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Introduction

Over the very last years, the Gendarmerie Nationale is interested in using Machine Learn-

ing and Artificial Intelligence methods in order to effectively find solutions to different issues

of national interest such as the prevention of the cybercrime, the airport security as it is stip-

ulated in the document of the Gendarmerie Nationale ”Plan stratégique de la recherche et

de l’innovation 2017-2022”. The prevention of road crashes is not clearly stated in this

document but it obviously stands in this innovative research direction and may be of great

interest for the Gendarmerie Nationale. The origin of the work presented in this report is

a small study asked in 2019 by the Gendarmerie Nationale de Besançon, more precisely by

colonel Joël Armand, focused on the multivariate analysis of road crash data from Franche-

Comté. I had the opportunity to be part of the 2nd Master degree student team in charge

of carrying out this project and the results obtained after one month work were presented to

the members of the Gendarmerie Nationale de Besançon including the colonel Joël Armand.

The Gendarmerie Nationale de Besançon was very interested in continuing this preliminary

statistical analysis and funding from the Grand Besançon Métropole (CAGB - Communauté

d’Agglomération du Grand Besançon) enabled this project to continue in the form of a the-

sis at the Mathematics Laboratory of Besançon (LmB - Laboratoire de Mathématiques de

Besançon) from the University of Franche-Comté and started in 2019. The first year of this

thesis project faced many difficulties due to COVID-19 and impacted the rest of the thesis.

First of all, road crashes data from 2020 and 2021 could not be used because the numerous

lockdowns made them atypical. In addition, meetings and communications with the Gen-

darmerie Nationale, the Police Nationale and the Doubs prefecture in order to collect data

and to discuss their interests in terms of accidentology were impacted and thus caused an

important delay in the progress of the work. Finally, it was impossible to present the work

at statistics conferences in 2020 as almost all national and international conferences have

been cancelled.

This thesis is structured into two parts entitled Injuries analysis of road accidents (one

chapter) and Space and time analyses of road accidents (three chapters). I give below a

short presentation of each part and chapters and I finish with some personal feelings about

this thesis.

15
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Part I: Injuries analysis of road accidents

Data used in the first part of the thesis are extracted from the French census of road

crashes BAAC files (Bulletin d’Analyse des Accidents Corporels) available on the open-

source French government website www.data.gouv. These data-sets have been enriched with

supplementary information concerning the consumption of alcohol and drugs obtained under

confidentiality agreements with the Gendarmerie Nationale de Besançon. More specifically,

our final datasets contain injury road accident characteristics filled in by the security forces

present on the accident scene (such as collision type, hurt obstacle, ...) reported on 4 950

accidents that occurred between 2005 and 2018 in the French region of Franche-Comté. The

first part of the thesis aims at giving a multivariate statistical analysis of road crash data

with special attention to road crash gravity.

The first step of this multivariate analysis was to perform Multiple Correspondence Anal-

ysis (MCA) in order to assess associations between the road crash injury and several impor-

tant accident related factors. Several multiple correspondence analysis have been performed

by considering separately the temporal type variables such as the time of the week or the day;

the spatial type variables such as the canton and finally, the spatio-temporal type variables.

These analyses highlighted the fact that associations may exist between the severity of the

accident (slight, serious or fatal), the department of the region (Doubs, Jura, Haute-Saône

or Territoire de Belfort) and the alcohol and/or drug consumption of the drivers. Besides, it

was noted that it may exist possible associations between the accident severity and several

temporal type variables such as the season of the year, the day of the week and the hour of

the day.

Log-linear models are used next in order to detect which associations between road crash

severity and related factors such as alcohol/drug consumption or spatial crash locations are

significant. Based on the associations revealed in a descriptive and geometric way with the

MCA, we consider a hierarchical and a non-hierarchical log-linear model. The two models

allow us to conclude that the considered associations are significant and to quantify the risks

by estimating the associated odds ratios. An important finding, for us as well as for the

Gendarmerie Nationale de Besançon, is the quantification of the estimated risks related to

the accident severity. For example, the risk that the accident is fatal is multiplied by six

if the driver has consumed alcohol and drugs. The Jura department also stands out as the

riskiest department. These results may encourage the Gendarmerie Nationale de Besançon

to take preventive measures to reduce the alcohol and drug consumption among drivers.

Finally, ordinal logistic regression was used in order to test the influence of each factor on

the accident severity. Eight factors, such as the alcohol and/or drug consumption or the time

of the day, were found to be highly influential on crash severity. Odds ratios estimated from

this model allowed to quantify the risks of the accident to be ”serious” (i.e. the accident has

at least one hospitalized person) or ”fatal” (i.e. the accident has at least one dead person)

and confirmed the results obtained with the log-linear modelling. They also revealed new

results such as the fact there is a significant risk that an accident will occur within the time

slot 4pm - 7:59pm.
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The results presented in the first part of the thesis are published in the article entitled

Multivariate statistical analysis for exploring road crash related factors in the Franche-Comté

region of France in Communications in Statistics: Case Studies, Data Analysis and Appli-

cations (Spychala et al., 2021). I presented them to several members of the Gendarmerie

Nationale de Besançon in 2020, 2021 and I have planned to present them to several con-

ferences in statistics during 2020 and 2021 which have been unfortunately cancelled due to

COVID-19 crisis.

Part II: Space and time analyses of road accidents

While the first part of this thesis is focused on the statistical modelling of the injury

accidents, so after the occurrence of the road accidents, the objective of the second part of

this thesis is dedicated now to predict the occurrence of road accidents, so before an accident

happens. More precisely, the main goal is now to spatially (eventually spatio-temporally)

predict the occurrence of the accidents in order to identify the critical geographical zones

and to build maps indicating the risky areas. Our study is motivated, in a second time, by

determining the riskiest factors. In order to meet these goals, the geographic coordinates of

the road accidents (recorded after the occurrence of the accident) are used in specific spatial

statistic models.

The data considered in the second part of the thesis concerns road accidents that occurred

in the Communauté d’Agglomeration du Grand Besançon (CAGB) between 2017 and 2019.

Road crash data are also extracted from the French government website www.data.gouv.

In order to conclude effectively on the critical areas of the CAGB and to identify the risk

factors, additional information was brought to the statistical analysis through covariates.

The covariates in question are now different from those used previously in the first part of

the thesis as the objectives are different: we wish to predict the occurrence on an accident,

while in the first part the accident had already happened. The covariates will be represented

by environmental factors that can potentially influence the occurrence of road accidents such

as the population density of an area, the number of shops in an area or the length of a given

road in an area. Gathering all this information required considerable effort and encountered

many obstacles. A major difficulty met on collecting such pertinent auxiliary information

was the lack of measures on the traffic density at a fine scale such that the number of cars

or taxi per day or week, information that generally turns out to be a relevant factor in road

accident statistical analysis. The traffic measures are actually collected by meters installed

at several locations from Besançon, every year, during one week of September. This poor

information of the traffic density in Besançon greatly limits the choice of statistical models.

We suggest in Chapter 4 a first statistical analysis based on such traffic data. To use high-

performance machine-learning models would be desirable but requires very rich traffic data

which is hard to collect without smart meters, devices that are not intended to be installed

in the city of Besançon as far as we know.

The second part of the thesis is divided into three chapters. In addition to the presen-

tation of the statistical analyses carried out in these chapters, particular attention is paid

also to the implementation in R (R Core Team, 2021) of all these methods. This detailed
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description aims at providing in an educational way both technical and practical elements

and it was inspired from reference books in statistics with applications in R such as Baddeley

et al. (2015).

Spatial point process analysis

Chapter 2 concerns the data preparation in order to be used next in the statistical

methods developed in Chapter 3. As mentioned above, environmental factors will be in-

corporated into the analysis. Focus is on gathering rich socio-demographic data and road

information concerning the CAGB by using open-data collected on numerous sites such as

www.data.gouv, www.insee.fr, www.openstreetmap.fr. This data collection required merging

several databases on a single support. Usually, spatial analysis is done on a computational

grid and significant data wrangling work has been carried out by using interpolation methods

in order to standardize different information sources on the chosen grid. This chapter gives

also numerous guidelines for using specific R packages dedicated to manipulation of spatial

data such as sf (Pebesma et al., 2022), spatstat (Baddeley et al., 2021b) and lgcp (Taylor

et al., 2021).

The statistical modelling considered in this second part of the thesis treats the road

crashes as the realization of an underlying stochastic process called point process. Road

crash data are considered then as a spatial point pattern. The essential element in the study

of point processes is the expected number of events per unit area or the intensity of the point

process. The context of road accidents directly implies the consideration of the intensity of

the process as a random process. We suggest in Chapter 3 to model the road crash data by a

Cox log-Gaussian process (Moller et al., 1998), namely a Cox process with the log-intensity

modelled by a latent Gaussian process and linearly related on several covariates previously

prepared in Chapter 2. To estimate the intensity of the process, and therefore the average

number of road accidents per unit area, we used Bayesian inference methods implemented by

using MCMC computation tools. A second concern focused on obtaining a powerful intensity

process model in terms of explanation and prediction while having a reasonable computation

time. To reduce the computational burden, we select first the most important covariates by

considering a variable selection ensemble method inspired from the random forest algorithm

and an importance variable criterion based on variable permutation as suggested in (Breiman,

2001). However, the variable selection method is not applied directly on LGCP models, as

they are very time-consuming, but on Poisson regression models since we considered that

the Poisson regression is the model that is the closest to the LGCP model while being very

fast. Several sets of covariates are thus selected and fitted in LGCP type models. The best

LGCP model (chosen according to a weighted mean square criterion) is used to create risk

areas maps for the CAGB and to identify the risk factors. The riskiest area of the CAGB,

for example, corresponds to the area with center given by the intersection of roads D673 and

N57 known to be a high traffic density area.

The results presented in Chapter 3 are the subject of an article in preparation. I have

also presented them in several national and international conferences in statistics.
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Spatio-temporal semiparametric analysis

While chapters 2 and 3 were concerned by the spatial component of the road accidents,

Chapter 4 focuses on temporal coordinates as well. The main objective is now to build

maps showing the risky areas relative to space and time. The road accidents considered here

occurred in the city of Besançon between 2017 and 2019 and it was extracted as usual from

BAAC files.

The statistical modelling considered in Chapter 4 is inspired by epidemiological studies,

more particularly by case-control studies. However, to carry out a spatio-temporal case-

control study in our situation, we only have the cases (road accidents). A major difficulty

in setting up this study is the absence of the control group. To overcome this issue, we

proposed to generate the control-cases by simulating realizations of a point process on the

road network (Baddeley et al., 2021a) having as intensity the traffic density. As detailed in

the general description of the part II of the thesis, the traffic density information is measured

only at several locations from Besançon during one week of September. We propose then to

extrapolate the traffic density to any location of the city of Besançon by using the method of

kriging used in geostatistics (Cressie and Wikle, 2011). Finally, a semiparametric modelling

is proposed in order to estimate the probability that a geolocated point is an accident relative

to time and to identify the risk factors.

This work is very recent and is the result of a collaboration with Benjamin Taylor (the

main author of the package lgcp Taylor et al. (2021)) from the University of Lancaster. I

visited the University of Lancaster for a month last May and started a research collaboration

with Benjamin Taylor.

Personal considerations

Finally, I wish to give at the end of the introduction chapter some personal thoughts. In

my opinion, a statistical analysis can be defined as a Brainstorming or MindMapping which

means that, starting from a study goal, the ideas and the steps are assembled around this

specific objective by sharing with specialists of the domain, theoreticians and/or practition-

ers. The methods used in order to give answers to the issues may vary according to the study

goal and especially to the available data. What is magical with the statistics is that there

exist several strategies and methods available in order to achieve our goals (if possible). The

reader may find in this thesis the solutions that I proposed in order to fulfill the goals that

we fixed at the beginning of the thesis, however several different statistical methods were

potentially also suitable to meet the same expectations. The subject of ”Road accidents”

actually weaves a large statistical web.

This thesis represented a huge opportunity for me. At the end of the Master degree,

I intended to learn more on the field of statistics and applied statistics and this is why I

wished to continue with a PhD. During the last three years, I have gained even more valuable

statistical knowledge, especially in spatial statistics which was an unknown field for me. I

have also improved my skills in terms of computational implementations as spatial tools

represent a very large sphere to explore. Besides, the thesis also enabled me to become more
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open even if, unfortunately, the years 2020 and 2021 have been difficult due to the COVID-

19. I had the chance to participate to many conferences and above all to go to Lancaster in

England several weeks. This was a great experience for me to live in Lancaster and to meet

people from the University of Lancaster.

The major part of what seemed very important for me during this thesis work such as

the specific literature review, the statistical methods and the computational tools necessary

to realize the analyses, has been structured and presented in the following of this report. I

hope that the reader will appreciate what took me three years to produce.
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Besançon using Log-Gaussian Cox Processes”, CHICAS (Centre for Health Informat-

ics, Computing And Statistics) seminar, May the 11th, 2022, University of Lancaster,

England.



21

2. Spychala, C., Dombry, C. and Goga, C. (2021). ”Spatial modelling road accidents in
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Chapter 1

Multivariate statistical analysis for

exploring road crash related factors in the

Franche-Comté region of France 1

Multiple Correspondence Analysis, log-linear models and ordinal logistic

regression

Understanding and modelling road crash data is crucial in fulfilling

safety goals by helping national authorities to take necessary measures

to reduce crash frequency and severity. This work aims at giving a mul-

tivariate statistical analysis of road crash data from the French region

of Franche-Comté with special attention to road crash gravity. The first

step for this multivariate analysis was to perform Multiple Correspondence

Analysis in order to assess associations between the road crash injury and

several important accident related factors and circumstances. Log-linear

models are used next in order to detect associations between road crash

severity and related factors such as alcohol/drug consumption or spatial

crash locations. The effects of each factors have been also evaluated on the

road crash gravity by using ordinal logistic regression. Data used in this

study are extracted from BAAC files, the French census of road crashes.

1.1 Introduction

Over the last decade, the number of road crashes has continuously been decreasing in

France. Indeed, 61 224 accidents have been recorded in 2017 instead of 58 352 in 2018, a

decrease of 4,7% (ONISR, 2019). However, road accidents still happen and important efforts

and means are developed to prevent them. Among these, modern statistical methods are

1This chapter leads to an article that has been accepted for publication in Communications in Statistics:
Case Studies, Data Analysis and Applications.
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efficient prevention tools used to describe and model accident data. This paper is concerned

about road accidents that occurred in the Franche-Comté region of France (see Fig. 1.1).

This region from the east of France is split up into four departments called Doubs, Jura,

Haute-Saône and Territoire de Belfort. Regarding to the mortality rate from 2017 to 2018,

this rate has globally decreased for this region. However, the situation is quite different

within each department. Indeed, the death rate has increased by 3% from 2017 in the

Doubs department while it has decreased in the Haute-Saône, Jura and Territoire de Belfort

departments by 45%, 65% and respectively by 50% (ONISR, 2019). Understanding and

modelling accident data is crucial in fulfilling safety goals by helping national authorities to

undertake necessary measures to reduce crash frequency and severity.

This paper focuses on accidents in Franche-Comté involving casualties. An accident

refers to a road crash with casualty needing hospital care and can involve several cars and

several people. One of the main goals of the National Gendarmerie of Besançon (Doubs,

France) is to reduce the number of accidents in Franche-Comté. More precisely, the National

Gendarmerie of Besançon plans to be able in the near future to anticipate road crashes by

using time and spatial modelling of accident data. This study aims at giving a multivariate

statistical analysis of the road crashes in Franche-Comté. A first multivariate descriptive

study of French accident data was conducted by Bièvre (2017) in an unpublished technical

report. We intend in this work to give a deeper analysis of Franche-Comté accident data.

The main goal of this research work is to explain the variable giving the severity or

the gravity of the accidents by using several covariates such as spatial location, time pe-

riod, weather conditions, road type, alcohol/drug consumption... Our multivariate statistical

analysis starts with a Multiple Correspondence Analysis (MCA). The MCA as suggested by

Benzécri (Benzécri, 1973, 1982) is the generalization of the Correspondence Analysis (CA)

for analysing jointly more than two categorical variables. This method is widely used in

categorical data analyses because it allows detecting similarities between individuals and as-

sessing associations between categories. Geometric representations of data clouds in smaller

dimension spaces allow identifying clusters of similar individuals and of associated categories

or variables. Many applications of MCA and related methods in various fields such as so-

cial, demographic, economic are given in Greenacre and Blasius (2006). The goal here is

to determine the accident factors mostly related to road crash severity. In the literature

concerning the accident analysis and prevention, several studies used MCA in various con-

texts but different from our framework. For example, Das and Sun (2015) used eight years

of pedestrian crash data and MCA to identify key associations between risk factors and

Das and Sun (2016) used MCA to identify crash-prone factors producing fatal run-off-road

crashes; Das et al. (2018) investigated the wrong way driving crash patterns by using MCA

while Fort et al. (2019) tried to explain working conditions and risk exposure of employees

whose occupations require driving on public roads.

The MCA analysis conducted on the Franche-Comté accident data set allows us to iden-

tify several variables associated with the road crash severity. A more in-depth analysis of

these variables is next considered by log-linear modelling (Agresti, 2013). The log-linear

model belongs to the class of generalized linear model (McCullagh and Nelder, 1989). In the



1.2. MATERIAL AND METHODS 27

case of categorical data, the cell counts of the contingency table are modelled by a Poisson

distribution and a log link function is used for the mean. More precisely, the log-linear model

specifies how the expected counts depend on the levels of the categorical variables and it

allows to quantify the associations and interactions between those variables. Unlike MCA,

log-linear models allow getting insight into complex dependence patterns such as conditional

or marginal dependence which may exist between several categorical variables. In our frame-

work, we will use log-linear models in order to detect conditional or marginal associations

between road crash severity and other variables such as alcohol/drug consumption and spa-

tial location. In a similar way, Abdel-Aty et al. (1998) used log-linear models to explain

associations between the driver age and several important factors and circumstances related

to the accident. Also, Yannis et al. (2005) performed a log-linear analysis in order to test

the significance of first- and second-order effects among various combinations of driver age

and engine size categories in relation to two-wheeler accident severity and at-fault risk rates.

Then, Abdel-Aty and Abdelwahab (2000) used log-linear models to investigate whether there

are associations between the different driver characteristics and alcohol involvement and also

in order to identify the high-risk group within each driver factor.

Finally, we propose ordinal logistic regression (Agresti, 2013) to model the gravity level

probabilities as a function of explicative covariates such as alcohol/drug consumption, time

period and spatial locations. This method widely used in accident data analysis is a pop-

ular supervised learning method for analysing dependencies between a binary or multiclass

response categorical variable and several explanatory variables. It allows in particular to sep-

arate and identify the effects of each explanatory variable on the response variable. Rezapour

and Ksaibati (2018) used ordinal logistic regression to investigate the contributory factors

that increased the odds of severe single-truck and multiple-vehicle crashes such as character-

istics related to driver or vehicle for instance. Then, Mekonnen (2018) has also performed

ordinal logistic regression in order to identify the risk factors among driver age, speed record

or alcohol consumption for example for severity levels of road traffic accident.

The paper is structured as follows. We first describe in Section 1.2 our data set as well

as the analysis methods: MCA is described briefly in Section 1.2.2, log-linear modelling in

Section 1.2.2 and ordinal logistic regression in Section 1.2.2. Section 1.3 contains the main

results of our study and, lastly, Section 1.4 concludes and proposes several recommendations

and perspectives.

1.2 Material and methods

1.2.1 Franche-Comté accident data

Data used in this study concern the Franche-Comté road crashes between 2005 to 2018

which are extracted from the French national analysis bulletin of road traffic injury accidents

called BAAC 2 (Bulletin d’Analyse des Accidents Corporels). The BAAC data are filled in

by the security forces present on the accident scene and next, data are treated, analysed

2The reader can find the BAAC open data on the government website https://www.data.gouv.fr/fr/
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Fig 1.1: France map with road crash frequency of Franche-Comté region. Each small division
corresponds to a canton.

and put online by the national interdepartmental observatory of road safety (Observatoire

National Interministériel de la Sécurité Routière).

The BAAC files contained more than 50 variables from which 15 new categorical variables

have been created and/or reclassified. The Franche-Comté accident dataset has 11 776

casualties registered in 4 950 accidents. The study focuses only on the accident itself and

not on each casualties. The region Franche-Comté is situated in the east of France and

neighboring Switzerland as we can see from Fig. (1.1). The counties situated on the west of

Franche-Comté are mountainous and entirely deserved by national and departmental roads.

A daily intensive border activity between Switzerland and France is also present in these

counties.

The analysis emphasizes the accident severity, denoted by type acc, classified into three

ordered levels: “slight safe”, “serious” and “fatal”. An accident is considered as ”slight safe”

(11,47% of accidents) if all passengers were safe or had minor injuries; the label ”serious”

was attributed to accidents involving at least one casualty needing hospital care for more

than 24 hours (69,82% of accidents) and lastly, an accident is considered as ”fatal” (18,71%

of accidents) if at least one casualty involved died.

The alcohol/drug consumption by car drivers is one of the main accident causes and has a

great impact on their severity. The categorical variable substance describing the alcohol/drug

consumption by the drivers involved in a road crash has the following levels:

• ”alcohol drug” when at least one of the involved drivers has consumed both alcohol

and drugs (2.69%);
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• ”drug” when at least one of the involved drivers has consumed drugs (2.73%);

• ”alcohol” when at least one of the involved drivers has consumed alcohol but not drugs

(16.22%);

• ”none” is associated with accidents involving only sober drivers (78.36%).

If the accident involves only one driver, the variable substance concerns the unique driver.

As mentioned above, the goal of this study is the statistical analysis of accidents and an

accident may involve several drivers and casualties. Variables such as age or sex refer to

individuals and are not straightforward to recode for an accident involving several persons.

For this reason, age or sex do not appear in our multivariate analysis.

In order to give a more thorough statistical analysis, we considered further 7 categorical

variables giving supplementary information about the weather, the type of the road and of

the collision:

• weather with two categories: normal and other kind (such as rainy, cloudy or snowy

weather);

• area with two categories: unurban and urban;

• intersection with two categories: intersection and out of intersection;

• obstacle corresponding to a mobile obstacle with four categories: vehicle, pedestrian,

other kind (such as animals) and none;

• shape road with two categories: curve and straight;

• collision with three categories: usual (such as frontal or rear-end collisions), other kind

and none;

• type road with five categories: communal, departmental, national, highway and

other kind (such as parking).

The above variables will be denoted in the paper as general features.

In order to conduct the temporal analysis of the Franche-Comté road crashes, we used

the following categorical variables related to the time period when the accident occurred,

denoted in the rest of the paper as temporal features:

• season with four categories: spring, summer, autumn and winter;

• week with two categories: weekday and week end;

• daytime with two categories: day and night;

• time with five categories: 7am 10am, 11am 3pm, 4pm 7pm, 8pm 11pm and mid-

night 6am. Note that the category 7am 10am means from 7:00 am to 10:59 am. It is

also the case for the other categories of time.
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In our accident data, each accident is located by the commune (town or village) and

the department (Doubs, Jura, Haute-Saône, Territoire de Belfort) where the accident took

place. The variable commune was used to build the variable canton (district) by regrouping

the 1176 communes into 50 cantons. In fact, the region of Franche-Comté is splitted up into

62 cantons, however, some cantons have been grouped together as for instance ”Belfort-1”,

”Belfort-2” and ”Belfort-3” into ”Belfort”. This reclassification allows to smooth the variabil-

ity of cantons categories. Hence, Jura department is divided into 15 cantons, Haute-Saône

and Doubs both into 14 cantons and Territoire de Belfort into 7 cantons. The categorical

variables department and canton have been used for the spatial analysis, whereas the vari-

able commune was dropped due to too many categories. We give in Fig. (1.1) the division

of Franche-Comté into cantons with their road crash frequencies; Jura department is the

department with the highest road crash frequency. These two variables will be denoted in

the rest of the paper as spatial features.

Tab 1.1 gives the cross-tabulation of the accident severity (type acc) with the different

categorical variables.
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1.2.2 Statistical analysis

Multiple Correspondence Analysis

The Multiple Correspondence Analysis (MCA) is an efficient unsupervised method for

exploring multivariate categorical data. The aim of MCA is to study the similarities be-

tween the individuals, to assess the relationships between the variables and to examine the

associations between the categories. For a thorough description of MCA as well as of related

methods, the reader is referred to the book of Greenacre and Blasius (2006). This method

allows, if appropriate, to corroborate a strong link between categorical variables. In some

cases, MCA enables to cluster categories and to reduce the data dimension allowing multi-

variate data to be analyzed more easily. Indeed, a graphical representation of individuals

and variables is built in an orthogonal system similarly as in Correspondence Analysis (CA).

This statistical tool is powerful for understanding, visualizing and simplifying the data.

MCA can be derived in several ways. One way is to apply CA on the indicator matrix

X = [X1 X2 . . . Xp] derived from the original data Individuals×Categorical variables
of p categorical variables recorded on n individuals. Each indicator matrix Xj is obtained by

column concatenation of Kj dummy variables where Kj is the number of categories of the

jth categorial variable, j = 1, . . . , p. Hence, X is a respondents-by-categories matrix having

n rows, corresponding to individuals, and K =
∑p

j=1Kj columns, corresponding to variable

categories. An element of this table, denoted by xik, is equal to 1 if the individual i has the

category k and 0 otherwise, i = 1, . . . , n and k = 1, . . . ,K. The indicator matrix X has row

sums equal to the constant p and column sums equal to nk, the marginal frequency of the

kth category, namely the number of individuals having the category k.

This kind of data implies the study of three kinds of objects: the individuals, the vari-

ables but also their categories. The scheme of MCA is to compare individuals and evaluate

variables characteristics by providing row typologies, column typologies and the relationships

between these typologies (Escofier and Pagès, 2008).

From a technical point of view, MCA uses as CA the χ2 distance in order to assess

similarity or dissimilarity between different columns or lines contained in X. The indicator

matrix X is transformed in order to obtain row profiles by dividing each element of a row

by the row frequency as well as column profiles by dividing each element of a column by

its frequency. In the case of MCA, row and column profiles are very simple. The ith row

profile is given by (xik/p)
K
k=1: the elements of a row profile have only zero and 1/p values, the

non-zero value being recorded if the individual i possesses the category k. So, row profiles

will be different only for ith and i′th individuals having mismatching category levels. The

kth column profile is given by (xik/nk)
n
i=1 : the elements of the column profile are zero and

1/nk values.

The χ2-distance between two individuals i and i′ is a weighted sum of squared distances

between the ith and i′th row profiles with weights given by the inverse of the average row
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profile given by (nk/np)
p
k=1:

d2
i,i′

=
K∑
k=1

np

nk

(
xik
p
− xi′k

p

)2

=
n

p

K∑
k=1

(xik − xi′k)
2

nk
, 1 ≤ i, i′ ≤ n. (1.1)

Hence, the terms from the above sum will be all zero for coincident zero values and coinci-

dent 1/p values meaning that these squared differences will not contribute to the distance

measure. Only differences between noncoincident categories will contribute to the distance

d2
i,i
′ and this contribution is proportional to (1/p)2 with weight equal to the inverse of the

marginal frequency nk. The χ2 distance between row profiles can be interpreted as a weighted

mismatching dissimilarity coefficient: small distance di,i′ means that individuals i and i′ have

many categories in commun, so they are very similar and on the contrary, large distance di,i′

means that i and i′ have few categories in commun, so they are very different. Moreover, a

rare category (small nk) has a large contribution to the final distance and moves its owner

or owners far away from the others individuals.

While the interpretation of the χ2 distance between individuals is similar to the one given

in the CA, the χ2 distance interpretation for variable analysis is quite different and more

difficult to justify (Greenacre, 2006). Information contained in a variable can be studied

through its categories, thus, MCA focuses mostly on variable categories. As for row-profiles,

the distance between categories k and k′ is defined as the weighted sum of squared distances

between the kth and k′th column profiles with weights given by the inverse of the average

column profile which has in this case all elements equal to 1/n:

d2
k,k′

= n

n∑
i=1

(
xik
nk
−
xik′

nk′

)2

=
1

pk
+

1

pk′
− 2pkk′

pkpk′
, 1 ≤ k, k′ ≤ K, (1.2)

where pk = nk/n is the relative frequency of the category k and pkk′ the relative frequency

of occurence of categories k and k′. If k and k′ are different categories of the same variable,

then pkk′ = 0. As it is defined, the distance between column profiles is a decreasing function

with respect to the relative frequencies pk and joint relative frequencies pkk′ . Two categories

are close one to each other with respect to this χ2 distance if they have many individuals in

common. Again, rare categories are far away from the others. In brief, it is important to

take the frequency of each category into account. However, as remarked by Greenacre (1989)

and Greenacre (2006), the terms 1/pk present in the χ2 distance are hard to interpret.

Once that distances between objects (individuals and variables) have been defined, the

next step in a MCA is to represent individuals and variables in new orthogonal systems and

to make the geometric data analysis on smaller dimension sets (Le Roux and Rouanet, 2004).

As in principal component or correspondence analysis, new orthogonal systems are built such

that they maximise the projected inertia of the individual cloud or variables on these new

orthogonal axis, the inertia being defined as usual as the weighted sum of squared distance

of individuals or variables to their barycenter. Each axis represents a certain percentage

from the total inertia. However, these percentages in MCA are lower than in CA and more

dimensions are needed to interpret properly the analysis. Transition relations link the cloud
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of individuals with the cloud of categories and a biplot representation is usually used as

a joint map of individuals and variable categories. The contribution of each individual to

each axis as well as the quality of its representation on each axis are obtained in a similar

way to CA. For more details about the graphical representation and all matters connected

therewith, see for example Greenacre (2006), Escofier and Pagès (2008, chapter 4), Husson

et al. (2016, chapter 3).

Log-linear model

Multivariate categorical data as multidimensional contingency tables (with an order

greater than two-way) display relationships between categorical variables. This kind of data

can me model by a log-linear model, that is a generalized linear model for Poisson regression.

The Poisson distribution is the simplest distribution for count data. The model describes

association and interaction among categorical variables and its purpose is to establish depen-

dence patterns between variables. There is no distinction between explanatory or response

variables since only the cell counts are considered. The reader may find a comprehensive

description in Agresti (2013, chapter 9).

For the sake of simplicity, we present the method for three categorical variables X1, X2

and X3 respectively with K1, K2 and K3 categories. The most general log-linear model for

the three-way table K1 ×K2 ×K3 is written as

logµk1k2k3 = λ+ λX1
k1

+ λX2
k2

+ λX3
k3

+ λX1X2
k1k2

+ λX1X3
k1k3

+ λX2X3
k2k3

+ λX1X2X3
k1k2k3

, (1.3)

where µk1k2k3 is the expected frequency of the cell with X1 = k1, X2 = k2 and X3 = k3.

The model-parameters are interpreted as follows: λ is the overall effect; λ
Xj

kj
is the effect

of the level Xj = kj , j = 1, 2, 3; λ
XjXj

′

kjkj′
is the interaction effect of levels Xj = kj and

Xj′ = kj′ , 1 ≤ j, j′ ≤ 3; finally λX1X2X3
k1k2k3

is the interaction effect between the levels X1 = k1,

X2 = k2 and X3 = k3. The model (1.3) is called the saturated model, it includes all

possible main effects and interactions between the variables. Some constraints between the

parameters ensure model identifiability and the number of free parameters in the saturated

model is equal to the number of cells K1K2K3, which is why the saturated model fits the

data perfectly. It reproduces exactly the observed cell frequencies and does not provide much

relevant information.

The aim is to find the simplest model that fits the data adequately, that is, a more

parsimonious model with less parameters. An unsaturated model is obtained by imposing

the nullity of some coefficients in (1.3) and may be more appropriate due to simpler in-

terpretations. Validation is performed thanks to goodness-of-fit assessment comparing the

expected cell frequencies to the observed frequencies. The goodness-of-fit can be tested with

the likelihood-ratio statistic:

G2 = 2

K1∑
k1=1

K2∑
k2=1

K3∑
k3=1

nk1k2k3 log
(nk1k2k3
µ̂k1k2k3

)
,
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where nk1k2k3 and µ̂k1k2k3 are respectively the cell frequencies and the fitted values from

model (1.3) taking into account the nullity constraint (Agresti, 1990). The G2 statistic is

used to determine the rejection or acceptance of a model. The larger the value of G2, the

more evidence there is against that the related model does fit the data adequately, hence it

should not be kept.

Tab 1.2: Different structures of log-linear models corresponding to different dependence
structures. The third column ”Symbol” corresponds to model notations, that is, the higher-
order model term represented of each variable used in the model.

Log-linear model Interpretation Symbol

λ+ λX1
k1

+ λX2
k2

+ λX3
k3

mutual independence (X1, X2, X3)

λ+ λX1
k1

+ λX2
k2

+ λX3
k3

+ λX2X3
k2k3

independence of X1 and (X2, X3) (X1, X2X3)

λ+ λX1
k1

+ λX2
k2

+ λX3
k3

+ λX1X3
k1k3

+ λX2X3
k2k3

independence of X1 and X2 given X3 (X1X3, X2X3)

λ+ λX1
k1

+ λX2
k2

+ λX3
k3

+ λX1X2
k1k2

+ λX1X3
k1k3

+ λX2X3
k2k3

homogeneous association (X1X2, X2X3,X1X3)

Different types of unsaturated log-linear models correspond to different type of depen-

dence between the variables X1, X2 and X3. We will consider here only hierarchical models,

meaning that if variables are involved in high order interactions, all the lower-order inter-

action term must also appear. For example, if the model contains λX1X2
k1k2

, then it also must

contain λX1
k1

and λX2
k2

. Table 1.2 summarizes the different types of resulting models which are

ordered with increasing complexity. The simplest model, noted (X1, X2, X3), assumes the

nullity of all the interaction effects and corresponds to the mutual independence of X1, X2

and X3. The model with no interaction of order 3 and no interaction of second order be-

tween X1, X2 and X1, X3 is noted (X1, X2X3) and corresponds to the independence of X1

and (X2, X3). The model with no interaction of order 3 and no interaction of order 2 between

X1 and X2 is noted (X1X3, X2X3) and corresponds to the conditional independence of X1

and X2 given X3. Finally, the model (X1X2, X2X3, X1X3) has all interactions of order 2 but

no interaction of order 3 and corresponds to homogeneous association that we will explain

below. One goal of the analysis of the log-linear model is to find out which is the simplest

model suitably fitting the data.

We now discuss marginal and conditional association of variables. A two-way contin-

gency table can be obtained by marginalizing out the third variable, obtaining the so-called

marginal table. Associations in this table are summarized by the marginal odd ratios. The

marginal odds ratio of a 2× 2 table (of X1 and X2) is defined by

θX1X2 =
µ11+µ22+

µ12+µ21+
.

where µij+ =
∑

k3
µijk3 are the expected marginal frequencies with i, j = 1, 2 and k3 a fixed

category of X3.

The distribution of the two variables X1 and X2 can be displayed conditionally on differ-

ent levels of X3 using cross sections of the three-way contingency table. The associations in

these cross-sections (also called partial tables) are called conditional associations and sum-

marized by conditional odds ratios: for instance the ratio of the odds of a 2× 2×K3 table
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is defined by

θX1X2(k3) =
µ11k3µ22k3

µ12k3µ21k3

.

On the other hand, the absence of interaction of order 3 in the model (X1X2, X2X3, X1X3)

implies that the conditional odds ratios do not depend on the category of the third condi-

tioning variable (Agresti, 2013). This property explains the term homogeneous association.

In practice, often data sets contain a large number of categorical variables which may

have a large number of levels. Hence, using log-linear models as described before would

require a large number of higher order interactions. The estimation and interpretation

of parameters may be difficult in such situations. To cope with this difficulty, one can

restrict the interaction parameters to have some predefined form, for example a product

form as suggested by Andersen (1980), Goodman (1986). The resulting model, known as

the multidimensional row-column or the RC association model is log-multiplicative rather

than log-linear since it contains multiplicative terms for the interactions. The number of

parameters from log-multiplicative models to be interpreted are considerably reduced in this

way. Coefficients used in these multiplicative terms are closely related to elements from the

singular value decomposition associated to the correspondence analysis of the contingency

table as described in Van der Heijden et al. (1989). The simple or multiple correspondence

analysis may be also used to detect groups of variables or categories of variables which are

mostly related. Then, one can fit a log-linear model using only these groups of selected

variables/categories of variables. The resulting log-linear model is no longer hierarchical but

the number of interactions is considerably reduced.

Ordinal regression model

The logistic regression is a popular supervised learning method for analysing dependencies

between a response categorical variable Y (binary or multiclass) and explanatory variables

denoted by X = (X1, . . . , Xp). More precisely, the logistic regression is used in order to

separate the effects of each variable, that is, identify the effects of an explanatory variable

Xj , j = 1, . . . , p, on the response variable Y . The logistic regression for a binary or multiclass

response variable will be presented briefly below, for more details see for example (McCullagh

and Nelder, 1989, chapter 5), (Agresti, 1990, chapter 9) or (Hothorn and Everitt, 2014,

chapter 7).

Let Y ∈ {0, 1} be a binary response variable. The logistic regression model is written as

P(Y = 1 | X = x) = F (β0 + βTx),

where x ∈ Rp, β0 ∈ R, β ∈ Rp and F (t) = et/(1 + et), t ∈ R, is the inverse logistic

link function. The coefficients β0, β1, . . . , βp are estimated by maximum likelihood method.

Equivalently, the log odds of the event {Y = 1} given X = x is linear in x :

log odds(Y = 1 | X = x) = log
P(Y = 1 | X = x)

1− P(Y = 1 | X = x)
= βTx.
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Finally, a variable Xj reveals to have an effect on the response variable if the result of the

nullity coefficient test for βj is significant, that means, βj not equal to 0 (several nullity tests

exist such as Wald test for instance).

Now, in this study, the focus lies on a categorical variable with more than two categories.

Let Y be a multiclass response variable. The logistic regression for a multiclass response

variable is an extension of the logistic regression for a binary one. When the categories

{m1, . . . ,mq} of the response variable Y are hierarchically ordered as m1 ≺ . . . ≺ mq, a way

to model Y is to suppose that there exists a latent unobserved continuous variable denoted

Y ∗ ∈ R, with logistic distribution F , such that

Y = mk if and only if ck−1 < Y ∗ ≤ ck,

where −∞ = c0 < c1 < . . . < cq−1 < cq = +∞ and k = 1, 2, . . . , q. Then, the ordinal

regression model is written as

P(Y � mk | X = x) = F (ck − βTx), (1.4)

where k = 1, 2, . . . , q−1. Note that the general intercept β0 is replaced by the set of ordered

intercept paramaters ck mentioned before. The unknown coefficients c1, . . . , cq−1, β1, . . . , βp

are estimated by maximimum likelihood.

Model (1.4) is also called the proportional-odds model due to the following property: the

log odds ratio of {Y � mk} at X = x1 and X = x2 is given by

log
odds(Y � mk | X = x1)

odds(Y � mk | X = x2)
= −βT (x1 − x2),

and does not depend on the category mk.

1.3 Results

This section aims at giving a multivariate analysis of Franche-Comté road crash data by

using the above described methods. Our analysis begins by performing several MCA analyses

on road crash variables to provide insights multivariate road crash related variables by using

geometric data visualization. This method is a powerful tool to distinct non-trivial category

associations if it is the case. More exactly, MCA analyzes were performed by considering

temporal and spatial features separately and next, a global MCA analysis based on temporal,

spatial features and variables which revealed to be most related one to another from separate

MCA analysis. General features such as crash gravity, alcohol/drug consumption, road type

and so on were included in the three performed MCA analyzes. These MCA analyzes revealed

several association and interaction patterns among the set of categorical variables related

to road crash gravity and hierarchical and non-hierarchical log-linear models were fitted in

second time to describe more thoroughly these associations. Finally, the ordinal regression

model allows to quantify the effects of each explanatory variable on the ordered response

variable road crash gravity.
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This study used open-source R software packages FactoMineR (Lê et al., 2008) and

factoextra (Kassambara and Mundt, 2019) to perform MCA, glm function to perform log-

linear models, then packages MASS (Venables and Ripley, 2002) and ordinal (Christensen,

2019) to perform ordinal logistic regression. Graphics were plotted with ggplot2 package

(Wickham et al., 2021).

1.3.1 MCA of road crash temporal variables

We conducted a MCA temporal analysis by considering general and temporal features as

described in Section (1.2.1). Spatial features are not included in MCA analysis. Fig (1.2)

gives the percentages of variance explained by each of the first ten axes built by the MCA

analysis. The first three-factorial axes explain 22,09% of the total variance and only these

axes were kept for further analysis. Two-dimensional geometrical representations are given

in Fig (1.3)-(1.5) and interpreted below. Each time, only the 25 best represented categories

have been plotted.

The two-dimensional map in Fig (1.3) gives the representation of categories on the plane

made by axis 1 and axis 2 and it accounts for 16,07% of the total inertia. The more categories

a variable has, the more it contributes to the inertia. The variables season and weather are

not represented on the first factorial plane since they are very poorly represented on this

plane. Next, categories with the greatest contribution to the axis 1 are ”night” (13,26%),

”none” from obstacle (10,57%) and ”midnight 6am” (9,26%) and respectively, ”pedestrian”

(28,45%), ”urban” (19,04%) and ”other kind” from collision (11,46%) for axis 2.

In this first factorial plane, axis 1 shows the contrast between weekday accidents (acci-

dents occurring during the week) and weekend ones (accidents occurring during the weekend).

Weekday accidents are more frequent during the day and mostly around lunch time, in urban

areas, on communal roads and are not associated to alcohol or drug consumption. These

accidents are more likely to happen on straight roads, at intersections and caused by col-

lisions between several vehicles. Weekend accidents, instead, are more frequent during the

night and mostly between 8 pm and 6 am, outside urban areas and involve more frequently

drug consumers. These accidents occur mainly on curve roads and no external factors seem

to impact (out of intersections, no bumped mobile obstacles or no collisions). To sum up,

this first factorial axis is related to fatal accidents.

Axis 2 provides a similar information as axis 1: it opposes accidents occurred during

weekday time, in urban area, at intersection and on straight road to accidents occurred

during weekend time, outside urban area, out of intersection and on curve road. However,

axis 2 stresses the fact that fatal road crash are more likely to occur between midnight and

6 am especially when alcohol and drugs have been consumed.

Geometrical representations derived in MCA plot closely associated categories and

unassociated ones further apart. The first factorial plane reveals several strong associations

among categories: categories ”straight”, ”intersection”, ”weekday”, ”substance none”,

”11am 3pm”, ”collision usual” are strongly associated to categories ”obstacle vehicle”;

categories ”curve”, ”out of intersection, ”week end”, ”unurban” are strongly associ-
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ated to ”fatal”; ”night”, ”8pm 11pm”, ”midnight 6am”, ”obstacle none”, ”alcohol” and

”alcohol drug” in the same way.

On the other hand, this factorial plane also shows that some categories are far from

the others, this results from their lower frequencies. Indeed, as it is given in Tab 1.1,

”obstacle pedestrian” and ”type road other kind” represents respectively only 8,28% and

2,53% of road accidents.

Fig (1.4) gives the two-dimensional map of axis 1 and axis 3 and it explains 15, 32% of the

total inertia. The variable area has been omitted from this geometrical representation due to

its poor representation quality. Categories that contribute the most to axis 3 are categories

”night” (11,82%), ”none” (11,08%) of the variable collision and category ”winter” (10,96%)

of the variable season.

In this factorial plane, axis 3 suggests that summer accidents tend to differentiate from

winter ones. Summer accidents are more likely to occur during the day, around lunch time

and on week-end time. They are globally associated to no alcohol or drug consumption,

happening on curve roads, out of intersections and other kind of collision. Winter accidents

instead occur more frequently during the night, the week time and on national roads. They

are also mostly associated with substances consumed, happening on straight roads, at in-

tersections and collisions with vehicles. The associations with straight roads, intersections

and collisions with vehicles seem to be caused by weather (”other kind”) which is generally

snowy in winter. In addition, the axis 3 specifies that winter accidents are more likely to be

fatal.

Two groups of strongly associated categories stand out in the second factorial plane: the

group formed by ”obstacle vehicle”, ”collision usual”, ”intersection”, ”straight”, ”weekday”,

”substance none”, ”day”, ”11am 3pm” and the other group formed by ”summer”; ”night”,

”8pm 11pm”, ”midnight 6am”, ”alcohol drug”. These groups resonates to those mentioned

previously.

Fig (1.5) gives the two-dimensional map of axis 2 and axis 3 and it explains 12,79%

of the total inertia. From the thirteen variables used, the variables substance, week and

intersection are very poorly represented on this map and are omitted from this geomet-

rical representation. This plot emphasizes the differences between serious and fatal acci-

dents which tend to be strongly associated with lunch time and respectively night time.

We distinguish two groups of close categories: ”winter”, ”night”, ”fatal”, ”8pm 11pm”,

”obstacle vehicle”, ”collision usual” and ”weather other kind”; ”type road departmental”,

”serious”, ”weather normal”, ”spring”, ”curve”, ”day”, ”summer”, ”11am 3pm” and ”ob-

stacle none”.
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Fig 1.2: MCA temporal analysis: variance percentage explained by the first 10 axes.

Fig 1.3: MCA temporal analysis: factorial plane made by axis 1 and axis 2.
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Fig 1.4: MCA temporal analysis: factorial plane made by axis 1 and axis 3.

Fig 1.5: MCA temporal analysis: factorial plane made by axis 2 and axis 3.
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1.3.2 MCA of road crash spatial variables

We performed a spatial analysis by considering the general features as well as the spatial

ones as described in the Section (1.2.1). Temporal variables (season, week, daytime and time)

are not considered in this analysis. Due to the several categories of the variable canton, the

spatial analysis of Franche-Comté has been splitted into two analyses corresponding to Doubs

and Jura departments. We will interpret only relationships from categories situated close

one to another in the plot.

Doubs department

For the spatial analysis of Doubs department, the first four factorial axes explain 21,22%

of the total inertia. Note that only the first 25 categories with the most important represen-

tation qualities were plotted.

Plot made by axis 1 and axis 2 given in Fig (1.7) explains 12,74% of the total inertia.

Not all the variables are plotted, the variable weather is less well represented than the other

categories and it does not figure on the plot. Categories which contribute the most for axis

1 are ”none” (20,77%) and ”vehicle” (14,06%) from obstacle, then ”usual” from collision

(12,88%); and for axis 2”pedestrian” (22,53%), ”urban” (18,92%) and ”other kind” from

collision (9,73%).

As mentioned before, associations can be highlighted by the proximity of cate-

gories on the factorial plot. Two groups of close categories with spatial connotations

stand out: ”type road other kind”, ”type road communal”, ”Bethoncourt”, ”urban” and

”Valentigney”; ”Besançon”, ”collision usual” and ”obstacle vehicle”. The first group

emphasizes that Bethoncourt and Valentigney accidents are more frequent in urban areas.

The second one strongly insists that the canton of Besançon is more conducive to collisions

with vehicles.

Additional plots made by combinations of axis 1, 2, 3 and 4 explain between 8,48% and

11,01% of the total inertia, it should be noted that compared to each other the associations do

not differ. These plots indicates, in addition to what was said before, that Besançon accidents

tend to be fatal when the weather is bad and more characterized by bumped pedestrians;

Bethoncourt accidents are mostly associated with substance consumption and very strongly

associated to ”drug”; Baume-les-Dames accidents are more likely to be fatal; Besançon,

Saint-Vit and Ornans accidents are mainly similar and more frequent on communal and

national roads; most of Mâıche accidents are not caused by collisions.
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Fig 1.6: MCA spatial analysis, Doubs department: variance percentage explained by the
first 10 axes.

Fig 1.7: MCA spatial analysis, Doubs department: factorial plane made by axis 1 and axis
2.

Jura department

For the spatial analysis of Jura department, the first four factorial axes explain 21,88%

of the total inertia. Note that only the first 25 categories with the most important represen-

tation qualities were plotted.

Plot made by axis 1 and axis 2 explains 13,08% of the total inertia and is given in Fig

(1.9). Not all the variables are plotted, the variable weather is less well represented than the

other categories and it does not figure on the plot. Categories which contribute the most for
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axis 1 are ”none” (18,34%) and ”vehicle” (13,79%) from obstacle, then ”usual” from collision

(11,94%); and for axis 2 ”pedestrian” (24,89%), ”urban” (18,69%) and ”other kind” from

type road (11,23%).

We can distinguish three groups of close categories, with components of the canton

variable that stand out in this factorial plane: ”Saint-Lupicin”, ”fatal”, ”drug”, ”alco-

hol drug”, ”alcohol” and ”obstacle none”; ”Authume”, ”Saint-Laurent-en-Grandvaux”, ”un-

urban”, ”type road departmental” and ”out of intersection”; ”Champagnole”, ”urban” and

”type road communal”. The first group highlights that accidents in the canton of Saint-

Lupicin are more likely to be fatal and associated to alcohol and drug consumption. The

second one tells that accidents happening in Authume and Saint-Laurent-en-Grandvaux are

more frequent in non urban areas, on departmental roads. Then, the third group of close

categories shows that accidents in the canton of Champagnole are occuring more commonly

in urban areas and on communal roads. Finally, the structure of this factorial plane tells

that accidents happening in Authume, Saint-Laurent-en-Grandvaux and Saint-Lupicin are

more likely to be fatal.

Additional plots made by combinations of axis 1, 2, 3 and 4 explain between 8,81% and

11,24% of the total inertia, it should be noted that compared to each other the associations

do not differ. The cantons of Champagnole, Morez and Saint-Laurent-en-Grandvaux have

been associated to each other in many factorial planes, it seems that accidents are more likely

to happen in these cantons when the weather is qualified as ”other kind” (cloudy, rainy or

snowy). This is opposed to accidents happening in Authume and Bletterans where accidents

are more frequent when the weather is ”normal”. Many cantons have been related to alcohol

or drug consumption: accidents occurring in the Dole canton are more commonly associated

to drug, Moirans-en-Montagne and Saint-Claude cantons are instead matched to alcohol.

Finally, the canton where accidents happen in higher proportion on highway is Dole, it is

also the canton where accidents are more likely to be fatal, and finally, the canton where

pedestrians are bumped in much higher amounts is Champagnole.

1.3.3 MCA of road crash temporal and spatial variables

Here was conducted a global MCA by considering both temporal variables (time, season,

daytime and week) and spatial variables (department) as well as the most important general

features such as type acc and substance. The first three-factorial axes explain 25,85% of

the total variance and only these axes were kept for further analysis. Two-dimensional

geometrical representations of all 24 categories are given in Fig (1.10)-(1.12) and interpreted

below.

The first two-dimensional map in Fig (1.10) gives the representation of categories on the

plane made by axis 1 and axis 2 and it accounts for 19,13% of the total inertia. Categories

with the greatest contribution to the axis 1 are ”night” (25,75%), ”midnight 6am” (13,83%)

and ”8pm 11pm” (11,88%) and respectively, ”winter” (21,99%), ”slight safe” (21,10%) and

”week end” (9,33%) for axis 2.

Axis 1 shows the contrast between serious accidents occurring during the day (between
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Fig 1.8: MCA spatial analysis, Jura department: variance percentage on the first 10 axes.

Fig 1.9: MCA spatial analysis, Jura departement: factorial plane made by axis 1 and axis
2.

7:00 a.m. and 7:59 p.m.) from fatal accidents happening during the night (between 8:00 p.m.

and 6:00 a.m.). In the first situation, the accidents happen under good daylight conditions,

during the spring and the summer time and mostly during the week-time (from Monday to

Friday). In the second situation, accidents occur during the week-end and they are associated

to alcohol/drug consumptions.

Axis 2 dissociates clearly slight accidents from serious and fatal ones. Accidents occurring

in Territoire de Belfort are mostly slight accidents while accidents from Jura are in general

serious or fatal. As for the first factorial axis, axis 2 shows the contrast week accidents

from week-end accidents which are fatal most of the time. We can notice that accidents
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occurring in the Doubs department are similar to those from the department of Haute Saône

and relatively close to the origine represented by the average accident profile.

The first factorial plane reveals five groups of associated categories: ”slight safe”,

”Terr Belfort” and ”winter”; ”weekday”, ”7am 10am” and ”none”; ”fatal”, ”week end”

and ”drug”; ”serious”, ”spring”, ”summer” and ”Jura”; enfin ”night”, ”8pm 11pm”,

”alcohol drug”, ”midnight 6am” and ”alcohol”.

Notice also that from this plot, the group formed by categories ”Territoire Belfort”,

”winter” and ”slight safe” is relatively far away from the origin of the plot. This is due to

the fact that categories ”Territoire Belfort” and ”slight safe” are of low relative frequencies,

6, 20% and respectively 11, 47%, see also Tab 1.1.

Plot made by axis 1 and axis 3 given in Fig (1.11) explains 18, 87% of the total iner-

tia. Categories with the greatest contribution to the axis 3 are ”Terr Belfort” (14, 96%),

”slight safe” (12, 84%) and ”spring” (10, 87%).

Axis 3 seems to contrast accidents occurring in spring/summer from those occurring in

autumn/winter. In the first situation, accidents happen mostly during the day, on week-end

and they may have minor consequences or, on the contrary, they may be very serious. In

the second situation, the accidents occur during the night, on week-time and they may be

serious. Again, the department of Jura is in opposite situation with the department Territoire

de Belfort. We can also notice that the department Doubs seems to be the department where

most of accidents are associated to drugs. Several groups of categories can be distinguished:

”drug”, ”Doubs” and ”summer”; ”Haute Saone” and ”serious”; ”none”, ”4pm 7pm” and

”weekday”; ”Jura”, ”autumn” and ”winter”.

Finally, the two-dimensional map of axis 2 and 3 given in Fig (1.12) explains 13, 70% of

the total inertia. This plot highlights several associations that were analyzed in previous ones.

For example, fairly similar modalities are ”8pm 11pm” and ”Doubs”; ”spring”, ”11am 3pm”,

”drug”, ”week end”, ”summer” and ”fatal”.
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Fig 1.10: MCA global analysis: factorial plane made by axis 1 and axis 2.

Fig 1.11: MCA global analysis: factorial plane made by axis 1 and axis 3.

1.3.4 Hierarchical log-linear modelling

The MCA performed in sections 1.3.1 and 1.3.2 reveals that there are associations be-

tween the gravity of the accidents (type acc) and the drug/alcohol consumption (substance).

Moreover, we could see during the spatial analysis that these associations are observed

within each department. In order to describe more thoroughly the association patterns be-

tween these categorical variables and the variable department, several hierarchical log-linear

models have been fitted on the related three-way contingency table (corresponding to the

column ”Observed values” of the table Tab 1.3).
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Fig 1.12: MCA global analysis: factorial plane made by axis 2 and axis 3.

Tab 1.4 gives the likelihood-ratio statistic G2 of each hierarchical model and the 5%-level

associated significance test (p-value). A model fits the data well if the null hypothesis of the

goodness-of-fit test is accepted. The p-values in Tab 1.4 show that all the models fit the

data poorly except (TS, TD, SD) which is close to the observed data (corresponding to the

column ”Fitted values” of the table Tab 1.3). This unsaturated hierarchical final model has

been kept as the objective was to find the simplest model that fits the data adequately. It

is written as

logµkk′k′′ = λ+ λTk + λS
k′

+ λD
k′′

+ λTS
kk′

+ λTD
kk′′

+ λSD
k′k′′

,

where k is ”slight safe”, ”serious” or ”fatal” for the categorical variable type acc (T) ; k
′

is ”none”, ”alcohol”, ”drug” or ”alcohol drug” for the variable substance (S) ; and k
′′

is

”Doubs”, ”Haute Saone”, ”Jura” or ”Terr Belfort” for the variable department (D).

This is the model with no three-factor interaction. The conditional association terms

appear for each pair of variables, this means that no pair is conditionally independent. The

odds ratios related to this model have been calculated and are given in Tab 1.5. Note that

the baseline categories of type acc, substance and department were respectively ”slight safe”,

”none” and ”Doubs”. For instance, the odds ratio relating the level ”serious” of type acc

and ”alcohol drug” of substance at the level ”Doubs” of department is calculated as

25, 64× 221, 37

1149, 58× 3, 96
= 1, 25.

Remind that the no three-factor interaction model means that the association between two

variables is identical at each level of the third variable. Hence, in the same way, calculat-

ing this odds ratio with the fitted values regarding to the levels ”Haute Saone”, ”Jura” or

”Terr Belfort” of department would have given the same result.

In general marginal odds ratios may differ from conditional ones in a no three-factor
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interaction model, however in this case marginal and conditional odds ratio are very close.

This means that controlling or ignoring the third variable does not change significantly the

association between the two variables. Only conditional odds ratio will be interpreted below

as the interpretations of marginal ones are the same.

Regarding substances consumption, the odds for an accident to be serious or fatal in-

creases when alcohol, drug or both are consumed. Indeed, the odds ratios for an accident

to be serious are estimated to be respectively 1,64, 1,94 and 1,25 higher than slight when

alcohol, drug and both are consumed compared with no consumption. Similarly, the odds

ratios for an accident to be fatal are estimated to be respectively 2,76, 4,15 and 5,93 higher

than slight when alcohol, drug and both are consumed. The highest risk for an accident to

be fatal corresponds to drug and alcohol consumption, almost two times larger than alco-

hol consumption. Regarding the department where the accident happens, the odds to be

serious or fatal decreases only for the department Territoire de Belfort. The odds ratio for

an accident to be serious is estimated to be 0,48 times lower than slight when it occurs in

this department compared with Doubs. Similarly, the odds for an accident to be fatal is

estimated to be 0,39 times lower than slight when it occurs in Territoire de Belfort compared

with Doubs. The highest risk for an accident to be fatal is when it occurs in Jura department

compared with Doubs, almost four times larger than in Territoire de Belfort.

Tab 1.3: Three-way contingency table with type acc, substance and department as categorical
variables. Left side correspond to the observed values, right one is equal to the predicted
frequencies from the log-linear model (TS, TD, SD).

Observed values Fitted values (TS, TD, SD)

type acc type acc

department substance slight safe serious fatal slight safe serious fatal

Doubs

alcohol drug 6 26 24 3,96 25,64 26,40
drug 2 30 13 2,87 28,79 13,34
alcohol 27 227 85 26,81 228,99 83,20
none 220 1150 250 221,37 1149,58 249,06

Haute Saone

alcohol drug 2 15 20 2,48 17,60 16,92
drug 4 21 14 2,32 25,60 11,08
alcohol 11 165 35 15,58 145,92 49,50
none 121 658 144 117,62 669,88 135,50

Jura

alcohol drug 0 12 10 0,86 9,40 11,74
drug 2 27 12 1,49 25,29 14,22
alcohol 12 131 75 10,03 144,34 63,63
none 89 802 201 90,62 792,97 208,42

Terr Belfort

alcohol drug 2 8 8 2,70 8,36 6,94
drug 0 8 2 1,32 6,32 2,36
alcohol 8 19 8 5,58 22,75 6,67
none 62 157 25 62,40 154,58 27,03
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Tab 1.4: Goodness-of-Fit Tests for log-linear models relating type acc (T), substance (S)
and department (D).

Model G2 p-value

(T, S, D) 246,39 0,00

(T, SD) 218,97 0,00
(S, TD) 179,65 0,00
(D, TS) 125,36 1,09e-12

(TS, TD) 58,61 3,99e-4
(TS, SD) 97,94 6,72e-11
(TD, SD) 152,23 0,00

(TS, TD, SD) 27,38 0,07

(TSD) 0,00 –

Tab 1.5: Odds ratio estimated from (TS, TD, SD) log-linear model. The table is divided into
two parts, which are also splitted up into two parts: conditional odds ratios in top have been
calculated respectively in left and right sides controlling levels of department and substance
variable, and marginal odds ratios in bottom have been calculated respectively in left and
right sides ignoring department and substance variable. Each odds ratio has been calculated
as each level of type acc, substance and department variable and was opposed respectively
to ”slight safe”, ”none” and ”Doubs”.

Conditional odds ratios

serious fatal serious fatal
alcohol drug 1,25 5,93 Haute Saone 1,10 1,02
drug 1,94 4,15 Jura 1,69 2,05
alcohol 1,64 2,76 Terr Belfort 0,48 0,39

Marginal odds ratios

serious fatal serious fatal
alcohol drug 1,08 4,92 Haute Saone 1,11 1,06
drug 1,91 4,07 Jura 1,68 1,98
alcohol 1,66 2,78 Terr Belfort 0,47 0,41

1.3.5 Log-linear modelling using MCA

The goal here was to fit a log-linear model with more than three categorical variables.

In order to do that, the global MCA analysis performed in the previous section has been

used to choose several variables associated to the road crash severity and to fit a log-linear

model with a limited number of parameters but well chosen. A similar analysis has been

performed by Papagiotakos and Pitsavos (2004). The global MCA analysis revealed several

groups of associated variables/categories such as ”slight safe”, ”Terr Belfort” and ”winter”;

”night”, ”8pm 11pm”, ”alcohol drug”, ”midnight 6am” and ”alcohol”, or even more ”fatal”,
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”week end” and ”drug”. These three groups suggest that it might exist interactions between

the variables type acc, department and season ; daytime, time and substance ; and finally,

type acc, week and substance.

Based on these considerations, the following log-linear model has been fitted:

logµk1k2k3k4k5k6k7 = λ+λTDk1k3 +λSDk2k3 +λDaTiSk7k4k2 +λTWS
k1k6k2 +λTDSek1k3k5 +λWTiS

k6k4k2 +λT iSDk4k2k3 , (1.5)

where k1 is ”slight safe”, ”serious” or ”fatal” for the categorical variable type acc (T); k2 is

”none”, ”alcohol”, ”drug” or ”alcohol drug” for the variable substance (S); k3 is ”Doubs”,

”Haute Saone”, ”Jura” or ”Terr Belfort” for the variable department (D); k4 is ”7am 10am”,

”11am 3pm”, ”4pm 7pm”, ”8pm 11pm” or ”midnight 6am” for the categorical variable time

(Ti); k5 is ”spring”, ”summer”, ”autumn” or ”winter” for the variable season (Se); k6 is

”weekday” or ”week end” for the variable week (W); and k7 is ”day” or ”night” for the

variable daytime (Da).

Several different log-linear models have been fitted and compared one to each other, this

final model was the one with the smallest likelihood-ratio statistic G2. This log-linear model

contains specific second and third order interactions between the seven chosen variables

based on the global MCA. As mentioned before, these interactions have been decided upon

the groups of associated variables revealed in the global MCA. Considering all the second

and third interaction terms in the log-linear model would cost in term of interpretation and

feasibility.

Tab 1.6: Seven-way contingency table with type acc (T), department (D), substance (S), time
(Ti), season (Se), week (W) and daytime (Da) as categorical variables. Left side correspond
to the observed values, right one is equal to the predicted frequencies from the log-linear
model 1.5.

Observed values Fitted values

type acc type acc

D, S, Ti, Se, Da week slight safe serious fatal slight safe serious fatal

Doubs
none
7am 10am
spring
day

weekday 10 27 4 8,33 32,01 7,02
week end 2 8 0 2,06 10,96 1,95

D, S, Ti, W, Da season slight safe serious fatal slight safe serious fatal

Doubs
none
11am 3pm
week end
day

spring 8 36 8 5,90 31,34 5,57
summer 4 44 6 5,44 41,08 7,24
autumn 5 30 2 3,68 30,19 6,15
winter 2 18 4 4,52 24,26 4,87

Tab 1.6 gives two partial tables of the seven-way contingency table made with type acc,

substance, department, time, season, week et daytime as categorical variables. It is quite dif-

ficult, actually, to give the whole seven-way contingency table due to the high number of cells

(3840). This table gives frequencies for categories ”Doubs”, ”none”, ”7am 10am”, ”spring”
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and ”day” of respectively department, substance, time, season and daytime variables; and

”Doubs”, ”none”, ”11am 3pm”, ”week end” and ”day” for respectively department, sub-

stance, time, week and daytime variables. The first partial table (top) details according to

week and type acc variables and the second partial table (bottom) details according to season

and type acc variables.

The odds ratios related to the fitted log-linear model from (1.5) have been calculated in

the same way as in the previous section and are given in Tab 1.7. The baseline categories

used of type acc, week and season were respectively ”slight safe”, ”weekday” and ”spring”.

Here, conditional odds ratios may differ according to which levels of the variables we have

conditioned. However there are too many possible combinations of levels with our seven

categorical variables used, hence only conditional odds ratios regarding to the fixed levels,

as in Tab 1.7, were calculated. Notice a slight difference between the conditional odds

ratios and the marginal ones. However, the interpretations are the same, except for the

level ”winter” of the variable season for which the odds ratios have a different conclusion

depending on whether they are conditional or marginal.

Conditional and marginal odds ratios inform that the risk of an accident being serious

or fatal increases if it occurs during the weekend. Indeed, the conditional and marginal

odds ratios for an accident to be serious are estimated to be equal to 1,38 on week-ends and

respectively 1,12 and 1,34 for an accident being fatal, on week-ends as well. Both kinds of

odds ratios tell us that the risk for a crash to be serious or fatal than slightly increases if it

occurs in summer or autumn in comparaison with spring. Conditional and marginal odds

ratios for an accident to be serious are estimated to be respectively 1,42 and 1,27 if it occurs in

summer, 1,54 and 1,37 if it is in autumn. They are estimated to be respectively equal to 1,41

and 1,03 for a fatal crash in summer, 1,77 and 1,23 in autumn. For those occurring during

winter with respect to spring, interpretations differ regarding to conditional or marginal odds

ratios. Indeed, the risk for an accident to be serious does not seem to depend on the fact

that it occurs in winter with respect to spring, the conditional odds ratio being equal to

1,01. The marginal odds ratio is equal to 0,90 meaning that this risk decreases slightly if

it occurs during winter. As for the fatal consequences of an accident occurring in winter,

the risk would be slightly increased compared to spring according to the conditional odds

ratio equal to 1,14; the marginal odds ratio equal to 0,91 informs us that this risk would be

slightly reduced.

1.3.6 Ordinal regression modelling

An ordinal regression has been fitted on the response variable type acc (ordered as

slight safe, serious and then fatal). The analysis was performed with all the explanatory

variables except canton (due to too many categories).

Note that the categorical variable type acc is considered as a response variable. It is rele-

vant because it gives the severity of accidents and the aim of this study lies on understanding

how the gendarmerie can avoid serious injuries.

The initial dataset has been split randomly into two sets: a training set (seventy-five
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Tab 1.7: Odds ratio estimated from log-linear model 1.5. The table is divided into two parts,
each part is also split up into two parts: conditional odds ratios in top have been calculated
in left side controlling the levels of department, substance, time, season and daytime then
right side controlling the levels department, substance, time, week and daytime variables,
and marginal odds ratios in bottom have been calculated in left side ignoring department,
substance, time, season and daytime then in right side ignoring department, substance, time,
week and daytime variables. Each odds ratio has been calculated as each level of type acc,
week and season variable and was opposed respectively to ”slight safe”, ”weekday” and
”spring”.

Conditional odds ratios

serious fatal serious fatal
summer 1,42 1,41

week end 1,38 1,12 autumn 1,54 1,77
winter 1,01 1,14

Marginal odds ratios

serious fatal serious fatal
summer 1,27 1,03

week end 1,38 1,34 autumn 1,37 1,23
winter 0,90 0,91

percent of the initial one) and a test set (the remaining twenty-five percent). An ordinal

regression model has been fitted on the training set, the results are given in Tab 1.8. Only

five explanatory variables reveal to have an effect on the response variable: time, substance,

department, collision and area. This model, with full parameters, gives a misclassification

error of 28,84% on the test set.

Next, a variable selection has been performed by using AIC criterion (with backward

selection). The final model is composed by the categorical variables time, substance, depart-

ment, collision and area. This model gives a misclassification error of 29,00% on the test

set, a score very close to the previous one. The odds ratio of these variables are given in Fig

(1.13). Only odds ratios with confidence intervals not containing the value 1 (represented

by the vertical dotted line) are interpreted.

Regarding the odds ratio, the highest risk for an accident to be serious or fatal is if

substances have been consumed by one of the drivers involved. Indeed, the most two im-

portant odds ratios are alcohol drug and drug which are equal to exp(1, 16) = 3, 19 and

exp(0, 85) = 2, 34 respectively. The risk for an accident to be serious or fatal increases if the

accident happens in non urban areas (odds ratio 2,10) or in the Jura department (odds ratio

1,42 with Doubs as reference). Accident involving uncommon collision also have a slightly

increased risk (odds ratio 1,28). On the opposite, two categories have a protective effect and

are associated with lower risk of serious or fatal accident. This is the case for Territoire de

Belfort department (odds ratio 0,56 with Doubs as reference) and for the occurrence time

between 4pm and 7pm (odds ratio 0,77).

Each department odds ratio has been represented on the map in Fig 1.14. Remind that

the odds of Haute-Saône department were not significant and hence meaningless. The odds
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Tab 1.8: Ordinal regression model results with type acc as ordered response variable. The
item * means that the p-value of the nullity coefficient test is less than 0,05. The category
in parentheses correspond to the baseline category of the above categorical variable.

Attribute Ordinal regression results Attribute Ordinal regression results

Coefficients Estimate p-value Coefficients Estimate p-value

substance alcohol drug 1,16 5,19e-8 * department Haute Saone -0,01 0,89
(none) drug 0,85 4,32e-5 * (Doubs) Jura 0,35 5,87e-5 *

alcohol 0,46 1,14e-5 * Terr Belfort -0,58 2,67e-4 *

season spring 0,01 0,30 obstacle vehicle -0,02 0,85
(winter) summer 0,11 0,27 (none) pedestrian 0,23 0,15

autumn -0,05 0,67 other kind 0,23 0,30

week week end -0,04 0,53 shape road curve -0,01 0,90
(weekday) (straight)

daytime day 0,08 0,51 collision usual -0,02 0,91
(night) (none) other kind 0,25 0,04 *

time 11am 3pm -0,08 0,50 type road communal 0,43 0,14
(7am 10am) 4pm 7pm -0,26 0,02 * (highway) departmental 0,39 0,15

8pm 11pm -0,10 0,52 national 0,47 0,10
midnight 6am 0,18 0,27 other kind 0,34 0,34

weather other kind 0,00 0,97 intersection intersection -0,12 0,31
(normal) (out of intersection)

area unurban 0,74 3,97e-16 *
(urban)

Fig 1.13: Odds ratios obtained by ordinal regression model. Grey lines represent the confi-
dence intervals and black points the values of the odds ratios.

ratio of Doubs department is equal to 0 as it was the baseline category for the department

variable. As a symbol, Jura and Territoire de Belfort departments have been represented in

red and blue respectively due to their odds ratio: the riskiest and the less risky.
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Fig 1.14: Franche-Comté map with department odds ratio. Each color corresponds to a
department with its odds ratio value considering the Doubs department as the reference and
each small division corresponds to a canton.

1.4 Summary of injury road accident analysis and discussions

A study of accidents with the purpose of mitigating the crash severity is critical for the

well-being of a society and the safety concern posed by road crashes. The aim of this work

was to understand factors which are the most influential in road accidents from the French

region Franche-Comté. To respond to these issues, three statistical methods were used:

Multiple Correspondence Analysis (MCA), log-linear model and ordinal logistic regression.

MCA, the only unsupervised or descriptive statistical method used in this study, al-

lowed to assess relationships between the categorical variables and examine the associations

between the different categories. Geometric representations of data in smaller dimension

spaces were produced and proximities between several road crash related categories have

been observed. This analysis allowed to establish a global vision of the data and to draw up

temporal and spatial profiles of accidents occurring in the Franche-Comté region. Regarding

the MCA temporal analysis, several associations have been highlighted. We remarked that

accidents occurring during the week are different from those occurring during the weekend.

Indeed, weekend accidents are more likely to happen during the night, be fatal and associ-

ated to alcohol/drug consumption. There was also a contrast between summer and winter

accidents. The MCA spatial analysis revealed that several cantons of the Franche-Comté re-

gion are strongly related to alcohol/drug consumption (Bethoncourt, Saint-Lupicin or Dole)

or to fatal accidents (Besançon, Baume-les-Dames, Authume, Saint-Laurent-en-Grandvaux,

Saint-Lupicin and Dole).Bethoncourt, Besançon and Baume-les-Dames are situated in the

Doubs department and others in the Jura department. Finally, the global MCA temporal

and spatial analysis allows to analyse the departments in association to alcohol/drug con-
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sumptions and crash severity in temporal ways. Many contrasts have been highlighted and

groups of close categories have been analysed. It seems that Jura department is the depart-

ment where most of accidents are serious or fatal, instead of Territoire de Belfort department

which is associated to minor consequences.

The log-linear model was used next in order to evaluate dependencies between the road

crash gravity, the alcohol/drug consumption and Franche-Comté departments. This tool

models the multidimensional contingency table formed by these three categorical variables

and describes associations and interactions among them. It allowed establishing patterns.

The selected model concludes on no interaction between the categorical variables type acc,

substance and department. It corresponds to the model of homogeneous association, which

means that each pair of variable were conditionally dependent. Odds ratios estimated from

this model allowed to quantify the risks about alcohol/drug consumption and the department

where the accident happened. We remarked that the highest risks for a serious or fatal

accident to happen are if drug, alcohol or both are consumed. Conversely, the lowest risk

for an accident to be serious or fatal is if it happens in the Territoire de Belfort department.

The Jura department was, instead of the previous one, a location which increases this risk.

Then, a second log-linear model was fitted, a non-hierarchical one. This model used results

from the global MCA. The fairly similar groups of categories were translated into variable

interactions which thus induced the fitted log-linear model. This model revealed many

associations between variables. Odds ratios estimated from this model allowed to quantify

the risk of an accident occurring during the week or the week-end, or occurring in spring,

summer, autumn or winter. According to the conditional odds ratios calculated with respect

to spring level, the highest risk for an accident to be serious or fatal is if it occurs in autumn.

The ordinal regression allowed the study to assess each effect of road crash related factors

on the road crash gravity. Eight circumstances revealed to be influential on the accident

gravity: the consumption of alcohol, drug or both; the period of the day between 4pm and

7pm; the roads situated outside urban areas; the roads situated in Jura or Territoire de

Belfort departments; collisions qualified as ”other kind” (not usual as frontal or rear-end for

example). Odds ratios estimated from this model allowed to quantify the risks due to each

of these circumstances. Similarly to the log-linear analysis, the risk of an accident being

fatal is highest if alcohol and drugs are consumed and lowest if the accident happens in the

Territoire de Belfort department.

The results obtained with these three methods allow us to conclude that the most im-

portant factor to take into account for road crashes in Franche-Comté is the alcohol/drug

consumption. As expected, this factor strongly influences the nature of accidents. Hence,

based on results obtained with this statistical study, more efforts should be gathered by the

National Gendarmerie of Besançon to prevent the alcohol/drug consumption especially in

the cantons which were associated to this factor. For example, more alcohol/drug tests and

driver awareness measures can be performed.

In order to be more precise for the spatial analysis, the future study would be focused

on how GPS coordinate can be used to prevent accidents.
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The previous part of this thesis is composed of the Chapter 1 that globally focused on the

analysis of road crash injuries. Now, the purpose of this second part is to geographically

anticipate the accident occurrences. Chapter 2 corresponds to the data preparation in order

to be used in Chapter 3 for the statistical methods. The chapters 2 and 3 consider only the

spatial component and Chapter 4 this time tries to undertake the temporal component of

the data.

While the first part of the thesis is concerned with unsupervised and supervised classical

statistical methods, the second part is now concerned with spatial statistics. As it was a

field totally unknown to me, I decided to give in Chapter 2, 3 and 4 the implementations of

the used statistical methods on the software R in an educational way.

The reader may pay attention now to the new notations: X denotes a spatial point pattern;

Y a Gaussian process; Z a vector of covariates values.
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Chapter 2

Spatial road crashes and related factors

data handling

Spatial point pattern and areal interpolation methods

This work introduces the notion of spatial point patterns. First exam-

ples of possible manipulations on the software R of such objects are given.

The spatial point pattern used and handled here corresponds to the road

accident data that occurred between 2017 and 2019 in the CAGB (urban

community of Besançon). Then, the research of relevant related factors to

road accidents has been investigated and the information brought has been

set properly on a global support. The support chosen is a regular 64× 64

grid of cells 650× 650 meters. The methods undertaken here to merge the

several characteristics, given each at a different scale, into one support are

interpolation methods. The purpose of the following work is to technically

prepare all these spatial elements (road crash point pattern and related

factors) for a statistical modelling in the next chapters and to give the

possible existing R software tools that allow to do this pre-processing.

2.1 Introduction

The previous chapter focused on giving a multivariate statistical analysis of road crash

data from the French region of Franche-Comté with special attention to road crash grav-

ity. Multiple Correspondence Analysis, Log-linear models and ordinal logistic regression

were performed in order to assess associations between the road crash injury and several

important accident-related factors. The purposes of this analysis make it possible to raise

awareness and insist more on the consequences of these accidents according to the behaviour

of the drivers involved (such as alcohol/drug consumption for example). In addition to this

behavioural preventive character, the objective now is the spatial analysis and prediction,

that is, geographically anticipate the occurrence of these accidents.

Some spatial components were used in the previous analysis such as the canton or the
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department where the accident occurred. The final goal now is to perform a spatial analysis

at a finer scale. In order to fulfill this objective, the main interest is the exact locations

of these accidents and this is what the analysis will focus on. This chapter deals with

georeferenced road crash data recorded in several locations in the Doubs department of the

French region of Franche-Comté. More particularly, we will present in the following sections

the manipulations and implementations of specific statistical and graphical tools available

in the software R (R Core Team, 2021) to handle this kind of spatial data for the fitting of

a statistical model in the next chapter.

The following librairies will be used :

> library(FRK)

> library(ggplot2)

> library(leaflet)

> library(lgcp)

> library(maptools)

> library(rgdal)

> library(rgeos)

> library(sf)

> library(sp)

> library(spatstat)

> library(tidyverse)

R packages FRK (Zammit-Mangion and Sainsbury-Dale, 2022), maptools (Bivand et al.,

2021b), rgdal (Bivand et al., 2021a), rgeos (Bivand et al., 2021c), sf (Pebesma et al., 2022),

sp (Pebesma et al., 2021) and spatstat (Baddeley et al., 2021b) deal with spatial data and

are used in order to handle this kind of data. The packages ggplot2 (Wickham et al., 2021),

and leaflet (Cheng et al., 2021) are used for plot. Finally lgcp (Taylor et al., 2021) is the

package used to fit our statistical model and tidyverse (Wickham, 2021) for data wrangling

basic operations.

The current chapter is structured as follows. Section 2.2 describes how to create a point

pattern object, specific class in the software which handle geographical locations points,

for our road crash data. Then Section 2.3 deals with environment resources that will be

associated to the point pattern built in last section. More particularly, Section 2.3.1 is

concerned in creating a grid support to welcome these resources and the interpolation of this

information onto the latter grid is in Section 2.3.2.

2.2 Road accident spatial point pattern

Data used in this study concern road injury crashes, that are, accidents that occurred

on a public road involving at least one vehicle and resulting in at least one victim requiring

cares. These data are extracted from the French national analysis bulletin of road traffic

injury accidents called BAAC file (Bulletin d’Analyse des Accidents Corporels) available as

open data on the French platform www.data.gouv.fr. The BAAC data are filled in by the

security forces present on the accident scene and next, data are treated, analyzed and put

online by the national interdepartmental observatory of road safety (Observatoire National

https://www.data.gouv.fr/fr/
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Interministériel de la Sécurité Routière). Datasets from BAAC file include accident location

information, as filled in on scene, as well as information regarding the characteristics of the

accident and its location, the involved vehicles and their victims.

This study deals with road crashes that occurred between 2017 and 2019 in the CAGB

(Communauté d’Agglomération du Grand Besançon), headquarters of the region Franche-

Comté and urban community of Besançon (central municipality) composed of 68 cities.

> c_2019 <- read_delim("DATA/caracteristiques -2019.csv",

+ delim = ";",

+ escape_double = FALSE ,

+ trim_ws = TRUE)

> c_2018 <- read_csv("DATA/caracteristiques -2018.csv")

> c_2017 <- read_csv("DATA/caracteristiques -2017.csv")

Files extracted from the French open platform data.gouv are .csv extension files.

Datasets c 2017, c 2018 and c 2019 are structured in order to extract only accidents that

occurred in the CAGB and then merged into one dataset called cagb (command-lines not

shown). This dataframe has 397 observations and two columns named x and y which

represent respectively the longitude and the latitude of the accident location.

When dealing with spatial data, the first step is to pay attention to a very important

aspect : the coordinate reference system (CRS) used. This system is a standard way to

describe geographical data and is defined by a projection, a datum and a set of parameters.

The projection corresponds to how the three dimensional angular system (defined by the

longitude and the latitude) is transformed into a two dimensional planer system. Then, the

datum is a model of the shape of the earth which estimates the angles of the angular system.

Most commonly used CRSs have been assigned a unique identifier called EPSG code. The

CRS used in the BAAC file is defined by the datum WGS84, also called World Geodesic

System 1984, which is the global reference system. This CRS has EPSG:4326. Data from

cagb are then visualized in Fig 2.1 using leaflet package as follows:

> leaflet(data = cagb) %>% addTiles () %>%

+ setView(lng = 6.01, lat = 47.24, zoom = 11) %>%

+ addCircleMarkers (~x, ~y,

+ weight = 1,

+ fillOpacity = 1,

+ radius = 1,

+ color = "black")

Several datasets will be loaded and used in the following, hence, it is important to

transform them to a common CRS so they align with one another. For more convenience,

the CRS chosen to be used is RGF93, also called Lambert 93, with EPSG:2154. This CRS

has the advantage to deal with actual shapes, dimensions and distances.

Data in the form of a set of points X = {x1, . . . , xn} of R2, irregularly distributed over

a study area, is called a spatial point pattern and refers to the locations as events. The

reader may find comprehensive descriptions of spatial point pattern and applications in R

respectively in Diggle (2013) and Baddeley et al. (2015). Road accident data extracted from

the French open platform data.gouv are georeferenced points, hence, a spatial point pattern.
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Fig 2.1: Spatial distribution of road crashes in the CAGB area.

In order to designate cagb as a point pattern in R, it needs to be converted into an object

of type ppp. This class of the package spatstat represents a two-dimensional point pattern

dataset. It specifies the locations of the points and the window (study area) in which the

pattern was observed.

The first step then is to create an object of class owin which defines the observation

window, that is, the study area of our spatial point pattern. The type of owin used here is

”polygonal”: a region whose boundary is a polygon or several polygons. The polygons of

the Doubs department cities are loaded from the website france-geojson.gregoiredavid.fr in

.geojson extension files. This website brings to the France Geojson project which contains

the routes of the French geographical and administrative entities (regions, departments,

cantons, districts and municipalities), data contain the postal code and the name of the

entity. The object cities created below is a SpatialPolygonsDataFrame object, a class

from the package sp for holding polygon geometries with attributes.

> u <- "https :// france -geojson.gregoiredavid.fr/

repo/departements/25-doubs/communes -25-doubs.geojson"

> downloader :: download(url = u, destfile = "communes.GeoJSON")

> cities <- readOGR(dsn = "communes.GeoJSON")

> cities@proj4string

> cities <- spTransform(cities , CRSobj=CRS("+init=epsg:2154"))

CRS arguments: +proj=longlat +datum=WGS84 +no_defs

The CRS of cities is WGS84, obtained with its attribute proj4string. As mentioned

before, it is more beneficial to work in Lambert 93. Hence the function spTransform from

the package sp is used in order to transform to the new CRS. The cities polygons are plotted

https://france-geojson.gregoiredavid.fr
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in Fig 2.2 using command-lines from package ggplot2 below. For more convenience in using

this package, the function SpatialPolygonsDataFrame to df from the package FRK is used

in order to convert the SpatialPolygonsDataFrame cities to a dataframe. Indeed, this

function creates columns X1, X2 and id which allow to plot polygons and values associated

(as name in our case) in a simply way. The reader may find various plotting methods later.

The object proj plot is used in order to specify to ggplot2 that the CRS wished for plotting

is Lambert 93. It will be used for the rest of the chapter.

> proj_plot <- ’+proj=lcc +lat_1=49 +lat_2=44 +lat_0=46.5 +lon_0=3 +x_

0=700000 +y_0=6600000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m

+no_defs’

> cities_df <- SpatialPolygonsDataFrame_to_df(cities)

> ggplot(cities_df , aes(x = X1, y = X2, group = id)) +

+ geom_polygon(colour=’black ’,

+ fill=ifelse(cities_df$name == "Besan çon",

+ "#1A8BAF", "white")) +

+ coord_sf(xlim = c(890000, 970000),

+ ylim = c(6660000, 6705000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour =

+ "black", linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour =

+ "black", linetype = "dashed", size = 0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude")

Our observation window owin cagb is plotted in Fig 2.3 as follows:

> cities <- gUnionCascaded(cities)

> owin_cagb <- as.owin(cities)

> owin_cagb_sf <- st_as_sf(owin_cagb)

> owin_cagb_sf <- st_transform(owin_cagb_sf , crs=2154)

> ggplot(owin_cagb_sf) +

+ geom_sf(color = ’black ’, fill = ’white ’) +

+ coord_sf(xlim = c(890000, 970000),

+ ylim = c(6660000, 6705000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour =

+ "black", linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour =

+ "black", linetype = "dashed", size = 0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude")
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Fig 2.2: Polygons of CAGB cities. The blue one corresponds to the city of Besançon.

Fig 2.3: Polygons of the study area.

The cities polygons have been merged into one polygon using the function

gUnionCascaded from the package rgeos and set as an object owin with package

maptools. For more convenience using package ggplot2, an object owin cagb sf of class sf

is created with st as sf from the package sf. This package is a support for simple features,

a standardized way to encode spatial data made of geometries (points, lines, polygons, ...).

The CRS is ensure with the sf function st transform by specifying EPSG:2154, just as
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similar as spTransform seen before.

As our owin object has been made, then an object of class ppp can be created with

command-lines below. First, an object cagb sf is created with st as sf. The coords

argument takes the names of the numeric columns holding spatial coordinates and the CRS

WGS84 is specified with the crs argument as it was the initial projection established when

loading data from data.gouv. Finally, the CRS of cagb sf is converted to Lambert 93 with

st transform as seen before.

> cagb_sf <- st_as_sf(cagb , coords = c("x", "y"), crs = 4326)

> cagb_sf <- st_transform(cagb_sf , crs=2154)

A ppp object called cagb ppp is then created by using cagb sf and owin cagb with the

function as.ppp from the package spatstat as follows:

> cagb_ppp <- as.ppp(st_coordinates(cagb_sf), owin_cagb)

> cagb_ppp <- as.ppp(cagb_ppp)

> area(owin_cagb)

> perimeter(owin_cagb)

[1] 513848149

[1] 150901

The points must lie inside the specified window but it might happen that some points lie

outside, this may be due to input error. Hence these points called ”rejects” can be excluded

by directly reusing the function as.ppp. The point pattern cagb ppp has 396 events in the

study window which has an area of 513 848 149 square meters and a perimeter of 150 901

meters. The point pattern cagb ppp can be visualized as follows and gives Fig 2.4:

> plot(cagb_ppp , pch = 20, cex = 0.25,

+ xlim = c(890000, 970000),

+ ylim = c(6660000, 6705000),

+ xlab = "Longitude", ylab = "Latitude",

+ ann = TRUE , axes = TRUE , main = "")

The point pattern can be also visualized with ggplot2 by using the sf objects cagb sf

and owin cagb sf as follows:

> ggplot () +

+ geom_sf(owin_cagb_sf, color = ’black ’, fill = ’white ’) +

+ geom_sf(cagb_sf, color = ’black ’, size = 0.5) +

+ coord_sf(xlim = c(890000, 970000),

+ ylim = c(6660000, 6705000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour =

+ "black", linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour =

+ "black", linetype = "dashed", size = 0.1)) +

+ xlab("Longitude")+

+ ylab("Latitude")
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Fig 2.4: Road accident spatial point pattern in the CAGB. Using plot function.

Fig 2.5: Road accident spatial point pattern in the CAGB. Using ggplot2 functions.

Command-lines above give Fig 2.5.

It might be interesting to divide the window into subregions B1, . . . , Bm, called quadrats,

and count the numbers of points falling in each quadrat. In practice, quadrat counting is a

simple way to check for some statistic properties of a point pattern. Quadrat counting is

performed in spatstat by the function quadracount and the plot method can be used to

display quadrats as follows:
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> par(mfrow = c(1, 2))

> plot(quadratcount(cagb_ppp , nx = 3, ny = 3), main="")

> plot(quadratcount(cagb_ppp , nx = 9, ny = 9), main="")

Fig 2.6 displays two ways of quadrat counting on our ppp object cagb ppp. The left and

respectively the right panel show the point pattern in 3×3 and 9×9 cells, as it was specified

with nx and ny arguments.

Fig 2.6: Plot of quadrats of road accident spatial point pattern. Left to right : 3×3 quadrat
sand 9× 9 quadrats.

Finally, the ppp object cagb ppp can be exported using the function saveRDS.

> saveRDS(cagb_ppp , "DATA/cagb_ppp.rds")

2.3 Handling auxiliary information and covariates

The current section focuses on the creating of a database of the environment characteris-

tics of road crashes locations, such as sociodemographic data, global and road infrastructure

data, so that the impact of these environment resources on road accidents can be assessed.

The information will be used in the next chapter in order to fit spatial statistical models such

as log-Gaussian Cox processes (LGCPs). In practice, fitting a LGCP requires to perform

computations on a regular grid. To be as rigorous as possible, covariate data collected will

be directly associate with this grid.

2.3.1 Computational support grid

The computational grid is created by using the getpolyol function from the lgcp package

as follows:
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> polyolay <- getpolyol(data = cagb_ppp , cellwidth = 650, ext = 2)

> grid_cagb <- polyolay$fftpoly

> area(grid_cagb)

[1] 1730560000

The arguments cellwidth and ext are chosen through preliminary statistical methods

relating to the model itself, we will therefore not give any further details here. As the CRS

of cagb ppp is Lambert 93, the grid used then the same CRS. Finally, the grid can be

extracted from the attribute fftpoly. The object grid cagb is of class SpatialPolygons

from package sp, similar to SpatialPolygonsDataFrame seen before.

This regular grid 64× 64 covers an area of 1 730 560 000 square meters, this means, the

4 096 cells are of 650m ×650m. This grid can be visualized as follows:

> grid_cagb_sf <- st_as_sf(grid_cagb)

> grid_cagb_sf %>%

+ dplyr :: select(geometry) %>%

+ ggplot () +

+ geom_sf( color = ’black ’, fill = ’white ’) +

+ coord_sf(xlim = c(880000, 975000),

+ ylim = c(6660000, 6710000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour =

+ "black", linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour =

+ "black", linetype = "dashed", size = 0.1)) +

+ xlab("Longitude")+

+ ylab("Latitude")

As seen before, for more convenience using ggplot2, an sf object grid cagb sf has been

created. Command-lines above gives Fig 2.7.

Finally the object polyolay, which contains the grid, is exported using the function

saveRDS as seen before as follows:

> saveRDS(polyolay , "DATA/polyolay.rds")

2.3.2 Areal interpolation

Environment resource data were extracted from various sources such as the French statis-

tical institute INSEE (Institut National de la Statistique et des Etudes Economiques), Open-

StreetMap (data by c© OpenStreetMap contributors under the Open Database Licence) or

the French open platform data.gouv seen before. Sociodemographic and global infrastruc-

ture data (such as school locations, shop locations or gas station locations for example) have

been extracted from the website of INSEE www.insee.fr. Road infrastructure data (such

as traffic light locations, give way or stop locations for example) have been extracted from

www.openstreetmap.fr. Finally, the network structure of roads has been extracted from

https://www.openstreetmap.org/copyright
https://www.insee.fr/fr/
https://www.openstreetmap.fr
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Fig 2.7: Computational support grid.

www.data.gouv.fr. Data collected were reported between 2015 and 2020, this information

has been considered unchanged over the years in order to associate them to road crashes

that occurred between 2017 and 2019.

The data formats are incompatible as they have been collected at different geographical

scales or units. For instance, sociodemographic data are provided as polygons, road network

as lines and infrastructure locations as points. However, these heterogeneous data need to

be simultaneously used. Hence it is necessary to merge them into one spatial support :

this problem is called the areal interpolation problem. The process of interpolation consists

in transforming data from source zones to target zones (which in our case are the cells

of grid cagb). Let t1, . . . , tT and s1, . . . , sS be the sets of target zones and source zones

respectively. We denote by Zti the value of the target variable Z (variable of interest needed

to be interpolated) on the target zone ti and respectively by Zsj on the source zone sj ,

i = 1, . . . , T and j = 1, . . . , S. Then, for the intersection zone Iti,sj between ti and sj , the

value of Z is noted as Zti,sj . The variables to be interpolated that will be considered in the

following are extensive variables (Do et al., 2021). Only one interpolation method will be

used and presented briefly below, for more details on interpolation methods see for example

Do et al. (2021).

Sociodemographic data

French sociodemographic file extracted from INSEE is a .shp file, that is, a shapefile.

Shapefiles are file formats for systems containing all the information linked to object geome-

tries (points, lines or polygons). Data are loaded below using the function st read, from

the package sf, which helps to read simple features from .shp files. It is a heavy file to

https://www.data.gouv.fr/fr/
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download and to load (around 3 minutes and 42 seconds for 1.04Go).

> T1 <- Sys.time()

> france <- st_read("DATA/Filosofi2015_carreaux_200m_metropole.shp",

+ quiet=TRUE)

> france <- st_transform(france , crs=2154)

> T2 <- Sys.time()

> difftime(T2, T1)

Time difference of 3.692795 mins

The data are structured (command-lines not shown) into an object grid insee sf that

extracts only geometries falling in the CAGB and wished covariates that give per geometry:

• Ind : the number of individuals

• Ind 18 24 : number of individuals between 18 and 24 years old

• Ind 65 79 : number of individuals between 65 and 79 years old

• Ind 80p : number of individuals more than 80 years old

Sociodemographic data provided by INSEE are given at a very fine scale. Indeed, they are

associated to a grid of cells 200× 200 meters, which is finer than the target zones, polygon

geometries of 650 × 650 meters. An illustration of this phenomenon can be visualized as

follows:

> sub_grid <- grid_cagb_sf[c(1358:1360,1294:1296),]

> st_crs(grid_insee_sf) <- st_crs(sub_grid)

> inters_insee <- st_filter(grid_insee_sf , sub_grid)

> inters_insee <- inters_insee %>% select(geometry)

> inters_point <- st_centroid(inters_insee)

> ggplot () +

+ geom_sf(data = sub_grid , fill = ’white ’) +

+ geom_sf(data = inters_insee , color = ’red’, fill = NA) +

+ geom_sf(data = inters_point , color = ’red’) +

+ coord_sf(xlim=c(913500, 917500), ylim=c(6677000, 6679200),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour = "black",

+ linetype="dashed",

+ size=0.1),

+ panel.grid.minor = element_line(colour = "black",

+ linetype="dashed",

+ size=0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude")
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Fig 2.8: Plot of INSEE data cells with centroids (in red) overlaying computational grid
cells (in black).

The Fig 2.8 represents the source zones (and centroids associated) in red that overlay a

subset of target zones (computational grid cells numbered 1358 to 1360 and 1294 to 1296)

in black. Indeed, the overlap of grid insee sf on grid cagb sf has been computed using

the function st filter, from the package sf, which joins according to geometries. Classical

functions of this package require that both sf objects have exactly the same CRS, which can

be done with st crs. Then the centroids of grid insee sf overlapping cells are obtained

with st centroid from sf package.

INSEE data cells (source zones) need to be transferred into the form of the computational

grid grid cagb sf cells (target zones). As mentioned before, sources are much smaller than

targets, which theoretically make the interpolation better. Indeed, sources are more likely

to be included in targets. The method that will be introduced below is the point-in-polygon

(PIP) method (Do et al., 2021). As its name implies, sources are points and targets are

polygons. As INSEE data cells are polygons, it has to be represented by points, hence the

use of centroid as described before. Finally, the value to be interpolated on a target zone is

the aggregation of all source points located in it, that is, the sum of the values of all these

source points. The PIP method is realized as follows:

> grid_insee_point <- st_centroid(grid_insee_sf)

> inters <- st_intersects(grid_cagb_sf , grid_insee_point , sparse = F)

> inters_yes <- apply(inters , 1, function (x) any(x != F))

> targets <- c("Ind", "Ind_18_24", "Ind_65_79", "Ind_80p")

> for(z in targets){

+ grid_cagb_sf[, z] <- rep(0, nrow(grid_cagb_sf))

+ for (i in which(inters_yes)) {

+ grid_cagb_sf[i, z] <- sum(st_drop_geometry(grid_insee_point)[



74 SPATIAL DATA HANDLING

inters[i,], z])

+ }

+ }

There are four target variables to be interpolated : Ind, Ind 18 24, Ind 65 79 and

Ind 80p. Two sets ti, i = 1, . . . , 4 096 and sj , j = 1, . . . , 3 386 of target zones and source

zones respectively. First, all centroid sources are computed. The function st intersects is

used in order to identify if both arguments geometries share any space and intersection zones

Iti,dj are obtained and stocked in inters yes. Then for each target variables, the aggregation

of all source points located in it is computed using the function sum. Remark that, as said

before, sf objects encode geometries of spatial data. Datasets of this class always contain

geometries in a column called geometry. This column does not have to be mentioned properly

in R operations in order to be considered, it is a sort of ”attached” column. The function

st drop geometry consists, as its name implies, to drop out geometries from the sf dataset.

Otherwise without using this function, the function sum applied above would have summed

up geometries too, even if there is only one target variable selected in the command-line.

> sum(grid_insee_sf$Ind)

> sum(grid_cagb_sf$Ind)

[1] 178232

[1] 178232

In our case, the PIP method is sufficient. Indeed for instance, the total number of

individuals on the whole grid grid insee sf is 178 232, same as grid cagb sf, which means

that there is no information lost. Note that INSEE data cells relate to information collected in

2015, and according to an INSEE report published in 2018 concerning the population census

in 2015, there are 197 754 inhabitants in the CAGB (INSEE, 2018). The difference between

197 754 and 178 232 is due to confidentiality problems. In conclusion, our sociodemographic

data interpolated on grid cagb sf is quite close to the reality. Two variables have been

created from available variables : prop18 and prop65 which give respectively the proportion

of individuals between 18 and 24 years old and the proportion of individuals more than 65

years old.

Global and road infrastructures

Global infrastructure data have been extracted from INSEE and transformed into the

following seven variables :

• health: locations of healthcare institutions (such as hospitals, doctor offices or drug-

stores for example)

• school : locations of schools (until the end of highschool)

• college: locations of schools (after highschool)

• shop: locations of shops (such as food shops, shops or restaurants for example)
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• station: locations of stations (such as train stations or taxi services for example)

• gasoline: locations of gas stations

• leisure: locations of establishments for leisure (such as cinemas or tennis courts for

example)

File extracted is a .csv extension file. Data were loaded, structured, split in order to keep

only resources that fall in the CAGB and transformed into a sf object where geometries are

points.

Road infrastructure data have been extracted from OpenStreetMap and transformed into

the variables intersection and radars which give respectively the locations of intersections

(traffic lights, stop and give way) and the locations of speed cameras. Files extracted are

.gpkg which is a file format for geospatial data. Data loaded as .gpkg files are of class sf

with points as geometries.

All these variables have to be interpolated on grid cagb sf. As sources are points, the

method to be applied is the PIP method described before. Another way to implement this

method consists in using functions of package sp as follows:

> radars_sf <- st_read("DATA/radardevitesse.gpkg")

> radars_sf <- radars_sf %>% dplyr:: select(geom)

> radars_sf <- st_transform(radars_sf , crs=2154)

> radars_sf <- st_intersection(owin_cagb_sf , radars_sf)

> radars_sf$radars <- rep(0, nrow(radars_sf))

> radars_sp <- as(radars_sf , ’Spatial ’)

> radars_sp <- spTransform(radars_sp , CRS("+init=epsg:2154"))

> radars_sp <- aggregate(x = radars_sp["radars"],

+ by = grid_cagb ,

+ FUN = length)

> radars_sf <- st_as_sf(radars_sp)

> radars_sf[is.na(radars_sf$radars) ,]$radars <- 0

> grid_cagb_sf <- st_join(grid_cagb_sf , radars_sf ,

+ join = st_nearest_feature)

First, the function st intersection is used in order to keep only speed cameras locations

located in the observation window. Then, a SpatialPolygonsDataFrame radars sp is cre-

ated using the function as(, ’Spatial’). The spatial aggregation is performed by applying

the function aggregate from package sp to the spatial object radars sp. The argument by

= grid cagb specifies that the aggregation has to be done according to it and FUN = length

specifies that the aggregation consists in the sum of the values. Then, the object radars sp

is converted once more into a sf object in order to be merged with grid cagb sf. To do

so, the function st join is used with argument join = st nearest feature which, as its

name implies, join according to nearest geometries. As radars sf and grid cagb sf have

the same geometries, this command-line acts as a classical merge operation.
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All target variables mentioned above have been interpolated to grid cagb sf similarly

as the variable radars.

Road network

The structure of road network has been extracted from the French open platform

data.gouv as a .shp file and loaded as a sf object with line type geometries.

> road_sf <- st_read("DATA/l_voiries_cagb_lg_r27.shp")

> road_sf <- st_transform(road , crs=2154)

The objective here is to be able to calculate the length of municipal roads and the length

of national roads (departmental, national and highways) per cells of the grid grid cagb sf.

To do so, one has to simply compute the length of the roads in the intersection zones, just

as follows:

> road_sf <- road_sf[, c("statut")] %>%

+ filter(statut %in% c("COMMUNALE",

+ "COMMUNAUTAIRE",

+ "VOIE PRIVEE"))

> road_sf <- st_transform(road_sf , crs = st_crs(grid_cagb_sf))

> inters <- st_intersection(grid_cagb_sf , road_sf)

> inters$len <- st_length(inters)

> grid_cagb_sf$Id <- 1:nrow(grid_cagb_sf)

> join <- st_join(grid_cagb_sf , inters)

> interpol <- group_by(join , Id) %>%

+ summarize(length = sum(len))

> interpol$length <- as.numeric(interpol$length)

> interpol[is.na(interpol$length) ,]$length <- 0

> interpol <- st_drop_geometry(interpol)

> grid_cagb_sf <- merge(data_sf , out , by = "Id")

> grid_cagb_sf <- grid_cagb_sf %>%

+ select(-Id)

> grid_cagb_sf <- grid_cagb_sf %>%

+ rename(municipal_length = length)

The variable statut of road sf gives the type of the road : COMMUNALE, COMMUNAUTAIRE

and VOIE PRIVEE corresponds to municipal roads ; ETAT and DEPARTEMENT corresponds to

national roads. The length of each road segments is computed with st length from sf

package. Then, the total road length is obtained by summing up according to cells, thanks

to the variable Id created above. This variable helps later in the merge operation, in order

to associate the length of the roads to grid cagb sf. This is another way to merge two

sf objects, instead of st nearest feature seen before. Command-lines above created the

variable municipal length for municipal roads, the same method can be applied for the length

of national roads.
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2.3.3 Final support of covariate values

All interpolation methods made before bring to a spatial object grid cagb sf which has,

per cell, values of 13 variables which are prop18, prop65, health, school, college, shop, station,

gasoline, leisure, intersection, radars, municipal length and national length. One last step

is to make the intersection between grid cagb sf and owin cagb sf in order to keep only

cells that fall in the CAGB :

> st_crs(owin_cagb_sf) <- st_crs(grid_cagb_sf)

> grid_cagb_sf <- st_intersection(grid_cagb_sf , owin_cagb_sf)

> area(grid_cagb_sf)

[1] 513848149

The grid grid cagb sf covers now an area of 513 848 149 square meters and is composed

of 1 362 cells. Each variable can be plotted, here are command-line examples for Fig 2.9

which represents range of values of the variable shop per grid cagb sf cells :

> grid_cagb_sf %>%

+ dplyr :: select(shop) %>%

+ ggplot () +

+ geom_sf(aes(fill = shop))+

+ scale_fill_gradient(low = "#F5FAFD", high = "#AA2A10",

+ breaks = c(0,50), limits = c(0,50)) +

+ coord_sf(xlim = c(905000, 950000),

+ ylim = (6665000, 6705000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour = "black",

+ linetype="dashed",

+ size=0.1),

+ panel.grid.minor = element_line(colour = "black",

+ linetype="dashed",

+ size=0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude") +

+ labs(fill = paste("Shops located", "\n", "per cells"))

Values of shop variable with a small range from 0 to 50 have been plotted, instead of

real values that goes to 353, it is only for the sake of clarity. Hence, grey cells are cells

where values are more than 50. The reader may find the plots of every remaining variables

in Appendix A.

Finally, the covariate data are exported with the function st write from package sf as

follows:

> st_write(obj = grid_cagb_sf , "DATA/grid_cagb_sf.shp", delete_layer =

TRUE)
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Fig 2.9: Plot of shop variable values, between 0 and 50, per cells of grid cagb sf.



Chapter 3

Spatial modelling road accidents in the

urban community of Besançon using

log-Gaussian Cox processes 1

Homogeneous and inhomogeneous Poisson point processes, Poisson

models aggregation and log-Gaussian Cox processes

In order to prevent and/or forecast road accidents, the statistical mod-

elling of spatial dependence and potential risk factors is a major asset. The

focus in the following is on the georeferenced location of accidents. We

crossed these events with covariates characterizing the study geographi-

cal area such as sociodemographic and infrastructure measures. After a

variable selection (poisson model, poisson models aggregation and random

forest), the occurrence of accidents was modelled by using a spatial log-

Gaussian Cox process. The results of this analysis enable us to identify

principal risk factors of road accidents and critical areas. The data used

are road accidents that occurred between 2017 and 2019 in the CAGB

(urban community of Besançon).

3.1 Introduction

Chapter 1 focused on giving a multivariate statistical analysis of road crash data from

the French region of Franche-Comté with special attention to road crash gravity. This

analysis has a behavioural preventive character. In order to fulfill the main goal of spatial

analysis of road crashes, the subsequent analyses should be focused on the spatial preventive

character. Chapter 2 focused on the spatial point pattern of road accidents of the CAGB

(Communauté d’Agglomération du Grand Besançon) to be fitted and associated covariates.

More particularly, it detailed the spatial tools used on the software R. The main goal now,

1This chapter leads to an article writing in progress for publication.
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with the available covariates, is to set boundaries for CAGB zones to be avoided and identify

the accident risk factors. Our road crash data are considered as a point pattern and assumed

to be a realization of an underlying stochastic process called point process. The crucial

element when studying point processes is the expected number of events per unit area,

known as the intensity of the point process. The context of road accidents directly implies

the consideration of the intensity of the process as a random process. The point process

proposed to model our road crash data in this chapter is the log-Gaussian Cox process

(Moller et al., 1998) (LGCP) for which the log-intensity is a Gaussian process.

The current chapter focuses on the fitting of LGCP and similarly as Chapter 2, the

objective is to delve deeper into the understanding and practical implementation of the

spatial LGCP using R.

The following librairies will be used :

> library(fields)

> library(ggplot2)

> library(leaflet)

> library(lgcp)

> library(maptools)

> library(miscFuncs)

> library(raster)

> library(sf)

> library(sp)

> library(spatstat)

> library(tidyverse)

R packages fields (Nychka et al., 2021), leaflet (Cheng et al., 2021), maptools (Bivand

et al., 2021b), raster (Hijmans et al., 2022), sf (Pebesma et al., 2022), sp (Pebesma et al.,

2021) and spatstat (Baddeley et al., 2021b) are tools for spatial data. The packages lgcp

(Taylor et al., 2021) and miscFuncs (Taylor, 2021) are packages used to fit the statistical

model LGCP. Finally ggplot2 (Wickham et al., 2021) and tidyverse (Wickham, 2021) are

used for plot and for data wrangling basic operations.

The current chapter is structured as follows. Section 3.2 introduces the notion of point

processes and gives the main properties of homogeneous and inhomogeneous Poisson point

processes. It also gives two possible nonparametric estimation methods of the intensity of

a point process. Section 3.3 first gives the statistical definition of LGCPs and presents

various possible inference methods for the intensity process: minimum contrast method,

maximum likelihood and Bayesian inference. As the Bayesian inference is the common

choice in practice and is adopted in this chapter, related methods such as computation

aspects and predictions are detailed. Finally, this section gives also performance assessment

tools and risk measures. We suggest in Section 3.4 a new variable selection method based

on an aggregation of Poisson regressions and the permutation variable importance criterion.

Finally, Section 3.5 corresponds to the fits of the LGCPs using the covariates thus selected

previously. The best LGCP model is used to create maps indicating the riskiest areas of the

CAGB and to identify the risk factors. A special attention is accorded to the implementation

on the software R of the theoretical tools defined in the last sections. A short conclusion
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is given in Section 3.6 and supplementary materials (such as Bayesian computation tools

implementations) are given in Section 3.7.

3.2 Point process basics

Section 2.2 in Chapter 2 introduced the notion of spatial point pattern. This refers to

observed spatial locations of events in some set W ⊂ R2 (Baddeley et al., 2015; Cressie and

Wikle, 2011). More particularly, consider a point pattern is a set of points X = {x1, . . . , xn}
where xi ∈W ⊂ R2 has a known location for all i = 1, . . . , n. The number n of the points in

the pattern is not fixed in advance and may be any nonnegative number including zero. For

a bounded region B ⊂W , X ∩B denotes the subset of X consisting of points falling in the

region B and n(X ∩B) denotes the number of points of X that fall in B. The analysis of a

spatial point pattern lies on many characteristics. Indeed, we can ask ourself: Are the points

uniformly located over a region or instead clustered ? Does the density of points depend

on an explanatory variable ? and so on... Hence, the analysis does not lie on the points

themselves but about the way the points were generated (Baddeley et al., 2015, Chapter 5).

Indeed, a spatial point pattern X is seen as a realization of an underlying process X denoted

as point process.

Point processes are widely used in several fields. For instance epicentres of earthquakes,

gorilla nesting sites, positions of trees in a forest or locations of cases of cancer are point

patterns that can be modelled by point process models. Many other examples have been

developed in the literature: Mohler (2014) used data consisting of violent crimes occurring in

Chicago in order to predict homicide; Olsbo et al. (2013) wanted to more precisely describe

the spatial structure of epidermal nerve fibers (the outmost part of the skin); Murotani et al.

(2019) analysed air voids which can be present in the concrete and may affects its properties;

then in the aim of estimating biodiversity of forests, Tovo and Favretti (2018) focused on the

tendency of plants to form clusters of individuals for the Barro Colorado Island and Pasoh

rainforests. Several different points of view, statistically speaking, were considered in these

articles.

Let X be a point process, namely a stochastic mechanism whose outcomes is a point

pattern X = {x1, . . . , xn} of any size n, where n is a nonnegative integer. As remarked by

Cressie and Wikle (2011), one fundamental property of a spatial point process is the expected

number of events in a given region B, namely E(n(X∩B)). This can be evaluated by means

of the intensity function λ(u) that is a measure of the potential for an event to appear at

any location u ∈ B ⊂ W. Let denote by Bu a small region located at u of volume |Bu|.
Mathematically speaking, the intensity function λ(·) is defined by:

λ(u) = lim
|Bu|→0

E(n(X ∩Bu))

|Bu|
, u ∈W (3.1)

provided that this limit exists. Then,

E(n(X ∩B)) =

∫
B
λ(u)du, B ⊂W.
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One of the main goals in statistical modelling and analysis of spatial point pattern is the

study of the intensity function λ(·) as it is a powerful tool to characterize the spatial be-

haviour of a point process. We start by considering first the simplest way to model a spatial

point pattern, the homogenous Poisson process, for which the intensity function is constant

everywhere and proceed next with the inhomogeneous Poisson of varying intensity function.

More generally, the Cox process are modifications of the inhomogeneous Poisson process to

incorporate random influences in the intensity function, namely the intensity function may

depend now on unobservable external factors as well as observable covariates. Finally, we

will consider the log-Gaussian Cox process (LGCP) which is a Cox process with log-intensity

modelled by a Gaussian process. Our final goal is to model the spatial point pattern of

CAGB road accident data by LGCP with log-intensity depending also on observable covari-

ates reflecting socio-demographic as well as road characteristics of the CAGB region.

3.2.1 Homogeneous Poisson process

An idealized standard process is the homogeneous Poisson point process, also called

complete spatial randomness (CSR), characterized by two properties:

HPP1 homogeneity : E[n(X ∩ B)] = λ|B|, λ > 0, which means that the expected number of

events falling in a region B ⊂W is proportional to its area;

HPP2 independence : n(X ∩ B1), n(X ∩ B2), . . . , n(X ∩ Bm) are m independent random

variables, whenever B1, B2, . . . , Bm are disjoint regions of W .

Property HPP1 is equivalent to the fact that the intensity function λ(·) defined in Eq

(3.1) is constant and equal to λ > 0. The parameter λ represents the average number of

random points per unit area, which in our case of road crashes can be seen as an occurrence

rate, and is known as the intensity of the point process. The two properties HPP1 and

HPP2 together imply that the number n(X∩B) of points falling in a region B has a Poisson

distribution with mean λ|B|, λ > 0. Furthermore, the homogeneous Poisson point process is

stationary and isotropic which respectively mean that the distribution of X is invariant under

translation and rotation. Homogeneous Poisson point processes are extensively presented in

Diggle (2013, Chapter 4) or Baddeley et al. (2015, Chapter 5).

A way to simulate homogeneous Poisson point process realizations is as follows:

> plot(rpoispp(30, nsim = 3), main = "", pch = 20, cex = 1)

Fig 3.1 gives three possible realizations of a homogeneous Poisson point process with

an intensity value λ of 30. The simulations have been made with rpoispp from package

spatstat. This function takes the intensity of the Poisson process as first argument, hence

in the homogenous case, a constant is required. The default window, in which the point

pattern is simulated, is the unit square. The function returned a list of ppp objects as nsim

= 3 specified that three realizations were required.
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Fig 3.1: Three simulated realizations of the Poisson point process with intensity 30 in the
unit square.

3.2.2 Inhomogeneous Poisson process

The Poisson process of completely random patterns presented in the previous section

is mostly used as the standard reference in comparison with other patterns. Indeed, the

intensity λ > 0 of this process is constant. However, the most important model for many

practical purposes is the inhomogeneous Poisson point process. This class of models is

a modification of homogeneous Poisson point processes in which the constant intensity is

replaced now by a spatially varying intensity function λ(u) depending on the spatial location

u, u ∈W ⊂ R2. The inhomogeneous Poisson point process X with intensity function λ(·) is

defined by the following two properties:

IPP1 intensity : for all bounded region B ⊂ W , E[n(X ∩ B)] =
∫
B λ(u)du, supposed to be

finite;

IPP2 independence: n(X∩B1), n(X∩B2), . . . , n(X∩Bm) are m independent random vari-

ables, whenever B1, B2, . . . , Bm are disjoint regions of W .

Property IPP1 implies that the point process X has intensity function λ(·), has defined

in Eq (3.1). The two properties together imply the Poisson distribution: for all bounded

region B ⊂W , n(X∩B) has a Poisson distribution with mean
∫
B λ(u)du. For more details

on inhomogeneous Poisson point process, see for example Diggle (2013, Chapter 6), Baddeley

et al. (2015, Chapter 9) and the references therein. There is no restrictions on the function

λ(u) to be used, as long as the function is non-negative and locally integrable. For example we

can simulate an inhomogeneous Poisson process with intensity function λ1(u) = 200(x+y)2,

u = (x, y) ∈ R2, as follows:

> lambda_1 <- function(x, y) {200 * (x+y)^2}

> lambda_1_im <- as.im(lambda , W = square(1))

> plot(lambda_1_im , main = "")

> plot(rpoispp(lambda_1, win = square(1)), main = "",

+ pch = 20, cex = 1, add = TRUE)
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Command-lines above give Fig 3.2, that is, the plot of a realization of an inhomogeneous

Poisson process overlaying the intensity function λ1. To do so, the first step is to create

the intensity function. Then in order to obtain a realization of the point process with λ1 as

intensity function, the same function as in Section 3.2.1 rpoispp is used but this time with

the function λ1, not a constant. In order to overlay the plots of the theoretical intensity and

the simulated point pattern, the function is converted to a pixel image using the function

as.im from the package spatstat. The object lambda 1 im of class im is plotted and the

point pattern is simply associated to the later plot by specifying add = TRUE. Note that as

before, the study window chosen is the unit square (square(1)). The Fig 3.2 shows a high

density of points in the top right corner of the window.

Fig 3.2: Plot of intensity function λ1 and realization of the associated inhomogeneous Poisson
point process in the unit square.

The intensity function of a point process is assumed to be the major part of the generation

of the data and the most important is to know whether the intensity is homogeneous or not.

Inhomogeneity of the intensity reflects the spatial distribution of points which may be more

or less abundant in different regions of space. For most real life problems, it is more realistic

to assume that the underlying point process is inhomogeneous, that means, driven by a non

constant intensity function. In our case, Fig 2.1 from Section 2.2 in Chapter 2 showed a

high density of points in the middle of the window. In order to inspect how the intensity

function in our case would be, the same plot as Fig 3.2 is obtained as follows:

> cagb_ppp <- readRDS("DATA/cagb_ppp.rds")

> plot(density(cagb_ppp), main = "")

> plot(cagb_ppp , main = "", pch = 20, cex = 1, add = TRUE)
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Fig 3.3: Plot of road accident spatial point pattern in the CAGB overlapping an estimation
of its intensity function.

The point pattern cagb ppp created in Section 2.2 is loaded with readRDS. A possible

estimate of the intensity of our point process here is produced with the function density

from spatstat which computes an intensity function from a point pattern in argument (more

details will be explained later about this function in the next Section). As expected, the

abundance of points in the middle of Fig 3.3 is reflected in intensity values. Indeed, the

warmer the colors of the intensity, the more points there are.

3.2.3 Estimation of the intensity function of a point process

The previous section shows how the investigation of the intensity of a point process is

an important step in point pattern analysis. Indeed, the intensity function is the expected

density of point per unit area and represents hence a reference descriptive characteristic for

a point process. It is interpreted as the incidence rate of the events recorded in the point

pattern. This rate of occurrence is the most important property of a point process to be

analysed when the goal of analysis is the prevention of the events. The main task in order

to fulfill our goal of geographical anticipation of road crashes of the CAGB is to map the

spatial variation in intensity and investigate, if it is the case, whether the intensity depends

on covariates. As said before, the intensity of the point process that generated our point

pattern of road crashes will be considered as inhomogeneous. Some preliminary estimation

investigations of the intensity will be presented briefly below.

If the intensity is suspected to be inhomogeneous, it can be estimated by nonparametric

methods such as quadrat counting, mentioned in Section 2.2 of Chapter 2, or kernel estima-

tion. More details and other existing estimation methods are given for example in Baddeley

et al. (2015, Chapter 6) and Diggle (2013, Chapter 5).
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Quadrat counting

Quadrat counting is a statistical technique to estimate the intensity function and that

allows to check if regions of equal area, from the observation window, have almost the

same number of points (as they would have if the point process were homogeneous). Indeed

subregions (quadrats) Bj , j = 1, . . . ,m, of the observation window each have nj = n(X∩Bj)
number of points. All are estimates of E[n(X ∩ Bj)] and are equal on average in the case

where the intensity is homogeneous. A simple estimate of the intensity function, as average

intensity in each quadrat, can be obtained by dividing each quadrat counts by the area of

the associated quadrats. The quadrat method is very similar to the histogram method for

density estimation.

The quadrat counts made in Fig 2.6 from Section 2.2 in Chapter 2 have been created once

again below with quadratcount from spatstat package. Then, estimates of the intensity

function can be obtained with the function intensity, from spatstat, which takes an object

quadratcount as argument. Fig 3.4 and Fig 3.5 are plotted as follows:

> q3_counts <- quadratcount(cagb_ppp , nx = 3, ny = 3)

> q9_counts <- quadratcount(cagb_ppp , nx = 9, ny = 9)

> par(mfrow=c(1, 2))

> plot(q3_counts , main = "")

> plot(intensity(q3_counts , image = TRUE), main = "")

> plot(q9_counts , main = "")

> plot(intensity(q9_counts , image = TRUE), main = "")

Fig 3.4: Quadrat counting for CAGB road accidents data. Quadrat counts 3× 3 in left and
intensity estimates (point per square meters) in right.

Intensity estimates in Fig 3.4 and Fig 3.5 suggest that the intensity may be quite elevated

in the middle of the plots, as before with Fig 3.3.

One way to assess whether the intensity function is homogeneous or inhomogeneous is

using the quadrat counting test of homogeneity. The null hypothesis of this test is that the

intensity is homogeneous and the alternative one is that the process is not a homogeneous
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Fig 3.5: Quadrat counting for CAGB road accidents data. Quadrat counts 9× 9 in left and
intensity estimates (point per square meters) in right.

Poisson process. However, the power of the test depends on the size of quadrats and is

only optimal when the quadrats are neither very large nor very small. This means that the

decision of the test depends on the choice of quadrat size and it is then questionable. In order

to show the weakness of this test, consider CAGB data and the estimation of the intensity

function by quadrats of size 2× 1 first and then, of size 9× 9:

> quadrat.test(cagb_ppp , nx = 2, ny = 1)

Chi -squared test of CSR using quadrat counts

data: cagb_ppp

X2 = 0.82724, df = 1, p-value = 0.7261

alternative hypothesis: two.sided

Quadrats: 2 tiles (irregular windows)

The quadrat counting test of homogeneity is performed with quadrat.test from

spatstat package. Numbers of quadrats in the x and y directions have to be specified

in the command-line. A grid 2 × 1 of quadrats for our point pattern has been created,

the associated test results in not rejecting the null hypothesis of a homogenous Poisson

process for the CAGB road accidents data. This result is not expected since the point

pattern clearly exhibits a strong spatial inhomogeneity with more point in the middle of

the window. Here the result is unsatisfactory because the quadrat size considered for the

test is too big. However, shifting number of quadrats as nx = 9 and ny = 9, for example,

gives p-value < 2.2e-16 which means that the null hypothesis is rejected and hence, we

conclude to an inhomogeneous intensity function. Hence, quadrat counting can be used for

standing assumptions on the intensity but should not be adopted for a final diagnostic.
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Kernel estimation

Another way to estimate the intensity function nonparametrically is the kernel estima-

tion. We use here the exact terms of Baddeley et al. (2015, Section 6.5.1, Page 168) who

illustrates this method metaphorically and allows to visualize it in an interesting way:

“Our favorite analogy is to imagine placing one square of chocolate on each data point.

Using a hair dryer we apply heat to the chocolate so that it melts slightly. The result is an

undulating surface of chocolate; the height of the surface represents the estimated intensity

function of the point process. The total mass of chocolate is unchanged.

There are many kernel estimators but only the standard one will be briefly presented

here. For any spatial location u in the observation window W ⊂ R2, the uncorrected kernel

estimator of λ(u) is defined as

λ̃(u) =
n∑
i=1

κσ(u− xi) (3.2)

where u = (x, y) ∈ W and the kernel function κσ(·) is the melted square of chocolate

placed at data point location xi. The kernel κσ may be a probability density function

symmetric about the origin and the most used choice is the Gaussian distribution : κσ(u) =

(2πσ2)−1 exp{−||u||2/2σ2}, u = (x, y) ∈ W . The standard deviation σ > 0 of the Gaussian

distribution is specified as the smoothing bandwidth of the kernel. This kernel estimator is

named uncorrected as it does not take into account edge effects. Other kernel estimators

with a correction are given in Baddeley et al. (2015, Chapter 6). For more details on the

kernel method, the reader may refer to Silverman (1986).

An estimation of the intensity function of cagb ppp with the uncorrected estimator can

be obtained as follows:

> k_density_50 <- density(cagb_ppp , sigma = 50, edge = FALSE)

> plot(k_density_50, clipwin = owin_bes ,

+ main = "", xlim = c(925000,932944), ylim = c(6685000, 6690000))

> contour(k_density_50, clipwin = owin_bes ,

+ xlim = c(925000,932944), ylim = c(6685000, 6690000),

+ add= TRUE , drawlabels = F)

> persp(k_density_50, main="", zlab = "Intensity estimated")

As seen in Section 3.2.2, the function density is used. This function actually computes

kernel density estimates. The argument sigma specifies the smoothing bandwidth σ as

mentioned above. The estimate can be plotted with plot. Then, contour lines can be added

to the previous plot using contour. On the other hand, in order to visualize this estimate as

a perspective view, the function persp is used. For the sake of clarity, a focus is made using

a smaller owin object : owin bes by using the optional argument clipwin of the function

contour. The object owin bes has been created in the same way as owin cagb seen in

Section 2.2 in Chapter 2 and relates to the polygon boundaries of the city of Besançon,

headquarter of the CAGB. The plot of the uncorrected kernel estimation of the intensity

function with smoothing bandwidth σ = 50 is plotted in the left panel of Fig 3.6. The
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perspective view is given in the left panel of Fig 3.7.

Fig 3.6: Kernel estimates of intensity for CAGB road crashes using different smoothing
bandwidths. Left to right: smoothing bandwidth σ equal to 50, 250 and 500. Same colour
code interpretation as Fig 3.3 (plot legend not displayed as it has been resized).

Fig 3.7: Perspective views of intensity kernel estimates of CAGB road crashes using different
smoothing bandwidths. Left to right: smoothing bandwidth equal to 50, 250 and 500.

Varying the smoothing bandwidth of the uncorrected kernel estimator produces the re-

maining panels of both Fig 3.6 and Fig 3.7. The larger the bandwidth is, the smoother

the estimated intensity is. Indeed, the smallest value σ = 50 produces an irregular intensity

surface, while larger values appear to slightly smooth the intensity.

As for quadrat counting, where the size of quadrats is chosen by the user, kernel esti-

mation depends heavily on the smoothing bandwidth σ and less on the choice of kernel.

However, several methods are available for selecting the bandwidth such as algorithms min-

imising some criterion for example. The likelihood cross-validation method (Loader, 1999)

is computed with bw.ppl as follows:

> smoothing_band <- bw.ppl(cagb_ppp)

> smoothing_band

> opt_density <- density(cagb_ppp , sigma = smoothing_band , edge =

FALSE)

> plot(opt_density , main="")

> persp(opt_density , main="", zlab = "Intensity estimated")

sigma

787.5311

Smoothing bandwidth estimate value obtained by the chosen algorithm is σ̂ = 787.5311

(much larger than the ones tried before) and Fig 3.8 displays the kernel estimate of the
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Fig 3.8: Plot of a kernel estimate of intensity of CAGB road crashes with smoothing band-
width selected by likelihood cross-validation method. Left to right : classical plot and
perspective plot.

intensity function of the point process that generated our CAGB road crashes point pattern

computed for this value σ̂. All these plots, and those produced with the quadrat counting

method, suggest that the intensity may be elevated in the middle of the observation window,

which actually almost corresponds to the south of Besançon city.

3.3 Log-Gaussian Cox Processes (LGCP)

The previous section introduced the notion of point processes and in particular, the in-

tensity function of a point process. In the case of the inhomogeneous Poisson point process,

the intensity function is varying spatially. Section 3.2.3 introduced two nonparametric meth-

ods used in order to estimate this intensity function. Other nonparametric methods exist

and, moreover, methods which this time inspect how the intensity of points depends on the

values of a covariate. Now, in this section, the statistical modelling of the intensity function

of the point process that generated our CAGB road crashes point pattern will be investi-

gated. More particularly, a log-Gaussian Cox process (LGCP) will be proposed to model the

road crashes point pattern, where the intensity depends on covariates and also on a spatial

Gaussian field capturing the spatial random effect.

Related works

The LGCP can be used to model various situations but its practical implementation

faces important computational challenges. A few methods have been proposed for running

and fitting this statistical model. For example Bayisa et al. (2020) used LGCPs in order

to improve the northern Sweden ambulance system in both space and time. It seems that

most of the emergency calls are located in populated areas, but the main concerns are for

inhabitants of large rural areas who may need fast access to prehospital care. The fitted

model has three components: a spatial component which was estimated by a quartic kernel

whose bandwidth has been selected using K-means clustering; a temporal component which

was estimated by a Poisson regression model; and a (unobservable) spatio-temporal Gaus-
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sian process whose properties were estimated using minimum contrast estimation. Another

field where LGCPs have proven useful is wildfire prevention. Opitz et al. (2020) used a

spatio-temporal model with the aim of giving preventive measures and operational forecasts

in the French Mediterranean basin. They faced a significant computational challenge due

to the high dimension of the data. Indeed, a large amount of information from covariates

such as for example vegetation type, weather or urbanization was used. Bayesian inference

was made using the integrated nested Laplace approximation (INLA). Ramı́rez and Valen-

cia (2021) trained LGCPs in the field of road crashes in order to understand and analyze

the occurrence of accidents, from a spatial and temporal point of view, in Bogota the cap-

ital city of Colombia. They included several spatial and temporal covariates associated to

accidents such as road characteristics, demographic conditions or even weather temporal

factors. Bayesian estimation was made using Markov chain Monte Carlo (MCMC) method

with the Metropolis-adjusted Langevin algorithm (MALA), a version of the commonly used

Metropolis-Hastings algorithm. Diggle et al. (2013) worked on LGCP in order to illustrate

and explain the use of the model. They developed different versions of the model with

increasing complexity, each adapted to a specific example: an introductory spatial model

whose events were hickory trees; a multivariate spatial model with four different types of

events corresponding to four different genotypes of bovine tuberculosis; a spatial model with

covariate information available for lung cancers observed on a geographical region of interest

partitioned into a set of subregions; and finally a spatio-temporal model for gastro-intestinal

disease. MCMC was also used for the Bayesian inference. Many other possible applications

may be given, however few fast computational methods are available for the moment. We

start by presenting briefly the statistical definition of a LGCP and the Bayesian approach

used for parameter inference and continue next with the LGCP modelling of our road crash

data and the associated computational algorithm.

3.3.1 LGCP statistical definition

As remarked in Section 3.2.2, the road crashes points seem to be clustered. This suggests

to consider the intensity as inhomogeneous. More particularly, our data will be modelled by

a Cox process. A Cox process is essentially a Poisson process for which the intensity function

is random. It is a natural way to model a inhomogeneous point processes as it assumes that

the unknown spatially varying intensity function Λ(u) is random.

Formally, a Cox process is defined by the following two assumptions (Diggle et al., 2013):

CP1 there exists a non-negative stochastic process Λ(·) = {Λ(u) : u ∈ W}, called driving

intensity process;

CP2 Conditionally on the realization Λ(·) = λ(·), the point process X is an inhomogeneous

Poisson process with intensity function λ(·).

More explicitly, conditionally on Λ(·) = λ(·), the count variable n(X ∩ Bj) is Poisson

distributed with mean
∫
B λ(u)(du) for all bounded B ⊂ W and n(X ∩ B1), . . . , n(X ∩ Bm)

are (conditionally) independent whenever B1, . . . , Bm are disjoint. We can see Λ and X as
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two different levels of randomness, so that the Cox process is often called a doubly stochastic

point process.

The random variation in the intensity function can be seen as a spatial random effect

and is often attributable to an unobserved covariate. The spatial variation in the intensity

function can make the point pattern look clustered, that is, with more abundant points

in some areas. For instance in our case of road crashes, the curvature of a road can be

a potential external factor. Indeed, a road more curved in some location can cause more

accidents instead of another location where the road is completely straight. The situation

can also be seen in a different way as: a road more curved will make the drivers slow instead

of a road completely straight where drivers would accelerate and lead to more accidents as

the speed is a risk factor. The observation remains the same, the curvature of the road

affects the driving and hence, the number of accidents.

There are many possible ways to build a Cox process, the most natural approach to cir-

cumvent the nonnegativity assumption of the intensity function is to deal with the logarithm

of the driving intensity, hence the concept of the log-Gaussian Cox process. A LGCP is a

Cox process whose log-intensity is modelled by a Gaussian process (Moller et al., 1998), say

Y = {Y (u) : u ∈ R2} (i.e. the joint distribution of any finite vector (Y (u1), . . . , Y (un)) is

Gaussian). More precisely,

log(λ(u)) = Y (u), u ∈W. (3.3)

The Gaussian random field Y is usually assumed to be the restriction on W of a stationary

and isotropic Gaussian random field defined on R2 (i.e. invariant under translations and

rotations), so that it is completely specified by its mean µ = E[Y (u)], its variance σ2 =

Var[Y (u)] and its covariance function

C(h) := Cov(Y (u), Y (u+ h)), u, h ∈ R2.

As the covariance function depends only on the distance between points and not on their

directions, it can be modeled by

C(h) = σ2r(||h||/φ), h ∈ R2,

where φ > 0 is a scale parameter and ||·|| is a suitable norm on R2 (for instance the Euclidean

norm), u ∈ R2. Moller et al. (1998) suggest several parametric forms for the function r that

ensure that the covariance function C(·) is well-defined (i.e. semi-definite positive function).

A common choice for r, that we will also adopt for the next of this chapter, is the exponential

function which leads to the following covariance function:

C(h) = σ2 exp

(
−||h||

φ

)
, h ∈ R2.

The covariance function of the Gaussian process Y can be specified using function

CovFunction from package lgcp as follows:

> cf <- CovFunction(exponentialCovFct)



3.3. LOG-GAUSSIAN COX PROCESSES (LGCP) 93

For the remaining of our work, we will also set µ = −σ2/2 which is a convenient re-

parameterisation since it enables to have E[Λ(u)] = E[exp(Y (u))] = 1 (Diggle et al., 2013;

Taylor et al., 2015), meaning that we have no prior information on the mean random spatial

effect. Note that due to properties of the log-Gaussian distribution, the intensity function

λ(·) and by consequence the process X are totally specified by the parameters σ and φ of the

Gaussian process Y, so efficient estimation of these parameters is crucial. The parameters

of the Gaussian process Y are often transformed onto log-scale, η = {log(σ), log(φ)}, as it

is more appropriated for the computation algorithm that will be used further (Taylor et al.,

2015).

In applications, one is often interested in the effect of spatial covariates. One way to

introduce them in the model is to add a linear term in the log-intensity that depends on the

covariates This results in the model

log(λ(u)) = Z(u)>β + Y (u), u ∈W,

where Z(u) is a vector of covariate values observed at the position u and β is a vector

of unknown parameters accounting for the effect of the different covariates. The notation
> stands for the vector or matrice transpose. The parameters of the model now are η =

{log(σ), log(φ)}, the parameters of the Gaussian process Y , and β, the vector of covariate

effects. For parameter estimation, three approaches can be considered: minimum contrast

estimation, maximum likelihood and Bayesian estimation (Diggle et al., 2013) which we

describe in Sections 3.3.2–3.3.4 below.

Finally, in practice, to fit the model in a tractable way, the common approach is to make

computation on a very fine regular grid. The study region of space is divided into a C × C
grid of equally spaced cells and the log-intensity is assumed to be constant over each grid

cell. Hence, the log-intensity within a given cell, for example the ith cell, is constant and

specified by its value at its centroid ci, i = 1, . . . , C2. The number of events, fitted with a

LGCP, is then treated as cell counts on this grid :

n(X ∩ ci) ∼ Poisson(λ(ci))

with

log(λ(ci)) = Z(ci)
>β + Y (ci), (3.4)

where n(X∩ ci) denotes the number of events in the ith cell of the grid with centroid ci, for

i = 1, . . . , C2. Usually, the grid is fine enough so that the cell-counts are very small (ideally

0 or 1) but it should allow a good compromise between accuracy of approximation and

computational complexity. The computational grid is also useful for the Bayesian inference

parameters as described in Section 3.3.4.
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3.3.2 Minimum contrast method

We consider first the LGCP model with the intensity process modelled by Eq (3.3).

The parameters to be estimated are σ and φ. The minimum contrast method is one way to

estimate these unknown parameters.

The minimum contrast method, also known as least-squares approach, consists in choos-

ing the parameters σ̂ and φ̂ which minimize the squared discrepancy between the empirical

and the theoretical second-order moments. Let C(·) be the covariance function of the Gaus-

sian process Y as presented in Section 3.3.1. Moller et al. (1998) chose estimate values σ̂2 and

φ̂ of respectively σ2 and φ that minimize the discrepancy between a nonparametric estimate

of the covariance function Ĉ(·) and the theoretical one C(·) as follows∫ u0

ε

[
Ĉ(u)α − C(u)α

]2
du

where 0 ≤ ε < u0 and α > 0, u ∈ R2. Moller et al. (1998) gave possible example choices for

the parameters ε, u0 and α. Usually, ε is the minimum distance between two points in the

point pattern and u0 and α are user-specified constants chosen so that the above integral

is well defined. However, it seems difficult to give appropriate values for these parameters.

Hence, minimum contrast estimation is generally considered as useful for providing prelim-

inary estimates of the parameters (Diggle et al., 2013; Taylor et al., 2015). The minimum

contrast method can be computed as follows:

> minimum.contrast(data = cagb_ppp ,

+ model = "exponential",

+ method = "g",

+ intens = density(cagb_ppp),

+ transform = log)

[Univariate spatial minimum contrast]

Nonparametric heterogenous PCF estimation ... done.

Starting values are (321.61, 2.99); optimising exponential correlation

function ...

done.

$estimates

scale variance

[1,] 617.4396 1.850986

$discrepancy

Squared discrepancy

[1,] 2150.972

The function minimum.contrast from lgcp package takes as argument the point pattern

cagb ppp. Then the assumed theoretical form of the spatial correlation function is specified

in the argument model. Various definitions of the minimum contrast method are given

in Brix and Diggle (2001), Diggle et al. (2013) and Taylor et al. (2015). In the package
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lgcp, the parametric functions that can be used are the pair correlation function (PCF) g

and Ripley’s K function (Ripley, 1977). The method of spatial minimum contrast here is

defined with method = "g" and is associated with transform = log which simply plays for

contrast criterion. Finally, an estimation of the intensity of cagb ppp is specified using the

function density as seen in Section 3.2.3. The parameter estimates are then φ̂ = 617.440

and σ̂2 = 1.851.

These values will be useful as preliminary estimates in the computation algorithm further.

In particular, they might be helpful for the choice of the grid size. Indeed, the scale parameter

φ of the covariance function C(·) of Y actually determines the spatial correlation in the

process. Hence the approximate spatial scale of 617 meters tells that a grid of close dimension

cells might be necessary to capture the dependence structure in the Gaussian process Y . The

choice of such an appropriate grid size can be seen as follows:

> chooseCellwidth(cagb_ppp , cwinit = 650)

The function chooseCellwidth from the package lgcp, as its name implies, helps in choosing

the cell width in order to set up the computational grid. The desired cell width is specified

in the argument cwinit. In our case, a cellwidth of 650 meters is chosen as it might be

appropriate for an efficient computational grid size. The above command-lines produce the

plot of the observation window of the ppp object given and computational grid associated.

Fig 3.9: Output of chooseCellwidth(cagb ppp, cwinit = 650).

The Fig 3.9 displays output grid of size 64× 64. One the cell width is chosen, it remains

to create the grid. The object polyolay, created in Section 2.3.1 from Chapter 2 is loaded

as follows:

> polyolay <- readRDS("DATA/polyolay.rds")

Remind that the grid have been created with a cell width of 650 meters.
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3.3.3 Maximum Likelihood Estimation

Maximum likelihood is one of the most used method for estimating unknown parameters.

However, as we will briefly describe below, in the case of Cox and LGCP models, this

approach can not be used.

Consider first a general Cox point process X. For a realization of the intensity process,

Λ(u) = λ(u), we have an inhomogeneous Poisson point process of intensity λ(·) governed by

some parameter θ. In this case, the likelihood for θ (computed with respect to the reference

homogeneous Poisson process of intensity λ = 1) is given by (Baddeley et al., 2015, Chapter

9)

`(θ ;X) = λ(x1)λ(x2) . . . λ(xn) exp

(∫
W

(1− λ(u))du

)
, (3.5)

where X = {x1, . . . , xn} is the observed point pattern within the observation window W.

The first term of the likelihood given in Eq. 3.5 is the probability of observing data in points

x1, . . . , xn and exp
(∫
W (−λ(u))du

)
is the probability of not observing any other points in

the window W. The constant factor exp
∫
W du = exp(|W |) is due to rescaling with respect

to the Poisson process of λ = 1 and it is usually omitted from the likelihood expression.

Then, we get that the probability density of the Cox process X is given by (Baddeley

et al., 2015, Chapter 12)

L(θ ;X) = E

[
n∏
i=1

λ(xi) exp

(
−
∫
W
λ(u)du

)]
.

The high dimensionality of the integration makes this likelihood analytically intractable

(Moller et al., 1998; Diggle et al., 2013; Baddeley et al., 2015) even in the case of computation

on a fine regular grid. The commonly used alternative is then the Bayesian inference.

3.3.4 Bayesian inference

Our goal is to use the data X = {x1, . . . , xn} in order to make inferences about the latent

process Y and the parameters θ = (η, β) which parametrize the covariance function of Y and

the covariate effects (see Eq (3.4)). In the Bayesian paradigm, Y as well as θ are considered

as random variables and the statistical problem may be summarized by a hierarchical model

as described in Cressie and Wikle (2011, Chapter 2):

parameter level : distribution of θ;

latent process level : distribution of Y |θ;

observation level : distribution of X|θ, Y.

Here the process Y is unobserved and often referred to as a latent process and only the point

pattern X is observed. In the LGCP case, the hierarchical model writes (Cressie and Wikle,
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2011, Chapter 4):

parameter level : θ = (β, η) with β the covariate effects and

η = (log(σ), log(φ)) parametrizing the covariance functions of Y ;

latent process level : Given θ, Y (·) is a Gaussian process and

Λ(u) = exp
(
Z(u)>β + Y (u)

)
, u ∈W ;

observation level : Given Λ(·) = λ(·), X is an inhomogeneous Poisson process

with intensity function λ(·).

To make inferential statements, the Bayesian paradigm assigns a prior distribution π(θ) to

the model parameters θ = (β, η) and focuses on the posterior distribution π(θ, Y |X), the

conditional distribution of θ and Y given the observations X, given by Bayes’ Theorem:

π(θ, Y |X) ∝ π(X|θ, Y )π(θ, Y )

∝ π(X|θ, Y )π(Y |θ)π(θ).

The latent field is unobserved and plays, during the estimation procedure, almost the

same role as an unknown parameter. For this reason, and for the convenience of notation,

we will note Θ = (θ, Y ) the unobserved part of the model to be estimated (both parameters

and latent process). We then have the following model:

unobserved level : Θ with distribution π(Θ)

observation level : X with distribution π(X|Θ),

where

π(Θ) = π(Y |θ)π(θ)

and

π(Θ|X) ∝ π(X|Θ)π(Θ) = π(X|θ, Y )π(Y |θ)π(θ).

Computational aspects

From a computational point of view, the Bayesian inference for LGCP presents two

main difficulties: the choice of the prior distribution and the computation of the posterior

distribution. As θ = (β, η), we can chose a prior of the product π(θ) = π(β)π(η). The package

lgcp allows to choose a multivariate Gaussian prior for β and a multivariate Gaussian prior

for η = (log σ, log φ):

β ∼ N (µβ,Σβ) and η ∼ N (µη,Ση).

Following Diggle et al. (2013) or Taylor et al. (2015), we have chosen

β ∼ N (0, 106), log σ ∼ N (log(1), 0.15) and log φ ∼ N (log(2000), 0.15).
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The prior for β corresponds to a very flat prior that conveys almost no information (zero

mean and very high variance). Note that µφ = 2000 has been chosen by preliminary fits on

our data, this results from the trace plot given in Fig B.6 in Appendix B. These priors are

defined in lgcp as follows:

> priors <- lgcpPrior(

+ etaprior = PriorSpec(LogGaussianPrior(mean = log(c(1, 2000)),

+ variance = diag(0.15, 2))),

+ betaprior = PriorSpec(GaussianPrior(mean = rep(0, 8),

+ variance = diag(10^6, 8))))

The above command-lines are an example of how priors can be defined with the function

lgcpPrior for a model with seven covariates. Indeed, in betaprior the mean and the

variance are of dimension eight (which correspond to intercept and the seven covariates).

The object priors will be used in a LGCP fit further.

Actually, with LGCP, it is not possible to have an analytically tractable expression for the

posterior π(θ, Y |X). Hence, we use Markov chain Monte Carlo (MCMC) algorithm in order

to simulate the unknown posterior distribution. Another way to approximate this unknown

distribution is the integrated nested Laplace approximation (INLA). For more details on

INLA and a comparative evaluation of the performance between MCMC and INLA see

Taylor and Diggle (2013).

MCMC methods generate samples from a Markov chain whose stationary distribution is

the target of interest, in our case π(θ, Y |X). The commonly used algorithm is the Metropolis-

Hastings algorithm. The reader may find more details in Robert (1996); Robert and Casella

(2004); Robert (2007); Brooks et al. (2011).

We note Θ = (θ, Y ) the unobserved part of the model (model parameters and latent pro-

cess) and {(Θ(N)}N≥1 the Markov Chain generated by the Metropolis-Hasting algorithm in

order to estimate the posterior distribution π(Θ|X). The Markov-Chain is generated follow-

ing the global principle given in Algorithm 1 and relies on proposal and acceptance/rejection.

The proposal distribution is defined by a transition kernel q(Θ∗|Θ).

Typically, the Markov chain {Θ(N)}N≥1 produced by Algorithm 1 is irreducible, ergodic

and converges to the target distribution π(Θ|X). For necessary conditions on q to ensure

these properties, see Robert and Casella (2004) for example. Beyond this basic properties,

the choice of q is critical to achieve quick convergence and good mixing properties of the

Markov chain.

The design of q used in our Metropolis-Hastings type MCMC method is a mix of random

walk and Langevin proposal kernels (Taylor et al., 2013). This method is known as the

Metropolis-adjusted Langevin algorithm (MALA) and has been recommended by several

authors working on inferential methods for spatial and spatio-temporal LGCP, for more

details see Moller et al. (1998) and the references therein. We will only give basic elements,

the reader may find further comprehensive details about MALA in Moller et al. (1998), Brix

and Diggle (2001), Taylor et al. (2013) or Taylor et al. (2015). As suggested by the latter

authors, it is better to work with a transformation of the Gaussian process Y , namely Γ for
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Algorithm 1 Metropolis-Hastings

(I) Initialization Θ(0) of the chain at time 0;

(II) Update from Θ(N) to Θ(N+1) as follows:

(a) Generate a proposal Θ∗ with distribution q(Θ∗|Θ(N))

(b) Compute the acceptance ratio

p = min

{
1,

π(Θ∗|X) q(Θ(N)|Θ∗)
π(Θ(N)|X) q(Θ∗|Θ(N))

}
.

(c) Set

Θ(N+1) =

{
Θ∗ with probability p,

Θ(N) with probability 1− p.

instance, implying a matrix that diagonalizes the covariance function. This transformation

appears to reduce the computational complexity and improve the mixing of the Markov

chain. With Θ∗ = {β∗, η∗, Y ∗} and Θ(N) = {β(N), η(N), Y (N)}, the proposal is defined as

q(Θ∗|Θ(N)) = N
[
Θ∗; Θ(N) +

h2

2
Σ∇ log{π(Θ(N)|X)}, h2Σ

]
where N (a; b, c) denotes a multivariate Gaussian density with mean b and variance c evalu-

ated at a and h > 0 is a scaling parameter. The parameter h is adjusted on some preliminary

runs of the algorithm in order to achieve an average acceptance rate of 0.574 for the MCMC

algorithm (Moller et al., 1998; Diggle et al., 2013). Finally, the component Σ is composed of

ΣΓ, Σβ and Ση where all are approximations of the negative inverse of the Fisher information

associated matrices (Diggle et al., 2013; Taylor et al., 2013, 2015). The construction of ΣΓ,

Σβ and Ση are based on initial guesses at Γ, β and η, hence approximate values φ̂ and σ̂2

obtained by minimum contrast method used before will be useful. The initial values for the

run of the MCMC algorithm can be declared as follows:

> INITS <- lgcpInits(etainit = log(c(sqrt(1.85), 617)), betainit =

NULL)

The function lgcpInits from package lgcp helps the MCMC algorithm to calibrate the

proposal density using the provisional estimates given if specified. The argument etainit, as

its name implies, is used in order to declare initial values for η which must be always presented

in the required form {log(σ), log(φ)}. Then, the argument betainit is for parameter β. We

followed Taylor et al. (2015) by specifying nothing. If no initial value is declared then β will

be estimated from an overdispersed Poisson fit to the cell counts, ignoring spatial correlation.

Finally, note that Y (or Γ) is not specified as the user can not do it, actually, a sensible value

is chosen by the MCMC function.
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Bayesian Prediction

In a Bayesian predictive framework, the distribution of a ”new” observation X∗ (in our

case a new point pattern) is given by the posterior predictive distribution defined by

π(X∗|X) =

∫
π(X∗|Θ)π(Θ|X)dΘ, (3.6)

where X = {x1, . . . , xn} denotes the data, π(X∗|Θ) is the data distribution and π(Θ|X) the

posterior distribution. Note that if Θ were known, the predictive distribution for X∗ would

simply be π(X∗|Θ). As Θ is unknown, the predictive distribution for X∗ is a mixture of the

data distributions π(X∗|Θ) with respect to the posterior distribution π(Θ|X).

As the LGCP is computed on a grid, the goal here is to predict the number of events

per cell of the computational grid. Considered an observed point pattern X = {x1, . . . , xn}
within an observation window W , then the prediction of the number of events per cell i is

given by the optimal predictor n∗i , the posterior predictive expectation of n(X∗ ∩ ci) given

the point-process data X :

n∗i = E[n(X∗ ∩ ci)|X], (3.7)

where E[·|X] is computed with respect to the posterior predictive distribution given in Eq

(3.6) and X∗ denotes an independent replicate of the data with the same values Θ that

produced the observed point pattern X (Cressie and Wikle, 2011, Chapter 2); a realization

of X∗ is X∗. Considering double conditioning with respect to Θ and X, we get

n∗i = E[n(X∗ ∩ ci)|X]

= E
[
E
[
n(X∗ ∩ ci)|X,Θ

]∣∣X]
= Eπ(Θ|X)

[
λ(ci|Θ)

]
, (3.8)

as X∗ is independent of point-process data X and n(X∗ ∩ ci)|Θ ∼ Poisson(λ(ci|Θ)) with

λ(ci|Θ) = exp
(
Z(ci)

>β + Y (ci)
)
. (3.9)

In Eq (3.8), the notation Eπ(Θ|X) means expectation with respect to the measure π(Θ|X).

From a practical point of view, the prediction n∗i is computed using Monte-Carlo simu-

lation methods to approximate the expectation by the average of simulated-based quantities

and the MCMC algorithm to generates samples from a Markov chain whose stationary distri-

bution is the target distribution π(θ|X) (Gamerman and Lopes, 2006). In the Monte Carlo

Markov Chain (MCMC) method, the expectation in Eq (3.8) may then be approximated by

n∗i '
1

N

N∑
l=1

λ(ci|Θ(l)), i = 1, . . . , C2, (3.10)

where Θ(l) denotes the lth sample replicate of the Markov chain defined in Algorithm 1.
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Indeed, the Markov chain (Θ(N))N≥1 being ergodic, the Ergodic theorem implies

1

N

N∑
l=1

λ(ci|Θl))
a.s.−→ Eπ(Θ|X)[λ(ci|Θ)], as N → +∞. (3.11)

For the sake of clarity, we give all software implementations in Section 3.5 which is

devoted to LGCP modelling of the CAGB data.

3.3.5 Model performance assessment and risk measures

The goal in assessments for model fitting, which actually corresponds to posterior predic-

tive diagnostics, is to determine whether the observed data are representative of the type of

data expected under the assumed model. Our main goal is to predict as accurate as possible

the number of accident per cell, so we suggest below several methods in order to evaluate

the performances of competitor models.

Weighted Mean Squared Error and R-squared value

The first metric is based on the classical mean square error (MSE):

MSE =
1

C2

C2∑
i=1

(n∗i − ni)2,

where ni = n(X ∩ ci) denotes the number of events for the ith cell of centroid ci of the

C × C computational grid and n∗i the predicted number of events for the ith cell. With the

MSE-metric, equal weights 1/C2 of sum equal to one are given to all squared differences

between the observed and the predicted values. In our situation, it may be advisable to

weight differently the squared discrepancies between the observed and the predicted values.

We suggest then the second metric which is a weighted MSE (wMSE) defined as follows

wMSE =

C2∑
i=1

wi(n
∗
i − ni)2, (3.12)

where

ωi =
ω̃i∑C2

j=1 ω̃j
, (3.13)

with

ω̃i =
1

Var(n(X∗ ∩ ci)|X)
, i = 1, . . . , C2, (3.14)
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and Var(n(X∗∩ci)|X) is computed with respect to the posterior predictive distribution given

in Eq (3.6). Considering again double conditioning with respect to Θ and X, we get

Var
[
n(X∗ ∩ ci)

∣∣X]
= E

[
Var
[
n(X∗ ∩ ci)

∣∣X,Θ]∣∣∣X]+ Var
[
E
[
n(X∗ ∩ ci)

∣∣X,Θ]∣∣∣X]
= Eπ(Θ|X)

[
λ(ci|Θ)

]
+ Varπ(Θ|X)

[
λ(ci|Θ)

]
, (3.15)

as X∗ is independent of the point-process data X and n(X∗ ∩ ci)|Θ ∼ Poisson(λ(ci|Θ)).

Recall that λ(ci|Θ) is defined in Eq (3.9).

From a practical point of view, the variance given in Eq (3.15) may be evaluated by

MCMC approximation. In the previous section, devoted to Bayesian prediction, the expec-

tation term from the right-side of Eq (3.15) is approximated by

1

N

N∑
l=1

λ(ci|Θ(l)) −→
N→+∞

Eπ(Θ|X)

[
λ(ci|Θ)

]
.

The variance term in the right-side of Eq 3.15 can be approximated in a similar way by

1

N

N∑
l=1

(
λ(ci|Θ(l))− 1

N

N∑
k=1

λ(ci|Θ(k))

)2

−→
N→+∞

Varπ(Θ|X)

[
λ(ci|Θ

]
.

So, in practice, we use the approximation

Var(n(X∗ ∩ ci)|X) ' 1

N

N∑
l=1

λ(ci|Θ(l)) +
1

N

N∑
l=1

(
λ(ci|Θ(l))− 1

N

N∑
k=1

λ(ci|Θ(k))

)2

. (3.16)

In order to compare the performances of different models, we have also considered the R-

squared value defined by

R2 = 1−
∑C2

i=1(n∗i − ni)2∑C2

i=1(n̄− ni)2
, (3.17)

where n̄ = 1
C2

∑C2

i=1 ni is the mean number of events per cell of the computational grid.

Confusion matrices

An appropriate LGCP model would predict correctly the event occurrences when they

were initially observed. In order to asses this model performance, we need to compute the
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probability that the expected number of events per cell is equal to 0:

P
(
n(X∗ ∩ ci) = 0

∣∣X) = E
[
I{n(X∗∩ci)=0}|X

]
(3.18)

= E
[
E
[
I{n(X∗∩ci)=0}|X,Θ

]∣∣∣X] (3.19)

= E
[
P
(
n(X∗ ∩ ci) = 0

∣∣X,Θ)∣∣∣X]
= Eπ(Θ|X)

[
exp(−λ(ci|Θ))

]
' 1

N

N∑
l=1

exp(−λ(ci|Θ(l)))
]
. (3.20)

These predicted probabilities can help us to classify the observations into two classes: if

the predicted probability is ”high” (namely higher than a threshold to be defined), then we

classify the corresponding observation as belonging to the class 0 = ”no events occurred”,

otherwise it belongs to the class 1 = ”at least one event occurred”. These predicted classes

can then be compared to the observed values which have been also classified in these two

0/1 classes by applying the same rule. Confusion matrices are crossed tables of the observed

and predicted classes as follows:

Predicted class
0 1

Observed
class

0 True negative (TN) False positive (FP)
1 False negative (FN) True positive (TP)

Several metrics are based on the quantities contained in the confusion matrix (TN, FN,

FP and TP) and are commonly used in machine learning in order to assess the model

performance. The reader may find more details on the confusion matrix implementations

and these metrics in Section 3.5.2.

Exceedance probabilities and relative risk

In order to visualize the spatial variation of the random intensity function

Λ(ci) = exp(Z(ci)
>β + Y (ci)), i = 1, . . . , C2, (3.21)

we use, as in Taylor et al. (2013), the exceedance probabilities defined by

P
(
Λ(ci) > t

∣∣X) = E
[
P
(
Λ(ci) > t

∣∣X,Θ)∣∣∣X]
= Eπ(Θ|X)

[
I{λ(ci|Θ)>t}

]
,

(3.22)

where I denotes the indicator function. Once again, the MCMC approximation is used and

yields

P
(
Λ(ci) > t

∣∣X) ' 1

N

N∑
l=1

I{λ(ci|Θ(l))>t}.
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The random intensity function takes into account both the spatial random effect through

the latent random field Y and the covariate effects through the parameter β. One is often

interested in studying the two effects separately and focus first on the spatial random effect.

In the sequel, the Markov Chain (Θ(N))N≥1 is noted

Θ(N) = (β(N), η(N), Y (N)), N ≥ 1.

If one wants to study specifically the spatial random effects, one can focus on the spatial

relative risk

P
(

exp(Y (ci)) > t
∣∣X) = E

[
P
(

exp(Y (ci)) > t
∣∣X,Θ)∣∣∣X]

= Eπ(Θ|X)

[
I{exp(Y (ci))>t}

]
' 1

N

N∑
l=1

I{exp(Y (l)(ci))>t}

. (3.23)

This quantity is interpreted as the residual spatial effect after integration of the spatial

variability due to the spatial covariates.

Parameter a posteriori distribution and associate effects

Finally, it is interesting to visualize the a posteriori distribution of the parameters θ =

(β, η).

The parameter β corresponds to the covariates effect. More precisely, the jth component

βj corresponds to the effect of the jth covariate Zj and the exponential exp(βj) is interepreted

as a relative risk. Hence, βj < 0 means that higher values of Zj imply reduced risk of road

crashes, while βj > 0 corresponds to increased risk. The value βj = 0 is interpreted as an

absence of effect of the covariate Zj . In the MCMC method, the a posteriori distribution

of βj is assessed through the empirical distribution {β(N)
j }N≥1 along the Markov chain.

Typically, the histogram of the MCMC sample {β(l)
j : 1 ≤ l ≤ N} allows to visualize the a

posteriori distribution of βj . One can compare the a posteriori distribution to the a priori

distribution and infer how much the observations are informative for the statistical inference.

In particular, recall that the a priori distribution for βj has been chosen as a very flat prior.

A credible interval with level 95% for βj is obtained by taking the empirical quantiles of order

2.5% and 97.5% of the MCMC sample. Of particular interest is to determine whether 0 lies

inside or outside the credible interval for βj , so as to determine the statistical significance of

the effect of the covariate Zj .

Similarly, the posterior distribution for η = (log σ, log φ) is visualized via an histogram

of the MCMC sample {η(l) : 1 ≤ l ≤ N}. This yields a Bayesian estimation of the parameters

of the latent process Y .
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3.4 Log-Gaussian Cox Processes pre-processing: variable se-
lection

Our main goal is the analysis of georeferenced road crashes in CAGB and more exactly,

to prevent and/or forecast road accidents. Taking into account the spatial characteristics of

these accidents therefore seems essential. Hence, the statistical modelling of spatial depen-

dence and potential risk factors is a major asset. More specifically regarding risk factors, the

information will be incorporated through covariates in order to build a model according to

a ”explanatory-predictive tradeoff”. Hence, it has to be decided which covariates will play a

part in the analysis.

We will use a LGCP to model the occurence of the road crashes in CAGB and we will

include spatially explanatory covariates in the varying intensity function λ(·) as explained

in Section 3.3. However, algorithms used in order to run a LGCP are computationally chal-

lenging and time consuming. For example, Ramı́rez and Valencia (2021) fitted a “saturated”

model (i.e. a model with all the available covariates) for which the total computation time

was around two days by using a 2.2 GHz Intel core i7-4702MQ processor with 16Gb of RAM

and they reduced the computation time to one day by using a model based only on the

significant covariates chosen manually. We suggest in this work automatic variable selection

methods and variable selection criterion in order to choose the most important covariates,

in a small number, to be used next in a LGCP model allowing in this way an important

reduction of the computation time. In order to do that, we need to do first several prelim-

inary data processing operations such as normalization and interpolation of covariates on

the chosen grid. Next, variable selection methods based on Poisson aggregation and vari-

able importance criterion will be used in order to choose the most important covariates to

be plugged-in the LGCP model. We consider all these preliminary treatments as LGCP

pre-processing.

We consider the covariates as structured and associated to the computational grid of the

LGCP as described in Chapter 2. The data are loaded as follows:

> cagb_covar_sf <- st_read(’DATA/grid_cagb_sf.shp’, quiet = TRUE)

> summary(cagb_covar_sf)[c(1, 6), ]

prop18 prop65 health school

Min. :0.000000 Min. :0.0000 Min. : 0.0000 Min. :0.00000

Max. :0.200000 Max. :0.7000 Max. :80.0000 Max. :7.00000

college shop station gasoline

Min. :0.00000 Min. : 0.0000 Min. :0.00000 Min. :0.00000

Max. :5.0000 Max. :353.0000 Max. :3.00000 Max. :2.00000

leisure intersection radars municipal_length

Min. : 0.0000 Min. : 0.0000 Min. :0.000000 Min. : 0.0

Max. :14.0000 Max. :23.0000 Max. :1.000000 Max. :13811.7
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national_length geometry

Min. : 0.0 POLYGON :1362

Max. :9761.8

For more convenience, covariate data are named cagb covar sf instead of grid cagb sf as

it is named in Chapter 2. Note that the covariates are on different scales. In order to make

each covariate equally important, a min-max normalization is applied as follows:

> minmax_norm <- function(x) return ((x - min(x)) / (max(x)-min(x)))

> cagb_covar_sf <- cagb_covar_sf %>%

+ mutate(radars = fct_norm(radars),

+ health = fct_norm(health),

+ school = fct_norm(school),

+ college = fct_norm(college),

+ leisure = fct_norm(leisure),

+ gasoline = fct_norm(gasoline),

+ station = fct_norm(station),

+ intersection = fct_norm(intersection),

+ shop = fct_norm(shop),

+ municipal_length = fct_norm(municipal_length),

+ national_length = fct_norm(national_length))

The total number of cells included in the observation window is 1 362. Each cell will repre-

sent an observation. The covariates are {Z1, Z2, . . . , Z13} = {prop18, prop65, health, school, college, shop,

station, gasoline, leisure, intersection, radars,municipal length,national length}. Then, the

response variable to be explained will be the cell event counts of the computational grid,

that is, the number of accidents per cell. A column accidents will be created and merged

to the covariates in order to have a global data-frame. Remind that in Section 2.2, the sf

object cagb sf has been structured and corresponds to our road crash point pattern. The

PIP interpolation method, as seen in Section 2.3.2, is used in order to aggregate road crash

points cagb sf located in polygon cells of cagb covar sf as follows:

> st_crs(cagb_sf) <- st_crs(cagb_covar_sf)

> cagb_sf$accidents <- rep(0, nrow(cagb_sf))

> cagb_covar_sp <- as(cagb_covar_sf , ’Spatial ’)

> cagb_sp <- as(cagb_sf , ’Spatial ’)

> cagb_sp <- aggregate(x = cagb_sp["accidents"],

+ by = cagb_covar_sp,

+ FUN = length)

> cagb_sf <- st_as_sf(cagb_sp)

> cagb_sf[is.na(cagb_sf$accidents), ]$ accidents <- 0

> st_crs(cagb_sf) <- st_crs(cagb_covar_sf)

> selection_sf <- st_join(cagb_covar_sf , cagb_sf ,

+ join = st_covers)

> selection <- st_drop_geometry(selection_sf)
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Similar command-lines as in Section 2.3.2 have been used. In order to use the function

aggregate, SpatialPolygonsDataFrame objects cagb sp and cagb covar sp have been

created with as(, ’Spatial’) as seen in the previous chapter. Then, the sf object

selection sf is created with st join from package sf but this time with argument

join = st covers, another way to join geometries that gives the same results as methods

employed in Section 2.3.2. Finally, the function st drop geometry is used in order to

remove geometries from selection sf and to create the data.frame object selection.

3.4.1 Poisson aggregation

We suggest in the following a variable selection method based on Poisson aggregation and

variable importance criterion. Indeed, the Poisson distribution is the simplest distribution

for count data. The average number of road crash occurrences per cell of the computational

grid will be modelled in function of the available covariates. Actually, Poisson regression is

quite similar to the LGCP as presented in Section 3.3 except that the Poisson regression

completely ignores the spatial correlation.

Mathematically speaking, let Ni be the random variable denoting the number of accidents

per i-th cell and ni the observed value of Ni. Then, Ni follows a Poisson distribution of

mean λi which we model by the following Poisson regression model based on covariate data

Z1, . . . , Z13 described in the previous section:

log(λi) = f(zi), i = 1, . . . , C2

f(z) = b0 + z>b

for zi = (Zij)
13
j=1 and b = (bj)

13
j=1, bj ∈ R, j = 1, . . . , 13. The predicted number of accidents

per cell, N̂i, is given by:

N̂i = f̂(zi) = exp(b̂0 + z>i b̂)

where b̂j , j = 1, . . . , 13 are computed from sample data iteratively by using the re-weighted

least squares criterion (Agresti, 2002, Chapter 4). In practice, count data exhibit sometimes

larger variability than the mean, this phenomenon is known as overdispersion and is rep-

resented by a dispersion parameter Φ. Literally, this is defined as Var(Ni) = ΦE[Ni] with

Φ > 1. A way to overcome this situation is to use the quasi-Poisson model that introduces

the dispersion parameter Φ into the model as suggested in Agresti (2002, Chapter 4).

In order to choose the most important variables, we suggest to proceed with a Poisson

model aggregation instead of fitting a classical single Poisson regression model. More ex-

actly, the Poisson model aggregation is an ensemble method that combines several Poisson

regression models in order to get a better fit than a single Poisson regression model would

do; it works in a similar way as the well-known random forest algorithms (Breiman, 2001)

except that we consider a Poisson regression model now instead of a regression tree.

Globally speaking, the statistical learning method proposed is as follows. In this ap-

proach, we generate M different bootstrapped training data sets by randomly selecting with

replacement n units among the initial n ones. Let Bm be these bootstrapped data sets,
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m = 1, . . . ,M. We select also randomly and without replacement a set of p0 covariates

among the initial 13 covariates; let Am ⊂ {1, . . . , 13} be the set of the labels of the chosen

covariates. Let denote by z∗i = (Zij)j∈Am the p0-dimensional vector of measures of the se-

lected covariates on the i-th unit, for i ∈ Bm. We fit next a Poisson regression model on

the data set (ni, z
∗
i ), i ∈ Bm and determine b̂0, b̂ = (b̂j)j∈Am . The predicted number of road

crashes N̂Bm at some point z is given by:

N̂Bm(z) = f̂Bm(z),

= exp(b̂0 + z>b̂). (3.24)

Finally, the m predicted values for Ni at z are averaged to obtain the final predicted value

for Ni at z :

N̂(z) =
1

M

M∑
m=1

N̂Bm(z). (3.25)

Here our main purpose is the variable selection and we need a variable importance crite-

rion. As suggested in Breiman (2001), we used the variable permutation criterion as variable

importance measure (VIM). This process consists in, once the model is trained on the data

set (ni, z
∗
i ), i ∈ Bm to determine f̂Bm(·), shuffling the jth covariate values, j = 1, . . . , 13 for

the units not selected in the bootstrapped sample Bm. Then, predictions errors are evaluated

on the initial sample and on the permuted sample. The permutation variable importance is

defined to be the increase in the model error when this single covariate has been randomly

permuted. This procedure breaks the relationship between the covariate and the response

variable, thus the increase in the model error is indicative of how much the model depends

on the variable.

More formally, the VIM is computed as follows. Dealing with a bootstrapped sample

means that there are remaining observations not used: these observations form the out-of-

bag (OOB) sample, named OOBBm . We fit a Poisson model on the data set (ni, z
∗
i ), i ∈ Bm

to determine f̂Bm(·); we compute the predictions N̂Bm(zi) = f̂Bm(zi) for i ∈ OOBBm and

evaluate the prediction error errOOBBm defined as the average of the squared discrepancies

between the predicted and the observed values:

errOOBBm =
1

|OOBBm |
∑

i∈OOBBm

(N̂Bm(zi)− ni)2,

where zi = (Zij)
13
j=1 for i ∈ OOBBm . We permute randomly the values of the jth covariate,

j ∈ {1, . . . , 13}, on the OOBBm data set and we compute the error in a similar way:

errOOBBm,j =
1

|OOBBm |
∑

i∈OOBBm

(N̂Bm(zji )− ni)
2,

where zji = (Z
(j)
i` )13

`=1 for which the values of the covariate Zj have been permuted on the

OOBBm set.

The VIM of the jth variable named V IMBm,j corresponds simply to the difference be-
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tween these two errors. The VIM is evaluated for each covariate on each training set Bm,

m = 1, . . . ,M . Finally, after running the M iterations of the process, all VIMs are averaged

in order to have one VIM value for each covariate named V IM j as follows

V IM j =
1

M

M∑
m=1

V IMBm,j . (3.26)

The higher the VIM value is, the more important the corresponding variable is. The corre-

sponding variable selection algorithm is described in Algorithm 2. In order to evaluate the

accuracy of this variable selection method, the whole dataset selection is splitted into a

training set strain = selection train and a test set stest = selection test.
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Algorithm 2 Poisson models aggregation

(I) For the mth bootstrapped training sample Bm selected from selection train, m =
1, . . . ,M , do:

1. Select randomly without replacement p0 ≤ 13 covariates among the original covariates
{Z1, . . . , Z13}; let Am be the set of the selected variables;

2. Fit a Poisson regression on the sample data (ni, z
∗
i ), i ∈ Bm where ni is the observed

number of accidents on the mth sample and z∗i is the vector of recorded values of the
p0 selected covariates for i ∈ Bm; determine f̂Bm(·);

3. Evaluate the out-of-bag error errOOBBm on the OOBBm observations

errOOBBm =
1

|OOBBm |
∑

i∈OOBBm

(N̂Bm(zi)− ni)2

where for i ∈ OOBBm , zi is the vector of recorded values of the 13 covariates and
N̂(zi) = f̂Bm(zi) are the prediction values.

4. For j = 1, . . . , 13 do:

(a) Shuffle randomly the values of the j-th variable on the OOB sample, let zji =

(Z
(j)
i` )13

`=1 be the new vector of observations, for i ∈ OOBBm .

(b) Evaluate the out-of-bag error errOOBBm,j :

errOOBBm,j =
1

|OOBBm |
∑

i∈OOBBm

(N̂Bm(zji )− ni)
2,

(c) Evaluate the variable selection criterion V IMBm,j

V IMBm,j = errOOBBm,j − errOOBBm

5. Compute the prediction of the number of accidents on the two whole subsets
selection train and selection test, respectively denoted as N̂Bm

strain and N̂Bm
stest

(II) Average all the predictions for the subsets selection train and selection test

N̂s =
1

M

M∑
m=1

N̂Bm
s , s in {strain, stest}

As mentioned before and described in Algorithm 2, the aim of the aggregation process

is to average all the predictions computed in the M iterations. The mean of predictions

N̂strain and N̂stest , where N̂s = 1
M

∑M
m=1 N̂

Bm
s for s ∈ {strain, stest}, are used then in order

to evaluate model accuracy metrics. First, the Mean Squared Errors (MSE) of our process

on selection train and selection test are defined as

MSEs =
1

ns

ns∑
i=1

(N̂s,i −Ns,i)
2, s in {strain, stest}. (3.27)
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Then, the R-squared values on selection train and selection test are defined as

R2
s = 1−

∑ns
i=1(N̂s,i −Ns,i)

2∑ns
i=1(N̄s −Ns,i)2

, s in {strain, stest} (3.28)

where N̄s is the mean value on the sample s.

The Poisson models aggregation is not already computed in any R package to the best

of our knowledge. Hence, a function rf poisson has been created in order to compute the

whole process described in Algorithm 2. This function takes as arguments the training and

the test sets, the response variable name, the covariate names, the number of covariates to be

randomly selected and the number of models to be fitted. These arguments are respectively

specified with train, test, N, varZ, mtry and M attributes. Note that in the following, for

the sake of clarity, we tried to split the function according to each step of Algorithm 2, as

the function is heavy to read. First, storing matrices are declared :

> rf_poisson <- function(train , test , N, varZ , mtry , M){

+ #Storing results

+ Nhat_train_Bm <- matrix(NA, nrow(train), M)

+ Nhat_test_Bm <- matrix(NA, nrow(test), M)

+ VIM <- matrix(NA, nrow = length(varZ), ncol = 1)

+ rownames(VIM) <- varZ

Objects Nhat train Bm, Nhat test Bm and VIM will contain respectively values of N̂Bm
strain ,

N̂Bm
stest and V IM j , m = 1, . . . ,M , j = 1, . . . , 13.

The next steps then correspond to the aggregation. Before fitting a Poisson regression,

a bootstrap sample Bm, a random selection of mtry covariates Zstar and the formula of the

Poisson model FORM are setted as follows:

+ for(m in (1:M)){ # Start M Poisson models

+ #Bootstrap sample Bm

+ b <- sample(nrow(train), nrow(train), replace = TRUE)

+ Bm <- train[b, ]

+ #Covariate random sampling

+ v <- sample(length(varZ), mtry)

+ Zstar <- varZ[v]

+ #Writing formula

+ FORM <- as.formula(paste(N, "~ ",

+ paste(Zstar , collapse = "+")))

Secondly, the m th Poisson model with N as the response variable and Zstar as covariates

is computed as follows:

+ #Model fitting

+ fhat_Bm <- glm(FORM , data = Bm, family = "quasipoisson")
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The function glm with argument family = "quasipoisson" is used in order to fit the

model, named fhat Bm. Note that this choice enables to focus on the overdispersion in

Poisson models.

Then, the m th OOB error is evaluated as follows:

+ #OOB error with no permutation

+ oob_Bm <- train[-b, ]

+ err_oob_Bm <- predict(fhat_Bm,

+ newdata = oob_Bm,

+ type = "response")

+ err_oob_Bm <- mean((err_oob_Bm - oob_Bm[, N])^2)

The OOB observations OOBBm are the remaining observations not used in the sam-

ple Bm, hence we simple remove the observations taken for Bm in train. Then, the error

errOOBBm is computed using the predictions and the observations, named err oob Bm.

Next, the variable importance criterion has to be setted. Hence, a for loop is also used

in order to iteratively permute the j th covariate in the OOB observations as follows:

+ #OOB error with permutation

+ for(j in varZ){

+ ind_j <- which(colnames(oob_Bm) == j)

+ oob_Bm_j <- gdata :: resample(oob_bm[, ind_j],

+ size = nrow(oob_bm))

+ oob_Bm_j <- oob_Bm %>%

+ dplyr :: select(-j) %>%

+ cbind(oob_Bm_j)

+ colnames(oob_Bm_j) <- c(colnames(oob_Bm[, -ind_j]), j)

+ err_oob_Bm_j <- predict(fhat_Bm,

+ newdata = oob_Bm_j,

+ type = "response")

+ err_oob_Bm_j <- mean((err_oob_Bm_j - oob_Bm_j[, N])^2)

+ #VIM

+ VIM[j, ] <- sum(VIM[j, ], err_oob_Bm_j - err_oob_bm,

+ na.rm = TRUE)

+ }

The j th covariate values of observations oob Bm are permuted with the function resample

from the package gdata. Then, the j th covariate non permuted is removed and replaced by

the new permuted values in oob Bm. The sample containing the vector of recorded values for

which the j th covariate values have been permuted is called oob Bm j. Then, similarly as

previous command-lines, the m th OOB permuted error errOOBBm,j , named err oob Bm j, is

obtained. Finally, the VIM is evaluated by summing up the difference between err oob Bm j

and err oob Bm to the previous differences computed at m−ith iterations, i = 1, . . . , m−1.

The final step for the m th iteration is to compute the predictions of the response variable

N on the train and test sets, train and test, as follows:

+ #Forecasting

+ Nhat_train_Bm[, m] <- predict(fhat_Bm,
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+ newdata = train ,

+ type = "response")

+ Nhat_test_Bm[, m] <- predict(fhat_Bm,

+ newdata = test ,

+ type = "response")

+ } #M fitted models

The for loop process for the aggregation is now done, M Poisson regressions have been

fitted and associated predictions for train and test sets have been computed at each step.

The final stage then is to average all the predictions and the VIM values in order to evaluate

MSE and R-squared values. This is done as follows:

+ #Mean predictions and VIM

+ Nhat_train <- rowMeans(Nhat_train_Bm[, 1:M], na.rm = TRUE)

+ Nhat_test <- rowMeans(Nhat_test_Bm[, 1:M], na.rm = TRUE)

+ VIM <- VIM/M

+ #Aggregation assessment

+ R2_train <- 1 - Metrics ::rse(train[, N], Xhat_train)

+ R2_test <- 1 - Metrics ::rse(test[, N], Xhat_test)

+ MSE_train <- Metrics ::mse(train[, N], Xhat_train)

+ MSE_test <- Metrics ::mse(test[, N], Xhat_test)

The objects Nhat train and Nhat test correspond respectively to N̂strain and N̂stest . R-

squared values on train and test are evaluated using the function rse from the package

Metrics. The MSE values are computed similarly using the function mse.

The function rf poisson is fully computed, it remains to return the results as follows:

+ #Function results

+ rf <- list(R2_train , R2_test , MSE_train , MSE_test , VIM)

+ return(rf)

+

+ }

3.4.2 Implementations of Poisson aggregation and variable se-
lection on CAGB data

Train/Test subsample sets

The first step is to split up the dataset selection into two subsets selection train and

selection test. Remind that there are 396 accidents located in the 1 362 cells that overlay

the CAGB window. This means that the split up of selection might create two subsets un-

equally shared according to the number of road crashes per cell. Moreover, this phenomenon

known as imbalanced class could degrade the performance of the learning method further.

Hence, it is a major asset to rectify this possible case. The method proposed is as follows. A

temporary column accidents class is created and is defined as the class 1 if one or more

accident are located in the cell, class 0 otherwise. Then, the subsets selection train and
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selection test are formed by following a kind of balance class. This process is computed

as follows:

> selection <- selection %>%

+ mutate(accidents_class = case_when(accidents != 0 ~ 1))

> selection[is.na(selection$accidents_class), ]$ accidents_class <- 0

> selection$accidents_class <- as.factor(selection$accidents_class)

> prop.table(table(selection$accidents_class))

0 1

0.8883994 0.1116006

The column accidents class is created with the function mutate from the package

dplyr. As expected, we are in a case of imbalanced class. Indeed, the class 0 is represented

around 88.84% and class 1 as 11.16%. Classical methods for balanced class usually form

the subsets by following the same balance of the initial dataset. However in the case of

imbalanced class, the purpose of main solution methods is to bring back to a case of balanced

class if possible (Menardi and Torelli, 2018). Several methods are available for solving this

problem. The method used here is Synthetic Minority Oversampling Technique (SMOTE)

which oversamples the minority class. The reader may find more details about overcoming

imbalance class methods, especially the SMOTE method, in Chawla et al. (2002). The

proposed solution to our imbalance class problem is computed as follows:

> set.seed(123)

> index <- createDataPartition(selection$accidents_class , p = 0.75,

list = FALSE)

> selection_train <- selection[index , ]

> selection_test <- selection[-index , ]

> selection_train <- DMwR:: SMOTE(accidents_class~.,

+ data.frame(selection_train),

+ k = 2,

+ perc.over = 300,

+ perc.under = 200)

+ prop.table(table(selection_train$accidents_class))

> selection_train$accidents <- round(selection_train$accidents)

0 1

0.6 0.4

First, the function createDataPartition from the package caret is used in an attempt to

balance the class distributions within the splits as the initial dataset selection. Then, the

SMOTE method is employed with the function SMOTE of package DMwR. This generates a new

dataset, following the specified parameters (we will not go into details here), that addresses

the class imbalance problem. Note that this method is setted only for selection train

as models would be trained on it. The subset selection test will be only used for model

assessments. Finally, accidents class is removed:
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> selection_train <- selection_train %>%

+ dplyr :: select(-accidents_class)

> selection_test <- selection_test %>%

+ dplyr :: select(-accidents_class)

Poisson aggregagtion on CAGB data

As the subsets selection train and selection test are now created properly, the

aggregation can be fitted. First, storing objects and arguments of the function rf poisson

are initialized as follows:

> N <- "accidents"

> varZ <- c("radars", "health", "school", "college",

+ "leisure", "gasoline", "station", "municipal_length",

+ "national_length", "prop18", "prop65",

+ "intersection", "shop")

> mtry <- c(4, 6, 8, 10, 13)

> M <- 1000

> res <- list()

The parameter mtry, which corresponds to the number of covariates randomly selected

to be fitted, is tuned with five possible values: 4, 6, 8, 10 and 13. Note that 13 corresponds to

the total number of available covariates. The parameter M, which corresponds to the number

of iterations, is setted to 1 000. Finally, a list object res is declared in order to contain

the results of the function rf poisson.

Then, the run of the aggregation is as follows:

> T1 <- Sys.time()

> i <- 1

> for(p0 in mtry){

+ res[[i]] <- rf_poisson(selection_train ,

+ selection_test ,

+ varA ,

+ varZ ,

+ mtry = p0,

+ M))

+ i <- i+1

+ }

> T2 <- Sys.time()

> difftime(T2, T1)

Time difference of 3.084634 mins

A for loop is used in order to iteratively run the aggregation with the p0 th element of

the vector mtry as number of covariates to be fitted in Poisson models. The computation

time of these 5 000 models is 3 minutes and 4.8 seconds.
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Results and interpretations

The results of this aggregation are compared with several fits (the corresponding R

command-lines are not given). Indeed, linear regressions, Poisson regressions, penalized

models (Lasso), Boosting and Random Forest models have been also fitted. We will only

present the results of a saturated Poisson regression, a Poisson regression with covariates

selected with Akaike Information Criterion (AIC) and a Random Forest model. Note that

the Random Forest has been fitted using also the permutation criterion and the hyperparam-

eters, such as for example the number of covariates to be randomly selected at each iteration,

have been tuned by cross validation. The results are shown in Tab 3.1.

Tab 3.1: Mean squared error (MSE) and R-squared (R2) values of various statistical models
fitted on the road crash data.

selection train selection test

Model fitted
Number of covariates
introduced

MSE R-squared MSE R-squared

Poisson regression 13 1.14 0.70 0.42 0.69

Poisson regression with AIC 7 1.19 0.68 0.45 0.67

Poisson regressions aggregation 4 1.39 0.63 0.58 0.57

6 1.16 0.69 0.46 0.66

8 1.09 0.71 0.42 0.69

10 1.07 0.72 0.41 0.70

13 1.18 0.69 0.42 0.69

Random Forest 8 0.28 0.92 0.51 0.62

Tab 3.1 gives the performance assessment of a saturated Poisson regression (which means

that all the covariates have been included), a Poisson regression with the seven covariates

selected with AIC criterion, the Poisson aggregations with different numbers of covariates

to be randomly selected and fitted into the models (four, six, eight, ten and thirteen) and

finally, a Random Forest model. The reader may find in Appendix B the Tab B.1 which is

very similar to Tab 3.1, however the statistical methods used have been fitted on different

samples of the dataset selection. First, the same results as Tab 3.1 are given. Then, the

methods are compared according to the training samples which are simply a training set

where the distribution of the column accidents class of selection have been preserved

(which means around 89% for the class 0 and 11% for the class 1), referred as Distribution

preserved in Tab B.1, and finally the whole dataset selection, which means that no training

and test sets have been created, referred as No split rule in Tab B.1.

The best model, according to MSE and R-squared values on selection train, is the

Random Forest with a MSE and a R-squared respectively equal to 0.28 and 0.92. However,

on selection test, this model is ranked almost the last with a MSE and a R-squared

respectively equal to 0.51 and 0.62. This specific case seems similar as overfitting cases.

However, the Random Forest model has been fitted with cross validation in order to find the
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best tuning parameters (we will not go into details here) that could improve values of MSE

and R-squared on selection test and the best model choice is this one (with for example

eight covariates to be randomly selected at each iteration).

The saturated Poisson regression and the saturated aggregation (both with all avail-

able covariates) are only presented in order to be compared with the parsimonious mod-

els. It seems that the two best models, in terms of the explanatory-predictive tradeoff, are

Poisson regressions aggregation with eight and ten covariates. Indeed, the MSE values on

selection train are respectively 1.09 and 1.07 whereas the saturated aggregation MSE

value is 1.18. R-squared values are respectively 0.71 and 0.72 instead of 0.69 for the satu-

rated model. However on selection test they are quite equivalents. Indeed, MSE values

of aggregations with 8 and 10 covariates are respectively 0.42 and 0.41 where the saturated

aggregation MSE is equal to 0.42. Then, R-squared values are respectively 0.69 and 0.70

where the saturated one is 0.69.

Globally, the R-squared values of all these fits do not exceed 0.72 and 0.70 on respectively

selection train and selection test. The methods employed did not give possibilities to

improve the predictions. This means that eventually there is: the need of more informative

covariates; another statistical model framework; no solutions to better anticipate the number

of road crashes per cells. Some tentative answers will be given further with the LGCP fit.

Variable importance visualization

Back to the importance of the covariates, it could be interesting to produce variable

importance plot similar to the classical plots usually given in practice. To do so, the VIM

values returned by the function rf poisson will be used. We proposed here to plot the ratio

of the VIM values compared to the maximum one. Here is how to compute such a plot:

> vim_4 <- as.data.frame(res[[1]][[5]])

> vim_4 <- cbind(rownames(vim_4), vim_4)

> colnames(vim_4) <- c(’covariate ’, ’vim’)

> vim_4 <- vim_4 %>%

+ mutate(imp = vim*100/max(vim))

> ggplot(data = vim_4, aes(x = reorder(covariate , +imp), y = imp)) +

+ geom_bar(stat = "identity", fill = "steelblue") +

+ coord_flip() +

+ labs(x = "Covariate", y = "Importance")

The VIM values of the Poisson models aggregation where four covariates were randomly

selected at each iteration have been chosen as an example for the command-lines, named

vim 4. First, the VIM values are handled in order to create a dataframe with the name of

the covariates, the VIM associated to them and the importance value as columns, named

respectively covariate, vim and imp. The importance value, as mentioned before, is simply

the ratio of the VIM compared to the maximum one. Then functions of the package ggplot2

are used in order to produce a barplot that plots the decreasing importance of each covariate.

Command-lines above produced Fig 3.10. The four covariates that are the most important
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are municipal length, shop, station and national length.

As the reader can see, it is possible sometimes to have negative values for permutation

importances. In these cases, the predictions on the shuffled data happened to be more accu-

rate than the real data. This happens when the covariate seems to be really not informative

but random chance caused the predictions on shuffled data to be more accurate (Genuer and

Poggi, 2019, Chapter 4).

Fig 3.10: Variable importance plot for Poisson models aggregation with four covariates
randomly included at each iteration.

The variable importance plots for all the remaining Poisson models aggregation and the

Random Forest model have been produced using the same command-lines as previously. The

results are given in Appendix B in Fig B.1, Fig B.2, Fig B.3, Fig B.4 and Fig B.5.

Recall that the definition of LGCP is written as

n(X ∩ ci) ∼ Poisson(λ(ci))

log(λ(ci)) = Z(ci)
>β + Y (ci).

Six subsets of covariates have been chosen and hence, give the following LGCP model for-

mulas :

LGCP1 : X ∼ municipal length + national length + intersection + radars + prop65 + prop18

+ station

LGCP2 : X ∼ municipal length + shop + station + national length

LGCP3 : X ∼ municipal length + national length + intersection + station + prop65 + leisure

LGCP4 : X ∼ municipal length + national length + intersection + shop + prop65 + station +

prop18 + gasoline
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LGCP5 : X ∼ municipal length + national length + prop65 + intersection + prop18 + shop +

school + gasoline + radars + station

LGCP6 : X ∼ municipal length + intersection + school + shop + health + national length +

station + prop18

The covariates of model LGCP1 correspond simply to the covariates selected with AIC

on the Poisson regression. Then for each remaining model, the covariates have been chosen

as being the most important covariates in the model relating respectively to the number

introduced. Indeed for example, as four covariates were set to be randomly selected and

fitted in the Poisson regressions of the aggregation then the most four important covariates

have been chosen for LGCP2. The same process was adopted for LGCP3, LGCP4,

LGCP5 and LGCP6.

3.5 Log-Gaussian Cox Processes : fit, diverse assessments and
result interpretations

3.5.1 Fit

In the previous section, six subsets of covariates have been selected by variable selection

methods. The next step then is to fit LGCP models with these choices. The model LGCP1

will be taken as example for the implementation in R. First, the model is defined as follows:

> FORM <- X ~ municipal_length + national_length + intersection +

radars + prop65 + prop18 + station

Then the next step is to interpolate the covariates of this model onto the computational

grid polyolay. Remind that in Section 2.3, an object SpatialPolygons has been extracted

from polyolay and has been used in order to interpolate all the available covariates on.

The purpose of interpolating the covariate values directly on a grid that is the same as the

computational grid polyolay was to perform the interpolation methods ourself. Indeed,

we were able to know exactly what was happening with our data and compare later the

covariate values support that will be used in the fit of the LGCP models. Hence, the

process of interpolation that will be used in the following will only give the same values as

cagb covar sf, produced in Section 2.3.3. The classical steps for interpolating the covariates

of a model on the computational grid as recommended in Taylor et al. (2015) using the

package polyolay are the following:

> cagb_covar_sp <- as(cagb_covar_sf , ’Spatial ’)

> cagb_covar_sp@data <- guessinterp(cagb_covar_sp@data)

> cagb_covar_sp@data <- assigninterp(df = cagb_covar_sp@data ,

+ vars = colnames(cagb_covar_sp@data),

+ value = "ArealWeightedSum")

radars interpolation via ArealWeightedMean

health interpolation via ArealWeightedMean
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school interpolation via ArealWeightedMean

college interpolation via ArealWeightedMean

leisure interpolation via ArealWeightedMean

gasoline interpolation via ArealWeightedMean

station interpolation via ArealWeightedMean

intersection interpolation via ArealWeightedMean

shop interpolation via ArealWeightedMean

municipal_length interpolation via ArealWeightedMean

national_length interpolation via ArealWeightedMean

prop18 interpolation via ArealWeightedMean

prop65 interpolation via ArealWeightedMean

First, the function guessinterp from package lgcp assigns by default the interpolation

method as the area-weighted mean for any numeric column. As its name implies, this

function is used in order to guess provisional interpolation methods for the columns of the

data frame. If the user wants to replace the assigned interpolation process, this can be

done by using the function assigninterp and specifying the desired method in the value

argument. There are three possible types of interpolation methods employed in the package

lgcp, the reader may find more details in Taylor et al. (2015, Section A). The method used

here is ArealWeightedSum. However, as our covariates have already been interpolated on

the computational grid previously, any of the three interpolation methods would lead to the

same result. Finally, the process of interpolation is as follows:

> Zmat <- getZmat(formula = FORM , data = cagb_ppp ,

+ regionalcovariates = cagb_covar_sp

+ cellwidth = 650,

+ ext = 2,

+ overl = polyolay)

Using ’cellwidth ’ and ’ext’ from overl

aggregating regional covariate information ...

loading polygon overlay ...

interpolating ...

Time Taken: 6.912689

The function getZmat constructs a design matrix for routine used in lgcp. Note that the

arguments cellwidth and ext have been mentioned in Section 2.3.1. The component

cellwidth has been explained above in Section 3.3.2. Then, the argument ext specifies

the amount by which the computational grid will be extended, we will not go into details

here, the reader may find comprehensive motivations in Davies and Bryant (2013).

The covariate data can be visualized by using the command-line plot(Zmat) which

produces a sequence of plots, almost similar to the ones produced in Section 2.3.3 and

in the Appendix A.

The final step from the LGCP routine is to run the MCMC algorithm. In order to do

that, we need the spatial point pattern (contained in cagb ppp), the covariates interpolated

onto the computational grid and contained in the object Zmat, the model formula specified

with FORM, the covariance function (contained in the object cf), the initial values of β and η
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specified in INITS and the priors specified in priors. Note that in Section 3.3.4, the priors

have been specified for a model of 7 covariates, just as LGCP1. The fit is computed as

follows:

> nsimul <- 1500000

> bnin <- 250000

> rt <- 1250

> BASEDR <- "RESULTS/res_LGCP1/"

> lgcp1 <- lgcpPredictSpatialPlusPars(

+ formula = FORM ,

+ sd = cagb_ppp ,

+ Zmat = Zmat ,

+ model.priors = priors ,

+ model.inits = INITS ,

+ spatial.covmodel = cf,

+ mcmc.control = mcmcpars(mala.length = nsimul ,

+ burnin = bnin ,

+ retain = rt,

+ adaptivescheme =

+ andrieuthomsh(inith = 1,

+ alpha = 0.5, C = 1,

+ targetacceptance = 0.574)),

+ output.control = setoutput(gridfunction =

+ dump2dir(dirname = BASEDR , forceSave = TRUE)),

+ cellwidth = CELLWIDTH , ext = EXT)

> save(list = ls(), file = file.path(BASEDR , "lgcp1.RData"))

The above command-lines run the MALA chain for 1 500 000 iterations, with an initial

burn-in of 250 000 iterations, followed by 1 250 000 iterations of which every 1 250th sample

is saved. This leads to a sample {(Θ(N)}N≥1 = {(β(N), η(N), Y (N))}N≥1 with N = 1000.

The argument adaptivescheme is specific to the MALA proposal, the reader is refered to

Taylor et al. (2013) for an explanation of these options. The results of lgcp1 are saved in

an object by specifying the argument output.control and with the function save used in

the last command-line.

The models LGCP2, LGCP3, LGCP4, LGCP5 and LGCP6 have been fitted by

using similar command-lines, respectively named lgcp2, lgcp3, lgcp4, lgcp5 and lgcp6.

However, note that the objects FORM, Zmat and priors are specific to the models themselves.

3.5.2 Fits assessment

The models LGCP2, LGCP3, LGCP4, LGCP5 and LGCP6 have been fitted in the

previous section. The purpose now is to compare these models in order to chose the best

one. The criteria that will be used further in order to choose the best model are the wMSE

and the R-squared values, then the confusion matrices as introduced in Section 3.3.5. The
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best model will then be used to map the riskiest zones of the CAGB and to identify the

riskiest factors as introduced in Section 3.3.5.

Weighted mean squared errors and R-squared values

The goal now is to compute the weighted mean square error, wMSE, defined in Eq (3.13)

for the six models. Recall that the wMSE is defined as follows

wMSE =
C2∑
i=1

ω̃i∑C2

j=1 ω̃j
(n∗i − ni)2,

where

ω̃i =
1

Var(n(X∗ ∩ ci)|X)
, i = 1, . . . , C2 (3.29)

and Var(n(X∗ ∩ ci)|X) will be approximated by Monte-Carlo and MCMC simulations as

given in Eq (3.16). In order to do that, we need to compute first n∗i , the expected number

of events per cell of the grid, defined in Section 3.3.4.

An approximation of n∗i , for the model LGCP1 can be computed as follows:

> lgcp1_pred <- lgcp ::: expectation.

lgcpPredictSpatialOnlyPlusParameters(lgcp1, numCases)[[1]]

|=============================================================| 100%

The function expectation from the package lgcp computes joint expectations under the

model with all parameters. The function numCases, in argument of expectation, gives the

expected number of events in each cell of the computational grid. The object lgcp1 pred is a

64 × 64 matrix. The observed and the predicted values can be compared graphically. In order

to do that, the initial road crash values have to be interpolated on the computational grid

in order to obtain a matrix 64 × 64 just as lgcp1 pred. Indeed, remind that selection sf

corresponds only to the cells including in the window owin cagb sf. Hence, a sf object

obs sf has been created with the SpatialPolygons object extracted from polyolay on

which the road crash point pattern cagb sf has been interpolated similarly as previous

methods used (command-lines not shown as the process was similar to many other processes

in the previous and current chapter). Then, as lgcp1 pred is simply a matrix, the spatial

marker that could have informed us of the different geometric structures of these cells is lost.

Hence, one way to assign back exactly the same spatial structures as obs sf for example is

to create a RasterLayer object. This is done as follows:

> obs_sp <- as(obs_sf , ’Spatial ’)

> r <- raster(ncol = 64, nrow = 64)

> crs(r) <- crs(obs_sp)

> extent(obs_sp)

> extent(r) <- extent(obs_sp)

> obs_ras <- rasterize(obs_sp , r, field = "accidents")

> lgcp1_pred_ras <- raster(lgcp1_pred)
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> extent(lgcp1_pred_ras) <- extent(obs_ras)

> plot(obs_ras , main = "")

> plot(lgcp1_pred_ras , main = "")

class : Extent

xmin : 906135.5

xmax : 947735.5

ymin : 6664498

ymax : 6706098

First, a RasterLayer object obs ras is created from obs sf. Indeed, the sf object

obs sf is our reference spatial structure from which we want to assign the same geometries

to lgcp1 pred. To do so, first a SpatialPolygonsDataFrame object obs sp is created as

it is necessary later. Then, a 64 × 64 RasterLayer object r is created using the function

raster from the package raster. The spatial extent of this RasterLayer object is specified

by using the extent of obs sp. An extent object is simply giving the spatial boundaries

of the object in argument. For example, the lowest latitude value of obs sp is 6 664 498.

Then, the function rasterize from the package raster allows to transfer the values con-

taining in the column accidents of the object obs sp to the raster cells r. Finally, the

RasterLayer object lgcp1 pred ras is created with the function raster and its extent is

specified using the extent of obs ras. The two RasterLayer objects can be then plotted

using the function plot. Note that it was not necessary to set obs ras in order to create

lgcp1 pred ras. Indeed to specify its extent, we could have used the following command-

line : extent(polyolay$fftpoly), as it is the same. The creation of obs ras is used as

manipulation examples of raster package functions but more particularly for the sake of

comparison between the observed and fitted values.

Fig 3.11 shows the observed number of road crashes per cell of the computational grid.

Fig 3.12 represents the predicted values from lgcp1, that are, the expected number of road

crashes per cell of the computational grid. The grey background of the plots corresponds to

the cells where no accidents happened. Graphically speaking, these plots are similar. The

same structure as Fig 3.11 can be recognized in Fig 3.12. Moreover, note that the five

green cells in the middle of Fig 3.11, that represent globally cells where between eight and

fourteen accidents happened, seem to have been predicted properly as it can be seen in Fig

3.12.

Now, that the expected number of events per cell of the grid n∗i has been approximated,

we can approximate the variance formula as given in Eq (3.16). For the sake of clarity, we

make a copy of lgcp1 pred named EX. The function that computes the approximation of the

variance given in Eq (3.16) is as follows :

> VARX <- function(Y, beta , eta , Z, otherargs){

+ ca <- diff(otherargs$mcens[1:2]) * diff(otherargs$ncens[1:2])

+ X <- ca * otherargs$poisson.offset[1:otherargs$M, 1:otherargs$N]

+ * exp(matrix(Z % * % t(beta), otherargs$M * otherargs$ext ,

+ otherargs$N * otherargs$ext)[1:otherargs$M, 1:otherargs$N] + Y)
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Fig 3.11: Plots of road crash observed values on a 64 × 64 grid.

Fig 3.12: Plots of road crash fitted values from lgcp1 on a 64 × 64 grid

+ return(EX + (X-EX)^2)}

> lgcp1_VARX <- lgcp ::: expectation.

lgcpPredictSpatialOnlyPlusParameters(lgcp1, VARX)[[1]]

|=============================================================| 100%

Note that this function is not so obvious. We will not go into details here. The most

important command-line is the option return in which the Eq (3.16) is clearly written. Then,
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the function expectation used the function VARX to compute the variance from lgcp1. Note

also that EX should have been incorporated as an argument in the function VARX but we did

not proceed with this direction as it was difficult to implement it. Finally, the wMSE for

the model LGCP1 is computed as follows:

> w1_tilde <- 1/lgcp1_VARX

> w1 <- w1_tilde/(sum(w1_tilde , na.rm = TRUE))

> lgcp1_wMSE <- sum(w1*(as.matrix(obs_ras) -

+ as.matrix(lgcp1_pred_ras))^2,

+ na.rm = TRUE)

> lgcp1_wMSE

[1] 0.01241512

The vector of weights ω̃ is computed as defined in Eq (3.14). The second command-line

allows to set NA values outside the window area. This implies that only the cells inside the

window owin cagb are considered meaning that the wMSE is written as

wMSE =

CW∑
i=1

ω̃i∑CW
j=1 ω̃j

(n∗i − ni)2,

where CW is the number of cells included in the study window W , equal to 1 362. The

value of the wMSE computed from lgcp1 is 1.24e-02. Finally, the vector of weights ωi =

ω̃i/
∑CW

j=1 ω̃j , i = 1, . . . , CW is computed as defined in Eq (3.13) and can be also visualized

with the following command-lines:

> w1_ras <- raster(w1)

> extent(w1_ras) <- extent(owin_cagb)

> plot(w1_ras , main = "")

The Fig 3.13 shows that the most important weights are essentially close to the bound-

aries of the study window. However, note that the weights are in a close range.

The same process for computing lgcp1 wMSE has been adopted for the remaining mod-

els LGCP2, LGCP3, LGCP4, LGCP5 and LGCP6. During this process, note that

RasterLayer objects lgcp2 pred ras, lgcp3 pred ras, lgcp4 pred ras, lgcp5 pred ras

and lgcp6 pred ras have been created just as lgcp1 pred ras. The results are shown in

Tab 3.2. The best model to be chosen would be lgcp2 as it has the lowest wMSE value,

which is 1.12e-02. However, the models seem to be quite equivalents regarding to their wMSE

values.

To assess the performance of each model, the second proposed metric is the R-squared

value as defined in Eq (3.17) and recalled below:

R2 = 1−
∑C2

i=1(n∗i − ni)2∑C2

i=1(n̄− ni)2
.

The R-squared values of each model are given in Tab 3.2.

The R-squared for lgcp1 is computed as follows:
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Fig 3.13: Plot of weights used in the wMSE for model lgcp1.

Tab 3.2: Metric results of the LGCP models fitted.

Model

Metric LGCP1 LGCP2 LGCP3 LGCP4 LGCP5 LGCP6

wMSE 1.24e-02 1.12e-02 1.16e-02 1.21e-02 1.20e-02 1.18e-02
R-squared (%) 91.07 91.08 91.13 90.99 91.39 91.42

> lgcp1_pred_sp <- rasterToPolygons(lgcp1_pred_ras)

> lgcp1_pred_sf <- st_as_sf(lgcp1_pred_sp)

> st_crs(lgcp1_pred_sf) <- st_crs(obs_sf)

> lgcp1_pred_sf <- st_intersection(lgcp1_pred_sf , owin_cagb)

> lgcp1_pred_sf <- st_join(lgcp1_pred_sf , obs_sf , join = st_covers)

> colnames(lgcp1_pred_sf) <- c("pred", "obs", "geometry")

> lgcp1_R2 <- 1-Metrics ::rse(lgcp1_pred_sf$obs , lgcp1_pred_sf$pred)

> lgcp1_R2

[1] 0.9107213

First, from the RasterLayer object lgcp1 pred ras, a SpatialPolygonsDataFrame

named lgcp1 pred sp has been created in order to be next converted into a sf object

lgcp1 pred sf. To do so, the explicit function rasterToPolygons from the package raster

has been used. The goal of this conversion was to use the function st intersection from

package sf in order to consider only the cells inside the window owin cagb, which definitely
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means that the R-squared value is written as

R2 = 1−
∑CW

i=1(n∗i − ni)2∑CW
i=1(n̄− ni)2

,

where CW is the number of cells included in the study window W , equal to 1 362. Then,

the observed values containing in obs sf are merged to the fitted values of lgcp1 pred sf

with the function st join. The column names are modified for the sake of clarity. Finally,

the R-squared metric is computed with the function rse of the package Metrics. The R-

squared value of the final model chosen lgcp1 is 91.07e-02 which literally enables us to say

that 91.07% of the predicted values are correlated to the observed values.

The same process used for computing lgcp1 R2 has been also adopted for the remaining

models LGCP2, LGCP3, LGCP4, LGCP5 and LGCP6 and the results are given in

Tab 3.2. The best model to chose, regarding to the R-squared values, would be LGCP6.

However, note that the values are in a close range.

Take a look back at the variable selection results given in Section 3.4.2. The maximum

R-squared value on the test set was equal to 0.70. This is correct but in practice, the purpose

is to have higher R-squared values. This suggested that, possibly, the covariate information

was not good enough to explain and/or predict well the road crashes. Hence, this expressed

the need to have maybe more informative covariates or maybe, the remaining of explanation

percentage is relating to a noise. The Gaussian process in the proposed method LGCP, as it

is a latent field, acts actually as a noise, that means, the hazard that can not be explained by

the covariates. If we compare the aggregation of Poisson models and the LGCP, the LGCP

seems to be more appropriate as the R-squared values are higher.

To conclude, the model that has been chosen and considered as the best one is LGCP3.

Indeed LGCP3 has almost the lowest wMSE, really close to LGCP2, but has a higher

R-squared value. The model LGCP3 has also shown the best results in the next section.

Confusion matrices

The goal now is to compute the probability that the expected number of accidents per cell

is equal to 0 in order to assess if the potential best model lgcp3 predicts correctly the accident

occurrences if they were initially observed, as described in Section 3.3.5. Unfortunately it

was difficult to compute the predictive distribution given in Eq (3.20) with the functions of

the package lgcp. An alternative that can give similar results and possible to be computed

is to generate a random Poisson variable with mean the intensity estimate from lgcp3. This

can be computed as follows:

> pois_proba0 <- function(Y, beta , eta , Z, otherargs){

+ ca <- diff(otherargs$mcens[1:2]) * diff(otherargs$ncens[1:2])

+ lambda <- ca *

+ otherargs$poisson.offset[1:otherargs$M, 1:otherargs$N]

+ *exp(matrix(Z % * % t(beta), otherargs$M * otherargs$ext ,

+ otherargs$N * otherargs$ext)[1:otherargs$M, 1:otherargs$N] + Y)
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+ x <- dpois(0, lambda)

+ return(x)

+ }

> lgcp3_proba0 <- lgcp ::: expectation.

lgcpPredictSpatialOnlyPlusParameters(lgcp3, pois_proba0)[[1]]

|=============================================================| 100%

As seen before with the function VARX, the creation of such a function as pois proba0

is not so obvious. The most important command-line is x <- dpois(0, lambda) which

returns the value of the Poisson probability density function. Especially, it will return the

probability that the number of events is equal to 0. Note that the Poisson distribution has

mean lambda, the intensity estimated from lgcp3. The object lgcp3 proba0 is a 64 × 64

matrix containing the probability that no accident happened in the cells of the computational

grid (from a random variable simulated with lgcp2 parameter estimates). Note that other

possible simulations could have been generated instead of the ones resulting from the function

dpois. For example, it would have been interesting to simulate an inhomogeneous Poisson

point process on the study window owin cagb with our intensity estimate coming from lgcp3

as parameter. Instead of probabilities, we would have had counts.

These predicted probabilities are used now to classify the observations and to determine

the confusion matrix as defined in Section 3.3.5 and recalled below:

Predicted class
0 1

Observed
class

0 True negative (TN) False positive (FP)
1 False negative (FN) True positive (TP)

The observed values and the probabilities in lgcp3 proba0 will be converted into two

classes: 0 for “no accident happened” and 1 for “at least one accident happened”. The

transformation of observed values into this binary class is simply realized by converting the

count values different from 0 to the class 1. However, for classifying the predicted probability

values obtained with lgcp3 proba0 into two classes, a decision rule needs to be defined. An

observation belongs to the class 0 if its predicted probability is higher than a threshold (to

be set in practice), otherwise it belongs to the class 1. True negative and true positive values

are respectively the count of predicted classes 0 and classes 1 when it was observed. Then,

the false negative and false positive values are respectively the count of predicted classes 0

and classes 1 when it was not the case. In practice, the choice of an ideal threshold may

be based on subjective criteria (for example, one can take the threshold equal to 0.5) or by

optimization criteria based on quantities computed from the confusion matrix such as the

Accuracy or the Sensitivity as defined below.

Several metrics can be derived from the confusion matrix, for example :

• Accuracy : (TP +TN)/(TP +FP +FN+TN), which is the ratio between the number

of correct predictions and the total number of predictions. This metric is useful when

false negatives and false positives have similar costs.
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• Sensitivity (also called recall) : TP/(TP+FN), which is the ratio between the number

of true positives and total number of observed positives. This metric is useful when

identifying the positives is crucial and hence, the occurrence of false negatives is not

wished.

• Specificity : TN/(TN + FP ), which is the ratio between the number of true negatives

and the total number of observed negatives. This metric is useful when the goal is to

cover all true negatives and hence, the occurrence of false positives is not wished.

• Precision: TP/(TP + FP ), which is the ratio between the number of true positives

and the total number of predicted positives. This metric is useful when the occurrence

of false positives is not wished.

• F1-Score: 2(Sensitivity · Precision)/(Sensitivity + Precision), which is the harmonic

mean of the precision and sensitivity. This metric is useful in a case of imbalanced

class distribution, when the cost of false positives and false negatives differs.

A way to assess the performance for the classification problems at various threshold

settings is the ROC curve (Receiver Operating Characteristics) from which the metric Area

Under The Curve (AUC) is derived. The ROC curve plots the specificity values on the

x-axis and the sensitivity values on the y-axis with respect to different threshold values. As

to improve the sensitivity you have to decrease the specificity, or vice versa, an ideal model

would be the one which allows to improve one of this metric without decreasing the other.

The AUC value allows to rate this tradeoff between sensitivity and specificity (James et al.,

2013). Hence, it is also interesting to compute this metric.

We propose to compute the confusion matrix metrics for several threshold values and the

AUC result for the model lgcp3. A way to implement it this is as follows:

> #Storing results

> threshold <- seq(0.01, 0.99, by=0.01)

> sensi <- rep(NA , length(threshold))

> speci <- rep(NA , length(threshold))

> acc <- rep(NA , length(threshold))

> prec <- rep(NA , length(threshold))

> f1_score <- rep(NA , length(threshold))

> k <- 1

> for(t in threshold){

+ #Data wrangling step

+ tmp <- raster(lgcp3_proba0)

+ extent(tmp) <- extent(obs_ras)

+ tmp <- rasterToPolygons(tmp)

+ tmp <- st_as_sf(tmp)

+ st_crs(tmp) <- st_crs(obs_sf)

+ tmp <- st_intersection(tmp , owin_cagb)

+ tmp <- st_join(tmp , obs_sf, join = st_covers)
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+ colnames(tmp) <- c("proba", "obs", "geometry")

+ #Observed values transformation to binary class

+ tmp[tmp$obs >= 1, ]$obs <- 1

+ tmp$obs <- as.factor(tmp$obs)

+ #Fitted values transformation to binary class

+ tmp$pred_bin <- tmp$proba

+ tmp[tmp$pred_bin > t, ]$pred_bin <- 0

+ tmp[tmp$pred_bin != 0, ]$pred_bin <- 1

+ tmp$pred_bin <- as.factor(tmp$pred_bin)

+ #Confusion matrix setting

+ tab <- table(tmp$pred_bin , tmp$obs)

+ #Confusion matrix metrics computation

+ sensi[k] <- tab[2, 2]/(tab[1, 2] + tab[2, 2])

+ speci[k] <- tab[1, 1]/(tab[1, 1] + tab[2, 1])

+ acc[k] <- (tab[1, 1] + tab[2, 2])/ sum(tab)

+ prec[k] <- tab[2, 2]/(tab[2, 2]+tab[2, 1])

+ f1_score[k] <- 2*(prec[k]*sensi[k])/(prec[k]+sensi[k])

+ k <- k+1

+ }

+ #AUC computation

> pROC::roc(response = tmp$obs , predictor = tmp$proba)$auc

Setting levels: control = 0, case = 1

Setting direction: controls > cases

Area under the curve: 0.9503

First, a vector threshold is set containing various threshold values to be used. Then,

storing objects sensi, speci, acc, prec and f1 score are declared for respectively each

confusion matrix metrics sensitivity, specificity, accuracy, precision and F1-score. A for

loop enable to iteratively run the creation of a sf object named tmp (as temporary) that

contains the observed values of obs sf and the probabilities that no accident happened of

lgcp3 proba0, the transformation of these probabilities to the binary class regarding to

the t th element of threshold, and finally the computation of the corresponding confusion

matrix and its associated metrics. Finally, the AUC is computed using the function roc of

the package pROC. Note that the command-lines used above contain redundant steps. Indeed,

it would have been more optimal not to compute the class of the observed values at each

iteration of the for loop for example.

The first metric AUC value is 95.03e-02 which tells that how much the model lgcp3

enables to distinguish between classes. The higher the AUC value is, the better model is for

predicting the classes 0 and 1. The final model lgcp3 is the best model regarding to the
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AUC values of every model (Tab 3.3). However, note that these values are in a close range.

Now, the final values of sensitivity, specificity, accuracy, precision and F1-score depend

on the research goal. As seen before, the metrics of the confusion matrix have different

interpretations. In our case, the most important one is the sensitivity. Indeed, identify

truly where accidents happened is crucial, we do not want to miss a cell where initially

accidents happened. There would rather be some extra false positives, which means cells

where accidents are supposed to happen but finally not, over saving some false negatives.

The results of the metrics regarding to different levels of sensitivity are computed as follows:

> for(s in c(0.80, 0.85, 0.90)){

+ ind <- which(sensi >= s)[1]

+ print(paste("Threshold:", threshold[ind]))

+ print(paste("Sensitivity:", sensi[ind]))

+ print(paste("Specificity:", speci[ind]))

+ print(paste("Accuracy:", acc[ind]))

+ print(paste("Precision:", prec[ind]))

+ print(paste("F1-Score:", f1_score[ind]))

+ cat("\n")

+ }

[1] "Threshold: 0.85"

[1] "Sensitivity: 0.809210526315789"

[1] "Specificity: 0.902479338842975"

[1] "Accuracy: 0.892070484581498"

[1] "Precision: 0.510373443983402"

[1] "F1-Score: 0.625954198473282"

[1] "Threshold: 0.87"

[1] "Sensitivity: 0.855263157894737"

[1] "Specificity: 0.8752066115702487"

[1] "Accuracy: 0.872980910425844"

[1] "Precision: 0.462633451957295"

[1] "F1-Score: 0.600461893764434"

[1] "Threshold: 0.9"

[1] "Sensitivity: 0.927631578947368"

[1] "Specificity: 0.821487603305785"

[1] "Accuracy: 0.8333333333333333"

[1] "Precision: 0.394957983193277"

[1] "F1-Score: 0.554027504911591"

Three levels for sensitivity values are set: 80%, 85% and 90%. Then, a for loop iteratively

identify the threshold value that allows to obtain a minimum sensitivity value equal to the sth

element of c(0.80, 0.85, 0.90) using the function which, and then computes the metrics

associated. The threshold value starting from which the probabilities values imply the class

to be 0 in order to obtain a sensitivity value of 90% is 0.90. Then the sensitivity, specificity,
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Tab 3.3: Confusion matrix results.

Model

Metric LGCP1 LGCP2 LGCP3 LGCP4 LGCP5 LGCP6

Sensibility 91.45 90.13 92.76 92.11 90.13 92.76
Precision 33.49 38.70 39.50 34.06 37.23 34.90
Specificity 77.19 82.07 82.15 77.60 80.91 78.26
Accuracy 78.78 82.97 83.33 76.87 81.92 79.88
F1-Score 49.03 54.15 55.40 49.73 52.69 50.72
AUC 94.51 95.17 95.03 94.68 94.67 95.06

accuracy, precision and F1-score values associated to this threshold are respectively 92.76%,

82.15%, 83.33%, 39.50% and 55.40%.

The precision value is 39.50% which seems to be very low. However, remind that we are

in a case of imbalanced class, as seen in the beginning of Section 3.4.2. Hence, this result was

expected. Indeed, the sensitivity was the metric to improve which implies to promote false

positives. Here, the precision value equal to about 40% means that, globally, when a true

positive is predicted, one and a half false positives are predicted. But note that in this case,

false positives are tolerable. On the other hand, note that the low F1-score value is expected

also. Indeed, the F1-score is not so high if one of the measures precision or sensitivity is

improved at the expense of the other.

The same process for computing lgcp3 proba0 and hence the metrics sensitivity, speci-

ficity, accuracy, precision, F1-score and AUC has been also adopted for the remaining models

LGCP1, LGCP2, LGCP4, LGCP5 and LGCP6. This enable us to compare the metric

values among all models. The results are given in Tab 3.3. Note that the sensitivity, speci-

ficity, accuracy, precision and F1-score values are associated to a threshold that allowed to

obtain a minimum sensitivity value of 0.90, as seen previously with the model lgcp3. The

best model with respect simultaneously to the sensitivity, specificity, accuracy, precision and

F1-score values is LGCP3. However, note that the values are in a close range.

These results are questionable. Indeed, the thresholds for a probability to be converted

to the class 0 in order to have, for example, a minimum sensitivity value of 90%, are very

high. Is the choice of these threshold values tolerable? If the threshold is set at t = 0.70,

which is an equidistant value between the standard threshold t = 0.50 and our threshold

t = 0.90, the value of sensitivity, precision, specificity, accuracy and F1-score, for model

lgcp3, would be respectively 65.13%, 72.79%, 96.94%, 93.39% and 68.75%.

3.5.3 Results interpretation

Remind that the goals of the whole analysis was to be able, by manipulating road crash

data as spatial point pattern, to be confident on saying which geographical zone of the study

area is critical and which environment factor is the most dangerous. The statistical model

chosen, LGCP, helps us to fulfill these goals. Indeed, a map of predicted probabilities can

be produced from the model results in order to easily identify the risky spatial areas. Then,

parameter estimates of the covariates in a Poisson model framework also enable to conclude
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on the risky character of the environment factor, as mentioned in Section 3.3.5.

Riskiest zones of the CAGB

Firstly, we propose to map the probability that the number of events exceeds a given

threshold t as defined in Eq (3.22) that we recall:

P
(
Λ(ci) > t

∣∣X) = Eπ(Θ|X)

[
I{λ(ci|Θ)>t}

]
For example, it could be interesting to map the probability that at least one accident

happens per cell of the computational grid. This is computed as follows:

> exceed <- function(Y, beta , eta , Z, otherargs){

+ ca <- diff(otherargs$mcens[1:2]) * diff(otherargs$ncens[1:2])

+ lambda <- ca *

+ otherargs$poisson.offset[1:otherargs$M, 1:otherargs$N]

+ * exp(matrix(Z % * % t(beta), otherargs$M * otherargs$ext ,

+ otherargs$N * otherargs$ext)[1:otherargs$M, 1:otherargs$N] + Y)

+ d <- dim(lambda)

+ return(matrix(as.numeric(lambda >= 1), d[1], d[2]))

+ }

> lgcp3_ex1 <- lgcp ::: expectation.lgcpPredictSpatialOnlyPlusParameters

(lgcp3, exceed)[[1]]

|=============================================================| 100%

As seen before, the creation of such functions requiring joint expectations is not so obvi-

ous. The most important command-line of this function is the option return which is clearly

explicit. The function expectation will use the function exceed to compute the probability

that the number of road crashes exceed one. Note that the threshold t (in this case t = 1)

should have been incorporated into the function exceed as an argument but was not as it

was heavy to do with the package lgcp.

The object lgcp3 ex1 is a 64 × 64 matrix containing the probabilities, per cell, that at

least one accident occurred. However, the spatial component that could inform about the

geographical location of each observation in the matrix has been lost, as usually with the run

of expectation. Hence, as seen many times before, the matrix lgcp3 ex1 will be converted

to a RasterLayer object in order to get back the spatial component. The reference spatial

object that will be used is, again, obs sf. The whole process is computed as follows:

> lgcp3_ex1_ras <- raster(lgcp3_ex1)

> extent(lgcp3_ex1_ras) <- extent(obs_sf)

> lgcp3_ex1_sp <- rasterToPolygons(lgcp3_ex1_ras)

> lgcp3_ex1_sf <- st_as_sf(lgcp3_ex1_sp)

> st_crs(lgcp3_ex1_sf) <- st_crs(owin_cagb)

> lgcp3_ex1_sf <- st_intersection(lgcp3_ex1_sf , owin_cagb)
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The matrix lgcp3 ex1 is used to create the RasterLayer object lgcp3 ex1 ras where

the extent is coming from obs sf. Then, the RasterLayer object is converted to a sf object

named lgcp3 ex1 sf, by transitioning to a SpatialPolygonsDataFrame as it is necessary.

The goal of this conversion is to be able to easily use the functions of package sf. Finally,

only the cells inside the study window owin cagb are kept with the use of st intersection.

The probabilities contained in lgcp3 ex1 sf are plotted as follows:

> lgcp3_ex1_sf %>%

+ ggplot () +

+ geom_sf(aes(fill = layer))+

+ scale_fill_gradient(low = "#F5FAFD", high = "#AA2A10",

+ breaks = c(0, 0.50, 1), limits = c(0, 1)) +

+ coord_sf(xlim = c(905000, 950000),

+ ylim = (6665000, 6705000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour = "black",

+ linetype="dashed",

+ size=0.1),

+ panel.grid.minor = element_line(colour = "black",

+ linetype="dashed",

+ size=0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude") +

+ labs(fill = paste("Probability that at least", "\n",

+ "one accident occurred"))

As lgcp3 ex1 sf is coming from a RasterLayer object, the numeric column attached,

containing the probabilities, is named layer. Then, remind that the object proj plot

has been set in Section 2.2 in order to specify to the package ggplot2 that the coordinate

reference system (CRS) wished for plotting is Lambert 93. Command-lines above generated

Fig 3.14.

Fig 3.14 shows that the zones where at least one accident could occur with a high

probability are in the centre of the study window.
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Fig 3.14: Plot of the posterior probability that the number of road crashes exceeds 1.

It is of interest to compute the exceedance probabilities and to plot the risk map for

higher values of t. Consider for example t = 5 and t = 10 which correspond to map more

riskier cells which are produced in Fig 3.15 and Fig 3.16 by using the same process as the

one used for computing Fig 3.14. Indeed, as we can see, less red cells are displayed in Fig

3.15 and we remark very few cells of the highest risk in Fig 3.16.

Fig 3.15: Plot of the posterior probability that the number of road crashes exceeds 5.
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Fig 3.16: Plot of the posterior probability that the number of road crashes exceeds 10.

Finally, we propose to plot the boundaries of the riskiest cell on a map in order to visualize

explicitly where the zone is in the urban community of Besançon. The code below generates

the result in Fig 3.17 :

> lgcp3_ex10_sf_84 <- st_transform(lgcp3_ex10_sf , crs = 4326)

> max(lgcp3_ex10_sf_84$layer)

> lgcp3_ex10_sf_84 %>%

+ filter(layer == max(layer)) %>%

+ leaflet () %>%

+ addProviderTiles("Esri.WorldImagery") %>%

+ addPolygons(color = "red")

[1] 0.901

The sf object lgcp3 ex10 sf results from the same command-lines that produced

lgcp3 ex1 sf, as mentioned previously, in order to compute Fig 3.16. Then, a sf object is

created from lgcp3 ex10 sf by converting the CRS to WGS 84, named lgcp3 ex10 sf 84.

This step is necessary for using functions from the package leaflet. Finally the riskiest

cell, which means the cell with the highest probability that at least ten accidents happen,

is plotted using the function leaflet. More particularly, the function addPolygons is

used to, as its name implies, add graphics elements and layers to the map. The function

addProviderTiles simply adds a tile layer from a known map provider.

The riskiest cell plotted in Fig 3.17 has a probability of 0.90 that more than ten accidents

happen. This zone corresponds to an important junction that links a big national road (N57)

and a departmental one (D673), that are roads known to have a high traffic density in the
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study window.

Fig 3.17: Plot of the riskiest cell in the CAGB regarding to its probability that at least 10
accidents occur.

Finally, the latent field Y can be seen as a noise, which means the hazard relating to the

road crashes which can not be explained only with the covariate information. Hence, it can

be also of interest to plot the probability that the relative risk exceeds a given threshold t

defined in Eq (3.23) that we recall:

P
(

exp(Y (ci)) > t
∣∣X) = Eπ(Θ|X)

[
I{exp(Y (ci))>t}

]
The plots of probabilities that the relative risk exceeds t = 2 or t = 5 are computed as

follows:

> ep <- exceedProbs(c(2, 5))

> ex <- lgcp ::: expectation.lgcpPredict(lgcp3, ep)

> par(mfrow = c(2, 1))

> plotExceed(ex[[1]], ’ep’, lgcp2, asp = 1, ylab = "", xlab = "")

|=============================================================| 100%

First, the function exceedProbs from the package lgcp computes the approximation of

the exceedance probabilities for thresholds 2 and 5. Then, as already seen before, the

function expectation is used. Finally, to plot these exceedance probabilities, the func-

tion plotExceed from the package lgcp is used. The command-lines above produced Fig

3.18.

Riskiest environment factors

In order to identify which factor increases the most the probability that an accident

occurs, we look at the estimator of the β parameter as it can be expressed also as a relative
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Fig 3.18: Plot that the relative risk exceeds a given threshold. Left to right : threshold
equal to 2 and 5.

risk, as described in Section 3.3.5. These coefficients are obtained as follows:

> parsummary(lgcp3)

The function parsummary from the package lgcp produces a summary table for the model

parameters β and η.

The results for β are given in Tab 3.4. As the covariates have been normalized, as

mentioned in Section 3.4, each one can be fairly compared. Hence, it is easy to say that

the riskiest factor is national length, with median 87.80. Then, in second, third and fourth

position there are municipal length, intersection and station with respectively median 26.65,

2.99 and 2.12. The factors prop65 and leisure were not found to be significant (95% CRIs

contained both the value 1).

Tab 3.4: Parameter estimates of LGCP3 model.

Parameter Median Lower 95% CRI Upper 95% CRI

exp(βIntercept) 4.78e-08 2.54e-08 8.34e-08
exp(βmunicipal length) 26.65 8.10 101.71
exp(βnational length) 87.80 33.96 264.83
exp(βintersection) 2.99 1.50 7.14
exp(βstation) 2.12 1.09 4.31
exp(βprop65) 3.53 0.61 17.49
exp(βleisure) 2.18 0.87 5.57

In other words, a cell zone where major roads are nationals is risky as it increases the

probability that an accident happens, higher than if the major roads were municipals. Then

a cell zone where the intersections are in a high number increases also the probability of

accident occurrence. Finally, if a cell zone contains one or more stations such as train or

taxi stations, the probability is also increased. Note that these results do not conclude that

the national or municipal roads, the intersections or the number of stations are the factor

that cause accidents. For example, a zone composed of one or more stations is usually a

busy area. Hence, the traffic density could possibly be the factor that influences the accident

occurrence.
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3.6 Summary of the spatial analysis of the urban community
of Besançon road crashes and discussions

Summary results The LGCP model is a tool for modelling a spatial point pattern as-

sumed to be generated by an inhomogeneous Poisson process from which the intensity is

a stochastic process assumed to vary spatially. The analysis goals of this chapter were to

identify the critical areas of the CAGB while highlighting the risk factors.

A significant number of factors were available for the analysis. However, the LGCP model

represents a challenge in terms of calculation and computation time. In order to choose

which factors would play a role in the analysis, we proposed to proceed with a variable

selection before fitting the LGCP based on the Poisson distribution, which is as close as

possible to the LGCP statistical modelling. The variable selection methods, mainly inspired

by Random Forest, established six variable combination to be fitted in the LGCP. Hence,

six LGCP models have been fitted and have been then assessed in order to choose the best

model from both explanatory and predictive points of view. The best model consists of the

covariates national length, municipal length, intersection, station, prop65 and leisure. This

model enables to conclude that 91.13% of the predicted values are correlated to the observed

values. In addition, we are able to predict in 92.76% of cases the occurrence of accidents.

Finally, to meet the objectives of the analysis mentioned above, we proposed to produce

maps plotting the probability that one, five and ten accidents occur. This allows us to

conclude on the riskiest area of the CAGB, corresponding to an area where the N57 and

D673 roads intersect and represents an area known to be very busy. Then, we are able to

say that the most risky factors in the hierarchical order are the length of national roads, the

length of municipal roads, the number of intersection and the number of stations (train or

taxis) per unit area.

Discussions Work realized in this chapter may be extended in several directions. It would

have been interesting to compare the LGCP fits to other spatial statistical modellings. One

possible extension with the same framework as the one set for the LGCP fits, is to model the

number of road crashes per cell by with a Poisson distribution in a semiparametric model,

inspired from Generalized Additive Models, for which the road crash spatial components

longitude and latitude could be fitted in smooth functions (Wood, 2017, Chapter 7). Some

similar examples will be given in Chapter 4.

On the other hand, it would have been interesting also to compare the LGCP prediction

performances to other statistical models. The methods undertaken for the variable selection

are actually models that can be compared to the LGCP as the statistical framework was

the same: the number of road crashes per cell of the grid; covariates values per cell of the

grid. Actually, the results have shown, according to the R-squared values, that the LGCP

fits are the best. However, there exist many machine learning methods such as boosting

models, support vector machines, neural networks, ... (Bao et al., 2019; Tang et al., 2020;

Dong et al., 2015; Li et al., 2020). One major difficulty to use such methods on our road

crash data is the lack of information recorded at a very fine scale (for example the traffic
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density data per day or even per hour of the day).

Focusing on the performances of the model LGCP, we proposed to compute a weighted

Mean Squared Error (wMSE), a R-squared value and the confusion matrix in the framework

where the number of accidents has been classed into 0 for ”no accident happened” and 1

for ”at least one accident happened”. These metrics enable us to decide which fit among

the LGCP fits was the best according to respectively its wMSE, its R-squared value and

its performance of predicting well that accidents happened when it was actually the case.

On top of these metrics, it would have been interesting to simulate a realization from an

inhomogeneous Poisson point process with intensity estimated from our LGCP fits. Then,

this point pattern just generated can be compared to the observed road crash point pattern.

To do so, a comparison metric has to be set. I would have enjoyed to focus on this latter

proposition of comparison if the time would have allowed it. My first thoughts go to the

nearest neighbour distance.

Then, the LGCP models fitted in this chapter are only spatial models. Another direction

for further research would be to consider spatio-temporal LGCP as suggested in Taylor et al.

(2015). Unfortunately, due to the thesis time constraints and the fact that a spatio-temporal

LGCP is very time costing, this proposition has not been deeply studied. Moreover, in order

to drive this kind of spatio-temporal analysis, the main elements were missing: the temporal

covariates. Chapter 4 handles traffic density data. However, these data are available only

for a very short subset of the CAGB study area: the city of Besançon. We suggest in

Chapter 4 to predict the traffic density data by using kriging. In order to adapt the LGCP

spatial analysis made here into a spatio-temporal one, it is actually possible to only focus

on Besançon city. But we assumed that the use of predicted values based on kriging was not

rigorous for this kind of statistical modelling. It could be interesting to collect road traffic

density data that are displayed on the apps Google Maps or Waze for example.

Finally, it could have been interesting to combine the goals of Chapter 1 and the goals of

this chapter, that means, fit a spatial analysis with a special attention on accident injuries.

Several methods can be investigated in order to achieve it. For example, our road crashes

point pattern can be modelled by marked point processes that allow to treat labelled point

pattern (Baddeley et al., 2015, Section 1.1.3). For example, in our case the road accidents

would be labelled as ”slight”, ”serious” and ”fatal” as in Chapter 1. On the other hand,

we can keep the grid for which we have the accidents located in the cells and the covariates

values, and we can set a cell score that is the sum of the injury scores. More precisely if

slight, serious and fatal injuries are scored respectively as 1, 2 and 3, a cell where three

accidents of each category have occurred would have a final score that is equal to 6. Bao

et al. (2019) have used a similar method as the one described just before.

3.7 Supplementary material

We give in this section the supplementary diagnostics needed for validation of the MCMC

algorithm and prior distributions.
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3.7.1 Markov Chain Monte Carlo diagnostic checks

After running the MCMC algorithm, monitoring methods have to be employed. This

include to check that the Markov chain is mixing well and converging. We will follow the

steps suggested in Taylor et al. (2015) based on widely used graphical methods for MCMC

convergence diagnosis.

An empirical approach to convergence control is the trace plot, which is a time series plot

that shows the realizations of the Markov chain at each iteration. This graphical method is

used to visualize the Markov chain in order to detect deviant or non-stationary behaviors.

The trace plots for the parameters β and η are computed as follows:

> traceplots(lgcp3)

To produce the trace plots for the parameters β and η, the function traceplots from

the package lgcp is used. The trace plot of parameter σ is shown in Fig 3.19. The plot

looks satisfactory as it shows random scatter around a mean value between 0.9 and 1.2

(approximatively). The reader may find all the trace plots in Appendix B.

Fig 3.19: Trace plot for the parameter σ from lgcp3.

The autocorrelation plots can also be used in order to check the mixing of the chain. These

are plots that graphically summarize the strength of a relationship between an observation

in a time series with observations at prior time steps, called lags. For fast-mixing Markov

chains, lag-k autocorrelation values drop down to (practically) zero as quickly as k increases.

On the other hand, high lag-k autocorrelation values for larger k indicate the presence of a

high degree of correlation and slow mixing of the Markov chain. The autocorrelation check

of the latent Gaussian process and the autocorrelation plots for the parameters β and η are

computed as follows:
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> lagch <- c(1, 5, 15)

> Sacf <- autocorr(lgcp3, lagch , inWindow = NULL)

> for(i in 1:3){

+ image.plot(xvals(lgcp3), yvals(lgcp3),

+ Sacf[, , i], zlim = c(-1, 1),

+ axes = FALSE , xlab = "", ylab = "", asp = 1,

+ sub = paste("Lag:", lagch[i]))

+ plot(cagb_ppp$window , add = TRUE)

+ scalebar(5000, label = "5 km")

+ }

> parautocorr(lgcp3)

|=============================================================| 100%

First, different lags of the chain are chosen: 1, 5 and 15 for example. The function autocorr

from package lgcp computes cell-wise for selected autocorrelations of the Gaussian process

of lgcp3. Then, the results are plotted with the function image.plot on which the study

window owin cagb is added with the plot call and the autocorrelation plots are obtained

with the function parautocorr from the package lgcp. The results are given in Fig 3.20.

Fig 3.20: Autocorrelation plot of the gaussian process from lgcp3. Left to right: lag 1, 5
and 15.

The three plots in Fig 3.20 show that there is little autocorrelation, especially the left

panel. However, this is very slight. Then, the autocorrelation plot for the parameter σ is

shown in Fig 3.21. The reader may find the remaining autocorrelation plots for parameters

φ and β in Fig B.7 in Appendix B. Note that there are little autocorrelation in these plots

but this is very slight. These plots are still satisfying. To completely avoid this case, it is

suggested to run again the algorithm for a longer period of time.

The diagnostic checks performed allow to check that the Markov Chain was mixing well

and has converged. As these monitoring steps have been established satisfactory, the best

chosen model lgcp3 can be used to make inferences.

3.7.2 Prior and posterior distributions

Finally, it also of interest to make visual assessment of prior and posterior distributions,

in order to graphically visualize how the posterior distribution acts relating to the prior
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Fig 3.21: Autocorrelation plot for the parameter σ from lgcp3.

distribution. The corresponding plots are computed as follows:

> par(mfrow = c(3, 3))

> priorpost(lgcp3)

The function priorpost from the package lgcp plots the prior distributions, as a red line,

and the posterior distributions, as a histogram, of the model parameters η and β. The

command-lines above produce the Fig 3.22.

Fig 3.22: Plot of the prior and posterior distributions of each parameter.

While the covariate effects β seem to be well identified by the data, the priors for the
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parameters η are not so close to the data. This tended to be not so well identified, the reader

can find similar results in Taylor et al. (2015) or Ramı́rez and Valencia (2021) for example.



Chapter 4

Road accident space and time preliminary

analyses of the city of Besançon 1

Linear network, kriging and Generalized Additive Models

In order to prevent and/or forecast road accidents, the statistical mod-

elling of spatio-temporal dependence and potential risk factors is a major

asset. The focus in the following is on the road accidents located in space

and time. A short descriptive statistical study on the road network where

the accidents happened has been developed. Then, the road traffic den-

sity has been used in a geostatistical framework in order to simulate a

road crash point pattern that lies on the road network. This simulated

point pattern has been merged to the road crash point pattern observed

in order to be analysed into space and time in an epidemiological adapted

framework known as case-control study. The spatio-temporal statistical

modelling method used here is the Generalized Additive Model. This work

aims at giving first exploratory space and time analyses, based on the road

accident data that occurred between 2017 and 2019 in the city of Besançon.

4.1 Introduction

Chapter 3 focused on giving a spatial analysis of road crash data from the CAGB, urban

community of Besançon. The method of log-Gaussian Cox processes has been used in order

to fulfill the main goals that were : highlight the most critical zones of the CAGB and

identify the riskiest accident factors. The final goal now is to perform spatio-temporal

analyses. Remind that in Chapter 1, we explored some temporal components that were

associated to the road accident data from the region of Franche-Comté. The results of

the Multiple Correspondence Analysis and the ordinal logistic regression models show that

the time components and the road crash injury were dependent. However, these temporal

1This chapter corresponds to a work in progress with Benjamin Taylor started when visiting University of
Lancaster in April and May 2022.
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components were handled as categorical variables. Hence, the focus of this chapter is to

analyse, this time, the road accident point pattern into a space and time framework with

suitable spatio-temporal statistic tools. The analysis proposed here is inspired by common

techniques used in the analysis of spatially-referenced case-control data in epidemiology. Our

road crash data represent the cases in the study and ”no crash data” represent the group

of controls. Unfortunately, the group of controls is missing in our study so we propose to

proceed with a simulation of the controls. Once the group of controls has been generated, we

are interested in predicting the probability for a point location to be a case by considering

semiparametric models based on environment characteristics into space and time. More

precisely, the final goal is to identify the critical zones of the city of Besançon according to

the time.

As the goal now is focused on the spatial and temporal components of our road crashes

point pattern, we begin by exploring the temporal characteristics of the data. Then, a huge

pre-processing work for the fitting of semiparametric models is presented in the following

sections. The motivation of this pre-processing work is the simulation of the group of controls.

The group of controls has to be simulated on the road network. Hence, the first part of the

pre-processing tries to introduce the notion of linear networks and how to handle point

patterns on a linear network. Then, the group of controls can be simulated according to a

given quantity. The second part of the pre-processing work is focused on the manipulations

of the traffic density data on which the simulation of the controls will be based. As our traffic

density data are sparse data, the method of kriging is used in order to extrapolate these data

beyond the observed locations. Finally a semiparametric space and time analysis is fitted,

inspired from Generalized Additive Models, with the aim of estimating the probability of

being a case, into space and time.

Similarly as Chapter 2 and Chapter 3, this chapter details the manipulations and imple-

mentations of specific statistical tools for spatial and temporal modelling from the software

R (R Core Team, 2021) used for this exploratory analysis.

The following librairies will be used :

> library(areal)

> library(gstat)

> library(ggplot2)

> library(leaflet)

> library(lubridate)

> library(maptools)

> library(mgcv)

> library(raster)

> library(sf)

> library(sp)

> library(spatstat)

> library(tidyverse)

R packages areal (Prener et al., 2022), leaflet (Cheng et al., 2021), maptools (Bivand

et al., 2021b), raster (Hijmans et al., 2022), sf (Pebesma et al., 2022), sp (Pebesma et al.,

2021) and spatstat (Baddeley et al., 2021b) are tools for spatial data. The packages gstat
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(Pebesma and Graeler, 2022) and mgcv (Wood, 2022) are packages used respectively to do

kriging and to fit GAMs. Finally ggplot2 (Wickham et al., 2021), lubridate (Spinu et al.,

2021) and tidyverse (Wickham, 2021) are used respectively for plot, data wrangling basic

operations and handling dates.

The current chapter is structured as follows. Section 4.2 gives descriptive analyses of the

spatio-temporal data of the road crashes point pattern of the city of Besançon. Section 4.3

is focused on the generation of the group of controls, based on short road network analyses

and traffic density data predicted by kriging. Then Section 4.4 described the semiparametric

statistical modelling and its results.

4.2 Space and time descriptive analyses of Besançon road
crashes

The purpose of this analysis is to describe the space and time components of the road

crash point pattern of the city of Besançon. Chapters 2 and Chapter 3 have only focused

until now on the spatial characteristics of these accidents. Before modelling the road crash

point pattern in a space and time framework, this subsection will focus on handling such

spatio-temporal data in the software R and describing globally the point pattern in space

and time.

First, a new dataframe is loaded that corresponds to the road crashes point pattern of

Besançon with the date of the accident occurrence associated :

> bes <- read_csv("DATA/bes.csv")

> head(bes)

> class(bes$date)

date latitude longitude

------------------------------------------------

3 janvier 2017 19h46:00 47.24508 6.02350

7 janvier 2017 04h12:00 47.24267 6.02574

15 janvier 2017 10h13:00 47.24433 6.00460

27 janvier 2017 12h20:00 47.22535 5.97899

12 fé vrier 2017 03h34:00 47.26256 6.04514

15 fé vrier 2017 17h10:00 47.22113 5.96667

[1] "character"

The dataframe is composed of three columns: date, latitude and longitude. The

first column corresponds to the date of the accident: the day, the month, the year and the

time with hours, minutes and seconds. The coordinate reference system (CRS) used for the

coordinates is WGS84. The first step is to specify to the software that the column date has

to be handled in a date-time class. The class used in this study is POSIXct, which stores

both date and time (contrary to the class date that is only a date class). A similar class

as POSIXct is POSIXlt, the difference is that the class POSIXlt stores the hours, minutes,

seconds, day, month and year separately. The transformation of date is computed as follows:
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> date_format <- "%d %B %Y %Hh%M:%S"

> bes <- bes %>%

+ mutate(date_single = as.POSIXct(date , format = date_format))

The format on which the date will be handled is specified in date format. Then, the

class is defined with the function as.POSIXct.

The advantages of using the class POSIXct is that it is easier to handle the temporal

characteristics of the variable. Indeed, many functions of the software, in the base or with

packages such as lubridate for example, help to directly deal with the year, the month,

the day and the time. For instance, the number of accidents per month in a year can be

visualized as follows:

> m_levels <- c("January", "February", "March", "April",

+ "May", "June", "July", "August",

+ "September","October", "November", "December")

> tmp <- tmp %>%

+ mutate(year = year(date),

+ month = factor(months(date), levels = m_levels))

> tmp %>%

+ ggplot(aes(month)) +

+ geom_bar(width = 1) +

+ facet_wrap(~year , nrow = 1) +

+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

The year and the month of each observation in the dataframe are obtained respectively with

the functions year and month. Command-lines above produced the Fig 4.1. The number

of road crashes per month vary from year to year, we can make the hypothesis that there is

probably no seasonality. What could probably be interesting is to investigate why in April,

May and June of 2018, the number of road crashes is much higher than in 2017 and 2019.

We propose now to plot the number of road crashes per trimester in a year. This is

computed as follows:

> q_levels <- c("Q1", "Q2", "Q3", "Q4")

> tmp <- tmp %>%

+ mutate(quarter = factor(quarters(date), levels = q_levels))

> tmp %>%

+ ggplot(aes(quarter)) +

+ geom_bar(width = 1) +

+ facet_wrap(~year , nrow = 1) +

+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

The trimester of each observation is obtained with the function quarter. Command-lines

above produced the Fig 4.2. Graphically, it is easier to see that the number of road crashes

is higher in 2018 than in 2017 and 2019.

The data can also be plotted in space and time. First, the creation of the sf object from

bes is computed as follows:
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Fig 4.1: Number of road crashes per month in a year.

Fig 4.2: Number of road crashes per trimester in a year.

> bes_sf <- st_as_sf(bes , coords = c("longitude", "latitude"), crs = 4

326)

> bes_sf <- st_transform(bes_sf , crs = 2154)

> class(bes_sf$date)

[1] "POSIXct" "POSIXt"
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The CRS is modified in order to use Lambert 93 as usual. On the other hand, as you can

see, the conversion to a sf object did not modify the class of date.

Then, the road crashes point pattern of the city of Besançon can be visualized as follows:

> owin_bes_sf <- st_as_sf(owin_bes)

> st_crs(owin_bes_sf) <- st_crs(bes_sf)

> ggplot () +

+ geom_sf(data = owin_bes_sf, color = "black", fill = "white") +

+ geom_sf(data = bes_sf, color = "black", size = 0.5) +

+ coord_sf(xlim = c(915000, 945000),

+ ylim = c(6680000, 6700000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour = "black",

+ linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour = "black",

+ linetype = "dashed", size = 0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude")

An object owin bes sf is created from owin bes with the function st as sf. The owin ob-

ject owin bes corresponds to the polygon boundary of the city of Besançon used respectively

in Chapter 3. Command-lines above produced the Fig 4.3.

Fig 4.3: Road accident spatial point pattern in the city of Besançon.

We propose now to plot the road crash point pattern per day in a year. In Chapter 1, a

variable week was used in order to compare the injury accidents that happened during the

week to the ones happening during the weekend. Our results have concluded on the fact

that accidents happening during the weekend were riskier than the ones happening during
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the week. Hence, it is interesting to look at the road crashes point pattern in space and time

with the time component decomposed into week and weekend. Indeed for example, one can

ask if road crashes can be more abundant in some locations according to if they happened

during the week or the weekend. This can be visualized as follows:

> tmp <- bes_sf %>%

+ mutate(day = factor(weekdays(date), levels = d_levels ,

+ week = ifelse(day %in% c("Saturday", "Sunday"),

+ "weekend", "week"),

+ year = year(date))

> ggplot () +

+ geom_sf(data = owin_bes_sf) +

+ geom_sf(data = tmp , size = 0) +

+ facet_grid(week~year) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour ="black",

+ linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour = "black",

+ linetype = "dashed", size = 0.1),

+ axis.text.x = element_blank (),

+ axis.text.y = element_blank ())

The day of week of each observation is obtained with the function weekdays. Command-lines

above produced Fig 4.4. It seems that accidents that happen during the weekend have no

geographical preferences compared to the ones happening during the week but it should be

properly analysed.

Fig 4.4: Road crash point pattern per time of the week in a year.
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Similarly as the previous plot, the road crash point pattern can be visualized according

to the trimester of the year. This is computed as follows:

> tmp <- tmp %>%

+ mutate(quarter = factor(quarters(date), levels = q_levels))

> ggplot () +

+ geom_sf(data = owin_bes_sf) +

+ geom_sf(data = tmp , size = 0) +

+ facet_grid(year~quarter) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour ="black",

+ linetype = "dashed", size = 0.1),

+ panel.grid.minor = element_line(colour = "black",

+ linetype = "dashed", size = 0.1),

+ axis.text.x = element_blank (),

+ axis.text.y = element_blank ())

Command-lines above produced the Fig 4.5. Graphically, it is hard to make assumptions

on a possible space and time trend.

Fig 4.5: Road crash point pattern per trimester in a year.

This section gives descriptive analyses of the space and time road crashes point pattern of

Besançon and enables to make assumptions on the potential temporal component that could

influence these accident occurrences. Before fitting the space and time analysis in order to

confirm a potential temporal effect, some elements are missing. The next section corresponds

to the solution that we proposed to theses issues and is defined as pre-processing.
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4.3 Spatio-temporal analysis pre-processing : simulation of
the controls

In order to build a spatio-temporal analysis, we propose to adapt the case-control studies

used in a classical epidemiological framework to our road accident study. This case-control

study is designed to determine if an exposure is associated with an outcome. This can be

described as follows : first, identify the cases (group known to have the outcome) and the

controls (group known to be free of the outcome) ; then, look back in time to learn which

subjects in each group had the exposure. In our case of road crashes, the recorded accident

locations are the cases, the controls would be simulated locations in the study window and

the potential exposure would be an environment characteristic such as road infrastructures

for example.

The motivation of the following section is the simulation of the group of controls, as it is

missing in the case-control study framework that we wish to adapt. The controls will be a

point pattern in the study window. The question is then : how should we simulate the group

of controls? Firstly, the controls in the framework of case-control studies can be potentially

considered as the cases. Indeed, the goal of the modelling is to estimate the probability

of being a case. Hence, the group of controls has to be simulated on the road network.

Secondly, the points will be simulated according to the traffic density data. However, the

available traffic data are sparse. Hence, we propose to extrapolate the data beyond the

observed locations using kriging.

The following section introduces the notion of linear networks and what point patterns

on linear networks. Then, a brief introduction to kriging is given, followed by the fit of this

method on the traffic density data. Finally, in the end of this section, we generate several

point patterns on the road network according to the traffic density data and hence form the

group of controls.

4.3.1 Point processes on linear networks

This section aims at giving solutions on how to handle the road network by using the

software R and especially, the road crashes point pattern of the city of Besançon on the

road network. The road network is categorized as a linear network in the field of spatial

statistics. A network can be railways, rivers or the work way of a worm. Baddeley et al.

(2021a) gave many example of spatial point patterns on networks such as reported crimes in

a neighbourhood, positions of spider webs on a urban brick wall or locations of spines of a

neuron. The first strategy undertaken in order to analyse point patterns on a linear network

is to adapt, if it is possible, the statistical tools already existing for point patterns in two

dimensional space for the new setting of a linear network. An example of kernel estimation

is given in the following that enables to make hypotheses on the riskiest road segments of

the city of Besançon.
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Linear network basics

Following Baddeley et al. (2015), a linear network, denoted by L, is defined as

L =
N⋃
i=1

li, (4.1)

where li are line segments and N < ∞ is the number of segments. Line segments li are set

to [ui, vi] = {ω : ω = tui + (1− t)vi, 0 ≤ t ≤ 1} where ui, vi ∈ R2 are the vertices of li.

Line segments meet themselves only at their endpoints. In the case where two road cross

each other, each road is splitted into segments that end at the meeting-point which is a

vertex of the network. The number of segments which exit from each vertex is referred to as

the degree of that vertex.

The most common distance measure used between any two points u and v in the network

L is the shortest-path distance. A path between two points u and v is defined to be a

sequence x0, x1, . . . , xp of points in L with x0 = u, xp = v and [xi, xi+1] ⊂ L. The shortest

path distance is simply the minimum of the lengths of all paths from u to v, where the

length of a path is the sum of the Euclidean distances between each points of the sequence

x0, x1, . . . , xp.

We take the sf object road sf which is the road network of the CAGB used in Chapter

2. First, we keep only the road network that is inside the city of Besançon as follows:

> st_crs(road_sf) <- st_crs(owin_bes_sf)

> road_sf <- st_intersection(road_sf , owin_bes_sf)

The road network can be visualized with the package leaflet as follows:

> road_sf_84 <- st_transform(road_sf , crs = 4326)

> leaflet () %>%

+ addTiles () %>%

+ setView(lng = 6.025490, lat = 47.236168, zoom = 15) %>%

+ addPolylines(data = road_sf_84,

+ color = "black",

+ opacity = 0.75,

+ weight = 1)

Remind that the creation of the sf object road sf 84, by converting the CRS to WGS

84, was required for using functions from the package leaflet. Command-lines above, by

switching values of attribute zoom, produced Fig 4.6.

Our purpose now is to describe how networks are handled in the software R. As for point

patterns that have their own classes such as ppp, linear networks can also be manipulated in

a specific class named linnet. An object of this class represents a linear network of straight

line segments and contains information about each segment, vertex and connectivity of the

network. The creation of such an object with our road network is as follows:

> road_sp <- as(road_sf , ’Spatial ’)

> road_linnet <- as.linnet.SpatialLines(road_sp)
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Fig 4.6: Road network of the city of Besançon. Left to right : anoverview and a focus on
Besançon city centre.

> road_linnet

Linear network with 34665 vertices and 36161 lines

Enclosing window: rectangle = [922571.8, 932940.5] x

[6682230, 6695093] units

First an object SpatialLines, collection of polygonal lines, is created from road sf in order

to use the function as.linnet.SpatialLines from the package maptools that, as its name

implies, converts such an object into an object of class linnet. Note that different methods

exist for creating linnet objects such as for example the function linnet, that creates a

linear network from vertices given by a ppp object. The object road linnet is composed of

34 665 vertices and 36 161 lines.

Point patterns on linear networks

A point pattern on a linear network L is a finite collection of points X = {x1, . . . , xn} of

R2 where each xi represents a location on L. As mentioned in Chapter 3 Section 3.2.1, the

point process reference models are usually assumed to be stationary and isotropic. However,

these assumptions in a point process framework on a linear network are difficult to stand.

Indeed, a linear network is not a homogeneous space as there is no guarantee that points will

still live on the underlying network after applying some transformations and/or rotations

(Baddeley et al., 2015).

To specify in the software R that a given point pattern lies on an network, the class lpp

stands. An object of this class contains information such as the linear network, the spatial

coordinates of the points and other kind of coordinates that specify which line segment of

the network contains the point and the position of the point along this segment (between 0

and 1 where 0 corresponds to the first endpoint and 1 the second one).

Before creating an object of class lpp, it is interesting to visualize the point pattern and

the network simultaneously.

> bes_sf_84 <- st_transform(bes_sf , crs = 4326)

> leaflet () %>%
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+ addTiles () %>%

+ setView(lng = 6.025490, lat = 47.236168, zoom = 15) %>%

+ addPolylines(data = road_sf_84,

+ color = "black",

+ opacity = 0.75,

+ weight = 1) %>%

+ addCircleMarkers(data = bes_sf_84,

+ weight = 1,

+ radius = 3,

+ fillOpacity = 1,

+ color = "blue")

Fig 4.7: Road network and road accident point pattern of the city of Besançon. Note that
the points do not lie on the network.

The Fig 4.7 shows a focus on the city centre of Besançon. The points plotted do not lie

on the network. This situation is avoided with the creation of a lpp object as the coordinates

of the point pattern are computed by projecting the locations onto the lines of the network.

This is computed as follows:

> bes_ppp <- as.ppp(st_coordinates(bes_sf), owin_bes)

> bes_lpp <- lpp(bes_ppp , road_linnet)

> tmp <- as.data.frame(cbind(bes_lpp$data$x, bes_lpp$data$y))

> tmp <- st_as_sf(tmp , coords = c("V1", "V2"), crs = 2154)

> tmp <- st_transform(tmp , crs=4326)

> leaflet () %>%

+ addTiles () %>%
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+ setView(lng = 6.025490, lat = 47.236168, zoom = 17) %>%

+ addPolylines(data = road_sf_84,

+ color = "black",

+ opacity = 0.75,

+ weight = 1) %>%

+ addCircleMarkers(data = tmp ,

+ weight = 1,

+ radius = 3,

+ fillOpacity = 1,

+ color = "blue")

The final step was to create a ppp object from bes sf and to associate it to the linnet

object road linnet with the function lpp from the package spatstat. Then, in order to

visualize it with the package leaflet similarly as in Fig 4.7, the point pattern from the lpp

object bes lpp has been extracted and named tmp, like temporary, as its use is only to show

that the point pattern lie well on the network now. Command-lines above produced Fig 4.8.

Fig 4.8: Road network and road accident point pattern of the city of Besançon. Use of the
function lpp. Note that the points now lie on the network.

Summary information of the object bes lpp is computed as follows:

> summary(bes_lpp)

Point pattern on linear network

296 points

Linear network with 34665 vertices and 36161 lines

Total length 655830.7 units

Average intensity 0.000451336 points per unit length



158 SPATIO-TEMPORAL ANALYSIS PRE-PROCESSING

Unmarked

Enclosing window: rectangle = [922571.8, 932940.5] x

[6682230, 6695093] units

The call of summary gives information about the point pattern on the linear network such as

the number of events, that are 296, or the average density points per unit length. The first

property that should be investigated from this point pattern on the network is the intensity

of the underlying point process.

Intensity of a point process on a linear network

Let X = {x1, . . . , xn} be a point pattern on a linear network L. A point process X on a

linear network L has homogenous intensity λ if

E[n(X ∩B)] = λ`(B) (4.2)

where `(B) denotes the total length of subset B ⊆ L and n(X ∩ B) denotes the number of

points of X that fall in B. Note that λ represents now the expected number of points per

unit length of network. The homogeneous Poisson process on a linear network is defined

similarly as the one in two dimensions defined in Section 3.2 where the property HPP1 is

simply replaced with Eq 4.2.

Alternatively, a point process X on a linear network L has inhomogeneous intensity

function λ(u) defined at all locations u on L if

E[n(X ∩B)] =

∫
L
λ(u)d(u), (4.3)

where du denotes integration with respect to arc length and B ⊆ L a subset. Here λ(u)

represents the expected number of points per unit length of network, in the vicinity of

location u. Note also that the inhomogeneous Poisson process on a linear network is defined

similarly as the one in two dimensions defined in Section 3.2.2 where the property IPP1 is

simply replaced with Eq 4.3.

In practice, the purpose of point pattern analysis is the estimation of the spatially varying

density of events. Intensity functions of inhomogeneous point processes can be estimated

non-parametrically with kernel smoothing. Whereas these methods were simple for spatial

point pattern data in two dimensions, as briefly introduced in Section 3.2.3, kernel estimation

on a linear network is mathematically and computationally difficult (Baddeley et al., 2021a).

Various kernel smoothing techniques have been proposed, Baddeley et al. (2015) sug-

gested that the method of choice is the equal-split continuous (Okabe et al., 2009). However,

as mentioned above, algorithms of kernel estimation are computationally challenging and

timely consuming. Hence, we follow Rakshit et al. (2019) and estimate the intensity with

the method of convolution kernel estimation, which can be computed rapidly using the so-

called Fast Fourier Transform computation algorithm. The convolution kernel estimator of
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the inhomogeneous intensity λ(·) is defined as

λ̃(u) =
1

c(u)

n∑
i=1

κ(u− xi), u ∈ L ⊂ R2, (4.4)

where κ(·) is the smoothing kernel and c(u) =
∫
L κ(v−u)dv is the convolution of the kernel

κ with the arc-length measure on the network. More particularly, the kernel κ is a function

of two spatial locations u and v, u, v ∈ R2, in contrast to spatial point pattern in two

dimensions where for example the kernel estimator given in Eq 3.2 in Section 3.2.3 was a

function of the distance between u and v.

An estimation of the intensity function of bes lpp with the convolution estimator can

be obtained as follows:

> smoothing_band <- bw.scott(bes_lpp)

> opt_density <- densityQuick.lpp(bes_lpp , sigma = smoothing_band)

> plot(opt_density , main = ")

It is difficult to choose suitable bandwidth values when dealing with linear networks.

Few methods are available to set these values. We used Scott’s rule (Rakshit et al., 2019)

to determine the smoothing bandwidth by computing the function bw.scott from the pack-

age spatstat. Then, the estimation is computed with the function densityQuick from

spatstat, it returns an object of class linim which represents a pixel image on the linear

network.

Fig 4.9: Kernel estimate of intensity for the road crashes of the city of Besançon on road
network.

Command-lines above produced the Fig 4.9. The expected number of road crashes per

unit length of road network is higher in the centre and in the bottom left of the city of
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Besançon. We propose now to compute the density estimation again in order to better

visualize the situation in Besançon city centre. The creation of a SpatialPolygons object,

focused on the city centre of Besançon, is as follows:

> x <- c(928000, 928000, 929500, 929500, 928000)

> y <- c(6687000, 6685500, 6685500, 6687000, 6687000)

> centre_sp <- cbind(x, y)

> centre_sp <- Polygon(centre_sp)

> centre_sp <- Polygons(list(centre_sp), 1)

> centre_sp <- SpatialPolygons(list(centre_sp))

> centre_sp@proj4string <- CRS("+init=epsg:2154")

> centre_sp <- spTransform(centre_sp , CRSobj=CRS("+init=epsg:4326"))

> centre_sf <- st_as_sf(centre_sp)

> centre_sf %>%

+ leaflet () %>%

+ addProviderTiles("Esri.WorldImagery") %>%

+ addPolygons(color = "red")

First, the coordinates of the polygon vertices are set in x and y in order to form

a SpatialPolygons object centre sp with the functions Polygon and Polygons from

spatstat. The coordinates are given in Lambert93, hence the CRS 2154 is specified in

the attribute proj4string of centre sp. In order to visualize with leaflet, the CRS is

transformed to WGS84 and a sf object from centre sp is created. Command-lines above

produced Fig 4.10. The polygon centre sp sets the limits of the city centre of Besançon,

called la Boucle by the inhabitants, which means ”the loop” due to its shape.

Fig 4.10: Polygon boundaries focused on Besançon centre.
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Now that a new smaller study window has been chosen, the next step is to intersect the

point pattern of Besançon road crashes and the road network both with the new window,

and then follow each step of the kernel estimation similarly as above. This is done as follows:

# Intersections

> centre_sf <- st_transform(centre_sf , crs = 2154)

> r_centre_sf <- st_intersection(road_sf , centre_sf)

> b_centre_sf <- st_intersection(bes_sf , centre_sf)

# Creation of linnet , ppp and lpp objects

> centre_sp <- spTransform(centre_sp , CRSobj=CRS("+init=epsg:2154"))

> r_centre_sp <- as(r_centre , ’Spatial ’)

> r_centre_linnet <- as.linnet.SpatialLines(r_centre_sp)

> centre_owin <- as.owin(centre_sp)

> b_centre_ppp <- as.ppp(st_coordinates(b_centre_sf), centre_owin)

> b_centre_lpp <- lpp(b_centre_ppp , r_centre_linnet)

# Kernel estimation

> density_centre <- densityQuick.lpp(b_centre_lpp ,

+ sigma = bw.scott(b_centre_lpp))

> plot(density_centre , main = "")

Command-lines above produced the Fig 4.11.

Fig 4.11: Kernel estimate of intensity for the road crashes of Besançon city centre.

It is of interest to overlay this intensity estimation on the map of Besançon city centre.

To do so, the linim object density centre has to be transformed into a sf object. This is

done as follows:

> d_centre_ras <- raster(as.matrix(density_centre))
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> extent(d_centre_ras) <- extent(centre_sp)

> d_centre_sp <- rasterToPolygons(d_centre_ras)

> d_centre_sp@proj4string <- CRS("+init=epsg:2154")

> d_centre_sp <- spTransform(d_centre_sp ,

+ CRSobj=CRS("+init=epsg:4326"))

> d_centre_sf <- st_as_sf(d_centre_sp)

> pal <- colorNumeric(palette = "Blues", domain = d_centre_sf$layer)

> d_centre_sf %>%

+ leaflet () %>%

+ addProviderTiles("Esri.WorldImagery") %>%

+ addPolygons(fillOpacity = 0.5, weight = 0.5, color = ~pal(layer))

The steps from a linim object to a sf proposed here is the transitions to RasterLayer ob-

jects, as seen in Section 3.5.2, and SpatialPolygonsDataFrame. The sf object d centre sf

is composed of polygons that were pixels of density centre. Finally, we set the colors to

the color palette Blues for the sake of clarity on the map. Command-lines above produced

Fig 4.12. The expected number of road crashes per unit length of road network is higher in

the top right, above the river Doubs, where stand two bridges called Pont de la République

and Pont Robert Schwint that are busy places. Note that since February the 14th of 2022,

this bridge is closed to all motorised vehicles (Eme-Ziri, 2022).

Fig 4.12: Kernel estimate of intensity for the road crashes of Besançon city centre. With
package leaflet.
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4.3.2 Kriging

The purpose of this chapter is to perform space and time analyses of the road crashes

point pattern of the city of Besançon. The goal of such a study is to obtain relevant temporal

information that is related to road crashes. An important related factor in this case is the

traffic density. For example Tang et al. (2020) used the average traffic volume per lane as

a covariate in their supervised method named TrAdaBoost.R2, Ma et al. (2015) also used

the traffic volume as covariate in order to fit a long short term memory neural network

for road accident analysis and Park et al. (2018) used the traffic congestion in a gradient

boosted decision trees model to analyse road crashes data. During this thesis, we tried to get

such information. Thanks to the Direction Départementale des Territoires (DDT) of Doubs

department and the Grand Besançon Metropole (CAGB), under confidentiality agreements,

traffic density data has been made available. The mobility and transportation ministries set

meters that record the number of vehicles crossing at fixed locations in Besançon during one

week of the year. Data recorded during this week are considered to be constant over the

year and are then used in order to get information about the annual average daily traffic for

example.

However, the traffic density is available only at some locations in the city of Besançon

and represent a sparse sample data. Hence, it would be difficult to use this information

into a spatio-temporal analysis. However, this information still remains important in the

road accident framework. The space and time framework analysis proposed in this chapter

is inspired from case-control studies in order to identify the critical zones of Besançon into

space and time. The statistical modelling that will be fitted further will enable to estimate

the probability of controls being a case. This last state suppose that a control can potentially

be considered as a case. Hence, the traffic density will be used for the simulation of the group

of controls as it is a relevant information for road accidents.

First, the traffic density data are loaded as follows:

> traffic <- read_delim("DATA/traffic.csv",

+ delim = ";", escape_double = FALSE , trim_ws = TRUE)

> head(traffic)

latitude longitude year tmja

------------------------------------

47.22063 5.97827 2017 12509

47.26064 6.04771 2017 13276

47.24841 6.02992 2017 9506

47.25085 6.03414 2017 12696

47.25648 6.02068 2017 24217

47.26336 6.04335 2017 20236

The column containing the traffic density is tmja which stands for traffic journalier moyen

annuel which means the annual average daily traffic. The traffic density data have been

collected during 2017 and 2019 in the city of Besançon.

As traffic density data are sparse, the idea is to extrapolate beyond the observed locations



164 SPATIO-TEMPORAL ANALYSIS PRE-PROCESSING

and to predict the traffic density on a given zone (that will be set further). Such method is

part of the field of geostatistics. Geostatistics consist in making maps of the quantities of

interest, such as the traffic density values, for a larger area than the finite numbers of locations

where it has been recorded. That means, predictions in places where we do not have available

data. The geostatistical method of prediction is known as kriging. It is assumed that the

sparse sample data are realizations of an underlying stochastic process. Let t(ui) denotes the

traffic values at observation points ui, i = 1, . . . , n. The process T = {T (u) : u ∈ D ⊂ R2}
that generated these values can be decomposed as

T (ui) = m(ui) + Y (ui) + ε(ui), i = 1, . . . , n, (4.5)

where Y is a zero mean Gaussian process and ε ∼ N (0, σ2
ε ). The component m(ui) can be

specified by a regression term as
p∑
j=1

zj(ui)βj ,

where zj(ui) is the measure of the jth covariate at ui and βj the associated effect. This case

in geostatistics is referred as universal kriging. The goal is to kriging our traffic density data.

A related information is the air pollution (Dekoninck and Severijnen, 2022). In the case of

our geostatistical model includes this covariate, we would need to know the values of air

pollution at each of the prediction locations in order to be able to predict the traffic density.

The air quality index, for the city of Besançon, is provided by the organization ATMO

Bourgogne-Franche-Comté. However, such data are recorded at only two fixed locations.

Hence, this relevant information related to the traffic density can not be used. On the other

hand, exploratory correlation analyses have been made in order to find if traffic density data

are correlated (in some sense) to another continuous information such as the population for

example, for which we do have the data at all the locations. However these analyses did not

give significant results.

As no covariates are available, the component m(·) can be specified simply as m, which

is a special case of universal kriging where the p-vector of covariates is z(·) = 1 with p = 1

and β = m ∈ R unknown. This specification is known as ordinary kriging.

The Gaussian process Y in Eq 4.5 is usually assumed to be a second order stationary

Gaussian process, which means that ∀u, h ∈ D ⊂ R2 :

E[Y (u)] = 0

Cov(Y (u), Y (u+ h)) = CY (h)

Cov(Y (u), Y (u+ 0)) = CY (0) = Var(Y (u)) = σ2
Y ≥ 0,

(4.6)

and intrinsic which means that ∀u, h ∈ D :

E[Y (u+ h)− Y (u)] = 0

Var(Y (u+ h)− Y (u)) = 2γY (h).
(4.7)
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The function γY (·) is called the semivariogram. Developing the second state in Eq 4.7 gives

γY (h) = CY (0) − CY (h). The semivariogram γY (·) is unknown is estimated based on data

t(u1), . . . , t(un). The processes T (·) and Y (·) are related through the relation given in Eq

4.5. The following expressions are straightforward (Cressie, 1993, Chapter 3), h ∈ R2 :

γT (h) = γY (h) + σ2
ε I{h6=0}

CT (h) = CY (h) + σ2
ε I{h=0}.

where γT (h) and CT (h) denote respectively the semivariogram and the covariance function

of the process T . An appropriate estimation of γY (·) is the empirical semivariogram (Cressie,

1993, Chapter 3) given by

γ∗T (h) =
1

2n(h)

n(h)∑
i=1

[t(ui + h)− t(ui)]2,

where t(ui + h) and t(ui) are observed values of T at locations ui and ui + h and n(h) is the

number of paired comparisons at lag h.

A wide range of theoretical models for semivariogram and corresponding covariance func-

tions have been proposed (Cressie, 1993, Chapter 2). The model that will be fitted further

is the Gaussian semivariogram model given by

γT (h) =

{
σ2
ε + σ2

Y [1− exp(−h
φ)2] h > 0

0 otherwise.
(4.8)

The shape of semivariogram models, such as the one given above, is specified basically by

three parameters σ2
ε , σ

2
ε + σ2

Y and φ respectively called the nugget, the sill, and the range.

The value obtained by subtracting the nugget from the sill is called the partial sill.

The semivariogram is the cornerstone of kriging. Indeed, we predict T at any new points

u0 by

T̂ (u0) =
n∑
i=1

ωit(ui),

where the weights ωi are made to sum to 1,
∑n

i=1 ωi = 1, and depend on the semivariogram

γT . For more details see (Cressie, 1993, Chapter 3).

Remind that the framework proposed here is to adapt the case-control study to our

situation. As the group of controls is missing, we proposed to generate it based on the road

network and the traffic density data. The latter data, as they are sparse, will be predicted

using kriging. The aim of the case-control study that will be fitted further in Section 4.4

is to perform a space and time analysis. For each timed case, one (or more) control has to

be set on the same date(in order to eliminate confounders at the design stage). Hence, we

propose to do kriging for traffic density values per year. The steps are as follows : plot the

empirical semivariogram ; fit the Gaussian semivariogram model ; kriging.

The year 2017 will be taken as example for R command-lines in the following. The first

step is to transform traffic data into a SpatialPolygonsDataFrame as follows:
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> traffic_2017 <- traffic %>%

+ filter(year == 2017) %>%

+ dplyr :: select(-year)

> traffic_2017_sp <- traffic_2017

> coordinates(traffic_2017_sp) = ~ longitude + latitude

> proj4string(traffic_2017_sp) <- CRS("+init=epsg:4326")

> traffic_2017_sp <- spTransform(traffic_2017_sp ,

+ CRS("+init=epsg:2154"))

Then the empirical semivariogram is obtained as follows:

> traffic_2017_sp@data <- traffic_2017_sp@data %>%

+ mutate(tmja = sqrt(tmja))

> spplot(traffic_2017_sp , "tmja")

> vg_2017 <- variogram(tmja~1, data = traffic_2017_sp)

> plot(vg_2010, pch = 4, cex = 0.5)

First, the data are transformed in order to estimate easier the semivariogram further. The

squared root function sqrt is the function chosen to be applied as it as shown good results

during our preliminary tests of the method. The locations of the data, as well as the specific

attribute tmja are plotted using the function spplot from sp. The range of squared root

values are between 23 and 202 as shown in Fig 4.13. Then, the empirical semivariogram is

obtained with the function variogram from the package gstat. The result is plotted in Fig

4.14.

Fig 4.13: Squared root of traffic density values of 2017.

The next step is now to fit a theoretical semivariogram model. A wide range of models

have been proposed. In practice, several models are fitted and visualized using the empirical
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Fig 4.14: Empirical semivariogram of traffic density values of 2017.

semivariogram. The one that seems to fit suitably our data is the Gaussian semivariogram

model given in Eq 4.8. This can be computed as follows:

> vgfit_2017 <- fit.variogram(vg_2017, model = vgm(model = "Gau",

+ psill = 1750,

+ range = 1000,

+ nugget = 750))

> plot(vg_2017, vgfit_2017, pch = 4, cex = 0.5)

The function fit.variogram from gstat is used with specified attributes psill, range and

nugget that respectively correspond to the partial sill, the range and the nugget parameters

of semivariogram models. The result is given in Fig 4.15. The reader may find also the fit

of a Gaussian semivariogram model for traffic density data of 2019 in Appendix C.

The final step now is to do the kriging. Before fitting this method, an output grid has to

be set onto which the traffic density values will be predicted. The construction of a regular

grid covering the observation window owin bes sf is as follows:

> extent(owin_bes_sf)

> x <- seq(921034, 934434, by = 100)

> y <- seq(6682133, 6695533, by = 100)

> pred_grid <- expand.grid(x, y)

> pred_grid <- SpatialPixels(SpatialPoints(pred_grid))

> proj4string(pred_grid) <- CRS("+init=epsg:2154")

class : Extent

xmin : 922525.6

xmax : 932943.1

ymin : 6682110
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Fig 4.15: Fit of Gaussian semivariogram model (solid line) and empirical semivariogram
(crosses) of traffic density data of 2017.

ymax : 6695556

Given the extent of the window owin bes sf and the wish to predict the traffic density per

cell of 100× 100 meters, the extent of the grid are set as from 921 034 to 934 434 and from

6 682 133 to 6 695 533, respectively longitude and latitude values.

Then, the grid is created using the functions expand.grid, SpatialPoints and

SpatialPixels that respectively creates a data frame from all combinations of the vectors

x and y, creates objects of class SpatialPoints and defined a spatial grid from the points

as a SpatialPixels object which has a GridTopology object in its list of attributes.

The class SpatialPixels is a class for defining a pixels, forming a possibly incomplete

rectangular grid of arbitrary dimension. On the other hand, the class GridTopology is a

class for defining a rectangular grid of arbitrary dimension. Both are classes of the package

sp. The overlay of the window owin bes sf on the grid pred grid is computed as follows:

> pred_grid_sf <- st_as_sf(pred_grid)

> st_crs(pred_grid_sf) <- st_crs(owin_bes_sf)

> ggplot () +

+ geom_sf(data = predictgrid_sf, color =’black ’, size = 0.05) +

+ geom_sf(data = owin_bes_sf, color = ’red’, fill = NA) +

+ coord_sf(xlim = c(915000, 940000),

+ ylim = c(6680000, 6697000),

+ crs = st_crs(2154), datum = proj_plot) +

+ theme_bw() +

+ theme(panel.grid.major = element_line(colour = "black", linetype =

"dashed", size = 0.1),
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+ panel.grid.minor = element_line(colour = "black", linetype = "

dashed", size = 0.1)) +

+ xlab("Longitude") +

+ ylab("Latitude")

Fig 4.16: Overlay of the study window of the city of Besançon on the kriging grid.

Command-lines above produced Fig 4.16. As the grid pred grid onto which the traffic

density values will be predicted has been created, we are now in position to perform the

kriging. This is done as follows:

> k_2017 <- krige(tmja~1,

+ traffic_2017_sp,

+ pred_grid ,

+ model = vgfit_2017)

> k_2017@data$var1.pred <- k_2017@data$var1.pred^2

> spplot(k_2017, "var1.pred")

[using ordinary kriging]

The kriging is performed with the function krige from gstat. The object k 2017 is of

class SpatialPixelsDataFrame and contains the predicted values in the column var1.pred

that can be plotted using spplot. Command-lines above produced Fig 4.17. Note that as

the values have been transformed earlier, they have to be transformed onto squared scale in

order to go back to the original values.

Fig 4.17 shows higher traffic density values in the bottom left that corresponds to the

bottom left of the study window. On the other hand, the lowest values of predicted density

traffic data are located in the middle and the top of the study window. The object k 2019

that corresponds to the predicted values for the year 2019 has been obtained with the same
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Fig 4.17: Predicted values of traffic density of 2017 for cells of pred grid.

command-lines used for the year 2017. The plot of the predicted values for the year 2019 is

given in Fig 4.18. As for 2017, Fig 4.18 shows higher values in the bottom left.

Fig 4.18: Predicted values of traffic density of 2019 for cells of pred grid.

Traffic density data are considered to be almost unchanged from year to year. Hence, we

propose to create an object k 2018 that corresponds to the traffic density values over the

grid pred grid by averaging k 2017 and k 2019. Traffic density values for the year 2018 are
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plotted in Fig 4.19.

Fig 4.19: Traffic density values of 2018 for cells of pred grid.

4.3.3 Simulation of the group of controls

The Section 4.3.1 introduced the notion of linear networks and gave also first preliminary

spatial non-parametric analyses of the intensity of the point process that generated the road

crash point pattern on the road network in the city of Besançon. The purpose was to show

various manipulations on the software R that were available to handle the road network.

Next, the Section 4.3.2 introduced the notion of kriging and gave the results of this method

that allowed to extrapolate traffic density data over a grid that overlays the study window.

We propose now to combine these analyses by simulating point patterns on the road network

according to traffic density data.

The traffic density values have been extrapolated for each cell of the grid pred grid for

each year 2017, 2018 and 2019. The group of controls can be then simulated. To do so, we

suggest to generate independent realizations of a Poisson point process on a linear network

according to a given intensity. More particularly, a point pattern is produced on the road

network based on traffic density data. This is computed as follows:

> k_2017_im <- k_2017

> k_2017_im@data <- k_2017_im@data %>%

+ dplyr :: select(var1.pred)

> k_2017_im <- as(k_2017_im , ’SpatialGridDataFrame ’)

> k_2017_im <- as(k_2017_im , ’im’)

> road_psp <- as.psp(road_sp)
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> controls_2017<- rpoisppOnLines(t_2017_im , road_psp)

> controls_2017

Planar point pattern: 1237 points

window: rectangle = [922571.8, 932940.5] x [6682230, 6695093] units

First, a pixel image k 2017 im of class im is created from the SpatialPixelsDataFrame

object k 2017. Then, an object road psp of class psp is created from road sp with as.psp

from spatstat. An object of this class represents a line segment pattern in the two-

dimensional plane. The creation of these objects was necessary in the following. Finally, a

point pattern on the linear network according to traffic density value is simulated using the

function rpoisppOnLines from spatstat. This function computes realizations of Poisson

point processes from which the intensity is specified in the first argument. The point pattern

controls 2017 on the network road psp produced is a realization of a Poisson process with

intensity k 2017 im and is composed of 1 237 points. Note that the range of number of

points is related to the intensity given.

Many implementation methods are available in order to simulate a point pattern on a

network according to preliminary information. For example, the function rpoislpp from

spatstat produces also a realization of a Poisson process with a specified intensity on a

given linear network. Actually, this function is very similar to the previous one except that

the linear network can be specified as an object of class linnet. On the other hand, we

can also compute the intersection between the pixel image k 2017 im and the road network

road sf and simply generate a point pattern with the function rpoispp seen in Section 3.2.1.

The intersection of the pixel image and the network can be computed, in another way than

using st intersection from sf, as follows:

> extract_2017 <- t_2017_im[road_linnet , drop = FALSE]

> plot(extract_2017, main = "")

The subset between the pixel image t 2017 im and the linear network road linnet is

plotted in Fig 4.20. The function [ , ] from spatstat is named extract.im. The argu-

ment drop = FALSE specifies simply that the values outside the subset (here road linnet)

are assigned to NA values.

Point patterns on the road network for the years 2018 and 2019 have been created

using the same command-lines for the creation of controls 2017, named respectively

controls 2018 and controls 2019. They are composed respectively of 727 and 928

points. The three point patterns produced are plotted in Fig 4.21. Points seem to be more

abundant in the bottom left than on the top of the study window, as expected.

Ratio of cases and controls We focus on the ratio of matching case and controls. Indeed,

how many controls do we have to include in the analysis ? According to Setia (2016), the

most optimum case-control ratio is one for one, denoted as 1:1. However in many situations,

the number of cases can be poor. Hence, the number of controls can be increased in order

to increase the statistical power of the analysis (as the number of cases is limited). If data

are available at no extra cost, the number of controls for each case is not limited. However
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Fig 4.20: Plot of the intersection between the pixel image of traffic density values of 2017
and the road network.

Fig 4.21: Point patterns simulated on the road network of Besançon according to traffic
density values. Left to right: year 2017, 2018 and 2019.

in the cases where it is expensive to collect data, the optimal ratio is four controls per case,

1:4. Our situation is a specific case of figure as the controls are simulated. Hence, the only

cost here is the computation time. We will not conclude on saying that the total number of

cases, that is the total number of road crashes (296), is low or high. Hence we propose to

set two different datasets where the matching ratio is 1:1 and 1:4.

The dataset design is as follows : each case would have one (or four) control that is

sharing the same date, with values of the same covariates and a column flags that is the

label of the observation (1 for a case and 0 for a control). The first step is to assign the same

dates as the cases to the controls. The creation of the dataset where the matching ratio is

1:1 is taken as an example for the software command-lines. For the year 2017, the process

of matching the dates and the controls are computed as follows:
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> dates_2017 <- bes_sf %>%

+ filter(year(date) == 2017) %>%

+ dplyr :: select(date) %>%

+ st_drop_geometry ()

> nrow(dates_2017)

> controls_2017_sf <- st_as_sf(controls_2017) %>%

+ filter(label == "point") %>%

+ dplyr :: select(geom)

> s <- sample(nrow(controls_2017_sf), nrow(dates_2017))

> c_1_2017_sf <- controls_2017_sf[s, ]

> c_1_2017_sf <- bind_cols(dates_2017, c_1_2017_sf)

> c_1_2017_sf <- st_as_sf(c_1_2017_sf)

> colnames(c_1_2017_sf) <- c("date", "geom")

[1] 87

First, the dates of the year 2017 from the cases are extracted and stored in dates 2017.

Then, for the sake of simplicity, the ppp object controls 2017 is transformed into a sf

object controls 2017 sf. This transformation implies the creation of a column label that

describes the type of row, that is if it is a point or the window. Hence, we select only the

points and then keep only the column that contains the geometries. Then, a number of points

c 1 2017 sf of the object controls 2017 sf is randomly selected, equal to the number of

dates of the year 2017 which is 87. Finally, the match is simply computed by merging the

two objects c 1 2017 sf and dates with bind cols from the package dplyr. Note that the

use of this function was necessary as it is an efficient tool for binding many data frames (of

any type) into one, contrary to the function cbind that makes a dispatch between dataframe

and sf objects. Note also that the call of the function st as sf is required after the use of

bind cols.

The same command-lines have been computed for the years 2018 and 2019. The objects

c 1 2018 sf and c 1 2019 sf, then created, are composed respectively of 118 and 91 controls.

The three objects c 1 2017 sf, c 1 2018 sf and c 1 2019 sf are simply merged into one

object c 1 sf.

The same whole process has been adopted for the creation of the object c 4 sf, that is

similar to c 1 sf, where the matching ratio is 1:4.

4.4 Generalized Additive Model: fits and results

The space and time analysis framework proposed is to adapt our situation as a case-

control study. To do so, the previous sections introduced the notion of a linear network that

has been used later in order to simulate a group of controls on the road network and kriging

that consisted in extrapolating the traffic density values on a grid that overlaps the study

window of the city of Besançon that helped to simulate the group of controls according to the

traffic density. As all the necessary elements for a spatio-temporal modelling are available,
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we are now in position to drive this space and time case-control analysis. The final goal

is to predict the probability for a point location on the road network to be a case based

on environment characteristics. More particularly, the idea is to map the riskiest zones of

Besançon into space and time. We suggest to introduce the environment characteristics as

linear predictors and spatio-temporal components in a nonlinear way into the semiparametric

statistical method, known as Generalized Additive Models, initially introduced by Hastie and

Tibshirani (1986). This class of model is common used in the field of spatial statistics in

order to fit space and/or time analyses. For instance, Wood (2017, Chapter 7) gives many

data and fit examples such as spatio-temporal analyses of fish eggs, Feng (2022) fitted a

spatio-temporal GAM on COVID-19 data and Wang and Brown (2012) also used a space

and time GAM to model criminal incidents.

Let F ∈ {0, 1} be the binary response variable that labels the point locations as 1

= ”case” and 0 = ”control”. In our case, the model takes the following form for F ∼
binomial(1, µi)

logit(µi) = Z>i β + f(xi, yi, ti), i = 1, . . . , n, (4.9)

where logit(a) = ln(a/(1 − a)), t ∈]0, 1[, is the logistic link function, Zi is the vector of

environment covariate values for the ith observation (more details in the next section) with

associated effect β and f is a nonparametric smooth function of xi, yi and ti that are

respectively the longitude, latitude and temporal coordinate of the ith observation. The

function f is approximated into a multivariate basis function such as tensor product spline

basis (Wood, 2017, Chapter 5). Model parameters are estimated using a penalised maximum

likelihood approach.

4.4.1 Fits and results

As previously, the manipulations of the dataset of matching ratio 1:1 is taken as an

example for the software command-lines that will be used for fitting GAMs. First, the

controls are merged to the cases as follows :

> c_1_sf <- c_1_sf %>%

+ mutate(flags = 0)

> bes_sf <- bes_sf %>%

+ mutate(flags = 1)

> bes_c_1_sf <- rbind(bes_sf , c_1_sf)

Note that a label has been created in order to specify which observation is a control or a

case before merging the objects. The column flags labels the control observations as 0 and

the cases observations as 1.

Then, we propose to incorporate information into the analysis through covariates.

Environment characteristics Remind that the goal of the analysis is to perform a spatio-

temporal analysis as a case-control study. In order to determine if one exposure (or more) are

associated to the outcome which is the accident occurrence, additional information through

covariates will be incorporated. The covariates used are the same as the ones used in Chapter
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2 and Chapter 3, that are prop18, prop65, health, school, college, shop, station, gasoline,

leisure, intersection, radars, municipal length and national length. Data collected for the

following work were reported between 2017 and 2020. This information has been considered

unchanged over the years in order to associate them to road crashes that occurred between

2017 and 2019.

This information will be associated this time to a point, instead of a polygon as seen in

Chapter 2 and Chapter 3. The covariate values are disposed on a grid, named grid bes sf,

that is the same as the one used for kriging in Section 4.3.2. Note that the choice of this grid

of cells 100 × 100 meters was motivated by having the information at a finer scale than in

the previous chapters 2 and 3 (given at cells of 650× 650 meters). However, this finer scale

implies the use of different interpolation methods as the ones used in Chapter 2. The reader

may find the interpolation details used to create the object grid bes sf in Section 4.6.

The covariate values of the grid grid bes sf can be associate to the controls and the

cases as follows:

> st_crs(bes_c_1_sf) <- st_crs(grid_bes_sf)

> bes_c_1_sf <- st_intersection(bes_c_1_sf , grid_bes_sf)

The association of the grid with the covariates values and the object bes c 1 sf has been

computed using simply the function st intersection as the intersection between polygons

and points are points. It is a easier way to process for the merger wished.

The final step before fitting the GAMs is the one as follows:

> bes_c_1 <- cbind(bes_c_1_sf , st_coordinates(bes_c_1_sf)) %>%

+ st_drop_geometry ()

The need of separate columns that contain the longitude and the latitude of the points

implied the use of the function st coordinates. The longitude and the latitude are now

part of bes c 1 in columns respectively automatically named X and Y. Then, the geometries

have been dropped out in order to have simply a dataframe object. The total number of

observation in this dataset is equal to 592.

The same whole process has been adopted for the creation of the dataframe bes c 4,

that is similar to bes c 1, where the matching ratio is 1:4. The total number of observation

in this dataset is equal to 1 480.

Generalized additive model fits We now discuss potential models. The date will not be

given in its simple form. In order to introduce temporal components in the following GAMs,

the creation of temporal covariates is needed. We proposed to incorporate the time given at

different scales such as trimester, month and day of week. The command-lines which give the

creation of the corresponding columns in the datasets, named respectively quarter, month

and day, are not shown.

The dataset bes c 1 and the temporal covariate quarter will be taken as examples for

the command-lines in this section. First, the simplest model of the form given in Eq (4.9)

is as follows

logit(µi) = f(Xi, Yi, quarteri), i = 1, . . . , 592,
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where f is a smoothing function. In practice, a satisfactory approach to approximate the

smooth functions depending on covariates measured on different scales is to use tensor prod-

uct smooth bases. The reader may find more details on the latter notion in Wood (2017,

Chapter 5). In our case the longitude and the latitude are given in meters and the time in

terms of trimester, month or day. Hence, this situation expresses the need to use tensors.

Then, the use of cubic spline is a common choice. The model above is implemented as

follows:

> gam_quarter <- gam(flags ~ -1 + te(X, Y, quarter , bs = ’cr’, k = 4),

+ data = bes_c_1,

+ family = binomial(link = logit))

> summary(gam_quarter)

Family: binomial

Link function: logit

Formula:

flags ~ -1 + te(x, y, quarter , bs = "cr", k = 4)

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

te(x,y,quarter) 23.65 26.66 63.18 8.13e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.116 Deviance explained = 11.8%

UBRE = 0.30282 Scale est. = 1 n = 592

The GAM is fitted using gam from the package mgcv. Then, the smooth term used is te()

with attributes bs = ’cr’ and k = 4 which corresponds respectively to the tensor product,

cubic spline and the number of knots (hyperparameter for splines).

The spatio-temporal term is significant with a p-value equal to 8.13e-05.

We propose now to fit a similar model as above but with including the covariate na-

tional length:

logit(µi) = national lengthiβ + f(Xi, Yi, quarteri), i = 1, . . . , 592,

where β is the associated effect of the covariate national length. This covariate was considered

as an important risk factor in Chapter 3. This model is computed as follows:

> gam_quarter_nat <- gam(flags ~ national_length +

+ te(X, Y, quarter , bs = ’cr’, k = 4),

+ data = bes_c_1,

+ family = binomial(link = logit))

> summary(gam_quarter_nat)

Family: binomial

Link function: logit
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Formula:

flags ~ te(X, Y, quarter , bs = "cr", k = 4)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2521 0.1051 -2.399 0.016461 *

national_length 1.9022 0.5424 3.507 0.000453 ***

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

te(x,y,quarter) 24.03 27.32 68.79 2.14e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.134 Deviance explained = 13.7%

UBRE = 0.28451 Scale est. = 1 n = 592

The covariate national length and the spatio-temporal term are both significant. The

exponential of the estimate of national length is equal to 6.70 which means that the increase

of length of national roads increases the probability of being a case. In other global words,

the environment covariate national length is a risky factor.

Several models have been fitted, with each temporal component and each environment

covariate, both on the datasets bes c 1 and bes c 4. The results are respectively summarized

in Tab C.1 and Tab C.2 in Appendix C. Globally for models on data bes c 1, the significant

covariates are shop, intersection and national lenght. The spatio-temporal components that

are always significant are the ones with the temporal covariates quarter and day. Then

for models on data bes c 4, the significant covariates are shop, gasoline, intersection and

national lenght. All the spatio-temporal components, with the temporal covariates quarter,

month and day, are almost always significant. The model forms proposed in this chapter

are set in order to make assumptions, more research is needed to implement more rigorous

models implying covariate selection, spline hyperparameter tuning and is planned to be

treated later.

Riskiest zones of Besançon into space and time For now, it is interesting to map the

estimated probability at each location of being a case, according to the temporal component.

With the fitted model gam quarter nat, this can be computed as follows :

> plot(owin_bes_sf)

> vis.gam(gam_quarter_nat , view = c("X", "Y"),

+ plot.type = "contour", type = "response",

+ cond = list(quarter = 1), color = "terrain",

+ too.far = 0.08, add = TRUE)

> plot(owin_bes_sf , add = TRUE)

The function vis.gam from the package mgcv enables to produce perspective or contour plot

views of gam objects. The attribute view has to contain the names of the two main effect
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terms to be displayed on the x and y dimensions of the plot. Then, the attribute view is a

list of the values to use for the other predictor terms. Note that the column quarter has

been labelled differently as seen previously in Section 4.2 and is of type double with values

1, 2, 3 and 4. Here the value equal to 1 of the covariate quarter has been taken as an

example. Command-lines above produced Fig 4.22.

Fig 4.22: Plot of estimated probabilities of being a case from the fit gam quarter nat at
level 1 of quarter. Green to red: probability values from 0 to 1.

The plots for the remaining values 2, 3 and 4 of the covariate quarter have been produced

using similar command-lines as above. The corresponding plots are given in Fig 4.23. The

comparison of the estimated probabilities according to each level of quarter is slightly

varying. The probability of being a case is higher in the middle of the study window as well

as in the bottom left, for each trimester. The middle of the study window corresponds to a

circle of centre approximatively equal to the train station Gare Viotte of the city of Besançon.

Then the bottom left of the study window corresponds globally to the departmental road

D673. Remind that in Chapter 3, the riskiest cell of the urban community of Besançon

(CAGB) was a cross between roads N57 and D673. The zone of this cell is clearly included

in the bottom left of the study window here.

4.5 Summary of the space and times analyses of the Besançon
road crashes and discussions

Summary results In order to conduct a space and time analysis of the Besançon road

crashes, the chosen statistical method was inspired from case-control studies. As only the

group of cases (occurred accidents) was available, the group of controls had to be simulated.

To do so, two big steps have been set: the manipulation of the road network; the traffic
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Fig 4.23: Plot of estimated probabilities of being a case from the fit gam quarter nat. Left
to right: levels 2, 3 and 4 of quarter. Green to red: probability values from 0 to 1.

density kriging. Firstly, the part focused on the road network enabled to handle the road

network on the software. On the other hand, the study also gave the road segments that

were the riskiest using a kernel estimation of the intensity of the point process that generated

the road crashes point pattern of Besançon. More specifically a strong hypothesis on road

segments near the bridges Pont de la République and Pont Robert Schwint to be risky has

been made. Secondly, the traffic density data have been predicted on a given grid using

kriging. The data have been produced in order to be considered as the intensity of a point

process that generated point patterns on the road network. These point patterns constituted

the group of controls for our case-control study. Finally, space and time analyses have been

fitted using semiparametrics models, based on Generalized Additive Model (GAM). Maps

of probabilities being a case have been produced and enable to conclude that the riskiest

zones of the city of Besançon are a circle centred on the train station Gare Viotte and the

departmental road D673.

Discussions This chapter gives only preliminary analyses and allows to make assumptions

on potential spatio-temporal dependences or eventual future investigations. It could be in-

teresting to model the road crashes point pattern on the road network using point processes

(Baddeley et al., 2021a). Then for the spatio-temporal analysis, the focus on the GAM has

to be set. Indeed, the GAMs need to be improved. These models are composed of hyperpa-

rameters that can be tuned and there are several propositions of covariate combinations to

be tested.

4.6 Supplementary material: areal interpolation

This section aims at giving the interpolation methods used in order to form the grid of

covariate values grid bes sf used in Section 4.4.1.

The information through covariates in GAMs is associated this time to a point, instead

of a polygon as seen in previous chapters. The process proposed is as follows: use the same

grid that was used for kriging for the interpolation methods and then make the intersection
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between the cells and the points that will keep the data. Note that the choice of this grid of

cells 100× 100 meters was motivated by having the information at a finer scale than in the

previous chapters (given at cells of 650× 650 meters).

As almost all the steps for the interpolation methods are similar to ones used in Section

2.3.2, only the steps for the interpolation of socio-demographic data will be presented below.

Indeed, remind that in Section 2.3.2 the socio-demographic data were available on a grid

of cells 200 × 200 meters, named as source zones. The target zones, that was a grid of

cells 650× 650 meters, were bigger than the source zones. Hence, the interpolation method

used was simply the point-in-polygon method. However, the target zones now are cells of

100× 100 meters, which are smaller than the source zones. Hence, in order to be as rigorous

as possible, the method point-in-polygon should be avoided (Do et al., 2021) and we used

instead the areal weighting interpolation (DAW).

Remind some notations given in Section 2.3.2. The set of target and source zones are

respectively t1, . . . , tT and s1, . . . , sS . The value of the variable Z (variable of interest to

be interpolated) on the the target zone ti and the source zone sj is denoted respectively as

Zti and Zsj . The intersection zone between zones ti and sj is Iti,sj . The value of Z on the

intersection zone Iti,sj is denoted as Zti,sj . The DAW method is defined as follows

Zti =

S∑
j=1

Zti,sj =

S∑
j=1

|Iti,sj |
|sj |

Zsj

where |Iti,sj | and |sj | denote respectively the area of the intersection zone Iti,sj and the source

zone sj , i = 1, . . . , T , j = 1, ..., S.

In other words, in the case where for example a source zone overlaps two target zones,

the DAW method disaggregates the values of the variable Z to be interpolated between the

two target zones, proportionally to the area of the intersected zones.

First for the sake of clarity, a copy of the object pred grid sf is made, named

grid bes sf, in order to use another named object as their uses have different goals. New

socio-demographic datasets are loaded and named ngrid insee sf. In the date of research

work written in Chapter 2 and Chapter 3, the socio-demographic data dated to 2015 and

have been provided by INSEE in July 2019. The website INSEE made socio-demographic

data available, similar as ones used in previous chapters, dated to 2017 and provided in

March 2022. Hence, we decided to use the up-to-date data in order to be as accurate as

possible.

The data of ngrid insee sf are the same as grid insee sf from Section 2.3.2:

• Ind : the number of individuals ;

• Ind 18 24 : number of individuals between 18 and 24 years old ;

• Ind 65 79 : number of individuals between 65 and 79 years old ;

• Ind 80p : number of individuals more than 80 years old.

> nrow(grid_bes_sf)
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> sum(st_area(grid_bes_sf))

> nrow(ngrid_insee_sf)

> sum(st_area(ngrid_insee_sf))

[1] 18225

182250000 [m^2]

[1] 900

34054543 [m^2]

The grid where the information has to be interpolated is composed of T = 18 225 target

zones that cover an area of 182 250 000 squared meters. A pre-processing of ngrid insee sf

data (command-lines not shown here) consisted in making the intersection between the

INSEE cells and the study window owin bes sf. The sf object ngrid insee sf is composed

of S = 900 sources zones that cover an area of 34 054 543 squared meters.

The interpolation of these four variable values on the grid grid bes sf using the DAW

method is computed as follows:

> grid_bes_sf$id <- seq(1, nrow(grid_bes_sf))

> grid_bes_sf$id <- paste0(’target ’, grid_bes_sf$id)

> ngrid_insee_sf$id <- seq(1, nrow(ngrid_insee_sf))

> ngrid_insee_sf$id <- paste0(’source ’, ngrid_insee_sf$id)

> st_crs(ngrid_insee_sf) <- st_crs(grid_bes_sf)

> grid_bes_sf <- aw_interpolate(grid_bes_sf , tid = id ,

+ source = ngrid_insee_sf, sid = id,

+ weight = "sum", output = "sf",

+ extensive = c("Ind", "Ind_18_24",

+ "Ind_65_79", "Ind_80p"))

The function for applying the DAW method is aw interpolate from the package areal.

This function requires first : a sf object that represents the target zones, the column name

that contains the identification of the target zones, a sf object that represents the source

zones and the column name that contains the identification of the source zones. Hence, the

first four command-lines above consist in the creation of the identifications required. Then,

the target variables are specified in the attribute extensive.

Finally, the proportions of people aged between 18 and 24 years old, and over 65 years

old are computed as follows:

> grid_bes_sf <- grid_bes_sf %>%

+ mutate(prop18 = Ind_18_24/Ind ,

+ prop65 = (Ind_65_79 + Ind_80p)/Ind) %>%

+ dplyr :: select(-Ind , -Ind_18_24, -Ind_65_79, -Ind_80p)

> grid_bes_sf[is.na(grid_bes_sf$prop18), ]$prop18 <- 0

> grid_bes_sf[is.na(grid_bes_sf$prop65), ]$prop65 <- 0

The remaining covariates health, school, college, shop, station, gasoline, leisure, intersec-

tion, radars, municipal length and national length do not suffer from the smaller cell size of

100 × 100 meters and are, hence, interpolated as seen in Section 2.3.2. The final sf object

grid bes sf can be exported as follows:
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> st_write(obj = grid_bes_sf , "DATA/grid_bes_sf.shp", delete_layer =

TRUE)

Note that, as used in Section 3.4, the data values have been normalized using the min-max

normalization.
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Appendix A

Spatial road crashes and related factors

data handling

This appendix corresponds to the supplementary materials of Chapter 2. In the following,

the reader may find plots of each variable values that composed the object grid cagb sf

created in Section 2.3.3. The following plots show the range of prop18, prop65, health, school,

college, station, gasoline, leisure, intersection, radars, municipal length and national length

values respectively given in Fig A.1, Fig A.2, Fig A.3, Fig A.4, Fig A.5, Fig A.6, Fig A.7,

Fig A.8, Fig A.9, Fig A.10, Fig A.11 and Fig A.12. Note that the plot of the values of

shop has been taken in example and has been produced in Fig 2.9.

Fig A.1: Plot of prop18 variable values, between 0 and 0.20, per cells of grid cagb sf.
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Fig A.2: Plot of prop65 variable values, between 0 and 0.70, per cells of grid cagb sf.

Fig A.3: Plot of health variable values, between 0 and 80, per cells of grid cagb sf.
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Fig A.4: Plot of school variable values, between 0 and 7, per cells of grid cagb sf.

Fig A.5: Plot of college variable values, between 0 and 5, per cells of grid cagb sf.
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Fig A.6: Plot of station variable values, between 0 and 3, per cells of grid cagb sf.

Fig A.7: Plot of gasoline variable values, between 0 and 2, per cells of grid cagb sf.
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Fig A.8: Plot of leisure variable values, between 0 and 14, per cells of grid cagb sf.

Fig A.9: Plot of intersection variable values, between 0 and 23, per cells of grid cagb sf.
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Fig A.10: Plot of radars variable values, between 0 and 1, per cells of grid cagb sf.

Fig A.11: Plot of municipal length variable values, between 0 and around 13 812, per cells
of grid cagb sf.
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Fig A.12: Plot of national length variable values, between 0 and around 9 762, per cells of
grid cagb sf.
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Appendix B

Spatial modelling road accidents in the

urban community of Besançon using

log-Gaussian Cox processes

This appendix corresponds to the supplementary materials of Chapter 3. In the following,

the reader may find a table that summarizes the result of the variable selection methods fitted,

variable importance plots for the Poisson models aggregation and Random Forest methods,

trace plots and autocorrelation plots of the parameters of the model LGCP3.

The variable selection methods have been fitted on various training samples : first a

training sample based on the SMOTE method ; second a training sample where the dis-

tribution has been preserved ; finally on the whole dataset. The results are given in Tab

B.1.

The variable importance plot for the Poisson models aggregation where six, eight, ten

and all the covariates have been randomly selected at each iteration is given respectively in

Fig B.1, Fig B.2, Fig B.3 and Fig B.4. Note that the variable importance plot for four

covariates has been taken in example and has been produced in Fig 3.10. Then, the reader

may find the variable importance plot of the Random Forest fitted with eight covariates

randomly selected at each iteration in Fig B.5.

Finally, trace plots and autocorrelation plots for the model LGCP3 are given respectively

in Fig B.6 and Fig B.7.
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Tab B.1: Mean squared error (MSE) and R-squared values of various statistical models
fitted on the road crash data. The statistical models have been fitted with different samples
of the data: on a training set based on the SMOTE method (which corresponds simply to
selection train), on a training set where the observed distribution has been preserved and
finally on the whole dataset (corresponds to no split rule).

Model fitted Number of covariates Split method MSE R-squared
introduced

Poisson regression 13 SMOTE train 1.14 0.70
test 0.42 0.69

Distribution preserved train 0.75 0.50
test 0.41 0.70

No split rule 0.61 0.58

Poisson Regression 7 SMOTE train 1.19 0.68
with AIC test 0.45 0.67

Distribution preserved train 0.75 0.50
test 0.41 0.70

No split rule 0.63 0.56

Poisson regressions 4 SMOTE train 1.39 0.63
aggregation test 0.58 0.57

Distribution preserved train 0.81 0.45
test 0.40 0.70

No split rule 0.71 0.51

6 SMOTE train 1.16 0.69
test 0.46 0.66

Distribution preserved train 0.83 0.44
test 0.44 0.67

No split rule 0.67 0.53

8 SMOTE train 1.09 0.71
test 0.42 0.69

Distribution preserved train 0.94 0.36
test 0.60 0.55

No split rule 0.76 0.57

10 SMOTE train 1.07 0.72
test 0.41 0.70

Distribution preserved train 1.45 0.01
test 0.84 0.37

No split rule 0.83 0.43

13 SMOTE train 1.18 0.69
test 0.42 0.69

Distribution preserved train 2.40 -0.62
test 0.91 0.32

No split rule 1.09 0.25

Random Forest 8 SMOTE train 0.28 0.92
test 0.51 0.62

Distribution preserved train 0.36 0.76
test 0.51 0.62

No split rule 0.31 0.78
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Fig B.1: Variable importance plot for Poisson models aggregation with six covariates ran-
domly included at each iteration.

Fig B.2: Variable importance plot for Poisson models aggregation with eight covariates
randomly included at each iteration.
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Fig B.3: Variable importance plot for Poisson models aggregation with ten covariates ran-
domly included at each iteration.

Fig B.4: Variable importance plot for Poisson models aggregation with all the covariates
(thirteen) randomly included at each iteration.
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Fig B.5: Variable importance plot for the Random Forest model with eight covariates ran-
domly included at each iteration.

Fig B.6: Trace plots for the parameters σ, φ and β from lgcp3.
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Fig B.7: Autocorrelation plots for the parameters φ and β from lgcp3.



Appendix C

Road accident space and time preliminary

analyses of the city of Besançon

This appendix corresponds to the supplementary materials of Chapter 4. In the following,

the reader may find the plot of the semivariogram analysis of traffic density data of the year

2019 and tables that summarize the results of the semiparametric space and time analyses

fitted on the road crash data of the city of Besançon.

The empirical semivariogram and the Gaussian semivariogram fit of traffic density data

of the year 2019 given in Fig C.1.

The results of the space and time semiparametric models fitted on the datasets bes c 1

and bes c 4, that respectively corresponds to the dataset of cases and controls from which

the matching ratio is 1:1 and 1:4, are respextively given in Tab C.1 and C.2.
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Fig C.1: Fit of Gaussian semivariogram model (solid line) and empirical semivariogram
(crosses) of traffic density data of 2019. Arguments of fit.variogram : model = "Gau",
psill = 3200, range = 2200 and nugget = 1000.



201

Tab C.1: Results of GAMs fitted on the dataset bes c 1. The item * means that the p-value
of the nullity coefficient test is less than 0.05.

Environment covariate included Estimate p-value Smoothing term included p-value

te(X, Y, quarter) 1.29e-04 *
te(X, Y, month) 2.48e-06 *
te(X, Y, day) 2.16e-06 *

-0.19 0.92 te(X, Y, quarter) 1.73e-04 *
prop18 -0.68 0.78 te(X, Y, month) 0.07

0.57 0.79 te(X, Y, day) 1.33e-04 *

0.96 0.31 te(X, Y, quarter) 7.16e-04 *
prop65 1.01 0.41 te(X, Y, month) 0.12

1.03 0.33 te(X, Y, day) 2.87e-04 *

1.95 0.24 te(X, Y, quarter) 6.58e-04 *
health 0.69 0.44 te(X, Y, month) 0.03 *

2.35 0.19 te(X, Y, day) 3.12e-04 *

1.95 0.24 te(X, Y, quarter) 6.58e-04 *
school 1.68 0.27 te(X, Y, month) 0.08

2.13 0.17 te(X, Y, day) 1.52e-04 *

-2.25 0.32 te(X, Y, quarter) 1.39e-04 *
college -1.67 0.51 te(X, Y, month) 0.07

-1.01 0.66 te(X, Y, day) 1.24e-04 *

4.75 0.04 * te(X, Y, quarter) 8.58e-04 *
shop 5.37 0.04 * te(X, Y, month) 0.11

5.69 0.02 * te(X, Y, day) 3.64e-04 *

2.95 0.12 te(X, Y, quarter) 1.03e-04 *
station 1.89 0.33 te(X, Y, month) 0.07

2.89 0.14 te(X, Y, day) 1.09e-04 *

0.92 0.20 te(X, Y, quarter) 1.59e-04 *
gasoline 1.45 0.09 te(X, Y, month) 0.06

1.19 0.12 te(X, Y, day) 7.3e-05 *

-1.14 0.37 te(X, Y, quarter) 1.21e-04 *
leisure -1.28 0.37 te(X, Y, month) 0.06

-0.67 0.62 te(X, Y, day) 1.05e-04 *

1.63 3.28e-03 * te(X, Y, quarter) 2.04e-03 *
intersection 1.44 0.02 * te(X, Y, month) 0.13

1.71 3.13e-03 * te(X, Y, day) 6.70e-04 *

0.39 0.74 te(X, Y, quarter) 1.54e-04 *
radars 0.22 0.89 te(X, Y, month) 0.06

0.63 0.62 te(X, Y, day) 1.19e-04 *

-0.11 0.86 te(X, Y, quarter) 1.51e-04 *
municipal length 0.07 0.93 te(X, Y, month) 0.06

-0.06 0.93 te(X, Y, day) 1.24e-04 *

1.90 4.53e-04 * te(X, Y, quarter) 2.14e-05 *
national length 1.32 0.04 * te(X, Y, month) 0.04 *

1.30 0.03 * te(X, Y, day) 6.14e-05 *



202 SPACE AND TIME PRELIMINARY ANALYSES

Tab C.2: Results of GAMs fitted on the dataset bes c 4. The item * means that the p-value
of the nullity coefficient test is less than 0.05.

Environment covariate included Estimate p-value Smoothing term included p-value

te(X, Y, quarter) 1.28e-06 *
te(X, Y, month) 3.19e-03 *
te(X, Y, day) 2.16e-06 *

0.82 0.57 te(X, Y, quarter) 2.92e-06 *
prop18 -0.01 0.99 te(X, Y, month) 0.02 *

0.56 0.73 te(X, Y, day) 4.09e-06 *

-0.49 0.48 te(X, Y, quarter) 3.58e-06 *
prop65 -0.81 0.30 te(X, Y, month) 0.03 *

-0.81 0.28 te(X, Y, day) 3.70e-06 *

1.18 0.16 te(X, Y, quarter) 2.92e-06 *
health 0.69 0.44 te(X, Y, month) 0.03 *

0.65 0.45 te(X, Y, day) 4.69e-06 *

0.12 0.85 te(X, Y, quarter) 1.45e-06 *
school -0.11 0.86 te(X, Y, month) 0.02 *

-0.25 0.70 te(X, Y, day) 2.31e-06 *

0.01 0.99 te(X, Y, quarter) 1.28e-06 *
college -0.17 0.93 te(X, Y, month) 0.02 *

-0.09 0.96 te(X, Y, day) 2.14e-06 *

3.35 0.01 * te(X, Y, quarter) 4.67e-04 *
shop 2.66 0.04 * te(X, Y, month) 0.08

2.48 0.07 te(X, Y, day) 3.47e-05 *

1.75 0.09 te(X, Y, quarter) 1.53e-06 *
station 1.40 0.19 te(X, Y, month) 0.02 *

1.89 0.08 te(X, Y, day) 2.21e-06 *

1.18 0.02 * te(X, Y, quarter) 1.38e-06 *
gasoline 1.12 0.04 * te(X, Y, month) 0.02 *

0.96 0.07 te(X, Y, day) 3.16e-06 *

-1.46 0.19 te(X, Y, quarter) 2.83e-06 *
leisure -1.72 0.13 te(X, Y, month) 0.02 *

-1.74 0.13 te(X, Y, day) 1.70e-06 *

1.73 1.15e-06 * te(X, Y, quarter) 6.77e-05 *
intersection 1.58 1.70e-05 * te(X, Y, month) 0.06

1.57 1.44e-05 * te(X, Y, day) 3.78e-05 *

1.14 0.22 te(X, Y, quarter) 2.19e-06 *
radars 1.49 0.14 te(X, Y, month) 0.02 *

1.29 0.17 te(X, Y, day) 2.76e-06 *

-0.18 0.71 te(X, Y, quarter) 1.29e-06 *
municipal length -0.18 0.72 te(X, Y, month) 0.02 *

-0.22 0.65 te(X, Y, day) 2.01e-06 *

1.93 1.74e-07 * te(X, Y, quarter) <2e-16 *
national length 1.70 2.78e-05 * te(X, Y, month) 4.84e-03 *

1.71 1.73e-05 * te(X, Y, day) 1.16e-06 *
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ONISR, Paris.

Opitz, T., Bonneu, F., and Gabriel, E. (2020). Point-process based bayesian modeling of

space–time structures of forest fire occurrences in mediterranean france. Spatial Statistics,

40:100429.

Papagiotakos, D. B. and Pitsavos, C. (2004). Interpretation of epidemiological data using

multiple correspondence analysis and log-linear models. Journal of Data Science, 2:75–86.

Park, H., Haghani, A., Samuel, S., and Knodler, M. A. (2018). Real-time prediction and

avoidance of secondary crashes under unexpected traffic congestion. Accident Analysis &

Prevention, 112:39–49.



208 BIBLIOGRAPHY

Pebesma, E., Bivand, R., Racine, E., Sumner, M., Cook, I., Keitt, T., Lovelace, R., Wickham,

H., Ooms, J., Müller, K., Lin Pedersen, T., Baston, D., and Dunnington, D. (2022). sf:

Simple Features for R. R package version 1.0-6.

Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V., Hijmans, R., Sumner, M.,

MacQueen, D., Lemon, J., Lindgren, F., O’Brien, J., and O’Rourke, J. (2021). sp: Classes

and Methods for Spatial Data. R package version 1.4-6.

Pebesma, E. and Graeler, B. (2022). gstat: Spatial and Spatio-Temporal Geostatistical Mod-

elling, Prediction and Simulation. R package version 2.0-9.

Prener, C., Revord, C., and Fox, B. (2022). areal: Areal Weighted Interpolation. R package

version 0.1.8.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Rakshit, S., Davies, T., Moradi, M. M., McSwiggan, G., Gopalan, N., Mateu, J., and Bad-

deley, A. (2019). Fast kernel smoothing of point patterns on a large network using two-

dimensional convolution. International Statistical Review, 87(3):531–556.

Ramı́rez, A. F. and Valencia, C. (2021). Spatiotemporal correlation study of traffic acci-

dents with fatalities and injuries in bogota (colombia). Accident Analysis & Prevention,

149:105848.

Rezapour, M. and Ksaibati, K. (2018). Application of multinomial and ordinal logistic re-

gression to model injury severity of truck crashes, using violation and crash data. Springer.

Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society B,

39(2):172–192.
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Résumé. Dans cette thèse, nous nous intéressons à l’analyse statistique des données d’accidents

routiers dans la région Franche-Comté. Plusieurs problématiques sont étudiées selon que l’on adopte

un point de vue rétrospectif (analyse des facteurs de risques des accidents déjà produits) ou prédictif

(position spatiale et période temporelle les plus à risque). Pour se faire, nous avons employé des

méthodes de prédiction plutôt classiques d’apprentissage statistique et des outils de prédiction spa-

tiale et spatio-temporelle. La première partie de la thèse est centrée sur l’analyse statistique de la

gravité des accidents. De nombreux facteurs (tels que la consommation d’alcool et/ou drogues, le

département, le moment de la journée) sont mis en relation avec la gravité de l’accident via des ap-

proches non-supervisées ou supervisées d’apprentissage statistique. La dépendance entre ces éléments

est modélisée par des modèles log-linéaires proposés suite à une analyse préliminaire de correspon-

dances multiples et également par une régression logistique ordinale. Ces deux modélisations perme-

ttent de quantifier l’effet des différents facteurs de risques sur la gravité des accidents. La deuxième

partie de la thèse porte sur la prédiction spatiale ou spatio-temporelle de la survenue d’un acci-

dent. Les données d’accidents sont modélisées par des processus de Cox log-Gaussiens (LGCP) basés

sur les coordonnées géolocalisées des accidents ainsi que sur des covariables socio-démographiques et

d’infra-structures routières afin d’identifier les zones géographiques les plus critiques. Nous proposons

également une méthode de sélection de variables basée sur une aggrégation de modèles de Poisson et

un critère d’importance de variables pour sélectionner les variables les plus importantes à incorporer

dans le modèle LGCP. Le meilleur modèle est utilisé pour déterminer les zones les plus risquées.

Dans un deuxième temps, la composante temporelle est ajoutée à l’étude et une modélisation semi-

paramétrique par modèle additif généralisé est proposée afin d’identifier les zones et périodes critiques.

La modélisation s’inspire des études cas-contrôles épidémiologiques et prend en compte la structure

du réseau routier ainsi que des données spatio-temporelles de trafic.
Mots-clés: analyse des correspondances multiples; interpolation de données surfaciques; krigeage; modèle

généralisé additif; processus de Cox log-Gaussien; régression logistique ordinale; régression log-linéaire; réseau linéaire.

Abstract. In this thesis, we focus on the statistical analysis of road accident data. Several issues

are studied depending on whether the accident has already occurred (retrospective point of view) or

before the accident occurs (predictive point of view). In order to do that, we use classical machine

learning statistical methods and spatial and spatio-temporal prediction models. The first part of the

thesis focuses on the statistical analysis of the accident severity. Many factors such as alcohol and/or

drug consumption, department, time of day are related to accident severity through unsupervised

or supervised statistical learning approaches. The dependence between these factors is modelled by

using first log-linear models based on the associations highlighted by preliminary analyses of multiple

correspondences and next, by ordinal logistic regression. These two types of modelling allow to

quantify the risks associated with the factors analysed in relation to the severity of the accidents.

The second part of the thesis focuses on the accident occurrence. The accident data are modelled

by log-Gaussian Cox processes (LGCP) based on the geolocated coordinates of the accidents as well

as on socio-demographic and road infrastructure covariates in order to identify the most critical

geographical areas. We propose a variable selection method based on an aggregation of Poisson

models and a variable importance criterion to select the most important covariates to be then used

in an LGCP type model. The best model is then used to determine the riskiest areas. Secondly, the

temporal component is introduced in the model and semiparametric generalized additive models are

proposed in order to identify the critical zones and time periods. The modelling is inspired by case-

control studies from epidemiology and takes into account the road network structure and space-time

traffic data.
Keywords: areal interpolation; log-linear models; generalized additive models; kriging; log-Gaussian Cox pro-

cesses, linear networks; multiple correspondence analysis; ordinal logistic regression.
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