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Titre :
Une étude théorique de processus élémentaires dans le plasma interstellaire

Résumé :
Le plasma est le plus abondant des états de la matière — les étoiles, le vent solaire, et le milieu interstellaire sont considérés

comme des plasmas. Des nuages de gaz et de poussière composant ce dernier sont une première étape importante de la formation des
étoiles, qui déterminent la structure et l’évolution des galaxies. Pour comprendre leur genèse, il faut comprendre les interactions chim-
iques qui régissent la dynamique des nuages interstellaires.

Des centaines de molécules ont été détectées dans le milieu interstellaire (ISM) — la matière entre les étoiles — mais seule-
ment huit d’entre elles ont une charge négative. On ne sait toujours pas comment ces molécules sont formées ; un mécanisme proposé
est l’attachement radiatif d’un électron libre à une molécule neutre, ce qui donne une molécule négative stabilisée par une perte
d’énergie via l’émission d’un photon. Des études théoriques précédentes ont trouvé que leurs taux d’attachement électronique radiatif
à CN, C3N, et C5N sont trop faibles pour expliquer la formations de leurs anions respectifs dans l’ISM. L’attachement électronique
via les états liés au moment dipolaire (DBS) surcritique de la molécule neutre ont été proposés par la suite comme mécanisme qui
pourrait améliorer les taux de réaction. Cependant, la section efficace est une fonction du cube de la fréquence du photon émis, qui est
très faible pour un DBS, donc on s’attendrait à que les taux soient eux aussi plus petits. Cette thèse considère la formation de C3N- par
l’attachement électronique via les DBS à C3N utilisant une approche ab initio précise avec des degrés de liberté électroniques et rota-
tionnels. Les fonctions d’onde des DBS ont été calculés et utilisées pour obtenir les sections efficaces d’attachement électronique qui
impliquent des taux de réaction encore plus faibles, ce qui suggère que C3N- est créée par un autre mécanisme dans l’ISM.

La recombinaison dissociative (DR) — le processus par lequel un électron libre rencontre un cation moléculaire et est capturé
dans un état lié temporaire qui mène à la dissociation de la molécule neutre — est un mécanisme de destruction important dans le plas-
ma. Cette étude considère la DR à basse énergie de CF+ et de CH+. La DR de CH+ est difficile à étudier vu que CH+ est une molécule
avec une couche ouverte avec des résonances électroniques basses. Il existe deux mécanismes de DR : direct et indirect. La DR directe
est déterminée par les résonances dissociatives du neutre dans lesquelles l’électron impactant est capturé, tandis que la DR indirecte
est contrôlée par la capture de l’électron dans des résonances Rydberg convergeant vers les états électroniques de l’ion. L’importance
relative des ces mécanismes n’est généralement pas connue à priori. Pour certaines molécules, comme par exemple CH+, les deux
mécanismes pourraient être importants à basse énergie.

Cette thèse décrit une méthode pour traiter uniformément les mécanismes directes et indirectes de la DR pour un ion di-
atomique utilisant une des calculs R-matrice, des transformations de repère vibrationnels et rotationnels, et la théorie de défauts quan-
tiques multicanaux. La méthode fonctionne pour les ions avec des couches ouvertes (CH+) ou fermées (CF+) avec ou sans résonances
à basse énergie. Les sections efficaces théoriques pour CF+ et CH+ sont en accord avec des résultats expérimentaux. Celles pour CH+,
en particulier, concordent bien avec celles de l’expérience récente au Cryogenic Storage Ring, qui ont une résolution rotationnelle, et
mieux que celles des études théoriques précédentes, globalement. Par ailleurs, des sections efficaces d’excitation vibronique, vibra-
tionnelle, et rotationnelle sont obtenues avec la méthode susmentionnée et sont comparées à des calculs précédents avec un bon accord
général.

Mots clés :

Recombinaison dissociative, attachement électronique radiatif, état dipolaire, milieu interstellaire, nuage interstellaire,
MQDT, R-matrice, transformation de repère, diffusion
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Title:
A theoretical study of elementary processes in interstellar plasma

Summary:
Plasma is the most abundant phase of matter — stars, solar wind, and the interstellar medium — are considered plasmas.

Clouds of gas and dust with varying degrees of ionization in the latter are an important early step in star formation, which determines
the structure and evolution of galaxies. To understand star formation, it is necessary to understand the chemical interactions that drive
interstellar cloud dynamics.

Hundreds of molecules have been detected in the interstellar medium (ISM) — the matter between stars — but only eight an-
ions have been detected. There is still some debate about how these are formed; one proposed mechanism is the radiative attachment
of a free electron to a neutral molecule, resulting in a stable anion after the system releases energy via photon emission. Previous theo-
retical calculations have obtained cross sections for radiative electron attachment (REA) to CN, C3N, and C5N, but the resulting rate
coefficients are too low to explain the formation of their respective anions. Later suggested was that dipole-bound states (DBSs) could
enhance the formation of negative molecular ions via REA. DBSs are weakly bound anionic states in which an electron is bound at
large distances to the permanent dipole moment of the neutral molecule — akin to Rydberg states in neutral molecules except that
there are typically only a small number of them. However, REA cross sections depend cubically on the emitted photon frequency,
which is very small for a DBS, so one would expect that the resulting rate coefficients are small as well. This study investigates the
formation of C3N- by REA via DBSs to rotating C3N using an accurate ab initio approach with electronic and rotational resolution.
DBS wavefunctions were calculated and used to determine REA cross sections that imply even smaller rate coefficients, suggesting
that C3N- is formed by a different mechanisms in the ISM.

Dissociative recombination (DR) — the process in which a free electron encounters a molecular cation and is captured into a
temporary bound state that leads to dissociation of the neutral molecule — is a major destruction mechanism in plasmas. This study
investigates the low-energy DR of the CF+ and CH+ molecular ions. The former plays an important role in the fluorine chemistry of
interstellar clouds. The latter has proven difficult to study because it is an open-shell molecule with low-lying electronic resonances.
There are two mechanisms of DR: the direct and indirect mechanisms. Direct DR is driven by direct capture of the electron into an ex-
cited dissociative state of the neutral molecule, while indirect DR is driven by capture of the incident electron into Rydberg resonances
converging to one of the electronic states of the ion. The relative importance of these mechanisms is not usually known a priori . In
certain molecules, like CH+, both mechanisms may be important at low energies. CH+ has several low-lying electronic resonances due
to its low-lying excited state, but also has neutral dissociative states of CH that cross its the potential energy curve of its ground elec-
tronic state near the Franck-Condon region.

This study describes an approach to uniformly treat the direct and indirect DR mechanisms for a diatomic using R-matrix
scattering, frame vibrational and rotational frame transformations, and multichannel quantum defect theory. The method works for
open-shell (CH+) and closed-shell (CF+) ions with or without low-lying electronic resonances. The calculated DR cross sections for
CF+ and CH+ agree well with experimental results. The calculated CH+ results agree well with a recent rotationally state-selected
storage ring experiment at the Cryogenic Storage Ring, and better than previous theoretical studies overall. Additionally, vibrational,
vibronic, and rotational excitation cross sections are obtained with the present DR method and compared to previous calculations with
overall good agreement.

Key words:

Dissociative recombination, radiative electron attachment, dipole-bound state, interstellar medium, interstellar cloud, MQDT,
R-matrix, frame transformation, scattering
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ABSTRACT

Interstellar plasma — interstellar clouds in particular — play an important role in determining the

structure and evolution of galaxies. Understanding the time evolution of such plasmas requires

knowledge of the chemical processes that drive their dynamics. Two processes are studied in this

dissertation: radiative electron attachment (REA) via dipole-bound states (DBSs) and dissociative

recombination (DR). Of the several hundred molecules detected in the interstellar medium, only

eight anions have been detected: CN– , C3N– , C5N– , C7N– , C4H– , C6H– , C8H– , and C10H– .

Their production mechanism is not well known; REA was suggested as a possible formation path-

way, but previous theoretical studies have found that REA rate coefficients were too low to explain

the formation of CN– , C3N– , and C5N– . It was later suggested that including DBSs — an elec-

tron weakly bound at a large distance to the large dipole moment of a neutral molecule — could

appreciably enhance the REA rate coefficients. The first portion of this study is dedicated to inves-

tigating the role of the large dipole moment of rotating C3N using an accurate ab initio approach

with electronic and rotational resolution. DBS wavefunctions of C3N– are calculated and used

to obtain REA cross sections that produce even smaller rate coefficients, suggesting that C3N– is

efficiently formed by a different process. The second part of this study investigates DR in the dif-

ficult case of molecules with low-lying eletronic resonances, although these are not necessary for

the approach. An approach to treat both direct and indirect mechanisms of DR in a diatomic ion

with electronic, vibrational, and rotational resolution using R-matrix scattering calculations, frame

transformation theory, and multichannel quantum defect theory is presented and applied to the CH+

and CF+ molecular ions at low collision energies. The calculated CH+ cross sections agree well

with recent rotationally state-resolved experimental results and overall better than previous theo-

retical results. The calculated CF+ cross sections agree well with experimental results, although

these do not have rotational resolution, and overall better than previous theoretical results at low

energies. Additionally, the method can study rovibronic (de-)excitation — a process in compe-
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tition with DR. These are calculated and compared to previous theoretical calculations for CH+,

which which our results agree well with the exception of dipole-driven rotational excitation cross

sections. This discrepancy is tentatively attibuted to negelcting the contribution of higher partial

waves in the description of the incident electron, which will be incorporated in future studies.
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CHAPTER 1: INTRODUCTION

Of the four fundamental phases of matter, plasma is the most commonly occurring in the universe.

The term plasma can be somewhat context-dependent, but a general definition of plasma is a phase

of matter in which there is a significant proportion of charged particles — it is appreciably ion-

ized. Stars, solar wind, and the interstellar medium (ISM), the matter between the star systems

of a galaxy, are considered plasmas. As plasmas become increasingly charged, they are governed

more and more by electromagnetic fields at microscopic and macroscopic levels. While there are

naturally occurring plasmas on our planet, e.g., the appropriately named ionosphere, plasma has

become an increasingly prevalent aspect of our everyday lives. Plasma technologies are rapidly

developing; this includes plasma etching used in microelectronics fabrication, fusion reactor de-

velopment for sustainable energy, environmental pollutant removal, plasma televisions, and even

lights to name a few. Although aspects of the theory and work presented in this dissertation are

applicable to other plasmas, the main focus here is on interstellar plasma. In particular, two pro-

cesses are studied in this dissertation that take place in interstellar clouds — clouds of gas and

dust with varying degrees of ionization found in the ISM spanning several orders of magnitude

in size. These processes are dissociative recombination (DR) and radiative electron attachment

(REA), both described later.

Interstellar clouds can collapse — an early process in star formation, which determines the

structure and evolution of galaxies1. Such gas clouds must be cold enough to allow their self-

gravity to overcome their thermal pressure. Much like how the Earth as its own magnetic field,

galaxies have their own magnetic field. Interstellar clouds must also have a low enough ionization

fraction such that they are significantly decoupled from the Galactic magnetic field so that they may

collapse to form stars2. Diffuse interstellar clouds are an important early stage in star formation.

Diffuse clouds can transition from being mostly atomic to being increasingly molecular.
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This transition is mapped by the abundance of H2, which is expressed as the molecular fraction,

fH2 =
2n(H2)

2n(H2) + n(H)
, (1.1)

where n(H) and n(H2) are the number densities of H and H2, respectively3. H2, however, is a

neutral and symmetric molecule. Despite being the most abundant molecule in the ISM, its lack of

a permanent dipole moment makes it difficult to detect4. Therefore, tracer molecules are used to

infer fH2 indirectly. To interpret the observed column densities of any species, one must understand

its chemical network within diffuse interstellar clouds.

Diffuse interstellar clouds typically have a temperature between 40 K and 130 K5. At such

low temperature, species do not collide with enough energy to overcome typical neutral-neutral

potential energy collision barriers. Instead, barrierless ion-neutral collisions drive the chemical

evolution of diffuse interstellar clouds. The presence of ionized species in diffuse clouds can be

traced back to ionization of atomic (H) or molecular (H2) hydrogen by cosmic rays — high-energy

particles travelling at relativistic speeds, or by the ionization of heavier species photons from the

interstellar radiation field (ISRF). Because of this, the abundance of various tracer molecules can

be used to constraint the cosmic-ray ionization rate (CRIR) of atomic hydrogen (ζH) and the ISRF.

The relative abundances of OH+, H2O+, and H3O+, for example, can be used to constrain ζH, while

the ISRF could be constrained by observations of HCl and some of its associated ions, HCl+ and

H2Cl+.

Exothermic neutral-neutral reactions still exist. Atomic fluorine (F) collides exothermically

with molecular hydrogen, creating HF which is dominant fluorine reservoir in molecular clouds6,7.

The main destruction mechanism of interstellar HF is collisions with C+:

HF + C+ −−→ CF+H. (1.2)
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One of the important destruction mechanisms for the above-mentioned ions is DR.

As molecular clouds become more molecular, they can become more dense as they col-

lapse. Such clouds typically have much lower temperatures — around 10 K — and have much

more complex chemical networks8. Of the multitude of detected molecules in the ISM, only eight

are negatively charged9–15: CN– , C3N– , C5N– , C7N– , C4H– , C6H– , C8H– , and C10H– . Negative

molecular ions can react with, e.g., hydrogen, via associative detachment16, e.g.

CnN
− +H −−→ HCnN+ e− (1.3)

The formation mechanism of negative molecular ions in interstellar clouds is still unknown.

This dissertation (i) investigates the plausibility of low-energy REA forming negative molecule

ions in the case of C3N to form C3N– and (ii) describes a new method to study low-energy DR, ap-

plied to CH+ and CF+, that is suitable for several diatomic molecules and will be developed further

to be applicable to polyatomic species.

Negative molecular ions

Negative molecular ions have been proposed17–21 among several candidates as being, at least par-

tially, responsible responsible for the diffuse interstellar bands — broad absorption-spectrum fea-

tures of astronomical bodies of generally unknown origin. The destruction of negative molecu-

lar ions is better understood than their formation in interstellar media. The rate coefficients of

collisions between observed CnH– anions and atomic hydrogen, nitrogen, and oxygen has been

studied experimentally21: collisions with atomic hydrogen are very efficient, whereas collisions

with atomic nitrogen could form observed CnN– ions. Although carbon chains tend to be more

reactive in collision with O than N, production of CO is much more favorable than any CnO– (still

unobserved) production pathway.
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Another proposed formation pathway of CnN– is radiative electron attachment,

CnN+ e− −−→ CnN
− + ℏω. (1.4)

An electron encounters a neutral molecule, after which the complex may release energy via photon

emission to relax to a low-energy state of the molecular anion. Previous calculations22–25, however,

have demonstrated that REA rates are too low to explain the observed abundance of CN–, C3N
–, and

C5N
–. It was then suggested that REA could occur via a “doorway” weakly bound dipole state26

— also known as dipole-bound states (DBSs). Fermi and Teller 27 showed that the interaction

between a point charge and a point-dipole for dipole values larger than the critical value of ∼

0.65 atomic units (au) supports infinitely many DBSs. Molecular effects increase the critical value

required to support DBSs and reduce the number of DBSs to a small, finite amount — often just

one electronic state, which of course can host several vibrational or rotational levels. The minimum

dipole moment required to form stable dipole-bound anions of common closed-shell molecules has

been experimentally observed to range between ∼0.79–0.98 au.

Over time, the effects of vibration28 and rotation29,30 of the neutral molecule on the DBS

have been investigated, showing that the critical moment for a rotating dipole is larger than that of

a stationary dipole. This suggest that CN, with a dipole moment of ∼0.57 au31, is not expected to

produce CN– via REA through DBSs. C3N and C3N– were selected to be the subjects of this study

because C3N– has been detected in the ISM9 and a DBS of C3N– was observed experimentally

in the ion-trap experiment of Simpson et al. 26 . A fully quantum study of REA through a DBS

that includes both the rotation of the molecule and the short-range part of the electron-molecule

potential is missing in the literature. This study aims to fill this void and determine if including

C3N– DBSs significantly enhances the REA rate coefficients to explain the perplexing abundance

of C3N– in interstellar media.
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Dissociative recombination

DR describes the process whereby a molecular cation collides with an electron and dissociates. It is

often the main destruction mechanism of molecular cations in the ISM. Laboratory measurements,

in general, are quite limited and can only produce a small amount of the data needed to model

interstellar chemistry. Hence, theoretical methods can often fill the gaps left from experimental

results or lack thereof. Only recently has the Cryogenic Storage Ring (CSR, 201632) come online,

carrying out groundbreaking experiments that can measure the DR rate coefficient for ions in their

ground state. Previous measurements, at best, were made at higher temperatures where the target

ions populated several excited states. Other experiments were carried out at temperatures where

the ions are expected to have been rotationally and vibrationally excited. This is an important dis-

tinction because the collisional rates in interstellar clouds are so low compared to the spontaneous

radiative decay rate of these molecular ions that electrons are expected to collide with molecular

ions in their ground rotational, vibrational, and electronic states. Measurements of the DR of HeH+

made at the CSR found a discrepancy of about an order of magnitude at lower electron energies

relevant for diffuse interstellar clouds33. An order-of-magnitude difference in the DR rate of OH+,

for example, would result in an order-of-magnitude difference in the inferred value of ζH 34.

Despite recent experimental advances, however, there still remain several challenges in

obtaining experimental ground-state DR rate coefficients. Cooling some molecules with small

dipole moments or rotational constants becomes difficult because the ions can only be stored for

a finite amount of time, during which they are expected to cool radiatively. In cases like these,

theory may be used to deconvolve experimental rate coefficient measurements or may even be

used instead of experimental measurements.

Theoretical DR treatments, however, also have significant limitations. Two DR mecha-

nisms exist: the direct mechanism and the indirect mechanism. In direct DR, the incident electron

is captured into a dissociative states of the neutral molecule. Indirect DR describes the process by
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which an electron is captured into a Rydberg states of the neutral molecule and then transitions to

a dissociative resonant state. Either the indirect or the direct mechanism dominates the DR pro-

cess in many cases for some given energy range. Their relative importance, however, is often not

known a priori, although investigating the electronic structure of the target ion may give some in-

sight. Additionally, both mechanisms may interfere and have a significant impact on the observed

rate coefficients.

Most theoretical DR treatments do not include both mechanisms simultaneously or do not

have rotational resolution. For gas-phase chemistry in diffuse interstellar clouds, these approxima-

tions may not be justified. The low kinetic temperatures of diffuse clouds (40–130 K) translates to

electrons impinging on molecular ions with kinetic energies of about 3.5×10−3–1.1×10−2 eV5),

which is typically considered low-energy. At and below such low energies, the rotational structure

of the target ion may be the most important in determining DR cross sections and, therefore, rate

coefficients. Systems that host a dominant indirect mechanism are typically most influenced by the

rotational structure of the target ion35,36.

The DR of two molecular ions will be presented: the DR of CH+, first detected in the ISM

by Douglas and Herzberg 37 , and CF+, first detected in the ISM by Neufeld et al. 38 . The former is

an excellent candidate for our developed method. It is an open shell ion with low-lying electronic

resonances, yet its electronic structure is not as complex as other diatomics. The DR of such ions is

typically difficult to study theoretically. Additionally, accurate state-resolved measurements of the

DR of CH+ were made at the CSR by Paul et al. 39 , who were able to resolve DR rate coefficients

from the ground rotational, vibrational, and electronic state of CH+. Their results can serve as a

benchmark to our theoretical method applied to CH+. CF+ has a similar electronic structure to that

of CH+, although it is slightly more complicated. Potential energy curves of both ions are shown in

Figure 1.1 This molecule has no recent experimental measurements that are comparable to those of

CH+Paul et al. 39 , yet its gas-phase chemistry is important to the fluorine chemistry of interstellar

clouds. Applying our method to CF+ will serve as a good test case for a similar molecular ion with
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a slightly more complicated electronic structure.

First-principles fully quantum DR theories have only recently been able to accurately de-

scribe the DR process accounting for all non-spin degrees of freedom: electronic, vibrational, and

rotational. Recently, ab initio theory managed to successfully reproduce all details of the experi-

mental DR cross sections measured at the CSR33 for the benchmark system, HeH+ 40,41. However,

for diatomic ions with a more complex electronic structure, theory is still not as accurate as in

the case of HeH+. DR of molecular ions with no electronic resonances at low collision energies

is dominated by the indirect mechanism. In such a case, theoretical approach based on quantum

defect theory42–44,41,40 offers a good description of the process. For molecular ions having one

or just a few electronic resonances at low scattering energies — likely dominated by the direct

DR mechanism — time-dependent45–48 and time-independent49–51,35,52–58 approaches represent the

process well and provide generally accurate (relative to experimental results) rate coefficients, with

the exception of certain molecular ions, e.g., CH+.

CH+ belongs to a class of ions with low-lying electronic states — creating low-energy elec-

tronic resonances that are excitable by low-energy electrons — for which the above-referenced

theoretical methods are less appropriate. This dissertation describes a method that can treat such

molecular ions, simultaneously including the direct and indirect mechanisms, although it can also

be applied to other ions where the relevant importance of the DR mechanisms are already known.

It implements the R-matrix method to perform electron-ion scattering calculations; rotational and

vibrational frame transformations to include electronic, vibrational, and rotational degrees of free-

dom; and multichannel quantum-defect theory (MQDT) to implicitly include Rydberg resonances

produced by closed excitation channels.
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Figure 1.1: Lowest three potential energy curves of the CH+ (left) and CF+ (right) ions.

Terminology — atomic units

Atomic units, also known as Hartree atomic units, will be denoted as “au”. This is a system of units

defined by setting the reduced Planck constant (ℏ = h/2π), the electron charge (e), the electron

rest mass (me), and the Coulomb constant (ke = (4πϵ0)
−1) to unity (1). The bohr radius, a0, is the

atomic unit of length and will often be referred to as a “bohr”. As an example, the time-dependent

Schrödinger equation in SI units,

− ℏ2

2me

∇2ϕ(
⇀
r , t) + V (

⇀
r )ϕ(

⇀
r , t) = iℏ

∂ϕ

∂t
(
⇀
r , t), (1.5)

takes the following form in atomic units,

−1

2
∇2ϕ(

⇀
r , t) + V (

⇀
r )ϕ(

⇀
r , t) = i

∂ϕ

∂t
(
⇀
r , t). (1.6)

Atomic units are assumed for the remainder of this manuscript, unless otherwise specified.
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CHAPTER 2: PRELIMINARY THEORY

Scattering equations

Scattering theory, for collisions between non-classical objects like electrons and molecules, deter-

mines the probability that certain processes will occur and the final internal states of the collision

partners. Classically, scattering theory is deterministic — the final states of the colliding particles

are determined entirely by the initial conditions of the system. We can determine the size of classi-

cal objects by measuring them, but this concept is somewhat lost in the quantum regime. Instead,

we use another concept that exists in classical mechanics: the cross section. Cross sections, clas-

sically, are the area that two colliding bodies must intersect to hit each other. In the context of

electron-molecule collisions, cross sections are an area measurement of the probability rate of a

process occurring, given some initial configuration of the collision partners.

The possible processes can be separated into two categories: elastic and inelastic collisions.

The internal states of the electron and the molecule are both left unchanged in elastic collisions.

Inelastic collisions define the case where the internal states of the colliders are altered. This could

mean just a change in energy of each collider ((de-)excitation) or even a change in particle (e.g.,

photoionization).

Elastic scattering of neutral particles — single channel

Suppose some particle of mass m experiences a short-range potential V (
⇀
r ), typically given by the

constraint

lim
r→∞

r2V (
⇀
r ) = 0. (2.1)

The solution to the time-independent Schrödinger equation (given in atomic units),

[
−1

2m
∇2 + V (

⇀
r )

]
ψk(

⇀
r ) = Ekψk(

⇀
r ), (2.2)
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can be chosen to behave asymptotically as

ψ(
⇀
r )

r→∞−−−→ eikz + f(θ, ϕ)
eikr

r
, (2.3)

i.e., the typical superposition of an incoming plane-wave moving along ẑ and an outgoing spherical

wave modulated by some scattering amplitude f(θ, ϕ) (as shown in Figure. 2.1), where θ and ϕ

are the polar and azimuthal angles, respectively. If the potential is radially symmetric, i.e. V (
⇀
r ) =

Figure 2.1: Sketch of the incoming plane-wave and outgoing spherical-wave describing the asymp-
totic behavior of a collision.

V (r), the orbital angular momentum,

L̂ =
⇀
r × p̂,

L̂2Y m
l (θ, ϕ) = l(l + 1)Y m

l (θ, ϕ), l ∈N0

L̂zY
m
l (θ, ϕ) = mY m

l (θ, ϕ) m ∈Z, |m| ≤ l (2.4)

is conserved and the asymptotic form of the wavefunction (2.3) can be expanded in the complete

orthonormal basis of spherical harmonics
(
Y m
l (θ, ϕ)

)
, which are the simultaneous eigenfunctions

10



of L̂2 and one of its components (L̂z in this case, chosen to align with the incoming plane wave).

The spherical harmonics have the well-known form, given by (B.21). The orbital angular

momentum quantum number (l) and the its projection on the ẑ axis (m), together, define each

partial wave used in the expansion of (2.3):

ψ(
⇀
r ) =

∞∑
l=0

Al
ϕl(r)

r
Pl(cos(θ)), (2.5)

where ϕ(r) is a radial wavefunction, and Pl(cos(θ)) are the Legendre polynomials (associated

Legendre polynomials of order 0, given in B.10), and Al is an expansion coefficient. Partial

wave expansions typically converge quickly for low-energy electron-molecule collisions, except

for cases where the target has a large permanent dipole moment that strongly couples channels

differing in l by unity. Dealing with such cases for, e.g., rotational excitation calculations, will be

briefly discussed later. The expression in equation (2.5) has no azimuthal dependence because both

the Schrödinger equation and the scattering wavefunction’s boundary conditions have azimuthal

symmetry. The scattering wavefunction has no dependence on ϕ, i.e., m = 0, so the spherical

harmonics reduce to Legendre polynomials multiplied by the
√
(2l + 1)/(4π) normalization fac-

tor. The time-independent Schrödinger equation (2.2) for a solution of the form given by (2.5), in

spherical coordinates, reduces to the following, in atomic units

[
− d

dr2
+
l(l + 1)

r2
+ V (r)

]
ϕ(r) = k2ϕ(r), k =

√
2mE. (2.6)

Two linearly independent solutions to (2.6) in the event that V (r) = 0 are the Riccati-

Bessel functions (B.8) of the first and second kind. If we suppose that the potential falls off faster

than 1/r, i.e. (V (r) ∝ 1/rα, α > 1), and is nonzero, the solution to (2.6) takes the form59

ϕ(r)
r→∞∝ sin

(
kr − lπ

2
+ δl

)
. (2.7)

11



The expansion coefficients, Al, of (2.5) must allow for the solution to maintain the form (2.3) at

large distances. Given that the incoming wave eikz has no azimuthal dependence, it can also be

expressed in terms of partial waves60

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos(θ)). (2.8)

Looking at the form of (B.8, 2.7, 2.8), we can determine the form of the expansion coefficients in

(2.5)

Al ∝
1

k
(2l + 1)ileiδl , (2.9)

where δl is the same constant as in (2.7): the scattering phase shift. These phase shifts, functions

of l and k, are important quantities that contain information information about the collision. There

is no general solution for δl; one must solve the specific Schrödinger equation to obtain them.

Combining (2.5), (2.7), and (2.9), the full wavefunction for each partial wave takes the following

asymptotic form

ψl(
⇀
r )

r→∞∝ (2l + 1)

kr
Pl(cos(θ))i

leiδl sin

(
kr − lπ

2
+ δl

)
r→∞∝ (2l + 1)

2ikr
Pl(cos(θ))

(
e2iδleikr + (−1)l+1e−ikr

)
,

(2.10)

where ψ(
⇀
r ) =

∞∑
l=0

ψl(
⇀
r ). The quantity

Sll′ = δll′e
2iδl (2.11)

in (2.10) is known as the scattering matrix or S-matrix. By construction, for δl ∈ R, then the

S-matrix is unitary, i.e.,SS† = S†S = I, where I is the identity matrix. The conservation of l

during a collision with a radial potential, as we have so far considered, is reflected in the S-matrix;

it is diagonal with respect to l. For elastic scattering, the scattering phases must be real so that S

12



is unitary and the particle flux is conserved, i.e. the incoming (e−ikr) and outgoing (e+ikr) waves

must have the same normalization.

Inelastic scattering of neutral particles — multiple channels

The different internal states of an electron-molecule system are known as channels. In the event

of elastic scattering, the system is restricted to one channel; the internal states of the electron

and molecule are left unchanged and different values of l are left uncoupled. A system’s total

wavefunction can be described as a product of a wavefunctions describing the internal state of

the colliders and a wavefunction describing the relative motion of the colliders. Neglecting sym-

metrization/antisymmetrization of identical fermions/bosons, it takes the following form:

Ψ(
⇀
r , ω) =

∑
i

ψi(
⇀
r )ϕi(ω). (2.12)

In (2.12), ω represents the internal coordinates of freedom of both colliders, ϕi(ω) are wavefunc-

tions defining the channel |i⟩, and ψi(
⇀
r ) are the channel wavefunctions. The ϕi(ω) solve the

Schrödinger equation for the internal degrees of freedom ω,

Ĥωϕi(ω) = Eiϕi(ω). (2.13)

The total Schrödinger equation for the system, in atomic units,

ĤΨ(
⇀
r , ω) = EΨ(

⇀
r , ω)[

−1

2
∇2 + Ĥω + V (

⇀
r , ω)

]
Ψ(

⇀
r , ω) = EΨ(

⇀
r , ω)∑

i

[
−1

2
∇2ψi(

⇀
r )ϕi(ω) + Eiψi(

⇀
r )ϕi(ω) + V̂ (

⇀
r , ω)ψi(

⇀
r )ϕi(ω)

]
= E

∑
i

ψi(
⇀
r )ϕi(ω), (2.14)
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where V̂ (
⇀
r , ω) is a coupling operator that acts on both functions of

⇀
r and ω. Projecting (2.14)

onto some internal state ϕj(ω) and expanding the full Hamiltonian,

∑
i

∫
dω ϕ∗j(ω)Ĥψi(

⇀
r )ϕi(ω) = E

∑
i

ψi(
⇀
r )

δj,i︷ ︸︸ ︷∫
dωϕ∗j(ω)ϕi(ω)

−1

2
∇2ψj(

⇀
r ) +

∑
i

∫
dω ϕj(ω)V̂ (

⇀
r , ω)ϕi(ω)︸ ︷︷ ︸

Vj,i(
⇀
r )

ψi(
⇀
r ) = (E − Ej)ψj(

⇀
r )

−1

2
∇2ψj(

⇀
r ) +

∑
i

Vj,i(
⇀
r )ψi(

⇀
r ) = (E − Ej)ψj(

⇀
r ), (2.15)

we obtain the coupled-channel equation for the j th channel. The quantities Ej define channel

energies. A channel is open if the total energy of the system, E, is larger than the channel energy

Ej . If Ej < E, then the channel j is closed. The total wavefunction (2.12) takes the following

asymptotic form

Ψ(
⇀
r , ω)

r→∞−−−→ eikjzϕj(ω) +
∑
i

fji(θ, ϕ)
eikiz

r
ϕi(ω) (2.16)

As before, the channel wavefunctions can be expanded in a basis of partial waves

ψi(
⇀
r ) =

∞∑
l=0

l∑
m=−l

ϕilm(r)

r
Y m
l (θ, ϕ). (2.17)

The expansion (2.17) allows us to separate the radial and angular components of the coupled-

channel equation (2.15), in atomic units,

(
− d

dr2
+
l(l + 1)

r2

)
ϕi,l,m(r) +

∑
i′l′m′

Vilm,i′l′m′(
⇀
r )ϕi′,l′,m′(r) = Eϕi,l,m(r) (2.18)

where i and i′ index initial and final internal channels of the target, respectively. This notation, with

primed (’) variables denoting final quantities and unprimed variables denoting initial quantities,

will be used hereafter. This multichannel partial-wave expansion (2.17) reduces to (2.5) in the case
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of a single channel with azimuthal symmetry (m = 0). Now that we consider multiple channels,

the free-particle solutions to the uncoupled radial equation (2.6) depend on the channel via the

channel wavenumber, ki =
√

2(Ei − E)

ϕreg
l (kir)

kir→∞∝ Sl(kir) = sin

(
kir −

lπ

2

)
, ϕirr

l (kir)
kir→∞∝ Cl(kir) = cos

(
kir −

lπ

2

)
(2.19)

for the ith channel.

Consequently, the normalization of these radial wavefunctions depends on the channel.

This leads to the solutions not being normalized at all in the multichannel case, but they can instead

be normalized in energy, picking up a multiplicative factor:

ϕreg
E,l(kir) →

√
2m

πki
ϕreg
E,l(kir), ϕirr

E,l(kir) →
√

2m

πki
ϕirr
E,l(kir). (2.20)

Should the colliding particle be an electron, m = 0.

The regular and irregular solutions form a basis (C.6) of the vector space Cno , where no

is the number of open channels |ilm⟩ considered. The elements of the basis vectors are given,

asymptotically, by

ϕi′l′m′

ilm (r)
r→∞−−−→ δii′δll′δmm′ϕreg

E,l(ki′r) +Kilm,i′l′m′ϕirr
E,l(ki′r), (2.21)

which can be transformed into a basis of incoming (ϕ(−)) and outgoing (ϕ(+)) spherical waves

(C.9):

χ(±)(kir) = ϕirr
E,l(kir)± iϕreg

E,l(kir)
r→∞−−−→

√
2m

πki
e±(kir−l

π
2
)

χi′l′m′

ilm (r)
r→∞−−−→ δii′δll′δmm′χ

(−)
E,l (ki′r)− Silm,i′l′m′χ

(+)
E,l (ki′r).

(2.22)

The relation between the two bases help us define a relation between the K-matrix in (2.21) and
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the S-matrix in (2.22):

S = (I − iK)−1(I + iK), (2.23)

S = Ue2iδU †. (2.24)

Here and throughout, any underlined variable will represent a matrix; the matrix I will always

refer to the identity matrix. In (2.24), the matrix δ is a diagonal matrix of asymptotic scattering

associated with each channel |ilλ⟩. Comparing (2.22) with (2.16), we can define the scattering

amplitude

fii′(θ, ϕ) =
∞∑
l=0

∞∑
l′=0

l′∑
m′=l′

Y m′

l′ (θ, ϕ)il−l
′−1

√
π(2l + 1)

kiki′
(Sil0,i′l′m′ − δii′δll′δ0m′) , (2.25)

which will be useful in connecting the S-matrix to the observable cross section. More details on

this subsection are available in Appendix C.

Collisions of charged particles

Unlike in the previous subsections, a collision between two charged particles is subject to the

Coulomb potential. Here, we consider an electron interacting with a positively charged target. The

Coulomb potential,

VCoulomb(r) =
V0
r
, V0 = constant, (2.26)

is a long-ranger potential, falling off slower than 1/r2. In this case, the coupled-channel equation

(2.15) includes the added term (2.26),

[
−1

2
∇2 +

V0
r

]
ψj(

⇀
r ) +

∑
i

Vj,i(
⇀
r )ψi(

⇀
r ) = (E − Ej)ψj(

⇀
r ), (2.27)
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where the total wavefunction, Ψ(
⇀
r , ω) is defined as in (2.12). The electron-molecule collisions

discussed later in this dissertation only involve neutral or positively charged target molecules.

Because the target is positively charged, V0 is negative, i.e. an attractive Coulomb potential. Ex-

panding ψ(
⇀
r ) again in a basis of partial waves, the addition of the Coulomb potential modifies the

radial coupled-channel equation (2.18),

[
− d

dr2
+
l(l + 1)

r2
+
V0
r

]
ϕi,l,m(r) +

∑
i′l′m′

Vilm,i′l′m′(
⇀
r )ϕi′,l′,m′(r) = k2i ϕi,l,m(r). (2.28)

The two independent solutions, for positive scattering energies k2/2, are known as the f and g

Coulomb functions. The energy-normalized f and g functions exhibit similar behavior as the

regular and irregular solutions (2.19) to the radial coupled-channel equation in the neutral case

(2.18):

fl(kir) →


0 r → 0√

2
πki

sin (kir − ηi0 ln(r) + ηi) r → ∞

gl(kir)
r→∞−−−→

√
2

πki
cos
(
kir − ηi0 ln(r) + ηi

)
r → ∞, (2.29)

where the long-range phase shift ηi and Sommerfeld parameter ηi0 are given by

ηi = −ηi0 ln(2ki) + arg
(
Γ(l + 1 + iηi0)

)
− lπ

2
,

ηi0 =
V0
ki
.

(2.30)
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For clarity, the energy-normalized f and g Coulomb functions are related to the regular (B.29) and

irregular (B.30) Coulomb functions by

fl(kr) ≡
√

2

πk
Fl

(
ηi0, kr

)
(2.31)

gl(kr) ≡
√

2

πk
Gl

(
ηi0, kr

)
. (2.32)

The procedure for scattering amplitudes in terms of the S-matrix is very similar to that of the

previous subsection. The energy-normalized f and g functions are used to construct the basis of

asymptotic sine/cosine solutions to (2.28),

ϕilm
i′l′m′(r)

r→∞−−−→ δii′δll′δmm′fl(ki′r) +Kilm,i′l′m′gl(ki′r), (2.33)

which can be transformed into the basis of incoming (f−) and outgoing (f+) spherical waves,

χilm
i′l′m′(r)

r→∞−−−→ δii′δll′δmm′f−(ki′r)− Silm,i′l′m′f+(ki′r), (2.34)

f±(kir) = gl(kir)± ifl(kir)
r→∞−−−→

√
2

πki
e±i(kir−η

i
0 ln(r)+ηi). (2.35)

The S-matrix, through similar manipulations to those in (C.10), is still related to the K-matrix by

(2.23), i.e. S = (S − iK)−1(S + iK).

The process of expressing the sine/cosine solutions in terms of the ingoing/outgoing spherical-

wave basis is slightly modified by the addition of the Coulomb potential, but remains similar. The

asymptotic behavior of the channel wavefunctions ψi′(
⇀
r ),

ψi′(
⇀
r )

r→∞−−−→ δii′e
i
(
ki′z+ηi

′
0 ln(ki′ (r−z))

)
+
(
δii′f

C
ii (θ) + fii′(θ, ϕ)

)
r−1e

i
(
ki′r−ηi

′
o ln(2ki′r)

)
(2.36)
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takes a similar form, but includes the Coulomb scattering amplitude,

fC
i (θ) = − ηi0

2 sin2(θ/2)
e−i(η

i
0 ln[sin2(θ/2)]−2 arg(Γ(1+iηi0))). (2.37)

The process for obtaining the scattering amplitudes fii′(θ, ϕ) in terms of the S-matrix is similar to

that of the previous subsection. Doing so, we arrive at

fii′(θ, ϕ) =
∑
ll′m′

Y m′

l′ (θ, ϕ)

√
π(2l + 1)

kiki′
il−l

′−1e
i arg

(
Γ(1+l+iηi0)Γ

(
1+l′+iηi

′
0

))

× (Sil0,i′l′m′ − δii′δ
′
ll′δ0m′) ,

(2.38)

which, again, will allow us to determine scattering cross sections in terms of the S-matrix.

Cross sections

For electron-molecule scattering with a neutral molecule, i.e. the electron’s wavefunction behaves

asymptotically as (2.3), the differential scattering cross section from the channel i to the channel i′

is given by
dσi→i′

dΩ
=
ki′

ki
|fii′(θ, ϕ)|2 , (2.39)

where Ω is the solid angle and dΩ = sin(θ)dθdϕ and fii′(θ, ϕ) is given by (2.25). Similarly, for a

collision between an electron and a charged molecule, i.e. the electron’s wavefunction obeys the

boundary condition (2.36),

dσi→i′

dΩ
=
ki′

ki

∣∣δii′fC
i (θ) + fii′(θ, ϕ)

∣∣2 , (2.40)
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where the scattering amplitudes fC
i (θ) and fii′(θ, ϕ) are given by (2.37, 2.38). The total cross

section from channel i to channel i′, then, is given by the integral over all solid angles:

σi→i′ =

π∫
0

sin(θ)dθ

2π∫
0

dϕ
dσi→i′

dΩ
,

σi =
∑
i′

σi→i′ .

(2.41)

The sum over i′ is taken over all open channels i′ . The total scattering cross section from channel

i is σi.

Analyzing the form of (2.37, 2.38, 2.25), the low-energy behavior of the cross sections will

follow the behavior (ki′/ki)/(ki′ki) = k−2i ∝ (E − Ei)
−1. Cross sections following such a 1/E

relationship diverge at E = Ei and are, of course, not defined for negative E < Ei. More details

of scattering theory are available in several works, such as those of Seaton 61 , Friedrich60,62 and

Landau & Lifshitz 59 .

Quantum defect theory

The concept of a channel, described in the previous sections, is important in the formulation of mul-

tichannel quantum defect theory (MQDT). MQDT, also referred to as multichannel spectroscopy,

has roots in the works of Wigner63,64 and Seaton65,66. To discuss MQDT, we will first introduce

the concept of the quantum defect.

One channel

Within the nonrelativistic formulation of quantum mechanics, the energy levels of the hydrogen

atom are given by

EH
n = − mee

4

8ε20h
2n2

= − 1

2n2
≡ −R

n2
, (2.42)
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where e is the charge of an electron, ε0 is the permittivity of free space, n is the principal quan-

tum number, and R is the Rydberg constant. The value EH
1 defines the Rydberg unit of energy,

∼13.6 eV. The threshold here is at E = 0, above which no bound states exist. A similar formula

holds for the bound states of the atoms belonging to the alkali metal group, i.e., The energy levels,

however, are still comparable to (2.42):

En = Eth −
R

(n− µnl)2
, (2.43)

where Eth is energy threshold for ionization and µnl is known as the quantum defect, which is

dependent on n and l. As n→ ∞, the quantum defects converge to a finite value:

µl ≡ lim
n→∞

µnl. (2.44)

One can define the effective quantum number:

n∗l ≡ n− µnl. (2.45)

Considering again the radial time-independent Schrödinger equation (2.6) with an atomic potential

V (r)
r→∞−−−→ −Z/r, Z being the screened charge of the nucleus at large distances, the solutions are

the Coulomb f and g functions (2.29). For negative scattering energies, i.e. bound states, the

energy levels follow (2.43). The infinite series given by (2.43) is known as a Rydberg series. The

density of states increases as n→ ∞, i.e. En → 0−.

It is important to mention Levinson’s theorem, which connects energy-dependent scattering

phase-shifts δl(k) to the number of bound states:

lim
k→0

δl(k)− lim
k→∞

δl(k) = (nl +N)π, (2.46)

21



where nl is the number of bound states with orbital angular momentum l, and N can be either 0 or

1/2. The case N = 1/2 corresponds to a bound state with l orbital angular momentum at k = −0.

Such bound states — asymptotically sinusoidal and therefore not square-integrable — have been

referred to as half bound states. Square-integrable bound states with l > 0, then, are represented

by N = 0. δl(0) the zero-energy phase-shift for some l. For such a short-range potential, or any

asymptotically bounded potential, the high-energy phase shift us negligible, i.e.

lim
k→∞

δl(k) = 0 =⇒ lim
k→0

δl(k) = (nl +N)π. (2.47)

Levinson’s theorem (2.46, 2.47) can be extended to a potential with Coulombic asymptotic behav-

ior:

lim
k→0+

δl(k)(mod π) = µl. (2.48)

Such a potential hosts an infinite number of bound states, but the quantum defect for some small

energy below threshold, ε, is equal to the number of bound states with lower energy than ε. As

described by Seaton 67 , this can be viewed as a generalization of (2.46). The ambiguity of a branch

choice in (2.48) may be removed by requiring δl(k) to be continuous functions of energy68, which

is related to the analytic continuation of the phase shifts negative energies67:

δl(k) = πµl(k). (2.49)

The quantum defect function µl(k) is continuous, depends only weakly on k, and coincides with

the discrete quantum defects µnl introduced in (2.43). The analytic continuation (2.49) connects

the below-threshold quantum defects to the single-channel S-matrix (2.11).
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Multiple channels

The effective quantum number has already been defined in terms of the quantum defect and the

principal quantum number (2.45). The analytic continuation of the quantum defect to above-

threshold energies suggests we might also define the effective quantum number above and below

threshold. Above threshold, the principal quantum number n is not defined, leaving us to define

the effective quantum number as

n∗l (k) = µ0
l (k) = −δ

0
l (k)

π
. (2.50)

Defining the threshold energy, below which bound states are possible, asEth, the effective quantum

number can be defined as a continuous function that is an extension of its previous definition (2.45):

Eth − E =
R
n∗

2

l

n∗l =

√
R

Eth − E
. (2.51)

This new definition below threshold (2.51) coincides with (2.45) at energies ERydberg
n given by

(2.43). Considering, now, two thresholds of energyE1
th andE2

th that are uncoupled, such thatE1
th <

E2
th, the energies of the infinite bound states converging to each threshold is given, respectively, by

E1
bound and E2

bound,

E1
bound = E1

th −
R
n∗

2

l1

E2
bound = E2

th −
R
n∗

2

l2

(2.52)

where n∗2l1 and n∗2l2 are the effective quantum numbers associated with the two channels. Channel

coupling, however, changes the Rydberg series converging to each threshold. There are three cases

to consider for some arbitrary energy E:

E < E1
th < E2

th: both channels are closed. The effective quantum number in channel i is

23



given by

n∗li(E) =

√
R

Ei
th − E

. (2.53)

Although energy eigenstates correspond only to bound states in this regime, their positions are

slightly modified by the influence of the second threshold. Considering the positions of uncoupled

bound states converging to E2
th with positions E2

B, the width of this state if it were a resonance69,

Γ2
B ≈ 4RIm(µ0

l )/[n −Re(µ0
l )]

3, determines which bound states converging to E1
th near E2

B will

be shifted. States around a half-width Γ2
B/2 above or below E2

B will be shifted. Shifting bound

levels corresponds to a rise in their effective quantum defect relative to E1
th, n∗l1, by one; channel

coupling effectively perturbs the resonances.

E1
th < E < E2

th: only the first channel is open. The second channel still supports an infinite

number of Rydberg states converging to E2. These manifest as Feshbach resonances, which have

resonance positions that approximately follow

ER = E2
th −

R
n∗2li

. (2.54)

As E → E2
th, the density of these resonances increase inversely with their widths, as illustrated by

Figure 2.2.

E1
th < E2

th < E: both channels are open. Above all thresholds, the continuum does not

have any Feshbach resonances, although other resonances, e.g., shape resonances, may be present.

Figure 2.2 also illustrates this, to an extent. Although higher channel threshold were present in the

calculation, the resonances appear only at higher energies.

For multiple channels, the quantum defects associated with certain channels can be encap-

sulated in the n × n S-matrix using (2.24, 2.49) — n being the number of included channels. As

the scattering energy approaches a channel threshold from below, the cross sections oscillate with

increasing frequency until the channel threshold, as shown in Figure 2.2.
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Figure 2.2: Rotational de-excitation cross section for an electron colliding with CH+ in its first
rotationally excited level of its ground vibronic state (j = 1, v = 0, X1Σ+). The channel threshold
for excitation to the next rotational channel (j = 2, v = 0, X1Σ+) is shown as a vertical dashed
line.

Resonances

Resonances are perhaps the most identifiable feature in observable signals, and are extremely im-

portant in describing certain physical phenomena, e.g., resonant dissociative recombination. Also

known as unstable or metastable states. They have various shapes, contain a wealth of information

about a collision. Resonances are characterized by a width Γ (energy units), not to be confused

with the gamma function, a position in an energy domain, ER, and a lifetime :

τ =
1

Γ
. (2.55)

Resonances may be defined in several ways, but these definitions become ambiguous as the res-

onance lifetime (2.55) decreases. Above-threshold phase-shifts are affected by resonances in the
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following way:

δl(E) = δ0l (E) + δres(E), tan(δres(E)) = − Γ/2

E − ER

. (2.56)

The phase shift δ0l (E) can be interpreted as a nearly constant background phase shift. The branch

choice of the tangent is ambiguous, but can be chosen such that δl(E) remains a continuous func-

tion to avoid the restriction to a modulus of π. Applying (2.49), we can re-express (2.56) in terms

of quantum defects,

µl(E) =
δl(E)

π
= µ0

l + µres
l , µ0

l =
δ0l (E)

π
, µres

l (E) = − 1

π
arctan

(
Γ/2

E − ER

)
. (2.57)

The quantum defect µ0
l is, by definition, also very weakly energy dependent.

Two common resonances will be briefly introduced: shape resonances and Feshbach reso-

nances. Shape resonances are also known as potential resonances due to their nature — these are

almost-bound (not to be confused with half-bound) continuum states that decay only slowly due

to the centrifugal barrier of the potential. They are often clearly identifiable, short-lived (wide)

resonances. The centrifugal barrier, as the name implies, comes from the centrifugal term in (2.6):

l(l + 1)/r2.

Feshbach resonances have a much sharper profile, i.e. are much longer-lived states, than

than that of shape resonances. They exist only if the system has more than one degree of freedom.

These resonances are bound in one degree of freedom, but can decay in another, where they lie in

the continuum. This is an inherently multichannel phenomenon, arising due to couplings between

channels. Eliminating this coupling would yield true bound states, which is perhaps one distinction

between these resonances and shape resonances.
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Channel elimination

The asymptotic basis of incoming and outgoing wavefunction (2.22) can be used to construct the

outer-region matrix

i
√
2Milλ,i′l′λ′(r) = f−l (kir)δii′ − f+

l (kir)Silλ,i′l′λ′ . (2.58)

The term ”outer-region” will be briefly discussed in the next section. For closed channels, the

functions f± diverge as r → ∞. If there are a total of N considered channels |ilλ⟩, then the

number of closed channels Nc and open channels No always add to N , i.e. N = No + Nc. A

suitable map can be chosen, transforming the matrix M with closed channels to the matrix M− of

open-channel incoming-wave solutions:

M−(r) =

M−
oo(r)

M−
co(r)

 =M(r)B, B =

 I

Bco

 . (2.59)

The matrices B and M− have dimensions N ×No.

Before applying this transformation, the matrices M and S should be partitioned into sub-

blocks of open (o) and closed (c) channels,

M =

M oo(r) M oc(r)

M cc(r) M cc(r)

 , S =

Soo Soc

Scc Scc

 , (2.60)

so that the exponential growth in the closed channels — for which f± are defined differently —

is eliminated. For negative energies, we define the quantity κi =
√
−2meEi and observe the

asymptotic form of f± (in atomic units) for closed channels,

f±c (κr)
r→∞−−−→ 1

2πκi
e±iβi

[
1

Drn
∗
l
eκr ∓ iDrn

∗
l e−κr

]
, (2.61)
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where D depends on the energy and l, and βi = π/
√

2(Ei − E). As r → ∞, the leading eκr term

in (2.61) dominates is eliminated in (2.59) by an appropriate choice of Bc,

Bc = −
(
Scc − e−2iβ

)−1
Sco, (2.62)

where β is a diagonal matrix whose entries are given by the quantity βi in channel i (for closed

channels). The resulting open-channel submatrix of M−(r) then becomes

− i√
2

[
f−o (kir)− f+

o (kir) (Soo + SocBc)
]
, (2.63)

which allows us to define the physical No ×No S-matrix

Sphys = Soo − Soc

(
Scc − e−2iβ

)−1
Sco. (2.64)

The RHS of (2.64) is also referred to as the MQDT closed-channel elimination procedure (CCEP),

while the LHS is called the physical S-matrix because it is expressed in a basis of physically al-

lowed (open) channels. The physical S-matrix will be used to calculate rovibronic (de-)excitation

and DR cross sections. Resonances in the observable cross section for DR, which will be cal-

culated in terms of the physical S-matrix (2.64), come from the near-singularity of the matrix

Scc − e−2iβ . This matrix is singular at energies of bound states, but is never singular when there

are no completely uncoupled closed channels (more details in Appendix C).

Closed channels can be further divided into weakly and strongly closed channels. Weakly

closed channels, typically close to the total energy of the system, are treated as open. Strongly

closed channels have a much larger difference between their channel energy (Ei) and the total

energy (E), and are eliminated via (2.64)

The f and g functions of some weakly closed channels exhibit problematic behavior due to
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the factor61

A(ε, l) =
l∏

n=0

(1 + n2ε), (2.65)

which appears as
√
A(2Ei, l) and 1/

√
A(2Ei, l) in the closed-channel f and g functions, respec-

tively61. An alternative normalization for these channels can be obtained by

f̃i(κir) = fi(κir)/
√
A(2Ei, l),

g̃i(κir) = gi(κir)
√
A(2Ei, l),

(2.66)

where f̃ and g̃ are given explicitly as f 0 and g by Greene et al. 70 . Typically, this alternate normal-

ization is used if |E − Ei| > (2l2i )
−1 in au.

The CCEP (2.64), however, assume that the f and g functions for different channels all

have the same normalization. Defining the diagonal matrix q whose elements are given by

qil =



1 normalization: (2.29)√
A(2Ei, l) normalization: (2.66), closed during CCEP√
A(2Ei, l)/

(
1− e−2π/

√
2(Ei−E)

)
normalization: (2.66), open during CCEP

(2.67)

the CCEP becomes

SCE = Soo − Sco

[
Scc −

(
q cos(β) + iq−1 sin(β)

)−1 (
q cos(β)− iq−1 sin(β)

)]−1
Sco,

Sphys =
[
(q−1 − q) + (q−1 + q)SCE

] [
(q−1 + q) + (q−1 − q)SCE

]−1
.

(2.68)

If this normalization procedure is not performed for any channel, then q = I and (2.68) reduces

to (2.64). Channels defined as closed during the calculation of the f and g functions may be

open at some other energy during the channel elimination procedure, hence the distinction in

2.67. More details on quantum-defect theory are available in several reviews, such as the works of
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Seaton65–67,71 and Aymar et al. 69 .

R-matrix

R-matrix theory, developed to study resonant reactions72–75, is used to study electron-atom and

electron-molecule collisions. A key aspect of R-matrix theory is the division of space (R3) into an

inner region and an outer region, separated by a bounding spherical shell of radius a. The inner

region (Sin ⊂ R3, r < a) contains the N -electron wavefunction, i.e. the wavefunction of the target

atom/molecule containing N electrons; the scattering electron can also exist in this region. Sin can

be centered anywhere, but is usually centered on the target’s center of mass (CoM) or even center

of charge (CoC).

In the outer region, (Sout = R3 \ Sin), there is only the wavefunction of the scattering

electron. In practice, of course, Sout does not extend to infinity. The scattering electron is con-

sidered distinguishable. In the inner region, all N + 1 electrons of the scattering problem may be

present. The more complicated physics of Sin is governed by an interaction potential that includes

nonlocal effects, but must only be solved once for each considered value of the total energy. The

simpler physics of Sout, however, is solved for each total energy. Channels in Sout are coupled by

the different terms in the multipole expansion of the interaction potential, which is easily solved

by outwards integration from r = a, the sphere on which the outer- and inner-region solutions are

matched.

Today, quantum chemistry codes allow us to calculate the many-electron inner region, but

early R-matrix work did not aim to obtain inner region solutions. The R-matrix, unsurprisingly

key to the approach, was defined by its value on the bounding sphere and the energy dependence

of the reaction was determined by the outer-region physics. The R-matrix is still defined by its

value on the matching surface. Considering again the multichannel time-independent Schrödinger

equation (2.14) and partial-wave expansion (2.17), the radial component of the total wavefunction
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can be re-expressed as

ϕi(r) =
∑
k

aRik(a,E)
dϕk

dr

∣∣∣
r=a

, (2.69)

where i and k identify channels, which include the quantum numbers l and m for each channel.

Considering all channels in the basis, (2.69) can be re-written as a matrix equation

⇀

ϕ(r) = aR(a,E)
d
⇀

ϕ

dr

∣∣∣
r=a

, (2.70)

where
⇀

ϕ(r) is a vector and R(a,E) is now a matrix. The matrix R(a,E) is known as the R-matrix

and can be propagated as R(r, E) to larger values of r. R-matrix calculations are done assuming

that the target nuclei do not move.

The R-matrix can also be defined, for r = a and some total energy E, by

Rik =
∑
γ

ωiγωkγ

Eγ − E
, (2.71)

where Eγ are poles of the R-matrix and ωiγ is the overlap integral between the ith inner-region

wavefunction and the γth outer-region wavefunction, taken over all angles and internal coordinates

at r = a. The R-matrix poles are obtained by diagonalizing the inner-region Hamiltonian. At all

other energies E ̸= Eγ , the R-matrix is holomorphic.

R-matrix calculations can be performed to obtain the short-range reactance matrix, K, for

several energies. The K-matrix (2.33), at r = a is related to the R-matrix by

K =

(
f(a)−R

df

dr

∣∣∣
r=a

)(
g(a)−R

dg

dr

∣∣∣
r=a

)−1
, (2.72)

where f and g are diagonal matrices, whose nonzero elements are given by the f and g energy-

normalized coulomb functions (2.29). Like R, K is real and symmetric. Therefore, it is diagonal-
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izable:

K = U tan(πµ)U †, (2.73)

where µ is a diagonal matrix of quantum defects and U is, of course, a unitary matrix. The K-

matrix can then be converted to the S-matrix by (C.11), which is used to calculate reaction cross

sections. As a reminder, the R- K-matrices are both expressed in the same finite basis of channels

that are included by the user.

The R-matrix can also have its closed channels eliminated similarly to (2.64),

Rphys = Roo −Roc

[
Rcc −W (E)

(
dW

dR
(E)

)−1]−1
Rco, (2.74)

which is performed at the R-matrix radius R = a. The subscripts o and c have the same meaning

as in, e.g., (2.64) — open and closed channels. W is the energy-normalized Whittaker Coulomb

function76 given in terms of (2.34) for closed channels, i.e. negative energies:

Wl(kir, n
∗
i ) =

i√
2
(e−iβif

+ − eiβif
−
). (2.75)

Frame transformations

The interaction between an electron and a molecule can occur at several energy ranges, which all

exhibit qualitatively different behavior. Fig 2.3 depicts such different regions one might consider

when constructing a model to describe electron-molecule scattering. To begin any calculation, a

frame of reference must be determined. The selection is arbitrary, but common choices simplify

the physics for various systems. Two common reference frames are the lab(oratory) frame (AKA

the space-fixed frame) and the molecular frame (AKA the body frame).

In the lab frame the laboratory in which an experiment is conducted is at rest. Experimental

measurement are typically made in this frame. In the molecular frame, the molecule is at rest. The
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molecular frame is often centered on the target molecule’s CoM or CoC and aligned, convention-

ally, such that the ẑ-axis coincides with the highest symmetry axis of the molecule. The CoM, if

chosen as the origin of a reference frame, is defined as the point where, for a point-mass system,

the position vectors (
⇀
r i) multiplied by their respective point mass (mi) add to

⇀

0 :

∑
i

mi
⇀
r i =

⇀

0 . (2.76)

In the CoM, the translational motion of the molecule can be separated from the other degrees of

freedom. As a possible analogue to the CoM, the CoC, when chosen as the origin of a reference

frame, is the point where the electric dipole moment
(
⇀
p(

⇀
r )
)

is
⇀

0 . For a point-charge system,

⇀
p(

⇀
r ) =

∑
i

qi(
⇀
r i −

⇀
r ), (2.77)

where qi is the charge of the point charge i and
⇀
r i is its position vector. For neutral systems,∑

i

qi
⇀
r = 0 in (2.77), i.e. the dipole moment of neutral systems is invariant in space. Therefore,

as an important distinction between the CoM and CoC, the CoC cannot be defined for neutral

systems. Depending on the type of model being used and calculations being performed, one might

be preferable over the other if they are different.

While experimental measurements are typically performed in the lab frame, theoretical and

computational approaches have been developed in both. The lab frame and the molecular frame

are appropriate for different regimes, as depicted by Figure 2.3. The molecular frame is good at

smaller distances r between the scattering electron and the molecule, where the projection of the

system’s total angular moment is a conserved quantum number. At small distances, the interaction

between and electron and a molecule can be well described within the frozen-nuclei or Born-

Oppenheimer approximation. The mass of a nucleon is almost 2000 times that of an electron.

Therefore, electronic motion happens on significantly smaller time scales than nuclear motion, i.e.
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molecular vibration and rotation. As the distance between the electron and the molecule increases,

the internuclear distance R can no longer be treated as a constant with the same accuracy as when

the electron interacts with the molecule at short distances. The electron is far away enough for the

molecule to vibrate on the time scale of the collision. The molecular frame is still appropriate for

describing an electron impinging on a vibrating target. For an electron at large distances impinging

on a rotating molecule, the rotating molecular frame is no longer the appropriate choice. The lab

frame is then an appropriate choice to describe, asymptotically, an electron colliding with a rotating

and vibrating molecule.

Figure 2.3: Figure 1 from Chang and Fano 77 redrawn here. Different regions of an electron-
molecule collisions system, showing relevant quantities in each region. The numbers Λ, j, v, and
R represent, respectively, the projection of the system’s total angular momentum on the molecular
axis, the angular momentum of the target, the vibrational quantum number of the target, and the
internuclear distance. The bottom axis represents r, the distance between the scattering electron
and the system’s coordinate origin. a is the R-matrix radius.

The lab and molecular frames can be related through a frame transformation77,78. One rea-

son for the practicality of frame transformations is that quantum chemistry calculations, now ubiq-

uitous in theoretical developments to study electron-molecule collisions, are typically performed
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in the molecular frame, but experimental measurements are made in the lab frame. Additionally,

increasing experimental technicality and precision allow for state-selected reaction cross sections

with electronic, vibrational, and rotational, i.e. rovibronic, resolution. Frame transformations al-

low us to pass from short-range interactions that are diagonal in R to a long-distance regime where

the rotation and vibration of the molecule are coupled. This is related to l-uncoupling79, where the

orbital angular momentum of the scattering electron (l), coupled to that of the molecule at small

distances where the electron essentially rotates with the molecule, is uncoupled from that of the

molecule.

Frame transformations can be applied to various quantities, but they are only applied to

the S-matrix in the work presented in this manuscript. Hence, the frame transformations will be

shown applied to the S-matrix. The rovibrational frame transformation produces, from an S-matrix

that is a function of R in a basis of electronic channels, an S-matrix that is expressed in a basis

of rovibronic channels. This is done in two steps: the vibrational frame transformation and the

rotational frame transformation. Additionally, frame transformations are only applied in the case

of non-symmetric diatomic molecules. Hence, the theory will be presented under this assumption.

Vibrational frame transformation

To pass between regimes in which the mutually incompatible variables R and v are sensible, the

vibrational frame transformation is used. R and v (and j and Λ) being mutually incompatible

means that their respective operators do not commute. The vibrational frame transformation takes

as input the electronic S-matrix in a basis of electronic channels |nlλ⟩, i.e.

SΛ
n′l′λ′,nlλ(R) ≡ ⟨n′l′λ′|Ŝ(R)|nlλ⟩ (2.78)

where n identifies the electronic state of the target, l is the magnitude of the orbital angular momen-

tum quantum number of the scattering electron, and λ is the projection of
⇀

l on the molecular axis.
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The superscript Λ indicates that the S-matrix is block diagonal with respect to Λ. Before proceed-

ing with the frame transformation, the vibrational wavefunctions of the target need to be calculated.

This is be done by solving the vibrational Schrödinger equation for a diatomic molecule,

(
−1

2

M1 +M2

M1M2

d2

dR2
+ V (R)

)
ϕnv(R) = Envϕnv(R), (2.79)

where the masses of the nuclei are M1 and M2 and ϕnv(R) are wavefunctions describing the

molecule in the state |nv⟩ and the scattering electron in the state |lλ⟩. v is, of course, the vi-

brational quantum number of the molecule. The potential V (R) is the internuclear potential. More

details will be provided about the calculation of these vibrational wave function later on.

With the vibrational wavefunctions obtained for each electronic state of the target, the

vibrational frame transformation can be carried out. It is given by

SΛ
n′v′l′λ′,nvlλ ≡

∫
dRϕn′v′(R)S

Λ
n′l′λ′,nlλ(R)ϕnv(R). (2.80)

The S-matrix is still block diagonal with respect to Λ in this regime, but is no longer a function of

R. Instead, it expressed in a basis of body-frame vibronic channels |nvlλ⟩.

Rotational frame transformation

We now consider the mutually incompatible quantum numbers j and Λ, ignoring electron spin.

The rotational frame transformation is performed on the vibronic S-matrix as follows80,81:

SJ
n′v′j′µ′l′,nvjµl =

∑
Λ

∑
λλ′

(−1)l+λ+l′+λ′
Cj′µ′

l′−λ′,JΛS
Λ
n′v′l′λ′,nvlλC

jµ
l−λ,JΛ. (2.81)

In (2.81), the Cjµ
l−λ,JΛ are the Clebsch-Gordan coefficients. The total angular momentum of the

system is
⇀

J =
⇀

j +
⇀

l , where
⇀

j is the total angular momentum of the target. µ is the projection of
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⇀

j on the molecular axis. For diatomics, µ is given entirely by the orbital angular momentum of the

target’s electronic state because the rotational angular momentum of the target is perpendicular to

the molecular axis. During the collision, J and M , the projection of J on the lab frame, are con-

served. Λ = λ + µ, however, is not necessarily conserved during a collision. Hence, the S-matrix

is now block diagonal with respect to J and not Λ. It should be stressed that this transformation is

unitary, i.e. SJSJ† = I .
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CHAPTER 3: REA VIA DIPOLE-BOUND STATES, C3N

Radiative electron attachment,

M + e− →M− + ℏω. (3.1)

is the process by which an electron encounters a neutral molecule and forms a resonant state

that relaxes via photon emission. The system could relax to any state of M– allowed by angular

momentum selection rules, including DBSs. The DBSs converge to the potential surface of the

neutral molecule, much like how Rydberg states converge to the potential surface of the cation.

Given that the target is a neutral molecule, the long-range interactions are dominated by non-

Coulomb interactions. Although the dipole term in the expansion of the interaction potential is

typically the strongest, other authors ave investigated quadrupole-bound and polarization-bound

states82,83. The effect of vibration and rotation28–30 have also been studied, showing that the critical

dipole moment is larger for rotating dipoles than stationary dipoles. However, no fully quantum

study of REA through a DBS including rotation and short-range interactions has been carried out.

Theoretical model

The neutral molecule of interest here is C3N. Most theoretical approaches for studying REA are

fairly straightforward: calculate bound-state anionic wavefunctions (ψf ), continuum wavefunc-

tions (ψi), and the dipole transition operator between the two (d̂i→f ). The approach described here

is essentially the same. To obtain these quantities, the potential energy operator of the e– – C3N

system is calculated in molecular frame with the origin at the CoM of the molecule and the ẑ-axis

aligned with the molecular axis pointing towards the N atom. For a system of point charges qi with

38



position vectors
⇀
r i, it is possible to define a CoC as

⇀

RC =

∑
i

qi
⇀
r i∑

i

qi
. (3.2)

The dipole moment with respect to the CoC is zero. For neutral systems, on the other hand, the

CoC is not defined because the dipole moment is invariant with respect to the choice of origin:

∑
i

qi

(
⇀
r i −

⇀

R
)
=
∑
i

qi
⇀
r i −

⇀

R

�
�

���
0∑

i

qi =
∑
i

qi
⇀
r i. (3.3)

For the C3N molecule, therefore, the CoM is the most natural choice. The scattering electron’s

polar coordinates are given by (r, θ).

Two different potentials are calculated to highlight the effects of the short-range interac-

tions. The first potential, Vdip, is entirely given by the interaction between a point charge and a

dipole,

Vdip = −µe
r2
P1 (cos(θ)) , (3.4)

where µ is the dipole moment of C3N (µ = 1.3 au) and P1 (cos(θ)) is a Legendre polynomial. The

second potential, Vai, is an ab initio potential comprised of four contributions and is a function of

the electronic wavefunction of C3N, ψe:

Vai(ψ
e) = Velec(ψ

e) + Vnuc + V HFEGE
ex (ψe) + Vcopol(ψ

e). (3.5)

The potentials Velec and Vnuc are the electronic and nuclear contributions of the electrostatic po-

tential between C3N and the scattering electron. The terms V HFEGE
ex (ψe) and Vcopol are density-

functional expressions representing the electron exchange and correlation-polarization contribu-

tions, respectively84,85. The perpendicular (α⊥) and parallel (α∥) polarizabilities, and the ioniza-

tion potential (IP) of C3N are needed for the potential of (3.5). Their values are α⊥ = 27.11,
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α∥ = 60.35, and IP = 0.53 au. The wavefunction ψe represents the ground electronic state of

C3N (X2Σ+) in its equilibrium geometry with the following three internuclear distances in the

C-C-C-N arrangement from left to right: 2.30, 2.62, and 2.13 au (see supplementary material of

Lara-Moreno et al. 25). This same geometry is used within the Born-Oppenheimer approximation

for all calculations described herein. The calculated dipole moment of C3N, 1.3 au, is in very good

agreement with the complete active space-configuration (CAS-CI) value of 1.4 au by Harrison and

Tennyson 23 . This suggests that the long-range e– – C3N potential, dominated by the dipole term,

is well described.

Each contribution to the potential Vai is expanded into a series of Legendre polynomials to

obtain an expansion of the total potential in Legendre polynomials:

Vai =
80∑
λ=0

Cλ(r)Pλ (cos(θ)) . (3.6)

This is accomplished by first shifting the ab initio multi-centered Gaussian basis set and analyt-

ically expanding it around the neutral molecule’s CoM in a symmetrized basis of real spherical

harmonics86 for values of l from 0 to 80. The Legendre polynomial expansion coefficients of

the potentials Velec(ψe) and Vnuc are obtained with the standard procedure for
∣∣∣⇀r − ⇀

r ′
∣∣∣−1 po-

tentials, described, for example, by Gianturco and Stoecklin 87 . The ab initio calculations were

performed using the MOLPRO software suite88,89 at the multi-configurational self-consistent field

(MCSCF) level using the correlation-consistent polarized valence sextuple-zeta with diffuse aug-

menting functions (aug-cc-pV6Z) atomic orbital basis set. Calculations were performed in the

C2v point group (A.2). The number of occupied orbitals in the irreps A1, B1, B2, and A2 was 13,

3, 3, and 0. Of these occupied orbitals, the lowest 6 A1 orbitals were considered closed.

The electronic and nuclear contributions to the local electrostatic interaction potential are
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given, respectively, by

Velec(
⇀
r ′) = 2

∑
i

∫
d
⇀
r

∣∣∣ϕi(
⇀
r )
∣∣∣2∣∣∣⇀r − ⇀
r ′
∣∣∣ (3.7)

and

Vnuc(
⇀
r ′) = −2

∑
i

∫
d
⇀
r
∑
j

Zj∣∣∣⇀r −
⇀

Rj

∣∣∣ (3.8)

in atomic units. ϕi(
⇀
r ) is the ith target orbital,

⇀
r is the position vector of an electron belonging to

the target,
⇀
r ′ is the position vector of the incident (scattering) electron, Zj is the charge of the j th

nucleus, and
⇀

Rj is the position vector of the j th nucleus.

The exchange contribution to (3.5), V HFEGE
ex (ψe), is given, in atomic units, by

V HFEGE
ex (

⇀
r ) = − 2

π
kF (

⇀
r )F (η)

F (η) =
1

2
+

1− η2

4η
ln

(
1 + η

1− η

)

η ≡ η(
⇀
r ) =

kF (
⇀
r )√

k2F (
⇀
r ) + (Eel + IP)

, kF (
⇀
r ) =

(
3π2ρ(

⇀
r )
)1/3

,

(3.9)

where ρ(
⇀
r ) is the charge distribution of the initial (ground) state of the target, Eel is the energy of

the incident electron, and IP is the ionization potential of the target. The correlation-polarization

contribution to (3.5), Vcopol, is a piecewise potential made of the correlation potential Vco and the

long-range polarization potential Vpol. The latter is given, in atomic units, by

Vpol(
⇀
r ) = − 1

2r4
(
α∥ + α⊥P2(cos(θ))

)
, (3.10)
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while the former is given by

Vco(
⇀
r ) =


0.0311 ln(rs)− 0.0584 + 0.00133rs ln(rs)− 0.0084rs r < 1

−0.1423(1 + 7
6
β1r

1/2
s + 4

3
β2rs)/(1 + β1r

1/2
2 + β2r2)

2 rs ≥ 1,

(3.11)

where β1 = 1.0529, β2 = 0.3334, and rs = (3/(4πρ(
⇀
r )))1/3. ρ(

⇀
r ) is still the charge distribution

of the target’s ground state. The correlation-polarization potential is given by (3.11) at shorter

distances and (3.10) at distances larger than the distance at which both intersect.

Figure 3.1 compares the two potentials, which are significantly different at small distances.

The point dipole on its own, therefore, may not accurately describe the C3N DBS. The ab initio

potential, however, includes short- and long-range contributions. The nuclear potential Vnuc is

strongly attractive near the nuclei, where it dominates the interaction. For slightly larger values of

r, the repulsive Velec(ψe) potential and attractive V HFEGE
ex (ψe) and Vcopol(ψe) terms add to make

an overall less attractive potential than the pure charge-dipole potential Vdip. The high energy

continuum states states and resonances are not expected to be accurately represented by the ab

initio potential, but it should describe the process qualitatively well at low collision energies where

the long- and mid-range contributions control the dynamics.

Dipole-bound states

First, the final (DBS) wavefunctions are calculated by solving the Schrödinger equation

[
− 1

2m

(
1

r

d2

dr2

) ⇀

L ·
⇀

L

2mr2
+B

⇀

J ·
⇀

J + V (r, Ẑ)

]
ψi(

⇀
r , Ẑ) = (E − Eα)ψ

i(
⇀
r , Ẑ), (3.12)

where
⇀
r and Ẑ are, respectively, the position vector of the scattering electron and the unit vector

representing the orientation of the molecular axis in the lab frame, and B is the rotational constant

of C3N (linear). m is the reduced mass of the e– – C3N system,
⇀

L is the orbital angular momentum
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Figure 3.1: The two potentials used in the study, Vdip (left panel) and Vai (right panel), shown as a
function of the Jacobi coordinates r and θ. The energy-dependent potential Vai is represented at an
electron scattering energy -0.1 eV (∼-806.5 cm−1). The origin of the figure is the C3N CoM. The
positions of the four atoms are also shown on the right panel.

operator,
⇀

J is the total angular momentum operator, and Eα is the energy of the molecule. A

simple basis set to describe the free molecule, ϕα = |JmJ⟩, is comprised of the eigenfunctions of

(J2,mJ ), mJ being the projection of J onto the lab-frame ẑ-axis. The resulting radial coupled-

channel equation to solve is then

[
d2

dr2
− l(l + 1)

r2
+ 2m(E − Eα)

]
ψα,ml(α),l(r) = 2m

∑
α′m′

ll
′

(
B

⇀

J ·
⇀

J + V (r, Ẑ)
)αlml

α′l′m′
l

ψα′,m′
l,l

′(r)

(3.13)

We propagate solutions with the Magnus propagator as described in the work of Heather and

Light90,91, and Guillon and Stoecklin 92 . The solutions are propagated from the classically for-

bidden small-r, where the solution and its coordinate derivatives are assumed to be zero. The

propagation continues to some boundary value in the potential well rb, at which the R-matrix is cal-

culated according to (2.69). A solution second propagation is done from large distances where the

solution obeys asymptotic boundary conditions given by the Wentzel-Kramers-Brillouin (WKB)

approximation to r = rb, where a second R-matrix is calculated. A third matrix Rdiff , equal to

the difference of the two R-matrices from each propagation, is constructed and diagonalized. This
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Table 3.1: DBS energies (cm−1) obtained for the two potentials for different values of J .

J E(Vai) E(Vdip)
0 -6.87 -22.13
1 -6.57 -21.80
2 -5.87 -21.14
3 -4.90 -20.15
4 -3.51 -18.84
5 -1.87 -17.19
6 -15.21
7 -12.91
8 -10.27
9 -7.30
10 -4.01
11 -0.38

procedure is repeated for several energies, varied from near the bottom of the potential well to the

continuum, to search for bound states at which at least one eigenvalue of Rdiff is zero.

40 rotational states of C3N were used, the wavefunctions were propagated from r = 0.1

to r = 300 bohr, and the boundary between propagation and counter-propagation was fixed at

rb = 3.2 bohr. The energies of the DBSs obtained using each of the two potentials are given in

Table 3.1 for different values of the total angular momentum J . The potential Vdip supports bound

states for J = 0 to J = 11, while Vai only supports bound states up to J = 5 due to the less

attractive mid-range part of Vai . For either potential, even-parity J > 0 states exist only for odd

values of J and odd-parity states exist only for even values of J . Successive rotational levels in

both cases follow the usual law for a rigid linear molecule with a rotational constant B:

Erot = Eground +BJ(J + 1), (3.14)

where Eground is given by the J = 0 value of each potential in Table 3.1. The rotational constant

of Gottlieb et al. 93 agrees well with the energy splittings in Table 3.1. Taking a Boltzmann average
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Figure 3.2: Dipole-bound states of C3N
– for J = 0 with energy -6.87 cm−1(left) and J = 1 with

energy -6.57 cm−1(right)

over the DBS energies obtained with the Vai potential,

Eavg =

5∑
J=0

EJ(2J + 1)e−EJ/kT

5∑
J=0

(2J + 1)e−EJ/kT

, (3.15)

where EJ is the energy in Table 3.1 relative to the J = 0 value, we find an average value of

2.66 cm−1 at the experimental temperature of 16 K, which is in good agreement with the exper-

imental estimate (-2±1 cm−1) of Simpson et al. 26 and the theoretical value (-2 cm−1) obtained

by the multireference configuration interaction (MRCI) calculation of Jerosimić et al. 94 , who ne-

glected rotation.

Figure 3.2 shows contour plots of the two lowest-energy DBS wavefunctions obtained

for the Vai potential. Wavefunctions with larger J look qualitatively similar, but with additional

nodes along the ẑ-axis. Wavefunctions associated with the Vdip potential qualitatively similar long-

distance forms, but lack the short-range features of the Vai wavefunctions.
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Continuum states and REA cross sections

Initial (continuum-state) wavefunctions for the e– – C3N system are also needed. One major

difference between this approach and that of Lara-Moreno et al. 24 is that we take into account the

effect of rotation on the REA process. As discussed in the previous chapter, the lab frame is more

appropriate for such a description than the molecular frame used in that study. Furthermore, we

take advantage of our local model of the interaction potential and use a method that was initially

developed for radiative association95,96 and later adapted to REA97,98.

Vibration, however, is not resolved. The scattering wavefunctions, in the rigid rotor ap-

proximation, take the following form in Jacobi coordinates:

ψi(
⇀
r , Ẑ) =

1

r

∑
jl

χJM
jl (r)Y JM

jl (r̂, Ẑ). (3.16)

⇀

l is the orbital angular momentum of the electron,
⇀

j is the total angular momentum of the neutral

target, and
⇀

J =
⇀

j +
⇀

l is the total angular momentum of the system. M , ml, and mj are, respec-

tively, the projections of
⇀

J ,
⇀

l , and
⇀

j on the lab-frame ẑ-axis. The superscript i denotes that this is

an initial state of the system. The angular functions Y JM
jl (r̂, Ẑ) are given by

Y JM
jl (r̂, Ẑ) =

∑
mjml

⟨jmjlml|JM⟩Ylml
(r̂)Yjmj

(Ẑ), . (3.17)

where Ylλ are the real-valued spherical harmonics (B.24). It should be noted that, as per conven-

tional notation, any two vectors â and
⇀
a have the same orientation, but â has unit length.

The radial part of the scattering wavefunction, χJ
jl(r), solves the driven differential equa-

tion96 [
d2

dr2
− l(l + 1)

r2
+ k2j (E)− 2mrV

J
j′l′,jl(r)

]
χJ
jl(r) = λαJjl (r), (3.18)

where V J
j′l′,jl(r) is the potential matrix in the basis (3.17). The term on the right-hand-side of
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(3.18) is the driving term for a given initial (scattering) and final (bound) state of the system, each

respectively characterized by the quantum numbers (j, l) and (α, J), where α is a channel index.

The driving term is a real quantity resulting from the dipolar coupling of the initial and final states

within the dipolar approximation, given by

λαJjl (r) = −2m

∫
dr̂ dẐ Y JM

jl (r̂, Ẑ)µ(
⇀
r , Ẑ)ψf

αJ(
⇀
r , Ẑ), (3.19)

where m is the reduced mass of the system. The final wavefunctions of the system are calculated

in the lab frame and expanded in the basis (3.17):

ψf
αJ(

⇀
r , Ẑ) =

1

r

∑
jl

ωJM
jl (r) Y JM

jl (r̂, Ẑ). (3.20)

The superscript f indicated that this is a final state of the system and ωJM
jl (r) is the radial part of

the final wavefunction.

The two sets of DBS wavefunctions — obtained with the potentials Vai and Vdip — are then

used to calculated REA cross sections in the same basis of 40 rotational levels. The REA cross

sections are given by the following:

σREA
f =

ga
gn

8π2

3k2ec
3

∑
J,α

ω3
α|dαJ

′

j,J |2, (3.21)

where dαJj,J — obtained from the driving term96 — is the transition dipole moment, ωα is the

frequency of the emitted photon (not to be confused with the radial part of (3.20)), and ga and gn

are, respectively, the spin degeneracy factors of the anion and the neutral.
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Figure 3.3: The REA cross sections for different initial rotational states j of C3N
– using the Vai

(left) and Vdip (right) potentials. The figures show the result (purple curve with error bars) of the
previous REA study22. The error bars on the curve represent the uncertainty of the model used in
that study.

Results

The cross section is summed over J , i.e. over the possible DBSs. Figure 3.3 shows the REA

cross sections for different initial rotational states of C3N using both potentials and the result of the

previous REA investigation22, which considered the ground electronic state of C3N– to be the final

state. For scattering energies below 0.1 eV, the present cross sections are much smaller than those

of Khamesian et al. 22 , which is expected for low collisions where the overall magnitude of the

cross section is dominated by the ω3
α term in (3.21). ωα is much smaller for a transition to a DBS

than for a transition to the ground anionic state. While the DBSs sit a few wavenumbers below the

neutral’s potential energy surface, the electron affinity of C3N– was determined experimentally to

be ∼34727 cm−1 26. The present cross sections approach that of Khamesian et al. 22 , approximately,

at larger scattering energies.

Figure 3.4 shows a subset of the driving terms included in the present calculations. The

oscillatory nature of the driving terms at smaller r manifest as the high-energy oscillations of the

REA cross sections (see Figure 3.3).

The present cross sections are even smaller at energies relevant for dense interstellar cloud
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Figure 3.4: Driving terms between various initial and final states of the system.

chemistry than those of Khamesian et al. 22 . The present study does consider dipole scattering

states (DSSs, dipole states with energies just above the ionization threshold), which suggested

by Carelli et al. 99 to enhance REA cross sections because of their large overlap with DBSs and

small dissipation energies. However, the emitted photon’s frequency remains small and may not

be enough to compensate for the larger transition dipole moment one might obtain by starting from

a DSS. Nonetheless, such an investigation is beyond the scope of the current study and should be

investigated to draw any conclusions more tentative than this.

The work detailed here on REA has been published:

• Joshua Forer, Viatcheslav Kokoouline, and Thierry Stoecklin. Radiative electron attachment

to rotating C3N through dipole-bound states. Physical Review A, 107(4):043117, 2023
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CHAPTER 4: DISSOCIATIVE RECOMBINATION AND ROVIBRONIC

EXCITATION

Of the multitude of processes that can occur when an electron collides with a molecule, DR of

molecular cations is among the most complicated to study, if not the most complicated, due to the

different available breakup modes and how Rydberg series drive the reaction. The total energy of

the electron-ion system is the sum of the incident electron’s kinetic energy Eel and the channel

energy of the ion Ei, the latter of which is determined by the initial state i of the ion, i.e.

Etot = Ei + Eel. (4.1)

Depending on the theoretical treatment, the channels could have any combination of electronic, vi-

brational, or rotational resolution. Molecular ions found in diffuse clouds are expected to be in the

ground rovibronic state due to radiative cooling, where a molecule loses energy via spontaneous

photoemission.

Upon collision, assuming DR takes place, potential energy binding the ion is transferred to

kinetic energy as it fragments. The asymptotic limit of the potential energy curve through which

the system dissociates is know as the dissociation energy, Ediss, which is the difference between

Etot and the kinetic energy of the products, Ekin:

Etot = Ediss + Ekin. (4.2)

DR, of course, is not the only process that can occur during an electron-molecule collision. The

main competitor, at low energies, is autoionization, an electron escapes from the neutral molecule

formed by the electron-ion system during the collision. This could be elastic scattering or inelastic

scattering, where the target ion is (de-)excited by transferring energy to the scattered electron.
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Figure 4.1: Sketch of the direct DR mechanism.

DR — resonant and nonresonant

DR is often separated into two mechanisms: direct and indirect or, respectively, resonant and

nonresonant DR. In the direct mechanism, the electron is captured adiabatically into a dissociative

state (resonance) of the neutral, as depicted by Figure 4.1. Direct DR is more likely to take place

in systems where the dissociative resonance crosses the relevant initial potential energy curve in or

slightly to the right of the Franck-Cordon region, and typically at higher electron energies. Indirect

DR described the non-adiabatic process by which an electron is captured into a Rydberg state of the

neutral, after which the system transitions to the above-mentioned resonance. Indirect DR can be

further separated into the core-unexcited and core-excited indirect mechanisms, as shown in Figure.

4.2 The term ”core” refers to the target ion in the sense that the singly excited Rydberg state is made

up of the ionic core and the captured Rydberg electron. For systems with low-lying electronic

states like CH+, these core-excited states become more important at low electron energies. In the

case of CH+, core-excited states were found to have a significant effect on the experimental101
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Figure 4.2: Sketch of the core-unexcited (left) and core-excited (right) indirect DR mechanisms.

and theoretical54,57 cross sections. The Rydberg state in which the incoming electron could be

captured can belong to any of the ion’s electronic states that are energetically accessible. These

could be vibrationally or rotationally excited cores in the ground or excited electronic states. The

incoming electron imparts some of its energy to the ionic core, exciting it in some combination

of its electronic, vibrational, or rotational degrees of freedom. Once the electron is captured, it

continues to exchange energy with the ionic core until the system either autoionizes or proceeds

to the dissociative resonant state. For completely or near-completely indirect DR, i.e. where the

indirect mechanism’s contribution is negligible, rotation dominates low-energy DR35,36.

Low-energy DR of diatomic ions

To study low-energy DR in systems with low-lying electronic states, which is generally difficult

due to the many low-lying electronic resonances, we have developed a method that incorporates

R-matrix theory, frame transformations with a complex absorbing potential (CAP), and MQDT.

The method will be presented generally, then molecule-specific details will be mentioned.
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Figure 4.3: Procedure flowchart of the present diatomic DR method. The different colors represent
the degrees of freedom included at different steps in the method: electronic (orange), vibrational
(vermillion), and rotational (blue). The boxes represent various procedures applied to their input
matrices. The MQDT procedure applied to the R-matrix is given by (2.74). The other MQDT
(rovibronic and vibronic) procedures applied to the S-matrix after frame transformations are given
by (4.23, 4.24) for CH+ and (4.25, 4.26) for CF+. The transformation of the δ-matrix from a basis
of real spherical harmonics to complex spherical harmonics

(
Ylλ → Y λ

l

)
is given by (B.24). VFT

is the vibrational frame transformation (2.80). RFT is the rotational frame transformation (4.16,
4.17). The incorporation of the present DR data into plasma and astrochemical models does not
fall within the scope of this study; their inclusion in the diagram is simply to suggest how the
present method might be interfaced with other applications.

Fixed-nuclei electronic-scattering matrix

The first steps in the approach are to identify which electronic states of the ion we want to include in

the approach and then perform R-matrix scattering calculations at several values of the internuclear

distance (R) such that these states are included in the calculations. The R-matrix calculations

produce K-matrices, as per (2.72), in a basis of open channels at some scattering energy. Details

on obtaining the K-matrices differ for CH+ and CF+, so they will be discussed in the relevant

molecule-specific subsections that follow. The approach assumes an energy-independent K-matrix

KΛ(R) and, therefore, an energy-independent S-matrix SΛ(R) (2.23). The matrices are in a basis

of electronic channels |nlλ⟩, where n identifies the electronic state of the target, l is the orbital
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angular momentum quantum number of the scattering electron, and λ is the projection of
⇀

l on the

molecular frame. We consider l = 0 – 2 for both CH+ and CF+, yielding up to (some channels are

eliminated in the CH+ R-matrix before obtaining the K-matrix) 9 partial waves attached to each

electronic state n.

Elements of the K-matrix, however, exhibit strong discontinuities as functions of R when

the eigenphase-shifts πµ approach ±π/2 (mod π) because the K-matrix eigenvalues behave as

tan(πµ) (4.4). From the discontinuous K-matrix, we construct the continuous matrix of scattering

phase-shifts, the δ-matrix, whose eigenvalues are the phases in the argument of the S-matrix in

(2.24). The K-matrix and δ-matrix are formally related by

KΛ(R) = tan
(
δΛ(R)

)
. (4.3)

In practice, we first diagonalize K(R) across all considered values of R,

KΛ(R) = U(R)Kdiag(R)U(R)† = U(R) tan
(
πµdiag

)
(R)U(R)†, (4.4)

where Kdiag is the diagonal matrix whose nonzero entries are the eigenvalues of K(R). The

superscript Λ is again used to indicated that the electronic matrices KΛ(R), δΛ(R), and SΛ(R) are

block diagonal with respect to Λ. We then construct δΛ by taking the arctangent of Kdiag(R) and

the using the same unitary matrices U(R) in (4.4):

δΛ(R) = U †(R) arctan
(
Kdiag(R)

)
U(R) = U †(R)πµdiag(R)U(R). (4.5)

With appropriate branch choices in (4.5), the matrix δΛ(R) is continuous as a function ofR. Figure

4.4 compares K-matrix elements with some of the δ-matrix elements to illustrate this.

The K-matrices, and therefore the δ-matrices, are calculated in the Abelian C2v point group

in a basis of real spherical harmonics Ylλ. We transform the δ-matrix from this basis to the basis
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Figure 4.4: K-matrix couplings and scattering phase-shifts plotted as a function of the internuclear
distance R for CH+. The notation for each coupling’s partial waves takes the form lλ ∼ l′λ′. All
K-matrix couplings are shown, but only some δ-matrix couplings are plotted. Large jumps in the
scattering phase-shifts occur around the same positions of the K-matrix discontinuities.

of complex spherical harmonics Y λ
l , which are better adapted for the natural non-Abelian C∞v

point group of heteronuclear diatomic ions, such that the electronic channels |nlλ⟩ have a definite

projection of the total angular momentum. Before applying the frame transformations, we apply

a basis transformation to the δ-matrix. The channel functions of the incident electron and channel

functions of the target electronic state undergo the same basis transformation; both basis transfor-

mations commute. The channel functions for the incident electron, given entirely by l and λ, are

transformed from Ylλ to Y λ
l , as per (B.24). Before the transformation, they belong to the following

irreps in the C2v point group:

Ylλ



A1 : λ ≥ 0, λ even

A2 : λ < 0, λ even

B1 : λ > 0, λ odd

B2 : λ ≥ 0, λ odd

(4.6)

The incident electron channel functions transformation is block diagonal over l, i.e. each Ylλ is

transformed into Y λ
l only for the same value of l. The electronic states considered in the case
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of CH+ and CF+ are of Σ+ (ground state) or Π (excited states) symmetry. The Σ states behave

behave as Y00 and, therefore, undergo only an identity transformation. The Π states, however, are

doubly degenerate in the C∞v point group and are considered separately in the C2v point group as

irreducible representations (irreps) B1 and B2 with, respectively, Λ = 1 and Λ = −1, chosen to

be consistent with (4.6). Similarly to the incident electron channel function transformation being

transformed according to (B.24), the transformation is only carried out between corresponding

degenerate target states: Π+

Π−

 =
1√
2

−1 −i

1 −i


ΠB1

ΠB2 ,

 (4.7)

where Π± are the complex-values channel functions for the target electronic states with projection

±1, and ΠB1 and ΠB2 are, respectively, the real-values channel functions for the target electronic

states of B1 and B2 symmetry. It should be noted that (4.7) is just a specific case of (B.24).

After this transformation is performed on δΛ(R), we convert it to the S-matrix via the

formal relation

SΛ(R) = e2iπδ
Λ(R), (4.8)

in a similar manner as before. We diagonalize δΛ(R),

δΛ(R) = U(R)δdiag(R)U †(R), (4.9)

to obtain the unitary matrices U(R). These U(R) diagonalize KΛ(R), δΛ(R), and SΛ(R) if they

are in the same basis of complex-valued spherical harmonics, and are used to obtain SΛ(R) in a

similar manner to that of (4.5):

SΛ(R) = U †(R)e2iπδ
diag(R)U(R), (4.10)

which is unitary by construction. The form of (4.10) is reminiscent of the single-channel definition
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of the S-matrix (2.11).

Rovibronic frame transformation

The electronic S-matrix, SΛ(R), is expressed in the basis of electronic channels |nlλ⟩, calculated in

the body frame. Using frame transformations, the R-dependent body-frame S-matrix will be con-

verted to an R-independent lab-frame S-matrix with additional vibrational and rotational channel

indices. Two frame transformations are carried out in series: the vibrational frame transformation

and then the rotational frame transformation.

Vibrational states of the ion must be calculated to carry out the vibrational frame transfor-

mation. In this approach, bound states and continuum states are needed. Bound states are exactly

that — bound vibrational states within an electronic state of the ion with a vibrational energy that is

lower than the dissociation limit of the attached electronic state. Continuum states — although still

attached to an electronic state of the ion — have a vibrational energy that is above the respective

state’s dissociation limit. The boundary conditions for each type of vibrational state is important:

bound states tend to 0 at the endpoints of the R interval while continuum states have outgoing-

wave behavior, representing outgoing dissociative flux. To obtain vibrational states of the ion, the

vibrational Schrödinger equation (2.79) needs to be solved. The potential, however, is non-real. In

addition to the internuclear potential, a purely imaginary contribution is added of the form102

VCAP (R) = iηNe−2L/(R−R0), (4.11)

where N is a normalization constant, η is the CAP strength, L is the CAP length (the length of the

imaginary part), and R0 is where the imaginary part of the CAP begins, (all chosen according to

Vibok and Balint-Kurti 102). CAP parameters used in the vibrational frame transformation of CH+

and CF+ are given in Table 4.1.

The vibrational Hamiltonian, then, is complex symmetric and not Hermitian. Therefore,
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Table 4.1: CAP parameters used in the vibrational frame transformation in the DR of CH+ (top)
and CF+ (bottom).

target η (au) N L (bohr) R0 (bohr)
CH+ 0.060 13.22 1.2 4.8
CF+ 0.066 13.22 2.0 5.0

the eigenenergies (vibronic channel energies) are, in general, complex:

Env = εnv − i
Γ

2
, (4.12)

,where εnv is the vibrational energy (real) of the ion and Γ is the width of the state. Γ is negligi-

ble only for bound vibrational states. The vibrational wavefunctions ϕnv(R), then, obey slightly

different normalization: ∫
dRϕn′v′(R)ϕnv(R) = δnn′δvv′ . (4.13)

The eigenenergies are real for bound vibrational states, but have non-negligible imaginary compo-

nents for continuum state. Because the functions ϕnv(R) obey the orthogonality condition (4.13)

where neither wavefunction is complex-conjugated, we define unitarity for the vibronic S-matrix

slightly differently (described in Appendix C). Given the electronic S-matrix SΛ(R), we define

two vibronic S-matrices:

SΛ
n′v′l′λ′,nvlλ =

∫
dRϕn′v′(R)S

Λ
n′l′λ′,nlλ(R)ϕnv(R) (4.14)

and

SΛ‡
nvlλ,n′v′l′λ′ =

∫
dRϕnv(R)S

Λ†
nlλ,n′l′λ′(R)ϕn′v′(R). (4.15)

Unitary subblocks of SΛ† (the Hermitian adjoint of the vibronic matrix SΛ (4.14)) and SΛ‡ (the
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matrix (4.15)) corresponding to such bound states are identical. The only differences arise for

blocks corresponding to continuum-state wavefunctions. As detailed in (C), SΛSΛ‡ = I . This

marks the end of the vibrational frame transformation.

The next step is the rotational frame transformation (2.81), applied to both vibronic S-

matrices (4.14) and (4.15):

SJ
n′v′j′µ′l′,nvjµl =

∑
Λ

∑
λ′λ

(−1)l+l′+λ+λ′
Cj′µ′

l′−λ′,JΛS
Λ
n′v′l′λ′,nvlλC

jµ
l−λ,JΛ, (4.16)

SJ‡
nvjµl,n′v′j′µ′l′ =

∑
Λ

∑
λ′λ

(−1)l+l′+λ+λ′
Cj′µ′

l′−λ′,JΛS
Λ‡
n′v′l′λ′,nvlλC

jµ
l−λ,JΛ. (4.17)

The superscript J denotes that the rovibronic S-matrices on the left-hand-side of (4.16) and (4.17)

are block-diagonal with respect to the magnitude of the system’s total angular momentum:

⇀

J =
⇀

j +
⇀

l , (4.18)

Λ = µ+ λ. (4.19)

where
⇀

j is the total angular momentum of the target ion and Λ, λ, and µ are the projections of
⇀

J ,
⇀

l and
⇀

j on the molecular axis. The rotational frame transformation is still unitary, i.e. SJSJ‡ = I .

The rovibronic channels Envj energies are related to the vibronic channels energies by

Envj = Env +Bnvj(j + 1), (4.20)

where Bnv is the rotational constant of the ion, calculated for the vibronic state |nv⟩.

DR cross sections and rate coefficients

Cross sections for DR from some initial channel are calculated for several electron energies (and

therefore values of Etot) (4.1). The rovibronic S-matrices SJ and SJ‡ are in a basis of asymptoti-
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cally open channels, but the number of open channels may change as a function ofEtot. In the even

where at least one channel is asymptotically closed, which is the case for low-energy collisions,

we use the channel-elimination procedure (2.68, 2.64), applied separately to SJ and SJ‡. They are

first partitioned into blocks defined by no open (o) channels and nc closed (c) channels:

SJ =

Soo Soc

Sco Scc

 , SJ‡ =

S‡oo S‡oc

S‡co S‡cc

 . (4.21)

Then, the diagonal nc × nc eigen-quantum-defect matrix β(Etot) is constructed in the same basis

of channels as Scc and S‡cc as

β
i′i
(Etot) =

π√
2 (Ei − Etot)

δii′ , (4.22)

where i and i′ run over closed channels, and Ei is the channel energy Envj (4.20). We can then

proceed with the closed-channel elimination procedure (2.68), applied to both S-matrices:

SJ,CE(Etot) = Soo − Sco

[
Scc −

(
q cos(β) + iq−1 sin(β)

)−1 (
q cos(β)− iq−1 sin(β)

)]−1
Sco

SJ,phys(Etot) =
[
(q−1 − q) + (q−1 + q)SJ,CE

] [
(q−1 + q) + (q−1 − q)SJ,CE

]−1
,

(4.23)

and

SJ,CE‡(Etot) = S‡oo − S‡co

[
S‡cc −

(
q cos(β∗)− iq−1 sin(β∗)

)−1 (
q cos(β∗) + iq−1 sin(β∗)

)]−1
S‡co,

SJ,phys‡(Etot) =
[
(q−1 − q) + (q−1 + q)SJ,CE‡] [(q−1 + q) + (q−1 − q)SJ,CE‡]−1 .

(4.24)

For q = I , (4.23) and (4.24) reduce, respectively, to

SJ,phys(Etot) = Soo − Soc

(
Scc − e−2iβ

)−1
Sco (4.25)
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Figure 4.5: Sum of degenerate DR probabilities P J
1000(Etot) as a function of total energy from the

ground rovibronic state of CH+.

and

SJ,phys‡(Etot) = S‡oo − S‡oc
(
S‡cc − e2iβ

∗)−1
S‡co (4.26)

just as (2.68) reduces to (2.64) under the same condition. It is important to note that between (4.23)

and (4.24), as well as between (4.25) and (4.26), the sign of the real part of β changes. Details on

q will be given for each target molecule.

The matrices SJ,phys(Etot) and SJ,phys‡(Etot) are the physical S-matrices introduced in

(2.64, 2.68). They are used to calculate the probability for DR to occur at that Etot, starting from

some initial state |nvjµ⟩ and a given J :

P J
nvjµ(Etot) = (2J + 1)

∑
l

[
1−

∑
l′

∑
n′v′j′µ′

SJ,phys
n′v′j′µ′l′,nvjµl(Etot)S

J,phys‡
nvjµl,n′v′j′µ′l′(Etot)

]
. (4.27)

The quantity P J(Etot) can exceed 1 for J > 0, as shown in Figure 4.5. It accounts for the rotational
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degeneracy (2J +1) and could be referred to as a degenerate probability. P J(Etot)/(2J +1) does

not exceed 1 because the physical S-matrix is subunitary and the rotational degeneracy is not

included. From (4.27), the DR cross section for each J from some initial channel |nvjµ⟩ can be

calculated,

σJ
nvjµ(Eel) =

π

k2
1

2j + 1
P J
nvjµ(Etot), (4.28)

where k =
√
2meEel is the magnitude of the incident electron’s wave vector. Taking the sum over

J of (4.28) gives us the total DR cross section from the initial channel |nvjµ⟩:

σnvjµ(Eel) =
∑
J

σJ
nvjµ(Eel). (4.29)

In case the rotational frame transformation is not applied, which may be desirable when

comparing to results that also lack rotational resolution, (4.27, 4.28, and 4.29) take on slightly dif-

ferent forms. Recalling that the vibronic S-matrices are in the basis of channels vibronic channels

|nvlλ⟩, the closed-channel elimination procedure (4.23 – 4.26) is applied in the same way to SΛ

and SΛ‡ to produce, respectively, SΛ,phys(Etot) and SΛ,phys‡(Etot). The vibronic DR cross section

from some initial channel |nv⟩, then, is given by

σnv(Eel) =
π

k2

∑
lλ

[
1−

∑
l′λ′

∑
n′v′

SΛ,phys
n′v′l′λ′,nvlλ(Etot)S

Λ,phys‡
nvlλ,n′v′l′λ′(Etot)

]
. (4.30)

Convolving and averaging theoretical results

Cross sections obtained from (4.30) or (4.29) benefit from computer precision, but experimental

measurements, with which we should compare our results, typically have much larger uncertainties

in their measurements. This is not to say that theoretical models and numerical methods do not

have uncertainties in their accuracy, but that the theoretical results can be calculated for electron

energies with precision down to the numerical precision of the data types used to hold such val-
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ues. For example, Figure 4.11 shows DR cross sections from experimental measurements39 and

unconvolved theoretical results of the present study. The theoretical results have a large number

of resonant structures, most of which are not present in the experimental data. It is difficult to

compare the two without taking the difference in energy resolution into account — resonances in

reaction cross sections can have peaks that are orders of magnitude apart.

Theoretical data, e.g. a cross section function σ(E), can be convolved with a function f(E)

including experimental energy precision that takes into account neighboring values:

σconv(E) ≡
∫
dE ′σ(E ′)f(E − E ′)∫
dE ′f(E − E ′)

. (4.31)

The popular choices for the function f are a Gaussian distribution,

σconv(E) =

∞∫
0

dE ′σ(E ′)e−(E−E
′)2/(2γ2)

∞∫
0

dE ′e−(E−E′)2/(2γ2)

, (4.32)

and a Lorentz or Cauchy distribution,

σconv(E) =

∞∫
0

dE ′σ(E ′) 1
π

γ
(E−E′)2+γ2∫

dE ′ 1
π

γ
(E−E′)2+γ2

. (4.33)

In (4.33) and (4.32), γ is a convolution width in the same units of energy as E and E ′. This can

be chosen arbitrarily to smooth out resonances as the user wishes, but γ is often taken from an

experiment against which theoretical results are compared. Common values for γ range from 0.1

to a few meV. As demonstrated by Figure 4.17, many resonant features are lost with increasing

convolution width.

Additionally, the data could be convolved with a Maxwell-Boltzmann distribution to pro-
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duce state-selected rate coefficients:

αkin
i =

∞∫
0

σi(Eel)e
−Eel/(kBT )

√
EeldEel.

∞∫
0

e−Eel/(kBT )
√
EeldEel.

(4.34)

This is relevant to a situation in in which the molecules and electrons are in thermal equilibrium,

such as in diffuse interstellar clouds. For such a comparison, it is important to retain the cross

sections from the ground rovibronic state, given that this is how the ions are expected to be found

in diffuse clouds. However, one may still wish to average the data over initial states:

αkin =

∑
i

αi(Eel)(2j + 1)e−Ei/(kBT ).∑
i

(2j + 1)e−Ei/(kBT ).
(4.35)

In (4.34, 4.35), i identifies initial channels and Ei are the corresponding channel energies, and

σi(Eel) is the cross section for some reaction, e.g. DR or rotational excitation. As before, j in

(4.35) can be taken to be zero for cross sections that are not rotationally resolved.

Storage ring beams, like at the CSR39, may require a more complicated convolution and

averaging procedure to account for experimental uncertainties. One such example is in merged-

beam experiments, where different energy spreads parallel and perpendicular to the beam direction

need to be considered. Additionally, the temperature T of the ion beam must be considered because

some ions may be rovibronically excited, and their contribution may not be removable from the

experimental results. An anisotropic Maxwell-Boltzmann convolution103 for such a situation has
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may be useful:

σconv(E∥) =

∑
i

∞∫
−∞

du∥
∞∫
0

dE⊥σ
(
(v∥ + u∥)

2/2 + E⊥
)
w

γ∥,γ⊥
i

(
T, u∥, E⊥

)
∑
i

∞∫
−∞

du∥
∞∫
0

dE⊥w
γ∥,γ⊥
i

(
T, u∥, E⊥

)
w

γ∥,γ⊥
i (T, u, E) = (2j + 1)e−Ei/(kBT )e−u

2/(2γ∥)e−E/γ⊥ .

(4.36)

In (4.36), γ∥ and γ⊥ are the convolution widths for the parallel and perpendicular direction, respec-

tively, andEi is the energy of the ith channel. The velocity of the electrons, relative to the molecule,

is given by
⇀
v =

⇀
v ∥+

⇀
u∥+

⇀
u⊥. The measurements are made at the velocity

⇀
v ∥;

⇀
u∥ and

⇀
u⊥ are the

parallel and perpendicular components of the energy spread that contribute to the actual velocity
⇀
v . The parallel and perpendicular energy components are E∥ = mev

2
∥/2 and E⊥ = meu

2
⊥/2 The

summation runs over all considered initial states i. j can be taken to be zero for data that is not

rotationally resolved.

Low-energy DR of CF+

The major differences between the present method’s application to study CF+ and CF+ lie in ob-

taining K-matrices from the fixed-nuclei R-matrix calculations. Figure 4.3 has two arrows (edges)

coming from the R-matrix calculations. The edge labelled CF+ bypasses the R(R) and MQDT

CCEP nodes, pointing directly to the K(R) node. In a sense, this method is less advanced (de-

veloped earlier) than the one applied to CH+, whose edge does not bypass the two former nodes.

Fixed-nuclei calculations

The lowest three potential energy curves of CF+ were calculated with in the MRCI method and

the correlation-consistent polarized valence double-zeta (cc-pVDZ) basis set for internuclear dis-

tances R from 2.20 bohr to 2.28 bohr using the MOLPRO software suite88,89. It should be stressed
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that CF+ is a closed-shell system. At the calculated equilibrium distance of 2.216 bohr, the two

lowest states (X1Σ+ and a3Π) are separated by ∼5 eV — a small enough difference to expect

Rydberg states converging to the a3Π state to play an important role in low-energy scattering.

The R-matrix calculations were performed in the CoM frame of CF+ with an R-matrix

radius of a = 10 bohr — implemented in UKRMol104,105,105, accessed via the Quantemol-N in-

terface106. The full configuration interaction (FCI) method was used with cc-pVDZ basis set to

represent the electronic wavefunction of the target. The lowest three electronic target states were

considered: X1Σ+, a3Π, and A1Π. The 1σ2 and 2σ2 orbitals were frozen, while the active space

contained the 3–8σ and 1–3π orbitals. Virtual orbitals 9–10σ and 4π were used as members of

the continuum set in the inner-region calculations. R-matrix calculations were performed for 6

evenly-spaced values of the internuclear distance from R = 2.20–2.30 bohr. 25 partial waves (all

projections of l =0–4) were used to represent the scattering electron.

The K-matrix is taken directly from the R-matrix calculations in a basis of open channels.

To include the effect of the excited states, we evaluated the K-matrices at energies about 0.1 eV

above the A1Π state. This is a relatively high energy at the internuclear distance of the X1Σ+

state — about 8 eV — and is a major limitation of this version of the approach. However, the

eigenphases above the considered electronic states are almost energy-independent in the region

just above the A1Π state, as demonstrated by Figure 4.6. This ensures we do not evaluate the K-

matrices near a resonance, which could lead to significant inaccuracy in our energy-independent

S-matrix approach.

The number of internuclear distances used in the R-matrix calculations of CF+ is relatively

small (6). The deep electronic potentials make identifying eigenphases from KΛ(R) (to correct

for branch jumps due to the tangent function (4.4)) difficult to identify across R by comparing

inner products of the eigenvectors between geometries — the same method successfully employed

for CH+. A small number of points inside the Franck-Condon region where this procedure was

feasible were identified and used to create a sparse grid upon which the matrix δΛ(R) would be
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Figure 4.6: CF+ scattering eigenphases for the different irreducible representations of the C2v point
group at R = 2.20 bohr.

interpolated to 20 points within the interval [2.20,2.30] bohr. The δ-matrix elements are then held

constant at the endpoints and extrapolated outwards with an even spacing to 1.2 and 7.0 bohr so that

the vibrational frame transformation (2.80) may be carried out on a sufficiently fine and expansive

R-grid. A significant advantage of the δ-matrix is that it is smooth and relatively safe to interpolate

(with respect to R) when compared to the K-matrix (after having corrected the branch jumps).

Results

DR cross sections were calculated with and without rotational resolution. Cross sections from

the lowest three rovibronic states of CF+ are compared to those obtained from the lowest vibronic

states without rotational resolution in Figure 4.7. The major discrepancies are most evident at the

lowest energies, which is unsurprising. The rotational constant of CF+ in its ground vibronic state

is ∼1.7 cm−1 or ∼2.1×10−4. Hence, the rotationless cross sections are expected to be different

at lower energies. However, major features retain their shape between the two, although major

67



resonance positions at lower scattering energies are shifted. Above ∼ 2 × 10−2 eV, the cross

sections from both calculations become much more similar. The first vibrational threshold is at

about .21 eV — not shown in Figure 4.7.

Figure 4.8 compares the v = 0 (no rotational frame transformation) DR rate coefficients

convolved according to (4.36) to a previous theoretical calculation107 and experimental results from

the Test Storage Ring107 (TSR). Also plotted are our calculated results including the rotational

structure via the rotational frame transformation (j = 0). These results, along with cross sections

from other initial rotational states, are averaged at several rotational temperatures to demonstrate

the difference between approaches with and without rotational structure over several energy ranges.

At lower energies, the difference is significant because of the low rotational energies and especially

small rotational constant of CF+. At higher energies, however, the results are all very similar. This

gives one an idea of the electron energy ranges in which the rotational structure of the ion can or

can not be neglected without significantly reducing the accuracy of the calculation. The average

over initial states was only taken up to 150 K, despite experimental measurements being taken

with ions at approximately 700 K, because our rotational basis was not large enough to confidently

converge thermal averages at higher temperatures.

Low-energy DR of CH+

Fixed-nuclei calculations

Figure 4.10 shows the lowest potential energy curves of CH+. In interstellar clouds and storage

rings, CH+ is observed in its ground state, X1Σ+. The two lowest excited states, a3Π and A1Π,

have relatively low energies of ∼ 1 – 3 eV above the ground state. One would expect the Rydberg

resonances associated with such low-lying electronic states to be important to the indirect DR

mechanism, hence why we include these three states in our study. The potential energy curves

of CH+ were calculated in the C2v group with the MRCI method and the correlation-consistent
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Figure 4.7: DR cross sections for CF+ from its lowest three (j = 0, 1, 2) rovibronic states and from
its lowest vibronic state (v = 0) without rotational resolution.

polarized valence quintuple-zeta (cc-pV5Z) basis set using the MOLPRO software suite88,89.

The scattering calculations were done with the R-matrix method implemented in UKR-

Mol104,108,105, accessed via the Quantemol-N interface106. The full configuration interaction (FCI)

method was used with the correlation-consistent polarized valence quadruple-zeta (cc-pVQZ) ba-

sis set to represent the electronic wavefunction of the ion. The X1Σ+, a3Π, and A1Π electronic

states of the ion were considered. The 1σ2 orbital was frozen; the active space was given by the

2–7σ, 1–3π, and 1δ orbitals; the 8–9σ and 4–5π virtual orbitals were used as members of the con-

tinuum set in the inner-region calculations. Calculations were performed in the C2v Abelian point

group for 300 evenly-spaced values of R between 1.200 and 2.695 bohr, with an R-matrix radius

of a = 13 bohr, in the molecular CoM frame. 25 partial waves with l = 0 – 4 were included to

represent the incident electron.

The K-matrix could be directly extracted from the R-matrix calculations at each R as in

the case of CF+. However, to include channels attached to the excited states, the K-matrices must
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Figure 4.8: DR rate coefficients for CF+. The present theoretical DR rate coefficients from the
lowest vibronic state (v = 0, no rotational resolution) and rovibronic state (j = 0, rotational
resolution) are compared to the previous MQDT treatment and experimental results from the TSR
of Novotný et al. 107 . The rotationally resolved results were also averaged over several initial states
at several rotational temperature of the ions (10, 30, and 150 K)

be calculated at total energies above that of the considered electronic states, i.e. ∼ 3 – 5 eV above

the ground electronic state of the ion, such that these channels are open. Figure 4.9 demonstrates

how, above such energies, the eigenphase are smooth. The K-matrix, therefore, is not expected to

have resonances as a function of energy. However, we do not expect the K-matrix to accurately

reproduce low-energy (Eel ≲ 1 eV) electron scattering.

To circumvent this issue, the energy-dependent R-matrix is extracted from the R-matrix

calculations in the Wigner-Eisenbud form (2.71) at the R-matrix radius (a = 13 bohr) at some rel-

atively smaller energy above the ground electronic state of the ion at each R (0.075 eV). Although

the channels attached to the excited states are asymptotically closed at such energies in our consid-

ered range of R, some are treated as being open — these are considered weakly closed channels.

After this identification, the channel elimination procedure (2.74) is applied to the R-matrix. The
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Figure 4.9: CH+ scattering eigenphases for the different irreducible representations of the C2v

point group at R = 2.10 bohr.

Table 4.2: Channel classification during the MQDT CCEP of the CH+ R-matrix. All possible
projections of l are implied for each value of l. The rightmost column gives the value of the matrix
q used to normalize channel functions and used in the CCEP (4.23, 4.24).

electronic state l classification qil

X1Σ+ 0 – 4 open 1

a3Π
0 – 1 weakly closed 1

2 weakly closed
√
A(2Ei, 2)

3 – 4 strongly closed —
A3Π 0 – 4 strongly closed —

R-matrix is originally expressed in a basis of 125 channels: 25 partial waves l =0–4 attached to

the ground X1Σ+ and the doubly degenerate a3Π and A1Π states. During the channel elimination

procedure, the channels have the classification given by Table 4.2.
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Figure 4.10: Lowest potential energy curves of CH+ with various vibrational levels attached to each
bound electronic state. The dashed line is one of the dissociative (continuum-state) wavefunctions.

The K-matrix is then obtained in the basis of open, weakly closed, and strongly closed

channels from the R-matrix following their relation given in (2.72), where the R-matrix is actually

the physical R-matrix after channel elimination (2.74). Such a K-matrix does not exhibit electronic

Rydberg resonances from the ion’s low-lying electronic states, but the is contained implicitly in the

K-matrix. After closing the strongly closed channels, we are left with 27 channels |ilλ⟩. Hence,

the real and symmetric electronic K-matrices belong to R27×27.

Results

DR cross sections from the lowest three rovibronic levels of CH+ (X1Σ+ v = 0, j = 0, 1, 2)

are shown in Figure 4.11. They are compared against recent experimental measurements made
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Figure 4.11: CH+ DR cross sections as a function of collision energy for the first three rotational
states within the ground vibronic channelX1Σ+, v = 0. The thin line represent raw or unconvolved
theoretical cross sections from the present study (j = 0 – 2), the thick line is the current theoretical
cross section for j = 0, and the circles are experimental DR measurements from the ground
rovibronic state of CH+ 39.

at the CSR by Paul et al. 39 . The abscissa in Figure 4.11 is E∥, the same longitudinal collision

energy as in (4.36). The ordinate values are the measured rate coefficients — not convolved or

thermally averaged — divided by the electron vel =
√

2Eel/me. The theoretical results have many

resonances that are associated with energetically closed channels of the ion, but are convolved

according to (4.36) to compare with the experimental CSR measurements. Energy uncertainties of

γ∥ = 0.27 meV and γ⊥ = 2.0 eV39 were used.

Figure 4.12 shows the same quantity as Figure 4.11 multiplied by the collision energy

Eel. This eases the aggressive log scaling of the cross sections and makes it easier to compare

results with more detail. The CSR experimental data39, a previous room-temperature storage-ring

experiment101, and a single-pass merged-beam experiment109 have their results displayed as points

and compared against previous theoretical results54,57,35,110 and the current convolved theoretical
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Figure 4.12: CH+ DR cross sections multiplied by collision energy Eel · σi(Eel) as a function
of collision energy. The present theoretical DR cross section from the ground rovibronic state
of CH+, convolved according to (4.36) with γ∥ = 0.27 meV and γ⊥ = 2.0 meV. Experimental
DR measurements are represented by circles39, triangles101, and squares109. Previous theoretical
results are given by the dot-dashed54, dashed57, double-dot-dashed35, and dot-double-dashed110

lines.

results. The storage-ring and merged-beam experiments could not resolve DR cross sections to the

ground rovibronic level of CH+. The ions were likely had a significant population of rotationally101

or even rovibrationally109 levels. The storage-ring results agree well at low energies, although

the merged-beam results are larger, possibly due to the vibrationally excited ions. At energies

approaching 0.01 eV from above, the theoretical results of Takagi et al. 35 (rovibrational) and Mezei

et al. 110 (vibrational) agree the best with the experimental CSR39 data. However, the results of

Mezei et al. 110 significantly underestimate the experimental data under 0.01 eV, possibly due to

the omission of the rotational structure.
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Figure 4.13: DR cross sections from the ground vibronic state of CH+. Results from the calculation
without rotational resolution, obtained according to (4.30) are labelled as σ10. Results from the
calculation with rotational resolution, obtained according to (4.30) from the ground rovibronic
state of CH+, are labelled as σ1000. The inset compares the same results from each calculation,
multiplied by the electron scattering energy Eel and convolved with a Gaussian distribution (4.32)
with a width of γ = 5 meV.

Figure 4.13 compares DR cross sections with and without rotational resolution. There is,

unsurprisingly, a lack of resonant structure at lower collision energies in the vibronic calculation.

The first few resonance in the vibronic data seem to be shifted when compared to the rovibronic

results. At larger energies, however, the overall structure of the vibronic and rovibronic data are

similar. The discrepancies are on the order of magnitude of the rotational constant of CH+, which

was calculated to be 13.76 cm−1 (∼1.7 meV) in its ground vibronic state.

Figure 4.14 shows the kinetic state-selected rate coefficients from the theoretical results of

Mezei et al. 110 , the experimental measurements at the CSR39, and the current calculations con-

volved according to (4.34). Our convolved theoretical cross section and kinetic rate coefficients

agrees with the experimental results well at most energies, especially when compared to previous
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Figure 4.14: Kinetic state-selected CH+ DR rate coefficients from the ground rotational state of
the ion. The dashed curve with a filled error curve are from the recent experimental measurements
made at the CSR39, the dot-dashed curve is from previous theoretical calculations that do not
resolve vibration110, and the solid line represents the present theoretical results thermally averaged
according to (4.34, 4.35).

theoretical results. At kinetic temperatures below ∼400 K, our kinetic rate coefficients are closer

to those of the experimental CSR measurements39.

Figure 4.15 shows convolved DR cross sections from the lowest rotational states of CH+

where the K-matrices were evaluated at different energies above the ground electronic state of CH+.

For reference, the CSR results are also plotted. The largest difference is at low energies, where

the energy dependence is not obvious. The lowest and highest evaluation energies agree very

well, while intermediate energies fall anywhere between these two and the experimental results.

Surprisingly, the highest evaluation energy resulted in the best agreement with the experiment

around 1 × 10−2 eV. This suggests there may still be improvements to be made in the method.

Above, ∼ 5× 10−2 eV, the difference is small. This does not necessarily mean that the evaluation

energy of the K-matrix plays less of a role. Instead, some channels that were considered strongly
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Figure 4.15: Convolved CH+ DR cross sections (solid lines) compared with experimental DR cross
sections measured at the CSR39. The convolved cross sections were calculated with S-matrices
evaluated at various energies (given in the legend) above the ground electronic state of the CH+.

closed for these evaluation energies could be considered weakly closed.

Rovibronic excitation of CH+

The present method can also be used calculate rovibronic (de-)excitation cross sections and rate

coefficients. All elements of the approach described above are the same, except the differences

described in this section. One major difference is that there is no CAP (4.11); dissociative flux is

not being considered in this approach. The vibrational Hamiltonian is Hermitian, so we only need

one S-matrix for the calculations. Unitarity of the S-matrix is again defined by the usual spectral

norm, i.e. SJSJ† = I or SΛSΛ† = I . Only vibrational levels with energy levels below that of the

dissociation threshold for the attached electronic state are calculated, and vibrational eigenenergies

(channel energies) are real.

The vibronic S-matrix is calculated in the same manner as (4.14). The remaining treatments
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to this matrix (4.16, 4.23) are identical, keeping in mind that the matrix β(Etot) (4.22) is real and

that only one S-matrix needs to be calculated, instead of two. The cross sections, however, take a

slightly different form. Once the physical S-matrix has been obtained, (de-)excitation cross section

are obtained from it following

σn′v′←nv(Eel) =
π

2meEel

∑
ll′

∑
λλ′

∣∣∣SΛ,phys
n′v′l′λ′,nvlλ

∣∣∣2 (4.37)

without rotational resolution, or by

σn′v′j′µ′←nvjµ(Eel) =
π

2meEel

∑
J

2J + 1

2j + 1

∑
ll′

∣∣∣SJ,phys
n′v′j′µ′l′,nvjµl

∣∣∣2 (4.38)

with rotational resolution. It should be noted that (4.37, 4.38) apply only to inelastic cross sections.

Kinetic state-selected or averaged rate coefficients for (4.37, 4.38) can be obtained following (4.35,

4.34).

The Coulomb-Born approximation

Although DR is driven by short-range processes, rotational excitation is governed by more long-

range interactions. The target molecule’s permanent dipole moment drives the ∆j = ±1 transi-

tions and couples partial waves differing in l by 1. The partial wave expansion, especially when

not performed in the molecular CoC, converges more slowly as progressively higher (larger l) par-

tial waves are coupled to each other; the R-matrix calculations only include up to l = 4 partial

waves. One method of circumventing this issue, implemented in our approach, is to calculate

the total and partial contributions of the dipole moment to the excitation cross sections within the

Coulomb-Born (CB) approximation111–113, i.e., the dipole interaction is treated as a perturbation to

the Coulomb interaction.

This CB approximation is less valid for low partial-waves scattering, especially s-waves
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where the scattering electron is close to the target and the 1/r2 dipole potential cannot be consid-

ered a perturbation. Therefore, we replace the l = 0–2 CB cross sections with our l = 0–2 cross

sections calculated with the above-mentioned R-matrix method. In a similar method to that of

Rabadán and Tennyson 114 , the total CB rotational excitation cross sections (σTCB) and partial CB

rotational excitation cross sections (σPCB
l=0−2) for the partial waves used in our approach are calcu-

lated. Then, the contribution of higher partial waves not included in our approach can be accounted

for following

σRVE = σR-mat + σTCB − σPCB, (4.39)

where σR-mat is the present rovibronic excitation cross section obtained with out method starting

from R-matrix calculations.

The partial CB cross sections are given by

σPCB
j′v′←jv = 16π

k′

k
|⟨v′|Qξ(R)|v⟩|2

2j′ + 1

2ξ + 1

j j′ ξ

0 0 0

2

× (2j + 1)(2j′ + 1)
lmax∑
ll′

 l l′ ξ

0 0 0

2 ∣∣∣M ξ
ll′

∣∣∣2 ,
(4.40)

where lmax = 2 because our R-matrix calculations only include up to l = 2 partial waves. The

dipole moment function is given by Qξ(R) and the matrix elements M ξ
ll′ are given by

M ξ
ll′ =

1

kk′

∞∫
0

drFl(η, r)r
−ξ−1Fl′(η

′, r), (4.41)

where Fl(η, r) is the regular radial Coulomb function, η = −1/k, and η′ = −1/k′. For an

approach that does not treat vibration, the integral ⟨v′|Qξ(R)|v⟩ in (4.40) can be replaced with the

dipole moment at the equilibrium geometry of the ion. Considering the dipolar coupling (ξ = 1),
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the partial CB cross sections (4.40) converge to the following as lmax → ∞:

σTCB
j′v′←jv =

8

3

π3

k2
|⟨v′|Qξ(R)|v⟩|2 (2j′ + 1)

j j′ 1

0 0 0

2

f(η, η′), (4.42)

where

f(η, η′) =
e2πη

(e2πη − 1)(e2πη′ − 1)
χ0

d

dχ0

|2F1(−iη,−iη′; 1;χ0)|2 ,

ζ = η′ − η, χ0 = −4ηη′/ζ2.

(4.43)

The function 2F1(a, b; c; z) is the Gaussian hypergeometric function, defined as:

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

, (q)n =
Γ(q + n)

Γ(q)
. (4.44)

It should be noted that we only include the CB correction to ∆j = ±1 transitions; our ∆j = ±2

transitions are obtained purely from our R-matrix method. For further detail in computing (4.43),

we invite the reader to read the work of Chu and Dalgarno 113 . Additionally, the work of Rabadán

and Tennyson 114 contains minor errors (non-squared Wigner 3-j symbols) in their equations (3)

and (4), which are corrected here.

Results

The vibrational excitation state-selected kinetic rate coefficients without rotational resolution, cal-

culated and convolved according to (4.36,4.37), are compared with those of Jiang et al. 115 , as

shown in Figure 4.16. The left panel compares vibrational excitation rate coefficients within the

ground electronic state, which agree well for the plotted transitions (v = 0 → v′ = 1, 2, 3). The

right panel compares vibronic excitation rate coefficients from the ground vibronic states to the

lowest 4 vibrational levels of the fist excited state (a3Π). These rate coefficients agree less than

those within the ground electronic state. Such differences may be due to the improvements in the
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Figure 4.16: State-selected kinetic VE rate coefficients within the ground electronic state of CH+

(left) and from the ground electronic state to the first excited state of CH+ (right). Solid lines rep-
resent rate coefficients from the present calculations, while dashed lines are taken from a previous
calculation115. The present cross sections are obtained according to 4.37, corresponding rate coef-
ficients are obtained following (4.34).

present treatment, e.g., using the δ-matrix in a basis of complex spherical harmonics or evaluating

K-matrices at much lower energies while considering weakly closed channels.

Rotational excitation cross sections were calculated according to (4.38). These were con-

volved according to (4.32) to demonstrate the effect of convolution on raw data and convolved ac-

cording to 4.36 to produce state-selected kinetic rate coefficients. The results of both convolutions

are shown in Figure 4.17. The cross sections in the left panel, convolved according to (4.32), show

the dominance of the dipole-driven ∆j = 1 transition, which is reflected in the state-selected ther-

mally averaged results in the right panel. The right panel of Figure. 4.17 also compares the present

rotational excitation rate coefficients with those obtained by Hamilton et al. 116 , who included the

CB correction for ∆j = ±1,±2 transitions. We only include this correction for ∆j = ±1 transi-

tions, but the agreement between the results is good overall. Hamilton et al. 116 also use an R-matrix

approach, but use the adiabatic-nuclei-rotation approximation to obtain rotational excitation (RE)

cross sections and rate coefficients, while we use a frame transformation (2.81) to describe the

rotational structure of the ion.

Figure. 4.18 illustrates the difference between the state-selected RE data with and without
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Figure 4.17: Rotational excitation cross sections within the ground vibronic state of CH+, starting
from j = 0, obtained according to (4.38) (left). State-selected kinetic RE rate coefficients (right)
obtained from the cross sections in the left panel following (4.34) The cross sections are obtained
according to (4.32) with γ = 1 meV (thin lines) and γ = 5 meV (thick lines). In the right
panel, solid lines represent the present theory, while dashed lines represent the results of Hamilton
et al. 116 .
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Figure 4.18: Left panel: comparison of cross sections for rotational excitation j = 0 → j′ = 1 ob-
tained using the R-matrix approach with s, p, and d partial waves (σR-mat), the closed-form total CB
approximation (σTCB), the partial CB cross section obtained with s, p, and d partial waves (σPCB),
and the cross section where the R-matrix data is combined with the total CB cross section account-
ing for partial wave with l > 2 (σRVE). Right panel: state-selected kinetic RE rate coefficients from
j = 0 to j′ = 1 within the ground vibronic state of CH+. The measured rates coefficients from
the CSR117 are compared to the results of Hamilton et al. 116 and our kinetic rate coefficients with
(αRVE) and without (αR-mat) the CB correction.
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the CB approximation for the ∆j = 1 transition. The left panel shows the four cross sections

from (4.39). The right panel compares state-selected rate-coefficients from the present work with

(αRVE) and without (αR-mat) the CB-approximation to theoretical results from the work of Hamilton

et al. 116 and recent experimental results from the work of Kálosi et al. 117 at the CSR. Our present

results with the CB correction show the best overall agreement with the CSR measurements, al-

though all theoretical rates are within the provided uncertainty for most of the kinetic temperatures

shown (10–140 K).

The work detailed in this chapter on DR has been published:

• Joshua Forer, Dávid Hvizdoš, Xianwu Jiang, Mehdi Ayouz, Chris H Greene, and Viatcheslav

Kokoouline. Unified treatment of resonant and nonresonant mechanisms in dissociative

recombination: Benchmark study of CH+. Physical Review A, 107(4):042801, 2023

A manuscript covering the RVE portion of this chapter has been submitted to the Monthly Notices

of the Royal Astronomical Society and is available at https://arxiv.org/abs/2309.

14370:

• Joshua Forer, Dávid Hvizdoš, Mehdi Ayouz, Chris H Greene, and Viatcheslav Kokoouline.

Kinetic rate coefficients for electron-driven collisions with CH+: dissociative recombination

and rovibronic excitation. arXiv preprint arXiv:2309.14370, 2023
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CHAPTER 5: CONCLUSIONS

REA to C3N via dipole-bound states

DBS energies of rotating C3N– were calculated and used in our theoretical approach. Six such

weakly bound states were found to exist within the Vai potential. REA cross sections, starting

from these six DBSs, were obtained for several rotational states of C3N over a large interval of

collision energies, including low, astrochemically relevant energies. The present theoretical REA

cross sections are much smaller than those previously calculated by Khamesian et al. 22 , which

was expected, who concluded that their calculated REA cross section is too small to explain the

observed abundance of C3N– in the ISM, assuming the species is formed by REA.

The observed C3N– abundance in the ISM has been determined to be too large to be ex-

plained by the theoretically REA cross sections of Khamesian et al. 22 . We, therefore, draw the

same conclusion given our smaller REA cross sections. Vibration was not considered in the present

approach. The effect of long-lived vibrational bending resonances could be considered in future

studies. Alternative formation mechanisms, such as collisions between carbon anions and atomic

nitrogen, should be considered for C3N– and possible other similar anions, although they deserve

separate studies. A technical result of interest to theorists: the short-range part of the interaction

potential significantly influences the REA cross sections below a few eV. The present approach

could be applied to study weakly-bound states and electron scattering for systems with a dominant

quadrupole interaction at large distances, such as TCNB– 120.

DR of CH+ and CF+

The theoretical approach presented here can simultaneously treat the direct and indirect DR mech-

anisms. Previous studies in the case of CH+ 35,110 have accounted for both mechanisms, but the

present method is easier to implement in the sense that it does not require bound dissociative states
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of the neutral molecule and their associated couplings to be calculated. A similar approach was

used to study DR of HeH+ 121. The theory can be applied to molecular ions regardless of whether

they have low-lying electronic resonances, including open-shell ions, of which DR is challenging

to study with previous theoretical methods. The present DR cross sections for CH+ agree well

overall with recent experimental results at the CSR39, where experimental DR measurements were

resolved to the ground rovibronic state of the ion. The overall magnitude of the cross sections and

positions of major resonances are well reproduced. An important limitation of the present method

is the use of an energy-independent scattering matrix. Accounting for such an energy dependence

in the case of HeH+ DR improved the agreement with experimental results41.

There is no recent rotationally resolved experimental data against which to compare our

rovibronically-resolved DR cross sections for CF+. However, upon calculating vibronically re-

solved cross sections — bypassing the rotational frame transformation (2.81) — we obtain overall

good agreement with experimental results obtained at the TSR107. The treatment used to describe

the DR of CF+ is slightly older, akin to that of58; applying the method used with CH+ may yield

more accurate low-energy DR cross sections. Further improvements can be made in the identifi-

cation of eigenphases across geometries so that the δ-matrix can be properly interpolated with a

larger initial number of calculations spanning a wider range of internuclear distances.

RVE of CH+

In addition to DR, this approach can be used to study electronic, vibrational, or rotational (de-

)excitation of diatomic ions, which may be difficult to measure experimentally. Vibrational exci-

tation state-selected kinetic rate coefficients of CH+ are compared to previous results115; we find

excellent agreement with vibrational excitation rate coefficients within the first excited state, but

differences arise when we consider vibronic excitation to vibrational levels of the first excited elec-

tronic state. This difference could be explained by this study’s improved treatment of the electronic

matrices obtained from the R-matrix scattering calculations, as well as other issues that have been
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addressed in the present implementation. The present RE rate coefficients within the ground elec-

tronic state of CH+ are compared to the work of Hamilton et al. 116 , which is an R-matrix method

that describes RE with the adiabatic-nuclei-rotation approximation and does not treat vibration.

They correct their ∆j = ±1,±2 transitions with the CB approximation, while we only do so for

∆j = ±1 transitions. Results between our approaches agree well over the presented kinetic tem-

peratures. Compared to j = 0 → j′ = 1 rate coefficients recently measured at the CSR117, our

theoretical results using the CB correction agree better over all plotted kinetic temperatures than

our theoretical results without the CB correction, and slightly better than the recent theoretically

determined rate coefficients of Hamilton et al. 116 over most kinetic temperatures between 10 K

and 140 K. However, all theoretically determined rates under 100 K are within the experimental

uncertainty.
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APPENDIX A: SYMMETRY — POINT GROUPS
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Point groups

The group is an important mathematical construct used to describe the symmetry of molecules —

their electronic wavefunctions, the spatial orientation of their nuclei, their vibration, etc. A group

is a nonempty set (G) equipped with some binary operator (∗) that, when applied to two elements

of the set, produced an element of the same set. Such a group, denoted (G, ∗), satisfies three

properties:

associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ G

the identity element: ∃e ∈ G such that ∀a ∈ G, e ∗ a = a ∗ e = a

the inverse element: ∀a ∈ G, ∃b ∈ G such that a ∗ b = b ∗ a = e.

Any group G satisfying commutativity (a ∗ b = b ∗ a ∀a, b ∈ G) is said to be Abelian. The set

of all real numbers (R), for example, form a group with respect to addition: (R,+). The identity

element — always its own inverse — is 0, and the negative numbers are the additive inverses of

the positive numbers (and vice versa).

The elements of symmetry groups in the context of scattering theory represent transfor-

mations that do not affect the Hamiltonian of a system. The point group is type of group whose

elements, when applied to some body, have a common fixed point that is left unchanged by the

elements. All symmetry axes and planes must all intersect at at least one point.

Two point groups are mentioned explicitly in this manuscript the infinite group C∞v and

one of its finite Abelian subgroups, C2v. Their character tables are given below. The groupC∞v is a

linear group with a symmetry axis, about which symmetry-respecting rotations are performed, and

a plane of reflection that contains the symmetry axis, about which symmetry-respecting reflections

are performed. It is an infinite group, i.e. it contains an infinite amount of elements. There are two

non-identity classes of symmetry operations: a rotation about the symmetry axis by some integer

multiple of an angle θ (C(θ)), and a reflection about some symmetry plane passing through the

symmetry axis σv. The former class has two elements per integer multiple of θ — a clockwise
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and a counterclockwise rotation. The latter contains an infinite number of elements; there are an

infinity number of planes containing the axis of symmetry about which a symmetry-preserving

reflection may be performed. The point group C2v contains 3 non-identity elements: a rotation

about the symmetry axis by 90◦ (C2), and reflections about the two mutually orthogonal planes

both containing the symmetry axis (σv and σ′v).

A representation of a point group describes how symmetry operations affect elements of

the system. Representations that cannot be formed by a linear combination of other representations

are said to be irreducible. Irreducible representations (irreps) have a character under the various

symmetry operations of a point group. Representations are group homomorphisms; they preserve

the structure of the group. A group homomorphism, given two groups (A, ∗) and (B, ⋆), is a

function ρ : A→ B obeying

ρ(a1 ∗ a2) = ρ(a1) ⋆ ρ(a2) ∀a1, a2 ∈ A. (A.1)

The characters of irreps contain important information about the point group. For example, the

electronic wavefunction of a molecule belonging to the A2 irrep would have its sign changed only

under a reflection and not under a rotation (see Table A.2). This can be seen by the A2 irrep having

character -1 with respect to the reflection operations σv and σ′v.

Table A.3 is useful for determining the symmetry of the product of irreps. Considering

an electron-molecule system whose wavefunction is described by the product of the target’s wave-

function and the incident electron’s wavefunction, the total wavefunction belongs to the irrep given

by the product of the irreps of the target and electron wavefunctions.
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Table A.1: Character table of the C∞v

point group.

C∞v E 2C(θ) ∞σv

A1(Σ
+) 1 1 1

A2(Σ
−) 1 1 -1

E1 (Π) 2 2 cos(θ) 0

E2 (∆) 2 2 cos(2θ) 0
...

...
...

...

En 2 2 cos(nθ) 0

Table A.2: Character table of the C2v

point group.

C2v E C2 σv σ′v

A1 1 1 1 1

A2 1 1 -1 -1

B1 -1 1 1 -1

B2 -1 1 -1 1

Table A.3: Multiplication table of the C2v point group.

C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1
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The Gamma function

The gamma function, Γ(z), is defined as

Γ(z) =

∞∫
0

tz−1e−tdt, Re(z) > 0. (B.1)

When z ∈ Z+, the gamma function reduces to a factorial

Γ(z) = (z − 1)!, (B.2)

where, of course, 0! ≡ 1. The gamma function is undefined only for non-positive integers.

Bessel functions

The Bessel differential equation,

r2
du2

dr2
+
du

dr
+
(
r2 − l2

)
u = 0, (B.3)

for some l ∈ C, yields two linearly independent solutions: the Bessel function of the first kind

(Jl(r)) and the Bessel function of the second kind (Nl(r)), the latter of which are also known as

the Neumann functions. They are given by:

Jl(r) =
∞∑
k=0

(−1)n

n!Γ(n+ l + 1)

(r
2

)2n+l

Nl(r) =
Jl(r) cos(lπ)− J−l(r)

sin(lπ)
, l ∈ C \ Z

Nn(r) = lim
l→n

Nl(r), n ∈ Z.

(B.4)
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Figure B.1: Bessel functions of the first (left) and second (right) kind.

Whereas Jl(r) remains finite at r = 0, Nl(r) diverges as r → 0. The functions Jl(r)± iNl(r) form

another set of linearly independent solutions to (B.3).

Spherical Bessel functions

The spherical Bessel functions of the first kind (jl(r)) and the spherical Neumann functions (nl(r)),

also known as the spherical Bessel functions of the second kind, solve the spherical Helmholtz

equation

r2
d2u

dr2
+ 2r

du

dr
+
(
x2 − l(l + 1)

)
u = 0. (B.5)

and can be defined with the Bessel functions (B.4)

jl(r) =

√
π

2r
Jl+ 1

2
(r) = (−r)l

(
1

r

d

dr

)l
sin(r)

r

r→∞−−−→ 1

r
sin

(
r − lπ

2

)
nl(r) =

√
π

2r
Nl+ 1

2
(r) = −(−r)l

(
1

r

d

dr

)l
cos(r)

r

r→∞−−−→ −1

r
cos

(
r − lπ

2

)
.

(B.6)

As r → 0, jl(r) remains finite, but nl(r) diverges. Their sums jl(r) ± inl(r) also form a set of

linearly independent solutions to (B.6).
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Figure B.2: Riccati-Bessel functions of the first (left) and second (right) kind.

Riccati-Bessel functions

The Riccati-Bessel functions solve the differential equation

r2
d2u

dr2
+
(
r2 − l(l + 1)

)
u = 0. (B.7)

They are only different from the spherical Bessel functions by a multiplicative ±r:

Sl(r) = rjl(r)
r→∞−−−→ sin

(
r − lπ

2

)
Cl(r) = −rnl(r)

r→∞−−−→ cos

(
r − lπ

2

) (B.8)

As with the other spherical Bessel functions, jl(r)±inl(r) form another set of linearly independent

solutions to (B.8).
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Legendre polynomials

Two special cases of the Legendre differential equation,

(1− x2)
d2y

dx2
− 2x

dy

dx
=

(
m2

1− x2
− n(n+ 1)

)
y, (B.9)

are of interest to us. The fist case of (B.9) is when m = 0 and the degree is an integer, i.e. n ∈ Z.

The solutions to this special case are the Legendre polynomials, often used to expand potentials

behaving as
∣∣∣⇀r − ⇀

r
′∣∣∣−1, for which many representations exist, e.g.

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1) = 2n

n∑
k=0

xk
(
n

k

)(
n+k−1

2

n

)
. (B.10)

The Pn(x) are defined for real numbers x in the interval x ∈ [−1, 1]. For all degrees n, Pn(1) ≡ 1,

and for all arguments x, P0(x) ≡ 1. Polynomials of different degrees are orthogonal,

1∫
−1

Pm(x)Pn(x)dx = δmn
2

2n+ 1
, (B.11)

and form a complete set
∞∑
n=0

2n+ 1

2
Pn(x)Pn(x

′) = δ(x− x′). (B.12)

within the interval [−1, 1]. Additionally, Legendre polynomials are either even or odd functions:

Pn(−x) = (−1)nPn(x). (B.13)

The second special case of (B.9) is when m and n are both integers. This first case is

obviously a subset of this case. The solutions in this case are known as the associated Legendre
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polynomials and can be expressed in terms of the Legendre polynomials:

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x) = (−1)m

1

2ll!
(1− x2)m/2 d

l+m

dxl+m
(x2 − 1)l. (B.14)

The order m and degree l are both assumed to be non-negative integers in (B.14). Additionally,

if the magnitude of m is larger than l, the polynomial Pm
l is by definition 0 for all values of

its argument x. For m < 0, the associated Legendre polynomials are defined by their m > 0

counterpart:

P−ml = (−1)m
(l −m)!

(l +m)!
Pm
l . (B.15)

Unlike the Legendre polynomials, the associated Legendre polynomials do not form a complete

orthogonal set. For the same order They are orthogonal in degree for the same order, i.e.

1∫
−1

Pm
l′ P

m
l dx =

2(l +m)!

(2l + 1)(l −m)!
δll′ , (B.16)

and are orthogonal in order for the same degree, i.e.

1∫
−1

Pm
l P

m′

l

1− x2
dx =


(l+m)!
m(l−m)!

δmm′ m ̸= 0 ⊻m′ ̸= 0

∞ m = m′ = 0

. (B.17)

The associated Legendre polynomials have the parity condition

Pm
l (−x) = (−1)l+mPm

l (x), (B.18)

which of course reduces to (B.13) for m = 0.
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Figure B.3: Associated Legendre polynomials of order m = 0 (top left), 1 (top right), 2 (bottom
left), and 3 (bottom right).

Spherical harmonics

The spherical harmonics Y λ
l (θ, ϕ) are the eigenfunctions of the ẑ-component and the square of the

orbital angular momentum operator:

L2Y λ
l (θ, ϕ) = l(l + 1)Y λ

l (θ, ϕ), (B.19)

LzY
λ
l (θ, ϕ) = λY λ

l (θ, ϕ). (B.20)
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The spherical harmonics are defined in terms of the associated Legendre polynomials (B.14):

Y m
l (θ, ϕ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
P λ
l (cos θ)e

iλϕ. (B.21)

The spherical harmonics form a complete, orthonormal set

f(θ, ϕ) =
∞∑
l=0

l∑
λ=−l

Cλ
l Y

λ
l (θ, ϕ), (B.22)

π∫
0

sin(θ)dθ

2π∫
0

dϕY λ
l (θ, ϕ)Y

λ′

l′ (θ, ϕ). (B.23)

Although the spherical harmonics Y λ
l (θ, ϕ) are in general complex, they can be transformed into

real-valued spherical harmonics Ylλ(θ, ϕ) by the unitary transformation


Yl|λ|

Yl0

Yl−|λ|

 =


(−1)λ 0 i(−1)λ

0 1 0

1 0 −i



Y
|λ|
l

Y 0
l

Y
−|λ|
l

 , (B.24)

where the order λ is assumed to be nonzero. By definition (B.21), the spherical harmonics also

obey the same parity as the associated Legendre polynomials (B.18).

Coulomb functions

The confluent hypergeometric functions are solutions to the differential equation,

z
d2y

dz2
+ (b− z)

dy

dz
− ay = 0. (B.25)
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Two linearly independent solutions exist:

M(a, b; z) =
∞∑
n=0

Γ(a+ n)

Γ(a)

Γ(b)

Γ(b+ n)

zn

n!
(B.26)

U(a, b; z) =
Γ(1− b)

Γ(a+ 1− b)
M(a, b; z) +

Γ(b− 1)

Γ(a)
z1−bM(a+ 1− b, 2− b; z). (B.27)

Several special cases exists where the these two solutions reduce to other familiar functions, e.g.,

ez, the Laguerre polynomials, Bessel functions, Laguerre polynomials, Hermite polynomials, but

they are introduced here to define the Coulomb functions, which solve the radial time-independent

Schrödinger equation (2.6),

[
− d2

dr2
+
l(l + 1)

r2
+

2η

r

]
yl(r) = yl(r), (B.28)

which supports two linearly independent solutions, the regular (B.29) and irregular (B.30) Coulomb

functions:

Fl(η, r) = 2le−πη/2
|Γ(l + 1 + iη)|

(2l + 1)!
e−irrl+1M(l + 1− iη, 2l + 2; 2ir), (B.29)

Gl(η, r) = iFl(η, r)

+ eπη/2
|Γ(l + 1 + iη)|
Γ(l + 1 + iη)

e−i(r−lπ/2)(2ir)l+1U(l + 1− iη, 2l + 2; 2ir).
(B.30)
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Energy normalization of radial wavefunctions

For positive energies (unbound, free particle states), a solution ϕl(kir) to the uncoupled radial

equation (2.6) is not square-integrable over the interval r ∈ (0,∞). The colliding particle here is

assumed to be an electrion, som is taken to be 0. The integral ⟨ϕl(k
′
ir)|ϕl(kir)⟩ is 0 for k′i = ki, i.e.

the free-particle solutions to (2.18) are orthogonal for different energies, but diverges otherwise,

which can be seen from the asymptotic behavior of the regular and irregular solutions

∞∫
0≪r

dr ϕreg
l (k′ir)

∗ϕreg
l (kir)

r→∞−−−→
∞∫

0≪r

sin(k′ir) sin(kir) =
π

2
δ(k′i − ki)

∞∫
0≪r

dr ϕirr
l (k′ir)

∗ϕirr
l (kir)

r→∞−−−→
∞∫

0≪r

cos(k′ir) cos(kir) =
π

2
δ(k′i − ki). (C.1)

The divergent part of the integrals in (C.1) is the integration from some arbitrarily large value of r,

at which the regular and irregular solutions can be well described by sin and cos, and determines

the multiplicative factor of δ(k′i−ki). However, in the multichannel case, δ(k′i−ki) is not as useful.

Looking at, for example, the regular solutions to (2.18)

⟨ϕreg
l (k′ir)|ϕ

reg
l (kir)⟩ = δ(k′i − ki) ̸= δ(k′j − kj) = ⟨ϕreg

l (k′jr)|ϕ
reg
l (kjr)⟩ , (C.2)

we see that normalizing each radial channel wavefunction with respect to the channel wavenumber

causes the set of solutions to not be normalized at all. Instead, the radial channel wavefunctions

can be normalized in energy.

For some function f(x), x ∈ R with a set of simple roots {xi} ⊂ R such that df/dx is

nonzero at every xi, the Dirac delta function has the following property

δ(f(x)) =
∑
i

δ(x− xi)

[
df(x)

dx

∣∣
xi

]−1
. (C.3)
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Using (C.3) and replacing x → k, xi → k′, and f(x) → f(k) = E − E ′ = k2/2 − k′2/2, we see

that

δ(E − E ′)
dE

dk
= δ(k − k′). (C.4)

In (C.4), we recall that we are only interested in positive energies E and use the fact that f(k) =

E − E ′ has only one zero on the open interval k ∈ (0 : ∞). Using the relation (C.4) and or-

thogonality condition (C.1), we can now normalize the radial free-particle wavefunctions (2.19) in

energy, which is channel independent:

〈√
2

πk′i
ϕl(k

′
ir)

∣∣∣∣∣
√

2

πki
ϕl(kir)

〉
= δ((E − Ei)− (E ′ − Ei)) = δ(E − E ′)〈√

2

πk′j
ϕl(k

′
jr)

∣∣∣∣∣
√

2

πkj
ϕl(kjr)

〉
= δ((E − Ej)− (E ′ − Ej)) = δ(E − E ′). (C.5)

□

Channel wavefunctions in terms of the S-matrix

The solutions ϕreg
E,l(kir) and ϕirr

E,l(kir) are complex scalars, but solutions to the coupled radial equa-

tion (2.18) span the vector space Cno , where no is the number of open channels |ilm⟩ at some

given total energy E. We can define several bases for this vector space, one such being the basis

of regular and irregular solutions

Bϕ
ilm =

{
ϕ100
ilm(ki′r), ϕ

11−1
ilm (ki′r), ϕ

110
ilm(ki′r), ϕ

111
ilm(ki′r), . . . , ϕ

i′l′m′

ilm (ki′r), . . . , ϕ
i′maxl

′
maxl

′
max

ilm (ki′r)
}

ϕi′l′m′

ilm (ki′r) = Iilm,i′l′m′ϕreg
E,l(ki′r) +Kilm,i′l′m′ϕirr

E,l(ki′r),

⇀

ϕilm =
⇀

ϕreg
E,l +K

⇀

ϕirr
E,l, (C.6)
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where I is the identity matrix and K is the reactance matrix or K-matrix. The vectors in (C.6) are

defined as

⇀

ϕilm =



ϕilm
100(k1r)

...

ϕilm
i′l′m′(ki′r)

...


,

⇀

ϕ
reg/irreg
E,l =



ϕ
reg/irreg
E,l (k1r)

...

ϕ
reg/irreg
E,l (ki′r)

...


, (C.7)

A slight change of basis, from regular and irregular solutions to free-particle incoming (-)

and outgoing (+) radial waves, will allow us to define the multichannel S-matrix in terms of the

multichannel K-matrix.

ϕirr
E,l(kjr)± i ϕreg

E,l(kjr)︸ ︷︷ ︸
χ
(±)
E,l (kjr)

r→∞−−−→

√
2

πkj

[
cos

(
kjr −

lπ

2

)
± i sin

(
kjr −

lπ

2

)]

χ
(±)
E,l (kjr)

r→∞−−−→

√
2m

πkj
e±(kjr−

lπ
2 ).

(C.8)

The incoming and outgoing waves, defined in (C.8), allow us to construct the basis of incoming

and outgoing waves

Bχ
ilm =

{
χ100
ilm(k

i′r), χ11−1
ilm (ki

′
r), χ110

ilm(k
i′r), χ111

ilm(k
i′r), . . . , χi′l′m′

ilm (ki
′
r), . . . , χ

i′maxl
′maxl′max

ilm (ki
′
r)
}

χi′l′m′

ilm (ki′r) = Iilm,i′l′m′χ
(−)
E,l (ki′r)− Silm,i′l′m′χ

(+)
E,l (ki′r). (C.9)

We can define the S-matrix by expressing our new vector
⇀
χilm, defined in analog to (C.7), in terms
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of the old vector
⇀

ϕilm.

⇀
χilm =

⇀
χ
(−)
E,l − S

⇀
χ
(+)
E,l

⇀
χilm =

⇀

ϕirr
E,l − i

⇀

ϕreg
E,l − S

(⇀
ϕirr
E,l + i

⇀

ϕreg
E,l

)
⇀
χilm =

⇀

ϕreg
E,l(−i) (I + S) +

⇀

ϕirr
E,l (I − S)

⇀
χilm (I + S)−1 i =

⇀

ϕreg
E,l +

⇀

ϕirr
E,l (I − S) (I + S)−1 i. (C.10)

Comparing with (C.6), we can finally define the K-matrix:

K = (I − S)(I + S)−1i

−iK(I + S) = (I − S)

−iK − iKS = I − S

(I − iK)S = I + iK

S = (I − iK)−1(I + iK). (C.11)

In the case of a single elastic channel, the K-matrix was given by K = tan(δl). Making this

substitution in (C.11) yields

S =
1 + i tan(δl)

(1− i tan(δl))
=

cos(δl) + i sin(δl)

cos(δl)− i sin(δl)
= e2iδl , (C.12)

which agrees with the single-channel definition of the S-matrix, e.g., (2.10). Expressing the K-
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matrix in terms of the S-matrix (C.11) in the basis of regular and irregular solutions (C.6),

⇀

ϕilm =
⇀

ϕreg
E,l +K

⇀

ϕirr
E,l,

⇀

ϕilm =
⇀

ϕreg
E,l + i(I − S)(I + S)−1

⇀

ϕirr
E,l,

⇀

ϕilm(I + S) =
⇀

ϕreg
E,l(I + S) + i(I − S)

⇀

ϕirr
E,l,

⇀

ϕilm(I + S)(−i) =
⇀

ϕirr
E,l − i

⇀

ϕreg
E,l︸ ︷︷ ︸

⇀
χ

(−)
E,l

−S
(⇀
ϕirr
E,l + i

⇀

ϕreg
E,l

)
︸ ︷︷ ︸

⇀
χ

(+)
E,l

. (C.13)

Comparing (C.13) with the incoming/outgoing radial-wave basis (C.9), we can define the basis

change

−iUϕ(I + S) = Uχ, (C.14)

where the unitary matrices Uϕ and Uχ are built from the orthonormal bases defined in (C.6) and

(C.9), respectively. The columns of Uϕ correspond to the vectors ϕilm, and similarly for the

columns of Uχ. Using the multichannel partial-wave expansion (2.17) and its asymptotic form,

as well as the decomposition of an incoming plane wave into Legendre polynomials and spherical

105



Bessel functions (2.8),

ψii′(
⇀
r ) =

∞∑
l′=0

l′∑
m′=−l′

ϕi′l′m′(r)

r
Y m′

l′ (θ, ϕ)

ψii′(
⇀
r )

r→∞−−−→ eikizδii′ +
∞∑
l′=0

l′∑
m′=−l′

eiki′r

r
fii′(θ, ϕ)

ψii′(
⇀
r )

r→∞−−−→
∞∑
l=0

(2l + 1)iljl(kir)Pl(cos(θ)) +
eiki′r

r

∞∑
l′=0

l′∑
m′=−l′

fii′(θ, ϕ)

ψii′(
⇀
r )

r→∞−−−→
∞∑
l=0

(2l + 1)il
sin
(
kir − lπ

2

)
kir

√
4π

2l + 1
Y 0
l (θ, ϕ) +

eiki′r

r

∞∑
l′=0

l′∑
m′=−l′

fii′(θ, ϕ)

ψii′(
⇀
r )

r→∞−−−→
∞∑
l=0

2
√
π(2l + 1)il

1

kir

ei(kir−
lπ
2 ) − e−i(kir−

lπ
2 )

2i
Y 0
l (θ, ϕ) +

eiki′r

r

∞∑
l′=0

l′∑
m′=−l′

fii′(θ, ϕ)

ψii′(
⇀
r )

r→∞−−−→
∞∑
l=0

√
π(2l + 1)il−1

1

kir
(−1)

(
e−i(kir−

lπ
2 ) − ei(kir−

lπ
2 )
)
Y 0
l (θ, ϕ) · · ·

· · · +
eiki′r

r

∞∑
l′=0

l′∑
m′=−l′

fii′(θ, ϕ). (C.15)

In (C.15), the first term gives us the relation between the basis vectors of Uϕ and Uχ:

ϕi′l′m′(r) =
∞∑
l=0

−
√
π(2l + 1)

ki
il−1
√
πki
2
χilm=0
i′l′m′ (r)

ϕi′l′m′(r) = −π
∞∑
l=0

√
2l + 1

2mki
il−1χil0

i′l′m′(r).

(C.16)

Now, using (C.16), we can obtain the asymptotic form of (2.17) in terms of the S-matrix and verify
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that the behavior satisfies the boundary conditions (2.16):

ψii′(
⇀
r ) =

∞∑
l′=0

l′∑
m′=−l′

ϕi′l′m′(r)

r
Y m′

l′ (θ, ϕ) = −π
∞∑
l=0

∞∑
l′=0

l′∑
m′=−l′

√
2l + 1

2mki
χil0
i′l′m′(r)il−1Y m′

l′ (θ, ϕ)

ψii′(
⇀
r )

r→∞−−−→
∑
ll′m′

√
2l + 1

2mki

π

r
il−1Y m′

l′ (θ, ϕ)

√
2m

ki′r2π

(
Sil0,i′l′m′ei(ki′r−

lπ
2 ) − δii′δll′δ0m′e−i(ki′r−

lπ
2 )
)

r→∞−−−→
∑
ll′m′

√
π(2l + 1)

kiki′
Y m′

l′ (θ, ϕ)
il−1

r

[
Sil0,i′l′m′ei(ki′r−

lπ
2 ) − δii′δll′δ0m′e−i(ki′r−

lπ
2 ) · · ·

· · · + 2i δii′δll′δ0m′ sin

(
ki′r −

lπ

2

)
− 2i δii′δll′δ0m′ sin

(
ki′r −

lπ

2

)]
r→∞−−−→

∑
l

√
π(2l + 1)

k2i
Y 0
l (θ, ϕ)2i

l sin(kir −
lπ
2
)

kir
· · ·

· · · +
∑
ll′m′

√
π(2l + 1)

kiki′
Y m′

l′ (θ, ϕ)il−1
eiki′r

r
e−

lπ
2 · · · (Sil0,i′l′m′ − δii′δll′δ0m′)

r→∞−−−→ eikiz +
eiki′r

r

∑
ll′m′

√
π(2l + 1)

kiki′
Y m′

l′ (θ, ϕ)il−l
′−1 (Sil0,i′l′m′ − δii′δll′δ0m′) . (C.17)

□

Using S‡ in lieu of S†: the ‡-norm

In the DR method presented in this dissertation, the vibrational frame transformation (2.80) is

carried out on the electronic S-matrix (2.78) to obtain the two vibronic S-matrices SΛ (4.14) and

SΛ‡ (4.15). The need for this second matrix and the reason why the usual Hermitian adjoint of the

first vibronic S-matrix is insufficient are shown below.

Proof. The first step is to define the bases in use during the vibrational frame transformation. The

basis of electronic channels is enumerated by the quantum numbers n, l, and λ: {|nlλ⟩}. The basis

of vibronic channels is enumerated by the quantum numbers n, v, l, and λ and is constructed as the

Kronecker products of vectors from the electronic basis {|nlλ⟩} and vectors from the vibrational
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basis {|v⟩}:

|nvlλ⟩ = |nlλ⟩ ⊗ |v⟩ , (C.18)

Invlλ = Inlλ ⊗ Iv. (C.19)

Iv, Inlλ, and Invlλ are the identity matrices in the above-mentioned bases. To make the following

notation more concise, let:

• Se denote the unitary R-dependent electronic S-matrix (2.78),

• Sve denote the vibronic S-matrix (4.14),

• S†ve denote the Hermitian adjoint vibronic S-matrix (4.14),

• S‡ve denote the second vibronic S-matrix (4.15).

An additional distinction is needed in the following. |α⟩ = |α) will denote a column vector in the

basis denoted by α. These two ket vector quantities are the same, but a difference arises in their

bra counterparts:

|α)⊤ = (α| ≠ (α|∗ = ⟨α| = |α⟩† , (C.20)

(n′v′l′λ′|nvlλ) =
∫
dRϕn′v′(R)ϕnv(R) ̸=

∫
dRϕ∗n′v′(R)ϕnv(R) = ⟨n′v′l′λ′|nvlλ⟩ . (C.21)

With the above in mind, we can re-examine the vibronic S-matrix (4.14) obtained from the

vibrational frame transformation (2.80). To further compress notation, different Greek letters will
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be used to represent some combination of vibronic quantum numbers, e.g., |α) ≡ |nvlλ⟩.

Sve =
∑
αβ

|α) (α|Se⊗Iv|β) (β| S‡ve =
∑
αβ

|α) (α|S†e⊗Iv|β) (β| ,

SveS
‡
ve =

(∑
αβ

|α) (α|Se⊗Iv|β) (β|

)(∑
ζη

|ζ) (ζ|S†e⊗Iv|η) (η|

)

=
∑
αβζη

|α) (α|Se⊗Iv|β) (β| |ζ) (ζ|S†e⊗Iv|η) (η|

=
∑
αβη

|α) (α|Se⊗Iv|β) (β|S†e⊗Iv|η) (η| ⇐= (β|ζ) = δβζ

=
∑
αη

|α) (α| (Se⊗Iv)
(
S†e⊗Iv

)
|η) (η| ⇐=

∑
β

|β) (β| = Invlλ

=
∑
αη

|α) (α|
(
SeS

†
e

)
⊗ (IvIv) |η) (η| ⇐= (A⊗B)(C ⊗D) = (AC)⊗ (BD)

=
∑
αη

|α) (α|Inlλ⊗Iv|η) (η| =
∑
αη

(α|Invlλ|η) ⇐= (C.19)

SveS
‡
ve = Invlλ.

(C.22)

However, the above steps do not, in general, result in the identity matrix for the Hermitian adjoint

of the vibronic S-matrix:

Sve =
∑
αβ

|α⟩ ⟨α|Se⊗Iv|β⟩ ⟨β| S‡ve =
∑
αβ

|α⟩ ⟨α|S†e⊗Iv|β⟩ ⟨β| ,

SveS
‡
ve =

(∑
αβ

|α⟩ ⟨α|Se⊗Iv|β⟩ ⟨β|

)(∑
ζη

|ζ⟩ ⟨ζ|S†e⊗Iv|η⟩ ⟨η|

)

=
∑
αβζη

|α⟩ ⟨α|Se⊗Iv|β⟩ ⟨β| |ζ⟩ ⟨ζ|S†e⊗Iv|η⟩ ⟨ζ|

̸=
∑
αβη

|α⟩ ⟨α|Se⊗Iv|β⟩ ⟨β|S†e⊗Iv|η⟩ ⟨β| ⇐= ⟨β|ζ⟩ ≠ δβζ

(C.23)

The unitarity of the vibronic S-matrix, therefore, cannot be defined by its usual Hermitian adjoint,

but instead by its double-dagger counterpart (4.15).
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This double-dagger matrix defines the norm ∥S∥‡, which will be referred to as the ‡-norm.

The ‡-norm has the same properties as the spectral norm,

∥A∥2 =
√
λmax(AA

†) = σmax(A), (C.24)

∥A∥‡ =
√
λmax(AA

‡) = σmax(A), (C.25)

where A is some square matrix, λmax(A) is the largest eigenvalue of a matrix A, and σmax(A) is

the largest singular value of a matrix A. The ‡-norm is the same

The above proof hinges on the assumption that the vibronic basis is complete, which would

require an infinite number of channels. In practice, of course, this is not achievable. This implies

that the vibronic S-matrix is slightly sub-unitary, i.e.
∥∥S‡ev∥∥‡ < ∥Invlλ∥‡ = ∥Invlλ∥2 = 1. The

norm ∥·∥‡ is similar to the spectral norm, ∥A∥2 = λmax

(
A†A

)
, except that the Hermitian adjoint is

replaced by the double-daggered matrix, i.e. The spectral norm of a matrix A is equal to its largest

singular value, σmax (A). Because matrix transposition and element-wise conjugation do not affect

the singular values of a matrix, the norm ∥·∥‡ is then equivalent to the norm ∥·∥2. The vibronic

S-matrix is subunitary for two reasons: the loss of flux from the continuum states obtained with

the CAP (4.11) and the incomplete basis. However, a large enough number of vibrational levels in

each electronic state can be used to approach completeness, which can usually be accomplished by

including all bound vibrational levels in each electronic states. Additionally, there is no significant

distinction between S†ev and Sev‡ if we consider only the sub-blocks corresponding to bound states.

Their energies and wavefunctions are real, which implies that ⟨nvlλ| = ⟨nvlλ|, therefore the two

matrices are equivalent (assuming, of course, that the vibronic basis is complete).

Finiteness of the MQDT closed-channel elimination procedure

The MQDT closed-channel elimination procedure applied on the S-matrix after the (ro)vibrational

frame transformation (4.25, 4.26) is guaranteed to produce a matrix that is not superunitary, i.e. it
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is subunitary or unitary at most. This condition is ensured by the non-superunitarity of the frame-

transformed S-matrix. In what follows, S will denote the full frame transformed S-matrix that has

been partitioned into blocks according to (4.21). S could be either vibronically or rovibronically

resolved.

Proof. The first proposition is that the matrix Scc − e−2iβ is not singular. Unitarity of the matrix

S is defined here with respect to the norm ∥·∥‡ (C.25), which is equal to the largest singular value

of S. The determinant of a matrix is equal to the product of its diagonal elements. Because

the S-matrix is unitary, the diagonal elements of the matrix Scc − e−2iβ are never 0, unless there

are closed channels that are completely decoupled from the others, which is not the case in our

calculations. The magnitude of the diagonal elements of Scc are strictly less than 1, while the

magnitude of the diagonal elements of e−2iβ are at least 1. The sum of two complex quantities

of different magnitudes will never be zero. The channel energies in the definition of β are real or

complex. In the case that they are real, the diagonal elements of e−2ibeta have unitary magnitude.

In the case that they are complex, we consider that the channel energies are negative by (4.12).

Considering that the square root of a complex number preserves the sign of the imaginary part

and that the reciprocal of a complex number changes the sign on its imaginary part, the diagonal

elements of e−2iβ must have at least unitary magnitude:

∣∣e−2iβkk
∣∣ = ∣∣∣e−2iπ/√Ek−E

∣∣∣ = ∣∣e−iaeb∣∣ > 1, a, b ∈ R, a ≥ 0, b > 0. (C.26)

nc is the number of closed channels. The determinant of a matrix being 0 is equivalent to the matrix

being singular. Given that
∣∣e−2iβ∣∣ ̸= 0, e−2iβ is not singular and is therefore invertible. A matrix is

singular if at least one of its singular values is 0, which implies that all singular values of e−2iβ are

greater than 0.

The spectral norm of a block matrix is equal to the spectral norm of its matricial norm (see

Theorem 1 (f ) in the work of Smoktunowicz 122). Replacing the spectral norm (∥·∥2) with the norm
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Figure C.1: Spectral norms of the subblocks of 100 random 300 × 300 unitary matrices U , parti-
tioned as in (4.21) as a function of the number of closed channels, nc. The norms of Uoc and Ucc

are not defined for nc = 0; the norms of Uoo and Uco are not defined for no = 0. In this figure,
no + nc = 300

∥·∥‡,

∥S∥‡ =

∥∥∥∥∥∥∥
Soo Soc

Sco Scc

∥∥∥∥∥∥∥
‡

=

∥∥∥∥∥∥∥
∥Soo∥‡ ∥Soc∥‡

∥Sco∥‡ ∥Scc∥‡

∥∥∥∥∥∥∥
‡

≤ 1, (C.27)

we can place some constraints on the norms of the sub-blocks of S, which is illustrated by Figure

C.1. The sub-blocks Sco and Soc are equal because the S-matrix is symmetric, so their norms are
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the same. Considering again (4.25, 4.26),

Sphys = Soo − Soc

(
Scc − e−2iβ

)−1
Sco, where S =

Soo Soc

Sco Scc


∥∥Sphys

∥∥
‡ =

∥∥∥Soo − Soc

(
Scc − e−2iβ

)−1
Sco

∥∥∥
2

≤ ∥Soo∥‡ +
∥∥∥Soc

(
Scc − e−2iβ

)−1
Sco

∥∥∥
‡
⇐= ∥A+B∥‡ ≤ ∥A∥‡ + ∥B∥‡

≤ ∥Soo∥‡ + ∥Soc∥‡ ∥Scc∥‡
∥∥∥(Scc − e−2iβ

)−1∥∥∥
‡
∥Sco∥‡ ⇐= ∥AB∥‡ ≤ ∥A∥‡ ∥B∥‡

(C.28)

The spectral norm of a matrix is equal to its largest singular value, so the spectral norm of the

inverse of a matrix is equal to the reciprocal of the smallest singular value of the matrix,

∥A∥‡ = σmax(A),
∥∥A−1∥∥‡ = 1

σmin(A)
, (C.29)

which implies that
∥∥∥(Scc − e−2iβ

)−1∥∥∥
‡

is greater than 0 (invertible) and bounded above. This,

coupled with the fact that the norm of the sub-blocks of S are all at most 1, implies that
∥∥Sphys

∥∥
‡

does not diverge.
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[10] J. Cernicharo, M. Guélin, M. Agúndez, K. Kawaguchi, M. McCarthy, and P. Thaddeus.

Astronomical detection of C4H– , the second interstellar anion. Astron. Astrophys., 467(2):

L37–L40, 2007. doi: 10.1051/0004-6361:20077415.
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[47] Åsa Larson and AE Orel. Wave-packet study of the products formed in dissociative recom-

bination of HeH+. Physical Review A, 72(3):032701, 2005.
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