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Abstract

Recent advances in deep and reinforcement learning have led to breakthroughs in
several fields (e.g. game of Go, protein structure prediction, ChatGPT), in some
contexts achieving superhuman performance. The progress made in these fields
of Artificial Intelligence naturally leads us to study approaches based on neural
networks trained by reinforcement learning for tackling complex combinatorial
problems. Today, many of these problems are, more or less effectively and satis-
factorily, dealt with by solving approaches relying on time-consuming definition
proposed by experts in the field of Operations Research.

In this context, this thesis focuses on the study of deep and reinforcement learn-
ing for the solution of two combinatorial optimization problems known as vehicle
routing problems (VRP): the Capacitated Vehicle Routing Problem (CVRP), and
the Ride-Hailing Problem (RHP). The former is a well-known classical optimiza-
tion problem, while the latter is a more recent variant involving uncertainty, e.g.
trip duration. Our main line of research focuses on the study of solvers based
on deep neural networks trained using reinforcement learning (policy gradient and
Deep Q-learning algorithms) on large datasets of unsolved instances. Among other
things, these solvers make it possible to overcome the need for manual definition of
solving methods and delegate this task to a deep neural network. For example, the
network will estimate a conditional probability that is useful for iteratively con-
structing a candidate solution, e.g. the probability that visiting a specific client
given a list of previously visited customers and the problem configuration, will
bring us closer to the optimal solution. More specifically, we are studying neural
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network architectures based on the attention mechanism. The latter makes our
solvers agnostic to instance size, enabling us to empirically study their generaliza-
tion capacity, particularly in their reuse on VRP instances of a different nature or
size from those considered during the training phases.

This manuscript is structured around three contributions. The first one aims
at studying the contribution of transfer learning to the resolution of combinatorial
optimization problems using neural networks. Our study is based on the implicit
transfer of knowledge from the traveling salesman problem (TSP) to the CVRP.
The aim is to study whether a model trained to solve a given VRP problem can
be used to solve another similar problem following the application of a few ad-
ditional training steps. In the second contribution, we propose a new two-steps
method involving deep neural networks and a shortest path algorithm to handle
the capacity constraint. Through our various experiments, we demonstrate the
competitiveness of this method with neural approaches in the literature, as well as
with classical CVRP heuristics. In our final contribution, we study the contribu-
tion of deep neural network-based solution methods to a ride-hailing problem that
includes a dimension of uncertainty (stochastic nature of request observation and
travel time). We propose a neural approach based on reinforcement learning, capa-
ble of handling variable numbers of requests and vehicles. Our results demonstrate
the effectiveness of such an approach in tackling this type of problem.

Keywords: Combinatorial optimization, Vehicle routing problem, Deep learn-
ing, Attention mechanism, Deep reinforcement learning, Policy gradient methods,
Deep Q-learning.



Résumé

Les avancées récentes en apprentissage profond et par renforcement ont récem-
ment conduit à des ruptures dans plusieurs domaines (e.g. jeu de Go, prédiction
de structures protéiques, ChatGPT), atteignant dans certains contextes des per-
formances suprahumaines. Les progrès amenés par ces domaines de l’Intelligence
Artificielle invitent naturellement à étudier les approches à base de réseaux de neu-
rones entraînés par renforcement pour aborder des problèmes complexes à forte
combinatoire. Aujourd’hui, nombre de ces problèmes sont traités, de manière plus
ou moins efficace et satisfaisante, par des approches de résolution reposant sur
une définition chronophage proposée par des experts du domaine de la recherche
opérationnelle.

Dans ce contexte, cette thèse se concentre sur l’étude de l’apprentissage profond
et par renforcement pour la résolution de deux problèmes d’optimisation combina-
toire dits de tournées de véhicules (VRP) : le problème de tournées de véhicules
avec contraintes de capacités (CVRP), et le problème de covoiturage (RHP). Le
premier est un problème d’optimisation classique bien connu, tandis que le second
est une variante plus récente impliquant de l’incertitude, e.g. durée des trajets.
Notre ligne principale de recherche se concentre sur l’étude de solveurs reposant
sur des réseaux de neurones profonds entraînés à l’aide de l’apprentissage par ren-
forcement (algorithmes de type policy gradient et Deep Q-learning) sur de vastes
jeux de données d’instances non résolues. Ces solveurs permettent entre autres
de s’affranchir de la définition manuelle de méthodes de résolution et de déléguer
cette tâche à un réseau de neurones profond. Le réseau estimera, par exemple,
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une probabilité conditionnelle utile pour la construction itérative d’une solution
candidate, e.g. la probabilité que la visite d’un client spécifique, sachant une liste
de clients déjà visités et la configuration du problème, nous approche de la tournée
optimale. Nous étudions plus précisément dans nos travaux des architectures de
réseaux de neurones basées sur le mécanisme d’attention. Ce dernier rend nos
solveurs agnostiques à la taille des instances, ce qui nous permet d’étudier em-
piriquement leur capacité de généralisation, en particulier dans leur réutilisation
sur des instances de VRP de nature ou de taille différentes de celles considérées
lors des phases d’entraînement.

Ce manuscrit est structuré autour de trois contributions. La première vise à
étudier l’apport de l’apprentissage par transfert dans le cadre de la résolution de
problèmes d’optimisation combinatoire par réseaux de neurones. Nous nous ba-
sons dans notre étude sur le transfert implicite de connaissances du problème de
voyageur de commerce (TSP) vers le CVRP. L’objectif est d’étudier si un modèle
entraîné pour résoudre un problème de VRP donné, peut être utilisé pour résoudre
un autre problème similaire suite à l’application de quelques étapes d’entraînement
supplémentaires. Dans la deuxième contribution, nous proposons une nouvelle
méthode à deux phases impliquant des réseaux de neurones profonds et un algo-
rithme de plus court chemin pour gérer la contrainte de capacité. Nous montrons
à travers nos différentes expérimentations la compétitivité de cette méthode avec
les approches neuronales de la littérature ainsi que les heuristiques classiques du
CVRP. Pour notre dernière contribution, nous étudions l’apport des méthodes de
résolution à base de réseaux de neurones profonds pour un problème de covoiturage
incluant une dimension d’incertitude (caractère stochastique de l’observation des
requêtes et de la durée de trajet). Nous proposons pour cela une approche neu-
ronale à base d’apprentissage par renforcement, capable de traiter des nombres
variables de requêtes et de véhicules. Nos résultats montrent l’efficacité d’une telle
approche pour aborder ce type de problèmes.

Mots clés : Optimisation combinatoire, Problème de tournées de véhicules,
Apprentissage profond, Mécanisme d’attention, Apprentissage par renforcement
profond, Policy-gradient, Deep Q-learning.



Résumé étendu

Introduction

La Recherche Opérationnelle et l’Optimisation Combinatoire jouent un rôle es-
sentiel dans les industries modernes. En effet, ces deux disciplines permettent
de résoudre des problèmes dans plusieurs secteurs tels que la logistique, la plan-
ification, l’énergie, la finance, les télécommunications, etc. À travers des outils
mathématiques et algorithmiques, ces deux domaines visent à trouver les solutions
parmi un ensemble fini, souvent vaste, de configurations possibles, tout en tenant
compte des contraintes et des objectifs.

Le problème de tournées de véhicules est l’une des classes de problèmes de la
Recherche Opérationnelle et de l’Optimisation Combinatoire les plus importantes
et les plus répandues [184]. Ce problème vise à optimiser les itinéraires pour un en-
semble de véhicules qui doivent desservir un ensemble de clients, tout en respectant
des contraintes telles que la capacité du véhicule, des horaires de livraison, etc. Ce
problème est complexe à résoudre, car il implique une combinaison exponentielle de
configurations possibles, ce qui rend impossible une énumération exhaustive pour
des instances de taille supérieure à quelques dizaines de clients. Plus précisément,
ce problème est NP-difficile [112], ce qui implique qu’il n’existe pas à ce jour un
algorithme efficace capable de résoudre en temps polynomial toutes les instances
du problème. De plus, certaines variantes du problème impliquent de l’incertitude
(e.g. sur les temps de trajets), ce qui rajoute de la difficulté lors de la résolution
[146].
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Les méthodes classiques de résolution du problème de tournées de véhicules
incluent les méthodes exactes, les heuristiques et les métaheuristiques. Parmi
les méthodes exactes, nous pouvons citer la programmation dynamique, la méth-
ode de séparation et évaluation (branch and bound) et la programmation linéaire
en nombres entiers, notamment les méthodes de type branch-and-cut-and-price
réputées performantes sur ce problème [35, 56, 7, 2, 145, 74]. Cependant, celles-ci
présentent des temps d’exécution importants qui font qu’elles ne peuvent pas être
utilisées pour résoudre des instances de très grande taille. Les méthodes heuris-
tiques, quant à elles, trouvent rapidement des solutions candidates, sans garantie
d’optimalité. Nous pouvons distinguer deux catégories : les heuristiques construc-
tives et les heuristiques d’amélioration. Dans la première catégorie, nous retrou-
vons l’heuristique de Clarke & Wright [36], l’heuristique du plus proche voisin
[174], et les méthodes à deux phases Cluster-first Route-second [64] et Route-
first Cluster-second [17]. La deuxième catégorie comprend des algorithmes tels
que 𝜆-opt, swap, relocate, move. Les métaheuristiques sont des méthodes
plus génériques, capables de traiter différents problèmes d’optimisation [173]. Ces
méthodes alternent entre des phases d’intensification de la recherche autour d’un
voisinage, et de diversification pour échapper aux optima locaux. Plusieurs méta-
heuristiques ont été utilisées pour résoudre les problèmes de tournées telles que le
recuit simulé [136], la recherche taboue [62], les algorithmes génétiques [149], etc.

Récemment, des avancées importantes ont été effectuées en apprentissage au-
tomatique, notamment en apprentissage profond et par renforcement. L’apprenti-
ssage profond repose sur l’utilisation de réseaux de neurones profonds comportant
plusieurs couches de neurones interconnectés [65]. Contrairement aux techniques
classiques d’apprentissage automatique, l’apprentissage profond vise à apprendre
à extraire automatiquement les caractéristiques d’intérêt pour la résolution de la
tâche d’apprentissage, à partir des données d’entraînement [109]. Cette dernière
décennie a vu l’émergence de nouvelles architectures de réseaux de neurones pro-
fonds tels que les réseaux de neurones récurrents GRU (Gated Recurrent Units)
[31], les Transformers [178], les réseaux de neurones sur graphe [194]. De plus,
des techniques de régularisation, telle que la normalisation des couches (layer
normalization) [10] et la connexion de saut (skip connection) [72], ont contribué
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grandement à stabiliser l’entraînement des réseaux de neurones, et ainsi perme-
ttre d’entraîner des modèles plus profonds. En outre, de nouveaux algorithmes
basés sur l’algorithme de descente de gradient ont été proposés (e.g. Adam [96])
et améliorent la convergence des réseaux de neurones lors de l’entraînement.

L’apprentissage par renforcement est une branche de l’apprentissage automa-
tique qui vise à permettre à un agent d’apprendre une stratégie (politique) de
prise des décisions (actions) à travers l’observation de l’état dans lequel il se
trouve dans un environnement afin d’optimiser une fonction objectif (généralement,
maximiser une fonction de récompense) [171]. Cette interaction entre l’agent et
l’environnement est modélisée via un processus de décision markovien. En appren-
tissage par renforcement, de nouveaux algorithmes ont aussi été proposés. Ceux-ci
se basent sur des réseaux de neurones profonds pour approximer les fonctions
d’évaluation d’état-action ou les politiques. Nous parlons alors d’apprentissage
par renforcement profond [71]. Nous pouvons citer, par exemple, l’algorithme de
Deep Q-Learning [130] qui utilise un réseau de neurones profond pour estimer
la fonction d’état-action, et ainsi évaluer dans un état donné la valeur de la ré-
compense espérée à long terme pour chaque action. Par ailleurs, des réseaux de
neurones profonds sont aussi utilisés dans des algorithmes de type policy gradient
(e.g. REINFORCE [192]) pour estimer directement la politique de l’agent.

Grâce à ces avancées, des ruptures dans des domaines réputés difficiles et
complexes à traiter par ordinateur ont été observées. L’apprentissage profond et
par renforcement ont permis d’atteindre des performances inégalées en traitement
d’image [72], traitement du langage naturel [119], résolution de jeux combinatoires
tels que les échecs ou le Go [166]. L’un des progrès les plus remarquables est
l’introduction d’agents conversationnels (e.g. ChatGPT) capables de dialoguer et
de se souvenir des messages d’une conversation [137]. En outre, elles ont ouvert
de nouvelles opportunités et ont notamment ravivé l’intérêt de l’utilisation des
réseaux de neurones pour la résolution de problèmes d’optimisation combinatoire
[185]. Bien que nous fassions mention de diverses approches de résolution pour ces
problèmes, celles-ci reposent principalement sur une définition manuelle de straté-
gies de résolution. En plus d’être chronophage, cette définition manuelle requiert
souvent une expertise dans le domaine afin d’aboutir à des stratégies intéressantes
en termes de performance et de temps d’exécution.
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Dans cette thèse, nous proposons l’étude de solveurs à base d’apprentissage
profond et par renforcement afin de s’affranchir de la définition manuelle de straté-
gies de résolution pour des problèmes de tournées de véhicules. Pour cela, nous
structurons ce manuscrit autour de trois contributions que nous détaillons dans la
section suivante.

Contributions

Notre ligne principale de recherche se concentre sur l’étude de solveurs reposants
sur des réseaux de neurones profonds entraînés à l’aide de l’apprentissage par
renforcement sur de vastes jeux de données d’instances non résolues [20]. Ainsi,
selon la classification de Bengio et al. [21], nos travaux se situent dans la catégorie
des méthodes d’apprentissage de bout-en-bout pour la résolution de problèmes
d’optimisation combinatoire. En conséquence, nous n’abordons pas, par exemple,
l’utilisation des méthodes d’apprentissage pour la définition des paramètres des
algorithmes de résolution.

État de l’art et évaluations empiriques

Nous avons consacré une partie du travail de cette thèse à faire une synthèse
de l’état des connaissances dans le domaine de l’apprentissage profond et par
renforcement pour les problèmes de tournées. Nous avons examiné 35 contribu-
tions parues de 2015 à 2022 dans des conférences et des revues majeures dans les
domaines de l’apprentissage automatique et de l’optimisation combinatoire. Le
cadre de résolution introduit est connu sous le nom cadre d’optimisation combina-
toire neuronale (Neural Combinatorial Optimization framework (NCO)) [20]. De
plus, nous avons concentré notre revue sur le problème du voyageur de commerce
(TSP) [6] étant donné que c’est le premier problème traité dans ce cadre de ré-
solution, et sur le problème de tournées de véhicules avec contraintes de capacité
(CVRP) [175]. Ainsi, nous avons constaté que la majorité des approches plébisci-
tent l’entraînement des modèles neuronaux via l’apprentissage par renforcement.
Ce type d’apprentissage présente l’avantage d’entraîner via une succession d’essais
et erreurs. L’autre paradigme d’entraînement utilisé est l’apprentissage supervisé,
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qui nécessite de recourir à la démonstration de solutions optimales pour les in-
stances utilisées durant l’entraînement. La collecte d’instances avec leurs solutions
optimales peut être une tâche fastidieuse, voire impossible pour certaines vari-
antes fortement contraintes du problème de tournée de véhicules. Ainsi, il devient
avantageux d’utiliser l’apprentissage par renforcement.

En apprentissage supervisé, nous avons pu distinguer deux types de modèles
: les modèles autoregressifs qui construisent la solution candidate de manière itéra-
tive [185], à l’image des heuristiques constructives, et les modèles non-autoregressifs
conçus pour obtenir la solution en une seule fois, en produisant une carte de
chaleur probabiliste sur la matrice d’adjacence [89]. En apprentissage par ren-
forcement, nous distinguons les méthodes constructives qui partent d’une solution
vide et y ajoute itérativement des nœuds jusqu’à ce qu’un critère d’arrêt soit vérifié
(généralement, jusqu’à ce que tous les clients soient visités) [20, 100], des méth-
odes d’amélioration qui démarrent d’une solution initiale et cherchent à l’améliorer.
Ces dernières intègrent les méthodes neuronales à l’intérieur d’une métaheuristique
telle que la recherche à voisinage large, afin de lui déléguer la phase de construction
de la solution candidate [80].

Nous constatons via notre état de l’art les différentes avancées en matière
d’architecture de réseaux de neurones utilisées. Ainsi, les premiers modèles sont à
base de réseaux de neurones récurrents, alors que les modèles récents et plus perfor-
mants intègrent des Transformers et des réseaux de neurones sur graphe [100, 89].
Également, la majorité des modèles utilisent des architectures de type encodeur-
décodeur [31]. Un premier réseau de neurones, appelé encodeur, est utilisé pour
l’extraction automatique de caractéristiques d’intérêt pour la résolution. Son rôle
est donc d’apprendre une représentation de l’instance qui facilitera sa résolution.
Le second réseau de neurones, appelé décodeur, utilise la représentation fournie
par l’encodeur afin de produire une solution candidate.

Une importante quantité de données est nécessaire pour entraîner les modèles.
Des millions d’instances sont donc utilisées durant l’entraînement. Plus il y a
d’instances dans le jeu de données d’entraînement, meilleure est la convergence
des modèles. En outre, ces modèles sont entraînés sur des instances de tailles sim-
ilaires, et généralement, des instances de petites tailles (20, 50 et 100 clients dans
le cas du CVRP). Concernant les stratégies de recherche pour exploiter les mod-
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èles, plusieurs ont été proposées, dont une recherche gloutonne, un échantillonnage
stochastiques, une recherche par faisceau, une recherche arborescente Monte Carlo,
etc.

Les protocoles d’évaluation des approches du cadre de l’optimisation combina-
toire neuronale considèrent des instances générées aléatoirement par un échantillon-
nage de la loi uniforme sur le carré [0, 1]× [0, 1] [132]. Les résultats exposés dans la
littérature montrent l’efficacité des modèles à base de réseaux de neurones profonds
pour la résolution des problèmes de tournées de véhicules. Cependant, ces mod-
èles tendent à être efficaces sur des instances de tailles semblables aux instances
utilisées durant l’entraînement. Par exemple, un modèle entraîné sur des instances
de 50 clients donnera de meilleurs résultats s’il est exploité sur des instances de
50 clients plutôt que s’il est exploité sur des instances de tailles inférieures ou
supérieures. Ce protocole d’évaluation ne permet pas de saisir l’étendue des per-
formances de ces modèles. En effet, pour être exhaustif, il faudrait considérer des
instances de différentes tailles, ainsi que différentes répartitions des clients sur le
plan, tel que le regroupement en clusters.

Dans l’optique d’avoir une meilleure idée des performances de ces modèles,
la seconde partie de notre état de l’art est consacrée à l’évaluation empirique des
performances des modèles d’optimisation combinatoire neuronale sur des instances
hétérogènes. Pour cela, nous avons reproduit une architecture de l’état de l’art et
nous l’avons évaluée sur des instances de CVRPLib [175]. Nos résultats montrent
des performances du même ordre de grandeur que ceux rapportés dans la littérature
sur des instances de petite taille, avec une répartition uniforme et en cluster des
clients. Nous avons aussi constaté une baisse des performances pour des tailles
d’instances plus grandes. Cependant, les performances de ces méthodes restent
toujours inférieures à celles des métaheuristiques de l’état de l’art telle que HGS
[182, 181].

Apprentissage par transfert pour les problèmes de tournées

Nous avons soulevé à travers l’état de l’art que l’entraînement des modèles nécessite
une quantité très importante d’instances du problème considéré (de l’ordre du mil-
lion). Cependant, il n’est pas aisé d’avoir accès à de telle quantité de données dans
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des scénarios concrets. Nous proposons donc l’apprentissage par transfert dans le
cadre de l’optimisation combinatoire neuronale. L’apprentissage par transfert est
une approche d’apprentissage automatique où les connaissances acquises lors de la
résolution d’une tâche peuvent être transférées et utilisées pour améliorer les perfor-
mances dans une autre tâche apparentée [65]. Grâce aux connaissances préalables
acquises, l’apprentissage par transfert peut accélérer le processus d’apprentissage
pour la nouvelle tâche et améliorer les performances du modèle.

Notre cas d’étude porte sur le transfert implicite de connaissances d’un prob-
lème de tournées à un autre. Nous considérons dans ce cas le problème du voyageur
de commerce (TSP) et le problème de tournées de véhicules avec contraintes de
capacité (CVRP). Le CVRP étant une généralisation du TSP, ces deux problèmes
constituent un cas d’étude idéal pour nos travaux. Nous considérons quelques hy-
pothèses de départ : (1) la même architecture de réseau de neurones est utilisée
pour les deux problèmes ; (2) tous les poids des neurones appris sur le TSP sont
réutilisés sur le CVRP, il n’y a donc aucun poids réinitialisé aléatoirement ; (3)
les mêmes caractéristiques sont utilisées pour encoder les deux problèmes ; (4) le
modèle du CVRP est entraîné sur moins d’itérations. De plus, nous considérons
quatre scénarios d’entraînement suivant la taille et la distribution des instances
du TSP et du CVRP : (1) elles sont de la même taille et proviennent de la même
distribution ; (2) elles sont de différentes tailles et proviennent de la même distri-
bution ; (3) elles sont de la même taille et proviennent de différentes distributions
; (4) le TSP est utilisé comme tâche prétexte pour le CVRP. Les trois premiers
scénarios correspondent à des cas d’apprentissage par transfert standard alors que
le dernier scénario est un cas proche de l’apprentissage autosupervisé [122].

Nos différentes expériences indiquent que l’apprentissage par transfert peut
être bénéfique dans les cas où relativement peu de données sont disponibles pour
la tâche cible. Il améliore la performance asymptotique (finale) du modèle par rap-
port au modèle sans apprentissage de transfert tout en accélérant l’apprentissage
sur quelques itérations. En outre, les modèles entraînés sur des instances de tailles
similaires et provenant de la même distribution entre les tâches source (TSP) et
cible (CVRP) donnent de meilleurs résultats. Enfin, dans les pires configurations,
l’apprentissage par transfert ne semble pas nuire au processus d’apprentissage,
étant donné les performances asymptotiques similaires observées.
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Order-first Split-second neuronal pour le problème de tournées

de véhicules avec contrainte de capacité

Cette contribution propose un nouvel algorithme à deux phases pour le problème
de tournées de véhicules avec contrainte de capacité, suivant le même modèle
que l’heuristique à deux phases Route-first Cluster-second [17]. Cette approche
combine un réseau neuronal profond avec un algorithme de plus court chemin.

Le réseau de neurones profond est utilisé pour générer un ordre de visite des
clients appelé tour géant. Ce dernier définit un graphe auxiliaire sur lequel un
algorithme de plus court chemin est appliqué pour obtenir les tournées et leur
coût associé (l’algorithme Split) [149, 150]. Cette approche combine les avan-
tages de l’utilisation d’un réseau de neurones profond avec un algorithme efficace
d’extraction de tournées. En effet, grâce au réseau de neurones, il n’est plus néces-
saire de définir explicitement la méthode de construction du tour géant. De plus,
la méthode bénéficie des avantages de Split qui extrait les meilleures tournées
d’un tour géant. En outre, le coût des itinéraires renvoyés par Split nous permet
d’entraîner le réseau neuronal à l’aide de l’apprentissage par renforcement.

Cette approche étant agnostique au modèle de réseau de neurones considéré,
nous avons donc proposé et évalué trois modèles de réseaux neuronaux différents
basés sur des réseaux de neurones sur graphe (GNN). En outre, nous avons proposé
d’introduire l’angle polaire par rapport au dépôt en tant que nouvelle caractéris-
tique brute pendant la phase d’encodage, ce qui s’est avéré particulièrement utile
pour améliorer la convergence de notre modèle vers un meilleur optimum local.
Nous proposons également, lors de la phase d’encodage, une définition du voisi-
nage d’un nœud qui prend en compte la capacité du véhicule et les demandes des
clients.

Lors de l’évaluation, nous avons constaté que le GNN basé sur le réseau de
neurones Transformer donne les meilleurs résultats. De plus, nous constatons
qu’une architecture peu profonde (GNN à trois couches) a une meilleure conver-
gence qu’une architecture plus profonde (GNN à huit couches).

Nos résultats sont compétitifs par rapport à ceux des méthodes constructives
basées sur des réseaux de neurones et des heuristiques. Notamment, notre modèle
obtient de meilleurs résultats que Route-first Cluster-second qui est une heuristique
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constructive de même nature que notre modèle. De plus, notre modèle est plus
rapide pour l’apprentissage et l’inférence que les méthodes constructives neuronales.
Nos évaluations sur CVRPLib confirment la performance de notre approche sur
des instances de petite et moyenne tailles, indépendamment de la distribution des
clients.

Apprentissage par renforcement profond pour le problème de

covoiturage

Notre dernière contribution est consacrée à l’étude des approches d’optimisation
combinatoire neuronales sur un problème stochastique et dynamique. Pour ce faire,
nous avons choisi le problème du covoiturage (Ride-hailing problem (RHP)) [102],
qui a gagné un intérêt significatif en raison des nombreuses applications proposant
ce type de service. Il représente un excellent cas d’étude, car il comporte intrin-
sèquement des aspects dynamiques et stochastiques. En effet, il est impossible
de connaître à l’avance la localisation de toutes les demandes des clients avant le
début du processus de résolution du problème. De plus, il existe une incertitude
concernant les temps de trajet des véhicules, qui dépendent des lieux de départ
et d’arrivée ainsi que de l’heure de la journée. En outre, ce problème comporte
deux aspects combinatoires : l’affectation des véhicules aux demandes et le repo-
sitionnement des véhicules pour anticiper les demandes futures et s’en rapprocher
davantage pour assurer une meilleure qualité de service.

Pour résoudre ce problème, nous avons construit un réseau de neurones profond
capable de traiter nombre fluctuant de demandes tout en manipulant une flotte
variable de véhicules. En outre, nous avons conçu plusieurs stratégies de résolu-
tion. Dans la première stratégie, l’affectation des demandes aux véhicules, ainsi
que le repositionnement des véhicules sont tous deux gérés par le réseau de neu-
rones profond. Une deuxième stratégie consiste à gérer l’affectation des demandes
aux véhicules à l’aide de réseaux de neurones profonds et à effectuer le reposition-
nement à l’aide d’un algorithme de plus proche voisin. Enfin, nous avons créé une
stratégie qui se situe entre les deux premières. L’affectation des demandes aux
véhicules est effectuée à l’aide de réseaux neuronaux profonds. Cependant, pour le
repositionnement, le réseau neuronal profond prédit la zone à laquelle le véhicule
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doit se rendre, et l’emplacement exact de repositionnement est sélectionné à l’aide
d’un algorithme du plus proche voisin. Nous avons entraîné nos modèles à l’aide
d’un algorithme de type n-step dueling deep Q-learning [189]. Pour les instances
de petite taille, l’algorithme qui combine un réseau de neurones pour l’affectation
des demandes et une approche de plus proche voisin pour le repositionnement est
plus efficace. Pour les instances de plus grande taille, l’algorithme qui combine une
approche de repositionnement par zone avec une approche de plus proche voisin est
plus efficace. Toutefois, des améliorations sont encore possibles pour atteindre de
meilleurs taux de satisfaction des demandes. Nos algorithmes satisfont en moyenne
40 % des demandes sur les petites instances et 68 % sur les grandes instances.

Notre approche présente l’avantage d’avoir de bonnes propriétés de généralisa-
tion. Ainsi, elle est capable de traiter à la fois des instances de la même taille que
celles rencontrées lors de l’entraînement, mais également des instances de taille plus
importante, sans qu’il soit nécessaire d’entraîner de nouveau le modèle sur la nou-
velle taille de l’instance. En outre, nous avons observé de meilleurs résultats pour
les politiques hybrides que pour les politiques basées sur l’apprentissage ou les poli-
tiques définies manuellement. Cela nous incite à étudier davantage l’hybridation
entre les modèles basés sur l’apprentissage et les heuristiques définies manuelle-
ment.

Principaux apports

Nous pouvons résumer les principaux apports de cette thèse dans les points suiv-
ants :

• Un état de l’art approfondi de la littérature du cadre d’optimisation combi-
natoire neuronale, avec une classification des approches.

• Une évaluation empirique sur des benchmarks reconnus par la communauté
des problèmes de tournées de véhicules. Celle-ci offre plus de détails sur les
performances des modèles.

• La proposition de l’apprentissage par transfert pour le transfert de connais-
sances d’une politique de résolution du TSP vers une politique de résolution
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du CVRP.

• Une nouvelle méthode à deux phases suivant le principe de Route-first Split-
second pour la résolution du CVRP. Celle-ci se base sur la génération d’un
ordre de visite des clients par réseau de neurones profond, et la délimitation
des tournées via l’algorithme Split.

• La proposition de l’ajout de l’angle au dépôt comme nouvelle caractéristique
pour l’encodage des instances du CVRP.

• La définition d’un réseau de neurones profond capable de traiter un nombre
variable de clients avec un nombre variable de voitures pour le problème de
covoiturage.

• La proposition d’algorithmes hybrides entre réseaux de neurones et algo-
rithme du plus proche voisin pour le problème de covoiturage.

Conclusion et perspectives

Les travaux initiés dans cette thèse s’inscrivent dans les efforts de rapproche-
ment entre la Recherche Opérationnelle et l’Intelligence Artificielle en étudiant
l’application d’outils d’apprentissage automatique sur des problèmes d’optimisation
combinatoire. Cette étude se fait à travers l’exploitation des récents développe-
ments en matière d’apprentissage profond et d’apprentissage par renforcement pour
la résolution du problème de tournées de véhicules.

Cette thèse présente trois contributions principales dans le cadre de l’optimisation
combinatoire neuronale. Un état de l’art a d’abord été réalisé afin de situer les
approches de ce cadre par rapport à la littérature, que ce soit sur la méthodologie
de résolution, ou sur les performances par rapport à des heuristiques et méta-
heuristiques état de l’art pour le problème de tournées de véhicule. Ensuite, un
premier travail sur l’apprentissage par transfert a été présenté afin de déterminer
l’apport du transfert de connaissances d’un problème de tournées vers un autre.
La troisième contribution présente un nouvel algorithme à deux phases permet-
tant l’apprentissage d’une représentation implicite d’une solution d’un CVRP sous
forme d’un tour géant. La dernière contribution présente un réseau de neurones
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capable de traiter un nombre variable de requêtes avec un nombre variable de
véhicules pour le problème de covoiturage.

À travers ces travaux, nous avons pu montrer que des méthodes à base de
réseaux de neurones peuvent être efficaces pour la résolution de problèmes de
tournées. Cependant, leurs performances restent encore en deçà de ce que pro-
posent les métaheuristiques de l’état de l’art. Néanmoins, le cadre de l’optimisation
combinatoire neuronale est encore récent. Il reste donc plusieurs pistes d’intérêt
à explorer. Nous en proposons dans ce qui suit quelques-unes que nous avons
identifiées, et nous les classons selon les critères suivants : la nature des instances,
l’apprentissage des représentations, la nature algorithmique, le type de problème
traité, et l’explicabilité.

Sur la nature des instances, nous avons observé que les modèles à base de
réseaux de neurones sont efficaces sur des instances de petite à moyenne tailles.
De plus, les méthodes hybrides sont capables de traiter de plus larges instances.
Il y a donc un premier défi sur le traitement d’instances de plus grandes tailles.
En outre, le nombre d’instances d’entraînement est conséquent. Il n’y a aucune
garantie que de telles quantités de données soient disponibles pour des problèmes
de tournées du monde réel, afin d’entraîner ces modèles. De même, l’aspect qualité
des données n’a pas été considéré durant l’entraînement des modèles. Il n’est pas
exclu qu’entraîner avec un jeu d’instances soigneusement sélectionnées donne de
meilleurs modèles.

L’apprentissage de représentations a été abordé en proposant l’apprentissage
par transfert, et en présentant différents encodeurs dans le cadre de l’apprentissage
de représentations pour le tour géant. De futurs travaux peuvent considérer
l’apprentissage autosupervisé [122], en s’inspirant des travaux en traitement d’image.
Par exemple, en considérant l’apprentissage contrastif dans le but d’apprendre à
différencier les instances similaires (e.g. à une rotation près) des instances dif-
férentes. De plus, il n’est pas exclu qu’il puisse exister d’autres architectures de
réseaux de neurones plus adaptées aux problèmes de tournées. La recherche au-
tomatique d’architectures de réseaux de neurones est une piste de recherche que
l’on peut considérer [50]. En outre, nous avons vu dans le cas du CVRP que
l’ajout de l’angle au dépôt améliore la convergence du modèle. Il n’est pas ex-
clu que d’autres caractéristiques d’intérêt puissent être trouvées dans de futurs
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travaux.
Sur la nature algorithmique, nous abordons les algorithmes d’entraînement et

d’exploitation du modèle pour la recherche de meilleures solutions. Bien que la ma-
jorité des méthodes se fondent sur l’apprentissage par renforcement pour entraîner
les modèles de réseaux de neurones, il n’est pas à écarter que nous puissions obtenir
de meilleurs modèles par apprentissage supervisé, particulièrement si ceux-ci sont
couplés avec une sélection méticuleuse d’instances d’entraînement. Concernant
les algorithmes d’exploitation, notre dernière contribution, ainsi que notre état de
l’art, montrent qu’il est intéressant de considérer des approches hybridant appren-
tissage et (meta)heursitiques. Ceci nous invite à repenser ce qu’il est judicieux de
déléguer à un modèle d’apprentissage et qu’il faut traiter par une méthode définie
manuellement.

Sur le type de problème traité, nous pouvons distinguer l’étude de problèmes
complexes qui intègrent des dimensions difficilement captables par les approches
d’optimisation classiques. Par exemple, intégrer l’expérience des chauffeurs à
travers un historique de leurs livraisons pour mieux estimer les temps de trajet, ou
prévoir la demande des clients sur un horizon temporel pour choisir le moment le
plus approprié pour les servir. Nous pouvons également envisager, dans ce cadre,
des modèles capables de résoudre une famille plus large de problèmes de tournées,
en s’adaptant à la présence ou non de certaines contraintes dans le problème.

Sur l’explicabilité, la nature "boîte noire" des réseaux de neurones rend difficile
la compréhension de ce qui est réellement appris à partir des données [75]. De fu-
turs travaux peuvent être initiés afin de mieux comprendre les politiques apprises
par les réseaux de neurones profonds. Cet aspect peut être particulièrement cru-
cial si nous voulons appliquer le cadre de l’optimisation combinatoire neuronale à
des problèmes de tournées du monde réel. En outre, l’explicabilité peut aider à
détecter les biais dans les algorithmes appris. Par exemple, dans le cas du prob-
lème de coivoiturage, nous pouvons assurer un service équitable en identifiant tout
biais potentiel pouvant conduire à la priorisation ou au traitement préférentiel des
quartiers riches par rapport aux autres.
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Introduction

Road transport: key sector and challenges

Road transportation of people and goods is an essential activity in modern soci-
ety. It facilitates economic and social transactions by allowing people to travel,
work, study, or access healthcare. Similarly, the transport of goods stimulates
the economy while allowing the distribution of vital goods such as food, clothing,
medicines, etc. As an illustration, in France in 2017, the road transportation of
goods represents 89% of the inland traffic, with a turnover of 43 billion euros, while
road passenger transport represents a turnover of 7.1 billion euros [11].

In the context of smart cities and the industry 4.0, urban logistics must be
rethought with all the challenges that this imposes in terms of reducing noise, con-
gestion, pollution and increasing the quality of services and customer satisfaction.
To meet these challenges, smart transportation and logistics propose to rethink
both the modeling of routing problems and the algorithms used to solve them
[92]. Indeed, when designing delivery plans, decision makers often model vehicle
routing problems (VRPs) to control costs and/or maximize profits. Furthermore,
with the advent of the Internet of Things and smartphones, the amount of data
that businesses have access to has increased exponentially; the transport sector is
no exception [204]. This has created new opportunities, such as offering customers
the ability to track in real-time their orders and to consider their preferences in
terms of delivery schedules. Delivery plans must then accommodate order cancel-
lation or rescheduling. In some cases, very short decision times are imposed on
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the algorithms to deliver a new plan.
In the light of all this, it appears that it is important to study two types

of VRPs: deterministic vehicle routing problems where all the problem data are
known in advance, and problems with stochastic or dynamic characteristics where
the problem data change or appear over time [146]. The first type is essential
when it is not necessary to plan in real time, such as when planning supermarket
deliveries by suppliers. As for the stochastic/dynamic problems, they are essen-
tial to consider uncertainties related to customer demands, service requests and
travel times [184]. Tackling these problems opens perspectives in designing new
algorithms that will, in the long term, contribute to advances in the supply chain
optimization, in general.

Algorithmic challenges of transport problems

Combinatorial optimization seems to be an inherent part of urban logistics, as
many of the problems encountered can be modeled as discrete-variable decision
problems. Optimization allows us first to quantify the proposed solutions to the
problems and, secondly, to look for better ones. Vehicle routing problems are one
of the most frequently encountered classes of problems that are optimized daily
[184]. These problems are known to be NP−hard, meaning that, until today,
there is no deterministic polynomial time algorithm that optimally solves all the
instances of these problems [141].

The research for efficient algorithms for solving combinatorial optimization
problems has resulted in a plethora of efficient solution methods, ranging from
exact methods to (meta)heuristic methods [141, 173]. However, challenges remain,
especially regarding the quality of the solutions and the execution time. Often,
heuristic methods are favored for their reasonable ratio in terms of solution qual-
ity and execution time. Different handcrafted heuristic strategies, that consider
the problem characteristics, have been designed. These handcrafted heuristics
generally require expert knowledge on the problem and have variable performance
depending on the instance that is tackled. Overall, when tackling a new problem
with different constraints, heuristics have to be adapted and tested to select the
one that performs better. This can be a repetitive, tedious and time-consuming
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task for the Operations Research engineers [27].
In this context, a highly sought-after search method would be a method (1) built

automatically by the computer, (2) capable of producing good quality solutions in
reasonable times, and (3) that can quickly adapt to changes in the constraints of
the problem. From this perspective, Artificial Intelligence, and more particularly
Machine Learning, seem to be promising fields that open perspectives in the au-
tomatic design of algorithms capable of discovering solution search strategies. In
this thesis, we aim at studying the vehicle routing problems from this perspective.

Machine Learning: an Artificial Intelligence approach

At the intersection between Computer Science, Statistics, Neurosciences and Opti-
mization, Machine Learning is an Artificial Intelligence subfield that can be viewed
"as searching through a large space of candidate programs, guided by training ex-
perience, to find a program that optimizes the performance metric." [87]
More formally, Mitchell defines Machine Learning as follows [128]:

Definition. A computer program is said to learn from experience 𝐸 regarding
some task 𝑇 and some performance measure 𝑃, if its performance on 𝑇 , as
measured by 𝑃, improves with experience 𝐸 .

In this definition, the experience refers to the gathered data used for training,
the task is the end goal we want the program to achieve and the performance
measure gives us feedback on the quality of the learned program. For example,
let us consider a handwriting recognition problem where a computer program has
to distinguish the ten different digits from zero to nine (the famous MNIST task
[110]). The data that we gather is a set of different handwritten digits with their
corresponding digit value (label). In this case, the task is to correctly classify any
handwritten digit to its corresponding digit. A simple measure of performance for
the learned program is to count the number of correctly and wrongly classified
samples not used during the learning phase. We would consider learning to be
more or less successful based on the evaluation of the performance measure.

Generally, we can classify machine learning algorithms into three main paradigms
[84]:

3
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• Supervised learning: the most encountered type of machine learning algo-
rithms, today. It considers learning from labeled datasets. The previous
example corresponds to that setting.

• Unsupervised learning: in this case, we consider unlabeled datasets. The
goal is generally to find patterns and the hidden structures in datasets. An
example of this type is data clustering.

• Reinforcement learning: this type of machine learning uses unlabeled datasets.
In reinforcement learning, an agent interacts with an environment by taking
actions that are determined by the observation of the current state. These
actions generate numerical values known as rewards. The objective of rein-
forcement learning is to find an optimal behavior policy for the agent that
maximizes the long-term reward. An example of this type is learning a
program that successfully plays chess. The feedback in this case could corre-
sponds to +1 if the program wins, 0 if it’s a tie, and -1 if it loses.

We can also distinguish other types of learning such as semi-supervised learning
where part of the dataset has labels, self-supervised learning that is considered
sometimes as a subfield of unsupervised learning and aims at finding patterns
in data by creating an artificial supervised task, few-shot learning that considers
learning from few data or transfer learning that uses knowledge gained from solving
one task to tackle a different but related task.

Traditional problem-solving approaches propose to tackle problems by first
studying, then formulating explicit rules and a set of instructions that the computer
must follow to produce a solution. Depending on the problem to tackle, this can
be a very complex and difficult task to do. For example, the problem of finding
the shortest path in a road network has seen the development of many algorithms
with different handcrafted rules, such as Bellman’s algorithm [19], Floyd-Warshall
algorithm [190] and Dijkstra’s algorithm [43].

Machine learning proposes a different paradigm (see Figure 2). Data is gathered
according to the task to solve. Instead of handcrafted rules, an end goal is presented
to the computer. Depending on the type of machine learning, this can be, for
instance, the labels of the training samples in the case of supervised learning,

4
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Computation

Problem

Handcrafted rules

Decisions

Figure 1: The traditional problem-solving approach.

or a score function that evaluates the performance of the algorithm in the case
of reinforcement learning. The output is the computer program that can tackle
unseen instances of the same problem.

Computation

Data

Goal

Program

Figure 2: Machine learning problem-solving approach.

The last decades have seen the successful application of machine learning in
several domains, ranging from facial recognition [13], automatic text translation
[31], intelligent conversational agents such as chatGPT [137], to the creation of
intelligent agents for combinatorial games such as chess or go [166]. This is mainly
due to recent advances in computer hardware for (1) computation, with more pow-
erful CPUs and GPUs, (2) data collection using sensors (e.g., IoT devices), social
networks, etc. (3) data storage such as SSDs. The low cost of computer hardware
such as RAMs or HDD has allowed the development of cloud computing, which
has democratized access to computing and storage resources. This has greatly fa-
cilitated the emergence of several application cases that contributed to the success
of the domain. Moreover, government initiatives such as Grid50001 or Jean Zay2

supercomputers are accelerating research and algorithm developments [23]. Fur-
thermore, several theoretical advances have been made, whether in optimization
(learning can most often be framed as solving a complex non-convex optimization
problem) [96], the introduction of new machine learning models (e.g., deep neural

1https://www.grid5000.fr/w/Grid5000:Home
2http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html
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networks [109]), or a more in-depth understanding of the mechanisms that stabilize
the models training (e.g., regularization3[66]). Moreover, it should be noted that
several machine learning development frameworks, such as Pytorch [143], have
recently been introduced, thus simplifying the design of new models. Finally, it
is worth mentioning that several platforms now provide access to databases of
pre-trained models as well as datasets, such as those available on HuggingFace4.

The idea of using machine learning models in the field of combinatorial opti-
mization is not new. In the earlier studies, the utilization of various artificial neural
network models were benchmarked on the Traveling Salesman Problem (TSP)[168].
These methods have been abandoned because they have not been successful on op-
timization problems, especially when compared to metaheuristics [168]. But due
to the advances that we mentioned above, there is a renewed interest in using
machine learning for optimization problems. Especially, over the past seven years,
there has been a growing interest in techniques relying on deep neural networks
and deep reinforcement learning, leading to the emergence of the Neural Combina-
torial Optimization framework. These methods aim to revive the pioneering works
on the use of neural networks to learn search strategies for combinatorial optimiza-
tion problems. Neural networks are particularly interesting as they are universal
approximators, meaning that they can approximate a wide variety of continuous
functions in R𝑛 [78]. The reformulation of a combinatorial optimization problem
from a discrete space to a continuous space would thus allow us to transform the
problem into the search for a continuous function approximated by a deep neural
network.

This thesis presents an exploratory investigation into the feasibility of using
deep neural networks to tackle difficult vehicle routing problems. Therefore, it
should be noted that the observed performances of these approaches, while promis-
ing, do not yet surpass those of established state-of-the-art methods. In the fol-
lowing section, we present the research questions studied in our work.

3Regularization is a set of techniques used to prevent the model from learning the training
dataset by heart. Indeed, the goal of the program learned via machine learning is to be able to
handle examples of the same problem given during training.

4https://huggingface.co/
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Research questions and thesis objectives

The emerging field of machine learning for combinatorial optimization problems
represents a considerable opportunity for the development of more efficient algo-
rithms to tackle a wide range of problems. It is also a source of scientific questions
that invite to propose contributions in very diverse aspects. For example, one
can question which learning paradigm to use? Which model is suitable? Can
a learned strategy alone compete with handcrafted heuristics, or is it better to
hybridize both?

The aim of this thesis is to contribute in some research directions regarding the
use of deep neural network models for solving vehicle routing problems. We focus
on two different classes of vehicle routing problems: deterministic and stochastic
versions. We identified the following research questions:

• Is it possible for a deep neural network to achieve performance comparable to
or better than that of handcrafted heuristics developed by domain experts?

• What are the performances of deep neural network-based approaches on
known benchmark datasets under different training settings?

• Do deep neural networks still fall short of (meta)heuristics in terms of solu-
tion quality and execution time when used to solve deterministic VRPs?

• Would it be possible to reuse a deep neural network trained on a specific
problem to tackle a similar problem?

• Can we use a deep neural network to learn an implicit search strategy for
the VRP?

• What are the performances of deep neural networks when used to solve a
dynamic VRP?

Thesis outline

In this thesis, we study the VRP from the deep learning and reinforcement learning
perspective. In particular, we are interested in the contribution of these two areas
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of machine learning in both deterministic and dynamic/stochastic VRPs. In the
first case, the Capacitated VRP is studied. In this variant, we have a set of
customers and a homogeneous fleet of vehicles. The goal is to minimize the delivery
cost of the customers (estimated by the total distance traveled) without exceeding
the capacity of the vehicles. As complete information is available regarding the
clients, vehicles, and road network, this serves as an ideal case study for evaluating
novel methodologies. Uchoa et al. [175] wrote about the problem: "Being the most
basic variant, it is a natural test bed for trying new ideas. Its relative simplicity
allows cleaner descriptions and implementations, without the additional conceptual
burden necessary to handle more complex variants. Successful ideas for the CVRP
are often later extended to more complex variants". In the second case, the Ride-
Hailing Problem is studied. It is a problem where a central operator handles a
fleet of vehicles to serve requests that arrive during the time of service. There is
a strong stochasticity due to the travel time depending on the zones where the
requests are located, to simulate the traffic congestion. The goal is to maximize
the total gain to the ride-sharing company by determining which customers to
serve and which vehicle to assign to the customers.

The diagram of Figure 3 illustrates the structure of the manuscript.

In Chapter 1, we give a brief introduction to the VRP. We review the main
deterministic and dynamic variants. A review of solving methods is presented to
situate our work in relation to the existing approaches. Then, we introduce the key
concepts in machine learning that are necessary to understand the work of this
thesis, namely deep neural networks and reinforcement learning. In the second
part of the chapter, we present the state of the art of different deep learning and
reinforcement learning methods for solving VRPs. We propose a taxonomy of the
different contributions of the state of the art according to different criteria such
as the learning methods and the type of neural network used. We also discuss the
different search methods used to exploit the strategies learned by neural networks
to find better quality solutions. We then present the training and evaluation
protocols implemented for the deep neural network-based solution approaches, as
well as initial empirical evaluations on recognized instances in the literature of the
VRP to better situate their performance.

Chapter 2 presents our first contribution, which deals with the study of trans-

8



Introduction

fer learning on VRP. Our study is based on the TSP and the CVRP. It aims to
evaluate if a deep neural network model trained to solve one of these problems can
be used to solve the other problem with a few additional training steps. Extensive
computational experiments show that when relatively little training data is avail-
able, transfer learning allows our model to learn faster than if it was trained from
scratch.

Chapter 3 presents NOFSS (Neural order-first split-second), a two-steps method
based on the order-first split-second paradigm used to tackle the CVRP. It hy-
bridizes neural networks with a shortest path algorithm. We propose indirectly to
learn a resolution strategy via the exploration of the space of giant tours. We con-
duct extensive experiments using various deep neural network architectures and
compare our results to classical heuristics for CVRP. Our results show that our
method is competitive with the state of the art in terms of result and execution
time. In addition, we conduct experiments on CVRPLib based on the evaluation
protocol introduced in Chapter 1.

In Chapter 4, we study a stochastic and dynamic variant of the vehicle routing
problem: the Ride-Hailing Problem (RHP). We formulate it as a reinforcement
learning problem, and we propose to explore various solution algorithms. We
conduct a comprehensive set of experiments to demonstrate the effectiveness of
learning-based methods for addressing the problem.

Finally, we conclude by summarizing our contributions and discussing potential
future research directions.
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Chapter 1
State-of-the-art

As a subfield of mathematical optimization, combinatorial optimization deals with
finding an optimal object from a finite set of objects [141]. Typically, combinatorial
optimization problems occur when we are seeking for the best configuration among
the feasible ones. The combinatorial nature of the problems makes the exhaustive
search of solution intractable and would result in a combinatorial explosion in
terms of running time and/or memory. These kinds of problems are ubiquitous
in industry, logistics or healthcare, to name a few. They also bear interest in
complexity theory and algorithmic theory, since they are a source of many advances
in computer science.

This chapter focuses on introducing vehicle routing problems (VRPs) as a class
of difficult combinatorial optimization problems. We review the main VRP vari-
ants as well as the key solution methods used to tackle them. Furthermore, we
introduce the main machine learning concepts that we will use throughout this
thesis, mainly the type of artificial neural networks that are widely used, and the
reinforcement learning algorithms used to train them. Then, we review the end-
to-end learning-based methods for the VRP. We will focus on the principal VRP
variants as introduced in the first section. In this review, we will distinguish the
different axes under which end-to-end learning for VRPs has been addressed (i.e.,
learning method, type of neural network, learning construction or improvement
strategy, etc.). The different search strategies used to exploit the learned model
are also exposed. Furthermore, to better understand the potential and limitations
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of the models, we conduct empirical evaluations of these approaches on the Ca-
pacitated Vehicle Routing Problem (CVRP), as a key representative VRP under
various scenarios.
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1.1 Overview of the vehicle routing problems

1.1.1 The traveling salesman problem

The traveling salesman problem (TSP) is one of the well-known and most studied
combinatorial optimization problems. The problem can be formulated as follows:
Given a set of 𝑛 cities and the distances between each pair of cities, what is the
shortest possible path that traverses all the cities once, and ends at the beginning
city?
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We can model this problem using graph theory. A TSP can be represented
with a graph 𝐺 = (𝑉, 𝐸) with the vertices being the set of 𝑛 cities to visit, and
the edges of the graph being the routes that connect the cities. Each edge has
an associated weight, being the distance between the cities. Generally, the TSP
refers to the Euclidean TSP, i.e., Euclidean distances are used as a cost between
two cities. Therefore, solving the TSP implies finding the shortest Hamiltonian
cycle in the graph. Figure 1.1-(a, b)1 shows an example of an instance of 32 cities
and its corresponding solution2, the red square node being the first visited city.
A candidate solution of the TSP can be seen as a permutation of the order of
visiting cities. Thus, for an instance of 𝑛 cities, we would have to search among 𝑛!
candidate solutions. Therefore, an exhaustive search is intractable for large values
of 𝑛.

(a) TSP instance. (b) Solution to the instance.

Figure 1.1: Example of a TSP instance.

The first work on the TSP dates back to the 1800s [160], but it took until 1954
with the seminal work of Dantzig, Fulkerson and Johnson to have a description of
a method based on linear programming to solve TSP instances [40]. They found
an optimal tour for a 49 cities instance, which was considered as large scale at
that time. Since then, many advances were made to tackle the problem. The size

1The graph considered is a complete graph, i.e., we have a connection between each pair of
vertices, but we omit them in the figure for readability.

2The instance is the A-n32-k5 from Augerat et al. [9] benchmark.
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of the instances used to benchmark the solution methods continued to grow over
the decades, from a few hundred cities to billions of cities. World TSP, which
has 1.9 million cities, is one of the large-scale benchmarks that challenges the
TSP community to test their algorithm on [38]. The best known solution given
by LKH heuristic is at most 0.047% greater than the optimal tour [38]. In the
present day, the largest TSP instance is the Galaxy TSP, with 1.69 billion nodes
constructed from the catalog of stars in the Milky Way [45]. Of course, there exist
small to middle scale benchmark instances that were made available for researchers
to test their algorithms. These instances are compiled in the Traveling Salesman
Problem Library (TSPLIB) from various sources and with various properties [153].
Furthermore, researchers often rely on Concorde as a benchmark for comparing
the results of their own TSP algorithms due to its reputation as one of the best
TSP solvers available [6].

Although significant advances have been achieved in tackling this problem, it
remains that it is a NP−hard problem, which means that until today, no algo-
rithm is known to optimally solve all the instances of the problem in polynomial
time [141]. Thus, the TSP remains one of the most important and representative
combinatorial optimization problems. It has led to many algorithmic advances as
it serves as a test-bed for numerous algorithms such as simulated annealing, ant
colony optimization, or iterated local search to name a few [98, 37, 117]. As we will
see throughout this chapter, the methods we are going to present are no exception
to the rule, as many of them were first tested on this problem.

It is relevant to mention that as real-world applications and needs have emerged
and evolved, variants of the TSP have been proposed and studied such as the
multiple TSP (mTSP) in which multiple salesmen are employed to visit a set of
cities [18], the TSP with Time Windows (TSPTW) where cities can be visited
only within their time windows [47], the Prize Collecting TSP (PCTSP) in which
a prize and a penalty are associated with each city. In the latter problem, the
salesman must visit a subset of the cities to collect a certain amount of prizes while
minimizing the total traveled distance and additional penalties of the unvisited
cities [14].
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1.1.2 The vehicle routing problem

First introduced in the pioneering work of Dantzig and Ramser in 1959 as the
"truck dispatching problem" for the delivery of gasoline to gas stations [41], the
VRP concerns the delivery and/or the collect of goods between depots and clients,
as well as the transport of persons from one place to another. Defined as it is, we
can make the observation that there are multiple scenarios that can fit into it. To
be more rigorous, we will introduce the problem through the most studied variant,
namely the Capacitated Vehicle Routing Problem (CVRP).

In the CVRP, we have a set 𝑁 = {1, . . . , 𝑛} of 𝑛 clients with demands 𝑞𝑖 > 0,
𝑖 ∈ 𝑁, a single depot, denoted as 0, with a fleet of homogeneous vehicles with a
loading capacity 𝑄, and an associated travel cost 𝑐𝑖 𝑗 between a pair of locations
(𝑖, 𝑗) ∈ (𝑁 ∪ {0})2. For convenience, we associate a zero demand to the depot, i.e.
𝑞0 = 0. The goal is to find a set of routes, such as the total travel cost is minimal
and such that the following constraints are satisfied:

1. A route begins at the depot, traverses a set of clients and ends at the depot;

2. The total demand of a set of clients in a route does not exceed the vehicle’s
capacity;

3. A client belongs to one and only one route;

4. All clients must be assigned to a route;

5. When a client is visited, their request must be fulfilled completely.

The demands are assumed to be less than or equal to the vehicle’s capacity,
i.e, 𝑞𝑖 ≤ 𝑄, ∀𝑖 ∈ 𝑁. Furthermore, we consider symmetric travel costs in the
form of the Euclidean distance between the clients and the depot, i.e., 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖,
(𝑖, 𝑗) ∈ (𝑁 ∪ {0})2.

Solving the CVRP involves two kinds of decisions: (1) grouping the clients
into clusters that respect the vehicle capacity, and (2) sequencing the clients to
get routes with minimum travel distance [150]. The CVRP therefore contains two
problems: a bin-packing problem to define the clusters and a traveling salesman
problem for the visit order of each cluster, starting from and ending at the depot.
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Let us note that the two tasks are interdependent, i.e., the cost of clustering
depends on the order of visit and the cost of the order of visit, depends on the
clusters. There is not, a priori, an order in the operations to favor over another.

Figure 1.2 depicts an example of a VRP solution by taking the previous TSP
instance as an example (Figure 1.1). The red square is the depot, and the black
circles are the clients.

𝑞1 = 19

𝑞2 = 21

𝑞3 = 6

𝑞4 = 19

𝑞5 = 7

𝑞6 = 12

𝑞7 = 16

𝑞8 = 6

𝑞9 = 16

𝑞10 = 8

𝑞11 = 14

𝑞12 = 21

𝑞13 = 16

𝑞14 = 3

𝑞15 = 22

𝑞16 = 18

𝑞17 = 19

𝑞18 = 1

𝑞19 = 24

𝑞20 = 8

𝑞21 = 12

𝑞22 = 4

𝑞23 = 8

𝑞24 = 24

𝑞25 = 24

𝑞26 = 2

𝑞27 = 20

𝑞28 = 15

𝑞29 = 2

𝑞30 = 14

𝑞31 = 9

𝑄 = 100

Figure 1.2: Example of a solution to a CVRP instance with 5 tours.

The bin-packing problem associated with CVRP allows us to give a lower bound
on the number of vehicles (or routes), 𝑘, needed to serve customers. This is given
by the following formula:

𝑘 =

⌈∑𝑛
𝑖=𝑖 𝑞𝑖

𝑄

⌉
Let us observe that this is only a lower bound, i.e., the number of vehicles necessary
to solve a CVRP instance may be greater than this bound3. An obvious upper

3For example, consider the CVRP problem where the capacity 𝑄 = 5, and there are 3 clients

with equal demands of 3 units (𝑞1 = 𝑞2 = 𝑞3 = 3). Based on the lower bound, 𝑘 =

⌈
3+3+3

5

⌉
= 2.
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bound of the number of the number of vehicles is obtained by assuming that each
client is assigned to a single route, i.e., 𝑘 ≤ 𝑛.

The problem admits a formulation based on graph theory. We consider 𝐺 =

(𝑉, 𝐸) an undirected graph with 𝑉 = {0} ∪ 𝑁 being the set of vertices representing
the depot and the clients, and the edge set 𝐸 = 𝑉 × 𝑉 corresponding to the road
network that connects the clients and the depot. The graph 𝐺 is assumed to be
complete. We assign weights to the vertices and edges corresponding respectively
to the client demands 𝑞𝑖, 𝑖 ∈ 𝑉 and the travel costs 𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸 . The CVRP
consists of finding a set of simple circuits with the minimum total cost and such
that the above constraints are respected.

Like the TSP, this problem is NP−hard [112], although from a practical per-
spective, the VRP is much more difficult to solve than the TSP for instances of
the same size [106].

Let us note that if we consider a sufficiently large vehicle load capacity such
that

∑𝑛
𝑖=1 𝑞𝑖 ≪ 𝑄, we can formulate either a multiple traveling salesman problem

(mTSP), if we consider using the whole fleet of 𝑘 vehicles, or a TSP if we consider
a single vehicle. Thus, we consider that the CVRP generalizes the mTSP and the
TSP. Similarly, adding constraints to CVRP gives us a variant that generalizes the
problem. We will detail the variants in the following section.

1.1.3 VRP variants

As pointed in the previous section, the CVRP is the base variant of the VRP.
However, to model more realistic routing problems, additional constraints have
been added, depending on the case study. We can classify the different variants
according to different criteria following the types of vehicles, customers, depots and
road network. The variants may also depend on the type of objective function. It
is possible to consider a maximization problem, where the total profit is assumed
to be a quantity of interest, or a minimization problem where a cost function
is to be minimized. It is also possible to define multi-objective VRPs, where
we have more than one objective function to optimize. While there is abundant

However, since a visited client must have its request fully satisfied, they can only be delivered in
separate routes, which means that 𝑘 = 3.
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literature about this topic, we consider these types of problem out of the scope
of this thesis. Readers may refer to recent surveys on this particular subject for
additional information [91, 203].

For the clients, there may be several constraints related to real-world applica-
tions. One of the most common being the periods of the day in which the clients
can be served, referred to as time windows. In addition, waiting times may be
observed when arriving at a client’s location. This reflects the time required to
load or unload the goods. The base variant is termed the Vehicle Routing Problem
with Time Windows [39]. Other clients characteristics include the type of request
that can be picked up and/or delivery request. In addition, deliveries may be split,
which allows a vehicle to partially fulfill a demand when visiting a client.

Concerning the vehicle characteristics, the fleet can be made of vehicles with
different loading capacities, it is then considered as heterogeneous. The vehicles
can also be of different type, for example electric vehicles, or a mix between elec-
tric and thermal vehicles. Recently, multimodality has become a topic of interest
for VRPs, for reducing the travel costs and congestion. For example, coopera-
tions between trucks and scouts, or between trucks and drones are increasingly
considered.

In the CVRP, we considered only one depot, but the problem can be gen-
eralized to multi-depot. Besides this, we can also find satellite depots, in the
two-echelon VRP, where intermediate delivery depots are considered. The con-
straint of returning to the depot can also be omitted, thus formulating an Open
VRP.

Depending on the characteristics considered, one can define numerous VRPs.
We can combine the above-mentioned properties to build an exponentially huge
number of variants. For example, we can combine time windows with a hetero-
geneous fleet VRP to solve a heterogeneous fleet VRP with time windows. Fur-
thermore, depending on data availability and problem uncertainties, we can define
static or dynamic variants as well as deterministic or stochastic ones. Table 1.1
summarizes the different types of data availability and uncertainty associated with
problem characteristics [146]. We can define: (i) static deterministic variants where
all problem inputs are known before the beginning of the resolution process (e.g.,
CVRP), (ii) static stochastic variants where stochasticity is associated to some
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problem characteristics, such as stochastic demands (VRPSD), (iii) Dynamic de-
terministic variants where part of problem inputs are revealed on the fly, and (iv)
Dynamic stochastic variants where problem inputs are revealed while performing
the resolution and some inputs involve stochasticity. A common example of this
type is the dial-a-ride problem, where customers’ requests in an ongoing fashion
and stochastic travel times are associated with vehicles [158].

Uncertainty
Deterministic Stochastic

Data availability Static Static deterministic Static stochastic
Dynamic Dynamic deterministic Dynamic stochastic

Table 1.1: Types of VRPs based on data availability and uncertainty.

1.1.4 Solution methods

In the 63 years of their existence, a plethora of solution methods have been de-
veloped for the different variants of the vehicle routing problems. In the context
of this thesis, we distinguish between handcrafted methods, learning-based ones,
and hybrids between these two. In handcrafted algorithms, one has to describe
the solution method used to tackle the problem. They generally require expert
knowledge about the problem. Learning-based methods, on the other hand, aim
to uncover solutions by not explicitly defining the strategies that generate high-
quality solutions. These methods do not require intensive knowledge about the
problem. Finally, hybrid methods propose to take advantage of both approaches
either by incorporating a method of one type inside another, or by running a
method of one type before another. In what follows, we review the handcrafted
methods for the CVRP. The other solution methods involving learning, which are
at the center of this thesis, will be reviewed in their specific section.

1.1.4.1 Exact solution methods

Branch and bound [105]. This algorithm uses a divide and conquer strategy on
the solution space 𝑆 and performs two operations:
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• Branching: the currently visited solution space 𝑆𝑐 is partitioned into two
or more, ideally disjoint, subspaces 𝑆𝑐1, 𝑆

𝑐
2, . . . , 𝑆

𝑐
𝑚, with 𝑆𝑐 =

⋃𝑚
𝑖=1 𝑆

𝑐
𝑖
. This

partitioning can be viewed as a generation of new leaves in a search tree. The
generated subspaces are stored in a queue. Depending on how the queue is
managed, i.e., how a new subspace is selected, the tree can be traversed in
Depth-First Search, Best-First Search, Breadth-First Search.

• Bounding: in this phase, a lower bound 𝐿𝐵(𝑆𝑐) of the solution space 𝑆𝑐 is
computed: 𝐿𝐵(𝑆𝑐) ≤ 𝑓 (𝑥),∀𝑥 ∈ 𝑆𝑐 with 𝑓 (·) being the objective function
associated with the problem. The lower bound has not to be associated with
a valid solution in 𝑆𝑐.

Let 𝑀 denote the objective value of the incumbent solution (the objective value
of the best solution found so far). This incumbent value provides, also, an upper
bound of the optimal objective value, in a minimization problem. The incumbent
solution is updated each time a new solution 𝑥 ∈ 𝑆𝑐, with 𝑓 (𝑥) < 𝑀, is found. The
branch and bound algorithm prunes a solution space 𝑆𝑐 if 𝐿𝐵(𝑆𝑐) > 𝑀, otherwise,
branching occurs. The algorithm terminates when the subspaces queue is empty.

The first branch and bound used bounds based on the Shortest Spanning Tree4,
which is an extension to the CVRP of the 1-tree method introduced for the TSP
and a branching scheme based on arcs, i.e., create two solution subspaces where
in the first the arc (𝑖, 𝑗) is selected to extend the path and another where it is not
selected [35]. Fisher extended the 1-tree approach by introducing the 𝑘−trees ap-
proach with a mixed branching scheme based on the arcs and the clients [56]. Other
work considers a lower bound based on the b-matching problem and Lagrangian
relaxation [127].

Branch and cut. This algorithm is a branch and bound with cutting planes for
(mixed) integer programs. The first approach of this type for the VRP proposes a
two-index integer program formulation of the problem. The integrality constraints
of the variables are relaxed, resulting in a linear program that is solved using the
simplex algorithm. If the solution found by the simplex algorithm is feasible for
the CVRP, then it is optimal, and the algorithm stops. If it is not feasible, or it

4the problem of finding a minimum-cost subset of edges connecting all vertices of the graph.
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is greater than the incumbent, then the sub-problem is pruned. Valid inequalities
(cuts) are added. When it is not possible to add further cuts, branching occurs
on a fractional variable, creating two sub-problems [107]. Many valid inequalities
were introduced for the VRP [7, 2, 3, 120].

Column Generation The VRP admits a set partitioning formulation [15]. In
this formulation, the set of all feasible routes is considered. Thus, the goal is to
select among those routes, the optimal subset. There is an exponential number
of these routes. Thus, we resort to column generation. The method starts from
a small subset of routes and solves a linear relaxation of the reduced model (the
model with only the subset of routes) to get the optimal dual variables associated
with the constraints. The dual information is then used to select a new route that
will be added to the subset. The algorithm iterates again with the new subset,
until no new route can be added. Numerous works adapted the column generation
to the VRP, readers may refer to the works in [167, 5, 42]. Readers may also refer
to a detailed tutorial of D. Feillet on column generation for the VRP for additional
information [53].

Branch-and-cut-and-price This algorithm combines cuts and column generation
into a branch and bound. The principle of pricing is to find columns (e.g., sub-
routes) with reduced negative costs. This approach is the best performing of the
exact approaches for VRPs [59, 74]. VRPSolver, a branch-and-cut-and-price exact
algorithm, achieves state-of-the-art results on different VRP variants and is freely
available for research [145]5. Different branch-and-cut-and-price were introduced
in the literature, readers may refer to the book chapter by Poggi and Uchoa for a
detailed review [147].

1.1.4.2 Heuristic solution methods

Exact solution methods are efficient for small size VRP instances because they find
the optimal solution in a reasonable computation time. However, as the size of the
instances grows, finding the optimal solution becomes intractable. Heuristic search

5Available at https://vrpsolver.math.u-bordeaux.fr/
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methods are thus used to compute a solution. We can distinguish two types of
heuristics for the VRP: constructive heuristics that build a solution from scratch,
and improvement heuristics that start from an initial solution and try to find a
better one.

Constructive heuristics are, themselves, divided into two categories: single-step
methods and two-steps methods.

Single-step methods iteratively build the solution by selecting the next client to
visit, via a greedy decision rule. The nearest neighbor is a simple greedy heuristic
that can be used to generate a feasible vehicle routing solution. It starts from the
depot, and iteratively adds the nearest unvisited client, in terms of Euclidean dis-
tance, to the route, until no further client can be added due to capacity constraint.
A new route is then started. The algorithm loops until all clients are visited. This
heuristic is simple and quick to execute, at the expense of the quality of the solu-
tion. Another single-step, that is widely used, is the Clarke and Wright savings
heuristic [36]. The heuristic merges routes of the form (0, . . . , 𝑖, 0) and (0, 𝑗 , . . . , 0)
by applying the savings criterion 𝑠𝑖 𝑗 = 𝑐𝑖0 + 𝑐0 𝑗 − 𝑐𝑖 𝑗 ,∀𝑖, 𝑗 ∈ 𝑁. The merge with
the largest savings is selected at each iteration, until it is not possible to perform
the operation. Several improvements were proposed to this heuristic, for example,
a parameter 𝜆 was added to the savings formula: 𝑠𝑖 𝑗 = 𝑐𝑖0 + 𝑐0 𝑗 − 𝜆𝑐𝑖 𝑗 [138].

Two-steps approaches for solving the CVRP involve (i) partitioning the clients
into feasible clusters regarding vehicle capacity and (ii) ordering them into routes of
minimum length. Based on how the two operations are orchestrated, we can distin-
guish two types of two-steps algorithms: Cluster-first Route-second and Order-first
Split-Second.

Cluster-first Route-second. In this type of algorithm, the clients are first
grouped together following the vehicle capacity constraint, then a traveling sales-
man problem is solved for each cluster using an exact solver or heuristics. The
Sweep algorithm is the most common algorithm of this type [64]. Feasible clusters
are constructed by considering the polar angle between the clients and the depot,
then for each cluster a TSP is solved. An extension of this algorithm called the
petal algorithm considers generating several routes and selects the final routes of
the solution by solving a set partitioning problem [157]. Another work considers
obtaining the clusters by solving a generalized assignment problem [57].
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Order-first Split-second. These approaches consider first ordering the customers
into a sequence called a giant tour, to then, decompose it into a set of feasible tours
considering the vehicle capacity. Traveling salesman problem heuristics are used
to get a giant tour, and the CVRP tours are optimally extracted from it by solving
a shortest path problem. The first documented approach of this type generates
the giant tour by random permutation of clients’ visit order, followed by a 2-opt

improvement, and then builds the routes using Floyd’s algorithm [17]. This type of
approach is widely used inside metaheuristics, as it is simple and fast to generate
a giant tour. We will detail the approach in Chapter 2 of this thesis, as we will
develop a learning-based approach that uses this solution representation for the
CVRP.

Starting from an initial candidate solution, improvement heuristics aim at find-
ing a better candidate solution by performing a move from one candidate solution
to a neighboring one. We can distinguish inter-route and intra-route improvement
heuristics.

Intra-route heuristics correspond to the improvement moves used in TSP. They
are applied to one route at a time, and change the order in which clients are visited.
Typical improvement heuristics include 𝜆-opt moves in which 𝜆 edges are removed
and are replaced by 𝜆 other edges. The most used ones being 2-opt and 3-opt

[115]. Other heuristics include Relocate, which changes the position of a client
in the tour to another and Swap, which exchanges the position of two clients in a
route.

Inter-route heuristics are moves that are used to change the clients’ positions
from one route to another. They are adapted from the intra-route heuristics. We
can cite the 2 − opt∗ which changes two edges from two different routes by two
other edges [148]. The Relocate can be adapted to remove a client from a route,
and insert it into another route. The Swap move exchanges two clients from two
different routes.

1.1.4.3 Metaheuristics

Metaheuristics are high-level heuristic algorithms designed to guide the search
procedure for a good quality solution. Generally, they are classified as Local
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Search algorithms and Population-based algorithms. In what follows, we briefly
review both of the types of metaheuristics applied to the VRP.

Local search algorithms. These methods explore the solution space by moving
from one solution to another by exploring its neighbrohood. A recent review of pa-
pers published between 2009 and 2015 shows that almost 64% of the metaheuristics
used to tackle VRPs were local search algorithms. Among them, 30% are based on
Tabu Search, 23% on Variable Neighborhood Search, 15% on Large Neighborhood
Search, 12% on Simulated Annealing, 10% on Iterated Local Search, 9% on Greedy
Randomized Adaptive Procedure, and 1% on Guided Local Search [49].

Tabu Search. This algorithm explores the neighborhood of a solution and
forbids some neighboring solutions that share characteristics with the current one,
to avoid cycling. Furthermore, to prevent the local search to become stuck in
local optima, solutions with worse cost can be accepted. TABUROUT was among
the first tabu search algorithms for the CVRP. The algorithm allows infeasible
candidate solutions, and introduces a penalty term to penalize capacity excess
[62].

Variable Neighborhood Search. This method uses several neighborhood opera-
tors such as 2-opt, 3-opt, swap, etc. to improve the current solution. Starting
from an initial solution, the operators are applied sequentially, one after another.
When the last operator is applied, the algorithm restarts again from the first op-
erator. This method has been successfully applied for the CVRP in [104, 24].

Large Neighborhood Search. This metaheuristic alternates between ruin (de-
stroy) and recreate (repair) operations. Starting from an initial solution, the ruin
operator removes clients from tours, and the recreate operator inserts them back
in other positions so that a new better solution is obtained. A simple but effective
method based on string removal and a greedy insertion procedure achieves results
competitive with the best metaheuristics [33].

Simulated Annealing [98]. This algorithm takes inspiration from annealing in
metallurgy, where heating and controlled cooling is used on materials to make
them more ductile. In the algorithm, solutions with worse objective function value
than the incumbent are accepted with a certain probability that is a function of the
cost of the solution considered and the incumbent, controlled by a temperature
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parameter. As an analogy to the cooling process, the temperature parameter
decreases as the execution progresses. Simulated annealing was successfully used
to tackle the CVRP, e.g., [136, 116].

Iterated Local Search. It consists of alternating between a perturbation function
to escape from local minima and a local search to explore the neighborhood of the
perturbed solution. Many methods that achieve state-of-the-art results are based
on this metaheuristic. A strategy similar to the petal algorithm was able to tackle
many variants of the VRP. It is based on an iterated local search which generates a
set of routes, and a set partitioning formulation which chooses the best combination
of routes [170]. Other recent works include a hybridization between iterated local
search and path relinking algorithm [125], and FILO, which uses iterated local
search and a simulated annealing-based neighbor acceptance criterion to ensure
diversification [1].

Greedy Randomized Adaptive Search Procedure (GRASP). This metaheuristic
proposes to use a greedy construction heuristic with some degree of randomness
to diversify the solution obtained, and an improvement moves to get a better
solution. This metaheuristic has been used along with a path-relinking algorithm
to tackle the CVRP [169]. A GRASP with multiple greedy construction heuristics
and a Circle Restricted Local Search moves successfully tackled instances up to
200 clients [123].

Population-based algorithms. These methods maintain and improve over a set
of candidate solutions. Most of these algorithms use nature-inspired concepts such
as evolutionary algorithms or swarm intelligence.

Genetic Algorithm. This metaheuristic belongs to the evolutionary algorithms.
Its first successful application to the VRP is due to Prins [149]. In their work, a
solution is represented as a giant tour, without the depot as a trip delimiter. A
shortest-path procedure, called Split, is used to delimit the routes by inserting
the depot. Genetic operators are then used into the giant tour, and a local search
is performed on the solution obtained after Split. The giant tour representation
was later on used in Hybrid Genetic Search (HGS) of Vidal et al. [182, 183] where
an efficient diversity control management is performed to not obtain a premature
convergence of the population. This is done by introducing a fitness function
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as a weighted sum of the solution cost and the Hamming distance to the other
solutions. Vidal later on released an open-source implementation of HGS for the
CVRP (HGS-CVRP) which is competitive with the state-of-the-art metaheuristic
[181].

Ant Colony Optimization. This type of swarm intelligence uses agents called
ants that construct solutions to the problem and records information about their
quality in a joint memory. The memory is updated, so that paths leading to
good quality solutions are favored. This mechanism is similar to the way ants put
pheromones on the promising paths towards food. The D-Ants algorithm uses the
Savings along with the pheromone information to build solutions for the CVRP, fol-
lowed by a local search improvement. The algorithm showed remarkable results on
instances up to 200 clients [152]. An Improved ant colony optimization algorithm
that uses a mutation and an ant-weight strategy based on the candidate solution’s
overall cost and route cost for pheromone updates, revealed to be competitive with
Tabu Search and Simulated Annealing for the CVRP [200]. For additional appli-
cations of Ant colony optimization for the routing problems, readers may refer to
[44].

1.2 Machine learning concepts

In this section, we will introduce the key ideas in machine learning that we will
use throughout this manuscript. We will cover different modern neural network
architectures, as well as reinforcement learning.

1.2.1 Deep neural networks

1.2.1.1 Artificial neural networks

Artificial neural networks take their inspiration from the biological neural networks
in the nervous system of animals. They were created to simulate the learning
process of a biological brain. They are made of simple computational units called
neurons.

Frank Rosenblatt’s perceptron is the first artificial neural network, composed
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Figure 1.3: The perceptron model.

of a single formal neuron, created in 1958 [155]. This artificial neuron performs
a weighted sum between input features followed by an activation function 𝜎(·)
(see Figure 1.3). Let x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]⊺ be a column vector of 𝑛 features, and
w = [𝑤1, . . . , 𝑤𝑛]⊺ a column vector of 𝑛 weights, a perceptron implements the
following function:

𝑓 (𝑥) = 𝜎
( 𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 + 𝑤0

)
= 𝜎

(
w⊺x + 𝑤0

)
where 𝜎(·) is the Heaviside (sign) function, i.e.

𝐻 (𝑥) =


1, if 𝑥 ≥ 0

0, otherwise

The perceptron is mainly used as a linear classifier, where data can be separated
using a hyperplane. Thus, the model is simple and is not suitable for processing
complex data that cannot be separated linearly. The perceptron is then called a
shallow network.

The multi-layer perceptron (MLP), is a type of feed-forward neural network,
that generalizes the perceptron with more than one neuron per layer, and possibly
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with more than one layer. Figure 1.4 depicts the general structure of a MLP. It is
represented by a directed acyclic graph6 with an input layer, hidden layers and an
output layer with an activation function in between each layer. If we have several
hidden layers, we speak of a deep neural network (DNN). The number of hidden
layers is the depth of the neural network, and the number of neurons in a layer,
is its width. Each neuron in the hidden and output layers performs an operation
similar to the perceptron. Considering a layer 𝑖 composed of 𝑚 neurons and with
an input xi ∈ R𝑑, it performs the following operation: 𝑓𝑖 (xi) = 𝜎

(
Wix

⊺
i +bi

)
, where

Wi ∈ R𝑚×𝑑, bi ∈ R𝑚 are the weights and the bias of the layer, respectively, and
𝜎(·) is the activation function7. The weights of a layer are grouped in a weight
matrix, with 𝑚 rows and 𝑛 columns. Each row corresponds to a neuron in the
layer, whereas each value in a column denotes the weight value pertaining to a
specific input feature.

Wi =

©«
𝑤11 𝑤12 . . . 𝑤1𝑑

𝑤21 𝑤22 . . . 𝑤2𝑑
...

. . . . . .
...

𝑤𝑚1 𝑤𝑚2 . . . 𝑤𝑚𝑑

ª®®®®®¬
The bias is organized in a column vector that is used to shift the result of each

neuron’s weighted sum, i.e. bi = [𝑏1, . . . , 𝑏𝑚]⊺.
A multi-layer perceptron, is then a stack of 𝑘 layers that correspond to a

composition of functions 𝑓𝑖. We denote this composition as

𝑓 (x, 𝜃) = ( 𝑓1 ◦ 𝑓2 ◦ . . . ◦ 𝑓𝑘 ) (x, 𝜃)

where 𝜃 regroups all the weights and biases (𝜃 = {W1,b1, . . . ,Wk,bk}) of the
MLP.

The activation functions in the hidden layers add non-linearity to the MLP,
which makes it able to approximate any real value function [78]. Thus, a MLP
can separate complex data. Common activation functions include

• sigmoid 𝜎(𝑥) = 1
1+𝑒−𝑥 ,

6thus the name feed-forward neural network.
7Let us note that these activation functions are defined for any real value. Thus, for a vector

x ∈ R𝑑 , the activation function is applied element-wise as follows: 𝜎(x) := [𝜎(𝑥1), . . . , 𝜎(𝑥𝑑)]
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Figure 1.4: The multi-layer perceptron model.

• hyperbolic tangent 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 ,

• rectified linear units 𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥),

• leaky rectified linear units 𝐿𝑅𝑒𝐿𝑈 (𝑥) =


0.01 · 𝑥 , 𝑥 ≤ 0

𝑥 , 𝑥 > 0
.

Figure 1.5 depicts the plots of the main activation functions in neural networks.

Traditional machine learning models have limited abilities in processing data
in their raw form. They require domain experts to design feature extractors that
transform raw data into feature vectors suitable for the task. Deep neural net-
works perform automatic feature extraction, i.e., they propose to discover the set
of features, called representations, needed to perform the target task during the
learning process from raw data. This is referred to as representation learning. The
neural networks learn the representations hierarchically. The deeper the network,
the more complex the learned representations [109]. Thus, a deep neural network
is capable of transforming raw input data into an alternative representation in a
feature space. This alternative representation is known as an embedding.
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Figure 1.5: Common activation functions used in deep neural networks.

30



1.2. MACHINE LEARNING CONCEPTS

Training neural networks Neural network training involves an iterative process
of forward pass, backward pass, and weight updates. In each training iteration,
input data is fed forward through the network, generating predictions that are
compared with the true values when dealing with supervised learning. The error
is then computed using a loss function, and backpropagation is employed to calcu-
late the gradients and propagate them backward through the network. The loss
function depends on the types of predictions, which can either be discrete ones
(classification) or continuous ones (regression).

In classification tasks, the goal is to predict discrete class labels for input data.
Thus, each data point is assigned to a predefined category. The loss function
commonly used in classification is the cross-entropy loss, which is defined for 𝑁
samples and 𝐶 classes as follows:

L(Ŷ,Y) = 1
𝑁

𝑁∑︁
𝑖=1

L𝐶𝐸 (Ŷ(𝑖) ,Y(𝑖))

where:

L𝐶𝐸 (ŷ, y) = −
𝐶∑︁
𝑗=1

y 𝑗 log(ŷ 𝑗 )

Ŷ is a 𝑁×𝐶 matrix containing the predicted probability distribution over the classes
for all 𝑁 samples, where each row corresponds to the predicted probabilities for a
single data point, and each column represents the probability of that data point
belonging to a specific class. Y is also an 𝑁 ×𝐶 matrix, but it contains the one-hot
encoded ground truth labels for each data point, indicating the true class for each
sample. ŷ is a row vector representing the predicted probabilities for each class for
a sample, y is a one-hot encoding row vector of the true label of the sample8.

When classification tasks involve multiple classes, the softmax function is often
used to produce class probabilities. The softmax function converts raw model
outputs into probabilities:

ŷ𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑖) =
𝑒𝑥𝑝(𝑒𝑖)∑𝐶
𝑗=1 𝑒𝑥𝑝(𝑒 𝑗 )

, ∀𝑖 ∈ {1, . . . , 𝐶}

8the vector has a value of 1 in the position corresponding to the class label and 0 in all other
positions.
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where 𝑒𝑖 ∈ R, 𝑖 ∈ {1, . . . , 𝐶} are the model’s raw outputs. Let us note that the
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function takes a vector of 𝐶 input values. To simplify notation, we abuse
notation and represent the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function applied to the 𝑖𝑡ℎ element of a vector
e = [𝑒1, . . . , 𝑒𝐶] as 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑖).

Regression tasks aim to predict continuous numerical values. In regression, the
mean squared error (MSE) is a frequently used loss function:

L𝑀𝑆𝐸 (ŷ, y) =
1
𝑁

𝑁∑︁
𝑖=1

(ŷ𝑖 − y𝑖)2

where ŷ denotes the predicted values, y represents the true target values, and 𝑁

is the total number of samples.
Neural networks use the gradient descent algorithm to update their weights

and biases values9. It is an optimization algorithm that iteratively updates the
weights of a neural network to minimize the loss L. The weight update equation
for gradient descent can be expressed as (with 𝜂 being the learning rate):

𝜃𝑖 ← 𝜃𝑖 − 𝜂
𝜕L
𝜕𝜃𝑖

The standard gradient descent updates the neural network’s parameters after
evaluating the gradient of the loss function with respect to each individual train-
ing example. This approach is time-consuming and may lead to slow convergence.
Therefore, to address these issues, the neural network parameters’ update is per-
formed by considering an accumulation of the gradient of the loss regarding a
mini-batch of training examples. The gradients are averaged over the mini-batch
before performing an update. A manually set batch size determines how many
training examples are considered for each update.
Today’s gradient descent optimizers are more sophisticated. For example, Adam
which is one of the most effective and widely used optimization algorithms, uses
an adaptive learning rate and maintains a memory of past gradients to accelerate
the convergence and improve the training process [96].

To compute the partial derivative of the loss regarding the neural network’s
9In this case, it must be fully differentiable. For example, the Heaviside function cannot be

used as an activation function.
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weights, the backpropagation algorithm is used. The algorithm uses the chain rule
to compute the gradients of the weights in a backward pass from the output to
the input layer.

To train the neural network, the dataset is typically divided into three subsets:
the training set, the validation set, and the test set. The training set is used to
train the neural network by exposing it to input data and their corresponding target
values. The network updates its parameters based on the error calculated using
the training set. The validation set serves as an independent dataset to assess
the network’s performance during training. It is used to monitor the model’s
generalization, and avoid overfitting: a phenomenon in machine learning where
a model performs well on the training data but fails to generalize accurately to
unseen data. For this, we measure the accuracy of the model on the validation set,
i.e., the proportion of correct predictions made by the model over the total number
of predictions, as measured on the validation set. The test set, which is separate
from the training and validation sets, is used to evaluate the final performance
of the trained model on unseen data. It provides an unbiased estimation of the
model’s predictive ability.

Finally, before diving into more complex neural network architectures, we give
an example of how a MLP can be used to tackle a TSP instance. Figure 1.6 depicts
an example of the first 3 steps of using a MLP to tackle a TSP instance with 5
cities [x1, . . . , x5]. Each city is represented by its 2D-coordinates x𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 ∈
{1, . . . , 5}. Let’s consider that the input of the network is the concatenation of
all cities coordinates [x1; . . . ; x5]10 and that we want to generate a categorical
probability distribution such as the output is defined as ŷ ∈ [0, 1]5 and

∑5
𝑖=1 ŷ𝑖 = 1.

Each component ŷ𝑖 will define the probability that the city 𝑖 is the next best one to
visit. At each step, a score 𝑒𝑖 ∈ R, 𝑖 ∈ {1, . . . , 5} is computed using the MLP. The
scores are converted into a probability distribution using the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function. If
we suppose that we select greedily the city with the highest probability, at step
1, x2 is the first city that will be selected. At step 2, since x2 is already in the
tour, we force its score to minus infinity so that when we use the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥, its
corresponding probability would be zero. Since x1 has the highest probability, it
is selected as the next city to be visited. At step 3, x1 and x2 have their score set

10We denote the concatenation operation with [·; ·].
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Figure 1.6: Example of the first 3 steps of using a MLP to solve a TSP instance.

to minus infinity. The city that is selected to extend the tour is x5. The process
continues until all cities are visited.

Although a multi-layer perceptron can theoretically approximate any function
given a sufficient number of hidden units and layers, in practice, depending on the
type of data needed to be processed, there may be more suited neural network
architectures. In the upcoming subsections, we will introduce the main ones that
will be used in our work for tackling the VRP.

1.2.1.2 Recurrent neural networks

When dealing with raw inputs that are organized as a single vector
x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]⊺ ∈ R𝑛, and we want to predict a single value of interest, a multi-
layer perceptron can be used. However, when we have a sequence of 𝜏 raw inputs,
like the coordinates of cities in the TSP, i.e. x = [x1, x2, . . . , x𝜏] with x𝑖 = (𝑥𝑖, 𝑦𝑖)⊺ ∈
R2, using a multi-layer perceptron is not sufficient to learn a good representation
of the instance. A MLP would simply compute the representations of the cities
independently of one another or mix all coordinates, as in the example of Figure
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1.6. Yet, for a city, both considering information on other cities representations
and considering specific information about the city in an isolated manner would
be useful to have a better representation. Thus, it appears that another type of
neural network would be more appropriate for this type of task. When input data
is organized as a sequence, recurrent neural networks (RNNs) was the de facto
option of choice at the beginning of our work, in 2019.

RNNs use a hidden state h𝑡−1 to store the sequence information until the step
𝑡 − 1. The basic computation unit of RNNs is called a recurrent cell (see Figure
1.7). To compute the hidden state at step 𝑡, the previous hidden state h𝑡−1 ∈ R𝑑ℎ
is used along with the current input x𝑡 ∈ R𝑛, i.e. h𝑡 = 𝑓 (x𝑡 ,h𝑡−1). An output 𝑦𝑡 can
then be computed using the hidden state h𝑡 with a function 𝑔(h𝑡). The output
𝑦𝑡 can then be used for prediction. The functions 𝑓 (·) and 𝑔(·) are parametric
functions that contain the weights and biases that will be learned. The simplest
implementation considers two multi-layer perceptrons for 𝑓 and 𝑔.

h𝑡 = 𝑓 (x𝑡 ,h𝑡−1) = 𝜎(Wℎℎ h𝑡−1 +Wℎ𝑥 x𝑡 + bℎ)

�̂�𝑡 = 𝑔(h𝑡) = 𝜎(Wℎ𝑦 h𝑡 + b𝑦)

where Wℎℎ ∈ R𝑑×𝑑ℎ , Wℎ𝑥 ∈ R𝑑×𝑛, Wℎ𝑦 ∈ R𝑑𝑦×𝑑 are the weights matrices, and
bℎ ∈ R𝑑, b𝑦 ∈ R𝑑𝑦 are the bias vectors.

Simple RNN cells are generally hard to train. They are subject to the vanishing
gradient phenomenon, which causes the weights of the RNN to perform little or no
updates during backpropagation because of the partial derivatives that are close
to zero. To prevent this, more sophisticated recurrent cells have been designed,
namely Long Short-Term Memory (LSTM) [76] and Gated Recurrent Unit (GRU)
[31].

Recurrent neural networks can be used on various tasks, that we can group
into three classes.

1. Many-to-one. This type corresponds to using an input of sequential features,
and outputting a single value (see Figure 1.8). The penultimate hidden state
h𝜏−1 encodes information about all previous inputs {𝑥𝑖}𝜏−1

𝑖=1 . Along with the
last input 𝑥𝜏, it outputs a single value 𝑦 which corresponds to the target task
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Figure 1.7: A simple Recurrent Neural Network cell.

prediction. For example, we can input the set of cities’ coordinates of a TSP
instance and output a scalar that estimates the optimal tour length.
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Figure 1.8: Input-to-output mapping: many-to-one.

2. Many-to-many. Tasks of this type are encountered when mapping a sequence
into another sequence (see Figure 1.9). An input {𝑥𝑖}𝜏𝑖=1 and hidden state
{h𝑖−1}𝜏𝑖=1 are used to predict an element of the target task {𝑦 𝑗 }𝑚𝑗=1. In the
figure, the input and output are of the same length, but in general 𝑚 ≥ 𝜏.
An example of a task of this type is learning to output a solution to the
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traveling salesman problem. The cities’ coordinates are given one at a time
to the RNN, which outputs the position of the city in the permutation.
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Figure 1.9: Input-to-output mapping: many-to-many.

3. One-to-many. This involves tasks that use a single input to generate a se-
quence of outputs (see Figure 1.10). For instance, this can be used to generate
an image caption. The input is a single vector of image features, while the
output is a sequence of words representing the caption.

R
N
N

R
N
N

R
N
N

· · ·
R
N
N

𝑥1

𝑦1 𝑦2 𝑦3 · · · 𝑦𝜏

ℎ1 ℎ2 ℎ3 ℎ𝜏−1ℎ0 ℎ𝜏

Figure 1.10: Input-to-output mapping: one-to-many.

Encoder-Decoder architecture. When tackling a task that requires to map a
sequence into another sequence, chances are that it will be tackled as a many-to-
many one. However, by construction, this configuration only takes the previous
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hidden state and the current element of the sequence as input. It does not take
into consideration the previous output, while this may be valuable information to
fully grasp the context of resolution. Another choice may be to use a one-to-many
configuration which makes predictions according to the last predicted value. The
drawback is that, it needs a single input value. To overcome these issues and take
the best of both worlds, an Encoder-Decoder model has been proposed [32]. Two
neural networks are used in this setting. The first neural network, called Encoder,
is responsible for mapping the input sequence into a single vector representation.
The second neural network, called the Decoder, produces a sequence using the
encoder’s vector representation as the initial input, then it uses the first decoder’s
output as input. This new architecture improves the results obtained on several
learning problems. It has become the state-of-the-art architecture used to tackle
several problems, including VRPs (e.g., [185]). Figure 1.11 shows an example of
an Encoder-Decoder architecture made of two RNNs. However, let us note that
the Encoder and the Decoder neural networks can be of different types.

1.2.1.3 The attention mechanism

The attention mechanism is probably one of the most important concepts in deep
learning that has resulted in breakthrough in many difficult tasks. It is inspired
from the biological attention of animals. Indeed, when they receive a massive
amount of data from their environment, animals can focus on a part of the infor-
mation. For example, when humans read books, they do not process the entire
page at once, but they concentrate on the specific sentence that they are read-
ing. The attention mechanism in deep neural networks mimics this behavior by
retaining only part of the input that is being processed.

The attention mechanism computes attention scores {𝑒𝑖}𝑛𝑖=1 between keys K ∈
R𝑛×𝑑𝑘 and a query q ∈ R𝑑𝑞 using an energy function 𝐸 , i.e. 𝑒𝑖 = 𝐸 (q,K𝑖),
∀𝑖 ∈ {1, . . . , 𝑛}, with 𝑛 being the set length [133]. The keys are the representa-
tions, computed by an encoder, of each input of a set of length 𝑛 each represented
in a 𝑑𝑘 dimension space, i.e. K = [k1,k2, . . . ,kn], with ki ∈ R𝑑𝑘 being row vectors
of the matrix. The query q is generally task-dependent. The vector can be seen as
literally a query or a question formulated by a model to ask for the relevant parts
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of the input necessary to perform the task.

The energy function reflects the correlation between the query and the keys.
The higher the correlation, the more relevant will be the corresponding key. Var-
ious energy functions have been designed in the literature [133]. We summarize
them in Table 1.2 that follows. The most commonly used attention mechanisms
are the additive and multiplicative ones. An empirical comparison between these
two mechanisms showed that additive attention slightly outperforms the multi-
plicative one [25]. However, the multiplicative attention is computationally less
expensive to compute. The scaled dot-product is a variant of the multiplicative
attention, where a scaling factor 1√

𝑑𝑘
is introduced to overcome the vanishing gradi-

ent problem of the softmax function [178]. The general attention scoring function
is a generalization of the multiplicative attention, where a linear transformation
of the keys is introduced. Finally, the cosine attention uses a cosine similarity to
compute a score between the keys and the query. Let us note that the multiplica-
tive, scaled dot-product and the cosine similarity attentions require that 𝑑𝑘 = 𝑑𝑞.

Energy function Formula

Additive [25] 𝐸 (q,k) = v⊺ · 𝑡𝑎𝑛ℎ(Wq · q +Wk · k)

Multiplicative (dot-product) [25] 𝐸 (q,k) = q · k⊺

Scaled dot-product [178] 𝐸 (q,k) = q·k⊺√
𝑑𝑘

General [119] 𝐸 (q,k) = q ·W · k⊺

Cosine similarity [68] 𝐸 (q,k) = q·k⊺
∥q∥·∥k∥

Table 1.2: Different energy functions used to compute the attention scores.
q ∈ R𝑑𝑞 ,k ∈ R𝑑𝑘 , v ∈ R𝑑 ; Wq ∈ R𝑑×𝑑𝑞 ,Wk ∈ R𝑑×𝑑𝑘 ,W ∈ R𝑑𝑞×𝑑𝑘 are learnable
parameters of the energy function. ∥ · ∥ is the Euclidean norm.

The scores {𝑒𝑖}𝑛𝑖=1 are then converted into attention weights through an at-
tention distribution function. Generally, the softmax function is used for that
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purpose.

𝛼𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑖) =
𝑒𝑥𝑝(𝑒𝑖)∑𝑛
𝑗=1 𝑒𝑥𝑝(𝑒 𝑗 )

, ∀𝑖 ∈ {1, . . . , 𝑛}

Since
∑𝑛
𝑖=1 𝛼𝑖 = 1 and 0 ≤ 𝛼𝑖 ≤ 1, ∀𝑖 ∈ {1, . . . , 𝑛}, thus, the attention distri-

bution can be viewed as a categorical distribution from which we can sample an
element accordingly. As we will see, this property is later used in designing deep
neural network methods for solving combinatorial optimization problems [185].
Moreover, the attention mechanism has allowed new developments for neural net-
work architectures, as we will see in the next subsection.

1.2.1.4 Transformer

One of the limitations of RNNs is that the sequential processing of the input data
cannot be parallelized, since to compute the current hidden state h𝑡 , it is needed
to have the previous hidden state h𝑡−1. Furthermore, empirical evaluations show
that it is difficult to process very long sequences with recurrent neural networks
due to the vanishing gradient phenomenon. In addition, RNNs consider sequences,
which implies that the order in which the data is passed to the neural network
is important. That may not be suited for some tasks, such as the TSP. This has
motivated research for alternatives that can overcome these shortcomings. In 2017,
a team at Google developed Transformers, a new type of feed-forward network
based primarily on self-attention [178].

A Transformer is a stack of 𝑁 identical transformer blocks, where each output
of a block in the input of the next block. A Transformer block is made of two sub-
layers: a multi-head attention layer (𝑀𝐻𝐴(·)) and a feed-forward layer (𝐹𝐹 (·))
(see Figure 1.12). Between each sublayer, there is a skip connection and a layer
normalization to prevent overfitting and to speed up training [10], i.e. for a set of
input vectors {x𝑖}𝑛𝑖=1 (with x𝑖 ∈ R𝑑):

o𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(x𝑖 + 𝑀𝐻𝐴(x𝑖)), ∀𝑖 ∈ {1, . . . , 𝑛}

h𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(o𝑖 + 𝐹𝐹 (o𝑖)), ∀𝑖 ∈ {1, . . . , 𝑛}

Skip connection [72] allows the output to bypass one or more layers and to be
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added to the final output, i.e, x𝑖+1 = 𝑓 (x𝑖) + x𝑖. This enables the design of deep
architectures without degrading the performance of the deep neural network.
The layer normalization [10] is a type of normalization that operates on a single
training example and normalizes the values across each feature independently. For
each training example, the mean, and variance are calculated for each feature, and
then the features are normalized based on these statistics. This normalization
improves the convergence and the generalization of the neural network.

The Multi-Head Attention 𝑀𝐻𝐴(·). As introduced in the previous subsection,
the attention scores are computed using a query and keys. Transformer extends
this idea by considering the attention as a mapping from queries to key-value pairs.
The idea behind this, is to be able to compute new representations for each input
as a convex sum of all the values, with different coefficients computed using the self-
attention mechanism. Here, "self" refers to the fact that this mechanism is used on
data that comes from the same set ; if we consider a single input as a set of vectors
{x𝑖}𝑛𝑖=1, then each vector x𝑖 attends to another input vector xj ( 𝑗 ∈ {1, . . . , 𝑛}). To
diversify the representations, the attention mechanism is decoupled 𝐿 times, hence
multiple queries and key-value pairs are computed for the same inputs; therefore it
uses multiple attention heads (thus the name Multi-Head Attention). A scaled dot-
product is used to compute the attention scores, followed by a softmax activation
function, i.e.

𝛼𝑙𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(q𝑙
𝑖
· (k𝑙

𝑗
)⊺

√
𝑑𝑘

)
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛},∀𝑙 ∈ {1, . . . , 𝐿} (1.1)

The new head-wise representation o𝑙
𝑖
is computed using a convex sum of all the

values {v𝑙
𝑗
}𝑛
𝑗=1 using the attention scores.

o𝑙𝑖 =
𝑛∑︁
𝑗=1

𝛼𝑙𝑖 𝑗 v𝑙𝑗 , ∀𝑖 ∈ {1, . . . , 𝑛} (1.2)

where ∀𝑖 ∈ {1, . . . , 𝑛}, ∀𝑙 ∈ {1, . . . , 𝐿}:

q𝑙𝑖 = W𝑙
𝑞 x𝑖 + b𝑙𝑞
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k𝑙𝑖 = W𝑙
𝑘 x𝑖 + b𝑙𝑘

v𝑙𝑖 = W𝑙
𝑣 x𝑖 + b𝑙𝑣

with x𝑖 ∈ R𝑑𝑥 , q𝑙
𝑖
∈ R𝑑𝑞 , k𝑙

𝑖
∈ R𝑑𝑘 , v𝑙

𝑖
∈ R𝑑𝑣 , W𝑙

𝑞 ∈ R𝑑𝑞×𝑑𝑥 , W𝑙
𝑘
∈ R𝑑𝑘×𝑑𝑥 , W𝑙

𝑣 ∈
R𝑑𝑣×𝑑𝑥 , b𝑙𝑞 ∈ R𝑑𝑞 , b𝑙

𝑘
∈ R𝑑𝑘 , b𝑙𝑣 ∈ R𝑑𝑣 and 𝑞𝑘 = 𝑑𝑞.

The head-wise representations o𝑙
𝑖

are then concatenated together to form the
final layer representation o𝑖.

o𝑖 = [o1
𝑖 ; o2

𝑖 ; . . . ; o𝐿𝑖 ], ∀𝑖 ∈ {1, . . . , 𝑛}

Since there is a skip connection, right after the 𝑀𝐻𝐴 function, we must keep
the dimension of 𝑜𝑖 the same as the dimension of x𝑖, i.e. o𝑖 ∈ R𝑑𝑥 . To do so, we
choose the number of heads as a divisor of 𝑑𝑥 (𝑑𝑥 mod 𝐿 = 0).

The feed-forward layer 𝐹𝐹 (·). It is simply a multi-layer perceptron with two
hidden layers and an activation function in between, i.e.

𝐹𝐹 (x) = W2 𝑅𝑒𝐿𝑈 (W1 x + b1) + b2

where x ∈ R𝑑𝑥 ,W1 ∈ R𝑑1×𝑑𝑥 ,b1 ∈ R𝑑1 ,W2 ∈ R𝑑2×𝑑1 ,b2 ∈ R𝑑2 .

One of the strong properties of the Transformer neural network is its ability
to compute a representation for an input that is a set; thus it is invariant to the
order of the elements in the input, contrary to RNNs that assume data to be a
sequence and for which element ordering will influence the model’s outputs. Thus,
using a Transformer for VRPs does not introduce a bias regarding inputs’ order.

Let us note that it is still possible to encode a sequence using Transformers by
introducing a positional encoding [178]. Positional encoding is added to the input
embeddings of the transformer model. It allows the model to differentiate between
inputs based on their position, enabling it to consider the order of the sequence.

1.2.1.5 Graph neural networks

In the section 1.1, we saw that the VRP has a graph formulation. It is possible to
take advantage of that formulation by considering a type of neural networks that
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Multi-head Attention

Add and norm

Feed-forward network

Add and norm

Inputs

Outputs

×𝑁

Figure 1.12: The Transformer model.
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are adapted to graphs, namely Graph Neural Networks (GNNs).
The goal of GNNs is to compute the nodes and the graph representations based

on the structure of the graph, i.e., starting from a set of node and edge features,
GNNs define nodes embeddings and a graph embedding, that are a representation
of, respectively, the nodes and the graph in a high dimension vector space. The
message-passing framework that stacks 𝐾 GNN layers is used for that [70]. Each
layer 𝑘 ∈ {1, . . . , 𝐾} can be viewed as a differentiable function with parameters
𝜃 (𝑘) that computes for each node 𝑢 a node embedding h(𝑘)𝑢 as follows:

h(𝑘)𝑢 = 𝐹 (h(𝑘−1)
𝑢 , {h(𝑘−1)

𝑣 }𝑣∈N𝑢 , {𝑎𝑢𝑣}𝑣∈N𝑢 , 𝜃 (𝑘))

N𝑢 is the set of the neighboring nodes of a node 𝑢 ∈ 𝑉 and {𝑎𝑢𝑣}𝑣∈N𝑢 the set of
edge features of the edge set that link 𝑢 to its neighbors 𝑣 ∈ N𝑢.

The function 𝐹 itself relies on two mechanisms: neighborhood message aggre-
gation and node embedding update (see Figure 1.13 for an example of an imple-
mentation of a message passing scheme), defined as:

m(𝑘)𝑢 = Aggregate
(
{h(𝑘−1)

𝑣 }𝑣∈N𝑢 , {𝑎𝑢𝑣}𝑣∈N𝑢
)

h(𝑘)𝑢 = Update(h(𝑘−1)
𝑢 ,m(𝑘)𝑢 )

The Aggregate function gathers the node and edge representations from the
node’s neighbors and their connecting edges, and computes an embedding that
summarizes the gathered information. An example of aggregation is the sum of
node embeddings, i.e. m(𝑘)𝑢 =

∑
𝑣∈N𝑢 h(𝑘−1)

𝑣 . Other aggregation functions include
the max, mean, and weighted sum of the neighbors embeddings. The Update

functions combines the embedding of the node 𝑢 from layer 𝑘 −1 with the message
from the neighbors into a new node embedding h(𝑘)𝑢 . A simple Update function
can consider passing the node embedding from the previous layer h(𝑘−1)

𝑢 and the
neighbors message m(𝑘)𝑢 through two different MLPs, summing up the result, and
adding non-linearity with an activation function, i.e.

Update(h(𝑘−1)
𝑢 ,m(𝑘)𝑢 ) = 𝜎(𝑀𝐿𝑃1(h(𝑘−1)

𝑢 ) + 𝑀𝐿𝑃2(m(𝑘)𝑢 ))

We can distinguish two families of GNNs: spectral and spatial GNNs.
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𝑢

𝑣1

𝑣2

𝑣3

h(𝑘−1)
𝑢

m(𝑘)𝑢 = h(𝑘−1)
𝑣1 + h(𝑘−1)

𝑣2 + h(𝑘−1)
𝑣3

h(𝑘)𝑢 = 𝑅𝑒𝐿𝑈 (W1 · h(𝑘−1)
𝑢 +W2 ·m(𝑘)𝑢 )

h(𝑘−1)
𝑣1

h(𝑘−1)
𝑣3

h(𝑘−1)
𝑣2

Figure 1.13: Example of a GNN layer that computes the embedding of the node 𝑢
(in orange) using a sum for the aggregation of the embeddings of the neighboring
nodes (in green) h(𝑘−1)

𝑣1 ,h(𝑘−1)
𝑣2 ,h(𝑘−1)

𝑣3 and an update function made of two MLPs
with weights W1 and W2 and ReLU activation function.

Spectral GNNs rely on spectral graph representations based on graph signal pro-
cessing theory. Properties such as adjacency matrix, graph Laplacian, eigenvector
and eigenvalue decomposition are exploited in order to compute the embeddings.
Graph Convolutional Networks (GCN) is one of the most used neural networks of
this type [97]. GCN operates the Aggregate and Update functions in one by
introducing self loops, and it uses a symmetric normalization based on the degree
of each node, i.e.,

h(𝑘)𝑢 = 𝜎

(
W(𝑘) ·

∑︁
𝑣∈N𝑢∪{𝑢}

h(𝑘−1)
𝑣√︁

|N𝑢 | · |N𝑣 |

)
Spatial GNNs exploits the graph topology by operating on a group of closed neigh-
bors. One of the successful approaches of this type is the Graph Attention network
(GAT) [179]. GAT uses a weighted sum of embeddings of a node, and its neighbors
to compute a new node’s embedding. It uses the Multi-head attention mechanism
from Transformer to compute multiple embeddings of the same node, i.e., for each
head 𝑙, the following computation is performed:

h(𝑘),𝑙𝑢 =
∑︁
𝑣∈N𝑢

𝛼𝑙𝑢𝑣 ·W(𝑘),𝑙h(𝑘−1),𝑙
𝑣
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where 𝛼𝑙𝑢𝑣 are computed using an attention mechanism:

𝛼𝑙𝑢𝑣 =
𝑒𝑥𝑝(𝐿𝑅𝑒𝐿𝑈 (a⊺ [W(𝑘),𝑙h(𝑘−1),𝑙

𝑢 ; W(𝑘),𝑙h(𝑘−1),𝑙
𝑣 ]))∑

𝑣′∈N𝑢 𝑒𝑥𝑝(𝐿𝑅𝑒𝐿𝑈 (a⊺ [W(𝑘),𝑙h(𝑘−1),𝑙
𝑢 ; W(𝑘),𝑙h(𝑘−1),𝑙

𝑣′ ]))

The final node embedding is represented either by concatenating or averaging
the multi-head embeddings h(𝑘),𝑙𝑢 , followed by an activation function 𝜎(·); i.e.

h(𝑘)𝑢 = 𝜎

(
[h(𝑘),1𝑢 ; h(𝑘),2𝑢 ; . . . ; h(𝑘),𝐿𝑢 ]

)
h(𝑘)𝑢 = 𝜎

( 1
𝐿

𝐿∑︁
𝑙=1

h(𝑘),𝑙𝑢

)
with W(𝑘),𝑙 ∈ R𝑑×𝑑 are the weight matrices of the 𝑙𝑡ℎ head of the 𝑘 𝑡ℎ GNN block
for the node embeddings, h(𝑘−1),𝑙

𝑣 is the node embedding from the 𝑙𝑡ℎ head of the
(𝑘 − 1)𝑡ℎ GNN block, and a ∈ R𝑑 is a vector of learned parameters.

The literature around GNNs is rich and continues to grow, reader may refer to
a review regarding different aspects of GNNs [208], or a recent book [194]11.

1.2.2 Reinforcement learning

1.2.2.1 Definition

Reinforcement learning is a subfield of Machine Learning that enables an agent to
learn from its interactions with its environment. The agent takes a sequence of
actions in the context of a sequential decision-making problem, e.g., solving a TSP
requires selecting one city after another. In reinforcement learning, no instruction
is given to the agent about how it must behave (act) to achieve its end goal, instead,
only a scalar, called reward, is returned to the agent to tell it how good its actions
were12. Essentially, reinforcement learning is learning by trial-and-error; the agent
performs actions on the environment, then it receives a reward, and it adjusts its
actions accordingly.

11Freely available at: https://graph-neural-networks.github.io/
12We introduce Reinforcement Learning as a reward maximization problem, but it can also be

formulated as a cost minimization problem so that it fits the case of CVRP, for example.

47

https://graph-neural-networks.github.io/


CHAPTER 1. STATE-OF-THE-ART

Environment

Agent

𝑅𝑡+1

𝑆𝑡+1

𝑅𝑡

𝑆𝑡

𝐴𝑡

Figure 1.14: The agent-environment interaction diagram in Reinforcement Learn-
ing, adapted from Sutton and Barto [171].

Formally, we model reinforcement learning problems using a Markov Decision
Process (MDP). An MDP is a tuple

〈
S,A,R, 𝑝, 𝛾

〉
representing the set of states,

actions, reward function, a transition probability function, and the discount rate,
respectively. At each time step 𝑡 ∈ {1, . . . , 𝑇}13, the agent observes a state 𝑆𝑡 ∈ S
and, on that basis, takes an action 𝐴𝑡 ∈ A. A reward 𝑅𝑡+1 is returned by the
environment to the agent, as well as the new state 𝑆𝑡+1 (see Figure 1.14). Thus,
reinforcement learning is an ideal framework to model sequential decision-making
problems, where we have a trajectory given by the states, actions, and rewards as
follows: T = 𝑆0, 𝐴0, 𝑅0, 𝑆1, 𝐴1, 𝑅2 . . .. When the trajectory reaches the terminal
state 𝑆𝑇 , in case of finite MDPs, we call it an episode.
The dynamics of the problem are defined by the state-transition probabilities,
where the next state depends solely on the current state and action values (thus
respecting the Markov property), i.e.,

𝑝 : S × S × A −→ [0, 1]
(𝑠′, 𝑠, 𝑎) ↦−→ 𝑝(𝑠′|𝑠, 𝑎) = 𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)

The reward is a central quantity in reinforcement learning. Formally, rewards
are computed using a reward function that depends on the current state, the
action and the resulting next state, i.e. 𝑅𝑡 = R(𝑆𝑡 , 𝐴𝑡 , 𝑆𝑡+1). The reward function
can either be deterministic or stochastic, depending on the problem being tackled.

13In our case, we consider only finite MDP with time horizon 𝑇 ≠ +∞.
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The goal of the agent is to maximize the cumulative reward over a trajectory
starting from time 𝑡 until the time horizon 𝑇 is reached, which is called return.
The return 𝐺 𝑡 is generally discounted using a discount factor 𝛾 ∈ [0, 1] i.e.,

𝐺 𝑡 :=
𝑇−𝑡−1∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

.
In reinforcement learning, the agent acts by following a policy denoted as 𝜋(𝑎 |𝑠).

In general, the policy is stochastic, and is defined as a mapping from states to
probabilities of selecting each possible action;

𝜋(𝑎 |𝑠) := 𝑃(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠)

A good policy leads to high returns, while a bad one gives poor quality returns. If
we note 𝐽𝜋 as the expected return for the policy 𝜋, i.e., 𝐽𝜋 := E𝜋 [𝐺 𝑡], then a good
policy is the one that maximizes the expected return among all possible policies,
which corresponds to 𝜋∗ = arg max

𝜋

E𝜋 [𝐺 𝑡]

There are two ways of solving a reinforcement learning problem:

1. Value-based methods: these methods estimate the value of states or state-
action pairs. The agent uses the value function to derive a policy by selecting
actions that maximize the value estimates.

2. Policy-based methods: instead of estimating the value of different actions
or state-action pairs, policy-based methods focus on finding the best policy
directly. The policy is typically represented as a parameterized function,
such as a neural network.

1.2.2.2 Value-based methods

Value-based methods define value functions, which are functions that estimate
"the goodness" of a given state or a state-action pair when following a given policy.
This is determined by the expected return the agent can receive in a given state
when acting according to the policy 𝜋. We can distinguish the state value function
and the state-action value function.
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𝑉𝜋 (𝑠) := E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠] (1.3)

𝑄𝜋 (𝑠, 𝑎) := E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1.4)

Thus, to solve reinforcement learning problems using value-based methods, we
estimate the value functions. One central idea for that is to use Temporal Differ-
ence (TD) Learning. We estimate the state value and state-action value functions
through iterative update as follows (𝛼 being the learning rate):

𝑉 (𝑆𝑡) ←− 𝑉 (𝑆𝑡) + 𝛼(𝑅𝑡+1 + 𝛾𝑉 (𝑆𝑡+1) −𝑉 (𝑆𝑡)) (1.5)

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎∈A(𝑆𝑡+1)

𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡)) (1.6)

The equation 1.6 gives us an ubiquitous value-based algorithm named Q-Learning
[191]. The algorithm estimates the optimal state-action value function by itera-
tively updating the Q-values in an off-policy manner, i.e., the update is performed
by choosing the action with the maximum return from 𝑆𝑡+1, which does not nec-
essarily correspond to the policy that is actually learned (see Algorithm 1). To
balance between exploration (trying new actions to explore the environment) and
exploitation of actions that appear to be the best based on past knowledge, we can
use an 𝜖−greedy strategy; with a probability 𝜖 , the agent selects a random action
(exploration), and with a probability 1 − 𝜖 , the agent selects the action with the
highest Q-value estimation (exploitation).

When the state and action spaces are huge, the computation of all the Q-values
becomes intractable. To overcome this limitation, modern Q-learning algorithms
use deep neural networks to estimate the Q-values (i.e., 𝑄(𝑠, 𝑎; 𝜃)), resulting in
Deep Q-learning (DQN [130]). It uses an experience replay buffer B to store
trajectories (𝑠, 𝑎, 𝑟, 𝑠′) and performs update by sampling from the buffer and min-
imizing a regression loss. The loss function in Deep Q-learning is typically defined
using the Mean Squared Error (MSE) between the predicted Q-values and the
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Algorithm 1: Q-learning algorithm for episodic MDP (adapted from
Sutton and Barto [171])
1 Input: learning rate 𝛼, discount factor 𝛾, exploration parameter 𝜖
2 foreach episode do
3 Initialize 𝑆0
4 foreach 𝑡 ∈ {0, . . . , 𝑇} do
5 Choose 𝐴𝑡 from 𝑆𝑡 using a policy derived from 𝑄 (e.g. 𝜖−greedy)
6 Take action 𝐴𝑡 , observe 𝑅𝑡+1, 𝑆𝑡+1
7 𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 max

𝑎∈A(𝑆𝑡+1)
𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡))

8 end
9 end

target Q-values.

L(𝜃) := E(𝑠,𝑎,𝑟,𝑠′)∼B
[
(𝑦 −𝑄(𝑠, 𝑎; 𝜃))2

]
The target Q-value 𝑦 is computed as:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−)

where 𝑄(𝑠′, 𝑎′; 𝜃−) represents the maximum predicted Q-value over all possible
actions 𝑎′ in the next state 𝑠′, using a separate target Q-network with parameters
𝜃−.

1.2.2.3 Policy-based methods

Policy-based methods propose to search for the optimal policy directly. The policy
can either be a deterministic one or a stochastic one. Stochastic policies are favored
when dealing with discrete action spaces.

Basically, stochastic policies work by increasing the probability value of actions
that maximize the expected return. Generally, a parameterized function represents
these policies 𝜋𝜃 . Thus, finding a good policy reverts to an optimization problem.
The optimization is done by policy gradient algorithms on a policy 𝜋𝜃 (𝑎 |𝑠) rep-
resented as a differentiable function with parameters 𝜃. The search for a policy
is therefore formulated as a continuous optimization problem where we aim to
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maximize the objective function 𝐽 (𝜃) defined as:

𝐽 (𝜃) = E
𝜋𝜃
[𝐺 𝑡]

The policy gradient theorem states that the gradient of the objective function with
respect to the policy parameters 𝜃 can be expressed as:

∇𝜃𝐽 (𝜃) = E𝜋𝜃

[
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐺 𝑡

]
(1.7)

The REINFORCE algorithm approximates the expected gradient in the policy
gradient theorem using sampled trajectories [192]. The update equation for the
policy parameters in REINFORCE is as follows:

𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐺 𝑡 ,

where 𝛼 is the learning rate.
Algorithm 2 presents the REINFORCE algorithm in the episodic case.

Algorithm 2: REINFORCE Algorithm (adapted from Barto and Sutton
[171])

Input: Policy 𝜋𝜃 with parameters 𝜃, learning rate 𝛼
Result: Learned policy 𝜋𝜃

1 Initialize policy parameters 𝜃 randomly;
2 foreach episode do
3 Generate an episode following 𝜋𝜃 :

{(𝑠0, 𝑎0, 𝑟1), (𝑠1, 𝑎1, 𝑟2), . . . , (𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 )};
4 foreach time step 𝑡 = 0 to 𝑇 − 1 do
5 Compute the return: 𝐺 𝑡 ←

∑𝑇
𝑘=𝑡 𝛾

𝑘−𝑡𝑟𝑘+1;
6 Compute the policy gradient: ∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡);
7 Update the policy parameters: 𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐺 𝑡 ;

8 end

9 end
10 return Learned policy 𝜋𝜃 ;

REINFORCE algorithm relies on sampling episodes to estimate the policy gra-
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dient. These sampled episodes introduce inherent variability due to the random-
ness in the environment and the policy itself. Therefore, to reduce the variance, a
baseline 𝑏 is introduced as follows:

∇𝜃𝐽 (𝜃) = E𝜋𝜃 [(𝐺 𝑡 − 𝑏)∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] (1.8)

Value-based methods are often used as a baseline, i.e., 𝑏 = 𝑉 (𝑠𝑡) which are
known in the literature as Actor-Critic methods [171].

There is abundant literature regarding deep reinforcement learning. Readers
may refer to the book of Hao et al. [71] for an in depth introduction.

1.3 End-to-end learning methods for the VRP

1.3.1 Machine learning for combinatorial optimization prob-

lems

Generally, there are two main reasons for using Machine Learning for combinatorial
optimization [21]:

1. Expert knowledge is assumed about the optimization algorithm, and a fast
approximation of heavy computations is desired. In this case, machine learn-
ing is used to learn to imitate the decision of the expert via supervised
learning.

2. Expert knowledge is either not available or insufficient to derive a good
decision-making algorithm. In that case, machine learning will help learn a
strategy through exploring the decision space.

At the algorithmic level, the above-mentioned use cases are implemented in al-
gorithm configuration learning, learning alongside optimization algorithms, and
end-to-end learning.

Algorithm configuration is an important aspect of optimization algorithms, as
many state-of-the-art metaheuristics have several parameters needed to be set
before the resolution process begins. Often, expert knowledge is needed to set the
parameters of an algorithm; they may also change based on instance features. Thus,
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having an algorithm able to set them based on the problem characteristics can
result in better quality candidate solutions for the problem [48]. Another aspect to
consider is the choice of the algorithm to run to solve an instance. Machine learning
models can be trained to predict, given an instance of a combinatorial optimization
problem, which algorithm to use to output the best solution. For example, the
Learning to Improve framework proposes to train a deep reinforcement learning
agent to choose which local search operator to apply at each resolution step [118].
Learning alongside optimization generalizes the algorithm configuration so that
it wraps the decision of the machine learning model inside the resolution loop
along with the optimization algorithm. For example, a machine learning model
can decide if it is advantageous to run a primal heuristic in a branch and bound
algorithm [94].

Finally, end-to-end methods propose to learn a heuristic for solving optimiza-
tion problems. A neural network is used as a general function approximation to
output a solution for the optimization problem. It can be described as a mapping
from the problem-parameters pair (P,R𝑑) to the space of heuristics H .

𝑓 : P × R𝑑 −→ H
(𝑝, 𝜃) ↦−→ 𝑓 (𝑝, 𝜃) = ℎ

The learned heuristic ℎ can be either an existing one, or a completely unknown
heuristic. In the first case, we aim at learning an existing heuristic when the
solution’s quality output by the heuristic is good, but it is time-consuming. The
target heuristic is thus fixed, and we learn it by demonstrating, for each training
instance, the desired solution to output. In the second case, we propose to search
for a heuristic by trial-and-error, until convergence is reached. In this case, the
target heuristic is not fixed, we move from a heuristic search ℎ to another one ℎ′

using the solution quality achieved by the heuristic ℎ on the instances as a signal
to guide the neural network training.

End-to-end methods are intended for solving similar problems to the ones the
deep neural network was trained on. They assume that the target instances come
from the same distribution as the ones used to obtain the training dataset. For
example, in routing problems, it may be problems that come from the same city
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locations.

Let us note that all the previously mentioned algorithmic level implementa-
tions can be used one in cooperation with another. For instance, an end-to-end
learned heuristic can be incorporated into a more general optimization algorithm.
Neural Diving, best represents this cooperation: it proposes to learn variable as-
signments for a mixed integer programs from a set of collected data from SCIP
solver [22]. This learned diving heuristic is then incorporated into the branch and
bound algorithm [131].

In what follows, we propose to review end-to-end machine learning for the VRP.
We will focus on the best known variants of the problem, along with the Traveling
Salesman Problem. The main contributions are summarized in Tables 1.4, 1.5, 1.6,
1.7 (pages 76, 77, 78, 79).

1.3.2 Neural combinatorial optimization for the VRP

1.3.2.1 VRP as a supervised learning problem

In the supervised learning setting, an oracle provides the desired solutions to out-
put, and a deep neural network learns to capture the patterns and relationships
between the inputs (instances) and the outputs (solutions). The goal of training
the deep neural networks is to be able to process instances unseen during training,
by outputting good quality solutions. Let us note (𝑋𝑖, 𝑌 ∗𝑖 )𝑁𝑖=1 a dataset of pairs
of instances’ features and their corresponding solutions obtained via an exact al-
gorithm, or (meta)heuristic giving "good quality" solutions, such as HGS for the
CVRP [181], Concorde for the TSP [6], or LHK3 for both problems [73]. Each
instance 𝑋𝑖 of the dataset is made of a set of coordinates of cities in the case of
TSP, or clients, depots and the demands in the case of CVRP, i.e. 𝑋𝑖 = {x𝑖𝑗 }𝑛𝑗=1,
where

x𝑖𝑗 =


(𝑎𝑖

𝑗
, 𝑏𝑖

𝑗
), where 𝑎𝑖

𝑗
, 𝑏𝑖

𝑗
∈ R represent the 2D-coordinates of a city 𝑗 for TSP

(𝑎𝑖
𝑗
, 𝑏𝑖

𝑗
, 𝑞𝑖

𝑗
), where 𝑎𝑖

𝑗
, 𝑏𝑖

𝑗
, 𝑞𝑖

𝑗
∈ R represent the 2D-coordinates of the depot

or a client 𝑗 and its corresponding demand for CVRP
(1.9)
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The corresponding ground truth solution 𝑌 ∗
𝑖

is represented by a sequence of visit
orders, i.e. 𝑌 ∗

𝑖
= {𝑦∗1, 𝑦

∗
2, . . . , 𝑦

∗
𝑇
}. For example, in the case of TSP, 𝑦∗1 represents

the city index that will be visited at first, and 𝑦∗2 is the index of the second city to
visit, and so on. This sequence has a length 𝑇 equal to the input’s length, in the
case of TSP, and is of different length due to the return to the depot, in the case
of CVRP.

Formulating routing problems as supervised learning problems can be achieved
either in an autoregressive setting or a non-autoregressive one.

Autoregressive setting. In this context, the solution is generated sequentially,
similar to constructive heuristics that choose the next client to be visited at each
step. The probability to output a solution 𝑌𝑖 for some instance 𝑋𝑖 is given by the
probability chain rule as follows:

𝑃𝜃 (𝑌 |𝑋) =
𝑇∏
𝑡=1

𝑝𝜃 (𝑦𝑡 |𝑦1, . . . , 𝑦𝑡−1, 𝑋) (1.10)

where 𝑝𝜃 (·) is a deep neural network with parameters 𝜃. The optimal parame-
ters corresponding to the target heuristic 𝜃∗ are searched by maximizing the log
probabilities of expected output 𝑌 ∗

𝑖
for the instances 𝑋𝑖 of the training set:

𝜃∗ = arg max
𝜃

∑︁
𝑋𝑖 ,𝑌

∗
𝑖

log 𝑃𝜃 (𝑌 ∗𝑖 |𝑋𝑖) (1.11)

"Pointer Network" (Ptr-Net) is the deep learning model that introduces this
approach to solve combinatorial optimization problems [185]. This approach was
tested on Convex Hull, Delaunay Triangulation and the Traveling Salesman Prob-
lem. It follows the Encoder-Decoder architecture with an attention mechanism
to compute the probabilities. Two LSTMs are used as an encoder and a decoder,
respectively. The LSTM encoder maps each city features 𝑥 𝑗 into a 𝑑−dimensional
vector space h 𝑗 . To do so, the hidden state output by the encoder, at each en-
coding step, is kept as the city’s new representation. The decoder is responsible
for computing, at each decoding step 𝑡, a query vector q𝑡 that will be used in an
additive attention mechanism to compute the probability of cities’ selection, i.e.,

56



1.3. END-TO-END LEARNING METHODS FOR THE VRP

𝑝𝜃 (𝑦𝑡 = 𝑗 |𝑦1, . . . , 𝑦𝑡−1, 𝑋) =
𝑒𝑥𝑝(𝑢 𝑗𝑡 )∑𝑛
𝑘=1 𝑒𝑥𝑝(𝑢𝑘𝑡 )

where:
𝑢
𝑗
𝑡 = v⊺ · 𝑡𝑎𝑛ℎ(W𝑞 q𝑡 +W𝑒 h 𝑗 ) (1.12)

the query vector q𝑡 is computed by passing into the decoding LSTM the features
of the lastly selected city. Having access to ground-truth optimal solutions is
often impossible or time-consuming. To overcome this, Objective-based training
is introduced [126]. The deep neural network is still trained in a supervised way,
but using instances with a heuristically generated solution using, for example, the
Nearest Neighbor heuristic. Instead of directly training the deep neural network to
mimic the heuristic, the solution is retained, if and only if it is better than the one
that is output by Ptr-Net. Thus, if the solution found by the neural network 𝑌 is
better than the ground-truth heuristic solution 𝑌 ∗, in terms of objective function,
then, it is not necessary to adjust the weights of the neural network because in
this case, it will learn for a worse quality solution than the one it found [126], i.e.,

𝜃∗ = arg max
𝜃

∑︁
𝑋𝑖 ,𝑌

∗
𝑖

𝟙 𝑓 (𝑌 ∗
𝑖
)< 𝑓 (𝑌𝑖) log 𝑃𝜃 (𝑌 ∗𝑖 |𝑋𝑖) (1.13)

with 𝑓 (·) being the objective function and 𝟙 𝑓 (𝑌 ∗
𝑖
)< 𝑓 (𝑌𝑖) =


1 𝑖 𝑓 𝑓 (𝑌 ∗

𝑖
) < 𝑓 (𝑌𝑖)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ptr-Net with Objective-based training was later used to tackle a Pickup and De-
livery problem (Ride Hailing). A Large Neighborhood Search (LNS) metaheuristic
is used to generate the approximate solutions for training. The resulting trained
model is then used as an insertion heuristic inside the LNS. The motivation behind
this hybridization is to take advantage of the past runs on similar problems. The
trained model turned out to be better than a handcrafted greedy construction
heuristic, and improved the quality of LNS compared with a handcrafted inser-
tion procedure [172]. Ptr-Net uses neural network weights as a means of storing
relevant information, but as the weights get updated, information is overwritten.
To avoid this, an approach that uses an explicit memory module was proposed
for TSP and the CVRP [177]. This approach relies on Differentiable Neural Com-
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puters (DNCs), which explicitly and intentionally (over)write information to an
external memory. The DNC can be viewed as a differentiable CPU having access
to a differentiable RAM [69]. The model stores edge information, then performs a
read operation to retrieve the edges that are in the solution. While this approach
turns out to be effective to solve TSP and CVRP, it is hard to train, since the
number of edges grows quadratically with the number of vertices. The approach
required training using curriculum learning, by gradually increasing the size of the
instances, until it reaches the size of the desired problem to tackle.

A recent method proposed by Li et al. [113] proposes to tackle large-scale CVRP
instances ranging from 500 to 3000 clients. Their approach proposes to train a
Transformer model, via supervised learning, to generate CVRP sub-problems and
to pass them to black-box solvers. The algorithm starts from a feasible solution,
and defines the sub-problems as a set of routes in the current solution. The sub-
problems are built by first selecting a route and computing its centroid, then the 𝑘
nearest routes are added. The nearest routes are determined by the Euclidean dis-
tance between the centroid of each route and the initially selected route’s centroid.
The sub-problem selection is then formulated as a regression problem, where a
Transformer model determines the cost of passing the sub-problem into a solver.
In the training dataset, this cost is already determined for each sub-problem using,
for example, the LKH3 and HGS-CVRP algorithms. At test, the sub-problem
which yields the best improvement in terms of cost is selected. The method is
competitive with LKH3 while being faster to execute. This cooperation between
learning methods and handcrafted methods proves to be more effective in dealing
with large instances, up to 3000 nodes, which pure learning-based methods still
struggle to tackle.

Non-autoregressive setting. In this case, the deep neural network is designed
to output the solution in a one-shot fashion, by producing a probabilistic heatmap
over the adjacency matrix. Table 1.3 shows an example of such a heatmap for a
TSP instance with 4 cities, which corresponds to the probability that an edge is
part of the optimal solution. For instance, there is a probability of 0.3 that the
edge (1,3) is part of the optimal solution.

This setting was introduced for the TSP in the work of Joshi et al. [89]. Their
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1 2 3 4
1 0.00 0.20 0.30 0.50
2 0.10 0.00 0.50 0.40
3 0.30 0.40 0.00 0.30
4 0.40 0.50 0.20 0.00

Table 1.3: Probability heatmap for TSP edges

model is based on a stack of Graph ConvNet layers, which computes new nodes
and edges representations for each instance. The node features used are the 2𝐷-
coordinates, while the edges features correspond to the distance between each city
at the ends of an edge. The edges embeddings are then converted into a proba-
bilistic heatmap using a Multi-Layer Perceptron. This approach, while effective in
practice, can become intractable to train for large instances, as for a batch of 𝐵
instances of 𝑛 cities, 𝐵× 𝑛× 𝑛 heatmaps needs to be computed, which would make
the space complexity of this approach intractable for large values of 𝑛. Also, know-
ing that numerous instances are needed to train the model (in the order of one
million), obtaining the optimal solutions for large instances becomes a bottleneck.
This model was later on trained on CVRP instances with ground-truth generated
by LKH3 [99]. A similar approach, which uses a different graph neural network
encoder and more advanced search strategies (see subsection 1.3.3) was proposed
to tackle large TSP instances [58].

While supervised learning turned out to be able to learn heuristics for solv-
ing VRPs, applying it to real-world instances is still challenging. First, it re-
quires labeled data, which ideally would be ground-truth optimal solutions. While
Objective-based training showed that it is possible to get ground-truth solution
from heuristics and train the neural network towards better solutions, it is not
guaranteed that the learned heuristic is of better quality. For non-autoregressive
models, while they tend to output better solutions than autoregressive models,
they require a pre-defined fixed size output for the model, which means that either
a model needs to be trained for each instances’ size (e.g., TSP with 100 nodes),
or advanced exploitation techniques such as graph sampling, heatmap merging,
Monte Carlo Tree Search (MCTS) are required to achieve good results [58].
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1.3.2.2 VRP as a reinforcement learning problem

In combinatorial optimization problems, we have access to an objective function
which can quantify the quality of a solution. Luckily, reinforcement learning can
exploit this signal as a reward or a cost to provide feedback to the deep neural
network models, and to guide them towards the parameters that output good
quality solutions. The approach, known as Neural Combinatorial Optimization
(NCO), was introduced by Bello et al. [20] as a "framework to tackle combina-
torial optimization problems using reinforcement learning and neural networks".
The advantage of this approach is that it does not require ground-truth labels,
as in supervised learning. This is a further step towards the automatic definition
of heuristic methods for difficult NP-hard problems. In this case, the solution
space includes all possible, even unknown, heuristic search algorithms, which is
at the same time, an advantage, and a disadvantage. If trained well, reinforce-
ment learning-based policies are a great opportunity to discover efficient unknown
heuristics for difficult optimization problems. The risk, in this case, is that the pol-
icy search process gets stuck into a local optimum, which yields a worse heuristic
method than a manually defined one. As for handcrafted heuristic methods, the
framework can be used to define constructive methods or improvement methods.

Construction-based neural combinatorial optimization. These methods start
from an empty solution and iteratively adds nodes to it until a stop criterion is
met. For the CVRP and TSP, the criterion is the visit of all clients/cities. This
iterative process corresponds to a sequential decision-making problem. Thus, it is
possible to model the problem using a finite MDP, and therefore use reinforcement
learning to solve the problem. Following an MDP formulation, states, actions, and
reward function are defined as follows:

• State (𝑠𝑡): it reflects the evolution of the solution process. Thus, it corre-
sponds to the instance features as defined in Equation 1.9 (page 55) and an
empty solution at 𝑡 = 0, or the partial solution under construction for 𝑡 > 0.

• Action (𝑎𝑡): it corresponds to the choice of the next node (city/client) to
add to the partial solution.
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• Reward (𝑟𝑡): it is often deterministic and reflects the change in the cost
function after taking action 𝑎𝑡 and transitioning to a new state 𝑠𝑡 . It is
defined as the total distance traveled following the partial solution until the
decision step 𝑡. When the termination state is reached, the cumulative reward
corresponds to the objective function of the routing problem.

Let us note that, in the case of deterministic routing problems, the dynam-
ics of the MDP are also deterministic, i.e., the probability of transitioning to a
state 𝑠′ while being in a state 𝑠 and taking the action 𝑎 is always equal to 1;
𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 1.

In Neural Combinatorial Optimization for routing problems, the goal is to learn
the parameters of a stochastic policy 𝑃𝜃 (·|𝑋), represented as a deep neural network,
which, given an instance 𝑋 = {𝑥 𝑗 }𝑛𝑗=1 of the problem, assigns high probability to
good quality solutions, while it lowers the probability of bad quality ones. This
probability is defined using the probability chain rule, as in equation 1.10 (page
56). For simplicity, we will first detail the framework, in the case of the TSP. In
this case, a solution of a TSP instance 𝑋 represents a visit order of the cities in the
form of a permutation 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, where 𝑦𝑡 is the index of the city that is
selected at step 𝑡. Thus, the training objective is the minimization of the expected
TSP tour length of the solutions 𝑌 sampled from the model for a given instance
𝑋, i.e. J(𝜃, 𝑋) = E𝑌∼𝑝𝜃 (·|𝑋) [𝐿 (𝑌, 𝑋)], with 𝐿 (𝑌, 𝑋) = ∑𝑛−1

𝑡=1 ∥𝑥𝑦𝑡 − 𝑥𝑦𝑡+1 ∥ + ∥𝑥𝑦𝑛 − 𝑥𝑦1 ∥.
Generally, the model is trained to tackle a class of instances of the same prob-

lem, which means that the instances come from the same distributionD. The train-
ing objective is, thus, formulated as the minimization of the expected tour lengths
of the solutions 𝑌 sampled from the deep neural network, i.e. 𝐽 (𝜃) = E𝑋∼D [J(𝜃, 𝑋)].
To do so, we resort to the gradient descent algorithm to find the parameters 𝜃
of the model. The gradient is given by the REINFORCE with baseline algo-
rithm: ∇𝜃𝐽 (𝜃) = E𝑋∼D,𝑌∼𝑃𝜃 (·|𝑋)

[(
𝐿 (𝑌, 𝑋) − 𝑏(𝑋)

)
∇𝜃 log 𝑃𝜃 (𝑌 |𝑋)

]
, which itself is

estimated using the Monte Carlo sampling (Algorithm 3 depicts the whole train-
ing procedure):

∇𝜃𝐽 (𝜃) ≈
1
𝐵

𝐵∑︁
𝑖=1

[(
𝐿 (𝑌𝑖, 𝑋𝑖) − 𝑏(𝑋𝑖)

)
∇𝜃 log 𝑃𝜃 (𝑌𝑖 |𝑋𝑖)

]
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Algorithm 3: REINFORCE with critic baseline for the TSP (adapted from
Bello et al. [20])
1 Inputs: policy network 𝑃𝜃 , baseline network 𝑏𝜙, number of epochs 𝐸 ,

batch size 𝐵, number of instances 𝐾 , number of cities 𝑛

2 𝑇 ← 𝐾

𝐵
3 for 𝑒 ← 1 to 𝐸 do // train for 𝐸 epochs
4 for 𝑡 ← 1 to 𝑇 do // loop over the 𝑇 instance batches
5 𝑋𝑖 ← getInstance(𝑛), ∀𝑖 ∈ {1, ..., 𝐵}
6 𝑌𝑖 ← SampleSolution(𝑋𝑖, 𝑝𝜃), ∀𝑖 ∈ {1, ..., 𝐵}
7 𝑏𝑖 ← 𝑏𝜙 (𝑋𝑖), ∀𝑖 ∈ {1, ..., 𝐵}
8 𝐿𝑖 ← 𝐿 (𝑋𝑖, 𝑌𝑖) ∀𝑖 ∈ {1, ..., 𝐵}

// Compute the loss and update the neural network

parameters

9 ∇𝜃𝐽𝜃 ←
1
𝐵

𝐵∑︁
𝑖=1

(𝐿𝑖 − 𝑏𝑖)∇𝜃 log 𝑃𝜃 (𝑌𝑖 |𝑋𝑖)

10 L𝜙 ← 1
𝐵

∑𝐵
𝑖=1 ∥𝑏𝑖 − 𝐿𝑖∥

11 𝜃 ← Adam(𝜃,∇𝜃𝐽𝜃)
12 𝜙← Adam(𝜙,∇𝜙L𝜙)
13 end
14 end

Similar to Ptr-Net, NCO follows the encoder-decoder approach. Bello et al. [20]
uses a LSTM encoder and decoder with an additive attention and mask mecha-
nism for computing the probability of selecting a city for the TSP. The mask
mechanism intervenes when computing the attention scores. This mechanism is
problem-dependent, as it faithfully transcribes the problem constraints. For ex-
ample, in the case of TSP, the already visited cities are masked, by forcing the
attention score value of the city to −∞, thus when using the softmax function,
its corresponding probability would be zero. Moreover, the attention scores are
clipped using a parameter 𝐶. This parameter controls the entropy of the model.
The higher is the value of 𝐶, the more confident the model is.

𝑢𝑡𝑗 =


𝐶 · 𝑡𝑎𝑛ℎ

(
v⊺ 𝑡𝑎𝑛ℎ(Wq qt +We hj)

)
, 𝑗 ∉ {𝑦𝑡 ′}𝑡 ′<𝑡

−∞ otherwise
(1.14)
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with hj being the embedding of the node 𝑥 𝑗 resulting from the encoding phase,
and qt is the query vector resulting from the glimpse mechanism, and 𝑦𝑡 ′ (𝑡′ < 𝑡)
are the already visited cities in the previous steps.

The glimpse mechanism is used to aggregate the contributions of different part
of the input to compute a query vector. In practice, this mechanism uses the
attention over the city embeddings {hj}𝑛𝑗=1 and the decoder’s output 𝑑𝑡 vector
followed by a softmax to compute attention weights {𝛼𝑡

𝑖
}𝑛
𝑖=1. These weights are

then used to compute a query vector 𝑞𝑡 as a weighted convex sum of the cities
embeddings.

qt =

𝑛∑︁
𝑖=1

𝛼𝑡𝑖hi

The baseline is an estimation of the value of the tour length. It is computed by
a deep neural network, named critic network 𝑏𝜙 (·). Bello et al. [20] uses a LSTM
encoder and a MLP with two hidden layers as critic network. It takes as input the
instance 𝑋 and outputs a single scalar which estimates the optimal tour length.
This deep neural network is trained to minimize the mean squared error objective
between its predictions 𝑏𝜙 (𝑋) and the actual tour lengths sampled by the policy
𝑝𝜃 (·|𝑋), i.e.,

L𝜙 =
1
𝐵

𝐵∑︁
𝑖=1

∥𝑏𝜙 (𝑋𝑖) − 𝐿 (𝑌𝑖, 𝑋𝑖)∥, with 𝑌𝑖 ∼ 𝑃𝜃 (·|𝑋)

The model was trained on instances of size 20, 50, 100 and showed competitive
results against handcrafted constructive methods, such as Christofides and OR-
Tools.

Nazari et al. [132] adapted the NCO framework for the CVRP and SDVRP. For
this, the authors divided the instance features into static and dynamic ones. The
static features being the coordinates of the clients and the dynamic features being
the demands, since they change across the resolution process (a selected client sees
its demand become zero to reflect that it is completely fulfilled).

They defined an encoder-decoder model which consists of a single layer MLP
encoder without an activation function14 and a LSTM decoder with additive atten-

14this is equivalent to performing a linear transformation of the input.
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tion. Using a MLP for encoding removes the bias induced by the LSTM encoder
on the order of inputs. This allows them to encode the instance as a set of points
instead of a sequence. They, however, kept the LSTM decoder since, the resulting
candidate solution can be viewed as a sequence of visit order. The LSTM takes
only the static features of the last selected client as input, as using both static and
dynamic ones does not show any improvement. Omitting them has the advantage
of reducing the number of parameters to learn for the deep neural network model,
while not degrading performance. Similar to Bello et al. [20], a glimpse mechanism
is used to compute the query vector using the decoder’s output, and the static and
dynamic embeddings for the clients.

They further extended the mask mechanism so that the following attention
scores are masked at each step 𝑡 for:

• Clients with null demands;

• The depot, if it was visited at the step 𝑡−1, to prevent the model from being
stuck at the depot. It becomes eligible again at 𝑡 + 1;

• Clients with demands greater than the vehicle’s capacity, in the CVRP case.

The model was trained on instances of 10, 20, 50, 100 clients using REINFORCE
with Critic baseline. It yields better solutions compared with Clarke and Wright
savings heuristic, the Sweep algorithm, and OR-Tools.

In the work of Nazari et al. [132], only VRPs with homogeneous vehicle capaci-
ties were tackled. More precisely, there is no restriction on the number of available
vehicles, only the total distance traveled should be minimized. This work has been
extended for the heterogeneous case [180]. In addition to the clients’ features (co-
ordinates and demands), the state is represented by vehicles’ features (coordinates
and remaining capacity). They modeled the problem as a multi-agent one; a policy
is trained for each vehicle (agent), in a centralized and cooperative way. This is
achieved by making the agents share the same state, and decide in a sequential
and alternating way. They extended the deep neural network model of Nazari et
al. [132] by introducing vehicle features, and used Advantage Actor Critic (A2C) to
train a policy for each vehicle [129]. The algorithm was experimented on HCVRP
with 10, 20, 50 and 80 clients and 3 vehicles with different capacities. The results
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indicate that the model is competitive with the Sweep and Clarke and Wright
savings heuristics, but it does not beat OR-Tools solver. The authors argue that
training the agents in an alternating way introduces a bias by assuming that the
optimal solution is achieved by alternating between the decisions for each agent.
One possible limitation of their framework is the need of training different policies
for each vehicle, but no further investigation was made available by testing the
model on a different number of vehicles.

Following the NCO framework, Kool et al. [100] introduced in 2019 the Atten-
tion Model (AM), a deep neural network architecture fully based on the attention
mechanism for tackling several routing problems: TSP, CVRP, SDVRP, Orien-
teering Problem (OP), Prize Collecting TSP (PCTSP) and Stochastic PCTSP.
They also introduced a new baseline which speeds up learning. Their encoder uses
two MLPs: one for computing the clients’ embeddings and another one for the
depot embedding (which they consider as a different node). Then, a Transformer
encoder with 3 Transformer blocks is used to compute a new representation of the
nodes (clients + depot) and a graph representation by using a mean pooling layer.
Their decoder uses a glimpse mechanism to produce a query vector, by using the
graph representation, the lastly visited client and the vehicle’s remaining capac-
ity. Their glimpse is based on a Multi-Head Attention. The query vector and the
clients/depot embeddings are then used in a scaled dot-product attention with a
masking mechanism and a softmax function to produce a probability distribution
for the next node selection. They trained their model using the REINFORCE
algorithm with Greedy Rollout baseline. This new baseline uses a copy of the
learning network (rollout policy), which is updated less often. This copy produces
a solution greedily, by choosing at each step the node with the highest probabil-
ity. The baseline is updated by comparing the current learned policy with the
rollout policy on a set of instances unseen during training. If the improvement is
significant according to a paired t-test with a threshold of (5%), then the rollout
policy is updated. Their computational experiments indicated that this baseline
yields faster convergence than a critic baseline. However, it requires additional
time, since it constitutes an additional forwards pass. This model showed better
results than handcrafted heuristics and Nazari et al.’s model, on a wide range
of routing problems. It rapidly became the state-of-the art model, and serves as
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a baseline for both comparison and future research directions. For example, the
work of Zhao et al. [207] extends the model of Nazari et al. [132] and uses Kool
et al. [100] training algorithm (REINFORCE with Greedy Rollout baseline) for
training, on the CVRPTW. To do so, they extended the mask to include the time
windows constraints. Furthermore, the authors suggested that the resulting solu-
tion of the model would make a good warm start solution for metaheuristics. They
hybridized their model with Guided Local Search of OR-Tools and LNS. Their find-
ings show that better results are achieved when using their model’s solution as a
starting point, than when using a handcrafted heuristic’s solution. Other applica-
tions of this learning-based models include the Electric Vehicle Routing Problem
with Time Windows (EVRPTW) [114] and the Orienteering Problem with Time
Windows (OPTW)[60].

Other works try to improve over the Attention Model (AM), such as Policy
Optimization with Multiple Optima (POMO) algorithm [103]. POMO introduces a
novel way of training NCO models for routing problems. It exploits the symmetries
in the representation of the instance’s solution. For example, in a TSP instance
with 5 nodes, if the sequence 2 → 5 → 3 → 1 → 4 → 2 is a solution, then the
following sequence is also an optimal solution 3 → 1 → 4 → 2 → 5 → 3. The
goal of training with POMO is to teach the deep neural network these kinds of
solution symmetries. For this, instead of sampling a single candidate solution in
the training phase, 𝜂 candidate solutions are sampled. This would correspond to
replacing the line 6 in algorithm 3 by:

𝑌
𝑗

𝑖
← SampleSolution(𝑋𝑖, 𝑃𝜃 , 𝜂), ∀ 𝑗 ∈ {1, ..., 𝜂}∀𝑖 ∈ {1, ..., 𝐵}

POMO also uses a simpler shared baseline among the candidate solutions which
corresponds to the average solution length over all the sample solutions, i.e.,
𝑏(𝑋𝑖) = 1

𝜂

∑𝜂

𝑗=1 𝐿 (𝑌
𝑗

𝑖
, 𝑋𝑖). Although these symmetries are not the same for the

CVRP because not every client node can be the first node to visit in route, the
same policy was applied to this problem, and showed strict improvements in the
solution quality. Finally, the authors suggest using more Transformer blocks (6)
in the Transformer encoder to improve the model’s performances.

The Joint Attention Model for Parallel Route-Construction (JAMPR) proposes
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to modify the Attention Model to tackle CVRP and CVRP with soft, partly soft
and hard Time Windows [51]. They argue that the sequential construction of sin-
gle routes yields poor performance because no information about the previously
constructed routes arrives at the current route under construction, but only infor-
mation about the lastly selected node. The difficulty of this construction approach
augments as more constrained problems are tackled (e.g., CVRPTW). For this,
they extended the AM with a Tour encoder and a Vehicle encoder. The learned
policy’s action space is made of pairs of the uncompleted routes and the remaining
clients.

Inspired by the Bellman’s Principle of Optimality, some research directions
argue that, once a node is chosen at some resolution step, it is no longer needed
to be part of the sub-problem induced by the remaining non-routed nodes [144,
196]. To do so, each time a node is selected for a visit, it is removed from the
instance. Nodes which do not satisfy the capacity constraint are also removed
from the sub-problem. A dynamic embedding mechanism is used on the remaining
nodes, i.e., they are re-embedded using the encoder. Embedding at each time step
allows having a more accurate representation of the remaining sub-problem to
solve. This strategy improved the accuracy of Ptr-Net [196] and AM [144, 196].
However, re-embedding the nodes is computationally costly, which induces longer
training times. For example, for a TSP instance with 𝑛 nodes, a transformer model
has a complexity of O(𝑛2), and calling the encoder 𝑛 times, would result on a
complexity of O(𝑛3). In practice, this limits the use of this technique. Alternately,
to consider the evolution of the resolution process, it is possible to inject this
information into the context vector. This direction was followed by Xu et al. [198].
In the original Attention Model, the context embedding is given by a concatenation
of the graph representation, the lastly visited client and the vehicle’s remaining
capacity, for the CVRP. The fact that the graph representation is static gives poor
information about the evolution of the resolution process. The information of the
last visited client and the remaining vehicle’s capacity is not sufficient. In the
Multiple Relational Attention Model of Xu et al. [198], the context embedding
considers the resolution process. To do so, they compute an embedding of the
visited nodes and another of the unvisited nodes, at each resolution step. These
two embeddings replace the static graph representation on the context embedding
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computation. This adjustment improves the results.

Another way to lead to fast training convergence is to diversify the outputs of
the deep neural network models. For this, instead of learning one policy, multiple
policies can be trained simultaneously, which increases the chances of finding good
quality solutions. This is what the Multi-Decoder Attention Model (MDAM) pro-
poses [197]. Inspired by the Multi-Head Attention, MDAM uses 𝑀 decoders with
identical structures and different parameters. Each decoder outputs a different
candidate solution. The encoder and the decoders follow the designed architecture
of AM, except that the last encoding layer uses a dynamic encoding layer similar
to Xin et al. [196] model. The model is trained using the REINFORCE algorithm.
To ensure diversification, a Kullback-Leibler (KL) divergence between each pair
of the output probability distributions from the multiple decoders of MDAM is
maximized. For a given solution 𝑌 of an instance 𝑋, the KL divergence is defined
as:

𝐷𝐾𝐿 (𝜃1, . . . , 𝜃𝑀) =
𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

|𝑌 |∑︁
𝑡=0

𝑝𝜃𝑖 (𝑦𝑡 |𝑦0, . . . , 𝑦𝑡−1, 𝑋) log
𝑝𝜃𝑖 (𝑦𝑡 |𝑦0, . . . , 𝑦𝑡−1, 𝑋)
𝑝𝜃 𝑗 (𝑦𝑡 |𝑦0, . . . , 𝑦𝑡−1, 𝑋)

This approach improves the performance of the Attention Model for routing prob-
lems up to 100 nodes. An interesting approach suggests combining reinforcement
learning and supervised learning to train an encoder-decoder model for the CVRP
[46]. This joint learning approach uses a GCN encoder with edges features, and
two decoders. The first decoder is a GRU recurrent cell with an additive attention
mechanism, as defined by Bello et al. [20]. The second one is a MLP, which output
a probabilistic heatmap similar to the supervised non-autoregressive work in [89].
The solution sequence output by the first decoder is converted to an adjacency
matrix, which is used as the supervised label for the second decoder. The whole
neural network is trained to minimize the sum of REINFORCE loss and the binary
cross-entropy loss.

As we can see, most of the RL-based methods for routing problems are based on
direct policy search via policy gradient methods, with variants of REINFORCE
as a training algorithm. A few other works consider deep learning value-based
methods, such as Deep Q-learning. It is more sample efficient than policy-based
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methods, because of the experience replay buffer. The replay buffer stores tu-
ples of the form of (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in a memory, and they are later used to train
the deep neural network. S2V-DQN is the first method of this kind that has
been applied to tackle the TSP. It combines the representation power of graph
neural networks (Struc2Vec [154]) and the n-step Deep Q-learning algorithm
for training. Struc2Vec is used to make nodes representation, by aggregating
embeddings of a fixed number of nearest neighbors of each node. These nodes’
embeddings are then used in a sum pooling layer to form the graph embedding.
The nodes embeddings and the graph embedding are used in an attention-like
mechanism to compute a Q-value for each node. The action selection is performed
by taking the node with the highest Q-value. Another work tackles both static
and dynamic15 variants of the CVRP by using a Graph Neural Network trained
with Deep Q-learning [135]. Their deep Q-network was trained in an offline setting,
using a simulator. While the performance falls short against classic handcrafted
heuristics on the static CVRP, the model showed better performance on the dy-
namic CVRP. A third work considers an adaptation of the Attention Model [100]
to the deep Q-learning setting to tackle the CVRP and the Multi-depot VRP
(MDVRP) [16]. The model, named RP-DQN, introduces a new way of encoding
dynamic node embeddings by injecting information about whether a node (i) has
already been inserted in the tour, (ii) cannot currently be inserted due to capac-
ity constraints, (iii) represents the currently served client or, in the multi-depot
case, represents the current depot. They trained the neural network via Deep
Q-learning. Their algorithm obtained better performance than the policy-based
Attention Model on both CVRP and MDVRP, while being more sample efficient.
In OmegaZero [186], a Deep Q-network based on GAT encoder and GRU decoder
is introduced. The model is inspired by AlphaZero and is trained via self-play, i.e.
the model is trained to compete against its previous versions.

With regard to instance features, most of the approaches propose to input
directly the raw features, which consist of the coordinates and the demands, for
the CVRP. Carefully designed features are essential in machine learning, even
though deep learning has a strong ability for automatic feature extraction. For
example, to enhance the representation power of the graph neural networks, the

15In the dynamic CVRP, the clients requests appear as the resolution process occurs.
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distance between a pair of nodes can be injected as an edge feature [93, 46, 111,
114]. Instance features are an important research line in order to improve the
performance of the models.

Improvement-based neural combinatorial optimization. Similar to handcrafted
improvement heuristics and metaheuristics, these methods start from an initial
solution, and try to improve it. To do so, these methods integrate a learning
component. These types of methods tend to generally give solutions with bet-
ter quality than construction neural combinatorial optimization methods. This
is because they perform more exploration of the solution space, especially in in-
ference.Analogously to constructive approaches, most of the improvement-based
neural methods use reinforcement learning. Following MDP formulation, states,
actions, and reward function are defined as following:

• State (𝑠𝑡): corresponds to the instance features and the incumbent solution
from previous states. At 𝑡 = 0, an initial solution is generated via a simple
handcrafted heuristic such as nearest neighbor.

• Action (𝑎𝑡): is dependent on the approach being implemented. It can be, for
example, the selection of the node to move in the solution.

• Reward (𝑟𝑡): reflects the amount of improvement (or deterioration) achieved
by the policy while performing the action 𝑎𝑡 . It is computed as the difference
between the objective function of the solution at 𝑠𝑡 and the incumbent.

We find, in the literature, two frameworks that integrate improvement neural
methods. The Large Neighborhood Search (LNS) and another one that bears
similarities with Iterated Local Search (ILS).

The Large Neighborhood Search (LNS) framework. LNS is a metaheuristic
that iterates between destruction and repair operators on a solution. The destruc-
tion operator removes clients from the solution, while the insertion operator inserts
them back into routes such as the obtained solution is better. The first work re-
ported of this kind has been applied to a ride hailing problem [172], which we
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discussed earlier in the supervised learning subsection 1.3.2.1. Concurrently, Hot-
tung and Tierney developed Neural Large Neighborhood Search (NLNS), which
integrates a learned heuristic inside the Large Neighborhood Search metaheuristic
[80]. In NLNS, the destruction procedures are handcrafted, while the insertion one
is carefully designed to be integrated inside the metaheuristic. Integrating learned
insertion heuristics inside a LNS framework has advantages over leaned construc-
tion heuristics. For instance, the neural network produces shorter sequences, since
only a part of the removed clients needs to be re-routed. This allowed NLNS
to tackle instances up to 300 clients. The effectiveness of the metaheuristic was
demonstrated on two destroy operators: a client-based destroy, which removes
clients closest to a randomly selected point and a tour-based destroy, which re-
moves the tours that are close to a randomly selected point. This results in an
incomplete solution where either a client is not routed at all, or only partially
routed, with one end not connected to another client or the depot. The non-routed
and partially routed clients serve as input to the deep neural network model. The
designed deep neural network consists solely of MLPs. In the first step, a non-
routed client is selected to be a reference client, and will serve as a query vector.
The reference client is passed into a MLP to generate a reference embedding. The
rest of the clients are passed into another MLP to obtain embeddings. The refer-
ence and clients embeddings are used in a first additive attention module similar
to the glimpse mechanism [20], to generate a context vector. This vector is used
to encode information on relevant inputs and is concatenated with the reference
embedding to compute a query vector. The query and the clients’ embeddings
are then used in an additive attention to compute a probability distribution over
the non-routed clients. The model is trained using a cost signal representing the
cost of repairing the initial solution (the difference of tour length between the de-
stroyed solution and the repaired solution). The REINFORCE with critic baseline
algorithm is used to train the model [80]: the critic is a MLP that estimates the
cost of repairing a solution. A model is trained for the different destroy operators.
The results indicate that the NLNS performs better than a LNS with handcrafted
insertion procedure.

NeuLNS is another Large Neighborhood Search-based learning algorithm, de-
signed to tackle the CVRP and CVRP with Time Windows [61]. Contrary to NLNS
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[80], NeuLNS learns to output which clients are removed from the solution, and
in which order they are considered for insertion. They follow the encoder-decoder
approach of Ptr-Net. The encoder is much more sophisticated as it integrates the
graph structure of the solution. It uses an extension of Graph Attention Network
with edges embeddings (EGATE) that includes information about the solution’s
arcs. The decoder uses a GRU recurrent cell to compute the query vector. Along
with the nodes embeddings, they are passed to an attention mechanism to select
the clients that will be removed from the tour. The selected client is then injected
to the GRU to compute the new query. The fact that they are passed through
a GRU reshapes the set of clients into an ordered list, which defines the order in
which they will be re-inserted into the solution. The insertion follows a least-cost
principle to yield a minimum cost solution. Thus, in a way, the insertion methods
of NeuLNS can be considered as a mix between handcrafted and learning strategy,
since the model gives only the order in which the removed clients are processed
and not directly the position where they are inserted. The method was able to
process medium-scale instances up to 400 clients, however, direct comparison with
other approaches is not possible, since the method was evaluated using a different
protocol.

Inspired by the recent SISR metaheuristic [33], a Large Neighborhood Search
based on the removal of a cluster of clients has been proposed by Chen et al. [29].
Their method named Dynamic Partial Removal (DPR) uses a deep neural network
model to determine an anchor node among the clients, which will serve as the basis
for the removal of other clients. The model also outputs two other scalars. They are
used to parameterize a beta distribution, which serves to determine the percentage
of clients that will be removed from each route. The deep neural network (HRGCN)
consists of an encoder made of a stack of GCN layers with skip connections, and a
GRU decoder with an attention mechanism to compute the probability of selecting
a node as an anchor node, similar to Ptr-Net. The removed clients are randomly
shuffled and a least-cost based insertion procedure is used to create a new solution,
which serves as input in the next iteration. The neural network is trained using a
Proximal Policy Optimization algorithm. Empirical evaluation on the CVRPTW
showed that the method is effective and competitive with the handcrafted LNS
and SISR, on instances up to 800 clients.
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1.3.2.2.1 The Iterated Local Search (ILS) framework. Methods of this kind
uses a deep neural network to select the regions where a local search operator will
be applied. This process is iterated in a number of predefined steps, starting from
the previously found solution. The Learning to Delegate [113] method discussed
in the supervised learning subsection can also be considered belonging to this
framework.

NeuRewriter can be considered as the first method of this kind. It learns a two-
parts policy: a region-picking and a rule picking policy [30]. For this, an initial
solution is generated, using the nearest neighbor heuristic. Then, a region set
composed of the solution’s routes is defined. The region-picking policy selects one
region, then the intra-route Relocate operator is used to move one client after
another. The client to which the operator is applied is selected using a rule-picking
policy, which is similar to Ptr-Net. The two policies are trained together, using
a combination of Q-Learning and Actor-Critic Algorithm for the region-picking
and rule picking policy respectively. Another line of research considers learning to
select the clients to which pairwise operators, such as 2-Opt or Swap, are applied.
When designed in a handcrafted way, these operators run in O(𝑛2), with 𝑛 being the
number of nodes. The goal of the deep neural network is to define the pair of nodes
on which these operators will be applied given the actual solutions characteristics,
which would reduce the complexity to O(1). Wu et al. [195] designed a strategy of
this kind. At each step, a solution is selected from the neighborhood of the current
solution by performing a local search using a pairwise operator, with the pair of
clients selected by a deep neural network. For this, the authors used a Transformer
model along with a positional embedding function to obtain a solution embedding.
The role of the positional embedding is to encode the position of each client in the
current solution. Without this element, the encoding process would be similar to
the Graph Neural Network encoding, resulting in a permutation equivariant model.
A graph embedding is then computed using a max pooling layer and passed into
a MLP. Each client embedding is passed into a MLP and is added up to the
graph embedding. These embeddings are used in a dot-product similar to the
self-attention mechanism to compute a compatibility matrix that is transformed
into a probability matrix using the softmax function, which reflects the probability
that a pair of clients will be selected for the pairwise operation. The algorithm is
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trained using n-step actor-critic, with a Transformer-based critic. The empirical
study indicated that the approach gives better results when used with the 2-Opt

operator than with Swap and Relocate. The approach is compared with its
handcrafted counterpart, where the pairs of nodes to which the operator Op is
applied is determined by either first-improvement or best-improvement policy, with
a random restart when stuck in a local minimum. The results show that the learned
method outperforms the handcrafted decision rules in less or equal iterations.

Ma et al. [121] follows the same strategy as Wu et al. [195], but uses a different
model. Their method, Dual-Aspect Collaborative Transformer (DACT), learns
nodes and positional embeddings separately. Then, it uses a Transformer encoder
to compute a new representation, where the self-attention of each type of embed-
ding uses the other type of embedding to compute the new representation. They
introduce a new positional encoding which considers the cycling aspects in the
routes of a CVRP solution. The decoder computes a compatibility matrix for each
type of embedding, following the same strategy of Wu et al. [195], and combines
them using a MLP and the softmax function to obtain the probability matrix. The
model is trained using a Proximal Policy Optimization algorithm. Furthermore,
they used curriculum learning during training, where the initial solution used as
a starting solution are ordered in a decreasing order in terms of solution quality.
Their results show that their model improves over the results of Wu et al. [195] in
both CVRP and TSP, while being competitive and faster to execute than LKH3
heuristic.

Finally, a recent method, using end-to-end learning components, is introduced
in [95]. It consists of a hierarchical solving protocol that learns collaborative
policies (LCP). This method is a hybrid between a constructive policy (the seeder)
and an improvement policy (the reviser). The seeder can be any constructive policy,
such as the Attention Model. It constructs various initial candidate solutions that
will be passed to the reviser policy. Then, the reviser decomposes each candidate
solution into a finite number of disjoint segments of the same length, and updates
them by performing a local search on each segment. The local search is performed
by a deep neural network, similar to constructive models such as Attention Model,
which constructs several candidate segments and returns the best, in terms of
total travel length. The improved segments are then fused to form the complete
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solution. This method showed that the handcrafted local search operators can be
successfully replaced by a deep neural network model to determine the neighboring
solution to select.

1.3.3 Search strategies

The purpose of training a model is to discover a policy that can tackle instances
of the considered routing problem unseen during training. Search strategies, or in-
ference strategies, are an important line of research, since they define the way
the model is exploited to output a solution. They influence the final perfor-
mance of the model. In what follows, we denote 𝑋 the routing problem instance,
𝑌 = {𝑦1, . . . , 𝑦𝑇 } the solution sequence, 𝑝𝜃 (·) the learned policy, and 𝑄(𝑠𝑡 , 𝑦𝑡) the
Q-value of a given state-action pair. Furthermore, we will focus on search strate-
gies for construction-based approaches, since there is abundant literature on the
subject.

Greedy search. Greedy search generates a solution by taking, at each step, the
client with the highest score. In the case of supervised learning [172], or policy-
based reinforcement learning [20, 132, 100], i.e.,

𝑦𝑡 = arg max
𝑦

𝑝𝜃 (𝑦 |𝑦1, . . . , 𝑦𝑡−1, 𝑋), ∀𝑡 ∈ {1, . . . , 𝑇}

In value-based reinforcement learning, this corresponds to the node with the high-
est Q-value at resolution step [93, 16].

𝑦𝑡 = arg max
𝑦

𝑄(𝑠𝑡 , 𝑦; 𝜃), ∀𝑡 ∈ {1, . . . , 𝑇}

Figure 1.15 depicts an example of the first three steps of solving a TSP instance
with five cities under the NCO framework, using greedy search and random search
based on a uniform distribution. The deep neural network (DNN) outputs at each
step a probability distribution to extend the partial tour under construction by a
given city. In the first step, the state 𝑠0 contains information about the instance
in the form of the city coordinates and the partial tour is empty. Using the greedy
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Figure 1.15: Example showing the first 3 steps of using greedy and random
search strategies in the NCO framework on a 5 cities TSP instance.

search strategy, x2 is chosen because it has the highest probability of being selected.
The random strategy chooses a city randomly based on a uniform distribution; x1

is selected. At step 2, 𝑠1 contains information about the cities and the partial tour
under construction which contains the city x2. The city x4 is chosen to extend the
partial tour using the greedy search because it has the highest probability, while
x2 has a zero probability because it was already included in the partial solution.
The random strategy chooses the x2. Following the same procedure, at step 3, x3

is chosen by the greedy strategy while the random search happens to choose the
same city.

The greedy strategy has the advantage of being fast to execute, but it shows
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limited abilities to render the best solutions. To overcome this, [103] proposed
a multi-greedy inference strategy. Instead of using a unique representation of an
instance, the deep neural network is fed with numerous instances equivalent to the
test instance. These equivalent instances are generated by performing isometric
transformation on the coordinates (rotation, flipping, etc.), similar to data aug-
mentation strategies developed in the computer vision field. Thus, the model has
multiple views of the same instance, which may lead to alternative solutions. Fi-
nally, the best among decoded solutions is selected as the incumbent. This strategy
was also used in DACT [121], which shows that the approach is valuable for both
constructive and improvement methods.
Greedy Search has been used in most of the works done on Neural Combinatorial
Optimization approaches, for its simplicity and its guarantee to output a valid
solution. Among the surveyed works, 21 of them used this search strategy (see
Tables 1.4–1.7).

Stochastic sampling. Introduced by Bello et al. [20], this strategy samples a
node according to the probability distribution given by the deep neural network
at each step, as it is done during training.

𝑦𝑡 ∼ 𝑝𝜃 (·|𝑦1, . . . , 𝑦𝑡−1, 𝑋), ∀𝑡 ∈ {1, . . . , 𝑇}

Using this search method, many candidate solutions can be sampled for a
single instance. Thus, this increases the chances of finding a better solution. The
diversity of the candidate solutions can be controlled by changing the clipping value
𝐶 of the attention scores, to increase or decrease the entropy of the probability
distribution [20]. Let us note that this strategy is also fast, Kool et al. [100] reports
the generation of 1280 candidate solutions in less than one second for the Attention
Model for TSP instances with 20 cities.

Beam search. This is a limited breadth first search greedy algorithm, which is
controlled by a parameter 𝜔 named beam width. From a global view, this search
algorithm keeps track of the most probable candidate solutions. At step 1, 𝜔 nodes
with the highest conditional probability are selected. Each of these nodes will
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start one of the 𝜔 candidate solutions. Starting from step 2, the joint probability
between the selected nodes of each of the retained partial candidate solutions, and
remaining non-selected nodes will be computed. The highest 𝜔 joint probabilities
are selected. The process continues until all nodes are routed. The Greedy search
can be considered as a special case of Beam search, where the beam width is equal
to 1.

In Ptr-Net, the authors suggested using beam search to prevent from selecting
invalid tours, for the TSP (e.g., tours with a city being repeated twice) [185].
Nazari et al. [132] obtained their best results using this strategy, with a beam
width 𝜔 = 10, while slightly increasing the computation time. In the MDAM
approach, the beam search strategy is used on each of the decoders of the model.
Thus, allowing for the exploration of more candidate solutions, e.g., a beam width
𝜔 = 10 and a 5 decoders, beam search produces 50 candidate solutions.

Deep Policy Dynamic Programming (DPDP) is a novel search algorithm which
is based on beam search [99]. The authors describe it as "a beam search over the
DP state space". The algorithm maintains a beam of candidate solutions and at
each step, they are (1) expended by choosing one node, (2) removed from the beam
if dominated, (3) updated with the best 𝜔 partial solutions. The particularity of
this method is the addition of the concept of dominated solution. For the CVRP,
a partial solution A dominates another partial solution B if both solutions visit
the same nodes, while A has better cost, in terms of objective function, and better
remaining vehicle capacity than B. In other words, they visit the same nodes, but
differ in the order in which they do the visits. This strategy generates solutions
which have a gap of 1.7% from the solutions found by HGS-CVRP [181] while
being 6 times faster. Increasing the beam size makes this gap falls to 0.4% with
a worse computation time (around 48 hours to solve 10000 test instances vs. 6
hours for HGS-CVRP).

Monte Carlo Tree Search. This tree search algorithm is one of the core al-
gorithms in modern deep reinforcement learning to achieve super-human perfor-
mances on difficult combinatorial games such as go, chess, and shogi [161]. The
algorithm was used as a search method for Neural Combinatorial Optimization
models. Fu et al. [58] tackled large TSP instances using a graph sampling al-
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gorithm combined with a non-autoregressive model to generate heatmaps. The
purpose of the graph sampling algorithm is to feed the large instance into a small-
scale model (e.g., model trained to solve TSPs with 20 cities) piece by piece. The
resulting heatmaps are merged to obtain the large instance’s heatmap. This latter
is exploited inside a MCTS algorithm to decode the final solution. OmegaZero
[186] uses the MCTS algorithm similar to AlphaZero [161] to tackle TSP and the
CVRP, to tackle instances up to 1000 cities (TSP) and 400 clients (CVRP).

Ensemble methods. In [12], the authors have observed that several models
trained on the same dataset encodes different heuristics. While they have simi-
lar performance in the validation set, the subsets in which they perform well vary
significantly. So, they proposed zero training overhead portfolio (Ztop), a method
that trains several models instead of only one, as in ensemble learning, and selects
the best 𝑘 models that achieve the same performances on the validation set. At
inference, the selected models are run on each test instance, and the best output,
in terms of total travel distance, is selected. In terms of training, the method
follows the same protocols as in single model training. The method was used with
a set of trained Attention Models. The results showed a significant improvement
over the use of a single Attention Model, while not adding any complexity during
the training phrase.

Active search. This search algorithm (see Algorithm 4) is an improvement of
the stochastic sampling strategy [20]. Rather than ignoring the rewards when
sampling from a model, they can be exploited by the model to update the neural
network weights towards a better optimum. The particularity of this algorithm is
that it can start from a neural network with random weights, then trains it on a
single instance. Thus, the model can process instances that are not from the same
distribution. However, in all the cases, the algorithm overfits the instance being
processed, so the resulting weights after the completion of the algorithm, generally
can’t be used on other instances. POMO [103] can be viewed as an extension of this
approach for training on different instances. Instead of processing one instance at
a time, a batch of instances is processed by generating a set of candidate solutions,
much like in Active Search. However, contrary to Active Search, POMO does not
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overfit and the solutions it can tackle are distribution-dependent. Let us also note
that POMO is a training algorithm, while Active Search is a search algorithm
intended to find the best solution for a single instance. Finally, Active Search opts
for an exponential moving average (see lines 16-21 in Algorithm 4) rather than
POMO’s mean reward as a baseline. This strategy turned out to be more effective
than stochastic sampling for the TSP [20]. It was also used as a search method
for the OPTW [60] and the CVRP [79]. However, let us note that Active Search
takes more time to execute than the other search methods.

Algorithm 4: Active Search
1 Inputs: Instance 𝑋, policy network 𝑃𝜃 , number of candidates 𝐾 , batch size 𝐵, parameter 𝛽
2 𝑌∗ ← RandomSolution()
3 𝐶∗ ← 𝐿 (𝑌∗, 𝑋)
4 𝑇 ← ⌈𝐾

𝐵
⌉

5 𝑌 [𝐵] // Empty array of size B

6 for 𝑡 ← 1 to 𝑇 do
7 for 𝑖 ← 1 to 𝐵 do
8 𝑌 [𝑖 ] ← SampleSolution(𝑃𝜃 , 𝑋)
9 end

10 𝑗 ← arg min𝑘∈[1,𝐵] 𝐿 (𝑌 [𝑘 ], 𝑋)
11 𝐶 ← 𝐿 (𝑌 [ 𝑗 ], 𝑋)
12 if 𝐶 < 𝐶∗ then
13 𝑌∗ ← 𝑌 [ 𝑗 ]
14 𝐶∗ ← 𝐶

15 end
16 if 𝑡 = 1 then
17 𝑏← 1

𝐵

∑𝐵
𝑖=1 𝐿 (𝑌 [𝑖 ], 𝑋)

18 end
19 else
20 𝑏← 𝛽 · 𝑏 + (1 − 𝛽) · 1

𝐵

∑𝐵
𝑖=1 𝐿 (𝑌 [𝑖 ], 𝑋)

21 end
22 ∇𝜃 𝐽𝜃 ← 1

𝐵

∑𝐵
𝑖=1 (𝐿 (𝑌 [𝑖 ], 𝑋) − 𝑏) ∇𝜃 log 𝑃𝜃 (𝑌 [𝑖 ] |𝑋)

23 𝜃 ← Adam(𝜃, ∇𝜃 𝐽𝜃 ) // update the weights

24

25 end

1.4 Evaluation protocols and results on CVRPLib

1.4.1 Current evaluation protocols

The evaluation protocol of neural combinatorial optimization for routing problems
differs from the one that is used to evaluate handcrafted methods. Firstly, deep
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neural networks require training, thus a sufficient number of training data must
be provided. This number is beyond the number of available instances in any
VRP benchmark set. Tables 1.4–1.7 give an overview of the number of data used
to train deep neural networks for VRPs. Most of them require millions of data.
Thus, most of the approaches are evaluated by generating synthetic VRP instances.
This data generation protocol proposes to sample from a uniform distribution
the necessary data. For example, for the CVRP, Nazari et al. [132] proposed to
generate the clients and depot coordinates using a uniform distribution on [0, 1] ×
[0, 1], i.e, U

(
[0, 1]2

)
, while the client’s demands are integers between 0 and 9

chosen randomly following a uniform distribution. The vehicle’s capacity 𝑄 is fixed
according to the size of the instances tackled, 𝑄 = 30, 40, 50 for respectively CVRP
with 20, 50 and 100 clients [132]. To date, it is the most widely accepted evaluation
approach for the CVRP and is used in [103, 100, 144]. Secondly, although most
models are agnostic to the size of the instances (i.e., we do not need to indicate
the size of the instances that are tackled), they are usually trained on instances of
fixed size, resulting in specialized models with limited generalization abilities, i.e.,
a model trained on instances of size 20 will perform well on other instances of the
same size, but there is no guarantee that it will be good on instances of different
sizes [88]. The reason they are trained with instances of a fixed size is mainly for
convenience, as batches of the same size are required when training deep neural
networks. Furthermore, regarding instance sizes, little work considered instances
with sizes over 100 for the CVRP. This is due mainly to memory limits on GPUs
used. In addition, the time required to train a model grows considerably as the
size of instances becomes more important. Moreover, too little work considered
real-world instances [46]. Finally, other works manage to find existing instance
generators, such as the DIMACS TSP Challenge instance generator [86], which
was used in the work of Khalil et al. [94].

1.4.2 Evaluation on CVRPLib instances

To close this chapter, we propose to compare the performance of NCO to well-
established heuristics on CVRPLib instance sets [175]16. All the gaps are measured

16available at: http://vrp.galgos.inf.puc-rio.br/index.php/en/
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against the best solutions achieved by HGS [181], as a state-of-the-art metaheuris-
tic for the CVRP, which gives the best known solutions for the sets (A, B, E, F,
M, P, X).

CVRPLib gathers a collection of instance sets of the CVRP. These instances
have different characteristics: uniformly distributed clients, clustered clients, small,
medium and big size instances, etc. Thus, CVRPLib contains instances with het-
erogeneous properties that make them suitable for evaluating the performance of
NCO models. This diversity of instances allows us to estimate more accurately the
performances of the deep neural networks compared with instances that possess ho-
mogeneous characteristics (see Table 1.8). For example, the instances of the set A,
E and P are small size instances with clients that are uniformly distributed. Thus,
evaluating on them would confirm to us the performances of neural combinatorial
approaches observed on the synthetic datasets. On the other hand, evaluating on
the sets B and F would provide us information on the behavior of the models on
small size clustered instances. Finally, evaluating on M and X17 would give us an
estimation of their performance on medium to big size instances.

set clients’ distribution instances sizes number of instances
A uniform 32 to 80 27
B clustered 31 to 78 23
E uniform 22 to 101 11
F clustered with clients close to each other 45, 71, 135 3
M 2 clustered (101, 121), 2 uniform (151, 200) 101, 121, 151, 200 4
P uniform 16 to 101 24
X mix of uniform and clustered 100 to 1000 1000

Table 1.8: Summary of CVRPLib instances.

To evaluate the performance of Neural Combinatorial Optimization framework
with CVRPLib instances, we have reproduced the Attention Model [100], which
we call NCO-AM for distinction. We used the Active Search algorithm, a single in-
stance search method, for a better exploration of the search space for each instance.
We compared the results with handcrafted heuristics: Route-first cluster-second,
Nearest Neighbor and Sweep. We summarize our primary results in Table 1.9. The

17In our tests, we only used instances of size from 100 to 242 (31 instances) due to computational
limits.
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detailed results for each instance are available in Appendix A. Table 1.11 offers an
overview of the results on a sample of three instances per set and their associated
solutions, aiming to exhibit the distinctive performance traits of each instance set.

As we can see, NCO-AM consistently demonstrates the best performance on
most sets, achieving the lowest optimality gaps on sets A, B, E, F, P, and M.
However, it performs significantly worse in the set X with an average optimality gap
of 90.09%, but slightly better than the Sweep algorithm. The average optimality
gaps on the sets A, E and P confirm the performance observed in the literature by
using random instances with clients uniformly distributed across the plane. Indeed,
the results observed for small size instances are of the same order of magnitude as
the ones we find on CVRPLib. Regarding the sets B and F, the model exhibits
good performance on clustered instances, confirming that it can handle clustered
instances. However, let us note that instances of set F are harder to solve since
clients in the same cluster are really close to each other, increasing the risk of
getting trapped in local optima. Besides this, the order of magnitude of the clients’
demands varies significantly in the set F. For example, for the instance F-n72-k4,
the minimum demand is 1 while the maximum is 21611. This strong variation may
cause the learning process of a deep neural network to converge towards a worse
local optimum. Regarding the size of instances, we can also see that the model
performs well on small size instances (sets A, B, E, P) with an average optimality
gap less than 6%. The performance decreases for medium to big size instances of
the sets M and X. In the set X, there are instances where the model performs well,
e.g., X-n148-k46 with an optimality gap of 0.91%, while other instances such as X-
n101-k25 are harder to tackle. We make the same observation as for the instances
of the set F, as it appears that instances with a strong variation in clients’ demands
are harder to solve.

Considering execution times (see Table 1.10), they are significantly longer than
those of the best heuristic and metaheuristic approaches. Whether it is RFCS,
Nearest neighbor, or Sweep, they only take a few seconds to output a solution,
while for NCO-AM we measure its execution time in minutes. However, it should
be noted that our study focused specifically on intensifying the search space explo-
ration via the Active Search algorithm. Therefore, we used these models differently
from their primary use, which is to be trained on a large database of instances and
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Set NCO-AM (±std) RFCS Nearest Neighbor Sweep
A 6.18 (±6.12%) 14.52 23.82 47.20
B 4.42 (±1.97%) 10.50 20.43 23.10
E 3.09 (±2.83%) 14.70 24.28 48.58
F 10.16 (±4.23%) 11.78 27.26 71.92
P 2.77 (±2.09%) 14.99 22.50 42.35
M 7.38 (±3.37%) 16.76 29.44 108.14
X 90.09 (±126.93%) 15.34 18.99 108.74

Table 1.9: Comparison between average gap with HGS solutions per set of
CVRPLib instances (%).

Set Avg. execution time (min.) (± std (min.)) Avg. time to best solution (min.) (± std (min.))
A 126.72 (±32.64) 81.01 (±49.80)
B 130.62 (±31.04) 103.85 (±46.54)
E 185.19 (±126.39) 151.34 (±135.55)
F 273.09 (±226.05) 102.11 (±61.41)
P 131.72 (±73.94) 71.63 (±55.86)
M 595.16 (±206.23) 377.46 (±272.99)
X 722.27 (±188.22) 549.79 (±261.93)

Table 1.10: Summary of average total execution times and average time until the
best solution for NCO-AM on CVRPLib sets.

then used for inference on unseen instances during training, with exploitation al-
gorithms that can be executed in a few seconds or minutes. As expected, the
model takes longer to run as the size of the instances increases. Furthermore, it
is noteworthy that the model consistently identifies its best solutions considerably
earlier than the completion of the entire execution process. This observation im-
plies that the model converges towards a local optimum well in advance of the
total execution time.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap (%) 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
A-n32-k5 100 5 0.82 1 24 784.0 787 0.38 83.56 19.83
A-n53-k7 100 7 0.95 1 30 1010.0 1064 5.35 132.33 47.06

A-n80-k10 100 10 0.94 1 26 1763.0 1812 2.78 204.86 196.44
B-n35-k5 100 5 0.87 1 26 955.0 989 3.56 91.36 80.68
B-n50-k7 100 7 0.87 2 63 741.0 769 3.78 127.16 123.67

B-n78-k10 100 10 0.94 1 26 1221.0 1302 6.63 201.93 199.88
E-n22-k4 6000 4 0.94 100 2500 375.0 375 0.00 63.04 2.96

E-n76-k10 140 10 0.97 1 37 830.0 847 2.05 202.38 192.71
E-n101-k14 112 14 0.93 1 41 1067.0 1182 10.78 423.10 417.99

F-n45-k4 2010 4 0.9 1 1300 724.0 798 10.22 113.27 56.53
F-n72-k4 30000 4 0.96 4 21611 237.0 251 5.91 174.28 171.95

F-n135-k7 2210 7 0.95 1 1126 1162.0 1329 14.37 531.73 77.84
M-n101-k10 200 10 0.91 10 50 820.0 852 3.90 413.03 105.53
M-n151-k12 200 12 0.93 1 41 1015.0 1088 7.19 604.60 603.34
M-n200-k17 200 17 0.94 1 41 1282.0 1365 6.47 880.79 621.35

P-n16-k8 35 8 0.88 6 31 450.0 450 0.00 54.59 1.69
P-n55-k10 115 10 0.91 5 37 694.0 709 2.16 145.23 119.72
P-n101-k4 400 4 0.91 1 41 681.0 727 6.75 399.17 40.09

X-n101-k25 206 25 1.0 1 100 27591.0 51464 86.52 469.46 445.97
X-n148-k46 18 46 0.99 1 10 43448.0 43844 0.91 710.73 670.28
X-n242-k48 28 48 0.99 1 10 82751.0 86007 3.93 1086.66 1065.88

Table 1.11: Sample of CVRPLib instances and their corresponding solution found
by NCO-AM. 𝑄: vehicle’s capacity, 𝐾 : number of routes, Tightness =

∑𝑛
𝑖=1 𝑞𝑖
𝐾𝑄

; 𝑞min:
the minimum demand; 𝑞max: the maximum demand; BKS: HGS solution; 𝑜𝑏 𝑗 .:
solution’s objective value found by AM-NCO; 𝑔𝑎𝑝: percentage of gap to the BKS
((1 − 𝑜𝑏 𝑗 .

𝐵𝐾𝑆
) × 100); 𝑡𝑏𝑒𝑠𝑡 : cpu time to find 𝑜𝑏 𝑗 . in minutes; 𝑡𝑏𝑒𝑠𝑡 : total runtime in

minutes.
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1.5 Conclusion

In this chapter, we have laid down the essential foundations that will serve as a
basis for developing the rest of this thesis. First, we introduced the Capacitated
Vehicle Routing Problem (CVRP) and its variants. We also discussed various
handcrafted solution methods commonly used to solve CVRP, including exact
algorithms, heuristics and metaheuristics.

Next, we introduced deep learning, as a subfield of machine learning that uses
artificial neural networks to model complex nonlinear functions. We presented
various types of neural networks used in this work, including recurrent neural net-
works (RNNs), transformers, and graph neural networks (GNNs). These networks
are known for their ability to capture complex dependencies in sequential data or
graph structured data. Moreover, we outlined reinforcement learning, as another
subfield of machine learning in which an agent interacts with its environment and
learns from the feedback it receives.

We reviewed the use of deep learning and reinforcement learning to solve VRPs.
This involved discussing various approaches that have been used in the literature,
with deep reinforcement learning emerging as today’s dominant training paradigm.
We also proposed a distinction between construction methods and improvement
methods, and we classified state-of-the-art contributions according to this distinc-
tion. We highlighted that these models need an important amount of data to be
efficiently trained.

Finally, we presented the primary results of our experiments with the CVR-
PLib instances by reproducing the Attention Model [100]. Deep learning models
show promising results, suggesting that it may be able to solve routing problems
efficiently without specifying any prior knowledge on how to achieve this. However,
execution times are still a challenge, and there is still room for improvement for
medium and big size instances. In the following chapters, we present our contri-
butions in the light of our main findings in this chapter. Regarding the amount of
data, we propose to study in Chapter 2 transfer learning to exploit prior knowledge
to reduce the number of training example needed to tackle the CVRP. Chapter
3 presents a two-steps method for tackling the CVRP instead of the single-step
construction methods presented in this chapter. Finally, Chapter 4 is dedicated to
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a dynamic and stochastic problem to further explore the NCO framework.
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Chapter 2
Transfer learning under the Neural
Combinatorial Optimization
framework

One of the main lines of research in reinforcement learning is whether a policy
learned to handle one task can be used to handle another different, but related
task. In the field of machine learning, this problem is known as transfer learning.
This is an interesting direction of research to reduce computation time and resource
usage when it is expensive to train a new policy from scratch. In this chapter, we
study transfer learning in the context of neural combinatorial optimization for
routing problems. We first review the literature on transfer learning and the main
metrics used to monitor the learning phase. We then describe how to use transfer
learning in VRPs. We experiment with transfer learning from TSP to CVRP under
different scenarios, and we compare the resulting policy with a policy trained from
scratch. The study of this approach allowed us to identify cases where transfer
learning is useful for learning neural combinatorial optimization policies.

2.1 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.1.1 Transfer learning in deep learning . . . . . . . . . . . . . . . 94
2.1.2 Transfer learning in reinforcement learning . . . . . . . . . . 97

2.2 Motivations and goals . . . . . . . . . . . . . . . . . . . . . . . . . 99
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2.1 Transfer learning

2.1.1 Transfer learning in deep learning

Transfer learning (TL) has its roots in the field of psychology, with the pioneering
work of Woodworth and Thorndike [193]. They argue that when the stimulus-
response elements share common properties between a source task and a target
task, it is possible to use the knowledge acquired on the source task to learn the
target one. The Machine Learning field takes inspiration from this concept and
adapts it for learning models. In Machine Learning, transfer learning consists of
the development of methods that transfer knowledge to a model from a source task
(or domain) to a target task. This is used to introduce a bias into the learning
process for the target task. This bias is derived from the pre-existing knowledge
acquired by the model through training on the source task. The transfer of this a
priori knowledge influences the learning process and guides the model’s behavior
when adapting to the target task. To guarantee the success of transfer learning,
the source and the target tasks have to be similar. This similarity condition can be
explained via the representations learned by the model on the source task, which
are suited for the target task. Goodfellow et al. best describe this in Chapter
15 of the Deep learning book [65]: “In general, transfer learning (...) can be
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achieved via representation learning when there exist features that are useful for
the different settings or tasks, corresponding to underlying factors that appear in
more than one setting.” Thus, instead of starting the learning process from a
random representation of the features of the target task, a representation resulting
from a learning process on the source task is used.

Concretely, implementing transfer learning consists in reusing the values of the
weights 𝜃∗

𝑆
of a deep neural network (DNN) as initial values for the training of a

target task T𝑇 on a target dataset D𝑇 (Equation 2.2). This weight refinement on
the target domain is also known as fine-tuning. The weights 𝜃∗

𝑆
result from the

training on a source task T𝑆 on the source dataset D𝑆 (Equation 2.1).
When learning the source task, the neural network weights are randomly ini-

tialized.

(T𝑆,D𝑆, 𝜃𝑆)
learning
↦−−−−−−→ 𝜃∗𝑆 (2.1)

(T𝑇 ,D𝑇 , {𝜃∗𝑆, 𝜃𝑇 })
learning
↦−−−−−−→ 𝜃∗𝑇 (2.2)

Figure 2.1 illustrates the two previous equations and schematizes transfer learn-
ing. We can notice that, generally, only the values of the weights of the layers
responsible for learning the representations are reused for learning to solve the
target task. The output layer responsible for predictions (in red, in the figure, e.g.
classification head), often specialized in the source task, is omitted and an output
layer with random weights is used for that part in the learning of the target task.
This is depicted in Equation 2.2 with additional weights 𝜃𝑇 . Note that the bound-
ary between what constitutes the representation learning layers and the prediction
layers can sometimes be difficult to determine. Empirically, this can be established
by first copying a subset of the values of the weights learned by the source model
into the target model and initializing the rest randomly. If an improvement is
found, we iterate the process with additional weights initialized from the source
neural network, otherwise we stop.

Transfer learning has been widely studied in the supervised learning case. It
is interesting when it is difficult to get a large labeled dataset, either because
labeling a large dataset is a tedious task, or not enough data samples are available.
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Figure 2.1: Overview of transfer learning.

In the case of deep neural networks, too little data is available to train a complex
model from scratch. In this case, transfer learning can be used to train the model
and improve the accuracy compared with training from scratch. There are no
guarantees that transferring knowledge yields good results, due to negative transfer
issues [187]. This may happen when the source and target domains have many
dissimilarities, or the model trained on the source task may not be suitable for
the target task. Therefore, the use of transfer learning calls for vigilance and a
meticulous definition of the source and target domains as well as the model used.

In practice, transfer learning has been successfully applied for real-world glitch
detection and exhibits that it reduces training time while improving the accuracy
[63]. The power of transfer learning has also been demonstrated in numerous com-
puter vision tasks ranging from image classification, scene recognition, to attribute
detection and image retrieval [162]. In Natural Language Processing, it has been
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demonstrated that learned features can be shared between multiple languages, and
can improve the system performance on new languages [81]. Thus, these promis-
ing results on supervised learning encouraged the Machine Learning community
to investigate more on transfer learning in deep reinforcement learning.

2.1.2 Transfer learning in reinforcement learning

As defined in the recent survey of Zhu et al. [210], transfer learning in reinforce-
ment learning aims to learn an optimal policy for the target task using knowledge
from one or more source tasks. In this case, source and target tasks are repre-
sented as Markov decision processes. Knowledge transfer can take various forms,
such as the reuse of a set of trajectories learned on the source task, or directly
reuse the policies learned from the source tasks (policy reuse [55]). Thus, unlike
the supervised learning case, in reinforcement learning, transfer learning can be
exploited in several ways to bias the policy on the target task with knowledge from
the source domain.

Although in reinforcement learning it is possible to learn without any form of
supervision, the learning process usually requires several data samples, especially
policy-based methods that are known for their sample inefficiency. Thus, transfer
learning received much attention to improve the sample efficiency of reinforcement
learning algorithms [108]. Moreover, the potential of transfer learning does not end
there. Figure 2.2 illustrates the expected key contributions of transfer learning for
reinforcement learning algorithms in a reward maximization setting. The plot in
blue represents a model that learns from scratch without transfer learning, while
the orange plot represents a model that learns with transfer learning. Figure
2.2-(a) corresponds to a setting where transfer learning improves the jump-start
performance of the model, i.e., the initial performance on the target task. In this
case, the model performs better on the target task without additional adaptation of
its weights (zero-shot transfer). Figures 2.2-(b), (c) show a more general case where
transfer learning improves the model’s sample efficiency with a distinction between
equal jump-start performance (Figures 2.2-(b)) and worse jump-start performance
(Figures 2.2-(c)). In the case (b), the model performs few-shot transfer, i.e., the
model needs few additional learning iterations to achieve better performance with
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transfer learning. The case (c) is more general: the jump-start performance of the
model with transfer learning is worse than the performance of the model trained
from scratch, and it needs more training epochs than the few-shot transfer to
achieve a better performance. Finally, Figure 2.2-(d) depicts the case where the
final performance is improved; not only does the model need fewer iterations to
reach the performance of the model trained from scratch, but the model also
achieves better asymptotic performance when trained with transfer learning.

Figure 2.2: Contributions of transfer learning to reinforcement learning (higher
is better).

Transfer learning has been successfully applied in reinforcement learning tasks.
In robotics, for example, transfer learning is useful for pre-training an agent’s policy
on a simulator before being trained on real-world environments [201]. Training on
a simulated environment gives the agent the advantage of doing more interactions
with it. Moreover, it reduces costs, since only the fine-tuning is done in the real
world. Another significant example of transfer learning is AlphaGo for board
games, which was pre-trained on a database of expert demonstrations. Its policy
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is then optimized via Monte Carlo Tree Search [165]. An important number of
these applications involve pre-training by imitation learning, i.e., the reinforcement
learning agent first learns from a set of expert demonstrations before adapting its
policy to the downstream task.

Few attempts have been made to apply transfer learning to combinatorial op-
timization problems. Nevertheless, all the cases listed in the literature concern a
special case of fine-tuning on the same problem, but with instances from a different
distribution (e.g., a model trained on CVRP instances with random distribution
of the clients may be fine-tuned to tackle other instances with clustered clients).
For example, zero-shot transfer has been successfully applied in a scheduling task
for different computation graphs [140]. Another interesting use case is reported
in the study of transfer learning in genetic programming hyper-heuristic for the
Uncertain Capacitated Arc Routing Problem [8]. The conclusions of the study
indicate that transfer learning improves the jump-start performance by allowing
the creation of a good new initial solution for the target problem. Furthermore,
we report an application of transfer learning on memetic algorithms for routing
problems, to solve new instances using knowledge learned from previously solved
ones [54]. Finally, Active Search [20] can also be seen as a fine-tuning strategy
which adapts a deep neural network’s weights to a specific instance (regardless of
its original distribution). For more detail on Active Search, readers may refer to
the section 1.3.3 of this thesis.

To the best of our knowledge, none of the attempts in the literature involve
transferring knowledge from one VRP problem to another more or less constrained
one, as discussed in the following sections.

2.2 Motivations and goals

As highlighted in Tables 1.4–1.7 of Chapter 1, the majority of the reinforcement
learning methods used in end-to-end learning involve policy-based methods. How-
ever, these methods are known for their sample inefficiency, which results in the
need of millions of instances to derive a good quality policy. For example, the state-
of-the-art approach of Kool et al. [100] uses 1.28M instances per training epoch.
Therefore, in the current framework, whenever a new problem is formulated by
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TSP CVRP
State partial solution under partial solution under

construction and unvisited nodes construction and unvisited nodes

Action choose an unvisited city choose an unvisited client or the depot

Reward total distance of the solution total distance of the solution
under construction (deterministric) under construction (deterministric)

Transition function deterministic deterministic

Termination condition all cities are visited all clients are visited

Table 2.1: Comparison between TSP and CVRP reinforcement learning MDP
modeling.

adding or removing constraints, a new model is trained from scratch to solve it
by policy-based deep reinforcement learning. Thus, the new problem’s relation-
ship to the previously solved problem is ignored. As well, from a practical side,
there is no guarantee that enough data is available for the new problem to train
a model from scratch. This could result in a model that converges to a poor local
minimum. Hence, studying transfer learning in this case could provide interesting
insights into the conditions of its applicability. Of course, we do not expect similar
or better performance than a model trained from scratch with enough data and
enough training epochs. We can then consider that we are interested in a degraded
mode, where we do not have enough time, nor enough data to train on the target
problem.

In this chapter, our case study concerns transfer learning in the Neural Com-
binatorial Optimization famework from TSP to CVRP, as two key representative
routing problems. As seen in Chapter 1, the two problems are related, since the
CVRP is a generalization of the TSP. Following the reinforcement learning formal-
ism, the two problems differ only in the action space (see Table 2.1). For the TSP,
an action corresponds to selecting a city not yet visited, while in the CVRP case,
an action is either "selecting a client not visited", or "coming back to the depot".
Thus, there exists an action in the CVRP that can be performed multiple times
(visiting the depot), which makes the problem relatively more difficult to solve.

To carry out this study, we make few assumptions. First, we consider that the
deep neural network model used on both TSP and CVRP are identical, i.e., they
have the same number of parameters, and the same architecture is used on both

100



2.3. MODEL DESCRIPTION

problems. Moreover, all weight values obtained during training on TSP are kept at
the beginning of training on CVRP; no layer of the neural network has its weights
randomly reset. These two assumptions put us in a situation where we consider a
model well-trained for a problem (TSP) that must be adapted to a new problem
(CVRP) with relatively less training data. Regarding the features, the CVRP uses
the same raw features as inputs of the deep neural network. This assumption is
implicitly included in the first one. Incorporating more features would necessitate
the inclusion of extra neurons on layers within the neural network. As a result,
additional parameters would be required to encode these features. Finally, we
measure the performance of the model by training it on fewer epochs than the
pre-training phase on TSP, with the aim of studying the adaptation of the model
to the downstream task (CVRP). To test the relevance of transfer learning, we
compare the model trained via transfer learning with the same model trained from
scratch by monitoring the metrics introduced in the previous section; jump-start
performance, asymptotic performance, performance with fixed training epochs.

Guided by our assumptions, we formulate research questions to which we will
attempt to provide answers.

1. In connection with the first two assumptions, is the representation learned
with TSP instances sufficient to learn a policy for the CVRP?

2. At what data count limit does transfer learning become useful?

3. How does the size of the dataset used during pre-training for the TSP influ-
ence the model’s performance when it is reused for the CVRP?

4. Will transfer learning be effective if the TSP and CVRP instances are drawn
from different distributions?

2.3 Model description

Our study is carried out on the NCO architecture proposed by Kool et al. [100]
(see page 65) which has proven to be an adequate candidate for both TSP and
CVRP. To fit our assumptions on the number of parameters and neural network
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architecture, we made adaptations to the original model. In what follows, we
briefly describe the model and introduce the adjustments we made.

This model is an encoder-decoder architecture that iteratively computes, at
each step 𝑡, the probability of choosing a node 𝑥𝑖 over the others from the prob-
lem’s raw features. In the original implementation, the TSP raw features consid-
ered are the 2𝐷-coordinates of the cities, while for the CVRP, in addition to the
clients coordinates there is also their respective demands. Furthermore, there is a
distinction between the depot and the clients nodes. In our formulation, to avoid
introducing additional parameters to the model, we use for both problems only
the 2𝐷-coordinates as raw features for the encoder, while the demands are only
used in the masking operation for the CVRP1. In the work of Nazari et al. [132],
the authors mention that using the demands along with the embedding of the 2𝐷-
coordinates for the decoder brings no significant improvement. Thus, we pushed
further this idea by only using the clients’ coordinates in the whole encoder-decoder
approach. Figure 2.3 shows the overview of the Attention Model architecture with
a linear embedding followed by an encoder and a decoder that we detail below.

2.3.1 The Encoder

The encoder is made of two main components: an embedding layer which maps the
2𝐷-coordinates to a vector in a 𝑑−dimensional space, and a transformer encoder
[178] that acts like a graph neural network on instances (recall that here we consider
an instance as a complete graph).

The embedding layer consists of a linear transformation of the node’s 2𝐷-
coordinates, following the equation: h𝑖 = Wx x𝑖 + bx ∀𝑖 ∈ {0, . . . 𝑛 − 1}, with
h𝑖,bx ∈ R𝑑, x𝑖 ∈ R2, Wx ∈ R𝑑×2, and 𝑛 being the number of nodes in an instance.
Unlike the original model, we do not use a separate linear embedding for the depot.
Although it is a special node in the CVRP, using the same linear embedding used
for the clients aims at benefiting from the representation of the coordinates learned
while solving the TSP when performing transfer learning.

For the transformer encoder, it consists of 𝑁 transformer blocks. The first

1in the original implementation [100], the demands are used along with the nodes coordinates
to compute node embeddings.
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Figure 2.3: Overview of the Attention Model architecture used in our TL experi-
ments.

block takes as input the resulting embeddings of the 2𝐷-coordinates, while the
others take the output of the previous layer. Each transformer block consists of
two components: a multi-head attention, a feed-forward layer and residual layers.
We used 3 transformer blocks with 8 heads, as suggested in the literature [100].
The result of the encoder is a set of 𝑑−dimensional node embeddings; the final
embedding of a node x𝑖 is denoted h𝑁

𝑖
.

2.3.2 The Decoder

The decoder is used to compute the probability distribution that measures the
probability that a partial solution has to be extended by a given node in order to,
in the end, minimize the total traveled distance. As we will explain hereafter, this
probability distribution will be computed confronting a context embedding with
the node embeddings. In the original model, the number of parameters defining
the context embedding varies whether we are dealing with TSP or CVRP. Here,
we also introduce modifications to preserve the same number of parameters for
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both problems.

For the TSP, at each time step 𝑡, the context embedding h𝑐 is defined as a
3𝑑−dimensional vector resulting from the concatenation of: (i) the representation
of the graph (h

𝑁
= 1

𝑛

∑𝑛−1
𝑖=0 h𝑁

𝑖
), (ii) the representation of the lastly selected node

h𝑁𝑦𝑡−1
, and (iii) the representation of the first selected node h𝑁𝑦0

. At 𝑡 = 0, two
parameter vectors v𝑙 ∈ R𝑑 and v 𝑓 ∈ R𝑑 are used to substitute the undefined values
of (ii) and (iii). The context embedding is thus defined as follows2:

h𝑐 =


[h

𝑁
; h𝑁𝑦𝑡−1

; h𝑁𝑦0
] 𝑡 ≥ 1

[h
𝑁

; v𝑙 ; v 𝑓 ] 𝑡 = 0

For the CVRP, the context embedding h𝑐 is the concatenation of the represen-
tation of the graph h

𝑁
, the representation of the lastly selected client (at 𝑡 = 0, we

use the representation of the depot h𝑁0 ) and the representation of the remaining
capacity. In the original implementation, this results in a (2𝑑 + 1)−dimensional
context vector h𝑐. However, to keep the same 3𝑑−dimensional embedding for the
CVRP as in the TSP, we did not use the remaining vehicle capacity 𝐶 ∈ R as
is as a feature. Instead, we compute an embedding of the remaining capacity by
diverting the vector v 𝑓 , i.e. Ĉ = 𝐶 v 𝑓 , thus at each time step 𝑡:

h𝑐 = [h
𝑁

; h𝑦𝑡−1 ; �̂�]

.

A glimpse mechanism [20] (see page 63) is then used to enhance the context
vector into a 𝑑−dimensional query vector q(𝑐) that will be used by an attention
mechanism to compute the probability of selecting a node as the next node. This
mechanism consists of a multi-head attention that computes the context vector in-
teraction regarding the nodes that have not yet been selected. Finally, a scaled dot
product attention mechanism [178] is used to compute the probability of choosing
a node over another. This dot product uses the query vector q(𝑐) and the keys
k𝑖 = W𝐾 h𝑁

𝑖
, ∀𝑖 ∈ {0, . . . , 𝑛 − 1} that result from a linear projection of the node

embeddings.

2We recall that [·; ·] is the concatenation operation.
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A mask is used to prevent selecting already selected nodes, as described in
Chapter 1. For the TSP, it is straightforward, as we mask already visited cities.
For the CVRP, the masking policy is more complex. Computing the probability
distribution defining the node to visit at 𝑡, we mask:

• Clients with demands greater than the remaining capacity;

• Already satisfied clients;

• The depot, if it has been selected at 𝑡 − 1, to prevent selecting it at the
current iteration.

2.4 Experimental protocol

2.4.1 Model training

We trained the model using reinforcement learning, as it tends to express interest-
ing generalization properties that may benefit Transfer Learning [90]. Supervised
learning would also be an option for the TSP, e.g., training our model from expert
demonstrations using the Concorde solver [6]. However, reinforcement learning
does not require labelled data that may be time-consuming to obtain. The para-
metric policy is more particularly trained using REINFORCE with a greedy rollout
baseline, as used in Kool et al. [100].

2.4.2 Model pre-training on TSP

We first pre-trained our model to solve the TSP. We used the same data generation
and training protocol commonly used in the literature, for each training epoch,
2500 batches of 512 instances have been generated (1.28M instances per epoch).
The data generation process consists of uniformly drawing 2𝐷-coordinates from
the unit square, i.e., U

(
[0, 1]2

)
unit square. For the validation, we used 10k

instances sampled from the same uniform distribution. Two models named TSP20
and TSP50 have been trained considering different datasets composed of instances
of 20 and 50 cities respectively. Both models have been trained during 100 epochs
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using the Adam optimizer [96] with a learning rate of 10−4. These models reach
state-of-the-art performance reported in Kool et al. [100].

2.4.3 Transfer learning to CVRP

Guided by our hypothesis and research questions, we, hereafter, present our dif-
ferent experiments on transfer learning for the CVRP. Regarding the number of
training data, we consider three different settings: 16k, 32k and 64k instances per
epoch. Considering these settings, our models are trained on respectively 80, 40
and 20 times fewer data per epoch than the original models. We also consider
training on only half the number of epochs used for the TSP, i.e., 50 epochs.

For each model trained with transfer learning, we consider its counterpart
trained without transfer learning, for comparison. When trained without trans-
fer learning, the models are trained from randomly initialized parameters using
the Adam optimizer with a learning rate of 10−4. When transfer learning is ap-
plied, the learning rate is set to 10−5 to exploit the optimizer’s saved state from
the TSP, and to gradually adapt the model’s parameters to the CVRP.

We generate CVRP instances following the protocol of Nazari et al. [132]
by sampling 2𝐷−coordinates from U

(
[0, 1]2

)
. The demands 𝑑𝑖 of clients (𝑖 ∈

{1, . . . , 𝑛 − 1}) are uniformly drawn from {1, . . . , 9}. Vehicle capacities are 30 for
instances with 20 nodes and 40 for instances with 50 nodes.

Our experiments are based on several factors: the data distribution of the
instances of the two problems, the instance size of the TSP and CVRP instances,
as well as the number of data used in the pre-training and the transfer learning
phases. We derive four series of experiments labelled as follows:

1. Same: the size of the instances and the data distributions are the same for
the TSP and the CVRP; we use a uniform distribution to sample nodes
coordinates for the TSP and CVRP instances. For example: we pre-train
on TSP with 20 cities drawn from a uniform distribution, and we train on
CVRP with 20 nodes drawn from a uniform distribution.

2. Diff size: the size of the instances differ between the TSP and CVRP, and
the data distributions are the same. For example, we pre-train on TSP with
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20 cities drawn from a uniform distribution, and we train on CVRP with 50
nodes drawn from a uniform distribution.

3. Diff Dist: the size of the TSP and CVRP instances is the same, but the data
distribution is different. For example, pre-training is done on TSP with 20
cities drawn from a uniform distribution, and training is done on CVRP with
20 cities drawn from a normal distribution.

4. Pretext: The term pretext task is borrowed from the literature of self-
supervised learning [122]. It is a task designed to create a proxy that enables
the model to learn useful representations from the dataset of the downstream
task. For example, it has been successfully used to pre-train large language
models, such as GPT-3 [26]. In our case, we use the CVRP instances to
first train a policy for the TSP. Then, starting from the resulting model and
the same CVRP instances, we use transfer learning to learn a policy for the
CVRP. The goal is to learn, from the pretext task (TSP), representations
that will be useful for the resolution of the target task (CVRP). Our study
aims, in this case, at knowing if the use of the TSP as a pretext task brings
a gain for the creation of better models for the CVRP. For example, we
pre-train the model to learn a policy for the TSP on 32k CVRP instances
with 20 cities drawn from a uniform distribution, then, we train the model
to learn a CVRP policy on the same 32k instances.

2.5 Results and discussion

2.5.1 Pre-training results

Two models, respectively denoted TSP20 and TSP50, are trained on instances of
20 and 50 cities during pre-training on TSP. Figure 2.4 depicts the evolution of
average solution length per epoch on the validation set during the training phase
in both cases. Validation is performed using 10k TSP instances unseen during
training, with 20 and 50 cities respectively. We observe that the average solution
length decreases, which implies that the model successfully learns to solve the
TSP for both instance sizes, and converges towards a minimum. Besides this, our
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Figure 2.4: Evolution of the average tour length per epoch in validation of the
model on TSP.

version of the model achieves average tour lengths of 3.84 and 5.82 for TSP 20 and
50 respectively, which matches the performance of the original model of 3.85 and
5.80 on the same instance sizes [100], despite introduced modifications.

2.5.2 Transfer learning results

We now present the results obtained in the different settings.

Same – Applying transfer learning using models pre-trained on TSP with the
same size and data generation distribution as the one considered for the CVRP
instances. Figure 2.5 shows the average tour length of CVRP models during the
training phase. Both models are presented: (i) trained from scratch with a random
weight initialization (NO-TL3 in blue), and (ii) trained starting from a pre-trained
TSP model (TL in orange). Plots a-b-c correspond to VRP20 with transfer learning
from TSP20 models, while plots d-e-f correspond to VRP50 models with transfer
learning from TSP50 models. Each plot corresponds to a number of instances per
epoch used to train our model, respectively from left to right, 16k, 32k and 64k.

Three phases can globally be distinguished in the learning process:

• Epoch 0 to 5: initial phase, the learning curve is rather in favor of models
3NO-TL designates the model trained from scratch: No-Transfer learning.
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Figure 2.5: Comparison of the evolution of average tour lengths per epoch in
training between CVRP models trained without Transfer Learning (NO-TL/blue)
and CVRP models trained using transfer learning (TL/orange) with different
number of instances per epoch (16k, 32k, 64k) with 20 nodes (plots a, b and c)
and 50 nodes (plots d, e and f).

without transfer learning, with a rapid decrease in tour lengths for both types
of models.

• Epoch 5 to 30: there is a shift in the training curves in favor of the trans-
fer learning models. The average tour lengths per epoch decreases faster
using transfer learning. The shift happens early in the learning process, so
it appears that our models need few-shot samples to adapt to the CVRP
domain.

• Epoch 30 to 50: the learning curves of the two models continue to decrease,
but more slowly than in the previous phase. Transfer learning models still
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outperform those trained without transfer learning.

Based on our findings, it appears that for the jump-start performance metric,
our models do not perform zero-shot adaptation since the initial performance is
poor compared with the NO-TL models. This can probably be partially explained
by the fact that the context embedding h𝑐 differs for the TSP and the CVRP,
since the vector v 𝑓 was departed from its initial representation to encode the
remaining capacity. The early shift seems to indicate that our models can adapt
in a few-shot way, especially when there are fewer instances per epoch. For 64k
instances/epoch models, our results suggest that they are still sample efficient, but
with no significant improvement of the final performance.

The curves also show that the more data we have, the better and faster is
the convergence of the models. The asymptotic performance between the two
models gets close to each other by augmenting the number of instances per epoch.
However, the gap between TL and NO-TL models is more significant when we
have less training data, which means that in this setting, we can achieve better
average tour lengths by considering a pre-trained model and transfer learning.

For our last metric, training on 50 epochs showed that for 16k and 32k in-
stances/epoch, transfer learning models outperform NO-TL models while for the
64k instances/epoch models, it improves the learning process by making the model
sample efficient. Another interesting observation can be made if we look at the
performance in previous epochs. For example, in Figure 2.5-(b), the TL model
achieves the performance of the NO-TL model in only 25 epochs, which is only
half the number of total epochs.

For the rest of the experiments, we train models with 32k instances per epoch,
as they are a good trade-off between training time and average tour lengths achieved
after 50 epochs.

Diff size – In this setting, we use a pre-trained TSP model trained on instances
of sizes that are different from the CVRP instances used to train our CVRP model.
In this case, we distinguish two scenarios: (i) the pre-trained TSP model is trained
on instances with sizes smaller than the CVRP instances and (ii) the pre-trained
TSP model was trained on instances with sizes larger than the CVRP instances.
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We report results on two experiments: a VRP20 model trained on CVRP instances
with 20 nodes using a TSP50 pre-trained model and a VRP50 model trained on
CVRP instances with 50 nodes using a TSP20 pre-trained model.

Figure 2.6: Average tour lengths for CVRP models, (a)- VRP20 and (b)-VRP50,
trained without Transfer Learning (NO-TL/blue), using transfer learning with
pre-trained TSP20 model (TL-TSP20/orange) and transfer learning with pre-
trained TSP50 model (TL-TSP50/green).

Figures 2.6-a, 2.6-b show the evolution of the average tour length for VRP20
and VRP50, respectively. We observe that using a pre-trained TSP model trained
on instances with the same size as the CVRP instances brings better average tour
lengths. In Figure 2.6-a, for the VRP20 model, we can see that using a pre-trained
TSP50 model (TL-TSP50) gives a jump-start performance similar to the model
with no Transfer Learning (NO-TL) and better than the model that uses the TSP20
pre-trained model (TL-TSP20). In phase 2 (from epoch 5 to 30), we can see that
Transfer Learning brings an improvement in average tour lengths in both settings
(curves orange and green are both under the blue curve). However, we can notice
that the average tour lengths are better when we use a TSP20 pre-trained model.
In phase 3 (epoch 30 to 50), the model with a TSP20 pre-trained model is still
better and leads to a faster learning and brings better asymptotic performance.
Surprisingly, at this phase, the TL-TSP50 model behaves exactly as the NO-TL
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model with no significant difference in asymptotic performance between the two
models. In the VRP50 case (Figure 2.6-b), we observe that using a TSP20 pre-
trained model gives worse jump-start performance than using a TSP50 model or
without Transfer Learning at all. The asymptotic performance is on par with the
NO-TL model, while being slightly in favor of the latter.

Our findings suggest that using a pre-trained model trained on TSP instances
bigger than the CVRP instances is more efficient than using a pre-trained model
trained on smaller instances than the CVRP instances. This assertion is based
on the observation that there exists a region in phase 2 in Figure 2.6-(a) where
the TL-TSP50 model behaves better than not using pre-training. Especially if we
have a limited time budget to train (number of epochs), it is still beneficial to use
transfer learning. In any case, it does not harm the learning process, as similar
asymptotic performances are obtained in the worst case. Based on our results, it
appears that the intuitive expectation of using a TSP50 model to pre-train for
VRP20 leading to a better improvement in the learning process is not supported.
Similarly, the assumption that using a TSP20 for pre-training for VRP50 would be
superior to starting learning from scratch does not hold true, based on our findings.
We can suppose that while learning to solve the TSP on a specific instance size,
the size of these instances is somehow encoded in the learned policy and that it
influences its behavior.

Diff dist – Training a CVRP model using instances generated from a different
distribution than the distribution used to generate the TSP instances for the pre-
trained models. Our pre-trained TSP models were trained on instances generated
from a uniform distribution. Clients’ coordinates of the CVRP instances have,
however, been generated using a truncated normal distribution so that all city
coordinates are inside the unit square. The demands are generated in the same
way as in the uniform case. Figures 2.7-a and 2.7-b show a comparison between
average tour lengths of models trained from scratch (NO-TL) and with a pre-
trained model (TL) with respectively 20 and 50 nodes.
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Figure 2.7: Average tour lengths per epoch between CVRP models trained with-
out Transfer Learning (NO-TL/blue) and CVRP models trained using transfer
learning (TL/orange) with 20 nodes [(a) VRP20] and 50 nodes [(b) VRP50].

Surprisingly, as we can see in Figure 2.7-a, using a pre-trained TSP20 model to
train a VRP20 model brings an improvement in terms of speed of learning even if
they are trained on instances coming from different distributions. The asymptotic
performance using transfer learning is better than the performance without using
it. The TL model achieves the performance of NO-TL in approximately half
the epochs. Monitoring the jump-start performance, we can observe that neither
the VRP20 nor the VRP50 can do zero-shot transfer. While the VRP20 adapts
in a few-shot way, the VRP50 struggles to do so. Figure 2.7-b shows that the
pre-training does not bring significant improvement for learning a representation
that would help tackle the VRP50, at least for a 50 epochs training. Indeed, in
this case, the asymptotic performance is on par with the NO-TL model. We can
hypothesize that the size of the problem to tackle makes the learning process more
difficult. There is probably a bias induced in the learning process of TSP50 from
the instances’ distribution (how the cities are spread in the unit square) that is not
helpful for solving the VRP50, in the case where the CVRP instances are drawn
from a different distribution. This bias may be less significant when the size of the
instances is small.
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TL as pretext task – Finally, we explore the use of TSP as a pretext task. To
this end, we pre-train two models for instances of sizes 20 and 50 with CVRP
instances whose features are used to solve a TSP. These pre-trained models are
then trained to solve CVRP20 and CVRP50 respectively. The models are trained
on 50 epochs, with 32k instances per epoch for both pretext and target tasks. The
resulting models trained using TSP as a pretext task are compared with models
trained from scratch and using the standard transfer learning (with a TSP trained
on 1.28M data per epoch). Figures 2.8-(a), (b) show the evolution of the average
tour lengths per epoch for the CVRP20 and CVRP50 respectively. In the case of
CVRP20 (Figure 2.8-(a)), we observe that using the TSP as a pretext task gives
a model that is more sample efficient than the model obtained using standard
transfer learning in the first 20 epochs. However, it converges more slowly, and
achieves a worse asymptotic performance compared with the standard transfer
learning setting. Using TSP as a pretext task is also more sample efficient than
training from scratch (NO-TL). On the other hand, for the CVRP50 experiments
(Figure 2.8-(b)), the results are not in favor of using the TSP as a pretext task, as it
has worse asymptotic performance than even training from scratch. Nevertheless,
let us note that the TL-pretext model has a better jump-start performance than
the other models, and is even more sample efficient in the first 5 epochs.

To explain the results obtained in this case, we investigate the final perfor-
mance of the models when pre-training on TSP. Figure 2.9 shows the evolution of
the average tour lengths per epoch, when using 32k CVRP instances per epoch
to train TSP models with 20 cities (plot (a)) and 50 cities (plot (b)). The final
performance is 4.04 for the TSP20 model, and 9.45 for the TSP50 model. These
models have a gap of 5.20% and 62.37% respectively to the final performance of
the TSP20 and TSP50 models that fully converged. This gap can be explained by
the difference in number of instances used to train the two models (32k instances
for pretext and 1.28M for fully converged models). Thus, the fact that we used
a model that did not fully converge in the case of TL-pretext explains the per-
formances observed when performing transfer learning. The CVRP20 model has
decent performance compared with training on CVRP from scratch because the
model’s final performance gap on TSP is small. However, for the CVRP50 model,
it has worse performance because it did not fully converge when pre-trained on
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Figure 2.8: Average tour lengths per epoch for CVRP models trained without
Transfer Learning (NO-TL/blue), CVRP models trained using transfer learning
(TL/orange) from a TSP model pre-trained on 1.28M instances per epoch, CVRP
models trained using transfer learning (TL-pretext/orange) with TSP model
pre-trained on 32k instances per epoch, with instances of (a) 20 nodes and (b) 50
nodes.

TSP. Still, we observe that it has a contribution to the performance of the CVRP50
model on the first few epochs, but it led to a worst local optimum, in terms of
asymptotic performance.

2.6 Conclusion and perspectives

In this chapter, we presented an empirical evaluation of transfer learning under
the Neural Combinatorial Optimization framework. We illustrated this evaluation
on two routing problems: the TSP and the CVRP. We presented working hypoth-
esis and derived research questions that guided our study throughout the chapter.
We also identified the metrics to monitor transfer learning from our literature re-
view: the jump-start and asymptotic performances and performance under a fixed
number of training epochs.

Several training settings were studied by varying the instances’ distribution, the
instances’ sizes of the pre-trained models, and the number of data used in both
pre-training and downstream task. We observe that, transfer learning from TSP (i)
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Figure 2.9: Evolution of average tour length per epoch when training on TSP
with 20 cities (left) and 50 cities (right) with 32k instances per epoch.

accelerates the learning process even with relatively few instances, as it improves
the sample efficiency of the pre-trained models that are trained on the CVRP and
(ii) improves the results (tour lengths) compared with a model trained from random
weights by achieving better asymptotic performance. We also identify the limit on
the number of data per epoch, where transfer learning brings improvement for 32k
instances/epoch. Our results also stress that in the worst settings, transfer learning
does not harm the learning process, as asymptotic performances similar to those
obtained by models with no pre-training are achieved. We also note that results
vary depending on the size of the instances used in the pre-training phase: better
models are obtained using models pre-trained on TSP instances of the same size
as the CVRP instances. Finally, the pre-trained model used for transfer learning
should be a model that was trained until full convergence. Indeed, using transfer
learning pre-training from a pretext task gives results correlated with the final
performance on the pretext task; the better the performance on the pretext task,
the better the performance on the target task.

Future work is required to investigate how to create models that are both
efficient and agnostic to the size of instances. Furthermore, training on CVRP
instances sampled from a different distribution than the TSP instances proved to be
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more challenging when using a pre-trained model; it does work for small instances
but struggles to scale to bigger instances. We encourage future contributions
to investigate this specific aspect of transfer learning for neural combinatorial
optimization applied to CVRP. Indeed, if we can pre-train and train models on
TSP and CVRP instances sampled from different distributions, this would lead
to significant improvements since it would be possible to pre-train on synthetic
instances to next efficiently train the model on real-world CVRP instances. Finally,
future research directions should investigate multitask learning, which considers
learning tasks simultaneously [205]. For example, we could consider learning with
the same deep neural network the CVRP and the VRPTW. Intuitively, grouping
the two types of instances increases the total number of available instances for
training the deep neural network, which could possibly make the training process
more sample efficient and give better asymptotic performance than training on
both problems separately.
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Chapter 3
Neural order-first split-second
approach for the vehicle routing
problem

In this chapter, we introduce a two-steps method based on route-first split-second
strategy for the Capacitated Vehicle Routing Problem. Our approach is based
on a combination of deep neural networks and an optimal split algorithm. We
first present a concise literature review on two-steps algorithms, and we detail the
Split algorithm. We then introduce our approach, along with the details of the
deep neural networks used to tackle the problem. We conduct extensive compu-
tational experiments on a dataset of randomly generated instances using different
search strategies. We compare our results with construction-based heuristics and
two-steps heuristics, as well as state of the art metaheuristics. Furthermore, the
proposed method is also evaluated on CVRPLib benchmarks. We also investigate
(i) the effect of features used and (ii) the depth of the neural network on the con-
vergence of the models, as well as (iii) the effect of the choice of neural network
encoder on the overall performance of the model.
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3.1 Two-steps approaches for routing problems

Two-steps approaches for the VRP have long been known in the literature. As
highlighted in Chapter 1, VRPs involve a bin-packing problem as a means to
determine clusters of clients, and a traveling salesman problem to order each cluster
into a minimum cost route.

3.1.1 Cluster-first Route-second algorithms

Cluster-first Route-second algorithms were among the first two-steps approaches,
because of their intuitiveness. In a first step, a set of feasible clusters are deter-
mined, i.e., clients are grouped so that the vehicle’s capacity is not violated (Figure
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3.1-(a)). In the second step, the order of visit of clients is set on using a TSP res-
olution method (Figure 3.1-(b)). Tyagi [174] proposed an algorithm that uses the
nearest neighbor criterion in order to add clients to clusters until the vehicle’s
capacity is reached. Gillet and Miller [64] introduced the Sweep algorithm. It cal-
culates the angle between each client location and the depot, and sorts the clients
in ascending order based on the angle. Then, they are assigned to routes, without
transgressing the vehicle’s capacity. If a client cannot be assigned to a route due
to the capacity constraint, a new route is created. The algorithm iterates until all
clients are visited. An extension of this algorithm, called the Petal algorithm, pro-
poses to build several routes, and then select the routes that are included into the
final solution by solving a set partitioning problem. The Fisher and Jaikumar [57]
algorithm determines the clusters by solving a generalized assignment problem.

(a) Cluster first.

depot

𝑞1 = 125

𝑞2 = 84

𝑞3 = 50𝑞6 = 175

𝑞10 = 500

𝑞11 = 150

𝑞12 = 100

𝑞13 = 250

𝑞4 = 500

𝑞5 = 300

𝑞7 = 350

𝑞8 = 150

𝑞9 = 1100

𝑄 = 4500

(b) Route second.

depot

𝑞1 = 125

𝑞2 = 84

𝑞3 = 50𝑞6 = 175

𝑞10 = 500

𝑞11 = 150

𝑞12 = 100

𝑞13 = 250

𝑞4 = 500

𝑞5 = 300

𝑞7 = 350

𝑞8 = 150
𝑞9 = 1100

𝑄 = 4500

Figure 3.1: Example of a CVRP instance solved using the Cluster-First Route-
Second algorithm.
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3.1.2 Order-first Split-second algorithms

Order-first Split-second algorithms first order the clients into a sequence called
giant tour (Figure 3.2-(a)), then, decompose it into a set of feasible routes (Fig-
ure 3.2-(b)). Beasley [17] was the first to propose the Route-first Cluster-second
algorithm (RFCS) for the CVRP. He observed that the routes can be optimally
extracted from the giant tour by solving a standard shortest path problem on an
acyclic graph in O(𝑛2) (𝑛 being the number of clients). RFCS uses TSP heuristics
to generate a giant tour. It uses 2-opt moves on a random permutation of clients
visit order to create a giant tour. Then, it builds the routes using Floyd-Warshall
algorithm [190], as detailed hereafter.

depot

1 2

3

4

5

6
7

8

9

10

11
12

13

14

15

(a) Order first. (b) Split second.

depot

𝑞1 = 19 𝑞2 = 30

𝑞3 = 16

𝑞4 = 23

𝑞5 = 11

𝑞6 = 31
𝑞7 = 15

𝑞8 = 28

𝑞9 = 8

𝑞10 = 8

𝑞11 = 7
𝑞12 = 14

𝑞13 = 6

𝑞14 = 19

𝑞15 = 11 𝑄 = 35

Figure 3.2: Example of a CVRP instance (P-n16-k8) solved using the Order-First
Split-Second method.

After building the giant tourY = (𝑦0, 𝑦1, ..., 𝑦𝑛) with 𝑦0 = 0 being the depot and
𝑦1, ..., 𝑦𝑛 being the index of the clients, we define an auxiliary graph 𝐻 (𝑉𝐻 , 𝐸𝐻 , 𝐷𝐻)
with |𝑉𝐻 | = 𝑛+1. The nodes in 𝑉𝐻 indicate the depot, either for return or departure.
The edge set indicates all possible routes that start from 𝑦𝑖 to 𝑦 𝑗 (𝑦𝑖, 𝑦𝑖+1, ..., 𝑦 𝑗)
that do not transgress the vehicle’s capacity constraint. We formulate it as follows:
𝐸𝐻 = {(𝑖, 𝑗) ∈ 𝑉𝐻 × 𝑉𝐻 ; 𝑖 < 𝑗 ,

∑ 𝑗

𝑘=𝑖+1 𝑞𝑦𝑘 ≤ 𝑄}. The edges are weighted as
follows: for an edge (𝑖, 𝑗) ∈ 𝐸𝐻 , we associate the total travelled distance starting
from the depot to the client 𝑦𝑖+1, visiting the tour (𝑦𝑖+1, ..., 𝑦 𝑗 ) and going back to
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the depot from 𝑦 𝑗 :

𝐷𝐻 = {𝑑𝑖 𝑗 = 𝑑𝑖𝑠𝑡 (0, 𝑦𝑖+1) +
𝑗−1∑︁
𝑘=𝑖+1
𝑗−𝑖>1

𝑑𝑖𝑠𝑡 (𝑦𝑘 , 𝑦𝑘+1) + 𝑑𝑖𝑠𝑡 (𝑦 𝑗 , 0), ∀(𝑖, 𝑗) ∈ 𝐸𝐻}

where 𝑑𝑖𝑠𝑡 (·, ·) is the function used to compute the Euclidean distance.

By construction, the auxiliary graph is a direct acyclic graph. Using a shortest
path algorithm, such as Bellman’s algorithm or Floyd-Warshall algorithm, we can
find the shortest path from the node 0 to the node 𝑛 in this graph. The associated
shortest path cost represents the best solution length (total travelled distance) for
the CVRP instance regarding the given giant tour.

To illustrate how the auxiliary graph is built and how to find the optimal split,
we use the previous example of Figure 3.2. The represented giant tour in Figure
3.2-(a) is Y = [0, 11, 4, 15, 12, 10, 1, 3, 8, 2, 13, 9, 7, 6, 5, 14], with 0 being the depot,
and the clients ranging from 1 to 15. The vehicle’s capacity is 𝑄 = 35 and the
demands are visible in Table 3.1. The distances between all the clients and the
depot are given in Table 3.2.

With an instance of 15 clients, we build an auxiliary graph with 16 nodes, i.e,
𝑉𝐻 = {0, · · · , 15}. The edge set is then computed, as described above. For example,
the edge (0, 1) is admitted because

∑1
𝑘=0+1 𝑞𝑦𝑘 = 𝑞11 = 7 ≤ 35, while the edge (0, 3)

is not in the edge set because
∑3
𝑘=0+1 𝑞𝑦𝑘 = 𝑞11 + 𝑞4 + 𝑞15 = 7 + 23 + 11 = 41 > 35.

Finally, the associated total traveled distance set 𝐷𝐻 is computed for each edge
in 𝐸𝐻 . For the edge (0, 1), it corresponds to going back and forth between the
depot and client 𝑦1 = 11, i.e. 𝑑0,1 = 𝑑𝑖𝑠𝑡 (0, 11) + 𝑑𝑖𝑠𝑡 (11, 0) = 56. Another less
trivial example is the total traveled distance associated with the edge (2, 5), which
is computed as follows: 𝑑2,5 = 𝑑𝑖𝑠𝑡 (0, 𝑦3) + 𝑑𝑖𝑠𝑡 (𝑦3, 𝑦4) + 𝑑𝑖𝑠𝑡 (𝑦4, 𝑦5) + 𝑑𝑖𝑠𝑡 (𝑦5, 0) =
𝑑𝑖𝑠𝑡 (0, 15) + 𝑑𝑖𝑠𝑡 (15, 12) + 𝑑𝑖𝑠𝑡 (12, 10) + 𝑑𝑖𝑠𝑡 (10, 0) = 30 + 6 + 10 + 21 = 67.

client id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
demand 19 30 16 23 11 31 15 28 8 8 7 14 6 19 11

Table 3.1: Clients’ demands in the instance P-n16-k8.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0.0 14 21 33 22 23 12 22 32 32 21 28 30 29 31 30

1 14 0.0 12 19 12 24 12 19 21 27 7 19 16 21 33 17

2 21 12 0.0 15 22 16 11 9 12 15 11 29 19 9 24 23

3 33 19 15 0.0 21 31 25 23 8 24 12 25 9 17 37 16

4 22 12 22 21 0.0 36 24 30 26 37 12 7 13 30 44 9

5 23 24 16 31 36 0.0 13 8 25 13 26 43 35 16 8 39

6 12 12 11 25 24 13 0.0 10 23 20 16 31 26 17 21 28

7 22 19 9 23 30 8 10 0.0 18 10 19 37 28 9 15 32

8 32 21 12 8 26 25 23 18 0.0 17 15 32 17 10 31 23

9 32 27 15 24 37 13 20 10 17 0.0 25 44 31 7 16 37

10 21 7 11 12 12 26 16 19 15 25 0.0 19 10 18 34 13

11 28 19 29 25 7 43 31 37 32 44 19 0.0 16 37 51 10

12 30 16 19 9 13 35 26 28 17 31 10 16 0.0 24 43 6

13 29 21 9 17 30 16 17 9 10 7 18 37 24 0.0 21 30

14 31 33 24 37 44 8 21 15 31 16 34 51 43 21 0.0 47

15 30 17 23 16 9 39 28 32 23 37 13 10 6 30 47 0.0

Table 3.2: The distance matrix associated with the P-n16-k8 instance.

Figure 3.1.2 depicts the resulting auxiliary graph, with edges weighted with
the couple (route demand, route distance). Selecting the best routes comes down
to solving a shortest path on this graph from node 0 to node 15, using the routes
distances as weights. The red arcs in Figure 3.1.2 represent the resulting solution
using Bellman’s algorithm. Thus, we can read from this solution the associated
CVRP solution, and its cost. There are 8 arcs in the shortest path solution,
which implies that there are 8 routes. We can deduce the CVRP solution from
the shortest path solution, as follows: for a selected arc (𝑖, 𝑗) in the shortest
path solution, the clients that are in a single route in the CVRP solution are
{𝑦𝑖+1, 𝑦𝑖+2 · · · , 𝑦 𝑗 }.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(7, 56)

(30, 57)

(23, 44)

(34, 61)

(11, 60)

(25, 66)

(33, 67)

(14, 60)
(22, 61)

(8, 42)

(27, 42)

(19, 28)

(35, 66)

(16, 66)

(28, 64)

(30, 42)

(6, 58)

(14, 68)

(29, 68)

(8, 64)

(23, 64)

(15, 44)

(31, 24)

(11, 46)

(30, 62)

(19, 62)

Figure 3.3: Example of an auxiliary graph of the instance (P-n16-k8) using the
giant tour of the Figure 3.2-(a) and the corresponding CVRP solution using the
Split algorithm. For each edge (𝑖, 𝑗) ∈ 𝐸 the associated weights represent the
total route demand

∑ 𝑗

𝑘=𝑖+1 𝑞𝑦𝑘 , and the total traveled distance from 𝑑𝑖 𝑗 ∈ 𝐷. The
arcs in red correspond to the shortest path from the node 0 to the node 15, using
the distances 𝑑𝑖 𝑗 as weights.

This gives us the following routes:

R#1 : 𝑦1, 𝑦2

R#2 : 𝑦3, 𝑦4, 𝑦5

R#3 : 𝑦6, 𝑦7

R#4 : 𝑦8

R#5 : 𝑦9

R#6 : 𝑦10, 𝑦11, 𝑦12

R#7 : 𝑦13

R#8 : 𝑦14, 𝑦15

The corresponding sequence with trip delimiters is, therefore:

Y′ = [0, 11, 4, 0, 15, 12, 10, 0, 1, 3, 0, 8, 0, 2, 0, 13, 9, 7, 0, 6, 0, 5, 14, 0]

The cost corresponds to the sum of the selected arcs’ weights, i.e., 57 + 67 + 66 +
64 + 42 + 68 + 24 + 62 = 450.

Let us note that, in practice, this auxiliary graph is not explicitly generated.
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Instead, a dynamic programming algorithm, called Split [149], is directly used to
extract the best solution from the giant tour, as depicted in Algorithm 5. The
algorithm takes as input the giant tour Y (with Y0 being the depot), the distance
matrix, the clients’ demands and the vehicle capacity. It returns the cost of the
optimal split of the giant tour, which corresponds to the cost of the CVRP candi-
date solution. 𝑚𝑖𝑛𝑙𝑜𝑛𝑔 is a one dimensional array that stores at index 𝑗 the cost
of a shortest path from the depot to the node Y𝑗 . 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[0] is associated with
the depot, for which the cost is 0, the rest of the array indices have an infinite
cost. Then we have two nested loops with variables 𝑖 and 𝑗 which correspond
to the subsequence of clients (Y𝑖, . . . ,Y𝑗 ). We compute the load and cost of the
subsequence. If the total load does not exceed the vehicle’s capacity and if there
is an improvement in the cost of the shortest path from the depot to the node Y𝑗 ,
then, we store the cost of the route in 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[ 𝑗]. The cost of the CVRP solution
can be retrieved from 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[𝑛] at the end of the execution of the algorithm.

A recent survey identifies more than 70 research papers that propose heuris-
tics and metaheuristics that successfully tackle VRPs using the Order-First Split-
Second approach [150]. Prins proposed the first genetic algorithm for the CVRP
that relies on the Order-first Split-second approach, which was competitive with
the best metaheuristic at that time (Tabu Search) [149]. In their approach, the
author proposed a representation of the chromosomes as giant tours; thus a chromo-
some is a permutation of clients’ visit order. They introduced the Split procedure,
a Bellman-based dynamic programming algorithm, to extract the best routes. The
resulting CVRP solution cost is then returned as a fitness evaluation of the giant
tour. The giant tour representation along with the Split procedure were later
used in a plethora of algorithms for various VRP variants. To name a few, Vi-
dal et al. [183] used a hybrid genetic algorithm to tackle different variants of the
VRP with time windows. More recently, Vidal [181] proposed a Hybrid Genetic
Search algorithm dedicated to the CVRP (HGS) which achieves state-of-the-art
performances on the problem.

Many reasons contribute to the success of this approach, in particular, the fact
that it is computationally less expensive to build a giant tour, and then to split
it, than building clusters of clients. In addition, searching for a solution among
permutations of clients’ visit order significantly reduces the size of the search space,
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compared with the one with trip delimiters.

Algorithm 5: The Split algorithm

1 Inputs: giant tour Y, number of clients 𝑛, vehicle’s capacity 𝑄, distance
matrix 𝑑𝑖 𝑗 ∀𝑖, 𝑗 ∈ {0, · · · , 𝑛}, clients demands 𝑞𝑖 ∀𝑖 ∈ {1, · · · , 𝑛}

2 Output: 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[𝑛] // cost of the CVRP tours

3 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[0] ← 0
4 for 𝑖 ← 1 to 𝑛 do
5 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[𝑖] ← ∞
6 end
7 for 𝑖 ← 1 to 𝑛 do
8 𝑙𝑜𝑎𝑑 ← 0
9 𝑗 ← 𝑖

10 𝑐1 ← Y[𝑖]
11 repeat
12 𝑐2 ← Y[ 𝑗]
13 𝑙𝑜𝑎𝑑 ← 𝑙𝑜𝑎𝑑 + 𝑞𝑐2

14 if 𝑗 = 𝑖 then
15 𝑐𝑜𝑠𝑡 ← 𝑑 [0, 𝑐2] + 𝑑 [𝑐2, 0]
16 else
17 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 − 𝑑 [𝑐1, 0] + 𝑑 [𝑐1, 𝑐2] + 𝑑 [𝑐2, 0]
18 end
19 if 𝑙𝑜𝑎𝑑 ≤ 𝑄 then
20 if 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[𝑖 − 1] + 𝑐𝑜𝑠𝑡 < 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[ 𝑗] then
21 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[ 𝑗] ← 𝑐𝑜𝑠𝑡 + 𝑚𝑖𝑛𝑙𝑜𝑛𝑔[𝑖 − 1]
22 end
23 𝑗 ← 𝑗 + 1

24 end
25 𝑐1 ← 𝑐2

26 until 𝑗 > 𝑛 or 𝑙𝑜𝑎𝑑 > 𝑄

27 end

This search space reduction does not make the optimal solution unattainable,
since there is an optimal giant tour which corresponds to the optimal solution. This
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can be easily verified. Indeed, if we suppose that we have an optimal solution with
trip delimiter, removing them would result in a giant tour, which, if split, would
give us again the optimal solution. Furthermore, thanks to the split approach,
we can implicitly consider numerous feasible vehicle routes, and from them pick
an optimal set of routes. This ensures to prevent too many poor quality solutions
from appearing often, provided we have a good quality giant tour. Finally, the split
procedure is relatively fast to execute, which makes it possible to evaluate several
giant tours, and to shift the resolution process to finding an efficient method that
generates the best giant tour. In the rest of this chapter, we will study the use of the
Order-First Split-Second approach under the Neural Combinatorial Optimization
(NCO) framework, which we will name Neural Order-First Split-Second (NOFSS).

3.2 The Neural Order-First Split-Second approach

We saw in Chapter 1 that most of the Neural Combinatorial Optimization ap-
proaches are construction-based strategies [132, 100, 103, 144]. As a reminder, the
candidate solution is built by iteratively selecting the next client to visit, or the
depot to refill, until all the demands are satisfied. The action to perform at each
construction step is chosen based on a probability distribution that will be esti-
mated by a deep neural network, either using supervised or reinforcement learning.
This discrete probability distribution defines the probability that an extension of
the partial solution under construction, considering each available choices (unsatis-
fied clients and depot), will lead to the optimal solution. Using such an approach,
the models handle both clients routing and returns to the depot. In this context,
choices of when to return to the depot are critical. Indeed, more returns to the
depot can de facto lead to candidate solutions with a number of tours greater
than the optimal one. This will result in models failing to learn interesting reso-
lution strategies efficiently, i.e., routing policies because of poor quality candidate
solutions, and/or large computational costs inducing prohibitive learning process
(millions of learning steps). For example, a model may decide to put each client
on a separate tour, when there is enough capacity in the vehicle to satisfy more
requests. Among other things, solutions of this type may appear in the first few
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iterations:
[0, 𝑦1, 0, 𝑦2, 0, 𝑦3, 0, · · · ]

which is, usually, far from the optimal one.
On the other hand, we have seen in the previous section that successful heuris-

tics and metaheuristics are obtained by considering the giant tour representation
of the solution, while the solution and its cost are retrieved via the Split algorithm.
Inspired by this problem decomposition, we propose the Neural Order-First Split-
Second (NOFSS) approach as a novel two-steps learning-based approach which:

1. Learns how to order clients into a giant tour;

2. Optimally split the giant tour using the Split algorithm.

NOFSS is a generic approach that we introduce and test in the context of
CVRP, even if it may be used for a larger class of routing problems. Its efficiency
stems into two keys aspects. The first one is the use of an Encoder-Decoder deep
neural network architecture based on (i) graph neural networks for computing the
representations of the CVRP instances in the embedding space, and (ii) a GRU
memory cell to encode the giant tour sequence at the time of its construction.
Thus, our neural network implicitly learns to solve VRP instances by exploring
the space of giant tours.

The second key aspect is the use of the Split algorithm to compute the total
travelled distance of the CVRP solution corresponding to the giant tour generated
from our deep neural network. Split acts as an oracle that evaluates the quality
of the giant tour, and provides feedback to the deep neural network. This oracle
replaces the usual NCO oracle which for a given solution with trip delimiters, i.e.,
[𝑦0, 𝑦1, 𝑦2, · · · , 𝑦𝑇 ], with 𝑇 being the length of the solution, computes the total
traveled distance is

∑𝑇−1
𝑖=0 𝑑𝑖𝑠𝑡 (𝑦𝑖, 𝑦𝑖+1). Thus, using Split, it is still possible to train

a NOFSS model via reinforcement learning.
As previously stated, with this approach, a deep neural network can learn differ-

ent policies depending on the variant of the VRP (e.g., VRP with Time Windows)
without additional adaptation. The Split algorithm will handle the additional con-
straints to extract the best feasible solution from the giant tour representation
and its corresponding cost, and the neural network learns the policy accordingly.
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It is also worth mentioning that unlike the other learning-based construction ap-
proaches that build a solution in a variable number of steps due to the return to
the depot to refill (with a number of iterations equal to twice the number of clients
in the instance, in the worst case1), the NOFSS approach builds a giant tour in a
fixed number of steps equal to the number of clients in the instance. Algorithm
6 presents the training loop, which corresponds to the REINFORCE with Rollout
baseline algorithm, adapted to the NOFSS method, which we detail hereafter.

The deep neural network with parameters 𝜃 is trained over a set of 𝐼 CVRP
instances, for 𝐸 epochs. The training dataset is split into batches of 𝐵 instances.
Thus, training for a single epoch requires a total of 𝑇 = 𝐼

𝐵
iterations. For a given

instance 𝑋 ∼ D of 𝑛 clients, our neural network defines a stochastic policy that
outputs the probability of generating a sequence Y as a giant tour. Using the
probability chain rule, with 𝜃 being the parameters of the neural network, this
probability is defined as the product of the conditional probabilities of extending
the giant tour with a client at step 𝑡, i.e.,

𝑃𝜃 (Y|𝑋) =
𝑛∏
𝑡=1

𝑝𝜃 (𝑦𝑡 |𝑦0, · · · , 𝑦𝑡−1, 𝑋)

We define the loss as the expected tour lengths of the giant tours evaluated by
the Split algorithm, i.e.

L(𝜃) = E𝑋∼D,Y∼𝑃𝜃 (.|𝑋)
[
Split(Y, 𝑋)

]
The objective is to find the best parameters 𝜃 that will output good quality

sequences Y that would result in short tour lengths. For this, we rely on gradient
descent to update the parameters 𝜃 during training, by using the Adam optimizer
[96]. To compute the gradient of the loss, we use the REINFORCE with baseline
algorithm. REINFORCE links the gradient of the loss to the gradient of the log
of the probabilities output by the deep neural network [192]:

∇𝜃L(𝜃) = E𝑋∼D,Y∼𝑃𝜃 (.|𝑋)
[(

Split(Y, 𝑋) − 𝑏(𝑋)
)
∇𝜃 log 𝑃𝜃 (Y|𝑋)

]
1The worst case corresponding to routing each client in a single route.
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The gradient ∇𝜃L(𝜃) is approximated using Monte Carlo sampling over a batch
of 𝐵 i.i.d CVRP instances as follows:

∇𝜃L(𝜃) ≈
1
𝐵

𝐵∑︁
𝑖=1

[(
Split(Y𝑖, 𝑋𝑖) − 𝑏(𝑋𝑖)

)
∇𝜃 log 𝑃𝜃 (Y𝑖 |𝑋𝑖)

]
The baseline 𝑏(𝑋) is used to reduce the gradient variance, leading to an acceleration
of the learning process. We use the greedy rollout baseline, which uses a delayed
copy of the policy network to generate a giant tourY𝐵𝐿 by a greedy search strategy;
the client with the highest probability of appearance is added to the giant tour at
each step. This giant tour baseline is then evaluated using the Split algorithm, i.e.
𝑏(𝑋) = Split(Y𝐵𝐿 , 𝑋). This baseline turned out to be more efficient than actor-
critic or REINFORCE with an exponential moving average baseline [100]. During
validation, if the performance of 𝜃 is significantly better than that of 𝜃𝐵𝐿 according
to a t-test (𝛼 = 5%), the baseline is updated with the parameters 𝜃 (lines 14–16
in Algorithm 6).
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Algorithm 6: NOFSS REINFORCE with Rollout Baseline

1 Inputs: initial policy network parameters 𝜃, number of epochs 𝐸 , batch
size 𝐵, number of instances 𝐼, number of clients 𝑛, vehicle capacity 𝑄,
t-test threshold 𝛼

2 𝑇 ← 𝐼

𝐵

3 𝜃𝐵𝐿 ← 𝜃

4 for 𝑒 ← 1 to 𝐸 do // train for 𝐸 epochs

5 for 𝑡 ← 1 to 𝑇 do // loop over the 𝑇 instance batches

// Get a batch of 𝐵 CVRP instances with 𝑛 clients

6 𝑋𝑖 ← getInstance(𝑛, 𝑄), ∀𝑖 ∈ {1, · · · , 𝐵}
// Sample a giant tour according to the learning policy

𝑃𝜃

7 Y𝑖 ← SampleGiantTour(𝑋𝑖, 𝑃𝜃), ∀𝑖 ∈ {1, · · · , 𝐵}
// Generate a giant tour greedily according to the policy

𝑃𝜃𝐵𝐿

8 Y𝐵𝐿
𝑖
← GreedyGiantTour(𝑋𝑖, 𝑃𝜃𝐵𝐿), ∀𝑖 ∈ {1, · · · , 𝐵}

// Evaluate giant tours total travel cost

9 𝐿𝑖 ← Split(𝑋𝑖, Y𝑖, 𝑄) ∀𝑖 ∈ {1, · · · , 𝐵}
10 𝐿𝐵𝐿

𝑖
← Split(𝑋𝑖, Y𝐵𝐿

𝑖
, 𝑄) ∀𝑖 ∈ {1, · · · , 𝐵}

11 ∇𝜃L ←
1
𝐵

𝐵∑︁
𝑖=1

(𝐿𝑖 − 𝐿𝐵𝐿𝑖 )∇𝜃 log 𝑃𝜃 (Y𝑖 |𝑋𝑖) // Compute the loss

12 𝜃 ← 𝐴𝑑𝑎𝑚𝑊 (𝜃,∇𝜃L) // update neural network parameters

13 end
14 if t-test(𝑃𝜃 ,𝑃𝜃𝐵𝐿 ) < 𝛼 then
15 𝜃𝐵𝐿 ← 𝜃

16 end

17 end
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Figure 3.4: Proposed NOFSS model for solving CVRP instances.

3.3 The deep neural network architecture

The NOFSS approach is agnostic to the choice of encoding and decoding compo-
nents of the model. Thus, we propose to train various encoder-decoder models that
rely on different graph neural networks (GNNs) encoders and a GRU recurrent cell
for decoding. Figure 3.4 depicts our proposed encoder-decoder architecture that
we detail in the subsection 3.3.2. We first detail the features that we will use as
inputs to our deep neural networks in the following subsection.

3.3.1 Instance features

Although deep neural networks’ power lies in their automatic feature extraction,
providing good initial features can improve the learning process and reduce training
time. In general, only raw features are given as input, and from this, the neural
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network computes a new representation. However, in the CVRP case, we find it
useful to compute features that may result in a better representation instead of
only using the raw features (node coordinates and demand). Let 𝐺 (𝑉, 𝐸) be the
graph associated with the CVRP instance, with 𝑉 being the nodes and 𝐸 being
the edges that connect each pair of nodes. For each instance, we define the nodes
and edges features as follows.

Node features. Each node 𝑢 ∈ 𝑉 is represented as a quadruplet (𝑥𝑢, 𝑦𝑢, 𝑞𝑢, 𝑎𝑢),
where (𝑥𝑢, 𝑦𝑢) ∈ [0, 1]2 are the node coordinates, 𝑞𝑢 =

𝑞𝑢

𝑄
∈ [0, 1] is the normalized

demand and 𝑎𝑢 = 𝑎𝑡𝑎𝑛
( 𝑦𝑢 − 𝑦0

𝑥𝑢 − 𝑥0

)
∈] − 𝜋

2
,
𝜋

2
[ is the polar angle between the node 𝑢

and the depot node 0. Generally, in the literature, only the triplet (𝑥𝑢, 𝑦𝑢, 𝑞𝑢) is
used, but we find it convenient to add information about the polar angle between a
client and the depot. Computing the polar angle does not add any computational
overhead and was already a characteristic of interest in handcrafted heuristics,
such as the Sweep algorithm [64].

Edge features. For each edge (𝑢, 𝑣) ∈ 𝐸 , we define the edge features as the
Euclidean distance between the nodes 𝑢 and 𝑣 (𝑒𝑢,𝑣 =

√︁
(𝑥𝑢 − 𝑥𝑣)2 + (𝑦𝑢 − 𝑦𝑣)2,

∀(𝑢, 𝑣) ∈ 𝐸). The distance between two nodes in the instance is an interesting
feature in the case of VRPs because it appears in the objective function as the
quantity of interest to be minimized.

3.3.2 NOFSS encoding-decoding architecture

3.3.2.1 Encoding

Since VRPs have inherently a graph theory formulation, we propose to use graph
neural networks for encoding the problem instances into an embedding space. The
literature of GNNs is rich, which yields to a plethora of choices for the encoder.
Since there is no certainty about the best GNN encoder, we experiment three of
them for our approach: GCN (a spectral GNN)[97], GAT (a spatial GNN) [179]
and TransformerConv (a spatial GNN) [163]. In all cases, the encoders are made of
𝐾 similar GNN layers with a ReLU activation function in between. Their inputs
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consist of node and edge features, and their outputs are node embeddings for
both the clients and depot h(𝐾)𝑢 ∈ R𝑑, ∀𝑢 ∈ 𝑉 and a graph embedding computed

using an average pooling layer h̄ =
1
|𝑉 |

∑︁
𝑢∈𝑉

h(𝐾)𝑢 . Finally, to distinguish the clients

embeddings from the depot embedding h(𝐾)0 , we use a linear transformation of the
client’s embeddings: h𝑢 = W𝑐 h(𝐾)𝑢 + b𝑐,∀𝑢 ∈ 𝑉 − {0}, with W𝑐 ∈ R𝑑×𝑑 ,b𝑐 ∈ R𝑑

being respectively the weights and the bias of the layer.

Each type of GNN differs from the other in the way it computes the node
embeddings. GCN computes the node embeddings as a linear transformation of
the weighted sum of the embeddings of each node’s neighbors, including itself
(Equation 3.1). The weights 𝛼𝑢,𝑣 correspond to the normalized edge values 𝑒𝑢,𝑣
(Equation 3.2).

h(𝑘)𝑢 = W(𝑘)
∑︁

𝑣∈N𝑢∪{𝑢}
𝛼𝑢,𝑣 h(𝑘−1)

𝑣 , 𝑘 ∈ {1, . . . , 𝐾} (3.1)

𝛼𝑢,𝑣 =
𝑒𝑢,𝑣√︁
|N𝑢 | |N𝑣 |

(3.2)

with N𝑢,N𝑣 being the neighborhood sets of nodes 𝑢 and 𝑣, respectively, W(𝑘) ∈
R𝑑×𝑑 the weight matrix of the 𝑘 𝑡ℎ GNN block, and h(𝑘−1)

𝑣 ∈ R𝑑 the node embedding
from the (𝑘 − 1)𝑡ℎ GNN block.

On the other hand, GAT proposes to take advantage of the improvements
introduced by the Transformer neural networks. Firstly, it uses the multi-head
mechanism to compute 𝐿 different embeddings for each node. Each head computes
a node representation as a weighted sum of the embeddings of the node’s neighbors,
including itself (Equation 3.3). The way the weighting is done differs from GCN.
In GAT, we use the attention mechanism similar to the additive attention to assign
a higher weight to more important neighboring nodes (Equation 3.4). The edge
features are included in the attention mechanism only. The final node embedding is
computed by concatenating the heads’ outputs, followed by an activation function
(Equation 3.8).
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h(𝑘),𝑙𝑢 =
∑︁

𝑣∈N𝑢∪{𝑢}
𝛼𝑙𝑢,𝑣 ·W(𝑘),𝑙h(𝑘−1),𝑙

𝑣 , 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.3)

𝛼𝑙𝑢,𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
𝑣∈N𝑢∪{𝑢}

(𝐿𝑅𝑒𝐿𝑈 (a⊺ [U(𝑘),𝑙 ; V(𝑘),𝑙 ; E(𝑘),𝑙])), 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾}

(3.4)

U(𝑘),𝑙 = W(𝑘),𝑙h(𝑘−1),𝑙
𝑢 , 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.5)

V(𝑘),𝑙 = W(𝑘),𝑙h(𝑘−1),𝑙
𝑣 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.6)

E(𝑘),𝑙 = We
(𝑘),𝑙𝑒𝑢,𝑣 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.7)

h(𝑘)𝑢 = 𝑅𝑒𝐿𝑈

( [
h(𝑘),1𝑢 ; . . . ; h(𝑘),𝐿𝑢

] )
, 𝑘 ∈ {1, . . . , 𝐾} (3.8)

with W(𝑘),𝑙 ∈ R𝑑×𝑑 ,We
(𝑘),𝑙 ∈ R1×𝑑 are the weight matrices of the 𝑙𝑡ℎ head of the

𝑘 𝑡ℎ GNN block for the node and edge embeddings respectively, h(𝑘−1),𝑙
𝑣 ∈ R𝑑/𝐿 is

the node embedding from the 𝑙𝑡ℎ head of the (𝑘 − 1)𝑡ℎ GNN block, and a ∈ R𝑑 is
a vector of learned parameters.

Finally, TransformerConv is similar to GAT, since both use the multi-head and
the attention mechanisms. They differ in the way they aggregate the neighbor’s
embeddings to compute node embeddings. TransformerConv uses different neu-
ral network parameters (W1,W2) to encode the updated node and its neighbors.
Moreover, the corresponding weight of the updated node is equal to 1, while the
neighbors weights are computed using an attention mechanism. TransformerConv
uses the scaled dot-product attention to compute the nodes embeddings. The edge
features are integrated similarly in both the aggregation and the attention mech-
anism. The final node embedding is obtained likewise as in GAT, by using an
activation function on the result of the concatenation of the output of the heads.
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h(𝑘),𝑙𝑢 = W1
(𝑘),𝑙h(𝑘−1),𝑙

𝑢 +
∑︁
𝑣∈N𝑢

𝛼𝑙𝑢,𝑣 ·
(
W2
(𝑘),𝑙h(𝑘−1),𝑙

𝑣 +E(𝑘),𝑙
)
, 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾}

(3.9)

𝛼𝑙𝑢,𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
𝑣∈N𝑢∪{𝑢}

(U(𝑘),𝑙
(
V(𝑘),𝑙 + E(𝑘),𝑙

)⊺
√
𝑑

)
, 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.10)

U(𝑘),𝑙 = W3
(𝑘),𝑙h(𝑘−1),𝑙

𝑢 , 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.11)

V(𝑘),𝑙 = W4
(𝑘),𝑙h(𝑘−1),𝑙

𝑣 , 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.12)

E(𝑘),𝑙 = We
(𝑘),𝑙𝑒𝑢,𝑣, 𝑙 ∈ {1, . . . , 𝐿}, 𝑘 ∈ {1, . . . , 𝐾} (3.13)

h(𝑘)𝑢 = 𝑅𝑒𝐿𝑈

( [
h(𝑘),1𝑢 ; . . . ; h(𝑘),𝐿𝑢

] )
, 𝑘 ∈ {1, . . . , 𝐾} (3.14)

with W(𝑘),𝑙
𝑖
∈ R𝑑×𝑑 , 𝑖 ∈ {1, . . . , 4} are the weight matrices of the 𝑙𝑡ℎ head of the

𝑘 𝑡ℎ GNN block for the node embeddings, We
(𝑘),𝑙 ∈ R𝑑×1 is the weight matrix of

the 𝑙𝑡ℎ head of the 𝑘 𝑡ℎ GNN block for the edge embeddings, h(𝑘−1),𝑙
𝑣 ∈ 𝑅𝑑/𝐿 is the

node embedding from the 𝑙𝑡ℎ head of the (𝑘 − 1)𝑡ℎ GNN block, and a ∈ R𝑑 is a
vector of learned parameters.

3.3.2.2 Neighborhood definition

In its canonical form, instances of the CVRP are represented by complete graphs.
There is, a priori, no way to assert that an edge connecting two nodes will not
be in the optimal solution. However, using a complete graph as input for the
GNNs may result in the appearance of the over-smoothing phenomenon; the rep-
resentations of the nodes in the graph end up being the same, as the number
of GNN layers increases [134]. To prevent this, we propose, for the encoding
phase only2, to define for each node its neighborhood. Previous works success-
fully used this trick for the TSP. For example, Khalil et al. [94] defined as fixed

2during decoding, we still consider a complete graph.
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number of neighbors (𝜅 = 10) for each node, regardless of the size of the graph.
Other works consider the 𝑛 · 𝜅% nearest neighbors, so that the node degrees
scale better on small and large instances. However, for the CVRP, we argue
that this neighborhood definition does not consider the instance’s characteristics.
Thus, we propose to use a different strategy to set the neighborhood of a client
and the depot. We define the neighborhood N𝑢 of a client node 𝑢 ∈ 𝑉 − {0}
as the 𝜅 nearest nodes in terms of Euclidean distance union the depot 0, i.e.,
N𝑢 = {𝑣1, 𝑣2, ..., 𝑣𝜅 ∈ 𝑉 ; ∥𝑣1 − 𝑢∥ ≤ ∥𝑣2 − 𝑢∥ ≤ ... ≤ ∥𝑣𝜅 − 𝑢∥} ∪ {0}). We choose
to connect all the clients to the depot because each one of the clients can be a po-
tential candidate from which the vehicle travels back to the depot. For the depot,
we consider that it is connected to every client, since every client can be a candi-
date for the departure from the depot. An example of an instance neighborhood
definition is depicted in Figure 3.5. The central node (red square) represents the
depot, while the other nodes (blue circles) represent the clients. An edge exists
between nodes 𝑢 and 𝑣 if 𝑣 ∈ N𝑢. In addition, we propose to compute the number
of nearest neighbors 𝜅, based on the characteristics of the instance in terms of the
number of clients, their demands, and the capacity of the vehicles instead of se-
lecting an arbitrary number of them. We set it to be the average number of clients
per route as if they were uniformly distributed on the routes, i.e. 𝜅 =

𝑛

𝑚
with 𝑛

being the number of clients and 𝑚 being the lower bound of the number of routes

(𝑚 =

⌈∑𝑛
𝑖=1 𝑞𝑖

𝑄

⌉
). Of course, such a neighborhood definition does not correspond

to the number of clients in each route in the optimal solution, nor the number of
routes itself. However, it offers the advantage of being individualized per instance,
which is, in our view, better than setting an arbitrary number for 𝜅.

3.3.2.3 Decoding

In the deep learning jargon, producing a giant tour corresponds to decoding a
sequence of clients’ order. Since the ordering of the clients is important in this
phase, we use a GRU recurrent cell to capture the sequence’s representation h(𝑠)𝑡
at each step 𝑡 [31]. Decoding happens iteratively, in 𝑛 steps. At 𝑡 = 0, we only
use the depot representation h(𝐾)0 as input of the GRU. For 𝑡 > 0, the GRU takes
as input the previously selected client representation at step 𝑡 − 1 and the depot
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Figure 3.5: CVRP instance with relationships between neighboring nodes (central
square node is the depot).

representation h(𝐾)0 . This results into a vector h(𝑠)𝑡 that represents the giant tour
under construction, i.e.,

h(𝑠)𝑡 :=

GRU( [h(𝐾)0 ]), 𝑡 = 0

GRU( [h𝑦𝑡−1 ,h
(𝐾)
0 ]), 𝑡 > 0

The graph embedding h̄, the depot embedding h(𝐾)0 and the sequence embed-
ding h(𝑠)𝑡 are then concatenated together to form a context vector h𝑐 ∈ R3𝑑. The
context vector is then passed to a feedforward layer made of two linear layers with
the 𝑅𝑒𝐿𝑈 activation function in between to output a query vector q ∈ R𝑑 i.e.,

q = W2 𝑅𝑒𝐿𝑈 (W1 h𝑐 + b1) + b2

with W1 ∈ R𝑑×3𝑑, W2 ∈ R𝑑×𝑑, b1,b2 ∈ R𝑑 being the parameters of the feedforward
network.

To compute the probability of selecting the next client 𝑝𝜃 (𝑦𝑡 |𝑦0, ..., 𝑦𝑡−1, 𝑋),
we compute attention scores 𝑠𝑢 (∀𝑢 ∈ 𝑉 − {0}) using a scaled dot-product with
a masking mechanism to avoid selecting the same client twice. These scores are
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then clipped within [−𝐶,𝐶] using 𝑡𝑎𝑛ℎ [20].

𝑠𝑢 =


𝐶 · 𝑡𝑎𝑛ℎ

(
q𝑡 · h⊤𝑢√

𝑑

)
, 𝑢 ≠ 𝑦𝑡 ′ 𝑡′ < 𝑡, 𝐶 = 10

−∞ otherwise

The attention scores are converted into a probability distribution using the
softmax function

𝑝𝜃 (𝑦𝑡 = 𝑖 |𝑦0, ..., 𝑦𝑡−1, 𝑋) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑠𝑖)

By setting the value of the attention score to −∞, we can perform the masking of
already visited clients. Thus, when passed to the softmax function, its associated
probability will be 0.

3.4 Experimental protocol

3.4.1 Data generation

We follow the data generation protocol of Nazari et al. [132] to consider 3 types
of CVRP instances with number of clients 𝑛 = 20, 50 and 100. For each problem
size, we have generated 100𝑘 instances for training, and two sets of 10𝑘 instances
for validation and test. Clients and depot locations are uniformly generated from
U

(
[0, 1]2

)
. The clients’ demands are also uniformly drawn from {1, . . . , 9}. Vehi-

cles’ capacities are set to 30, 40 and 50 respectively for 𝑛 = 20, 50, 100.

3.4.2 Hyperparameters

We use an embedding dimension 𝑑 = 128 and a uniform parameter initialization
for our deep neural networks U

(
[− 1√

𝑑
, 1√

𝑑
]
)

and set the learning rate to 𝜂 = 10−3.
The models are trained with a time limit of 100 hours and batch size 𝐵 = 128. For
each encoder type, we use 𝐾 = 3 GNN blocks. GAT and TransformerConv use
𝐿 = 8 heads for the multi-head attention mechanism.
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3.4.3 Baselines

We use HGS3 [181] as baseline as it is one of the state-of-the-art metaheuristics for
the CVRP. We also use classical CVRP heuristics4: (i) RFCS [17] as a two-steps
Order-first Split-second heuristic, (ii) Sweep [64] as a two-steps Cluster-first Route-
second approach, and (iii) Nearest Neighbor heuristic as a single-step construction
approach [176]. We also trained the model with TransformerConv encoder in end-
to-end (FL-Transformer), i.e., the model manages the visit of the clients and the
return to the depot (FL stands for Full Learning).

We first notice that NOFSS models are faster to train, completing 𝐸 = 1000
of learning epochs in the 100 hours time budget, while the Full-learning models
perform 1000, 500 and 200 training epochs for instance sizes of 20, 50 and 100
respectively. The validation is done using a greedy decoding which considers the
highest probability at each decoding step, for both the policy and the baseline
models. For the exploitation of the learned policies on the test set (inference),
we use greedy decoding and a sampling strategy which samples 1280 candidate
solutions for each test instance from the probability distributions given by the
models.

Table 3.3 reports the results of each approach on the test set, specifying: av-
erage solution lengths (obj.), the average gap (in percentage) to the best average
solution lengths, and the running time (in seconds) to output a candidate solution
for a single instance.

3.5 Computational results

3https://github.com/vidalt/HGS-CVRP
4https://github.com/yorak/VeRyPy
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3.5.1 Comparison with an end-to-end construction model

Figure 3.6 presents the evolution of the average solution length per epoch during
training and validation on CVRP instances with 20 clients (left) and 50 clients
(right)5. During training, candidate solutions are sampled from the model and
their total lengths are averaged over the training set. Let us note that the models’
parameters are updated each time a batch is processed via gradient descent, thus
the performance of the models changes for every batch during training, while
validation is performed using the model resulting from the processing of the last
batch in the training set, which is supposed to be the best model achieved at the
end of the epoch. Furthermore, in validation, we use a greedy decoding instead
of sampling. The evolution of the average solution lengths shows that the NOFSS
model can learn an implicit policy for solving the CVRP by learning to output an
indirect representation of the solution (giant tour).

Figure 3.6: Learning curves in training and validation for Full-learning (blue)
and NOFSS models (orange) on CVRP instances with 20 (CVRP20) and 50 clients
(CVRP50); lower is better.

On instances with 20 clients, we can observe that during training, the NOFSS

5We observe the same evolution in the plot with 100 clients.
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model achieves better average solution lengths than the Full-learning model. On
validation, we observe the same trend as in training, but starting from the 600𝑡ℎ

epoch, the Full-learning model slightly outperforms the NOFSS model. The equiv-
alent performance of the two models is confirmed on the test set with average
solution lengths of 6.50 and 6.49 on greedy decoding for NOFSS and Full-learning
respectively with similar execution times. On sampling decoding, similar perfor-
mances are observed, with 0.9% difference in performance between the two models,
but with an advantage in execution time in favor of NOFSS. On CVRP with 50
clients, we observe that NOFSS has a better jump-start performance on training
and the Full-learning model has a better final performance. We observe 2% differ-
ence in performance for greedy and sampling decoding on the test set. We also
note similar sampling times for the two types of models in greedy decoding, while
NOFSS being 1.52, 1.50 and 3.41 times faster in sampling respectively for 𝑛 = 20,
50 and 100.

3.5.2 Comparison with handcrafted heuristics

When compared with handcrafted heuristics, we can observe from Table 3.3 that
either with greedy or sampling search strategies, NOFSS models outperform the
Sweep, Nearest neighbor and RFCS algorithms, except for the instances with 100
clients where only the sampling strategy outperforms RCFS. Let us note that while
RFCS and NOFSS belong to the same type of two-steps strategy, using a sampling
strategy for NOFSS makes it surpass RFCS in both solution quality and execution
time. Furthermore, the difference in average solution lengths may suggest that
NOFSS’s learned policy is different from a handcrafted strategy that uses TSP
heuristics to generate the giant tour. We further investigate the number of test
instances where NOFSS performs better than RFCS and vice versa. The results
are presented in Table 3.4. It shows that overall, NOFSS with stochastic sampling
outperforms RFCS for 99.29%, 98.72% and 90.57% of the instances of sizes of 20,
50, 100 respectively.
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𝑛 NOFSS better than RFCS RFCS better than NOFSS

20 9929 71
50 9872 128

100 9057 943

Table 3.4: Summary of the number of instances where NOFSS with stochastic
sampling is better than RFCS and vice versa, for different instance sizes (20, 50,
100).

3.5.3 Generalization to different instance sizes

We propose to study the generalization of the models trained on a set of instances
with a specific size on instances of different size. For this, we evaluate the models
trained on a specific instance size by using the different test sets with instances of
size 20, 50 and 100. We use the NOFSS-Transformer model and compare it with
its full learning counterpart (FL-Transformer). Table 3.5 sums up our results. We
report the average solution lengths for both greedy (G) and sampling (S) search
strategies. Regarding the greedy decoding, we present the results for the models
trained on the different instance sizes while for stochastic sampling, we focus on the
model trained on instance sizes which seems more promising based on our findings
on the greedy decoding. For example, in the first line of Table 3.5, Transformer-20-
(G) refers to the model that uses TransformerConv encoder, which was trained on
instances with 20 clients, and evaluated on the test sets using greedy (G) decoding.
The first column means that the model is the NOFSS-Transformer which is tested
on instances of size 20, 50 and 100. The second column corresponds to the FL-
Transformer which is tested on instances of size 20, 50 and 100.

We observe that for the Transformer-20-(G), the NOFSS model has a better
generalization property than the Full-learning model, with performance similar for
𝑛 = 20 and 𝑛 = 100 and better for 𝑛 = 50. Since training models on instances with
20 clients is faster, it is relevant to stress that NOFSS would therefore be a better
choice.

For Transformer-50-(G) and Transformer-100-(G), it appears that, for 𝑛 = 20
NOFSS models have better performances than their Full-learning counterparts
while staying competitive for 𝑛 = 50 and 𝑛 = 100. An interesting result observed
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on Transformer-50-(G) is its good generalization to CVRP instances with 100
clients, as it appears that it achieves better performance than the models trained
on instances with 100 clients. This may suggest that relevant invariants that are
beyond the instance size are learned while training on instances with 50 clients. We
push further our investigations on Transformer-50-(S) by analyzing its performance
using a stochastic sampling search strategy. While for the instances with 20 clients,
the models stay competitive with the ones trained on that size, they achieve the
best performances on the sets with instances with 50 and 100 clients. Transformer-
50 appears to be a good trade-off between learning speed (it is faster to train than
Transformer-100) and performance.

Trained model NOFSS Full-learning
20 50 100 20 50 100

Transformer-20-(G) 6.50 11.62 18.34 6.49 12.01 18.33
Transformer-50-(G) 6.64 11.57 17.97 6.76 11.34 17.52
Transformer-100-(G) 6.94 11.79 18.13 6.98 11.65 17.69
Transformer-50-(S) 6.31 11.03 17.40 6.25 10.79 17.22

Table 3.5: Comparison of average solution lengths achieved by the NOFSS and
Full-learning models on different instance sizes of the test set using greedy search
(G) and stochastic sampling (S).

3.5.4 Evaluation on CVRPLib instances

We performed an evaluation of the NOFSS model using Active Search strategy
on the CVRPLib instances, for the different sets A, B, E, F, P, and X. For the
X instances, because of memory consumption, we only tackled instances from 100
to 240 clients. For each instance, our model samples a total of 576,000 candidate
solutions. The number of sampled candidate solutions per batch depends on the
size of the instance and is depicted in Table 3.6. For small instances, until 32
nodes, we sample 16 candidate solutions per batch, which means that the algorithm
performs 36,000 iterations. For bigger instances (𝑛 > 200), due to memory limits,
we only sample 64 candidate solutions per iteration.
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We compare our algorithm with handcrafted heuristics. Table 3.7 presents
the average gap per set of instances. The detailed results on each instance are
available in Appendix B and are summarized in the box plot proposed in Figure
3.7. These results confirm that our algorithm outperforms RFCS, Nearest neighbor,
and Sweep as it achieves better gaps in all the instance sets.

The gaps found by our algorithm on these sets match the orders of magnitude
of the gaps observed on the randomly generated instances, especially on sets with
small size instances (A, B, E, P). For the medium size instances of the set M, the
average gap is 3.71%, while for the medium to big size instances of set X, this gap
becomes more important (6.49%) but is still acceptable. The box plots in Figure
3.7 detail some statistics about the gaps. For instance, we observe that 75% of
the instances in the sets (A, B, E, P, M) have a solution that is under 5% gap
from the best solution found by HGS, while for the set X, the third quartile is at
around 8% gap. For the set F, this statistic is not relevant, since there are only
3 instances in the set. Due to their characteristics of having many clients closer
to each other, these instances are more difficult to solve for our model, with an
average gap of 5.60%.

number of nodes 𝑛 batch size
𝑛 ≤ 32 16

33 ≤ 𝑛 ≤ 64 32
65 ≤ 𝑛 ≤ 128 64

129 ≤ 𝑛 ≤ 200 128
𝑛 > 200 64

Table 3.6: Number of sampled candidate solutions for each instance sizes inter-
vals.
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Set NOFSS (± std) NCO-AM (± std) RFCS Nearest Neighbor Sweep
A 2.87 (±1.56) 6.18 (±6.12%) 14.52 23.82 47.20
B 2.45 (±2.09) 4.42 (±1.97%) 10.50 20.43 23.10
E 2.91 (±1.96) 3.09 (±2.83%) 14.70 24.28 48.58
F 5.60 (±4.47) 10.16 (±4.23%) 11.78 27.26 71.92
P 2.51 (±1.51) 2.77 (±2.09%) 14.99 22.50 42.35
M 3.71 (±1.54) 7.38 (±3.37%) 16.76 29.44 108.14
X 6.49 (±2.54) 90.09 (±126.93%) 15.34 18.99 108.74

Table 3.7: Comparison between the average gap per set of CVRPLib instances
(%).

Figure 3.7: Box plot detailing the gap to HGS results of the execution of NOFSS
on CVRPLib instance sets.

Regarding the execution times, we report in Table 3.8 the average of the total
execution time and the average time until the model reaches its incumbent solution.
As we can see, our model needs, on average, less than an hour to sample the 576,000
candidate solutions for the small size sets, while it needs an average of 1.3 to 1.8
hours for the medium to big size instances. Regarding the average time to find the
best solution, it is less than 23 minutes for the small size instances of the sets (A, B,
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Set Avg. execution time (min.) (± std (min.)) Avg. time to best solution (min.) (± std (min.))
A 50.71 (±10.2) 12.94 (±12.0)
B 51.38 (±8.87) 22.88 (±17.5)
E 51.37 (±8.14) 15.33 (±14.4)
F 53.37 (±8.27) 20.77 (±18.0)
P 52.63 (±6.92) 8.59 (±9.04)
M 80.01 (±16.9) 71.55 (±22.8)
X 109.95 (±46.7) 96.74 (±47.2)

Table 3.8: Summary of average total execution time and average time until the
best solution for NOFSS on CVRPLib sets.

E, F, P). We note that our model needs more time to find a good solution for sets
with clustered clients (sets B and F) compared with sets with randomly distributed
clients (sets A, E and P). For the medium to big size instances (set M and X), our
model continues to find better solutions nearly until the end of the total execution
time. This is because these instances are more difficult to solve, since the search
space is larger for instances with more than a hundred clients. Moreover, these
sets contain a mix of instances with randomly distributed clients and clustered
clients. Thus, for some instance, the clustering property adds complexity to the
size.

Finally, we compare the results of NOFSS with the ones obtained by NCO-AM
in Chapter 1 (see Table 3.7). We observe that, when running the NOFSS model in
Active Search algorithm, its performance is better than NCO-AM’s. While they
have comparable performance on the instances of sets E and P, the difference in
gaps between the two models is more visible on the set X. In this case, NOFSS is
able to produce better solutions that NCO-AM for the majority of the instances.
Nevertheless, there exist instances where NCO-AM performs better than NOFSS,
for example, the instance X-n242-k48, where NCO-AM achieves a gap to the HGS
solution of 3.91% while NOFSS achieves 7.93%. This suggests that there is still
room for improvement for our approach.
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3.6 Model study

3.6.1 Influence of the type of encoder

We investigate the influence of the choice of GNN encoder on models’ performance.
Figure 3.8 shows the evolution of the average solution lengths per epoch in training
and validation phases for the 3 types of GNN encoders: GCN, GAT and Trans-
formerConv on CVRP with 20 and 50 clients. We observe the same trends for both
training and validation phases, with TransformerConv having the best convergence,
followed by GAT encoder and finally by GCN encoder. The instances’ representa-
tion plays an important role in the resolution process because a good representation
leads to the exploitation of meaningful features and, thus, gives a better solution.
The choice of the encoder seems to be a critical part of the model’s architecture. It
appears from these results that spatial GNNs better perform than spectral GNNs
in our evaluation setting. This means that the attention-based node aggregation
gives a better representation than the aggregation based on node degrees, by as-
signing different weights to a nodes’ neighborhood. While TransformerConv and
GAT are both spatial GNNs, it appears that the way they exploit the node and
edges information has an impact on the overall performance of the models. Possi-
ble explanations are that TransformerConv has more parameters than GAT, and
uses the edge values representations in the neighborhood aggregation. Another
possibility is that the dot-product attention better estimates the contributions of
each neighboring node than the additive attention used in GAT.

3.6.2 On features’ influence

We investigate the contribution of the use of the polar angle feature for nodes
representation. For that, we trained the same model, by omitting this feature,
i.e., we trained a model that considers only the coordinates and the normalized
demands as nodes features. Figure 3.9 shows the evolution of the average solution
length per epoch for a NOFSS model with TransformerConv encoder trained with
the polar angles features (in blue) and without this feature (in orange) on CVRP
with 20 clients. As we can see, adding this feature does improve the learning
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Figure 3.8: Comparison of Graph Neural Network encoders on models’ perfor-
mance (training and validation).

process. The model has a better starting performance. In addition, it learns faster
than the model without this feature. The validation curves confirm that the model
that uses the polar angles achieves better performance.

3.6.3 Using a deeper model

Our last investigation concerns the depth of the GNN encoder. Figure 3.10 shows
the evolution of solution length per epoch in train and validation for a shallow
model (in blue) and a deeper model (in orange). It highlights an interesting case,
where deeper neural networks fail to learn better models than their shallow coun-
terpart. As we can see, the average solution length is constant in the first hundred
epochs, which means that the model cannot learn any meaningful heuristic from
the data. Starting from the epoch 150, the average solution length begins to de-
crease, which means that the model starts to learn, but it cannot catch with the
shallow model which achieves better average solution lengths in both training and
validation phases. This finding suggests to us that neural networks must be care-
fully designed to achieve better performances, otherwise either the learning process
can slow down, or, in the worst case, the model cannot recover from the region it
is stuck in and completely fails to learn a meaningful heuristic.
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Figure 3.9: Comparison of TransformerConv NOFSS models trained with ad-
ditional polar angles features (in blue) and without polar angles features (in
orange), lower is better.

Figure 3.10: Comparison of NOFSS models with 𝐾 = 3 TransformerConv layers
(in blue) and with 𝐾 = 8 layers (in orange), lower is better.
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3.7 Conclusion and perspectives

In this work, we proposed Neural Order-First Split-Second (NOFSS), a two-steps
algorithm hybridizing a deep neural network model and an exact tour splitting pro-
cedure for the Capacitated Vehicle Routing Problem (CVRP). To the best of our
knowledge, this is the first model that proposes a hybridization between a deep
neural network and a dynamic programming algorithm to successfully learn an
implicit policy based on giant tour generation to solve the CVRP. We conducted
extensive experiments on the proposed models with various Graph Neural Network
encoders, which highlighted the importance of carefully designing the deep neural
network for tackling the problem. We also introduced a new way to compute the
number of neighboring nodes that takes into consideration the instance’s charac-
teristics. Furthermore, we proposed to add the polar angle between the clients
and the depot as a node feature, and empirically observed that it improves the
learning process, and the final performance of the models.

We compared our model with classic CVRP heuristics and its corresponding
end-to-end version. Our results show that NOFSS outperforms classic CVRP
heuristics while being competitive with its end-to-end full-learning counterpart,
even if it does not outperform it. NOFSS is however faster than end-to-end ap-
proaches in both training and evaluation. It also shows good generalization prop-
erties when trained on instances with a specific size and applied to solve instances
of different sizes. Besides this, the NOFSS model is easier to implement than its
end-to-end alternative, while still not relying on sophisticated handcrafted search
strategies to find good quality solutions. We also evaluated the performance of
our approach on the CVRPLib benchmarks, and confirmed the performances on
different instances sizes.

In summary, the results presented in this chapter encourage us to investigate
more on the generalization of the NOFSS model to instances of bigger sizes. In
addition, it would be interesting to evaluate it on other problems, such as the
Vehicle Routing Problem with Time Windows. Future work will focus on the
integration of this model with local search algorithms, to provide a good warm
start to initiate the search.
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Chapter 4
Deep reinforcement learning for the
ride-hailing problem

In the previous chapters, we investigated different aspects of the application of
end-to-end deep reinforcement learning on static and deterministic VRPs, with
the Capacitated Vehicle Routing Problem as the default test bed. In this chapter,
we shed light on the study of deep reinforcement learning methods on dynamic
and stochastic VRPs. Precisely, we study the Dynamic Ride-Hailing Problem with
stochastic travel times, which is a variant of the pickup and delivery problem for the
transport of people. Dynamic and stochastic problems are inherently more difficult
to tackle than their static and deterministic counterparts, even for handcrafted
methods. Indeed, as dynamic problems require making decisions in real time, it is
difficult to plan ahead. Moreover, the stochasticity of the problem adds uncertainty,
which makes it difficult to predict specific outcomes. Thus, feasible solutions are
bound to the realization of uncertain events. Since deep neural networks can learn
complex patterns and relationships in data, and deep reinforcement learning allows
accommodating to changes in real-time decision-making problems, they seem to
be an interesting research direction for tackling these problems.

The problem tackled in this chapter was part of the 12𝑡ℎ DIMACS implemen-
tation challenge [101]. The competition gathered 13 teams, and 4 of them were
able to submit their results on the challenge. This chapter presents our approach,
which ranked 3𝑟𝑑 in the challenge. Other contributions to the challenge can be
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found in the following references [4, 142].
In what follows, we first review the use of learning-based methods for ride-

hailing problems. Then, we describe the problem that is studied throughout this
chapter based on the description given in the DIMACS implementation challenge,
and we formulate it as a reinforcement learning problem. Next, we introduce
the different solution methods we designed for the problem and the deep neural
network used to tackle it. This is followed by extensive computational experiments
and comparisons between the different solution methods. Finally, we summarize
our findings, and we give future research directions.
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4.1 Literature review

The development of technologies like navigation services, real-time traffic data,
and mapping, as well as the widespread adoption of the internet and smartphones
contributed to the emergence and rapid adoption of ride-sharing services, such as
Blablacar, Uber, Lyft. As an illustration, in the city of New York, the NYC Taxi
& Limousine Commission, which is responsible for licensing and regulating taxis,
reports data regarding the use of taxis and ride-sharing applications (see Figure
4.1). Through this data, we can observe that the trend has been towards the use
of ride-sharing applications, with a rising trend since 2015. In 2022, these appli-
cations accounted for over 600000 trips, compared to 100000 for taxis. Similarly,
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the market share of ride-sharing applications has significantly increased recently,
representing over 83% in 2022 [159].

Figure 4.1: Left: Evolution of the number of trips per day from 2010 to 2022 in
New York City for yellow taxis and ride-hailing applications. Right: Evolution of
market share of ride-hailing applications as of % of (yellow taxis + ride-hailing)
[159]

In a typical ride-sharing service, we distinguish five modules [151]:

1. Pricing: establishes the cost of a ride;

2. Matching: assigns the ride to an available vehicle;

3. Repositioning: assigns an available vehicle to an idling location;

4. Pooling: adjusts the pricing, matching, repositioning, and routing;

5. Routing: guides vehicles to different locations.

Once a user requests a ride, the first module that is called is the pricing module,
which computes its cost. The user can either accept or decline the ride. Upon
acceptance, the matching module assigns the ride to an available vehicle. Once
the vehicle has driven the customer to their destination, the driver receives the
fare and becomes available for the next ride. In cases where multiple passengers
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share a ride, the pooling module adjusts the pricing, matching, repositioning, and
routing. The ride-sharing application can propose to a vehicle to reposition via
the repositioning module to direct the vehicle to parking areas that exhibit a high
likelihood of an imminent request. Finally, the routing module is triggered to guide
the vehicle to the pick-up location, destination of the ride, and idling locations.

The democratization of ride-sharing is accompanied by challenges that must
be addressed by companies operating in this industry. For example, order cancel-
lation may happen before matching the request to a vehicle, or when the vehicle is
en route to pick up the customer. This complicates the matching problem. In ad-
dition, the problem of repositioning presents a significant challenge, as it involves
selecting an optimal idle location that would enable the vehicle to be near a future
ride request. Furthermore, the routing in ride-sharing applications differs from
the standard shortest-path problem, since it must adapt to traffic condition, most
often characterized stochastically [164].

The matching problem, also known as ride dispatching or order dispatching,
is the subject of several studies from the reinforcement learning perspective [199,
188, 85, 209, 77, 202, 28, 102]. The rationale for using deep reinforcement learning
rather than handcrafted heuristics stems from the fact that heuristics tend to
prioritize immediate customer satisfaction, whereas deep reinforcement learning
prioritizes the maximization of long-term rewards.

In Xu et al. [199], the matching problem is formulated as a Markov decision
process, where each vehicle is considered as an agent. For each vehicle, they define
the state as a pair of (time, location). The actions are either "serve a request" or
"reposition in an idling location". The reward is the revenue earned by serving a
request. The city is divided into regions (zones) for discretizing the action space.
They consider that repositioning does not induce any cost, and perform value
estimation in a discrete tabular state space, using dynamic programming. Wang
et al. [188] adopt the same formulation, except that they consider a single vehicle.
The problem is then solved using a model-free deep Q-learning approach (see
section 1.2.2.2), using a Multi-layer perceptron (MLP) to compute the Q-values.
Although trained for a single vehicle, the authors argue that the learned policy can
be used in a multi-driver setting. In Zhou et al. [209], the authors propose a multi-
agent reinforcement learning approach, where each vehicle acts as an independent
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agent. Furthermore, they consider a reward composed of the accumulated driver
income as well as the order response rate, defined as the proportion of served
requests to the total orders in one day. They used a deep Q-learning with an MLP
for the Q-network to optimize the agent’s policy, as well as a KL-divergence to
accelerate the learning process.

Figure 4.2: Representation of the city of Manhattan with its zoning. Yellow dots
represent vehicles and blue dots represent repositioning locations.

Other works consider the joint matching and repositioning problems. In Jin
et al. [85], they use a hexagonal grid-world representation of a city, where each
grid is considered as an agent. Each grid (agent) handles the vehicles in its zone.
The vehicles are divided into an order dispatching group and a repositioning group.
Authors also model additional agents that represent districts with multiple grids
inside. Moreover, they formulate the problem as a partially observable Markov
decision process1, solved using hierarchical reinforcement learning2 [82]. They
used policy gradient to train the agents with real-world data from a ride-sharing
company. In Holler et al. [77] and Kullman et al. [102], the authors consider a
central agent responsible for fleet management that handles both matching and
repositioning tasks. Holler et al. [77] designed a deep neural network that uses
two different MLPs for vehicle and request encoding. They introduce an attention
mechanism to compute a global context vector, which is used in two other MLPs to
compute a Q-value for repositioning and request assignment. Kullman et al. [102]
address a more complex problem. In addition to the repositioning and matching

1A partially observable Markov decision process is used to model decision-making where the
agent cannot fully observe the system’s state.

2Hierarchical reinforcement learning decomposes a reinforcement learning problem into a
hierarchy of tasks.
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problems, they consider an electric fleet of vehicles. This requires addressing the
extra issue of repositioning the vehicles to a charging station [102]. They considered
real-world data from the city of Manhattan. In their study, the authors divided the
city into various zones and utilized one-hot encodings to represent each zone (see
Figure 4.2). They used a Double Deep Q-learning algorithm and a neural network
similar to the one applied in Holler et al. [77] to train two agents for covering both
customer and vehicle perspectives, respectively. Their findings revealed that the
vehicle-centric agent performed better in terms of cumulated rewards.

Alternative studies examine the joint pricing and dispatching problem [28] or
the joint pricing and repositioning problem [202]. Chen et al. [28] used a contex-
tual bandit algorithm for the pricing problem, and temporal difference learning for
vehicle dispatching [171]. Specifically, the pricing decisions are discrete changes in
the percentage of the price, and are chosen using a contextual bandit algorithm
that incorporates the long-term values learned by the value network into the re-
wards. Yuan et al. [202] formulated the pricing and the repositioning as regression
problems, and they trained several models for that purpose, including two MLPs.
They find out that for both tasks, their approaches based on deep neural networks
best performed. Their experiment over the New York City dataset shows an im-
provement of 6.7% on the number of served requests compared with the original
optimization approach based on Model Predictive Control optimization.

Regarding the experimental setup, the aforementioned papers utilized simula-
tors that rely on real-world data. Several works, including [199, 188, 209, 77, 28]
utilized a simulator based on DiDi ride-sharing application data. Other works
considered real data from the NYC Taxi & Limousine Commission to create a
simulator over the city of Manhattan [202, 102].

In what follows, we will consider a ride-hailing problem, a variant of ride-
sharing, where only one passenger shares the ride with the driver. Furthermore,
our work focuses on the matching and repositioning problems.

4.2 Problem definition

The problem addressed in this study shares similarities with the one presented in
Kullman et al. [102], with the exception that electric vehicles are not considered,
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Symbol Meaning

𝑉 Number of vehicles
V Set of vehicles
𝐶𝐹 Fixed income
𝐶𝐷 Per-distance income
𝑇 Time horizon
𝑇𝐶 Travel cost
𝑤∗ Maximum waiting time

Table 4.1: Symbols and associated meanings.

and therefore there are no charging-related constraints to be considered. Further-
more, the following problem definition and modeling stem from the corresponding
DIMACS implementation challenge [101].

We consider the dynamic ride-hailing problem with stochastic travel times,
where we have a homogeneous fleet of vehicles V = {0, 1, ..., 𝑉 − 1} (with 𝑉 being
the number of vehicles) located in idling locations, where they wait for client’s
requests. This fleet is controlled by a central operator, which either dispatches
them to serve trip requests that arise randomly across the city of Manhattan
(matching), or repositions them into other idling locations (lots) to anticipate
future requests.

Objective. The goal is to define a policy for the central operator that maximizes
the total profit earned over a time horizon of 𝑇 hours. When serving a request,
a vehicle earns a fixed income 𝐶𝐹 and a per-distance income 𝐶𝐷 that depends on
the distance between the request’s origin and destination. We also associate with
each vehicle a travel cost 𝑇𝐶 that depends on the total travelled distance. This
includes the distance to go pick the client at a given position, the distance to the
client’s destination, and the distance to an idling location. Thus, the total profit
is computed as the difference between the revenue earned from serving client’s and
the travel costs:
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𝑃𝑟𝑜 𝑓 𝑖𝑡 =
∑︁

𝑟∈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
(𝐶𝐹 + 𝐶𝐷 × 𝑑𝑖𝑠𝑡_𝑠𝑒𝑟𝑣𝑖𝑛𝑔(𝑟)) − 𝑇𝐶 × 𝑑𝑖𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑇 (4.1)

where 𝑑𝑖𝑠𝑡_𝑠𝑒𝑟𝑣𝑖𝑛𝑔 is a function that computes the distance between a request’s
origin and destination, and 𝑑𝑖𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑇 is the total distance traveled by the
vehicles over the entire time horizon 𝑇 .

Stochasticity. Depending on the day of the week and hours of the day, the
requests may arise in different areas of the city of Manhattan. Moreover, the
central operator does not know in advance where and when requests may arise.
Thus, it cannot have a predefined vehicle allocation plan, and must make decisions
as requests come in. The operator must also build a strategy for deploying the fleet
of vehicles to the idling locations to respond to requests in the shortest possible
time. This deployment must be done intelligently so that the travel costs are
not too high, but also so that the vehicles are positioned to respond quickly to
client requests. In addition, to insure a quality of service, a vehicle must arrive at
client’s location within a fixed time of 𝑤∗ minutes. After this time, if the customer
is not picked up by a vehicle, the operator cancels its request. We also consider
road traffic congestion in the form of stochastic travel times. The travel time
is a function of the distance between the start and the end points, as well as the
speed of the vehicle. This speed depends on the time slot of the customer’s request
location and the location of the vehicle. For example, during rush hour, depending
on the vehicle’s and request’s geographical locations in Manhattan, the speed of
the vehicle may be higher or lower. We assume that the vehicle’s speed follows a
normal distribution. Table 4.2 shows an example of the parameters used to sample
the vehicle’s speed. The mean and standard deviation speeds (in km/s) depend
on:

• the elapsed time from midnight (in minutes),

• the departure zone (the zone where the vehicle is located),

• the arrival zone (the zone where the request is located).
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For example, if we serve a customer from a location in zone 4 to another location
in zone 4, and the elapsed time from midnight is 15 min, the speed of the vehicle
for the run will be sampled from N(4.75𝑒−03, 1.24𝑒−03)

puzone dozone min speed_mean speed_stddev
4 4 0 4.77e-03 1.26e-03
4 4 15 4.75e-03 1.24e-03
4 4 30 4.73e-03 1.23e-03
4 4 45 4.71e-03 1.22e-03
4 4 60 4.68e-03 1.20e-03

Table 4.2: Examples of vehicle’s speed data based on the departure (puzone) and
arrival (dozone) zones, the minutes elapsed from midnight (min), mean and
standard deviation speed (speed_mean, speed_stddev).

Note that this table of parameters is not directly accessible by the central operator,
making it more complex to allocate vehicles to requests.

Vehicle’s job types. A vehicle can either serve a request or receive a repositioning
instruction. To describe the current vehicle activity, each vehicle maintains a queue
of three "jobs", i.e. 𝑗𝑜𝑏𝑠 = [ 𝑗𝑜𝑏1, 𝑗𝑜𝑏2, 𝑗𝑜𝑏3]. The possible job types for the
vehicles are3:

• Idling (IDLE): the vehicle is waiting at a designated idling location (lot).

• Repositioning (REPO): the vehicle is on its way to a lot.

• Setup (PICKUP): the vehicle is on its way to pick up a customer.

• Processing (PROCESS): a vehicle is transporting a customer to its location.

• Null (NULL): no job specified for the vehicle.

Triggering a decision by the operator. The central operator makes decisions at
a time step 𝑡 when:

• a new request arises;
3changes have been made to the denominations used in the DIMACS challenge to facilitate

the presentation.
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• a vehicle goes from 𝑗𝑜𝑏𝑠 = [𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿] to [𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿];

• 𝑀𝐴𝑋_𝑇 𝐼𝑀𝐸 seconds have elapsed since the last decision step. This allows
the operator to make a decision on requests that have been put on the waiting
list.

Request assignment. Request assignment to a vehicle 𝑣 is possible when:

• the vehicle can travel to the request’s location within 𝑤∗ minutes. If the
expected arrival time exceeds this time constraint, then, the assignment is
ignored4;

• 𝑗𝑜𝑏1 ∈ {𝑁𝑈𝐿𝐿, 𝐼𝐷𝐿𝐼𝑁𝐺, 𝑅𝐸𝑃𝑂};

• the vehicle 𝑣 has at most one assigned request: a request can be assigned to
a vehicle that has 𝑗𝑜𝑏𝑠(𝑣) = [𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿], which will become
𝑗𝑜𝑏𝑠(𝑣) = [𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑃𝐼𝐶𝐾𝑈𝑃, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆]. Note that it is not possible
to assign a request when the vehicle is on its way to pick a customer, i.e.,
𝑗𝑜𝑏𝑠(𝑣) = [𝑃𝐼𝐶𝐾𝑈𝑃, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿].

Furthermore, additional constraints must be respected:

• when a vehicle is processing a request and has another assigned request, it
must first drop off its current customer at its destination. Then, it can
begin to travel to its second customer. Thus, transitions from 𝑗𝑜𝑏𝑠 =

[𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿] to 𝑗𝑜𝑏𝑠 = [𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑃𝐼𝐶𝐾𝑈𝑃, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆]
do not imply a detour;

• a vehicle cannot stay in a configuration such as 𝑗𝑜𝑏𝑠 = [𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿];
it must be assigned a request or reposition;

• a request is only assigned once: it is not possible to re-optimize a solution
once a vehicle’s dispatching plan has been decided by the operator;

4when a request is assigned to a vehicle, the operator also provides an idle location. Therefore,
if 𝑤∗ is not respected, the vehicle can reposition to an idling location, if it is not processing a
request (e.g., 𝑗𝑜𝑏𝑠 = [𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿]).
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• assigned requests cannot be canceled, i.e., a vehicle with 𝑗𝑜𝑏𝑠 = [𝑃𝐼𝐶𝐾𝑈𝑃,
𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿] cannot switch to [𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿];

• a vehicle that is repositioning to an idling location can be assigned to another
one;

• idling vehicles will stay at their idling location until they are assigned to a
request or repositioned.

We sum up all these vehicles’ jobs transitions in the diagram of Figure 4.3.
Blue arcs indicate the states conditions for performing request assignments, while
the red ones represent the state from which it is possible to reposition. The
"start" arrow at the node [𝐼𝐷𝐿𝐸, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿] indicates that, at the beginning,
all vehicles are waiting in an idling location. The remaining arcs indicate that a
vehicle that is described with the job types in the node at a time 𝑡, can be observed
being in the corresponding transition node at 𝑡 + 1. For example, a vehicle that
has 𝑗𝑜𝑏𝑠 = [𝑃𝐼𝐶𝐾𝑈𝑃, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿] at a time 𝑡 can be observed at 𝑡 + 1
either at the same state, which means that it did not yet arrive at the request
location’s origin, or it can be observed with 𝑗𝑜𝑏𝑠 = [𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿]
when it arrives at the request’s pickup location. This reflects the fact that going
from one point in the city to another is not instantaneous.

Central operator decisions. When a decision step is triggered, the central oper-
ator can make the following decisions:

• Process unassigned requests. The operator can either:

– Assign a request to an eligible vehicle (see blue arcs in Figure 4.3);

– Reject the request;

– Wait until the next decision step to decide.

• Reposition eligible vehicles (see red arcs in Figure 4.3);

In the next section, we will formulate this problem under the reinforcement
learning paradigm, as well as introduce our notations for the next sections.
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Figure 4.3: Possible changes of vehicles’ job types over the time steps. Blue
arcs indicate request assignment conditions, which are subject to the time limit
constraint. Red arcs represent repositioning conditions.
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4.3 Reinforcement learning formulation

To formulate this problem as a reinforcement learning problem, we identify each
component of the reinforcement learning framework: the environment, agent, state,
actions, reward.

Agent. It is responsible for making decisions (actions) at each decision step, given
the current state of the environment. In the problem description, this is what we
called the central operator. It handles the fleet of vehicles and assigns them new
tasks. It also decides whether a request should be treated, delayed or rejected.

Environment. The city of Manhattan constitutes the environment of this prob-
lem. Its main characteristics are the road network structure, the idling locations,
the division into zones, the traffic congestion, the stochastic travel speeds between
zones and the requests. Moreover, the Manhattan distance is used to compute all
the distances. Changes in the environment during the interactions with the agent
can be observed through the states’ components, as described below.

State. At each decision step 𝑡, the state is represented as a tuple 𝑠𝑡 = (𝑠T , 𝑠R , 𝑠V)
defining:

• Timing 𝑠T = (𝑡′, 𝑑), with 𝑡′ ∈ [0, 𝑇]5 being the time at which the decision step
was triggered over a time horizon of 𝑇 = 86400 seconds and 𝑑 ∈ {0, 1, 2, 3, 4}
being the day of the week (0 for Monday), excluding the weekends.

• Pending requests 𝑠R = (𝑠𝑃𝑡 , 𝑠T𝑟 ). With 𝑃𝑡 = {0, 1, ..., 𝑝𝑡 − 1} the set of 𝑝𝑡
pending requests at the time 𝑡, 𝑠𝑃𝑡 = {((𝑜𝑖𝑥 , 𝑜𝑖𝑦), (𝑑𝑖𝑥 , 𝑑𝑖𝑦)),∀𝑖 ∈ 𝑃𝑡} being the
set of the pending requests’ Cartesian coordinates of the origin and destina-
tion locations, and 𝑠T𝑟 = {𝑟T

𝑖
,∀𝑖 ∈ 𝑃𝑡} represents the request time at which

the requests were first received by the operator.

• Vehicles. 𝑠V defines for each vehicle 𝑣 ∈ V:
5Note that the decision step 𝑡 and the environment internal timing 𝑡 ′ are different from one

another. The step 𝑡 is reported when an event is triggered, while 𝑡 ′ refers to the time elapsed
since midnight.
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– (𝑥𝑣, 𝑦𝑣) the Cartesian coordinates of its location.

– [ 𝑗𝑜𝑏𝑖 (𝑣) ∈ {𝐼𝐷𝐿𝐸, 𝑅𝐸𝑃𝑂, 𝑃𝐼𝐶𝐾𝑈𝑃, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆, 𝑁𝑈𝐿𝐿}, 𝑖 ∈ {1, 2, 3}]
represents the job types. There are 3 jobs per vehicle.

– ( 𝑗𝑜𝑖𝑣, 𝑗 𝑑𝑖𝑣), 𝑖 ∈ {1, 2, 3} represents the job origin and destination Carte-
sian coordinates, i.e., 𝑗𝑜𝑖𝑣 = (𝑥𝑜𝑖𝑣, 𝑦𝑜𝑖𝑣) and 𝑗 𝑑𝑖𝑣 = (𝑥𝑑𝑖𝑣, 𝑦𝑑𝑖𝑣), when rele-
vant ( 𝑗𝑜𝑏𝑖 (𝑣) ≠ 𝑁𝑈𝐿𝐿, 𝑖 ∈ {1, 2, 3})

We consider that the vehicles share the same environment’s state. This means
that the agent makes decisions for all the vehicles regarding this current state
configuration. This might not be fully accurate since in practice the new state
would have to be recalculated each time the agent decides for a given vehicle. This
approach reduces the complexity of calculating individual states for each vehicle
separately, which can be computationally intensive, especially in environments
with numerous vehicles.

Action space. At each decision step 𝑡, the operator specifies for each vehicle and
request:

• req_rejections ∈ {0, 1}𝑝𝑡 a vector of length 𝑝𝑡 that indicates whether a re-
quest is rejected (1) or not (0), i.e., req_rejections𝑖 = 1 implies that 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖
is rejected.

• req_assgts ∈ {V ∪ {𝑉}}𝑝𝑡 a vector defining the vehicle assigned to each
request. A request may be set to wait (value 𝑉).

• reposition ∈ {𝐿 ∪ {|𝐿 |}}𝑉 represents where the vehicles will be repositioned,
with 𝐿 the set of lots (predefined idling locations grouped into zones and
represented by their Cartesian coordinates {(𝑥𝑖

𝑙
, 𝑦𝑖
𝑙
),∀𝑖 ∈ 𝐿}). Vehicles can

be assigned to any idling location 𝑙 ∈ 𝐿 or not repositioned (value |𝐿 |).

Thus, an action 𝑎𝑡 is defined as a tuple of (req_rejections, req_assgts, reposition)6.

We should observe that as the number of pending requests 𝑝𝑡 changes over time,
the req_rejections and req_assgts vectors have a variable length (possibly zero
length vectors).

6The environment manages inconsistencies, for example if rejected requests are assigned to
vehicles, then they are ignored.
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Initialization. The initial state 𝑠0 begins at 𝑡′ = 0, the day of the week 𝑑 is
initialized randomly, with no pending requests. The vehicles are idling at a lot,
with the 𝑗𝑜𝑏𝑠 queue being 𝑗𝑜𝑏𝑠(𝑣) = [𝐼𝐷𝐿𝐸, 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿], ∀𝑣 ∈ V.

Reward. We consider a shared reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡) among the vehicles. A shared
reward will encourage cooperation between the vehicles [102]. The reward function
𝑅(·, ·) is defined as the total sum of the incomes earned by all the vehicles minus
the travel costs, as defined in Equation 4.1.

4.4 Solution methods

In this section, we describe the four different solution methods we designed to
tackle the problem. The first one relies on completely learning Q-values for reposi-
tioning and matching; the second one is a hybrid policy with learned Q-values for
matching and a handcrafted nearest neighbor policy for repositioning: the third
one is in between the first two policies, it learns the Q-values for matching, and
Q-values for selecting the repositioning zone, combined with a nearest neighbor
strategy to determine the repositioning lot. The last method is a fully handcrafted
heuristic based on a nearest neighbor strategy. Furthermore, we have decided not
to reject any customer requests, for all the strategies. Regarding, request’s wait,
we decided that a customer will wait if and only if all vehicles are busy serving
other customers.

Our learning-based agents manage both request assignments (matching) and
vehicle repositioning. We tackle the problem from the vehicles’ perspective, i.e.,
at a given state 𝑠𝑡 , the action 𝑎𝑡 corresponds to a set of actions for each vehicle
(𝑎𝑡 = {𝑎𝑣𝑡 ,∀𝑣 ∈ V}). From the vehicle’s perspective, an action corresponds to
either request assignment or repositioning. This formulation of the action space
reduces its size compared with the original formulation in section 4.3.

We train the agents using an n-step Dueling Deep Q-learning (D2QN) algo-
rithm to estimate the Q-values [189]. In D2QN, we estimate both the value of a
state 𝑉 (𝑠𝑡) and the advantage of each state-action pair 𝐴(𝑠𝑡 , 𝑎𝑡). The Q-value of
a state-action pair is therefore computed as following: 𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑉 (𝑠𝑡) + 𝐴(𝑠𝑡 , 𝑎𝑡).
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The main advantage of this decomposition is to separate between the common esti-
mation (the value of the state) from the differentiating estimation (the advantage
of taking an action on given a state), which often leads to a more accurate Q-value
estimation [189]. For this, we use two different neural networks for each quantity
to estimate. The first one is the value of a state 𝑉 (𝑠𝑡), and the second one is the
relative advantage of choosing an action in that state 𝐴(𝑠𝑡 , 𝑎𝑣𝑡 ), ∀𝑣 ∈ V. Moreover,
in the final estimation of the Q-values, the mean advantage of each state-action
pair is subtracted from the computed advantage to increase the stability of the
optimization [189]. Therefore, for each vehicle 𝑣 ∈ V:

𝑄(𝑠𝑡 , 𝑎𝑣𝑡 ) = 𝑉 (𝑠) +
(
𝐴(𝑠𝑡 , 𝑎𝑣𝑡 ) −

1
|A𝑣

𝐷𝑄𝑁
|

∑︁
𝑎
′𝑣
𝑡 ∈A𝑣𝐷𝑄𝑁

𝐴(𝑠𝑡 , 𝑎
′𝑣
𝑡 )

)
where A𝑣

𝐷𝑄𝑁
is the set of all possible actions that the vehicle can take using the

D2QN neural network. This action set is detailed later on, since it differs from
one solution strategy to another.

In addition, the D2QN algorithm considers two different estimators for the Q-
values: a Q-network and a Target-network. The Q-network represents our learning
agents. It estimates the expected cumulative rewards that each vehicle would earn
by taking an action. The Target network is a copy of the Q-network, but its
parameters are fixed for a certain number of iterations. It is periodically updated
using the Q-network parameters to help track the changes in the optimal policy
over time, during the learning phase.

During the interactions with the environment, we store the agent’s experiences
as a tuple (𝑠𝑡 , 𝑟𝑡 , 𝑎𝑡 , 𝑠𝑡+1), at each decision step 𝑡, in a replay memory buffer. This
replay memory will be used later on to sample experiences to train our Q-network.
This memory of size 𝑀 is cyclical; older experiences are overwritten by newer ones
when it is full. In the standard Deep Q-learning approaches, including D2QN,
this memory is updated with a new experience at each step. In the case of our
problem, delayed rewards issues may occur because the vehicles need a certain
time to process a request, and thus to receive a positive reward. The use of 𝑛-
step Q-learning [171] allows the model to wait for 𝑛 decision steps before receiving
the final reward; thus, the future reward estimation is more accurate. We store
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the transitions in our replay memory with 𝑛-step delay (𝑠𝑡 , 𝑟𝑡:𝑡+𝑛, 𝑎𝑡 , 𝑠𝑡+𝑛) where
𝑟𝑡:𝑡+𝑛 =

∑𝑛
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 and 𝛾 being a discount factor (usually a value close to 1).
To ensure exploration, we use an 𝜖−greedy strategy. We take a random action

with a probability 𝜖 , otherwise, we act according to our Q-network policy. At the
beginning of training, we favor exploration by random actions, but as the training
progresses, they will become less frequent. To do so, we use an exponential decay

strategy for epsilon [124], which is defined as: 𝜖 = 𝜖 𝑓 +(𝜖𝑖−𝜖 𝑓 ) ·𝑒𝑥𝑝
(
−𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠

𝜖𝑑

)
,

where 𝜖𝑖, 𝜖 𝑓 , 𝜖𝑑 are the initial, final, and decay step values, and 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 counts
the number of steps since the beginning of the learning process. At the beginning
𝜖 = 𝜖𝑖, then it converges towards 𝜖 𝑓 when 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 gets bigger.

The loss function during training is defined across all vehicles using of batch of
𝐵 experiences sampled from the replay buffer (see Equation 4.2). It is computed
using the mean squared error between:

• target value 𝑦𝑣
𝑖

defined as the sum of the 𝑛-step delayed reward 𝑟
(𝑖)
𝑡:𝑡+𝑛 and

the maximum Q-value at state 𝑠𝑡+𝑛 estimated by the Target network 𝑄𝜃𝑇 for
each vehicle,

• the Q-value at state 𝑠𝑡 estimated by the Q-network for each vehicle.

𝐿 (𝜃) = 1
𝐵 ×𝑉

𝐵∑︁
𝑖=1

∑︁
𝑣∈V
(𝑦𝑣𝑖 −𝑄𝜃 (𝑠(𝑖)𝑡 , 𝑎

(𝑖),𝑣
𝑡 ))2 (4.2)

with 𝑦𝑣
𝑖
= 𝑟
(𝑖)
𝑡:𝑡+𝑛 +max𝑎𝑣∈A𝑣

𝐷𝑄𝑁
𝑄𝜃𝑇 (𝑠

(𝑖)
𝑡+𝑛, 𝑎

𝑣).
The Algorithm 7 gives an overview of the training loop of our deep neural

network model. It is the same for all our Deep Q-networks.
In what follows, we describe the main differences between the Deep Q-networks

strategies (DQN).

DQN_ALL_LOTS. This Q-network outputs Q-values per request and per ve-
hicle. For each vehicle, our model outputs a Q-value for each pending request
𝑄𝑟𝑒𝑞𝑖,∀𝑖 ∈ 𝑃𝑡 , and a Q-value per reposition lot 𝑄𝑟𝑒𝑝. When there is no pending
request, we compute a dummy 𝑄𝑟𝑒𝑞 value by using a vector of zeros as a repre-
sentation of a request. Therefore, at each decision step, we have 𝑚 = max(𝑝𝑡 , 1)
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Algorithm 7: The Q-learning algorithm used to train the DQN
1 Inputs: env: ride-hailing environment, DQN parameters 𝜃 , number of episodes 𝐸, batch size 𝐵, memory size

𝑀, target network update frequency 𝑀𝑢𝑝𝑑𝑎𝑡𝑒 , DQN learning frequency 𝑀 𝑓 𝑟𝑒𝑞 , initial epsilon 𝜖𝑖 , final
epsilon 𝑒 𝑓 , epsilon decay 𝜖𝑑 , n-step 𝑛, discount factor 𝛾, learning rate 𝑙𝑟

2 𝜃𝑇 ← 𝜃 // initialize target network parameters
3 𝜖 ← 𝜖𝑖
4 M ← [] // initialize empty memory
5 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 ← 1
6 for 𝑒← 1 to 𝐸 do // train for 𝐸 steps
7 𝑠0 ← env.reset() // get initial observation
8 for 𝑡 ← 0 to 𝑇 − 1 do // perform 𝑇 steps until episode terminaison
9 (𝑥T , 𝑥R , 𝑥V )𝑡 ← getFeatures(𝑠𝑡 )

10 if random() < 𝜖 then
11 𝑎𝑡 ← env.get_random_action()
12 else
13 𝑎𝑡 ← get_action_from_dqn(𝑄𝜃 , (𝑥T , 𝑥R , 𝑥V )𝑡 )
14 end
15 𝑠𝑡+1, 𝑟𝑡 ← 𝑒𝑛𝑣.𝑠𝑡𝑒𝑝 (𝑎𝑡 )
16 store_n_step_transition(M, 𝑀, (𝑠𝑡 , 𝑟𝑡 , 𝑎𝑡 , 𝑠𝑡+1) , 𝑛, 𝛾)
17 if 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 mod 𝑀 𝑓 𝑟𝑒𝑞 = 0 then
18 B ← sample(M, 𝐵) // uniformly sample a batch of transitions from

memory
19 learn(𝑄𝜃 , 𝑄𝜃𝑇 , B, 𝑙𝑟) // computes the loss as defined in Equation 4.2

and performs gradient descent using Adam optimizer on 𝑄𝜃.

20 end
21 if 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 mod 𝑀𝑢𝑝𝑑𝑎𝑡𝑒 = 0 then
22 𝜃𝑇 ← 𝜃

23 end

24 𝜖 ← 𝜖 𝑓 + ( 𝜖𝑖 − 𝜖 𝑓 ) · 𝑒𝑥𝑝
(
−𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠

𝜖𝑑

)
25 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 ← 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 + 1
26 end
27 end

𝑄𝑟𝑒𝑞 values to compute. In the environment, there are 302 lots spread across
the city. Thus, for each vehicle 𝑣 ∈ V, its associated Q-values are as follows:
Q𝑣
𝐷𝑄𝑁

=
{
𝑄𝑟𝑒𝑞𝑣1, ..., 𝑄𝑟𝑒𝑞

𝑣
𝑚, 𝑄𝑟𝑒𝑝

𝑣
1, ...., 𝑄𝑟𝑒𝑝

𝑣
302

}
. So at each decision step, our

DQN computes 𝑉 × (𝑚 + 302) values. The associated action set per vehicle can be
represented as: A𝑣

𝐷𝑄𝑁
=

{
𝑠𝑒𝑟𝑣𝑒𝑣1, ..., 𝑠𝑒𝑟𝑣𝑒

𝑣
𝑚, 𝑟𝑒𝑝

𝑣
1, ...., 𝑟𝑒𝑝

𝑣
302

}
. The advantage of

this representation is that it considers all the problem aspects in detail, especially
for the repositioning part. All the lots have an associated Q-value. The main
drawback is that the action space is huge, and can become bigger as the number
of vehicles and pending requests grow. Let us note that in our case, we separate
the estimation of the 𝑄𝑟𝑒𝑞 and the 𝑄𝑟𝑒𝑝 values by using two separate subnetworks
for each, since we will use different features to estimate each Q-value type (more
details in our neural network architecture in section 4.5). Moreover, we do not
explicitely handle the case when the vehicle does not reposition. We argue that
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the Q-network can choose in the next decision step to reposition the vehicle to
the same idling location where it is at the current decision step, which would be
equivalent to instructing it to wait at its idling location.

DQN_NN hybrid strategy. It estimates a Q-value for each pending request,
and a dummy Q-value when no pending request is available. For repositioning,
it considers all the available lots, but uses a handcrafted nearest neighbor strat-
egy; each available vehicle is assigned to the nearest lot in terms of Manhattan
distance. Since we used two different subnetworks for request assignment and ve-
hicle repositioning in the DQN_ALL_LOTS strategy, we decided to take directly
the resulting request assignment subnetwork, without retraining it. Our choice is
motivated by two research questions: (1) is the repositioning subnetwork’s policy
a nearest neighbor? (2) otherwise, is the repositioning subnetwork’s policy better
or worse than a nearest neighbor?

DQN_ZONES. This strategy is in between the previous two strategies. For
each vehicle, our model outputs a Q-value for each pending request 𝑄𝑟𝑒𝑞𝑖,∀𝑖 ∈ 𝑃𝑡 ,
another Q-value for the null action that indicates to the vehicle to not reposi-
tion 𝑄𝑁𝑈𝐿𝐿 and a Q-value per reposition zone 𝑄𝑟𝑒𝑝. When there are no pend-
ing requests, we compute a dummy 𝑄𝑟𝑒𝑞 value. Since the lots are grouped
into zones, our Q-network selects the zone where to reposition instead of di-
rectly determining the lot where to reposition. Then, we use a nearest neigh-
bor strategy, in terms of Manhattan distance, to select the lot in the chosen
zone. Computing a Q-value per zone reduces the cardinality of the output of
our DQN, since there are only 50 zones (out of the 61 available zones) where the
lots are situated. For each vehicle 𝑣 ∈ V, its associated Q-values are as follows:
Q𝑣
𝐷𝑄𝑁

=
{
𝑄𝑟𝑒𝑞𝑣1, ..., 𝑄𝑟𝑒𝑞

𝑣
𝑚, 𝑄

𝑣
𝑁𝑈𝐿𝐿

, 𝑄𝑟𝑒𝑝𝑣1, ...., 𝑄𝑟𝑒𝑝
𝑣
50

}
. So at each decision step,

our DQN computes 𝑉 × (𝑚 + 1 + 50) values. The associated action set per vehicle
is therefore: A𝑣

𝐷𝑄𝑁
=
{
𝑠𝑒𝑟𝑣𝑒𝑣1, ..., 𝑠𝑒𝑟𝑣𝑒

𝑣
𝑚, 𝑁𝑈𝐿𝐿, 𝑟𝑒𝑝

𝑣
1, ...., 𝑟𝑒𝑝

𝑣
50

}
.

Nearest Neighbor. This is a fully handcrafted strategy, where vehicles’ assign-
ments and reposition are determined by computing the Manhattan distances be-
tween each vehicle and pickup location of a request and each vehicle and lot. The
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nearest point is then selected as the destination of the vehicle. We will use this
strategy as a baseline to compare the performance of our learning-based and hybrid
policies.

Table 4.3 summarizes the solutions methods used to tackle the problem. DQN
_ALL_LOTS, DQN_NN, DQN_ZONES agents use a Q-value estimation for
matching vehicles to requests. At inference, when tackling instances unseen during
training, the vehicle with the maximum Q-value is chosen to handle the request.
DQN_ALL_LOTS agent chooses the lot with the maximum Q-value for reposi-
tioning, while DQN_NN agent uses a nearest neighbor strategy. DQN_ZONES
agent chooses the zone with the maximum Q-value for repositioning, and assigns
the vehicle to the nearest lot in that zone.

strategy matching repositioning
DQN_ALL_LOTS Q-value Q-value at lot level

DQN_NN Q-value Nearest neighbor (NN)
DQN_ZONES Q-value Q-value at zone level

and NN for lot selection
Nearest Neighbor NN NN

Table 4.3: Summary of the solution methods.

4.5 The deep neural network architecture

In this section, we provide a description of the deep neural network we defined
to tackle the problem. Contrary to other works [102, 77], our main focus is to
design a deep neural network that can tackle a variable number of requests with
a variable number of vehicles. Thus, we do not have to train a single model each
time the number of requests or the number of vehicles changes in the environment.
In the following, W and b denote the weights and biases of our DQN layers.

Decision step features. We define the decision step features to feed to our deep
Q-network from the environment’s state 𝑠𝑡 = (𝑠T , 𝑠R , 𝑠V)𝑡 as follows:

• xT ∈ R6 is the time features vector, it is made of the concatenation of
relative time 𝑡/𝑇 and a one hot encoding of the 5 days of the week excluding
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the weekend (𝑑𝑜𝑤). We use a one hot encoding representation not to imply
an order relationship between the days of the week.

• xR𝑟 ∈ R5, ∀𝑟 ∈ 𝑃𝑡 is the request feature vector. Each request is represented
using a concatenation of:

– its relative triggering time 𝑡𝑟/𝑇 ,

– its origin’s normalized coordinates7,

– its destination’s normalized coordinates.

If there is no pending request, x𝑟 = 0R5 .

• xV𝑣 ∈ R14, ∀𝑣 ∈ V is the vehicle features vector. It is represented using
the concatenation of the normalized vehicle’s current location coordinates
(2𝐷) and the normalized vehicle’s 𝑗𝑜𝑏𝑠 origin and destination coordinates
(3 × 2 × 2𝐷).

Initial embeddings. We first compute time (eT ), requests’ (eR), and vehicles’
embeddings (eV) adopting the same approach:

e𝑢(·) = 𝑅𝑒𝐿𝑈 (W𝑢 x𝑢(·) + b𝑢), 𝑢 ∈ {T ,R,V}

with W𝑢 ∈ R𝑑×𝑑𝑢 and b𝑢 ∈ R𝑑.
These embeddings are a first mapping of each of the state features into a 𝑑 dimen-
sional vector space. They offer an initial alternative representation of each feature,
but these representations are independent of each other, since different parameters
are used for each type. For example, the vehicles are not aware of the requests’ or
time representations.

Vehicles embeddings. To enhance the representation of the vehicles, we define
an attention mechanism. For this, we use the same formalism as used by the
Transformer architecture by defining queries, keys, and values [178]. The queries

7The coordinates (𝑥, 𝑦) are bounded in ranges [𝑥min, 𝑥max] and [𝑦min, 𝑦max], respectively. These
ranges are predefined in the environment. We use Min-Max Normalization on the coordinates to
make the learning process more stable and to speed up the convergence of the deep Q-network.
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will confront the keys to compute attention scores that take into consideration
the requests representations. The resulting scores will then be used to compute
a new vehicle representation considering other vehicles’ representations. We use
a scaled dot-product attention that is faster to compute. It is used to get a new
representation of each vehicle that considers the requests and the other vehicles
representations.

We define the queries by a linear transformation of the concatenation of each
vehicle embedding with the request embedding followed by a 𝑅𝑒𝐿𝑈 activation
function:

q𝑟𝑣 = 𝑅𝑒𝐿𝑈 (W𝑞 [eV𝑣 ; eR𝑟 ] + b𝑞), ∀𝑟 ∈ 𝑃𝑡 , 𝑣 ∈ V

with W𝑞 ∈ R𝑑×2𝑑 and b𝑞 ∈ R𝑑.
The keys are defined by another linear transformation of the vehicle embed-

dings:
k𝑣 = W𝑘 eV𝑣 + b𝑘

with W𝑘 ∈ R𝑑×𝑑 and b𝑘 ∈ R𝑑.
We consider the vehicle embeddings eV𝑣 ,∀𝑣 ∈ V without applying any trans-

formation for the values.

For each request 𝑟 ∈ 𝑃𝑡 and for each pair of vehicles (𝑖, 𝑗) ∈ V ×V, we get an
attention score using a scaled dot-product followed by the softmax function, i.e.,

𝛼𝑟𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(q𝑟𝑖 · k⊤𝑗√
𝑑

)
with 0 < 𝛼𝑟𝑖 𝑗 ≤ 1 and

∑
𝑗∈V 𝛼𝑟𝑖 𝑗 = 1.

Finally, we get a vehicle representation per request as a convex sum of all other
vehicles embeddings, where the convex coefficients are the attention coefficients,
i.e.

h𝑟𝑣 =
∑︁
𝑗∈V

𝛼𝑟𝑣 𝑗eV𝑗

The value network. The value network is a multi-layer perceptron with 2 layers
and a 𝑅𝑒𝐿𝑈 activation function in between for non-linearity. It takes as input a
concatenation of:
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1. a global fleet embedding defined using a global average pooling of all vehicles

embeddings h̄ =
1

𝑝𝑡 ×𝑉
∑︁
𝑟∈𝑃𝑡

∑︁
𝑣∈V

h𝑟𝑣,

2. a global request embedding also defined using a global average pooling of all

pending requests ēR =
1
𝑝𝑡

∑︁
𝑟∈𝑃𝑡

eR𝑟 ,

3. the time embedding eT

𝑉 (𝑠) = W𝑠1 𝑅𝑒𝐿𝑈 (W𝑠2 [h̄; ēR ; eT ] + b𝑠2) + b𝑠1

with W𝑠1 ∈ R1×𝑑 ,b𝑠1 ∈ R,W𝑠2 ∈ R𝑑×3𝑑 ,b𝑠2 ∈ R𝑑.

The advantage network. Since we have a variable number of pending requests,
we separate the computation of the requests advantages and the repositioning
advantages using two different neural networks.

The request advantage subnetwork uses a scaled dot-product attention between
vehicles representations h𝑟𝑣 and a query qRT𝑟 .

𝑎𝑑𝑣𝑟𝑣 =
qRT𝑟 · h⊤𝑣√

𝑑
, ∀𝑟 ∈ 𝑃𝑡 ,∀𝑣 ∈ V

The query is formed using a linear transformation of the concatenation of each
request embedding with the time embedding, followed by a 𝑅𝑒𝐿𝑈, i.e.

qRT𝑟 = 𝑅𝑒𝐿𝑈 (WRT [eR𝑟 ; eT ] + bRT ), ∀𝑟 ∈ 𝑃𝑡

with WRT ∈ R𝑑×2𝑑 and bRT ∈ R𝑑.
The repositioning advantage subnetwork is a multi-layer perceptron with 2 fully

connected layers and a 𝑅𝑒𝐿𝑈 activation function in between. For the DQN_ZONES
approach, it outputs one advantage score per zone where vehicles can reposition in
addition to a score for the no reposition action, while for the DQN_ALL_LOTS
policy, it outputs one score per lot. The repositioning advantage subnetwork takes
as input a representation of vehicles embedding computed as a mean aggregation

of vehicles embeddings over the requests (h̄𝑣 =
1
𝑝𝑡

∑︁
𝑟∈𝑃𝑡

h𝑟𝑣, ∀𝑣 ∈ V) concatenated
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with a global time request representation G computed as follows:

G = 𝑅𝑒𝐿𝑈 (W𝑔 [ēR ; eT ] + b𝑔)

with W𝑔 ∈ R𝑑×2𝑑 and b𝑔 ∈ R𝑑.

4.6 Computational results

In this section, we present the computational results of the various strategies we
designed. We begin by reporting the results during the training phase for our
learning-based agents. We, then, confront these agents to the remaining solution
strategies on unseen instances, to evaluate the generalization capabilities of our
proposed approaches. Regarding the environment reward and episode length, the
time horizon is 𝑇 = 24 hours, the per kilometer reward is 𝐶𝐷 = 4.02$/𝑘𝑚, the fixed
reward is 𝐶𝐹 = 10.75$, 𝑇𝐶 = 0.53$/𝑘𝑚, 𝑤∗ = 5 minutes. For the environment, we
used pyhailing8 which uses the same programming interfaces as OpenAI gym.

4.6.1 Model training

We first train two different agents. The first one learns to assign vehicles to requests
and to reposition (or not) a vehicle to a zone (DQN_ZONES), while the second one
(DQN_ALL_LOTS) learns to assign vehicles to requests and to assign a vehicle
to a lot. The first model took approximately 12 hours to train on GTX 1660 super
GPU, while the second one, took a whole day for training. We trained each model
over 300 episodes, with a fleet of 14 vehicles and 1400 requests per day. Table 4.4
displays the hyperparameters used during the training phase. The reported values
are the result of a manual tuning process aimed at achieving the best possible
results for our model.

Figure 4.4 represents the evolution of total reward per training episode for the
DQN_ZONES (in orange) and DQN_ALL_LOTS (in blue) policies. As we can
observe, both models can learn a policy, improving at each training episode. In
the first forty (40) episodes, we can observe that the two policies seem to have

8available at: https://pypi.org/project/pyhailing/

178

https://pypi.org/project/pyhailing/


4.6. COMPUTATIONAL RESULTS

Hyperparameter Value

Number of episodes 𝐸 300
𝑀𝐴𝑋_𝑇 𝐼𝑀𝐸 60 seconds
Training seed 321
Discount factor 𝛾 0.999
Replay memory size 𝑀 100000
Training frequency 𝑀 𝑓 𝑟𝑒𝑞 100
Batch size 𝐵 32
Embedding dimension 𝑑 64
Target network update frequency 𝑀𝑢𝑝𝑑𝑎𝑡𝑒 5000
Initial epsilon 𝜖𝑖 1
Final epsilon 𝜖 𝑓 0.1
Epsilon decay steps 𝜖𝑑 75000
n-step 𝑛 3
learning rate 𝑙𝑟 10−3

Table 4.4: Hyperparameters used during training.

slightly similar performances, this may be due to the use of the 𝜖-greedy policy,
which favors random actions for the first episodes. From the episode 40 to 100, the
DQN_ALL_LOTS policy continues to change towards a better policy, in terms of
total reward per episode. From episode 100 onwards, the policy stabilizes at around
6000$ reward per episode. On the other hand, the DQN_ZONES model continues
its exploration of new policies from episode 40 to 200, where it begins to stabilize
at around 13000$ reward per episode. As we can see, the DQN_ZONES final
policy outperforms the DQN_ALL_LOTS final policy. One possible explanation
is that the action space of the DQN_ZONES model is smaller than the one of
DQN_ALL_LOTS, thus it converged towards a better local optimum.

4.6.2 Evaluation

We evaluate our models on two different instance sizes: the small instances have
similar size as the ones used during training, 14 vehicles and 1400 requests per
episode, while the big instances consider a fleet of 100 vehicles and 10000 requests
per episode. We use a different seed than the one used for training (20151101).
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Figure 4.4: Evolution of total reward per episode during training for
DQN_ZONES and DQN_ALL_LOTS models.

Moreover, the evaluation is made over 50 episodes, for both sizes. In addition to
the mentioned strategies, we add the random policy as a trivial baseline9.

Figure 4.5 and Table 4.5 summarize the results of all the strategies on the small
instances, while Figure 4.6 and Table 4.6 do the same on the big instances. We
observe two different behaviors in both cases, that we will describe hereafter.

Figure 4.5 shows a box plot that summarizes the evolution of the total reward
per episode between our designed strategies over the small size instances. As we
can see, all the models outperforms the random policy, and DQN_ZONES out-
performs DQN_ALL_LOTS which confirms the results observed during training.
Surprisingly, the total rewards of DQN_ZONES during evaluation decreased com-
pared with the ones achieved during training, but we observe the inverse for the
DQN_ALL_LOTS policy, which achieves better total rewards than what we ob-
served during training. This may be due to a sensitivity to the seed used during the
evaluation. On another front, we observe that the nearest neighbor (NN) policy has
similar performances to DQN_ZONES, but slightly outperforms it. Finally, when
changing the repositioning policy to a nearest neighbor policy (DQN_NN), we ob-
serve that we obtain the best model with a median near 12000$. This contributes
to answering our questions on the DQN_ALL_LOTS model. These observations

9This strategy chooses randomly which vehicle to match with a request and where vehicles
reposition.

180



4.6. COMPUTATIONAL RESULTS

suggest that the learned repositioning policy is different from the nearest neighbor
policy, and that using the latter produces better results. Table 4.5 presents more
details on the results on the small size instances. The first four columns confirm
the observations in the figure. The last column offers additional information on
the average percentage of fulfilled requests per episode. We can observe that none
of the policies can satisfy more than 40% of the requests. One possible explana-
tion is that the fleet size is too small: they are most of the time unable to arrive
within the time limit of 𝑤∗ = 5 minutes. Another reason is that the repositioning
strategies are far from optimal. Thus, there is still room for improvement on the
small size instances.

Small instances
mean std min max avg. served requests (%) (±std)

RANDOM 796.66 306.13 154.50 1738.54 15.67 (± 0.90%)
DQN_ZONES 10386.41 684.12 9250.16 12049.81 36.55 (± 2.29%)
DQN_ALL_LOTS 8285.19 596.11 6474.06 9740.53 29.57 (± 2.02%)
DQN_NN 11895.58 1011.10 9228.01 13519.65 40.61 (± 3.70%)
Nearest Neighbor (NN) 10575.70 972.09 8304.09 12332.02 36.48 (± 3.61%)

Table 4.5: Summary of the evaluation results on 50 small size instances, reporting
the mean, standard deviation, minimum, maximum achieved rewards, and the
average number of fulfilled requests.

Figure 4.6 shows a box plot of the evolution of the total reward per episode
between our policies for the big size instances. For our learning-based policies, we
can observe that they are all able to generalize well to instances with bigger size
than the ones seen during training. We observe that DQN_ZONES outperforms
the other models, and has better generalization properties than the others. It
is followed by the Nearest Neighbor (NN) policy. Hybridizing DQN and nearest
neighbor for repositioning (DQN_NN) still brings improvement compared with a
policy that fully learns to take both decisions, but this time, we observe only a
slight improvement, compared with what we observed on the small size instances.
This still confirms that for DQN_ALL_LOTS, it is difficult to learn a good reposi-
tioning policy, and that a nearest neighbor repositioning improves the total rewards.
This result is emphasized by Table 4.6 which shows that DQN_ALL_LOTS and
DQN_NN serve the same number of requests (on average), but DQN_NN achieves
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Figure 4.5: Box plot summarizing the evolution of the total reward per episode
for the different resolution strategies over 50 episodes, using instances with 14
vehicles and 1400 requests per day.

better total rewards. This time, all the models are able to serve more than 50%
of the requests, with the maximum being for DQN_ZONES with 67.27% of the
requests that are being fulfilled. Changes in the observed patterns may be due
to the large size of the fleet of vehicles. Furthermore, a hybrid repositioning with
a deep neural network that determines the zones and a nearest neighbor strategy
that chooses the lot seems to give better results. In the worst case (small size
instances), it achieves results similar to the handcrafted policy (NN).

Big instances
mean std min max avg. served requests (%) (±std)

RANDOM 7440.66 935.92 4988.77 9459.72 16.19 (± 0.39%)
DQN_ZONES 139420.00 7235.41 96741.11 145487.01 67.27 (± 3.5%)
DQN_ALL_LOTS 121424.29 2056.10 115926.93 125988.02 58.22 (± 1.06%)
DQN_NN 123098.96 2946.82 117092.79 129051.64 58.22 (± 1.44%)
Nearest Neighbor (NN) 132086.59 4800.74 118904.99 141314.62 62.98 (± 2.35%)

Table 4.6: Summary of the evaluation results on 50 big size instances, reporting
the mean, standard deviation, minimum, maximum achieved rewards, and the
average number of fulfilled requests.
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Figure 4.6: Box plot summarizing the evolution of the total reward per episode
for the different resolution strategies over 50 episodes, using instances with 100
vehicles and 10000 requests per day.

4.7 Conclusion and perspectives

In this chapter, we investigated a use case of deep Q-learning on the Ride-hailing
problem, a dynamic and stochastic variant of the VRP. For this, we formulated
the problem under the reinforcement learning framework. We then, designed three
different deep learning-based policies for tackling the problem: the first one relies
on completely learning Q-values for repositioning and request assignment, the
second one is a hybrid policy with learned Q-values for the request assignment
and a handcrafted nearest neighbor policy for repositioning. The third one, is in
between the first two policies: it learns the Q-values for the request assignment,
and Q-values for the zones where to reposition; the nearest lot to the vehicle in
the chosen zone is then designated as the repositioning lot. Our designed deep
neural network for this problem can handle an arbitrary number of requests with
an arbitrary number of vehicles. This means that we can train our neural network
on instance sizes, and deploy it to be used on instances of different sizes. We
experimented on small size instances and big size instances, where we observed
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good generalization properties of the policies. We observed better results for the
hybrid policies than the leaning-based policy or the handcrafted policy. This
suggests to us that we should investigate more on hybridization between learning-
based models and handcrafted heuristics.

On the other hand, future works should investigate more on the deep neural net-
work architectures to use. While our deep neural network has a desirable property
of being able to tackle an arbitrary number of requests with an arbitrary number
of vehicles, it may not be complex enough to grasp all the important features.
This can be one plausible hypothesis to explain that the full learning-based policy
does not perform better than the hybrid models. One possible candidate model
for this problem are temporal graph neural networks [156, 52] which can make
a representation of dynamic graphs. Finally, another interesting line of research
would be the investigation of model-based deep reinforcement learning [139]. In
this thesis, we focused only on model-free deep reinforcement learning, but it may
be interesting to learn a model of the environment, including the dynamics and
the stochastic nature of the requests.
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The intersection between operations research and artificial intelligence has the
potential to produce considerable benefits, yet it remains a relatively unexplored
field. The work initiated in this thesis is part of the efforts made to bring the two
disciplines closer together by studying the application of machine learning tools
on combinatorial optimization problems, exploiting recent developments in deep
learning and reinforcement learning. Through this manuscript, we propose three
contributions to a family of combinatorial optimization problems widely studied
in the literature, namely vehicle routing problems. Specifically, we consider the
Capacitated Vehicle Routing Problem (CVRP), the most basic variant, which is
not less interesting for our study due to its complexity (NP-hard). This problem is
widely studied in the literature, which allows us, by comparing ourselves to known
results, to objectively assess the performances of our contributions. The second
problem considered is a stochastic ride-hailing problem. Through this problem, we
aim to study the performance of neural approaches on stochastic variants of the
vehicle routing problem.

First, we review the current state of knowledge on vehicle routing problems,
deep neural networks, and reinforcement learning. We contextualize vehicle rout-
ing problems, their existing variants, and the various algorithms developed over
the years. This allows us to distinguish between static and deterministic problems,
where data is known before the start of the resolution and does not involve any
form of uncertainty, and dynamic and stochastic problems, where data are revealed
throughout the resolution process, and it involves uncertainty.
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Secondly, we were interested in understanding the tools that we will mobilize to
solve these problems. Deep neural networks are learning models based on the prin-
ciple of universal approximation. The last decade has seen the emergence and rapid
development of new neural network models, architectures, more efficient training
algorithms (both in supervised and reinforcement learning), and vast amounts of
data. This has allowed the application of these models to a wide range of prob-
lems that are considered difficult to solve using explicit resolution approaches, e.g.,
handcrafted methods.

In the second part of the chapter, we delved into the literature that focuses on
the application of these models to tackle vehicle routing problems. We conducted
a comprehensive study of over 35 recent contributions. Several interesting con-
clusions emerge for us: deep neural network-based models are capable of finding
solutions without explicitly specifying how to solve the problem; reinforcement
learning is more favored for training neural network models; as with handcrafted
heuristics, there are construction and improvement approaches; the quantity of
instances needed to train the models is significant (on the order of millions of in-
stances); the majority of the approaches presented are evaluated on small-sized
instances; several model exploitation strategies have been implemented to obtain
better quality solutions during the evaluation phase.

To conclude the first chapter, we looked at the evaluation protocols of these
approaches. Most studies propose to train and evaluate on synthetic data, all
coming from the same distribution, to compensate for the lack of data quantity
needed for model training. This can pose a problem for a more precise evaluation
of performance, since the instances used do not consider the diversity of possible
layouts for clients and the depot. To overcome this weakness and better appreciate
the performance of these models, we proposed a study on instances of CVRPLib,
widely exploited in the handcrafted heuristics’ literature. These instances have the
advantage of distinguishing several cases of client layouts (random, grouped) and
depot layouts (centered, eccentric), as well as a diversity of demand orders and
vehicle capacity, and heterogeneous instance sizes.

To achieve this, we reproduced the Attention Model (AM), one of the best
performing approaches in the literature, and evaluated it through a single instance
search solution method (Active Search algorithm). Our results were able to confirm
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the performance orders observed in the literature on instances with a random client
layout, but also to show that these models displayed good results on instances with
clustered clients. Regarding instance size scale, our evaluations showed that the
models provided good quality solutions on small-sized instances, but scaling up is
still a significant challenge. In terms of execution time, these were significantly
longer than the best heuristic and metaheuristic approaches. However, it is worth
noting that our study specifically focused on intensifying the exploration of the
search space. Therefore, we diverted these models from their primary use, which
is to be trained on a large database of instances and then used for inference on
unseen instances during training with exploitation algorithms that can be executed
in seconds or minutes.

Chapter two addresses the study of transfer learning in the context of the Neu-
ral Combinatorial Optimization framework, through experiments on the Traveling
Salesman Problem (TSP) as the source task and the Capacitated Vehicle Routing
Problem (CVRP) as the target task, which is a generalization of the former. The
study aims to investigate whether a model trained on the source task can be reused
to solve the target task. An experimental plan was constructed considering several
assumptions: (a) the same model is used for both tasks, (b) relatively few data
are available for training on the target task (16k, 32k or 64k), (c) training on the
target task is done for a fixed number of epochs. Similarly, different scenarios were
considered based on three parameters: (1) the number of data used to train on the
source task, (2) the data distribution for the two problems, (3) the instance sizes
used for the two problems.

Our various experiments indicate that transfer learning can be beneficial in
cases where relatively few data is available for the target task. It improves the
asymptotic (final) performance of the model compared to the model without trans-
fer learning while accelerating the learning on few epochs. In addition, models
trained on instances of similar sizes and from the same distribution between the
source and target tasks yield better results. Finally, in the worst configurations,
transfer learning seems not to harm the learning process, given the observed asymp-
totic performances being at worst comparable to learning from scratch.

Chapter three proposes a novel two-steps algorithm for the CVRP, following the
two-steps methods known in heuristic algorithms. This approach combines a deep
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neural network with a shortest path algorithm. The deep neural network is used to
generate a client visiting order, called a giant tour, which then defines an auxiliary
graph on which a shortest path algorithm is applied to obtain the routes and their
cost (the Split algorithm). This approach combines the advantages of using a deep
neural network without the need to explicitly define the giant tour construction
method, with the advantages of Split that extracts the best routes from a giant
tour. Moreover, the cost of the routes returned by Split allows us to train the
neural network using reinforcement learning. We have designed and evaluated
three different neural network models based on Graph Neural Networks (GNNs).
In addition, we proposed to introduce the polar angle to the depot as a new raw
feature during the encoding phase, which has proven to be particularly useful
in improving the convergence of our model towards a better optimum. During
evaluation, we found that the GNN-based Transformer yields the best results,
and our results are competitive with those of neural network-based constructive
methods and heuristic algorithms. Furthermore, our model is faster in training
and inference than neural network-based constructive methods. Additionally, our
evaluations on CVRPLib confirm the performance of our approach on small and
medium-sized instances, regardless of the client distribution.

The final chapter of this thesis is devoted to the study of neural combinatorial
optimization approaches on a stochastic and dynamic problem. To this end, we
have chosen the ride-hailing problem, which has gained significant interest due to
the numerous applications offering this type of service. It represents an excellent
case study as it inherently involves dynamic and stochastic aspects. Indeed, it
is not possible to know in advance the location of all client requests before the
problem-solving process begins. Moreover, there is uncertainty regarding the travel
times of vehicles, depending on the starting and ending locations as well as the time
of day. Additionally, this problem has two combinatorial aspects: the assignment
of vehicles to requests and the repositioning of vehicles to anticipate and to be
closer to future requests.

To address this problem, we constructed a deep neural network capable of
handling any number of requests while manipulating a variable fleet of vehicles.
Additionally, we designed several resolution strategies. In the first strategy, assign-
ment of requests to vehicles, as well as vehicle repositioning, are both managed by
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the deep neural network. A second strategy involves managing the assignment of
requests to vehicles using deep neural networks and performing repositioning via
a nearest neighbor algorithm. Finally, we created a strategy that lies somewhere
between the first two. The assignment of requests to vehicles is done using deep
neural networks, but for repositioning, the deep neural network predicts the area
where the vehicle needs to go, and the idling location is selected using a nearest
neighbor algorithm. We trained our models with an n-step Double Deep Q-learning
algorithm.On the small size instances, the algorithm that combines a neural net-
work for request assignment and a nearest neighbor approach for repositioning is
more effective. On larger instances, the algorithm that combines a zone-based
repositioning approach with a nearest neighbor approach is more effective. How-
ever, there is still room for improvement in future work to achieve better request
satisfaction rates. Our algorithms on average satisfy 40% of requests on small
instances and 68% on larger instances. Our approach has the advantage of good
generalization properties, as it is capable of handling both instances of the same
size as those used during training, and instances of larger sizes, without needing
to retrain the model on the new instance size.

Given the state of the art and the work of this thesis, it can be seen that
it is possible to develop effective deep neural network-based algorithms to solve
combinatorial optimization problems. Although these approaches fell into disfavor
at the end of the 1990s in favor of metaheuristics, they have greatly benefited
from advances in deep and reinforcement learning, enabling them to produce high-
quality solutions. However, there are still challenges to be met by these methods.
Firstly, while the results are good, they still fall short of what metaheuristics can
achieve. Neural combinatorial optimization is a relatively new field, and many
aspects remain to be explored. Therefore, it is possible that in the future, this
learning framework applied to optimization problems will become as effective as
metaheuristics. In the following, we present several ideas for future research, which
we group into five relevant aspects: instances and their nature, representations,
algorithmic nature, problems addressed, and explainability.

On instances and their nature: we have observed that most models can handle
small and medium-sized instances. Models that are capable of handling larger
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instances are hybrids of algorithms known for their efficiency in solving CVRP
instances, such as LKH3, HGS-CVRP, and LNS [113, 29]. There is therefore a
challenge in ensuring that these models can handle large instances in reasonable
computation times. Additionally, the number of instances required for training
must also be constrained to account for real-world conditions in the application
of these methods. Indeed, it is rare to come across real-world problems where
millions of instances are available for training. This will further encourage research
to develop more sample-efficient models and training algorithms. Moreover, an
aspect that is still neglected is the quality of instances used during training. Future
work may include selecting representative instances of the problem to consider the
diversity of configurations that may be encountered.

On the representations: In this aspect, we address the question of learning the
underlying structure and relationships that link raw data. In Chapter 2, we saw
that transfer learning could be a solution when we have two similar problems. This
is due to the exploitation of representations made of instances on the source task.
Other methods for learning representations can be considered. For example, self-
supervised learning [122] could be considered via the definition of relevant pretext
tasks for these types of problems. For example, we explored the use of the TSP
as a pretext task for learning representations for the CVRP in Chapter 2. Other
approaches to self-supervised learning, taking inspiration from image processing,
could be considered, such as contrastive learning, which involves differentiating
between similar instances (up to a rotation, for example) and different instances
[83]. Furthermore, the search for deep neural network architectures suitable for
this type of problem can be an interesting research direction, through what has
been developed in the field of neural architecture search (NAS) [50]. Although
graph neural networks seem to be suitable for routing problems, we have seen
in Chapter 3 that the type of encoding (responsible for learning representations)
used (GAT, GCN, Transformer) has a significant impact on performance, as does
the number of encoding layers used. Therefore, there are chances that a NAS
approach can provide us with a better architecture resulting in better results.
Finally, raw features can also be subject to further investigation. Although deep
neural networks are known to require little human intervention for the explicit
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definition of useful raw features, we saw in Chapter 3 that adding the angle to
the depot improves neural network performance. We believe that this research
direction has not been fully explored and deserves particular attention in future
work.

On the algorithmic nature: this concerns both training algorithms and search
algorithms used for inference. Regarding training algorithms, while the majority
of approaches consider reinforcement learning for its advantage in avoiding the col-
lection of optimal solutions, it is not excluded that supervised learning may lead
to better models, especially if coupled with a meticulous selection of instances
to build the dataset. Additionally, in the context of reinforcement learning, the
reward function admitted in most cases is the total distance traveled. However,
nothing excludes that a better reward function may allow for better convergence.
Similarly, it is conceivable to use a Reinforcement learning from human feedback
(RLHF) approach to solve problems where the objective function is complex to
formulate, but where domain experts can qualitatively evaluate the solution based
on their experience [34]. Moreover, as we have seen in Chapter 4, hybridizing a
learning model with a heuristic can sometimes offer higher quality solutions. This
can lead us to rethink what can be delegated to a learning model and what can
be delegated to a heuristic [113, 67]. Furthermore, we may consider the solution
of a neural network model as an excellent starting solution for a local search. Let
us also note that improvements can also be made for the implementations, such as
reducing the precision of numerical values of the weights (quantization) or remov-
ing unnecessary connections or neurons from the network (pruning). Moreover,
better inference times can be obtained with by using more low-level programming
languages such as C or C++, especially for the search strategies.

On the problems addressed: from this perspective, we can distinguish the study
of complex problems that integrate dimensions that can hardly be captured by clas-
sical optimization approaches. This would help us to solve more realistic variants
of routing problems. For example, integrating driver experience through a history
of their deliveries to better estimate travel times, or predicting customer demand
over a time horizon to choose the most appropriate time to serve them. We may
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also consider, in this context, models capable of solving a larger family of routing
problems, adapting to the presence or absence of certain constraints in the prob-
lem. Neural networks are well suited for this type of exercise through the learning
of common representations between different variants of the problem.

On the explainability: The black-box nature of neural networks makes it difficult
to understand what is actually learned from the data [75]. How can we ensure that
what is learned by a neural network corresponds to an algorithm for solving a VRP?
Can this algorithm’s decisions be explained? What is the relationship between the
learned algorithm and the size of the instances it can handle? To understand
this, work on explainability of neural networks in the context of combinatorial
optimization may be particularly crucial if we want to apply this framework to real-
world problems. For example, how can we explain to a driver that they are making
a longer tour than another driver? How can we explain that a solution that seems
counter-intuitive is better than a more intuitive solution (e.g., nearest neighbor)?
How can we explain that neural networks trained on instances of a certain size
struggle to generalize to other instance sizes? Furthermore, explainability can
help detect biases in the learned algorithms. For example, in the RHP case, we
can ensure equitable service by identifying any potential biases that may lead to
prioritization or preferential treatment of rich districts over other districts.

Finally, some issues raised in these perspectives are already being researched
in a broader framework encompassing deep learning and reinforcement learning.
What we emphasize here is the need to adapt them to the framework of neural
combinatorial optimization, as presented in the work of this thesis. Furthermore,
we highlight that these different perspectives are not mutually exclusive, and it
is necessary to consider several aspects as interconnected, such as interpretability,
the training algorithm, and the neural network architecture.
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Appendices

A First evaluation results on CVRPLib

𝑄 Vehicle’s capacity
𝐾 Number of routes

Tightness
∑𝑛
𝑖=1 𝑞𝑖
𝐾𝑄

𝑞min The minimum demand
𝑞max The maximum demand
BKS HGS solution
𝑜𝑏 𝑗 . Solution objective value
𝑔𝑎𝑝 %gap to the BKS ((1 − 𝑜𝑏 𝑗 .

𝐵𝐾𝑆
) · 100)

𝑡𝑏𝑒𝑠𝑡 cpu time to find 𝑜𝑏 𝑗 . in minutes
𝑡𝑏𝑒𝑠𝑡 total runtime in minutes

Table 7: Description of table columns.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
X-n101-k25 206 25 1.0 1 100 27591.0 51464 86.52 469.46 445.97
X-n106-k14 600 14 0.94 50 100 26364.0 45597 72.95 437.06 427.97
X-n110-k13 66 13 0.95 5 10 14971.0 15762 5.28 448.09 442.76
X-n115-k10 169 10 0.91 1 99 12747.0 49745 290.25 470.04 148.05
X-n120-k6 21 6 0.94 1 1 13332.0 14891 11.69 458.89 393.51

X-n125-k30 188 30 0.98 1 100 55539.0 61208 10.21 569.52 558.33
X-n129-k18 39 18 0.95 1 10 28940.0 30101 4.01 533.82 527.10
X-n134-k13 643 13 0.98 3 100 10916.0 24500 124.44 542.52 160.41
X-n139-k10 106 10 0.98 5 10 13590.0 14478 6.53 546.91 540.45
X-n143-k7 1190 7 0.9 2 99 15700.0 70276 347.62 552.03 83.43

X-n148-k46 18 46 0.99 1 10 43448.0 43844 0.91 710.73 670.28
X-n153-k22 144 22 0.97 1 98 21225.0 30155 42.07 655.73 327.78
X-n157-k13 12 13 1.0 1 1 16876.0 17577 4.15 624.01 607.78
X-n162-k11 1174 11 0.94 51 100 14138.0 20887 47.74 652.78 649.93
X-n167-k10 133 10 0.93 5 10 20557.0 22018 7.11 655.23 625.14
X-n172-k51 161 51 0.99 2 100 45607.0 84082 84.36 830.16 561.60
X-n176-k26 142 26 0.98 1 100 47812.0 84384 76.49 747.93 534.73
X-n181-k23 8 23 0.98 1 1 25569.0 26628 4.14 751.62 746.37
X-n186-k15 974 15 0.95 50 100 24145.0 93405 286.85 760.40 194.07
X-n190-k8 138 8 0.94 1 10 16980.0 18401 8.37 733.11 649.66

X-n195-k51 181 51 1.0 1 100 44225.0 97315 120.05 877.35 443.81
X-n200-k36 402 36 0.99 2 100 58578.0 73801 25.99 868.21 868.12
X-n204-k19 836 19 0.95 50 100 19565.0 83074 324.61 855.81 151.39
X-n209-k16 101 16 0.96 5 10 30656.0 33770 10.16 836.65 806.56
X-n214-k11 944 11 1.0 2 100 10856.0 47658 339.00 838.79 563.72
X-n219-k73 3 73 1.0 1 1 117595.0 118760 0.99 1075.14 1038.61
X-n223-k34 37 34 0.98 1 10 40437.0 43165 6.75 961.39 843.33
X-n228-k23 154 23 0.98 1 100 25742.0 31425 22.08 942.25 887.06
X-n233-k16 631 16 1.0 1 100 19230.0 97499 407.02 955.05 198.59
X-n237-k14 18 14 0.94 1 1 27042.0 29933 10.69 943.16 881.18
X-n242-k48 28 48 0.99 1 10 82771.0 86007 3.91 1086.66 1065.88

Table 8: NCO-AM solution cost vs. HGS solution cost on the set X.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
A-n32-k5 100 5 0.82 1 24 784.0 787 0.38 83.56 19.83
A-n33-k5 100 5 0.89 2 24 661.0 737 11.50 85.76 72.10
A-n33-k6 100 6 0.9 1 66 742.0 792 6.74 89.03 50.92
A-n34-k5 100 5 0.92 1 25 778.0 796 2.31 88.33 14.71
A-n36-k5 100 5 0.88 1 23 799.0 826 3.38 91.92 35.76
A-n37-k5 100 5 0.81 1 27 669.0 759 13.45 93.94 46.98
A-n37-k6 100 6 0.95 1 66 949.0 961 1.26 98.31 79.96
A-n38-k5 100 5 0.96 1 26 730.0 759 3.97 97.51 20.70
A-n39-k5 100 5 0.95 1 26 822.0 864 5.11 101.80 20.80
A-n39-k6 100 6 0.88 1 72 831.0 986 18.65 102.81 59.80
A-n44-k6 100 6 0.95 2 24 937.0 960 2.45 112.88 42.99
A-n45-k6 100 6 0.99 2 24 944.0 993 5.19 115.45 104.66
A-n45-k7 100 7 0.91 1 26 1146.0 1171 2.18 115.07 40.42
A-n46-k7 100 7 0.86 1 26 914.0 943 3.17 117.44 38.67
A-n48-k7 100 7 0.89 2 26 1073.0 1093 1.86 120.92 80.67
A-n53-k7 100 7 0.95 1 30 1010.0 1064 5.35 132.33 47.06
A-n54-k7 100 7 0.96 2 36 1167.0 1248 6.94 133.83 42.70
A-n55-k9 100 9 0.93 2 66 1073.0 1197 11.56 143.04 137.95
A-n60-k9 100 9 0.92 1 48 1354.0 1406 3.84 152.98 117.98
A-n61-k9 100 9 0.98 2 72 1034.0 1328 28.43 156.00 155.19
A-n62-k8 100 8 0.92 1 26 1288.0 1345 4.43 152.78 124.13

A-n63-k10 100 10 0.93 1 63 1314.0 1408 7.15 164.15 163.94
A-n63-k9 100 9 0.97 1 26 1616.0 1668 3.22 159.94 113.83
A-n64-k9 100 9 0.94 1 54 1401.0 1507 7.57 163.95 94.28
A-n65-k9 100 9 0.97 1 26 1174.0 1191 1.45 165.79 124.21
A-n69-k9 100 9 0.94 1 39 1159.0 1189 2.59 177.08 140.76

A-n80-k10 100 10 0.94 1 26 1763.0 1812 2.78 204.86 196.44

Table 9: NCO-AM solution cost vs. HGS solution cost on the set A.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
B-n31-k5 100 5 0.82 2 25 672.0 695 3.42 81.33 18.41
B-n34-k5 100 5 0.91 1 69 788.0 848 7.61 89.30 52.00
B-n35-k5 100 5 0.87 1 26 955.0 989 3.56 91.36 80.68
B-n38-k6 100 6 0.85 1 26 805.0 820 1.86 98.16 86.71
B-n39-k5 100 5 0.88 1 25 549.0 591 7.65 98.62 51.89
B-n41-k6 100 6 0.94 6 25 829.0 875 5.55 104.79 66.11
B-n43-k6 100 6 0.87 1 25 742.0 749 0.94 108.83 62.95
B-n44-k7 100 7 0.92 3 69 909.0 939 3.30 115.35 86.22
B-n45-k5 100 5 0.97 1 25 751.0 780 3.86 114.34 35.90
B-n45-k6 100 6 0.99 2 26 678.0 694 2.36 114.97 78.99
B-n50-k7 100 7 0.87 2 63 741.0 769 3.78 127.16 123.67
B-n50-k8 100 8 0.92 2 69 1312.0 1364 3.96 129.21 120.56
B-n51-k7 100 7 0.98 3 42 1016.0 1046 2.95 129.40 121.12
B-n52-k7 100 7 0.87 1 26 747.0 779 4.28 135.11 66.52
B-n56-k7 100 7 0.88 1 26 707.0 736 4.10 138.41 136.20
B-n57-k7 100 7 1.0 1 60 1153.0 1209 4.86 143.27 142.57
B-n57-k9 100 9 0.89 2 26 1598.0 1652 3.38 144.04 115.19

B-n63-k10 100 10 0.92 2 48 1496.0 1538 2.81 161.95 160.76
B-n64-k9 100 9 0.98 1 54 861.0 934 8.48 163.71 162.70
B-n66-k9 100 9 0.96 1 23 1316.0 1369 4.03 167.12 164.83

B-n67-k10 100 10 0.91 1 26 1032.0 1109 7.46 172.03 157.97
B-n68-k9 100 9 0.93 1 48 1272.0 1336 5.03 173.97 96.96

B-n78-k10 100 10 0.94 1 26 1221.0 1302 6.63 201.93 199.88

Table 10: NCO-AM solution cost vs. HGS solution cost on the set B.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
E-n101-k14 112 14 0.93 1 41 1067.0 1182 10.78 423.10 417.99
E-n101-k8 200 8 0.91 1 41 815.0 847 3.93 400.91 345.38
E-n22-k4 6000 4 0.94 100 2500 375.0 375 0.00 63.04 2.96
E-n23-k3 4500 3 0.75 60 4100 569.0 577 1.40 59.22 2.82
E-n30-k3 4500 3 0.94 100 3100 503.0 513 1.99 79.96 64.76
E-n33-k4 8000 4 0.92 40 4000 835.0 848 1.56 84.40 41.99
E-n51-k5 160 5 0.97 3 41 521.0 538 3.26 126.28 72.63

E-n76-k10 140 10 0.97 1 37 830.0 847 2.05 202.38 192.71
E-n76-k14 100 14 0.97 1 37 1021.0 1044 2.25 211.48 209.19
E-n76-k7 220 7 0.89 1 37 682.0 713 4.55 192.90 165.82
E-n76-k8 180 8 0.95 1 37 735.0 752 2.31 193.44 148.52

Table 11: NCO-AM solution cost vs. HGS solution cost on the set E.

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
F-n135-k7 2210 7 0.95 1 1126 1162.0 1329 14.37 531.73 77.84
F-n45-k4 2010 4 0.9 1 1300 724.0 798 10.22 113.27 56.53
F-n72-k4 30000 4 0.96 4 21611 237.0 251 5.91 174.28 171.95

Table 12: NCO-AM solution cost vs. HGS solution cost on the set F

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
M-n101-k10 200 10 0.91 10 50 820.0 852 3.90 413.03 105.53
M-n121-k7 200 7 0.98 2 35 1034.0 1158 11.99 482.23 179.65

M-n151-k12 200 12 0.93 1 41 1015.0 1088 7.19 604.60 603.34
M-n200-k17 200 17 0.94 1 41 1282.0 1365 6.47 880.79 621.35

Table 13: NCO-AM solution cost vs. HGS solution cost on the set M.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. %gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
P-n101-k4 400 4 0.91 1 41 681.0 727 6.75 399.17 40.09
P-n16-k8 35 8 0.88 6 31 450.0 450 0.00 54.59 1.69
P-n19-k2 160 2 0.97 6 31 212.0 215 1.42 49.08 19.38
P-n20-k2 160 2 0.97 6 31 216.0 219 1.39 50.96 4.30
P-n21-k2 160 2 0.93 6 30 211.0 217 2.84 53.51 7.87
P-n22-k2 160 2 0.96 6 30 216.0 216 0.00 55.54 28.67
P-n22-k8 3000 8 0.94 100 2500 590.0 604 2.37 58.47 1.29
P-n23-k8 40 8 0.98 5 30 529.0 532 0.57 71.16 6.67
P-n40-k5 140 5 0.88 3 41 458.0 486 6.11 101.83 51.29
P-n45-k5 150 5 0.92 3 41 510.0 524 2.75 112.14 39.56

P-n50-k10 100 10 0.95 5 37 696.0 730 4.89 133.69 76.52
P-n50-k7 150 7 0.91 5 37 554.0 571 3.07 127.92 64.93
P-n50-k8 120 8 0.99 5 37 631.0 637 0.95 130.42 42.61

P-n51-k10 80 10 0.97 3 41 741.0 751 1.35 137.82 64.22
P-n55-k10 115 10 0.91 5 37 694.0 709 2.16 145.23 119.72
P-n55-k15 70 15 0.99 5 37 941.0 952 1.17 158.69 122.15
P-n55-k7 170 7 0.88 5 37 568.0 585 2.99 138.53 84.34
P-n55-k8 160 8 0.81 5 37 576.0 600 4.17 136.43 77.26

P-n60-k10 120 10 0.94 5 37 744.0 757 1.75 156.04 106.44
P-n60-k15 80 15 0.94 5 37 968.0 1013 4.65 167.94 135.39
P-n65-k10 130 10 0.94 5 37 792.0 812 2.53 168.00 130.79
P-n70-k10 135 10 0.97 5 37 827.0 838 1.33 185.68 134.82
P-n76-k4 350 4 0.97 1 37 593.0 641 8.09 182.45 178.01
P-n76-k5 280 5 0.97 1 37 627.0 647 3.19 186.08 181.17

Table 14: NCO-AM solution cost vs. HGS solution cost on the set P.
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B Results of NOFSS on CVRPLib

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡

X-n101-k25 206 25 1.0 1 100 27591.0 28738 4.16% 64.49 37.70
X-n106-k14 600 14 0.94 50 100 26364.0 27152 2.99% 68.41 56.87
X-n110-k13 66 13 0.95 5 10 14971.0 15461 3.27% 70.63 32.85
X-n115-k10 169 10 0.91 1 99 12747.0 13255 3.99% 74.00 35.92
X-n120-k6 21 6 0.94 1 1 13332.0 13955 4.67% 77.75 71.48
X-n125-k30 188 30 0.98 1 100 55539.0 58735 5.75% 82.59 78.38
X-n129-k18 39 18 0.95 1 10 28940.0 30689 6.04% 59.00 48.88
X-n134-k13 643 13 0.98 3 100 10916.0 11658 6.80% 62.43 57.39
X-n139-k10 106 10 0.98 5 10 13590.0 14217 4.61% 65.74 43.96
X-n143-k7 1190 7 0.9 2 99 15700.0 16935 7.87% 68.41 68.08
X-n148-k46 18 46 0.99 1 10 43448.0 45288 4.23% 71.69 68.90
X-n153-k22 144 22 0.97 1 98 21225.0 23265 9.61% 74.41 72.08
X-n157-k13 12 13 1.0 1 1 16876.0 17668 4.69% 78.08 77.56
X-n162-k11 1174 11 0.94 51 100 14138.0 15023 6.26% 82.68 77.77
X-n167-k10 133 10 0.93 5 10 20557.0 22551 9.70% 87.24 71.10
X-n172-k51 161 51 0.99 2 100 45607.0 47457 4.06% 91.21 83.02
X-n176-k26 142 26 0.98 1 100 47812.0 51859 8.46% 93.15 91.89
X-n181-k23 8 23 0.98 1 1 25569.0 26344 3.03% 96.52 88.48
X-n186-k15 974 15 0.95 50 100 24145.0 26074 7.99% 101.44 82.99
X-n190-k8 138 8 0.94 1 10 16980.0 18337 7.99% 105.51 86.66
X-n195-k51 181 51 1.0 1 100 44225.0 46759 5.73% 109.37 98.73
X-n200-k36 402 36 0.99 2 100 58578.0 63347 8.14% 112.79 100.43
X-n204-k19 836 19 0.95 50 100 19565.0 21260 8.66% 157.01 133.28
X-n209-k16 101 16 0.96 5 10 30656.0 33204 8.31% 162.38 153.91
X-n214-k11 944 11 1.0 2 100 10856.0 12144 11.86% 167.90 162.58
X-n219-k73 3 73 1.0 1 1 117595.0 118710 0.95% 172.96 168.39
X-n223-k34 37 34 0.98 1 10 40437.0 42842 5.95% 177.48 122.05
X-n228-k23 154 23 0.98 1 100 25742.0 28003 8.78% 183.04 172.29
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X-n233-k16 631 16 1.0 1 100 19230.0 21114 9.80% 190.33 185.17
X-n237-k14 18 14 0.94 1 1 27042.0 29504 9.10% 198.09 169.85
X-n242-k48 28 48 0.99 1 10 82771.0 89334 7.93% 201.62 200.40

Table 15: NOFSS solution cost vs. HGS solution cost on
the set X.

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
A-n32-k5 100 5 0.82 1 24 784.0 788 0.51% 64.89 24.76
A-n33-k5 100 5 0.89 2 24 661.0 661 0.00% 37.05 1.32
A-n33-k6 100 6 0.9 1 66 742.0 744 0.27% 36.77 6.99
A-n34-k5 100 5 0.92 1 25 778.0 800 2.83% 38.06 0.65
A-n36-k5 100 5 0.88 1 23 799.0 818 2.38% 39.86 9.70
A-n37-k5 100 5 0.81 1 27 669.0 693 3.59% 40.91 0.78
A-n37-k6 100 6 0.95 1 66 949.0 969 2.11% 41.05 0.19
A-n38-k5 100 5 0.96 1 26 730.0 750 2.74% 42.25 7.90
A-n39-k5 100 5 0.95 1 26 822.0 856 4.14% 42.81 1.39
A-n39-k6 100 6 0.88 1 72 831.0 845 1.68% 42.51 7.16
A-n44-k6 100 6 0.95 2 24 937.0 970 3.52% 47.63 35.33
A-n45-k6 100 6 0.99 2 24 944.0 971 2.86% 48.38 2.33
A-n45-k7 100 7 0.91 1 26 1146.0 1168 1.92% 48.32 30.72
A-n46-k7 100 7 0.86 1 26 914.0 969 6.02% 49.22 7.76
A-n48-k7 100 7 0.89 2 26 1073.0 1103 2.80% 50.89 3.63
A-n53-k7 100 7 0.95 1 30 1010.0 1037 2.67% 55.80 6.28
A-n54-k7 100 7 0.96 2 36 1167.0 1219 4.46% 57.42 12.33
A-n55-k9 100 9 0.93 2 66 1073.0 1079 0.56% 58.13 34.71
A-n60-k9 100 9 0.92 1 48 1354.0 1416 4.58% 63.38 1.81
A-n61-k9 100 9 0.98 2 72 1034.0 1070 3.48% 64.19 36.39
A-n62-k8 100 8 0.92 1 26 1288.0 1346 4.50% 64.84 14.60

A-n63-k10 100 10 0.93 1 63 1314.0 1357 3.27% 65.69 24.26
A-n63-k9 100 9 0.97 1 26 1616.0 1685 4.27% 65.92 25.50
A-n64-k9 100 9 0.94 1 54 1401.0 1443 3.00% 66.71 13.09
A-n65-k9 100 9 0.97 1 26 1174.0 1189 1.28% 41.03 3.21
A-n69-k9 100 9 0.94 1 39 1159.0 1188 2.50% 44.56 6.94

A-n80-k10 100 10 0.94 1 26 1763.0 1865 5.79% 50.99 29.91

Table 16: NOFSS solution cost vs. HGS solution cost on the set A.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
B-n31-k5 100 5 0.82 2 25 672.0 672 0.00% 68.37 0.58
B-n34-k5 100 5 0.91 1 69 788.0 804 2.03% 40.00 3.35
B-n35-k5 100 5 0.87 1 26 955.0 962 0.73% 39.78 3.21
B-n38-k6 100 6 0.85 1 26 805.0 815 1.24% 42.47 5.06
B-n39-k5 100 5 0.88 1 25 549.0 558 1.64% 43.40 32.54
B-n41-k6 100 6 0.94 6 25 829.0 838 1.09% 45.30 14.81
B-n43-k6 100 6 0.87 1 25 742.0 756 1.89% 47.25 12.28
B-n44-k7 100 7 0.92 3 69 909.0 919 1.10% 48.19 17.94
B-n45-k5 100 5 0.97 1 25 751.0 766 2.00% 49.26 38.40
B-n45-k6 100 6 0.99 2 26 678.0 722 6.49% 48.99 7.84
B-n50-k7 100 7 0.87 2 63 741.0 743 0.27% 54.03 5.95
B-n50-k8 100 8 0.92 2 69 1312.0 1340 2.13% 53.73 26.85
B-n51-k7 100 7 0.98 3 42 1016.0 1019 0.29% 54.79 33.06
B-n52-k7 100 7 0.87 1 26 747.0 757 1.34% 55.76 9.25
B-n56-k7 100 7 0.88 1 26 707.0 730 3.25% 59.98 14.86
B-n57-k7 100 7 1.0 1 60 1153.0 1154 0.09% 60.80 59.54
B-n57-k9 100 9 0.89 2 26 1598.0 1640 2.63% 61.42 25.91

B-n63-k10 100 10 0.92 2 48 1496.0 1592 6.42% 66.30 38.72
B-n64-k9 100 9 0.98 1 54 861.0 910 5.69% 66.84 62.89
B-n66-k9 100 9 0.96 1 23 1316.0 1354 2.89% 41.43 21.50

B-n67-k10 100 10 0.91 1 26 1032.0 1097 6.30% 42.02 9.85
B-n68-k9 100 9 0.93 1 48 1272.0 1298 2.04% 42.61 37.38

B-n78-k10 100 10 0.94 1 26 1221.0 1282 5.00% 48.98 44.44

Table 17: NOFSS solution cost vs. HGS solution cost on the set B

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
E-n101-k14 112 14 0.93 1 41 1067.0 1108 3.84% 64.57 32.25
E-n101-k8 200 8 0.91 1 41 815.0 859 5.40% 64.49 12.28
E-n22-k4 6000 4 0.94 100 2500 375.0 375 0.00% 47.43 3.92
E-n23-k3 4500 3 0.75 60 4100 569.0 569 0.00% 49.00 46.38
E-n30-k3 4500 3 0.94 100 3100 503.0 503 0.00% 60.13 0.68
E-n33-k4 8000 4 0.92 40 4000 835.0 866 3.71% 36.56 33.21
E-n51-k5 160 5 0.97 3 41 521.0 544 4.41% 53.20 1.94

E-n76-k10 140 10 0.97 1 37 830.0 857 3.25% 47.24 10.20
E-n76-k14 100 14 0.97 1 37 1021.0 1066 4.41% 47.34 6.45
E-n76-k7 220 7 0.89 1 37 682.0 706 3.52% 47.50 5.94
E-n76-k8 180 8 0.95 1 37 735.0 761 3.54% 47.63 15.43

Table 18: NOFSS solution cost vs. HGS solution cost on the set E.
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Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
F-n135-k7 2210 7 0.95 1 1126 1162.0 1235 6.28% 64.86 44.91
F-n45-k4 2010 4 0.9 1 1300 724.0 730 0.83% 49.49 15.66
F-n72-k4 30000 4 0.96 4 21611 237.0 260 9.70% 45.76 1.75

Table 19: NOFSS solution cost vs. HGS solution cost on the set F.

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
M-n101-k10 200 10 0.91 10 50 820.0 834 1.71% 62.86 37.59
M-n121-k7 200 7 0.98 2 35 1034.0 1068 3.29% 77.37 77.26

M-n151-k12 200 12 0.93 1 41 1015.0 1066 5.02% 72.00 70.01
M-n200-k17 200 17 0.94 1 41 1282.0 1344 4.84% 107.81 101.36

Table 20: NOFSS solution cost vs. HGS solution cost on the set M.
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B. RESULTS OF NOFSS ON CVRPLIB

Instance Q K Tightness 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 BKS obj. gap 𝑡𝑡𝑜𝑡 𝑡𝑏𝑒𝑠𝑡
P-n101-k4 400 4 0.91 1 41 681.0 688 1.03% 66.12 28.25
P-n16-k8 35 8 0.88 6 31 450.0 450 0.00% 41.11 0.02
P-n19-k2 160 2 0.97 6 31 212.0 219 3.30% 46.35 6.28
P-n20-k2 160 2 0.97 6 31 216.0 219 1.39% 48.15 8.91
P-n21-k2 160 2 0.93 6 30 211.0 218 3.32% 49.61 26.29
P-n22-k2 160 2 0.96 6 30 216.0 224 3.70% 50.04 3.28
P-n22-k8 3000 8 0.94 100 2500 590.0 590 0.00% 49.91 10.14
P-n23-k8 40 8 0.98 5 30 529.0 536 1.32% 51.51 0.05
P-n40-k5 140 5 0.88 3 41 458.0 465 1.53% 44.66 0.13
P-n45-k5 150 5 0.92 3 41 510.0 514 0.78% 49.47 0.71
P-n50-k10 100 10 0.95 5 37 696.0 718 3.16% 54.42 13.29
P-n50-k7 150 7 0.91 5 37 554.0 575 3.79% 54.48 0.45
P-n50-k8 120 8 0.99 5 37 631.0 644 2.06% 54.52 22.09
P-n51-k10 80 10 0.97 3 41 741.0 758 2.29% 55.14 1.36
P-n55-k10 115 10 0.91 5 37 694.0 724 4.32% 58.87 20.47
P-n55-k15 70 15 0.99 5 37 941.0 968 2.87% 58.53 3.53
P-n55-k7 170 7 0.88 5 37 568.0 597 5.11% 59.36 0.70
P-n55-k8 160 8 0.81 5 37 576.0 599 3.99% 59.46 0.49
P-n60-k10 120 10 0.94 5 37 744.0 779 4.70% 64.49 8.16
P-n60-k15 80 15 0.94 5 37 968.0 986 1.86% 64.08 21.68
P-n65-k10 130 10 0.94 5 37 792.0 811 2.40% 41.46 2.77
P-n70-k10 135 10 0.97 5 37 827.0 838 1.33% 44.72 16.55
P-n76-k4 350 4 0.97 1 37 593.0 622 4.89% 48.15 1.08
P-n76-k5 280 5 0.97 1 37 627.0 635 1.28% 48.56 9.61

Table 21: NOFSS solution cost vs. HGS solution cost on the set P.
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