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Résumé: La magnétoencéphalographie et
l’électroencéphalographie (M/EEG) sont des
techniques non invasives d’enregistrement de
l’activité électrique du cerveau. Les données
consistent en des séries temporelles multivar-
iées qui fournissent des informations sur les pro-
cessus cognitifs ainsi que sur l’état biologique
d’un sujet. Dans le cadre de cette thèse, nous
étudions trois problèmes qui se posent lors du
traitement de signaux M/EEG: l’extraction de
motifs, la résolution de problèmes inverses, et
l’apprentissage statistique à partir de signaux
M/EEG. Tout d’abord, nous proposons une
analyse des algorithmes déroulés dans le cadre
de l’apprentissage de dictionnaire, et en par-

ticulier de leur efficacité computationelle par
rapport aux méthodes d’optimisation tradition-
nelles. Nous proposons également une étude de
leur comportement pour la résolution des prob-
lèmes inverses. Dans un deuxième temps, nous
mettons l’accent sur l’aspect applicatif. Nous re-
visitons l’apprentissage de dictionnaire convolu-
tif pour l’extraction de motifs dans des signaux
MEG de grande taille, et présentons une implé-
mentation qui pourrait avoir des perspectives
d’application en étude de populations. Enfin,
nous introduisons une méthode d’apprentissage
à partir des signaux M/EEG fondée sur l’analyse
des matrices de covariance et le transport opti-
mal.

Title: A study of unrolled algorithms for dictionary learning and inverse problems, and contri-
butions to M/EEG signal processing
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Abstract: Magnetoencephalography and elec-
troencephalography (M/EEG) are non-invasive
techniques for recording the electrical activity of
the brain. The data consist of multivariate time
series that provide information about cognitive
processes as well as the biological state of a sub-
ject. In this thesis, we study three problems that
arise when processing M/EEG signals: pattern
extraction, inverse problems resolution, and sta-
tistical learning from M/EEG signals. First, we
propose an analysis of unrolled algorithms in the
context of dictionary learning, and in particu-

lar of their computational efficiency compared to
traditional optimization methods. We also pro-
pose a study of their behavior for solving inverse
problems. In a second step, we focus on applica-
tions in M/EEG. We revisit convolutional dic-
tionary learning for pattern extraction in large
MEG signals, and present an implementation
that could have potential applications in pop-
ulation studies. Finally, we introduce a method
to learn from M/EEG signals based on covari-
ance matrices analysis and optimal transport.



Résumé

La magnétoencéphalographie et l’électroencéphalographie (M/EEG) sont des modalités de
neuroimagerie non invasives qui enregistrent l’activité électrique du cerveau. Concrète-
ment, quelques dizaines ou centaines de capteurs sont placés autour de la tête d’un sujet,
et la machine enregistre l’intensité du champ électrique ou magnétique à haute résolution
temporelle, de l’ordre de 1000Hz. Cela permet de suivre l’évolution temporelle et spatiale
des courants électriques circulant dans les dendrites des neurones lors de la transmission
synaptique. Les données obtenues sont constituées d’autant de séries temporelles qu’il y a
de capteurs et peuvent contenir un volume important d’échantillons, variant avec la durée
de l’enregistrement. L’objectif de ce processus est de fournir des informations sur le pro-
cessus cognitif ou l’état biologique d’un sujet. Il existe de nombreuses façons d’extraire des
informations utiles de ces données, en fonction de la tâche à accomplir en aval. Chacune
d’entre elles s’accompagne de défis spécifiques.

Premier défi: extraction efficace de motifs dans les signaux M/EEG. Une
méthode d’automatisation de l’analyse des signaux M/EEG consiste à extraire des motifs
cognitifs correspondant à des activités physiologiques, telles que des artefacts récurrents
comme les battements de cœur ou les clignements d’yeux, ou des stimuli auditifs ou visuels
externes présentés à un sujet. En fait, l’identification de formes d’ondes prototypiques et
de leurs occurrences dans les données permet de concevoir une représentation événemen-
tielle de la dynamique temporelle du signal et de relier les stimuli aux réponses évoquées
qu’ils déclenchent. Cette représentation permet de développer des outils statistiques pour
déterminer le temps de réponse, ainsi que son intensité.

Une façon d’y parvenir est d’exploiter l’apprentissage de dictionnaire convolutif, qui est
particulièrement efficace pour les tâches d’apprentissage de motifs sur des séries temporelles
ou des images. Toutefois, les méthodes d’optimisation de l’apprentissage de dictionnaire
convolutif ont du mal à s’adapter aux grandes quantités de données à traiter dans les ap-
plications telles que l’analyse des signaux MEG. En particulier, ces méthodes fonctionnent
bien sur de petits enregistrements d’un sujet spécifique, mais sont difficilement applicables
à des cohortes de dizaines ou de centaines d’individus. Ainsi, leur adaptation à l’analyse des
enregistrements M/EEG pour l’étude de population présente un défi majeur: nous devons
d’abord améliorer l’efficacité de calcul de l’apprentissage de dictionnaire convolutionnel.
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Pour ce faire, nous devons trouver des algorithmes plus rapides ou faire des concessions
acceptables qui préservent la qualité du résultat final.

Dans ce qui suit, nous étudions dans quelle mesure l’utilisation de la différentiation au-
tomatique et des algorithmes déroulés - un type spécial de réseau de neurones basé sur
des algorithmes d’optimisation itératifs - permet d’accélérer l’apprentissage de diction-
naire pour les données volumineuses. Nous fournissons également des outils pour rendre
l’apprentissage par dictionnaire convolutif plus rapide dans la pratique, ainsi que des per-
spectives d’applications dans l’analyse de données MEG.

Deuxième défi: apprentissage d’a priori pour la résolution de problèmes
inverses. La mesure de l’activité électrique à la surface de la tête par magnétoencéphalo-
graphie s’accompagne d’une perte d’information potentiellement critique concernant la
localisation des sources électriques à l’intérieur du cerveau. En effet, chaque capteur en-
registre le signal émis par chaque source dont l’intensité dépend de la distance qui les
sépare et des propriétés physiques des tissus cérébraux que l’onde électromagnétique doit
traverser. En raison de la linéarité des équations de Maxwell, le signal observé est obtenu
comme une transformation linéaire des sources, corrompue par le bruit de mesure. La
combinaison des méthodes à éléments finis, des données du scan IRM de la tête du sujet,
et de la connaissance des tissus cérébraux permet de calculer une approximation numérique
de cette transformation linéaire. Étant donné que nous connaissons à la fois les observa-
tions et la transformation linéaire, nous sommes intéressés par la récupération des sources
qui ont généré ces observations. C’est ce qu’on appelle le problème de la localisation des
sources, un type particulier de problème inverse linéaire.

Comme la dimension des mesures (fournies par quelques centaines de capteurs) est générale-
ment beaucoup plus petite que la dimension des sources (quelques milliers de voxels dans le
cerveau), ce problème inverse est mal posé, ce qui signifie que plusieurs solutions pourraient
être correctes compte tenu d’un ensemble d’observations. L’incertitude sur les mesures,
corrompues par le bruit, augmente le nombre de solutions potentielles. Par conséquent,
les praticiens s’appuient sur leur connaissance préalable des données pour sélectionner la
solution la plus plausible parmi toutes les solutions possibles. Dans certains cas, des trans-
formées efficaces et analytiques sont disponibles et produisent des résultats satisfaisants,
comme les ondelettes pour les images ou les Gaborlets pour les signaux audio. Cependant,
la complexité et la variabilité des signaux font qu’il est souvent difficile de s’appuyer sur
des a priori ou des dictionnaires ad hoc, en particulier dans le scénario non supervisé de la
M/EEG où aucune donnée de vérité de terrain n’est disponible. Un deuxième défi se pose
donc : nous cherchons un moyen efficace et robuste de résumer la structure des données afin
de résoudre un problème linéaire inverse sans avoir recours à des connaissances préalables.

Ici, nous nous concentrons sur l’utilisation possible des algorithmes déroulés comme méth-
ode d’apprentissage d’a priori pour la résolution de problèmes inverses. Plus précisément,
nous démontrons les limites pratiques de l’apprentissage d’a priori dans le cadre non super-
visé et comparons plusieurs types d’algorithmes d’apprentissage de dictionnaires déroulés
pour les problèmes inverses non supervisés et semi-supervisés.
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Troisième défi: prédiction à partir des signaux M/EEG. Les données de
magnétoencéphalographie peuvent contenir de nombreuses informations sur les processus
cognitifs ou sur l’état biologique d’un sujet donné. Pour accéder à ces informations, il est
très intéressant de concevoir des outils de prédiction capables de traiter ce type spécifique
de données. Les applications de la M/EEG comprennent l’interface cerveau-ordinateur
– qui consiste à établir une interface de communication entre le cerveau et un dispositif
externe – la prédiction de l’âge du cerveau – qui peut aider à caractériser le vieillissement
biologique et la gravité des maladies – ou le dépistage de la démence – où nous voulons
détecter si un sujet présente des signes avant-coureurs d’une maladie neurodégénérative.

Une pratique courante de l’apprentissage statistique sur les données M/EEG consiste à
considérer que la quantité d’intérêt est une fonction de la puissance des sources. Comme la
résolution du problème inverse pour récupérer ces sources est coûteuse et incertaine, nous
sommes confrontés à un troisième défi : nous devons concevoir des méthodes capables
d’effectuer des prédictions précises directement à partir des mesures.

Dans ce travail, nous proposons une nouvelle méthode de traitement des signaux M/EEG
basée sur les matrices de covariance des mesures. Nous nous appuyons sur des outils de
transport optimal et de géométrie riemannienne pour concevoir une nouvelle distance sur
les distributions de matrices symétriques définies positives et évaluons son efficacité sur
plusieurs tâches de prédiction en M/EEG.
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Notations

N Set of integers
R Set of real numbers
Rn Set of real valued vectors of dimension n
Rn×m Set of real valued matrices of dimension n×m
1E 0-1 indicator function of a set E
A† Pseudo-inverse of A ∈ Rn×m

A⊤ Transpose of A ∈ Rn×m

Tr(A) Trace of A
kerA Kernel space of A ∈ Rn×m

⊙ Hadamard product (element-wise product)
∗ Convolution product
⊗ Product measure
E⊥ Orthogonal to the vector space E
⟨u, v⟩E Inner product between u ∈ E and v ∈ E
∥ · ∥0 Number of non-zero coordinates (ℓ0 pseudo-norm)
∥ · ∥p Euclidean ℓp norm
∥ · ∥∞ Euclidean ℓ∞ norm
∥ · ∥TV Total Variation norm
∂f Sub-gradient of f
∇f Gradient of f
sgn Sign operator
proxf Proximal operator of f
f∗ Fenchel transform of f
ιC 0-∞ indicator function of C
Pp(E) Set of probability measures with moment p defined on Borel sets of E
N (µ,Σ) Gaussian distribution of mean µ and covariance matrix Σ
T# Push-forward operator for the measurable map T
Sd(R) Set of real valued symmetric matrices of dimension d
S++
d (R) Set of real valued symmetric positive definite matrices of dimension d
Od Set of orthogonal matrices of dimension d
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Motivation

Magnetoencephalography and electroencephalography (M/EEG) are non invasive neu-
roimaging modalities that record the electrical activity of the brain. Concretely, a few
dozen or hundred sensors are placed around the head of a subject, and the machine records
the intensity of the electric or magnetic field at high temporal resolution, of the order of
1000Hz. This makes it possible to follow the temporal and spatial evolution of the electrical
currents flowing in the dendrites of neurons during synaptic transmission. The resulting
data are made up of as many time series as there are sensors and can contain a large vol-
ume of samples, varying with the duration of the recording. The purpose of this process is
to provide information about the cognitive process or biological state of a subject. There
are many ways to extract useful information from this data, depending on the downstream
task. Each one of them comes with specific challenges.

First challenge: efficient pattern extraction from M/EEG data. A method
to automate the analysis of M/EEG signals consists in extracting cognitive patterns that
correspond to physiological activities, such as recurrent artifacts like heartbeats or eye
blinks, or external auditory or visual stimuli that are presented to a subject. As a matter
of fact, the identification of prototypical waveforms and their occurrences in the data allows
to design an event-based representation of the temporal dynamic of the signal, and link
the stimuli to the evoked responses they trigger. This representation makes it possible to
develop statistical tools to determine the latency of the triggering process, as well as its
intensity.

One way to achieve this is to leverage Convolutional Dictionary Learning, which is partic-
ularly effective for pattern learning tasks on time series or images. However, optimization
methods for Convolutional Dictionary Learning struggle to scale to the large amounts of
data considered in real-world applications such as MEG data analysis. In particular, these
methods work well on small recordings from one specific subject, but are hardly applica-
ble to cohorts of tens or hundreds of individuals. Thus, providing new tools to analyze
M/EEG recordings at the population level presents a major bottleneck: we must first im-
prove the computational efficiency of Convolutional Dictionary Learning. To do so, we
have to find faster algorithms or make acceptable concessions that preserve the quality of
the final result.
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In the following, we study to what extent the usage of automatic differentiation and un-
rolled algorithms – a special kind of neural network based on iterative optimization schemes
– allows to speed up Dictionary Learning for large data. We also provide tools to make
Convolutional Dictionary Learning faster in practice, as well as perspectives of applications
in MEG data analysis.

Second challenge: prior learning for linear inverse problems. Measuring
the electrical activity at the surface of the head through M/EEG comes with a loss of
potentially critical information concerning the localization of the electrical sources inside
the brain. Indeed, each sensor records the signal emitted by each source with intensity
depending on the distance between them and the physical properties of the brain tissues
the electromagnetic wave has to go through. Due to the linearity of Maxwell’s equations,
the observed signal is obtained as a linear transformation of the sources, corrupted by
measurement noise. Combining Finite or Border Elements Methods to MRI data and
knowledge of the brain tissues allows to compute a numerical approximation of this linear
transformation. Given that we know both the observations and the linear transformation,
we are interested in recovering the sources that generated these observations. This is called
the source localization problem, and it is a specific type of linear inverse problem.

As the dimension of the measurements – provided by a few hundreds sensors – is usually
much smaller than the dimension of the sources – a few thousand voxels in the brain – this
inverse problem is ill-posed, meaning that several solutions could be correct given a set
of observations. The uncertainty on the measurements, corrupted by noise, increases the
number of potential solutions. Therefore, practitioners rely on prior knowledge of the data
to select the most plausible solution among all possible ones. In some cases, efficient and
analytic transforms are available and produce satisfying results, such as wavelets for images
or Gaborlets for audio signals. However, the complexity and the variability of the signals
often make it hard to rely on ad hoc priors or dictionaries, especially in the unsupervised
scenario of M/EEG where no ground truth data are available. Thus, a second challenge
arises: we are looking for an efficient and robust way of summarizing the structure of the
data in order to solve a linear inverse problem without the need of expert knowledge.

Here, we put the focus on the possible usage of unrolling as a prior learning method
for inverse problems resolution. More specifically, we demonstrate practical limitations of
prior learning in the unsupervised setting, and compare several kinds of unrolled dictionary
learning algorithms for unsupervised and self-supervised inverse problems.

Third challenge: prediction from M/EEG data. M/EEG data may contain
a lot of information on cognitive processes or on the biological state of a given subject.
To access this information, it is of great interest to design prediction tools that are able
to deal with this specific type of data. Applications of M/EEG include Brain Computer
Interface – which consists of establishing a communication interface between the brain and
an external device – brain-age prediction – which can help characterize biological aging
and disease severity – or dementia screening – where we want to detect whether a subject
shows warning signs of a neurodegenerative disease.

A common practice in statistical learning on M/EEG data is to consider that the target
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is a function of the power of the sources. As solving the inverse problem to recover these
sources is costly and uncertain, we are faced with a third challenge: we need to design
methods that are able to perform accurate predictions directly from the measurements.

In this work, we propose a new way to process M/EEG signals based on covariance ma-
trices from the measurements. We leverage tools from optimal transport and Riemannian
geometry to design a new distance on distributions of Symmetric Positive Definite matrices
and evaluate its efficiency on several prediction tasks in M/EEG.

Organization of this work. The thesis is divided into two parts. The first one
studies unrolled dictionary learning and its usage in inverse problems. The second one
focuses on M/EEG applications.
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Part I

Understanding unrolled dictionary
learning and its usage in inverse

problems
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A common problem encountered in observational sciences is the design of a procedure that
recovers physical quantities of interest from a set of measurements. A good knowledge
of the law of physics and of the measurement devices allows one to model the process
that transforms the input into the output, which is called the forward model. Thus, in
the case where the forward model is available, it is straightforward to calculate the set of
measurements that would be observed for a set of input signals. However, the practitioner is
often interested in the reverse procedure: given a forward model and a set of measurements,
what is the set of signals that caused those measurements ? This problem is called an
inverse problem, and is found in a wide variety of applications.

• Image processing. A camera is a good example of machine designed to capture
information about our surrounding environment. What it does is to analyze the
number and the wavelength of photons emitted by a source to create an image that
matches what we see in our daily life. However, as every physical system, the camera
makes some mistakes and often produces degraded results which have to be processed
to recover the original one. For example, the image could be noisy, blurred or lacking
some pixels. Given the observed image and the knowledge of the acquisition process,
one would like to recover the image as the human eye would have seen it. Examples
of processing techniques can be found in Burger and Burge [2016].

• Neuroimaging. It is not always possible to get an exact representation of the input
signal. In image processing, we expect the image to look like what we see. But in
other areas like neuroimaging, the quantities of interest are hidden, for example in
the brain, and it is only possible to measure their effects outside the head. In MRI
and M/EEG, the device records electric and magnetic field intensities to get an idea
on the subject’s brain activity. The laws of physics and Maxwell’s equations provide
a framework to compute the effects when the causes are known, but the other way
around – the inverse problem – is trickier to deal with. Indeed, the number of areas
of interest in the brain is very large compared to the number of sensors that are
placed over the head. Thus, the resolution generally relies on expert knowledge on
the signal [Gramfort et al., 2012, Costa et al., 2017].

• Audio. Given a setup where a few microphones record a conversation or a song,
several applications involve separating the sound sources – meaning to isolate each
voice or instrument. A microphone outputs a mixture of the sources, that can be
modeled as a linear transformation. If this mixture is known, the source separation
problem is a linear inverse problem for which the practitioner knows the forward
model. Otherwise, the problem is called blind source separation and requires other
tools, like the ones presented in Ozerov and Févotte [2009].

• Astrophysics. Solving an inverse problems means retrieving unknown causes of
known effects. This scenario happens in plenty of contexts in physics. For instance,
it is of interest to compute the gravitational field in some areas of space to study the
celestial bodies or matter they contain. In this case, the effects are known because
they can be observed with appropriate instruments, and the goal of the problem is
to compute the operator which models the physical phenomenon. More details on
inverse problems in astrophysics can be found in Starck [2016].
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Mathematically speaking, the problem can be modeled as follows. Let x ∈ Rn be a real
valued signal of dimension n, and y ∈ Rm be a real valued measurement of dimension m.
We denote A the forward model which allows to compute y from x. The additive noise
modeling the degradation of the signal through the measurement device is denoted by the
real valued random vector b ∈ Rm. Then we have

y = A(x) + b . (1)

In the case where A is a linear operator, we use the corresponding matrix A ∈ Rm×n,
leading to

y = Ax+ b . (2)

In the following, we will only consider linear inverse problems with Gaussian noise, i.e.
b ∼ N (0, σ2Im) where σ > 0 and Im ∈ Rm×m is the identity matrix of dimension m. It
may seem very restrictive to constrain A to be linear. However, this is realistic for a lot
of applications, including imaging or neuroimaging. Regarding the noise, b is not always
normally distributed, but this approximation makes the computations easier and gives
acceptable results in practice in a wide variety of applications. We now go into the details
of classical and modern resolution methods for linear inverse problems.
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Chapter 1

Background on sparse representations and

optimization for inverse problems

When the output is noiseless, i.e. b = 0, the inverse problem reduces to a matrix inversion
problem. If the dimension n of the input and the dimension m of the output are equal, and
if the matrix A is invertible, then the solution is unique and thus well defined, and solving
the linear system provides an exact solution. Otherwise, the problem is more complex to
deal with.

In our main case of interest, the dimension of the observation is smaller than the dimension
of the signal, i.e. m < n. This scenario is called under-determined and is present in various
areas of signal processing, as in M/EEG where there is a 1 to 100 ratio between m and n.
A first attempt to solve the problem may involve finding the Ordinary Least Square (OLS)
solution. Denoting ∥ · ∥2 the euclidean ℓ2 norm, we wish to solve

min
x∈Rn

∥y −Ax∥22 . (1.1)

The least square solution xLS is the orthogonal projection of y onto (kerA)⊥. Let x0 ∈
kerA, then x0 + xLS is a solution. Thus, there are an infinite number of solutions and
the problem is said to be ill-posed. Moreover, the noiseless case is unrealistic in signal
processing, and b can’t be considered equal to 0. In the case of Gaussian noise, the least
square solution performs poorly because the noise level is not taken into account in the
model. Indeed, ∥y − Ax∥22 has to be close to mσ2 in order to respect the statistics of the
measurement.

This simple example shows that trying to solve an under-determined inverse problem with-
out adding any information to the model is unrealistic. Thus, some prior knowledge has
to be integrated in order to select a plausible solution.

1.1 . Sparse representations and optimization for signal reconstruction
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In order to solve the issues noticed in OLS, one idea is to leverage the information we
have about the signal to avoid selecting bad solutions. This information is called a prior
and it can take many forms. One simple example is the usage of a regularization term
that can be added to the data-fitting term in Equation 1.1. A function R is designed by
the practitioner depending on the properties of the signal he wants to preserve, and is
then integrated to the model. It is associated with a hyper-parameter λ > 0 to adapt the
penalization to the data and the noise level. The optimization problem we would like to
solve becomes

min
x∈Rn

1

2
∥y −Ax∥22 + λR(x) . (1.2)

As an example, let’s consider the well-known Ridge or Tikhonov regularization [Ito and
Jin, 2014], where R(x) = ∥x∥22. This time, the problem is strictly convex and admits a
unique solution, defined as xRidge = (A⊤A+ λIn)

−1A⊤y where A⊤ is the transpose of A,
and λ can be tuned to fit the statistics of the noise. Ridge regularization provides a way
to penalize vectors with high ℓ2 norms.

Many other types of regularization exist and the choice of R is crucial in order to get an
acceptable solution for a given problem. We now focus on the design of a suitable R by
leveraging one of the concepts that has had the most significant impact on the field of
inverse problems in the last thirty years: sparsity.

Sparsity and the Lasso

A vector or matrix is called sparse if most of its entries are equal to zero. The main interest
of sparsity is that it makes the recovery process easier because it is not necessary to take as
many measurements as components in the signal, as studied in compressed sensing theory
[Foucart and Rauhut, 2013a]. In our framework where m < n, it seems relevant to take
advantage of sparsity to build a penalization.

Let’s first focus on sparsity-inducing regularizations R, i.e. functions that prioritize signals
with a significant proportion of coordinates equal to 0. The most straightforward example
is the ℓ0 pseudo-norm [Elad, 2010a], which is defined as

∥x∥0 = |{i, xi ̸= 0}| . (1.3)

The ℓ0 pseudo-norm gives the number of non-zero coefficients in a signal. A way to force
most of them to be equal to zero is to constrain ∥x∥0 to stay under an upper bound k0 > 0.
The optimization problem in Equation 1.2 then becomes

min
x∈Rn

∥Ax− y∥22 s.t. ∥x∥0 ≤ k0 . (1.4)

One of the main challenge of the optimization problem in Equation 1.4 is that it is a
non-convex and NP-hard problem. There exist several heuristics and greedy algorithms to
solve it, like matching pursuit algorithms [Mallat and Zhang, 1994], and some of them are
detailed in Elad [2010a]. In order to benefit from convex optimization tools and make the
problem easier to solve, one idea is to replace Equation 1.4 by a convex relaxation which
promotes sparsity. Natural candidates are ℓp norms, which are defined as

∥x∥p =
( n∑
i=1

xpi
) 1

p . (1.5)
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Taking R(x) = ∥x∥p, the optimization problem in Equation 1.2 becomes convex when
p ≥ 1, and leads to sparse solutions when p ≤ 1. This observation led to the introduction
of the Least Absolute Shrinkage and Selection Operator (Lasso) problem in Tibshirani
[1996], a convex optimization problem of the form

min
x∈Rn

1

2
∥Ax− y∥22 + λ∥x∥1 . (1.6)

Properties of the Lasso.

As the cost function is convex and bounded below, the set of solutions is convex and
non empty. Therefore, it contains either a unique or an infinite number of solutions.
Moreover, if the entries of A are independent samples drawn from a continuous probability
distribution, then the solution is unique with probability 1 [Tibshirani and Ryan, 2012].

An optimal solution should verify the KKT conditions, i.e.

0 ∈ AT (Ax− y) + λ∂∥·∥1(x) , (1.7)

where ∂∥·∥1 is the sub-gradient of the l1 norm in dimension 1, defined coordinate-wise as

∂∥·∥1(x)i =

{
sgn(xi) if xi ̸= 0
[−1, 1] if xi = 0

. (1.8)

When λ ≥ ∥A⊤y∥∞, 0 satisfies the KKT conditions and it is therefore an optimal solution.
Moreover, the value of λ determines the number of zero coordinates in x. Indeed, if
λ ≥ |(A⊤y)i|, then xi = 0. The set of indexes of non-zero coordinates of a solution is called
the support.

The dual of the Lasso also provides information on the solution. Denoting r = Ax− y the
residual, and θ ∈ Rm the dual variable, the problem can be written as

max
θ

min
r,x

1

2
∥r∥22 + λ∥x∥1 + θ⊤(r −Ax+ y) . (1.9)

Minimizing over r leads to

min
r

1

2
∥r∥22 + θ⊤r = −1

2
∥θ∥22 , (1.10)

with r = θ, and minimizing over x leads to

min
x
λ∥x∥1 − θ⊤Ax = −ιFλ(A)(θ) , (1.11)

where ιE is the 0 −∞ indicator function of the set E, and Fλ(A) = {θ | ∥AT θ∥∞ ≤ λ}.
Hence the problem becomes

max
θ
−1

2
∥θ∥22 + θ⊤y − ιFλ(A)(θ) (1.12)

= max
θ

1

2
(∥y∥22 − ∥y − θ∥22)− ιFλ(A)(θ) . (1.13)

Thus, the maximum is reached when θ minimizes ∥y− θ∥2 over the convex set Fλ(A), and
the residual r is equal to projFλ(A)

(y), i.e. the projection of y onto the convex set Fλ(A).
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Algorithm 1 FISTA
y, A, λ, T
x0 = 0, t = 1, α0 = 1
Compute the Lipschitz constant L of A⊤A
while t ≤ T do

vt+1 ← ST λ
L

(
xt − 1

L
A⊤(Axt − y)

)
αt+1 ←

1+
√

1+4α2
t

2

xt+1 ← vt+1 + (αt−1
αt+1

)(vt+1 − vt)
t← t+ 1

end while

More information about the Lasso can be found in Hastie et al. [2015].

Algorithms.

As opposed to Ridge regression, the Lasso does not have a closed-form solution. Thus,
iterative algorithms are generally used to find a precise enough approximation of a solution.
Introduced in Daubechies et al. [2004], the Iterative Shrinkage Thresholding Algorithm
(ISTA) produces a sequence (xk)1≤k≤T , such that at each iteration 1 ≤ t ≤ T − 1

xt+1 = STτλ
(
xt − τA⊤(Axt − y)

)
, (1.14)

where τ is a step-size and where ST is the Soft-Thresholding operator defined for all index
1 ≤ i ≤ n as

STγ(x)i = sgn(xi)max(0, |xi| − γ) . (1.15)

With an appropriate choice of τ , ISTA converges toward a fixed point of the function
x 7→ STτλ

(
x− τA⊤(Ax− y)

)
at rate O(1t ), and the set of fixed points corresponds to the

set of solutions of the Lasso in Equation 1.6. This happens for 0 < τ < 2
L , L being the

highest eigenvalue of A⊤A. See Tseng [2010] for details.

There exist many algorithms designed to solve the Lasso more efficiently. One of the most
well-known example is called Fast ISTA (FISTA) [Beck and Teboulle, 2009], described in
Algorithm 1, and is an adaptation of gradient descent with momentum. It has a conver-
gence rate of O( 1

t2
). Variations have been developed, for instance in Chambolle and Dossal

[2014] where the authors study other possible linear combinations between the iterates,
taking αt = t+a−1

a with a > 2. Other algorithms to solve the Lasso are presented in Hastie
et al. [2015].

Sparse representations and splitting algorithms for reconstruction

As is, the Lasso may not seem appropriate in the context of signal processing. Indeed,
natural signals are rarely sparse in time or in space. Using the examples previously men-
tioned, images have numerous non-zero pixels, and the same is true for audio or M/EEG
recordings. However, looking at the signal the right way makes things much easier.

As mentioned in Foucart and Rauhut [2013a], many real-world signals can be approximated
by sparse components if the representation is appropriately chosen. For instance, let’s
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consider a family of signals generated as linear combinations of elements from a set of basic
bricks, or atoms. The assumption that one signal taken from this family is made of a few
bricks only does not appear too restrictive. For instance, in M/EEG, one chunk of signal
may correspond to a heartbeat, another to eye-blinks and another to a visual stimulation.
Thus, the signal can be considered as sparse when decomposed on that "basis". Taking
another example, let’s consider a piece-wise constant signal. It can be fully recovered by
knowing the value at the origin, and the location and intensity of each discontinuity, which
are sparse. In a lot of applications, looking at the signal the right way allows simple and
sparse representations of the signal to be found.

Two challenges emerge from this approach. First, one needs to find either the family
of atoms that generated the signals of interest, or a transform which gives access to a
representation of the signal in a well-chosen space. This can be done either manually from
expert knowledge, or automatically by learning it from the data. Second, one needs to
recover the linear combination of atoms that generated each measurement, with the key
assumption that this representation is sparse. This procedure is known as sparse coding
[Elad, 2010a].

Analysis and Synthesis.

Mathematically speaking, two formulations of the problem are widely used: Analysis and
Synthesis [Elad et al., 2007].

• Analysis. A classical approach considers that the signal to reconstruct x can be
represented as a sparse vector in an unknown space. A first way to impose such
prior is to assume that there exists a forward transform Γ ∈ RL×n, which makes
the signal sparse. This formulation is called Analysis, and comes with the following
optimization problem

min
x∈Rn×T

1

2
∥Ax− y∥22 + λ∥Γ⊤x∥1 . (1.16)

Here, the link with the initial regularized problem in Equation 1.2 is straightforward
as R(x) = ∥Γ⊤x∥1.

• Synthesis. Another possibility is to assume that the signal can be decomposed
into a sparse representation in a redundant basis of patterns or atoms. In other
words, the goal is to recover sparse codes z ∈ RL×T from a dictionary D ∈ Rn×L

and noisy measurements y. This formulation is called Synthesis, as the signal is
synthesized from the dictionary, i.e. x = Dz, and it consists in solving the Lasso-
based optimization problem given by

min
z∈RL×T

1

2
∥ADz − y∥22 + λ∥z∥1 . (1.17)

A detailed comparison between the two formulations is provided in Elad et al. [2007]. The
simplest case appears when D or Γ⊤ are invertible. Then the two problems are equivalent
by doing the change of variable Dz = x or Γ⊤x = z. It is quite usual to take L ≥ n,
meaning that the length of the sparse code is larger than the length of the signal and the
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measurement, in order to store more information in the dictionary. Then, the dictionary is
called redundant because the columns don’t form a basis, as their rank is smaller than n.
In this case, there is no straightforward relation between Equation 1.16 and Equation 1.17.

Focus on optimization: splitting algorithms

While solving Synthesis simply reduces to solving the Lasso, Analysis requires other tools
from convex optimization to solve minimization problems involving composite convex func-
tions. Details and proofs can be found in Boyd and Vandenberghe [2004], Bauschke et al.
[2011] and Parikh et al. [2014].

Let f : Rn →]−∞,∞] be a closed proper convex function, meaning that the epigraph

epif = {(x, λ) ∈ X × R, f(x) ≤ t} (1.18)

is a nonempty closed convex set. Then the proximal operator of f proxf : Rn → Rn is
defined as

proxf (y) = argmin
x

f(x) +
1

2
∥x− y∥22 . (1.19)

This operator is well-defined for all y ∈ Rn as f is convex and not everywhere infinite,
and ∥ · −y∥22 is strongly convex. Proposition 1.1.1 makes a connection between proximal
operators and fixed point theory, and states that the set of fixed points of proxf is the set
of minimizers of f .

Proposition 1.1.1. x∗ ∈ Rn minimizes f if and only if x∗ = proxf (x
∗).

Thus, minimizing f reduces to solve the fixed point equation x = proxf (x). Solutions of
fixed point equations of the form x = T (x) where T is a contraction, i.e. ∥T∥ < 1, are
generally found with iterative procedures generating sequences (xt)t∈N such that xt+1 =

T (xt). Proximal operators are non expansive, meaning that their norm is inferior or equal
to 1, but they are not contractions. Therefore, convergence is ensured by other properties.
Proposition 1.1.2 shows how to build converging fixed point iterations from non expansive
operators.

Proposition 1.1.2. Let N be a non expansive operator and α ∈ (0, 1). The α-averaged
operator T = αN +(1−α)I has the same fixed points as N and the sequence xt+1 = T (xt)
converges toward a fixed point of N .

As stated in Proposition 1.1.3, proximal operators are actually α-averaged operators.

Proposition 1.1.3. proxf is firmly non expansive, i.e.

∥ proxf (x)− proxf (y)∥ ≤ (x− y)⊤(proxf (x)− proxf (y)) .

Moreover, firmly non expansive operators are 1
2 -averaged.

Thus, the fixed point iterates xt+1 = proxf (xt) will converge toward a minimizer of f .

Let’s now focus on composite functions of the form F = f + g, where f : Rn → R and
g : Rn →] − ∞,∞] are closed proper convex functions, and f is differentiable with L-
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Lipschitz gradient. Minimizers x∗ of F satisfy the Fermat condition

0 ∈ ∇f(x∗) + ∂g(x
∗) . (1.20)

Let τ > 0, then

0 ∈ τ∇f(x∗) + τ∂g(x
∗) (1.21)

0 ∈ τ∇f(x∗)− x∗ + x∗ + τ∂g(x
∗) (1.22)

x∗ = (I + τ∂g)
−1(I − τ∇f)(x∗) . (1.23)

It turns out that the proximal operator proxτg is the resolvent of the sub-differential ∂g
with parameter τ , as stated in Proposition 1.1.4.

Proposition 1.1.4. Let τ > 0. Then

proxτg = (I + τ∂g)
−1 .

Therefore, the Fermat condition reduces to

x∗ = proxg ◦(I − τ∇f)(x∗) . (1.24)

As soon as τ ≤ 1
L , where L is the Lipschitz constant of ∇f , the forward-backward operator

proxg ◦(I − τ∇f) is α-averaged and the fixed point iterates xt+1 = proxg ◦(I − τ∇f)(xt)
converge toward a minimizer of F = f + g.

The proximal operator provides a simple optimization procedure to get a solution of
minx F (x). However, it is not always straightforward to compute. One example where
this is feasible is the Lasso, where g(x) = λ∥x∥1. Indeed, argminx

1
2∥x− y∥

2
2 + λ∥x∥1 can

be obtained with the KKT conditions coordinate-wise

0 ∈ xi − yi + λ∂|·|(xi) (1.25)

xi =

{
0 if |yi| − λ ≤ 0
sgn(yi)(|yi| − λ) otherwise , (1.26)

and we recognize the Soft-Thresholding operator. Thus, the ISTA is simply the forward-
backward splitting algorithm applied to the ℓ1 norm.

The Analysis formulation implies minimizing composite functions of the form F = f + g ◦
Γ⊤, where Γ is a linear operator. Besides when Γ⊤ is orthogonal, i.e. Γ⊤Γ = ΓΓ⊤ = I,
there is no simple formula to compute proxg◦Γ⊤ given proxg. Thus, these problems are
generally solved via primal-dual algorithms, which alternate minimization steps in the
primal domain and maximization steps in the dual domain.

• PDHG.

The Fenchel transform – also called convex conjugate – of a function f taking values
on the extended real number line is defined as follows

f∗(y) = sup
x

(
y⊤x− f(x)

)
. (1.27)
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Algorithm 2 PDHG
T , σ, τ
x0 = 0, y0 = 0, t = 1
while t ≤ T do

xt+1 ← xt − τ(∇f(xt) + Γyt)
yt+1 ← proxσg∗(yt + σΓ⊤(2xt+1 − xt))
t← t+ 1

end while

f∗ is convex, and f∗∗ = f whenever f is convex and proper. Thus

min
x
f(x) + g(Γ⊤x) = min

x
f(x) + g∗∗(Γ⊤x) (1.28)

= min
x

max
y

f(x) + (Γ⊤x)⊤y − g∗(y) . (1.29)

The most basic algorithm finds a saddle point by alternating a gradient descent over
x with step size τ > 0 and a proximal ascent over y with step size σ > 0, as follows

xt+1 = xt − τ(∇f(xt) + Γyt) (1.30)

yt+1 = proxσg∗(yt + σΓ⊤xt+1) , (1.31)

In Chambolle and Pock [2011], the authors update yt+1 differently by replacing
xt+1 with 2xt+1 − xt to obtain a converging algorithm when τ > 0 and σ > 0 are
chosen such that τσ∥Γ⊤∥2 ≤ 1, leading to the Primal-Dual Hybrid Gradient (PDHG)
algorithm, described in Algorithm 2.

The Fenchel transform g∗ and its proximal operator are sometimes easier to compute
than proxg◦A. For instance, when g = λ∥ · ∥1, then g∗ = ιB(0,λ) is the indicator
function of the ball of center 0 and radius λ for the ℓ∞ norm, i.e.

g∗(x) =

{
0 if ∥x∥∞ ≤ λ
∞ otherwise . (1.32)

Therefore, its proximal operator proxg∗ is simply the projection on B(0, λ).

• ADMM.

The Alternating Direction Method of Multipliers consists of replacing Γ⊤x by an-
other variable y and adding a Lagrangian term to the cost function in order to
preserve the constraint y = Γ⊤x. The problem becomes

min
x,y

max
z
f(x) + g(y) + z⊤(Γ⊤x− y) + γ

2
∥Γ⊤x− y∥22 , (1.33)

where γ > 0 is a hyper-parameter. As in PDHG, it is possible to alternate between a
minimization over x and y, and a gradient ascent step over the Lagrange multiplier
z, as described in Algorithm 3. There exist strong links between PDHG, ADMM and
another algorithm called Douglas-Rachford splitting that won’t be described here.

Variants and accelerations, as well as more in-depth theoretical foundations, can be found
in Condat et al. [2019].
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Algorithm 3 ADMM
T , γ
x0 = 0, y0 = 0, z0 = 0, t = 1
while t ≤ T do

xt+1 ← argminx f(x) + z⊤t (Γ
⊤x) + γ

2
∥Γ⊤x− yt∥22

yt+1 ← argminy g(y)− z⊤t y +
γ
2
∥xt+1 − y∥22

zt+1 ← zt + γ(Γ⊤xt+1 − yt+1)
t← t+ 1

end while

1.2 . Dictionary Learning

While there exist efficient and analytic transforms that produce satisfying results on specific
data, such as wavelets for images or Gaborlets for audio signals [Mallat, 2008], the signals
complexity and variability often make it hard to rely on ad hoc priors or dictionaries.
Therefore, it is of interest to learn sparse representations from ground truth or noisy data
in a supervised setting.

Dictionary Learning [Olshausen and Field, 1997, Aharon et al., 2006, Mairal et al., 2009]
is a common way to encode data-driven prior knowledge on signals. A typical example
is pattern learning, which provides insightful information on the data in various biomedi-
cal applications. This includes the study of magnetoencephalography (MEG) recordings,
where one aims to analyze the electrical activity in the brain from measurements of the
magnetic field around the scalp of the patient [Dupré la Tour et al., 2018]. One may also
mention neural oscillations study in the local field potential [Cole and Voytek, 2017] or QRS
complex detection in electrocardiograms [Xiang et al., 2018], among others. This problem
is typically seen as a factorization problem where the signal is assumed to be the product
of a redundant basis of patterns or atoms – the dictionary – and of a sparse representation
vector – the sparse codes. There are multiple ways of finding such decomposition, and this
work focuses on Lasso-based Dictionary Learning.

Lasso-based Dictionary Learning.

Let X ∈ Rn×T be a data-set of noisy signals. The goal is to recover a sparse code Z ∈ RL×T

and a dictionary D ∈ Rn×L from the signals X which are supposedly obtained as the linear
transformation DZ, corrupted with noise B ∈ Rn×T : X = DZ + B. Sparsity-based
optimization problems related to Dictionary Learning generally rely on the usage of the ℓ0
or ℓ1 regularizations. Here, we study Lasso-based Dictionary Learning where the dictionary
D is learned in a convex set of constraints C by solving

min
Z∈RL×T ,D∈C

F (Z,D) ≜
1

2
∥DZ −X∥22 + λ∥Z∥1 . (1.34)

The signal estimate X̂ = D̂Ẑ is invariant to several transformations of (Ẑ, D̂) ∈ RL×T ×C.

• Scale invariant. Let α > 0, and (Ẑ, D̂) ∈ RL×T×C. Then X̂ = D̂Ẑ = αD̂ 1
α Ẑ. There-

fore, (Ẑ, D̂) and ( 1α Ẑ, αD̂) are equivalent representations of the signal. However, if
α > 1, then F (Ẑ, D̂) < F ( 1α Ẑ, αD̂) and the optimization problem in Equation 1.34
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will prefer solutions with smaller ℓ1 norm, and thus α as big as possible. To alleviate
this issue, the constraint set C generally includes a normalization criterion, where
each atom of D is constrained to belong to a ball of fixed radius.

• Permutation invariant. Let P ∈ RL×L be a permutation matrix, i.e. the identity
matrix IL with permuted columns, and (Ẑ, D̂) ∈ RL×T × C. Then X̂ = D̂Ẑ =

D̂P⊤PẐ. Therefore, (Ẑ, D̂) and (PẐ, D̂P⊤) are equivalent representations of the
signal, and F (Ẑ, D̂) = F (PẐ, D̂P⊤).

• Sign invariant. Let S ∈ RL×L be a sign change matrix, i.e. a diagonal matrix
with coefficients 1 and −1, and (Ẑ, D̂) ∈ RL×T × C. Then X̂ = D̂Ẑ = D̂SSẐ.
Therefore, (Ẑ, D̂) and (SẐ, D̂S) are equivalent representations of the signal, and
F (Ẑ, D̂) = F (SẐ, D̂S).

All this shows that the optimization problem in Equation 1.34 is highly non-convex. Indeed,
for each solution (Z,D), there are at least 2LL!− 1 other solutions given by permutations
and change of sign of coordinates of Z and columns of D.

Besides normalization, other sets of constraints have been studied. For instance, C may
constrain the atoms to belong to normalized convolutional kernels to perform Convolutional
Dictionary Learning [Grosse et al., 2007], or to be orthonormal, i.e. belong to {U | UU⊤ =

I, ∀i ∈ I ∥Ui∥2 = 1} [Yaghoobi et al., 2013]. Specific applications require physics-informed
constraints, like rank one convolutional dictionaries used in Dupré la Tour et al. [2018] to
extract meaningful patterns from M/EEG signals.

Algorithms and properties.

Finding a proper decomposition requires to solve a non-convex problem. What makes
things simpler is that this problem is also bi-convex, meaning that it is convex in each
variable Z or D when the other one is fixed and when the set of constraint C is convex
as well. In particular, successful algorithms often exploit this and alternate between mini-
mization over Z with fixed D, and minimization over D with fixed Z. This framework is
called Alternating Minimization.

The most simple example is the Method of Optimal Direction (MOD). It consists of min-
imizing F over Z with a sparse coding algorithm like FISTA, and then performing a
projected gradient descent over D. This produces a sequence of tuples (Zt, Dt)1≤t≤T as
follows

Zt+1 = argmin
Z

1

2
∥X −DtZ∥22 + λ∥Z∥1 (1.35)

Dt+1 = projC(Dt − τt(DtZt+1 −X)Z⊤
t+1) , (1.36)

where (τt)1≤t≤T are step sizes. The initialization of the dictionary plays a key role in the
performance of alternating minimization algorithms, as the problem is non convex. Usual
methods include random initialization, or initialization from chunks of signals. The choice
of λ also impacts the performance, and is quite difficult when the problem is unsupervised.

Other Dictionary Learning algorithms have been developed in the past years. Three major
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examples are K-SVD [Aharon et al., 2006], Online Dictionary Learning [Mairal et al., 2009],
and Proximal Alternating Linearized Minimization (PALM) [Bolte et al., 2013].

• K-SVD.

K-SVD [Aharon et al., 2006] is a widely used heuristic to find a good solution to the
ℓ0 dictionary learning optimization problem

min
D,X
∥X −DZ∥22 s.t. ∀i ∥Zi∥0 ≤ T0 , (1.37)

where T0 > 0 is the maximal number of non-zero coordinates in the sparse codes.
This can be seen as an extension of the k-means algorithm, where each data point
belongs to several clusters instead of one. K-SVD is an alternate procedure, and
consists of applying a sparse coding algorithm like Orthogonal Matching Pursuit
[Pati et al., 1993] to find an appropriate solution X of the ℓ0 problem when D is
fixed, and then updating each column of the dictionary as follows. For each column
dk, we have

∥X −DZ∥2F = ∥
(
X −

∑
j ̸=k

djz
⊤
j

)
− dkz⊤k ∥2F (1.38)

= ∥Ek − dkz⊤k ∥2F (1.39)

= ∥EkΩk − dkz⊤k Ωk∥2F , (1.40)

where Ωk discards the zero entries in the row vector z⊤k , and Ek = X −
∑

j ̸=k djz
⊤
j .

Denoting EkΩk = UΛV ⊤ the SVD decomposition of EkΩk, the optimal new column
dk is the first column of U – with highest eigenvalue – and the new z⊤k Ωk is the first
column of Λ1,1V .

• Online Dictionary Learning.

Dictionary learning methods often suffer from large computation time when dealing
with large data-sets. Indeed, at each iteration, Alternating Minimization methods for
the ℓ1 problem require solving the Lasso for all data points, while K-SVD computes
expensive decompositions to update the columns of the dictionary. Online dictionary
learning [Mairal et al., 2009] alleviates this issue by processing the data sequentially
to minimize a quadratic surrogate function of the empirical cost, while converging
to a stationary point of the main objective function.

• PALM.

PALM [Bolte et al., 2013] is a simple and yet efficient method which solves bi-variate
optimization problems by alternating steps of proximal gradient descent. In the case
of Dictionary Learning, it performs a proximal gradient descent step over Z and a
proximal gradient descent step over D, i.e.

Zt+1 = STλσt
(
Zt − σtD⊤

t (DtZt −X)
)

(1.41)

Dt+1 = projC
(
Dt − τt(DtZt+1 −X)Z⊤

t+1

)
. (1.42)

With an appropriate choice of step sizes (σt, τt)t∈N, this produces a converging se-
quence (Zt, Dt)t∈N which tends to a local minimum of Equation 1.34.
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The literature on Dictionary Learning provides various theoretical results on local minima,
local recovery or convergence of optimization algorithms. Several works analyze Alter-
nating Minimization, as done in Arora et al. [2015], Agarwal et al. [2016], Chatterji and
Bartlett [2017], and show that if the initial dictionary is taken sufficiently close to the true
solution up to permutation and sign invariant, then the algorithm will converge and recover
the dictionary which generated the data up to a small error. The main assumption is that
the support of the sparse code estimate is equal or contained in the true support at each
iteration, which allows to compute lower bounds on the correlation between the gradient
and the optimal direction. Then this lower bound is used to prove that the iterates of the
algorithm converge to a proper solution with results based on convex optimization. Other
works have focused on local and global optima in several Dictionary Learning frameworks.
Some of them treat the case of ℓ1-norm minimization and show that with sufficiently in-
coherent bases and sparse signals, local identifiability is guaranteed with high probability
[Gribonval and Schnass, 2010, Gribonval et al., 2015]. Besides the ℓ1 criterion, global op-
timality of the true dictionary have been studied in the context of square and invertible
matrices [Sun et al., 2016], separable dictionary learning [Schwab et al., 2019] or in more
general factorization contexts [Haeffele and Vidal, 2015].

Convolutional Dictionary Learning.

In order to adapt Dictionary Learning to shift invariant signals like time series or images,
it is possible to replace the dictionary D by a set of convolutional filters (dk)1≤k≤L. This
variant, called Convolutional Dictionary Learning [Grosse et al., 2007], involves solving an
optimization problem of the form

min
zk,dk∈C′

1

2
∥

L∑
k=1

dk ∗ zk − y∥22 + λ

L∑
k=1

∥zk∥1 , (1.43)

where C′ is the set of filters with unit norm. Algorithms that find solutions to Equation 1.43
are essentially built on methods previously mentioned, including Alternating Minimization,
and may include the usage of Fourier transforms [Wohlberg, 2015]. The main downside is
that convolutions dk ∗ zk are costly to compute when the size of the signal gets large.

Learning dictionaries with Analysis.

While most Dictionary Learning methods focus on the Synthesis formulation in Equa-
tion 1.34, several works consider the Analysis counterpart [Peyré and Fadili, 2011, Yaghoobi
et al., 2013, Li et al., 2017]. In other words, the problem to solve becomes

min
X̂∈Rn×T ,Γ∈CA

FA(X,Γ) ≜
1

2
∥X̂ −X∥22 + λ∥Γ⊤X̂∥1 , (1.44)

where CA is a set of constraint. The most classical constraint set chosen for CA is the
Unit Norm, where each atom is normalized, as in Synthesis. In Yaghoobi et al. [2013], the
authors notice that it is insufficient to guarantee that the learned dictionary is nontrivial
with Analysis. As a matter of fact, rank one dictionaries can be shown to be optimal
under Unit Norm. Therefore, they propose to use the Unit Norm Tight Frame constraint
{U s.t. UU⊤ = I, ∀i ∈ I∥Ui∥2 = 1} which is a subset of the Stiefel manifold corresponding
to orthonormal k-frames with normalized atoms. Finally, CA can also be chosen as nor-
malized convolutional kernels. This last constraint corresponds to learning finite difference
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schemes for Analysis – as done in Chambolle and Pock [2020] and Kobler et al. [2020] for
Total Variation.

As for Synthesis, the optimization problem in Equation 1.44 is bi-convex with appropriate
constraints CA. However, the regularization term ∥Γ⊤X̂∥1 being non-differentiable, the
minimization over Γ is generally done by sub-gradient descent [Yaghoobi et al., 2013], i.e.

Xt+1 = argmin
X̂

1

2
∥X̂ −X∥22 + λ∥Γ⊤X̂∥1 (1.45)

Γt+1 = projCA
(
Γt − τtu

)
s.t. u ∈ ∂∥·⊤Xt+1∥(Γt) . (1.46)

Usage in inverse problems.

There are three main learning settings in inverse problems:

• Supervised.

The practitioner has access to ground truth data and to a fixed operator A, which
allows him to build a training data-set (Y,X) where Y = AX+B is the observations,
and to fit a model to predict X from Y . Then, this model can be applied to other
data from the same distribution given that the measurement process does not vary.

• Self-supervised.

The practitioner has access to ground truth or noisy data, but the operator A changes
depending on the problem. For instance, this happens in deblurring where the shape
or intensity of the blur A are not fixed and depend on the device or acquisition
process. Thus, the model learned from the data has to be sufficiently modular to
allow to integrate information on the measurement operator A that are not available
during training.

• Unsupervised.

The practitioner only has access to observations Y = AX + B, possibly acquired
through different perspectives, i.e. with different operators A.

As demonstrated in Mairal et al. [2009], the most straightforward way to apply Dictionary
Learning to inverse problems resolution is to learn the dictionary from ground truth or
noisy data Xtrain, i.e. solving Equation 1.34 to obtain D̂ or Equation 1.44 to obtain Γ̂, and
then to use this dictionary to find an estimate X̂ from noisy observations Y = AXtest +B

with Synthesis

X̂ = D̂
(
argmin

Z

1

2
∥AD̂Z − Y ∥22 + λ∥Z∥1

)
, (1.47)

or Analysis

X̂ = argmin
X

1

2
∥AX − Y ∥22 + λ∥Γ̂⊤X∥1 . (1.48)

This methodology solves the self-supervised setting, because the dictionary may be used
with all kinds of operators, given that the data distribution does not change. It is also
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possible to replace D̂ and Γ̂ by non linear operators learned from the data, as done in
Oberlin and Verm [2021] with deep generative models.

Even though Dictionary Learning has mainly been studied and used in noiseless or noisy
scenarios, a few works have demonstrated that it is possible to learn dictionaries from in-
complete data in an unsupervised setting, especially in the context of missing values or in-
painting in imaging [Szabó et al., 2011, Studer and Baraniuk, 2012, Naumova and Schnass,
2017], or in multiview compressive sensing [Anaraki and Hughes, 2013, Pourkamali-Anaraki
et al., 2015, Chang et al., 2019]. The Dictionary Learning problem in Equation 1.34 be-
comes

min
Z∈RL×T ,D∈C

1

2
∥ADZ − Y ∥22 + λ∥Z∥1 (1.49)

with one measurement operator A, and

min
Zi∈RL×T ,D∈C

Nm∑
i=1

1

2
∥AiDZi − Yi∥22 + λ∥Zi∥1 (1.50)

with multiple measurement operators (Ai)1≤i≤Nm . Another line of work studied online
factorization of large matrices by aggregating partial information randomly selected from
the data at each iteration [Mensch et al., 2016, 2017]. This is equivalent to learning a
dictionary from incomplete data, except that one sample can be looked at multiple times
from different angles, which is hardly possible in an inverse problem context.

One can also mention applications to Blind Source Separation where signals from different
sources are mixed before measurement, and where sparse coding is useful to recover an
appropriate factorization [Gribonval and Lesage, 2006].

1.3 . Learning to optimize with Unrolling

Optimization procedures are often cumbersome when the size of the data increases. This is
particularly true in inverse problems where resolution methods are often based on iterative
algorithms that need hundreds or thousands of iterations to converge and produce an
accurate solution. Thus, with the success of automatic differentiation and Deep Learning,
a new paradigm called Learning to Optimize [Chen et al., 2022] intends to develop new
optimization methods trained with back-propagation to reduce this computational cost,
and scale up to large data-sets. More concretely, this paradigm generally involves a model
trained to solve an optimization problem or a surrogate problem on a training data set,
supposedly more efficiently than standard iterative methods. Then, it can be applied
as is or integrated in a more complex system to process new data without the need of
classical optimization algorithms. In this work, we mainly deal with one framework based
on Learning to Optimize, called Unrolling [Gregor and LeCun, 2010].

Unrolling

Many reconstruction and optimization methods are based on iterative algorithms. The
idea of Unrolling was to unroll/unfold the iterations of these algorithms and learn the
weights as if they were parameters of a neural network. As this work mainly focuses on
sparse representations and optimization problems based on the ℓ1 norm, we will present
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Figure 1.3: Learned ISTA (LISTA)

the concept of Unrolling with the example of the Lasso, and Learned ISTA [Gregor and
LeCun, 2010].

Learned ISTA.

FISTA and coordinate descent are well-performing on small problems. However, they don’t
scale to larger ones. Thus, in order to improve the computation time and the convergence
rate during the first iterations, an idea is to use Deep Learning to learn a better way to
perform proximal gradient descent. The intuition is that the descent directions and steps
may be fitted to a given data distribution.

This observation motivated the work of Gregor and LeCun [2010], in which the authors
introduce Learned ISTA (LISTA). As a matter of fact, ISTA can be seen as a recurrent
neural network, as represented in Figure 1.1. Denoting W1 =

1
LA

TA, W2 = I− 1
LA

TA and
θ = 1

L , it is possible to rewrite the network and see W1, W2, θ as parameters, resulting in
the RNN in Figure 1.2.

Then, N iterations can be unfolded to obtain LISTA [Gregor and LeCun, 2010], as shown
in Figure 1.3. In LISTA, the parameters (W i

1, W i
2, θi)1≤i≤N at iteration i are learned to

minimize a loss, either in a supervised setting as in the original paper, or in an unsupervised
setting to solve the Lasso without any ground truth as in Ablin et al. [2019]. The weights
are generally initialized with ISTA, i.e. W i

1 = 1
LA

TA, W i
2 = I − 1

LA
TA, θi = 1

L , and
optimized by gradient descent with the help of automatic differentiation.

Properties.
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A large amount of works provide theoretical explanations on the behavior of LISTA, analyze
its properties and derive strategies to learn with less parameters. The review in Chen et al.
[2022] provides a complete overview of the field. As an example, Moreau and Bruna [2017]
presents LISTA as a matrix factorization method whose goal is to improve the directions
and the step sizes of the gradient descent. In Chen et al. [2018], the asymptotic properties
of the weights are analyzed in order to detect a convergence pattern. As a matter of fact,
||W1− (I −W2)|| converges toward 0 when the layer position goes to infinity. Notice that,
by definition, the relation W1 − (I −W2) = 0 is verified in ISTA. Therefore, the authors
propose a new network based on that property where the parameters are coupled, meaning
that W i

1 − (I −W i
2) = 0 for each layer. This trick makes it possible to reduce the number

of parameters in the network. In Liu and Chen [2019], the authors extend this idea and
show that an analytic formula for the weights allows to learn only the steps sizes and the
thresholds, while retaining the properties of LISTA.

Another interesting observation is that the thresholds are bigger at the beginning than at
the end of the algorithm. Big thresholds make the zero coefficients converge faster. After
a few iterations, the threshold level goes back to normal. The asymptotic behavior of the
weights and the thresholds is explained in Ablin et al. [2019]. In particular, the authors
prove the convergence of LISTA toward ISTA when the number of iterations becomes large.
They also propose to learn only the step sizes in ISTA.

Usage for reconstruction and inverse problems.

As explained before, inverse problems are commonly solved by finding a solution to an
optimization problem of the form

min
x∈Rn

1

2
∥y −Ax∥22 + λR(x) . (1.51)

This is generally achieved with the usage of iterative procedures, like forward backward
splitting algorithms. Unrolling provides a way to fit the regularization to the data by
learning the parameters of the algorithm. More precisely, given a dataset of Nd clean
signals (xi)1≤i≤Nd

and related measurements (yi)1≤i≤Nd
, a network fN,θ built from N

iterations of an iterative algorithm is trained to minimize

Ex,y[∥fN,θ(y)− x∥2] (1.52)

over θ. This technique has been used to solve a broad range of inverse problems like
computed tomography [Hammernik et al., 2017], image restoration [Lecouat et al., 2020,
Bertocchi et al., 2020, Kobler et al., 2020, Jiu and Pustelnik, 2021], medical imaging [Kofler
et al., 2020, Ramzi et al., 2020, Li et al., 2021] and phase retrieval [Vial et al., 2022].

Usage for dictionary learning.

Classical Dictionary Learning methods solve (2.1) through Alternating Minimization (AM)
[Mairal et al., 2009, Peyré and Fadili, 2011]. It consists of minimizing the cost function
over Z with a fixed dictionary D and then performing gradient descent to optimize the
dictionary with a fixed Z. While AM provides a simple strategy to perform Dictionary
Learning, it can be inefficient on large-scale data sets due to the need to precisely resolve
the inner problems. Over the past years, many studies have proposed to use algorithm
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Figure 1.4: Illustration of LISTA for Dictionary Learning with initialization Z0 = 0 for
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⊤D), where L = ∥D∥2. The result ZN (D) output

by the network is an approximation of the solution of the LASSO.

unrolling, either for Analysis [Chambolle and Pock, 2020, Lecouat et al., 2020] or Synthesis
[Tolooshams et al., 2020, Scetbon et al., 2021], to overcome that issue. For such unrolled
algorithms, the weights W 1 and W 2 can be re-parameterized as functions of D – as illus-
trated in Figure 1.4 – such that the output ZN (D) of the network matches the result of N
iterations of ISTA, i.e.

W 1
D =

1

L
D⊤ and W 2

D = (I − 1

L
D⊤D), where L = ∥D∥2 . (1.53)

Then, the dictionary can be learned by minimizing the loss over D with back-propagation.
This approach is commonly referred to as Deep Dictionary Learning (DDL).

Variants of DDL with different kinds of regularization have been proposed in the litera-
ture. Scetbon et al. [2021] proposes to unroll sparse coding to learn a dictionary and the
regularization hyperparameter from the data. In Tolooshams et al. [2020], the authors
propose an unrolled algorithm based on expectation maximization to learn convolutional
filters. Other works focus on image processing based on metric learning [Tang et al., 2022]
and classification tasks with scattering [Zarka et al., 2019], among others.

Networks adapted to learn Analysis dictionaries have also been studied [Chambolle and
Pock, 2020, Jiu and Pustelnik, 2021]. Indeed, the corresponding optimization problem can
be solved with a primal-dual algorithm like Condat-Vu [Condat, 2013, Vu, 2013], which
consists of a primal descent with step size τ and a dual ascent with step size σ. N iterations
of Condat-Vu can be unrolled to obtain xN (Γ) on the same principle as LISTA and DDL
in Synthesis [Jiu and Pustelnik, 2021]. In Lecouat et al. [2020], the authors leverage a
smooth regularization of Analysis based on the Moreau envelope and use this as a basis to
build their unrolled architecture and perform image reconstruction.

Contributions on Unrolling for Dictionary Learning and inverse problems

In the first part of this work, we focus on two questions related to the usage of unrolling for
dictionary learning and inverse problems. The first one is: does Unrolling make Dictionary
Learning more efficient ? As explained above, many authors have proposed to unroll
sparse coding algorithms and learn dictionaries with back-propagation in order to improve
either the solution or the convergence speed. In chapter 2, we analyze the efficiency and
limitations of Unrolling in this context.

The second question we address is: to what extent can unrolled Dictionary Learning be
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used to solve inverse problems ? In chapter 3, we provide an empirical study of prior
learning and Unrolling in unsupervised inverse problems. Then, we study to what extent
unrolled networks built from Analysis and Synthesis can be used as pre-trained denoisers
in a self-supervised setting in chapter 4.
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Chapter 2

Efficiency and limitations of Unrolling for

Dictionary Learning

The content of this chapter was published in:

Benoît Malézieux, Thomas Moreau, and Matthieu Kowalski. Understanding approximate
and unrolled dictionary learning for pattern recovery. International Conference on Learning
Representations, 2022a

While Deep Dictionary Learning methods have proven to be efficient on a large amount of
tasks in signal processing, the reasons why are still unclear.

From now on and for the sake of simplicity, we will focus on Synthesis and adopt the
vector notation z for sparse codes Z. Dictionary Learning can be written as a bi-level
optimization problem to minimize the cost function F of the Lasso with respect to the
dictionary only, as mentioned in Mairal et al. [2009],

min
D∈C

G(D) ≜ F (z∗(D), D) with z∗(D) = argmin
z∈RL

F (z,D) . (2.1)

Computing the data representation z∗(D) is often referred to as the inner problem, while
the global minimization is the outer problem.

Bi-level optimization problems involving the Lasso have been studied in Bertrand et al.
[2020] for hyper-parameter selection. The authors show that it is possible to find an optimal
hyper-parameter λ for a given data-set by gradient descent. This involves solving the inner
problem, i.e. the Lasso, and then computing the weak Jacobian of the outer loss over the
hyper-parameter in order to get the value of the gradient. As the objective is smooth on
the support of the solution, the loss becomes differentiable when the estimate is precise
enough.

The quality of Jacobians and gradients rendered by automatic differentiation for smooth
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bi-level problems have been studied in Ablin et al. [2020]. The idea is that instead of
computing a costly exact solution z∗(θ) to optimize a loss function f(θ, z∗(θ)) with respect
to θ, the estimate is replaced by an approximation zN (θ) obtained through N iterations of a
numerical optimization scheme. Then the gradient ∇θf can be found either by automatic
differentiation of f(θ, zN (θ)) or by Alternating Minimization with an analytic formula
where zN acts as z∗. The authors show that the estimate with automatic differentiation
converge twice as fast as the standard estimate with Alternating Minimization in the case
of smooth loss.

Both papers have inspired the work of Tolooshams and Ba [2021], where the authors focus
on unrolled Dictionary Learning and study its behavior when the support of z∗(D) has
been reached by zN (D), which makes the loss smooth.

However, computational limitations often prevent from reaching the support when un-
rolling sparse coding algorithms. As a matter of fact, back-propagation does not scale to
hundreds or thousands of iterations, which are necessary to converge when starting from
a random initialization, and support estimation can be difficult in a broad range of situa-
tions. Thus, this raises the question of the behavior of Unrolling out of the support, which
we now address.

Contributions of chapter 2.

In this section, we study the efficiency and limitations of Unrolling for Dictionary Learning.
As many works have focused on smooth losses [Bertrand et al., 2020, Ablin et al., 2020,
Tolooshams and Ba, 2021], we study the instability of non-smooth bi-level optimization
and unrolled sparse coding out of the support, which is of major interest in practice with a
small number of layers. We provide details on Unrolling in Lasso-based Dictionary Learning
in section 2.1, and we analyze the convergence of the Jacobian computed with automatic
differentiation in section 2.2 to find out that its stability is guaranteed on the support
of the sparse codes only. De facto, approximation errors in its estimation make Unrolling
inefficient after a few dozen iterations. We also provide a lower bound of these errors for an
ill-conditioned example and highlight that they can be arbitrarily large depending on the
data and the optimization path. Finally, we give practical details on the usage of unrolled
Dictionary Learning in section 2.3.

2.1 . Bi-level optimization and gradient estimation in Dictionary Learn-
ing

As previously mentioned, z∗(D) does not have a closed-form expression, and G cannot be
computed directly. A solution is to replace the inner problem z∗(D) by an approxima-
tion zN (D) obtained through N iterations of a numerical optimization algorithm or its
unrolled version. This reduces the problem to minimizing GN (D) ≜ F (zN (D), D). The
first question is how sub-optimal global solutions of GN are compared to the ones of G.
Proposition 2.1.1 shows that the global minima of GN converge as fast as the numerical
approximation zN in function value.
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Proposition 2.1.1. Let D∗ = argminDG(D) and D∗
N = argminDGN (D), where N is

the number of unrolled iterations. We denote by K(D∗) a constant depending on D∗, and
by C(N) the convergence speed of the algorithm, which approximates the inner problem
solution. We have

GN (D
∗
N )−G(D∗) ≤ K(D∗)C(N) .

Proof 2.1.1

Let G(D) ≜ F (z∗(D), D) and GN (D) ≜ F (zN (D), D) where z∗(D) = argminz∈RL F (z,D)

and zN (D) = FISTA(D,N). Let D∗ = argminDG(D) and D∗
N = argminDGN (D). We

have

GN (D
∗
N )−G(D∗) = GN (D

∗
N )−GN (D∗) +GN (D

∗)−G(D∗) (2.2)

= F (zN (DN ), DN )− F (zN (D∗), D∗) (2.3)

+ F (zN (D
∗), D∗)− F (z(D∗), D∗) (2.4)

By definition of D∗
N

F (zN (D
∗
N ), D

∗
N )− F (zN (D∗), D∗) ≤ 0 (2.5)

The convergence rate of FISTA in function value for a fixed dictionary D is

F (zN (D), D)− F (zN (D), D) ≤ K(D)

N2
(2.6)

where K(D) is a constant depending on D. Therefore

F (zN (D
∗), D∗)− F (z(D∗), D∗) ≤ K(D∗)

N2
(2.7)

Hence
GN (D

∗
N )−G(D∗) ≤ K(D∗)

N2
(2.8)

Proposition 2.1.1 implies that when zN is computed with FISTA [Beck and Teboulle, 2009],
the function value for global minima of GN converges with speed C(N) = 1

N2 toward the
value of the global minima of F . Therefore, solving the inner problem approximately
leads to suitable solutions for (2.1), given that the optimization procedure is efficient
enough to find a proper minimum of GN . As the computational cost of zN increases with
N , the choice of N results in a trade-off between the precision of the solution and the
computational efficiency, which is critical for processing large data sets.

Moreover, learning the dictionary and computing the sparse codes are two different tasks.
The loss GN takes into account the dictionary and the corresponding approximation zN (D)

to evaluate the quality of the solution. However, the dictionary evaluation should reflect
its ability to generate the same signals as the ground truth data and not consider an ap-
proximate sparse code that can be recomputed afterward. Therefore, we should distinguish
the ability of the algorithm to recover a good dictionary from its ability to learn the dic-
tionary and the sparse codes simultaneously. In this work, we compare the atoms using
their correlation and denote as C the cost matrix whose entry i, j compare the atom i of
the first dictionary and j of the second. We define a sign and permutation invariant metric
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S(C) = maxσ∈SL
1
L

∑L
i=1 |Cσ(i),i|, where SL is the group of permutations of [1, L]. This

metric corresponds to the best linear sum assignment on the cost matrix C, which can be
computed with the Hungarian algorithm. Note that doing so has several limitations and
that evaluating the dictionary is still an open problem. The practical study in section 2.3
provides details on the performance of unrolled Dictionary Learning with respect to this
metric.

Dictionary Learning is a non-convex problem, meaning that good or poor local minima
of GN may be reached depending on the initialization, the optimization path, and the
structure of the problem. Therefore, a gradient descent on GN cannot guarantee an ade-
quate minimizer of G. While complete theoretical analysis of these problems is arduous,
we propose to study the correlation between the gradient obtained with GN and the actual
gradient of G as a way to ensure that the optimization dynamics are similar. Once z∗(D)

is known, Danskin [1967, Thm 1] states that g∗(D) = ∇G(D) is equal to ∇2F (z
∗(D), D),

where ∇2 indicates that the gradient is computed relatively to the second variable in F .
Even though the inner problem is non-smooth, this result holds as long as the solution
z∗(D) is unique. In the following, we will assume that D⊤D is invertible on the support
of z∗(D), which implies the uniqueness of z∗(D). This occurs with probability one if D is
sampled from a continuous distribution [Tibshirani, 2013]. Alternating Minimization (AM)
and Deep Dictionary Learning (DDL) differ in how they estimate the gradient of G. AM
relies on the analytical formula of g∗ and uses an approximation zN of z∗, leading to the
approximate gradient g1N (D) = ∇2F (zN (D), D). We evaluate how well g1N approximates
g∗ in Proposition 2.1.2.

Proposition 2.1.2. Let D ∈ Rn×L, and z0(D) = 0. Then, there exists a constant L > 0,
depending on D, such that for every number of iterations N

∥g1N − g∗∥ ≤ L∥zN (D)− z∗(D)∥ .

Proof 2.1.2

We have

F (z,D) =
1

2
∥Dz − y∥22 + λ∥z∥1 (2.9)

∇2F (z,D) = (Dz − y)z⊤ (2.10)

z0(D) = 0 and the iterates (zN (D))N∈N converge toward z∗(D). Hence, they are con-
tained in a closed ball around z∗(D) that depends on D. As ∇2F (·, D) is continuously
differentiable, it is locally Lipschitz on this closed ball, and there exists a constant L(D)

depending on D such that

∥g1N − g∗∥ = ∥∇2F (zN (D), D)−∇2F (z
∗(D), D)∥ (2.11)

≤ L(D)∥zN (D)− z∗(D)∥ (2.12)

Proposition 2.1.2 shows that g1N converges as fast as the iterates of ISTA converge. DDL
computes the gradient automatically through zN (D). Unlike AM, this directly minimizes
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the loss GN (D). Automatic differentiation yields a sub-gradient g2N (D) such that

g2N (D) ∈ ∇2F (zN (D), D) + J+
N

(
∂1F (zN (D), D)

)
, (2.13)

where JN : Rn×L → RL is the weak Jacobian of zN (D) with respect to D and J+
N de-

notes its adjoint. The product between J+
N and ∂1F (zN (D), D) is computed via automatic

differentiation. As for AM, we characterize the convergence of g2N toward g∗ in Proposi-
tion 2.1.3.

Proposition 2.1.3. Let D ∈ Rn×L. Let S∗ be the support of z∗(D), SN be the support of
zN and S̃N = SN ∪ S∗. Let f(z,D) = 1

2∥Dz − y∥
2
2. Let R(J, S̃) = J+

(
∇2

1,1f(z
∗, D) ⊙

1
S̃

)
+ ∇2

2,1f(z
∗, D) ⊙ 1

S̃
. Then there exists a constant L > 0 and a sub-sequence of

(F)ISTA iterates zϕ(N) such that for all N ∈ N:

∃ g2ϕ(N) ∈ ∇2f(zϕ(N), D) + J+
ϕ(N)

(
∇1f(zϕ(N), D) + λ∂∥·∥1(zϕ(N))

)
s.t. :

∥g2ϕ(N) − g
∗∥ ≤ ∥R(Jϕ(N), S̃ϕ(N))∥∥zϕ(N) − z∗∥+

L

2
∥zϕ(N) − z∗∥2 .

This sub-sequence zϕ(N) corresponds to iterates on the support of z∗.

Proof 2.1.3

We have
g2N (D) ∈ ∇2f(zN (D), D) + J+

N

(
∇1f(zN (D), D) + λ∂∥·∥1(zN )

)
(2.14)

We adapt equation (6) in Ablin et al. [2020]

g2N = g∗ +R(JN , S̃N )(zN − z∗) +RD,zN + J+
NR

z,z
N (2.15)

where

R(J, S̃) = J+
(
∇2

1,1f(z
∗, D) ⊙ 1

S̃

)
+∇2

2,1f(z
∗, D) ⊙ 1

S̃
(2.16)

RD,zN = ∇2f(zN , D)−∇2f(z
∗, D)−∇2

2,1f(z
∗, D)(zN − z∗) (2.17)

Rz,zN ∈ ∇1f(zN , D) + λ∂∥·∥1(zN )−∇
2
1,1f(z

∗, D)(zN − z∗) (2.18)

As zN and z∗ are on S̃N

∇2
2,1f(z

∗, D)(zN − z∗) =
(
∇2

2,1f(z
∗, D) ⊙ 1

S̃N

)
(zN − z∗) (2.19)

J+
(
∇2

1,1f(z
∗, D)(zN − z∗)

)
= J+

(
∇2

1,1f(z
∗, D) ⊙ 1

S̃N
(zN − z∗)

)
(2.20)

As stated in Proposition 2.1.2, ∇2f(·, D) is locally Lipschitz, and RD,zN is the Taylor rest
of ∇2f(·, D). Therefore, there exists a constant LD,z such that

∀N ∈ N, ∥RD,zN ∥ ≤
LD,z
2
∥zN (D)− z∗(D)∥2 (2.21)

We know that 0 ∈ ∇1f(z
∗, D)+λ∂∥·∥1(z

∗). In other words, ∃u∗ ∈ λ∂∥·∥1(z∗) s.t.∇1f(z
∗, D)+

u∗ = 0. Therefore we have:

Rz,zN ∈ ∇1f(zN , D)−∇1f(z
∗, D)−∇2

1,1f(z
∗, x)(zN − z∗) + λ∂∥zN∥1 − u∗ (2.22)

Let Lz,z be the Lipschitz constant of ∇1f(·, D). (F)ISTA outputs a sequence such that
there exists a sub-sequence (zϕ(N))N∈N which has the same support as z∗. For this sub-
sequence, u∗ ∈ λ∂∥·∥1(zϕ(N)). Therefore, there exists Rz,zϕ(N) such that
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1. Rz,zϕ(N) ∈ ∇1f(zϕ(N), D) + λ∂∥·∥1(zϕ(N))−∇2
1,1f(z

∗, x)(zϕ(N) − z∗)

2. ∥Rz,zϕ(N)∥ ≤
Lz,z

2 ∥zϕ(N) − z∗∥2

For this sub-sequence, we can adapt Proposition 2 from Ablin et al. [2020]. Let L =

LD,z + Lz,z, we have

∃ g2ϕ(N) ∈ ∇2f(zϕ(N), D) + Jϕ(N)

(
∇1f(zϕ(N), D) + λ∂∥zϕ(N)∥1

)
, s.t. : (2.23)

∥g2ϕ(N) − g
∗∥ ≤ ∥R(Jϕ(N), S̃ϕ(N))∥∥zϕ(N) − z∗∥+

L

2
∥zϕ(N) − z∗∥2 (2.24)

Proposition 2.1.3 shows that g2N may converge faster than g1N once the support is reached.
Ablin et al. [2020] and Tolooshams and Ba [2021] have studied the behavior of strongly
convex functions, as it is the case on the support, and found similar results. This allowed
Tolooshams and Ba [2021] to focus on support identification and show that automatic
differentiation leads to a better gradient estimation in Dictionary Learning on the support
under minor assumptions.

However, we are also interested in characterizing the behavior outside of the support.
Besides the computation of the sub-differential – in practice, automatic differentiation
uses the sign operator as a sub-gradient of the ℓ1 norm – the convergence behavior of g2N
is driven by R(JN , S̃N ) and thus by the weak Jacobian computed via back-propagation.
Therefore, it is of high interest to study the behavior of this Jacobian. We first compute
a closed-form expression of the weak Jacobian of z∗(D) and zN (D). We then show that
R(JN , S̃N ) ≤ L∥JN − J∗∥ and we analyze the convergence of JN toward J∗.

2.2 . Study of the Jacobian.

The computation of the Jacobian can be done by differentiating through ISTA. In Theo-
rem 2.2.1, we show that JN+1 depends on JN and the past iterate zN , and converges toward
a fixed point. This formula can be used to compute the Jacobian during the forward pass,
avoiding the computational cost of back-propagation and saving memory.

Theorem 2.2.1. At iteration N + 1 of ISTA, the weak Jacobian of zN+1 relatively to Dl,
where Dl is the l-th row of D, is given by induction:

∂(zN+1)

∂Dl
= 1|zN+1|>0 ⊙

(
∂(zN )

∂Dl
− 1

L

(
Dlz

⊤
N + (D⊤

l zN − yl)In +D⊤D
∂(zN )

∂Dl

))
.

∂(zN )
∂Dl

will be denoted by JNl . It converges toward the weak Jacobian J∗
l of z∗ relatively to

Dl, whose values are

J∗
l S∗ = −(D⊤

:,S∗D:,S∗)−1(Dlz
∗⊤ + (D⊤

l z
∗ − yl)In)S∗ ,

on the support S∗ of z∗, and 0 elsewhere. Moreover, R(J∗, S∗) = 0.

Proof 2.2.1

We start by recalling a Lemma from Deledalle et al. [2014].
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Lemma. The soft-thresholding STµ defined by STµ(z) = sgn(z) ⊙ (|z| − µ)+ is weakly
differentiable with weak derivative dSTµ(z)

dz = 1|z|>µ.

Coordinate-wise, ISTA corresponds to the following equality:

zN+1 = STµ((I −
1

L
D⊤D)zN +

1

L
D⊤y) (2.25)

(zN+1)i = STµ((zN )i −
1

L

m∑
p=1

(

n∑
j=1

DjiDjp)(zN )p +
1

L

n∑
j=1

Djiyj) (2.26)

The Jacobian is computed coordinate wise with the chain rule and the Lemma:

∂(zN+1)i
∂Dlk

= 1|(zN+1)i|>0 · (
∂(zN )i
∂Dlk

− 1

L

∂

∂Dlk
(

m∑
p=1

(

n∑
j=1

DjiDjp)(zN )p) +
1

L

∂

∂Dlk

n∑
j=1

Djiyj))

(2.27)
Last term:

∂

∂Dlk

n∑
j=1

Djiyj = δikyl (2.28)

Second term:

∂

∂Dlk

m∑
p=1

n∑
j=1

DjiDjp(zN )p =
m∑
p=1

n∑
j=1

DjiDjp
∂(zN )p
∂Dlk

+
m∑
p=1

n∑
j=1

∂DjiDjp

∂Dlk
(zN )p (2.29)

∂DjiDjp

∂Dlk
=


2Dlk if j = l and i = p = k
Dlp if j = l and i = k and p ̸= k
Dli if j = l and i ̸= k and p = k
0 else

(2.30)

Therefore:
m∑
p=1

n∑
j=1

∂DjiDjp

∂Dlk
(zN )p =

m∑
p=1

(2Dlkδipδik +Dliδpk1i ̸=k +Dlpδik1k ̸=p)(zN )p (2.31)

= 2Dlk(zN )kδik +Dli(zN )k1i ̸=k +
m∑
p=1
p̸=k

Dlp(zN )pδik (2.32)

= Dli(zN )k + δik

m∑
p=1

Dlp(zN )p (2.33)

Hence:

∂(zN+1)i
∂Dlk

= 1|(zN+1)i|>0 ·
(∂(zN )i
∂Dlk

− 1

L
(Dli(zN )k+ (2.34)

δik(

m∑
p=1

Dlp(zN )p) +

m∑
p=1

n∑
j=1

∂(zN )p
∂Dlk

DjiDjp − δikyl)
)

This leads to the following vector formulation:

∂(zN+1)

∂Dl
= 1|zN+1|>0 ⊙

(
∂(zN )

∂Dl
− 1

L

(
Dlz

⊤
N + (D⊤

l zN − yl)Im +D⊤D
∂(zN )

∂Dl

))
(2.35)
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On the support of z∗, denoted by S∗, this quantity converges toward the fixed point:

J∗
l = −(D⊤

:,S∗D:,S∗)−1(Dlz
∗⊤ + (D⊤

l z
∗ − yl)Im)S∗ (2.36)

Elsewhere, J∗
l is equal to 0. To prove that R(J∗, S∗) = 0, we use the expression given by

(2.35)

J∗ = 1S∗ ⊙
(
J∗ − 1

L

(
∇2

2,1f(z
∗, Dl)

⊤ +∇2
1,1f(z

∗, D)⊤J∗
))

(2.37)

J∗ − 1S∗ ⊙ J∗ =
1

L
1S∗ ⊙ ∇2

2,1f(z
∗, Dl)

⊤ + 1S∗ ⊙ ∇2
1,1f(z

∗, D)⊤J∗ (2.38)

0 = J∗+(∇2
1,1f(z

∗, D) ⊙ 1S∗
)
+∇2

2,1f(z
∗, D) ⊙ 1S∗ (2.39)

0 = R(J∗, S∗) (2.40)

This result is similar to Bertrand et al. [2020] where the Jacobian of z is computed over λ
to perform hyper-parameter optimization in Lasso-type models. Using R(J∗, S∗) = 0, we
can write

∥R(JN , S̃N )∥ ≤ ∥R(JN , S̃N )−R(J∗, S∗)∥ ≤ L∥JN − J∗∥ , (2.41)

as ∥∇2
1,1f(z

∗, D)∥2 = L. If the back-propagation were to output an accurate estimate JN
of the weak Jacobian J∗, ∥R(JN , S̃N )∥ would be 0, and the convergence rate of g2N could
be twice as fast as the one of g1N .

Convergence analysis

We now analyze the convergence of JN toward J∗ to quantify this. In Proposition 2.2.2, we
compute an upper bound of ∥JNl −J∗

l ∥ with possible usage of truncated back-propagation [Sha-
ban et al., 2019]. Truncated back-propagation of depthK corresponds to an initial estimate
of the Jacobian JN−K = 0 and iterates the induction in Theorem 2.2.1.

Proposition 2.2.2. Let N be the number of iterations and K be the back-propagation
depth. We assume that ∀n ≥ N − K, S∗ ⊂ Sn. Let ĒN = Sn \ S∗, let L be the largest
eigenvalue of D⊤

:,S∗D:,S∗, and let µn be the smallest eigenvalue of D⊤
:,Sn

D:,Sn−1. Let Bn =

∥PĒn
−D⊤

:,Ēn
D†⊤

:,S∗PS∗∥, where PS is the projection on RS and D† is the pseudo-inverse of
D. We have

∥JNl −J∗
l ∥ ≤

K∏
k=1

(
1− µN−k

L

)
∥J∗

l ∥+
2

L
∥Dl∥

K−1∑
k=0

k∏
i=1

(1−µN−i
L

)
(
∥zN−k
l −z∗l ∥+BN−k∥z∗l ∥

)
.

Proof 2.2.2

We denote by G the matrix (I − 1
LD

⊤D). For zN with support SN and z∗ with support
S∗, we have with the induction in Theorem 2.2.1

JNl,SN
=
(
GJN−1

l + uN−1
l

)
SN

(2.42)

J∗
l,S∗ =

(
GJ∗

l + u∗l
)
S∗ (2.43)

where uNl = − 1
L

(
Dlz

⊤
N + (D⊤

l zN − yl)I
)

and the other terms on S̄N and S̄∗ are 0.
We can thus decompose their difference as the sum of two terms, one on the support S∗
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and one on this complement ĒN = SN \ S∗

J∗
l − JNl = (J∗

l − JNl )S∗ + (J∗
l − JNl )ĒN

.

Recall that we assume S∗ ⊂ SN . Let’s study the terms separately on S∗ and ĒN = SN \S∗.
These two terms can be decompose again to constitute a double recursion system,

(JNl − J∗
l )S∗ = GS∗(JN−1

l − J∗
l ) + (uN−1

l − u∗l )S∗ (2.44)

= GS∗,S∗(JN−1
l − J∗

l )S∗ +GS∗,ĒN−1
(JN−1
l − J∗)ĒN−1

+ (uN−1
l − u∗l )S∗ ,

(2.45)

(JNl − J∗
l )ĒN

= (JNl )ĒN
= GĒN

(JN−1
l − J∗

l ) +GĒN ,S∗J∗
l + (uN−1

l )ĒN
(2.46)

= GĒN ,S∗(JN−1
l − J∗

l )S∗ +GĒN ,ĒN−1
(JN−1
l − J∗

l )ĒN−1
(2.47)

+ (uN−1
l − u∗l )ĒN

+
(
(u∗l )ĒN

−D⊤
:,ĒN

D:,S∗(D⊤
:,S∗D:,S∗)−1(u∗l )S∗

)
.

We define as PSN ,ĒN
the operator which projects a vector from ĒN on (SN , ĒN ) with zeros

on SN . As S∗ ∪ ĒN = SN , we get by combining these two expressions,

(JNl − J∗
l )SN

=GSN ,SN−1
(JN−1
l − J∗

l )SN−1
+ (uN−1

l − u∗l )SN
(2.48)

+ PSN ,ĒN

(
(u∗l )ĒN

−D⊤
:,ĒN

D:,S∗(D⊤
:,S∗D:,S∗)−1(u∗l )S∗

)
Taking the norm yields to the following inequality,

∥JNl − J∗
l ∥ ≤∥GSN ,SN−1

∥∥JN−1
l − J∗

l ∥+ ∥uN−1
l − u∗l ∥ (2.49)

+ ∥(u∗l )ĒN
−D⊤

:,ĒN
D:,S∗(D⊤

:,S∗D:,S∗)−1(u∗l )S∗∥ .

Denoting by µN the smallest eigenvalue of D⊤
:,SN

D:,SN−1
, then ∥GSN ,SN−1

∥ = (1− µN
L ) and

we get that

∥JNl − J∗
l ∥ ≤

K∏
k=1

(1− µN−k
L

)∥JN−K
l − J∗

l ∥ (2.50)

+

K−1∑
k=0

k∏
i=1

(1− µN−i
L

)
(
∥uN−k

l − u∗l ∥+ ∥(u∗l )ĒN−k
−D⊤

:,ĒN−k
D†⊤

:,S∗(u
∗
l )S∗∥

)
.

The back-propagation is initialized as JN−K
l = 0. Therefore ∥JN−K

l − J∗
l ∥ = ∥J∗

l ∥.
Moreover ∥uN−k

l − u∗l ∥ ≤
2
L∥Dl∥∥zN−k

l − z∗l ∥. Finally, ∥(u∗l )ĒN−k
− D⊤

:,ĒN−k
D†⊤

:,S∗(u∗l )S∗∥
can be rewritten with projection matrices PĒN−k

and PS̄∗ to obtain

∥(u∗l )ĒN−k
−D⊤

:,ĒN−k
D†⊤

:,S∗(u
∗
l )S∗∥ ≤∥PĒN−k

u∗l −D⊤
:,ĒN−k

D†⊤
:,S∗PS∗u∗l ∥ (2.51)

≤∥PĒN−k
−D⊤

:,ĒN−k
D†⊤

:,S∗PS∗∥∥u∗l ∥ (2.52)

≤∥PĒN−k
−D⊤

:,ĒN−k
D†⊤

:,S∗PS∗∥ 2
L
∥Dl∥∥z∗l ∥ . (2.53)

Let BN−k = ∥PĒN−k
−D⊤

:,ĒN−k
D†⊤

:,S∗PS∗∥. We have

∥JNl −J∗
l ∥ ≤

K∏
k=1

(1− µN−k
L

)∥J∗
l ∥+

2

L
∥Dl∥

K−1∑
k=0

k∏
i=1

(1− µN−i
L

)
(
∥zN−k
l −z∗l ∥+BN−k∥z∗l ∥

)
.

(2.54)
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We now suppose that the support is reached at iteration N − s, with s ≥ K. Therefore,
∀n ∈ [N − s,N ] Sn = S∗. Let ∆n = F (zn, D)− F (z∗, D) + L

2 ∥zn − z
∗∥. On the support,

F is a µ-strongly convex function and the convergence rate of (zN ) is

∥z∗ − zN∥ ≤
(
1− µ

L

)s 2∆N−s
L

(2.55)

Thus, we obtain

∥JNl − J∗
l ∥ ≤

K∏
k=1

(1− µN−k
L

)∥J∗
l ∥ (2.56)

+
2

L
∥Dl∥

K−1∑
k=0

k∏
i=1

(1− µN−i
L

)
(
∥zN−k
l − z∗l ∥+BN−k∥u∗l ∥

)
≤

K∏
k=1

(1− µN−k
L

)∥J∗
l ∥ (2.57)

+
2

L
∥Dl∥

s−1∑
k=0

(1− µ

L
)k
(
∥zN−k
l − z∗l ∥

)
+

2

L
∥Dl∥(1−

µ

L
)s

K−1∑
k=s−1

k∏
i=s−1

(1− µN−i
L

)
(
∥zN−k
l − z∗l ∥+BN−k∥(u∗l )∥

)

≤
K∏
k=1

(1− µN−k
L

)∥J∗
l ∥ (2.58)

+
2

L
∥Dl∥

s−1∑
k=0

(1− µ

L
)k
(
1− µ

L

)s−1−k 2∆N−s
L

+
2

L
∥Dl∥(1−

µ

L
)s

K−1∑
k=s−1

k∏
i=s−1

(1− µN−i
L

)
(
∥zN−k
l − z∗l ∥+BN−k∥(u∗l )∥

)

≤
K∏
k=1

(1− µN−k
L

)∥J∗
l ∥ (2.59)

+ ∥Dl∥(1−
µ

L
)s−1s

4∆N−s
L2

+
2

L
∥Dl∥(1−

µ

L
)s

K−1∑
k=s−1

k∏
i=s−1

(1− µN−i
L

)
(
∥zN−k
l − z∗l ∥+BN−k∥(u∗l )∥

)
(2.60)

Proposition 2.2.2 shows that the error ∥JN − J∗∥ is upper bounded by a sum of two terms
C1
N + C2

N , where C1
N converges toward 0 and C2

N increases before the iterates reach the
support. This upper bound reveals multiple stages in the Jacobian estimation. First, one
can see that if all iterates used for the back-propagation lie on the support S∗, the Jacobian
estimate has a quasi-linear convergence, as shown in Corollary 2.2.3.
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Corollary 2.2.3. Let µ > 0 be the smallest eigenvalue of D⊤
:,S∗D:,S∗ . Let K ≤ N be the

back-propagation depth and let ∆N = F (zN , D) − F (z∗, D) + L
2 ∥zN − z

∗∥. Suppose that
∀n ∈ [N −K,N ]; Sn ⊂ S∗. Then, we have

∥J∗
l − JNl ∥ ≤

(
1− µ

L

)K
∥J∗

l ∥+K
(
1− µ

L

)K−1
∥Dl∥

4∆N−K
L2

.

Proof 2.2.3

The term 2
L∥Dl∥(1− µ

L)
s
∑K−1

k=s−1

∏k
i=s−1(1−

µN−i

L )
(
∥zN−k
l − z∗l ∥+BN−k∥(u∗l )∥

)
vanishes

when the algorithm is initialized on the support. Otherwise, it goes to 0 as s,K → N and
N →∞ because ∀n > N − s, µn = µ < 1.

Once the support is reached, ISTA also converges with the same linear rate (1− µ
L). Thus

the gradient estimate g2N converges almost twice as fast as g1N in the best case – with optimal
sub-gradient – as O(K(1− µ

L)
2K). This is similar to Ablin et al. [2020, Proposition.5] and

Tolooshams and Ba [2021].

Second, Proposition 2.2.2 shows that ∥J∗
l − JNl ∥ may increase when the support is not

well-estimated, leading to a deterioration of the gradient estimate. This is due to an
accumulation of errors materialized by the sum in the right-hand side of the inequality, as
the term BN∥z∗∥ may not vanish to 0 as long as SN ̸⊂ S∗. Interestingly, once the support
is reached at iteration S < N , the errors converge linearly toward 0, and we recover the
fast estimation of g∗ with g2. This result suggests that unrolling too many iterations has
a negative impact on the gradient estimation. Therefore, DDL should either be used with
a low number of steps or truncated back-propagation to ensure stability.

Lower bound for an ill-conditioned example

The upper bound of ∥JN −J∗∥ we provided is helpful to highlight the ambiguous behavior
of the Jacobian estimate before the support in the general case. However, this behavior
may change depending on the dictionary and the data. In the following, we compute a
lower bound of ∥JN − J∗∥ in a simple case where the iterates (zN )N∈N reach arbitrarily
slowly the support of z∗, and demonstrate that the lower bound is representative of what
happens in practice in certain cases.

First, we define a dictionary D of dimension 2× 3 with the following triplet of correlated
atoms

d1 =

[
1
0

]
d2 =

[
1− ϵ√
ϵ(2− ϵ)

]
d3 =

[
1− ϵ

−
√
ϵ(2− ϵ)

]
and denote D = [d1, d2, d3]. The gram matrix A = D⊤D for this dictionary is

A =

 1 1− ϵ 1− ϵ
1− ϵ 1 1− 4ϵ+ 2ϵ2

1− ϵ 1− 4ϵ+ 2ϵ2 1

 .

This matrix is rank 2, with eigenvalues L = λ1 = 3− 4ϵ+ 2ϵ2, λ2 = 2(2ϵ− ϵ2) and λ3 = 0

49



and associated eigenvectors

v1 =

 1
1−ϵ
1
1

 , v2 =

 0
−1
1

 and v3 =

−2(1− ϵ)1
1

 .

We consider the input point y = d1. Then KKT conditions lead to z∗ =

1− λ0
0

. If we

suppose that epsilon is small enough, we have

z0 =
D⊤y

L
− λ

L
=

1

L

 1− λ
1− λ− ϵ
1− λ− ϵ

 = α1v1 + α3v3 ,

with α1 =
1

L∥v1∥22
(1−λ1−ϵ + 2(1− λ− ϵ)) and α3 =

1
L∥v3∥22

(−2(1− λ)(1− ϵ) + 2(1− λ− ϵ)) =
−2ϵ(2−λ)
L∥v3∥22

Here ϵ needs to be smaller than 1 − λ, so the soft thresholding is simply the
operation x→ x−λ as all coordinates are positive. The dynamic of the forward operation
is the one of ISTA. As long as no coordinates of zt+1 becomes negative, we have:

zt+1 = (Id− A

L
)zt +

D⊤y

L
− λ

L︸ ︷︷ ︸
z0

.

We denote zt = αt1v1 + αt2v2 + αt3v3. Decomposing the dynamic in the eigenspaces of A,
we get

αt1 = α1 , αt2 = 0 and αt3 = αt−1
3 + α3 = (t+ 1)α3 (2.61)

Note that this dynamic is true until one coefficient of zt becomes negative. With this
dynamic, the first coordinate of zt is α1

1−ϵ − 2(t+1)(1− ϵ)α3. This is always positive, as α3

is negative. For the coordinate 2 and 3 of zt, we have ct = α1 + (t+ 1)α3. This is positive
as long as

t <
−α1

α3
− 1 =

∥v3∥
∥v1∥

2(1− λ− ϵ) + 1−λ
1−ϵ

2ϵ(2− λ)
− 1 = O(1

ϵ
)

Thus, we have a simple dynamic out of the support for a very long amount of time. This
will cause an error accumulation for the Jacobian, as shown in Proposition 2.2.4.

Proposition 2.2.4. Let D ∈ R2×3 be defined as [d1, d2, d3]. Let y = d1, ϵ < 1 and λ < 1.
Then a lower bound of ∥Jt − J∗∥2 before reaching the support is

1

∥v3∥22
|4(1− ϵ)2(2λ− 1) +

t

L
(
α1

1− ϵ
+ 2(1− ϵ)α1 − 1)| ≤ ∥Jt − J∗∥2 .

The error increases linearly with the number of iterations outside of the support.

Proof 2.2.4

Given that zt has strictly positive coefficients when t is small enough, the induction on the
Jacobian reduces to

J t+1
l = (I − 1

L
A)J tl −

1

L
(Dlz

t⊤ + (D⊤
l z

t − yl)I) (2.62)
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The limit is
J∗
l = −(D⊤

:,S∗D:,S∗)−1(Dlz
∗⊤ + (D⊤

l z
∗ − yl)Im)S∗ (2.63)

on the support S∗ and 0 otherwise.
Let’s consider the case l = 1 (first row). We denote P = (v1, v2, v3) and Λ = diag(λ1, λ2, λ3).
During the first iterations, when t is small enough, we have

J t+1
1 = (I − 1

L
A)J t1 −

1

L
(D1z

t⊤ + (D⊤
1 z

t − y1)I) (2.64)

= (I − 1

L
A)J t1 −

1

L
Mt (2.65)

P−1J t+1
1 P = ΛP−1J t1P −

1

L
P−1MtP (2.66)

Thus

J0
1 = 0 (2.67)

JT1 = − 1

L

T−1∑
t=0

(I − 1

L
A)T−1−tMt T ≥ 1 (2.68)

= − 1

L

T−1∑
t=0

PΛT−1−tP−1Mt (2.69)

P−1JT1 P = − 1

L

T−1∑
t=0

ΛT−1−tP−1MtP (2.70)

with

P =

 1
1−ϵ 0 −2(1− ϵ)
1 −1 1
1 1 1

 (2.71)

P−1 = diag(C1, C2, C3)× P⊤ =

 C1
1−ϵ C1 C1

0 −C2 C2

−2(1− ϵ)C3 C3 C3

 (2.72)

Λ =

 0 0 0

0 1− 2ϵ(2−ϵ)
L 0

0 0 1

 (2.73)

(2.74)

where C1 =
1

∥v1∥22
, C2 =

1
∥v2∥22

, C3 =
1

∥v3∥22
. When t is big enough, the dynamic changes and

comes back to what was studied before. Thus, after convergence, the limit of the Jacobian
is

J∗
1 =

 2λ− 1 0 0
0 0 0
0 0 0

 (2.75)

P−1J∗
1P = diag(C1, C2, C3)×

 2λ−1
1−ϵ 0 −2(1− ϵ)(2λ− 1)

0 0 0
−2(2λ− 1) 0 4(1− ϵ)2(2λ− 1)

 (2.76)

(2.77)
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Let’s compute P−1MtP . Recall that z2 = z3.

P−1MtP = diag(C1, C2, C3)(P
⊤D1z

t⊤P + (D⊤
1 z

t − y1)I) (2.78)

= C

 2−ϵ
1−ϵ(z1 + 2(1− ϵ)z2)− 1 0 2(z2 − (1− ϵ)z1)

0 z1 + 2(1− ϵ)z2 − 1 0
0 0 z1 + 2(1− ϵ)z2 − 1


(2.79)

(2.80)

When t < (T − 1), multiplying by ΛT−1−t leads to

ΛT−1−tP−1MtP =

 0 0 0

0 C2(1− 2ϵ(2−ϵ)
L )T−1−t(z1 + 2(1− ϵ)z2 − 1) 0

0 0 C3(z1 + 2(1− ϵ)z2 − 1)


(2.81)

=

 0 0 0

0 C2(1− 2ϵ(2−ϵ)
L )T−1−t( α1

1−ϵ + 2(1− ϵ)α1 − 1) 0

0 0 C3(
α1
1−ϵ + 2(1− ϵ)α1 − 1)


(2.82)

(2.83)

Looking at the dynamic of the bottom right corner coordinate gives a lower bound of
∥Jt − J∗∥, as we have

|C3||4(1− ϵ)2(2λ− 1) +
t

L
(
α1

1− ϵ
+ 2(1− ϵ)α1 − 1)| ≤ ∥Jt − J∗∥ . (2.84)

Before reaching the support, the error between the Jacobian estimate and the true Jacobian
increases linearly. For ϵ and λ small enough, the error can become very large. This shows
that when the iterates are far from the support, and the optimization path is too long,
Unrolling will fail on ill-conditioned examples like the one we presented.

Numerical illustrations

We now illustrate these theoretical results depending on the number N of unrolled iter-
ations. Figure 2.1 confirms the linear convergence of JNl once the support is reached.
However, the convergence might be unstable when the number of iterations grows, leading
to exploding gradient, as illustrated in the second case. When this happens, using a small
number of iterations or truncated back-propagation becomes necessary to prevent accu-
mulating errors. It is also interesting to look at the proportion of unstable Jacobians (see
Figure 2.2). We recover behaviors observed in the first and second cases in Figure 2.1. 40%
samples suffer from numerical instabilities in this example. Interestingly, ill-conditioned
patterns of convergence look like what we obtain with our toy example in Figure 2.2. This
suggests that bad conditioning may be a common problem even in very simple contexts
and may negatively impact the gradient estimation outside of the support.

We will now focus on the gradient estimation. We display the convergence behavior of
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Figure 2.1: Average convergence of JNl toward J∗
l for two samples from the same data set.

We generate a normalized random Gaussian dictionary D of dimension 30×50, and sparse
codes z from a Bernoulli Gaussian distribution of sparsity 0.3 and σ2 = 1. The signal to
process is X = DZ + B where B is an additive Gaussian noise with σ2noise = 0.1. The
Jacobians are computed for a random perturbation D +BD of D where BD is a Gaussian
noise of scale 0.5σ2D. JNl corresponds to the approximate Jacobian with N iterations of
ISTA with λ = 0.1. J∗

l corresponds the true Jacobian computed with sparse codes obtained
after 104 iterations of ISTA with λ = 0.1. ∥J∗

l − JNl ∥ converges linearly on the support in
both cases. However, for sample 2, full back-propagation makes the convergence unstable,
and truncated back-propagation improves its behavior, as described in Proposition 2.2.2.
The proportion of stable and unstable samples in this particular example is displayed in
Figure 2.2.

the gradients estimated by AM and by DDL with different back-propagation depths (20,
50, full) for simulated data and images in Figure 2.3. We unroll FISTA instead of ISTA
to make the convergence faster. We observed similar behaviors for both algorithms in
early iterations but using ISTA required too much memory to reach full convergence. As
we optimize using a line search algorithm, we are mainly interested in the ability of the
estimate to provide an adequate descent direction. Therefore, we display the convergence
in angle defined as the cosine similarity ⟨g, g∗⟩ = Tr(gT g∗)

∥g∥∥g∗∥ . The angle provides a good
metric to assert that the two gradients are correlated and thus will lead to similar opti-
mization paths. We compare g1N and g2N with the relative difference of their angles with
g∗, defined as ⟨g2N ,g

∗⟩−⟨g1N ,g
∗⟩

1−⟨g1N ,g∗⟩
. When its value is positive, DDL provides the best descent

direction. Generally, when the back-propagation goes too deep, the performance of g2N
decreases compared to g1N , and we observe large numerical instabilities. This behavior is
coherent with the Jacobian convergence patterns studied in Proposition 2.2.2. Once on the
support, g2N reaches back the performance of g1N as anticipated. In the case of a real im-
age, Unrolling beats AM by up to 20% in terms of gradient direction estimation when the
number of iterations does not exceed 50, especially with a small back-propagation depth.
This highlights that the principal interest of unrolled algorithms is to use them with a
small number of layers – i.e., a small number of iterations.

2.3 . Unrolled Dictionary Learning in practice

This section introduces practical guidelines on Lasso-based approximate dictionary learning
with unit norm constraint, and we provide empirical justifications for its ability to recover
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Figure 2.2: (Left) Average convergence of JNl toward J∗
l for 50 samples. The data gen-

eration process is the same as in Figure 2.1. In this example, 40% of the Jacobians are
unstable (red curves). (Right) Comparison between ∥JN − J∗∥2 and the lower bound com-
puted in Proposition 2.2.4. As expected, the error increases linearly before reaching the
support in our example.

the dictionary. We optimize with projected gradient descent and a line search to compute
high-quality step sizes. The computations have been performed on a GPU NVIDIA Tesla
V100-DGXS 32GB using PyTorch [Paszke et al., 2019].

Improvement of precision.

As stated before, a low number of iterations allows for efficient and stable computations,
making the sparse code less precise. One can learn the step sizes of (F)ISTA to speed
up convergence and compensate for imprecise representations, as proposed by Ablin et al.
[2019] for LISTA. To avoid poor results due to large degrees of freedom in unsupervised
learning, we propose a method in two steps to refine the initialization of the dictionary
before relaxing the constraints on the steps sizes:

1. We learn the dictionary with fixed step sizes equal to 1
L where L = ∥D∥2, given by

convergence conditions. Lipschitz constants or upper bounds are computed at each
gradient step with norms, or the FFT for convolutions, outside the network graph’s
scope.

2. Then, once convergence is reached, we jointly learn the step sizes and the dictio-
nary. Both are still updated using gradient descent with line search to ensure stable
optimization.

LISTA-like algorithms with no ground truth generally aim to improve the speed of sparse
coding when high precision is not required. When it is the case, the final sparse codes can
be computed separately with FISTA [Beck and Teboulle, 2009] or coordinate descent [Wu
et al., 2008] to improve the quality of the representation.

Unrolling v. AM.
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Figure 2.3: ( left) Gradient convergence in angle for 1000 synthetic samples. We generate
a normalized random Gaussian dictionary D of dimension 30× 50, and 1000 sparse codes
z from a Bernoulli Gaussian distribution of sparsity 0.3 and σ2 = 1. The signal to process
is y = Dz + b where b is an additive Gaussian noise with σ2noise = 0.1. The gradients
are computed for a random perturbation D + bD of D where bD is a Gaussian noise of
scale 0.5σ2D. ( center) Gradient convergence in angle for patches from a noisy image. A
128 × 128 black-and-white image is degraded by a Gaussian noise with σ2noise = 0.1 and
normalized. We processed 1000 patches of dimension 10 × 10 from the image and computed
the gradients for a dictionary composed of 128 random patches. ( right) Relative difference
between angles from DDL and AM. gN corresponds to the gradient for N iterations of
FISTA with λ = 0.1. g∗ corresponds to the true gradient computed with a sparse code
obtained after 104 iterations of FISTA. Convergence is faster with DDL in early iterations
and becomes unstable with too many steps.

In Figure 2.4, we show the number of gradient steps before reaching convergence, the behav-
ior of the loss FN , and the recovery score defined at the beginning of the section for synthetic
data generated by a Gaussian dictionary. As a reminder, S(C) = maxσ∈SL

1
L

∑L
i=1 |Cσ(i),i|

where C is the correlation matrix between the columns of the true dictionary and the
estimate. The number of iterations corresponds to N in the estimate zN (D). First, DDL
leads to fewer gradient steps than AM in the first iterations. This suggests that automatic
differentiation better estimates the directions of the gradients for small depths. However,
computing the gradient requires back-propagating through the algorithm, and DDL takes
1.5 times longer to perform one gradient step than AM on average for the same number
of iterations N . When looking at the loss and the recovery score, we notice that there is
no gain in the usage of DDL for the minimization of FN without learning the step sizes,
but there is an increase in performance concerning the recovery score. DDL better esti-
mates the dictionary for small depths, inferior to 50. When unrolling more iterations, AM
performs as well as DDL on the approximate problem and is faster.

Approximate DL.

Figure 2.4 also shows that high-quality dictionaries are obtained before the convergence
of FN , either with AM or DDL. 40 iterations are sufficient to reach a reasonable solution
concerning the recovery score, even though the loss is still very far from the optimum
at this stage. This suggests that computing optimal sparse codes at each gradient step is
unnecessary to recover the dictionary. To illustrate that, we display in Figure 2.4 the PSNR
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Figure 2.4: ( left) Number of gradient steps performed by the line search before convergence,
( center) distance to the optimal loss, and ( right) distance to the optimal dictionary recovery
score depending on the number of unrolled iterations. We generate a normalized random
Gaussian dictionary D of dimension 30×50 and sparse codes z from a Bernoulli Gaussian
distribution of sparsity 0.3 and σ2 = 1. The signal to process is y = Dz + b where b is an
additive Gaussian noise with σ2noise = 0.1. The initial dictionary is a random perturbation
D+ bD of D where bD is a Gaussian noise of scale 0.5σ2D. N corresponds to the number of
unrolled iterations of FISTA. F ∗ is the value of the loss for 103 iterations minus 10−3. S∗

is the score obtained after 103 iterations plus 10−3. The optimization is done with λ = 0.1.
We compare the number of gradient steps ( left), the loss values ( center), and the recovery
scores ( right) for 50 different dictionaries. Due to memory and optimization time issues,
DDL with step sizes learning is evaluated on 100 iterations only. We display the mean and
the 10% and 90% quantiles over 50 random experiments. DDL needs fewer gradient steps
to converge in early iterations and Unrolling obtains high recovery scores with only a few
dozen iterations.

of a noisy image reconstruction depending on the number of iterations, compared to full
AM dictionary learning with 1000 iterations. As for synthetic data, optimal performance
is reached very fast. In this particular case, the model converges after 80 seconds with
approximate DL unrolled for 20 iterations of FISTA compared to 600 seconds in the case
of standard DL. Note that the speed rate highly depends on the value of λ. Higher values
of λ tend to make FISTA converge faster, and Unrolling becomes unnecessary in this case.
On the contrary, Unrolling is more efficient than AM for lower values of λ.

Loss landscape.

The ability of gradient descent to find adequate local minima strongly depends on the
structure of the problem. To quantify this, we evaluate the variation of PSNR depending
on the Signal to Noise Ratio (SNR) – defined as 10 log10

(
σ2

σ2
b

)
where σ2b is the variance of

the noise – for 50 random initializations in the context of convolutional dictionary learning
on a task of image denoising, with 20 unrolled iterations. We also compare in Figure 2.4
(right) the shapes of local minima in 1D by computing the values of the loss along a
line between two local minima. This visualization confirms that (approximate) dictionary
learning locally behaves like a convex function with similar local minima.
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Figure 2.5: We consider a normalized image degraded by Gaussian noise. ( left) PSNR
depending on the number of unrolled iterations for σ2noise = 0.1. DL stands for full AM
dictionary learning. There is no need to unroll too many iterations to obtain satisfying
results. ( center) PSNR and average recovery score between dictionaries depending on the
SNR for 50 random initializations in CDL. ( right) 10 loss landscapes in 1D for σ2noise =
0.1. DDL is robust to random initialization when there is not too much noise.

Conclusion

Dictionary learning is an efficient technique to learn patterns in a signal but is challenging
to apply to large real-world problems. This work showed that approximate dictionary
learning, which consists in replacing the optimal solution of the Lasso with a time-efficient
approximation, offers a valuable trade-off between computational cost and quality of the
solution compared to complete Alternating Minimization. This work provided a theoretical
study of the asymptotic behavior of unrolling in approximate dictionary learning. In
particular, we showed that numerical instabilities make the usage of unrolled Dictionary
Learning inefficient with too many layers or iterations.
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Chapter 3

Unrolled Dictionary Learning for unsupervised

inverse problems

This work was carried out with the help of Florent Michel. The content of this chapter was
partly published in:

Benoît Malézieux, Thomas Moreau, and Matthieu Kowalski. Apprentissage de dictionnaire
par différentiation automatique pour la résolution de problèmes inverses. GRETSI, 2022b

While data-driven methods have been extensively studied in the context of supervised in-
verse problems, recent works have focused on unsupervised scenarios and provided new
algorithms to learn from corrupted data only [Lehtinen et al., 2018, Bora et al., 2018,
Liu et al., 2020]. Chen et al. [2021] and Tachella et al. [2022] demonstrate that a neces-
sary condition to learn extensive priors from degraded signals is either to measure them
with multiple operators which span the whole space, or to introduce weak prior knowl-
edge such as group structures and equivariance in the model when only one operator is
available. Other works based on Deep Learning have leveraged successful architectures to
recover images without access to any ground truth data. In particular, Deep Image Prior
shows that CNNs contain enough prior information to recover an image in several inverse
problems, such as denoising or inpainting [Ulyanov et al., 2018].

Contributions of chapter 3.

We demonstrate practical limitations of prior learning methods for unsupervised inverse
problems. We first provide an analysis of dictionary learning when the data is measured
with a single or multiple operators. As mentioned by Tachella et al. [2022], "seeing the
whole space" is a necessary condition to learn a good prior from the data, as nothing
can be recovered in the kernel of the operator A. However, we point out that this is not
sufficient in the case of dictionary learning. Indeed, the problem is made harder by the
measurement operators, and is sometimes unfeasible even with access to the whole space.
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Then we study the practical behavior of methods heavily relying on convolutions in cases
where they work well (inpainting) and in cases where they fail because the prior is too weak
(deblurring), and provide experiments complementary to the theoretical study of Tachella
et al. [2022]. We present three examples, namely Convolutional Dictionary Learning, Deep
Image Prior, and Plug and Play, and train the prior "as is" in the range space without
relying on any data augmentation technique or equivariance. Finally, we compare unrolled
networks based on Analysis and Synthesis. We evaluate their performance on several
inverse problems without access to any ground truth data for three classes of dictionaries
in terms of recovery of the dictionary and reconstruction of the signal.

3.1 . The main bottleneck of prior learning in inverse problems.

For inverse problems, the dimension of the measurements m is often smaller than the
dimension of the signal n. This dimension reduction implies that information on the signal
contained in the null space of A ∈ Rm×n is lost during the observation process, and needs
to be reconstructed from the observed signal. We first aim to study the impact of this
degradation on constraint-free prior learning through the lens of dictionary learning.

Dictionary learning with a single measurement operator. Dictionary learning
assumes that the signal can be decomposed into a sparse representation in a redundant
basis of patterns. Taking the example of Lasso-based dictionary learning, recovering X

would require solving a problem of the form

min
Z∈RL×N ,D∈C

1

2
∥ADZ − Y ∥22 + λ∥Z∥1 . (3.1)

We first aim to see the impact of A on the algorithm ability to recover a proper dictionary.
In Proposition 3.1.1, we focus on inpainting where the measurement operator is a binary
mask or equivalently a diagonal matrix with m non-zeros elements.

Proposition 3.1.1. Let A = diag(λ1, · · · , λn) ∈ Rn×n be a diagonal measurement matrix
where m < n, λ1 ≥ · · · ≥ λm > 0 and λm+1 = · · · = λn = 0. Let D0 ∈ Rn×L and D′ be
such that

D′ =

(
∥D0,j∥

∥D0,j,m∥D0,j,m

0n−m

)
1≤j≤L

, where D0 =

(
D0,m

D0,n−m

)
Then

min
Z

1

2
∥AD′Z − Y ∥22 + λ∥Z∥1

≤ min
Z

1

2
∥AD0Z − Y ∥22 + λ∥Z∥1 .

Proof 3.1.1

Let Z0 ∈ argminZ
1
2∥AD0Z − Y ∥22 + λ∥Z∥1. Let Z ′

j =
∥D0,j,m∥
∥D0,j∥ Z0j . Then

∥AD′Z ′ − Y ∥2 = ∥AD′
0Z

′
0 − Y ∥2 (3.2)

∥Z ′∥1 ≤ ∥Z0∥1 (3.3)

The result follows.
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In this simple case, our proposition shows that the optimal dictionary must be 0 in the
null space of A. The core idea behind the proof is that due to invariances, the optimal
solution for dictionary learning is contained in an equivalence class {PSD′ + V } where P
is a permutation matrix, S is a scaling matrix, D′ is a matrix of rank m and V is a matrix
of rank n−m such that PSD′ ∈ ker(A)⊥ and V ∈ ker(A). Given a dictionary PSD′ + V

in this equivalence class, the dictionary PSD′ is always a better minimizer after proper
rescaling. Therefore, the solver puts to 0 all directions from which A loses the information
to maximize the input from the others. Proposition 3.1.2 generalizes Proposition 3.1.1 to
the case of rectangular matrices.

Proposition 3.1.2. Let A ∈ Rm×n be a measurement matrix where m < n, and let Y ∈
Rm×N be the observed data. If a dictionary D ∈ Rn×L minimizes minZ∈RL×N ,D∈C

1
2∥ADZ−

Y ∥22 + λ∥Z∥1, then D ∈ ker(A)⊥.

Proof 3.1.2

Let A ∈ Rm×n, Y ∈ Rm×T . We aim to solve

min
D∈C,Z

1

2
∥ADZ − Y ∥22 + λ∥Z∥1 (3.4)

Performing a SVD on A leads to

A = UΛV ∗ s.t. U ∈ Rm×m, V ∈ Rn×n and UU∗ = Im, V V
∗ = In (3.5)

Λ =


λ1 0 · · · 0 · · · 0
0 λ2 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · λm · · · 0

 (3.6)

Then,

min
D∈C,Z

1

2
∥ADZ − Y ∥22 + λ∥Z∥1 (3.7)

= min
D∈C,Z

1

2
∥UΛV ∗DZ − Y ∥22 + λ∥Z∥1 (3.8)

= min
D∈C,Z

1

2
∥ΛV ∗DZ − U∗Y ∥22 + γ∥Z∥1 (3.9)

= min
D̃∈C,Z,D=V D̃,Ỹ=U∗Y

1

2
∥ΛD̃Z − Ỹ ∥22 + γ∥Z∥1 (3.10)

Adding zeros to Λ to make it square, and adding zeros at the end of the measurement
vector U∗Y to respect dimensions, the problem reduces to

min
D∈C,Z

1

2
∥ΛD̃Z − Ỹ ∥22 + λ∥Z∥1

s.t. Λ = diag(λ1, · · · , λm, 0, · · · , 0), Ỹ =

(
U∗Y
0n−m

)
.

(3.11)

Then, Proposition 3.1.1 applies and an optimal dictionary is contained in ker(A)⊥.
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Similarly to what happens in inpainting, nothing can be recovered in the null space of
A. Thus, we can only expect to learn a dictionary of rank m with a single measurement
matrix. This result relates to the one from Tachella et al. [2022] which says that the signals
cannot be recovered where there is no information.

Dimension reduction makes dictionary learning harder in the range space. Even
in the range space of the signal, a good dictionary cannot always be learned reliably.
Guarantees of identifiability of the dictionary or local recovery are strongly based on the
ability of the sparse coding algorithm to recover an accurate estimation of Z Arora et al.
[2015], Gribonval et al. [2015], Chatterji and Bartlett [2017]. As the dimension of the
measurement m becomes smaller than the dimension of the signal n, these conditions are
not valid anymore. As an example, if D is a Gaussian random dictionary, the theory of
compressed sensing states that n ≥ 2s ln(Ls ) where s is the sparsity of Z is a sufficient
condition to be able to recover Z with high probability Foucart and Rauhut [2013b].
When the dictionary is degraded by a matrix A, this constraint becomes m ≥ 2s ln(Ls )

and the sparsity level s has to decrease by a ratio close to m
n to compensate for the loss of

information. This implies that recovering the part of the dictionary not contained in the
null space of A also becomes harder with the corruption of the data.
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Figure 3.1: Recovery score for Gaus-
sian dictionaries 100 × 100, after
degradation by a single compressed
sensing operator m×100. When the
dimension m decreases, the part of
the dictionary not contained in the
null space can be recovered only with
sparse signals.

Figure 3.1 shows the recovery score for data gen-
erated with a 100 × 100 random Gaussian dictio-
nary, depending on the size of the measurements and
on the sparsity of a Bernoulli Gaussian signal, after
degradation by a single compressed sensing opera-
tor. We compare it to the perfect score that we can
achieve in the range space of the operator. We eval-
uate the quality of the dictionary, based on the Pear-
son correlation of their columns. To make the metric
sign and permutation invariant, we use a best linear
sum assignment S(C) = maxσ∈Sn

1
n

∑n
i=1 |Cσ(i),i|,

where Sn is the group of permutations of [1, n] and
C is the cost matrix whose entry i, j compares the
atom i of the first dictionary and j of the second. It
is equal to 1 when the dictionary is perfectly recov-
ered. The recovery score drops when the dimension
m decreases and small values of m require a high
sparsity level to recover the dictionary in the range
of A.

Seeing the data through multiple operators. Even though it is not possible to
recover the whole dictionary from a single measurement operator, the situation changes
when the measurement matrix is sample dependent. Indeed, several operators may span
different parts of the signal space and make it possible to recover the missing part of the
signal. In this section, we focus on cases where the data are observed through a set of Nm

measurement matrices (Ai)1≤i≤Nm , and consider the task of learning a dictionary with the
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associated lasso-based optimization problem

min
D∈C

F (ZA(D), D)

≜
Nm∑
i=1

1

2
∥AiDZAi(D)− Yi∥22 + λi∥ZAi(D)∥1 ,

with ZAi(D) = argmin
Z

1

2
∥AiDZ − Yi∥22 + λi∥Z∥1 .

(3.12)

Here ZA(D) = (ZA1(D), . . . ZANm
(D)) denotes the sparse codes related to each operator.

This problem is non-convex and is usually solved through gradient descent, in order to
find a local minimum. In the following, we study the cases when the local minima of
Equation 3.12 are also local minima for the problem without observation operators and
provide an empirical analysis in different scenarios. With multiple measurement operators,
the gradient of Equation 3.12 is given by

∇DF (ZA(D), D) =

Nm∑
i=1

A⊤
i (AiDZAi(D)− Yi)ZAi(D)⊤ . (3.13)

The main difficulty in studying this quantity is that the sparse codes estimate ZAi(D)

depends on D and Ai. Each operator provides measurements from a limited number of
samples in the data-set, and the sparse codes are different with and without A. Thus, we
consider the simplest case where Z = ZAi(D) is the same for all Ai, including A = I. This
is an easier problem than the general formulation in Equation 3.12. If this is not feasible,
then Equation 3.12 is not feasible. In this case, we have

∇DF (ZA(D), D) = (
∑
i

A⊤
i Ai)∇DF (ZI(D), D) . (3.14)

KKT conditions imply that the gradient ∇DF (ZA(D), D) must vanish at local minima.
Whenever

∑
iA

⊤
i Ai is injective, ∇DF (ZI(D), D) vanishes if and only if ∇DF (ZA(D), D)

vanishes. Thus, local minima of Equation 3.12 are also local minima for the original prob-
lem where Ai = I. This means that when

∑
iA

⊤
i Ai spans the entire space, the dictionary

from the original problem can be recovered. Otherwise local minima of F (ZA(D), D) are
not necessarily local minima of F (ZI(D), D). This case boils down to the case previously
studied, as

∑
iA

⊤
i Ai is full rank whenever the rank of the matrix obtained by stacking

the operators (A⊤
1 , · · · , A⊤

Nm
) is equal to n. The message from these results is essentially

the same as the one from Chen et al. [2021]: a necessary condition for recovery is that
the operators span the whole space. It is however important to note that this is only a
necessary condition to recover the dictionary, as sparse coding guarantees may not be met
when the dimension m is too small. We now present two examples of inverse problems
with multiple operators to illustrate what happens in practice.

• Compressed sensing (CS). When allAi are random Gaussian matrices, (A⊤
1 , · · · , A⊤

Nm
)

is also a random Gaussian matrix of dimension n × Nmm. Therefore, it is of rank
n with probability 1 if Nm ≥ ⌊ nm⌋+ 1. Figure 3.3 illustrates that it is indeed a nec-
essary condition to recover D, but it is not sufficient when m is too small, because
sparse coding becomes inefficient. Multiview compressive dictionary learning has
also been studied in Anaraki and Hughes [2013], Pourkamali-Anaraki et al. [2015],
Chang et al. [2019].
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Figure 3.2: We generate the data from a Gaussian dictionary of size 100×100 and Bernoulli
Gaussian sparse codes of sparsity s (average rate of non zero coordinates). Then, we
degrade the data with a binary mask of variable rates of available coordinates p. We learn
a dictionary of size 100×100 over several values of λ. We show the ability of the algorithm
to recover the dictionary, depending on p, the number of training samples and the level
of sparsity in the data. Dictionary recovery is defined as obtaining a recovery score of
at least 0.95. We display the results from three different perspectives: (Left) Minimal
number of samples necessary to recover the dictionary depending on sparsity and rate of
available coordinates in the data. A number of samples larger than 104 means no recovery
possible. (Center) Maximal level of sparsity s (maximal proportion of non zero coordinates)
to recover the dictionary depending on the number of samples and the rate of available
coordinates. A level equal to 0 means no recovery possible. (Right) Minimal rate of available
coordinates for recovery depending on the number of samples and the level of sparsity. A
level equal to 1 means no recovery possible. These figures show that there is a hard limit to
what can be learned depending on the proportion of missing values and sparsity, regardless
the number of training samples. Having access to the whole signal space is not a sufficient
condition to recover the dictionary.

• Inpainting. All Ai are binary masks with coefficients following Bernoulli distributions
of parameters p1, · · · , pn, i.e. Ai = diag(a1i , · · · , ani ) where each aji is equal to 1 with
probability pj . The rank of (A⊤

1 , · · · , A⊤
Nm

) is equal to n if for each coordinate j there
exists an index i such that aji = 1. This happens with probability

∏
j(1−(1−pj)Nm).

Figure 3.2 shows that similar to CS, this is a necessary but insufficient condition
to recover a proper dictionary. Even when the number of samples compensates
for missing values, the sparsity of the data plays a great role in the ability of the
algorithm to recover the proper dictionary after heavy dimension reduction. To
illustrate what happens on real data, we consider the example of image inpainting.
Let A ∈ {0, 1}h×w be a binary mask used to observe an image X ∈ [0, 1]h×w and
Y = A⊙X be the observed image. While the operator is unique when we consider
the whole image at once, learning a dictionary from patches of size n from the
image is equivalent to learning a dictionary with multiple operators in Equation 3.12.
Denoting Aij = diag(Ani:n(i+1),nj:n(j+1)) and Yij = vect(Yni:n(i+1),nj:n(j+1)) the i, j-
patch, patch-based dictionary learning solves

min
Zij ,D∈C

∑
i,j

1

2
∥AijDZij − Yij∥22 + λ∥Zij∥1 (3.15)

The dictionary should be recovered if the image is large enough and if there are not
too many masked pixels. In Figure 3.3, we show the PSNR (Peak Signal to Noise
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Figure 3.3: (left) Recovery score for Gaussian dictionaries 100× 100, after degradation by
Nm compressed sensing operators m×100. Nm ≥ ⌊ nm⌋+1 is necessary, but not sufficient to
recover the dictionary when m is too small. In the case of inpainting, PSNR (center) and
weighted recovery score (right) depend on the proportion of missing values in dictionary
learning on patches from a natural image. When the dimension of the measurement space
is large enough, the algorithm recovers the image and the supervised dictionary successfully.

ratio) and the recovery score depending on the proportion of missing values in an
image of resolution 128×128, from which we extract patches of size 10×10. To take
into account that some atoms might not be as relevant as others, the score is re-
weighted by the sum of corresponding activations in the sparse codes Z. The recovery
score drops when the proportion of missing values is larger than 50%. Otherwise, the
image is successfully recovered even when the dictionary is learned from the degraded
observation. This is why dictionary learning led to good results in unsupervised
inpainting in the literature Szabó et al. [2011], Studer and Baraniuk [2012], Naumova
and Schnass [2017].

We have demonstrated that dictionary learning won’t operate in the null space of the
measurement matrix. However, the usage of multiple operators allows for mitigating that
issue, the whole signal space being seen through different matrices Ai. Our experiments
with synthetic and real data also show that this is only a necessary condition to learn a
good dictionary. In some cases, the sparse codes cannot be recovered as the information
is too degraded. Reducing the dimension of the observations could then be a hard limit
to dictionary learning, and theoretical results on the convergence of classical optimization
methods such as Alternating Minimization would be of great interest to ensure the iden-
tifiability of the dictionary with multiple operators. In the following, we show that well
chosen weak prior knowledge can lift the problem and allow to recover the information
from the kernel space of a single operator through the example of convolutions in imaging.

3.2 . Weak prior knowledge through convolutions

The usage of convolutions in Deep Learning LeCun et al. [1998] has encountered tremen-
dous success in a broad range of tasks from image classification to reconstruction. Con-
volutions and convolutional neural networks are efficient to analyze translation invariant
data while reducing the number of parameters to be learned. In this section, we provide
elements to understand the efficiency and the limitations of convolutions used as weak
prior knowledge for unsupervised image reconstruction through the study of three meth-
ods based on prior learning: Convolutional Dictionary Learning Grosse et al. [2007], Plug
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and Play Chan et al. [2016] and Deep Image Prior Ulyanov et al. [2018]. All computations
have been performed on a GPU NVIDIA Tesla V100-DGXS 32GB using PyTorch Paszke
et al. [2019].

Convolutional dictionary learning (CDL) consists in learning kernels of relatively small
dimensions from a signal Y . Lasso-based CDL solves a problem of the form

min
zk,dk∈C

1

2
∥A
∑
k

dk ∗ zk − Y ∥22 + λ
∑
k

∥zk∥1 . (3.16)

Deep Image Prior (DIP) takes advantage of CNN architectures to project the observed
image into a well-suited range space by drawing a random code vector z in the latent space
and optimizing the parameters of the network f as follows

min
θ
∥Y −Afθ(z)∥22 . (3.17)

Plug and Play (PnP) is an iterative algorithm inspired from proximal gradient descent,
which recovers images from an observation Y with steps of the form

Xn+1 = fθ (Xn − τA∗(AXn − Y )) ∀n ≥ 1 , (3.18)

where X0 = 0, τ is a step size and fθ is an image denoiser. CDL and DIP can be applied
to a single observation without training on a data set, the prior being learned directly on
one piece of degraded data without needing other information. In contrast, PnP usually
resort to a deep denoiser generally pre-trained on a clean database. As we focus on the
unsupervised setting, we adapt PnP by training the denoiser on degraded data instead. In
this case, we consider that we have access to a dataset (Yi)1≤i≤N where each Yi = AXi+ ϵi
is an observation of an original image Xi degraded by the same operator A and a gaussian
noise ϵi. We artificially generate noisy images (Y ′

i )1≤i≤N from our data-set of observations
Y ′
i = Yi+ ϵ

′
i, and we train a DnCNN Zhang et al. [2017] to recover Yi from Y ′

i in the range
space of A by minimizing

min
θ

1

N

∑
i

∥A(fθ(Y ′
i )− Yi)∥22 . (3.19)

The idea is to check in which case the architecture can compensate for the lack of in-
formation in the kernel of A by learning from the information in the range space of A.
To point out the limits of these prior learning algorithms, we will compare them to two
reconstruction methods based on Total Variation (TV) Chambolle et al. [2010] and sparse
wavelets Mallat [2008].

The purpose is to highlight the hard limits of unsupervised methods in various contexts.
Therefore, we evaluate the performance reached by each algorithm over oracle hyper-
parameters, namely hyper-parameters leading to the best performances. While evaluating
hyper-parameter sensitivity is necessary when comparing different methods, it is orthog-
onal to our study, which considers the difference between supervised and unsupervised
training of similar methods.

Why convolutions are likely to work on tasks like inpainting.
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Figure 3.4: PSNR depending on the proportion of available pixels in the full space, kernel
space, and range space of the masking operator for reconstruction methods based on CDL,
DIP, TV, and wavelets for a 256 × 256 grey-level image (top), and for PnP based re-
construction on 160 × 160 grey-level images (bottom) with a SNR of 20db. Unsupervised
prior learning methods work better than hand-crafted methods even with a lot of lacking
information and can recover missing information in the kernel space. Moreover, they per-
form close to supervised methods (CDL supervised and PnP supervised) when the ratio of
missing pixels is not too high.
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Figure 3.5: The recovery score of
convolutional dictionaries depends
on the image size and the rate of
available pixels ρ. Increasing the
size improves the quality at high
enough rates.

Works on prior learning in unsupervised inverse
problems often evaluate the performance of the
methods they propose on an inpainting task Ulyanov
et al. [2018], Chen et al. [2021] and achieve very good
performance compared to supervised learning tech-
niques. Here, we provide elements to understand
why this problem, in particular, is feasible with the
help of convolutional dictionaries or neural networks
without access to ground truth data.

Learning convolutional dictionaries from in-
complete data. To understand what happens in
inpainting, let’s consider a simple one-dimensional
signal example. Let Xt be a wide sense station-
ary (WSS) random process, and let At be an i.i.d
Bernoulli process of mean ρ. The observed signal
Yt = AtXt is also a WSS random process and its
auto-correlation function RY (τ) is

RY (τ) = E[AtXtAt+τXt+τ ] = RX(τ)E[AtAt+τ ]
(3.20)

= ρ2RX(τ)1τ ̸=0 + ρRX(τ)1τ=0 . (3.21)

Then, the Wiener-Khintchine theorem assures that
the power spectral density of X and Y are proportional. This shows that with sufficient
samples in the signal, the masking process won’t affect the spectrum of the original sig-
nal X, and translation invariant priors can take advantage of the information from all
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Original Observation CDL DIP Wavelets TV

Figure 3.6: Reconstruction and PSD of a 256 × 256 RGB image with 50% missing pixels
in a noiseless scenario. PSNR: CDL 34.8dB, DIP 34.1dB, Wavelets 34.7dB, TV 34.3dB.
The PSD reveals the presence of ringing artifacts in the reconstruction by CDL. Otherwise,
unsupervised algorithms recover the whole spectrum of the original image and do as well as
hand-crafted methods.

frequencies.

We illustrate the practical implication of this observation on the ability of CDL to recover
10 digits from an image, depending on the size of the image and the rate of available pixels
ρ in Figure 3.5. As expected, the performance increases with the size when ρ is not too
low. It is essential to note that having access to all frequencies is only a necessary condition
to learn a good dictionary, as sparse coding assumptions are not met when there are too
many missing values. Of course, these results do not stand for non-stationary signals.

Unsupervised reconstruction. Similar effects can be observed for reconstruction. Nat-
ural images are stable enough to allow convolution-based algorithms to learn from all
frequencies that are present in the signal. Figure 3.4 presents an example where a sin-
gle natural image is degraded by a random binary mask and gaussian noise and reports
the PSNR of the reconstruction in the mask kernel space and range space for CDL, DIP,
and methods based on TV and sparse wavelets for different rates of missing pixels with
a SNR of 20dB. Supervised means the algorithm learns a prior on the clean signal and
uses it for reconstruction after degradation, whereas unsupervised means that the prior is
learned directly on the observation. The experiments highlight that unsupervised methods
work as well as supervised CDL and are better than hand-crafted priors in the kernel of
A when the noise level is not too high (SNR ≥ 20). They succeed in learning in the range
space of A and generalizing in the kernel space. The PSNR drops in favor of TV and
wavelets when the noise increases, as it becomes more challenging to learn the structure
of the signal. Figure 3.6 provides a visual example in the noiseless case. Unsupervised
algorithms successfully recover the original image after degradation by a binary mask with
50% pixels missing. The PSD shows that low and high frequencies are retrieved, despite
ringing artifacts in the case of CDL.

In the case of Plug-and-Play, we train a DnCNN to recover noisy images from the dataset
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Figure 3.7: SNR depending on the size of the blur in the full space, kernel space, and range
space of the blur operator for reconstruction methods based on CDL, DIP, TV, and wavelets
for a 256 × 256 grey-level image (top), and for PnP based reconstruction on 160 × 160
grey-level images (bottom) with a SNR of 20db. This time, unsupervised prior learning
methods fail to recover information in the kernel space. More surprisingly, supervised PnP
and CDL also struggle in the kernel space.

Imagenette1 and plug it into an iterative reconstruction algorithm. In the unsupervised
case, the denoiser learns how to recover degraded images, as explained above. The results
are shown in Figure 3.4 for SNR=20dB. When the noise is low, i.e., SNR≥ 20, and when the
rate of missing pixels stays below 50%, unsupervised and supervised PnP leads to similar
performance levels in terms of PSNR. As for the single image example, unsupervised PnP
can generalize what is learned in the range space of A to the kernel space and performs
closely to its supervised counterpart as long as the rate of masked pixels is not too large.

The pitfall of convolutions in deblurring.

Convolutions work well when all frequencies are preserved, as shown for inpainting. How-
ever, several inverse problems involve recovering a signal with missing frequencies. In
super-resolution, all odd frequencies lack in the signal. In deblurring, the signal is observed
after degradation by a low-pass filter. Unsupervised prior learning becomes troublesome
in these cases, as mentioned in Tachella et al. [2022]. We will focus on the example of
deblurring in the following.

The CDL problem can be re-written in terms of Fourier transforms with the Parseval
equality

min
zk,dk

1

2
∥Â
∑
k

d̂kẑk − Ŷ ∥22 + λ
∑
k

∥zk∥1 . (3.22)

As the spectrum Â is low-pass, nothing is observed in high frequencies. Thus, optimal
dictionaries contain atoms (dk)k with high frequencies set to 0, for the same reason as
pointed out in Proposition 3.1.1.

For a blurred image, Figure 3.8 displays its reconstructions and their PSD for various
methods and Figure 3.7 their performances for various blur sizes in the kernel and range

1The data are available at https://github.com/fastai/imagenette
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Original Observation CDL DIP Wavelets TV

Figure 3.8: In a noiseless scenario, reconstruction and PSD of a 256 × 256 RGB image
blurred by a gaussian kernel. PSNR: CDL 31.9dB, DIP 31.7dB, Wavelets 34.6dB, TV
32.7dB. The PSD clearly shows that nothing is learned in high frequencies compared to
what was obtained in inpainting.

spaces. These results show that neither CDL nor DIP can recover information outside
the span of the blur, i.e., in high frequencies. While CDL puts all high frequencies to 0,
DIP adds noise. The same phenomenon appears with PnP: there is a performance gap
between supervised and unsupervised learning in the kernel, and generalization from the
range space to the kernel space is impossible.

3.3 . Unrolled dictionary learning in unsupervised inverse problems

In section 2.1, the study on gradient estimation in unrolled dictionary learning highlighted
that Unrolling may only be helpful in early iterations. However, the performances criti-
cally depend on the optimization problem and evaluating the differences between Analysis
and Synthesis in the framework of unrolled algorithms is of interest. Here, we empiri-
cally compare both formulations for dictionary learning in inverse problems without access
to ground truth data regarding dictionary recovery, reconstruction quality, and objective
function behavior. We aim to study whether Unrolling allows to learn a dictionary and
recover the signal with either Analysis or Synthesis, within the limits described above.

Unrolling Analysis.

As opposed to Synthesis, Analysis supposes the existence of a transform Γ⊤, which changes
the signal into a sparse representation. The optimization problem corresponding to Anal-
ysis is

min
X∈Rn×T ,Γ∈CA

FA(X,Γ) ≜
1

2
∥AX − Y ∥22 + λ∥Γ⊤X∥1 , (3.23)

where CA is the set of constraint and λ is a regularization hyperparameter. As a reminder,
Synthesis consists of learning D in a set of constraints CS by solving

min
Z∈RL×T ,D∈CS

FS(X,D) ≜
1

2
∥ADZ − Y ∥22 + λ∥Z∥1 . (3.24)

Moreover, all the results on gradient estimation given in section 2.1 remain valid in the
case of inverse problems where A ̸= I. As a matter of fact, Corollary 3.3.1 emphasizes that
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there is no difference between the convergence behavior of the Jacobian with and without
A.

Corollary 3.3.1. Let Dl be row l of D. At iteration N of ISTA, the Jacobian of
zN+1(AD) with respect to Dl can be written as a function of (J iN+1(AD))1≤i≤m where
J iN+1(AD) is the Jacobian of row i of AD computed in Theorem 2.2.1:

∂(zN+1(AD))

∂Dl
=

m∑
i=1

Ai,lJ
i
N+1(AD)

The Jacobian of zN+1(AD) converges at the same speed as (J iN+1(AD))1≤i≤m.

Proof 3.3.1

zN+1(AD) can be written as a function of all rows of AD:

zN+1(AD) = zN+1((AD)1, . . . , (AD)L) (3.25)

Then the chain rule can be applied as follows:

∂zN+1(AD)

∂Dl
=

L∑
i=1

∂(AD)i
∂Dl

∂zN+1((AD)1, . . . , (AD)L)

∂xi
(3.26)

=
L∑
i=1

Ai,l
∂zN+1((AD)1, . . . , (AD)L)

∂xi
(3.27)

=

L∑
i=1

Ai,lJ
i
N+1(AD) (3.28)

Analysis can be written as a bi-level optimization problem on the same principle as Syn-
thesis in section 2.1

min
Γ∈CA

GA(Γ) ≜ FA(X
∗(Γ),Γ) with X∗(Γ) = argmin

X∈Rn×T

FA(X,Γ) . (3.29)

Several algorithms have been proposed in the literature to solve the inner problem, i.e., to
compute X∗(Γ). In particular, Lasso-based Analysis is a particular case of a more general
problem

min
x
f(Ax) + g(Γ⊤x) , (3.30)

with f convex differentiable and g convex non smooth. Equation 3.30 has been largely
studied in the literature in the past years, and several algorithms have been proposed to
solve it efficiently [Condat et al., 2019]. In this work, we chose to unroll the algorithm
referred to as Condat-Vu algorithm [Condat, 2013, Vu, 2013], which is a primal-dual split-
ting algorithm. We describe it in Algorithm 4. As for Synthesis, the idea is to replace
X∗(Γ) by an approximation XN (Γ) given by N iterations of Condat-Vu, then compute the
gradient of FA(XN (Γ),Γ) with respect to Γ with automatic differentiation and minimize
the loss by gradient descent. We will refer to this architecture as Deep Primal-Dual Prior
Learning (DPDPL). This network is similar to the one proposed in Jiu and Pustelnik [2021]
for supervised image reconstruction.
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Algorithm 4 Condat-Vu
1: y, A, Γ, λ, N
2: (τ , σ) s.t. 1

τ
− σ∥Γ⊤∥2 ≥ ∥A∥2

2

3: p0 = 0, d0 = 0, n = 0
4: while n < N do
5: pn+1 ← pN − τA⊤(ApN − y)− τΓdN
6: dn+1 ← proxσλ(∥·∥∗1)(dN + σΓ⊤(2pn+1 − pN))
7: n← n+ 1
8: end while

Optimization and steps sizes learning.

We aim to compare the ability of Analysis and Synthesis to learn Γ and D, respectively.
We focus on three constraints: Unit Norm, Convolutions, and Unit Norm Tight Frame.
For UN and Conv+UN, the optimization is performed with projected gradient descent,
and matrix multiplications are replaced with convolutions in PyTorch when necessary. For
UNTF, the new point on the manifold is computed with a Cayley transform [Wen and
Yin, 2013, Li et al., 2017]. We rely on full-batch gradient descent and line search for the
sake of precision and robustness of our experiments, as done in [Ablin et al., 2019].

As stated before, we learn the dictionary and the step sizes in two steps to compensate for
the imprecise resolution of the inner problem.

1. We learn the dictionary with fixed step sizes given by convergence conditions. For
Synthesis, the step size is equal to 1

L where L = ∥AD∥2. For Analysis, we take
σ = 1 and τ = 1

1
2
∥A∥2+σ∥Γ⊤∥2 . Lipschitz constants are computed at each gradient

step outside the network graph’s scope.

2. Then, once convergence is reached, we jointly learn the step sizes and the dictionary.
Both are still updated using gradient descent with line search to ensure stable opti-
mization. This improves the convergence of the networks toward Z∗

N (D) or X∗
N (Γ).

Reconstruction on real data.

To illustrate the performance of unrolled algorithms for dictionary learning, we consider an
unsupervised inpainting task. The original image is degraded with additive Gaussian noise
to get a SNR of 10dB, and then a fraction of its pixels are randomly removed. We learn
dictionaries and recover the image with unrolled algorithms using 20 iterations of FISTA
or Condat-Vu. For UN and UNTF, the image is decomposed into patches, while convolu-
tions can be applied directly to the whole image. Figure 3.9 displays the best results for
each method. Synthesis-based methods achieve better image reconstruction compared to
their Analysis counterpart. Convolutions improve the performances for Analysis, especially
with small kernels – size 4 in that case, compared to 10 for Synthesis – emphasizing the
importance of the selected constraints set. These results also demonstrate the ability of
Synthesis to recover a good dictionary in the case of compressed or lacking information.
Finally, Synthesis leads to more realistic reconstructions than TV-based methods. Fig-
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Figure 3.9: (top) Inpainting on a color image of size 200 × 200, with 50% lacking pixels.
Each RGB channel is processed separately. PSNR: Synthesis UN 33.4dB; Synthesis Conv
33.3dB; Analysis UNTF 29.6dB; Analysis Conv 30.8dB; TV 32.7 dB. (bottom) Shows
the maximal PSNR obtained for an inpainting task on a grayscale image of size 128 ×
128, depending on the dimension of the patches and the percentage of pixels removed.
Several values of λ and the number of atoms are evaluated for several runs. 20 iterations
are unrolled in this example. Synthesis and Analysis with UNTF constraint perform better
with large patches, while Analysis with convolutions is better conditioned with small kernels.
Synthesis performs better in general, even with a significant rate of lacking pixels.

ure 3.9 also provides additional results for a gray-level image with different rates of lacking
pixels and several patch dimensions. Analysis with convolutions seems to only work with
small kernels, whereas Synthesis leads to good performance with larger patches.

The ability of gradient descent to find adequate local minima strongly depends on the
structure of the problem. To quantify this, we evaluate the variation of PSNR depending
on the percentage of lacking pixels for 50 random initializations in the context of convo-
lutional dictionary learning. Figure 3.10 shows that Synthesis is more robust to random
initialization, and almost all local minima are similar in terms of reconstruction quality.
On the contrary, Analysis suffers from a significant number of poor local minima, and the
reconstruction quality highly depends on the initialization. We propose to study the loss
landscape for Analysis and Synthesis with the help of visualization techniques presented
in Li et al. [2018]. The 3D landscape is displayed in Figure 3.10 using the Python library
K3D-Jupyter2. We also compare the shapes of local minima in 1D by computing the nor-
malized values of the loss along a line between two local minima. These representations of
the loss landscape clearly show that Synthesis is much smoother than its Analysis coun-
terpart and the different minima have similar performances in this case. Synthesis locally
behaves like a convex function, while Analysis landscape is much steeper with poor local
minima.

Dictionary recovery on synthetic data.

We now evaluate the dictionary recovery performance of unrolled algorithms on synthetic

2Package available at https://github.com/K3D-tools/K3D-jupyter
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Figure 3.10: (top) PSNR depending on the rate of lacking pixels without noise (left) and
depending on the SNR (dB) with 50% pixels removed for 50 random initializations with
convolutions on a grayscale image of size 128 ×. (bottom) Loss landscapes in 1D and 2D.
Analysis (center) is poorly conditioned compared to Synthesis (right) and suffers from bad
local minima due to its high sensitivity to initialization.
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Figure 3.11: Dictionary recovery in the context of denoising depends on the SNR and the
dimension of y. DPDPL performs well only with the UNTF constraint when the dictionary
is almost square.

data. For Synthesis, a sparse code z is drawn from a Bernoulli Gaussian distribution of
mean 0, variance σ2, and Bernoulli parameter p. The signal is computed as Drefz. For
Analysis, we adopt the data generation process proposed in Elad et al. [2007]. The sparsity
s of the signal is drawn from a Bernoulli distribution of parameter p, and L − s rows of
Γ⊤
ref are chosen such that the corresponding sub-matrix is full-rank.

The generated signal is u− (Γ⊤
ref )

†Γrefu with u ∼ N (0, σ2).

• Denoising. The data are generated with a UNTF dictionary of 50 atoms. We com-
pare the maximal score for several values of λ and depth (between 5 and 50 iterations)
depending on the Signal to Noise Ratio (SNR) and the dimension of the observation.
The SNR is defined as 10 log10(

σ2

σ2
b
) where σ2b is the variance of the noise. We assume

that the number of atoms is known, and the results are provided in Figure 3.11. DDL
behaves like standard Dictionary Learning, implemented in scikit-learn [Pedregosa
et al., 2012]. The experiment confirms that UN does not work. Moreover, UNTF
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Original 50% pixels removed CDL TV

Figure 3.12: Inpainting task on a noisy image generated using seven letters {J, M, L, R}
with 50% of pixels removed. DDL recovers a dictionary (left) and the image (right).

works only when the measurement dimension is close to the dimension of the signal
and for a large SNR.

• Compressed sensing. The data are generated with an orthogonal dictionary of size
50 in a compressed sensing scenario. The results are presented in Table 3.1. DDL
outperforms DPDPL, especially when the size of the measurements decreases. Anal-
ysis seems poorly conditioned compared to Synthesis, and the UNTF constraint is
not sufficient to recover the orthogonal prior. Compared to other regularization
techniques in inverse problems, the main interest of dictionary learning is to provide
meaningful insights into the data. This can be achieved with the method studied in
this paper, but the results depend on the structure of the data.

Convolutional dictionary learning with Synthesis.

We generate a text image from four letters {J, M, L, R}, and degrade it by removing pixels
and adding noise. We compare the quality of reconstruction of TV and DDL in Figure 3.12,
for a dictionary of 30 atoms of size 20 × 20. TV cannot adapt to the structure of the data,
while DDL with convolutions learns a dictionary of patterns from the measurements and
recovers the image simultaneously. The quality of the recovery highly depends on the
amount of available information. Figure 3.13 (left) shows the average recovery score of
CDL with initialization from patches of the image. The dictionary can be well-recovered
for a large fraction of missing pixels, given that the SNR is reasonable.

Convolutional dictionary learning with Analysis.

Analysis is not adapted to recover patterns but can be applied to signals generated from
recurrent relations such as Partial Differential Equations (PDEs) as done in auto-regressive
models or textures. For instance, Analysis has been used in Kitić et al. [2015] to regularize
inverse problems involving physical signals with PDEs. In fact, a discrete scheme from an
ODE is equivalent to a convolution. Let’s consider the function x : t→ A sin(ωt). It satis-
fies ẍ+ω2x = 0, and the associated Euler discretization is xn+1+(dt2ω2−2)xn+xn−1 = 0,

Table 3.1: Orthogonal dictionary recovery for compressed sensing with SNR = 20dB

Algo dim. y = 50 dim. y = 40 dim. y = 30 dim. y = 20 dim. y = 10
DDL 0.98 0.89 0.76 0.61 0.36

DPDPL 0.96 0.78 0.57 0.43 0.37
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Figure 3.13: Average recovery score in Deep CDL depending VS SNR (dB) and rate of
lacking pixels (%) (left). MSE(f0, fCPL) VS sampling rate (Hz) and signal frequency (Hz)
(right).

where dt is the step size. In Figure 3.13, we measure the ability of convolutional dictionary
learning with Analysis to recover a filter close to [1, dt2ω2−2, 1], which corresponds to this
discretization, by estimating the frequency fCPL = ω

2π given noisy data. The algorithm is
successful when the sampling rate is high enough. However, the question of kernel identifi-
ability arises: while the algorithm denoises the signal, it fails to recover meaningful kernels
in 2D without additional constraints.

Conclusion

Prior knowledge of the signal plays a key role in inverse problems resolution, especially
without access to ground truth data. In the context of unsupervised inverse problems, this
work showed that prior learning techniques, as Dictionary Learning, achieve good results
only with multiple operators or appropriate constraints in the model. When the operator
is too ill-conditioned, which is typically the case in deblurring, the prior knowledge should
compensate for the lack of information, and exclusively relying on convolutions is not
enough.

Moreover, even though unrolled algorithms perform well on various kinds of inverse prob-
lems with a small number of layers or iterations, their behavior highly depends on the
structure of the optimization problem they solve.
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Chapter 4

A study of Plug and Play with Unrolling for inverse

problems

This work was carried out in collaboration with Audrey Repetti, with the help of Mathieu
Dagréou.

A common approach to solve linear inverse problems is to define the solution X⋆ to be a
minimizer of a penalized least squares objective, i.e., to find

X⋆ ∈ argmin
X∈RN

1

2
∥AX − Y ∥2 + p(X), (4.1)

where p : RN → (−∞,+∞] is a convex, lower semi-continuous, proper function, corre-
sponding to a penalization term, incorporating prior information on the target image. In
particular, methods to efficiently summarize the observations structure by leveraging spar-
sity have been extensively studied [Elad, 2010b]. In this case, the prior p may be taken
as a regularization term which promotes sparsity of the signal in a well-chosen representa-
tion space. For instance, this function may involve Fourier or Wavelet transforms [Mallat,
2008] or regularizations based on Total Variation [Chambolle et al., 2010]. However, mod-
ern resolution approaches rely on prior learning, i.e. learning the structure of the signal
from a clean dataset in a supervised setting. One successful way to do so is to rely on
Plug-and-Play algorithms.

A standard method to solve Equation 4.1 is to use a forward-backward (FB) algorithm
– also known as proximal gradient descent [Combettes and Wajs, 2005]. This scheme
alternates at each iteration between a gradient step on the differentiable least squares
function, and a proximal step on the non-smooth function p. This algorithm reads

for k = 0, 1, . . .⌊
Xk+1 = proxτkp

(
Xk − τkA∗(AXk − Y )

)
,

(4.2)

where, for every k ∈ N, τk > 0 is a step size parameter, A∗ denotes the adjoint operator of
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A, and proxp denotes the proximity operator of p defined as

(∀V ∈ RN ) proxp(V ) = argmin
X∈RN

p(X) +
1

2
∥X − V ∥2. (4.3)

An important comment is that that the proximity operator of p can be interpreted as a
maximum a posteriori estimate for a Gaussian denoising problem. Leveraging this fact,
multiple works in the past decades have proposed to replace proximity operators related to
penalization terms by more powerful denoisers, leading to plug-and-play (PnP) techniques
[Brifman et al., 2016]. Among these works, we can distinguish PnP involving hand-crafted
priors (e.g., BM3D [Dabov et al., 2009]), and learned priors such as neural networks [Chan
et al., 2016, Romano et al., 2017, Rick Chang et al., 2017] denoisers. In this context, the
PnP version of Equation 4.2, dubbed FB-PnP, can be rewritten as

for k = 0, 1, . . .⌊
Xk+1 = fθ

(
Xk − τkA∗(AXk − Y )

)
,

(4.4)

where fθ : RN → RN is a good denoiser. The main challenge of building fθ is to find a
trade-off between convergence of the algorithm, to guarantee that it produces a converging
sequence of estimates (Xk)k∈N, and reconstruction performance. Thus, finding guarantees
on denoisers is a central problem in the literature [Ryu et al., 2019].

Analysis and Synthesis dictionaries have been widely used in signal processing and inverse
problems in the past decades due to their ability to provide simple representations of
a family of signals. Recently, it has been proposed in Repetti et al. [2022] to define
the operator fθ in Equation 4.4 as an unrolled proximal algorithm designed to solve the
Analysis formulation, i.e. Equation 1.16. This technique has been shown to perform at
least as well as FB-PnP algorithms involving advanced denoising networks, while reducing
drastically the number of learned parameters. For instance, compared to classical DnCNN
architectures Zhang et al. [2017], the proposed unfolded proximal network has 20 times
less learnable parameters, while comparing to DRU-Net architectures Zhang et al. [2021],
it has 400 times less parameters. In terms of reconstruction quality, the FB-PnP algorithm
with unfolded proximal network outperformed the FB-PnP with DnCNN for deconvolution
problems, and performed as well as using a DRU-Net.

The approach adopted in Repetti et al. [2022] aims to build a denoiser fθ such that fθ(V ) ≈
X⋆, where X⋆ ∈ RN is an estimate of an original unknown image X ∈ RN from a noisy
observation V = X+υW , for υ > 0 and W ∈ RN a realization of an i.i.d. standard normal
random variable. As explained in the previous section, a standard approach to obtain such
an estimate is to rely on the proximity operator as defined in Equation 4.3. Hence, we can
define

fθ(V ) ≈ proxp(V ) , (4.5)

where p is an Analysis sparsity prior, i.e.

(∀X ∈ RN ) p(X) = λg(Γ∗X) , (4.6)

where λ > 0 is a regularization parameter, Γ∗ : RN → RS a sparsifying linear operator,
and g : RS → (−∞,+∞] is a convex, lower semi-continuous, proper function (e.g., an ℓ1
norm). Let V be an input image to denoise. Repetti et al. [2022] propose a denoiser fθ
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which is built by unrolling N iterations of a dual FB algorithm [Combettes and Pesquet,
2011], as follows

for ℓ = 0, . . . , L− 1,⌊
Uℓ+1 = (I − proxλσ−1

ℓ g)
(
Uℓ + Γℓ,θ

∗(V − σℓΓℓ,θUℓ)
)

fL,θ(V ) = V − σLΓL,θUL ,

(4.7)

where for every l ∈ N, σl > 0 is a step size parameter. The main interest of this approach
lies in the convergence properties of the denoiser. As a matter of fact, when the (Γℓ,θ)1≤ℓ≤L
are the same for every ℓ and L tends to infinity, the left and right terms in Equation 4.5
are equal. Indeed, we can deduce the following convergence result from Combettes and
Pesquet [2011].

Let V ∈ RN , and L ∈ N∗. Let (Uℓ)1≤ℓ≤L be generated by Equation 4.7 where, for every
ℓ ∈ {1, . . . , L}, Γℓ,θ = Γθ : RS → RN is a linear operator, and σℓ ∈

(
0, 2/∥Γθ∥2

)
. Then

proxp(V ) = lim
L→∞

fL,θ(V ) = lim
L→∞

V − σΓθUL. (4.8)

Thus, the Plug and Play algorithm converges toward a fixed point.

Unrolled Sparse Coding as a denoiser in Plug-and-Play. The unfolded net-
work described above is built on an iterative algorithm which solves the convex minimiza-
tion problem

min
X∈RN

1

2
∥X − V ∥2 + λg(Γ∗X) , (4.9)

where V ∈ RN is a noisy observation of an original unknown signal X ∈ RN . The problem
described in Equation 4.9 corresponds to the Analysis formulation, and involves the usage
of a linear operator Γ, also known as a (sparsifying) dictionary. Such a prior assumes
that there exists a forward transform Γ: RS → RN , which makes the signal sparse. In
the case where the dictionary Γ does not change over the layers of the unfolded network,
the denoising operator fθ corresponds to an iterative algorithm which approximates the
proximal operator of p(X) = λg(Γ∗X).

On the same principle, it is possible to replace the denoiser built from the Analysis formu-
lation by a denoiser built from the Synthesis formulation. This time, the unfolded network
is inspired from a proximal gradient descent that solves

min
Z∈RS

1

2
∥DZ − V ∥22 + λg(Z) . (4.10)

In other words, the goal is to recover sparse codes Z ∈ RS from a dictionary D ∈ RN×S .
Then, if Z∗ is a solution to the problem described in Equation 4.10, X∗ = DZ∗ corresponds
to an estimate of X given V . As before, the denoiser fθ is parameterized by a dictionary
D, and solves the denoising problem with a few iterations of an iterative algorithm.

Taking fθ as an unrolled sparse coding algorithm (Synthesis), or a dual forward backward
algorithm (Analysis), it is possible to learn either one or several dictionaries in order to
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denoise the data in a supervised setting. Concretely, given a set of clean data (Xi)1≤i≤NX
,

the unrolled network fθ is trained by solving the minimization problem

min
θ

1

NX

NX∑
i=1

L(fθ(Xi + ϵi), Xi) , (4.11)

where (ϵi)1≤i≤NX
is a set of noises, and L is a loss function. In this case θ corresponds to

the dictionary or dictionaries to be learned. Then, the unrolled network can be plugged in
an iterative algorithm to solve an inverse problem, as done by Repetti et al. [2022].

Contributions of chapter 4. Besides reconstruction performance, the interest of
Plug-and-Play algorithms is to find mathematical guarantees on their convergence behav-
iors and on the set of solutions. In particular, the usage of approximate proximal operators
and unrolled algorithms in Repetti et al. [2022] is motivated by the fact that we can explain
why the algorithm converges – as described in Equation 4.8 – and why this particular kind
of architectures works well in practice on natural signals, by making use of the literature
on Dictionary Learning and proximal algorithms.

Analysis and Synthesis Dictionary Learning and sparse coding have been extensively stud-
ied in the last 20 years, from optimization algorithms to reconstruction properties. In this
paper, we develop ideas to bridge the gap between unrolled denoisers in Plug and Play and
the literature on sparse coding for inverse problems.

More specifically, we first study to what extent Dictionary Learning and sparse coding, be-
ing Synthesis or Analysis, are well-suited as denoising techniques in Plug-and-Play. Then,
we show that there is a strong link between modern Plug-and-Play algorithms leveraging
unfolded networks and classical optimization approaches based on Dictionary Learning.
Finally, we present numerical results highlighting the good trade-off between convergence
guarantees and reconstruction performance.

4.1 . Why denoisers based on Dictionary Learning are adapted to Plug-
and-Play

Plug-and-Play algorithms were designed from the observation that iterative optimization
schemes involving proximal gradient descent perform well in inverse problem resolution.
Let fθ be a denoising operator, the related PnP algorithm reads

for k = 0, 1, . . .⌊
Xk+1 = fθ

(
Xk − τkA∗(AXk − Y )

)
.

(4.12)

Classical resolution methods rely on proximal operators of well-chosen regularization func-
tions p and on proximal gradient descent – also called forward backward algorithms. In
particular, proximal operators of functions involving sparsifying regularizations have been
widely used in signal processing, for instance with Total Variation or Analysis dictionaries
combined to the ℓ1 norm. These methods are related to Plug-and-Play algorithms in the
sense that they correspond to taking fθ = proxp, where p is the penalization contained in
the loss. In this specific case where the denoiser fθ is not learned from data but built from
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expert knowledge on the signal, PnP just reduces to a proximal gradient descent, i.e.

for k = 0, 1, . . .⌊
Xk+1 = proxp

(
Xk − τkA∗(AXk − Y )

)
.

(4.13)

PnP algorithms output converging sequences (Xk)k∈N if the denoiser fθ is firmly non
expansive, i.e. when for all x, y ∈ RN

∥fθ(x)− fθ(y)∥ ≤ ⟨(x− y), (fθ(x)− fθ(y))⟩ , (4.14)

as a consequence of fixed point theory [Bauschke et al., 2011]. Thus, denoisers that verify
this property lead to convergence of the algorithm. As proximal operators are known to
be firmly non expansive, they happen to be operators of choice for obtaining good results.

Analysis. Going back to Analysis Dictionary Learning, solving the sparse coding op-
timization problem described is equivalent to computing the proximal operator of the
regularization function p(X) = λg(Γ∗X) = gλ(Γ

∗X). Thus, for every dictionary Γ, includ-
ing ones that are learned from data, the denoising operator that consists of finding the
minimum of the Analysis optimization problem is a proximal operator.

Proposition 4.1.1. Let Γ ∈ RN×M , and let fΓ be the Analysis denoising operator param-
eterized by the dictionary Γ. Then fAΓ is a proximal operator, i.e.

fAΓ (V ) = argmin
X∈RN

1

2
∥X − V ∥2 + gλ(Γ

∗X)

= proxgλ(Γ∗·)(V ) ,

and the related PnP algorithm

for k = 0, 1, . . .⌊
Xk+1 = proxgλ(Γ∗·)

(
Xk − τkA∗(AXk − Y )

)
produces a converging sequence.

Proof 4.1.1

Immediate from the definition of the prox.

The result from Proposition 4.1.1, which is a result of the study of proximal operators
[Bauschke et al., 2011], shows that once we have access to a proper Analysis dictionary Γ,
then the denoising procedure based on the Analysis formulation is a good candidate to be
plugged in PnP algorithms. We now present a new result which establishes that the same
is true for Synthesis.

Synthesis. As opposed to its Analysis counterpart, Synthesis sparse coding can’t be
directly expressed as a proximal operator, but we show here that it is. Given a dictio-
nary D ∈ RM×N , the idea of Synthesis is first to compute a decomposition – also called
sparse codes – V ∗ in the redundant basis induced by D, and then recover the signal with
the product X∗ = DV ∗. To prove our results, we rely on the notion of Fenchel convex
conjugate. We recall its definition in what follows.
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Definition. Let E be a euclidean vector space with inner product denoted ⟨·, ·⟩. Let f :
E 7→ R ∪ {−∞,∞} be a function defined on E and taking values on the extended real line.
The convex conjugate (or Fenchel conjugate) denoted f∗ is defined as

f∗(y) = sup
x∈E

(
⟨y, x⟩ − f(x)

)
.

Then we show in Proposition 4.1.2 that the denoising procedure based on Synthesis actually
corresponds to a proximal operator.

Proposition 4.1.2. Let D ∈ RM×N , and let fSD be the Synthesis denoising operator parme-
terized by the dictionary D. Then fSD is a proximal operator, i.e.

fSD(V ) = D argmin
Z∈RS

1

2
∥DZ − V ∥2 + gλ(Z)

= prox(g∗λ◦D∗)∗(V ) ,

and the related PnP algorithm

for k = 0, 1, . . .⌊
Xk+1 = prox(g∗λ◦D∗)∗

(
Xk − τkA∗(AXk − Y )

)
produces a converging sequence.

Proof 4.1.2

Let V ∗ = DZ∗ where
Z∗ = argmin

Z∈RS

1

2
∥V −DZ∥22 + λg(Z) . (4.15)

The associated dual problem to Equation 4.15 reads (Fenchel Rockafellar)

U∗ = argmin
U∈RN

1

2
∥V − U∥22 + (λg)∗(D∗U) = prox(λg)∗◦D∗(V ) . (4.16)

In addition we have [Bauschke et al., 2011][Theorem 19.1]

−U∗ ∈ ∂ 1
2
∥V−·∥22

(DZ∗) = {DZ∗ − V } . (4.17)

Therefore, Moreau’s identity leads to

V ∗ = DZ∗ = (I − prox(λg)∗◦D∗)(V ) = prox((λg)∗◦D∗)∗(V ) . (4.18)

The convergence of the sequence (Xk)k∈N is then obtained using results from Bauschke
et al. [2011].

Proposition 4.1.2 shows that the process combining Synthesis sparse coding to compute Z
and the signal reconstruction obtained with the product DZ actually corresponds to the
proximal operator of the function (g∗λ ◦D∗)∗. Thus, plugging it into a PnP algorithm for
reconstruction produces a converging sequence. As an example, let’s consider the case of
the Lasso, i.e. gλ = λ∥·∥1. We have (g∗λ◦D∗)∗ = ι∗Fλ(D) where Fλ(D) = {x | ∥D∗x∥∞ ≤ λ}
is a convex polytope. Note that this result is only true when considering the whole process,
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as Synthesis sparse coding alone does not correspond to a proximal operator.

For now, we highlighted that both Analysis and Synthesis denoisers are actually proximal
operators and that this is why they are well-suited to be used in a Plug and Play algorithm.
The main challenge is that the evaluation of these particular proximal operators – for which
we do not have access to a closed-form – requires iterative optimization schemes that may
take a long time to converge. This is why a recent line of work is turning to unfolded
networks, for which the denoising procedure only takes a few iterations. Thus, the question
we address in the following is: to what extent are PnP algorithms with unfolded networks
based on Dictionary Learning linked to classical methods for inverse problems resolution ?

4.2 . Unrolled dictionary learning for Plug and Play algorithms

In this section, we propose to study the behavior of unrolled algorithms that solve Equa-
tion 4.9 and Equation 4.10 when used as denoisers plugged in the PnP-FB algorithm. Let
X ∈ RN be an original unknown image, and V = X + υW be a noisy observation of it,
where υ > 0 and W ∈ RN is a realization of an i.i.d. standard normal random variable.
We aim to build a denoiser fθ such that fθ(V ) ≈ X⋆, where X⋆ ∈ RN is an estimate of
X. We will do so based either on the algorithm that solves the Analysis formulation from
Equation 4.9 or on the one that solves the Synthesis formulation from Equation 4.10.

Analysis. We first focus on Analysis, and build an operator fAL,λ corresponding to an
unfolded iterative scheme used to approximate the proximal operator proxp where p =

λg ◦ Γ∗. In our notation, we drop index θ representing the learned parameters – the
dictionary Γ in our case – and instead we make fAL,λ dependent on the regularization
parameter λ. As previously mentioned, such a denoiser can be built by unrolling a fixed
number L ∈ N∗ of dual-FB iterations

let U0 ∈ RS ,

for ℓ = 0, . . . , L− 1,⌊
Uℓ+1 = proxσ(λg)∗

(
Uℓ + σΓ∗(V − ΓUℓ)

)
fAL,λ(V,U0) = V − ΓUL,

(4.19)

where σ > 0.

In the following proposition, we show that the operator fAL,λ defined in Equation 4.19 can
be formulated as a feed-forward network.
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Proposition 4.2.1. Let L ∈ N∗, σ > 0, and

f̃AL,λ : RS × RN → RS × RN

be the operator defined as L compositions of operator

Aλ : RS × RN → RS × RN

(U, V ) 7→ proxσ(λg)∗
((
I − σΓ∗Γ

)
U + σΓ∗V

)
.

Let (V,U0) ∈ RS × RN . Then fAL,λ(V,U0) = V − Γf̃AL,λ(V,U0), where fAL,λ is defined
in Equation 4.19.

Proof 4.2.1

Directly obtained by reformulation of Equation 4.19.

Note that that this operator converges toward the proximal map proxλg, as described in
Equation 4.8. In particular, we can deduce the following result regarding the convergence
of this algorithm toward a solution to the Analysis formulation.

Corollary 4.2.2. Let (Uℓ)1≤ℓ≤L be generated by Equation 4.19, for L ∈ N∗ and σ ∈(
0, 2/∥Γ∥2

)
. Then, fAL,λ(V,U0) converges to a solution to

argmin
X∈RN

1

2
∥X − V ∥2 + gλ(Γ

∗X)

when L→ +∞, for any choice of Γ: RS → RN , λ > 0, and (V,U0) ∈ RN × RS.

Proof 4.2.2

Direct consequence of the result described in Equation 4.8.

When plugging fAL,λ into algorithm Equation 4.4, this leads to

for k = 0, 1, . . . Vk = Xk − τA∗(AXk − Y ),

Uk+1 = f̃AL,λτ (Uk, Vk),

Xk+1 = Vk − ΓUk+1,

(4.20)

where τ > 0 is the stepsize of the FB algorithm. Using results from Combettes and Wajs
[2005], we can show the following convergence result.

Theorem 4.2.3. Let (Xk)k∈N be generated by the algorithm in Equation 4.20, where
τ ∈

(
0, 2/∥A∥2

)
. Then (Xk)k∈N converges to a solution of

argmin
X∈RN

1

2
∥Y −AX∥2 + gλ(Γ

∗X)

when using fA∞,λ = limL→∞ fAL,λ.

Proof 4.2.3

When L→∞, the algorithm in Equation 4.20 reduces to a proximal gradient descent.
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These two results only hold when L→∞, i.e. if fAL,λ has an infinite number of layers. This
corresponds to the case where we have access to the true value of the proximal operator
related to Analysis, as explained in the previous section. In the context of deep dictionary
learning however, the number of layers is finite, and the network often comprises only a few
dozens of layers. We propose to investigate to what extent this impacts the convergence
and the nature of the final solution. Note that in Equation 4.20, the unrolled network
benefits from a warm restart on variable Uk. In Proposition 4.2.4, we show that unrolling
combined to warm restart of the dual variable enables Equation 4.20 to converge to a fix
point when L = 1.

Proposition 4.2.4. When L = 1, the algorithm described in Equation 4.20 converges to
a solution to

argmin
X∈RN

1

2
∥Y −AX∥2 + gλ(Γ

∗X) ,

given that σ < 2
∥Γ∥2 and τ < 1

∥A∥2 . More specifically, it produces a sequence (Xk, Uk)k∈N

that correspond to the sequence output by the algorithm described in Loris and Verhoeven
[2011][Section 6 (40)], i.e.

Ũk = prox(λg)∗ σ
τ

(
Ũk−1 +

σ

τ
Γ∗(Xk−1 − τA∗(AXk−1 − Y )− τΓŨk−1)

)
Xk = Xk−1 − τA∗(AXk−1 − Y )− τΓŨk ,

up to rescaling Ũk = 1
τUk.

Proof 4.2.4

We have

Xk = Vk−1 − ΓUk (4.21)

= Xk−1 − τA∗(AXk−1 − Y )− ΓUk (4.22)

and

Uk = proxσ(λτg)∗
(
Uk−1 − σΓ∗ΓUk−1 + σΓ∗Vk−1

)
(4.23)

= proxσ(λτg)∗
(
Uk−1 − σΓ∗ΓUk−1 + σΓ∗(Xk−1 − τA∗(AXk−1 − Y ))

)
(4.24)

= proxσ(λτg)∗
(
Uk−1 + σΓ∗(Xk−1 − τA∗(AXk−1 − Y )− ΓUk−1)

)
(4.25)

Thus the optimization scheme becomes

Uk = proxσ(λτg)∗
(
Uk−1 + σΓ∗(Xk−1 − τA∗(AXk−1 − Y )− ΓUk−1)

)
Xk = Xk−1 − τA∗(AXk−1 − Y )− ΓUk

(4.26)

Moreover, Moreau’s equality applied to a l.s.c function ϕ leads to [Combettes and Wajs,
2005][Section 2.5]

x = proxγϕ(x) + γ proxϕ∗
γ

(
x

γ
) , (4.27)

where γ > 0. Applying this result to ϕ = (λτg)∗ and γ = σ leads to

x = proxσ(λτg)∗(x) + σ proxλτg
σ
(
x

σ
) (4.28)

x

σ
=

1

σ
proxσ(λτg)∗(x) + proxλτg

σ
(
x

σ
) (4.29)
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On the same principle, applying this result to ϕ = λg and γ = τ
σ leads to

x = prox τ
σ
λg(x) +

τ

σ
prox(λg)∗ σ

τ
(x
σ

τ
) (4.30)

x

σ
= prox τ

σ
λg(

x

σ
) +

τ

σ
prox(λg)∗ σ

τ
(x

1

τ
) (4.31)

By combining these two equalities, we get that

prox τ
σ
λg(

x

σ
) +

τ

σ
prox(λg)∗ σ

τ
(x

1

τ
) =

1

σ
proxσ(λτg)∗(x) + proxλτg

σ
(
x

σ
) (4.32)

τ prox(λg)∗ σ
τ
(x

1

τ
) = proxσ(λτg)∗(x) (4.33)

Therefore, the optimization scheme leading to Uk can be formulated as follows

Uk = τ prox(λg)∗ σ
τ
(
1

τ
Uk−1 +

σ

τ
Γ∗(Xk−1 − τA∗(AXk−1 − Y )− ΓUk−1)) (4.34)

and with the change of variable Ũk = 1
τUk

Ũk = prox(λg)∗ σ
τ

(
Ũk−1 +

σ

τ
Γ∗(Xk−1 − τA∗(AXk−1 − Y )− τΓŨk−1)

)
Xk = Xk−1 − τA∗(AXk−1 − Y )− τΓŨk

(4.35)

which corresponds to the algorithm described in Loris and Verhoeven [2011][Section 6 (40)],
and produces a sequence (Xk, Uk)k∈N that converges to a solution of

argmin
X∈RN

1

2
∥Y −AX∥2 + gλ(Γ

∗X)

with σ < 2
∥Γ∥2 and τ < 1

∥A∥2 .
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Figure 4.1: Convergence of primal and dual
variables for different values of L. The num-
ber of layers does not change anything to the
result of the algorithm when the dictionary is
fixed.

Proposition 4.2.4 shows that taking L =

1 is equivalent to using a primal-dual al-
gorithm, namely the Loris-Verhoeven al-
gorithm introduced by Loris and Verho-
even [2011], and actually produces the
same sequence of iterates. Moreover, the
conditions on τ and σ are disjoint, as
opposed to other primal dual algorithms
like Chambolle-Pock [Chambolle and Pock,
2011] or Condat-Vu [Condat, 2013, Vu,
2013]. This fits well to a context where the
denoiser is trained independently from the
measurement operator A.

We conjecture that taking 1 < L < ∞ does not impact the convergence of the algorithm
and leads to the same result. As demonstrated in Figure 4.1, taking different values of L
does not change the nature of the solution with a fixed dictionary. Of course, training a
network with more or less iterations may lead to different dictionaries. In the following,
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we propose a proof of convergence in the case where 1 < L < ∞ for a more restrictive
scenario where the regularization function g is replaced by its Moreau envelope, making it
smooth.

Synthesis. Now, we aim to build an operator fSL,λ based on the Synthesis formulation,
given in Equation 4.10. First, we note that if g is proximable, then Equation 4.10 can
be solved with FB iterations. Hence, a denoiser can be built by unrolling a fixed number
L ∈ N∗ of FB iterations as follows

let Z0 ∈ RS ,

for ℓ = 0, . . . , L− 1,⌊
Zℓ+1 = proxλσg

(
Zℓ − σD∗(DZℓ − V )

)
fSL,λ(V,Z0) = DZL,

(4.36)

where σ > 0.

In the following proposition, we show that operator fSL,λ defined in Equation 4.36 can be
formulated as a feedforward network.

Proposition 4.2.5. Let L ∈ N∗, σ > 0, and

f̃SL,λ : RS × RN → RS × RN

be the operator defined as L compositions of operator

Bλ : RS × RN → RS × RN

(V,Z) 7→ proxλσg

((
I − σD∗D

)
Zℓ + σD∗V

)
.

Let (V,Z0) ∈ RS × RN . Then fSL,λ(V,Z0) = Df̃SL,λ(V,Z0), where fSL,λ is defined in Equa-
tion 4.36.

Proof 4.2.5

Directly obtained by reformulation of Equation 4.36.

First note that the operator Aλ defined for Analysis and the operator Bλ defined for
Synthesis have the same structure, except that A uses the Fenchel conjugate of g in the
prox, while B uses g. As for Analysis, we can deduce a convergence result when L tends
to infinity.

Corollary 4.2.6. Let (Zℓ)1≤ℓ≤L be generated by Equation 4.36, for L ∈ N∗ and σ ∈
(0, 1/∥D∥2). Then, fSL,λ(V,Z0) converges to a solution to the synthesis problem

D argmin
Z∈RS

1

2
∥DZ − V ∥2 + gλ(Z) ,

for any choice of D : RS → RN , λ > 0, and (V,Z0) ∈ RN × RS.

Proof 4.2.6

Consequence of convergence properties of Forward Backward algorithms.
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When plugging fSL,λ into algorithm Equation 4.4, this leads to

for k = 0, 1, . . . Vk = Xk − τA∗(AXk − Y ),

Zk+1 = f̃SL,λτ (Zk, Vk),

Xk+1 = DZk+1,

(4.37)

where τ > 0 is the stepsize of the FB algorithm.

As we showed in Proposition 4.1.2, when L → ∞, fSL,λ – which corresponds to denoising
with sparse coding and a Dictionary D – is actually a proximal operator. Indeed, when
L → ∞, the signal recovery process based on Dictionary Learning corresponds to the
proximal operator of the conjugate of g∗λ ◦ D∗. Thus, as for Analysis and according to
Combettes and Wajs [2005], we can deduce the following convergence result for Plug and
Pay based on Synthesis in an inverse problem context with measurement operator A.

Theorem 4.2.7. Let (Xk)k∈N be generated by the algorithm in Equation 4.37, where
τ ∈

(
0, 2/∥A∥2

)
. Then (Xk)k∈N converges to a solution to

argmin
X∈RN

1

2
∥AX − Y ∥2 + (g∗λ ◦D∗)∗(X) ,

when using fS∞,λ = limL→∞ fSL,λ.

Proof 4.2.7

We have that limL→∞ fSL,λ = prox(g∗λ◦D∗)∗ . Thus, the algorithm in Equation 4.37 reduces
to a proximal gradient descent.

This result emphasizes that it is actually possible to write the Synthesis optimization
problem that solves the inverse problem with the Analysis formulation, replacing p(X) =

λg(Γ∗X) by p(X) = (g∗λ◦D∗)∗(X). Once again, this behavior only holds when L→∞, i.e.,
if fSL,λ has an infinite number of layers, and we now study what happens in the case L <∞.
First, when the dictionary has been learned, the reconstruction problem is classically solved
by minimizing 1

2∥Y −ADZ∥
2
2 +λg(Z) over Z. This problem can be solved with FISTA or

any other sparse coding algorithm. For instance, the sparse codes Z can be obtained by
proximal gradient descent algorithm, as follows

∀t ∈ N Zt+1 = proxσλg
(
Zt − σD∗A∗(ADZt − Y ))

)
, (4.38)

and the signal reconstruction is then obtained with X = DZ. As demonstrated in Propo-
sition 4.1.2, the Plug and Play counterpart introduced in this work recovers the signal by
solving a problem of the form

argmin
X

1

2
∥Y −AX∥22 + (g∗λ ◦D∗)∗(X) . (4.39)

In Proposition 4.2.8, we show that these methods solve equivalent problems.
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Proposition 4.2.8. The two optimization problems

(i) D
(
argmin
Z∈RS

1

2
∥Y −ADZ∥22 + λg(Z)

)
(ii) argmin

X∈RN

1

2
∥Y −AX∥22 + (g∗λ ◦D∗)∗(X)

are equivalent.

Proof 4.2.8

Let f = 1
2∥A · −Y ∥

2
2, then problem (i) finds a minimizer Z⋆ of

f(DZ) + λg(Z) , (4.40)

and reconstruct the signal with DZ⋆. By strong duality [Bauschke et al., 2011][Proposition
15.22], we have that

inf
Z
f(DZ) + λg(Z) = sup

V

(
− (λg)∗(D∗V )− f∗(−V )

)
(4.41)

= sup
V

(
− ((λg)∗ ◦D∗)(V )− sup

X
⟨−V,X⟩ − 1

2
∥AX − Y ∥22

)
(4.42)

= sup
V

(
− ((λg)∗ ◦D∗)(V ) + inf

X
⟨V,X⟩+ 1

2
∥AX − Y ∥22

)
(4.43)

= inf
X

(1
2
∥AX − Y ∥22 + sup

V
⟨V,X⟩ − ((λg)∗ ◦D∗)(V )

)
(4.44)

= inf
X

1

2
∥AX − Y ∥22 + ((λg)∗ ◦D∗)∗(X) (4.45)

This shows that the values of the two problems minima are the same. Let’s now show
that when X⋆ is a minimizer of problem (ii), then X⋆ = DZ⋆ where Z⋆ is a solution of
problem (i), and when Z⋆ is a solution of problem (i), then DZ⋆ is a solution of problem
(ii). Observe that if we take a minimizer Z⋆ of problem (i), then we have

1

2
∥ADZ⋆ − Y ∥22 + ((λg)∗ ◦D∗)∗(DZ⋆) =

1

2
∥ADZ⋆ − Y ∥22 + sup

V
⟨V,DZ⋆⟩ − (λg)∗(D∗V )

(4.46)

=
1

2
∥ADZ⋆ − Y ∥22 + sup

V
⟨D∗V,Z⋆⟩ − (λg)∗(D∗V )

(4.47)

≤ 1

2
∥ADZ⋆ − Y ∥22 + sup

V
⟨V,Z⋆⟩ − (λg)∗(V )

(4.48)

≤ 1

2
∥ADZ⋆ − Y ∥22 + λg(Z⋆) (4.49)

≤ 1

2
∥AX⋆ − Y ∥22 + ((λg)∗ ◦D∗)∗(X⋆) (4.50)

where Equation 4.48 results from the fact that {D∗V ;V ∈ RN} ⊂ RN , and Equation 4.50
results from the equality in Equation 4.45. Thus, if Z⋆ is a solution of problem (i), then
DZ⋆ is a solution of problem (ii).
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Let us now consider the reverse implication, that if X⋆ is a solution of (ii), then there
exists Z⋆ a solution of (i) such that X⋆ = DZ⋆. If we assume that the component of X⋆

contained in Im(D)⊥ = kerD∗ is not 0, then

sup
V
⟨V,X⋆⟩ − ((λg)∗ ◦D∗)(V ) ≥ sup

V ∈kerD∗
⟨V,X⋆⟩ − (λg)∗(0) (4.51)

≥ ∞ . (4.52)

As the value of Equation 4.45 is finite, this would violate the optimality of X⋆, thus X⋆

is contained in the image of D, and there exists Z⋆X such that X⋆ = DZ⋆X . Moreover,
for bounded linear operators D and convex functions g, Bauschke et al. [2011][Proposition
13.21] show

(Dg)∗ = g∗ ◦D∗ , (4.53)

where Dg(X) = inf{g(Z) | DZ = X}. Thus, ((λg)∗ ◦D∗)∗ = (D(λg))∗∗ = D(λg) because
D(λg) is convex, and we have

1

2
∥AX⋆ − Y ∥22 + ((λg)∗ ◦D∗)∗(X⋆) =

1

2
∥AX⋆ − Y ∥22 + inf

Z
{λg(Z) | DZ = X⋆} (4.54)

= min
Z,X⋆=DZ

1

2
∥ADZ − Y ∥22 + λg(Z) . (4.55)

Taking Z⋆X a solution of Equation 4.55, we have

1

2
∥ADZ⋆X − Y ∥22 + λg(Z⋆X) =

1

2
∥AX⋆ − Y ∥22 + ((λg)∗ ◦D∗)∗(X⋆) (4.56)

=
1

2
∥ADZ⋆ − Y ∥22 + λg(Z⋆) . (4.57)

This shows that Z⋆X is a minimizer of problem (i) and this conclude the proof.

In particular, when g = λ∥ · ∥1 and denoting Fλ(D) = {x | ∥D∗x∥∞ ≤ λ},

(i) D
(
argmin

Z

1

2
∥Y −ADZ∥22 + λ∥Z∥1

)
(4.58)

(ii) argmin
X

1

2
∥Y −AX∥22 + ι∗Fλ(D)(X) (4.59)

are equivalent.

Proposition 4.2.8 shows that the classical resolution method based on sparse coding algo-
rithms with the operator AD and the optimization method based on the computation of
the prox operator described in Proposition 4.1.2 are equivalent. The following proposition
shows that taking L = 1 leads to the same solution as the one obtained with L =∞ in The-
orem 4.2.7. This result follows from the fact that solving problem (i) in Proposition 4.2.8
is equivalent to using the algorithm described in Equation 4.37 with fS1,λ.

Proposition 4.2.9. Solving (i) in Proposition 4.2.8 is equivalent to a Plug and Play
approach with fS1,τλ or with the quadratic approximation defined as

f̂Sτλ(Z0, V ) = D argmin
V

(1
2
∥V−DZ0∥22+(Z−Z0)

T (D∗(DZ0−V ))+
1

2σ
∥Z−Z0∥22+λτg(Z)

)
.
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Proof 4.2.9

Let f̂Sτλ be defined as

f̂Sτλ(Z0, V ) = D argmin
Z

(1
2
∥X −DZ0∥22 + (Z − Z0)

T (D∗(DZ0 − V ))

+
1

2σ
∥Z − Z0∥22 + λτg(Z)

)
(4.60)

= D proxλσg
(
Z0 − σD∗(DZ0 − V )

)
. (4.61)

This is equivalent to take L = 1 in the unrolled Synthesis algorithm, i.e. fS1,τλ = f̂Sτλ.
Then, the PnP algorithm reduces to

Zt+1 = proxλστg
(
Zt − σD∗(DZt − (Xt − τA∗(AXt − Y )))

)
(4.62)

= proxλστg
(
(I − σD∗D)Zt + σD∗(Xt − τA∗(AXt − Y ))

)
(4.63)

Xt+1 = DZt+1 . (4.64)

As Xt = DZt, we have

Zt+1 = proxλστg
(
(I − σD∗D)Zt + σD∗(Xt − τA∗(AXt − Y ))

)
(4.65)

= proxλστg
(
(I − σD∗D)Zt + σD∗DZt − στD∗A∗(ADZt − Y ))

)
(4.66)

= proxλστg
(
Zt − στD∗A∗(ADZt − Y ))

)
. (4.67)

Thus, this is equivalent to the proximal gradient descent algorithm for (i) in Proposi-
tion 4.2.8.
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Figure 4.2: Convergence of signal and sparse
code variables for different values of L in Syn-
thesis. The number of layers does not change
the convergence to the optimal solution X∗

when the dictionary is fixed/

As in the case of Analysis, Proposition 4.2.9
shows that unrolling one iteration is equiv-
alent to solving the problem with a classi-
cal sparse coding algorithm. Moreover, we
conjecture that taking 1 < L < ∞ leads
to the same result, as experimentally illus-
trated in Figure 4.2.

These results highlight that unfolded net-
works based on Analysis and Synthesis
combined to Plug-and-Play with warm
restart actually correspond to well-known
formulations of the reconstruction problem
in border cases, i.e. L = 1 and L → ∞,
and lead to the same results as classical op-
timization methods.

Bi-level optimization for approximate prox. When using Unrolling in Plug and
Play, the success of the algorithm relies on the convergence of the optimization scheme
with finite number L of layers/iterations. In particular, we proved in previous section that
the special case L = 1 allows to recover the same solution as for L → ∞. Here, we study
to what extent this result generalizes to other values of L, i.e. 1 < L < ∞. We focus on
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the following regularized version of the problem

min
x,u∈Rn

F (x, u) ≜ f(x) + g(u) +
1

2λ
∥x− u∥22 , (4.68)

where g(x) has been replaced by its (λ-)Moreau enveloppe minu g(u) +
1
2λ∥x − u∥

2
2. This

is equivalent to the problem

min
x
h(x) ≜ F (x, u(x)) s.t. u(x) = argmin

u
G(x, u) (4.69)

where G(x, u) = g(u) + 1
2λ∥x − u∥

2
2. In other words, u(x) = proxgλ(x), and this problem

is well-defined as this is strongly convex.

In practice, we often don’t have access to proxg. Hence, it is approximated with an iterative
algorithm ut+1 = A(ut, x) which produces a sequence (ut(x))t∈N that converges toward
u(x) when t→∞. Here, we study the behavior of the bi-level optimization scheme

xt+1 = xt − ρ∇xF (x, ut)
ut+1 = AL(ut, xt+1) .

(4.70)

Note that an important point here is that we restart the prox algorithm with the output
of the previous operator. In the following, we denote ut+1(x) = AL(ut, x), and we make
the hypothesis that

∀x ∈ Rn, ∀t ∈ N, ∥AL(ut(x), x)− u(x)∥2 ≤ τ(L)∥ut(x)− u(x)∥2 . (4.71)

Proposition 4.2.10. If L is chosen such that τ(L) < 1
2 , there exists ρ > 0 such that the

algorithm described in Equation 4.70 converges to a solution of Equation 4.68.

Proof 4.2.10

We have from the inequality ∥a+ b∥2 ≤ 2∥a− c∥2 + 2∥c− b∥2 that

∥ut+1 − u(xt+1)∥2 = ∥AL(ut(xt), xt+1)− u(xt+1)∥2 (4.72)

≤ τ(L)∥ut(xt)− u(xt+1)∥2 (4.73)

≤ 2τ(L)
(
∥ut − u(xt)∥2 + ∥u(xt)− u(xt+1)∥2

)
(4.74)

First, we use the fact that the prox is non-expansive and the gradient descent step xt+1 =

xt − ρ∇xF (xt, ut) to show that

∥u(xt)− u(xt+1)∥2 ≤ ∥xt − xt+1∥2 (4.75)

≤ ρ2∥∇xF (xt, ut)∥2 (4.76)
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Moreover,

h(xt+1) = h(xt − ρ∇xF (xt, ut)) (4.77)

≤ h(xt)− ρ⟨∇xF (xt, ut),∇h(xt)⟩+
Lh
2
ρ2∥∇xF (xt, ut)∥2 (4.78)

≤ h(xt)− ρ

2
∥∇xF (xt, ut)∥2 −

ρ

2
∥∇h(xt)∥2

+
ρ

2
∥∇xF (xt, ut)−∇h(xt)∥2 +

Lh
2
ρ2∥∇xF (xt, ut)∥2 (4.79)

≤ h(xt)− ρ

2
∥∇xh(xt)∥2 −

ρ

2
(1− Lhρ)∥∇xF (xt, ut)∥2

+
ρ

2
∥∇xF (xt, ut)−∇h(xt)∥2 (4.80)

and

∇xF (xt, ut)−∇h(xt) = ∇f(xt) +
1

λ
(xt − ut)−∇f(xt)− 1

λ
(xt − u(xt)) (4.81)

=
1

λ
(u(xt)− ut) (4.82)

thus

h(xt+1) ≤ h(xt)− ρ

2
∥∇xh(xt)∥2 −

ρ

2
(1− Lhρ)∥∇xF (xt, ut)∥2

+
ρ

2λ2
∥ut − u(xt)∥2 (4.83)

We define

Lt = h(xt) + ϕ∥ut − u(xt)∥2 . (4.84)

Then

Lt+1 − Lt = h(xt+1)− h(xt) + ϕ∥ut+1 − u(xt+1)∥2 − ϕ∥ut − u(xt)∥2 (4.85)

≤
(
− ρ

2
∥∇xh(xt)∥2 −

ρ

2
(1− Lhρ)∥∇xF (xt, ut)∥2 +

ρ

2λ2
∥ut − u(xt)∥2

)
+ ϕ∥ut+1 − u(xt+1)∥2 − ϕ∥ut − u(xt)∥2 (4.86)

≤
(
− ρ

2
∥∇xh(xt)∥2 −

ρ

2
(1− Lhρ)∥∇xF (xt, ut)∥2 +

ρ

2λ2
∥ut − u(xt)∥2

)
− ϕ(1− 2τ(L))∥ut − u(xt)∥2 + 2ϕρ2τ(L)∥∇xF (xt, ut)∥2 (4.87)

≤ −ρ
2
∥∇xh(xt)∥2

− ρ

2
(1− Lhρ− 4ρϕτ(L))∥∇xF (xt, ut)∥2

− (ϕ− 2ϕτ(L)− ρ

2λ2
)∥ut − u(xt)∥2

)
(4.88)

If ρ, ϕ verify

1− Lhρ− 4ϕρτ(L) ≥ 0
ρ

2λ2
+ 2ϕτ(L) ≤ ϕ

(4.89)
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and L sufficiently large so that τ(L) ≤ 1
2 , then

Lt+1 − Lt ≤ −ρ
2
∥∇xh(xt)∥2 (4.90)

i.e. (LT − L0) ≤ −ρ
2

T−1∑
i=0

∥∇h(xi)∥2 (4.91)

0 ≤
T−1∑
i=0

∥∇h(xi)∥2 ≤ 2L0

ρ
∀T ∈ N (4.92)

In this case, (∥∇h(xt)∥)t∈N converges toward 0. As h is strictly convex with continuous
gradient, the gradient vanishes at the minimum and (xt)t∈N converges toward the minimum
of h.

Proposition 4.2.10 shows that when L is sufficiently large to get τ(L) < 1
2 , then the

optimization scheme described in Equation 4.70 converges to a solution of the regularized
problem in Equation 4.68 for well-chosen values of ρ. In other words, taking the inexact
proximal operator and combining the PnP scheme to warm restart allows to solve smoothed
problems. We leave open the question of whether this result can be generalized to non-
smooth regularization functions, as we previously conjectured.

Moreover, it is not straightforward to estimate values of L for which the main assumption
∥AL(ut(x), x)− u(x)∥2 < 1

2∥u
t(x)− u(x)∥2 is true for all x ∈ Rn and for all t ∈ N. As an

example, if the algorithm that estimates the prox produces a sequence (ut)t∈N such that
G(x, ut+L) − G(x, u∗) ≤ C

L∥u
t − u∗∥22 where C is a constant that does not depend on x,

then we have ∥ut+L − u∗∥22 ≤ 2λC
L ∥u

t − u∗∥22 by ( 1λ)-strong convexity of G(x, ·). In this
case, L should be superior to 4λC to satisfy the hypothesis.

Reformulation of Analysis and Synthesis in the case of the Lasso. In the
special case of the Lasso, it is possible to reformulate Analysis and Synthesis PnP methods
to better show the similarities between then. Proposition 4.2.11 proposes a reformulation
of these two problems.

Proposition 4.2.11. Let FAλ (Γ) =
{
X | inf{∥Z∥∞ | ΓZ = X} ≤ λ

}
and FSλ (D) =

{X | ∥D∗X∥∞ ≤ λ}. Analysis and Synthesis can be written as

(Synthesis) argmin
X

max
X0∈FS

λ (D)

1

2
∥Y −AX∥22 + ⟨X,X0⟩

(Analysis) argmin
X

max
X0∈FA

λ (Γ)

1

2
∥Y −AX∥22 + ⟨X,X0⟩ ,

or equivalently, denoting B(0, λ) = {X | ∥X∥∞ ≤ λ},

(Synthesis) argmin
X

1

2
∥AX − Y ∥22 + (inf{ιB(0,λ)(Z) | Z = D∗X})∗

(Analysis) argmin
X

1

2
∥AX − Y ∥22 + (inf{ιB(0,λ)(U) | ΓU = X})∗ .
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Proof 4.2.11

Analysis solves

min
X

1

2
∥AX − Y ∥22 + λ∥Γ∗X∥1 . (4.93)

Moreover, we have that for bounded linear operators L and convex functions f

(Lf)∗ = f∗L∗ , (4.94)

where Lf(y) = inf{f(x) | Lx = y}. Thus, as the conjugate of the ℓ1 norm is the indicator
of the ℓ∞ unit ball, we have

λ∥Γ∗X∥1 = ι∗B(0,λ)(Γ
∗X) (4.95)

= (inf{ιB(0,λ)(U) | ΓU = X})∗ . (4.96)

Comparing with Synthesis, we get

(Synthesis) min
X

1

2
∥AX − Y ∥22 + (ιB(0,λ)(D

∗X))∗ (4.97)

= min
X

1

2
∥AX − Y ∥22 + (inf{ιB(0,λ)(Z) | Z = D∗X})∗ (4.98)

(Analysis) min
X

1

2
∥AX − Y ∥22 + (inf{ιB(0,λ)(U) | ΓU = X})∗ (4.99)

Let FAλ (Γ) =
{
X | inf{∥Z∥∞ | ΓZ = X} ≤ λ

}
and FSλ (D) = {X | ∥D∗X∥∞ ≤ λ}.

Using the definition of the convex conjugate, i.e. f∗(x) = maxy⟨x, y⟩ − f(y), Analysis and
Synthesis can be written as

(Synthesis) argmin
X

max
X0∈FS

λ (D)

1

2
∥Y −AX∥22 + ⟨X,X0⟩ (4.100)

(Analysis) argmin
X

max
X0∈FA

λ (Γ)

1

2
∥Y −AX∥22 + ⟨X,X0⟩ (4.101)

This result shows that in the context of inverse problems, Analysis and Synthesis both
correspond to the same min-max optimization problem with different convex constraints
on the second variable X0. In the case of Synthesis, the convex set is

FSλ (D) = {X | ∥D∗X∥∞ ≤ λ} , (4.102)

while for Analysis the convex set is

FAλ (Γ) =
{
X | inf{∥V ∥∞ | ΓV = X} ≤ λ

}
. (4.103)

Using these constraints, both problems can be reformulated as least squares with regular-
ization functions that can be expressed as the convex conjugate of an infimum that depends
on X. Moreover, denoting C a closed convex set and assuming X /∈ C, we have

argmax
X0∈C

⟨X,X0⟩ = projC(X) . (4.104)

Thus, the fixed point equation of gradient descent over X and maximization over X0 leads
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Figure 4.3: Convergence depending on the number of iterations. Analysis and Synthesis
bases Plug-and-Play are proavbly stable, while DRU-Net may diverge for some regularization
parameters.

to

X∗ = (I − τA∗A)X∗ + τ(A∗Y + projC(X
∗)) (4.105)

(A∗A+ projC)(X
∗) = A∗Y . (4.106)

As expected, when λ → 0, projC(X
∗) → 0 and we recover the OLS solution X∗ =

(A∗A)−1A∗Y .

Numerical results

We now present numerical illustrations of the behavior of unrolled dictionary learning
compared to classical Plug-and-Play algorithms based on neural networks [Zhang et al.,
2021]. Both Analysis and Synthesis based networks are trained with a fixed number of
layers – 20 in our examples – on a train dataset from the BSD S500 image bank. Since we
studied what happens when the dictionary is the same for each iteration, every layer shares
the same parameters to reflect this. Moreover, the parameters are made of 50 convolutional
filters of dimension 5 × 5. Then, images from the test dataset are blurred with a known
kernel and reconstructed by plugging the network into a reconstruction algorithm with
warm restart between iterations, as described in previous sections.
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Figure 4.4: PSNR depending on the number of iterations. Analysis and Synthesis are
globally more stable than DRU-Net when used as denoisers in Plug-and-Play.

We first compare convergence behaviors between Analysis, Synthesis and DRU-Net in
Figure 4.3. The Plug-and-Play algorithm is run with different values of regularization,
from 10−5 to 10−1, and we display ∥XN −XN−1∥ for different values of N on 5 different
images from the test dataset. Plug-and-Play based on Synthesis and Analysis converges
for each value of the regularization parameter, even though the speed of convergence may
vary. On the other hand, Plug-and-Play based on DRU-Net only converges for the largest
regularization value.

Then, we compare the reconstruction performance in Figure 4.4. This time, we display
the PSNR depending on the regularization parameter, from 10−5 to 10−1, and the number
of iterations. The results are provided for 5 different images from the test dataset. This
figure shows that the choice of hyper-parameter has a strong impact on the performance
on the method based on DRU-Net and Analysis, while Synthesis is more robust to the
choice of regularization. In particular, DRU-Net and Analysis reach the highest level of
PSNR in early iterations for small parameters, and diverge to poor solutions without early
stopping.

We propose five visual examples of the behavior of Analysis, Synthesis and DRU-Net after
1000 iterations of PnP in Figure 4.5. The choice of hyper-parameters is the result of a trade-
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Figure 4.5: Visual results for deblurring on 5 images from the BSD S500 dataset.

off between the quality of the image and the convergence behavior, from results provided
in previous experiments. In particular, the values of regularization parameters are 0.1 for
DRU-Net, 0.001 for Analysis and 0.1 for Synthesis. Visually, Synthesis and Analysis work
well compared to what we get with other methods based on PnP, even though Synthesis
suffers from artefacts on textures. Moreover, the performance displayed for DRU-Net is
obtained after convergence while it gives the best results with early-stopping – which is
often used in practice.

Conclusion

We have proposed a study of unrolled Dictionary Learning in the context of Plug-and-Play
by replacing the denoiser with a neural network inspired from a sparse coding algorithm,
and parameterized with a dictionary. First, when the network is built from the Analysis
formulation, it can be shown that the Plug-and-Play algorithm converges for an infinite
number of layers and for one layer. Interestingly, both cases lead to the same final result,
and the one layer algorithm is actually equivalent to a primal dual algorithm. Then, re-
garding the Synthesis formulation, we demonstrated that Dictionary based reconstructions
are proximal operators and showed that Plug-and-Play combined to unrolling converges
with an infinite number of layers and with one layer, as in the case of Analysis. In par-
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ticular, the study of reconstruction instead of sparse codes in Synthesis offers a different
perspective from what is usually found on the process, as this allows to see it as a proxi-
mal operator. Finally, we showed that this result extends to other numbers of layers both
experimentally and theoretically in a particular case where the regularization function is
replaced by its Moreau envelope, making it smooth. Future works could include proving
that convergence is also guaranteed in the general case without the Moreau envelope, and
studying what happens when the dictionary is different on each layer.
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Part II

Insights on M/EEG signal processing
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Electrophysiology refers to the branch of physiology that studies electrical phenomena
occurring in organic tissues, like muscle fibers or neurons. In particular, the electrical
activity of neurons is induced by the emission of post-synaptic potentials consecutive to
ion exchanges at the synapse level. Then, the potentials of certain groups of active neurons
sum up and induce an electro-magnetic field that becomes measurable at a macroscopic
scale [Gramfort, 2009].

Magnetoencephalography and electroencephalography (M/EEG) are non-invasive tech-
niques for recording the electrical activity of the brain [Hämäläinen et al., 1993]. Elec-
troencephalography captures differences of potential all over the scalp, while Magnetoen-
cephalography measures the density of the magnetic flux that go through the head. In
both cases, the data consist of multivariate time series output by sensors placed around
the head, which capture the intensity of the electric or magnetic field with very high tem-
poral resolution. Even though the spatial resolution is rather poor due to the low number
of sensors – which varies from a few dozens to around 200-300 – the high temporal sampling
frequency makes these methods attractive for neuroscientists. As a matter of fact, those
measurements provide information on cognitive processes as well as on the biological state
of a subject that would not be available with other neuroimaging methods like MRI or
fMRI that are limited by the time scales of hemodynamic responses.

Statistical analysis and learning from neural recordings is becoming more and more im-
portant in modern neuroscience. This motivates the development of computational tools
able to deal with this type of signal. In the following, we will focus on two challenges of
M/EEG signal processing: characteristic waveforms detection and prediction for brain-age
regression and BCI.

Contributions on M/EEG signal processing

First, the quantitative analysis of M/EEG signals often boils down to the identification
and study of temporal patterns such as evoked responses. As it is of interest to know to
what extent these patterns are linked to a specific stimulus, event-based pattern learning
methods are being developed [Dupré la Tour et al., 2018, Allain et al., 2021]. However,
these methods do not scale well to large data-sets consisting of more than a few subjects.
The contribution presented in chapter 5 is an efficient implementation of an MEG pattern
learning algorithm at the population level.

Second, recent advances in modeling brain signals have highlighted that Riemannian ge-
ometry allows to effectively summarize M/EEG multivariate time series. Thus, many
algorithms take advantage of covariance matrices and the underlying manifold to predict
quantities of interest from the signal [Barachant et al., 2013, Sabbagh et al., 2019]. The
contribution presented in chapter 6 is the development and study of a distance between
distributions of symmetric positive definite matrices linked to covariance matrices. In
particular, we use this distance to design Machine Learning methods for prediction and
domain adaptation from M/EEG data.
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Chapter 5

WinCDL: Fast Convolutional Dictionary Learning

for M/EEG signals

This work was carried out in collaboration with Cédric Allain.

Neurophysiological signals recorded by M/EEG are composed of specific temporal patterns
such as evoked responses induced by stimulations, transient bursts of neural oscillations,
or artefacts that correspond, for instance, to eye blinks or heartbeats. The identification
of these patterns plays a key role in the quantitative analysis of the signal, and an increas-
ingly large line of work provides methods to automatically detect the waveforms and their
occurrences in the data [Cole and Voytek, 2017, Dupré la Tour et al., 2018, Allain et al.,
2021, Power et al., 2023].

In particular, Convolutional Dictionary Learning [Grosse et al., 2007] makes it possible to
learn cognitive patterns corresponding to physiological activities by decomposing neural
signals as combinations of spatio-temporal atoms that are time-invariant. As the electro-
magnetic waves propagate through the brain at the speed of light, every sensor measures
the same waveform simultaneously but not at the same intensity. Thus, Dupré la Tour
et al. [2018] propose to rely on multivariate convolutional sparse coding (CSC) with rank-1
constraint to leverage this physical property and learn prototypical patterns.

Fast numerical solvers for Dictionary Learning on large data have been successful on a
wide range of tasks [Mairal et al., 2009, Wohlberg, 2015, Mensch et al., 2016]. Thus,
efforts have been made to create new tools that allow to factorize the signal in such a way
at the subject level in M/EEG [Jas et al., 2017, Dupré la Tour et al., 2018, Moreau and
Gramfort, 2020], but they still require too many computations to scale to larger data-sets.
This makes it very hard to develop analytical and statistical tools at the population level
based on Dictionary Learning.

Contributions of chapter 5. We study stochastic sub-windowing in CDL, which
consists of performing the sparse coding on sub-frames of signals to compute the gradient
and demonstrate its practical efficiency on M/EEG signals. To do so, we introduce a novel
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Figure 5.1: Rank-1 Convolutional Dictionary Learning learns temporal and spatial patterns
corresponding to stimuli events and artefacts from the M/EEG signal, as well as the oc-
curences of the patterns in the signal. Figure used with the courtesy of Cédric Allain.

implementation of CDL for large signals based on stochastic sub-windowing, approximate
dictionary learning and Pytorch [Paszke et al., 2019]. We provide a benchmark of CDL
algorithms and libraries on simulated data and MEG signals with the help of Benchopt
[Moreau et al., 2022], as well as a theoretical study of the behavior of stochastic sub-
windowing in Dictionary Learning.

5.1 . Background on Rank-1 Convolutional Dictionary Learning for
pattern extraction in M/EEG

M/EEG sensors record time series at specific locations on the head. The physical process
that links the electrical sources to the data, based on Maxwell’s equations, shows that
each sensor measures the same waveform at the same time. However, due to differences in
tissue conductivity and to the distance between the electrical sources and the sensors, the
intensity of the magnetic or electric field changes depending on the location.

In order to take these properties into account and restrict the set of solutions to the most
realistic ones, Dupré la Tour et al. [2018] propose to rely on multivariate convolutional
sparse coding with rank-1 constraint, as illustrated in Figure 5.1. In this case, space and
time patterns are disjoint in each atom: dk = ukv

T
k where u gathers the spatial activations

on each channel and v corresponds to the temporal pattern. This leads to the model

min
zk∈RT ,uk∈RS ,vk∈Rt

1

2
∥

n∑
k=1

(ukv
⊤
k ) ∗ zk − y∥22 + λ

n∑
k=1

∥zk∥1 , (5.1)

where y is the signal, n is the number of atoms, T is the total recording time, t is the
kernel size, and S is the number of sensors. For a dictionary D = (dk)1≤k≤N and sparse
codes Z = (zk)1≤k≤N , we define the cost function

F (Z,D, x) =
1

2
∥

N∑
k=1

dk ∗ zk − y∥22 + λ
N∑
k=1

∥zk∥1 . (5.2)
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Convolutional Dictionary learning can be written as a bi-level optimization problem to
minimize the cost function with respect to the dictionary only, as mentioned in Mairal
et al. [2009], by solving

min
D∈C

G(D, y) = F (D,Z∗(D), y)

with Z∗(D) = argmin
Z

F (D,Z, y) ,
(5.3)

with C = {(dk) ∈ Rc×t, ∥dk∥2 ≤ 1, dk = ukv
T
k }.

Classical dictionary learning methods solve this bi-convex optimization problem through
Alternating Minimization (AM) [Mairal et al., 2009]. It consists in alterning on two steps.
The first one involves minimizing the cost function F over Z with a fixed dictionary D,
generally with the help of sparse coding algorithms like (F)ISTA [Daubechies et al., 2004,
Beck and Teboulle, 2009], coordinate descent [Wu et al., 2008, Moreau et al., 2018], or
ADMM [Bristow et al., 2013, Wohlberg, 2015]. Then, the second step consists either of
computing the gradient ∇1F (D,Z, y), where ∇1 indicates that the gradient is computed
relatively to the first variable in F , to perform one or several steps of projected gradient
descent on the dictionary, or of directly finding the optimal D by solving a least squares
problem and thus computing a pseudo-inverse.

In the following, we will focus on gradient descent on D. Once Z∗(D) is known, Danskin
[1967, Thm 1] states that the gradient g∗ = ∇G(D, y) is equal to ∇1F (D,Z

∗(D), y). Even
though the inner problem is non-smooth, this result holds as long as the solution Z∗(D)

is unique. Denoting by D⊤ the transpose operator of D, we will assume that D⊤D is
invertible on the support of Z∗(D) in the following. This implies the uniqueness of Z∗(D).

While CDL users generally want to get both D and Z, it is of interest to efficiently optimize
Equation 5.3 in order to get a solution D∗ as fast as possible, and then compute an optimal
Z∗(D∗). Indeed, the cumbersome part of the calculation is generally the sparse coding step,
especially for large signals for which convolutions are expensive. In order to do that, several
strategies are available. One is to compute approximate gradients, approach popularized
by the usage of unrolled algorithms and automatic differentiation [Gregor and LeCun, 2010,
Scetbon et al., 2021, Tolooshams and Ba, 2021] in the context of Dictionary Learning, that
was studied in chapter 2. Another one is to adapt stochastic gradient descent to Dictionary
Learning for large images or time series [Mensch et al., 2016].

5.2 . WinCDL

We here introduce a novel algorithm – called WinCDL – to efficiently solve Equation 5.1.
The idea of WinCDL is to combine the empirical observations from the work on Unrolled
Dictionary Learning in chapter 2 – i.e. a small number of iterations is sufficient to get a
good estimate of the gradient – to stochastic sub-windowing of the signal where random
sub-windows are sampled from the recording to get a stochastic estimate of the gradient.
The aim is to reduce the computational costs associated with sparse coding. Another issue
that comes up is that the choice of gradient steps is critical to the optimization process
in dictionary learning, and SGD methods based on simple heuristics like rate decay are
difficult to tune in this context. Thus, we propose to leverage an optimization scheme
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Algorithm 5 Pseudo-code for WinCDL
Set N the number of iterations
Set (Uα,t)t∈N a sequence of maximal step sizes decreasing to 0
Set C a set of constraints for (u, v)
for 1 ≤ t ≤ N do

Sample index i and window y[i, i+W ] in the dataset
Compute gradient ∇Li(ut, vt) of ut and vt with approximate sparse coding
Compute best step size αt with line search and starting point Uα,t
(ut+1, vt+1)← PC

(
(ut+1, vt+1)− αt∇Li(ut, vt)

)
end for

introduced in Vaswani et al. [2019], which consists of performing a stochastic line search.
The algorithm computes a good step size at each epoch, after which a heuristic decreases
the maximal step. The use of a line search is possible due to the efficient computation of
the loss with the approximate sparse codes ZN (D) when N is taken sufficiently small. The
main steps of the algorithm are listed in Algorithm 5, and we now describe each step in
details.

Approximate sparse coding.

As illustrated in chapter 2, optimizing over D does not necessarily require precise sparse
coding at each gradient descent step. Here, we build our algorithm from a fixed number of
FISTA iterations in the same spirit as Unrolling, but without leveraging back-propagation.
Concretely, we thus have an approximation ZN (D) of Z∗(D), where ZN (D) is given by N
iterations of FISTA starting from 0, i.e.

Z0 = 0 and α0 = 1 (5.4)

Vt+1 = ST λ
L

(
Zt −

1

L
D⊤ ∗ (D ∗ Zt − y)

)
(5.5)

αt+1 =
1 +

√
1 + 4α2

t

2
(5.6)

Zt+1 = Vt+1 +
αt − 1

αt+1
(Vt+1 − Vt) , (5.7)

where L is the Lipschitz constant of D⊤ ∗D, and where D ∗Z =
∑n

k=1 dk ∗ zk. In practice,
we observed that choosing N between 20 and 30 is enough to get accurate results on MEG
data.

Stochastic sub-windowing.

Given approximate sparse coding, the loss that we want to minimize is

L(u, v) = 1

2
∥

n∑
k=1

(ukv
⊤
k ) ∗ zN,k(ukv⊤k )− y∥22 . (5.8)

For datasets that contain large time series, as is the case in M/EEG, convolutions are
expensive and the computational cost of FISTA increases. Thus, instead of processing
all the signal at each iteration, we propose to sample smaller chunks of data from the
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recordings when evaluating the loss. This makes the descent algorithm stochastic, but
allows to dramatically reduce the computational cost. The sampling procedure consists
in choosing a random chunk of signal y[i : i +W ] at each iteration, where W is a hyper-
parameter corresponding to the length of the window and where i is an index in [0, T −W ].
Then, we compute the gradient of the corresponding loss

Li(u, v) =
1

2
∥

n∑
k=1

(ukv
⊤
k ) ∗ zN,k,i(ukv⊤k )− y[i : i+W ]∥22 (5.9)

with respect to u and v assuming that the sparse codes are constant terms. This corre-
sponds to usual Alternating Minimization, but on random chunks from the original signal
y. We show in section 5.3 that this gives an unbiased estimate of the gradient in specific
cases.

Stochastic line search.

Standard stochastic gradient descent algorithms fail to produce satisfying results on our
problem because of the difficulty to tune the step size. Thus, we leverage a method called
Stochastic line search, introduced in Vaswani et al. [2019], that extends the line search to
the case where the gradient is stochastic. Indeed, line search algorithms are very helpful
in situations where the step size of the gradient descent is hard to tune.

In usual gradient descent, the parameters θt = (ut, vt) are updated at each gradient step t
with the help of ∇θL(θt) and a step size parameter αt, as follows

θt+1 = θt − αt∇θL(θt) . (5.10)

The line search algorithm consists of finding the largest possible step size αt starting from
an upper bound ᾱ, by evaluating the loss L(θt − ρnᾱ∇θL(θt)) for 0 < ρ < 1 and n ∈ N
until the loss satisfies a condition of the form L(θt− ρnᾱ∇θL(θt)) < L(θt)− c where c can
either be constant or depend on the problem, or until ρn < ϵ where ϵ > 0 is a stopping
criterion. Then, αt = ρnf where nf is the final number of iterations.

The idea of the Stochastic line search is to extend this principle in a scenario where we only
have access to an estimate of the true gradient. In this case, naively applying a line search
with each sample of gradient would lead to a non converging sequence of (θt)t∈N, because
the algorithm restarts the process at the upper bound ᾱ for each new window of signal.
Instead, the Stochastic extension uses a decreasing sequence of upper bounds (ᾱi)i∈N that
should converge to 0, with a well-chosen heuristic. For instance, our implementation is
based on a sequence obtained through cosine annealing, starting from an initial upper
bound that is a hyper-parameter of the algorithm. Thus, for each random sample i,
once a gradient has been computed, the parameters are updated by evaluating Li(θt −
ρnᾱi∇θLi(θt)) for increasing values of n, until the stopping criterion is reached.

Line search gradient descent is known to be time-consuming because it is necessary to
compute the new loss for each potential choice of parameters. In the case of Dictionary
Learning, this is usually a major issue, because the computation of the loss involves a
sparse coding procedure. Our implementation replaces this expensive step by N iterations
of proximal gradient descent that are fast to compute on GPU, which makes it possible to
rely on a line search algorithm.

109



5.3 . Stochastic sub-windowing

Stochastic gradient descent traditionally consists of sampling i.i.d points from a data-set
in order to get an estimate of the gradient. In the case of CDL, the problem comes from
the fact that computing the gradient for a single point of the data-set is computationally
expensive, for example when the point is a large time series or image. Thus, a simple idea
is to reduce the computation to a sub-window of signal, for sparse coding to run in an
acceptable time.

Let’s take a one dimensional example. Denoting by y ∈ RT a univariate time series, we
can sample a window of size W from y and then estimate the gradient on this sub-window.
In other words, we first sample an index i uniformly in [0, T −W ] and compute the sparse
code estimator corresponding to y[i : i+W ]. We define

S = [1, T ]

SW,i = [i, i+W − 1]

SW,i,L = [i− L+ 1, i+W + L− 2]

∂SW,i,L = [i− (L− 1), i] ∪ [i+W − 1, i+W − 1 + (L− 1)] .

(5.11)

Note that SW,i ∪ ∂SW,i,L = SW,i,L. We also define the restriction of Z onto SW,i (resp.
SW,i,L) by ZSW,i

:= Z[i, i+W − L] ∈ RW−L+1 (resp. ZSW,i,L
:= Z[i− L+ 1, i+W − 1] ∈

RW+L−1).

To avoid border effects in the gradient estimation, it is possible to compute the sparse
codes over the whole window W and to use only its restriction over SW,i,L where L ∈ N is
the width of the buffer zone [Moreau and Gramfort, 2020]. In the following, we will make
the assumption that the sparse code estimator obtained as explained above is equal to the
original window ZSW,i,L

. In that case, the gradient estimate is given by

ĝW,i = ∇1F (D,ZSW,i,L
, y[i : i+W ]) , (5.12)

and Proposition 5.3.1 shows that this is an unbiased estimator of the true gradient g∗.

Proposition 5.3.1. Under the assumption that for each window i, we have access to the
correct value of ZSW,i,L

on the interval SW,i,L, then

Ei
[
ĝW,i

]
= g∗ .

Proof 5.3.1

The true gradient is

g∗ = Z− ∗X − Z− ∗ Z ∗D = ψ − ϕ ∗D ∈ RL (5.13)

where Z− is obtained by reversal of the temporal dimension, i.e., Z−[t] = Z[T + 1 − t],
and ∀s ∈ [1, L], ψ[s] =

∑T−L+1
τ=1 z[τ ]X[s+ τ − 1] and ϕ[s] =

∑T−L+1
τ=1 z[τ ]z[s+ τ − 1].

The estimated gradient on window SW,i = [i, i+W − 1], 1 ≤ i ≤ T −W is

ĝW,i = Z−
SW,i
∗XSW,i

− Z−
SW,i
∗ ZSW,i

∗D (5.14)

= ψW,i − ϕW,i ∗D ∈ RL (5.15)

110



where ψW,i[s] =
∑i+W

τ=i z[τ + s]x[τ ] for s ∈ [0, L − 1] and ϕW,i[s] =
∑i+W

τ=i z[τ + s]z[τ ] for
s ∈ [−L+1, L− 1]. Here, we make the assumption that for each window i, we have access
to the correct value of z on the interval SW,i,L (we add the border of size L ∂SW,i,L).
For s ∈ [0, L− 1], we have that the value of ψ[s] for the full signal is:

ψ[s] =
T−L+1∑
τ=0

z[τ + s]x[τ ] (5.16)

=
T−L+1∑
i=−W+1

1

W

i+W∑
τ=i

z[τ + s]x[τ ] (5.17)

=
1

W

T−L+1∑
i=−W+1

ψW,i[s] (5.18)

(5.19)

where the second line derives from the fact that each coefficient is seen throughW windows.
Here, to avoid border effect, we consider we can take windows on the extended interval
[−W + 1, T − L+ 1 +W ], for instance with zero padding.
Thus, we can see that

Ei
[
ψW,i[s]

]
=

1

T − L+W

T−L+1∑
i=−W+1

ψW,i[s] =
W

T − L+W
ψ[s] (5.20)

Similarly, we can show that Ei
[
ϕW,i[s]

]
= W

T−L+W ϕ[s] for all s ∈ [−L+ 1, L− 1].
Thus, by linearity of the convolution and the expectation, we get:

Ei
[
ĝW,i

]
= Ei

[
ψW,i

]
− Ei

[
ϕW,i

]
∗D = ψ − ϕ ∗D = g∗ (5.21)

Proposition 5.3.1 shows that under the assumption that the sparse code estimator is ac-
curate on the sub-window, then we have access to an unbiased estimator and can apply
stochastic gradient descent on our problem. This hypothesis may seem very restrictive, and
is verified in practice only for large values of L when the sparsity of Z is high enough. In
other words, patterns in the signal have to be well separated in order to avoid propagating
border effects. However, we observed that taking sufficiently large windows W made it
possible to reduce the bias that the error on the borders of ZSW,i,L

could introduce. The
study of the impact of sparse code estimation errors on the gradient estimate is left for
future work.

Numerical Results

In Figure 5.2, we provide a comparison of performance between WinCDL and two methods
for rank-1 CDL implemented in the Python package alphacsc. The cost value is taken as
G(D,Y ) = F (D,Z∗(D), Y ), where the unknown to optimize is the dictionary. Thus, we
do not take into account the ability of the algorithm to compute D and the sparse codes Z
at the same time, but we evaluate the dictionary D by computing F with the exact sparse
codes Z∗(D). The figure shows that the usage of line search and sub-windowing allows
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Figure 5.2: Cost value as a function of the time for algorithms from alphacsc and
WinCDL. WinCDL linesearch and sub-windowing allows to speed up the Dictionary Learn-
ing process.

to speed up the Dictionary Learning process, both on simulated data where multivariate
time series are generated as linear combination of cosine, and on MEG data.

The MEG data-set contains recordings of a subject submitted to audio and visual stimuli.
The subject was also asked to press a button as fast as possible when shown a smiley
face. The experiment lasts about 5 minutes. Figure 5.3 presents 30 atoms learned from
this recording with WinCDL. We plot the spatial and temporal representations of each
pattern, which may correspond either to artefacts or to evoked responses. The results are
coherent with what is generally obtained with alphacsc on the same task with equivalent
parameters, as shown in Figure 5.4.

Conclusion

We proposed a new implementation for Convolutional Dictionary Learning on large data
for M/EEG recordings based on stochastic sub-windowing and a stochastic line search.
The implementation allows to learn the dictionary faster, without the need of precise
optimization of the sparse codes at each gradient descent iteration. In practice, we obtain
similar results as reference libraries regarding the temporal waveforms and spatial patterns
in the atoms, but the method can be applied to larger datasets, including at the population
level. Thus, this work might be seen as a first step towards the design of efficient tools
based on dictionary learning and sparse coding for population studies in neuroscience.
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Figure 5.3: 30 atoms learned by WinCDL from a MEG recording.
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Figure 5.4: 30 atoms learned by alphacsc from a MEG recording.
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Chapter 6

Sliced-Wasserstein on Symmetric Positive Definite

Matrices for M/EEG signals

This work was carried out in collaboration with Clément Bonet, with the help of Alain
Rakotomamonjy, Lucas Drumetz, and Nicolas Courty. The content of this chapter was
published in:

Clément Bonet, Benoît Malézieux, Alain Rakotomamonjy, Lucas Drumetz, Thomas Moreau,
Matthieu Kowalski, and Nicolas Courty. Sliced-wasserstein on symmetric positive definite
matrices for m/eeg signals. International Conference on Machine Learning, 2023a

Successful machine learning (ML) techniques that deal with M/EEG data often rely on
covariance matrices estimated from band-passed filtered signals in several frequency bands
[Blankertz et al., 2007]. The main difficulty that arises when processing such covariance
matrices is that the set of symmetric positive definite (SPD) matrices is not a linear space,
but a Riemannian manifold [Bhatia, 2009, Bridson and Haefliger, 2013]. Therefore, specific
algorithms have to be designed to take into account the non Euclidean structure of the data.
The usage of Riemannian geometry on SPD matrices has become increasingly popular in
the ML community [Huang and Van Gool, 2017, Chevallier et al., 2017, Ilea et al., 2018,
Brooks et al., 2019]. In particular, these tools have proven to be very effective on prediction
tasks with M/EEG data in Brain Computer Interface (BCI) applications [Barachant et al.,
2011, 2013, Gaur et al., 2018] or more recently in brain-age prediction [Sabbagh et al., 2019,
2020, Engemann et al., 2022]. As covariance matrices sets from M/EEG data are often
modeled as samples from a probability distribution – for instance in domain adaptation for
BCI [Yair et al., 2019] – it is of great interest to develop efficient tools that work directly
on those distributions.

Optimal transport (OT) [Villani, 2009, Peyré et al., 2019] provides a powerful theoretical
framework and computational toolbox to compare probability distributions while respect-
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ing the geometry of the underlying space. It is well defined on Riemannian manifolds [Mc-
Cann, 2001, Cui et al., 2019, Alvarez-Melis et al., 2020] and in particular on the space of
SPD matrices that is considered in M/EEG learning tasks [Brigant and Puechmorel, 2018,
Yair et al., 2019, Ju and Guan, 2022]. The original OT problem defines the Wasserstein
distance which has a super cubic complexity w.r.t samples. To alleviate the computational
burden, different alternatives were proposed such as adding an entropic regularization [Cu-
turi, 2013] or computing the distance between mini-batches [Fatras et al., 2020]. Another
popular alternative is the Sliced-Wasserstein distance (SW) [Rabin et al., 2011] which com-
putes the average of the Wasserstein distance between one-dimensional projections. SW
has recently received a lot of attention as it significantly reduces the computational bur-
den while preserving topological properties of Wasserstein [Bonnotte, 2013, Nadjahi et al.,
2020, Bayraktar and Guo, 2021]. Moreover, Kolouri et al. [2016], Meunier et al. [2022] have
shown that, as opposed to Wasserstein, SW allows to properly extend kernel methods to
data-sets of distributions with very efficient computation of the kernel matrix. This opens
the way to new regression and classification methods. However, the initial construction of
SW is restricted to Euclidean spaces. Thus, a new line of work focuses on its extension to
specific manifolds [Rustamov and Majumdar, 2020, Bonet et al., 2022, 2023b].

Contributions of chapter 6.

In order to benefit from the advantages of SW in the context of M/EEG, we propose an
SW distance on the manifold of SPD matrices and evaluate its efficiency on two prediction
tasks.

• We introduce an SW discrepancy between measures of symmetric positive definite
matrices (SPDSW), and provide a well-founded numerical approximation.

• We derive theoretical results, including topological, statistical, and computational
properties. In particular, we prove that SPDSW is a distance topologically equivalent
to the Wasserstein distance in this context.

• We extend the distribution regression with SW kernels to the case of SPD matrices,
apply it to brain-age regression with MEG data, and show that it performs better
than other methods based on Riemannian geometry.

• We show that SPDSW is an efficient surrogate to the Wasserstein distance in domain
adaptation for BCI.

6.1 . Sliced-Wasserstein on SPD matrices

In this section, we introduce an SW discrepancy on SPD matrices and provide a theoretical
analysis of its properties and behavior.

Euclidean Sliced-Wasserstein distance.

For µ, ν ∈ Pp(Rd) two measures with finite moments of order p ≥ 1, the Wasserstein
distance is defined as

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
∥x− y∥p2 dγ(x, y) , (6.1)
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where Π(µ, ν) = {γ ∈ P(Rd × Rd), π1#γ = µ, π2#γ = ν} denotes the set of couplings
between µ and ν, π1 and π2 the projections on the first and second coordinate and #

is the push-forward operator, defined as a mapping on all borelian A ⊂ Rd, such that
T#µ(A) = µ(T−1(A)). For practical ML applications, this distance is computed between
two empirical distributions with n samples and the main bottleneck consists in solving the
linear program (6.1). Its computational complexity is O(n3 log n) [Pele and Werman, 2009]
which is expensive for large scale applications.

While computing (6.1) is costly in general, it can be computed efficiently for problems
where d = 1, as it admits the following closed-form [Peyré et al., 2019, Remark 2.30]

W p
p (µ, ν) =

∫ 1

0
|F−1
µ (u)− F−1

ν (u)|p du , (6.2)

where F−1
µ and F−1

ν are the quantile functions of µ and ν. By computing order statistics,
this can be approximated from samples in O(n log n).

This observation motivated the construction of the SW distance [Rabin et al., 2011, Bonneel
et al., 2015] which is defined as the average of the Wasserstein distance between one
dimensional projections of the measures in all directions, i.e. for µ, ν ∈ Pp(Rd),

SWp
p(µ, ν) =

∫
Sd−1

W p
p (t

θ
#µ, t

θ
#ν) dλ(θ) , (6.3)

where λ is the uniform distribution on the sphere Sd−1 = {θ ∈ Rd, ∥θ∥2 = 1} and
tθ is the coordinate of the projection on the line span(θ), i.e. tθ(x) = ⟨x, θ⟩ for x ∈ Rd,
θ ∈ Sd−1. This distance has many advantages, motivating its use in place of the Wasserstein
distance. First, it can be approximated in O

(
Ln(d + log n)

)
with L projections and a

Monte-Carlo method. Moreover, it is topologically equivalent to the Wasserstein distance
as it also metrizes the weak convergence [Nadjahi et al., 2019], and its sample complexity
is independent of the dimension [Nadjahi et al., 2020] as opposed to Wasserstein. Finally,
it is a Hilbertian metric and it can be used to define kernels over probability distributions
[Kolouri et al., 2016, Carriere et al., 2017, Meunier et al., 2022]. This is particularly
interesting for regression or classification over data-sets of distributions, as we will see for
brain-age prediction.

Background on SPD matrices.

Let Sd(R) be the set of symmetric matrices of Rd×d, and S++
d (R) be the set of SPD matrices

of Rd×d, i.e. matrices M ∈ Sd(R) satisfying

∀x ∈ Rd \ {0}, xTMx > 0 . (6.4)

S++
d (R) is a Riemannian manifold [Bhatia, 2009], meaning that it behaves locally as a

linear space, called a tangent space. Each point M ∈ S++
d (R) defines a tangent space

TM , which can be given an inner product ⟨·, ·⟩M : TM × TM → R, and thus a norm. The
choice of this inner-product induces different geometry on the manifold. One example is
the geometric and Affine-Invariant metric [Pennec et al., 2006], where the inner product is
defined as

∀M ∈ S++
d (R), A,B ∈ TM ,

⟨A,B⟩M = Tr(M−1AM−1B) .
(6.5)
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Denoting by Tr the Trace operator, the corresponding geodesic distance dAI(·, ·) is given
by

∀X,Y ∈ S++
d (R), dAI(X,Y ) =

√
Tr(log(X−1Y )2) . (6.6)

Another example is the Log-Euclidean metric [Arsigny et al., 2005, 2006] for which,

∀M ∈ S++
d (R), A,B ∈ TM ,

⟨A,B⟩M = ⟨DM logA,DM logB⟩ ,
(6.7)

with log the matrix logarithm and DM logA the directional derivative of the log at M
along A [Huang et al., 2015]. This definition provides another geodesic distance [Arsigny
et al., 2006]

∀X,Y ∈ S++
d (R), dLE(X,Y ) = ∥ logX − log Y ∥F , (6.8)

which is simply a Euclidean distance in Sd(R) in this case. We will use the Log-Euclidean
metric in the following, as it is simpler and faster to compute while being a good first order
approximation of the Affine-Invariant metric [Arsigny et al., 2005, Pennec, 2020]. In this
case, the geodesic between X,Y ∈ S++

d (R) is t ∈ R 7→ exp((1− t) logX + t log Y ). log is a
diffeomorphism from S++

d (R) to Sd(R), whose inverse is exp. Thus, the geodesic line going
through A ∈ Sd(R) and the origin of Sd(R) is GA = {exp(tA), t ∈ R}. To span all such
geodesics, we can restrict to A with unit Frobenius norm, i.e. ∥A∥F = 1.

Figure 6.1: (Left) Random geodesics drawn
in S++

2 (R). (Right) Projections (green
points) of covariance matrices (depicted as
red points) over one geodesic (in black)
passing through I2 along the Log-Euclidean
geodesics (blue lines).

Construction of SPDSW.

On a Euclidean space, the SW distance
is defined by averaging the Wasserstein
distance between the distributions pro-
jected over all possible straight lines pass-
ing through the origin. As S++

d (R) with
Log-Euclidean metric is a geodesically com-
plete Riemannian manifold, i.e. there ex-
ists a geodesic curve between each couple of
points and each geodesic curve can be ex-
tended to R, a natural generalization of SW
on this space can be obtained by averaging
the Wasserstein distance between distribu-
tions projected over all geodesics passing
through the origin Id.

To construct SPDSW, we need several ingredients. First, it is required to find the projec-
tion onto a geodesic GA passing through Id where A ∈ Sd(R). Such projection P GA can be
obtained as follows

∀M ∈ S++
d (R), P GA(M) = argmin

X∈GA

dLE(X,M) , (6.9)

and we provide the closed-form in Proposition 6.1.1.

Proposition 6.1.1. Let A ∈ Sd(R) with ∥A∥F = 1, and let GA be the associated geodesic
line . Then, for any M ∈ S++

d (R), the geodesic projection on GA is

P GA(M) = exp
(
Tr(A logM)A

)
.
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Proof 6.1.1

Let M ∈ S++
d (R). We want to solve

P GA(M) = argmin
X∈GA

dLE(X,M)2. (6.10)

In the case of the Log-Euclidean metric, GA = {exp(tA), t ∈ R}. We have

dLE(exp(tA),M)2 = ∥ log exp(tA)− logM∥2F
= ∥tA− logM∥2F
= t2Tr(A2) + Tr(log(M)2)− 2tTr(A logM)

= g(t) .

(6.11)

Hence
g′(t) = 0 ⇐⇒ t =

Tr(A logM)

Tr(A2)
. (6.12)

Therefore
P GA(M) = exp

(
Tr(A logM)

Tr(A2)
A

)
= exp (Tr(A logM)A) , (6.13)

since ∥A∥2F = Tr(A2) = 1.

Then, the coordinate of the projection on GA can be obtained by giving an orientation to
GA and computing the distance between P GA(M) and the origin Id, as follows

tA(M) = sign(⟨logM,A⟩F )dLE(P G(M), Id) . (6.14)

The closed-form expression is given by Proposition 6.1.2.

Proposition 6.1.2. Let A ∈ Sd(R) with ∥A∥F = 1, and let GA be the associated geodesic
line. Then, for any M ∈ S++

d (R), the geodesic coordinate on GA is

tA(M) = ⟨A, logM⟩F = Tr(A logM) .

Proof 6.1.2

First, we give an orientation to the geodesic. This can be done by taking the sign of the
inner product between log(P GA(M)) and A.

tA(M) = sign(⟨A, log(P GA(M))⟩F )d
(
PA(M), I

)
(6.15)

= sign(⟨A, log(P GA(M))⟩F )d (exp (Tr(A logM)A) , I) (6.16)

= sign(⟨A, ⟨A, logM⟩FA⟩F )∥⟨A logM⟩FA− log I∥F (6.17)

= sign(⟨A, logM⟩F )|⟨A, logM⟩F | (6.18)

= ⟨A, logM⟩F (6.19)

= Tr(A logM) . (6.20)

These two properties give a closed-form expression for the Riemannian equivalent of one-
dimensional projection in a Euclidean space. In Figure 6.1, we illustrate the projections
by matrices M ∈ S++

2 (R) embedded as vectors (m11,m22,m12) ∈ R3. S++
2 (R) is an open
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cone and we plot the projections of random SPD matrices on geodesics passing through
I2.

We are now ready to define an SW discrepancy on measures in Pp(S++
d (R)) = {µ ∈

P(S++
d (R)),

∫
dLE(X,M0)

p dµ(X) <∞, M0 ∈ S++
d (R)}.

Definition. Let λS be the uniform distribution on {A ∈ Sd(R), ∥A∥F = 1}. Let p ≥ 1
and µ, ν ∈ Pp(S++

d (R)), then the SPDSW discrepancy is defined as

SPDSWp
p(µ, ν) =

∫
Sd(R)

W p
p (t

A
#µ, t

A
#ν) dλS(A) .

As shown by the definition, being able to sample from λS is the cornerstone of the com-
putation of SPDSW. In Lemma 6.1.3, we propose a practical way of uniformly sampling a
symmetric matrix A. More specifically, we sample an orthogonal matrix P and a diagonal
matrix D of unit norm and compute A = PDP T which is a symmetric matrix of unit norm.
This is equivalent to sampling from λS as the measures are equal up to a normalization
factor d! which represents the number of possible permutations of the columns of P and
D for which PDP T = A.

Lemma 6.1.3. Let λO be the uniform distribution on Od = {P ∈ Rd×d, P TP = PP T = I}
(Haar distribution), and λ be the uniform distribution on Sd−1 = {θ ∈ Rd, ∥θ∥2 = 1}. Then
λS ∈ P(Sd(R)), defined such that ∀ A = Pdiag(θ)P T ∈ Sd(R), dλS(A) = d! dλO(P )dλ(θ),
is the uniform distribution on {A ∈ Sd(R), ∥A∥F = 1}.

Proof 6.1.3

A matrix in Sd(R) has a unique decomposition Pdiag(θ)P T up to permutations of the
columns of P ∈ Od and coefficients of θ ∈ Sd−1. Thus, there is a bijection between {A ∈
Sd(R), ∥A∥F = 1} and the set S(O),Sd−1 of d!-tuple {(P1, θ1), . . . , (Pd!, θd!) ∈ (Od×Sd−1)d!}
such that (Pi, θi) is a permutation of (Pj , θj). Therefore, the uniform distribution λS

(O),Sd−1

on S(O),Sd−1 , defined as dλS
(O),Sd−1

((P1, θ1), . . . , (Pd!, θd!)) =
∑n!

i=1 d(λO ⊗ λ)(Pi, θi) =

d!·d(λO⊗λ)(P1, θ1), allows to define a uniform distribution λS on {A ∈ Sd(R), ∥A∥F = 1}.
Let A = PdiagθP T with (P, θ) ∈ Od × Sd−1, then

dλS(A) = d! d(λO ⊗ λ)(P, θ) . (6.21)

Then, the coordinate of the projection on the geodesic GA is provided by tA(·) = Tr(A log ·)
defined in Proposition 6.1.2. The Wasserstein distance is easily computed using order
statistics, and this leads to a natural extension of the SW distance in S++

d (R). There exists
a strong link between SW on distributions in Rd×d and SPDSW. Indeed, Proposition 6.1.4
shows that SPDSW is equal to a variant of SW where projection parameters are sampled
from unit norm matrices in Sd(R) instead of the unit sphere, and where the distributions
are pushed forward by the log operator.
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Proposition 6.1.4. Let µ̃, ν̃ ∈ Pp(Sd(R)), and t̃A(B) = Tr(ATB) for A,B ∈ Sd(R). We
define

SymSWp
p(µ̃, ν̃) =

∫
Sd(R)

W p
p (t̃

A
#µ̃, t̃

A
#ν̃) dλS(A) .

Then, for µ, ν ∈ Pp(S++
d (R)),

SPDSWp
p(µ, ν) = SymSWp

p(log# µ, log# ν) .

Proof 6.1.4

Denoting t̃A(B) = ⟨B,A⟩F for all B ∈ Sd(R), we obtain using [Paty and Cuturi, 2019,
Lemma 6]

W p
p (t̃

A
# log# µ, t̃

A
# log# ν) = inf

γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)
|t̃A(log(X))− t̃A(log(Y ))|p dγ(X,Y )

(6.22)

= inf
γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)
|tA(X)− tA(Y )|p dγ(X,Y ) (6.23)

=W p
p (t

A
#µ, t

A
#ν) , (6.24)

since t̃A(logX) = ⟨A, logX⟩F = tA(X). Hence,

SymSWp
p(log# µ, log# ν) = SPDSWp

p(µ, ν) . (6.25)

Thus, it seems natural to compare the results obtained with SPDSW to the Euclidean
counterpart log SW = SW(log# ·, log# ·) where the distributions are made of projections
in the log space and where the sampling is done with the uniform distribution on the
sphere. The Wasserstein distance is also well defined on Riemannian manifolds, and in
particular on the space of SPD matrices. Denoting d a geodesic distance on S++

d (R), we
can define the corresponding Wasserstein distance between µ, ν ∈ Pp(S++

d (R)) as

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
d(X,Y )p dγ(X,Y ) . (6.26)

In the following, we study properties of SPDSW and in particular, we show that it is a
computationally efficient alternative to Wasserstein on P(S++

d (R)) as it is topologically
equivalent while having a better computational complexity and being better conditioned
for regression of distributions.

6.2 . Properties of SPDSW

We now derive theoretical properties of SPDSW.

Topology.

Following usual arguments which are valid for any sliced divergence with any projection,
we can show that SPDSW is a pseudo-distance. Here, S++

d (R) with the Log-Euclidean
metric is of null sectional curvature [Arsigny et al., 2005, Xu, 2022] and we have access

121



to a diffeomorphism to a Euclidean space – the log operator. This allows us to show that
SPDSW is a distance in Theorem 6.2.1.

Theorem 6.2.1. Let p ≥ 1, then SPDSWp is a finite distance on Pp(S++
d (R)).

Proof 6.2.1

Let p ≥ 1, and µ, ν ∈ Pp(S++
d (R)). First, let’s check that SPDSWp

p(µ, ν) <∞.
To see that, we will use on one hand Villani [2009, Definition 6.4] which states that on a
Riemannian manifoldM, for any x0 ∈M,

∀x, y ∈M, d(x, y)p ≤ 2p−1
(
d(x, x0)p + d(x0, y)p

)
. (6.27)

Moreover, we will use that the projection tA is equal (up to a sign) to the Busemann
function which is 1-Lipschitz [Bridson and Haefliger, 2013, II. Proposition 8.22] and hence
for any A ∈ Sd(R) such that ∥A∥F = 1 and X,Y ∈ S++

d (R), |tA(X)− tA(Y )| ≤ dLE(X,Y ).
Then, using Paty and Cuturi [2019, Lemma 6], we have, for any π ∈ Π(µ, ν) and X0 ∈
S++
d (R),

W p
p (t

A
#µ, t

A
#ν) = inf

γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)
|tA(X)− tA(Y )|p dγ(X,Y ) (6.28)

≤
∫
S++
d (R)×S++

d (R)
|tA(X)− tA(Y )|p dπ(X,Y ) (6.29)

≤ 2p−1

(∫
S++
d (R)

|tA(X)− tA(X0)|p dµ(X) +

∫
S++
d (R)

|tA(X0)− tA(Y )|p dν(Y )

)
(6.30)

≤ 2p−1

(∫
S++
d (R)

dLE(X,X0)
p dµ(X) +

∫
S++
d (R)

dLE(Y,X0)
p dν(Y )

)
(6.31)

<∞ . (6.32)

Let p ≥ 1, then for all µ, ν ∈ Pp(S++
d (R)), it is straightforward to see that SPDSWp(µ, ν) ≥

0, SPDSWp(µ, ν) = SPDSWp(ν, µ). It is also easy to see that µ = ν =⇒ SPDSWp(µ, ν) =

0 using that Wp is a distance.
Now, we can also derive the triangular inequality using the triangular inequality for Wp

and the Minkowski inequality, i.e. ∀µ, ν, α ∈ Pp(S++
d (R))

SPDSWp(µ, ν) =
(∫

Sd(R)
W p
p (t

A#µ, tA#ν) dλS(A)
) 1

p (6.33)

≤
(∫

Sd(R)

(
Wp(t

A
#µ, t

A
#α) +Wp(t

A
#α, t

A
#ν)

)p
dλS(A)

) 1
p (6.34)

≤
(∫

Sd(R)
W p
p (t

A#µ, tA#α) dλS(A)
) 1

p (6.35)

+
(∫

Sd(R)
W p
p (t

A
#α, t

A
#ν) dλS(A)

) 1
p (6.36)

= SPDSWp(µ, α) + SPDSWp(α, ν). (6.37)
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Lastly, we can derive the indiscernible property. Let µ, ν ∈ Pp(Sd(R)) such that SPDSWp(µ, ν) =

0. Then, as for all A ∈ Sd(R), W p
p (tA#µ, t

A
#ν) ≥ 0, it implies that for λS-almost every A,

W p
p (tA#µ, t

A
#ν) = 0 which implies tA#µ = tA#ν for λS-almost every A since Wp is a distance.

By taking the Fourier transform, this implies that for all s ∈ R, t̂A#µ(s) = t̂A#ν(s). But, we
have

t̂A#µ(s) =

∫
R
e−2iπts d(tA#µ)(s) (6.38)

=

∫
S++
d (R)

e−2iπtA(M)s dµ(M) (6.39)

=

∫
S++
d (R)

e−2iπ⟨sA,logM⟩F dµ(M) (6.40)

=

∫
Sd(R)

e−2iπ⟨sA,S⟩F d(log# µ)(S) (6.41)

= l̂og# µ(sA). (6.42)

Hence, we get that SPDSWp(µ, ν) = 0 implies that for λS-almost every A,

∀s ∈ R, l̂og# µ(sA) = t̂A#µ(s) = t̂A#ν(s) = l̂og# ν(sA). (6.43)

By injectivity of the Fourier transform on Sd(R), we get log# µ = log# ν. Then, as log is
a diffeomorphism from S++

d (R) to Sd(R), we have for all Borelian M ⊂ S++
d (R),

µ(M) =

∫
S++
d (R)

1M (X) dµ(X) (6.44)

=

∫
Sd(R)

1M (exp(S)) d(log# µ)(S) (6.45)

=

∫
Sd(R)

1M (exp(S)) d(log# ν)(S) (6.46)

=

∫
S++
d (R)

1M (Y ) dν(Y ) (6.47)

= ν(M). (6.48)

Hence, we conclude that µ = ν and that SPDSWp is a distance.

In the case of the Affine-Invariant metric, the Riemannian manifold endowed with this met-
ric has a non-positive and non-constant sectional curvature, and closed-forms of geodesics
projections are not known to the best of our knowledge. We can however derive Busemann
coordinates, which involve a costly additional projection. Moreover, whether or not it
satisfies the indiscernible property remains an open question. Hence, we focus on SPDSW

with Log-Euclidean metric.

An important property which justifies the use of the SW distance in place of the Wasserstein
distance in the Euclidean case is that they both metrize the weak convergence [Bonnotte,
2013]. We show in Theorem 6.2.2 that this is also the case with SPDSW in Pp(S++

d (R)).
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Theorem 6.2.2. For p ≥ 1, SPDSWp metrizes the weak convergence, i.e. for µ ∈
Pp(S++

d (R)) and a sequence (µk)k in Pp(S++
d (R)), limk→∞ SPDSWp(µk, µ) = 0 if and

only if (µk)k converges weakly to µ.

Proof 6.2.2

To prove Theorem 6.2.2, we will adapt the proof of Nadjahi et al. [2020] to our projection.
First, we start by adapting Nadjahi et al. [2020, Lemma S1].

Lemma. Let (µk)k ∈ Pp(S++
d (R)) and µ ∈ Pp(S++

d (R)) such that limk→∞ SPDSW1(µk, µ) =

0. Then, there exists φ : N→ N non decreasing such that µφ(k)
L−−−→

k→∞
µ.

Proof of the Lemma. By Bogachev and Ruas [2007, Theorem 2.2.5],

lim
k→∞

∫
Sd(R)

W1(t
A
#µk, t

A
#µ) dλS(A) = 0 (6.49)

implies that there exits a subsequence (µφ(k))k such that for λS-almost every A ∈ Sd(R),

W1(t
A
#µφ(k), t

A
#µ) −−−→

k→∞
0 . (6.50)

As W1 metrizes the weak convergence, this is equivalent to tA#µφ(k)
L−−−→

k→∞
tA#µ. Then,

by Levy’s characterization theorem, this is equivalent to the pointwise convergence of the
characterization function, i.e. for all t ∈ R, ϕtA#µφ(k)

(t) −−−→
k→∞

ϕtA#µ
(t). Moreover, we have

for all s ∈ R,

ϕtA#µφ(k)
(s) =

∫
R
e−itsd(tA#µφ(k))(t) (6.51)

=

∫
S++
d (R)

e−it
A(M)s dµφ(k)(M) (6.52)

=

∫
S++
d (R)

e−i⟨sA,logM⟩F dµφ(k)(M) (6.53)

=

∫
Sd(R)

e−i⟨sA,S⟩F d(log# µφ(k))(S) (6.54)

= ϕlog# µφ(k)
(sA) (6.55)

−−−→
k→∞

ϕlog# µ(sA) . (6.56)

Then, working in Sd(R) with the Frobenius norm, we can use the same proof of Nadjahi
et al. [2020] by using a convolution with a gaussian kernel and show that it implies that
log# µφ(k)

L−−−→
k→∞

log# µ. Finally, let’s show that it implies the weak convergence of (µφ(k))k
towards µ. Let f ∈ Cb(S++

d (R)), then∫
S++
d (R)

f dµφ(k) =

∫
Sd(R)

f ◦ exp d(log# µφ(k)) (6.57)

−−−→
k→∞

∫
Sd(R)

f ◦ exp d(log# µ) (6.58)

=

∫
S++
d (R)

f dµ . (6.59)
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Hence, we can conclude that µφ(k)
L−−−→

k→∞
µ.

Main proof.
First, we suppose that µk

L−−−→
k→∞

µ in Pp(S++
d (R)). Then, by continuity, we have that for

λS almost every A ∈ Pp(S++
d (R), tA#µk −−−→

k→∞
tA#µ. Moreover, as the Wasserstein distance

on R metrizes the weak convergence, Wp(t
A
#µk, t

A
#µ) −−−→

k→∞
0. Finally, as Wp is bounded

and it converges for λS-almost every A, we have by the Lebesgue convergence dominated
theorem that SPDSWp

p(µk, µ) −−−→
k→∞

0.

On the other hand, suppose that SPDSWp(µk, µ) −−−→
k→∞

0. We first adapt Lemma S1 of

[Nadjahi et al., 2020] in the Lemma and observe that by the Hölder inequality,

SPDSW1(µ, ν) ≤ SPDSWp(µ, ν) , (6.60)

and hence SPDSW1(µk, µ) −−−→
k→∞

0.

By the same contradiction argument as in Nadjahi et al. [2020], let’s suppose that (µk)k
does not converge to µ. Then, denoting dP the Lévy-Prokhorov metric, limk→∞ dP (µk, µ) ̸=
0. Hence, there exists ϵ > 0 and a subsequence (µφ(k))k such that dP (µφ(k), µ) > ϵ

for any k ∈ N. Then, we have limk→∞ SPDSW1(µφ(k), µ) = 0. Thus, by the Lemma,

there exists a subsequence (µψ(φ(k)))k such that µψ(φ(k))
L−−−→

k→∞
µ which is equivalent to

limk→∞ dP (µψ(φ(k)), µ) = 0 and contradicts the hypothesis.
We conclude that (µk)k converges weakly to µ.

Moreover, SPDSWp and Wp – the p-Wasserstein distance with Log-Euclidean ground cost
– are also weakly equivalent on compactly supported measures on Pp(S++

d (R)), as demon-
strated in Theorem 6.2.3.

Theorem 6.2.3. Let p ≥ 1, let µ, ν ∈ Pp(S++
d (R)). Then

SPDSWp
p(µ, ν) ≤ c

p
d,pW

p
p (µ, ν) ,

where cpd,p = 1
d

∫
∥θ∥pp dλ(θ). Let R > 0 and B(I,R) = {A ∈ S++

d (R), dLE(A, Id) =
∥ logA∥F ≤ R} be a closed ball. Then there exists a constant Cd,p,R such that for all
µ, ν ∈ Pp(B(I,R)),

W p
p (µ, ν) ≤ Cd,p,RSPDSWp(µ, ν)

2
d(d+1)+2 .

Proof 6.2.3

See the paper for the proof.

The theorems above highlight that SPDSWp behaves similarly to Wp on Pp(S++
d (R)).

Thus, it is justified to use SPDSWp as a surrogate of Wasserstein and take advantage of
the statistical and computational benefits that we present now.

Statistical properties.

In practice, we approximate SPDSW using the plug-in estimator [Niles-Weed and Rigollet,
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2022, Manole et al., 2022], i.e. for µ, ν ∈ Pp(S++
d (R)), we approximate SPDSWp

p(µ, ν) by
SPDSWp

p(µ̂n, ν̂n) where µ̂n and ν̂n denote empirical distributions of µ and ν. Hence, we are
interested in the speed of convergence towards SPDSWp

p(µ, ν), which we call the sample
complexity. We derive the convergence rate for SPDSW in Proposition 6.2.4, relying on the
proof of Nadjahi et al. [2020] and on the sample complexity of the Wasserstein distance
[Fournier and Guillin, 2015]. The sample complexity we find does not depend on the
dimension, which is an important property of sliced divergences [Nadjahi et al., 2020].

Proposition 6.2.4. Let q > p ≥ 1, µ, ν ∈ Pp(S++
d (R)), and µ̂n, ν̂n the associated em-

pirical measures. We define the moment of order q by Mq(µ) =
∫
∥X∥qF dµ(X), and

Mq(µ, ν) = Mq(log# µ)
1/q +Mq(log# ν)

1/q. Then, there exists a constant Cp,q depending
only on p and q such that

E
[
|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ, ν)|

]
≤ αn,p,qC1/p

p,q Mq(µ, ν) ,

where αn,p,q =


n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p) .

Proof 6.2.4

See the paper for the proof.

Proposition 6.2.4 assumes we can exactly compute the outer integral, which is not the
case in practice, as it requires a Monte-Carlo approximation. In Proposition 6.2.5, we
show that, L being the number of projections, the Monte-Carlo error is O( 1√

L
) for a fixed

dimension d. This time, the dimension intervenes in VarA∼λS

[
W p
p (tA#µ, t

A
#ν)

]
.

Proposition 6.2.5. Let p ≥ 1, µ, ν ∈ Pp(S++
d (R)). Then, the error made by the Monte

Carlo estimate of SPDSWp with L projections can be bounded as follows

EA
[
| ̂SPDSW

p

p,L(µ, ν)− SPDSWp
p(µ, ν)|

]2
≤ 1

L
VarA∼λS

[
W p
p (t

A
#µ, t

A
#ν)

]
,

where ̂SPDSW
p

p,L(µ, ν) = 1
L

∑L
i=1W

p
p (t

Ai
# µ, tAi

# ν) with (Ai)
L
i=1 independent samples from

λS.

Proof 6.2.5

See the paper for the proof.

Computational complexity and implementation.

Let µ, ν ∈ Pp(S++
d (R)) and (Xi)

n
i=1 (resp. (Yj)

m
j=1) samples from µ (resp. from ν). We

approximate SPDSWp
p(µ, ν) by ̂SPDSW

p

p,L(µ̂n, ν̂m) where µ̂n = 1
n

∑n
i=1 δXi and ν̂m =

1
m

∑m
j=1 δYj . Sampling from λO requires drawing a matrix Z ∈ Rd×d with i.i.d normally

distributed coefficients, and then taking the QR factorization with positive entries on the
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Algorithm 6 Computation of SPDSW
Input: (Xi)

n
i=1 ∼ µ, (Yj)mj=1 ∼ ν, L the number of projections, p the order

for ℓ = 1 to L do
Draw θ ∼ Unif(Sd−1) = λ
Draw P ∼ Unif(Od(R)) = λO
A = Pdiag(θ)P T

∀i, j, X̂ℓ
i = tA(Xi), Ŷ ℓ

j = tA(Yj)
Compute W p

p (
1
n

∑n
i=1 δX̂ℓ

i
, 1
m

∑m
j=1 δŶ ℓ

j
)

end for
Return 1

L

∑L
ℓ=1 W

p
p (

1
n

∑n
i=1 δX̂ℓ

i
, 1
m

∑m
j=1 δŶ ℓ

j
)

diagonal of R [Mezzadri, 2006], which needs O(d3) operations [Golub and Van Loan, 2013,
Section 5.2]. Then, computing n matrix logarithms takes O(nd3) operations. Given L

projections, the inner-products require O(Lnd2) operations, and the computation of the
one-dimensional Wasserstein distances is done in O(Ln log n) operations. Therefore, the
complexity of SPDSW is O(Ln(log n + d2) + (L + n)d3). The procedure is detailed in
Algorithm 6. In practice, when it is required to call SPDSW several times in optimization
procedures, the computational complexity can be reduced by drawing projections only once
at the beginning.

Note that it is possible to draw symmetric matrices with complexity O(d2) by taking A =
Z+ZT

∥Z+ZT ∥F
. Although this is a great advantage from the point of view of computation time,

we leave it as an open question to know whether this breaks the bounds in Theorem 6.2.3.
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Figure 6.2: Runtime in log-log scale of
SPDSW and log SW (200 proj., d=20) com-
pared to alternatives based on Wasserstein be-
tween Wishart samples. Sliced discrepancies
can scale to larger distributions in S++

d (R).

We illustrate the computational complex-
ity w.r.t samples in Figure 6.2. We
compare the runtime to the Wasserstein
distance with Affine-Invariant (AIW) and
Log-Euclidean (LEW) metrics, and to
Sinkhorn algorithm (LES) which is a classi-
cal alternative to Wasserstein to reduce the
computational cost. When enough samples
are available, then computing the Wasser-
stein distance takes more time than com-
puting the cost matrix, and SPDSW is fast
to compute.

6.3 . From brain data to distributions in S++
d (R)

M/EEG data consists of multivariate time series X ∈ RNC×T , with NC channels, and
T time samples. A widely adopted model assumes that the measurements X are linear
combinations of NS sources S ∈ RNS×T degraded by noise N ∈ RNC×T . This leads to
X = AS+N , where A ∈ RNC×NS is the forward linear operator [Hämäläinen et al., 1993].
A common practice in statistical learning on M/EEG data is to consider that the target
is a function of the power of the sources, i.e. E[SST ] [Blankertz et al., 2007, Dähne et al.,
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2014, Sabbagh et al., 2019]. In particular, a broad range of methods rely on second-order
statistics of the measurements, i.e. covariance matrices of the form C = XXT

T , which are
less costly and uncertain than solving the inverse problem to recover S before training the
model. After proper rank reduction to turn the covariance estimates into SPD matrices
[Harandi et al., 2017], and appropriate band-pass filtering to stick to specific physiological
patterns Blankertz et al. [2007], Riemannian geometry becomes an appropriate tool to deal
with such data.

In this section, we propose two applications of SPDSW to prediction tasks from M/EEG
data. More specifically, we introduce a new method to perform brain-age regression, build-
ing on the work of Sabbagh et al. [2019] and Meunier et al. [2022], and another for domain
adaptation in BCI.

Distributions regression for brain-age prediction.

Learning to predict brain age from population-level neuroimaging data-sets can help char-
acterize biological aging and disease severity [Spiegelhalter, 2016, Cole and Franke, 2017,
Cole et al., 2018]. Thus, this task has encountered more and more interest in the neuro-
science community in recent years [Xifra-Porxas et al., 2021, Peng et al., 2021, Engemann
et al., 2022]. In particular, Sabbagh et al. [2019] take advantage of Riemannian geometry
for feature engineering and prediction with the following steps. First, one covariance esti-
mate is computed per frequency band from each subject recording. Then these covariance
matrices are projected onto a lower dimensional space to make them full rank, for instance
with a PCA. Each newly obtained SPD matrix is projected onto the log space to obtain
a feature after vectorization and aggregation among frequency bands. Finally, a Ridge re-
gression model predicts brain age. This white-box method achieves state-of-the-art brain
age prediction scores on MEG datasets like Cam-CAN [Taylor et al., 2017].

MEG recordings as distributions of covariance matrices. Instead of modeling
each frequency band by a unique covariance matrix, we propose to use a distribution of
covariance matrices estimated from small time frames. Concretely, given a time series
X ∈ RNC×T and a time-frame length t < T , a covariance matrix is estimated from each
one of the n = ⌊Tt ⌋ chunks of signal available. This process models each subject by as
many empirical distributions of covariance estimates (Ci)ni=1 as there are frequency bands.
Then, all samples are projected on a lower dimensional space with a PCA, as done in
Sabbagh et al. [2019]. Here, we study whether modeling a subject by such distributions
provides additional information compared to feature engineering based on a unique covari-
ance matrix. In order to perform brain age prediction from these distributions, we extend
recent results on distribution regression with SW kernels [Kolouri et al., 2016, Meunier
et al., 2022] to SPD matrices, and show that SPDSW performs well on this prediction task
while being easy to implement.

SPDSW kernels for distributions regression. As shown in section 6.2, SPDSW is a
well-defined distance on distributions in S++

d (R). The most straightforward way to build
a kernel from this distance is to resort to well-known Gaussian kernels, i.e. K(µ, ν) =

e−
1

2σ2 SPDSW2
2(µ,ν).

However, this is not sufficient to make it a proper positive kernel. Indeed, we need SPDSW
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to be a Hilbertian distance [Hein and Bousquet, 2005]. A pseudo-distance d on X is
Hilbertian if there exists a Hilbert space H and a feature map Φ : X → H such that
∀x, y ∈ X , d(x, y) = ∥Φ(x)− Φ(y)∥H. We now extend Meunier et al. [2022, Proposition 5]
to the case of SPDSW in Proposition 6.3.1.

Proposition 6.3.1. Let m be the Lebesgue measure and let H = L2([0, 1]×Sd(R),m⊗λS).
We define Φ as

Φ : Pp(S++
d (R))→ H

µ 7→
(
(q, A) 7→ F−1

tA#µ
(q)
)
,

where F−1
tA#µ

is the quantile function of tA#µ. Then, SPDSW2 is Hilbertian and for all

µ, ν ∈ Pp(S++
d (R)),

SPDSW2
2(µ, ν) = ∥Φ(µ)− Φ(ν)∥2H .

Proof 6.3.1

Let µ, ν be probability distributions on S++
d (R) with moments of order p ≥ 1. Then

SPDSW2
2(µ, ν) =

∫
Sd

∥F−1
tA#µ
− F−1

tA#ν
∥2 dλS(A)

=

∫
Sd

∫ 1

0

(
F−1
tA#µ

(q)− F−1
tA#ν

(q)
)2

dqdλS(A)

= ∥Φ(µ)− Φ(ν)∥2H .

Thus, SPDSW2 is Hilbertian.

The proof is similar to the one of Meunier et al. [2022] for SW in Euclidean spaces and
highlights two key results. The first one is that SPDSW extensions of Gaussian kernels
are valid positive definite kernels, as opposed to what we would get with the Wasserstein
distance [Meunier et al., 2022]. The second one is that we have access to an explicit and
easy-to-compute feature map that preserves SPDSW, making it possible to avoid inefficient
quadratic algorithms on empirical distributions from very large data. In practice, we rely on
the finite-dimensional approximation of projected distributions quantile functions proposed
in Meunier et al. [2022] to compute the kernels more efficiently with the ℓ2-norm. Then, we
leverage Kernel Ridge regression for prediction [Murphy, 2012]. Let 0 < q1 < · · · < qM < 1,
and (A1, . . . , AL) ∈ Sd(R)L. The approximate feature map has a closed-form expression in
the case of empirical distributions and is defined as

Φ̂(µ) =

(
1√
ML

F−1

t
Ai
# µ

(qj)

)
1≤j≤M,1≤i≤L

. (6.61)

Regarding brain-age prediction, we model each couple of subject s and frequency band
f as an empirical distribution µs,fn of covariance estimates (Ci)

n
i=1. Hence, our data-set

consists of the set of distributions in S++
d (R)(

µs,fn =
1

n

n∑
i=1

δCi

)
s,f

. (6.62)
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Average MAE

Filterbank-riemann (Sabbagh et al. 2019)
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Figure 6.3: Average MAE and R2 score for 10 random seeds on the Cam-CAN data-set
with time-frames of 2s and 1000 projections. Kernel Ridge regression based on SW kernels
performs best. SPDSW and log SW are close to each other. Sampling from symmetric
matrices offers a slight advantage but does not play a key role on performance. For infor-
mation, Euclidean SW led to poor results on the task (MAE 9.7).

5 6 7 8 9
MAE

Filterbank-riemann (Sabbagh et al. 2019)
Filterbank-riemann kernel

SPDSW kernel

0.70 0.74 0.78 0.82 0.86
R2

Figure 6.4: Results of 10-folds cross validation on the Cam-CAN data-set for one random
seed. We display the Mean Absolute Error (MAE) and the R2 coefficient. SPDSW, with
time-frames of 2s and 1000 projections, performs best. Note that Kernel Ridge regression
based on the Log-Euclidean distance performs better than Ridge regression.

First, we compute the associated features (Φ̂(µs,fn ))s,f by loading the data and band-pass
filtering the signal once per subject. Then, as we are interested in comparing each subject
in specific frequency bands, we compute one approximate kernel matrix per frequency f ,
as follows

Kf
i,j = e−

1
2σ2 ∥Φ̂(µi,fn )−Φ̂(µj,fn )∥22 . (6.63)

Finally, the kernel matrix obtained as a sum over frequency bands, i.e. K =
∑

f K
f , is

plugged into the Kernel Ridge regression of scikit-learn [Pedregosa et al., 2011].

Numerical results. We demonstrate the ability of our algorithm to perform well on
brain-age prediction on the largest publicly available MEG data-set Cam-CAN Taylor
et al. [2017], which contains recordings from 646 subjects at rest. We take advantage of
the benchmark provided by Engemann et al. [2022] – available online1 – to replicate the
same pre-processing and prediction steps from the data, and thus produce a meaningful
and fair comparison.

For each one of the seven frequency bands, we divide every subject time series into frames
of fixed length. We estimate covariance matrices from each timeframe with OAS [Chen
et al., 2010] and apply PCA for rank-reduction, as in Sabbagh et al. [2019], to obtain
SPD matrices of size 53 × 53. This leads to distributions of 275 points per subject and
per frequency band. In Sabbagh et al. [2019], the authors rely on Ridge regression on
vectorized projections of SPD matrices on the tangent space. We also provide a comparison
to Kernel Ridge regression based on a kernel with the Log-Euclidean metric, i.e. K log

i,j =

e−
1

2σ2 ∥ logCi−logCj∥2F .

1https://github.com/meeg-ml-benchmarks/brain-age-benchmark-paper
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Figure 6.5: Average results for 10 random seeds with 200, 500 and 1000 projections for
SPDSW compared to average MAE and R2 obtained with Ridge and Kernel Ridge regression
on features from covariance estimates [Sabbagh et al., 2019]. With enough projections,
SPDSW kernel does not suffer from variance and performs best.
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Filterbank-riemann kernel

SPDSW kernel timeframe 200
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Figure 6.6: Average MAE and R2 score on brain age regression with different time-frame
lengths for 10 random seeds The performance depends on the time-frame length, and there
is a trade-off to find between number of samples and noise in the samples.

Figure 6.3 shows that SPDSW (1000 projections, time-frames of 2s) performs best in aver-
age on 10-folds cross-validation for 10 random seeds, compared to the baseline with Ridge
regression [Sabbagh et al., 2019] and to Kernel Ridge regression based on the Log-Euclidean
metric, with identical pre-processing. We provide more details on scores for each fold on
a single random seed in Figure 6.4. In particular, it seems that evaluating the distance
between distributions of covariance estimates instead of just the average covariance brings
more information to the model in this brain-age prediction task, and allows to improve
the score. Also note that Log-Euclidean Kernel Ridge regression works better than the
baseline method based on Ridge regression [Sabbagh et al., 2019]. Then, Figure 6.5 in the
appendix shows that SPDSW does not suffer from variance with more than 500 projec-
tions in this use case with matrices of size 53 × 53. Finally, Figure 6.6 shows that there
is a trade-off to find between smaller time-frames for more samples per distribution and
larger time-frames for less noise in the covariance estimates and that this is an important
hyper-parameter of the model.

Domain adaptation for BCI.

BCI consists of establishing a communication interface between the brain and an exter-
nal device, in order to assist or repair sensory-motor functions [Daly and Wolpaw, 2008,
Nicolas-Alonso and Gomez-Gil, 2012, Wolpaw, 2013]. The interface should be able to cor-
rectly interpret M/EEG signals and link them to actions that the subject would like to
perform. One challenge of BCI is that ML methods are generally not robust to the change
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Table 6.1: Accuracy and Runtime for Cross Session.

Subjects Source AISOTDA SPDSW LogSW LEW LES SPDSW LogSW LEW LES
[Yair et al., 2019] Transformations in S++

d (R) Descent over particles

1 82.21 80.90 84.70 84.48 84.34 84.70 85.20 85.20 77.94 82.92
3 79.85 87.86 85.57 84.10 85.71 86.08 87.11 86.37 82.42 81.47
7 72.20 82.29 81.01 76.32 81.23 81.23 81.81 81.73 79.06 73.29
8 79.34 83.25 83.54 81.03 82.29 83.03 84.13 83.32 80.07 85.02
9 75.76 80.25 77.35 77.88 77.65 77.65 80.30 79.02 76.14 70.45

Avg. acc. 77.87 82.93 82.43 80.76 82.24 82.54 83.71 83.12 79.13 78.63
Avg. time (s) - - 4.34 4.32 11.41 12.04 3.68 3.67 8.50 11.43

of data domain, which means that an algorithm trained on a particular subject will not
be able to generalize to other subjects. Domain adaptation (DA) [Ben-David et al., 2006]
offers a solution to this problem by taking into account the distributional shift between
source and target domains. Classical DA techniques employed in BCI involve projecting
target data on source data or vice versa, or learning a common embedding that erases the
shift, sometimes with the help of optimal transport [Courty et al., 2016]. As Riemannian
geometry works well on BCI [Barachant et al., 2013], DA tools have been developed for
SPD matrices [Yair et al., 2019, Ju and Guan, 2022].
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Figure 6.7: (Left) PCA on BCI data
before and after alignment. Minimizing
SPDSW with enough projections allows align-
ing sources on targets. (Right) Accuracy
w.r.t num. of projections for the cross-session
task with transformations. Here, there is no
need for too many projections to converge.

SPDSW for domain adaptation on
SPD matrices. We study two train-
ing frameworks on data from P(S++

d (R)).
In the first case, a push forward operator
fθ is trained to change a distribution µS
in the source domain into a distribution
µT in the target domain by minimizing a
loss of the form L(θ) = L

(
(fθ)#µS , µT

)
,

where L is a transport cost like Wasserstein
on P(S++

d (R)) or SPDSW. The model
fθ is a sequence of simple transformations
in S++

d (R) [Rodrigues et al., 2018], i.e.
TW (C) =W TCW for W ∈ S++

d (R) (trans-
lations) or W ∈ SOd (rotations), poten-
tially combined to specific non-linearities
[Huang and Van Gool, 2017]. The advantage of such models is that they provide a high
level of structure with a small number of parameters.

In the second case, we directly align the source on the target by minimizing L with a
Riemannian gradient descent directly over the particles [Boumal, 2020], i.e. by denoting
µS((xi)

|XS |
i=1 ) = 1

|XS |
∑|XS |

i=1 δxi with XS = {xSi }i the samples of the source, we initialize at

(xSi )
|XS |
i=1 and minimize L((xi)

|XS |
i=1 ) = L

(
µS((xi)

|XS |
i=1 ), µT

)
.

We use Geoopt [Kochurov et al., 2020] and Pytorch [Paszke et al., 2017] to optimize
on manifolds. Then, an SVM is trained on the vectorized projections of XS in the log

space, i.e. from couples (vect(log xSi ), yi)
|XS |
i=1 , and we evaluate the model on the target

distribution.
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Table 6.2: Accuracy and Runtime for Cross Subject.

Subjects Source AISOTDA SPDSW LogSW LEW LES SPDSW LogSW LEW LES
[Yair et al., 2019] Transformations in S++

d (R) Descent over particles

1 42.09 62.94 61.91 60.50 62.89 63.64 62.56 61.91 62.84 63.25
3 35.62 71.01 66.40 66.53 66.34 66.30 65.74 64.96 60.27 62.29
7 39.52 63.98 60.42 57.29 60.89 60.43 60.97 58.49 53.18 59.52
8 42.90 66.06 61.09 60.19 61.29 62.14 60.95 60.00 61.68 61.77
9 29.94 59.18 53.31 50.63 54.79 54.89 58.72 54.91 58.22 64.90

Avg. acc. 38.01 64.43 60.63 59.03 61.24 61.48 61.79 60.05 59.24 62.55
Avg. time - - 4.34 4.31 11.76 11.21 3.67 3.64 9.54 10.32

Numerical results. In Table 6.1, we focus on cross-session classification for the BCI
IV 2.a Competition dataset [Brunner et al., 2008] with 4 target classes and about 270
samples per subject and session. The cross-subject counterpart is detailed in Table 6.2.
We compare accuracies and runtimes for several methods run on a GPU Tesla V100-
DGXS-32GB. The distributions are aligned by minimizing different discrepancies, namely
SPDSW, logSW, Log-Euclidean Wasserstein (LEW) and Sinkhorn (LES), computed with
POT [Flamary et al., 2021]. Note that we did not tune hyper-parameters on each particular
subject and discrepancy, but only used a grid search to train the SVM on the source data-
set, and optimized each loss until convergence, i.e. without early stopping. We compare
this approach to the naive one without DA, and to the barycentric OTDA [Courty et al.,
2016] with Affine-Invariant metric reported from Yair et al. [2019]. Our results show that
all discrepancies give equivalent accuracies. As expected, SPDSW has an advantage in
terms of computation time compared to other transport losses. Moreover, transformations
in S++

d (R) and descent over the particles work almost equally well in the case of SPDSW.
We illustrate the alignment we obtain by minimizing SPDSW in Figure 6.7, with a PCA
for visualization purposes. Additionally, Figure 6.7 shows that SPDSW does not need too
many projections to reach optimal performance.

Conclusion

We proposed SPDSW, a discrepancy between distributions of SPD matrices with appealing
properties such as being a distance and metrizing the weak convergence. Being a Hilber-
tian metric, it can be plugged as is into Kernel methods, as we demonstrate for brain age
prediction from MEG data. Moreover, it is usable in loss functions dealing with distribu-
tions of SPD matrices, for instance in domain adaptation for BCI, with less computational
complexity than its counterparts. Beyond M/EEG data, our discrepancy is of interest for
any learning problem that involves distributions of SPD matrices, and we expect to see
other applications of SPDSW in the future. One might also be interested in using other
metrics on positive definite or semi-definite matrices such as the Bures-Wasserstein metric,
with the additional challenges that this space is positively curved and not geodesically
complete [Thanwerdas and Pennec, 2023].
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Conclusion and perspectives

The starting point of the thesis was the study of Unrolling and automatic differentiation
for Dictionary Learning, and their potential usage to solve inverse problems. At that time,
as we were intrigued by the success of Unrolling in reconstruction, and also in gradient
computations for smooth loss functions, we were wondering whether this technique may
allow to speed up the computation of the dictionary, and why not, learn a better one.
Then, the idea was to study how this technique could be used for prior learning in inverse
problems, and apply it to M/EEG data.

However, the study on Unrolled Dictionary Learning summarized in chapter 2 highlighted
the limitations of automatic differentiation for non smooth losses and non smooth algo-
rithms. We now know that it does not allow to improve the results as we hoped at the
beginning, and strangely enough, can even worsen them. But what we got instead was a
new point of view of the Dictionary Learning problem that suits applications. Indeed, if
the only variable that matters in optimization is the dictionary itself, then we do not have
to care about precise or complete sparse coding in the learning process, and this can save
a great amount of computation time. Then, if the sparse codes are needed, they can be
computed once and for all at the end of the process when the dictionary is known, and we
demonstrated the efficiency of this approach on MEG signals in chapter 5.

The second line of research that guided this thesis was the study of prior learning tech-
niques for inverse problems resolution. As works focusing on supervised inverse problems
predominate the literature, we first decided to deal with unsupervised inverse problems,
which naturally arise in neuroscience and M/EEG. In chapter 3, we analyzed what was
and was not possible to do through the lens of Dictionary Learning, and we ended up with
the conclusion that expert knowledge on the signal and on the problem structure, condi-
tioned by the measurement operator, can allow designing parameterized models able to
learn all information necessary for reconstruction from observed data only. But the main
condition is that prior knowledge on the data should not be correlated to the structure of
the measurement operator, as is the case of shift-invariant signals in deblurring, and this
makes it extremely difficult to learn relevant information in the kernel space of the oper-
ator. We also compared the behavior of Unrolled Dictionary Learning based on Analysis
and Synthesis in practice on several inverse problems and with several constraints on the
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Dictionary, and illustrated how the structure of the prior learning algorithm can impact
the performance.

Then, we turned to self-supervised inverse problems and studied prior learning based on
Unrolled Dictionary Learning to build Plug-and-Play estimators in chapter 4. The idea was
to provide theoretical elements to help practitioners that use Unrolling in Plug-and-Play
algorithms understand the similarities with classical inverse problem resolution methods
based on Dictionary Learning. We were able to prove the stability of these approaches and
their equivalence to primal dual and sparse coding optimization algorithms, and illustrate
that they work well in imaging reconstruction problems.

Finally, we contributed to M/EEG signal processing by developing a method – explained
in chapter 6 – to predict quantities of interest from M/EEG recordings and compare sub-
jects between each other with distributions of covariance matrices. This allows making
predictions without having to solve the source localization inverse problem.

Besides the contributions and answers provided in this thesis, our work has raised multiple
questions that would deserve to be studied in more details in the future.

How to quantify the difficulty of an inverse problem ? The work on prior
learning in unsupervised inverse problems presented in chapter 3 shows that there is an
intrinsic limit to what we can expect to learn from observed data, and thus to the perfor-
mance of reconstruction algorithms without expert knowledge in this context. While this
may seem natural in an unsupervised scenario, it also applies to supervised scenarios where
we have access to a training dataset of clean samples and to the measurement operator.
As an example, it is possible to compute a lower bound of the optimal performance of
reconstruction algorithms with the help of entropy estimators [Michel et al., 2023]. This
quantity acts as a difficulty measure for an inverse problem defined as the combination of
a data distribution, a measurement operator, and a noise distribution.

Thus, this metric might be used to identify areas of the signal domain from which all
information is lost by the measurement operator, depending on the distribution of the
data, so that specific expert knowledge can be inserted into the model to fill the gaps in
prior learning. Another application would be to quantitatively assess the reconstruction
performance of an algorithm relatively to the optimal value, and thus know to what extent
it is worth spending time improving reconstruction on a particular problem and know in
what part of signal domain the method succeeds or fails.

Is solving the inverse problem helpful for prediction ? In M/EEG, prediction
tasks like brain-age prediction, detection of dementia or sleep stage classification rely on
the output of the few hundreds of sensors that measure the electromagnetic activity around
the head. Yet, the data are only degraded observations of the cerebral activity inside the
head, observed through a physical model induced by Maxwell’s equations which involves a
heavy dimension reduction of the signal and which is subject-dependent. The question then
arises as to whether finding the sources from the observations and the linear model, i.e.
solving the source localization inverse problem, would improve performances in prediction
tasks.
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This question arises in multiple domains and is closely related to prediction from missing
values [Le Morvan et al., 2021]. Indeed, the operator erases information in specific areas of
the signal, and it would be of interest to know whether solving the related inverse problem
might help improving prediction performance depending on the data distribution and the
properties of the forward model. Moreover, turning the problem upside-down, prediction
could serve as a performance metric for prior learning methods or reconstruction algo-
rithms, and could even be used for hyper-parameter selection in unsupervised contexts.
Taking the example of source localization in M/EEG, proxy problems like brain-age pre-
diction are good candidates to assess whether a reconstruction algorithm works well or
not.

Perspectives of Convolutional Dictionary Learning in M/EEG. The aim
of speeding up CDL on M/EEG data was first and foremost to develop tools to process
datasets at the population level. Yet, it is not straightforward to compare dictionaries
between each other, or to learn a common dictionary from a population of subjects that
takes into account variations that may appear in the signal, in order to draw interesting
conclusions from the data. In addition, CDL could also be used in prediction from M/EEG
data. Indeed, recent works have shown that Dictionary Learning could be used as an
embedding method in self-supervised learning [Chen et al., 2023], and it would be of
interest to extend this method to CDL in M/EEG and see whether the related embedding
obtained from sparse coding are well-performing.

Perspectives of kernel methods and distribution regression in M/EEG.
The work on SPDSW, and in particular its application in M/EEG for brain age prediction,
opens up new possibilities to predict from M/EEG data. First, the idea of processing
frequency bands in different kernels before summing them up can easily be extended with
Multiple Kernel Learning [Gönen and Alpaydın, 2011], where each kernel would be weighted
by a coefficient to be determined, i.e K =

∑
f βfKf . This would provide a framework to

compare the contribution of each frequency band to the final result, and hopefully help
improving the performance of the naive average. In addition, the idea of distribution
regression can be developed further by studying to what extent seeing M/EEG data as
distributions allows to model phenomena that a simple average can’t model, and thus
recover information that was lost with state of the art techniques. As an example, this
could be the case for non stationary signals.
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