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Résumé
Dans cette thèse de doctorat, nous considérons le défi de rendre l’apprentissage par renforce-
ment (RL) plus adapté aux problèmes du monde réel sans perdre les garanties théoriques. Il
s’agit d’un domaine de recherche très actif, car l’application au monde réel est l’objectif final
de cette littérature ainsi que la motivation première des cadres spécifiques de l’apprentissage
par renforcement. Les garanties théoriques sont, comme leur nom l’indique, l’assurance que la
théorie peut fournir sur la performance et la fiabilité de nos stratégies. Le développement de
ce domaine est crucial pour améliorer les algorithmes de RL interprétables. Notre travail est
structuré autour de quatre contextes différents, nous commençons par une introduction au
domaine et une revue générale de la littérature, y compris les bandits, les processus de Markov
(MDP), certains objectifs d’apprentissage par renforcement, et quelques défis de RL réaliste.

La thèse se poursuit en spécifiant divers scénarios spécifiques ainsi que différentes ap-
proches pour relever quelques défis pertinents du RL. Nous nous attaquons d’abord à un
scénario séquentiel d’identification de signe pour les bandits à bras multiples, où nous con-
cevons une méthode générique pour définir des algorithmes, une nouvelle stratégie de preuve
fournissant des limites d’erreur. Ensuite, nous présentons de nouvelles observations comparant
les algorithmes adaptatifs aux oracles hors ligne. Notre deuxième contribution est une amélio-
ration théorique de la régression linéaire séquentielle pour des limites de regret améliorées et
une stabilité accrue, nous nous sommes inspirés de résultats bien établis et les avons adaptés au
cadre stochastique, puis nous avons illustré les améliorations avec une application aux bandits
linéaires. Une contribution significative de cette thèse est l’étude de la récente représentation de
la famille exponentielle bilinéaire pour les MDPs à espaces continus. Nous avons pu faire des
observations notables menant à des solutions explicites et à des garanties théoriques améliorées.
Enfin, nous nous sommes attaqués au problème des gradients de politiques profondes où nous
avons introduit une mesure d’erreur bien justifiée pour un apprentissage plus précis de la
fonction de valeur. Le besoin de cette dernière amélioration a été fortement motivé par des
travaux récents ainsi que par plusieurs expérimentations que nous avons fournies.

Les résultats de cette thèse démontrent un progrès dans la littérature RL, tant sur le plan
pratique que théorique, offrant des perspectives et des solutions précieuses pour la communauté
RL. Nous pensons que les méthodes proposées font partie des solutions pour combler le fossé
entre la théorie du RL et ses applications, faisant de cette thèse une contribution significative
au domaine.



Abstract
This thesis explores the challenge of making reinforcement learning (RL) more suitable to
real-world problemswithout losing theoretical guarantees. This is an interesting active research
area because real-world problems are the final goal and the first motivation for the different
RL settings, and theoretical guarantees are like their name suggests, the assurances that the
theory can provide about the performance and reliability of our strategies. Developing this
field is crucial for improving interpretable RL algorithms. Our work is structured around
four different RL settings, and begins with an introduction to the field and a general review
of relevant literature, including bandits, Markov Decision Processes (MDPs), a number of
reinforcement learning objectives, and relevant realistic RL challenges.

The thesis proceeds by specifying various specific scenarios as well as different approaches
to address the relevant RL challenges. We first tackle an online sign identification setting for
multi-armed bandits, where we investigate a generic method to design algorithms, a novel
proof strategy providing SOTA error bounds, and we present unprecedented observations
when comparing adaptive algorithms to offline oracles. Our second contribution is a theoretical
improvement of sequential linear regression for improved regret bounds and increased stability,
we took inspiration from well established results that we adapted to the stochastic setting,
we illustrated the improvements with an application to linear bandits. Another significant
contribution of this thesis is studying the recent bilinear exponential family representation
for continuous MDPs, we were able to make notable observations leading to tractability and
improved theoretical guarantees. Finally, we tackled the setting of deep policy gradients where
we introduced a principled loss for a more accurate value function learning, the need for this
improvement was strongly motivated by recent work as well a several experiments that we
provided.

The results of this research demonstrate substantial progress in the RL literature both
practically and theoretically, offering valuable insights and solutions for the RL community.
We believe that the proposed methods show the potential to close the gap between purely
theoretical RL and applications-motivated RL, making this thesis a significant contribution to
the field.
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To the layman reader

If you can’t explain it to a six-year-old,
you don’t understand it yourself

Albert Einstein.

We are interested in a universal task, one that regularly faces every living entity, making
decisions in sequential settings. Humans tackle such problems on a daily basis, and with
varying importance or possible consequences. From choosing one’s clothes every morning to
deciding which career to pursue, and from impacting the personal comfort through the day to
determining the future quality of life.

Naturally, the decisions must be made for a purpose, and can be part of a bigger plan. This
so called purpose is a subjective concept that is almost never identical for different interacting
entities, mathematically, it is commonly represented using a utility function that an entity seeks
to maximize. This mapping is supposed to encode the entity’s preferences and the impact of
its choices. In this context, various problems with different complexities and specifities give
rise to numerous possible formulations.

As part of our motivation for this manuscript, we shall consider a tangible example that
speaks to everyone, concertizes our vision, and allows us deduce generic principles that will
inspire the different problems we wish to tackle. For this purpose, I will examine the closest
example to my personal life: the PhD student’s journey.

Reinforcement learning Classical machine learning involves training a model to make pre-
dictions or decisions based on a fixed set of data. The goal is to build a model that is able
to generalize to new, unseen data. In the latter, learning is based on the input data and the
corresponding outputs that have been provided to it. Reinforcement learning, on the other
hand, is interaction-based and the data is provided sequentially instead of a batch manner.

In simple terms, reinforcement learning is a way for a computer or robot to learn how to
do something by trying different things and seeing which ones work the best. Imagine you’re
playing a game where you have to find the treasure. The computer or robot is like a little



explorer trying to find the treasure, and it gets a reward every time it finds the treasure. The
more treasure it finds, the more it will want to keep playing the game. The computer or robot
will try different things to find the treasure, and if it does something that helps it find the
treasure more often, it will keep doing that. If it does something that doesn’t help it find the
treasure, it will try something else. Through this process, the computer or robot will learn how
to find the treasure more efficiently.

The case for RL instead of ML One of the key promises of RL is that it allows learners to
improve through experience, without requiring explicit programming of rules or behaviors.
This can be particularly useful in complex or dynamic environments, where it may be difficult to
pre-define a fixed set of rules or behaviors. RL algorithms can adapt to changing environments
and learn to make optimal decisions based on the feedback they receive.

Another promise of RL is that it has the potential to enable autonomous systems to learn
and adapt to their surroundings in real-time. This can be beneficial in a variety of applications,
such as self-driving cars, which need to be able to respond to changing traffic conditions and
make decisions that maximize safety and efficiency.

Overall, the promise of RL is to enable agents to learn and adapt to their environments in
order to optimize their performance and achieve their goals.

A primer on RL terminology We define some necessary keywords of the RL jargon.
First, we define the environment, i.e. a context in which the learner operates and makes deci-

sions. For example, the environment could be a physical space, such as an inverted pendulum
that a person controls using their hands. Next, an action is a decision taken by the learner. For
example, the action of a person to push the pendulum forward, backward, or to not push it. A
state is the current situation or context in which the learner finds itself, like the angle or the
abscissa of our pendulum. The state may include information about the environment, like the
wind, the current velocity, or the person’s past decisions. The learner is called an agent in RL,
an entity that is learning and taking actions in an environment. Like the person that controls
the inverted pendulum in our example.

Then, let’s define some terms that encode the environment or agent’s reactions and decisions.
For instance, a policy is a strategy or set of rules that the agent uses in its interaction with the
environment. The latter can be deterministic or randomized, e.g. an agent can play each possible
action with a given probability. The reaction of the environment to an action in a given state
is called a reward. A reward is the outcome or consequence of an action taken by the agent, it
provides feedback to encourage or discourage the agent from taking specific actions.
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Finally, we define the most important quantity in reinforcement learning. The value function
is a measure of the expected long-term reward or utility of a given state or action. The value
function helps the agent decide which actions are most likely to lead to good long-term out-
comes. The value function is defined in conjunction with a policy of the agent, and it helps the
latter evaluate potential consequences of different actions and choose the ones that most likely
lead to great rewards.

To summarize, we say that an agent interacts with an environment, decides which actions
to play using their policy, receives a reward and moves to a new state. An agent represents
the efficacy of a given policy by estimating its corresponding value function. Based on the
value estimate, the agent updates their policy when they deem it appropriate and receives new
rewards as feedback from the environment on how to improve their decision making process.

RL challenges RL is still an open field with many open questions, which is fortunate for us.
In the following, we enumerate and explain the main challenges facing an RL agent through a
concrete example.

Figure 1 – Answer of DALL.E
2 for the prompt "PhD student
in the wild, drawing style"

Exploration-exploitation Consider an innocent undergradu-
ate, embarking in the adventure that is a PhD, full of hope and
happy to finally have the freedom of doing research in their fa-
vorite field. The latter is high spirited and doesn’t know how to
spend their energy, they are thus confronted with their first (of
many) dilemma: probe the literature in depth or parse relevant
papers and pursue a first result. While the former translates
to spending months in exploring and searching for pertinent
research, the latter can quickly lead to publishable content and
to harnessing the student’s strengths. This compromise is at the
heart of the reinforcement learning challenge and is called the
exploration-exploitation trade-off.

Definition. In reinforcement learning, the exploration-exploitation trade-off is the funda-
mental dilemma faced by a learner trying to learn about its environment and maximize its
profit. On one hand, the learner needs to explore, or try out different actions and be in new
states, in order to learn more about the environment and improve its decision-making. On
the other hand, the agent also needs to exploit, or take advantage of what it has learned so
far, in order to maximize its profit in the short term.

The exploration-exploitation trade-off arises because exploration can be risky and may
not lead to an immediate payoff, while exploitation allows the agent to maximize its profit
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based on its current learner, but may not lead to long-term learning or optimization. As a
result, the learner must find a balance between exploration and exploitation in order to
learn effectively and maximize its reward over time.

Our PhD candidate faces the exploration-exploitation trade-off from the beginning of their
studies, for instance, they must balance their desire to utilize known techniques to improve
existing work whit their mission to learn key techniques from their area of interest. Therefore,
this tension between exploration and exploitation manifests itself from the first months of their
research.

Continuous spaces Let’s say that our PhD student has now spent enough time to become
well-informed about their chosen field. And let’s assume for our case that their advisor has
given them the freedom to choose their specific topic. The second challenge that confronts
our candidate is selecting one specific subject. For instance, a scholar interested in RL has to
choose from multi-armed bandits, structured bandits (linear, Lipschitz, generalized...), tabular
MDPs, continuous MDPs, etc. And that for all of the latter, they can choose between stationary
or non-stationary, theory or practice, regret minimization or pure exploration and much more.
Agreed a layman reader wouldn’t understand these technical terms, yet they would surely
grasp the frustration that a junior candidate is faced with when they are spoiled for choice to
this extent.

Definition. One major difficulty in sequential decision making is scaling the strategies
to continuous spaces, i.e. environments with large or infinite number of states and actions.
Indeed, it can be very challenging to handle the exploration-exploitation dilemma in
continuous spaces. Indeed, balancing this trade-off may require the agent to explore a large
(possibly infinite) number of states in order to learn about the environment effectively.

Function approximation Faced with the aforementioned challenge, it may be impractical
for our PhD candidate to evaluate every possible course of action explicitly. In these cases, a
popular solution is to resort to function approximation techniques. Our scholar can assume
some kind of model for the rewards and or transitions, then they can optimize their policy by
learning in a functional space. The latter can be easier and is especially interesting in the case
of parametric spaces or functions with particular structures.

Definition. Function approximation in RL refers to the setting where some functional
representation is assumed to approximate the value function or the policy. Major challenges
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arise with the latter. For instance, these techniques can be computationally intensive if the
class is overly intricate, do not necessarily provide accurate approximations if the class is
overly simplistic, and may even be unrealistic.

Computational efficiency Tractability is an important consideration in machine learning,
indeed algorithms often involve complex computations. In RL, computational efficiency is even
more regnant since algorithms almost always involve iterative processes, such as updating an
estimator of the value function or re-optimizing the agent’s policy after new observations.

Definition. Computational efficiency is directly correlated to the performance and prac-
ticality of an RL algorithm in real-world scenarios. Unfortunately, and due to the nature
of the setting, RL algorithms may need to update/optimize certain functions a number of
times proportional to the amount of data. Therefore, RL methods can be computationally
intensive and those with theoretical guarantees are often intractable. Accordingly, compu-
tational efficiency constitutes a key challenge in the development and application of RL
algorithms, and can seriously affect the impact and popularity of this literature.

Other RL challenges RL is a very active field of research and has been applied to a different
practical domains, e.g. robotics, advertisements, games, etc. Consequently, every potential
application in this dynamic literature brings up new concerns and challenges specific to the
particular setting’s purpose. A common issue is the credit assignment, i.e. how to assign
rewards to particular actions when a series of decisions has been made. Handling non-stationary
environments is another issue that comes up often as the world is naturally non-stationary.
Also, when used to solve real world problems, the issue of sample complexity arises, indeed RL
algorithms may need a consequential amount of interactions before learning, and this can be
very limiting in real life. Finally, an essential challenge in the deployment of RL algorithms is
the safety and reliability of the agent. Indeed, a self-driving car cannot be trusted to drive in the
real world if it’s learning its policy from scratch and without prior knowledge.

Overall, the literature on RL is large and diverse, and as it continues to grow and evolve,
researchers and practitioners raise new difficulties in conjunction with their respective applica-
tions. The latter is beneficial and tackling such challenges head on advances the state of the
art and practicality of RL. The PhD student’s example and many other applications of RL that
ordinary mortals face consistently are a major personal incentives in this thesis.

Conclusion It is particularly frustrating for our PhD student when they recognize that RL
frameworks have the ability to address their conundrum and many other important challenges,
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yet the applicability of RL is hindered by practical limitations. It is also disheartening when
certain RL problems are deemed resolved even though the theoretical framework is not well-
aligned with reality.

Drawing inspiration from the previous examples and limitations, my particular interest in
this thesis is to improve the practicality of RL frameworks and algorithms. In other words, I
aimed to increase the applicability of RL algorithms by working towards reducing stringent
assumptions, limiting the need for extensive prior knowledge, effectively utilizing available
information, and ultimately replacing flawed structures or procedures with more realistic
equivalents that better reflect the complexity of real-world scenarios. This way, my purpose is
to make RL algorithms and theory more widely applicable to real-world problems.
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Chapter 1

Introduction

1.1 Motivation and theoretical formalism

We are interested in sequential decision making, where a learner interacts with some environ-
ment and must take a sequence of decisions in order, such that the outcome of each decision
may influence the options available for subsequent decisions. In this context, various specific
problems with different complexities and diverse objectives give rise to numerous possible for-
mulations. In particular, we are interested in the reinforcement learning framework, a sub-field
of machine learning where data is not provided beforehand but is revealed sequentially as the
learner interacts with the environment.

In this Chapter, we will clarify the main concepts of our chosen theoretical frameworks,
then we will enumerate and provide high-level intuition for the different objectives studied in
this manuscript. Finally, we will describe in further detail the tasks that are studied, and give a
summary of our contributions.

Reinforcement learning is a type of machine learning that involves trial and error interactions
with an environment, i.e. learning from the consequences of actions. More precisely, the learner
receives rewards or punishments for its actions, and it adjusts its behavior accordingly in order
to maximize the reward.

In reinforcement learning, the learner tries to maximize its utility by taking decisions
that lead to favorable outcomes. The agent learns to choose actions that will lead to the
greatest reward over time, based on its past experiences and the feedback it receives from the
environment. Reinforcement learning has been applied to a variety of applications, including
natural language processing, robotics, and recommendation systems.
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1.1.1 Markov decision process

The MDP framework is the most popular for reinforcement learning. In this structure, the
learner that interacts with the world is called an agent, the agent’s available decisions are
named actions, and the utility that a decision achieves is called a reward. The literature studies
reinforcement learning mathematically as a Markov decision processes (MDP) where the
agent i) chooses actions based on past observations ii) observes an immediate reward sampled
from an unknown function, and iii) moves to a new state following an unknown Markovian
transition mapping. The latter implies that given the current state and action, the next state
is independent of previous state-action pairs. In layman’s terms, we say that a transition is
Markovian if the future depends only on the present state and not on the past history.

Infinite-horizon RL A popular formulation of RL is the infinite-horizon Markov Decision
Problem (MDP) with -possibly- continuous states s ∈ S , actions a ∈ A, transition distribution
st+1 ∼ P(. | st, at) and reward function rt ∼ r(st, at). Let π(a|s) denote a stochastic policy,
the agent repeatedly interacts with the environment by sampling action at ∼ π(.|st), receives
reward rt and moves to a state st+1.

In Infinite-horizon RL, the value of a policy in a given state is measured as:

V π(s) ≜ Eτ∼π

[ ∞∑
t=0

γtrt|s0 = s

]
,

where γ ∈ [0, 1) is a discount factor accounting for the preference of present rewards over
-possibly larger- future ones. This value function evaluates the performance of an agent and is
often linked to the objective even though the latter can vary depending on the application.

Episodic RL Another prominent formulation for RL (Osband, Russo, and Van Roy, 2013;
Azar, Osband, and Munos, 2017; Dann, Lattimore, and Brunskill, 2017), Episodic RL is a tuple
P = ⟨S,A,P, r,K,H⟩, where the state (resp. action) space S (resp. A) might be continuous. In
episodic RL, the agent interacts with the environment inK ∈ N episodes consisting of H ∈ N
steps. Episode k starts by observing state sk1 . Then, for t = 1, . . . H , the agent draws action akt
from a (possibly time-dependent) policy πt(skt ), observes the reward rt ∼ r(skt , akt ) ∈ [0, 1], and
moves to a new state skt+1 ∼ P(. | skt , akt ) according to the transition function P.

Roughly speaking, episodic RL was introduced as a way of breaking down the RL problem
into smaller problems, where the agent learns from the rewards they receive at the end of each
episode. This allows the agent to focus on the short-term decisions rather than the long-term
ones and makes the problem more manageable. It is also more interesting in practice due to
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the reduced amount of updates to the policy, which is usually correlated with an improved
stability of the agent’s performance.

In episodic RL, the performance of a policy π is measured by the total expected reward
V π

1 starting from a state s ∈ S, the value function and the state-action value functions at step
h ∈ [H] are defined as

V π
h (s) =∆ E

[
H∑
t=h

rt | sh = s

]
, Qπh(s, a) =∆ E

[
H∑
t=h

rt | sh = s, ah = a

]
.

Multi-armed bandits This is a special case of the MDP model where there is only one state,
i.e. without a transition structure. In other terms, the agent chooses actions, observes the
corresponding reward signals and repeats the process again, i.e. it stays in the same state.

The multi-armed bandits setting is classically motivated by slot machines, also known as
one-armed bandits, of which the setting got its name. Given a fixed amount of coins T and a
numberK of slot machines (arms) with possibly different rewards, the agent allocates their
wealth sequentially between the machines in order to gain as much money possible, under
the assumption that each machine is characterized by a different payoff. Mathematically, arm
k ∈ {1, . . . ,K} is modeled by a distribution of probability Dk, with mean µk. At time t, the
agent picks an arm j and receives reward rt sampled from the distribution Dj . In an abstract
sense, the agent seeks to identify the arm with the highest mean in the shortest amount of time.

1.1.2 Realistic reinforcement learning

Here we shed some light onto the subject of this thesis “towards realistic RL” and provide some
high level insights to assure the reader of its relevance.

Reinforcement learning aims to solve a wide range of real-world problems, including
natural language processing, robotics, and game playing. Therefore, it is only natural to
expect these concrete problems to be plausible under the studied theoretical formalism and
assumptions. For example, when training an autonomous car to navigate safely, we assume that
the transition and reward models are well represented in an -efficiently- learnable model. In
practice, applying reinforcement learning involves dealing with real-world challenges such as
noisy or incomplete data, limited computational resources, and the need to balance exploration
and exploitation without prior knowledge. As a result, the gap between reinforcement learning
theory and practice can sometimes be significant, and bridging this gap requires a combination
of theoretical understanding and practical experience.

For previous reasons and more, we make seeking realistic practices in theoretical reinforce-
ment learning a driving goal for this thesis. This purpose is visible in our work with different
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levels of wingspan, and we believe that the journey of realistic RL is still long and contains
several -deceptively small- building blocks and contributions.

1.2 Reinforcement learning objectives

There are several different performance measures that can be used to evaluate the effectiveness
of an agent in reinforcement learning. One common measure is the expected return, which is
the sum of the discounted rewards that an agent receives over time. Another measure is the
cumulative reward, which is the total reward received by an agent over a certain period of time.
Other measures include the average reward per time step, which reflects the average reward
received by an agent at each time step, and the average reward per episode, which reflects the
average reward received by an agent over the course of an episode. These performancemeasures
can be used to compare the performance of different agents or to assess the performance of a
single agent over time.

1.2.1 Regret minimization

Regret minimization is a concept in reinforcement learning that refers to the idea of computing
the policy leading to maximization of cumulative reward. The latter requires the agent to
strategically control the actions in order to learn the transition and reward functions to a
sufficient level of precision. This tension between learning the unknown environment and
reward maximization is quantified as regret: the typical performance measure of an episodic
RL algorithm. Regret is defined as the difference between the expected cumulative reward or value
collected by the optimal agent that knows the environment and the expected cumulative reward
or value obtained by an agent that has to learn about the unknown environment. Formally, the
regret overK episodes is

R(K) ≜
K∑
k=1

(
V π⋆

1 (sk1)− V πt
1 (sk1)

)
.

where πt is the policy of the agent at episode t and π⋆ is the optimal policy, i.e. for all possible
initial states s ∈ S we have π⋆ ∈ arg maxπ V π

1 (s) .
We choose to defer the other definitions of regret to their respective chapters, e.g. those

relating to Infinite-horizon RL or to Multi-armed bandits. In essence, the objective is similar:
minimizing the regret incurred by an agent in every setting. The differences are manifested in
the structures of interaction or in the different definitions of the value functions.
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1.2.2 Pure exploration

In reinforcement learning, pure exploration refers to situations where an agent’s primary goal
is to gather as much information about the world as possible, rather than maximizing the
cumulative reward. In these settings, the environment may or may not reveal the rewards to
the agent, and the goal is to learn as much as possible in order to return a policy that optimizes
some criterion. The exploration and exploitation trade-off is also present in this setting, through
the decision of whether to try a new action that may lead to a better reward or to continue
using a known action to obtain a better estimate of its value and / or transition dynamics. Pure
exploration settings can be useful for gathering data and understanding the structure of an
environment.

To illustrate this objective, consider the Best-policy identification setting. In the latter, the
agent observes both transitions and rewards to attempt returning an ε-optimal policy with
large probability. In technical terms, if we denote V π the value function of the agent following
policy π and V ∗ the optimal value function then the objective is: given ε ∈ R+ and δ ∈ (0, 1),
interact with the environment and return as fast as possible a policy π such that:

P (∀s ∈ S, V π(s) ≥ V ∗(s)− ε) ≥ 1− δ.

To conclude, regret minimization and pure exploration are two pertinent objectives that
continue to attract the attention of researchers in the reinforcement learning field. While in pure
exploration an agent’s primary goal is to gather as much information about its environment as
possible through exploration, regret minimization rather entails maximizing the cumulative
reward which can be more restrictive for the agent since it cannot explore possibly fruitless
actions. In both cases, the agentmust balance the trade-off between exploration and exploitation.

1.3 Outline and Contributions

The purpose of this section is to summarize the different contributions of this thesis in the
fields of bandits, linear regression, and reinforcement learning.

Prior to outlining and elaborating our contributions, we provide an overview of our moti-
vation at a high-level. In reality, our efforts and aspirations can be summarized in the question
“how can we make the RL framework, algorithms, and assumptions more realistic?”.

It is only natural that we begin this effort by turning to the simplest model for sequential
decisionmaking: Multi-armed bandits. We consider the finite number of arms case inChapter 3
and study a pure exploration objective called Thresholding bandits. We propose a Frank-
Wolfe based method, extend the setting to a wider class of losses, beat the state-of-the-art
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both theoretically and empirically, and apply our generic proof scheme to improve existing
algorithms. The findings of this Chapter were published at the Neural Information Processing
Systems conference in 2021 as a spotlight paper (top 3%).

In Chapter 4, we consider the popular linear regression problem. We uncover an old result
of the adversarial setting and adapt it to the stochastic case, we show that this algorithm should
be the default one instead of ridge regression. We apply this modification to linear bandits
and show that it enables removing an omnipresent assumption. Our analysis is useful both
theoretically and for the practitioner. The results of this Chapter were accepted for publication
at the Neural Information Processing Systems conference in 2021.

In order to progress, we study continuous state action MDPs in Chapter 5. Bewildered by
the popularity of the unrealistic linear MDP model, we consider a recently proposed MDP
representation. We recall the expressive power of the latter and unveil a novel and crucial
property about it that enables us to design an algorithm with tractable planning. We also show
several results of independent interest, e.g. we show that we can forgo clipping value functions
therefore removing a superfluous step of non-linearity. The contributions in this Chapter were
published in the The AAAI Conference on Artificial Intelligence in 2023 as an oral presentation.

In Chapter 6, we study deep policy gradients, an infinite-horizon MDP setting where the
value function and policy are modeled using deep neural networks and optimized using gradi-
ent descent. Driven by recently unveiled pitfalls of existing algorithms, we show that a simple
modification in the value function loss can lead to significant improvement. We first motivate
the latter and provide an intuitive proof of concept, then we demonstrate empirically that 1)
our method improves over the standard training loss, and 2) our intuition is indeed accurate
and our predicted are corroborated by the simulations. The contributions presented in this
Chapter were accepted for publication at the International Conference on Learning Representations
in 2021.

To summarize, our contributions are organized as depicted in Figure 1.1, between improve-
ments of existing methods and contributions that introduce novel principles and algorithms.
Our goal through all of them is unique: contribute to the RL research by improving algo-
rithms that are both theoretically sound and user-friendly for practitioners, and to support the
advancement towards a more realistic RL formalism.

Remark 1.1. remarkbar The chapters in this thesis have been written to be standalone and can be
read independently, catering to the diversity of settings studied. This allows for ease of readability
and flexibility for the reader, who may only be interested in a specific topic without the need to go
through the entire thesis.
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Figure 1.1 – Our contributions are divided by whether they improve existing algorithms and models or
they propose entirely novel strategies. They are united in striving for reasonable structures.

1.3.1 Frank-Wolfe for thresholding bandits

In Chapter 3, we focus on a pure exploration setting called thresholding bandit. In the latter, a
learner interacts with a K-armed bandit, nature provides it with a threshold and after a known
time horizon it asks the learner to output their answer for “which arms’ means are larger than
the threshold”. An agent is evaluated by the total number of mistakes it makes, weighted or
not, after ending the interaction. In this game, the learner’s loss depends on the unknown
bandit parameters. Therefore, at every time-step, the agent needs to act with two independent
objectives in mind: improving the loss estimate, and sampling arms that can possibly yield the
most significant loss reduction. The latter is a quintessential challenge facing an agent in this
setting, and is a manifestation of the famous exploration-exploitation trade-off.

This setting has been investigated in many recent papers and several algorithms were pro-
posed with good empirical performances yet sub-optimal theoretical guarantees. We extend
this bandit problem to more general loss functions, with possibly gap-dependent weights.
Moreover, building on the popular Frank-Wolfe optimization approach, we are able to propose
a generic method to design strategies for this setting. Our algorithms are (perhaps surprisingly)
not based on typical RL concepts like optimism, explore-than-commit, nor successive elimina-
tion. Furthermore, we provide an simple and intuitive analysis that works for a wide class of
index-based algorithms including all previously introduced ones for this setting. Our analysis
not only yields to state-of-the-art theoretical guarantees for our algorithm but improves the
bounds for existing algorithms as well. In addition, we evaluate our algorithm empirically and
show how it outperforms existing techniques. Finally, we provide new non-trivial observations
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about this setting, e.g. how adaptive-methods can empirically outperform non-adaptive oracles
by a significant margin.

1.3.2 The forward algorithm and application to linear bandits

In our quest of tackling increasingly complex sequential decision making settings, in Chapter 4
we are interested in studying bandit problems with a continuous action space. Several works
in this direction make structural assumptions about the reward model, the most popular one
being the linear rewards assumption. In the latter, it is also assumed that the reward function
is bounded (usually in [0, 1]) and that the learner is aware of this. While considering bounded
rewards is very reasonable, providing the bound to an agent before the interaction is restrictive
in our opinion. We investigate methods of relaxing the latter by attacking the underlying
linear regression challenge, specifically, we are interested in studying the stochastic linear
regression setting without assuming a known bound on observations. We motivate this setting
by highlighting the theoretical and empirical weaknesses of the standard ridge regression.

This problem has been solved for adversarial setting in the seminal paper (Vovk, 1997) by
adopting the forward algorithm, which ingeniously adds a regularization term depending
on the future coordinate. Naturally, we investigated this method in the stochastic setting to
determine whether it also alleviates the “bound knowledge” assumption in this case. We
answer the latter positively, and we show the true bounds of standard regression when stripped
from knowing the range of observations. Furthermore, we show that this algorithm lends itself
very conveniently to the linear bandit setting. Finally, we show through numerical experiments
the success due to this simple modification. The latter is indeed a small adjustment, yet it paves
the way towards realistic scenarios in which the observations’ range is not known a priori.

1.3.3 MDPs with Continuous state and actions spaces

We take the pursuit of realistic RL challenge to the next level by attempting to advance the work
on continuous state-action MDPs. In Chapter 5, we consider the episodic RL setting in which
an agent interacts with the environment inK ∈ N epochs of lengthH ∈ N. A learner in this
framework must update its policy at the beginning of every epoch based on past information
only. Currently, the main challenge in this setting is the representation choice. Indeed, while
linearMDPsmodel has become ubiquitous in literature, it remains a purely abstract assumption
that only helps the analysis without any concrete example or application.

In this perspective, we investigate a recently introduced representation based on the expo-
nential family of distributions (Chowdhury, Gopalan, and Maillard, 2021). Unlike the class of
linear MDPs, the Bilinear exponential family is very expressive and includes real examples like
Tabular, Factored MDPs, and Linear Quadratic Regulators. After a thorough motivation of this
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little-appreciated functional class, we unveil a novel observation assimilating the latter to an
approximate linear representation. Consequently, we are able to provide a tractable algorithm
for MDPs of this family in the episodic RL setting. We also provide a regret bound under mild
regularity assumptions that exhibits an optimal dependence onH andK. Finally, the presented
algorithm and analysis showcase certain improvements over the literature, e.g. clipping the
value function is irrelevant.

1.3.4 Improved value estimator for deep policy gradients

In Chapter 6, probably our most practical work, we consider discounted infinite horizon MDPs
with continuous state-action spaces. Our objective in this effort is to join the race for principled
deep policy gradient algorithms with strong empirical performances. In fact, this research
direction has been very prolific since the emergence of toy environments that mimic real life
scenarios by encoding the laws of physics. Indeed, RL has been very successful in learning the
dynamics of these tasks, ranging from playing various video games to controlling real robots.

We became interested in this problem after diverse observations by a handful of recent
papers pinpointing significant discrepancies between the driving principles and insights that
drive algorithms on and what is implemented in practice. For instance, the belief that neural
network approximators allow for a smooth learning of value functions has been challenged
showing that the deep policy framework fails to provide a decent fit. Motivated by these
findings, we motivate then propose to adopt the residual error as a loss for critics in the
actor-critic framework. We provide evidence that this methods fits the values better and
demonstrate a consistent and logical performance boost on a variety of challenging tasks,
including environments with sparse rewards signals. Finally, we provide empirical evidence
that our method factually reduces the policy gradient variance, further demonstrating the
soundness of our intuition, unlike previous methods that were shown to bias the estimators
without variance reduction.

List of publications
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Chapter 2

Literature review

We motivate some key concepts discussed in this thesis and describe the current
state-of-the-art and remaining challenges. Specifically, we discuss the literature of multi-armed
bandits and Markov decision processes in the context of reinforcement learning, we provide
brief overview of the origins and purposes of each formalism, and we lay out the major
research directions relating to each setting.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Stochastic multi-armed bandits . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Reinforcement learning objectives . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Realistic RL: Open questions and promising prospects . . . . . . . . . . . . 19

2.1 Introduction

This chapter provides an overview of several key concepts in Reinforcement Learning (RL),
includingmulti-armed bandits, MarkovDecision Processes (MDPs), and different RL objectives.
We will also explore some of the open questions in realistic RL and the challenges that arise
when dealing with large-scale and complex problems.

Multi-armed bandits are a simple and fundamental problem in RL that has been widely
studied and has many practical applications. MDPs are a more general framework for RL
problems and are widely used in many applications. We will discuss the key concepts of MDPs,
such as states, actions, rewards, and the value function. We will also discuss different variants
of the MDP framework with their possible applications.
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This chapter also examines different RL objectives, such as regret minimization and pure
exploration, and various special manifestations of these objectives like best arm identification
and thresholding bandits, which are important for many real-world applications. We also
mention various concepts involved in solving this kind of RL problems, such as optimism-
under-uncertainty, Thompson sampling and Track-and-stop

Finally, we will review some of the open questions in realistic RL, such as the challenges of
dealing with large-scale and complex problems. We will inspect the importance of representa-
tions and structures that can simplify the problem and make it more tractable. We will also
highlight the importance of addressing these sample and computational complexity challenges
in order to make RL more widely applicable to real-world problems.

Overall, the chapter provides a broad yet non-exhaustive introduction to the field of RL,
with a focus on the key concepts, variants, and open questions that are relevant to the core of
this thesis.

Remark 2.1. In this portion of the manuscript, we have made a conscious decision to be more
verbose and steer away from discussing mathematical details. Our objective is not to provide a
comprehensive, technical review of all relevant concepts, as there are already many comprehensive
monographs available that serve that purpose. Instead, we aim to stimulate the reader’s imagination
and encourage discussion. By presenting the material in a more descriptive manner, we hope to
generate a broader andmore accessible understanding of the topic, and to encourage deeper exploration
by the reader. Our focus is on creating a thought-provoking narrative that encourages the reader to
engage with the material in a meaningful way.

2.2 Stochastic multi-armed bandits

A stochastic multi-armed bandit problem is a set of distributions indexed by the available
actions. A decision maker sequentially samples from the different distributions for a number
of consecutive rounds. This first trails of this setting date back to the fifties where the seminal
works (Robbins, 1952; Lai, Robbins, et al., 1985) introduced the stochastic multi-armed bandit
problem. In a broader sense, these were among the pioneering works that paved the way for
sequential statistics, i.e. where the sample size is not necessarily fixed or known in advance
(Dodge and Romig, 1929; Wald, 1947). This novelty at the time was a significant step towards
realistic and more efficient algorithms. Indeed, although the literature was far from being
optimal, it still improved over known pre-defined time budgets. The latter was groundbreaking
in the sense that it allowed statisticians a formalism where they could adjust their decisions
continuously with the upstream of new information. This meant that the testing budgets were
reduced and pointless samples were avoided.
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In this modernization of research efforts on statistics, the departure was not from the fixed
sample size exclusively, instead it also swept other outdated concepts from consideration, e.g.
promoting multiple population statistics (Isbell, 1959; Bradt, Johnson, and Karlin, 1956; Bell-
man, 1956; Vogel, 1960). The latter was also motivated by the need for more applicability and
better sample efficiency. Pragmatically, a statistician’s goal is more often to compare multiple
populations than just to confirm or infirm some property of a singular population. In the
medicinal drug dosage problem for example, the doctor needs to determine the amount of
medication to prescribe for their patient, and this can change over time with factors such as the
resistance and reaction of the specific patient, the severity of their condition, the emergence of
new drugs, and even to the comparison between several competing drugs with different prop-
erties. Overall, the fact that sequential decision making improves over classical statistics does
not really require much motivation as it so clearly is an improvement in terms of applicability
and prospects of gained efficiency.

Purpose and applications Nowadays, multi-armed bandits serve a variety of real world
objectives. Indeed, there exist multiple scenarios where one needs to make decisions in a se-
quential manner in order to maximize rewards. For instance, multi-armed bandit can be used to
model situations in which an agent must allocate resources (Lattimore, Crammer, and Szepesvári,
2015; Verma et al., 2019; Fontaine, Mannor, and Perchet, 2020), such as advertising budget, to
different options in order to maximize the return on investment. Another considerable field of
application is clinical trials, indeed, bandits can be model the selection of treatments or therapies
in clinical trials (Berry, 1978; Villar, Bowden, and Wason, 2015; Aziz, Kaufmann, and Riviere,
2021), allowing researchers to learn which treatments are most effective over time. Moreover,
bandits are also of great interest in the field of network optimization, they help in the allocation of
resources in communication networks (Avner andMannor, 2016; Li, Yang, et al., 2013; Cai et al.,
2018; Gai, Krishnamachari, and Jain, 2010; Gai and Krishnamachari, 2011), allowing network
operators to learn which strategies are most effective at optimizing network performance.

There still exist a wide variety of problems that are not mentioned here, e.g. online advertis-
ing to model the selection of ads displayed to the users and personalization to optimize their
engagement or satisfaction. Overall, multi-armed bandits are a useful tool for modeling and
solving decision-making problems in which the agent must learn which actions most probably
lead to good outcomes over time.

Variants A consequence of the abundances of potential applications including bandits is
that they induce a myriad of variations over the original MAB problem. Here we provide a
non-exhaustive number of the many influential settings based on MABs.
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Perhaps themost famous problem in this context is the contextualMAB. In contextual bandits
(Abe and Long, 1999; Agarwal, Hsu, et al., 2014; Beygelzimer et al., 2011), the reward or utility
of an action depends not only on the action itself, but also on the context in which the action is
taken. For example, the utility of attending doctoral training may depend on the PhD student’s
prior education, interests, or current workload.

Combinatorial MABs is another compelling and popular setting. In combinatorial bandits
(Anantharam, Varaiya, and Walrand, 1987; Caro and Gallien, 2007; Gai, Krishnamachari, and
Jain, 2010; Chen, Wang, and Yuan, 2013), the agent must choose a combination of actions rather
than a single action. This can be convenient for modeling scenarios where the learner must
make multiple decisions or choices simultaneously, such as a PhD student allocating their time
to multiple projects or papers.

Among the research directed at the previously mentioned continuous spaces challenge,
Linear banditswere proposed as a structured variant of the (MAB) problem (Abe and Long,
1999; Auer, Cesa-Bianchi, and Fischer, 2002). In linear bandits, the reward of an action is
modeled as a linear function of a set of -known- features or characteristics associated with the
action. Several research efforts introduced optimism based algorithms for this setting (Abbasi-
Yadkori, Pál, and Szepesvári, 2011; Dani, Hayes, and Kakade, 2008), along with near optimal
regret bounds.

On the other hand, pure exploration objectives were also proposed with the multi-armed
bandit setting. For instance, in thresholding bandits (Abernethy, Amin, and Zhu, 2016; Mukherjee
et al., 2017; Tao et al., 2019), the final objective is to return arms whose reward exceeds a certain
threshold value.

2.3 Markov Decision Processes

The Markov Decision Process (MDP) framework is a mathematical formalism for modeling
problems of decision-making under uncertainty. There are many traces of this setting in
the early fifties and sixties (Massé, 1946; Wald, 1947; Arrow, Harris, and Marschak, 1951;
Arrow, Karlin, Scarf, et al., 1958; Dvoretzky, Kiefer, and Wolfowitz, 1952), this is not an
exhaustive list as several objectives led to using similar frameworks at the time, e.g. inventory
control, resource management, and sequential testing. Richard Bellman was the one who
popularized MDPs in the early 1950s, indeed he introduced the framework rigorously and
invented Dynamic programming in an effort to solve the optimization problems faced by
engineers and economists (Bellman, 1966).

The motivation behind the MDP framework is to provide a flexible and generalizable tool
for solving a wide range of optimization problems in which an agent must make decisions
based on incomplete information about the environment. MDPs are particularly useful for
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modeling problems in which the agent must take a sequence of actions over time, as they
provide a way to represent the temporal structure of the problem.

The MDP framework has been widely applied in a variety of fields, including economics,
operations research, engineering, and computer science. It has played a central role in the
development of reinforcement learning (RL) (Sutton and Barto, 1998). MDPs have also been
used to model a variety of real-world problems, such as inventory management, production
planning, and robotic control (Powell, 2007).

Purpose The purpose of adopting MDPs in RL is to provide a formal framework for defining
and solving RL problems, that is more general and realistic than the multi-armed bandit. An
MDP consists of a set of states, actions, and a transition function that defines the probabilistic
transitions between states as a result of taking actions. It also includes a reward function that
defines the rewards received by the agent for taking certain actions in certain states. The goal
of the RL agent is to learn a policy, which is a function that specifies the action to take in each
state, that maximizes the expected cumulative reward over time.

MDPs provide a way to represent the temporal structure of RL problems, as they allow the
agent to take sequential actions in order to achieve a goal. They also provide away to incorporate
uncertainty into the decision-making process, as the transitions and rewards are typically
stochastic and the agent must learn to make decisions based on incomplete information.

MDPs have been applied to a wide range of RL problems, including control problems
such as robotic manipulation and autonomous driving, as well as problems in economics and
finance, such as portfolio management and auction design. They have also been used to model
a variety of real-world problems, such as inventory management, production planning, and
network routing.

Variants There are many variants of MDPs that have been proposed in literature. The major
defining factor of these diverse alternatives appears in the way the environment or decision-
making problem is structured.

In Partially observable MDPs (POMDPs), the agent only has partial observability of its state
in the environment. This is suitable when modeling situations in which the agent has limited
or noisy information about the environment (Thrun, 2002), such as in problems involving
sensor uncertainty or hidden state variables. A different variant is the Stochastic gameswhere
there are multiple agents that can take actions simultaneously and influence the state of the
environment. This is suitable for modeling situations where the actions of multiple agents are
co-dependent (Kearns, Mansour, and Singh, 2013), such as in multi-player games or social
dilemmas. Another variant of MDPs is Decentralized MDPs, in which the agent must make
decisions based on the actions of other agents, who may be pursuing their own goals or
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objectives. This fits scenarios where the agent must coordinate with other agents or respond to
their actions (Amato et al., 2013), such as in distributed control or multi-agent systems.

On the other hand, we find a different kind of MDP variants where the contrast is in terms
of algorithmic choices or structural assumptions. In other terms, these are variants of MDPs
that differ in the way agents make decisions or the way policies are chosen and updated.

Reinforcement learning, the most pertinent variant for our manuscript, is where the agent
learns a policy or strategy by interacting with the environment and receiving feedback in the
form of rewards. This is useful for settings where the agent must learn from experience (Sutton
and Barto, 1998), such as in problems involving exploration or uncertainty. Another algorithmic
choice is Dynamic programming: in DP the agent uses a backward induction approach to solve
the MDP by working from the final time step (horizon) backwards to the initial time step.
Using the Bellman equations, the agent is able to compute the optimal value function and
deduce the best policy to follow. This is suitable for interactions with a finite horizon or a
known end time, and when the transition probabilities and rewards are known in advance.
Please refer to the book (Bertsekas, 2000) for a complete overview. On a different notes, Monte
Carlo methods were also proposed to solve MDPs. In MC algorithms, the agent estimate a
policy’s value function by sampling from the environment and averaging the rewards over
multiple episodes. This is useful in problems with large state or action spaces, or when the
transition probabilities or rewards are uncertain or hard to model.

2.4 Reinforcement learning objectives

The objectives in RL refer to the metrics used to evaluate the performance of an RL algorithm.
These objectives typically reflect the ultimate goal of the agent, such as maximizing the cumu-
lative reward, returning a policy within a certain distance of the optimal, or achieving a certain
level of safety. Common performance objectives include the expected cumulative reward, the
average reward per step, the value of the optimal policy, and the probability of reaching a goal
state. Additionally, there are other objectives that are related to the stability and robustness of
the algorithm, such as the variance of the achieved rewards and the convergence time. These
performance objectives can be used to compare different RL algorithms and to guide the design
and improvement of RL algorithms. In the real-world application of RL, it is crucial to identify
the appropriate performance objectives and the according algorithm.

2.4.1 Regret minimization

Regret minimization is a key concept that is used in the field of reinforcement learning (RL)
to evaluate the performance of RL algorithms. The idea is to compare the performance of a
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strategy to that of an optimal decision-making algorithm, in terms of the cumulative rewards
over time. Formally, regret is defined as the expected value of the difference between rewards
of the optimal strategy and those obtained by the algorithm being evaluated.

There is a large body of literature on regret minimization in RL, with research focusing
on various aspects of the problem such as designing algorithms with provably low regret,
understanding the relationship between regret and other performancemeasures, and improving
the sample complexity while keeping optimal bounds.

Most RL algorithms are based on the concept of optimism. Optimism in RL refers to the idea
of taking actions that have a high potential for reward, i.e. the agent compares different actions
optimistically by comparing their best possible outcomes (Agrawal, 1995; Kaelbling, 1993;
Kaelbling, 1994). This can be accomplished by using optimistic initialization, which assigns a
high initial value to the estimates of the value of the states or actions, or by using optimistic
planning, which assumes that the unknown parts of the environment will be favorable. One
example of an algorithm that uses optimism is UCRL (Upper Confidence RL), which is an
optimistic algorithm that can be used for planning in uncertain environments.

Just as popular as the optimistic strategies is Thompson sampling. This is a strategy where
the agent selects an action based on a probability weighting over the value of actions, this
algorithm is older than Bandits or MDPs (Thompson, 1933). The said distribution is updated
based on the observed rewards, and the action is again selected by sampling from the current
distribution. This strategy can be useful when the agent is uncertain about the true value of the
actions and they have a reasonable prior distribution for the rewards. Thompson sampling is
the most popular Bayesian Multi-armed Bandit algorithm (Granmo, 2010; Scott, 2010; Chapelle
and Li, 2011; May and Leslie, 2011; Agrawal and Goyal, 2012), it is also very commonly used
for solving MDPs (Gopalan and Mannor, 2015; Agrawal and Jia, 2017).

Another popular concept in designing RL algorithms is Explore-then-commit. This is a
strategy in which an agent explores different options or actions at the beginning of the decision-
making process and then commits to the action that has the highest estimated value and for
the rest of the process (Gittins and Jones, 1979). This strategy can be useful when the agent
is uncertain about the true value of the actions or options but has a good idea of the relative
value.

There exist other strategies in RL such as Elimination, in which an agent tries out different
options or actions and eliminates the ones that have been found to be sub-optimal. This can
be useful when the agent has a good idea of the relative value of the actions or options but is
uncertain about their absolute value (Even-Dar et al., 2006). Track-and-stop is another common
strategy, it is used when a reasonable estimation of the optimal allocation is available, through
e.g. a tractable lower bound, and the agent’s policy is then trying to match this estimated
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allocation (Combes, Magureanu, and Proutiere, 2017; Garivier and Kaufmann, 2016; Degenne,
Shao, and Koolen, 2020).

In addition to these, the research on regret minimization has also been extended to various
specific scenarios such as adversarial setting and online learning with side observations. And it
is worth noting that the mentioned strategies are not exhaustive nor mutually exclusive, indeed
a number of recent efforts propose combinations of these algorithms.

2.4.2 Pure exploration

Pure exploration in RL refers to the problem of learning about the environment in order to
identify the optimal policy or value function of the environment. In this problem, the agent
may not know the reward function and it’s objective is not to achieve a good reward but can
rather be learning about the environment or returning a near optimal policy. Contrary to regret
minimization, pure exploration encompasses a collection of disparate objectives, and with
efforts focusing on various algorithmic. Also, in this setting and unlike the regret objective,
the agent may be given a fixed confidence level instead of the time budget, in which case they
need to decide when to stop the interaction and ensure an optimal response with the provided
confidence level.

In the bandit literature, Best arm identification (BAI) is when the goal of the agent is to identify
the armwith the highest expected reward in as few steps as possible. The best arm identification
problem is a fundamental problem in the field of online learning and optimization. A number
of algorithms have been proposed for BAI, some examples include UCB (Upper Confidence
Bound) algorithm, Thompson Sampling and Bayesian optimization. Some key references for
best arm identification problem are (Domingo, Gavalda, and Watanabe, 2002; Bubeck, Munos,
and Stoltz, 2009; Audibert, Bubeck, and Munos, 2010). The extension of the latter to MDPs is
called Best policy identification (BPI). The BPI problem refers to the problem of learning the best
policy in an environment with unknown dynamics and/or unknown reward functions. The
objective is to identify, as fast as possible, the policy that maximizes the expected cumulative
reward. This is generally more challenging than BAI problem and various algorithms have
been proposed to solve it. A key reference for best policy identification problem is the book
(Fiechter, 1994; Zanette, Kochenderfer, and Brunskill, 2019; Al Marjani and Proutiere, 2021;
Wagenmaker, Simchowitz, and Jamieson, 2022). A close variant of the latter is Reward free
reinforcement learning. This is where there is no explicit feedback from the environment, in
other words no rewards. RF methods rely on some kind of internal signal, such as the agent’s
curiosity or the uncertainty of its beliefs, to guide exploration. (Ménard et al., 2021) provides
methods for the two settings of BPI and Reward-free learning and discuss the juxtaposed
relationship of these concepts. Note that different kinds of pure exploration objectives exist in
literature. For instance, thresholding bandits is a variation of the multi-armed bandit problem
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where the goal is to identify the relative positions of the arms’ expected rewards from a certain
threshold (Steinwart, Hush, and Scovel, 2005; Locatelli, Gutzeit, and Carpentier, 2016; Chen,
Lin, and Zhou, 2015; Tao et al., 2019). Thresholding bandits are relevant when the agent seeks
to find all arms that have a pertinent level of reward instead of just finding the best one.

Regarding the prominent algorithms for this type of objectives, they are essentially similar
to the popular strategies for regret minimization. For example, Optimism in the face of uncer-
tainty is used for Best policy identification and reward free exploration (Ménard et al., 2021),
Thompson Sampling was also proposed for a variety of exploration objectives (Russo, Van Roy,
et al., 2017), and so on and so forth of previously introduced algorithmic concepts. A special
kind of concepts is of greater interest in this setting, namely the Information-theoretic measures.
These are used to quantify the amount of information gained by the agent when it explores
different states or actions. One of the most widely used measures is the mutual information,
which quantifies the degree of dependence between the state of the environment and the
actions taken by the agent. Another commonly used measure is the conditional entropy, which
quantifies the uncertainty of the agent’s belief about the environment given its observations.
Several works are based on this concept (Russo and Van Roy, 2014; Wagenmaker and Jamieson,
2022).

2.5 Realistic RL: Open questions and promising prospects

Reinforcement Learning research is a large body of literature and one of the largest subfield of
machine learning. Realistic RL refers to the part of literature and techniques that can be applied
to complex and realistic environments, such as robotics, autonomous vehicles, or at least to
large-scale simulations mimicking the world.

The field of reinforcement learning (RL) has seen significant progress in both theoretical
and practical research. The former focuses on understanding the fundamental properties of RL
algorithms and developing provable guarantees for their performance. In contrast, practical
RL focuses on designing implementable RL methods that handle real-world problems and
environments, this often involve the use of deep learning techniques. However, there is often a
disjunction between the theoretical and practical RL communities, with the former focusing on
idealized problems and assumptions, and the latter focusing on the empirical performance of
methods in real-world settings. This can make it challenging to find common ground, for this
reason, there is a growing interest in developing theoretical frameworks that better match the
settings and assumptions of realistic RL problems.
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2.5.1 Representation

In reinforcement learning, the representation refers to how the agent’s state, actions, and
rewards are represented internally. Representation can be a defining factor of the problem’s
hardness and the subsequent algorithm complexity.

One of the most popular choices for representation in RL is the tabular one, where the
agent’s state is represented as a table with entries for each possible state, and the agent’s action
and value functions are also represented as tables. This method can be very sample efficient in
small state spaces, but becomes infeasible in large or continuous state spaces, for several reasons
such as the curse of dimensionality, the lack of differentiability, and the difficulty of exploring
and learning in high-dimensional spaces. The curse of dimensionality refers to the exponential
increase in the number of states as the dimensionality of the space increases. Another challenge
is the lack of differentiability, which makes it difficult to use traditional optimization techniques
such as gradient descent. Finally, exploring and learning in high-dimensional continuous
spaces can be difficult, as the agent might need a very large number of interactions with the
environment to learn a good policy.

For all previous reasons and more, continuous representations are indispensable in RL,
and their choice is an important factor that can have a significant impact on the performance,
sample efficiency, and tractability of the RL algorithm.

In this context, a popular direction in RL is the adoption of function approximation (Sutton,
McAllester, et al., 1999; Melo, Meyn, and Ribeiro, 2008), where the agent’s state, action, and
value functions are represented by a parameterized function. This allows the agent to generalize
from past experience to new states, and is supposed to bemuchmore sample efficient in large or
continuous state spaces. The choice of representation highly depends on the problem domain
and the sensors available. Another important aspect to take in account is the generalization
ability.

2.5.2 Structures in bandits

Structuredmulti-armed bandits dealwith the problemof balancing exploration and exploitation
in decision making when the action space is structured. Linear, Lipschitz, uni-modal and
generalized linear are different possible assumptions that are commonly made about the
underlying reward function in order to solve bandit problems efficiently.

The most popular bandits structure, and relevant to our manuscript in the linear reward
assumption (Abbasi-Yadkori, Pál, and Szepesvári, 2011; Abeille and Lazaric, 2017). Indeed,
linear bandits assume that the reward function is linear with respect to the parameters of
the action. This assumption allows for the use of linear regression techniques (Vovk, 1997)
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to estimate the parameters of the reward function and make more informed decisions. An
extension of this structure is the Generalized linear multi-armed bandits (Filippi et al., 2010),
where rewards are modeled by a Generalized Linear Model. A GLM is a flexible framework
generalizes linear regression by assuming the response variable to be related to the explanatory
variable through a link function on top of a linear model (Nelder and Wedderburn, 1972).

Note that there are many other relevant structures in literature, in we refer the interested
reader to the following papers (Degenne, Shao, and Koolen, 2020; Combes, Magureanu, and
Proutiere, 2017) for some examples of structures bandit instances as well as the state-of the art
algorithms. Overall, it is true that structural assumptions in bandits have their flaws, but they
are for most very realistic as they can model real-life scenarios, and they are useful in different
settings because they entail more efficient solutions.

2.5.3 Structures in MDPs

Structured MDPs are an extension of the standard MDP framework where the state, action, or
reward spaces have some additional structure. Examples of structured MDPs include Factored
MDPs, which assume that the state space can be represented as a combination of smaller,
independent components. This assumption allows for the use of techniques such as dynamic
programming to solve the MDP more efficiently. MDPs with Graph feedback are another
example, in which the state-action space is represented as a feedback graph, i.e. a directed
graph where each node has an associated reward function, and each edge has an associated
transition probability. (Dann, Mansour, et al., 2020) considers this setting and relates it to the
bandits with side observations structure (Mannor and Shamir, 2011).

There exist certain techniques that allows researchers to handle generic structures, this
often consists of tracking the optimal allocation given by lower bounds (Ok, Proutiere, and
Tranos, 2018). However, the oracle allocation is often intractable and only currently available
for infinite-horizon settings, i.e. obtaining tight -even intractable- lower bounds is still an
active area of research in the finite horizon setting. Indeed, the stochasticity of transitions is a
significant hurdle in this setting compared to bandits, especially when the state-action spaces
are continuous. Currently, optimal finite time problem-dependent bounds for MDPs are still
elusive, the current state of the art in this direction is the work (Tirinzoni, Al-Marjani, and
Kaufmann, 2022) for the tabular episodic MDPs. This shows that the MDP literature has still
got multiple open questions and the continuous state-action spaces area is still very challenging
even to the purely theoretical researchers.

Linear MDPs is a recent class of representation where the dynamics and rewards are
described by linear functions (Jin et al., 2020). This class of MDPs has gained a significant
popularity because it entails a closed-form solutions using linear algebra, and they are computa-
tionally tractable and efficient. Also, using dynamic programming, the value can be represented
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as a unique function which makes linear MDPs ideal for studying the convergence properties
of the RL algorithms and analyzing their performance.

However, while it is true that the linear structure allows for efficient algorithms, the appli-
cability of this class of MDPs is unsatisfactory. Indeed, the main limitation of linear MDPs is in
assuming that the transition and value functions are linear. For instance, their isn’t to this day
a single example of finite dimensional linear transition function beyond tabular MDPs. This
limited expressiveness doesn’t seem to capture the complex relationships induced by stochastic
transitions.

Overall, in MDPs the popular structures often suffer two possible limitations. The first
consists of assumptions that are realistic and applicable, yet they entail intractable solutions and
complicated algorithms that can’t be implemented in practice. The second category includes
structures for which very efficient solutions exist, unfortunately they are very unrealistic and
therefore not suitable for modeling real world problems.

2.5.4 Compelling complexity measures

In this section, we will delve into the complexities of various classes of Markov Decision
Processes (MDPs) and their significance in the field of Reinforcement Learning (RL). We will
discuss threemeasures of complexity: Bellman rank, bilinear classes, andEluder dimension, and
how they are used to understand the properties of different classes of MDPs. Furthermore, we
will also explore how these complexities are shaping the future of RL by providing insights into
the fundamental limits of solving MDPs, studying the performance of different algorithms, and
guiding the development of new methods and techniques. Understanding these complexities
is crucial for making progress in the field of RL and for solving more challenging and realistic
problems.

One way to measure the complexity of an MDP is by using the Eluder dimension (Russo
and Van Roy, 2013), which measures the efficiency of predicting the value of actions not taken
based on observed sample data. Eluder dimension has been used to study the complexity of
various classes of MDPs, such as -possibly infinite- linear mixtures (Ayoub et al., 2020), and to
provide general analyses for MDPs with small Eluder dimension (Wang, Salakhutdinov, and
Yang, 2020; Ishfaq et al., 2021). It has been shown that the Eluder dimension provides optimal
bounds for linear MDPs and generalized linear MDPs, it was also shown that this complexity
is exactly equivalent to the information gain for reproducing kernel Hilbert spaces.

Another way tomeasure the complexity of anMDP is by using the Bellman rank (Jiang et al.,
2017). Prior to defining the latter, let’s define the average Bellman of a function f at step hwhen
following policy π. This error is defined as the expected Bellman error of f at step h, when all
previous actions were taken according to π. Now, the Bellman rank is basically the uniform
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upper bound on the rank of all matrices formed by the Bellman errors of all possible functions
f when following a greedy policy πf ′ of any possible function f ′. In the case of tabular MDPs,
it is simply the rank of the transition matrix matrix that represents the optimal value function.
Bellman rank has been used to study the complexity of various classes of MDPs (Dong et al.,
2020).

A third structural family is the Bilinear class of MDPs (Du, Kakade, Lee, et al., 2021), which
connects the Bellman error, which measures the sub-optimality of a value function, to a sum
of bilinear forms. Additionally, it allows for the use of data from a past value function to
estimate a bilinear form for all value functions within the class. This essentially entails that data
can be reused to evaluate multiple functions. The bilinear class subsumes block MDPs (Du,
Krishnamurthy, et al., 2019), linear MDPs (Jin et al., 2020), linear quadratic regulators, factored
MDPs (Kearns and Koller, 1999) and Bellman rank.

In conclusion, understanding the complexities of different classes of MDPs is crucial for
making progress in the field of RL and for solving more challenging and realistic problems. The
Bellman rank, Eluder dimension, and Bilinear classes are three ways to measure the complexity
of an MDP and to study the properties of different classes of MDPs. These complexities
are shaping the future of RL by providing insights into the fundamental limits of solving
MDPs, studying the performance of different algorithms, and guiding the development of new
methods and techniques.

2.5.5 Tractable RL

Reinforcement Learning is powerful for solving decision-making problems, and other than its
sample complexity issues, it also comes with several computational challenges.

In RL, the policy and transition dynamics of the system should be modeled and the cor-
responding parameters must be estimated. In many problems, the transition dynamics are
represented by a parametric probability density function, which can be complex and high-
dimensional, making it difficult to estimate the parameters. This issue can be addressed by
using variousmethods such as Gaussian Processes (Williams and Rasmussen, 2006), Maximum
Likelihood Estimation (Levina and Bickel, 2004), and Variational Inference (Blei, Kucukelbir,
and McAuliffe, 2017) to estimate the parameters of the transition dynamics.

Another manifestation of the computational efficiency hurdles is the optimization problem
involving bilevel optimization problems where the outer problem is to optimize the policy,
and the inner problem is to optimize the value function. In fact, a bilevel linear optimization
problem is NP-hard in general (Jeroslow, 1985). Even in practice, such problems are known to
be computationally challenging and may require specialized optimization techniques such as
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gradient-basedmethods (Sinha, Khandait, andMohanty, 2020) andmeta-learning (Hospedales
et al., 2020) to solve.

A third computational tractability hurdle is feature learning. For instance, the state space
is often high-dimensional, making it difficult to learn the features of the state space that
are relevant for the problem at hand. Practical approaches to deduce features for a task
include using representation learning methods such as autoencoders (Vincent et al., 2008) and
variational autoencoders (Kingma and Welling, 2013) that can be used to extract the relevant
features from the high-dimensional state space. These methods learn a lower-dimensional
representation of the state space that can be used to solve the RL task. On a more theoretical
aspect, recent efforts in RL include causality structures (Bareinboim, Forney, and Pearl, 2015;
Lu, Meisami, and Tewari, 2022; Lattimore, Crammer, and Szepesvári, 2015) that allow efficient
and theoretically grounded methods for feature learning. Finally, we would like to mention
research efforts for learning representations that are independent of RL, especially theoretically
motivated ones like (Duvenaud et al., 2013; Malkomes, Schaff, and Garnett, 2016).

Finally, RL also comes with several less critical challenges. For example, the problem’s
horizon is often unknown and this can make the practitioner’s job more challenging, it can
however be usually solved by the doubling trick (Cesa-Bianchi, Freund, et al., 1997; Cesa-
Bianchi and Lugosi, 2006) and we believe this should be more popular in literature. Also,
the variance information even in the simple case of bandits is assumed to be known prior to
learning, which is not realistic, and this can also be mitigated by specific adaptive regularization
techniques (Durand, Maillard, and Pineau, 2018). Moreover, the bounds on variables are also
important, e.g. for deriving confidence intervals, and they are usually assumed to be known.
Overall, these limitations can lead to infeasible or unstable decisions, and using available
information to the fullest extent is crucial for the success of RL algorithms. This involves
effectively utilizing the information obtained from the environment and making assumptions
that are applicable to a wide range of real life settings.

In conclusion, RL is a powerful method for solving sequential problems, but it also comes
with several computational challenges. The complexity of parameter estimation, optimization
problems, and the tractability of learning features are some of the main issues that need to be
addressed in order to make progress in the field of RL. There are various methods in literature
to address these challenges and to improve the performance of RL algorithms. However, despite
these advances, there are still open problems and challenges that need to be addressed, and
further research is needed to improve the scalability and efficiency of RL algorithms.
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Chapter 3

Online sign identification for
multi-armed bandits

In the fixed budget thresholding bandit problem, an algorithm sequentially allocates a
budgeted number of samples to different arms (distributions). It then predicts whether the
mean of each arm is larger or lower than a given threshold. We introduce a large family of
algorithms (containing most existing relevant ones), inspired by the Frank-Wolfe algorithm,
and provide a thorough yet generic analysis of their performance. This allowed us to construct
new explicit algorithms, for a broad class of problems, whose losses are within a small
constant factor of the non-adaptive oracle ones. Quite interestingly, we observed that adaptive
methods empirically greatly out-perform non-adaptive oracles, an uncommon behavior in
standard online learning settings, such as regret minimization. We explain this surprising
phenomenon on an insightful toy problem. 1
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1This chapter is based on a collaboration with Rémy Degenne, Pierre Gaillard, and Vianney Perchet (Ouhamma,
Degenne, et al., 2021) It was accepted for publication as a spotlight at the 32nd conference on advances in Neural
Information Processing Systems (NeurIPS).
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3.1 Introduction

In a stochastic multi-armed bandit problem, a decision maker sequentially samples from
different distributions in order to optimize a loss that depends on the unknown parameters of
those distributions. As a consequence, a trade-off arises between gathering more samples from
any possible distribution (to enhance the estimation of relevant parameters) and optimizing the
allocation to minimize the final loss. We can distinguish two main categories of losses, focusing
on “exploitation” vs “exploration”. The former directly depends on the whole allocation of
samples and the typical example is regret minimization (we refer to the recent monographs
(Lattimore and Szepesvári, 2020; Bubeck, Cesa-Bianchi, et al., 2012; Slivkins et al., 2019) that
cover this setting almost exhaustively). The later is a bit different; after the budget of samples is
exhausted, the algorithmsmust answer one or several “questions” (on the different distribution)
and its loss is related to the number of mistakes made; the typical application being best-arm
identification and variants (Audibert, Bubeck, and Munos, 2010; Kaufmann, Cappé, and
Garivier, 2016).

We investigate a class of pure exploration problems, called “thresholding bandit” (Locatelli,
Gutzeit, and Carpentier, 2016; Tao et al., 2019). The key property of this class is that a question
is asked about each distribution, and the probability of making a mistake decreases with the
total information gathered on that distribution solely. The typical question the algorithm
must answer is “is the mean of the distribution above or below some threshold?" (say, 0, for
simplicity); giving the wrong answer can either incur a unit cost - independently from the
distribution -, or a data-dependent cost (say, the distance to the threshold that represents the
“risk” of that distribution). A typical application of thresholding bandits is crowdsourcing
(Chen, Lin, and Zhou, 2015) where the objective is to distinguish workers with positive (vs.
negative) efficiency; another one is bandit binary classification (Jain and Jamieson, 2019).

Some care must be taken when designing a performance criterion for a thresholding bandit
problem, since any non-stupid algorithm will eventually answer all questions correctly (hence
have a 0 loss) if it has enough samples. Furthermore, if distributions are sub-Gaussian (a
rather mild assumption that we are going to make), the probability of making a single mistake
decreases exponentially fast with the number of samples. As a consequence, the focus must
be on controlling the exponential decay constant. We illustrate that issue on the unit cost
problem described as follows. There areK different σ-sub-Gaussian distributions; the mean
of distribution k is denoted by µk and the (variance-normalized) gap of distribution k to the
threshold 0 is denoted by ∆k := |µk|/

√
2σ2. The algorithm has a budget of T samples to

(sequentially) allocate to those distributions and, based on the Nk,T samples of distribution
k, it must decide the sign of µk; any mistake has a cost of one. We denote by Ek ∈ {0, 1} an
indicator of a wrong sign prediction of µk after exhausting the budget of T samples. The loss is
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then L1
T :=

∑
k Ek. It is not difficult to see that the expected number of mistakes could be of

order∑K
k=1 exp(−Nk,T∆2

k) .
In particular, sampling evenly across distributions (i.e. choosing Nk,T = T/K) gives

an expected loss E[L1
T ] ≈

∑
k exp(− T

K∆2
k), which has an exponential decay in T . However,

this uniform allocation is far from being optimal in term of the exponential decay constant.
Computing an (approximate) optimal fixed allocation in hindsight is not difficult: just optimize
the upper-bound of E[L1

T ]. Since even the uniform allocation has a loss decaying exponentially,
the performance of an algorithm should bemeasured not with respect toE[L1

T ] (see (Kaufmann,
Cappé, and Garivier, 2016)) but rather in terms of − log(E[L1

T ])/T . The oracle that uses
knowledge of the gaps ∆k to optimize its fixed allocation verifies

lim sup
T→∞

1
T

log(E[L1
T ]) ≤ − 1∑

k 1/∆2
k

.

This unit cost framework has been investigated recently (Tao et al., 2019) with a simple
yet effective algorithm called LSA (Logarithmic-Sample Algorithm) designed exclusively for
this problem; it samples the distribution with the smallest current index defined as αNk,t∆̂2

k,t +
logNk,t, where ∆̂k,t is the empirical estimate of ∆k and α is some parameter to be chosen. LSA
is "optimal up to a constant", but the constant is unfortunately in the exponential decay, as it
was proved that2

lim sup
T→∞

1
T

log(E[L1
T ]) ≤ − 1

16020
1∑

k 1/∆2
k

for LSA.

As we shall see, thanks to our new refined and general proof methodology, we can improve
this result drastically (that implies choosing a totally different parameter α = 1 instead of 1/10
as suggested originally) without modifying the algorithm.

3.1.1 Contributions

We investigate the thresholding bandit problem with a weighted number of errors loss. Our
contributions are twofold: 1) a generic method to design algorithms, with a generic proof,
showing good performance on the weighted number of errors loss. 2) new lower-bounds and
counter-intuitive results for the unit cost problem.

A generic algorithm with performance guarantees We propose a Frank-Wolfe inspired
method to design bandit algorithms. We develop a proof technique to obtain loss bounds for
the type of algorithms that our method produces, which we apply to the thresholding bandit

2See Remark 1 (Tao et al., 2019). This bound implies that LSA - with the specified choice of α = 0.1 needs 16000
times more samples than the oracle to achieve the same performances.
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with losses
LT =

K∑
k=1

akEk or L∆
T =

K∑
k=1

∆kEk , (3.1)

where (ak)k∈[K] are known costs. The class of algorithms we analyze includes both LSA and
APT (Anytime Parameter-free Thresholding) (Tao et al., 2019; Locatelli, Gutzeit, andCarpentier,
2016). We obtain precise non-asymptotic loss bounds for E[LT ]; for instance, we improve the
original bound of LSA by a factor 4005 (and APT by a factor 8). More importantly, we get a
new algorithm whose expected error for the unit cost problem is within a factor 4 of the oracle.
We emphasize again than those “constant” factors are in the exponential (and are not mere
multiplicative constants).

Interestingly, this class of algorithms are not driven either by the “optimism under uncer-
tainty” principle, a standard technique in multi-armed bandit (Auer, Cesa-Bianchi, and Fischer,
2002) nor “Explore-then-commit / Successive Elimination” (Perchet et al., 2016; Even-Dar et al.,
2006).

New insights on the thresholding bandit problem First, the optimal allocation provided
by the oracle of (Tao et al., 2019) in the unit cost problem has aM-shape (see Figure 3.1) because
of two concurrent phenomena. On the one hand, the arms close to the threshold should not be
pulled too much because their sign is difficult (if not impossible) to identify and it is a waste
of budget. On the other hand, the signs of the arms far from the threshold are quickly well
estimated and therefore should not be chosen too often either. The middle arms are the ones
that need to be pulled the most frequently. As T gets larger, more and more budget is allocated
to difficult arms. In Section 3.2.3, we provide a lower-bound that shows that this M shape is
actually impossible to achieve for a sequential algorithm. Typically, the hollow inside of the M
shape corresponds to arms whose sign cannot be well-estimated. In particular, it is not possible
to distinguish arms that are very close to the threshold from the arms that are at the top of the
M and should be pulled the most frequently according to the oracle.

Our second insight is corroborated by numerical simulations in Section 3.7. We show
empirically that our algorithms not only match but also surpass the optimal non-adaptive
sampling of the oracle. We conjecture that our algorithms take advantage of the chance due
to noise that can move its estimate of the arm away from the threshold. In particular, when
all the gaps ∆k are equal, the non-adaptive optimal allocation should be uniform, which is
significantly outperformed by adaptive algorithms. This suggests that adaptivity is crucial for
this problem and may inspire future research directions to the multi-armed bandit community
in order to prove theoretical guarantees for such phenomena.
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3.1.2 Additional related work

Zero-one loss Most of the literature on thresholding bandits (Locatelli, Gutzeit, andCarpentier,
2016; Mukherjee et al., 2017; Cheshire, Menard, and Carpentier, 2020) aims at minimizing the
probability of making any sign error, i.e., minimizing the loss

L∗
T = I{∃k ∈ [K], Ek = 1} = max

k
Ek. (3.2)

We already mentioned the algorithm APT (Locatelli, Gutzeit, and Carpentier, 2016), that gets
an exponential decay of that loss (variants include variance estimation (Zhong, Huang, and
Liu, 2017) and/or delayed feedbacks). Other algorithms exist, but based on the optimism
principle (Katz-Samuels and Scott, 2018; Mukherjee et al., 2017). Unfortunately they suffer
from a degraded exponential decay constant (by a factor bigger than 1000).

Another part of the literature focuses on the fixed confidence framework, where the objective
is to answer some questions with some fixed probability of mistake (and obviously with a
minimal sample budget). For instance, an objective could be to return any arm above some
threshold as soon as possible (Kano et al., 2019; Degenne and Koolen, 2019), or the one closest
to the threshold (Garivier, Ménard, et al., 2017), or just identifying that one arm is above that
threshold (Kaufmann, Koolen, and Garivier, 2018), or even to control false discovery rates and
variants (Jamieson and Jain, 2018; Jain and Jamieson, 2019).

Global loss, dynamic allocation and outliers detection The loss considered in thresholding
bandits can be seen as a variant of a “global loss” (i.e., essentially non-linear) that has been
extensively studied in the bandit literature (Agarwal, Foster, et al., 2011; Agrawal and Devanur,
2014; Mannor, Perchet, and Stoltz, 2014). However, the major difference is, again, that the
optimal allocation is time dependent and that the loss converges exponentially fast to zero (no
matter the algorithm). Similarly, Frank Wolfe algorithms have been introduced in this setting
(Berthet and Perchet, 2017; Fontaine, Berthet, and Perchet, 2019); even though our algorithms
share some similarities, they are intrinsically different for the same reasons.

Similarly, the problem investigated could be seen as a special case of bandit resource
allocations (Koopman, 1953; Chen, Lin, and Zhou, 2015; Salehi et al., 2016; Devanur et al., 2019;
Fontaine, Mannor, and Perchet, 2020) but where the loss is always decreasing with respect to
the budget allocated per resource (hence again leading to a zero loss exponentially fast).

Finally the global objective of thresholding bandits is to obtain a synthetic view of how
the means of distributions are spread on the real line (which ones are above/below some
threshold). In that aspect, this problem sheds some similarities with outlier detection in multi-
armed bandits (Katariya, Tripathy, and Nowak, 2019; Zhuang, Wang, and Wang, 2017; Zhu,
Katariya, and Nowak, 2020).
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3.2 Preliminaries

We describe here the weighted number of errors setting, in which an error on arm k has a
known cost ak > 0. The sum-of-gaps setting will be briefly investigated in Section 3.5.3. The
environment is composed of K > 1 arms and an algorithm sequentially pulls them. After
pulling arm k ∈ [K], it observes a sample from a distribution νk with mean µk, and that sample
is independent of past observations. The distribution νk is supposed σ-sub-Gaussian, that is

∀λ ∈ R : EX∼νk
[exp(λ(X − µk))] ≤ exp(σ2λ2/2) .

The total number of rounds (and samples) T is known in advance and called the horizon. After
pulling T arms, the task of the algorithm is to classify the arms depending on whether µk > θ

or not, where θ is a known threshold that we conveniently set to 0 (although it could be any
other value, even different from arm to arm, without significant change to the analysis). Let
sk ∈ {−1, 1} be the sign of µk − θ, equal to 1 iff µk − θ > 0. The algorithm returns for all arms
an estimated sign ŝk ∈ {−1, 1}. The objective is to minimize the expected weighted number of
missclassified arms, where a mistake on arm k has a known cost ak > 0,

LT =
K∑
k=1

akI{ŝk ̸= sk} =
K∑
k=1

akEk . (3.3)

Note that the linear form of the loss is quite general: since Ek ∈ {0, 1}, any separable loss∑
k fk(Ek) is the sum of a constant and∑k akEk for some costs ak.
We conclude this description of the problemwith notations used in the design of algorithms.

Let Nk,t and µ̂k,t = 1
Nk,t

∑t
s=1 I{it = k}Xt be the number of times the learner has pulled arm

k up to round t (included) and the subsequent empirical mean of arm k repectively. Define
further ∆̂k,t = |µ̂k,t− θ|/

√
2σ2 and ∆k = |µk− θ|/

√
2σ2, respectively the empirical and the true

(variance-normalized) gap of arm k to the threshold after t rounds.

3.2.1 Lower bound for the expected number of mistakes

Following the proof of (Tao et al., 2019) in a slightly more generic fashion (using exponential
families with one parameter instead of Bernoulli distribution), we obtain a lower bound on the
performance of any algorithm from which we get Theorem 3.1.

Theorem 3.1. (Similar to Theorem 20 in (Tao et al., 2019)) Let (∆1, . . . ,∆K) be a sequence of
gaps. Then for any algorithm and time horizon T ≥ K, there exists an instance in which all arms

30



3.2 Preliminaries

k ∈ [K] have Gaussian distributions with variance σ2 and mean in {∆k,−∆k} such that

E[LT ] ≥ 1
4 min∑

k
Nk=T

K∑
k=1

ake
−4Nk∆2

k .

Proof. First, denote the expected loss on a bandit problem µ: E[LT (µ)] =
∑K
k=1 akPµ{ŝk ̸= sk}.

For each arm k ∈ [K], define two values µk, µ̃k ∈ R, with µk < θ < µ̃k. Let µ = (µk)k∈[K].
For some fixed one-parameter exponential family, we denote by KL(a, b) the Kullback-Leibler
divergence between distributions with mean a and b.

Given a vector λ ∈ RK with λk ∈ {µk, µ̃k} for all k ∈ [K] and S ⊆ [K], let λS be such that
λk,S ∈ {µk, µ̃k} and λk,S ̸= λk for k ∈ S and λj,S = µj for j /∈ S.

For S ∈ P([K]), let S ± i be equal to S ∪ {i} if i /∈ S and to S \ {i} otherwise. Also, we
denote by (sk(λ)) be the signs of (λk). Then the following holds

sup
S∈P([K])

E[LT (µS)] ≥ 1
2K

∑
S∈P([K])

E[LT (µS)]

= 1
2K

∑
S∈P([K])

K∑
k=1

akPµS{ŝk ̸= sk(µS)}

= 1
2K+1

∑
S∈P([K])

K∑
k=1

akPµS{ŝk ̸= sk(µS)}+ akPµS±k
{ŝk ̸= sk(µS±k)}

= 1
2K+1

∑
S∈P([K])

K∑
k=1

akPµS{ŝk ̸= sk(µS)}+ akPµS±k
{ŝk = sk(µS)}.

For each arm k, we can bound the sum of the two probabilities from below. Let Ek,S = {ŝk ̸=
sk(µS)}.

PµS (Ek,S) + PµS±k
(Ek,S) ≥ 1

2 exp (−EµS [Nk,T ] KL(µk,S , µk,S±k)) ,

so that, when plugged back in the previous equation, we get

sup
S∈P([K])

E[LT (µS)] ≥ 1
2K+1

∑
S

K∑
k=1

1
2ak exp (−EµS [Nk,T ] KL(µk,S , µk,S±k))

≥ 1
4

1
2K

∑
S

min
N :
∑

k
Nk=T

K∑
k=1

ak exp (−Nk KL(µk,S , µk,S±k))
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≥ 1
4 min
N :
∑

k
Nk=T

K∑
k=1

ak exp (−Nk max{KL(µk, µ̃k),KL(µ̃k, µk)})

We finish the proof by recalling that for Gaussians with variance σ2, KL(a, b) = (a−b)2

2σ2 .

As can be seen from the proof above, the result holds more generally for one-parameter
exponential-families where the gaps on the r.h.s are replaced with the Kullback-Leibler diver-
gence.

3.2.2 Non-adaptive oracle

We now derive an optimal but unrealistic oracle, which requires prior knowledge of the gaps
as input. Consider the algorithm that pulls each arm Nk,T times, a number fixed in advance,
then returns the sign of the empirical mean µ̂k,T . Using Hoeffding’s inequality, the expected
loss verifies:

E[LT ] =
K∑
k=1

akP ((µ̂k,T − θ)(µk − θ) < 0) ≤
K∑
k=1

ake
−Nk,T ∆2

k (3.4)

We define the non-adaptive oracle as the allocation NT which minimizes that upper bound.
Its error probability has the same form as the lower bound of Theorem 3.1, but has a different
constant in the exponential (1 instead of 4). We can solve that minimization problem and make
the error bound more explicit.

Lemma 3.2. Suppose that the arms are ordered such that a1∆2
1 ≤ . . . ≤ aK∆2

K . There is a
set S = {k0, k0 + 1, . . . ,K} and a constant CS such that the oracle non-adaptive algorithm has
Nk,T = 0 for k /∈ S andNk,T =

(
CS + log(ak∆2

k)
)
/∆2

k for k ∈ S (see the proof below for details).
The expected loss of that non-adaptive oracle is

E[LT ] ≤
∑
k/∈S

ak +
∑
k∈S

ak exp

−T +
∑
j∈S

1
∆2

j
log

(
ak∆2

k

aj∆2
j

)
∑
j∈S

1
∆2

j

 . (3.5)

Proof. The objective of the non-adaptive oracle section is to find an explicit solution of

min∑
k
Nk=T

∑
k

ake
−Nk∆2

k .

Introducing the Lagrange multiplier γ ∈ R, it is straightforward that the solution is such
that all Nk which are nonzero verify ∂

∂Nk
(
∑
j aje

−Nj∆2
j ) = γ. Then there exists a set S and a
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constant γS(T ) > 0 for which k /∈ S =⇒ Nk = 0 and for k ∈ S, Nk ̸= 0 and

ak∆2
ke

−Nk∆2
k = γS(T ) .

That is, Nk = 1
∆2

k
(γS(T ) + log(ak∆2

k)) .

We remark that k ∈ S iff 1
∆2

k
(γS(T ) + log(ak∆2

k)) > 0, which then implies that if a1∆2
1 ≤

. . . ≤ aK∆2
K , then S = {k0, k0 + 1, . . . ,K} for some k0 ∈ [K].

Using the condition∑kNk = T to determine γS(T ), we get

K∑
k=k0

1
∆2
k

(γS(T ) + log(ak∆2
k)) = T =⇒ γS(T ) =

T +
∑K
k=k0

1
∆2

k
log 1

ak∆2
k∑K

k=k0
1

∆2
k

.

Finally, we can characterize k0. Notice that k ∈ S iff 1
∆2

k
(γS(T ) + log(ak∆2

k)) > 0, i.e. iff

1
∆2
k

T +
∑K
j=k0

1
∆2

j
log 1

aj∆2
j∑K

j=k0
1

∆2
j

+ log(ak∆2
k)

 > 0 ⇔ T >
K∑

j=k0

1
∆2
j

log
aj∆2

j

ak∆2
k

.

Finally, let Hk =
∑K
j=k+1

1
∆2

j
log aj∆2

j

ak∆2
k
, with H0 = +∞ and HK = 0. Then k0 is the unique

element of [K] such that Hk0 < T ≤ Hk0−1.

Note that the oracle is not pulling arms 1, . . . , k0− 1. These are the arms which are too close
to the threshold (in a distance weighted by ak) and thus too hard to classify to be worth trying.
Giving up on those arms is not something that a non-oracle algorithm can do.

1.0 0.5 0.0 0.5 1.0
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0.0
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APT

Figure 3.1 – Optimal and empirical sampling distributions with respect to µ.
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Figure 3.2 – Optimal sampling distribution and empirical sampling distribution with respect to µ when
µk = (−1)kk2

K2 forK = 50 arms.
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Figure 3.3 – Optimal sampling distribution and empirical sampling distribution with respect to µ when
µk = (−1)kk

K forK = 50 arms.

Figure 3.1 illustrates on an example (µk = (−1)k(k/K)2, k = 1, . . . , 50, and T = 500) the
shape of the optimal allocation (arms near the threshold should not be drawn) as well as the
empirical sampling distributions of several algorithms that pull all arms. Next, we illustrate
how this optimal allocation evolves with the horizon T .

Figures 3.2 and 3.3 represent the optimal non-adaptive sampling distribution if the means
were known and the empirical sampling distribution of the algorithms for different numbers
of iterations. As we can see, for the initial phase, the arms that are closest to the threshold
should ideally not be drawn. Yet, as we will see in the next section, this is not possible for
sequential algorithms. All arms must be sampled. We can see that this is indeed the case for
all algorithms: the closer the arms are to the threshold, the more likely they are to be sampled.

34



3.2 Preliminaries

3.2.3 A good algorithm must pull all arms

We provide a new lower bound for the thresholding bandit with unit-cost problem, to support
the claim that it is not possible to avoid pulling the arms which are close to the threshold.
Consider the following 4 Gaussian bandit models (with variances 1) with means

µ+ε = (ε, . . . , ε, µK0+1, . . . , µK) , µ′
+ = (µK0+1, . . . , µK0+1, µK0+1, . . . , µK) ,

µ−ε = (−ε, . . . ,−ε, µK0+1, . . . , µK) , µ′
− = (−µK0+1, . . . ,−µK0+1, µK0+1, . . . , µK) .

where 0 < ε < µK0+1 ≤ . . . ≤ µK , the value µK0+1 is large enough for the oracle to pull all
arms on µ′

+ and ε ≤ √log(2)/(2T ).

Lemma 3.3. If Eµ̃[LT ] ≤ c1 min∑
k
Nk=T

∑
k

e−c0Nk∆2
k for constants c0, c1 on µ̃ ∈ {µ′

+, µ
′
−}, then

max
µ∈{µ+ε,µ−ε}

Eµ

K0∑
k=1

Nk,T

 ≥ 1
2(µK0+1 − ε)2

(
c0
T +H log

H
+ log K0

32c1H

)
.

where H = K0
∆2

K0+1
+
∑K
k=K0+1

1
∆2

k
and H log = K0

∆2
K0+1

log 1
∆2

K0+1
+
∑K
k=K0+1

1
∆2

k
log 1

∆2
k
.

The proof idea is that if an algorithmhas an expected loss close to the loss of the non-adaptive
oracle, then it must pull linearly the arms which are close to the threshold.

Proof. We will prove that the number of pulls of arms 1, . . . ,K0 cannot be too small. Formally,
let nε =

∑K0
k=1 Eµ+εNk,T be the expected number of pulls under µ+ε of the arms with mean ε.

We aim at showing that that number cannot be zero. We first prove that

Pµ+ε(LT > K0/2) ≥ 1
4 . (3.6)

This follows from the basic inequalities,

Pµ+ε(LT (µ+ε) > K0/2) + Pµ−ε(LT (µ+ε) ≤ K0/2) ≥ 1
2e

−nε KL(ε,−ε) ≥ 1
2e

−2ε2T

In particular, for ε ≤
√

log 2
2T , max{Pµ+ε(LT (µ+ε) > K0/2),Pµ−ε(LT (µ−ε) > K0/2)} ≥ 1

4 , and
either Inequality 3.6 either holds for µ+ε, or we just need to switch the role of ε and −ε in this
proof. Suppose now that Inequality 3.6 holds for µ+ε.
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The Kullback-Leibler divergence between µ+ε and µ′
+ is

∑
k

Eµ[Nk,t] KL(µk,+ε, µ′
k,+) =

K0∑
k=1

Eµ[Nk,t] KL(ε, µk0+1)

≥ kl(Pµ+ε(LT > K0/2),Pµ′
+

(LT > K0/2))

≥ kl(1
4 ,

2
K0

Eµ′
+

[LT ]) ≥ 1
4 log K0

2Eµ′
+

[LT ] − log 2 ,

We have proved that nε ≥ 1
KL(ε,µK0+1)(1

4 log K0
2Eµ′

+
[LT ] − log 2) and the final result is obtained by

using the explicit form for the bound on Eµ′
+

[LT ].

3.3 An interesting class of algorithms

We introduce and analyse a new class of algorithms for the thresholding bandit problem
that we call index-based algorithms. That class unifies several existing algorithms, including
APT (Locatelli, Gutzeit, and Carpentier, 2016) and LSA (Tao et al., 2019).

3.3.1 A generic algorithm

An index-based algorithm pulls the minimum of K quantities, one for each arm, that each
depends only on the rewards and pull counts of the respective arm (it does not change when
pulling other arms). In particular, we consider algorithms for which the sampled arm is
it+1 ∈ arg mink∈[K] F

(
Nk,t, Nk,t∆̂2

k,t; ak
) for a function F : N× R+ × R∗

+ → R that depends on
the pull counts, the information about the sign and the weight of the arm.

Algorithm 3.1: Index-based algorithm for thresholding bandit
1 Inputs: an index function F : N× R+ × R∗

+ → R; a1, . . . , aK ∈ R∗
+; σ > 0; and θ ∈ R

2 For t = 1, . . . , T do
- for all k ∈ [K] define

Nk,t−1 =
t−1∑
s=1

I{k = is}, µ̂k,t−1 = 1
Nk,t−1

t−1∑
s=1

I{k = is}Xs, ∆̂2
k,t−1 = 1

2σ2

(
µ̂k,t−1 − θ

)2

- pull it ∈ arg mink∈[K] F
(
Nk,t−1, Nk,t−1∆̂2

k,t−1; ak
).

- observe Xt ∼ νit
Define tmax = maxt∈[T ] mink∈[K] F

(
Nk,t, Nk,t∆̂2

k,t; ak
)

Return for each k ∈ [K] the sign ŝk = sign(µ̂k,tmax − θ)
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After T rounds, the algorithm recommends the sign of the arms at the round tmax ∈ [T ] at
which mink∈[K] F

(
Nk,t, Nk,t∆̂2

k,t; ak
)was maximal. This rule is used as opposed to returning

the sign of all arms at time T to facilitate the analysis, which is based on the observation that
there is a small probability of error when all arms have high index. The time tmax should be
close to T : in particular, only one arm is sampled (possibly several times) between tmax and T
(see Appendix A.1). In Section 3.4, we provide a generic analysis for index-based algorithms
satisfying the assumption below.

Assumption 3.4. The index function F (n, x; a) : N×R+ ×R∗
+ → R is non-decreasing in n and

x and limn→+∞ F (n, ny; a) = +∞ for all y > 0, a > 0.

Intuitively, algorithms that verify Assumption 3.4 prefer pulling arms that were pulled the
least (smallest n) and whose quantity of information about the sign (n∆̂2

k,n) is small. This class
includes several algorithms from the thresholding bandits literature: APT (Locatelli, Gutzeit,
and Carpentier, 2016) for F (n, x; ak) = x and LSA (Tao et al., 2019) for F (n, x; ak) = x+ log(n)
(these algorithms are only defined for ak = 1). We now propose a generic method for designing
an index-based algorithm.

3.3.2 Frank-Wolfe for Thresholding bandits

Our strategy to minimize the expected loss is inspired by the Frank-Wolfe algorithm (Frank and
Wolfe, 1956) and aims at controlling an upper-bound on the loss, such as the right hand side of
Inequality (3.4). Let’s write that function as B(NT ) =

∑K
k=1 ake

−Nk,T ∆2
k . The high-level idea is

to sequentially estimate its gradient andmove to theminimizer of its linear approximation. If the
gaps were known, we could compute at time t+ 1 the gradient of the bound with respect toNt,
∇B(Nt) = (−ak∆2

ke
−Nk,t∆2

k)k and use the Frank-Wolfe algorithm. The algorithm would pull
it+1 ∈ arg minu u⊤∇B(Nt) for u in the simplex, which is simply arg mink∈[K](−ak∆2

ke
−Nk,t∆2

k).
The gaps are however unknown. We therefore compute an estimate of the gaps ∆̂k,t, with
which we form the estimated gradient

∇̂B(Nt)k = −ak∆̂2
ke

−Nk,t∆̂2
k,t = − exp

(
−
(
Nk,t∆̂2

k,t − log(Nk,t∆̂2
k,t) + log

(Nk,t

ak

)))
.

This gives a natural choice for the index function of our algorithm F (n, x; ak) = x − log x +
log(n/ak). However, the latter is decreasing in x for x ∈ (0, 1), which in addition to violating
Assumption 3.4, may lead to instability in the initial phase when the gaps ∆k are poorly
estimated by ∆̂k,n. We therefore propose a slight modification that preserves the asymptotic
behavior of F and we call the resulting algorithm FWT (Frank-Wolfe for Thresholding bandits):

F (n, x; ak) = max{x, 1} − log(max{x, 1}) + log(n/ak) . (FWT)
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Recovering APT Using different upper-bounds B on the expected loss may lead to different
algorithms. In particular, we highlight a link between our Frank-Wolfe inspired method and the
APT algorithm of (Locatelli, Gutzeit, and Carpentier, 2016), which was designed to minimize
the loss

LT =
K∑
k=1

akI{ŝk ̸= sk} =
K∑
k=1

akEk .

Following our method with the choice B(Nt) = maxk∈[K] e
−Nk,t∆2

k results in exactly the same
sampling rule as the one of the APT algorithm (the recommendation rule differs slightly since
we recommend the sign at tmax and not at T). Indeed, the derivative of B with respect to
Nk,t is nonzero (and negative) if and only if Nk,t∆2

k = arg minj Nj,t∆2
j (ignoring the case in

which there are several argmins, for which the tie breaking can be arbitrary). This leads to the
choice F (n, x; ak) = x in Algorithm 3.1, which then pulls it+1 = arg mink∈[K]Nk,t∆̂2

k. This is
the sampling rule of APT.

3.4 Loss upper bound

We provide a loss upper bound that is valid for all index-based algorithms verifying Assump-
tion 3.4. We then give a summary of the analysis outline and the resulting loss bounds.

Theorem 3.5. Let K ≥ 1, a1, . . . , aK > 0, T ≥ 1, and σ > 0. Let F : N × R × R∗
+ → R that

satisfies Assumption 3.4. Let C1, . . . , CK > maxk F (0, 0; ak). For all j, k ∈ [K], define
• tj(Ck) a solution of the equation F (t, t∆2

j ; aj) = Ck,

• Sk ⊆ [K] and tj,0(Ck) ∈ R+, a set and values such that for i /∈ Sk,

P
(
∃n ≤ ti,0(Ck), F (n, n∆̂2

n,i; ai) ≥ Ck
)

= 1

.Then the expected loss of Algorithm 3.1 is upper-bounded as

E[LA
T ] ≤

K∑
k=1

ak

e · exp

− 1
2

(
T −

∑
j /∈Sk

tj,0(Ck)
)
−
∑
j∈Sk

tj(Ck)∑
j∈Sk

1/∆2
j

+ T · e−tk(Ck)∆2
k

 .

Before diving into the proof, we give a high-level intuition. The analysis is composed of
two parts:

1. First we establish that for any arm j ∈ [K], with large probability, there is a time τj(Ck)
such that F (τj(Ck), τj(Ck)∆̂τj(Ck),j ; aj) ≥ Ck. We prove that for all j, k ∈ [K], τj(Ck) has
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3.4 Loss upper bound

an exponential tail then use the fact that the algorithm pulls the minimal index to control
the probability that the minimum never reaches Ck.

2. We show that if an arm’s index is large, then the probability of mistake on it is small.

Remark 3.6. The times tj(Ck) of Theorem 3.5 are the smallest numbers of samples such that
tj(Ck) ≥ τj(Ck) with high enough probability. By determining those times, we derive explicit
bounds for algorithms that verify Assumption 3.4.

We note that our analysis is valid for a more general class than the one studied in this paper.
Indeed, 1) we analyze index functions slightly more general than F (n, x; ak). Each arm has
a potentially different index function Fk(n, x), and 2)we consider algorithms which obey -a
slightly more generic- Assumption 3.4, i.e. whose index can be written as Ikn = Fk(n, n∆̂2

n,k),
where each Fk is non-decreasing in both variables, and limn→+∞ Fk(n, ny) = +∞ for y > 0.

Proof roadmap: Set (Ck)1≤k≤K ∈ R+, so that it immediately follows

E[LT ] =
∑
k

akP(ŝk ̸= sk)

≤
K∑
k=1

akP(ŝk ̸= sk ∧ ∃T ′ ∈ [T ], IkNT ′ ≥ Ck) + akP(∀T ′ ∈ [T ], IkNT ′ < Ck)

≤
K∑
k=1

akP(ŝk ̸= sk ∧ ∃T ′ ∈ [T ], IkNT ′ ≥ Ck) + akP(FCk
) ,

where E stands for the complement of an event E .
The proof proceeds in two steps, which are proved in Section 3.4.1 and Section 3.4.2, in

order to control both probabilities introduced above:
1. Lemma 3.8: with large probability, there is some time t for which the index IkNk,t

is large
for all k ∈ [K] (and all arms are well explored)

2. Theorem 3.10: if IkNk,t
is large, then there is a small probability of mistake for arm k.

3.4.1 With large probability, all arms are well explored

We know from Lemma A.3 that any index based algorithm verifies FC = {
∑
k τk(C) ≤ T}.

Hence, to prove that FC happens with great probability, it suffices to show that∑k τk(C) has
an exponential tail.

We derive a bound on P(
∑
k τk(C) > T ). To that end, we bound individually for each arm

P(τk(C) ≥ tk + x) for some tk to be defined and x ≥ 0, and conclude by Corollary A.7.
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Theorem 3.7. Under Assumption 3.4, the algorithm verifies, for all x ≥ 0,

P(
√
τk(C) >

√
tk(C) + x) ≤ exp(−∆2

kx
2) ,

with tk(C) solution to Fk(t, t∆2
k) = C, if such a solution exists. Otherwise, if C < Fk(0, 0) and no

solution exists, τk(C) = 0 with probability 1.

Proof. We first bound P(τk(C) > tk + x), where tk is chosen later, and x ≥ 0.

P(τk(C) > tk + x) = P(∀n ≤ tk + x, Ikn < C) ≤ P(Iktk+x < C)

= P(Fk(tk + x, (tk + x)∆̂2
k) < C)

First, by monotonicity of Fk, this probability equals zero if C ≤ Fk(tk + x, 0). If C >

Fk(tk +x, 0), we define δtk+x,k,C such that ∆δtk+x,k,C

tk+x,k = inf{∆ ≥ 0 | C < Fk(tk +x, (tk +x)∆2)}.
In the following, we write Fk(n, ·)−1(C) := inf{x | C ≤ Fk(n, x)}. If Fk(n, ·) is increasing, this
is its inverse, but we only suppose that Fk(n, ·) is non-decreasing. Note that x < Fk(n, ·)−1(C)
implies that Fk(n, x) < C. With that definition, (tk + x)(∆δtk+x,k,C

tk+x,k )2 = Fk(tk + x, ·)−1(C). As a
consequence, we get

P(τk(C) > tk + x) ≤ P(Iktk+x < C) = P(Fk(tk + x, (tk + x)∆̂2
tk+x,k) < C)

≤ P((tk + x)∆̂2
tk+x,k < Fk(tk + x, ·)−1(C))

= P(∆̂2
tk+x,k < (∆δtk+x,k,C

tk+x,k )2)

≤ δtk+x,k,C ,

where by definition,

δtk+x,k,C = exp
(
−(tk + x)(∆k −∆δtk+x,k,C

tk+x,k )
)

= exp
(
−
(√

∆2
k(tk + x)−

√
Fk(tk + x, ·)−1(C)

)2
)
.

We intend to prove an exponential decrease with x. In order to have it, we will set tk such that
the exponential is equal to 1 for x = 0, and then decreases as x grows.Let then tk be such that
C ≤ Fk(tk, tk∆2

k). It exists as soon as C ≥ Fk(0, 0) (where the later is non-positive for specific
algorithms we will consider). For all t ≥ tk, Fk(t, t∆2

k) ≥ Fk(tk, tk∆2
k) ≥ C, which leads to√

∆2
kt−

√
Fk(t, ·)−1(C) ≥ 0. Note that since Fk is non-decreasing in the first variable we have

Fk(t+ x, ·)−1(C) ≤ Fk(t, ·)−1(C) for all t, x ≥ 0, and

δtk+x,k,C = exp
(
−
(√

∆2
k(tk + x)−

√
Fk(tk + x, ·)−1(C)

)2
)
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3.4 Loss upper bound

≤ exp
(
−
(√

∆2
k(tk + x)−

√
Fk(tk, ·)−1(C)

)2
)

≤ exp
(
−∆2

k

(√
tk + x−

√
tk
)2)

.

Let Yk = max(
√
τk(C),

√
tk); we have proved that for all x ≥ 0,

P(Yk >
√
tk + x) ≤ exp

(
−∆2

k

(√
tk + x−

√
tk
)2)

.

By setting x = 2
√
λtk + λ for λ ≥ 0, we get P(Yk >

√
tk + λ) ≤ exp

(
−∆2

kλ
2) .

Lemma 3.8. For all C > 0, tk such that F (tk, tk∆2
k) ≥ C.

P(
∑
k

τk(C) ≥ T ) ≤ e× exp
(
−
T
2 −

∑
k tk∑

k 1/∆2
k

)
.

Proof. Rewrite the event {∑k τk(C) > T} using Yk = max(
√
τk(C),

√
tk), so that:

P
(∑

k

τk(C) > T

)
= P

(∑
k

((Yk −
√
tk) +

√
tk)2 > T

)

≤ P
(

2
∑
k

(Yk −
√
tk)2 + 2

∑
k

tk > T

)

≤ P
(∑

k

(Yk −
√
tk)2 > T/2−

∑
k

tk

)
. (3.7)

We now apply Lemma A.6 to (Yk −
√
tk)2, which verifies P((Yk −

√
tk)2 ≥ x) ≤ exp(−∆2

kx).
From Equation (3.7), we obtain

P(
∑
k

τk(C) > T ) ≤ P(
∑
k

(Yk −
√
tk)2 > T/2−

∑
k

tk) ≤ e× exp
(
−T/2−

∑
k tk∑

k 1/∆2
k

)
.

Remark We can actually derive a tighter bound than (3.7)

P(
∑
k

τk(C) > T ) = P(
∑
k

((Yk −
√
tk) +

√
tk)2 > T )

≤ P


√∑

k

(Yk −
√
tk)2 +

√∑
k

tk

2

> T


= P

∑
k

(Yk −
√
tk)2 > (

√
T −

√∑
k

tk)2

 .
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Roughly speaking, to get it, just write ∥(Y −√t) +
√
t∥2 ≤ (∥Y −

√
t∥+∥

√
t∥)2. To get Equation

(3.7), we further use (∥Y −
√
t∥+ ∥

√
t∥)2 ≤ 2∥Y −

√
t∥2 + 2∥

√
t∥2. In the case of APT (at least)

it leads to the same final bound on the algorithm because when we optimize further down,
we set∑k tk = T/4 no matter which of these inequalities we use, value for which resulting
exponents are equal.

Corollary 3.9. Suppose now that there is a set SC such that for k /∈ SC , P(τk(C) > tk) = 0. Then we
can refine Lemma 3.8 to

P(
∑
k

τk(C) > T ) ≤ P(
∑
k∈SC

τk(C) > T −
∑
k/∈SC

tk)

≤ e× exp
(
−

(T −
∑
k/∈SC

tk)/2−
∑
k∈SC

tk∑
k∈SC

1/∆2
k

)
.

3.4.2 When an arm index is large, the probability of mistake is small

The goal of this section is to bound P(ŝk ̸= sk ∧ ∃T ′ ∈ [T ], IkNT ′ ≥ C). We define the random
variable Ek,t = I{(µ̂k,t − θ)(µk − θ) < 0}; it is equal to 1 iff there is an error on the sign at time
t. The algorithm makes a mistake on arm k is Ek,tmax = 1 since it returns the sign at that time.

Theorem 3.10. The algorithm using Fk for its index definition verifies

P(ŝk ̸= sk ∧ ∃T ′ ∈ [T ], IkNT ′ ≥ C) ≤ P(∃T ′ ∈ [T ], Ek,T ′ = 1 ∧ IkNT ′ ≥ C)

≤ T · inf{e−nk∆2
k | Fk(nk, nk∆2

k) < C} .

Proof. We use Lemma 3.13 (below): find nk as large as possible such that Fk(nk, nk∆2
k) < C.

Then, since the algorithm returns the sign of the arm at the time at which its index was maximal,
we get P(ŝk ̸= sk ∧∃T ′ ∈ [T ], IkNT ′ ≥ C) ≤ P(∃T ′ ∈ [T ], Ek,T ′ = 1∧ IkNT ′ ≥ C) ≤ T · e−nk∆2

k .

Lemma 3.11. For any δk ∈ (0, 1), with probability at least 1− δk, and for all n ∈ [T ], it holds

√
Nk,t(µ̂kt − µk) ≤

√
log

(
T

δk

)
.

Proof. This is a direct implication of Hoeffding’s inequality with a union bound for time-
uniformity.

Define nk = 1
∆2

k
log

(
T
δk

)
. Consider the following three facts (their definition will be useful

for the following proofs):
1. If the concentration holds, then√Nk,t(µ̂kt − µk) ≤

√
nk∆k.

2. If there is a mistake at time t, then we have
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(a) µ̂kt − µk ≥ ∆k.
(b) (µ̂kt − µk)2 ≥ ∆̂2

Nk,t,k
+ ∆2

k.
3. If IkNk,t

> C then Fk(Nk,t, Nk,t∆̂2
t,k) > C and Nk,t∆̂2

t,k ≥ Fk(Nk,t, ·)−1(C).

Lemma 3.12. If at time t, concentration holds and there is a mistake (1 and 2 are true), thenNk,t ≤ nk
and Fk(Nk,t, (nk −Nk,t)∆2

k) ≥ IkNk,t
.

Proof. First point: combine 1 and 2(a). Second point: use 1, then 2(b), then the definition of
IkNk,t

:

nk∆2
k ≥ Nk,t(µ̂kt − µk)2 ≥ Nk,t∆̂2

t,k +Nk,t∆2
k ≥ Fk(Nk,t, ·)−1(IkNk,t

) +Nk,t∆2
k .

Lemma 3.13. If at time t, all three “if” are true, then Fk(nk, nk∆2
k) ≥ C.

Proof. Use the monotonicity of Fk in the inequality of Lemma 3.12.We have Nk,t ≤ nk and
nk −Nk,t ≤ nk.

3.5 Examples

Here we explicit the earlier theorem for some previously existing algorithms in this setting as
well as our newly proposed one. Then, we provide a numerical comparison of the different
bounds so as to provide an intuition to the reader interesting in comparing them.

3.5.1 Explicit bounds for FWT, LSA and APT

APT ((Locatelli, Gutzeit, and Carpentier, 2016)) We analyze the variant of this algorithm
that returns the sign at the time tmax when the minimal index was maximal.

Corollary 3.14. Suppose that for all k ∈ [K], ak = 1. For all T ∈ N∗,

E[LAPT
T ] ≤ 2K

√
e · T · exp

(
−1

4
T∑K

j=1 1/∆2
j

)
.

Since maxk Ek ≤
∑
k Ek, the bound of Corollary 3.14 is also a bound on the zero-one loss,

which we can compare to the result of (Locatelli, Gutzeit, and Carpentier, 2016). Our result
shows a 1/4 factor in the exponential instead of the worse 1/32 constant of the original paper.
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Proof. This algorithm (in its variant that stops at tmax) corresponds to F (n, x) = x. To apply
Theorem 3.5 we find that tj(Ck) = Ck

∆2
j
is solution, then:

E[LT ] ≤
K∑
k=1

eak exp
(
−
(

T/2∑K
j=1 1/∆2

j

− Ck

))
+ T · ak exp (−Ck)

An optimal Ck is such that e · exp
(
−

T
2∑K

j=1 1/∆2
j

+ Ck

)
= T · exp(−Ck).

Then the bound becomes: E[LT ] ≤ 2
√
e · T

∑K
k=1 ak exp

(
−1

4
T∑K

k=1 1/∆2
k

)
.

LSA ((Tao et al., 2019)) This algorithm corresponds to F (n, x) = x+ logn, we provide the
following bound, which is significantly tighter than the one provided by its inventors.

Corollary 3.15. For all T ∈ N∗,

E[LLSA
T ] ≤

K∑
k=1

e · ak exp

−
 T

2 −
∑K
j=1

1
∆2

j
W (∆2

j exp(Ck))∑K
j=1 1/∆2

j

+ Tak exp
(
−W (∆2

k exp(Ck))
)
.

Furthermore, if ∀k, j Ck + log ∆2
j ≥ 1 we obtain:

E[LLSA
T ] ≤

K∑
k=1

(1 + e) · ak exp

−
 T

2 +
∑K
j=1

1
∆2

j
(log 1

∆2
j

+ log(Ck + log ∆2
j ))∑K

j=1 1/∆2
j

+ Ck


+

K∑
k=1

T (Ck + log ∆2
k)

∆2
k

ak exp (−Ck) . (3.8)

Proof. The stopping time tj(Ck) is solution to t∆2
j + log t = Ck. This equation has a closed form

solution: tj(Ck) = 1
∆2

j
W (∆2

j exp(Ck)), whereW is the Lambert W function, and this entails the
first bound.

Then, we can use an inequality on the Lambert function (cf Corollary 2.4 in (Hoorfar and
Hassani, 2008)), For all x ≥ ewe have

log x− log log x ≤W (x) ≤ log x− log log x+ log
(
1 + e−1

)
,

this entails that if ∀k, j Ck + log ∆2
j ≥ 1 we obtain the second more specific bound.
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FWT (our algorithm) This algorithm corresponds to Fk(n, x) = max(1, x)− log max(1, x) +
logn− log ak. Using our generic analysis, we are able to prove the following result about FWT.

Corollary 3.16. Let S, S′ be two sets with S′ ⊆ S ⊆ [K] and let C ∈ R be such that C ≥
1 + max

k∈S
log 1

ak∆2
k
. Then, for all T ≥ 1

E[LFWT
T ] ≤

∑
k/∈S′

ak + e
∑
k∈S′

ak exp

− 1
2(T −

∑
j /∈S aje

C−1) +
∑
j∈S

1
∆2

j
log 1

aj∆2
j∑

j∈S 1/∆2
j

+ C


+ T

∑
k∈S′

ak exp
(
−C + log(1/(ak∆2

k))
)
.

Moreover, if we have T ≥ 2
∑K
j=1

1
∆2

j
(2 + log aj∆2

j maxi ai∆2
i

(mink ak∆2
k

)2 − log T
e3 ), we get the bound

E[LT ] ≤ 2
√
eT
∑
k

ak exp

−1
2

T/2−
∑
j

1
∆2

j
log aj∆2

j

ak∆2
k∑

j 1/∆2
j

 .
Up to a 1/4 factor, this is the exponent of the optimal non-adaptive oracle (cf Equation 3.4)

Proof. In order to find the times tj(Ck) of Theorem 3.5 we solve the equation:

max(1, n∆2
k)− log max(1, n∆2

k) + log(n∆2
k) = C + log ak + log ∆2

k .

Let Dk = C + log ak + log ∆2
k. We want a solution to max(1, x) − log max(1, x) + log x = Dk.

The function on the left, which we now denote by I, is increasing and bijective from R+ to R.
• If Dk ≥ 1, I(Dk) = Dk.

• If Dk ≤ 1, I(eDk−1) = Dk.

• For all Dk > 0, I(eDk−1) ≥ Dk.
Moreover, we have Fk(akeC−1) ≥ C, it comes P(τk(C) > ake

C−1) = 0.
Let Ck > 0 and Sk ⊆ {j ∈ [K] | Ck + log aj∆2

j ≥ 1}. Let S′ be a set such that for all k ∈ S′,
k ∈ Sk.

E[LT ] ≤
∑
k/∈S′

ak +
∑
k∈S′

akP(FCk
) +

∑
k∈S′

akP(Ek(T ) ∩ FCk
)

≤
∑
k/∈S′

ak + e
∑
k∈S′

ak exp

− 1
2(T −

∑
j /∈Sk

aje
Ck−1)−

∑
j∈Sk

1
∆2

j
log aj∆2

j∑
j∈Sk

1/∆2
j

+ Ck


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+ T
∑
k∈S′

ak exp
(
−Ck − log ak∆2

k

)
.

Large T : The value of Ck which equalizes the two terms indexed by k verifies

Ck = 1
2

1
2(T −

∑
j /∈Sk

aje
Ck−1)−

∑
j∈Sk

1
∆2

j
log aj∆2

j∑
j∈Sk

1/∆2
j

− 1
2 log ak∆2

k + 1
2 log T

e
.

The latter can be chosen if T is big enough such that Sk = [K] for all arms, this is the case if
T ≥ 2

∑K
j=1

1
∆2

j
(2 + log aj∆2

j maxi ai∆2
i

(mink ak∆2
k

)2 − log T
e3 ), this entails the second bound of the corollary.

General T : We choose a set S ⊆ [K] and set Ck = C, a common value still to be determined,
for all k ∈ S′. Then for all k ∈ S′, we set Sk = S. We impose C ≥ 1 + maxj∈S log 1

aj∆2
j
, such

that the condition Sk ⊆ {j ∈ [K] | Ck + log aj∆2
j ≥ 1} is verified. This finished the proof for

the first bound of the corollary.

Remark 3.17. Note that the bounds for LSA and FWT are actually very similar, indeed Theorem 3.5
applies to LSA and FWT with the following times:

• LSA: tj(Ck) = W (eCk∆2
j )/∆2

j and tj,0(Ck) = eCk ,
• FWT: tj(Ck) = log(eCkaj∆2

j )/∆2
j and tj,0(Ck) = aje

Ck−1 ,
Therefore, for the two algorithms, the times tj(Ck) are close (equal up to the log log terms inW),
thus their bounds are close as well. Note that LSA is only defined for aj = 1 for all j.

We highlight a notable property, in the regime where T is sufficiently large, FWT recovers
the same exponent as in the non-adaptive oracle loss bound (3.5) (up to a factor 1/4). In
the same regime of large T , the bound that we obtain for LSA is of the same order, but less
explicit due to the functionW . The latter is still impressive since the original theorem of (Tao
et al., 2019) for LSA exhibits an exponent significantly looser, of order exp

(
− 1

16020
T∑K

j=1 1/∆2
j

)
,

i.e. 4005-times worse than our bound. We finally derive a bound for our newly introduced
algorithm.

3.5.2 Numerical comparison

Figure 3.4 compares the upper-bounds of Corollary 3.14 (APT), Theorem 3.5 (see also Equa-
tion (3.8)) (LSA), and Corollary 3.16 (FWT) for the particular case ∆i = (i/K)2 and ai = 1, for
i = 1, . . . ,K = 50. We can see that while the bounds of LSA, APT, and FWT are asymptotically
similar, that of FWT starts to be significant for much smaller T . On the right, we can see the
importance of the set S′ in Corollary 3.16: the bounds first ignores all the arms, and suffers a
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Figure 3.4 – [left] Comparison of the upper-bounds of Corollaries 3.14, 3.16 and that of the optimal
non-adaptive oracle of Equation (3.5) (blue) when the gaps are of the form ∆i = (i/K)2. [right]
Evolution over time of the size of the optimal sets S (blue) and S′ (orange) that minimize the bound of
Corollary 3.16.

loss of 1 and then adds them one by one as soon as they can be classified. The bound derived
in (Tao et al., 2019) for LSA is not represented on the figures, since it is still bigger thanK for
the considered range of T .

Figure 3.5 compares the upper-bounds of Corollary 3.14 (APT), Equation (3.8) (LSA), and
Corollary 3.16 (FWT) for the particular case ∆i = i/K and ai = 1, for all i = 1, . . . ,K and
K = 50. We observe a behavior similar to that of Figure 3.4.
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Figure 3.5 – [left] Comparison of the upper-bounds of Corollaries 3.14, 3.16 and that of the optimal non-
adaptive oracle of Equation (3.5) (blue) when the gaps are of the form ∆i = i/K. [right] Evolution over
time of the size of the optimal sets S (blue) and S′ (orange) that minimize the bound of Corollary 3.16.
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3.5.3 The sum-of-gaps objective

We show that our method applies for the sum-of-gaps objective ∑K
k=1 ∆kEk. This is not a

particular case of the setting discussed previously since ak was known to the algorithm, while
∆k is unknown. It serves as a proof of concept for the extensibility of our method. The index
given by FWT in this setting is F (n, x) = x′ − 3

2 log (x′) + 3
2 log (n), where x′ = max

(
x, 3

2

)
. We

can then bound the sum-of-gaps loss using our generic analysis by proceeding similarly to
Theorem (3.5).

Corollary 3.18. (FWT for the sum-of-gaps objective) In the large horizon regime, specifically
when T ≥ 2

∑k
j=1

1
∆2

j

(
3 + 3 log ∆j maxi ∆i

(mini ∆i)2 − log T
e

)
, then we show that

E[
K∑
k=1

∆kEk] ≤ 2
√
eT
∑
k

∆k exp

−1
2

T
2 +

∑
j

3
2

1
∆2

j
log ∆2

k

∆2
j∑

j 1/∆2
j

 .

This can be useful for applications in which errors are more tolerated for arms that are close
to the threshold.

Proof. The global loss we investigate in this section is

LT =
∑
k

∆kEk.

First wewrite the Frank-Wolfe index: arg minkNk,t∆̂2
k,t−

3
2 log

(
Nk,t∆̂2

k,t

)
+ 3

2 log (Nk,t), then
we slightly modify it to comply with Assumption 3.4 (see explanation above Equation FWT):

IkNk,t
= max(3

2 , Nk,t∆̂2
k,t)−

3
2 log max(3

2 , Nk,t∆̂2
k,t) + 3

2 logNk,t.

This corresponds to the index F (n, x) = 3
2 logn+ max(3

2 , x)− 3
2 log max(3

2 , x).
Solving F (n, n∆2

k) = C gives rise to two cases:
• n = 1

∆2
k
(C + 3

2 log ∆2
k) if C + 3

2 log ∆2
k ≥

3
2 ,

• n = 3
2 exp(2

3C − 1) otherwise. In that case, n ≤ 3
2

1
∆2

k
.

Also, n = 3
2 exp(2

3C − 1) is solution to F (n, 0) = C. Consider Ck > 0, let Sk = {j ∈
[K] | Ck + 3

2 log ∆2
j ≥ 3

2} and S′ be a set such that for all k ∈ S′, k ∈ Sk, then

E[LT ] ≤
∑
k/∈S′

∆k +
∑
k∈S′

∆kP(FCk
) +

∑
k∈S′

∆kP(Ek(T ) ∩ FCk
)

48



3.6 Additional Experiments

≤
∑
k/∈S′

∆k + e
∑
k∈S′

∆k exp

− 1
2(T −

∑
j /∈Sk

3
2∆je

2
3Ck−1) +

∑
j∈Sk

3
2

1
∆2

j
log 1

∆2
j∑

j∈Sk
1/∆2

j

+ Ck


+
∑
k∈S′

T∆k exp
(
−Ck −

3
2 log ∆2

k

)

Large T The values of Ck that optimize the r.h.s of the previous inequality verify:

Ck = 1
2

1
2(T −

∑
j /∈Sk

3
2∆je

2
3Ck−1) +

∑
j∈Sk

3
2

1
∆2

j
log 1

∆2
j∑

j∈Sk
1/∆2

j

− 1
2 log ∆3

k + 1
2 log T

e

If T is big enough such that Sk = [K] for all arms, which is true in the case considered in the
corollary, then we prove the bound of the latter.

3.6 Additional Experiments

In this section, we illustrate on synthetic data the performance of APT, LSA, and FWT. The
implemented algorithms respectively correspond to Algorithm 3.1 with the following choices:

F (n, x; 1) = x (APT)
F (n, x; 1) = x+ log(n) (LSA)
F (n, x; 1) = (1 +

√
x)2 − log(1 +

√
x)2 + log(n) (FWT)

Note that we used a slighly different version for APT than the one proposed in the analysis
F (n, x; 1) = max{1, x} − log max{1, x}+ log(n). The analysis and experiments work similarly
for both versions. But the (1 +

√
x)2 version performs slightly better empirically while the

max{1, x} version provides cleaner theoretical results. The experiments are averaged over 500
runs and consider arm distributions of the form νk = N (µk, 1). The gaps are thus ∆k = |µk|,
for k = 1, . . . ,K. The performance criterion is the sum of errors defined in Equation 3.4 with
ak = 1. The experiments were run on a personal laptop with Intel Core i5, Dual Core, 3.1 GHz.

Since most of the tested experiments obtained similar performance, we only provide the
results of a few experiments. Although our theoretical upper bounds are slighly better for FWT,
LSA and FWT generally have similar performance, while APT underperforms. This last point
is not surprising since, although we provide in Corollary 3.14 an upper bound for APT that
appears asymptotically similar to those of LSA and FWT, APT was not designed to minimize
the sum of errors. APT was made to minimize the probability of making at least one error and
thus focuses too much on arms with very small gaps that are very difficult to classify.
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Figure 3.6 – Sum of errors over time of the different algorithmswhen µk = (−1)kk
K [left] and µk = (−1)kk2

K2

[right] forK = 50 arms.
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Figure 3.7 – Ratio of improvement with respect to the non adaptive oracle sampling when µk = (−1)kk
K

[left] and µk = (−1)kk2

K2 [right] forK = 50 arms.

Figure 3.6 shows the performance of the algorithms together with the non-adaptive oracle
of Section 3.7. Figure 3.7 plots the ratio of error with respect to the non-adaptive oracle.
Interestingly, in all of our experiments, APT and FWT perform better than it.

3.7 Beating the oracle? The benefits of adaptivity.

We argue that in some situations adaptive algorithms can greatly outperform the non-adaptive
oracle of Section 3.2.2, i.e., the cost of non-adaptivity can be much higher than the cost of
learning. The algorithms in the family we considered are all adaptive in the sense that they
adapt their drawing strategy as more information is observed, at the cost of learning the
parameter µk. We illustrate the benefits of adaptivity in the following toy example.
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3.7 Beating the oracle? The benefits of adaptivity.

The “optimal” non-adaptive algorithm may be worse than adaptive algorithms. Consider
the following parametric problem. An arm distribution is parametrized by x ∈ R and is
supported on {0, x}; a sample of that distribution is equal to 0 or x, each with probability
1/2. We assume that all arms have non-zero parameter and we will compute the optimal
non-adaptive allocation.

We make the convention that if an algorithm sees only zeros for one arm, it returns any
sign with probability 1/2. The error probability of a non-adaptive allocation Nk

T for arm k is
half of the probability of seeing only zeros (since if anything else is observed, the arm can be
classified with perfect accuracy). Hence the total error is

E
[
LT
]

= 1
2

K∑
k=1

1
2Nk,T

≥ K

2(T/K)+1 ,

which is minimized with the uniform allocation: Nk,T = T
K for all k ∈ [K].

Consider now an adaptive procedure that sample each arm in turn, but stops sampling an
arm as soon at it sees a non-zero value. We crudely prove an upper bound for its number of
errors, by remarking that it is zero if the algorithm classifies all arms correctly and smaller than
K otherwise. The number of samples required to perfectly classify an arm follows a geometric
distribution with parameter 1/2. As a consequence, the number of required samples to classify
all arms correctly follows a negative binomial NB(K, 1/2). Let Z be such a negative binomial
random variable. The expected number of errors of the adaptive procedure is up toKP(Z > T ).
It then verifies

E
[
LT
]
≤ KP(Z > T ) ≤ Ke−(log(2)/2)TEe(log(2)/2)Z = K

2T/2

(
1 + 1√

2

)K
,

where the value log(2)/2 is chosen for simplicity (in [0, log 2)). In the regime where T is large,
this is of order 1/2T/2, which forK > 2 is much smaller than 1/2T/K for the uniform allocation.

This toy example differs drastically from more realistic situations, as one non-zero sample
for an arm is sufficient to know the sign of the expectation perfectly. We therefore consider
empiricallymore reasonable frameworks, closer to those analyzed in the paper: the distributions
ofK arms are eitherN (1, 1) orN (−1, 1). Since all gaps ∆i are equal, the optimal non-adaptive
oracle is also the uniform sampling. The results are illustrated on the left part of Figure 3.8 and
highlight the fact that all the adaptive algorithms considered (APT, LSA or FWT) drastically
outperform the oracle. The right part of the figure shows the same phenomenon on another
example in which the gaps are not constant. In particular, we can see that FWT and LSA have
similar performance while APT (not designed for this purpose) generally suffers from a larger
error. This result was corroborated by most of our experiments. We refer to Appendix 3.6 for
more details.
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Figure 3.8 – [left] Median (and 0.25, 0.75 empirical quantiles obtained on 500 runs) of the ratio between
the error suffered by each algorithm and that of the optimal non-adaptive oracle (µk = (−1)k, k =
1, . . . , 100). [right] Ratio of the averaged errors (over 500 runs) of each algorithm with that of the oracle
(µk = (−1)k(k/K)2, k = 1, . . . , 50).

3.8 Discussion

An interesting research direction is to consider objective functions more general than (3.1). In
particular, we believe that our approach (algorithm and analysis) can be generalized to loss
functions that have the form LT =

∑K
k=1 f(∆k, Ek) under certain regularity assumptions on f .

Moreover, we focused on separable losses (hence linear wlog) and the index based algorithms
we analyze reflect that separability. An obvious and intriguing direction for further work is to
replace that assumption. One might for example want to design an algorithm that minimizes
the probability of making more than a given number of mistakes.

The fact that adaptive algorithms can beat non-adaptive oracles has already been observed
empirically for fixed confidence identification (Simchowitz, Jamieson, andRecht, 2017; Degenne,
Koolen, and Ménard, 2019), although only in cases where the non-adaptive oracle was worse
only for small times and was still asymptotically optimal. The phenomenon we observe for
fixed budget thresholding is much more significant and remains to be explained by theoretical
arguments. Currently, the best theoretical bound for adaptive algorithms is still a factor 1/4

away in the exponent from the non-adaptive oracle bound.
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Chapter 4

Linear regression: an improved
algorithm & application to linear
bandits

We consider the problem of online linear regression in the stochastic setting. We derive high
probability regret bounds for online ridge regression and the forward algorithm. This enables us
to compare online regression algorithmsmore accurately and eliminate assumptions of bounded
observations and predictions. Our study advocates for the use of the forward algorithm in
lieu of ridge due to its enhanced bounds and robustness to the regularization parameter.
Moreover, we explain how to integrate it in algorithms involving linear function approximation
to remove a boundedness assumption without deteriorating theoretical bounds. We showcase
this modification in linear bandit settings where it yields improved regret bounds. Last, we
provide numerical experiments to illustrate our results and endorse our intuitions.1

Contents
4.1 Introduction and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Adversarial bounds and limitations . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 High probability bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 The unregularized-forward algorithm . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Application: linear bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1This chapter is based on a collaboration with Odalric Maillard and Vianney Perchet (Ouhamma, Maillard, and
Perchet, 2021). It was accepted for publication at the 32nd conference on advances in Neural Information Processing
Systems (NeurIPS).
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4.1 Introduction and preliminaries

The forward regression algorithm, popularized in (Vovk, 2001; Azoury and Warmuth, 2001),
shows competitive performance bounds in the challenging setup of online regression with
adversarial bounded observations. We revisit the analysis of this strategy in the practically rele-
vant alternative situation of stochastic linear regression with sub-Gaussian noise, hence possibly
unbounded observations. When compared to the classical ridge regression strategy - its natural
competitor - the existing analysis in the adversarial bounded case suggests the forward algo-
rithm has higher performances. It is then natural to ask whether this conclusion holds for the
stochastic setup. However, we show that in the stochastic setup, the existing adversarial analysis
does not seem sufficient to draw conclusions, as it does not capture some important phenomena,
such as the concentration of the parameter estimate around the regression parameter. It may
further lead the practitioner to use an improper tuning of the regularization parameter. In
order to overcome these issues, we revisit the analysis of the forward algorithm in the case of
unbounded sub-Gaussian linear regression and provide a high probability regret bound on the
performance of the forward and ridge regression strategies. Owing to this refined analysis, we
show that the forward algorithm is superior in this scenario as well, but for different reasons
than what is suggested by the adversarial analysis. We discuss the implications of this result
in a practical application: stochastic linear bandits, both from theoretical and experimental
perspectives.

Setup: In the classical setting of online regression with the square loss, an environment
initially chooses a sequence of feature vectors {xt}t ∈ Rd together with corresponding observa-
tions {yt}t ∈ R. Then, at each decision step t, the learner receives feature vector xt and must
output a prediction ŷt ∈ R. Afterwards, the environment reveals the true label yt and iteration
t+ 1 begins. In this article, we focus on the case when the data generating process is a stochastic
linear model:

∃θ∗ ∈ Rd such that ∀t ∈ N∗ : yt = x⊤
t θ∗ + εt,

where {εt}t is a noise sequence. At iteration t, strategy A computes a parameter θA
t−1 to predict

ŷA
t = x⊤

t θ
A
t−1. In the sequel, we omit the subscript A when the algorithm is clear from context.

The learner’s prediction incurs the loss: ℓAt =∆ ℓ(x⊤
t θt−1, yt) = (ŷt − yt)2, the learner then

updates its prediction θt−1 to θt and so on. The total cumulative loss at horizon T is denoted
LA
T =

∑T
t=1 ℓ

A
t . We also let ℓt(θ) = ℓ(x⊤

t θ, yt) (resp. LT (θ) =
∑T
t=1 ℓt(θ)) be the instantaneous

(resp. cumulative) loss incurred by predicting θ at time t (resp. ∀t = 1, . . . , T). Online
regression algorithms are evaluated using different regret definitions, in the form of a relative
cumulative loss to a batch loss; The quantity of interest in this paper is:

RA
T = LA

T −min
θ
LT (θ). (4.1)

54



4.1 Introduction and preliminaries

From the perspective of online learning theory, online regression algorithms are usually de-
signed for an adversarial setting, assuming an arbitrary bounded response variable |yt| ≤ Y at
each time step. While the mere existence of algorithms with tight guarantees in this general
setting is remarkable, a practitioner may also consider alternative settings, in which analysis
for the adversarial setup may be overly conservative. For illustration, we focus on the practical
setting of bounded parameter ∥θ∗∥2 ≤ S and i.i.d zero-mean σ-sub-Gaussian noise sequences:

∀t ≥ 1, γ ∈ R : E [exp(γε)] ≤ exp(σ2γ2/2).

We emphasize that while previous results in literature are valid for the adversarial bounded
setting, we will still shed new light on the performance of these strategies in a stochastic
unbounded setup, which is neither more general nor more restrictive than the adversarial
one, and discuss their implications for the practitioner. Let us recall the two popular online
regression algorithms considered.

Online ridge regression [Algorithm 4.1]: This folklore algorithm is defined in the online
setting as the greedy version of batch ridge regression:

θr
t ∈ arg min

θ
Lt(θ) + λ||θ||22, (4.2)

where λ is a parameter and λ||θ||22 is a regularization used to penalize model complexity.
Algorithm 4.1: Online ridge regression
1 Given θ0 ∈ Rd

2 for t = 1, . . . , T do
3 observe xt ∈ Rd and predict ŷt = x⊤

t θ
r
t−1 ∈ R

4 observe yt and incur loss ℓt ∈ R
5 update parameter: θr

t ∈ arg minθ Lt(θ) + λ||θ||22
6 end

A solution to the quadratic optimization problem of Equation 4.2 is given in closed form, by
θr
t = Gt(λ)−1bt, where Gt(λ) = λI +

∑t
q=1 xqx

⊤
q and bt =

∑t
q=1 xqyq. We may further denote

Gt instead of Gt(λ) when λ is clear from context.

The forward algorithm [Algorithm 4.2]: A subtle change to the ridge regression takes
advantage of the next feature xt+1 to better adapt to the next loss:

θf
t ∈ arg min

θ
Lt(θ) + (x⊤

t+1θ)2 + λ||θ||22. (4.3)
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Algorithm 4.2: The forward algorithm
1 Given θ0 ∈ Rd

2 for t = 1, . . . , T do
3 observe xt ∈ Rd

4 update parameter: θf
t−1 ∈ arg minθ Lt−1(θ) + (x⊤

t θ)2 + λ||θ||22
5 predict ŷt = x⊤

t θ
f
t−1 ∈ R

6 observe yt and incur loss ℓt ∈ R
7 end

Equivalently, the update step can be written: θf
t = G−1

t+1bt, where Gt is still defined same
as before. Intuitively, the term (x⊤

t+1θ)2 in Equation 4.3 is a “predictive loss”, a penalty on the
parameter θ in the direction of the new feature vector xt+1. This approach can be linked to
transductive methods for regression (Cortes and Mohri, 2007; Tripuraneni and Mackey, 2019).
(Tripuraneni and Mackey, 2019) describe two algorithms for linear prediction in supervised
settings, and leverage the knowledge of the next test point to improve the prediction accuracy.
However, these algorithms have significant computational complexities and are not adapted to
online settings.

Related work Linear regression is perhaps one of the most known algorithms in machine
learning, due to is simplicity and explicit solution. In contrast with the batch setting (when all
observations are provided), online linear regression started receiving interest relatively recently.
The first theoretical analyses date back to (Foster, 1991; Littlestone, Long, and Warmuth,
1991; Cesa-Bianchi, Long, and Warmuth, 1996; Kivinen and Warmuth, 1997). Under the
assumption that the response variable is bounded |yt| ≤ Y , it has been shown that the forward
algorithm (Vovk, 2001; Azoury andWarmuth, 2001) achieves a relative cumulative online error
of dY 2 log(T ) compared to the best batch regression strategy. This bound holds uniformly over
bounded response variables and competitor vectors, and is 4 times better than the corresponding
bound derived for online ridge regression.

Bartlett et al. (2015) studies minimax regret bounds for online regression, and ingeniously
removed a dependence on the scale of features in existing bounds by considering the beforehand-
known features setting, where all feature points {xt}1≤t≤T are known before the learning
starts. Moreover, they derive a "backward algorithm" that is optimal under certain intricate
assumptions on observations and features. Later on, (Malek and Bartlett, 2018) proves that
under new (tricky) assumptions on observed features and labels the backward algorithm is not
only optimal but applicable in sequential settings as well. More recently, (Gaillard et al., 2019)
provides an optimal algorithm in the setting of beforehand known features without imposing
stringent conditions as in (Bartlett et al., 2015; Malek and Bartlett, 2018). The latter shows
that the forward algorithm with λ = 0 yields a first-order optimal asymptotic regret bound

56



4.2 Adversarial bounds and limitations

uniform over bounded observations. However, due to the lack of regularization, their bound
(cf Theorem 11 in (Gaillard et al., 2019)) may blow up if the design matrix Gt(0) is not full
rank. It is hence not uniform over all bounded feature sequences {xt}t.

Paper outline and contributions: In this paper, we continue the line of work initiated on the
forward algorithm and advocate for its use in the stochastic setting with possibly unbounded
response variables, in replacement for the ridge regression (whenever possible). To this end,
we consider an online stochastic linear regression setup where the noise is assumed to be i.i.d
σ-sub-Gaussian.

In Section 4.2 we recall the online performance bounds established for ridge regression
and the forward algorithm in the adversarial case with bounded observations. Next, in subsec-
tion 4.2.3, we discuss some limitations of the adversarial results when comparing regression
algorithms in the stochastic setting. For instance, these bounds compare the cumulative loss of
a strategy to the value of the batch optimization problem, which may not be indicative of the
real performance of the strategy (cf Corollary 4.5) and may encourage a sub-optimal tuning of
the regularization parameter.

In Section 4.3, we study the performance of these algorithms using the cumulative regret
with respect to the true parameter (cf Equation 4.6), which we believe is more practitioner-
friendly than comparing to the batch optimization problem. We show in Theorem 4.6 how
these two measures of performance are related. We provide in Theorems 4.7 and 4.9 a novel
analysis of online regression algorithms without assuming bounded observations. This key
result is made possible by considering high probability bounds instead of bounded individual
sequences. We show that the regret upper-bound for ridge regression is inversely proportional
to the regularization parameter. Consequently, we argue that following these results, forward
regression should be used in lieu of ridge regression.

In Section 4.5, we revisit the linear bandit setup previously analyzed assuming bounded
rewards: we relax this assumption and provide an -optimism in the face of uncertainty- style
algorithm with the forward algorithm instead of ridge, which is especially well-suited for the
bandit setup, and provide novel regret analysis in Theorem 4.15. We proceed similarly by
revisiting a setup of non-stationary (abruptly changing) linear bandits.

4.2 Adversarial bounds and limitations

In this section, we recall existing results regarding the aforementioned ridge and forward
algorithms. We then discuss their limits and benefits when considered from a stochastic
perspective.
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4.2.1 Adversarial regret bounds (known results)

One of the first theoretical analyses of online regression dates back to (Vovk, 2001) and (Azoury
andWarmuth, 2001), and is recalled in the theorem below. It is stated in the form of an “online-
to-offline conversion” performance bound.

Theorem 4.1. (Theorem 4.62 of (Azoury and Warmuth, 2001)) The online ridge regression
algorithm satisfies:

Lr
T −min

θ

(
LT (θ) + λ∥θ∥22

)
≤ 4(Y r)2d log

(
1 + TX2

λd

)
,

where X = max
1≤t≤T

∥xt∥2, and Y r = max
1≤t≤T

{
|yt| ,

∣∣∣x⊤
t θt−1

∣∣∣}.

The reader should note that this result compares the learner’s online cumulative loss to the
regularized batch ridge regression loss. As such, it is an online-to-offline conversion regret.
This is different from the sequential regret that would compare to the minimum achievable
loss. This theorem highlights a dependence on the range of predictions of the algorithm, as
Y r ≥ max

1≤t≤T

∣∣∣x⊤
t θt−1

∣∣∣.
Remark 4.2. (Small losses) The regret bound for ridge regression can be improved if the learner
knows that the loss is small for the best expert, see Orabona, Cesa-Bianchi, and Gentile (2012). Note
however that such techniques require prior knowledge of all the best expert loss L∗

T , their optimal
bound is ∼ O(

√
L∗
T log T ).

The forward algorithm has an enhanced performance in this setup according to this next
result.

Theorem 4.3. (Theorem 5.6 of (Azoury and Warmuth, 2001)) The forward algorithm satisfies:

L
f
T −min

θ

(
LT (θ) + λ∥θ∥22

)
≤ (Y f)2d log

(
1 + TX2

λd

)
,

where X = max
1≤t≤T

∥xt∥2, and Y f = max
1≤t≤T

|yt|.

Notice that in this result Y is different than in Theorem 4.1 and is independent from the
algorithm’s predictions. Moreover, Theorem 4.3 exhibits a bound that is at least 4 times better
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4.2 Adversarial bounds and limitations

than Theorem 4.1. More precisely, Theorem 4.1 suggests that, in order to compare the two
bounds, prior knowledge of Y f is required to further clip the predictions of online ridge
regression in [−Y f, Y f]; and that even with such knowledge the forward algorithm may be
4-times better than ridge regression. We believe that this unfortunately led researchers to turn
away from analyzing more deeply what may happen.

4.2.2 Limitation in the adversarial setup: rigid regularization

To evaluate online regression strategies, a tight lower bound was derived in (Gaillard et al.,
2019). The latter studied uniform minimax lower bounds in the setting of beforehand-known
features (that is when (xt)1≤t≤T known in advance), which is very challenging for a lower
bound. They show that, the minimax uniform regret bound is controlled as follows.

Theorem 4.4. (Gaillard et al. (2019)) For all T ≥ 8, Y > 0 we have:

R⋆T,[−Y,Y ] ≥ dY
2(log(T )− (3 + log(d))− log(log(d))) .

where R⋆T,[−Y,Y ]
def= inf

A
sup

x1,...,T ∈[0,1]d
sup

|yt|≤Y

{∑T
t=1(yt − ŷA

t )2 − infu∈Rd

∑T
t=1(yt − x⊤

t u)2
}

We will use this result to evaluate the optimality of ridge and forward regressions. First, we
need to convert Theorems 4.1 and 4.3 to sequential regret bounds. Indeed, in their current form,
they compare the cumulative loss of the learner to the value of a regularized batch optimization.
This next result transforms them, and is a corollary of Theorems 11.7 and 11.8 of Cesa-Bianchi
and Lugosi (2006).

Corollary 4.5. (Of Theorems 11.7 and 11.8 of (Cesa-Bianchi and Lugosi, 2006)) For all T ≥
1, (xt)1≤t≤T ∈ Rd, (yt)1≤t≤T ∈ [−Y, Y ] such that ∥xt∥2 ≤ X ,

for A ∈ {r, f} RA
T ≤ cA(Y A)2d log

(
1 + TX2

λd

)
+ λ (Y A)2T

λrT (GT (0)) ,

where rT = rank(GT (0)) and λrT is its smallest positive eigenvalue, cr = 4 and cf = 1.

This bound suggests that to obtain a log(T ) bound, λ should not be chosen larger than
about log(T )/T , due to the second term, this is the stringent regularization limitation.
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Proof. Consider (w.l.o.g) ridge regression, denoteXT the design matrix and yT the labels, then:

∥θT ∥2 =
∥∥∥GT (0)†bT

∥∥∥
2

=
√
y⊤
TX

⊤
T GT (0)†GT (0)†XT yT ≤

√
y⊤
TX

⊤
T GT (0)†XT yT
λrT (GT )

≤ Y r

√
T

λrT (GT ) ,

where GT (0)† is the pseudo-inverse of GT (0), the last inequality is because X⊤
T GT (0)†XT is an

orthogonal projection on Im(X⊤). Injecting in the previous theorem finishes the proof, these
bounds hold for arbitrary bounded sequences. The proof for the forward algorithm proceeds
in the same way by replacing GT by GT+1 and Y r by Y f.

Choosing λ = 1/T yields a first order regret of 2dY 2 for the forward algorithm and 8dY 2

for ridge regression (with clipping and prior knowledge of Y ), which is at best twice the first
order term from the lower bound. This suggests the presence of an optimality gap. Strikingly,
Gaillard et al. (2019) shows that a non-regularized version of the forward algorithm achieves
the optimal first order of dY 2. However, it also suffers from an important weakness: Indeed,
the (Y A)2/λrT (GT (0)) term in Corollary 4.5 is not uniformly bounded over feature sequences,
but only on specific "well-behaved" features. In fact, double uniformity over features and
observations is still an open question (see (Gaillard et al., 2019)).

4.2.3 Limitations in the stochastic setting

Now that we have recalled the main properties of the forward and ridge algorithms in the
adversarial setup, we advocate for the need of a complementary analysis of the previous
algorithms in the stochastic unbounded setting by unveiling some key limitations.

Too unconstrained The existing analysis being for a different setting, it naturally ignores
crucial aspects of the stochastic setup. For instance, the quantity Y is uninformative and may
be substantial. Let us look at how the term Y appears in the proofs of Azoury and Warmuth
(2001). For ridge regression, the penultimate step to prove Theorem 4.1 writes:

Lr
T −min

θ

(
LT (θ) + λ∥θ∥22

)
≤

T∑
t=1

(
x⊤
t θt−1 − yt

)2
x⊤
t G

−1
t xt︸ ︷︷ ︸

first term

≤ 4(Y r)2
T∑
t=1

x⊤
t G

−1
t xt. (4.4)

In an adversarial setting, the “first term” cannot be controlled without assuming bounded pre-
dictions |x⊤

t θt−1| ≤ Y r, and doing so yields a bound
(
x⊤
t θt−1 − yt

)2
≤ 4(Y r)2. In a stochastic

setup however, we expect the term
(
x⊤
t θt−1 − yt

)2 to reduce and stabilize around
(
x⊤
t θ∗ − yt

)2,
owing to the convergence properties of the estimate towards θ∗.
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Figure 4.1 – Online regret. y-axis is logarithmic.

For the forward algorithm, the final step in the proof of Theorem 4.3 writes:

Lf
T −min

θ

(
LT (θ) + λ∥θ∥22

)
≤

T∑
t=1

y2
t x

⊤
t G

−1
t xt︸ ︷︷ ︸

first term

−
T−1∑
t=1

x⊤
t+1G−1

t xt+1
(
x⊤
t+1θt

)2

︸ ︷︷ ︸
second term

. (4.5)

Then, the analysis uses that |yt| ≤ Y f and disregards the negative contribution of the “second
term”. Illustrative example: Let us analyze these terms in an practice: consider d = 5, θ∗ ∈ R5,
we sample 200 features uniformly in [0, 1]5 and Gaussian noises (σ = 0.1). Figure 4.1 displays
the instantaneous first regret term of both algorithms (with λ = 1) and the second regret term
of the forward algorithm, averaged over 100 replicates. We remark that the first terms vanish
quickly for ridge regression and are quite stable for the forward algorithm. On the other hand,
they are essentially cancelled out by the second term. Overall, the two strategies perform on par
on this example. This suggests that Theorems 4.1 and 4.3 can be misleading in this stochastic
setup: for ridge regression they introduce a conservative 4(Y r)2 bound on (x⊤

t (θt−1 − θ∗))2,
while in practice we observe that this term decreases rapidly to zero; for the forward algorithm,
the bound ignores the effect of a negative term, which, as we see in Figure 4.1, is essential to
explain why this algorithm may outperform ridge regression.

Time dependence: In the stochastic case, it can be confusing to introduce Y A. Indeed, the
latter hides a significant implicit time-dependence. For instance, for the forward algorithm
Y f = max1≤t≤T |x⊤

t θ∗ + εt|. Considering the tractable setting of Gaussian i.i.d noise with
variance σ2 and using the classical Sudakov minoration (Sudakov, 1969), we deduce that there
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exists C > 0 such that:

∀T ≥ 1 : E[Y f] ≥ E
[

max
1≤t≤T

εt

]
−X∥θ∗∥2 ≥ σC

√
2 log(T )−X∥θ∗∥2.

Since (Y f)2 appears in the previous performance bounds, this suggests that Y f actually in-
creases the order of the regret bound to log(T )2 in this setting.

By focusing on the unbounded stochastic scenario, we hope in this paper to shed novel light
on the practical performance of these strategies and better explain these phenomena.

4.3 High probability bounds

In this section, we analyze online ridge regression and the forward algorithm in the stochastic
setting. We present our results in terms of the following intuitive regret definition:

R̄A
T = LA

T − LT (θ∗). (4.6)

This regret directly compares the cumulative loss of the learner to the cumulative loss of the
oracle knowing the true parameter θ∗. This contrasts with the online-to-batch conversion result
that compares the loss of the learner to the value of a batch regularized optimization problem.
Since we are in a stochastic setup, we further state results in high probability. More precisely,
we state Theorems 4.6,4.7, 4.9 below holding with high probability uniformly over all T , and
not simply for each T . As a first step, we prove that for T great enough, we can choose this
definition instead of RT defined in Equation 4.1 without altering the bounds.

Theorem 4.6. (Regret equivalence) In the stochastic setting with sub-Gaussian noise, for all δ > 0
with probability at least 1− δ, for all T > 0, (xt)1≤t≤T ∈ Rd such that ∥xt∥2 ≤ X, |GT (0)| > 0

LT (θ∗)− min
θ∈Rd

LT (θ) = o
(
log(T )2

)
,

in particular, it comes
RA
T = R̄A

T + o
(
log(T )2

)

Theorem 4.6 justifies choosing R̄T to provide identical first order guarantees as RT . Indeed,
in the following sections we prove high probability upper bounds of order O(log(T )2).
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Proof. Denote ∀T ≥ 1 : θT = arg minθ∈Rd LT (θ), then:

RT−R̄T = LT (θ∗)− LT (θT ) = 2
T∑
t=1

εt(θT − θ∗)⊤xt −
T∑
t=1

(
(θT − θ∗)⊤xt

)2
. (4.7)

Denote ST =
∑T
t=1 εt(θT − θ∗)⊤xt and AT =

∑T
t=1

(
(θT − θ∗)⊤xt

)2. Using Lemma B.1 we
can prove that ST = o(AT ), this means that we can focus on bounding AT to obtain the desired
result.

Using Lemma B.1 and Equation (4.7) we get that for all σ′, δ > 0 with probability at least
1− δ:

RT − R̄T ≤
√

2(AT + 1/σ′2) log
(√

σ′2AT + 1/δ
)
−AT

≤
√

(AT + 1/σ′2) (log(σ′2AT + 1) + 2 log(1/δ))−AT

≤
√
AT + 1/σ′2

(√
log(σ′2AT + 1) +

√
2 log(1/δ)

)
−AT

≤ 1
σ′2 +

√
2(AT + 1/σ′2) log(1/δ) (4.8)

The next step is to the use confidence intervals of Maillard (2016) (Theorem 3.3 therein)
which hold once the design matrix is singular, see Theorem B.1 for its statement.

The latter entails, that for bounded features ∥x∥ ≤ X , we obtain λmax(GT (0)) ≤ TX2.
Denote T0 = inft≥1{|Gt| > 0}, and for t ≥ T0 : βt = 2(1 + κ)(1 + α)σ2 log κd(e2λmax(GT ))

δ , then
for all δ > 0 with probability at least 1− δ:

AT =
T∑
t=1

(
(θT − θ∗)⊤xt

)2
≤ AT0 +

T∑
t=T0

(
(θT − θ∗)⊤xt

)2

≤ AT0 +
T∑

t=T0

βt∥xt∥2Gt(0)−1 ≤ AT0 + βT

T∑
t=T0

∥xt∥2Gt(0)−1 (4.9)

Then we bound the sum of features using Lemma B.2.
From equation (4.8), using AT ≤

∑T
t=1 ∥θT − θ∗∥2Gt

∥xt∥2G−1
t

≤
∑T
t=1 ∥θT − θ∗∥2GT

∥xt∥2G−1
t

,
then injecting Lemma B.2 with λ = 0, we find that for all δ > 0, with probability at least 1− δ:

AT ≤ AT0 + βTd log
(

1 + TX2/λmin(GT0(0))d
)
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Then injecting this last inequality in equation (4.7) gives, for all δ, σ′ > 0, with probability
at least 1− δ:

RT − R̄T ≤
1
σ′2 + σ′

√
2 log(1/δ)

(
βTd log

(
1 + TX2/λmin(GT0)d

)
+ 1

)
.

Finally, we know -by definition- that RT ≥ R̄T , this concludes the proof for the equivalence of
the two regret definitions.

4.3.1 Online ridge regression

We start our results by stating a new high probability regret bound for online ridge regression.

Theorem 4.7. In the stochastic setting with sub-Gaussian noise, for all δ > 0 with probability at
least 1− δ, for all T ≥ 0:

R̄r
T ≤

2dσ2X2

λ log(1 +X2/λ) log
(
1 + TX2/λd

)
log

(
(1 + TX2/λd)d/2

δ/2

)
+ o(log(T )2),

where X = max1≤t≤T ∥xt∥2.

This result is interesting because the ranges of both predictions and observations do not
appear, hence predictions clipping and/or a prior knowledge assumption on Y f are not required.
On the other hand, a factor 1/λ appears in the worst case of a singular designmatrix. This seems
to be the price for no longer assuming bounded predictions. Another notable improvement
is that this bound no longer involves λ∥θ∥22 terms. In particular, it is uniform over bounded
sequences of observations.

Proof. See Equation 4.12 for an explicit bound. In particular, the o(log(T )2) term isO(log(T )3/2).
Let’s write the instantaneous regret:

r̄t = ℓt(θt−1)− ℓt(θ∗) =
(
θ⊤
t−1xt − θ⊤

∗ xt)2 + 2εt(θ⊤
t−1xt − θ⊤

∗ xt) (4.10)

The proof proceeds in three steps, that we detail hereafter and then we explain how to
combine them for the final result.

First step: Confidence bound to control the concentration of θt−1 around θ∗. For this we use
the confidence ellipsoid from Abbasi-Yadkori, Pál, and Szepesvári (2011), which states that for
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any δ > 0, with probability at least 1− δ, for all t > 0:

∥θr
t − θ∗∥Gt

≤
√
βt(δ) = σ

√
d log

(1 + tX2/λd

δ

)
+ λ1/2S.

It comes, with probability at least 1− δ:

(θt−1 − θ∗)⊤xt ≤ ||xt||G−1
t−1
||θt−1 − θ∗||Gt−1 ≤

√
βt−1(δ)||xt||G−1

t−1
.

Then, since βt is non-decreasing:

Lt − L∗
t ≤ βT−1

T∑
t=1
∥xt∥2ηt−1 + 2

T∑
t=1

εt(θt−1 − θ∗)⊤xt. (4.11)

Second step: Next we bound the sum of feature norms. The main idea here is to use linear
algebra techniques to obtain a telescopic sum.
Lemma B.2 doesn’t apply here because we have ||xt||G−1

t−1
instead of ||xt||G−1

t
. We derive a

similar result for this sum of feature norms in Lemma B.3.
Third step: To control the second term in the r.h.s of Equation 4.10, we use Martingale

inequalities similar to the ones used for the confidence intervals to derive a uniform high
probability bound. Indeed, Lemma B.4 proves that the second term in Equation 4.10 is a of
order∼ O(log(T ) log log T ). In fact, with high probability∑t

s=1

(
(θt−1 − θ∗)⊤xt

)2
= O(log(T )2)

therefore, with high probability ST is of order ∼ O(log(T ) log(log T )/δ). Consequently, with
high probability, ST is second order.

Proof aggregation: By combining earlier results we find for any δ, σ′ > 0, with probability at
least 1− δ, for all T ≥ 0:

R̄r
T ≤

(
σ

√
d log

(1 + TX2/λd

δ/2

)
+ λ1/2S

)2
X2/λ

log(1 +X2/λ)d log
(

1 + TX2/λd

)

+ σ

√√√√√2
(

1/σ′2 +
t∑

s=1

(
(θs−1 − θ∗)⊤xs

)2) log

2

√√√√1 + σ′2
t∑

s=1

(
(θs−1 − θ∗)⊤xs)2/δ

 . (4.12)

Remark 4.8. (Regularization in ridge) Note that the bound holds with high probability, uniformly
over T , and not only for each individual time horizon. In the proof of this result, 1/λ emerges from
bounding λmin(Gt(0)) in the worst case. When the collected features ensure the design matrix
Gt(0) is invertible, 1/λ virtually disappears. We highlight this experimentally in Section 4.4.2.

65



Linear regression: an improved algorithm & application to linear bandits

4.3.2 The forward algorithm

We analyze the forward algorithm and derive a high probability regret bound for it using
similar techniques up to minor modifications.

Theorem 4.9. Assuming sub-Gaussian noise, with probability at least 1− δ, for all T ≥ 0:

R̄
f
T ≤ 2dσ2 log

(
1 + TX2/λd

)
log

(
(1 + TX2/λd)d/2

δ/2

)
+ o(log(T )2),

where X = max1≤t≤T ∥xt∥2 and the o(log(T )2) depends on λ (see Equation 4.13).

Proof. The proof proceeds similarly to that of Theorem 4.7. First, we need to bound the instan-
taneous regret.

r̄t = ℓt(θt−1)− ℓt(θ∗) =
(
θ⊤
t−1xt − θ⊤

∗ xt)2 + 2εt(θ⊤
t−1xt − θ⊤

∗ xt)

We proceed in three steps like before.
First step: We start by deriving a confidence ellipsoid for this new parameter estimate. This

is the novel result of Theorem B.5 where we show that for any δ > 0, with probability at least
1− δ, for allt > 0:

∥θt − θ∗∥Gt
≤
√
βt(δ) = σ

√
d log

(1 + tX2/λd

δ

)
+ (λ1/2 +X)S.

For the first term, with probability at least 1− δ for all t ≥ 0:

(θt−1 − θ∗)⊤xt ≤ ||xt||G−1
t
||θt−1 − θ∗||Gt

≤
√
βt−1(δ)||xt||G−1

t
≤
√
βT−1(δ)||xt||G−1

t
.

Second step: We can use Lemma B.2 to bound the sum of feature norms. It comes

T∑
t=1

(θ⊤
t−1xt − θ⊤

∗ xt)2 ≤ βT (δ)d log
(

1 + TX2/λd

)

Third step: Again, we derive Lemma B.6, a high probability bound To control the second
term in the r.h.s of (4.10).
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Proof aggregation: We combine previous results to finish the proof of the forward algorithm
regret bound. For any δ, σ′ > 0, with probability at least 1− δ, for all T ≥ 0:

R̄f
T ≤

(
σ

√
d log

(1 + TX2/λd

δ/2

)
+ (
√
λ+X)S

)2
X2/λ

log(1 +X2/λ)d log
(

1 + TX2/λd

)

+ σ

√√√√√2
(

1/σ′2 +
t∑

s=1

(
(θt−1 − θ∗)⊤xt

)2) log


√√√√1 + σ′2

t∑
s=1

(
(θt−1 − θ∗)⊤xt)2/δ

 . (4.13)

Theorem 4.9 exhibits a better bound than Theorem 4.7. In fact, the coefficient of the first order
term for the forward algorithm only depends on the dimensionality and the noise variance,
whilst for ridge regression, it also depends on the features’ scale and on the regularization
parameter λ.

Remark 4.10. (Unrestrained regularization) Compared to existing results, this analysis lifts the
“stringent regularization” that requires λ = 1/T or data-dependent regularization (cf (Malek and
Bartlett, 2018)) to obtain uniform bounds. Therefore, Theorems 4.7 and 4.9 are not a mere conse-
quence of bounding Y 2 with high probability in previous deterministic theorems. For completeness,
we also derive a high probability regret bound for a non-regularized version of the forward algorithm
in Appendix 4.4; this algorithm was proven to be asymptotically first order minimax optimal in the
adversarial bounded setting (Gaillard et al., 2019).

4.4 The unregularized-forward algorithm

For the sake of completeness, we propose a high probability bound on the regret of a non-
regularized forward algorithm -studied in the adversarial bounded case in Gaillard et al. (2019)-
which achieves the optimal asymptotic first order deterministic minimax bound of dY 2 log(T ).
This algorithm is a simple yet elegantmodification of forward regression, it avoids the exploding
λ∥θT ∥22 term by setting λ = 0. Consequently θt = G†

t+1bt, where G†
t is the pseudo-inverse of Gt.

Theorem 4.11. (Regret of the unregularized forward) The unregularized forward regression achieves,
for any δ > 0, with probability at least 1− δ for all T > 0:

R̄u−f
T ≤ 2(1 + κ)(1 + α)σ2 log

(
κd(1 + TX2/γd)

δ/4

)
log

 |G†
T |

|G†
T1
|


+ 2σ2 log

(4T1
δ

)(
d+

∑
1≤t≤T1,t∈T

log
(

X2

λrt(
∑t
s=1 xtx

⊤
t )

))
,
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where κ, α ∈ R∗
+ are peeling parameters (can be chosen), γ = min1≤t≤T ∥xt∥2, and κd(x) ∝

xd up to logarithmic factors and depends on κ and α (cf Theorem 5.4 in Maillard (2016)). T1 =
min {t ≥ 1, |Gt| > 0} is, if it exists, the first time the design matrix is non-singular, otherwise T1 = T ,
and T is the set of indices t such that rank(Gt) >rank(Gt−1). The last term accounts for when the
design matrix is singular, and is naturally unbounded (this was also the case in the adversarial case).

Asymptotically, with probability at least 1− δ the first regret term is bounded as:

R̄u−f
T ≤ 2(1 + κ)(1 + α) log

(
C(κ, α)(TX2/λd)d

δ

)
log

(
(T − T1)X2/λd

)
,

where C(κ, α) is a function of the peeling parameters.
We don’t seek a more involved analysis to explicit this bound or improve on it, but we see that
vaguely it leads to a bound similar to Theorems 4.7 and 4.9 provided that the term accounting
for the singularity of the design matrix is controlled. The latter empowers the intuition that in
the high probability analysis, the forward algorithm is first order minimax optimal even though
concretely we cant be sure because we don’t have access to uniform lower bounds.

Proof. The proof consists of two mains steps: the first is to use the following bound while the
design matrix is singular:
Theorem 4.12. (Theorem 11 Gaillard et al. (2019)) For all T ⩾ 1, for all sequences x1, . . . , xT ∈ Rd

and all y1, . . . , yT ∈ [−Y, Y ], the unregularized forward algorithm achieves the regret bound

RT (u) ≤ Y 2
T∑
t=1

xT
t η

†
txt ⩽ dY 2 log T + dY 2 + Y 2 ∑

t∈[1,T ]∩T
log

(
X2

λrt(
∑t
s=1 xsx

⊤
s )

)

where ∀M ∈Md(R), λ1(M) ≥ . . . ≥ λd areM ’s eigenvalues and rt = rank(
∑t
s=1 xsx

⊤
s )) and where

the set T contains rT rounds, given by the smallest s ⩾ 1 such that xs is not mull, and all the s ⩾ 2 for
which rank (Gs−1) ̸= rank (Gs).

The second step is a bound when the design matrix is invertible, using Theorem B.1. Denote
T1 = inf

t≥1
{|Gt| > 0}, using Theorem 4.12:

R̄T1 ≤ Y 2

d log(T1) + d+
∑

1≤t≤T1,t∈T
log

( X2

λrt(Gt)
)

From standard results on sub-Gaussian noise, we also know that E[max1≤t≤T εt] ≤ σ
√

2 log(T )
(see e.g. Kamath (2015)), then using the transformation of Laplace along with Markov’s
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inequality, ∀δ > 0 P
(
∀T ≥ 1, Y 2 ≤ 2σ2 log(T/δ)

)
≥ 1− δ, hence with probability at least 1− δ:

R̄T1 ≤ 2dσ2 log T1
δ

log(T1) + 2dσ2 log T1
δ

+ 2σ2 log T1
δ

∑
1≤t≤T1,t∈T

log
(

X2

λrt(
∑t
s=1 xsx

⊤
s )

)
.

(4.14)

And for T > T1, we bound RT −RT1 using the same methodology as the proofs of Theo-
rem 4.7 and Theorem 4.9. In fact, using the confidence bounds of Theorem B.1 we find, for all
δ > 0, with probability at least 1− δ:

∀t > T1 :
(
θ⊤
t−1xt − θ⊤

∗ xt)2 ≤
√
βt−1(δ)||xt||G†

t
.

We use the tail inequality of Lemma (B.4) to get, ∀δ > 0, with probability at least 1− δ, ∀T > 0:

R̄T − R̄T1 ≤ 2(1 + κ)(1 + α)σ2 log
(
κd(1 + TX2/λd)

δ/2

)
log

 |G†
T |

|G†
T1
|

 (4.15)

From (4.14) and (4.15) we obtain for all δ > 0, with probability at least 1− δ:

R̄T ≲ 2(1 + κ)(1 + α)σ2 log
(
κd(1 + TX2/λd)

δ/4

)
log

 |G†
T |

|G†
T1
|


+ 2σ2 log(T1)

δ/4

(
d+

∑
1≤t≤T1,t∈T

log
(

X2

λrt(
∑t
s=1 xtx

⊤
t )

))
.

4.4.1 Tightness of the bounds

Here we clarify the impact of a tighter confidence width for regularized least squares that was
proved concurrently with the writing of this paper. First we state the result then we discuss its
implications.

Theorem 4.13. (Theorem 1 of Tirinzoni, Pirotta, et al. (2020)) Let δ ∈ (0, 1), n ≥ 3, and θ̂t be
a regularized least-square estimator obtained using t ∈ [n] samples collected using an arbitrary
bandit strategy π := {πt}t≥1 . Then,

P
{
∃t ∈ [n] :

∥∥∥θ̂t − θ∗
∥∥∥
V̄t

≥ √cn,δ
}
≤ δ
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where cn,δ is of order O(log(1/δ) + d log logn).

This has important implications for Theorems 4.6, 4.7 and 4.9: in short it re-scales their
regret upper-bounds from RT = O

(
(dσ)2 log(T )2) to RT = O

(
dσ2 log(T ) log(1/δ)

).
The first order (dσ)2 log(T )2 in our results is the product of 1) d log T from the elliptical lemma,
for bounding the sum of feature norms and 2) σ2 log(T d/δ) the confidence ellipsoid width
in the estimation of the regression parameter. It is the second term that is altered following
the new result from Tirinzoni, Pirotta, et al. (2020). These tighter confidence intervals change
the upper bounds to O(dσ2 log(T ) log log(T )). The latter matches the popular lower bounds
in excess risk literature (see e.g. Theorem 1 in Mourtada (2019)) up to sub-logarithmic terms
suggesting the optimality of the forward algorithm in the stochastic setting.

4.4.2 Experiment

We provide experimental evidence supporting the fact that our novel high probability analysis
better reflects the influence of regularization than results its adversarial counterpart.

100 101 102 103

#Observations

10 2

100

102

104

106

108

On
lin

e 
Re

gr
et

0.001
0.14476482730108395
1
10
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(b) The forward algorithm

Figure 4.2 – Online regret’s (Instantaneous loss difference) dependence on λ. All axes are logarithmic.
Lines are averages over 100 repetitions and shaded areas represent one standard deviation.

In Figures 4.2a and 4.2b we observe the effect of regularization on the performance of
ridge regressions and on the Forward algorithm in a 5-dimensional regression setting. We
vary λ ∈ {1/T, 1/ log(T ), 1, 10}, sample a zero mean Gaussian noise with σ = 0.1 and draw
features uniformly from the unit ball. The results clearly highlight the robustness of the forward
algorithm to λ, contrarily to ridge. In particular, for ridge regression, we observe the exact
dependence on λ described by Theorem 4.7 in the first rounds of learning; as explained in
Remark 4.8, once the collected features are enough for the design matrix Gt(0) to become
non-singular, the 1/λ virtually disappears from the first order regret bound and is replaced by
the smallest eigenvalue of Gt(0), making the regret significantly more stable.
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4.5 Application: linear bandits

The proposed analysis of forward regression in the stochastic setting suggests that using it
could be useful for revisiting several popular setups that include linear function approximation.
We apply this change for stochastic linear bandits hereafter and derive the novel regret bound
obtained when using forward regression instead of the standard ridge regression.

4.5.1 Stationary bandits

Consider the setting of stochastic linear bandits, where at round t the reward of an action xt (from
the action space X ⊂ Rd) is yt = ⟨xt, θ∗⟩ + εt, where θ∗ ∈ Rd is an unknown parameter and
εt is, conditionally on the past, a σ-sub-Gaussian noise. An upper bound S on the unknown
parameter’s norm is provided: ∥θ∗∥2 ≤ S. The (pseudo) regret in this setting is defined:

RT =
T∑
t=1
⟨x∗
t , θ∗⟩ −

T∑
t=1
⟨xt, θ∗⟩ =

T∑
t=1
⟨x∗
t − xt, θ∗⟩, (4.16)

where x∗
t = arg maxx∈X ⟨x, θ∗⟩. Traditionally, the following additional assumption is made.

Assumption 4.14. for all xt ∈ X ⟨xt, θ∗⟩ ∈ [−1, 1] .

The “optimism in the face of uncertainty linear bandit" (OFUL) algorithmwas introduced in
(Abbasi-Yadkori, Pál, and Szepesvári, 2011). OFUL resorts to ridge regression, constructs a con-
fidence ellipsoid for the parameter estimate, and chooses the action that maximizes the upper-
confidence bound on the reward. Under Assumption 4.14, (Abbasi-Yadkori, Pál, and Szepesvári,
2011) we prove that the cumulative regret of OFUL satisfies, for δ > 0 with probability at least

1 − δ, ∀T > 0 Rr
T ≤ 4

√
Td log(λ+ TX2/d)

(
λ1/2S + σ

√
2 log(1/δ) + d log(1 + TX2/(λd))

)
,

where X = max1≤t≤T ∥xt∥2.

Forward variant [Algorithm 4.3]: In a second phase, we propose the variant OFULf in which
we replace ridge regression by the forward algorithm. What this means is that the parameter
estimate is a function of actions:

θf
t (x) = arg min

θ∈Rd

t∑
s=1

(ys − ⟨xs, θ⟩)2 + λ∥θ∥22 + ⟨x, θ⟩2.
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This fits perfectly since actions can be chosen. Implementation details are in Algorithm 4.3.
Algorithm 4.3: OFULf algorithm
1 Given λ, δ, S > 0
2 for t = 1, . . . , T do

3 xt = arg maxx∈X ⟨x, θf
t (x)⟩+ ∥x∥G−1

t−1,x
(
√
λ+ ∥x∥2)S + σ

√
2 log

(
(1+tX2

t (x)/λd)d/2

δ

)
,

4 where Xt(x) = max{∥x∥2,max1≤s≤t−1 ∥xs∥2}, Gt−1,x = Gt−1 + xx⊤ and
θf
t (x) = arg minθ∈Rd

∑t−1
s=1(ys − ⟨xs, θ⟩)2 + λ∥θ∥22 + ⟨x, θ⟩2

5 play xt and observe yt.
6 end

Note that OFULf only requires an upper bound S on ∥θ∗∥2. We prove that OFULf enjoys
the same regret bound as OFUL and doesn’t require Assumption 4.14. In stark contrast, we
cannot show a similar bound for the standard OFULwithout said assumption, it actually suffers
a λ-dependent scaling factor in this case.

Theorem 4.15. (Bandits with unbounded rewards) Without Assumption 4.14, for all δ > 0,
OFULr achieves with probability at least 1− δ, for all T ≥ 1,

Rr
T ≤ 4

√
XXX2Td log(λ+ TX2/d)

λλλ log(1 +XXX2/λλλ)

(
λ1/2S+σ

√
2 log(1/δ) + d log(1 + TX2/(λd))

)
,

also, we show that for all δ > 0, OFULf achieves with probability at least 1− δ, for all T ≥ 1:

R
f
T ≤ 4

√
Td log(λ+ TX2/d)

(
(λ1/2 +X)S + σ

√
2 log(1/δ) + d log(1 + TX2/(λd))

)
.

Proof. OFUL with forward regression: Lets decompose the instantaneous regret as follows:

rt = ⟨θ∗, x∗⟩ − ⟨θ∗, xt⟩ ≤
〈
θ̃t, xt

〉
− ⟨θ∗, xt⟩ =

〈
θ̃t − θ∗, xt

〉
=
〈
θ̂t−1 − θ∗, xt

〉
+
〈
θ̃t − θ̂t−1, xt

〉
=
∥∥∥θ̂t−1 − θ∗

∥∥∥
(Gt−1+xtx⊤

t )
∥Xt∥(Gt−1+xtx⊤

t )−1 +
∥∥∥θ̃t − θ̂t−1

∥∥∥
(Gt−1+xtx⊤

t )
∥xt∥(Gt−1+xtx⊤

t )−1

≤ 2
√
βt−1(xt, δ) ∥xt∥(Gt−1+xtx⊤

t )−1 , (4.17)

where θ̃t is the optimistic parameter estimate, i.e. the θ ∈ Ct(xt) that maximizes the upper
confidence bound on the reward of action xt. The first inequality is since

(
Xt, θ̃t

)
is optimistic,

and the last step holds by Cauchy-Schwarz. Using Inequality (4.17) and the expression of the
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confidence interval (Ct(x)) for the forward algorithm at the action x:
{
θ ∈ Rd : ||θf

t − θ||Gt+xx⊤ ≤
√
βt(x, δ) = (

√
λ+ ||x||2)S + σ

√√√√2 log
(

(1 + tX2/λd)d/2

δ

)}

we get that, with probability at least 1− δ, for all n ≥ 0

Rn ≤

√√√√n n∑
t=1

r2
t ≤

√√√√8βn(δ)n
n∑
t=1
∥xt∥(Gt−1+xtx⊤

t )−1

≤ 4
√
nd log(λ+ nL/d)

(
(λ1/2 +X)S + σ

√
2 log(1/δ) + d log(1 + nL/(λd))

)
where the last step follow from Lemma B.2.

OFUL with ridge regression: Now we derive a novel regret bound for online ridge regression,
one that doesn’t require the bounded rewards, i.e. Assumption 4.14.
The proof follows exactly like the above one except the last step (control of the norm of actions)
that now proceeds using Lemma B.3. The first step is to use the confidence ellipsoid for the
ridge regression parameter (cf Theorem 2 of Abbasi-Yadkori, Pál, and Szepesvári (2011)). With
probability at least 1− δ, for all t ≥ 0, θ∗ lies in the set

Ct =

θ ∈ Rd : ∥θr
t − θ∥Gt

≤
√
βt(δ) = σ

√
d log

(1 + tX2/λd

δ

)
+ λ1/2S

 .
Then

rt = ⟨θ∗, x∗⟩ − ⟨θ∗, xt⟩ ≤
〈
θ̃t, xt

〉
− ⟨θ∗, xt⟩ =

〈
θ̃t − θ∗, xt

〉
=
〈
θ̂t−1 − θ∗, xt

〉
+
〈
θ̃t − θ̂t−1, xt

〉
=
∥∥∥θ̂t−1 − θ∗

∥∥∥
Gt−1
∥Xt∥G−1

t−1
+
∥∥∥θ̃t − θ̂t−1

∥∥∥
Gt−1
∥xt∥G−1

t−1

≤ 2
√
βt−1(δ) ∥xt∥G−1

t−1
(4.18)

where θ̃t is the optimistic parameter estimate, i.e. the θ ∈ Ct that maximizes the upper confi-
dence bound on the reward of action xt. The first inequality is since

(
Xt, θ̃t

)
is optimistic, and

the last step holds by Cauchy-Schwarz. Using Inequality (4.18) we get that, with probability at
least 1− δ, for all n ≥ 0

Rn ≤

√√√√n n∑
t=1

r2
t ≤

√√√√8βn(δ)n
n∑
t=1
∥xt∥G−1

t−1

≤ 4
√
ndX2 log(1 + nX2/λd)

λ log(1 +X2/λ)

(
λ1/2S + σ

√
2 log(1/δ) + d log(1 + nX2/(λd))

)
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where the last step follow from Lemma B.3.

Remark 4.16. we can drop the dependence on X and S by bounding the second term in the index
of OFUL and OFULf (see line 285) by XS(1 +X/

√
λ) and then dropping this -constant- term at

the expense of a looser index. Therefore, knowing the bounds x and S is not crucial. Furthermore,
while we choose to adopt the pseudo-regret definition like in (Abbasi-Yadkori, Pál, and Szepesvári,
2011), we could also derive similar bounds for the regret involving rewards yt = ⟨xt, θ∗⟩ instead of
their expected value, (yt)t≥1 are unbounded.

Experiment We provide experimental evidence that the OFULf variant improves OFUL for
linear bandits; we find that it is generally as good as the standard OFULr, and in some cases it
can prove to be significantly more robust to aberrant regularization parameters. We consider a
100-dimensional linear bandit with 10 arms, the parameter vector is drawn from the unit ball,
actions are such that ∥xt∥ ≤ 200. Noise εt L= N (0, 10−1), λ = 10−5, δ = 10−3.
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Figure 4.3 – Cumulative regret. y-axis is logarithmic.

In Figure 4.3, lines are average regret over 100 repetitions and shaded areas cover the region
between dashed-lines that are the first and third quartiles. We observe that -as predicted by
Theorem 4.15: OFULf is particularly robust and choosing λ = 1/T incurs substantial regret
for OFUL. Because of this phenomena, and for the same observations in the online stochastic
regression setting, we advocate for the use of the forward algorithm instead of ridge regression
whenever possible, to take advantage of its increased robustness to λ.
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Remark 4.17. Regarding the choice λ = 1/T : we use this specific regularization for two reasons:
1) to demonstrate the benefits of our stochastic analysis, since previous deterministic bounds suggest
this λ is best, 2) to showcase the increased robustness of OFULf compared to OFUL. In fact, more
often than not, OFUL performs as good as OFUL, except when λ is small or X is large.

4.5.2 Non-stationary bandits

In this section, we study linear stochastic bandits in the non-stationary setting. We analyze
then provide an experimental study of this setup. Consider non-stationary stochastic linear
bandits, where the target parameter is varying with time: θ∗ = θ∗(t) ∈ Rd, assuming that∑T−1
s=1 ∥θ∗(s)− θ∗(s+ 1)∥2 ≤ BT .
One of the optimal algorithms in this setting is D-LinUCB of (Russac, Vernade, and Cappé,

2019), it defines θt as

θt = arg min
θ∈Rd

t∑
s=1

γt−s(ys − ⟨xs, θ⟩)2 + λ/2∥θ∥22.

D-LinUCB proceeds as follows:

Algorithm 4.4: D-LinUCB

1 Input: δ, σ, λ,X, S, γ > 0, dimension d ∈ N∗.
2 Initialization: b = 0Rd , V = λId, Ṽ = λId, θ = 0Rd

3 for t ≥ 1 do
4 Receive X , compute βt−1 =

√
λS + σ

√
2 log

(
1
δ

)
+ d log

(
1 + X2(1−γ2(t−1))

λd(1−γ2)

)
5 for a ∈ X do
6 Compute UCB(a) = a⊤θ + βt−1

√
a⊤V −1Ṽ V −1a

7 At = arg maxa(UCB(a))
8 Play action At and receive reward Xt

9 Updating phase: V = γV + xtx
⊤
t + (1− γ)λId, Ṽ = γ2Ṽ + xtx

⊤
t + (1− γ2)λId

10 b = γb+ YtXt, θ = V −1b

We recall the regret bound of standard D-LinUCB .

Theorem 4.18. (Theorem 3 of Russac, Vernade, and Cappé (2019)) Assuming that

T−1∑
s=1
∥θ∗(s)− θ∗(s+ 1)∥2 ≤ BT
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and ∀x ∈ X , t ≥ 1 : ⟨x, θt⟩ ≤ 1, the regret of the D-LinUCB algorithm is bounded for all γ, δ ∈ (0, 1)
and integer D ≥ 1, with probability at least 1− δ, by:

Rr
T ≤ 2XDBT + 4X3S

λ

γD

1− γT + 2
√

2βT
√
dT ×

√
T log(1/γ) + log

(
1 + X2

dλ(1− γ)

)
,

where βT is the width of the confidence interval for θ∗(T ).
Now we introduce D-LinUCB f, which uses the forward algorithm and defines an action

dependent θt as:

arg min
θ∈Rd

t∑
s=1

γt−s(ys − ⟨xs, θ⟩)2 + λ/2∥θ∥22 + ⟨x, θ⟩2. (4.19)

Theorem 4.19. Assuming that ∑T−1
s=1 ∥θ∗(s)− θ∗(s+ 1)∥2 ≤ BT , the regret of the D-LinUCB f is

bounded for all γ, δ ∈ (0, 1) and integer D ≥ 1, with probability at least 1− δ, by

R
f
T ≤ 2XDBT + 4X3S

λ

γD

1− γT + 2βT
√
dT

√
T log(1/γ) + log

(
1 + (2− γ)X2

dλ(1− γ)

)
.

Proof. This result is again a modification of the original proof consisting in bounding the sum
of the actions’ norms differently. Let us recall the notations Vt =

∑t
s=1wsxsx

⊤
s + λtId + xx⊤

and Ṽt =
∑t
s=1w

2
sxsx

⊤
s + µtId + xx⊤. To summarize the difference of this analysis -that no

longer requires a bounded rewards assumption- at the step where we bound the sum of actions’
norms, we replace Proposition 4 of Russac, Vernade, and Cappé (2019):

T∑
t=1

min
(

1, ∥xt∥2V −1
t−1Ṽt−1V

−1
t−1

)
≤ 2

T∑
t=1

log
(

1 + γ−t ∥xt∥2V −1
t−1

)
≤ 2 log

(det (VT )
λd

)
,

that requires the predictions to lie in the same range as the rewards with this inequality for
D-LinUCB f

T∑
t=1
∥xt∥2V −1

t ṼtV
−1

t
≤

T∑
t=1

log
(
1 + γ−t ∥xt∥2V −1

t

)
≤ log

(det (VT )
λd

)
.

We don’t provide the full proof of this result as it is cumbersome and not of special interest for
our purposes since it is similar to the analysis for D-LinUCB except for the inequality above.

Remark 4.20. This result is fascinating as it first allows to remove an unnecessary assumption, and
further yields a better bound than D-LinUCB r which suffers the factor XXX

√
2

λλλ log(1+XXX/λλλ) in its last regret term
without Assumption 4.14.

Experiments for non-stationary linear bandits: We now reproduce the experiments of (Rus-
sac, Vernade, and Cappé, 2019) for non-stationary linear bandits, and add D-LinUCB f to the
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Figure 4.4 – Performance of several algorithms in an non-stationary environments, averaged over 100
runs, shaded areas represent one standard deviation.

pool of algorithms. We first simulate an abruptly changing environment of dimension 2 with
3 changes: for t < 103 : θ∗ = (1, 0); for 103 ≤ t ≤ 2.103 : θ∗ = (−1, 0); for 2.103 < t <

3.103 : θ∗ = (0, 1); for t > 3.103 : θ∗ = (0,−1). We observe in Figure 4.4a that both variants of
D-LinUCB compare on par. Here LinUCB-OR denotes an oracle knowing the change points.

Second, we simulate a slowly changing environment where the parameter θ∗ starts at (1, 0)
and moves counter-clockwise on the unit-circle up to the position (0, 1) in 3.103 steps then
remains there, BT = 1.57. We see the results in Figure 4.4b, where we notice that in this setting
as well, D-LinUCB f has very similar performance to standard D-LinUCB .

Remark 4.21. In both experiments, we also reported the performances of SW-LinUCB, that is alternative
version to D-LinUCB. SW-LinUCB is better suited for abrupt changes while D-LinUCB is better suited
for slow changes.

Note that we added these final experiments to demonstrate the competitiveness of algo-
rithms that use forward regression against their ridge counterparts in the same settings that
were used by previous works. While we could have specified specific parameters to illustrate
the robustness to regularization of algorithms that incorporate the forward algorithm; we esti-
mate that the experiments presented in the main text already fulfilled this objective. Again, the
purpose here is to show that using the forward algorithm improves the theoretical guarantees
without deteriorating the performance.
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4.6 Discussion

We revisited the analysis of online linear regression algorithms in the setup of stochastic,
possibly unbounded observations. We proved high probability regret bounds for three popular
online regression algorithms (cf Theorems 4.7, 4.9 and 4.11). These bounds provide novel
understanding of online regression. In particular, Theorem 4.7 seems to be the first regret
bound for ridge regression that does not require bounded predictions or prior knowledge of a
bound on observations. Our novel bounds seem to correctly capture the nature of dependence
with regularization, as indicated by Figure 4.2. Moreover, a new results from Tirinzoni, Pirotta,
et al. (2020) can be incorporated in the proof mechanism to bring the high probability upper
bounds to O(dσ2 log(T ) log log(T )), which matches the optimal achievable bounds from the
excess risk literature up to sub-logarithmic factors.
Furthermore, we argue that replacing ridge regression by the forward algorithm whenever
possible in algorithms that require linear approximations can be beneficial, we depict this in a
case study involving linear bandits: First from a theoretical standpoint our results show that the
OFULf algorithm enjoys the classic first order regret bound while dropping Assumption 4.14;
Second, we find that empirically, implementing OFUL with the forward algorithm makes the
algorithm significantly more robust to extreme values of regularization, which is of practical
interest.
More broadly, we believe that the improvement resulting from replacing ridge regression with
the forward algorithm could be extended to several other settings. For instance, Graph bandits
are of interest as well: they consider linear function approximations using ridge regression,
and make Assumption 4.14, see for example Theorem 1 of (Valko et al., 2014); Meta-learning
with linear bandits can also be enhanced using forward regression: see for example Lemma 1
and consequent results in (Cella, Lazaric, and Pontil, 2020).
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Chapter 5

Continuous MDPs: the Bilinear
Exponential Family representation

We study the problem of episodic reinforcement learning in continuous state-action spaces
with unknown rewards and transitions. Specifically, we consider the setting where the rewards
and transitions are modeled using parametric bilinear exponential families. We propose an
algorithm, BEF-RLSVI, that a) uses penalized maximum likelihood estimators to learn the
unknown parameters, b) injects a calibrated Gaussian noise in the parameter of rewards to
ensure exploration, and c) leverages linearity of the bilinear exponential family transitions
with respect to an underlying RKHS to perform tractable planning. We further provide a
frequentist regret analysis of BEF-RLSVI that yields an upper bound of Õ

(√
d3H3K

)
, where d

is the dimension of the parameters, H is the episode length, andK is the number of episodes.
Our analysis improves the existing bounds for the bilinear exponential family of MDPs by

√
H

and removes the handcrafted clipping deployed in existing RLSVI-type algorithms. Our regret
bound is order-optimal with respect to H andK.1
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1This chapter is based on a collaboration with Debabrota Basu and Odalric Maillard (Ouhamma, Basu, and
Maillard, 2023). It was accepted for publication as an oral at the 37th AAAI Conference on Artificial Intelligence.
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5.1 Introduction

Reinforcement Learning (RL) is a well-studied and popular framework for sequential decision
making, where an agent aims to compute a policy that allows her to maximize the accumulated
reward over a horizon by interacting with an unknown environment (Sutton and Barto, 2018).
Episodic RL. In this paper, we consider the episodic finite-horizon MDP formulation of RL, in
short Episodic RL (Osband, Russo, and Van Roy, 2013; Azar, Osband, and Munos, 2017; Dann,
Lattimore, and Brunskill, 2017). Episodic RL is a tuple P = ⟨S,A,P, r,K,H⟩, where the state
(resp. action) space S (resp. A) might be continuous. In episodic RL, the agent interacts with
the environment in episodes consisting ofH steps. Episode k starts by observing state sk1 . Then,
for t = 1, . . . H , the agent draws action akt from a (possibly time-dependent) policy πt(skt ),
observes the reward r(skt , akt ) ∈ [0, 1], and transits to a state skt+1 ∼ P(. | skt , akt ) according to the
transition function P. The performance of a policy π is measured by the total expected reward
V π

1 starting from a state s ∈ S, the value function and the state-action value functions at step
h ∈ [H] are defined as

V π
h (s) =∆ E

[
H∑
t=h

r(st, at) | sh = s

]
, Qπh(s, a) =∆ E

[
H∑
t=h

r(st, at) | sh = s, ah = a

]
.

Here, computing the policy leading to maximization of cumulative reward requires the
agent to strategically control the actions in order to learn the transition functions and reward
functions as precisely as required. This tension between learning the unknown environment
and rewardmaximization is quantified as regret: the typical performancemeasure of an episodic
RL algorithm. Regret is defined as the difference between the expected cumulative reward or value
collected by the optimal agent that knows the environment and the expected cumulative reward
or value obtained by an agent that has to learn about the unknown environment. Formally, the
regret overK episodes is

R(K) ≜
K∑
k=1

(
V π⋆

1 (sk1)− V πt
1 (sk1)

)
.

Key Challenges. The first challenge in episodic RL is to tackle the exploration–exploitation trade-off.
This is traditionally addressed with the optimism principle that either carefully crafts optimistic
upper bounds on the value functions (Azar, Osband, andMunos, 2017), ormaintains a posterior
on the parameters to perform posterior sampling (Osband, Russo, and Van Roy, 2013), or
perturbs the value function estimates with calibrated noise (Osband, Van Roy, and Wen, 2016).
Though the first two approaches induce theoretically optimal exploration, they might not yield
tractable algorithms for large/continuous state-action spaces as they either involve optimization
in the optimistic set or maintaining a high-dimensional posterior. Thus, we focus on extending
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5.1 Introduction

the third approach of Randomized Least-Square Value Iteration (RLSVI) framework, and inject
noise only in rewards to perform tractable exploration.

The second challenge, which emerges for continuous state-action spaces, is to learn a parametric
functional approximation of either the value function or the rewards and transitions in order to perform
planning and exploration. Different functional representations (ormodels), such as linear (Jin et
al., 2020), bilinear (Du, Kakade, Lee, et al., 2021), and bilinear exponential families (Chowdhury,
Gopalan, and Maillard, 2021), are studied in literature to develop optimal algorithms for
episodic RLwith continuous state-action spaces. Since the linear assumption is restrictive in real-
life -where non-linear structures are abundant-, generalized representations have obtainedmore
attention recently (Chowdhury, Gopalan, and Maillard, 2021; Li, Li, et al., 2021; Du, Kakade,
Lee, et al., 2021; Foster et al., 2021). The BEF model is of special interest as it is expressive
enough to represent tabular MDPs (discrete state-action), factored MDPs (Kearns and Koller,
1999), and linearly controlled dynamical systems (such as Linear Quadratic Regulators (Abbasi-
Yadkori and Szepesvári, 2011)) as special cases (Chowdhury, Gopalan, and Maillard, 2021).
Thus, in this paper, we study the BEF of MDPs, i.e. the episodic RL setting where the rewards and
transition functions can be modeled with bilinear exponential families.

The third challenge is to perform tractable planning2 given the perturbation for exploration and the
model class. Existing work (Osband and Van Roy, 2014; Chowdhury, Gopalan, and Maillard,
2021) assumes an oracle to perform planning and yield policies that aren’t explicit. The main
difficulty in such planning approaches is calculating ∫ P(s′ | s, a)Vh(s) for all (s, a) pairs. This
is not trivial unless the transition is assumed to be linear and decouples s′ from (s, a), which
is not known to hold except for tabular MDPs. This challenge received attention recently, e.g.
(Du, Kakade, Wang, et al., 2019) asks when misspecified linear representations are enough for
a polynomial sample complexity in several settings. (Shariff and Szepesvári, 2020; Lattimore,
Szepesvari, and Weisz, 2020; Van Roy and Dong, 2019) provide positive answers for certain
linear settings. In this paper, we aim to design a tractable planner for the BEF representation.

In this paper, we aim to address the following question that encompasses the three chal-
lenges:

Can we design an algorithm with tractable exploration and planning for the bilinear
exponential family of MDPs yielding a near-optimal frequentist regret bound?

Contributions. We address this question in three folds.
1. Formalism: We assume that neither rewards nor transitions are known, previous efforts

on the bilinear exponential family of MDPs assumed knowledge of rewards. This makes
the addressed problem harder, practical, and more general. We also observe that though the

2By tractable planning, we mean having a planner with (pseudo-)polynomial complexity in the problem
parameters, i.e. in the dimension of features, the horizon, and the number of episodes.
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Continuous MDPs: the Bilinear Exponential Family representation

Table 5.1 – A comparison of RL Algorithms for MDPs with functional representations.
Algorithm Regret Tractable Tractable Free of Model, assumptions

exploration planning clipping
Thompson sampling √

d2H3K ✗ ✓ N.A Gaussian P
(Ren et al., 2021) (Bayesian) Known rewards

EXP-UCRL
√

d2H4K ✗ ✗ N.A Bilinear Exp Family (BEF)
(Chowdhury, Gopalan, and Maillard, 2021) (Frequentist) known rewards

SMRL (Li, Li, et al., 2021) √
d2H4K ✗ ✗ N.A BEF, known rewards

UCRL-VTR (pmlr-v119-ayoub20a) √
d2H4K ✗ ✗ N.A Linear mixture model

F−PHE-LSVI (Ishfaq et al., 2021) poly(dEH)
√

KH ✓ ✗ ✗ Eluder dimension, Tabular
PHE-LSVI (linear-RL)

√
d3H4K Anti-concentration

UC-MatrixRL (Yang and Wang, 2020) √
d2H5K ✗ ✗ N.A Linear factor MDP

OPT-RLSVI (Zanette, Brandfonbrener, et al., 2020) √
d4H5K ✓ ✓ ✗ Linear V

BEF-RLSVI (this work) √
d3H3K ✓ ✓ ✓ Bilinear Exp Family

transitionmodel can represent non-linear dynamics, it implies a linear behavior (see Section 5.2)
in a Reproducible Kernel Hilbert Space (RKHS). This observation contributes to the tractability
of planning.

2. Algorithm: We propose an algorithm BEF-RLSVI that extends the RLSVI framework to
bilinear exponential families (cf Section 5.3). BEF-RLSVI a) injects calibrated Gaussian noise in
the rewards to perform exploration, b) leverages linearity of the transitions with respect to an
underlying RKHS to perform tractable planning and c) uses penalized maximum likelihood to
learn the parameters corresponding to rewards and transitions (cf Section 5.4). To the best of
our knowledge, BEF-RLSVI is the first algorithm for the bilinear exponential family of MDPs with
tractable exploration and planning under unknown rewards and transitions.

3. Analysis: We carefully develop an analysis of BEF-RLSVI that yields Õ
(√

d3H3K
)
regret

which improves the existing regret bound for the BEF of MDPs with known rewards by a factor
of
√
H (Section 5.3.2). Our analysis builds on existing analyses of RLSVI-type algorithms (Os-

band, Van Roy, and Wen, 2016), but contrary to them, we remove the need to handcraft a
clipping of the value functions (Zanette, Brandfonbrener, et al., 2020). We also do not need
to assume anti-concentration bounds as we can explicitly control it by the injected noise. This
was not done previously except for the linear MDPs. We illustrate this comparison in Table 5.1.
We highlight three technical tools that we used to improve the previous analyses: 1) Using
transportation inequalities instead of the simulation lemma reduces a

√
H factor compared to

(Ren et al., 2021), 2) Leveraging the observation that true value functions are bounded enables
using an improved elliptical lemma (compared to (Chowdhury, Gopalan, and Maillard, 2021)),
and 3) Noticing that the norm of features can only be large for a finite amount of time allows us
to forgo clipping and reduce a

√
d factor from the regret compared to (Zanette, Brandfonbrener,

et al., 2020).
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5.2 Bilinear exponential family of MDPs

5.2 Bilinear exponential family of MDPs

We introduce the BEF model (Chowdhury, Gopalan, and Maillard, 2021) and extend it to
parametric rewards. Then, we make an important observation of linearity.

Definition 5.1 (Bilinear exponential family model). We consider both transition and reward
kernels to be unknown and modeled with bilinear exponential families. Specifically,

P (s̃ | s, a) = exp
(
ψ(s̃)⊤Mθpφ(s, a)− Zp

s,a(θp)
)
, (5.1)

P (r | s, a) = exp
(
r B⊤Mθrφ(s, a)− Zr

s,a(θr)
)
, (5.2)

where φ ∈ (Rq
+)S×A and ψ ∈ (Rp

+)S are known feature functions, andB ∈ Rp is a known scaling
factor. The unknown reward and transition parameters are θp, θr ∈ Rd. Mθ· =∆

∑d
i=1 θ

·
iAi, where

Ai is a known p× q matrix for each i. Finally, Z denotes the log partition function:

Zp
s,a(θp) =∆ log

∫
S

exp
(
ψ(s̃)⊤Mθpφ(s, a)

)
ds̃,

Zr is defined similarly.

A minor difference with the original BEF model and the one stated here is that, like (Li, Li,
et al., 2021), we omit a base measure of the form h(s, s̃, a), all the BEF examples provided in
(Chowdhury, Gopalan, and Maillard, 2021) still hold with this slight restriction. We denote
V π
θp,θr,h, (resp. Qπθp,θr,h) the value (resp. state-action) value function for policy π in the MDP

parameterized by (θp, θr) at time h. A policy π⋆ is optimal if for all s ∈ S, V π⋆

θ,h(s) = max
π∈Π

V π
θ,h(s).

A learning algorithm minimizes the (pseudo) regret:

R(K) ≜
K∑
k=1

(
V π⋆

θ,1 (sk1)− V πt

θ,1(sk1)
)
. (5.3)

Linearity of transitions. Now, we state an observation about the bilinear exponential family
and discuss how it helps with the challenge of planning in episodic RL. Specifically, the popular
assumption of linearity of the transition kernel is a direct consequence of our model. Indeed,

2ψ
(
s′)⊤Mθpφ(s, a) = −∥(ψ(s′)−Mθpφ(s, a)∥2 + ∥ψ(s′)∥2 + ∥Mθpφ(s, a)∥2.

Notice that the quadratic term is the Radial Basis Function (RBF) kernel. More precisely, for an
RBF kernel with covariance Σ=Ip and k(x, y)=∆ exp

(
−∥x− y∥2/2

), we find

P
(
s′ | s, a

)
= ⟨ϕp(s, a), µp(s′)⟩H, (5.4)
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Continuous MDPs: the Bilinear Exponential Family representation

whereH is the RKHS associated with the k(., .), and

µp(s′) = (2π)−p/2 k
(
ψ(s′), .

)
exp

(
∥ψ
(
s′) ∥2/2)

ϕp(s, a) = k
(
M⊤
θpφ(s, a), .

)
exp

(∥M⊤
θpφ(s, a)∥2

2 − Zs,a(θp)
)

In Equation (5.4), s′ is decoupled from (s, a), we see hereafter why this is crucial to reducing
the complexity of planning.

Remark 5.2. Up to our knowledge, (Ren et al., 2021) is the only work providing an example of
linear transitions for RL with continuous state-actions. They consider Gaussian transitions with
an unknown mean (f⋆(s, a)) and known variance. It is a special case of the BEF model, where
ψ(s′) = (s′, ∥s′∥2) andMθφ(s, a) = (fθ(s, a)/σ2,−1/σ2).

Importance of linearity. To understand the planning challenge in RL, recall the Bellman
equation:

Qπh(s, a) = r(s, a) +
∫
s̃∈S

P (s′ | s, a)V π
h+1(s̃)ds̃,

We must approximate the integral at the R.H.S.for (s, a) ∈ S × A. For a tabular MDP with
|S| states and |A| actions, we need to evaluate (Qπh)h∈[H], i.e. to approximate |S| × |A| × H
integrals per episode, which can be very expensive. However, if the transition model is linear
(Equation (5.4)), then

Qπθ,h(s, a) = r(s, a) +
〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ,h+1(s̃)ds̃
〉
. (5.5)

When ϕp, µp ∈ Rτ , we can obtainQh by computing τ integrals per timestep, reducing the state-
action space complexity to τ only. For our model, although ϕp and µp are infinite dimensional,
we show in Section 5.4 (§ planning) that the planning complexity is still significantly reduced.

5.3 BEF-RLSVI: algorithm design and frequentist regret bound

We formally introduce and the Bilinear Exponential Family Randomized Least Squares Value
Iteration algorithm (BEF-RLSVI) and provide a high probability regret bound.

5.3.1 BEF-RLSVI: algorithm design

BEF-RLSVI is based on RLSVI (Osband, Van Roy, and Wen, 2016) except it perturb the reward
parameter only. The latter is reminiscent of Thompson Sampling, yet more explicit and with a
better control of the optimism probability.
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5.3 BEF-RLSVI: algorithm design and frequentist regret bound

Algorithm 5.1: BEF-RLSVI

1: Input: failure rate δ, constants αp, η and (xk)k∈[K] ∈ R+

2: for episode k = 1, 2, . . . do
3: Observe initial state sk1
4: Sample noise ξk ∼ N

(
0, xk(Ḡp

k)−1
)
such that

Ḡ
p
k = η

αp A +
∑k−1
τ=1

∑H
h=1(φ(sτh, aτh)⊤A⊤

i Ajφ(sτh, aτh))i,j∈[d]

5: Perturb reward parameter: θ̃r(k) = θ̂r(k) + ξk
6: Compute (Qk

θ̂p,θ̃r,h
)h∈[H] via Bellman-backtracking, see Algorithm 5.2

7: for h = 1, . . . ,H do
8: Pull action akh = arg maxaQθ̂p,θ̃r,h(skh, a)
9: Observe reward r(skh, akh) and state skh+1.
10: end for
11: Update the penalized ML estimators θ̂p(k), θ̂r(k), see Equation (5.6) and Equation (5.7)
12: end for
In line 4, BEF-RLSVI performs exploration by a Gaussian perturbation of the reward param-

eter. Contrary to optimistic approaches, this method is explicit and more efficient since it does
not a involve high-dimensional optimization.

Algorithm 5.2: Bellman Backtracking
1: Input Parameters θ̂p, θ̃r, initialize θ̃ = (θ̃r, θ̂p) and for all s ∈ S, VH+1(s) = 0
2: for steps h = H − 1, H − 2, · · · , 0 do
3: Calculate Qθ̃,h(s, a) = Eθ̃r

s,a[r] + ⟨ϕp(s, a),
∫
Vθ̃,h+1(s′)µp(s′)ds′⟩H

4: end for

Line 3 can be approximated with O(pH3K log(HK)
) complexity without damaging the

sample complexity (cf § planning, Section 5.4). Therefore, planning is tractable.

Remark 5.3. The observation of linearity (cfEquation (5.5) and Line 3) does not reduce BEFMDPs
to linear MDPs because the former holds in an RKHS. Also, linearity is not in the representation
parameter. Therefore, linear RL algorithms do not readily solve the BEF MDPs.

5.3.2 BEF-RLSVI: regret upper-bound

We state the standard smoothness assumptions on the model (Chowdhury, Gopalan, and
Maillard, 2021; Jun et al., 2017; Lu, Meisami, and Tewari, 2021).
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Continuous MDPs: the Bilinear Exponential Family representation

Assumption 5.4. There exist constants αp, αr, βp, βr > 0, such that the representation model
satisfies, for all (s, a) ∈ S ×A , and for all θ, x ∈ Rd

αp ≤ x⊤Cθs,a[ψ]x ≤ βp, αr ≤ Varθs,a(r) x⊤B⊤Bx ≤ βr,

where Varθs,a(r) ≜
(
Eθs,a

[
r2]− Eθs,a [r]2

)
, and Cθs,a [ψ (s′)] ≜ EPθ|s,a

[
∥ψ (s′) ∥2

]
−∥∥∥EPθ|s,a

[
ψ (s′)

]∥∥∥2

These inequalities imply a control over the eigenvalues of the Hessian matrices of the
log-normalizers (cf Appendix C.2.3). We now state our main result.

Theorem 5.5. [Regret bound] Let A ≜ (⊤(AiA⊤
j ))i,j∈[d] and Gs,a ≜

(φ(s, a)⊤A⊤
i Ajφ(s, a))i,j∈[d]. Under Assumption 5.4 and further considering that

1. max{∥θr∥A, ∥θp∥A} ≤ BA, ∥A−1Gs,a∥ ≤ Bφ,A and Eθr [r(s, a)] ∈ [0, 1] for all (s, a).

2. noise ξk ∼ N (0, xk(Ḡp
k)−1) satisfies xk ≥

(
H
√

βpβp(K,δ)
αpαr +

√
βrβr(K,δ) min{1,αp

αr }
2αr

)2
∝ dH2,

then for all δ ∈ (0, 1], with probability at least 1− δ,

R(K) ≤
√
Hγr

K

[
βrCd

√βr(K, δ)
2αr +c

√
xKd log(dK/δ)


︸ ︷︷ ︸

Estimation error for no clipping ≈ dH

+
βrd
√
xK

Φ(−1) (1+
√

log(d/δ))
√
Cd

(
1+α

rBφ,AH

η

)
︸ ︷︷ ︸

Learning error for no clipping ≈ (dH)3/2

]

+
[
c βr

√
xKdγr

K log(dK/δ) +
βr
√
xKdγr

K log(e/δ2)
Φ(−1)

(
1 +

√
log(d/δ)

)
︸ ︷︷ ︸

Noise concentration ≈ d3/2H

+ βr

√
βr(n, δ)γr

K

2αr︸ ︷︷ ︸
Reward concentration ≈ d

+ 2H

√2βp

αp β
p(K, δ)γp

K+(1+
√
γr
K)
√

log(1/δ2)


︸ ︷︷ ︸

Transition concentration ≈ dH

]
√
KH

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γi

K + log(1/δ), and γi
K ≜ d log(1 + βi

η Bφ,AHK).
Also, Cd ≜ 3d

log(2) log
(

1 + αr∥A∥2
2B

2
φ,A

η log(2)

)
, Φ is the Gaussian CDF, and c is a universal constant.
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Theorem 5.5 entails a regretR(K) = O
(√

d3H3K
)
for BEF-RLSVI, where d is the number

of parameters of the bilinear exponential family model,K is the number of episodes, and H is
the horizon of an episode. We now clarify how this contrasts with related literature.

Comparison with other bounds. The closest result is from (Chowdhury, Gopalan, andMaillard,
2021), it considers the same model for transitions but with known rewards. They propose a
UCRL-type and PSRL-type algorithm, which achieve a Õ(

√
d2H4K) regret. There are two notable

algorithmic differences with BEF-RLSVI. First, they use intractable-optimistic upper bounds
or high-dimensional posteriors, while we do explore with explicit perturbations. The second
difference is in planning: while they assume access to a planning oracle, we do it explicitly with
pseudo-polynomial complexity (Section 5.4.1). Moreover, we improve the regret bound by

√
H

thanks to an improved analysis, (cf Lemma C.12). But similar to all RLSVI-type algorithms, we
pick up an extra

√
d (cf (Abeille and Lazaric, 2017)).

(Zanette, Brandfonbrener, et al., 2020) proposes a variant of RLSVI for continuous state-
action spaces, where there are low-rank models of transitions and rewards. They show a regret
boundR(K) = Õ(

√
d4H5K), which is larger than that of BEF-RLSVI byO(

√
dH2). In algorithm

design, we improve on their work by removing the need to carefully clip the value function.
Analytically, our model allows us to use transportation inequalities (cf Lemma C.7) instead of
the simulation lemma, which saves us a

√
H factor.

(Ren et al., 2021) considers Gaussian transitions, i.e. s′ = f∗(s, a) + ε such that ε ∼
N
(
0, σ2). This is a particular case of our model. They propose to use Thompson Sampling,

and have the merit of being the first to have observed linearity of the value function from
this transition structure. But they do not connect it to the finite dimensional approximation
of (Rahimi and Recht, 2007) unlike us (Section 5.4). Finally, they show a Bayesian regret bound
of O(

√
d2H3K). This notion of regret is weaker than frequentist regret, hence this result is not

directly comparable with Theorem 5.5.
Tightness of regret bound. A lower bound for episodic RL with continuous state-action

spaces is still missing. However, for tabular RL, (Domingues et al., 2021) proves a lower
bound of order Ω(

√
H3SAK). If we represent a tabular MDP in our model, we would need

d = S2 × A parameters (Section 4.3, (Chowdhury, Gopalan, and Maillard, 2021)). In this
case, our bound becomes R(K) = O(

√
(S2A)3H3K), which is clearly not tight is S and A.

This is understandable due to the relative generality of our setting. We are however positively
surprised that our bound is tight in terms of its dependence on H andK.

5.4 Algorithm design

We discuss our choices for the design of BEF-RLSVI as well as the justification of tractability of
some essential sub-procedures.
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Continuous MDPs: the Bilinear Exponential Family representation

5.4.1 Building blocks of BEF-RLSVI

We present necessary details about BEF-RLSVI and discuss the key algorithm design techniques.
Estimation of parameters. We estimate transitions and rewards from observations similar to
EXP-UCRL (Chowdhury, Gopalan, and Maillard, 2021), i.e. by using a penalized maximum
likelihood estimator

θ̂p(k) ∈ arg min
θ∈Rd

∑
1≤t≤k

1≤h≤H

− log Pθ

(
sth+1 | sth, ath

)
+ η pen(θ).

Here, pen(θ) is the trace-normpenalty: pen(θ) = 1
2∥θ∥A whereA = (tr(AiA⊤

j ))i,j . By properties
of the exponential family, the penalized ML estimator verifies, for i ≤ d:

∑
1≤t≤k

1≤h≤H

(
ψ
(
sth+1

)
−Eθ̂

p
k

st
h
,at

h

[
ψ
(
s′)])⊤

Aiφ
(
sth, a

t
h

)
= η∇i pen

(
θ̂

p
k

)
. (5.6)

The above can be solved in closed form for simple distributions, like Gaussian, but it can be
involved for other distribution (cf Appendix 5.4.2). For the reward, θr is defined similarly:

θ̂r(k) ∈ arg min
θ∈Rd

∑
1≤t≤k

1≤h≤H

− log Pθ

(
rt | sth, ath

)
+ η pen(θ),

Then, for all i ∈ [d]:
∑

1≤t≤k
1≤h≤H

(
rt − Eθ̂

r
k

st
h
,at

h
[r]
)
B⊤Aiφ

(
sth, a

t
h

)
= η∇i pen

(
θ̂r
k

)
(5.7)

Exploration. A significant challenge in RL is handling exploration in continuous spaces. The
majority of the literature is split between intractable, upper confidence bound-style optimism or
Thompson sampling algorithms with high-dimensional posterior and guarantees only in terms
of Bayesian regret. In BEF-RLSVI, we adopt the approach of reward perturbation motivated
by the RLSVI-framework (Zanette, Brandfonbrener, et al., 2020; Osband, Van Roy, and Wen,
2016). We show that perturbing the reward estimation can guarantee optimism with a constant
probability, i.e. there exists ν ∈ (0, 1] such that for all k ∈ [K] and sk1 ∈ S,

P
(
Ṽ1(sk1)− V ⋆

1 (sk1) ≥ 0
)
≥ ν.

(Zanette, Brandfonbrener, et al., 2020) proves that this suffices to bound the learning error.
However, their method clashes with not clipping the value function, as it modifies the proba-
bility of optimism. Thus, (Zanette, Brandfonbrener, et al., 2020) proposes an involved clipping
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procedure to handle the issue of unstable values. Instead, by careful geometric analysis (cf
Lemma C.14), we bound the occurrences of the unstable values, and in turn, upper bound the
regret without clipping. Note that unlike (Ishfaq et al., 2021), BEF-RLSVI does not guarantee
that the estimated value function is optimistic but still is able to control the learning error (cf
Section 5.5).
Planning. Recall that with our model assumptions, we can write the state-action value function
linearly (Equation (5.5)). Using BEF-RLSVI, we have at step h:

Qπ
θ̂p,θ̃r,h

(s, a) = Eθ̃r [r(s, a)] +
〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ̂p,θ̃r,h+1(s̃)ds̃
〉
.

Then, we select the best action greedily to compute Qh(s, a). Although ϕp and ψp are infinite-
dimensional, we show (next paragraph) that an approximation with dimensionality of order
O
(
pH2K log(HK)

) is possible, and that it doesn’t increase the regret. Thus, the planning can
be done in O(pH3K log(HK))

), which is pseudo-polynomial in p, H andK, ergo tractable.
For details about the finite-dimensional approximation of our transition kernel, refer to

Subsection 5.4.2. Now, we highlight the schematic of a finite-dimensional approximation of
ϕp and ψp. We proceed in three steps. 1) We have with high probability S(Vθ̂p,θ̃r,h) ≤ dH3/2

(Section 5.5). 2) If we have a uniform ε-approximation of Pθp , we show that using it incurs
at most an extra O

(
εdH5/2K

)
regret. 3) Finally, following (Rahimi and Recht, 2007), we

approximate uniformly the shift invariant kernels, here the RBF in Equation (5.4), within ε
error and with features of dimensions O

(
pε−2 log 1

ε2 )
)
, where p is dimension of ψ. Associating

these three elements and choosing ε = 1/
√

(H2K), we establish our claim.

5.4.2 Tractable Planning and Maximum likelihood estimation

A Primer on random Fourier transforms. We start by defining the Random Fourier Transform
and its most relevant property. Let us consider the transition model of Equation (5.1), we have

P(s′ | s, a, θ) = exp
(
ψ(s′)Mθφ(s, a)− Zθ(s, a)

)
= Ep(w,b)

[
f
(
ψ(s′), w, b

)
f (Mθφ(s, a), w, b)

]
,

where f (x,w, b) =
√

2 cos(w⊤x + b) are the random Fourier bases. p(w, b) = N (0, σ−2I) ×
U([0, 2π]), such that N is the Gaussian distribution, U is the Uniform distribution, and p(w, b)
is a coupling among them.

Notice that this provides an alternative approach to decompose the transition kernel and
obtain linearity of the value function. Moreover, since ∀x,w ∈ Rd, b ∈ R, |f(x,w, b)| ≤

√
2,

we can use Hoeffding’s inequality to prove that a Monte-Carlo approximation of P(s′ | s, a, θ)
using N sample pairs of (w, b) guarantees an error smaller than ε with probability at least

89



Continuous MDPs: the Bilinear Exponential Family representation

1−2 exp(−Nε2/4). (Rahimi and Recht, 2007) proves a stronger result: it provides an algorithm
approximating the Gaussian kernel for which the following uniform convergence bound holds.

Lemma 5.6. LetM be a compact subset ofRp with diameter diam(M). Then, using the explicit
mapping z defined in Algorithm 1 in (Rahimi and Recht, 2007) with N samples, we have

Pr
[

sup
x,y∈M

∣∣z(x)′z(y)− k(y,x)
∣∣ ≥ ε] ≤ 28

(
σp diam(M)

ε

)2
exp

(
− Nε2

4(p+ 2)

)

where σ2
p ≡ Ep [ω′ω] is the second moment of the Fourier transform of k.

Further, it implies that ifN = Ω
(
p
ε2 log σp diam(M)

ε

)
, then supx,y∈M |z(x)′z(y)− k(y,x)| ≤ ε

with constant probability.
Application to planning in BEF-RLSVI. Since our regret analysis is done under the high

probability event of bounded estimation parameters, we know that the spaces of ψ(s′) and
Mθφ(s, a) are bounded and the diameter depends on the dimensions. We abstain from expli-
cating the exact diameter as it only influences the number of samples logarithmically. Using
N ≈ p/ε2 samples, we can construct a uniform ε-approximation of P(s′ | s, a, θ).

Let’s call V̂h the estimated value function using Algorithm 3 with the above approximation
of transition. Here, we elucidate the span of this estimation of value function. First we have:

V̂ π
H − V π

H =
∫
s′

(P̂ − P )(s′ | s, a)r(s′, π(s′))ds′ ≤ εdH3/2

Here, we use the facts that S
(
Vθ̂,θ̃x,h

)
≤ dH3/2 (cf Section 5.5.2) and the error in approximating

P is bounded by ε, i.e. sups′,s,a |(P̂ − P )(s′|s, a)| ≤ ε.
Assume that at step h+ 1, we have V̂ π

h+1 − V π
h+1 ≤

∑h+1
j=1 ε

jαh+1,j . Then, we obtain

V̂ π
h − V π

h ≤
∫
s′

(P̂ − P )(s′ | s, a)V̂ π
h+1(s′)ds′ +

∫
s′
P (s′ | s, a)(V̂ π

h+1 − V π
h+1)(s′)ds′

=
∫
s′

(P̂ − P )(s′ | s, a)(V π
h+1 + V̂ π

h+1 − V π
h+1)ds′ +

∫
s′
P (s′ | s, a)(V̂ π

h+1 − V π
h+1)(s′)ds′

≤ ε(dH3/2 +
h+1∑
j=1

εjαh+1,j) +
h+1∑
j=1

εjαh+1,j

≤ ε(dH3/2 + αh+1,1) +
h+1∑
j=2

εj(αh+1,j−1 + αh+1,j) + εh+2αh+1,h+1
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Using the fact that α1,1 = dH3/2 and with a proper induction, we find that:

V̂ π
1 − V π

1 ≤ εdH5/2 1− εH−h

1− ε ≤
H→∞

εdH5/2

This concludes the proof of the arguments provided in § Planning of Section 5.4.1. This
means that the extra regret due to planning with the approximation by RFT features is of
order O

(
εdH5/2K

)
. By choosing an ε of order 1/(H

√
K), we deduce that approximating the

probability kernel with O(pH2K
) samples induces a tractable planning procedure without

harming the regret.

Remark 5.7. The reader might be tempted to combine the finite approximation using RFT with
algorithms from the linear reinforcement learning literature (Jin et al., 2020). However, note that
the dimensionality of the linear space induced by RFT is polynomial in H andK. Consequently,
applying algorithms designed with the assumption of linear value function would incur a linear
regret.

Maximum likelihood estimation The ML estimation is explicit for simple distributions like
the Gaussian (Rogers and Young, 1977) and for Linearly controlled dynamical systems. But it
requires integral approximations for generic transitions as mentioned in (Chowdhury, Gopalan,
and Maillard, 2021). However, we believe that this estimation problem is simpler than the
planning problem since the latter traditionally involves approximating an integral for all pairs
of (s′, a).

One of the popular solutions to this estimation are the Integral approximation techniques.
(Neal, 2001) proposes to handle the MLe using simulated annealing, a method consisting
in starting from a tractable distribution and updating it to resemble the distribution at hand.
(Vembu, Gartner, and Boley, 2012) proposesMCMC techniques for approximating the partition
function. (Carreira-Perpinan and Hinton, 2005) shows that optimizing a different objective,
called the contrastive divergence leads to a good approximation of the ML.

Another popular solution to the ML estimation consists in Score matching. This is a
technique that avoids approximating the partition function and is well studied in literature, see
(Jørgensen, 1983). More recently, (Li, Li, et al., 2021) proposed an adaptation of this technique
to the exact setting we consider. The latter shows that under certain conditions, that we are
unable to verify, the estimation can be solved in O(d3) time.

Other works (Shah, Shah, and Wornell, 2021) assume Bounded distribution support
and natural parameter, and show tha, for a minimally represented k-parameter Exponential
family, under boundedness of the support of the distribution and of the natural parameter,
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Continuous MDPs: the Bilinear Exponential Family representation

an α-approximation of the MLE can be derived in O(poly(k/α)) time. The latter assumes a
specific definition of compactness of the representation as well as knowledge of the support
and shows how to re-parameterize the density to a specific class of exponential families that
are easier to study.

Finally, (Dai, Dai, et al., 2019) studies exponential families such that the natural parameter
belongs to some RKHS, moreover, it proposes a method that learns the Kernel parameters and
improves over score matching in time and in memory complexity.

5.5 Regret analysis

We provide a high probability analysis of the regret of BEF-RLSVI under standard regularity
assumptions of the representation. First we recall the regret definition then we separate the
perturbation error from the statistical estimation:

R(K) =
K∑
k=1

(V ⋆
θp,θr,1 − V

πk
θp,θr,1)(sk1) =

K∑
k=1

(
V ⋆
θp,θr,1 − V

πk

θ̂p,θ̃r,1︸ ︷︷ ︸
learning

+V πk

θ̂p,θ̃r,1 − V
πk
θp,θr,1︸ ︷︷ ︸

Estimation

)
(sk1)

For the estimation error, we use smoothness arguments with concentrations of parameters
up to some novelties. Regarding the learning error, we show that the injected noise ensures a
constant probability of anti-concentration. Applying Assumption 5.4 and Lemma C.12 leads to
the upper-bound.

5.5.1 Estimation error

To show that the estimation error (∑K
k=1 Vθ̂p,θ̃r,1 − V

πk
θp,θr,1

) can be controlled, we decompose it
to an error that comes from the estimation of the transition parameter and one that comes from
the estimation of the reward parameter:

V π
θ̂p,θ̃r(sk1)− V π

θp,θr(sk1) = V π
θ̂p,θr(sk1)− V π

θp,θr(sk1)︸ ︷︷ ︸
transition estimation

+V π
θ̂p,θ̃r(sk1)− V π

θ̂p,θr(sk1)︸ ︷︷ ︸
reward estimation

, (5.8)

we control each term separately in Section 5.5.1 and Section 5.5.1. Therefore, we obtain the
following lemma controlling the estimation error.

Lemma 5.8. The estimation error satisfies, with probability at least 1− 5δ

K∑
k=1

Vθ̂p,θ̃r,1(sk1)− V π
θp,θr,1(sk1) ≤ 2H

√
2βp

αp β
p(N, δ)Nγp

K + 2H
√

2N log(1/δ)
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5.5 Regret analysis

+
[√

KHd log (1 + αrη−1Bφ,An) + Cd

√
Hd log(1 + αη−1Bφ,AH)

]
×
(√

βr(n, δ)
2αr

+c
√

(max
k

xk)d log(dK/δ)
)
βr +

√
2KHd log (1 + αrη−1Bφ,An) log(1/δ)

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γi

K + log(1/δ), and γi
K ≜ d log(1 + βi

η Bφ,AHK). Also,
Cd ≜

3d
log(2) log

(
1 + αr∥A∥2

2B
2
φ,A

η log(2)

)
, and c is a universal constant.

Proof. It follows directly by combining Lemma 5.9 and Lemma 5.12 using a union bound.

Transition estimation

The goal of this section is to prove the following lemma which bounds the regret due to
transition estimation.

Lemma 5.9. We have, with probability at least 1− 2δ

K∑
k=1

Vθ̂p,θr(sk1)− V π
θp,θr(sk1) ≤ 2H

√
2βp

αp β
p(N, δ)Nγp

K + 2H
√

2N log(1/δ)

where γp
K := d log

(
1 + βpη−1Bφ,AHK

), and βp(K, δ) ≜ η
2B

2
A + γ

p
K + log(1/δ).

Note that in this error term, the reward is bounded since its parameter is exact, the value
function is therefore smaller thanH . Using the transportation of Lemma C.7 we obtain a bound
in terms of kl divergences. We then notice that since the reward parameter is exact, the bound
can be improved using Lemma C.12 under Assumption 5.4. We win a

√
H factor compared to

the analysis of (Chowdhury and Gopalan, 2019).

Proof. The proof proceeds in two parts. First, we will reveal a bound in terms of the induced
local geometry, i.e. a bound in terms of KL-divergence. Second, we explicit the bound by
transferring the induced local geometry to the euclidean one.

1) Bound in terms of local geometry. We provide a bound on the estimation error of the
transition in terms of KL divergences, for that end we show that the estimation error can be
decomposed and well controlled. We start by writing the one-step decomposition:
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V π
θ̂p,θr,1(sk1)−V π

θp,θr,1(sk1)

= Eθ̂p

sk
1 ,a

k
1

[
V π
θ̂p,θr,2

]
−Eθp

sk
1 ,a

k
1

[
V π
θ̂p,θr,2

]
+ Eθp

sk
1 ,a

k
1
[V π
θ̂p,θr,2 − V

π
θp,θr,2]

= Eθ̂p

sk
1 ,a

k
1

[
V π
θ̂p,θr,2

]
−Eθp

sk
1 ,a

k
1

[
V π
θ̂p,θr,2

]
+ V π

θ̂p,θr,2(s2k)− V π
θp,θr,2(s2k) + ζk1

=
H∑
h=1

Eθ̂p

shk,ahk

[
V π
θ̂p,θr,h+1

]
−Eθp

shk,ahk

[
V π
θ̂p,θr,h+1

]
+ ζhk

where ζhk = Eθp

shk,ahk
[V π
θ̂p,θr,h+1 − V

π
θp,θr,h+1] −

(
V π
θ̂p,θr,h+1(sh+1k)− V π

θp,θr,h+1(sh+1k)
)
is a mar-

tingale sequence, and the last equality comes by induction. Here we consider the true reward
parameter which verifies |Eθr [r(s, a)]| ≤ 1 by assumption, therefore |ζhk| ≤ 2H . Using the
Azuma-Hoeffding inequality (Boucheron, Lugosi, and Massart, 2013), with probability at least
1− δ

K∑
k=1

H∑
h=1

ζhk ≤ 2H
√

2KH log(1/δ)

We finish bounding the first term using Lemma C.7, indeed

Eθ̂p

shk,ahk

[
V π
θ̂p,θr,h+1

]
−Eθp

shk,ahk

[
V π
θ̂p,θr,h+1

]
≤ H

√
2 KLshk,ahk

(θp, θ̂p)

≤ H min
{

1,
√

2 KLshk,ahk
(θp, θ̂p)

}
,

the last inequality follows because ∀h, S(Vθ̂p,θr,h+1) ≤ H .

Remark 5.10. Traditionally, the expected value difference bound follows from the simulation
lemma (Ren et al., 2021). The simulation lemma incurs an extra

√
H factor compared to our bound.

We deduce that with probability at least 1− δ:

K∑
k=1

Vθ̂p,θr(sk1)− V π
θp,θr(sk1)

≤ H
K∑
k=1

min
{

1,
H∑
h=1

√
2 KLshk,ahk

(θp, θ̂p)
}

+ 2H
√

2KH log(1/δ) (5.9)

2) Bounding the sum of KL divergences. we explicit the bound of Inequality (5.9) using
Assumption 5.4 along with properties of the exponential family (cf Section C.2.3). We have for
all (s, a),

∀θp, θp′,
αp

2
∥∥θp′ − θp∥∥2

Gs,a
≤ KLs,a

(
θp, θp′) ≤ βp

2
∥∥θp′ − θp∥∥2

Gs,a
. (5.10)
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This implies that

KLs,a
(
θ̂p(k), θp

)
≤ βp

2

∥∥∥θp − θ̂p(k)
∥∥∥2

Gs,a

≤ βp
∥∥∥(Ḡp

k)
−1/2Gs,a(Ḡp

k)
−1/2

∥∥∥ 1
2

∥∥∥θp − θ̂p(k)
∥∥∥2

Ḡ
p
k

,

where Ḡp
k ≡ Ḡ

p
(k−1)H := Gk + (αp)−1ηA and Gk ≡

∑k−1
τ=1

∑H
h=1Gsτ

s ,a
τ
h
.

From Corollary C.2, with probability at least 1− δ and for all k ∈ N

∥∥∥θp − θ̂p(k)
∥∥∥2

Ḡ
p
k

≤ 2βp(k, δ)/αp.

Also, using Lemma C.12, we have

T∑
t=1

H∑
h=1

min
{

1,
∥∥∥(Ḡp

k)
−1/2Gs,a(Ḡp

k)
−1/2

∥∥∥} ≤ 2d log
(
1 + αpη−1Bφ,AHK

)
.

Combining these two results we obtain, with probability at least 1− δ:

T∑
t=1

H∑
h=1

min
{

1,KLst
h
,at

h

(
θ̂p(k), θp

)}
≤ 2βp

αp β
p(K, δ)γp

K . (5.11)

Remark 5.11. Notice that the minimum with 1 is crucial, indeed, without it the bound deteriorates
by a factor H as was the case in (Chowdhury, Gopalan, and Maillard, 2021).

3) Combining the bounds. By applying Cauchy-Schwarz in Inequality (5.9), we obtain,
with probability at least 1− δ, and for allK ∈ N

K∑
k=1

Vθ̂p,θr(sk1)− V π
θp,θr(sk1) ≤ H

√√√√2
K∑
k=1

H∑
h=1

KLshk,ahk
(θp, θ̂p) + 2H

√
2KH log(1/δ).

Injecting Inequality (5.11) proves the desired result with probability at least 1− 2δ.

Reward estimation

Previous work uses clipping to help control this error, but in this case it can reduce the optimism
probability. (Zanette, Brandfonbrener, et al., 2020) proposes an involved clipping depending
on the norms ∥(Aiφ(skh, akh))i∈[d]∥(Ḡp

k
)−1 , which is somewhat delicate to analyze and deploy. We

remedy the situation acting solely in the proof. We provide the bound over the regret due to
estimating the reward parameter in the following lemma.
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Lemma 5.12. With probability at least 1− 3δ, the following result holds true.

K∑
k=1

V π
θ̂p,θ̃r,1(sk1)−V π

θ̂p,θr,1(sk1) ≤

√βr(K, δ)
2αr + c

√
(max
k≤K

xk)d log(dK/δ)

βr

×
(√

Cd

(
1 + αrBφ,AH

η

)
+
√
K log(e/δ2)

)√
Hd log (1 + αrη−1Bφ,AHK),

where βp(K, δ) ≜ η
2B

2
A + γ

p
K + log(1/δ), and γp

K ≜ d log(1 + βp

η Bφ,AHK). Also, c is a universal
constant and Cd ≜ 3d

log(2) log
(

1 + αr∥A∥2
2B

2
φ,A

η log(2)

)
.

Proof. The reward estimation error in Equation (5.8) can be written explicitly. Indeed, using
Lemma C.11

V π
θ̂p,θ̃r,1(sk1)− V π

θ̂p,θr,1(sk1) = E(s̃h)1≤h≤H∼π|θ̂p,sk
1

[
H∑
h=1

Vars̃h,π(s̃h)(r)
2 B⊤Mθ̃r−θrφ(s̃h, π(s̃h))

]

≤E
[
H∑
h=1

Vars̃h,π(s̃h)(r)
2 ∥θ̃r − θr∥Ḡr

k
∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k
)−1

]

≤∥θ̃r − θr∥Ḡr
k
E
[
H∑
h=1

Vars̃h,π(s̃h)(r)
2 ∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k
)−1

]

≤∥θ̃r − θr∥Ḡr
k

βr

2 E
[

H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k
)−1︸ ︷︷ ︸

=∆ t̃rajk

]
,

where trajk =∆
∑H
h=1 ∥(Aiφ(sh, π(sh)))1≤i≤d∥(Gr

k
)−1 .

Bad rounds. We separate the analysis of this estimation error into bad and good rounds.
Here we analyze the bad rounds, which are define by the following set:

T = {k ∈ N∗,∃h ∈ [H], ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k

)−1 ≥ 1}

These rounds are why clipping is necessary. Thanks to Lemma C.14, we know that the number
of such rounds is at most O(d). Surprisingly, it depends neither on H nor onK.

We now show that the “bad rounds” incur at most O
(
d3/2H2

)
regret, independent ofK.

Thus, we can omit clipping for free.
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Remark 5.13. In non-episodic settings, the forward algorithm (Azoury and Warmuth, 2001)
eliminates the span control issue. See (Ouhamma, Maillard, and Perchet, 2021) for stochastic
analysis and an application to linear bandits.

1) We know that ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d(Aiφ(s̃h, π(s̃h)))⊤
1≤i≤d∥22 ≤ ∥A∥22B2

φ,A. Then, ac-
cording to Lemma C.14

|T | ≤ 3d
log(2) log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
.

2) SinceGk is positive semi-definite, we have Ḡr
k ⪰ (αr)−1ηA, and in turn, for all state-action

couples (s, a),
∥∥∥(Ḡr

k)−1Gs,a
∥∥∥ ≤ αr

η

∥∥A−1Gs,a
∥∥ ≤ αrBφ,A

η .
This further yields

∥∥∥∥∥I + (Ḡr
k)−1

H∑
h=1

Gst
h
,at

h

∥∥∥∥∥ ≤ 1 +
H∑
h=1

∥∥∥(Ḡr
k)−1Gst

h
,at

h

∥∥∥ ≤ 1 + αrBφ,AH

η
.

Let us define Ḡr
k+H := Ḡr

k +
∑H
h=1Gsk

h
,ak

h
. Then,

Ḡ−1
k+HGs,a =

(
I + (Ḡr

k)−1
H∑
h=1

Gst
h
,at

h

)−1

(Ḡr
k)−1Gs,a.

Therefore, for all pairs (s, a),

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k

)−1 =
√

⊤((Aiφ(s̃h, π(s̃h)))⊤
1≤i≤d(Ḡr

k)−1(Aiφ(s̃h, π(s̃h)))1≤i≤d)

=
√

⊤(
(

1 + αrBφ,AH

η

)
(Ḡr

k+H)−1Gs,a)

≤
√(

1 + αrBφ,AH

η

)
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k+H
)−1

Since ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k+H

)−1 ≤ 1, we have

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k+H

)−1 ≤ min
{

1, ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k

)−1

}
.

Consequently

H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k+H
)−1 ≤

√
Hd log(1 + αrη−1Bφ,AH).
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3) From 1) and 2), we deduce that the total regret induced by rounds from T is bounded.

∑
k∈T

∑
h∈[H]

V π
θ̂p,θ̃r,1(sk1)− V π

θ̂p,θr,1(sk1) ≤ ∥θ̃r − θr∥Ḡr
k

βr

2√√√√ 3d
log(2) log

(
1 +

αr∥A∥22B2
φ,A

η log(2)

)(
1 + αrBφ,AH

η

)
Hd log(1 + αrη−1Bφ,AH) (5.12)

Remark 5.14. The bad rounds analysis is one of our most important contributions as it enables us
to forgo clipping without consequences. Consequently, this is a novel method to control the reward
estimation error that improves on existing work for whom clipping was essential.

Good rounds. Going forward we consider rounds from T̄ . Let us define

ζ ′
k =∆ trajk−E(s̃h)1≤h≤H∼π|θ̂p,sk

1

[
t̃rajk

]
.

where t̃rajk is the same quantity as traj but with a random realization of state transitions.
Since all feature norms are smaller than one, (ζ ′

k)k is a martingale sequence with |ζ ′
k| ≤√

Hd log (1 + αrη−1Bφ,AHK). We deduce that with probability at least 1− δ:

K∑
k=1

ζ ′
k ≤

√
2KHd log (1 + αrη−1Bφ,AHK) log(1/δ)

Therefore, we have with probability at least 1− 3δ:

∑
k∈T c

V π
θ̂p,θ̃r,1(sk1)− V π

θ̂p,θr,1(sk1) ≤

√βr(K, δ)
2αr + c

√
(max

k
xk)d log(dK/δ)


× βr

√
KHd log (1 + αrη−1Bφ,AKH) log(e/δ2).

The last inequality follows from controlling the concentration of the reward parame-
ter. First we observe that (Corollary C.4) with probability at least 1 − δ, uniformly over
k ∈ N,

∥∥∥θr − θ̂r(k)
∥∥∥2

Ḡr
k

≤ 2
αrβr(k, δ). Second, we also have that for all k ≥ 1, with proba-

bility at least 1 − δ, ∥ξk∥Gr
k
≤ c

√
xkd log(d/δ), we then use a union bound. Combining with

Equation (5.12) we find

K∑
k=1

V π
θ̂p,θ̃r,1(sk1)− V π

θ̂p,θr,1(sk1) ≤

√βr(K, δ)
2αr + c

√
(max

k
xk)d log(dK/δ)


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× βr
√
KHd log (1 + αrη−1Bφ,AHK) log(e/δ2).

This concludes the proof of the reward estimation error.

Remark 5.15. If we use Lemma C.11 without the martingale difference sequence, it will lead to
a linear regret. Indeed, the span of the sum of norms over an episode is of order

√
H . Using the

martingale technique instead allows us to retrieve a telescopic sum controlled using the elliptical
lemma, this is essential to obtaining a sub-linear regret bound.

5.5.2 Learning error

We now start the control of an important regret term, due to the distance between the estimated
value function and the optimal value function. Our main methodology here is to show that the
estimated value is optimistic with a constant probability and that this suffices to control the
error.

Lemma 5.16. If the variance parameter of the injected noise (ξk)k satisfies

xk ≥

H
√
βpβp(k, δ)
αpαr +

√
βrβr(k, δ) min{1, αp

αr }
2αr

 ,
then the learning error is controlled with probability at least 1− 2δ as

K∑
k=1

V ⋆
1 (sk1)− V π

θ̂p,θ̂r+ξ̄k,1
(sk1) ≤

dβr√xk
(
1 +

√
log(d/δ)

)
Φ(−1)

√
H log (1 + αrη−1Bφ,AHK)

×
(√

Cd

(
1 + αrBφ,AH

η

)
+
√
K log(e/δ2)

)
,

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γi

K + log(1/δ), and γi
K ≜ d log(1 + βi

η Bφ,AHK). Also
Cd =∆ 3d

log(2) log
(

1 + αr∥A∥2
2B

2
φ,A

η log(2)

)
, and Φ is the normal CDF.

This result basicallymeans that we are no longer obliged to follow optimistic value functions,
the perturbed estimation is enough to have a tight bound on the learning error.
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Continuous MDPs: the Bilinear Exponential Family representation

Stochastic optimism

The goal here is to show that by injecting our carefully designed noise in the rewards we can
ensure optimism with a constant probability. Consider the optimal policy π⋆, we have:

(Vθ̂p,θ̃r,1 − V
⋆
θp,θr,1)(s1) ≥ (Q⋆

θ̂p,θ̃r,1 −Q
⋆
1)(s1, π

⋆(s1))

≥ V π⋆

θ̂p,θr(s1)− V π⋆

θp,θr(s1)︸ ︷︷ ︸
first term

+V π⋆

θ̂p,θ̂r(s1)− V π⋆

θ̂p,θr(s1)︸ ︷︷ ︸
second term

+V π⋆

θ̂p,θ̃r(s1)− V π⋆

θ̂p,θ̂r(s1)︸ ︷︷ ︸
third term

The first and second terms are perturbation free, we handle them like the estimation error, by
concentration arguments for θ̂p and θ̂r. For the third term, using transportation of rewards
(Lemma C.11) and anti-concentration of ξk (Lemma C.6).

First term. By assumption, the expected value of the reward following the true parameter
satisfies Eθr [r(s, a)] ∈ [0, 1], then S

(∑H
t=1 Eθr [r(st, π(st))]

)
≤ H . Consequently, the first term

can be controlled using Lemma C.7

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr(s1) ≤ H
√

KL(Pθ̂p(s2, . . . , sH), Pθp(s2, . . . , sH))

≤ H

√√√√E(s̃t)t∈[H]∼θ̂p|sk
1

[
H∑
t=1

ψ(s̃t+1)⊤Mθ̂p−θpφ(s̃t, π⋆(s̃t)) + Z
p
θp(s̃t, π⋆(s̃t))− Zp

θ̂p(s̃t, π⋆(s̃t))
]

Using Taylor’s expansion, for all h ∈ [H],∃θh ∈ [θp, θ̂p] such that:

E(s̃t)t∈[H]∼θ̂p|sk
1

[
ψ(s̃t+1)⊤Mθ̂p−θpφ(s̃t, π⋆(s̃t)) + Z

p
θp(s̃t, π⋆(s̃t))− Zp

θ̂p(s̃t, π
⋆(s̃t))

]
= 1

2(θ̂p − θp)⊤E(s̃t)t∈[H]∼θ̂p|sk
1

[
∇2
sh,π⋆(sh)Z

p(θh)
]

(θ̂p − θp)

≤ βp

2 E(s̃t)t∈[H]∼θ̂p|sk
1

[
∥θ̂p − θp∥2Gs̃h,π⋆(s̃h)

]
.

Define uk =∆
∑H
h=1 E(s̃t)t∈[H]∼θ̂p|sk

1

[
(Aiφ(s̃h, π⋆(s̃h)))i∈[d]

]
, then

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr(s1) ≤ H

√√√√βp

2

H∑
h=1

E(s̃t)t∈[H]∼θ̂p|sk
1

[
∥θ̂p − θp∥2Gs̃h,π⋆(s̃h)

]

≤ H

√
βp

2

∥∥∥θ̂p − θp
∥∥∥∑H

h=1 E(s̃t)t∈[H]∼θ̂p|sk
1
[Gs̃h,π⋆(s̃h)]

≤ H

√
βp

2

∥∥∥θ̂p − θp
∥∥∥
uku

⊤
k

≤ H

√
βp

2

∥∥∥(Ḡp
k)−1/2uku

⊤
k (Ḡp

k)−1/2
∥∥∥∥θ̂p − θp∥Ḡp

k
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≤ H

√
βp

2 ∥uk∥(Ḡ
p
k

)−1∥θ̂p − θp∥Ḡp
k

The third line follows because ∀x ∈ Rd, ∥x∥∑
i=1 aia⊤

i
≤ ∥x∥(∑

i=1 ai)(
∑

i=1 ai)⊤ , and the last
one follows because ⊤(AB) ≤⊤ (A)⊤(B) for any two real positive semi-definite matrices A and
B.
We deduce, with probability at least 1− δ:

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr(s1) ≤ H

√
βpβp(k, δ)

αp

∥∥∥∥∥
H∑
h=1

E(s̃t)t∈[H]∼θ̂p|sk
1

[
(Aiφ(s̃h, π⋆(s̃h)))i∈[d]

]∥∥∥∥∥
(Ḡp

k
)−1

Second term. We have

V π⋆

θ̂p,θ̂r(s1)− V π⋆

θ̂p,θr(s1) = E(s̃t)t∈[H]∼θ̂p|sk
1

[
H∑
t=1

Varθr
t (r)

2 B⊤Mθ̂r−θrφ(s̃t, π⋆(s̃t))
]

= (θ̂r − θr)⊤E(s̃t)t∈[H]∼θ̂p|sk
1

[
H∑
t=1

Varθr
t (r)

2 (Aiφ(s̃t, π⋆(s̃t)))i∈[d]

]
B

≤
√
βr

2 ∥θ̂
r − θr∥Ḡr

k

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk
1

[
H∑
t=1

(Aiφ(s̃t, π⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡr

k
)−1

The last inequality comes from Cauchy-Schwarz. Applying that the norm (sum) makes appear
only symmetric matrices times the variances so that we can bound the latter by βr.
We conclude that with probability at least 1− δ,

V π⋆

θ̂p,θ̂r(s1)− V π⋆

θ̂p,θ̃r(s1) ≤ βr√βr(k, δ)√
2αr

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk
1

[
H∑
t=1

(Aiφ(s̃t, π⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡr

k
)−1

We want to write all the norms in the same matrix. Therefore, with probability at least 1− δ,

V π⋆

θ̂p,θ̂r(s1)− V π⋆

θ̂p,θ̃r(s1) ≤

√
βrβr(k, δ) min{1, αp

αr }
2αr

×
∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk

1

[
H∑
t=1

(Aiφ(s̃t, π⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡp

k
)−1

Third term. We have

V π⋆

θ̂p,θ̂r,1(s1)− V π⋆

θ̂p,θ̃r,1(s1) = E(s̃t)t∈[H]∼θ̂p|sk
1

[
H∑
t=1

Varθ
r
j (r)

2 B⊤Mθ̂r−θ̃rφ(s̃t, π⋆(s̃t))
]

= ξ⊤
k E(s̃t)t∈[H]∼θ̂p|sk

1

[
H∑
t=1

Varθ
r
j (r)

2 (Aiφ(s̃t, π⋆(s̃t)))i∈[d]

]
B
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Given the normal CDF Φ, we obtain that with probability at least Φ(−1)

V π⋆

θ̂p,θ̂r(s1)− V π⋆

θ̂p,θ̃r(s1) ≥
√
xkαr

∥∥∥∥∥
[
H∑
t=1

Varθ
r
j (r)

2 (Aiφ(s̃t, π⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡp

k
)−1

Choosing xk ≥
(
H
√

βpβp(k,δ)
αpαr +

√
βrβr(k,δ) min{1,αp

αr }
2αr

)
and using Lemma C.6, we find that

the perturbed value function is optimistic with probability at least Φ(−1).

Controlling the learning error

In this sectionwe see the core differencewith optimistic algorithms. On the one hand, optimistic
approaches require the value function generating the agent’s policy to be larger than the optimal
one with large probability, and can therefore ensure that the learning error is negative. On
the other hand, BEF-RLSVI only ensures that the value function is optimistic with a constant
probability: intuitively when this event holds the learning happens, and if it does not then the
policy is still close to a good one thanks to the decreasing estimation error.

Upper bound on V ⋆
1 . Let us draw (ξ̄k)k∈[K] i.i.d copies of (ξk)k∈[K]. Define the optimism event

at episode k:
Ōk = {Vθ̂p,θ̂r+ξ̄k,1(sk1)− V ⋆

1 (sk1) ≥ 0} (5.13)

we know that P(Ōk) ≥ Φ(−1). This event provides the upper bound:

V ⋆
1 (sk1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1(sk1)] (5.14)

Lower bound on Vθ̂p,θ̃r . We define this bound with an optimization problem under concen-
tration of the noise. Consider V1(sk1) is the solution of

min
ξk

Vθ̂p,θ̂r+ξk,1(s1k) (5.15)

∥ξk∥Ḡp
k
≤
√
xkd log(d/δ), ∀t ∈ [H]

Under the concentration of our injected noise, we obtain

V1(sk1) ≤ Vθ̂p,θ̃r(sk1) (5.16)
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Combining the error bounds. Combining the upper bound of Equation (5.14) with the lower
bound of Equation (5.16), we get, with probability at least 1− δ:

V ⋆
1 (sk1)− Vθ̂p,θ̂r+ξ̄k,1(sk1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1(sk1)− V1(sk1)]

Also, using the tower rule,

Eξ̄k
[Vθ̂p,θ̂r+ξ̄k,1(sk1)− V1(sk1)]

= Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1(sk1)− V1(sk1)]P(Ōk) + Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1(sk1)− V1(sk1)]P(Ōc

k)

Therefore,

V ⋆
1 (sk1)−Vθ̂p,θ̂r+ξ̄k,1(sk1)

≤
(
Eξ̄k

[Vθ̂p,θ̂r+ξ̄k,1(sk1)− V1(sk1)]−Eξ̄k|Ōc
k
[Vθ̂p,θ̂r+ξ̄k,1(sk1)− V1(sk1)]P(Ōc

k)
)
/P(Ōk)

=
(
Eξk

[V π
θ̂p,θ̂r+ξk,1

(sk1)− Vπ1 (sk1)]−Eξk|Ōc
k
[Vθ̂p,θ̂r+ξk,1(sk1)− V1(sk1)]P(Ōc

k)
)
/P(Ōk).

The last line follows since ξk and ξ̄k are i.i.d.
The rest of the analysis proceeds similarly to the proof of the reward estimation.
Let us call the argument of the minimum in Equation (5.15) as ξ

k
. Using Lemma C.11, we

find

V π
θ̂p,θ̃r,1(sk1)−V π

θ̂p,θ̂r+ξ
k
,1(sk1)

= E(s̃h)1≤h≤H∼π|θ̂p,sk
1

[
H∑
h=1

Vars̃h,π(s̃h)(r)
2 B⊤Mθ̃r−θ̂r−ξ

k

φ(s̃h, π(s̃h))
]

≤ E
[
H∑
h=1

Vars̃h,π(s̃h)(r)
2 ∥θ̃r − θ̂r − ξ

k
∥Ḡp

k
∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k
)−1

]

≤ ∥θ̃r − θ̂r − ξ
k
∥Ḡp

k
E
[
H∑
h=1

Vars̃h,π(s̃h)(r)
2 ∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k
)−1

]

≤ ∥ξ̃k − ξk∥Ḡp
k

βr

2 E
[

H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k
)−1

]

Then,

Eξ̃k

[
V π
θ̂p,θ̃r,1(sk1)−V π

θ̂p,θ̂r+ξ
k
,1(sk1)

]
≤ βr

2 Eξ̃k
[∥ξ̃k − ξk∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k
)−1

]
.
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Also,∣∣∣Eξk|Ōc
k
[Vθ̂p,θ̂r+ξk,1(sk1)−V 1(sk1)]

∣∣∣
≤ βr

2 Eξ̃k|Ōc
k
[∥ξ̃k − ξk∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k
)−1

]

≤ βr

2 Eξ̃k
[∥ξ̃k − ξk∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k
)−1

]
.

We have a bound on the expected value of the sum of feature norms in the proof of Lemma 5.12.
Also,

Eξ̃k
[∥ξ̃k − ξk∥Ḡp

k
] ≤ Eξ̃k

[∥ξ̃k∥Ḡp
k
] + Eξ̃k

[∥ξ
k
∥Ḡp

k
]

≤
√

Eξ̃k
[∥ξ̃k∥2Ḡp

k

] +
√
xkd log(d/δ)

≤
√
xkd+

√
xkd log(d/δ)

The second line follows from Cauchy-Schwarz and by definition of ξ
k
. The last line is due to the

fact that xk(Ḡp
k)−1 ∼ N (0, xkId), which implies ∥ξ̃k∥2Ḡp

k

∼ N (0, dxk). We conclude the proof by
taking the sum of feature norms from the proof of Lemma 5.12.

We conclude that with probability at least 1− 2δ:

K∑
k=1

V ⋆
1 (sk1)− Vθ̂p,θ̂r+ξ̄k,1(sk1) ≤ βr

Φ(−1)(
√
xkd+

√
xkd log(d/δ))

[√√√√ 3d
log(2) log

(
1 +

αr∥A∥22B2
φ,A

η log(2)

)(
1 + αrBφ,AH

η

)
Hd log(1 + αrη−1Bφ,AH)

+
√
KHd log (1 + αrη−1Bφ,AHK) log(e/δ2)

]
.

5.6 Related works: functional representations of MDPs with regret
and tractability

Our work extends the endeavor of using functional representations for regret minimization in
continuous state-action MDPs. Now, we posit our contributions in existing literature.

Kernel value function representation. (pmlr-v119-ayoub20a) studies MDPs with a linear
mixtures model then extends to an RKHS setting, this generalizes our work and that of (Yang
and Wang, 2020). However, the paper proposes an Eluder-dimension analysis, for RKHS
settings this leads to the result of (Yang and Wang, 2020), i.e. a regret H log(T )d higher than
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for BEF-RLSVI.Recently, (Huang et al., 2021) shows that for RKHS, Eluder dimension and the
information gain are strictly equivalent, which brings in the extra factor.

General functional representation. The Eluder dimension is a complexity measure often used
to analyze RL with general function space, (Huang et al., 2021) asserts that "common examples
of where it is known to be small are function spaces (vector spaces)". (Dai, Shaw, et al.,
2018) provides the first convergence guarantee for general nonlinear function representations
in the Maximum Entropy RL setting, where entropy of a policy is used as a regularizer to
induce exploration. Thus, the analysis cannot address episodic RL, where we have to explicitly
ensure exploration with optimism. In the episodic setting, (Wang, Salakhutdinov, and Yang,
2020) leverage the UCB approach for tabular MDPs and function spaces with bounded Eluder
dimension, this strategy achieves a and achieve a Õ

(√
d4H2T

)
regret for linear MDPs. (Ishfaq

et al., 2021) considers the same setting, proposes an RLSVI based algorithm, and achieves a
Õ(
√
d3H4K) for linear MDPs. However, the latter assumes an oracle perturbing the estimation

to achieve anti-concentrationwhilemaintaining a bounded covering number, which is a counter-
intuitive mix of boundedness and anti-concentration. Indeed, (Zanette, Brandfonbrener, et al.,
2020) studied the linear MDP case, and while it managed to design an ingenious clipping
verifying previous assumptions, the method is extremely intricate and the proof is involved
and unlikely to extend for general value function spaces. To concertize our design, we focus on the
general but explicit BEF of MDPs than any abstract representation. We also remove the requirement to
clip with a novel analysis.

Bilinear exponential family of MDPs. Exponential families are studied widely in RL theory,
from bandits to MDPs (Lu, Meisami, and Tewari, 2021; Korda, Kaufmann, and Munos, 2013;
Filippi et al., 2010; Kveton and Hauskrecht, 2006), as an expressive parametric family to design
theoretically-grounded model-based algorithms. (Chowdhury, Gopalan, and Maillard, 2021)
first studies episodic RL with Bilinear Exponential Family (BEF) of transitions, which is linear
in both state-action pairs and the next-state. It proposes a regularized log-likelihood method to
estimate the model parameters, and two optimistic algorithms with upper confidence bounds
and posterior sampling. Due to its generality to unifiedly model tabular MDPs, factored MDPs,
and linearly controlled dynamical systems, the BEF-family of MDPs has received increasing
attention (Li, Li, et al., 2021). (Li, Li, et al., 2021) estimates the model parameters based on
score matching that enables them to replace regularity assumption on the log-partition function
with Fisher-information and assumption on the parameters. Both (Chowdhury, Gopalan, and
Maillard, 2021; Li, Li, et al., 2021) achieve a worst-case regret of order Õ(

√
d2H4K) for known

reward. On a different note, (Du, Kakade, Lee, et al., 2021; Foster et al., 2021) also introduces
a new structural framework for generalization in RL, called bilinear classes as it requires the
Bellman error to be upper bounded by a bilinear form. Instead of using bilinear forms to
capture non-linear structures, this class is not identical to BEF class of MDPs, and studying
the connection is out of the scope of this paper. Specifically, we address the shortcomings of the
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existing works on BEF-family of MDPs that assume known rewards, absence of RLSVI-type algorithms,
and access to oracle planners.

Tractable planning and linearity. Planning is a major byproduct of the chosen functional
representation. In general, planning can incur high computational complexity if done naïvely.
Specially, (Du, Kakade, Wang, et al., 2019) shows that for some settings, even with a linear
ε-approximation of the Q-function, a planning procedure able to produce an ε-optimal policy
has a complexity at least 2H . Thus, different works (Shariff and Szepesvári, 2020; Lattimore,
Szepesvari, and Weisz, 2020; Van Roy and Dong, 2019) propose to leverage different low-
dimensional representations of value functions or transitions to perform efficient planning.
Here, we take note from (Ren et al., 2021) that Gaussian transitions induce an explicit linear
value function in an RKHS. And generalize this observation with the bilinear exponential.
Moreover, using uniformly good features (Rahimi and Recht, 2007) to approximate transition
dynamics from our model enables us to design a tractable planner. We provide a detailed
discussion of this approximation in Section 5.4. More practically, (Ren et al., 2021; Nachum and
Yang, 2021) use representations given by random Fourier features (Rahimi and Recht, 2007) to
approximate the transition dynamics and provide experiments validating the benefits of this
approach for high-dimensional Atari-games. Thus, we propose the first algorithm with tractable
planning for BEF-family.

5.7 Discussion

We propose the BEF-RLSVI algorithm for the bilinear exponential family of MDPs in the setting
of episodic-RL. BEF-RLSVI explores using a Gaussian perturbation of rewards, and plans
tractably (complexity of O(pH3K log(HK)

)) thanks to properties of the RBF kernel. Our
proof shows that clipping can be forwent for similar RLSVI-type algorithms. Moreover, we
prove a

√
d3H3K frequentist regret bound, which improves over existing work, accommodates

unknown rewards, and matches the lower bound in terms of H and K. Regarding future
work, we believe that our proof approach can be extended to rewards with bounded variance.
We also believe that the extra

√
d in our bound is an artefact of the proof, and specifically,

the anti-concentration. We will investigate it further. Finally, we plan to study the practical
efficiency of BEF-RLSVI through experiments on tasks with continuous state-action spaces in
an extended version of this work.
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Chapter 6

Deep policy gradient: improved
learning of value functions

Policy gradient algorithms have proven to be successful in diverse decision making and
control tasks. However, these methods suffer from high sample complexity and instability
issues. In this paper, we address these challenges by providing a different approach for
training the critic in the actor-critic framework. Our work builds on recent studies indicating
that traditional actor-critic algorithms do not succeed in fitting the true value function, calling
for the need to identify a better objective for the critic. In our method, the critic uses a new
state-value (resp. state-action-value) function approximation that learns the value of the states
(resp. state-action pairs) relative to their mean value rather than the absolute value as in
conventional actor-critic. We prove the theoretical consistency of the new gradient estimator
and observe dramatic empirical improvement across a variety of continuous control tasks and
algorithms. Furthermore, we validate our method in tasks with sparse rewards, where we
provide experimental evidence and theoretical insights.1
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6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Method: Actor with Variance Estimated Critic . . . . . . . . . . . . . . . . . . 111
6.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

1This chapter is based on a collaboration with Yannis Flet-Berliac, Odalric Maillard and Philippe Preux (Flet-
Berliac, Ouhamma, et al., 2021). It was accepted for publication at the The International Conference on Learning
Representations (ICLR).
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6.1 Introduction

Model-free deep reinforcement learning (RL) has been successfully used in a wide range of
problem domains, ranging from teaching computers to control robots to playing sophisticated
strategy games (Silver et al., 2014; Schulman, Moritz, et al., 2016; Lillicrap et al., 2016; Mnih,
Badia, et al., 2016). State-of-the-art policy gradient algorithms currently combine ingenious
learning schemes with neural networks as function approximators in the so-called actor-critic
framework (Sutton, McAllester, et al., 2000; Schulman, Wolski, et al., 2017; Haarnoja et al.,
2018). While such methods demonstrate great performance in continuous control tasks, several
discrepancies persist between what motivates the conceptual framework of these algorithms
and what is implemented in practice to obtain maximum gains.

For instance, research aimed at improving the learning of value functions often restricts the
class of function approximators through different assumptions, then propose a critic formula-
tion that allows for a more stable policy gradient. However, new studies (Tucker et al., 2018;
Ilyas et al., 2020) indicate that state-of-the-art policy gradient methods (Schulman, Levine,
et al., 2015; Schulman, Wolski, et al., 2017) fail to fit the true value function and that recently
proposed state-action-dependent baselines (Gu et al., 2016; Liu et al., 2018; Wu et al., 2018) do
not reduce gradient variance more than state-dependent ones.

These findings leave the reader skeptical about actor-critic algorithms, suggesting that
recent research tends to improve performance by introducing a bias rather than stabilizing
the learning. Consequently, attempting to find a better baseline is questionable, as critics
would typically fail to fit it (Ilyas et al., 2020). In (Tucker et al., 2018), the authors argue
that “much larger gains could be achieved by instead improving the accuracy of the value
function”. Following this line of thought, we are interested in ways to better approximate the
value function. One approach addressing this issue is to put more focus on relative state-action
values, an idea introduced in the literature on advantage reinforcement learning (Harmon
and Baird III, n.d.) followed by works on dueling (Wang, Schaul, et al., 2016) neural networks.
More recent work (Lin and Zhou, 2020) also suggests that considering the relative action values,
or more precisely the ranking of actions in a state leads to better policies. The main argument
behind this intuition is that it suffices to identify the optimal actions to solve a task. We extend
this principle of relative action value with respect to the mean value to cover both state and
state-action-value functions with a new objective for the critic: minimizing the variance of
residual errors.

In essence, this modified loss function puts more focus on the values of states (resp. state-
actions) relative to their mean value rather than their absolute values, with the intuition that
solving a task corresponds to identifying the optimal action(s) rather than estimating the exact
value of each state. In summary, this paper:
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• IntroducesActor withVariance EstimatedCritic (AVEC), an actor-critic method providing
a new training objective for the critic based on the residual variance.

• Provides evidence for the improvement of the value function approximation as well as
theoretical consistency of the modified gradient estimator.

• Demonstrates experimentally that AVEC, when coupled with state-of-the-art policy gra-
dient algorithms, yields a significant performance boost on a set of challenging tasks,
including environments with sparse rewards.

• Provides empirical evidence supporting a better fit of the true value function and a
substantial stabilization of the gradient.

6.2 Related Work

Our approach builds on three lines of research, of which we give a quick overview: policy
gradient algorithms, regularization in policy gradient methods, and exploration in RL.

Policy gradient methods use stochastic gradient ascent to compute a policy gradient estima-
tor. This was originally formulated as the REINFORCE algorithm (Williams, 1992). Kakade and
Langford (2002) later created conservative policy iteration and provided lower bounds for the
minimum objective improvement. (Peters, Mulling, and Altun, 2010) replaces regularization
by a trust region constraint to stabilize training. In addition, extensive research investigated
methods to improve the stability of gradient updates, and although it is possible to obtain an
unbiased estimate of the policy gradient from empirical trajectories, the corresponding variance
can be extremely high. To improve stability, (Weaver and Tao, 2001) shows that subtracting a
baseline (Williams, 1992) from the value function in the policy gradient can be very beneficial in
reducing variance without damaging the bias. However, in practice, these modifications on the
actor-critic framework usually result in improved performance without a significant variance
reduction (Tucker et al., 2018; Ilyas et al., 2020). Currently, one of the most dominant on-policy
methods are proximal policy optimization (PPO) (Schulman, Wolski, et al., 2017) and trust
region policy optimization (TRPO) (Schulman, Levine, et al., 2015), both of which require new
samples to be collected for each gradient step. Another direction of research that overcomes
this limitation is off-policy algorithms, which therefore benefit from all sample transitions;
soft actor-critic (SAC) (Haarnoja et al., 2018) is one such approach achieving state-of-the-art
performance.

Several works also investigate regularization effects on the policy gradient (Jaderberg et al.,
2016; Namkoong and Duchi, 2017; Kartal, Hernandez-Leal, and Taylor, 2019; Flet-Berliac and
Preux, 2019; Flet-Berliac and Preux, 2020); it is often used to shift the bias-variance trade-off
towards reducing the variance while introducing a small bias. In RL, regularization is often
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used to encourage exploration and takes the form of an entropy term (Williams and Peng, 1991;
Schulman, Wolski, et al., 2017). Moreover, while regularization in machine learning generally
consists in smoothing over the observation space, in the RL setting, (Thodoroff et al., 2018)
shows that it is possible to smooth over the temporal dimension as well. Furthermore, (Zhao
et al., 2016) analyzes the effects of a regularization using the variance of the policy gradient
(the idea is reminiscent of SVRG descent (Johnson and Zhang, 2013)) which proves to provide
more consistent policy improvements at the expense of reduced performance. In contrast, as
we will see later, AVEC does not change the policy network optimization procedure nor involves
any additional computational cost.

Exploration has been studied under different angles in RL, one common strategy is ε-greedy,
where the agent explores with probability ε by taking a random action. This method, just like
entropy regularization, enforces uniform exploration and has achieved recent success in game
playing environments (Mnih, Kavukcuoglu, et al., 2013; Van Hasselt, Guez, and Silver, 2015;
Mnih, Badia, et al., 2016). On the other hand, for most policy-based RL, exploration is a natural
component of any algorithm following a stochastic policy, choosing sub-optimal actions with
non-zero probability. Furthermore, policy gradient literature contains exploration methods
based on uncertainty estimates of values (Kaelbling, 1993; Tokic, 2010), and algorithms which
provide intrinsic exploration or curiosity bonus to encourage exploration (Schmidhuber, 2006;
Bellemare et al., 2016; Flet-Berliac, Ferret, et al., 2021).

While existing research may share some motivations with our method, no previous work in
RL applies the variance of residual errors as an objective loss function. In the context of linear
regression, (Brown, 1947) considers a median-unbiased estimator minimizing the risk with
respect to the absolute-deviation loss function (Pham-Gia and Hung, 2001) (similar in spirit to
the variance of residual errors), their motivation is nonetheless different to ours. Indeed, they
seek to be robust to outliers whereas, when considering noiseless RL problems, one usually
seeks to capture those (sometimes rare) signals corresponding to the rewards.

6.3 Preliminaries

6.3.1 Background and Notations

We consider an infinite-horizon Markov Decision Problem (MDP) with continuous states
s ∈ S, continuous actions a ∈ A, transition distribution st+1 ∼ P(st, at) and reward function
rt ∼ R(st, at). Let πθ(a|s) denote a stochastic policy with parameter θ, we restrict policies to
being Gaussian distributions. In the following, π and πθ denote the same object. The agent
repeatedly interacts with the environment by sampling action at ∼ π(.|st), receives reward rt
and transitions to a new state st+1. The objective is to maximize the expected sum of discounted
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rewards:
J(π) ≜ Eτ∼π

[ ∞∑
t=0

γtr (st, at)
]
, (6.1)

where γ ∈ [0, 1) is a discount factor (Puterman, 1994), and τ = (s0, a0, r0, s1, a1, r1, . . . ) is a
trajectory sampled from the environment using policy π. We denote the value of a state s in
the MDP framework while following a policy π by V π(s) ≜ Eτ∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s
] and

the value of a state-action pair of performing action a in state s and then following policy π
by Qπ(s, a) ≜ Eτ∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s, a0 = a
]. Finally, the advantage function which

quantifies how an action a is better than the average action in state s is denoted Aπ(s, a) ≜

Qπ(s, a)− V π(s).

6.3.2 Critics in Deep Policy Gradients

In this section, we consider the case where the value functions are learned using function
estimators and then used in an approximation of the gradient. Without loss of generality, we
consider the algorithms that approximate the state-value function V . The analysis holds for
algorithms that approximate the state-action-value function Q. Let fϕ : S → R be an estimator
of V̂ π with ϕ its parameter. fϕ is traditionally learned through minimizing the mean squared
error (MSE) against V̂ π. At iteration k, the critic minimizes:

LAC = Es
[(
fϕ(s)− V̂ πθk (s)

)2]
, (6.2)

where the states s are collected under policy πθk
, and V̂ πθk (s) is an empirical estimate of V

(see Section 6.4.3 for details). Similarly, using fϕ : S ×A → R instead, one can fit an empirical
target Q̂π.

6.4 Method: Actor with Variance Estimated Critic

In this section, we introduce AVEC and discuss its correctness, motivations and implementation.

6.4.1 Defining an Alternative Critic

Recent work (Ilyas et al., 2020) empirically demonstrates that while the value network succeeds
in the supervised learning task of fitting V̂ π (resp. Q̂π), it does not fit V π (resp. Qπ). We
address this deficiency in the estimation of the critic by introducing an alternative value network
loss. Following empirical evidence indicating that the problem is the approximation error and
not the estimator per se, AVEC adopts a loss that can provide a better approximation error, and
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yields better estimators of the value function (as will be shown in Section 6.5.4). At update k:

LAVEC = Es

[(
(fϕ(s)− V̂ πθk (s))− Es

[
fϕ(s)− V̂ πθk (s)

] )2]
, (6.3)

with states s collected using πθk
. Note that the gradient flows in fϕ twice using Equation 6.3.

Then, we define our bias-corrected estimator: gϕ : S → R such that gϕ(s) = fϕ(s)+Es[V̂ πθk (s)−
fϕ(s)]. Analogously to Equation 6.3, we define an alternative critic for the estimation of Qπ by
replacing V̂ π by Q̂π and fϕ(s) by fϕ(s, a).

Lemma 6.1 (AVEC Policy Gradient). If fϕ : S×A → R satisfies the parameterization assumption
(Sutton, McAllester, et al., 2000) then gϕ provides an unbiased policy gradient:

∇θJ (πθ) = E(s,a)∼πθ
[∇θ log(πθ(s, a))gϕ(s, a)] .

This result also holds for the estimation of V πθ with fϕ : S → R.

Proof. we consider the case in which the state-action-value function of a policy πθ is approx-
imated. We prove that given some assumptions on this estimator function, we can use it to
yield a valid gradient direction, i.e. we are able to prove policy improvement when following
this direction.

In this setting, the critic minimizes the loss of Equation 6.3 where the targeted function is
Q̂πθ (s, a). Therefore, when a local optimum is reached, the gradient of the latter expression is
zero:

∇ϕLAVEC = E(s,a)∼π

[ (
Q̂πθ (s, a)− fϕ(s, a)− E(s,a)∼π

[
Q̂πθ (s, a)− fϕ(s, a)

])

×
(

(∂fϕ(s, a)
∂ϕ

− E(s,a)∼π

[
∂fϕ(s, a)

∂ϕ

]) ]
= 0

In the expression above, the expected value of the partial derivative disappears because the
term in the first bracket is centered:

E(s,a)∼π

[
(Q̂πθ (s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ (s, a)− fϕ(s, a)])E(s,a)∼π[∂fϕ(s, a)

∂ϕ
]
]

= E(s,a)∼π

[
∂fϕ(s, a)

∂ϕ

]
E(s,a)∼π[Q̂πθ (s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ − fϕ]] = 0.
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Simplifying the gradient at the local optimum becomes:

E(s,a)∼π

[
(Q̂πθ (s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ (s, a)− fϕ(s, a)])(∂fϕ(s, a)

∂ϕ
)
]

= 0. (6.4)

Then, if we denote gϕ = fϕ(s, a) + E(s,a)∼π[Q̂π(s, a)− fϕ(s, a)], and use the policy parame-
terization assumption:

∂fϕ(s, a)
∂ϕ

= ∂πθ(s, a)
∂θ

1
πθ(s, a) , (6.5)

We obtain:
∇θJ = E(s,a)∼πθ

[∇θ log(πθ(s, a))gϕ(s, a)] . (6.6)

The latter follows by combining the parameterization assumption in Equation 6.5 with
Equation 6.4. Indeed this entails:

E(s,a)∼πθ

[
(Q̂πθ (s, a)− gϕ(s, a))∂πθ(s, a)

∂θ

1
πθ(s, a)

]
= 0. (6.7)

Since the expression above is null, we get:

∇θJ = E(s,a)∼πθ
[∇θ log(πθ(s, a))Q̂πθ (s, a)]

= E(s,a)∼πθ
[∇θ log(πθ(s, a))Q̂πθ (s, a)]− E(s,a)∼πθ

[(Q̂πθ (s, a)− gϕ(s, a))∂πθ(s, a)
∂θ

1
πθ(s, a) ]

= E(s,a)∼πθ
[∇θ log(πθ(s, a))gϕ(s, a)].

Which finished the proof.

Remark 6.2. While the proof seems more or less generic, the assumption in Equation 6.5 is extremely
constraining to the possible approximators. (Sutton, McAllester, et al., 2000) quotes J. Tsitsiklis
who believes that a linear gϕ in the features of the policy may be the only feasible solution for this
condition.

Concretely, such an assumption cannot hold since neural networks are the standard ap-
proximators used in practice. Moreover, empirical analysis (Ilyas et al., 2020) indicates that
commonly used algorithms fail to fit the true value function. However, this does not rule out
the usefulness of the approach but rather begs for more questioning of the true effect of such
biased baselines.
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6.4.2 Building Motivation

Here, we present the intuition behind using AVEC for actor-critic algorithms. (Tucker et al.,
2018) and (Ilyas et al., 2020) indicate that the approximation error ∥V̂ π − V π∥ is problematic,
suggesting that the variance of the empirical targets V̂ π(st) is high. Using LAVEC, our approach
reduces the variance term of the MSE (or distance to V π) but mechanistically also increases
the bias. Our intuition is that since the bias is already quite substantial (Ilyas et al., 2020), it
may be possible to reduce the variance enough so that even though the bias increases, the total
MSE reduces.

State-value function estimation. In this case, optimizing the critic with LAVEC can be inter-
preted as fitting V̂ ′π(s) = V̂ π(s)− Es′ [V̂ π(s′)] using the MSE. We show that the targets V̂ ′π are
better estimations of V ′π(s) = V π(s)−Es′ [V π(s′)] than V̂ π are of V π. To illustrate this, consider
T independent random variables (Xi)i∈{1,...,T}. We denoteX ′

i = Xi − 1
T

∑T
j=1Xj and V(X) the

variance of X . Then, V (X ′
i) = V (Xi) − 2

T V (Xi) + 1
T 2
∑T
j=1 V (Xj) and V(X ′

i) < V(Xi) as
long as ∀i 1

T

∑T
j=1 V(Xj) < 2V(Xi), or more generally when state-values are not strongly nega-

tively correlated2 and not very discordant. This entails that V̂ ′π has a more compact span, and
is consequently easier to fit. This analysis shows that the variance term of the MSE is reduced
compared to traditional actor-critic algorithms, but does not guarantee it counterbalances the
bias increase. Nevertheless, in practice, the bias is so high that the difference due to learning
with AVEC is only marginal and the total MSE decreases. We empirically demonstrate this claim
in Section 6.5.4.

State-action-value function estimation. In this case, Equation 6.3 translates into replacing
V̂ π(s) by Q̂π(s, a) and fϕ(s) by fϕ(s, a) and the rationale for optimizing the residual variance of
the value function instead of the full MSE becomes more straightforward: the practical use of
the Q-function is to disentangle the relative values of actions for each state (Sutton, McAllester,
et al., 2000). AVEC’s effect on relative values is illustrated in a didactic regression with one
variable example in Figure 6.1 where grey markers are observations and the blue line is our
current estimation. Minimizing the MSE, the line is expected to move towards the orange one
in order to reduce errors uniformly. Minimizing the residual variance, it is expected to move
near the red one. In fact, LAVEC tends to further penalize observations that are far away from the
mean, implying that AVEC allows a better recovery of the “shape” of the target near extrema. In
particular, we see in the figure that the maximum and minimum observation values are quickly
identified. Would the approximators be linear and the target state-values independent, the
two losses become equivalent since ordinary least squares would provide minimum-variance
mean-unbiased estimation.

2(Greensmith, Bartlett, and Baxter, 2004) analyzes the dependent case: in general, weakly dependent variables
tend to concentrate more than independent ones.
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Figure 6.1 – Comparison of simple models derived when LAVEC is used instead of the MSE.
It should be noted that, as in all the works related to ours, we consider noiseless tasks, i.e.

the transition matrix is deterministic. As such, there are no outliers and extreme state-action
values correspond to learning signals. In this context, high estimation errors indicate where
(in the state or action-state space) the training of the value function should be improved, as
opposed to possible outliers.

6.4.3 Implementation

We apply this new formulation to three of the most dominant deep policy gradient methods to
study whether it results in a better estimation of the value function. A better estimation of the
value function implies better policy improvements. We now describe how AVEC incorporates
its residual variance objective into the critics of PPO (Schulman, Wolski, et al., 2017), TRPO
(Schulman, Levine, et al., 2015) and SAC (Haarnoja et al., 2018). Let B be a batch of transitions.
In PPO and TRPO, AVEC modifies the learning of Vϕ (line 12 of Algorithm 6.1) using:

L1
AVEC (ϕ) = Es∼B

[
(fϕ (s)− V̂ π (s))− Es∼B

[
fϕ (s)− V̂ π (s)

] ]2
,

then Vϕ = fϕ(s) +Es∼B[V̂ π(s)− fϕ(s)], where V̂ π (st) = fϕold(st) +At such that fϕold(st) are the
estimates given by the last value function and At is the advantage of the policy, i.e. the returns
minus the expected values (At is often estimated using generalized advantage estimation
(Schulman, Moritz, et al., 2016).
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Algorithm 6.1: AVEC for PPO or TRPO. JALGO denotes the policy loss of either algo-
rithm (described in (Schulman, Wolski, et al., 2017; Schulman, Levine, et al., 2015)).

1: Input parameters: λπ ≥ 0, λV ≥ 0
2: Initialize policy parameter θ and value function parameter ϕ
3: for each update step do
4: batch B ← ∅
5: for each environment step do
6: at ∼ πθ(st)
7: st+1 ∼ P (st, at)
8: B ← B ∪ {(st, at, rt, st+1)}
9: end for
10: for each gradient step do
11: θ ← θ − λπ∇̂θJALGO(πθ)
12: ϕ← ϕ− λV ∇̂ϕL1

AVEC (ϕ)
13: end for
14: end for
In SAC, AVEC modifies the objective function of (Qϕi

)i=1,2 (line 13 of Algorithm 6.2) using:

L2
AVEC (ϕi) = E(s,a)∼B

[
(fϕi

(s, a)− Q̂π(s, a))− E(s,a)∼B
[
fϕi

(s, a)− Q̂π(s, a)
] ]2

,

thenQϕi
= fϕi

(s, a) +E(s,a)∼B[Q̂π(s, a)− fϕi
(s, a)], where Q̂π(s, a) is estimated using temporal

difference (see (Haarnoja et al., 2018)): Q̂π(st, at) = r(st, at) + γEst+1∼π[Vψ̄(st+1)] with ψ̄ the
value function parameter (see Algorithm 6.2).

Algorithm 6.2: AVEC coupled with SAC.
1: Input parameters: β ∈ [0, 1], λV ≥ 0, λQ ≥ 0, λπ ≥ 0
2: Initialize policy parameter θ, value function parameter ψ and ψ̄ and Q-functions

parameters ϕ1 and ϕ2 and D ← ∅
3: for each iteration do
4: for each step do
5: at ∼ πθ(at|st)
6: st+1 ∼ P (. | st, at)
7: D ← D ∪ {(st, at, rt, st+1)}
8: end for
9: for each gradient step do
10: sample batch B from D
11: Update: ψ ← ψ − λV ∇̂ψJV (ψ) and ϕi ← ϕi − λQ∇̂ϕi

L2
AVEC (ϕi) for i ∈ {1, 2}

12: Update θ ← θ − λπ∇̂θJ(πθ); ψ̄ ← βψ + (1− β)ψ̄
13: end for
14: end for

Finally, notice that AVEC does not modify any other part of the considered algorithms
whatsoever, which keeps their implementation and computational complexity unchanged.
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Remark 6.3. Theoretically, LAVEC is defined as the residual variance of the value function (cf
Equation 6.3). However, state-values for a non-optimal policy are dependent and the variance is
not tractable without access to the joint law of state-values. Consequently, to implement AVEC in
practice we use the best-known proxy at hand, which is the empirical variance formula assuming
independence:

LAVEC = 1
T − 1

T∑
t=1

((
fϕ(st)− V̂ π(st)

)
− 1
T

T∑
t=1

(
fϕ(st)− V̂ π(st)

))2
,

where T is the size of the sampled trajectory.

(Greensmith, Bartlett, and Baxter, 2004) provides some support for this approximation by
showing that weakly dependent variables tend to concentrate more than independent ones.

6.5 Experimental Study

In this section, we conduct experiments along four orthogonal directions. (a) We validate the
superiority of AVEC compared to the traditional actor-critic training. (b) We evaluate AVEC in
environments with sparse rewards. (c) We clarify the practical implications of using AVEC
by examining the bias in both the empirical and true value function estimations as well as
the variance in the empirical gradient. (d) We provide an ablation analysis and study the
bias-variance trade-off in the critic by considering two continuous control tasks.
We point out that a comparison to variance-reduction methods is not considered in this paper:
(Tucker et al., 2018) demonstrated that their implementations diverge from the unbiased
methods presented in the respective papers and unveiled that not only do they fail to reduce
the variance of the gradient, but that their unbiased versions do not improve performance either.
Note that in all experiments we choose the hyperparameters providing the best performance
for the considered methods which can only penalyze AVEC (cf Appendix D.1). In all the figures
hereafter (except Figure 6.5c and 6.5d), lines are average performances and shaded areas
represent one standard deviation.

6.5.1 Continuous Control

For ease of comparison with other methods, we evaluate AVEC on the MuJoCo (Todorov, Erez,
and Tassa, 2012) and the PyBullet (Coumans and Bai, 2016) continuous control benchmarks
(see Appendix D.2 for details) using OpenAI Gym (Brockman et al., 2016). Note that the
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Task SAC AVEC-SAC PPO AVEC-PPO
Ant 3084 3650± 127 (+18%) 972 1202± 148 (+24%)
AntBullet 1193 2252± 82 (+89%) 1174 2216± 99 (+89%)
HalfCheetah 10028 11018± 102 (+10%) 1068 1403± 37 (+31%)
HalfCheetahBullet 1255 1331± 184 (+6%) 1329 2223± 62 (+67%)
Humanoid 4084 4472± 424 (+10%) 391 415± 4.6 (+6%)
Reacher −6.0 −5.0± 0.1 (+20%) −7.4 −5.9± 0.3 (+25%)
Walker2d 3452 4334± 128 (+26%) 2193 2923± 151 (+33%)

Table 6.1 – Average total reward of the last 100 episodes over 6 runs of 106 timesteps. Comparative
evaluation of AVEC with SAC and PPO. ± corresponds to a single standard deviation over trials and (.%)
is the change in performance due to AVEC.

PyBullet versions of the locomotion tasks are harder than the MuJoCo equivalents3. We choose
a representative set of tasks for the experimental evaluation; their action and observation
space dimensions are reported in Appendix D.3. We assess the benefits of AVEC when coupled
with the most prominent policy gradient algorithms, currently state-of-the-art methods: PPO
(Schulman, Wolski, et al., 2017) and TRPO (Schulman, Levine, et al., 2015), both on-policy
methods, and SAC (Haarnoja et al., 2018), an off-policy maximum entropy deep RL algorithm.
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Figure 6.2 – Comparative evaluation (6 seeds) of AVEC with SAC and PPO on PyBullet (“TaskBullet”)
and MuJoCo (“Task”) tasks. X-axis: number of timesteps. Y-axis: average total reward.

Table 6.1 reports the results while Figure 6.2 and 6.3 show the total average return for SAC
and PPO. TRPO results are provided in Section 6.5.2 for readability. We provide the list of
hyperparameters and further implementation details in Appendix D.1.

When coupled with SAC and PPO, AVEC brings very significant improvement (on aver-
age +26% for SAC and +39% for PPO) in the performance of the policy gradient algorithms,
improvement which is consistent across tasks. As for TRPO, while the improvement in perfor-
mance is less striking, AVEC still manages to be more efficient in terms of sampling in all tasks.

3Bullet Physics SDK GitHub Issue.

118

https://github.com/bulletphysics/bullet3/issues/1718#issuecomment-393198883


6.5 Experimental Study

Overall, AVEC improves TRPO, PPO and SAC in terms of performance and efficiency. This does
not imply that our method would also improve other policy gradient methods that use the
traditional actor-critic framework, but since we evaluate our method coupled with three of the
best performing on- and off-policy algorithms, we believe that these experiments are sufficient
to prove the relevance of AVEC.

In addition, in Figure 6.3, we plot the total average return for AVEC coupled with SAC and
PPO on the Walker2d task. Similar to considered other continuous control tasks from MuJoCo
and PyBullet, AVEC brings a significant performance improvement (+26% for SAC and +33%
for PPO), confirming the generality of our approach.
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Figure 6.3 – Comparative evaluation (6 seeds) of AVEC with SAC (left) and PPO (right) on the Walker2d
MuJoCo task. Lines are average performances and shaded areas represent one standard deviation.

Finally, in our experiments we do not seek the best hyperparameters for the AVEC variants,
we simply adopt the parameters allowing us to optimally reproduce the baselines. Alternatively,
if one seeks to evaluate AVEC independently of a considered baseline, further hyperparameter
tuning should produce better results. Notice that since no additional calculations are needed
in AVEC’s implementation, computational complexity remains unchanged.

6.5.2 Comparison with TRPO

In order to evaluate the performance gains in using AVEC instead of the usual actor-critic
framework, we produce some additional experiments with the TRPO (Schulman, Levine, et al.,
2015) algorithm. Figure 6.4 shows the learning curves while Table 6.2 reports the results.

6.5.3 Sparse Reward Signals

Domains with sparse rewards are challenging to solve with uniform exploration as agents
receive no feedback on their actions before starting to collect rewards. In such conditions
AVEC performs better, suggesting that the shape of the value function is better approximated,
encouraging exploration.
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Task TRPO AVEC-TRPO
Ant −50.5 −43.5± 2.2 (+16%)
AntBullet 564 970± 70 (+72%)
HCheetah 346 466± 56 (+35%)
HCBullet 1154 1281± 94 (+11%)
Humanoid 352 344± 1.2 (−3%)
Reacher −8.5 −9.9± 1.3 (−16%)

Table 6.2 – Average total reward of the last 100 episodes over 6 runs of 106 timesteps. Comparative
evaluation of AVEC with TRPO. ± corresponds to a single standard deviation over trials and (.%) is the
change in performance due to AVEC.
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Figure 6.4 – Comparative evaluation of AVEC with TRPO. We run with 6 different seeds: lines are average
performances and shaded areas represent one standard deviation.

The relative value estimate of an unseen state is more accurate: in Section 6.4.2, AVEC
identifies extreme state-values (e.g., non-zero rewards in tasks with sparse rewards) faster. In
Figures 6.5a and 6.5b, we report the performance of AVEC in the Acrobot and MountainCar
environments: both have sparse rewards. AVEC enhances TRPO and PPO in both experiments.
When PPO and AVEC-PPO both reach the best possible performance, AVEC-PPO exhibits better
sample efficiency. Figures 6.5c and 6.5d illustrate how the agent improves its exploration
strategy in MountainCar: while the PPO agent remains stuck at the bottom of the hill (red),
the graph suggest that AVEC-PPO learns the difficult locomotion principles in the absence of
rewards and visits a much larger part of the state space (green).

This improved performance in sparse environments can be explained by the fact that AVEC
is able to pick up on experienced positive reward more easily. Moreover, the reconstructed
shape of the value function is more accurate around such rewarding states, which pushes the
agent to explore further around experienced states with high values.

120



6.5 Experimental Study

0 200000 400000 600000 800000 1000000

500

400

300

200

100

Acrobot

AVEC-PPO
PPO
AVEC-TRPO
TRPO

(a)
0 200000 400000 600000 800000 1000000

200

180

160

140

120

100
MountainCar

AVEC-TRPO
TRPO
AVEC-PPO
PPO

(b)
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
TRPO
AVEC-TRPO

(c) (d)
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timesteps. Y-axis: average total reward. (c,d): Respectively state visitation frequency and phase portrait
of visited states of AVEC-TRPO (green) and TRPO (red) in MountainCar.
6.5.4 Analysis of the Variance Estimated Critic

In order to further validate AVEC, we evaluate the performance of the value network in more
detail: we examine (a) the estimation error (distance to the empirical target), (b) the approxi-
mation error (distance to the true target) and (c) the empirical variance of the gradient. (a,b)
should be put into perspective with the conclusions of (Ilyas et al., 2020) where it is found that
the critic only fits the empirical value function but not the true one. (c) should be placed in
light of (Tucker et al., 2018) highlighting a failure of recently proposed state-action-dependent
baselines to reduce the variance.

Learning the Empirical Target. In Figure 6.6, we report the quality of fit (MSE) of the
empirical target V̂ π in the methods PPO and AVEC-PPO in the AntBullet and HalfCheetahBullet
tasks.
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Figure 6.6 – L2 distance to V̂ π .

We observe that PPO better fits the empirical target than when equipped with AVEC, which
is to be expected since vanilla PPO optimizes the MSE directly. This result put aside the
remarkable improvement in the performance of AVEC-PPO (Figure 6.2) suggests that AVEC
might be a better estimator of the true value function. We examine this claim below because if
true, it would indicate that it is indeed possible to simultaneously improve the performance of
the agents and the stability of the method.

121



Deep policy gradient: improved learning of value functions

Learning the True Target. A fundamental premise of policy gradient methods is that op-
timizing the objective based on empirical return leads to a better policy. Which is why we
investigate the quality of fit of the true target. To approximate the true value function, we fit
the returns sampled from the current policy using a large number of transitions (3 · 105).
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Figure 6.7 – L2 distance to V π. X-axis: we run PPO and AVEC-PPO and ∀t ∈ {1, 2, 4, 6, 9} · 105 we stop
training, use the current policy to collect 3 · 105 transitions and estimate V π .

Figure 6.7 shows that gϕ is far closer to the true value function half of the time (horizon
is 106) than the estimator obtained with MSE, then as close to it. Comparing Figure 6.7 with
Figure 6.6, we see that the distance to the true target is close to the estimation error for AVEC-
PPO, while for PPO, it is at least two orders of magnitude higher at all times. We further
investigate these results in Figure6.8 where we study the variation of the squared bias and
variance components of the MSE to the true target (MSE = Var + Bias2).

Variation of the Bias and Variance terms: PPO. In Figure 6.8, we show the variation of the
bias and variance terms in the MSE between the estimators (of AVEC-PPO and PPO) and the
true target: E[∥gϕ−V π∥22] = Bias(AVEC)2 +Var(AVEC) and E[∥Vϕ(PPO)−V π∥22] = Bias(PPO)2 +
Var(PPO) where Vϕ(PPO) is the value function estimator in PPO. Let us define what we
study in exact terms: %Variation(Bias) = Bias2(AVEC-PPO)−Bias2(PPO)

Bias2(PPO) and %Variation(Var) =
Var(AVEC-PPO)−Var(PPO)

Var(PPO) . X-axis: we run PPO and AVEC-PPO and for every t ∈ {1, 2, 4, 6, 9} · 105,
we stop training, use the current policy to interact with the environment for 3 · 105 transitions,
and use these transitions to estimate the true value function.

We observe that the variance reduction is more substantial than that of the bias. Using
those results and Figure 6.7 showing that the distance of the estimator to V π is lower when
using AVEC confirms that the variance reduction effect counterbalances the bias increase. Note
that the % Variation of the Var term is always negative in our experiments, and that the shaded
areas that suggest otherwise are merely due to a false assumption of symmetrical deviations,
itself due to the assumption of Gaussianity needed to construct confidence intervals.

For completeness, we also analyze the distance to the true target for the Q-function estimator
in SAC and AVEC-SAC in AntBullet and HalfCheetahBullet. Indeed, in Figure 6.9, we compare
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Figure 6.8 – % Variation of the bias and variance terms in the MSE between the estimator and the true
target. Lines are average variations and shaded areas represent one standard deviation (5 seeds).
the error between the Q-function estimator and the true Q-function for SAC and AVEC-SAC in
AntBullet and HalfCheetahBullet.
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Figure 6.9 – Distance to the true Q-function (SAC). X-axis: we run SAC and AVEC-SAC and for every
t ∈ {1, 2, 4, 6, 9} · 105 we stop training, use the current policy to interact with the environment for 3 · 105

transitions, and use these transitions to estimate the true value function. Lines are average performances
and shaded areas represent one standard deviation.

We note a modest but consistent reduction in this error when using AVEC coupled with SAC,
echoing the significant performance gains in Figure 6.2. We conclude that AVEC improves the
value function approximation and we expect that the gradient is more stable.

Empirical Variance Reduction. We choose to study the gradient variance using the average
pairwise cosine similarity metric as it allows a comparison with (Ilyas et al., 2020), with which
we share the same experimental setup and scales.

Figure 6.10 shows that AVEC yields a higher average pairwise cosine similarity, which means
closer batch-estimates of the gradient and, in turn, indicates smaller gradient variance.

In Figure 6.11, we study the empirical variance of the gradient in measuring the average
pairwise cosine similarity (10 gradient measurements) in two additional tasks: HopperBullet
and Walker2DBullet. We also vary the trajectory size used in the estimation of the gradient.
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Figure 6.10 – Average gradient cosine-similarity (over 10 batches per iteration).
The variance reduction effect observed in several environments suggests that AVEC is the

first method since the introduction of the value function baseline to further reduce the variance
of the gradient and improve performance.

6.5.5 Ablation Study

In this section, we examine how changing the relative importance of the bias and the residual
variance in the loss of the value network affects learning. For this study, we choose difficult tasks
of PyBullet and use PPO because it is more efficient than TRPO and requires less computations
than SAC. For an estimator ŷn of (yi)i∈{1,...,n}, we write Bias = 1

n

∑n
i=1(ŷi − yi) and Var =

1
n−1

∑n
i=1(ŷi − yi − Bias)2. Consequently: MSE = Var + Bias2. We denote Lα = Var + αBias2,

with α ∈ R. In Figure 6.12, Bias-α means that we use Lα and Var-α means that we use L 1
α
.

We observe that while no consistent order on the choices of α is identified, AVEC seems to
outperform all other weightings. Note that, for readability purposes, the graphs have been
split and the curves of AVEC-PPO and PPO are the same in Figures 6.12a and 6.12c, and in
Figures 6.12b and 6.12d. A more extensive hyper-parameter study with more α values might
provide even higher performances, nevertheless we believe that the stability of an algorithm is
crucial for a reliable performance. As such, the tuning of hyperparameters to achieve good
results should remain mild.

6.6 Discussion

In this work, we introduce a new training objective for the critic in actor-critic algorithms to
better approximate the true value function. In addition to beingwell-motivated by recent studies
on the behaviour of deep policy gradient algorithms, we demonstrate that this modification is
both theoretically sound and intuitively supported by the need to improve the approximation
error of the critic. The application of Actor with Variance Estimated Critic (AVEC) to state-of-
the-art policy gradient methods produces considerable gains in performance (on average +26%
for SAC and +39% for PPO) over the standard actor-critic training, without any additional
hyperparameter tuning.
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Figure 6.11 – Average cosine similarity between gradient measurements. AVEC empirically reduces
the variance compared to PPO or PPO without a baseline (PPO-nobaseline). Trajectory size used in
estimation of the gradient variance: 3000 (upper row), 6000 (middle row), 9000 (lower row). Lines are
average performances and shaded areas represent one standard deviation.

First, for SAC-like algorithmswhere the critic learns a state-action-value function, our results
strongly suggest that state-actions with extreme values are identified more quickly. Second, for
PPO-like methods where the critic learns the state-values, we show that the variance of the
gradient is reduced and empirically demonstrate that this is due to a better approximation of
the state-values. In sparse reward environments, the theoretical intuition behind a variance
estimated critic is more explicit and is also supported by empirical evidence. In addition to
corroborating the results in (Ilyas et al., 2020) proving that the value estimator fails to fit
V π, we propose a method that succeeds in improving both the sample complexity and the
stability of prominent actor-critic algorithms. Furthermore, AVEC benefits from its simplicity
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Figure 6.12 – Sensitivity (6 seeds) of AVEC-PPO with respect to (a,b): the bias; (c,d): the variance. X-axis:
number of timesteps. Y-axis: average total reward.
of implementation since no further assumptions are required (such as horizon awareness
(Tucker et al., 2018) to remedy the deficiency of existing variance-reduction methods) and the
modification of current algorithms represents only a few lines of code.

In this paper, we have demonstrated the benefits of a more thorough analysis of the critic
objective in policy gradientmethods. Despite our strongly favorable results, we do not claim that
the residual variance is the optimal loss for the state-value or the state-action-value functions,
andwe note that the design of comparably superior estimators for critics in deep policy gradient
methods merits further study. In future work, further analysis of the bias-variance trade-off
and extension of the results to stochastic environments is anticipated; we consider the problem
of noise separation in the latter, as this is the first obstacle to accessing the variance and
distinguishing extreme values from outliers.
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Chapter 7

General Conclusion and Perspectives

The past is gone, the future is unseen
Rise and seize the opportunity in between

Poet unknown1

In this thesis, we have made significant contributions to the fields of bandits, linear re-
gression, and reinforcement learning. Our overarching goal was to make the RL framework,
algorithms, and assumptions more realistic.

We began by studying the simplest model for sequential decision making, multi-armed
bandits, in Chapter 3. We considered the finite number of arms case and studied a pure
exploration objective called Thresholding bandits. We proposed a Frank-Wolfe based method
of designing algorithms, which we made to extend and solve a wider class of losses. By doing
so, wewere able to improve the state-of-the-art both theoretically and empirically. Moreover, we
applied our newly formulated, intuitive, and generic proof scheme to improve the bounds on the
number of mistakes made by all previously existing algorithms in this setting. In terms of the
limitations of our algorithm, it should be noted that our current state-of-the-art bound remains
within a factor of 4 in the exponent from the ideal oracle. Additionally, during our research,
we made an intriguing observation that adaptive algorithms can sometimes outperform non-
adaptive (i.e. offline) oracles. A theoretical understanding of this phenomenon has yet to be
developed. Lastly, we are also keen on extending this setting to large or continuous actions, as
there are connections with other index-based algorithms such as IMED (Honda and Takemura,
2015). Further examination of these connections could lead to a deeper understanding of how
to scale our generic algorithm.

1Arabic proverbs collected and translated to english by @ArabicWords. The original wording of the verse is:

�y�d`�� �y� T}rf�� �nt�A� �� ** �§�� �y��yF A�¤ YS� �A� A�
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General Conclusion and Perspectives

In Chapter 4, we delved into the linear regression problem and uncovered an old result
from the adversarial setting, which we adapted for the stochastic case. Our findings revealed
that this should be the default algorithm instead of the commonly used ridge regression.
Additionally, we applied this modification to linear bandits and proved that it allows for the
elimination of a pervasive assumption. Our analysis holds value not just in theory but also
for practical use, as it presents a novel perspective on a frequently employed method and
highlights novel insights about the effect of regularization. One of the main limitations of this
method becomes evident in the context of MDPs, as it can be difficult to regularize using a
random future explanatory variable. However, we were still able to eliminate the assumption
of a known bound on observations in MDPs using other techniques in Chapter 5. Additionally,
in Chapter 4, we discussed how the dependence on d in our bounds can be improved using
Theorem 1 of (Tirinzoni, Pirotta, et al., 2020). Possible avenues for future research building
on this contribution include applying these techniques to more complex regression scenarios
where the features are themselves dynamic, such as neural networks and regression trees.

To further our progress, we focused our interest on MDPs with continuous state action
spaces in Chapter 5. At first we were intrigued by the ubiquity of the linear MDP model, this
prevalence can be interpreted as a lack of optimism in finding efficient and effective representa-
tional assumptions for learning. Defying this attitude, we became interested in a recent MDP
representation that has shown great promise and compelling expressive power, modeling real
MDPs like Tabular, Factored, and Linear Quadratic Regulators. While investigating this model,
we discovered a new and crucial property about it that allowed us to create an algorithm with
tractable planning, which enjoys an optimal regret bound in its dependence on the number of
episodes and their length. Furthermore, we presented several results that hold independent
value, such as the ability to eliminate the need for clipping value functions, which removes an
superfluous and omnipresent non-linearity. A major challenge we identified in our research is
the dependence on d in our bound. From the available literature, it appears that this depen-
dence is always suboptimal for tractable algorithms, and that a slight modification to UCB-style
algorithms (which are intractable) can lead to the optimal dependence. We aim to investigate
whether the increased dependence on dimensionality is a necessary trade-off for achieving
tractability. Another area for future research is testing this representation in practice to evaluate
its effectiveness. Additionally, a necessary direction for future work is learning features instead
of providing them to the learner, which could be achieved through techniques such as causal
discovery (Zhang et al., 2022; Chalupka, Eberhardt, and Perona, 2017) or automatic Bayesian
search (Malkomes, Schaff, and Garnett, 2016).

In Chapter 6, the final contribution of this thesis, we examined a framework of decision-
making known as deep policy gradients. This is an infinite-horizon setting that utilizes deep
neural networks to model both the value function and the policy, and is optimized through
the use of gradient descent. Inspired by some recently discovered -practical- limitations in
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existing algorithms, we proposed a minor modification to the value function loss which led to
significant enhancements. Our proposed method was supported by both theoretical arguments
and empirical evidence, showing improvements over traditional training loss and proving
the accuracy of our insights. For instance, we validated independent findings, hypothesized
possible implications for these shortcomings, and validated our intuition as well through
practical experimentation on simulated environments. In terms of extending this work, one
potential next stepwould be to find a balance between bias and variance in themean square error
loss, rather than completely eliminating bias as we have done. Additionally, some researchers
propose that other parameters such as regularization or the weight of the stability penalty
could also be optimized using gradient descent for automation (Haarnoja et al., 2018). Lastly,
from a theoretical perspective, we are curious about the possibility of replacing the iterative
optimization technique with theoretically sound algorithms for bi-level problems.

To summarize our contributions, they are organized between 1) improvements of existing
methods, including reducing assumptions like the boundedness in linear regression Chap-
ter 4 and simplifying algorithms like removing clipping Chapter 5 and slightly modifying
the loss Chapter 6. And 2), notable novel contributions such as generic algorithm design
schemes and general proof techniques Chapter 2, and discovering novel implications for useful
structures Chapter 5 therefore leading to improved tractability and simpler algorithms. Our
goal throughout this journey was unique: to contribute to the RL research by improving and
proposing algorithms that are both theoretically sound and user-friendly for practitioners, and
to support the advancement towards a more realistic RL formalism. We have made notable
contributions to the research supporting this goal by proposing novel methods, adapting ex-
isting algorithms to new settings, and uncovering new properties of commonly used models.
Overall, we believe that this thesis has made significant contributions to the field of RL and
will have a lasting impact on the field.

Our directly relevant perspectives fall into two categories: 1) Designing tractable and
optimal RL algorithms, for which we believe that the bilinear exponential family could be very
perinent. Indeed it is an expressive representation enjoying many interesting properties that
can be useful for other RL objectives. For instance, we intend to study this model for best policy
identification as well as reward-free reinforcement learning. Furthermore, we wish to study
the empirical performance of this representation, and possibly incorporate provable methods
to automatically build the feature mapping (Malkomes, Schaff, and Garnett, 2016) instead of
requiring it as prior knowledge. 2) Improving model learning in RL, we are interested in
studying new RL settings and attempting to improve model estimation. This could take the
form of theoretical improvements, e.g. in the mixture of experts setting, information about the
level of confidence for each expert could be available and we don’t know how to take advantage
of it to make a final prediction. Improving model learning concerns empirical methods as well,
e.g. in the deep learning literature, if validation data is available then the learned model could
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be calibrated in the hope of better adjusting to any eventual change of distribution. Since the
coordinates of the test set are given, it should be studiedwhether incorporating this information
could be beneficial, in the form of a regularization for example.

All in all, our goal in this thesis and for the future is to combine probability theory with
machine learning and optimization techniques to tackle sequential decision making problems.
Practically, we are interested in studying online learning and reinforcement learning problems
and designing algorithms that can a) can be generic enough to model realistic scenarios or to
constitute plausible approximations, and b) can be analyzed theoretically without stringent
assumptions.
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A.1 Properties of index-based algorithms

An algorithm is index-based if, at any round t, it pulls kt = arg mink IkNk,t−1
where the index

IkNk,t
depends only on the number of pulls and on rewards of arm k. That index does not

change when other arms are pulled.
For C ≥ 0, let FC ≜ {∃T ′ ≤ T, ∀k ∈ [K], IkNk,T ′ ≥ C} be the event that at some time before

T , all arm indices are above a value C. And let τk(C) = min{n|Ikn ≥ C} be the minimal number
of pulls of arm k such that its index becomes greater than C.

We start with two immediate remarks about index-based algorithms.

Lemma A.1. If IjNj,t
≥ C, then at the next time t′ when an index-based algorithm pulls arm j, it

necessarily holds that mink IkNk
t′−1
≥ C.

Lemma A.2. If mink IkNk,t
≥ C then for all k, by definition of τk(C), Nk,t ≥ τk(C).

This next lemma explicits FC using (τk(C))k∈[K].

Lemma A.3. An index-based algorithm verifies FC = {
∑
k τk(C) ≤ T}.

Proof. We first prove the inclusionFC ⊆ {
∑
k τk(C) ≤ T}. At the time T ′ defined inFC , it holds

mink IkNT ′ ≥ C. The results then follows from Lemma A.2: ∑k τk(C) ≤
∑
kNk,T ′ = T ′ ≤ T .

We now prove {∑k τk(C) ≤ T} ⊆ FC . If there is no j with Nj,T > τj(C), we have T =∑
kNk,T ≤

∑
k τk(C) ≤ T . Hence there is equality and we have Nk,T = τk(C) for all k and FC

is true for T ′ = T .
If there is some j such that Nj,T > τj(C), then after the time at which arm j was pulled

τj(C) times it verified IjNj,t
≥ C. Arm j is again pulled at least once at some time t′, and at that

time we have by Lemma A.1 that for all k, IkNk,t′−1
≥ IjNj,t′−1

= IjNj,t
≥ C. Stated otherwise, the

event FC happens.

Lemma A.4. Let tmax = arg maxt∈[T ] mink∈[K] I
k
Nk,t

. Then for all arms except at most one,Nk,tmax =
Nk,T .

Proof. The algorithm switches arm only if the index of the pulled arm becomes strictly greater
than the minimal index of the others. As a consequence, the value of the minimal index at
times of arm changes is increasing. If two or more arms are pulled since tmax, there is an arm
change later than tmax and the minimal index value at that time is higher than at tmax. This is a
contradiction.
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A.2 Concentration lemmas

First, we state a simple but useful lemma.

Lemma A.5. Let ∆δ
n,k = ∆k−

√
log(1/δ)

n . For all δ ∈ (0, 1) such that ∆δ
n,k ≥ 0, Hoeffding’s inequality

implies that P(∆̂n,k < ∆δ
n,k) ≤ δ.

The next lemma will be used to bound the sum of exponentially tailed distributions.

LemmaA.6 ((Janson, 2018)). LetZ1, . . . , ZK be independent random variables and a1, . . . , aK ∈ R+

be such that for all k ∈ [K] and x ∈ R+, P(Zk ≥ x) ≤ e−akx. Then for all λ ≥ 0,

P(
∑
k

Zk ≥ λ
∑
k

1
ak

) ≤ e1−λ .

Corollary A.7. Let Y1, . . . , YK be independent random variables and y1, . . . , yK ∈ R, a1, . . . , aK ∈
R+ be such that for all k ∈ [K] and x ∈ R+, P(Yk ≥ yk + x) ≤ e−akx. Then for all x ≥∑k yk,

P(
∑
k

Yk ≥ x) ≤ e× exp
(
−x−

∑
k yk∑

k 1/ak

)
.

The corollary is a direct application of Lemma A.6 to Zk = Yk − yk.
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B.1 Technical results

Lemma B.1. (Tail inequality) For all δ > 0, σ′ > 0, with probability at least 1− δ, for all T > 0:

|ST | ≤

√√√√2(AT + 1/σ′2) log
(√

σ′2AT + 1
δ

)

Proof. We use the method of mixtures, denote

Mλ
t = exp

(
λεt(θT − θ∗)⊤xt −

λ2

2
(
(θT − θ∗)⊤xt

)2
)
.

Without loss of generality, we can assume that (εs)s≥1 is 1-sub-Gaussian (this can be achieved
by scaling features appropriately), then E[Mλ

t ] ≤ 1.
Let Λ ∼ N(0, σ′2) be a Gaussian random variable and define Mt = E[MΛ

t |F∞]. We have
E[Mt] = E[E[MΛ

t |Λ]] ≤ 1. By making explicitMt and using Markov’s inequality we get that for
any stopping time τ , for all δ > 0, with probability at least 1− δ:

|Sτ |2

1/σ′2 +Aτ
≤ 2σ2 log

(√
1 + σ′2Aτ

δ

)
.

We conclude using the same stopping time construction in Proof B.1.

Theorem. (Theorem 3.3 of (Maillard, 2016)) (Ordinary Least-squares) Assume that N is a stopping
time adapted to the filtration of the past. Then in the sub-Gaussian streaming regression model, for any
δ > 0, with probability at least 1− δ, ∀T ≥ 1 if |GT (0)| > 0:

∥θ∗ − θT ∥2GT (0) ≤ 2(1 + κ)(1 + α)σ2 log κd(e
2λmax(GT ))

δ

where κd(x) is function of κ and α, κd(x) = 2
3π

2 log(x/e)2
[

log(x)
2

⌉ [
(12(d+ 1)

√
d)dxd + d

]
for

κ = α = 1.
Lemma B.2. (Technical inequality) For all sequences {xt}t ∈ Rd such that ∀t, ∥xt∥2 ≤ X , for all
λ ∈ R+, T0, T ∈ N

T∑
t=T0

∥xt∥2G−1
t
≤ d log

(
1 + TX2/λmin(GT0)d

)
where Gt = Gt(λ).

Proof. Using the Weinstein–Aronszajn identity: ∥xt∥2G−1
t

= 1− |Gt−1|
|Gt| , and that z − 1 ≥ log(z)

leads to:
T∑

t=T0

∥xt∥2G−1
t
≤

T∑
t=1
− log |Gt−1|

|Gt|
= log

( |GT |
|GT0 |

)
.
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Since ∥xt∥2 ≤ X , using the AM-GM inequality:

T∑
t=T0

log
(

1 + ∥xt∥2G−1
t−1

)
≤ d log

(
1 + TX2/λmin(GT0)d

)
.

Lemma B.3. (Technical inequality, Ridge regression) For all sequences {xt}t ∈ Rd such that
∀t, ∥xt∥2 ≤ X , for all λ ∈ R+, T ∈ N

T∑
t=1
||xt||2G−1

t−1
≤ X2/λ

log(1 +X2/λ)d log
(

1 + TX2/λd

)

Proof. We use the Weinstein–Aronszajn identity: ∥xt∥2G−1
t−1

= |Gt|
|Gt−1| − 1,which leads to:

T∑
t=1

log
(

1 + ∥xt∥2G−1
t−1

)
= log

(
GT
G0

)
.

Then since ∥xt∥2 ≤ X and using the AM-GM inequality:

T∑
t=1

log
(

1 + ∥xt∥2G−1
t−1

)
≤ d log

(
1 + TX2/λd

)
.

This next part is what differs from Lemma B.2, using ||xt||2G−1
t−1
≤ λmax(G−1

t−1)||xt||22 ≤ X2/λ

and the concavity of the function log we find:

T∑
t=1
∥xt∥2G−1

t−1
≤

T∑
t=1

X2/λ

log(1 +X2/λ) log
(
1 + ∥xt∥2G−1

t−1

)
.

The last inequality can also be proved by noting that x→ x/ log(1 + x) is non-decreasing
which can be used to bound every feature norm.

Lemma B.4. (Tail inequality, see Corollary 8 of (Abbasi-Yadkori, Pal, and Szepesvari, 2012)) Define
St =

∑t
s=1 εs(θs−1 − θ∗)⊤xs and let (Ft)t≥0 be a filtration such that xt is Ft−1 measurable and εt is

Ft measurable. Then St is a martingale with respect to Ft and for any δ > 0, σ′ > 0, with probability at
least 1− δ, for all t ≥ 0:

|St| ≤ σ

√√√√√2
(

1/σ′2 +
t∑

s=1

(
(θt−1 − θ∗)⊤xt

)2) log


√

1 + σ′2∑t
s=1

(
(θt−1 − θ∗)⊤xt)2

δ


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Proof. The proof of this result follows the same line in the proof of Theorem 1 of Abbasi-Yadkori,

Pál, and Szepesvári (2011), first we define for λ ∈ Rd, t > 0 : Mλ
t = exp

(∑t
s=1

[
εsλ(θt−1 −

θ∗)⊤xt − λ2
(
(θt−1 − θ∗)⊤xt

)2
/2
])

.

Without loss of generality, we can assume that (εs)s≥1 is 1-sub-Gaussian (this can be achieved
by scaling features). Let τ be a stopping time with respect to the filtration {Ft}∞t=0. ThenMλ

τ is
well-defined almost surely and

E[Mλ
τ ] ≤ 1.

Let Λ ∼ N(0, σ′2) be a Gaussian random variable and define Mt = E[MΛ
t |F∞]. We have

E[Mt] = E[E[MΛ
t |Λ]] ≤ 1. By expliciting Mt and using Markov’s inequality we get that for

δ > 0, with probability 1− δ:

|Sτ |2 ≤
(

1/σ′2 +
τ∑
t=1

(
(θt−1 − θ∗)⊤xt

)2)2σ2 log


√

1 + σ′2∑τ
t=1

(
(θt−1 − θ∗)⊤xt)2

δ

 . (B.1)

Next we use a stopping time construction from Freedman (1975): Define the bad event:

Bt(δ) =
{
ω ∈ Ω : |St|2

1/σ′2+
∑t

s=1

(
(θs−1−θ∗)⊤xs

)2 > 2σ2 log

√1+σ′2
∑t

s=1

(
(θs−1−θ∗)⊤xs)2

δ

}

We are interested in bounding the probability that ⋃t>0Bt(δ) happens. Define τ(ω) =
min{t ≥ 0 : ω ∈ Bt(δ)} , with the convention that min ∅ = ∞. Then, τ is a stopping time.
Further, ⋃

t≥0
Bt(δ) = {ω : τ(ω) <∞}

Thus, by Equation B.1:

Pr

⋃
t≥0

Bt(δ)

 = Pr[τ <∞] = Pr [Bτ (δ), τ <∞] ≤ Pr [Bτ (δ)] ≤ δ

Theorem B.5. (Confidence ellipsoid for the Forward algorithm) For any δ > 0, with probability at least
1− δ, for allt > 0:

∥θt − θ∗∥Gt
≤
√
βt(δ) = σ

√
d log

(1 + tX2/λd

δ

)
+ (λ1/2 +X)S.
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Proof. Denote Xt = (x⊤
1 , . . . , x

⊤
t ), εt = (ε1, . . . , εt)⊤. Using

θt = G−1
t+1X

⊤
t (Xθ∗ + εt)

= G−1
t+1X

⊤
t εt +G−1

t+1(X⊤
t Xt + λI + x⊤

t+1xt+1)θ∗ −G−1
t+1(λI + x⊤

t+1xt+1)θ∗

= G−1
t+1X

⊤
t εt + θ∗ −G−1

t+1(λI + x⊤
t+1xt+1)θ∗,

we get

|x⊤θt − x⊤θ∗| = |x⊤G−1
t+1Xtεt − x⊤G−1

t+1(λθ∗ + xt+1x
⊤
t+1θ∗)|

≤ ∥x∥G−1
t+1

(
∥X⊤

t εt∥G−1
t+1

+
(√
λ+X

)
∥θ∗∥2

)
,

where in the last inequality we used Cauchy-Schwartz inequality and that by the Sherman-
Morrison formula x⊤

t+1G
−1
t+1xt+1 = x⊤

t+1G
−1
t xt+1

1+x⊤
t+1G

−1
t xt+1

≤ 1.

We know that: ||X⊤
t εt||G−1

t+1
≤ ||X⊤

t εt||G−1
t

which allows us to use Theorem 1 from Abbasi-
Yadkori, Pál, and Szepesvári (2011) that we recall directly after this proof. We conclude by
plugging in x = Gt+1(θt − θ∗).

Theorem. (Self-Normalized Bound for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration. Let
{ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft -measurable and ηt is conditionally R
-sub-Gaussian for some R ≥ 0 i.e.

∀λ ∈ R E
[
eληt | Ft−1

]
≤ exp

(
λ2R2

2

)

Let {Xt}∞t=1 be an Rd -valued stochastic process such that Xt is Ft−1 -measurable. Assume that V is a
d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +
t∑

s=1
XsX

⊤
s St =

t∑
s=1

ηsXs.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥St∥2V −1
t
≤ 2R2 log

det
(
V̄t
)1/2

det(V )−1/2

δ

 .
Note that the deviation of the martingale ∥St∥2V̄ −1

t
is measured by the norm weighted by the matrix V̄ −1

t

which is itself derived from the martingale, hence the name "self-normalized bound".

Lemma B.6. (Tail inequality, Forward algorithm) Define St =
∑t
s=1 εs(θs−1−θ∗)⊤xs and let (Ft)t≥0

be a filtration such that xt is Ft−1 measurable and εt is Ft measurable. Then St is a martingale with
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respect to Ft and for any δ > 0, σ′ > 0, with probability at least 1− δ, for all t ≥ 0:

|St| ≤ σ

√√√√√2
(

1/σ′2 +
t∑

s=1

(
(θt−1 − θ∗)⊤xt

)2) log


√

1 + σ′2∑t
s=1

(
(θt−1 − θ∗)⊤xt)2

δ


Proof. The proof of this result proceeds in the exact same way as for Lemma B.4.

B.2 Experimental details and instructions:

The experiments were run on a personal laptop with Intel Core i7-8665U, CPU 1.90GHz ×
8. Code for the experiments for online regression and linear bandits can be provided upon
request to the authors. For the experiments of non-stationary linear bandits that we present
next, we used an existing code from the Github page of Russac, Vernade, and Cappé (2019)
and we added an implementation of D-LinUCB f to compare with previous algorithms.
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C.1 Concentrations

C.1.1 Concentration of the transition parameter

We recall the important concentration of the maximum likelihood estimator for general bilinear
exponential families (cf Theorem 1 of (Chowdhury, Gopalan, and Maillard, 2021)).

Theorem C.1. Suppose {Ft}∞t=0 is a filtration such that for each t, (i) st+1 is Ft-measurable, (ii)
(st, at) is Ft−1 measurable, and (iii) given (st, at) , st+1 ∼ P p

θp (· | st, at) according to the exponential
family defined by Equation (5.1). Let θ̂p(k) be the penalized MLE defined by Equation (5.6), and let
Z

p
s,a(θ) be strictly convex in θ for all (s, a). Then, for any δ ∈ (0, 1], with probability at least 1− δ, the

following holds uniformly over all n ∈ N :

k∑
t=1

KLst,at

(
θ̂p(k), θp

)
+ η

2

∥∥∥θp − θ̂p(k)
∥∥∥2

A
− η

2 ∥θ
p∥2A ≤ log

(
C

p
A,k
δ

)
,

where Cp
A,k =

(∫
Rd exp

(
−η2 ∥θ

′∥2A
)
dθ′
)
/
(∫

Rd exp
(
−
∑k
t=1 KLst,at (θk, θ′)− η

2 ∥θ
′ − θk∥2A

)
dθ′
)
. De-

fine Gs,a =∆
(
φ(s, a)⊤A⊤

i Ajφ(s, a)
)
i,j∈[d]

, we have

C
p
A,k ≤ det

(
I + βpη−1A−1

k∑
t=1

Gst,at

)
,

where βp = supθ,s,a λmax
(
Cθs,a [ψ (s′)]

)
.

A proof of this result can be found in the work (Chowdhury, Gopalan, and Maillard, 2021).
We provide an almost similar proof for the concentration of rewards in the next section.

Corollary C.2. The previous theorem implies a simple euclidean confidence region. Indeed, with
probability at least 1− δ, for all k ∈ N

∥∥∥θp − θ̂p(k)
∥∥∥2

Ḡ
p
n

≤ 2
αpβ

p(k, δ),

where βp(k, δ) =∆ β
p
(k−1)H(δ) = 2

2B
2
A + log

(
2Cp

A,k/δ
)
.

Proof. The result follows from the following simple calculations:

1
2

∥∥∥θp − θ̂p(k)
∥∥∥2

Ḡk

= (αp)−1η

2

∥∥∥θp − θ̂p(k)
∥∥∥2

A
+
k−1∑
τ=1

H∑
h=1

1
2

∥∥∥θp − θ̂p(k)
∥∥∥2

Gsτ
h

,aτ
h

≤ (αp)−1
(
η

2

∥∥∥θp − θ̂p(k)
∥∥∥2

A
+
k−1∑
τ=1

H∑
h=1

KLsτ
h
,aτ

h
(θk, θ)

)
.
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C.1.2 Concentration of the reward parameter (contribution)

Theorem C.3. Suppose {Ft}∞t=0 is a filtration such that for each t, (i) r(st, at) is Ft-measurable,
(ii) (st, at) is Ft−1 measurable, and (iii) given (st, at) , r(st, at) ∼ P r

θr (· | st, at) according to the
exponential family defined by (5.2). Let θ̂r(k) be the penalized MLE defined by Equation (5.7), and let
Zr
s,a(θ) be strictly convex in θ for all (s, a). Then, for any δ ∈ (0, 1], with probability at least 1− δ, the

following holds uniformly over all k ∈ N :

k∑
t=1

KLst,at

(
θ̂r(k), θr

)
+ η

2

∥∥∥θr − θ̂r(k)
∥∥∥2

A
− η

2 ∥θ
r∥2A ≤ log

(
Cr

A,k
δ

)
,

where Cr
A,k =

(∫
Rd exp

(
−η2 ∥θ

′∥2A
)
dθ′
)
/
(∫

Rd exp
(
−
∑k
t=1 KLst,at (θk, θ′)− η

2 ∥θ
′ − θk∥2A

)
dθ′
)
. De-

fine Gs,a =∆
(
φ(s, a)⊤A⊤

i Ajφ(s, a)
)
i,j∈[d]

, we have

CA,k ≤ det
(
I + βrη−1A−1

k∑
t=1

Gst,at

)
,

where βr := ∥B∥22 supθ,s,aVarθs,a(r).

Proof. We proceed similar to the proof of Theorem 1 in (Chowdhury and Gopalan, 2019).

Step 1: Martingale construction. First, observe that by assuming strict convexity, the log-
partition function Zr

s,a becomes a Legendre function. Now for the conditional exponential
family model, the KL divergence between Pr

θr (· | s, a) and Pr
θ′r (· | s, a) can be expressed as a

Bregman divergence associated to Zr
s,a with the parameters reversed, i.e.

KLs,a
(
θr, θr′) := KL (Pθr(· | s, a), Pθr′(· | s, a)) = BZs,a

(
θr′, θr) .

Now, for any λ ∈ Rd, we introduce the function BZn,α,θr(λ) = BZn,α (θr + λ, λ) and define

Mλ
n = exp

(
λ⊤Sn −

n∑
t=1

BZnt,at ,θ
r(λ)

)

where ∀i ≤ d, we denote (Sn)i =
∑n
t=1

(
r (st, at)− Eθr

st,at
[r]
)
B⊤Aiφ (st, at) .Note thatMλ

n > 0
and it is Fn− measurable. Furthermore, we have for all (s, a),

Eθ
r

s,a

[
exp

(
d∑
i=1

λi
(
r (st, at)− Eθ

r

st,at
[r]
)
B⊤Aiφ (st, at)

)]
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= exp
(
−λ⊤∇Zr

s,a (θr)
) ∫

S
exp

(
d∑
i=1

(θr
i + λi)B⊤Aiφ(s, a)− Zr

s,a(θr)
)
dr

= exp
(
Zr
s,a(θr + λ)− Zr

s,a(θr)− λ⊤∇Zr
s,a(θr)

)
= exp

(
BZr

s,a
(θr)

)
This implies E

[
exp

(
λ⊤Sn

)
| Fn−1

]
= exp

(
λ⊤Sn−1 +BZnn,an,θr (λ)

)
thus E

[
Mλ
n | Fn−1

]
=

Mλ
n−1. Therefore

{
Mλ
n

}∞

n=0
is a non-negative martingale adapted to the filtration {Fn}∞n=0 and

actually satisfies E
[
Mλ
n

]
= 1. For any prior density q(θ) for θ, we now define a mixture of

martingales
Mn =

∫
Rd
Mλ
n q (θr + λ) dλ (C.1)

Then {Mn}∞n=0 is also a non-negative martingale adapted to {Fn}∞n=0 and in fact, E [Mn] = 1.

Step 2: Method of mixtures. Considering the prior density N (0, (ηA)−1), we obtain from
(C.1) that

Mn = c0

∫
Rd

exp
(
λ⊤Sn −

n∑
t=1

BZr
xt,at

,θr(λ)− η

2 ∥θ
r + λ∥2A

)
dλ, (C.2)

where c0 = 1∫
Rd exp(− η

2 ∥θ′∥2
Λ)dθ′ .We now introduce the function Zr

n(θ) =
∑n
t=1 Z

r
st,at

(θ). Note
that Zr

n is a also Legendre function and its associated Bregman divergence satisfies

BZr
n

(
θ′, θ

)
=

n∑
t=1

(
Zr
st,at

(
θ′)− Zr

st,at
(θ)−

(
θ′ − θ

)⊤∇Zr
St,at

(θ)
)

=
n∑
t=1

BZr
st,αt

(
θ′, θ

)
Furthermore, we have∑n

t=1BZr
st,αt

,θr(λ) = BZr
n,θ

r(λ). From the penalized likelihood formula
(5.7), recall that

∀i ≤ d,
n∑
t=1
∇iZr

st,at

(
θ̂r(k)

)
+ η

2∇i∥θ̂
r(k)∥2A =

k∑
t=1

rtB
⊤Aiφ (st, at) .

This yields

Sk =
k∑
t=1

(
∇Zr

st,at

(
θ̂r(k)

)
−∇Zr

st,at
(θr)

)
+ ηAθ̂r(k) = ∇Zr

k

(
θ̂r(k)

)
−∇Zr

k (θr) + ηAθ̂r(k)

(C.3)
We now obtain from (C.2) and (C.3) that

Mk = c0 · exp
(
−η2 ∥θ

r∥2A
)∫

Rd
exp

(
λ⊤xk −BZk,θ∗(λ) + gk(λ)

)
dλ, (C.4)

where we introduced gk(λ) = η
2

(
2λ⊤Aθ̂r(k) + ∥θr∥2A − ∥θr + λ∥2A

)
and xk = ∇Zr

k

(
θ̂r(k)

)
−

∇Zr
k (θr).
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Now, note that supλ∈Rd gk(λ) = η
2

∥∥∥θr − θ̂r(k)
∥∥∥2

A
, where the supremum is attained at λ⋆ =

θ̂r(k)− θr. We then have

gk(λ) = gn(λ) + sup
λ∈R⋆

gk(λ)− gk (λ⋆)

= η

2

∥∥∥θ̂r(k)− θr
∥∥∥2

A
+ η (λ− λ⋆)⊤ A (θr + λ⋆) + η

2 ∥θ
r + λ⋆∥2A −

η

2 ∥θ
r + λ∥2A

= BZr
0

(
θr, θ̂r(k)

)
+ (λ− λ⋆)⊤∇Zr

0 (θr + λ⋆) + Zr
0 (θr + λ⋆)− Zr

0 (θr + λ) (C.5)

where we have introduced the Legendre function Zr
0 (θ) = η

2∥θ∥
2
A. We now have from (C.9)

that

sup
λ∈Rd

(
λ⊤xn −BZr

n,θ
r(λ)

)
= B⋆

Zr
n,θ

r (xn) = B⋆
Zr

n,θ
r

(
∇Zr

n

(
θ̂r(n)

)
−∇Zr

n (θr)
)

= BZrn

(
θr, θ̂r(n)

)
.

Further, any optimal λmust satisfy

∇Zr
n (θr + λ)−∇Zr

n (θr) = xn =⇒ ∇Zr
n (θr + λ) = ∇Zr

n

(
θ̂r(n)

)
.

One possible solution is λ = λ⋆. Now, since Zr
n is strictly convex, the supremum is indeed

attained at λ = λ⋆. We then have

λ⊤xn −BZr
n,θ

r(λ)

= λ⊤xn −BZr
n,θ

r(λ) +BZr
n

(
θr, θ̂r(n)

)
−
(
λ⋆xn −BZr

n,θ
r (λ⋆)

)
= BZr

n

(
θr, θ̂r(n)

)
+ (λ− λ⋆)⊤∇Zr

n (θr + λ⋆) +BZr
n,θ

∗ (λ⋆)−BZr
n,θ

∗(λ)

− (λ− λ⋆)⊤∇Zr
n (θr)

= BZr
n

(
θr, θ̂r(n)

)
+ (λ− λ⋆)⊤∇Zr

n (θr + λ⋆) + Zr
n (θr + λ⋆)− Zr

n (θr + λ) (C.6)

Plugging Equation (C.5) and Equation (C.6) in Equation (C.4), we obtain

Mn = c0 · exp

 ∑
j∈{0,n}

BZr
j

(θr, θj)−
η

2 ∥θ
r∥2A


×
∫
Rd

exp

 ∑
j∈{0,n}

(
(λ− λ⋆)⊤∇Zr

j (θr + λ⋆) + Zr
j (θr + λ⋆)− Zr

j (θr + λ)
) dλ

= c0 · exp

 ∑
j∈{0,n}

BZr
j

(
θr, θ̂r(n)

)
− η

2 ∥θ
r∥2Å


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× exp

− ∑
j∈{0,n}

(
(θr + λ⋆)⊤∇Zr

j (θr + λ⋆)− Zr
j (θr + λ⋆)

)
×
∫
Rd

exp

 ∑
j∈{0,n}

(
(θr + λ)⊤∇Zr

j (θr + λ⋆)− Zr
j (θr + λ)

) dλ
= c0
cn

exp

 ∑
j∈{0,n}

BZr
j

(
θr, θ̂r(n)

)
− η

2 ∥θ
r∥2A


×
∫
Rd exp

(∑
j∈{0,n}

(
(θr + λ)⊤∇Zr

j (θr + λ⋆)− Zr
j (θr + λ)

))
dλ∫

Rd exp
(∑

j∈{0,n}

(
(θ′)⊤∇Zr

j (θr + λ⋆)− Zr
j (θ′)

))
dθ′

= c0
cn
· exp

(
BZn

(
θr, θ̂r(n)

)
+BZ0

(
θr, θ̂r(n)

)
− η

2 ∥θ
r∥2A

)
,

where we introduced cn =
exp
(∑

j∈{0,n}((θr+λ∗)⊤∇Zr
j (θr+λ∗)−Zr

j (θr+λ∗))
)

∫
Rd exp

(∑
j∈{0,n}((θ′)⊤∇Zr

j (θr+λ∗)−Zr
j (θ′))

)
dθ′

.

Since λ⋆ = θ̂r(n)− θr, we have

cn = 1∫
Rd exp

(
−
∑
j∈{0,n}BZr

j
(θ′, θr + λ⋆)

)
dθ′

= 1∫
Rd exp

(
−
∑n
t=1BZst,at

(
θ′, θ̂r(n)

)
− η

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2

A′

)
dθ′

Therefore, we have from (5) that

CA,n := cn
c0

=
∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′

∫
Rd exp

(
−
∑n
t=1 KLst,at

(
θ̂r(n), θ′

)
− η

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2

A

)
dθ′

An application of Markov’s inequality now yields

P
[
n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+ η

2

∥∥∥θr − θ̂r(n)
∥∥∥2

A
− η2 ∥θ

r∥2A ≥ log
(
CA,n
δ

)]
=P

[
Mn ≥

1
δ

]
≤ δE [Mn] = δ

Step 3: A stopped martingale and its control. Let N be a stopping time with respect to the
filtration {Fn}∞n=0. Now, by the martingale convergence theorem,M∞ = limn→∞Mn is almost
surely well-defined, and thusMN is well-defined as well irrespective of whether N < ∞ or
not. LetQn = Mmin{N,n} be a stopped version of {Mn}n. Then an application of Fatou’s lemma
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yields
E [MN ] = E

[
lim inf
n→∞

Qn
]
≤ lim inf

n→∞
E [Qn] = lim inf

n→∞
E
[
Mmin{N,n}

]
≤ 1,

since the stopped martingale
{
Mmin{N,n}

}
n≥1

is also a martingale. Therefore, by the properties
ofMn, (12) also holds for any random stopping time N <∞. To complete the proof, we now
employ a random stopping time construction as in Abbasi-Yadkori et al. (2011)

We define a random stopping time N by

N = min
{
n ≥ 1 :

n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+ η

2

∥∥∥θr − θ̂r(n)
∥∥∥2

A
− η

2 ∥θ
r∥2A ≥ log

(
CA, n

δ

)}

with min{∅} :=∞ by convention. We then have

P
[
∃n ≥ 1,

n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+ η

2

∥∥∥θr − θ̂r(n)
∥∥∥2

A
− η

2 ∥θ
r∥2A ≥ log

(
CA,n
δ

)]
= P[N <∞] ≤ δ,

which concludes the proof of the first part.

Proof of second part: upper bound on CA,n. First, we have for some θ̃ ∈
[
θ̂r(n), θ′

]
∞

that

KLs,a
(
θ̂r(n), θ′

)
= 1

2

d∑
i,j=1

(
θ′ − θ̂r(n)

)
i
Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a)

(
θ′ − θ̂r(n)

)
j

(C.7)
Now (C.7) implies that

n∑
t=1

KLst,at

(
θ̂r(n), θ′

)
≤ β

2

n∑
t=1

d∑
i,j=1

(
θ′ − θ̂r(n)

)
i
φ (st, at)⊤A⊤

i Ajφ (st, at)
(
θ′ − θ̂r(n)

)
j

= βr

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2∑n

t=1
Gst,at ,

where βr := λmax
(
BB⊤

)
× supθ,s,aVarθs,a(r) and ∀i, j ≤ d, (Gs,a)i,j := φ(s, a)⊤A⊤

i Ajφ(s, a).
Therefore, we obtain

CA,n ≤
∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′

∫
Rd exp

(
−1

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2

(βr
∑n

t=1 Gst,at +ηA)

)
dθ′

= (2π)d/2

det(ηA)1/2 ×
det (βr∑n

t=1Gst,at + ηA)1/2

(2π)d/2 = det
(
I + βrη−1A−1

n∑
t=1

Gst,at

)
,

which completes the proof of the second part.
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Corollary C.4. Here also, the theorem implies a euclidean control. With probability at least 1 − δ
uniformly over k ∈ N ∥∥∥θr − θ̂r(k)

∥∥∥2

Ḡr
k

≤ 2
αrβ

r(k, δ),

where βr(k, δ) =∆ βr
(k−1)H(δ) = 2

2B
2
A + log

(
2Cr

A,k/δ
)
.

C.1.3 Gaussian concentration and anti-concentration

Lemma C.5 (Gaussian concentration, ref. Appendix A in (Abeille and Lazaric, 2017)). Let
ξtk ∼ N (0, Hνk(δ)Σ−1

tk ). For any δ > 0, with probability 1− δ

∥ξtk∥Σtk
≤ c

√
Hdνk(δ) log(d/δ) (C.8)

for some absolute constant c.

Lemma C.6 (Gaussian anti-concentration, ref. Appendix A in (Abeille and Lazaric, 2017)). Let
ξ ∼ N (0, Id), for any u ∈ Rd with ∥u∥ = 1, we have:

P(u⊤ξ ≥ 1) ≥ Φ(−1),

where Φ is the normal CDF.

Thanks to lower bounds on the error function, we have the following bound on the proba-
bility of anti-concentration Φ(−1) ≥ 1/(4

√
eπ).

C.2 Technical results

C.2.1 A transportation lemma

For any function f : X → R, we define its span as S(f) := maxx∈X f(x) − minx∈X f(x). For
a probability distribution P supported on the set X , let EP [f ] := EP [f(X)] and VP [f ] :=
VP [f(X)] = EP

[
f(X)2]− EP [f(X)]2 denote the mean and variance of the random variable

f(X), respectively. We now state the following transportation inequalities, which can be
adapted from (Boucheron, Lugosi, and Massart, 2013) (Lemma 4.18).

Lemma C.7. (Transportation inequalities) Assume f is such that S(f) and VP [f ] are finite. Then it
holds

∀Q≪ P, EQ[f ]− EP [f ] ≤
√

2VP [f ]KL(Q,P ) + 2S(f)
3 KL(Q,P )

∀Q≪ P, EP [f ]− EQ[f ] ≤
√

2VP [f ]KL(Q,P )

148



C.2 Technical results

C.2.2 Bregman divergence

For a Legendre function F : Rd → R, the Bregman divergence between θ′, θ ∈ Rd associated
with F is defined as BF (θ′, θ) := F (θ′)− F (θ)− (θ′ − θ)⊤∇F (θ). Now, for any fixed θ ∈ Rd,
we introduce the function

BF,θ(λ) := BF (θ + λ, λ) = F (θ + λ)− F (θ)− λ⊤∇F (θ).

It then follows that BF,θ is a convex function, and we define its dual as

B⋆
F,θ(x) = sup

λ∈Rd

(
λ⊤x−BF,θ(λ)

)

We have for any θ, θ′ ∈ Rd:

BF
(
θ′, θ

)
= B⋆

F,θ′
(
∇F (θ)−∇F

(
θ′)) (C.9)

To see this, we observe that

B⋆
F,θ′

(
∇F (θ)−∇F

(
θ′))

= sup
λ∈Rd

λ⊤ (∇F (θ)−∇F
(
θ′))− [F (θ′ + λ

)
− F

(
θ′)− λ⊤∇F

(
θ′)]

= sup
λ∈Rd

λ⊤∇F (θ)− F
(
θ′ + λ

)
+ F

(
θ′) .

Now an optimal λ must satisfy ∇F (θ) = ∇F (θ′ + λ). One possible choice is λ = θ − θ′.
Since, by definition, F is strictly convex, the supremum will indeed be attained at λ = θ − θ′.

Plugin-in this value, we obtain

B⋆
F,θ′

(
∇F (θ)−∇F

(
θ′)) =

(
θ − θ′)⊤∇F (θ)− F (θ) + F

(
θ′) = BF

(
θ′, θ

)
.

Note that (C.9) holds for any convex function F . Only difference is that, in this case, BF (·, ·)
will not correspond to the Bregman divergence.

C.2.3 Properties of the bilinear exponential family

In this section, we detail some useful results related to exponential families in our model.
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Derivatives

Lemma C.8. (Gradients) We provide the derivatives of the log-partitions in closed form. As usual
with exponential families, these are intimately linked to moments of the random variable. We have:(

∇iZp
s,a

)
(θ) = Eθs,a

[
ψ
(
s′)]⊤Aiφ(s, a).

And (
∇iZr

s,a

)
(θ) = Eθs,a [r] B⊤Aiφ(s, a).

Proof. We prove the lemma as follows

(
∇iZp

s,a

)
(θ) =

∫
S
ψ
(
s′)⊤Aiφ(s, a)

exp
(∑d

i=1 θiψ (s′)⊤Aiφ(s, a)
)

∫
S exp

(∑d
i=1 θtψ (s′)⊤Aiφ(s, a)

)
ds′

ds′

= Eθs,a
[
ψ
(
s′)]⊤Aiφ(s, a)

(
∇iZr

s,a

)
(θ) =

∫
S
rB⊤Aiφ(s, a)

exp
(
r
∑d
i=1 θiB

⊤Aiφ(s, a)
)

∫
S exp

(
r
∑d
i=1 θiB

⊤Aiφ(s, a)
)
dr
dr

= Eθs,a [r] B⊤Aiφ(s, a)

Lemma C.9. (Hessians) The entries of the Hessians of the log partition functions are given by(
∇2
i,jZ

p
s,a

)
(θ) = φ(s, a)⊤A⊤

i Cθs,a
[
ψ
(
s′)]Ajφ(s, a),

where Cθs,a [ψ (s′)] =∆ Eθs,a
[
ψ (s′)ψ (s′)⊤

]
− Eθs,a [ψ (s′)]Eθs,a

[
ψ (s′)⊤

]
.

Similarly, (
∇2
i,jZ

r
s,a

)
(θ) = Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a),

where Varθs,a(r) =∆
(
Eθs,a

[
r2]− Eθs,a [r]2

)
is the variance of the reward under θ.

Proof. We prove these formulas by differentiating under the integral sign.

(
∇2
i,jZ

p
s,a

)
(θ) =

∫
S
ψ
(
s′)⊤Aiφ(s, a)ψ

(
s′)⊤Ajφ(s, a)

exp
(∑d

i=1 θiψ (s′)⊤Aiφ(s, a)
)

∫
S exp

(∑d
i=1 θiψ (s′)⊤Aiφ(s, a)

)
ds′

ds′

−
∫

S
ψ
(
s′)⊤Aiφ(s, a)

exp
(∑d

i=1 θiψ (s′)⊤Aiφ(s, a)
)

∫
S exp

(∑d
i=1 θiψ (s′)⊤Aiφ(s, a)

)
ds′

ds′ (∇jZs,a) (θ)

= Eθs,a
[
ψ
(
s′)⊤Aiφ(s, a)ψ

(
s′)⊤Ajφ(s, a)

]
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− Eθs,a
[
ψ
(
s′)⊤Aiφ(s, a)

]
Eθs,a

[
ψ
(
s′)⊤Ajφ(s, a)

]
=φ(s, a)⊤A⊤

i

(
Eθs,a

[
ψ
(
s′)ψ (s′)⊤]− Eθs,a

[
ψ
(
s′)]Eθs,a [ψ (s′)⊤])Ajφ(s, a)

=φ(s, a)⊤A⊤
i Cθs,a

[
ψ
(
s′)]Ajφ(s, a),

where we introduce in the last line the p× p covariance matrix given by

Cθs,a
[
ψ
(
s′)] = Eθs,a

[
ψ
(
s′)ψ (s′)⊤]− Eθs,a

[
ψ
(
s′)]Eθs,a [ψ (s′)⊤]

The proof of the form of the Hessian for the reward partition function follows the same
steps as above.

Lemma C.10. (KL Divergences) For any two θ, θ′ and for some pair (s, a),

∃θ̃ ∈
[
θ, θ′]

∞ , KL
(
P

p
θ (· | s, a), P p

θ′(· | s, a)
)

= 1
2
(
θ − θ′)⊤ (∇2Zp

s,a

)
(θ̃)
(
θ − θ′) ,

where [θ, θ′]∞ denotes the d-dimensional hypercube joining θ to θ′.
Similarly

∃θ̃ ∈
[
θ, θ′]

∞ , KL (P r
θ (· | s, a), P r

θ′(· | s, a)) = 1
2
(
θ − θ′)⊤ (∇2Zr

s,a

)
(θ̃)
(
θ − θ′) .

Proof. We start by writing:

log
(
P

p
θ (s′ | s, a)

P
p
θ′ (s′ | s, a)

)
=

d∑
i=1

(
θi − θ′

i

)
ψ
(
s′)⊤Aiφ(s, a)− Zp

s,a(θ) + Zp
s,a

(
θ′) ,

then

KL
(
P

p
θ (· | s, a), P p

θ′(· | s, a)
)

=
d∑
i=1

(
θi − θ′

i

)
Eθs,a

[
ψ
(
s′)]⊤Aiφ(s, a)− Zp

s,a(θ) + Zp
s,a

(
θ′)

= 1
2
(
θ − θ′)⊤ (∇2Zp

s,a

)
(θ̃)
(
θ − θ′) ,

where in the last line, weused, by a Taylor expansion, thatZs,a (θ′) = Zs,a(θ)+(∇Zs,a(θ))⊤ (θ′ − θ)+
1
2(θ− θ′)⊤

(
∇2Zs,a(θ̃)

)
(θ − θ′) for some θ̃ ∈ [θ, θ′]∞.

The proof of the form of the KL divergence for the reward follows the same steps as
above.
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A transportation lemma for rewards

Lemma C.11. We provide a closed-form formula for the difference of expected rewards under two distinct
parameters:

∃θ3 ∈ [θ1, θ2], Eθ1
s,a [r] = Eθ2

s,a [r] +
Varθ3

s,a(r)
2 B⊤Mθ1−θ2φ(s, a)

Proof. Let’s recall the gradient of the reward log partition function:(
∇iZr

s,a

)
(θr) = Eθ

r

s,a [r] B⊤Aiφ(s, a)

then for all θr′ we have:

Eθ
r

s,a [r] = 1
B⊤Mθr′φ(s, a)∇iZ

r
s,a(θr)⊤θr′

Let θ1, θ2 ∈ Rd, using Taylor-Cauchy’s formula there exists θ3 ∈ [θ1, θ2] such that:

Eθ1
s,a [r] = Eθ2

s,a [r] + 1
2B⊤Mθr′φ(s, a)(θ1 − θ2)⊤∇2Zr

s,a(θ3)⊤θr′

We know that
(
∇2
i,jZ

r
s,a

)
(θ) = Varθs,a(r) × φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a), choosing θr′ = θ1 − θ2

we find:
Eθ1
s,a [r] = Eθ2

s,a [r] +
Varθ3

s,a(r)
2 B⊤Mθ1−θ2φ(s, a).

C.2.4 Elliptical potentials and elliptical lemma

Elliptical lemma

Here we show a lemma that is popular for regret control in linear MDPs and linear Bandits.
First, consider the notations: Gs,a := (φ(s, a)⊤A⊤

i Ajφ(s, a))1≤i,j≤d , Ḡe
n ≡ Ḡe

(k−1)H :=
Gn + (αe)−1ηA , andGn ≡ G(k−1)H :=

∑k−1
τ=1

∑H
h=1Gsτ

s ,a
τ
h
. Where e represents either r or p, we

omit the superscript e w.l.o.g in the rest of this section.
Lemma C.12. (Elliptical lemma and variant for bounded potentials) Let c ∈ R+, we can bound the
sum of feature norms as follows

T∑
t=1

min{c,
H∑
h=1

∥∥∥Ḡ−1/2
n Gs,aḠ

−1/2
n

∥∥∥} ≤ c

log(1 + c)d log
(
1 + αη−1Bφ,An

)
.

where Bφ,A := sups,a
∥∥A−1Gs,a

∥∥.
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Further, we have
T∑
t=1

H∑
h=1

∥∥∥Ḡ−1/2
n Gs,aḠ

−1/2
n

∥∥∥ ≤ 2d log
(
1 + αη−1Bφ,An

)
+ 3dH

log(2) log
(

1 +
α∥A∥22B2

φ,A
η log(2)

)

Proof. First we have

∥Ḡ−1/2
n Gs,aḠ

−1/2
n ∥ =

√
⊤(Ḡ−1/2

n Gs,aḠ
−1/2
n Ḡ

−1/2
n Gs,aḠ

−1/2
n )

≤⊤ (Ḡ−1/2
n Gs,aḠ

−1/2
n ) =⊤ (Ḡ−1

n Gs,a) =⊤ (a⊤
h Ḡ

−1
n ah)

the last line is because Gs,a = aha⊤
h , where ah = (Aiφ(sh, ah))i∈[d].

First result. Consider h ∈ [H], denote (λh,i)i ∈ [d] the eigenvalues of a⊤
h Ḡ

−1
n ah. Ḡn is

positive definite hence λh,i > 0, ∀h, i, then

min{c,
H∑
h=1

Tr(a⊤
h Ḡ

−1
n ah)} = min{c,

H∑
h=1

d∑
i=1

λh,i}

≤ c

log(1 + c)

H∑
h=1

d∑
i=1

log(1 + λh,i) (log is concave)

≤ c

log(1 + c)

H∑
h=1

log(
d∏
i=1

1 + λh,i)

≤ c

log(1 + c)

H∑
h=1

log det(I + a⊤
h Ḡ

−1
n ah)

≤ c

log(1 + c) log
(

det(Ḡn +
∑H
h=1Gsh,ah

)
det(Ḡn)

)

where the last line follows from the matrix determinant lemma:

det
(
Ḡn + aha⊤

h

)
= det(I + a⊤

h Ḡ
−1
n ah) det(Ḡn)

Therefore:
T∑
t=1

min{c,
H∑
h=1

∥∥∥Ḡ−1
n Gst

h
,at

h

∥∥∥} ≤ c

log(1 + c)

T∑
t=1

log
det

(
Ḡn+H

)
det

(
Ḡn
) ,

We can now control the R.H.S. of the above equation, as

T∑
t=1

log
det

(
Ḡn+H

)
det

(
Ḡn
) =

T∑
t=1

log
det

(
ḠtH

)
det

(
Ḡ(t−1)H

) = log
det

(
ḠTH

)
det

(
Ḡ0
)

= log
det

(
ḠN

)
det ((αp)−1ηA) = log det

(
I + αη−1 A−1GN

)
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≤ d log
(

1 + αpη−1

d
tr
(
A−1Gn

))
(Trace-determinant (or AM-GM) inequality)

≤ d log
(
1 + αpη−1Bφ,An

)
This concludes the proof of the first result.

Second result. First, we have sups,a ∥Gs,a∥2 ≤ ∥A∥2Bφ,A.
Fix an episode k ∈ [K], n = (k − 1)H , using Lemma C.14, we know that the number of

times h ∈ [h] such that
∥∥∥Ḡ−1

n Gsh,ah

∥∥∥ ≥ 1 is smaller than 3d
log(2) log

(
1 + α(∥A∥2Bφ,A)2

η log(2)

)
. Let us call

Tk := {h ∈ [H]
∥∥∥Ḡ−1

(k−1)hGsh,ah

∥∥∥ ≤ 1}, then

T∑
t=1

H∑
h=1

∥∥∥Ḡ−1
n Gst

h
,at

h

∥∥∥ ≤ 3d
log(2) log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
+
∑
h∈Tk

min{1,
∥∥∥Ḡ−1

n Gst
h
,at

h

∥∥∥}
the sum of the right hand side is similar to the first result. Although the sum is not contiguous,
the previous bound holds since if h1 < h2,det(Ḡn+h1) ≤ det(Ḡn+h2), this concludes the
proof.

Remark C.13. We can also write from the lemma in terms of ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k

)−1 by
skipping the norm upper bound at the beginning of the proof:

T∑
t=1

min{c,
H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k
)−1} ≤

c

log(1 + c)d log
(
1 + αη−1Bφ,An

)
.

and
T∑
t=1

H∑
h=1
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k
)−1 ≤2d log

(
1 + αη−1Bφ,An

)

+ 3dH
log(2) log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)

Elliptical potentials: finite number of large feature norms (contribution)

Lemma C.14. (Worst case elliptical potentials, adaptation of Exercise 19.3 (Lattimore and Szepesvári,
2020) for matrices) Let V0 = λI and a1, . . . , an ∈ Rd×p be a sequence of matrices with ∥at∥2 ≤ L for
all t ∈ [n]. Let Vt = V0 +

∑t
s=1 asa

⊤
s , then

∣∣∣{t ∈ N∗, ∥at∥V −1
t−1
≥ 1}

∣∣∣ ≤ 3d
log(2) log

(
1 + L2

λ log(2)

)
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Proof. Let T be the set of rounds twhen ∥at∥V −1
t−1
≥ 1 and Gt = V0 +

∑t
s=1 IT (s)asa⊤

s . Then

(
dλ+ |T |L2

d

)d
≥
(trace (Gn)

d

)d
≥ det (Gn) (Trace-determinant inequality)

= det (V0)
∏
t∈T

(
1 + ∥at∥2G−1

t−1

)

≥ det (V0)
∏
t∈T

(
1 + ∥at∥2V −1

t−1

)
≥ λd2|T |

where the third line follows from the matrix determinant lemma:

det
(
Ḡn + aha⊤

h

)
= det(I + a⊤

h Ḡ
−1
n ah) det(Ḡn).

Rearranging and taking the logarithm shows that

|T | ≤ d

log(2) log
(

1 + |T |L
2

dλ

)

Abbreviate x = d/ log(2) and y = L2/dλ, which are both positive. Then

x log(1 + y(3x log(1 + xy))) ≤ x log
(
1 + 3x2y2

)
≤ x log(1 + xy)3 = 3x log(1 + xy).

Since z − x log(1 + yz) is decreasing for z ≥ 3x log(1 + xy) it follows that

|T | ≤ 3x log(1 + xy) = 3d
log(2) log

(
1 + L2

λ log(2)

)
.
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D.1 Experiment Details

In all experiments we choose to use the same hyper-parameter values for all tasks as the best-
performing ones reported in the literature or in their respective open source implementation
documentation. In Tables D.1, D.2 and D.3, we report the list of hyper-parameters for all
continuous control tasks.

Table D.1 – Hyperparameters used both in SAC and AVEC-SAC.
Parameter Value
Adam stepsize 3 · 10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.01
Target update interval 1
Gradient steps 1

Table D.2 – Hyperparameters used both in PPO and AVEC-PPO.
Parameter Value
Horizon (T ) 2048
Adam stepsize 2.5 · 10−4

Nb. epochs 10
Nb. minibatches 32
Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ε) 0.2

Overall, we choose the hyper-parameters in a way to ensure the best performance for the
conventional actor-critic framework. In other words, since we are interested in evaluating the
impact of this new critic, everything else is kept as is. This experimental protocol may not
benefit AVEC.
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Table D.3 – Hyperparameters used both in TRPO and AVEC-TRPO.
Parameter Value
Horizon (T ) 2048
Adam stepsize 1 · 10−4

Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Stepsize KL 0.01
Nb. iterations for the conjugate gradient 15

D.2 Details about the environments

Table D.4 – Environments details.
Environment Description
Ant-v2 Make a four-legged creature

walk forward as fast as possi-
ble.

AntBulletEnv-v0 Idem. Ant is heavier, encour-
aging it to typically have two
or more legs on the ground
(source: PyBullet Guide - url).

HalfCheetah-v2 Make a 2D cheetah robot run.
HalfCheetahBulletEnv-v0 Idem.
Humanoid-v2 Make a three-dimensional

bipedal robot walk forward
as fast as possible, without
falling over.

Reacher-v2 Make a 2D robot reach to a ran-
domly located target.

Walker2d-v2 Make a 2D robotwalk forward
as fast as possible.

Acrobot-v1 Swing the end of a two-joint
acrobot up to a given height.

MountainCar-v0 Get an under powered car to
the top of a hill.
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D.3 Dimensions of Studied Tasks

Table D.5 – Actions and observations dimensions.
Task S A
Ant R111 R8

AntBullet R28 R8

HalfCheetah R17 R6

HalfCheetahBullet R26 R6

Humanoid R376 R17

Reacher R11 R2

Walker2d R17 R6

Acrobot R6 3
MountainCar R2 3
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