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Abstract 

The contact between two parts, especially when induced, as in braking systems, needs to be 

improved and better understood. The phenomena involved are complex as they encompass multi-

scale and multi-physics concepts within a context of constant evolution. An additional challenge 

arises from the closed nature of the contact, making it difficult to explicitly observe the interface 

phenomena that play a crucial role in the targeted performance such as noise pollution, emission of 

fine particles, and wear, among others. Considering the increasingly stringent European 

environmental standards, it is imperative to establish new strategies for comprehensively addressing 

this problem.  The team aims to bridge the gap between numerical simulations and experimental 

methods. The "experimental" component relies on dedicated test benches equipped with advanced 

and precise instrumentation. The "numerical" aspect involves multi-scale and multi-physics 

modeling, striving to account for tribological mechanisms within a complete system. One challenge 

lies in comparing and aligning these two components.  

Therefore, the objective of this PhD thesis is to propose predictive models that connect the 

contact interface with the complete system using artificial intelligence. Initially, we will attempt to 

determine the natural frequencies of a pin-on-disk system by considering various surface types for 

the interface. More specifically, the interface will exhibit a numerically generated roughness field. 

Subsequently, an AI model will be developed to predict the contact distribution during a test. This 

part relies on measurements obtained from a thermocouple array embedded near the surface of the 

friction material during the tests. Lastly, based on experimental acquisitions of the surface profile 

at different time intervals, a model will be proposed to determine the wear evolution. The AI models 

specifically developed for these three components employ algorithms such as CNN, GAN, RNN, 

etc. As these concepts may not be familiar to the mechanical engineering community, they will be 

illustrated using a simple example of behavior identification in the introduction of this manuscript. 

In terms of results, the obtained outcomes demonstrate a high level of satisfaction when compared 

to simulation and/or experimental data. This confirms the value of utilizing AI to advance the 

prediction capabilities of these models. Additionally, AI enables understanding the significance of 

input parameters, potentially facilitating system optimization and test control in the medium term. 

 

Keywords: Tribology, Deep Learning, Contact, Multi-Physical, Multi-Scale, Evolutionary 

 

 



6 
 

Resumé 

 
Le contact entre deux pièces, notamment quand il est provoqué comme sur les systèmes de 

freinage, mérite d’être amélioré et donc d’être mieux compris. Les phénomènes mis en jeu sont 

complexes car ils font appel à des notions multi-échelle, multi-physique dans un contexte 

d’évolution constante. Une difficulté supplémentaire est que le contact est fermé, et donc il est par 

conséquent difficile d’observer explicitement les phénomènes d’interface qui joue un rôle 

prépondérant dans les performances visés (pollution sonore, émission des particules fines, usure 

etc.). Au regard des normes environnementales européennes qui seront de plus en plus sévères, il 

est indispensable d’établir de nouvelles stratégies permettant de mieux appréhender le problème 

dans sa globalité. L’équipe souhaite tendre vers le couplage numérique et expérience. La partie 

« expérience » s’appuie sur des bancs d’essais dédiés avec une instrumentation riche et fine. La 

partie « numérique » s’appuie sur des modélisations multi-échelles et multi-physiques tentant de 

considérer des mécanismes tribologiques au sein d’un système complet. Une difficulté est de vouloir 

comparer (recaler) ces deux parties.  

Ainsi, l'objectif de cette thèse est de proposer des modèles prédictifs liant l’interface de 

contact avec le système complet par l’intelligence artificielle. Dans un premier temps, on tentera 

de déterminer les fréquences propres d’un système pion-disque en prenant en compte n’importe 

quelles surfaces pour l’interface. Plus précisément, cette interface présentera un champ de rugosité 

qui sera généré numériquement. Dans un second temps, un modèle IA est développé pour prédire 

la distribution de contact pendant un essai. Cette partie s’appuie sur des mesures d’une nappe de 

thermocouples noyée dans le matériau de friction en proche surface pendant les essais. Dans un 

troisième temps, en s’appuyant sur des acquisitions expérimentales du profil de surface à différent 

instant, un modèle est proposé pour déterminer les évolutions de l’usure. Les modèles IA 

spécifiquement développés pour ces trois parties font appel à des algorithmes de type CNN, GAN, 

RNN etc. Ces notions n’étant pas commune dans la communauté mécanicienne, elles sont illustrées 

sur un exemple simple d’identification de comportement en préambule de ce manuscrit. En termes 

de bilan, les résultats obtenus sont très satisfaisants au regard de la comparaison aux données de 

simulation et/ou expérimentales. Cela confirme l’intérêt de l’utilisation de l’IA afin de passer un 

cap dans la prédiction des modèles. De plus, l’IA permet aussi la compréhension et l’importance 

des paramètres d’entrée qui pourrait servir à moyen terme à optimiser le système ou de piloter les 

essais. 

Mots-clés : Tribologie, Deep Learning, Contact, Multi-Physique, Multi-Echelle, Évolutif 
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An Overview of the Study 

 

1. INTRODUCTION 

The contact mechanism is a tribological issue and one of the most complex problems that 

engineers might face. As it is a multi-scale, multi-physical and evolutionary problem, a correct 

understanding of its physical characteristics leads to make optimal designs in the industrial sector 

and prevents the loss of energy, materials, and the occurrence of many disturbances in which this 

mechanism plays a major role. One of the most common applications in which the contact 

mechanism has a great impact is friction brakes. This type of braking is widely used in the 

automotive and railway industries, but there are two major problems associated with friction brakes. 

First, the squealing of the brake pads, and second, the release of fine particles during the braking 

process, which cause many diseases, including mental [1][2], respiratory [3], skin diseases [4] and 

visual disturbances [5]. 

But diseases are not the only aspect of this problem because the occurrence of these disorders causes 

high costs for after-sales service companies and the replacement of these parts causes the production 

of large amounts of waste, which has many destructive environmental effects [6][7]. 

As the contact issue is multi-scale, multi-physical, and evolutionary, and the contact surfaces evolve 

under the effects of sliding, loads, and different mechanical properties of materials, they can lead to 

different behaviors of the system, which can cause problems. In order to prevent these problems to 

occur, different aspects of the contact mechanism must be identified.  

For this reason, in order to clarify the aspect of this issue, each of these aspects will be described 

separately, and by reviewing the valuable research that has been done before, we will have an 

overview of the road map. 

2. MULTI-SCALE POINT OF VIEW 

To analyze the problem from the multi scale point of view, different scales which are illustrated 

in Figure 1 are presented by [8]. The contact process is basically multi-scale, from the atomic up to 

the system scale. Generally, three scales are considered in tribological problems. The first scale is 

the macro-scale models where the physical quantities are influenced by small scales. The second 

scale is associated to the different components of the global system and their surface topography 

(roughness, plateaus, etc.). The third scale is related to the wear debris, which results from the initial 

contact between the bodies. 
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The figure highlights a remarkable challenge: as the scale increases, the computation time also 

increases dramatically. This can result in calculations for large-scale structures taking years to 

complete. As a consequence, the application of these models becomes highly impractical, making 

it nearly impossible to accurately predict complete systems that incorporate all relevant parameters. 

One of the methods that can help to understand the process of contact is the use of analytical 

or modeling methods. In this regard, many researchers have tried to use these methods to predict 

contact behavior from different aspects. 

Analytical methods: Hertz is the pioneer in the study of contact mechanics and tribology. Hertz 

theory tries to solve this problem by using two non-conforming elastic objects that are exposed to 

frictionless contact mechanics [8][9]. It should be noted that the initial models used to investigate 

the problem were based on Hertz theory and they have taken adhesion into consideration and have 

helped to understand the mechanics of contact [10][11]. But these models have many limitations 

and are only valid for very small contact surfaces [8]. For this reason, in recent years, other methods 

such as semi-analytical [12], multilayered elastic coating or the introduction of anisotropy [13], the 

use of heterogeneous materials [14][15] and the use of viscoelastic properties [16] were used to 

make these methods closer to reality. But it must be admitted that in a real contact phenomenon, the 

contact surfaces are rough, so the models need to be realistic and close to reality, and it is necessary 

to consider roughness as a parameter in models. In fact, this roughness makes the actual contact 

surface much smaller than a perfectly smooth contact surface, which leads to a completely different 

behavior. 

The effects of surface roughness are highlighted by [17], which investigates the relationship 

between electrical conductivity and surface roughness across a wide range of charge values. The 

Figure 1: A time-vs scales amount diagram of models developed in tribology [8]. 
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results confirm that the actual contact area is much smaller than the nominal contact area. [18] 

Provides a valid model for modeling a contact surface that is close to rough surfaces in reality. 

Braking scale: In recent years, the advanced IT science, programming, hardware, and computing 

modeling methods such as finite elements method (FEM) has helped to model the contact 

mechanism and a complete braking system in its whole complexity [19][20] and it is mostly used 

to solve these problems leading to a high number of degree of freedom (DOF) models. Figure 2 

presents the common braking system mostly used in academic and industrial domains [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generally, in these models, the contact surface is considered smooth and the roughness or 

heterogeneity of the materials are not considered in the calculations, which reduces the accuracy. 

Also the contact modeling is often simplified by considering only flat surfaces [21][22][23][24]. 

Furthermore, in studying the dynamic behavior of the system, other minimal approaches have also 

been proposed alongside the reduction of degrees of freedom. For instance, with mode Lock-in 

theory, the stability of frictional systems has been analyzed using simplified mass-spring systems 

[25][26]. 

Surface scale: Since the state of the contact surface plays a significant role in the behavior of 

tribological systems, models have been presented to consider the contact surface state. For 

example,[27] analyzes and models the effect of roughness on the mechanical responses of the 

system, including stress fields [28]. Additionally, [29] investigates the thermomechanical responses 

Figure 2: Complete FEM disc brake model  [19]. 
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of the system to predict the resulting dynamic aspects, including vibrations. But in these models, 

the heterogeneity of materials and the evolution of the state of the contact surface are not considered. 

So, there is a need to analyze specially the surface state evolution in a third body scale. 

Lately, the simplified models that consider roughness were born as the role of surface roughness in 

the occurrence of disturbances in the contact process was inevitable [30].  Obviously, the 

computation time in such models is much less than a complete braking system model, and by 

changing the parameters in the surface scale, the responses at the system scale are examined. But 

these models also could not provide a completely appropriate results, because many unknown 

phenomena are involved in the contact problem or to have a complete model, many parameters must 

be entered into the models, which will firstly increase the computation time and secondly working 

with such models would be very difficult and impractical with such models. 

Third body scale: As the current approaches used for third body models differ from static rough 

modeling, most of these models are based on particle interactions, which contribute to the evolution 

of the contact surface. 

As an example, the third body is considered as a fluid granular medium made of rigid or deformable 

particles in the discrete element method (DEM) [31][32]. 

As the large-scale interactions between contact objects cannot be considered in this approach, an 

improved approach called "Non Smooth Contact Dynamics" [33] has been used in [34] to combine 

FEM to deform contact objects and DEM for third body particles. 

The approaches used for the third body issue are various, such as the cellular automaton [35]. In 

this method, the medium is seen as a discrete set of cells having different states and linked to each 

other by many rules controlling the evolution of the third body. 

The neighboring cells define the state of each specific cell. The movable cellular automaton 

approach is the enhancing factor of this method [36][37] which consists of pairing two cells by a 

state corresponding to their chemical bonds. Thereafter, a general equation is obtained to describe 

the motion of the automaton considering the links between the cells and the force of inter-cell 

interaction. To solve the problem, a response function is introduced to consider the material 

behavior (elastic, plastic, etc.) by linking the cell deformation to stress. 
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3. MULTI-PHYSICS POINT OF VIEW 

When two solids come into contact with each other, various tribological phenomena occur at 

the contact interface (Figure 3), and their interaction may give rise to different physical phenomena 

[8][38]. Among these various phenomena, mechanical (fatigue, deformations, micro-cracks), 

thermomechanical, and vibration aspects could be mentioned. 

 

 

Various mechanisms can typically occur in contact surfaces either individually or in interaction with 

each other, leading to disruptions in contact systems. These mechanisms include fatigue, elastic and 

plastic deformations, as well as the expansion of micro-cracks under loads. 

Fatigue: The Finite Element Method (FEM) has been utilized to investigate the fatigue aspect in 

contact problems within brake systems, which can lead to system disturbances under cyclic loads. 

The modeling approach aims to comprehend and predict the effects of fatigue on the system's 

behavior [39]. 

Deformations: Two kinds of deformation, elastic and plastic could happen due to loading materials 

during the contact process. To understand this mechanism by using a sphere on a flat surface, a new 

method was presented to calculate the elastic deformation. This model considers the influence of 

short-range as well as long-range attractive forces both inside and outside the actual contact area 

[40]. The influence of strain hardening on the cumulative plastic deformation, also known as 

ratcheting, occurring in repeated rolling and sliding contacts, has been assessed through the 

implementation of a non-linear kinematic hardening law. This assessment considers plastic 

deformations and stress levels on the contact surface [41].  

Thermo-mechanical: Heat generation is another mechanism that occurs at the contact surface. 

Indeed the studies show that 95% of the mechanical energy is transformed into heat [42] [43][44] 

Figure 3 : multi-physics phenomena associated to contact [8]. 
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and this temperature increase can spread through the contact surface or in the depth of the solids 

[45]. Changes in the mechanical properties of materials can be caused by high temperature [46] or 

expansion [47]. Since these changes in contact surface are heterogeneous, they lead to completely 

different contact localization [48], and as a result, different responses could be received from the 

system. 

Therefore, initially, experimental models [49][50] were presented for the analysis of the contact 

surface, but since the contact surface is closed during contact and it is not possible to obtain much 

information about the contact state, these models could not provide a complete view of this 

phenomenon. 

For this reason, in an effort to understand the temperature evolution on the contact surface, various 

models [51] [52] have been developed. However, due to their tendency to oversimplify the problem 

and not account for critical factors such as material heterogeneity, the accuracy of these models is 

compromised.  

Therefore, methods such as the inverse method [48] by placing thermocouples under the contact 

surface were created so that they could analyze the behavior of the system by locating the contact 

zones, but these models could not predict the contact location, which is a crucial issue in the contact 

problem. 

Vibrational aspects (friction-induced vibration): Many forms of waves and oscillations within 

solids might be created by the friction in the sliding contact, they can cause noise production and 

its propagation to the environment [53]. These instabilities caused by friction, are generally called 

friction-induced vibrations [38].  

One of the major issues of interest in the transportation industry is the vibration due to friction on 

the brakes. As the friction makes the frequency higher than 1 kHz, it would cause a great discomfort 

for human ear [53]. Furthermore, the consequences of these issues can include safety concerns, 

inconvenient driving experiences, and increased maintenance requirements. As it is known, brakes 

are one of the essential components in terms of performance and safety in the field of transportation. 

Therefore, car manufacturers are looking for the ways to improve the design of the braking system 

to increase its performance quality, efficiency, and durability [38][54]. 

It must be noted that, the surface topography and pressure distribution are the major causes of 

surface instability and then the noise [30][55]. When the contact surface changes due to separation 

or combination of the third body, the friction surface will be changed and consequently the system 

behavior changes [55] (Figure 4), therefore studying and analyzing this issue would be beneficial.  
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4. EVOLUTIVE POINT OF VIEW 

When two solids come into contact with each other due to the presence of surface roughness, 

speed, and load, the contact surface undergoes evolution [56]. These evolutions can be caused by 

the separation of small parts from the contact surface, which either come out of the system or stick 

to the contact surfaces under the effect of high temperature and force during the contact process 

[57], which in any case causes the creation of a new topography generation and, as a result, different 

behavior. Various mechanisms cause the evolution of the contact surface, including Adhesive wear, 

Abrasive wear, Corrosive wear, Fatigue wear, but due to the complexity and smallness of these 

mechanisms, a model that can predict these changes well has not been presented. 

Adhesive wear is due to the transfer of material from one surface to another surface by shearing of 

solid welded junctions of asperities. It leaves pits, voids, cavities or valley on the surface [58][59]. 

This wear occurs because of the adhesive bond. At the contact points, the adhesive bond is stronger 

than the cohesive bond of the weaker material of the Pair. Normally, adhesion occurs when two 

similar chemical composition metals are in contact or contact surface are free from oxide layer 

(vacuum or an inert atmosphere). 

Abrasive wear occurs due to hard particles or protuberances sliding along a soft solid surface. It 

results from ploughing, wedging and cutting phenomena [59] [60]. In ploughing (also called ridge 

Figure 4: Surface evolution and corresponding squeal generation curves [55] 
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formation) process, material is displaced at both the sides and forms a groove with or without 

removal of material. 

Erosive wear is due to mechanical interaction between solid surface and fluid, or impinging liquid 

or solid particles [59] [61]. When particles with some velocity are impacted on the surface of metal, 

the pits and large scale subsurface deformation occur on the metal surface. 

Fretting wear is due to small amplitude of oscillatory or reciprocating movement between two 

surfaces [59] [62]. It is a two-step mechanism. Initially, the adhesive wear occurs due to rubbing of 

two surfaces and then they become oxidized due to large quantity of energy stored in wear particles. 

Fatigue wear is caused by fracture arising from surface fatigue due to cyclic loading [59] [63]. It 

results in a series of pits or voids. It usually occurs in rolling or sliding contact bodies such as 

bearings, roads, etc. After repeated cyclic loading, a crack is observed on the subsurface or the 

surface. The subsurface cracks propagate, connect with other cracks, reach the surface and generate 

wear particles. 

Corrosive wear occurs when sliding takes place in corrosive or oxidative environment. During dry 

sliding also, the oxygen from the normal environment or other gases present in the environment can 

react with the solid surface [59] [64]. The excessive presence of anti-wear additives or other 

chemical agents also can bring corrosive wear. 

Due to the complexities in the wear problem, many models have been presented to help to 

understand the mechanism, for example Adhesive wear [65][66] Abrasive Wear [67][68] Erosive 

wear [69][70] Fretting wear  [71] [72] Fatigue/ Delamination wear [73] [74] Corrosive wear [75] 

but most of these models are either simplified or do not consider the interaction between the 

mechanisms. 

5. AI POINT OF VIEW 

The advancements in computer science, particularly in artificial intelligence and hardware such 

as Central Processing Units (CPUs), Graphics Processing Units (GPUs), and Tensor Processing 

Units (TPUs), have opened up new opportunities for mechanical engineers to tackle complex 

problems. However, despite the long history of AI research and development, the limited 

capabilities of earlier hardware prevented its widespread use in engineering. With the advent of 

modern technology and powerful computing devices such as GPUs and TPUs, AI has become a 

valuable tool for solving complex tasks in science. While AI is widely used in fields such as 

economics, health, and marketing, it is not as commonly used in engineering due to several factors. 

Engineers often view AI as a "black box" and have doubts about its applicability, despite the fact 
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that AI is based on simple mathematical equations that have been automated through programming. 

Additionally, the lack of proper knowledge and understanding of AI algorithms and data structure 

among engineers has led to limited use of AI in engineering. Furthermore, the lack of a consistent 

framework for storing data in engineering sciences has hindered the use of AI in these fields. 

Finally, AI algorithms have primarily been developed for purposes other than engineering and may 

require modification to be effectively used in engineering applications. To fully understand and 

utilize AI in engineering, it is necessary to introduce and discuss the potential uses of AI in different 

areas of engineering. 

Previously, deep learning based methods have been presented to predict system-scale responses 

by examining the system's behavior [76]. In these methods, global system responses are analyzed 

and predicted by computer vision [77] while [78] analyzes the system's responses by considering 

the contact history by using recurrent neural network algorithms. And [79] analyzes and predict 

NVH (noise, vibration, and harshness) brake pad modal characteristics by using artificial neural 

network and machine learning. Or [80] they tried by image processing to predict the dry friction at 

the contact scale. Although these researches claim to have obtained good results, most of them 

analyze the responses of the system and predict them at the system scale, but the origin and root of 

these responses are not investigated.  

Therefore, the main objective of this thesis is to conduct a comprehensive examination of the 

fundamental causes of mechanical problems through the utilization of suitable Machine Learning 

(ML) and Deep Learning (DL) algorithms. The research aims to delve into the root of these 

problems by analyzing the underlying mechanisms and identifying key factors that contribute to 

their occurrence. To achieve this goal, various algorithms will be employed to analyze and interpret 

data, as well as simulate and model the mechanical systems in question. The results of this analysis 

will be used to generate insights and recommendations for addressing the problems under 

investigation. The hope is that the research will contribute to the development of more effective 

solutions for mechanical problems and improve the overall efficiency and performance of 

mechanical systems. 

6. MAIN SKETCH OF THIS THESIS 

So far, a summary of tribology and contact issues has been provided, along with methods for 

understanding and predicting these problems. However, due to the inherent complexity of contact 

problems, the methods presented thus far have not fully elucidated many aspects of this scientific 

domain. As a result, a paradigm shift in the analytical approach and philosophy is necessary to 
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address the contact mechanism problem more effectively. In this study, the application AI, 

specifically DL, is explored to provide a more accurate and comprehensive analysis of contact 

mechanisms.  

Despite the significant potential of deep learning techniques in addressing problems related to 

mechanical science, their application in this field remains moderate, as per literature review. To 

fully harness the capabilities of this method and uncover hidden aspects related to mechanical 

problems, it is essential to first evaluate the effectiveness of deep learning techniques in tackling 

complex mechanical issues. Subsequently, knowledge and experience can be applied to the specific 

area of contact mechanics. 

First, a comprehensible example by using deep learning in a problem related to mechanical and civil 

engineers is presented. In this example, a database is firstly generated using finite element modeling. 

Then it is analyzed by using machine learning and deep learning algorithms and considering the 

physics of the problem. After explaining this example and gaining sufficient view about deep 

learning algorithms and understanding of mechanical problems, we will enter the main part of the 

thesis, which is the problem of contact mechanism. 

The main body of this thesis consists of three parts. In the first part, using modeling data, the effect 

of surface topography on the occurrence of system instability is investigated to determine a criterion 

for these disorders, and the surfaces that have a higher risk of instability are analyzed. 

After understanding the surface physics and examining the modeled data, it is time to analyze the 

experimental data to predict the temperature evolution (another physical aspect) and the 

performance of algorithms in facing experimental data that many parameters are involved in the 

occurrence of system behaviors, and the behavior of the system is studied by predicting the 

evolution temperature of system. 

In the final chapter, an analysis of surface changes, one of the most complex issues in tribological 

studies, is conducted. Based on the surface condition, predictions are made regarding these 

evolutions. 

As the outline of this thesis:  

• In Chapter I, a numerical modeling dataset is used to classify the mechanical properties of 

materials using a neural network architecture. Then, using a 2D-CNN architecture, the 

parameters of the material constitutive law are predicted by analyzing the displacement 

field. 

• In Chapter II, a finite element model dataset is used to investigate the risk of instability in a 

pin-on-disc system based on the roughness of the contact surface. First, a 2D-CNN 
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architecture is used to classify the contact surfaces as stable or unstable, then another 2D-

CNN is used to predict instability frequencies for the unstable surfaces.  

• In Chapter III, the contact surface temperature evolution of a pin-on-disc system is studied 

using an experimental trial dataset and 2D-CNN and RNN architectures to analyze and 

predict the system responses then.  

• In Chapter IV, the evolution of contact surface roughness is generated using a dataset 

obtained from experimental tests (pin-on-disc system) using GAN algorithms. 

The general scenario of this thesis is described below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general scenario of the thesis, which in this chapter artificial intelligence 
algorithms are introduced through an example. 
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Transition 
 

One of the main needs in mechanical engineering, in order to carry out optimal designs, is 

knowing the materials constitutive law and its parameters. However, due to the varying 

behavior of materials, such as anisotropy and the presence of numerous constitutive 

parameters, identifying their behavior becomes a challenging and laborious process. 

Consequently, in order to prevent energy and material wastage, it is essential to acquire 

knowledge about these parameters. 

Therefore, in the first chapter of this manuscript (indicated with a blue box in the main outline  

(Figure I) through a mechanical example), two main goals are followed. The first is to classify 

the constitutive law by analyzing the received responses from a mechanical system, and the 

second is to determine the parameters of the constitutive law.  

However, the primary objective of this thesis is to establish a connection with the field of 

tribology. Nonetheless, through this mechanical example, artificial intelligence algorithms are 

introduced to serve as an interface between the mechanical and computer engineering 

communities. This integration aims to provide a comprehensive perspective on the challenges 

that lie ahead. 

One of the challenges in solving mechanical problems is selecting appropriate algorithms. So, 

the needs, geometry, physics, and the type of data, etc. all must be considered. 

After providing a general point of view of artificial intelligence algorithms for mechanical 

engineers and mechanical problems for computer engineers, the main topic of the thesis, which 

is the use of artificial intelligence in tribology problems, will be discussed.  

  

Figure I: The general scenario of the thesis, which in this chapter artificial intelligence algorithms are 
introduced through an example. 
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I. AI and Mechanics: Demonstrator on Classification and 

Regression Applied to the Constitutive Laws 
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Abstract 

The determination of the stress-strain relationship is a challenge especially when the 

material presents complex behaviors such as anisotropy. Here, the developed method is based 

on the use of Artificial Intelligence (AI) via deep learning (DL) techniques. The input data is 

the displacement field which could, from an experimental point of view, be obtained by image 

correlation. Here, the kinematics field is generated by Finite Element Method (FEM) 

calculations. The main purpose of this section is to classify and identify the constitutive law 

parameters, for these materials. By using the proposed methods, very promising results are 

obtained. The advantage of the proposed method is the quasi-instantaneousness of solution. 

Also, the obtained average errors are less than 3% on all the identified parameters. It should be 

added that the architecture of the AI is of paramount importance where the multi-scale notion 

must be considered, for this reason, an encapsulated architecture is used to determine the 

mechanical properties. 

 

Keywords: Inverse identification, Deep Learning, different constitutive laws 
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I.1. INTRODUCTION 

  Understanding the mechanical properties of materials is not an easy task and requires a 

coupling between experiment and analytical/numerical tools. In order to determine the 

mechanical properties of materials, aid of relationship between stress and strain is required . 

Indeed, in the simplified case (1D), where the width and height of the sample are significantly 

smaller compared to its length, stress can be defined as the force per unit area (σ=F/A). In this 

case, stress (σ) is calculated as the ratio of the force (F) to the surface area (A). Consequently, 

when a body is subjected to an external force, its shape changes, leading to a strain. Strain (ε) 

is determined by dividing the change in length (ΔL) by the initial length (L) of the body (Figure 

1a) [81].  

 

 

 

 

 

 

 

 

In Figure 1b, the relationship between stress and strain is shown. As it shows initially the strain 

increases linearly with the increase of the stress, but by the increase of the stress and passing 

through linear stage, the relationship turns nonlinear.  

But in reality, not only these deformations happen in the direction of the force, but also 

transverse deformations occur (Figure 2), therefore the complexity of the problem increases 

where according to the direction of the applied force, the equations change according to the 

deformations of the object. 

 

 

(a) (b) 

Figure 1a-b:  

a) The change in the length of the object due to the external load applied to 

the longitudinal axis of the object in 1D case. 

b) Strain vs stress diagram for elastoplastic materials which initially has a 

linear behavior, then a non-linear behaviour. 
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The equations corresponding to the deformations are shown in Figure 3, where σ represents 

stresses, ε represents strains, E represents Young's modulus, ν represents Poisson's ratio, ꞇ 

represents shear stress, and γ represents shear strain.  

 

 

 

 

 

 

 

 

 

In addition, determining the stress-strain relationship is a challenge especially when the 

material exhibits complex behavior (anisotropy is the property of a material that allows it to 

change or assume different properties in different orientations, heterogeneity, damage, 

asymmetry of tensile/compression behavior, etc.). Awareness of this relationship is the key to 

understand the behavior of materials at the structural scale in order to obtain the best possible 

designs. This is in a context where environmental standards are increasingly restrictive and the 

need to lighten the structure has become a priority to save material and energy. To meet these 

needs, it is essential to better understand the new materials which are used in present day 

(composites, 3D printing, etc.) with the aim of being able to optimize them on both their 

composition and their shape. 

From a bibliographical point of view, the current approach to characterize the mechanical 

properties of these materials, consists mainly in taking up the standardized tests, simplified 

Figure 2: The change in the length of the object due to the external 
load applied to the longitudinal axis of the object in 3D case. 

Figure 3: The equations of the changes in shapes according to the applied force direction. 

https://en.wikipedia.org/wiki/Shear_strain
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tests [82], or reverse engineering methods to determine the mechanical properties from global 

information [83][84][85][86][87]. In these methods the effort is mainly focused on the 

preparation of the test in order to apply only one loading mode in particular (traction, 

compression, shear, etc.).  Although these approaches make it possible to estimate a constitutive 

law and its associated parameters, they are less accurate when dealing with complex or 

heterogeneous materials. 

Recently, other methods have tried to study the behavior of materials by the help of receiving 

more information from the experimental test process. For example, when the test is heavily 

instrumented, in particular by means of cameras, more advanced studies have made it possible 

to develop strategies based on a numerical- experimental dialogue [88][89] such as the Finite 

Element Model Updating (FEMU) [90] methods and its variations [91]. Nevertheless, the use 

of these numerical methods does not give full satisfaction when the number of parameters to 

be determined becomes important. The difficulty lies in the minimization of a single cost 

function that can generate several pairs of "admissible" solutions.   

In recent years, several methods such as point clouds obtained from simple or complex tests 

and the constitutive law have been proposed to show the relationship between stresses and 

strains to determine the parameters of the constitutive law.  But the relationship could only be 

shown when they were calculated by tensile tests or isostatic homogeneous tests, analytical 

formulae and a simple geometry [92][93][94][95][96][97][98]. 

Recently, new methods have been developed such as "Data-Driven Computational Mechanics" 

(DDCM) [99][100][101][102] and in continuity, Data-Driven Identification (DDI) [103][104]. 

These methods are based on the construction of statically admissible field from field 

measurements. Therefore, these methods allow the identification of certain parameters [103] 

[104][105]. But the complexity of these methods and the high computational time when the 

number of calculated parameters makes them less efficient. Since different materials behave 

differently and the parameters of the constitutive law are various, it is better to first classify 

them according to the constitutive law, then determine the parameters of the constitutive law. 

There are methods [106] which perform the classification of the behavior of materials, but are 

not accurate enough due to the complex material behavior and which take a lot of time to 

perform [99][100]. In this section, a new way is proposed to first, classify the constitutive law 

and second identify the parameters of the constitutive law.  

In the presented method, the displacement, strain, and stress obtained from a modeled tensile 

test are utilized to meet the objectives of the problem. From an experimental test point of view, 

the system responses can be calculated using the image correlation method. This method is 
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solely based on the measurement of kinematic fields from a characterization trial. The used 

methodology utilizes artificial intelligence (AI) on a dataset generated by numerical models. 

This numerical data is exploited from finite element method (FEM). In fact, in the first part, 

the classification between three materials classes (perfect plasticity, bilinear plasticity and 

transversely isotropic) is done. In the second part, by using a supervised learning algorithm, 

the feasibility and capacity of AI is demonstrated to determine the mechanical properties. A 

specific example on a transversely isotropic material is carried out. These material categories 

were chosen because by changing the orientation of mechanical properties and having more 

parameters than perfect plasticity and bilinear plasticity, they can well challenge the ability of 

AI to deal with complex mechanical problems. At the end, the objectives will be to determine 

the Young modulus in the longitudinal and transverse directions of the isotropy axis, the 

Poisson's ratio, the shear modulus, as well as the orientation angle of the transversely isotropic 

material. In this study, we propose a global approach that incorporates the characterization of 

this constitutive law. 

I.2. AI: WHAT IS IT REALLY? 

By development of computer science field, especially in the artificial intelligence and 

hardware such as central processing unit (CPUs), graphics processing unit (GPUs), tensor 

processing unit (TPUs) and the increase of computing power, a new prospect has opened up 

for mechanical engineers to be able to understand and solve complex problems. 

Although the AI is not a new subject [107], and since many efforts have been made to develop 

algorithms in this science in the late 20th century, the low configuration hardware did not allow 

to use this powerful tool for a long time. By using the modern technology as well as computers 

and the availability of (GPUs) and (TPUs), a powerful assistant was born to use in the complex 

tasks of science. 

Although the artificial intelligence is widely used in economics, health, marketing, etc. it is less 

used in engineering, because of several reasons. 

First of all, engineers often perceive AI as a black box, and since the primary objective of 

research for this group is to understand and subsequently address problems, they often harbor 

doubts about using AI. However, it is important to emphasize that artificial intelligence is not 

an incomprehensible black box. It is rooted in simple mathematical equations that have been 

automated through programming science to expedite the solution of these equations. 

Secondly, although mechanical and civil engineers have a good view of programming, the lack 

of proper knowledge of complex artificial intelligence algorithms and lack of proper view of 
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data structure and database, has made them reluctant to use this method, so they use it in very 

minimal sections. 

Thirdly, unlike other sciences that have established well-structured frameworks for data storage 

over many years, the field of engineering lacks a standardized approach to data storage. As a 

result, each researcher tends to archive and analyze data in their own individual manner, 

leading to a lack of coherence in engineering data repositories. 

Fourthly, the algorithms used in artificial intelligence have been developed for purposes other 

than engineering, and in order to use them, they need to be slightly modified or innovated to 

meet the needs well. 

According to the mentioned points and in order to understand the algorithms in artificial 

intelligence properly, we first introduce them and then discuss the potential of using each of 

them in different sections. 

Artificial intelligence: AI is a branch of computer science that refers to the general ability of 

computers to mimic human thinking and perform tasks in real environments, while machine 

learning (ML) is a subset of artificial intelligence and refers to techniques that enable systems 

to learn from examples. Deep learning (DL) is a subfield of machine learning, where neural 

networks form the backbone of its models. Figure 4 shows an overview of artificial intelligence 

and its scope. 

In general, ML algorithms can be categorized according to the algorithms used to predict or 

categorize (ML and DL), and the learning methods (supervised learning, semi-supervisory 

learning and non-supervised learning) [108][109]. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4: Overview of AI, machine learning and deep learning 
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Machine learning: (ML) finds a logical connection between inputs and responses using the 

examples given and non-complex algorithms, without explicit planning, human dictation and 

intervention. In machine learning, instead of planning everything, data is given to an algorithm, 

so it is the algorithm that builds its logic based on the given data [109]. 

Some of the most important machine learning algorithms are: 

• Regression Algorithms 

• Instance-based Algorithms 

• Regularization Algorithms 

• Decision Tree Algorithms 

• Bayesian Algorithms 

• Clustering Algorithms 

• Association Rule Learning Algorithms 

• Artificial Neural Network Algorithms (ANN) 

These algorithms can be used according to problem needs which contain prediction or 

classification. 

Deep Learning: (DL) is a subset of machine learning in which, inspired by human brain 

algorithms, a large amount of data is presented to the model, and by analyzing this data, the 

model can learn and analyze a wide range of problems. Deep learning algorithms, such as the 

human brain, can learn from experience, run a program repeatedly, and at each step, the 

algorithm improves itself to make the answers more accurate [110]. 

Some of the most important machine learning algorithms are: 

• Convolutional Neural Network (CNN) 

• Recurrent Neural Networks (RNNs) 

• Generative Adversarial Networks (GANs) 

• Auto-Encoders 

• Deep Boltzmann Machine (DBM) 

• Deep Belief Networks (DBN) 

These algorithms also can be used according to problem needs which contain prediction or 

classification and can classify them into three general categories in terms of learning methods. 

Supervised learning: Supervised algorithms are rhythms that attempt to find logic between 

input and output data using the examples given to them. In this method, all data is labeled and 

the output is labeled according to each input. In this way, the model takes the input data and 

tries to find the outputs. If the model responses were significantly different from the actual 
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responses, the algorithm attempts to correct the model in order to minimize the discrepancy 

between the predicted and actual answers. 

Unsupervised learning: In unsupervised learning there is no label for the input data and the 

model tries to categorize the data according to the similarity of the data or mathematical rules. 

Semi-supervised learning: In this method, some data is labeled, and some is not. By looking 

at the labeled data, the model tries to find a logic between input and output data, then develops 

its logic on the unlabeled data. 

It is not possible to say which algorithm is the best to use in mechanical engineering or civil 

engineering, because each of these algorithms, depending on their architecture, can be very 

suitable for a series of problems and very unsuitable for a number of problems. For this reason, 

before using any of them, two aspects of the problem must be considered. Firstly, the physics 

of the problem should be known well, and secondly, by studying the existing algorithms, the 

most appropriate algorithm for solving the problem could be selected. After introducing AI, it 

is time to solve the defined problem. For this purpose, a scenario has been defined that is 

described in the next part. 

I.3. GLOBAL VIEW OF THE PROBLEM RESOLUTION 

In fact, the goal of the proposed scenario is: first classify different materials based on 

their behavior, then predict the parameters of the constitutive law according to the mechanical 

responses of the system. A scenario overview is shown in Figure 5. This process consists of 

different steps:  

- Step 1: various mechanical properties are incorporated into the numerical model, leading to 

distinct behavioral characteristics exhibited by the system. 

- Step 2: the responses gained from the model include displacements, deformations, stresses, 

and reaction forces, for each configuration are prepared and recorded in the database. 

- Step 3. this data is used for training the AI model in order to classify the mechanical properties 

of materials.  

- Step 4. after classifying the mechanical properties, this data is used to determine the 

mechanical properties.  
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- Step 5. the model performance is analyzed facing new data. Each of the mentioned steps is 

explained in detail in pursuit. 

 

 

I.3.1. The database generation process  

The database for the training algorithm is generated artificially using a finite element 

software. In order to demonstrate the approach, a tensile test on a standardized specimen is 

proposed. The geometry is detailed in Figure 6 where we find a section reduction in the center 

of the specimen. The dimensions are specified in millimeter and allow being in conformity 

with the standardized tests of the ISO-6892-1 standard. The database contains the whole 

kinematic field of the reduced section (stress, displacements, strains), as it could be done from 

the measurement of fields by cameras from an experimental point of view. A set of 2544  

(consists of 48 rows and 53 columns) nodes are present as shown in Figure 7. The length of the 

arch in the area in question is 41.5 mm, which consists of 52 elements  and the height of this 

area varies between 24 to 44 mm, which consists of 47 elements. Average size of the elements 

in the longitudinal direction is 0.743 mm and in the transverse direction is 0.66 mm.  

 Figure 5: Strategy global to link system responses with mechanical properties 
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Concerning the boundary conditions, a displacement of 5 mm in the X direction is imposed on 

point A which is coupled with all the displacements of the right edge of the specimen. On the 

left edge (noted B in Figure 7), an embedding is imposed on all the nodes in order to comply 

with an experimental tensile test. Then, the stress, displacements and strains are recorded on 

all the points located on the central part of the test specimen and reactions force for the left 

edge. An illustration of the results obtained from the model is presented in Figure 8 where the 

displacement and strain fields are shown. The objective is also to demonstrate the variations in 

displacement and strain gradients, which can serve as signatures of the properties. 

 All these calculations are done sequentially on a server running at 2.50Ghz in a single 

processor. The calculation time to generate the whole database is approximately one day . 

Figure 6: The geometry of model (Dimensions are in millimeter and the thickness of the sample is 1 mm) 

Figure 7: Boundary conditions: displacements= 0 mm on the left edge(B), and the displacement 
applied to point A= 5 mm 



32 
 

 

After obtaining all the results, the data is normalized and then split as training, validation and 

test sets. This normalization is an essential step, so that there is no higher weighting for a family 

of data. 

Normalizing a set of data transforms the set of data to be on a similar scale. The goal is usually 

to recenter and rescale the data to be arranged between 0 and 1 or -1 and 1. Normalization can 

help the training phase, as the different features are on a similar scale, which helps to converge 

faster the training phase [111]. 

Here the used normalization method is finding the absolute maximum value of each feature, 

then diving all values by this value, the scale of all data will be the same between 0 and 1. 

I.3.2. Classification of the material behavior 

According to the mentioned goals, the behavior of materials will be classified by using 

the artificial neural networks algorithm. For this purpose, strain-stress data of three classes of 

materials, including “perfect plasticity” (Figure 9a), “bilinear plasticity” materials (Figure 9b), 

and “transversely isotropic material” (Figure 9c), were stored in the database and the model 

was asked to classify them according to the different behavior of each material.  

Figure 8: Numerical kinematic results with: nu = 
0.1, G = 100 MPa, E1 = 300 MPa, E2 = 200 MPa, 
Orientation angle = 45° 
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In fact, by changing the mechanical properties of each category, the system responses, 

including the stresses and strains associated with each configuration, are recorded. 

 As, for the perfect plasticity, parameters including Young modulus (between 50 and 500 MPa), 

the elastic limit (between 25 and 80 MPa), and Poisson’s ratio (between 0.1 and 0.4) are 

variable. 

 For the bilinear plasticity model, parameters including Young modulus (between 50 and 500 

MPa), the elastic limit (between 25 and 80 MPa), Poisson’s ratio (between 0.1 and 0.4), and 

plastic strain (between 0.05 and 0.25) are variable.  

 For transverse isotropic elastic materials, Young’s modulus varied (between 50 and 500 MPa) 

in the longitudinal and transverse directions, shear modulus (between 50 and 200 MPa), 

transverse angle (between 0 and 90), and Poisson’s ratio (between 0.1 and 0.4) are variable. 

Each material shows different behavior due to their mechanical properties, which causes them 

to have different strain-stress curve. Strain-stress data for each of these configurations are 

stored in the database, and a label is assigned to each of these behaviors according to the 

different received responses.  

2000 samples were made for each type of material, and 1700 cases were used in the training 

phase and 300 in the test phase. Then, after the data has been prepared for the first part of 

modeling, which is classification, the model training phase begins. 

From this point of view, neural network algorithms were used to classify mechanical behavior, 

because in the presented example, the purpose of classification is 3 different classes of 

materials, and in machine learning algorithms, when the number of classes increases, the 

accuracy of the model decreases, because the algorithms have to analyze more features, but 

neural network models have a good performance in multi-class classification [112]. 

The schematic of the artificial network model used is shown in the Figure 10. 

(a) (b) (c) 

Figure 9a-c: Schematic of strain stress curves for different materials 

a) Schematic of strain stress curve for perfect plasticity (Class 1) 

b) Schematic of strain stress curve for bilinear plasticity (Class 2) 

c) Schematic of strain stress curve for transversely isotropic elastic (Class 3) 
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In the following, neural networks are introduced and then they are classified into different 

categories using a mechanical behavior neural network. 

I.3.3. Use of Artificial neural networks (ANN) to classify system responses 

An artificial neural network (or simply neural network) consists of an input layer of 

neurons (or nodes, units, perceptron), several intermediate layers of neurons, and a final layer 

of output neurons [113].  

First, we will give a summary of neural networks, then, it will be applied to the problem. 

A model made of ANN algorithms generally consists of the following parts: 

• Neurons 

• Weights  

• Activations 

• Optimization 

• Loss function 

Multilayer perceptron: Neural networks or multilayered perceptron, are made up of a certain 

number of neurons [114]. Neural networks are designed to model the structure of the human 

brain in order to address challenging computational tasks, including prediction. The goal of 

Figure 10: The schematic of the used (ANN) model to determine the mechanical properties. 
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these algorithms is not to create real models of the brain, but to create robust algorithms and 

data structures that we can use to model difficult problems. A row of neurons is called a layer, 

and a network can have multiple layers (Figure 11). The architecture of network neurons is 

often called the network topology. 

 

 

 

 

 

 

 

 

 

 

Neurons: A block of neural networks is made of artificial neurons [111]. They are simple 

computational units that generate the output signals by giving weight to the input signals.  

(Figure 12) 

 

 

 

 

 

 

 

 

After creating the database and choosing the algorithm that suits the needs of the problem, the 

model training phase begins. 

The training phase of models made of neural networks consists of two parts. In the first part, 

which is called training, the data of the training phase is entered to the model and the weights 

are updated according to the input data and forecasts. Then in the next part, the validation data 

is entered to the model and the model tries to edit the weights by comparing the responses of 

the validation data to the real data so that the model has a good generalizability and has an 

acceptable performance in the test phase. One of the methods that can explain the model 

Figure 12: Schematic of an artificial neuron 

Figure 11: Schematic of an artificial neural network 
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behavior in the training and validation phase is the loss function curve, which measures the 

error or mismatch between predicted and actual values, helping evaluate the performance of 

the model. For having an acceptable performance in the training and validation phase, two 

points must be considered. The first is that the loss curves tend to zero, indicating a decreasing 

error between predicted and actual values. The second is that both the training and validation 

loss curves converge, suggesting that the model is effectively learning and generalizing across 

both datasets. An artificial intelligence model can perform well when its hyperparameters are 

well adjusted. 

In order to set the best hyperparameters for model training, an iterative strategy is adopted. 

Hyperparameters are adjustable parameters that are not learned by the model itself, but rather 

set by the user before the training process. They control the behavior and performance of the 

model, such as the learning rate, batch size, number of hidden layers, and activation functions. 

In order to decrease calculations time, two models were considered in parallel, in each the loss 

functions were constant. And each model was run with different configurations to find the best 

hyperparameters. Finally, the average error percentage was recorded for each hyperparameter.  

In this strategy, to reduce the calculation time, two models were built in parallel, in each, the 

loss function, the number of epochs (An epoch is a complete learning cycle involving the 

forward and backward propagation using all the data, and the model tries to optimize the results 

by examining the error rate relative to the actual values.)  (70 epochs), and the number of batch 

size (32 batch), which refers to the number of samples processed together during each iteration 

of training, were considered as fixed parameters. Then, in each model, the optimizer and metric 

were changed to find the best ones. In the following, after finding the best optimizer, metric 

and loss function, these hyper parameters are considered constant, and in the next step, the best 

batch size is found by keeping the number of epochs constant. Then the number of data required 

for training the model was found. Then best value of epoch is determined by changing the 

number of the epochs. The results are shown in (Table 1). The computation time for setting 

hyper parameters and complete training phase of the classification model by a server computer 

(Configuration: Memory: 128 GB, Processor: Intel® Xeon® Gold 5215 CPU @ 2.50GHz *40, 

Graphics: NVIDIA Corporation GV100GL [Tesla V100SPCIe 32GB] and a Samsung SSD 2 

TB M.2 NVMe) is nearly 72 hours. 
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By using the hyperparameters obtained from the previous step, an artificial neural network 

model is built to find the best number of model layers that has the lowest error percentage. 

For this purpose, first the model was trained with 4 layers with a percentage error of 3.01%, 

then with 5 layers with a percentage error of 2.86%, 6 layers with a percentage error of 2.63%, 

7 layers with a percentage error of 2.71%. and finally, 8 layers with a percentage error of 2.69%. 

The results obtained by the number of layers compared to the error percentage are shown in 

Figure 13. 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Error percentage vs. the number of layers 

Table 1: Received responses from the classification model for different configurations 
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By looking at the model, it can be seen that initially the error percentage of the model decreases 

as the number of layers increases, but after 6 layers, there is no significant change in the 

performance of the model. For this reason, the best number of layers was 6. Table 2 shows the 

final specifications of the used model. 

 

 

 

 

 

 

 

 

The loss function relative to the epoch curve can represent the behavior of the model in this 

phase. 

The loss function-epochs curves and the accuracy evolution for this classification is shown in 

Figure 14. The blue curve represents the loss function in the training phase and the orange 

curve represents the loss function of the model in the validation part. In fact, the learning 

process consists of two parts, training and validation phases, and the model seeks to minimize 

the value of loss function in these phases, also tending this trend to zero indicates a good 

training phase for the model. It is clear that the model has a good training phase so that the loss 

function curves in the training and validation phases tended to zero and both of these curves 

were converged, and also, the accuracy of the model tends to one.  

 

 

 

 

 

 

 

 

 

 

It is important because if the model does not perform well during training and has over-fit or 

under-fit, measures should be taken to guide the model to better training. 

Figure 14: Loss function curves and accuracy evolution of model percentage 

Table 2: Model specifications for classification 
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The over-fitting is one of biggest problems in training neural networks. It means that the neural 

network at the certain time during the training period does not improve its ability to solve 

problem anymore. But just starts to learn some random regularity contained in the set of 

training patterns [115][116][117]. Over-fitting occurs when astatically model describes random 

error or noise instead of the underlying relationship [116][118][119]. 

Under-fitting is the opposite of Over-fitting. This occurs when the model is incapable of 

capturing the variability of the data [116][120]. Under-fitting, on the other hand, means the 

model has not captured the underlying logic of the data. It doesn’t know what to do with the 

given task, therefore, it provides an answer that is far from reality. 

 In order to test the generalization performance of the model facing new data, a test phase is 

performed on 300 samples of test data not encountered in the training phase. The result is 

presented in the confusion matrix (Table3). The classification time in the test phase is nearly 

10ms for each case. 

 

 

 

 

 

 

 

 

Looking at the confusion matrix, it can be seen that the model can classify well, so it recognized 

292 cases out of 300 (perfect plasticity materials) well the rest 7 cases misidentified bilinear 

plasticity and 1 case transverse isotropic (elastic). In the case of bilinear plasticity, it 

categorized 289 cases well and incorrectly identified 11 cases as perfect plasticity. In the case 

of transverse isotropic (elastic), it categorized 293 cases correctly and 7 cases incorrectly, also 

5 cases were bilinear plasticity, and 2 cases were perfect plasticity. The error percentage of 

model in detecting perfect plasticity is 2.6%, bilinear plasticity is 3.6% and transverse isotropic 

(elastic) is 2.3%.  

Two examples of misclassified are shown in following. In the Figure 15, the bilinear plastic 

material is miss-classified as perfect plasticity by the model. It can be seen that the material 

behavior is very similar to perfect plasticity and the curve has entered the plastic phase with a 

very small angle that is why the model mistook it as perfect plasticity. Or in Figure 16, the 

model is identified a bilinear plastic material as elastic material, which can be due to the angle 

Table 3: Confusion matrix to classify the behavior of the material 
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of the diagram between the elastic and plastic phases. In short, the problem comes from a bad 

discretization in the finite element method that should be refined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After having done the classification model, now is the time to determine the mechanical 

properties of the materials according to the displacements. 

 In the next part, prediction of the mechanical properties of transverse isotropic materials is 

presented. These materials were selected because they have a larger number of parameters and 

more complex behavior than other materials in the database. 

 

Figure 15: A bilinear plastic material which is misclassified as perfect plasticity 

Figure 16: A bilinear plastic material which is misclassified as elastic material 
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I.3.4. Identify the parameters of the transversely isotropic material 

 
The class of transversely isotropic elastic materials will be used because its constitutive 

law consists of numerous parameters (5 parameters) and the ability of artificial intelligence 

algorithms can be challenged facing a relatively complex behavior. In a plane, this class of 

material is characterized by an axis that allows to orient longitudinal and transverse Young’s 

modulus, the Poisson’s ratio as well as the shear modulus. An overview of these materials is 

shown in Figure 17. These parameters will be the input of the finite element model. The value 

ranges for these parameters are globally inspired by commonly used materials where Young’s 

modulus for both directions will be between 50 and 500 MPa, the shear modulus will vary 

between 50 and 200 MPa, and finally the values of the Poisson’s ratio will be in the interval 

[0.06-0.4]. The angle of the axis of the transverse isotropy can be arbitrary, thus ranging from 

0 to 180°. The distribution of mechanical properties in the database are not homogeneous and 

the data are denser in the range of materials that are mostly found in nature, the data distribution 

is shown in Figure 18. 

 

 

 

 

 

 

 

Figure 18: Density curve of mechanical 
properties in the database 

Figure 17: transversely isotropic elastic materials schematic 
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To summarize, 17680 samples with different properties are generated from the finite element 

analysis. Each case is unique by combining the dispersion of all the parameters. This data 

number is the minimum data by which the model can have proper training phase, and the reason 

is shown in Table 4. With this mapping, a wide range of data is generated that helps to build a 

coherent database, also the generalization capacity of the model built with a complete database 

is very high. 

I.3.5. First proposal: Machine Learning exploiting the displacement field  

Several strategies were considered to determine the mechanical properties of transverse 

isotropic materials. These strategies include machine learning and deep learning which are 

described below. 

 Indeed, the goal is to use exclusively the displacement field and the reaction force (obtained 

on the point A Figure 7) without any particular treatment. From an experimental point of view, 

these displacements could be derived from image correlation for example, and the reaction 

force can be deduced by the information given by the machine test. In order to train the model, 

70% of the data is allocated to the training phase, 20% of the data to the validation phase, and 

10% to the model test. 

In the first scenario, the data such as displacements and reaction force are entered to the model 

in form of vector in order to determine the mechanical properties of the materials including, 

the Poisson’s ratio, Young modulus in the longitudinal and transverse directions of the isotropy 

axis, the shear modulus as well as the orientation angle of the transversely isotropic material. 

The model scheme is shown in Figure 19. An iterative strategy is used to adjust the 

hyperparameters so that to reduce the calculation time. Four models are built in parallel, in 

each, the loss function, the number of epochs (100 epochs), and the number of batch size (32 

batch) are considered as fixed parameters. Then, in each model, the optimizer is changed to 

find the best ones. In the following, after finding the best optimizer and loss function, these 

hyper parameters are considered constant, and in the next step, the best batch size is found by 

keeping the number of epochs constant. Then the number of data required for training the model 

is found. Then best value of epoch is determined by changing the number of the epochs. The 

results are shown in Table 4 and the model specifications are shown in Table 5. The 

computation time for setting hyperparameters and completing the training phase of the 

identification model by the server computer (explained in the classification of the material 

behavior part) is nearly 45 hours. 
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The loss function curves in the training phase are shown in Figure 20, which shows that the 

training and validation curves have converged but did not tend to zero, indicating that the model 

could not find a good correlation between input and output data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: The schematic of the used (ANN) model to determine the mechanical properties 

Table 4: Received responses from the identification model for different configurations 
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After the training phase, although, the model does not have a proper evolution in the training 

phase, it is tested by the test phase data to evaluate its performance facing new data. 10 tests 

were randomly selected from the test database, but it did not yield acceptable results. 

These results are shown for each of the mechanical properties in Figures 21 a to 1e. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: (ANN) model specifications to determine the 
mechanical properties. 

Figure 20: Loss function curves of (ANN) to 
determine the mechanical properties. 

(a) (b) 

(c) (d) 
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In these figures, the blue stars show the actual results, and the red stars the predicted values in 

the test phase. 

The error rate for Poisson's ratio is 10.3%, Young modulus in the longitudinal direction is 9.5%, 

11.5% in the transverse direction, the transverse angle is 12.7%, and the shear modulus is 14%. 

In fact, it can be said that since the spatial form of the input data is not preserved, the model 

could not find a relationship between displacements and mechanical properties. For this reason, 

another method must be used to deal with this issue. 

I.3.6. Second proposal: deep learning exploiting displacement fields - 2D 

Convolutional Neural Networks (2D-CNN) 

In fact, since acceptable results were not obtained in the previous section, it was decided 

to preserve the spatial form of the input data, including the longitudinal and transverse 

displacement fields in form of matrix in different layers, that is why 2D-CNN is used, given 

that in the previous scenario, the data was entered into the model in rows form.  

Convolutional Neural Networks are a powerful artificial neural network technique. They are 

popular because researchers are achieving state-of-the-art results on difficult computer vision 

[77][121][122]. 

In fact, in terms of the structure, 2-dimensional convolutional networks are composed of 

perceptron that are placed in a two-dimension plan.  

Convolutional neural networks, not only maintain spatial shape of the input matrix in the 

network, but also establish correlation between the input matrix arrays. Here are some benefits 

of using convolutional neural networks: 

• They use fewer parameters (weights) to learn than a fully connected network. 

• They are designed to be invariant to object position and distortion in the scene.  

(e) 

Figure 21a-e: Results of the test phase to determine the 
material properties. 

a) Results of the test of the model to determine the 

Poisson's ratio. 

b) Results of the test of the model to determine the 

Young's modulus (in longitudinal direction). 

c) c: Results of the test of the model to determine 

the Young modulus (in transverse direction). 

d) d: Results of the test of the model to determine 

the Young modulus (in transverse direction). 

e) e: Results of the test phase to determine the 

shear modulus. 
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• They automatically learn and generalize features from the inputs. 

 

A model made of (CNN) generally consists of the following parts: 

• Convolutional Layers 

•  Filters 

•  feature maps 

• Pooling layers 

• Fully connected Layers  

 

According to the needs of the problem and the described algorithms, now is the time to build a 

model to assess the ability of these algorithms to deal with a mechanical problem.  

The AI scheme for the second strategy is summarized in Figure 22. It consists of six 2D-

convolutional layers and various filters that are applied to make the input data clear for the 

model. Since the goal is prediction, the activation function "linear" are used in the first two 

layers and the "relu" activation function is used in the other layers. Then, seven "dense" layers 

with "relu" activation function are used. The used optimizer is "adam" and the loss function 

used is "mean_squared_error". The strategy of the previous part is used to adjust the 

hyperparameters so that to reduce the calculation time, again four models are built in parallel, 

in each, the loss function, the number of epochs (100 epochs), and the number of batch size (32 

batch) are considered as fixed parameters. Then, in each model, the optimizer is changed to 

find the best ones. In the following, after finding the best optimizer and loss function, these 

hyper parameters are considered constant, and in the next step, the best batch size is found by 

keeping the number of epochs constant. Then best value of epoch is determined by changing 

the number of the epochs. The results are shown in Table 6 and the model specifications are 

shown in Table 7. The computation time for setting hyperparameters and completing the 

training phase of the identification model by the server computer (explained in the 

classification of the material behavior part) is nearly 80 hours. 

 In order to clarify the behavior of the model, the loss function-epoch curves during the learning 

phase are shown in Figure 23, for each target (Poisson’s ratio, Angle, Young modulus 1, Young 

modulus 2, Shear modulus). But Figure 23 shows that the trend of the model is not good and 

indicates the lack of correct training of the model. It is evident that the loss function curves 

have not converged. However, the rate of decrease in the loss function is closer to zero 

compared to the previous architecture. This divergence shows that the model cannot find a 
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correlation between the inputs and the outputs. This means that the model does not have enough 

information to find the mechanical properties. Other works has been done on the AI scheme by 

increasing the number of layers in particular, which did not solve the problem. 

 

 

 

 

 

 

Figure 22: The 2D-CNN schema of the used meta-
model to determine the mechanical properties 

Table 7: (2D-CNN) model specifications to 
determine the mechanical properties 

Table 6: Received responses from the identification model for different configurations 



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23a-e: Loss functions to determine mechanical 
properties using displacements and reaction force at 
point A. 

a) Loss function curve to predict Poisson's ratio 

b) Loss function curve to predict Young's 

modulus (in longitudinal direction) 
c) Loss function curve to predict Young's 

modulus (in transverse direction) 
d) Loss function curve to predict the shear 

modulus 
e) Loss function curve to predict the 

orientation angle 

 

 

(c) 

(a) (b) 

(d) 

(e) 
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Although the rate of decrease in the loss function during the training phase may be close to 

zero, the divergence of the loss function curves between the training and validation phases 

indicates that the model did not generalize well during training. This discrepancy suggests that 

the model may have overfit the training data, resulting in poor performance on unseen data. In 

addition, in the test phase, the model cannot provide good results, and the error rate for the 

Poisson's ratio is 8.3%, Young modulus in the longitudinal direction is 9.7%, 11.2% in the 

transverse direction, the transverse angle is 12.6%, and the shear modulus is 11.8% which 

confirms that the model is not able to solve this problem (Figure 24 a-e shows the results). 

(a) 
(b) 

(c)  (d) 

(e) 

Figure 24a-e: Results of the test phase to determine the 
material properties 

a) Results of the test of the model to determine 
the Poisson's ratio  

b) Results of the test of the model to determine 

the Young's modulus (in longitudinal 

direction) 

c) Results of the test of the model to determine 

the Young modulus (in transverse direction) 

d) Results of the test phase to determine the 

shear modulus 

e) Results of the model in test phase to 

determine the orientation angle 
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I.3.7. Third proposal: deep learning exploiting displacement field and strain field 

As the previous  results are not completely conclusive, it is then essential to physically 

enrich the initial model by drawing inspired "Physics Informed Neural Networks" (PINNs) 

[123][124], where the strain field would be introduced as an input data like the displacement 

fields. This strain field is deduced from another AI scheme which had an input data in the 

displacement fields. The last schema is also derived from a 2D-CNN model. The global scheme 

is presented in Figure 25. Here the purpose is to improve the performance by dividing the 

learning process into two separate parts. In the first part, the model predicts the strains by 

analyzing the displacements in the longitudinal and transverse directions. 

 Then the outputs of this step enter into the second part with the inputs of the first step to predict 

the mechanical properties. The first structure of model consists of five 2D-convolutional layers. 

The activation function used in the first layer is "linear" and for the other layers, the activation 

function ''relu'' is used. After the 2D-convolutional layers, four "dense" layers are applied, and 

the found hyperparameters for the model in (I.3.6) are used. In the second step of the model, 

the same model as in (I.3.6) is used, with the difference that instead of using seven dense layers, 

six layers are used. The computation time for setting hyperparameters and completing the 

training phase of the identification model by the server computer (explained in the 

classification of the material behavior part) is nearly 80 hours. (Table 8 shows the model 

specifications) 
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In the following, the behavior of the model is verified in two parts, first with the analysis of the 

loss function and then with the test data.  In fact, in this section, the displacements of the test 

data samples are given to the artificial intelligence model to check the generalizability of the 

model. The first parameter to analyze is the Poisson ratio, and loss function curves are shown 

in Figure 26. As shown, the curves tend to zero and indicates a good learning operation of the 

Figure 25: The scheme of model to improve the 
regression performance 

Table 8: (2D-CNN) model specifications to determine the mechanical properties 
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model.  After completing the training phase, the effectiveness of the model is verified with data 

outside the original database.  

 Figure 27 compares Poisson ratio results across 10 tests randomly selected from the test data. 

Blue stars represent the values given to the (FEM) and red stars represent values predicted by 

AI. Figure 27 shows the results obtained from the model and indicates that the model is working 

well, also the maximum relative error for predicting this parameter is 8.5%. The model error 

rate for the Poisson's ratio in prediction phase is 5.37%.  

 

 

 

 

 

 

 

 

Young's modulus in the longitudinal direction is the second mechanical property to predict. 

The loss function curve is shown in Figure 28. The training and validation curves show that 

the training process is well done, then the model should be evaluated with test data to ensure 

the accuracy of the results. The maximum error rate for this parameter in the test section of the 

model is 3.48%, and the average error associated with the Young's modulus in the longitudinal 

direction is 2.67 %, which is an acceptable percentage. Figure 29 shows the results of real and 

predicted values for several samples. The red stars are the results of the AI model, and the blue 

stars are the actual values, used for this parameter in the (FEM) model. 

 

 

  

 

 

 

 

 

 

The above trend for finding the Young's modulus in the longitudinal direction is repeated for 

finding the Young's modulus in the transverse direction. Figure 30 shows the training and 

Figure 28: Loss function curve to predict 
Young's modulus (in longitudinal direction) 

Figure 27: Results of the test of the model 
to determine the Poisson's ratio  

Figure 26: Loss function curve to predict 
Poisson's ratio  

 

Figure 29: Results of the test of the model to 

determine the Young's modulus (in 

longitudinal direction) 
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validation curves that indicate a proper performance of the model in the training phase. In 

Figure 31 the test results are shown, and it should be noted that the maximum error rate for this 

target is 4.79%. Also, the average error rate of the model is 3.47% which provides very good 

responses from the model. 

 

 

 

 

 

 

 

 

 

The model training process and the loss function for the prediction the shear modulus is shown 

in Figure 32 and the model test results are shown in Figure 33. The error rate is 1.98%, which 

is a good indication for the efficiency of the model. The performance of the model in this 

section is quite well as the maximum value is 3.5%. 

  

 

The last parameter that is examined in this part is determining the angle of the transverse 

isotropy.  The process of training and validation to predict this parameter is shown in Figure 34. 

The model then is evaluated by test data which these results are shown in Figure 35. The 

maximum error value for the model-testing phase to find this parameter is 3.2%. The average 

error of the model for predicting the transverse angle is 1.35% and results indicate the high 

accuracy of the model to predict this parameter. 

Figure 32: Loss function curve to predict 
the shear modulus 

Figure 30:  Loss function curve to predict 
Young's modulus (in transverse direction) 

Figure 31: Results of the test of the model to 
determine the Young modulus (in transverse 
direction) 

Figure 33: Results of the test phase to 
determine the shear modulus 
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In conclusion, quantitatively, the results are quite convincing regardless of the parameter to be 

identified. and the classification time in the test phase is 7ms for each case. Therefore, the step 

of introducing the strain field in the AI algorithm proved to be crucial.  

I.4. IDENTIFICATION OF INFLUENTIAL AREAS FOR 

PARAMETER DETERMINATION 

After making predictions in order to find the mechanical properties with respect to 

displacements and strains, it is important to visualize the zone on the surface that are more 

important for the algorithm and in order to find a logical correlation between inputs and outputs 

can lead to a better understanding of the physics of the problem. In fact, the goal is to 

understand the performance of the algorithm by visualizing the zones that have more weight 

on the structure of model. In order to determine and illustrate these zones, it is necessary to 

find the weight of each input elements of the model. For this reason, a machine learning 

algorithm (feature sensitivity also known as feature contribution in XGBoost which is an 

implementation of gradient boosting machines [125]) is used.  In fact, in this process, each of 

the constitutive law parameters is analyzed separately. For this purpose, displacement and 

deformation matrices are converted into vector form and are considered as the input for the 

feature sensitivity algorithm, then each of the parameters is considered individually as a target 

so that the feature sensitivity is determined. Then the results were converted into matrix form 

to show their spatial form.  Finally, after determining the weight of each element, these weights 

are plotted by assigning color as the weight. 

Figure 34: Loss function curve to predict the 
orientation angle 

Figure 35: Results of the model in test phase 
to determine the orientation angle 
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I.4.1. Influential zones for finding Poisson's ratio 

 First, the zones that are most influential in order to find the responses for prediction the 

Poisson's ratio is investigated. The results are shown in Figure 36 by associating a dark color 

to the places where the zone is influential with respect to the search for the value of the 

Poisson's ratio. As it can be seen, the algorithm used a special pattern to determine the Poisson's 

ratio. The edges and a pattern of oblique lines in the central areas have the most presence. 

 

 

 

 

 

 

 

 

 

 

I.4.2. Influential zones for finding Young's modulus in the longitudinal direction 

The Young's modulus in the longitudinal direction is the second target to be analyzed. 

The strategy used in the previous section is also used for this section. The aim is to better 

understand the performance of the algorithm to make clearer the learning process of the deep 

learning model. In Figure 37 more important zones for the algorithm are illustrated. The pattern 

of diagonal lines that start from the top left and continue to the right is shown in the Figure 37, 

in addition, a cloud of points in the center of the image tilted to the left have more effects in 

this analysis. 

 

 

  

 

 

 

 

 

Figure 36: The influential zone for the algorithm to predict the Poisson's ratio 

Figure 37: The influential zone for the algorithm to predict the Young's modulus in the longitudinal direction 
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I.4.3. Effective zones for finding Young's modulus in the transverse direction 

The next goal is to find more significant areas for the Young's modulus in the transverse 

direction. It can be derived from Figure 38 that the density of the lines is higher on the top and 

bottom edge and less density towards the center.  

 

 

  

 

 

 

 

 

I.4.4. Effective zones for finding Shear modulus 

In this part, the effective zones for the algorithm in order to predict the shear modulus 

are studied and analyzed. Figure 39 shows the active points are more in the center and corners 

of the surface. The point to be made is that the more effective areas are along the load applied 

to the geometry. 

  

 

 

 

 

 

 

 

 

Figure 38: The zone importance for the algorithm to predict the Young's modulus in the transversal direction 

Figure 39: The zone importance for the algorithm to predict the Shear modulus 
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I.4.5. Effective zones for finding transversal angle 

The last parameter to be examined is the transversal angle. The diagonal lines at on the 

top and bottom of the surface indicate the most important zones for the algorithm in order to 

find a link between inputs and transversal angle. Also, a horizontal line that is propagated along 

the surface is more important for the algorithm, this behavior was not observed in other 

parameters. (Figure 40) 

 

 

 

 

 

 

 

 

 

 

By looking at all the influence maps (Figures 36-40) on the different parameters, a tendency 

seems to show that the important zones to consider are almost the same. In particular, through 

the lines that cross the central zone of the specimen which are systematically present on all the 

figures. In fact, by looking at the results, it can be inferred that the model has been able to 

define the mechanical properties by using some specific points and not by using all 

displacements so that the multi-scale nature of the approach is considered. Also, according to 

the results of the important zones, some limited zones control the behavior of system, and it 

can be stated that the deep learning algorithm finds the answers in a larger scale by examining 

and considering the behavior of the system in the smaller scale. Therefore, the position of each 

point plays a significant role in finding answers for the model. 

I.5. CONCLUSION  

In this chapter, the capabilities of Artificial Intelligence and Machine Learning in 

mechanical engineering were demonstrated through the example of material behavior 

understanding. Indeed, a method based on artificial intelligence is proposed for two goals, first 

to classify the material behavior and second to identify the parameters of an elastic type 

behavior law in a transverse isotropic material framework. The study is conducted in a plane 

Figure 40: The zone importance for the algorithm to predict the Transversal angle 
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where the objective was to determine the constitutive parameters and the main angle of the 

material in the manner of an experimental test. From the obtained results, we highlight several 

points.  

• First, it is necessary to optimize the input data. By taking only the displacement field 

and even by adding layers in the schema or by modifying the hyper-parameters, the 

meta-model does not work as expected. It was necessary to guide the meta-model by 

adding a mechanical field: the deformations. This last one, even if it is artificially 

determined as it is the case here, allowed to obtain convincing results with an average 

error of 3%. This observation shows that it is essential to think and to put as much 

physics as possible in the construction of the meta-model.   

• Second, the multi-dimensional nature of the resolution. The convolutional aspect of the 

2D resolution is judicious. Other machine learning type schemes (not presented here) 

have been developed and have shown insufficient results. Moreover, the multi-scale 

nature of the resolution through the choice of the convolution data sizes is essential. By 

its structure, the scheme proposed here establishes a link coupling information at a fine 

scale with other more global information in a multi-level manner. This link has been 

highlighted and allows a better understanding of the crucial areas for obtaining good 

results.  

• Third, the generalization of the proposed scheme for other forms of specimens, and 

other classes of materials. Studies are carried out with hyper-elastic materials or with 

materials showing plasticity. The results are equally convincing with multi-parameter 

behavior laws.  

• Fourth, the execution cost. The constitution or generation of the database is the point 

that takes the most time. For the case of the transverse isotropic elastic material where 

5 parameters of different nature had to be identified, nearly 18000 cases were generated. 

In a non-optimized way, both on the number and on the resolution, which was done 

sequentially, the simulation times took almost 24h. Even if this time may seem long, 

from an experimental point of view, the machines or the tests performed often remain 

unchanged. Therefore, the proposed base does not have to be renewed continuously. 

On the other hand, once the meta-model is obtained, the results are almost 

instantaneous, allowing for quick and efficient analysis without the need for extensive 

computational time. This remark allows for the quasi-direct treatment of parameter 

identification in the constitutive law, leading to smart testing possibilities.    
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Transition 

After presenting a demonstrator in Chapter I and framing a mutual understanding 

between mechanical engineers and computer engineers, the main axis of this research which is 

tribology is being proposed.  

Tribology is one of the main issues in the industry since it concerns all problems where there 

is contact. It depends on the system, but it can cause problems with wear, noise, etc. 

Most of these disturbances are caused by the state of the contact surface during the contact 

process. One of the main factors that has a direct effect on system efficiency and system 

responses is the state of the contact surface, which can be caused by the surface roughness. 

These conditions can be risky for the environment and human health. For this reason, it can be 

useful to predict the behavior of tribological systems in order to prevent disturbances. But due 

to multi-mechanism and multi-scale tribological systems, modeling these systems is very 

complicated. Due to the complexity of the problem, it can be studied from different aspects in 

order to understand it better. Therefore, in this research, the problem of the contact process is 

investigated in three phases, from three aspects. 

In this chapter, by following the contact surface roughness and the mechanical state of the 

contact surface, the responses of the system are studied. As it was mentioned, the tribology 

issue is a multi-mechanical and multi-physical problem that can be analyzed from different 

aspects. Therefore, in order to provide a comprehensive tribology model, first, the surface 

mechanical state and its effect on the system's responses are investigated. Then, the contact 

surface state and its behavior during the contact process, and finally, the surface contact 

evolution is analyzed (the box highlighted in blue in Figure II is analyzed in this chapter). 
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Here, two main goals are pursued. In the first part, by analyzing the surface roughness, the 

system instability risk is studied, and in the second part, the probable frequencies which can be 

produced by the risky surfaces would be foreseen. Finally, by analyzing the deep learning 

model behavior, the zones that might have a greater impact on the system disorders are 

determined. 

 

 

 

 

 

 

 

 

 

 Figure II: The general scenario of the thesis, which in this chapter 
artificial intelligence algorithms are introduced through an example. 
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II. Factors of Understanding Between the Surface State and the 

Vibratory Behavior  
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Abstract 

The real surfaces in the contact process are generally non-regular at different scales, 

which results in a complex and non-predictable behavior of the vibratory response of the 

system due to the presence of roughness, contact plateaus, bumps, and other factors. 

Moreover, considering that friction-induced vibration is a multi-scale problem, the 

localization of contact plays a crucial factor in determining the behavior. Thus, in order to 

avoid squeal problems in designing process, the engineer often starts a trial-and-error 

approach which limits the understanding of the phenomena and does not allow to clearly 

identify the relevant criteria for the “ideal surfaces” to be defined. A complete approach is 

proposed where, through a database generated from a multi-scale contact simulation, a link is 

established between the asperity field generated through the contact and the obtained 

frequencies. In fact, this analysis in the first part deals with classifying the roughness of the 

surfaces that lead to system vibration, and in the second part by analyzing the surface 

roughness which is at risk of vibration, the probable generated frequencies produced by this 

roughness are predicted. 

In order to investigate this problem, deep learning algorithms and more precisely 2D-

convolutional neural networks (2D-CNN) are used. To train the deep learning model, a 

database using finite element modeling is used, which models a pin-on-disk system. 

Very satisfactory results were obtained. An accuracy of 99% in the classification section and 

accurate results, less than 4% error rate in the frequency prediction section, is reached by the 

model. Finally, a discussion on the areas of influence and the importance of the multi-scale 

aspect on vibratory behavior is addressed to establish a criterion.  

 

Keywords: Multi-scale contact, Deep learning, Pin-on-disc configuration, Squeal 

prediction 
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II.1. INTRODUCTION 

One of the main problems faced by the transport industries is the undesirable squeal 

during braking phases. Although the disc brake system has been used for more than a century, 

the brake squeal still remains an unsolved problem [126][127]. Squeal is due to system 

instability that occurs during braking [128]. This instability is caused by friction between the 

contact surfaces. Since mechanical interactions in the braking system are overly complex and 

depend on many parameters, this issue cannot be easily solved [126]. This noise does not 

technically disturb the performance of the braking system, however, consumers have been 

complaining about these annoying noises and tend to replace braking pads, which imposes 

huge costs on after-sales service companies [53]. In recent years, efforts have been made to 

investigate the effects associated with this phenomenon [129], and many methods have been 

used to solve it [128]. A lot of researchers have tried to study the instability of the system 

through various methods, such as complex eigenvalue analysis and calculating the friction 

effects between contact surfaces using linear elements in an asymmetric stiffness matrix 

[130][131] . A simplified linear mathematical model of a disc brake is presented, which 

investigates the possible occurrence of unstable states under an oscillating motion [132] . Other 

approaches include building a physical model in the laboratory [133][134], among others.  

However, in the contact issue, there are strong nonlinearities due to the presence of the surface 

defects which are generally not taken into account [128]. Indeed, in the majority of cases, 

surface evolution and contact localization is globally not considered, while it is a key factor in 

the prediction of squeal [135]. From the “system” point of view, different research teams have 

been looking at the problem and working on the system responses [136][137].  

There are also many methods to analyze the contact process such as : numerical methods 

[138][139]; investigating the effect of geometrical parameters [140];  a method based on fuzzy 

arithmetic [141]; a variance-based global sensitivity applied to the oscillator parameters [142]; 

predicting unstable frequencies, trying to be similar to the behavior of the experimental model 

[143]. But, the results are still not satisfactory due to the complexity of the problem [144]. 

Afterwards some researches started using finite elements method in this field by considering 

the contact process as a multi-scale problem and entering the contact stiffness heterogeneity to 

the calculations [26], a Hertz theory based model is presented, it considers the contact surfaces 

as ellipsoidal roughness and analyzes the frictionless rough contact surfaces [28].  For better 

understanding this phenomenon, porosity, material heterogeneity and contact surface 

heterogeneity is taken into consideration [145][146], but they were not able to meet the reality 
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factors as it is a multi-scale and multi-mechanical issue (tribology, system scale, etc.) which 

has a crucial impact on squealing. It can also be added that these methods are time consuming, 

and the complexity of these methods makes them not easy to use and requires a lot of 

specialized skills. Recently the methods for predicting brake squeal by DL have been presented 

[144],  however they are not strong in two aspects. First, they are based on a limited set of 

empirical data and cannot be generalized because they are mostly case studies. Second, these 

models are based on observation and are not able to investigate the origin of the problems like 

surface topography to provide an indicator for understanding the origin of the problem. 

Considering these points, to have a high performance DL model, a combination of experimental 

data and modeled data can be a good solution. For this reason, a numerically efficient and 

realistic numerical model could be utilized. By incorporating these validated models, a 

comprehensive braking system can be accurately modeled [139]. Additionally, models that 

simulate pin-on-disk systems [26][28][146] contribute to the development of a reliable 

database. Although these methods are time consuming, but when the database is created and 

the DL model training is completed, using the DL model would be immediate. In short, time 

will be consumed only once to build a database and the DL model training but the proficiency 

of the built model is instantaneous.  

The motivation of building up a database using the pin-on-disk system is that it is a simplified 

system and shows the contact problem. In addition, there are many physical models that model 

a pin-on-disk system which can easily be a triangle of the AI, numerical modeling and 

experimental modeling to solve the complex problem of contact after years of study and 

research. 

On one hand, built models using DL methods are more flexible and can easily extract maximum 

information from data obtained from experiments or modeling. On the other hand, DL models 

have the ability to predict the behavior of the system, which makes it possible to prevent the 

occurrence of such disturbances. Regarding the main problem, which is surface vibration, using 

2D-Convolutional Neural Network (2D-CNN) (explained in I.3.6) can be a good idea to 

investigate the issue of squeal. This approach is therefore used to establish a link between the 

defects of contact surfaces and the natural frequencies. Due to the nature of the data and the 

team's know-how on multi-scale numerical developments, a numerical database is generated 

and a “supervised learning” algorithm is used because the used data is labeled. Moreover, the 

powerful architecture of 2D-CNN is used due to the input dimensions (2D) which is the surface 

roughness.   
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In this research, the modeling phase consists of two main parts. In the first part, by using 

classification algorithms based on the 2-DCNN architecture, the surfaces that have the risk of 

making vibration on the system scale are identified. 

In the second part, by using the 2-DCNN, the model predicts the disturbing generated 

frequency by analyzing the roughness of the surfaces that increases the risk of system vibration. 

Usually, in deep learning models that use 2-DCNN, the input data is an image, which usually 

does not consider the multi-scale effect, but here, the model input is the surface roughness 

matrix, which considers the roughness as one of the main parameters in the occurrence of 

disturbances. Not only using an image as input cannot be a good idea in this issue, but also 

using the roughness matrix allows the multi-scale effect to enter the deep learning model. 

It should be considered that the evaluation of the robustness of the developed meta-model will 

be based on known criteria, such as the Receiver Operating Characteristic (ROC) and the 

confusion matrix. 

Once the relevance of the meta-model (a meta-model is a model that is trained to make 

predictions about other models.) is ensured, it will be used to propose a selection of criterion 

for the crunchy configurations and thus show the multi-scale dimension of the problem. 

II.2. GLOBAL VIEW OF SOLVING THE PROBLEM  

A scenario overview is shown in Figure 1. This process consists of different steps: 

- Step 1: the surface roughness is produced by numerical methods. 

- Step 2: this data enters the numerical model, which according to their asperities may 

cause instability of the model. 

- Step 3: the received responses from the model include stability or instability, also 

system frequencies for each surface are recorded in the database.   

-  Step 4: the data is used for training the AI model in classification part.  

- Step 5: the data is used for training the AI model in regression part. 

- Step 6: Finally, by analyzing the results received from the AI model, the mechanism of 

this model is interpreted. Each of the mentioned steps is explained in detail in pursuit. 
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II.2.1. Step 1: Generation of the roughness surface: creation of the database 

The input parameters of the global strategy are the topographies of the contact surface. 

These topographies are generated numerically inspired by experimental measurements. Indeed, 

depending on different factors such as manufacturing processes or wear during its use, the 

surfaces can be different. These surfaces have been generated numerically using fractal 

techniques [147]. Indeed, a self-affine surface is generated using a power-law spectral density.  

 

S (𝐤) = S0 |k|−2(𝐻+1) 

S0 is a constant and H is the Hurst exponent which is related to the fractal dimension Df = 3−H. 

A randomly rough surface can be generated with any given spectral density. 

ℎ(𝑥) =  ∑ 𝐵(𝑘)𝑒𝑖.(
2𝜋
𝐿

 𝑘.𝑥+∅(𝑘))

𝑘

 

𝐵(𝑘) = 2𝜋(
𝑠(𝑘)

𝐴0
)1/2 , A0 is the surface area, L is the square root of A0 and ∅(k) are independent 

random variables which are uniformly distributed in the interval [0, 2π].  In order to have a 

better view, two of these surfaces are illustrated in (Figure 2). The fractal dimension is 0.59 

(deduced by experimental data from [148]), the cutoff wave vectors are 2 and 10 and the surface 

is Gaussian with a root mean square which is a parameter. The amplitude of roughness can also 

be modified with a range from a few micrometers to a few hundred micrometers.  

(1) 

Figure 2: Global Strategy to link surface defects to vibratory behaviors  

(2)  
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II. 2.2. Step 2: Presentation of the multi-scale model (Finite element model for 

database generation) 

A multi-scale model is used which considers surface defects within a pin-on-disc [28] 

[146]. It consists of a disc, topped with a pad that is held to a flexible plate (Figure 3). A force 

(300N) is applied to the ends of the plate while the disc is rotating around its axis. The disc and 

the plate are made of steel while the pad has properties of a classical friction material 

(E=3000MPa and nu=0.2). A rotation of the disc around its axis is imposed. The overall 

numerical model is explained in full in [149]. 

A method of enrichment is being taken into account, completing the mentioned models (other 

enrichments are possible such as contact plates [28], the undulation of the disc [150] etc.). The 

disc will be considered perfectly flat. This method is based on numerical homogenization 

[28][151] through a local evaluative contact stiffness. To provide information, a calculation 

lasts ~10min (per each roughness) on a (high performance computing) HPC cluster [152].  

 

 

 

 

 

 

Figure 3:  The contact model a disk-on-pin system. 

Figure 2:  Two examples of numerically generated surface roughness. 
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To better understand the used multi-scale contact model, Figure 4 shows the kind of state of 

surfaces that are used as input data. Figure 4a shows a smooth surface while (Figure 4b) shows 

a rough one. The leading edge is localized at the bottom edge of both figures. Figure 4c and 4d 

shows the pressure fields associated with Figure 4a and 4b respectively. In the perfect case 

(Figure 4a), an overpressure (Figure 4c) occurs at the contact entrance, while in the case with 

roughness (Figure 4b), the pressure (Figure 4d) is slightly more distributed over the whole 

surface, mainly on the highest roughness. 

In the used model, the surface of the disc is considered completely smooth, and after adding 

roughness on the pad surface, the results obtained from the system are recorded. For example, 

in Figure 4a, the surface of the pad is considered smooth and the responses show that in this 

case the stresses are localized at the contact entrance. 

But when roughness enters the model, stresses are distributed on the contact surface, which 

reduces stress concentration and temperature rise in limited points that disrupts the system's 

efficiency [153]. 

 

 

 

 

Figure 4a-d: Surface of friction pad with associated pressure distribution 

a) Perfectly flat surface 

b) Rough surface 

c) Stress distribution for a flat surface 

d) Stress distribution for a heterogeneous surface 

(b) (a) 

(c) (d) 
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Due to the nature of the contact problem, different surfaces generate different frequencies 

during the contact.  For example, perfectly flat surfaces produce unstable frequencies, close to 

7.5 kHz during the contact, but rough surfaces produce different frequencies (between 2.1kHz 

and 3.5kHz) which are sometimes stable or unstable, also unstable frequencies could be 

changed with the evolution of the surface. These complex behaviors during the contact make 

it difficult to understand this problem. Figure 5 shows some examples of frequencies generated 

by rough surfaces and their effects on the system behavior. 

 

 

 

 

II.2.3. Step 3: Data preparation and storing responses received from the finite 

element model  

In step 3, the data is prepared and stored. In the stored database, 10,500 examples were used to 

train and test the model. In fact, for each roughness surface (in a matrix form, including 128 

rows and 128 columns, which elements of these matrices are the surface roughness altitude for 

each point), the responses of the system, including the system stability and instability, and the 

received frequencies are stored. How to produce different roughness with different 

configurations is explained in [26][28][146]. The data distribution is shown in the Figure (6). 

 

 

 

 

 

 

 

 

One of the major challenges in this issue is the imbalanced data, because the number of unstable 

cases in the database is much less than the stable ones, 29 percent (3045 rough surfaces) 

unstable and 71 percent (7455 rough surfaces) stable, which caused the database to be 

imbalanced. In order to solve this problem, several techniques can be used.  

2546Hz 2610Hz 2618Hz 2920Hz 2975Hz 

Figure 5: Different frequencies produced by different rough surfaces 

Figure 6: The percentage of stable cases compared to the unstable cases 
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One of the possible solutions that has been used here in facing imbalanced databases is the 

technique of double copying the less repeated data in the database [32]. 

After accomplishing this process, before entering the data into the model, a normalization step 

is performed which led to the data set being included in the interval [1, -1].   

In fact, since the roughness data is randomly generated, each surface has different maximum 

and minimum values for surface roughness. In order to make the roughness be on the same 

scale, their minimum and maximum value from all roughness were found, then the minimum 

value was set to -1 and the maximum value was set to +1. The surface roughness data before 

normalization is shown in figure 7a and after normalization in 7b. 

 

 

 

 

II.2.4. Step 4: Development of an AI model - 2D CNN model for classification: mode 

lock-in or not? 

The aim of this step is to provide a model for classifying surface roughness, therefore, 

by using a sequential model, the structure of the classification model is constructed.  

Due to the nature of the data, which is surface topography, 2D-Convolutional Neural Network 

(2D-CNN) is used. A key advantage of 2D-CNNs is their ability to preserve the spatial structure 

of data, as referenced in studies  [144] and [154] By keeping this structure, the algorithm can 

accurately interpret inputs and produce the desired outputs. The model architecture for 

classification is shown in Figure 8. 

Figure 7a-b: Surface roughness before and after applying normalization 

a) Before applying normalization 

b) After applying normalization 

(a) 
(b) 
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In this model the input data is the surface roughness represented as a matrix. In fact,  

the data is presented in a matrix format, with 128 rows and 128 columns. The elements within 

these matrices represent the surface roughness altitude for each point.  In the layers of the 

model, several filters are applied to the initial matrix, which help to find the features helping 

to understanding and describing the system behavior. For example, as the higher points play 

the major role when contact occurs, applying MaxPooling layers can preserve information that 

is more useful and remove unnecessary information in the training process. Then, by flattening 

the feature maps, the shape becomes one-dimensional before applying Dense layers and the 

model tries to analyze the information obtained from (2D-CNN) layers in the best way and 

classifies the contact surfaces into two categories: stable and unstable.  

In order to provide an optimal model, the hyper parameters of the model, such as “Loss 

function”, “Activation function”, “Number of epochs”, “Optimization function”, “Metrics”, 

etc. are adjusted using an iterative strategy which is described below. 

In this strategy, to reduce the calculation time, four models were built in parallel, in each, the 

loss function, the number of epochs (64 epochs), and the batch size (32 batch) were considered 

as fixed parameters. Then, in each model, the optimizer and metric were changed to find the 

best ones. In the following, after finding the best optimizer, metric and loss function, these 

hyper parameters are fixed, and in the next step, the best batch size is found by keeping the 

number of epochs fixe. The best value of epoch is determined by changing the number of the 

epochs. The results are shown in Table 1. 

Figure 8: 2D-CNN Diagram for Classification 
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According to figure 9, it can be seen that the model has not been able to analyze the relationship 

between the surface roughness and the behavior of the system properly at the beginning when 

there is not a sufficient amount of data for training phase, so that the error percentage of the 

model is very high. The higher number of data, the lower error percentage. In other words, in 

order to understand the relationship between the surface roughness and the behavior of the 

system, the model needs to have enough examples. It is necessary to provide enough data to 

the model to achieve the desired error percentage which is below one percent. 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Number of data vs error rate 

Table 1: Received responses from the classification model for different configurations 
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To analyze the data in order to train the meta-model, data has been divided into three parts, 

sixty percent (6300 rough surfaces) for training, about twenty percent (2101 rough surfaces) 

for validation and around twenty percent (2099 rough surfaces) for testing. 

The findings indicate that the model failed to establish a strong correlation between the input 

and output data during the initial stage, which could be from two aspects, either the model does 

not fit the needs of the problem, or the provided data to the model is not sufficient. For this 

reason, first the number of data was increased, so the model obtained better results, and the 

model was tested for each number of data with different configurations, then when the model 

showed the best configuration with a small number of data, the number of data was increased 

to reach the percentage of the acceptable error which is below one percent (which is 10500 

cases). Hyperparameters and final specifications of the model are shown in Table 2. 

 

 

 

 

 

 

 

 

 

The computation time for setting hyper parameters and complete training phase of the 

classification model by a server computer (Configuration: Memory: 128 GB, Processor: Intel® 

Xeon® Gold 5215 CPU @ 2.50GHz *40, Graphics: NVIDIA Corporation GV100GL [Tesla 

V100SPCIe 32GB] and a Samsung SSD 2 TB M.2 NVMe) is less than 40 hours. 

Results of the classification model 

After completing the training phase of the model (consists of training and validation), 

its performance is evaluated with test data. The main purpose of the classification task is to 

find the squeal risk of the surfaces.  

Indeed, by analyzing the surface which includes the asperities and their position at the micro 

scale, the model seeks to find a logical relationship between the topography and the risk of 

system squeal at the macro scale. To evaluate the performance of the classification model, the 

Receiver Operating Characteristic (ROC) curve is used [155][156]. To draw the ROC curve, 

"True Positive Rate" (TPR) and "False Positive Rate" (FPR) are required. Also, to calculate 

Table 2: Model specifications for classification 
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(4) 

(3) 

FPR and TPR, parameters like (“True Positive (TP)”, “False positive (FP)”, “True Negative 

(TN)” and “False Negative (FN)”) are needed and they can be obtained from the confusion 

matrix (Table 3). 

 

 

 

 

 

 

The confusion matrix shows that the model is able to correctly identify 1448 out of 1448 silent 

cases without any misidentified cases with vibration risk. On the other hand, among the 651 

cases with squeal risk, 646 cases are detected correctly by the model but 5 cases are 

misdiagnosed. 

According to the values obtained from the confusion matrix the TPR (True Positive Rate) and 

FPR (False Positive Rate) can be calculated to draw the ROC curve:  

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 0.996558844  

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 0 

                                   Actual class 

 Predicted 

Stable Unstable 

Positive 1448(TP) 0(FP) 

Negative 5 (FN) 646(TN) 

Table 3: Confusion Matrix 
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As the TPR value is close to 1 and the FPR value is 0, it can be inferred that the model is 

efficient.  

Figure 10 shows the TPR vs FPR curves which is divided to three areas: beige, blue and green, 

if the curves are in the beige area or below the diagonal line, the model has not been able to 

perform properly, and it has actually done the classification randomly. 

If the curves are placed in the blue area, the model has been able to perform a relatively good 

classification, and if the graphs are in the green area, it means that the classification model is 

performing very well. As it can be seen in Figure (10), the ROC curve converges well to the 

upper left corner and is located in the green area. It indicates that the performance of the model 

is particularly good. In addition, the “Area Under the Curve” (AUC) value is close to 1, which 

is extremely high performance for a classification model. By calculating the “Accuracy” (ACC) 

of the model, the efficiency of the model can be examined from another aspect. The accuracy 

value is calculated below: 

 

Figure 10: ROC results in categorical classification case.  
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𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 =  

1448 + 646

1448 + 646 + 0 + 5
∗ 100 = 0.997617913  

 

Given that the database under study is imbalanced, to ensure the performance of the model, 

“Balanced Accuracy” (BA) variable should be calculated and (BA) gives a good view of the 

actual performance of the model. To achieve (BA) calculating “True Negative Rate” (TNR) is 

needed first. 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=  

646

646 + 5
= 0.99231950 

 

𝐵𝐴 =  
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
=  

0.964985994 + 0.99231950

2
= 0.998279422 

The (BA) which is closer to 1, indicates that the model is so capable in classification process 

with an imbalanced dataset. 

Another practical variable in such problems, is the “F1-score” or “F-measure” variable to check 

the performance of the model. In fact, this variable is a kind of average between TPR and 

positive predictive value (PPV). 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=  

1448

1448 + 0
= 1  

 F1 is calculated through the following formula: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=  2 ∗

1 ∗ 0.964985994

1 + 0.964985994
=  0.982181040 

 

The value of F1-score which is close to 1 indicates that the model is appropriate to the problem, 

and it can do the classification properly. 

Here is a case in which the AI model mistakenly classified 5 out of 651 surfaces as non-risky, 

when in fact they were risky. These 5 cases have one factor in common which is the contact 

entrance. Although these surfaces are rough and must be considered no risk, the contact 

entrances are flat which can cause vibration risk and make it risky but the AI model assumed 

them no risk.  

Figure 11 shows a no risk surface, Figure 12 is a risky one and Figures 13 are the risky surfaces 

which were considered no risk by the AI model. It should be mentioned that all of the testing 

procedure happened in 7 sec. and each one needed 35 ms. 

(5) 

(7) 

(8) 

(6) 

(9) 
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 Figure 13: A risky surface which is considered no risk 

Figure 11: A no risky surface 

Figure 12: A risky surface 
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To explain the cause of these mistakes, it must be clarified that they happen in the cases where 

the roughness is mostly the same and the model has to consider a borderline to separate them. 

The model tries to make the borderline not so complicated in order to avoid over-fitting. Hence, 

some of the factors will remain on the wrong side, which leads the model to make such 

mistakes. Figure 14 shows a schematic for this explanation. 

 

 

 

 

 

 

 

 

 

 

 

 

II.2.5. Step 5: 2D-CNN model for prediction:  value of the mode lock-in frequency 

After finding the surfaces that have the risk of squeal, the next goal is applying deep 

learning to determine the instability frequencies values. For this purpose, regression algorithms 

are used, and according to the data structure, which is the surface topography, again (2D-CNN) 

architecture is used to preserve the spatial form of the inputs. The inputs of this approach are 

similar to the previous one, but the training process and target output is different in comparison 

with the classification approach, because after finding the risk of instability by the classification 

algorithm, the regression model predicts the instability frequencies value. In fact, the approach 

by analyzing the surface roughness, seeks to find a correlation between asperities of the contact 

surface and the value of vibration frequency, then it predicts these frequencies. This mechanism 

makes the loss function, activation function, metric and other hyper parameters act differently 

from the classification models and require the use of functions appropriate to the prediction 

problems. Obviously, the roughness matrix forms the model input, where we target to extract 

the maximum information from the roughness by applying different filters. Then, by applying 

consecutively “Convolutional” layers, the model is allowed to investigate all points of the 

surface and improve its performance. In order to present an optimal architecture, the same 

Figure 14: A simplified schematic of borderline assessment 
by the model, which causes the mistake 
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strategy of the previous step is used (Table 4). The architecture of this model is shown in Figure 

15. 

 

 

 

 

 

 

 

 

 

 

The strategy begins with selecting four models in parallel and in each one, the loss function, 

the number of epochs and the number of batch sizes are considered constant. After determining 

Figure 15: 2D CNN Diagram for Prediction 

Table 4: Received responses from the regression model for different configurations 
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the best loss function, the optimizer is adjusted and the general structure of the model is found, 

now the batch size and the number of epochs are going to be determined. In this process, two 

goals are followed to find the best hyperparameters. First, the MSE value in the training and 

validation trend must be minimum. Second, the MSE value in the training and validation phases 

must be close to each other. For example, in the optimization functions, the minimum value in 

the validation phase is very low, but it is far from the minimum value in the training phase, that 

is why the “adam” optimization function is selected. Table 5 shows the final specifications of 

the model. 

 

 

 

 

 

 

 

 

 

The “Mean Squared Error” (MSE) metric is used to evaluate the performance of the model in 

the regression phase, so that the performance of each hyper parameter is checked by this 

indicator. 

Loss function is the first parameter that is set to build the model. There are different loss 

functions for regression problems, which the best loss function can be selected by considering 

the physics of the problem and its performance. By looking at the results, it can be understood 

that the “Mean Squared Error” loss function has the best performance. The next hyper 

parameter that has been analyzed is the optimizer and the results indicate that “Adam” 

Optimizer has the best performance.  

Batch size analysis shows that the optimal performance of the model belongs to the value of 

128, it also helps to converge and reduce the value of MSE in the training and validation phases. 

Epoch is the last hyper parameter that is analyzed, and the results show that the performance 

of the model with 128 epochs is acceptable.  

The computation time of setting hyper parameters and complete training phase (consists of 

training and validation) of the regression model with a server computer (Configuration: 

"Memory: 128 GB, Processor: Intel® Xeon® Gold 5215 CPU @ 2.50GHz *40, Graphics: 

Table 5: Model specifications for classification 
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NVIDIA Corporation GV100GL [Tesla V100SPCIe 32GB] and a Samsung SSD 2 TB M.2 

NVMe) was less than 28 hours. 

Results of the regression model 

In this phase, the goal is to predict the vibration frequency. The model training process 

is shown in Figure 16. This curve shows the loss function changes over epochs. In regression 

issues, in order to have an acceptable performance for the model, two indicators must be 

considered. First, the loss function must be reduced during the training phase, second the 

training and validation curves must be converged. 

 

 

 

 

 

 

 

 

 

 

As it can be seen in Figure 16, the loss function is reduced during the training phase, also, the 

validation and training curves are well converged. In addition, during the training and 

validation, the behavior of the model is stable and there is not any noise between epochs 40 

and 128, which indicates the model is able to be generalized. In order to determine and evaluate 

the ability of the model, it is tested by out of the database. In Figure 17, the blue circles indicate 

the value of expected frequencies, and the red circles are values that have been predicted by 

deep learning. It shows that the prediction results in most cases are close to the real cases, the 

error rate for all test data is 3.7%, which indicates the proper performance of the model in 

comparison to the out of database data, this indicates the model ability to generalize. 

 

 

 

 

 

 

 

Figure 16: Loss function curve that shows the model training process 

Figure 17: Results from model testing 
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Two examples of surface roughness are shown below: Figure 18 displays a surface roughness 

for which the model successfully predicts the frequency of instability, while Figure 19 depicts 

a contact surface roughness where the model struggles to accurately detect the frequency of 

instability. By referring to the roughness of the surface, no difference can be observed between 

these surfaces. Therefore, it can be inferred that the lack of variety surface roughness in the 

database is the cause. In other words, the roughness heights provided during the training phase 

were different from those encountered in the test phase, despite having the same shape. As a 

result, the model made predictions based on the training phase data and faced difficulties when 

presented with unfamiliar roughness heights during testing. In order to have higher accuracy, 

more roughness and the maximum possible state should be presented to the model in the 

training phase so that the model has good generalizability. 

For example, in the figure below, two surface roughness are shown, which at first glance are 

very similar to each other, but during the contact process, surface A produces a frequency of 

4148 Hz, and the second surface produces 2900 Hz. In fact, very small changes in the contact 

level can cause different responses (pay attention to the different scales of the following figures 

which makes them different).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Results from model testing  

Figure 19: Results from model testing 
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II.3. DISCUSSION OF RESULTS 

II.3.1. Influential zones 

According to the results of the previous sections that small changes can lead to different 

responses, this idea can be raised that maybe some surface areas have a more significant role 

in the occurrence of system responses. For this reason, by using XGBoost [125] (explained in 

Chapter I, Section I.4) and Random Forest algorithms [157] (which is an extension of bootstrap 

aggregation (bagging) of decision trees and can be used for classification and regression 

problems) , the location of points that have a greater influence on the behavior of different 

responses of the system was discussed. The surface roughness matrices are transformed into 

vector form and used as input for the feature sensitivity algorithm to determine system stability 

or instability. The results are then converted back into matrix form to display their spatial 

distribution. The weight of each roughness point is determined and visualized by assigning 

color to the weight. This process is repeated for different roughness scales by reducing the 

matrix size from 128*128 to 64*64, 32*32, 16*16, and finally 8*8 to observe the impact of 

surface roughness scale on the localization of critical points. The results for Random Forest 

and XGBoost are presented in figures 20a-e and 21a-e respectively. 

 

 

 

 

 

 

 

 

 

Figure 20a-e: Location of the roughness 
topographies that have the most effects on 
the occurrence of surface squeal by 
random forest algorithms 

a) Scale 128*128 

b) Scale 64*64 

c) Scale 32*32 

d) Scale 16*16 

e) Scale 8*8 

(a) (b) (c) 

(d) (e) 

https://machinelearningmastery.com/bagging-ensemble-with-python/
https://machinelearningmastery.com/bagging-ensemble-with-python/
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It must be clarified that the output matrix in scale of 128*128 is 16 times finer than 8*8 and 

these 2 algorithms had almost the same responses and they both assumed the center and the up 

left of the surface as the important parts. 

Figures 20 and 21 show that the brighter points have the most effects on the occurrence of 

vibration and both algorithms show almost the same location for important zones. It is also 

well visible that in the multi-scales, the location of the points of more importance are different. 

In other words, different responses are received from the system at different scales. That is why 

finding correct areas that play the main role in squeal must be considered in a small scale. 

II.3.2.  Influence of the roughness scale in the learning phase 

  In this subsection, the objective is to clarify the needs for considering the multiscale 

dimension to predict system squeal. To do so, the training phase is carried out by the surfaces 

with the large roughness height (-0.0002 mm to +0.0002 mm intervals). Then, the meta-model 

is tested by ultrafine roughness height (-0.0001 mm to +0.0001 mm) and tries to classify the 

instability risk for these asperities. 

(a) (b) (c) 

(d) (e) 

Figure 21a-e: Location of the roughness 
topologies that have the most effects on 
the occurrence of surface squeal by 
XGBoost algorithms. 

a) Scale 128*128 

b) Scale 64*64 

c) Scale 32*32 

d) Scale 16*16 

e) Scale 8*8 
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As Figure 22 shows, the results are not satisfactory, since the meta-model is trained with larger 

roughness height, it cannot perform well on a smaller scale. In order to prove this theory, in the 

next step, the database is inversed, using asperities with small size. In this step, model training 

is performed by small scale roughness height then the meta-model is tested by data in large 

scale. The ROC curve for testing the model is shown in Figure 23. 

 

 

Figure 23 shows that when the model is trained by finer roughness height, it can be well 

generalized to the other surfaces. The confusion matrix in the model testing phase is shown in 

(Table 6). The confusion matrix shows that the model is able to correctly identify 1436 out of 

1448 silent cases and 9 misidentified cases with vibration risk. On the other hand, among the 

651 cases with squeal risk, 636 cases are detected correctly by the model, but 15 cases are 

misdiagnosed. 

 

Table 6: Confusion Matrix 

 

 

 

 

 

A summary of the predicted outputs the test phase is shown in Table 7. 

The results show that the accuracy obtained by this approach is significant and the model has 

an acceptable generalizability.  

By comparing the results in Table 3 to the Table 6, it is seen that the results in Table 3 are more 

accurate. By analyzing the input data, it was clarified that the inputs of II.3.2. model was much 

                                   Actual class 

 Predicted 

Stable Unstable 

Positive 1439 (TP) 9(FP) 

Negative 15 (FN) 636 (TN) 

Figure 22:  ROC curve of the model which has been 
trained by large roughness height and tested by 
small roughness height data  

Figure 23: ROC curve of the model which has been 
trained by small roughness height and tested by 
large roughness height data  
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more various so it helped the models generalizability but as the inputs in table 6 were more 

limited, the model was in trouble to generalize and extend the data. 

 

Table 7: Model performance analysis 

 

 

 

 

 

 

 

 

 

The model's behavior during training and the results obtained during testing suggest that 

surface data scales play a significant role and that the DL model employs a multiscale approach 

to understand the correlation between surface roughness height and system instability. In other 

words, the strategy can be summarized as exploiting only data with the finest possible 

roughness height. 

II.4. CONCLUSION 

In this chapter, contact surface roughness and its effect on system responses are 

investigated. For this purpose, two-dimensional convolutional networks are used according to 

the shape the inputs, which are surface roughness and in matrix form. Surface roughness is 

analyzed from two aspects. First, by using a classification model, surfaces with high vibration 

risk are found, then by a prediction model, the instability frequencies related to each roughness 

are predicted. The error of the model is less than 1% in the classification section and less than 

3% in the prediction section. The results demonstrate that minor variations in surface roughness 

yield different system responses, resulting in an increased error rate. To improve the model's 

performance, it is crucial to generate additional data for the training phase, addressing the need 

for an increased data volume. Even though it may take some time, having a comprehensive and 

representative dataset will be beneficial in the long term. 

In order to build the dataset introduced in this section, a finite element model is used. 

Parameters such as the friction coefficient are considered constant, as changing any of these 

Indicator Value 

TPR True Positive Rate 0.9896 

FPR False Positive Rate 0.0139 

TNR True Negative Rate 0.978 

ACC Accuracy 0.988 

BA Balanced Accuracy 0.984 

PPV positive predictive value 0.994 

F1 Score 0.992 
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parameters would significantly increase the calculation time for different configurations. 

However, in experimental tests, these parameters exhibit high variability and interdependence 

with each other. They have many interactions and affect the behavior of the system. For this 

reason, according to the acceptable results obtained in this section, it is appropriate to create a 

dataset of experimental trial, and by analyzing these system responses, the behavior of the 

system can be checked and predicted. 

It should be added that in the approach used in this section, the surface of the disk is considered 

completely smooth, although the roughness of the disc surface can also be the reason for the 

different behavior of the system in experimental tests. 
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Transition 

In Chapter II, the dynamic state system in squealing process was studied. In order to 

analyze contact process, surfaces were generated using function based on experimental 

measurements [158]. Despite the function's ability to work with real experimental data, it is 

evident that there are differences present in actual contact surfaces. For example, in reality, we 

encounter surfaces that exhibit multi-scale characteristics, whereas the function focuses on a 

specific scale. Also, in reality during the contact process, surface evolution happens which 

causes the primary assumptions do not work properly as the surface has changed. 

On the other hand, during the contact process, obtaining information is not feasible as the 

contact process is closed. However, it is evident that in the contact process between two 

surfaces, the highest points make contact first. So, the stress and consequently temperature 

raise in these zones due to the friction. So, by studying the temperature in different zones, it 

will be helpful to detect the contact zones state. 

Finally, measuring the contact surface temperature evolution can lead to get information about 

the contact surface during the contact process. In this chapter, the surface state is investigated 

by analyzing the temperature evolution, which is depicted in a blue box in the main thesis 

diagram (Figure III).  

 
Figure III: The general scenario of the thesis, which in this chapter the surface state, during the contact process is 
analyzed. 
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III. Toward Predicting Contact Localization in a Pin-on-disc 

System: Deep Learning Approach 
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Abstract 

From the tribological point of view, it is well known that the frictional contact between 

two parts is, on the one hand, localized only on some contact areas and, on the other hand, 

evolving. To try to predict these localizations over time, an approximate coupling is employed 

between a pin-on-disc system and a proposed AI hyper-model, which refers to an advanced 

model utilizing artificial intelligence techniques. The contact locations are "captured" through 

a sheet of thermocouples embedded in the pin. Nearly 600 tests are performed with different 

boundary conditions (contact force, disc speed and holding brake time) to obtain variability. 

Based on a large amount of data, a hyper-model based on an innovative 2-D recurrent 

convolutional neural networks (2D-RCNN) architecture is built to predict the evolution of 

temperature. This hyper-model appears to be very efficient as it presents an error lower than 

4% in the test phase. An intelligent control system of the applying contact force is proposed, 

with the aim of achieving contact homogeneity. This, in turn, suggests the potential for "smart 

braking". 

 

 

Keywords: Tribology, contact localization, experimental-numerical coupling, deep 

learning, heavily instrumented trials 
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III.1. INTRODUCTION 

The contact mechanism is a tribology issue, and due to the presence of roughness in the 

contact interface, the actual contact surface is less than the nominal contact surface [158], 

which causes the concentration of stress, and as a result, the temperature rises in these zones 

[159][30]. So the behavior of contact interface has a great effect on the system performance 

[160]. Experimental studies show that the propensity to squeal in the contact process directly 

depends on the tribological parameters such as surface temperature, humidity, local pressure, 

and loading history [55][161][162]. To gain a clear understanding of tribological systems is 

important because, with a proper understanding of this mechanism, disorders such as friction-

induced vibration [163][164] which is the main cause of noise pollution [165][166] during the 

contact process, can be prevented. Since the contact process is a complicated multi-scale 

[158][146] tribological issue, which is also multi-physical [167] and evolutionary [30][168]. 

Moreover, various factors including contact localization [169][170], third body [171][172], 

contact materials [146][168], and rheology are involved in this problem. These complexities 

cannot be adequately understood through simplified models [173] or classical experimental 

tests.  

In addition, as the contact interface is closed during the contact process, it is no longer possible 

to easily obtain information about the state of the surface. Therefore, one of the primary and 

critical parameters which helps to understand the contact surface behavior in the closed 

condition, is the evolution of temperature during the contact process in different contact zones. 

In recent years, various methods [169][170][174] have been proposed to locate and predict 

these evolutions. However, as per the aforementioned points, the contact problem is highly 

complex, making it impractical to develop a comprehensive model that encompasses all aspects 

of this problem. For these reasons, there are still many unsolved problems in this field. 

Recently, some methods for understanding system behavior using Deep Learning approaches 

have been proposed [144], but these models are based on system-scale responses and do not 

analyze the cause and origin of these behaviors. This is a key aspect because by a correct 

understanding of the contact process and by finding the origin of these disorders, some actions 

can be taken during the contact process to control the occurrence of annoying frequencies 

generated by the system. They could reduce the costs of after-sales services, increase quality, 

and reduce noise and environmental pollution. Hence, by using DL methods including 

Recurrent Neural Network (RNN) and 2D-CNN, a method is presented and applied on an 

experimental database to study and predict the surface temperature evolution during the contact 
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process. The combination of two types of architecture, CNN to capture the spatial features, and 

RNN to model the relationship between them across the temporal domain, could offer an 

interesting property to understanding the frictional contact behavior.  

III.2. THE BENCH-TEST  

III.2.1. Presentation 

The experimental set-up that is being used in this study is based on the design previously 

established in [175], and it has been utilized in [48]. It is based on a pin-on-disc configuration 

(Figure 1).  A thin plate is fixed at its extremities on a rigid stand. A 20 mm x 20 mm square 

face pin (extracted from a brake pad) is glued at the center of the blade. The rigid stand moves 

along the axial disc direction and pushes the pin against the disc, the normal load is obtained 

with the bending of the plate. The disc is designed in a solid automotive shape, and it is made 

of 15CrMoV6 steel material. The average radius of the friction track is 100 mm. The pin is 

made of a sintered composite material with a metal matrix (copper and iron) graphite particles 

and abrasives  

Since it is impossible to obtain much information about the contact interface when two bodies 

come into contact and the surfaces are closed, hence the surface temperature changes can 

indicate the contact state during the process. Therefore, materials with high thermal 

conductivity are used to transfer temperature changes quickly to thermocouples. Indeed, the 

used materials have transversal isotropic properties and the heat conduction in the direction 

perpendicular to the contact surface is much higher than in other directions, therefore, by 

placing thermocouples in the depth of the pad near the contact surface and recording the contact 

changes during the contact process it is possible to get information about the contact surface  

temperature during the process.  
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III.2.2. Instrumentations 

According to the objectives of the study, several measurements are performed: 

- Acoustic measurements: A microphone placed along the axis of rotation of the disc at the 

distance of 1 m from the pin-disc contact surface, is used for the determination of the squealing 

frequencies. They were deduced from the raw acoustic pressure using short-time Fourier 

Transform. A peak is the spectrogram is considered as a squealing frequency if its sound 

pressure level is greater than 80 dB and a duration greater than 1s. 

- Force measurements: Two 3D piezoelectric sensors are inserted between the extremities of 

the thin plate and the rigid stand. Normal and tangential contact forces can be estimated from 

these measurements. 

- Thermal measurements: 8 thermocouples are inserted inside the pin at 3 mm depth from 

the contact surface. The position of the thermocouples is shown in Figure 2, and during the 

(a) 

(b) 

Figure 1a-b: Equipment installed on the experimental test and test schematic. 

a) Equipment installed in situ to record system responses. 

b) The physical model schematic includes a pin on the disc. 



94 
 

process, two thermocouples (no.7 and no.8) were detached from their positions, while the 

remaining six thermocouples continued to be used for the tests. The used instrumentation has 

already been in the same as [48] to track the load bearing area at a macroscopic scale. 

The sampling frequencies for the first two measurements are 50 kHz and for the thermocouples 

90 kHz. 

 

 

 

 

 

 

 

III.2.3. Protocol and some illustrations of experimental configuration 

The trial sequence is decomposed into series of friction tests (typically around 10 tests) 

including contact and no-contact conditions. The rotation speed remains constant (drag 

conditions) for each trial (Figure 3a), the normal forces (Figure 3b) and the trial duration 

(Figure 3c) are different from each other. The complete sequence is finally composed of 584 

friction tests with different speed rotations, normal force, and duration of contact. 

 

 

 

 

 

 

 

 

 

Figure 2: Position of thermocouples relative to the contact surface. 

(a) 
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The point marked with blue points are used data in the training phase of the deep learning 

model, and the data marked with red points are used from experimental data into the model 

evaluation phase, which will be described later. In order to have a homogeneous distribution 

from all the test phase, the data selection strategy for the model training phase and the model 

testing phase have been completely random. 

III.3. AI MODEL FOR LOCAL TEMPERATURE PREDICTION 

III.3.1. General presentation of the model 

As the performance of a tribology system is highly dependent on the behavior of the 

contact interface [158][55][161][146], the interface analysis can provide useful information to 

predict system performance, and makes it possible to prevent system-scale disturbances. Due 

to the complexity and existence of multi-physical interaction in the contact mechanism, current 

experimental or numerical methods cannot cover all aspects of this process to provide a 

complete model with high generalizability. Here, using deep learning  (DL) methods, the 

contact interface is analyzed in order to predict the behavior of the system. 

Since the evolution of surface temperature and contact localization are believed to be the main 

factors influencing the behavior of a tribological system, the aim is to predict this evolution 

during the contact process, in order to accurately anticipate the system's behavior.  

As the main method, a deep learning type scheme and more precisely, a 2D-recurrent 

convolutional neural networks (2D-RCNN) is used. This choice is motivated because of two 

Figures 3a-c: The disparity in the input parameters in all the trials 

a) Distribution of disc rotation speed in the test series. 
b) Distribution of normal force in the test series. 
c) Distribution of tests duration in the test series 

(b) (c)  
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main reasons. First, the history effects must be considered in the problem (time series data). 

Second, the temperature of different thermocouples can have a direct or indirect effect on each 

other (spatial features).  

For a better understanding the used algorithm, first recurrent algorithm is introduced, then 

different scenarios are presented to solve the problem. 

Recurrent neural networks: A type of artificial neural networks which is very suitable for 

analyzing, processing and forecasting sequences and time series [176]. 

One of the advantages of recurrent neural networks is that they can process and predict 

sequences with different lengths, which helps the generalization of models built with this 

algorithm [177]. 

Recurrent neural networks are different because they are trained by taking the history of a 

sequence into account. It lets the algorithm in this structure receive information from the 

previous data and use them to influence the next outputs and inputs [178]. In fact, recurrent 

neural networks are a type of neural networks that their performance makes deep learning 

models dynamic. Figure 4 shows the schematic of the operation of recurrent neural networks. 

 

 

 

 

 

 

 

 

 

 

After creating the dataset and choosing a suitable algorithm to the needs of the issue, it is 

time to adopt a scenario facing the problem.   

By looking at the experimental results which are the temperature changes compared to the 

initial contact surface temperature, in the first-time no-good signals would be received. 

Because it can be clearly seen that they are completely heterogeneous from one to another.  

Figure 5 shows three of these tests randomly selected from the database (each thermocouple is 

indicated by a specific number and color specified in Figure 2). 

Figure 4: Schematic of the recurrent neural network algorithms mechanism. 
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The evolution recorded by each thermocouple during each test is also different, for example, 

test no. 96 in Figure 6 shows this heterogeneity, and during each test at different times, a 

different behavior of each thermocouple is obtained. 

As a result, this heterogeneity with respect to time and location of each thermocouple provides 

us with an extremely complex problem. In fact, this inhomogeneity in the evolution of the 

surface temperature in different zones and over time is caused by tribological phenomena, 

which causes the contact surface and contact behavior to evolve. For this reason, a conventional 

understanding of this phenomenon cannot be obtained with classical research methods. 

 

 

 

 

 

 

 

 

Figure 5a-c: Three different tests show the system behavior heterogeneity. 

a) Test no. 96 

b) Test no. 108 

c) Test no. 225 

 

(a) 
(b) 

(c) 
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According to the mentioned points and in order to use deep learning, an appropriate scenario 

for this problem must be used. The global scenario facing this issue is shown in Figure 7. 

Figure 6: Temperature evolution heterogeneity in different surface zones (test no. 96). 
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This scenario consists of several steps, in the first step, experimental tests are performed, in the 

second step, data including the disc rotation speed, the force applied from the pad to the disc, 

the time and the temperature evolution during each trial are stored in the database. In the third 

step, after some data preparation such as data normalization (for example, a normalization is 

carried out so that all the values are located between 0 and 1, implying a homotheticity 

compared to the extreme values experimentally recorded), the model training phase begins, 

and the model tries to predict the temperature evolution by analyzing the data for a few seconds 

from the beginning of the test. Finally, in the fourth step, the built model is evaluated with data 

outside the training phase to verify its performance. 

To solve the problem, two different strategies are considered to find the best, most appropriate 

and optimal strategy which will be described in the following. 

III.3.2. Different scenarios to solve the problem  

- First strategy: An LSTM (Long Short-Term Memory) architecture is used to build a model 

that considers the temperature evolution, normal force, and rotation speed for a certain time as 

known data and the training phase is done with this data. Then, in the test phase, by providing 

data such as rotation speed and normal force as known data, the model is asked to predict the 

evolution of the temperature of the contact surface. In fact, the data from an experiment is given 

to the model from the second 0 to 20 in the training phase, each second contains 10 frames so 

Figure 7: The scenario chosen to solve this issue. 
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20 seconds equals to 200 frames. Then the model predicts the extension of the experiment. 

Figure 8 shows the general architecture of the model. 

 

 

 

 

 

 

 

In order to set and find the best hyperparameters of the model, an iterative strategy is used. 

These results are shown in Table 1. 

 

The final specifications of the model are shown in Table 2. 

 

Table 1: Model results for tuning hyperparameters (first strategy) 

 

Figure 8: The model architecture used to predict surface temperature evolution. 
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After setting the hyperparameters, to find the minimum desired frame so that the model has a 

correct understanding of the history of temperature evolution, the different frames number is 

presented to the model and the error percentage corresponding to each of the configurations is 

recorded. The model error percentage for each interval is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although, the results of the model considering 300 frames (30 sec.) are more accurate than 200 

frames (20 sec.) but considering that the duration of the used test when the pad is in contact 

with the disc is approximately 35 seconds, choosing 300 frames (30 Sec.) is not a suitable 

choice for predicting temperature evolution. For this reason, 200 frames (20 Sec.) are used for 

the model training phase. Figure 10 shows the training process of the model.  

Table 2: Specifications of the model used for model training and testing (first strategy) 

 

Figure 9: Model error percentage vs the number of used frames 
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In this process, the training phase is done from second 0 to 20, marked by the vertical red line 

in the Figure 10a, then the model predicts the temperature evolution of the contact surface from 

second 20 to 35, according to the history and the trend of temperature evolution during the 

contact process. 

In this strategy, the disc rotation speed, normal forces, and temperature changes for a specific 

interval are considered known data, and the model predicts the temperature changes in the next 

step. 

By comparing the predicted results by the model in Figure 10a after the red vertical line and 

comparing it with the real data in Figure 10b, it can be seen that the performance of the model 

is acceptable. 

 

 

 

 

The results of this scenario are satisfactory so that the error percentage of the model is 3.9 %, 

and it can predict the continuation of the surface temperature evolution. In order to evaluate 

the performance of the model, then it is tested by data outside the training phase. The results 

are shown in Figure 11. 

  

 

Figure 10a-b: The model performance using the first twenty seconds data. 

a) Model training phase and test results (test no. 96). 

b) Temperature evolution in the trial no. 96. 

(a) (b) 
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As can be seen, the approach made with this method is inefficient because if applied to another 

experiment with different behavior, it predicts completely incorrect results (8.9% error). Even 

though the data is given to the model with a large interval, the model has not been able to 

predict the phenomena well. The prediction results and the real data respectively are shown in 

Figure 11. By comparing tests no. 96 and no.225, it can be seen that two completely different 

prediction results have been received from the system, that's why the model has not been able 

to make a good prediction. According to the obtained results, another strategy is presented that 

is more accurate and generalizable. 

- Second strategy: Due to the heterogeneity of system responses in the experimental test series, 

the training process should change entirely to provide a model with a proper performance. 

Therefore, the training phase is done discontinuously, contrary to the philosophy of recurrent 

Figure 11: Model performance facing new data. 
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neural networks. In this strategy, the data to perform the training phase is divided into time 

intervals, including n frames as input and the n+1st frame as output, then data is entered into 

the model randomly from all parts of the training phase even in a single test and in a discrete 

way (Figure 12a).  

In this strategy, the disc rotation speed, normal forces, and temperature changes for a specific 

interval are considered as known data, and the model predicts the temperature changes in the 

next step. But the testing phase is done in a continuous manner, in such a way that the data for 

the first n frames are entered into the model as input, and the model predicts the temperature 

changes for the n+1st frame, then the predicted data is entered into the model to predict the 

temperature changes for the n+2nd frame and this trend continues until the end of the test. The 

mentioned process is shown in Figure 12b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12a-b: Enhancing model performance through discontinuous training and iterative testing for 
heterogeneous system responses. 

a) Discontinuous training approach for improving model performance in heterogeneous system responses 

b) Model testing process that predicts the entire temperature using an iterative process 

(a) 

(b) 
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In order to apply DL, 85% of the data from all the trials described above are used in the training 

and 10% for the validation phases. Once the DL model is established, the 5% remaining is used 

for the testing phase.  In order to adjust the hyperparameters of the model, an iterative strategy 

is used, the results for each hyperparameter are shown in the Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final specifications of the model are shown in Table 4.  

 

 

 

 

 

 

 

 

 

After adjusting the hyperparameters, selecting the optimal number of frames as the input for 

the DL model is the next goal. So that it has the highest accuracy and the least number of frames 

as input in order to have the best prediction in the shortest possible time. To find the best 

Table 4: Specifications of the model used for model training and testing (second strategy) 

 

Table 3: Model results for tuning hyperparameters (second strategy) 
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interval for the model training, in the first step, the first 10 frames (1 sec.) are taken. The error 

rate is more than 17.5 %. Then the model is trained by 25 frames (2.5 sec.) as an interval, which 

significantly reduced the error rate to 8%. The next try is 50 frames (5 sec.), which reduced the 

model error percentage to less than 4%. 3.2 % for a 75 frame (7.5 sec.) interval and 2.6% for a 

100 frame (10 sec.) interval. It can be seen that as the number of frames increases, the accuracy 

of the model would be increased, but the goal in this analysis is to get an error less than 5% 

with the minimum input frame so that the 50 frames as input has a good performance. The 

model error percentage for each of the listed intervals is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

Since the temperature evolution happens so fast, the goal is to predict the system's behavior in 

a short period to correct the inappropriate behaviors. Therefore, 50 frames are the optimum 

interval chosen because the less than 50 frame interval reduces the model performance, and 

more than 50 frame reduces the prediction speed. 

 This choice of 50 frames (5 sec) also seems to be physically founded because in view of Figure 

14a, it would seem that there is a characteristic length of about 5 seconds. In addition, the 

spectrogram corresponding to this test, Figure 14b, also shows that the frequencies received 

from the system are disturbed in a 5 second periods.  

Figure 13: Percentage error vs the number of input frames 
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According to the error percentage of model for 50 frames as input and the system behavior 

such as surface temperature evolution and the recorded spectrogram, it can be concluded that 

the period of 5 seconds is a decisive period in the system behavior. As far as this phenomenon 

happens in 50 frame or more intervals, it could be generalized to all the following tests.  

After finding the best hyperparameters and the best interval, now is the time to train the model 

and analyze its performance in the training phase. 

The training phase consists of sampling the data at 5-second (50 frames) intervals taken 

randomly from the 95% database which is dedicated to training and validation phase. The goal 

of this package of 50 frame is to determine the temperature evolution of the six thermocouples 

at the 51st frame. Then in the test phase (5% of database), by successive iterations and shifting 

the input data in the DL model, it would be possible to predict the temperature evolutions at all 

subsequent times. In fact, in the test process, the force data is considered as a parameter which 

can be controlled by the user when the contact occurs, the rotation speed and the surface 

temperature data in only the initial 50 frames (5 sec) is considered as known data, and after 

each prediction, the predicted data enters into the model as an input to predict the temperature 

evolution in the next step. 

III.3.3. Training phase 

In order to increase the model ability, a separate model is considered for each thermocouple.  

(a) (b) 

Figure 14a-b: Responses received from the system which change in 5 second intervals. 

a) 5 second intervals indicated by red vertical lines (Temperature evolution for test no. 96). 

b) 5 second intervals indicated by red vertical lines (Spectrogram corresponding to test no. 96) 
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The loss function/epoch (when all the data of the training phase is entered into the model and 

the weight of the layers is updated in the forward and backward propagation phases) curves in 

the training and validation phases for each of the thermocouples are shown in Figure 15.  

 

 

 

The training and validation curves for all six thermocouples show that the training phase of the 

model is well done after the model is trained by this strategy.  

The computation time for setting hyper parameters and complete training phase of the model 

by a server computer (Configuration: Memory: 128 GB, CPU @ 2.50GHz *40, Graphics: 

32GB and an SSD 2 TB M.2 NVMe) is less than 24 hours. 

 

 

Figure 15: Loss function curves for six DL model associated to each thermocouple. 
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III.4. RESULTS AND DISCUSSION 

At the end of the training phase, the model is tested on a separate test subset to assess 

its performance and generalizability. 5% of the dataset is used as a test subset.  

As mentioned above, the average error of our 2D-RCNN model on the entire test set is 3.8% 

per 50 frames of input data, and the calculation time required to predict the entire test is 153ms. 

To demonstrate the effectiveness of the model, two specific tests (tests no.18 and no.96) were 

selected. The temperature evolution in the database can generally be categorized into two types: 

steady and disturbed evolution. Hence, experiment 18 was chosen as representative of steady 

temperature evolution, while experiment 96 was chosen as representative of transient 

temperature evolution, allowing for a comparative analysis of their respective behaviors. For 

this reason, by examining the input data of these two typical tests, the different behavior of the 

model is analyzed. 

First, test no.18 is analyzed. In order to make predictions, the first 50 frames marked with a red 

vertical line in Figure 16 have been provided for the model. After the red bar, the AI uses the 

force data, rotation speed and the results obtained from each step, predicts temperature changes 

in the next frame. 

In Figure 16, the curves shown in red are the results predicted by the DL model, and the curves 

shown in different colors are the results recorded during the experimental tests. The general 

trend between the experimental and predicted results by DL model seems to match. In detail, 

the braking process lasted for 35 seconds. After 35 seconds, the pad-disc pair is no longer in 

contact, and it is in the free convection cooling phase, but the test presented continued to the 

75th sec. 

Either in the phase of rising or falling temperature, the DL model seems to be in a good 

agreement since the errors do not exceed 2.4% comparing the experimental data. 

Indeed, this trial seems quite classical concerning the evolutions where the first derivative is 

always from the same sign on the contact (<35s with a positive sign) and non-contact (>35s 

with a negative sign) phases. In other words, this test shows a quasi-uniformity of the contact 

on the whole surface of the pad during the whole braking phase, as shown by the evolution of 

the temperatures on all the thermocouples and the level of temperatures reached.  
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According to the evolution of the surface temperature in the experimental test no. 18, although 

the evolution of the surface temperature in all thermocouples did not take place in the same 

way, the model is able to detect even the existing peak just before the temperature decrease in 

thermocouple no.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, the other trial (no. 96) which is not used in the training phase is analyzed. This trial shows 

more variations in the braking phase, as shown in Figure 17. Again, the inputs are the first 50 

frames, and after the vertical red bar, the DL model is left in autonomy. At the first sight, the 

global trends are pretty good between the temperature evolutions predicted by the model and 

the experimental data so that the error percentage for the trial no. 96 is 6.8% (but compared to 

the total error percentage of the model (3.8 percent), it is large). More precisely, these tests 

Figure 16: Predicting the temperature evolution of experiment no.18 by the (DL) model 
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show more variation (with positive and negative slopes) during the braking phase. These 

variations are often "captured" by the model, where there may be some errors in predicting the 

amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results shown before are pretty encouraging but need to be improved in some respects 

where there are more heterogeneities in the thermal response of the system. This kind of 

situation occurred in 15% of all cases treated. This is still reasonable, but it is necessary to 

better understand what is going on to improve the prediction. As mentioned in the 

instrumentation section, the test bench is equipped with a microphone. And to better 

Figure 17: Predicting the temperature evolution of experiment no.96 by the DL model 
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understand the different responses of the system, spectrograms are very useful. The 

spectrograms of the two tests illustrated above are presented in Figures 18 and 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the acoustic characteristics are not the same across different tests. The 

first spectrogram Figure 18, related to the test no.18, has some clear continuous lines over time 

without many fluctuations. While on the spectrogram of the test no.96 Figure 19, the response 

seems more disorganized over time. The difference between these two tests is in three aspects, 

disc rotation speed, the contact surface evolution and the other is the normal force, that may 

cause different responses such as acoustic signals from the system or different surface 

temperature evolution. In fact, looking at the recorded spectrograms, different responses can be 

divided into two general categories. Spectrograms that have continuous lines and have no 

undergone sudden frequency changes and have a stable state (class 1). Spectrograms that have 

sudden frequency changes, the frequencies produced by the system are not continuous over 

time and are unstable (class 2). On the first class of tests (such as test no.18), the tribological 

aspects appear to be in a steady state, while on the other class of tests (such as test no.96), they 

Figure 18: The spectrogram corresponding to experiment no.18 

Figure 19: The spectrogram corresponding to experiment no.96 
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appear to be transient. In other words, the surface phenomena related to tribology are more 

chaotic on the second class and must depend on a shorter wavelength. However, by increasing 

the number of thermocouples, more accurate information on the evolution of the surface 

temperature may be obtained in order to make a better prediction for the tests in class 2. 

Although test no.96 was not able to do the predictions as precisely as no.18 due to disturbed 

evolution, but test number 93 could predict accurately despite the similarities to test no.96. The 

results are shown in Figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here a question is proposed which is why the model had 2 different conclusions in 2 similar 

tests (93,96), it might be due to the data which has been stored in the database that matches 

with test 93 requirements. 

Figure 20: Predicting the temperature evolution of experiment no.93 by the DL model 
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III.5. A FIRST STEP TO SMART BRAKING  

One of the advantages of the proposed model is having the ability to adapt and face 

dynamic and continuous problems.  

As seen in Figures 21a and 21b, the force applied in experiments no. 18 and no. 96 respectively, 

has a significant impact on the output frequencies, as seen in the corresponding temperature 

evolution (Figures 16 and 17) and spectrogram (Figures 18 and 19) of the experiments. 

In fact, when the pin comes in contact with the disc, due to friction, the kinetic energy is 

converted into heat. In addition, when a greater force is applied from the pin to the disc, in less 

time the kinetic energy is converted into thermal energy. This force can also limit the movement 

of the disc and affect system vibrations. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 21a-b: Different normal forces applied in tests no. 18 and no. 96. 

a) The normal force corresponding to experiment no.18. 

b) The normal force corresponding to experiment no.96. 

Figure 22: Applied force and experimental temperature evolution (Exp. no. 18). 

(a) (b) 
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Force amount in the mentioned experiments shows that when a larger amount of force is 

applied, the temperature evolution is steady (Figure 22), and when a smaller force is applied, 

the temperature evolution is not steady (Figure 23), as the associated spectrogram is very noisy.  

Based on this ability, and the surface temperature evolution sensitivity to the applied force 

(Figure 24), the idea of predicting the system's responses by changing the influential parameters 

in the system's behavior is proposed which is the smart braking system. 

 

 

 

 

 

  

 

 

 

 

Now, the idea is raised to explore the effects of controlling the braking force as a parameter 

that can be easily adjusted by the user on the behavior of the system.  

To achieve this, the force applied in experiment no. 18 was replicated in experiment no. 96, 

and the model was tasked with predicting the temperature evolution. Surprisingly it provided 

significant results. As observed in Figure 25, the model has a completely different prediction 

from this experiment and the sudden temperature evolution turned into uniform evolution. 

 

Figure 23: Applied force and experimental temperature evolution (Exp. no. 96). 

Figure 24: High sensitivity of the surface evolution to the applied load during the contact process 
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In fact, it can be interpreted that controlling the force can completely change the responses of 

the system and the temperature evolution of the system is highly sensitive to the force applied 

from the pad to the disc. Because of the applied force, the surface of the pad is uniformly in 

contact with the surface of the disc and temperature changes are uniform. As the model boasts 

a short calculation time, it proves to be highly advantageous in generating results quickly. This 

attribute further strengthens the concept of smart braking. In addition, it was shown that the 

frequencies produced by the system are unstable and undergo sudden changes when the 

evolution of temperature undergoes sudden changes. By putting these points together, it can be 

said that force during the contact process as a key parameter can play an effective role in system 

responses. 

Figure 25: Results of force change to predict system behavior. 
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III.6. CONCLUSION 

In this chapter, the contact process is investigated as a tribological problem. Since it is 

not possible to get much information about the state of the interface when the contact surface 

is closed, eight thermocouples (2 thermocouples were detached during the process and the tests 

continued with the remaining six) are placed in a pin made of conductive and friction-resistant 

materials to analyze the state of the contact surface by examining the temperature evolution. 

Due to the mechanical complexity and the physics of the contact problem which should be 

considered the history of temperature evolution, a 2D-RCNN has been used for its analysis and 

prediction. 

There are two main motivations for using this architecture, since it has been applied on an 

experimental dataset including surface temperature changes during the contact process. Firstly, 

the location of the points involved during this process should be considered, that is why the 

convolutional neural network is effective. Secondly, the history of these changes should be 

considered, therefore, recurrent neural network is important. 

Due to the heterogeneity of the experimental data, the training process was done discretely, but 

in the test phase, the prediction was done continuously. The used data for this prediction are 

the normal forces, disc rotation speed, and surface temperature changes. This data feed the 

model for an interval including 5 seconds at the beginning of the test, and after the fifth second, 

normal force and disc rotation speed are considered as known data, but temperature changes 

are considered unknown. 

The error percentage of the model is 3.8%, which is acceptable and by increasing the number 

of thermocouples and obtaining more information from the interface, its performance could be 

improved. 

The presented method for predicting the surface temperature evolution is interesting because it 

can predict the evolution of surface temperature in a fraction of a second (153ms) by only 

having information of less than 5s of the contact process. 

The analysis shows that one of the main parameters that has a direct effect on the system 

behavior is the applied normal force to the contact surface, and in a pin-on-disk system, the 

force can limit the disc movements, as a result, the system has a more stable behavior in the 

interface. So, it can be concluded that the behavior of the system can be controlled. 
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Transition 

Contact surfaces are constantly evolving due to the interaction between different 

mechanisms caused by the force and the contact of two objects in the sliding period. The 

mechanisms can be mentioned as stress concentration and heterogeneous surface temperature 

evolution during contact, which can lead to the generation of different topographies and 

different behavior of tribological systems. For example, the detachment of fine particles from 

surfaces can cause changes in surface topography. Particles leaving the system can result in 

environmental pollution or respiratory problems. Particles sticking to contact surfaces due to 

force or temperature can cause surface roughness, leading to system malfunction and risk of 

noise pollution or performance issues. 

Therefore, knowing and predicting these changes can be useful to prevent such disorders. 

But the prediction of these changes is very complicated and hard to make due to the existence 

of different mechanisms, and heterogeneous materials that lead to different behavior or 

different roughness. 

As it is concluded, roughness is playing a major role in the system function. In Chapter II, it 

was shown that different roughness can cause different vibration frequencies and in Chapter 

III, it was shown that different roughness can cause temperature evolution which directly 

affects the system behavior. In order to prevent system malfunctions, it is necessary to predict 

the surface evolution. Here, under constant conditions, these predictions are made. To perform 

this action a model is presented which uses deep learning (DL) using an experimentally 

generated dataset. The analyzed part is marked in a blue box in the main diagram (Figure IV). 
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Figure IV: The general scenario of the thesis, which in this chapter the surface state, during the contact process is analyzed. 
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IV. Prediction of Surface Evolution 
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Abstract 

According to the concept of the tribological circuit, the surface conditions of the first 

bodies are constantly changing. This is due to a combination of geometrical surface defects, 

different flow rates and local loadings. Moreover, everything is established in a multi-physical 

and multi-scale context. The system performances (friction, noise, wear, etc.) are very 

dependent on these evolutions which have been difficult to model. Indeed, the difficulties in 

obtaining a relevant model are both on the experimental and numerical sides. From 

experimental point of view, despite fine measurements, the understanding and the qualification 

of the phenomena is still a difficult problem. From a numerical point of view, the models (the 

equation of the phenomena) and their approximation still raise a lively debate in the 

community. In this chapter, we propose an approach which aims to predict the surface 

evolution on the pin side. This approach is based on generative adversarial networks (GANs) 

using an experimental dataset. More precisely, profilometry measurements obtained at the end 

of a test cycle will be introduced into an artificial intelligence architecture. The results show 

that the global phenomena are rather well predicted.  

 

Keywords: Wear, Deep Learning, Pin-on-disc configuration. 
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IV.1. INTRODUCTION 

When two surfaces come into contact, the existence of various factors such as surface 

roughness, sliding speed [179][180], normal force [180], different mechanical properties[181], 

surface contact temperature [182], etc., cause the evolution of the contact surface. According 

to the mentioned factors, surface evolution can occur locally or on the entire surface, which is 

commonly referred to as "wear". There are multiple mechanisms of wear, and the contact 

surface can be influenced by one or more of these mechanisms, depending on factors such as 

environmental conditions, type of loading, and others. According to Archard’s research [183], 

several mechanisms can be mentioned: 

- Adhesive wear is one of the most prevalent mechanisms that causes the modification of the 

contact surface. When the small particles from the contact surfaces remain in the interface and 

are stuck to the contact surfaces under the effect of normal force and temperature due to 

friction, they do not leave the system [184][185][186]. This type of wear has a significant effect 

on the components of a tribological system [187]. (Figure 1) 

 

 

 

 

 

 

- Abrasive wear occurs when two rough surfaces come into contact, and during this process, 

minute particles separated from the surfaces either leave the system or remain in the interface 

and slide between the two surfaces [188][189][190]. (Figure 2) 

 

 

 

 

 

 

 

 

- Corrosive wear occurs when the contact surfaces are placed in an environment with a risk of 

corrosion, and during the contact process and sliding, the corroded or oxidized layer is removed 

Figure 1: Adhesive wear schematic. 

Figure 2: Abrasive wear schematic 
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from the contact surface, which causes the surfaces to be continuously exposed to corrosive 

environmental conditions and accelerate the corrosion process [191][192][193]. (Figure 3) 

 

 

 

 

 

 

-   Fatigue wear occurs when the contact surfaces are in contact in a repeating cycle, micro-

cracks are formed on the surface or under the contact surface due to the force that the surfaces 

exert on each other. These cracks grow over time and loads, until they cause the separation of 

parts from the contact surface [194] [195]. (Figure 4) 

 

 

 

 

 

 

These mechanisms vary the contact surface in terms of surface roughness [196], which 

subsequently change the mechanical responses of the system. Finally, it leads to a disruption 

or alteration in the behavior of the system. These disturbances can be shown as system 

squealing [163], friction-induced vibration [197][196] particles emission [198][199], which 

easily enter the respiratory system due to their small size. These factors affect the performance 

of the system. In addition, these disorders cause environmental or noise pollution [200][201], 

which imposes considerable expenses to the industry and treatment sector. 

Therefore, knowing the behavior of surface evolution can help to predict and prevent their 

occurrence. Many different methods were presented for analyzing the surface evolution. For 

example, [187] studied the complete process of wear particle formation (i.e., nucleation, 

evolution, and detachment) during adhesive sliding contact using a coarse-grained numerical 

technique. They realized that by reducing adhesion, the probability of wear particle formation 

at the asperity contact decreases. [202] Analyzed the influence of the wear partition factor and 

modeled the wear contact surface based on Archard's wear law. [183] Used the finite element 

method, and [203] found, through interrupted rotating-bending fatigue tests, that despite the 

wear mechanism remaining unchanged, the distance from each fretting damage zone boundary 

Figure 3: Corrosive wear schematic 

Figure 4: Fatigue wear schematic 
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to the contact edge changes with the number of fatigue cycles. [204] Also studied the material 

response of stainless steel to incremental particle impact and the evolution of surface and 

subsurface wear with time during erosion-corrosion. [205] presented that the relative impact of 

pressure sliding amplitude and the number of fretting cycles can be assumed as a single 

parameter by introducing an energy wear concept.  

However, due to the complexity of the contact mechanism, they usually model the evolution 

of the contact surface using simplified or idealized models, or they might include some 

parameters such as force, type of material or surface roughness in the model and which are not 

considered at the same time Despite the complexity of these models, they are known to be time-

consuming and require a high level of proficiency [153]. But the evolution of the surface in 

tribological systems such as friction brakes are subjected to several different mechanisms at 

the same time, and the factors such as sliding speed, normal force, type of material, contact 

duration, temperature of the contact surface, roughness, etc. are involved in the surface contact 

evolution. 

Recently, methods based on deep learning have been introduced to study it.  For example, [206] 

tried to classify the wear on the contact surface of a cutting machine by using deep learning, 

and the model performance was acceptable in some categories and failed to meet expectations 

in some categories. In addition, this approach has weaknesses in order to classification complex 

systems such as friction brakes that are performed at high speed and under different 

environmental conditions and under the effect of forces, temperature and different materials. 

On the other hand, this model will not be able to predict the surface state, which is one of the 

main needs of tribology systems. Alternatively, [207] estimates the tool wear by using one-

dimensional convolutional networks, but the actual results are far from the predicted results 

and these models do not predict the evolution of two-dimensional surfaces. 

According to the mentioned points, it is necessary to provide a way which can model the 

evolution of the contact surface in real conditions. For this reason, in this section, a model is 

presented using Generative Adversarial Networks (GANs) [208] to analyze and predict the 

evolution of the contact surface. In order to solve this issue, a deep learning model is applied 

with an experimental database which is described in the following. 
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IV.2. GENERATING THE EXPERIMENTAL DATABASE 

IV.2.1. Presentation 

According to the purpose of this section, which is to analyze and predict the evolution 

of the surface contact state, a pin-on-disk system is used [175][48]. The disc material is 

15CrMoV6 steel and the pin is made of composite material. Figure 5 shows the experimental 

setup.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this purpose, a rigid stand is used, which is connected to the blade at both ends, and a pin 

with a dimensions of 20 mm x 20 mm is connected in the center of the blade. In order to perform 

the contact process, a displacement is applied to the stand so the pin is in contact with the disc 

and the bending created in the blade applies the normal force from the pad side to the disc. 

A profilometer is located at a distance of half a meter from the disk and the pin is placed at the 

average distance of 30 mm from the profilometer after rotation. The pin rotates 90 degrees 

around the base axis and is placed in front of the profilometer, to perform profilometry, no 

disassembly is done on the system so that the pin does not suffer shock or vibration and 

profilometry can be performed with minimal damage. In order to make a fixed reference for 

performing profilometry, a distance of the profilometer is set to the blade of the pin holder so 

that the profilometer records the surface changes compared to a fixed reference. 

Figure 5: Pin-on-disk system and used equipment to perform experimental tests. 
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 After each 10-contact process, the pin rotates 90 degrees to the profilometer to perform 

profilometry. Given that the process is time-consuming (approximately 30 minutes, including 

15 minutes for machine shutdown, cable connection and disconnection for profilometry, and 

an additional 15 minutes for restarting). A profilometry was performed after every 10 contact 

tests. Although this process may cause a smaller database to be created, it can be positive in 

the sense that the changes made in the contact surface are more for every ten contacts and the 

model can receive more changes from the evolution of the surface, which may be useful for 

the model. Figure 6 shows two examples of profilometry (no.1, after first 10 brakes and no.2 

after the second 10 brakes). 

 

 

 

IV.2.2. Protocols and illustrations of the experimental results 

The experimental test sequence is decomposed into series of tests (330 tests which made 

33 profilometry records). The rotation speed is remained constant (drag conditions) for each 

trial. The distribution of the normal force applied to the surface is shown in Figure 7. In this 

figure, the blue points represent the tests conducted, the red points represent the profilometry 

data used during the model training phase, and the yellow points represent the data used during 

the testing phase. 

 

 

 

Figure 6a-b: Figure a, shows the profilometry for the complete surface 
(20*20 mm²) after 10 contact, and Figure b after 20 contact. 

a) Profilometry number 1. 

b) Profilometry number 2. 

(a)  (b) 
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Time is another parameter which affects the test results. In fact, in each test, the pin is in contact 

with the disc for 30 seconds in the form of a drag braking, then the pin is disconnected from 

the disc for 30 seconds, and the cooling phase takes place, and the pin contacts to the disc again. 

In Figure 8, the duration of the tests is shown with blue points. The red points indicate the tests 

where profilometry is performed and the used data in the training phase. The yellow points 

indicate the tests where profilometry is performed and the data used is in the model testing 

phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the experiments, the disc rotation speed is 200 rpm, and its distribution is shown in Figure 

9. The blue points show the disk rotation speed in the experimental tests. The red dots indicate 

Figure 7: Distribution of normal force in the test series. 

Figure 8: Distribution of tests duration in the test series. 
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the experiments in which profilometry was performed and were used for model training, and 

the yellow dots indicate the experiments in which profilometry was performed and were used 

in the model testing phase. 

 

 

 

 

 

 

 

 

 

 

 

 

IV.3. AI MODEL FOR PREDICTION THE CONTACT SURFACE 

EVOLUTION 

IV.3.1. General presentation of the model 

According to the problem that is the contact surface evolution using Generative 

Adversarial Networks (GANs) seems relevant, because GANs models have both the ability to 

predict and generate 2D images that fit the needs of this issue. GANs is a deep learning 

architectures for training a generative model. It was first described in [208], however the initial 

models worked but were unstable and difficult to train. Therefore a standardized approach 

called Deep Convolutional Generative Adversarial Networks, or DCGAN, that led to more 

stable models was later formed by [209][210]. 

The GAN model architecture includes two sub-models: a generator model for generating new 

examples and a discriminator model for classifying whether generated examples are real (from 

the domain) or fake (generated by the generator model). 

-  Generator model is used to generate new plausible examples from the problem domain. 

- Discriminator model is used to classify examples as real (from the domain) or fake 

(generated).  

Figure 9: Distribution of normal force in the test series. 
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Generative adversarial networks are based on a theoretic game scenario in which the generator 

network must compete against an adversary. The generator network directly produces samples 

but its adversary, the discriminator network, attempts to distinguish between samples drawn 

from the training data and samples drawn from the generator [211].  

Figure 10 shows the schematic and the learning process of a GANs model. 

 

 

 

 

 

 

IV.3.2. Global view of the problem resolution 

After creating the dataset and choosing the algorithm that suits the needs, it is time to define 

a scenario to solve the problem. The adopted scenario in this chapter, in order to provide an 

efficient model consists of five steps. First, experimental tests are performed in such a way 

that the pin is brought into contact with the surface of the disc with a certain force. Second, 

after every 10 tests, the state of the contact surface is recorded by profilometry. Third, the 

data is stored on the dataset. Fourth, the data is entered into the model and the training phase 

is carried out so that the model finds a correct connection between the inputs and outputs. 

Finally, after training the model, its ability is checked by data outside the database. The used 

scenario is shown in Figure 11. 

 

Figure 10: Schematic of a GANs model. 

Figure 11: The chosen scenario to solve this issue. 
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IV.3.3. AI model for surface evolution generating and prediction 

The surface contact state is one of the main factors involved in the behavior of 

tribological systems. It was shown in Chapter II that the occurrence of instability of a pin-on-

disk system, is directly related to the roughness of the contact surface. Since the contact surface 

in a tribological system is constantly evolving under various factors over time and these 

changes cause different behavior of the system, predicting these changes can be useful to 

prevent system malfunctions. However, the changes in the contact surface are the result of the 

action of various mechanisms, and the complexity of this issue has made the presented models 

not having accurate predictions. For example, by looking at Figures 12a (test no. 90, 

profilometry no.9) and 12b (test no. 100, profilometry no.10), it can be seen that there are 

grooves on the contact surface which can be caused by the separation of hard materials such as 

ceramics at the entrance of the contact surface (shown with a red circle in Figure 12a) and has 

extracted through it, which has completely changed the contact surface roughness (shown by 

the red rectangle in photo 12b). 

For this reason, in this chapter, prediction of surface roughness evolution is discussed using a 

DCGANs architecture. In fact, the goal is to give the state of the contact surface at time n to 

the algorithm and predict the state of the surface at time n+1. Figure 13 shows the used 

architecture for this purpose. 

 

 

 

 

 

(a) (b) 

Figure 12: The process of grooving creation 

a) Strat point of grooving (test no. 90, profilometry no.9) 

b) Grooving creation (test no. 100, profilometry no.10) 
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IV.3.4. Different scenarios to solve the problem 

- First strategy: To train the model, the initial 29 profilometry data points were used. 

The model then aims to learn the underlying relationship between the input and output data, 

where the input is the surface state at time n and the desired target is the surface state at time 

n+1. Since a GANs model consists of two parts, the generator and the discriminator, the 

hyperparameter adjustment with the iterative strategy is very time-consuming. For this reason, 

according to the task of the discriminator, which is to classify the surfaces produced by the 

generating network, the efficient hyperparameter found in Chapter II to classify the roughness 

of the surface is used. However, the hyperparameters of the generative network were adjusted 

using an iterative strategy. In fact, the generating network should predict and generate the 

evolution of the surface so that it makes the minimum difference compared to the actual 

surfaces and the discriminator model cannot find a difference between the produced results and 

the actual results. For this reason, the value of the loss function of the GANs model should be 

reduced to lead the error percentage of the discriminator model increase, which means that the 

discriminator model cannot find a difference between the generated data and the real data, and 

the real label is assigned to the generated surfaces. In summary, during the training phase of 

the GAN model, the hyperparameters of the discriminator are fixed while those of the generator 

are adjusted. The two components, the generator and the discriminator, work together in an 

Figure 13: The used mechanism of the model to predict the contact surface evolution. 
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end-to-end manner to improve the overall performance of the model. The end-to-end training 

process involves the generator and discriminator models constantly interacting with each other, 

with the output of one serving as input for the other, until the training is complete and the GAN 

model is optimized for the task at hand. 

The generator's role is to predict and generate the evolution of the surface, minimizing the 

difference between the actual surface state and the generated one. The discriminator, on the 

other hand, classifies the generated surfaces and determines their similarity to the real surfaces. 

By adjusting the hyperparameters of the generator, the goal is to make it harder for the 

discriminator to distinguish between the real and generated data, thus improving the overall 

performance of the GAN model. Here, the GAN architecture is a 2D Convolutional Neural 

Network (2D-CNN) GAN, where both the generator and discriminator components have 2D-

CNN structures. The generator's function is to create new data that resembles the real data it 

has been trained on. For a 2D-CNN GAN, the generator takes a random noise vector as input 

and produces a 2D output, such as an image. The generator's ability to generate realistic images 

is honed through its interaction with the discriminator in the adversarial training process. Table 

1 shows the used hyperparameters in the discriminator model. 

 

 

 

 

 

 

 

 

 

 

 

But in order to determine the hyperparameters of the model that generate the contact surface 

evolution, an iterative strategy is used, the goal is minimizing the value of the loss function, 

then the data is given to the discriminator model to distinguish the surfaces produced by the 

algorithm from the real ones. In fact, in order to reduce the training time of the model, four 

parallel models are used in such a way that in each of the models, one of the loss functions is 

used as a fixed hyperparameter. Then one of the optimizers is selected and the model starts 

training by changing the batch sizes and the number of epochs. At the end, the average loss 

 Table 1: Model specifications for classification 
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function is recorded for each configuration. These values for each of the hyperparameters are 

shown in the green box in Table 2. 

 

 

The results show that the model is not converged and could not predict the contact surface 

evolution. In fact, the training and validation results (Table 2) show that the lack of data in the 

model training phase has caused the model to be unable to establish a relationship between the 

input and output data, and the model has suffered from poor fit. Also the discriminator has been 

able to identify with 100% accuracy all the surfaces produced by the model, which shows the 

weakness of the generator in producing data close to reality. Figure 14 shows the surfaces 

produced by the generator model. It is clearly shown the model has not been able to update the 

weight of the layers well due to the lack of data and has produced very poor results. 

Figure 14: The results obtained from the trained model by 29 profilometry data and tested by 4 profilometry data  

Table 2: Model results for tuning hyperparameters (first attempt)  
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- Second strategy: Next, in order to solve the lack of data problem and improve the 

performance of the generating model, a technique was used to increase the data so that the 

model has enough data to complete the training phase. 

According to the original size of the images, which is 2512x2512 pixels, a window with a size 

of 512x512 was created and it was moved on the contact surface so maximum of 120 sub-

surfaces were generated and it lead the number of data to be increased. 

For this reason, each profilometry was divided into 30, 60 and 120 parts, then the training phase 

of the model was done with different amounts of data. 

Since DL models require a large amount of data (even when the data is of lower quality) to 

obtain satisfactory results to be more effective, the use of data augmentation is common to 

reduce overfitting and improve the performance[212][213][214].  

The minimum loss function in the generative model is related to training the model by dividing 

each profilometry into 120 parts. In addition, the discriminator model has the maximum error 

percentage for identifying the data generated by the trained model. Figure 15 shows the error 

percentage of the discriminator model in the test phase. 

 

 

 

 

 

 

 

 

 

 

 

Results show that as the number of data increases, the model is able to have better outputs. In 

fact, it can be concluded that when the profilometry is divided into 120 parts, the surface 

roughness in a suitable scale is provided to the model and the model can receive the information 

with good resolution. 

In the generator model, the “relu” activation function was used in the encoder layers and the 

“tanh” activation function was used in the last decoder layer. Therefore, the “relu” activation 

function was selected in the encoder layers because the purpose of the problem is to predict the 

evolution of the contact surface and the reason for using the “tanh” activation function in the 

Figure 15: The model percentage error vs. increasing training phase data 
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last layer is that the input data of the model is normalized between -1 and 1 and since the range 

of the “tanh” function is between -1 and 1, this function was used. 

The results show that the model using “mse” loss function had the best performance. In this 

way, it can be concluded that the distribution of surface changes during contact is in a certain 

range and the probability of surface evolution is higher in some places, and the distribution of 

these changes may be Gaussian distribution, that's why “mse” works better to find the minimum 

value. 

In order to optimize the training process, adam optimization algorithm was chosen since it is 

an extension of stochastic gradient descent, it can be explained with the same argument and 

this optimizer randomly finds the minimum value for the model. 

Batch size is the next hyperparameter to be set. The results show that batch size 120 has stable 

and acceptable results. In fact, since each profilometer is divided into 120 parts in each epoch, 

the 120 data that enter the model are the data of a complete level, that's why the model has 

presented a better trend by using 120 data. 

In the end, the last hyperparameter to consider is the number of epochs. By using 400 epochs, 

the model was able to minimize the "mse" value. Table 3 shows the results of the iterative 

strategy to find the best hyperparameters of the generative model, and Table 4 shows the final 

specifications of the model. 

  

 

 

    Table 3: Model results for tuning hyperparameters (second attempt)  
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The computation time for setting hyper parameters and complete training phase of the model 

by a server computer (Configuration: Memory: 128 GB, CPU @ 2.50GHz *40, Graphics: 

32GB and a SSD 2 TB M.2 NVMe) is about 12 days. 

IV.4. RESULTS AND DISCUSSION 

 After setting the hyperparameters and training the model in the testing phase, the 

profilometry data was divided into 120 samples and each of these subparts is entered into the 

model separately and the model predicts the state of the contact surface at the next moment. 

After making these predictions for the smaller parts, the subparts are connected together to 

reconstruct the full contact surface. In Figure 16, the results are presented, where the left image 

represents the input of the model, depicting the state of the contact surface at time n (test no. 

310, profilometry no. 31). The middle image displays the state of the contact surface at time 

n+1 (test no. 320, profilometry no. 32), and the right image illustrates the predicted state of the 

contact surface at time n+1 generated by the model (prediction for profilometry no. 32).  

Table 4: The final specifications of the generating model. 

Figure 16: The results obtained by the deep learning model compared to the expected results 
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The time for making predictions and generating the pin surface evolution is approximately 0.1 

seconds. By zooming in, and looking at the pin scale results, it can be seen that the model is 

able to make good predictions of the contact surface evolution, but there are some differences 

between the predicted results and the expected data (Figure 17). In fact, these differences can 

be caused by various factors, such as heterogeneous stress distribution on the contact surface, 

which causes the temperature to rise in some zones, and leads to the expansion of the pin and 

disc, separation of the pin material that causes grooves on the surface of the pin and small 

particles that enter the system during the contact process and stick to the contact surface. 

 

 

In Figure 18, the figure on the right displays the contrast between profilometry no. 31 and no. 

32. The middle figure represents the contrast between test no. 31 and no. 32 (predicted), 

showing the difference between the AI results and the real profilometry to provide a clear visual 

comparison. The left figure illustrates the contrast between profilometry no. 32 and no. 32 

(predicted). The results indicate slight differences between the predictions and the actual state, 

allowing for a comprehensive evaluation of the accuracy of the AI predictions. 

In fact, it can be concluded that in smaller scales, the process of surface evolution is different 

compared to the process of surface evolution at the larger scales, because different mechanisms 

are involved in these scales, the model has less accuracy in production and predictions, 

Figure 17: Minor differences in the results obtained compared to the expected results. 
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however, the discriminator model could not find a significant difference between the generated 

and the expected data.  

In fact, the results can be interpreted from several aspects. In the original scale, with a general 

look at the results, it can be seen that the model has been able to obtain acceptable results using 

the analysis of the surface condition. In the smaller scale, it is possible to see differences in 

some points of the contact surface in experimental tests and predicted results, which can be 

caused by the presence of various materials in some areas of the surface or the concentration 

of stress in some areas due to the height differences in the contact surface. It may lead to the 

local increase of the contact surface in limited areas and the occurrence of heterogeneous 

surface temperature evolution in the contact surface and as a result different behavior of the 

contact surface. In the smallest scale, the presence of microcracks on the contact surface can 

be considered, which can be caused by normal force, tangential force, system vibration or 

sliding speed on the contact surface and lead to the separation of the contact surface materials 

and as a result changes random and complex contact surface. 

 

 

 

 

Figure 18: The blue spots indicate the border lines of the sub surfaces which have been overlapped. In the final 
regenerating they will appear as the blue spots. 
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IV.5. CONCLUSION 

In this chapter, the evolution of the contact surface was investigated, and a model was 

presented to predict the surface evolution. In order to make these predictions, a GANs model 

was used to predict surface state at time n+1 by examining and analyzing the surface state at 

time n. In order to train the model, an experimental database was used, the used data to feed 

deep learning model is the surface profilometry of the pin surface in a pin-on-disk system. It 

was demonstrated that the data recorded in the experimental phase is insufficient for training 

the model. Therefore, a technique was employed to augment the data, enabling the model to 

establish the relationship between the inputs and outputs more effectively. As a result, the 

model can better capture the patterns and dependencies within the data. It was shown that 

GANs models have the ability to predict surface evolution, and acceptable results were 

obtained. Although slight differences can be observed in certain areas, these variations can be 

attributed to various factors, including particle separation from the contact surface, elevated 

contact surface temperature, disc material and thickness, and more. By incorporating additional 

data, such as contact surface temperature throughout the contact process, stress distribution on 

the pin surface, state of the contact surface on the disc side, mechanical properties of the pin 

materials, and more profilometry measurements, the model's understanding of the contact 

process will be enhanced. 

In fact, the presented model is able to generate the surface evolution of the contact surface in 

0.1 sec. and before the contact occurs, and make it possible to predict the system responses. By 

using these predictions can prevent system disturbances such as system instability or the release 

of fine particles by the system can be identified before they occur, and preparations can be 

taken to prevent them in order to avoid huge costs in health, environment and after-sales 

services. 
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Conclusions and Perspectives 
 

Conclusion: 

In this thesis, mechanical issues have been addressed through artificial intelligence. 

Classification and regression problems were handled using data from other models or directly 

from experimental tests. More precisely, apart from the first chapter, which is a demonstrator 

of artificial intelligence for the mechanical community, the main problem is dedicated to 

tribology. This science contains many difficulties because it is multi-scale, multi-physical and 

evolutionary which have crucial effects on the prediction process. To simplify understanding 

the process, a 3-step categorization of tribology are proposed in the following. 

• The first consisted in establishing the mechanical state according to a system considering 

rough surfaces.  

• The second is aimed to physically identify the contact states according to the history effect 

of the contact.  

• Finally, the third part is devoted to the evolution of contact states by trying to link them 

with the surface state. 

Although this breakdown could be improved, a number of strong results have been proposed 

within this 3. step breakdown. At first, it appears possible to establish a link between the 

frequencies of a system and the contact surface. This link highlights a strong multi-scale 

relationship. Still, on this aspect of "mechanical state" and relying on AI, stress fields were 

always determined in the presence of irregular surfaces. This point of view will certainly in 

the long term make it possible to identify relevant criteria. In the second step, the prediction 

of contact localization was established based on temperature rises. Although it was necessary 

to rely on a few thermocouples embedded within the pad, the results deduced from the AI 

seem to indicate good relevance and good robustness despite various phenomena related to the 

parameterization of the input data (force, speed, test duration). This approach could highlight 

that the duration of the story effect (indicated as frame number in chapter 3) is important to 

consider. Finally, in order to better understand the evolution of surfaces, an approach based on 

a GAN scheme showed that the global point of view has been well characterized. More local 

phenomena (local grooves, heterogeneities, etc.) still need to be improved by relying on more 

experimental data (microstructure, history effect, frequency spectrum, etc.).  
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In general, mechanical problems, especially tribological problems, are intrinsically complex 

due to their nature, and the behavior of multi-physical, multi-scale, and evolutionary systems 

is so complex that there are many nonlinear behaviors in these fields, hence machine learning 

algorithms or even classical neural networks and they cannot be the right and effective choice 

to solve these problems. For example, in the process of contact, this mechanism occurs at the 

interface of two objects, and the spatial location of the contact points should be considered so 

that the model can have a proper picture of the details of the contact, hence the use of two-

dimensional convolutional neural networks is a good choice because not only it considers the 

two-dimensional form of the problem, but also takes the interaction between different points 

of the contact surface into account.  

Another effective factor in the behavior of tribological systems is the history of the contact, in 

which the model would be able to provide an appropriate understanding of the process and 

subsequently a precise prediction of the system's responses by considering the contact history, 

as far as the algorithms existing in the field of machine learning do not have such ability and 

the history of the problem cannot be taken into consideration using these algorithms, the use 

of deep learning algorithms and, more precisely, recurrent neural network algorithms can be a 

good choice in dealing with tribological problems, because contact history plays a key role in 

these problems and cannot be ignored.  

It must be noted that, most of the existing hyperparameters and tools related to artificial 

intelligence and more precisely deep learning have been developed to use artificial intelligence 

algorithms for solving various problems rather than mechanical problems, which can be a key 

point because by developing a tool that fulfills the needs of mechanical issue the accuracy of 

the models would be increased and also the training time for the training phase could be 

decreased which is essential in calculation process. 

Another point which plays an important role in mechanical issues is the geometry of the studied 

objects, because, by changing the geometry of the system, the received responses will be 

different. Therefore, the development of a tool that can classify and predict the appropriate 

responses of the system according to different geometries is very important and can be greatly 

helpful for the generalization ability of the models. 

In summary in this thesis, by combining the chapters related to tribology, a comprehensive 

model can be reached in such a way that by analyzing contact location and contact surface 

changes, a model with high accuracy could be presented to predict roughness changes. Then 

the results of this model are entered into the model presented in chapter two, and according to 

the roughness of the contact surface, the risk of system instability is analyzed, and this cycle 
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can be completed for the entire life of the contact surface in less than a few seconds without 

performing complex calculations and time-consuming to predict the risks facing the system, so 

it is less expensive and time-consuming than many experimental tests. 

In short, we look forward to have demonstrated within this manuscript that artificial 

intelligence is the most complementary and effective tool for the classical modeling due to its 

capabilities and capacities which can make it outstanding from the other methods and due to 

its characteristics, it has a strong potential to be developed in the numerical-experience 

coupling which can continuously result to time and energy reduction. 

 

Perspectives: 

In this part, the perspectives related to each chapter are presented separately, and in fact, 

it shows the potential for the continuation of the path of each chapter. This analysis provides a 

detailed overview of the key aspects of each chapter and highlights the potential opportunities 

for further exploration and development. The information presented in this analysis serves as 

a valuable resource for researchers and practitioners who are interested in the continued growth 

and evolution of the field. In fact, the analysis and insights presented in this chapter 

demonstrate the potential for further exploration in each area, and provide valuable guidance 

for future research and development endeavors. 

In Chapter I, artificial neural networks were used to classify the behavior law and 2D-

CNN were used to determine mechanical properties, which results showed the artificial 

intelligence capabilities in the mechanical field. In this research, the ability of artificial 

intelligence to determine the constitutive law parameters for relatively complex materials was 

shown and good results were obtained. 

Therefore, this idea can be expanded, and this method can be used to determine the mechanical 

properties of heterogeneous materials. (Figure 1) 

 

 

 

 

 

 

 

Figure 1: A microscopic heterogonous material example (Nagesh et al. 2021-2024) 
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For this purpose, the method introduced in this chapter might be used to determine the 

mechanical properties of heterogeneous materials, which are very complicated due to their 

behavior. But by using the proposed method, it is possible to record the real responses of the 

system with heterogeneous materials, and according to these responses, the material 

constitutive law and its parameters would be calculated. 

In Chapter II, classifications and predictions were made to predict the risk of system 

instability, and acceptable results were obtained. To apply deep learning, loss functions, 

activation functions, optimizer, and existing functions of deep learning were used. In addition, 

by increasing the number of data and an iterative strategy to adjust hyperparameters, an optimal 

model for classification and predictions was presented. We believe that by developing loss 

functions, optimizer and activation functions tailored to the needs of the contact problem, 

results can be obtained with a smaller amount of data in the training phase.  

For example, the activation function used in this section to predict instability frequencies is 

relu, (Figure 2) which is a linear function and if it can be developed to a nonlinear one such as 

the one shown in Figure 3, it would facilitate the model’s training and generalizability process. 

As it can be seen from Figure 3, which is based on Hertz contact theory, the function goes 

through a different process. So, if an activation function would be developed following Hertz 

contact theory, it might cause the results of the model to be improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The used activation function curve for the prediction model 

Figure 3: Proposed activation function based on Hertz theory 
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In Chapter III, the obtained results indicate that more studies can be done to improve the 

prediction of dynamic responses such as generated frequencies by the system. Since it was 

shown that there is a direct relationship between the temperature evolution and the frequencies 

generated by the system, this idea can be proposed to predict the generated frequencies by using 

surface temperature evolution and the force applied to the surface. For this purpose, the 

temperature and force data recorded from the experimental tests and the first few seconds of 

the spectrogram can be considered as input data and then the evolution of the received 

frequencies from the system could be predicted.   Figure 4 shows the results that are not 

satisfactory.  

 

 

 

 

 

 

Therefore, better predictions could be made by providing more features such as surface 

roughness, increasing the number of thermocouples and system geometry to the model.  

 

In Chapter IV, despite some weaknesses in certain areas, the model successfully obtained 

satisfactory results. It can be improved by incorporating additional physical data, such as the 

stress field. 

Due to the roughness of the contact surfaces, the stress distribution is not uniform, leading to 

stress concentration in certain areas during the contact process. As a result, the evolution of the 

surface and surface temperature in some areas can be significantly different from other areas. 

Knowing the stress distribution during the contact process can thus be a critical factor in 

obtaining more accurate results. Therefore, it would be useful to develop a model that can 

Figure 4: The model performance using the first 5 seconds data. 

a) Model training phase and test results (spectrogram corresponding to experiment no.96). 

b) The spectrogram corresponding to experiment no.96. 

(a) (b) 
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predict the stress field distribution based on the surface roughness. Figure 5 shows the results 

obtained from the deep learning model trained using numerical data, where the stress field is 

predicted using the surface roughness. Figure 5 displays the results, with the left image being 

the input of the model (the roughness), the middle image being the stress field obtained from a 

finite element model, and the right image being the stress field produced by the deep learning 

model. 

In fact, presenting a model having several different effective inputs in the contact process can 

lead to more coherent models, so  that the models will be able to predict the contact surface 

evolution more efficiently. 

 

 

 

 

 

The content of this research presented at various conferences [1][2][3][4]. Also two research 

papers [5][6] were written and submitted for publication. The papers are currently under review 

for acceptance. 

The author's work has been evaluated and discussed through these presentations and potential 

publications. 
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Figure 5: Generating stress field using deep learning model 

a) Surface roughness. 

b) Stress field calculated by finite element model 

c) Stress field generated AI model 
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