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Introduction

Reducing chip dimensions has been one of the main challenges of the last
twenty years in chip manufacturing. Smaller chips can reach higher frequen-
cies, reduced latency, capacitance and inductance, and moving data for shorter
distances significantly lower power consumption. All these advances reflect
in better performance, which can improve our everyday life: from Internet of
Things devices that last longer to high-performance facilities for calculations we
only dreamed about one decade ago.

At the beginning of the 21st century, it was realized that reducing the size of
planar transistors was no longer a viable solution to increase transistor density,
and manufacturers began exploring the possibility of using the third dimension
in making 3D transistors (an illustrative example is presented in fig. 1.). These
3D transistors were under development by the scientific community since the
nineties, and thanks to their transposition from the laboratory to the production
line they are now a standard in chip manufacturing.

Size reduction is reaching a point where quantum mechanical effects are not
negligible and short channel effect and current leakage are now problems that
can not be easily overcome anymore. As a result the industry is looking for new
ways to take advantage of the third dimension.

As of today, the approaches taken by different firms are different flavors of
chip stacking. In general, with this technology, chips, better defined as dies,
implementing different functions, like CPU and storage, are stacked one on top
of the other and soldered together. The electrical interconnections between dies
are obtained through through-silicon-vias (TSV) etched into a silicon wafer and
filled with conductive material. TSV employs a concept that has been known
since the sixties, and the major limitation that this approach poses to future pro-
cess scalability is the size of the vertical electrical connections (vias) since this
quantity can not be arbitrarily reduced. The main limit is given by the manu-
facturing process that lacks the accuracy to align the dies within the micrometer
scale required when soldering them together. [1]

The long-term solution to this problem is to move away from die stacking to
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Figure 1: On the left side, we present a planar transistor design. In this de
sign, we have the source/ drain regions obtained by doping areas below the 
wafer's surface and the gate built on top. On the right, we can see a non
planar transistor, or "3D" transistor, referred to as fin field-effect transistor (Fin
FET). This name was given to this transistor geometry because the shape of 
the source/ drain regions closely resembles "fins" on the silicon surface. While 
more complex to manufacture, this second geometry allows for faster switching 
times, higher current density, and higher transistor density. These, with other 
advantages, have made this geometry the basis for modem electronic semicon
ductor device fabrication. 
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a 30 monolithic ch ip integration. 30 monolith ic integration starts from a regu
lar die and instead of soldering a second die on top of it proceeds by covering 
it with an insulating material that allows for the direct construction of a new 
die on top of the buried one. The construction of the second die starts from the 
deposition of a new thin layer of silicon that acts as base to build the transis
tors. Once those are made, vias can be hatched directly in the insulator, and the 
process can be repeated @- Figure ~ shows a typical dies stack and the theo
retical equivalent using 30 monolithic integration. This technique is still under 
active development and unlocks the third dimension in a way that is very simi
lar to die stacking but solves the alignment issue to an unprecedented accuracy, 
reaching transistor densities that are two orders of magnitude larger than with 
conventional approaches @-

Communication to PCB r ................ T ................ T ............ ~ 
~ ~ '.,;;' 

Figure 2: A typical stack of dies connected by TSV is presented on the left. Each 
layer is tenths of µm thick, and the size of the TSV has to be hundreds of nm 
wide because of the limited alignment precision available during the stacking 
process. On the right, an equivalent structure is embedded in a single silicon 
die where each layer is hundreds of nm thick. In this case, the communication 
between layers and the PCB is granted by etched channels less than 100nm. 
The alignment problems are directly solved while manufacturing the chip. This 
approach can increase transistor density by two orders of magnitude. 

Functional prototypes have already been developed in the laboratory and 
the major technological issues are coming from the need to use low-temperature 
processing while making the transistors in the upper layers. This is necessary in 
order not to alter the devices present in the underlying layers, degrading their 
performances. Among all the processes involved during transistor fabrication, 
dopant activation is a key and delicate one that is usually performed at high 
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temperature. This result is commonly achieved through rapid thermal process-
ing which heats silicon at temperatures exceeding 1300K for a few seconds, a
temperature that in the case of 3D monolithic integration is sufficient to alter
the properties of the device. A promising way to achieve excellent dopant acti-
vation levels in silicon is Solid Phase Epitaxy (SPE) at low temperature (900K)
for several minutes after low-temperature implantation.

In this case, when dopants are added to silicon by high-energy implanta-
tion, the cascades resulting from atoms knocking add stress and point defects
to the initial crystal structure, amorphizing it. The implantation energies used
are however not enough to amorphize all the material and regions of perfect
crystal remain. SPE involves the transition from the amorphous to the crys-
talline phases of the material. Raising the temperature of the sample triggers
the epitaxial recrystallization of the amorphous layer, responsible for dopants
activation in the implanted regions.

A detailed knowledge of the involved processes is desirable. Studying this
problem in its whole complexity, using only quantum mechanics, is impossi-
ble even with modern computational capabilities and a multi-scale approach is
needed, where different levels of theory are used to tackle different time scales.

In a multi scale approach more accurate but expensive theories are used to
generate parameters for more approximate but computationally lighter theo-
ries that can tackle longer timescales. In the case of SPE simulations, a realis-
tic timescale of the order of minutes can only be achieved with kinetic Monte-
Carlo approaches. A typically employed approach is the on-lattice Monte-Carlo
method. This approach starts considering the atoms on an oriented crystalline
lattice and labels individual atoms crystalline or amorphous according to their
position in the sample. Then, defining a catalog of events that can change the
label of a given atom and the corresponding probability rates, the sample re-
crystallization can be simulated. This approach relies on the knowledge of the
key events and of their probabilities and it falls short in describing phenomena
that are characterized by events that are not included in the catalog. As of to-
day, practically implemented on-lattice Monte-Carlo methods for SPE are based
on empirically defined events that decide whether an atom at the crystal/amor-
phous interface can become crystalline with a probability that depends on the
nature of its nearest neighbors and is directly fit to experimental results. This
approach has limited predicting power in many respects and an active line of
research is the search for these key events by employing techniques that explore
the potential energy surface of the system when atoms are not confined to reside
on a lattice.

Different attempts have been made in this direction in the last decades but
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their success was limited by the accuracy of the employed potential energy sur-
face. The investigations performed so far were based on energy models ob-
tained from relatively simple empirical interatomic potentials, with a few pa-
rameters adjusted to reproduce specific lattice geometries and/or a few known
experimental properties, but seldom on extensive accurate quantum mechani-
cal calculations. In order to create a more accurate catalog of elemental events
and improve existing simulation protocols a more accurate description of the
potential energy surface is needed.

In this work we will pursue this program by exploring the ability of modern
machine-learned interatomic potentials, based on neural networks trained on
large datasets of accurate quantum-mechanical density functional theory calcu-
lations, to provide an overall accurate description of the properties of Silicon
and a realistic description of the SPE.

In the first chapter, the SPE will be introduced in details from an experi-
mental prospective covering properties such as the experimental setups and the
experimental observables, that will be used to validate the final results. Then,
Density Functional Theory, the quantum mechanical framework used to calcu-
late the potential energy surface of interest, will be introduced discussing in
particular the major approximations that may impact the obtained results, such
as the exchange-correlation functional of choice and the electronic temperature.
Finally, how artificial neural network can be used to generate an interatomic po-
tential that retains the accuracy of DFT at a fraction of the cost will be discussed.
The building steps of this approach will be explained in some details, such as
the collection of the training dataset that defines where the potential energy sur-
face is accurate, the specific description of the local environment on which the
neural network acts on, and how the fit of this complex object is performed.

The second chapter will detail the creation of the potential developed in this
work. First, it will cover the creation of the training dataset. This is done in
an iterative way where first simple potentials are used to explore the phase
space relevant for SPE that includes configuration such as the diamond bulk,
the amorphous and the liquid phases, some surfaces. Energy and forces of the
sampled configurations are then reevaluated with density functional theory and
used to train a first neural network potential. This potential is then used to sam-
ple more representative configurations that are included in the training dataset,
which is used to train newer, more realistic, potentials. Then the chapter will
continue by showing the key aspects of the training procedure that lead to the
final potential, and will finish by discussing its performance. The validation of
the potential will be first done computing the standard machine-learning met-
rics over a set-aside fraction of data, not used during the training phase, and
then checking a few selected physical properties that are valuable for SPE such
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as the ability to produce good structure factors for the amorphous, an accurate
melting temperature, stability of the main surface reconstructions, and realistic
crystalline phonon dispersions.

Solid phase epitaxy will then be investigated in the third chapter. Here, a
detour is first taken to discuss in detail the quality of the amorphous phase that
the developed potential can generate with the procedure we follow to create
it. This investigation is important because SPE rates seem to be sensitive to
the level of relaxation of the amorphous phase present. During this analysis,
we find that standard geometrical descriptors are insufficient to give a com-
plete picture of the amorphous quality, and a more elaborate analysis is given
in an attempt to obtain a more complete picture. Then a solid phase epitaxy
simulation at a significant temperature is discussed in detail showing how ho-
mogeneity in the amorphous region is hard to reach, diffusion levels are higher
than at low temperatures, and more than one phenomenon is present. Finally,
the results of several solid phase epitaxy simulations at different temperatures
are collected, and the barriers that characterize the physical phenomena are fit.
The agreement between these fitted values and the barrier deduced from exper-
iments proves the ability of the developed potential to provide a realistic SPE
description, in spite of a severe overestimation of the measured recrystallization
speed, and the comparison with results in the numerical simulation literature
validates the proposed picture that two key events are involved in recrystalliza-
tion: a defect-creation and a defect-migration event that together account for
the single measured barrier.

In a final chapter a few directions for future research are discussed.
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Chapter 1

Background

1.1 Solid Phase Epitaxy

Solid State Epitaxy (SPE) is the process by which a higher free-energy state of a
given material progressively transforms into a more stable state, following the
template that the substrate provides. This transformation takes place at temper-
atures below the melting point of the material and through atomic reordering
and migration occurring at the interface between the two phases. In the case
of silicon, the tetrahedral crystalline structure (c-Si) is the growing stable phase,
while the meta-stable state is represented by the amorphous silicon phase (a-
Si). Like the crystalline phase also a-Si is mainly tetrahedrally coordinated, but
breaks the long-range order typical of the crystal. The increased strain caused
by bond angle distortion and the presence of point defects are the main causes
of the higher internal energy of the amorphous phase. When the temperature
of the system is raised above a minimal kinetic energy needed for a-Si atoms
to overcome the diffusion barriers and move, a-Si layers in the proximity of
the crystalline template starts to re-order themselves. Such reordering can be
achieved through a diverse set of structural relaxations with a relative relevance
determined by the temperature [4, 5, 6, 7].

Unfortunately, SPE is not a stand-alone phenomenon, and other processes
are compatible with the same experimental conditions, e.g. random nucleation
growth (RNG), precipitation, phase separation, and defect-enhanced diffusion.
All these processes are characterized by an activation barrier [8], hence their
characteristic time τi follows an Arrhenius law:

1/τi = 1/τ0 exp(− Ei

kBT
) (1.1)

where Ei is the activation energy of such processes, kB is the Boltzmann con-
stant, T is the sample temperature, and τ0 is a process-dependent prefactor. This
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exponential behavior is what allows for their identification during experiments
and simulations.

Some of these phenomena are more compatible than others with SPE and
their knowledge can give valid insight when interpreting numerical results.
However, taking into account all these pathways can also increase the com-
plexity of the analysis. To cite a few among the most relevant phenomena we
have the creation of c-Si seeds in RNG, and explosive RNG. The first is a pro-
cess with very high energy barrier, estimated to be in the range between 4 and
5.3 eV [9, 10], and it is often observed in the a-Si region of samples undergoing
high-temperature SPE [4]. When the sample temperature approaches the melt-
ing point, explosive RNG is also observed. In this case, the exothermic a-Si/c-Si
transformation provides enough energy to heat the interface above the melt-
ing point, increasing the mobility of the atoms at the border of the c-Si grain
and hence allowing for a fast reconstruction. Such explosive behavior has been
reported to occur also at the c-Si/a-Si interface in numerical simulations of SPE.

Comparing numerical simulations to experiments is made even harder by
the fact that not all the a-Si are equal, and their properties strongly depend on
the sample thermal history. Experimentally, when creating a sample for SPE the
procedure starts from a perfect c-Si crystal, oriented in the direction of inter-
est, that is either bombarded (implanted) with ions at different energies, flux,
and angles, or over-grown by depositing atoms on the surface (sputtering/e-
vaporation). While all these procedures result in the creation of a-Si, the sam-
ples obtained can have very different properties. For example, a-Si obtained
by ion implantation is typically characterized by the presence of interstitial de-
fects while, over-grown a-Si samples are characterized by more vacancies and
voids. A commonly applied procedure to standardize the structure of different
samples is to anneal them at low temperature (> 500 K). However, such a pro-
cess has not been uniformly applied in experiments and so, for coherence, one
should always specify the a-Si full thermal history. In the following, we will
always indicate whether an a-Si sample is relaxed or non-relaxed, and further
details will be added when relevant.

An obvious key role for the understanding, modeling, and interpretation
of SPE results is played by temperature. While we can assume that the tem-
perature in the material undergoing epitaxy is constant (thanks to the fact that
silicon thermal diffusion length is greater than 1 μm), we do not know the prop-
erties of the specific a-Si under investigation at that temperature. This is due to
two major issues. The first is the uncertainty in a-Si melting temperature: con-
trary to the well-defined melting temperature of the crystalline structure, the
melting temperature of a-Si depends on its relaxation state. As the disorder of
the sample increases its melting temperature can drop to values as low as 1000
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K, while well relaxed a-Si samples show melting temperatures up to 1412 K. An
example of the impossibility of defining a single melting temperature is shown
in fig. 3 taken from [11] where the melting temperature of samples with differ-
ent thermal history is modelled [12, 13, 11]. The second issue is the theorized
existence of an a-Si state, often called low-density liquid (LDL), that shares more
properties with liquid silicon (l-Si) than with glasses[14, 15].

Figure 3: Reproduced from Ref. [11]. Calculation of the Gibbs free energy of l-Si
and various states of a-Si relative to c-Si. The curves are theoretical estimates
and the listed melting temperatures T are derived from the intersection of the
free energy curves of a-Si with the one of l-Si. Parameters used in the theoretical
model to obtain the curves have been obtained from samples with a thermal his-
tory specified in the inset. Continuous random network (CNR) is a theoretical
defect-free a-Si structure. Points refer to experimental estimates performed on
a-Si with different degrees of relaxation. Higher points are un-relaxed samples,
while lower points are relaxed samples.

1.1.1 Measuring SPE velocity

Since SPE occurs progressively, it is possible to define a “velocity” of such pro-
cess as the speed at which the interface between the two phases moves towards
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the surface. This velocity can be inferred from experiments in different ways,
and since it has an exponential dependence on the temperature, different tech-
niques are needed to address different temperature ranges.

At low temperature (600–700,K) SPE rate ranges between 0.1 to 1 Å/min,
and the regrowth of a typical 5000 Å slab requires days. The only experiments
performed in this temperature range are indirect, based on differential scanning
calorimetry (DSC) and isothermal calorimetry [16, 5]. In those experiments,
the sample temperature is slowly raised following a 40 K/min ramp during
which the excessive heat produced by internal relaxations is measured. The
excessive heat can then be related to the change in enthalpy of the system and,
by knowing the initial a-Si thickness, the SPE velocity is estimated as a function
of the temperature [16].

In the range between 700 K and 900 K, crystal regrowth of the typical 5000 Å
experimental slab happens in a matter of hours. Such time frame allows for the
use of furnaces where the sample is maintained at a constant temperature for
a given amount of time, after which the width of the regrown crystalline layer
can be investigated through back-scattering spectra. Using this method, SPE
velocity has been measured along different crystalline directions, leading to the
hypothesis that the driving mechanism has preferential lattice directions [17,
18], a key point in modeling the phenomenon. Experimental speed as a function
of interface crystallographic orientation is presented in Fig. 4.

The maximum temperature reachable with the furnace approach is upper
bounded by practical issues. In particular, above ≈ 900 K crystalline regrowth
becomes so fast that the reconstruction time becomes shorter than the time
required to insert and extract the sample from the furnace. Indeed a typical
5000 Å sample would reconstruct in a matter of minutes, making accurate mea-
surements impossible. A solution was put forward by Olson et al. [19] using
time-resolved reflectivity (TRR) of samples maintained at some base tempera-
ture using a heating element from below and flash heated from above with a
continuous wave (CW) laser. At high temperature, CW laser heating of the top
portion of the sample becomes essential because the time otherwise required to
rise the sample temperature with the bottom heating element would be com-
parable to the time required to crystallize the whole sample. In TRR, the crys-
talline/amorphous (c/a) interface position can be constantly probed by a sec-
ond He-Ne laser: the higher refraction index in the visible range of a-Si w.r.t. c-Si
X causes a reflection at the interface inside the material. Interference between
the primary beam reflection from the sample surface and the beam component
emerging after reflection by the c/a interface, causes oscillations in the reflec-
tivity as a function of the interface position that can be monitored over time, as
shown for instance in Fig. 5. The reconstruction velocity can be extracted from
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the main frequency in the reflectivity oscillations and the laser wavelength. Us
ing this technique, it is possible to observe SPE along the (100) direction up to 
1600 K, where the reconstruction speed is of the order of cm/ s. 
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Figure 4: From Csepregi et al. IITZ/] SPE velocity along different crystallographic 
axis measured at 820K. The sample was relaxed with furnace annealing and a-Si 
depth was characterized by back-scattering. More accurate selective measure
ments are available in I[§]], where the ratio between the three main directions 
of technological interests ( (100) : (110) : (111)) is established as 20:8.7:1, close to 
the 26:8:1 ratios reported by Csepergi. 

The variability in measured SPE velocity can be readily seen by comparing 
different experiments: Fig. ~ reports the SPE velocity as a function of temper
ature for samples with different thermal history and compositions. The corre
sponding fits to parameters in an Arrhenius law v = v0 exp - f;;r, where v is 
the SPE ra te, Ea is the activation energy, and v0 is the process prefactor, are 
reported in table l!J From this table we can see that ion implanted layers recon
struct with a larger prefactor than the deposited films. Such behaviour has been 
attributed to their lack of voids in the a-Si. Moreover, the presence of boron and 
phosphorus impurities can drastically affect the barrier, suggesting a possible 
dependency between the speed and the Fermi level ~ -

As we can see from fig. B no pure silicon investigation has been performed 
above 1200 K, but high-temperature points are available only for Si/ As samples. 
Velocities extracted from these samples are consistent with the assumption of a 
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Figure 5: TRR procedure from Olson et al.[19]. Up to t=0 the sample is kept at
a baseline temperature by the heated support and negligible SPE growth takes
place. The observed reflectivity is the one of the amorphous layer combined
with the bulk diamond layer at the temperature of the substrate. Once the heat-
ing CW laser shutter is open there is a sudden jump in reflectivity (solely due to
the temperature change) and SPE growth starts. The reflectivity then oscillates
depending on the depth of the amorphous. Moreover, as the depth decreases
the light that remains trapped in the amorphous also decreases, leading to a
larger oscillation amplitude. Once the whole system is crystallized the final re-
flectivity is that of the heated diamond structure. Closing the CW laser shutter
causes a drop in the reflectivity proportional to the temperature drop of the
sample surface.
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single barrier process theorized for pure Si samples. The effect of arsenic im
plantation on SPE velocity has been investigated by Olson et al. @ showing 
that the presence of low arsenic doses can not affect SPE velocity by more than 
approximately a factor of 2, a quantity that has a low impact on the energy bar
rier estimation. Although this is only an indication it is not unreasonable to 
assume that for pure Si the behavior remains the same over the whole temper
ature range studied. 
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Figure 6: Selected SPE velocity as a fonction of temperature for different sam
ples measured with different techniques. SiAs - Olson sample from @211 and Si 
- Olson sample from @. Both were obtained with TRR. Csepregi from l[ZJI was 
obtained via furnace annealing. Oifferent lines are exponential fit to the data, 
exact parameters are available in Table fi 

Differences between SPE velocities for "as implanted" samples and annealed 
samples have been investigated through both TRR and DSC. Rooda et al. 1§1 in
vestigated the reconstruction speed at low temperatures for annealed and "as 
implanted" samples, measuring a higher speed for the latter (see Fig. lJ. This 
higher speed has been attributed to defect-mediated diffusion that naturally 
leads to lower diffusion activation energies. At high temperature no speed dif
ferences are observed, thus supporting a mechanism change in favor of a native 
mechanism (therefore, independent of the sample history). Similar behaviors 
have also been observed for Ge I[§]]. 

Other experiments have, however, reported different behaviors. For in
s tance, Lu et al. ~ found a speed increase lasting only tenths of a second and 
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Sample details Ea (eV) v0 (cm/sec)
Implanteda 2.68 ± .05 3.1 ×108

Implantedb 2.3 ± .1 2.8 ×106

Implantedc 2.85
Implantedd 2.9 ± .1
Depositeda 2.71 ± .05 2.3 ×108

Depositedb 2.7 ± .2
Doped with Arsenica 2.75 ± 0.05 3.68 ×108

Doped with Borona 2.52
Doped with Phosphorusa 2.68
Doped with Phosphorousc 2.5

Table 1: Different prefactors, v0, and energy barriers, Ea, experimentally mea-
sured on different samples. a [4], b [17], c [21], d [18].

postulated the presence of Hydrogen in the sample [23]. Aziz et al. [24], by per-
forming low-temperature TRR, excluded any correlation between a-Si thermal
history and SPE velocity, and suggested the existence of a native mechanism at
the interface.

1.1.2 Atomistic models

As of yet, no agreement exists on the mechanism of the process. Simple atom-
istic models based on dangling bond migration at the interface have been pro-
posed [25, 26, 27]. Starting from those models industrial on-lattice kinetic Monte
Carlo (KMC) codes [28, 29] that try to describe the possible lattice faults during
the crystallization of macroscopic samples, dopant activation and other phe-
nomena have been developed. However, their ability to correctly describe the
physics in configurations that are out of equilibrium is still limited because they
are based on qualitative mechanisms. The ideal solution is to create a larger
database of events by investigating SPE using other techniques and implement-
ing these events in the KMC. When trying to do so, the first goal is always to
obtain the correct barrier while simulating the reconstruction. Only then mech-
anisms can be isolated and analyzed.

Because of the length, time-scale and disorder involved in SPE a parameter-
free quantum mechanical approach is not computationally affordable, even to-
day with the new exascale High-Performance Computers. Several authors [30,
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Figure 7: Crystallization velocity obtained by DSC measurements for as-
implanted and relaxed structures, from [5]. Results from Olson et al. [4] (pre-
sented here in Fig. 5) are also present. The relaxed material differs from the
implanted one because it has been subject to a 500 C furnace annealing. In the
“as-implanted” sample a clear knee is present where the un-relaxed defects be-
come the main driver of the reconstruction.
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31, 32, 33, 34, 35, 36, 37] have, therefore, investigated the fundamental mecha-
nisms using classical (and parametrized) interatomic potentials. The most suc-
cessful studies were conducted using Tersoff [38] potential, Environment De-
pendent Interatomic Potential (EDIP) [39, 40] potential, and with a parametriza-
tion of the Stillinger-Weber [41, 42] (SW) potential specifically crafted for this
phenomenon. Simulation with Tersoff potential succeeds in predicting a single
barrier close to experiments, but the predicted bulk melting temperature is too
high. Moreover, it does not reproduce the 26:8:1 experimental ratio between
orientation dependent speeds shown in fig. 4 [35]. Therefore the mechanism
events extrapolated from such simulations can be misleading. Similar issues are
encountered with SW potential, but fewer studies have been performed. EDIP
potential, on the other hand, predicts two different barriers similarly to what
is inferred from fig. 7. These barriers have been associated with two separate
phenomena that experiments have ruled as plausible, but it has a reconstruction
speed prefactor v0 that is orders of magnitude higher than the one observed in
experiments [30, 22].

1.2 Computational approach

In order to overcome the limitations displayed in simulations using the avail-
able inter-atomic potentials, we propose to develop a new Machine Learned
(Neural Network) inter-atomic potential fitted on accurate density functional
theory (DFT) data. We briefly introduce here the main elements of these two
topics.

1.2.1 Density functional theory

The DFT formalism reduces the complexity of the many body problem for the
electrons by rephrasing it into a simpler one. In this section, we will first in-
troduce the Hohenberg and Kohn (HK) theorem, showing how all properties
of the electronic ground state depend on the electronic density. Then the Kohn
and Sham (KS) ansatz will be discussed, allowing the reformulation of the in-
teracting electron problem into a non-interacting electron one. This step allows
to isolate the so-called exchange-correlation functional term, where the major
practical approximations used in the theory can be introduced. Several other
theoretical extensions that are relevant to some of the results of this work will
be discussed later in the text.
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The electronic Ground State Problem

The natural starting point of any quantum mechanical description is the time
independent Schrödinger equation for a general electron and ion system:

Ĥ({ri} , {RI}) Ψs({ri} , {RI}) = Es Ψs({ri} , {RI}), (1.2)

where lower case letters (ri) are used to describe the coordinates of the N elec-
trons of the system, and upper case letters (RI) for the coordinates of the M
nuclei. Many body wave functions Ψs({ri} , {RI}) are the eigen-states of equa-
tion (1.2) corresponding to eigen-energies Es, where s = 1, 2, 3 . . . labels dif-
ferent solutions. Exact determination of such wave functions quickly becomes
numerically intractable as the number of particles to describe increases. Ĥ is
the Hamiltonian operator that can be expressed as:

Ĥ =−
∑
I

�
2

2MI

∇2
I −

�
2

2me

∑
i

∇2
i

−
∑
i,I

ZIe
2

|ri −RI |

+
1

2

∑
i �=j

e2

|ri − rj| +
1

2

∑
I �=J

ZIZJe
2

|RI −RJ | .

(1.3)

Here � is the Plank constant, me is the electron mass and MI is the mass of the
I-th ion. These five terms can be analyzed separately: the first two terms rep-
resent the ion and electron kinetic energies respectively, where ∇ is the Laplace
operator w.r.t. the ion/electron coordinates. The fourth and the last terms are
the electron-electron and ion-ion Coulomb repulsion terms respectively, where
e is the (modulus of the) electron charge and ZI/J is the atomic number of the
ions. The third term is the electron-ion attractive interaction.

The problem of electrons coupled with ions is too hard to be tackled all at
once and a first step which is almost invariably performed is the separation of
the ionic and electronic degrees of freedom via the so called adiabatic or Born-
Oppenheimer(BO) approximation [43]. Such approximation exploits the obser-
vation that the nuclear masses MI are much larger than the electronic ones. The
immediate consequence is that the nuclear kinetic energy term is negligible with
respect to all the others or, in other words, the ions reaction time-scale is orders
of magnitude longer than the electronic one. An “expansion” of the solution
around the instantaneous positions of the ions can then be performed. First, the
eigen-function solution to the Hamiltonian has to be decomposed in the ionic
part and the electronic part. This decomposition can be achieved without loss
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of generality by separating the ionic and electronic Hilbert sub-spaces:

Ψs({r} , {R}) =
∑
i

χsi({R}) Φi({r}|{R}), (1.4)

where χsi are purely ionic wave function components, and {Φi} is the com-
plete basis set of the eigen-functions for the electronic problem (Eq. (1.3) without
the ionic kinetic energy term, see also Eq. (1.6) below) computed at fixed ionic
positions. Inserting Eq. (1.4) in Eq. (1.2) it is possible to write a matrix-form
Schrödinger equation for the ions wavefunction components χsi. Such equa-
tion correlates every χsi with all the other {χsi} with coefficients that represent
quantum transitions between different electronic states. The adiabatic approx-
imation, using the physical justification that electrons adjust much faster than
the ions, neglects all these transitions, hence electrons remain in the same elec-
tronic state (the same potential energy surface (PES)), during time evolution.

Using the BO approximation it is possible to rewrite the main problem as
two separate ones. The first one is an equation for the ions where the electronic
potential energy surfaces as a function of ionic positions act as the external po-
tentials for the ionic problem

[
−
∑
j

∇2
j

2Mj

+ Ui({R})
]
χni({R}) = Eni χni({R}), (1.5)

where Ui({R}) is i-th eigenvalue of the effective Hamiltonian for the electronic
wave function at fixed ionic positions:

ĤBO = − �
2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI | +
1

2

∑
i �=j

e2

|ri − rj| +
1

2

∑
I �=J

ZIZJe
2

|RI −RJ |
= T̂ + V̂ ext + V̂ int + EII

(1.6)

where i and j label the electrons, while I labels the ions. The second line defines
the operators that are going to be used hereafter: the kinetic energy T̂ , electron-
electron Coulomb interaction V̂ int, the classical ion-ion interaction EII , and an
external potential V̂ ext that here is generated by the nuclei but can also include
the interaction with any external field.

The matrix elements connecting different electronic and ionic states that are
neglected in the adiabatic approximation describe electron-phonon coupling.
While these are fundamental to describe properties like electrical resistivity of
material (and superconductivity), they typically have a minor effect for the ionic
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dynamics when an electronic band gap is present and even in metals are typi-
cally introduced in a perturbative way when relevant.1.

A further practical simplification resulting from the separation of the elec-
tronic and ionic problems is the fact that while the electronic problem requires a
quantum mechanical treatment, the ionic problem can be addressed classically
solving Newton’s equation of motion for the ions

MjR̈j = −∇jUi({R}), (1.7)

where Ui({R}) is the interaction potential. The electronic state, i, considered in
these simulations is almost invariably the ground state. Equation (1.7) is at the
core of most atomic-scale simulations.

The ground state of the Born-Oppenheimer Hamiltonian (1.6) is in princi-
ple exactly solvable, but this is unfeasible in practice, except for systems with
a very limited number of electrons. A first approximate approach proposed
by Hartree and Fock can then be applied. This approach restricts the general
solution to a single Slater determinant Φ of parametrized single particle spin
orbitals φσ

i (rj) = ψσ
i (rj)αi(σj) where i and j retain their previous meaning, σ is

the particle spin, ψ is the spatial part of the wave function, and α is the spin part
of the wave function. By inserting such solution in (1.6) we obtain:〈

Φ
∣∣∣Ĥ∣∣∣Φ〉 =

∑
i,σ

∫
drψσ�

i (r)

[
−1

2
∇2 + Vext

]
ψσ
i (r) + EII

+
1

2

∑
i,j,σi,σj

∫
drdr′ψσi�

i (r)ψ
σj�
j (r′)

1

|r− r′|ψ
σi
i (r)ψ

σj

j (r′)

− 1

2

∑
i,j,σ

∫
drdr′ψσ�

i (r)ψσ�
j (r′)

1

|r− r′|ψ
σ
i (r)ψ

σ
j (r

′).

(1.8)

In this equation the second row describes the classical electrostatic energy of the
electronic density, and is defined as the Hartree term, and the third row describes
the Exchange term originating from the antisymmetry of the trial wave function
and has no classical analog.

The total energy of the system, computed from Eq (1.8), can then be mini-
mized with respect to the parameters in ψi to give the best approximate solution
describable with the chosen set of single particle spin orbitals. This approach
falls short as the complexity of the system increases and more accurate solu-
tions require an expansion over a basis set of several Slater determinants with

1In this study, we have encountered several metallic configurations. Nevertheless we did not
engage in addressing this problem because, de facto, we are not going to perform any molecular
dynamics of the metallic phases. For all the calculations where the motion of the atoms is taken
into account (e.g. phonon spectra), we restrict to configurations where there is a band gap.
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increased memory (more wave functions to be memorized) and computational
requirements (more integrals).

Two theorems, proven by Hohenberg and Kohn (HK), introduced a
paradigm shift moving the focus of the problem from the wave function to the
electron density, making this a density functional theory. The knowledge of the
wave function is not the only way to access the properties of the system, but the
electronic density of the ground state is what really matters, so if it is possible to
find an alternative inexpensive way to compute such quantity, all observables
can be derived from it. The two theorems state the following:

Theorem 1.1. For any system of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, up to an additive constant, by the ground

state particle density n0(r).

Theorem 1.2. A universal functional for the energy E[n] in terms of the density n(r)
can be defined, valid for any external potential Vext(r) :

EHK[n] = FHK[n] +

∫
d3rVext(r)n(r) + EII − μ

(∫
n(r)d3r −N

)
, (1.9)

where the second term represents the interaction between the external fields (e.g. the

electric field due to the ions positions) and the electrons, EII is the repulsive interaction

between nuclei, and the last term represents the chemical potential. The term FHK =
T [n] + Eint[n] embeds all the internal quantities such as the kinetic energy and the

electron-electron interaction.

For any particular Vext(r), the exact ground state energy of the system is the global

minimum of this functional, and the density n(r) that minimizes the functional is the

exact ground state density n0(r).

Proof of these theorems can be found in a number of textbooks (see e.g. [44]).
If it were possible to find an explicit formula for the FHK functional and min-

imize it with respect to the density, the final density would be a quantity that
completely defines the properties of the system. Unfortunately the HK theo-
rems do not give us any indication on how to do so.

The open question that remains is the definition of accurate approximations
to such functional. A simple model, due to Thomas and Fermi, can provide
an analytic approximation to it, but this misses some of the essential physics
needed for the description of matter. A useful approach was proposed by Kohn
and Sham (KS) who considered the ansatz that the ground state density of the
original interacting system is equal to that of some auxiliary non-interacting
system.
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The construction of the auxiliary system can start from the definition of an
independent-particle Hamiltonian:

Ĥ
σ

aux = − �

2me

∇2 + V σ
KS(r), (1.10)

where the potential V σ
ks is not yet specified. We will label the eigenfunctions of

such Hamiltonian ψσ
i and the relative eigenvalues εσi .

The density of such simple system thus becomes:

n(r) =
∑
σ

Nσ∑
i=1

|ψσ
i (r)|2 , (1.11)

its kinetic energy

Ts = − �

2me

∑
σ

Nσ∑
i=1

〈
ψσ
i

∣∣∇2
∣∣ψσ

i

〉
, (1.12)

and its classical Coulomb interaction, the Hartree energy, can be written as:

EHartree[n] =
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′. (1.13)

We can apply the HK theorems to this non-interacting problem, and equation
(1.9) will read:

EKS[n] = Ts[n] +

∫
d3rVKS(r)n(r)− μ

(∫
n(r)d3r −N

)
. (1.14)

The link between the two problems (HK and KS) comes from the observation
that the two systems have the same ground state density. Taking the functional
derivative with respect to the density at the minimum of equations (1.9) and
(1.14) we obtain:

δFHK [n]

δn
+ Vext = μ (1.15)

δTs[n]

δn
+ VKS = μ, (1.16)

where in principle the two μ are the same up to a constant that can always be
removed. We can formally single out the non interacting kinetic energy and the
classical interaction energy in the FHK [n] functional, thus defining an exchange-

correlation functional as the reminder:

FHK [n] := Ts[n] + EHartree[n] + Exc[n]. (1.17)
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Substituting (1.17) in (1.15) and making it equal to (1.16), after using the HK
ansatz on the same density to simplify the two functional derivatives of the
kinetic energy Ts[n], we are left with:

VKS = Vext +
δEHartree

δn
+
δExc

δn
= Vext + VHartree + V σ

xc.
(1.18)

This is the formulation for the KS potential of the auxiliary non-interacting
problem, that hides all the complexity behind the still unknown Exc functional.
The remaining problem requires the solution of a Schrödinger-like equation:

(Hσ
KS − εσi )ψ

σ
i (r) = 0, (1.19)

with the KS Hamiltonian (1.10), subject to the KS potential (1.18). These are
known as the KS equations.

The KS equations (1.19) are typically solved self consistently: first an initial
guess on the density is made and with it VKS is and the corresponding eigen-
functions and eigenvalues of the Hamiltionian are computed. With the new
quantities the energy is computed and if it is significantly different from the
previous iteration a new charge density is built using the new eigenfunctions
and the cycle is repeated until convergence.

Exchange and correlation functionals

Up to this point the KS equations are formally exact, but what has been done
is nothing more than shuffling the cards and moving the interacting problem
around, from the Slater determinant in the HF approximation, to the Exchange
Correlation (xc) part of the potential in the KS non-interacting formulation. In
fact, the problem still needs to be addressed: this requires to determine the
functional form of the exchange-correlation term. The usefulness of DFT relies
on the fact that practical approximations for XC energy can be defined. His-
torically, the first model proposed was the local density approximation (LDA),
which was developed around the assumption that the exchange-correlation en-
ergy is equal to the one of a homogeneous electron gas with the same local
density:

ELDA
xc [n(r)] =

∫
drn(r)εhom

xc (n(r)), (1.20)

where εhom
xc , the xc-energy per particle of the homogeneous gas, can be numer-

ically computed and is usually split in an analytic part [44] defined from the
HF exchange εx, and a numerical part added to reach values predicted by more
accurate quantum Monte Carlo calculations [45]. This second contribution is
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defined as correlation εc and by construction the splitting is such that εx � εc.
This simple formulation however has several shortcomings: it overestimates
the atomization energy, and bonds tend to be too short and strong. A practi-
cal consequence is the prediction of lattice constants that are smaller than the
experiments and bulk moduli that are too high.

Correcting equation (1.20) requires an extension of the theory. An attempt
to pursue this extension systematically by performing a second-order gradient
expansion in the density resulted in lower accuracy in the prediction because
the resulting exchange-correlation energy functional displayed non-physical
behaviors [46]. This led to the proposal of more general functional forms de-
pending on the gradient of the density, such as the non empirical generalized-
gradient approximation (GGA) formulation:

EGGA
xc [n] =

∫
drf(n,∇n), (1.21)

a form that includes many of the functionals that are commonly used today.
The problem with these non empirical constructions is that there is no unique
recipe to define the f function. The form of f can be subject to several different
constraints, and different GGA approaches satisfy different subsets of them.

A standard GGA approach for the definition of f starts by rewriting (1.21)
as:

EGGA
xc [n] = EGGA

x [n] + EGGA
c [n]

=

∫
drn(r)εhom

x (n(r))Fx(s(r))

+

∫
drn(r)

{
εhom
c (n(r)) +H(rs, s(r))

}
,

(1.22)

where the separation of exchange and correlation energies defined in the LDA
case has been taken as a starting point, and the gradient approximation has been
introduced through the two empirical functions Fx and H . Here rs is the local
Seitz radius (such that n = 3

4πr3s
) and s(r) ∝ |∇n|

n4/3 .
The construction of the two functions Fx and H is not unique. A series of

physically meaningful constraints for these functions have been identified [47],
however the ultimate choice on which of those constraints needs to be fulfilled
is always left to the authors.

Since this work focuses only on semiconductors, in particular on crystalline
silicon and surfaces, the standard choice nowadys is the use of PBE [46] con-
struction and its twin PBESol [48]. The latter uses the same functional form as
the first one, but by prioritizing different constrains. PBEsol is believed to better
describe solid phases.
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In the PBE formulation the functionals Fx and H still have 2 parameters that 
need to be fixed, and to fix them one can use three physical constraints that 
however cannot be satisfied ail together: i) reproduce the correct correlation for 
small values of s, ii) reproduce the correct exchange for small values of s, iii) 
have a global E~GA that recovers LDA for small s. In the PBE case, one of these 
parameters is fit to reproduce the correct correlation value for slowly varying 
density (condition i)) while the second is chosen to respect the third condition, 
effectively violating the second condition and providing a worse approximation 
for the exchange. The PBESol functional instead, is fitted to the correct exchange 
expansion (condition ii)), and a compromise between the other two conditions. 
In particular condition iii) is almost full y satisfied, but corrected to better predict 
surface energies. Differences between different GGAs are typically reported 
through their enhancement factor Fxc, defined by rewriting equation ~ as: 

(1.23) 

where r8 and s have been previously defined and depend on r. The plot for 
these two quantities for the two functionals under investigation is reported 
in Fig. !fil Unfortunately, until extensively tested on various properties, these 
graphs give little insight on how the functionals might behave outside of the 
fitted properties. 
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Plane waves

We will now describe an approach to practically solve the Schrödinger equation
for the KS Hamiltionian (1.19) numerically. In a periodic system it is computa-
tionally convenient to expand the wave function over a complete set of Fourier
components:

ψi(r) =
∑
q

ci,q
1√
Ω

exp(iqr) ≡
∑
q

ci,q |q〉 , (1.24)

where q is the wave-vector, Ω is a normalization volume, and ci,q are the coeffi-
cients of the wave function in the basis of orthonormal plane waves |q〉 satisfy-
ing

〈q′|q〉 ≡ 1

Ω

∫
Ω

dr exp(−iq′r) exp(iqr) = δq′,q. (1.25)

Inserting (1.25) into (1.19), multiplying from the left by 〈q′ | and using the
relation (1.25) leads to the Schrödinger equation in Fourier space:∑

q

〈
q′
∣∣∣ĤKS

∣∣∣q〉 ci,q = εici,q. (1.26)

that must be solved to obtain the ci,q. Resolving the matrix element for the
kinetic part is immediate〈

q′

∣∣∣∣− �
2

2me

∇2

∣∣∣∣q
〉

=
�
2

2me

|q|2 δq′,q. (1.27)

but things are more complicated for the periodic potential part such as those in
periodic crystals. In the case of a periodic crystal of volume Ωcrystal =

∏3
i=1Niai

(whereNi is the number of unit cells along the ai basis vector)the potential must
be periodic with the same periodicity as the crystal:

VKS(r) = VKS(r+Tn), (1.28)

where Tn ≡ ∑3
i=1 niai is any lattice translational vector. Such a periodic func-

tion can be represented in terms of Fourier components that must satisfy the
Born-Von Karman periodic boundary conditions (PBC) along each dimension:

exp(iqNiai) = 1 ⇒ qiai = 2π
integer
Ni

(1.29)

.
Now following the definition of the Fourier transform:

VKS(q) =
1

Ωcrystal

∫
Ωcrystal

dr VKS(r) e
iqr, (1.30)
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and by imposing the periodicity, we can reduce the integral to only the primitive
cell

VKS(q) =
1

Ωcrystal

∑
n

∫
Ωcell

dr VKS(r) e
iq(r+Tn)

=
1

Ncell

∑
n

eiqTn
1

Ωcell

∫
Ωcell

dr VKS(r) e
iqr.

(1.31)

Where Ncell is the total number of cells in the crystal.
The sum over all lattice points in the middle vanishes for all q except those

for which qTn = 2π times an integer for all crystal lattice vectors T. Since
Tn is a sum of integer multiples of the primitive translations ai, it follows that
qai = 2π × integer. The set of Fourier components q that satisfy this condition
is the “reciprocal lattice”. If we define the vectors bi such that:

biaj = 2πδi,j, (1.32)

the nonzero components of the Fourier transform are only those that live on the
lattice in the reciprocal space

q ≡ G(m1,m2,m3) =
3∑

i=1

mibi. (1.33)

With these considerations the potential can be written as

VKS(r) =
∑
m

VKS(Gm)e
iGmr, (1.34)

thus the matrix elements of the potential

〈q′ |VKS|q〉 =
∑
m

VKS(Gm)δq′−q,Gm (1.35)

are nonzero only if the difference between q′ and q is a reciprocal lattice vector
Gm.

Moreover, if we define q = k + Gm and q′ = k + Gm′ (which differ by a
reciprocal lattice vector), then the Shrödinger equation for any given k can be
written as the matrix equation:∑

m′

Ĥm,m′ci,m′(k) = εi(k)ci,m(k), (1.36)

where
Hm,m′(k) =

〈
k+Gm

∣∣∣ĤKS

∣∣∣k+Gm′

〉
=

�
2

2me

|k+Gm| δm,m′ + VKS(Gm −Gm′).
(1.37)
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These last two equations are the core equation implemented in any DFT-
plane wave code. Once these are solved, many properties can be obtained by
integrating over the k-space. For example, the total energy, or the total electron
density (1.11):

n(r) =
1

V

∑
k,i

∑
m,m′

fk,ic
∗
i,m(k)ci,m′(k)ei(Gm−Gm′ )r (1.38)

here we introduced fki as the occupation number which represents the occupa-
tion of a given state i at a given k by an electron.

Electronic temperature

The occupation number, fki introduced in equation (1.38), at zero temperature
is a step-function that goes abruptly to zero above the Fermi energy. As this
quantity is discontinuous, it may require a very dense sampling in the Brillouin
Zone and lead to convergence issues during the self-consistent procedure as,
for example, from one iteration to the next some states close to the Fermi energy
can abruptly switch from being non-occupied to being occupied, and viceversa.
Such jumps cause major changes in the charge distribution that reflects in insta-
bilities in the total energy.

To prevent this from happening, an “electronic temperature” is added. Prac-
tically speaking, this corresponds to allowing the electronic states to have a
partial occupation, an this can be done by substituting the step-function at the
Fermi energy with smooth approximations such as the Fermi-Dirac distribution
-in this case the electronic temperature could have a physical interpretation- or
any other smooth approximate step-function. Unfortunately, using the Fermi-
Dirac distribution the electronic temperature needed to sufficiently smooth the
occupation, and hence to avoid convergence issue must be quite large (on the or-
der of magnitude of 0.3 eV ≈ 4000K or more). Such large values cause partial oc-
cupation of electronic states at much higher energy than the Fermi energy with
consequent nonphysical behaviors. To overcome this limitation, different occu-
pation distributions have been developed, notably the Methfessel-Paxton [49]
and the Marzari-Vanderbilt [50] ones. The latter will be adopted in this work
as it increases the numerical stability when very large density gradients are ex-
pected, i.e. in the case of surfaces.

Pseudo-potentials

Equation (1.36) is the exact Shrödinger equation in Fourier space and its nu-
merical solution is performed by truncating the (discrete infinite) set of plane
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waves corresponding to a given k-vector to include only the plane waves with
kinetic energy less than a given cutoff value. For sufficiently large cutoff val-
ues the total charge density and all related properties converge. Unfortunately
the required cutoff may be extremely large, especially when the electronic wave
functions are oscillating at very high frequency. This is the case when treating
atomic core orbitals, and due to orthogonality, it also applies to valence wave
functions in the core region. To overcome such problems, core electrons are re-
moved from the problem and valence orbitals are modified so as to reproduce
their correct behavior outside the core region. This is achieved by replacing VKS

in equation (1.35) with a V eff. The theory of first principles pseudopotential
and their optimization has been developed in a number of seminal papers to
which we refer to [norm-conserving HSC, vanderbilt ultra soft , PAW] Using
pseudopotentials materials, of any chemical composition can be computed with
similar cutoff requirements.

1.2.2 From DFT to machine learning

SPE processes take hundreds of picosecond to be detectable at low temperature.
In principle the classical dynamics of the ions in the system could be studied
along the lines described previously solving the second order Newton equa-
tions

Fi({Rj}) = −∇iV ({Rj}), (1.39)

where Fi is the force acting on the atom i and {Ri}j∈1..N is the completeN atoms
atomic configuration and V represents the ion-ion interaction energy that can in
principle be obtained from DFT. However, even with advanced techniques such
as the Car-Parrinello dynamics [51], due to the large samples and long simula-
tion times needed to address the SPE, these simulations are too computationally
demanding to be performed directly at the DFT level.

As a consequence researchers have been forced to trade accuracy for speed
and all simulations so far have been performed using empirical interatomic po-
tentials, constructed on empirical observations, that took into consideration the
main chemical properties of the system, and were fit to reproduce specific ex-
perimental (where available), or some DFT properties that were considered rele-
vant for the problem under study. The assumption being that for simple enough
functional forms the parameters found in this way would extend beyond the re-
gion of the phase space used to fit them.

A common class of these functionals describes the interactions among parti-
cles by performing an expansion into different contributions depending on an
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increasing numbers of atomic coordinates:

U({Rj}j∈1..N) =
∑
i

u1(Ri) +
∑
i,j
i<j

u2(Ri,Rj) +
∑
i,j,k

i<j<k

u3(Ri,Rj,Rk)

+ · · ·+ un(R1, . . . ,Rn)

(1.40)

where u1 is a one-body term describing the interaction with external fields, u2
is a two-body term, e.g. Coulomb repulsion and other spherically symmetric
interactions, u3 is a three body term, and so on. All the terms along this ex-
pansion should be considered, but in practice they are limited by taking into
consideration two factors.

First, the interaction often only has an effective radius rc beyond which it
becomes negligible. This limits the number of ions that need to be considered
and, by consequence, the maximum order or the expansion. A second con-
straint comes from the observation, through theoretical modeling, that the con-
tribution from high values of n rapidly converges to zero. In general, the energy
splitting in different components is not uniquely defined, and may depend on
the variety of the atomic configurations to be described. In the case of a periodic
solid it can be addressed by a procedure that defines the one body term as the
average energy per atom in the crystal, while the remaining error is then fit to
the two-body term, and so on showing that expanding up to three-body terms
is often enough.

On the basis of the locality considerations, a main ansatz that can be intro-
duced is to write the total system energy as a sum of local atomic contributions:

U({Rj}j∈1..N) =
∑
i

Ui({Rj| |Rj −Ri| < rc}) (1.41)

where rc is a chosen interaction radius and the function U depends on the cen-
tral atom.

These different assumptions are not always valid, a common case being the
presence of charge distributions that create long range electrostatic interactions
that must be explicitly accounted for. Fortunately, silicon is neutral and does
not need such corrections.

Silicon, being one of the most interesting materials of the last century, has
seen a multitude of different empirical potentials developed for its simulation.
The most common ones that will be used throughout this work have been de-
veloped by Stillinger and Weber (SW) [41], and Tersoff (in several parametriza-
tions) [52, 53, 38, 54]. Also relevant is the EDIP [40] potential. SW potential
uses a two- plus three-body description, where the latter is formulated to sim-
ulate the strong directional bonds that are present in the tetrahedral structure.
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EDIP potential improves this picture by adding an environmental dependence
to the SW three-body term. Tersoff potential instead adopts a different expan-
sion: it starts from a two-body Morse potential [55] that has an attractive and a
repulsive term and it expands the theory beyond the attractive term, effectively
making it a three-body term.

The Newtons equations resulting from these potentials can then be inte-
grated numerically using, for instance, the velocity Verlet integrator [56], as
implemented in one of the available general molecular dynamics (MD) codes.
In this work, we will use the LAMMPS [57] code, for its extendable code-base,
its stability and well written documentation.

The main issue associated to the use of empirical potential is of course their
limited accuracy. The last decade has seen a rapid evolution of new techniques
based on the development of very flexible interatomic potentials trained by
linear regression, kernel methods or neural networks (NN) [58] on datasets of
atomic configurations whose energies and forces are evaluated at the DFT level.
In contrast with standard approaches with their rigid, although physically
motivated, functional form, these very general and often hyper-parametrized
machine-learned potentials can describe much more complex potential energy
surfaces (PES), thus delivering much better accuracy in regions of the material
phase space well represented in the training dataset. In regions of the config-
urational space that the potential has not been trained on, the model can lead
however, to an unphysical behavior, thus stressing the importance of an accu-
rate configuration sampling.

In this section we are going to briefly review our adopted NN approach. This
technique share with many other the approach: i) the generic atomic configura-
tion is decomposed in atomic local environments, defined by a cutoff radius rc,
ii) each local environment is encoded in a descriptor which is used as an input
to iii) optimize the parameters of the model (a NN in our case) by reproducing
the result of a representative dataset of atomic configurations . In the produc-
tion stage the trained model is implemented in the LAMMPS code and can be
applied to the atomic configurations of interest to obtain energy and forces.

The local environment descriptor

One of the key ingredients of any potential, based on NNs or otherwise, is the
descriptor i.e. how the local environment is represented before being processed
by the numerical method of choice. In empirical potentials like SW, Tersoff the
descriptor is comprised directly from distances and angles among the atoms
within the cutoff. Distances from the atom central to the local environment are
used to write the potential function two-body part, together with the angles
for the three-body part. On potentials based on the fit of high dimensional
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parametric functions instead, the descriptor is a multidimensional vector that
tries to represent the atomic density in the local environment around the central
atom.

The literature behind the descriptors is vast and multiple choices have
proven valid in different contexts. For simple multilayer perceptrons, the de-
scriptors proposed by Behler and Parrinello [59, 60] (BP) and successive varia-
tions [61], have shown to be particularly appropriate. At the same time, poten-
tials based on Gaussian processes are often fitted with the SOAP descriptor [62],
and many systems have been successfully studied through these Gaussian Ap-
proximation Potentials (GAP). Recently, Atomic Cluster Expansion (ACE) [63]
descriptors have made their appearance, and preliminary results are pointing
towards their effectiveness, also when used in combination with the NN ap-
proach. While these descriptors will be considered in future works, the follow-
ing discussion will focus only on the BP-like descriptors, that are the ones used
here.

When formulating an atomic descriptor, the effect of translational, rotational
and permutational symmetries must be taken into consideration. In principle,
the fact that symmetry related configurations have the same energy could be
inferred from the data but the amount of data required would be enormous and
it is much more convenient to enforce invariance between equivalent atomic
configurations at the level of the descriptor.

BP symmetry functions, are discrete vectors G of features that represent a lo-
cal environment and have identical representation for symmetrically equivalent
configurations. These functions describe the local atomic configuration sam-
pling the space on a carefully designed translationally and rotationally invari-
ant grid. The concept of locality of a certain environment is enforced by using a
cutoff function:

fc(r) =

{
0.5 [cos( πr

rc
)+1] , if r ≤ rc

0, if r > rc
, (1.42)

were r is the distance from a central atom, and rc represents the cutoff distance.
A first part of the symmetry function descriptor is purely radial:

GR
m,s;i =

All atoms of kind s∑
i �=j

e−η(Rij−Rm)2fc(Rij), (1.43)

where the distributions of atoms {j} around the central atom i with distances
{Rij} is filtered by a series of Gaussian functions. These Gaussian functions
have a width controlled by a hyperparameter η, and are centered on a regular
grid of radial distances Rm. The index s is then used to differentiate between
different species.
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This two-body term alone, however, is not sufficient to fully describe the
configuration, and a higher body angular term is added. The detail of this 3
body term may vary slightly between different implementations. This work will
use the formulation proposed by Smith et al. [61] as implemented in PANNA
code [64]:

GA
n,m,s1,s2;i

= 21−ξ

j of kind s1,k of kinds2∑
j,k �=i

(1+cos(Θijk−Θn))
ξ e

−η
(

Rij+Rik
2

−Rm

)2

fc(Rij)fc(Rik)

(1.44)
where the contribution of each pair of atoms j, k around the central atom i is
resolved over a number of radial channels (with resolution defined by η) and
angular channels (with angular resolution controlled by the number of probed
angles Θn and the exponent ξ.2 This part of the descriptor is also resolved by
species trough the s1 and s2 indexes. A practical example for a case with a single
specie is presented in Fig. 9.

To summarize: the descriptor is a vector of finite, predefined, length. The
first part can be viewed as a concatenation of two-body features similar to the
radial distribution function, one for each species. The second part is a concate-
nation of radio/angular distribution functions again divided by species.

Neural network architecture

The mathematical foundation of a NN is the artificial neuron developed by
McCulloch-Pitts [65] at the beginning of the nineties to study signal processing
in the brain. Despite the high biological complexity, some of the basic function-
ality of a neuron can be mathematically modeled as:

y = f(wx+ b) (1.45)

where y is the output of the neuron, w is a vector of weights, b is a bias that
together with the weights defines the parameters of the neuron, and f is a non
linear activation function. The variable x is the input vector, or the data that

2As written, Eq. 1.44 has a discontinuous derivative when a triplet of atoms is collinear. To
resolve this problem the cos(Θijk −Θn) is substituted with the expression:

2
cos(Θijk) cos(Θn) +

√
1− cos(Θijk)2 + ε sin(Θn)2 sin(Θn)

1 +
√

1 + ε sin(Θn)2
.

This recovers the original formulation in the ε → 0 limit. The value ε = 1e − 3 is found to be
sufficient to not alter the accuracy of the model in any appreciable way and completely address
the discontinuity problem for integration with a sufficiently small time step.
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r1 r2 r3 r4 r5 r6
0

π/4

π/2

3π/4

π
Ri

Rj

Θij

I nearest neighbor
II nearest neighbor

Figure 9: Pictorial view of the descriptors’ three-body part. The radial grid
shows the sampled radius between r1 and r6. The angular grid shows the sam-
pled angles. The intersections between the two grids are the descriptor bins.
The two parameters ξ and η of equation 1.44 are used to tune respectively the
extension of the angle and radius probed by each bin. As an example the central
atom of the environment is at the origin in orange,the two first nearest neigh-
bors in a hypothetical c-Si structure are reported in red at positions Ri and Rj ,
and one second nearest neighbor is reported in blue. In this case, the triplet
composed of the central atom and the first nearest neighbors populates the ra-
dial bins between r2 and r3 at an angle between 7

12
π and 8

12
π. The triplet com-

posed of the central atom, one first nearest neighbor (for convenience the one
at a 0-degree angle), and the second nearest neighbor does not have Ri = Rj

and hence it will contribute to bins as if there is a virtual particle at an average
distance(in green).
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will be processed by the neuron. In different implementations f can have dif-
ferent shapes. The most common functional forms are the sigmoid 1

1+e−x and
the hyperbolic tangent, but also Gaussians and othernon linear functions have
been used.

The flexibility allowed by a single neuron is not enough to fully approximate
the functions that we would describe. Theoretical results [66] have shown that
networks of neurons, organized in layers of sufficiently large size, can imple-
ment functions of any complexity. We will consider here an all-to-all connected
feed-forward neural network (FFNN), being among the simplest of many pos-
sible architectures. To create an all-to-all connected FFNN we will first collect
several neurons creating a so-called layer:

yi = f(
∑
j

wijxj + bi), (1.46)

where i is the index of the neuron inside the layer, and we have explicitly writ-
ten the scalar product wx. It is worth noting that the weights are now a matrix
where the number of rows, i, is the size of the output of the layer while the
number of columns, j, is the size of the input, which is shared by all neurons.
Now that the concept of layer has been introduced, it is possible to stack a series
of layers, using the output of one as the input of the next, obtaining the FFNN:

y1i = f 1(w1
ijx

0
j + b1i )

y2i = f 2(w2
ijy

1
j + b2i )

...
yout
i = fout(wout

j yout−1
j + bout

i )

(1.47)

In this notation x0 is the input to the NN (the atomic descriptor in our specific
case) and yout is the neural network prediction (the predicted contribution of the
given local environment to the total energy). In practice since we will only pre-
dict one energy for every descriptor the output vector is composed of a single
element.

In the case of a NN potential (NNP) aimed at describing a system comprised
of several species, the local contribution to the total energy depends on the na-
ture of the central atom and one needs to train as many FFNN as the number
of species present in the system. The descriptors are then labeled accordingly
to the central atomic species and fed to the correct FFNN. This is presented
schematically in fig. 10.

35

---



Features vectors 

% ~ ·1 ~ 
{J ~ 

Potential 
Species 2 

Species 1 

0 
Tota l energy: E = ~ Ei 

i 

Dataset 
Training 

random 
initia I izaL:-t,-io-n-il~ 

Potential 

Validation 

Validation 
hase 

Figure 10: On the left side: a pictorial view of a FFNN can be realized as 
an ensemble of nodes arranged in layers. Each node or neuron is a uniquely 
parametrized mathematical function that takes as input the vector that is passed 
to the layer it is part of and returns as output the value of the function for the 
given input. Layers are chained together from the "input" to the "output" in a 
hierarchical manner such that the output of the above layer is given as input 
to the next layer. The vector passed to the input layer is commonly defined as 
the features vector and the output layer is composed of a single neuron, the 
output of which is the local contribution to the total energy. The extrapolation 
from one FFNN to a potential is trivial: each features vector is labeled with the 
species of the central atom and is processed accordingly by a different FFNN. 
The combination of all these networks (one per species) defines a full potential. 
On the right side: the main training/validation procedure described in the text 
is sketched. 

Dataset, training and validation 

At creation time, the NN parameters that compose the potential are randomly 
initialized. The weights are sampled from a uniform distribution, while the 
biases are set to zero. Starting from this point in the parameter space, an optimal 
model is found by evolving the parameters to minimize a "loss fonction" .C with 
respect to a set of reference data called training dataset. 
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A dataset in this context is a set of structures resolved in total energy and
forces by some reference method, DFT in our case. The creation of a dataset is a
complex procedure that will be described in the next chapter for our application
but the general idea consists in the generation, with different approaches, of
atomic configurations that are representative of the phase space regions that
will be explored by the problem under investigation. The dataset is then usually
randomly split in 2 parts containing e.g. 80% and 20% of the data, respectively.
The larger portion is defined as the training dataset, while the smaller one is
the validation dataset. The training dataset is used in the first phase where the
network is trained (fitted) by minimizing a cost function that is a measure of the
distance between the neural network predictions and the true values. Usually,
this part of the dataset is composed of thousands of structures and hundreds of
thousands of atoms. The validation part of the dataset is instead used to verify
the network accuracy over a set of points that have never been seen, in order to
obtain a unbiased estimate of the error.

The loss function is a measure of the distance between the model prediction
and its true value. We use the function:

L(W ) = γe
∑

i∈batch

(EDFT
i − Ei(W )NN)2

#atoms2i

+ γf
∑

i∈batch

∑
j∈atomsi

∑3
k=1(F

DFT
i,j,k − FNN

i,j,k(W ))2

#atomsi

+ γnorm(
|W |2
2

+ |W |).

(1.48)

This function is composed of 3 weighted contributions. The first contribution is
the squared error between the exact DFT energy EDFT

i and the predicted values
Ei(W )NN over a limited set of training configurations i in a batch. In this equa-
tion, W represents all the network parameters. Since different configurations
can have a different number of atoms their contribution to the squared error is
normalized with #2

atomsi . In a standard gradient descent minimization gradients
at each step are computed for an objective function summing over all the avail-
able points in the dataset. In this case, however, we restrict our sum over a batch
of randomly extracted elements. This is done for two reasons: first, a practical
one, as the dataset will often not fit in memory all at the same time. The second
is a theoretical one, as the usage of batches continuously changes the shape of
the target PES, introducing a noise term that helps avoid local minima. The sec-
ond term is equivalent to the energetic one, but it works on forces. FDFT

ijk is the
exact force of the configuration i and atom j along the direction k and FNN

ijk is
the value predicted by the NN. This quantity is in principle unnecessary, since
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energy data should naturally contain force information. Nevertheless, it would
be very expensive to generate a dataset dense enough to describe its curvature
around each point. It is instead convenient to use more information available
from the configurations already computed. The third term consists of the L1

and L2 norms of all the parameters and is introduced to limit their growth since
this seems to help in converging the model.

Different cost functions can be written to better reweigh outliers during
training. However, we have found in this work that this simpler form leads
to equivalent results.

Another hyper-parameter is the learning rate α. This enters in the equation
that defines how weights are updated:

W t+1 = W t − α ∗ ∇WL(W t), (1.49)

where all the quantities have been previously defined and the subscript t is the
minimization step. At each step t, the gradient of the loss function (1.48) with
respect to the network parameters is computed and subtracted from the current
set of network parameters. The result is a new set of optimized weights that has
a lower loss function and hence is capable of better predictions. α regulates how
big the step is in the weight space during the minimization. Since the gradient
is a local property, a large value for α can overshoot its radius of trustfulness.
This result in steps that do not minimize the loss function. On the other hand,
small alpha can lead to very slow minimizations.

In practice, the real implemented equation is W t+1 = W t − α ∗
Adam(∇WL(W t)). Adam, or Adaptive Moment Estimation [67], is a protocol
that uses running averages over the gradients to tune the learning rate at each
minimization step. Regions where the gradients are large, tend to lower the
learning rate while regions where gradients are small, tend to allow for steps
as big as α. This greatly improves convergence and final accuracy helping to
avoid being trapped in local minima.

Finally, to assess the fit quality, a validation is performed. In this phase,
the NNP is evaluated against the validation portion of the dataset. Predicted
energies and forces are compared to the DFT values, and root mean square er-
rors(RMSE) are computed. If such errors are sufficiently small physical proper-
ties of the NNP are also tested against their DFT counterparts.

1.2.3 Codes

This work exploits several well established open source software tools and
packages and ad-hoc libraries. The Machine Learning (Neural Network) part
is based on PANNA [64]. PANNA is a code developed by our team and based
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on TensorFlow [68]. Binary outputs are managed by a library (Molecular data
base library) that I have developed. This library also provides several common
utilities to work with atomic configurations. Jupyter, Numpy [69], Pandas [70],
Matplotlib [71], and Seaborn [72] were used for the data analysis and visualiza-
tion. Other codes used were: LAMMPS [73] with the PANNA plugin for the
MD runs (part of the PANNA code); Ovito [74] for MDs visualization and post-
processing. Quantum ESPRESSO (QE) [75], a software distribution for ab-initio
calculations within the framework of Density Functional Theory, was used to
perform all the required DFT calculations.
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Chapter 2

Creation of the potential

The creation of the potential, as explained in the sec. 1.2.2 comprises two phases:
a training phase and a validation phase. Both of these phases rely on a dataset of
configurations, and this dataset physical expressivity is what determines which
regions of the phase space are ultimately described by the potential. To create
an optimal dataset an iterative procedure is often employed [76, 77]. It starts
from a sampling of the phase space of interest. MDs or other techniques (eg.
KART [78], NEB [79]) are adopted depending on the physical phenomena under
investigation. The energy and forces of the atomic configurations thus collected
are then evaluated with an accurate method of choice (DFT in our case) and
these data are included in the dataset and a NNP is trained so as to reproduce
them at best.

At the beginning, when the potential used to generate the atomic config-
urations is not very accurate, the atom dynamics will follow inaccurate PES,
sampling configurations in the phase space far from the ones corresponding to
the ground truth level of theory (i.e. DFT). As better potentials become available
from the previous iterations more accurate PES will be followed, and more rel-
evant configurations will be sampled and added to the dataset. The procedure
can be iterated until a self-consistent solution is obtained without significantly
new configurations to be added to the dataset.

During each cycle of this self-consistency, the potential performance is mon-
itored by evaluating standard error metrics over the validation dataset (contain-
ing configurations not used during training) as well as monitoring a set of rel-
evant (easily computable) physical properties. This quantitative analysis helps
to locate whether and where more sampling is needed, and once a satisfactory
accuracy is reached the potential creation procedure terminates and production
runs can be undertaken.

The procedure mentioned above adapted to our work is shown in Figure 11,
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and this chapter will elaborate on it in great detail. First, we are going to de-
scribe how to generate a meaningful dataset for each of the different explored
phases (Sec. 2.2). This will be done while highlighting interesting results of sur-
face properties related to the surface reconstruction phenomenon and optimiza-
tion of the DFT related parameters. We are then going to discuss the training of
the neural network potential that will be used in the next chapter to investigate
SPE and how we validated it against an independent set of atomic configura-
tions and additional physical properties (Sec. 2.5). Finally, a discussion on the
ability of the ML approach to reflect DFT choices will be put into place in Sec.2.6.

2.1 Computational details of DFT calculations

To achieve accurate energy and forces for the configurations included in the
training and validation datasets, we need accurate DFT calculations. This sec-
tion discusses the main design choices and convergence criteria that we adopt
to ensure accuracy.

The most important choice underlying the overall accuracy of the DFT calcu-
lations used as reference for our studies is the choice of the exchange-correlation
functional. Among the plethora of possible functionals that have been proposed
along the years, we selected two parametrizations of the PBE functional family
as reported in sec. 1.2.1. First we considered PBESol parametrization due to its
reported higher accuracy in solid-state applications [48] for which it was explic-
itly developed. As we will see in the following, we then switched back to the
original PBE parametrization [81, 82] because of its better performance in the
description of Si melting.

On the numerical side, the primary source of error is defined by the k-point
density used when performing integrals in the reciprocal space to extract phys-
ical quantities (Sec. 1.2.1). To estimate this quantity we started from c-Si. In
c-Si k-point sampling converges quite quickly, and a k-point density of 15.3 k-
points · Å is sufficient to reproduce rather complex quantities such as phonon
dispersions [83]. Disordered phases, such as a-Si and l-Si, are simulated with
the single point Γ [84, 85, 86, 87] in rather large unit cells corresponding to a k-
point density of the order of 16.3 k-points · Å. One of our goals is to accurately
describe silicon surfaces and we therefore took this system as reference, obtain-
ing a required density of 46.1 k-points · Å, in line with accurate surface studies
in the literature [88]. See Sec. 2.2.4 for more details.

The presence of metallic configurations in the dataset is a source of numeri-
cal instabilities and convergence problems. To solve these issues a fictitious elec-
tronic temperature (smearing) is usually added. This induces partial occupation
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Figure 11: Data creation procedure we followed in this work. The first step 
is the choice of a simple potential or a series of potentials that are known to 
describe correctly macroscopical properties of the regions of interest. Then, a 
series of MDs covering the region of interest are performed with such poten
tial, and from those simulations, we sampled the set of structures to create the 
initial database. In our case, we could not find an empirical potential capable 
of capturing the surface properties we were interested in. Hence we trained a 
first potential directly on a dataset~ explicitly developed for gap potentials. 
We used it to sample surfaces using the same MD/ sampling strategy described 
before. We then resolved all the collected structures in energy and forces at DFT 
accuracy using the Quantum espresso engine. With this operation, we obtained 
our first dataset. We then used this dataset to train a potential we validated 
against several simple properties. If the validation were satisfactory, we would 
have stopped here. If they were not, we must collect new data from the regions 
of interest to extend our database, resolve them at DFT accuracy, and train/val
idate a new potential. Once we were satisfied with the accuracy of our simple 
properties, we removed from the dataset structures that were not representative 
of our problem. Finally, we trained a potential and validated it on the same set 
of simple properties and more complex ones. 
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of the anti-bonding states and weakens the typically strong covalent bonds of c-
Si. Different kinds of smearing are possible and in this work Marzari-Vanderbilt
smearing was chosen because of its mild dependence on the smearing width
and its reported good accuracy in surface applications [50]. In principle, elec-
tronic temperature could be optimized for each configuration and chosen as
small as possible to minimize this side effect, but this is not possible in the high
throughput approach adopted here. After a preliminary convergence study, a
smearing width of 0.05 eV was fixed as a good compromise between accuracy
of the calculation and numerical stability.

Another important convergence parameter is the kinetic energy cutoff of the
plane wave expansion that defines the completeness of the basis set used. Cut-
off energies of 680 eV for the expansion of the wave functions, and 3400 eV for
the charge density expansion, were selected as sufficient for an accurate treat-
ment of the pseudo-potentials used that were taken from the standard PSlibrary
of the Quantum ESPRESSO distribution. Convergence tests were performed for
c-Si and, since both considered functionals performed very similarly, we used
the same parameters for both types of calculations.

2.2 Dataset creation

The creation of a potential is based on the knowledge of the configurations that
will be explored during the simulation of the target physical phenomenon. It
has been shown [76] that the creation of potentials trained on narrow regions
of the phase space can be very accurate where trained on, but suffer from poor
generalization in unexplored regions; on the other hand potentials trained on
wider regions of the phase space, while in principle more robust, may be forced
to make compromises in any specific phase space region, thus resulting in a
less accurate potential in the region of interest. A balanced choice must then be
made.

As a consequence, for this study, we restricted our attention only to those
regions that are likely explored during SPE. As introduced in Sec. 1.1, the most
relevant regions can be identified as the crystalline solid, the amorphous phase,
the liquid phase, and some of the surfaces of the crystalline phase. These last
ones are relevant because of the limited size of our sample, and for future inter-
est in low Miller index surfaces (and their vicinal surfaces) [89] that are known
to be a key feature in SPE regrown samples [90].

In the first dataset iteration different potentials were used to explore differ-
ent regions of the phase space. Starting with potentials that follow PES closer to
the real one implies that sampled configurations are already a good representa-
tive of those in the phase space region under investigation. Such optimization
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results in the need for fewer iterations to converge the dataset. At each itera-
tion the collected data was obtained by combining MDs with different sampling
methodologies, depending on the region under study as explained in the fol-
lowing sections. This allowed us to capture relevant features that led to a better
final potential.

2.2.1 Crystalline silicon

Starting with the structure with the lowest entropy, c-Si has been sampled in
its harmonic basin by using a Tersoff potential [53]. For this particular step, we
used a tetragonal cell with 32 atoms. This choice was made in order to have
fast DFT calculations with local environments that do not have atom periodic
replicas inside the local environment cutoff radius. The phase space spanned
by c-Si thermal vibrations is sufficiently well explored by any empirical poten-
tial. Hence, a few thermal and pressure ramps have been deemed sufficient to
correctly capture all the needed physics.

Sampling structures that average at different per atom volumes (eg different
densities) is very important in this case, as generating a dataset with a single
density would only succeed in reproducing the local energy volume curvature
but not its linear term. This can be seen by expanding the internal energy with
respect to the volume around the equilibrium value. Using the notation intro-
duced in section 1.2.2:

U({rj}j∈1..N , V ) =
∑
i

ui({rj| |rj − ri| < rc} , vi)

=
∑
i

ui(veq) +

(
∂ui
∂v

)
v=veq

∑
i

(vi − veq)

+

(
∂2ui
∂v2

)
v=veq

∑
i

(vi − veq)
2

2
+ . . .

(2.1)

where V is the total cell volume, vi is the volume occupied by the atom i, and
veq is the per atom equilibrium volume. We can see that the linear term is pro-
portional to

∑
i(vi − veq) but if the overall cell volume is not allowed to change

during our sampling this term vanishes. The result is that during the fit no con-
straint is applied to the linear term. This is not the case for higher-order terms.

The simulations were performed at 300K and explored a range of pressures
from -15 GPa to +65 GPa. From the simulations, we collected 1162 configura-
tions by sampling them from the dynamics at equally spaced intervals. The
presence of high-pressure regions is necessary to sample the strong short-range
repulsion. Such repulsion term prevents atoms from collapsing on each other.
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In standard empirical potentials, the repulsive term is built-in by consh"uction 
in the choice of the functional, but for NNPs each desired feature needs to be 
represented in the training set. A sketch of a potential with such short-range is
sues is shown in Fig. ~ Above 14 GPa, we observed a phase h"ansition and the 
system goes through astate that seems compatible w ith the ,B-tin '® transfor
mation predicted by the potential ~ - The reached state is nota real physical 
state but rather an idiosyncrasy of the Tersoff potential. Since we do not plan 
to reach such high pressure in any of our simulations, we didn't further investi
gate this region. We kept the few collected points in that region only to provide 
a strong interatomic repulsion. 
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Figure 12: Equation of states curves for the diamond structure with different 
potential realizations. In Blue DFT references. In orange a potential that has 
been correctly trained with diamond structures with an interatomic distance as 
small as 2 Aand high pressure structures. In green a potential trained with
out high pressure configurations and without structures with an interatomic 
distance below ~ 2.25 A. The potential depicted in green shows a spurious at
traction at short distances. This is reflecting the lack of high pressure structures 
in the training set. The major issue of this spurious minimum and the existence 
of a barrier-less path to reach it is the existence of un-physical bonding states. 

2.2.2 Amorphous 

A full microscopie knowledge of the amorphous structure has yet to be deter
mined, and there likely is not only one amorphous but rather a large variety 
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of them. This lack of knowledge, however, has not limited the amount of re-
search efforts to identify possible microscopic atomic arrangements. To date,
there are mainly two different numerical approaches to obtaining a-Si struc-
tures. The cheaper WWW [93, 94, 95] approach is based on the iterative distor-
tion of local bonds while keeping the tetrahedral coordination and relaxing with
a potential. This approach preserves the local order while changing bond-angle
and length distributions, generating a structure that has a radial distribution
function compatible with experimental measurements. More recently, thanks
to the increase in computational power, the golden standard for the generation
of amorphous samples has become the melting-quenching technique. This tech-
nique tries to replicate what is done in some experiments when obtaining the
amorphous phase: the sample is first melted and then it is slowly cooled to the
amorphous state. Metastable glassy phases could be reached if the quench is
too rapid, but this can be avoided by reducing the cooling-ramp steepness. Up-
per bounds on extreme experimental ramps are estimated to be of the order of
1010 ∼ 1012K/s [96].

Two potential forms are commonly adopted in a-Si investigations: SW and
Tersoff potential types. The original SW potential [41] can not be be employed
directly in the melting-quenching technique. This is due to SW’s inabilities to
correctly describe the l-Si to c-Si phase transition [97], that instead of generating
a structure mostly composed of fourfold coordinated atoms generates a glass
with an excess of 5-fold coordinated atoms. To overcome this issue, if the l-
Si/a-Si phase transition is of interest, it is possible to tune SW parameters and
the simulation details so as to force the appearance of fourfold structures [98]
during a-Si phase formation. We excluded this approach because it is rather
hand-wavy, and does not guarantee good properties, other than the coordina-
tion number, during the phase transition.

Tersoff potentials on the other hand, despite having a severe problem with
the liquid phase, where it underestimates the density [99], undergo a realis-
tic phase transition providing a-Si of good quality [100]. Since the error in the
liquid phase can be easily corrected by performing dynamics at the desired con-
stant volume we started our exploration of the amorphous phase with this func-
tional form, in the original Tersoff [53] parametrization.

A sample of 64 atom/cell, a number chosen to allow a fast DFT computation,
was selected. The cell was prepared at a density that is compatible with the ex-
perimental crystal density. The box was then melted in a canonical (NVT) sim-
ulation at 3500K using a Nosé-Hoover thermostat. This temperature was cho-
sen because it is well above the Tersoff melting temperature of approximately
2500K. The liquid state of the final configuration was assessed by computing
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the radial distribution function structure and comparing it with known l-Si ref-
erences [99]. From the melted system, another NVT MD with a target temper-
ature of 2500K of 110 ps was performed saving a snapshot every 10 ps. After
discarding the first 10 ps of the simulation due to equilibration, the remaining
10 configurations were used as a starting point for the liquid annealing. The an-
nealing was performed by changing the bath temperature with a cooling ramp
of 6 · 1012K/s down to a temperature of 500K.

During annealing, the pressure was monitored showing a positive value typ-
ical of Tersoff potentials at this volume in the liquid phase. This is in contrast
with the experimental negative value that would lead to liquid contraction. As
the temperature drops, the pressure decreases reaching zero at about 800K.

The limited size of the samples poses serious limitation to the configura-
tional variability that is in principle present in the a-Si. In particular at very low
temperatures, the system freezes and can remain stuck in a metastable state.
To investigate this phenomenon, we employ a simple description based on the
measured mean-squared displacement (MSD):

R2(t) =
1

N

N∑
i=0

|ri(t)− ri(tfinal)|2 (2.2)

that is an ensemble average over the particles in the cell. In this expression,
ri(tfinal) is the reference position of the particle i at the end of the simulation,
and ri(t) is the position of the particle i at time t. An example of the evolution
of this quantity on a single MD run is reported in Fig. 13.

Fig. 13 shows that the exploration of these metastable states starts approxi-
mately at 1200K, and for each one of them the soft modes are probed. Although
it could be argued that the identified clusters might not correspond to a single
cluster but rather multiple clusters sharing similar distance from the final con-
figuration, this was dismissed by analyzing a few configurations and verifying
that the clusters do not undergo major changes over a long period. Further-
more, the change from one cluster to the next is usually due to the change in a
single local environment. This happens through the crossing of an energy bar-
rier that separates the two local minima. This behaviour was also observed later
with the NNP at different temperatures and with a different frequency. Such a
scenario would be very unlikely for larger systems (more than 64 atoms).

It is important to note that this approach, that will be repeated in the iterative
part of the potential generation, will not sample any voids in the a-Si. It is
possible that the final potential may not be well suited for a-Si with pockets that
could be realized by evaporation [4]. Thankfully, experimental SPE samples are
usually prepared by implantation processes which avoids this problem.
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Figure 13: MSD in A with respect to the last configuration as a function of the 
temperature. Blue lines represent successive sampled tirne steps in the simula
tion. Orange points are running averages over 7 blue points to aid the under
standing. In the presented MD simulation the system visits 3 meta-stable states 
circled in red and recognizable from the clustering of the orange dots. The red 
line at 1100 K represent the arbitrary temperature below which configurations 
where sampled. 
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This procedure was repeated six times, first with Tersoff and then with dif-
ferent iterations of the NNP. Configurations were randomly sampled from the
dynamics below the temperature where metastable states start to be explored.
A total of 4485 amorphous configurations (accounting for 287040 local atomic
environments) were collected.

2.2.3 Liquid

Choosing an initial potential for the liquid phase is easy because any functional
form, if the correct density is imposed, produces reasonable geometrical prop-
erties (e.g. the radial distribution function). Given that we used the Tersoff
potential for the previous two phases, we also adopted it for the liquid phase.

Knowing that the equilibrium density of Tersoff potential l-Si phase is larger
than the equilibrium density of experimental l-Si, we decided to address this
problem by adding an external pressure. For this reason, a preliminary NVT
run at the experimental l-Si density (0.0522 atom/Å−3 [41]) was performed to
determine the pressure needed to keep the system stable at this density. This
resulted in a pressure of approximately 8.9 GPa.

For the first sampling, the positions for the initial l-Si structure were taken
from an l-Si configuration encountered in the a-Si investigation and scaled to
the desired density. At this point, both the NVT and isothermal-isobaric (NPT)
simulations were run at 2500K for 500 ps and uncorrelated samples were taken
every 50 ps. These simulations were performed on 64 atom cells following what
it was done in the a-Si exploration.

We explored the possibility to use larger 216-atom cells but did not include
these simulations in the final dataset as pathological cases that were difficult to
converge in DFT calculations were rather common, making this size impractical
for the high throughput approach. Selected structures were investigated and
we found their metallic behavior and the Marzari-Vanderbilt smearing chosen
to deal with it (Sec. 2.1 and 1.2.1) to be the main issue.

This procedure was repeated eight times, first with Tersoff and then with
different iterations of the NNP. Simulation temperatures and pressures were
adjusted accordingly to the potential performances. A total of 4612 configura-
tions (accounting for 194248 atomic environments) were collected.

2.2.4 Surfaces

The sample size that we will be able to afford when simulating SPE poses an
additional problem: its thickness is limited. The natural consequence is that the
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a-Si/vacuum interface will be close to the c-Si/a-Si interface. This limited thick-
ness forces the creation of a potential able to stabilize the surface and provide
realistic dynamics. Behaviors to be avoided are, for example, fictitious sublima-
tion, or unrealistic reconstructions. Another advantage of having a model that
contains this information comes from its ability to reconstruct steps like those
that are present in the vicinal surfaces. This is not immediately useful in our
case but will leave doors open for future investigations of these surface orienta-
tions.

To create a model capable of describing surfaces, configurations including
them must be sampled as done with the other phases. Since complex recon-
structions are possible, before proceeding with the sampling, a detailed investi-
gation is required.

As illustrated in the background (Sec. 1.1.1) SPE proceeds along different
crystalline directions with different speeds. The main direction of SPE regrowth
that we will target is the 〈100〉, because of its high technological utilization. As
a consequence, the surfaces of focus will be the (100). Another valid reason to
start from this surface is the limited number and cell periodicity of the possible
reconstructions: the (100) surface is known to have a set of five possible recon-
structions [101]. Three of these are known to be stable and the other two are not
experimentally observed and are needed to define reference quantities and/or
compare with other works.

The p(1x1) or ideal reconstruction is a structure with a surface periodicity of
1 single atom. In this case, during the relaxation, no symmetry is broken, and
the only relaxation that takes place is a contraction along the 〈100〉 direction.
This results in the reconstruction with the highest energy (per surface atom).
The p(2x1) symmetric (s-p(2x1)) reconstruction is the first real reconstruction:
composed of two p(1x1) surface unit cells along the 〈001〉 direction it is obtained
by moving the two atoms in the top layer closer together (dimerization) to re-
move one of the two dangling bonds pointing outwards from the surface. The
net result is the formation of rows of dimers along the 〈010〉 direction on the
surface with a decrease in energy of ≈ 2 eV/dimer w.r.t. the ideal 1x1 case. Due
to the Jahn–Teller effect, the dimer symmetry can be broken by displacing one
atom of the dimer further and moving the other atom closer to the surface. This
symmetry-breaking lowers the dimer energy by a further ≈ 0.1 eV/dimer, and
the obtained configuration is referred to as p(2x1) asymmetric (a-p(2x1)) recon-
struction. Alternating the direction of symmetry-breaking of the dimers along
the 〈010〉 direction can lower the energy by another ≈ 0.02 eV/dimer, leading
to what is known as p(2x2) reconstruction. If two consecutive rows of dimers
are shifted by one cell along the 〈010〉 direction the slightly more stable recon-
struction c(4x2) can be obtained, further lowering the energy by 2 meV/dimer.
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A top view of these different surface reconstructions is shown schematically in
Fig. 14.

We realized the surface calculations by creating periodic (super)cells con-
taining a finite slab of c-Si exposing two (100) surfaces. The slab must be thick
enough to accommodate elastic distortions propagating from the two surfaces
in the Si bulk. In addition, the cell must include a vacuum layer sufficiently
wide to avoid surface-surface interaction. This makes the calculation expen-
sive. A common trick to reduce the cell size and the cost of the calculation is
to consider only half of the slab, freezing the atoms on one side in their bulk
positions, passivating the dangling bonds with hydrogen atoms, and studying
the remaining single surface. Unfortunately, while this approach can be used
to determine the relative stability of the different reconstructions, as the contri-
bution from the fixed artificial passivated surface cancel out in the comparison,
this cannot be done in our case where the absolute energy of the different re-
constructions is required and the presence of the hydrogen atoms would need
to be modelled as well, making the potential design and training needlessly
more complex.

Elastic distortions caused by surface reconstruction extend for several lay-
ers within the bulk of c-Si, and the minimization of large slabs may be ex-
pensive. Therefore, we developed a procedure to speed up these calculations.
First, we considered a crystalline slab of 8 atomic layers with the surface pe-
riodicity of the desired reconstructions and we added a 10 Å vacuum layer in
the 〈001〉 direction to create the two surfaces. The exponential decay of the
wave functions in the direction perpendicular to the surface makes the cho-
sen distance sufficient to grant decoupling between the surfaces. The surface
atom positions were then perturbed by a few tenths of an Angstrom in the di-
rection of the desired relaxation and the sample was relaxed with the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm as implemented in QE. The
DFT computational details used were those fixed in section 2.1 together with a
first low-accuracy grid with 15.4 k-points · Å. Atoms located in the middle of
the sample were kept frozen during the relaxation. This was done for a slab
with a width of a unit cell. If at the end of the relaxation the forces on the frozen
atoms exceeded the BFGS tolerance of 26 meV/Å, an additional crystalline bi-
layer was inserted at the center of the slab and the procedure repeated freezing
only the central atoms. Once the cell was large enough to accommodate all the
elastic distortions making the forces acting over the frozen atoms negligible, the
k-points grid was increased and the cell relaxed again. If the forces remained
below the threshold convergence was reached, alternatively more layers were
added and a new iteration was performed.

The procedure just described was applied to the five surface reconstructions,
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p(1x1) ideal

s-p(2x1) a-p(2x1)

p(2x2) c(4x2)

〈010〉

〈001〉

Figure 14: Top view of the unreconstructed (ideal) surface and the four recon-
structions to be considered in this study. Smaller and darker circles represent
deeper atoms. Thus the small black circles are second layer atoms and the larger
grey and white circles are surface atoms. In the reconstructions with buckled
dimers, the large white circles protrude further from the surface than the grey
circles. The dashed lines and shaded areas show the surface unit cells used in
the calculations.
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and the two different functionals, PBE and PBESol, were tested to investigate
their geometrical and energy differences. The final energy differences between
the relaxed reconstructions are presented in Table 2 where the per-dimer energy
is defined as:

Edimer =
Ecell − Eequivalent ideal surface

ndimers
, (2.3)

and the surface energy as:

Esurface =
Ecell − Ebulk ∗ natoms

A
(2.4)

where Ebulk is the per-atom energy of the ideal crystal and A is the total surface
area of the considered unit cell (in our case twice the surface exposed by the
cut because of the PBC). For these calculations a final k-points density of 46.1
k-points · Å was deemed sufficiently accurate for both functionals.

The error due to the finite vacuum size was investigated on the a-p(2x1)
reconstruction for the PBESol functional. A cell with 10 Å of vacuum was com-
pared to one with 15 Å of vacuum, and an error of only 1.8 10-3 meV/atom was
found. Adding extra vacuum didn’t cause any significant further relaxation.

The results collected in Table 2 show that the energetic ordering for the two
functionals is identical and that the c(4x2) reconstruction is always the most
stable. In Table 3, a comparison with LDA is also presented showing that both
PBE-type functionals are in agreement with the commonly accepted energy or-
der. Unlike previous findings [101] (and references therein), the s-p(2x1) config-
uration hereby reported is not a stable state. It was found that such symmetry
is a local minimum only if the BFGS relaxation is performed at an insufficiently
accurate precision (in k-point grid density). The reported values are obtained
from a calculation relaxed at a k-points density of 15 k-points · Å and then re-
computed with a single point self-consistent calculation at the same higher ac-
curacy as the other calculations.

Regarding geometrical (schematic views in Fig. 15 and 16 and energy anal-
ysis (Table 3), the description of c-Si (100) surfaces is very similar for both PBE
and PBESol functionals. Almost equivalent geometries are found and elastic
distortions propagate similarly through the sample (both require similar width
to converge). From these analyses, it is hard to ascertain which functional best
describes the surfaces, also due to the lack of consistent high-resolution ex-
periments at low temperatures. Furthermore, this suggests that the dynamics
performed with the two functionals should be very similar, allowing a simple
switch from one to the other without the need for new sampling.

In the literature, different electronic quantities, such as charge distribution
and band structures are also discussed. But since the potential we are aiming to
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surface dimer PBESol PBE
slab-size Edimer Esurface slab-size Edimer Esurface

ideal - 20 0 143.607 20 0 134.703
s-p(2x1) 2 32 -1.533 91.668 32 -1.456 86.028
a-p(2x1) 2 36 -1.702 85.955 36 -1.614 80.746
p(2x2) 4 36 -1.768 83.706 40 -1.684 78.431
c(4x2) 4 40 -1.775 83.486 40 -1.686 78.359

surface dimer NNP
Edimer Esurface

ideal - 0 110.117
s-p(2x1) 2 - -
a-p(2x1) 2 -0.894 79.836
p(2x2) 4 -0.983 76.812
c(4x2) 4 -0.981 76.880

Table 2: Energy difference per dimer and surface energy for the two functionals.
The reported slab-size is the number of layers of the final slab and dimer is the
number of dimer. In the NNP case a 40 layers slab-size was used for all the
surfaces since computational time was not an issue. Edimer in eV/dimer and
Esurface in meV/Å2

surface PBESol PBE LDA[101] NNP
ideal -> a-p(2x1) 1.70 1.61 1.9 .894
a-p(2x1) -> p(2x2) 0.066 0.069 0.048 0.089
p(2x2) -> c(4x2) 6.68 10-3 2.15 10-3 3 10-3 -2 10-3

Table 3: Difference in energy in meV/dimer between different functionals at
relaxed reconstructions (different geometries). PBE and PBESol share the same
accuracy.
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conf a-p(2x1) p(2x2)
PBEsol PBE NN PBEsol PBE NN

a 2.38 2.38 2.39 2.38 2.40 2.39
b 2.42 2.42 2.43 2.38 2.39 2.39
c 2.35 2.36 2.36 2.38 2.39 2.39
d 2.38 2.39 2.40 2.38 2.40 2.39
e 2.32 2.32 2.33 2.33 2.34 2.34
f 2.38 2.39 2.40 2.38 2.40 2.40
g 2.29 2.31 2.31 2.34 2.35 2.35
α 18.81 16.3 18.34 19.52 19.04 19.44
h 3.84 3.88 3.87 4.08 4.09 4.02
i 3.84 3.88 3.87 3.60 3.64 3.62

Figure 15: Top figure: Schematic Top and side view of the a-p(2x1) and p(2x2)
reconstructions. Bottom table: Geometric characterization of configurations re-
ported in the top figure for PBESol and PBE. Distances are reported in Å and
angles in degrees. A comparison with our final potential is also available. No
major difference is noticeable.
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conf c(4x2)
PBEsol PBE NN

a 2.38 2.34 2.39
b 2.38 2.34 2.40
c 2.33 2.34 2.34
d 2.33 2.34 2.34
e 2.34 2.35 2.35
f 3.58 3.62 3.60
g 4.10 4.10 4.12
α 19.90 19.00 19.90
β 0.86 0.60 0.86

Figure 16: Top figure:Schematic Top and side view of the c(4x2) reconstruction.
In this case, differently in the p(2x2) case, more cells are presented in the top
view. This has been done to show more clearly the presence the small angle β
with respect to the 〈001〉 direction that was not present in other reconstructions.
Bottom table: Geometric characterization of the configuration for the c(4x2) re-
construction. In this case, we characterized only the first two layers, and they
are very similar. Our potential trained on PBE in the last column. Distances are
reported in Å and angles in degrees.

56

L 

L 



create will not contain any of this information, these quantities have not been
investigated.

Similarly to the other regions of the phase space, also for the surface per-
forming dynamics closer to real PES will significantly reduce the number of
iterations needed for an exhaustive sampling. To achieve this, after ruling
out the Car-Parrinello approach because of its numerical cost, we explored
different empirical potentials: Tersoff [53], Purja Pun [102], SW [41], MEAM
with spline [103], and ReaxFF [104] potentials were tested. All these potentials
failed to stabilize any of the experimentally observed reconstructions and all of
them relaxed back to the s-p(2x1). Noticeably the ReaxFF parametrization also
showed particularly poor results also for the lattice constant near the surface
and it will not be considered.

To overcome this issue we decided to train a first preliminary NN potential,
using the data provided in [80]. After checking the ability of the network to
relax in the three stable geometries, we adopted it as a starting point for surface
sampling. The first sampling consisted of a dynamic for each reconstruction
and a few snapshots taken from high-temperature dynamics before evaporation
started. The sample sizes were standardized to slabs containing 64 atoms to
simplify the DFT computations.

It is interesting to observe that already with this early iteration of the poten-
tial, during the molecular dynamics runs an oscillation from the p(2x2) to the
c(4x2) reconstruction takes place. This resembles what is observed experimen-
tally at room temperature [105] and would be an interesting topic for further
studies.

This procedure was repeated eight times, first with the preliminary poten-
tial and then with different iterations of the NN potential. Different slab thick-
nesses, surface sizes, and temperatures were sampled. A total of 3175 configu-
rations (accounting for 203200 local environments) were collected.

2.3 Dataset analysis

In the first iteration with the Tersoff potential and our preliminary NNP for
surfaces, about 2 thousand points were collected. The data were then used to
train the first NN potential. This potential was then used to generate new data
following procedures closely related to those just detailed. A selection of these
new data was added to the global pool of data to train a new NNP in a self-
consistent cycle that led to the final potential. For this procedure, PBESol was
chosen as the DFT flavor in the first-principle calculations.

In each iteration, different properties were monitored. Among the most diffi-
cult to converge were the melting temperature and the stability of the surfaces,
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especially the minute energy difference between the c(4x2) and the p(2x2) re-
constructions. To converge this quantity, we added specific configurations to
the dataset, notably larger surfaces (at the cost of sample thickness), and low-
temperature simulation to sample the reconstructions’ basins. For the melting
temperature, we added a few solid/liquid interface samples to include realistic
intermediate local environments.

During the evolution, the dataset variability was monitored qualitatively
using a t-SNE bidimensional projection of the explored dataset as presented in
Fig. 17. This showed how the configurations generated by Tersoff and the early
generation NN potentials explored different geometries than those found self-
consistently by the later generations of NN potentials.

About 16 thousand points were collected, for a total of 890 thousand local
environments. After removing the data from [80], the structures that were no
longer visited during the latest iterations of the self-consistent procedure, and
applying a random uniform sub-sampling on the remaining dataset, we were
left with about 5 thousand rapresentative data points, and 250 thousand local
environments. An exact summary is available in Table 4. A standard splitting
of the dataset in a training part (containing 80% of the data) and a validation
part (containing 20% of the data) was performed, ensuring that the same frac-
tion of training and validation data were present in each subset to allow for an
homogeneous testing in different regions of the phase space.

Table 4: Data distribution before and after pruning. Pruned points are available
in both DFT flavors, PBE and PBESol. Before pruning only PBESol is available.

All atomic All selected Selected
configurations environments configurations environments

amorphous 4485 287040 1077 68928
bulk 1162 37184 504 16128
interfaces 98 12544 42 5376
liquid 4612 194248 2000 83904
surfaces 3175 203200 1376 88064
dataset [80] 2312 161048 0 0
total 15844 895264 4999 262400
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Figure 17: The figure shows a t-sne bi-dimensional map of the atomic config-
urations in the dataset using the structural fingerprint defined in Valle et al.
[106] and the cosine distance. Other distances were tested. Both Cartesian
and Wasserstein distances showed no appreciable difference. This picture has
shown also a strong resilience towards t-sne parameters. In gray, all the avail-
able structures are presented while colored points refer to the final dataset. Dif-
ferent colors highlight the macro-regions of the phase space. The gray macro-
scopic islands are points explored by early potential iterations and data col-
lected with Tersoff and discarded in the final self-consistent potential iteration
(e.g. the gray island in the top left is the first iteration of a-Si structures; the
small gray islands are from the environments in the [80] dataset). The yellow
points correspond to surface configurations ordered in an arch from right to left
for increasing temperature. For each temperature two clusters are visible: one
for the c(4x2)/p(2x2) points and one for the a-p(2x1) points. The blue points
in the center are configurations describing vibrations in c-Si and on the left are
high-pressure structures. Configurations for a-Si and l-Si are the two large green
and orange islands in the center of the figure. The contact points between the
two islands are configurations containing l-Si/a-Si interfaces.
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2.4 Parametrization of local environment descrip-

tors

As explained in section 1.2.2, to train a NN potential it is first necessary to en-
code in a descriptor the local environment of each atom in the dataset. Descrip-
tors, described in section 1.2.2, are vectors of a fixed length that contain the
information needed by the NN to predict the local energy. Larger descriptors
increase the computational time while providing more details on the local envi-
ronment. On the other hand, smaller descriptors are faster but less accurate.

Since we are concerned with a single atomic type, all the species indexes in
equations (1.43) and (1.44) are dropped and we selected the following hyper-
parameters to achieve a reasonable tradeoff between size and expressivity: for
the radial part η = 16 Å-2, rc = 4.6 Å, and thirty two values of Rm equally spaced
between 0.5 Å and rc. For the angular part instead: η =6 Å, rc = 4.6 Å-2, ξ = 50,
with six values of Rm equally spaced between 1.5 Å and rc and twelve values
of Θn in the 0-π range. The short-range cutoffs were chosen to take into ac-
count the short-range interactions and are mostly populated by high pressure
structures. The long-range cutoffs instead were chosen similar to the one in
other empirical potentials such as SW and Tersoff, extending beyond the sec-
ond nearest-neighbour distance in c-Si. These hyper-parameter set results in
local environment feature vectors with 104 components, i.e. 32 in the radial part
and 72 in the angular one.

To understand which are the most important descriptor features appearing
in our training dataset we plotted their distribution. This data is presented as
box-plots in Fig. 18 for the radial part and Fig. 19 for the angular part, where
the outliers are automatically identified using the Tukey definition as detailed
in [107].

Focusing on those outliers, we can observe that they are distributed among
configurations that contain liquid-solid interfaces and high-pressure solids. The
sampling over each one of these regions could have been increased to provide a
better description, but we reached satisfactory physical accuracy without hav-
ing to do so. High-pressure configurations are seldom explored in our simula-
tions. The solid-liquid interface data is present to stabilize the melting temper-
ature estimate which, as we will see, is already reliably determined.

Unlike similar previous studies [64, 76, 61], in this work we employ a tanh
activation function for the hidden layers of the NN, instead of a Gaussian one.
Such activation was chosen because it has the advantage of a linear behavior
near zero and a stronger theoretical background to understand and optimize
the training phase. On the other hand, this choice requires a preconditioning
of the input that must be transformed from the positive defined descriptor to a
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Figure 18: Distribution of the values assumed by each bin of the radial descrip
tor in the training dataset. Blocks are percentiles, 14 boxes are present, the larger 
one contains 50% of the data values assumed by the bin, the next ones 75% and 
87.5% respectively. The line in the middle of the main block is the average bin 
value. Points at the margin of the distributions are outliers identified using the 
Tukey definition. Color is present to help the eye. The shape of the radial part 
descriptor closely resembles the radial distribution fonction, with a first peak 
approximately at bin 14 (2.4 À). The tail does not converge to 1 because of the 
dumping fonction (see Eg. ll.42D. 
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Figure 19: Angular average descriptor, same representation as in Figure ~ 
Each panel represents a probed radius. Bins inside each panel sample the angle 
between O and 1r; all the angles are homogeneously sampled from the dataset. 
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normalized one with zero mean and unit standard deviation. For this normal-
ization step, two possibilities have been identified: i) a simple bin re-scaling or
ii) adoption of principal components analysis (PCA). The re-scaling is obtained
by subtracting from each bin its mean value and dividing by the standard de-
viation over the training dataset. A problem that arises with the chosen de-
scriptor parametrization and dataset is that a few bins have little to no standard
deviation, forcing the introduction of a small regularization constant to avoid
extreme re-scaling. We found PCA a more systematic approach. From our train-
ing dataset, the directions of maximum variance of the descriptor (or principal
components) are computed. As a result, it is possible to define projectors of the
old descriptor coordinates on this new base. The variance in each new direction
can be normalized to one.

We found that 8 out of the 104 components are linearly dependent on the
others, hence having no variance at all. This means that they can be discarded
with no information loss limiting the principal components under consideration
to 96.

Furthermore, directions of very low variance can also be discarded to avoid
division by very small numbers in the normalization step. A possible metric
to understand how much information is lost in the PCA step is to measure the
“total explained variance”. In our case, we discarded the principal components
that explain less than 10-5 % of the total variance, thus reducing the number of
bins from 96 to 86. We do not expect this small reduction to have any measur-
able impact on the training results.

2.5 Neural network training and validation

Different rounds of training were performed to explore the landscape of NN
architecture hyper-parameters. For every NN architecture, at least two train-
ings were performed to monitor differences due to the stochastic nature of the
process. Among all these trainings, we analyze here the ones that leads to the
potential that will be used in the rest of this thesis. This NNP was trained on
the 5000 points dataset described earlier, with PBE-DFT flavor. In this case, the
network was structured as follows: two hidden layers (hence L=3) of 256 and
128 nodes, respectively, with hyperbolic tangent activation functions and a sin-
gle output node with linear activation. The PCA input normalization step was
implemented adding a linear, non trainable, layer to the network. We are left
with a model with 59905 degrees of freedom.

The training was performed with a manually tuned schedule for the learn-
ing rate parameter. The learning rate was changed from 10-3 to 10-5 in three
steps. The batch size was composed of 150 elements. Regularization terms on
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both Ll and L2 norms on weights and biases were included in the cost fonc
tion with a multiplicative factor of 10·8 , while energy and force loss terms were 
both weighted by a unit factor. Training curves and detailed information on the 
schedule are presented in Fig.~ Validation curves are presented in Fig.@ 

Loss function 

- replica 1 
- replica 2 

20000 40000 60000 80000 100000 120000 140000 160000 
training step 

Figure 20: Loss fonction curves during training for the two replicas, in this case 
the learning rate was manually tuned. At the beginning a large value of 10·3 was 
used for the learning rate and this results in a rapid decrease of the cost func
tion while allowing for larger oscillations when outliers are present in the batch. 
As the learning rate is decreased to 10·4 at 50K steps also the oscillations are 
dumped and the system freezes near a local minimum. At 150K steps the learn
ing rate is further reduced by an order of magnitude. The training was stopped 
when no more improvement was seen on the validation side, Fig. @ During the 
training 90 to 95% of the contribution to the cost fonction was coming from the 
force term and the remaining 5 - 10% from the energy term. The normalization 
contribution is negligible. 

The overall accuracy on the validation set for the NN potential corresponds 
to a root mean square error (RMSE) of 5.6 meV /atom for the prediction of the 
energy and a RMSE of 153 meV / A per force component. This accuracy is com
parable to the one obtained by others with similar approaches ~ - To give a 
more detailed picture of the validation accuracy, we computed the error over 
the different sampled macro-regions of the phase space described in the previ
ous sectiont obtaining 5.8 meV -170 meV / A for the amor_rhous phase, 0.9 meV 
- 66 me V/ A for the crystalline bulk, 7.5 me V - 196 me V/ A for the liquid phase 
and 3.4 me V - 103 me V/ A for the surfaces. The distributions of these errors 
are reported in Fig. ~ showing that the accuracy is rather uniform across the 
phase space. Fig. ~ shows the force error distribution across the different parts 
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Figure 21: Validation errer of selected points along the trajectory. The curves 
follow the typical shape of a training. Initially a fast increase in accuracy is 
experienced followed by a plateau where only small increases are measured. In 
this case however there is an interesting deviation in the validation of the forces 
(star points that refer to the right axis) where an apparent over-fitting is present. 
A detailed analysis of the force distribution showed that this is not the case and 
instead we are only looking at a change in the distribution of the ouliers. 

of the dataset: observe that none of these distributions is a Gaussian. The pres
ence of heavy tails in the error distributions indicates that the RMSE may not 
be very relevant in the comparison of different trainings as it is very sensitive 
to the presence of outliers. 

A second potential was similarly trained on the same 5000 configuration 
dataset, evaluated with PBESol functional. Also in this case, different RMSE can 
be computed for energies and forces depending on the subset of points: 6.3 me V 
-165 meV / Â for the amorphous phase, 1.0 meV - 61 meV / Â for the crystapine 
bulk, 8.4 meV -183 meV / A for the liquid phase, and 6.9 meV - 256 me V/ A for 
the surfaces. This shows that the accuracy of the potentials developed for the 
two functional variants is indeed very similar. 

2.6 Testing the potential on additional physical 
properties 

In order to get a better feeling of the quantitative behavior of our PBE NNP asso
ciated to the numerical errors reported above, we tested it by investigating a few 
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Figure 22: Distributions of the errors per dataset in Energies (top panel), box 
corresponds to the first quartile, and forces (bottom panel), different boxes rep
resent different 14 different percentiles are presented. It can be seen how phases 
with the highest variability (liquid and amorphous) show the highest errors. 
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Figure 23: Error distribution of force components over the validation set. y 
axis is in logarithmic scale and black lines correspond to Gaussians with mean 
and standard deviation computed on the presented data. If the data were to 
be Gaussianly distributed they should stay below the black curves. Different 
regions present very different accuracy in the forces over the validation dataset. 
Bulk and surfaces have the highest accuracy thanks to their simple structures. 
In the case of surface (panel with the green distribution), atoms that are close 
to the vacuum often are badly predicted and appears in the large tails far form 
the Gaussian. Liquid (orange) and amorphous (red) instead are complex to 
describe and follow large Gaussian with large tails. Strictly speaking none of 
these distributions has a Gaussian shape with a negligible number of outlayers. 
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physical properties that can be compared with experimental and/ or DFT refer
ence data. A comprehensive test has been carried out for the Si-diamond struc
ture, where we checked and computed the bulk modulus, obtaining a value of 
87.2 GPa close to the experimental value of 97.6 GPa 01090. Table ê] reports a full 
comparison of bulk elastic constants. Full phonon dispersions were also inves
tigated obtaining results very close to the DFT reference results (Fig. ~ - The 
acoustic dispersion around the X and L points shows some oscillations which 
suggest that the long-range interaction along the bond-chains in the [110] direc
tions, responsible for the flatness of the dispersion in the DFT reference, is not 
perfectly captured by our NNP. We were able to improve the latter result by in
creasing the weighting factor of the force term in the loss fonction Ql.48D by two 
orders of magnitude. The ability to approach the DFT long range dispersion 
curve with high precision suggests that this piece of information is present in 
the training dataset, but in order to obtain such an improvement in the disper
sion we would have to compromise on the energy accuracy. The optical modes 
are overall slightly softer than the reference DFT results and it is possible that 
this softening is due to the presence in the training set of a number of metal
lic or small-gap configurations where the partial occupation of the conduction 
bands due to the use of Marzari-Vanderbilt smearing makes the high frequency 
vibrations less stiff. 
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Figure 24: Diamond phonons of silicon. DFT prediction with PBE (black line) 
and NNP (red line). 

The dynamics of SPE is critically dependent on temperature, and the com
monly adopted empirical potentials either fail in describing the thermal stability 
of the different phases or, if they succeed, fail in other aspects. For example, the 
standard SW potential has a melting temperature of 1691 ± 20 K ~ , very close 

68 



NN DFT [110] Experiment
PBE PBESol PBE PBESol LDA (4.2 K)[111]

C11 150.1 156.2 153 156 161 167.5
C12 56.4 61.9 57 62 65 64.9
C44 72.0 73.9 74 74 76 80.02
bulk mod. 87.2 93.3 89 94 97 97.6 [109]

Table 5: Elastic constants in GPa for Silicon in diamond phase at 0K calculated
in this work for different NN potential, and compared to theoretical and exper-
imental results from the literature.

to the experimental one, but generates amorphous configurations of very poor
quality. This is due to the limited strength of the three-body term that is not able
to force enough tetrahedrally coordinated environments. The Tersoff potential,
on the other hand, is believed to generate realistic amorphous geometries, but
it predicts a very high melting temperature of 2547 ± 22 K [99]. Errors in the
predicted melting temperature are likely to have an impact on defect forma-
tion and diffusion dynamics, relevant for the SPE. It is therefore interesting to
study the bulk melting temperature associated to our NN potential and we de-
termined it from numerical simulation of the coexistence of the crystalline and
liquid phases [112, 113].

Disappointingly, the NN potential developed from data computed with the
PBE-sol exchange-correlation functional, originally adopted on the basis of its
reported better description of solid phases [48], resulted in a bulk melting tem-
perature as low as 1194 ± 29 K. The unsuitability of the PBE-sol functional to de-
scribe the melting behavior of materials has later been independently confirmed
by simulations based on GAP ML potentials [114]. For this reason, we reverted
our exchange-correlation choice to the original PBE functional for which a fully
ab-initio estimate of the bulk melting temperature of 1540 ± 50 K [85] is avail-
able, still slightly off from the experimental value of 1685 ± 2 K but reasonably
close. With the NN potential trained on our dataset with PBE energies and
forces a melting temperature of 1468 ± 11 K, in line with the above literature
value, was obtained showing that the main source of discrepancy with the ex-
periment is not in the numerical errors associated to the ML potential accuracy
or in the limited size of the cells used in the DFT calculations [85] but in the
quality of the adopted DFT functional form. A more detailed description of
the method used to compute the melting temperature, and its dependence on
simulation cell size is given in Appendix A.

Having obtained a reasonable description of the liquid/solid transition, we
proceeded to study the amorphous phase. We followed the procedure described
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in Ref. 0115~ ~ where the liquid samples were quenched with a lOK/ps tem
perature ramp. Amorphous samples of very good quality were thus obtained 
and in Fig. ~ the structure factor from the largest simulated cell (4096 atoms) is 
compared with experimental results. 
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Figure 25: Amorphous silicon stn1cture factor S(q) . Dots are experimental 
points ~ , red line from PBE NNP. 

We examined in detail the (001) surfaces that play a very important role in 
microelectronic devices 0101~. As mentioned previously, several reconstn1ctions 
have been proposed in the literature 01O1~: the ideal unreconstructed surface 
with p(lxl) surface periodicity, the symmetric-dimer reconstruction with p(2xl) 
periodicity, the asymmetric-dimer p(2xl) reconstruction, and the larger recon
structions with p(2x2) and c(4x2) periodicity. Of these five structures, only the 
last three have proven to be stable with sufficiently accurate calculations, while 
the ideal p(lxl) and the symmetric p(2xl) reconstructions are only meta-stable. 
The energy ordering of the various structures according to d ifferent methods 
can be seen in Fig. ~ and the corresponding values have been reported earlier 
in Table 0 AU reconstn1ctions are predicted with differences in energy in good 
agreement with DFT reference values from the literature. In the the second to 
last column of Fig. ~ the geometry of the dimers is taken from the DFT calcula
tions, scaled so as to reproduce the lattice constant of the NNP. The last column 
is obtained by relaxing the structures with the NNP. It shows that the symmet
ric <limer reconstruction is not a local minimum and spontaneously relax in 
the asymmetric <limer structure as expected from accurate DFT calculations. It 
turns out the predicted energy ordering between the c(4x2) and the p(2x2) re
constructions obtained with the NNP is opposite to the DFT result, correspond
ing to very close energies for the two configurations (within 2-3 me V per <limer) 
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in both schemes.
The atomic geometries of the different reconstructions were also compared

and the NNP calculations were able to correctly predict the dimer tilting angle
of 18◦ for the p(2x1) asymmetric phase as well as the 19◦ angle in the p(2x2) and
c(4x2) ones, in agreement with DFT results. More details on the geometrical
characterization are reported earlier in Figures 15 and 16.
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Figure 26: Surface energies. From left to right, PBE-Sol energies, PBE ener-
gies, NN energies for PBE geometries, NN energies after relaxation. The c(4x2)
structure has always been taken as zero reference. DFT geometries have been
obtained by relaxation with the BFGS algorithm, with the default 25 meV/Å
as a force threshold. Minimizations with NNPs were performed with the same
threshold. Both DFT calculations predicted the s-p(2x1) structure as stable only
with a low k-point grid, the reported energy is a successive SCF calculation with
the high accuracy grid. In the last column the s p(2x1) geometry has relaxed to
the a p(2x1) structure. The p(2x2) and the c(4x2) are incorrectly ordered but
their difference in energy is below our error threshold.
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Chapter 3

Solid Phase Epitaxy

The major issue of the current on-lattice KMC approaches that simulate SPE is
their lack in microscopical knowledge of the key events 1.1.2. The end goal of
all the developed ML potentials should always finally be their ability to predict
new physics and extend our knowledge. Hence, in this chapter, we are going to
use the predictive power of the NN potential previously created to investigate
SPE from an atomistic prospective, computing its characteristic barrier and iso-
lating the time sequence of the simulations that are most likely to contain the
key events for further analysis. This will be done using MDs, that have been
proven to be able to describe with a reasonable degree of accuracy structural
and dynamical properties of simple and complex materials. Such results will
pave the way for the search for new microscopic mechanisms for the KMC, and
possibly validate or disprove the results obtained with well-known empirical
potentials.

3.1 The l-Si/a-Si phase transition

In the section 1.1 we reported that experimentally the SPE speed follows an Ar-
rheniuhs’ law, Eq. 1.1. This exponential relation between reconstruction velocity
and temperature means that even small changes in the simulated temperature
result in large changes in the computational time necessary to observe a recon-
struction. It is then mandatory to find a temperature upper bound at which the
SPE can be observed, so that we can simulate the fastest possible phenomenon,
resulting in a reasonable MD simulation time.

Two phase transitions are involved in this process: the c-Si/a-Si phase tran-
sition and the a-Si/l-Si phase transition. The first one is the phase transition we
are interested in, the second phase transition is a problem we have to deal with
when investigating high-temperature regimes.
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We lack SPE experiments on pure silicon samples so we don’t know pre-
cisely at which temperature SPE ceases to happen, but Olson et al. [4] performed
several high temperature experiments in samples with arsenic. After excluding
the a-Si/l-Si phase transition in the high-temperature range they measured a
barrier very similar to the pure silicon one. Further analysis showed that the
presence of low As concentrations does not induce major differences with re-
spect to pure samples. Such result offers solid empirical evidence that the mi-
croscopic mechanisms, whatever they are, should not change significantly up
to the melting point. With this in mind, we can assume that an extrapolation to
pure silicon samples from experimentally available data at high temperatures
should hold.

At this point, the high-temperature regime of interest lies between the melt-
ing temperature of c-Si (1685K) and the melting temperature of a-Si (1260K-
1450K depending on its level of relaxation [117, 118] or section 1.1). The melt-
ing temperature of c-Si for the NNP, as explained in section 2 is lower than
the experimental one by a factor of about 1.14. Experimental values estimated
for the melting temperature of a-Si can not be used directly in our simulations.
The approach often adopted in the literature to address this issue is to linearly
scale these temperatures with the aforementioned factor. This approach fixes
our temperature boundaries with a maximum theoretical temperature that can
be adopted in simulations of 1400K, and a melting temperature of a-Si of ap-
proximately 1100-1240 K.

For the sake of simplicity, all reported temperatures in the following text will
refer to these scaled simulated temperatures unless otherwise specified.

The 1100 to 1240 K temperature range is only a qualitative estimate, and
there is no reason to trust it blindly. Quantitative proof of the presence of an
l-Si/c-Si phase transition and more accurate values for its temperature can be
given by looking for the presence of a van der Walls loop (vdW) in isother-
mal lines in the P-V space, below the critical temperature. In realistic systems,
isotherms in P-V space near a first-order phase transition display two distinct
behaviors separated by the isotherm at the critical temperature. Above the crit-
ical temperature, P-V isotherms have no stationary points, and no phase tran-
sition can be defined. At the critical temperature, the P-V isotherm displays a
stationary point that separates the pressure/volume ranges assigned to the two
phases. Phase coexistence is possible at the stationary point. Below the critical
temperature isotherms are characterized by a intermediate range of volumes
accessible to the system in equilibrium only as a mixture of the two phases,
coexisting at the same pressure and different volumes. In NVT numerical sim-
ulations performed in simulation cells of limited size, at these intermediate vol-
umes the sample can not undergo the phase separation process and is trapped
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in either an undercooled or an overheated homegeneous state of one or the
other of the two phases. The result is that below the critical temperature, what
was supposed to be a straight line connecting the two phases becomes an os-
cillation. From the oscillation, it is possible to recover the equilibrium pressure
and the transition volumes of the two phases by applying the Maxwell construc-
tion. In our case, the phase transition occurs around zero pressure so, instead
of using the Maxwell construction to obtain the pressure from a given tempera-
ture, we will use it to look for a range of temperatures that satisfy it at vanishing
pressure.

To investigate the vdW loop we proceeded as follows. First, a set of liquid
configurations with different densities and a size that does not allow for the co-
existence of the two phases was generated. The density range goes from 10%
less dense than a-Si to 10% denser than l-Si. From each configuration, different
NVT relaxations with initial random velocities compatible with a temperature
of 2000K were performed. During the relaxations, a 10K/ps cooling ramp was
applied, and each relaxation ended at the temperature of a target isotherm. This
procedure leads to each density having as many different configurations as tar-
get isotherms. Then, for each isotherm the pressure at a given density can be es-
timated by running long NVT dynamics. The main limitation of this procedure
is that if the initial configuration is trapped in a local minimum the sampling
for that isotherm will be very limited. To overcome this we applied the replica
exchange method [119] that regularly attempts to swap configurations between
nearby isotherms.

For the vdW study we used samples composed of 216 atom cells and 15
isotherms in the range between 880 and 1280K were targeted. The NVT sam-
pling with the replica exchange method was run for 40 ps. Results are pre-
sented in fig. 27. Assuming that the Maxwell equal-area construction must hold
at zero pressure, we can estimate a temperature on the order of 1100≈1050 as
the maximum temperature at which the generated amorphous can coexists with
the liquid phase. This result is approximately in line with our initial estimate.
Furthermore, its density is approximately between 18.2 and 20.7 Å3/atom as
expected.

An interesting result, never considered in SPE literature, regarding the a-Si
is that there are numerical [14, 15, 120] as well as experimental [121] observa-
tions that indicate the existence of an intermediate phase between l-Si and a-Si,
that shares geometrical structure and electrical characteristics with a-Si while
diffusing as a liquid. This state has been defined as low-density liquid (LDL)
in contrast with the usual l-Si phase, called high-density liquid (HDL). The ex-
istence of this state is not unchallenged [122] but, as we will see, some of our
high-temperature simulations have properties that are close to this state.
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Figure 27: Isotherms in the pressure-volume plane near the 1-Si/ a-Si phase tran
sition. 15 temperatures were simulated in the 880-1280 K range but only 7 are 
reported for clarity. A possible Maxwell construction is highlighted and the 
liquid , In the figure, a positive P(V) slope indicates that the system is in a ther
modynamically unstable state, and, if larger samples were simulated, it would 
separate in the two phases. The three temperatures presented in the middle re
gion (1051, 1080, and 1108 K) are those that show a clear vdW loop at zero pres
sure, and give a solid upper and lower bounds for the hypothetical Tm value. 
From the figure, the critical temperature, which is the one corresponding to the 
lowest isotherm that does not show a stationary point, can also be estimated in 
the 1220-1250K range, a value very close to other DFT theoretical results ~ 
performed with GGA functionals. 
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3.2 a-Si characterization

During the generation of all our amorphous structures, we quenched the sam-
ples from the liquid by decreasing the temperature with a linear ramp. The lin-
ear ramp was chosen with a 10K/ps rate. This value is similar to fast quenching
experiments but is still several orders of magnitude faster than the quenching
rates used in SPE experiments. Therefore, it is important to understand the
quality of the obtained a-Si samples.

When talking about comparisons, the properties accessible with numerical
simulations can be roughly divided into two categories: those that require the
knowledge of the charge distribution and of the wave function, and those that
do not. Electronic properties belong to the first category and are notoriously ex-
pensive to compute, their knowledge would allow a precise characterization of
point defects. This can be achieved, for example, by smartly combining the elec-
tron localization function and the charge distribution to classify all the types of
bonds [123] or by associating them to localized states within the bandgap [124].
The second category includes instead all the geometrical and vibrational prop-
erties that can be investigated by limiting the domain to classical mechanics.
Among the geometrical properties, we find the density, the structure factor, the
angular/dihedral distributions, the ring counting distribution [125, 126], the
excess energy w.r.t. c-Si, and the vibrational density of states (v-DOS). Since
the nature of our potential is classical we will restrict our investigation to this
second category.

Volume and structure factor metrics have the advantage of being directly
comparable with experiments but are known to be very little informative since
different local structures can easily give rise to similar results [127]. a-Si excess
energy w.r.t. c-Si is also a property that can be directly compared to calorimet-
ric experiments [128]. Since such extra energy is stored in bond angle distor-
tions and point defects it should be a good overall indication of the a-Si quality.
Angles and other geometric quantities, on the other hand, are not directly mea-
sured but are accessible to atomistic simulations and allow comparison between
atomic configurations reported in the literature. v-DOS is sensitive to the local
structure and can be accessed at a reasonable cost from the simulation.

To numerically create a-Si samples a variety of techniques have been pro-
posed and combined with all sorts of potentials [129]. These methods produced
the most disparate results, and comparing our a-Si with all of them is beyond
the scope of this work. However, defining a baseline to compare with is neces-
sary. We opted for two comparisons, one with structures obtained from classical
approaches and one with a DFT "optimal" structure proposed in [86].

For the comparison with classical approaches, we focus on SPE: Krzeminski
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et al. [34] started from a WWW a-Si, and relaxed it with MDs using different po-
tentials. After extensive tests, they concluded that Tersoff [38] potential, thanks
to its correct density prediction and correct SPE barriers, is the best choice for
this application, in spite of the large overestimation of Si melting temperature.
Lampin et al. [35] expanded the previous study showing that results can be im-
proved if instead of using the WWW approach, the a-Si was prepared through
a melting quenching technique. Hence we adopted the latter approach to gen-
erate all the structures used for comparison.

In this characterization, we are not interested in creating an excellent amor-
phous but rather in understanding the properties of the average amorphous we
deal with during SPE simulations. This is the reason why we followed an ap-
proach that produced many cheap samples instead of a few large cells. To create
samples that share the same thermal history as the a-Si used in SPE, the sample
creation for both the neural network potential and the Tersoff potential was per-
formed following the melting-quenching technique with a 10K/ps ramp. These
ramps were started from configurations extracted by initial liquid dynamics at
temperatures adapted to the potential (3500K for Tersoff potential and 2000K
for the neural network potential); the liquid presence was assessed by qualita-
tively analyzing the radial distribution function. For the Tersoff potential the
liquid dynamics and the first part of the annealing (at 2500K) were NVT MD
runs constrained to have the correct l-Si density. For both potentials, the pro-
cedure was repeated with cells of 216 and 1728 atoms to probe for finite-size
effects. Ten samples from each potential and cell size were collected, providing
a dataset of 40 amorphous configurations.

For the comparison with DFT structures instead, we considered the best con-
figuration generated by Pedersen et al. [86] in a recent work. This structure was
generated with a novel procedure that aims at minimizing the excess energy
of the amorphous sample w.r.t. c-Si. Starting from a structure generated with
the melting-quenching technique (using the Tersoff [38] potential) and then re-
laxed with PBE-DFT, for each atom in the cell the corresponding relaxed re-
moval energy was computed. The removal energy is defined, similarly to the
vacancy formation energy as how much cohesive energy is needed to remove
the atom from a particular a-Si realization. Among the atoms, those with nega-
tive removal energy (that is atoms not strongly bound to their neighbors whose
removal lowers the sample energy [87]) were of particular interest. The atom
with the lowest (more negative) removal energy was indeed removed, the sys-
tem relaxed, and the procedure repeated until no more atoms with negative
removal energy were present. The best structure obtained (with the lowest ex-
cess energy w.r.t. c-Si) is used as a reference and referred to as y, following the
notation used in [86]. The y structure relaxed with our NNP will also be the
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object of discussion and will be labeled as yNN.

3.2.1 Geometrical characterization

The simplest quantities that can be used to compare different samples gener-
ated with numerical procedures are geometric quantities such as bond angles,
dihedral angles, the ring counting distribution, the per atom volume, and the
radial distribution function. The radial distribution function was already inves-
tigated indirectly during the potential creation in chapter 2 (see Fig. 25), where
we showed that the structure factor, that is the Fourier transform of the radial
distribution function, obtained with our NNP is in good agreement with ex-
periments. Therefore we are not showing it here again. Bond angle and di-
hedral angle distributions are reported in Fig. 28, and a summary of the angle
distribution properties are reported in Table 6. Fig. 28 shows that amorphous
samples obtained from Tersoff potential have noticeable features in the angular
distribution around 60 and 80 degrees. Those featutres are not present in the
samples generated with the NNP. This difference easily explains the standard
deviation differences reported in Table 6 between the two approaches. How-
ever, the origin of these two peaks is still unclear. An investigation over the
molecular database created by Allen et al. [130] showed that both 60 and 80
degrees bond angles are reasonable if one considers the possible hybridizations
of silicon atoms [131]. This leaves open the question whether such a result is an
idiosyncrasy of Tersoff potential or is a real feature of a-Si not described by PBE
and consequently by any MLP trained of DFT-PBE.

Fig. 28 and Table 6 show also that statistically no major difference in angles
statistics is due to the sample size, and all the features seem to be determined by
the potential. To further prove the goodness of our NNP, Table 6 reports angle
means and standard deviations also for the y structure and its sibling structure
relaxed with the NNP, yNN . As expected the distribution proprieties are very
similar to the ones obtained from the melting-quenching technique with our
NNP.

Another quantity commonly analyzed in amorphous samples is the ring-
size distribution. Results for this metric are presented in Table 7, for samples
generated from our NNP and with Tersoff potential, as well as for the DFT opti-
mal structure y and its NNP relaxed variant, yNN . From the reported results we
stress the similarity between the samples generated from the NNP and the one
optimized with DFT, and the larger deviation noticeable for the samples gen-
erated with Tersoff potential. The agreement with the DFT optimized sample
could likely be further improved if we adopted the same optimization protocol.
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Figure 28: Angular distribution (top panel), and dihedral distribution (bottom 
panel) for the NN potential and and Tersoff ~ potentials, and different num
bers of a toms. For each potential increasing the number of a toms only smoothes 
the curves thanks to the increased sampling. The features in the dihedral angle 
distribution shows the existence of a medium-range order, up to second nearest 
neighbors, more pronounced for the NN potential. 

potential natoms mean std 
NNP 216 109.08(4) 11.9(4) 
NNP 1728 109.03(3) 12.0(2) 
Tersoff 216 108.64(18) 14.3(9) 
Tersoff 1728 108.62(5) 14.4(3) 
y 216 108.92 11.6 
YNN 216 109.02 11.2 

Table 6: Average angle distribution and standard deviation obtained with dif
ferent potentials, and sample size. Ten samples were collected for each row. The 
last two rows are the statistics for the y structure provided by ~ relaxed with 
DFT and with our NN potential. The only significant difference in the results 
seems to originate from the potential choice. 
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Ring length NN potential Tersoff y yNN

3 0.006(2) 0.012(5) 0.005 0.0
4 0.031(10) 0.087(28) 0.042 0.037
5 0.429(27) 0.520(57) 0.391 0.395
6 0.717(73) 0.668(112) 0.772 0.767
7 0.046(30) 0.042(23) 0.023 0.023

Table 7: Ring counting distribution, obtained with the ring definition from [132]
and the code [125]. Results averaged over 10 structures with 216 atoms for NN
potential and Tersoff potential. Also shown results for y and yNN structures.

In conclusion, all these geometric metrics do not indicate any critical statisti-
cal difference between well-relaxed DFT configurations and the average config-
uration obtained with our NN potential. The same can not be said for structures
produced with simulations using Tersoff potential.

3.2.2 Excess energy distribution

The excess energy with respect to c-Si is defined as the per-atom difference in
energy between c-Si and a-Si and is stored in either point defects and/or lat-
tice distortions. This value can be experimentally estimated with calorimetry
by measuring the excess heat during a-Si/c-Si recrystallization and is estimated
to be between 0.07 and 0.15 eV per atom [133, 128] depending on sample prepa-
ration method and thermal history.

Another quantity that we will investigate in parallel to the excess energy is
the density of a-Si with respect to the one of c-Si. Experimentally, a-Si density is
expected to be lower than c-Si density by 1.8±0.1% [134, 135].

These two quantities are presented together in Fig. 29. Looking at the rela-
tive density axis in Fig. 29, we can conclude that the a-Si per atom equilibrium
volume, in general, is a property of the potential that is rather independent
from the system size. The same cannot be said about the excess energy. Ter-
soff potential gives generally bad results and always predicts very high excess
energy values that seem to be influenced by the sample size. The NNP always
shows a consistent behavior, and the average configuration has the same excess
energy regardless of the number of atoms in the cell. Unfortunately, the ap-
plied melting-quenching generation procedure seems to fail to generate amor-
phous structures as relaxed as the yNN structure, the black dot in Fig. 29, so it
must be concluded that the amorphous structures produced with our melting-
quenching protocol still have a significant margin of excess energy that could
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Figure 29: Two dimensional map of the excess energy and relative density with 
respect to crystalline diamond. For each potential, the corresponding diamond 
structure has been taken as a reference. The data are grouped by potential and 
number of atoms. The black dot corresponds to the reference structure YNN· 

Solid Unes are kernel density estimates of the distributions, due to the small 
number of data points they should be considered as an aid to the eye to estimate 
the reachable regions. Increasing the number of a toms only reduces the energy 
fluctuation while keeping the same average. 
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be further relaxed to bring them doser to the DFT optimized reference, for in
stance adopting the same optimization protocol. Unfortunately this important 
energetic difference is however not captured by the geometrical structural anal
ysis described ear lier. 

3.2.3 Vibrational density of states 

Another material quantity that can be used to characterize the amorphous 
phase is the v ibrational density of states (v-DOS) which is sensitive to the lo
cal environment of the vibrating atoms. To compute v-DOS we adopted the 
frozen phonon approach as implemented in phon ~ as well as a code of our 
own that fixes several performance issues that phon experiences for big cells. 
Results for selected configurations are shown in Fig. ê2J. So far we only made 
the statistical comparison for cells containing 216 atoms. 
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Figure 30: Vibrational density of states for 216 atoms cells for the NNP and Ter
soff potential with error bars. Tersoff potential results are presented for com
parison but shares little with our potential or DFT. DFT results are taken from 
Pedersen et al. ~ and refer to the y structure. Vertical orange lines represent 
the extrema used to perform the table's ~ integrals. 

Starting by comparing the DFT spectrum of the y configuration from ~ 
with the v-DOS spectrum computed for the YNN configuration, the main fea
tures are: 1) the difference in shape of the low frequency peak, 2) the presence 
of a double peak in the in the optical region of YNN, 3) an overall underesti
mation of the frequency in the optical peak. For the first d ifference, we were 
not able to find its origin. For the second, it is very likely that our NNP re
laxed some local configuration to something that locally closely resembles c-Si 
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making a c-Si-like peak appear at approximately 59 meV. This explanation is
supported by the fact that a double peak is indeed often seen in experiments
during implantation when the whole c-Si structure has not yet been completely
amorphized [137, 138], and could be also the reason why the sample has the low
excess energy observed in the previous section. As for the third difference, it is
very likely related to the overall underestimation of the optical branches in c-Si
phonon dispersion observed in section 2.6. Despite all of these differences the
agreement between the NN potential results and the DFT ones is rather good
and the number of modes encompassed by the two main low/high frequency
peaks, reported in table 8, is very similar. The average v-DOS of the samples
we created behaves very similarly to the v-DOS of yNN except for the less struc-
tured optical peak. This, as commented before, could be a sign of the absence
of c-Si-like environments that would give sharp c-Si-like modes in the optical
region. More details on the v-DOS features are available in Appendix B

low high
DFT 36.14% 51.25%
yNN 36.64% 49.77%
NNP 37.0(2) % 49.3(5)%

Table 8: Average Integrals for the low (below 28 meV) and high (above 40 meV)
peaks in the v-DOS.

3.3 Creation of the SPE samples

From an estimate of the T at which a-Si/l-Si phase transitions occur of approx-
imately 1100K, and a characterization of a-Si quality, we can proceed with SPE
investigation. First, we create the sample as follows(a pictorial view with the
key events is also presented in fig. 31):

1. An initial set of boxes of c-Si is created by replicating the 3.84×3.84×5.43
Å3 ([011̄]× [011]× [100]) 4-atom unit cell, and then thermalized at 900K in
an NPT ensemble. The cells used for this procedure were composed of 512
atoms (4x4x8), 2560 atoms (8x8x10), and 10240 atoms (16x16x10).

2. Before starting the next phase 4 (100) contiguous layers are frozen in their
c-Si equilibrium configurations to ensure the final presence of a c-Si/l-Si
interface.

3. The next step, the model of the l-Si phase, is achieved through an ini-
tial NVT run at a high temperature (2300K), followed by a cooling phase
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down to 1800K, and a subsequent thermalization at 1700K using an NPT 
ensemble to allow the volume of the box to shrink and accommodate the 
correct liquid density. 

4. At temperatures sufficiently low to create a 1-Si/vacuum interface without 
any risk of rnaterial evaporation. This is done by cutting open one of the 
two 1-Si/ c-Si interfaces. 

5. Two of the four c-Si frozen layers in contact with the 1-Si are freed and 
set to interact with a reservoir at 900K, while the rest of the l-Si is slowly 
cooled at a lOK/ps rate as done for the a-Si creation in section~ 

c-Si 

Selective 
melting 

1-Si/ c-Si c-Si/ a-Si/ sufrace 

lOK/ps ramp 

-1-Si/ c-Si explosive 
reconstruction 

-1-Si/ a-Si phase 
change 

· - Sample 
ready 

ps 

Figure 31: To create the sample needed to investigate SPE, we start with a per
fect c-Si crystal. Tuen, by abruptly raising the temperature and freezing two lay
ers, we achieve a selective melting of all the material except for the frozen layers. 
Then, after an equilibration, we open the sample on one side (this is achieved 
by removing the PBE and creating a surface) and slowly cool down the sample 
following a lOK/ps thermal ramp. During this thermal ramp, we observe an 
explosive reconstruction at the c-Si/1-Si interface that promptly stops leaving 
a more regular 1-Si/a-Si phase transition. Once the ramp reaches a sufficiently 
low temperature, we are left with a sample ready to simulate SPE. 

The arbitrary choice of adding 2 crystalline layers thermalized at 900K was 
made in order to mimic a realistic sample mounted upon a heated support, 
where a temperature gradient must be present ~ ' and to actas an intermediate 
stage towards the fictitious frozen bulk. Except for the smallest cell, which does 
not give sensible results, for the other two cell sizes a similar evolution can be 
observed during the last cooling ramp. At the beginning of the cooling ramp, 
the c-Si/ a-Si interface grows homogeneously and without defects parallel to the 
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(100) surface, and does not show any specific feature or pattern. A rough esti
mate of the velocity with the method explained later in section [!] results in 
a value of approximately 13 10-3 nm/ps suggesting this to be an explosive re
growth (a value between 0.01 and 2010-3 nm/ps is experimentally estimated for 
this phenomenon ~ )- The measured explosive reconstruction put a further 
bound on the speed of our cooling ramp because in order to be able to spend 
more time at each temperature we would need to start with a much thicker 
sample. 

This first mechanism lasts until a temperature of approximately 1400K is 
reached when some features start to appear at the c-Si/1-Si interface. Such fea
tures can be described as small "hills and valleys" of atoms with Voronoi vol
ume larger than the liquid one. At 1050K the formation of a geometrical pattern 
exposing the (111} faces on the sides is always present. This pattern is compati
ble with what was experimentally observed in ll!21J, where different reconstruc
tion speeds were reported in different directions. An example can be seen in 
Fig. ~ This is a positive and easily reproducible result, not always obtained 
with other empirical potentials, that instead naturally occurs with ours. 

Figure 32: 3D wedge structure appearing during the solid phase epitaxy simu
lation at 1050K. Only tetrahedrally coordinated atoms w ith angles compatible 
with the diamond structure are shown, for simplicity. A (111) is drawn in gray. 

We know from section[]that the 1-Si/ a-Si phase transition at ambient pres
sure is possible between 1050 and 1100K. This, however, does not grant that the 
phase transition is taking place since coexistence between the two phases is still 
possible. To assess if our sample displays coexistence between the two states of 
matter the simplest discriminant to investigate is the density or its counterpart, 
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the per atom local volume. By defining the volume occupied by each atom as
the Voronoi volume that encloses that atom it is possible to plot the distribution
of this quantity in the sample as a function of the temperature. If the distribution
is centered around the average liquid value no phase changes have happened
yet; if instead it is distributed around the a-Si average value the phase change
has already occurred. a Since there is a significant overlap between the a-Si per
atom volume distribution and the c-Si per atom volume distribution, we need
to exclude the atoms in the sample that are in the c-Si state from this analysis.
This is done by performing a common neighbor analysis [140, 141], with an
adaptive cutoff, modified to detect the diamond structure [142, 74]. This metric
can detect also atoms in structures with symmetries different from the diamond
one, but we restricted our investigation to two categories one of atoms detected
as embedded in a perfect diamond structure and their first nearest neighbors,
and one composed by of all the other atoms.

The distributions shown in Fig. 33 show, as expected, that the phase tran-
sition causes a shift in the volume distribution that starts from one compatible
with the liquid phase and evolves to one closer to the silicon diamond phase,
but broader. At 1100 K the presence of residual l-Si can not be excluded, sug-
gesting that a fully glassy regime has not yet been achieved. Further analysis of
such distribution as a function of the position along the [100] growth direction
highlights that atoms closer to the a-Si/vacuum surface tend to have lower per
atom volumes and therefore to be more liquid-like. At 1050 K the system is al-
most fully transformed to a-Si even if some sporadic l-Si-like environments are
possible. And finally, below 1000K the phase transition is completed.

From this analysis, we can identify which temperatures are good candidates
for our SPE simulation study: 4 configurations were therefore selected between
1100K and 900K every 50K. Finally, another sample was taken at 800K to inves-
tigate a low-temperature regime. For consistency: during the relaxation below
900K the bottom layer thermostat was attached to the top one and cooled with
the same ramp.

To measure the barrier that regulates SPE one major problem is left, to iden-
tify where the c-Si/l-Si interface is located. This will be discussed in the next
section.

3.4 c-Si/l-Si interface growth

From the previous analysis regarding the phase transition, it is possible to esti-
mate that the fastest and most significant simulation should be the one at 1050K.
We used this as a reference temperature to define a reliable way to identify the
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Figure 33: Distribution of the per atom volume measured using Voronoi tessel
lation and presented as a kernel density estimate fit for better visualization. In 
black are the two references: dot-dash line for distribution of c-Si at 900K, and 
dashed line for the distribution of 1-Si at 1700K; a-Si distribution is not reported 
for clarity as it would essentially overlap with the one of the sample at 500K. 
Other lines describe distributions after a 100 ps equilibration at different tem
peratures (see the figure legend for the corresponding color scheme) in a 2560 
atom simulation cell. To obtain such distributions we took configurations at se
lected temperatures along the final thermal ramp (step 5) performed to create 
the sample. Those samples were then evolved, similarly to what was done to 
simulate SPE, in an NVT MD at a constant temperature. 

87 



position of the interface and investigate size effects. These latter will be dis-
cussed using the 10240 atoms and the 2560 atoms cell sizes previously men-
tioned in section 3.3.

3.4.1 Interface position

The measure of the reconstruction speed along the [100] direction requires a
reliable definition of the interface location, and different approaches have been
proposed to achieve this.

Mattoni et al. [33] proposed a possible definition based on a directional struc-
ture factor S(z) =

∣∣∣ 1
Nz

∑
z<zi<z+dz e

ikr
i

∣∣∣ where ri are the atomic coordinates of the
atoms in a slab of width dz, k is a fixed vector in the reciprocal space parallel to
the a-Si/c-Si interface chosen to match the crystalline lattice periodicity in the
plane, and Nz is the number of atoms in the slab. The width dz is chosen such
that the slab contains at least two c-Si (100) lattice planes to always have a value
different from zero. Once computed, at each z the function S(z) will assume
high values, lower than one, where the structure is ordered with the probed pe-
riodicity or small values where there are unordered structures. At the interface,
a sharp (or smooth, depending on the local order) transition from a high value
to a low value would be present, and an average position can be estimated from
the decay.

This technique has been successfully applied in other studies [35] and gives
good results in the case of sharp interfaces and large reconstructions. We have
tried to use this method but it does not perform well in cases, like ours, where a
non planar geometrical pattern is present: instead of observing a sharp degra-
dation in S(z) at the interface, a smooth transition is observed from the value
associated with the crystal to the value associated with the amorphous. It is rea-
sonable to try to extend this method by testing different reciprocal vectors other
than the c-Si periodicity 2π

a0
(2, 2, 0). For this reason, we tried the orthogonal

vector 2π
a0
(2,−2, 0), and the same vectors by doubling the frequency. In our ex-

periments, adding the orthogonal vector did indeed help give sharper changes
in the S(z) at the interfaces, while sampling higher frequency vectors degraded
the whole metric to the point of making it a nonviable option. Overall, the best
results we were able to obtain were not sufficient to uniquely identify the posi-
tion of the interface lacking a clear interface motion as a function of simulation
time.

Following these considerations, we opted for a different method relying on
the atom classification used in section 3.3, and performed via the OVITO [74]
software. We restricted our analysis only to atoms detected as perfect diamonds
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(d) or as nearest neighbors of perfect diamonds (dl). Once these a toms are iden
tified, we can multiply their number by either an average c-Si volume compat
ible with the simulated temperature or their exact Voronoi volume. It is, then, 
possible to <livide this number by the interface area in order to obtain the c-Si 
layer width S, and the evolution of this quantity represents an approximation 
to the interface speed. Since this way of counting the atoms is a somehow arbi
trary definition, we evaluated two different options to appreciate its robustness: 
using only the number of the perfect diamond atoms, da toms, or using both the 
perfect diamond and the nearest neighbor to diamond atoms, d and dl atoms, 
combined. 

Since we have found that a change in the method used to estima te the atomic 
volume can impact the speed estima te up to 5% of its magnitude, while a change 
in the atoms categorization can impact it up to 40%, we will report only the 
discussion over the second quantity. As for the volume, we will only consider 
the use of local Voronoi volumes. We believe that obtaining consistent results 
with the two crystalline descriptors (d vs d and dl) for counting crystal atoms 
will give a sensible feeling over the errors incurred by the two methods. Results 
are shown in Fig. ~ and detailed speed estima tes for the various regions of the 
simulation, see la ter, are available in Table l2J 
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Figure 34: Position along the [100] axis of the a-Si/ c-Si interface as a fonction of 
time, computed with the two different metrics and for simulations of different 
sizes at 1050K. The large cell simulation lasted 1.2 ns and consisted of 10240 
atoms, while the small cell one consisted of 2560 atoms and lasted 3 ns. A de
tailed analysis on the physics is available in sectionl3.4.2~ 
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3.4.2 Size effects

Since simulations are expensive, it would be desirable to use the smallest pos-
sible cell that can capture the physics of interest, although this might come at
the price of more complex analysis. We will here present a comparison of the
simulations performed with the two cell sizes anticipated in section 3.3 of 2560
atoms and 10240 atoms.

As shown in Fig. 34, when comparing the two cell sizes there are differ-
ent mechanisms that come into play during the recrystallization, and not all of
them are common to the two cell sizes. In the larger cell it is possible to see
that, after an initial equilibration phase of about 165 ps, the system evolves at
a roughly constant speed with rare small jumps. We have isolated these jumps
and determined that they are due to a rapid phase change of small clusters (ap-
proximately 25/35 atoms) embedded in the interface, that are kept under stress
by defects. Once the defect is removed, the whole cluster becomes crystalline.
This crystallization is roughly one order of magnitude faster than the regular
reconstruction, and it is thus registered as a jump in the interface position, but
it does not impact significantly the average velocity.

Considering the smaller cell, a similar initial 150 ps equilibration period is
present. After it, we can identify at least two rather large jumps, one at 180 ps
and one at 660 ps, connected by what could be another equilibration phase or a
first steady recrystallization phase. However, since the measured speed seemed
to be accelerating, we decided to consider the system not yet equilibrated and
excluded this region from further analysis. The range between 680 ps and
1600 ps is a region with small jumps that shows the same behavior as in the
large cell. As such, we chose this time interval as the prototype to estimate the
steady-state SPE velocity. Fig. 35 shows how the atomic environments changed
during this time. After 1600 ps, the amount of material left to undergo a-Si/c-
Si phase transformation is not sufficient to observe a clean SPE reconstruction,
due to the closeness of the a-Si vacuum surface the quality of the simulation
degrades. The final reconstructed material is less than the maximum available
amount because, in this last part of the dynamics, defects start to embed in the
crystalline lattice, and some atoms that compose the crystal are no more recog-
nized as diamond atoms by the descriptor.

The two jumps at 180 ps and 660 ps in the 2560 atom simulation are of par-
ticular interest, because similar phenomena have been reported in the litera-
ture [36, 32, 37, 143], but they are absent in our simulations with the larger cell.
In our cases, we have approximately 50 atoms that change in a way close to
what happens in the small jumps, but on a much larger scale. Snapshots before
and after the 680 ps jump are presented in Fig. 36. The presence of jumps in the
numerical simulations of the SPE with various potentials led previous authors
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Figure 35: Distribution of the atoms category average over 2 ps at the interface 
during a normal reconstruction in the 2560 atoms case. The x axis represents 
atoms positions in the [100] direction. The first row shows the number of atoms 
in the crystalline configuration at a given height: we see that they are organized 
according to the lattice, and their number decreases as we get doser to the in
terface. The color represents time steps: 680 ps and 1600 ps. As time passes, the 
atoms deeper in to the sample (left) only reorganize under thermal vibrations, 
while those doser to the interface (right) tend to present more c-Si atoms. The 
second row is the same graph for the dl atoms: we can see that they are dis
tributed around the interface and follow, as a fonction of time, a pattern similar 
to the one of c-Si. 
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Before the jump, at 650 ps 

After the jump, at 680 ps 

Figure 36: Snapshot of the atomic configurations during the jump registered 
between 650 and 680 ps in the simulation with 2560 atoms. Atoms are colored 
accordingly to the classification provided by Maras et al. descriptor. 
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Figure 36: (continuation) Blue atoms (d) are in perfect crystalline positions.
Light blue atoms (d1) are first nearest neighbor of crystalline atoms and greens
(d2) are second nearest neighbor. White atoms are in an amorphous state. Red
atoms where originally white and are colored to show where the event is hap-
pening. It can be seen how this red atoms are trapped between two 111 wedges
that are artificially close due to the presence of the periodic replica of the main
feature.

to consider this as the main mechanism of the reconstruction, but our analysis
would suggest otherwise. We hypothesize that these events are only possible
due to the limited cell size that does not allow for the {111} facets that compose
the wedges at the c-Si/a-Si interface, see section 3.3 and Fig. 32, to grow be-
yond the periodic cell size. Indeed similar jumps are observed, with somewhat
greater frequency, in SPE simulations performed in smaller cells with a poten-
tial reported to be better than SW [36], but the effect of cell size was not studied.
Simulations with both SW [32] and Tersoff [37] potentials show rare jumps on
time-scales and cell sizes similar to ours, and report no jumps in larger cell, as in
our case. Tersoff potential displays a similar behavior also for germanium [143].

Our analysis allows us to split every simulation in different regions, each
displaying its own regime. The average velocities computed for these regimes
are presented for different cell sizes and descriptor definitions in table 9. It can
be observed that the velocity estimates are stable with respect to the change
in the descriptor threshold. After eliminating the regions that we deemed not
representative of steady SPE (equilibration periods, large jumps, etc.) we can
compute the average SPE velocity in the steady regime, presented in bold in the
table 9. We can notice that these SPE velocity estimates are rather insensitive to
system size, thus justifying our choice of restricting the more systematic study
to the small system only.

The analysis described was applied to all simulations performed at differ-
ent temperatures and only the average velocity corresponding to steady SPE
growth simulation region will be reported in the following.

3.4.3 Evolution of the sample profile

Previous studies neglected an analysis of the material properties as a function of
the positions along the [100] direction. We believe that there are at least two rel-
evant quantities to monitor that give powerful insights into any further discus-
sion. These are temperature and diffusion. In order to do this analysis, samples
were sliced into three parts. The top, or surface, region was composed exclu-
sively of a-Si atoms. The central, or interface, region was composed of a mixture
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Event Time interval [ps] Speed [10−3 nm / ps] Temperature
category begin end d d+d1 NVT sim. [K]
2560 atom cell

equilibration 30 150 2.18 2.24 1038
200 650 .495 .539 1044

jump 650 680 2.68 1.93 1041
860 880 2.38 2.77 1050

1600 1700 .785 1.06 1046
1950 2050 3.02 3.15 1043

avg 680 1600 .175 .243 1043

end region 1700 1950 .526 .588 1044
2050 2300 1.25 1.22 1049

10240 atom cell

equilibration 10 30 3.34 3.80 1030
30 165 1.56 1.35 1024

jump 250 275 1.52 1.28 1030
325 350 1.28 .804 1026

avg 165 1191 .265 .246 1027

Table 9: Speed estimates during different regimes (time regions) of the trajec-
tories. The upper part of the table refers to the 2560 atom cell simulation, the
lower part refers to the 10240 atom cell simulation. Different qualitative cat-
egories have been defined based on the sample behavior in that time interval
and refer to the discussion in section 3.4.2. Speeds are reported according the
two considered ways for identifying bulk atoms in the interface definition (d vs
d + d1, as defined in section 3.4.1). The reported temperatures are the average
temperatures in at the interface in the specified time interval. The average SPE
speeds after equilibration (excluding the surface-affected final phase in the 2560
atom cell) are marked in bold and are our best estimates for the SPE speeds.
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of a-Si and c-Si atoms. And the bottom, or bulk, region was composed only by
c-Si atoms. During the analysis, the boundaries of each region have been kept
fixed. This choice was taken because the interface motion during the simulation
was small compared to the 15–20 Å typical region width.

Starting the analysis with the temperature, we observe that the system is
never at equilibrium with the thermal bath of Nosé-Hoover thermostat, and
a temperature gradient is present. Fig. 37 reports the temperature evolution
as a function of time for the three selected regions. During the crystallization
process, the interface releases energy, and this tends to rise the sample temper-
ature. The excess kinetic energy migrates towards the surface and the bulk. On
the surface, the only mechanism that can remove the energy is the interaction
with the thermostat, which is not happening fast enough. Therefore, the sur-
face becomes hotter than the connected thermostat. This could, in principle, be
fixed by increasing the frequency at which the atoms interact with the thermal
bath, but we preferred not to do so to sample more closely the more realistic
microcanonical ensemble. On the bulk side, our choice of adding a two-layer
buffer zone interacting with a colder bath at 900K between the frozen atoms
and the rest of the sample prevented the temperature from rising significantly
above the bath temperature and kept the c-Si cool enough to have an interface
at the desired temperature.

Another quantity that is not constant across the three sections of the sam-
ple is the diffusion coefficient. This quantity is derived from the mean square
displacement of atoms per unit time :

D(t) = lim
T→∞

1

6 T Nat

∑
ri(t)∈region

|ri(t+ T )− ri(t)|2 (3.1)

where the sum, generally extended over all the atoms in the sample, is restricted
to those (Nat) that are in the region of interest at time t. We found that for the
surface and interface regions the value of D is converged for T = 100 ps. It is
not the same for the bulk region where diffusion is basically not present. Results
are reported in figure 38.

Starting from the bulk region the lack of convergence in the c-Si region
means that if we were able to increase T further in equation 3.1 the net effect
would be only a rigid shift of the curve, while other curves would not change.
This is important because it gives us a reference value for the non-diffusive be-
havior with the chosen value of T . The interface region instead displays a low
but clearly non-zero diffusion coefficient as expected from the regular a-Si/c-Si
mixture. The most interesting information comes from the surface region. This
region has an average density compatible with a-Si (see Fig. 39) but it has a dif-
fusion coefficient that is in the range between the one of regular l-Si (HDL) and
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Figure 37: Temperature in the different regions for the case of the 2560k atoms 
as a function of time in the simulation targeted at 1050K previously presented 
in figure ~ In the beginning, we can see that the 180 ps equilibration phase 
is common to all regions. In the middle, the period of time deemed valid for 
the reconstruction has constant temperatures in all the regions, especially at the 
interface where relevant phenomena are happening. In the end, after 1.7 ns once 
the sample has crystallized no more energy is released by the phase transition, 
and the surface cools down. 

LDL ~ - Even if part of this effect can be attributed to surface diffusion, and 
more targeted simulations are needed to obtain an exact value for the diffusiv
ity of LDL, we can not exclude that the surface region of our sample is in the 
LDL state and not in a classical a-Si phase. 
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Figure 38: Diffusion coefficient in the different regions of the sample for the case 
of the 2560 atom cellas a fonction of time in the simulation targeted at 1050K 
previously presented in figure ~ In the first 180 ps during the equilibration, 
we can see a very high diffusion phase is common to both the top and the in
termediate regions. In the middle part of the simulation diffusion is constant in 
all the regions. Toward the end, after 1.7 ns, the sample has crystallized, and 
diffusion reduces to defect migration and other unknown spurious phenomena 
we did not investigate. 
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Figure 39: Average and standard deviation of the per-atom volume in the dif
ferent regions of the 2560 atom cellas a function of time in the simulation tar
geted at 1050K previously presented in figure ~ This shows us exactly what 
is happening in the two relaxation regime below 180 ps, during this period a 
transformation of the material from the 1-Si state to the a-Si state can be seen. 
The first relaxation regime termina tes when the interface region becomes amor
phous. The lower asymptotic value is due to the presence of both c-Si and a-Si 
in this region. The second relaxation regime terminates when the whole sample 
has becorne a-Si. In the end, after 1.7 ns all the densities converge towards the 
c-Si value. 

3.5 The physical phenomenon 

With the definitions given in the previous sections, we performed different sim
ulations of SPE at five different temperatures between 1100 and 900 K and the 
collected data are presented in Table l!QI. The two velocity values reported at 
each temperature, obtained from the two atomic descriptors used to identify 
bulk atoms, crf. section rn give an estirnate of the uncertainty due to this 
choice, which, we believe, is the largest source of uncertainty in the determina
tion of the velocity. On the obtained velocities we fitted the previously intro
duced Arrhenius law (sec !l.lD: 

- Ea 
v = voexp kbT (3.2) 

where Ea is the activation energy of the process and v0 is the velocity prefactor. 
By excluding the low temperature point at 800K that is an outlier for reason 
that will be discussed later, the measured barrier Ea, is between 2.72 eV and 
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2.82 eV, depending on the chosen descriptor. Either value is in very good agree-
ment with the experimental accepted value of approximately 2.7eV (table 1 in
section 1.1.1). The velocity prefactor v0 instead is estimated to be between 4 109

and 1.1 1010 nm/ps, and this is considerably overestimated with respect to ex-
perimental estimates. This overestimate is a direct consequence of the velocities
obtained in our simulations being roughly eight orders of magnitude faster than
the experimental observed values. To explain this large discrepancy as well as
the results obtained at the lowest simulated temperature, 800K, we need to put
these data in the context of the literature.

temp d d + d1 sampling time
[K] [10-3nm/ps] [10-3nm/ps] [ps]

1098 1.93 1.71 290
1043 .175 .243 920
1027 .265 .246 1026

995 .0209 .0303 2628
943 .0175 .0184 2214
799 .0171 .00981 3156

Table 10: SPE velocities with different descriptor thresholds (second and third
columns) at different temperatures (first column) averaged over different time-
length. Data were all extracted from steady state periods in the cell with 2560
atoms except for the point at 1027 K that was obtained from the simulation with
10240 atoms. At each temperature, the available time length depends is due
to several factors. In the high-temperature regime, the reconstruction speed
and the limited amount of material available to reconstruct are binding us to
only consider a small time window as a valid representative of the real SPE.
At low temperatures, on the other hand, to produce very small reconstructions
(hundred of atoms) longer runs are needed and computational time is the only
boundary. Temperatures reefers to average temperatures during the sampled
time at the interface slab. The last raw has not been used in the fit of the Arrhe-
nius law because because we believe it describe a different phenomena, more
details are available in the text

We collect in Fig. 40 SPE speed results from experimental and numerical
simulation literature together with the results of our simulations. As a gen-
eral comment, it is clear that all theoretical estimates severely overestimate SPE
speed, with the exception of simulations using Tersoff potential which however
severely overestimate the temperature range in which the phenomenon takes
place.

Bernstein et al. [30] performed a study with the EDIP potential [40, 39] (pink
line and points in Fig. 40). Their velocities were obtained with a procedure
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Figure 40: Arrhenius plot of experiments, numerical experiments, and our cal
culations. Experiments: pure Si from Olson et al. ~ , Csepregi et al. ll!ZII, SiAs 
from Olson et. al ij145J, and explosive reconstruction from Calvinet. al ~ 
Numerical works: EDIP, Lenosky, SW (no barrier was fit for those tree) SW115( 
with a barrier of 1.87 eV), Tersoff (w ith a barrier of 2.99 eV) from Krzeminskiat 
al. ~ , Bernstein et al. 00 ( 2.0 and 0.4 EV). This work: black dots as indicated 
in the legend, red fit (2.72 eV) and blue (0.39 eV) as discussed in the text. 

100 



close to the one used in our approach and with similar sample sizes. In these
simulations, they obtained points that show a change of regime as a function
of temperature, similar to the change of behavior we observe when comparing
simulations above or below 900K. To justify their finding in a way compati-
ble with the observed single barrier experimental evidence, they postulated the
existence in their sample of two mechanisms with different barriers, of which
only one would be relevant in the experimental conditions. Of these two mech-
anisms, one mechanism with a barrier of 0.4 ± 0.2 eV is the dominant one below
950K while at higher temperature the dominant mechanism has an activation
energy of 2.0 ± 0.5 eV. This higher activation energy event is in fair agreement
with the experimentally observed barrier of 2.7 eV [4] which has then been in-
terpreted to represent a combination of a defect-formation event with an en-
ergy of 2.3 eV and a defect-migration event with an energy barrier of 0.4 eV [22]
resulting in the experimentally observed barrier. They attributed their obser-
vation of a second mechanism at lower temperature to an excess of defects in
a-Si in their sample (of the order of 5 % according to their estimates) giving a
significant contribution to the reconstruction due to migration of pre-existing
defects. This contribution is absent in well relaxed experimental samples while
an enhanced recrystallization speed is reported in non-relaxed ion-implanted
samples by DSC experiments (see Fig. 7) in 1.1.1).

This interpretation is not shared by Krezeminski et al. [34] that performed a
comparative study with different potentials and deemed EDIP (blu points and
line in Fig. 40) not to be able to correctly describe the phenomena that are at
the base of SPE. In this work, an a-Si generated with the WWW technique com-
bined with the Keating potential [147] is placed in contact with a substrate of
c-Si while the other side of a-Si is exposed to vacuum. This initial configuration
is then relaxed for 4 ps at different temperatures and with different potentials.
After the relaxation, similarly to what we have done, a Nosé-Hoover thermo-
stat at the target temperature is used to sample the reconstruction speed for each
temperature/potential pair. Once results were collected and a fit to Arrhenius
law was performed (Fig. 40), they argued that potentials such as MEAM (in the
Lenosky parametrization [103]), SW [41], and EDIP (all potentials featuring in
the topmost region of Fig. 40) are not capable of reproducing any SPE, while this
is not the case for SW115 [42] (a SW parametrization that favours tetrahedral
coordination) and Tersoff [38] potentials which correctly extrapolate the barrier
while incorrectly describing other important physical properties, such as melt-
ing temperatures, phonons and local geometries that we think are important for
this phenomena.

We believe that Krezeminski et al. [34] conclusions, at least as far as EDIP
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potential is concerned, are not compelling. Recent calculations place the melt-
ing temperature corresponding to EDIP potential around 1520K [148], close to
the 1350K predicted by LDA/DFT [84]. For this potential the amorphous melt-
ing temperature is therefore expected to be around 1175-1200K [42, 149]. This
means that three of the five temperatures simulated by Krezeminski et al. are in
the liquid regime and, therefore, can not be regarded as representative of SPE.
As for the two simulation points at lower temperatures, analyzing the geomet-
rical data provided in the paper, it is possible to conclude that the a-Si relaxation
reached in these cells is not as good as the one obtained by Bernstein et al.. If
this is the case, then, using Bernstein et al. argument, one would expect to mea-
sure a faster SPE velocity with respect to the one reported in their study, which
is indeed the case.

Our simulation points endorse Bernstein et al. "two barriers" interpretation
where defects can migrate with a 0.4 eV barrier, and the migration/formation
happens with another barrier that we estimated to be about 2.7 eV, in excellent
agreement with the experimental determination. What we obtain is also in line
with DSC experiments (shown in section) where SPE speed for defective sam-
ples at low temperatures is driven by a second mechanism characterized by a
lower barrier. The elephant in the room that both our and Bernstein et al. models
suffer is the six orders of magnitude difference with respect to experimentally
measured recrystallization velocities.

We believe that no single source can be responsible for this error. Accepting
the two barrier interpretation the equation that governs the SPE can be written
as: [

ρ0 + ρ1 exp (−ΔE0

kbT
)

]
exp (−ΔE1

kbT
) (3.3)

where ΔE0 is the defect formation energy, ΔE1 is the activation energy of the
defect migration, ρ0 is the pre-formed defect concentration and ρ1 is the concen-
tration of sites where defects can form.

In the low temperature regime ΔE0

kbT
is negligible and the only important ex-

ponential that remains is ΔE1

kbT
associated to defect migration. As a consequence,

in order to bring our results in better agreement with experiments the needed
correction is a reduction in the pre-formed defect concentration ρ0. This ob-
servation is compatible with our a-Si sample characterization showing highly
defective a-Si.

Raising the temperature triggers the second mechanism. If we believe ρ1 in
our samples to be in line with experimental values, the estimated value of ρ0
from our low temperature simulations is so high that higher barrier mechanism
would become observable only around ≈1900 K. At such a temperature, how-
ever, our a-Si would be completely melted. This is clearly not the case since
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in our simulations already at approximately 950 K we see a behavior that is
explainable only by combining the two exponential.

Since the estimated 2.7 eV barrier is in line with experiments, and hence
the underlying mechanisms should be correct, we believe that the source of the
discrepancy is mainly imputable to a very different value for ρ1. Indeed it is
reasonable to assume that the density of locations where a new defect can form
is not simply proportional to the number of atoms in the a-Si state but could be
also influenced by the concentration of neighboring atoms already in a defective
state. As previously discussed above 950 K our analysis shows a complex slab
where the interface is in contact with a region of amorphous material, itself in
contact with another region displaying liquid-like diffusion like LDL [120]. We
think that in this region the blurry and rather large a-Si/LDL interface increases
the number of atoms in defective states effectively making ρ1 much larger than
what it should be.

We verified the relevance of the LDL/a-Si interface by artificially removing
the LDL. The removal of this state was obtained by freezing the c-Si/a-Si in-
terface region and evolving only the portion of atoms in the LDL state for 1 ns
in an NVT environment. The final result is that, since no heat is produced by
the SPE, an equilibrium with the bath temperature can be achieved. This was
done for the simulation at 1050K. After such a procedure the frozen atoms were
freed and SPE restarted. The behavior is similar to the one previously observed
with an initial equilibration that then saturates in a stationary SPE that shows
a velocity of 4.35 10-5 nm/ps for the d metric and 3.81 10-5 nm/ps for the d +
d1 metric. These values, combined with the ones presented in table 10 for 1000
and 950 K gives a barrier of 0.2 eV and 0.39 eV respectively that is also pre-
sented in figure 40, and is in good agreement with the 0.4 eV value estimated in
experiments. This result shows how the presence of LDL or of a region of a-Si
with higher diffusivity is key to reproduce our results.

We believe that in order to observe the 2.7 eV barrier in our samples without
the aid of an LDL region a much less defective a-Si is needed.

Achieving such high quality a-Si samples by the melting-quenching ap-
proach would require thermal ramps similar to the experimental ones which are
several orders of magnitude slower than the ones possible in MD simulations,
hence other techniques are required, for example by applying methods such as
off-lattice KMC [150], or by optimizing the excess energy as done by Pedersen
et al [151, 86]. Another possibility that we are pursuing is the characterization
of the amorphous trough quantities such as phonon localization [152, 153], and
soft spots [154, 155] that will allow for surgically act on regions with very local-
ized low frequency modes. The result of such defect removal will corresponds
to a lower ρ0 in equation 3.3, moving the corresponding contribution to SPE to
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lower values, and offering the possibility of observing the mechanism charac-
terized by the 2.7 eV barrier already at lower temperatures. The reduction of ρ0,
and the removal of LDL-like regions in the a-Si region, will probably also affect
ρ1, lowering the SPE simulation points characterized by an high barrier toward
experimental values.

Another, independent, improvement to the simulation quality would derive
from the use of a better DFT functional, able to predicts a more accurate melting
temperature. Adoption of a different DFT functional would not have a simple
effect like a mere temperature scaling as discussed briefly in Appendix A (that
will have the inevitable side effect of scaling all the barriers), but will likely
change the equilibrium between a-Si and LDL. The more likely scenario is that
LDL will appear only at higher temperatures with the result of shifting the 2.7
eV portion of the simulated SPE in Fig. 40) to the left thus improving agreement
with experiments.

Applying all these steps in an attempt to make our simulations closer to re-
ality will simultaneously lower the simulated SPE speed to a point where direct
simulation by MD would not be a viable option anymore. However, since the
end goal of this study is the identification of the correct microscopic mechanism
underlying the phenomenon we think that the current level of accuracy of the
simulation is already sufficient to start an event characterization, that will lead
to improved KMC approaches. This can be achieved for example, in a statistical
fashion, by following the evolution during the MD runs of the local environ-
ment of every single atom and by clustering and labeling them so as to allow
to compute the transition probability between states from the simulation itself.
The resulting models could then be run on a larger system to validate their pre-
dictions against known quantities, such as the different reconstruction speeds
along different directions, and to investigate the formation of {111} wedges at
the c-Si/a-Si interface during SPE, a feature that, if large enough and sufficiently
periodic, should also be accessible to TEM investigations.
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Chapter 4

Summary and Conclusion

The work presented in this Ph.D. thesis tries to elucidate the physics behind
SPE, an essential process in the design of chips using the 3D monolithic inte-
gration technique as a way to leverage the third dimension. We achieved so by
performing in silico MD simulations with a novel potential developed within
this work. This potential is based on an artificial neural network (NN) that al-
lows the scaling from a quantum mechanical approach -numerically unfeasible-
to a classical one.

In the first part of the project, addressed in chapter 2, we developed a NN po-
tential and the associated data set needed for its training. To create the dataset
we sampled, by means of MD, all the regions of the phase space that we deemed
relevant for the SPE investigation. Namely c-Si, a-Si, l-Si, and some surfaces.
This sapling was performed using an iterative approach as it is customary when
generating ML potential. The energy and forces for the final set of configura-
tions have then been computed with DFT and two different functionals: PBE
and PBESol. To construct the interatomic potential, we trained an all-to-all
fully connected feed-forward ANN network, and as a descriptor, we used a
modified version of the Behler and Parrinello atomic symmetry functions as we
implemented in the "Properties from Artificial Neural Network Architectures"
(PANNA) package.

The final accuracy reached by both potentials expressed by standard ML
metrics (e.g. RMSE) is in line with results published in the literature, but we
showed how this metric varies among different regions of the data and can not
be trusted as the only way to characterize the goodness of a potential. Accuracy
in regions with lower entropy such as c-Si systematically outperforms accu-
racy in higher entropy regions such as l-Si. On top of standard characteriza-
tion, we investigated several physical properties and compared them with DFT
ones. For c-Si, we investigated the energy-volume curve around the minimum,
phonons, and elastic constants. For all of them, we obtained an agreement with
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the reference. It stands out that we were never able to recover the stiffness of
the TO modes, and we think that this is due to the presence of smearing in the
reference DFT. For a-Si we investigated the structure factor, obtaining sufficient
agreement with experiments, and for the surface, we showed how the potential
is always capable of recovering the correct reconstruction geometries. However,
for the surface, we have identified a limitation: the small difference in energy
between the p(2x2) and c(4x2) is too small (≈0.2 meV/Å2) to be correctly recov-
ered.

One of the main characteristics needed to study SPE is a good prediction of
the c-Si melting temperature. Our first functional tentative (PBESol) systemati-
cally gave us a very low melting temperature of 1194±29 K. We were only able
to solve this problem by chaining the functional to the original PBE which gave
us a melting temperature of 1468±11 K. This result is still below the experimen-
tal value of 1685±2 K but usable for our purposes. This discrepancy among the
two functionals however showed that with the accuracy reached by our poten-
tial the difference with the experiment can be traced back to the quality of the
DFT functional, giving a solid starting point for future improvements.

In the second part of this work, presented in chapter 3, we have applied the
generated PBE version of the NN potential to the investigation of SPE. Since ex-
perimentally SPE microscopical mechanism should hold up to the melting point
of c-Si and the speed follows an Arrhenius law as a function of the temperature
we have searched, within the limit of our potential, the highest temperature
we could simulate. In order to obtain this temperature, we observed at which
temperature a vdW loop at zero pressure is present. This limited the tempera-
ture for the phase transition in the 1050≈1100 K range. Knowing that the a-Si
produced by our procedure is poorly relaxed this value should fall in the up-
per part of the experimentally measured range (1250-1450 K) of a-Si melting
temperatures, and we can confidently assert that the major contribution to the
difference is due to the quality of the DFT functional.

Another central aspect of SPE is the relaxation reached while producing a-
Si, that in our case, is generated through a melting quenching technique with
a 10 K/ps ramp. Geometrical metrics were used at first to compare a-Si ob-
tained with our NN potential and with Tersoff potential. In addition to a good
agreement with experimental density, this analysis showed that both potentials
predict a medium-range order, but our potential lacks the presence of triplets of
atoms with angles in the 60-80 degree range. The lack of these angles in a-Si is
also confirmed by a realistic a-Si configuration obtained by a carefully crafted
procedure in DFT. Since no geometrical difference is clear between our aver-
age a-Si structure and the reference one, we investigated the excess energy with
respect to c-Si. This investigation showed that our average structure is not as
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relaxed as the reference, and our samples display systematically higher excess
energies that, to be lowered, would require much slower quenching rates or
specifically crafted procedures.

Once we understood the capabilities of our potential we finally addressed
the SPE simulation. In order to measure the SPE barriers, we simulated the re-
construction process at different temperatures in the 800-1100 K range and fit
the Arrhenius law. The collected points support a two-barrier interpretation of
the simulated phenomenon, a lower barrier for defects migration around 0.4 eV
and a second experimentally measured one that characterizes the combined cre-
ation and migration of defects around 2.7 eV. The 0.4 eV barrier, not present in
experiments with relaxed samples, is predominant in our low-temperature sim-
ulations because of the poor relaxation reached in our amorphous samples with
the implemented thermal ramp. Furthermore, we noticed that the number of
defects that are present in our samples should not allow for the investigation of
the 2.7 eV barrier, but our analysis shows a picture of the phases involved dur-
ing high-temperature SPE more complex than previously thought. In particular,
at temperatures where the 2.7 eV barrier is measurable, we found the presence
of highly diffusive a-Si (probably LDL) only a few layers apart from our inter-
face where the reconstruction is happening. After showing that the removal of
this artificially high diffusivity region recovers a reconstruction speed in line
with the 0.4 eV barrier, we concluded that its presence must alter the exponen-
tial prefactors of the Arrhenius law, allowing the appearance of the events with
the barrier of our interest.

Our work can now be extended in several directions.
On one hand, an improvement in the quality of a-Si by increasing its level of

relaxation obtainable by designing and applying ad-hoc procedures will lower
the prefactors in the Arrhenius law leading to slower but more realistic SPEs
simulations. This can be performed alongside research for a better DFT func-
tional capable of better describing key properties such as melting temperatures
for c-Si and a-Si. These more realistic simulations can then be used to investi-
gate new and more accurate microscopical events and elucidate the relevance
and existence of the LDL phase.

On the other hand, one can move forward and, assuming the accuracy of
the present simulations to be already sufficient, one can proceed in the analysis
of the MD simulations to identify a library of local environments involved in
reconstruction events and estimate the corresponding transition probabilities to
be used in a KMC approach in order to address the challenge of the longer time
scales involved in a realistic SPE simulation.
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Appendix A

Melting temperature

The melting temperature of a material described by a potential can be calcu-
lated numerically either by simulating the melting process through molecular
dynamics or by more rigorous - but complicated to apply - free energy meth-
ods [156]. The interface-based method[112, 113] adopted here is part of the first
category. This method is based on the observation that a system whose simula-
tion cell contains both the liquid and the crystalline phases will evolve toward
the equilibrium melting point. This approach has limitations when dealing with
complex systems with slow dynamics but we don’t think this to be our case and,
as it will be shown, the accuracy obtained is higher than, for instance the error
due to the choice of exchange-correlation functional in the potential generation.

To measure the melting temperature in crystalline silicon the procedure
starts from a solid diamond bulk cell with PBC where the size in one direc-
tion (for simplicity z) is larger than the other two. The minimal cell size for the
shorter directions can be defined based on the potential cutoff radius, and later
incremented to investigate size effects. The longer direction instead must be
tuned to allow the system to contain enough l-Si and c-Si material to avoid the
interfaces separating the two to interact with each other. Further space along
this direction must be provided to have enough crystal to melt or liquid to crys-
tallize during the thermal equilibration. Once sizes are defined, using the NPT
ensemble, a three-step process is applied. First, the velocities are initialized ac-
cordingly to a Maxwell Boltzmann distribution at a temperature known to be
below the melting point. After an equilibration phase of 5 ps, the part of the
cell meant to remain in the bulk structure (usually half of it) is frozen, and the
velocities of the atoms meant to undergo the phase transition are scaled to a
temperature close to the melting one. Then another 5 ps thermal ramp with
a final temperature above the expected melting temperature is applied to the
free atoms. This ramp must provide enough kinetic energy to escape the su-
perheated crystal state and grant the fusion of the structure. Since in the NPT
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ensemble used in this procedure the target p ressure is always O GPa and 1-Si 
has a higher density than c-Si the occurrence of phase transition can be easily 
detected by monitoring the expansion of the cell along the z-axis. The system 
is then brought back to a ternperature close to the melting one by a final cool
ing ramp. An example of final configuration obtained with this procedure is 
reported in Fig. f!l] 

Figure 41: Exarnple of a representative sarnple to study the rnelting ternpera
ture. Colors are obtained with the Maras et al. descriptor~ and highlight 
the perfect diamond structure in blue, the first and second order coordinated 
diamond structure in light blue, and the only first neighbor tetrahedrally coor
dinated in green. White atoms are randomly arranged in a liquid phase. This 
particular configuration is a 4x4x8 cell. 

The created cell can now be initialized with different ternperatures below 
and above the expected melting value, and the system is equilibrated in an 
isobaric-isenthalpic (NPH) dynamics. The expected behavior is that when 
the temperature is slightly higher than the rnelting temperature some rnaterial 
should melt, and the temperature stabilizes at the melting value, due to the ad
sorption of the corresponding latent heat. When the temperature is lower than 
the melting one some material should freeze, and again the temperature stabi
lizes at the melting value due to release of latent heat. In the latter case however 
we saw that defects are easily embedded in the recrystallized part of the sample 
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creating more of an amorphous layer, hence the determination of the melting
temperature approaching from below is less precise.

The final results obtained for the melting temperature of bulk silicon were
1194 ± 29 K for the PBESol and 1468 ±11 K for the PBE derived potential as
reported in the main text. We also examined the dependence of the calculated
temperature on the cell size and results are reported in table 11. We can see that
the estimated melting temperatures are rather stable with respect system size,
the main difference being the larger statistical uncertainty in smaller systems
due to more pronounced temperature oscillations during the simulation due to
the limited amount of atoms present.

Table 11: Size effects in melting temperature.

atoms replicas mean [K] std[K]
128 2x2x8 1465 107
256 2x2x16 1462 75

1024 4x4x8 1460 37
8192 8x8x16 1468 11

Fixing the melting temperature

We observed that our potential, based on PBE functional, underestimates the
melting temperature by about 14%. Since we know that the melting tempera-
ture Tm is defined by the condition that the free energy of the liquid Fl is equal
to the free energy of the crystal Fc, we can obtain the thermodynamic relations:

Fl = Fc

Ul − TmSl = Uc − TmSc

Tm = ΔU
ΔS

(A.1)

where Ul/c is the internal energy and Sl/c is the entropy of the two phases re-
spectively.

Starting from these relations we can see whether there are simple ways to
modify the potential so as to fix the melting temperature. Indeed if one scales
the potential by a constant factor of 1.14 the atomic configurations visited dur-
ing the dynamics remain unchanged if the time-step is scaled down by the cor-
responding factor

√
1.14. In the above thermodynamic relations the internal

energy estimates would therefore be scaled, while the entropy estimates would
remain unchanged thus giving the desired scaling of the melting temperature.

We did so and computed the melting temperature as described previously
using a scaled potential and we determined a melting temperature of 1673± 40
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K (this test was limited to the 1024 atom cell) confirming the soundness of the
analysis.

This procedure, besides the conceptual flaw of not being ab-initio, has how-
ever serious consequences on all the other physical properties of the material:
the elastic constants of the bulk are made stiffer by a factor 1.14, similarly the
phonon frequencies are scaled by a factor

√
1.14 breaking the obtained good

agreement with the DFT results. More critically, defect formation and migra-
tion energies would be similarly affected.

113

---



Appendix B

v-DOS

Acoustic modes

We know that a-Si, as all glassy systems, is characterized by an excess of specific
heat in the range between 15-30K [157, 158]. This property has been linked to
an excess of states, wrt the Debye theory, in the low spectrum region of the
Raman spectra and consequently in the v-Dos in the region between 2 and 15
meV. Commonly refereed as the boson peak, this anomaly has been found by
some authors to be due to the existence of localized soft modes [159, 155].

To test the presence of the boson peak and the capacity of our potential in
reproducing it comes in handy in two ways. First because it can be used to
determine if the atoms on the top part of our SPE sample are indeed in a glassy
state. Such comparison can be done by computing the phonons of those atoms
using their self correlation velocity as for example is done in [14]. Second atoms
participation ratio[153, 152] in those soft modes can be used as a proxy to locate
regions that can undergo irreversible changes that are expected to sensibly effect
dynamics [160]. Furthermore such regions can be taken as first candidate to
investigate glassy dynamics and to search for defects.

We have tested our 216 atoms models and found that all of them show such
anomaly as reported in fig. 42 that present an ω0 at approximately 12meV. Value
that must be compared with experimental expectations that in the range 14.13-
30.37 meV in the Raman spectrum[161, 162]. The same pattern is also visible
even if less marked in the Tersoff samples. SW is also able to show it but larger
cells are needed because of it very low frequency [163, 164].
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Figure 42: g~) in the low frequency spectrum for Panna and Tersoff potentials. 
Extracted form figure ~ The black line is an estima te of the lower frequency 
that can fit in the simulated cell. Points far below such line can be regarded 
as artifacts. Oscillation are due to the number of poitns in the reciprocal space 
used when evaluating the v-DOS. Such sampling has been performed on a reg
ular mesh grid, and as a consequence at low frequency where the modes have 
privileged directions are poorly samapled. Samples generated with the NN po
tential follow the expected boson peak pattern. They start fiat (4-5 meV and 
probably below) and then increas up to ~ 12 me V. Tersoff has also a similar pat
tern. 
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Optic modes and ~ 

In the upper part of the spectrum the main quantity of interest is the Raman 
TO-peak half-width r / 2. The interest behind this quantity is given by its hy
pothesized linear correlation w ith the sample angular distortion~ !166~ 11son, 
and the possibility to find a lower and an upper bound to the number of de
fects@ . In a preliminary investigation we decided to first verify the linear 
correlation between r / 2 and the angular distortion. 

The computation of r / 2 requires the Raman spectrum, a quantity that at 
the moment we don't have. However, accepting some approximations we can 
never the less have a good insight. Since our attention now is on a very lim
ited part of the spectrum that has a Gaussian decay, it is not unreasonable to 
assume that the interaction between the light and the vibrational modes as a 
constant value. With this assumption we can simply convert the v-DOS to the 
Raman spectrum by dividing with a 1 / w factor ~ . It is then possible to in
quire the existence of the hypothesized relation. Fig. ~ shows that, with our 
crude approximations such relation does not seem to hold. 

16 
potential • • • NN 

15 • Tersoff • 
atoms • • 

• " • 216 • 
14 • 1728 • • 

• • 
• • • 

12 • • Y nn • 
• • • YDFT 

• • exp. region 

11 
3 4 5 6 7 8 9 

r12 ev 

Figure 43: Distribution of the angle as a fonction of r /2, black lines are experi
mental region where r / 2 is expected to live. 
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Summary

Evaluation of neural network methodologies for understanding the interface
phenomena in integrated materials in microelectronics: application to the
case of solid phase epitaxy in Silicon

Moore’s Law is ended, but all is not lost. To maintain a higher transistor
density, changing device geometry from planar to three-dimensional was one
of the first successful approaches to take advantage of dimension z. In partic-
ular, recently, 3D monolithic integration has been proposed to align different
wafers on top of each other. With this technique, a layer of amorphous silicon is
deposited on top of the transistor, this amorphous layer is then crystallized by
performing a solid phase epitaxy (SPE) at low temperature. Solid phase epitaxy
in silicon material is a general phenomenon that consists in the regrowth of a
perfect diamond structure from an amorphous material in direct contact with a
crystalline substrate without the need to liquefy it. Industrialists use numerical
simulations to optimize their SPE process, but the current codes do not capture
all the microscopic events that occur within the material. This is due to the very
poor knowledge we have of the microscopic phenomena that need further in-
vestigation.
This work achieves a complete ab-initio study of solid phase epitaxy in silicon
based on state-of-the-art numerical approaches. First, an interatomic neural net-
work potential is developed and fitted on a data set built from scratch for this
specific task. The points of the data set are solved in energy and forces in the
density functional theory framework. Particular interest is given to the con-
struction and veracity of the dataset used to train the potential: choice of the
functional, exhaustive sampling of each phase space region of interest, repro-
ducibility of the physical properties necessary to model the physical phenom-
ena of the SPE. This neural network was then used to study solid phase epitaxy
with molecular dynamics. The simulations show a variety of phenomena that
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were not previously accessible with less accurate potentials, and give a micro-
scopic interpretation to the observed experimental activation barrier. In addi-
tion, a statistical approach comparing a series of structures with a state-of-the-
art density functional theory structure was performed to discuss the relevance
of the quality of the amorphous used in our SPE simulation. We determined
that several metrics such as the geometry of our amorphous structures and the
energy excess with respect to the diamond silicon are consistent with the litera-
ture.
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Évaluation des méthodologies de réseaux neuronaux pour la compréhen-
sion des phénomènes d’interface dans les matériaux intégrés dans les
domaines de la microélectronique : application au cas de l’épitaxie en phase
solide dans le silicium

La loi de Moore est terminée mais tout n’est pas perdu. Pour maintenir
une plus grande densité de transistors, la modification de la géométrie des dis-
positifs, qui passe du planaire au tridimensionnel, a été l’une des premières
approches adoptées avec succès pour tirer parti de la dimension zéro. Récem-
ment, l’intégration monolithique 3D a notamment été proposée pour aligner
différents wafers l’un sur l’autre. Avec cette technique, une couche de sili-
cium amorphe est déposée sur le dessus du transistor, cette couche amorphe
est ensuite cristallisée par épitaxie en phase solide (SPE) à basse tempéra-
ture. L’épitaxie en phase solide dans le Silicium est un phénomène général
qui consiste à faire repousser une structure de type diamant parfaite à par-
tir d’un matériau amorphe en contact direct avec un substrat cristallin sans
qu’il soit nécessaire de le liquéfier. Les industriels s’aident alors de simula-
tions numériques pour l’optimisation de leur procédé, mais les codes actuels ne
capturent pas l’ensemble des événements microscopiques qui se produisent au
sein du matériau. Cela est dû à la très faible connaissance que nous avons des
phénomènes microscopiques qui doivent être étudiés plus en détails.
Ce travail réalise une étude ab-initio complète de l’épitaxie en phase solide dans
le silicium en s’appuyant sur des approches numériques à l’état de l’art. Tout
d’abord, un potentiel interatomique de réseau neuronal est développé et ajusté
sur un ensemble de données construit de toutes pièces pour ce procédé spéci-
fique. Les points de l’ensemble de données sont résolus en énergie et en forces
avec la théorie de la fonctionnelle de la densité. Un intérêt particulier est donné
sur la construction et la véracité du jeu de données utilisé pour entrainer le po-
tentiel : choix de la fonctionnelle, échantillonnage exhaustif de chaque région
d’espace de phase d’intérêt, reproductibilité des propriétés physiques néces-
saires à la modélisation des phénomènes physiques de la SPE. Ce réseau de
neurones a ensuite été utilisé pour étudier l’épitaxie en phase solide avec la dy-
namique moléculaire. Les simulations montrent une variété de phénomènes
qui n’étaient pas accessibles auparavant avec des potentiels moins précis, et
donnent une interprétation microscopique à la barrière d’activation expérimen-
tale observée. En complément, une approche statistique à partir d’une série de
structures issues de la DFT a été réalisée pour discuter la pertinence de la qual-
ité de l’amorphe utilisé dans notre simulation SPE. Nous avons déterminé que
plusieurs métriques comme la géométrie de nos structures amorphes et l’excès
d’énergie par rapport au silicium diamant sont conformes avec la littérature.
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