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Abstract

The simplicity of strings and their impactful usage puts their processing at the heart of
many applications, including Bioinformatics, Information Retrieval, and Cybersecurity.
Exact pattern matching has been extensively studied [93] as the most natural problem,
however, many applications also need more complex queries. Additionally, in all those
application fields, the quantity of information to process has been increasing at such a
staggering rate [225], that obtaining scalable algorithms is difficult. In this thesis we con-
tribute multiple space- and time-efficient algorithms for various string problems, by relying
on sketches: compressions (lossless or lossy) that only keep the essential characteristic of
the input needed to answer a given query.

In the first part of this thesis, we study complex queries such as regular expressions
search, gapped consecutive matching, and square detection. For regular expression search,
we provide a space-efficient algorithm in the streaming model: characters of the text arrive
one at a time, and we can only access past characters if we explicitly store them. Next,
gapped consecutive matching is a simpler type of query where, given two patterns P1,
P2 and a range [a, b], one must report all consecutive occurrences of P1 followed by P2
separated by a distance in [a, b]. We study this problem in two settings: compressed
indexing and pattern matching on a compressed text. Motivated by the importance of
periodicity detection, next, we investigate square detection for general alphabets (the
most abstract setting where squares can be defined). We give an optimal algorithm which
answers an open question asked by Main and Lorentz [27] in 1984.

The second part of this thesis proposes several ways to use approximation toward
scaling up to large amounts of data in diverse applications including Bioinformatics. We
first study approximate matching, where we must report all occurrences at distance at
most k for a given similarity measure. We provide efficient parametrized algorithms for
computing the length of the longest common substring with approximately k mismatches
and to compute all positions of a text where a pattern occurs with dynamic time warping
distance at most k. Finally, we propose a compressed index for redundant collections of
next-generation sequencing reads, which takes advantage of alignments to an assembled
genome to improve the overall compression but can incur false positive occurrences.



Résumé détaillé en français

La simplicité des chaînes de caractères rendent leur traitement crucial pour de nombreuses
applications, telles que la bio-informatique, la recherche d’informations et la cybersécurité.
Le problème de la recherche exact d’un motif a naturellement été largement étudié [93],
cependant, de nombreuses applications nécessitent également des requêtes plus complexes.
De plus, dans ces domaines applicatifs, la quantité de données à traiter augmente à une
vitesse stupéfiante [225], et les complexités des requêtes ne permettent pas toujours de
passer à l’échelle. Dans cette thèse, nous proposons plusieurs algorithmes efficaces en
temps et en espace pour divers problèmes sur les chaînes de caractères, en nous appuyant
sur des “sketchs” : des compressions (avec ou sans perte) qui ne conservent que les
caractéristiques essentielles de l’entrée pour répondre à une requête précise.

Dans la première partie de cette thèse, nous étudions des requêtes complexes telles que
la recherche par expressions régulières, la recherche de motifs consécutifs avec espacement
et la détection de carrés. Pour la recherche d’expressions régulières, nous présentons un
algorithme utilisant peu d’espace dans le modèle de flot de données (“streaming”) : les
caractères du texte arrivent un par un, et nous ne pouvons accéder aux anciens que
si nous les avons stockés explicitement. Ensuite, nous étudions la recherche de motifs
consécutifs avec espacement, un type de requête plus simple, où étant donnés deux motifs
P1, P2 et un intervalle [a, b], il faut renvoyer toutes les occurrences consécutives (sans
autres occurrences des motifs entre les deux) de P1 suivies de P2 espacées d’une distance
comprise entre a et b. Nous étudions ce problème sous plusieurs angles : l’indexation
compressée et la recherche de motifs dans un texte compressé. Motivés par l’importance
de la périodicité, nous étudions ensuite la détection de carrés pour alphabets sans ordres
(le cadre le plus abstrait dans lequel les carrés peuvent être définis). Nous fournissons un
algorithme optimal et répondons à une question ouverte posée par Main et Lorentz [27]
en 1984.

La seconde partie de cette thèse propose quelques utilisations d’approximations pour
aider à passer à l’échelle sur des grandes quantités de données, en particulier avec
application à la bio-informatique. Nous étudions tout d’abord la recherche approximative
de motifs, où nous devons rapporter toutes les occurrences à une distance au plus égale
à k pour une mesure de similarité donnée. Nous fournissons des algorithmes paramétrés
efficaces pour calculer la longueur de la plus longue sous-chaîne commune avec environ k
différences, puis pour permettre la recherche de motifs apparaissant avec une distance de
“dynamic time warping” au plus k. Enfin, nous proposons un index compressé pour des
collections de lectures de séquençage. Cet index tire parti d’alignements sur un génome
assemblé pour améliorer la compression, mais l’index est approximatif car il peut renvoyer
des faux positifs lors de ses requêtes.
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Contexte de la thèse
Lorsque je réponds à la question classique “Quel est le sujet de ta thèse ?” posée par ma
famille et mes amis, je commence toujours par la fonction “Ctrl + F” dans leur éditeur de
texte ou leur navigateur web préféré. Cela permet de mettre rapidement en évidence l’une
des applications de la recherche exacte des motifs. Mais même mes grands-parents savent
immédiatement qu’une recherche efficace dans un texte est possible depuis des décennies
et qu’il ne peut s’agir de mon véritable sujet de recherche.

En effet, le problème de la recherche exacte de motif dans un texte a été largement
étudié, avec en particulier, le célèbre algorithme de Knuth–Morris–Pratt qui fait partie
des algorithmes classiques. Charras et Lecroq ont publié un manuel détaillé [93] sur les
différentes solutions pour la recherche exacte de motif dans un texte et ces solutions ont
également été comparées dans le détail en pratique [142, 169]. En général, cependant,
le besoin de traitement de texte va bien au-delà de la recherche exacte de motifs. Dans
cette thèse, nous regroupons les problèmes de traitement de chaînes de caractères étudiés
en trois grandes catégories : la recherche de motifs complexes, le calcul de distance et
mesure de similarité, et enfin la détection de répétitions. Nous détaillerons ensuite la
nécessité d’avoir des algorithmes ultra-efficaces pour essayer de passer à l’échelle sur les
grandes quantités de données des domaines applicatifs utilisant le traitement de chaînes
de caractères.

Traitement des chaînes de caractères

Recherche de Motifs Complexes. L’un des modèles le plus utilisé et classique pour
les requêtes complexes est la recherche par expressions régulières, introduite par Kleene
en 1951 [3]. Le formalisme des expressions régulières permet une description concise
d’ensembles de chaînes par des combinaisons récursives de caractères d’un alphabet Σ
ainsi que de trois opérateurs fondamentaux : la concaténation (·), l’union (|) et l’étoile
de Kleene (∗). Pour deux expressions rationnelles R1 et R2, la concaténation R1 · R2
reconnaît toute concaténation d’une chaîne reconnue par R1 et d’une chaîne reconnue par
R2, l’union (R1|R2) reconnaît toute chaîne reconnue par R1 ou R2, et (R1)∗ reconnaît
toutes répétitions d’une chaîne reconnue par R1, y compris l’absence de répétition, c’est-
à-dire la chaîne vide. L’utilisation des expressions régulières a gagné en popularité dans
les années 1970 grâce à leur mise en œuvre efficace dans les outils Unix tels que awk,
grep, ou sed. Elles sont devenues un outil crucial dans de nombreux domaines tels que
l’analyse du trafic internet [113, 109], les bases de données, l’exploration de données [81,
71, 72], les réseaux informatiques [106], et la recherche de protéines [74]. Nous étudions
les expressions régulières dans le Chapitre 1.

Malheureusement, Backurs et Indyk [211] suivis par Bringmann, Grønlund, et
Larsen [237] ont prouvé des bornes inférieures conditionnelles qui impliquent que certaines
expressions régulières ne peuvent probablement pas être recherchées en temps fortement
sous linéaire. Comme alternative plus simple, Fischer et Paterson [14] ont introduit la
recherche de motifs avec “don’t care” où un symbole don’t care (aussi appelé wildcard ou
gap), dénoté ’?’, peut apparaître à la fois dans le motif et dans le texte, et correspond à
n’importe quel autre caractère de l’alphabet. Ce modèle a été directement appliqué dans
la base de données de protéines PROSITE [105] où les caractères génériques sont pris en
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charge. Plus généralement, les space seeds [95], un concept similaire où seules certaines
positions doivent corespondre, ont été utilisées dans la recherche d’homologie [84],
l’alignement [150], l’assemblage [195], et la métagénomique [196]. Les motifs avec don’t
cares sont parfois [151] décrits comme P = P1g1P2g2 . . . gℓPℓ+1 où P1,P2, . . .,Pℓ+1 sont
des motifs sur l’alphabet Σ et g1, g2, . . . , gℓ sont le nombre de ? entre deux motifs.
Naturellement, cette question a ensuite été étendue au problème de la recherche de motifs
avec espacement variable [154, 174] où la longueur des espaces peut varier dans des
intervalles [ai, bi] pour i ∈ [1, ℓ]. Les espacements de longueur variable sont également pris
en charge par la base de données PROSITE [105]. Différentes variantes du problème ont
été étudiées [218, 128, 63], y compris une version plus simple avec seulement deux motifs
P1 et P2 et un seul espace [107, 131] et le cas spécial P1 = P2 [85, 114].

En 2016, Navarro et Thankatchan [227] ont proposé une variante naturelle : étant
donné un motif unique P et un intervalle [a, b], on doit déclarer toutes les occurrences
consécutives de P commençant aux positions (i, j) (consécutive signifiant aucune autre
occurrence entre i et j) tel que j−i appartient à [a, b]. Depuis, les occurrences consécutives
ont été étudiées dans plusieurs publications [348, 363, 347]. Récemment, Bille et al. [349]
ont proposé une combinaison des modèles de recherche de motifs consécutifs et de
recherche de motifs avec espacement : la recherche de motifs consécutifs avec espacement.
Dans ce modèle que nous étudions dans les Chapitres 2 et 3, on nous donne deux motifs
P1, P2 et un intervalle [a, b], et il faut renvoyer toutes les occurrences consécutives de P1
suivies de P2 espacées d’une distance dans [a, b].
Mesures de Similarité. De nombreuses applications de chaînes de caractères doivent
composer avec la présence de bruit dans les données d’entrée, ce qui rend difficile la
recherche de correspondances exactes. Les modèles tels que “don’t care” et “variable
length gap matching” présentés précédemment définissent leur match de manière à prendre
en compte les données d’entrée bruitées, mais une autre approche consiste à travailler
avec des distances et des mesures de similarité. La quantification du degré de similarité
et de dissimilarité de deux chaînes de caractères est par exemple nécessaire en bio-
informatique [57], en analyse musicale [41] et en détection de plagiat [115]. Une mesure
de distance quantifie la dissimilarité entre les chaînes de caractères, tandis qu’une mesure
de similarité quantifie le degré de ressemblance entre les chaînes de caractères. La plupart
des distances peuvent être dérivées en mesures de similarité, et la plupart des mesures de
similarité ont une distance correspondante. Dans cette section, nous alternons donc les
deux termes en fonction de la forme la plus courante dans la littérature.

Différents types de bruit peuvent apparaître dans les données, tels que le remplacement,
l’insertion ou la suppression de caractères, ou encore l’étirement ou la réorganisation de
sections du texte. Par conséquent, diverses mesures de similarité peuvent être définies
pour tenir compte des différents types de bruit, l’objectif étant toujours que quelques
modifications ne changent pas radicalement la distance par rapport à d’autres chaînes
de caractères. L’une des distances les plus simples sur les chaînes de caractères est la
distance de Hamming : pour deux chaînes X et Y avec |X| = |Y |, il s’agit du nombre
de différences entre X et Y . La distance de Hamming est également définie comme le
nombre de substitutions nécessaires pour transformer X en Y . Lorsque l’objectif est
plutôt d’avoir une mesure de similarité robuste aux insertions et aux suppressions dans
les chaînes X et Y , on peut considérer la longueur de la plus longue sous-séquence
commune entre X et Y : le plus grand ℓ tel qu’il existe des positions i1 < .... < iℓ et
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j1 < ... < jℓ telles que X[ip] = Y [jp] pour tout p ∈ [1, ℓ]. Notez que la plus longue
sous-séquence commune est à la base d’outils de comparaison tels que diff qui sont
ensuite appliqués dans des systèmes de contrôle de version tels que git. Pour la distance
de Levenshtein [8] (également appelée distance d’édition par la suite), les opérations
autorisées sont les substitutions, les insertions et les suppressions, toutes avec un coût de
1. Cette définition peut être généralisée pour permettre aux coûts de différer pour chacune
des opérations (distance d’édition pondérée) ou même pour que le coût dépende du
caractère qui est ajouté, supprimé ou substitué (distance d’édition pondérée en fonction
de l’alphabet). Cette métrique est l’une des plus connues, en raison de l’importance
de la recherche d’alignements globaux (alignements de deux chaînes complètes avec
substitutions, insertions et suppressions) en bio-informatique [57]. Malheureusement,
Backurs et Indyk [253] ont prouvé une borne inférieure conditionnelle (basée sur SETH)
qui suggère qu’il est peu probable que la distance d’édition soit calculable en temps
fortement sous-quadratique. Pour tenter de contourner cette limite inférieure, dans le
Chapitre 5, nous considérons la plus longue sous-chaîne commune (LCS) avec environ k
différences comme une version approximative d’une mesure résiliente aux substitutions :
LCS avec k différences. Dans le problème LCS avec k différences, étant donné un entier k
et deux chaînes X et Y , LCSk(X, Y ) est la longueur maximale d’une sous-chaîne (qui doit
être continue, contrairement à une sous-séquence) de X qui apparaît dans Y avec au plus
k différences. Mais là encore, Kociumaka, Radoszewski et Starikovskaya [293] ont montré
(sous réserve de SETH) qu’il existe k = Θ(log n) tel que LCS avec k différences ne peut
être résolu en temps fortement sous-quadratique, ils ont donc introduit LCS avec environ
k différences dans le but de rendre le problème plus facile par approximation. Dans le
Chapitre 5, nous étudions ce problème, où nous recevons une constante ε > 0, et nous
devons retourner une sous-chaîne de X de longueur au moins LCSk(X, Y ) qui apparaît
dans Y avec au plus (1 + ε) · k différences. Nous fournissons deux nouveaux algorithmes
avec des compromis spatio-temporels différents et évaluons l’éfficacité pratique de l’un
d’entre eux par rapport à la solution de programmation dynamique quadratique pour
LCS avec k différences.

Outre la comparaison directe de deux chaînes de caractères, les distances sont
également utilisées pour définir des problèmes de recherche approximative de motifs [32,
39] où, pour un entier donné k, un motif P et un texte T , on doit trouver toutes les
positions j telles qu’il existe une sous-chaîne T [i..j] qui est à une distance maximale de
k par rapport à P . Pour un aperçu des résultats obtenus avant 2001 sur la recherche
approximative pour les distances d’édition, de Hamming et de la plus longue séquence
commune, voir [73]. Nous étudions l’appariement approximatif dans le Chapitre 6 pour
une distance populaire pour les séquences temporelles, qui est moins courante pour les
chaînes de caractères : la “Dynamic Time Warping (DTW) distance” [18]. Pour les
chaînes de caractères, la distance DTW peut être décrite comme suit : dupliquer certains
caractères dans le but d’obtenir des chaînes de longueur égale et de minimiser la somme
des distances entre les caractères situés aux mêmes positions, cette somme étant la
distance DTW.

Détections de Répétitions. Après avoir abordé les modèles de recherches de motifs
et les mesures de similarité, nous passons maintenant à une autre tâche centrale du
traitement des chaînes de caractères : la détection de répétitions. La localisation des
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fragments répétés dans une chaîne de caractères peut être utilisée pour détecter les données
dupliquées qui doivent être supprimées ou pour compresser leur représentation. Par
exemple, la décomposition d’une chaîne en fragments maximaux apparus précédemment
est à la base de la factorisation de Lempel–Ziv [17]. Une fois détectées, les régions
hautement répétitives d’une chaîne peuvent également être traitées différemment, permettant
d’obtenir un algorithme plus efficace.

En musique [38], génomique [274], finance [111] et astronomie [20]1, de nombreuses
données présentent des signes de répétitions et de phénomènes périodiques. Formellement,
on dit qu’une chaîne T de longueur n est périodique avec une période p si pour tout
0 ≤ i < n − p, T [i] = T [i + p], et la plus petite période de T est simplement appelée
la période de T . Mais souvent, les données d’entrée ne contiennent que des sous-chaînes
périodiques (au lieu d’être entièrement périodiques), ce qui conduit naturellement au
concept de “runs”. Les runs sont des sous-chaînes maximales périodiques, c’est-à-dire
qu’une sous-chaîne T [i..j] est un run si elle est périodique, soit p sa période, et T [i− 1..j]
et T [i..j + 1] (si elles sont bien définies, c’est-à-dire 0 < i et j < |T | − 1) ne sont pas
périodiques de période p.

Un modèle plus simple souvent considéré est le carré : une sous-chaîne T [i..i+ 2k− 1]
telle que T [i..i + k − 1] = T [i + k..i + 2k − 1], est appelé un carré ou un tandem. Cette
forme de répétition est naturellement présente dans l’ADN et joue un rôle important dans
l’établissement des empreintes génomiques [89, 243]. L’étude des carrés dans les chaînes
de caractères remonte à 1906 avec les travaux de Thue [1] sur la construction d’un mot
infini sans carré. En termes d’algorithme, la question la plus fondamentale est de tester
si une chaîne de longueur n contient au moins un carré, et elle a été examinée pour la
première fois par Main et Lorentz [27] qui ont conçu un algorithme en temps O(n log n).
Ils ont utilisé une approche en “diviser pour régner” pouvant être adaptée pour obtenir
une représentation compacte de tous les carrés dans le même temps. Ils ont également
montré que Ω(n log n) comparaisons (vérifier si deux caractères sont égaux) sont nécessaire
pour tester la présence de carré. Cependant, leur preuve utilise des chaînes avec jusqu’à
n caractères distincts et ils ont laissé explicitement ouverte la question de savoir si un
algorithme plus rapide pouvait être conçu lorsque la taille de l’alphabet est restreinte.
Dans le Chapitre 4, nous montrons qu’en effet, pour une chaîne sur un alphabet non
ordonné de taille σ, il existe un algorithme pour tester si elle contient un carré en temps
O(n log σ) n’utilisant que des tests d’égalité pour comparer les caractères. Nous montrons
également que ce résultat est optimal pour les algorithmes déterministes et nous étendons
notre solution pour permettre de renvoyer de tous les runs de la chaîne.

Difficulté du Passage à l’Échelle
Nous avons vu jusqu’à présent comment les tâches de traitement des chaînes de caractères
ont des applications cruciales pour d’autres domaines appliqués, mais un autre défi majeur
dans la plupart des applications est le passage à l’échelle sur de grands jeux de données. Les
jeux de données manuellement gérés restent généralement de petite taille. Par exemple,
les pages anglaises de Wikipédia (uniquement le texte et les métadonnées) occupaient

1Lorsque Jocelyn Bell a découvert pour la première fois des signaux provenant de pulsars (une étoile
à neutrons en rotation qui crée un effet de phare), leurs régularités étaient si surprenantes que des
spéculations ont été faites sur le fait qu’ils pourraient être des signaux d’une intelligence extraterrestre.
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20 gigaoctets dans un format compressé en 2022 [365]. En comparaison, toute forme
d’archivage et d’historique des versions tend à être beaucoup plus volumineuse. Les
métadonnées de l’historique des révisions (sans le contenu des articles) pour les pages
anglaises de Wikipédia occupaient à elles seules 75 gigaoctets en 2022. Il est parfois
possible de limiter la redondance dans des données archivées, par exemple en utilisant un
graphe indiquant les endroits où les données sont répétées. C’est l’approche adoptée par
le projet Software Heritage [366], qui vise à archiver l’intégralité du code logiciel produit
par l’humanité. La structure du graphe est particulièrement nécessaire dans ce projet
pour refléter l’utilisation courante d’historiques de versions dans le développement de
logiciels. Des efforts considérables de recherche et d’ingénierie [342] ont été déployés pour
permettre une navigation efficace dans le graphe. Cependant, comme les dépôts de code
sont indexés sur la base de leurs URL et de leurs métadonnées, il n’est actuellement pas
possible d’effectuer une recherche spécifique pour trouver les occurrences d’un extrait de
code particulier2. En 2023, le graphe occupe seulement 7 terabytes, mais avec les fichiers
source, l’archive occupe proche de 1 petabyte [367]. Un autre exemple de grand projet
d’archivage est l’Internet Archive, une organisation à but non-lucratif qui a commencé à
sauvegarder des pages web en 1996 et qui détient aujourd’hui un historique pour plus de
800 milliards de pages web grâce à son programme : la Wayback Machine [368]. Cette
archive occupe plus de 70 pétaoctets et continue de grandir rapidement (voir Figure 1).
Là encore, les options de recherche sont limitées aux métadonnées des sites web et non
aux contenus des pages web elles-mêmes.

De grandes archives de chaînes de caractères existent également en bio-informatique,
mais la structure des séquences biologiques est très différente de celle de programmes ou
de pages web, qui sont typiquement structurés, avec des liens, un grand alphabet et un
nombre raisonnable de mots distincts. L’information génétique codée dans l’ADN peut être
abstraite comme une simple chaîne sur l’alphabet des nucléotides {A, T, C, G}. Nous
obtenons cette chaîne après séquençage et assemblage. Lorsqu’un génome est séquencé, le
résultat est un ensemble de fragments, appelés lectures, extraits de la séquence originale.
Les lectures peuvent contenir des erreurs de séquençage, notamment des insertions, des
suppressions et des substitutions de nucléotides. La longueur typique et le taux d’erreur
des lectures varient en fonction des techniques de séquençage. Dans tous les cas, la position
originale de la lecture dans le génome est perdue pendant le séquençage et les lectures
doivent être alignées et fusionnées afin de reconstruire le génome original Ce problème est
appelé l’assemblage de séquences. Pour rendre cette reconstruction possible, les lectures
sont extraites en quantités telles que chaque position du génome original est couverte
plusieurs fois. Cela rend les ensembles de lectures plus grands et plus redondants que
le génome assemblé. Une difficulté supplémentaire réside dans le fait que l’ADN est
composé de deux chaînes de nucléotides complémentaires (appariement A-T, C-G). Au
cours du séquençage, ces chaînes complémentaires sont détachées et traitées dans des
directions opposées, et les lectures proviennent des deux. Ainsi, lors de l’assemblage ou
de l’alignement sur une référence, il est nécessaire de prendre en compte le complément
inversé d’une lecture.

Les applications bio-informatiques travaillent avec des séquences qui sont généralement

2 Un exemple simple mais intéressant est [189] où l’auteur a recherché "const double epsilon ="
(et les équivalents dans d’autres langages) sur tous les dépôts GitHub pour étudier la valeur que les
programmeurs choisissent généralement pour epsilon.
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Pages retirée pour

des questions

de sécurités.

(a) The Wayback Machine Archive (b) The Sequence Read Archive

Figure 1 : Graphes de l’évolution des tailles de bases de données pour les archives the
Wayback Machine [372] et the Sequence Read Archive [371]. Ces bases donnés sont non
seulement déjà très grandes, mais aussi grandissent toujours rapidement.

redondantes, soit en raison de régions répétées au sein d’un génome (redondance intra-
génome), soit en considérant plusieurs génomes (de la même espèce) qui partagent des
parties de leurs génomes (redondance inter-génome). L’exploitation de cette redondance
est essentielle pour fournir des algorithmes efficaces, pour des problèmes tels que
l’indexation d’une chaîne de caractères. Si l’ADN est stocké sous la forme d’une chaîne
de nucléotides {A, T, C, G}, il n’utilise que 2 bits par base, mais nécessite un parcours
linéaire de l’ensemble de la chaîne pour rechercher un motif. L’arbre des suffixes est
une structure classique qui permet une analyse plus efficace des séquences, mais qui
nécessite 10 octets par base [226], ce qui représente 30 gigaoctets pour un génome humain
contenant 3,3 milliards de bases. Cela n’est pas envisageable pour les projets où des milliers
de génomes ont été séquencés, comme le projet 1000 génomes [199] achevé en 2015 et
le projet 100K génomes [369] achevé en 2018. Heureusement, les structures de données
compactes qui exploitent la redondance pour réduire l’utilisation de l’espace offrent un
compromis intéressant : pour un génome humain, elles permettent de représenter la
séquence et son arbre à suffixes en utilisant seulement 4 gigaoctets [226].

Les algorithmes efficaces sont essentiels pour la bio-informatique, car depuis 2008, on
a assisté à une diminution drastique du coût du séquençage combiné à une augmentation
du débit, entraînant une augmentation massive des volumes d’ADN séquencés. À ce jour,
l’Archive européenne des nucléotides (ENA) a accumulé plus de 50 pétaoctets [370] de
données de séquençage. Alors que le NCBI Sequence Read Archive possède plus de 73
pétabases [371] de données, dont 38 pétabases en libre accès, et continue de croître, voir
Figure 2. Cependant, comme pour le Software Heritage project et internet archive, dans
l’ENA et le NCBI, les données sont indexées uniquement sur la base de leurs métadonnées.
Dans le Chapitre 7, nous proposons un index compact spécialement conçu pour les
ensembles de lectures courtes, qui tire parti de l’entrée redondante pour obtenir une
meilleure compression.
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L’Utilisation de Sketches
Jusqu’à présent, nous avons présenté les deux principaux défis au cœur du traitement
de chaînes de caractères moderne : permettre des requêtes pertinentes (et parfois
complexes) adaptées à des applications spécifiques tout en maintenant des performances
qui permettent de passer à l’échelle sur de grands volumes de données. Cette thèse
propose de nouveaux compromis, théoriques et pratiques, entre les requêtes complexes et
efficaces. Pour cela, nous nous reposons sur l’utilisation de sketches. Dans cette thèse,
un sketch est une compression avec ou sans perte qui ne conserve que les caractéristiques
essentielles des données d’entrée nécessaires pour répondre à une requête donnée, offrant
ainsi un potentiel prometteur pour le passage à l’échelle. Parmi les exemples de sketchs
pour la compression avec perte, on peut citer les empreintes de Karp–Rabin [35] (voir
Préliminaires 4.3) qui occupent un espace constant et permettent de vérifier si deux chaînes
de caractères sont égales avec une probabilité élevée. Mais les empreintes ne contiennent
pas en elles-mêmes suffisamment d’informations pour reconstruire les données d’origine.
Pour la compression sans perte, un exemple est la factorisation de Lempel–Ziv [17], une
compression très efficace en pratique utilisée dans des formats de compression tels que
png ou zip, qui permet toujours de reconstruire la chaîne de caractères originale, mais
dans le pire des cas, la factorisation de Lempel–Ziv peut occuper autant d’espace que
l’entrée d’origine.

Contributions
La Partie I se concentre sur une étude théorique des requêtes complexes. Nous
commençons par la recherche d’expressions régulières dans le modèle des données en
streaming. Nous supposons que l’on nous donne une expression régulière R, et un texte en
streaming T de longueur n. Pour le problème d’appartenance à une expression rationnelle,
nous devons déterminer, après avoir vu T entièrement, s’il est reconnu par l’expression
rationnelle R, tandis que pour la recherche, nous devons répondre, à chaque position r, s’il
existe une position l telle que la sous-chaîne T [l..r] reconnue par R. Dans le Chapitre 1,
notre principale contribution est d’identifier d, le nombre de symboles d’union et d’étoiles
de Kleene dans R, comme le paramètre clé qui permet un algorithme de streaming
efficace en espace. Auparavant, Bille et Thorup [139]3 avaient déjà utilisé ce paramètre
pour proposer des algorithmes permettant de résoudre l’appartenance et la recherche
d’une expression régulière de longueur m en O(m) espace et O(n(d log w

w
+ log d)) temps,

où w est la taille du mot machine. Mais il restait à savoir si d pouvait être utilisé pour une
solution efficace en terme d’espace. Nous répondons à cette interrogation en fournissant
des algorithmes randomisés Monte Carlo (le temps d’exécution est déterministe, mais les
algorithmes peuvent se tromper avec une faible probabilité) permettant de résoudre
les problèmes d’appartenance et de recherche d’une expression régulière en espace
O(d3 polylog n) et un temps par caractère en O(nd5 polylog n) (Théorème 1.27).

Voici un bref résumé de la façon dont nous prouvons notre résultat : nous commençons
par définir chaînes atomiques qui sont les “mots” apparaissant dans l’expression régulière.
Elles ne contiennent que des caractères de Σ et il y en a Θ(d). Par exemple, pour

3Ils considèrent en fait k, le nombre de chaînes de caractères apparaissant dans R, mais k = Θ(d).
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R = GAT(TA|O)(CAT)∗ l’ensemble des chaînes atomiques est {GAT, TA, O, CAT}. La
base de notre approche consiste à stocker efficacement certaines occurrences des préfixes
des chaînes atomiques dans le texte T . Ces occurrences stockées sont ensuite liées pour
tester s’il existe une correspondance “partielle” de R (Définition 1.5). Sur les régions
périodiques du texte, il peut y avoir trop d’occurrences pour toutes les stocker. Nous
choisissons donc de ne stocker que quelques-unes de ces occurrences qui peuvent être
très éloignées les unes des autres, avec juste une longue sous-chaîne périodique entre les
deux. Pour reconstruire une correspondance partielle, nous devons vérifier si cette longue
sous-chaîne périodique correspond à une exécution de l’automate de Thompson [9]. Nous
formulons cela comme la recherche d’un chemin de poids spécifique dans un multigraphe.
Nous résolvons ensuite efficacement ce problème de graphe en le traduisant en un circuit
utilisant des portes d’addition et de convolution qui peuvent être évaluées de manière
efficace en terme d’espace à l’aide d’un système général [144, 236]. En outre, nous
améliorons ce système en supprimant sa dépendance à l’Hypothèse de Riemann étendue
(Théorème 1.33). Les sketches utilisés dans ce chapitre sont des empreintes de Karp–
Rabin (Preliminaries 4.3) utilisées pour détecter les occurrences des préfixes des chaînes
atomiques dans l’algorithme de recherche de motifs (Théorème 1.9) que nous utilisons.

Dans le Chapitre 2, nous commençons notre étude de la recherche de motifs
consécutifs avec espacement. Dans ce problème, on nous donne deux motifs P1, P2,
et un intervalle [a, b] et nous devons trouver toutes les paires de positions (i, j) dans
un texte T telles qu’une occurrence de P1 commence à la position i, une occurrence de
P2 commence à la position j, il n’y a pas d’occurrence de P1 ou P2 commençant dans
l’intervalle [i+1, j−1], et enfin j− i ∈ [a, b]. Bille et al. [349] ont introduit ces requêtes et
ont donné une borne inférieure conditionnelle indiquant que pour les index (texte traité
en amont et les motifs donné ensuite sous forme de requêtes) de taille Õ(|T |) (la notation
Õ cache les facteurs polylogarithmiques), l’obtention d’un temps de requête plus rapide
que Õ(|P1|+ |P2|+

√
|T |) contredirait “the Set Disjointness conjecture”, même si a = 0 est

fixé. En outre, ils ont fourni une borne supérieure non-triviale qui utilise Õ(|T |) d’espace
et Õ(|P1|+ |P2|+ |T |2/3occ1/3) de temps pour rapporter toutes les occ occurrences.

Nous supposons a = 0 fixé, et que le texte T de taille n est donné comme un programme
linéaire G de taille g. Un programme linéaire est une grammaire sans contexte générant
exactement une chaîne de caractères. Par exemple, la grammaire avec les non-terminaux
{A,B,C,D} et les règles {A → BC,B → b, C → DD,D → d} génère la chaîne de
caractères bdd. Nous avons choisi ce formalisme, car il permet de capturer la populaire
factorisation de Lempel–Ziv à un facteur logarithmique près : une factorisation de Lempel–
Ziv de taille z peut être transformée en un programme linéaire de taille O(z log n) [79,
90]. Notre contribution est de créer un index prenant un espace polynomial dans la
taille de la grammaire qui rapporte les occurrences consécutives à distance dans [0, b]
en temps optimal, à des facteurs polylogarithmiques près. Pour rapporter les occurrences
consécutives (sans contraintes sur la distance entre P1 et P2), notre index utilise un espace
en O(g2 log4 |T |) où g est la taille de la grammaire (voir Corollaire 2.16). Nous nous
appuyons sur une construction efficace d’arbre préfixes compacts (voir Preliminaries 4.2)
qui tire parti du fait que les chaînes sont des préfixes et des suffixes de chaînes générées
par des non-terminaux. Cette implémentation utilise les empreintes de Karp–Rabin (voir
Préliminaires 4.3). Les arbres préfixes compacts sont ensuite augmentés à l’aide d’une
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décomposition en chemins de poids lourds. Nous réutilisons ensuite cette structure pour
notre résultat principal : le Théorème 2.1, avec un index qui rapporte des occurrences
consécutives à distance dans un intervalle [0, b] en utilisant l’espace O(g5 log5(|T |)). Le
programme linéaire donné en entrée est le principal sketch utilisé dans ce travail, mais
l’index que nous construisons forme également un sketch de la grammaire spécifique à
la recherche d’occurrences consécutives. L’index du Théorème 2.1 contourne la borne
inférieure dans le cas des textes hautement compressibles (tels que g5 << n2). Il s’agit
d’un résultat non-trivial puisque certains problèmes ne peuvent échapper à une forte
dépendance vis-à-vis de la taille de la chaîne non compressée. Cependant, nous nous
attendons à ce que notre complexité en espace soit loin d’être optimale et nous laissons
les améliorations ainsi que le cas général avec 0 ≤ a ≤ b ≤ |T | comme des questions
ouvertes.

Motivés entre autre par les contraintes d’espace de notre index en Õ(g5), dans le
Chapitre 3, nous abordons le problème dual : la recherche de motifs consécutifs. Dans
ce problème, les motifs et le texte arrivent et sont traités en même temps. Notons que
pour un texte non compressé, la recherche de motifs consécutifs peut être résolue par
un algorithme de recherche linéaire classique, en temps O(|T | + |P1| + |P2| + occ) ,
en gardant simplement la trace des occurrences les plus récentes de P1 et P2 . Nous
montrons qu’une complexité similaire peut être atteinte lorsque le texte est hautement
compressible : toutes les occurrences consécutives peuvent être rapportées en temps
O(g + |P1| + |P2| + occ) (voir le Théorème 3.1) où g est la taille du texte compressé
sous forme de grammaire. Nous dérivons ensuite de ce résultat des algorithmes pour la
recherche d’occurrences consécutives avec espacement (Corollaire 3.2) et pour la recherche
des k occurrences consécutives les plus proches (Corollaire 3.3). Notre résultat est basé
sur l’encodage efficace de l’“information frontalière” récemment introduit par Ganardi et
Gawrychowski [353]. Pour un motif donné P , les informations P -frontalières d’une chaîne
S stockent les sous-chaînes apparaissant à la fois dans P et S. Elles sont choisies pour
capturer uniquement les informations nécessaires à la détection de nouvelles occurrences
de P qui pourraient survenir lors de la concaténation d’une chaîne à S. Les auteurs
montrent comment utiliser cet encodage pour déterminer en O(g + |P |) temps si P
apparaît dans le texte compressé. Nous étendons leur approche pour rapporter toutes les
occurrences croisant la frontière (Lemme 3.10). Nous répétons ensuite cette technique
à un deuxième niveau avec des “informations frontalières secondaires” et analysons
soigneusement tous les cas pour obtenir le Théorème 3.1. Ici encore, le sketch principal
est la grammaire sur laquelle nous travaillons.

Tous les chapitres précédents s’appuient fortement sur la détection de la périodicité
pour le design des algorithmes, et il semblait donc naturel d’étudier ce problème dans le
Chapitre 4. Nous montrons comment rapporter tous les carrés en temps optimal dans le
modèle le plus abstrait où ils peuvent être définis : les alphabets généraux (non ordonnés)
où la seule opération autorisée est un test d’égalité entre deux caractères. Nous considérons
d’abord le problème de la détection des carrés, puis nous étendons notre approche pour
rapporter les carrés et runs. En 1984, Main et Lorentz [27] ont conçu un algorithme en
O(n log n) temps pour la détection de carrés dans un texte T de taille n sur un alphabet
général non ordonné. Ils ont également fourni une borne inférieure correspondante pour
les chaînes ayant Ω(n) symboles distincts, mais ont laissé ouverte la question de savoir si
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un algorithme plus rapide était possible si la taille de l’alphabet σ = |Σ| était restreinte.
Nous commençons par prouver que le problème nécessite Ω(n log σ) comparaisons même
si la taille de l’alphabet est connue (Théorème 4.1). En outre, dans le Théorème 4.9,
nous montrons que le calcul de toute approximation pertinente du nombre de caractères
distincts nécessite Ω(nσ) opérations. Pour les alphabets ordonnés généraux (lorsqu’un
ordre est donné), Crochemore [30] a utilisé la factorisation f (liée à la factorisation de
Lempel–Ziv) pour donner un algorithme de détection des carrés fonctionnant en temps
O(n log σ). En très résumé, la factorisation f et la factorisation Lempel–Ziv (factorisation
LZ) détectent les fragments répétitifs dans le texte et peuvent être calculées efficacement à
l’aide d’un arbre à suffixes ou d’un tableau à suffixes. Cependant, nous montrons que pour
les alphabets généraux non ordonnés, ces factorisations nécessitent Ω(nσ) opérations pour
être calculées (corollaire de la borne inférieure sur l’approximation de l’alphabet). Au lieu
de cela, nous introduisons la factorisation de Lempel–Ziv ∆-approchée qui agit comme un
sketch capturant uniquement les carrés suffisamment longs (d’une longueur d’au moins
8∆), par opposition à la factorisation f et à la factorisation LZ qui capturent tous
les carrés. Nous présentons notre algorithme final par étapes. Nous supposons d’abord
que la taille de l’alphabet est connue et nous nous concentrons sur l’obtention d’une
borne supérieure sur le nombre de comparaisons, puis nous supprimons l’hypothèse de
la connaissance de la taille de l’alphabet, et enfin nous fournissons un algorithme global
efficace fonctionnant en temps O(n log σ).

La Partie II explore l’utilisation d’approximations pour réduire encore la taille des
sketches et fournir des algorithmes encore plus efficaces. Chaque Chapitre fournit une
implémentation pratique de ses algorithmes pour des applications en bio-informatique.
Plus tôt, nous avons détaillé l’importance des mesures de similarité pour de nombreuses
applications. En bio-informatique, la distance d’édition est sans doute la mesure de
similarité la plus populaire, mais Backurs et Indyk [253] ont prouvé une borne inférieure
conditionnelle (basée sur SETH) suggérant qu’il est peu probable que la distance d’édition
soit calculable en temps fortement sous-quadratique. La nécessité de surmonter cet
obstacle a conduit à l’étude d’algorithmes approximatifs pour la distance d’édition.
Chakraborty et al. [254] ont donné le premier résultat avec un algorithme d’approximation
à facteur constant qui calcule la distance d’édition entre deux chaînes de longueur n en
temps Õ(n2−2/7). Depuis notre publication [316] (présentée dans le Chapitre 5), une série
de travaux ont été publiés sur l’approximation de la distance d’édition [310, 317], le
résultat le plus fort étant [305] avec une approximation à facteur constant en temps n1+ε

pour tout ε > 0 (où la constante d’approximation dépend uniquement de ε). Néanmoins,
ces algorithmes ont tendance à être assez techniques et même ceux qui sont censés être
plus simples, comme [304], ne semblent pas avoir été implémentés et évalués dans la
pratique. Dans le Chapitre 5, nous adoptons une autre approche en considérant une
mesure de similarité différente censée être à la fois robuste aux changements légers et
suffisamment simple pour permettre un calcul efficace. Nous considérons la plus longue
sous-chaîne commune (abrégée LCS par la suite) avec environ k différences, qui est une
version approximative de LCS avec k différences. Rappelons que, pour un entier k et
deux chaînes X et Y , LCSk(X, Y ) est la longueur maximale d’une sous-chaîne de X qui
apparaît dans Y avec au plus k différences. Pour une constante ε > 0, le problème LCS
avec environ k différences doit retourner une sous-chaîne de X de longueur au moins
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LCSk(X, Y ) qui apparaît dans Y avec au plus (1 + ε) · k différences. Ce problème a été
introduit par Kociumaka, Radoszewski et Starikovskaya [293] après qu’ils aient montré
qu’il existe k = Θ(log n) tel que LCS with k Mismatches ne peut pas être résolu exactement
en temps fortement sous-quadratique (conditionné par SETH). Dans le Théorème 5.1,
nous fournissons deux algorithmes : l’un supposant un alphabet de taille constante
s’exécutant en temps et en espace en O(n1+1/(1+2ε)+o(1)), et l’autre en temps et en
espace en O(n1+1/(1+ε) log3 n) linéaire sans contraintes sur l’alphabet. Le premier résultat
repose sur une structure de données pour la recherche de plus proches voisins [193]
comme boîte noire, et nous ne l’évaluons pas dans la pratique. En revanche, notre
deuxième contribution est plus simple et nous confirmons son caractère pratique par une
évaluation expérimentale. En outre, dans le “Fait 5.2”, nous montrons une borne inférieure
conditionnelle pour LCS avec environ k différences (avec une construction similaire à la
preuve de la borne inférieure de LCS with k Mismatches). Dans nos algorithmes, nous
nous appuyons sur les empreintes de Karp–Rabin et sur un sketch estimant la distance
de Hamming basée sur la réduction de dimensions, tous deux détaillés dans la section 2.

En poursuivant notre exploration des mesures de similarité et des distances, le Chapitre
suivant se concentre sur la distance DTW (Dynamic Time Warping). Pour la distance
DTW, il faut “doubler” les caractères des deux chaînes jusqu’à ce que les chaînes soient
de même longueur, puis additionner les distances entre les caractères situés aux mêmes
positions. Pour proposer un algorithme efficace pour cette distance, dans le Chapitre 6,
nous considérons l’une des formes les plus simples de sketchs : l’encodage par plages (run-
length encoding). L’encodage par plages d’une chaîne S de longueur N est défini comme
RLE(S) = (c1, l1)(c2, l2)...(cn, ln) où (ci, li) représente le caractère ci ∈ Σ répété li fois
pour i ∈ [1, n], et tel que ∑i∈[1,n] li = |S|. Ce sketch est particulièrement pertinent pour la
DTW car les séries de caractères égaux ont tendance à être alignées malgré les variations
de longueur. C’est pourquoi Froese et al. [284] ont déjà utilisé le nombre de runs dans les
chaînes de caractères pour donner un algorithme calculant la distance DTW entre deux
chaînes de caractères avec un temps d’exécution O(mN +nM), où M,N sont la longueur
des chaînes de caractères, et m,n sont les tailles de leurs encodages par plage.

Notre contribution est la suivante : lorsque les distances entre les caractères de Σ sont
des entiers, pour un motif P avec m runs et un texte T avec n runs, nous montrons qu’il
existe un algorithme en O(n+m) temps qui calcule toutes les positions j où la distance
DTW entre P et un suffixe de T [..j] est au plus de 1. Puis, plus généralement, pour un
entier k, nous fournissons un algorithme en temps O(knm) qui calcule toutes les positions
j où la distance DTW entre P et un suffixe de T [..j] est au maximum de k. Notre intérêt
et nos recherches sur DTW sont également motivés par des applications potentielles à
l’analyse de données biologiques produites par le séquençage de troisième génération. Pour
cette technologie, l’ADN passe à travers un nanopore à une vitesse irrégulière, ce qui tend
à créer des erreurs dans la longueur des plages du même nucléotide (homopolymères) [330].
Nous détaillons cette application potentielle dans la section 6. Depuis notre publication,
Boneh, Golan, Mozes, et Weimann ont mis en ligne une prépublication [360] avec un
temps en Õ(n2) pour le calcul de la distance DTW entre deux chaînes avec n runs, ce
qui est optimale à des facteurs logarithmiques près. Ils suivent l’approche que Clifford
et al. [281] ont utilisée pour montrer un résultat similaire pour la distance d’édition :
ils représentent et traitent les entrées et les sorties à l’aide d’une fonction linéaire par
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morceaux.

Pour le Chapitre 7, nous quittons l’étude des mesures de similarité pour nous
concentrer sur le problème pratique de l’indexation des ensembles de lectures de séquençage.
De plus, dans ce Chapitre, la perspective sur l’approximation est différente. Au lieu
d’étudier la correspondance approximative où l’on rapporte toutes les sous-chaînes à
une distance donnée du motif, nous proposons un index compact qui a l’inconvénient de
rapporter des faux positifs : des occurrences du motif qui ne sont pas entièrement incluses
dans une lecture. Une lecture est une séquence de paires de bases, généralement courte
(la longueur précise dépend de la technique de séquençage), obtenue lors du séquençage
de l’ADN. Pour pouvoir réassembler l’ensemble de la séquence d’ADN, chaque position
de la séquence est généralement couverte par plusieurs lectures. Le nombre moyen de
lectures couvrant une position est appelé couverture de séquençage. La couverture de
séquençage standard pour les lectures courtes dans le but d’assembler un génome se
situe aujourd’hui entre 30 et 50, ce qui rend les ensembles de lectures très répétitifs,
en particulier lorsque l’ADN séquencé provient d’un seul individu. Pour indexer une
chaîne répétitive unique, l’index FM [98] basé sur la transformation de Burrows-Wheeler
(BWT) [48] est l’une des structures de données les plus importantes, et elle a été appliquée
dans plusieurs outils bio-informatiques pour l’alignement des lectures courtes [133, 163,
134]. L’amélioration la plus récente du FM-index est le r-index de Gagie et al. [312]
qui occupe un espace proportionnel à r, le nombre de plages dans la BWT de la chaîne
indexée. Plus précisément, la structure de données occupe O(r log log n) d’espace tout en
étant capable de compter et de localiser toutes les occurrences d’un motif en un temps
optimal (à un facteur logarithmique près). Cela fait du nombre de plages dans la BWT un
paramètre important pour les structures économes en espace et r est souvent considéré
comme une mesure de la répétitivité du texte. Malheureusement, l’extension de la BWT
à une collection de chaînes de caractères n’est pas simple. Nous recommandons au lecteur
la publication de Cenzato et Lipták [351] qui présente toutes les variantes existantes pour
construire une structure de type BWT pour une collection de chaînes et l’impact sur le
nombre de plages dans la transformation qui en résulte.

Notre travail dans le Chapitre 7 propose de tirer parti d’une information très
couramment associée aux lectures : l’alignement sur un génome de référence. Nous
construisons un arbre dont le tronc principal est la référence et les lectures se ramifient à
partir du tronc depuis la position sur laquelle elles sont alignées, puis nous calculons la
généralisation de la BWT pour les arbres : la transformée de Burrows–Wheeler étendue
(XBWT) [129]. Intuitivement, notre transformation fournit un contexte aux lectures
qui permet un meilleur tri et limite le nombre de ruptures dans les plages de la chaîne
transformée. Formellement, nous montrons que si les lectures sont presque identiques
à la référence et que les différences sont situées vers la fin des lectures (ce qui est le
cas en pratique pour les lectures courtes), le nombre de plages dans la XBWT peut
être limité en fonction du nombre de plages dans la BWT de la référence. Nous testons
ensuite notre approche en pratique et montrons qu’elle permet d’obtenir moins de runs
que la BWT avec l’heuristique co-lexicographique populaire (15% moins de run que
BWT+colex pour un ensemble de lectures du chromosome 19 humain). Le principal
inconvénient de notre index est que nous cherchons dans l’arbre de branchement et donc,
lorsque nous comptons le nombre d’occurrences d’un motif, nous ne pouvons pas éviter
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de compter les occurrences qui ne sont pas entièrement contenues dans une lecture (qui
sont partiellement ou entièrement dans le tronc principal correspondant à la référence).
Une autre contribution de notre travail est que, dans le but de permettre un passage
à l’échelle de la construction de l’index, nous adaptons la technique de découpage sans
préfixe pour la construction de la BWT inventé par Boucher et al. [279] à la construction
de la XBWT. Dans la construction de la BWT par découpage sans préfixe, la chaîne
d’entrée est découpée en phrases qui se chevauchent comme suit : nous maintenons un
hash d’une fenêtre glissante en utilisant les empreintes de Karp–Rabin, et chaque fois
que le hash est égal à zéro, nous terminons la phrase en cours et en commençons une
nouvelle. Cette technique, nous permet de créer un ensemble de phrases sans préfixe. La
chaîne est ensuite décomposée en un dictionnaire et d’un parse. Le dictionnaire associe
chaque phrase à un métacaractère, et le parse est une chaîne de métacaractères. Cette
construction utilise des sketches (empreintes de Karp–Rabin) mais crée également un
sketch par le biais de cette représentation compacte de la chaîne. L’intuition est que les
sections répétées de la chaîne se traduiront par des phrases répétées qui peuvent être
représentées par les mêmes métacaractères dans le parse, ce qui permet au dictionnaire de
rester raisonnablement petit. La BWT de la chaîne d’entrée est alors construite à partir
de la BWT du parse (où l’ordre entre les métacaractères est l’ordre lexicographique de la
phrase qu’ils représentent) et de la BWT des phrases.

L’adaptation de cette technique aux arbres et à la construction de la XBWT n’est
pas triviale car chaque branche peut créer de nouvelles phrases. Nous avons implémenté
notre index et l’avons évaluée expérimentalement en termes de nombre d’exécutions dans
la XBWT résultante. La mise en œuvre des requêtes et l’analyse des faux positifs font
partie des travaux futurs.

J’espère que cet aperçu des contributions a clairement mis en évidence le fait que les
sketches sont des outils précieux dans de nombreux contextes et applications. Je m’attends
à ce qu’ils continuent de se développer dans de nombreux travaux futurs, tant en théorie
qu’en pratique.
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Introduction

When answering the classic question “What is your PhD about?” to family and friends,
I always start with the “Ctrl + F” function in their favourite text editor or web browser.
This quickly highlights one of the applications of the exact pattern-matching problem. If
I feel especially ambitious in my explanations, I will attempt to give the intuition of the
naive O(nm) algorithm. Picture a young child, aligning the string against every position
of the text and comparing character by character because the child has yet to learn how
to read. To show a glimpse of a more complex solution, I comment on how, depending
on the pattern, the child may try to skip portions of the text. But even my grandparents
immediately know that efficient search in a text has been possible for decades and that
it cannot be my real research subject.

1 Context

The exact pattern matching problem has been extensively studied, with in particular the
famous Knuth–Morris–Pratt algorithm15 published in 1977 [16] after being independently
discovered by Morris-Pratt in a technical report in 1970 and Knuth in 1973. Since then,
this has become one of the classic textbook algorithms, and Charras and Lecroq published
a detailed handbook [93] on the various solutions to exact pattern matching which have
also been thoroughly compared in practice [142, 169].

In order to present the context of this thesis, we start with a few basic definitions.
We assume the reader to be familiar with the little o, big O, Ω , and Θ notations for
complexities. For ease of readability, we additionally use the notation Õ that hides poly-
logarithmic factors. A string of length n is a sequence T [0] . . . T [n− 1] of characters from
a finite alphabet Σ of size σ. The substring T [i..j] is the string T [i] · · ·T [j]. We also use
the notation T [i..j) and T (i..j] which stand for T [i..j − 1] and T [i + 1..j], respectively.
We call the substrings of the form T [0..i] prefixes and use the notation T [..i], analogously
suffixes refer to substrings T [j..n− 1] and are denoted T [j..]. Given two strings P and T ,
we say that P occurs in T at position i if i + |P | ≤ |T | and P = T [i..i + |P | − 1]. Note
that the notation for substrings can differ slightly from chapter to chapter16.

Throughout this thesis, we assume the standard unit-cost word RAM model with
words of size θ(N) for an input of size N . In this introduction, data structures are seen
as algorithms where the complexity analysis is split into two parts: the construction and
the query. The construction is generally more expensive and meant to be performed
once, whereas the queries are meant to be fast and performed multiple times with varying
inputs, thus the focus is often on improving the space and time needed for the queries.
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Introduction

Matching Pattern Text with occurrences underlined

Regular
expression [3] P = GAT(TA | O)(CAT)∗ GATTAATGATOCATCATA

Don’t care [14]
P = GAT??CAT
The ? match any
other characters.

GATTACATAGATOACATAC

Gapped
consecutive

[349]

P1 = GATTA P2 = TAC
a = 2, b = 6

Consecutive occurrences (i, j) of
(P1, P2) and s.t. j − i ∈ [a, b]

AGGGATTACTAC, distance between
P1 and P2 6− 3 = 3 ∈ [a, b]

Degenerate [33] P =
{

G
C

}
ATTA

GATTAATCCATTACCATGAAT
Some positions can match several

characters.

Generalized
degenerate [251] P =

{
G
C

}
AT
{

TA
AT

} GATTAATCCATTACCATGAAT
Some positions match a set strings of a

fixed length.

Elastic
degenerate [338] P =

{
G
C

}
A
{

TTA
T

} GATTAATCCATTACCATGAAT
Some positions match a set of strings

(length can vary).

Abelian/Jumbled
[94]

P = GATTACAT
Characters can be in reordered. AGAGTATGATCAGT

Weighted [50]

Each position is given a
character probability

distribution.
GATTA has a cumulative

probability > 0.07.

0 1 2 3 4
A 0 1 0.25 0 0.75
C 0.25 0 0.25 0 0.25
G 0.75 0 0.25 0.5 0
T 0 0 0.25 0.5 0

Order preserving
[181, 170]

P = 1 5 3 4 6 2

Characters must have the same
relative order.

2 7 4 5 8 3 1 20 15 16 25 6

Parametrized [45]
P = GATTACAT

Characters can be renamed with
a bijection

OPOPOGGODOGO
A:O, C:D, G:P, T:G

Table 1: Example for various matching models, in bold those we study in this thesis.
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1.1 Matching Models
However, in general, the need for text processing goes far beyond the exact pattern-
matching problem. To illustrate this claim, we present alternative models of matching
with their motivations and specify those we study in the following chapters. Figure 1 also
provides an example for each matching model.

One of the oldest and most classic models for complex queries is regular expressions
search, introduced by Kleene in 1951 [3]. The regular expression formalism offers a con-
cise description for sets of strings through recursive combinations of characters from an
alphabet Σ along with three fundamental operators: concatenation (·), union (|), and
Kleene star (∗). For two regular expressions R1 and R2 the concatenation R1 ·R2 matches
any concatenation of a string matching R1 and a string matching R2, the union (R1|R2)
allows matching any string matching either R1 or R2, and (R1)∗ matches any number of
repetitions of a string matching R1, including no repetition, i.e. the empty string. The use
of regular expression gained popularity in the 1970s through their efficient implementation
in Unix tools such as awk, grep, or sed. They have become a crucial tool in many fields
such as internet traffic analysis [113, 109], databases, data mining [81, 71, 72], computer
networks [106], and protein search [74]. Another way to describe regular expressions is
through the Thompson automaton construction [9]. This automaton can then be sim-
ulated efficiently to test whether a string T is recognized by a regular expression R in
O(|R|× |T |) time. A series of works [44, 118, 126, 101, 139] has focused on improving the
time complexity of regular expression search. However, they only managed to shave off
polylogarithmic factors from the O(|R| × |T |) complexity, and a recent fine-grained com-
plexity approach brought an explanation for this. Backurs and Indyk [211] followed by
Bringmann, Grønlund, and Larsen [237] considered a subclass of regular expressions called
“homogeneous”. A regular expression is “homogeneous” if, in the tree representation of
the expression, the operators at each level are equal. For example, R = (P1|P2|...|Pd)∗ is
homogeneous and searching it corresponds to the Word break problem [152, 377]. The
authors of [211, 237] showed that for every homogeneous regular expression there is either
a solution in near-linear time or it requires Ω((|R| × |T |)1−o(1)) time conditioned on the
Strong Exponential Time Hypothesis [69]. The only exception is the Word break problem
which can be solved in O(|T |(|R| log |R|)1/3 + |R|)-time and has a matching lower bound
up to polylogarithmic factors. Abboud and Bringmann [250] further detailed those lower
bounds using an even finer-grained complexity approach. These results give a good un-
derstanding of the time complexity of regular expression in the classical setting, however,
multiple practical applications need to work with a stream of input. We specify what we
mean by a stream later on in this introduction. Therefore, in Chapter 1, we provide a
new space-efficient streaming algorithm for regular expression membership and pattern
matching.

Although the versatility of regular expressions makes them widely used in practice
across fields, they are notoriously difficult to write for users. As a simpler alternative,
Fischer and Paterson [14] introduced the “don’t care” pattern matching where a don’t
care (also called wildcard or gap) symbol, denoted ?, can occur in both the pattern
and the text, and matches any other character of the alphabet. This model has been

15The elegance of this algorithm is what first drew me in this area of research as a bachelor student!
16I chose not to unify notations between chapters (corresponding to publications) so the substrings

T [i..j] is denoted T [i...j] in Chapter 2 and 3 and by T [i, j] in Chapter 5.
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directly applied in the PROSITE [105] database of proteins where wildcards are supported.
More generally, space seeds [95], a similar concept where only some positions have to be
matched, have been used in homology search [84], alignment [150], assembly [195], and
metagenomics [196]. Patterns with don’t cares are sometimes [151] described as P =
P1g1P2g2 . . . gℓPℓ+1 where P1,P2,. . . ,Pℓ+1 are patterns over the alphabet Σ and g1, g2, . . . , gℓ

are the lengths of the maximal stretches of ?. Naturally, this question was later extended
to the problem of string matching with variable length gap [154, 174] where the length of
the gaps can vary in intervals [ai, bi] for i ∈ [1, ℓ]. Note that variable length gaps are also
supported by the PROSITE [105] database. Different variants of the problem have been
studied [218, 128, 63], including a simpler version with just two patterns P1 and P2 and
a single gap [107, 131] and the special case P1 = P2 [85, 114].

In 2016, Navarro and Thankatchan [227] proposed a natural variant to pattern match-
ing with a variable length gap, where given a single pattern P and an interval [a, b],
one must report all consecutive occurrences of P starting at positions (i, j) (consecutive
meaning no other occurrence in between i and j) such that j − i belongs to [a, b]. Since,
consecutive occurrences have been studied in several publications [348, 363, 347]. Recently
Bille et al. [349] proposed a combination of the gapped and consecutive lines of research:
gapped consecutive matching where we are given two patterns P1 and P2 as well as an
interval [a, b] and must report all consecutive occurrences of P1 and P2 with distance in
[a, b]. We study gapped consecutive pattern matching in various settings in Chapters 2
and 3, a summary of the contribution is given in Section 3.

Although an in-depth non-standard matching listing is out of scope for this manuscript,
for completeness, we detail other models found in the literature, and Table 1 provides ex-
amples for each of the models. The modelling of flexible and diverse DNA sequences [10]
lead to the model of degenerate strings [33] (also called indeterminate), where each posi-
tion corresponds to a subset of Σ. For Bioinformatic applications, degenerate strings are
most often used as a pattern to search for (like in the example I give in Table 1). This
model has recently been extended in two directions: elastic degenerate strings [338] where
each position is a subset of strings over Σ and generalized degenerate strings [251] where
each position is a subset of strings of Σk, and the length k can vary from position to posi-
tion. Alternatively, when each position is assigned a random variable with values in Σ the
strings are called weighted (or uncertain) and can be represented by a weight matrix [50],
see Table 1 for an example. Then, the cumulative probability that a string occurs at a po-
sition is the product of the probabilities of the corresponding characters at each position,
and a match is often defined by a threshold on that cumulative probability. This model has
been used in molecular biology17 in “profiles” that represent multiple aligned strings [34].
In the model of Abelian matching, a string (or a substring) is entirely identified by the
characters it contains (with multiplicities), disregarding their order. It stems from the
automatic discovery of clusters of genes in genomes where they can occur in a different
order but still linked to the same function [94], but the same concept has also been used in
the context of using mass spectrometry for DNA assembly [87] where the strings without
order are called compomers. This model is also known as jumbled and permutation pat-
tern matching, and several other names, see [140]. The order-preserving model [181, 170]
takes a somewhat opposite approach and says that two strings over an integer alphabet

17Though they study a slightly different score: log p(x,i)
p(x) where p(x, i) is the probability that the ith

character is equal to x and p(x) is the overall frequency of x in the weighted string.
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match if they have the same relative shape: ∀i, j ∈ [0, n− 1], X[i] < X[j]⇔ Y [i] < Y [j].
This matching model aims at capturing the trend detection needed in the stock mar-
ket and music melody matching problems [181]. Another application-driven model is
parametrized strings or “p-string” introduced by Baker [45], where two strings match if
we can transform one into the other by applying a function renaming the parameters,
meant to detect code duplication.

1.2 Similarity Measures and Distances

Many string applications have to work around noise in the input data, which makes it
difficult to search for exact matches. Some of the models presented earlier define their
match to take into account noisy input, but another important approach is to work with
distances and similarity measures. Quantifying the degree of similarity and dissimilarity of
two strings is for example needed in Bioinformatics [57], music analysis [41], and plagiarism
detection [115]. A distance measure quantifies the dissimilarity between strings, while a
similarity measure quantifies the degree of resemblance between strings. There is a natural
link between the two terms, and in this section, we alternate between them depending on
which form is most common in the literature.

Various types of noise can appear in the input, examples include single characters
or entire words being replaced, inserted, or deleted, or some sections of the text being
stretched or reordered. As a consequence, various similarity measures can be defined to
account for the different types of noise, as the goal is always that a few noisy modifications
do not modify drastically the distance to other strings. One of the simplest distances on
strings is the Hamming distance: For two stringsX and Y with |X| = |Y |, it is the number
of mismatches between X and Y . Alternatively, the Hamming distance is defined as the
number of substitutions needed to transform X into Y . When instead the goal is to have
a similarity measure robust to insertions and deletions in the strings X and Y , one can
consider the length of the Longest Common Subsequence between X and Y : the largest
ℓ such that there exist positions i1 < ... < iℓ and j1 < ... < jℓ such that X[ip] = Y [jp] for
all p ∈ [1, ℓ]. The longest common subsequence has been used as the basis of comparison
programs like diff which are then applied in version control systems like git. For the
Levenshtein distance [8] (also called the edit distance hereafter) the operations allowed
are substitutions, insertions, and deletions, all with cost 1. A formal definition is given in
Table 2, this definition can be generalized to allow costs to differ for each of the opera-
tions (weighted edit distance) or even for the cost to depend on which character is being
added, removed or substituted (alphabet-weighted edit distance). This metric is one of
the most well-known, due to the importance of finding global alignments (alignments of
two full strings with substitutions, insertions, and deletions) in Bioinformatics [57]. Un-
fortunately, Backurs and Indyk [253] proved a conditional lower bound (based on SETH)
which suggests that the edit distance between two strings is unlikely to be computable in
strongly subquadratic time. As an attempt to circumvent this lower bound, in Chapter 5
we consider the Longest Common Substring (LCS) with Approximately k Mismatches an
approximate version of a measure resilient to substitutions: LCS with k Mismatches.
In the LCS with k Mismatches problem, given an integer k and two strings X and Y ,
LCSk(X, Y ) is the maximal length of a substring (must be continuous, unlike a sub-
sequence) of X that occurs in Y with at most k mismatches. But again, Kociumaka,
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Radoszewski, and Starikovskaya [293] showed (conditioned on SETH) that there is k =
Θ(log n) such that LCS with k Mismatches cannot be solved in strongly subquadratic time,
thus they introduced LCS with Approximately k Mismatches to make the problem easier
through approximation. In Chapter 5 we study this problem, where we are given a con-
stant ε > 0, and we need to return a substring of X of length at least LCSk(X, Y ) that
occurs in Y with at most (1 + ε) · k mismatches. We provide two new algorithms with
different space-time trade-offs and evaluate the speed of one of them in practice compared
to the quadratic dynamic programming solution for LCS with k Mismatches. In Section 3,
we further detail our contributions.

Apart from the direct comparison of two strings, distances are also used to define ap-
proximate matching problems [32, 39] where for a given integer τ , a pattern P , and a text
T , one must report all positions j such that there is a substring T [i..j] that is at distance
at most τ from P . For a survey on the results before 2001 on approximate matching for the
Edit, Hamming and Longest Common Subsequence distances, see [73]. We study approx-
imate matching in Chapter 6 with regard to a popular distance for temporal sequences,
which is less common for strings: the Dynamic Time Warping (DTW) distance [18]. For
strings, the DTW distance can be described as follows: duplicate some characters to
obtain strings of equal length and to minimize the sum of the distances between the char-
acters at the same positions, this sum is the DTW distance. Computing the edit distance
(for a given metric space over the characters) has been reduced to computing DTW [294]
(over the same metric space, just with an added null character). All similarity measures
and distances mentioned above are illustrated in Figure 2.

1.3 Repetition Detection
Having discussed pattern-matching models and similarity measures, we now move to an-
other central task in string processing: repetition detection. Locating repeated fragments
inside a string can be useful to detect duplicated data to be removed or to compress its
representation. For example, decomposing a string into maximal fragments that appeared
earlier (and appending the next symbol) is the basis of the Lempel–Ziv factorization [17].
Once detected, highly repetitive regions of a string can also be treated differently (see [136]
for example) allowing for a more efficient algorithm overall.

In music [38], genomic [274], finance [111] and astronomy [20]18, a number of datasets
present signs of repetitions and periodic phenomenon. Formally, we say that a string T of
length n has period p if for all 0 ≤ i < n− p, T [i] = T [i+ p], and the smallest period of T
is simply called the period of T . If the period of T is smaller than |T |/2 we say that the
string is periodic. But often, input data only contains periodic substrings (rather than
being entirely periodic), which naturally leads to the concept of runs. Runs are maximal
substrings that are periodic with a given period, i.e. a substring T [i..j] is a run if it is
periodic with period p, and T [i − 1..j] and T [i..j + 1] (if well-defined, i.e. 0 < i and
j < |T | − 1) are not periodic with period p.

A simpler model often considered is squares: substrings T [i..i+2k−1] such that T [i..i+
k−1] = T [i+k..i+2k−1], it is referred to as a square or a tandem. This form of repetition

18When Jocelyn Bell first discovered signals coming from pulsars (a rotating neutron star that creates
a lighthouse effect), their regularity was so surprising that speculations where made on the fact that they
might be signal from extraterrestrial intelligence.
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Similarity measure Example

Hamming distance

HD(X, Y ) =
{

+∞ if |X| ≠ |Y |,
|{i s.t. X[i] ̸= Y [j]}|, else.

X = AAAATG
|||**|

Y = AAATCG
HD(X, Y ) = 2

Length of the Longest Common Subsequence

LCSeq(Xi, Yj) =


0 if i = 0 or j = 0,
LCSeq(Xi−1, Yj−1) + 1 if X[i] = Y [j],
max(LCSeq(Xi−1, Yj), LCSeq(Xi, Yj−1)), else.

X = AAAAGC
Y = AATC

LCseq(X, Y ) = 3

Levenshtein/Edit distance

ED(Xi, Yj) =


max(i, j) if i = 0 or j = 0,

else, min

ED(Xi−1, Yj−1) + d(X[i], Y [j]),
ED(Xi−1, Yj) + 1,
ED(Xi, Yj−1) + 1


X = AAAATG

|| |*
Y = AA--TC

ED(X, Y ) = 3

Dynamic Time Warping distance

DTW(Xi, Yj) =



0 if i = 0 and j = 0,
+∞ else if i = 0 or j = 0,

else, min

DTW(Xi−1, Yj−1),
DTW(Xi−1, Yj),
DTW(Xi, Yj−1)

+ d(X[i], Y [j])

X = AAAA︸ ︷︷ ︸ TG
|| |*

Y = AA TC
DTW(X, Y ) = 1

Length of the Longest Common Substring

LCS(X, Y ) = max{l + 1,∃i, j s.t. X[i : i + l] = Y [j : j + l]}

X = AAAATG
Y = AATTCG

LCS(X, Y ) = 3

Length of the Longest Common Substring with k Mismatches

LCSk(X, Y ) = max{l+1,∃i, j s.t. HD(X[i : i+l], Y [j : j+l]) ≤ k}

X = AAAATG
Y = AATTCG

LCS2(X, Y ) = 5

Table 2: Example for various similarities, in bold those we study in this thesis, for a given
metric d : Σ×Σ→ Z+ over the alphabet. For two given strings X and Y and two integers
0 ≤ i < |X| and 0 ≤ j < |Y |, for compactness, Xi and Yj denote the prefixes of X and Y
of length i and j respectively.
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naturally occurs in DNA and plays an important role in genomic fingerprinting [89, 243].
The study of squares in strings goes back to 1906 with the work of Thue [1] on the
construction of an infinite square-free word. In terms of algorithm, the most basic question
is testing whether a string of length n contains at least one square, and it was first
considered by Main and Lorentz [27] who designed an O(n log n) time algorithm using a
divide and conquer approach to report a compact representation of all squares. At the
same time, they showed that Ω(n log n) comparisons (checking if two characters are equal)
were necessary, but their proofs used strings with up to n distinct characters. Therefore,
they left as an open question whether a faster algorithm could be designed when the
alphabet size is restricted. And indeed, we show in Chapter 4 that for a string over an
unordered alphabet of size σ, there is an algorithm for testing whether it contains a square
in O(n log σ) time using only equality tests to compare characters. We also show that
this result is optimal for deterministic algorithms, and we extend it to reporting all runs
in the string.

Many other forms of string regularities have been considered in the literature. Al-
though they are out of the scope of this thesis, we list a few of them for completeness.
Palindromes are strings that are identical when read backward or forward, formally, a
string T of length n is a palindrome if T [n− 1] . . . T [1]T [0] = T [0]T [1] . . . T [n− 1]. Palin-
dromes are found in music [373, 374] and genomes [345] where they are linked to the
regulation of gene replication and implicated in the evolution and development of dis-
eases such as cancer and neurodegenerative disorders. Another way to view repeated
fragments is through the lenses of string covers [52]. A string C is a cover of a string T if
T occurs in a string constructed by overlapping and concatenating occurrences of C. A
substring of T is called a seed if it is a cover T and a cover of minimal length is called a
quasiperiod of T . Those notions generalize the concept of periods in the sense that they
additionally allow for superposition of the repetitions, but other approaches have been
considered as generalizations. Cadences [234] in a string are characters that are repeated
at regular intervals. Formally, given a string T [0, n − 1], a cadence is a pair (i, d) such
that 0 ≤ i, d < n and for every k ≥ 0 such that i + kd < n we have T [i] = T [i + kd].
Intuitively, a cadence defines a periodicity that is woven regularly inside an aperiodic
string. Approximate periodicity has been considered as well. A series of publications [76,
192, 137, 272, 252] studied the problem of deciding whether a given string is close to
any periodic string under a given metric. Interestingly, a number of those definitions
can be formulated through substring equations and Gawrychowski et al. [313] gave an
algorithm that from a set of substring equations over strings of length n can produce a
“generic” solution, meaning that it contains a maximal number of different characters
and from which every solution can be generated through character renaming. They gave
an algorithm producing a generic solution in O(n) which generalizes solutions to various
reconstruction problems such as reconstructing a string from its maximal palindromes or
runs.

1.4 Scalability Issues

So far, we discussed how string processing tasks have crucial applications to other do-
mains, but another major challenge in most applications is scaling up to process large
datasets. Highly curated datasets generally remain quite small. For example, the English
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pages of Wikipedia (just the text and metadata) take up 20 gigabytes in a compressed
format as of 2022 [365]. In comparison, any form of archival and version history tends
to grow much bigger. Just the metadata of the revision’s history (without the content
of the articles) for the Wikipedia English pages occupies 75 gigabytes as of 2022. It is
sometimes possible to limit the redundancy in the archival data, for example by using
a graph which tracks where the data is repeated multiple times. This is the approach
taken by the Software Heritage [366] project, which aims at keeping an archive of all the
software code produced by humanity. The graph structure is especially necessary for this
project to reflect the standard use of version history management in software develop-
ment. Substantial research and engineering efforts [342] were made to provide efficient
navigation of the graph. However, since the code repositories are indexed based on their
URLs and metadata, it is not currently feasible to perform a search specifically for oc-
currences of a particular code snippet19. As of 2023, the graph is limited to 7 terabytes
but with the source files the space usage approaches 1 petabyte [367]. Another example
of a large archival project is the internet archive, a non-profit which started saving web
pages in 1996 and now holds the history of more than 800 billion web pages through their
program: the Wayback Machine [368]. This archive takes up more than 70 petabytes,
and is still growing quickly (see Figure 2). Here, again, the search options are limited to
the metadata of the websites and not the content of the web pages themselves.

Large archives also exist in Bioinformatics, but the structure of biological sequences is
very different from that of code or webpages, which are typically structured, with links,
a large alphabet, and a reasonable number of distinct words. The genetic information
encoded in DNA can be abstracted as just a string over the nucleotide alphabet {A,
T, C, G}. We obtain this string after sequencing and assembling. When a genome is
sequenced, the output is a set of fragments, called reads, extracted from the original
sequence. Reads can contain sequencing errors, including nucleotide insertions, deletions,
and substitutions. The typical length and error rate of the reads vary depending on the
sequencing techniques. In any case, the original position of the read in the genome is lost
during sequencing and the reads have to be aligned and merged in order to reconstruct the
original genome, this problem is called sequence assembly. To make this reconstruction
possible, the reads are extracted in such quantities that each position of the original
genome is covered multiple times. This makes readsets larger and more redundant than
the assembled genome. An additional difficulty is that DNA is composed of two chains of
complementary nucleotides (A-T, C-G pairing). During sequencing, those complementary
chains are detached and processed in opposite directions, and reads come from both chains,
thus, when assembling or aligning to a reference it is necessary to consider the reverse
complement of a read.

Bioinformatics applications work with sequences that are generally redundant either
from repeated regions in a genome (intra-genome redundancy) or by considering several
genomes (from the same species) that share portions of their genomes (inter-genome
redundancy). Exploiting this redundancy is key to providing efficient algorithms, an
example of that is the problem of indexing a single string. If the DNA is stored just as a
string over the nucleotide alphabet {A, T, C, G}, it uses just 2 bits per base but requires

19 A simple but interesting example is [189] where the author searched "const double epsilon ="
(and equivalents in other languages) on all GitHub repositories to study the value programmers typically
chose for epsilon.
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Pages removed due

to security concerns.

(a) The Wayback Machine Archive (b) The Sequence Read Archive

Figure 2: Plots of the database growth for the Wayback Machine [372] and the Sequence
Read Archive [371]. The databases are big but also still quickly growing.

linearly scanning the whole string to search for a pattern. Alternatively, the suffix tree
is a classical structure that enables more efficient sequence analysis but necessitates 10
bytes per base [226], which amounts to 30 gigabytes for a human genome containing 3.3
billion bases. This would not be practical for projects where thousands of genomes have
been sequenced such as the 1000 Genomes project [199] completed in 2015 and the 100K
Genomes project [369] completed in 2018. Fortunately, compact data structures that
exploit redundancy to decrease space usage offer an interesting trade-off: for a human
genome it allows representing the sequence and its suffix tree using just 4 gigabytes [226].

Scalable algorithms are crucial for Bioinformatics as there has been a drastic decrease
in sequencing cost and an increase in throughput since 2008 which both lead to higher
volumes of DNA being sequenced. So far, the European Nucleotide Archive has accu-
mulated more than 50 petabytes [370] of sequencing data. While the NCBI Sequence
Read Archive has more than 73 petabases [371] of data including 38 petabases in open
access and is still growing, see Figure 2. However, like for the software heritage project
and internet archive, in the ENA and the NCBI, the data is indexed solely based on its
metadata. In Chapter 7, we propose a compact index specifically designed for sets of
short reads, that takes advantage of the redundant input to achieve better compression
and scalability.

2 Sketching
So far, we presented the two core challenges at the heart of modern text processing: en-
abling relevant (and sometimes complex) queries suited to specific applications while also
maintaining performances that can scale to large volumes of data. This thesis offers new
theoretical and practical trade-offs between complex and scalable queries, and we do so
through the use of sketches. In this thesis, a sketch is a lossless or lossy compression
that keeps only the essential characteristic of the input needed to answer a given query,
offering promising scalability potential. Examples of sketches for lossy compression in-
clude Karp–Rabin fingerprints [35] (see Preliminaries 4.3) which occupy constant space
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and allow checking whether two strings match with high probability, but in themselves do
not contain enough information to reconstruct the original data. For lossless compression,
an example is the Lempel–Ziv factorization [17], a very efficient compression in practice
used in compression formats such as png or zip, that always allows reconstructing the
original string, but in the worst case, the Lempel–Ziv factorization can occupy as much
space as the original input. There exist a myriad of sketches and how to choose one
entirely depends on the problem’s characteristic and space limitations, but they can be
grouped under three general approaches (that can sometimes be combined):

• Compressed input: highly redundant data can sometimes be represented by a
sketch of a manageable size. Consequently, algorithms that can directly operate
on the sketch become much more efficient. This is a very natural approach as the
data is almost always shared in a compressed format, the difficulty is working with
the sketch’s property and structure. However, it is important to note that not all
problems can be solved faster with this approach. For example, Abboud et al. [232]
showed that to compute the longest common subsequence of two strings of uncom-
pressed size N , given as grammar of size n, there is a time lower bound (nN)1−o(1)

assuming the Strong Exponential Time Hypothesis (SETH, see Preliminaries 4.1).
Very recently, Ganesh et al. [354] also showed a time lower bound Ω(Nk−1n) con-
ditioned on SETH to compute the median edit distance and length of the longest
common subsequence of k strings. In other words, sometimes, even if the input is
given in compressed form, we cannot avoid a high dependency on the uncompressed
size. In this thesis, Chapters 2 and 3 both take as input a sketch, more precisely a
grammar-compressed text and their complexities are given as a function of the size
of the compressed input.

• Streaming algorithms: there, the data is considered so large that it can only be
handled as a stream. For the pattern-matching problem, the pattern and the length
of the text are known and can be preprocessed in advance. Then the characters
of the text arrive one by one and can only be accessed later if they are stored
explicitly. This model focuses on small space complexity and accounts for all the
space used, including the space required to store the input. Thus, sketches are
crucial to keep the necessary information about the data already seen while limiting
space usage. Chapter 1 studies the regular expression membership and pattern-
matching problems in this model. Streaming algorithms also relate to the practical
notion of efficient second-memory algorithms. One of the challenges when dealing
with large inputs is the quantity of main memory used, as most computers are still
limited to gigabytes of RAM. To circumvent this limitation, programs may resort to
working directly from secondary memory as disk space scales at a much cheaper cost
than RAM. Random access to disk is in general quite inefficient, however, contiguous
reads on recent SSD can read gigabytes (between 2.2 and 3.4 Gb) of data per second
which is comparable to the speed of most RAM. Therefore, an algorithm that uses no
or few random accesses (including streaming algorithms) can be executed directly on
disk which allows it to scale to large inputs much more easily. We use this approach
of streaming on secondary memory to limit main memory usage in Chapter 7. The
construction of the index is split into phases that read and process the input as a
stream from disk.
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• Approximation algorithms: When dealing with very large datasets, it is not
always needed to provide precise answers to queries. Allowing for some approxima-
tion in the results can enable shortcuts and help bypass lower bounds. There, using
sketches in the form of lossy compression inherently introduces approximation but
allows for more efficient processing. The entire second part of this thesis is dedicated
to this approach. In particular, in Chapter 5, we treat the problem of the Longest
Common Subsequence with approximately k mismatches with a probabilistic algo-
rithm that answers correctly with high probability.

Before presenting the main contributions of this thesis, I would like to present Min-
Hash, a sketch that has been very successfully applied in Bioinformatics to the large
amounts of genomic data we mentioned in Section 1.4. I will also mention a few other
popular sketches in Bioinformatics for completeness. In this field, a sketch generally refers
to lossy compression producing a small and approximate summary of the data, and does
not include lossless compression as we do. Most of the sketching techniques in Bioinfor-
matics rely on the k-mer decomposition: the sequence (or sequences) are represented by
their substrings of length k (called k-mers)20. Naturally, similar strings will tend to share
a lot k-mers. The Jaccard index measures this similarity. For two k-mer sets A and B,
it is simply defined as J(A,B) = |A∩B|

|A∪B| . Unfortunately, dealing with complete k-mer sets
quickly becomes infeasible as the input’s size grows. The MinHash sketch [54], originally
developed for duplicate detection in web pages and images, allows computing efficiently
an estimator of the Jaccard Index. For a given set of S hash functions (h1, h2, ..., hS), the
sketch of a k-mer set A is defined as:

MinHash(A) = (min
a∈A

h1(a),min
a∈A

h2(a), ...,min
a∈A

hS(a))

It is a locality-sensitive hash: similar inputs will have similar sketches with high prob-
ability. Therefore, for two k-mer sets the number of shared hashes in MinHash(A) and
MinHash(B) is on average a good estimator of the shared elements. The first tool imple-
menting this concept for k-mer set was Mash [229] and the speed at which it could compare
two sets made it a game changer. However, it is important to note that it uses a variant
of MinHash sometimes called KMV sketching or Bottom MinHash [77] that uses a single
hash function and is defined for a k-mer set A as mash(A) = (h(a1), h(a2), ..., h(aS)) where
h(a1) < h(a2) < ... < h(aS) are the S the smallest elements of h(a)a∈A. The estimator of
the Jaccard index is then computed as follows:

Jmash(A,B) = |mash(A) ∩mash(B) ∩mash(A ∪B)|
|mash(A ∪B)|

and the authors show that it is an unbiased estimator. Since the publication of Mash,
multiple variants have been considered, but not all the corresponding estimators are un-
biased [346]. For visual illustrations of the MinHash variants, I recommend Camille
Marchet’s blog post [375]. MinHash and its variants are sketches for set similarity, but
other sketches are used for other tasks: Bloom filters can be seen as sketches for set
membership (“Is my element in the set?”), count-min sketches have been used for element

20In general, a k-mer and its reverse complement are seen as equivalent and represented by the smallest
of the two according to the lexicographic order (called the canonical k-mer).
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frequency (“In how many sets does my element occur?”), and HyperLogLog sketches
estimate set cardinality (“How many distinct elements are in my set ?”). Those are ex-
amples taken from the survey on sketching for genomics by Will P.M. Rowe [300], and for
more details see also the survey by Marçais et al. [297] on “Sketching and Sublinear Data
Structures in Genomics”.

3 Contributions
In this manuscript, each chapter corresponds to an independent publication, with a specific
problem, a review of the state of the art, and a set of contributions. The choice of
not unifying notations and merging those publications was motivated by the variety of
subjects and techniques used, and how they were conceived as independent projects (with
varying sets of co-authors) during the PhD Nevertheless, this section intends to provide
an overview of the main contributions, some insights into the techniques used, and how
they relate to the over-arching concept of sketches.

Part I focuses on a theoretical study of complex queries. We start with regular ex-
pression search in the streaming setting. We assume to be given a regular expression R, a
streaming text T of length n over an alphabet Σ. For regular expression membership we
need to determine, after having seen T entirely, whether it matches a regular expression
R, while for pattern matching, we must answer, at each position r, whether there exists a
substring T [l..r] recognized by R. In Chapter 1, our main contribution is to identify d,
the number of union symbols and Kleene stars in R, as the key parameter that enables a
space-efficient streaming algorithm. Previously, Bille and Thorup [139]21 already used this
parameter to propose algorithms to solve membership and pattern matching of a regular
expression of length m in O(m) space and O(n(d log w

w
+log d)) time, where w is the size of

the machine word. But it remained unclear if d could be used for a space-efficient solution.
This parameter was already known in the streaming model for the two special cases of
regular expressions: dictionary matching and don’t care matching. In dictionary match-
ing, we search for occurrences of a set of patterns {P1, P2, ...Pd} of total length at most m,
which corresponds to pattern matching for the regular expression (P1|P2|...|Pd), a series of
results [136, 175, 198, 242, 269] led to the development of a randomized Monte-Carlo al-
gorithm in O(d logm) space and O(log log |Σ|) time per character. For don’t care pattern
matching, we are given a pattern P1?P2...?Pd where Pi, i ∈ [1, d], are strings (possibly
empty) over an alphabet Σ of total length at most m. Don’t care pattern matching can
be expressed as matching R = P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd, and Golan,
Kopelowitz, and Porat [291] showed that this problem can be solved by a randomized
Monte-Carlo algorithm in O(d logm) space and O(d+ logm) time per character.

Formally, we provide space-efficient randomized Monte-Carlo algorithms (meaning the
execution time is deterministic, but the algorithms can err with a small probability) that
solve regular expression membership and pattern matching in O(d3 polylog n) space and
O(nd5 polylog n) time per character of T (Theorem 1.27). Here is a bird’s eye view of how
we prove our result: we start by defining atomic strings which are the “words” appearing in
the regular expression. They only contain characters of Σ and there are Θ(d) of them. For
example, for R = GAT(TA|O)(CAT)∗ the set of atomic strings is {GAT, TA, O, CAT}.

21They actually consider k the number of strings appearing in R but k = Θ(d).
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The basis of our approach is to efficiently store some specific occurrences of prefixes of
the atomic strings in the text T . Those stored occurrences are then linked to test if there
is a “partial” match of R (Definition 1.5). Over periodic regions of the text, there can
be too many occurrences to store them all. Thus, we choose to store only a few of those
occurrences that can be very far apart, with just a long periodic substring in between.
To reconstruct a partial match, we must check if that long periodic substring corresponds
to a run of the Thompson automaton [9]. We formulate it as finding a path of a specific
weight in a multi-graph. We then efficiently solve this graph problem by translating it into
a circuit using addition and convolution gates that can be evaluated in a space-efficient
manner using a general framework [144, 236]. Additionally, we improve that framework
by removing its dependency on the Extended Riemann Hypothesis (Theorem 1.33). Here
the sketches are Karp–Rabin fingerprints (Preliminaries 4.3) used to detect matches of
the prefixes of atomic strings, but it is black-boxed in the streaming pattern matching
algorithm (Theorem 1.9) that we use. My personal contribution to this work was focused
on formalizing and proving key properties of “anchor” positions (Definition 1.14) which
serve to efficiently choose which occurrences are stored and this concept is key for achieving
the desired space complexity. I also participated in developing the streaming algorithm.

In Chapter 2, we begin our study of gapped consecutive matching. In this problem,
we are given patterns P1, P2, an interval [a, b], and must report all pairs of positions (i, j)
in a text T such that an occurrence of P1 starts at position i, an occurrence of P2 starts
at position j, there are no occurrences of P1 or P2 starting in the interval [i + 1, j − 1],
and finally j − i ∈ [a, b]. Bille et al. [349] introduced those queries and gave a conditional
lower bound stating that for indexes of size Õ(|T |) (the Õ notation hides polylogarithmic
factors) achieving a query time faster than Õ(|P1|+ |P2|+

√
|T |) would contradict the Set

Disjointness conjecture, even if a = 0 is fixed. Additionally, they provided a non-trivial
index that uses Õ(|T |) space and Õ(|P1|+|P2|+|T |2/3output1/3) time. We assume a = 0 is
fixed, and that the text T of size n is given as a straight-line program G of size g, which is
a context-free grammar generating exactly one string. For example the grammar with the
non-terminals {A,B,C,D} and rules {A→ BC,B → b, C → DD,D → d} generates the
string bdd. We choose this formalism as it captures the popular Lempel–Ziv factorization
up to a logarithmic factor: a Lempel–Ziv factorization of size z can be transformed into
an SLP of size O(z log n) [79, 90]. Our contribution is to create an index taking space
polynomial in the size of the grammar that reports consecutive occurrences with distances
in [0, b] in optimal time up to poly log factors. To report consecutive occurrences without
constraints on the distance between P1 and P2, our index uses O(g2 log4 |T |) space, where
g is the size of the SLP (see Corollary 2.16). We rely on an efficient construction of
compact tries (see Preliminaries 4.2) which takes advantage of the strings being prefixes
and suffixes of strings generated by non-terminals. This implementation uses Karp–Rabin
fingerprints (see Preliminaries 4.3) and the compacted tries are then augmented using a
heavy path decomposition. We then reuse this structure for our main result: Theorem 2.1,
with an index that can report consecutive occurrences with distances in an interval [0, b]
using O(g5 log5(|T |)) space. Apart from the Karp–Rabin fingerprints in the compact tries,
the straight-line program input is the main sketch used in this work, but the index we
construct also forms a grammar-based sketch specific to consecutive occurrences. The
index of Theorem 2.1 circumvents the lower bound for highly compressible texts (such
that g5 << n2), which is a non-trivial result since some problems cannot avoid a high
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dependency on the size of the uncompressed string (as detailed in Section 2). However,
we expect our space complexity to be far from optimal and leave improvements as well as
the general case with 0 ≤ a ≤ b ≤ |T | as open questions22. I contributed to every part.

Partially motivated by the limitations of the space usage in Õ(g5), in Chapter 3, we
address the dual problem: consecutive pattern matching, where the patterns and the text
are processed simultaneously. Note that for an uncompressed text, consecutive pattern
matching can be solved by a classic online matching algorithm, just keeping track of the
most recent occurrences of P1 and P2 in O(|T |+ |P1|+ |P2|+ occ) time. We show that a
similar complexity can be achieved when the text is highly compressible: all consecutive
occurrences can be reported in O(g+ |P1|+ |P2|+ occ) time (see Theorem 3.1) where g is
the size of the grammar compressed text. We then derive from this result algorithms for
gapped consecutive matching (Corollary 3.2) and the k-closest consecutive occurrences
(Corollary 3.3). Our result is based on the efficient “boundary information” encoding
recently introduced by Ganardi and Gawrychowski [353]. For a given pattern P , the P -
boundary information of a string S stores substrings occurring both in P and S. They
are chosen to capture just the information needed to detect new occurrences of P that
could occur when concatenating a string to S. The authors show how to use this encoding
to determine in O(g + |P |) time whether P occurs in the compressed text. We sightly
extend their approach to report all occurrences crossing the boundary (Lemma 3.10).
Then we repeat this technique on a second level with “secondary boundary information”
and carefully analyse all cases to obtain Theorem 3.1. Here, again, the main sketch is the
straight-line program we work on, and I contributed to all aspects of the publication.

Intrinsically, all previous chapters rely heavily on periodicity detection, thus it felt
only natural to study this problem in Chapter 4. We show how to report all runs in
optimal time in the most abstract model where they can be defined: general (unordered)
alphabets where the only operation allowed is an equality test between two characters.
We first consider the problem of square detection, and then extend our approach to square
and run reporting. In 1984, Main and Lorentz [27] designed an O(n log n) time algorithm
for square detection in a text T of size n over a general unordered alphabet. They also
provided a matching lower bound for strings that have Ω(n) distinct symbols but left as an
open question whether a faster algorithm was possible if the size of the alphabet σ = |Σ|
is restricted. We start by proving that the problem requires Ω(n log σ) comparisons even
if the size of the alphabet is known (Theorem 4.1). Additionally, in Theorem 4.9, we
show that computing any relevant approximation of the number of distinct characters
requires Ω(nσ) operations. For general ordered alphabets (where an order is given),
Crochemore [30] used the f -factorization (related to popular Lempel–Ziv factorization)
to give an algorithm for square detection running in O(n log σ) time. Roughly speak-
ing, the f -factorization and Lempel–Ziv factorization (LZ-factorization) detect repetitive
fragments in the text and can be computed efficiently using a suffix tree or suffix ar-
ray. However, we show that on general unordered alphabets, those factorizations require
Ω(nσ) operations to be computed (as a corollary of the lower bound on approximating
the alphabet). Instead, we introduce the ∆-approximate LZ-factorization which acts as a
sketch capturing only sufficiently long squares (of length at least 8∆), as opposed to the

22We started writing a solution for the general case where the distance between the consecutive oc-
currences has to be in [a, b], but it was very technical and had an unreasonable space-complexity of
Õ(g15)...
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f -factorization and the LZ-factorization that capture all squares. We present our final
algorithm in steps. We first assume that the alphabet size is known and focus on giving
an upper bound on the number of comparisons, then we proceed to remove the assump-
tion on knowing the alphabet size, and finally, we provide an overall efficient algorithm
running in time O(n log σ). In this work, I participated in formalizing and clarifying the
proofs throughout the research process.

Part II explores the use of approximation to further reduce the size of sketches and
provide more efficient algorithms. Each chapter provides a proof of concept implementa-
tion for Bioinformatics applications. Earlier in this introduction, we detailed the impor-
tance of similarity measures for numerous applications. In Bioinformatics, the edit dis-
tance is arguably the most popular similarity measure, however, Backurs and Indyk [253]
proved a conditional lower bound (based on SETH) which suggests it is unlikely to be
computable in strongly subquadratic time. The need to overcome this quadratic-time
barrier led to the study of approximate algorithms for the edit distance. Chakraborty
et al. [254] gave the first breakthrough result with a constant-factor approximation algo-
rithm that computes the edit distance between two strings of length n in time Õ(n2−2/7).
Since our publication [316] (presented in Chapter 5), a series of works have been pub-
lished on approximating the edit distance [310, 317] with the strongest result being [305]
with a constant factor approximation in time n1+ε for any ε > 0 (where the approxi-
mation constant depends solely on ε). Nevertheless, these algorithms tend to be quite
technical and even those meant to be simpler such as [304] do not seem to have been
implemented and evaluated in practice. In Chapter 5, we take another approach by
considering a different similarity measure meant to be both robust to small changes and
simple enough to allow for efficient computation. We consider the Longest Common
Substring (abbreviated LCS hereafter) with Approximately k mismatches which is an ap-
proximate version of LCS with k Mismatches. Recall that, for an integer k and two strings
X and Y , LCSk(X, Y ) is the maximal length of a substring of X that occurs in Y with
at most k mismatches. For a constant ε > 0, the LCS with Approximately k Mismatches
problem needs to return a substring of X of length at least LCSk(X, Y ) that occurs in Y
with at most (1 + ε) · k mismatches. This problem has been introduced by Kociumaka,
Radoszewski, and Starikovskaya [293] after they showed that there is k = Θ(log n) such
that LCS with k Mismatches cannot be solved exactly in strongly subquadratic time (con-
ditioned on SETH). In Theorem 5.1, we provide two algorithms: one assuming a constant
size alphabet running in O(n1+1/(1+2ε)+o(1)) time and space, and one in O(n1+1/(1+ε) log3 n)
time and linear space without constraints on the alphabet. The first result relies on an
Approximate Nearest Neighbour data structure [193] as a black box, and we do not eval-
uate it in practice. In contrast, our second contribution is simpler, and we confirm its
practicality through an experimental evaluation. Additionally, in Fact 5.2, we show a
conditional lower bound for LCS with Approximately k Mismatches (with a construction
similar to the proof for the lower bound of LCS with k Mismatches). In our algorithms, we
rely on Karp–Rabin fingerprints and a sketch estimating the Hamming distance based on
dimension reduction, both detailed in Section 2. I participated in all aspects of the work,
modified our lower bound reduction to work over a binary alphabet and implemented the
practical evaluation of our algorithm.

Continuing our exploration of similarity measures and distances, the next chapter fo-
cuses on the Dynamic Time Warping (DTW) distance. Recall that for the DTW distance,

16



Introduction

one must “warp” the two strings: double some characters until the strings are of equal
length and then sum the distances between the characters at the same positions. To pro-
pose an efficient algorithm for this distance, in Chapter 6, we consider one of the simplest
forms of sketching: run-length encoding. The run-length encoding of a string S of length
N is a concise representation RLE(S) = (c1, l1)(c2, l2)...(cn, ln) where (ci, li) represents the
character ci ∈ Σ repeated li times for i ∈ [1, n], and such that ∑i∈[1,n] li = N . This sketch
is especially relevant for DTW as the runs of equal characters tend to be aligned despite
variations in length. That is why the number of runs in the strings has already been used
by Froese et al. [284] who gave an algorithm computing the DTW distance between two
strings with running time O(mN + nM), where M,N are the lengths of the strings, and
m,n are the sizes of their run-length encodings.

Our contribution is as follows: when the distances between characters of Σ are integers,
for a pattern P with m runs and a text T with n runs, we show that there is an O(n+m)-
time algorithm that computes all locations j where the DTW distance between P and
a suffix of T [..j] is at most 1. More generally for an integer k, we provide an algorithm
with O(knm)-time that computes all locations j where the DTW distance between P
and a suffix of T [..j] is at most k. Our interest and research on DTW are also motivated
by potential applications to analysing biological data produced by the third generation
sequencing where DNA is passed through a nanopore at an uneven speed which tends to
create errors in the length of stretches of the same nucleotide (homopolymers) [330]. We
detail this potential application in Section 6. I contributed to every part of that work
except for the approximation algorithms (given as corollary of our second algorithm)
which were added by Tatiana Starikovskaya, I only helped in checking correctness. Since
our publication, Boneh, Golan, Mozes, and Weimann uploaded a preprint [360] with a
Õ(n2)-time computation of the DTW distance between two strings with n runs, which
is optimal up to log factors. They follow the approach that Clifford et al. [281] used to
show a similar result for the edit distance: they represent and manipulate the distances
computed with a piecewise-linear function.

For Chapter 7, we shift our focus from the study of similarity measures to the
practical problem of readsets indexing. Additionally, in this chapter, the perspective on
approximation is different, instead of studying approximate matching where one reports
all substrings at a given distance from the pattern, we propose a compact index that has
the downside of reporting false positives: occurrences of the pattern that are not fully
included in a read.

Recall that a read is a sequence of base pairs, generally short (the precise length
depends on the sequencing technique), obtained when sequencing DNA. To be able to
re-assemble the entire DNA sequence, each position of the sequence is generally covered
by multiple reads. The average number of reads covering a position is called the sequenc-
ing coverage. The standard sequencing coverage for short reads to assemble a genome
is now between 30 and 50, making the readsets highly repetitive, especially when the
DNA sequenced comes from a single individual. To index a single repetitive string, the
FM-index [98] based on the Burrows-Wheeler transform (BWT) [48] is one of the most
important data structures23, and it has been applied in several Bioinformatics tools for
short read alignment [133, 163, 134]. The most recent improvement on the FM-index is

23The authors of both the BWT and FM-index received in 2022 the ACM Paris Kanellakis Theory and
Practice Award for those breakthroughs.
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the r-index by Gagie et al. [312] that takes space proportional to r, the number of runs
in the BWT of the indexed string. More precisely, for an indexed string of length n, the
data structure occupies O(r log log n) space while still being able to count and locate all
occurrences of a pattern in optimal time (up to a logarithmic factor). This makes the
number of runs in the BWT an important parameter for space efficiency and is often seen
as a measure of the repetitiveness of the text.

Unfortunately, extending the BWT to a collection of strings is not straightforward.
To better understand the context of Chapter 7, let me give an overview of the current
solutions and their impact on the resulting index structures. A possible approach is
to concatenate all strings of the collection with a distinct separator character between
them and then build the FM-index of the resulting string. However, with this approach
the string can be very large, making the BWT challenging to build and update (adding
a string to the index), and one character is added to the alphabet per string in the
collection which becomes costly for large collections. Some methods avoid this increase in
the alphabet size by having a repeated separator symbol and comparing two separators
using their position in the concatenated string (this is done in tools such as BEETL [158]
and RopeBWT [184]). BigBWT [279] uses another method, there are two separator symbols:
one is put between the strings and the other just at the end of the concatenated string
as a way to order the separators. But both of those approaches create a result where two
different letters followed by the same suffix (up to a dollar) will be ordered depending
on the input order of their respective strings in the collection. This can cause some
variation in the number of runs in the resulting transform. A common heuristic (used
by BEETL [158] and RopeBWT [184]) is to sort the strings in the collection according to
their colexicographic24 order so that the strings with similar suffixes are grouped together.
Mantaci et al. [116] generalized the concept of the BWT to collections of strings. The
EBWT is a permutation of characters in the strings of a collection according to the
lexicographic order of the suffixes that immediately follow those characters, considering
each string as cyclic25. In the literature, several variants of the EBWT are commonly
used. The first variant is the EBWT of the collection where each string is appended a
shared end-of-string symbol (This is the definition we take as standard in Chapter 7).
The second variant is the EBWT of the collection where each string is appended a unique
end-of-string symbol.

Those nuances between definitions of the BWT for a concatenation of strings and
EBWT with or without distinct end-of-string symbols may seem minor, but they do
impact the transformed string, and Cenzato and Lipták [351] showed that the final number
of runs can drastically change depending on the precise definition of the BWT for a given
collection of strings (among the variant we described above). They compared the number
of runs produced by each variant to the number of runs in the BWT where the end-of-
string symbols follow the order given by Bentley et al. [278], which minimize the numbers
of runs in the resulting BWT. The construction of this order has been implemented in
practice by [361]. Their experiments demonstrate the efficiency of the heuristic ordering
the end-of-string symbols according to the colexicographic order of the strings in practice
(which we also highlighted in Chapter 7) and they provide a theoretical upper bound. I
strongly encourage reading their survey, it is a very helpful reminder that the devil is in

24Lexicographic order on the reversed strings, i.e. X ≺colex Y if and only if rev(X) ≺lex rev(Y ).
25This is the Omega order (≼ω) order defined by Mantaci et al. [116].
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the details.

Our work in Chapter 7 is prior to the publication of the survey of Cenzato and Lip-
ták [351] and the construction of an optimal order by Bentley et al. [278], and we take
a different approach to optimizing the number of runs for the BWT. We propose to take
advantage of information very commonly associated with reads: alignment to a reference
genome. We build a tree where the main trunk is the reference and reads branch out of
the trunk at the position they are aligned to, and then compute the generalization of the
BWT for trees: the eXtended Burrows–Wheeler transform (XBWT) [129]. Intuitively,
this provides a context to the reads that allows for better sorting and limits the number
of runs breaking in the transformed string. Formally, we show that if the reads are almost
identical to the reference and that the differences are located towards the end of the reads
(which is the case in practice for short reads), the number of runs in the XBWT can be
bounded depending on the number of runs in the BWT of the reference. We then test
our approach in practice and show that it does obtain fewer runs than the BWT with
the colexicographic heuristic (15% less for a human chromosome 19 read set). The main
drawback of our index is that we search in the branching tree thus when counting the
number of occurrences of a pattern, we cannot avoid counting occurrences that are not
fully contained in a read (that are partially or entirely in the main trunk corresponding
to the reference).

Another contribution of our work is that, with the goal of a scalable construction of
the index in mind, we adapt the technique of a prefix-free parsing construction of the
BWT of Boucher et al. [279] to the construction of the XBWT. In the prefix-free parsing
construction of the BWT, the input string is parsed into overlapping phrases as follows:
we maintain the hash of a sliding window using Karp–Rabin fingerprints, and whenever
the hash is equal to zero we end the current phrase and begin a new one. This technique,
called context-triggered piecewise hashing, allows us to create a set of phrases that are
prefix-free. The string is then decomposed using a dictionary and a parse. The dictionary
associates each phrase with a metacharacter, and the parse is a string of metacharacters in
the same order as the corresponding phrases occur in the input string. This construction
uses sketches (Karp–Rabin fingerprints) but also creates a sketch through this compact
representation of the string. The intuition is that repeated sections of the string are
translated into repeated phrases that can be represented by the same metacharacters in
the parse, allowing the dictionary to remain reasonably small. The BWT of the input
string is then constructed starting from the BWT of the parse (where the order between
the metacharacters is the lexicographic order of the phrase they represent) and the BWT of
the phrases. Adapting this technique to labelled trees and the construction of the XBWT
is non-trivial because each branch may create new phrases. My contribution was focused
on this adaptation, the implementation, and the experimental evaluation of our proposed
data structure in terms of the number of runs in the XBWT. The implementation of the
queries and analysis of false positives are left as future work.

I hope this overview of the contributions has highlighted clearly that sketching is a
valuable tool in a variety of settings and applications. I expect that they will continue to
appear in many future works both in theory and in practice.
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4 Preliminaries

This section aims at presenting some recurring concepts needed to understand the follow-
ing chapters.

4.1 The Strong Exponential Time Hypothesis

The Strong Exponential Time Hypothesis (SETH) has already been mentioned several
times in this introduction as the basis of many important conditional lower bounds. Con-
ditional lower bounds are a crucial tool to understand the problems’ complexity and
whether the current upper bounds are optimal. In this thesis we never work directly with
SETH, but for completeness here is the hypothesis’s statement:

The Strong Exponential Time Hypothesis [70]
The satisfiability of a formula in conjunctive normal form (a conjunction of clauses,
where each clause is a disjunction of literals) with N variables and O(N) clauses
cannot be solved in time 2N(1−o(1)).

4.2 Tries and Suffix Trees

Let S = S1, S2, ..., Sk be a collection of strings over an alphabet Σ. Its trie [2, 4, 5] is a
rooted tree with edge labels in Σ. For any path, we say the path spells the string obtained
by concatenating the label of the edges of the path. Likewise, when referring to a node
within the tree, we define its label as the string spelled by the unique path from the root
to that node. The trie is a tree such that no two nodes spell the same string, each leaf
spells a string of S and each Ti ∈ S is spelled by a leaf or an internal node. In both cases,
we mark the nodes spelling the Ti ∈ S with a special end-of-string character.

The more efficient compacted trie is obtained by contracting into a single edge each
maximal path from a node that is either marked (by an end-of-string character) or branch-
ing (with at least two children) to its lowest ancestor that is either branching or marked.
This edge is then labelled with the string spelled by the path it replaced. Let S be a
string spelled by a node of the non-compacted trie. If it is also spelled by a node of the
compacted trie we say the node is explicit else it is implicit. Those definitions are illus-
trated in Figure 3. Note that for any two nodes i and j, their lowest common ancestor
spells the longest common prefix between the strings spelled by i and j. Notice that all
nodes are either branching or marked and that all marked nodes spell distinct strings of
S. Hence, there are O(k) nodes in the compacted trie. For each edge, there exists (i, s, e)
such that its label is equal to Si[s..e], thus we can avoid storing the label explicitly and
just store the reference (i, s, e) to the strings of S. Thus, O(k) space is sufficient to store
the compacted trie.

A suffix tree of a string T of length n is the compacted trie containing the suffixes of
T$ (where $ is a special symbol not in Σ) i.e. over the collection {T [j..]$ for j ∈ [0, n−1]}.
It can be stored in O(n) space and for a linearly-sortable alphabet can be constructed
in O(n) time [56]. For more details on the suffix tree see Chapters 5 to 9 of [57]. We
illustrate this definition in Figure 3c. Tries and suffix trees are used in Chapters 1 to 4.
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Figure 3: Subfigure (a) shows the trie of S ={CAT, CODE, CODED, COTTAGE, COT-
TON, TON}, (b) its compacted form and (c) represents the suffix tree of the string
GATTAGATACAT (with full strings instead of references). In (a) and (b) the nodes
marked with a * spell a string from S. Note that the string COT is spelled by an implicit
node of the trie of S.
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4.3 Karp–Rabin Fingerprint
For p ≥ |Σ| a prime number and an integer b ≥ |Σ|, the Karp–Rabin fingerprint [35] of a
string S is defined as φp(S) = ∑|S|−1

i=0 S[i]b|S|−i−1 mod p. It is easy to see that if two strings
S1 and S2 are equal then φp(S1) = φp(S2). The reverse is not true, two distinct strings
S1 and S2 can have equal fingerprints, but we can bound the probability of such an event
by choosing the prime p at random below an integer I. If I = |S1|2|S2| the probability of
a false match is O( 1

|S1|). For a detailed analysis see Chapter 4.4 of [57]. This fingerprint
has a convenient “sliding” property in the sense that for a string T and two integers i,m
such that i + m < |T |, we can express efficiently the fingerprint of T [i + 1..i + m] as a
function of the fingerprint of T [i..i+m− 1], T [i] and T [i+m]:

φp(T [i+ 1..i+m]) = (φp(T [i..i+m− 1])× b− T [i]bm + T [i+m]) mod p

This allows Karp–Rabin fingerprints to be used for an online matching algorithm for a
pattern P running in O(|P | + |T |) that can err with a small probability (Monte-Carlo).
In practice, p is often chosen as a large prime number around 227 to still fit into a 32-bit
integer, and in the implementation of Chapter 7, b = 256 to accommodate for the UTF-8
where each character is encoded on 8 bits.

In Chapters 2 and 5, we use a variant of Karp–Rabin fingerprint defined by Porat and
Porat [136]: for a prime number p ≥ |Σ| and r ∈ Fp (the finite field of integers modulo
p), the fingerprint of a string S is defined as φp,r(S) = ∑|S|−1

i=0 S[i]ri mod p. The collision
analysis of this variant is simpler: for a given integer n, if p is chosen to be Θ(max(|Σ|, nk))
and r is chosen at random in Fp, |S1|, |S2| ≤ n, then φp,r(S1)− φp,r(S2) = 0 can be seen
as a polynomial over Fp. This polynomial has degree greater than zero (because S1 ̸= S2),
and at most max(|S1|, |S2|) < n thus it can have at most n roots. Thus, the probability
that the fingerprints S1 and S2 collide is less than n

nk = 1
nk−1 .

Note that the precise definition can vary slightly depending on the specific prop-
erty needed. In Chapter 2, the fingerprint of a string S is defined as a triple (r|S|−1

mod p, r−|S|+1 mod p, φp,r(S)), to have the property that given three strings X, Y, Z such
that XY = Z, and the fingerprints of two of the strings, we can deduce in constant time
the third fingerprint (Fact 2.13).

4.4 The Fine–Wilf’s Periodicity Lemma
Recall that a string S has period p if for all i ∈ [0, N − p− 1], S[i] = S[i+ p]. There are
two versions of the lemma, we give the proof only for the simpler version:

Lemma 1 (Fine–Wilf’s Strong Periodicity Lemma [7]). If p and q are both periods of a
string S such that p+ q ≤ |S|+ gcd(p, q), then gcd(p, q) is also a period of S.

Lemma 2 (Fine–Wilf’s Weak Periodicity Lemma [7]). If p and q are both periods of a
string S such that p+ q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. The proof is immediate when p = q. Without loss of generality, we can assume
p > q and our goal is to show that p− q is also a period of S. Let i ∈ [0, N − (p− q)− 1],
if i + p < |S|, then S[i] = S[i + p] = S[i + p − q], else it implies that i − q ≥ 0 thus
S[i] = S[i − q] = S[i + p − q]. We showed that p − q is also a period of S and by a
recurrence following Euclid’s algorithm, we obtain that gcd(p, q) is also a period of S.
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This is a basic tool in the field of combinatorics on words, and it has been extended
to strings with don’t cares [62, 119, 78, 96, 75, 179, 356], Abelian periods[102, 167],
parametrized periods [117], order-preserving periods [223, 315], approximate periods [137,
153, 192]. In this thesis, in Chapters 1 to 3 of Part I, we use the following corollary:

Corollary 3. If there are at least three occurrences of a string Y in a string X, where
|X| ≤ 2|Y |, then the occurrences of Y in X form an arithmetic progression equal to the
period of Y .

Proof. Let i < j < k be the starting positions of occurrences of Y in X. Because
|X| ≤ 2|Y |, at least two of the substrings X[i..i+ |Y |), X[j..j + |Y |), and X[k..k + |Y |),
overlap by more than |Y |/2. Without loss of generality we can assume that it is the case
for X[i..i + |Y |) and X[j..j + |Y |), meaning X[j..i + |Y |) is a substring that is both a
prefix and a suffix of Y , this implies a period of j − i < |Y |/2. Let p be the period of Y ,
j − i has to be a multiple of p, else the (weak) periodicity lemma (p+ j − i ≤ |Y |) would
contradict the minimality of p. Next, because |X| ≤ 2|Y |, X[j..j+ |Y |) and X[k..k+ |Y |)
must overlap by at least p positions, i.e. j + |Y | − 1 − k ≥ p. X[k..j + |Y |), is both a
prefix and a suffix of |Y | which implies a period of k− j ≤ |Y |− p, by the same argument
of the minimality of p we have that k − j must be a multiple of p and thus the substring
X[i..k + |Y |) is a run of period p and each position i+ np for 0 ≤ n ≤ ⌊k−1+|Y |−i

p
⌋ is the

start of an occurrence of Y .
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Chapter 1
Streaming Regular Expression Membership
and Pattern Matching

This chapter corresponds to the following publication: Bartlomiej Dudek, Pawel
Gawrychowski, Garance Gourdel, and Tatiana Starikovskaya, “Streaming Regu-
lar Expression Membership and Pattern Matching”, in: Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, ed. by Joseph (Seffi) Naor and Niv
Buchbinder, SIAM, 2022, pp. 670–694, doi: 10.1137/1.9781611977073.30.

Publication

Regular expression search is a key primitive in myriads of applications, from web scrapping to
bioinformatics. A regular expression is a formalism for compactly describing a set of strings,
built recursively from single characters using three operators: concatenation, union, and Kleene
star. Two basic algorithmic problems concerning such expressions are membership and pattern
matching. In the regular expression membership problem, we are given a regular expression R
and a string T of length n, and must decide whether T matches R. In the regular expression
pattern matching problem, the task to find the substrings of T that match R.

By now we have a good understanding of the complexity of regular expression membership
and pattern matching in the classical setting. However, only some special cases have been con-
sidered in the practically relevant streaming setting: dictionary matching and wildcard pattern
matching. In the dictionary matching problem, we are given a dictionary of d strings of length at
most m and a string T , and must find substrings of T that match one of the dictionary strings.
In the wildcard pattern matching problem, we are given a string P of length m that contains
d wildcards, where a wildcard is a special symbol that matches any character of the alphabet,
and a string T , and must find all substrings of T that match P . Both problems can be solved in
the streaming model by a randomised Monte Carlo algorithm that uses O(d log m) space [Golan
and Porat (ESA 2017), Golan, Kopelowitz and Porat (Algorithmica 2019)].

In the general case, we cannot hope for a streaming algorithm with space complexity smaller
than the length of R for either variant of regular expression search. The main contribution
of this paper is that we identify the number of unions and Kleene stars, denoted by d, as the
parameter that allows for an efficient streaming algorithm. This parameter has been previously
considered in the classical setting, and it has been observed that in practice it is significantly
smaller than the length of R. We design general randomised Monte Carlo algorithms for both
problems that use O(d3 polylog n) space in the streaming setting.

A crucial technical ingredient of our algorithms is an adaptation of the general framework for
evaluating a circuit with addition and convolution gates in a space-efficient manner [Lokshtanov
and Nederlof (STOC 2010), Bringmann (SODA 2017)], initially designed as a key component
of a pseudopolynomial time algorithm for the subset sum problem. We show how to replace
the Extended Generalised Riemann Hypothesis in [Bringmann (SODA 2017)] by an application
of the Bombieri–Vinogradov theorem to achieve the same bounds (but unconditionally), which
might be of independent interest.

27

https://doi.org/10.1137/1.9781611977073.30


Partie I, Chapter 1 – Streaming Regular Expression Membership and Pattern Matching

1 Introduction
The fundamental notion of regular expressions was introduced back in 1951 by Kleene [3].
Regular expression search is one of the key primitives in diverse areas of large scale
data analysis: computer networks [106], databases and data mining [81, 71, 72], human-
computer interaction [161], internet traffic analysis [113, 109], protein search [74], and
many others. As such, this primitive is often the main computational bottleneck in
these areas and in the pursuit for efficiency has been implemented in many programming
languages: Perl, Python, JavaScript, Ruby, AWK, Tcl and Google RE2, to name a few.

A regular expression R is a sequence containing characters of a specified alphabet Σ
and three special symbols (operators): concatenation (·), union (|), and Kleene star (∗),
and it describes a set of strings L(R) on Σ. For example, a regular expression R = (a|b)∗c
specifies a set of strings L(R) on the alphabet Σ = {a, b, c} such that their last character
equals c, and all other characters are equal to a or b. (See formal definition in Section 2). In
this work, we consider two classical formalisations of regular expressions search, regular
expression membership and pattern matching. In the regular expression membership
problem, we are given a string T of length n, and must decide whether T ∈ L(R) for a
given regular expression R. In the regular expression pattern matching problem, we must
find all positions 1 ≤ r ≤ n such that for some 1 ≤ ℓ ≤ r, the substring T [ℓ . . r] ∈ L(R).

Assume that T is read-only, and let m be the length of the regular expression. The clas-
sical algorithm by Thompson [9] allows to solve both problems in O(nm) time and O(m)
space by constructing a non-deterministic finite automaton accepting L(R). Galil [28]
noted that while the space bound of Thompson’s algorithm is optimal in the determin-
istic setting, the time bound could probably be improved. Since then, the effort has
been mainly focused on improving the time complexity of regular expression search. The
first breakthrough was achieved by Myers [44], who showed that both problems can be
solved in O(mn/ log n + (n + m) log n) time and O(mn/ log n) space. Bille and Farach-
Colton [118] reduced the space complexity down to O(nε +m), for an arbitrary constant
ε > 0. This result was further improved by Bille and Thorup [126] who showed an algo-
rithm with running timeO(nm(log log n)/ log3/2 n+n+m) time that usesO(nε+m) space.
The idea of the algorithms by Myers [44], Bille and Farach-Colton [118], and Bille and
Thorup [126] is to decompose Thompson’s automaton into small non-deterministic finite
automata and tabulate information to speed up simulating the behaviour of the original
automaton when reading T . A slightly different approach was taken by Bille [101] who
showed that the small non-deterministic finite automata can be simulated directly using
the parallelism built-in in the Word RAM model. For w being the size of the machine
word, Bille showed O(m)-space algorithms with running times O(nm log w

w
+ m logw) for

m > w, O(n logm+m logm) for
√
w < m ≤ w, and O(min{n+m2, n logm+m logm})

for m ≤
√
w. Finally, Bille and Thorup [139] identified a new parameter affecting the com-

plexity of regular expression search, which is particularly relevant to this paper. Namely,
they noticed that in practice a regular expression contains d≪ m occurrences of the union
symbol and Kleene stars, and showed that regular expression membership and pattern
matching can be solved in O(m) space and O(n · (d log w

w
+ log d)) time1.

It is easy to see, however, that in the general case the time complexity of the algorithms

1Formally, they consider a parameter k equal to the number of strings in R, but it is not hard to see
that k = Θ(d).
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above remains close to “rectangular”, with some polylogarithmic factors shaved. Recently,
fine-grained complexity provided an explanation for this. Backurs and Indyk [211] followed
by Bringmann, Grønlund, and Larsen [237] considered a subclass of regular expressions
which they refer to as “homogeneous”. Intuitively, a regular expression is homogeneous,
if the operators at the same level of the expression are equal. Assume that the alpha-
bet Σ = {1, 2, . . . , σ}. To give a few examples, the following regular expressions are
homogeneous: R1 = (P1|P2| . . . |Pd), R2 = P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd,
and R3 = (P1|P2| . . . |Pd)∗, where Pi, 1 ≤ i ≤ d, are strings on Σ, i.e. concatenations of
characters in Σ. [211, 237] considered both the membership and the pattern matching
problems. A careful reader might notice that in the pattern matching setting the expres-
sion R1 corresponds to the famous dictionary matching problem [15] and R2 to pattern
matching with wildcards (don’t cares) [14, 83, 80, 60, 110]. In the membership set-
ting, R3 corresponds to the Word Break problem [152, 377]. As such, a seemingly simple
class of homogeneous regular expressions covers many classical problems in stringology.
The authors of [211, 237] provided a complete dichotomy of the time complexities for
homogeneous regular expressions in both settings. Namely, they showed that in both
settings, every regular expression either allows a solution in near-linear time, or requires
Ω((nm)1−α) time, conditioned on the Strong Exponential Time Hypothesis [69]. The only
exception is the Word Break problem in the membership setting, for which [237] showed
an O(n(m logm)1/3 +m)-time algorithm and a matching combinatorial lower bound (up
to polylogarithmic factors). Later, Abboud and Bringmann [250] took an even more
fine-grained approach and showed that in general, regular expression pattern matching
and membership cannot be solved in time O(nm/ log7+α n) for any constant α > 0 un-
der the Formula-SAT Hypothesis. Schepper [324] extended their result by revisiting the
dichotomy for homogeneous regular expressions, and showed an O(nm/2Ω(

√
log min{n,m})

time bound for some regular expressions, and for the remaining ones an improved lower
bound of Ω(nm/ polylog n).

By now we seem to have a rather good understanding of the time complexity of regular
expression membership and pattern matching. However, in multiple practical applications
one needs to work with the input arriving as a stream, one character at a time, without the
possibility of going back and retrieving any of the previous characters on demand. This
motivates studying both problems in the streaming model of computation. In this model,
we mostly focus on designing algorithms with small space complexity, and need to account
for storing any information about the input. On the other hand, we allow for randomised
algorithms, more specifically Monte Carlo algorithm returning correct answers with high
probability (with respect to the length to the input). The field of streaming algorithms
for string processing is relatively recent but, because of its practical interest, quickly
developing. It started with the paper of Porat and Porat [136], who showed streaming
algorithms for exact pattern matching and for the k-mismatches problem. This was
followed by a series of works on streaming pattern matching [175, 198, 242, 212, 248, 269,
289, 282, 314, 322, 340], search of repetitions in streams [141, 240, 258, 287, 298, 299,
288], and recognising formal languages in streams [185, 264, 265, 263, 215, 266, 165, 214,
285, 326].

For a general regular expression membership and pattern matching, it is not hard to
see that Ω(m) bits of space are required by a reduction from Set Intersection. However,
there are at least two interesting special cases of regular expression pattern matching that

29



Partie I, Chapter 1 – Streaming Regular Expression Membership and Pattern Matching

admit better streaming algorithms. In the dictionary matching, we are given a dictionary
of d strings of length at most m over an alphabet Σ and for each position r in T must
decide whether there is a position ℓ ≤ r such that T [ℓ . . r] matches a dictionary string.
A series of work [136, 175, 198, 242, 269] showed that this problem can be solved by
a randomised Monte Carlo algorithm in O(d logm) space and O(log log |Σ|) time per
character of the text. In the (d − 1)-wildcard pattern matching the expression is R =
P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd, where Pi, 1 ≤ i ≤ d are strings of total length
at most m over an alphabet Σ = {1, 2, . . . , σ}. Golan, Kopelowitz, and Porat [291] showed
that this problem can be solved by a randomised Monte Carlo algorithm in O(d logm)
space and O(d + logm) time per character. The d-wildcard problem is a special case of
the k-mismatch problem which asks to compute Hamming distances between a pattern
and all its alignments to a text for which the Hamming distance does not exceed the given
threshold k. The most space efficient algorithm for the d-mismatch problem is by Clifford,
Kociumaka and Porat [282] and implies an algorithm that uses O(d log m

d
) words of space

and spends O(log m
d

(
√
d log d+log3 m)) time per character which is also the most efficient

for the d-wildcard problem.
In a related work, Ganardi et al. [264, 265, 263, 215] considered a variant of the regular

expression membership problem, where the automaton describing the regular expression
has constant size, and one must tell, for each position r of T , whether T [r − ℓ+ 1 . . r] ∈
L(R), where ℓ is an integer specified in advance (“window” size). As a culmination of
their work, they showed that any randomised Monte Carlo algorithm for this variant
of the regular expression membership problem takes either constant, or Θ(log log ℓ), or
Θ(log ℓ), or Θ(ℓ) bits of space, and provided descriptions of these complexity classes.

This brings the challenge of identifying a structural parameter of a regular expression
that determines whether it admits better streaming algorithms. As mentioned earlier,
Bille and Thorup [139] observed that in practice the number d of occurrences of the union
symbol and Kleene stars is significantly smaller than the size m of the expression R.
Furthermore, both the dictionary matching and the wildcard pattern matching can be
casted as instances of the regular expression pattern matching, and streaming algorithms
with space complexity of the form poly(d, log n) are known. The main goal of this paper is
to investigate whether this is also the case for the general regular expression membership
and pattern matching.

1.1 Our Results
We consider the space complexity of regular expression membership and pattern match-
ing in the streaming model of computation. As by now traditional in streaming string
processing, we assume that we receive R and n first, preprocess them, and then receive
the string T character by character. We do not account neither for the time nor for the
space used during the preprocessing stage. In the membership problem, we must output
the answer after having read T entirely, whereas in the pattern matching problem we
must decide whether there is a substring T [ℓ . . r] ∈ L(R) at the moment when we receive
the character T [r].

Our main conceptual contribution is that we identify the small number d of occur-
rences of the union symbol and Kleene stars in R as allowing for space-efficient streaming
algorithms for regular expression membership and pattern matching. More specifically, we
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design randomised Monte Carlo algorithms that solve both problems usingO(d3 polylog n)
space and O(nd5 polylog n) time per character of the text (Theorem 1.27). While it was
known that the value of d determines the space complexity in the two special cases of
streaming dictionary matching and wildcard pattern matching, our approach works for any
regular expression. We leave it as an open problem to obtain algorithms with poly(d, log n)
space complexity and poly(d, log n) time complexity.

On a very high-level, our approach is based on storing carefully chosen subsets of
occurrences of the strings appearing in R. As usual in the area, this is easier when the
strings are not periodic, that is, any two occurrences of a string S in T must be more than
|S|/2 characters apart. Of course, this is not always the case, and the usual remedy is
to treat periodic and aperiodic strings separately (more specifically, in streaming pattern
matching algorithms one applies this reasoning on every prefix of length being a power of
2). The technical novelty of our algorithms is that we apply this reasoning on O(log n)
levels, thus obtaining a hierarchical decomposition of a periodic string. Next, because not
all occurrences are stored we need to recover the omitted information. Very informally, we
need to decide whether a substring of T sandwiched between two occurrences of strings
A1, A2 is a label of some run from A1 to A2 in the compact Thompson automaton for
R, where the period of the substring is equal to the period of some prefix of length 2k

of one of the strings. The difficulty is that, while the substring has a simple structure,
it could be very long, and it is not clear how to implement this computation in a space-
efficient manner. We overcome this difficulty by recasting the problem in the language of
evaluating a circuit with addition and convolution gates. This technique was introduced
by Lokshtanov and Nederlof [144] for designing a space-efficient solution for the subset sum
problem. Later, Bringmann [236] replaced complex numbers with computation modulo
a prime number p to obtain a tighter bound on the time and space complexity. In
more detail, he designed two solutions, one using the Extended Riemann Hypothesis
and the other unconditional but with polynomially higher time and space. We revisit his
approach and show that, in fact, one can replace the Extended Riemann Hypothesis by an
application of the Bombieri–Vinogradov theorem to achieve the same bounds. We believe
that this might be of independent interest. As a consequence of our improvement, we
obtain an efficient randomised Monte Carlo algorithm for the following classical problem:
given a directed multigraph G with non-negative integer weights on edges, its two nodes
v1, v2, and a number x, decide whether there is a walk from v1 to v2 of total weight x.
Our algorithm requires x · poly(|G|, log x) time and poly(|G|, log x) space.

The rest of the paper is organised as follows. We first remind the necessary definitions
in Section 2, and in Section 3 we give an overview of the main technical ideas we introduced
in this paper. We describe the new algorithms for regular expression membership and
pattern matching in Section 4.2. Finally, in Section 5 we describe how to replace the
Extended Riemann Hypothesis with an application of the Bombieri–Vinogradov theorem
in Bringmann’s framework and design a space-efficient algorithm for checking if there is
a walk of specified weight between two nodes of a directed multigraph.

2 Preliminaries
We assume an integer alphabet Σ = {1, 2, . . . , σ} with σ characters. A string Y is a
sequence of characters numbered from 1 to n = |Y |. For 1 ≤ i ≤ n, we denote the i-th
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character of Y by Y [i]. For 1 ≤ i ≤ j ≤ n, we define Y [i . . j] to be equal to Y [i] . . . Y [j],
called a fragment of Y . We call a fragment Y [1] . . . Y [j] a prefix of Y and use a simplified
notation Y [. . j], and a fragment Y [i] . . . Y [n] a suffix of Y denoted by Y [i . .]. We say that
a fragment Y [i . . j] contains a position k if i ≤ k ≤ j. We denote by ε the empty string.

We say that X is a substring of Y if X = Y [i . . j] for some 1 ≤ i ≤ j ≤ n. The
fragment Y [i . . j] is called an occurrence of X. We say that an integer p is a period of
Y if for each 1 ≤ i ≤ |Y | − p, Y [i] = Y [i + p]. The smallest period of Y is referred to
as the period of Y . We say that Y is periodic with period ρ if ρ is the period of Y and
ρ ≤ |Y |/2. For the period ρ of Y , we define the string period of Y to be equal to Y [1 . . ρ].

For an integer k, we denote the concatenation of k copies of Y by Y k. We say that a
string X is primitive if X ̸= Y k for any string Y ̸= X and any integer k. Note that the
string period of a string is always primitive.
Definition 1.1 (Regular expression). We define regular expressions over Σ as well as
the languages they match recursively. Let L(R) be the language matched by a regular
expression R.

• Any a ∈ Σ ∪ {ε} is a regular expression and L(a) = {a}.
For two regular expressions A and B, we can form a new expression using one of the three
symbols · (concatenation), | (union), or ∗ (Kleene star):

• A ·B is a regular expression and L(A ·B) = {XY, for X ∈ L(A)and Y ∈ L(B)};

• A | B is a regular expression and L(A | B) = L(A) ∪ L(B);

• A∗ is a regular expression and L(A∗) = ⋃
k≥0{X1X2 . . . Xk, where Xi ∈ L(A) for

1 ≤ i ≤ k}.
Definition 1.2 (Thompson automaton [9]). For a regular expression R we define the
Thompson automaton of R, T (R), recursively. This non-deterministic finite automaton
(NFA) accepts all strings s ∈ L(R).

• If R = a ∈ Σ ∪ {ε}, T (R) is constructed as in Figure 1.1a;

• If R = A · B, T (R) is constructed as in Figure 1.1b. Namely, the initial state of
T (A) becomes the initial state of T (R), the final state of T (A) becomes the initial
state of T (B), and the final state of T (B) becomes the final state of T (R);

• If R = A|B, T (R) is constructed as in Figure 1.1c. Namely, the initial state of
T (R) goes via ε-transitions both to the initial state of T (A) and to the initial state
of T (B), and the final states of T (A) and T (B) go via ε-transitions to the final state
of T (R);

• If R = A∗, T (R) is constructed as in Figure 1.1d. Namely, the initial state of T (R)
and the final state of T (A) go via ε-transitions both to the initial state of T (A), and
to the final state of T (R).

Definition 1.3 (Compact Thompson automaton). Given a Thompson automaton T (R),
we define the compact Thompson automaton TC(R) as the automaton obtained from T (R)
by replacing every maximal path of transitions labelled by a1, a2, . . . , ak ∈ Σ by a single
transition labelled by a1a2 . . . ak. The non-empty labels of TC(R) are called atomic strings,
and the size of the (multiset) of the atomic strings is defined to be the size of R.
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Figure 1.2 gives an example of the Thompson automata for R = b(ab|b)∗ab. We note
that in general the size of a regular expression is much smaller than the total number of
characters in it and is bounded by twice the number of union and Kleene star symbols
plus two. The size of a regular expression measures its “complexity”.
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(a) T (A) for a ∈ Σ ∪ {ε}
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T (A) T (B)
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(c) T (A|B)
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ε ε

ε

ε

T (A)

(d) T (A∗)

Figure 1.1: Thompson automaton. In each automaton, i and f are the initial and final
states, respectively.

Definition 1.4 (Occurrence of a regular expression). We say that a fragment S[i . . j]
of a string S, where 1 ≤ i ≤ j ≤ |S|, is an occurrence of a regular expression R, if
S[i . . j] ∈ L(R), or in other words if there is a walk from the initial state of TC(R) to
the final state of TC(R) such that the concatenation of the labels of the transitions in this
walk equals S[i . . j].

We will also need a notion of a partial occurrence of R. Intuitively, S[i . . j] is a partial
occurrence of R if it is a prefix of a string in L(R), but we will need a more precise
definition.

Definition 1.5 (Partial occurrence of a regular expression). We say that a fragment
S[i . . j] of a string S, where 1 ≤ i ≤ j ≤ |S|, is a partial occurrence of a regular
expression R ending with a prefix P of an atomic string A, if there is a walk from the
initial state of TC(R) to the endpoint of the transition corresponding to A such that the
concatenation of the labels of the transitions in this walk equals S[i . . j]A[|P |+ 1 . .].

3 Technical Overview
In this section, we give an overview of the main technical ideas we introduced in this
paper.
Statement of the problems and the model of computation. Let us start by
giving the precise formulation of the regular expression membership and pattern matching
problems and reminding the definition of the streaming model of computation.
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Figure 1.2: The Thompson automatons of the regular expression b(ab|b)∗ab.

Regular expression membership and pattern matching
Given a string T of length n over an alphabet Σ = {1, 2, . . . , σ}, where σ = nO(1),
and a regular expression R over Σ of size d. In the regular expression membership
problem, we must decide whether T ∈ L(R). In the regular expression pattern match-
ing problem, we must find all positions 1 ≤ r ≤ n, such that there exists a position
1 ≤ ℓ ≤ r such that T [ℓ . . r] ∈ L(R).

We work in the streaming model of computation. As it is now standard in the stream-
ing string processing algorithms, we assume to receive n and R first. We do not account
neither for the time nor for the space we need to preprocess R. After having preprocessed
R, we receive T as a stream, character by character. At the moment we receive the first
character of T , the main phase of the algorithm starts. During the main phase, we account
for all the space and time used.
Definitions and tools. Let A1, A2, . . . , Ad be the atomic strings of the regular expression
R. We define Π = {Ai[1 . .min{2j, |Ai|}] : 1 ≤ i ≤ d, 0 ≤ j ≤ ⌈log |Ai|⌉}. The prefixes of
Ai’s that belong to Π are called canonical.

We can assume that all atomic strings have length at most n, otherwise they never
appear in the text and we can ignore them. Formally, during the preprocessing phase
we delete all transitions (u, v) from TC(R) that are labelled by atomic strings of lengths
larger than n. We also assume that d ≤ n, otherwise we can use the following solution:

Claim 1.6. Given a streaming text T of length n and a regular expression of size d ≥ n.
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Assume that all atomic strings have length at most n each. There is a deterministic
algorithm that solves the membership and the pattern matching problems for T and R in
O(d2) space and O(d3) time per character of T .

Proof. First note that we can afford storing T in full. Second, we build a compact trie
on the reverses of the atomic strings of R. The trie occupies O(dn) = O(d2) space.
Finally, let F contain all atomic strings A such that there is an ε-transitions path from
the endpoint of the transition labelled by A to the final state of TC(R).

Define an array D of length n + 1 = O(d) such that D[0] contains a singleton set
consisting of the starting state of TC(R) and D[r], 1 ≤ r ≤ n, stores all states u such
that u is the end of some transition labelled by an atomic string and T [1 . . r] equals the
concatenation of the labels of the transitions in some walk from the starting state of TC(R)
to u. Assume that we have constructed D[1 . . r]. To compute D[r+ 1], we use the trie to
find the atomic strings A1, A2, . . . , Aq equal to D[1 . . r + 1], D[2 . . r + 1], . . . or D[r + 1]
in O(r + q) time. Note that q ≤ d. For each atomic string Ai, 1 ≤ i ≤ q, labelling a
transition (v, w), we add w to D[r + 1] if there is a state u in D[r + 1 − |Ai|] such that
there is an ε-transition path from u to v, which can be checked in O(d) time and space.
In total, the algorithm spends O(d3) time to process a character of T (q = O(d), and for
each 1 ≤ i ≤ q the set D[r + 1− |Ai|] contains O(d) states). The algorithm reports that
T ∈ L(R) if D[n] contains a state v, which is an endpoint of a transition labelled by some
A ∈ F .

In the regular expression pattern matching problem, we define an array D in the
following way. As before, D[0] contains a singleton set consisting of the starting state of
TC(R). For every 1 ≤ r ≤ n, D[r] stores the starting state of TC(R) and all states u such
that u is the end of some transition labelled by an atomic string and T [ℓ . . r], for some
ℓ ≤ r, equals the concatenation of the labels of the edges in some walk from the starting
state of TC(R) to u. Assume that we have constructed D[1 . . r]. To compute D[r+ 1], we
use the trie to find the atomic strings A1, A2, . . . , Aq equal to D[1 . . r+1], D[2 . . r+1], . . .
or D[r + 1] in O(r + q) = O(d) time. For each atomic string Ai, 1 ≤ i ≤ q, labelling a
transition (v, w), we add w to D[r + 1] if there is a state u in D[r + 1 − |Ai|] such that
there is an ε-transition path from u to v, which can be checked in O(d) time and space.
In total, the algorithm spends O(d3) time to process a character of T . We report all
positions r such that D[r] contains a state v, which is an endpoint of a transition labelled
by some A ∈ F .

From now on, we assume that all atomic strings have length at most n, and that
d ≤ n. For a string P and a text T , denote by occ(P, T ) the set of the ending positions
of the occurrences of P in T . Our solutions for streaming regular expression membership
and pattern matching are very similar, the main difference is how we define a witness:

Definition 1.7 (Witness (Membership)). Let P be a canonical prefix of an atomic string,
and r ∈ occ(P, T ). We say that r is a witness if T [1 . . r] is a partial occurrence of R ending
with P .

Definition 1.8 (Witness (Pattern matching)). Let P be a canonical prefix of an atomic
string, and r ∈ occ(P, T ). We say that r is a witness if there exists a position 1 ≤ ℓ ≤ r
such that T [ℓ . . r] is a partial occurrence of R ending with P .
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We exploit the following algorithm, which we refer to as the pattern matching algorithm2:

Theorem 1.9 (cf. [136, Theorem 2]). Given a pattern of length at most n and a text T of
length n over an alphabet of size nO(1). There exists a randomised Monte Carlo streaming
algorithm that uses O(log n) space and O(log n) time per character of the text. When it
receives T [i], it says whether i ∈ occ(P, T ). The algorithm is correct with high probability.3

We also make use of the following well-known fact:

Fact 1.10 (Fine and Wilf’s periodicity lemma [7]). If a string X has two periods of
length p and q and p+ q ≤ |X|, then X also has a period of length gcd(p, q).

Intuition: non-periodic case. To give intuition behind our solutions, consider a very
simple case when every canonical prefix is not periodic. We start with the following simple
observation:

Observation 1.11. By Fact 1.10, if P is not periodic, there can be at most two occur-
rences of P in a string of length ≤ 2|P |.

Therefore, if none of the strings in Π is periodic, we can use the following approach.
For each P ∈ Π and T , we run the pattern matching algorithm and at any moment store
the two most recent witnesses for P discovered by the algorithm (for membership, witness
are defined as in Definition 1.7, and for pattern matching as in Definition 1.8). When the
algorithm discovers a new position r ∈ occ(P, T ), we must decide whether it is a witness.
Let P = A[1 . .min{2k, |A|}], where A is an atomic string.

If k = 0, we consider the starting node u of the transition in the compact Thompson
automaton TC(R) labelled by A. Suppose that there is an ε-transitions path from the
endpoints of the transitions labelled by atomic strings Ai1 , Ai2 , . . . , Aij

to u. We then
check if (r−1) is a witness for at least one of Ai1 , Ai2 , . . . , Aij

. If it is, then r is a witness.
Importantly, if r−1 is a witness for Aij′ , 1 ≤ j′ ≤ j, it is the most recent one and is stored
in the memory of the instance of the pattern matching algorithm for Aij′ and T . Suppose
now that k ≥ 1. We then must check whether (r − 2k−1) is a witness for A[1 . . 2k−1]. If
it is, then r is a witness for P . Note that by Observation 1.11, if (r − 2k−1) is a witness
for A[1 . . 2k−1], it is one of the two most recent ones and will be stored by the pattern
matching algorithm for A[1 . . 2k−1].

Let F contain all atomic strings A such that there is an ε-transitions path from the
endpoint of the transition labelled by A to the final state of TC(R). In the regular
expression pattern matching problem, we report all positions r such that r is a witness
in occ(A, T ) for some A ∈ F . In the regular expression membership problem, T ∈ L(R)
if n is a witness for occ(A, T ), for some A ∈ F .

We do not provide the formal analysis of the algorithm, as we only give it for intuition,
but it is easy to see that it uses O(d2 log2 n) space and O(d log2 n) time per character of
the text (recall that we do not account for the time spent during the preprocessing phase).
As all atomic strings have length at most n and d ≤ n, the algorithm is correct with high
probability by Theorem 1.9.

2One could also use one of the streaming dictionary matching algorithms (see the introduction), but
this does not change the final complexity and makes the description of the algorithm more complex.

3With high probability means with probability at least 1− 1/nc for any predefined constant c > 1.
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General case: main technical contributions. In general, unfortunately, some of
the canonical prefixes are periodic we can no longer use Observation 1.11. However, the
following generalisation holds:

Observation 1.12. By Fact 1.10, if for a string P and a string X, X ≤ 2|P |, we
have |occ(P,X)| > 2, then P is periodic and the set occ(P,X) can be represented as an
arithmetic progression with difference ρ, where ρ is the period of P . 4

Observation 1.12 gives the idea behind our approach for the general case. By this
observation, we obtain that every r ∈ occ(P, T ), where P is a canonical prefix of some
atomic string periodic with period ρ, belongs to a fragment of form (∆(P ))k, where
∆(P ) = P [|P | − ρ+ 1 . .] and k is an integer. Instead of storing the last two witnesses for
each canonical prefix, we would like to store the witnesses in the last two fragments of
form (∆(P ))k. However, the number of such witnesses can be large. Our main technical
novelty is a compressed representation of such witnesses. We give a high-level overview of
the approach we use for the membership problem, our solution to the regular expression
pattern matching problem is similar. We show that for each fragment of form (∆(P ))k it
suffices to store a small, carefully selected subset of witnesses that belong to this fragment.
The remaining ones can be restored in small space at request.

Consider a witness r ∈ occ(P, T ), where P ∈ Π. By definition, there is a partition
T [1 . . r] = T [ℓ1 . . r1]T [ℓ2 . . r2] . . . T [ℓm . . rm] such that each fragment in the partition,
except for the last one, is an atomic string, and the last one equals P . Furthermore, by
Observation 1.12, r must belong to some fragment F = T [i . . i + kρ − 1] = (∆(P ))k.
Let m′ be the index of the first fragment such that rm′ ≥ i. Consider the fragment
W = T [ℓm′′ . . rm′′ ], m′ ≤ m′′ ≤ m, containing a position i + 2ρ− 1 (we call this position
an “anchor”). Note thatW is a canonical prefix of some atomic string and rm′′ ∈ occ(W,T )
is a witness. If there are a few witnesses t ∈ occ(W,T ) such that T [t−|W |+1, t] contains
the anchor i+2ρ−1, we can store them explicitly. Otherwise, there is a periodic fragment
containing i + 2ρ − 1, and we can recurse for it by choosing a new anchor close to its
starting point. We choose the definition of anchors (see Section 4.1) so that the recursion
stops in a logarithmic number of steps and for some of the anchors there is a witness that
we store explicitly for this anchor.

To summarize, the idea of the compact representation of witnesses that belong to a
fragment of form (∆(P ))k is to choose a logarithmic set of anchors close to the starting
point of the fragment, and for each of these anchors to store a constant number of witnesses
for each canonical prefix in Π. Suppose now that r ∈ occ(P, T ), where P is a canonical
prefix of an atomic string A, r belongs to a fragment F = T [i . . i+kρ−1] = (∆(P ))k. To
decide whether it is a witness we use the following approach. From above we know that
r is a witness iff there is a witness r′ ∈ occ(A′, T ), where A′ is an atomic string, that we
store in the compact representation of witness in F , and there is a path in TC(R) from
the ending node of the transition labelled by A′ and to the starting node of the transition
labelled by A such that the concatenation of the strings on the edges of the path equals
T [r′ + 1 . . r− |A|] (which is a substring of (∆(P ))k). Unfortunately, it is not clear how to
verify this condition in a straightforward way as we do not have random access neither to
∆(P ), nor to the strings on the edges of TC(R). Instead, using anchors again, we show

4Note that when |occ(P, X)| ≤ 2, we can represent occ(P, X) as at most two (degenerate) arithmetic
progressions of length 1, we will use this fact to simplify the description of the algorithms.
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that verifying this condition can be reduced to the following question, where G is a graph
of size poly(d, log n) (see Lemma 1.25 for details):

Walks in a weighted graph
Given a directed multigraph G with non-negative integer weights on edges, two nodes
and a number x, decide if there is a walk from the first node to the second one of total
weight x.

Walks in a weighted graph and circuits. In Section 5, we show the following theorem:

Theorem 1.13. There exists an algorithm which, given a directed multigraph G with
non-negative integer weights on edges, its two nodes v1 and v2 and a number x, decides if
there is a walk from v1 to v2 of total weight x in O((|E(G)| + |V (G)|3)x polylog x) time
and O((|E(G)|+ |V (G)|3) polylog x) space and succeeds with probability at least 1/2.

Let N = |V (G)|. For the simpler case when the graph is unweighted, we could use
a folklore approach and compute the x-th power of the adjacency matrix in O(N3 log x)
time and O(N2) space. In order to handle arbitrary weights of edges, we compute the
arrays Ck of bit-vectors of length x+ 1, where Ck[u, v][d] stores a bit indicator of whether
there exists a walk from u to v in G of at most 2k edges of total weight exactly d. The
following formula holds:

Ck[u, v][d] =
∨

w∈V (G)
i∈{0,...,d}

Ck−1[u,w][i] ∧ Ck−1[w, v][d− i]

Using the fast Fourier transform to compute the convolutions, we obtain an algorithm
with O(N3x log2 x) time and space O(N2x).

In our application, x can be equal to n, and the approach above uses Ω(n) space, which
is prohibitive. In order to improve the space complexity, we represent the above compu-
tations as a circuit with binary Or and Convolutionx gates operating on bit-vectors
of length x+ 1. Every element Ck[u, v] requires a separate gate and while computing its
value we need to perform N convolutions, for every possible intermediate node w, so in
total there are O(N3 log x) gates. The Convolutionx gates store only the first x + 1
bits of the results, as we never need paths of total weight larger than x. We are interested
only in a single bit of output of the circuit, namely C⌈log x⌉[v1, v2][x]. If there were only
Or gates in the circuit, we could store only the x-th element at each gate. In order to
handle also Convolutionx gates, we use the discrete Fourier transform over a suitably
chosen ring.

We use the technique introduced by Lokshtanov and Nederlof [144] and then modified
Bringmann [236] to work with numbers modulo p instead of complex numbers. Informally,
they show that if we operate on Zt

p (vectors of length t with elements in Zp for suitably
chosen p and t) instead of the bit-vectors, we can compute out(C)[x], the x-th element of
the output of the circuit C in O(|C|t polylog p) time and O(|C| log p) space (see details in
Theorem 1.28). However, there are technical difficulties that we need to overcome to apply
their technique to our solution. The approach of Bringmann [236] requires that t > x and
Zp contains a t-th root of the unity. The main difficulty is to choose these numbers as
small as possible as they directly affect the complexity of the algorithm. This question
was also faced by Bringmann [236], who showed two variants of the framework, one using
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the Extended Riemann Hypothesis and the other unconditional but with polynomially
higher time and space, which is not good enough for our streaming application. By using
Bombieri–Vinogradov theorem (see details in Theorem 1.33) and facts about counting
primes in arithmetic progressions, we obtain an unconditional time bound comparable to
that of Bringmann that assumes the Extended Riemann Hypothesis.

4 Membership and Pattern Matching
In this section, we address the problems of regular expression membership and pattern
matching in the streaming model of computation. In Section 4.1, we introduce a notion
of anchors that is the key to achieving the desired space complexity. In Section 4.2, we
describe the algorithms.

4.1 Anchors
In this section we define the notion of anchors that will allow us to store all occurrences
(partial or not) of regular expressions detected by the algorithm efficiently.

Definition 1.14 (Anchors). Consider a periodic string W with period ρ. Set the anchor
a0 = 2ρ and the period ρ0 = ρ. Suppose that (ar, ρr)q−1

r=0 are defined. We define (aq, ρq)
recursively. Consider the set S of fragments W [i . . j] of W satisfying the following prop-
erties:

1. W [i . . j] contains aq−1 and is periodic with period π < ρq−1;

2. i+ 4π − 1 ≤ aq−1 (there are at least four repetitions of the string period of W [i . . j]
before aq−1);

3. aq−1 ≤ j− 4π− r, where r = (j− i+ 1) (mod π) (there are at least four repetitions
of the string period of W [i . . j] after aq−1).

Let iq = min{i : W [i . . j] ∈ S} and jq = max{j : W [iq . . j] ∈ S}. If W [iq . . jq] is
undefined, recursion stops. Otherwise, ρq is defined to be the period of W [iq . . jq] and
aq := iq + 2ρq − 1.

Let A(W ) = {a0, a1, . . . , aQ}, where (aQ, ρQ) is the last defined anchor-period pair.
We call A the generator set of anchors of W . Define A∗(W ) =

[⋃
∆∈Z+(A(W ) + ∆ · ρ)

]
∩

[1, |W | − 2ρ]. We refer to A∗ simply as the set of anchors of W . For an illustration, see
Fig. 1.3.

(In the next section we slightly abuse notation and extend the notion of the set of
anchors to infinite strings in a natural way, i.e. for an infinite string W with period ρ the
set A∗(W ) =

[⋃
∆∈Z+(A(W ) + ∆ · ρ)

]
.) We first show that the generator set of anchors

has logarithmic size:

Lemma 1.15. Let W be a periodic string with period ρ. We have |A(W )| = O(log ρ).

Proof. Let A(W ) = {a0, a1, . . . , aQ}. For each 0 ≤ q ≤ Q, let W [iq . . jq] be the fragment
associated with aq, and ρq be its period. (In particular, for q = 0 we have i0 = 1, j0 = |W |,
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W
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Figure 1.3: Anchors of a periodic string W with period ρ.

ρ0 = ρ.) We show that for each 1 ≤ q ≤ Q we have |W [iq . . jq]| ≤ 2ρq−1. This implies,
in particular, that |W [iq . . aq−1]| ≤ 2ρq−1 and therefore ρq ≤ ρq−1/2. The lemma follows
immediately.

Fix 0 ≤ q ≤ Q. Assume by contradiction that |W [iq . . jq]| > 2ρq−1. We then have
that W [iq . . jq] has periods ρq−1 and ρq and ρq−1 + ρq < |W [iq . . jq]|. Hence, W [iq . . jq] is
periodic with period π = gcd(ρq−1, ρq) by Fact 1.10. The substring W [iq . . jq] contains a
full copy of W [iq−1 . . iq−1 + ρq−1 − 1]. Therefore, W [iq−1 . . iq−1 + ρq−1 − 1] has a period
π, which implies that it equals (W [iq−1 . . iq−1 + π − 1])ρq−1/π, i.e. the string period of
W [iq−1 . . jq−1] is not primitive, a contradiction.

Definition 1.16. Let W be a periodic string with period ρ. We say that a fragment
F = W [i . . j] is anchored by an anchor a ∈ A∗(W ) if i ≤ a ≤ j and for any strings
U ∈ Σ∗, V ∈ Σρ such that V ̸= W [1 . . ρ] there are at most eight occurrences of F in
UV (W [1 . . j]) containing the anchor (i.e., containing |U |+ |V |+ a).

Lemma 1.17. Let W be a periodic string with period ρ. Consider a fragment W [ℓ . . r]
of length at least 4ρ and a partitioning W [ℓ . . r] = W [ℓ1 . . r1]W [ℓ2 . . r2] . . .W [ℓk . . rk].

(a) There exists 1 ≤ k′ ≤ k such that W [ℓk′ . . rk′ ] is anchored by an anchor a ∈ A∗(W )∩
[r − 4ρ+ 1, r].

(b) If, in addition, 1 ≤ ℓ ≤ 2ρ, there exists 1 ≤ k′ ≤ k such that W [ℓk′ . . rk′ ] is anchored
by an anchor a ∈ A∗(W ) ∩ [1, 4ρ].

Proof. The high-level idea of the proof of (a) and (b) is as follows. Let A(W ) =
{a0, a1, . . . aQ}. For every 0 ≤ q ≤ Q and an integer ∆ > 0 to be determined later,
define a∆

q := aq + ∆ · ρ. Let Fq = W [ℓkq , rkq ] be the fragment that contains a∆
q . We

show that either Fq is anchored by a∆
q or q < Q, which yields the lemma. We exploit two

auxiliary claims:
Claim 1.18. Let π be the period of Fq, 0 ≤ q ≤ Q. If Fq is not anchored by a∆

q , then
there exist U ∈ Σ∗, V ∈ Σρ with V ̸= W [1 . . ρ] such that there is a fragment S[p . . t] of
the string S = UV (W [. . rq]) satisfying the following properties:

1. p ≤ |U |+ |V |+ a∆
q ≤ t (the fragment contains the anchor);

2. S[p . . t] is periodic with period π;
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3. p+ 7 · π ≤ |U |+ |V |+ a∆
q (there are at least seven repetitions of the string period of

the fragment before the anchor);

4. |U | + |V | + a∆
q ≤ t − 6π − r, where r = t − p + 1 (mod π) (there are at least six

repetitions of the string period of the fragment after the anchor).

Proof. Let U ∈ Σ∗, V ∈ Σρ with V ̸= W [1 . . ρ] such that there are least eight occurrences
of Fq in S = UV (W [1 . . rq]) containing a := |U |+ |V |+a∆

q . Let the last eight occurrences
be S[pk . . tk], 1 ≤ k ≤ 8. As all occurrences contain a, the length of S[p1 . . t8] is at
most 2|Fq|. By Observation 1.12, we obtain that S[p1 . . t8] is periodic with period π,
pk = p1 + (k − 1)π, and tk = t1 + (k − 1)π. As p8 = p1 + 7π ≤ a, we have S[p1 . . a] ≥ 7π.
On the other hand, t2 − r + 1 ≥ t1 + 1 ≥ a + 1. Therefore, |S[a + 1 . . t8 − r]| ≥
|S[t2 − r + 1 . . t8 − r]| ≥ 6π. By taking p = p1 and t = t8, we obtain the claim. For an
illustration, see Fig. 1.4.

U V W [. . rkq ]
ta

π

Fq

p

Figure 1.4: Illustration of Claim 1.18.

Claim 1.19. Assume that q ≥ 0 and that the period of Fq is π < ρq. If Fq is not anchored
by a∆

q , then q < Q.

Proof. By Claim 1.18, there exist U ∈ Σ∗, V ∈ Σρ with V ̸= W [1 . . ρ] such that there is
a fragment S[p . . t] of the string S = UV (W [. . rq]) periodic with period π that contains
a := |U | + |V | + a∆

q and such that there are at least six repetitions of the string period
before and after a.

Let us show that a − 2ρq + 1 ≤ p < t ≤ a + 2ρq. Suppose by contradiction that
p < a− 2ρq + 1. We have that S[a− 2ρq + 1 . . a] = W [a∆

q − 2ρq + 1 . . a∆
q ] (note that by

definition a∆
q ≥ 2ρq for any ∆). Furthermore, W [a∆

q − 2ρq + 1 . . a∆
q ] has periods ρq (by

definition of iq and a∆
q ) and π (by the assumption). By Fact 1.10, W [a∆

q − 2ρq + 1 . . a∆
q ]

has a period gcd(ρq, π) < ρq. As W [a∆
q − 2ρq + 1 . . a∆

q ] contains a full copy of the string
period of W [iq . . jq], we obtain that it is not primitive, a contradiction. (See Fig. 1.5). To
show that t ≤ a+2ρq, note that S[a+1 . . a+2ρq] = W [a∆

q +1 . . a∆
q +2ρq], a∆

0 +2ρ ≤ |W |
and, for q ≥ 1, a∆

q + 2ρq ≤ a∆
q−1 by definition of iq and aq. Therefore, for all q ≥ 0,

W [a∆
q + 1 . . a∆

q + 2ρq] is periodic with period ρq. The rest of the argument is analogous.
From a − 2ρq + 1 ≤ p < t ≤ a + 2ρq and the fact that S[p . . t] contains at least six

repetitions of its string period before and after a, we obtain that iq+1, jq+1 and hence
aq+1, ρq+1 are well-defined, which completes the proof of the claim.

We are now ready to show (a) and (b).
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U V W [. . rkq ]

ta

π

p

ρq

W [a− 2ρq + 1, a] has period gcd(π, ρq) < ρq

a− 2ρq + 1

Figure 1.5: Illustration of the proof of Claim 1.19, case p < a− 2ρq + 1.

(a) Let ∆ ≤ ⌊|W |/ρ⌋−2 be the smallest integer such that a0+∆·ρ ≥ r−4ρ. Note that ∆
is well-defined. Consider an anchor a∆

0 = a0+∆·ρ ∈ A∗(W )∩[r−4ρ+1, r]. Let F0 =
W [ℓk0 . . rk0 ] be the fragment that contains a∆

0 and π be its period. If F0 is anchored
by a∆

0 , we are done. Otherwise, by Claim 1.18, there exist U ∈ Σ∗, V ∈ Σρ with
V ̸= W [1 . . ρ] such that there is a fragment S[p . . t] of the string S = UV (W [. . rk0 ])
periodic with period π that contains a := |U | + |V | + a∆

0 and such that there are
at least six repetitions of the string period of F0 before and after a. As we have
rk0 − a∆

0 + 1 ≤ r − a∆
0 + 1 ≤ 4ρ, there is π ≤ 2ρ/3. It follows that i1, j1 and hence

a1, ρ1 are well-defined, i.e. 0 < Q.
We now show that for arbitrary q ≥ 1 either a∆

q = aq + ∆ · ρ anchors Fq or the
period π of Fq is smaller than ρq, which by Claim 1.19 implies that q < Q. By our
choice of ∆, Fq is well-defined. If Fq is anchored by a∆

q , we are done. Otherwise,
by Claim 1.18, there exist U ∈ Σ∗, V ∈ Σρ with V ̸= W [1 . . ρ] such that there is
a fragment S[p . . t] of the string S = UV (W [. . rkq ]) periodic with period π that
contains |U |+ |V |+ a∆

q and such that there are at least six repetitions of the string
period of S[p . . t] before and after |U |+ |V |+a∆

q . Recall that a∆
q = (iq +2ρq)+∆ ·ρ.

First, we have that π ̸= ρq, otherwise we could have extended W [iq . . jq] to the
left. Second, let us show that the case π > ρq is impossible. Suppose otherwise. If
t − 4π + 1 ≤ |U | + |V | + a∆

q−1, then W [a∆
q + 1 . . a∆

q−1] contains a copy of S[1 . . 2π],
and therefore S[1 . . 2π] has a period ρq. By Fact 1.10, the string period S[1 . . π] of
S is not primitive, a contradiction. (See Fig. 1.6a.) Otherwise, |U | + |V | + a∆

q−1
is contained in S[p . . t], which has period π > ρq−1. In addition, there are at least
four repetitions of the string period of S[p . . t] before and after |U |+ |V |+a∆

q−1, and
p < |U |+|V |+a∆

q −2ρq ≤ |U |+|V |+iq, a contradiction with the choice of W [iq . . jq].
(See Fig. 1.6b.) It finally follows that π < ρq and therefore by Claim 1.19, q < Q.

(b) Let ∆ be the smallest integer such that a0 + (∆ − 2)ρ ≥ ℓ (note that ∆ = 1, 2).
Consider an anchor a∆

0 = a0 + ∆ · ρ ∈ A∗(W ) ∩ [1, 4ρ]. We first show that either
F0 is caught by a∆

0 , or 0 < Q. If F0 is anchored by a∆
0 , we are done. Otherwise,

let π be the period of F0. We claim that π < ρ = ρ0. As F0 is not anchored,
by Claim 1.18 there exist U ∈ Σ∗, V ∈ Σρ with V ̸= W [1 . . ρ] such that there is
a fragment S[p . . t] of the string S = UV (W [. . rk0 ]) periodic with period π that
contains a := |U | + |V | + a∆

0 and such that there are at least six repetitions of
the string period of S before and after a. We can immediately rule out the case
π = ρ as a ≤ 4ρ and V ̸= W [1 . . ρ]. Consider now the case π > ρ0. Consider
the suffix S[a + 1 . .] = W [a∆

0 + 1 . . rk0 ]. It contains an occurrence of S[1 . . 2π]. By
Fact 1.10, S[1 . . 2π] has a period gcd(π, ρ), and therefore the string period of S is
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U V W [. . rkq ]

a∆
q−1

ta∆
q

π

ρq

Contradicts primitivity of S[1 . . π]

Subcase t− 4π + 1 ≤ |U |+ |V |+ a∆
q−1.

U V W [. . rkq ]

a∆
q−1

ta∆
q

π

ρq

p

iq + |U |+ |V |
Contradicts minimality of iq

Subcase t− 4π + 1 ≥ |U |+ |V |+ a∆
q−1.

Figure 1.6: Illustration of the proof of Lemma 1.17(a), case π > ρq.

not primitive, a contradiction. For q ≥ 1, Fq is well-defined by our choice of ∆. The
rest of the argument repeats the argument in the proof of (a).

This concludes the proof of Lemma 1.17.

4.2 Algorithms
In this section, we give a description of our new streaming algorithms for regular expression
membership and pattern matching. The structure of the algorithms is very similar, the
main difference is how we define a witness (see Definitions 1.7 and 1.8). For this reason,
we describe the algorithms in parallel. Recall that T is a string of length n over an
alphabet Σ = {1, 2, . . . , σ}, where σ = nO(1), and A1, A2, . . . , Ad are the atomic strings for
the regular expression R. Recall also that Π is the set of canonical prefixes of the atomic
strings, defined as Π = {Ai[1 . .min{2j, |Ai|}] : 1 ≤ i ≤ d, 0 ≤ j ≤ ⌈log |Ai|⌉}.

We make use of the following corollary of Fact 1.10:

Corollary 1.20 (Of Fact 1.10). For a primitive string X of length x, a string D = XX
can contain only two occurrences of string X, D[1 . . x] and D[x+ 1 . . 2x].

Preprocessing. We start by deleting all transitions (u, v) from TC(R) that are labelled
by atomic strings of lengths larger than n.

Let F contain all atomic strings A such that there is an ε-transitions path from the
endpoint of the transition labelled by A to the final state of TC(R). In addition, for each
atomic string A, compute the subset Ai1 , Ai2 , . . . , Aij

of atomic strings such that there is
an ε-transitions path from the endpoint of the transition labelled by Aij′ , 1 ≤ j′ ≤ j, to
the starting point of the transition labelled by A.

For each periodic P ∈ Π, consider a string ∆(P ) = P [|P | − ρ + 1 . .], where ρ is the
period of P . During the preprocessing step, the algorithm computes the generator set of
anchors A (Definition 1.14) for the string W = (∆(P ))∞.
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Define the overlap of two strings X and Y as the maximal length of a suffix of X that
equals a prefix of Y , Π(P ) to be the set of all canonical prefixes such that their overlap
with W is at least 2ρ, and Overlap(P ) = ⋃

P ′∈Π(P ){ℓ : ℓ is the overlap of P ′ and W}. The
algorithm computes Π(P ) and Overlap(P ) during the preprocessing step as well.

For regular expression pattern matching, it also computes the smallest integer µ(P )
such that p = µ(P ) · ρ ∈ occ(P,W ) and p is a witness for P in W (in the sense of
Definition 1.8).

Finally, the algorithm creates a directed graph G(P ) = (V,E) from the compact
Thompson automaton TC(R). Consider again the string W = (∆(P ))∞. For each canon-
ical prefix P ′ ∈ Π(P ), the algorithm creates a node v ∈ V corresponding to a pair (P ′, r),
where r is the remainder of the overlap of P ′ and W modulo ρ. Additionally, for every
fragment W [i . . j] = P ′′ ∈ Π which is anchored by an anchor a ∈ A∗(W ), it creates a
node v ∈ V corresponding to a pair (P ′′, j (mod ρ)) (for two identical prefix-remainder
pairs, it creates just one node).

Consider two nodes v′, v′′ ∈ V . Suppose that v′ corresponds to (P ′, r′) and v′′ to
(P ′′, r′′), where P ′, P ′′ are canonical prefixes of atomic strings A′, A′′, respectively, and
r′, r′′ are remainders modulo ρ. For 0 < ℓ ≤ 10ρ, the algorithm adds an edge (v′, v′′) of
length ℓ to E if there is a walk in TC(R) from the ending state of the transition labelled
by A′ to the ending state of the transition labelled by A′′ such that the concatenation
of the labels in this walk equals to a string L = ∆(P )[r′ . .]∆(P )α∆(P )[. . r′′], where the
integer power α is chosen so that |L| = ℓ (in other words, the concatenation equals to a
fragment of W with the offsets defined by v′ and v′ and of an appropriate length, if such
a fragment does not exist, the algorithm does not create the edge).

It might seem that the resulting graph is infinite, but as we show below, this is not
the case.

Claim 1.21. Consider all occurrences W [ℓi . . ri], i ∈ Z+, of a string X in W . The size
of the set {ri (mod ρ) : W [ℓi . . ri] is anchored by a ∈ A∗(W ), i ∈ Z+} is O(log ρ).

Proof. We consider two cases: |X| ≥ 2ρ and |X| < 2ρ. In the first case, by Fact 1.10,
if there is at least one occurrence of X in W , then X is periodic with period ρ. By
Corollary 1.20, we have ri = q (mod ρ) for some fixed q and all i ∈ Z+. The claim follows
from Lemma 1.15.

In the second case, for all a ∈ A∗(W ) such that a ≥ 2ρ, and for all strings U ∈ Σ∗, V ∈
Σρ such that V ̸= W [1 . . ρ], all occurrences of X that contain |U |+|V |+a are contained in
(UVW )[|U |+|V |+a−2ρ+1 . . |U |+|V |+a−2ρ−1] = W [a−2ρ+1 . . a−2ρ−1]. It follows
that for all a, a′ ∈ A∗(W ) such that a, a′ ≥ 2ρ and a = a′ (mod ρ), the sets {ri (mod ρ) :
W [ℓi . . ri] is anchored by a, i ∈ Z+} and {ri (mod ρ) : W [ℓi . . ri] is anchored by a′, i ∈
Z+} are equal. Moreover, each of them contains only a constant number of elements.
Therefore, the size of the set {ri (mod ρ) : W [ℓi . . ri] is anchored by a ∈ A∗(W ), a ≥
2ρ, i ∈ Z+} is O(log ρ) by Lemma 1.15. It remains to estimate the size of the analogous
sets for anchors smaller than 2ρ. The number of such anchors is O(log ρ) by Lemma 1.15,
and each of them can anchor only a constant number of occurrences of X. The claim
follows.

Corollary 1.22. G(P ) contains |V | = O(d log2 n) nodes and |E| = O(d2 log4 n) edges,
and can be constructed in O(ρ · d3 log4 n) time.
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Proof. The size of Π, and consequently Π(P ), is O(d log n). For each string P ′ ∈ Π(P ),
the remainder r of the overlap of P ′ and W modulo ρ is defined in a unique way. By
Claim 1.21, for each string P ′′ ∈ Π there are O(log ρ) different remainders r modulo ρ
such that there is an anchored occurrence of P ′′ ending at a position p = r (mod ρ). Thus
|V | = O(d log2 n).

Observe that the interval [0, 10ρ] can contain only a constant number of values ℓ such
that the power α is an integer. Hence for each pair of nodes we have only a constant
number of possible edges, so |E| = O(d2 log4 n). For each edge, we can check whether it
exists in time O(ρ · |T (R)|) = O(|ρ| · d).

Corollary 1.23 (Of Theorem 1.13). There exists an algorithm which, given the graph
G(P ), its two nodes v1 and v2 and a number x ≤ n, decides if there is a walk from v1 to
v2 of total weight x in O(xd3 polylog n) time and O(d3 polylog n) space and succeeds with
high probability.

Proof. Recall that ρ ≤ n. We substitute the bounds from Corollary 1.22 into Theo-
rem 1.13. Then we repeat the algorithm of Theorem 1.13 2c⌈log n⌉ times and output the
majority answer to obtain a success probability of at least 1− 1/nc.

Main phase. During the main phase of the algorithm, we run the pattern matching
algorithm (Theorem 1.9) for every P ∈ Π. For every non-periodic P ∈ Π, we store (at
most) two latest witnesses. For every periodic P ∈ Π, we run the pattern matching
algorithm for ∆(P ) = P [|P | − ρ+ 1 . .] and T , where ρ is the period of P .

Definition 1.24. We say that a fragment T [i . . j] is a streak of a string X if T [i . . j] = Xk

for some integer k ≥ 1 and it is maximal, i.e. it cannot be extended neither to the left
nor to the right.

The pattern matching algorithm detects streaks of ∆(P ) in the arrived prefix of T .
Every witness r for P belongs to occ(P, T ) and by Observation 1.12 ends in such a
streak. At any moment of the algorithm, we store (at most) two latest streaks and a
compact representation of witnesses in occ(P, T ) that end in it. For membership testing
we assume that the witnesses are defined as in Definition 1.7, and for pattern matching as
in Definition 1.8. Perhaps a bit counter-intuitively, the representation contains witnesses
from occ(P, T ) and witnesses for other canonical prefixes as well, the reason for it will
become clear later. Formally, the representation of a streak S = T [i . . j] consists of the
following elements, where ρ = |∆(P )|:

1. For each P ′ ∈ Π(P ) and its overlap ℓ withW , the representation contains p = i+ℓ−1
if p ∈ occ(P ′, T ) and is a witness;

2. All witnesses in occ(P, T ) that belong to the interval [i . . i+ 12ρ− 1];

3. For every ℓ ∈ Overlap(P ), all witnesses in occ(P, T ) that belong to the interval
[i+ ℓ . . (i+ ℓ− 1) + 8ρ];

4. For every P ′ ∈ Π, all witnesses r ∈ occ(P ′, T ) such that T [r − |P ′| + 1 . . r] is a
fragment of S and is anchored by an anchor in A∗(F ) ∩ [i, i+ 4ρ].
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By Observation 1.12 and Lemma 1.15, the compact representation of witnesses in a
streak has size O(d log2 n). The algorithm uses the compact representations of witnesses
to decide whether a newly detected occurrence r ∈ occ(P, T ) for some P ∈ Π is a witness:

Lemma 1.25. Let d < n. Assume that T [r] is the latest arrived character of the text
and that r ∈ occ(P, T ). Assume that for each non-periodic P ′ ∈ Π we store two latest
witnesses in occ(P ′, T ), and for each periodic P ′ ∈ Π we store the two latest streaks of
∆(P ′) and compact representations of the witnesses in them. In addition, assume that we
store the set of all atomic strings A such that (r− 1) is a witness for occ(A, T ). One can
decide whether r is a witness for P in O(nd4 polylog n) time and O(d3 polylog n) (extra)
space with high probability.

Proof. Let P = A[1 . .min{2k, |A|}], where A is an atomic string. Consider two cases:
k = 0 and k ≥ 1.

Case 1: k = 0. If k = 0, let Ai1 , Ai2 , . . . , Aij
be the atomic strings such that there is

an ε-transitions path from the endpoint of the transition labelled by Ai′
j
, 1 ≤ j′ ≤ j, to

the starting point of the transition labelled by A. The position r is a witness for P iff for
some 1 ≤ j′ ≤ j, the position (r − 1) is a witness for Aij′ . We can decide whether this
holds in O(d) time.

Case 2: k ≥ 1. If k ≥ 1, the position r is a witness for P iff r − 2k−1 is a witness for
P [1 . . 2k−1]. For brevity, denote r′ = r− 2k−1, P ′ = P [1 . . 2k−1], and ρ = |∆(P ′)|. If P ′ is
non-periodic and r′ ∈ occ(P ′, T ), the algorithm stores it explicitly by Observation 1.11.
Otherwise, by Observation 1.12, r′ belongs to one of the two latest streaks of ∆(P ′), let
it be a fragment S = T [i . . i + ℓ · ρ− 1]. Suppose that r′ is a witness for P ′. Let us first
explain the solution for the regular expression membership problem, and then we will
show how to modify it for the regular expression pattern matching problem.

In the membership problem, if r′ is a witness for P ′, then T [1 . . r′]P [2k−1+1 . .] is a par-
tialoccurrence of R and there is a partition of T [1 . . r′] = T [ℓ1 . . r1]T [ℓ2 . . r2] . . . T [ℓm . . rm],
where each T [ℓm′ . . rm′ ], 1 ≤ m′ < m, is an atomic string, and T [ℓm . . rm] = P ′. Let
T [ℓm′ . . rm′ ] be the fragment containing i. We consider two subcases: rm′ − i + 1 > 2ρ
and rm′ − i+ 1 ≤ 2ρ.

Case 2(a): rm′ − i+ 1 > 2ρ. We claim that in this subcase rm′ − i + 1 equals the
overlap ℓ of T [ℓm′ . . rm′ ] and W = (∆(P ′))∞. By definition, rm′ − i+ 1 ≤ ℓ. Suppose that
rm′−i+1 < ℓ. If ℓ−(rm′−i+1) is a multiple of ρ, then we obtain that T [rm′−ρ . . rm′−1] =
∆(P ′), a contradiction with the definition of S. If ℓ − (rm′ − i + 1) is not a multiple of
ρ, then there is an occurrence of ∆(P ′) in the prefix (∆(P ′))2 of S that does not end at
positions ρ or 2ρ. By Corollary 1.20, we obtain a contradiction. Therefore, rm′− i+1 = ℓ
and the compact representation of witnesses in S stores rm′ ∈ occ(T [ℓm′ . . rm′ ], T ).

If m′ = m or rm − rm′ ≤ 8ρ, then we are done: if r′ is a witness, it must be stored
explicitly, and we can check whether it is the case in O(d log2 n) time. Otherwise, we use
the following claim:

Claim 1.26. There is a sequence m′ = m0 < m1 < m2 < · · · < mq = m such that each
T [ℓmq′ . . rmq′ ], 1 ≤ q′ < q, is either anchored by an anchor a ∈ A∗(S), or has length at
least 2ρ, and for each 1 ≤ q′ ≤ q, ℓmq′ − rmq′−1 ≤ 10ρ.

Proof. The sequence is built as follows. Let m0 = m′ and mq′ be the latest index added
to the sequence. If there is an index m′′ such that T [ℓm′′ . . rm′′ ] has length at least 2ρ
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or m′′ = m and ℓm′′ − rq′ ≤ 10ρ, then set mq′+1 = m′′ and continue. Otherwise, let m′′

be the smallest index such that ℓm′′ − rmq′ ≥ 8ρ. Note that we also have ℓm′′ − rmq′ ≤
10ρ (otherwise, the length of T [ℓm′′−1 . . rm′′−1] would have been larger than 2ρ). By
Lemma 1.15, there is mq′ < m̃ ≤ m′′ such that T [ℓm̃ . . rm̃] is anchored by an anchor
a ∈ A∗(S) ∩ [rm′′ − 4ρ+ 1, rm′′ ]. We set mq′+1 = m̃ and continue.

Let v′ be the node in G(P ) corresponding to (T [ℓm′ . . rm′ ], rm′ − i + 1 (mod ρ)), and
v be the node corresponding to (P ′, rm − i+ 1 (mod ρ)). We have that j′ is a witness iff
there exists the sequence m′ = m0 < m1 < m2 < · · · < mq = m as above iff there is a walk
from v to v′ of length |T [rm′ + 1 . . rm]| ≤ n, which we can check in O(nd4 polylog n)time
and O(d3 polylog n) extra space with high probability via Corollary 1.23 (we must check
whether this condition is verified for each of the O(d log2 n) witnesses stored in the com-
pact representation of S).

Case 2(b): rm′ − i+ 1 ≤ 2ρ. Consider now the second subcase. If rm ≤ 12ρ, then we
are done: if r′ is a witness, it must belong to the compact representation of witnesses in S,
which can be verified in O(d log2 n) time. Otherwise, rm − rm′ ≥ 8ρ. By Lemma 1.17(a)
there is p, m′ < p ≤ m, such that T [ℓp . . rp] is anchored by an anchor A∗(F ) ∩ [i, i +
4ρ − 1], and therefore T [ℓp . . rp] is stored in the compact representation of witnesses in
S. Analogously to Case 2(a), we can show equivalence of the following conditions: r′

is a witness; there is a walk in G(P ) from the node corresponding to (T [ℓp . . rp], rp −
i + 1 (mod ρ)) to the node corresponding to (T [ℓm . . rm], rm − i + 1 (mod ρ)) of length
|T [rp + 1 . . rm−1]|. We can therefore decide whether r′ is a witness via Corollary 1.23 in
O(nd4 polylog n) time and O(d3 polylog n) space with high probability.

We now explain how to modify the argument so that it can be used for regular ex-
pression pattern matching. Note that in pattern matching, if r′ is a witness for P ′, then
there is some position ℓ′, 1 ≤ ℓ′ ≤ r′ such that r′ ∈ occ(P ′, T ) is a witness. The position
ℓ′ can be inside the streak S, i.e. m′ can be undefined, making it impossible to apply the
argument above. However, we can easily check if this is the case using the integer µ(P ′)
we computed during the preprocessing step: if µ(P ′) · ρ ≥ (r′− i+ 1), then r′ is a witness
and we are done, and otherwise ℓ′ ≤ i (if r′ is a witness), m′ is defined, and we can apply
the argument above.

Theorem 1.27. Given a streaming text T of length n and a regular expression R of size
d. There is a randomised algorithm that solves the membership and the pattern matching
problems for T and R in O(d3 polylog n) space and O(nd5 polylog n) time per character
of the text. The algorithm succeeds with high probability.

Proof. If d ≥ n, we can use Claim 1.6. Below we assume that d < n. Recall that we
do not account for the time used during the preprocessing step (but one can note that
it is polynomial in d and the total length of the atomic strings of R). The information
computed during this step, including the graphs G(P ) for each P ∈ Π, takes O(d3 log5 n)
space.

During the main step, we use Lemma 1.25 to maintain the compact representations
of the streaks of ∆(P ) for each P ∈ Π, and to decide, eventually, whether T matches the
regular expression R. Whenever an instance of the pattern matching algorithm detects
an occurrence of ∆(P ), we decide in constant time whether this occurrence extends the
latest streak of ∆(P ) or starts a new one. If the number of streaks becomes equal to
three, we discard the oldest streak.
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When an instance of the pattern matching algorithm detects r ∈ occ(P, T ) for some
P ∈ Π, we must decide whether r is a witness and whether we must store it in the compact
representation of the streaks containing r. We apply Lemma 1.25 to decide whether r is
a witness in O(nd4 polylog n) total time and O(d3 polylog n) space and then in O(d log n)
time whether r must be added to the compact representations of the streaks containing r.
Note that a position r can belong to occ(P, T ) for O(d log n) canonical prefixes P ∈ Π,
and therefore in the worst case we spend O(nd5 polylog n) to process r. The compact
representations of the streaks take O(d2 log3 n) space.

Recall that F contains all atomic strings A such that there is an ε-transitions path
from the endpoint of the transition labelled by A to the final state of TC(R). In the
regular expression pattern matching problem, we report all positions r such that r is a
witness in occ(A, T ) for some A ∈ F . In the regular expression membership problem,
T ∈ L(R) if n is a witness for occ(A, T ) for some A ∈ F .

5 Proof of Theorem 1.13

An important tool in our proof is the framework that allows computing output of a circuit
time- and space-efficiently. Before we describe the framework in detail, we provide some
notation following [236]. A circuit is a directed acyclic graph with nodes of in-degree 0
or 2. Degree-0 nodes are called inputs and degree-2 nodes are gates. In our application,
every node corresponds to a vector from Zt

p (i.e. a vector of length t with values in Zp)
indexed from 0 to t − 1, for some values of p and t that will be specified later. A vector
in Zt

p is a singleton if it has at most one non-zero entry.
There are two types of gates: ⊞ and ⊠ that denote respectively the pointwise addition

and vector convolution binary gates, that is (a ⊞ b)[i] = a[i] + b[i] and (a ⊠ b)[i] =∑i
j=0 a[j] · b[i − j]. Every gate corresponds to the result of its underlying operation

applied to its incoming nodes. We say that a convolution gate with input a, b ∈ Zt
p does

not overflow, if for all i ≥ t, (a⊠ b)[i] = 0. An element ω is a t-th root of unity in Zp iff
ωt ≡ 1 mod p but ωs ̸≡ 1 mod p for all 0 < s < t.

With the definitions at hand, we are ready to state the technique introduced by Lok-
shtanov and Nederlof [144] for complex numbers and its modular variant discussed by
Bringmann [236]:

Theorem 1.28 (cf. [236, Theorem 4.2]). Let p be a prime, t ≥ 1, and suppose that Zp

contains a t-th root of the unity, ω. Let C be a circuit over (Zt
p,⊞,⊠) which takes as

an input only singleton constants and outputs a vector out(C) ∈ Zt
p. Suppose that no

convolution gate overflows. Then given p, t, ω, and 0 ≤ x < t we can compute out(C)[x]
in time O(|C|t polylog p) and space O(|C| log p).

For Bringmann’s framework to be efficient, one must provide a method to choose
p and ω. Bringmann [236] showed two different methods, one requiring the Extended
Riemann Hypothesis and the other one resulting in an additional tε factor in both time
and space [236, Lemma 4.4]. Below we show that one can achieve the bounds of the
former method unconditionally.
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5.1 Finding Primes
The goal of this section is to prove the following theorem:

Theorem 1.29. There is a procedure that, given y, finds in O(y polylog y) arithmetic
operations and O(log y) space a prime p and ω such that for every N ≤ 2O(y log y), with
probability at least 1/2 the following holds:

1. ω is a t-th primitive root of unity in Zp, for some t satisfying y ≤ t = O(y polylog y);

2. p = O(y2 polylog y);

3. p ∤ N .

Let B be a constant to be determined later. To compute numbers p and ω we run the
following procedure:

1. Set x to be the smallest number such that 1
2
√
x log−B x ≥ y (using binary search);

2. Choose a random q ∈ [1
2 , 1] ·

√
x log−B x;

3. Find a prime p such that p ≤ x and p ≡ 1 mod q (by guessing candidate p and
checking all numbers up to √p if they divide p or not);

4. Find a generator g of Z∗
p (by guessing candidate g and checking if g

p−1
p′ ̸≡ 1 mod p

for all prime divisors p′ of p− 1);

5. Set t = q and ω = g
p−1

t .

Clearly, t | p−1 and ω = g
p−1

t is well-defined. As g is a generator, we have that ω is a t-
th primitive root of unity in Z∗

p. By the choice of x and p, we have p ≤ x = O(y2 polylog y)
and hence y ≤ q = t = O(y polylog y). In the following lemma we show that with
probability at least 7/8, there are many primes p satisfying p ≤ x and p ≡ 1 mod q and
hence we can efficiently find one. Finally, we show how to find the generator g efficiently.
Let π(x; q, a) = |{p ≤ x : p ≡ a (mod q)}| and ϕ(n) = |{1 ≤ a ≤ n : gcd(a, n) = 1}|.

Lemma 1.30. Let q be chosen uniformly at random from [1
2 , 1] ·

√
x log−B x. With prob-

ability at least 7/8 we have π(x; q, 1) = Ω(
√
x(log x)B−1).

Before we prove the lemma, we remind some number-theory notation and facts related
to counting primes. The reader familiar with this area can skip this part. We first remind
the definitions of von Mangoldt function Λ(n) and Chebyshev functions ψ and ϑ:

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n), where Λ(n) =


log p if n = pk

for some prime p and k ∈ Z+,

0 otherwise.
ϑ(x; q, a) =

∑
p≤x

p≡a (mod q)

log p, where the summation is over prime numbers p.

By skipping the last two arguments we denote ϑ(x) = ∑
0≤a<q ϑ(x; q, a), analogous for

ψ(x).
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Fact 1.31 (By definition). ϑ(x; q, a) ≤ π(x; q, a) · log x.

Fact 1.32 (cf. [6, Theorem 13]). ψ(x; q, a) ≤ ϑ(x; q, a) +O(
√
x).

Proof. Theorem 13 of [6] states that ψ(x)− ϑ(x) = O(
√
x), so for completeness we show

an adaptation of this property to numbers forming an arithmetic progression.

ψ(x; q, a)− ϑ(x; q, a) =
∑
n≤x

n≡a mod q
n=pk,k≥1

log p−
∑
p≤x

p≡a mod q

log p

≤
∑
n≤x
n=p2

log p+
∑
n≤x

n=pk,k≥3

log p

≤ ϑ(
√
x) +O( 3

√
x log2 x) = O(

√
x)

as ∑ n≤x
n=p2

log p = ∑
p≤

√
x log p = ϑ(

√
x) and finally ϑ(x) = x+ o(x) by [6, (2.29)].

Theorem 1.33 (Bombieri–Vinogradov theorem [13]). For every A > 0 there exists B =
B(A) > 0 such that for every x:

∑
q≤

√
x(log x)−B

max
y≤x

max
gcd(a,q)=1

∣∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣∣ = O(x log−A x).

With all the notation at hand we are ready to prove Lemma 1.30.

Proof of Lemma 1.30. Let R = [1
2 , 1] ·

√
x log−B x be the range from which we draw q.

By choosing y = x and a = 1 and summing only over q ∈ R we lower bound the left-
hand side of Bombieri–Vinogradov theorem obtaining that, for every A > 0 there exists
B = B(A) > 0 such that

∑
q∈R

∣∣∣∣∣ψ(x; q, 1)− x

ϕ(q)

∣∣∣∣∣ = O(x log−A x). (1.1)

Similarly to Markov’s inequality, for q chosen uniformly at random from R we have with
probability at least 7/8:

∣∣∣∣∣ψ(x; q, 1)− x

ϕ(q)

∣∣∣∣∣ = O(
√
x(log x)−A+B) (1.2)

Indeed, there can be at most |R|/8 numbers q inR such that ψ(x; q, 1) ≥ 8·Ω(x log−A x)
|R| =

Ω(
√
x(log x)−A+B) in order not to exceed the right-hand side of (1.1). Let B be the

constant from Theorem 1.33 for A = 1. Without loss of generality, we assume B ≥ 3 >
A = 1. Now we rewrite (1.2) using properties of ϕ(n), ϑ(n) and ψ(n) and obtain:

π(x; q, 1) = Ω(
√
x(log x)B−1)
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In more detail:
x

ϕ(q) − ψ(x; q, 1) = O(
√
x(log x)−A+B) from (1.2)

x

q
≤ ϑ(x; q, 1) +O(

√
x) +O(

√
x(log x)−A+B) by Fact 1.32 and ϕ(q) ≤ q

x

q
≤ π(x; q, 1) · log x+O(

√
x(log x)−A+B) by Fact 1.31 and B > A

π(x; q, 1) ≥
√
x(log x)B−1 −O(

√
x(log x)−A+B−1) as q ∈ R

π(x; q, 1) = Ω(
√
x(log x)B−1) as A = 1

Lemma 1.34. Suppose π(x; q, 1) = Ω(
√
x(log x)B−1). With probability at least 7/8, in

O(
√
x log x) arithmetic operations and O(log x) space we can find such a prime p ≤ x

such that p ≡ 1 mod q.

Proof. Clearly, we can check if a number n is prime by iterating through all numbers
2, 3, . . . ,

√
n and checking if they are a divisor of n. Let Q = {n ≤ x : n = 1 mod q}.

Observe that the probability that a number chosen uniformly at random from Q is prime
is at least:

π(x; q, 1)
|Q|

= π(x; q, 1)
x/q

= Ω
(√

x(log x)B−1√x log−B x

x

)
= Ω

(
1

log x

)
Hence by checking Θ(log x) numbers from Q we find a prime with probability at least
7/8.

Lemma 1.35. With probability at least 7/8, we can find a generator g of Z∗
p in O(√p)

arithmetic operations and O(log p) space.

Proof. First, we generate the set of all divisors of p − 1 in O(√p) time by iterating
through 2, 3, . . . ,

√
p− 1 and checking if they are a divisor of p− 1. By using an auxiliary

accumulator we can restrict only to prime divisors, we call this set D. Now we can check
if a number g is a generator of Z∗

p by checking if for every p′ ∈ D, a prime divisor of
p − 1, we have g(p−1)/p′ ̸≡ 1 mod p. Using exponentiating by squaring, this runs in total
O(polylog p) time.

The probability of a random g ∈ {0, . . . , p− 2} to be a generator is ϕ(p− 1)/(p− 1) =
Ω(1/ log log p), as ϕ(n) = Ω(n/ log log n) [6, Theorem 15]. Hence by checking Θ(log log p)
numbers from Z∗

p we find a generator with probability at least 7/8.

Finally, as x ≥ y2 and π(x; q, 1) = Ω(
√
x(log x)B−1) and B ≥ 3 we have π(x; q, 1) ≥

y log2 y ≥ 8 logN , as N ≤ 2O(y log y). Because N has at most logN prime divisors, the
probability that the chosen prime p is one of them is at most 1/8. Summing up, there are
four events due to which our algorithm can fail:

1. The number q does not satisfy π(x; q, 1) = Ω(
√
x(log x)B−1);

2. We did not find p in the planned number of iterations;
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3. The chosen p divides N ;

4. We did not find g in the planned number of iterations.

We note that we do not have access to the value of N during the algorithm, so we cannot
spot immediately that the chosen p is wrong. When we fail to find g or p in the planned
number of iterations we terminate. However, if q is chosen wrongly, we cannot detect it
immediately, but then the subsequent steps (choosing p or g) will have a larger probability
of failure. To conclude, the overall probability of a failure is at most 1/2 and the running
time of the whole procedure is O(

√
x polylog(x)) = O(y polylog y). This concludes the

proof of Theorem 1.29.

5.2 Walks in a Weighted Graph
We can finally prove Theorem 1.13. We first describe an algorithm that uses significantly
much more time and space than desired, and then improve it. We compute arrays Ck

for k ∈ {0, . . . , ⌈log x⌉} indexed by nodes u, v ∈ V (G), where Ck[u, v] is a bit-vector of
length x+ 1 such that:

1. Ck[u, v][d] = 1 implies that there exists a walk of weight d from u to v;

2. For every d ≤ 2k, if there exists a walk of weight d from u to v in G, we have
Ck[u, v][d] = 1.

In other words, Ck contains the information about all walks of weight at most 2k in G and
possibly some other walks of weight at most x. We initialize the array C0 in the following
way: ∀u∈V (G)C0[u, u][0] = 1 and C0[u, v][d] = 1 if there is an edge from u to v of weight
0 ≤ d ≤ x. If there are 0-weight edges in G, we first need to compute their transitive
closure in G in O(|V (G)|3) time and mark in C0 all walks of total weight 0 or 1 in G.
We define (or,Convolutionx)-product of matrices consisting of bit-vectors, truncated
to the first x+ 1 positions:

∀u,v∈V (G)
d∈{0,...,x}

(A⊙B)[u, v][d] :=
∨

w∈V (G)
i∈{0,...,d}

A[u,w][i] ∧B[w, v][d− i]

Now, we compute the consecutive arrays Ck as follows by repeateadly applying the
(or,Convolutionx)-product:

Ck+1 := Ck ⊙ C0 ⊙ Ck

Both invariants for the array Ck follow by inductive reasoning, as every walk of weight
d can be split into three parts of weights d1, d2, d3 where d1, d3 ≤ d/2 and the middle part
consists of a single edge (recall that for each edge (u, v) of weight 0 ≤ d ≤ x we have
C0[u, v][d] = 1). Then, for the given nodes v1, v2 we can return the entry C⌈log x⌉[v1, v2][x].

This approach runs in O(|V (G)|2x) space and O(|V (G)|3 + |V (G)|2x polylog x) time
when we use the fast Fourier transform at every step. Observe that this complexity
matches the time and space bounds stated in Theorem 1.13 for the case when x =
O(|V (G)|). Hence, we focus on the case when x = Ω(|V (G)|).
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Saving space with circuits. To save both time and space, we will use circuits and
the framework of Theorem 1.28. In order to use this framework, we need to modify our
algorithm in various aspects. First, in O(x polylog x) time we find the appropriate values
of p, t, ω using Theorem 1.29 from Section 5.1 for y = Θ(x) that will be defined precisely
later. Then t = O(x polylog x). Instead of bit-vectors as entries of the array Ck, we
operate on vectors from Zt

p over (Zp,+, ·). In other words we use ⊞ (addition in Zt
p)

instead of Boolean or and ⊠ (the standard (+, ·)-convolution modulo p) instead of the
Boolean (∨,∧)-convolution. Then the ⊙ product between A⊙B becomes (A⊙B)[u, v] =
⊞w∈V (G)A[u,w] ⊠ B[w, v]. With ⊙ defined this way, Ck[u, v][d] counts modulo p walks
from u to v of weight d, possibly counting one walk more than once — we analyse these
values in detail at the end of the proof.

Now we describe the construction of the circuit. To simplify the presentation, we
work with multi-ary addition gates ⊞∗ which can be replaced with binary gates ⊞ at the
expense of doubling the total size of the circuit.

1. For every k ∈ {0, . . . , ⌈log x⌉} and u, v ∈ V (G) we create a ⊞∗ gate Ck[u, v];

2. For every node v ∈ V (G) we create a singleton constant Vv with only the 0-th entry
set to 1, connected to the ⊞∗ gate C0[v, v];

3. For every edge (u, v, d) ∈ E(G) from node u to v of weight d, we create a singleton
constant Eu,v,d with only the d-th entry set to 1, connected to the ⊞∗ gate C0[u, v];

4. As (A ⊙ B)[u, v] = ⊞∗
w∈V (G)A[u,w] ⊠ B[w, v], we can implement every product

X = A ⊙ B with |V (G)|3 gates Xw[u, v] := A[u,w] ⊠ B[w, v] and |V (G)|2 gates
X[u, v] := ⊞∗

w∈V (G)X
w[u, v]. For every k > 0, it holds Ck = Ck−1 ⊙ C0 ⊙ Ck−1, so

we need an intermediate product C ′
k := Ck−1 ⊙ C0 and then Ck := C ′

k ⊙ Ck−1.

The above construction gives a circuit onO(|E(G)|+|V (G)|3 log x) gates with singleton
constants, out of which we need to output if C⌈log x⌉[v1, v2][x] > 0. However, we still
cannot use the framework from Theorem 1.28, as we cannot guarantee that there are no
convolution gate overflows. Indeed, if there are edges of weight almost x, we would obtain
walks of weight x2. In the following paragraph we show a refined construction in which
we have more control on the maximum weight of walks considered in the k-th step of the
algorithm.
Refined construction. Let ε be a value to be determined precisely later. Instead of the
arrays Ck, we will compute arrays Dk that, informally, describe all walks of total weight at
most (1+ε)k, some walks of weight d ≤ (1+ε)k ·(1+ε)2k·log(1+ε) and no longer walks. As we
operate on values modulo p, let D′

k[u, v][d] be the value of Dk[u, v][d] if computed exactly,
without taking modulo p at every step. Formally, for every k = {0, . . . , ⌈log1+ε x⌉} we
have:

1. D′
k[u, v][d] > 0 implies that there exists a walk of weight d from u to v;

2. For each d ≤ (1 + ε)k, if there exists a walk of weight d from u to v in G, we have
D′

k[u, v][d] > 0;

3. Dk[u, v][d] = 0 for all d > (1 + ε)k · (1 + ε)2k·log(1+ε).
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The array D0 stores all walks of total weight at most 1, that is D0[u, v][d] = 1 iff
d ∈ {0, 1} and there is a walk from u to v of total weight d. It can be computed in
O(|V (G)|3) time as C0, by first computing all pairs of nodes connected by a walk of 0-
weight edges. Now we show how to obtain the array Dk. Again, every walk of weight d
can be cut into three parts of total weights d1, d2, d3 where d1, d3 ≤ d/2 and the middle
part consist of a single edge. We need to control the total weight of the walk, so we will
iterate over all possible base-(1+ε) logarithms of weights of the three parts k1, k2, k3. For
all possible values d1, d2, d3 such that d1 +d2 +d3 ≤ (1+ε)k, we process the triple k1, k2, k3
where ∀i∈{1,2,3}(1 + ε)ki−1 < di ≤ (1 + ε)ki . Then, from the definition of arrays Dk, every
walk of weight di will be included in Dki

. For single edges of particular weight, let Bk

describe all pairs of nodes connected by an edge of weight at most (1+ε)k: Bk[u, v][d] = 1
iff d ≤ (1 + ε)k and there is an edge of weight d from u to v. Note that Bk = Bk−1 ⊞ Fk

where Fk describes all edges of weight from
(
(1 + ε)k−1, (1 + ε)k

]
. We restrict only to

triples k1, k2, k3 satisfying both:

(a) (1 + ε)k1−1 + (1 + ε)k2−1 + (1 + ε)k3−1 ≤ (1 + ε)k (1.3)
(b) 2 · (1 + ε)max{k1,k3}−1 ≤ (1 + ε)k (1.4)

and call such triples k-good. Then we compute Dk in the following way:

Dk := ⊞∗
k−good k1,k2,k3Dk1 ⊙Bk2 ⊙Dk3 (1.5)

Now we show that all the invariants about Dk are satisfied. Clearly there are no false-
positive entries in the array. We never miss a walk of weight at most (1 + ε)k, as the
condition (a) filters out the triples ki contributing only the walks of total weight larger
than (1 + ε)k. The condition (b) guarantees that the first and third part of the walk have
weight at most 1

2(1 + ε)k. In the following lemma we show that we also never construct
walks of too large weight.

Lemma 1.36. For every k and every k-good triple k1, k2, k3, the largest weight of a walk
in Dk1 ⊙Bk2 ⊙Dk3 is at most (1 + ε)k · (1 + ε)2k·log(1+ε).

Proof. Induction on k. Without loss of generality assume k1 ≥ k3 and then the walks in
Dk1 ⊙Bk2 ⊙Dk3 have total weight at most:

≤(1 + ε)k1 · (1 + ε)2k1·log(1+ε) + (1 + ε)k2 + (1 + ε)k3 · (1 + ε)2k3·log(1+ε)

≤[(1 + ε)k1 + (1 + ε)k2 + (1 + ε)k3 ] · (1 + ε)2k1·log(1+ε)

≤(1 + ε)k+1 · (1 + ε)2k1·log(1+ε) (from the condition (a)) (1.6)

Now we use the condition (b) of a good k-triple:

(1 + ε)k ≥ 2 · (1 + ε)k1−1 apply log1+ε(·) and rearrange
k − k1 ≥ log1+ε 2− 1 multiply both sides by 2 · log2(1 + ε)

2 · log2(1 + ε) · (k − k1) ≥ 2 · (1− log2(1 + ε)) > 1 as 1 + ε <
√

2
2k · log2(1 + ε) ≥ 2k1 · log2(1 + ε) + 1

Applying the above inequality to (1.6) concludes the inductive step.
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Setting ε = 1/ log x, as log(1 + ε) > ε we obtain that there are

r = ⌈log1+ε x⌉ ≤ 1 + log x
log(1 + ε) = O

(
log x
ε

)
= O(log2 x)

arrays Dk to compute. As log(1 + ε) < 2ε, the largest possible weight is bounded from
above by

(1 + ε)r · (1 + ε)2r·log(1+ε) ≤ (1 + ε)r·(4ε+1) ≤ (1 + ε)(log1+ε x+1)·(4ε+1)

≤ x · x4ε · ((1 + ε)ε)4 · 2 = O(x · 24·log x· 1
log x ) = O(x).

Hence, the appropriate choice of y = Θ(x) guarantees that no convolution gate overflows.
Now we estimate the size of the constructed circuit. We compute r = O(log2 x) arrays

Dk. For each of them we process O(r3) k-good triples which perform two ⊙ products
each. Every ⊙ product introduces O(|V (G)|3) ⊞ and ⊠ gates. Hence the total number
of gates is O(|E(G)|+ |V (G)|3 · polylog x).

Finally we discuss the properties of the values computed in Dr and all the intermediate
gates. Recall that D′

k[u, v][d] is the value of Dk[u, v][d] if computed exactly, without taking
modulo p at every step. For each d ≤ (1 + ε)k, every walk between u and v of weight
d contributes at least 1 to D′

k[u, v][d]. Notice that such walk may contribute more than
1, as it can be cut into three parts in many ways, for different triples k1, k2, k3. As no
walks of weight different from d contribute to D′

k[u, v][d], there is a walk from u and v of
weight d iff D′

k[u, v][d] > 0. However, while computing the arrays Dk we operate in Zp,
so we might have false negative error if p | D′

k[u, v][d]. In Theorem 1.29 we include such
situations in the probability of failure (we fail if p | N , where N = D′

r[u, v][d]), but we
need to ensure that D′

r[u, v][d] never exceeds 2O(t log t).

Lemma 1.37. Suppose we execute the above algorithm up to the r-th matrix Dr in Z, not
applying modulo p in every gate. Then all the obtained values are bounded by 2O(x log x).

Proof. Recall that ε = 1
log x

, r = ⌈log1+ε x⌉, we operate on vectors with t = O(x polylog x)
entries, and the convolutions do not overflow as the result always fits in the first y = O(x)
elements of the vectors. Let f(k) be a monotonous function that upper bounds the
values in D′

k and g = |V (G)|. Observe that a single product A ⊙ B of matrices with
entries bounded by respectively amax and bmax results in a matrix with entries bounded
by g · y · amax · bmax. Hence, as values in Bk2 are 0 or 1, from Equation (1.5) we have the
following bound:

f(k) ≤
∑

k−good k1,k2,k3

f(k1) · (y · g)2 · f(k3) ≤ k3(y · g)2 · f 2(kmax) ≤ Wf 2(kmax)

where kmax is the largest possible value of ki that can be a part of a k-good triple and
W = r3 · (y · g)2 = O(x5) as y = O(x) and we consider the case when x = Ω(g). From
Equation (1.4) we have:

2 · (1 + ε)kmax−1 < (1 + ε)k

kmax + log1+ε 2− 1 < k
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As arguments of f are integers, it would be more convenient to write kmax ≤ k− c where
c = ⌈log1+ε 2− 1⌉ ≥ log1+ε 2− 1. As f is monotonous, we have:

f(k) ≤
W · f 2(k − c), k ≥ c

W, k < c

which solves by induction to f(k) < W 2⌈ k
c ⌉+1−1. Then, as W = O(x5) we have:

f(r) < W 2⌈ r
c ⌉+1−1 < WO(2r/c) < 2O(2r/c log x)

Finally, we show that r/c ≤ log x+O(1).

r

c
≤ log1+ε x+ 1

log1+ε 2− 1 =
log x

log(1+ε) + 1
log 2

log(1+ε) − 1
= log x+ log(1 + ε)

1− log(1 + ε) ≤ log x+ 2ε
1− 2ε (as log(1 + ε) < 2ε)

= log2 x+ 2
log x− 2 = log x+O(1)

Combining that with the above bound on f(r) we obtain:

f(r) < 2O(2r/c log x) ≤ 2O(2log x+O(1) log x) = 2O(x log x)

which gives the desired bound on the obtained values.

Hence we can apply Theorem 1.28 to the circuit computing Dr[u, v] for the values p, t, ω
from Theorem 1.29. The running time of the algorithm isO(|C|t polylog p) = O((|E(G)|+
|V (G)|3)x polylog x) as |C| = O(|E(G)| + |V (G)|3 · polylog x), t = O(x polylog x), p =
O(y2 polylog y) and y = Θ(x). The space complexity is bounded by O(|C| log p) =
O((|E(G)|+ |V (G)|3) polylog x). This concludes the proof of Theorem 1.13.
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Chapter 2
Compressed Indexing for Consecutive
Occurrences

This chapter corresponds to the following publication: Pawel Gawrychowski, Garance
Gourdel, Tatiana Starikovskaya, and Teresa Anna Steiner, “Compressed Indexing for
Consecutive Occurrences”, in: 34th Annual Symposium on Combinatorial Pattern
Matching (CPM 2023), June 26-28, 2023, Marne-la-Vallée, France, ed. by Laurent
Bulteau and Zsuzsanna Lipták, vol. 259, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023, 12:1–12:22, doi: 10.4230/LIPIcs.CPM.2023.12.

Publication

The fundamental question considered in algorithms on strings is that of indexing, that is,
preprocessing a given string for specific queries. By now we have a number of efficient solutions
for this problem when the queries ask for an exact occurrence of a given pattern P . However,
practical applications motivate the necessity of considering more complex queries, for example
concerning near occurrences of two patterns. Recently, Bille et al. [CPM 2021] introduced a
variant of such queries, called gapped consecutive occurrences, in which a query consists of two
patterns P1 and P2 and a range [a, b], and one must find all consecutive occurrences (q1, q2) of
P1 and P2 such that q2−q1 ∈ [a, b]. By their results, we cannot hope for a very efficient indexing
structure for such queries, even if a = 0 is fixed (although at the same time they provided a
non-trivial upper bound). Motivated by this, we focus on a text given as a straight-line program
(SLP) and design an index taking space polynomial in the size of the grammar that answers
such queries in time optimal up to polylog factors.

1 Introduction
In the indexing problem, the goal is to preprocess a string for locating occurrences of a
given pattern. For a string of length N , structures such as the suffix tree [12] or the suffix
array [47], use space linear in N and allow for answering such queries in time linear in the
length of the pattern m. By now, we have multiple space- and time-efficient solutions for
this problem (both in theory and in practice). We refer the reader to the excellent survey
by Lewenstein [171] that provides an overview of some of the approaches and some of its
extensions, highlighting its connection to orthogonal range searching.

However, from the point of view of possible applications, it is desirable to allow for more
general queries than just locating an exact match of a given pattern in the preprocessed
text, while keeping the time sublinear in the length of the preprocessed string. A very
general query is locating a substring matching a regular expression. Very recently, Gibney
and Thankachan [335] showed that if the Online Matrix-Vector multiplication conjecture
holds, even with a polynomial preprocessing time we cannot answer regular expression
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query in sublinear time. A more reasonable and yet interesting query could concern
occurrences of two given patterns that are closest to each other, or just close enough.

Preprocessing a string for queries concerning two patterns has been first studied in
the context of document retrieval, where the goal is to preprocess a collection of strings.
There, in the two patterns document retrieval problem the query consists of two patterns
P1 and P2, and we must report all documents containing both of them [85]. In the
forbidden pattern query problem we must report all documents containing P1 but not
P2 [159]. For both problems, the asymptotically fastest linear-space solutions need as
much as Ω(

√
N) time to answer a query, where N is the total length of all strings [160,

143]. That is, the complexity heavily depends on the length of the strings. Larsen
et al. [209] established a connection between Boolean matrix multiplication and the two
problems, thus providing a conditional explanation for the high Ω(

√
N) query complexity.

Later, Kopelowitz et al. [219] provided an even stronger argument using a connection to
the 3SUM problem. Even more relevant to this paper is the question considered by
Kopelowitz and Krauthgamer [218], who asked for preprocessing a string for computing,
given two patterns P1 and P2, their occurrences that are closest to each other. The main
result of their paper is a structure constructible in O(N1.5 logϵ N) time that answers such
queries in O(|P1| + |P2| +

√
N logϵ N), for a string of length N , for any ϵ > 0. They

also established a connection between Boolean matrix multiplication and this problem,
highlighting a difficulty in removing the O(

√
N) from both the preprocessing and query

time at the same time.
The focus of this paper is the recently introduced variant of the indexing problem,

called gapped indexing for consecutive occurrences, in which a query consists of two pat-
terns P1 and P2 and a range [a, b], and one must find the pairs of consecutive occurrences of
P1, P2 separated by a distance in the range [a, b]. Navarro and Thankanchan [227] showed
that for P1 = P2 there is a O(n log n)-space index with optimal query time O(m+output),
where m = |P1| = |P2| and output is the number of pairs to report, but in conclusion
they noticed that extending their solution to the general case of two patterns might not
be possible. Bille et al. [349] provided an evidence of hardness of the general case and
established a (conditional) lower bound for gapped indexing for consecutive occurrences,
by connecting its complexity to that of set intersection. This lower bound suggests that,
at least for indexes of size Õ(N), achieving query time better than Õ(|P1|+ |P2|+

√
N)

would contradict the Set Disjointness conjecture, even if a = 0 is fixed. In particular, ob-
taining query time depending mostly on the lengths of the patterns (perhaps with some
additional logarithms), arguably the whole point of string indexing, is unlikely in this
case.

Motivated by the (conditional) lower bound for gapped indexing for consecutive oc-
currences, we consider the compressed version of this problem for query intervals [0, b].
For exact pattern matching, there is a long line of research devoted to designing the so-
called compressed indexes, that is, indexing structures with the size being a function of
the length of the compressed representation of the text, see e.g. the entry in the Encyclo-
pedia of Algorithms [222] or the Encyclopedia of Database Systems [260]. This suggests
the following research direction: can we design an efficient compressed gapped index for
consecutive occurrences?

The answer of course depends on the chosen compression method. With a goal to
design an index that uses very little space, we focus on the most challenging setting
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when the compression is capable of describing a string of exponential length (in the size
of its representation). An elegant formalism for such a compression method is that of
straight-line programs (SLP), which are context-free grammars describing exactly one
string. SLPs are known to capture the popular Lempel–Ziv compression method up to
a logarithmic factor [79, 90], and at the same time provide a more convenient interface,
and in particular, allow for random access in O(logN) time [194].

By now it is known that pattern matching admits efficient indexing in SLP-compressed
space. Assuming a string S of length N described by an SLP with g productions, Claude
and Navarro [156] designed an O(g)-space index for S that allows retrieving all occurrences
of a pattern of length m in time O(m2 log logN + output log g). Recently, several results
have improved the query time bound while still using a comparable O(g logN) amount
of space: Claude, Navarro and Pacheco [329] showed an index with query time O((m2 +
output) log g); Christiansen et al. [328] used strings attractors to further improve the time
bound to O(m+ output logϵ N); and Díaz-Domínguez et al. [332] achieved O((m logm+
output) log g) query time.

However it is not always the case that a highly compressible string is easier to pre-
process. On the negative side, Abboud et al. [232] showed that, for some problems on
compressed strings, such as computing the LCS, one cannot completely avoid a high
dependency on the length of the uncompressed string and that for other problems on
compressed strings, such as context-free grammar parsing or RNA folding, one essentially
cannot hope for anything better than just decompressing the string and working with the
uncompressed representation! This is also the case for some problems related to linear
algebra [301]. Hence, it was not clear to us if one can avoid a high dependency on the
length of the uncompressed string in the gapped indexing for consecutive occurrences
problem.

In this work, we address the lower bound of Bille et al. [349] and show that, despite
the negative results by Abboud et al. [232], one can circumvent it assuming that the text
is very compressible:

Theorem 2.1. For an SLP of size g representing a string S of length N , there is an
O(g5 log5 N)-space data structure that maintains the following queries: given two patterns
P1, P2 both of length O(m), and a range [0, b], report all output consecutive occurrences of
P1 and P2 separated by a distance d ∈ [0, b]. The query time is O(m logN + (1 + output) ·
log4 N log logN).

While achieving O(g) space and O(m+ output) query time would contradict the Set
Disjointness conjecture by the reduction of Bille et al. [349], one might wonder if the
space can be improved without increasing the query time and what is the true complexity
of the problem when a is not fixed (recall that [a, b] is the range limiting the distance
between co-occurrences to report). While we leave improvement on space and the general
case as an interesting open question, we show that in the simpler case a = 0, b = N (i.e.
when there is no bound on the distance between the starting positions of P1 and P2), our
techniques do allow for O(g2 log4 N) space complexity, see Corollary 2.161.

Throughout the paper we assume a unit-cost RAM model of computation with word
size Θ(logN). All space complexities refer to the number of words used by a data struc-
ture.

1Note that the conditional lower bound of Bille et al. [349] does not hold for this simpler case.
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2 Preliminaries
A string S of length |S| = N is a sequence S[0]S[1] . . . S[N − 1] of characters from an
alphabet Σ. We denote the reverse S[N − 1]S[N − 2] . . . S[0] of S by rev(S). We define
S[i . . . j] to be equal to S[i] . . . S[j] which we call a substring of S if i ≤ j and to the empty
string otherwise. We also use notations S[i . . . j) and S(i . . . j] which naturally stand for
S[i] . . . S[j−1] and S[i+1] . . . S[j], respectively. We call a substring S[0 . . . i] a prefix of S
and use a simplified notation S[. . . i], and a substring S[i . . . N − 1] a suffix of S denoted
by S[i . . . ]. We say that X is a substring of S if X = S[i . . . j] for some 0 ≤ i ≤ j ≤ N−1.
The index i is called an occurrence of X in S.

An occurrence q1 of P1 and an occurrence q2 of P2 form a consecutive occurrence (co-
occurrence) of strings P1, P2 in a string S if there are no occurrences of P1, P2 between q1
and q2, formally, there should be no occurrences of P1 in (q1, q2] and no occurrences of P2
in [q1, q2). For brevity, we say that a co-occurrence is b-close if q2 − q1 ≤ b.

An integer π is a period of a string S of length N , if S[i] = S[i + π] for all i =
0, . . . , N − 1− π. The smallest period of a string S is called the period of S. We say that
S is periodic if the period of S is at most N/2. We exploit the well-known corollary of
the Fine and Wilf’s periodicity lemma [7]:

Corollary 2.2. If there are at least three occurrences of a string Y in a string X, where
|X| ≤ 2|Y |, then the occurrences of Y in X form an arithmetic progression with a differ-
ence equal to the period of Y .

2.1 Grammars
Definition 2.3 (Straight-line program [68]). A straight-line program (SLP) G is a
context-free grammar (CFG) consisting of a set of non-terminals, a set of terminals, an
initial symbol, and a set of productions, satisfying the following properties:

• A production consists of a left-hand side and a right-hand side, where the left-hand
side is a non-terminal A and the right-hand side is either a sequence BC, where
B,C are non-terminals, or a terminal;

• Every non-terminal is on the left-hand side of exactly one production;

• There exists a linear order < on the non-terminals such that A < B whenever B
occurs on the right-hand side of the production associated with A.

A run-length straight-line program (RLSLP) [228] additionally allows productions of
form A→ Bk for positive integers k, which correspond to concatenating k copies of B. If
A is associated with a production A→ a, where a is a terminal, we denote head(A) = a,
tail(A) = ε (the empty string); if A is associated with a production A→ BC, we denote
head(A) = B, tail(A) = C; and finally if A is associated with a production A→ Bk, then
head(A) = B, tail(A) = Bk−1.

The expansion S of a sequence of terminals and non-terminals S is the string that is
obtained by iteratively replacing non-terminals by the right-hand sides in the respective
productions, until only terminals remain. We say that G represents the expansion of its
initial symbol.
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Definition 2.4 (Parse tree). The parse tree of a SLP (RLSLP) is a rooted tree defined
as follows:

• The root is labeled by the initial symbol;

• Each internal node is labeled by a non-terminal;

• If S is the expansion of the initial symbol, then the ith leaf of the parse tree is labeled
by a terminal S[i];

• A node labeled with a non-terminal A that is associated with a production A→ BC,
where B,C are non-terminals, has 2 children labeled by B and C, respectively. If
A is associated with a production A → a, where a is a terminal, then the node has
one child labeled by a.

• (RLSLP only) A node labeled with non-terminal A that is associated with a produc-
tion A→ Bk, where B is a non-terminal, has k children, each labeled by B.

The size of a grammar is its number of productions. The height of a grammar is the
height of the parse tree. We say that a non-terminal A is an ancestor of a non-terminal
B if there are nodes u, v of the parse tree labeled with A,B respectively, and u is an
ancestor of v. For a node u of the parse tree, denote by off(u) the number of leaves to
the left of the subtree rooted at u.

Definition 2.5 (Relevant occurrences). Let A be a non-terminal associated with a pro-
duction A→ head(A)tail(A). We say that an occurrence q of a string P in A is relevant
with a split s if q = |head(A)| − s ≤ |head(A)| ≤ q + |P | − 1.

For example, in Fig. 2.1 the occurrence q = 3 of P = cab is a relevant occurrence in
C with a split s = 1 but A contains no relevant occurrences of P .

Claim 2.6. Let q be an occurrence of a string P in a string S. Consider the parse tree
of an RLSLP representing S, and let w be the lowest node containing leaves S[q], S[q +
1], . . . , S[q + |P | − 1] in its subtree, then either

1. The label A of w is associated with a production A → BC, and q − off(w) is a
relevant occurrence in A; or

2. The label A of w is associated with a production A→ Br and q−off(w) = q′ + r′|B|
for some 0 ≤ r′ ≤ r, where q′ is a relevant occurrence of P in A.

Proof. Assume first that A is associated with a production A → BC. We then have
that the subtree rooted at the left child of w (that corresponds to B) does not contain
S[q+ |P | − 1] and the subtree rooted at the right child of w (that corresponds to C) does
not contain S[q]. As a consequence, q − off(w) is a relevant occurrence in A.

Consider now the case where A is associated with a production A → Br. The leaves
labeled by S[q] and S[q+|P |−1] belong to the subtrees rooted at different children of A. If
S[q] belongs to the subtree rooted at the (r′ +1)-th child of A, then q′ = q−off(w)−|B| ·r′

is a relevant occurrence of P in A.
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Definition 2.7 (Splits). Consider a non-terminal A of an RLSLP G. If it is associated
with a production A→ BC, define

Splits(A,P ) = Splitsrev(A,P ) = {s : q is a relevant occurrence of P in A with a split s}.

If A is associated with a rule A→ Bk, define

Splits(A,P ) = {s : q is a relevant occurrence of P in A with a split s};
Splitsrev(A,P ) = {|P | − s : q is a relevant occurrence of rev(P ) in rev(A) with split s}.

Define Splits(G,P ) (Splitsrev(G,P )) to be the union of Splits(A,P ) (Splitsrev(A,P )) over
all non-terminals A in G, and Splits′(G,P ) = Splits(G,P ) ∪ Splitsrev(G,P ).

We need the following lemma, which can be derived from Gawrychowski et al. [268]:

Lemma 2.8. Let G be an SLP of size g representing a string S of length N , where g ≤ N .
There exists a Las Vegas algorithm that builds a RLSLP G′ of size g′ = O(g logN) of height
h = O(logN) representing S in time O(g logN) with high probability. This RLSLP has
the following additional property: For a pattern P of length m, we can in O(m logN)
time provide a certificate that P does not occur in S, or compute the set Splits′(G′, P ).
In the latter case, |Splits′(G′, P )| = O(logN).

2.2 Compact Tries
We assume the reader to be familiar with the definition of a compact trie (see e.g. [57]).
Informally, a trie is a tree that represents a lexicographically ordered set of strings. The
edges of a trie are labeled with strings. We define the label λ(u) of a node u to be the
concatenation of labels on the path from the root to u and an interval I(u) to be the
interval of the set of strings starting with λ(u). From the implementation point of view,
we assume that a node u is specified by the interval I(u). The locus of a string P is the
minimum depth node u such that P is a prefix of λ(u).

The standard tree-based implementation of a trie for a generic set of strings S =
{S1, . . . , Sk} takes Θ

(∑k
i=1 |Si|

)
space. Given a pattern P of length m and τ > 0 suffixes

Q1, . . . , Qτ of P , the trie allows retrieving the ranges of strings in (the lexicographically-
sorted) S prefixed by Q1, . . . , Qτ in O(m2) time. However, in this work, we build the tries
for very special sets of strings only, which allows for a much more efficient implementation
based on the techniques of Christiansen et al. [328]:

Lemma 2.9. Given an RLSLP G of size g and height h. Assume that every string in a
set S is either a prefix or a suffix of the expansion of a non-terminal of G or its reverse.
The trie for S can be implemented in space O(|S|) to maintain the following queries in
O(m+τ ·(h+logm)) time: Given a pattern P of length m and suffixes Qi of P , 1 ≤ i ≤ τ ,
find, for each i, the interval of strings in the (lexicographically sorted) S prefixed by Qi.

Proof. Let us first recall the definition of the Karp–Rabin fingerprint.
Definition 2.10 (Karp–Rabin fingerprint). For a prime p and an r ∈ F∗

p, the Karp–Rabin
fingerprint [35] of a string X is defined as a tuple (r|X|−1 mod p, r−|X|+1 mod p, φp,r(X)),
where φp,r(X) = ∑|X|−1

k=0 S[k]rk mod p.
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We use the result of Christiansen et al. [328], which builds on Belazzougui et al. [138] and
Gagie et al. [178, 262].

Fact 2.11 ([328, Lemma 6.5]). Let S be a set of strings and assume we have a data
structure supporting extraction of any length-l prefix of strings in S in time fe(l) and
computing the Karp–Rabin fingerprint φ of any length-l prefix of a string in S in time
fh(l). We can then build a data structure that uses O(|S|) space and supports the following
queries in O(m+fe(m)+τ(fh(m)+logm)) time: Given a pattern P of length m and τ > 0
suffixes Q1, . . . , Qτ of P , find the intervals of strings in (the lexicographically-sorted) S
prefixed by Q1, . . . , Qτ .

It should be noted that despite using a hash function, the query algorithm is deter-
ministic: the proof shows that p and r can be chosen during the construction time to
ensure that there are no collisions on the substrings of the strings in S.

To bound fe, we use [328, Lemma 6.6] which builds on Gąsieniec et al. [99] and Claude
and Navarro [156].

Fact 2.12 ([328, Lemma 6.6]). Given an RLSLP of size O(g), there exists a data structure
of size O(g) such that any length-l prefix or suffix of A can be obtained from any non-
terminal A in time fe(l) = O(l).

To bound fh(l), we introduce a simple construction based on the following well-known
fact:

Fact 2.13. Consider strings X, Y, Z where XY = Z. Given the Karp–Rabin fingerprints
of two of the three strings, one can compute the fingerprint of the third string in constant
time.

Claim 2.14. Given a RLSLP G of size g and height h, there exists a data structure of
size O(g) that given a non-terminal A and an integer l allows to retrieve the Karp-Rabin
fingerprints of the length-l prefix and suffix of Ar and rev(Ar) in time fh(l) = O(h+log l).

Proof. The claim for rev(Ar) follows for the claim for Ar by considering the grammar
Grev, where the order of the non-terminals in each production is reversed. Below we focus
on extracting the fingerprints for Ar, and we further restrict our attention to prefixes of
Ar, the algorithm for suffixes being analogous.

The data structure consists of two sets. The first set contains the lengths of the
expansions of all non-terminals in the grammar, and the second one their fingerprints.

By Fact 2.13 and doubling, it suffices to show an algorithm for computing the finger-
print of the length-l prefix of A. Assume that A associated with a rule A → BC. If the
length of A is smaller than l, we return error. Otherwise, to compute the fingerprint of
the length-l prefix of A, we consider two cases. If l ≤ |B|, we recurse on B to retrieve
the fingerprint of the l-length prefix of B. Otherwise, we recurse on C to retrieve the
fingerprint of C[. . . l − |B|) and then compute the fingerprint of the l-length prefix of A
from the fingerprints of B and C[. . . l − |B|) in constant time by Fact 2.13.

For a non-terminal A associated with a rule A → Br, we compute the fingerprint
analogously. If the length of A is smaller than l, we return error. Otherwise, let q be such
that q · |B| ≤ l < (q + 1) · |B|. We compute the fingerprint of Bq from the fingerprint
of B by applying Fact 2.13 O(1 + log q) times, and the fingerprint of B[. . . l − q · |B|)
recursively. We can then apply Fact 2.13 to compute the fingerprint of the length-l prefix
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of A in constant time. Note that in this case, the length of the prefix decreases by a factor
at least q.

If we are in a terminal A, the calculation takes O(1) time (the prefix must be equal
to A itself).

In total, we spend O(h+ log l) time as we recurse O(h) times, and whenever we spend
more than constant time in a symbol, we charge it on the decrease in the length. The
fingerprints of length-l suffixes are computed analogously.

By substituting the bounds for fe(l) (Fact 2.13) and fh(l) (Claim 2.12) into Fact 2.11,
we obtain the claim of the lemma.

3 Relevant, Extremal, and Predecessor Occurrences
in a Non-terminal

In this section, we present a data structure that allows various efficient queries, which we
will need to prove Theorem 2.1. We also show how it can be leveraged for an index in the
simpler case of consecutive occurrences (a = 0, b = N). Recall that the text S is a string
of length N represented by an SLP G of size g. By applying Lemma 2.8, we transform G
into an RLSLP G′ of size g′ = O(g logN) and depth h = O(logN) representing S, which
we fix from now on. We start by showing that G′ can be processed in small space to allow
multiple efficient queries:

Theorem 2.15. There is a O(g2 log4 N)-space data structure for G′ that given a pattern
P of length m can preprocess it in O(m logN + log2 N) time to support the following
queries for a given non-terminal A of G′:

1. Report the sorted set of relevant occurrences of P in A in O(logN) time;

2. Decide whether there is an occurrence of P in A in O(logN log logN) time;

3. Report the leftmost and the rightmost occurrences of P in A, head(A), and tail(A)
in O(log2 N log logN) time;

4. Given a position p, find the rightmost (leftmost) occurrence q ≤ p (q ≥ p) of P in
A in O(log3 N log logN) time (predecessor/successor).

Before we proceed to the proof, let us derive a data structure to report all consecutive
occurrences (co-occurrences) of a given pair of patterns.

Corollary 2.16. For an SLP of size g representing a string S of length N , there is an
O(g2 log4 N)-space data structure that supports the following queries: given two patterns
P1, P2 both of length O(m), report all output co-occurrences of P1 and P2 in S. The query
time is O(m logN + (1 + output) · log3 N log logN).

Proof. We exploit the data structure of Theorem 2.15 for G′. To report all co-occurrences
of P1, P2 in S, we preprocess P1, P2 in O(m logN + log2 N) time and then proceed as
follows. Suppose that we want to find the leftmost co-occurrence of P1 and P2 in the
string S[i . . . ], where at the beginning i = 0. We find the leftmost occurrence q′

1 of P1
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with q′
1 ≥ i (if it exists) by a successor query on the initial symbol of G′ (the expansion of

which is the entire string S). Then we find the leftmost occurrence q2 of P2 with q2 ≥ q′
1

(if it exists) by a successor query and the rightmost occurrence q1 of P1 with q1 ≤ q2 by a
predecessor query. If either q′

1 or q2 do not exist, then there are no more co-occurrences
in S[i . . . ]. Otherwise, clearly, (q1, q2) is a co-occurrence, and there can be no other co-
occurrences starting in S[i . . . q2]. In this case, we return (q1, q2) and set i = q2 + 1. The
running time of the retrieval phase is O(log3 N log logN · (output + 1)), since we use at
most three successor/predecessor queries to either output a new co-occurrence or decide
that there are no more co-occurrences.

3.1 Proof of Theorem 2.15
The data structure consists of two compact tries Tpre and Tsuf defined as follows. For
each non-terminal A, we store rev(head(A)) in Tpre and tail(A) in Tsuf . We augment Tpre

and Tsuf by computing their heavy path decomposition:

Definition 2.17. The heavy path of a trie T is the path that starts at the root of T and
at each node v on the path branches to the child with the largest number of leaves in its
subtree (heavy child), with ties broken arbitrarily. The heavy path decomposition is a set
of disjoint paths defined recursively, namely it is defined to be a union of the singleton
set containing the heavy path of T and the heavy path decompositions of the subtrees of T
that hang off the heavy path.

For each non-terminal A of G′, a heavy path hpre in Tpre, and a heavy path hsuf in
Tsuf , we construct a multiset of points P(A, hpre, hsuf ). For every non-terminal A′ and
nodes u ∈ hpre, v ∈ hsuf the multiset contains a point (|λ(u)|, |λ(v)|) iff A′, u, v satisfy the
following properties:

1. A is an ancestor of A′;

2. I(u) contains rev(head(A′)) and I(v) contains tail(A′).

3. u, v are the lowest nodes in hpre, hsuf , respectively, satisfying Property 2.

(See Fig. 2.1.) The set P (A, hpre, hsuf ) is stored in a two-sided 2D orthogonal range
emptiness data structure [171, 168] which occupies O(|P(A, hpre, hsuf )|) space. Given a
2D range of the form [α,∞] × [β,∞], it allows to decide whether the range contains a
point in P(A, hpre, hsuf ) in O(log logN) time.

Claim 2.18. The data structure occupies O(g2 log4 N) space.

Proof. Each non-terminal A′ has at most g′ distinct ancestors and each root-to-leaf path
in Tpre or Tsuf crosses O(log g′) heavy paths (as each time we switch heavy paths, the
number of leaves in the subtree of the current node decreases by at least a factor of
two). As a corollary, each non-terminal creates O(g′ log2 g′) = O(g log3 N) points across
all orthogonal range emptiness data structures.

When we receive a pattern P , we compute Splits′(G′, P ) via Lemma 2.8 in O(m logN)
time or provide a certificate that P does not occur in S, in which case there are no
occurrences of P in the expansions of the non-terminals ofG′. Recall that |Splits′(G′, P )| ∈
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(a) Parse tree of G′. (b) Searching for cab with a split s = 1.

Figure 2.1: A string S = aababacacabc is generated by an SLP G′. Nodes u and v are
the loci of c and ab in Tpre and Tsuf respectively. The heavy paths hpre in Tpre and hsuf

in Tsuf are shown in blue. We have (2, 2) ∈ P(A, hpre, hsuf ) corresponding to C, u, v.

O(logN). We then sort Splits′(G′, P ) in O(log2 N) time (a technicality which will allow
us reporting relevant occurrences sorted without time overhead). Finally, we compute,
for each s ∈ Splits′(G′, P ), the interval of strings in Tpre prefixed by rev(P [. . . s]) (which
is the interval I(u) for the locus u of rev(P [. . . s]) in Tpre) and the interval of strings in
Tsuf prefixed by P (s . . . ] (which is the interval I(u) for the locus u of P (s . . . ] in Tsuf ).
By Lemma 2.9, with τ = |Splits′(G′, P )| = O(logN) and h = O(logN), this step takes
O(m+ log2 N) time.

Reporting relevant occurrences is easy: by definition, each relevant occurrence q of P
in A is equal to |head(A)|− s for some s ∈ Splits′(G′, P ) such that rev(P [. . . s]) is a prefix
of rev(head(A)) and P (s . . . ] is a prefix of tail(A). As we already know the intervals of the
strings in Tsuf and Tpre starting with rev(P [. . . s]) and P (s . . . ], respectively, both condi-
tions can be checked in constant time per split, or in O(|Splits′(G′, P )|) = O(logN) time
overall. Note that since Splits′(G′, P ) are sorted, the relevant occurrences are reported
sorted as well.

We now explain how to answer emptiness queries on a non-terminal:

Claim 2.19. Let A be a non-terminal labeling a node in the parse tree of G′. We can
decide whether A contains an occurrence of P in O(logN log logN) time.

Proof. Below we show that P occurs in A iff there exists a split s ∈ Splits′(G′, P ) such
that for u being the locus of rev(P [. . . s]) in Tpre and v the locus of P (s . . . ] in Tsuf , for
hpre the heavy path containing u in Tpreand hsuf the heavy path containing v in Tsuf ,
the rectangle [|λ(u)|,+∞] × [|λ(v)|,+∞] contains a point from P(A, hpre, hsuf ). Before
we proceed to the proof, observe that by the bound on |Splits′(G′, P )| this allows us
to decide whether P occurs in A in O(logN) range emptiness queries, which results in
O(logN log logN) query time.

Assume that [|λ(u)|,+∞] × [|λ(v)|,+∞] contains a point (x, y) ∈ P(A, hpre, hsuf )
corresponding to a non-terminal A′. By construction, A is an ancestor of A′, the subtree
of u contains a leaf corresponding to rev(head(A′)) and the subtree of v contains a leaf
corresponding to tail(A′). Consequently, A′ contains an occurrence of P , which implies
that A contains an occurrence of P . To show the reverse direction, let ℓ = off(u) + 1 and
r = off(u)+ |A|, i.e. S[ℓ . . . r] = A. The string A contains an occurrence A[q . . . q+ |P |) of
P iff S[ℓ+q . . . ℓ+q+|P |) is an occurrence of P in S. From Claim 2.6 it follows that if w is
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the lowest node in the parse tree of G′ that contains leaves S[ℓ+ q], . . . , S[ℓ+ q+ |P | − 1]
in its subtree and A′ is its label, then there exists a split s ∈ Splits′(G′, P ) such that
rev(P [. . . s]) is a prefix of rev(head(A′)) and P (s . . . ] of tail(A′). By definition of u and v,
the leaf of Tpre labeled with rev(head(A′)) belongs to I(u) and the leaf of Tsuf labeled with
tail(A′) belongs to I(v). Let hpre (hsuf ) be the heavy path in Tpre(Tsuf ) containing u (v)
and (x, y) be the point in P(A, hpre, hsuf ) created for A′. As |λ(u)| ≤ x and |λ(v)| ≤ y,
the rectangle [|λ(u)|,+∞]× [|λ(v)|,+∞] is not empty.

It remains to explain how to retrieve the leftmost/rightmost occurrences in a non-
terminal, as well as to answer predecessor/successor queries. The main idea for all four
types of queries is to start at any node of the parse tree ofG′ labeled by A and recurse down
via emptiness queries and case inspection. Since the length of the expansion decreases
each time we recurse from a non-terminal to its child and the height of G′ is h = O(logN),
this allows to achieve the desired query time.

Claim 2.20. Given a non-terminal A of G′, we can find the leftmost and the rightmost
occurrences of P in A and as a corollary in head(A) and tail(A) in O(log2 N log logN)
time.

Proof. We explain how to find the leftmost occurrence of P in A, the rightmost one can be
found analogously. We first check whether A contains an occurrence of P via Claim 2.19
in O(logN log logN) time. If it does not, we can stop immediately. Below we assume that
there is an occurrence of P in A. Next, we check whether head(A) contains an occurrence
of P via Claim 2.19 in O(logN log logN) time. If it does, the leftmost occurrence of P in
A is the leftmost occurrence of P in head(A) and we can find it by recursing on head(A).
If head(A) does not contain an occurrence of P , but A contains relevant occurrences of
P , then the leftmost occurrence of P in A is the leftmost relevant occurrence of P in A
and we can find it in O(|Splits′(G′, P )|) = O(logN) time. Finally, if P neither occurs in
head(A) nor has relevant occurrences in A, then the leftmost occurrence of P in A is the
leftmost occurrence of P in tail(A). If tail(A) is a non-terminal C, we recurse on C to
find it. If tail(A) = Br−1 for a non-terminal B, tail(A) cannot contain an occurrence of
P because B does not contain P and there are no relevant occurrences in A. We recurse
down at most h = O(logN) levels, and spend O(logN log logN) time per level. The
claim follows.

Lemma 2.21. Let A be a non-terminal of G′. For any position p, we can find the
rightmost occurrence q ≤ p of P in A and the leftmost occurrence q′ ≥ p of P in A in
O(log3 N log logN) time.

Proof. First we describe how to locate q. Consider a node u of the parse tree of G′ labeled
by A. The algorithm starts at u and recurses down. Let A′ be the label of the current
node. It computes the leftmost and rightmost occurrences in A′, head(A′) and tail(A′) as
well as all relevant occurrences via Claim 2.20. If the leftmost occurrence of P in A′ is
larger than p, the search result is empty. Otherwise, consider two cases.

1. A′ is associated with a rule A′ → B′C ′, i.e. head(A′) = B′, tail(A′) = C ′.

(a) If p ≤ |B′|, recurse on B′.
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(b) Assume now that p > |B′|. If the leftmost occurrence of P in C ′ is smaller
than p, recurse on C ′. Otherwise, return the rightmost relevant occurrence of
P in A′ if it exists else the rightmost occurrence of P in B′.

2. A′ is associated with a rule A → (B′)r, i.e. head(A′) = B′, tail(A′) = (B′)r−1. Let
an integer k be such that (k− 1) · |B′|+ 1 ≤ p ≤ k · |B′|. The desired occurrence of
P is the rightmost one of the following ones:

(a) The rightmost occurrence q ≤ p of P which crosses the border between two
copies of B′. To compute q, we compute all relevant occurrences of P in A′

and then shift each of them by the maximal possible shift r′ · |B′|, where r′ is
an integer, which guarantees that it starts before p and ends before |A′| and
take the rightmost of the computed occurrences to obtain q.

(b) The rightmost occurrence q of P such that for some integer k′, we have (k′ −
1) · |B′| ≤ q ≤ q + |P | − 1 ≤ k′ · |B′| (i.e. the occurrence fully belongs to
some copy of B′). In this case, q is either the rightmost occurrence of P in the
(k − 1)-th copy of B′, or the rightmost occurrence of P in the k-th copy of B′

that is smaller than p. In the second case, we compute q by recursing on B′.

We recurse down at most h levels. On each level we spend O(log2 N log logN) time
to compute the leftmost, the rightmost, and relevant occurrences and respective shifts
for a constant number of non-terminals via Claim 2.20. Therefore, in total we spend
O(h · log2 N log logN) = O(log3 N log logN) time.

Locating q′ is very similar and differs only in small technicalities. The algorithm starts
at the node u and recurses down. Let A′ be the label of the current node. We compute
the leftmost and rightmost occurrences in A′, head(A′) and tail(A′) as well as all relevant
occurrences via Claim 2.20. If the rightmost occurrence of P in A′ is smaller than p, the
search result is empty. Otherwise, consider two cases.

1. A′ is associated with a rule A′ → B′C ′, i.e. head(A′) = B′, tail(A′) = C ′.

(a) If p > |B′|, recurse on C ′.
(b) Assume now that p ≤ |B′|. If the rightmost occurrence of P in B′ is larger

than p, recurse on B′. Otherwise, return the leftmost relevant occurrence q
satisfying q ≥ p, if it exists, and otherwise the leftmost occurrence of P in C ′.

2. A′ is associated with a rule A → (B′)r, i.e. head(A′) = B′, tail(A′) = (B′)r−1. Let
an integer k be such that (k− 1) · |B′|+ 1 ≤ p ≤ k · |B′|. The desired occurrence of
P is the leftmost one of the following ones:

(a) The leftmost occurrence q′ ≥ p of P which crosses the border between two
copies of B′. To compute q′, we compute all relevant occurrences of P in A′

and then shift each of them by the minimal possible shift r′ · |B′|, where r′ is
an integer, which guarantees that it starts after p and ends before |A′| (if it
exists) and take the leftmost of the computed occurrences to obtain q.

(b) The leftmost occurrence q′ of P such that for some integer k′, we have (k′ −
1) · |B′| ≤ q′ ≤ q′ + |P | − 1 ≤ k′ · |B′| (i.e. the occurrence fully belongs to
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some copy of B′). In this case, q′ is either the leftmost occurrence of P in the
(k + 1)-st copy of B′, or the leftmost occurrence of P in the k-th copy of B′

that is larger than p. In the second case, we compute q′ by recursing on B′.

The time complexities are the same as for computing q.

4 Compressed Indexing for Close Co-occurrences
In this section, we show our main result, Theorem 2.1. Recall that S is a string of length
N represented by an SLP G of size g. We start by applying Lemma 2.8 to transform G
into an RLSLP G′ of size g′ = O(g logN) and height h = O(logN) representing S.

The query algorithm uses the following strategy: first, it identifies all non-terminals
of G′ such that their expansion contains a b-close relevant co-occurrence, where a relevant
co-occurrence is defined similarly to a relevant occurrence:

Definition 2.22 (Relevant co-occurrence). Let A be a non-terminal of G′. We say that
a co-occurrence (q1, q2) of P1, P2 in A is relevant if q1 ≤ |head(A)| ≤ q2 + |P2| − 1.

Second, it retrieves all b-close relevant co-occurrences in each of those non-terminals,
and finally, reports all b-close co-occurrences by traversing the (pruned) parse tree of G′,
which is possible due to the following claim:

Claim 2.23. Assume that P2 is not a substring of P1, and let (q1, q2) be a co-occurrence
of P1, P2 in a string S. In the parse tree of G′, there exists a unique node u such that
either

1. Its label A is associated with a production A→ BC, and (q1− off(u), q2− off(u)) is
a relevant co-occurrence of P1, P2 in A;

2. Its label A is associated with a production A → Bk, q1 − off(u) = q′
1 + k′|B|,

q2−off(u) = q′
2+k′|B| for some 0 ≤ k′ ≤ k, where (q′

1, q
′
2) is a relevant co-occurrence

of P1, P2 in A.

Proof. Let A be the label of the lowest node u in the parse tree that contains leaves
S[q1], S[q1 + 1], . . . , S[q2 + |P2| − 1] in its subtree. Because P2 is not a substring of P1, A
cannot be associated with a production A→ a. By definition, S[off(u)+1] is the leftmost
leaf in the subtree of this node.

Assume first that A is associated with a production A→ BC. We then have that the
subtree rooted at the left child of u (labelled by B) does not contain S[q2 + |P2| − 1] and
the subtree rooted at the right child of u (labelled by C) does not contain S[q1]. As a
consequence, (q1 − off(u), q2 − off(u)) is a relevant co-occurrence of P1, P2 in A.

Consider now the case where A is associated with a production A → Bk. The leaves
labelled by S[q1] and S[q2 + |P2| − 1] belong to the subtrees rooted at different children of
A. If S[q1] belongs to the subtree rooted at the k′-th child of A, then (q1 − off(u)− |B| ·
(k′ − 1), q2 − off(u)− |B| · (k′ − 1)) is a relevant co-occurrence of P1, P2 in A.
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4.1 Combinatorial Observations
Informally, we define a set of O(g2) strings and show that for any patterns P1, P2 there are
two strings S1, S2 in the set with the following property: whenever the expansion of a non-
terminal A in G′ contains a pair of occurrences P1, P2 forming a relevant co-occurrence,
there are occurrences of S1, S2 in the proximity. This will allow us to preprocess the
non-terminals of G′ for occurrences of the strings in the set and use them to detect b-close
relevant co-occurrences of P1, P2.

Consider two tries, Tpre and Tsuf : For each production of G′ of the form A → BC,
we store C in Tsuf and rev(B) in Tpre. For each production of the form A → Bk, we
store B, B2, Bk−2, and Bk−1 in Tsuf and the reverses of those strings in Tpre. For
j ∈ {1, 2} and s ∈ Splits′(G′, Pj) define Sj(s) = rev(U)V , where U is the label of the
locus of rev(Pj[. . . s]) in Tpre and V is the label of the locus of Pj(s . . . ] in Tsuf . Let
lj(s) = |rev(U)| and ∆j(s) = lj(s)− s.

Consider a non-terminal A such that its expansion A contains a relevant co-occurrence
(q1, q2) of P1, P2.

Claim 2.24. There exists s ∈ Splits′(G′, P2) such that p2 = q2 −∆2(s) is an occurrence
of S2(s) in A and [p2, p2 + |S2(s)|) ⊇ [q2, q2 + |P2|).

Proof. Below we show that there exists a descendant A′ of A and a split s ∈ Splits′(G′, P2)
such that either rev(P2[. . . s]) is a prefix of rev(head(A′)) and P2(s . . . ] is a prefix of
tail(A′), or A′ is associated with a rule A′ → (B′)k, rev(P2[. . . s]) is a prefix of rev((B′)2)
and P2(s . . . ] is a prefix of (B′)k−2. The claim follows by the definition of Tpre, Tsuf , and
S2(s).

If q2 is relevant in A, there exists a split s ∈ Splits′(G′, P2) such that rev(P2[. . . s])
is a prefix of rev(head(A)) and P2(s . . . ] is a prefix of tail(A) by definition. If q2 is not
relevant, then q2 ≥ |head(A)| by the definition of a co-occurrence. By Claim 2.6, there
is a descendant A′ of A corresponding to a substring A[ℓ . . . r] for which either (q2 − ℓ)
is relevant (and then we can repeat the argument above), or A′ is associated with a
rule A′ → (B′)k and (q2 − ℓ) − k′ · |B′| is relevant, for some 0 ≤ k′ ≤ k. Consider
the latter case. If A′ = A, then k′ = 1, as otherwise q1 < q′

2 = q2 − |B′| < q2 is an
occurrence of P2 in A contradicting the definition of a co-occurrence (recall that (q1, q2)
is a relevant co-occurrence and hence by definition q1 < |head(A)|), and therefore s =
|(B′)2| − q2 + ℓ ∈ Splits′(G′, P2), rev(P2[. . . s]) is a prefix of rev((B′)2) and P2(s . . . ] is a
prefix of (B′)k−2. If A′ ̸= A, then we can analogously conclude that k′ = 0, which implies
s = |B′| − q2 + ℓ ∈ Splits′(G′, P2), rev(P2[. . . s]) is a prefix of rev(B′) and P2(s . . . ] is a
prefix of (B′)k−1.

As the definition of a co-occurrence is not symmetric, q1 does not enjoy the same
property. However, a similar claim can be shown:

Lemma 2.25. There exists s ∈ Splits′(G′, P1) and an occurrence p1 of S1(s) in A such
that [p1, p1 + |S1(s)|) ⊇ [q1, q1 + |P1|) and at least one of the following holds:

1. q1 −∆1(s) is an occurrence of S1(s);

2. q2 is a relevant occurrence of P2 in A, the period of S1(s) equals the period π1 of P1,
and there exists an integer k such that p1 = q1 −∆1(s) − π1 · k and q2 + π1 − 1 ≤
p1 + |S1(s)| − 1 ≤ q2 + |P2| − 1.
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Proof. If q1 is a relevant occurrence of P1 in A with a split s ∈ Splits′(G′, P1), then
rev(P1[. . . s]) is a prefix of rev(head(A)) and P1(s . . . ] is a prefix of tail(A) and therefore
the first case holds by the definition of Tpre and Tsuf .

Otherwise, by Claim 2.6, there is a descendant A′ of head(A) corresponding to a
substring A[ℓ . . . r] for which either (q1 − ℓ) is relevant (and then we can repeat the
argument above), or A′ is associated with a rule A′ → (B′)k and (q1 − ℓ) − k′ · |B′|,
for some 0 ≤ k′ ≤ k, is a relevant occurrence of P1 in A′ with a split s ∈ Splits′(G′, P1).
Consider the latter case. We must have (1) q1 + |P1|−1+ |B′| ≥ r or (2) q1 + |B′|−1 ≥ q2,
because if both inequalities do not hold, then q1 < q1 + |B′| ≤ q2 is an occurrence of P1 in
A, which contradicts the definition of a co-occurrence. Additionally, if (1) holds, then by
definition there exists a split s′ ∈ Splits′(G′, P1) (which might be different from the split
s above) such that rev(P1[. . . s′]) is a prefix of rev((B′)r−1) and P1(s′ . . . ] is a prefix of B′

and we fall into the first case of the lemma.
From now on, assume that (2) holds and (1) does not. Since q1 + |B′| ≤ r ≤ |head(A)|

and (q1, q2) is a relevant co-occurrence, q2 must be a relevant occurrence of P2 in A.
If |P1| − s ≤ |(B′)2|, then rev(P1[. . . s]) is a prefix of rev(B′) and P1(s . . . ] is a prefix
of (B′)2 and therefore q1 − ∆1(s) is an occurrence of S1(s). Otherwise, by Fine and
Wilf’s periodicity lemma [7], the periods of A′, P1, and S1(s) are equal, since P1 and
hence S1(s) span at least two periods of A′. By periodicity, S1(s) occurs at positions
q1 − ∆1(s) − |B′| · k of A. Let p1 be the leftmost of these positions which satisfies
p1 + |S1(s)| − 1 ≥ q1 + |P1| − 1. This position is well-defined as (1) does not hold, and
furthermore [q1, q1 + |P1|) ⊆ [p1, p1 + |S1(s)|) as s ≤ l1(s) and |S1(s)| − l1(s) ≥ |P1| − s.
We have p1 = q1 − ∆1(s) − π1 · k′′ for some integer k′′ (as |B′| is a multiple of π1), and
q2 + π1 − 1 ≤ q1 + 2|B′| − 1 ≤ q1 + |P1| − 1 ≤ p1 + |S1(s)| − 1 ≤ r < q2 + |P2| − 1, where
the last inequality holds as q2 is a relevant occurrence in A. The claim of the lemma
follows.

We summarize Claim 2.24 and Lemma 2.25:

Corollary 2.26. Let (q1, q2) be a co-occurrence of P1, P2 in the expansion of a non-
terminal A. There exist splits s1 ∈ Splits′(G′, P1), s2 ∈ Splits′(G′, P2) and occurrences p1
of S1(s1) and p2 of S2(s), where [p1, p1 + |S1(s1)|) ⊇ [q1, q1 + |P1|) and [p2, p2 + |S2(s2)|) ⊇
[q2, q2 + |P2|), such that at least one of the following holds:

1. The occurrence p1 is either relevant or p1 + |S1(s1)|−1 ≤ |head(A)|. The occurrence
p2 is either relevant or p2 > |head(A)|. Additionally, p1 = q1 − ∆1(s1) and p2 =
q2 −∆2(s2).

2. The occurrence p2 is relevant and p1 ≤ |head(A)|. Additionally, p2 = q2 − ∆2(s2),
the period of S1(s) equals the period π1 of P1, and there exists an integer k such that
p1 = q1 −∆1(s1)− π1 · k and p2 + π1 − 1 ≤ p1 + |S1(s1)| − 1 ≤ p2 + |S2(s2)| − 1.

The reverse observation holds as well:

Observation 2.27. If pj is an occurrence of Sj(s) in A, j = 1, 2, then qj = pj + ∆j(s)
is an occurrence of Pj. Furthermore, if S1(s) is periodic with period π1, then q1 + π1 · k,
0 ≤ k ≤ ⌊(|S1(s)| − q1 − |P1|)/π1⌋, are occurrences of P1 in A.

Finally, the following trivial observation will be important for upper bounding the
time complexity of our query algorithm:
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head(A) tail(A)
ℓ

B′ B′ B′ B′ B′ B′ B′

r
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P2

q2
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q1 + |B′| q1 + |B′|+ |P1| − 1
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(a) If neither (1) nor (2), then (q1, q2) is not consecutive.

head(A) tail(A)
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B′ B′ B′ B′ B′ B′ B′
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P2

q2

P1

q1 q1 + |P1| − 1

(b) (1) holds and (2) does not.

head(A) tail(A)
ℓ
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P2

q2

π1 . . .
S1

q1 −∆1 − |B′|

S1

q1 −∆1 − 2|B′|
P1

q1

(c) (2) holds, (1) does not, and |P1| − s ≥ (B′)2.

Figure 2.2: Subcases of Lemma 2.25.

Observation 2.28. If a string contains a pair of occurrences (q1, q2) of P1 and P2 such
that 0 ≤ q2 − q1 ≤ b, then it contains a b-close co-occurrence of P1 and P2.

4.2 Index
The first part of the index is the data structure of Theorem 2.15 and the index of Chris-
tiansen et al. [328]:

Fact 2.29 ([328, Introduction and Theorem 6.12]). There is a O(g log2 N)-space data
structure that can find the output occurrences of any pattern P [1 . . .m] in S in time
O(m+ output).

The second part of the index are the tries Tpre and Tsuf , augmented as explained
below. Consider a quadruple (u1, u2, v1, v2), where u1 and u2 are nodes of Tpre and v1 and
v2 are nodes of Tsuf . Let U1, U2, V1, V2 be the labels of u1, u2, v1, v2, respectively. Define
S1 = rev(U1)V1 and S2 = rev(U2)V2, and let l1 = |rev(U1)| and l2 = |rev(U2)|.

First, we store a binary search tree T1(u1, u2, v1, v2) that for each non-terminal A
contains at most six integers d = p2 − p1, where p1, p2 are occurrences of S1, S2 in A,
satisfying at least one of the below:

1. p1 is the rightmost occurrence of S1 such that p1 + |S1| − 1 < |head(A)| and p2 is
the leftmost occurrence of S2 such that p2 ≥ |head(A)|;
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2. p1 is a relevant occurrence of S1 with a split l1 and p2 is the leftmost occurrence of
S2 such that p2 ≥ |head(A)|;

3. p1 is a relevant occurrence of S1 with a split l1, p2 is a relevant occurrence of S2
with a split l2;

4. p2 is a relevant occurrence of S2 with a split l2 and p1 is the rightmost occurrence
of S1 such that p1 + |S1| − 1 < p2;

5. p2 is a relevant occurrence of S2 with a split l2 and p1 is the leftmost or second
leftmost occurrence of S1 in head(A) such that p1 < p2 ≤ p1 + |S1|−1 < p2 + |S2|−1.

Second, we store a list of non-terminals L(u2, v2) such that their expansion contains a
relevant occurrence of S2 with a split l2. Additionally, for every k ∈ [0, logN ], we store,
if defined:

1. The rightmost occurrence p1 of S1 in S2 such that p1 + (|S1| − 1) ≤ l2 − 2k;

2. The leftmost occurrence p′
1 of S1 in S2 such that p′

1 ≤ l2 − 2k ≤ p′
1 + |S1| − 1;

3. The rightmost occurrence p′′
1 of S1 in S2 such that p′′

1 ≤ l2 − 2k ≤ p′′
1 + |S1| − 1.

Finally, we compute and memorize the period π1 of S1. If the period is well-defined
(i.e., S1 is periodic), we build a binary search tree T2(u1, u2, v1, v2). Consider a non-
terminal A containing a relevant occurrence p2 of S2 with a split l2. Let p1 be the
leftmost occurrence of S1 such that p1 ≤ p2 ≤ p1 + |S1| − 1 ≤ p2 + |S2| − 1 and p′

1 the
rightmost. If p1 and p′

1 exist (p1 might be equal to p′
1) and p′

1 + |S1| − 1 ≥ p2 + π1 − 1,
we add an integer (p′

1 − p1)/π1 to the tree and associate it with A. We also memorize a
number ov(S1, S2) = p2− p′

1, which does not depend on A by Corollary 2.2 and therefore
is well-defined (it corresponds to the longest prefix of S2 periodic with period π1).
Claim 2.30. The data structure occupies O(g5 log5 N) space.
Proof. The data structure of Theorem 2.15 occupies O(g2 log4 N) space. The index of
Christiansen et al. occupies O(g log2 N) space. The tries, by Lemma 2.9, use O(g′) =
O(g logN) space. There are O((g′)4) quadruples (u1, u2, v1, v2) and for each of them
the trees take O(g′) space. The arrays of occurrences of S1 in S2 use O(logN) space.
Therefore, overall the data structure uses O(g5 log5 N) space.

4.3 Query
Recall that a query consists of two strings P1, P2 of length at most m each and an integer
b, and we must find all b-close co-occurrences of P1, P2 in S, let output be their number.

We start by checking whether P2 occurs in P1 using a linear-time and constant-space
pattern matching algorithm such as [36]. If it is, let q2 be the position of the first occur-
rence. If q2 > b, then there are no b-close co-occurrences of P1, P2 in S. Otherwise, to find
all b-close co-occurrences of P1, P2 in S (that always consist of an occurrence of P1 in S
and the first occurrence of P2 in P1), it suffices to find all occurrences of P1 in S, which we
do using the index of Christiansen et al. [328] in time O(|P1|+ output) = O(m+ output).

From now on, assume that P2 is not a substring of P1. Let N be the set of all non-
terminals in G′ such that their expansion contains a relevant b-close co-occurrence of
P1, P2. By Claim 2.23, |N | ≤ output.
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Lemma 2.31. Assume that P2 is not a substring of P1. One can retrieve in O(m+ (1 +
output) log3 N) time a set N ′ ⊃ N , |N ′| = O(output logN).

Proof. We start by computing Splits′(G′, P1) and Splits′(G′, P2) via Lemma 2.8 in time
O((|P1| + |P2|) logN) = O(m logN) (or providing a certificate that either P1 or P2 does
not occur in S, in which case there are no co-occurrences of P1, P2 in S and we are done).
Recall that |Splits′(G′, P1)|, |Splits′(G′, P2)| ∈ O(logN). For each fixed pair of splits
s1 ∈ Splits′(G′, P1), s2 ∈ Splits′(G′, P2) and j ∈ {1, 2}, we compute the interval of strings
in Tpre prefixed by rev(Pj[. . . sj]), which corresponds to the locus uj of rev(Pj[. . . sj]) in
Tpre and the interval of strings in Tsuf prefixed by Pj(sj . . . ], which corresponds to the
locus vj of Pj(sj . . . ] in Tsuf . Computing the intervals takes O(m + log2 N) time for all
the splits by Lemma 2.9. Consider the strings S1 = rev(U1)V1 and S2 = rev(U2)V2, where
U1, U2, V1, V2 are the labels of u1, v1, u2, v2, respectively. Let l1 = |rev(U1)|, ∆1 = l1 − s1,
l2 = |rev(U2)|, ∆2 = l2 − s2, and ∆ = ∆1 −∆2.

Consider a relevant co-occurrence (q1, q2) of P1, P2 in the expansion of a non-
terminal A. By Corollary 2.26, the relevant co-occurrence q1, q2 imply the existence of
occurrences p1, p2 of S1, S2 such that [p1, p1 + |S1|) ⊇ [q1, q1 + |P1|) and [p2, p2 + |S2|) ⊇
[q2, q2 + |P2|). Our index must treat both cases of Corollary 2.26. We consider eight
subcases defined in Fig. 2.3, which describe all possible locations of p1 and p2.

Subcases (1.1)-(1.4). To retrieve the non-terminals, we query T1(u1, u2, v1, v2) to find
all integers that belong to the range [∆,∆ + b] (and the corresponding non-terminals).
Recall that, for each non-terminal A, the tree stores an integer d = p2−p1, where p1 is the
starting position of an occurrence of S1 in A and p2 of S2. By Observation 2.27, p1 + ∆1
is an occurrence of P1 and p2 + ∆2 is an occurrence of P2. The distance between them
is in [0, b] iff d ∈ [∆,∆ + b]. By Observation 2.28, each retrieved non-terminal contains
a close co-occurrence of (q1, q2). On other other hand, if A contains a co-occurrence
(q1, q2) corresponding to one Subcases (1.1)-(1.4), then by Corollary 2.26, p1 = q1 − ∆1
is an occurrence of S1 and p2 = q2 − ∆2 is an occurrence of S2 and by construction
T1(u1, u2, v1, v2) stores an integer d = p2 − p1. Therefore, the query retrieves all non-
terminals corresponding to Subcases (1.1)-(1.4).

Subcases (1.5) and (2.1). We must decide whether an occurrence of P1 in S2 forms a
b-close co-occurrence with the occurrence ∆2 of P2 in S2, and if so, report all non-terminals
such that their expansion contains a relevant co-occurrence of S2 with a split l2, which
are exactly the non-terminals stored in the list L(u2, v2). Let k = ⌈log(s2)⌉. Recall that
the index stores the following information for k:

1. p1, the rightmost occurrence of S1 in S2 such that p1 + (|S1| − 1) ≤ l2 − 2k;

2. p′
1, the leftmost occurrence of S1 in S2 such that p′

1 ≤ l2 − 2k ≤ p1 + (|S1| − 1);

3. p′′
1, the rightmost occurrence of S1 in S2 such that p′′

1 ≤ l2 − 2k ≤ p′′
1 + (|S1| − 1).

(See Fig. 2.4). By Observation 2.27, the occurrence p1 of S1 induces an occurrence q1 =
p1 + ∆1 of P1. Furthermore, if S1 is periodic with period π1, then q1 + π1 · k, 0 ≤ k ≤
⌊(|S1| − q1 − |P1|)/π1⌋, are also occurrences of P1. One can decide whether the distance
from any of these occurrences to q2 is in [0, b] in constant time, and if yes, then there S2
contains a b-close co-occurrence of P1, P2 by Observation 2.28. Second, by Corollary 2.2,
if S1 is not periodic, then there are no occurrences of S1 between p′

1 and p′′
1 and p′

1, p
′′
1
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Figure 2.3: Assume that S1 does not contain S2. The figure shows all possible locations
of occurrences p1, p2 of S1, S2 in A. In Case 1 of Corollary 2.26, there are six subcases:
(1.1) p1 + |S1| − 1 ≤ |head(A)|, p2 > |head(A)|; (1.2) p1 is a relevant occurrence of S1,
p2 > |head(A)|; (1.3) p1, p2 are relevant; (1.4) p2 is relevant, p1 + |S1| − 1 ≤ p2; (1.5)
p2 is relevant, p2 < p1 ≤ p1 + |S1| − 1 ≤ p2 + |S2| − 1; (1.6) p2 is relevant, p1 < p2 <
p1 + |S1|−1 ≤ p2 + |S2|−1. By the definition of a co-occurrence and by Observation 2.27,
in Subcases (1.1) and (1.4) p1 must be as far to the right as possible, and in Subcases (1.1)
and (1.2) p2 must be as far to the left as possible. In Case 2, there are two subcases:
(2.1) p2 is relevant and p2 ≤ p1 ≤ p1 + |S1| − 1 ≤ p2 + |S2| − 1; (2.2) p2 is relevant and
p1 < p2 < p2 + π1 − 1 ≤ p1 + |S1| − 1, where π1 is the period of S1. In all subcases,
q2 = p2 + ∆2. In Subcases (1.1)-(1.6) q1 = p1 + ∆1 and in Subcases (2.1) and (2.2)
q1 = p1 + ∆1 + k · π1 for some integer k.

by Observation 2.27 induce occurrences p′
1 + ∆1, p

′′
1 + ∆1 of P1. Otherwise, there are

occurrences of P1 in every position p′
1 + ∆1 + k · π1, 0 ≤ k ≤ ⌊(|S1|+ p′′

1 − |P1| − p′
1)/π1⌋.

Similarly, we can decide whether the distance from any of them to the occurrence ∆2 of P2
in S2 is in [0, b] in constant time. Finally, let q1 be the rightmost occurrence of P1 in S2 in
the interval [l2−2k +1,∆2]. We extract S2(l2−2k,∆2+|P2|) via Fact 2.12 and search for q1
using a linear-time pattern matching algorithm for P1, which takes O(|P1|+ |P2|) = O(m)
time. If 0 ≤ ∆2− q1 ≤ b, then there is a b-close co-occurrence of P1, P2 in S2. Correctness
follows from Corollary 2.26, Observation 2.27 and Observation 2.28.

Subcase (2.2). Let π1 be the period of S1. We retrieve the non-terminals associated
with the integers q ∈ T2(u1, u2, v1, v2) such that the intersection of an interval I = [a, b]
and [ℓ, q] is non-empty, where

a = ⌈(∆− ov(S1, S2))/π1⌉, b = ⌊(∆− ov(S1, S2) + b)/π1⌋ and ℓ = −⌊(|S1| − |P1| −∆1)/π1⌋

(See the description of the index for the definition of ov(S1, S2)). As ℓ is fixed, we can
implement the query via at most one binary tree search: If b ≤ ℓ, the output is empty, if
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1
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Figure 2.4: Query algorithm for Subcases (1.5) and (2.1).

a ≤ ℓ ≤ b, we must output all integers, and if ℓ ≤ a, we must output all q ≥ b. Let us now
explain why the algorithm is correct. Consider a non-terminal A for which T2(u1, u2, v1, v2)
stores an integer q. By construction, A contains a relevant occurrence of S2 with a split
l2. A position p1 = |head(A)| − l2 − ov(S1, S2)− q · π1 is the leftmost occurrence of S1 in
A such that p1 ≤ p2 ≤ p1 + |S1| − 1 and p2 = |head(A)| − l2 − ov(S1, S2) the rightmost.
Consequently, there is an occurrence q1 = |head(A)| − l2 − ov(S1, S2) − q′ · π1 + ∆1
of P1 for each −⌊(|S1| − |P1| −∆1)/π1⌋ ≤ q′ ≤ q. The occurrence of S2 implies that
q2 = |head(A)|−s2 is an occurrence of P2. We have 0 ≤ q2−q1 = q′ ·π1+ov(S1, S2)−∆ ≤ b
iff ∆ − ov(S1, S2) ≤ q′ · π1 ≤ ∆ − ov(S1, S2) + b, which is equivalent to [ℓ, q] ∩ I ̸= ∅.
It follows that we retrieve every non-terminal corresponding to Subcase (2.2). On the
other hand, by Observation 2.28, the expansion of each retrieved non-terminal contains a
b-close co-occurrence of P1, P2.

Subcase (1.6). We argue that we have already reported all non-terminals correspond-
ing to this subcase and there is nothing left to do. Consider a non-terminal A such that
its expansion contains a relevant occurrence p2 of S2. If there are at most two occurrences
p1 of S1 such that p1 ≤ p2 ≤ p1 + |S1|−1 ≤ p2 + |S2|−1, we will treat them when we query
T1(u1, u2, v1, v2) (Subcases (1.1)-(1.4)). Otherwise, by Corollary 2.2, S1 is periodic and
there is an occurrence p′

1 of S1 such that p′
1 ≤ p2 < p2 +π1 ≤ p1 + |S1| − 1 < p2 + |S2| − 1.

The non-terminals corresponding to this case are reported when we query T2(u1, u2, v1, v2)
(Subcase (2.2)).

Time complexity. As shown above, the algorithm reports a set N ′ ⊃ N of non-
terminals and each non-terminal in N ′ contains a b-close co-occurrence. By Claim 2.23
and since the height of G′ is h = O(logN), we have |N ′| = O(output logN). Furthermore,
for a fixed pair of splits of P1, P2, each non-terminal in N ′ can be reported a constant
number of times. Since |Splits′(G′, P1)| · |Splits′(G′, P2)| = O(log2 N), the total size of the
output is |N ′| · O(log2 N) = O(output · log3 N). We therefore obtain that the running
time of the algorithm is O(m+ log3 N + output log3 N) = O(m+ (1 + output) log3 N) as
desired.

Once we have retrieved the set N ′, we find all b-close relevant co-occurrences for each
of the non-terminals in N ′ using Theorem 2.15. In fact, our algorithm acts naively and
computes all relevant co-occurrences for a non-terminal in N ′, and then selects those that
are b-close. By case inspection, one can show that a relevant co-occurrence for a non-
terminal A always consists of an occurrence of P2 that is either relevant or the leftmost in
tail(A), and a preceding occurrence of P1. Intuitively, this allows to compute all relevant
co-occurrences efficiently and guarantees that their number is small. Formally, we show
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the following claim:

Lemma 2.32. Assume that P2 is not a substring of P1. After O(m logN + log2 N)-
time preprocessing, the data structure of Theorem 2.15 allows to compute all b-close
relevant co-occurrences of P1, P2 in the expansion of a given non-terminal A in time
O(log3 N log logN).

Proof. We preprocess P1, P2 in O(m logN + log2 N) time as explained in Theorem 2.15.
Upon receiving a non-terminal A, we compute the leftmost and the rightmost occurrences
of P1, P2 in head(A) and tail(A), as well as a set Π1 of all relevant occurrences of P1 in A
and a set Π2 of all relevant occurrences of P2 in A via Claim 2.20. We will compute all
relevant co-occurrences in A, selecting those of them that are b-close is then trivial. As
q1 ≤ q2 by definition, each relevant co-occurrence (q1, q2) of P1, P2 in A falls under one of
the following categories:

1. q1 is a relevant occurrence of P1 in A and q2 is a relevant occurrence of P2 in A
(i.e. q1 ∈ Π1, q2 ∈ Π2). To check whether a pair q1 ∈ Π1, q2 ∈ Π2 forms a co-
occurrence of P1, P2 in A, we must check whether there is an occurrence q of either
P1 or P2 between q1 and q2. The occurrence q can only be the rightmost occurrence
rq of P2 in head(A), the leftmost occurrence lq of P1 in tail(A), or an occurrence in
Π1 ∪ Π2. Consequently, we can find all co-occurrences in this category by merging
two (sorted) sets: Π1 ∪ {lq} and {rq} ∪ Π2, which can be done in O(2 + |Π1 ∪ Π2|)
time.

2. 1 ≤ q1 ≤ q1 + |P1| − 1 ≤ |head(A)| and |head(A)| < q2 ≤ q2 + |P2| − 1. In this
case, q1 must be the rightmost occurrence of P1 in head(A) and q2 the leftmost
occurrence in tail(A), q1 ≤ q2, and there must be no occurrence q ∈ Π1 ∪ Π2 such
that q1 ≤ q ≤ q2. Therefore, if there is a co-occurrence in this category, we can
retrieve it in O(|Π1 ∪ Π2|) time.

3. q1 is a relevant occurrence of P1 in A (i.e. q1 ∈ Π1) and |head(A)| < q2 ≤ q2+|P2|−1.
In this case, q1 must be the rightmost occurrence in Π1 and q2 the leftmost occurrence
of P2 in tail(A), and there should be no occurrence from Π2 between q1 and q2.
Therefore, if there is a co-occurrence in this category, we can find it in O(|Π1 ∪Π2|)
time.

4. q1 ≤ q1 + |P1| − 1 ≤ |head(A)| and q2 is a relevant occurrence of P2 in A (i.e.
q2 ∈ Π2). First, consider the leftmost occurrence in q2 ∈ Π2. We find the rightmost
occurrence q1 ≤ q2 of P1 in A via a predecessor query. The pair (q1, q2) is a co-
occurrence iff the rightmost occurrence of P2 in head(A) is smaller than q1, which
can be checked in constant time. Second, we consider the remaining occurrences in
Π2. Let q′

2 be the leftmost one. We begin by computing the preceding occurrence q′
1

of P1 via a predecessor query and if q2 ≤ q′
1, output the resulting co-occurrence. If

Π2 = {q2, q
′
2}, we are done. Otherwise, by Corollary 2.2, the occurrences in Π2\{q2}

form an arithmetic progression with difference equal to the period of P2 (as all of
them contain the position |head(A)|). Furthermore, as P1 does not contain P2, the
occurrence of P1 preceding q′

2 belongs to the periodic region formed by the relevant
occurrences of P2. Therefore, all the remaining co-occurrences can be obtained from
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the co-occurrence for q′
2 by shifting them by the period. In total, this step takes

O(|Π2|+ log3 N log logN) time.

A part of the index of Christiansen et al. [328] is a pruned copy of the parse tree of
G′. They showed how to traverse the tree to report all occurrences of a pattern, given its
relevant occurrences in the non-terminals. By using essentially the same algorithm, we
can report all b-close co-occurrences in amortized constant time per co-occurrence, which
concludes the proof of Theorem 2.1.

Lemma 2.33. Assume that P2 is not a substring of P1. One can compute all b-close
co-occurrences of P1, P2 in S in time O(m+ (1 + output) · log4 N log logN).

Proof. During the preprocessing, we prune the parse tree: First, for each non-terminal B,
all but the first node labeled by B in the preorder is converted into a leaf and its subtree
is pruned. For each node v labeled by a non-terminal B, we store anc(v), the nearest
ancestor u of v labeled by A such that u is the root or A labels more than one node in the
pruned tree. Second, for every node labeled by a non-terminal A associated with a rule
A→ Bk, we replace its k− 1 rightmost children with a leaf labeled by Bk−1. We call the
resulting tree the pruned parse tree and for each node v labeled by a non-terminal B store
next(v), the next node labeled by B in preorder, if there is one. As every non-terminal
labels at most one internal node of the pruned parse tree and every node has at most two
children, it occupies O(g′) space.

When the algorithm of Lemma 2.31 outputs A ∈ N ′, we compute all relevant co-
occurrences (q1, q2) in A in time O(log3 N log logN) using Lemma 2.32 and select those
which satisfy q2 − q1 ≤ b.

Fix a b-close relevant co-occurrence (q1, q2) in A. If A is associated with a rule A →
BC, construct a set output(A) := {(q1, q2)}, and otherwise if A is associated with a rule
A→ Bk,

output(A) := {(q1 + i · |B|, q2 + i · |B|) : 0 ≤ i ≤ ⌊(|A| − q2 − |P2|+ 1)/|B|⌋}

Suppose that A labels nodes v1, v2, . . . , vk of the unpruned parse tree ofG′ (by construction
v1 is not pruned and we assimilate it to the corresponding node in the pruned parse tree).
If W is a set of co-occurrences, denote for brevity W +δ = {(q1 +δ, q2 +δ) : (q1, q2) ∈ W}.
Below we show an algorithm that generates a set S = ∪ioutput(A) + off(vi) that contains
all secondary b-close co-occurrences due to (q1, q2).

We traverse the pruned parse tree, while maintaining a priority queue. The queue is
initialized to contain the first node in the preorder labeled by A together with output(A).
Until the priority queue is empty, pop a node v and a set W of co-occurrences of P1, P2
in the expansion of its label, and perform the following steps:

• Reporting step: If v is the root, report W ;

• Next node step: If next(v) is defined, push (next(v),W + off(next(v))− off(v));

• Sibling step: If v is labeled by a non-terminal B and its sibling by Bk, for some
integer k, then W := ∪0≤i≤kW + i · |B|
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• Ancestor step: Push to the queue (anc(v),W + off(anc(v))− off(v)).

By construction and as every node is connected with the root by a path of anc links,
the algorithm generates all co-occurrences in S.

Let us show that it reports every co-occurrence in S at most once. Assume that a
co-occurrence was reported twice by two different sequences of nodes. Let u,w be the
first nodes in the sequences where the same co-occurrence (q1, q2) ∈ S was created. Note
that ancestor steps do not create new occurrences, but only update already created ones.
Therefore, we have only three possible cases for u,w: either we generated (q1, q2) because
the node equals to v1, or we applied the next node step, or we applied the sibling step.
We cannot have u = w = v1, as v1 is considered by the algorithm only once due to the
fact that the preorder number of the current node increases both after the next node step
and the ancestor step. Suppose now that u = v1 and that we applied the next node or
the sibling step to w. Neither next(w) nor the siblings of w can be in the subtree of u.
On the other hand, u cannot be neither in the subtree of next(w) nor in the subtrees of
the siblings of w (they are pruned). Therefore, in this case we could not generate (q1, q2)
both for u and w. If we generated (q1, q2) by applying the next node step to u and the
next node step to w, then by the choice of u,w, we have next(u) ̸= next(w). Furthermore,
neither next(u) can be an ancestor of next(w), nor vice versa, as the subtrees of next(u)
and next(w) are pruned, and therefore we could not create (q1, q2) both for u and w. If
(q1, q2) was generated by applying the next node step to u and the sibling step to w, then
u ̸= w by definition and as the subtree of next(u) is pruned, neither w nor its siblings can
be descendants of u. On the other hand, the subtrees and the siblings of w are pruned,
and cannot be ancestors of next(w). A contradiction. Finally, consider the case when we
apply the sibling step both to u and w. In this case, the subtrees of the siblings of u and
w are pruned by construction, and neither u can belong to a subtree of a sibling of w,
nor vice versa, and therefore we cannot generate (q1, q2) both for u and w. All remaining
cases are symmetrical.

The time complexity follows: Lemma 2.31 takes time O(m + (1 + output) · log3 N);
applying Lemma 2.32 to every non-terminal in N ′ takes time O(output · log4 N log logN);
and maintaining the queue and reporting the co-occurrences takes O(output) time as
at every step we can charge the time needed to update the queue on newly created co-
occurrences.
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Chapter 3
Compressed Consecutive Pattern Matching

This chapter is a joint work with Pawel Gawrychowski, Tatiana Starikovskaya, and
Teresa Anna Steiner, unpublished.

Joint work

Originating from the work of Navarro and Thankanchan [TCS 2016], the problem of consec-
utive pattern matching is a variant of the fundamental pattern matching problem, where one is
given a text and a pair of patterns p1, p2, and must compute consecutive occurrences of p1, p2 in
the text. Assuming that the text is given as a straight-line program of size g, we develop an al-
gorithm that computes all consecutive occurrences of p1, p2 in optimal O(g + |p1|+ |p2|+output)
time. As a corollary, we also derive an algorithm that reports all co-occurrences separated by a
distance d ∈ [a, b] in O(g + |p1| + |p2| + output) time and an algorithm that reports the top-k
closest co-occurrences in O(g + |p1|+ |p2|+ k) time.

1 Introduction
In the classical pattern matching problem, one is given a pattern and a text, and must find all
substrings of the text equal to the pattern. However, considering potential applications, it is
advantageous to enable queries beyond simply identifying exact matches of a given pattern in
the preprocessed text.

Recently, Navarro and Thankanchan [227] suggested a generalisation of the pattern matching
problem, where in addition to the pattern and the text one is given two integers a, b, and must
find all pairs of consecutive occurrences of the pattern in the text separated by a distance
d ∈ [a, b]. They showed that there is a O(n log n)-space index for this problem with optimal
query time O(m + output), where n is the length of the text and m of the pattern.

Following their work, indexing for consecutive occurrences is receiving growing attention in
the literature [348, 349, 363].

Bille et al. [349] considered an even more general case of the problem, where a query consists
of two different patterns p1, p2 of total length m and two integers a, b, and one must find all
pairs of consecutive occurrences of p1, p2 in the text separated by a distance d ∈ [a, b]. For
reporting the occurrences, they showed a linear-space data structure with Õ(m + n2/3output)
query time. On the other hand, by reduction from the set intersection problem, they showed
a lower bound suggesting that achieving query time better than Õ(m +

√
n) for indexes of size

Õ(n) is impossible, even if a = 0 is fixed.
Gawrychowski et al. [363] showed that one can circumvent this lower bound in the case a = 0

assuming that the text is very compressible: assuming that the text is represented by a straight-
line program (SLP) of size g, they showed a Õ(g5)-space data structure with Õ(m + output)
query time, where m is the total length of the patterns.

Unfortunately, the above upper bounds, despite their theoretical interest, are still far from
providing an efficient solution. Motivated by this, we study the dual variant of the problem,
where one must process the text and the patterns simultaneously. Note that if the text is
uncompressed and has length n, the problem can be solved by classical online pattern matching
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in O(n + m + output) time by keeping the most recent occurrences of p1 and p2. In this work,
we show that a similar complexity can be achieved for very compressible texts by extending the
ideas of [353]:

Theorem 3.1. Given a text of length n represented by an SLP G of size g and patterns p1, p2 of
total length m, all consecutive occurrences of p1, p2 in the text can be found in O(g+m+output)
time assuming the word-RAM model with a machine word of size w = Ω(log n).

Using similar techniques, we derive an algorithm to output all consecutive occurrences with
a bounded distance between them:

Corollary 3.2. Given a text of length n represented by an SLP G of size g and patterns p1, p2 of
total length m, all consecutive occurrences of p1, p2 in the text separated by a distance d ∈ [a, b]
can be found in O(g + m + output) time assuming the word-RAM model with a machine word
of size w = Ω(log n).

Finally, our techniques allow to derive an efficient solution for the variant of the problem
suggested by Bille et al. [348], where one must report the top-k consecutive occurrences of p
with smallest distances between them.

Corollary 3.3. Given an integer k, a text of length n represented by an SLP G of size g and
patterns p1, p2 of total length m, the k closest consecutive occurrences of p1, p2 in the text can
be found in O(g + m + k) time assuming the word-RAM model with a machine word of size
w = Ω(log n).

2 Preliminaries
A string s of length |s| = n is a sequence s[0]s[1] . . . s[n − 1] of characters from an integer
alphabet Σ that can be sorted in O(m + g) time. A substring of a string s is a pair (i, j)
where 0 ≤ i ≤ j < |s| and is identified with the string s[i . . . j] = s[i] . . . s[j]. We also use
the notation s[i . . . j) and s(i . . . j] which stand for the substring s[i . . . j − 1] and s[i − 1 . . . j]
respectively. We say that a substring s[i . . . j] is fully contained in another substring s[i′ . . . j′]
if i′ ≤ i ≤ j ≤ j′. We call a substring s[0 . . . i] a prefix of s and use a simplified notation s[. . . i],
and a substring s[i . . . n − 1] a suffix of s denoted by s[i . . . ]. We say that x occurs in s at
position i if x = s[i . . . i + |x|), alternatively we say i is an occurence of x in s. Additionaly, an
occurence i is fully included in a substring f of s if s[i . . . i + |x|) is fully included in f .

An occurrence k1 of p1 together with an occurrence k2 of p2 form a consecutive occurrence
(co-occurrence) (k1, k2) of the strings p1, p2 in a string s if there are no occurrences of p1 in
(k1, k2] and no occurrences of p2 in [k1, k2). The distance k2 − k1 is sometimes referred to as a
gap.

An integer π is a period of a string s of length n if s[i] = s[i + π] for all i = 0, . . . , n− 1− π.
We say that s is periodic if its smallest period, referred to as the period of s, is at most |s|/2.
We also exploit the well-known corollary of the Fine and Wilf’s periodicity lemma [7]:

Corollary 3.4. Let x, y be strings such that |x| ≤ 2|y|. If there are at least three occurrences
of y in x, then all occurrences of y in x form an arithmetic progression with difference equal to
the period of y.

Proposition 3.5. One can preprocess a string p of length m in O(m) time and space to main-
tain the following queries in constant time: Given a substring (i, j), find the leftmost and the
rightmost occurrences of p[i...j] in p, as well as the total number of occurrences. Given two sub-
strings (i, j) and (k, l), compute the longest common prefix and longest common suffix between
p[i...j] and p[k...l].
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Proof. We assume the reader to be familiar with suffix trees. We build the suffix tree of p in
O(m) time and space. Belazzougui et al. [327] showed that the suffix tree can be preprocessed
in linear time so that, given a substring (i, j), one can find the node u of the suffix tree labeled
by p[i...j] in constant time. The leaves of the subtree of u correspond to the occurrences of
p[i...j] in p. For each node, we can precompute in linear time, the size of its subtree, the lefmost
and rightmost occurrences of its label. This is done by simply traversing the tree from the
bottom to the top and propagating the information. We also preprocess the suffix trees in
linear time so that they can fing the lowest common ancestor between two nodes in constant
time [<empty citation>]. Given two substrings (i, j) and (k, l) the length of the label of their
common ancestor is their longest common prefix. Analogously, by having the same suffix tree
built for the reversed string, we can compute the longest common suffix.

Corollary 3.6 (of Corollary 3.4 and Proposition 3.5). One can preprocess a string p of length
m in O(m) time and space to maintain the following queries in constant time: Given a substring
(i, j), such that j − i ≥ m/2, one can output the arithmetic progression of the occurrences of
p[i...j] in p in constant time.

2.1 Grammars
Definition 3.7 (Straight-line program [68]). A straight-line program (SLP) is a context-free
grammar (CFG) consisting of a set of non-terminals X1, . . . , Xq, a set of terminals, an initial
symbol Xq, and a set of productions, satisfying the following properties:

• A production consists of a left-hand side and a right-hand side, where the left-hand side
is a non-terminal Xi and the right-hand side is a sequence XjXk, where j, k < i, or a
terminal;

• Every non-terminal is on the left-hand side of exactly one production.

The expansion S of a sequence of terminals and non-terminals S is the string that is obtained
by iteratively replacing non-terminals by the right-hand sides in the respective productions, until
only terminals remain. We say that G represents the expansion G of its initial symbol.

Definition 3.8 (Parse tree). The parse tree of a SLP is defined as follows:

• The root is labeled by the initial symbol;

• Each internal node is labeled by a non-terminal;

• If S is the expansion of the initial symbol, then the ith leaf of the parse tree is labeled by
a terminal S[i];

• A node labeled with a non-terminal A that is associated with a production A → BC has
two children labeled by B and C, respectively.

The size of a grammar is the total size of all right-hand sides of all productions. The height
of a grammar is the height of the parse tree.

3 Boundary Information
For the duration of this section, fix a pattern p of length m. For a string s, let prefixp(s) be the
longest prefix of s which is a suffix of p and suffixp(s) the longest suffix of s which is a prefix
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s us vs xs ys

p[m− |prefixp(s)| . . . ] p[. . . |suffixp(s)| − 1]

Figure 3.1: A p-boundary information for a string s that is not a substring of p.

of p. If s occurs in p at position i, meaning s = p[i...i + |p| − 1], then we define p-substring
information for s as (i, i + |p|−1), and otherwise p-substring information for s is undefined. For
a string s, a p-boundary information is defined as follows:

1. If s occurs in p, then it is simply p-substring information for s;

2. Otherwise, it is two substrings of p, us and vs such that prefixp(s) is a prefix of usvs

which in turn is a prefix of s (p-prefix information), and two substrings of p, xs, ys such
that suffixp(s) is a suffix of xsys which in turn is a suffix of s (p-suffix information). (See
Fig. 3.1.)

For a string s, multiple p-boundary information can be constructed. One way to construct
one is recursively: for two strings s, t, assume to be given p-boundary information for s, t,
Algorithm 3.1 (first described in [353]) correctly constructs a p-boundary information for c = st.

Algorithm 3.1 A boundary information of c = st

1. If s is a substring of p and t is not, then the p-suffix information of c is the p-suffix
information of t and we define the p-prefix information for c as follows:

(a) If sut is a substring of p, then uc = sut and vc = vt;
(b) Otherwise, uc = s and vc = ut.

2. If t is a substring of p and s is not, then the p-prefix information of c is the p-prefix
information of s and we define the suffix information for c as follows:

(a) If yst is a substring of p then yc = yst and xc = xs;
(b) Otherwise, xc = ys and yc = t;

3. If s and t are both substrings of p, and c is a substring p[i . . . j] of p, then the
p-boundary information is p-substring information for c, and we define it equal to
(i, j). Otherwise, we put uc = xc = s and vc = yc = t.

4. If neither s nor t is a substring of p, then one can take p-prefix information for c
equal to p-prefix information for s and p-suffix information to p-suffix information
for t.

Definition 3.9 (Crossing occurrences). Let s, t be two strings. We say that a position i is a
crossing occurrence of p in a string c = st if i is an occurrence of p in c and i ≤ |s| ≤ i+|p|−1. By
extension, i is a crossing occurrence of p in the expansion A of a non-terminal A of a grammar
G, or simply a crossing occurrence for A, if A is associated with a production A → BC and
i ≤ |B| ≤ i + |p| − 1.
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Ganardi and Gawrychowski [353] showed that given a p-boundary information of two strings
s, t one can efficiently decide whether there is a crossing occurrence of p in c = st. By slightly
modifying their solution, we can report all such occurrences:

Lemma 3.10. Assume to be given a p-boundary information of strings sk, tk for k ∈ [1, q]. One
can compute all crossing occurrences of p in all strings sktk, for k ∈ [1, q], in O(q + m) time.
For each k, the output is represented as an arithmetic progression.

We defer the proof of the lemma to Section 6. The proof and our algorithm exploit the
following fact:

Fact 3.11 (see [353, Lemma 2.2, Theorem 1.3]). Let w be the size of the machine word. A
string p of length m can be preprocessed in O(m) time so that:

• q substring concatenation queries on p can be answered in O(q + m/w) time. A sub-
string concatenation query on a string p asks: Given two substrings (i, j) and (k, ℓ), let
u = p[i . . . j] and v = p[k . . . ℓ] of p, check whether uv occurs in p and, if so, return an
occurrence;

• Given q substrings u1, . . . , uq of p one can compute prefixp(ui) and suffixp(ui) in O(q +
m/w) time.

4 Compressed Consecutive Pattern Matching
We are now ready to prove Theorem 3.1. Recall that the text has length n and is represented
by an SLP G of size g ≪ n, and the patterns p1, p2 have total length m.

4.1 Computing Boundary Information and Crossing Occur-
rences

We first use a linear-time pattern matching algorithm (e.g. the Knuth-Morris-Pratt algo-
rithm [16]) to check whether p2 is a substring of p1. If it is, then every co-occurrence of p1, p2
in the text is a pair (i, i + ℓ), where i is an occurrence of p1 in the text and ℓ is the leftmost
occurrence of p2 in p1. (By definition, there is no occurrence of p2 in [i, i + ℓ). Note also that
there cannot exist an occurrence i < i′ ≤ i + ℓ of p1, because then i + ℓ − i′ < ℓ would be
an occurrence of p2 in p1, a contradiction with the choice of ℓ.) In other words, to find all
co-occurrences of p1, p2 in the text it suffices to find all occurrences of p1 in the text, which can
be done in O(g + m + output) time [353].

Below we assume that p2 is not a substring of p1. Define an array P such that for every
j ∈ [0, |p2| − 1], P [j] is the rightmost occurrence of p1 in p2 to the left of j if their is one, else
−1. We call P the predecessor array. P can be computed in O(m) time by a linear-time pattern
matching algorithm.

By [286], we can restructure the SLP G representing the text in O(g) time to ensure that
its height is O(log n), while its size increases by only a constant factor.

For every symbol A of G (a non-terminal or a terminal) associated with a production A→
BC, we compute:

1. a p1-boundary information and a p2-boundary information for A;

2. All crossing occurrences of p1 and p2 for A;

3. The rightmost and the leftmost occurrences of p1 and p2 in A;
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4. Furthermore, if p2-suffix information for A is (xA, yA), then we compute:

(a) a p1-boundary information of xA and yA, which we refer to as secondary boundary
information;

(b) All crossing occurrences of p1 for xA, yA;
(c) The rightmost occurrence of p1 in A starting before xA.

Proposition 3.12. There is a O(g)-time algorithm that computes boundary and secondary
boundary information for all symbols of G.

Proof. We first compute boundary information. For all terminals, it suffices to check if the
characters occur in p, if they do occur, let i be one of their occurences, we can define the
p-substring information to be (i, i), else we can define p-prefix information and the p-suffix
information to be empty strings. Let the k-th level Lk of G be the set of its symbols whose parse
tree has height k. We apply Algorithm 3.1 to compute boundary information for the symbols
of each level in turn, starting from level 0. Processing Lk takes |Lk| substring concatenation
queries and O(|Lk|) extra time. Since the height of G is O(log n), by Fact 3.11 we obtain
O(∑k(|Lk|+ m/w)) = O(g + m) total time.

The secondary boundary information is computed by applying Algorithm 3.1 on the sub-
strings constituting the boundary information. In more detail, note that for any non-terminal A
of G associated with a production A→ BC Algorithm 3.1 computes the boundary information
of A by either copying the boundary information of B or C or by concatenating the substrings
constituting the boundary information of B and C a constant number of times. It follows that in
total there are O(|Lk|) copying and concatenation operations at level k. For each concatenation
operation, we apply Algorithm 3.1 to update the boundary information. Processing Lk hence
takes O(|Lk|) substring concatenation queries and O(|Lk|) extra time. As above, this leads to
O(∑k(|Lk|+ m/w)) = O(g + m) total time.

We now apply Lemma 3.10 to compute all crossing occurrences for the non-terminals of G
in O(g + m) time. By a second application of Lemma 3.10, we compute, for every non-terminal
A of G, all crossing occurrences for pairs xA, yA, which constitute p2-suffix information for A,
using the same amount of time.

Proposition 3.13. Given the boundary information and the crossing occurrences for all symbols
of G, one can compute the rightmost and leftmost occurrences of p1 and p2 in the expansion of
every symbol of G in O(g) time.

Proof. We explain how to compute the rightmost occurrences of p1, the rest can be computed
analogously. The algorithm processes the symbols of G bottom-up. Consider a symbol A of G.
If it is a terminal, then we can find the rightmost occurrence of p1 in its expansion (if it exists)
in O(1) time. Otherwise, assume that A is associated with a production A→ BC. If C contains
an occurrence of p1, then the rightmost occurrence of p1 in A is the rightmost occurrence of p1
in C (and we have already computed it). Otherwise, if there are crossing occurrences of p1 for
B, C, it is the rightmost such occurrence. And finally, if C does not contain an occurrence of p1
and there are no crossing occurrences, then we copy the rightmost occurrence of p1 in B.

We will need the following auxiliary claim:

Observation 3.14. Given an arithmetic progression by its starting position, difference, and
length, we can find the predecessor of a number z in that progression in constant time.
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Proposition 3.15. There is a O(g + m)-time algorithm that computes, for each symbol A of
G, the rightmost occurrence of p1 in A before xA, where (xA, yA) is p2-suffix information for A.

Proof. Let (xB, yB) (resp., (xC , yC)) be the p2-suffix information for B (resp., C) that we com-
puted using Algorithm 3.1. We review the cases of Algorithm 3.1:

In Cases 1 and 4, the p2-suffix information of A is the p2-suffix information of C. Therefore,
the rightmost occurrence of p1 before xA in A is either the last occurrence before xC = xA in
C, or the rightmost crossing occurrence of p1 for A, or the rightmost occurrence of p1 in B, and
we can compute it in constant time.

In Case 3, either (xA, yA) is undefined or xA = B, and therefore the rightmost occurrence of
p1 is undefined.

In Case 2a, xA = xB, and therefore the rightmost occurrence of p1 in A before xA is either
the rightmost occurrence of p1 in B before xB or the rightmost crossing occurrence of p1 for A
that precedes xB, which can be found in constant time by Observation 3.14.

In Case 2b, we have xA = yB. Thus, the rightmost occurrence before xA equals to one of
the following:

1. The rightmost crossing occurrence of p1 for xB and yB;

2. The rightmost occurrence fully contained in xB;

3. The rightmost occurrence of p1 preceding xB;

4. The rightmost crossing occurrence of p1 for A preceding xB.

We can find the rightmost occurrence fully contained in xB = p2[i . . . j] by querying the prede-
cessor array for j − |p1|+ 1, and the two other occurrences have been already computed.

4.2 Reporting Co-occurrences
We now show how to quickly report the co-occurrences using the precomputed information.

Proposition 3.16. Consider a symbol A of G associated with a production rule A→ BC. Let
j < |B| ≤ j + p2 − 1 be an occurrence of p2 in A. One can find the rightmost occurrence i ≤ j
of p1 such that i + |p1| − 1 < |B| in O(1) time.

Proof. Let (xB, yB) be p2-suffix information for B. By definition, j belongs to xByB. If j belongs
to yB, then i is the rightmost existing one of the following candidates:

1. The rightmost occurrence i′ ≤ j of p1 such that A[i...i + |p1|) is fully contained in yB

(which we can find in O(1) time using the predecessor array P );

2. The rightmost crossing occurrence i′ ≤ j of p1 for xB, yB (which we can find in O(1) time
by Observation 3.14);

3. The rightmost occurrence of p1 that is fully in xB (which we can find in O(1) time using
the predecessor array P );

4. The rightmost occurrence of p1 in B starting before xB (which we have precomputed).

If j is in xB, then i is the rightmost existing one of the following candidates:

• The rightmost occurrence i′ ≤ j of p1 such that A is fully contained in xB (which we can
find in O(1) time using the predecessor array P );
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• The rightmost crossing occurrence i′ ≤ j of p1 for xB, yB (which we can find in O(1) time
by Observation 3.14);

• The rightmost occurrence of p1 in B starting before xB.

It follows that i can be computed in constant time.

Definition 3.17 (Primary co-occurrence). Let A be a non-terminal of G associated with a
production A → BC. We say that a co-occurrence (i, j) of p1, p2 in A is primary if i ≤ |B| ≤
j + |p2| − 1.

For a node u of the parse tree of G, denote by off(u) the number of leaves to the left of the
subtree rooted at u.

Observation 3.18. Assume that p2 is not a substring of p1, and let (i, j) be a co-occurrence
of p1, p2 in the text. In the parse tree of G, there exists a unique node u such its label A is
associated with a production A→ BC, and (i− off(u), j − off(u)) is a primary co-occurrence of
p1, p2 in A.

Lemma 3.19. Assume that p2 is not a substring of p1 and that we are given the information
computed in Section 4.1. There is a O(g + m)-time algorithm that reports all primary co-
occurrences of p1 and p2 in the expansions of the non-terminals of G. If there is more than one
primary co-occurrence in the expansion of a non-terminal, they are output as a single arithmetic
progression.

Proof. Let A be a non-terminal associated with a production A→ BC. We consider three types
of co-occurrences of p1, p2 in A:

1. The occurrence of p1 is fully contained in B and the occurrence of p2 is fully contained in
C, or

2. The occurrence of p1 is a crossing occurrence for B, C and the occurrence of p2 is not, or

3. The occurrence of p2 is a crossing occurrence for B, C.

Let (i, j) be a co-occurrence of Type 1. It must have the property that i is the rightmost
occurrence of p1 fully contained in A[. . . |B| − 1], j is the leftmost occurrence of p2 in A[|B| . . . ],
and there are no occurrences of p1, p2 in between. As we store all crossing occurrences for B, C,
the rightmost occurrences of p1, p2 in B and the leftmost occurrences of p1, p2 in C, we can check
whether (i, j) exists and compute it in O(1) time by Observation 3.14.

A co-occurrence (i, j) of of Type 2 must satisfy the following properties:

1. j cannot be in A[. . . |B|− 1], since it is not a crossing occurrence and p2 is not a substring
of p1;

2. Since i and j are consecutive, and i is a crossing occurrence, i must be the rightmost
crossing occurrence and j must the leftmost occurrence of p2 in A[|B| . . . ] = C.

We retrieve i, the rightmost crossing occurrence of p1, and j, the leftmost occurrence of p2 in
A[|B| . . . ]. It remains to check that there is no occurrence of p1 in (i, j] and no occurrence of p2
in [i, j). If there is an occurrence of p1 in (i, j], it can only be the leftmost occurrence of p1 in
A[|B| . . . ] = C. If there is an occurrence of p2 in [i, j), it can only be a crossing occurrence for
A. Both conditions can be tested in constant time by Observation 3.14.
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A B C

j0

p2

d

j0 + d j∗ j0 + ℓ · di

p1

Figure 3.2: Co-occurrences with crossing occurrences of p2 forming an arithmetic progres-
sion.

For Type 3, consider two cases. First, consider the case when j is the leftmost crossing
occurrence. Let i′ ≤ j be the rightmost occurrence of p1 such that i′ + |p1| − 1 < |B|, which
we can find in O(1) time by Proposition 3.16 and i′′ be the rightmost crossing occurrence of p1
that is at most j, which we can find in O(1) time as well using Observation 3.14. By definition,
the only candidate for a co-occurrence containing j is (i = max{i′, i′′}, j). By construction of i′

and i′′, there can’t be any occurrence of p1 in (i, j] and it suffices to check whether there are
occurrences of p2 in [i, j). If there is such an occurrence, it must be the rightmost occurrence of
p2 in B, and we can check if it is the case in constant time.

Consider now the case when j is not the leftmost crossing occurrence of p2 for A. By
Corollary 2.2, all crossing occurrences of p2 form an arithmetic progression. Let j0 be the
leftmost occurrence, d be the difference and ℓ the length of this progression. By Corollary 2.2,
A[j0 . . . j0 + ℓ · d + |p2| − 1] is periodic with period d. Let 1 ≤ k ≤ ℓ be the largest such that
the occurrence j∗ = j0 + k · d forms a co-occurrence with an occurrence i of p1. By definition of
a co-occurrence, j0 ≤ j∗ − d < i ≤ j∗. Furthermore, since p2 is not a substring of p1, we have
i + |p1| − 1 < j∗ + |p2| − 1. Hence, by periodicity, (i− k′ · d, j∗ − k′ · d) is a co-occurrence for all
1−k ≤ k′ ≤ ℓ−k. (In particular, by maximality of j∗, we have j∗ = j0 + ℓ ·d.) Hence, it suffices
to find the co-occurrence for k′ = 1− k, i.e. to find the occurrence of p1 preceding j0 + d. This
can be done in constant time similarly to the case above. This case is illustrated in Figure 3.2.

By Fact 3.11, the algorithm takes O(g + m) time.

Finally, we report all co-occurrences of p1, p2 in the text given the primary co-occurrences
for the non-terminals of G. Using the approach of [328, Section 6.4], also used in Lemma 2.33 of
the previous Chapter, it can be done in O(g + output) time. Observation 3.18 guarantees that
we report all co-occurrences.

5 Gapped and Top-k Consecutive Pattern Matching
We now explain how to modify the algorithm to report only the co-occurrences with a bounded
gap (Corollary 3.2) and only the top-k co-occurrences in the text (Corollary 3.3).
Bounded-gap co-occurrences. We run the algorithm of Section 4 in O(g + m) time to gen-
erate a description of all primary co-occurrences (the elements of this description are single
co-occurrences and arithmetic progressions of co-occurrences with a fixed gap) and select the
elements of this description with a gap in [a, b]. For each selected element, we apply the ap-
proach of [328, Section 6.4]) to generate all co-occurrences with a gap in the interval [a, b] in
time O(g + m + output).
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Top-k co-occurrences. To report the top-k co-occurrences, we first generate a description of all
primary co-occurrences (the elements of this description are single co-occurrences and arithmetic
progressions of co-occurrences with a fixed gap) in O(g + m) time as in Section 4. Second,
we arrange the elements of the description in a heap in O(g) time sorted by the gaps. Then,
conceptually, we attach to each node of the heap a path containing the secondary co-occurrences
that originate from the element stored in the node. We finally select the k co-occurrences with
smallest gaps in O(k) time using Frederickson’s heap selection algorithm [46]. The algorithm
and its analysis requires the min-heap property, the fact that all nodes have constant degree,
and to have quick access to the children of an already visited node. The first two properties are
guaranteed by construction, and the method of [328, Section 6.4]) guarantees that the children
of an already visited node can be accessed in constant amortised time.

6 Proof of Lemma 3.10
Consider two strings s, t. Let x, y be p-suffix information of s and u, v p-prefix information of t.
To find all crossing occurrences of p in a string st, it suffices to look at occurrences in xyuv as
xy contains suffixp(s) and uv contains prefixp(t).

We can also assume that x is a prefix of p and v a suffix of p because there is an occurrence
of p in xyuv if and only if there is an occurrence of p in suffixp(x)yuprefixp(v). Here and below,
whenever we replace a string x with suffixp(x) and or a string v with prefixp(v), we assume to
compute them using Fact 3.11.

By Corollary 2.2, the crossing occurrences of p form a single arithmetic progression. We will
consider several cases and for each case will report an arithmetic progression of occurrences,
but in the end they can be merged into a single one. We repeatedly make use of the following
procedure:

Proposition 3.20. Let ℓ be a prefix of p, r a suffix of p, and c a concatenation of at most
three substrings of p. One can report all occurrences of p in ℓc starting at positions i ≤ |ℓ|/2
and all occurrences in cr ending at positions j ≥ |c|+ |r|/2 using a constant number of longest
common prefix and longest common suffix queries. The occurrences are output as an arithmetic
progression.

Proof. We show how to proceed for the occurrences in s = ℓc, the proof for the occurrences in
cr is symmetric. Assume that there is an occurrence of p at position i ≤ |ℓ|/2. As ℓ is a prefix
of p, i = α · d, where 0 ≤ α ≤ |ℓ|/2d is an integer and d is the period of ℓ.

After a classical shared linear-time preprocessing the period of any prefix of p can be ex-
tracted in O(1) time [16]. If d > |ℓ|/2, then the only candidate is i = 0 and we can test
whether p occurs at this position using a constant number of longest common prefix and suffix
queries. We now assume d ≤ |ℓ|/2. Let αmax ≤ |ℓ|/(2d) be the rightmost position such that
αmax · d + m ≤ |s|. If there are none, then |s| < m and there are no occurrences of p in s. Let
k ≥ |ℓ| be the rightmost position such that p[0 . . . k − 1] has period d; k can be computed by
one longest common prefix and suffix query on p and p[d . . . m − 1]. Furthermore, using O(1)
more longest common prefix and suffix queries, one can check if p[0 . . . k − 1] occurs at position
αmax · d and if not, compute the first mismatching position.

Consider first the case where p[0 . . . k − 1] occurs at position αmax · d. If k = m, then p
occurs at every position α · d with 0 ≤ α ≤ αmax. If k < m, then p cannot occur at a position
αd with α ≤ αmax by the maximality of k. It suffices to check if p occurs at position αmax · d
using O(1) longest common prefix and suffix queries and report it accordingly. Now assume
that p[0 . . . k − 1] does not occur at position αmax · d and let p[0 . . . i − 1] be the longest prefix
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starting at position αmax · d in s, meaning p[i] ̸= s[αmax · d + i]. By construction, d is a period
of s[0 . . . αmax · d + i− 1]. Consequently, no occurrence of p[0 . . . k− 1] in ℓc can cross position i,
meaning there is no occurrence of p in ℓc starting at position α · d with α · d + k > αmax · d + i.
Thus, occurrences can only be at positions α ·d ≤ αmax ·d + i−k. If k = m, by the d-periodicity
of s[0 . . . αmaxd + i− 1], any such position is valid and we can report the occurrences as a single
arithmetic progression. If k < m, the only possible candidate is the maximal α · d such that
α · d + k < αmax + i (by maximality of k), and we can check whether there is an occurrence of
p via O(1) longest common prefix and suffix queries as above, and report it accordingly.

We start by applying Proposition 3.20 on ℓ = x and c = yuv to report all occurrences starting
before |x|/2 and then apply it again on ℓ = suffixp(x[|x|/2 . . . ]) and c = yuv, which gives all
occurrences of p in xyuv starting before 3|x|/4. Symmetrically, we can report all occurrences of
p ending after |xyu|+ |v|/4.

It remains to report the occurrences of p in a string x′yuv′, where x′ = suffixp(x[3|x|/4 . . . ])
and v′ = prefixp(v[. . . |v|/4]). As |x|, |v| ≤ m, we have |x′|, |v′| ≤ m/4. For an occurrence i of p
in x′yuv′, consider three (overlapping) cases:

1. The occurrence is fully contained in x′yu;

2. The occurrence fully contains yu;

3. The occurrence is fully contained in yuv′.

Consider Case 1. By applying Proposition 3.20 on c = x′y and r = u, we can assume that
|u| ≤ m/2. We then have three subcases: (a) either an occurrence of p is fully contained in x′y,
or (b) it contains y, or (c) it is fully contained in yu. In Case 1(a), as |x′| ≤ m/4 and |y| ≤ m,
any occurrence of p in x′y ends in the second half of y and hence we can report all occurrences
by applying Proposition 3.20 once to x′ and prefixp(y). Case 1(c) is analogous. We repeat the
argument for Case 3. Thus, it remains to report all occurrences of p in a string h = efg, where
|e|, |g| ≤ m/4, e is a prefix of p, g is a suffix of p, such they fully contain f .

Recall that f is given by its starting and ending positions in p, let f = p[i . . . j]. If the length
of f is smaller than m/2, then |h| < m and there are no occurrences of p in h. Assume now that
|f | ≥ m/2.

By Corollary 3.6, after O(m)-time and O(m)-space preprocessing we can find the arithmetic
progression of the occurrences of f in p in constant time. If there are only two occurrences, we
test if they extend in e and g to an occurrence of p using two longest common prefix and suffix
queries.

Assume now that there are at least three occurrences. Let pmid be the minimal substring
of p which contains all occurrences of f . By Corollary 2.2, the period of pmid equals the period
of f , d. Let p = pleftpmidpright. Next, using two longest prefix and suffix queries, we compute
the maximal substring f ′ of h that starts and ends with an occurrence of f . Namely, by
Corollary 2.2, it suffices to check how far the periodicity in f extends beyond f : f ′ must be
periodic with period d, must fully contain f , and must start at a position |e|−α ·d and end at a
position |e|+ |f |+ α ·β for some integers α, β. Let h = e′f ′g′. By Corollary 2.2, the occurrences
of f in h start at positions |e′| + α · d for integer 0 ≤ α ≤ (|f ′| − |f |)/d. Hence, if pleft is not
empty, then the only possible position where p can occur in h is |e′| − |pleft|, and we can test
whether it is the case using O(1) longest common prefix and suffix queries. If pright is not empty,
then the only possible position where p can occur in h is |e′| + |f ′| − |pleftpmid|. Otherwise, if
both pleft and pright are empty, the arithmetic progression of occurrences of p = pmid in h is
simply |e′|+ α · d for 0 ≤ α ≤ (|f ′| − |pmid|)/d.
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Chapter 4
Run Reporting Over General Alphabets

This chapter corresponds to the extended version of the following publication: Jonas Ellert,
Pawel Gawrychowski, and Garance Gourdel, “Optimal Square Detection Over General Al-
phabets”, in: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms
(SODA 2023), ed. by Nikhil Bansal and Viswanath Nagarajan, SIAM, 2023, pp. 5220–
5242, doi: 10.1137/1.9781611977554.ch189. The results specific to this extended ver-
sion are the reporting of all runs in optimal time.

Publication

Squares (fragments of the form xx, for some string x) are arguably the most natural type of
repetition in strings. The basic algorithmic question concerning squares is to check if a given
string of length n is square-free, that is, does not contain a fragment of such form. Main and
Lorentz [J. Algorithms 1984] designed an O(n log n) time algorithm for this problem, and proved
a matching lower bound assuming the so-called general alphabet, meaning that the algorithm is
only allowed to check if two characters are equal. However, their lower bound also assumes that
there are Ω(n) distinct symbols in the string. As an open question, they asked if there is a faster
algorithm if one restricts the size of the alphabet. Crochemore [Theor. Comput. Sci. 1986]
designed a linear-time algorithm for constant-size alphabets, and combined with more recent
results his approach in fact implies such an algorithm for linearly-sortable alphabets. Very
recently, Ellert and Fischer [ICALP 2021] significantly relaxed this assumption by designing
a linear-time algorithm for general ordered alphabets, that is, assuming a linear order on the
characters that permits constant time order comparisons. However, the open question of Main
and Lorentz from 1984 remained unresolved for general (unordered) alphabets. In this paper, we
show that testing square-freeness of a length-n string over general alphabet of size σ can be done
with O(n log σ) comparisons, and cannot be done with o(n log σ) comparisons. We complement
this result with an O(n log σ) time algorithm in the Word RAM model. Finally, we extend the
algorithm to reporting all the runs (maximal repetitions) in the same complexity.

1 Introduction
The notion of repetition is a central concept in combinatorics on words and algorithms on strings.
In this context, a word or a string is simply a sequence of characters from some finite alphabet
Σ. In the most basic version, a repetition consists of two (or more) consecutive occurrences
of the same fragment. Repetitions are interesting not only from a purely theoretical point of
view, but are also very relevant in bioinformatics [89]. A repetition could be a square, defined
as two consecutive occurrences of the same fragment, a higher power (for example, a cube), or
a run, which is a length-wise maximal periodic substring. For example, both anan and nana are
squares with two occurrences each in banananas, and they belong to the same run ananana. In
this paper, we start by focusing on squares, then generalize our results for runs.

The study of squares in strings goes back to the work of Thue published in 1906 [1], who
considered the question of constructing an infinite word with no squares. It is easy to see that
any sufficiently long binary word must contain a square, and Thue proved that there exists an
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infinite ternary word with no squares. His result has been rediscovered multiple times, and in
1979 Bean, Ehrenfeucht and McNulty [19] started a systematic study of the so-called avoidable
repetitions, see for example the survey by Currie [97].
Combinatorics on words. The basic tool in the area of combinatorics on words is the so-
called periodicity lemma. A period of a string T [1..n] is an integer d such that T [i] = T [i + d]
for every i ∈ [1, n − d], and the periodicity lemma states that if p and q are both such periods
and p + q ≤ n + gcd(p, q) then gcd(p, q) is also a period [7]. This was generalised in a myriad
of ways, for strings [64, 67, 91], partial words (words with don’t cares) [62, 119, 78, 96, 75,
179, 356], Abelian periods[102, 167], parametrized periods [117], order-preserving periods [223,
315], approximate periods [137, 153, 192]. Now, a square can be defined as a fragment of length
twice its period. The string an contains Ω(n2) such fragments, thus from the combinatorial
point of view it is natural to count only distinct squares. Fraenkel and Simpson [59] showed
an upper bound of 2n and a lower bound of n − Θ(

√
n) for the maximum number of distinct

squares in a length-n string. After a sequence of improvements [112, 200, 325], the upper
bound was very recently improved to n [350]. The last result was already generalised to higher
powers [357]. Another way to avoid the trivial examples such as an is to count only maximal
periodic fragments, that is, fragments with period at most half of their length and that cannot
be extended to the left or to the right without breaking the period. Such fragments are usually
called runs. Kolpakov and Kucherov [65] showed an upper bound of O(n) on their number, and
this started a long line of work on determining the exact constant [108, 125, 120, 122, 130, 149],
culminating in the paper of Bannai et al. [235] showing an upper bound of n, and followed by
even better upper bounds for binary strings [202, 244]. This was complemented by a sequence
of lower bounds [121, 124, 135, 145].
Algorithms on strings. In this paper, we are interested in the algorithmic aspects of detecting
repetitions in strings. The most basic question in this direction is checking if a given length-n
string contains at least one square, while the most general version asks for computing all the
runs. Testing square-freeness was first considered by Main and Lorentz [27], who designed an
O(n log n) time algorithm based on a divide-and-conquer approach and a linear-time procedure
for finding all new squares obtained when concatenating two strings. In fact, their algorithm
can be used to find (a compact representation of) all squares in a given string within the same
time complexity. They also proved that any algorithm based on comparisons of characters
needs Ω(n log n) such operations to test square-freeness in the worst case. Here, comparisons of
characters means checking if characters at two positions of the input string are equal. However,
to obtain the lower bound they had to consider instances consisting of even up to n distinct
characters, that is, over alphabet of size n. This is somewhat unsatisfactory, and motivates the
following open question that was explicitly asked by Main and Lorentz [27]:

Question 1.1. Is there a faster algorithm to determine if a string is square-free if we restrict
the size of the alphabet?

Crochemore [22] gave another O(n log n) time algorithm for finding all repetitions, and also
showed that for constant-size alphabets testing square-freeness can be done in O(n) time [30].
In fact, the latter algorithm works in O(n log σ) time for alphabets of size σ with a linear order
on the characters. That is, it needs to test if the character at some position is smaller than the
character at another position. In the remaining part of the paper, we will refer to this model
as general ordered alphabet, while the model in which we can only test equality of characters
will be called general (unordered) alphabet. Later, Kosaraju [49] showed that in fact, assuming
constant-size alphabet, O(n) time is enough to find the shortest square starting at each position
of the input string. Apostolico and Preparata [24] provide another O(n log n) time algorithm
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assuming a general ordered alphabet, based more on data structure considerations than com-
binatorial properties of words. Finally, a number of alternative O(n log n) and O(n log σ) time
algorithms (respectively, for general unordered and general ordered alphabets) can be obtained
from the work on online [123, 182, 207] and parallel [51] square detection (interestingly, this
cannot be done efficiently in the related streaming model [299, 358]).

Faster algorithms for testing square-freeness of strings over general ordered alphabets were
obtained from more general results on finding all runs. Kolpakov and Kucherov [65] not only
proved that any length-n string contains only O(n) runs, but also showed how to find them
in the same time assuming linearly-sortable alphabet. Every square is contained in a run, and
every run contains at least one square, thus this in particular implies a linear-time algorithm
for testing square-freeness over such alphabets. For general ordered alphabets, Kosolobov [206]
showed that the decision tree complexity of this problem is only O(n), and later complemented
this with an efficient O(n(log n)2/3) time algorithm [220] (still using only O(n) comparisons).
The time complexity was then improved to O(n log log n) by providing a general mechanism for
answering longest common extension (LCE) queries for general ordered alphabets [216], and next
to O(nα(n)) by observing that the LCE queries have additional structure [213]. Finally, Ellert
and Fischer provided an elegant O(n) time algorithm, thus fully resolving the complexity of
square detection for general ordered alphabets. However, for general (unordered) alphabets the
question of Main and Lorentz remains unresolved, with the best upper bound being O(n log n),
and only known to be asymptotically tight for alphabets of size Θ(n).
General alphabets. While in many applications one can without losing generality assume
some ordering on the characters of the alphabet, no such ordering is necessary for defining what
a square is. Thus, it is natural from the mathematical point of view to seek algorithms that do
not require such an ordering to efficiently test square-freeness. Similar considerations have lead
to multiple beautiful results concerning the pattern matching problem, such as constant-space
algorithms [25, 42], or the works on the exact number of required equality comparisons [55]
More recent examples include the work of Duval, Lecroq, and Lefebvre [176] on computing the
unbordered conjugate/rotation, and Kosolobov [221] on finding the leftmost critical point.
Main results.

We consider the complexity of checking if a given string T [1..n] containing σ distinct charac-
ters is square-free. The input string can be only accessed by issuing comparisons T [i] ?= T [j], and
the value of σ is not assumed to be known. We start by analysing the decision tree complexity
of the problem. That is, we only consider the required and necessary number of comparisons,
without worrying about an efficient implementation. We show that, even if the value of σ is
assumed to be known, Ω(n log σ) comparisons are required.
Theorem 4.1. For any integers n and σ with 8 ≤ σ ≤ n, there is no deterministic algorithm
that performs at most n ln σ − 3.6n = O(n ln σ) comparisons in the worst case, and determines
whether a length-n string with at most σ distinct symbols from a general unordered alphabet is
square-free.

Next, we show that O(n log σ) comparisons are sufficient. We stress that the value of σ is not
assumed to be known. In fact, as a warm-up for the above theorem, we first prove that finding
a sublinear multiplicative approximation of this value requires Ω(nσ) comparisons. This does
not contradict the claimed upper bound, as we are only saying that the number of comparisons
used on a particular input string is at most O(n log σ), but might actually be smaller. Thus, it
is not possible to extract any meaningful approximation of the value of σ from the number of
used comparisons.
Theorem 4.2. Testing square-freenes of a length-n string that contains σ distinct symbols from
a general unordered alphabet can be done with O(n log σ) comparisons.
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The proof of the above result is not efficient in the sense that it only restricts the overall
number of comparisons, and not the time to actually figure out which comparisons should
be used. A direct implementation results in a quadratic time algorithm. We first show how
to improve this to O(n log σ + n log∗ n) time (while still keeping the asymptotically optimal
O(n log σ) number of comparisons), and finally to O(n log σ). In this part of the paper, we
assume the Word RAM model with word of length Ω(log n). We stress that the input string is
still assumed to consist of characters that can be only tested for equality, that is, one should think
that we are given oracle access to a functions that, given i and j, checks whether T [i] = T [j].

Theorem 4.3. Testing square-freeness of a length-n string that contains σ distinct symbols from
a general unordered alphabet can be implemented in O(n log σ) comparisons and time.

Finally, we also generalize this result to the computation of runs.

Theorem 4.4. Computing all runs in a length-n string that contains σ distinct symbols from a
general unordered alphabet can be implemented in O(n log σ) comparisons and time.

Altogether, our results fully resolve the open question of Main and Lorentz for the case of
general unordered alphabets and deterministic algorithms. We leave extending our lowerbound
to randomised algorithms as an open question.
Overview of the methods.

As mentioned before, Main and Lorentz [27] designed anO(n log n) time algorithm for testing
square-freeness of length-n strings over general alphabets. The high-level idea of their algorithm
goes as follows. They first designed a procedure for checking, given two strings x and y, if
their concatenation contains a square that is not fully contained in x nor y in O(|x|+ |y|) time.
Then, a divide-and-conquer approach can be used to detect a square in the whole input string
in O(n log n) total time. For general alphabets of unbounded size this cannot be improved,
but Crochemore [30] showed that, for general ordered alphabets of size σ, a faster O(n log σ)
time algorithm exists. The gist of his approach is to first obtain the so-called f -factorisation
of the input string (related to the well-known Lempel-Ziv factorisation), that in a certain sense
“discovers” repetitive fragments. Then, this factorisation can be used to apply the procedure of
Main and Lorentz on appropriately selected fragments of the input strings in such a way that
the leftmost occurrence of every distinct square is detected, and the total length of the strings
on which we apply the procedure is only O(n). The factorisation can be found in O(n log σ)
time for general ordered alphabets of size σ by, roughly speaking, constructing some kind of
suffix structure (suffix array, suffix tree or suffix automaton).

For general (unordered) alphabets, computing the f -factorisation (or anything similar) seems
problematic, and in fact we show (as a corollary of our lower bound on approximating the
alphabet size) that computing the f -factorisation or Lempel-Ziv-factorisation (LZ-factorisation)
of a given length-n string containing σ distinct characters requires Ω(nσ) equality tests. Thus,
we need another approach. Additionally, the O(n) time algorithm of Ellert and Fischer [333]
hinges on the notion of Lyndon words, which is simply not defined for strings over general
alphabets. Thus, at first glance it might seem that Θ(nσ) is the right time complexity for
testing square-freeness over length-n strings over general alphabets of size σ. However, due to
the Ω(n log n) lower bound of Main and Lorentz for testing square-freeness of length-n string
consisting of up to n distinct characters, one might hope for an O(n log σ) time algorithm when
there are only σ distinct characters.

We begin our paper with a lower bound of Θ(n log σ) for such strings. Intuitively, we show
that testing square-freeness has the direct sum property: n

σ instances over length-σ strings can
be combined into a single instance over length-n string. As in the proof of Main and Lorentz,
we use the adversarial method. While the underlying calculation is essentially the same, we
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need to appropriately combine the smaller instances, which is done using the infinite square-
free Prouhet-Thue-Morse sequence, and use significantly more complex rules for resolving the
subsequent equality tests. As a warm-up for the adversarial method, we prove that computing
any meaningful approximation of the number of distinct characters requires Ω(nσ) such tests,
and that this implies the same lower bound on computing the f -factorisation and the Lempel-Ziv
factorisation (if the size of the alphabet is unknown in advance).

We then move to designing an approach that uses O(n log σ) equality comparisons to test
square-freeness. As discussed earlier, one way of detecting squares uses the f -factorisation of the
string, which is similar to its LZ factorisation. However, as we prove in Corollary 4.10 and 4.11,
we cannot compute either of these factorisations over a general unordered alphabet in o(nσ)
comparisons. Therefore, we will instead use a novel type of factorisation, ∆-approximate LZ
factorisation, that can be seen as an approximate version of the LZ factorisation. Intuitively,
its goal is to “capture” all sufficiently long squares, while the original LZ factorisation (or f -
factorisation) captures all squares. Each phrase in a ∆-approximate LZ factorisation consists of
a head of length at most ∆ and a tail (possibly empty) that must occur at least once before, such
that the whole phrase is at least as long as the classical LZ phrase starting at the same position.
Contrary to the classical LZ factorisation, this factorisation is not unique. The advantage of our
modification is that there are fewer phrases (and there is more flexibility as to what they should
be), and hence one can hope to compute such factorisation more efficiently.

To design an efficient construction method for ∆-approximate LZ factorisation, we first show
how to compute a sparse suffix tree while trying to use only a few symbol comparisons. This
is then applied on a set of positions from a so-called difference cover with some convenient
synchronizing properties. Then, a ∆-approximate LZ factorisation allows us to detect squares
of length ≥ 8∆.

The first warm-up algorithm fixes ∆ depending on n and σ (assuming that σ is known), and
uses the approximate LZ factorisation to find all squares of length at least 8∆. It then finds
all the shorter squares by dividing the string in blocks of length 8∆, and applying the original
algorithm by Main and Lorentz on each block pair. Our choice of ∆ leads to O(n(lg σ + lg lg n))
comparisons.

The improved algorithm does not need to know σ, and instead starts with a large ∆ = Ω(n),
and then progressively decreases ∆ in at mostO(lg lg n) phases, where later phases detect shorter
squares. As soon as we notice that there are many distinct characters in the alphabet, by
carefully adjusting the parameters we can afford switching to the approach of Main and Lorentz
on sufficiently short fragments of the input string. Since we cannot afford Ω(n) comparisons
per phase, we use a deactivation technique, where whenever we perform a large number of
comparisons in a phase, we will discard a large part of the string in all following phases. More
precisely, during a given phase, we avoid looking for squares in a fragment fully contained in a
tail from an earlier phase. This leads to optimal O(n lg σ) comparisons.

The above approach uses an asymptotically optimal number of equality tests in the worst
case, but does not result in an efficient algorithm. The main bottleneck is constructing the sparse
suffix trees. However, it is not hard to provide an efficient implementation using the general
mechanism for answering LCE queries for strings over general alphabets [216]. Unfortunately,
the best known approach for answering such queries incurs an additional O(n log∗ n) in the time
complexity, even if the size of the alphabet is constant. We overcome this technical hurdle by
carefully deactivating fragments of the text to account for the performed work.

Many of our techniques can easily be modified to compute all runs rather than detecting
squares. We exploit that the approximate factorisation reveals long substrings with an earlier
occurrence. Hence we compute runs only for the first occurrence of such substrings, while for
later occurrences we simply copy the already computed runs. By carefully arranging the order
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of the computation, we ensure that the total time for copying is bounded by the number of runs,
which is known to be O(n). This way, we achieve O(n lg σ) time and comparisons to compute
all runs.

2 Preliminaries
Strings. A string of length n is a sequence T [1] . . . T [n] of characters from a finite alphabet
Σ of size σ. The substring T [i..j] is the string T [i] · · ·T [j], whereas the fragment T [i..j] refers
to the specific occurrence of T [i..j] starting at position i in T . If i > j, then T [i..j] is the
empty string. A suffix of T has the form T [i..n]. We say that a fragment T [i′..j′] is properly
contained in another fragment T [i..j] if i < i′ ≤ j′ < j. A substring is properly contained
in T [i..j], if it equals a fragment that is properly contained in T [i..j]. We write T [i..j) a
shortcut for T [i..j − 1]. Similarly, we write [i, j] = [i, j + 1) as a shortcut for the integer
interval {i, . . . , j}. Given two positions i ≤ j, their longest common extension (LCE) is the
length of the longest common prefix between suffixes T [i..n] and T [j..n], formally defined as
lce(i, j) = lce(j, i) = max{ℓ ∈ {0, . . . , n− j + 1} | T [i..i + ℓ) = T [j..j + ℓ)}.

Definition 4.5. A positive integer p is a period of a string T [1..n] if T [i] = T [i + p] for every
i ∈ {1, . . . n−p}. The smallest such p is called the period of T [1..n], and we call a string periodic
if its period p is at most n

2 .

Computational model. For a general unordered alphabet Σ, the only allowed operation on
the characters is comparing for equality. In particular, there is no linear order on the alphabet.
Unless explicitly stated otherwise, we will only use such comparisons. A general ordered alphabet
has a total order, such that comparisons of the type less-equals are possible.

In the algorithmic part of the paper, we assume the standard unit-cost Word RAM model
with words of length Ω(log n), but the algorithm is only allowed to access the input string T [1..n]
by comparisons T [i] ?= T [j], which are assumed to take constant time. We say that a string
of length n is over a linearly-sortable alphabet, if we can sort the n symbols of the string in
O(n) time. Note that whether or not an alphabet is linearly-sortable depends not only on the
alphabet, but also on the string. For example, the alphabet Σ = {1, . . . , mO(1)} is linearly-
sortable for strings of length n = Ω(m) (e.g., using radix sort), but it is unknown whether it
is linearly-sortable for all strings of length n = o(m) [82]. Our algorithm will internally use
strings over linearly-sortable alphabets. We stress that in such strings the characters are not
the characters from the input string, but simply integers calculated by the algorithm. Note that
every linearly-sortable alphabet is also a general ordered alphabet.
Squares and runs. A square is a length-2ℓ fragment of period ℓ. The following theorem is a
classical result by Main and Lorentz [27].

Theorem 4.6. Testing square-freenes of T [1..n] over a general alphabet can be implemented in
O(n log n) time and comparisons.

The proof of the above theorem is based on running a divide-and-conquer procedure using the
following lemma.

Lemma 4.7. Given two strings x and y over a general alphabet, we can test if there is a square
in xy that is not fully contained in x nor y in O(|x|+ |y|) time and comparisons.

A repetition is a length-ℓ fragment of period at most ℓ
2 . A run is a maximal repetition.

Formally, a repetition in T [1..n] is a triple ⟨s, e, p⟩ with s, e ∈ [1, n] and p ∈ [1, e−s+1
2 ] such that
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p is the smallest period of T [s..e]. A run is a repetition ⟨s, e, p⟩ that cannot be extended to the
left nor to the right with the same period, in other words s = 1 or T [s− 1] ̸= T [s− 1 + p] and
e = n or T [e + 1] ̸= T [e + 1− p]. The celebrated runs conjecture, proven by Bannai et al. [235],
states that the number of runs is any length-n string is less than n. Ellert and Fischer [333]
showed that all runs in a string over a general ordered alphabet can be computed in O(n) time.
As mentioned earlier, each run contains a square, and each square is contained in a run. Thus,
the string contains a square if and only if it contains a run, and it follows:
Theorem 4.8. Computing all runs (and thus testing square-freeness) of T [1..n] over a general
ordered alphabet can be implemented in O(n) time.

Lempel-Ziv factorisation. The unique LZ phrase starting at position s of T [1..n] is a fragment
T [s..e] such that T [s..(e − 1)] occurs at least twice in T [1..(e − 1)] and either e = n or T [s..e]
occurs only once in T [1..e]. The Lempel-Ziv factorisation of T consists of z phrases f1, . . . , fz

such that the concatenation f1 . . . fz is equal to T [1..n] and each fi is the unique LZ phrase
starting at position 1 +∑i−1

j=1 |fj |.
Tries. Given a collection S = {T1, . . . , Tk} of strings over some alphabet Σ, its trie is a rooted
tree with edge labels from Σ. For any node v, the concatenation of the edge labels from the root
to the node spells a string. The string-depth of a node is the length of the string that it spells.
No two nodes spell the same string, i.e., for any node, the labels of the edges to its children are
pairwise distinct. Each leaf spells one of the Ti, and each Ti is spelled by either an internal node
or a leaf.

The compacted trie of S can be obtained from its (non-compacted) trie by contracting each
path between a leaf or a branching node and its closest branching ancestor into a single edge
(i.e., by contraction we eliminate all non-branching internal nodes). The label of the new edge
is the concatenation of the edge labels of the contracted path in root to leaf direction. Since
there are at most k leaves and all internal nodes are branching, there are O(k) nodes in the
compacted trie. Each edge label is some substring Ti[s..e] of the string collection, and we can
avoid explicitly storing the label by instead storing the reference (i, s, e). Thus O(k) words are
sufficient for storing the compacted trie. Consider a string T ′ that is spelled by a node of the
non-compacted trie. We say that T ′ is explicit, if and only if it is spelled by a node of the
compacted trie. Otherwise T ′ is implicit.

The suffix tree of a string T [1..n] is the compacted trie containing exactly its suffixes, i.e., a
trie over the string collection {T [i..n] | i ∈ {1, . . . , n}}. It is one of the most fundamental data
structures in string algorithmics, and is widely used, e.g., for compression and indexing [57].
The suffix tree can be stored in O(n) words of memory, and for linearly-sortable alphabets it
can be computed in O(n) time [56]. The sparse suffix tree of T for some set B ⊆ {1, . . . , n} of
sample positions is the compacted trie containing exactly the suffixes {T [i..n] | i ∈ B}. It can
be stored in O(|B|) words of memory.

We assume that T is terminated by some special symbol T [n] = $ that occurs nowhere
else in T . This ensures that each suffix is spelled by a leaf, and we label the leaves with the
respective starting positions of the suffixes. Note that for any two leaves i ̸= j, their lowest
common ancestor (i.e., the deepest node that is an ancestor of both i and j) spells a string of
length lce(i, j).

3 Lower Bounds
In this section, we show lower bounds on the number of symbol comparisons required to com-
pute a meaningful approximation of the alphabet size (Section 3.1) and to test square-freeness
(Section 3.2). For both bounds we use an adversarial method, which we briefly outline now.
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The present model of computation may be interpreted as follows. An algorithm working on
a string over a general unordered alphabet has no access to the actual string. Instead, it can
only ask an oracle whether or not there are identical symbols at two positions. The number of
questions asked is exactly the number of performed comparisons. In order to show a lower bound
on the number of comparisons required to solve some problem, we describe an adversary that
takes over the role of the oracle, forcing the algorithm to perform as many symbol comparisons
as possible.

We use a conflict graph G = (V, E) with V = {1, . . . , n} and E ⊆ V 2 to keep track of the
answers given by the adversary. The nodes directly correspond to the positions of the string.
Initially, we have E = ∅ and all nodes are colorless, which formally means that they have
color γ(i) = ⊥. During the algorithm execution, the adversary may assign colors from the set
Σ = {0, . . . , n− 1} to the nodes, which can be seen as permanently fixing the alphabet symbol
at the corresponding position (i.e., each node gets colored at most once). The rule used for
coloring nodes depends on the lower bound that we want to show (we describe this in detail in
the respective sections). Apart from this coloring rule, the general behaviour of the adversary
is as follows. Whenever the algorithm asks whether T [i] = T [j] holds, the adversary answers
“yes” if and only if γ(i) = γ(j) ̸= ⊥. Otherwise, it answers “no” and inserts an edge (i, j) into
E. Whenever the adversary assigns the color of a node, it has to choose a color that is not
used by any of the adjacent nodes in the conflict graph. This ensures that the coloring does not
contradict the answers given in the past.

Let us define a set T ⊆ Σn of strings that is consistent with the answers given by the
adversary. A string T ∈ Σn is a member of T if

∀i ∈ V : γ(i) ∈ {⊥, T [i]} ∧ ∀i, j ∈ V : (T [i] = T [j]) =⇒ (i, j) /∈ E.

Note that T changes over time. Initially (before the algorithm starts), we have T = Σn.
With every question asked, the algorithm might eliminate some strings from T . However, there
is always at least on string in T , which can be obtained by coloring each colorless node in a
previously entirely unused color.

3.1 Approximating the Alphabet Size
Given a string T [1..n] of unknown alphabet size σ ≥ 2, assume that we want to compute an
approximation of σ. We show that if an algorithm takes at most nσ

8 comparisons in the worst-
case, then it cannot distinguish strings with at most σ distinct symbols from strings with at
least n

2 distinct symbols. Thus, any meaningful approximation of σ requires Ω(nσ) comparisons.
For the sake of the proof, consider an algorithm that performs at most nσ

8 comparisons
when given a length-n string with at most σ ≥ 2 distinct symbols. We use an adversary as
described at the beginning of Section 3, and ensure that the set T of strings consistent with
the adversary’s answers always contains a string with at most σ distinct symbols. Thus, the
algorithm terminates after at most nσ

8 comparisons. At the same time, we ensure that T also
contains a string with at least n

2 distinct symbols, which yields the desired result. The adversary
is equipped with the following coloring rule. All colors are from {1, . . . , σ}. Whenever the degree
of a node in the conflict graph becomes σ−1, we assign its color. We avoid the colors of the σ−1
adjacent nodes in the conflict graph. At any moment in time, we could hypothetically complete
the coloring by assigning one of the colors {1, . . . , σ} to each colorless node, avoiding the colors
of adjacent nodes. This way, each node gets assigned one of the σ colors, which means that T
contains a string with at most σ distinct symbols. It follows that the algorithm terminates after
at most nσ

8 comparisons. Each comparison may increase the degree of two nodes by one. Thus,
after nσ

8 comparisons, there are at most nσ
8 ·

2
σ−1 ≤

n
2 nodes with degree at least σ−1. Therefore,
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at least n
2 nodes are colorless. We could hypothetically color them in n

2 distinct colors, which
means that T contains a string with at least n

2 distinct symbols. This leads to the following
result.

Theorem 4.9. For any integers n and σ with 2 ≤ σ < n
2 , there is no deterministic algorithm

that performs at most nσ
8 equality-comparisons in the worst case, and is able to distinguish

length-n strings with at most σ distinct symbols from length-n strings with at least n
2 distinct

symbols.

The theorem implies lower bounds on the number of comparisons needed to compute the
LZ factorisation (as defined in Section 2) and the f -factorisation. In the unique f -factorisation
T = f1f2 . . . fz, each factor fi is either a single symbol that does not occur in f1 . . . fi−1, or it is
the fragment of maximal length such that fi occurs twice in f1 . . . fi.

Corollary 4.10. For any integers n and σ with 2 ≤ σ < n
4 , there is no deterministic algo-

rithm that performs at most (n−1)σ
16 equality-comparisons in the worst case, and computes the

f -factorisation of a length-n string with at most σ distinct symbols.

Proof. For some string T = T [1]T [2] . . . T [n
2 ] with σ distinct symbols, consider the length-n

string T ′ = T [1]T [1]T [2]T [2] . . . T [n
2 ]T [n

2 ] with σ distinct symbols constructed by doubling each
character of T . The alphabet size of T is exactly the number of length-one phrases in the f -
factorisation of T ′ starting at odd positions in T ′. Thus, by Theorem 4.9, we need nσ

16 = |T |σ
8

comparisons to find the f -factorisation of T ′. We assumed that n is even, and account for odd
n by adjusting the bound to (n−1)σ

16 .

Corollary 4.11. For any integers n and σ with 3 ≤ σ < n
6 + 1, there is no deterministic

algorithm that performs at most (n−2)(σ−1)
24 equality-comparisons in the worst case, and computes

the Lempel-Ziv factorisation of a length-n string with at most σ distinct symbols.

Proof. For some string T = T [1]T [2] . . . T [n
3 ] with σ− 1 distinct symbols, let T ′ be the length-n

string with σ distinct symbols constructed by doubling every character of T with a separator in
between, i.e., T ′ = T [1]T [1]#T [2]T [2]# . . . #T [n

3 ]T [n
3 ]#. The first occurrence of character x in

T corresponds to the first occurrence of xx# in T ′, thus the preceding phrase (possibly of length
one) ends at the first x in the first occurrence of xx#, and the subsequent phrase must be x#.
Then, for the later occurrences of xx# we cannot have that x# is a phrase. Consequently, the
alphabet size of T is exactly the number of length-two phrases in the Lempel-Ziv factorisation of
T ′ starting at positions i ≡ 2 (mod 3) in T ′. Thus, by Theorem 4.9, we need n(σ−1)

24 = |T |(σ−1)
8

comparisons to find the LZ factorisation of T ′. We assumed that n is divisible by 3, and account
for this by adjusting the bound to (n−2)(σ−1)

24 .

3.2 Testing Square-Freeness
In this section, we prove that testing square-freeness requires at least n ln σ− 3.6n comparisons
(even if σ is known). The proof combines the idea behind the original Ω(n lg n) lower bound by
Main and Lorentz [27] with the adversary described at the beginning of Section 3. This time,
we ensure that T always contains a square-free string with at most σ distinct symbols. At the
same time, we try to ensure that T also contains a string with at least one square. We will show
that we can maintain this state until at least n ln σ − 3n comparisons have been performed.

The string (or rather family of strings) constructed by the adversary is organized in
⌈

4n
σ

⌉
non-overlapping blocks of length σ

4 (we assume σ
4 ∈ N and 8 ≤ σ ≤ n). Each block begins with

a special separator symbol. More precisely, the first symbol of the k-th block is the k-th symbol
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Figure 4.1: Example conflict graph of the adversary described in Section 3.2. The alphabet
{0, . . . , 15} is of size σ = 16. The blocks are of length σ

4 = 4. The gray nodes are exactly
the starting positions of the blocks and contain the symbols of the ternary Thue-Morse
sequence v = 2, 1, 0, 2, 0, 1, 2, . . . , which is square-free. We assume that the colored nodes
were colored in the following order: 2, 6, 8, 7, 15, 16, 14. At the time of coloring node 8,
we had to avoid colors 0, 1, 2 (because they are reserved for the separator positions), 3
(because the adjacent node 2 already has color 3), and 4 (because node 6 is in the same
block and already has color 4). The algorithm has not eliminated all squares yet. For
example, nodes 10 and 11 with absent edge (10, 11) /∈ E are adjacent to nodes of colors
{3, 6, 5} ∪ {5, 3, 4}. Thus, any of the colors {0, 1, 2} ∪ {7, . . . , 15} can be assigned to both
nodes, enforcing the square T [10..11]. As visualized on the right, an edge of length ℓ
eliminates at most ℓ squares.

of a ternary square-free word over the alphabet {0, 1, 2} (e.g., the distance between the kth and
(k + 1)th occurrence of 0 in the Prouhet-Thue-Morse sequence, also known as the ternary Thue-
Morse-Sequence, see [58, Corollary 1]). Initially, the adversary colors the nodes that correspond
to the separator positions in their respective colors from {0, 1, 2}. All remaining nodes will later
get colors other than {0, 1, 2}. Any fragment crossing a block boundary can be projected on
the colors {0, 1, 2}, and by construction the string cannot contain a square. Thus, the separator
symbols ensure that there is no square crossed by a block boundary, which implies that the
string is square-free if and only if each of its blocks is square-free.

During the algorithm execution, we use the following coloring rule. The available colors are
{3, . . . , σ − 1}. Whenever the degree of a node becomes σ

4 , we assign its color. We avoid not
only the at most σ

4 colors of already colored neighbors in the conflict graph, but also the less
than σ

4 colors of nodes within the same block (due to σ ≥ 8, there are at least σ − 3 − σ
2 ≥ 1

colors available). An example of the conflict graph is provided in Fig. 4.1. At any moment in
time, we could hypothetically complete the coloring by assigning one of the colors {3, . . . , σ−1}
to each colorless node, avoiding colors of adjacent nodes and colors of nodes in the same block.
Afterwards, each node holds one of the σ colors, but no two nodes within the same block have
the same color. Thus, each block is square-free, and therefore T always contains a square-free
string with at most σ distinct symbols.

Now we consider the state of the conflict graph after the algorithm has terminated. We are
particularly concerned with consecutive ranges of colorless nodes. The following lemma states
that for each such range, the algorithm either performed many comparisons, or we can enforce
a square within the range.

Lemma 4.12. Let R = {i, . . . , j} ⊂ V be a consecutive range of m = j − i + 1 colorless nodes
in the conflict graph. Then either

∣∣E ∩R2∣∣ ≥ ∑⌊m/2⌋
ℓ=1

m−2ℓ+1
ℓ , or there is a string T ∈ T with

at most σ distinct symbols such that T [i..j] contains a square.

Proof. We say that an integer interval [x, x + 2ℓ − 1] with i ≤ x < (x + 2ℓ − 1) ≤ j has been
eliminated, if for some y with x ≤ y < x + ℓ there is an edge (y, y + ℓ) in the conflict graph. If
such an edge exists, then (by the definition of T ) all strings T ∈ T satisfy T [y] ̸= T [y + ℓ]. Thus
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T [x..x + 2ℓ− 1] is not a square for any of them.

Now we show that if [x, x + 2ℓ − 1] has not been eliminated, then there exists a string
T ∈ T such that T [x..x + 2ℓ − 1] is a square. For this purpose, consider any position y with
x ≤ y < x + ℓ, i.e., a position in the first half of the potential square. Since [x, x + 2ℓ − 1] has
not been eliminated, (y, y + ℓ) is not an edge in the conflict graph. It follows that we could
assign the same color to y and y + ℓ. We only have to avoid the at most 2 · (σ

4 − 1) colors of
adjacent nodes of both y and y + ℓ in the conflict graph. Thus there are σ

2 + 2 appropriate
colors that can be assigned to both nodes. Unlike during the algorithm execution, we do not
need to avoid the special separator colors or the colors in the same block; since we are trying
to enforce a square, we do not have to worry about accidentally creating one. By applying this
coloring scheme for all possible choices of y, we enforce that all strings T ∈ T have a square
T [x..x + 2ℓ− 1]. Note that by coloring additional nodes after the algorithm terminated, we only
remove elements from T . Thus, the strings with square T [x..x + 2ℓ− 1] were already in T when
the algorithm terminated. It follows that, if the algorithm actually guarantees square-freeness,
then it must have eliminated all possible intervals [x, x + 2ℓ− 1] with i ≤ x < (x + 2ℓ− 1) ≤ j.

While each interval needs at least one edge to be eliminated, a single edge eliminates multiple
intervals. However, all the intervals eliminated by an edge must be of the same length. Now we
give a lower bound on the number of edges needed to eliminate all intervals of length 2ℓ. Any
edge (y, y+ℓ) eliminates ℓ intervals, namely the intervals [x, x+2ℓ−1] that satisfy x ≤ y < x+ℓ.
Within R, we have to eliminate m−2ℓ+1 intervals of length 2ℓ, namely the intervals [x, x+2ℓ−1]
that satisfy i ≤ x ≤ j − 2ℓ + 1 (see right side of Fig. 4.1). Thus we need at least m−2ℓ+1

ℓ edges
to eliminate all squares of length 2ℓ. Finally, by summing over all possible values of ℓ, we
need at least ∑⌊m/2⌋

ℓ=1
m−2ℓ+1

ℓ edges to eliminate all intervals in R. Note that the edges used
for elimination have both endpoints in R, and are thus contained in E ∩ R2. Consequently, if∣∣E ∩R2∣∣ <

∑⌊m/2⌋
ℓ=1

m−2ℓ+1
ℓ , then not all intervals have been eliminated, and there is a string in

T that contains a square.

Finally, we show that the algorithm either performed at least Ω(n lg σ) comparisons, or there
is a string T ∈ T that contains a square. Let c1, c2, . . . , ck be exactly the colored nodes. Initially
(before the algorithm execution), the adversary colored

⌈
4n
σ

⌉
nodes. Thus k ≥

⌈
4n
σ

⌉
, and there

are k −
⌈

4n
σ

⌉
nodes that have been colored after their degree reached σ

4 . Therefore, the sum of
degrees of all colored nodes is at least (k −

⌈
4n
σ

⌉
) · σ

4 ≥
σk−4n−σ

4 ≥ σk−5n
4 . Each comparison

may increase the degree of two nodes by one. Thus, the colored nodes account for at least
σk−5n

8 comparisons. There are k non-overlapping maximal colorless ranges of nodes, namely
{ci + 1, . . . , ci+1− 1} for 1 ≤ i ≤ k with auxiliary value ck+1 = n + 1. According to Lemma 4.12,
each respective range accounts for ei = ∑⌊mi/2⌋

ℓ=1
mi−2ℓ+1

ℓ edges, where mi = ci+1 − ci − 1. (No
edge gets counted more than once because the ranges are non-overlapping, and both endpoints
of the respective edges are within the range.) Thus, in order to verify square-freeness, the
algorithm must have performed at least ∑k

i=1 ei + σk−5n
8 comparisons. The remainder of the

proof consists of simple algebra. First, we provide a convenient lower bound for ei (explained
below):
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ei =
⌊mi/2⌋∑

ℓ=1

mi − 2ℓ + 1
ℓ

=
⌈mi/2⌉∑

ℓ=1

mi − 2ℓ + 1
ℓ

≥ (mi + 1)

⌈mi/2⌉∑
ℓ=1

1
ℓ

− 1


> (mi + 1) · (ln mi

2 −
1
2)

= (mi + 1) · ln mi

2
√

e

≥ (mi + 1) · ln mi + 1
2.5
√

e

We can replace ⌊mi/2⌋ with ⌈mi/2⌉ because if mi is odd the additional summand equals zero.
The first inequality uses simple arithmetic operations. The second inequality uses the classical
lower bound (ln x + 1

2) < Hx of harmonic numbers. The last inequality holds for mi ≥ 4. For
mi < 4 the result becomes negative and is thus still a correct lower bound for the number of
comparisons. We obtain:

k∑
i=1

(mi + 1) · ln mi + 1
2.5
√

e︸ ︷︷ ︸
comparisons within colorless ranges

+ σk − 5n

8︸ ︷︷ ︸
comparisons for
colored nodes

≥ n · ln n

2.5
√

ek
+ σk − 5n

8

= n · ln σ

2.5
√

ex
+ xn− 5n

8

= n · ln σ + n ·
(

x− 5
8 − ln 2.5

√
ex

)
> n · ln σ − 3.12074n

The first step follows from ∑k
i=1(mi + 1) = n and the log sum inequality (see [103, Theorem

2.7.1]). In the second step we replace k by using x = σk
n . The third step uses simple arithmetic

operations. The last step is reached by substituting x = 8, which minimizes the equation.
Finally, we assumed that σ is divisible by 4. We account for this by adjusting the lower bound
to n ln(σ − 3)− 3.12074n, which is larger than n ln σ − 3.6n for σ ≥ 8.

Theorem 4.1. For any integers n and σ with 8 ≤ σ ≤ n, there is no deterministic algorithm
that performs at most n ln σ − 3.6n = O(n ln σ) comparisons in the worst case, and determines
whether a length-n string with at most σ distinct symbols from a general unordered alphabet is
square-free.

4 Upper Bound
In this section, we consider the problem of testing square-freeness of a given string. We in-
troduce an algorithm that decides whether or not a string is square-free using only O(n lg σ)
comparisons, matching the lower bound from Section 3.2. Note that this algorithm is not yet
time efficient because, apart from the performed symbol comparisons, it uses other operations
that are expensive in the Word RAM model. A time efficient implementation of the algorithm
will be presented in Section 5, where we first achieve O(n lg σ +n log∗ n) time, and then improve
this to O(n lg σ) time. In Section 6, we generalize the result to compute all runs in the same
time complexity.
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4.1 Sparse Suffix Trees and Difference Covers
Lemma 4.13. The sparse suffix tree containing any b suffixes T [i1..n], . . . , T [ib..n] of T [1..n] can
be constructed using O(bσ log b) comparisons plus O(n) comparisons shared by all invocations of
the lemma.

Proof. We maintain a union-find structure over the positions of T [1..n]. Initially, each position is
in a separate component. Before issuing a query T [x] ?= T [y], we check if x and y are in the same
component of the union-find structure, and if so immediately return that T [x] = T [y] without
performing any comparisons. Otherwise, we issue the query and if it returns that T [x] = T [y]
we merge the components of x and y. Thus, the total number of issued queries with positive
answer, over all invocations of the lemma, is less than n, and it remains to bound the number
of issued queries with negative answer.

We insert the suffixes T [ij ..n] one-by-one into an initially empty sparse suffix tree. To insert
the next suffix, we descend from the root of the tree to identify the node u that corresponds to the
longest common prefix between T [ij ..n] and any of the already inserted suffixes. We then make
u explicit unless it is explicit already, and add an edge from u to a new leaf corresponding to the
whole T [ij ..n]. We say that the insertion procedure terminates at u. Node u can be identified
with only O(σ log b) comparisons with negative answers as follows. Let v be the current node
(initially, the root of the tree), and let v1, . . . , vd be its children, where d ≤ σ. Here, v can be
either explicit or implicit, in the latter case d = 1. We arrange the children of v so that the
number of leaves in the subtree rooted at v1 is at least as large as the number of leaves in the
subtree rooted at any other child of v. Then, we compare the character on the edge leading to
v1 with the corresponding character of the current suffix. If they are equal we continue with v1,
otherwise we compare the characters on the edges leading to v2, . . . , vd with the corresponding
character of the current suffix one-by-one. Then, we either continue with some vj , j ≥ 2, or
terminate at v. To bound the number of comparisons with negative answer, observe that such
comparisons only occur when we either terminate at v or continue with vj , j ≥ 2. Whenever
we continue with vj , j ≥ 2, the number of leaves in the current subtree rooted at vj decreases
at least by a factor of 2 compared to subtree rooted at v (as the subtree rooted at v1 had the
largest number of leaves). Thus, during the whole descent from the root performed during an
insertion this can happen only at most 1 + log b times. Every time we do not continue in the
subtree v1 we might have up to d ≤ σ comparisons with negative answer, thus the total number
of such comparisons is as claimed1.

Now we describe the sample positions that we will later use to compute the approximate
LZ factorisation. A set S ⊆ N is called a t-cover of {1, . . . , n} if there is a constant-time
computable function h such that, for any 1 ≤ i, j ≤ n − t + 1, we have 0 ≤ h(i, j) < t and
i + h(i, j), j + h(i, j) ∈ S. A possible construction of t-covers is given by the lemma below, and
visualized in Fig. 4.2.

Lemma 4.14. For any n and t ≤ n, there exists a t-cover D(t) of {1, . . . , n} with size O(n/
√

t).
Furthermore, its elements can be enumerated in time proportional to their number.

Proof. We use the well-known combinatorial construction known as difference covers, see
e.g. [29]. Let r = ⌊

√
t⌋ and define D(t) = {i ∈ {1, . . . , n} : i mod r = 0 or i mod r2 ∈

{0, . . . , r − 1}}. By definition, |D(t)| ≤ ⌊n/r⌋ + ⌊n/r2⌋r = O(n/r) = O(n/
√

t). The func-
tion h(i, j) is defined as a + b · r, where a = (r − i) mod r and b = (r − ⌊(j + a)/r⌋) mod r.

1In the descent, if all children are sorted according to their subtree size, the number of comparisons
decreases to O(b(σ/ log σ) log b), but this appears irrelevant for our final algorithm.
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∆
√

∆

Figure 4.2: Positions in a ∆-difference cover.

T =
s e

T [s..e)︸ ︷︷ ︸T [s..e)

T [s..e] occurs exactly once in T [1..e]

T [s..e) occurs at least twice in T [1..e)

(a) A standard LZ phrase T [s..e].

T =
s

s+d < s+∆
↓ ee′

LZ phrase
head tail T [s+d..e]

︸ ︷︷ ︸
T [s+d..e]

T [s..e′] occurs exactly once in T [1..e′]

T [s+d..e] occurs at least twice in T [1..e]

(b) A ∆-approximate phrase T [s..e]. The (stan-
dard) LZ phrase at position s is T [s..e′], and it
holds e′ − 1 < e.

Figure 4.3: Illustration of the definition of a LZ-phrase and a ∆-approximate phrase.

Note that i + h(i, j) ≤ n and j + h(i, j) ≤ n. Then, i + (a + b · r) = 0 (mod r), while
⌊(j + (a + b · r))/r⌋ = ⌊(j + a)/r + b⌋ = 0 mod r implies j + h(i, j) mod r2 ∈ {0, . . . , r − 1}},
thus i + h(i, j), j + h(i, j) ∈ D(t) as required.

4.2 Detecting Squares with a ∆-Approximate LZ Factorisation
A crucial notion in our algorithm is the following variation on the standard Lempel-Ziv factori-
sation:

Definition 4.15 (∆-approximate LZ factorisation). For a positive integer parameter ∆, the
fragment T [s..e] is a ∆-approximate LZ phrase if it can be split into a head and a tail T [s..e] =
head(T [s..e])tail(T [s..e]) such that |head(T [s..e])| < ∆ and additionally

• tail(T [s..e]) is either empty or occurs at least twice in T [1..e], and

• the unique (standard) LZ phrase T [s..e′] starting at position s satisfies e′ − 1 ≤ e.

In a ∆-approximate LZ factorisation T = b1b2 . . . bz, each factor bi is a ∆-approximate phrase
T [s..e] with s = 1 +∑i−1

j=1 |bj | and e = ∑i
j=1 |bj |.

Note that a standard LZ phrase is not a ∆-approximate phrase. Also, while the LZ phrase
starting at each position (and thus also the LZ factorisation) is uniquely defined, there may
be multiple different ∆-approximate phrases starting at each position. This also means that a
single string can have multiple different ∆-approximate factorisations. The definitions of both
standard and ∆-approximate LZ phrases are illustrated in Fig. 4.3.

The intuition behind the above definition is that constructing the ∆-approximate LZ factori-
sation becomes easier for larger values of ∆. In particular, for ∆ = n one phrase is enough. We
formalise this in the following lemma, which is made more general for the purpose of obtaining
the final result in this section.
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Lemma 4.16. For any parameter ∆ ∈ [1, m], a ∆-approximate LZ factorisation of any fragment
T [x..y] of length m can be computed with O(mσ log m/

√
∆) comparisons plus O(n) comparisons

shared by all invocations of the lemma.

Proof. By Lemma 4.14, there exists a ∆-cover D(∆) of {1, . . . , n} with size O(n/
√

∆). Let
S = D(∆) ∩ {x, x + 1, . . . , y}. Let S = {i1, i2, . . . , ib}. It is straightforward to verify that the
construction additionally guarantees b = O(m/

√
∆). We apply Lemma 4.13 on the suffixes

T [i1..n], . . . , T [ib..n] to obtain their sparse suffix tree T with O(bσ log b) comparisons plus O(n)
comparisons shared by all invocations of the lemma. T allows us to obtain the longest common
prefix of any two fragments T [i..y] and T [j..y], for i, j ∈ S, with no additional comparisons. By
the properties of D(∆), for any i, j ∈ {x, x + 1, . . . , y − ∆ + 1} we have 0 ≤ h(i, j) < ∆ and
i + h(i, j), j + h(i, j) ∈ S.

We compute the ∆-approximate LZ factorisation of T [x..y] phrase-by-phrase. Denoting the
remaining suffix of the whole T [x..y] by T [x′..y], we need to find x′ ≤ y′ ≤ y such that T [x′..y′]
is a ∆-approximate phrase. This is done as follows. We iterate over every x′ ≤ x′′ < x′ +∆ such
that x′′ ∈ S. For every such x′′, we consider every x ≤ a′ < x′ such that a′ ∈ S, and compute
the length ℓ of the longest common prefix of T [x′′..y] and T [a′..y]. Among all such x′′, a′ we
choose the pair that results in the largest value of x′′− x′ + ℓ− 1 and choose the next phrase to
be T [x′..(x′′ + ℓ−1)], with the head being T [x′..(x′′−1)] and the tail T [x′′..(x′′ + ℓ)−1]. Finally,
if there is no such pair, or the value of x′′ − x′ + ℓ − 1 corresponding to the found pair is less
than ∆−2, we take the next phrase to be T [x′.. min{x′ + ∆−1, y}] (with empty tail). Selecting
such a pair requires no extra comparisons, as for every x′′, a′ ∈ S we can use the sparse suffix
tree to compute ℓ. While it is clear that the generated ∆-approximate phrase has the required
form, we need to establish that it is sufficiently long.

Let T [x′..y′′] be the (unique) standard LZ phrase of T [x..y] that is prefix of T [x′..y]. If
y′′ < x′ + ∆ − 1 then we only need to ensure that the generated ∆-approximate phrase is of
length at least min{∆−1, y−x′ +1}, which is indeed the case. Therefore, it remains to consider
the situation when y′′ ≥ x′ + ∆ − 1. Let T [a..b] be the previous occurrence of T [x′..(y′′ − 1)]
in T [x..y] (because T [x′..y′′] is a phrase this is well defined). Thus, T [a..b] = T [x′..(y′′ − 1)]
and a < x′. Because y′′ ≥ x′ + ∆ − 1 and y′′ ≤ y, as explained above 0 ≤ h(a, x′) < ∆ and
a + h(a, x′), x′ + h(a, x′) ∈ S. We will consider x′′ = x′ + h(a, x′) and a′ = a + h(a, x′) in the
above procedure. Next, T [a′..b] = T [x′′..(y′′ − 1)], so when considering this pair we will obtain
ℓ ≥ |T [x′′..(y′′ − 1)]|. Thus, for the found pair we will have x′′ + ℓ − 1 ≥ y′′ − 1 as required in
the definition of a ∆-approximate phrase.

Next, we show that even though the ∆-approximate LZ factorisation does not capture all
distinct squares, as it is the case for the standard LZ factorisation, it is still helpful in detecting
all sufficiently long squares. A crucial component is the following property of the ∆-approximate
LZ factorisation.

Lemma 4.17. Let b1b2 . . . bz be a ∆-approximate LZ factorisation of a string T . For every
square T [s..s + 2ℓ− 1] of length 2ℓ ≥ 8∆, there is at least one phrase bi with |tail(bi)| ≥ ℓ

4 ≥ ∆
such that tail(bi) and the right-hand side T [s + ℓ..s + 2ℓ− 1] of the square intersect.

Proof. Assume that all tails that intersect T [s + ℓ..s + 2ℓ− 1] are of length less than ℓ
4 , then the

respective phrases of these tails are of length at most ℓ
4 +∆−1 (because each head is of length less

than ∆). This means that T [s+ℓ..s+2ℓ−1] intersects at least
⌈
ℓ/( ℓ

4 + ∆− 1)
⌉
≥
⌈
ℓ/( ℓ

2 − 1)
⌉

= 3
phrases. Thus there is some phrase bi = T [x..y] properly contained in T [s + ℓ..s + 2ℓ − 1],
formally s + ℓ < x ≤ y < s + 2ℓ − 1. However, this contradicts the definition of the ∆-
approximate LZ factorisation because T [x..s + 2ℓ] is the prefix of a standard LZ phrase (due to
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T [x..s + 2ℓ− 1] = T [x− ℓ..s + ℓ− 1]), and the ∆-approximate phrase bi = T [x..y] must satisfy
y ≥ s + 2ℓ− 1. The contradiction implies that T [s + ℓ..s + 2ℓ− 1] intersects a tail of length at
least ℓ

4 ≥ ∆.

Lemma 4.18. Given a ∆-approximate LZ factorisation T = b1b2 . . . bz, we can detect a square
of size ≥ 8∆ in O

(∑
|tail(bi)|≥∆ |tail (bi)|+ z

)
time and O

(∑
|tail(bi)|≥∆ |tail (bi)|

)
comparisons.

Proof. We consider each phrase bi = T [a1..a3] with head(bi) = T [a1..a2 − 1] and tail(bi) =
T [a2..a3] separately. Let k = |tail(bi)|. If k ≥ ∆, we apply Lemma 4.7 to x1 = T [a2− 8k..a2− 1]
and y1 = T [a2..a3 + 4k − 1], as well as x2 = T [a2 − 8k..a3 − 1] and y2 = T [a3..a3 + 4k − 1]
trimmed to T [1..n]. This takes O(|tail(bi)|) time and comparisons, or O

(∑
|tail(bi)|≥∆ |tail (bi)|

)
time and comparisons for all phrases. We need additional O(z) time to check if k ≥ ∆ for each
phrase.

Now we show that the described strategy detects a square of size at least 8∆. Let T [s..s +
2ℓ − 1] be any such square. Due to Lemma 4.17, the right-hand side T [s + ℓ..s + 2ℓ − 1] of
this square intersects some tail tail(bi) = T [a2..a3] of length k = |tail(bi)| ≥ ℓ

4 ≥ ∆. Due to the
intersection, we have a2 ≤ s + 2ℓ − 1 and a3 ≥ s + ℓ. Thus, when processing bi and applying
Lemma 4.7, the starting position of x1 and x2 satisfies a2 − 8k ≤ s + 2ℓ− 1− 8 ℓ

4 = s− 1, while
the end position of y1 and y2 satisfies a3 + 4k − 1 ≥ s + ℓ + 4 ℓ

4 − 1 = s + 2ℓ − 1. Therefore,
the square is entirely contained in the respective fragments corresponding to x1y1 and x2y2. If
s < a2 ≤ s + 2ℓ− 1, we find the square with our choice of x1 and y1. If s < a3 ≤ s + 2ℓ− 1, we
find the square with our choice of x2 and y2. Otherwise, T [s..s + 2ℓ− 1] is entirely contained in
tail T [a2..a3], and we find another occurrence of the square further to the left.

4.3 Simple Algorithm for Detecting Squares
Now we have all the tools to introduce our simple method for testing square-freeness of T [1..n]
using O(n(log σ + log log n)) comparisons, assuming that σ is known in advance. Let ∆ =
(σ log n)2. We partition T [1..n] into blocks of length 8∆, and denote the kth block by Bk. A
square of length at most 8∆ can be found by invoking Theorem 4.6 on B1B2, B2B3, and so
on. This takes O(∆ log ∆) = O(∆(log σ + log log n)) comparisons for each pair of adjacent
blocks, or O(n(log σ + log log n)) comparisons in total. It remains to test for squares of length
exceeding 8∆. This is done by first invoking Lemma 4.16 to compute a ∆-approximate LZ
factorisation of T [1..n] with O(nσ log n/

√
∆) = O(n) comparisons, and then using Lemma 4.18,

which adds another O(n) comparisons. The total number of comparisons is dominated by the
O(n(log σ + log log n)) comparisons needed to apply Theorem 4.6 to the block pairs.

4.4 Improved Algorithm for Detecting Squares
We are now ready to describe the algorithm that uses only O(n log σ) comparisons without
knowing the value of σ. Intuitively, we will proceed in phases, trying to “guess” the value of σ.
We first observe that Lemma 4.16 can be extended to obtain the following.

Lemma 4.19. There is an algorithm that, given any parameter ∆ ∈ [1, m], estimate σ̃ and
fragment T [x..y] of length m, uses O(mσ̃ log m/

√
∆) comparisons plus O(n) comparisons shared

by all invocations of the lemma, and either computes a ∆-approximate LZ factorisation of T [x..y]
or determines that σ > σ̃.

Proof. We run the procedure described in the proof of Lemma 4.16 and keep track of the num-
ber of comparisons with negative answer. As soon as it exceeds O(mσ̃ log m/

√
∆) (where the
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constant follows from the complexity analysis) we know that necessarily σ > σ̃, so we can termi-
nate. Otherwise, the algorithm obtains a ∆-approximate LZ factorisation withO(mσ̃ log m/

√
∆)

comparisons. Comparisons with positive answer are paid for globally.

Now we describe how to find any square using O(n lg σ) comparisons. We define the sequence
σt = 22⌈log log n⌉−t , for t = 0, 1, . . . , ⌈log log n⌉. We observe that σt−1 = (σt)2, and proceed in
phases corresponding to the values of t. In the tth phase we are guaranteed that any square
of length at least (σt)2 has been already detected, and we aim to detect square of length less
than (σt)2, and at least σt. We partition the whole T [1..n] into blocks of length (σt)2, and
denote the kth block by Bk. A square of length less than (σt)2 is fully contained within some
two consecutive blocks BiBi+1, hence we consider each such pair B1B2, B2B3, and so on. We
first apply Lemma 4.19 with ∆ = σt/8 and σ̃ = (σt)1/4/ log(σt) to find an (σt/8)-approximate
LZ factorisation of the corresponding fragment of T [1..n], and then use Lemma 4.18 to detect
squares of length at least σt. We cannot always afford to apply Lemma 4.18 to all block pairs.
Thus, we have to deactivate some of the blocks, which we explain when analysing the number
of comparisons performed by the algorithm. If any of the calls to Lemma 4.19 in the current
phase detects that σ > σ̃, we switch to applying Theorem 4.6 on every pair of blocks BiBi+1 of
the current phase and then terminate the whole algorithm.

We now analyse the total number of comparisons, ignoring the O(n) comparisons shared
by all invocations of Lemma 4.19. Throughout the tth phase, we use O(n · σ̃ log σt/

√
∆) =

O(n · (σt)1/4/ log(σt) · log(σt)/
√

σt) = O(n/(σt)1/4) comparisons to construct the ∆-approximate
factorisations (using Lemma 4.19) until we either process all pairs of blocks or detect that σ >
(σt)1/4/ log(σt). In the latter case, we finish off the whole computation with O(n log(σt)) com-
parisons (using Theorem 4.6), and by assumption on σ this is O(n log σ) as required. Until this
happens (or until we reach phase t = ⌈log log n⌉ − 3 where σt ≤ 256), we use O(∑t′

t=0 n/(σt)1/4)
comparisons to construct the ∆-approximate factorisations, for some 0 ≤ t′ ≤ ⌈log log n⌉. To
analyse the sum, we need the following bound (made more general for the purpose of the next
section).

Lemma 4.20. For any 0 ≤ x ≤ y and c ≥ 0 we have
∑y

i=x 2ic/22i = O(2xc/22x).

Proof. We observe that the sequence of exponents 2i is strictly increasing from i = 0, hence
y∑

i=x

2ic

22i ≤
2y∑

i=2x

ic

2i
≤

∞∑
i=2x

ic

2i
=

∞∑
i=0

(2x + i)c

2(2x+i) ≤
∞∑

i=0

2xc · (i + 1)c

2(2x+i) = 2xc

22x ·
∞∑

i=0

(i + 1)c

2i
.

∑∞
i=0

(i+1)c

2i is a series of positive terms, we thus use Alembert’s ratio test (i+2)c

2i+1 · 2i

(i+1)c = 1
2

(i+2)c

(i+1)c

which tends to 1
2 when i goes to the infinity, thus the series converges to a constant.

Corollary 4.21. For any 0 ≤ t′ ≤ ⌈log log n⌉, it holds that
∑t′

t=0 n ·polylog(σt)/(σt)1/4 = O(n).

Proof. We have to show that ∑t′
t=0 n logc(σt)/(σt)1/4) = O(n) for any constant c ≥ 0. We

achieve this by splitting the sum and applying Lemma 4.20.

t′∑
t=0

n logc(σt)
(σt)1/4 ≤

⌈log log n⌉∑
t=0

n · (2⌈log log n⌉−t)c

(22⌈log log n⌉−t)1/4 =
⌈log log n⌉∑

t=0

n · (2t)c

(22t)1/4

= n ·
⌈log log n⌉∑

t=0

2tc

22t−2 = n ·

 1
22−2 + 2c

22−1 + 4 ·
⌈log log n⌉−2∑

t=0

2tc

22t

 = O(n)

Thus, all invocations of Lemma 4.19 cause O(∑t′
t=0 n/(σt)1/4) = O(n) comparisons.
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Deactivating Block Pairs

It remains to analyse the number of comparisons used by Lemma 4.18 throughout all phases.
As mentioned earlier, we cannot actually afford to apply Lemma 4.18 to all block pairs. Thus,
we introduce a mechanism that deactivates some of the pairs.

First, note that there are O(∑t′
t=0 n/(σt)2) ⊆ O(∑t′

t=0 n/(σt)1/4) = O(n) block pairs in all
phases. For each pair, we store whether it has been deactivated or not, where being deactivated
broadly means that we do not have to investigate the pair because it does not contain a leftmost
distinct square. For each block pair BiBi+1 in the current phase t, we first check if it has been
marked as deactivated. If not, we also check if it has been implicitly deactivated, i.e., if any of
the two pairs from the previous phase that contain BiBi+1 are marked as deactivated. If BiBi+1
has been implicitly deactivated, then we mark it as deactivated and do not apply Lemma 4.19
and Lemma 4.18 (the implicit deactivation serves the purpose of propagating the deactivation
to all later phases). Note that if some position of the string is not contained in any active block
pair in some phase, then it is also not contained in any active block pair in all later phases. This
is because it always holds that σt−1 = (σt)2 (with no rounding required), which guarantees that
block boundaries of earlier phases do not intersect blocks of later phases.

We only apply Lemma 4.19 and then Lemma 4.18 to BiBi+1 if the pair has neither explicitly
nor implicitly been deactivated. When applying Lemma 4.18, a tail T [a..a + ℓ) contributes O(ℓ)
comparisons if ℓ ≥ ∆ = σt/8 (and otherwise it contributes no comparisons). As the whole
T [a..a + ℓ) occurs earlier, it cannot contain the leftmost occurrence of a square in the whole
T . Thus, any block pair (of any phase) contained in T [a..a + ℓ) also cannot contain such an
occurrence, and thus such block pairs can be deactivated.

The mechanism used for deactivation works as follows. Let T [a..a + ℓ) be a tail contributing
O(ℓ) comparisons with ℓ ≥ ∆ = σt/8 in phase t. We mark all block pairs of phase t + 2 that are
entirely contained in T [a..a + ℓ) as deactivated. Note that blocks in phase t + 2 are of length√

σt, and consider the fragment T [a + 2√σt..a + ℓ − 2√σt). In phase t + 2, and by implicit
deactivation in all later phases, this fragment overlaps (either partially or fully) only block pairs
that have been deactivated. Thus, after phase t + 1, we will never inspect any of the symbols in
T [a + 2√σt..a + ℓ− 2√σt) again. We say that tail T [a..a + ℓ) deactivated the fragment of length
ℓ − 4√σt = Ω(ℓ), which is positive until phase t = ⌈log log n⌉ − 3 because σt > 256. Since the
number of deactivated positions is linear in the number of comparisons that the tail contributes
to Lemma 4.18, it suffices to show that each position gets deactivated at most a constant number
of times. In a single phase, any position gets deactivated at most twice. This is because the
tails of each factorisation do not overlap by definition, but the tails of the two factorisations of
adjacent block pairs BiBi+1 and Bi+1Bi+2 can overlap. If a position gets deactivated for the
first time in phase t, then (as explained earlier) we will not consider it in any of the phases
t′ ≥ t + 2. Thus, it can only be that we deactivate the position again in phase t + 1, but not in
any later phases. In total, each position gets deactivated at most four times. Hence Lemma 4.18
contributes O(n) comparisons in total.

We have shown:

Theorem 4.2. Testing square-freenes of a length-n string that contains σ distinct symbols from
a general unordered alphabet can be done with O(n log σ) comparisons.

5 Algorithm
In this section we show how to implement the approach described in the previous section to
work in O(n log σ) time. The main difficulty is in efficiently implementing the sparse suffix tree
construction algorithm, and then computing a ∆-approximate factorisation. We first how to
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obtain an O(n log σ + n log∗ n) time algorithm that still uses only O(n log σ) comparisons, and
then further improve its running time to O(n log σ).

5.1 Constructing the Suffix Tree and ∆-Approximate Factori-
sation

To give an efficient algorithmic construction of the sparse suffix tree from Lemma 4.13, we will
use a restricted version of LCEs, where a query ShortLCEx(i, j) (for any positive integer x)
returns min(x, lce(i, j)). The following result was given by Gawrychowski et al. [216]:

Lemma 4.22 (Lemma 14 in [216]). For a length-n string over a general unordered alphabet2,
a sequence of q queries ShortLCE4ki for i ∈ {1, . . . , q} can be answered online in total time
O(n log∗ n + s) and O(n + q) comparisons3, where s = ∑q

i=1(ki + 1).

In the lemma, apart from theO(n log∗ n) time, each ShortLCE4ki query accounts forO(ki+1)
time. Note that we can answer the queries online, without prior knowledge of the number and
length of the queries. Also, computing an LCE in a fragment T [x..y] of length m trivially reduces
to a ShortLCE4⌈log4 m⌉ query on T . Thus, we have:

Corollary 4.23. A sequence of q longest common extension queries on a fragment T [x..y] of
length m over a general unordered alphabet can be answered in O(q log m) time plus O(n log∗ n)
time shared by all invocations of the lemma. The number of comparisons is O(q), plus O(n)
comparisons shared by all invocations of the lemma.

While constructing the sparse suffix tree, we will maintain a heavy-light decomposition using
a rebuilding scheme introduced by Gabow [40]. Let L(u) denote the number of leaves in the
subtree of a node u. We use the following recursive construction of a heavy-light decomposition:
Starting from a node r (initially the root of the tree), we find the deepest descendant node e
such that L(e) ≥ 5

6L(r) (possibly e = r). The path p from the root r(p) = r to e(p) = e is a
heavy path. Any edge (u, v) on this path satisfies L(v) ≥ 5

6L(u), and we call those edges heavy.
As a consequence, a node u can have at most one child v such that (u, v) is heavy. For each
edge (u, v) where u is on the heavy path and v is not, we recursively build a new heavy path
construction starting from v.

When inserting a new suffix in our tree, we keep track of the insertion in the following
way: for every root of a heavy path, we maintain I(u) the number of insertions made in the
subtree of u since we built the heavy-light decomposition of this subtree. When I(u) ≥ 1

6L(u)
we recalculate the values of L(v) for all nodes v in the subtree of u and rebuild the heavy-light
decomposition for the subtree of u.

This insures that, despite insertion, for any heavy path starting at node r and a node u on
that heavy path, L(e) ≥ 2

3L(r). When crossing a non-heavy edge the number of nodes in the
subtree reduces by a factor at least 5

6 which leads to the following property:

Observation 4.24. The path from any node to the root crosses at most O(log m) heavy paths.

2Lemma 14 in [216] does not explicitly mention that it works for general unordered alphabet. However,
the proof of the lemma relies solely on equality tests.

3Lemma 14 in [216] does not explicitly mention that it requires O(n + q) comparisons. However, they
use a union-find approach where there can be at most O(n) comparisons with outcome "equal", and each
LCE query performs only one comparison with outcome "not-equal", similarly to what we describe in the
proof of Lemma 4.13.
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Additionally, rebuilding a subtree of size s takes O(s) time and adding a suffix T [ij ..y] to the
tree increases I(r) for each path p from the root r to the new leaf. Those are at most O(log m)
nodes, and thus maintaining the heavy path decomposition takes amortized time O(log n) time
per insertion.

With these building blocks now clearly defined, we are ready to describe the construction of
the sparse suffix tree.

Lemma 4.25. The sparse suffix tree containing any b suffixes T [i1..y], . . . , T [ib..y] of T [x..y]
with m = |T [x..y]| can be constructed using O(bσ log b log m) time plus O(n log∗ n) time shared
by all invocations of the lemma.

Proof. As in the proof of Lemma 4.13, we consider the insertion of a suffix T [ij ..y] into the sparse
suffix tree with suffixes T [i1..y], T [i2..y] · · ·T [ij−1..y]. At all times, we maintain the heavy path
decomposition. Additionally, we maintain for each heavy path a predecessor data structure,
where given some length ℓ, we can quickly identify the deepest explicit node on the heavy path
that spells a string of length at least ℓ. The data structure can, e.g., be a balanced binary
search tree with insertion and search operations in O(log b) time (the final sparse suffix tree
and thus each heavy path contains O(b) nodes). When rebuilding a subtree of the heavy path
decomposition, we also have to rebuild the predecessor data structure for each of its heavy paths.
Thus, rebuilding a size-q subtree takes O(q log b) time (each node is on exactly one heavy path
and has to be inserted into one predecessor data structure), and the amortized insertion time
increases from O(log m) to O(log m · log b). Whenever we insert a suffix, we make at most one
node explicit, and thus have to perform at most one insertion into a predecessor data structure.
The time for this is O(log b), which is dominated be the previous term.

When inserting T [ij ..y], we look for the node u corresponding to the longest common prefix
between T [ij ..y] and the inserted suffixes, make u explicit if necessary and add a new leaf
corresponding to T [ij ..y] attached to u. Let v be the current node (initialized by the root, and
always an explicit node) and v1, · · · , vd be its (explicit) children. If there is a heavy edge (v, va)
for 1 ≤ a ≤ d, let p be the corresponding heavy path. For each heavy path p, we store the
label of one leaf (i.e., the starting position of one suffix) that is contained in the subtree of e(p).
Thus, we can use Corollary 4.23 to compute the longest common extension between the string
spelled by e(p) and T [ij ..y]. Now we use the predecessor data structure on the heavy path to
find the deepest (either explicit or implicit) node v′ on the path that spells a prefix of T [ij ..y].
If v′ is implicit, we make it explicit and add the leaf. If v′ is explicit and v′ ̸= v, we use v′ as
the new current node and continue. Otherwise, we have v′ = v, i.e., the suffix does not belong
to the subtree rooted in va. In this case, we issue d LCE queries between T [ij ..y] and each of
the strings spelled by the nodes v1, . . . , vd. This either reveals that we can continue using one of
the va as the new current node, or that we can create a new explicit node on some (v, va) edge
and attach the leaf to it, or that we can simply attach a new leaf to v.

Now we analyse the time spent while inserting one suffix. We spent O(b · log m · log b) total
time for inserting O(b) nodes into the dynamic heavy path decomposition and the predecessor
data structures. In each step of the insertion process, we either (i) move as far as possible
along some heavy path or (ii) move along some non-heavy edge. For (i), we issue one LCE
query and one predecessor query. For (ii) we issue O(σ) LCE queries. Due to Observation 4.24,
both (i) and (ii) happen at most O(log b) times per suffix. Thus, for all suffixes, we perform
O(b log b) predecessor queries and O(bσ log b) LCE queries. The total time is O(b log2 b) for
predecessor queries, and O(bσ log b log m) for LCE queries (apart from the n log∗ n time shared
by all invocations of Corollary 4.23).
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Lemma 4.26. For any parameter ∆ ∈ [1, m], a ∆-approximate LZ factorisation of any fragment
T [x..y] of length m can be computed in O(mσ log2 m/

√
∆) time plus O(n log∗ n) time shared by

all invocations of the lemma.

Proof. Let T ′ = T [x..y], and let {i1, i2, . . . , ib} be a ∆-cover of {1, . . . , m}, which implies b =
Θ(m/

√
∆). We obtain a sparse suffix tree of the suffixes T ′[i1..m], . . . , T ′[ib..m], which takes

O(bσ log b log m) ⊆ O(mσ log2 m/
√

∆) time according to Lemma 4.25, plus O(n log∗ n) time
shared by all invocations of the lemma. Now we compute a ∆-approximate LZ factorisation of
T ′ from the spare suffix tree in O(b) time.

In the following proof, we use i1, i2, . . . , ib interchangeably to denote both the difference
cover positions, as well as their corresponding leaves in the sparse suffix tree. Assume that the
order of difference cover positions is i1 < i2 < · · · < ib. First, we determine for each ik > i1, the
position src(ik) = ih and the length len(ik) = lce(ih, ik), where ih ∈ {i1, . . . , ik−1} is a position
that maximizes lce(ih, ik). This is similar to what was done in [261] for the LZ77 factorisation.
We start by assigning labels from {1, . . . , b} to the nodes of the sparse suffix tree. A node has
label k if and only of ik is its smallest descendant leaf. We assign the labels as follows. Initially,
all nodes are unlabelled. We assign label 1 to each node on the path from i1 to the root. Then,
we process the remaining leaves i2, . . . , ib in increasing order. For each ik, we follow the path
from ik to the root. We assign label k to each unlabelled node that we encounter. As soon
as we reach a node that has already been labelled, say, with label h and string-depth ℓ, we
are done processing leaf ik. It should be easy to see that ih is also exactly the desired index
that maximizes lce(ih, ik), and we have lce(ih, ik) = ℓ. Thus, we have found src(ik) = ih and
len(ik) = ℓ. The total time needed is linear in the number of sparse suffix tree nodes, which is
O(b).

Finally, we obtain a ∆-approximate LZ factorisation using src and len. The previously
computed values can be interpreted as follows: ik could become the starting position of a
length-len(ik) tail (with previous occurrence at position src(ik)). For the ∆-approximate LZ
factorisation, we will create the factors greedily in a left-to-right manner. Assume that we
already factorised T ′[1..s − 1], then the next phrase starts at position s, and thus the next
tail starts within T ′[s..s + ∆) (as a reminder, the head is by definition shorter than ∆). Let
S = {i1, i2, . . . , ib} ∩ {s, . . . , s + ∆ − 1}. If there is no ik ∈ S with ik + len(ik) > s + ∆ − 1,
then the next phrase is simply T ′[s.. min(|T ′|, s + ∆− 1)) with empty tail. Otherwise, the next
phrase has (possibly empty) head T ′[s..ik) and tail T ′[ik..ik + len(ik)) (with previous occurrence
src(ik)), where ik is chosen from S such that it maximizes ik + len(ik). Creating the phrase in
this way clearly takes O(|S|) time. Since the next phrase starts at least at position s + ∆ − 1,
none of the positions from S \ {s + ∆− 1} will ever be considered as starting positions of other
tails. Thus, every ik is considered during the creation of at most two phrases, and the total time
needed to create all phrases is O(b).

It remains to be shown that the computed factorisation is indeed a ∆-approximate LZ
factorisation, i.e., if we output a phrase T ′[s..e], then the unique (non-approximate) LZ phrase
T ′[s..e′] starting at position s satisfies e′ − 1 ≤ e. First, note that for the created approximate
phrases (except possibly the last phrase of T ) we have s + ∆ − 2 ≤ e. Assume e′ < s + ∆,
then clearly e′ − 1 ≤ e. Thus, we only have to consider e′ > s + ∆ − 1. Since T ′[s..e′] is
an LZ phrase, there is some s′ < s such that lce(s′, s) = e′ − s. Let h be the constant-time
computable function that defines the ∆-cover, and let ik′ = s′ + h(s′, s) and ik = s + h(s′, s).
Note that ik′ ∈ {i1, i2, . . . , ik−1} and ik ∈ {i1, i2, . . . , ib}∩{s, . . . , s + ∆− 1}. Therefore, we have
len(ik) ≥ lce(ik′ , ik) = lce(s′, s) − h(s′, s) = (e′ − s) − (ik − s) = e′ − ik. While computing
the ∆-approximate phrase T ′[s..e], we considered ik as the starting positions of the tail, which
implies e ≥ ik + len(ik)− 1 ≥ e′ − 1.
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Lemma 4.27. There is an algorithm that, given any parameter ∆ ∈ [1, m], estimate σ̃ and
fragment T [x..y] of length m, takes O(mσ̃ log2 m/

√
∆) time plus O(n log∗ n) time shared by all

invocations of the lemma, and either computes a ∆-approximate LZ factorisation of T [x..y] or
determines σ > σ̃.

Proof. We simply use Lemma 4.26 to compute the factorisation. In the first step, we have to
construct the sparse suffix tree using the algorithm from Lemma 4.25. While this algorithm takes
O(mσ log2 m/

√
∆) time, it is easy to see that a more accurate time bound is O(md log2 m/

√
∆),

where d is the maximum degree of any node in the sparse suffix tree. If during construction
the maximum degree of a node becomes σ̃ + 1, we immediately stop and return that σ > σ̃.
Otherwise, we finish the construction in the desired time.

Now we can describe the algorithm that detects squares in O(n lg σ + n log∗ n) time and
O(n lg σ) comparisons. We simply use the algorithm from Section 4, but use Lemma 4.27 instead
of Lemma 4.19. Next, we analyse the time needed apart from the O(n log∗ n) time shared by
all invocations of Lemma 4.27. Throughout the tth phase, we use O(n · σ̃ · log2(σt)/

√
∆) =

O(n · (σt)1/4/ log(σt) · log2(σt)/
√

σt) = O(n log(σt)/(σt)1/4) comparisons to construct all the
∆-approximate factorisations. As before, if at any time we discover that σ̃ > (σt)1/4/ log(σt),
then we use Theorem 4.6 to finish the computation in O(n lg σt) = O(n log σ) time. Until
then (or until we finished all ⌈log log n⌉ phases), we use O(∑t′

t=0 n log(σt)/(σt)1/4) time, and by
Corollary 4.21 this is O(n). For detecting squares, we still use Lemma 4.18, which as explained
in Section 4 takes O(n) time and comparisons in total, plus additional O(Z) time, where Z is
the number of approximate LZ factors considered during all invocations of the lemma. We apply
the lemma to each approximate LZ factorisation exactly once, and by construction each factor
in phase t has size at least ∆ = Ω(σt). Also, each text position is covered by at most two tails
per phase. Hence Z = O(∑t′

t=0 n/σt), which is O(n) by Corollary 4.21.
The last thing that remains to be shown is how to implement the bookkeeping of blocks, i.e.,

in each phase we have to efficiently deactivate block pairs as described at the end of Section 4. We
maintain the block pairs in ⌈log log n⌉ bitvectors of total length O(n), where a set bit means that
a block pair has been deactivated (recall that there are O(n) pairs in total). Bitvector t contains
at position j the bit corresponding to block pair BjBj+1 = T [i..i+2(σt)2) with i = (σt)2 ·(j−1).
Note that translating between i and j takes constant time. For each sufficiently long tail in phase
t, we simply iterate over the relevant block pairs in phase t + 2 and deactivate them, i.e., we set
the corresponding bit. This takes time linear in the number of deactivated blocks. Since there
are O(n) block pairs, and each block pair gets deactivated at most a constant number of times,
the total cost for this bookkeeping is O(n).

The number of comparisons is dominated by the O(n log σ) comparisons used when finishing
the computation with Theorem 4.6. The only other comparisons are performed by Lemma 4.18,
which we already bounded by O(n), and by LCE queries via Corollary 4.23. Since we ask O(n)
such queries in total, the number of comparisons is also O(n). We have shown:

Lemma 4.28. The square detection algorithm from Section 4 can be implemented in O(n lg σ +
n log∗ n) time and O(n log σ) comparisons.

5.2 Final Improvement
For our final improvement we need to replace the LCE queries implemented by Corollary 4.23
with our own mechanism. The goal will remain the same, that is, given a parameter ∆ and
estimate σ̃ of the alphabet size, find a ∆-approximate LZ factorisation of any fragment T [x..y]
in O(mσ̃ log m/

√
∆) time, where m = |T [x..y]| (with m = Θ(∆2), as otherwise we are not

required to detect anything).
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(a) Sampling dense fragments and cutting the text into chunks. Dotted lines indicate
chunk boundaries, and hx = (j + x) · τ for some integer j and x ∈ [0, 13] are positions of
chunk boundaries. The dense fragments are D1 = T [h2..h3), D2 = T [h7..h8), and D3 =
T [h12..h13). The primary occurrences of dense fragments are grey, while the secondary
occurrences (the ones that we aim to find) are white. A purple box in the text, and the
matching purple line underneath the text, correspond to some substring T [j ·τ−rj−1..j ·τ).
Similarly, the orange boxes and lines correspond to substrings T [j · τ..j · τ + ℓj).
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ĥ7

$
7

D2D2

ĥ8
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ĥ10

$
10
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(b) The string T ′ used to find all the occurrences of dense fragments. Each position ĥx

maps to position hx in Fig. 4.4a. The substring indicated by the purple box preceding
hx = (j +x)τ and the orange box succeding hx is exactly T [hx−rj+x−1..hx + ℓj+x). Each
$
x

is a distinct separator symbol that is unique within T ′.

Figure 4.4: Supplementary drawings for Section 5.2.

115



Partie I, Chapter 4 – Run Reporting Over General Alphabets

As in the previous section, the algorithm might detect that the size of the alphabet is larger
than σ̃, and in such case we revert to the divide-and-conquer algorithm. Let τ = ⌊

√
∆⌋.

Initially, we only consider some fragments of T [x..y]. We say that T [i · τ2..i · τ2 + τ) is a
dense fragment. We start by remapping the characters in all dense fragments that intersect
T [x..y] to a linearly-sortable alphabet. This can be done in O(σ̃) time for each position by
maintaining a list of the already seen distinct characters. For each position in a dense fragment,
we iterate over the characters in the list, and possibly append a new character to the list if it is
not present. As soon as the size of the list exceeds σ̃, we terminate the procedure and revert to
the divide-and-conquer algorithm. Otherwise, we replace each character by its position in the
list. Overall, there are O(m/

√
∆) positions in the dense fragments of T [x..y], and the remapping

takes O(mσ̃/
√

∆) time.
Next, we construct two generalised suffix trees [57], the first one of all dense fragments, and

the second one of their reversals. (The generalised suffix tree of a collection of strings is the
compacted trie that contains all suffixes of all strings in the collection.) Again, because we
now work with a linearly-sortable alphabet this takes only O(m/

√
∆) time [56]. We consider

fragments of the form T [i ·τ..(i+1) ·τ) having non-empty intersection with T [x..y]. We call such
fragments chunks. We note that there are O(m/

√
∆) chunks, and their total length is O(m). For

each chunk, we find its longest prefix T [i·τ..i·τ+ℓi) and longest suffix T [(i+1)·τ−ri..(i+1)·τ) that
occur in one of the dense fragments. Fig. 4.4a visualizes the dense fragments, chunks, and longest
prefixes and suffixes. This can be done efficiently by following the heavy path decomposition of
the generalised suffix tree of all dense fragments and their reversals, respectively. On each current
heavy path, we just naively match the characters as long as possible. In case of a mismatch, we
spend O(σ̃) time to descend to the appropriate subtree, which happens at most O(log m) times
due to the heavy path decomposition. After having found ℓi and ri, we test square-freenes of
T [i ·τ..i ·τ +ℓi) and T [(i+1) ·τ−ri..(i+1) ·τ). Because they both occur in dense fragments, and
we have remapped the alphabet of all dense fragments, we can use Theorem 4.8 to implement
this in O(ℓi + ri) time. Thus, the total time per chunk is thus O(σ̃ log m) plus O(ℓi + ri). The
former sums up to O(mσ̃ log m/

√
∆), and we will later show that the latter can be amortised

by deactivating blocks on the lower levels.
The situation so far is that we have remapped the alphabet of all dense fragments to linearly-

sortable, and for every chunk we know its longest prefix and suffix that occur in one of the dense
fragments. We concatenate all fragments of the form T [i · τ − ri−1..i · τ + ℓi) (intersected with
T [x..y]) while adding distinct separators in between to form a new string T ′. We stress that,
because we have remapped the alphabet of all dense fragments, and the found longest prefix
and suffix of each chunk also occur in some dense fragment, T ′ is over linearly-sortable alphabet.
Thus, we can build the suffix tree ST of T ′ in O(|T ′|) time [56]. A visualization of T ′ is provided
in Fig. 4.4b

Let D = {D1, D2, . . .} be the set of distinct dense fragments. We would like to construct the
set of all occurrences of the strings in D in T [x..y]. Using the suffix tree of T ′ we can retrieve all
occurrences of every Dj in T ′. We observe that, because of how we have defined T [i · τ..i · τ + ℓi)
and T [(i+1) ·τ −ri..(i+1) ·τ), this will in fact give us all occurrences of every Dj in the original
T [x..y]. To implement this efficiently, we proceed as follows. First, for every i we traverse ST
starting from its root to find the (explicit or implicit) node corresponding to the dense fragment
T [i · τ2..i · τ2 + τ). This takes only O(mσ̃/

√
∆) time. Then, all leaves in every subtree rooted

at such a node correspond to occurrences of some Dj , and can be reported by traversing the
subtree in time proportional to its size, so at most O(|T ′|) in total. Finally, remapping the
occurrences back to T [x..y] can be done in constant time per occurrence by precomputing, for
every position in T ′, its corresponding position in T [x..y], which can be done in O(|T ′|) time
when constructing T ′. Thus, in O(|T ′|) time, we obtain the set S of starting positions of all
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occurrences of the strings in D. We summarize the properties of S below.

Proposition 4.29. S admits the following properties:

1. For every i ∈ [x, y] such that i = 0 (mod τ2), i ∈ S.

2. For every i ∈ [x, y − τ ], i ∈ S if and only if T [i..i + τ) ∈ D.

3. |S| ≤ |T ′|.

We now define a parsing of T [x..y]$ based on S. Let i1 < i2 < . . . ik be all the positions in
S, that is, (ij , ij+1)∩ S = ∅ for every j = 1, 2, . . . , k− 1. For every j = 1, 2, . . . , k− 1, we create
the phrase T [ij ..ij+1 + τ). We add the last phrase T [ik..y]$. We stress that consecutive phrases
overlap by τ characters, and each phrase begins with a length-τ fragment starting at a position
in S. This, together with property 2 of S, implies the following property.

Observation 4.30. The set of distinct phrases is prefix-free.

We would like to construct the compacted trie Tphrase of all such phrases, so that (in par-
ticular) we identify identical phrases. We first notice that each phrase begins with a fragment
T [ij ..ij + τ) that has its corresponding occurrence in T ′. We note that, given a set of positions
P in T , we can find their corresponding positions in T ′ (if they exist) by sorting and scanning
in O(|P |+ |T ′|) time.

Thus, we can assume that for each ij we know its corresponding position i′
j in T ′. Next, for

each node of ST we precompute its unique ancestor at string depth τ in O(|T ′|) time. Then, for
every fragment T [ij ..ij + τ) we can access its corresponding (implicit or explicit) node of ST .
This allows us to partition all phrases according to their prefixes of length τ . In fact, this gives
us the top part of Tphrase containing all such prefixes in O(m/

√
∆) time, and for each phrase we

can assume that we know the node of Tphrase corresponding to its length-τ prefix.
To build the remaining part of Tphrase, we partition the phrases into short and long.

T [ij ..ij+1 + τ) is short when ij+1 ≤ ij + τ (meaning that its length is at most 2τ), and long
otherwise.

We begin with constructing the compacted trie T ′
phrase of all short phrases. This can be done

similarly to constructing the top part of Tphrase, except that now the fragments have possibly
different lengths. However, every short phrase T [ij ..ij+1 + τ) occurs in T ′ as T ′[i′

j ..i′
j+1 + τ).

We claim that the nodes of ST corresponding to every T ′[i′
j ..i′

j+1 + τ) can be found in O(|T ′|)
time. This can be done by traversing ST in the depth-first order while maintaining a stack of
all explicit nodes with string depth at least τ on the current path. Then, when visiting the leaf
corresponding to the suffix of T ′ starting at position i′

j , we iterate over the current stack to find
the sought node. This takes at most O(|T ′[ij + τ..ij+1 + τ ]|) time, which sums up to O(|T ′|).
Having found the node of ST corresponding to T [ij ..ij+1 + τ), we extract T ′

phrase from ST in
O(|T ′|) time.

With T ′
phrase in hand, we construct the whole Tphrase as follows. We begin with taking the

union of T ′
phrase and the already obtained top part of Tphrase, this can be obtained in O(|T ′|)

time. For each long phrase T [ij ..ij+1 + τ), we know the node corresponding to T [ij ..ij + τ) and
would like to insert the whole string T [ij ..ij+1 + τ) into Tphrase. We perform the insertions in
increasing order of ij (this will be crucial for amortising the time later). This is implemented with
a dynamic heavy path decomposition similarly as in Section 5.1, however with one important
change. Namely, we fix a heavy path decomposition of the part of Tphrase corresponding to the
union of T ′

phrase and the top part of Tphrase, and maintain a dynamic heavy path decomposition
of every subtree hanging off from this part. Thanks to this change, the time to maintain the
dynamic trie and all heavy path decompositions is O(m log m/

√
∆), as there are only O(m/

√
∆)
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long phrases. Next, for each long phrase T [ij ..ij+1 + τ), we begin the insertion at the already
known node corresponding to T [ij ..ij + τ), and continue the insertion by following the heavy
paths, first in the static heavy path decomposition in the part of Tphrase corresponding to T ′

phrase,
second in the dynamic heavy path decomposition in the appropriate subtree. On each heavy
path, we naively match the characters as long as possible. The time to insert a single phrase
T [ij ..ij+1 + τ) is O(log m) (twice) plus the length of the longest prefix of T [ij + τ..ij+1 + τ)
equal to a prefix of T [ij′ + τ..ij′+1 + τ), for some j′ < j. The former sums up to another
O(m log m/

√
∆), and we will later show that the latter can be amortised by deactivating blocks

on the lower levels.
Tphrase allows us to form metacharacters corresponding to the phrases, and transform T [x..y]

into a string Tparse of length O(|T ′|) consisting of these metacharacters. We build a suffix tree
Sparse over this string over linearly-sortable metacharacters in O(|T ′|) time. Next, we convert
it into the sparse suffix tree S ′

parse of all suffixes T [ij ..y] as follows. Consider an explicit node
u ∈ Sparse with children v1, v2, . . . , vd, d ≥ 2. We first compute the subtree Tu of Tphrase induced
by the leaves corresponding to the first metacharacters on the edges (u, vi), for i = 1, 2, . . . , d, and
connect every vi to the appropriate leaf of Tu. This can be implemented in O(d) time, assuming
constant-time lowest common ancestor queries on Tphrase [66] and processing the leaves from left
to right with a stack, similarly as in the Cartesian tree construction algorithm [21]. We note
that the order on the leaves is the same as the order on the metacharacters, and hence no extra
sorting is necessary. Overall, this sums up to O(|T ′|). Next, we observe that, unless u is the root
of Sparse, all metacharacters on the edges (u, vi) correspond to strings starting with the same
prefix of length τ . We obtain the subtree T ′

u by truncating this prefix (or taking Tu if u is the
root). Finally, we identify the root of T ′

u with u, and every child vi with its corresponding leaf
of T ′

u. Because we truncate the overlapping prefixes of length τ , after this procedure is executed
on every node of Sparse we obtain a tree S ′

parse with the property that each leaf corresponds
to a suffix T [ij ..y]. Also, by Observation 4.30, the edges outgoing from every node start with
different characters as required.

By following an argument from the proof of Lemma 4.26, S ′
parse allows us to determine, for

every suffix T [ij ..y], its longest prefix equal to a prefix of some T [i′..y] with i′ < ij , as long as
its length is at least τ . Indeed, in such case we must have i′ ∈ S by property 2, so in fact i′ = ij′

and it is enough to maximise the length of the common prefix with all earlier positions in S,
which can be done using S ′

parse. Thus, we either know that the length of this longest prefix is
less than τ , or know its exact value (and the corresponding position i′ ∈ S).

Lemma 4.31. For any parameter ∆ ∈ [1, m] and estimate σ̃ of the alphabet size, a (∆ + τ)-
approximate LZ factorisation of any fragment T [x..y] can be computed in O(m/

√
∆) time with

m = |T [x..y]| (assuming the preprocessing described earlier in this section).

Proof. Let e ∈ [x, y] and suppose we have already constructed the factorisation of T [x..e − 1]
and are now trying to construct the next phrase. Let e′ be the next multiple of τ2, we have that
e′ − e < τ2 ≤ ∆ and T [e′..e′ + τ) is a dense fragment. Thus, by property 1 we have e′ ∈ S.

The first possibility is that the longest common prefix between T [e′..y] and any suffix starting
at an earlier position is shorter than τ . In this case, we can simply set the head of the new
phrase to be T [e..e′ + τ) and the tail to be empty. Otherwise, we know the length ℓ of this
longest prefix by the preprocessing described above. We set the head of the new phrase to be
T [e..e′) and the tail to be T [e′..e′′ + ℓ). This takes constant time per phrase, and each phrase is
of length at least τ , giving the claimed overall time complexity. It remains to argue correctness
of every step.

Let T [e..s] be the longest LZ phrase starting at position e, to show that we obtain a valid
(∆+τ)-approximate phrase it suffices to show that s ≤ e′+max(τ, ℓ). Let the previous occurrence
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of T [e..s) be at position p < e. If s− e′ < τ then there is nothing to prove. Otherwise, T [e′..s)
is a string of length at least τ that also occurs starting earlier at position p + e′ − e < e′. Thus,
we will correctly determine that ℓ ≥ τ , and find a previous occurrence of the string maximising
the value of ℓ. In particular, we will have ℓ ≥ s− e′ as required.

To achieve the bound of Theorem 4.3, we now proceed as in Section 4.4, except that in-
stead of Lemma 4.27 we use Lemma 4.31. For every T [x..y] with m = |T [x..y]| this takes
O(mσ̃ log m/

√
∆) time plus the time used for computing the longest prefix and suffix of each

chunk (the latter also accounts for constructing the suffix tree ST and other steps that have been
estimated as taking O(|T ′|) in the above reasoning) plus the time for inserting T [ij +τ..ij+1 +τ)
into Tphrase when ij+1 ≥ ij + τ .

We observe that we can deactivate any block pair fully contained in T [i · τ..i · τ + ℓi) and
T [(i + 1) · τ − ri..(i + 1) · τ), as we have already checked that these fragments are square-free.
Also, we can deactivate any block pair fully contained in the longest prefix of T [ij + τ..ij+1 + τ)
equal to T [ij′ + τ..ij′+1 + τ), for some j′ < j, because such fragment cannot contain the leftmost
occurrence of a square.

There are O(m/
√

∆) chunks and long phrases. If a chunk or a long phrase contributes
x = Ω( 4√∆) to the total time, then we explicitly deactivate the block pairs in phase t + 3 that
are entirely contained in the corresponding fragment. Block pairs in phase t + 3 are of length
O( 4√∆), and thus we deactivate Ω(x) positions. Therefore, the time spent on such chunks and
long phrases in all phases sums to O(n). The remaining chunks and long phrases contribute
O( 4√∆) to the total time, and there are O(m/

√
∆) of them, which adds up to O(m/

4√∆). In
every phase, this is O(n/

4√∆), so O(n) overall by Corollary 4.21.

6 Computing Runs
Now we adapt the algorithm such that it computes all runs. We start with the algorithm from
Sections 4 and 5 without the final improvement from Section 5.2. First, note that the key
properties of the ∆-approximate LZ factorisation, in particular Lemmas 4.17 and 4.18, also hold
for the computation of runs. This is expressed by the lemmas below.

Lemma 4.32. Let b1b2 . . . bz be a ∆-approximate LZ factorisation of a string T . For every run
⟨s, e, p⟩ of length e− s + 1 ≥ 8∆, there is at least one phrase bi with |tail(bi)| ≥ e−s+1

8 ≥ ∆ such
that tail(bi) and the right-hand side T [s +

⌈
e−s+1

2

⌉
..e] of the run intersect.

Proof. Let ℓ = e−s+1
2 and note that ℓ

4 ≥ ∆ and e = s + 2ℓ − 1. Assume that all tails that
intersect T [s + ⌈ℓ⌉ ..e] are of length less than ℓ

4 , then the respective phrases of these tails are of
length at most ℓ

4 + ∆ − 1 ≤ ℓ
2 − 1 (because each head is of length less than ∆). This means

that T [s + ⌈ℓ⌉ ..e] (of length ⌊ℓ⌋) intersects at least
⌈
⌊ℓ⌋ /( ℓ

2 − 1)
⌉
≥ 3 phrases (the inequality

holds for ℓ ≥ 4, which is implied by ∆ ≥ 1). Thus there is some phrase bi = T [x..y] properly
contained in T [s+ ⌈ℓ⌉ ..e], formally s+ ⌈ℓ⌉ < x ≤ y < e. However, this contradicts the definition
of the ∆-approximate LZ factorisation because T [x..e + 1] is the prefix of a standard LZ phrase
(due to T [x..e] = T [x− p..e− p]). The contradiction implies that T [s + ⌈ℓ⌉ ..e] intersects a tail
of length at least ℓ

4 .

Before we show how to algorithmically apply Lemma 4.32, we need to explain how Lemma 4.7
extends to computing runs, and then how this implies that the approach of Main and Lorentz [27]
easily extends to computing all runs. We do not claim this to be a new result, but the original
paper only talks about finding a representation of all squares, and we need to find runs, and
hence include a description for completeness.
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Lemma 4.33. Given two strings x and y over a general alphabet, we can compute all runs in
xy that include either the last character of x or the first character of y using O(|x| + |y|) time
and comparisons.

Proof. Consider a run ⟨s, e, p⟩ in t = xy that includes either the last character of x or the first
character of y, meaning that s ≤ |x| + 1 and e ≥ |x|. Let ℓ = ⌊ e−s+1

2 ⌋ ≥ p. We separately
compute all runs with s + ℓ ≤ |x| + 1 and s + ℓ > |x| + 1. Below we describe the former, and
the latter is symmetric.

Due to s + ℓ ≤ |x|+ 1, the length-p substring x[|x| − p + 1.. |x|] is fully within the run. This
suggests the following strategy to generate all runs with s + ℓ ≤ |x| + 1. We iterate over the
possible values of p = 1, 2, . . . , |x|. For a given p, we calculate the length of the longest common
prefix of x[|x| − p + 1.. |x|]y and y, denoted pref, and the length of the longest common suffix
of x[1.. |x| − p] and x, denoted suf. It is easy to see that t[|x| − p + 1 − suf.. |x| + pref] is a
lengthwise maximal p-periodic substring, and its length is ℓ′ = p + suf + pref. If pref + suf ≥ p
and s + ⌊ℓ′/2⌋ ≤ |x| + 1, then we report the substring as a run. (The latter condition ensures
that each run gets reported by exactly one of the two symmetric cases.)

We use a prefix table to compute the longest common prefixes. For a given string, this table
contains at position i the length of the longest substring starting at position i that is also a prefix
of the string. For computing the values pref, we use the prefix table of y$xy (where $ is a new
character that does not match any character in x nor y). Similarly, for computing the values
suf, we use the prefix table of the reversal of a new string x$x. The tables can be computed in
O(|x|+ |y|) time and comparisons (see, e.g., computation of table lppattern in [27]). Then, each
value of p can be checked in constant time.

Lemma 4.34. Computing all runs in a length-n string over a general unordered alphabet can
be implemented in O(n log n) time and comparisons.

Proof. Let the input string be T [1..n]. We apply divide-and-conquer. Let x = T [1..⌊n/2⌋] and
y = T [⌊n/2⌋ + 1..n]. First, we recursively compute all runs in x and y. Of the reported runs,
we filter out all the ones that contain either the last character of x or the first character of y,
which takes O(|x| + |y|) time. In this way, if some reported run is a run with respect to x (or
y), but not with respect to xy, then it will be filtered out. We have generated all runs except
for the ones that contain the last character of x or the first character of y (or both). Thus we
simply invoke Lemma 4.33 on xy, which will output exactly the missing runs in O(|x|+ |y|) time
and comparisons. There are O(log n) levels of recursion, and each level takes O(n) time and
comparisons in total.

Lemma 4.35. Let T = b1b2 . . . bz be a ∆-approximate LZ factorisation of T , and χ =∑
|tail(bi)|≥∆ |tail (bi)|. We can compute in O (χ + z) time and O (χ) comparisons a multiset R of

size O(χ) of runs with the property that a run T [s..e] is possibly not in R only if e− s + 1 < 8∆
or there is some tail tail(bi) = T [a2..a3] with a2 < s and e < a3.

Proof. Let n = |T |. We consider each phrase bi = T [a1..a3] with head(bi) = T [a1..a2 − 1]
and tail(bi) = T [a2..a3] separately. Let k = |tail(bi)|. If k ≥ ∆, we apply Lemma 4.33 to
x1 = T [a2 − 8k..a2 − 1] and y1 = T [a2..a3 + 4k], as well as x2 = T [a2 − 8k..a3 − 1] and
y2 = T [a3..a3 + 4k] trimmed to T [1..n]. This takes O(|tail(bi)|) time and comparisons and
reports O(|tail(bi)|) runs with respect to x1y1 = x2y2 = T [a2−8k..a3 +4k] (trimmed to T [1..n]).
Of these runs, we filter out the ones that contain any of the positions a2−8k (only if a2−8k > 1)
and a3 + 4k (only if a3 + 4k < n), which takes O(|tail(bi)|) time. This way, each reported run
is not only a run with respect to x1y1, but also a run with respect to T . In total, we report
O(χ) runs (including possible duplicates) and spend O (χ) time and comparisons when applying
Lemma 4.33. Additional O(z) time is needed to check if |tail(bi)| ≥ ∆ for each phrase.
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Now we show that the described strategy computes all runs of length at least 8∆, except for
the ones that are properly contained in a tail. Let ⟨s, e, p⟩ be a run of length 2ℓ, where ℓ ≥ 4∆
is a multiple of 1

2 . Due to Lemma 4.32, the right-hand side T [s + ⌈ℓ⌉ ..e] of this run intersects
some tail tail(bi) = T [a2..a3] of length k = |tail(bi)| ≥ ℓ

4 ≥ ∆. Due to the intersection, we have
a2 ≤ e and a3 ≥ s + ⌈ℓ⌉. Thus, when processing bi and applying Lemma 4.33, the starting
position of x1 and x2 satisfies a2− 8k ≤ e− 8 ℓ

4 < s, while the end position of y1 and y2 satisfies
a3 + 4k ≥ s + ⌈ℓ⌉+ 4 ℓ

4 > e. Therefore, the run is contained in the fragment T [a2 − 8k..a3 + 4k]
(trimmed to T [1..n]) corresponding to x1y1 and x2y2, and the run does not contain positions
a2 − 8k and a3 + 4k. If s ≤ a2 ≤ e, we find the run when applying Lemma 4.33 to x1 and y1.
If s ≤ a3 ≤ e, we find the run when applying Lemma 4.33 to x2 and y2. Otherwise, T [s..e] is
entirely contained in T [a2 + 1..a3 − 1] and we do not have to report the run.

Now we describe how to compute all runs using O(n log σ) comparisons and O(n log σ +
n log∗ n) time. We again use the sequence σt = 22⌈log log n⌉−t , for t = 0, 1, . . . , ⌈log log n⌉. We
observe that σt−1 = (σt)2, and proceed in phases corresponding to the values of t. In the tth

phase we aim to compute runs of length at least σt and less than (σt)2. We stress that this
condition depends on the length of the run and not on its period. We partition the whole
T [1..n] into blocks of length (σt)2, and denote the kth block by Bk. A run of length less than
(σt)2 is fully contained within some two consecutive blocks BiBi+1, and there is always a pair of
consecutive blocks such that the run contains neither the first nor the last position of the pair
(unless the first position is T [1] or the last position is T [n] respectively). Hence we consider each
pair B1B2, B2B3, and so on. We first apply Lemma 4.27 with ∆ = σt/8 and σ̃ = (σt)1/4/ log(σt)
to find an (σt/8)-approximate LZ factorisation of the corresponding fragment of T [1..n], and
then use Lemma 4.35 to compute all runs of length at least σt, apart from possibly the ones
that are properly contained in a tail. Of the computed runs, we discard the ones that contain
the first or last position of the block pair (unless the first position is T [1] or the last position is
T [n] respectively). This way, each reported run is a run not only with respect to the block pair,
but with respect to the entire T [1..n]. If we do not report some run of length at least σt and
less than (σt)2 in this way, then it is properly contained in one of the tails.

We cannot always afford to apply Lemmas 4.27 and 4.35 to all block pairs. Thus, we have to
deactivate some of the blocks. During the current phase t, for each tail T [s..e] of length at least
∆, we deactivate all block pairs in phase t + 3 that are contained in T [s + 1..e− 1]. By similar
logic as in Section 4, if a tail contributes e − s + 1 comparisons and time to the application of
Lemma 4.35, then it permanently deactivates Ω(e− s + 1) positions of the string, and thus the
total time and comparisons needed for all invocations of Lemmas 4.27 and 4.35 are bounded by
O(n) (apart from the additional O(n log∗ n) total time for Lemma 4.27). Whenever we apply
Lemma 4.27, we add all the tails of length at least ∆ to a list L, where each tail is annotated
with the position of its previous occurrence. After the algorithm terminates, L contains all
sufficiently long tails from all phases. We have already shown that the total time needed for
Lemma 4.35 is bounded by O(n), and thus the total length of the tails in L is at most O(n).

If any of the calls to Lemma 4.27 in the current phase detects that σ > σ̃, or if σ̃ < 256, we
immediately switch to applying Lemma 4.34 on every pair of blocks BiBi+1 of the current phase,
which takes O(n log σ) time (because the length of a block pair is polynomial in σ̃). Again, after
applying Lemma 4.27 to BiBi+1, we discard all runs that contain the first or last position of
BiBi+1 (unless the first position is T [1] or the last position is T [n], respectively). After this
procedure terminates, we have computed all runs, except for possibly some of the runs that were
properly contained in a tail in list L. We may have reported some duplicate runs, which we
filter out as follows. The number of runs reported so far is r = O(n log σ)4. We sort them in

4a more careful analysis would reveal that it is O(n), but this is not necessary for the proof
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additional O(n + r) = O(n log σ) time, e.g., by using radix sort, and remove duplicates. The
running time so far is O(n log σ).

6.1 Copying Runs From Previous Occurrences
Lastly, we have to compute the runs that were properly contained in a tail in L. Consider such
a run ⟨rs, re, p⟩, and let T [s..e] be a tail in L with s < rs and re < e. If multiple tails match this
criterion, let T [s..e] be the one that maximizes e. In L, we annotated T [s..e] with its previous
occurrence T [s − d..e − d]. Note that ⟨rs − d, re − d, p⟩ is also a run. Thus, if we compute the
runs in an appropriate order, we can simply copy the missing runs from their respective previous
occurrences. For this sake, we annotate each position i ∈ [1, n] with:

• a list of all the runs ⟨i, e, p⟩ that we already computed, arranged in increasing order of
end position e. We already sorted the runs for duplicate elimination, and can annotate
all position in O(n) time.

• a pair (e∗, d∗), where e∗ = d∗ = 0 if there is no tail T [s..e] such that s < i < e. Otherwise,
among all tails T [s..e] with s < i < e, we choose the one that maximizes e. Let T [s−d..e−d]
be its previous occurrence, then we use e∗ = e and d∗ = d. As explained earlier, the total
length of all tails in L is O(n), and thus we can simply scan each tail and update the
annotation pair of each contained position whenever necessary.

Observe that, if a position is annotated with (0, 0), then none of the runs starting at position
i is fully contained in a tail, and thus we have already annotated position i with the complete
list of the runs starting at i. Now we process the positions i ∈ [1, n] one at a time and in
increasing order. We inductively assume that, at the time at which we process i, we have
already annotated each j < i with the complete list of runs starting at j. Hence our goal is
to complete the list of i such that it contains all runs starting at i. If i is annotated with
(0, 0), then the list is already complete. Otherwise, i is annotated with (e, d), every missing run
⟨i, er, p⟩ satisfies er < e, and the annotation list of i−d already contains the run ⟨i− d, er − d, p⟩
(due to T [i− 1..er + 1] = T [i− d− 1..er − d + 1] and the inductive assumption). For each run
⟨i− d, re − d, p⟩ in the annotation list of position i − d, we insert the run ⟨i, er, p⟩ into the
annotation list of i. We perform this step in a merging fashion, starting with the shortest runs
of both lists and zipping them together. As soon as we are about to insert a run ⟨i, er, p⟩ with
er ≥ e, we do not insert it and abort. Thus, the time needed for processing i is linear in the
number of runs starting at position i. By the runs theorem [235], the total number of runs is
less than n, making the total time for this step O(n).

Apart from the new steps in Section 6.1, the complexity analysis works exactly like in
Section 4. Hence we have shown:

Theorem 4.36. Computing all runs in a length-n string that contains σ distinct symbols from
a general unordered alphabet can be implemented in O(n log σ) comparisons and O(n log σ +
n log∗ n) time.

6.2 Final Improvement for Computing Runs
The goal is now to adapt the final algorithm to detect all runs. We can no longer stop as soon as
we detect a square, and we cannot simply deactivate pairs of blocks that occur earlier. However,
Theorem 4.8 is actually capable of reporting all runs in T [i·τ..i·τ+ℓi) and T [(i+1)·τ−ri..(i+1)·τ)
in O(ℓi + ri) time, and we do not need to terminate the algorithm if these fragments are not
square-free. Thus, we can indeed deactivate any block pair fully contained in T [i · τ..i · τ + ℓi)
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and T [(i + 1) · τ − ri..(i + 1) · τ). Next, we also deactivate block pairs fully contained in the
longest prefix of T [ij + τ..ij+1 + τ) equal to T [ij′ + τ..ij′+1 + τ), for some j′ < j. Denoting the
length of this prefix by ℓ, we treat T [ij + τ..ij + ℓ) as a tail and add it to the list L (annotated
with ij′). The total length of all fragments added to L is still O(n).

Theorem 4.37. Computing all runs in a length-n string that contains σ distinct symbols from a
general unordered alphabet can be implemented in O(n log σ) comparisons and O(n log σ) time.
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Chapter 5
Approximating Longest Common Substring
with k Mismatches

This chapter corresponds to the extended version of the following publication: Garance
Gourdel, Tomasz Kociumaka, Jakub Radoszewski, and Tatiana Starikovskaya, “Approx-
imating Longest Common Substring with k mismatches: Theory and Practice”, in: 31st

Annual Symposium on Combinatorial Pattern Matching (CPM 2020), June 17-19, 2020,
Copenhagen, Denmark, ed. by Inge Li Gørtz and Oren Weimann, vol. 161, LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 16:1–16:15, doi: 10.4230/LIPIcs.CPM.
2020.16.

Publication

In the problem of the longest common substring with k mismatches we are given two strings
X, Y and must find the maximal length ℓ such that there is a length-ℓ substring of X and
a length-ℓ substring of Y that differ in at most k positions. The length ℓ can be used as
a robust measure of similarity between X, Y . In this work, we develop new approximation
algorithms for computing ℓ that are significantly more efficient that previously known solutions
from the theoretical point of view. Our approach is simple and practical, which we confirm via
an experimental evaluation, and is probably close to optimal as we demonstrate via a conditional
lower bound.

1 Introduction
For decades, the edit distance and its variants remained the most relevant measure of similarity
between biological sequences. However, there is strong evidence that the edit distance cannot
be computed in strongly subquadratic time [253]. One possible approach to overcoming the
quadratic time barrier is computing the edit distance approximately, and last year in the break-
through paper Chakraborty et al. [254] showed a constant-factor approximation algorithm that
computes the edit distance between two strings of length n in time Õ(n2−2/7). Nevertheless, the
algorithm is highly non-trivial and because of that is likely to be impractical.

A different approach is to consider alignment-free measures of similarities. Ideally, we want
the measure to be robust and simple enough so that we could compute it efficiently. One
candidate for such a measure is the length of the longest common substring with k mismatches.
Formally, given two strings X, Y of lengths at most n and an integer k, we want to find the
maximal length LCSk(X, Y ) of a substring of X that occurs in Y with at most k mismatches.
Computing this value constitutes the LCS with k Mismatches problem.

The LCS with k Mismatches problem was first considered for k = 1 [146, 203], with current
best algorithm takingO(n log n) time andO(n) space. The first algorithm for the general value of
k was shown by Flouri et al. [203]. Their simple approach used quadratic time and linear space.
Grabowski [205] focused on a data-dependent approach, namely, he showed two linear-space
algorithms with running times O(n((k + 1)(LCS + 1))k) and O(n2k/LCSk), where LCS is the
length of the longest common substring of X and Y and LCSk, similarly to above, is the length
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of the longest common substring with k mismatches of X and Y . Abboud et al. [191] showed
a k1.5n2/2Ω(

√
(log n)/k)-time randomised solution to the problem via the polynomial method.

Thankachan et al. [230] presented an O(n logk n)-time, O(n)-space solution for constant k. This
approach was recently extended by Charalampopoulos et al. [256] to develop an O(n)-time and
O(n)-space algorithm for the case of LCSk = Ω(log2k+2 n).

On the other hand, Kociumaka, Radoszewski, and Starikovskaya [293] showed that there
is k = Θ(log n) such that the LCS with k Mismatches problem cannot be solved in strongly
subquadratic time, even for the binary alphabet, unless the Strong Exponential Time Hypothesis
(SETH) of Impagliazzo, Paturi, and Zane [70] is false. This conditional lower bound implies that
there is little hope to improve existing solutions to LCS with k Mismatches. To overcome this
barrier, they introduced an approximation approach to LCS with k Mismatches, inspired by the
work of Andoni and Indyk [100].

Problem 1 (LCS with Approximately k Mismatches). Two strings X, Y of length at most n, an
integer k, and a constant ε > 0 are given. Return a substring of X of length at least LCSk(X, Y )
that occurs in Y with at most (1 + ε) · k mismatches.

Kociumaka, Radoszewski, and Starikovskaya [293] also showed that for any ε ∈ (0, 2) the
LCS with Approximately k Mismatches problem can be solved in O(n1+1/(1+ε) log2 n) time and
O(n1+1/(1+ε)) space. Besides for superlinear space, their solution uses a very complex class of
hash functions which requires n4/3+o(1)-time preprocessing, and that is the underlying reason
for the bounds on ε. In this work, we significantly improve the complexity of the LCS with
Approximately k Mismatches problem and show the following results.

Theorem 5.1. Let ε > 0 be an arbitrary constant. The LCS with Approximately k Mismatches
problem can be solved correctly with high probability:

1) In O(n1+1/(1+2ε)+o(1)) time and O(n1+1/(1+2ε)+o(1)) space assuming a constant-size alpha-
bet;

2) In O(n1+1/(1+ε) log3 n) time and O(n) space for alphabets of arbitrary size.

Our first solution uses the Approximate Nearest Neighbour data structure [193] as a black
box. The definition of this data structure is extremely involved, and we view this result as more
of a theoretical interest. On the other hand, our second solution is simple and practical, which
we confirm by experimental evaluation (see Section 4 for details).

As a final remark, we note that a construction similar to the one used to show a lower bound
for the LCS with k Mismatches problem [293] gives a lower bound for LCS with Approximately k
Mismatches.

Fact 5.2. Assuming SETH, for every constant δ > 0, there exists a constant ε = ε(δ)1 such
that any randomised algorithm that solves the LCS with Approximately k Mismatches problem for
given X and Y of length at most n correctly with constant probability uses Ω(n2−δ) time.

For completeness, we provide the proof of the fact in the full version of this paper.

Related work. In 2014, Leimester and Morgenstern [183] introduced a related similarity
measure, the k-macs distance. Let LCPk(Xi, Yj) = max{ℓ : dH(X[i, i+ℓ−1], Y [j, j+ℓ−1]) ≤ k},
where dH stands for Hamming distance, i.e. the number of mismatches between two strings. We
have LCSk = maxi,j LCPk(Xi, Yj). The k-macs distance, on the other hand, is defined as

1Here δ is a function of ε for which the explicit form is not known (a condition inherited from [276]).
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a normalised average of these values. Leimeister and Morgenstern [183] showed a heuristic
algorithm for computing the k-macs distance, with no theoretical guarantees for the precision of
the approximation; other heuristic approaches for computing the k-macs distance include [231,
249]. The only algorithm with provable theoretical guarantees is [230] and it computes the
k-macs distance in O(n logk n) time and O(n) space.

2 Preliminaries
We assume that the alphabet of the strings X, Y is Σ = {1, . . . , σ}, where σ = nO(1).
Karp–Rabin fingerprints.
The Karp–Rabin fingerprint [35] of a string S = s1s2 . . . sℓ is defined as

φ(S) =
(

ℓ∑
i=1

ri−1si

)
mod q,

where q = Ω(max{n5, σ}) is a prime number, and r ∈ Fq is chosen uniformly at random.
Obviously, if S1 = S2, then φ(S1) = φ(S2). Furthermore, for any ℓ ≤ n, if the fingerprints of
two ℓ-length strings S1, S2 are equal, then S1, S2 are equal with probability at least 1 − 1/n4

(for a proof, see e.g. [136]).
Dimension reduction.
We will exploit a computationally efficient variant of the Johnson–Lindenstrauss lemma [26]
which describes a low-distortion embedding from a high-dimensional Euclidean space into a
low-dimensional one. Let ∥·∥ be the Euclidean (L2) norm of a vector. We will exploit the
following claim which follows immediately from [86, Theorem 1.1]:
Lemma 5.3. Let P be a set of n vectors in Rℓ, where ℓ ≤ n. Given α = α(n) > 0 and a constant
β > 0, there is d = Θ(α−2 log n) and a scalar c > 0 such that the following holds. Let M be a
d×ℓ matrix filled with i.u.d. ±1 random variables. For all U ∈ P , define skα(U) = c·MU . Then
for all U, V ∈ P there is ∥U − V ∥2 ≤ ∥skα(U) − skα(V )∥2 ≤ (1 + α)∥U − V ∥2 with probability
at least 1− n−β.

Since the Hamming distance between binary strings U, V is equal to ∥U−V ∥2, the matrix M
defines a low-distortion embedding from an ℓ-dimensional into a d-dimensional Hamming space
as well. For non-binary strings, an extra step is required. Let the alphabet be Σ = {1, 2, . . . , σ}
and consider a morphism µ : Σ→ {0, 1}σ, where µ(a) = 0a−110σ−a for all a ∈ Σ. We extend µ
to strings in a natural way. Note that for two strings U, V over the alphabet Σ the Hamming
distance between µ(U), µ(V ) is exactly twice the Hamming distance between U, V . We therefore
obtain:
Corollary 5.4. Let P be a set of n strings in Σℓ, where ℓ ≤ n. Given α = α(n) > 0 and a
constant β > 0, there is d = Θ(α−2 log n) and a scalar c > 0 such that the following holds. Let
M be a d× (σ · ℓ) matrix filled with i.u.d. ±1 random variables. For all U ∈ P , define skα(U) =
c ·Mµ(U). Then for all U, V ∈ P there is dH(U, V ) ≤ ∥skα(U) − skα(V )∥2 ≤ (1 + α)dH(U, V )
with probability at least 1− n−β.

We will use the corollary for dimension reduction, and also to design a simple test that
checks whether the Hamming distance between two strings is at most k.
Corollary 5.5. Let P be a set of n strings in Σℓ, where ℓ ≤ n. With probability at least 1−n−β,
for all U, V ∈ P :

1) if ∥skα(U)− skα(V )∥2 ≤ (1 + α)k, then dH(U, V ) ≤ (1 + α) · k;

2) if ∥skα(U)− skα(V )∥2 > (1 + α)k, then dH(U, V ) ≥ k.
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2.1 The Twenty Questions Game
Consider the following version of the classic game “Twenty Questions”. There are two players:
Paul and Carole; Carole thinks of two numbers A, B between 0 and N , and Paul must return
some number in [A, B]. He is allowed to ask questions of form “Is x ≤ A?”, for any x ∈ [0, N ].
If x ≤ A, Carole must return YES; If A < x ≤ B, she can return anything; and if B < x, she
must return NO. Paul must return the answer after having asked at most Q questions where
Carole can tell at most ⌈ρQ⌉ lies, and only in the case when x ≤ A.

We show that Paul has a winning strategy for Q = Θ(log n) and any ρ < 1/3 by a black-box
reduction to the result of Dhagat, Gács, and Winkler [43] who showed a winning strategy for
A = B.

Theorem 5.6 ([43]). For A = B, Paul has a winning strategy for all ρ < 1
3 asking Q =

⌈
8 log N

(1−3ρ)2

⌉
questions.

This result is obtained by maintaining a stack of trusted intervals. Once Paul knows that
A is between ℓ and r, where ℓ ≤ r, he checks whether A is in the left or the right half of the
interval [ℓ, r]. If no inconsistencies appear (like A < ℓ or r < A), he pushes the new interval to
the stack, else he removes the interval [ℓ, r] from the stack of trusted intervals. After Q rounds,
Paul returns the only number in the top interval in the stack, which is guaranteed to have length
1 and to contain A. We give the pseudocode of Paul’s strategy in Algorithm 5.2. By Carole(x),
we denote the answer of Carole for a question “Is x ≤ A?”.

Algorithm 5.2 The Twenty Questions game
1: Q←

⌈
8 log N

(1−3ρ)2

⌉
2: S ← {[0, N ]}
3: for i = 1, 2, . . . , Q/2 do
4: I = [ℓ, r]← S.top()
5: mid ←

⌈
ℓ+r

2

⌉
6: if Carole(mid) then
7: if Carole(r) then S.pop() ▷ The answer is inconsistent with I; remove I.
8: else S.push([mid, r])
9: else

10: if Carole(ℓ) then S.push([ℓ,mid − 1])
11: else S.pop() ▷ The answer is inconsistent with I; remove I.

We now a show a winning strategy for our variant of the game.

Corollary 5.7. For A ≤ B, Paul has a winning strategy for all ρ < 1
3 asking Q = 8 log N

(1−3ρ)2

questions.

Proof. We introduce just one change to Algorithm 5.2, namely, we return the argument of the
largest YES obtained in the course of the algorithm. From the problem statement it follows
that the answer is at most B. We shall now prove that the answer is at least A. If Carole ever
returned YES for A < x ≤ B, then it is obviously the case. Otherwise, Carole actually behaved
as if she had A = B in mind: apart from the small fraction of erroneous answers, she returned
YES for x ≤ A, and NO for x > A. Thus, the strategy of Dhagat, Gács, and Winkler ends up
with A as the answer (and this must be due to a YES for x = A).
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3 LCS with Approximately k Mismatches
In this section, we prove Theorem 5.1. Let us first introduce a decision variant of the LCS with
Approximately k Mismatches problem.

Problem 2. Two strings X, Y of length at most n, integers k, ℓ, and a constant ε > 0 are given.
We must return:

1. YES if ℓ ≤ LCSk(X, Y );

2. Anything if LCSk(X, Y ) < ℓ ≤ LCS(1+ε)k(X, Y );

3. NO if LCS(1+ε)k(X, Y ) < ℓ.

If we return YES, we must also give a witness pair of length-ℓ substrings S1 and S2 of X and
Y , respectively, such that dH(S1, S2) ≤ (1 + ε)k.

The decision variant of the LCS with Approximately k Mismatches problem can be reduced to
the following (c, r)-Approximate Near Neighbour problem.

Problem 3. In the (c, r)-Approximate Near Neighbour problem with failure probability f , the
aim is, given a set P of n points in Rd, to construct a data structure supporting the following
queries: given any point q ∈ Rd, if there exists p ∈ P such that ∥p − q∥ ≤ r, then return some
point p′ ∈ P such that ∥p′ − q∥ ≤ cr with probability at least 1− f .

Using the reduction, we will show our first solution to the LCS with Approximately k Mis-
matches decision problem based on the result of Andoni and Razenshteyn [193], who showed that
for any constant f , there is a data structure for the (c, r)-Approximate Near Neighbour problem
that has O(n1+ρ+o(1) + d · n) size, O(d · nρ+o(1)) query time, and O(d · n1+ρ+o(1)) preprocessing
time, where ρ = 1/(2c2 − 1).

Lemma 5.8. Assume an alphabet of constant size σ. The decision variant of LCS with Approx-
imately k Mismatches can be solved in space O(n1+1/(1+2ε)+o(1)) and O(n1+1/(1+2ε)+o(1)) time.
The answer is correct with constant probability.

Proof. Let P be the set of all length-ℓ substrings of X and Q be the set of all length-ℓ substrings
of Y , all encoded in binary using the morphism µ (see Section 2). We start by applying the
dimension reduction procedure of Corollary 5.4 to P and Q with α = 1/(log log n)Θ(1) and β = 2
to obtain sets P ′ and Q′. We can implement the procedure in O(σn log2 n(log log n)Θ(1)) =
O(n log2+o(1) n) time by encoding X, Y using µ and running the FFT algorithm [14] for each of
the O(log1+o(1) n) rows of the matrix and µ(X), µ(Y ).

To solve the decision variant of LCS with Approximately k Mismatches, we build the data
structure of Andoni and Razenshteyn [193] for (

√
(1 + ε)(1− α),

√
(1 + α)k)-Approximate Near

Neighbour over Q′. We make a query for each string in P ′. If, queried for skα(S1) ∈ P ′,
where S1 is a length-ℓ substring of X, the data structure outputs skα(S2) ∈ Q′, where S2 is a
length-ℓ substring of Y , then we compute ∥skα(S1) − skα(S2)∥2. If it is at most (1 + ε)k, we
output YES and the witness pair (S1, S2) of substrings. As the length of vectors in P ′, Q′ is
d = O(log1+o(1) n), we obtain the desired complexity.

To show that the algorithm is correct, suppose that there are length-ℓ substrings S1 and S2 of
X and Y , respectively, with dH(S1, S2) ≤ k. By Corollary 5.4, ∥skα(S1), skα(S2)∥ ≤

√
(1 + α)k

holds with probability at least 1 − 1/n. Then, when querying for skα(S1), with constant
probability the data structure will output a string skα(S′

2) such that ∥skα(S1) − skα(S′
2)∥2 ≤

(1 + ε)(1− α2)k ≤ (1 + ε)k. Then, our algorithm will return YES.
On the other hand, if we output YES with a witness pair (S1, S2), then ∥skα(S1) −

skα(S2)∥2 ≤ (1 + ε)k implies dH(S1, S2) ≤ (1 + ε)k with high probability by Corollary 5.4.
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While this solution is very fast, it uses quite a lot of space. Furthermore, the data structure
of [193] that we use as a black box applies highly non-trivial techniques. To overcome these two
disadvantages, we will show a different solution based on a careful implementation of ideas first
introduced in [100] that showed a data structure for approximate text indexing with mismatches.
In [293], the authors developed these ideas further to show an algorithm that solves the LCS
with Approximately k Mismatches problem in O(n1+1/(1+ε)) space and O(n1+1/(1+ε) log2 n) time
for ε ∈ (0, 2) with constant error probability. In this work, we significantly improve and simplify
the approach to show the following result:

Theorem 5.9. Assume an alphabet of arbitrary size σ = nO(1). The decision variant of LCS
with Approximately k Mismatches can be solved in O(n1+1/(1+ε) log2 n) time and O(n) space. The
answer is correct with constant probability.

Let us defer the proof of the theorem until Section 3.1 and start by explaining how we use
Lemma 5.8 and Theorem 5.9 and the Twenty Questions game to show Theorem 5.1.

Proof of Theorem 5.1. We will rely on the modified version of the Twenty Questions game that
we described in Section 2.1. In our case, A = LCSk(X, Y ) and B = LCS(1+ε)k(X, Y ). For
Carole, we use either the algorithm of Lemma 5.8, or the algorithm of Theorem 5.9, with an
additional procedure verifying the witness pair (S1, S2) character by character to check that it
indeed satisfies dH(S1, S2) ≤ (1+ε)k. We output the longest pair of (honest) witness substrings
found across all iterations. We will return a correct answer assuming that the fraction of errors
is ρ < 1

3 . Recall that the algorithm solves the decision variant of the LCS with Approximately k
Mismatches problem incorrectly with probability not exceeding a constant δ, and we can ensure
δ < 1

3 by repeating it a constant number of times. It means that Carole can answer an individual
question erroneously with probability less than 1

3 . Therefore, for a sufficiently large constant
in the number of queries Q = Θ(log n), the fraction of erroneous answers is ρ < 1

3 with high
probability by Chernoff–Hoeffding bounds. The claim of the theorem follows immediately from
Lemma 5.8 and Theorem 5.9.

3.1 Proof of Theorem 5.9
We first give an algorithm for the decision version of the LCS with Approximately k Mismatches
problem that uses O(n log n) space and O(n1+1/(1+ε) log n+σn log2 n) time, and then we improve
the space and time complexity.

We assume to have fixed a Karp–Rabin fingerprinting φ for a prime q = Ω(max{n5, σ})
and an integer r ∈ Zq. With error probability inverse polynomial in n, we can find such q in
O(logO(1) n) time; see [164, 92].

Let Π be the set of all projections of strings of length ℓ onto a single position, i.e., the value
πi(S) of the i-th projection on a string S of length ℓ is simply its i-th character S[i]. More
generally, for a length-ℓ string S and a function h = (πa1 , . . . , πam) ∈ Πm, we define h(S) as
S[a1]S[a2] · · ·S[am].

Let p1 = 1−k/ℓ and p2 = 1− (1 + ε)k/ℓ. We assume that (1 + ε)k < ℓ in order to guarantee
p1 > p2 > 0; the problem is trivial if (1 + ε)k ≥ ℓ. Further, let m =

⌈
logp2

1
n

⌉
.

We choose a set H of L = Θ(n1/(1+ε)) hash functions in Πm uniformly at random. Let CH
ℓ

be the mutliset of all collisions of length-ℓ substrings of X and Y under the functions from H,
i.e. CH

ℓ = {(X[i, i + ℓ − 1], Y [j, j + ℓ − 1], h) : φ(h(X[i, i + ℓ − 1])) = φ(h(Y [j, j + ℓ − 1])), 1 ≤
i ≤ |X| − ℓ, 1 ≤ j ≤ |Y | − ℓ}.

We will perform two tests. The first test chooses an arbitrary subset C ′ ⊆ CH
ℓ of size

|C ′| = min{4nL, |CH
ℓ |} and, for each collision (S1, S2, h) ∈ C ′, computes ∥skε(S1)− skε(S2)∥2. If
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this value is at most (1+ε)k, then the algorithm returns YES and the pair (S1, S2) as a witness.
The second test chooses a collision (S1, S2, h) ∈ CH

ℓ uniformly at random and computes the
Hamming distance between S1 and S2 character by character in O(ℓ) = O(n) time. If the
Hamming distance is at most (1 + ε)k, the algorithm returns YES and the witness pair (S1, S2).
Otherwise, the algorithm returns NO. See Algorithm 5.3.

Algorithm 5.3 LCS with Approximately k Mismatches (decision variant)
1: Choose a set H of L functions from Πm uniformly at random
2: CH

ℓ = {(S1, S2, h) : S1, S2-length-ℓ substrs. of X, Y resp. and φ(h(S1)) = φ(h(S2))}
3: Choose an arbitrary subset C ′ ⊆ CH

ℓ of size min{4nL, |CH
ℓ |}

4: Compute skε(·) sketches for all length-ℓ substrings of X, Y
5: for (S1, S2, h) ∈ C ′ do
6: if ∥skε(S1)− skε(S2)∥2 ≤ (1 + ε)k then return (YES, (S1, S2))
7: Draw a collision (S1, S2, h) ∈ CH

ℓ uniformly at random
8: if dH(S1, S2) ≤ (1 + ε)k then return (YES, (S1, S2))
9: return NO

We must explain how we compute CH
ℓ and choose the collisions that we test. We consider

each hash function h ∈ H in turn. Let h = (πa1 , . . . , πam). Recall that for a string S of length ℓ
we define h(S) as S[a1]S[a2] · · ·S[am]. Consequently, φ(h(S)) = (∑m

i=1 ri−1S[ai]) mod q. We
create a vector U of length ℓ where each entry is initialised with 0. For each i, we add ri−1 mod q
to the ai-th entry of U . Finally, we run the FFT algorithm [14] for U and X, Y in the field Zq,
and sort the resulting values. We obtain a list of sorted values that we can use to generate the
collisions. Namely, consider some fixed value z. Assume that there are x substrings of X and y
substrings of Y of length ℓ such that the fingerprint of their projection is equal to z. The value
z then gives xy collisions, and we can generate each one of them in constant time. This explains
how to choose the subset C ′ in O(nL log n) time.

To draw a collision from CH
ℓ uniformly at random, we could simply compute the total

number of collisions across all functions h ∈ H, draw a number in [1, |CH
ℓ |], and generate the

corresponding collision. However, this would require to generate the collisions twice. Instead, we
use the weighted reservoir sampling algorithm [23]. We divide all collisions into subsets according
to the values of fingerprints. We assume that the weighted reservoir sampling algorithm receives
the fingerprint values one-by-one, as well as the number of corresponding collisions. At all times,
the algorithm maintains a “reservoir” containing one fingerprint value and a random collision
corresponding to this value. When a new value z with xy collisions arrives, the algorithm replaces
the value in the reservoir with z and a random collision with some probability. Note that to
select a random collision it suffices to choose a pair from [1, x]× [1, y] uniformly at random. It is
guaranteed that if for a value z we have xy collisions, the algorithm will select z with probability
xy/|CH

ℓ |. Consequently, after processing all values, the reservoir will contain a collision chosen
from CH

ℓ uniformly at random.

Lemma 5.10. Algorithm 5.3 uses O(n1+1/(1+ε) log n + σn log2 n) time and O(n log n) space.

Proof. Computing the sketches (Line 4) takes O(σn log2 n) time and O(n log n) space. Comput-
ing the collisions and choosing the collisions to test takesO(n1+1/(1+ε) log n) time andO(n) space
in total. Testing min{4nL, |CH

ℓ |} collisions (Line 5) takes O(n1+1/(1+ε) log n) time and constant
space. Computing the Hamming distance for a random collision (Line 8) takes O(ℓ) = O(n)
time and constant space.
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Lemma 5.11. Let S1 and S2 be two length-ℓ substrings of X and Y , with dH(S1, S2) ≤ k. If
L = Θ(n1/(1+ε)) is large enough, then, with probability at least 3/4, there exists a function h ∈ H
such that h(S1) = h(S2).

Proof. Consider a function h = (πa1 , . . . , πam) drawn from Πm uniformly at random. The
probability of h(S1) = h(S2) is at least pm

1 . Due to p1 ≤ 1, we have

pm
1 = p

⌈logp2
1
n⌉

1 ≥ p
1+logp2

1
n

1 = p1 · n
− log p1

log p2 .

Moreover, p1 = 1− k
ℓ and (1 + ε)k < ℓ yield p1 > 1− 1

1+ε = ε
1+ε , whereas Bernoulli’s inequality

implies p2 = 1− (1 + ε)k
ℓ ≤ (1− k

ℓ )1+ε = p1+ε
1 , i.e., log p2 ≤ (1 + ε) log p1. Therefore,

pm
1 ≥ p1 · n

− log p1
log p2 ≥ ε

1+ε · n
− 1

1+ε .

Hence, we can choose the constant in L = |H| so that the claim of the lemma holds.

Lemma 5.12. If |CH
ℓ | > 4nL and (S1, S2, h) is a uniformly random element of CH

ℓ , then
Pr[dH(S1, S2) ≥ (1 + ε)k] ≤ 1

2 .

Proof. Consider length-ℓ substrings S1, S2 of X, Y , respectively, such that dH(S1, S2) ≥ (1+ε)k,
and a hash function h. Let us bound the probability of (S1, S2, h) ∈ CH

ℓ . There two possible
cases: either h(S1) ̸= h(S2) but φ(h(S1)) = φ(h(S2)), or h(S1) = h(S2). The probability of the
first event is bounded by the collision probability of Karp–Rabin fingerprints, which is at most
1/n. Let us now bound the probability of the second event. Since dH(S1, S2) ≥ (1 + ε)k, we
have Pr[h(S1) = h(S2)] ≤ pm

2 ≤ 1/n, where the last inequality follows from the definition of m.
Therefore, the probability that for some function h ∈ H we have φ(h(S1)) = φ(h(S2)) is at most
2/n.

In total, we have n2|H| possible triples (S1, S2, h) so by linearity of expectation, we conclude
that the expected number of such triples is at most 2

nn2L = 2nL. Therefore, the probability
to hit a triple (S1, S2, h) such that dH(S1, S2) ≥ (1 + ε)k when drawing from CH

ℓ uniformly at
random is at most 2nL/|CH

ℓ | ≤ 2nL/4nL = 1/2.

Below, we combine the previous results to prove that, with constant probability, Algo-
rithm 5.3 correctly solves the decision variant of the LCS with Approximately k Mismatches
problem. Note that we can reduce the error probability to an arbitrarily small constant δ > 0:
it suffices to repeat the algorithm a constant number of times.

Corollary 5.13. With non-zero constant probability, Algorithm 5.3 solves the decision variant
of LCS with Approximately k Mismatches correctly.

Proof. Suppose first that ℓ ≤ LCSk(X, Y ), which means that there are two length-ℓ substrings
S1, S2 of X, Y such that dH(S1, S2) ≤ k. By Lemma 5.11, with probability at least 3/4, there
exists a function h ∈ H such that h(S1) = h(S2). In other words, (S1, S2, h) ∈ CH

ℓ with
probability at least 3

4 . If |CH
ℓ | < 4nL, we will find this triple and it will pass the test with

probability at least 1 − n−6. If |CH
ℓ | ≥ 4nL, then by Lemma 5.12 the Hamming distance

between S1, S2, where (S1, S2, h) was drawn from CH
ℓ uniformly at random, is at most (1 + ε)k

with probability ≥ 1/2, and therefore this pair will pass the test with probability ≥ 1/2. It
follows that in this case the algorithm outputs YES with constant probability.

Suppose now that ℓ > LCS(1+ε)k(X, Y ). In this case, the Hamming distance between any
pair of length-ℓ substrings of X and Y is at least (1 + ε)k, so none of them will ever pass the
second test and none of them will pass the first test with constant probability.
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We now improve the space of the algorithm to linear. Note that the only reason why we
needed O(n log n) space is that we precompute and store the sketches for the Hamming distance.
Below we explain how to overcome this technicality.

First, we do not precompute the sketches. Second, we process the collisions in C ′ in batches
of size n. Consider one of the batches, B. For each collision (S1, S2, h) ∈ B we must compute
∥skε(S1)− skε(S2)∥2. We initialize a counter for every collision, setting it to zero initially. The
number of rounds in the algorithm will be equal to the length of the sketches, and, in round
i, the counter for a collision (S1, S2, h) ∈ B will contain the squared L2 distance between the
length-i prefixes of skε(S1) and skε(S2). In more detail, let S be the set of all substrings of X, Y
that participate in the collisions in B. Recall that all these substrings have length ℓ. At round
i, we compute the i-th coordinate of the sketches of the substrings in S. By definition, the i-th
coordinate is the dot product of the i-th row of c·M , where c and M are as in Corollary 5.4, and a
substring encoded using µ. Hence, we can compute the coordinate using the FFT algorithm [14]
in O(σn log n) time and O(n) space. When we have the coordinate i computed, we update the
counters for the collisions and repeat.

At any time, the algorithm uses O(n) space. Compared to the time consumption proven
in Lemma 5.10, the algorithm spends an additional O(σn1+1/(1+ε) log2 n) time for computing
the coordinates of the sketches. Therefore, in total the algorithm uses O(σn1+1/(1+ε) log2 n) =
O(n1+1/(1+ε) log2 n) time and O(n) space. For constant-size alphabets, this completes the proof
of Theorem 5.9. For alphabets of arbitrary size, we replace the sketches from Section 2 with
the sketches defined in [293] to achieve the desired complexity. We note that we could use the
sketches [293] for small-size alphabets as well, but their lengths hide a large constant.

4 Experiments
We now present results of experimental evaluation of the second solution presented in Theo-
rem 5.1.

Methodology and test environment. The baselines and our solution are written in C++11
and compiled with optimizations using gcc 7.4.0. The experimental results were generated on
an Intel Xeon E5-2630 CPU using 128 GiB RAM. To ensure the reproducibility of our results,
our complete experimental setup, including data files, is available at https://github.com/
fnareoh/LCS_Approx_k_mis.

Baseline. The only other solution to the LCS with Approximately k Mismatches problem was
presented in [293], however, it has a worse complexity and is likely to be unpractical because
it uses a very complex class of hash functions. We therefore chose to compare our algorithm
against algorithms for the LCS with k Mismatches problem. To the best of our knowledge, none
of the existing algorithms has been implemented. We implemented the solution to LCS with k
Mismatches by Flouri et al., which we refer to as FGKU [203]. (The other algorithms seem to be
too complex to be efficient in practice.) The main idea of the algorithm of Flouri et al. is that
if we know that the longest common substring with k mismatches is obtained by a substring of
X that starts at a position p and a substring of Y that starts at a position p + i, then we can
find it by scanning X and Y [i, |Y |] in linear time; see Algorithm 5.4 for details.

Details of implementation. We made several adjustments to the theoretical algorithm we
described. First, we use the fact that A = LCS(X, Y ) + k ≤ LCSk(X, Y ) ≤ B = (k + 1) ·
LCS(X, Y )+k to bound the interval in the Twenty Questions game. We also treated the number
of questions in the Twenty Questions game and L, the size of the set of hash functions H, as
parameters that trade time for accuracy, and put the number of questions to 2 log(B−A) in the
Twenty Questions game and L = n1/(1+ε)/16. In Line 6 of Algorithm 5.3, we used sketches to
estimate the Hamming distance. In practice, we computed the Hamming distance via character-
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Algorithm 5.4 FGKU algorithm
1: n← |X|, m← |Y |
2: l← 0, r1 ← 0, r2 ← 0
3: for d← −m+ 1 to n− 1 do
4: i← max(−d, 0) + d, j ← max(−d, 0)
5: Q← ∅, s← 0, p← 0
6: while p ≤ min(n− i,m− j)− 1 do
7: if X[i+ p] ̸= Y [j + p] then
8: if |Q| = k then
9: s← minQ+ 1

10: DEQUEUE(Q)
11: ENQUEUE(Q, p)
12: p← p+ 1
13: if p− s > l then
14: l← p− s, r1 ← i+ s, r2 ← j + s

by-character comparison when ℓ is small compared to k and via kangaroo jumps otherwise [31].
Also, when the length ℓ in Algorithm 5.3 is smaller than 2 log n, we compute the hash values of
the ℓ-length substrings of S1 and S2 naively, instead of using the FFT algorithm [14].

(a) Random, k = 10 (b) E. coli, k = 10

Figure 5.1: Comparison of the FGKU algorithm versus our algorithm for k = 10 and
different values of ε. Large standard deviation for length 60000 is caused by an outlier
with very long longest common substring with k mismatches.

Data sets and results. We considered k ∈ {10, 25, 50} and ε ∈ {1.0, 1.25, 1.5, 1.75, 2.0}. We
tested the algorithms on pairs of random strings (each character is selected independently and
uniformly from a four-character alphabet {A, T, G, C}) and on pairs of strings extracted at
random from the E. coli genome. The lengths of the strings in each pair are equal and vary from
0 to 60000 with a step of 5000. All timings reported are averaged over ten runs. Figures 5.1- 5.3
show the results for k = 10, 25, 50. We note that for ε = 1 and k = 10, 25, the standard deviation
of the running time on the E. coli data set is quite large, which is probably caused by our choice
of the method to compute the Hamming distance between substrings, but for all other parameter
combinations it is within the standard range. We can see that the time decreases when ε grows,
which is coherent with the theoretical complexity.
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(a) Random, k = 25 (b) E. coli, k = 25

Figure 5.2: Comparison of the FGKU algorithm versus our algorithm for k = 25 and
different values of ε.

(a) Random, k = 50 (b) E. coli, k = 50

Figure 5.3: Comparison of the FGKU algorithm versus our algorithm for k = 50 and
different values of ε.

As for the accuracy, note that our algorithm cannot return a pair of strings at Hamming
distance more than (1 + ε)k, and so the only risk is returning strings which are too short.
Consequently, we measured the accuracy of our implementation by the ratio of the length
LCSk̃(X, Y ) returned by our algorithm divided by LCSk(X, Y ) computed by the dynamic
programming. We estimate rmin(ε, k) = minX,Y (LCSk̃(X, Y )/LCSk(X, Y )) and rmax(ε, k) =
maxX,Y (LCSk̃(X, Y )/LCSk(X, Y )) by computing LCSk̃ and LCSk for 10 pairs of strings for
each length from 5000 to 60000 with step of 5000, as well as the error rate, i.e. the percentage
of experiments where LCSk̃(X, Y ) is shorter than LCSk(X, Y ) (see Table 5.1). Not surprisingly,
rmin and rmax grow as k and ε grow, while the error rate drops. Even though there is no theoret-
ical upper bound on rmax, the latter is at most 2.24 at all times. We also note that even in the
cases when the error rate is non-negligible, LCSk̃ ≥ 0.86 · LCSk, in other words, our algorithm
returns a reasonable approximation of LCSk.
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Random E. coli
k = 10 k = 25 k = 50 k = 10 k = 25 k = 50

ε = 1.0 0.95 1.41 1.12 1.46 1.27 1.54 0.89 1.34 0.94 1.48 0.97 1.59
err = 3% err = 0% err = 0% err = 33% err = 13% err = 3%

ε = 1.25 0.97 1.47 1.15 1.63 1.44 1.78 0.88 1.48 0.98 1.56 0.99 1.73
err = 1% err = 0% err = 0% err = 28% err = 5% err = 3%

ε = 1.5 1.05 1.57 1.37 1.76 1.55 1.91 0.88 1.45 0.96 1.67 0.99 1.89
err = 0% err = 0% err = 0% err = 17% err = 3% err = 3%

ε = 1.75 1.02 1.69 1.46 1.86 1.72 2.12 0.88 1.58 0.95 1.84 1.02 2.15
err = 0% err = 0% err = 0% err = 17% err = 2% err = 0%

ε = 2.0 1.10 1.72 1.59 2.00 1.89 2.24 0.91 1.77 1.01 2.10 1.00 2.19
err = 0% err = 0% err = 0% err = 9% err = 0% err = 1%

Table 5.1: Accuracy of the LCS with Approximately k Mismatches algorithm. For each k
and ε, we show rmin(ε, k), rmax(ε, k), as well as the error rate.



Chapter 6
Pattern Matching under DTW Distance

This chapter corresponds to the extended version of the following publication: Garance
Gourdel, Anne Driemel, Pierre Peterlongo, and Tatiana Starikovskaya, “Pattern Matching
Under DTW Distance”, in: String Processing and Information Retrieval - 29th International
Symposium, SPIRE 2022, Concepción, Chile, November 8-10, 2022, Proceedings, ed. by
Diego Arroyuelo and Barbara Poblete, vol. 13617, Lecture Notes in Computer Science,
Springer, 2022, pp. 315–330, doi: 10.1007/978-3-031-20643-6_23.

Publication

In this work, we consider the problem of pattern matching under the dynamic time warping
(DTW) distance motivated by potential applications in the analysis of biological data produced
by the third generation sequencing. To measure the DTW distance between two strings, one must
“warp” them, that is, double some letters in the strings to obtain two equal-lengths strings, and
then sum the distances between the letters in the corresponding positions. When the distances
between letters are integers, we show that for a pattern P with m runs and a text T with n
runs:

1. There is an O(m+n)-time algorithm that computes all locations where the DTW distance
from P to T is at most 1;

2. There is an O(kmn)-time algorithm that computes all locations where the DTW distance
from P to T is at most k.

As a corollary of the second result, we also derive an approximation algorithm for general metrics
on the alphabet.

1 Introduction
Introduced more than forty years ago [18], the dynamic time warping (DTW) distance has be-
come an essential tool in the time series analysis and its applications due to its ability to preserve
the signal despite speed variation in compared sequences. To measure the DTW distance be-
tween two discrete temporal sequences, one must “warp” them, that is, replace some data items
in the sequences with multiple copies of themselves to obtain two equal-lengths sequences, and
then sum the distances between the data items in the corresponding positions.

The DTW distance has been extensively studied for parameterized curves — sequences where
the data items are points in a multidimensional space — specifically, in the context of locality
sensitive hashing and nearest neighbor search [239, 257]. In this work, we focus on a somewhat
simpler, but surprisingly much less studied setting when the data items are elements of a finite
set, the alphabet. Following traditions, we call such sequences strings.

The classical textbook dynamic programming algorithm computes the DTW distance be-
tween two N -length strings in O(N2) time and space. Unfortunately, unless the Strong Expo-
nential Time Hypothesis is false, there is no algorithm with strongly subquadratical time even
for ternary alphabets [190, 197, 294]. On the other hand, very recently Gold and Sharir [270]
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showed the first weakly subquadratic time algorithm (to be more precise, the time complexity of
the algorithm is O(N2 log log log N/ log log N)). Kuszmaul [294] gave a O(kN)-time algorithm
that computes the value of the distance between the strings if it is bounded by k, assuming that
the distance between any two distinct letters of the alphabet is at least one, and used it to de-
rive a subquadratic-time approximation algorithm for the general case. Finally, it is known that
binary strings admit much faster algorithms: Abboud, Backurs, and Vassilevska Williams [190]
showed an O(N1.87)-time algorithm followed by a linear-time algorithm by Kuszmaul [341].

The problem of computing the DTW distance has also been studied in the sparse and run-
length compressed settings, as well as in the low distance regime. In the sparse setting, we
assume that most letters of the string are zeros. Hwang and Gelfand [245] gave an O((s + t)N)-
time algorithm, where s and t denote the number of non-zero letters in each of the two strings.
On sparse binary strings, the distance can be computed in O(s + t) time [292, 224]. Froese et
al. [284] suggested an algorithm with running time O(mN + nM), where M, N are the length of
the strings, and m, n are the sizes of their run length encodings. If n ∈ O(

√
N) and m ∈ O(

√
M),

their algorithm runs in time O(nm · (n + m)). For binary strings, the DTW distance can be
computed in O(nm) time [201].

Nishi et al. [319] considered the question of computing the DTW distance in the dynamic
setting when the stings can be edited, and Sakai and Inenaga [323] showed a reduction from the
problem of computing the DTW distance to the problem of computing the longest increasing
subsequence, which allowed them to give polynomial-time algorithms for a series of DTW-related
problems.

In this work, we focus on the pattern matching variant of the problem: Given a pattern P
and a text T , one must output the smallest DTW distance between P and a suffix of T [1 . . r]
for every position r of the text.

Our interest to this problem sparks from its potential applications in Third Generation
Sequencing (TGS) data comparisons. TGS has changed the genomic landscape as it allows to
sequence reads of few dozens of thousand of letters where previous sequencing techniques were
limited to few hundred letters [303]. However, TGS suffers from a high error rate (from ≈ 1 to
10% depending on the used techniques) mainly due to the fact that the DNA sequences are read
and thus sequenced at an uneven speed. The uneven sequencing speed has a major impact in the
sequencing quality of DNA regions composed of two or more equal consecutive letters. Those
regions, called homopolymers, are hardly correctly sequenced as, due to the uneven sequencing
speed, their size cannot be precisely determined [337]. In particular, a common post-sequencing
task consists in aligning the obtained reads to a reference genome. This enables for instance
to predict alternative splicing and gene expression [217] or to detect structural variations [296].
All known aligners use the edit distance, most likely, due to the availability of software tools for
the latter (see [273] and references therein). However, we find that the nature of TGS errors is
much better described by the DTW distance, which we confirm experimentally in Section 6.
Our contribution. As a baseline, the problem of pattern matching under the DTW distance
can be solved using dynamic programming in time O(MN), where M is the length of the pattern
and N of the text (Equation 6.1).

In this work, we aim to show more efficient algorithms for the low-distance regime on run-
length compressible data, which is arguably the most interesting setting for the TGS data
processing. Formally, in the k-DTW problem we are given an integer k > 0, a pattern P and a
text T , and must find all positions r of the text such that the smallest DTW distance between
the pattern P and a suffix of T [1 . . r] does not exceed k. One might hope that the DTW distance
is close enough to the edit distance and thus is amenable to the techniques developed for the
latter, such as [61, 37]. In the full version, we show that this is indeed the case for k = 1:
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2. Preliminaries

Lemma 6.1. Given run-length encodings of a pattern P and of a text T over an alphabet Σ and
a distance d : Σ × Σ → Z+, the 1-DTW problem can be solved in O(m + n) time, where m is
the number of runs in P and n is the number of runs in T . The output is given in a compressed
form, with a possibility to retrieve each position in constant time.

Unfortunately, extending the approach of [61, 37] to higher values of k seems to be impossible
as it is heavily based on the fact that in the edit distance dynamic programming matrix the
distances are non-decreasing on every diagonal, which is not the case for the DTW distance (see
Fig. 6.1).

In Section 4 we develop a different approach. Interestingly, we show that the value of any
cell of the bottom row and the right column of a block of the dynamic programming table (i.e.
a subtable formed by a run in the pattern and a run in the text) can be computed in constant
time given a constant-time oracle access to the left column and the top row. Combining this
with a compact representation of the k-bounded values, we obtain the following result:

Theorem 6.2. Given run-length encodings of a pattern P and of a text T over an alphabet Σ
and a distance d : Σ×Σ→ Z+, the k-DTW problem can be solved in O(kmn) time, where m is
the number of runs in P and n is the number of runs in T . The output is given in a compressed
form, with a possibility to retrieve each position in constant time.

We note that while our algorithm can be significantly faster than the baseline, its worst-case
time complexity is cubic. We leave it as an open question whether there exists an O(k ·(m+n))-
time algorithm. Finally, in Section 5 we use Theorem 6.2 to derive an approximation algorithm
for the general variant of pattern matching under the DTW distance.

G G T T T T C T T A T T T T G G T G A T A
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A ∞ 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0
A ∞ 2 2 2 2 2 2 2 2 2 0 1 2 2 2 2 2 2 2 0 1 0
T ∞ 3 3 2 2 2 2 3 2 2 1 0 0 0 0 1 2 2 3 1 0 1
T ∞ 4 4 2 2 2 2 3 2 2 2 0 0 0 0 1 2 2 3 2 0 1
A ∞ 5 5 3 3 3 3 3 3 3 2 1 1 1 1 1 2 3 3 2 1 0
T ∞ 6 6 3 3 3 3 4 3 3 3 1 1 1 1 2 2 2 3 3 1 1

Figure 6.1: Consider P = AATTAT and T = GGTTTTCTTATTTTGGTGATA. A
cell (i, j) contains the smallest DTW distance between P [1 . . i] and T [1 . . j], where the
distance between two letters equals one if they are distinct and zero otherwise. A non-
monotone diagonal of the table is shown in red.

2 Preliminaries
We assume a polynomial-size alphabet Σ with σ letters. A string X is a sequence of letters.
If the sequence has length zero, it is called the empty string. Otherwise, we assume that the
letters in X are numbered from 1 to n =: |X| and denote the i-th letter by X[i]. We define
X[i . . j] to be equal to X[i] . . . X[j] which we call a substring of X if i ≤ j and to the empty
string otherwise. If j = n, we call a substring X[i . . j] a suffix of X.

Definition 6.3 (Run, Run-length encoding). A run of a string X is a maximal substring X[i . . j]
such that X[i] = X[i + 1] = . . . = X[j]. The run-length encoding of a string X, RLE(X) is a
sequence obtained from X by replacing each run with a tuple consisting of the letter forming the
run and the length of the run. For example, RLE(aabbbc) = (a, 2)(b, 3)(c, 1).
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Let d : Σ×Σ→ R+ be a distance function such that for any letters a, b ∈ Σ, a ̸= b, we have
d(a, a) = 0 and d(a, b) > 0. The dynamic time warping distance DTWd(X, Y ) between strings
X, Y ∈ Σ∗ is defined as follows. If both strings are empty, DTWd(X, Y ) = 0. If one of the strings
is empty, and the other is not, then DTWd(X, Y ) = ∞. Otherwise, let X = X[1]X[2] . . . X[r]
and Y = Y [1]Y [2] . . . Y [q]. Consider an r × q grid graph such that each vertex (i, j) has (at
most) three outgoing edges: one going to (i + 1, j) (if it exists), one to (i + 1, j + 1) (if it exists),
and one to (i, j + 1) (if it exists). A path π in the graph starting at (1, 1) and ending at (r, q) is
called a warping path, and its cost is defined to be ∑(i,j)∈π d(X[i], Y [j]). Finally, DTWd(X, Y )
is defined to be the minimum cost of a warping path for X, Y . Below we omit d if it is clear
from the context.

Let M = |P |, N = |T |, and D be an (M + 1) × (N + 1) table where the rows are indexed
from 0 to M , and the columns from 0 to N such that:

1. For all j ∈ [0, N ], D[0, j] = 0;

2. For all i ∈ [1, M ], D[i, 0] = +∞;

3. For all i ∈ [1, M ] and j ∈ [1, N ], D[i, j] equals the smallest DTW distance between P [1 . . i]
and a suffix of T [1 . . j].

(See Fig. 6.1.) To solve the pattern matching problem under the DTW distance, it suffices to
compute the table D, which can be done in O(MN) time via a dynamic programming algorithm,
using the following recursion for all 1 ≤ i ≤M, 1 ≤ j ≤ N :

D[i, j] = min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]}+ d(P [i], T [j]) (6.1)

In the subsequent sections, we develop more efficient solutions for the low-distance regime on
run-length compressible data. We will be processing the table D by blocks, defined as follows: A
subtable D[ip . . jp, it . . jt] is called a block if P [ip . . jp] is a run in P or ip = jp = 0, and T [it . . jt]
is a run in T or it = jt = 0. For ip, it > 0, a block D[ip . . jp, it . . jt] is called homogeneous if
P [ip] = T [it]. (For example, a block D[3 . . 4][3 . . 6] in Fig. 6.1 is homogeneous.) A block such
that all cells in it contain a value q, for some fixed integer q, is called a q-block. (For example,
a block D[5 . . 5][11 . . 14] in Fig. 6.1 is a 1-block.) The border of a block is the set of the cells
contained in its top and bottom rows, as well as first and last columns. Consider a cell (a, b) in
B. We say that a block B′ is the top neighbor of B if it contains (a− 1, b), the left neighbor if
it contains (a, b− 1), and the diagonal neighbor if it contains (a− 1, b− 1).

Lemma 6.4. Consider a block B = D[ip . . jp, it . . jt] and cell (a, b) in it. If ip ≤ a < jp, then
D[a, b] ≤ D[a + 1, b] and if it ≤ b < jt, then D[a, b] ≤ D[a, b + 1].

Proof. Let us first give an equivalent statement of the lemma: if (a, b) and (a + 1, b) are in the
same block, then D[a, b] ≤ D[a + 1, b], and if (a, b) and (a, b + 1) are in the same block, then
D[a, b] ≤ D[a, b + 1].

We show the lemma by induction on a + b. The base of the induction are the cells such that
a = 0 or b = 0, and for them the statement holds by the definition of D. Consider now a cell
(a, b), where a, b ≥ 1. Assume that the induction assumption holds for all cells (x, y) such that
x + y < a + b. By Equation 6.1, we have:

D[a, b] = min{D[a− 1, b− 1], D[a− 1, b], D[a, b− 1]}+ d

D[a + 1, b] = min{D[a, b− 1], D[a, b], D[a + 1, b− 1]}+ d

D[a, b + 1] = min{D[a− 1, b], D[a− 1, b + 1], D[a, b]}+ d
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Assume that (a, b) and (a + 1, b) are in the same block. We have D[a, b] ≤ D[a, b − 1] + d and
trivially D[a, b] ≤ D[a, b] + d. By the induction assumption, D[a, b − 1] ≤ D[a + 1, b − 1] (the
cells (a, b− 1) and (a + 1, b− 1) must belong to the same block). Therefore,

D[a + 1, b] = min{D[a, b− 1], D[a, b], D[a + 1, b− 1]}+ d

= min{D[a, b− 1] + d, D[a, b] + d, D[a + 1, b− 1] + d}
≥ min{D[a, b], D[a, b], D[a, b− 1] + d}
≥ min{D[a, b], D[a, b], D[a, b]} = D[a, b].

Assume now that (a, b) and (a, b + 1) are in the same block. We have D[a, b] ≤ D[a− 1, b] + d.
Furthermore, as (a−1, b) and (a−1, b+1) are in the same block, we have D[a−1, b] ≤ D[a−1, b+1]
by the induction assumption. Therefore,

D[a, b + 1] = min{D[a− 1, b], D[a− 1, b + 1], D[a, b]}+ d

= min{D[a− 1, b] + d, D[a− 1, b + 1] + d, D[a, b] + d}
≥ min{D[a− 1, b] + d, D[a− 1, b] + d, D[a, b]}
≥ min{D[a, b], D[a, b], D[a, b]} = D[a, b].

This concludes the proof of the lemma.

By Equation 6.1, inside a homogeneous block each value is equal to the minimum of its
neighbors. Therefore, the values in a row or in a column cannot increase and we have the
following corollary:

Corollary 6.5. Each homogeneous block is a q-block for some value q.

3 Linear Algorithm for k = 1
In this section, we show Lemma 6.1 that for a pattern P with m runs and and text T with n
runs gives an O(m + n)-time algorithm.

Definition 6.6 (RLE-diagonals). We say that a sequence of blocks forms an RLE-diagonal if
the blocks are formed by runs i, i + 1, . . . , j of P and i + δ, i + 1 + δ, . . . , j + δ of T , for some
integers i, j, δ.

Definition 6.7 (Streak). A q-streak is a maximal subsequence of an RLE-diagonal containing
sequential homogeneous q-blocks.

Observation 6.8. If D[i, j] = 0, then it belongs to a 0-streak. Furthermore, each 0-streak
necessarily starts in the first row of D.

Proof. By definition, there must be a path from the first row of D to D[i, j] containing 0-values
only. For every 0-value D[i′, j′] we must have P [i′] = T [j′], and therefore every such value must
belong to a homogeneous 0-block. Furthermore, two homogeneous blocks can only be neighbours
diagonally, else it would contradict the maximality of the runs. The claim follows.

Observation 6.9. If D[i, j] = 1, then D[i, j] belongs to a 1-streak or neighbours a block in a
0-streak.

Proof. If P [i] = T [j], we are in a homogeneous block and D[i, j] belongs to a 1-streak, and we are
done. Otherwise, we have P [i] ̸= T [j] and there is a path (i1, j1), (i2, j2), . . . , (iq, jq) such that
i1 = 1, (iq, jq) = (i, j), and D[iq, jq] = ∑q

q′=1 d(P [iq′ ], T [jq′ ]). It follows that for all 1 ≤ q′ ≤ q−1,
d(P [iq′ ], T [jq′ ]) = 0, and therefore D[iq′ , jq′ ] must belong to a 0-streak by Observation 6.8.
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Lemma 6.1. Given run-length encodings of a pattern P and of a text T over an alphabet Σ and
a distance d : Σ × Σ → Z+, the 1-DTW problem can be solved in O(m + n) time, where m is
the number of runs in P and n is the number of runs in T . The output is given in a compressed
form, with a possibility to retrieve each position in constant time.

Proof. For a string S, define RLE(S) to be a string such that RLE(S)[i] contains the letter
forming the i-th run of S. We preprocess P ′ = RLE(P ) and T ′ = RLE(T ) in O(m + n) time
and space to maintain longest common suffix queries in constant time [104]. The input of a
longest common suffix query are two positions i, j of P ′ and T ′ respectively, and the output is
the largest ℓ such that P ′[i− ℓ . . i] = T ′[j − ℓ . . j].

Let Bi, 1 ≤ i ≤ n, be the block of D formed by the m-th run in P and the i-th run in T .
Using one longest common suffix query for each block Bi, we find the maximal streak containing
it. If this streak reaches the first row of D, it is a 0-streak and we can fill the last row of Bi

with zeros.
We must now decide which entries in the M -th row of D must be filled with one. Consider

an entry D[M, ℓ] ̸= 0 that belongs to a block Bi.
If Bi is contained in a streak of length at least one, then for D[M, ℓ] to be equal to one, it

must be a 1-streak. Consider the first block in the maximal streak containing Bi, and let c be
the cell in its top left corner. Because c can not be equal to zero, it suffices to check whether
the value in c equals one. Consider a path realizing the value of c. It goes either through the
left neighbour ℓ of c, the top neighbour t of c, or the diagonal neighbour d of c. Furthermore,
the value in c equals the minimum of the values in ℓ, d, t, and therefore, at least one of these
values equals one, and neither of them can belong to a 1-streak. By Observation 6.9, such a cell
must neighbour a block in a zero-streak. For each block neighbouring the cells ℓ, d, t, we use one
longest common suffix query to decide whether they are contained in a 0-streak. If they are,
then the value in c, and consequently all the values in Bi, including the values in the last row
of Bi, are equal to one, and we fill them in appropriately.

Suppose now that Bi does not belong to a streak. For D[M, ℓ] to be equal to one, it must
neighbour a block in a 0-streak. Therefore, there can be only one such cell in Bi, the one in the
left bottom corner, and we can decide whether the value in it equals to one in constant time
similar to above.

4 Main Result: O(kmn)-time Algorithm
In this section, we show Theorem 6.2 that for a pattern P with m runs and a text T with n
runs gives an O(kmn)-time algorithm. We start with the following lemma which is a keystone
to our result:

Lemma 6.10. For a block D[ip . . jp, it . . jt] let h = jp − ip, w = jt − it, and d = d(P [ip], T [it]).
We have for every ip < x ≤ jp:

D[x, jt] =
{

D[ip, jt − (x− ip)] + (x− ip) · d if x− ip ≤ w;
D[x− w, it] + w · d otherwise.

(6.2)

For every it < y ≤ jt:

D[jp, y] =
{

D[jp − (y − it), it] + (y − it) · d if y − it ≤ h;
D[ip, y − h] + h · d otherwise.

(6.3)
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ip

ip + w

(ip, jt − (x− ip))

(x, jt)

(a)(b)

(c)

Case 1: x− ip ≤ w

ip

ip + w

(x− w, it)

(x, jt)

(a)

(b)
(c)

Case 2: x− ip > w

Figure 6.2: Cases of Lemma 6.10. Possible locations of the cell (a, b) are shown in blue.

Proof. For a homogeneous block, we have d = 0, and by Corollary 6.5 all the values in such a
block are equal, hence the claim of the lemma is trivially true.

Assume now d > 0. Consider x, ip < x ≤ jp, and let us show Eq. 6.2, Eq. 6.3 can be
shown analogously. Let π be a warping path realizing D[x, jt]. Let (a, b) be the first node of
π belonging to the block. We have a ∈ [ip, jp] and b ∈ [it, jt] and either a = ip or b = it. The
number of edges of π in the block from (a, b) to (x, jt) must be minimal, else there would be a
shorter path, thus it is equal to max{x− a, jt− b} and D[x, jt] = D[a, b] + max{x− a, jt− b} · d.
Case 1: x− ip ≤ w. Consider a cell (ip, jt − (x− ip)). There is a path from (ip, jt − (x− ip)) to
(x, jt) that takes x− ip diagonal steps inside the block, and therefore D[x, jt] ≤ D[ip, jt − (x−
ip)] + (x− ip) · d. We now show that D[x, jt] ≥ D[ip, jt − (x− ip)] + (x− ip) · d, which implies
the claim of the lemma.

(a) If a = ip and b ≥ jt − (x− ip), then max{x − ip, jt − b} = x − ip. We have D[x, jt] =
D[ip, b] + (x− ip) · d ≥ D[ip, jt − (x− ip)] + (x− ip) · d (Lemma 6.4).

(b) If a = ip and b < jt − (x− ip), then max{x− ip, jt − b} = jt − b. As there is a path from
(a, b) = (ip, b) to (ip, jt− (x− ip)) of length (jt− (x− ip)− b), we have D[ip, jt− (x− ip)] ≤
D[ip, b] + (jt − (x− ip)− b) · d. Consequently,

D[x, jt] = D[ip, b] + (jt − b) · d
≥ D[ip, jt − (x− ip)]− (jt − (x− ip)− b) · d + (jt − b) · d (Eq. 6.1)
= D[ip, jt − (x− ip)] + (x− ip) · d

(c) If b = it, then ip ≤ a and max{x − a, jt − b} ≤ max{x − ip, w} = w. As there is a path
from (ip, it) to (ip, jt− (x− ip)) of length (jt− (x− ip)− it), we have D[ip, jt− (x− ip)] ≤
D[ip, it] + (jt − (x− ip)− it) · d. Therefore,

D[x, jt] = D[a, it] + w · d ≥ D[ip, it] + w · d (Lemma 6.4)
≥ D[ip, jt − (x− ip)]− (jt − (x− ip)− it) · d + w · d
= D[ip, jt − (x− ip)] + (x− ip) · d

Case 2: x− ip > w. Consider a cell (x − w, it). There is a path from (x − w, it) to (x, jt) that
takes w diagonal steps inside the block, and therefore D[x, jt] ≤ D[x − w, it] + w · d. We now
show that D[x, jt] ≥ D[x− w, it] + w · d, which implies the claim of the lemma.

(a) If b = it and a ≥ x− w, then max{x − a, jt − b} = max{x − a, w} = w and we have
D[x, jt] = D[a, it] + w · d ≥ D[x− w, it] + w · d (Lemma 6.4).
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(b) If b = it and a < x− w, then max{x−a, jt−b} = max{x−a, w} = x−a. As there is a path
from (a, it) to (x−w, it) of length (x−w−a), we have D[x−w, it] ≤ D[a, it]+(x−w−a)·d
by definition. Therefore,

D[x, jt] = D[a, it] + (x− a) · d
≥ D[x− w, it]− (x− w − a) · d + (x− a) · d
= D[x− w, it] + w · d

(c) If a = ip, b ≥ it and thus max{x− a, jt − b} ≤ max{x− ip, w} = x− ip. Additionally, as
there is a path from (ip, it) to (x − w, it) of length (x − w − ip) we have D[x − w, it] ≤
D[ip, it] + (x− w − ip) · d. Consequently,

D[x, jt] = D[ip, b] + (x− ip) · d ≥ D[ip, it] + (x− ip) · d (Lemma 6.4)
≥ D[x− w, it]− (x− w − ip) · d + (x− ip) · d
= D[x− w, it] + w · d

We say that a cell in a border of a block is interesting if its value is at most k. To solve the
k-DTW problem it suffices to compute the values of all interesting cells in the last row of D.
Consider a block B = D[ip . . jp, it . . jt] and recall that the values in it are non-decreasing top
to down and left to right (Lemma 6.4). We can consider the following compact representation
of its interesting cells. For an integer ℓ, define qℓ

top ∈ [it, jt] to be the last position such that
D[ip, qℓ

top] ≤ ℓ, and qℓ
bot ∈ [it, jt] the last position such that D[jp, qℓ

bot] ≤ ℓ. If a value is not
defined, we set it equal to it − 1. Analogously, define qℓ

left ∈ [ip, jp] to be the last position such
that D[qℓ

left, it] ≤ ℓ, and qℓ
right ∈ [ip, jp] the last position such that D[qℓ

right, jt] ≤ ℓ. If a value is
not defined, we set it equal to ip − 1. Positions q0

top, . . . , qk
top uniquely describe the interesting

border cells in the top row of B, q0
bot, . . . , qk

bot in the bottom row, q0
left, . . . , qk

left in the leftmost
column, q0

right, . . . , qk
right in the rightmost column.

Lemma 6.11. The compact representations of the interesting border cells in the top row and
the leftmost column of a block B can be computed in O(k) time given the compact representation
of the interesting border cells in its neighbors.

Proof. We explain how to compute the representation for the leftmost column of B, the repre-
sentation for the top row is computed analogously. Let d = d(P [ip], T [it]). If d = 0 (the block is
homogeneous), by Corollary 6.5 the block is a q-block for some value q which can be computed
in O(1) time by Equation 6.1 if it is interesting (and otherwise we have a certificate that the
value is not interesting). We can then derive the values qℓ

left, ℓ = 0, 1, . . . , k in O(k) time.
Assume now d > 0. We start by computing D[ip, it] using Equation 6.1. We note that

if D[ip, it] ≤ k, then we know the values of its neighbors realizing it and therefore can com-
pute it, otherwise we can certify that D[ip, it] > k. Assume D[ip, it] = v, which implies that
q0

left, . . . , q
min{k,v}−1
left equal ip − 1. We must now compute q

min{k,v}
left , . . . , qk

left. Consider a cell
(q, it) of the block with q > ip. The second to the last cell in the warping path that realizes
D[q, it] = ℓ is one of the cells (q− 1, it), (q− 1, it− 1) or (q, it− 1), and the value of the path up
to there must be ℓ− d. Note that all the three cells belong either to the leftmost column of B,
or the rightmost column of its left neighbor. Consequently, for all min{k, v} < ℓ ≤ k, we have
qℓ

left = min{max{qℓ−d
left , rℓ−d

right}+ 1}, jt}, and the positions q0
left, . . . , qk

left can be computed in O(k)
time.
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ip

jp

it jt

q0
left

...

qk
left

jp + it − qk
left − 1 jp + it − q0

left − 1

q0
top qk

top

q0
top + h

. . .
qk

top + h

Figure 6.3: Compressed representation of interesting border cells.

Lemma 6.12. The compact representations of the interesting border cells in the bottom row and
the rightmost column of a block B can be computed in O(k) time given the compact representation
of the interesting border cells in its leftmost column and the top row.

Proof. We explain how to compute the representation for the bottom row, the representation
for the rightmost column is computed analogously.

Eq. 6.3 and the compact representations of the leftmost column and the top row of B partition
the bottom row of B into O(k) intervals (some intervals can be empty), and in each interval
the values are described either as a constant or as a linear function. (See Fig. 6.3.) Formally,
let h = jp − ip. By Eq. 6.3, for y ∈ [it, jp + it − qk

left − 1] ∩ [it, jt] we have D[jp][y] > k. For
y ∈ [jp+it−qℓ

left, jp+it−qℓ−1
left −1]∩[it, jt], ℓ = k, k−1, . . . , 1, we have D[jp][y] = ℓ+(y−it)·d. For

y ∈ [jp+it−q0
left, jp+it−ip]∩[it, jt] we have D[jp][y] = (y−it)·d. For y ∈ [it+h, q0

top+h−1]∩[it, jt]
we have D[jp][y] = h · d. For y ∈ [qℓ

top + h, qℓ+1
top + h − 1] ∩ [it, jt], ℓ = 0, 1, . . . , k − 1, we have

D[jp][y] = ℓ + h · d. Finally, for y ∈ [qk
top + h, jt], there is D[jp][y] > k again.

By Lemma 6.4, the values in the bottom row are non-decreasing. We scan the intervals
from left to right to compute the values q0

bot, . . . , qk
bot in O(k) time. In more detail, let qℓ

bot be
the last computed value, and [i, j] be the next interval. We set qℓ+1

bot = qℓ
bot. If the values in

the interval are constant and larger than ℓ + 1, we continue to computing qℓ+2
bot . If the values

are increasing linearly, we find the position of the last value smaller or equal to ℓ + 1, set qℓ+1
bot

equal to this position, and continue to computing qℓ+2
bot . Finally, if the values in the interval are

constant and equal to ℓ + 1, we update qℓ+1
bot = j and continue to the next interval. As soon as

qk
bot is computed, we stop the computation.

Since there are O(mn) blocks in total, Lemmas 6.11 and 6.12 immediately imply Theo-
rem 6.2.

5 Approximation Algorithm
In this section, we show an approximation algorithm for computing the smallest DTW distance
between a pattern P and a substring of a text T . We assume that the DTW distance is defined
over a metric on the alphabet Σ. Kuszmaul [294] showed that the problem of computing the
smallest DTW distance over an arbitrary metric can be reduced to the problem of computing
the smallest distance over a so-called well-separated tree metric:

Definition 6.13 (Well-separated tree metric). Consider a rooted tree τ with positive weights on
the edges whose leaves form an alphabet Σ. The tree τ specifies a metric µτ on Σ: The distance
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between two leaves a, b ∈ Σ is defined as the maximum weight of an edge in the shortest path
from a to b. The metric µτ is a well-separated tree metric if the weights of the edges are not
increasing in every root-to-leaf path. The depth of µτ is defined to be the depth of τ .

Below we show that Theorem 6.2 implies the following result for well-separated tree metrics:

Lemma 6.14. Given run-length encodings of a pattern P with m runs and a text T with n
runs over an alphabet Σ. Assume that the DTW distance is specified by a well-separated tree
metric µτ on Σ with depth h, and suppose that the ratio between the largest and the smallest
non-zero distances between the letters of Σ is at most exponential in L = max{|P |, |T |}. For any
0 < ϵ < 1, there is an O(L1−ε · hmn log L)-time algorithm that computes O(Lε)-approximation
of the smallest DTW distance between P and a substring of T .

By plugging the lemma into the framework of [294], we obtain:

Theorem 6.15. approx Given run-length encodings of a pattern P with m runs and of a text
T with n runs over an alphabet Σ. Assume that the DTW distance is specified by a metric µ on
Σ, and suppose that the ratio between the largest and the smallest non-zero distances between
the letters of Σ is at most exponential in L = max{|P |, |T |}. For any 0 < ϵ < 1, there is a
O(L1−ε · mn log3 L)-time algorithm that computes O(Lε)-approximation of the smallest DTW
distance between P and a substring of T correctly with high probability1.

Proof. The proof follows the lines of the full version [295] of [294]. Any metric µ can be embedded
in O(σ2) time into a well-separated tree metric µτ of depth O(log σ) with expected distortion
O(log σ) (see [88] and [147, Theorem 2.4]). Furthermore, the ratio between the smallest distance
and the largest distance grows at most polynomially. Formally, for any two letters a, b we have
µ(a, b) ≤ µτ (a, b) and E(µτ (a, b)) ≤ O(log σ) · d(a, b). Therefore, we have:

DTWµ(X, Y ) ≤ DTWµτ (X, Y ) (6.4)

E(DTWµτ (X, Y )) ≤ O(log σ) ·DTWµ(X, Y ) (6.5)

Let δ = minS− substr. of T DTWµ(P, S) and δτ = minS− substr. of T DTWµτ (P, S). Assume that δ
is realised on a substring X, and δτ on a substring Xτ . By Eq. 6.4, we then obtain:

δ = DTWµ(P, X) ≤ DTWµ(P, Xτ ) ≤ δτ

And Eq. 6.5 gives the following:

E(δτ ) ≤ E(DTWµτ (P, X)) ≤ O(log σ) ·DTWµ(P, X) = O(log σ) · δ

We apply the embedding log L times independently to obtain well-separated tree metrics µi
τ ,

i = 1, 2, . . . , log L. From above and by Chernoff bounds,

min
i

min
S− substring of T

DTWi
µτ

(P, S)

gives an O(log σ) = O(log L) approximation of δ with high probability and can be computed in
time O(L1−ε ·mn log3 L) by Lemma 6.14, concluding the proof of the theorem.

1The preprocessing time O(|Σ|2 log L) that is required to embed µ into a well-separated metric is not
accounted for in the runtime of the algorithm.

148



5. Approximation Algorithm

We now show Lemma 6.14. Compared to [294], the main technical challenge is that our
k-DTW algorithm (Theorem 6.2) assumes an integer-valued distance function on the alphabet.
We overcome this by developing an intermediary 2-approximation algorithm for real-valued
distances (see the two claims below).
Proof of Lemma 6.14. For brevity, let δ be the smallest DTWµτ distance between P and a
substring of T .

Claim 6.16. Let 0 < ε < 1. Assume that for all a, b ∈ Σ, a ̸= b, there is µτ (a, b) ≥ γ and that
the value of µτ (a, b) can be evaluated in O(t) time. There is an O(L1−εtmn)-time algorithm
which either computes a 2-approximation of δ or concludes that it is larger than γ · L1−ε.

Proof. Define a new distance function µ′
τ (a, b) = ⌈µτ (a, b)/γ⌉. For all a, b ∈ Σ, a ̸= b, we have

µτ (a, b) ≤ γ · µ′
τ (a, b) ≤ µτ (a, b) + γ ≤ 2µτ (a, b). Consequently, for all strings X, Y we have

DTWµτ (X, Y ) ≤ γ · DTWµ′
τ
(X, Y ) ≤ 2DTWµτ (X, Y ). Let δ′ = minS− substring of T min{2k +

1, DTWµ′
τ
(P, S)} for k = L1−ε. By Theorem 6.2, it can be computed in O(L1−εtmn) time. If

δ′ = 2L1−ε + 1, we conclude that δ ≥ γ · L1−ε, and otherwise, output γδ′.

W.l.o.g., the minimum non-zero distance between two distinct letters of Σ is 1 and the largest
distance is some value M , which is at most exponential in L. We run the algorithm above for
γ = 1, which either computes a 2-approximation of δ which we can output immediately, or
concludes that δ ≥ L1−ε. Below we assume that δ ≥ L1−ε.

Definition 6.17 (r-simplification). For a string X ∈ Σ∗ and r ≥ 1, the r-simplification sr(X)
is constructed by replacing each letter a of X with its highest ancestor a′ in τ that can be reached
from a using only edges of weight ≤ r/4.

Fact 6.18 (Corollary of [294, Lemma 4.6], see also [280]). For all X, Y ∈ Σ≤L, the following
properties hold:

1. DTWµτ (sr(X), sr(Y )) ≤ DTWµτ (X, Y ).

2. If DTWµτ (X, Y ) > Lr, then DTWµτ (sr(X), sr(Y )) > Lr/2.

Fix r ≥ 1 and 0 < ε < 1. In the (Lε, r)-DTW gap pattern matching problem, we must output
0 if the smallest DTW distance between P and a substring of T is at most L1−εr/4 and 1 if it
is at least Lr, otherwise we can output either 0 or 1.

Claim 6.19. The (Lε, r)-DTW gap pattern matching problem can be solved in O(L1−ε · hmn)
time.

Proof. Let δr be the smallest DTWµτ distance between sr(P ) and a substring of sr(T ). If
L1−ε > L/2, then L = O(1) and we can compute δ exactly in O(1) time by Equation 6.1.
Otherwise, we run the 2-approximation algorithm for γ = r/4, which takes O(L1−ε · hmn) time
(we can evaluate the distance between two letters in O(h) time). If the algorithm concludes
that δr > L1−εr/4, then δ > L1−εr/4 by Fact 6.18, and we can output 1. Otherwise, the
algorithm outputs a 2-approximation δ′

r of δr, i.e. δr ≤ δ′
r ≤ 2δr. If δ′

r ≤ L1−εr ≤ Lr/2,
then we have δr ≤ Lr/2. Therefore, δ ≤ Lr by Fact 6.18 and we can output 0. Otherwise,
δ ≥ δr ≥ δ′

r/2 > L1−εr/2 > L1−εr/4, and we can output 1.

Consider the (Lε/2, 2i)-DTW gap pattern matching problem for 0 ≤ i ≤ ⌈log ML⌉. If the
(Lε/2, 20)-DTW gap pattern matching problem returns 0, then we know that δ ≤ L, and can
return L1−ε as a Lε-approximation for δ. Therefore, it suffices to consider the case where the
(Lε/2, 20)-DTW gap pattern matching problem returns 1. We can assume, without computing it,
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that the (Lε/2, 2⌈log ML⌉)-DTW gap pattern matching returns 0 as δ ≤ML. Consequently, there
must exist i∗ such that (Lε/2, 2i∗−1)-DTW gap pattern matching returns 1 and (Lε/2, 2i∗−1)-
DTW returns 0. We can find i∗ by a binary search which takes O(L1−εhmn log log ML) =
O(L1−εhmn log L) time. We have δ ≥ 2i∗−1L1−ε/4 and δ ≤ 2i∗

L, and therefore can return
2i∗−1L1−ε/4 as a O(Lε)-approximation of δ.

6 Experiments
This section provides evidence of the advantage of the DTW distance over the edit distance
when processing the third generation sequencing (TGS) data. Our experiment compares how
the two distances are affected by biological mutation as opposed to sequencing errors, including
homopolymer length errors.

We first simulate two genomes, G and G′, which can be considered as strings on the alphabet
Σ = {A, C, G, T}. The genome G is a substring of the E.coli genome (strain SQ110, NCBI
Reference Sequence: NZ_CP011322.1) of length 10000 (positions 100000 to 110000, excluded).
The genome G′ is obtained from G by simulating biological mutations, where the probabilities
are chosen according to [127]. The algorithm initializes G′ as the empty string, and pos = 1.
While pos ≤ |G| it executes the following:

1. With probability 0.01, simulate a substitution: chose uniformly at random a ∈ Σ, a ̸=
G[pos]. Set G′ = G′a and pos = pos + 1.

2. Else, with probability 0.0005 simulate an insertion or a deletion of a substring of length
x, where x is chosen uniformly at random from an interval [1, max_len_ID], where
max_len_ID is fixed to 10 in the experiments:

(a) With probability 0.5, set pos = pos + x + 1 (deletion);
(b) With probability 0.5, choose a string X ∈ Σx uniformly at random, set G′ = G′X

and pos = pos + 1 (insertion).

3. Else, set G′ = G′G[pos] and pos = pos + 1.

To simulate reads, we extract substrings of G′ and add sequencing errors:

1. For each read, extract a substring R of length 500 at a random position of G′. As G′

originates from G, we know the theoretical distance from R to G, which we call the
“biological diversity”. The biological diversity is computed as the sum of the number of
letter substitutions, letter insertions, and letter deletions that were applied to the original
substring from G to obtain R.

2. Add sequencing errors by executing the following for each position i of R:

(a) With probability 0.001, substitute R[i] with a letter a ∈ Σ, a ̸= R[i]. The letter a is
chosen uniformly at random.

(b) If R[i] = R[i−1], insert with a probability phom a third occurrence of the same letter
to simulate a homopolymer error.

Fig. 6.4 shows the difference between the biological diversity and the smallest edit and DTW
distances between a generated read and a substring of G depending on phom. It can be seen
that the DTW distance gives a good estimation of the biological diversity, whereas, as expected,
the edit distance is heavily affected by homopolymer errors. To ensure reproducibility of our
results, our complete experimental setup is available at https://github.com/fnareoh/DTW.
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Figure 6.4: Edit and DTW distances offset by the biological diversity as a function of
phom. Each point is averaged over 600 reads (×30 coverage).





Chapter 7
Compressing and Indexing Aligned Readset

This chapter corresponds to the extended version of the following publication: Travis Gagie,
Garance Gourdel, and Giovanni Manzini, “Compressing and Indexing Aligned Readsets”,
in: 21st International Workshop on Algorithms in Bioinformatics, (WABI 2021), August 2-
4, 2021, Virtual Conference, ed. by Alessandra Carbone and Mohammed El-Kebir, vol. 201,
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 13:1–13:21, doi: 10.
4230/LIPIcs.WABI.2021.13.

Publication

Compressed full-text indexes are one of the main success stories of bioinformatics data struc-
tures but even they struggle to handle some DNA readsets. This may seem surprising since,
at least when dealing with short reads from the same individual, the readset will be highly
repetitive and, thus, highly compressible. If we are not careful, however, this advantage can be
more than offset by two disadvantages: first, since most base pairs are included in at least tens
reads each, the uncompressed readset is likely to be at least an order of magnitude larger than
the individual’s uncompressed genome; second, these indexes usually pay some space overhead
for each string they store, and the total overhead can be substantial when dealing with millions
of reads.

The most successful compressed full-text indexes for readsets so far are based on the Ex-
tended Burrows-Wheeler Transform (EBWT) and use a sorting heuristic to try to reduce the
space overhead per read, but they still treat the reads as separate strings and thus may not
take full advantage of the readset’s structure. For example, if we have already assembled an
individual’s genome from the readset, then we can usually use it to compress the readset well:
e.g., we store the gap-coded list of reads’ starting positions; we store the list of their lengths,
which is often highly compressible; and we store information about the sequencing errors, which
are rare with short reads. There is nowhere, however, where we can plug an assembled genome
into the EBWT.

In this paper we show how to use one or more assembled or partially assembled genome as
the basis for a compressed full-text index of its readset. Specifically, we build a labelled tree
by taking the assembled genome as a trunk and grafting onto it the reads that align to it, at
the starting positions of their alignments. Next, we compute the eXtended Burrows-Wheeler
Transform (XBWT) of the resulting labelled tree and build a compressed full-text index on that.
Although this index can occasionally return false positives, it is usually much more compact
than the alternatives. Following the established practice for datasets with many repetitions, we
compare different full-text indices by looking at the number of runs in the transformed strings.
For a human Chr19 readset our preliminary experiments show that eliminating separators
characters from the EBWT reduces the number of runs by 19%, from 220 million to 178 million,
and using the XBWT reduces it by a further 15%, to 150 million.

Acknowledgement. Many thanks to Jarno Alanko and Uwe Baier for their XBWT-
construction software, and to Diego Díaz, Richard Durbin, Filippo Geraci, Giuseppe Italiano,
Ben Langmead, Gonzalo Navarro, Pierre Peterlongo, Nicola Prezza, Giovanna Rosone, Jared
Simpson, Jouni Sirén and Jan Studený for helpful discussions.
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1 Introduction

The FM-index [98] is an important data structure in both combinatorial pattern matching and
bioinformatics. Its most important application so far has been in standard short-read aligners
— Bowtie [133, 163] and BWA [134] have together over 70 thousand citations and are used every
day in clinics and research labs worldwide — but it has myriad other uses and more are still being
discovered. Just within computational genomics, FM-indexes have been generalized from single
strings to collections of strings for tools such as BEETL [158], RopeBWT [184] and Spring [255],
to de Bruijn graphs for tools such as BOSS [155], VARI [247] and Rainbowfish [233], and to
graphs for tools such as vg [267]. Recent breakthroughs [312] mean we can now scale FM-indexes
to massive but highly repetitive pan-genomic datasets for a new generation of tools [318].

As genomic datasets grow exponentially (from the Human Genome Project to the 1000
Genomes Project and the 100K Genomes Project) and standards for sequencing coverage increase
(from less than 10x a few years ago to 30x and 50x now and over 100x for some applications),
an obvious question is whether and how the recent breakthroughs in FM-indexing of repetitive
datasets can be turned into comparable advances in indexing readsets, so more researchers
can efficiently mine them for biomedical insights. For example, extrapolating from previous
experiments [318], it should be possible to index both haplotypes from 2705 individuals in
less than 100 GB of RAM. In contrast, the readset from the final phase of the 1000 Genomes
Project consisted of reads from 2705 individuals and was released as a 464 GB Burrows-Wheeler
Transform (BWT) [238], which is beyond the resources of most labs to process. This almost
five-fold increase (from 100 to 464 GB) seems reasonable, given the range of lengths and the error
rate of short-read sequencing technologies, but those reads were trimmed and error-corrected
before their BWT was computed, making that increase harder to justify and thus a target for
improvement. Although experimenting with that particular readset is beyond the scope of this
paper, since it occupies 87 TB uncompressed, we expect the insights and techniques we develop
here will eventually be useful in software able to handle efficiently inputs of that scale.

Recent results on FM-indexing repetitive datasets [312] have shown that the index perfor-
mance depends on the number of runs in the transformed sequence, where a run is a maximal
non-empty unary substring. For example, if the BWT of a dataset of (uncompressed) size n
has r runs, we can design an FM-index of size O(r log log n) supporting the count and locate
operations in optimal linear time. Hence, if a BWT variant produces a transformed string with
a smaller number of runs, the resulting index will be smaller and equally fast. The naïve ap-
proach to FM-indexing readsets is to concatenate the reads with copies of a separator character
between them, and FM-index the resulting single string. However, computing the BWT of such
a long string is a challenge and each separator character causes several runs in that BWT. The
most competitive indexes for readsets are based on Mantaci et al.’s [116] Extended Burrows
Wheeler Transform, which is also easier to build for readsets. The first index for readsets based
on the EBWT was BEETL [158], followed by RopeBWT [184]; recently the EBWT has been
used also by the Spring compressor [255] specialized for FASTQ reads. BEETL and RopeBWT
use explicit separator characters but such characters could be replaced by bitvectors marking
positions at the ends of reads.

BEETL and RopeBWT use a heuristic to reduce the number of runs in the EBWT: they
conceptually put the separator characters at the ends of reads into the co-lexicographic order
(lexicographic order on the reverse string, also referred to as reverse lexicographic order) of the
reads, so that the final characters or reads with similar suffixes are grouped together in the
EBWT. This often works surprisingly well but in the worst case it cannot make up for the lack
of context for sorting those characters into their places in the EBWT. Our proposal in this paper
is to graft the reads onto their assembled genome, or a reference genome to which they align
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well, and index the resulting labelled tree with Ferragina et al.’s [129] XBWT. To this end we
assume that we know how the reads align to the assembled/reference genome: this is not an
unreasonable assumption since alignment is the initial step of any readset analysis.

In order to implement our idea we have to overcome a significant hurdle: as the coverage
increases so does the amount of raw data produced by a single NGS experiment. Although
the high coverage implies that the data is highly compressible, the actual compression process,
ie the construction and the compression of the XBWT, must be done partially in externally
memory since the input will be usually much larger than the available RAM. Another contri-
bution of the paper is therefore the adaptation of the prefix-free parsing (PFP) technique [279]
to the construction of the XBWT. PFP has been proposed for the construction of BWTs of
collections of similar genomes: the initial parsing phase is able to compress the input main-
taining enough information to compute the BWT working on the compressed representation.
In this paper we adapt PFP to readsets, taking care also of the “grafting” of the single reads
to the reference/assembled genome. Given a pattern P , our index could answer count(P ) and
locate(P ) queries which report respectively the number of positions where P occurs and the list
of positions where P occurs. The main drawback to our index, apart from taking one or more
assembled or partially assembled genomes as a base, is that it can return a false-positive in the
count operation when an occurrence of a pattern starts in the trunk of an alignment tree and
ends in a branch. In other words, the index can report a match that is not completely contained
within a read but would be if we padded the read on the left with enough characters copied
from just before where it aligns. In a locate operation false-positives could be identified, but
this operation is much slower. Even this is not entirely bad, however, and it is conceivable this
bug could sometimes be a feature. The analysis of those false positive and the size of the bit
vectors marking the end of reads is left as future work.

The rest of the paper is organized as follows. In Section 2 we first describe the BWT and
FM-indexes, then the EBWT and XBWT and the concept of Wheeler graph that unifies them.
In Section 3 we introduce our idea for indexing aligned readsets with the XBWT and we prove
some theoretical results supporting it. In Section 4 we describe how we adapt PFP to indexing
readsets, which allows us to experiment with larger files than would otherwise be possible with
reasonable resources. In Section 5 we present our experimental results showing that applying
the XBWT to index readsets works well in practice as well as in theory. Finally, we outline in
Section 6 how our study of storing reads with the XBWT may improve the space usage of the
hybrid index [177, 259, 204].

2 Concepts
For a better understanding of the problem context, we give a succinct description of the sec-
ond generation sequencing technique. Most publicly available readsets are from Illumina se-
quencers [162] which rely on sequencing by synthesis. For this process, millions or billions of
single-stranded snippets of DNA called templates are deposited onto a slide and amplified into
clusters of clones. In each sequencing cycle we learn one base of each template: we add DNA
polymerase and specially terminated bases; the polymerase attaches a terminated base to each
strand, complementary to the next base in the strand; we shine a light on the slide and the
terminated bases glow various colours; we take a photo and note the colour of each cluster; and
finally, we treat the slide to remove the terminators. Sometimes, however, one of the added
bases is not correctly terminated, so the polymerase attaches first it and then another base to
a strand in some cluster; that strand is then out of step with the rest of the cluster, and the
cluster will have a mix of colours in the photos for subsequent sequencing cycles. As we go
through more and more sequencing cycles, more strands tend to fall out of step, resulting in
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less reliable results. (For futher discussion we refer the reader to, e.g., Langmead’s lecture on
this topic [208].) This tendency means sequencing by synthesis has an asymmetric error profile,
with errors more likely towards the ends of the reads. It follows that sequencing errors tend
to be near the end of the reads: our index is designed to take advantage of this feature (see
Theorem 7.2).

2.1 BWT and FM-index
The Burrows-Wheeler Transform (BWT) [48] of a string S is a permutation of the characters
in S into the lexicographic order of the suffixes that immediately follow them, considering S
to be cyclic. For example, as shown on the left in Figure 7.1, the BWT of GATTAGATACAT$ is
TTTCGGAA$AATA, assuming $ is a special end-of-string symbol lexicographically smaller than all
other characters. Because the BWT groups together characters that precede similar suffixes, it
tends to convert global repetitiveness into local homogeneity: e.g., for any string α, the BWT of
αt consists of |α| unary substrings of length t each; even the BWT in our example has length 13
but consists of only 8 maximal unary substrings (called runs). This property led Burrows and
Wheeler to propose the BWT as a pre-processing step for data compression and Seward [53]
used it as the basis for the popular bzip2 compression program.

The BWT is also the basis for the FM-index [98], one of the first and most popular com-
pressed indexes, which is essentially a rank data structure over the BWT combined with a
suffix-array sample. The FM-index is an important data structure in combinatorial pattern
matching and bioinformatics, and is itself the basis for popular tools such as Bowtie [133, 163]
and BWA [134] that align DNA reads to reference genomes. We refer the reader to Navarro’s [226]
and Mäkinen et al.’s [210] textbooks for detailed discussions of how FM-indexes are implemented
and used for read alignment.

2.2 EBWT
Although alignment against one or more reference genomes remains a key task in bioinformatics,
there is growing interest in compressed indexing of sets of reads [238, 339]. The FM-index plays a
central role here too: Mantaci et al. [116] generalized the BWT to the Extended BWT (EBWT),
which applies to collections of strings, and then Cox et al. [166, 157, 180] used an FM-index
built on the EBWT in their index BEETL for readsets. The same construction was also used
in subsequent indexes for readsets, such as RopeBWT [184] and Spring [255].

The EBWT of a collection of strings is a permutation of the characters in those strings into
the lexicographic order of the suffixes that immediately follow them, considering each string to
be cyclic. For example, as shown on the right in Figure 7.1, the EBWT of GATTA$, TTAGA$,
TAGATA$, GATAC$ and ATACAT$ is TCAAATTGTTTTCGG$GAAAA$$ATAAAT$A$. When we see the BWT
and EBWT as permutations of characters, the BWT of a single string has a single cycle, whereas
the EBWT of a collection of strings has a cycle for each string. This means it is easier to build
the EBWT and update it when a string is added or deleted, than to build and update the BWT
of the concatenation of the collection with the strings separated by copies of a special character.
We refer the reader to Egidi et al.’s [283, 311] and Díaz-Domínguez and Navarro’s [331] recent
papers for descriptions of efficient construction and updating algorithms.

Despite its benefits, the EBWT sometimes does not take full advantage of its input’s com-
pressibility. In our example, as Figure 7.1 shows, even though all the strings in the collection are
substrings of GATTAGATACAT$ with copies of $ appended to them, their EBWT has more than
twice as many runs as its BWT. As a heuristic for reducing the number of runs, and thus reduc-
ing BEETL’s space usage, Cox et al. suggested considering the lexicographic order of the copies
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F L
0 $GATTAGATACAT
1 ACAT$GATTAGAT
2 AGATACAT$GATT
3 AT$GATTAGATAC
4 ATACAT$GATTAG
5 ATTAGATACAT$G
6 CAT$GATTAGATA
7 GATACAT$GATTA
8 GATTAGATACAT$
9 T$GATTAGATACA

10 TACAT$GATTAGA
11 TAGATACAT$GAT
12 TTAGATACAT$GA

F L F L
0 $ATACAT 16 ATTA$ G
1 $GATA C 17 C$GAT A
2 $GATT A 18 CAT$ATA
3 $TAGATA 19 GA$TT A
4 $TTAG A 20 GATA$TA
5 A$GAT T 21 GATAC $
6 A$TAGAT 22 GATTA $
7 A$TTA G 23 T$ATACA
8 AC$GA T 24 TA$GA T
9 ACAT$AT 25 TA$TAGA

10 AGA$T T 26 TAC$G A
11 AGATA$T 27 TACAT$A
12 AT$ATAC 28 TAGA$ T
13 ATA$TAG 29 TAGATA$
14 ATAC$ G 30 TTA$G A
15 ATACAT$ 31 TTAGA $

Figure 7.1: The matrices whose rows are the lexicographically sorted rotations of
GATTAGATACAT$ (left) and of GATTA$, TTAGA$, TAGATA$, GATAC$ and ATACAT$ (right).
The BWT and EBWT are TTTCGGAA$AATA and TCAAATTGTTTTCGG$GAAAA$$ATAAAT$A$
with 8 and 19 runs, respectively.

of $ to be the strings’ co-lexicographic order. This does not help in cases such as our example,
however, for which the EBWT still has 19 runs even with that ordering. Bentley et al. [308]
recently gave a linear-time algorithm to find the ordering of the copies of $ that minimizes the
number of runs, but it has not been implemented and it is unclear whether it is practical for
large readsets.

Another way to potentially reduce the number of runs is to remove the copies of $ entirely,
and store an auxiliary ternary vector marking which characters in the EBWT are the first and
last characters in the strings. If there are t strings in the collection with total length n, then stor-
ing this vector takes O(t log(n/t)+t) bits (even if some of the strings are empty or consist of only
one character). As shown in Figure 7.2, the EBWT becomes TTTTTTGTCGGGAACAAAAAATTAAAA,
with only 10 runs. The idea of replacing $’s with an auxiliary vector is relatively new since it
originates from seeing the EBWT as a special case of Wheeler graphs [241] which are described
in the next section.

2.3 Wheeler Graphs and XBWT
Wheeler graphs were introduced by Gagie, Manzini and Sirén [241] as a unifying framework for
several extensions of the BWT, including the EBWT, Ferragina et al.’s [129] eXtended BWT
(XBWT) for labelled trees, Bowe, et al’s. [155] index (BOSS) for de Bruijn graphs, and Sirén
et al.’s [187] Generalized Compressed Suffix Array (GCSA) for variation graphs. A directed
edge-labelled graph is a Wheeler graph if there exists a total order on the vertices such that

• vertices with in-degree 0 are earliest in the order;

• if (u, v) is labelled a and (u′, v′) is labelled b with a ≺ b, then v < v′;
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F L F L
0 0 ACATAT 14 + GATA C
1 0 ACGA T 15 0 GATATA
2 0 AGATAT 16 0 GATT A
3 − AGAT T 17 + GATT A
4 0 AGAT T 18 0 TACATA
5 + ATACAT 19 0 TACG A
6 0 ATAC G 20 + TAGATA
7 − ATAGAT 21 0 TAGA T
8 0 ATATAC 22 0 TAGA T
9 0 ATATAG 23 − TATACA

10 0 ATTA G 24 0 TATAGA
11 − ATTA G 25 0 TTAG A
12 0 CATATA 26 + TTAG A
13 − CGAT A

Figure 7.2: The matrix whose rows are the lexicographically sorted rotations of GATTA,
TTAGA, TAGATA, GATAC and ATACAT. The EBWT is TTTTTTGTCGGGAACAAAAAATTAAAA with
10 runs.

• if (u, v) and (u′, v′) are both labelled a and u < u′ then v ≤ v′.

Figure 7.3 shows an example of a Wheeler graph with a valid order on the vertices. The ordering
is obtained by lexicographically sorting the strings spelling the labels in the upward path from
each vertex to the root where the ties are broken deterministically (following an arbitrary order
on the branches). For example, vertex 0 has upward path ε, vertex 3 has upward path AG, vertex
30 has upward path TAG and so on. Notice that for directed acyclic graphs such as trees, such
order on the vertices can be computed quickly with an adaptation of the doubling algorithm [11].

Once we have a valid order, the standard representation of a Wheeler graph is defined
considering the vertices in that order and listing the labels on the outgoing edges of each vertex.
In addition, for each vertex we represent its out-degree and in-degree in unary thus obtaining
two additional binary arrays. For example, for the graph in Figure 7.3 the first five vertices have
outgoing edges labelled GG T T T TT, so the label array starts with GGTTTTT· · · and the out-
degree bit-array starts with 001010101001· · · . This simple representation, combined with rank
and select primitives, supports efficient search and navigation operations on Wheeler graphs. We
refer the reader to Prezza’s [344] recent survey for a discussion of Wheeler graphs and related
results.

Note that the graph in Figure 7.3 is a labelled tree: indeed its Wheeler Graph representation
is equivalent to the output of the XBWT [129] applied to the same tree (details in the full paper).
For clarity of presentation in the following we will still refer to the EBWT and XBWT even if
they are both special cases of Wheeler graphs.

3 Our Contribution
Figure 7.3 can be seen as a representation of a “genome” GATTAGATACAT and of five “reads”
GATTA, TTAGA, TAGATA, GATAC and ATACAT extracted, without errors, from it. Starting with the
vertex with rank 28, corresponding to the last symbol of the “genome”, and navigating the tree
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Figure 7.3: A directed, edge-labelled tree whose vertices are labelled to show it is a
Wheeler graph. The XBWT is GGTTTTTTTTTCCCGGGGAAAAAAAAATTTTAAAAAAAA with 7
runs.

we are able to recover all the individual strings. Notice however, that the XBWT has only 7
runs while the BWT of the “genome” and the EBWT of the “reads” in Figure 7.1 have 8 and
19 runs, respectively. The EBWT without $ of the reads alone in Figure 7.2 has 10 runs. We
refer the reader to Giuliani et al.’s [336, 290] recent papers for a discussion of the impact of the
$ and of the direction of the string on the number of runs in the BWT. The following theorem
shows that the example in Figure 7.3 is not a coincidence: if the “reads” have no errors and they
are appended to the reference in the proper positions, then the XBWT has the same number of
runs as the BWT of the reverse of the “genome”.

Theorem 7.1. Suppose we sample substrings from a string and we form a labelled tree by
grafting (appending) the substrings in the same position they were sampled so that all edge labels
at the same depth are equal. Then the XBWT of the tree has the same number of runs as the
BWT of the reverse of the string.

Proof. Consider the tree shown in Figure 7.3. The tree satisfies the hypothesis of Theorem 7.1
since it was obtained by sampling some substrings from GATTAGATACAT and then grafting them
onto it such that all the edge labels at the same depth are equal (so a horizontal line always hits
edges with only the same label). Clearly, all the labels at the same depth not only are equal, but
they have the same upward-path label, which is the prefix preceding the corresponding character
in the string. Since the XBWT is built by sorting labels according to the string spelled by their
upward path, we see that each symbol of the original string will be adjacent to all reads symbols
at the same horizontal level, and that all such symbols are identical. Finally, observe that also
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in the BWT of the reverse of the string symbols are sorted according to the prefix preceding
them; hence the XBWT can be obtained by replacing each symbol in the BWT, except the $,
by a run of the same symbol and the thesis follows.

Figure 7.3 and Theorem 7.1 suggest a new way to compress and index readsets: graft the
reads onto a fully or partially assembled genome, or a reference genome if need be, and store
the XBWT of the resulting tree. We note that, although assembly-free indexing is a more
general problem, indexing assembled reads is still of practical interest [238]. Many readsets have
coverage of 30x or even 50x, which makes them extremely large but should also make run-length
compression practical on the XBWTs. If we want to index readsets from several individuals, we
can simply graft the reads onto the appropriate assembled genomes and compute the XBWT of
the forest, which is also a Wheeler graph.

Theorem 7.1, provides an extremely good estimate of the number of runs of the XBWT, but
it holds under the unrealistic assumption that the reads have no errors. However, we can take
advantage of the fact that sequencing by synthesis has an asymmetric error profile: errors are
much more likely at the end of a read than at the beginning. The following result shows that
errors at the end of the reads have a limited impact to the overall number of runs in the XBWT.

Theorem 7.2. In the hypothesis of Theorem 7.1 suppose that the sampled substrings may differ
from the reference string and that the average distance from first difference (insertion, deletion,
or substitution) to the end of the substring is δ. Then, with respect to Theorem 7.1 the XBWT
of the tree will have at most 2δ additional runs per substring.

Proof. Consider a single substring of length ℓ in which the distance between the first difference
and the end of the substring is d (we assume d = 0 if there are no differences). Reasoning as
in the proof of Theorem 7.1, we see that the first ℓ− d symbols of the substring will end up in
the same run as the corresponding symbol of the reference string (the one at the same depth
in the tree). Each of the other d symbols will, in the worst case, end in the middle of a run
of a different symbol thus creating two additional runs. Summing this additional runs over all
substrings we get a total number of additional runs upper bounded by 2δ runs per substring.

To guarantee that most of the errors are at the end of the reads, we propose to build two
trees: one for the assembled genome and one for its reverse complement. Having two trees means
we do not have to reverse and complement half the reads before grafting them onto a single tree:
the reversal of the string would be problematic in view of Theorem 7.2 since it would move an
error from the end of the read to its front. We can build two trees with a small additional cost
since the alignment algorithm will tell us whether each read aligns to the reference or to its
reverse complement.

Assuming our scheme guarantees an improvement in compression we want to be sure the
resulting index is also efficient. Prezza [343] recently showed how to generalize Gagie, Navarro
and Prezza’s [312] results about fast locating from run-length compressed BWTs to run-length
compressed XBWTs, at the cost of storing the trees’ shapes, which takes a linear number of bits.
For trees with far more internal vertices than leaves, however, it is relatively easy to support
fast locating in small space, as a corollary of the following theorem.

Theorem 7.3. Let G be a Wheeler graph and r be the number of runs in a Burrows-Wheeler
Transform of G, and suppose G can be decomposed into υ edge-disjoint directed paths whose
internal vertices each have in- and out-degree exactly 1. We can store G in O(r + υ) space such
that later, given a pattern P , in O(|P | log log |G|) time we can count the vertices of G reachable
by directed paths labelled P , and then report those vertices in O(log log |G|) time per vertex.
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Corollary 7.4. Let T be a labelled tree on n vertices obtained by grafting reads onto their
assembled genome as described. Let r be the number of runs in the XBWT and let t be the
number of reads. We can store T in O(r + t) words of space such that later, given a pattern P ,
in O((|P |+ k) log log n) time we can report all the k vertices reachable by paths labelled P .

We sketch a proof of Theorem 7.3 in 7, although we omit the details because, at least when
dealing with short reads, it may be more practical just to descend until we reach a branching
node (in which case the pattern is in the assembled genome, not in a read) or a leaf. We have
not yet considered carefully whether Nishimoto and Tabei’s [320] faster locating can be applied
to improve Theorem 7.3 or Corollary 7.4.

Before we concentrate on optimizations we should consider two basic questions: are our
XBWTs for readsets significantly smaller than their EBWTs in practice and, if so, how can we
build them efficiently? Theorem 7.2 offers some guarantees of compression, but to test how our
idea works in practice in Section 5 we build the XBWT and EBWT for a real, high-coverage
readset and see how the numbers of runs in them compare. In Section 4 instead we face the
problem of the efficient construction of XBWTs for large datasets.

4 XBWT via Prefix Free Parsing
The problem of building the XBWT for a set of reads as described in Section 3 is non trivial
because the input typically consists in tens of gigabytes of data and we cannot make use of
the available algorithms [302, 306] which are designed to work in RAM. However, the fact that
reads are copies (possibly with errors), of portions of a relatively small reference suggests that
the overall amount of information content is relatively small. Therefore we decided to compute
the XBWT using the technique of Prefix Free Parsing (PFP) that has been successfully utilized
for computing the BWT for large collections of genomes from individuals of the same species.
Our implementation was done in C++ and is available on github.com/fnareoh/Big_XBWT.
Note that our algorithm does not take as input a labelled tree, but rather a reference genome
and a set of reads aligned to that genome (in the format of a .bam file); the alignment implicitly
defines a labeled tree as described in Section 3.

In the PFP construction of the BWT the input is parsed into overlapping phrases using
context-triggered piecewise hashing [279]. If the input contains many repetitions, the use of
context-triggered hashing ensures that the parsing will contain a relatively small number of
distinct phrases. The actual construction of the BWT is done using only the dictionary of distinct
phrase and the parse (which describes how the dictionary phrases can be used to reconstruct the
input). For repetitive datasets the dictionary and the parse fit in RAM even when the original
input does not. Unmodified, however, PFP does not work well on readsets since the phrases
generated at the beginning and end of each read will likely be unique. As a result, the dictionary
will be quite large and the algorithm inefficient. To prevent this, we extend the reads forward
and backward so they begin and end with complete phrases. The extension is done using the
symbols in the reference immediately before and after the position where the read aligns, so that
the phrases are likely to be not unique (if the read has no errors the phrases will be exactly the
same generated when parsing the reference). Although this technique maintains the dictionary
small, the tricky part is to exclude these extensions when computing the actual XBWT.

Summing up, our implementation is divided in three main phases. In the first phase we
partition the reference and the reads into phrases; the set of distinct phrases is called the
dictionary and the way phrases form the reference and the reads is called the parse. We use the
extension trick mentioned before, and ,if the reference and the reads are similar, the dictionary
will be relatively small. In the second phase we compute the XBWT of the parse. Since
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phrases are relatively large, the number of symbols in the parse is much smaller than in the
original input, so the parse fits in RAM and the computation can be done using a doubling
algorithm [11]. Finally, in the third phase we recover the XBWT of the input from the XBWT
of the parse. The details of the three phases are given below.

4.1 Construction of the Dictionary and the Parse
We start by scanning the reference as in the PFP BWT construction algorithm. The algorithm
takes as input parameters a window size w, and a modulo m. We slide a window of length
w over the text, at each step computing the Karp-Rabin fingerprint [35] of the window. We
define a terminating windows as a window with Karp-Rabin fingerprint equal to zero modulo m.
Terminating windows decompose the text into overlapping phrases: each phrase is a minimal
substring that begins and ends with a terminating window. Note that each terminating window
is a suffix of the current phrase and the prefix of the next phrase so consecutive phrases have a
size-w overlap. Note that defining phrases using terminating windows ensures that no phrase is
a prefix (or a suffix) of another phrase, hence the name “prefix free parsing”.

In addition to keeping track of window fingerprints, we also maintain a different hash h(pi)
of the current phrase pi. For simplicity in the following we assume distinct phrases always have
distinct hashes, if not we detect it and crash. At the end of this scanning phase, the reference
has been parsed into the (overlapping) phrases p1, p2, . . . , pz. We build a vector S[1, z] storing
for each phrase pi its starting position si in the reference and its hash h(pi). We also build as we
go the dictionary that associate to each hash value h(pi) the corresponding phrase pi (stored as
a simple string) and occ(pi) the number of occurrences of that phrase. We will later also need
the length of each phrase but we don’t store it explicitly, just deduce it from the string stored
in the dictionary.

After parsing the reference, we process the reads one by one. From the file of aligned reads,
we obtain both the read r as a string and the position l where the read aligns to the reference.
We binary search in S for the rightmost phrase ps that starts before position l and for the
leftmost phrase pe that ends after position l + |r| − 1. Let p′

s (resp. p′
e) denote the prefix (resp.

suffix) of ps (resp. pe) ending (resp. starting) immediately before (resp. after) position l (resp.
l+|r|−1). We define the extended read rext = p′

s ·r ·p′
e where · here denotes string concatenation.

We slide a window onto rext, decomposing it into phrases, as we did for the reference. Since rext

starts and ends with a terminating window the phrases we add while parsing rext still form a
prefix-free parsing. However, as we do not want to index the whole rext in the final XBWT, for
each read we keep track and store to disk the starting and ending position of r in rext.

When processing the reads we continue adding the hashes of the phrases to the end parse,
using a special value as separator between reads. If we parse a new phrase, we add it to the
dictionary. However, as previously pointed out, the phrases coming from the extended reads are
likely to be equal to phrases in the reference so we expect the dictionary not to grow significantly
(the dictionary would not grow at all if all the reads were substrings of the reference). From
the starting and ending position of the original read in the extended read we deduce for each
phrase what characters are part of the original read (the reads without extensions) and we store
a starting and ending position for each phrase.

Once all the reads have been processed, we sort the phrases in the dictionary in reverse
lexicographic order and we output a new parse where each hash of phrase is replaced by its
reverse lexicographic rank, the separator symbol is replaced by the number of phrases plus one.
To summarize, at the end of this phase we have produced the following output files:

1. file.dict: the dictionary in co-lexicographic order;
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2. file.occ: the frequency of each phrases;

3. file.parse: the parse with each phrase represented by its co-lexicographic rank;

4. file.limits: the starting and ending position of the original input (reads without ex-
tension) in each phrase.

4.2 XBWT of the Parse
The main goal of this phase is to construct the XBWT of the parse, using the co-lexicographic
rank as meta-characters. To this end we load the parse on RAM, reconstruct its tree structure,
and compute the XBWT of this tree via a doubling algorithm [11]. Then, rather than storing
the XBWT as is, we construct an inverted list as this structure will be more appropriate for the
next phase. For each phrase pi we store the list of XBWT positions where pi appears. The size
of the inverted list for pi is equal to its frequency; since frequencies were computed in the first
phase, we can output the inverted list as a plain concatenation of positions.

In this phase we also permute the limits (the starting and ending position in the original
input) of each phrase according to their order in the XBWT. This way, in the next phase, with
the inverted list, we can easily access the limit of any given phrase in the parse. In this phase,
we also compute and write to disk for every phrase, the list of phrases (with multiplicities) that
immediately follow in the parse. This list will be used to index the characters that precede a full
word. However because we only want to index the characters that are in the original input, we
only add it after checking the limits. Finally, because we are not storing special characters to
mark the end of a read or of the reference (as they would break runs), we construct a bit vector
marking such positions and we permute it according to the XBWT order. To summarize, at the
end of this phase we have produced the following output files:

1. file.dict: the dictionary of the reversed phrases (from the first phase).

2. file.occ: the frequency of each phrases (from the first phase).

3. file.ilist: the inverted list of the parse.

4. file.xbwt_limits: the limits of the phrases in XBWT order.

5. file.xbwt_end: markers of the phrases where a read or reference ends in XBWT order.

6. file.full_children: for every word, the list of words that follows it.

4.3 Building the Final XBWT
This is the final phase where we compute the XBWT of the reference and of the readset. We
start by sorting lexicographically the suffixes of the strings in the dictionary D. At this stage the
dictionary D contains the phrases reversed, so this is equivalent to sort in reverse lexicographic
order the prefixes of all phrases. We ignore the suffixes of length ≤ w as they correspond to
the terminating window which also belongs to the previous phrase. The sorting is done by
the gSACAK algorithm [246] which computes the SA and LCP array for the set of dictionary
phrases. We scan the sorted elements of D, for s a proper suffix, there are two cases, all the
elements in D which have s as a proper suffix have the same preceding character, in this case
we add it the correct number of times using the frequency of each phrase. In the other case, we
use a heap to merge the inverted list writing the appropriate characters accordingly. Here when
writing a character we first check that the suffix length is between the limits and only write it

163



Partie II, Chapter 7 – Compressing and Indexing Aligned Readset

to file if it does. We also check if the character to be added is the last of its sequence (read or
reference), if so output a 1 to signal the end of a sequence, else 0. When finding a suffix s′ that
corresponds to an entire phrase, we use the children file to output the character at the start of
the following phrase. At the end of this phase we have written to disk a file with the XBWT of
the reference and readset as well as a bit vector marking which positions are the last character
of a read or a genome. To summarize, in this phase we use file.dict, file.occ, file.ilist,
file.full_children and file.xbwt_limits; all other files can be discarded. We output the
XBWT in plain text as file.bwt and file.is_end is the compressed bit vector marking the
end of reads.

5 Experiments
In this section we present a first experimental evaluation of our XBWT-based approach for com-
pressing a set of aligned reads and we compare it with the known methods based on the EBWT.
We compare ourselves to the EBWT and not other compression tools for aligned readset as our
long-term goal is to create an index and not just compression. Recall that our implementation
and experimental pipeline is available on github.com/fnareoh/Big_XBWT. For simplicity we
compare the numbers of runs produced by the different algorithms. The actual compression
depends on the algorithm used for encoding the run lengths: preliminary experiments with the
γ encoder show that the number of runs is a good proxy for measuring the actual compression.
An accurate comparison of the time efficiency is left as a future work: we only compared the
number of runs produced by our XBWT with the number of runs produced by the EBWT
and some of its variants. Note that our implementation computes the XBWT of the reference
genome and the readset (as described in the previous section), while the EBWT and its variants
were applied only to the readset. We computed all EBWT variants using ropeBWT2 [184]; in
addition to plain EBWT we also tested 2 heuristics that reorder the reads to reduce the num-
ber of runs in the EBWT: Spring [255] and reverse lexicographic order (RLO) [157], the latter
obtained using the option -s in ropeBWT2. Since our XBWT implementation does not use the
$ symbol, for a fair comparison we measured the number of runs with and without the $ for
EBWT, Spring+EBWT and RLO+EBWT (therefore ignoring for all algorithms the extra cost
of implicitly encoding the ending position of each string). In our tests, we used the following
readsets:

• E.coli and S.aureus from the single-cell dataset [148], the references used are those linked
on the single-cell website1,2.

• R.sphaeroides We have HiSeq and MiSeq sequencing, raw and trimmed versions of the
reads from the GAGE-B dataset [172]. The reference used is the longest contig assembled
by MSRCA v1.8.3 [173] as it was the most accurate assembler according to the Gage-b
companion paper [172]. We only considered the longest contig because our implementation
doesn’t handle forests of trees yet.

• Human Chromosome 19 We used as a reference Chromosome 19 from the CHM1
human assembly [188] and one of the HiSeq 2000 readsets3 used to compute that assembly,
considering only the reads that aligned with the reference.

1https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
2https://www.ncbi.nlm.nih.gov/nuccore/87125858
3https://www.ncbi.nlm.nih.gov/sra/SRX966833[accn]
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5. Experiments

Dataset Number of reads Read length Coverage

Avg. dist. from
the first

sequencing err.
to the end

Prop. of reads
without seq.

error
Error rate

E.coli [148] 14139182 100 304× 13 57.30% 0.01%
S.aureus [148] 26654420 100 927× 7 88.79% 0.01%

Human Chr19 [188] 34167479 100 57× 15 71.62% 0.01%

R.sphaeroides [172]
HiSeq raw 166820 101 46× 27 31.34% 0.04%

HiSeq trimmed 134207 up to 101 37× 6 83.26% 0.01%
MiSeq raw 23102 251 24× 122 0.25% 0.15%

Miseq trimmed 20046 up to 251 20× 29 63.55% 0.03%

Table 7.1: Statistics on each dataset used in the experiments. Those statistics where
computed only on the reads that aligned forward to the reference. We call sequencing
error (or simply error) any difference between the genome and the reads. The coverage
is simply defined as the total number of base-pairs in the reads compared to the number
of base-pairs in the reference. The average distance between the first sequencing error
and the end of the read and the end is computed considering that for error less read this
distance is 0. Note that this parameter is exactly δ in Theorem 7.2.

None of those readsets are aligned, so we used bwa mem [134] to align them to the chosen
reference. In this preliminary experiments we discarded the reads that bwa aligned with the
reverse-complement of the reference genome. As mentioned in Section 3 our final prototype will
build an XBWT of the tree with the reference and of the tree of the reversed-complemented
reference. In Table 7.1, we present statistics on the readsets we used: those statistics where
computed only on the reads that aligned forward to the reference.

Preliminary experiments, not reported here, show that removing the $ in the EBWT (all
variants) reduces the number of runs between 2.7% and 29.2%. Consequently, we focus our anal-
ysis on the comparison of Plain (no read reordering) EBWT (without dollars), SPRING+EBWT
(without dollars), RLO+EBWT, with and without $ and XBWT.

The results of this comparison are reported in Figures 7.4a and 7.4b. They show that in
general the plain EBWT performs worse followed by the SPRING reordering, RLO ordering with
dollars then RLO ordering without dollars and finally XBWT performs best. XBWT yields a
smaller number of runs than RLO+EBWT (with or without $) on all datasets, although the
number is comparable on some datasets this is still a significant improvement considering that
RLO+EBWT already has far less run than the EBWT baseline. On the Chr19 dataset, using
RLO+EBWT-no-$ over plain BWT-no-$ (not reported in Figure 7.4a) reduced the number
of runs by 49%; using the XBWT reduced the number of runs by an additional 16%. On
S.aureus and E.coli the reduction between RLO+EBWT-no-$ and XBWT is of only 3% and 8%
respectively.

The R.sphaeroides datasets are especially interesting as they involve two NGS technologies
that generate reads of different lengths, different coverages, and with different error profiles.
We can first notice that our method brings greater benefits on the HiSeq sequencing which
has smaller reads with less errors that are located towards the end of the string. This is an
experimental validation of the statement of Theorem 7.2. We can also observe the effect of
trimming the reads on the number of runs. On the HiSeq sequencing, trimming reduces the
coverage only from 46x to 37x but yields a reduction in the number of XBWT runs by 86%.
Note that, as a result, on HiSeq trimmed, the number of XBWT runs is less than half the
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(a) E.coli, S.aureus, Human Chr19 (b) R.sphaeroides

Figure 7.4: Comparison of run-lengths compression by RLO+EBWT with and without $
and XBWT on various species (7.4a) and on two sequencing of R.sphaeroides (HiSeq and
MiSeq) and for reads both raw and trimmed (7.4b).

number of runs in plain RLO+EBWT.

6 Application to the JST
From a certain angle, Figure 7.3 is reminiscent of Figure 7.5, from Rahn, Weese and Rein-
ert’s [186] paper on their Journaled String Tree (JST). This raises the question of whether the
XBWT and JST can be used to improve the space usage of the hybrid index [177, 204, 259] and
eventually the PanVC [277] pan-genomic read aligner, which is based on the hybrid index.

Figure 7.5 shows a JST supporting search for patterns of length up to 4 in four aligned
sequences: the reference

r = TAGCGTAGCAGCTATGAGGAGGACCGAGTT

and three others,

s1 = TAGCGTAGCAGCGAGGAGCGACCGAGTT ,

s2 = TAGCGTGGCAGCGAGGAGCACCGAGTT ,

s3 = TAGCGTGGCAGCTATGAGGAGCACCGAGTT .

The straight branch of the tree running along the bottom of the figure is labelled with r, and
the other branches indicate places where the other sequences differ from r. The other branches
end just before a window of size 4 sliding over their sequences matches an aligned window of
size 4 sliding over r. For example, the first branch ends at position 9 because a sliding window
of length 4 over positions 7 to 10 of sequences s2 and s3 (that is, containing the characters in
columns 7 to 10 and the rows for s2 and s3 in the alignment shown at the top right in the
figure), matches a sliding window of length 4 over positions 7 to 10 in r (that is, containing the
characters in columns 7 to 10 and the row for r in the alignment).

Suppose we are looking for the pattern p = AGCG: considering the circle at the left as the
root, p occurs 3 times as a substring (marked in orange) of root-to-leaf paths, and we can find
those occurrences using a depth-first traversal of the tree. Since the sequences are similar, such
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Figure 7.5: An illustration of a JST [186]

a traversal is faster than running a sliding window over each sequence separately. If we find an
occurrence of p in the tree that ends at a node not in the branch for r, then we have found
occurrences in each of the sequences labelling the leaves in that node’s subtree. If we find an
occurrence of p in the branch for r, then we have found occurrences in r and possibly other
sequences. Unfortunately this case is not illustrated in the figure, but if we were looking for
GTAG then the occurrence at position 4 in r would have a corresponding occurrence in s1 but not
in s2 or s3; this is shown by the dashed line between 3 and 7, with {1} at the left end indicating
that s1 matches r between 3 and 7 and {1, 2, 3} indicating that s1, s2 and s3 all match r from
7 onward (until the next such interval starts at 9).

The hybrid index is conceptually similar to the JST, but the former is an index and the
latter performs pattern matching by scanning the tree sequentially. To build the hybrid index
supporting search for patterns of length up to 4 in r, s1, s2, s3, we first build a string kernel
consisting of r and substrings from s1, s2, s3 that contain all the characters within distance 3 of
variations from r, all separated by copies of a special symbol $:

TAGCGTAGCAGCTATGAGGAGGACCGAGTT$CGTGGCA$AGCGAG$GAGCGACC$GAGCACC .

Any substring of length at most 4 of the the four sequences r, s1, s2, s3 is a substring of the string
kernel, and any substring of length at most 4 of the string kernel that does not include a copy
of $ is a substring of at least one of those sequences. We then build an FM-index for the string
kernel, with auxiliary data structure that allow us to quickly map occurrences of a pattern in
the string kernel to occurrences in the sequences.

It seems interesting that the string kernel for the four sequences in Figure 7.5 has more
characters than the JST: on top of r, the string kernel has a substring $CGTGGCA and the JST
has a branch labelled GGCA; the string kernel has $AGCGAG and the JST has GAG; the string
kernel has $GAGCGACC and the JST has CGAC and GACCG (a tie in this one case); the string kernel
has $GAGCACC and the JST has CACC (with the first C shared with the branch ending CGAC).
This difference is because the string kernel stores copies of the characters both before and after
variation sites, whereas the JST stores copies only of the characters after them. If we build an
index using the XBWT of the JST, therefore, it may be smaller than the hybrid index while
having the same basic functionality. We leave exploring this possiblity as future work.
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7 Proof Sketch for Theorem 7.3
Let G be a Wheeler graph with the vertices sorted according to the permutation π. A Burrows-
Wheeler Transform (BWT) of G according to π is a permutation of G’s edge labels such that,
for any pair of edges e = (u, v) and e′ = (u′, v′) labelled a and a′ respectively, if u < u′ then
a precedes a′ in that permutation. For convenience, we assume that the labels of each vertex’s
out-edges appear in the order in π of their destinations. Notice there may be many BWTs for
G because it may have many permutations π satisfying the Wheeler graph conditions.

Let B be a BWT of G according to π. By the definition of a Wheeler graph, for any pattern
P over the alphabet of edge labels, the vertices reachable by directed paths labelled P form an
interval in π. Moreover, if we store a rank data structure for B and partial sum data structures
for the frequencies of the distinct edge labels and the vertices’ in- and out-degrees, then given P
we can find its interval in O(|P | log log |G|) time. Let r is the number of runs (i.e., maximal non-
empty unary substrings) in B and suppose G can be decomposed into υ edge-disjoint directed
paths whose internal vertices each have in- and out-degree exactly 1. Then these data structures
take a total of O(r + υ) space, measured in words.

Let D be a such decomposition of G and n be the number of vertices in G, and assume the
vertices are assigned numeric identifiers from 0 to n−1 such that if (u, v) is an edge and neither u
nor v is an endpoint of a path in D, and u has identifier i, then v has identifier i+1. Notice these
identifiers are not necessarily the vertices’ ranks in π. For convenience, we assume that even
though G is a multigraph, the number of edges is polynomial in n, so log log |G| = O(log log n).
We show how, still using O(r + υ) space, after we have found the interval for P we can then
report the vertices in it using O(log log n) time for each one.

We first prove a generalization of Bannai, Gagie and I’s version [307] of Policriti and Prezza’s
Toehold Lemma [275], that lets us report the last vertex in the interval for P . We then define
a generalization of Kärkkäinen, Manzini and Puglisi’s ϕ function [132], that maps each vertex’s
identifier to the identifier of its predecessor in π. Finally, we give a generalization of a key
lemma behind Gagie, Navarro and Prezza’s r-index [312], that lets us compute our generalized
ϕ function with O(r+υ)-space data structures. Combined, these three results yield a generalized
r-index for Wheeler graphs.

7.1 Generalized Toehold Lemma
For any pattern P [0..m−1], the interval for the empty suffix P [m..m−1] of P is all of π, because
every vertex is reachable by an empty path. Assume we have found the interval π[si+1, ei+1] for
P [i + 1..m − 1] and now we want to find the interval π[si, ei] for P [i..m − 1]. With the partial
sum data structure for the vertices’ out-degrees, in O(log log n) time we can find the interval in
B containing the labels of the edges leaving the vertices in π[si+1, ei+1].

By the definition of a Wheeler graph, the edges labelled with the first and last occurrences of
P [i] in that interval in B, lead to the first and last vertices in the interval π[si, ei] for P [i..m−1].
Using the partial sum data structures for the frequencies of the distinct edge labels and the
vertices in-degrees, in O(log log n) time we can find the ranks si and ei in π of those first and
last vertices in π[si, ei]. It follows that in O(log log n) time we can find π[si, ei] from π[si+1, ei+1];
therefore, by induction, we can find the interval for P in O(|P | log log n) time. We can count the
vertices in that interval in the same asymptotic time by simply returning the size of the interval.

To be able to find the identifier of the last vertex in the interval for P , for each edge (u, v)
we store u’s and v’s identifiers if any of the following conditions hold:

• (u, v)’s label a is the last label in a run in B;

• either u or v is an endpoint of a path in D;
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• the vertex that follows u in π has out-degree 0.

We store a select data structure for B, a bitvector marking the labels a in B for whose edges
(u, v) we have u’s and v’s identifiers stored, and a hash table mapping the position in B of each
marked label a to the identifiers of its edge’s endpoints. This again takes a total of O(r + υ)
space.

By querying the rank data structure, the select data structure, the bitvector and the hash
table in that order, we can find the identifier of the vertex reached by the edge labelled by the
last copy of P [m − 1] in B. By the definition of a Wheeler graph, this is the last vertex in
the interval π[sm−1, em−1] for P [m − 1]. Assume we have found the interval π[si+1, ei+1] for
P [i + 1..m− 1] and the identifier of the last vertex u in that interval, and now we want to find
the interval π[si, ei] for P [i..m − 1] and the identifier of the last vertex v in that interval. We
can find π[si, ei] as described above, so we need only say how to find v’s identifier.

With the partial sum data structure on the vertices’ out-degree and the rank data structure,
in O(log log n) time we can check whether u has an outgoing edge labelled P [i]. If it does
then, of all its out-edges labelled P [i], the one whose label appears last in B goes to v. By our
assumption of how the vertices are assigned their identifiers, if neither u nor v are endpoints of
a path in D, then v’s identifier is u’s identifier plus 1. If either u or v is an endpoint of a path in
D, then we have v’s identifier stored and we can use the hash table to find it from the position
in B of the last label P [i] on one of u’s out-edges, again in O(log log n) time.

If u does not have an outgoing edge labelled P [i] then we can use the rank data structure
to find the last copy of P [i] in B that labels an edge leaving a vertex in π[si+1, ei+1]. By the
definition of a Wheeler graph, this edge (u′, v) goes to v. Unlike in a BWT of a string, however,
its label may not be the end of a run in B: u could have out-degree 0, u′ could immediately
precede u in π and the last of its outgoing edges’ labels in B could be a copy of P [i], and the
first label in B of an outgoing edge of the successor of u in π could also be a copy of P [i]. This
is why we store v’s identifier if the vertex that follows u′ in π has out-degree 0. If (u′, v)’s label
is the end of a run in B, of course, then we also have v’s identifier stored. In both cases we
use O(log log n) time, so from the interval π[si+1, ei+1] for P [i + 1..m − 1] and the identifier of
the last vertex u in that interval, in O(log log n) time we can compute the interval π[si, ei] for
P [i..m − 1] and the identifier of the last vertex v in that interval. Therefore, by induction, in
O(|P | log log n) time we can find the interval for P and the identifier of the last vertex in that
interval.

Lemma 7.5. We can store G in O(r + υ) space such that in O(|P | log log n) time we can find
the interval for P and identifier of the last vertex in that interval.

7.2 Generalized ϕ

For a string S, the function ϕ takes a position i in S and returns the starting position of the
suffix of S that immediately precedes S[i..|S| − 1] in the lexicographic order of the suffixes. In
other words, ϕ takes the value in some cell of suffix array of S and returns the value in the
preceding cell. Given a pattern P , if we can find the interval of the suffix array containing
the starting positions of occurrences of P in S, and the entry in the last cell in that interval,
then by iteratively applying ϕ we can report the starting positions of all the occurrences of P .
This is the idea behind the r-index for strings, which uses a lemma saying it takes only space
proportional to the number of runs in the BWT of S to store data structures that let us evaluate
ϕ in O(log log |S|) time.

We generalize ϕ to Wheeler graphs by redefining it such that it takes the identifier of some
vertex u in G and returns the identifier of the vertex that immediately precedes u in π. (For our
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purposes here, it is not important how ϕ behaves when given the identifier of the first vertex in
π.) Given a pattern P , if we can find the interval in π containing the vertices in G reachable by
directed paths labelled P , and the identifier of the last vertex in that interval, then by iteratively
applying ϕ we can report the identifiers of all those vertices.

Let J be the set that contains u’s identifier if and only if any of the following conditions
hold:

• u has out-degree not exactly 1;

• u has a single outgoing edge (u, v) but v has in-degree not exactly 1;

• the predecessor u′ of u in π has out-degree not exactly 1;

• u′ has a single outgoing edge (u′, v′) but v′ has in-degree not exactly 1;

• the edges (u, v) and (u′, v′) have different labels.

We store a successor data structure for J and, if u’s identifier is in J , then we store with it as
satellite data the identifier of u’s predecessor u′ in π. Notice u’s identifier is in J only if at least
one of u or u′ or v or v′ is the endpoint of a path in D, or the label of (u′, v′) is the the last in a
run in B and the label of (u, v) is the first in the next run. It follows that we can use O(r + υ)
space for the successor data structure and have it support queries in O(log log n) time.

Suppose we know the identifier of some vertex u with identifier i that is immediately preceded
by u′ in π with identifier i′. If u ∈ J then we have i′ stored as satellite data with ≻ (i) = i. If
u ̸∈ J , then u has a single outgoing edge (u, v) and u′ has a single outgoing edge (u′, v′) with
the same label, say a, and v and v′ each have in-degree exactly 1. By our assumption on how
the identifiers are assigned, the identifiers of v and v′ are i + 1 and i′ + 1 and, by the definition
of a Wheeler graph, v is immediately preceded by v′ in π. It follows that if i + ℓ is the successor
of i then it has stored with it as satellite data i′ + ℓ, and so we can compute ℓ and then i′ in
O(log log n) time.

Lemma 7.6. We can store G in O(r + υ) space such that we can evaluate ϕ in O(log log n)
time.

7.3 Discussion
Combining Lemmas 7.5 and 7.6, we generalize, we obtain Theorem 7.3. Since υ = 1 for a
single string labelling a simple path or cycle, Theorem 7.3 gives the same O(r) space bound and
O(|P |+ k log log n) time bound we achieve with the r-index for strings, where k is the number
of occurrences. Nishimoto and Tabei [320] recently improved the query time of the r-index for
strings to O(P + k log log n) — or optimal O(P + k) for polylogarithmic alphabets — without
changing the space bound, and we conjecture this is achievable also for r-indexes for Wheeler
graphs.
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Conclusion

In this thesis, we presented the need for more general string queries than classical pattern
matching, and the scalability challenges that come from the large productions and archrivals of
data. In Sections 2 and 3, we detailed the sketch-based approach common to all contributions.
The use of sketches enabled processing and storing data efficiently to yield better time and
space complexities. The sketching techniques we use are diverse and are not immediate to apply
to other problems, but my personal takeaway is the importance of thinking in terms of the key
characteristic of the input for a given query. I find it very helpful in algorithmic design both for
theoretical studies and applied projects.

Let me recall briefly our contributions and the open questions they leave. In Chapter 1, we
gave streaming algorithms for solving the regular expression pattern matching and membership
problems. For a regular expression R of size m in a stream of size n, our algorithms run in
O(d3 polylog n) space and O(nd5 polylog n) time per character where d is the number of | and ∗
symbols in R. Is it possible to achieve poly(d, log n) space and time per character?

Chapters 2 and 3 studied gapped consecutive occurrences, where given a text T , patterns
P1 and P2 and an interval [a, b], the task is to find in T all consecutive occurrence of P1 and P2
separated by a distance d ∈ [a, b]. In both chapters, the text T is given as a straight-line program
(a grammar generating a single string) of size g, but Chapter 2 focuses on indexing, while
Chapter 3 studies pattern matching. In Chapter 2, we gave two indexes: an index for reporting
consecutive occurrences without constraints on the distance, using O(g2 log4 |T |) space, and
an index for reporting consecutive occurrences at distance within [0, b] taking O(g5 log5(|T |))
space. The query time is Õ(|P1| + |P2| + occ) for both indexes. Can we improve the space
complexity of our indexes, in particular, is space Õ(g) achievable with the same time complexity
for consecutive (without distance constraints)? Is there an efficient index for the general case
where we search for consecutive occurrences separated by a distance in an interval [a, b]?

In Chapter 3 we addressed pattern matching where the pattern and the text are processed
simultaneously. We showed how to report all consecutive occurrences in O(g + |P1|+ |P2|+ occ)
optimal time and how we can filter the consecutive occurrences to report those at distance in
[a, b] in the same complexity.

The last contribution of Part I (Chapter 4), was a deterministic algorithm for reporting runs
in O(n log σ) time for unordered alphabet (where the only operation allowed on characters is
equality testing) and we showed a matching lower bound for deterministic algorithms. It remains
open whether the lower bound of Ω(n log σ) comparisons for square testing holds for randomized
algorithms.

Chapter 5 focused on the LCS with Approximately k Mismatches problem, where for a constant
ε > 0 and given two strings X and Y and an integer k, we must return a substring of X of
length at least LCSk(X, Y ) that occurs in Y with at most (1 + ε) · k mismatches. We provided
two algorithms: one assuming a constant size alphabet running in O(n1+1/(1+2ε)+o(1)) time and
space, and one in O(n1+1/(1+ε) log3 n) time and linear space without constraints on the alphabet.
We also confirmed the practicality of the second algorithm by an experimental evaluation. As
future work, it would be interesting to implement ourO(n1+1/(1+2ε)+o(1)) time and space solution
using an implementation of Approximate Nearest Neighbour data structure such as [376] and
add it to the practical evaluation.

Next, we studied pattern matching for the Dynamic Time Warping (DTW) distance. In
Chapter 6, for a run-length compressed pattern P with m runs and a run-length compressed
text T with n runs and an integer k, we provided an O(knm)-time algorithm that computes
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all locations j where the DTW distance between P and a suffix of T [..j] is at most k. It
remains open whether it is possible to improve to O(k(n + m)) time. Additionally, we detailed
a possible practical application of DTW for third-generation sequencing alignment through
minimal experiments. It would be interesting to investigate further, unfortunately, it seems
difficult due to many tools using an alignment based on the edit distance under the hood.

Finally, in Chapter 7, we studied the applicative problem of read indexing. We proposed
using the read’s alignment to give additional context and to achieve better overall compression.
Our index is based on the XBWT, and we provided a main memory-efficient construction using
prefix-free parsing. We measured the improvement of our structure in terms of the number
of runs in the XBWT as a first step, but it remains to implement and evaluate the full data
structure in terms of space usage and query time.

From a more general point of view, there remains a lot to be done with sketches. In this thesis,
we heavily used the Karp–Rabin fingerprints to improve the efficiency of our algorithms and this
is likely extendable to many other problems. Another approach common to Chapters 2, 3 and 6
was working on compressed input (either a straight-line program or a run-length compressed
string) and there again I believe there is more to be done. I find this direction especially
interesting because of the practical perspective of being able to always work directly on the
compressed data without the need to decompress. Several of the classical processing tasks
have been implemented already for a straight-line program input, but, in practice, grammar
compression requires large construction time and space, an order of magnitude more than to
construct the Lempel–Ziv factorization (See column “Re-pair” of Fig.9 and 10 of [329]). So could
we improve construction time for grammar compression or develop some algorithms working
directly on the LZ factorization?

On the more practical side, I would personally be interested in the use of spaced seeds [95]
in Bioinformatics. A space seed is a binary sequence that describes positions that are either
relevant (marked by a one) or irrelevant (marked by a zero), then two strings match for the spaced
seed if they match at every relevant position. They have been used for homology search [84],
alignment [150], assembly [195], and metagenomics [196]. In all those applications they were
reported to increase the sensitivity and specificity performances compared to the use of k-mers,
but they cannot be hashed as efficiently as k-mers and their use incurred a greater computational
cost. Recently, Petrucci et al. [321] proposed a technique that greatly speeds up space seed
hashing. Consequently, I wonder if sketching techniques used in Bioinformatics (presented at
the end of Section 2) could gain accuracy by being based on spaced seeds rather than k-mers.
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The Cat and the Yarn

Inspired by the book "Le chat au pays des nombres" by Ivar Ekeland and
John O’brien, which presents the Hilbert’s paradox of the Grand Hotel in
a kids book format, I decided (on my own time) to sketch a comic inspired
by this thesis. I dedicate it to Hana, Mira, and all the little girls that may
take an interest in computer science one day.





Titre : Approches Basé sur les Sketches pour le Traitement massif de Chaînes de Caractères

Mot clés : Chaîne de Caractères, Algorithmes, Structures de données, Flots, Recherche Approchée

Résumé : La simplicité des chaînes de caractères rendent
leur traitement crucial pour de nombreuses applications,
telles que la bio-informatique, la recherche d’informations
et la cybersécurité. Le problème de la recherche exact d’un
motif a naturellement été largement étudié [93], cependant,
de nombreuses applications nécessitent également des
requêtes plus complexes. De plus, dans ces domaines
applicatifs, la quantité de données à traiter augmente à une
vitesse stupéfiante [225], et les complexités des requêtes
ne permettent pas toujours de passer à l’échelle. Dans cette
thèse, nous proposons plusieurs algorithmes efficaces en
temps et en espace pour divers problèmes sur les chaînes
de caractères, en nous appuyant sur des “sketchs” : des
compressions (avec ou sans perte) qui ne conservent que
les caractéristiques essentielles de l’entrée pour répondre à
une requête précise.

Dans la première partie de cette thèse, nous étudions
des requêtes complexes telles que la recherche par
expressions régulières, la recherche de motifs consécutifs
avec espacement et la détection de carrés. Pour la
recherche d’expressions régulières, nous présentons un
algorithme utilisant peu d’espace dans le modèle de flot de
données (“streaming”) : les caractères du texte arrivent un
par un, et nous ne pouvons accéder aux anciens que si nous
les avons stockés explicitement. Ensuite, nous étudions la
recherche de motifs consécutifs avec espacement, un type
de requête plus simple, où étant donnés deux motifs P1, P2

et un intervalle [a, b], il faut renvoyer toutes les occurrences
consécutives (sans autres occurrences des motifs entre les
deux) de P1 suivies de P2 espacées d’une distance comprise
entre a et b. Nous étudions ce problème sous plusieurs
angles : l’indexation compressée et la recherche de motifs
dans un texte compressé. Motivés par l’importance de la
périodicité, nous étudions ensuite la détection de carrés
pour alphabets sans ordres (le cadre le plus abstrait dans
lequel les carrés peuvent être définis). Nous fournissons
un algorithme optimal et répondons à une question ouverte
posée par Main et Lorentz [27] en 1984.

La seconde partie de cette thèse propose quelques
utilisations d’approximations pour aider à passer à l’échelle
sur des grandes quantités de données, en particulier avec
application à la bio-informatique. Nous étudions tout d’abord
la recherche approximative de motifs, où nous devons
rapporter toutes les occurrences à une distance au plus
égale à k pour une mesure de similarité donnée. Nous
fournissons des algorithmes paramétrés efficaces pour
calculer la longueur de la plus longue sous-chaîne commune
avec environ k différences, puis pour permettre la recherche
de motifs apparaissant avec une distance de “dynamic
time warping” au plus k. Enfin, nous proposons un index
compressé pour des collections de lectures de séquençage.
Cet index tire parti d’alignements sur un génome assemblé
pour améliorer la compression, mais l’index est approximatif
car il peut renvoyer des faux positifs lors de ses requêtes.

Title: Sketch-Based Approaches to Process Massive String Data

Keywords: Strings, Algorithms, Data Structure, Streaming, Approximate Search

Abstract: The simplicity of strings and their impactful us-
age puts their processing at the heart of many applications,
including Bioinformatics, Information Retrieval, and Cyber-
security. Exact pattern matching has been extensively stud-
ied [93] as the most natural problem, however, many appli-
cations also need more complex queries. Additionally, in all
those application fields, the quantity of information to pro-
cess has been increasing at such a staggering rate [225],
that obtaining scalable algorithms is difficult. In this thesis
we contribute multiple space- and time-efficient algorithms
for various string problems, by relying on sketches: com-
pressions (lossless or lossy) that only keep the essential
characteristic of the input needed to answer a given query.

In the first part of this thesis, we study complex queries
such as regular expressions search, gapped consecutive
matching, and square detection. For regular expression
search, we provide a space-efficient algorithm in the stream-
ing model: characters of the text arrive one at a time, and
we can only access past characters if we explicitly store
them. Next, gapped consecutive matching is a simpler type
of query where, given two patterns P1, P2 and a range [a, b],
one must report all consecutive occurrences of P1 followed

by P2 separated by a distance in [a, b]. We study this problem
in two settings: compressed indexing and pattern matching
on a compressed text. Motivated by the importance of pe-
riodicity detection, next, we investigate square detection for
general alphabets (the most abstract setting where squares
can be defined). We give an optimal algorithm which an-
swers an open question asked by Main and Lorentz [27] in
1984.

The second part of this thesis proposes several ways
to use approximation toward scaling up to large amounts
of data in diverse applications including Bioinformatics. We
first study approximate matching, where we must report all
occurrences at distance at most k for a given similarity mea-
sure. We provide efficient parametrized algorithms for com-
puting the length of the longest common substring with ap-
proximately k mismatches and to compute all positions of
a text where a pattern occurs with dynamic time warping
distance at most k. Finally, we propose a compressed in-
dex for redundant collections of next-generation sequencing
reads, which takes advantage of alignments to an assem-
bled genome to improve the overall compression but can in-
cur false positive occurrences.
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