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Résumé: Depuis plusieurs décennies, l’inflation est
considérée comme le paradigme principal pour décrire
l’Univers primitif. Les théories décrivant l’inflation peu-
vent être testées et améliorées à partir de la mesure de
différentes propriétés telles que l’inclinaison du spectre
de puissance scalaire primordial, les ondes gravitation-
nelles primordiales ou la non-gaussianité primordiale
(PNG). En effet, les modèles d’inflation les plus simples
(single-field slow roll inflation) prédisent une distribu-
tion presque gaussienne des fluctuations primordiales,
c’est-à-dire une quantité minimale de PNG alors que les
modèles plus complexes comme par exemple l’inflation
à champs multiples prédisent des quantités significa-
tives de PNG. Pour contourner la limite de variance
cosmique des observations du fond diffus cosmologique
qui donne les meilleures contraintes actuelles sur les
PNGs, une possibilité serait d’utiliser l’énorme puis-
sance statistique des regroupements de galaxies en 3D,
en sondant un grand volume de l’Univers. En par-
ticulier, une approche prometteuse consiste à utiliser
l’empreinte minuscule laissée à grande échelle sur le
spectre de puissance de la matière par la PNG locale,
connue sous le nom de biais dépendant de l’échelle.
C’est l’approche que nous suivrons dans cette thèse en
analysant les 1,2 millions de quasars du relevé spectro-
scopique de la première année d’observation du Dark
Energy Spectroscopic Instrument (DESI). Après avoir

donné le cadre théorique permettant d’expliquer les
phénomènes mis en jeu, je commencerai par décrire
l’échantillon de quasars (QSO) de DESI. En particulier,
je présenterai la sélection des cibles QSOs utilisées dans
DESI, dont j’ai eu la charge pendant la Survey Val-
idation, phase préliminaire au relevé spectroscopique,
ainsi que le pipeline spectroscopique pour collecter le
décalage vers le rouge. Cette sélection permet de col-
lecter plus de 200 quasars par degré carré incluant
60 d’entre eux avec redshift (z) plus grand que 2,1,
améliorant de plus de 20% les exigences du comité sci-
entifique de DESI. Ensuite je présenterai le traitement
des effets observationnels qui pourraient contaminer
la mesure des PNGs et la façon de les traiter. Afin
d’éviter tout biais de confirmation lors de cette étape
de correction, je détaillerai une méthode pour masquer
le signal caractéristique des PNGs. Finalement, je don-
nerai la mesure masquée des PNGs avec les 1,2M de
quasars de la première année d’observation ainsi que
les contraintes attendues. Avec cette première année
d’observation, nous nous attendons d’ores et déjà à une
meilleure sensibilité qu’avec le dernier relevé spectro-
scopique de quasars fourni par l’expérience eBOSS en
2022. Il faudra en revanche attendre le relevé com-
plet de DESI et employer de nouvelles approches afin
de pouvoir concurrencer la meilleure mesure actuelle
effectuée par le satellite Planck.

Title: Studying inflation with quasars from the DESI spectroscopic survey
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Abstract: For several decades, inflation has been considered
the main paradigm for describing the early Universe. The the-
ory describing inflation can be tested and improved by measur-
ing properties such as the tilt of the primordial scalar power
spectrum, primordial gravitational waves or primordial non-
Gaussianity (PNG). Indeed, the simplest inflation models (single-
field slow-roll inflation) predict an almost Gaussian distribution of
primordial fluctuations, i.e. a minimal amount of PNG, whereas
more complex models such as multi-field inflation predict signifi-
cant amounts of PNG. To circumvent the cosmic variance limit of
cosmic microwave background observations, which give the best
current constraints on PNGs, one possibility would be to use the
enormous statistical power of 3D galaxy clustering, by probing
a large volume of the Universe. In particular, one promising ap-
proach is to use the tiny imprint left on the large-scale matter
power spectrum by local PNGs, known as the scale-dependent
bias. This is the approach we will follow in this thesis, analyzing
the 1.2 million quasars in the spectroscopic survey of the first
year of observation by the Dark Energy Spectroscopic Instrument
(DESI). After providing a theoretical framework to explain the

phenomena at play, I will begin by describing the DESI quasar
sample (QSO). In particular, I’ll present the selection of QSO
targets used in DESI, for which I was responsible during Survey
Validation, the preliminary phase of the spectroscopic survey,
as well as the spectroscopic pipeline for collecting the redshift.
This selection enabled us to collect more than 200 quasars per
square degree, including 60 with redshift (z) greater than 2.1,
improving on the requirements of the DESI scientific committee
by more than 20%. Next, I’ll present how to deal with observa-
tional effects that could contaminate the measurement of PNGs.
In order to avoid any confirmation bias during this correction
stage, I will detail a method for masking the characteristic PNG
signal. Finally, I’ll give the masked measurement of PNGs with
the 1.2M quasars from the first year of observation, along with
the expected constraints. With this first year of observations,
we already expect a better sensitivity than with the last spec-
troscopic survey of quasars provided by the eBOSS experiment
in 2022. Nevertheless, we will have to wait for DESI’s complete
survey, and use a new approach to be competitive with the best
measurement currently being made by the Planck satellite.
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me risquer à en oublier, alors que vous soyez de ceux avec qui j’ai fait ma prépa, Supaéro, mon
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Introduction

Remember to look up at the stars and not down at your feet. Try to make
sense of what you see and wonder about what makes the Universe exist. Be
curious.

Stephen Hawking

C osmology, the scientific study of the Universe at its largest scales, seeks to unravel the
mysteries of its origin, evolution and ultimate destiny. It encompasses a wide range of

subjects, including the Big Bang theory, the structure and behavior of large-scale structures in
the Universe, and the nature of dark matter and dark energy. Relevant dates are given in the
timeline in Table 1.

The birth of ”modern” cosmology can be traced back to the groundbreaking work of Albert
Einstein and his theory of general relativity in 1915, which revolutionized our understanding
of gravity by proposing a space-time dynamically influenced by matter and energy. The ex-
pansion of our Universe was predicted a few years later by Georges Lemâıtre and Alexander
Friedmann, who independently solved Einstein’s equations. Observational confirmation, known
as the Hubble-Lemaitre law, was one of the most important turning points in modern physics.

Long questioned, the Big Bang theory, which describes an expanding Universe, was widely
adopted after the discovery in 1964 by Arno Penzias and Robert Wilson of the cosmic microwave
background radiation. Its discovery irrefutably confirmed that our Universe was hotter and
denser in its early days. The cosmic microwave background has been an important object
of study through the COBE, WMAP and Planck missions, and is still at the heart of major
observational programs.

In 1998, observations of type Ia supernovae, a particular class of exploding white dwarf stars,
showed that the expansion of the Universe was accelerating rather than decelerating under the
influence of gravity alone. This led to the discovery of dark energy, whose existence and behavior
are currently the biggest open question in cosmology.

To answer this burning issue, another set of data is crucial: observations of the large-scale
structures of the Universe. Galaxies and cosmic voids form a vast cosmic web, revealing the
distribution of matter across the Universe. The observation of galaxy redshifts, first carried out
by the CfA Redshift Survey in the late 1970s, then extended by the Sloan Digital Sky Survey in
the 2000s, and currently performed by the Dark Energy Spectroscopic Instrument, enables us
to map the Universe with great precision, and to measure the expansion rate of the Universe at
different epochs.

All these observations also seek to shed light on the first moments of our Universe. For
several decades, inflation has been considered the leading paradigm for describing the early
Universe. Inflation is a set of many models that can be tested and improved from the mea-
surement of different properties such as the tilt of the primordial scalar power spectrum, the
primordial gravitational waves, or the primordial non-gaussianity (PNG). The first is already



Introduction viii

well constrained with the latest Planck CMB data, and the second is gaining a growing interest
with future missions to observe the B-mode polarization of the cosmic microwave background.
At variance, PNG remains to date still poorly constrained by current experiments, and it is the
main subject of this dissertation.

The simplest inflation models predict a nearly Gaussian distribution of primordial fluctu-
ations i.e. a minimal amount of PNG. In particular, the detection of local non-gaussianity:
O
(
f locNL

)
∼ 1 will rule out single field inflation and will hint at more complex models e.g.

multi-field inflation.
Currently, the best constraints on PNG are obtained from Planck data: f locNL = −0.9 ± 5.1.

To circumvent the cosmic variance limit of CMB observations, one possibility would be to use
the enormous statistical power in the 3D galaxy clustering, probing a large volume of the Uni-
verse. A promising approach is through the tiny imprint left at large scales on the matter power
spectrum by local PNG, known as the scale-dependent bias. With this method, the Dark Energy
Spectroscopic Instrument (DESI) is expected to constrain local PNG with similar accuracy to
Planck. Although the measurement will strongly depend on the tracer linear bias value and its
response to PNG, the quasar sample seems to be the target of choice, since it probes a very
large volume.

This dissertation will first introduce the theoretical background required to study the large-
scale structures of the Universe in Chapter 1. Then, it will briefly give an overview of the early
Universe described by the inflation in Chapter 2. The Dark Energy Spectroscopic Instrument
will be described in Chapter 3. Chapter 4 will explain the target selection for the quasars in
DESI. Finally, Chapter 5 will show the measurement of primordial non-gaussinity with the DESI
Y1 blind data.

This dissertation took full advantage of several useful references:

• Dodelson and Schmidt (2020)

• Lecture notes from Hannu Kurki-Suonio1

• Baumann (2022)

• en Français: Peter and Uzan (2005) et Bernardeau (2007)

My work was made much easier thanks to the use of open source packages (CLASS, cosmoprimo,
pycorr, pypower, mpytools, mockfactory, fastpm, desilike), their associated software (in
particular, all the scientific python environment), and all open-source community for their nu-
merous responses in miscellaneous forums.

1https://www.mv.helsinki.fi/home/hkurkisu/

https://www.mv.helsinki.fi/home/hkurkisu/


ix Introduction

Table 1: Timeline of selected major events in Cosmology

1915 • Alber Einstein publishes the theory of general relativity
1927 - 1929 • Georges Lemâıtre and Edwin Hubble discover

independently the expansion of the Universe
1933 • Fritz Zwicky obtains the first signs of the existence of dark

matter
1946 • George Gamow proposes primordial nucleosynthesis, a

mechanism for the formation of atomic nuclei in the early
stages of an expanding Universe

1964 • First observation of the Cosmic Microwave Background by
Penzias & Wilson

1970 • Vera Rubin measures the rotation of spiral galaxies,
confirmation of existence of dark matter

1977 • Start of CfA Redshift Survey
1978 • Nobel Prize (A.Penzias & R.Wilson): ”for their discovery

of cosmic microwave background radiation”
1980s • Guth, Linde, Albrecht & Stein propose inflation to describe

the early Universe
1989 • Launch of COBE satellite
1990 • Launch of Hubble Space Telescope from the Discovery

Shuttle
1998 • Discovery of the accelerated expansion of the Universe and

introduction of dark energy
2000 • Start of Sloan Digital Sky Survey
2001 • Launch of WMAP satellite
2004 • First detection of Baryonic Acoustic Peak with SDSS

galaxy survey
2006 • Nobel Prize (J.Mather & G.Smoot): ”for their discovery

of the blackbody form and anisotropy of the cosmic
microwave background radiation”

2009 • Launch of Planck satellite
2011 • Nobel Prize (S.Permutter, B.Schmidt & A. Reiss): ”for

the discovery of the accelerating expansion of the Universe
through observations of distant supernovae”

2016 • First observation of gravitational waves by LIGO/Virgo
2017 • Nobel Prize (R.Weiss, K.Thorne & B.Barish): ”for

decisive contributions to the LIGO detector and the
observation of gravitational waves”

2019 • Nobel Prize (J.Peebles): ”for theoretical discoveries in
physical cosmology”

2020 • Nobel Prize (R.Penrose): ”for the discovery that black
hole formation is a robust prediction of the general theory
of relativity”, (R.Genzel, A.Ghez): ”for the discovery of a
supermassive compact object at the center of our galaxy”

2021 • Start of DESI Main survey
2021 • James Webb Space Telescope is launched from Ariane V
2023 • Launch of Euclid satellite
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Toutes les lois sont donc tirées de l’expérience ; mais pour les énoncer, il
faut une langue spéciale ; le langage ordinaire est trop pauvre, il est d’ailleurs
trop vague, pour exprimer des rapports si délicats, si riches et si précis. Voilà
donc une première raison pour laquelle le physicien ne peut se passer des ma-
thématiques ; elles lui fournissent la seule langue qu’il puisse parler.

Henri Poincaré, La valeur de la science (1905)

T he advent of special relativity, developed by Albert Einstein in 1905, marked a significant
transformation in classical physics by introducing the concept of space-time and linking

energy and mass. While special relativity established the foundation, it was not until the
invention of general relativity by Einstein in 1915 that a theory respecting special relativity
was available to explain the gravitational force. Although it already explained the precession of
Mercury’s perihelion, general relativity was first validated in 1919 with the measurement of the
deflection of light by the sun that it predicted (Eddington 1919, Dyson et al. 1920). This paved
the way for the beginning of modern cosmology.

This chapter provides a succinct overview of the theory necessary to comprehend the origin
and evolution of large-scale structures in the Universe. For in-depth information, please refer to
the list of references provided in the introduction (p. viii).

1.1 A smooth and expanding Universe

1.1.1 General relativity

1.1.1.1 Equivalence principle & Metric

General relativity is a successful relativistic description of gravitation. It relies on the equivalence
principle stating: at every point in space-time in an arbitrary gravitational field, it is possible
to choose a local inertial coordinate system such that in a sufficiently small region around of
this point, the law of nature takes the same form as in special relativity. In this local inertial
coordinate system Xµ = (t, x, y, z), the linear element ds2 is given by the Minkowski metric:

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dτ2, (1.1)

where c is the speed of light and τ the proper time. We choose, the following convention for the
Minkowski tensor: ηµν = diag(−1, 1, 1, 1).

Finding the local inertial coordinate system at each point of the space and working with it,
is usually something complicated, and it may be better to work with a global coordinate system
xµ such that:

ds2 = gµν(x)dxµdxν , (1.2)
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where gµν(x) is the metric tensor defined at each space-time position by

gµν(x) = ηαβ
∂Xα

∂xµ
∂Xβ

∂xν
. (1.3)

Following the Weinberg derivation, the equation of motion of a free particle can be derived
directly from the equivalence principle. A free-falling particle does not accelerate in the local
inertial freely falling coordinate system such that:

d2Xµ

dτ2 = 0. (1.4)

The equation of motions, called the geodesic equations, can then be written in any coordinate
system, xµ, in applying a simple change of coordinates:

d2xµ

dτ2 + Γµαβ
dxα

dτ
dxβ

dτ = 0, (1.5)

where Γµαβ are the Christoffel symbols:

Γµαβ = ∂xµ

∂Xλ

∂2Xλ

∂xα∂xβ
= 1

2g
µλ (∂αgλβ + ∂βgλα − ∂λgαβ) , (1.6)

using the useful notation for the partial derivate: ∂µ = ∂/∂xµ .
In a flat space i.e. without any gravitational interactions, the geodesics are straight lines. In

the presence of gravity, the space is not flat anymore, it is said to be curved, and the geodesics
give the trajectory of a free particle undergoing gravity. All the information of how a particle
moves in a gravitational field is then contained inside the metric gµν .

1.1.1.2 Einstein equations

Motivated by Newtonian physics, the Einstein equations aim to describe the dynamical evolution
of gµν i.e. describe the curvature of spacetime as a function of the distribution of matter and
energy within it. Einstein proposed:

Gµν + Λgµν = κTµν , (1.7)

where κ and Λ are free parameters, Gµν is the Einstein tensor and Tµν is stress–energy tensor.
The Einstein tensor is defined as

Gµν = Rµν −
1
2gµνR, (1.8)

where R = Rµµ is the Ricci scalar, Rµν = Rλµλν is the Ricci tensor and Rλµκν is the Riemann
curvature tensor describing the local curvature of the spacetime. If Rλµκν = 0 everywhere, the
space is then completely flat and the coordinate system is equivalent to the Minkowski metric.
The Riemann curvature tensor is linked to the metric gµν by

Rλµκν = ∂κΓλνµ − ∂νΓλκµ + ΓλκωΓωνµ − ΓλνωΓωκµ. (1.9)

The stress-energy tensor represents the distribution of matter and energy in spacetime. In
particular, the stress-energy tensor for a perfect fluid is given by

Tµν =
(
ρ+ P

c2

)
uµuν + Pgµν , (1.10)
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where ρ is the energy density, uµ is the four-velocity of the fluid, P is the pressure. Formally, in
the fluid rest frame, T 00 represents the energy density, T0i the energy flux density which is equal
to the momentum density Ti0 and Tij represents the spatial stress tensor. The conservation of
energy in the fluid rest frame reads as

∂µT
µν = 0. (1.11)

These equations give in the non-relativistic limit the well-known equation of continuity (∂ρ/∂t+
∇ · (pv) = 0) and the Euler equations (ρ ∂v/∂t + ρ (v · ∇) v +∇P = 0); see, for instance,
Rieutord (2014). To conserve the equality in any general coordinate system, the partial derivate
needs to be replaced by the covariant derivate ∇µ:

∇µT
µν ≡ ∂µTµν + ΓµµγT γν + ΓνµγTµγ = 0, (1.12)

Such an equation is called covariant conserved: thanks to the equivalence principle if it is true
in an inertial rest frame, it is true under this transformation in any coordinate system.

The free parameter κ is chosen to recover the Poisson equation which gives the classical
description of the gravity in the Newtonian limits1: κ = 8πG

c4 .

The latest free parameter is the famous cosmological constant Λ, responsible for the late
acceleration of the expansion of the Universe. The best current measurement gives Λ =
1.1056 × 10−52 m−2 (Planck Collaboration et al. 2020) (see Section 1.3.2).

The energy conservation (1.12), is automatically verified in the Einstein equations (1.8),
since by construction the Riemann curvature tensor follows the Bianchi identity such that

∇µG
µν = 0. (1.13)

Energy conservation is a fundamental requirement for any theory of gravity. The Lovelock
theorem (Lovelock 1972) ensures that the Einstein tensor is the only tensor, with the metric
tensor itself, which contains only up to second derivatives of the four-dimensional spacetime
metric, linear in the second derivatives of the metric and be covariant conserved i.e. divergent
free along one index. Thus, the proposed Einstein equations are the only possible equations
using up to second derivatives of the metric. Although artificially introduced by Einstein (1917)
in order to obtain a static i.e. not expanding Universe2, the presence of Λ is not just an artifact,
it is mathematically promoted with this set of equations. Today, its presence explains the late
accelerated expansion of the Universe (Riess et al. 1998, Perlmutter et al. 1999).

These equations are one possibility to describe gravity in the framework of special relativity.
Several potential extensions, such as using high-order derivatives of the metric, are already being
considered. However, the current Einstein equations have been extensively tested and validated
up to solar system scales through numerous experiments and observations: the gravitational
deflection of light by massive objects (Dyson et al. 1920), the perihelion of Mercury (Einstein
1916) or the detection of gravitational waves (Abbott et al. 2016). Hence, the Einstein equations
will be assumed to be in the following.
Remark: In the following and as often in cosmology, we will set c = 1 and ~ = 1.

1The Newtonian limit supposing that the gravitational fields are weak, particles move slowly compared to the
speed of light and the gravitational fields vary slowly in time. Under these assumptions, geodesic equations (1.5)
are reduced to d2xi

/
dτ2 = 1/2 ∂ih00 where h is a small perturbation of the Minkowski metric such that

gµν = ηµν + hµν . In classical mechanics, the Poisson equation ∇2Φ = 4πGρm leads to d2xi
/

dτ2 = −∂iΦ.
Hence, g00 = −(1 + 2Φ). Comparing the 00 Einstein equation (1.8) to the Poisson equation gives κ = 8πG

c4 .
2At that time, the only objects observed were stars with very small peculiar velocities.
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1.1.2 Homogeneous description

1.1.2.1 A homogeneous and isotropic Universe: the cosmological principle

Describing gravity in the Universe requires finding a coordinate system in which we can easily
describe the distribution of matter. First, consider the distribution of the matter at large scales.

Fig. 1.1a shows a fraction of the galaxy distribution observed by the Sloan Digital Sky
Survey (SDSS)3. The different colors represent different types of galaxies but all the galaxies
trace the matter across the Universe. Although an internal structure in the galaxy distribution
is clearly visible on small scales (< 100 h−1 Mpc), it seems that the distribution is isotropic and
homogeneous on large scales.

The isotropy is also observed in the temperature fluctuation around TCMB = 2.7255 K of
the cosmic microwave background (CMB) as observed by ESA Planck mission4 in Fig. 1.1b.
CMB is the oldest light in the Universe that can be observed today. It was emitted when the
Universe was just 380 000 years old. At first order, the temperature is isotropic, the fluctuations
in Fig. 1.1b are very small, δT/T ∼ 10−5, and correspond to regions with slightly different
densities which are the seed of the future large-scale structures.

The Copernican principle, which states the Earth is not a special place in the Universe, then
implies the cosmological principle: the Universe is isotropic and homogeneous.

1.1.2.2 An expanding Universe: the Hubble diagram

A cornerstone of observational cosmology is the discovery of the expansion of the Universe.
Lemâıtre and Hubble observed that galaxies are moving away from Earth at speeds proportional
to their distance, described by the Hubble-Lemâıtre law

v = H0 ×D, (1.14)

where v is the speed of a galaxy moving away from the Earth, D is the distance between the
galaxy and the Earth and H0 is called the Hubble constant and represents the expansion rate
of the Universe at the present time. The first observation and publication of this relationship
were made by Lemâıtre (1927), as recorded in his French work. However, when he translates
into English in Lemâıtre (1931), this aspect of his work was omitted. Meanwhile, Hubble made
also the observation of (1.14) two years later in Hubble (1929).

Fig. 1.2a shows the diagram of distance-velocity used by Lemâıtre in 1927 to obtain the first
empirical value of the Hubble constant: H0 = 575 km s−1 Mpc−1, as reproduced by the solid
black line (Block 2012). In 1929, Hubble published similar diagram, shown in Fig. 1.2b, where
he found 530 km s−1 Mpc−1.

These two measurements are the first observation of the expansion of the Universe which is
today well observed. The best constraint on the Hubble constant is from Planck ESA mission:
H0 = 67.4±0.5 km s−1 Mpc−1 (Planck Collaboration et al. 2020). As discussed in Section 1.3.2,
the Hubble constant can be also derived thanks to the supernovae: H0 = 73.5±1.1 km s−1 Mpc−1

(Brout et al. 2022). This is the world-famous H0 tension, and it is one of the burning issues of
the ΛCDM model.
Remark: Distances in astronomy are generally given in megaparsec:

1 Mpc = 3.26× 106 ly = 3, 086× 1022 m.

3https://www.sdss.org/
4https://www.esa.int/Science_Exploration/Space_Science/Planck

https://www.sdss.org/
https://www.esa.int/Science_Exploration/Space_Science/Planck
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(a)

(b)

Figure 1.1: (a) Projected slice of the galaxy distribution observed by the Sloan Digital Sky Survey
(SDSS). The black (resp. red) points are the main galaxy sample (resp. the luminous red galaxies).
Coherent structures are visible at small scales (< 100 h−1Mpc), while the Universe seems quite isotropic
at large scales (> 100 h−1Mpc) Credit: Michael Blanton and SDSS collaboration. (b) Distribution of
the temperature fluctuation around TCMB = 2.7255 K of the cosmic microwave background (CMB) as
observed by the ESA Planck mission. The relative fluctuation is about δT/T ∼ 10−5. Credit: Planck
Collaboration.
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(a)

(b)

Figure 1.2: (a) Diagram of distance-velocity relation of galaxies used by Lemâıtre (1927; 1931) to yield
the first empirical value of the expansion rate of the Universe: 625 km s−1 Mpc−1 and 575 km s−1 Mpc−1.
Solid black line has a slope of 575 km s−1 Mpc−1 (Block 2012). (b) Similar diagram published in Hubble
(1929) founded the best slope of 530 km s−1 Mpc−1.

In cosmology, they are generally expressed in h−1Mpc

h = H0

100 km s−1 Mpc−1 ,

where h is the reduced Hubble parameter.

1.1.2.3 FLRW metric

Under these three assumptions, our Universe should be described by a metric that represents a
homogeneous, isotropic and expanding spacetime. Let’s find the corresponding metric for the
usual coordinate system xµ = (t, r):

ds2 = gµ,ν(t,x)︸ ︷︷ ︸
=gµν(t)

dxµdxν (1.15)

= g00(t)dt2 + 2 g0i(t)︸ ︷︷ ︸
=0

dtdxi + gij(t)︸ ︷︷ ︸
=a(t)2gij

dxidxj , (1.16)

where the homogeneity is used in (1.15) and the isotropy in (1.16)5. The expansion is driven by
the term a(t). The final spatial component of the metric, gijdxidxj , represents a 3-dimensional
space with maximal symmetry, due to the assumption of isotropy. This corresponds in a flat
space, to the classic spherical metric; ergo leading to the famous Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric with spherical coordinates (r, θ, φ):

ds2 = −c2dt2 + a(t)2
(

dr2

1−Kr2 + r2dΩ2
)
, (1.17)

where a(t) is known as the scale factor, dΩ2 = dθ2 + sin2(θ)dφ2 is the solid angle element with
θ, φ ∈ [0, 2π], [−π/2, π/2] and K is the curvature term. If K = 0 (resp., K > 0, K < 0), the
Universe is said flat (resp., closed, open). We choose K to be in units of length−2 and, then, r

5Note that g00 and also g0i cannot depend on time to be able to synchronize clocks (Landau and Lifshitz 1975).
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has to be in units in length and a(t) is unitless. For convenience, a(t) is chosen to be 1 today
(t0).

For computational reasons, it is generally convenient to write the FLRW metric using the
conformal time η and the comoving coordinate χ:

ds2 = a(η)2
[
−c2dη2 +

(
dχ2 + S2

K(χ)dΩ2
)]
, (1.18)

where the conformal time is defined as dt = adη and SK(χ) depends on the value of the curvature
term K:

SK(χ) =


K−1/2 sin

(√
Kχ

)
K > 0

χ K = 0
(−K)1/2 sinh

(√
−Kχ

)
K < 0.

. (1.19)

The position of an object can be written as r = ax where x are the comoving coordinates of
the object. In these coordinates, the object is not moving due to the expansion of the Universe.
The velocity reads as

v = da
dt x + a

dx
dt = Hr + avpec, (1.20)

where H is the Hubble parameter
H = 1

a

da
dt . (1.21)

The velocity has two components: the Hubble flow from the expansion of the Universe
and the peculiar velocity vpec due to the proper motion of the objects inside the Hubble flow.
By construction, 〈vpec〉 = 0 and 〈v〉 = Hr. For nearby galaxies, typically those observed by
Lemâıtre and Hubble, the Hubble parameter is constant, finding the Hubble-Lemâıtre law (1.14).

1.1.2.4 Redshift and distance measurements

Measuring the distance of extremely distant objects is a challenging task in astronomy. One of
the most reliable methods is to measure the redshift from an object through its spectral analysis.

Suppose a galaxy emits a photon at time te and received it on Earth at time t0. Photons
respect, by definition, ds2 = 0. Then, from (1.18), the radial comoving distance of this galaxy
is

χ =
∫ t0

te

cdt
a(t) . (1.22)

If a second photon is emitted shortly after the first one at time te + δte and received at time
t0 + δt0, the radial comoving distance of this galaxy will be still the same. Hence,

δte
a(te)

= δt0
a(t0) , (1.23)

since a(t) can be supposed constant between te and te+δte and also between t0 and t0+δt0. Then,
the wavelength of photons λ = cδt propagating through the expanding Universe is stretched,
creating the cosmological redshift:

λe
λ0

= 1
a(te)

≡ 1 + z, (1.24)

where a(t0) = 1 by choice and z is the redshift of the observed galaxy. In addition to the
expansion of the Universe, two other effects cause redshift
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• Doppler redshift: similar to what happens on earth, the peculiar velocity vpec of galaxies
along the line of sight creates a Doppler effect

1 + zpec =
√

1 + vpec/c

1− vpec/c
≈ 1 + vpec

c
.

• Gravitational redshift: the energy of light decreases as it travels through a gravitational
field. It has been observed firstly with the Pound-Rebka experiment. This contribution
is generally negligible for cosmological scales except for the Sachs–Wolfe effect. This
contribution is

1 + zgrav =
(

1− 2GM
rc2

)− 1
2
,

where M is the mass of the object creating the gravitational field and r is the distance to
the source.

These three redshift contributions can be combined as 1 + zglob = (1 + z)(1 + zpec)(1 + zgrav).
In the following and for the considered scales, the gravitational and the Doppler redshift will be
neglected.

Redshift is the sole method for measuring the distance of extremely distant objects and is
crucial for any cosmological measurement. The goal of a galaxy survey that will be discussed in
this dissertation, is to observe as accurately as possible the redshifts of millions of galaxies.

Several distances and geometrical elements are used in cosmology, some of them are displayed
for the Planck 2018 parameters in Fig. 1.3. For a complete description refer to Hogg (1999).

The look-back time gives the time needed for a photon to travel a certain distance/redshift :

tL =
∫ z

0

dz′

(1 + z′)H (z′) (1.25)

In a flat Universe, the comoving distance is equal to the radial comoving distance expressed
by (1.22). Noting that dt = da/(aH) = −adz/H, the comoving distance becomes (with K = 0):

Dc(z) = χ(z) =
∫ z

0

cdz′

H(z′) . (1.26)

The comoving volume Vc is defined as the volume in which the number density of objects
locked into Hubble flow is constant with the redshift; the comoving volume element in solid
angle dΩ and redshift interval dz is (with K = 0)

dVC = cχ(z)2

H(z) dΩdz. (1.27)

1.1.2.5 Friedmann equations

Knowing the amount of matter and energy present, Einstein’s equations (1.8) will describe the
evolution and the dynamics of the Universe. Under the FLRW metric (1.18), Einstein’s equations
can be reduced to two independent equations, called the Friedmann equations:

H2 = 8πG
3 ρ− K

a2 + Λ
3

ä

a
= −8πG

6 (ρ+ 3P ) + Λ
3

, (1.28)



Chapter 1. Cosmology with large-scale structures 10

0.0 2.5 5.0 7.5 10.0

z

0.0

2.5

5.0

7.5

10.0

12.5

lo
ok

-b
ac

k
ti

m
e

[G
y
r]

Planck 18

Age of the
Universe:
13.78

0.0 2.5 5.0 7.5 10.0

z

0

2000

4000

6000

χ
(z

)
[h
−

1
M

p
c]

0.0 2.5 5.0 7.5 10.0

z

0.00

0.05

0.10

0.15

0.20

d
V
c
/

(c
/H

0
)3

[d
Ω
−

1
d
z
−

1
]

Figure 1.3: Look-back time, comoving distance and dimensionless comoving volume element as a func-
tion of the redshift for the fiducial Planck 2018 parameters (Planck Collaboration et al. 2020).

where the first (resp. second) one is obtained from the equation 00 (resp. ii) of (1.8).
The conservation equation (1.12) becomes

dρ
dt + 3H(ρ+ P ) = 0. (1.29)

Remark: The conservation equation is automatically verified with the Bianchi identity (1.13).
Hence, (1.29) can be recovered simply by combining the two Friedmann equations (1.28).

1.1.3 Hot Big Bang model

1.1.3.1 The Universe dynamics

The Friedman equations (1.28) are used to describe the expansion of the Universe based on
the amount and type of energy in it. However, these two independent equations have three
unknowns and an additional equation is needed to solve them. The energy will be described by
an equation of state of the following form

P = wρ, (1.30)

where w will be generally supposed constant. The energy and matter that fills the Universe
can be classified into different species: the pressure-less matter, non-relativistic, with w = 0
which can be separated into baryonic matter (b) which interacts electromagnetically and dark
matter (cdm) which interacts not or very little electromagnetically – the radiation, relativistic,
with w = 1/3 which can be separated into photons (γ) and neutrinos (ν) – the curvature
contribution that can be described by a fluid such as w = −1/3, see K term in (1.28), and will
be neglected hereafter – the dark energy described by Λ which is assimilated to a fluid such as
w = −1.

The evolution of the density of each species is given by injecting (1.30) in (1.29):

ρ ∝ a−3(1+w), (1.31)

then the scale factor can be obtained via the Friedmann equations (1.28). The behavior of
density and scale factor for the different species, when they are considered as predominant, is
given in Table 1.1.
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Table 1.1: Summary of the behavior of density ρ, scale factor a and conformal time η as a function of
time for the usual species, with an equation of state w, filling the Universe.

type w ρ a η

cosmological constant −1 ∝ a0 ∝ eHt ∝ e−Ht

pressure-less matter 0 ∝ a−3 ∝ t2/3 ∝ t1/3

relativistic species 1/3 ∝ a−4 ∝ t1/2 ∝ t1/2

It is useful to define the critical density parameter

ρc = 3H2

8πG, (1.32)

and the density parameter for each species as ΩX = ρX/ρc, defining for the curvature and dark
energy components the following density ρΛ = Λ/(8πG) and ρK = −3K/(8πGa2). Thus, the
first Friedman equation (1.28) becomes∑

X

ΩX + ΩΛ + ΩK = 1, (1.33)

where typically
∑
X ΩX = Ωm+ Ωr = Ωb+ Ωcdm+ Ωγ + Ων . Since the density evolution for each

species is known from (1.31), the above equation can be expressed as a function of the density
parameters ΩX,0 = ΩX(z = 0) and the redshift z, given the evolution of the Hubble parameter
as

H2(z) = H2
0

[∑
X

ΩX,0(1 + z)3(1+wX) + ΩK,0(1 + z)2 + ΩΛ,0

]
. (1.34)

This expression of H(z) is crucial since it enables us to compute analytically the distances and
volume presented in Fig. 1.3 supposing a distribution of the different species today. The critical
density parameter ρc,0 depends on the value of the Hubble constant today H0. It is therefore
natural to consider the reduced density parameters ωX,0 = ΩX,0h

2 which is then independent of
H0.

The quantities ΩX and ωX can be expressed explicitly as a function of their value today
(z = 0) and z. Therefore, in the following and as usual, ΩX = ΩX,0 and ωX = ωX,0.

As shown in Table 1.1, the density of the species that fill the Universe evolves differently
according to the scale factor a or to the redshift z, revealing phases of domination of one species
over the others. The evolution of the density parameters as a function of z is shown in Fig. 1.4.
ΩX are chosen to be those measured in the latest Planck data release (Planck Collaboration
et al. 2020) and will be the fiducial value for these parameters in this dissertation. The history
of the Universe begins with a radiation-dominated area, then turns into a matter-dominated
area, that can be well approximated by an Einstein-de Sitter Universe. The most recent part of
the Universe’s history is an accelerated expanding Universe where dark energy dominates. The
moment when the radiation density is equal to the matter density is known as matter-radiation
equality, and it occurs at a redshift of zeq ∼ 3387.

This description is only valid for fluids that interact only through gravity. Otherwise, one
must take into account the coupling terms, see for example Section 2. Since the only non-gravity
interaction is Compton scattering between photons and baryons, and since baryons represent
only a very small fraction of matter, the above description is valid at least to first order.

According to the Planck 2018 measurement (Planck Collaboration et al. 2020) and assuming
the ΛCDM model, the Universe is today made of ∼ 8 · 10−3% of radiation, ∼ 31% of matter
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Figure 1.4: Evolution of the density parameters (radiation in red, matter in blue, dark energy in
green) in a flat ΛCDM model for the fiducial Planck 2018 parameters (Planck Collaboration et al. 2020)
(Ωm = 0.311, ΩΛ = 0.689, Ωr = 7.91 · 10−5, H0 = 67.66). zeq is the redshift of the radiation-matter
equality i.e. when the radiation density is equal to the matter density. zrec is the redshift of the
recombination mentioned in 1.1.3.2. Today, the Universe is dominated by the dark energy component
which appears very late in its history, well after the formation of all its large-scale structures.

(including ∼ 4.5% of baryonic matter) and ∼ 69% of dark energy. Supported by the same
measurement, the Universe will be assumed flat in the following, at least for the scales observed
in the various cosmological experiments: K = 0.

1.1.3.2 A brief history

For much of the 20th century, the idea that the Universe was expanding and therefore denser
and hotter in the past was controversial. In fact, it was even mockingly referred to as the ”Big
Bang” by Fred Hoyle, who believed in a stationary Universe. However, the discovery of cosmic
microwave background (CMB) radiation by Penzias and Wilson in 1965 confirmed a prediction
made by Gamow, Alpher, and Herman in 1948.

As the Universe expanded and cooled, protons and electrons combined to form hydrogen
preventing the photons present at that time to interact by Thomson scattering. Photons were
then released into the Universe, creating cosmic microwave background radiation. This radiation
can only exist in an expanding Universe in which the temperature decreases over time.

The timeline in Fig. 1.5 summarizes the history of the Universe according to the ”Hot Big
Bang” model. It can be quickly described as follows:

• The initial phase between the ’instant zero’ and the real beginning of the ”Hot Big Bang”
model corresponds to the early Universe and is currently explained by cosmic inflation
and will be described in Chapter 2. Note that before the Planck epoch (tpl ∼ 10−43 s) the
actual theory of gravitation cannot be applied since the 4 fundamental forces should be
considered in a uniform framework.

• At the very beginning (t ∼ 10−30 s), the Universe consisted of an extremely hot and
dense plasma, known as the ”primordial soup”, made of the most fundamental particles,
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as quarks and gluons. As the Universe expanded and cooled, the temperature dropped
to a point where the first nuclei could form, limiting the existence of the most energetic
particles.

• Then, the plasma was made almost exclusively of the lowest energetic particles as protons,
electrons, neutrinos and photons. During a short period (t ∼ 10/103 s), the plasma was
hot enough to allow the creation of heavier nuclei. This is the Big Bang nucleosynthesis
(BBN) which is responsible for the formation of most of the helium and deuterium in the
Universe. The quantity observed of these two components in the galaxies (Aver et al. 2015,
Cooke et al. 2018) can be only explained by the BBN and is also in favor of the ”Hot Big
Bang” model.

• As the universe continued to expand and cool, protons and electrons combined. This is the
recombination (t ∼ 380 000 yr). Photons decoupled from matter and propagated freely
through the Universe.

• After the recombination, the Universe was not dense enough to emit new light. This
is called the Dark Ages. Under the gravity effect, the matter fell into the over-dense
regions creating the first stars and galaxies. These first structures emitted new first lights
which are responsible for the reionization (t ∼ 250/900 Myr) of the Universe (Bromm and
Yoshida 2011, Wise et al. 2012).

• Then, galaxies continued to be formed under the competition between gravity and the
expansion of the Universe creating the cosmic web as it is observed today with a filamentary
structure and clusters.

Figure 1.5: Cosmological timeline of the Hot Big Bang model which summarizes the almost 14-billion-
year-long history of our universe. Starting from the initial phase of the cosmos where the properties of
the Universe were almost uniform and punctuated only by tiny fluctuations up to the well-formed and
clustered Universe that is observed today. Credits: ESA – C. Carreau

1.1.3.3 The Hot Big Bang problems

Although the ”Hot Big Bang” model has received significant support from the discovery of cosmic
microwave background radiation and the observed abundances of light elements produced during
primordial nucleosynthesis, it still faces challenges that cannot be resolved without additional
theories. For instance, the following problems should be explained:



Chapter 1. Cosmology with large-scale structures 14

I Flatness problem The curvature evolution can be written from (1.28) as

dΩK

d ln a = (3w + 1) (1− ΩK) ΩK , (1.35)

which can be integrated as a function of the redshift

ΩK = ΩK0
(1− ΩK0) (1 + z)3w+1 + ΩK0

(1.36)

The current observations are in favor of a flat Universe, typically |ΩK0| = |Ω0 − 1| < 0.1.
Neglecting the dark energy contribution, this leads to radiation-matter equality (w = 0) to

|Ω (zeq )− 1| < 3× 10−5,

and then (w = 1/3) to a very small flatness at the Planck time

|Ω (zpl)− 1| < 10−60.

Therefore, the theory should be able to either explain why ΩK = 0 with high precision or
identify a mechanism that can produce curvature of such a small magnitude.

I Horizon problem The observed temperature of the CMB is prodigiously isotropic, where
the relative fluctuation is about 10−5, see Fig. 1.1b. This leads us to the fundamental assumption
of the cosmological principle.

To explain this isotropy simply, the regions that emit CMB photons at zrec should be causally
related, i.e. the light could have traveled between them before zrec. Let’s compute the particle
horizon at zrec which gives the maximum distance that light particles could have traveled to an
observer from the beginning of the Universe. It is exactly the comoving distance at zrec:

χ(zrec) =
∫ ∞
zrec

dz
H(z) ≈

2√
ΩmH0

1√
1 + zrec

. (1.37)

Since the recombination occurs during the matter-dominated area, H2(z) is approximated to
ΩmH

2
0 (1+z)3 from (1.34). The corresponding angular distance is dA(zrec) = a(zrec)χ(zrec) ≈ 2◦ .

Finally, only patches with a diameter of about 2◦ , i.e. with a surface of about 0.0012 sr, on
the celestial sphere could be causally connected at the time of recombination. Hence, the CMB
should consist of 4π/0.0012 ≈ 104 causally independent patches which should have all the same
temperature. An elegant solution will be to provide a mechanism that increases the particle
horizon before the recombination.

I Monopole problem In the standard picture of the Hot Big Bang model, the temperature
gets bigger as the Universe gets younger. Hence, in the very early Universe i.e. before the
Grand Unification scale (T ∼ 1016 GeV, t ∼ 10−38 s), the electromagnetic force, weak force and
strong force become equal in strength and should be described by a common theory known as
the Grand Unification Theory (GUT) (De Boer 1994)

Unfortunately, many of these theories predict the creation of ”topological defects” resulting
from the phase transition due to symmetry breaking when the Universe cools as it expands. In
particular, most GUT theories predict the creation of magnetic monopoles (see Zeldovich and
Khlopov 1978, Preskill 1979, Guth and Tye 1980) already hypothesized by Maxwell or Dirac. In
the case of GUT transition, magnetic monopoles should be the dominant matter in the Universe.
However, no monopole has ever been observed, directly or indirectly, by humans. Monopoles
are called unwanted relics since they are produced by the theory but not observed.
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I Inflation, a life-saving solution These first two problems can be solved, with a great ex-
perimental pertinence, by adding an additional period of accelerated expansion at the beginning
of the Universe’s history: inflation. The monopole problem was one of the early motivations for
inflationary physics since inflation allows us to control the energy scales at which particles are
created in the Universe, and choosing an energy scale lower than the GUT transition solves this
problem. This description of the early Universe was pioneered by Guth (1981), Albrecht and
Steinhardt (1982), Linde (1982a).

The mechanisms that can create inflation will be the main topic of Chapter 2. Note that
inflation will provide, naturally, an explanation for the size and shape of the primordial fluctua-
tions. Today, inflation and the hot Big Bang model constitute the standard cosmological model
although the notion of a standard model can be quite variable over time.

This thesis aims to bring some, unfortunately indirect, observations to this mechanism via
the observation of the galaxy distribution.

1.2 Large-scale structures of the Universe

As described in the previous section and according to current observations, the Universe is very
well described by a homogeneous and isotropic model. However, the discovery of galaxies in the
early 20th century demonstrated that the universe is not perfectly homogeneous at small scales.
The goal of this section is to describe the evolution of the matter perturbations that will lead
to the appearance of galaxies and the large-scale structures of the Universe.

1.2.1 Statistical description of cosmological fields

Let’s start by defining and describing the cosmological fields, along with providing a statistical
characterization of them.

1.2.1.1 Contrast density field and Ergodicity

To investigate perturbations in a homogeneous and isotropic Universe, the main field used will be
the contrast density field δ of any statistical field such as the matter density or the temperature.
In the following, only real fields will be considered. For instance, the matter contrast density is
defined at any spatial position x as

δ(x) = ρ(x)− ρ̄
ρ̄

, (1.38)

where ρ(x) is the matter density and ρ̄ the spatial average of the matter density. By construction,
see hereafter, the first moment of the field δ is zero:

〈δ(x)〉 = 0. (1.39)

In probability theory, the expected value of a random variable X, denoted by 〈X〉, is the
generalization of the classic weighted average for a random variable. The law of large numbers
enables the estimation of the expected value as the sample average of a large set of independent
realizations of X. It is generally called the ensemble average. In physics, this average can be
computed with a large set of independent simulations.

However, when observing the Universe, only one realization of the cosmological fields can
be observed. In such cases, it is usually assumed that fields satisfy the property of ergodicity
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which set the equality between the ensemble average and the volume average when the volume
is sufficiently large. Although there is no formal proof of this assumption in cosmology, it is
regarded as a commonsense axiom (Peacock 1998).

Thus, the property of ergodicity and the cosmological principle ensures that the ensemble
average does not depend on the position, and it is equal to the mean value of the density observed
in the Universe:

〈ρ(x)〉 = 〈ρ〉x = ρ̄.

1.2.1.2 2-point correlation function & power spectrum

The contrast density field δ will be statistically described by using its statistical moments.
Fig. 1.6 shows two different fields. Both of them have the same expected value (first-order
moment). Both of them have the same expected value (first-order moment). The one on the
left is completely random and has no over-density. On the right, the field is called ’clustered’,
characterized by its second moment, the two-point correlation function.
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Figure 1.6: Left: Randomly distributed field with an associated power spectrum of zero. Right: Field
generated with the Planck 2018 power spectrum. The points are clustered and not randomly distributed.
The power spectra and the correlation functions of these two fields are shown in Fig. 1.7.

The 2-point correlation function, also called autocorrelation function, is defined as the en-
semble average of the field taken in two positions:

ξ(r) = 〈δ(x)δ(x + r)〉.

In the case of a field with a null expected value, it is the covariance between the field δ(x) and
the field δ(x + r), which depends on the position x. However, the statistical homogeneity of the
Universe ensures that ξ depends only on r. In addition, the correlation function depends only
on r = ‖r‖ since the Universe is also assumed isotropic.

As often, it is useful to go in Fourier space:

δ̃(k) =
∫
δ(x)e−ik·xd3x and δ(x) = 1

(2π)3

∫
δ̃(k)eik·xd3k. (1.40)
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Note that since the field δ is real, δ̃(k) = δ̃∗(−k). The power spectrum is defined as the Fourier
transform of the 2-point correlation function:

P (k) =
∫
ξ(r)e−ik·rd3r and ξ(r) = 1

(2π)3

∫
P (k)eik·rd3k. (1.41)

The statistical properties of the field δ will be completely described by the field δ̃. For instance,
the 2-point correlation function ξ can be expressed in function of δ̃:

〈δ̃(k)δ̃(k′)〉 =
∫ ∫
〈(δ(x)δ(x + r)〉e−ik·xe−ik′·(x+r)d3xd3r

=
∫
ξ(r)

(∫
e−i(k+k′)·xd3x

)
e−ik

′·rd3r

= (2π)3δD(k + k′)
∫
ξ(r)e−ik′·rd3r,

where δD is the Dirac distribution. It appears via the Fourier transform of the identity distri-
bution:

(2π)3δD(k) =
∫
e−i(k·x)d3x, (1.42)

which will be very useful in the following. Since ξ depends only on r, P will also depend only
on k. Thus,

〈δ̃(k)δ̃(k′)〉 = (2π)3δD(k + k′)P (k), (1.43)

and ξ(r) can be only expressed in function of k. The spherical coordinates (k, θk, φk) of k are
associated to the sphere where the z axis is defined along the direction of x:

ξ(r) = 1
(2π)3

∫
P (k)eik·rd3k

= 1
(2π)3

∫
P (k)

(∫
eirk cos(θ) cos(θk)dθk

)(∫
dφk

)
k2dk

= 4π
(2π)3

∫
P (k)sin(kr)

kr
k2dk.

Since the 2-point correlation function depends only on r (isotropy), an equivalent definition
of the power spectrum (1.41) is generally given, changing our usual definition of the Fourier
transform:

P (k) =
∫
ξ(r)eik·rd3r, and ξ(r) = 1

(2π)3

∫
P (k)e−ik·rd3k.

The 2-point correlation function and associated power spectrum represent the second-order
summary statistics. They describe at what scales the particles are clustered together. Fig. 1.6
shows two different fields with a similar first-order summary statistic: 〈δ(x, y)〉 = 0 but with
two different second-order summary statistics. They are displayed in Fig. 1.7. The field on the
left has no particular clustering and has a zero power spectrum, while on the right the field
has strong over/under dense regions and the associated power spectrum is non-zero. This field
was generated with the matter power spectrum measured from Planck data, mimicking in two
dimensions the way galaxies are placed in the Universe.
Remark: Instead of computing the autocorrelation of a field δ, it can be useful sometimes to
compute the cross-correlation between two fields δ1, δ2. This is the natural extension of what
is defined in this section: ξ12(r) = 〈δ1(x)δ2(x + r)〉.

The purpose of galaxy surveys, and in particular the DESI survey (see Section 3.2) which will
be discussed in this dissertation, is to map the Universe and characterize the x-order summary
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Figure 1.7: The associated power spectra (left) and the correlation functions (right) of the two fields
display in Fig. 1.6. As expected, the random field exhibits no correlation.

statistics of the matter distribution. However, mapping the Universe in 3 dimensions is a
challenging and costly task, as it requires observing individually the spectrum of billions of
galaxies to determine their redshifts and hence their distances from us. It is therefore sometimes
more practical, and less expensive, to look at the angular distributions and their associated
summary statistics.

The angular 2-point correlation function w(θ) is then defined as w(θ) = 〈δ(φ)δ(φ+θ)〉 where
θ is the angular separation between two positions on the sphere (for an explicit derivation, see
for instance Kurki-Suonio 2019). It is related to ξ(r) through:

w(θ) =
∫ ∞

0

∫ ∞
0

ξ(r12)S̃(r1)r2
1dr1S̃(r2)r2

2dr2, (1.44)

where r12 =
√
r2

1 + r2
2 − 2r1r2 cos(θ) and S̃(r) represents the probability for a galaxy at distance

r to be observed by the survey. It is defined as

S̃(r) = S(r)∫∞
0 S(r)r2dr , (1.45)

where S(r) is the survey selection function giving the density of galaxies observed by the survey
at distance r, S(r) = dN(r)/dr with N the area density, and it is assumed here that it does
not depend on the direction of the sphere.

The famous Limber approximation (Limber 1954) states that the correlation function is non-
negligible only for small values of r i.e. that the angular correlation function is non-zero only
for small values of θ, one can assume that x = r2 − r1 and y = (r1 + r2)/2, and hence derive
Limber’s equation valid only for small angles:

w(θ) '
∫ ∞

0
S̃(y)2y4

∫ ∞
−∞

ξ

(√
x2 + y2θ2

)
dxdy. (1.46)

Assuming then a power law for the 3D correlation function such that ξ(r) = (r/r0)−γ , the
angular correlation function is reduced to

w(θ) =
√
π

Γ
(
γ−1

2

)
Γ
(γ

2
) rγ0θ

1−γ
∫ ∞

0
S̃2(y)y5−γdy (1.47)
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Similarly, the angular power spectrum can be derived from the 3D power spectrum

Cl = 2
π

∫ ∞
0

[∫ ∞
0

jl(kr)S̃(r)r2dr
]2
P (k)k2dk, (1.48)

where jl is the spherical Bessel function. The angular power spectrum Cl is the main observable
in the CMB experiment which probes the last scattering surface.

These two angular statistics are shown in Fig. 1.8. The power spectrum is the power spectrum
from the Planck data and the selection function S(z) is a Gaussian centered in 1.7 with a
dispersion of 0.8. This selection function mimics the redshift distribution of observed quasars in
DESI, see Section 4.2.4.5. In particular, one can clearly identify in the angular and 3d 2-point
correlation functions, the peak generated by the baryonic acoustic oscillation, see Section 1.2.3.4.

10−4 10−2 100 102

k [h Mpc−1]

10−1

103

P
(k

)
[h
−

3
M

p
c3

]

0 50 100 150 200 250

r [h−1 Mpc]

0

10

r2
ξ(
r)

[h
−

1
M

p
c]

BAO peak

101 102

`

0.5

1.0

1.5

10
7
×
C
`

0.0 2.5 5.0 7.5 10.0

θ [deg]

−5

0

5

10
5
×
θ2
w

(θ
)

[d
eg

2
]

BAO peak

Figure 1.8: On top, power spectrum and 2-point correlation function from Planck data. On the bottom,
angular power spectrum and correlation function. The selection function used to compute them is a
Gaussian centered in z=1.7 with a dispersion of 0.8, mimicking the quasar redshift distribution observed
with DESI, see Section 4.2.4.5. The BAO peak, see Section 1.2.3.4, can be identified in the 2-point
correlation functions.

1.2.1.3 High order statistics and Wicks theorem

Like the variance, the 2-point correlation function does not allow the characterization of an entire
cosmological field, fully described by the knowledge of all the N-point correlation functions.
These high-order statistics are defined as

ξ(N) (x1,x2, . . . ,xN ) ≡ 〈δ (x1) δ (x2) . . . δ (xN )〉 . (1.49)

Using xN as the reference point and defining xi = xN + ri, the spatial homogeneity ensures
that ξ(N) depends only on the separations between the points. Since ξ(N) is invariant under
permutation of xi, ri can be reordered by length. Note that the choice of reference point is free
and other symmetries exit. Finally,

ξ(N) (x1,x2, . . . ,xN ) = ξ(N) (r1, r2, . . . , rN−1) , with |r1| ≤ . . . ≤ |rN−1| . (1.50)
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It is more usual to work with the connected N-point correlation functions which are the
remaining part of the N-point correlation functions minus all the contributions from the lower-
order correlations:

ξ
(N)
C (x1,x2, . . . ,xN ) ≡ ξ(N) (x1,x2, . . . ,xN )−

∑
n

ξ
(N1)
C . . . ξ

(Nn)
C , (1.51)

where the sum is over all partitions of {x1,x2, . . . ,xN} into smaller subsets. Note that ξ1
C =

〈δ〉 = 0, ξ(2,3)
C = ξ(2,3) and ξ

(n)
C 6= ξ(n) for n ≥ 4.

If δ is assumed to be gaussian, then the Wick theorem can be applied to the N-point corre-
lation function:

ξ(N) (x1,x2, . . . ,xN ) =
∑
n

ξ
(N1)
C . . . ξ

(Nn)
C , (1.52)

such that for Gaussian density perturbations, summary statistics are fully determined by ξ(r).
In particular, in the case of Gaussian fields, ξ(N) = 0 when N is odd. Hence, the connected
higher-order statistics measure the non-gaussianity.

Specifically, the 3-point correlation function ξ3(r1, r2), written as ζ(r1, r2) is a statistic of
great interest to probe the non-gaussianity in the field δ. The associated Fourier transform is
called the bispectrum, noted B such that

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δ3
D (k1 + k2 + k3)B (k1,k2) , (1.53)

it can be also written as B (k1,k2,k3) with the implicit condition k1 + k2 + k3 = 0.
Remark: As for the power spectrum, while the isotropy i.e. the rotational invariance holds,
the bispectrum will only depend on the magnitude of k1, k2 and not on their orientations.
Additionally, the bispectrum is proportional to δ3

D (k1 + k2 + k3) since the Universe is assumed
homogeneous leading to translation invariance.

1.2.2 Linear perturbation theory

Assuming that galaxies or the CMB temperature correctly trace the matter, it seems possible
to measure the density contrast field of the δ matter as well as the statistical moments that they
describe it. This section aims to model theoretically the evolution of δ during the history of the
Universe.

In the following, we will work at linear order in perturbation theory, neglecting all the
second-order terms.

1.2.2.1 Perturbed metric

As presented in Section 1.1, the Universe is correctly described as a homogeneous and isotropic
expanding Universe. The inhomogeneities can be then treated as perturbations of the smooth
FLRW metric:

gµν = ḡµν + hµν , (1.54)

where ḡµν is the metric given by (1.18), hµν is a symmetric 4-tensor and |hµν | << ḡµν .
The perturbed metric hµν can be decomposed with the usual scalar-vector-tensor (SVT)
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decomposition (Bardeen 1980) as

h00 = −2a2Φ, (1.55)

hi0 = a2
[
2∂B
∂xi

+ 2Bi
]
, (1.56)

hij = a2
[
−2Ψδij + 2 ∂2E

∂xi∂xj
+ 2∂Ei

∂xj
+ 2∂Ej

∂xi
+ 2Eij

]
, (1.57)

where Φ, Ψ, B and E are scalars, Bi and Ei are divergence-less vector fields and Eij is a traceless,
symmetric and divergence-less tensor field. The metric is a symmetric 4-tensor, which implies
the existence of 10 degrees of freedom. These degrees of freedom are indeed recovered through
the SVT decomposition, which yields 4 + 2× 2 + 2 = 10. The different modes resulting from the
SVT decomposition correspond to different physical phenomena: the scalar modes correspond
to the gravitational potential, the vector modes to gravito-magnetism, while the tensor mode to
gravitational waves.

The coordinate system used to describe the perturbed metric is not unique, and a different
choice can lead to another expression for the metric tensor. However, the underlying physics
remains the same. This is known as the gauge-freedom. In this case, out of the 10 potential
degrees of freedom, only 6 are independent. To fix the remaining 4 degrees of freedom, we can
set B,E and Bi to zero. This choice is called the Newtonian gauge or longitudinal gauge, and
Φ and Ψ are known as the Bardeen potentials in this gauge. Hence, the perturbed metric can
be expressed as follows6

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdxidxj

]
. (1.58)

In this expression, only scalar modes are considered since they evolve independently of the
vector and tensor modes. Indeed, the scalar, vector and tensor parts are not coupled to each
other in the linear theory i.e. first order in perturbation theory. The vector mode, in the absence
of a stress tensor, decays very quickly as a2 and so disappears at the time of our observation,
see Appendix 4.2. Additionally, they are not produced during the early Universe, see Chapter 2.
The tensor mode is an order of magnitude smaller than the scalar ones.

The Newtonian gauge has the great advantage that scalar modes, described by the Bardeen
potentials Φ and Ψ, can easily be related to the Newtonian limit of gravity. In this limit, Ψ = Φ
and Φ/Ψ will be equal to the Newtonian gravitational potential verifying the Poisson equation7:

∆Ψ = 4πGa2ρ̄δ. (1.59)

Several other gauges exist, see Appendix 4.1, with other specificities, for instance, spatially-
flat gauge is very convenient for computing inflationary perturbations or synchronous gauge is
a popular gauge for numerical implementation of the perturbation equations.
Remark: In the early Universe, the amplitude of the Bardeen potentials Φ in real space, is
about 10−5 and justifies the linear order used in the following perturbation analysis.

6Here, we follow the convention used in Peter and Uzan (2013). Note that several other conventions exist! In
particular, Dodelson and Schmidt (2020) use

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1 + 2Φ)δijdxidxj

]
.

7This will be derived in the next section. The additional factor a2 is because the coordinates are in comoving
units.
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1.2.2.2 Perturbed Einstein equations

The Einstein equations for the perturbed part of the metric is simply

δGµν = κδTµν , (1.60)

where δGµν is computed carefully from (1.58) - (1.9), and δTµν is the perturbed stress energy
tensor derived in Appendix 1. In the Newtonian gauge (1.58) and considering only the scalar
modes, it simplifies as

δT00 = ρ̄a2(δ + 2Φ)
δT0i = −ρ̄a2(1 + w)∂iv

δTij = P̄

(
hij + δP

P̄
ḡij + ΠS

ij

), (1.61)

where δ is the usual contrast density δ = δρ/ρ̄, P̄ = wρ̄ and v (resp. ΠS
ij) the scalar part of the

3-velocity (resp. anisotropic pressure).
Finally, at linear order, the perturbed Einstein equations (1.60) lead to8

∆Ψ = 4πGa2ρ̄[δ − 3H(1 + w)v]
Ψ− Φ = 8πGa2P̄Π
Ψ′ +HΦ = −4πGa2ρ̄(1 + w)v

Ψ′′ + 3H
(
1 + c2

s

)
Ψ′ +

[
2H′ +H2

(
1 + 3c2

s

)]
Ψ− c2

s∆Ψ

= −
(
H2 + 2H′

) [Γ
2 +

(
3H2 + 2H′

)
Π +HΠ′ + 1

3∆Π
]
− 9c2

sH4Π

, (1.62)

where ′ corresponds to the derivative respect to the conformal time η and H = a′/a = aH is the
conformal Hubble parameter. Using the Friedmann equation (1.28), it can be expressed as

3
2H

2 = 4πGa2ρ̄. (1.63)

The speed of sound cs and the entropy perturbation Γ are defined as

δP = c2
sδρ+ P̄Γ. (1.64)

The two last equations describe the time evolution of the two scalars Ψ,Φ. The first equation
is the general relativity version of the Poisson equation and looks like the usual form with
δC = δ−3H(1+w)v. The second equation sets the equality between Ψ and Φ if the scalar mode
of the anisotropic stress is null. This case appears when only perfect fluids are considered, and
simplifies a lot the above equations.

The energy-momentum continuity equations (1.12) can be used instead of some Einstein
equations, in particular, to replace the two-time evolution equations above. The background
(order 0) continuity equation is given in (1.29) and the first-order perturbation continuity equa-
tions are in the Newtonian gauge:

δ′ + 3H
(
c2
s − w

)
δ = −(1 + w)

(
∆v − 3Ψ′

)
− 3HwΓ, (1.65)

v′ +H
(
1− 3c2

s

)
v = −Φ− c2

s

1 + w
δ − w

1 + w

[
Γ + 2

3∆Π
]
. (1.66)

The equation (1.65) is generally referred to the energy continuity equation and (1.66) to the
Euler equation.

8The first equation is obtained with δG0
0 + 3H∂−1

i δGi0, the second one with the traceless part of δGji , the third
is ∂−1

i δGi0 and the fourth is from δGji + 3c3sδG0
0.
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1.2.2.3 The real Universe

Let’s derive the final set of equations to describe the Universe we observe today. According to
the latest measurement, the Universe is filled with 5 main fluid components: photons, neutrinos,
cold dark matter, baryons (including electrons) and dark energy. The electrons and the nuclei
are tightly coupled through Coulomb scattering and then can be treated as a single component,
the baryons. Fig. 1.9 gives a summary of the different components constituting the Universe
and the different interactions between them and the metric. Dark energy perturbations will be
neglected in the following because even if they exist, we will observe the Universe at a time when
the dark energy is never dominant, see Fig. 1.4. Hence, the overall density is

ρ = ρb + ρcdm + ργ + ρν + ρDE , (1.67)

and the pressure (both for background and perturbations) of cold dark matter and baryons
can be ignored: wcdm = wb = 0 = ccdm = cb. For simplicity here, the neutrinos are assumed
massless9: wν = 1/3, and we assume no entropy perturbation for each component: Γ = 0 such
that c2

s = δP/δρ = w.

Figure 1.9: Different components that constitute the Universe and the interaction between them (Dodel-
son and Schmidt 2020). Due to their tight coupling through Coulomb scattering, electrons and nuclei will
be considered as a single component (baryons). The perturbation of the Dark Energy will be neglected.

The cold dark matter does not interact with the other components such that the conservation
equations are

δ′cdm = −∆vcdm + 3Ψ′

v′cdm = −Hvcdm − Φ
(1.68)

The interaction of the neutrinos will be ignored since we are only interested in times much after
neutrino decoupling which occurs when the Universe was just ∼ 1s. old. Then,

δ′ν = −4
3∆vν + 4Ψ′

v′ν = −1
4δν −

1
6∆Πν − Φ.

(1.69)

9If neutrinos are considered massive, wν 6= 1/3 and the equation of state should be estimated from P/ρ
where P and ρ are computed by integrating the probability density function f(x,p, t). However, some accurate
approximations exist to circumvent this computation e.g. Nascimento (2023).
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However, the baryons and photons interact via the Compton scattering, which creates a collision
term between these two components. The collision term for δ′b and δ′γ can be neglected and
only the momentum transfer between photons and baryons is relevant. Thus, the conservation
equations for the baryons are

δ′b = −∆vb + 3Ψ′

v′b = −Hvb − Φ + collision term,
(1.70)

and the ones for the photons are

δ′γ = −4
3∆vγ + 4Ψ′

v′γ = −1
4δγ −

1
6∆Πγ − Φ + collision term.

(1.71)

To be completely rigorous, each component should be described from a statistical point of
view, using its probability density function f(r,p, t) which respects the Boltzmann equation (see,
for instance, Dodelson and Schmidt 2020, for a full derivation). In particular, the continuity
equation is obtained by taking the zeroth moment of the Boltzmann equation, while the Euler
equation is obtained by taking the first moment.

In the Newtonian gauge and for the scalar modes, the Boltzmann equation at linear order is

df
dt = ∂f

∂t
+ p

E

p̂i

a

∂f

∂xi
−
[
H − Ψ̇ + E

ap
p̂i
∂Φ
∂xi

]
p
∂f

∂p
= C [f ] , (1.72)

where C [f ] is the collision term and E/p = 1 for massless particles.
Considering Compton scattering between the baryons and the photons, the Boltzmann equa-

tion for the photons is10

Θ′ + p̂i
(
∂Θ
∂xi

+ ∂Φ
∂xi

)
= Ψ′ + τ ′ [Θ0 −Θ + p̂ · vb] , (1.73)

where Θ is the temperature contrast defined by T (x, p̂, t) = T (t) [1 + Θ(x, p̂, t)], Θ0 is the
temperature monopole

Θ0(x, t) ≡ 1
4π

∫
dΩ′Θ

(
p̂′,x, t

)
, (1.74)

and τ ′ = aneσT is the inverse of the photon mean path, with ne is the free electron density and
σT the Thomson cross-section.

The temperature is usually decomposed into its spherical harmonic components in the Fourier
space, a method known as the Boltzmann hierarchy. Here, for simplicity, only the first two
multipoles are considered. They correspond to the familiar quantities: Θ0 = 1

4δγ ,Θ1 = 1
3vγ . This

approximation is particularly relevant in the case of the thight-coupling regime where vγ−vb = 0
at zeroth order and then, allowing the ` ≥ 2 multipoles to be ignored.

Hence, the Euler equation for the photons (1.71) becomes

v′γ = −Φ− 1
4δγ + τ ′ (vb − vγ) . (1.75)

Similarly, the Euler equation for the baryons (1.70) is

v′b = −Hvb − Φ + τ ′

R
(vγ − vb) ,where R(η) = 3

4
Ωb(η)
Ωγ(η) . (1.76)

10Here, we neglected the angular dependence of Compton scattering and ignored the contribution of the polar-
ization field.



25 1.2. Large-scale structures of the Universe

Finally, the perturbation of the metric is described by four independent equations given by
(1.62). However, when using the continuity and Euler equations to describe the evolution of
perturbations in the fluid, only two of these equations remain independent. In practice, the first
two equations of (1.62) are chosen.

1.2.3 Linear perturbation evolution

The above set of equations looks horrific and will be solved numerically. In only a few cases,
some analytical derivations can be performed, see Section 1.2.3.4.

1.2.3.1 Transfer function and linear power spectrum

As described in Section 1.2.1.2, the contrast density fields δ will be represented by its statistical
moments such that the 2-point correlation function. In the following, we will only be interested
in the associated power spectrum, since the evolution equations (1.68)–(1.71) are simpler in
Fourier space where ∇ = ik and ∆ = −k2. Hence, in Fourier space and at linear order, each
mode k evolves independently.

Therefore, it is relevant to use transfer functions which describe the evolution of perturbed
quantities from the initial conditions. A generic transfer function T is defined by

A(k, z) = TB→A(k, z)×B(k, zprim), (1.77)

where A and B are any perturbed quantities and zprim is the redshift at which the initial
conditions are fixed.

The most useful is the transfer function which describes the evolution of the matter contrast
density: δm(k, z) = Tm(k, z)δm(k, zprim) which can be computed from the equations given in
Section 1.2.2.3. Thus, the matter linear power spectrum is

Plin(k, z) = Tm(k, z)2Pini(k), (1.78)

where Pini is the initial matter power spectrum given by the initial conditions.

1.2.3.2 Initial conditions

To solve the set of equations given in Section 1.2.2.3, we need to specify the initial density
and velocity perturbations for each species. The initial conditions are set during the radiation-
dominated epoch (Ωr ≈ 1 and Ωm � 1), sufficiently early that all scales k of interest are outside
the horizon. These modes are called super-Hubble and respect k � H.

As described in Chapter 2, the simple model of inflation (single field inflation) generates
adiabatic perturbations such that all component velocity perturbations are equal: vi = v, and
the density perturbations are related:

δi
1 + wi

= δ

1 + w
. (1.79)

Therefore, the initial perturbations can be specified for only one specie or equivalently, via the
Einstein equations, for one perturbed metric quantity. Since the comoving curvature perturbation
R, see (A.38), is constant for adiabatic perturbations and modes k outside the horizon (A.42),
it is convenient to use it to describe the initial conditions.
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The comoving curvature perturbation is related to the Bardeen potential Φ for modes outside
the horizon through (A.47),

Rini = −3
2Φini (1.80)

Finally, the initial conditions are set via Rini such that Φ = const. and Φ′ = 0. Then, the
initial density and velocity perturbations are computed from (1.79) and from (1.68)–(1.71),

vini = − Φini

2Hini
, δr,ini = −2Φini, δm,ini = −3

2Φini. (1.81)

Remark: As explained in Chapter 2, single field inflation will generate the following initial
curvature power spectrum

PR(k) = 2π2

k3 As

(
k

kpivot

)ns−1

, (1.82)

where ns is expected to be closed to 1 and As is the amplitude of the initial power spectrum at
kpivot which is generally chosen to be 0.05 Mpc. Hence, to compute the matter power spectrum
(1.78), one only needs to compute the transfer function Tm since δm,ini can be related to Rini.

1.2.3.3 Numerical solution

The prediction of the linear power spectrum (1.78) depends on the primordial power spectrum
(1.82) and on the transfer function T (k, z) which is computed from the equation set given in
Section 1.2.2.3. To assess these quantities, a numerical approach were developed during the
past 20 years to resolve the complete set of Boltzmann equations. The most popular Boltzmann
solver codes are CAMB11 and CLASS1213. In the following, we will use CLASS with the friendly-user
wrapper cosmoprimo14.

A Boltzmann solver computes numerically the time evolution of the perturbed quantities
in Fourier space. For instance, the evolution of the density perturbations and the Bardeen
potentials for the mode k = 0.1 [Mpc−1] in the fiducial Planck 18 cosmology are displayed in
Fig. 1.10. The velocity perturbations are not shown here for convenience. The following section
aims to explain quantitatively the shape of the curves displayed in this figure.

In general, in galaxy surveys, the evolution of cosmological perturbations is only useful to
compute the linear matter power spectrum or the transfer function, in order to compare it with
the one measured. Fig. 1.11 shows the linear matter power spectrum Plin(k) at redshift z = 0
and the associated transfer function T (k, z = 0) for the fiducial Planck 18 cosmology and two
other cosmologies close to the fiducial one.

1.2.3.4 Qualitative study

Let us derive the behavior of T (k, z) displayed in Fig. 1.11. Since in linear theory, each k-
mode evolves independently, we need to trace the history of a k-mode that undergoes different

11https://camb.info/
12http://class-code.net/
13Note that CLASS follows the convention of Ma and Bertschinger (1995). In particular, the Newtonian gauge

is defined as
ds2 = a2(η)

[
−(1 + 2Ψ)dη2 + (1− 2Φ)δijdxidxj

]
,

swapping Ψ↔ Φ in our notation (1.58).
14https://github.com/cosmodesi/cosmoprimo

https://camb.info/
http://class-code.net/
https://github.com/cosmodesi/cosmoprimo
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Figure 1.10: Time evolution of the density perturbations (right) and the Bardeen potentials (left) for
the mode k = 0.1 [Mpc−1] in the fiducial Planck 18 cosmology. The vertical gray dashed lines represent,
from left to right, the moment when the mode k crosses the Hubble horizon, the radiation-matter equality
and the recombination.
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Figure 1.11: Linear power spectrum and associated transfer function (normalized to 1 at k = 0) at
redshift z = 0 for the fiducial Planck 2018 parameters (Planck Collaboration et al. 2020) and some
fluctuations around the fiducial values. The black dashed line represents the general form of the transfer
function given by (1.100).

configurations: modes remaining super-Hubble (k � H(z = 0)) i.e. never entering the horizon,
modes entering the horizon during matter area, modes entering the horizon during radiation
area and endure the transition between the radiation and the matter area.

In the following qualitative study, we assume that the Universe consists only of matter and
photons which do not interact through Compton scattering, and neglecting the multipoles ` ≥ 2
in the Boltzmann hierarchy (tight coupling during radiation area and irrelevant on the evolution
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of the matter distribution during the matter area). We introduced the evolution variable

y ≡ a

aeq
= ρm

ρr
, (1.83)

to quantify the transition between the radiation area (y � 1) and the matter area (y � 1)
which happens when Ωm,0a

−3
eq = Ωr,0a

−4
eq . The corresponding Fourier mode is

keq = Heq = H0

√
2Ωm,0a

−1
eq = H0Ωm,0

√
2Ω−1

r,0 . (1.84)

I Large scales Let’s study modes that stay super-Hubble (k � H) during the radiation
area and the epoch of equality, and then enter the horizon in the matter area. In this case, k
terms can be neglected compared to the conformal time derivate ′ in (1.68) and in (1.71). Hence,
the contrast density δm and δr are related by δm = 3/4δr and

δm = 3Φ− 9
2Φini

δr = 4Φ− 6Φini

, (1.85)

where the initial conditions are given in Section 1.2.3.2.
Using (1.62), the evolution of Φ as a function of y while k � H is given by (Kodama and

Sasaki 1984)
Φ(k, y) = Φini(k) 1

10y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
. (1.86)

Notably, in the matter area

Φ = 9
10Φi, δr = −12

5 Φi, δm = −9
5Φi. (1.87)

The gravitational potential Φ decreases by a factor 9/10 because of the transition between the
radiation and the matter area. This behavior can be also predicted from the fact that R remains
constant for adiabatic perturbations and super-Hubble modes as shown in Appendix 4.1.5. The
gravitational potential evolves, see (A.47), between the radiation and the matter domination as

Φ(k, η)|super-Hubble =
{
−2

3R(k), radiation domination,
−3

5R(k), matter domination.
(1.88)

Additionally, one can show15 that while the Universe is matter dominated, the gravitational
potential remains constant as the mode crosses the horizon, and then Φ = (−3/5)R even inside
the horizon. Thus, the evolution of matter density perturbations for these modes is controlled
by the Poisson equation (∝ a).

I Small scales In contrast to the large scales, let’s consider modes entering the horizon
during the radiation area, and then passing the epoch of equality as sub-Hubble modes. This is
the case for the mode k used in Fig. 1.10. These modes are such that k � keq.

15In the matter-dominated Universe, the pressure can be ignored: P̄ = w = c2s = 0 and δP = Π = 0, such
that the last equation of (1.62) leads to Φ′′ + 3HΦ +

(
2H′ +H2)Φ = 0. The two equations of Friedmann (1.28)

give 2H′ +H2 = 0, and Table 1.1, H = 2/η. Finally, the gravitational potential respects Φ′′ + (6/η)Φ′ whose the
solution is Φ(η,x) = C1(x) +C2(x)η−5. Unless C1(x) is surprisingly small i.e. very special initial conditions, one
can always neglect the decaying part such that Φ(x, η) = Φ(x).
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The evolution of the matter density contrast δm is given by (1.68) and can be written as

δ′′m +Hδ′m = 3Φ′′ + 3HΦ′ − k2Φ, (1.89)

where from (1.62) the gravitational potential follows the evolution equation

k2Φ + 3H
(
Φ′ +HΦ

)
= −4πGa2 (ρmδm + ρrδr) , (1.90)

or the Poisson equation

k2Φ = −4πGa2
[
ρmδm + ρrδr + 3H

k

(
ρmvm + 4

3ρrvr
)]

. (1.91)

• Radiation-dominated epoch In this case, the radiation dominates (H = η−1)
and Φ can be computed from only the radiation components. Inserting (1.71) in the perturbed
Einstein equations gives

Φ′′ + 4
η

Φ′ + 1
3k

2Φ = 0, (1.92)

where the growing mode solution is given by

Φ(η) = 3Φini

sin
(
kη√

3

)
− kη√

3 cos
(
kη√

3

)
(
kη√

3

)3 . (1.93)

Hence, for sub-horizon scales (Solution (1.93) is in fact true for all scales during the radiation
area), the radiation perturbations oscillate with constant amplitude such that

δr ≈ −
2
3(kη)2Φ ≈ 6 cos (cskη) Φini

vr = 1
2
(
kη2Φ′ + kηΦ

)
≈ 9cs

2 sin (cskη) Φini

, (1.94)

where the speed of sound is cs = 1/
√

3.
The matter perturbations are obtained from (1.89). The associated homogeneous equation

admits two solutions δ = const. and δ = ln(kη). Then, Green’s method ensures that

δm(η) = C1 + C2 ln(kη) +
∫ η

0
du [ln(ku)− ln(kη)]u

(
k2Φ− 3Φ′′ − 3

u
Φ′
)
, (1.95)

where C1 = −3/2Φini, C2 = 0 in order to match the initial value given in (1.81). For kη � 1,
the integral stops changing as a function of its upper limit and can be approximated numerically
using (1.93) leading to

δm(k, η) ≈
{
−A ln(Bkη)Φini kη � 1
−3/2Φini(k) kη � 1

, (1.96)

where A = 9.0 and B = 0.62.
The matter and radiation perturbations have two clearly different behaviors. The radiation

perturbations undergo a competition between gravity and pressure, causing the oscillation of
(1.94) around zero with constant amplitude. While the matter perturbations are only affected
by the gravity created by the radiation. The matter falls towards the initial gravity well, then
accelerates or slows down as the potential begins its oscillation (1.93). However, the amplitude
of oscillation decreases and the potential is not able to stop the collapse before the first reversal
of Φ. Thus, the matter density perturbations continue to grow (1.96).
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• Matter-dominated epoch Once the modes are crossing the horizon during the
radiation area, they will see the transition to the matter as sub-Hubble modes k � H.

As described above, during the radiation dominated epoch δr oscillates without growing
while δm grows logarithmically so that δρm = δmρm will become larger than δρr = δrρr even
though ρm remains smaller than δr. Hence, Φ will be determined only by matter perturbations
from some y = yδeq << 1 where the radiation still dominates.

Combining (1.89) and (1.91) in the limit of sub-Hubble modes (k � H) and neglecting the
radiation perturbations (y � yδeq), gives the equation of evolution for δm in a radiation-matter
background known as the Meszaros equation (Meszaros 1974):

d2δm
d2y

+ 2 + 3y
2y(y + 1)

dδm
dy
− 3

2y(y + 1)δm = 0. (1.97)

This equation remains valid until dark energy becomes non-negligible. It admits two solutions:

D1(y) = y + 2
3

D2(y) = 15
8 (2 + 3y) ln

(√
1 + y + 1√
1 + y − 1

)
− 45

4
√

1 + y
, (1.98)

where D1 (resp. D2) is the growing (resp. decaying) solutions with late time (y � 1) behavior:
D1(y) ∝ y and D2(y) ∝ y−3/2.

To match the solution in radiation-dominated epoch (1.96) and the solution in the matter-
dominated epoch δm(y) = C1D1(y) +C2D2(y), we will assume that the behavior of δm is not so
dramatically different when y ≈ yδeq. The decaying mode is neglected since we are interested in
late-time behavior. Hence, the density perturbation growing mode for y � yδeq is

δm(k, y) ≈ −3
2A ln

(
4Be−3

yk

)(
y + 2

3

)
Φini(k), (1.99)

where yk is the value of y when mode k enters the horizon k = H.

• Baryonic acoustic oscillations For the moment, there is no interaction between
the matter and the radiation. In the real Universe, a fraction of the matter is baryonic and
interacts with photons through Compton scattering. The oscillations of radiation density per-
turbations during the radiation area (1.94) let a similar signature into the baryonic density
perturbations, and then through gravity into the matter density perturbations. This oscillation
is known as the baryonic acoustic oscillations (BAO).

These oscillations are visible in Fig. 1.10. This figure shows the time evolution of the density
perturbations and the Bardeen potentials for a mode k that crosses the Hubble horizon during
the radiation domination and is described by the equations above. In particular, the damped
oscillations of Φ (1.93) are discernible during the Hubble crossing moment and the recombination,
and as expected, the potential is constant well before the Hubble crossing moment and after the
recombination. The difference between Φ and Ψ at the very early time is due to neutrinos in
the fiducial Planck 18 cosmology, which have been neglected in this qualitative study.

In the same manner, the photon oscillations (1.94) are noticeable during the Hubble crossing
time and the recombination in the density perturbations (here, for convenience, we plot |δ|)
and lead to the baryonic oscillations, while the cold dark matter density perturbations growth
following (1.96) in the radiation-dominated area and (1.99) in the matter-dominated area. Once
the recombination occurs, cold dark matter will attract the baryons.
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These oscillations let a characteristic signature into the linear matter power spectrum and
in the transfer function, typically around k ∼ 0.1 h Mpc−1, as shown in Fig. 1.11.

I Transfer function The previous studies have attempted to describe the behavior of δm
at large and small scales in a simplified case, and help us to understand the general form of the
transfer function, represented in the black dashed line in the right panel of Fig. 1.11.

The large scales (k � keq) study shows that the transfer function, as defined in (1.106) is
very closed to 1 (at 9/10 factor according to the definition) for all scales entering the horizon
after the equality: k � keq.

The small scales (k � keq) study shows that when the mode remains super-Hubble, δm ∝ a2

(Poisson equation), then when the mode is sub-Hubble during the radiation-dominated epoch,
δm ∝ ln(a) and until the equality. Finally, during the matter-dominated epoch, δm ∝ a. The
only difference between the modes is then when it enters the horizon and stops growing. Thus,
a mode k entering the horizon at Hk does not grow by a factor of (Hk/Heq)2 compared to a
mode remaining super-Hubble. The transfer function is roughly proportional to (k/keq)2.

Hence, the transfer function, left panel of Fig. 1.11, should be closed to

Tm(k) ∼
{

1 k � keq

(keq/k)2 k � keq
. (1.100)

1.2.3.5 Late time evolution

To take advantage of the late time evolution of the sub-Hubble scales (k � H) in the matter-
dominated area, one can write the perturbations of the non-relativistic matter in the Newtonian
limit (see Adamek et al. 2016, for the impact of general relativity). In this context, perturbations
of a perfect fluid are described by the well-known continuity, Euler and Poisson perturbed
equations in comoving coordinates16 (Rieutord 2014):

δ′ +∇ · ((1 + δ)u) = 0

u′ + (u · ∇) u +Hu = 1
ρ
∇δP −∇Φ

∆Φ = 4πGa2ρ̄δ

, (1.102)

where c2
s = δP/δρ, and the time component and derivative were replaced by the conformal time

η (· → ′). These equations are the Newtonian limit of (1.68) and (1.62). During gravitational
collapse and before the virialization, ∇δP can be neglected.

Similarly to the SVT decomposition, the velocity u can be decomposed17 into its divergence
θ = ∇ · u and its vorticity w = ∇× u. As mentioned in Section 1.2.2.1, the vector modes
are diluted in expansion. Here, from the linear order of the Euler equation, w ∝ a−1. Hence,
only the scalar mode θ is generally considered i.e. u is supposed curl-free. In Fourier space,
u = −iθk/k2.

16Applying carefully the chain rules with (1.20), the derivatives become in comoving coordinates:{
∇r −→ 1

a
∇x

∂tf(r, t) −→ ∂tf(x, t)−H (x ·∇x) f(x, t)
(1.101)

17Helmholtz decomposition.
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At the linear order (δ, ui � 1), (1.102) becomes

δ′ + θ = 0
θ′ +Hθ = −∆Φ

, (1.103)

which lead, with the Poisson equation to

δ′′ +Hδ′ − 3
2H

2Ωmδ = 0. (1.104)

This 2nd order linear partial differential equation admits two independent solutions:

δ(k, η) = D+(η)δ+
late(k) +D−(η)δ−late(k), (1.105)

where δ+
late (growing modes), δ−late (decaying modes) are set at redshift zlate when Ωm = 1 after

the recombination. In the presence of dark energy, D should be computed numerically. However,
in an Einstein-deSitter Universe (Ωm = 1),

D+(t) = t
2
3 = a, D−(t) = t−1 = a−3/2.

In the following, only growing modes (+) will be considered and D+ is called the linear growth
factor.

To take advantage of this late evolution, it is usual to define Tm only between the primordial
fluctuations and the fluctuations at zlate after the recombination (zlate � zrec)such that

δm(k, z) = Tm(k, zlate)×
D+(z)
D+(zlate)

× δprim(k). (1.106)

Hence, the growth of the structure formation during the matter-dominated area is completely
encoded in the growth factor D+. Note that generally, the transfer function is normalized to 1
at k = 0 and therefore does not depend on the choice of zlate. This late-time evolution in EdS
Universe is only true when neutrinos are neglected. Otherwise, the evolution function continues
to depend on k.

For growing modes,

δ′ = D+′

D+ δ = fHδ, (1.107)

where f is the growth rate defined by

f = d lnD+

d ln a . (1.108)

The growth rate can be accurately parametrized by Ω γ
m . For instance, Linder (2005) shows

that in a flat ΛCDM Universe with Ωm ∈ [0.22, 1], f ' Ω0.55
m to better than 0.05%.

From (1.103), the linear matter velocity can be expressed in Fourier space according to the
matter density perturbation,

u(k) = ifH k
k2 δ(k). (1.109)

This description, at linear order, does not hold for small scales k > 0.1 h Mpc−1, and one
needs to use the full set of equations (1.102) without assuming the linear approximation as it is
done in Appendix 3.
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1.3 Observational cosmology

In the previous sections, we discussed the evolution of large-scale structures in the Universe,
starting from primordial fluctuations and progressing to the late-time universe. Chapter 2
will explain the creation of primordial fluctuations. In order to validate this description and
constrain the fundamental parameters of the ΛCDM model, the primary goal of observational
cosmology is then to observe the statistical distribution of the matter in the Universe, which
can be accomplished, for instance, through observations of light emitted by galaxies.

The first subsection will describe how the underlying matter field can be linked to observable
objects. The second one will provide an overview of the different standard observations used to
validate the description presented in this chapter and constitute the current state-of-the-art of
our knowledge.

1.3.1 Cosmological tracers

Galaxy survey, as it will be used in this dissertation, observes millions of galaxies to track the
matter distribution of the Universe. Galaxies are expected to be formed in the denser regions of
the Universe. However, galaxies do not measure the matter density field itself but are the result
of a complex formation process in which the matter density field plays a crucial role.

Let’s describe how the observed distribution of galaxies δobsg is linked to the matter one δ:

δobsg
1.3.1.3−−−−→
1.3.1.2

δg
1.3.1.1−−−−→ δ

1.3.1.1 Tracer bias

Galaxies form within the gravitational potential wells created by dark matter in high-density
excursions of the matter density field (Kaiser 1984). The galaxy bias relates the galaxy density
field to the underlying density matter field. Since the formation process is affected by various
physical processes, such as gas cooling, star formation, and feedback from supernovae and black
holes, each type of galaxy is more or less clustered than the underlying matter and has a different
bias.

The galaxy bias can be described in a perturbative bias expansion theory

δg(x, z) =
∑
O

bO(z)O(x, z), (1.110)

where O are statistical fields describing the environment properties on which galaxy density can
depend. For instance, (δ, δ2, . . .) or the tidal field Kij(k) =

[
(kikj)/k2 − 1/3δij

]
δ(k), . . . have

to be considered in this expansion.
The rigorous description18 of the bias expansion is out of the scope of this dissertation which

will be focused on scales where the linear theory can be applied. In linear order, the galaxy bias
reads as

δg(x) = b1δ(x) + ε, (1.111)

where ε is the stochastic contribution which corresponds to the presence of random small-scale
fluctuations, not correlated to the long-wavelength fluctuations described by δ and to the fact
that galaxies are a discrete sampling of the matter density field. This contribution is modeled
as with noise i.e. Pε(k) = const. and 〈εδ〉 = 0.

18See Section 2 of Desjacques et al. (2018) for a complete derivation.



Chapter 1. Cosmology with large-scale structures 34

Remark: The expansion bias needs to be performed up to the third order (δ3) when the
non-linear power spectrum is computed with the 1-loop correction since δ(2) ∝

(
δ(1)

)2
.

1.3.1.2 Redshift space distortions (RSD)

As explained in Section 1.1.2.4, the redshift observed is composed of several contributions.
Hence, when transforming redshifts into distances, the observed distance s is slightly different
from the real distance r without the effect of the peculiar velocity u. They are linked by

s = r + (u · ẑ)
H

ẑ = r + uzẑ, (1.112)

where ẑ is the line-of-sight (LOS).
At large scales, galaxies fall coherently into deep gravity well and the density field becomes

squashed along the (LOS) (we are only sensitive to the velocity along the LOS). The cluster-
ing amplitude is then higher along the LOS. This is known as the Kaiser effect but was first
mentioned by Sargent and Turner (1977). Large scales are correctly described by the linear
theory. This effect is shown on the left of Fig. 1.12, the observed density field (full line) looks
asymmetric.

Linear RSD

DESI

δχ(zhigh)

δχ(zlow)

AP effect

DESI

Figure 1.12: Left: Redshift space distortion effects for linear and non-linear cases. In both cases,
the dashed (resp. full) line represents a contour of constant density (resp. the observed contour for
an observer in the vertical direction which looks asymmetric) around a central overdensity i.e. deep
gravity well. The Kaiser effect (linear order) is displayed on the left. The coherent velocities squash
the density field along the line of sight. A grey arrow has a typical size of 1 h−1Mpc. Right: The use
of wrong cosmology in the redshift-distance conversion caused the Alcock-Paczyński distortion. Since
the comoving distance depends on the redshift, the additional displacement is not the same for all the
redshifts. The observed tracer field is then asymmetric (from the dashed circle if the displacement is the
same for all redshifts to ellipse). Inspired from Dodelson and Schmidt (2020).

I Linear order First, let’s try to link the density contrast in redshift space δs to the density
contrast in real space δ using the linear order of the perturbation theory. The peculiar velocity
in Fourier space is then given by (1.109). The density conservation between the redshift and the
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real space implies

δs(s) =
∣∣∣∣ds
dr

∣∣∣∣−1
[1 + δ(r)]− 1, (1.113)

and in Fourier space

δs(k) =
∫

d3r

(
1 + δ(r)−

∣∣∣∣ds
dr

∣∣∣∣) e−ik·s
=
∫

d3r (δ(r)− ∂zuz) e−i(kµuz+k·r)
(1.114)

where µ ≡ k̂ · ẑ is the directional cosine between the line-of-sight ẑ and the wavelength k. Using
(1.109) and assuming |µkuz � 1|, (1.114) becomes

δs(k) ≈
∫

d3r (δ(r)− ∂zuz(r)) e−ik·r

= δ(k)−
∫

d3re−ik·r∂z

[∫ d3k′

(2π)3uz(k
′)eik′·r

]

= δ(k)−
∫ d3k′

(2π)3 ik
′µ
ifk′µδ(k′)

k′2

∫
d3re−i(k−k′)·r

= δ(k) + fµ2
∫

d3k′δD(k− k′)δ(k′)

=
(
1 + fµ2

)
δ(k).

(1.115)

This is known as the Kaiser formula (Kaiser 1987). Hence, the power spectrum in redshift space,

P s(k) = P s(k, µ) =
(
1 + fµ2

)2
Plin(k), (1.116)

depends on k, µ and not just on k as in the real space. This is the redshift space distortion, at
least for the linear order.

I Multipole decomposition for the linear order The galaxy contrast density can be
expressed at linear order as δg = b1δ, where we neglect the stochastic contribution which is
not impacted by the RSD. Since the velocity is caused by the gravity of the total matter field,
galaxies are assumed to have a similar velocity to the underlying matter field such that ug = u.
Hence, the Kaiser formula (1.115) for galaxy contrast reads as

P s(k) =
[
b1 + fµ2

]2
Plin (k) = b21

[
1 + βµ2

]2
Plin (k) , (1.117)

where β = f/b1, and we have dropped g in P sg .

To compress the information of P (s)(k), it is useful to use the Legendre decomposition, given
by

P s (k, µ) =
∑
`

P s` (k)L` (µ) , (1.118)

where L` are the Legendre polynomes and P s` are the multipoles. By construction, they are19

P s` (k) ≡ 2`+ 1
2

∫ 1

−1
dµL` (µ)P s (k, µ) . (1.119)

19One can also integrate over the angle θ between k̂ and ẑ, and then divide by 4π instead of integrate over µ
and divide by 2.
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One can show that only the monopole (` = 0), quadrupole (` = 2), and hexadecapole (` = 4)
are non-zero:

P
(z)
0 (k) =

(
1 + 2

3β + 1
5β

2
)
P (k)

P
(z)
2 (k) =

(4
3β + 4

7β
2
)
P (k)

P
(z)
4 (k) = 8

35β
2P (k)

. (1.120)

Similarly to (1.118) – (1.119), the correlation function in redshift space can be also decom-
posed with Legendre polynomes and its multipoles are related to the power spectrum multipoles
via20

ξ`(r) = i`

2π2

∫
k2dkj`(kr)P`(k), (1.121)

where jl is the spherical Bessel function. Hence, defining J`(x) ≡
∫ x

0 ξ(y)y`−1dy, the multipoles
for the correlation function are:

ξ
(z)
0 (s) =

(
1 + 2

3β + 1
5β

2
)
ξ(s)

ξ
(z)
2 (s) =

(4
3β + 4

7β
2
)
ξ(s) +

(
−4β − 12

7 β
2
)
J3(s)
s3

ξ
(z)
4 (s) = 8

35β
2ξ(s) + 12

7 β
2J3(s)
s3 − 4β2J5(s)

s5

. (1.122)

Fig. 1.13 shows the 2-point statistics in redshift space, power spectrum (left) and correlation
function (right), for b = 2, β = 0.355, z = 0.7.
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Figure 1.13: Monopole (blue), quadrupole (red), hexadecapole (green) of the power spectrum (left) and
correlation function (right) in redshift space with b = 2.3, β = 0.355, z = 0.7. The real space function
(black) is displayed for comparison. The odd multipoles are null.

Remark: In this case, the hexadecapole (` = 4) does not depend on the bias of the tracer and
the odd multipoles are zero. They can be non-zero when considering cross-correlation. Finally,
l > 4 are zero because the decomposition was performed using the linear order i.e. the Kaiser
formula (1.115).

20The Rayleigh expansion of a plane wave is eik·x =
∑

`
i`(2`+ 1)j`(kx)L`(k̂ · x̂).
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I Improving the linear order Besides the Kaiser effect, the density field is also stretched
at small scales, typically below 1 h−1Mpc, when galaxy velocities become too important respect
to the size of the gravity well. This effect is called the Finger of God (FoG) effect. Addition-
ally, when galaxies virialize and cease to have coherent velocities for only random motions, the
clustering amplitude is damped along the LOS.

To be completely rigorous, we need to use the exact expression of P s. Starting from given
by (1.114), the redshift space power spectrum is

P s(k) =
∫

d3re−ik·r
〈
e−ikµ∆uz [δ(x)− ∂zuz(x)]

[
δ
(
x′
)
− ∂zuz

(
x′
)]〉

. (1.123)

At the linear order, we have omitted the term e−ikµ∆uz . However, at small scales, i.e. after
virialization, the random motions create out-of-phase velocities and the exponential term damps
the redshift space power spectrum.

Motivated by (1.123), Scoccimarro (2004), Percival and White (2009) have proposed phe-
nomenological models to describe the competition between Kaiser and Finger of God effects.
The redshift space power spectrum can then be expressed as follows

P s(k, µ) = DFoG (kµσv)P sKaiser(k, µ), (1.124)

where σ2
v is the velocity dispersion defined as

σ2
v = 1

3

∫ d3q

(2π)3
Pθθ(q)
q2 ≈ f2

6π2

∫
dqPlin(q). (1.125)

Pθθ is the velocity power spectrum. Here, the velocity is normalized by H (1.112). The velocity
dispersion is generally treated as a free parameter. However, it can be directly computed from
(A.12), in particular, the above approximation (≈) is for the linear order. The Finger of Gods
damping is modeled either as a Gaussian or Lorentzian damping:

DFoG(x) =
{

exp
(
−x2) (Gaussian)

1/
(
1 + x2) (Lorentzian)

(1.126)

Finally, the power spectrum can be either modeled with the Kaiser effect or can be expanded
to treat the non-linearity:

P sKaiser (k, µ) =
{(

1 + βµ2)2 Pδδ(k) (linear)
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) (non-linear)

, (1.127)

where Pδθ is the density-velocity cross power spectrum.
The phenomenological approach presented above provides a reasonably accurate description

of the redshift space distortions, as shown in Fig. 1.14, up to relatively small scales. At a redshift
of z = 0.5, it only deviates by 1% from simulations for k greater than 0.2 h Mpc−1. This simple
approach does not take into account the intermediate-scale interaction between the Kaiser and
FoG effects. A more complex description, known as the TNS model (Taruya et al. 2010, Zheng
and Song 2016), can address this issue. However, for this dissertation, the phenomenological
model will be retained.

1.3.1.3 Alcock-Paczyński effect

In observational cosmology, we derive distances through the redshift measurement. To apply
the conversion with (1.26), we need to assume a cosmology. A wrong one will then displace
artificially the objects from their true position

χfid(z) = χ(z) + δχ(z). (1.128)
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(a) (b)

Figure 1.14: Comparison between N-body simulations and phenomenological models (Taruya et al.
2010). The ratio of power spectra to smoothed linear power spectra i.e. without wiggles are plotted for
monopole (right) and quadrupole (left). Several combinations of (1.126) and (1.127) are displayed. Here,
the velocity dispersion σv is fitted to match the prediction to the N-body simulations.

Fig. 1.12 illustrates this phenomenon. The artificial displacement is unfortunately not the same
for all redshifts, creating an artificial asymmetry in the observed density field. This effect is
known as the Alcock-Paczyński distortion.

The observed position is (θ1, θ2, z) where (θ1, θ2) is the position in a sphere of unit radius
and z the observed redshift centered around z̄ the mean redshift of observed positions. Hence,
the observed 3D position is

xobs = χfid(z)×
(
θ1, θ2, 1−

χfid(z̄)
χfid(z)

)
. (1.129)

The real 3D position in the correct cosmology is then,

x
(
xobs

)
=
(
α⊥x

obs1
, α⊥x

obs2
, α‖x

obs3)
, (1.130)

where

α⊥ = χ

χfid

∣∣∣∣∣
z̄

; α‖ = Hfid

H

∣∣∣∣
z̄
. (1.131)

We have use (1.128) for (x1, x2) and, since the observed tracers are generally in a narrow redshift
slice, x3 = χ(z) − χ(z̄) = (z − z̄)/H(z̄) where H is either from the true cosmology or from the
fiducial one. For a similar reason and to remove the redshift dependence, the quantity α⊥ is
also taken at z̄.

Since the density is independent of the choice of the coordinates, the observed density con-
trast and the real one are related together (similarly for the power spectrum)

δobsg

(
kobs

)
= δg(k)|

k=
(
α−1
⊥ kobs1, α−1

⊥ kobs2, α−1
‖ kobs3

) . (1.132)
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Hence, even without galaxy peculiar velocity and so RSD effects, the galaxy power spectrum
can have some anisotropy, since α⊥ and α‖ are different. This was first noticed by Alcock
and Paczynski (1979) and it is known as the Alcock-Paczyński effect (AP effect). This effect
can be disentangled from the RSD effects since the amplitude depends on the shape of the
power spectrum. Section 1.3.2.4 describes how we can infer cosmological information from these
parameters.

1.3.2 Cosmological probes

The description given in this chapter is supported by various cosmological observations. The
following sections aim to give a brief overview of the current pillars of cosmology based on the
most recent experiments and not to give a complete description of each field. It will deliberately
omit certain aspects of observational cosmology such as weak-lensing, intensity mapping, galaxy
clusters, . . . This dissertation will be focused on galaxy survey whose standard measurements
are described in Section 1.3.2.4.

1.3.2.1 Supernovae

I Discovery the dark energy One cornerstone of cosmology is the discovery of the accel-
erated expansion of the Universe, which we attribute today to the presence of dark energy. This
discovery was achieved at the end of the 20th century by two independent groups (Riess et al.
1998, Perlmutter et al. 1999), using type Ia supernovae and their magnitude-redshift diagram.
The Supernova Cosmology Project21 diagram is shown in Fig. 1.15a. The best fit with a flat
ΛCDM model is highly in favor of the existence of dark energy (ΩΛ,Ωm) = (0.72, 0.28), where22

Ωm = 0.28+0.09
−0.08(stat)+0.05

−0.04(sys) for statistical and systematic errors.

I Measuring the Hubble constant In addition to the detection of the accelerated expan-
sion, supernovae can also be very useful in deriving the value of H0 with the third rung of the
distance ladder method led by the SHOES collaboration, as described in detail in Riess et al.
(2022) (see Fig. 12 for the three rungs of the ladder). The ladder is necessary to determine the
intrinsic supernovae magnitude and thus to measure the value of (H0) in the magnitude-redshift
diagram.

Fig. 1.15b shows the famous H0 tension at a 5σ level between the local value of H0 derived
with the distance ladder method (H0 = 73.04 ± 1.04 km s−1 Mpc−1) and the value inferred
from the cosmic microwave background (CMB), as discussed in Section 1.3.2.2, measured by
the Planck mission (H0 = 67.74± 0.46 km s−1 Mpc−1). The fitted model in this figure is a flat
cosmology with a free equation of state parameter w for the dark energy. Planck alone is not
able to constrain this parameter, and the above value is given for fixed parameters w = −1.
Current measurements are in favor of w = −1.

This 5σ tension is today the greatest disagreement between two independent cosmological
measurements. Both measurements are well explained by the ΛCDM model, but not with the
same parameters. A major community effort is underway to reconcile these two measurements,
either by validating the CMB or the local measurement or by proposing a refinement to the
model, as described in Di Valentino et al. (2021).

21https://supernova.lbl.gov/
22In a flat universe, neglecting the radiation contribution: Ωm + ΩΛ = 1.
23http://astro.vaporia.com/start/calantololosurvey.html

https://supernova.lbl.gov/
http://astro.vaporia.com/start/calantololosurvey.html
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Figure 1.15: (a) Magnitude-redshift diagram, also called Hubble diagram, of 42 high-redshift (resp.
18 low-redshift) type Ia supernovae from the Supernova Cosmology Project (resp. the Calàn/Tololo
Supernova Survey23) published in Perlmutter et al. (1999). The best fit with ΛCDM model is obtained
for (ΩΛ,Ωm) = (0.72, 0.28). (b) Posteriors for flat wCDM Universe with Ωm, H0 and w (equation of
state of Λ) as cosmological parameters (Brout et al. 2022). Planck is TT, TE,EE+ lowE likelihoods and
0.2 < Ωm < 0.4 is set for computational speed. Pantheon+ does not include the distance ladder method
and cannot fit correctly the value of H0.

1.3.2.2 Cosmic microwave background

The discovery of the cosmic microwave background (CMB) by Penzias and Wilson in 1964
provided clear evidence of the expansion of the Universe. Since then, three dedicated space
missions - COBE (Mather et al. 1990, Smoot et al. 1990), WMAP (Bennett et al. 2003; 2013,
Hinshaw et al. 2013) and Planck (Tauber et al. 2010, Planck Collaboration et al. 2020;?) - have
been launched to measure temperature fluctuations, or anisotropies, in the CMB. Currently, the
Planck mission provides the most accurate measurements.

The ΛCDM model and perturbation theory, which are discussed in this chapter, can be
described using only six parameters. As shown in Fig. 1.16, the angular power spectrum of
the temperature measured by Planck is exactly reproduced by this six-parameter model. The
blue line in the figure represents the best fit obtained with TT, TE, EE + low E + lensing
likelihood, where TT (resp. TE, EE) are the angular power spectrum of the temperature (T)
(resp. cross-power spectrum of t temperature and E mode polarization, power spectrum of the
E mode polarization), low E includes the low multipoles of the angular power spectrum of the
E mode. Finally, lensing adds the power spectrum of the lensing potential and the lensing field
map itself. This is weak gravitational lensing. In the presence of mass, lines of sight in the
Universe are slightly deflected, such that the foreground mass distribution can be detected by
systematically aligning background sources around the lens mass.

This observation provides unparalleled validation of the theory described in this chapter.
Table 1.2 gives the best constraint today on the six ΛCDM parameters using the TT, TE,
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Figure 1.16: Planck18 temperature angular power spectrum at the top and the residuals to the best fit
at the bottom (Planck Collaboration et al. 2020). Red points are the measurement and the error bars are
1σ uncertainties, containing cosmic variance and not the uncertainties in the foreground model for ` ≥ 30.
The blue line is the base ΛCDM theoretical spectrum best fit to the Planck TT,TE,EE+lowE+lensing
likelihoods. Note the difference of horizontal scale before (logarithmic) and after (linear) the dashed line
and of vertical scale for the residual.

EE+lowE+lensing likelihood, and also some useful derived quantities. In this table, Ωm includes
the contribution from one neutrino with a mass of 0.06 eV, θMC (resp. θ∗) is an approximation
to (resp. the full numerical result of) the acoustic scale angle.

The CMB continues to be the subject of significant study, particularly for the observation
of the B-modes of the CMB polarization, which would be generated during inflation.

1.3.2.3 Big Bang nucleosynthesis

The Big Bang nucleosynthesis (BBN), also known as primordial nucleosynthesis, describes the
formation of heavy nuclei during the first few dozen minutes of the Universe’s history. This
process produced the majority of deuterium (2H), helium-3 (3He), and helium-4 (4He), as well
as a small fraction of lithium, beryllium, and boron. Other elements in the Universe were created
through stellar nucleosynthesis, which occurs later in the Universe’s history and is still ongoing.
Spallation is responsible for much of the current lithium, beryllium, and boron in the Universe.

The most significant reactions during primordial nucleosynthesis are displayed in Fig. 1.17a.
The abundance of each element depends on the time it takes for lighter elements to form heavier
ones. Additionally, the Universe expands and cools as time passes, making the formation of heavy
nuclei impossible after a certain moment. Knowing the reaction rates, one can theoretically
predict24 the abundance of elements produced during primordial nucleosynthesis as a function
of time or temperature. This can be computed using numerical codes such as PArthENoPE25

24See Pitrou et al. (2018) for a recent review and all the references therein.
25https://parthenope.na.infn.it/

https://parthenope.na.infn.it/
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Table 1.2: Base-ΛCDM cosmological parameters from Planck TT,TE,EE+lowE+lensing best fit. The
errors are the 1σ uncertainties. (kpivot = 0.05 Mpc−1).

Parameter TT,TE,EE+lowE+lensing

Ωbh
2 0.02237± 0.00015

Ωch
2 0.1200± 0.0012

100θMC 1.04092± 0.00031
τ 0.0544± 0.0073
ln
(
1010As

)
3.044± 0.014

ns 0.9649± 0.0042

Ωmh
2 0.1430± 0.0011

H0 [km s−1 Mpc−1] 67.36± 0.54
Ωm 0.3153± 0.0073
Age [Gyr] 13.797± 0.023
σ8 0.8111± 0.0060
S8 ≡ σ8(Ωm/0.3)0.5 0.832± 0.013
zre 7.67± 0.73
100θ∗ 1.04110± 0.00031
rdrag [Mpc] 147.09± 0.26

(Pisanti et al. 2008, Consiglio et al. 2018, Gariazzo et al. 2022) or PRIMAT26 (Pitrou et al. 2018;
2020). Fig. 1.17b shows the abundance of the lightest elements, with deuterium, helium-3, and
helium-4 being the most commonly produced during BBN.

The nuclear rates required to form heavier nuclei depend on the density of baryonic matter.
The more baryons there are, the more interactions occur. Therefore, observing the primordial
abundance of elements is a direct measurement of the amount of baryonic matter. Since (2H,
3He, 4He) are mostly produced during primordial nucleosynthesis, they play a major role in
determining the baryonic density (Aver et al. 2015, Cooke et al. 2018). Fig. 1.17c gives the
latest constraints on Ωbh

2 from (Pitrou et al. 2020), with an inferred baryonic density being
1.8σ lower than the Planck measurement.

BBN plays a crucial role in cosmology since it can be combined with BAO scale measurements
(see Fig. 1.19c) to provide a competitive and independent constraint on the ΛCDM parameters
compared to Planck 18 (Planck Collaboration et al. 2020).

1.3.2.4 Galaxy survey

If the description of the Universe’s history presented in this chapter is correct, the oscillations
observed in the angular temperature spectrum at z ∼ 1100, see Fig. 1.16, should be imprinted in
the distribution of matter that we observe today through the galaxy distribution. The BAO peak
(Fourier transform of the oscillations) was first detected in 2005 by the SDSS collaboration27

in the luminous red galaxy (LRG) sample (Eisenstein et al. 2005), and then in 2007 in the
main galaxy sample with a combined clustering analysis with 2dFGRS28 (Percival et al. 2007).
Fig. 1.18 shows the BAO peak detected for the time in 2005 with the SDSS LRG sample. This

26http://www2.iap.fr/users/pitrou/primat.htm
27https://classic.sdss.org/
28http://www.2dfgrs.net/

http://www2.iap.fr/users/pitrou/primat.htm
https://classic.sdss.org/
http://www.2dfgrs.net/
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Figure 1.17: (a) Sketch of the most important reactions (on 424 available) during the BBN (Pitrou et al.
2018). In particular, it shows the production of deuterium, 3He and 4He which are mainly produced during
the BBN. (b) Evolution of the lightest element abundances as a function of time/temperature (Pitrou
et al. 2018). The current observations are focused on deuterium, 3He, 4He and 7Li. (c) Inferred posterior
distribution of baryon density (Ωbh

2) from BBN (full line), Planck (dashed line) and Planck+BAO
(dashed-dotted line) (Pitrou et al. 2020). The difference between BBN and Planck is about 1.8σ and it
is mainly due to the primordial abundance of deuterium, highlighting the importance of this probe.

detection opened the road for 20 years of sky mapping with SDSS through the BOSS (Dawson
et al. 2013) / eBOSS (Dawson et al. 2016) programs and still today with the next survey
generation as DESI (DESI Collaboration et al. 2016a) and Euclid (Scaramella et al. 2022).

The acoustic oscillation during radiation domination, see Section 1.2.3.4 and (1.94), imprints
in the matter distribution a characteristic scale rd which represents the distance that the baryons
contrast density δb, under radiation pressure, have traveled while the two components were
coupled through Compton scattering. rd is the sound horizon at baryons/photons decoupling
time zd

rd =
∫ td

0
dtcs(t)
a(t) =

∫ ∞
zd

dz cs(z)
H(z) , (1.133)
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Figure 1.18: Redshift space correlation function of the SDSS luminous red galaxy sample (Eisenstein
et al. 2005). The points are correlated together. The color lines are pure CDM models with ns = 0.98
and Ωbh

2 = 00.24. The magenta line is without the acoustic peak. The others have different values of
Ωmh

2. The bump, known as the BAO peak, at 100 h−1 Mpc is statistically significant, rejecting the
Universe without BAO (magenta line) with confidence of σ = 3.4.

where cs = c [3 (1 + 3ρb/4ργ)]−1/2 ∼ c/
√

3 is the speed of sound in the baryons-photons fluid.
Since the decoupling between baryons and photons is not instantaneous and photons are

much more numerous than baryons, the baryons/photons decoupling time zd is slightly different
than the ”CMB time” z? = 1089.80± 0.21 defined as the moment when photons have interacted
on average with baryons for the last time. A fraction of the photons, which continue to oscillate,
interact longer with the baryons and drag (d) baryons a bit further. Therefore, zd corresponds to
the moment when the baryons stop interacting on average with the photons: zd = 1060.01±0.29.
Hence, the sound horizon is slightly different r∗ = 144.57±0.22 Mpc and rd = 147.21±0.23 Mpc.
Numbers are from the best fit of Planck18 (Planck Collaboration et al. 2020). One can find a
numerical estimation of rd, see for instance equation 16 in Aubourg et al. (2015).

This BAO scale rd can be observed with the preferred correlation in the galaxy distribution
either in the LOS or transverse direction:

∆z = H(z)rd, ∆ϑ = rd
DM (z) , (1.134)

where ∆z is the redshift difference and ∆ϑ is the angular separation of the preferred distance in
the 2-point correlation. In a flat universe, the transverse comoving distance DM (z) is equal to
the comoving distance χ(z). Hence, by setting the value of rd either with the CMB or with the
BBN, one can extract cosmological information at different redshifts.

Unfortunately, these two distances cannot be measured directly due to the AP effect, as
described in Section 1.3.1.3. Besides, we need to generate a template of the power spectrum
or correlation function in order to measure the position of the BAO peak. This template is
computed from a given cosmology that will be supposed to be the fiducial one for practical
reason29. Hence, the template value of rd is then not exactly the correct one and we have to

29In the most general case, we can use another cosmology to compute the template, such that rtempd = rfidd .
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add an additional factor to the AP parameters α‖, α⊥ (1.131):

α⊥ ≡
χ(z)rfidd
χfid(z)rd

, α‖ ≡
Hfid(z)rfidd
H(z)rd

, (1.135)

renaming generally the pure AP parameters as q‖, q⊥.
Sometimes, one can prefer to use the isotropic dilation factor:

αiso = DV (z)rfidd
Dfid
V (z)rd

, (1.136)

where DV is the ”spherically averaged” distance defined as DV (z) =
[
zχ2(z)c/H(z)

]1/3.
Fig. 1.19a gives the 7 independent 2-point clustering measurements using different types of

galaxies from the latest eBOSS data release DR16 (Alam et al. 2021), on which we can extract
the α‖, α⊥. The middle line corresponds to the ratio between the isotropic measurement (for
Ly-α, it is a combination of radial and transverse measurements) and the theoretical prediction
assuming Planck18 parameters.

In Section 1.3.1.2, RSD was linked to the growth rate f via the Kaiser formula (1.115).
However, f completely degenerates with the primordial amplitude As of the power spectrum
used to compute Plin. To be agnostic to As which is a free parameter in the ΛCDM model, the
parameter σ8 defined as

σ2
8(z) = 1

2π2

∫ ∞
0

dkk2Pmlin(k, z)W 2(rk), (1.137)

where W is the top-hat window function and r = 8 h−1Mpc. Hence, the Kaiser formula becomes,

P (k) =
(
1 + βµ2

)2
Plin(k) =

(
σ8b1 + σ8fµ

2
)2 P̃mlin(k)

σ2
8

, (1.138)

and is independent of As, but the growth rate is measured as fσ8. Similarly to Fig. 1.19a,
Fig. 1.19b shows the 2D redshift space function from eBOSS DR16 and the middle line the ratio
between the measurement and the prediction from Planck18.

Finally, Fig. 1.19c sums up the eBOSS DR16 α‖, α⊥, fσ8 measurements. The full lines
correspond to the theoretical prediction assuming the Planck 18 values as ΛCDM parameters.
Expect the value from the ELG, the BAO/RSD measurements are remarkably in agreement
with the prediction. The aim of the new generation of galaxy surveys is to get similar sensitivity
to the ΛCDM parameters than Planck by increasing the number of points and decreasing the
error bars on this figure. See Alam et al. (2021) for additional figures and inferred cosmological
constraints as the sum of neutrinos mass, alternative models to ΛCDM, etc . . .
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Credit: Ashley J. Ross and SDSS
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And if inflation is wrong, then God missed a good trick. But, of course, we’ve
come across a lot of other good tricks that nature has decided not to use.

Jim Peebles, interview at Princeton (1994)

A lthough some problems in the Hot Big Bang model may emerge as the flatness, horizon and
monopole problems, it seems that, on the whole, it correctly describes the Universe. In par-

ticular, the primordial nucleosynthesis, the discovery of the CMB and the theoretical description
of its anisotropies are strong predictions of the simple flat ΛCDM model, see Section 1.3.2.

Hence, it is natural to try to complete this model instead of changing it completely. The
most distant observation that we can make by collecting light comes from the CMB, and it
remains upstream a whole part of the history of the Universe that is still unknown. A phase
of accelerated expansion at the very beginning of the Universe, as mentioned in Section 1.1.3.3,
could be the miracle cure for all our ills.
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This chapter will first explain the mechanism of inflation and how this paradigm can also
generate primordial density fluctuations that will be the seed of the large-scale structures of
the Universe. We then turn our attention to the possible observables of inflation, in order to
classify the various candidates for this paradigm. In particular, we will study the primordial
non-gaussianity and the imprint left on galaxy clustering.

2.1 Inflation

2.1.1 The missing piece in the jigsaw puzzle

2.1.1.1 An accelerated expansion

The flatness and horizon problems, raised in Section 1.1.3.3, are both related to the fact that
the comoving Hubble radius (aH)−1 increases over time. The curvature density parameter (B.2)
and the particle horizon (1.37) can be written as

Ω(a)− 1 = −ΩK = K

(aH)2 , χ(a) =
∫ ln a

ln ai

d ln a
aH

, (2.1)

where ai is the scale factor at the beginning of the Universe. Assuming the Universe consists of
a single fluid with an equation of state P = wρ, the comoving Hubble radius becomes

(aH)−1 = H−1
0 a(1+3w)/2, (2.2)

and it increases over time if 1 + 3w > 0 that is the case for radiation or matter dominated
area, see Table 1.1. Hence, any small space curvature in the early Universe (K 6= 0) is amplified
throughout the history of the Universe. Additionally, since (aH)−1 is a time-increasing function,
the particle horizon at the recombination can be only increased by pushing back the beginning
of the Universe ti by integrating longer.

Both of these problems can be solved by adding a period to the early Universe in which the
Hubble sphere (aH)−1 shrinks over time. This means that the time derivate of the comoving
Hubble radius should be negative

d
dt

( 1
aH

)
= − ä

(aH)2 < 0 =⇒ ä > 0, (2.3)

corresponding to a period of accelerated expansion, as first proposed by Guth (1981), Albrecht
and Steinhardt (1982), Linde (1982a). As for the recent accelerated expansion, a fluid that can
describe this period should respect w < −1/3 (2.2).

Let’s introduce the first slow roll parameter, ε ≡ −Ḣ/H2, which verifies
ä

a
= H2 (1− ε) . (2.4)

The accelerated expansion (ä > 0) implies that ε < 1. Assuming a flat universe with a single
fluid component and using the Friedmann equations (1.28), ε can be related to w by

1− ε = −(1 + 3w)/2. (2.5)

If ε→ 0 i.e. the Hubble parameter varies slowly with time (Ḣ ' 0), then w → −1 such as this
period is similar to a de Sitter Universe which consists of a Universe with only a cosmological
constant Λ. Hence, the scale factor respects

a(t) ∝ eHt, (2.6)

and the expansion increases exponentially in a way that this period is called inflation.
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2.1.1.2 With an appropriate energy

As mentioned in Section 1.1.3.3, if the Hot Big Bang starts at very high temperature, some
unwanted relics can be produced when the Universe cools as it expands. To circumvent the
production of these relics, all we need to ensure is that the amount of energy at the beginning
of the Hot Big Bang is low enough for the initial temperature to be below that of the phase
transition. Typically, the monopole problem will be solved requiring a temperature below the
Grand Unification scale (∼ 1016 GeV).

Nevertheless, the observed quantities of helium and deuterium in the Universe can only be
explained by the primordial nucleosynthesis, see Section 1.3.2.3, i.e. the temperature should be
higher than 1 MeV.

Finally, from the current observations, the initial amount of energy should produce a tem-
perature such as

1 MeV < Treh < 1016 GeV. (2.7)

2.1.1.3 For a sufficiently long period

To solve the two main issues mentioned above, inflation should exist over a sufficiently long
period. The length of the inflation is controlled by the number of e-folds N defined by

N ≡ ln
(
ae
ai

)
=
∫ te

ti

dtH(t), (2.8)

where ae (resp. ai) is the scale factor at the end (resp. beginning) of the inflation. N corresponds
to the growth of the scale factor during the inflation, expressed in the exponential basis e.

From (B.2) and neglecting ΩK0,

∣∣∣∣ΩK (te)
ΩK (ti)

∣∣∣∣ ' (aeai
)−2

= e−2N . (2.9)

The curvature at Planck time is |ΩK(tpl)| < 10−60, see Section 1.1.3.3. Then, to have |ΩK(ti)| ∼
O(1) and inflation that stops at Planck time, the number of e-fold should be

N ≥ 70. (2.10)

From (2.2), the particle horizon can be calculated analytically

χ(a) = 2H−1
0

(1 + 3w)
[
a(1+3w)/2 − a(1+3w)/2

i

]
≈ 2

(1 + 3w)(aH)−1, (2.11)

where the early time contribution can be neglected for w > −1/3. Hence, to solve the horizon
problem, the observable Universe should be causally connected at least at the recombination as
observed by the CMB experiment. Therefore, at the very least, we need

(aH)−1(trec) < (aH)−1(ti). (2.12)

Neglecting the relative recent matter and Dark energy contribution, the Universe can be assumed
to be in the radiation-dominated area since the end of the inflation. Hence, with w = 1/3,
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H ∝ a−2 (see Table 1.1), one can link the end of the inflation and the recombination through

aH(trec)
aH(te)

= a(te)
a(trec)

= T (trec)
T (te)

1 ∼ 3000 K
1016 GeV ∼ 10−26, (2.13)

where 1 eV = kB/1.6 × 1019 K and the end of the inflation te is chosen to be at the Grand
Unification scale (T ∼ 1016 GeV), see Section 2.1.1.2. Finally, (2.12) requires that

(aiHi)−1 > (arecHrec)−1 ∼ 1026 (aeHe)−1 ⇒ N = ln
(
ae
ai

)
≥ 60, (2.14)

where the Hubble parameter is supposed constant during inflation.
To achieve this long period of inflation, ε should remain small for a sufficiently large number

of Hubble times
|η| < 1, with η ≡ d ln ε

dN
= ε̇

Hε
. (2.15)

η is known as the second slow roll parameter.
Finally, having inflation in the early Universe solves the two major issues of the Hot Big

Bang model. It remains to derive physical mechanisms which can lead to an inflationary phase
and to connect them with the Hot Big Bang model. First, let’s describe briefly the Lagrangian
mechanics which will be the standard approach in the following.

2.1.2 Lagrangian mechanics

In 1780, Joseph-Louis Lagrange introduced a concise and elegant description of classical mechan-
ics through the use of the stationary-action principle. This description can easily be adapted to
the theory of field whether it is non-relativistic, relativistic or even quantum case (Landau and
Lifshitz 1976; 1975). In this description, a physical system is depicted by its Lagrangian L. The
temporal evolution of the system is given by its action S defined as the temporal integral of the
Lagrangian of the system. The equations of motion are then obtained thanks to the principle
of least action which states δS = 0 and is known as the Euler–Lagrange equations.

In a manner completely equivalent to the description given in Section 1.1.1, the Einstein
equations (1.8) can be derived from the stationary-action principle. Einstein and Hilbert pro-
posed to use the scalar curvature R as Lagrangian to depict the metric behavior:

SEH = c4

16πG

∫
d4x
√
−gR, (2.16)

where the multiplicative factor is set to recover the classical mechanics in the Newtonian limit and
g is the determinant of the metric in which the coordinates x are written such as g = det(gµν).

Adding the dark energy component and the Lagrangian of matter Lm, the action becomes

S = SEH + SΛ + Sm = c4

16πG

∫
d4x
√
−g(R− 2Λ) +

∫
d4x
√
−gLm, (2.17)

1The Stephan-Boltzmann law ensures that the energy density u ∝ T 4. In an expanding Universe, u ∝ a−4.
Hence, during the radiation-dominated area, the Universe is in thermal equilibrium and its temperature evolves
as T ∝ a−1. Note that after the recombination, matter and radiation are decoupled and evolve independently.
The temperature of the remaining photons is still Tγ ∝ a−1. For matter, one can assume an ideal gas. Since
the expansion of the Universe is an adiabatic process, the Laplace law ensures that PV γ = const. where γ is the
adiabatic index, and since there is no matter creation, P ∝ ργ during the expansion. Similarly, from the ideal
gaz law, P ∝ T × ρ. In an expanding Universe, ρ ∝ a−3 and therefore the temperature of the matter evolves as
Tm ∝ a−3γ+3. Typically, for a monoatomic gaz, γ = 5/3 and Tm ∝ a−2.
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and δS = 02 ensures that
Gµν + Λgµν = 8πG

c4 Tµν , (2.18)

where the stress–energy tensor is defined from the Lagrangian of matter Lm as

Tµν ≡ −
2√
−g

δ
√
−gLm
δgµν

= −2δLm
δgµν

+ gµνLm. (2.19)

Remark: Here, there is only one field, the gµν metric, and therefore only one set of Euler-
Lagrange equations that describe its dynamics. In general, there are as many Euler–Lagrange
equations as there are different fields to describe each of their dynamics.

This formalism is very useful to test various extensions or modifications of the theory of
gravity since it provides a simple formalism to derive the Einstein equations. Further, the same
formalism is used in quantum field theory and many similarities will appear in the following.

Remark: One can introduce the Planck mass as Mpl =
√

~c
8πG ≈ 2.43× 1018 Gev3 to simplify

the above actions. Hence, with ~ = 1 and c = 1, (2.16) becomes

SEH =
M2

pl
2

∫
d4x
√
−gR.

2.1.3 Single field slow-roll inflation

The simplest model to describe an inflation phase that respects the conditions mentioned above
is to postulate the existence of an additional scalar field φ(t,x), called inflaton, and its associated
potential energy V (φ). If the field varies with time, it will also carry kinetic energy. Once the
stress-energy associated with inflaton dominates, the inflaton dynamics will source the evolution
of the background metric of the Universe.
Remark: Although no scalar field had been observed at that time, the use of a scalar field was
appealing because its use a few years earlier led to the creation of a mechanism that provides
masses to particles in the standard model (Higgs 1964, Englert and Brout 1964). 50 years
later, the Higgs boson was detected, which was the first observed manifestation of a scalar field
(ATLAS Collaboration et al. 2012, CMS Collaboration et al. 2012).

2.1.3.1 Source of inflation

Using the simple form for the kinetic term, called the canonical kinetic term, the Lagrangian
for a scalar field reads

Lφ = −1
2g

µν∂µφ∂νφ− V (φ). (2.20)

The associated stress-energy tensor is

Tµν ≡ −
2√
−g

δ
√
−gLφ
δgµν

= 4∂µφ∂νφ− gµν
[1

2g
αβ∂αφ∂βφ+ V (φ)

]
. (2.21)

2Here, δ means the functional derivative as a function of gµν and should be written δS
δgµν

if other fields are
present.

3The mass are quoted in Gev/c2, but here c = 1.
4With the Jacobi formula δg = ggµνδgµν , we have δ

√
−g =

√
−ggµνδgµν/2, and from gµαg

αν = δνµ, we have
δgµν = −gµαgνβδgαβ .



Chapter 2. The early Universe 52

By analogy to a fluid, one can define the associated density and pressure to the scalar field where
they are defined in the Minkowski space by ρ ≡ T 00 and P ≡ 1/3(T 11 + T 22 + T 33). Hence,

ρφ = 1
2 φ̇

2 + 1
2(∇φ)2 + V (φ) = 1

2 φ̇
2 + V (φ)

Pφ = 1
2 φ̇

2 − 1
6(∇φ)2 − V (φ) = 1

2 φ̇
2 − V (φ)

, (2.22)

where φ is assumed to be homogeneous such as ∂iφ = 0. This is consistent with the fact that
in the following we will use the FLRW metric that describes a homogeneous Universe. In this
case, the associated equation of state for the scalar field is given by

wφ = φ̇2 − 2V (φ)
φ̇2 + 2V (φ)

. (2.23)

If the potential term V (φ) dominates i.e. V (φ)� φ̇2 then w → −1 and the inflation is close to
a de Sitter Universe. When the kinetic term dominates, w → 1 and the inflation stops.

At early time, the Universe should stay homogeneous and can be assumed flat as it can
still be described by the FLRW metric. In addition, the matter, radiation and dark energy
contribution can be neglected. The dynamics of the Universe is then obtained by the Euler-
Lagrange equations of

S = SEH + Sφ =
M2

pl
2

∫
d4x
√
−gR+

∫
d4x
√
−gLφ. (2.24)

The first set of equations, δS/δgµν = 0, leads to the Friedmann equations (1.28) with fluid
quantities given by ρφ and Pφ:

H2 = 1
3M2

pl

(1
2 φ̇

2 + V (φ)
)

Ḣ = − 1
2M2

pl
φ̇2

, (2.25)

where the second Friedmann equation was simplified using the first one5.
The second set, δS/δφ = 0, gives the dynamics of φ. Since φ and gµν are only coupled

through
√
−g, δS/δφ = δSφ/δφ, and φ will satisfy the well-known Klein-Gordon equation

�φ+ V ′(φ) = 0, (2.26)

where V ′ = dV
dφ and � is the d’Alembertian operator

�φ ≡ 1√
−g

∂ν
(√
−ggµν∂µφ

)
. (2.27)

Finally, with
√
−g = a3, φ is ruled by

φ̈+ 3Hφ̇+ V ′(φ) = 0. (2.28)

This is the traditional equation of motion with force derived from a potential (V ′(φ)) with
friction (3Hφ̇).

5Ḣ = ä/a− (ȧ/a)2
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2.1.3.2 How does inflation work?

Initially, the φ field will have to be dominated by its potential energy and this for a sufficiently
long time for inflation to take place (2.23). Then, it is sufficient to find a potential which ac-
cording to (2.28) can accelerate the field enough so that its kinetic energy becomes predominant
compared to the potential energy. Inflation then naturally stops at this moment (2.23).

A potential that makes all this description possible is shown in Fig. 2.1. Inflation occurs
in the shaded parts of the potential. To ensure that inflation lasts long enough, the potential
energy must predominate throughout the entire period i.e. the potential must not accelerate
too much the field during inflation. This is possible if the derivative of the potential is close
to zero (2.28). This period is legitimately called slow-roll inflation. Then, the field rolls slowly
along the potential before rolling into the well and oscillating there as it heats up. This is the
reheating period and the inflation stops.

slow-roll inflation reheating

ε, |η| � 1

φ

V (φ)

Figure 2.1: Example of potential V which respects the slow-roll approximation. Inflation starts at the
red points and occurs in all the grey-shaded areas. Then, the field rolls slowly along the potential before
rolling into the well and oscillating there as it heats up. Inflation stops at this point.

I Slow-roll approximation In (2.28), the friction term tends to slow down φ, and the
slow-roll inflation can be easily reach if

φ̇2 � V (φ), |φ̈| � |3Hφ̇|. (2.29)

From (2.28) and (2.25), these slow-roll conditions lead to

3Hφ̇ = −V ′(φ)

H2 = V (φ)
3M2

pl
,

(2.30)

and the slow-roll parameters can be written as

ε(φ) =
M2

pl
2

(
V ′(φ)
V (φ)

)2
, η(φ) = M2

pl
V ′′(φ)
V (φ) . (2.31)
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Hence, the slow-roll conditions (2.29) imply

ε� 1, |η| � 1 (2.32)

and the condition mentioned in Section 2.1.1 are respected. Note that the conditions on ε, η are
only conditions on the shape of the considered potential V so that it may have a period in which
the slow-roll approximation is correct. This is a necessary but not sufficient condition to have a
slow-roll period. Furthermore, the slow-roll approximation guarantees inflation, but it is not a
necessary condition. It is perfectly possible to produce inflation without a slow-roll period.

I Toy model The simplest model of inflation is described by single field inflation driven by
a mass term,

V (φ) = 1
2m

2φ2. (2.33)

This potential is displayed in Fig. 2.2 and leads to the following slow-roll parameters

ε = η = 2
(
Mpl
φ

)2
. (2.34)

The slow-roll regions (ε, |η| � 1) should be such as φ2 � 2M2
pl. The condition is represented

by the gray shaded areas in Fig.2.2. However, this condition is not sufficient to have a slow-roll
regime. The slow-roll existence will depend on the initial value of the inflaton (φ, φ̇).

−
√

2Mpl
√

2Mpl φ

V (φ)

Figure 2.2: Potential for a single field inflation driven by a mass term. The gray shaded areas represent
where the slow-roll conditions can be respected. At the bottom of the well, the oscillation during the
reheating period is familiar to the well-known harmonic oscillator.

I Initial conditions Since (2.28) is a second order differential equation, it is completely
determined by the initial conditions (φi, φ̇i). Even if φi is in the possible slow-roll region, the
slow-roll approximation may not hold. Fortunately, the solution in the slow-roll approximation
given by (2.30) is an attractor for the full solution given by (2.25) and (2.28) i.e. whatever the
initial conditions (φi, φ̇i) the solution will converge to the slow-roll solution.

For instance, (2.28) can be written for our toy model as

φ̇× dφ̇
dφ = −

√
3
2

1
M2

pl

(
φ̇2 +m2φ2

)1/2
φ̇+m2φ. (2.35)

This is a first-order differential equation in φ which can be easily solved numerically. Fig 2.3
shows in the (φ, φ̇) plane, solutions for several initial conditions. Most solutions will converge
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−
√

2Mpl
0
√

2Mpl

−
√

2
3mMpl

0

√
2
3mMpl

φ

φ̇

Figure 2.3: Phase portrait for several initial conditions in a single field inflation driven by a mass
term. Before rotating around (0, 0) (reheating phase), most solutions will first converge towards φ̇ =
±
√

2/3mMpl (slow-roll phase). This illustrates the attraction toward the slow-roll solution.

towards φ̇ = ±
√

2/3mMpl and to the same slow-roll dynamics. Then, they will fall into the well
of the potential V , rotating around (0, 0) and signaling the end of the inflation.

The initial conditions cannot be completely arbitrary since they must be within the basin
of attraction of the slow-roll solution. However, if the basin of attraction is large enough, the
Universe without any particular initial conditions for (φ, φ̇) can reach itself the basin so that if
the inflaton is the major contribution to the total energy, the Universe starts to inflate. The
Universe then becomes very flat and homogeneous, and its dynamic is governed by the slow-
roll solution. Thus, inflation erases the memory of the initial conditions and the history of the
Universe is entirely described by the shape of the V potential.

I Reheating: end of the inflation In this description, all the energy in the Universe
during the inflation comes from the potential energy V (φ) (φ̇2 � V (φ)). At the end of the
inflation, the inflaton falls into a potential well and starts to oscillate. Its energy is then yielded
to particles produced at this moment, known as the reheating period, producing all the content
of the observable Universe. For instance, if inflaton is decaying into fermions (Linde 1982b,
Abbott et al. 1982), the energy density evolves as

ρ̇φ + (3H + Γφ) ρφ = 0, (2.36)

where Γφ is a phenomenological decay term.
As described in Section 2.1.1.2, the temperature of the Universe after the end of the inflation

should be large enough to produce the standard Big-Bang nucleosynthesis and sufficiently low
to not produce unwanted relics. Since all the energy in the Universe is from the potential energy
of the inflaton, (2.7) will constrain the amplitude of the potential V . For instance, in our toy
model, the slow-roll regime breaks when φe ≈

√
2Mpl, and the total available energy is then

V (φe) = m2M2
pl. Hence,

(1 MeV)4 < m2M2
pl <

(
1016 GeV

)4

⇒ 4 · 10−22 MeV < m < 4 · 1013 GeV
. (2.37)
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This very wide range offers only minimal constraints on the mass m of the inflaton. For compari-
son, the Higgs field, the only scalar field observed in the Universe, has mass of 125.25±0.17 GeV.

I Duration of the inflation As seen in Section 2.1.1, the duration of inflation is quantified
by the number of e-fold N and N ≥ 60 is needed to solve the horizon problem. In the slow-roll
approximation and using (2.30), this number becomes

N(φ) =
∫ te

ti

H(t)dt =
∫ φe

φi

H

φ̇
dφ ≈ 1

M2
pl

∫ φi

φe

V (φ)
V ′(φ)dφ. (2.38)

In our toy model, it is

N(φ) = 1
M2

pl

∫ φi

φe

φ

2 dφ = 1
4M2

pl
φ2
i −

1
2 , (2.39)

where φe ≈
√

2Mpl.
For instance, one can assume that the largest possible initial value of φ will lead to the

Planck density such as V (φi) = M4
pl, and so N(φ) ≈ M2

pl/2m2. Even with the highest mass
m ∼ 4 · 1016 GeV, the number of e-folds N ∼ 1011 is very large i.e. we need to wait a very long
time with this model to recover an acceptable temperature when the initial value of φ leads to
the Planck density.

2.1.4 Origin of primordial fluctuations

The success of inflation is not only due to the resolution of the flatness, horizon and unwanted
relics problems but mainly because inflation is an elegant mechanism to explain the origin of the
metric fluctuations (Hawking 1982, Starobinsky 1982, Guth and Pi 1982, Bardeen et al. 1983).
The origin of the perturbations will be understood as quantum-mechanical vacuum fluctuations
during inflation. Inflation predicts the production of scalar and tensor perturbations and no
vector perturbations.

2.1.4.1 Perturbed equations

As in Section 1.2.2.1, the scalar field φ will de decomposed as

φ(t,x) = φ0(t) + δφ(t,x), (2.40)

where φ0 is described by (2.25) and (2.28). Note that in the following, ′ will refer to the conformal
time derivative and not to the derivate with respect to φ as above, and for simplicity, V will
correspond to V (φ0). Furthermore, in conformal time, Friedmann equations (2.25) are

H2 = 1
3M2

pl

(1
2φ
′2
0 + a2V

)
H′ = − 1

3M2
pl

(
φ′20 − a2V

) . (2.41)

We will work with the Newtonian gauge in similarity to the previous chapter, although this
is not the usual gauge for solving perturbations during inflation. The following equations are
then obtained as in section 1.2.2.2. In particular, the perturbed stress-energy tensor for a scalar
field is written

δTµν = 2∂µδφ∂νφ0 − δgµν
[1

2g
αβ∂αφ0∂βφ0 + V

]
− gµν

[1
2δg

αβ∂αφ0∂βφ0 + gαβ∂αφ0∂βδφ+ ∂V

∂φ
δφ

]
.

(2.42)
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In the Newtonian gauge, it becomes

δT00 = φ′0δφ
′ + 2a2V Φ + a2∂V

∂φ
δφ

δT0i = (∂iδφ) · φ′0

δTij =
[
φ′0δφ

′ − (Ψ + Φ)φ′0
2 + 2a2VΨ− a2∂V

∂φ
δφ

]
δij

. (2.43)

I Scalar modes Since (2.43) does not have any anisotropic pressure6, Φ = Ψ, and the other
Einstein equations are

Φ′ +HΦ = 1
2MPl

φ′0δφ

k2Φ = − 1
2M2

Pl

[
φ′0

2Φ + φ′0δφ
′ + a2∂V

∂φ
δφ+ 3Hφ′0δφ

], (2.44)

and the dynamics of δφ is given by the perturbed Klein-Gordon equation

δφ′′ + 2Hδφ′ + k2δρ = −2a2∂V

∂φ
Φ + 4φ′0Φ′ − a2∂

2V

∂φ2 δρ. (2.45)

I Vector modes Scalar field (2.43) does not have any vector components. Therefore, there
is no associated Klein-Gordon equation for the vector mode and the only Einstein equations are

E′i + 2HEi = 0, (2.46)

such that the vector modes from the metric follow Ei ∝ a−2. Hence, for any model of inflation
based on a scalar field, vector modes have disappeared at the end of the inflation.

I Tensor modes As for the vector modes, scalar field (2.43) does not have any tensor
components and the equations for the metric tensor modes are,

E′′ij + 2HE′ij −∆Eij = 0. (2.47)

The solution, see Appendix 4.3, E+,× are the primordial gravitational waves.

2.1.4.2 From quantum perturbations to metric perturbations

Since the comoving curvature perturbation R (A.38) is constant under an adiabatic evolution
for super-Hubble scales, the initial conditions will be given by the amount of perturbations when
the mode k crosses the Hubble radius during the inflation. Fig. 2.4 shows the history of a mode
k from the inflation period until today.

During the inflation, the Universe is dominated by a scalar field and the comoving curvature
perturbation (A.38) can be written as7

R = −Φ− Hδφ
φ′0

. (2.48)

6δT ji ∝ δ
j
i

7R is a gauge invariant quantity, and it is, therefore, sufficient to determine the value of v+B as a function of
φ in the Newtonian gauge. The perturbed stress-energy tensor for a perfect fluid (A.2) gives δT0i = −a2(ρ̄+P̄ )∂iv
while the one for a scalar field (2.43) gives δT0i = (∂iδφ)·φ′0. Finally, with ρ̄+P̄ = φ′0

2
/a2, we have v+B = −δφ/φ′0.
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horizon
exit

reheating horizon
entry

CMB
rec.

today

k−1

sub-Hubble super-Hubble sub-Hubble

k = aH

R′ = 0

PR

time

comoving scales
(aH)−1

Figure 2.4: Perturbation dynamics for a mode k during the inflation and beyond. Thanks to inflation,
at very early times, all modes of interest are far inside the horizon and can be modulated by inflation.
During the inflation, the Hubble sphere shrinks and the mode becomes super-Hubble and its evolution
is frozen (R′ = 0), fixing the initial conditions for the post-inflationary Universe. Finally, during the
standard Big-Bang evolution, the Hubble sphere increases and the mode re-enters the horizon following
the dynamics described in Section 1.2.3.

Motivated by the slow-roll limit, one needs to consider

u = −zR with z = aφ′0
H

, (2.49)

which verifies, astonishingly, a very simple equation of motion derived from (2.44) and (2.45)
(see, for instance, Mukhanov et al. 1992):

u′′ +
(
k2 − z′′

z

)
u = 0. (2.50)

This is the equation of a free field with a variable mass z′′/z.
For super-Hubble modes, the dominant solution of 2.50 is u = zR0 where R0 is constant.

Hence, after the horizon exit, the curvature perturbation R is, as expected, constant. The
perturbations induced during the inflation will then persist after the end of inflation and will be
the initial condition used in Section 1.2.3.2.

I Slow-roll approximation The shape of the initial power spectrum will be given by the
solution of (2.50). Unfortunately, it is not possible to solve it in the general case. However,
under the slow-roll approximation, there are two different time scales: one fast for the accelerated
expansion (a) and one slow for the variation of the Hubble parameter and the scalar field such
that u→ aδφ, z′′/z → a′′/a =

s−r
2/η2, and (2.50) becomes

u′′ +
(
k2 − 2

η2

)
u = 0. (2.51)

Similarly to how one quantize the Klein-Gordon equation (see Peskin and Schroeder 1995), u is
promoted to operator û

û(η,x) =
∫ d3k

(2π)3

[
âkψk(η)eik·x + â†kψ

∗
k(η)e−ik·x

]
, (2.52)
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where âk (resp. â†k) is the annihilation (resp. creation) operator and ψk(η) is found for each
mode k by solving (2.51):

ψk(η) = 1√
2k

(
1− i

kη

)
eikη. (2.53)

Note that at small scales (far inside the horizon) i.e. kη → ∞, (2.53) converge to the known
solution in the Minkowski space validating the normalization of ψk.

For a sufficiently long period of inflation, kη becomes very small, and the mode exits the
horizon. Hence, for super-Hubble mode, ψk ∝ 1/η ∝ a and δφ ∝ ψk/a is constant. In this limit,
kη � 1

ψk(η) = e−ikη√
2k
−i
kη
, (2.54)

and the power spectrum of δφ is8

Pδφ(k) = |ψk(η)|2

a2 = H2

2k3 , (2.55)

where the last equality is also from the slow-roll approximation9:

η ≡
∫ a

ae

da
Ha2 '

1
H

∫ a

ae

da
a2 ' −

1
aH

(2.56)

I Primordial power spectrum From (2.30), the comoving curvature perturbation reads
as10

R = 3H2

∂V /∂φ δφ, (2.57)

and the power spectrum of the scalar perturbation is then

PR(k) = H2
∗

2k3
V 2
∗

(∂V /∂φ)2
∗

= H2
∗

4k3ε∗
, (2.58)

where ∗ corresponds to the value of the quantity when the mode exits the horizon e.g. k = aH
since the comoving curvature perturbation is conserved for super-Hubble modes.

The condition k = aH implies

d log k = H′dη = − V

M2
pl ∂V /∂φ

dφ, (2.59)

and the derivative of the primordial power spectrum can be expressed with the slow-roll param-
eters ε, η

d logPR(k)
d log k = −3− 6ε+ 2η. (2.60)

8Contrary to particle physics, observables in cosmology correspond to equal time correlators between positions
in space. Thus, the two-point correlation of u is the expectation value of the observable u(η, x)u(η, x′) on a
given state of the Universe, a priori during the inflation, to the cosmological vacuum, which will be immediately
associated to |0〉 i.e. to the kernel of the annihilation operator. This identification is known as the Bunch-Davies
vacuum. Hence, the two-point correlation is then ξ(η, r) = 〈0|u(η,x)u(η,x + r)|0〉 as in Section 1.2.1.2, and the
associated power spectrum is then Pu(k) =

〈
|û|2
〉

= |ψk(η)|2.
9H is roughly constant during the inflation, and the scale factor at the end of the inflation is much larger than

during the inflation, a� ae
10During the inflation, Φ is negligible compare to the last term in (2.48), since the inflation aims to generate

non-negligible metric perturbations.
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Traditionally, the spectral index is then defined as

ns ≡ 4 + d logPR(k)
d log k = 1− 6ε+ 2η, (2.61)

Finally, the primordial power spectrum, see Section 1.2.3.2, is generally parametrized as

PR(k) = 2π2

k3 As

(
k

kpivot

)ns−1

, (2.62)

were As sets the amplitude of the power spectrum at kpivot chosen to be 0.05 Mpc and ns is
intended to be closed to 1 in the slow-roll approximation (2.61).
Remark: (2.62) is a strong prediction of a single field slow roll inflation. To validate it, one
can introduce αs, the running of the spectral index, defined as

PR(k) = 2π2

k3 As

(
k

kpivot

)ns−1+ 1
2αs ln(k/kpivot)

, (2.63)

where αs is expected to be zero.

I Primordial gravitational waves The two polarization solutions E+,× of (2.47) evolve
and will be quantified independently. The correct variable is

vp = a(η)Ep
2Mpl

, (2.64)

where p = +,×. Fortunately, vp respects the same equation (2.50) than u and therefore can
be quantified in the same manner. The power spectrum of the primordial tensor perturbations,
counting the two polarization modes, is then

PT (k) = 4H
2
∗
k3 (2.65)

In the slow-roll approximation, the ratio of the tensor and scalar amplitudes is expressed by
the first slow-roll parameter

r = PT (k)
PR(k) = 16ε. (2.66)

Today, r is an important quantity to classify the different models of inflation, since gravitational
waves should be produced during inflation.

Similarly to the scalar spectral index, one can define a tensor spectral index for the gravita-
tional waves

nT = d logPT (k)
d log k = −2ε. (2.67)

I Toy Model For our toy model (2.33), the slow-roll parameters are ε = η = 2 (Mpl/φ)2

and the primordial fluctuations are parametrized by

ns = 1− 8
(
Mpl
φ

)2
, r = 32

(
Mpl
φ

)2
, nT = −4

(
Mpl
φ

)2
. (2.68)

To solve the horizon problem, one needs at least N ∼ 60, and from (2.39)

φ2 = 4M2
pl

(
N + 1

2

)
≈ 4M2

plN. (2.69)
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The primordial fluctuations are then controlled by

ns = 1− 2
N
≈ 0.966, r = 8

N
≈ 0.133, nT = − 1

N
≈ −0.016. (2.70)

With this toy model, the amount of gravitational waves can be reduced by increasing the number
of e-folds to the detriment of the value of ns, bringing it closer to 1.

2.1.5 Model for inflation

The above description is generic and agnostic on the shape of the potential. If the potential
respects the slowing down approximation, we can simplify the inflation paradigm, and it is,
therefore, attractive to find potentials that verify this approximation. Many models were pro-
posed, and we briefly present those used in Fig. 2.5. A complete and updated review is available
in Martin et al. (2014).

I Power-law inflation Power-law inflation (Lucchin and Matarrese 1985) refers to model
with a potential that has the form

V (φ) = m4e−αφ/Mpl , (2.71)

where α is a dimensionless parameter. These models were extensively studied since they lead to
an exact solution in power-law such that a ∝ t2/α2 and w = −1+α2/3. The slow-roll parameters
are

ε = α2

2 , η = α2. (2.72)

I Natural inflation Natural inflation (Freese et al. 1990, Adams et al. 1993) was proposed
to solve the well-known ’fine-tuning’ problem of inflation i.e. we need to choose very particular
values so that the inflationary predictions correspond to what the Universe looks like. This
model used a potential written as

V (φ) = m4
[
1 + cos

(
φ

f

)]
, (2.73)

where m is chosen to match the CMB normalization and f is an unknown free scale. The
slow-roll parameters are

ε =
M2

pl
2f2

sin2 x

(1 + cosx)2 , η =
M2

pl
f2(1 + cosx)

(
sin2 x

1 + cosx − 1
)
, (2.74)

with x = φ/f .

I R2 inflation Starobinsky (1980) noticed that the quantum corrections to general relativity
should be important for the early Universe. These corrections lead to the modification of the
Einstein-Hilbert action which then takes a similar form to the f(R) modified gravity with a R2

term. The new action becomes

S =
M2

g
2

∫
d4x
√
−g

(
R+ R2

µ2

)
, (2.75)

where Mg is the mass scale of gravity.
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The curvature squared term, when it is dominant, acts as an effective cosmological constant
and was naturally proposed by Starobinsky to be a candidate for inflation. The associated
potential is written as

V (φ) =
M2

gµ
2

8

(
1− e−

√
2
3
φ
Mg

)2
, (2.76)

and the slow-roll parameters are

ε = 4
3

(
1− e

√
2/3x

)−2
, η = 8

3

(
1− e

√
2/3x

)−2
− 1

3

[
sinh

(
x√
6

)]−2
, (2.77)

where x ≡ φ/Mg. Fortunately, the primordial parameters can be expressed (see, for instance
(48) in Planck Collaboration et al. 2020) as a function of the number of e-fold

ns − 1 ' − 2
N
, r ' 12

N2 . (2.78)

I Multi-field inflation The above models are all single-field models for which the slow-
roll approximation is valid, but we can easily extend the slow-roll approximation to multi-field
inflation (Gong 2017). For instance, two-field inflation can be described by the Lagrangian

Lφ,σ = −1
2g

µν (∂µφ∂νφ− ∂µσ∂νσ − Cφσ∂µφ∂νσ)− V (φ, σ), (2.79)

where V is any potential which depends on φ and σ and Cφσ is a coupling constant. The
equations of motion are simply obtained by computing the three Euler-Lagrange equations:
∂S/∂gµν , ∂S/∂φ, ∂S/∂σ.

2.1.6 Constraining inflation models

To constrain inflation, particularly single-field slow-roll inflation, the most effective approach
currently is to measure the parameters ns and r that characterize the primordial fluctuations.
It is worth noting that inflation also predicts the presence of primordial gravitational waves,
which have yet to be observed. These gravitational waves leave an imprint in the B-modes of
the CMB polarization and their detection will support the inflationary paradigm. Measuring
these B-modes represents one of the most significant challenges in the coming decade, and
several dedicated instruments are currently designed such as CMB-S4 (Abazajian et al. 2022)
and LiteBIRD (Hazumi et al. 2020).

By accurately measuring the values of ns and r, we can place constraints on different in-
flationary models and narrow down the range of possible scenarios, described in the slow-roll
single field case by the choice of one potential V . The current observational data, mainly driven
by the Planck measurement (Planck Collaboration et al. 2020), have already provided valuable
insights and placed constraints on the inflationary parameter space as shown in Fig. 2.5, where
popular models of inflation are compared to the data. Some of these models are presented in
Section 2.1.5. In particular, our toy model described by (2.33) is shown in yellow.

The Planck18 observations give
ns = 0.9649 ±0.0042 (68%CL)
αs = −0.0045 ±0.0067 (68%CL)

, (2.80)

and combining with the BICEP2/Keck Array data11 (BK15, Keck Array and BICEP2 Collab-
orations et al. 2018),

r(kpivot = 0.002 Mpc−1) ≡ r0.002 < 0.056 at 95% CL.

11http://bicepkeck.org/index.html

http://bicepkeck.org/index.html


63 2.2. Primordial non-gaussianity

0.94 0.96 0.98 1.00

Primordial tilt (ns)

0
.0

0
0.

0
5

0.
1
0

0
.1

5
0
.2

0

T
en

so
r-

to
-s

ca
la

r
ra

ti
o

(r
0
.0

0
2
)

Convex

Concave

TT,TE,EE+lowE+lensing

TT,TE,EE+lowE+lensing
+BK15

TT,TE,EE+lowE+lensing
+BK15+BAO

Natural inflation

Hilltop quartic model

α attractors

Power-law inflation

R2 inflation

V ∝ φ2

V ∝ φ4/3

V ∝ φ
V ∝ φ2/3

Low scale SB SUSY
N∗=50

N∗=60

Figure 2.5: Planck18 constraints in the ns, r plane at k = 0.002 Mpc−1 with 68% and 95% confidence
level (Planck Collaboration et al. 2020). Gray contour gives the constraints using only Planck data and
the color ones are the improvement by adding external data. Popular models of inflation are marked on
this plane for two e-fold values (N = 50, 60). Some of these models are presented in Section 2.1.5.

This result is significantly improved by the new data release of BICEP/Keck (BK18, Keck Array
and BICEP2 Collaborations et al. 2021). These constraints can then discriminate the different
inflation models introduced in Section 2.1.5:

• Toy model i.e. φ2 inflation (yellow): the simplest slow-roll single field inflation generated
by a quadratic potential is already excluded at least at 1σ by the low value of r.

• Power-law inflation (black dashed line): these models do not have free parameter in the
ns, r plan and are likely excluded by the Planck 18 measurement.

• Natural inflation (purple): this model, while still in line with the BK15 data, is beginning
to be ruled out in the light of the latest BK18 data.

• R2 inflation (green): this model seems attractive since it is in agreement with the Planck18
measurement at 95% CL for 49 < N < 59. In particular, it predicts a very low amount of
primordial gravitational waves.

Of course, other single field models are also still in complete agreement with the data such as
those shown in Fig. 2.5: Hilltop quartic model (Dimopoulos 2020) or α-attractors (Kallosh and
Linde 2021).

2.2 Primordial non-gaussianity

As described above, the inflationary paradigm is a very natural way to explain the primordial
fluctuations of the Universe. It is therefore reasonable to constrain inflationary models by the
shape of these fluctuations. In particular, the prediction of primordial gravitational waves, that
have not yet been detected, is a crucial constraint, since their non-detection would not fit the
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inflation paradigm. However, this measurement based on the B-modes of the CMB polarization
is hampered by the presence of galactic foregrounds. Besides, several inflation models can predict
similar forms of primordial fluctuations. One can therefore look for other unique signatures of
inflation in the primordial fluctuations that would not have faded.

The simplest models of inflation, single field slow-roll inflation, are expected to generate
quasi-Gaussian primordial fluctuations, as we know from the study of the Klein-Gordon equation
in quantum field theory (2.51). According to Wick’s theorem, the primordial fluctuations are
then completely described by the 2-point correlation function. Hence, the detection of primordial
non-Gaussianity (PNG) i.e. the presence of higher-order correlations in primordial fluctuations
is a smooking-gun against the single field slow-roll paradigm.

The non-gaussianity (NG) can come from different phenomena:

• Primordial non-gaussianity (PNG): Some mechanism during the inflation can generate
non-gaussianity during the early Universe in the primordial curvature perturbation R.
This is what we want to probe, to discriminate the different inflation scenarios.

• Second-order non-gaussianity: As explained in Section 1.2.3, the matter perturbed den-
sity field is connected to the primordial one thanks to the transfer function Tm which is
currently computed in CLASS or CAMB at the first order in the perturbation theory. Some
non-gaussianity can be generated by non-linear interaction (second-order perturbations)
in the Einstein equations (1.60).

• Secondary non-gaussianity: Late time in the Universe, the perturbations become too large
to be described by the linear theory (1.102) and one needs to resolve the complete equations
(A.9). As explained in Appendix 3, gravity couples the modes k creating some non-
gaussianity and in particular non-zero bispectrum (A.17).

• Foreground non-gaussianity: Non-gaussianity can be created by observational effect, in
particular for the CMB observation, the galactic foregrounds generate some non-gaussianity.

The measurement of the primordial non-gaussianity requires therefore a prescient knowledge
of the other forms of non-gaussianity. In particular, the most important contamination comes
from the secondary non-gaussianity generated by gravity at small scales. This is all the more
important for statistics that are measured at low redshift. Thus, the theory to model this effect
needs to be carefully tested with realistic simulations to disentangle late-time evolution with
real primordial non-gaussianity, and this is one of the major challenges for measuring PNG with
galaxy bispectrum.

2.2.1 Shape of non-gaussianity

The bispectrum is the first order which describes the non-gaussianity. In the Gaussian case,
it is expected to be zero. Therefore, the first step in probing primordial non-gaussianity is to
measure it.

I Primordial bispectrum Following Section 1.2.1.2, the primordial bispectrum is〈
R (k1)R (k2)R (k3)

〉
= (2π)3δ(3) (k1 + k2 + k3)BR (k1, k2, k3) , (2.81)

where k1, k2, k3 form a triangle. The search for primordial non-gaussianity then starts with the
exploration of the bispectrum. Note that even if we do not measure any bispectrum, that does
not mean there is no non-gaussianity, it may be hidden in the high-order correlation functions.



65 2.2. Primordial non-gaussianity

A crucial point is that the different scenarios of inflation do not generate the same shape
of bispectrum i.e. the same pattern in the triangular configuration, which makes it possible to
discriminate between the different competitive extensions of single-field, slow-rolling inflation.
For instance,

• Squeezed Triangle (k1 � k2 ' k3):, also called local useful configuration since it enables
us to discriminate between single and multi-field inflation, as we will see later (Choi and
Byrnes 2010).

• Equilateral Triangle (k1 = k2 = k3): these shapes can be generated with high-derivative
interaction and complex speed of sound as in DBI inflation (Chen 2005) or in Ghost
inflation (Izumi and Mukohyama 2010).

• Folded Triangle (k1 = 2k2 = 2k3): models with non-standard vacuum initial state |0〉
create non-gaussianity in the folded configuration (Holman and Tolley 2008).

To probe these different configurations, it is useful to introduce some bispectrum templates that
mimic the expected behavior of primordial non-gaussianity generated from different inflation
scenarios. These templates are just a way to parametrize the amount of non-gaussianity and
one can imagine as many parametrizations as one wants. Note that the theory at first order and
the observations are in favor of almost Gaussian distribution. We therefore expect only a small
deviation from gaussianity.

I Change of convention In the following, to match the mainstream definition of primordial
non-gaussianity, we change our Newtonian gauge convention (1.58) for the one from Dodelson
and Schmidt (2020):

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1 + 2Φ)δijdxidxj

]
. (2.82)

This implies the following changes:

Φ→ Ψ and Ψ→ −Φ,

such that in absence of anisotropic stress (Π = 0)

Φ = Ψ→ Ψ = −Φ, and, Φ = −3/5R → Φ = 3/5R (k � H).

In particular, with this new convention the Poisson equation (1.59) becomes

∆Φ = −4πGa2ρ̄δ, (2.83)

and in Fourier space:
k2Φ = 4πGa2ρ̄δ. (2.84)

Remark: As described by (2.83), the potential Φ has the opposite sign to the usual Newtonian
gravitational potential (well described by Ψ in our notation (1.58)) i.e. is positive. Thus, a
positive increase of Φ, see (2.86), represents an increase of the gravity!

I Local template Popularized by Komatsu and Spergel (2001) (similar parametrization
were already introduced by, for instance, Salopek and Bond 1990, Gangui et al. 1994), local
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template12 was one of the first phenomenological parametrizations of primordial non-gaussianity
using a non-linear correction of the comoving curvature perturbation R:

R(x) = Rg(x) + 3
5f

loc
NL

[
Rg(x)2 −

〈
Rg(x)2

〉]
, (2.85)

where Rg is the gaussian part of R. The factor 3/5 is generally used since the local template
was originally introduced in terms of Newtonian potential Φ that are related to R in the matter-
dominated area via Φ = 3/5R. With this definition, we have

Φ(x) = Φg(x) + f loc
NL ×

[
Φg(x)2 − 〈Φg(x)〉2

]
, (2.86)

where f loc
NL tracks the amount of local primordial non-gaussianity in the matter-dominated area.

Depending on how the measurement is made, one can also get back to the value of Φ well
before the recombination in the radiation-dominated area such that the factor 3/5 is not the
correct one to get (2.86), and one could prefer to use 2/3. It is solely a problem of definition of
f loc

NL and in this dissertation, we always chose f loc
NL such that (2.86) is true in the matter-dominated

area.
The Wick theorem ensures that the bispectrum reads as13

Bloc
R (k1, k2, k3) = 6

5f
loc
NL × [PR (k1)PR (k2) + 2 perm. ]

= 6
5f

loc
NL ×

A2
R

(k1k2k3)2

[
k2

1
k2k3

+ k2
2

k1k3
+ k2

3
k1k2

]
︸ ︷︷ ︸
= 3× S loc(k1, k2, k3)

, (2.87)

where we assumed a scale invariant power spectrum PR(k) = AR/k3. The computation can be
easily extended for non-scale invariant power spectrum (2.62).

Finally, in the squeezed configuration (k1 � k2 ' k3), the bispectrum becomes

lim
k1→0

Bloc
R (k1, k2, k3) = 12

5 f
loc
NL × PR (k1)PR (k3) . (2.88)

Remark: Current observations show a very low amount of primordial non-gaussianity, the total
”non-gaussian” field Φ can be therefore expanded around gaussian solution Φg

14. Note that the
amplitude of Φg is about 10−5, and the Taylor expansion converges quickly. We can always
perform this expansion such that the amount of PNG is correctly given by the value from the
template.

I Equilateral template Inflations with higher-derivation, as DBI inflation (Chen 2005),
have a key characteristic that the bispectrum vanishes when one mode is far outside the horizon
suggesting that the bispectrum is maximal and peaks for equilateral configurations (k1 ≈ k2 ≈
k3). One can then search for these signatures using the following template

Bequil
R = 18

5 f
equil
NL × A2

R
(k1k2k3)2

[(
k1
k2

+ 5 perm.
)
−
(
k2

1
k2k3

+ 2 perm.
)
− 2

]
︸ ︷︷ ︸

= Sequil(k1, k2, k3)

. (2.89)

12This template is called local since it is defined locally in real space.
13The Fourier transform of the non gaussian part of (2.86) can be written as

∫
d3k

(2π)3 Φg (k + k′) Φg (k′) −
(2π)3δD(k)

〈
Φ2
g

〉
.

14One can expand Φ = f(Φg)
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I Orthogonal template One can define a last template orthogonal to the local and equi-
lateral templates, Sortho · Sloc = Sortho · Sequil ≡ 0. In particular, this shape of the template
probes signatures from inflation models with higher-derivative interactions. The template is

Bortho
R = 18

5 f
ortho
NL × A2

R
(k1k2k3)2

[
−3
(
k2

1
k2k3

+ 2 perm.
)

+ 3
(
k1
k2

+ 5 perm.
)
− 8

]
︸ ︷︷ ︸

= Sortho(k1, k2, k3)

. (2.90)

The different shapes S loc, Sequil and Sortho are displayed in Fig. 2.6. For visualization, we have
plotted S(1, x2, x3) with x2 = k2/k1, x3 = k3/k1.
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Figure 2.6: Visualization of the (a) local (2.87) (b) equilateral (2.89) (c) orthogonal (2.90) templates.
We have plotted here, for simplicity, S(1, x2, x3) with x2 = k2/k1, x3 = k3/k1. The local template peaks
in squeeze configuration (x3 ≈ 0), while the equilateral template for x2 ≈ x3 ≈ 1.

2.2.2 Consistency Relation

The generation of primordial non-gaussianity during inflation is well beyond the scope of this
dissertation and will not be discussed here. We only mention the fact that this can be done
through two different mechanisms

• Before horizon exit: Quantum-mechanical effects can generate non-gaussianity. This study
can be performed via the Schwinger-Keldysh in-in formalism (Schwinger 1961), see Malda-
cena (2003), Weinberg (2005) for a description of the in-in formalism applied to inflation.
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• After horizon exit: Classical non-linear evolution can generate non-gaussianity. This can
be computed with the δN formalism (see, for instance, Sugiyama et al. 2013).

However, without digging into these details, one can derive a very powerful relation for
any single field inflation model, known as the consistency relation (Creminelli and Zaldarriaga
2004). Indeed, in squeezed configuration, one long-wavelength mode k1 = kl is correlated with
two short-wavelength modes k2 ' k3 = ks such that kl � ks and

〈Rk1Rk2Rk3〉 −→ 〈R
2
ksRkl〉 (2.91)

Since the modes with longer wavelength freeze earlier (they cross the horizon earlier), the mode
kl will already be frozen when the two shorter modes freeze, and it will act as a background
field. Hence, the bispectrum can be estimated to

〈R2
ksRkl〉 ≈ 〈〈R

2
ks〉
∣∣∣
Rkl

Rkl〉. (2.92)

Using the ADM formalism (Arnowitt et al. 2008) to correctly add the dependence of the
comoving curvature perturbation, the metric once the mode kl is frozen can be written as

ds2 = −dt2 + a2(t)e2R(x)dx2, (2.93)

where the time dependence of R was removed since it is constant15 for super-Hubble modes.
Following Creminelli et al. (2011), the computation will be easier in real space, since the

comoving curvature perturbation will be absorbed in the line element by a simple local rescaling
dx′ = eR(x)dx where R(x) is the background field induced by the frozen Rk1 . Under the effect
of the background field,

∆x′ ' eR∆x ≈ ∆x +R∆x, (2.94)

where ∆x = x3 − x2 and R is evaluated implicitly in (x2 + x3)/2.
Hence, the 2-point correlation of the short modes under a background field can be evaluated

via a first-order expansion

〈R(x2)R(x3)〉|R =
〈
R
(
x′2
)
R
(
x′3
)〉

= 〈R(x2)R(x3)〉|0 + R [∆x ·∇〈R(x2)R(x3)〉]
∣∣∣
0

, (2.95)

where |0 denotes the quantity without background field i.e. R → 0. The squeezed 3-point
correlation function is then, from (2.92),〈
R(x1)R(x2)R(x3)

〉
=
〈
R(x1)

〉
〈R(x2)R(x3)〉

∣∣∣
0

+ 〈R(x1)R〉 [∆x ·∇〈R(x2)R(x3)〉]
∣∣∣
0

= 〈R(x1)R〉 [∆x ·∇〈R(x2)R(x3)〉]
∣∣∣
0

. (2.96)

The first term vanishes since it is the 1-point correlation function. To find the bispectrum, one
needs to re-write the above equation as an integration on k, the left term can be written as〈

R(x1)R
〉

=
∫

kL
P (kL)eikL·(x1−(x2+x3)/2), (2.97)

15R is constant outside the horizon only for adiabatic perturbations. Fortunately, we are considering here single
field inflation that generates only adiabatic perturbations.
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and the right one as

∆x ·∇〈R(x2)R(x3)〉 =
∫

kS
P (kS) (kS · ∂kS ) eikS ·∆x

= −
∫

kS
∂kS · [kSP (kS)] eikS ·∆x

= −
∫

kS
P (kS) d ln

(
k3
SP (kS)

)
d ln kS

eikS ·∆x

, (2.98)

where we have used the integration by parts for the second equality16 and for the last one can
be verified by carefully expanding the two terms17.

Finally, using the two above results and adding the fact that
∫

k1
(2π)3δ

(3)
D (k1 + k2 + k3) = 1,

the 3-point correlation function can be written as

〈
R (x1)R (x2)R (x3)

〉
= −

∫
k1

∫
k2

∫
k3
e−i(k1·x1+k2·x2+k3·x3)

× (2π)3δ(3) (k1 + k2 + k3)P (k1)P (k2) d ln
(
k3

2P (k2)
)

d ln k2

, (2.99)

leading to the consistency relation:

lim
k1→0

〈Rk1Rk2Rk3〉 = (2π)3δ (k1 + k2 + k3) (1− ns)PR (k1)PR (k3) , (2.100)

where we use the primordial power spectrum generated by single field slow-roll inflation model
(2.61).

Matching (2.100) to (2.88) leads to

f loc
NL = 5

12(1− ns). (2.101)

The current observations give ns = 0.9649± 0.0042 i.e. f loc
NL ∼ 10−2 for the single field inflation

model.
Remark: The consistency relation (2.100) is, independent of the shape of the potential (V (φ)),
of the kinetic term (∂µφ), and of the initial vacuum state. The detection of primordial non-
gaussianity in the squeezed limit thus has the authority to rule out all the single field inflation!
That is why the measurement of local shape has gained more and more interest in recent years!
The aim of upcoming observations is to achieve the sensitivity to detect f loc

NL ∼ O(5) with this
method in a very near future (Laureijs et al. 2011, DESI Collaboration et al. 2016b) and then
to reach f loc

NL < O(1).

2.2.3 Scale-dependent bias

As seen above, inflation can imprint specific signatures into cosmological perturbations and thus
into the matter distribution through primordial non-gaussianity.

16The integrated product term vanishes since the P is 0 at both terminals.
17We have used the fact that ∂k · k = 3, derivate the second term of the product using spherical coordinates,

and d/d ln(k) = (d ln(k)/dk )−1 d/dk
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I Probe PNG with LSS These signatures can be observed directly in the bispectrum
as has already been done with the CMB temperature and polarization distributions (Planck
Collaboration et al. 2020). In particular, they found,

f loc
NL = −0.9± 5.1; f equil

NL = −26± 47; fortho
NL = −38± 24, (2.102)

at 68% confidence level. These are the best competitive measurement so far. Unfortunately, the
Planck measurements are already close to the cosmic variance limit18, and the next generation
of the CMB experiment, as CMB-S4, will only improve the current constraints by a factor ∼ 2
(Abazajian et al. 2016).

To circumvent the cosmic variance limit of CMB observations, one possibility would be to
use the enormous statistical power in the 3D galaxy clustering, probing a large volume of the
Universe. The direct measurement of the bispectrum will not be used in this dissertation since
is complicated by the important presence of secondary non-Gaussianity, see Appendix 3, and
requires a theoretical and technical development that is ongoing (Moradinezhad Dizgah et al.
2021), much more complex than the simple BAO/RSD measurement, see Section 1.3.2.4.
Remark: This dissertation focuses on the local primordial non-gaussianity constraint through
the measurement of f loc

NL and in the rest of this dissertation, we will not distinguish fNL and f loc
NL.

I PNG with power spectrum A promising approach is through the unexpected tiny im-
print left at large scales on the matter power spectrum by local PNG, known as the scale-
dependent bias. This relation, firstly discovered by Dalal et al. (2008) and later confirmed by
(Desjacques et al. 2009, Grossi et al. 2009, Pillepich et al. 2010), has radically changed the
search for primordial non-gaussianity over the last decade, since it allows the measurement of
PNG only with the power spectrum, and at scales where the linear theory holds.

In Section 1.3.1.1, the galaxy bias has been assumed to depend only on the field δ(x) at
linear order. However, the presence of local PNG can impact the formation of galaxies. Indeed,
a positive value of f loc

NL in (2.86) will increase the primordial gravitational field where the density
field is the densest such that the matter will aggregate in primordial potential wells forming
denser regions more quickly. It acts as a local rescaling of the critical threshold above which a
galaxy can form; see next paragraph. Remember, here, Φ is positive i.e. has the opposite sign
to the usual Newtonian gravitational potential. And the exact opposite for a negative value f loc

NL
which will slow down the aggregation of matter in the primordial potential wells.

Fig. 2.7a shows simulations with similar initial conditions but with different values of f loc
NL: -

5000, -500, 0, 500, 5000 from top to bottom. The impact of f loc
NL is clearly visible by eye-matching

the large scale structures.
Hence, we need to complete the galaxy bias (1.111) (see Desjacques et al. 2018, for a rigorous

derivation) with an additional term taking into account the local modifications implied by the
primordial gravitational field,

δg(x) = b1δ(x) + bΦf
loc
NLΦprim(x) + ε, (2.103)

where bΦ is a new free parameter giving the sensibility of a specific type of galaxy to the local
rescaling of the critical threshold induced by the presence of local PNG.

The primordial gravitational field Φprim can be related to the matter density perturbation
δ through a transfer function (1.77) such that δ(k) = α(k)Φprim(k). Note that to match the

18See Section 4.1.2.
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(a) (b)

Figure 2.7: These figures are from Dalal et al. (2008), who first noticed the impact of local PNG
on the halos power spectrum. (a) Simulation at z = 0 with similar initial conditions but with f loc

NL =
−5000,−500, 0,+500,+5000 from top to bottom. Each slice is 375 h−1 Mpc wide and 80 h−1 Mpc high
and deep. The impact of positive or negative value of f loc

NL can be visualized by eye-matching the large
scale structures. In the case of positive value, primordial over-dense regions are more clustered. (b) The
upper panel shows the cross-power spectra between halos and dark matter. The points are measurements
from simulations with several values of f loc

NL at z = 1 for halos of mass 1.6×1013M� < M < 3.2×1013M�.
The black and dashed lines are the theoretical prediction given by (2.104). The bottom panel shows the
ratio b(k, f loc

NL)/b(k, f loc
NL = 0). The measurements with f loc

NL = −500, 500 are from smaller simulations and
then have bigger statistical errors. The scale-dependent bias strongly modifies the value of the power
spectrum at large scales i.e. at small k. The expected effect is of course much smaller than the one shown
here.

definition (2.86), Φprim is normalized in the matter-dominated area such that Φ = 3/5R. The
Fourier transform of the field δg is

δg(k) =
(
b1 + bΦ

α(k)f
loc
NL

)
δ(k), (2.104)

where the stochastic contribution was dropped for convenience.
Finally, in the presence of local PNG, the galaxy power spectrum in linear order is

P (k, z) =
(
b1(z) + bΦ(z)

α(k, z)f
loc
NL

)2
× Plin(k, z), (2.105)

where α(k, z) can be calculated in two different ways:

• One can directly compute the transfer function from CLASS19

α(k, z) = TΦ→δ(k, z) =
√

Pδ(k, z)
PΦprim(k) , (2.106)

19The different convention used in CLASS (Φ → −Φ) is not a problem since we are computing the transfer
function as the square root of the ratio of power spectra! One just needs to check the expected sign of α that
should be positive.



Chapter 2. The early Universe 72

and since Φprim is normalized in the matter-dominated area such that Φ = 3/5R, and
with (1.82), the primordial power spectrum can be written as

PΦprim(k) = 9
25

2π2

k3 As

(
k

kpivot

)ns−1

. (2.107)

• Or as in Slosar et al. (2008), one can link δ to Φ in matter dominated area through the
Poisson equation (2.84):

α(k, z) = 2
3
k2T (k)D(z)

Ωm

c2

H2
0
, (2.108)

where c is the speed of light, H0 is the present-day Hubble parameter, Ωm is the matter
density parameter at z = 0, and T (k)D(z) is the transfer function for the gravitational
potential TΦ→Φ(k, z) with D(z) the linear growth factor normalized to be (1 + z)−1 in the
matter-dominated area.

In the following, we will prefer to use the direct computation with the ratio power spectrum
given by CLASS.

The scale-dependent bias leaves a unique imprint on large scales (k < 0.001 Mpc−1 h) in
the power spectrum as shown in Figure 2.7b. Although this relationship is theoretically very
promising, since it involves scales where the theory is linear, it is, unfortunately, subject to
very significant systematic effects, known as imaging systematic effects, making them tricky to
exploit, as we shall see in this dissertation.

I Expecting value of bΦ The scale-dependent bias (2.104) introduce a new free parameter,
bφ, that can be derived in the peak-background formalism (Cole and Kaiser 1989). We follow
Slosar et al. (2008)20.

The density field can be split into uncorrelated long (δl) and short (δs) wavelength pertur-
bations

ρ(x) = ρ̄ (1 + δl + δs) . (2.109)

Similarly, The gaussian part of the primordial gravitational field can be split as Φg = φl + φs,
such that

Φ = φl + fNLφ
2
l + (1 + 2fNLφl)φs + fNLφ

2
s + const. (2.110)

The contrast density field computed from a sufficiently average local density depends only
on the large scale modes i.e. on δl, and the transfer function (2.106) gives δl(k) = α(k)Φ(k).
Hence, with (2.110),

δl(k) = α(k)φl(k), (2.111)

since fNLφ
2
l is secondary order in φl, (1 + 2fNLφl)φs has short wavelength contribution and

fNLφ
2
s adds a small constant contribution at large scales. Note that φl and φs are uncorrelated

such that φl × φs is not a second order term.
Within a large scale over-density, the short wavelength modes of the contrast density field

are
δs = α

[
X1φs +X2φ

2
s

]
, (2.112)

20A complete derivation can be found in Section 7 of Desjacques et al. (2018).
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with X1 = 1 + 2fNLφl, X2 = fNL. The local Lagrangian number density of galaxies i.e. the
number density of haloes per unit halo mass at a position x will then depends not just on δl but
also on X1, X2: n(δl, X1, X2) such that the Lagrangian bias reads as

bL(M,k) ≡ n̄−1 dn
dδl

= n̄−1
[

∂n

∂δl(x) + 2fNL
dφl(k)
dδl(k)

∂n

∂X1

]
= bgL + 2fNL

dφl(k)
dδl(k)

1
n̄

∂n

∂X1

, (2.113)

where we have used the definition of the Lagrangian bias in the Gaussian case:

bgL = n̄−1 ∂n/∂δl(x) . (2.114)

Non-gaussianity acts as a local rescaling of the amplitude of small-scale perturbations (2.112)
and it can be parametrized by σ8 (1.137) such that

σlocal
8 (x) = σ8X1(x) ⇒ δσlocal

8 = σ8δX1 (2.115)

Since the Lagrangian bias is related to the Eulerian bias through b1 = bL + 1 (Matsubara 2008),
one can identify with (2.113) the value of bΦ:

bΦ = 2 ∂ lnn
∂ ln σ8

, (2.116)

where we have dropped the local label.

I Universal mass function Haloes from dark matter simulations respect the universal
mass function (Manera et al. 2010, Hoffmann et al. 2015) i.e. the mean abundance of haloes
per unit halo mass n̄ can be written only as a function of the significance ν(M)21

n̄(M) = n̄(M,ν) = ρ̄m
M
νf (ν) d ln ν

d lnM , (2.117)

where the significance is defined as ν = δc/σ(M) with δc = 1.686, the spherical collapse linear
over-density (see, for instance, Mo and White 1996) and σ(M) is the variance of the linear
matter density field smoothed on the Lagrangian radius R that is related to M through M =
(4π/3)ρ̄mR3(M). f(ν) is the fraction of mass that collapses into haloes of significance between
ν and ν + dν.

Applying (2.114) and (2.116), the Lagrangian bias and the new bias bΦ can be computed
explicitly

bL = n̄−1 ∂n̄

∂δl(x) = − 1
σ

1
νf (ν)

d [νf (ν)]
dν

bΦ = 2 ∂ ln n̄
∂ ln σ8

= −2δcr
σ

1
νf (ν)

d [νf (ν)]
dν

. (2.118)

Finally, the new free parameter bΦ can be related to known parameters

bΦ = 2δcbL = 2δc(b1 − 1), (2.119)

21The Jacobian is
∣∣d lnσ(M)

d lnM

∣∣ = d ln ν(M)
d lnM .
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this expression of bΦ is known as the universal mass relation.
Remark: Unfortunately with galaxy surveys, we are not probing directly the distribution of
dark matter haloes but much more complex structure formations which are not entirely specified
by the halo mass M . The universal mass relation is a reasonable starting point, but it needs
to be refined according to the type of the observed objects. For quasars, for instance, Slosar
et al. (2008) uses the fact that the quasars formation is thought to be triggered by mergers of
halos such that (2.119) has to be corrected by bφ = 2δc(b1 − 1− δ−1

c ) and was later verified by
Reid et al. (2010) with dark matter simulations. Hence, the bias is generally described by a
parameter p such that

bφ = 2δc(b1 − p), (2.120)

with p = 1 for dark matter haloes and p = 1 + δ−1
c ' 1.6 for recent mergers as quasars.

More recent studies (Barreira 2020; 2022b) based on hydrodynamic simulations which emulate
galaxy formation more accurately than the simple dark matter simulations, have shown that
this relationship is not necessarily verified by all types of tracers, particularly those selected by
their magnitude. This complicates the measurement of PNG, since the parameter bφ cannot be
fixed and is completely degenerated with f loc

NL. This degeneracy can be removed either by fixing
the value of bφ or by using the galaxy bispectrum (see, for instance, Moradinezhad Dizgah et al.
2021).

In the following, we will fix the value of bφ with (2.120) as in Slosar et al. (2008), Castorina
et al. (2019), Mueller et al. (2022), knowing that the value of bφ will greatly influence the
constraints obtained on f loc

NL.

I Improvement Two other effects due to the presence of local PNG have been neglected in
(2.104). They become non-negligible at small scales and can therefore be omitted if only large
scales are taken into account. The complete additional bias due to local PNG is (Desjacques
et al. 2009)

∆b (k, fNL) = ∆b (k, fNL) + ∆bI (fNL) + b1(M)βm (k, fNL) . (2.121)

The different contributions are

• ∆b is the scale-dependent bias correction defined in (2.104).

• ∆bI is a scale-independent correction noted but neglected in Slosar et al. (2008). This
correction arises from the change in the mean number density of haloes due to the presence
of the local PNG (there are more massive haloes for positive fNL) and it is given by

∆bI (fNL) = − 1
σ(M)

∂

∂ν
ln
[
f (ν, fNL)
f(ν, 0)

]
Note that the correction has an opposite sign to fNL since the bias decreases (resp. in-
creases) when the mass function is magnified (resp. suppressed).

• βm quantifies the modification of the linear matter power spectrum in the presence of
local PNG, since a positive value of fNL tends to increase the power at small scales. Albeit
relatively small, it is worth including if small scales are used,

βm (k, fNL) = Pmm (k, fNL)− Pmm(k, 0)
Pmm(k, 0) .

Here, only a small value of fNL is considered, otherwise one needs to consider also higher-
order terms. The impact of each term is shown in Fig. 2.8. In particular, the scale-independent
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Figure 2.8: Validation of the bias in presence of local PNG in Desjacques et al. (2009). The top panel
shows the relative modification βm of the linear matter power spectrum in the presence of local PNG for
z = 0, 2 and fNL = −100, 100. The theory is the linear order in the perturbative expansion. The different
contributions to the non-gaussian bias are shown on the bottom panel at z = 0.5. The description given
by (2.121) is accurate up to k ∼ 0.05 hMpc−1.

correction can be absorbed into the linear bias and the modification of the linear power spectrum
becomes relevant at small scales (k > 0.05 hMpc−1).
Remark: The scale-dependent bias relation was extensively tested with dark matter simulations
over the past decade. For instance, Biagetti et al. (2017) investigate the impact of the algorithm
to extract haloes from dark matter simulation. They found, in particular, a discrepancy between
simulations and (2.121) with high mass haloes, in a similar range than for the quasars. The
difference can be explained by the choice of δc which was motivated by the spherical collapse
approximation. However, there is some evidence (More et al. 2011) to suggest that the Friend-
of-Friend with linking length λ = 0.222 are not extracting spherical haloes. From Biagetti et al.
(2017), δc has to be corrected by a factor √q = 0.85 such that δc →

√
qδc. Hence, there is

another freedom in the choice of δc since dark matter haloes never precisely collapse as an
isolated spherical perturbation, and might be better described by elliptical collapse.

2.2.4 Current constraints

The hunt for primordial non-gaussianity began in the early 2000s with the WMAP satellite
(Komatsu et al. 2003, Spergel et al. 2007, Komatsu et al. 2009, Komatsu 2010) and is still today
a crucial aspect of cosmology. The different constraints are displayed in Fig. 2.9. Subsequently,
the discovery of scale-dependent bias (2.105) allowed these measurements to be made with galaxy
surveys, in particular with SDSS (Slosar et al. 2008, Xia et al. 2011, Ross et al. 2013, Castorina

22See Section 5.2.1 for further explanation.



Chapter 2. The early Universe 76

et al. 2019, Mueller et al. 2022). It is worth noting that the constraints obtained with SDSS are
of the same order of magnitude as those obtained with WMAP data.

Today, the best constraints come from WMAP’s successor, the Planck satellite (Planck
Collaboration et al. 2014; 2016; 2020). Unfortunately, the new CMB measurement experiments
will only be able to reduce the constraints by a factor of 2 (Abazajian et al. 2016). To circumvent
the cosmic variance limit of CMB observations, new large scale galaxy surveys as DESI (what
I’m doing in this dissertation!) or Euclid are expected to measure f loc

NL with a precision of the
order of five.

Another promising approach that has gained prominence in recent years is the cross-correlation
between photometric surveys of galaxies and CMB lensing (Giannantonio et al. 2014, McCarthy
et al. 2022, Krolewski et al. 2023). This method is particularly attractive as it avoids large scale
systematic effects that complicate measurements using galaxy power spectra.

Furthermore, the recent utilization of the galaxy bispectrum has proven to be a powerful
tool in constraining different forms of non-Gaussianity (D’Amico et al. 2022, Cabass et al. 2022).
This method, based on the effective theory of large scale structures (see, for instance, Carrasco
et al. 2012), offers a decisive solution for breaking the degeneracy between bΦ and f loc

NL, and could
reduce the error by a factor 2 or 3 (Moradinezhad Dizgah et al. 2021). However, it introduces
additional complexity to the theoretical framework.
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Figure 2.9: Compilation of local primordial non-gaussianity measurements. Dashed lines correspond to
the 95% confidence level, while the full ones to the 68% confidence level. Shaded areas show the evolution
of the 68% constraints. References to these measurements are given in the text. Inspired from Mueller
et al. (2022).
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Il éprouvait le sentiment radieux de s’être une fois de plus emparé d’un
fragment du monde ; d’avoir découpé avec son scalpel imaginaire une mince
bande de tissu dans la toile infinie de l’univers.

Milan Kundera, Nesnesitelná lehkost byt́ı (1982)

M apping the Universe requires acquiring the 3-dimensional coordinates of galaxies that
surround us. We first use a photometric survey to detect and locate galaxies in the sky.

Then, we use spectroscopy to determine their redshifts (1.24), which serve as proxies for their
distances (1.26).

A photometric survey captures images of the sky with or without optical filters. Longer
exposure times allow for the detection of fainter objects. The position of each object in the sky
is generally given in equatorial coordinates, represented as (R.A.,Dec.). The Declination (Dec.)
is analogous to terrestrial latitude, while the Right Ascension (R.A.) is comparable to terrestrial
longitude.

While photometric measurements are relatively quick as they only depend on the exposure
time, spectroscopic measurements take significantly longer. This is because the light of each
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object spread over a CCD needs to be collected in a fiber and then analyzed individually with
a spectrograph. The following section discusses the evolution of spectroscopic surveys over the
past four decades, while the second section provides a more detailed description of the Dark
Energy Spectroscopic Instrument (DESI), a new generation spectroscopic survey.

3.1 History of LSS survey

The use of spectroscopy as a tool to measure distances and map the Universe started in the
1970s, but it gained significant momentum in the 2000s with the race to discover the BAO
signal. Fig. 3.1 shows the evolution of the number of objects mapped by spectroscopy in the
main dedicated survey as a function of time. It is well-known as the Moore law for the galaxy
surveys where the number of observed galaxies increases by an order of magnitude every ten
years. The color represents the mean redshift of the sample. Galaxy surveys have undergone two
major revolutions: multi-fiber observation (from stage II to III) but each fiber was positioned
by hand on the focal plane, and the creation of robotic positioners (from stage III to IV).
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Figure 3.1: Moore law for the galaxy surveys. The number of observed objects increases by an order
of magnitude every ten years thanks to technical progress. DESI will be the first spectroscopic survey of
the fourth generation to be on sky.

3.1.1 Stage I / II: Knockin’ on heaven’s door

Redshift survey history began during the 1970s when high-voltage image intensifier devices
replaced the photographic plates as the primary detector in telescopes. A redshift accuracy of
±100 km s−1 for a galaxy of magnitude m ∼ 15 is then reached in only 15 min compared to 2.5
hours with the previous devices.

I First spectroscopic map The usual representation of a galaxy survey showing data in
polar coordinates, where the right ascension is used as the angular coordinate and the redshift
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as the radial coordinate, appears with the Coma cluster redshift survey in Tifft and Gregory
(1976). It is displayed in Fig. 3.2a. See Thompson and Gregory (2011) for useful historical
references. At that time, the number of observations was too small to describe the structure of
the cosmic web, but this paved the way for the study of the galaxy distribution today.

I CfA Redshift Survey The Center for Astrophysics (CfA) conducted the first attempt,
the CfA Redshift Survey1, to map the large-scale structures of the Universe. They achieved two
surveys: CfA from 1977 to 1982 (Davis et al. 1982, Huchra et al. 1983) and CfA2 from 1985 to
1995 (Huchra et al. 1999), collecting the redshifts of 18,000 bright galaxies in the Northern sky.
Data collected during these two surveys showed that galaxies were not evenly distributed in the
sky but clustered. Fig. 3.2b shows the first slice of the CfA2 Survey (de Lapparent et al. 1986)
which is a set of 1100 galaxies in a strip on the sky six degrees wide and about 130 degrees long.
Clusters and voids can clearly be identified in this figure.

CfA2 discovered also one of the largest known structures in the observable Universe. The
first Great Wall is at z ∼ 0.03, 61 Mpc in width and about 5 Mpc in thickness. This supercluster
is too large to be produced by gravitational collapse since the beginning of the Universe and is
explained as artifacts of quantum fluctuations in the inflationary epoch of the Universe.

(a) (b)

Figure 3.2: (a) Redshift survey of the Coma cluster by Tifft and Gregory (1976). It is the first use of
a cone diagram in the Astrophysical Journal. (b) Diagram showing the first CfA strip observed in 1985
by de Lapparent et al. (1986). A cluster of galaxies with the shape of a man surrounded by voids can be
surprisingly identified.

3.1.2 Stage III: Multi-fiber survey

The first revolution in the spectroscopic survey is the emergence of multi-fiber surveys (a few
hundred fibers) which increases drastically the number of objects which can be observed in a
single night.

1http://tdc-www.harvard.edu/zcat/.

http://tdc-www.harvard.edu/zcat/.
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I Two-degree-Field Galaxy Redshift Survey The Australian Astronomical Observatory
(AAO) performed from 1997 to 2002 the Two-degree-Field Galaxy Redshift Survey (2dFGRS2,
Colless et al. 2001) with the 3.9 m Anglo-Australian telescope. It was the largest redshift
survey at that time collecting 232,155 galaxies on an area of about 1500 square degrees with
a depth up to z ' 0.2. This survey allowed to accurately measure the density parameters of
non-relativistic matter and, with the help of SDSS (see next paragraph), to detect the Baryon
acoustic oscillations in the large-scale structures (Percival et al. 2007). Then, the AAO conducted
two other smaller surveys: 6dFGS (Jones et al. 2009) and WiggleZ (Drinkwater et al. 2010).

I Sloan Digital Sky Survey The Sloan Digital Sky Survey (SDSS)3 is the major astro-
physical survey of the past decade starting in 2000. In particular, the program Baryon Oscil-
lation Spectroscopic Survey (BOSS) and the extended Baryon Oscillation Spectroscopic Survey
(eBOSS) produced the largest 3D map of our universe in 2020 (Ahumada et al. 2020). Previously
to these two dedicated programs, the BAO peak was first detected by Eisenstein et al. (2005) in
the first galaxy survey performed by SDSS. Fig. 3.3 shows the 2.3 million objects observed over
20 years divided into different target classes4. The associated observed BAO peaks are plotted
on the right and were used in Fig. 1.19c.

Dedicated analysis are available for each tracer: Ross et al. (2015), Howlett et al. (2015) for
Main galaxy sample, Alam et al. (2017) for BOSS galaxies, Gil-Maŕin et al. (2020), Wang et al.
(2020), Bautista et al. (2021) for luminous red galaxies (LRG), Tamone et al. (2020), Raichoor
et al. (2021), De Mattia et al. (2021) for emission line galaxies (ELG), Hou et al. (2021), Neveux
et al. (2020) for quasars (QSO) and du Mas des Bourboux et al. (2020) for Lyα forest. Each
tracer will be discussed in more detail in Section 3.2.3.2.

Figure 3.3: SDSS map from DR16 release after two decades of observation. Each color represents a
specific target class and the associated measured BAO peak at different redshifts is plotted on the right.
Credit: Anand Raichoor, Ashley Ross and the SDSS Collaboration

2http://www.2dfgrs.net/
3https://www.sdss.org/
4For a short walk inside: https://www.youtube.com/watch?v=KJJXbcf8kxA&t=3s.

http://www.2dfgrs.net/
https://www.sdss.org/
https://www.youtube.com/watch?v=KJJXbcf8kxA&t=3s
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3.1.3 Stage IV: Mapping efficiently the sky and beyond

Apart from the size of the telescope which limits the amount of light and thus the number of
possible fibers, the major limitation of the BOSS/eBOSS programs was the manual positioning of
fibers during each exposure, which took about 15 minutes to change the cartridge containing the
optical fibers. Each of these cartridges was prepared during the day, taking 40 minutes for each.
However, the fourth-generation surveys have revolutionized fiber positioning by automating the
process. For instance, DESI, see Section 3.2.1.3, puts its fibers automatically in the sky in less
than two minutes. To achieve the ten-fold increase in survey capabilities predicted by Moore’s
Law (Fig. 3.1), DESI will use 5000 fibers compared to 1000 for BOSS/eBOSS.

DESI is not the only 4th generation spectroscopic survey to emerge. For instance, the
European Euclid satellite (Scaramella et al. 2022) which will operate in slitless mode, or the
4-meter Multi-Object Spectroscopic Telescope (4MOST5, de Jong et al. 2022) which will be
hosted by the VISTA telescope in the coming years.

However, the depth of the photometric surveys and the availability of targets remain a
crucial limitation of the upcoming spectroscopic surveys. Hence, to probe deeper into the
Universe and improve our statistical measurements, the next generation of surveys, following
DESI, will require much deeper photometry to observe more distant objects. Fortunately, the
Vera C. Rubin Observatory, formerly known as the Large Synoptic Survey Telescope (LSST6,
Ivezić et al. 2019), will provide an unprecedented quality of photometry.

3.2 Dark Energy Spectroscopic Instrument (DESI)

3.2.1 Overview

3.2.1.1 Context

The Dark Energy Spectroscopic Instrument (DESI)7 is an international scientific collaboration
to study dark energy through the measurement of the expansion rate of the Universe. The
instrument is hosted by the Mayall telescope on top of Kitt Peak at an elevation of 21000
m. Kitt Peak National Observatory is located in the Sonoran Desert near Tuscon, Arizona,
USA. The Mayall telescope is a 4-meter telescope and was built in 1973. Figure 3.4 shows the
instrument with the 5000 fibers installed on the Mayall telescope.

DESI is capable of taking 5,000 simultaneous spectra over a wavelength range from 360
nm to 980 nm. The nominal survey will be conducted over 5 years and will cover an area of
14,000 deg2 i.e. 1/3 of all the sky area. DESI will then observe 40 million objects covering a
redshift range of 0.05 to 4, classified between bright galaxy sample (BGS), luminous red galaxies
(LRGs), emission line galaxies (ELGs) and quasars (QSOs), see Section 3.2.3.2. DESI is the
first stage-IV galaxy survey on sky. For comparison, DESI will collect in six months the same
amount of spectra as during all the BOSS/eBOSS programs.

The R&D phase for DESI started in December 2012 and was managed by the Lawrence
Berkeley National Laboratory. The instrument construction started in 2016 and the first light
of the new corrector system was obtained on the night of April 1, 2019, and on the night of
October 22, 2019, for the entire instrument. The commissioning phase was completed in March
2020. After a long break due to the COVID-19 pandemic, DESI had its survey validation during

5https://www.4most.eu/cms/home/
6https://www.lsst.org/
7https://www.desi.lbl.gov/

https://www.4most.eu/cms/home/
https://www.lsst.org/
https://www.desi.lbl.gov/
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the winter of 2021 and the nominal survey started in May 2021. For more detailed information,
see the DESI Science final design report DESI Collaboration et al. (2016a;b).

Figure 3.4: The Mayall Telescope at Kitt Peak National Observatory with DESI installed. Photo from
DESI collaboration.

3.2.1.2 Science motivation

The main purpose of DESI is to constrain the expansion of the universe (1.34) and thus to
constrain the amount of dark energy and its equation of state (1.30). Like BOSS/eBOSS, DESI
will observe the distribution of matter in the Universe in which one will be able to measure the
acoustic oscillation of baryons and the redshift space distortion as explained in Section 1.3.2.4.

By increasing by a factor of 10 the number of observed galaxies and quasars, DESI will
increase the constraining power from the galaxy survey on the ΛCDM model. Fig. 3.5 gives
the forecast on the BAO and RSD parameters based on the survey validation of DESI DESI
Collaboration et al. (2023a). With this large number of points measured over a wide range
of redshifts, and with the help of the BBN measurement to break the degeneracy of rd (see
Section 1.3.2.3), DESI should have competitive constraints on ΛCDM parameters compared to
Planck (Planck Collaboration et al. 2020) alone.
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In addition to the BAO/RSD parameters, the increase in statistics will allow DESI to strongly
improve the measurement of the entire shape of the power spectrum pioneered by SDSS, and
then to improve the constraints on several other effects such as the neutrino mass, modified
gravity or primordial non-gaussianity.

This dissertation is focused on the measurement of the latter one, in order to constrain the
different scenarios of inflation. The large volume probed by DESI, especially by the quasar
sample, is an excellent opportunity to improve the previous measurement performed in eBOSS
and reach similar sensitivity to Planck.
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Figure 3.5: Same as Fig. 1.19c. BOSS/eBOSS points are from Alam et al. (2021) and references therein.
Errors for DESI are from DESI Collaboration et al. (2023a). At low redshift, the errors are larger because
the volume probed is smaller (1.27). Above z > 2.1, the points come from Lyα forest study and cannot
provide a constraint, for the moment, on the growth rate. In DESI, QSO is the unique tracer available to
probe the Universe above z = 1.6 either with QSOs as a direct tracer or with the Ly-α forest contained
in their spectra.

3.2.1.3 Telescope & Instrument

DESI is mounted on the Mayall telescope located at Kitt Peak in Arizona (USA). It uses the
existing primary mirror of the 50 years old Mayall telescope with a new prime focus corrector,
specifically developed for DESI, which allows the use of 5,000 fibers over 8 deg2. Figure 3.6
shows the position of the relevant part of DESI installed on the Mayall. A full description can
be found in the instrument design report (DESI Collaboration et al. 2016b) or in the instrument
overview (DESI Collaboration et al. 2022). Briefly, the DESI experiment consists of:

• Telescope & Prime focus corrector : As shown on Fig. 3.6, the Mayall telescope is a reflective
telescope. To have a large field of view and collect the light of 5000 objects simultaneously,
the prime focus corrector and the focal plane system were installed at the top of the
telescope. It required the modification of the telescope by adding a large metallic ring
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Ten thermally-controlled,
3-channel spectrographs

(360-980 nm)

Top ring, vanes,
and cage

Focal Plane Assembly with
5000 Fiber Positioners

Calibration Lamp
System

Six-lens, 8 sq. deg,
Wide-field corrector

on a Hexapod

Ten, 50m long
fiber cables

Fiber View
Camera

4-meter
primary mirror

Figure 3.6: 3D CAD model of DESI installed on the Mayall Telescope. The most relevant parts of the
instrument are annotated.

supported by long arms. Finally, the light is reflected by the 4-meter diameter primary
mirror and goes through the prime focus corrector at the top of the telescope. After
passing through the corrector, the light reaches the focal plane system and is collected by
the optical fibers.
The prime focus corrector (Miller et al. 2023) was designed specifically for DESI and
consists of six lenses, each with a diameter of approximately 1 meter. The corrector
expands the field of view on the focal plane system to approximately height square degrees
(DESI Collaboration et al. 2022). The last two lenses in the corrector act as an atmospheric
dispersion corrector (ADC), which compensates for the wavelength-dependent atmospheric
dispersion up to 60 degrees from the zenith. To align the corrector and the focal plane, the
corrector is connected to the metallic ring by a hexapod. Typically, the alignment may be
affected by mechanical deformation caused by the weight of the corrector. The hexapod
provides up to six degrees of freedom.

• Focal plane system: The great advance compared to BOSS/eBOSS, the DESI ancestor, is
the use of robotic fiber positioners which allow DESI to position 5,000 fibers in the field of
view in less than 2 min instead of spending 15 min to change the cartridge that contains
the optical fibers of BOSS/eBOSS. Hence, this step in DESI is done in a similar amount
of time to read the CCDs.
The focal plane system consists of 10 petals of 500 fibers each. Fig. 3.7 shows a petal with
a bunch of robotic positioners already installed that independently control one optical fiber
each. Robotic positioners are installed along a hexagonal grid with a 10.4 mm separation.
Additionally, each petal is equipped with one Guide, Focus and Alignment camera (GFA),
10-12 field-illuminated fiducials (FIF) and two GFA illuminated fiducials (GIF). GFAs are
used for the guidance, focus and alignment of the telescope by tracking reference stars.
The spherical shape ensures a correct focus and alignment of the instrument. Thanks to
these cameras, the telescope can follow the rotation of the sky.
To ensure accurate positioning of the fibers on the focal plane, DESI employs a Fiber View
Camera (FVC), which is situated at the center of the primary mirror. When fibers are
positioned, they are back-illuminated and the FVC, using FIFs and GIFs as a reference, is
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able to measure both the position of the fibers and any deformations caused by the prime
focus corrector. This image is used to correct the position of the fibers to reach a maximal
RMS error of about 5 µm, while the diameter of one fiber is 107 µm that is comparable
to twice the diameter of a hair (Silber et al. 2023).

(a) (b)

Figure 3.7: (a) One of the 10 petals that will be placed at the focal plane of the telescope. Each of
them consists of 500 optical fibers that are controlled individually and simultaneously by robotic arms.
Arms with fibers are being installed on the petal. (b) Backside of the petal reveals some arms with their
controlled cards and fibers. Photos from Marilyn Chung.

• Spectrographs: The 500 fibers of each petal are grouped together in one fiber cable and
reach one of the ten spectrographs after running 50 meters of fiber cable. Fig. 3.8a shows
the diagram of one spectrograph. The light of each fiber is separated firstly by a NIR pass
dichroic reflecting the blue and the red to a red pass dichroic (Edelstein et al. 2018). At the
entrance of each arm of the spectrograph, lights from fibers are spread by a volume phase
holographic grating providing a high transmission over all the desired wavelengths. Finally,
the infrared, red and blue light are collected by CCD sensors of 4096×4096 pixels for blue
cameras and 4114× 4128 pixels for red and infrared cameras. To reduce the reading noise
of the CCDs, they have to work almost in a vacuum at very low temperatures. This is
made possible by cryostats provided by the IRFU (CEA Saclay), which allow maintaining
the temperature at 163 K (resp. 140 K) and 10−6 mbar for the B channel (resp. R and
Z). Table 3.1 gives the bandwidth of each channel as well as their resolutions which are
obtained by measuring the PSF of a 12 µm diameter light source.

Fig. 3.8 shows the raw CCD images from spectrograph 6 of exposition 12127 with 1334 s
exposure time. The 500 fibers are horizontal, while the increased wavelengths are vertical.
Horizontal arcs correspond to the sky emission lines more prominent in the near-infrared
channel. The red and near-infrared channels are more sensitive to cosmic rays. These raw
CCD images need to go through all the spectroscopic pipeline desispec8 to extract the
spectra of the observed objects as detailed in Guy et al. (2023) before measuring their
redshifts.

8https://github.com/desihub/desispec

https://github.com/desihub/desispec
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Table 3.1: Range and resolution for the three channels (B, R, Z) of the ten DESI spectrographs. From
Table 5.1 of DESI Collaboration et al. (2016b).

Channel Range [Å] Resolution
Blue (B) 3600− 5930 2000− 3200
Red (R) 5600− 7720 3200− 4100

Near-infrared (Z) 7470− 9800 4100− 5100

(a)

(b) (c) (d)

Figure 3.8: (a) Diagram of the 3 channels that constitute each of the 10 spectrographs of DESI (DESI
Collaboration et al. 2016b) (b) Spectrograph 6 - Blue (B) channel (c) Red (R) channel (d) Near-infrared
(Z) channel of the exposition 12127 with 1334 s exposure time and taken during the 02/04/22 night.
They are raw CCD images and need to go through the spectroscopic pipeline. x-axis represents 500
fibers, while y-axis represents increasing wavelength. The horizontal arcs correspond to the sky emission
lines which contaminate, at fixed wavelengths, the data. The black columns are gaps in each set of 25
fibers. Red and near-infrared channels are more sensitive to cosmic rays.

3.2.2 Observing the sky

3.2.2.1 One night of observation

Before performing one night of observation, observers check the functioning of all cameras and
the instrument, and they carry out a nightly calibration of the spectrograph cameras. For this
step, the dome is closed, and no external light is in the room. The calibration consists of several
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steps:

1. Zero: to determine the intrinsic readout noise from the bias level of the CCD depending
on the position. The bias level will be subtracted from the raw images and the readout
noise will be accounted in the error.

2. Dark: to measure the dark current (electric noise produced by the CCD) during nominal
exposure time that will be subtracted from the raw images.

3. Flat: to quantify the response of cameras to light with a smooth spectrum at the pixel
level and to normalize the incoming flux during the observation.

4. Arc: to quantify the response of cameras to well-defined emission lines (Ar, Cd, Hg, Kr,
Ne, and Xe) and to derive the resolution of the cameras for each fiber, as well as, to
model the full two-dimensional point spread function (2D PSF) for each image using the
spectroperfectionism algorithm (Bolton and Schlegel 2010).

After these calibrations, the observation night can start when the Sun is 12 degrees below the
horizon and will stop when the Sun reaches the opposite side, 12 degrees below the horizon.
Fig. 3.9a shows a perfectly dark night during my observation shift on 02/03/2022. The yellow
lights on the side are from humans: Tucson (east) and Phoenix (north) cities.

(a)

(b)

Figure 3.9: (a) All-sky camera of a clear night at Kitt Peak National Observatory taken during my
observation shift on 02/03/2022. (b) The manual plan for the same night is used only if you do not want
to follow the Next Tile Selector (NTS) program. The red points are the location of the observation in
this plan.

The DESI sky has been paved by tiles which are circles of 8 deg2 in which about 5000
objects can be observed. To be able to achieve SDR9 requirement (DESI Collaboration et al.
2016b), DESI will have to make about 5 passes at each place of the sky (Schlafly et al. 2023).

9Science Design report
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The targets of each unobserved tile are updated every day via the Merge Target List (MTL,
Raichoor 2023) to respect a predefined order of priority and then to allow the re-observation
of objects such as high-z quasars (z > 2.0) for the Ly-α forests. Fig. 3.9b shows the manual
plan for the 02/03/2022 night which corresponds to what should be done in the case of optimal
weather. To optimize the observation time and avoid bad weather zones, DESI uses a real-time
algorithm that determines the best tile to observe via the Next Tile Selector (NTS).

3.2.2.2 Survey validation

Figure 3.10: Survey Validation map; SV3 covers a wide range of regions in order to validate the main
survey which should observe all the grey region above Dec. > −20◦. Grey is the footprint of the Legacy
Imaging Survey. Since DESI is in the Northern Hemisphere, it cannot cover all this area.

From December 2020 to April 2021, the collaboration has performed a survey validation (SV,
DESI Collaboration et al. 2023a) to validate the choice made for the target selection, optimize
the exposure time, the survey strategy and test the performance of the spectroscopic pipeline.
This crucial step, before the main survey, will determine the global strategy for the next 5 years.
Survey validation was done in several stages:

• SV1: dedicated observation to test, optimize and validate the target selection. In partic-
ular, tiles with important exposure time (∼ 10000 s) were observed to determine the effi-
ciency of the redshift measurement and hence derive the nominal exposure time (∼ 1000 s).
From these observations, the collaboration built truth tables by visually inspecting several
thousand spectra (Lan et al. 2023, Alexander et al. 2023).

• SV2: optimization of the target selection before SV3 which will be used as validation for
the main survey. Actually, small modifications were applied to target selection between
SV2 and SV3.

• SV3: dress rehearsal for the main survey with 20% longer exposure time. Final validation
and tiny optimization of the target selection. The observations are done in several rosettes
which are made of a lot of tiles to observe almost every target in these areas, and thus
to fully characterize the final main sample. In particular, these observations are used
to derive important parameters and characteristics to tune the simulations for the first
cosmological analysis based on the year 1 dataset.

Fig. 3.10 shows the different areas covered by the survey validation. All these observations
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were published in the early data release (EDR, DESI Collaboration et al. 2023b) and are publicly
available.

Figure 3.11: View from the Mayall telescope hosting DESI. On Friday morning 17 June 2022,
the Contreras Fire reaches the summit of Kitt Peak causing the stop of the observations during the
two summer months. DESI will start mapping the sky again in early September 2022. Credit:
KPNO/NOIRLab/NSF/AURA.

3.2.2.3 Main survey

DESI started the main survey in May 2021 for a nominal period of 5 years. After a first shutdown
during the summer of 2021 for a hardware upgrade, DESI outperformed the planning during its
first year of observation. Unfortunately, DESI was forced to make a second shutdown due to
the Contreras fire10. Fig. 3.11 is the view from the Mayall telescope when the fire reaches the
summit of Kitt Peak. No structural damage other than ash has impacted DESI. The survey
restarted in early September 2022 without a cable internet connection and with a fuel generator
as a power source.

Fig. 3.12 shows the progression of the main survey for the dark time. Fig.3.12a is after the
two months of observation before the first shutdown. Fig. 3.12b is just before the fire. These
data will constitute the year 1 (Y1) data release, with which I perform the measurement of local
primordial non-gaussianity in this dissertation. Fig. 3.12c is when I finish to write these lines,
approximately 2 years after the survey began.

10https://www.desi.lbl.gov/2022/06/29/contreras-fire-threatens-desi-and-kitt-peak-national-observatory/

https://www.desi.lbl.gov/2022/06/29/contreras-fire-threatens-desi-and-kitt-peak-national-observatory/
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(a)

(b)

(c)

Figure 3.12: Number of visits per sky positions which tracks the main DESI survey (dark time) progress
for three different moments: (a) End of the two first months of observations – 2021-07-09 (b) First-year
coverage – 2022-06-13 (c) Today – 2023-06-12. After the nominal 5 years of the survey, DESI is expected
to cover all the grey area with at least 5 tiles. These figures were generated using a script written by
Anand Raichoor.
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3.2.3 Mapping the Universe

3.2.3.1 DESI Legacy Imaging Surveys

To select targets for the DESI spectroscopic survey, the Legacy Imaging Surveys11 program was
conducted over more than 14,000 deg2 of the sky from the Northern Hemisphere, in three optical
bands : g, r and z. The optical surveys were complemented by two infrared bands from the
custom “unWISE” coadds (Meisner et al. 2017) of the all-sky data of the Wide-field Infrared
Survey Explorer (WISE) satellite (Wright et al. 2010), namely: W1 and W2. Table 3.2 recaps
the five bands from the Legacy Imaging Surveys. DESI will use the data release 9 (DR9) for the
target selection. An overview of the Legacy Imaging Surveys is available in Dey et al. (2019).
The optical bands were collected via three independent programs:

• The Beijing-Arizona Sky Survey (BASS, Zou et al. 2019) observed ∼5,100 deg2 of the
North Galactic cap (NGC) in g and r using the 2.3-meter Bok telescope. The area surveyed
corresponded to approximately Dec. > 32.375 deg.

• The Mayall z-band Legacy Survey (MzLS, Silva et al. 2016) provided z-band observations
over the same footprint as BASS using the 4-meter Mayall telescope. Because the median
value of the seeing is significantly better than in the BASS data, the MzLS data are critical
for deblending sources and deriving source morphology.

• The Dark Energy Camera Legacy Survey (DECaLS) was performed with the Dark En-
ergy Camera (DECam, Flaugher et al. 2015) on the 4-meter Blanco telescope. DECaLS
observed the bulk of the Legacy Imaging Surveys footprint in g, r and z. DECam was
initially built to conduct the Dark Energy Survey (DES) and DECaLS expanded the DES
area using publicly available DECam time. However, DES imaging is significantly deeper
than standard DECaLS observations as it is covered by more exposures (more than 4 in
each band).

Table 3.2: Legacy Imaging Surveys bands.

Band range [Å] Mean wavelength [Å]
g 3800 – 5657 4770
r 5400 – 7350 6231
z 8250 – 10150 9134
W1 26200 – 39500 33680
W2 39500 – 53900 46180

Fig. 3.13 shows the effective band passes for the three optical programs BASS/MzLS/DECaLS12

and for the WISE satellite13. Although the effective band passes are quite similar, it will be
necessary to take into account these slight differences to be able to compare the magnitudes of
the objects measured by the three programs, in particular for the g band between BASS and
DECaLZ.

A photometric survey can be described by the quality of their images, e.g. with the PSF

11https://www.legacysurvey.org/dr9/
12Optical throughputs can be found here: https://www.legacysurvey.org/dr6/description/, https://www.

legacysurvey.org/dr7/description/
13WISE throughputs can be found here: https://www.astro.ucla.edu/˜wright/WISE/passbands.html

https://www.legacysurvey.org/dr9/
https://www.legacysurvey.org/dr6/description/
https://www.legacysurvey.org/dr7/description/
https://www.legacysurvey.org/dr7/description/
https://www.astro.ucla.edu/~wright/WISE/passbands.html


Chapter 3. Galaxy survey 92

4000 6000 8000 10000

Wavelength [Å]
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Figure 3.13: The effective band-passes used for the Legacy Imaging Surveys. Right: The DECaLS,
BASS and MzLS effective filter throughputs for the entire system are shown. These include the trans-
mission of the atmosphere (at a median airmass of 1.0 for BASS and MzLS and 1.4 for DECaLS), the
reflectivity and obscuration of the primary mirror, the corrector transmission, and the quantum efficiency
of the CCDs. Two different airmasses are used since telescopes are not on the same location. Left: The
same for WISE. Since WISE is a satellite, the throughputs are not impacted by the transmission of the
atmosphere and are therefore higher.

Table 3.3: Median values of the PSF depth and PSF size for the three imaging surveys that together
constitute the DR9 Legacy Imaging Surveys. DECaLS is split according to the DES region since the
quality of the photometry inside this region is significantly better. For comparison, the corresponding
values for the SDSS imaging are displayed in the last row.

PSF Depth [mag] PSF Size [arcsec]
g r z g r z

DECaLS (non DES) 24.7 24.2 23.3 1.51 1.38 1.31
DES 25.2 25.0 23.8 1.42 1.24 1.14
BASS 24.2 23.7 1.89 1.67
MzLS 23.3 1.24
SDSS 23.13 22.70 20.71 1.44 1.32 1.29

Depth [1/nanomaggies2] which is the 5-sigma point-source magnitude depth14, and the PSF size
[arcsec] which is the inverse-noise-weighted average of the full width at half maximum of the
point spread function, also called the delivered image quality or seeing. A small value of PSF
size corresponds to a good image resolution. The median values of the PSF depth and PSF size
for each program are given in Table 3.3. For comparison, the corresponding values for the SDSS
imaging15 are displayed in the last row.

Fig. 3.14 shows the PSF Depth r in the Legacy Imaging Surveys and highlights three distinct
regions:

1. In blue, the combination of BASS and MzLS covering the northern part (∼5,100 deg2) of
the DESI footprint (designated North hereafter).

14For a 5σ point source detection limit in band x, 5/
√
x gives the PSF Depth as a flux in nano mag-

gies and −2.5
(
log10(5/

√
x)− 9

)
gives the corresponding magnitude (see https://www.legacysurvey.org/dr9/

catalogs/).
15https://www.sdss4.org/dr16/imaging/other_info/

https://www.legacysurvey.org/dr9/catalogs/
https://www.legacysurvey.org/dr9/catalogs/
https://www.sdss4.org/dr16/imaging/other_info/
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2. In red, the DES part of DECaLS covering ∼4,600 deg2 (designated DES).

3. In green, the non-DES part of DECaLS covering ∼9,900 deg2 (designated South).

The region around the Large Magellanic Cloud (R.A.,Dec. in the ranges [52◦, 100◦] and [−70◦,−50◦]
respectively) is excluded in the following since it is heavily contaminated by stars. Note that
DESI will only observe Dec. > −20◦ since the Mayall telescope is in the North hemisphere.

Figure 3.14: Distribution of the PSF Depth r in the DR9 Legacy Imaging Surveys footprint. The solid
black line shows the Galactic plane. Three different imaging footprints are highlighted. The designations
are as in Chaussidon et al. (2022). The blue region is the combination of BASS and MzLS (designated
North in the following). The red region is the DES part of DECaLS (designated DES). The green region,
which excludes the red and the blue regions, is the non-DES part of DECaLS (designated South).

3.2.3.2 DESI targets

To map the matter throughout the Universe, DESI will observe different types of sources that
depict different epochs of the Universe. Fig. 3.15 shows images from the DR9 of the Legacy
Imaging Surveys, which can be explored via the viewer16. Each source object in this figure
represents as many potential galaxies or stars as DESI can observe. However, even with its 5000
fibers DESI cannot observe all these objects simultaneously. Hence, the first step of a galaxy
survey is to select which source objects in the sky will receive an optical fiber when DESI will
measure the redshift of these objects tranforming this 2D figure into a 3D map.

Table 3.4: Required number of targets for DESI by the science committee by deg2

Tracer density (# deg−2) magnitude cut
BGS 1400 r < 20.175
LRG 615 z < 21.5
ELG 2400 g < 23.5
QSO 310 r < 23.0

The target selection is based on the photometric properties of each tracer and to further
reduce the contamination of the sample from unwanted stars or galaxies, a limit on source

16Enjoy the viewer: https://www.legacysurvey.org/viewer?ra=217.6059&dec=11.9277&layer=ls-dr8&
zoom=12. For DESI members, you can even consult directly the spectra of objects already observed by DESI.

https://www.legacysurvey.org/viewer?ra=217.6059&dec=11.9277&layer=ls-dr8&zoom=12
https://www.legacysurvey.org/viewer?ra=217.6059&dec=11.9277&layer=ls-dr8&zoom=12
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Figure 3.15: Image from the DR9 of the DESI Legacy Imaging Surveys at R.A. ∼ 217◦ and Dec. ∼ 16.2◦.
The scale is given by the grey bar in the top left of the figure which corresponds to 5 arcmin. All the light
points are potential targets for DESI. The target selection process selects which points will be observed
during the survey. Circles are the targets for the MAIN survey. Yellow circles are stars, whites are bright
galaxies, reds are luminous red galaxies, blues are emission line galaxies, and greens are quasars.

magnitude is also applied. The target selection was tuned on previous spectroscopic samples
as those from the BOSS/eBOSS program, and of course, were intensively tested during the
Survey Validation phases emulating a nominal observation with DESI. It will apply to the
Legacy Imaging Surveys using the package desitarget17 (Myers et al. 2023). Figure 3.16 gives
an overview of the target selection for each tracer and Table 3.4, the target density and the
magnitude limit for each tracer. In the following, a quick description of each tracer is given in
order of distance from us18:

I Milky Way Survey (MWS) During the full moon, the brightness of the night sky can
make difficult the observation of faint objects. To address this, DESI conducts two independent
surveys: one called bright time, when the sky is too bright for observing faint targets, and
another called dark time when the sky is darker and more suited for observing distant objects.

However, the number of bright galaxies, such as those in the Bright Galaxy Sample, is not
sufficient for DESI to observe continuously throughout the entire nominal phase. Hence, in
parallel, DESI will conduct a star survey of the Milky Way. It is expected to observe about 6.42
million stars including high-completeness samples of white dwarfs, low-mass stars within 100 pc
of the Sun, and horizontal branch stars (Prieto et al. 2020, Cooper et al. 2023).

17https://github.com/desihub/desitarget
18Blog post https://www.desi.lbl.gov/2022/01/12/selecting-targets-for-the-desi-survey/ that I

wrote on this topic.

https://github.com/desihub/desitarget
https://www.desi.lbl.gov/2022/01/12/selecting-targets-for-the-desi-survey/
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(a) (b)

(c) (d)

Figure 3.16: Color-color diagrams used for the target selection of the four main DESI tracers. (a) BGS:
Star-galaxy separation is performed using gGaia− r > 0.6 cut, see Hahn et al. (2022). (b) LRG: selection
in DECaLS footprint. Color points are spectroscopically LRG confirmed and redshifts are from DESI
spectroscopy. The stellar rejection cut is displayed in red, with point sources (almost all of which are stars)
in gray, see Zhou et al. (2023). (c) ELG: each point is color-coded by the mean photometric redshift from
the HSC/DR2. The ELG selection is displayed in black polygon (ELG LOP) and the associated extension
is in red (ELG VLO). The stellar locus is the small full black line. Green (resp. red) track shows the
evolution of star-forming (resp. passive) galaxy, starting from z = 2 (square) to z = 0.1 (star) via z = 1.6
(downward facing triangle), z = 1.1 (circle) and z = 0.6 (upward facing triangle), see Raichoor et al.
(2023). (d) QSO: red are stars and blue/yellow are spectroscopically classified quasars. Here, grz (resp.
W ) is the magnitude of the weighted flux flux(grz) = 1/2.3× [flux(g) + 0.8× flux(r) + 0.5× flux(z)]
(resp. flux(W ) = 0.75× flux(W1) + 0.25× flux(W2)), see Chaussidon et al. (2023).
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I Bright Galaxy Sample (BGS) DESI survey expects to observe 13.8 million bright galax-
ies with a redshift range 0.05 < z < 0.4. It is the closest matter tracer. They will be, with the
MWS, the targets observed during the bright time.

Figure 3.16a shows the criterion for the BGS selection. The Star–galaxy separation is per-
formed using the gGaia−r cut, where gGaia is the photometry from ESA GAIA mission19 (Prusti
et al. 2016). The criterion exploits the fact that the Gaia magnitude is measured with an aper-
ture of a space-based point-spread function (PSF) while the Legacy Imaging Surveys magnitude
captures the light from the entire source. This cut separates point sources (stars) from extended
sources (galaxies), and the selection will observe about 850 targets per square degree of the
bright sample (r < 19.5), and with additional cut to ensure a high redshift efficiency, about 550
targets per square degree of the faint sample (19.5 < r < 20.175) (Ruiz-Macias et al. 2020, Hahn
et al. 2022).

I Luminous Red Galaxy (LRG) From here, the tracers will be observed during the dark
time. DESI uses the expected 7.46 million LRGs to probe the Universe in the redshift range
0.4 < z < 1. These are the most massive galaxies, composed largely of old stars. Their red color
makes them easy to select in imaging. In particular, stars are rejected through z−W1 vs. r−z,
the redshift is controlled through g− r vs. z−W1 and the density is tuned through r−W1 vs.
W1.

The LRG selection is done by the cut (see red line in Figure 3.16a) in the (r − z)–(z −W1)
space. This selection uses the W1 infrared band to separate galaxies (color points) from stars
(grey points). The different colors show the redshift of the galaxies in the color–color space.
This selection will observe about 615 targets per square degree (Zhou et al. 2020; 2023).

I Emission Line Galaxy (ELG) DESI uses ELG for the redshift range 0.6 < z < 1.6
and should collect 15.7 million. This is the largest sample in DESI. These are fainter and more
distant, but their vigorous star formation and hot young stars create strong emissions in distinct
wavelengths that DESI can easily detect.

Figure 3.16c shows the ELG target selection. The color histogram is the redshift distribution
of ELGs in the color space. To avoid stellar contamination (black smooth line), ELG selection
is based on a cut in (g − r)-(r − z) space. Since the objective of the DESI ELG sample is to
provide the tightest cosmological constraints over the 0.6 < z < 1.6, favoring as much as possible
the high-z part of the sample (1.1 < z < 1.6) where other DESI tracers are the least dense,
the ELG target selection is composed of two disjoint subsamples. ELG LOP (low priority),
selected by the black polygon, will be for the 1.1 < z < 1.6 subsample with a density of about
1940 deg−2, while ELG VLO (very low priority), selected by the red dashed polygon will be
for the 0.6 < z < 1.1 with a density of about 460 deg−2 and have a lower priority during the
observation than ELG LOP (Raichoor et al. 2020; 2023).

I Quasar (QSO) Then to go further and probe the young Universe, DESI uses quasars.
Quasars or quasi-stellar objects (QSO) are forming galaxies where the central supermassive
black hole is accreting large amounts of gas that are glowing as it reaches relativistic speeds.
Quasars will be used either as direct tracers of the matter or to study Ly-α forest with high-z
QSOs such that z > 2.0. Ly-α forests are clouds of neutral hydrogen in the line of sight of
a quasar. They absorb the continuum light from the quasar that is redshifted to the Ly-α

19https://sci.esa.int/web/gaia

https://sci.esa.int/web/gaia
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wavelength by the Universe expansion. These absorption lines track the matter distribution at
high redshift. DESI is expected to observe 2.87 million quasars.

Only point sources are considered during the selection and the target selection aims to
separate quasars from stars. However, the separation between these two classes is less obvious
than in the previous cases. A more sophisticated selection has to be applied. Quasars are
selected via a Random Forest classification instead of the classical color cuts selection done in
previous spectroscopic surveys. The idea of the selection is to separate quasars from stars based
on the “infrared excess” of QSOs. In Figure 3.16d, the stellar locus is illustrated by the red line
and the quasars by the blue/green/yellow points. This selection will observe about 310 targets
per square degree (Yèche et al. 2020, Chaussidon et al. 2023). See Section 4.2 for a detailed
description.

3.2.3.3 Redshift determination

After observing the targets, the next step is to classify them and extract their redshifts. The
classification is necessary since the selection process is not perfect and some unwanted objects,
which have no cosmological information, may have been included e.g. stars into the quasar sam-
ple. To test and improve the accuracy of the automated classification and redshift measurement
algorithms, a truth table is constructed by visually inspecting several thousand spectra, see Lan
et al. (2023) for galaxies and Alexander et al. (2023) for quasars.

After all the spectroscopic processing (Guy et al. 2023), DESI will use redrock20 (Bailey
2023) to classify and measure the redshifts of spectra by fitting templates from principal com-
ponent analysis (PCA) to the data. Redrock is inspired by the previous algorithm used in
SDSS (Bolton et al. 2012) and was already used during the eBOSS program to improve the
redshift estimate for LRG and ELG targets (Ross et al. 2020). Redrock performs a redshift
scan and selects the minimum χ2 as the best fit spectral classification and redshift. For this
purpose, it uses four sets of templates, one for stars, one for galaxies and two for quasars: one
with 0.05 ≤ z < 1.6 and the second covers 1.4 ≤ z < 7.0 (see Brodzeller et al. 2023, for the
QSO template performance). Note that up to Guadalupe version, Redrock used only one quasar
template.

Figure 3.17 shows typical spectra for the five main target classes observed with DESI. BGS is
characterized by various and strong emission lines, LRG by their absorption lines and the global
form of their spectra, ELG by the characteristic [OII] doublet emission, and QSO by their broad
emission lines. The Ly-α forest is blueward of the Ly-α emission peak. Redrock will simply
match these different spectra with the different sets of templates trying different redshifts.

3.2.3.4 Redshift distribution

An important result of the survey validation, see Section 3.2.2.2, is the determination of the red-
shift distribution of each tracer, since it enables the use of DESI targets in the cross-correlation
with the CMB lensing map (see, for instance, Krolewski et al. 2023).

Fig. 3.18 shows the redshift distributions for the 4 main tracer of DESI. These distributions
are for the sample that will be used for the clustering analysis, as explained in DESI Collabo-
ration et al. (2023b). Unlike other tracers, QSOs are not very dense but cover a wide redshift
range!

20https://github.com/desihub/redrock

https://github.com/desihub/redrock
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Figure 3.17: Spectra for the DESI five main target classes observed during the survey validation. From
top to bottom: stars and bright galaxies are collected during the bright time, luminous red galaxies,
emission line galaxies and quasars are collected during the dark time. These spectra were collected
during SV1 with a very long exposure time, typically 10 times longer than the nominal exposure time.
Credit: Ting-Wen Lan and DESI Collaboration.
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Une mathématique bleue,
dans cette mer jamais étale
D’où me remonte peu à peu
Cette mémoire des étoiles

Léo Ferré, La Mémoire et la Mer (1970)

I n the past two decades, quasars (a.k.a. quasi-stellar objects, or QSOs), have become a key
ingredient in our understanding of cosmology and galaxy evolution. Being among the most

luminous extragalactic sources, they have become a mainstay of cosmological surveys such as the
2dF Quasar Redshift Survey (2QZ; Croom et al. 2001) and the Sloan Digital Sky Survey (SDSS;
York et al. 2000), where they are the privileged targets to study large-scale structures at high
redshift.

As part of the third-generation of the Sloan Digital Sky Survey (SDSS-III; Eisenstein et al.
2011), the Baryon Acoustic Oscillation Survey (BOSS; Dawson et al. 2013) measured the spec-
trum of about 300,000 quasars, 180,000 of which are at z > 2.15, to a limiting magnitude of
g ∼ 22. As part of SDSS-IV, the extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) has observed 350,000 quasars with redshifts of 0.8 < z < 2.2 to g ∼ 22.5,
in addition to targeting 60,000 new quasars at z > 2.2 (Lyke et al. 2020). DESI is aiming to
quadruple the number of known quasars and to obtain spectra of nearly three million quasars,
reaching limiting magnitudes r ∼ 23.

DESI will use this sample to measure, see Section 1.3.2.4, the scale of baryon acoustic
oscillations (BAO) and the growth of structure through redshift-space distortions (RSD) that
was pioneered for the quasars by eBOSS studies (Zarrouk et al. 2018, Hou et al. 2021, Neveux
et al. 2020).

Note that the Section 4.2 and 4.3 are from Chaussidon et al. (2023) and Chaussidon et al.
(2022).

4.1 Quasi-stellar object

4.1.1 A particular active galactic nuclei

Quasars are a specific class of active galactic nuclei (AGN). The first optical spectrum of active
galactic nuclei was collected in 1908 at Lick Observatory by E.A. Fath who noted the presence
of strong emission lines in the nebula NGC 1068. Then, these objects were first classified by
Carl Seyfert in 1943.

Several decades later, Schmidt (1963) observed for the first time a new type of object that will
be called quasars for quasi-stellar objects, since they have the particularity to be point sources,
(see Kellermann 2014, for a historical review). Quasars are characterized by the following at-
tributes: they are point sources with radio sources, have time-variable continuum flux, large
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UV flux, broad emission lines and large redshifts (see Peterson 1997, for a complete introduc-
tion), whereas QSOs stand for similar characteristics than quasars but without radio emission.
Fig. 4.1 shows the modern classification of active galactic nuclei. Note that, in the rest of this
dissertation, QSOs and quasars will be identified as a single type of active galactic nuclei, since
we will not be able to separate these two types.

Figure 4.1: Schematic active galactic nuclei classification (Thorne et al. 2022). The type of object seen
depends on the viewing angle, whether or not the AGN produces a significant jet (radio-loud and radio-
quiet), and the rate of accretion onto the central supermassive black hole. The center of the schematic
shows the typical components of an AGN, although the geometry of many of these components is still
unknown. Some of the most commonly used names are displayed for different classes of AGN including
broad line radio galaxy (BLRG), narrow line radio galaxy (NLRG), narrow emission line galaxy (NELG),
flat spectrum radio quasar (FSRQ), steep spectrum radio quasar (SSRQ), optically violent variables
(OVV), and quasi-stellar objects (QSO). Here, quasars and QSOs are separated into radio-loud and
radio-quiet objects, however, these names are often used interchangeably. The transparency of the colour
in each ring corresponds to the increasing strength or prevalence of a particular emission type.

Since Quasars are the brightest object in the sky at every wavelength, they can be observed
at very great distances from us i.e. at very high redshift, and thus allow us to probe the distant
Universe.

Fig. 4.2 shows a Ly-α quasar spectrum with a high signal observed by DESI. This spectrum
exhibits a predominant emission line at λ = 1215.67Å due to the Ly-α emission. The peculiar
shape of the spectrum with these broad bands makes automatic classification easy. However,
the broadness of the emission lines also makes the redshift measurement less accurate. See also,
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Fig. 4.9 for other quasar spectra.
The Ly-α forests, blueward the emission line, become visible to DESI spectrographs from

z ≈ 2 and are a valuable source of information to probe the Universe at this redshift (du Mas
des Bourboux et al. 2020). In particular, the use of Ly-α forest helps the constraint on the
neutrinos mass (Palanque-Delabrouille et al. 2015; 2020)
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Figure 4.2: High-signal spectrum of a quasar located at a redshift z = 3.42 measured by DESI with an
exposure time of 2, 300 seconds (Ravoux et al. 2023). This quasar was observed on 12th April 2021, in the
SV program, on DESI tile 221 (TARGETID = 39627746095137037, RA = 217.263 ◦, DEC = −1.755 ◦).
The quasar flux is represented in blue and its noise is in orange. The Ly-α forest is shown in green. The
region in red and yellow are used for the Ly-α forest study.

4.1.2 A fabulous tracer for high-z Universe

Under Gaussian approximations, the statistical errors on the power spectrum can be expressed
as the sum of the limitations of the finite volume of the survey, known as the sample variance,
plus the fluctuation due to the sampling of the underlying density field, known as the shot noise.
Since the observable Universe is finite, the sample variance cannot be reduced to zero. This is
known as the cosmic variance.

Finally, the statistical errors are (Feldman et al. 1994)

σP
P

= 2π
√

2
V k2∆k∆µ

(1 + nP

nP

)
, (4.1)

where V is the volume of the survey, n is the comoving number density of the considered
tracer, and 1/n is the shot noise from the Poisson sampling of the density field when n is
supposed constant in position. As explained in Section 1.3.1.2, the power spectrum (1.116)
depends on k, µ. Thus, ∆k (resp. ∆µ) is the bin width in k (resp. µ) and P is the average
value of the power spectrum in ∆k,∆µ. The number of independent Fourier modes is given by
2× 2πk2∆k∆µV/(2π)3. The additional factor two arises because the density field is real and so
the Fourier modes k and −k are not independent.

When the shot noise contribution becomes dominant over the sample variance i.e. nP � 1,
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the tracer is said shot noise limited, as for the quasars, and the errors reduce as

σP
P
∝ 1√

V

1 + nP

nP
−→ 1√

V

1
nP

. (4.2)

In this case, increasing the density of the tracer, typically increasing the number of targets, is
a direct gain for the power spectrum measurement and then for the cosmological inferences. In
the opposite case (nP � 1), the errors depend only on the volume of the survey and on the
value of the power spectrum.

To quantify, the statistical power of each tracer in DESI, one can calculate the associated
effective volume, as in Anderson et al. (2014), defined by

Veff =
∑
i

(
n̄ (zi)P0

1 + n̄ (zi)P0

)2
∆V (zi) , (4.3)

where P0 is computed at the effective redshift of the shell at k = 0.1 hMpc−1, the redshift
distributions are displayed in Fig. 3.18 and we consider a nominal sky coverage of 14, 000deg2.

The result for the three main dark tracers of DESI is given in Table 4.1. Note that the
computation does not take into account the bias evolution as a function of the redshift (see, for
instance, Laurent et al. 2017).

Table 4.1: Effective volume for DESI tracers computed as in Anderson et al. (2014). The densities are
from the Y1 catalog which will be used for the clustering measurement. For simplicity, we compute P0
at the mean redshift of the sample.

Tracer Density [deg−2] z range z mean bias Veff [(Gpc/h)3]

LRG 537 0.4− 1.1 0.7 2.3 19
ELG 2400 0.6− 1.6 1.1 1.3 39
QSO 188 0.8− 3.1 1.7 2.6 107

QSOs have the biggest effective volume and are therefore expected to have the best sensitivity
to measure the power spectrum at large scales. In order to use QSOs as a tracer to measure the
primordial non-gaussianity with the best possible sensitivity, we will pay particular attention to
their target selection.

4.2 Quasar target selection for DESI

Because of their point-like morphology and with photometric characteristics that mimic faint
blue stars in optical wavelengths, especially for the Ly-α QSOs, the QSO selection is challenging.
Successful selection of a highly-complete and pure QSO sample are usually based on their UV
excess (Richards et al. 2002, Ross et al. 2012). In DESI, we propose an alternative approach
that detects their near-infrared excess as already demonstrated in eBOSS (Myers et al. 2015).
Indeed, we use three optical bands (g, r, z) combined with WISE infrared photometry in the
W1 and W2 bands to select our primary sample of QSOs. QSOs are ∼ 2 mag brighter in the
near-infrared at all redshifts compared to stars of similar optical magnitude and color, providing
a powerful method for discriminating against contaminating stars.

In order to test the different target selection approaches and to optimize the exposure time
for each target class before beginning five years of DESI operations (hereafter main survey),
DESI has performed a Survey Validation (SV), organized in two phases with separate goals.
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The first phase of SV, completed in four months, allowed us to optimize the selection algo-
rithms, estimate the redshift distributions, and evaluate the projected cosmology constraints. It
provided spectra over 45 fields containing a mix of luminous red galaxy targets, emission line
galaxy targets and quasar targets. Among them, 42 fields have a total effective exposure time
of Teff ∼ 4000s and 3 fields correspond to ultra-deep observations (Teff ∼ 10, 000s). The latter
observations have been visually inspected (VI) and those three fields provide a control sample
to study the target selection.

The second stage, the 1% survey consisted of a full clustering program covering about 1% of
the DESI survey with fiber assignments similar to the main survey and exposure times ∼ 30%
longer than the nominal exposure time (Teff ∼ 1000s) projected for the main survey. It lasted
approximately one month. During the second phase of SV, we used the final quasar selection
(hereafter “main selection”) that was optimized during the first phase of SV.

In the following, All magnitudes, will be quoted on the AB system, including magnitudes
from the Wide-field Infrared Survey Explorer which are often given on the Vega system. In
addition, except when mentioned otherwise, all computations with HEALPix pixels are done
with Nside = 256 (a pixel area of ∼0.05 deg2) and all maps are plotted in a Mollweide projection
with a HEALPix resolution of Nside = 64.

4.2.1 Main Quasar Target Selection

In this section, we describe the target selection used in the 1% survey and in the main survey.
This selection corresponds to bit 2 (QSO) of the maskbits SV3 DESI TARGET and DESI TARGET
described in Myers et al. (2023).

4.2.1.1 Overview of the sample

The DESI survey uses QSOs as point tracers of the matter clustering mostly at redshifts lower
than 2.1, in addition to using QSOs at higher redshift as backlights for clustering in the Ly-α
forest. This approach enlarges the role of QSOs relative to the BOSS project (Ross et al. 2012),
which only selected QSOs at z > 2.15 for use via the Ly-α forest, and enhances their role relative
to eBOSS (Myers et al. 2015), where QSOs are used in a similar fashion as in DESI although
with lower densities.

In DESI Collaboration et al. (2016b), based on the quasar luminosity function (QLF)
of Palanque-Delabrouille et al. (2016), we inferred that a complete QSO sample, brighter than
magnitude r = 22.7, would contain about 190 QSOs per deg2 at z < 2.1 and about 70 at z > 2.1.
Assuming a minimum efficiency of about 65%, the goal of DESI was to obtain the redshifts for
120 and 50 QSOs per deg2 in the redshift ranges z < 2.1 and z > 2.1, respectively. With
the Survey Validation during which we were able to test several extensions of our selection, we
demonstrated that we can significantly exceed these statistics without significantly inflating our
target budget (see Sec. 4.2.3). Therefore, in the main selection presented in this Section, we use
a magnitude limit of r = 23.0 for an average density of ∼ 310 targets per deg2.

4.2.1.2 Strategy for the Selection

QSOs commonly exhibit hard spectra in the X-ray wavelength regime, bright Ly-α emission
in the rest-frame UV, and a power-law spectrum behaving as Fν ∝ να with α < 0 in the
mid-infrared bands (Stern et al. 2005, Donley et al. 2012). In the mid-optical colors, QSOs
at most redshifts are not easily distinguished from the much more numerous stars. Successful

 https://github.com/desihub/desitarget/blob/0.57.0/py/desitarget/sv3/data/sv3_targetmask.yaml#L2-L63
https://github.com/desihub/desitarget/blob/1.1.1/py/desitarget/data/targetmask.yaml#L2-L51
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selection of a highly-complete and pure QSO sample must make use of either UV or infrared
photometry. With the extended (WISE) mission that more than quadrupled the exposure time
of the original (WISE) all-sky survey, and in the absence of any ’u’-band imaging over the whole
DESI footprint, we decided to rely upon optical and infrared photometry for QSO selection.

Therefore, the DESI QSO target selection is a combination of optical-only and optical+IR
colors. In order to illustrate this strategy, we use two colors, grz −W vs. g − z where grz is a
weighted average of the grz band fluxes with flux(grz) = [flux(g) + 0.8×flux(r) + 0.5×flux(z)] /
2.3 andW a weighted average ofW1 andW2 fluxes with flux(W )=0.75×flux(W1)+0.25×flux(W2).
In the Legacy Imaging Surveys (Dey et al. 2019), the conversion from linear fluxes to magnitudes
is m = 22.5− 2.5 log10(flux). Fig. 4.3 shows the bulk of the QSO targets which are identified in
an optical+IR selection where the excess infrared emission from QSOs results in a clear segrega-
tion from stars with similar optical fluxes. Stellar SEDs indeed sample the rapidly declining tail
of the black-body spectrum at those wavelengths, where QSOs have a much flatter SED than
stars. This method was previously demonstrated in eBOSS and Fig. 5 of Myers et al. (2015)
exhibits the same separation between stars and QSOs thanks to WISE imaging.

Figure 4.3: Colors in the optical or near-infrared of objects photometrically classified as stars (red) or
spectroscopically classified as QSOs (from blue to yellow dots, depending on their redshift). The color
grz −W allows us to reject stars based on the “infrared excess” of QSOs.

4.2.1.3 Selection with Random Forest Algorithm

Neural-network-based algorithms implemented in BOSS (Yèche et al. 2010) were found to in-
crease QSO selection efficiency by ≈ 20% compared to color cuts. Similarly, to improve the
success rate for DESI, we use a machine-learning algorithm based on Random Forests (RF).

First, before utilizing the RF, we restrict the selection to objects with stellar morphology
(’PSF’ in DR9), to avoid an almost 10-fold contamination by galaxies that otherwise enter our
selection region, and we impose 16.5 < rAB < 23.0. In addition, to reject stars, we apply a cut
on the (WISE) magnitudes (W1 < 22.3 and W2 < 22.3). This cut is particularly efficient at
getting rid of stars in the Sagittarius Stream, a region which exhibits an overdensity of QSO
targets (see Fig. 4.4 and discussion in Section 4.3.2). We also require that the targets are not
in the vicinity of bright stars, globular clusters, or large galaxies. Such “masked” sources have
MASKBITS1 of 1, 12 or 13 set in Legacy Surveys catalogs.

1https://www.legacysurvey.org/dr9/bitmasks/

https://www.legacysurvey.org/dr9/bitmasks/
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Then, we train the RF using two samples: one of ’QSOs’ similar to the objects we want to
select and the other of ’stars’ we want to discriminate against. The QSO sample consists of
332,650 known QSOs in the DESI footprint. The vast majority of those QSOs with 17.5 < r <
23.2 are selected by their intrinsic time-variability in the SDSS Stripe 82 (an equatorial stripe in
the South Galactic Cap defined by SDSS), using the method described in Palanque-Delabrouille
et al. (2011) with SDSS light curves. This selection provides a training sample of QSOs that is
not biased by information on QSO color, an essential ingredient for the RF training. The ’star’
sample is obtained by considering 332,650 unresolved sources in Stripe 82 that are not known
QSOs and do not exhibit any QSO-like variations in their SDSS light curve. We randomly select
the stars from this much larger sample such that the r-band number counts of the stars matches
the QSOs. We train the RF selection with 11 input parameters: the 10 possible colors using
the five optical and NIR bands grzW1W2, and the r-band magnitude. In contrast to the RF
method applied during the DESI commissioning (Yèche et al. 2020), the final selection uses a
single RF covering the full QSO redshift range, which we retrained with the latest processing of
imaging catalogs, DR9.

In order to achieve the required QSO target budget, ∼ 310 targets per deg22, and to ensure
a uniform target density over the full DESI footprint, we apply slightly different thresholds
on the RF probability in the three regions (North), South (DES) and South (non-DES), see
the exact definition on Fig. 3.14. We also vary the RF probability threshold with r, following
pth(r) = α − β × tanh(r − 20.5). For the three regions (North), South (DES) and South (non-
DES), we choose (α, β) to equal (0.88, 0.04), (0.7, 0.05), and (0.84, 0.04), respectively. The heat
map of the resulting selection is illustrated in Fig. 4.4.

Figure 4.4: Density map of the DR9 QSO target selection. The solid black and dashed blue lines show
respectively the Galactic plane and the plane of the Sagittarius Stream.

Fig. 4.5 shows the magnitude distribution of the QSO targets in the r, z, W1 and W2 bands
and demonstrates that these distributions are similar for each of the imaging footprints high-
lighted in Fig. 3.14. The three magnitude limits imposed on the selection are clearly visible on
the corresponding histograms. Note that the r < 23.0 limit also affects the z-band distribution,
producing a sharp drop-off at the faint end for objects in the top-right panel. The two Gaussian
distributions for W1 and W2 (bottom panels) demonstrate that the selection of a QSO target
is not limited by the depth of the optical imaging (DECaLS or BASS/MzLS) but is sensitive to
the determination of the fluxes in the WISE imaging.

2Since DES is less contaminated by stars than the other regions, the target density is on average smaller than
310 targets per deg2.
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Figure 4.5: Magnitude distribution of the QSO targets in the r, z, W1 and W2 bands. These distribu-
tions are shown for the three independent imaging footprints in Fig. 3.14. Blue is for the North, green
for the South and red for DES. Each grey histogram depicts the magnitude distribution for the parent
sample of sources (PSF sources with r < 23) from which QSO targets are selected.

To help contextualize which bands guide the DESI QSO target selection, it is worth noting
that the colors that carry the largest weight in the selection are first z −W2 and z −W1 and
then g − r, W1 −W2 and g − z. This can be quantified using the importance features, see
Section 4.3.4.2 for a complete description, as shown in Fig. 4.6. Although the feature r has the
lowest Gini importance, the target selection is worse without including it in the training. As
explained in Section 4.3.4.2, one can prefer to use the permutation importance to avoid this kind
of artifact.
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Figure 4.6: Feature importance for the QSO target selection, calculated using the Random Forest
method based on Gini importance. As expected, the target selection is driven by z −W2 and z −W1
i.e. , by a difference between an optical and an infrared band.
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The code for the QSO target selection of both the 1% survey and the main survey is public
on GitHub and it is available at 1% QSO selection and main QSO selection.

4.2.2 Extended selection of QSO targets during Survey Validation

The goals of the first SV phase were to optimize the selection algorithms, estimate the redshift
distributions, and evaluate the projected cosmology constraints. In this section, we describe
the extensions of the main selection and the alternative QSO selection methods that we tested
during SV.

In practice, as explained in Sec. 4.2.2.1, we varied the definition of the stellar morphology
and the magnitude limit. We released the cuts on the RF probability and on the definition of
the color boxes. The goal was to select fainter QSOs or those with higher redshift missed by the
main selection. In parallel, we tested new algorithms using for instance, the intrinsic variability
of the QSOs. All these variations of selections are grouped into 5 classes which are described in
Sec. 4.2.2.2.

4.2.2.1 Alternative Selections

I Source Morphology for the Quasar Selection The first SV study was related to the
definition of stellar morphology (’PSF’ in DR9). Fig. 4.7 shows the potential gain that we expect
using point-like sources in the COSMOS/HST region. For instance, we can extend the definition
of ’PSF’ sources to also include objects photometrically classified as ‘extended’ but having small
relative χ2 difference between PSF and extended morphological models (∆(χ2)/χ2 < 0.015).
Using the DR9 Legacy Surveys Imaging catalogs, the relative χ2 is defined as (dchisq[′REX′]−
dchisq[′PSF′])/dchisq[′PSF′].

We will discuss in Sec. 4.2.3 the impact of these extensions and the optimization performed
to achieve the final main selection of Sec. 4.2.1. For instance, in this specific case, we will study
the redshift distribution of the QSOs recovered with the looser morphology restriction. It will
allow us to assess the trade-off between a higher QSO completeness and an increase in the quasar
target budget.
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Figure 4.7: Relative χ2 difference between extended and ’PSF’ models as a function of the χ2 difference,
for COSMOS/HST objects. The violet dots correspond to objects confirmed as point-like sources in HST
imaging. The green dots correspond to objects identified as extended galaxies in the HST imaging.
The blue dots are HST point-like sources that are classified as extended objects in the DECaLS DR9
photometric catalogs.

https://github.com/desihub/desitarget/blob/0.57.0/py/desitarget/sv3/sv3_cuts.py#L1621-L1862
https://github.com/desihub/desitarget/blob/1.1.1/py/desitarget/cuts.py#L1766-L1899
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I Extension of the Color Selections In parallel, we investigated two approaches for the
QSO selection, one based on color cuts and the other on a machine-learning algorithm. At
the time of the SV, both methods had reached a high level of maturity, and one of the SV
goals was to select between the two approaches (Yèche et al. 2020). In addition to the pure
performance in terms of number of true quasars selected per deg2 for a given target budget,
the relative sensitivity to systematic effects also has to be assessed. Finally, if the sample of
spectroscopically-confirmed quasars selected by one of the two approaches is included in the
sample selected by the other approach, we will retain the selection yielding the largest set of
validated quasars.

The QSO luminosity function indicates that the size of the QSO samples at both z < 2.1
and z > 2.1 can be increased by extending the magnitude limit above r = 22.7. The benefits
are particularly apparent for the higher redshift Ly-α forest QSOs. Therefore, we relaxed the
magnitude limit to r = 23.2 for the extended SV RF selection, as shown by the distribution of
r-band magnitude in the ‘Ext. Random Forest Selection’ on Fig. 4.8. We also developed an
additional selection for Ly-α forest QSOs as faint as 22.7 < r < 23.5 (see the distribution of r-
band magnitudes of the ‘High-z and Faint selection’ in Fig. 4.8). In addition, a goal of SV was to
determine how efficiently we can identify and classify high-redshift quasars with these extended
selections for the nominal effective exposure time, Teff ∼ 1000s (see definition in Schlafly et al.
(2023)).

I Selection of High-z QSOs QSOs at z > 5 provide direct probes of the evolution of the
intergalactic medium and supermassive black holes at early cosmic times. Current high-redshift
QSO surveys either mainly focus on the bright end or are limited to a small deep field. We
conducted a selection for z & 5 faint QSOs using photometry from DECaLS grz and unWISE
W1, W2. The selection method is based on the color selections that have been used in previous
successful z ∼ 5−6 QSO surveys (Wang et al. 2016, Yang et al. 2017). The main techniques are
g/r-band dropout and the r − z/z −W1 color-color diagram. The unWISE W1 −W2 color is
used to further reject M dwarfs. We have a survey depth of z band magnitude 21.4. We divide
the selection into two sets based on two redshift ranges, zred ≥ 4.8 and 4.3 < zred < 4.8, and
apply different color cuts according to QSO color-zred tracks in r − z/z −W1 and W1 −W2
color space.

I WISE Variability Selection Finally, in Palanque-Delabrouille et al. (2011), it was demon-
strated that the SDSS light curves on the stripe 82 provide a very efficient method to select the
QSOs by their intrinsic variability. The DR9 (WISE) catalog offers, for each object, light curves
with 15 epochs over a time period of about 10 years in the W1 and W2 bands. We adapted
the method developed in Palanque-Delabrouille et al. (2011) to the (WISE) light curves. We
selected objects with ’PSF’ morphology and 18.0 < r < 23.0, passing a low RF probability cut,
p > 0.1, and exhibiting a high variability in their light curves. This variability technique is a
robust, efficient and well-understood method, less sensitive to the spatial non-uniformity of the
optical imaging. The goal was to study whether such a method can select quasars not already
spotted by the usual methods based on optical and NIR colors.

4.2.2.2 Definition of the QSO Target Maskbits

We defined five classes of quasar selection for SV, grouping the extensions described above. Each
selection can be identified by a combination of bits of SV1 DESI TARGET defined in Myers et al.
(2023). The code for the QSO target selection of SV is public on GitHub and a link to the code
is provided for each class.

https://github.com/desihub/desitarget/blob/0.51.0/py/desitarget/sv1/data/sv1_targetmask.yaml#L21-L26


Chapter 4. DESI quasar survey 112

1. Extended color Cut Selection, QSO COLOR 4PASS or QSO COLOR 8PASS (∼ 300 deg−2):
Compared to the Color Cut selection of Yèche et al. (2020), we relaxed all the definitions
of the color boundaries; loosened the veto on the color box defined for stars, and applied
a looser selection when requiring point-source morphology. Link to the code.

2. Extended Random Forest Selection, QSO RF 4PASS or QSO RF 8PASS (∼ 570 deg−2):
Compared to the RF selection of (Yèche et al. 2020), the r-band magnitude limit is
extended to r = 23.2, the RF probability is reduced, and a looser selection is applied to
require point-source objects. Link to the code.

3. High-z and Faint QSO Selection, QSO HZ F (∼ 115 deg−2): The selection is extended
to fainter objects 22.7 < r < 23.5. We have also applied a looser cut on the RF probability
than for the nominal selection but with an additional color cut to enhance the fraction of
high-z QSOs. Link to the code.

4. z ∼ 5 QSO Selection, QSO Z5 (∼ 20 deg−2): We use g-band and r-band dropout tech-
niques to select very high-z QSO candidates (4.5 < zred < 5.5). Link to the code.

5. WISE Variability Selection, WISE VAR QSO in secondary targets SV1 SCND TARGET (∼
140 deg−2): We use the intrinsic variability of the QSOs, based on the WISE light curves
spanning over 10 years.

The r-band magnitude distribution for each class is shown in Fig. 4.8. Many objects are
common to the different classes and the total density is not the simple sum of all the individual
densities. Finally, the overall density is of the order of 700 targets per deg2, to be compared to
260 targets per deg2 for the original selection.
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Figure 4.8: Target densities as a function of the r magnitude for the five classes of extended SV selections
and the original selection with r < 22.7. All the selections are based on DECaLS DR9 imaging catalogs.

4.2.3 Optimization of quasar selection with Survey Validation

In this section, we describe our process to build a catalog of QSOs using the DESI spectroscopic
information for each of the QSO targets we observed. We validate the catalog with a control
sample of QSOs obtained after visual inspection of the spectra (Alexander et al. 2023). We
then use this catalog to optimize the QSO selection (definition of point sources, magnitude
limits, etc.) and we test the impact of the alternative selections (Color Cut selection, (WISE)
variability, etc.) proposed in Sec. 4.2.2. For each alternative selection, we present its results and
we estimate the potential gain in terms of QSO density by reference to the total target budget.
Finally, we explain our choice of QSO selection for DESI which is described in Section 4.2.1.

https://github.com/desihub/desitarget/blob/0.51.0/py/desitarget/sv1/sv1_cuts.py#L555-L671
https://github.com/desihub/desitarget/blob/0.51.0/py/desitarget/sv1/sv1_cuts.py#L705-L827
https://github.com/desihub/desitarget/blob/0.51.0/py/desitarget/sv1/sv1_cuts.py#L830-L1020
https://github.com/desihub/desitarget/blob/0.51.0/py/desitarget/sv1/sv1_cuts.py#L1023-L1091
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Table 4.2: Description of the three datasets (first SV phase, 1% survey, main survey) used in this paper
for QSO analysis. For the 1% survey, we only study the fields with an effective area greater than 0.4
deg2).

Number Effective Number Number
of Area of good of

Fields (deg2) spectra QSOs
First SV phase 45 90.5 78182 26094
1% survey 79 159.6 53307 33813
Main survey 305 1290.9 432383 264753

Table 4.3: Fractions of the spectrum types for the three ultra-deep fields that were visually inspected.
Spectra that are of insufficient quality to assign a type are labeled ’inconclusive’. The first and second
rows are respectively for the SV and Main selections.

Fraction Fraction Fraction Fraction
of of of of

QSOs stars galaxies inconclusive
SV sel. 33.5% 11.9% 39.8% 14.8%
Main sel. 71.0% 6.3% 16.1% 6.7%

4.2.3.1 Dataset and Control Sample Visually Inspected

The first phase of SV was used to optimize the QSO target selection. In this section we study
45 fields observed during this phase. They contain a mix of luminous red galaxy, emission
line galaxy targets and quasar targets (see Table 4.2). Among them, 42 fields have a total
effective exposure time of Teff ∼ 4000s and 3 fields correspond to ultra-deep observations (Teff =
7200s, 10820s, 8200s) (see a few examples of spectra in Fig. 4.9).

The latter observations have been visually inspected (VI) and those three fields provide a
pure sample of QSOs that we use as a control sample when building the QSO catalog (see
section 4.2.3.2). The breakdown of the visual inspection results is summarized in Table 4.3.
As the main purpose of SV selection was to collect all the possible QSOs, the selection was
extremely loose and we cannot draw any conclusion about the contaminants.

By contrast, the second row of Table 4.3 gives us a description of the contaminant of the QSO
main selection. Roughly, one-quarter of the contaminants are stars and the other three-quarters
are galaxies. The fraction of contaminant increases for fainter targets, especially for galaxies as
illustrated in Fig. 4.10a. Comparison of Fig. 4.3 and Fig. 4.10b shows that the location in the
color-color space, of the two contaminants, stars and galaxies, are in the middle of the QSO
color space, demonstrating the difficulties to improve the QSO selection.

4.2.3.2 Quasar catalog

The process to produce the QSO catalog is illustrated by the flow chart of Fig. 4.11. The method
is based on three algorithms: the DESI pipeline classifier Redrock (RR), a broad Mg ii line finder
(MgII) and a machine learning-based classifier QuasarNET (QN).

The RR algorithm (Bailey 2023) is a template-fitting classifier. It uses a set of templates for
each class (star, galaxy or QSO) constructed from spectra observed in SDSS. After PCA decom-
position, theses templates provide a linear basis. Linear combinations of the basis components
are fitted to each spectrum for each redshift within a suitable range. From these fits, a best class
and a best redshift is determined, corresponding to the template class-redshift combination that
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Figure 4.9: Four spectra of the ultra-deep field used for visual inspection. The field is centered at
R.A. = 106.740◦ and Dec. = 56.100◦. The effective exposure time is Teff = 10, 820s. The spectra cover
the range of redshifts observed in DESI. The redshifts are 0.695, 1.557, 2.948 and 4.777. The last spectrum
is a very rare case of a target selected by both the RF and the high-z selections. The maroon curves are
the DESI spectra. The black curves are obtained after smoothing the spectra with a Gaussian filter. The
orange curves represent the noise spectrum.

resulted in the lowest ∆χ2. Therefore, as an output, RR provides both the class of the object
(star, galaxy or QSO) and its best-fit redshift.

The MgII algorithm identifies spectra with a Mg ii broad line. It is an afterburner, run after
RR and using RR outputs as inputs. The goal is to change the initial classification of the object
from Galaxy to QSO if the spectrum exhibits a Mg ii broad line. The method consists in fitting a
Gaussian in a 250 Å window centered at the position of Mg ii line given by RR. We consider the
Mg ii line as a broad line if the improvement of χ2 is better than 16, the width of the Gaussian
greater than 10 Å and the significance of the amplitude of the Gaussian greater than 3. The
algorithm possibly changes the source classification but never modifies the redshift given by RR.

The QN algorithm (Busca and Balland 2018, Farr et al. 2020) is a deep convolutional neural
network (CNN) classifier, taking a smoothed spectrum as an input before carrying out four layers
of convolutions. The output from these convolutions is then passed to a fifth, fully-connected
layer, before feeding into a number of ”line finder” units. Each of these units consists of a fully-
connected layer, trained to identify a particular emission line. In our case, we use the following
six lines: Lyα, C iv, C ii, Mg ii, Hα and Hβ and an object is classified as a QSO if at least one
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Figure 4.11: Flow chart to produce the quasar catalog.

of the six confidence probabilities is greater than 0.5.
Our strategy to build the final QSO catalog was established thanks to a control sample of

QSOs obtained by visual inspection of their DESI spectra (Alexander et al. 2023). This truth
sample contains ∼ 1330 QSOs passing the selection summarized in Sec. 4.2.2, see results in
Table 4.3.

In order to monitor the quality of our catalog, we define two quantities, the efficiency and
the purity. Those two parameters are performance metrics similar to parameters used in clas-
sification problems (Powers 2011), respectively, the recall and the precision . We define the
efficiency, ε, as the fraction of the QSOs of the control sample that is selected in the catalog
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and the purity, p, as the fraction of the catalog objects confirmed as QSOs. Numerically, the
ε and p are defined as ε = NQSO

c /NQSO
cs and p = NQSO

c /Nc, where NQSO
c , NQSO

cs and Nc are
respectively, the number of QSOs in the catalog, the number of QSOs in the control sample and
the number of objects in the catalog.

Fig. 4.12 shows the performance achieved when the RR, MgII and QN algorithms are suc-
cessively applied. From Fig. 4.12, we learn that by using the QSO class from RR alone, we
obtain a catalog with a very high purity and an efficiency of the order of 80%. Adding the QSOs
identified by MgII algorithm, low-z QSO are recovered. Finally, the QN algorithm allows us to
recover faint QSOs missed by the RR or MgII algorithms. For the main selection described in
Sec. 4.2.1, the total efficiency and purity are respectively 99.2 ± 0.3% and 98.3 ± 0.4%. These
results reflect the performance of the QSO catalog that will be used in the DESI science anal-
yses and not the composition of the parent QSO target sample described in Table 4.3 and in
Fig. 4.10a.

For the contaminants of the catalog, we have limited statistics, only 17 spectra. Therefore
it is difficult to draw definitive conclusions. Of the 17 spectra, none corresponds to that of a
star and 8 spectra do not have sufficient quality to assign a type. Of the 9 galaxy spectra, all
the spectra but one have the correct redshift in the QSO catalog. These objects correspond to
a transition phase during which the quasar is formed. Considering those galaxies with a good
redshift as good tracers of the matter, the purity increases to 99.1± 0.3%.

To summarize the flow chart of Fig. 4.11, we first classify the object as QSO if it is classified as
QSO by RR. We check if the redshift is confirmed by QN, otherwise we refit the redshift with RR
using a top hat prior of ±0.05 around the redshift given by QN. Then, if the RR classification
is GALAXY and the MgII classification is QSO, we classify the object as QSO and keep the redshift
given by RR. Finally, if the object is classified as QSO by QN but neither by RR nor MgII, we
classify it as QSO in the QSO catalog but we refit the redshift with RR using a ±0.05 top hat
prior around the redshift given by QN. In this way, all the redshift are obtained by a single
algorithm, RR, providing a consistent measurement of the redshift.

In summary, we validated the automated QSO catalog with visually inspected objects. We
achieve both excellent purity and excellent efficiency. In the rest of this paper, the QSO catalog
is therefore built according to the strategy described above. The numbers of QSOs for all the
datasets are given in Table 4.2.

4.2.3.3 Source Morphology for the Quasar Selection

The distribution of ∆(χ2)/χ2 for point source objects in COSMOS/HST is illustrated in Fig. 4.7.
It indicates that we can potentially improve the QSO selection by accepting objects with
∆(χ2)/χ2 < 0.015. By relaxing the stellar morphology definition in such a way, the target
density of the main selection (310 targets per deg2) is increased by 70 targets per deg2.

During SV, this option was tested. Fig. 4.13 shows the fraction of additional QSOs selected
when relaxing the morphological criterion as a function of the redshift and the r magnitude.
The improvement is mainly visible for faint QSOs with z < 1, which do not contribute to neither
QSO clustering nor Ly-α forest studies. In addition, they only add 14 QSOs per deg2 to a total
of 200 QSOs per deg2 for the main selection.

In conclusion, because the relaxed morphological selection only increases the number of QSOs
at low redshifts and because the cost in terms of target budget is significant (+20%), we do not
retain this extended definition of stellar morphology and we use the ’PSF’ morphology definition
of DR9 catalogs to select point-like sources.
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Figure 4.12: Efficiency and purity as a function of redshift and r magnitude, using the VI catalog
as control sample. The efficiency is the fraction of the control sample that is selected in the catalog.
The purity is the fraction of the catalog objects that are confirmed QSOs. Starting with QSO targets
selected as described in Sec. 4.2.2, the three algorithms, RR, MgII and QN, are successively applied.
The violet curve corresponds to the main selection described in Sec. 4.2.1 using the three algorithms
(RR+MgII+QN).
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Figure 4.13: Fraction of additional QSOs selected by relaxing the morphological criterion as a function
of the redshift and the r magnitude.

4.2.3.4 Results for the Alternative Selections

The SV phase also allowed us to study several alternative selections described in Sec. 4.2.2.
Fig. 4.14 summarizes all the results and compares these alternative methods to the main selection
based on a RF approach (see Sec. 4.2.1).

For a fixed target density, ∼ 310 target per deg2, the RF selection (main selection) retains
15% more QSOs than the Color Cut selection on average over all redshifts, and 21% more for
the Ly-α forest QSOs. Taking the union of the RF and the color cut selections would increase
the target budget by 20%. In addition, only 3% of the QSOs selected by the Color Cut method
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Figure 4.14: Study of alternative selections. Number of QSOs as a function of the redshift and the
r magnitude. Each row of two plots tests successively a Color Cut selection (CC), a selection based on
variability detected in WISE light curves (WISE) and a high-z faint quasar selection (Hz-f).

do not pass the RF selection, and the first row of Fig. 4.14 shows that they mostly have a low
redshift. As the vast majority of the QSOs with z > 1.0 selected by the Color Cut method are
included in the RF sample, we do not use the Color Cut selection.

A selection based on the detection of the QSO intrinsic variability with the WISE light
curves represents a very interesting alternative because it shows a better spatial uniformity.
However, the conclusions are similar to those of the Color Cut selection. The union with the
main selection would increase by 15% the target budget with a QSO gain of 3%, mainly at low
redshift (see second row of Fig. 4.14). Therefore, this selection was not retained.

We have also extended the RF selection to very faint objects 22.7 < r < 23.5 with an
additional color allowing us to select high-z quasars. This selection was extremely expensive
in terms of target budgets (+30% for r > 23.0) and the gain in terms of QSOs was extremely
small, as we can see on the third row of Fig. 4.14, especially for r > 23.0. In the main selection,
we extended the magnitude limit cut from the original r = 22.7 upper bound to r = 23.0. In
contrast, it was not worth selecting targets above r = 23.0.

Finally, this z & 5 QSO selection has identified ∼ 60 QSOs at 3.9 ≤ z ≤ 5.7 during SV
observations. Since at z ∼ 5 the Lyα emission line is in the i band, color selection that does
not include i band photometry will help to construct a sample without dependence on Lyα
line luminosity. This selection does identify weak-line and strong broad-absorption-line QSOs
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missed by the previous z ∼ 5 selection based on r − i/i − z colors (McGreer et al. 2013, Wang
et al. 2016). However, this selection has high contamination rate due to the lack of i band data.
The success rate is about 2-3% and most of the contaminants are M dwarfs. About half of the
z ∼ 3.9− 5 QSOs can also be selected by the QSO RF selection. Therefore, this selection is not
retained. An updated selection adding i band photometry from Pan-STARR1 (Chambers et al.
2016) has been developed as a secondary program in the 1% and year 1 main surveys, focusing
on QSOs in a higher redshift range, z ∼ 5− 6.5.

In conclusion, all these studies validate the decisions made for the main selection described
in Sec. 4.2.1: we select 16.5 < r < 23.0 objects with a stellar morphology (’PSF’ in DR9) and
with a RF probability greater than the probability threshold, pth(r). To ensure uniformity of
the target density over the whole footprint, pth(r) is optimized independently in each of the
three imaging regions.

4.2.4 Validation of the main quasar selection in DESI

In this section, we study the performance of the main selection that was deployed both for
the 1% and the main surveys. The resulting catalog of QSOs is obtained with the approach
presented in Sec. 4.2.3.2.

4.2.4.1 Methodology

The instrumental conditions varied a lot during both the SV and the beginning of the main
survey. For instance, at the beginning of SV, the fiber reach was limited because of technical
developments on the positioners of the focal plane. As a result, only a small fraction of the QSO
targets could be observed. This limitation was gradually removed, making data analysis and
the comparison between fields more complex. Similarly, some observations were performed with
a subset only of the ten spectrographs. To account for the large variability of the instrumental
conditions during observations, we use the number of quasars per deg2 obtained for each field.

First, for a given field (tile), we compute the effective surface defined as the ratio of the
number of QSO targets with a spectrum over the number of QSO targets in the field, multiplied
by the surface of the focal plane (8.2 deg2). Note that the numerator does not include targets
which are not assigned to a fibre or for spectra which do not pass the spectroscopic quality flag
COADD FIBERSTATUS. The effective surface varies from 1.6 deg2 for the first tiles of SV, to 4.6
deg2 for the tiles of main survey. For the 1% and the main surveys, the total effective surface
are 160 deg2 and 1290 deg2 respectively (see Table 4.2).

We then divide the number of QSOs (defined as in Sec. 4.2.3.2) for a given field by its effective
surface. Therefore, the number of quasars per deg2 is a quantity insensitive to the instrumental
conditions.

In addition, as both in the 1% survey and the main survey, the QSOs can be re-observed
several times, we only use the first observation, meaning that we require respectively for the 1%
and main surveys, PRIORITY == 103400 and PRIORITY == 3400.

4.2.4.2 Performance of the Main Selection

First, we estimate the efficiency and the purity of the automated QSO catalog, as defined in
Section 4.2.3.2 for the main selection with nominal exposure time conditions. To achieve this,
we coadded the different exposures of the three tiles visually inspected into coadds of ∼ 1000s
and we apply a posteriori the main selection. Using as the truth, the classification obtained by
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Figure 4.15: Number of quasars per deg2 as a function of the effective time for SV1 (∼ 1000s or
∼ 4000s), 1% survey and the main survey. Each point corresponds to a tile.
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Figure 4.16: Number of quasars per deg2 as a function of the target location on the focal plane. Each
petal of the focal plane exhibits a hole at its periphery, corresponding to Guide, Focus, and Alignment
(GFA) sensors. One of the 10 petals presents additional holes, due to connection issues with the posi-
tioners that were repaired during 2021 summer.

visually inspecting spectra containing all the coadds, we measure a 99.4 ± 0.1% purity and a
93.5 ± 0.1% efficiency, for effective exposure time, corresponding to Teff ∼ 1000s. Considering
the galaxy contaminant with a good redshift as good tracers of the matter, the purity increases
to 99.7± 0.1%. This very high purity of the automated catalog with nominal conditions allows
us to use this catalog in the rest of the paper for the validation of the main selection.

Then, we study the performance of the main selection as a function of the effective time,
Teff . In Fig. 4.15, three different datasets are studied: 1) the three tiles visually inspected, for
which we coadded the different exposures in coadds of ∼ 1000s or ∼ 4000s effective time, 2) the
1% survey with an average ∼ 1300s effective time, 3) the main survey with an average ∼ 1000s
effective time.

The result of the top plot of Fig. 4.15 had a crucial role in our choice of the final selection. It
clearly shows that the number of quasars has very little dependence on the effective observation
time. Whether for Teff ∼ 1000s or Teff ∼ 4000s, the number of QSOs is ∼ 200 QSOs and ∼ 60
QSOs per deg2 for all QSOs and Ly-α forest QSOs, respectively. This stability of the results
made it possible to extrapolate the results obtained for the SV (Teff ∼ 4000s) to the main survey
(Teff ∼ 1000s).

The other two plots of Fig. 4.15 again show that the number of QSOs is very stable as a func-
tion of Teff , even when Teff is below the nominal time, defined for the main survey (Teff = 1000s).
By construction, during the main survey, the effective time will suffer from a certain dispersion,
∆Teff ∼ ±150s, but the stability of the number of quasars proves that QSO clustering analyses
will not have to correct for a possible first-order effect related to exposure time. Similarly, the
excellent uniformity of the number of QSOs as a function of target location over the focal plane,
as illustrated by Fig. 4.16, should facilitate clustering analyses.

In conclusion, the performance of the QSO main selection is extremely stable in Teff and
uniform as a function of the target location on the focal plane.

4.2.4.3 Comparison with SDSS catalog

As the QSO targets have the highest priority in the DESI fiber assignment, the first two months
of main survey already correspond to an effective surface of 1291 deg2 for the QSO targets.
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Figure 4.17: Efficiency as a function of redshift and r mag., using the DR16Q SDSS catalog as a
control sample. The efficiency is the fraction of the DR16Q SDSS catalog that is selected in the DESI
QSO catalog. The three algorithms, RR, MgII and QN are successively applied.

A large fraction of the DESI footprint is covered by the DR16Q SDSS QSO catalog (Lyke
et al. 2020). In the DESI main survey, 49, 148 QSO targets are also in DR16Q. We use these
QSOs as a control sample with which we measure the efficiency (but not the purity because
the DR16Q control sample is not complete) defined in Section 4.2.3.2. The results shown in
Fig. 4.17 are quite similar to those obtained with the visually inspected control sample of QSOs
(see Fig. 4.12). The RR algorithm has an efficiency at the order of 90%. The MgII algorithm
allows us to recover low-z QSOs and finally QN algorithm allows us to achieve a 99% efficiency.

Figure 4.18: Comparison of DESI redshifts with SDSS redshifts. The objects are matched between the
SDSS DR16Q catalog and the QSO catalog for the first two months of the DESI main survey.

In Fig. 4.18, we compare the redshift measurements of the DESI and DR16Q catalogs. The
top left plot shows that the vast majority of QSOs have consistent redshifts. The off-diagonal
QSOs (0.8% of the sample) most often correspond to an incorrect association of QSO emission
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Figure 4.19: Comparison of the DESI redshifts and the SDSS redshifts with the VI redshifts when the
SDSS and DESI redshifts are inconsistent (i.e. for QSOs that lie off the z(SDSS) = z(DESI) diagonal on
the top left plot of Fig. 4.18).

lines, which results in lines that lie off the z(SDSS) = z(DESI) diagonal.
A visual inspection of one third of the off-diagonal QSOs which exhibit inconsistent redshifts

between the two catalogs is summarized in Fig. 4.19. Only three objects out of 99 show a
discrepancy between the visual redshift and the DESI redshift. In contrast, all the SDSS redshifts
of the off-diagonal QSOs are inconsistent with the visual inspection redshifts.

The core of the redshift difference distribution, δ = z(SDSS)− z(DESI), is shown in the top
right plot of Fig. 4.18. It is clearly asymmetric, and the mean is significantly different from
zero: µ(δ) = (1.1 ± 0.01) · 10−3. The bottom plot of Fig. 4.18 seems to demonstrate that the
asymmetry in δ appears only above redshift 2.5, when the Mg ii line cannot be used to measure
the redshift. A direct comparison of DR16Q redshifts with the systemic redshifts measured with
spectra of the reverberation mapping project (Shen et al. 2016) or a more recent publication(Wu
and Shen 2022) tend to confirm this discrepancy.

4.2.4.4 DESI redshift resolution

In the 1% survey, all the QSOs with z > 1.6 have been observed at four times the nominal
exposure time in order to test the infrastructure that will allow DESI to observe the Ly-α QSOs
four times longer that the rest of the QSOs. The 1% survey thus provides several repeats of
the same QSO, allowing us to study the DESI redshift resolution. There are 103, 350 pairs with
z > 1.6 that can be used for comparison.
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Figure 4.20: Comparison of the DESI redshifts for several repeats of the same QSO obtained with
the 1% survey. The black and violet curves correspond respectively to two-Gaussian and three-Gaussian
models.

For each pair (i, j) of redshifts, we compute the redshift difference, ∆v = (zi − zj)/(1 +
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Table 4.4: Number of QSOs per deg2 for the 1% and main surveys, obtained with a 310 deg−2 main
selection target density. The second and third columns are for all the QSOs and for the z > 2.1 QSOs,
respectively.

Number of Number of
QSOs (deg−2) Ly-α QSOs (deg−2)

DESI requirements 170 50
1% survey 211.9± 1.2 61.0± 0.6
Main survey 205.1± 0.4 59.1± 0.2

(zi + zj)/2) × c (see Fig. 4.20). The standard deviation of the ∆v distribution is 372 km s−1,
indicating a redshift resolution of the order of 263 km s−1. However, Fig. 4.20 shows a non-
Gaussian distribution with very wide tails. A two-Gaussian model encounters difficulties in
reproducing the tails (black curve). The ∆v distribution is better modeled by three Gaussians
with σ1 = 95 km s−1, σ2 = 400 km s−1 and σ3 = 1500 km s−1, corresponding to 53%, 44% and
3%, respectively, of the total distribution.

4.2.4.5 Results

The results in terms of number of QSOs per deg2 are summarized in Table 4.4. With a 310
deg−2 target density, the main quasar selection selects more than 200 deg−2 quasars, including
60 deg−2 quasars with z > 2.1. The QSO densities are exceeding the project requirements by
20 %. We expect a similar gain of 20% in the measurement of the cosmological parameters from
clustering of either QSOs or Ly-α QSOs compared to the forecasts given in DESI Collaboration
et al. (2016b).

We measure a slight difference between 1% survey and main survey, on the order of a few
percents. This is partly due to the difference in the effective exposure time but mainly due to
the regions of the sky observed. These first two months of the main survey are located near the
Galactic Plane, a region where the imaging is of lower quality, which explains the small observed
discrepancy.

The comparison of the distribution of the QSO number as a function of the redshift is
remarkably identical for the North and South imaging (see Fig. 4.21). The only area of small
discrepancy is at low z, a region where the target selection depends notably on the definition
of the stellar morphology (’PSF’). The morphology which is driven by the z band in the North
imaging is different than in the South imaging where the three optical bands contribute almost
equally.
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Figure 4.21: dN/dz for North and South regions.
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Finally, we compare our results to the density of QSOs as a function of redshift that we
can derive from the Quasar Luminosity Function (QLF) of Palanque-Delabrouille et al. (2016).
In Fig. 4.22, the QLF is corrected for target selection completeness, ε(z, r), which depends on
redshift and r magnitude. This selection completeness is determined from the QSOs in the RF
test sample that were not used in the RF training and that pass the selection of Sec. 4.2.1. For
r < 22.7 (blue curve), we obtain an excellent agreement between the prediction from the QLF
and the observed number of QSOs. The very small discrepancy observed for r < 23.0 (red curve)
comes, on the one hand, from uncertainties in the QLF, in particular for faint QSOs, and, on
the other hand, from the limited number of QSOs available in the RF test sample beyond 22.7
in r.

In conclusion, with a 310 deg−2 target density, the main selection based on a RF approach
selects over 200 deg−2 quasars, including 60 deg−2 quasars with z > 2.1, exceeding the project
requirements by 20%. These QSO densities are in excellent agreement with QLF predictions.
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Figure 4.22: Comparison between QLF predictions and the measured quasar density for r < 22.7 and
r < 23.0. The green curve is the QLF integrated up to r = 23.0. The red and blue curves are computed
after correcting by the target selection completeness, ε(z, r). The blue and red dots correspond to the
QSO density obtained with the main survey for r < 22.7 and r < 23.0 QSO targets, respectively.

4.3 Mitigation of imaging systematics in the QSO target selec-
tion

4.3.1 Context

As described in Section 2.2.3, a promising approach to probe inflation is through the tiny
imprint left on the matter power spectrum by inflation-induced primordial non-Gaussianity.
This measurement Ross et al. (2013), Castorina et al. (2019), Mueller et al. (2022) is known to
be limited by systematic effects on large scales, most of which are due to imaging systematics
imprinted on the density of spectroscopic targets during the target selection.

Hence, the aim of this section is to mitigate imaging systematics for the DESI QSO target
selection. We compute the angular clustering properties of the QSO targets in order to validate
the selection method and to provide a control sample of QSO targets stripped of residual biases
from imaging systematics or selection criteria. This is particularly important as the QSO target
selection is known to be strongly contaminated by stars in addition to being impacted by imaging
systematics. This work also serves as a crucial input to the selection of the QSO targets for DESI,
which will soon be finalized for the five-year duration of the survey, in order to avoid strong
imprints into the spectroscopic QSO sample due to imaging systematics that occur during the
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target selection. Finally, it is also a proof of concept. Since the stellar contamination of the
target selection will be removed after the spectroscopic survey, the same method could be used
to mitigate systematics in the DESI spectroscopic QSO sample.

Different strategies have been developed to deal with imaging systematic effects and improve
the reliability of clustering studies. In this work, we follow the approach that was used for SDSS
studies (Myers et al. 2006, Ross et al. 2011, Ho et al. 2012, Ross et al. 2017; 2020, Raichoor
et al. 2021) and for Dark Energy Survey (DES Collaboration et al. 2021) studies (Leistedt et al.
2016, Elvin-Poole et al. 2018). This method models the variation of target density as a linear
function of imaging features (see, e.g. Myers et al. 2015, Prakash et al. 2016) in order to
remove fluctuations caused by imaging systematics. A correction weight is then computed and
applied to the data. Since this method smooths density fluctuations, one needs to check to what
level the mitigation procedure affects the cosmological signal. Another less common approach
is based on mode projection (Rybicki and Press 1992, Tegmark et al. 1998, Leistedt et al. 2013,
Elsner et al. 2016, Kalus et al. 2019): Modes (in Fourier space) or pixels (in configuration space)
are assigned increased variance where the systematics map exhibits large values, such that the
covariance matrix has larger values in the presence of systematics. This is a robust method,
which, however, only mitigates systematics using also a linear combination of the imaging maps.
It cannot model the non-linear effects that are now observed, as illustrated in Ho et al. (2012).
The correction-weights and mode-projection strategies can be combined in a common framework
as explained in Weaverdyck and Huterer (2021).

To circumvent the assumption that only known features can completely explain all imaging
systematics, one can also use a forward-modeling approach (Suchyta et al. 2016, Burleigh 2018,
Kong et al. 2020). Such an approach accounts for source detection and target selection processes
in an end-to-end fashion, by injecting fake galaxies into raw images, running source detection
on the images, and applying target selection algorithms to the resulting sources.

Some studies of how imaging systematics affect DESI target selection have already been
undertaken. For instance, Kitanidis et al. (2020) gave a first overview of imaging systematics for
different DESI target classes selected from Data Release 7 (DR7) of the DESI Legacy Imaging
Surveys (see e.g. Dey et al. 2019), and found that the DESI QSO target sample suffered from
strong contaminating effects. In another study of DR7 of the Legacy Imaging Surveys, Rezaie
et al. (2020) analysed how imaging systematic affect the eBOSS-like ELG selection, and used
an artificial neural network to mitigate non-linear effects.

In this section, we will therefore analyse the final QSO target selection that is used by
DESI in its nominal survey, and we will explore machine-learning approaches based on Random
Forests (RFs) and Neural Networks (NNs), which we will compare to each other as well as to a
traditional linear treatment, to mitigate systematic effects on the QSO selection. The mitigation
process will be tested by measuring the angular properties of the QSO target selection, before
and after applying the weights derived from these techniques.

4.3.2 Photometric properties of the QSO selection

Fig. 4.23 shows the density map of the QSO targets from the main selection described in
Sec. 4.2.1. In particular, it exhibits several regions with higher density of QSO targets than
average:

• Overdensity near the Galactic plane: the stellar density is higher near the Galactic plane
(black line in Fig. 4.23), which increases the stellar contamination in the QSO target
selection. This effect is not obvious in the region bounded by R.A.,Dec. ∈ [120◦, 140◦] ×
[−10◦, 15◦], because the lower W1/W2 PSF depth counters the excess of targets caused
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by the higher stellar density.

• Overdensity in the Sagittarius Stream (see also Section 4.3.3.1): the stellar population of
the Sagittarius Stream, indicated by the blue dashed line in Fig. 4.23, is different from
the Galactic stellar population. Most of the stars in the stream are bluer than Galactic
stars and tend to have similar colors to the bulk of the QSO population. We empirically
noted that Sgr. Stream stars are very faint in the two NIR bands, W1 and W2 compared
to Galactic-plane stars, which justifies our NIR cut (W1 < 22.3 and W2 < 22.3) of
Sec. 4.2.1. This overdensity is mainly visible in the NGC, but it can also be observed in
SGC at 0◦ < R.A. < 30◦.

• Overdensity in the North: the DESI QSO target density increases with declination. This
overdensity could be due to the poorer PSF depth in the z band in this region. This is
likely caused by imaging depth decreasing at higher declination due to increasing airmass
that was not compensated for by additional exposure time in the MzLS observing strategy.
Since the z band plays a crucial role in the QSO selection, the discriminating power between
stars and DESI QSO targets is reduced at higher declinations.

• The DES footprint, which benefits from a one mag. deeper photometry in all optical
bands is, as expected, the least contaminated region. Note that DES region is similarly
contaminated in the region of the crossing of the Sagittarius Stream.

Figure 4.23: Density map of the DR9 QSO target selection. The solid black line indicates the Galactic
plane and the blue dashed line indicates the plane of the Sagittarius Stream.

Fig. 4.24 shows the relative QSO target density as a function of each observational param-
eter, allowing us to identify the main sources of systematic effects in the QSO target selection.
Observational parameters (called features in the next) are described in Section 4.3.3.1. We
observe very different behaviors in the three regions:

• In the South (DES) region, because of the deeper photometry in optical bands, all the
fluctuations of the relative density are at the order of only a few percent, typically, one
order of magnitude below the level of fluctuations in the other two regions (North and
South (non-DES)).

• In the North region, the morphology is driven by the z band since the MzLS telescope is
the one with the best seeing. In addition, the segregation between stars and QSOs is based
on the comparison of the optical z band with the two NIR (W1,W2) bands. Therefore,
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Figure 4.24: Relative QSO target density in the North, South (Non-DES) and South (DES) regions
as a function of each observational parameter (see Sec. 4.3.3.1 for the definition of the parameters).
The relative QSO target density is a mean value after rejecting outliers. The histograms represent the
distributions of each observational parameter in the three regions. The color code is blue, green and red,
respectively, for the North, South (Non-DES) and South (DES) regions.

we observe a strong dependence of the QSO density on the z band seeing as well as on the
z, W1 and W2 depths.

• In the South (non-DES), we observe the same trends except that the QSO density is less
sensitive to the z band seeing, because the morphology is determined from an almost
balanced combination of the three optical bands. Finally, the W1 and W2 imaging is
shallower in the South region compared to North one, because WISE produced many
more images around the North Ecliptic Pole located in the North region. However, the
behavior is essentially the same: the blue and green curves (see Fig. 4.24) are just shifted
by ∼ 0.5 magnitude.

4.3.3 Methodology

All the density and feature maps discussed in this section will be pixelized using HEALPix3

(Gorski et al. 2005) with Nside = 256. All HEALPix operations are done using the healpy4

package (Zonca et al. 2019). The choice of Nside (i.e. the size of the pixelization) is justified in
4.3.5.2.

3http://healpix.sf.net
4https://healpy.readthedocs.io/en/latest/

http://healpix.sf.net
https://healpy.readthedocs.io/en/latest/
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This method is implemented in regressis5, and it is currently used to compute the default
weights to correct the imaging systematics in the catalog creation pipeline of DESI. This method
was also used in Krolewski et al. (2023) to constrain fNLloc by cross-correlating the QSO target
density with the CMB lensing.

4.3.3.1 Features

The aim of the systematic mitigation is to correct for spurious density fluctuations in the target
selection without suppressing the cosmological signal contained in the targets’ clustering. We
restrict our study to “features” directly linked to the observational properties such as imaging
quality and physical properties that could altered the observations as the stellar density. We
are careful to avoid incorporating parameters that relate to specific positions in the sky. For
instance, we do not use the Modified Julian Date (MJD) as a feature (as in, e.g. , Rezaie et al.
2020), since the date of an observation directly translates into the position observed on that
date.

I Observational Features from DR9 We use ten observational features to describe the
systematic effects in the DESI QSO target selection. Whether our features are sufficient to
describe spurious density fluctuations will be verified after the mitigation procedure by checking
the isotropy of the corrected target selection map (see Section 4.3.4.3). The impact of mitigating
systematics on the observational features themselves will be presented in Section 4.3.4.1.

The feature maps are generated using the script bin/make imaging weight map from the
desitarget package6. The maps, which we describe below, are extracted from the random
catalogues provided as part of DR9 of the Legacy Imaging Surveys7, with the exception of the
stellar density map:

• Stellar density (Stardens) [deg−2]: Density of point sources from Gaia DR2 (Gaia Collab-
oration et al. 2018) in the magnitude range: 12 < PHOT G MEAN MAG < 17.

• E(B-V) [mag]: Galactic extinction from Schlegel et al. (1998) as modified by Schlafly and
Finkbeiner (2011).

• PSF Depth [1/nanomaggies2] in r, g, z, W1, W2: PSF depth is the 5-sigma point-source
magnitude depth8. The dependence of target selection on PSF depth is governed by two
competing effects. On the one hand, the number of resolved objects increases with PSF
depth. On the other hand, the determination of the flux is better for brighter objects,
which means that contaminants are more easily rejected, resulting in a reduced number of
targets. In this study, the z depth does not limit the target selection (cf. Section 4.2): it
only affects the measurement of the z flux. Therefore, the target density decreases with
increased z PSF Depth. In contrast, fluxes in W1 and W2 are obtained with forced-
photometry. This allows fluxes to be measured for fainter objects that are detected at
marginal significance in the WISE imaging (see Dey et al. 2019). Because such fluxes are
noisy, the resulting colors scatter in regions of insufficient depth. Corresponding objects
are rejected by the target selection not because they are not quasars but because their

5https://github.com/echaussidon/regressis
6https://github.com/desihub/desitarget
7https://www.legacysurvey.org/dr9/files
8For a 5σ point source detection limit in band x, 5/

√
x gives the PSF Depth as flux in nanomag-

gies and −2.5
(
log10(5/

√
x)− 9

)
gives the corresponding magnitude (see https://www.legacysurvey.org/dr9/

catalogs/).

https://github.com/echaussidon/regressis
https://github.com/desihub/desitarget
https://www.legacysurvey.org/dr9/files
https://www.legacysurvey.org/dr9/catalogs/
https://www.legacysurvey.org/dr9/catalogs/
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Figure 4.25: Maps of the most important features used in our systematics mitigation. The difference
between the three imaging footprints highlighted in Fig. 3.14 is clearly visible in the PSF Depth z and
PSF Size g feature maps.

colors are not in the region populated by QSOs. Conversely, when the PSF Depth in W1
or W2 is higher, the colors are more precise, and a greater number of targets are selected
as genuine QSOs.

• PSF Size [arcsec] in r, g, z: Inverse-noise-weighted average of the full width at half maxi-
mum of the point spread function, also called the delivered image quality. A small value of
PSF size corresponds to a good image resolution, which leads to more precise fluxes and
improved target selection.

Fig. 4.25 shows 5 of the 10 observational feature maps from DR9. It is important to note that
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these 10 features are correlated, and the level of correlation depends on the imaging footprint
(North, South, DES). Stellar density and E(B-V) are positively correlated across the entire sky
but E(B-V) contains additional information. This can be seen by comparing the top two left
panels in Fig. 4.25 in the region near (R.A.,Dec.) = (0◦, 15◦). The W1 and W2 PSF Depths are
highly correlated in all of the three imaging footprints of interest. However, we include both as
our analysis will show that the W2 PSF Depth is particularly heavily weighted by the Random
Forest in the North, indicating that this feature has extra information which is not contained
in the W1 PSF Depth. For the optical observational features, two cases are of particular note.
In the North, the g and r bands were collected by the same camera and so their observational
features are positively correlated, but these features are not correlated with the z-band, which
was independently obtained by MzLS. In the South and in DES, the three bands were collected
with the same camera and therefore are all positively correlated. Finally, the W1/W2 PSF
Depths are more correlated with the other features in the DES region, as compared to the
North and the South, since all the feature maps are more uniform in the DES footprint.

I Sagittarius Stream Model The target density map (Fig. 4.4) shows a significant excess
in the Sagittarius Stream region. The Sagittarius galaxy is one of the closest galaxies orbiting
around the Milky Way. The gravitational forces create two tidal arms called streams wrapping
the Milky Way with the same orbit (Newberg et al. 2002, Majewski et al. 2003).

The Sagittarius contamination (see the blue dashed line in Fig. 4.4) occurs mainly in the
South footprint but also touches the DES footprint. However, none of the feature maps discussed
so far contain a pattern matching this contamination. Thus, an additional feature is required in
our analysis. To model this feature, we use the Sagittarius Stream catalogue derived in Antoja
et al. (2020). This catalogue is built from the Gaia DR2 catalogue, identifying stars in the
Stream via their proper motions. Matching the Antoja et al. catalogue to the SDSS DR16 QSO
catalogue (Lyke et al. 2020) on position, we find that some of the stars are actually known QSOs.
To generate the Stream feature shown in Fig. 4.25 (top right panel), we remove the known QSOs
and apply an r > 18 cut to only select faint stars. A fainter cut would better match the QSO
selection, but the Antoja et al. catalogue does not contain a sufficient number of objects faint
in r-mag to apply a fainter cut.

I Three imaging footprints The three footprints of the Legacy Imaging Surveys (North,
South, DES; as defined in Section 3.2.3.1), exhibit distinct imaging properties. As shown in
Fig. 4.26, while the PSF size in the z band is similar in the North and South, the r-band
depth distributions are very different in the North, South and DES footprints. For instance, a
PSF depth of 24.7 in r leads to a small overall target overdensity in DES (cf. Fig. 4.30) while it
corresponds to an underdensity in the South (cf. Fig. 4.29). The imaging properties in the South
footprint are similar in the North (NGC) and South (SGC) Galactic Cap. There is therefore no
reason to split the South footprint in two.

In addition,the selection threshold in the QSO target selection is set independently in each
of these three footprints. We therefore model systematic effects in the three footprints indepen-
dently.

4.3.3.2 Systematic Model

We will identify each position on the sky with the corresponding pixel number i from a HEALPix
pixelization. For each imaging footprint, we only consider pixels that contain at least one object
from the random catalogues. The density of selected targets inside a pixel i is noted Ni. It is
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Figure 4.26: Density distribution of the PSF Size z and PSF Depth r for the three imaging footprints
shown in Fig. 3.14. These two histograms show that a joint analysis on the three footprints is difficult
since some features share the same support and others do not.

derived from the observational target density as

Nobs
i = fi ×Ni, (4.4)

where fi is the observed fractional area of pixel i calculated as the number of random targets
inside the pixel divided by the nominal density of randoms, and Ni is the true number of quasars
in the pixel in the absence of any systematic effects. Ni is related to the mean target density
N0 by

Ni = N0 (1 + δi) , (4.5)
where δi is the overdensity that contains the cosmological information.

N0 is unknown and has to be estimated from the target selection as the mean of the pixel
density over the footprint weighted by f : N̂0 = 〈Ni〉i = 〈f−1

i ×Nobs
i 〉i. Since the target selection

is contaminated by stars, we choose different regions known to be less contaminated to perform
this estimation in the three footprints. We use the same region used to tune the probability
selection during the quasar target selection, which was a box of R.A.,Dec. ∈ [120◦, 240◦] ×
[32.2◦, 40◦] for the North footprint, a box of R.A.,Dec. ∈ [120◦, 240◦]× [24◦, 32.3◦] for the South
footprint and the entire footprint for DES. Note that even these regions are contaminated by
stars, such that the actual QSO target density is smaller.

Systematic effects will be taken into account using an additional term Fi such that

Ni = N0 (1 + δi)× Fi. (4.6)

The aim of the imaging systematics mitigation is to describe Fi as a function of a set of
observational features. These features must not depend on the sky position, to avoid suppressing
the cosmological signal. We assume that the imaging systematics can be completely explained
by our set of observational features. This assumption can be validated by the uniformity of the
target selection density map after mitigation (cf. Section 4.3.4.3).

The features in the pixel i are denoted si which is an n-dimensional vector where n is the
number of features (n = 11 in our case: 10 observational features from Section 4.3.3.1 and
the Sagittarius Stream feature from Section 4.3.3.1). F should depend only on these features
and not on the pixel number. We thus rewrite Fi as F (si), and N now also depends on the
observational features:

Ni(si) = N0 (1 + δi)× F (si). (4.7)
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We denote A(S) to be the subset of pixel numbers which belong to the same region S in
the space of the feature maps. Averaging over many pixels will suppress the density contrast:
〈δi〉i∈A(S) = 0. Thus, if S is sufficiently large, the contamination signal is given by

F (S) =
〈Ni(S)〉i∈A(S)

N0
. (4.8)

This averaging is controlled by hyper parameters of the different regression methods. For in-
stance in the particular case of the Random Forest (see Section 4.3.3.3), the averaging is con-
trolled by the minimum number of objects in a leaf.

The systematic correction will be modelled by a weight to apply in each pixel, defined as

wsys
i = 1

F (si)
. (4.9)

The correction is only efficient on scales at least as large as the typical size of the pixel at
Nside = 256, i.e. about θ = 0.22 deg. Hence, the correction is constant within each pixel.

The regression is performed using only reliable pixels, which we choose to be pixels with
fi > 0.9, and is then applied to all pixels. This criterion removes pixels that contain too few
targets, which could bias the regression. The pixels that are excluded represent only about
3.8% of the DR9 footprint, lying mainly at the edges of the footprint and in the region south
of Dec. < −10◦ in the NGC. For studies with a smaller pixel size, e.g. Nside = 512, the nominal
density of the randoms would have to be increased to limit the Poisson noise when determining
fi.

4.3.3.3 Regression Methods

We test different methods, utilizing the same feature set, to perform the regression presented
above. The initial correction, obtained with a linear regression, turns out to be insufficient (as
illustrated in Fig. 4.28 – 4.30), necessitating non-linear regression approaches. We therefore test
two classical machine-learning methods based on scikit-learn (Pedregosa et al. 2011), namely,
the Random Forest and Neural Network methods.

I Linear The contamination function F is described as a linear function of the observational
features: F (si) = a0 +

∑11
j=1 ajsij . The coefficients aj will be estimated with a least square min-

imization using the iminuit package (Dembinski et al. 2020). The χ2 used for the minimization
is defined as

χ2 =
∑
i

1
Ni

(
F (si)−

Ni

N0

)2
+ creg × (〈F (si)〉i − 1)2 , (4.10)

where
√
Ni is an estimate of the error for the object count inside a pixel and creg is a penalty

term to regularize the regression. Since the distribution of Ni/N0 is not symmetric around 1, the
higher number of pixels with Ni/N0 < 1 forces the contamination function to not be centered
around 1. We therefore use a penalty term to flatten the density map around the chosen mean
density. The value of the penalty term depends on the number of pixels used to build χ2. In
our configuration, we use creg = 2e6 and we check that as long as creg is sufficiently large, its
value does not change the result of the regression.

I K-fold training Machine learning methods tend to overfit the data and have to be used
carefully. Since we cannot create a training sample independent of the data set, we have to use
a K-fold training to avoid over-training.
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A K-fold training is a method that splits the data into K folds. For each fold, the method is
trained with the remaining K-1 folds then the regression is performed on the isolated fold. This
method guarantees that no data used for the regression is used for the training. A small value
of K ensures no overfitting but the mitigation will be inefficient since the training set would not
contain enough information. A high value of K ensures an efficient mitigation but is more prone
to overfitting. In our case, we choose to work with 6 folds in the North and the DES footprint
and with 12 folds in the South. Each fold has an area of about 830 deg2.

The locations of the folds have to be carefully chosen, since the contamination has distinct
causes. For example, if all the borders of the Galactic plane in the South footprint were to
be put in the same fold, the machine learning algorithm would not be able to explain related
contamination with the K-1 remaining folds, since all the relevant information would have been
removed from the training set. Therefore, we construct folds from small patches of the sky to
spread the information across all folds. Such folds can be constructed easily in the HEALPix
“nested” scheme using the scikit-learn function GroupKFold. The size of the patch matters,
as patches that are too small lead to overfitting since all the information is present in all the
folds. We use patches (groups in scikit-learn language) of 1000 pixels, which corresponds to
an area of ∼52 deg2 for each patch.

The patch distribution is shown in Fig. 4.27, which demonstrates that no particular region is
described by a single color. We checked that the estimated weight remains stable if we slightly
vary the number of folds or the size of the patch, and used mocks (cf. Appendix 5.1) to ensure
that no overfitting occurs.

Figure 4.27: Distribution of folds across the three imaging footprints. There are 6 folds in the North
(blue region), 12 in the South (green region) and 6 in DES (red region). Folds were split into small
patches so the specific effects that contaminate target selection are always spread across several folds.
The area of each patch is ∼52 deg2.

I Random Forest (RF) The first machine learning method used in our regression analysis
is the well-known Random Forest algorithm. It is easy to parameterise and gives a helpful
classification of the features as a function of their importance during the regression.

For the regression, we use the same set of hyper-parameters for each footprint and we do
not normalise the data set. We choose a forest of 200 trees and we fix the minimum number of
samples contained inside a leaf at 20. This means the average to estimate F (S) (cf. Eq. (4.8))
is computed with at least 20 pixels. The mean number of pixels in each leaf is 80. We checked
that the minimum sample size in a leaf has no strong impact on the regression during the K-fold
training.
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I Neural Network (NN) We also use the Multi-layer Perceptron (MLP) algorithm, a fully
connected type of Neural Network. Finding the best hyper-parameters for a neural network is
difficult. We base our choice on the result of a grid search performed on simulated QSO samples
(i.e. mocks). The mocks used for this study are described in Appendix 5.1.

For the regression, we use the same set of hyper-parameters for each footprint, but when
dedicated mocks for DESI become available, different hyper-parameterisations will be possible.
We use an MLP with 2 hidden layers, comprising 10 neurons for the first layer and 8 for the
second (i.e. a (10, 8) formalism). The data are normalised on each fold dividing each feature by
the standard deviation estimated in the considered fold. We hyper-parameterise the MLP with
a sigmoid activation function, a batch size of 1000 and a tolerance of 1e-5. We use the Adam
solver (Kingma and Ba 2015) to perform the minimization during the training.

4.3.4 Systematics Mitigation

We apply the method presented in Section 4.3.3 to correct for observational systematics in the
DESI QSO target selection. We first describe the origin of these systematics and explain the role
of the most important features. We then present the target density after it has been corrected
by our systematic mitigation method.

4.3.4.1 Systematic Plots

To illustrate our method, we plot the relative QSO target density as a function of each obser-
vational feature. We will refer to these plots as “systematic plots”. In our systematic plots, we
center the relative density around 0. The goal of the correction is to obtain a relative density
that is independent of the value of the observational feature. We produce systematic plots for
the North (see Fig. 4.28), the South (see Fig. 4.29) and for DES (see Fig. 4.30).

Below, we give a brief description of the systematic plots in each footprint:

• North (Fig. 4.28): z and W1/W2 are crucial for the DESI QSO target selection. The plot
of the relative density as a function of the PSF Depth z or the PSF Size z shows that
when the z observational feature values are for bad observational conditions (small PSF
Depth and high PSF Size), the discriminating power of the target selection algorithm is
poorer and the relative density higher. In addition to the importance of the z band for
the target selection, the z band benefits from better image quality (smaller PSF Size and
higher PSF Depth) than g or r. The fluctuation of the relative density as a function of the
g/r observational features are therefore weaker, but they follow the same general pattern.
As explained in Section 4.3.3.1, the impact of the W1/W2 PSF Depths differs from the
g/r/z depths since the depth of the WISE colors are crucial for selecting QSOs. Hence,
the number of targets increases with W1/W2 PSF Depth. In addition, the z PSF Depth is
smaller in regions where the W1/W2 PSF Depth is larger, as shown in the bottom panels
of Fig. 4.25. The combined effect increases the target density in this region.

• South (Fig. 4.29): the plots as a function of the z and W1/W2 PSF depths at high values
exhibit similar behaviour as in the North. However, the effect is less significant since it
is mainly visible in the R.A.,Dec. ∈ [210◦, 270◦] × [15◦, 30◦] region. In comparison to
the North, the plots as a function of the g/r/z features all show similar trends to each
other since these bands were collected with the same camera. The z-band dependence
is the strongest, as expected since it is one of the most important bands for the QSO
selection. The plots as a function of the W1/W2 PSF Depth exhibit seemingly unexpected
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Figure 4.28: Relative QSO target density in the North footprint as a function of each observational
feature. The relative QSO target density is a mean value after rejecting outliers i.e. pixels with a coverage
lower than 90%. The blue lines depict the raw DESI QSO target selection. The green (resp. yellow /
black) lines depict the QSO target selection after correcting for systematic effects using the RF (resp. NN
/ Linear) regression. The histogram represents the fraction of objects in each bin for each observational
feature and the error bars are the estimated standard deviation of the normalized target density in each
bin. The three methods all successfully flatten the relative QSO target density as a function of each
observational feature. However, the linear method is less efficient than the other two methods.

behaviour at low values of the PSF Depth, where the relative density is almost flat. As
explained in Section 4.3.2, the excess of stars near the Galactic plane or the Sagittarius
Stream counteracts any expected decrease of targets due to lower values of the W1/W2
PSF Depth (cf., in particular, the R.A.,Dec. ∈ [120◦, 150◦] × [−10◦, 15◦] region). The
plots in the top panel of Fig. 4.29 (stellar density, dust and Sagittarius Stream) indicate
a higher relative density due to the presence of stars. These features explain the stellar
contamination near the Galactic plane and inside the Sagittarius Stream. Some stars have
similar colors to QSOs and are therefore selected as QSO targets. More stars thus enter
the QSO selection in regions of higher stellar density.

• DES (Fig. 4.30): The fluctuations of the relative density are much lower than in the two
other footprints. The observational features for g/r/z, and especially for the z band, are
better in DES than in both the South and the North (cf. the median value of these features
in Table 3.3 and the distribution of the PSF Depth Size z and the PSF Depth r in Fig. 4.26).
This results in excellent discrimination of QSOs from stars in the target selection process.
So, DES is the least contaminated region and exhibits smaller fluctuations in relative
density as a function of the observational features.
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Figure 4.29: Same as Fig. 4.28 but for the South imaging footprint.

In Fig.s 4.28 – 4.30, we also plot the three different regression methods we apply for each
footprint: RF in green, NN in yellow and Linear in black. These plots show that the mitigation
works well and correctly flattens each feature. The difference in efficiency between the Linear
and the non-linear methods is particularly obvious for the North and South footprints, where
the contamination is stronger. For example, the linear correction fails when the relative density
as a function of the PSF depth z is large, as shown in Fig. 4.28. This illustrates the non-linearity
of the contamination and justifies the use of the machine learning methods. Both the RF and
the NN perform well in correcting the non-linear systematics, although small differences can be
found between these two methods. A more detailed comparison between the RF and NN will
be done in Section 4.3.5.2.

4.3.4.2 Importance Features

The Random Forest algorithm includes a specific tool called importance features. Importance
is a measure of which features most affect the regression. The importance features metric for
the RF implemented in scikit-learn is based on the mean decrease in impurity (MDI), which
is also called the Gini importance. The metric corresponds to averaging (over all the trees of
the forest) the impurity reduction of each node weighted by the ratio of the training set passing
through each node. The permutation importance was also tested and yields similar result in our
data set than the Gini importance.

A feature with a higher importance value is more discriminating than a feature with a lower
importance value, so the importance values are useful to identify the observational features that
lead to contamination, to first order. It is worth noting that a feature with a low importance
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Figure 4.30: Same as Fig. 4.28 but for the DES imaging footprint.

value is not necessarily useless and can still improve the training compared to a case where we
remove it. For instance, the Sagittarius Stream feature is necessary to correct the over-density
in the Sagittarius region but it is not a high-value importance feature since it is useful only for
a small number of pixels that vary in a manner that is quite different from other pixels in the
footprint. This well-known bias can be circumvented using the permutation importance, where
the Sagittarius Stream feature is ranked as one of the most important in the South.

In Fig. 4.31, we plot the importance for each feature. We only plot the six most important
features for each footprint, since the other features have about the same value as the sixth most
important feature. We recover the expected most important features described in Section 4.3.4.1:

• North: The importance feature analysis makes it clear that the PSF Depth z and the PSF
Depth W2 play a key role in the contamination of the target selection in the North.

• South: The South region is strongly contaminated by stars from the Galactic plane as
highlighted by the importance of the stardens and EBV features. The Sagittarius Stream
feature has a low importance even if it is crucial to correct the Sagittarius Stream region
(as explained above). The PSF Depth z plays an important role in this overdensity, as
already noted. Surprisingly, the W2 PSF Depth does not appear as an importance feature,
even though it explains the under-density near the anti-Galactic pole.

• DES: No clear importance feature emerges, as expected given that the DES region is the
least contaminated, most uniform, region.
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Figure 4.31: Feature importance calculated using the Random Forest method. Only the 6 most im-
portant features are plotted for each footprint. Each dot represents the feature importance value found
with one decision tree. The box plot is assembled across all the trees of the forest. The values of the
importance’s cannot be compared between the three regions.

4.3.4.3 Quasar target selection after correction

Figure 4.32: Distribution of the systematic correction weights (weight - 1) across the Legacy Imaging
Surveys footprint.

We construct a pixel weight map to correct the over or under densities of the target selection.
Fig. 4.32 shows the weight map obtained with the RF regression. We then multiply the density
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of the DESI QSO target selection by the weight on a pixel-by-pixel basis. Fig. 4.33 shows the
corrected QSO selection. The map is almost completely uniform at this resolution. The largest
overdensities vanish after mitigation, which confirms that the set of observational features that
we considered suffices to explain most of the observed large-scale target density variations.

Figure 4.33: Density map of the QSO target selection after mitigating systematics using the RF method.
The density map is quasi-uniform compared to the initial density map shown in Fig. 4.23. The solid black
line depicts the Galactic plane and the blue dashed line depicts the plane of the Sagittarius Stream.

The density distribution of the QSO target selection is shown in Fig. 4.34. The full histograms
are before applying the systematic mitigation and the lines are for after. The systematic mitiga-
tion acts on the width of the histograms removing the over or under-density pixels. This effect
is smaller in DES than in the North and in the South which confirms the visual inspection of the
Fig. 4.23 and 4.33. The difference in mean density between DES and the two other photometric
footprints was mentioned in Section 4.2.1.

200 250 300 350 400

# targets [deg−2]

0.000

0.005

0.010

0.015
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Figure 4.34: Density distribution of the QSO target selection for non corrected (full histogram) and
corrected (line) cases in the three photometric footprints. After the correction, the width of the histogram
is smaller in each photometric footprint. As mentioned in Section 4.2.1, the density in DES is lower than
in the North or in the South.

4.3.5 Angular Correlation and Clustering

Our systematic mitigation method is able to correct fluctuations in density as a function of our
observational features. In this section, we measure the impact of the systematic mitigation on
the angular correlation function.
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4.3.5.1 2-point Correlation function

I Definition The 3-dimensional 2-point correlation function ξ(r), see Section 1.2.1.2, de-
scribes the excess probability to find a pair of objects inside two infinitesimal volumes dV1 and
dV2 separated by r:

dP (r) = n̄2 (1 + ξ(r)) dV1dV2, (4.11)

where n̄ is the mean density. It is related to the contrast density by ξ(r) = 〈δ(x)δ(x + r)〉x.
The cosmological principle ensures that ξ depends only on r.

The same definition can be extended to the 2-dimensional case i.e. the angular correlation
where volumes are replaced by solid angles and distances by angular distances:

dP (θ) = n2
0(1 + ω(θ))dΩ1dΩ2, (4.12)

where n0 is the mean angular density.

I 2-point correlation function estimator We estimate the angular correlation function
w(θ) using the Landy-Szalay estimator derived in Landy and Szalay (1993):

ŵ(θ) = aDD − bDR+RR

RR
, (4.13)

where DD, DR, RR refer to the weighted pair counts data−data, data−random and random−
random with an angular separation θ. The normalization terms are

a =

∑
i 6=j

wRi w
R
j∑

i 6=j
wDi w

D
j

and b =

∑
i 6=j

wRi w
R
j∑

i
wDi

∑
j
wRj

, (4.14)

where wDi (resp. wRi ) is the weight for the data (resp. random). The Landy-Szalay (LS)
estimator is known to be unbiased and to have minimal variance in the limit of an infinitely large
random catalogue with a volume greater than the scales considered, and for weak correlations
(w(θ) << 1).

We use the package CUTE9 (Alonso 2012) to perform the estimation. CUTE is a fast imple-
mentation written in C and using OpenMP and MPI.

4.3.5.2 Angular correlation of the DR9 quasar target selection

The systematic mitigation method is checked to avoid over-fitting. This is done in Appendix 5.1
by applying the mitigation method to contaminated mocks. Then, we compute the angular
correlation of the DR9 quasar target selection corrected by the systematic weights that we
calculated in Section 4.3.4.

I Comparison with SDSS DR16 We calculate the angular correlation function of the raw
and corrected (RF method) QSO target densities for the three different imaging footprints. For
comparison, we also calculate the angular correlation function of SDSS DR16 quasars. Note that
the correlation with SDSS quasars cannot be computed at angles smaller than 62 arsec due to
fiber collisions (e.g. Dawson et al. 2016). For SDSS DR16 quasars, we use the systematic weights
provided in Rezaie et al. (2021) based on a neural network treatment (see Ross et al. 2020, for

9https://github.com/damonge/CUTE

https://github.com/damonge/CUTE
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the standard treatment). The results are shown in Fig. 4.35. Note that the error bars shown
in Fig. 4.35 are the standard deviation of the LS estimator (Landy and Szalay 1993) except for
the correlation function of SDSS quasars, for which the errors are estimated using the standard
deviation across 100 EZ-mocks from Zhao et al. (2021).

After mitigating for systematics, the angular correlation in the North and in the DES region
(again, see Fig. 3.14 for the definition of these regions) are comparable with the correlation
computed with the SDSS DR16 sample. The SDSS DR16 sample has been carefully corrected
for systematic effects (as derived in previous work), and so is expected to be largely free from
any contamination. In the South, even after mitigating for systematics, we do not recover the
same level of correlation as for the SDSS DR16 sample. Reasons for this difference are discussed
further in Appendix 5.2.

It is worth noting that the correction is larger at larger angles, i.e. the impact of systematic
effects is higher on large scales. Therefore, mitigation of photometric systematics is critical for
studies that require information from large scales, such as studies of primordial non-Gaussianity.
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Figure 4.35: The angular 2-point correlation function of the DR9 QSO targets. The dashed lines
represent the nominal DESI QSO target selection. The solid lines are for the corrected QSO target
selection with RF method. The black line is the angular correlation function from SDSS DR16 (which
cannot be calculated at angles smaller than 62 arcsec, due to fiber collisions). The grey region despicts
the error for SDSS DR16 estimated as the standard deviation across 100 EZ-mocks. The black dotted
line corresponds to the typical resolution of our regression analyses i.e. the pixel size at Nside = 256.
The solid green line is discussed in detail in Appendix 5.2.

I Regression method comparison Fig. 4.36 shows the difference between the three meth-
ods introduced in Section 4.3.4 on the North, on the South and on DES. As expected, the lin-
ear method is less effective than the other two in the highly contaminated North (top panel),
highlighting the necessity of our more complex machine-learning-based regressions. The two
machine-learning-based methods give similar results in the North. None of the three methods
properly correct for the contamination in the South (middle panel); this is discussed further in
Appendix 5.2.

The information in Fig. 4.30 suggests that all three methods introduced in Section 4.3.4
are quite effective at mitigating systematics in the DES region. However, the bottom panel of
Fig. 4.36 demonstrates that the linear method and the NN method less effectively correct the



143 4.3. Mitigation of imaging systematics in the QSO target selection

angular correlation function in the DES region as compared to the RF method. The difference
between the linear and the RF methods comes from the non-linear part of the contamination
in this region. The systematics plots show that in the highly contaminated regions, the linear
method corrects less than the RF.

The difference between the NN and the RF is more subtle since the training information, i.e.
the area and the chosen folds in that area, is similar. The explanation comes from the difference
between the two algorithms. The NN method is less efficient to correct small, highly contam-
inated regions. The RF creates boxes in feature space and separates the most contaminated
regions from the rest. The estimation of the correction weight is then possible everywhere.

To solve this problem, a regularization term can be introduced to force the NN to also
consider small regions. The choice of the regularization value strongly depends on the size of
the small regions and on their location in feature space. Without realistic mocks for the DESI
QSO sample, this additional hyper-parameter cannot be easily optimized. The training time for
the NN also varies considerably as a function of the value of the tolerance chosen to sample the
NN hyper-parameters, whereas, with our parameterisation, the RF method is quicker to train.
Since the RF correction already obtains good results in DES, we do not need to improve the
current NN method. We leave fine optimizing of the NN method for future work when realistic
DESI QSO mocks become available.

I Resolution of the correction The size of the pixels used when determining weights
to mitigate systematics is critical, because it gives the scale at which the correction is most
effective. We perform all the analysis above with Nside = 256 corresponding to a characteristic
angle of ∼0.22 deg i.e. 12.6 h−1Mpc at z ∼ 1.7 (Planck 2015; Planck Collaboration et al. 2016).
This pixel size is chosen such that there are sufficient targets inside each pixel to learn about
contamination without introducing significant Poisson noise in the mitigation.

For the DESI QSO target selection, a pixel with a size of Nside = 256 typically contains a
median of ∼16 QSO targets. At a size of Nside = 512, the number of targets decreases to ∼4.
With such a small number of targets, the per-pixel density is too noisy for machine learning
methods to relate fluctuations in density to observational features. For the same reason, we
needed to increase the pixel-size used in our analysis to Nside = 128 when studying eBOSS
mocks, since the density of the eBOSS mocks was lower than the DESI QSO target selection
density (see Appendix 5.1).

Other DESI targets, such as ELGs and LRGs, will have a higher density and it will be
possible to decrease the size of the pixels used to estimate correction weights by a factor of 2–4.

I Systematic checks: restrictive QSO target selection Since the DESI QSO targets
are selected with an RF classification, the stellar contamination depends on the value of the
selection threshold. This dependence propagates into the angular correlation, since we broadly
expect a lower r0 for a less contaminated sample.

Fig. 4.37 shows the angular correlations in the North for DESI QSO targets with different
values of the selection threshold (dashed lines) and of the corresponding corrected samples (full
lines). The systematic weights are generated with the RF method for each target selection.
The nominal probability in the North footprint used in the QSO selection depends on r and is
given by p(r) = 0.88− 0.04× tanh(r − 20.5). This threshold is lower than for the other regions.
When the threshold increases, the selection is less contaminated since the RF will select a higher
fraction of bonafide QSOs.

The amplitude of the angular correlation in Fig. 4.37 decreases as the probability threshold



Chapter 4. DESI quasar survey 144

10−5

10−4

10−3

10−2

10−1

ω
(θ

)

North

Targets DR9

Corrected with NN

Corrected with Linear

Corrected with RF

10−5

10−4

10−3

10−2

10−1

ω
(θ

)

South

Targets DR9

Corrected with NN

Corrected with Linear

Corrected with RF

10−2 10−1 100 101

θ [deg]

10−5

10−4

10−3

10−2

10−1

ω
(θ

)

DES(DR9)

Targets DR9

Corrected with NN

Corrected with Linear

Corrected with RF

Figure 4.36: The angular correlation function for the three different methods introduced in Section 4.3.4
for the three regions highlighted in Fig. 3.14. The Linear method is less effective than the two machine-
learning-based methods, especially in the most strongly contaminated region (the North). The correction
in the South does not improve properly the correlation for any of the three methods. The RF and NN
methods produce similar results in the North but slightly different results in DES. This is because the
RF is more robust to sampling high levels of contamination from a small number of pixels.

is increased, suggesting that the excess of correlation is mostly due to stellar contamination.
This also confirms that our method to mitigate the systematics does not over-fit the data since
when the contamination is removed, the correlation converges to the same level as the SDSS
QSO correlation (cf. Fig. 4.35).

Finally, we note that the excess correlation in the South is not reduced when the probability
threshold of the RF selection is increased. This is because many stars in the Sagittarius Stream
have selection features that resemble QSOs. These stars are assigned near unit probability by the
DESI QSO targeting algorithm, such that they are not removed by a more restrictive selection.

4.3.5.3 Limber parameters

I Limber approximation One can use the Limber approximation to relate the angular 2-
point correlation function to the 3D one with (1.47). The integral calculation requires a fiducial
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Figure 4.37: Evolution of the angular correlation function in the North region when the probability
threshold of the quasar target selection is increased. The nominal probability in the North is p(r) =
0.88 − 0.04 × tanh(r − 20.5). The dashed lines depict raw target selections with different probability
thresholds. The solid lines show the corrected versions of the same selections. The black dotted line
corresponds to the typical resolution of the correction i.e. the pixel size at Nside = 256.

cosmology. We choose a Λ cold dark matter (ΛCDM) cosmology following the Planck 2015
parameters from Planck Collaboration et al. (2016): Ωm,0 = 0.308, ΩΛ,0 = 0.691, Ωb,0 = 0.048,
h = 0.677, σ8 = 0.815, ns = 0.967.

I Fitting of Limber parameters The power-law parameterisation of the correlation func-
tion ξ(r) can be then constrained by the angular correlation function w(θ) at small angles.
We proceed by estimating these power-law parameters and comparing them to previous mea-
surements done with SDSS data by Myers et al. (2009) and with 2dF data by Croom et al.
(2005).

The Limber parameters are estimated in the three imaging regions highlighted in Fig. 3.14
and also in the DES region with only Dec. > −30, which we will refer to as DES(Dec. > −30).
This region will almost correspond to the intersection between DES and the expected nominal

Table 4.5: Limber parameters for the DESI QSO target selection in the imaging footprints depicted in
Fig. 3.14. The errors are estimated using a sub-sampling method. We provide the measurements for both
the non-corrected and corrected cases. The correction is performed with the RF method. z̄ is the mean
redshift of the sample.

rp min
[h−1Mpc]

rp max
[h−1Mpc]

z̄ r0
[h−1Mpc]

γ r0
[h−1Mpc]

γ

Croom 1.0 25 1.35 - - 5.84± 0.33 1.64± 0.04
Myers 1.6 40 2 - - 4.56± 0.48 1.5 (fixed)

DESI QSO Targets Corrected

North 0.045 45 1.7 10.15± 0.70 1.61± 0.03 7.49± 0.57 1.89± 0.02
South 0.045 45 1.7 12.88± 0.95 1.64± 0.03 10.33± 0.84 1.80± 0.02
DES (Dec. > −30) 0.045 45 1.7 6.76± 0.58 1.78± 0.04 6.15± 0.45 1.88± 0.04
DES 0.045 45 1.7 7.19± 0.34 1.79± 0.03 6.47± 0.31 1.89± 0.02
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DESI footprint. The results are shown in Table 4.5 and fit for the corrected DESI QSO targets
in DES region is plotted in Fig. 4.38. The correlation function is fitted from 1e−3 to 0.8 deg,
corresponding to a transverse separation of 0.045 to 45 h−1Mpc at redshift 1.7. The mean
redshift of the DESI QSO targets (∼ 1.7) is obtained thanks to the selection function introduced
in Section 4.3.5.3 which corresponds to the estimated redshift distribution of the sample.
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Figure 4.38: Fit of the Limber parameters in the DES region for the corrected DESI QSO targets (red
line). The Limber parameters (r0, γ) are given in each case. The black (resp. grey) dashed line shows
the Limber function measured by Croom et al. (2005) (resp. Myers et al. 2009). The parameters for the
other regions are given in Table 4.5.

The errors on the parameters r0 and γ are estimated using a sub-sampling method: 10 (resp.
18, 10, 4) sub-regions of similar area (∼ 450 deg2) are used for the North (resp. South, DES,
DES Dec. > −30)). Sub-sampling is used to probe the variability of the angular correlation
function in different areas of the footprint, where stellar contamination and systematic effects
should differ. If the systematics are properly mitigated, the error of each parameter should be
reduced i.e. the corrected angular correlation functions over each sub-region should be more
similar.

The value r0, which parameterises the amplitude of the correlation function, captures the
offset of different measured angular correlation functions. For instance, the fact that the angular
correlation in the South is higher than in DES, manifests in a value of r0 that is higher in the
South than in DES. As systematics tend to lead to an increase in amplitude, r0 tends to be higher
when systematics are dominant. For example, the fact that the value of r0 that we measure
in the DES footprint is generally comparable to the values found for previous measurements
(Croom et al. 2005, Myers et al. 2009), suggests that systematics have been mitigated well in
the DES region.

The parameter γ describes the slope of the angular correlation. A higher value of γ means
a steeper slope. It is worth noting that since the relevant correction scales of the systematic
weights are larger than the pixel size used for our analyses (∼ 0.2 deg), the angular correlations
of the corrected targets have a steeper slope than for the raw target samples. The comparison
of γ between the DESI QSO targets and previous measurements is not particularly relevant
since any excess correlation caused by systematics on small scales, i.e. below the typical angular
resolution of our corrections, cannot be removed with our mitigation procedure.

Though no spectroscopic confirmation of DESI QSO targets is available across a significant
fraction of the footprint used in our study, our correction for angular systematics enables us
to provide a Limber amplitude parameter r0 which is consistent with those found by Croom
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Figure 4.39: Relative QSO target or QSO densities for a part of South (Non-DES) region as a function
of each observational parameter. The blue curve represents the density for all the QSO targets while the
red curve is obtained for the spectroscopically confirmed QSOs only.

et al. (2005), Myers et al. (2009) using spectroscopic data. Nevertheless, the fitting of the
Limber parameters will be greatly improved by information from the DESI spectroscopic survey.
Follow-up spectroscopy will enable us to remove stars from the DESI QSO target sample, so
any clustering analyses will be free of the stellar contamination that increases the amplitude of
the angular correlation measurements.

4.3.6 Imaging systematics validation

In order to identify the main sources of systematic effects in the QSO target selection, Fig. 4.24
shows the relative QSO target density as a function of each observational parameter. Those
plots are obtained for all the QSO targets, including the contaminants, galaxies and stars. It
is particularly interesting to reproduce such a figure for the objects retained in the automated
QSO catalog, presented in Section 4.2.3.2, since the purity of this catalog is > 99% i.e. all the
contaminants were removed.

Fig. 4.39 allows us to compare the systematic effects for the original QSO target catalog
(blue curve) and the catalog of QSOs spectroscopically confirmed (red curve) in a part of South
(Non-DES) region, observed during the first two months of main survey. This subset of DESI
footprint corresponds to a region, strongly contaminated by stars from the Sagittarius Stream
and therefore particularly interesting to study. We observe that all the strong trends in the
target densities related to the stellar density in the Galactic plane or the Sagittarius Stream,
vanish in the spectroscopic catalog. Weaker systematic effects are also removed. The method
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presented in this section should suppress the remaining effects.

4.4 DESI QSO Y1

With a 310 deg−2 target density, the main survey selection allows DESI to select more than
200 deg−2 quasars, including 60 deg−2 quasars at redshifts z > 2.1, exceeding the project
requirements by 20% (DESI Collaboration et al. 2016b), and since QSOs have the highest
priority during the observation, the Y1 QSO sample is already expected to have competitive
results compare to the ones from the QSO of eBOSS DR16 (Neveux et al. 2020, Hou et al. 2021,
Mueller et al. 2022).

4.4.1 Footprint and QSO density

The DESI Y1 data release contains all the data of the main survey from May, 14th 2021 up to
the Contreras fire in early June 2022. Fig. 4.40 shows the number of passes in the Y1 footprint.
Survey coverage is unfortunately uneven across the 7560 deg2. However, the region with at
least three passes covers about 2, 100 deg2, and the QSO sample can be almost considered as a
complete sample in this region.

Figure 4.40: Number of passes in Y1 footprint. The QSO sample is 55% (resp. 80%) complete after
one pass (two passes) and can be almost considered complete in the three passes region. The three passes
region covers about 2, 100 deg2.

For the quasars, all the QSO targets which are detected as a quasar by the pipeline presented
in Section 4.2.3.2 with 0.8 < z < 3.5, will be kept in the final catalog used for the clustering
measurement. The creation of the clustering catalogs is briefly explained for all the tracers in
DESI Collaboration et al. (2023b). Fig. 4.41 shows the density distribution of the QSO sample
for clustering corrected by the completeness. The map shows no significant over-density regions,
illustrating the stellar contamination that occurs in the Sagittarius stream or near the galactic
plane as shown in Fig. 4.23. Note the difference in density between the North and the South
photometry.

Fig. 4.42 shows the redshift distribution of all the quasar targets that are identified by the
pipeline, see Section 4.2.3.2, as true quasars. In particular, the standard clustering measure-
ments, as defined in DESI Collaboration et al. (2016a), will use the quasars with 0.8 < z < 2.1.
To increase the volume probed and hence reduce the statistical errors on power spectrum mea-
surement, we will also use the quasars with 2.1 < z < 3.5.



149 4.4. DESI QSO Y1

Figure 4.41: Y1 QSO (0.8 < z < 3.5) density distribution corrected by the completeness. This map
does not exhibit strong over or under-density region. In particular, there is no overdensity along the
Sagittarius stream or near the galactic plane.

0 1 2 3 4

z

0

10000

20000

30000

40000

50000

60000

#
Q

S
O

s
[∆
z

=
0.

07
]

mean = 1.76

Figure 4.42: Y1 QSO redshift distribution. The clustering catalog will contain all quasars with 0.8 <
z < 3.5.

4.4.2 Imaging systematics

Since the regions South NGC and South SGC will not be used together during power spectrum
measurements, we show systematic plots for the two separate regions, Fig 4.43b-4.44a. Although
the imaging systematic effects are much less pronounced than in the case of targets, the remaining
fluctuations will have to be carefully corrected to be able to measure the power spectrum on
large scales without bias. This is one of the main topic of the next chapter.

Note that the imaging systematic plots in Fig. 4.43-4.44 are plotted between −0.1 and 0.1.
Wile the previous figures, Fig. 4.28-4.30, 4.39, are plotted between −0.2 and 0.2.

The imaging systematics displayed here are weaker than in the target case confirming the
prediction done in Fig. 4.39. Indeed, thanks to the purity of the catalog, all the stellar con-
tamination that occurs during the QSO target selection is removed after the spectroscopic clas-
sification. The large trends observed on the stellar density and Sagittarius stream features in
Fig. 4.28 are then removed. The dependence in E(B-V) is also removed, since E(B-V) is strongly
contaminated with the stellar density and the trend was not fully due to the E(B-V) feature.

This can be also observed in the sky distribution shown in Fig. 4.41, where no excess of
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objects can be identified near the galactic plane or in the Sagittarius stream.
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Figure 4.43: Same as Fig. 4.28, but here the blue lines are for the catalog from the spectroscopic data
with completeness weights and the red ones are for the catalog from spectroscopic data with completeness
weights and with imaging weights computed with regressis. (a) is for North and (b) for South NGC
footprint.
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Figure 4.44: Same as Fig. 4.43. (a) is for South SGC and (b) for DES footprint.
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Deep in the human unconscious is a pervasive need for a logical universe that
makes sense. But the real universe is always one step beyond logic.

Frank Herbert, Dune (1965)

N ow that DESI is producing the largest 3D map of the Universe ever made, it is time to take
the next step, by analyzing all this new data. DESI will have several data release (DR)

during all its survey. In the following, we will work with DR1, the data release of the first year
of observation, see Section 3.2.2.3.

This first data release (DR1) is particularly appealing for the quasars sample since they
have the highest priority during the observation and then are collected first. So we are already
expecting competitive constraints on the measurement of primordial non-gaussianity.

After explaining how to measure the power spectrum, and therefore primordial non-gaussianity,
from a galaxy survey, we will validate the weights correcting for imaging systematics using sim-
ulations with non-zero f loc

NL values. Then, we will propose a method for blinding the signal
produced by the scale-dependent relation, with the aim of optimizing the measurement without
any confirmation bias. Finally, we will conclude with a preliminary analysis using the DR1
quasars.

Section 5.3 is from Chaussidon et al. (2023) and all this analysis should be published with
the release of DESI Y1 data expected in late 2024.

5.1 Measuring primordial non-gaussianity

5.1.1 Measuring the power spectrum from a spectroscopic survey

5.1.1.1 Power spectrum estimator

I FKP estimator Under the assumption that fluctuations are Gaussian, Feldman et al.
(1994) derived the optimal estimator for the power spectrum:

P̂ (kµ) = 1
AVkµ

∫
Vkµ

dk
[∫

dx1

∫
dx2e

ik·(x2−x1)wFKP (x1,kµ)wFKP (x2,kµ)F (x1)F (x2)

−
∫

dxn̄(x)wFKP (x,kµ)2
] ,

(5.1)
where P̂ (kµ) is the estimation of the average power spectrum in a volume Vkµ corresponding to
the binning used in kµ space for the measurement. The last term removes the shot noise. The
normalization factor is given by

A =
∫

dxn̄(x)2wFKP (x,kµ)2 , (5.2)
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and F is the fluctuation field, known also as the FKP field,

F(x) = n(x)− n̄(x) = n̄(x) [δ(x)− 1] . (5.3)

n̄(x) is the expected number density of galaxies in the absence of clustering, and it is computed
via a synthetic catalog, knowns as randoms, that reproduce geometrically the exact observed
data distribution1. The fluctuation field becomes

F(x) = n(x)− αns(x), (5.4)

with
α =

∫
dxW (x)∫
d3xnr(x) , (5.5)

where we have introduced, the survey selection function: W (x) = 〈n(x)〉.
Remark: As shown in Feldman et al. (1994), the average of the FKP fields is given by〈

F(x)F
(
x′
)〉

= n̄(x)n̄
(
x′
)
ξ
(
x,x′

)
+ n̄(x)δ(3)

D

(
x− x′

)
, (5.6)

that explains the normalization factor A and the subtraction of the shot noise contribution in
(5.1), to obtain an unbiased estimator, such that〈
P̂ (kµ)

〉
= 1
AVkµ

∫
Vkµ

dk
∫

dx1

∫
dx2e

ik·(x2−x1)n̄(x1)wFKP (x1,kµ) n̄(x2)wFKP (x2,kµ) ξ(x1,x2).

(5.7)
The weights wFKP, known as the FKP weights2, are the optimal weighting scheme for the

power spectrum measurement and minimize the expected errors of P̂ (kµ):

wFKP(x,k) = 1
1 + n̄(x)P (k) . (5.8)

They are the optimal compromise between the density of the tracer (the greater the number
of objects, the smaller the errors) and the value of the power spectrum (the larger the power
spectrum, the easier it is to measure). They depend on k and on P (k) which is unknown a priori.
We can easily iterate on the value of P(k), although this is not necessarily very decisive, and it
is common to take the value of the fiducial power spectrum as a reference. On the other hand,
for computational reasons, the FKP weights are fixed at a specific value of k to be independent
of it. They are set at to the scale of interest. In our case, we want to probe the scale-dependent
bias with the power spectrum (2.105) around keq i.e. where the amplitude is maximal. Hence,
we will use the maximal amplitude measured in the data: P (k) = P0 = 3 × 104 h−3Mpc3, see
Fig. 5.35.

I Multipoles estimator Few years later, Yamamoto et al. (2006) proposed similar estima-
tors for the multipoles of the power spectrum (1.119):

P̂` (kµ) = 2`+ 1
AVkµ

∫
Vkµ

dk
∫

dx1

∫
dx2e

ik·(x2−x1)wFKP (x1)wFKP (x2)F (x1)F (x2)L`
(
k̂ · x̂m

)
− P noise

` (kµ)
,

(5.9)

1In the following, we will assume that the density of randoms in the synthetic catalog is sufficiently high to
avoid any bias in the determination of n̄(x). In general, a density 10 times that of the data is sufficient.

2Feldman et al. (1994) were written by Feldman, Kaiser and Peacock.
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using the midpoint line-of-sight xm = (x1 + x2) /2. This is only well defined under the so-called
local plane-parallel approximation in which the two galaxies are far from the observer such that
|x2 − x1| / |xm| � 1. The shot noise contribution is

P noise
` (kµ) = 2`+ 1

AVkµ

∫
Vkµ

dk
∫

dxn̄(x)wFKP (x)2 L`(k̂ · x̂)

= δ`0
A

∫
dxn̄(x)wFKP (x)2 .

(5.10)

To reduce the computation time of (5.9), one can split the double integral by choosing one
galaxy in each pair as the line-of-sight, as noticed by Yamamoto et al. (2006),

P̂` (kµ) = 2`+ 1
AVkµ

∫
Vkµ

dkF0(k)F`(−k)− P noise
` (kµ) , (5.11)

where we have introduced

F`(k) =
∫

dxeik·xwFKP (x)F(x)L`(k̂ · x̂). (5.12)

As noticed by Hand et al. (2017), (5.12) can be written as a sum of Fourier transforms.
Indeed, by decomposing the Legendre polynomials L` into spherical harmonics Y`m:

L`(x̂ · k̂) = 4π
2`+ 1

m=`∑
m=−`

Y`m(x̂)Y ?
`m(k̂), (5.13)

(5.12) becomes

F`(k) = 4π
2`+ 1

m=`∑
m=−`

Y ?
`m(k̂)

∫
d3xe−ik·xwFKP (x)F (x)Y`m(x̂), (5.14)

and requires the computation of only 2`+ 1 Fast Fourier Transforms for each multipole `.

I Aliasing and interlacing To perform the computation of (5.12), the FKP field F is
interpolated on mesh creating aliasing effects. In general, the interpolation scheme is chosen to
be the (p− 1)-th order convolution of the top hat function with itself:

• p=1, nearest-grid-point (NGR):

W (1)(s) =
{

1 si |s| < Tc
2

0 otherwise
(5.15)

• p=2, cloud-in-cell (CIC):

W (2)(s) =
{

1− |s| si |s| < Tc

0 otherwise
(5.16)

• p=3, triangular shaped cloud (TSC):

W (3)(s) =


3
4 − s

2 si |s| < Tc
2

1
2

(
3
2 − s

2
)2

si Tc
2 < |s| < 3Tc

2

0 otherwise
(5.17)
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where s is the distance between the object and the node of the mesh, and p is the order of the
interpolation. This order corresponds to the number of nodes in which the object is distributed.

The aliasing effects can be corrected by the interlacing method, as proposed by Sefusatti et al.
(2016). The interlacing at order n consists of painting the density field shifted by [0, 1, . . . , n−1]
mesh cell size in x, y and z directions and then averaging the FFT multiplied by the appropriate
phase terms. The resulting Fourier transform must still be divided by the Fourier transform of
the interpolation scheme W p(k).

With the TSC interpolation scheme and the interlacing method, the power spectrum is
measured with relative errors of ∼ 10−4 up to the Nyquist frequency defined as

knyq = π
Nmesh
Lbox

, (5.18)

where Lbox is the size of the grid and Nmesh is the number of nodes along one direction in which
we perform the Fourier transform.
Remark: In the following, all the power spectrum will be computed with pypower3 using the
TSC sampling and interlacing at order n = 3.

5.1.1.2 Optimal quadratic estimator for the scale-dependent bias

The above section gives, with the FKP weights, the optimal estimator for measuring the power
spectrum. However, it does not give the optimal way to extract the scale-dependent bias signal
in the power spectrum. This can be achieved by using an optimal quadratic estimator (OQE)
as in Mueller et al. (2019), Castorina et al. (2019), Mueller et al. (2022). In the following, we
will follow Castorina et al. (2019) that propose to weight each galaxy instead of weighting pairs
of galaxies as in Mueller et al. (2022), which is more natural to compute FKP field F .

The optimal estimator for extracting f loc
NL has the same form as (5.11) but with a different

weighting scheme:

P̂` (kµ) = 2`+ 1
A`Vkµ

∫
Vkµ

dkF̃ (k)F`(−k)− P noise
` (kµ) , (5.19)

where
F̃ (k) =

∫
dxeik·xw̃ (x)F(x)

F`(k) =
∫

dxeik·xw` (x)F(x)L`(k̂ · x̂)
, (5.20)

and the shot noise contribution is

P noise
` (kµ) = δ`0

A

∫
dxn̄(x)w̃ (x)w` (x) .

Similarly, the normalization factor (5.2) becomes

A` =
∫

dxn̄(x)2w̃ (x)w` (x) .

The optimal weights4 w̃, w0 and w2 for the quadratic estimator are

w̃(z) = wFKP(z) [b(z)− p]
w0(z) = wFKP(z)×D(z) [b(z) + f(z)/3]
w2(z) = wFKP(z)× 2/3D(z)f(z)

, (5.21)

3https://github.com/cosmodesi/pypower
4Here, we assume that the density distribution is isotropic and only depends on the redshift.

https://github.com/cosmodesi/pypower
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where p is the parametrization used in bφ (2.120), f is the growth rate (1.108) and D is the
growth factor (1.105).

These weights are displayed in Fig. 5.1 for the main QSO sample of DESI, where we supposed
that the QSO linear bias follows the relation found in Laurent et al. (2017). The weights will
overweight the objects at high redshift where the bias is higher, and so, where the measurement
of f loc

NL will be easier since at first order in f loc
NL, the scale-dependent bias (2.105) reads as P (k, z) =(

b(z)2 + b(z)× bφ(z)f loc
NL/α(k, z)

)
Plin(k, z). Besides, bφ increases also with the redshift in the

case of the universal mass relation.
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Figure 5.1: Left: Linear bias of QSO measured by Laurent et al. (2017) with the SDSS DR14 quasars.
Right: Weights for the optimal quadradic estimator. We use P0 = 3e4 for the FKP weights.

Practically speaking, this is just the cross-power spectrum between one FKP field weighted
by w̃ and another one weighted by w`. Therefore, the computation of the power spectrum can
be carried out without any hassle!
Remark: Since the bias vanishes in the hexadecapole (` = 4), no specific weights are needed
for this multipole. Including the hexadecapole can only improve the statistical error on f loc

NL by
improving the measurement of the other fitting parameters. In the case of QSOs, the large-scale
hexadecapole will be far too noisy to be used and will therefore be neglected in the rest of the
analysis.

5.1.1.3 Correcting observational effects

The data can be weighted, and so the FKP field, in order to correct some observational effects5.

I Fiber assignement One big concern with a multi-fiber spectroscopic survey is the impact
of the choice of the targets during the observation known as the fiber assignement (F.A.). Fig. 5.2
illustrates this process with one and two passes in the same regions. Each gray patch is one tile
that can observe about 5000 objects simultaneously. The number of available targets is higher
than the number of fibers for each exposure, and several passes are needed to observe all the
targets.

5Since the randoms should reproduce exactly the same distribution as the data, they should also be weighted
in the same manner. To avoid any problems, one can simply draw randomly the redshifts and associated weights
from the data for the randoms (Ross et al. 2020)
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Figure 5.2: Fiber assignment with one pass (left) and two passes (right). Red points are the targets
that are inside the geometrical region observed by the considered tiles. Yellow points are the available
targets i.e. targets that could be observed by one fiber. Due to the particular shape of the focal plane,
or due to broken fibers, some areas do not have any fiber, and so all the targets cannot be assigned.
Green points are the targets that are observed. Since they are too numerous, they cannot be observed in
a single pass. DESI is expected to have at least five passes over a given region to observe all the targets.

The complex geometry of the survey will be taken into account via the randoms and does not
represent any difficulties. On the other hand, targets unobserved because they are no free fibers
to observe them, will lead to bad estimation of the FKP field. These missing targets cannot be
taken into account by the randoms since the associated geometrical regions, where these targets
are, are observed by the survey. This will impact both large and small scales. Fig. 5.3 shows
the impact at large scales for two different regions of the Y1 data: SGC (poorly complete) and
the restricted 3-pass area in the NGC (almost complete), see Fig. 4.40. The green lines are not
corrected of this effect and present an excess of power on large scales. The impact at small scales
is a tiny effect that is not visible in this log-log plot but can be visualized by plotting kP (k) as
a function of k.

The large scales can be easily corrected by completeness weights wcomp. Fig. 5.4 illustrates
how we can weight an object according to nearby unobserved targets. The completeness weights
are then the number of unobserved targets plus one in the control radius of a fiber6. Each
unobserved object can only be counted once. The number of unobserved targets is decreased
with the number of passes, so the completeness weights will become almost one everywhere once
the survey is done. Red lines in Fig. 5.3 are the power spectrum computed with the completeness
weights and match perfectly the power spectrum without fiber assignment at large scales.

The impact at small scales can be corrected with more sophistical methods (see, for instance,
Bianchi et al. 2018, Mohammad et al. 2020) but will be neglected in the following since the
completeness weights correct exactly the scales of interest used for the scale-dependent bias
measurement.

I Imaging weights Imaging systematics occur during the target selection and will create,
unfortunately, an excess of correlation at large scales. These effects will be corrected by a set of
weights wsys. One of the main results of this dissertation is the development of these weights for
DESI, see Section 4.3. This also explains the special attention I paid to the quasar selection in
DESI, see Section 4.2, to reduce as much as possible the imaging systematics in the spectroscopic
sample, see Section 4.4.2.

6In DESI, this number is 1 /FRACZ TILELOCID
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Figure 5.3: Mean of 16 sub-realizations of my fastpm simulation with f loc
NL = 0 (Fastpm simulation will

be described in Section 5.2.1) for SGC (left) and the 3-pass area of the South NGC (right). Errors are
the standard deviation of these 15 sub-realizations. Blue lines are the power spectrum measured from
the simulations without the fiber assignment applied. Green ones are from the simulations with fiber
assignment applied, and red ones are after the correction with completeness weights.

Figure 5.4: Illustration of the completeness weights. Red stars are targets in a nearby region. Black
circles are the control radius of a fiber i.e. the area reachable by the fiber. In the first (resp. second)
pass, five (resp. four) targets are reachable by the fiber. The completeness weights are computed to be
egal of the number of unobserved targets plus one in the control radius. Note that an object can only be
counted once.

The major concern about these weights is the possibility to remove too much, or not enough,
power at large scales in the power spectrum, thus biasing the measurement of f loc

NL. Hence,
Section 5.2 will study this impact carefully.

I Redshift efficiency weights Classification and redshift determination will depend on the
quality of the observation. Poor weather, noise in the CDDs or dust in the sky can indeed have
an impact on the spectra collected. At this stage of DESI, no impact has been shown on a large
scale, and this effect will not be corrected in the following. Although it will naturally be taken
into account in our theoretical model.
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I Total weights Finally, the final weights used for each galaxy are

wtot = wcomp × wwsys × wFKP/OQE (5.22)

5.1.2 Theory versus Data

In DESI, we will use the Planck18 cosmology (Planck Collaboration et al. 2020), given in Ta-
ble 1.2, as the fiducial cosmology to transform redshifts in distances.

5.1.2.1 Power spectrum model

Multipoles of the power spectrum measured from the data will be compared to

Ptheo,`(k) = 2`+ 1
2

∫ 1

−1
dµPtheo(k, µ)L`(µ), (5.23)

with Ptheo our model. For the measurement of the primordial non-gaussianity, we will use the
linear theory with the Kaiser term (1.127), a damping factor (1.126) and a scale-dependent bias
(2.105):

Ptheo(k, µ) =

[
b+ bΦ

α(k, zeff)f
loc
NL + fµ2

]2

[
1 + 1

2 (kµΣs)2
]2 × Plin(k, zeff) + sn,0 (5.24)

where Plin is the linear power spectrum computed with CLASS at the effective reshift of the
data, sn,0 accounts for the residual shot noise and Σs represents the typical damping velocity
dispersion. Although initially introduced to explain the Finger-of-God effect, the damping term
will also naturally account for the redshift determination errors. For instance, in DESI, these
errors are about 150 kms−1 for quasars with z < 4.0 (Brodzeller et al. 2023) or see Fig. 4.20.
Remark: During all the parameter estimation, we will evaluate the linear power spectrum at
the fiducial cosmology, keeping the shape of the linear power spectrum fixed. This means that we
will neglect the uncertainty on the shape of the power spectrum given by Planck Collaboration
et al. (2020) compared to the uncertainty of our measurement, by not propagating uncertainties
about Ωm.

5.1.2.2 Effective Redshift

The model (5.24) requires the evaluation of Plin at the effective redshift of the data. Under the
local plane parallel approximation, with infinite dΩk, and assuming the survey selection function
varies slowly with respect to the correlation function, the Yamamoto estimator (5.9) gives, in
average (similarly to (5.7)),

〈
P̂`(k)

〉
=
∫

drn̄2(r)P`(k, z(r))∫
drn̄2(r) , (5.25)

where n̄ is the expected mean density of the data (weighted) without clustering. P`(k, z(r)) is
the true power spectrum of the data evaluated at the redshift z. The Taylor expansion of the
power spectrum around the effective redshift zeff gives

P`(k, z) = P` (k, zeff ) + P ′` (k, zeff ) (z − zeff ) + · · · (5.26)
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Finally, injecting (5.26) into (5.25) leads, at first order in the Taylor expansion, to

P̃`(k) =
∫

drn̄2(r)P` (k, zeff )∫
drn̄2(r) , (5.27)

using the effective redshift defined by

zeff =
∫

drn̄2(r)z(r)∫
drn̄2(r) . (5.28)

This definition can be easily extended in the case of two different sets of weights, as required for
the OQE weights, by

zeff =
∫
dzn(z)2w1(z)w2(z)z∫
dzn(z)2w1(z)w2(z) . (5.29)

Table 5.1 gives the effective redshift under the different sets of weights that will be used in
the following. The redshift distribution of the DESI quasars is given in Fig. 4.42. Note the
significant increase in effective redshift when including quasars with high redshift (z > 2.1),
especially when using OQE weights.

In the following, for the OQE weights, we will only generate the model at the effective
redshift given by the monopole weights. This simplified calculation will be removed in the near
future.

Table 5.1: Effective redshift for the DESI quasars with different redshift ranges. For comparison, the
mean redshift of the sample is displayed in the first line.

Redshift range 0.8 – 2.1 0.8 – 3.1 0.8 – 3.5
z̄ 1.491 1.768 1.803
zeff 1.435 1.570 1.575
zeff (FKP) 1.441 1.649 1.663

zeff (OQE ` = 0, p = 1.0) 1.597 1.964 2.005
zeff (OQE ` = 2, p = 1.0) 1.546 1.837 1.862

zeff (OQE ` = 0, p = 1.6) 1.715 2.114 2.162
zeff (OQE ` = 2, p = 1.6) 1.684 2.015 2.048

Remark: Many other definitions of effective redshift exist, see, for instance, De Mattia et al.
(2021).

5.1.2.3 Geometrical effects

Some effects cannot be corrected by weighting the data and we need to change the theory to
match correctly the observation.

I Window function Due to the stars, Milky Way dust, or simply the focal plane, some
parts of the footprint are masked or unobserved. Hence, we do not exactly observe the full
density field δ(x), but only a fraction of it given by W (x)δ(x) where W is the survey function,
as defined in Section 5.1.1.1, W (x) = 〈nd(x)〉. Hence, the resulting multipole of the power
spectrum estimator reads as〈

P̂`(k)
〉

= (2`+ 1)
A

∫ dΩk

4π

∫
ds1

∫
ds2e

ik(s2−s1)ξ(s1, s2)W (s1)W (s2)L`
(
k̂ · ŝ1

)
(5.30)
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Following Beutler et al. (2019), the correlation function can be also expanded into Legendre
multipoles. Let s = s1− s2, and under the local plane-parallel approximation limit (s� s1, s2),

ξ (s1, s2) =
∑
p

ξp(s)Lp (ŝ1 · ŝ) . (5.31)

The estimator becomes〈
P̂`(k)

〉
=(2`+ 1)

A

∑
p

∫ dΩk

4π

∫
dx
∫

dse−ik·sW (x)W (x− s)ξp(s)Lp(x̂ · ŝ)L`(k̂ · x̂).

= 4π(−i)`(2`+ 1)
∑
`1,`2

(
`1 `2 `
0 0 0

)2 ∫
dss2j`(ks)ξ`1(s)W`2(s)

(5.32)

where we have successively used the usual tools for the multipole manipulation7, and we have
introduced the real space window matrix

W`(s) ≡
(2`+ 1)
4π ×A

∫
dΩs

∫
dxW (x)W (x− s)L`(x̂ · ŝ). (5.33)

The multipoles of the correlation function can be computed from the theoretical power
spectrum (5.24) using (1.121):

ξ`(r) = i`

2π2

∫
k2dkj`(kr)P`(k). (5.34)

In practice, the window matrix is computed from the randoms that fully described the
geometry of the data. In the following, we will use the implementation of the window matrix
computation from pypower8 and will convolve the theoretical model with the window function
thanks to desilike9. As in Beutler et al. (2017), we will only use the multipoles up to ` = 4 in
(5.32) such that we will only consider the window matrix up to ` = 810.

The impact of the window function for the DESI QSO Y1 is shown in Fig. 5.5. The impact
on large scales of the window matrix cannot be neglected when constraining the primordial
non-gaussianity.
Remark: As indicated by De Mattia and Ruhlmann-Kleider (2019), the real space window
matrixW0 is not normalized to 1 when s→ 0 since small scales are not completely well sampled
by the randoms. The normalization factor is the same as the one used in Yamamoto’s estimator
(5.11) and does not introduce a bias during the parameter estimation.

7The Rayleigh expansion of a plane wave is

e−ik·s =
+∞∑
q=0

(−i)q(2q + 1)jq(ks)Lq(k̂ · ŝ),

orthogonality of Legendre polynomials gives∫
dΩk
4π L`(k̂ · x̂)Lq(k̂ · ŝ) = δ`q

2`+ 1L`(x̂ · ŝ),

and finally the Wigner 3-j symbols (alternative to the Clebsch–Gordan coefficients) are defined by

L`1 (k̂ · x̂)L`2 (k̂ · x̂) =
∑
`3

(
`1 `2 `3
0 0 0

)2

(2`3 + 1)L`3 (k̂ · x̂).

8https://github.com/cosmodesi/pypower/blob/main/nb/window_examples.ipynb
9https://github.com/cosmodesi/desilike

10Non-zero Wigner 3-j symbols must respect: |l1 − l2| < l ≤ l1 + l2

https://github.com/cosmodesi/pypower/blob/main/nb/window_examples.ipynb
https://github.com/cosmodesi/desilike
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Figure 5.5: Left: Real space window matrix up to ` = 8. Right: Monopole (blue) and quadrupole (ref)
for a simple Kaiser model with expected parameters for the QSO Y1 (dashed lines) and the associated
convolved model (full lines) with the window matrix computed for the geometry of DESI QSO Y1.

I Wide-angle effect In order to speed up the computation, we chose one galaxy as the
line-of-sight in the Yamamoto estimator (5.25). This is a good choice under the local plane-
parallel approximation (s � x1,x2). As shown in Castorina and White (2018), this choice
creates wide-angle effect compare to the measurement using the midpoint line-of-sight when the
approximation of the local plane-parallel does not hold. Note that this choice will also create
non-vanishing odd multipoles.

Following Beutler et al. (2019), the wide-angle effect can be taken into account by expanding
the theoretical correlation function such as

ξ (x1,x2) =
∑
p,n

(
s

d

)n
ξ(n)
p (s)Lp(d̂ · ŝ), (5.35)

where s = x2 − x1 is the pair separation and d a generic line-of-sight (not normalized). This
expression, under the local plane-parallel approximation (s/d → 0), gives the usual Legendre
multipole decomposition given in (5.31).

One can show (Beutler et al. 2019) that at first order (n = 1), choosing one galaxy as the
line-of-sight leads to

ξ
(1)
1 (s) = −3

5ξ
(0)
2 (s)

ξ
(1)
3 (s) = 3

5ξ
(0)
2 (s)− 10

9 ξ
(0)
4 (s)

. (5.36)

This correction can be easily added in the above window matrix formalism, introducing the
(s/d)n expansion in (5.32). Hence, additional window matrices, of order 1, have to be computed:

W(n)
` (s) = 2`+ 1

4π ×A

∫
dΩs

∫
dxd−nW (x)W (x− s)L`(d̂ · ŝ). (5.37)

The impact of the wide-angle effect is shown in Fig. 5.6. As expected, no strong effects
are visible for the DESI QSO Y1, since the quasars are far enough away from us for the local
plane-parallel approximation to hold. The effect is only visible in the very large scales i.e. for
small k.
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Figure 5.6: Left: Real space window matrix at order n = 1 for the DESI QSO Y1. Right: Ratio of
convolved power spectrum with window matrix including wide-angle effect at order 1 to the one with
window matrix not including the wide-angle effect.

I Integral constraint De Mattia and Ruhlmann-Kleider (2019) noted that the real selection
function is unknown and will strongly depend on the luminosity function of the considered tracer
or of the efficiency to determine the redshift. These effects cannot be, unfortunately, handled
correctly by the randoms, and this leads to an additional correction in the theoretical correlation
function or power spectrum.

In the following, these effects are expected to be small enough compared to the parameter
statistical errors and will be neglected.

5.1.2.4 Computing the covariance matrix

The covariance associated with the power spectrum measurement will be computed as the co-
variance between measurements done in a large set of realistic simulations, commonly called
mocks, that emulate as faithfully as possible the observations.

Real N-body simulations, see Section 5.2.1.1, are unfortunately too time-consuming to be
produced in sufficient numbers. As in eBOSS (Zhao et al. 2021), we will use the approximate
method known as EZmocks (Chuang et al. 2015). This method will generate, at an effective
redshift, a galaxy field with position and velocity that follows an input power spectrum, thanks
to the Zel’dovich approximation (Zeldovich 1970). See Zhang et al. (2023) for an assessment of
the covariance matrix from EZMocks.

The EZmocks generated for DESI are similar to what is described in Zhao et al. (2021). We
use 2000 boxes of 6 Gpc h−1 side generated at z = 1.4, 1000 for the NGC and 1000 for the
SGC. These two regions are completely disconnected during the power spectrum measurement
and therefore can be treated independently.
Remark: Despite the large size of the boxes, quasars, that are too dispersed in redshift, cannot
be fully emulated without repeating the box. To avoid any problems, we will stop with the
maximum redshift range possible with these simulations without repeating the box i.e. zmax =
3.1. This leads the nominal choice for the rest of the analysis.
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Below, we describe the steps involved in creating the most realistic simulation possible. All
these steps were performed with mockfactory 11 an MPI-based code to generate cutsky mocks
from box simulations, which I have helped to develop. Although the EZmocks are already in
cutsky form i.e. transformed from the cartesian coordinates to the (R.A.,Dec., z) observational
coordinates, these steps will be still described. These steps will be applied for both data and
randoms, in the exact same way. Starting from box simulation with position and velocity of
galaxies in cartesian coordinates:

• From cartesian to sky coordinates: First, the box, which is generally periodic, is
remapped according to Carlson and White (2010) in order to increase the potential sky
coverage of the simulation. Then, the remapped box is moved along an axis and it is cut
out all the objects which are not in the desired redshift range and the sky coverage. Hence,
there is a sweet spot to find between the simulated redshift range and the available sky
coverage at a fixed box size. Fig. 5.7 shows the remapping method and how the box is
then transformed into a cutsky simulation.

• Redshift space distortion: Once the simulation is transformed into a cutsky, one needs
to add the redshift space distortion effect along the line-of-sight. The position r in real
space will be translated to the redshift space s, following Kaiser (1987),

s = r + v · l
aH(a) l (5.38)

where l is the line of sight and the velocity is given in km.s−1. The conformal Hubble
parameter H = aH(a) is sometimes called also the RSD factor and converts the velocity
into h−1Mpc.

• Match density and n(z) distribution: Since the photometric survey used for the target
selection, see Section 3.2.3.1, exhibits three distinct photometric regions (North, South,
DES), we will match independently the density and the redshift distribution in these
distinct regions. See Fig. 3.14 for their positions in the sky. In addition, we will split the
region South in two: South (NGC) and South (SGC) because the NGC and SGC part of
the mocks are generated independently.

Fig. 5.8 shows the relative fluctuation of the redshift distribution in the different pho-
tometric regions and Table 5.2 gives the the density of the quasars in these regions. In
particular, DES has more high-z quasars than the others because the imaging is deeper
and DES and North have less low-z quasars than in the South since the PSF is better
resolved.

Since the fiber assignment or the completeness is applied after, we match the density
computed from the data weighted by the completeness weights.

Table 5.2: Quasar density in the different photometric region computed with the completeness weights.

region density [deg−2]
North 186.63
South (NGC) 188.73
South (SGC) 188.73
DES 192.73

11https://github.com/cosmodesi/mockfactory

https://github.com/cosmodesi/mockfactory
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• Match DESI footprint: To reproduce exactly the DESI footprint, one needs to apply
the fiber assignment which was used during the observation i.e. selecting one data only
on each working fiber, or all the randoms reachable by the working fibers. Unfortunately,
the fiber assignment process currently takes too long to be applied 1,000 times over12.
As shown in Section 5.1.1.3, large scales are mainly impacted by the completeness of the
observation.
Thus, we first only keep objects which are located in a DESI tile and then, we simply
downsample the data and the randoms via an Healpix map at Nside = 256 representing
the fraction of the pixel that was observed. We finally remove objects that are in bad
imaging regions i.e. that are located in the imaging maskbits 1, 7, 8, 11, 12 and 13 of the
legacy survey.
Note that, maskbits 1, 12 and 13 are from the target selection and should be removed

12I developed an MPI-based version that considerably reduces runtime, but this effect is negligible for the
large-scale studies.

https://github.com/echaussidon/mockfactory/blob/main/mockfactory/desi/fiber_assignment.py
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Figure 5.8: Left: redshift distribution of DESI QSO Y1 weighted by the completeness on all the
footprint. Right: the ratio between the redshift distribution computed in the specific photometric region
and all the footprint. In particular, there are fewer quasars in the North at low redshift and more quasars
at high redshift in DES.

before the fiber assignment, while maskbits 7, 8 and 11 are quality masks added after the
observation. Whether or not to include the latter maskbits will have to be studied at a
later date.

Once each cutsky is matched to the DESI Y1 observations, we compute the power spectrum
with different sets of weights, such as FKP or OQE weights. Fig. 5.9 shows the power spectrum
of the 1000 EZmocks (NGC+SGC) matching the Y1 observations without FKP or OQE weights.
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Figure 5.9: Multipoles (full lines) of the power spectrum are the average on 1000 EZmocks emulating the
DESI QSO Y1, without any FKP or OQE weights. Light lines beyond show the individual measurement
and will give the covariance. The errors on the right are the standard deviation (diagonal of the covariance
matrix) of the 1000 EZmocks.

Remark: The power spectra of the EZmocks, although they were not generated at the corrected
effective redshift, have the same amplitude as the data, see Section 5.4.2.1, and therefore could
be used to compute the covariance matrix.

Finally, the covariance Cij , that will be used for the parameter estimation, will be simply
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the covariance between these 1000 measured power spectra. Since the covariance is estimated
from a finite number of mocks, C−1

ij provides a bias estimation of the inverse of the covariance
due to the skewed nature of the inverse Wishart distribution. As proposed in Hartlap et al.
(2007), this bias can be corrected by re-scaling the inverse of the covariance as

C−1
ij ≡

Nm − n− 2
Nm − 1 C−1

ij , (5.39)

where Nm is the number of mocks and n is the number of data points. Typically, in the following
Nm = 1000 and n = 116 such that the Hartlap factor corresponds to ∼ 0.88. For the moment,
we do not include the extra correction from Percival et al. (2014) that is expected to have only
a minor contribution to the final errors.
Caveat: When I match the redshift distribution of the data and randoms, I remove all the ob-
jects in the first half bin and in the last half bin of the redshift histogram, due to an interpolation
problem. In practice, the objects are generated with 0.818 < z < 3.081 instead of 0.8 < z < 3.1,
and this effect is completely negligible for the accuracy of our measurement since the density
used is the one for 0.8 < z < 3.1.

5.1.2.5 Parameter estimation

In Section 5.1.1.1, we derive how the power spectrum will be measured from the spectroscopic
data. Then, in Section 5.1.2.1, we described the theoretical model used to estimate the amount
of primordial non-gaussianity. Finally, in Section 5.1.2.4, we have explained how to generate a
covariance matrix to describe the statistical errors for each measured point and the correlation
between them. These different steps are summed up in Fig. 5.10.

Figure 5.10: Summary of the different steps to constrain cosmological parameters with a galaxy survey.

The parameter estimation will be done in two steps:

• The parameter value will be the best-fit value from the χ2 minimization. In the following,
we will use minuit13 to perform the minimization (James and Roos 1975).

• The errors will be estimated as the 68% of the confidence level of the posterior computed
via the Markov chain Monte Carlo (MCMC) method. In particular, we will use emcee14

(Foreman-Mackey et al. 2013).

To process each of these steps, we will use the coherent and user-friendly framework desilike15.

13https://iminuit.readthedocs.io/en/stable/
14https://emcee.readthedocs.io/en/stable/
15https://github.com/cosmodesi/desilike

https://iminuit.readthedocs.io/en/stable/
https://emcee.readthedocs.io/en/stable/
https://github.com/cosmodesi/desilike
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5.2 Validation with quasi N-body simulations

A critical part of the measurement of primordial non-gaussianity in the power spectrum is the
correction of the large-scale contaminant. In particular, the imaging systematics presented in
Section 4.3 which, if corrected, could result in the removal of excess power on a large scale, thus
biasing this measurement.

In order to quantify the efficiency and safety of the method presented in Chaussidon et al.
(2022), we will test it on realistic quasi-Nbody simulations that emulate the real impact of the
primordial non-gaussianity.

Here, we will only briefly describe the N-body and quasi N-body simulations used in cosmol-
ogy; see Angulo and Hahn (2022) for an excellent, comprehensive and up-to-date review of the
subject!

5.2.1 Simulate the Universe

5.2.1.1 N-body simulation

Simulating the full range of interactions between all the constituents of the universe, from large-
scale gravity to small-scale electromagnetic interactions, requires extraordinarily high resolution
and astronomical computing times. While such simulations are necessary for the study of, for
instance, Ly-α forests, they cannot be produced with volumes large enough to simulate the
portion of the universe we will be observing with DESI.

One solution is to neglect all interactions other than gravity. As we saw in Section 1.2.3.5,
gravity, at scales of interest, in a matter-dominated Universe, is well described by Newtonian
gravity in comoving coordinates. Matter will be described by dark matter particles corresponding
to a given mass and they will evolve step by step by computing the Newtonian gravity force
between them. Such simulations are called N-body simulations.

To speed up execution time, particle displacement under the force of gravity is separated
into two steps at each time step. First, the force of gravity is calculated on a large scale, and
then the particles are moved according to this force. To do this, the large-scale Φ gravity field is
determined using the Poisson equation in Fourier space (1.102). This step involves calculating
the Fourier transform of the density field and it is known as a particle mesh computation. Then,
to account for small scales, the force of gravity is calculated for each particle in its traditional
1/r2 form, taking into account only the particles in a reduced sphere to reduce computation
time. The particles are then moved to their final state for this time iteration.

The first step can be performed with a Fast Fourier Transform (FFT) algorithm, which has a
complexity of O(Nln(N)), whereas the traditional calculation of the force of gravity experienced
by the N particles has a complexity of O(N2). For more details, see the reference code GADGET
(Springel 2005) or the more recent implementation designed for DESI (Garrison et al. 2021).

The second stage, when the number of particles is sufficiently large, enables us to model the
gravitational collapse that occurs on small scales. However, when we’re only interested in larger
scales, the first step may be more than adequate. These are known as quasi N-body simulations.
In the following, we will use FastPM16 (Feng et al. 2016) for particle mesh solver, and we will
follow the parametrization done in Ding et al. (2022).

16I use the pythonic version: https://github.com/echaussidon/fastpm-python

https://github.com/echaussidon/fastpm-python
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5.2.1.2 Initial conditions

I Generate field from a power spectrum We will need to generate an initial density
field following the desired initial power spectrum. Let’s generate the field δ such that

δ(x) = 1
(2π)3

∫
R3

dkeik·xϕ(k)W (k), (5.40)

where W is a white noise i.e. a complex-valued 3D random field17 satisfying

W (k) = W (−k), 〈W (k)〉 = 0,
〈
W (k)W ? (k′)〉 = δD

(
k− k′

)
, (5.41)

and ϕ is chosen in function of the desired power spectrum P (k):

ϕ(k) = (2π)3/2√P (k). (5.42)

Hence, δ satisfies 〈
φ(k)φ?

(
k′
)〉

= (2π)3P (k)δD
(
k− k′

)
. (5.43)

I Reducing cosmic variance The white noise can be polar decomposed asW (k) ≡ A(k)eiθ(k)

where A follows a Rayleigh distribution and θ a uniform distribution in [0, 2π). The power spec-
trum is independent of the phase θ and

δD
(
k− k′

)
=
〈
W (k)W ? (k′)〉 =

〈
A(k)A

(
k′
)〉
. (5.44)

For one realization of W (k), we expect fluctuation in 〈W (k)W ? (k′)〉 around the ensemble
average of the order of 1/sqrtNk where Nk is the number of independent modes, in a finite
interval k, k + dk, available in the simulation. This is the cosmic variance, and it is related to
the volume of the simulation.

It can be drastically reduced by sampling A from a Dirac distribution such that A(k) =
δD(k) (Angulo and Pontzen 2016). This is commonly referred to ’fixing’ or ’unitary’ method,
and it allows us to generate large simulations with low cosmic variance i.e. with only the
desired physical signal without noise. The cosmic variance can be also reduced by using pairs
of simulations where the second simulation is initialized with W ?(k) instead of W (k), see Avila
and Adame (2023) for a recent utilization with PNG simulations.

In our case, we want to probe the impact of the imaging systematics on the PNG signal.
Hence, we will use the ’unitary’ method to reduce the cosmic variance.

I Generate initial particle position The particle position and velocity are set via the 1
order of the Lagrangian perturbation theory, known as the Zel’dovich approximation (Zeldovich
1970)18.

First, we generate a random uniform distribution of particles, and then, we update their
position and give their velocity following

x→ x−∇∇−2δ(x), (5.45)

and set the velocity v = avp with

v→ −aHf∇∇−2δ(x). (5.46)
17It is called white noise since its power spectrum does not depend on k
18See White (2014) for a modern review.
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I Initial conditions with fNL In FastPM, the initial density field is generated at z = 0
and this field is then rescale with the growth factor at the initial redshift used for the particle
generation. The initial density field is generated following these steps:

• Generate density field δ(k, z = 0) according to the matter power spectrum.

• δ is linked to the primordial potential φprim via the transfer function (2.106)

δ(k, z) = α(k, z)φprim(k). (5.47)

• Add primordial non-gaussianity in real space:

φNG(x) = φprim(x) + fNL
(
φ2
prim(x)− 〈φ2

prim〉
)
. (5.48)

• Create initial non Gaussian density field δNG(k, z = 0) thanks to the transfer function
again:

δNG(k, z = 0) = α(k, z = 0)ΦNG(k) (5.49)

Remark: In the case of EZmocks, mentioned in Section 5.1.2.4, we just emulate the power
spectrum at the desired effective redshift in the same way as described above, using the second
order in Lagrangian perturbation theory. The particle field does not evolve with time, it is
generated at a specific redshift with a specific shape of power spectrum. EZmocks do not
emulate the gravity, they just reproduce a theoretical model. In our case, we use quasi N-body
simulation to reproduce the behavior of the gravity into the halo formation. Hence, with these
simulations, we can validate the theoritical model (Slosar et al. 2008, see, for instance,).

5.2.1.3 From box to realistic simulation

Once the dark matter particle field has been generated at redshift z = 19 (in our case), we
evolve the particles in 40-time steps to z = 1.5, saving the particle field at different redshifts
(snapshot) z ∈ [2.5, 2.25, 2.0, 1.75, 1.5].

I From dark matter particles to quasars Despite the complexities of galaxy forma-
tion, dark matter represents 80% of the matter in the Universe and so there is a robust, well-
established fact: galaxies and quasars reside in massive, gravitationally bound structures called
halos. This can be emulated by carrying out the following two steps:

• Halos finder: First, we need to identify halos i.e. dark matter particle clusters in which
galaxies and quasars are in the real Universe. This step is achieved with an MPI version
(Feng and Modi 2017)19 of the popular friends-of-friends (FOF) algorithm (Huchra and
Geller 1982, Press and Davis 1982, Davis et al. 1985). It builds groups of particles with a
linking length b for the mean interparticle distance. The larger the linking length, the more
particles will constitute each group. We will use, the adopted value, b = 0.2 corresponding
to form halos with density ∆ = 180 times higher than the average ”global” density, which
is typically the overdensity used for another popular halo finder, as the so-called spherical
overdensity algorithm (Warren et al. 1992).
See Biagetti et al. (2017) for a comparison between FoF, spherical overdensity, and Rockstar20

algorithms with real N-body simulations in the particular scope of primordial non-gaussianity.

19I improve this version, see here, to make it executable on many number of processors simultaneously.
20Rockstar (Behroozi et al. 2013) is generally considered the best method for extracting the physical limit of

dark matter halos.

https://github.com/echaussidon/fastpm-python/blob/master/fastpm/fof.py
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• Halos Distribution Function (HOD): Then, we need to populate the halos with galaxies or
quasars. Several methods exist as abundance matching or the halos distribution function.
We will use the latter with the simplest distribution function by selecting all the halos
above a specific mass. For more complex models, one can have a look at the DESI paper
on this topic (see, for instance, Yuan et al. 2023, Rocher et al. 2023). Note that with
N-body simulations, we only have access to the mass of the halos, so we cannot check
whether the tracer we are using verifies the universal mass relation (2.119).

I Calibrate the Mass cut To find the expected bias from Laurent et al. (2017), we need
to calibrate the mass cut for the HOD step. Fig. 5.11a shows the bias measured as a function
of the redshift for different mass cuts. We find that Mc = 2.25e12 M� gives the expected bias.
Note that this minimal mass cut is in agreement with the one find in Table 4 of Laurent et al.
(2017).

To increase the size of the box, without increasing the number of meshes and so the RAM
needed to run the simulation, we test the dark matter particle mass dependence. Fig 5.11b
shows the power spectrum and the ratio for two simulations with the same volume, but one
has better resolution, see Table 5.3. Keeping the same mass cut (Mc = 2.25e12 M�) for HOD
step, the high-resolution simulation features a minimum of 178 dark matter particles per halo,
while the low-resolution simulation a minimum of 22. The residual ∼ 10% effect in the ratio
is scale-independent and has no impact on the behavior of the scale-dependent bias. Due to
the better resolution, the mass distribution function of the halos is shifted towards the lower
masses, so the effective bias in the high-resolution simulation is lower than in the low-resolution
simulation. Finally, using 1e11 M� as dark matter particle mass seems enough to reproduce the
desired scale-dependent bias.

I Final run I ran these simulations on the National Energy Research Scientific Computing
Center (NERSC) hosted by the Lawrence Berkeley National Laboratory (LBNL) with the KNL
partition of Cori. Fig. 5.12 shows a part of Cori in LBNL dedicated building.

The three sets of simulations are summarized in Table 5.3. The first one (run-knl-1) was
the initial setup to calibrate the minimum halos’ mass and validate the initial condition with
primordial non-gaussianity that I wrote. The second set (run-knl-2) was used to validate the
resolution of run-knl-1. Finally, the last set (run-knl-3) was the largest box with the resolution of
run-knl-1 that I could run easily. The power spectrum for redshift z = 2.5, 2.0, 1.5 are displayed
in Fig. 5.13, in which we can clearly identify the scale-dependent bias generated by non-zero
f loc

NL.

Table 5.3: Parameters for the three sets of simulations that I ran on NERSC. All the simulation are
run with the same seed and uses the unitary method to reduce the cosmic variance.

run-knl-1 run-knl-2 run-knl-3
fNL -100/0/100 -100/0/100 -25/0/12/25

Boxsize [Gpc/h] 2760 5520 5520
Nmesh 3000 3000 6000

Particle Mass [M�] ≈ 1e11 ≈ 1.26e10 ≈ 1e11

Remark: I was limited by the memory required to build a grid with enough meshes inside. For
instance, increasing by a factor of two the number of meshes on each side i.e. by a factor of 8 in
run-knl-3, requires too much memory for the entire KNL partition. The largest boxes took on
1600 KNL nodes, 5 hours to be generated and required about 153TB of random access memory
(RAM).
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Figure 5.11: (a) Top: Linear bias as a function of the redshift computed in one of our FastPM simu-
lations with different mass cuts during the HOD step. The expected bias from Laurent et al. (2017) is
plotted in black. Bottom: Ratio between the measured bias and the expected bias from Laurent et al.
(2017) for a more restrictive choice of mass cut. (b) Top: Power spectrum measured at z = 2 with
Mc = 2.25e12 M� for high (particle mass 1.26e10 M�) and low (particle mass 1e11 M�) resolution
simulations (see Table 5.3) and for f loc

NL ∈ [−100, 0, 100]. Bottom: Ratio between the two.
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Figure 5.12: Cori is the 8th supercomputer of the National Energy Research Scientific Computing
Center (NERSC21) hosted by the Lawrence Berkeley National Laboratory (LBNL). Cori is made of 9,688
Intel Xeon Phi Processor 7250 22(KNL nodes) and 2,388 Intel Xeon Processor E5-2698 v3 23(Haswell
nodes).
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Figure 5.13: Power spectrum measured on my 5.5 Gpc/h boxes with f loc
NL ∈ [−25, 0, 12, 25] for three

snapshots z = 2.5, 2.0, 1.5. Error bars are theoretical predictions with respect to the number of observed
independent modes in the box.

I Mimicking the DESI survey Finally, we follow the step describe in Section 5.1.2.4 to
generate realistic cutsky from the run-knl-3 boxes. Unfortunately, even with a 5.5 Gpc/h box
and the remapping algorithm, I am just able to reproduce either North, South (NGC) or SGC
(South and DES) with a redshift range of 0.8 < z < 2.65 for the first two and 0.8 < z < 3.1 for
the SGC.

Additionally, from on box, I can extract 16 different subsamples that match the DESI QSO
survey with a density of 280 deg−2. The cutskys are generated with a density higher than the
one observed in the data, see Table 5.2, in order to contaminate these cutskys with realistic
imaging systematics. Although they are not completely independent, we will use the mean of
these 16 samples to reduce the cosmic variance.
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Table 5.4: Best fit values from the mean of the 16 subsamples with realistic DESI QSO Y1 covariance
matrix rescaled by 16. Errors are the 1σ (68% CL) from the posteriors shown in Fig. 5.15a and in
Fig. 5.15b.

f loc
NL b sn,0 Σs χ2/(115− 4)

f loc
NL = 0 uncont. 2.3+3.4

−2.9 2.604+0.022
−0.017 550+230

−200 1.95+0.72
−0.36 4.23

cont. + corr. 12.9+2.8
−2.6 2.603+0.019

−0.017 550+210
−200 2.37+0.50

−0.28 4.07
f loc
NL = 12 uncont. 10.1+3.2

−2.5 2.606+0.020
−0.018 470+190

−230 1.85+0.69
−0.37 3.94

cont. + corr. 22.0+2.9
−2.5 2.575+0.021

−0.016 850+210
−210 2.55+0.38

−0.33 3.89
f loc
NL = 25 uncont. 20.4+2.4

−2.5 2.616+0.019
−0.017 380+210

−200 2.04+0.59
−0.35 3.88

cont. + corr. 30.9+2.4
−2.1 2.587+0.017

−0.017 700+180
−230 2.11+0.64

−0.28 3.97
f loc
NL = −25 uncont. −15, 7+3.8

−3.6 2.625+0.021
−0.021 480+210

−230 1.98+0.67
−0.31 3.27

c ont. + corr. −1.9+3.3
−3.3 2.620+0.020

−0.020 450+230
−210 2.41+0.45

−0.33 3.93

5.2.2 Validate imaging systematic mitigation

5.2.2.1 Impact of imaging systematic mitigation

Exactly as performed for the angular cases, see Appendix 5.1, we will test the mitigation method
proposed in Chaussidon et al. (2022) by comparing the impact of the mitigation on contaminated
cutskys to uncontaminated cutskys. We will, in particular, follow the colors used in the pipeline
shown in Fig. A5.1, where uncontaminated cutsky is in blue, contaminated cutsky is in green,
and the correction of contaminated cutsky is in red.

In this test, we consider the SGC part of the footprint, and we contaminate the cutsky with
realistic contamination matching the DESI QSO Y1 imaging systematics displayed in Fig. 4.44.

Fig. 5.14 shows the monopole and the quadrupole of the mean on the 16 subsamples extracted
from the same box for four different values of f loc

NL. The expected window convolved model (5.32)
is shown in black.

5.2.2.2 Systematic bias from imaging systematic mitigation

To assess any systematic bias in the correction, we fit the mean of 16 subsamples of the monopole
and the quadrupole in the uncontaminated and contaminated with regressis correction cases
with 0.003 < k < 0.08, kstep = 0.001 [h Mpc−1] for the monopole, and 0.003 < k < 0.08,
kstep = 0.002 [h Mpc−1] for the quadrupole. We use the 1000 EZmocks (only SGC part) of
DESI Y1 to build the covariance, and we rescale it by 16. Note that, here, the universal mass
relation (2.119) ensures p = 1.

The result of these fits is given in Table 5.4 for the four different values of f loc
NL. Posteriors

are given in Fig. 5.15a for the uncontaminated mocks, following the color code from Fig. 5.13,
and in Fig. 5.15b for the contaminated mocks with correction.

First, our cutsky fastpm simulations reproduce correctly the expected scale-dependent bias
for the given f loc

NL with the exception that we find, as in Biagetti et al. (2017), a lower amplitude
for the scale-dependent bias about 80%. Note that this effect is more important for our f loc

NL =
−25 simulation.
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Figure 5.14: (a) Monopole (b) Quadrupole of the mean on 16 subsamples extracted from the same
box with f loc

NL ∈ [−25, 0, 12, 25] at z = 1.75. The power spectrum of each subsample is displayed in the
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As noticed by Desjacques et al. (2009), Biagetti et al. (2017), this difference arises from the
fact that the halos in our fastpm simulation are extracted with a Friend-of-Friend (FoF) halo
finder which is known to not exactly reproduce the correct behavior of bφ. One explanation
could be that, compared with what was assumed in Section 2.2.3, the formation of halos is not
strictly spherical.
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Figure 5.15: (a) Posteriors for the mean of the 16 subsamples from the different fastpm simulations
with f loc

NL ∈ [−25, 0, 12, 25] in the uncontaminated case. (b) Same as (a) but for the contaminated with
regressis correction case. (c) Best fit value for f loc

NL, with errors as the 1σ (68% CL) from the posteriors,
for the different simulations and the uncontaminated and the contaminated with correction cases.

Although it removes most of the excess power produced by systematics imaging, our mitiga-
tion method does not precisely reproduce the power spectrum measured in the uncontaminated
case; see blue lines versus red lines in Fig.5.14. These residuals excess of power bias, unfor-
tunately, our f loc

NL measurement. The best-fit value for the different simulations and cases are
shown in Fig. 5.15c, illustrating a clear systematic bias after the corrections.

This systematic bias can be the sign of a non-perfect correction and could be reduced by
fine-tuning regressis. However, the contamination used here was extracted from the data with
regressis, so the mitigation can produce the expected correction. The systematic bias may
therefore be due to how the correction is performed. In particular, it seems that this systematic
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bias is almost the same for the different f loc
NL. This bias was already observed in the angular case

in Rezaie et al. (2023), and we may also need to correct it similarly.
This is the critical part of the scale-dependent bias measurement. In the following, we’ll

assume that this systematic bias is under control, although we will need to study this further to
ensure an unbiased measurement.
Remark: Here, we compute the power spectra without FKP or OQE weights, and we need to
test also the impact of the systematic mitigation in the presence of these optimal weights.

5.3 Blinding of the data set

As described in Section 5.2, the imaging systematics that occurs during the target selection,
strongly bias the large-scale measurement. The method proposed in Section 4.3 learns unfortu-
nately directly from the data and is known to be able to overfit that also biasing the large-scale
measurement. This prompted us to validate the method using simulation in the previous Section,
but this does not allow us to know whether or not all the imaging systematics are corrected.

Following the seminal work of Brieden et al. (2020) on the RSD and BAO, and in order to
investigate unknown observational systematics without any confirmation bias (f loc

NL is expected
to be closed to 0), we propose a method to blind the value of f loc

NL i.e. we will simulate the
impact on the scale-dependent bias of an unknwon, randomly selected, f blindNL value.

In this section, we describe a method to simulate a fake scale-dependent bias that could be
produced by f loc

NL and validate this method, in particular, in presence of f loc
NL 6= 0 and with the

combination of imaging systematic mitigation what we want to test without confirmation bias.
This method is implemented in mockfactory24 and is currently used in the DESI clustering
analysis.

5.3.1 Theoretical description

5.3.1.1 Model

The main idea is to generate weights for the data catalogs to mimic the power spectrum with
the scale-dependent bias (2.104) given any value of f loc

NL. The proposed weights are:

wdblind(x) = 1 + wblind(x), (5.50)

where wblind(x) is the Fourier transform of

wblind(k) = bφf
blind
NL

α(k) × 1
b
× δ̂r(k) = a(k)× δ̂r(k), (5.51)

bφ and α(k) are computed at the effective redshift zeff of the data. δ̂r(k) is the estimation of
the reconstructed field in real space. The reconstruction is performed with the iterative FFT
reconstruction algorithm (Burden et al. 2015) implemented in pyrecon25.

To perform the reconstruction, the first step is to paint the density field on the grid on which
the density field is smoothed by a window function

W s(k) = exp
(
−1

2k
2σ2

)
24https://github.com/cosmodesi/mockfactory/blob/main/mockfactory/blinding/catalog.py
25https://github.com/cosmodesi/pyrecon/tree/mpi

https://github.com/cosmodesi/mockfactory/blob/main/mockfactory/blinding/catalog.py
https://github.com/cosmodesi/pyrecon/tree/mpi
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where σ is the chosen smoothing radius. Since we only need to reconstruct the real-space density
field at large scales (where PNG matters), we take σ = 30 Mpc h−1. This window function for
several values of σ is displayed in Fig. 5.16.
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Figure 5.16: Reconstruction window function for several values of smoothing radius parameter σ.

Additionally, the density field is smoothed by the painting and the reading of weights on the
grid at particle positions. For both steps, we use the CIC (cloud-in-cell) assignment scheme.
The total window function which is applied to the density field is:

W tot(k) = W s(k)×W cic(k)2, (5.52)

where
W cic(k) = sinc2

(
πk

2kN

)
with kN = π/H is the Nyquist frequency corresponding to the cell size H. Here, we take the
window function to be isotropic, as an approximation for the 3D:

W cic(k) = W cic(kx) W cic(ky)W cic(kz).

Thus, the real field that we evaluate is such that:

〈|δ̂r(k)|2〉 ∝W tot(k)2 ×
[
b2Plin(k) + 1/n

]
, (5.53)

where 1/n is an undesired shot noise term, that if not corrected for will bias the blinding
procedure as discussed below.

5.3.1.2 From galaxy catalog to FKP field

With this blinding scheme applied to the data, the FKP field (5.3) is

F (x) = ng(x)− αns(x)
= W (x) [(1 + δg(x))× (1 + wblind(x))]−W (x)
= W (x)δg(x) +W (x)wblind(x),

where δg(x)× wblind(x) is neglected since it is a term of order 2 in δg.
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This assumption can be avoided by weighting the randoms instead of the data with

wrblind(x) = 1− wblind(x). (5.54)

The FKP field becomes then,

F (x) = W (x) (1 + δg(x))−W (x)× (1− wblind(x))
= W (x)δg(x) +W (x)wblind(x),

see Section 5.3.2.1 for a comparison between applying weights to the data and to the randoms.
Remark: The expected value of ng will be unchanged with the blinding scheme applied in the
data. Indeed, the expected value reads:

〈ng(x)〉 = W (x)〈1 + δg(x) + wblind(x) + δg(x)wblind(x)〉
'W (x)〈1 + δg(x) + wblind(x)〉
= W (x) = αns(x),

where, again, δg(x)wblind(x) was neglected. A simple way to test this approximation is to
compute the change in 〈ng(x)〉, which just corresponds to the change in mean data weights.
This change is very small. For instance, the data weights with a blinding scheme are displayed
in Fig. 5.24 and the change in the mean is about 10−4.

5.3.1.3 Shot noise correction

With the blinding weights, the new density field is δs′(k) = δs(k) + a(k)δ̂r(k). δs is the density
field in redshift space and δ̂r is the estimation of the reconstructed field in real space. The
associated power spectrum is:

〈|δs
′
(k)|2〉 = 〈|δs(k)|2〉︸ ︷︷ ︸

= (b+ fµ2)2Plin(k) + 1/n

+2a(k)Re(〈δs(k)δ̂r?(k)〉︸ ︷︷ ︸
≡ X̃(k)

) + a(k)2 〈|δ̂r(k)|2〉︸ ︷︷ ︸
≡ Ỹ (k)

, (5.55)

with the low-k limits:
X̃(k) = b(b+ fµ2)W tot(k)Plin(k) + 1

n
W tot(k) exp

(
−1

2k
2µ2f2σ2

d

)
Ỹ (k) = b2W tot(k)2Plin(k) +W tot(k)2 1

n

, (5.56)

Some brief remarks on the above equations:

• The shot-noise can be supposed similar between the redshift space distribution and the
real space distribution since the size of fluctuations of n(x) are much smaller than the
displacement field.

• The exponential term in X̃(k) is from section 5.2 of Smith et al. (2021), where the variance
of the displacement σ2

d is defined as

σ2
d = 1

6π

∫
dkPlin(k). (5.57)

For the same reason as the window W tot(k) appears in 5.53, the displacement field ψ is
also computed from the smoothed density field and σd must be rescaled as (with only one
CIC-reading)

σ2
d = 1

6π

∫
dk(W sW cic)2(k)Plin(k). (5.58)
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• The shot noise terms in (5.56) are undesired but unfortunately cannot be removed. The
shot noise evolves with the survey selection function, so will depend on the redshift. The
power spectrum computed in different redshift slices would lead to different apparent f loc

NL.
It is therefore crucial to correct this shot noise effect.

Let us find a′(k) to be used instead of a(k) in (5.51) to recover the expected value of the
additional PNG power without the undesired shot noise term. Hence, we want

2a′(k)X̃(k) + a′2(k)Ỹ (k) = 2a(k)X(k) + a2(k)Y (k) ≡ A(k), (5.59)

where X(k) (resp. Y (k)) corresponds to the non shot noise part (1/n → 0) of X̃(k) (resp.
Ỹ (k)). Solving the above second-degree polynomial gives:

a′(k, f blindNL , n) =
−X̃(k, n)±

√
X̃(k, n)2 + Ỹ (k, n)A(k)
Ỹ (k, n)

(5.60)

X̃(k, n) and Ỹ (k, n) depend on both k and x via the shot noise term. To ensure that
the amplitude of the PNG signal in the power spectrum does not depend on the local survey
selection function, we want to retain the dependence on x and then, for simplicity, remove the
dependence on k. We, therefore, choose a value of k defined as (kpivot, µpivot) where the equality
will be respected and normalize the currently proposed weights:

wblind(k) = a(kpivot, µpivot, n)
a(kpivot, µpivot)︸ ︷︷ ︸

shot noise correction factor

× a(k)× δ̂r(k) (5.61)

5.3.1.4 Positive or negative solution?

From (5.50) with f loc
NL > 0, it is clear that we need to choose the positive solution in (5.60)

requiring to use +. For f loc
NL < 0, we choose also the + solution in (5.60) motivated by the fact

that we want a corrective factor (a′/a) which should be ∈ [0, 1]. This ratio is plotted in Fig. 5.17
for different values of f loc

NL and for different shot noises, where the + solutions are in blue/violet
whereas the − solutions are in orange/red.

To avoid any troubles with the behavior where f loc
NL is negative (b + ∆b can be zero), we

choose a value of kpivot = 8 · 10−3 h Mpc−1. For f loc
NL > 0 we choose a lower value in order to

de-bias the PNG signal as best as we can, fixing: kpivot = 4 · 10−3 h Mpc−1. In all cases, we use
µpivot = 0.6. The impact of the value of kpivot is shown in Fig 5.18.

5.3.1.5 Shot noise with data weights

For the shot noise correction to work, we need a decent estimate of the shot noise. We suggest
using the same estimation as used in the power spectrum estimation, that is, in each cell of
volume dV :

N =
∑
dV w

2
g

α(
∑
dV wg)(

∑
dV ws)/dV

(5.62)

The denominator is an estimation of the integral
∫
d3xn̄2(x). We use α(

∑
dV wg)(

∑
dV ws)

instead of (
∑
dV wg)2 as the latter estimate is biased due to shot noise, which the former avoids

in the assumption that data and randoms are uncorrelated.
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Figure 5.17: (a) Left: Reduced discriminant ∆(k) = X̃(k, n)2 + Ỹ (k, n)A(k) is always positive. (5.59)
has always two real solutions. Right: Different terms from which the reduced discriminant is computed.
In the two cases, the shot noise is 1/n = 104 Mpc3 h−3. (b) Left: Corrective factor for different values of
f loc

NL with n = 10−4 Mpc−3 h3. The + solutions are in blue and the − ones are in orange. For f loc
NL < 0,

we choose the + solution since we will fix the value of kpivot to 8 · 10−3 h Mpc−1 (see Fig. 5.18). Right:
Similar to left but for different values of the shot noise with f loc

NL = 10.
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5.3.2 Validation with mocks

In the following, most of the tests are performed on the fastpm cubic box with 5.5 Gpc h−1 size
presented in Section 5.2.1, while the real DESI cutsky Y1 (SGC) will be tested in Section 5.3.2.2.
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5.3.2.1 Mocks vs. model

I Mocks without shot noise corrective factor Let us first try to apply the blinding
scheme without adding the shot noise correction factor. Fig. 5.19 shows the power spectra
blinded with different values of f loc

NL. The blue dashed lines are the expected power spectra for
the corresponding f blindNL values (with hand-tuned linear bias) without any contribution from the
shot noise. This is what we want to reproduce. In the left panel, the blinding scheme is applied
on a high-density sample where the shot noise is almost negligible. The blinding scheme recovers
correctly the desired blind value. In the right, the blinding scheme is applied on a low-density
sample and the red full lines are the predicted models from (5.55) (i.e.) including the shot noise.
Thus, the predicted model agrees with the measured power spectra. As described above, the
blinding weights without the shot noise correction factor yield a larger PNG signal than desired.

10−2 10−1

k [h Mpc−1]

103

104

105

P
(k

)
[h
−

3
M

p
c3

]

n = 1.05e-03

f blindNL :

-50

-10

10

50

10−2 10−1

k [h Mpc−1]

103

104

105

n = 5.24e-05

Predicted model:

w.o. shot noise

w. shot noise

Figure 5.19: Blinding scheme without the shot noise correction factor, where the contribution
of the shot noise is added to the prediction. Dots are the measured power spectrum monopoles. Left
(resp. Right) is for high (resp. low) density sample. Dashed lines are the desired power spectra with the
corresponding values of f loc

NL without shot noise contribution and the red ones are the prediction from
(5.55) including the shot noise contribution.

I Mocks with shot noise corrective factor Let us test the final blinding scheme including
the shot noise correction factor. The blinding power spectra are shown in Fig. 5.20 for high and
low-density samples. The predicted models do not have any shot noise contribution and are
exactly what we want to achieve. The shot noise correction seems to reproduce the desired
signal up to the typical scale of the fitting range kmin ∼ 4 · 10−3 h Mpc−1. The shot noise
correction factor is required especially for the low-density samples to recover the desired PNG
signal.

Let us try to measure f loc
NL from these blinded power spectra. The fits are performed with

iminuit, and posterior samples are drawn with zeus26 wrapped in the desilike framework.
The power spectrum monopole is fit with a damped Kaiser model, with the usual parametriza-
tion27 (f loc

NL, b1, sn,Σs) (5.24), where we fix bφ with the universal mass function assumption
(2.119). The power spectrum covariance is computed analytically in the Gaussian approxima-
tion, without the window effect.

The fits for f loc
NL and b1 with the associated errors are presented in Fig. 5.21. The high-

density sample with n = 1.05 · 10−3 Mpc−3 h3 (called in the figures ”full sample”) is in blue.

26https://github.com/minaskar/zeus
27https://github.com/echaussidon/desilike/blob/main/nb/png_examples.ipynb

https://github.com/minaskar/zeus
https://github.com/echaussidon/desilike/blob/main/nb/png_examples.ipynb
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typically DESI QSO at high redshift, where the shot noise matters. The blinding scheme with the shot
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of f blind

NL ∈ {−20,−10, 10, 20}, with 1σ posterior errors. Black dashed lines are the expected value of the
linear bias and the expected blinded value fNL.

I Blinded range of scales Fig. 5.22 shows the ratio between the blinded and the non-
blinded power spectrum monopoles. As explained in Section 5.3.1.1, the scale-dependent bias
created in the blinding scheme is W tot(k)∆b(k): the measured ’high’ k PNG signal is damped
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with the window function W tot(k).
The dashed lines are the theoretical prediction without W tot(k) and the black dotted lines are

the theoretical predictions with only the W tot(k) order 1 term28 (leading the small discrepancy
at very high k).

Yet, this W tot(k) term is not included in the fitted model, thereby explaining the different
bias values displayed in Fig. 5.21. Since we recover the correct (at least in the expected error
bars) value of f loc

NL, this is not a problem, just something to be aware of.
Important: With this window function the impact of the f loc

NL blinding is then negligible beyond
k ∼ 0.06 h Mpc−1 and should not impact BAO or RSD measurements.
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Figure 5.22: Both figures represent the ratio between the blinded power spectrum and the non-blinded
power spectrum for different values of f loc

NL. Dashed (resp. dotted) lines are the model predictions without
(resp. with) the window function W tot(k) from the reconstruction smoothing and particle assignment.
The window function damps the PNG signal, such that it goes to zero faster than the theory.

I Weights applied on data or randoms? We can either compute the weights for the
data: 1 + wblind(x) or for the randoms: 1 − wblind(x). The difference between the two cases is
negligible, as shown in Fig. 5.23 for the 20× subsample.

It is more convenient to add weights to the data, to keep the definition of randoms as
sampling the survey selection function (without – or as less as possible – correlation with the
data).

28(ie) P (k) =
(
b2 + 2W tot(k)b∆b+W tot(k)∆b2

)
Plin(k)
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Figure 5.23: Ratio between the measured power spectrum after the blinding scheme with weights
applied to the data and with the weights applied to the randoms.

I Distribution of blinding weights Let us compute the expected standard deviation of
the proposed weights (5.50) and (5.61):

σ2
wd

blind
= 〈(1 + wblind − 1)2〉

= 〈wblind(x)wblind(x)〉

= 1
(2π)6

∫
dk
∫

dq ei(k+q)x〈wblind(k)wblind(q)〉

= 1
(2π)6

∫
dk
∫

dq ei(k+q)xa(k, n)a(q, n)〈δ̂r(k)δ̂r(q)〉

= 1
(2π)6

∫
dk
∫

dq ei(k+q)xa(k, n)a(q, n)(2π)3δD(k + q)P
δ̂r

(k)

= 1
(2π)3

∫
dk a(k, n)2W (k)2

(
b2Plin(k) + 1/n

)
= 1

2π2

∫
dk k2a(k, n)2W (k)2

(
b2Plin(k) + 1/n

)
(5.63)

Remark: The simulation box size is of finite size, so we have to integrate only from kmin =
kf = 2π/L with L the box size to kmax = kN the Nyquist frequency. In fact, kmax does not
really matter since the integrand goes to 0 really quickly for high k. In principle, the best would
be to perform the above integral on the k-grid actually used in the blinding routines.

Fig. 5.24 gives the integrand (left) for two values of f locNL ∈ {−10, 20} and for two values of
n ∈ {10−4, 5 · 10−5} Mpc−3 h3. The integrand peaks at low k, such that the minimum scale
used in the integral indeed has great importance. The two other panels show the dispersion of
the blinding weights for the corresponding values of f loc

NL for the different samples used above
full sample, 10× subsample and 20× subsample.
Remark: Importantly, the terms of the weights are very small, less than 10−2, such that they
can discreetly be mixed with other weights, e.g. photometric systematic weights.

I Sanity check with hexadecapole The hexadecapole (` = 4) in the linear regime is
P

(z)
4 (k) = 8

35f
2Plin(k), hence does not depend on the bias b + ∆b(f locNL, k) and then on f loc

NL.
The hexadecapole, for multiple values of f loc

NL, is shown in Fig. 5.25. It is not impacted by the
blinding weights as expected.
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in colored lines, and Gaussian with dispersion predicted with (5.63) in dashed black lines. The RMS is
given in the legend (measured/computed).
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Figure 5.25: Hexadecapole for multiple values of f blind
NL ∈ {−50,−20,−10, 10, 20, 50} for the high-density

sample n = 1.05 · 10−3 Mpc−3 h3.

5.3.2.2 Blinding with a misspecified survey selection function (remaining system-
atics)

In order to test the blinding procedure in realistic conditions, we use the 16 subsamples matching
the DESI QSO Y1 SGC with the expected imaging contamination from the current Y1 data,
described in Section 5.2.1. On each subsample, contaminated by the imaging systematics, we
apply the blinding scheme, and then we correct the imaging systematics either with the inverse of
the contamination or with regressis29 (Chaussidon et al. 2022). We then measure the output
value of f loc

NL, hoping to recover the input blinding value.
To reduce sampling noise, we use the mean of the 16 realizations. The measured power

spectrum for the different cases is shown in Fig. 5.26. The errors are from 1000 EZ mocks
matching the DESI QSO Y1 SGC sample not divided by 16.

f loc
NL posteriors, for the mean of the 16 subsamples, are displayed in Fig. 5.27. For the Y1

case, we use the covariance matrix from the Y1 footprint instead of the one from the SGC

29https://github.com/echaussidon/regressis
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Figure 5.26: Mean of 16 subsamples mimicking the DESI QSO Y1 SGC sample. The errors are from the
standard deviation of 1000 EZ mocks. The dashed vertical line is about the minimum scale used in the
fit. The blue line is the power spectrum measured in simulations without imaging systematics and with
blinding. Green is for contaminated simulations with blinding. Orange (resp. violet) is for contaminated
simulations with blinded and correction with regressis (resp. inverse of the contamination).

footprint, just to reduce the errors. We recover the input blinding value f blindNL = 10 well within
the Y1 uncertainty both if no contamination is applied and including the imaging systematics,
with the exact inverse correction. In the latter case, we obtain a slightly lower value of f loc

NL. The
correction with regressis is a bit farther off (1.4σ), but no tuning has been performed yet.
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Figure 5.27: We almost recover the input blinding value: f blind
NL = 10 in the three cases. Blue contours

correspond to the blinding applied on the uncontaminated sample. Violet (resp. orange) contours corre-
spond to blinding applied on contaminated sample and with the inverse of the contamination (resp. with
regressis). (a) uses the SGC covariance matrix, (b) the Y1 covariance matrix (notice the change in
uncertainties).
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5.3.2.3 Blinding with non-zero f loc
NL simulations

Although Planck constraints are compatible with f loc
NL = 0 (Planck Collaboration et al. 2020),

we check how the blinding pipeline responds to an initial non-zero value of f loc
NL. We use similar

fastpm simulations to the one with f loc
NL = 0 but with f loc

NL = 25, creating the same 16 subsamples
which match the DESI QSO Y1 SGC sample.

Fig. 5.28 shows the measured Y1 SGC power spectra for the non-blinded case, and blinding
values of f loc

NL ∈ {−25, 10}. The best-fit values are given in Table 5.5. The errors are smaller
than those we’ll obtain in the next section because we have a larger bias and use p=1. Up to
the scale of interest (kmin = 4 · 10−3 h Mpc−1), we mostly recover the expected signal. Yet, a
discrepancy between the model and the measured power spectrum is already observable in the
non-blinded case, see Section 5.2.2.2, which propagates to the blinded cases.

Table 5.5: Best fit values for non-blinded simulation with f loc
NL = 25 and for blinded cases (+10, -25)

non-blinded blinded + 10 blinded - 25

f loc
NL 19+9

−9 31+9
−8 −9+12

−10
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Figure 5.28: (a) The brick line is the measured power spectrum without blinding for the Y1 SGC
footprint, based on fastpm simulations with f loc

NL = 25, with error bars from 1000 EZ mocks. Orange and
blue lines show the power spectra blinded with f loc

NL ∈ {−25, 10} respectively. The dashed vertical line is
about the minimum scale used in the fit. (b) Posteriors for the three power spectra in (a). The posterior
of the fastpm (non-blinded) power spectrum is slightly shifted to a lower f loc

NL value than input, which
propagates to the blinded cases.

Remark: For the purposes of this dissertation, we are only interested in analyzing the large
scales of the power spectrum, and we will not be looking at the scales at which the BAO peak
and RSD are measured. We, therefore, don’t need to look at the impact of this blinding scheme
on the other scales of the power spectrum. However, we have verified (not shown here) that the
addition of this blinding does not alter the measurement of the BAO and RSD parameters at
the statistical accuracy of Y1 measurements, nor does it alter the blinding setup for BAO and
RSD.

As a result, this blinding was introduced into DESI’s clustering analysis pipeline, and since
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simple forecast predicts a sensitivity on f loc
NL about 15 with the Y1 data, we draw a random value

for the blinding in [−15, 15].

5.4 Preliminary analysis: PNG with DESI QSO Y1 data

The blinding scheme for BAO, RSD, and f loc
NL were effective at the end of May 2022, and the

analysis on real data could start. As explained above, we have blind the data with f blindNL ∈
[−15, 15].

5.4.1 Clustering catalog validation

A preliminary description of the clustering catalogs is available in DESI Collaboration et al.
(2023b). The case of quasars is the easiest. For the clustering catalog, we consider only the
quasar targets classified as a quasar with 0.8 < z < 3.5 by the pipeline presented in Fig. 4.11. In
addition, we mask the region with imaging maskbits 7, 8 (bright star masks from WISE) and 11
(star mask from Gaia), although the need for these additional masks has not yet been studied.

The density of the quasars used for the clustering is given in Table 5.2, and their redshift
distribution is displayed in Fig.5.8. The overall imaging systematic study is presented in Sec-
tion 4.4.2, and the summary plots are given in Fig. 4.43 for the North and South (NGC) and
Fig. 4.44 for the South (SGC) and DES.

5.4.1.1 Analysis in redshift bins

As described in Section 4.2.3.3, at low z, the target selection depends notably on the definition
of the stellar morphology (’PSF’), see Fig. 4.13. However, the morphology of the objects is
determined by the images of the legacy survey such that a better image quality means better
object resolution and, in the case of quasars, precise determination of the extended galaxy host
in addition to the quasar at its center. Hence, one can expect different imaging effects depending
on the redshift.

The relative QSO density in the North and South, as a function of each observational pa-
rameter for different redshift bins, is given in Fig. 5.29. Here, and in the following, we have not
displayed the figure for DES due to the lack of statistics. One can clearly identify a different
behavior between the low redshift sample (0.8 < z < 1.5) shown in blue and the higher redshift
sample, particularly in the sub-panel for the PSF size and PSF depth of z.

This behavior is consistent with what we have seen using the Morphology criterion. When
image quality is good30, it is easier to observe the quasar and its host galaxy, classifying it as an
extended source and not selecting it as a target quasar. The closer the objects are, the greater
the effect. Conversely, when image quality is poor, it is impossible to detect extended sources,
and most objects are considered point sources.

Morphology determination of the sources in the Legacy Imaging Surveys is done by combining
the different optical bands. In particular, this effect should be accentuated in the z-band since
z has the best quality image in the different regions, see Table 3.3.

One can zoom in the first redshift bin 0.8 < z < 1.5, to understand the dependence of the
effect as a function of the redshift. Thinner redshift bins for the South region are shown in

30Reminder: good quality is high PSF Depth and low PSF size.
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Figure 5.29: Same as Fig. 4.28, but for the clustering catalog with completeness weights in different
redshift bins. (a) is for North and (b) for South footprint.
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Figure 5.30: Same as Fig. 5.29, but for thinner redshift bins in the South region.

Fig. 5.30. The redshift bin 1.3 < z < 1.5 seems to have similar trends to the higher redshift bins
shown in Fig.5.29, in particular for the PSF size and PSF depth of z.

5.4.1.2 Two weights for the imaging systematics

The two distinctive trends displayed in Fig.5.29 cannot be corrected with a single weight com-
puted on the entire redshift range since no redshift information is currently used in regressis.
The simple solution is then to generate two sets of weights independently. Based on Fig. 5.30,
we decided to split the sample into two subsamples:

• low-z sample: 0.8 < z < 1.3

• high-z sample: 1.3 < z < 3.5

We used lower pixelization order to keep the number of objects sufficiently high in each pixel
during the regression, from Nside = 256 to Nside = 12831. The impact of Nside was relatively
small at large scales during our angular study in Section 4.3. However, this change must be
tested more thoroughly for the power spectrum.

The efficiency of the correction is shown in Fig.5.31, where mainly the trends in PSF size
and PSF depth z are perfectly corrected. Plots for the high-z sample correction are similar to
Fig.4.28 and are well corrected.

31At Nside = 256 (resp. Nside = 128), the typical size of a pixel, at zeff = 1.7, is
√

Area = 4.8 h−1Mpc (resp.
= 9.6 h−1Mpc) corresponding to a Fourier scale ∼ 0.2 hMpc−1 (resp. ∼ 0.1 hMpc−1) greater than the scales
used for the scale-dependent bias measurement.
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Figure 5.31: Same as Fig. 5.29, but blue is for the clustering catalog with completeness weights and
0.8 < z < 1.3, and red are after the new correction computed specifically in this redshift range.
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Remark: At present, the z=1.3 separation value has not been tested further. We can also
imagine having more than two different weights by cutting the sample into more redshift slices
to improve the correction.

5.4.1.3 QSO Y1 power spectrum measurement

Now that the imaging effects seem to have all been corrected correctly, we can compare the
measured power spectrum with different sub-samples. Our aim here is not to find out whether
the shape of the power spectrum is the expected one but to check the consistency between the
different photometric regions.

I Four photometric regions The first step is to compare the power spectrum computed in-
dependently in the four photometric regions. The four power spectra are displayed in Fig. 5.32a.
To test the compatibility between the four photometric regions, we compute the difference be-
tween the power spectrum measured in one region and the average over the effective coverage
of the power spectra measured in the other regions, divided by the expected final errors, as dis-
played in Fig. 5.32b. The final errors take into account the modes between the different regions,
and, therefore, are weaker than the errors using only the four regions independently. Due to the
coverage, the power spectrum measured in DES is expected to be noisier. Note the excellent
agreement between these regions, in particular at large scales.

As a result, we can measure the power spectrum over the entire NGC and SGC parts of
the footprint simultaneously, using modes between North/South and South/Des, increasing our
statistical precision.
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Figure 5.32: (a) Power spectrum measured in the four photometric regions using two weights to mitigate
imaging systematics, one for low-z sample (z < 1.3) and one for the high-z sample (z > 1.3). (b)
Compatibility test between the four photometric regions. The solid lines are the difference between the
power spectrum measured in one region and the average over the effective coverage of the power spectra
measured in the other regions, divided by the expected final errors. The final errors take into account
the modes between the different regions. The four regions are in complete agreement, in particular at
large scales.

For sanity check, one can compare the measured power spectrum with the two weights for the
imaging systematic and the one with a single weight generated for the entire sample. Fig. 5.33
shows for the four photometric regions the power spectra with two weights (faceless marker)
and with a single weight (full marker). Note the strong impact on large scales for the different
photometric regions.
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Figure 5.33: Impact of using two weights, one for low-z and one for high-z sample (faceless marker),
versus a single weight generated with the entire sample (full marker).

I Normalize South (SGC) to DES In the current DESI pipeline, the South (NGC) is
normalized to the North when the power spectrum is computed simultaneously on these two
regions. Here, by normalized, we mean that the randoms redshift distribution is matched inde-
pendently in the North and the South (NGC), and the randoms weights in the South (NGC)
are multiplied by the normalization factor:

fnorm =
∑
i∈Northwr,i∑
i∈Northwd,i

×
∑
i∈South (NGC)wd,i∑
i∈South (NGC)wr,i

. (5.64)

This normalization step takes into account the fact that tracer density and redshift distribution
are not the same between the two photometric regions, see for instance the quasar case in
Table 5.2 and in Fig. 5.8. This may be due to either a slightly different target selection in these
regions, or because the photometry is deeper in one of the two regions and more targets are
visible.

For the exact same reason, the South (SGC) region has to be normalized to the DES region
by generating independently the randoms redshift and matching the weights between these two
regions. For quasars, this is crucial, given the difference in density shown in Table 5.2 and on the
redshift distribution shown in Fig. 5.8. Fig. 5.34 shows the result of this normalization. Without
this normalization (brown), we measure an excess of power at large scales, when you consider
objects in South (SGC) and DES simultaneously, compared to the separate region South (SGC)
(orange) and DES (red) which will bias the measurement of primordial non-gaussianity. We
recover an expected behavior using normalization (black).

I Compare NGC vs. SGC Since we can compute the power spectrum correctly in all the
NGC and SGC, one can compare these two regions and finally combine the power spectrum
from these two independent measurements. Fig. 5.35 shows the power spectrum for these two
regions, showing again an excellent agreement.
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Figure 5.34: Comparison between South (SGC) (orange), DES (red), South (SGC) + DES where we
do not use the normalization (brown) and when we use the normalization (black).
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Figure 5.35: Power spectrum for the NGC (blue), SGC (red) and NGC combined with SGC (black).
NGC and SGC are showing a perfect agreement.

I Redshift evolution To validate the imaging systematic mitigation, we can also look at
the power spectrum in different redshift bins. Fig. 5.36 shows the power spectrum for different
redshift bins. Note that only the second redshift bin mixes the two weights to mitigate the
imaging systematics, otherwise, each redshift bin is using a single weight.

As expected, one can see an amplitude evolution as a function of the redshift. However, the
global shape of the power spectrum shows no difference between the different redshift bins.

Finally, with these two weights to mitigate the imaging systematics, we have shown that

• The four different photometric regions lead to a similar power spectrum.

• No discrepancy between the different redshift bins.

• One can compute the power spectrum on all the NGC and SGC.
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Figure 5.36: Power spectrum (NGC + SGC) computed for different redshift bins. Only the second
redshift bin (1.2 < z < 1.6) uses the two weights simultaneously, otherwise, each redshift bin is using a
single weight generated either for the low-z or high-z sample.

5.4.2 Constraints on local PNG

Due to the limitation on the maximal redshift in the EZmocks, we will limit here the analysis
for the QSO with 0.8 < z < 3.1.

5.4.2.1 Compare DESI QSO Y1 vs. EZMocks

The covariance matrix, see Section 5.1.2.4, that will be used for the parameter estimation step,
will be computed from 1000 EZmocks. Unfortunately, these EZmocks are generated at z = 1.4
i.e. at a lower redshift than the effective redshift of the DESI QSO Y1 sample given in Table 5.1.

Since we are measuring large scales, where linear theory applies, it does not really matter.
This is only a question of rescaling. Indeed, the linear power spectrum evolves only as a function
of the growth factor that does not depend on k, see late time evolution given by (1.106).

Hence, we only need the power spectrum from the EZmocks to have a similar amplitude
as the power spectrum from the data, such that we will have the correct errors on the power
spectrum. Fig. 5.37 shows the mean power spectrum of the EZmocks (blue line) compared to
the power spectrum from the DESI QSO Y1. The expected errors are the dispersion of the 1000
EZmocks shown in light blue. It is worth noting that the catalog presented here is blind and
does not show any large-scale excess or deficiency of power.

5.4.2.2 Analysis with EZmocks

Before fitting the data, we test the pipeline and evaluate the sensitivity of our sample by fitting
the mean of the 1000 EZmocks without normalizing the covariance matrix i.e. we use the
covariance of the 1000 EZmocks. First, for testing purposes and to be conservative, we rescale
the mean of the EZmocks to find the expected bias from Laurent et al. (2017) at the effective
redshift given in Table 5.1. We fit the monopole (` = 0) and the quadrupole (` = 2) with{

`0 : 0.003 < k < 0.08 with kstep = 0.001 [h Mpc−1]
`2 : 0.003 < k < 0.08 with kstep = 0.002 [h Mpc−1] , (5.65)
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Figure 5.37: Comparison between the mean (blue line) of the 1000 EZmocks (light blue lines) used to
compute the covariance and the power spectrum (NGC + SGC) computed from the data (black triangles)
with 0.8 < z < 3.5. Here, the data are blinded with f blind

NL ∈ [−15, 15].

where we have rebin the quadrupole to avoid any problem related to the power spectrum esti-
mation since the EZmock quadrupoles are highly scattered.

Unless otherwise stated, we will use p = 1.6 to parameterize the relation (2.120), as it was
proposed by Slosar et al. (2008) and was done recently by Castorina et al. (2019), Mueller et al.
(2022).

The result of the fit is given in Table 5.6 when we use no weights, FKP weights (5.8) and
OQE weights (5.21), and the posteriors are shown in Fig. 5.38.

Table 5.6: Best fit values from the mean of 1000 EZmocks with the realistic DESI QSO Y1 covariance
matrix. Errors are the 1σ (68% CL) from the posteriors shown in Fig. 5.38.

f loc
NL b sn,0 Σs

no weights 3+15
−15 2.405+0.041

−0.043 280+530
−430 3.13+1.08

−0.59

no weights (new maskbits) 2+15
−14 2.405+0.040

−0.041 290+440
−480 3.13+1.05

−0.56

FKP weights 2+14
−12 2.519+0.041

−0.045 140+520
−460 2.64+1.22

−0.72

OQE weights −2.5+9.4
−8.7 3.255+0.063

−0.064 −700+680
−680 0+0.26

−0.89

The different sets of weights modify the effective redshift of the sample as we overweight high
redshift quasars, and so the linear bias b1 used to fit the theory to the data increases reducing
the error on the desired parameter: f loc

NL.
Although the measured value of f loc

NL is not strictly 0, one can assume that the systematic
bias in our measurement is low enough compared to the statistical Y1 errors. In particular,
the geometric effects from the window function are sufficiently well taken into account in our
theoretical model, see Fig. 5.5. Note also, that the difference between the FKP weights and the
OQE weights (2− (−2.5) = 4.5) is about 1/3 (resp. 1/2) of the statistical error from FKP (resp.
OQE) weights, such that it corresponds32 to an increase about 5% (resp. 10%) of the errors.

32Systematic and statistical errors are added in quadrature: σtot =
√
σ2

sys + σ2
stat
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Figure 5.38: Posteriors for the mean of the 1000 EZmocks without weights (green), with FKP weights
(orange) and OQE weights (blue), calibrated with the expected bias from Laurent et al. (2017) at the
different effective redshifts given in Table 5.1 using the DESI QSO Y1 covariance matrix.

Therefore, it could be, for the moment, neglected.

I Error evolution As described in Section 5.2, the imaging systematic mitigation can overfit
the data and remove too much power at a very large scale. This can be limited by not considering
these scales during the fitting procedure.

Fig.5.39 shows the error evolution as a function of the minimal (resp. maximal) k value
used during the fit. In particular, it is interesting to note that reducing kmin to 0.001 does
not drastically improve error compared to 0.003. We need to find the best trade-off between
statistical and systematic errors. Hence, to avoid any imaging contamination or overfitting
consideration, we choose kmin = 0.003. On the other hand, the value kmax is fixed by the
validity of our theoretical model, and we choose kmax = 0.08, see Fig. 1.14.

I New maskbits For safety, the current DESI clustering pipeline adds three additional
imaging masks, removing all the quasars with maskbits 7, 8, and 11. This corresponds to
removing about 6% of the final clustering catalogs.

Since the quasars are shot noise limited, we would certainly like to keep as many objects as
possible. Fig. 5.40 shows the posterior for the nominal case (blue) and when we do not use the
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Figure 5.39: Left: Evolution of the errors for the different weighting schemes as a function of the
minimal k value used during the fit at kmax = 0.08. Right: Evolution of the error as a function of the
maximal k value at kmin = 0.003. Errors are estimated as the 1σ interval given by the posterior computed
with MCMC chains from a fit of the mean of the 1000 EZmocks calibrated with the expected bias from
Laurent et al. (2017) at the different effective redshifts, using the DESI QSO Y1 covariance matrix.

three additional maskbits. The best-fit parameters are given in Table. 5.6. The expected gain
on the error of f loc

NL is also about 6%, as expected (4.2).
Further work will be required to ensure that the addition of these quasars is not problematic

from an imaging systematics point of view so that they can be included in this analysis.

5.4.2.3 Analysis with DESI QSO Y1

Since our analysis pipeline has been approved on simulations, we can measure the blinded data
without anxiety. The best-fit parameters are given in Table 5.7 and the posteriors for the
power spectrum estimation without weights, with FKP weights and OQE weights are shown in
Fig. 5.41.

Table 5.7: Best fit values for the DESI QSO Y1 data. Errors are the 1σ (68% CL) from the posteriors
shown in Fig. 5.41.

f loc
NL b sn,0 Σs χ2/(115− 4)

no weights 8+25
−26 2.110+0.043

−0.045 1050+460
−470 7.95+0.47

−0.47 1.53

FKP weights 6+22
−19 2.206+0.041

−0.048 810+440
−480 7.97+0.52

−0.41 1.38

OQE weights −17+15
−12 2.833+0.074

−0.069 −480+630
−670 8.71+0.52

−0.53 1.54

As expected, the linear bias is higher at higher effective redshift, but the value found here
is lower than the prediction from Laurent et al. (2017) that worked with the eBOSS QSO.
Additionally, the difference between the FKP and the OQE weights is higher than with the
EZmocks. These two effects will be discussed later.

The errors on f loc
NL are bigger than in the case of EZmocks because we measure a smaller bias

in the data. To avoid this discussion, we should instead measure bφf loc
NL directly, and we should
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Figure 5.40: Similar to Fig. 5.38, but the posterior is for power spectrum estimated without weights
for the nominal case (blue) and when we do not use the three additional maskbits.

then find similar errors. Note, however, that the error ratio is roughly similar between EZmocks
and data using the same covariance matrix.

Fig. 5.42 shows the best-fit model compared to the data for the OQE weights case, and the
corresponding residuals. We also plot the model at the best value where we change the value
of f loc

NL to best-fit value ±1σ. Note that the quadrupole does not bring too many constraints on
f loc

NL, but it breaks down degeneracies between the various parameters of the model.
Remark: Compared to Castorina et al. (2019), we find Gaussian posterior for f loc

NL, as in Mueller
et al. (2022). This is because we are not probing sufficiently negative values of f loc

NL for the shape
of the scale-dependent bias to be different.

I Discrepancy between FKP and OQE weights In the EZmocks, the small difference
was noted in the fit of the mean of the 1000 EZmocks. To investigate the effect, we fit individually
the 1000 EZmocks with different weights. To have similar errors to the data, we rescale the
EZmocks at the effective redshift with the measured bias from Table 5.7.

The normalized distribution of the difference between the best-fit value obtained with the
different sets of weights on each EZmock is shown in Fig. 5.43. First, the dispersion on 1000
EZmocks of the best value for each set of weights is compatible with the errors given in Table 5.7.
We still have a coherent shift ((µ, σ) = (5.9, 9.1)) in the distribution of the difference between
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Figure 5.41: Posteriors for data without weights (green), with FKP weights (orange) and OQE weights
(blue) at the different effective redshifts given in Table 5.1. Note that the linear bias b1 is lower than the
prediction at the effective redshift done by Laurent et al. (2017).

FKP and OQE cases, when we renormalize the dispersion, with the previous EZmocks case.
Finally, the difference that we observe (6 − (−17) = 23) in the data (single realization), is

included in the 2σ interval [−12, 24] for the distribution of the difference between FKP and OQE
cases shown in Fig. 5.43.
Remark: Although this shift also exists in Castorina et al. (2019), Mueller et al. (2022), it is
not discussed in these papers since the effect was not large enough compared to the statistical
errors. In particular, Mueller et al. (2022) found a shift of 24 (13 − (−11)). However, we will
need to study this shift in more detail, especially for the final release of DESI, to avoid biasing
our measurement.

I Bias QSO To investigate the lower bias found in Table. 5.7, we compute the power spec-
trum in different redshift slices with the blinded data of the Y1 sample and with the non−blinded
data of the first two months of observation, called hereafter DAO2. They are displayed in
Fig. 5.44. The blinded and non-blinded data are consistent with each other. Unfortunately, the
expected monopole at the considered effective redshift and with the expected bias from Laurent
et al. (2017) is higher, especially for high-redshift slices.

To avoid any problem with the window function or other systematic effects that can impact
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Figure 5.44: Power spectrum computed without FKP or OQE weights in different redshift slices for
the blinded data of the Y1 sample (blue) and the non-blinded data of the first two months of observation
(red). For comparison, the expected monopole at the considered effective redshift and with the expected
bias from Laurent et al. (2017) is plotted in black.

the amplitude of the power spectrum, we decide to fit the bias for the DESI QSO sample
by comparing the amplitude of the monopole of the correlation function ξ0 between 30 and
80 h−1Mpc to the simple Kaiser formula (1.122). We split the QSO sample into ten redshift
bins.

This measurement is displayed in Fig.5.45 where the bias measured with ξ0 are plotted in
blue. For comparison, we also plot the bias found in Table 5.7 which is compatible with the
measurement from the correlation function, albeit slightly lower. As in Laurent et al. (2017),
we fit the QSO bias with the phenomenological relation

bQSO(z) = α
[
(1 + z)2 − 6.565

]
+ β, (5.66)

with
α = 0.214± 0.011, β = 2.206± 0.029. (5.67)

The biases measured in our QSO sample are actually lower than the measurement from (Laurent
et al. 2017): α = 0.278± 0.018, β = 2.393± 0.042.
Remark: In the final analysis, we will therefore need to use the measure of bias evolution given
for our data to calculate the OQE weights.

I Systematic budget: To assess our measurement, we need to quantify the amount of
systematics in the analysis. They can be preliminarily classified as follows:
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BOSS (dark red, Laurent et al. 2016) and with (red, Laurent et al. 2017). For comparison, the biases
found with the power spectrum, see Table 5.7, are displayed in sky blue, and these are not independent
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• Observational effect mitigation: From Section 5.2.2.2, we saw that regressis correction
leads to a shift on f loc

NL about 10. Preliminary analysis based on a few FastPM simulations,
see Fig. 5.15, indicates an additive shift. Once this shift is fully calibrated, we can rigor-
ously calculate the associated systematic error. For the moment, and to be conservative,
we can simply consider the half of the shift as a systematic error: σsys = 10/2 = 5.

• Fitting procedure: As discussed above, the use of OQE weights instead of FKP weights
leads to a shift on f loc

NL about 6. Similarly to the previous shift and to be conservative, we
consider a systematic error about σsys = 6/2 = 3.

• Error on the model: It is not discussed here since we do not have enough FastPM mocks
to validate it. In particular, we do not study the impact of using the spherical halo
collapse model in (2.120). For recent model validation, see, for instance, Biagetti et al.
(2017). Similarly, the universal mass relation (2.120) could also be treated as theoretical
systematics; however, we will give the measurement and the constraints with p = 1 in the
next paragraph.

These systematic errors will be summed up in quadrature with the final statistical errors. We
do not use any correlation coefficient between these two systematic errors to be as conservative
as possible. In the OQE case, we found a statistical error about σstat = 13.5, and including the
systematic errors increase the final errors to σtot =

√
σ2
stat +

∑
i σ

2
sys,i ' 14.2.

For this analysis, the systematic shifts observed are sufficiently small compared to the statis-
tical error. However, the systematic budget will dominate over the statistical errors with either
the upcoming Y5 data, the combination with the other tracers, or the use of more advanced
methods. It will be necessary to better understand these shifts, whether they are additive or
multiplicative, model them to correct them and estimate a systematic error in the correction.
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I Comparison with p = 1: The previous measurement assumes p = 1.6 i.e. quasars come
from recent mergers. This increases, unfortunately, the constraints on f loc

NL. Here, we compare
the evolution of the constraints by assuming either p = 1.0 or p = 1.6. Note that the OQE
weights are recomputed with p = 1 and then the redshift effective is lower than the one with
p = 1.6.

The best-fit values are given in Table 5.8 and the posteriors are displayed in Fig. 5.46 above
the posteriors with p = 1.6. Using p = 1.0 halves the error for FKP weights (σ = 20.5 → 10),
while the gain is smaller for OQE weights (35 %, σ = 13.5 → 8.9), mainly due to a smaller
effective redshift.

Table 5.8: Best fit values for the DESI QSO Y1 data with p = 1 instead of p = 1.6. Errors are the 1σ
(68% CL) from the posteriors shown in Fig. 5.38.

f loc
NL b sn,0 Σs χ2/(115− 4)

no weights 4+12
−11 2.110+0.044

−0.046 1050+410
−510 7.95+0.42

−0.48 1.53

FKP weights 3+10.
−10. 2.206+0.045

−0.046 810+480
−450 7.97+0.45

−0.43 1.38

OQE weights −10.9+9.3
−8.5 2.676+0.057

−0.063 −730+560
−590 8.10+0.45

−0.44 1.51
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Figure 5.46: Similar to Fig. 5.46, where we have added the posteriors for p = 1.
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5.4.3 Forecast for the final Y5 data release

Similarly to the description done in Section 5.1.2.4, we can generate EZmocks mimicking the
expected Y5 (final) footprint of DESI. For this forecast, we assume an isotropic density of 188.7
deg−2 between 0.8 < z < 3.1, an isotropic redshift distribution, and full completeness across all
the footprint.

Here, we compute the power spectrum with the FKP weights, keeping in mind that the use
of OQE weights can bring an additional 35% gain on the errors on f loc

NL, and we recalibrate the
power spectrum of the EZmocks to recover the bias measured in the Y1 data, see Table 5.7.

The posteriors, using FKP weights, for the mean of 1000 EZmocks mimicking either the Y1
dataset or the expected final Y5 dataset of DESI are shown in Fig 5.47 for p = 1.6 and p = 1.0.
The best-fit values and the errors from the posteriors are given in Table 5.9.

Unfortunately, the lower bias found in the DESI QSO increases the expected errors and even
with the OQE weights, one can only expect to have σ ∼ 10 for the final Y5 dataset with p = 1.6.
In order to have competitive constraints compared to the Planck ones, we will need to explore
additional methods to extract the PNG signal from the large-scale structure data collected by
DESI. For instance, we can think to combine this measurement with the measurement from the
other tracers like LRG or split the QSO sample into different redshift bins. As done in Krolewski
et al. (2023), we can also imagine combining the QSO data with the CMB lensing.

Table 5.9: Best-fits and errors from the 1σ posteriors displayed in Fig. 5.47 for the mean of 1000
EZmocks computed with the FKP weights.

Y1 (p = 1.6) Y1 (p = 1.0) Y5 (p = 1.6) Y5 (p = 1.0)

f loc
NL 4+22.

−22. 4+11.8
−9.9 6+14

−14 2+7.2
−6.5
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Figure 5.47: Posteriors for the mean of 1000 EZmocks, rescaled to the observed bias at zeff = 1.649,
mimicking either the current Y1 data or the expected Y5 final dataset. The power spectra are computed
with FKP weights, and we do the forecast for p = 1.6 (full contours), the nominal value for quasars, and
p = 1.0 (dashed contours).



Conclusion & Prospects

Pour chaque fin il y a toujours un nouveau départ.
Antoine de Saint-Exupéry, Le Petit Prince (1943)

I n this dissertation, we have tried to observe the imprint that inflation, the theory describing
the early Universe, may have left on the large-scale structures of the Universe. For this

purpose, we have used the spectroscopic survey of quasars from the DESI instrument, in which we
measure the 2-point correlation function, namely the power spectrum, to measure the presence
of primordial non-gaussianity thanks to the scale-dependent bias relation.

This dissertation illustrates the fact that to measure the large scales of the power spectrum
with controlled systematic errors, particular attention must be paid to every stage of the anal-
ysis: from target selection to power spectrum calculation.

First, I was in charge of the quasar target selection, one of the four main tracers for DESI
(Chapter 4). Quasars have become a pillar of cosmological surveys over the past two decades.
They are the source of choice to study large-scale structures at high redshift either as direct
tracers of dark matter in the redshift range 0.8 < z < 2.1 or as continuous tracers with the
Lyman-α forest imprinted in their spectra at z > 2.1. The latter has received growing interest
since the potential tension at high-redshift unveiled by eBOSS in the Lyman-α BAO measure-
ment. Because DESI has a predefined number of targets for each tracer, the optimization of
target selection is determinant for quasars that are shotnoise limited and whose selection is
heavily contaminated by stars.

Extending the seminal color-cut classification from eBOSS, I developed a method based
on Random Forest classification, in order to increase the efficiency of the selection by 20%.
Additionally, I found that the baseline spectroscopic pipeline missed ∼ 10-15% of true quasars
and could be optimized using an Mg II line finder and a neural network classifier to increase
identification efficiency and avoid line confusion. The final combination presented reaches a
redshift efficiency of 98.0± 0.4% and purity of 99.5± 0.4%.

The selection was made difficult by unexpected stellar contamination from the Sagittarius
stream. To validate the selection, I extensively studied the final sample to be sure that large-
scale angular density fluctuations were explained by the known set of photometric features. In
particular, I developed a template regression method based on Random Forest regression to
mitigate the imaging systematics, regressis, by accounting for the non-linear relation between
the imaging features and improving the mitigation. This method is implemented and currently
used in the official DESI clustering pipeline.

This novel target selection and the optimized spectroscopic pipeline were extensively tested
during the Survey Validation with a considerable effort of visual inspection conducted by the
collaboration in which I was involved. This work enables DESI to collect more than 2.8 million
spectra of quasars with correct redshift, including nearly 1 million with redshift z > 2.1, thereby
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exceeding DESI scientific requirements by 20%. Because of the priority, DESI has already
collected more than 1.4 million quasars during the first year of observation.

Finally, I used the DESI Y1 QSOs to constrain PNG with the scale-dependent bias method.
For this purpose, I assessed the efficiency of the mitigation on the spectroscopic sample, I devel-
oped an end-to-end pipeline based on FastPM simulations mimicking one-third of the sample,
including contamination from imaging systematics. This ongoing analysis has revealed an ad-
ditive systematic shift due to the mitigation procedure and will need to be precisely studied
shortly to ensure unbiased measurement of primordial non-gaussianity.

To avoid any confirmation bias during the imaging systematic mitigation and clustering
catalog validation, I also developed a blinding scheme that mimics the behavior of a fake scale-
dependent bias, emulating an unknown value of f loc

NL in the data. This blinding scheme was
added to the global DESI blinding procedure. A complete procedure to validate the catalog
needs to be clearly stated before unblinding the data, and unfortunately, I only worked with the
blind data.

With the blind data, we explored the Y1 QSO and found an excellent agreement of the power
spectrum at large scales between the different photometric regions when applying separately the
imaging systematic mitigation in two redshift bins. After validating the fitting pipeline on real-
istic mocks, I fitted the blind data and found a lower linear bias than expected increasing the
statistical errors. I found with FKP weights f loc

NL = 6+22
−19 and with OQE weights f loc

NL = −17+15
−12,

with p = 1.6. The statistical gain between the two methods comes mainly from the increase of
effective redshift.

This work led to several scientific publications: Chaussidon et al. (2022) for the imaging
systematic mitigation, Chaussidon et al. (2023) for the quasar target selection and Chaussidon
et al. (2023) for the blinding procedure. The measure of f loc

NL will be published with the Y1
data release over the next year. I was also involved in additional publications, see, in particular,
Alexander et al. (2023) or Krolewski et al. (2023).

I Prospects Realistic forecasts for Y5 DESI data, using FKP weights, give σ(fNL) = 22→
14 for p = 1.6, and σ(fNL) = 11 → 7 for p = 1.0. Although an additional gain of about 35% is
expected using the OQE weights, the QSOs alone will not be sufficient to obtain a measurement
competitive with Planck. However, this will be possible if all DESI data is considered.

Indeed, this measurement can be improved with the DESI data either by using several redshift
bins for the QSO (low versus high redshift), the other dark time tracer as LRGs which seems
to be quite competitive (already σ(fNL) ∼ 15 with Y1 data). In addition, another promising
approach is to use the CMB lensing to cross-correlate it with the DESI tracers. Below, we
propose two detailed research avenues:

• Improving PNG measurement with the bispectrum The nominal survey of DESI
is expected to constrain local PNG with scale-dependent bias up to σ

(
f locNL

)
∼ 5 DESI Collab-

oration et al. (2016a). Adding the bispectrum information can improve the constraint on f locNL
compared to the power spectrum only measurement Tellarini et al. (2016), Karagiannis et al.
(2018), Moradinezhad Dizgah et al. (2021). To test PNG at a level necessary to rule out the
simplest inflation models, the use of bispectrum will be required.

The measurement of f locNL via the scale-dependent bias is degenerated with an unknown bias
term bφ describing the response of the tracer density to local PNG. The seminal work Slosar



211 Conclusion & Prospects

et al. (2008) provides an analytical description of bφ, but more recent studies Barreira (2020;
2022a) based on hydrodynamical simulations show that it may not be correct for all tracers.
The degeneracy is broken by the use of the bispectrum, which allows f locNL to be measured
without extending the prior on bφ and improves the constraint on f locNL by more than a factor
of 5 compared to the power spectrum-only measurement Moradinezhad Dizgah et al. (2021).
I would also like to extend my work to other forms of PNG as the equilateral and orthogonal
forms, which can be probed with the bispectrum Coulton et al. (2023).

The first analyses using the bispectrum in the context of PNG appeared earlier in the year
Cabass et al. (2022), D’Amico et al. (2022). However, there is still much work to do to reach
the desired precision; in particular, observational systematic effects have been little studied so
far. Particular attention must be paid to these since the squeeze configuration (triangle shape
with two large sides and a small one: k1, k2 � k3) can be contaminated by observational effects
from both large (e.g. imaging systematics) and small (e.g. redshift determination) scales.

Additionally, geometrical effects such as the window function, are more complicated to model
than in the power spectrum case Pardede et al. (2022), especially for the high multipoles.
Cutting-edge analyses with bispectrum Ivanov et al. (2022), Philcox et al. (2022) used only the
monopole, and special care would be needed for the higher-order multipoles. These geometri-
cal effects can be modelled with a simulation-based approach to circumvent heavy analytical
computation.

• PNG with DESI successor Once the mapping of the high-redshift Universe has been
completed with DESI quasars, the successor of DESI could be a specific survey designed to target
higher redshift objects as proposed for DESI-II (Schlegel et al. 2022). The previous analysis could
then be performed with Lyman Break Galaxies (LBGs) in the redshift range (2.2 < z < 3.6),
probing a larger volume and expected to yield better constraints on PNG.

For instance, to circumvent cosmic variance and reduce the errors drastically, it sounds entic-
ing to cross-correlate several tracers with different biases (Seljak 2009, Hamaus et al. 2011). This
method could be applied to DESI-II with two potential main tracers: Lyman-α emitters (LAEs)
and LBGs. These two probes together open great opportunities to constrain f locNL with the scale-
dependent bias and other forms of non-gaussianity with bispectrum analyses (Yamauchi et al.
2017).

Exciting times lie just ahead.
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Bolton, A. S., D. J. Schlegel, É. Aubourg, S. Bailey, V. Bhardwaj, et al. (2012). Spectral classification and
Redshift measurement for the SDSS-III baryon oscillation spectroscopic survey. The Astronomical
Journal 144(5), 144. arXiv:1207.7326.
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Chaussidon, E., C. Yèche, N. Palanque-Delabrouille, D. M. Alexander, J. Yang, et al. (2023). Target
Selection and Validation of DESI Quasars. The Astrophysical Journal 944(1), 107. arXiv:2208.08511.
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More, S., A. V. Kravtsov, N. Dalal, and S. Gottlöber (2011). The overdensity and masses of the friends-
of-friends halos and universality of halo mass function. The Astrophysical Journal, Supplement
Series 195(1), 4. arXiv:1103.0005.

Mueller, E. M., W. J. Percival, and R. Ruggeri (2019). Optimizing primordial non-Gaussianity measure-
ments from galaxy surveys. Monthly Notices of the Royal Astronomical Society 485(3), 4160–4166.
arXiv:1702.05088.

Mueller, E.-M., M. Rezaie, W. J. Percival, A. J. Ross, R. Ruggeri, et al. (2022). Primordial non-
Gaussianity from the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey II: mea-
surements in Fourier space with optimal weights. Monthly Notices of the Royal Astronomical Soci-
ety 514(3), 3396–3409. arXiv:2106.13725.

Mukhanov, V. F., H. A. Feldman, and R. H. Brandenberger (1992). Theory of cosmological perturbations.
Physics Reports 215(5-6), 203–333.

Myers, A. D., R. J. Brunner, G. T. Richards, R. C. Nichol, D. P. Schneider, et al. (2006). First Mea-
surement of the Clustering Evolution of Photometrically Classified Quasars. The Astrophysical Jour-
nal 638(2), 622–634. arXiv:astro-ph/0510371.

Myers, A. D., J. Moustakas, S. Bailey, B. A. Weaver, A. P. Cooper, et al. (2023). The Target-selection
Pipeline for the Dark Energy Spectroscopic Instrument. The Astronomical Journal 165(2), 50.
arXiv:2208.08518.

Myers, A. D., N. Palanque-Delabrouille, A. Prakash, I. Pâris, C. Yeche, et al. (2015). The SDSS-IV
extended Baryon oscillation spectroscopic survey: Quasar target selection. The Astrophysical Journal,
Supplement Series 221(2), 27. arXiv:1508.04472.

Myers, A. D., M. White, and N. M. Ball (2009). Incorporating photometric redshift probability density
information into real-space clustering measurements. Monthly Notices of the Royal Astronomical
Society 399(4), 2279–2287. arXiv:0903.3121.

Nascimento, C. (2023). An accurate fluid approximation for massive neutrinos in cosmology. Physical
Review D 108(2), 023505. arXiv:2303.09580.

Neveux, R., E. Burtin, A. de Mattia, A. Smith, A. J. Ross, et al. (2020). The completed SDSS-IV
extended baryon oscillation spectroscopic survey: BAO and RSD measurements from the anisotropic
power spectrum of the quasar sample between redshift 0.8 and 2.2. Monthly Notices of the Royal
Astronomical Society 499(1), 210–229. arXiv:2007.08999.

Newberg, H. J., B. Yanny, C. Rockosi, E. K. Grebel, H.-W. Rix, et al. (2002). The Ghost of Sagit-
tarius and Lumps in the Halo of the Milky Way. The Astrophysical Journal 569(1), 245–274.
arXiv:astro-ph/0111095.

Palanque-Delabrouille, N., C. Magneville, C. Yeche, I. Pâris, P. Petitjean, et al. (2016). The extended
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Ross, N. P., A. D. Myers, E. S. Sheldon, C. Yèche, M. A. Strauss, et al. (2012). THE SDSS-III baryon
oscillation spectroscopic survey: Quasar target selection for data release nine. The Astrophysical
Journal, Supplement Series 199(1), 3. arXiv:1105.0606.

Ruiz-Macias, O., P. Zarrouk, S. Cole, P. Norberg, C. Baugh, et al. (2020). Preliminary Target Selection for
the DESI Bright Galaxy Survey (BGS). Research Notes of the AAS 4(10), 187. arXiv:2010.11283.

Rybicki, G. B. and W. H. Press (1992). Interpolation, realization, and reconstruction of noisy, irregularly
sampled data. The Astrophysical Journal 398, 169.

Salopek, D. S. and J. R. Bond (1990). Nonlinear evolution of long-wavelength metric fluctuations in
inflationary models. Physical Review D 42(12), 3936–3962.

Sargent, W. L. W. and E. L. Turner (1977). A statistical method for determining the cosmological density
parameter from the redshifts of a complete sample of galaxies. The Astrophysical Journal 212, L3.

Scaramella, R., J. Amiaux, Y. Mellier, C. Burigana, C. S. Carvalho, et al. (2022). Euclid preparation: I.
the Euclid Wide Survey. Astronomy and Astrophysics 662. arXiv:2108.01201.

Schlafly, E. F. and D. P. Finkbeiner (2011). Measuring reddening with Sloan Digital Sky Survey stellar
spectra and recalibrating SFD. The Astrophysical Journal 737(2), 103. arXiv:1012.4804.

Schlafly, E. F., D. Kirkby, D. J. Schlegel, A. D. Myers, A. Raichoor, et al. (2023). Survey Operations for
the Dark Energy Spectroscopic Instrument. arXiv:2306.06309.

Schlegel, D. J., S. Ferraro, G. Aldering, C. Baltay, S. BenZvi, et al. (2022). A Spectroscopic Road Map
for Cosmic Frontier: DESI, DESI-II, Stage-5. arXiv e-prints. arXiv:2209.03585.

Schlegel, D. J., D. P. Finkbeiner, and M. Davis (1998). Maps of Dust Infrared Emission for Use in Esti-
mation of Reddening and Cosmic Microwave Background Radiation Foregrounds. The Astrophysical
Journal 500, 525–553. arXiv:astro-ph/9710327.

Schmidt, M. (1963). 3C 273: A star-like object with large red-shift. Nature 197(4872), 1040.
Schwinger, J. (1961). Brownian motion of a quantum oscillator. Journal of Mathematical Physics 2(3),

407–432.
Scoccimarro, R. (2004). Redshift-space distortions, pairwise velocities, and nonlinearities. Physical

Review D - Particles, Fields, Gravitation and Cosmology 70(8). arXiv:astro-ph/0407214.
Sefusatti, E., M. Crocce, R. Scoccimarro, and H. M. Couchman (2016). Accurate estimators of correlation

functions in Fourier space. Monthly Notices of the Royal Astronomical Society 460(4), 3624–3636.
arXiv:1512.07295.

Seljak, U. (2009). Extracting primordial non-Gaussianity without cosmic variance. Physical Review
Letters 102(2). arXiv:0807.1770v1.

Shen, Y., W. N. Brandt, G. T. Richards, K. D. Denney, J. E. Greene, et al. (2016). the Sloan Digital Sky
Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines. The Astrophysical
Journal 831(1), 7. arXiv:1602.03894.

Silber, J. H., P. Fagrelius, K. Fanning, M. Schubnell, J. N. Aguilar, et al. (2023). The Robotic Multi-
object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI). The Astronomical
Journal 165(1), 9. arXiv:2205.09014.

http://arxiv.org/abs/1607.03145
http://arxiv.org/abs/1105.2320
http://arxiv.org/abs/1208.1491
http://arxiv.org/abs/1409.3242
http://arxiv.org/abs/1105.0606
http://arxiv.org/abs/2010.11283
http://arxiv.org/abs/2108.01201
http://arxiv.org/abs/1012.4804
http://arxiv.org/abs/2306.06309
http://arxiv.org/abs/2209.03585
http://arxiv.org/abs/astro-ph/9710327
http://arxiv.org/abs/astro-ph/0407214
http://arxiv.org/abs/1512.07295
http://arxiv.org/abs/0807.1770v1
http://arxiv.org/abs/1602.03894
http://arxiv.org/abs/2205.09014


Silva, D. R., R. D. Blum, L. Allen, A. Dey, D. J. Schlegel, et al. (2016). The Mayall z-band Legacy
Survey. In American Astronomical Society Meeting Abstracts #228, Volume 228, pp. 317.02.

Slosar, A., C. Hirata, U. Seljak, S. Ho, and N. Padmanabhan (2008). Constraints on local primordial
non-Gaussianity from large scale structure. Journal of Cosmology and Astroparticle Physics 2008(8).
arXiv:0805.3580.

Smith, A., A. de Mattia, E. Burtin, C. H. Chuang, and C. Zhao (2021). Reducing the variance of redshift
space distortion measurements from mock galaxy catalogues with different lines of sight. Monthly
Notices of the Royal Astronomical Society 500(1), 259–271. arXiv:2007.11417.

Smoot, G., C. Bennett, R. Weber, J. Maruschak, R. Ratliff, et al. (1990). COBE Differential Microwave
Radiometers - Instrument design and implementation. The Astrophysical Journal 360, 685.

Spergel, D. N., R. Bean, O. Dore, M. R. Nolta, C. L. Bennett, et al. (2007). Three-Year Wilkinson
Microwave Anisotropy Probe ( WMAP ) Observations: Implications for Cosmology. The Astrophysical
Journal Supplement Series 170(2), 377–408. arXiv:astro-ph/0603449.

Springel, V. (2005). The cosmological simulation code GADGET-2. Monthly Notices of the Royal
Astronomical Society 364(4), 1105–1134. arXiv:astro-ph/0505010.

Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics
Letters B 91(1), 99–102.

Starobinsky, A. A. (1982). Dynamics of phase transition in the new inflationary universe scenario and
generation of perturbations. Physics Letters B 117(3-4), 175–178.

Stern, D., P. Eisenhardt, V. Gorjian, C. S. Kochanek, N. Caldwell, et al. (2005). Mid-Infrared Selection
of Active Galaxies. The Astrophysical Journal 631(1), 163–168. arXiv:astro-ph/0410523.

Suchyta, E., E. M. Huff, J. Aleksić, P. Melchior, S. Jouvel, et al. (2016). No galaxy left behind: Accurate
measurements with the faintest objects in the Dark Energy Survey. Monthly Notices of the Royal
Astronomical Society 457(1), 786–808. arXiv:1507.08336.

Sugiyama, N. S., E. Komatsu, and T. Futamase (2013). δn formalism. Physical Review D - Particles,
Fields, Gravitation and Cosmology 87(2). arXiv:1208.1073v3.

Tamone, A., A. Raichoor, C. Zhao, A. de Mattia, C. Gorgoni, et al. (2020). The Completed SDSS-
IV extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from
anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the Emis-
sion Line Galaxy sample. Monthly Notices of the Royal Astronomical Society 499(4), 5527–5546.
arXiv:2007.09009.

Taruya, A., T. Nishimichi, and S. Saito (2010). Baryon acoustic oscillations in 2D: Modeling redshift-
space power spectrum from perturbation theory. Physical Review D - Particles, Fields, Gravitation
and Cosmology 82(6). arXiv:1006.0699.

Tauber, J. A., N. Mandolesi, J. L. Puget, T. Banos, M. Bersanelli, et al. (2010). Planck pre-launch status:
The Planck mission. Astronomy and Astrophysics 520(1), A1.

Tegmark, M., A. J. S. Hamilton, M. A. Strauss, M. S. Vogeley, and A. S. Szalay (1998). Measuring the
Galaxy Power Spectrum with Future Redshift Surveys. The Astrophysical Journal 499(2), 555–576.
arXiv:astro-ph/9708020.

Tellarini, M., A. J. Ross, G. Tasinato, and D. Wands (2016). Galaxy bispectrum, primordial non-
Gaussianity and redshift space distortions. Journal of Cosmology and Astroparticle Physics 2016(6).
arXiv:1603.06814.

Thompson, L. A. and S. A. Gregory (2011). An Historical View: The Discovery of Voids in the Galaxy
Distribution. arXiv e-prints. arXiv:1109.1268.

Thorne, J., A. Robotham, L. Davies, and S. Bellstedt (2022). AGN Unification Diagram.
Tifft, W. G. and S. A. Gregory (1976). Direct observations of th large-scale distribution of galaxies. The

Astrophysical Journal 205, 696.
Wang, F., X.-B. Wu, X. Fan, J. Yang, W. Yi, et al. (2016). a Survey of Luminous High-Redshift Quasars

With Sdss and Wise. I. Target Selection and Optical Spectroscopy . The Astrophysical Journal 819(1),
24. arXiv:1602.04659.

http://arxiv.org/abs/0805.3580
http://arxiv.org/abs/2007.11417
http://arxiv.org/abs/astro-ph/0603449
http://arxiv.org/abs/astro-ph/0505010
http://arxiv.org/abs/astro-ph/0410523
http://arxiv.org/abs/1507.08336
http://arxiv.org/abs/1208.1073v3
http://arxiv.org/abs/2007.09009
http://arxiv.org/abs/1006.0699
http://arxiv.org/abs/astro-ph/9708020
http://arxiv.org/abs/1603.06814
http://arxiv.org/abs/1109.1268
http://arxiv.org/abs/1602.04659


Wang, Y., G. B. Zhao, C. Zhao, O. H. Philcox, S. Alam, et al. (2020). The clustering of the SDSS-IV
extended baryon oscillation spectroscopic survey DR16 luminous red galaxy and emission-line galaxy
samples: Cosmic distance and structure growth measurements using multiple tracers in configuration
space. Monthly Notices of the Royal Astronomical Society 498(3), 3470–3483. arXiv:2007.09010.

Warren, M. S., P. J. Quinn, J. K. Salmon, and W. H. Zurek (1992). Dark halos formed via dissipationless
collapse. I - Shapes and alignment of angular momentum. The Astrophysical Journal 399, 405.

Weaverdyck, N. and D. Huterer (2021). Mitigating contamination in LSS surveys: a comparison of
methods. Monthly Notices of the Royal Astronomical Society 503(4), 5061–5084. arXiv:2007.14499.

Weinberg, S. (2005). Quantum contributions to cosmological correlations. Physical Review D - Particles,
Fields, Gravitation and Cosmology 72(4), 1–19. arXiv:hep-th/0506236.

White, M. (2014). The Zel’dovich approximation. Monthly Notices of the Royal Astronomical Soci-
ety 439(4), 3630–3640. arXiv:1401.5466.

Wise, J. H., M. J. Turk, M. L. Norman, and T. Abel (2012). The birth of a galaxy: Primordial metal
enrichment and stellar populations. The Astrophysical Journal 745(1), 50. arXiv:1011.2632.

Wright, E. L., P. R. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, et al. (2010). The Wide-
field Infrared Survey Explorer (wise): Mission description and initial on-orbit performance. The
Astronomical Journal 140(6), 1868–1881. arXiv:1008.0031.

Wu, Q. and Y. Shen (2022). A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release
16. The Astrophysical Journal Supplement Series 263(2), 42. arXiv:2209.03987.

Xia, J. Q., C. Baccigalupi, S. Matarrese, L. Verde, and M. Viel (2011). Constraints on primor-
dial non-Gaussianity from large scale structure probes. Journal of Cosmology and Astroparticle
Physics 2011(8). arXiv:1104.5015.

Yamamoto, K., M. Nakamichi, A. Kamino, B. A. Bassett, and H. Nishioka (2006). A measurement
of the quadrupole power spectrum in the clustering of the 2dF QSO survevy. Publications of the
Astronomical Society of Japan 58(1), 93–102. arXiv:astro-ph/0505115.

Yamauchi, D., S. Yokoyama, and K. Takahashi (2017). Multitracer technique for galaxy bispectrum:
An application to constraints on nonlocal primordial non-Gaussianities. Physical Review D 95(6).
arXiv:1611.03590.

Yang, J., X. Fan, X.-B. Wu, F. Wang, F. Bian, et al. (2017). Discovery of 16 New z ∼ 5.5 Quasars:
Filling in the Redshift Gap of Quasar Color Selection. The Astronomical Journal 153(4), 184.
arXiv:1703.03526.
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1 Perturbed energy stress tensor

The energy stress tensor for a non-perfect fluid is

Tµν = (ρ+ P )uµuν + P (gµν + Πµν) , (A.1)

where Πµν is the contribution from anisotropic stress1, called also anisotropic pressure. It is
symmetric, traceless, such that Πµ0 = 0 and unitless in this definition. The perturbed stress-
energy tensor in linear order, defined as the linear part of δTµν = Tµν − T̄µν with T̄µν following
(1.10), is

δTµν = (δρ+ δP ) ūµūν +
(
ρ̄+ P̄

)
(δuµūν + ūµδuν) + P̄

(
hµν + δP

P̄
ḡµν + Πµν

)
, (A.2)

where ρ̄, P̄ , ūµ are the unperturbed quantities of the underlying perfect fluid. Let derive the
four-velocity uµ = ūµ + δuµ in the Newtonian gauge (1.58). By isotropy, the underlying fluid is
at rest and since ḡµν ūµūν = −1,

ūµ = a−1δ0
µ. (A.3)

1For instance, neutrinos develop anisotropic stress which cannot be neglected up to the matter-dominated
area.
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By construction uµ respects also gµνuµuν = −1. Therefore, in linear order

2ḡµν ūµδuν + hµν ū
µūν = 0, (A.4)

and then, δu0 = −a−1Φ. Writing δui = a−1vi, the four-velocity becomes

uµ = a−1
(
1− Φ, vi

)
. (A.5)

The perturbed energy tensor (A.2) is currently decomposed into 2 scalars (δρ, δP ), one 3-
vector vi and one symmetric traceless 3-tensor Πij . Following the SVT decomposition, vi can
be separated into 1 scalar and 1 3-vector with two degrees of freedom, such that,

vi = vSi + vVi

with vSi = ∂iv and ∇ · ~vV = 0. Similarly, the anisotropic pressure Πij can be separated into 1
scalar Π, 1 3-vector Πi that is divergence-free (Πi,i = 0), and one 3-tensor with two degrees of
freedom ΠT

ij , such that
Πij = ΠS

ij + ΠV
ij + ΠT

ij

with ΠS
ij =

(
∂i∂j − 1

3δij∇
2
)

Π, ΠV
ij = (∂jΠi + ∂iΠj) and δikΠT

ij,k = 0.

Hence, in the Newtonian gauge (1.58) and considering only the scalar modes, the perturbed
energy tensor (A.2) simplifies as follows

δT00 = ρ̄a2(δ + 2Φ)
δT0i = −ρ̄a2(1 + w)∂iv

δTij = P̄

(
hij + δP

P̄
ḡij + ΠS

ij

)
,

(A.6)

where δ is the usual contrast density δ = δρ/ρ̄ and P̄ = wρ̄.

2 A Universe with multiple species

The Universe is composed of different species whose contributions to the stress-energy tensor
are added Tµν =

∑
I T

I
µν . Hence, from (1.61), the perturbed quantities are

δρ =
∑
I

δρI , δP =
∑
I

δPI , (ρ̄+ P̄ )vi =
∑
I

(ρ̄I + P̄I)viI , Πij =
∑
I

P̄I

P̄
Πij
I . (A.7)

The Einstein equations involve the total fluid quantities and express the gravity generated
by all the contributions together. However, each component can be described separately by its
stress-energy conservation equations

∇µT
µν
I = QµνI , (A.8)

where QµνI represents the interaction term for each component. If the component I interacts
with the others only through gravity i.e. there is no energy transfer, then QµνI = 0. To satisfy
the overall energy conservation equation (1.12),

∑
I Q

µν
I = 0. These conservation equations

take the form of (1.65) and (1.66), but with an additional contribution to the right-hand side if
necessary.
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3 Perturbation evolution: beyond the linear regime

In Section 1.2.3.5, we described the evolution of the perturbations in the linear regime. During
the cosmic evolution, these perturbations become too large to be well described by the linear
theory, and this happens for small scales: linearity holds up to kNL ∼ 0.1 h Mpc−1 at z = 0.

When we derive the perturbed tensor at linear order (A.2), we have neglected all the second
order terms, especially δρ× δu. For smaller scales (k > kNL) need a particular description.

The general description of non-relativistic matter perturbations in matter area is given by
(1.102), and the linear regime by (1.103). In this regime, the k modes are not coupled, and they
evolve independently.

Without neglecting any terms, (1.102) can be written in Fourier space as

δ′(k, η) + θ(k, η) = −
∫ d3k1d3k2

(2π)3 δ
(3)
D (k− k12)α (k1,k2) θ (k1, η) δ (k2, η)

θ′(k, η) +Hθ(k, η) + 3
2ΩmH2δ(k, η) = −

∫ d3k1d3k2
(2π)3 δ

(3)
D (k− k12)β (k1,k2) θ (k1, η) θ (k2, η)

(A.9)
where the kernels α and β are, noting k12 = k1 + k2,

α (k1,k2) = k12 · k1
k2

1
, β (k1,k2) = (k12 · k2) (k1 · k2)

k2
1k

2
2

= k2
12k1 · k2
2k2

1k
2
2

. (A.10)

Beyond the linear regime, k modes do not evolve independently, they are coupled by gravity, as
shown in the RHS of (A.9).

To solve these equations, one can use the perturbation method, known as the standard
perturbation theory (SPT):

δ =
∞∑
n=1

δ(n), θ =
∞∑
n=1

θ(n), (A.11)

where δn, θn are solved iteratively with (A.9). For instance, (δ(1), θ(1)) are the solution of the
linear regime described by (1.103). Hence, (δn, θn) can be fully described by δ(1) (Bernardeau
et al. 2002)

δ(n)(k, τ) =
∫

k1

∫
kn

(2π)3δD (k− k1···n)Fn (k1, · · · ,kn, τ)
n∏
i

δ(1) (ki, τ)

θ(n)(k, τ) = −H(τ)f(τ)
∫

k1

∫
kn

(2π)3δD (k− k1···n)Gn (k1, · · · ,kn, τ)
n∏
i

δ(1) (ki, τ)
, (A.12)

where
∫

k = 1/(2π)3 ∫ d3k. Fn (resp. Gn) is called the density (resp. divergence) kernels. From
the linear order

F1 = 1 G1 = 1. (A.13)

In matter-dominated area and neglecting dark energy (Einstein-De Sitter Universe), these kernels
do not depend on time and are easy to compute. For instance, the second-order kernels are

F2 (k1,k2) = 5
7 + 2

7
(k1 · k2)2

k2
1k

2
2

+ k1 · k2
2k1k2

(
k1
k2

+ k2
k1

)
G2 (k1,k2) = 3

7 + 4
7

(k1 · k2)2

k2
1k

2
2

+ k1 · k2
2k1k2

(
k1
k2

+ k2
k1

). (A.14)
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In this configuration, (δ(n), θ(n)) will be completely described by the linear growth function D(τ)
which then encodes the entire cosmology dependence of the non-linear structure formation.
For simplicity, the SPT kernels are usually computed in the EdS Universe and used for all
cosmologies.

Since 〈δ(k, z)δ(k′, z)〉 = (2π)3P (k, z), the matter power spectrum at first order is given by

P (k, z) = Plin(k, z) + P22(k, z) + 2P13(k, z), (A.15)

where
P22(k) =

∫ d3q

(2π)3Plin(q)Plin(k− q) |F2(q,k− q)|2

P13(k) = 3Plin(k)
∫ d3q

(2π)3Plin(q)F3(k,q,−q).
(A.16)

Similar computation can be done for the high-order statistics, in particular, the mode coupling
will create a non-zero bispectrum that is in the Gaussian case given by

B (k1,k2) = 2F2 (k1,k2)P (k1)P (k2) + perm. (A.17)

This part of the bispectrum is usually called the gravitational contribution in order to separate
it from the potential primordial non-gaussianities which are also encoded in the bispectrum.

Finally, the accuracy of SPT for the matter power spectrum and bispectrum has been ex-
tensively tested using N-body simulations that emulate the gravity, see for instance Jeong and
Komatsu (2006) which shows that the accuracy of STP increases when the non-linearity is less
prone, typically at high redshift (z > 1). Several alternative methods, also based on perturba-
tive development, have been proposed in recent years to increase the accuracy of perturbative
development without increasing the order used. See, for instance, the effective field theory of
large-scale structures (EFFofLSS, Carrasco et al. 2012, Ivanov 2023).

4 Einstein equations in different gauges

As described in Section 1.2.2.1, at linear order, the scalar, vector and tensor perturbations evolve
independently.

4.1 Scalar perturbations

The perturbed metric for the scalar modes reads

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + 2B,idxidη + [(1− 2Ψ)δij + 2E,ij ] dxidxj

]
, (A.18)

where B,i = ∂B/∂xi and E,ij = ∂2E/∂xi∂xj .
They are two scalar gauge transformations

η → η + α

xi → xi + ∂iβ
, (A.19)

which lead to the following scalar metric perturbation transformations

Φ→= Φ− α′ − a′

a
α

B → B − β′ + α

Ψ→ Ψ +Hα
E → E − β

, (A.20)
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The physics is encoded in a gauge-invariant combination of the scalar metric perturbations.
The two scalar gauge-invariant quantities, introduced by Bardeen (Bardeen 1980), are

ΦB ≡ Φ +H
(
B − E′

)
+
(
B − E′

)′
ΨB ≡ Ψ +H(E′ −B)

. (A.21)

Similarly, the perturbed fluid quantities are not invariant under the above gauge transfor-
mations. δ, δP and v are transformed as

δρ→ δρ− ρ̄′α, δP → δP − P̄ ′α, v → v + β′. (A.22)

Remark: The perturbed fluid quantities depend on the choice of the gauge. They will be
noted with an additional superscript. For instance, the Newtonian gauge quantities are written
δN , vN .

4.1.1 Einstein equations

The computation of the perturbed Einstein tensor and the perturbed stress-energy tensor leads
to the perturbed Einstein equations in gauge-invariant quantities

∆ΨB = 4πGa2ρ̄δC

ΨB − ΦB = 8πGa2P̄Π
Ψ′B +HΦB = −4πGa2ρ̄(1 + w)vN

HX ′ +
(
H2 + 2H′

)
X = 4πGa2ρ̄

(
wΓ + c2

sδ
F + 2

3w∆Π
), (A.23)

where X = ΨB + ΦB + (ΨB/H)′, δC is the comoving density perturbations (A.37), δF is
the spatially-flat density perturbations (A.33) and vN is the Newtonian velocity perturbations
(A.27). The entropy perturbations Γ is defined as δP = c2

Sδρ + PΓ such that for an adiabatic
perturbation, δP/δρ = c2

s and therefore Γ = 0. Note that Γ and Π are gauge-invariant2.
Similarly, one can compute the continuity equation and the Euler equation for fluid in gauge-

invariant quantities
δC
′ − 3HwδC = (1 + w)∆2vN + 2Hw∆2Π

vN
′ +HvN = −Φ− c2

s

1 + w
δC − 2

3
w

1 + w
∆2Π

, (A.24)

where Φ is in the newtonian gauge.

4.1.2 Newtonian gauge

The Newtonian gauge reduces to Newtonian gravity in the classical limit, and so it is very
popular for analytic computation since the scalar modes can be understood as the classical
gravity. The Newtonian gauge fixes

B = E = 0, (A.25)

such that the perturbed metric becomes

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdxidxj

]
. (A.26)

2Π is gauge-invariant thanks to the Stewart-Walker lemma and Γ→ Γ +
(
P̄ ′ − c2sρ̄′

)
α = Γ
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The Newtonian density perturbations and velocity perturbations

δN = δ + ρ′

ρ

(
B − E′

)
, vN = v + E′ (A.27)

are gauge-invariant.
Remark: In this gauge, (ΨB,ΦB) = (Ψ,Φ) and that is why we have used these notations in the
perturbation of the metric since in most cases we will work with the Newtonian gauge, although
it can be confusing in general. In the following, (Ψ,Φ) will always refer to their expression in
the Newtonian gauge unless otherwise stated.

4.1.3 Synchronous gauge

The synchronous gauge is used in the numerical implementation of the perturbation equations
as in many Boltzmann solvers. CLASS3 can solve the perturbed equations in both Newtonian
and Synchronous gauges. The synchronous gauge fixes

ΦS = BS = 0, (A.28)

such that the perturbed metric becomes

ds2 = a2(η)
[
−dη2 +

[
(1− 2ΨS)δij + 2ES,ij

]
dxidxj

]
. (A.29)

4.1.4 Spatially-flat gauge

The spatially-flat gauge is generally used to compute the inflationary perturbation, such that
the scalar perturbations are described by δφ. The spatially-flat gauge fixes

ΨF = EF = 0, (A.30)

such that the perturbed metric becomes

ds2 = a2(η)
[
−(1 + 2ΦF )dη2 + 2BF

,i dxidη + δijdxidxj
]
. (A.31)

The two remaining scalars can be expressed as

ΦF = Φ + Ψ + (Ψ/H)′

BF = B − E′ −Ψ/H
, (A.32)

where Φ,Ψ, B,E are from (A.18).
The spatially-flat density perturbations

δF = δ + ρ′

H
Ψ (A.33)

is gauge-invariant.

3Note that CLASS follows the convention of Ma and Bertschinger (1995). In particular, the Newtonian gauge
is defined as

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1− 2Φ)δijdxidxj

]
,

swapping Ψ↔ Φ in our notation (A.26).
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4.1.5 Comoving gauge

Known also as the comoving orthogonal gauge, it is defined such that the coordinate system is
comoving with the fluid flow i.e. requiring a zero 3-velocity and the orthogonality of constant
time hypersurfaces to 4-velocity. This gauge is then,

vC = BC = 0. (A.34)

This can be achieved with the following gauge transformation

α = −(v +B), β = −
∫
vdτ + C(x), (A.35)

where C(x) is the residual gauge freedom in shifts of the spatial coordinates. Hence, the scalar
quantities are

ΦC = Φ +H(B + v) + (B + v)′

ΨC = Ψ−H(B + v)

EC = E +
∫
vdτ − C

. (A.36)

The comoving density perturbations

δC = δ + ρ′

ρ
(v +B) = δ − 3H(1 + w) (v +B) (A.37)

is gauge-invariant. One can introduce also another very useful gauge-invariant quantity called
the comoving curvature perturbation,

R ≡ −ΨC = −Ψ +H(B + v), (A.38)

which can be expressed only as a function of the metric in the Newtonian gauge (B = 0, E = 0)4

R = −Ψ + H (Ψ′ +HΦ)
H′ −H2 = −Ψ− 2

3H
(Ψ′ +HΦ)

1 + w
, (A.39)

where from (1.28), we have 3/2(1 +w) = 1−H′/H2. Taking the conformal time derivative with
some simplifications from the background evolution5 leads to

R′ = − 2H−1

3(1 + w)Ψ′′ − 4 + 6c2
s

3(1 + w)Ψ′ − 2
3(1 + w)Φ′ + 2Hw − c

2
s

1 + w
Φ. (A.40)

Then, the Einstein equations (1.62) give

R′ = −2
3
H

1 + w

[
−c2

s

(
k

H

)2
Ψ + 1

3

(
k

H

)2
(Φ−Ψ) + 3

2ρ̄
(
δP − c2

sδρ
)]
. (A.41)

Finally, for super-Hubble modes (k � H) and adiabatic evolution (Γ = 0→ δP = c2
sδρ),

R′ = 0. (A.42)

Since the expansion of the Universe is an adiabatic process, the comoving curvature perturbation
R stays constant outside the horizon!

4From Einstein equations, we have Ψ′ + HΦ = 4πGa2 (ρ̄+ P̄
)
vN and combining the Friedmann equations

gives 4πGa2 (ρ̄+ P̄
)

= H2 −H′.
5w′ = −3H(1 + w)(c2s − w) and H′ = −1/2H2(1 + 3w)
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Neglecting the anisotropic pressure (Π = 0), Ψ = Φ and (A.39) becomes

R = −Φ− 2
3H

(Φ′ +HΦ)
1 + w

. (A.43)

For adiabatic perturbations at super-Hubble modes (R = const.), (A.43) is a differential equa-
tion for Φ during the period where w = const.:

2
3H
−1Φ′ + 5 + 3w

3 Φ = −(1 + w)R. (A.44)

The solution is the sum of the particular and the homogeneous solution

Φ = −3 + 3w
5 + 3wR+ Ca−

5+3w
2 . (A.45)

If w = const. for a long time enough i.e. a sufficiently high value of a, one can neglect the
second term and

Φ = −3 + 3w
5 + 3wR = const. (A.46)

In particular, this relation holds for a radiation-dominated Universe and a matter-dominated
Universe. Hence, for adiabatic perturbations,

Φk = −2
3Rk (radiation-dominated)

Φk = −3
5Rk (matter-dominated)

, (k � H). (A.47)

Even if this question does hold during the radiation-matter transition, outside the horizon Rk
remains constant and since Φk changes from −2

3Rk to −3
5Rk, Φk changes by a factor 9/10.

Remark: Several conventions exist to define the comoving curvature perturbation, some (see,
for instance, Peter and Uzan 2013) prefer to use the name ζ defined as

ζ = −R. (A.48)

It can be useful to define another gauge-invariant quantity called the curvature perturbation in
the flat-slicing gauge (known also as the spatially-flat gauge) and defined as

ζBST = Ψ + δρ

3(ρ+ P ) = Ψ + δ

3(1 + w) . (A.49)

This quantity can be related to the comoving curvature perturbation via

ζ = ζBST −
∆Φ

3 (H′ −H2) . (A.50)

Hence, for super-Hubble modes (∆ ∝ k2), these two quantities are equal: ζ =
k�H

ζBST.

4.2 Vector perturbations

The perturbed metric for the vector modes reads

ds2 = a2(η)
[
−dη2 + 2Bidxidη + (δij + 2Ei,j + 2Ej,i) dxidxj

]
, (A.51)

where Bi,i = Ei,i = 0.
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There is one vector gauge transformation

xi → xi + βi, βi,i = 0, (A.52)

which lead to the following vector metric perturbation transformations

Bi → Bi + aβ̇i

Ei → Ei − βi
. (A.53)

The gauge-invariant quantity is Ėi + Bi/a and is known as the gauge-invariant vector shear
perturbation.

The associated perturbed Einstein equations are

δq̇i + 3Hδqi = k2Πi

k2
(
Ėi +Bi/a

)
= 16πGδqi

, (A.54)

where δqi = (ρ̄+ p̄)vi is the 3-momentum density, see Appendix 2, and Πi is the vector part of
the anisotropic pressure.
Remark: In the Newtonian gauge, Bi is set to 0.

Finally, in the absence of anisotropic stress (Πi = 0), the first Einstein equation becomes
δq̇i + 3Hδqi = 0 such that δqi decays with the expansion of the Universe. Hence, the shear
perturbation Ėi + Bi/a vanishes with the expansion of the Universe. Vector modes will not
play an important role in large-scale structure formation, especially as they are not created by
inflation.

4.3 Tensor perturbations

The perturbed metric for the tensor modes reads

ds2 = a2(η)
[
−dη2 + (δij + 2Eij) dxidxj

]
, (A.55)

where Eij is a traceless (Eii = 0), symmetric (Eij = Eji) and divergence-free (kiEij = 0) tensor.
This tensor is gauge invariant in linear order.

The Einstein equations for the tensor perturbations are

E′′ij + 2HE′ij −∆Eij = 8πGa2P̄ΠT
ij , (A.56)

where ΠT
ij is the tensor part of the anisotropic pressure. For a perfect fluid or scalar field,

ΠT
ij = 0.
Eij is fully depicted by only two independent components corresponding to the polarization

modes of the gravitational waves. Several settings exist for the polarization (see, Isi 2022). For
instance, the linear polarization sets the propagation of the wave along the ẑ axis, such as

E+ ≡ E11 = −E22, E× ≡ E12 = E21, (A.57)

where the spatial basis is form to be right-handed with x̂ and ŷ two arbitrary orthonormal
vectors that, with ẑ. The gravitational waves Eij can be therefore expanded as

Eij(k) = E+e
+
ij + E×e

×
ij (A.58)
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where e+,×
ij are the polarization tensors, defined by

e+
ij =

 1 0 0
0 −1 0
0 0 0

 , e×ij =

 0 1 0
1 0 0
0 0 0

 . (A.59)

This frame is constructed to have k aligned with ẑ and therefore the polarization tensors depend
implicitly on k.

5 Validation of imaging systematic mitigation method

5.1 Validation with mocks

To validate the systematic mitigation method and avoid overfitting, we use a set of 100 QSO
EZ-mocks from eBOSS (Zhao et al. 2021). They have a smaller density than the nominal target
selection density and a smaller area. However, it will not impact the analysis since the surface
and the density are enough for our test. Besides, since our analysis for the legacy survey is
different for the three photometric footprints, we will mimic one footprint only, similar to a
sub-region of the North footprint.

The mocks contain a cosmological signal but no systematic effects. They are contaminated
using the inverse weight estimated previously and this contamination will be mitigated with our
method using the same observational features.

We present here contamination estimated with the RF method (it is the inverse of the map
shown in Fig. 4.32). We test the method in two different ranges of contamination: one describing
a weakly contaminated case (extracted from the R.A.,Dec. ∈ [100◦, 270◦]× [32◦, 60◦] box) where
all the methods work well; a second describing a strongly contaminated case (extracted from the
R.A.,Dec. ∈ [120◦, 290◦]× [55◦, 90◦] box) where the linear method is inefficient as shown in the
systematics plots of Fig. 4.28. To compare the method efficiency and avoid biasing the results,
we also applied an NN-based estimation for the strongly contaminated case.

The validation pipeline is shown in Fig. A5.1. There are two different tests (dashed lines).
The first one is to check whether our method overfits the data. We apply the mitigation method
to the initial (uncontaminated) mocks such that no correction is expected. The angular cor-
relations of the uncontaminated mocks and of the corrected uncontaminated mocks should be
identical. The second test is to validate our mitigation. We apply the mitigation method to the
contaminated mocks, expecting to recover the same angular correlation as for the initial mocks.

Some subtleties have to be considered. First, the density of these mocks (70 deg−2) is lower
than that of the quasar targets (300 deg−2). Thus, the size of the correction cannot be the same
since the number of objects inside a pixel of Nside = 256 is too small. We, therefore, downgrade
the contamination and the observational feature maps to Nside = 128.

Secondly, the footprint of these mocks is different from the North footprint. The size of the
training sample is here twice smaller as the data. We, therefore, use only 3 folds instead of 6
for the DR9 North training. It is worth noting that we need to change the position of the folds
to cover the footprint correctly as explained in 4.3.3.3, especially for the strongly contaminated
case.

Nevertheless, the training conditions are slightly different and we expect some differences for
the second test.

The angular correlation functions for the weakly contaminated case are shown in Fig. A5.2a.
Each correlation function is the average of the angular correlations of the 100 mocks and the error
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Figure A5.1: Pipeline validation with mocks. The initial mocks (blue) are uncontaminated and contain
a cosmological signal. They are contaminated with systematic weights (green). Then, they are corrected
with the mitigation presented above (red). We compare the corrected mock to the initial mock to verify
if we recover the correct initial state. As a sanity check, we also applied the mitigation to the initial
mock (purple) to verify whether our mitigation technique overfits target density variations. These tests
are represented by the two black dashed lines.

bars are the standard deviation between all the realizations. We show the correlation function
up to θ ∼ 3.5 deg, which corresponds to a comoving angular distance of ∼ 250 Mpc h−1 at
z = 1.7, the maximum size of the eBOSS analysis. The result for each regression method is
shown in the three panels.

The purple lines are the angular correlations of the initial mocks mitigated with our methods.
In the three cases, they lie on top of the blue lines that show the angular correlations of the
initial mocks. This indicates no sign of overfitting compared to the significance of the correction.
The green lines are the angular correlations for the mocks after contamination. The red lines
are the angular correlations for the contaminated mocks after mitigation. The red line exactly
recovers the blue line in the case of the RF method. In the two other cases, the red lines recover
more or less the blue lines and the slight difference stems from the contamination was done from
an estimation of the systematics by the RF method which benefits the RF case.

The angular correlations for the strongly contaminated case are shown in Fig. A5.2b for the
RF-based contamination and in Fig. A5.2c for the NN-based one. The two figures are similar,
indicating that the contaminated method does not benefit the RF or NN mitigation. The result
from the same contamination method can be compared together.

Here again, there is no indication of overfitting for the NN and Linear method. For the RF
method, the purple line is slightly below the blue one above 1 deg indicating tiny overfitting. Note
that the mocks that we used here cover a smaller area than the DESI QSO sample, thereby mak-
ing our method more prone to overfit for this test case. Optimization of the hyper-parameters
to reduce overfitting on the DESI footprint will be pursued with DESI mocks. However, this
tiny overfitting is much less significant than the level of systematic corrections validating that
most of the impact of RF weights on the angular correlation function of the DESI QSO sample
is real systematics mitigation and not overfitting.

The angular correlation of contaminated mocks is higher as a consequence of the stronger
contamination compared to the previous case. The red lines do not perfectly recover the blue
lines even in the case of the RF regression. Indeed, the smaller size of the training sample and the
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modification of the fold form prevent the NN and RF methods to learn all the information needed
to fully correct this contamination. In addition, the NN method is less efficient to correct small
contaminated regions without any additional hyper-parametrization like regularization terms.
The RF approach is more robust than the NN one to variations in the training sample and less
dependent on hyper-parametrization. For the linear method, the correction is less efficient: in
the region of extreme observational features, the systematic effects are less corrected, as shown
in Section 4.3.4.1.

This set of mocks and the second test are used to optimize the hyper-parameters of the NN
and perform the grid search method (4.3.3.3). Given the subtleties presented above, however,
it is expected that the hyper-parameters used here are not the best ones for the DR9 training.
More optimized parameter tuning will eventually be achieved with mocks matching the DESI
QSO samples.

5.2 South footprint and Sagittarius Stream contamination

As shown in Fig. 4.35, even after the systematic mitigation, we do not recover the same level of
correlation in the South footprint as in the two other regions. To analyze the excess of correlation
in the South footprint, we divide it into 4 zones, represented in Fig. A5.3. These zones are:

• Zone 1 near the anti-galactic pole shows less over-density than the other regions near the
Galactic plane. Its lower density is due to the lower value of the PSF Depth W2 in this
zone.

• Zone 2 contains the Sagittarius Stream and it is strongly contaminated by stars.

• Zone 3 and zone 4 show strong over-density due to stars from the galactic plane. In
addition, zone 4 describes the SGC part of the South footprint and we considered also
zone 13 combining zone 1 with zone 3 which describes the NGC without the Sagittarius
Stream part of the South.

The angular correlation functions for these different zones are shown in Fig. A5.4. Here each
mitigation is performed with the RF method. The top panel shows the correction done with
training on all the South footprints. The bottom panel shows the correction where the training
was done individually on each considered zone. We add also the angular correlation for the
corrected targets in South (in green) and in DES (in black) for reference. The correlations of
the corrected targets on each zone are lower than on all the South footprint but it is not the
average on zones due to the missing cross-terms.

The excess of correlation at small scales cannot be removed by our method. It is due to
either stars or non-considered features. The part caused by a non-considered feature is left for
a future study with the spectroscopic sample. The excess caused by the stellar contamination
will be removed with the spectroscopic data as explained in Sec. 4.3.5.2. Hence, we will discuss
the excess of correlation at large scales compared to the correlation in DES.

The correction estimated with the training on all South footprint is not sufficient to recover
the same level of correlation as in DES after mitigation for all zones. The correction in zone
2 is more efficient than in the other zones since the Sagittarius Stream feature separates the
Sagittarius Stream from the rest during the training. This zone does not recover the same
angular correlation at large scales as in DES since the Sagittarius Stream feature is built as the
spatial average of candidate stars suppressing the angular correlation information contained in
this feature.
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Figure A5.2: (a) Mean on 100 eBOSS EZ-
mocks of the angular correlation functions. The
error bars are the standard deviation between
all realizations. Colors follow the same scheme
as in Fig. A5.1. The systematic contamina-
tion is done with an RF estimation of a weakly
contaminated area (R.A.,Dec. ∈ [100, 270] ×
[32, 60]) of the DR9 legacy survey. The method
does not overfit the data and recovers the ini-
tial correlation. Note that the contamination
was estimated with the RF method which ex-
plains the small residual systematics with the
NN and Linear correction. (b) The systematic
contamination depicts a strongly contaminated
area (R.A.,Dec. ∈ [120, 290] × [55, 90]). The
correction is not perfect since the training sam-
ple is smaller than the Legacy Surveys case and
cannot contain the same information in each
fold. Besides, the correction is done with a
higher Nside which can explain why we do not
fully recover the initial state. (c) Same as (b)
but the contamination is estimated with the NN
method.
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(c) Strongly contaminated case

The angular correlation in zone 1 without systematic mitigation is lower than those in the
three other zones since this region does not show strong over-density. However, the systematic
mitigation is inefficient in this region when the training is done on all the South footprint. This
is not the case when we apply the mitigation from the training only in zone 1. Our method is
unable to extract the correct information for this zone in all of the South. Zone 4 and zone 13
are better when the training is performed only on each zone, recovering a level of correlation
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Figure A5.3: The South region is split into four distinct zones to analyze the stellar contamination.
Zone 1 near the anti-galactic pole shows less overdensity than the three others. Zone 2 contains the
Sagittarius Stream. Zone 3 and Zone 4 show strong overdensity due to stars from the galactic plane.
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Figure A5.4: The angular correlation for the four zones which are represented in Fig. A5.3. The dotted
lines are the correlations of DR9 targets, the solid ones are for the corrected targets. For comparison,
we also plot the correlation in the South region (green line) and in the DES region (black line) which is
known as the least contaminated region. On the top panel, corrections are calculated on all the South
footprints. On the bottom panel, corrections are calculated in each zone independently.
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that is in more agreement with that of DES at large scales.
The inefficiency of the regression in the South can be explained by the numerous stars in

this region which bias the information about the observational systematic effects preventing the
regression to learn correctly the true observational features dependency of the relative target
density. For instance, the PSF Depth W2 is not characterized as an important feature (cf.
Sec. 4.3.4.2) while it explains the lower density observed around the anti-galactic pole. Fig. A5.5
shows the feature importance estimated with the training on the considered zone only. The
feature importances for all the zone used are plotted. PSF Depth W2 is almost uniform (cf.
Fig. 4.25 for its distribution) in zone 1 and zone 3 and so does not appear as an important feature
when the training is done in each region. However, it is found as the most important feature in
the training on zone 13 illustrating that the stars in zone 2 and zone 4 bias the training, e.g.
the fluctuation of the relative density in the function of the PSF Depth W2 in zone 2 is masked
by the presence of numerous stars from the Sagittarius Stream.

Even if the training in an individual zone is more effective, especially at large scales than
the training in all the South, we do not recover the same level of correlation as in DES at
intermediate scales. This can be explained still by the presence of numerous stars in each zone.
The stellar contamination is mixed with the imaging systematics and the two effects are not
easily separable. Then, the excess of correlation can be caused either by the stellar contaminant
or by an additional unconsidered imaging feature.

This analysis could be performed once the spectroscopic survey is done since the stellar
contamination will vanish. The impact of imaging features can be then studied without any
significant bias. If the set of features introduced during this analysis contains all the information,
our systematic mitigation method will be able to correctly learn the true dependence on the
observational features as in DES or the North and recover the correct angular correlation.
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Figure A5.5: Same as Fig. 4.31 but the feature importances plotted are estimated with the training
only on the considered zone. The different behaviors in each zone are highlighted by the different features
which are qualified as important. In particular, the density of stars from the galactic plane prevents the
regression to learn correctly the role of the PSF Depth W2 as expected.
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Rappelez-vous de regarder vers les étoiles et pas vers vos pieds. Essayez de
donner un sens à ce que vous voyez et demandez-vous ce qui fait que
l’Univers existe. Soyez curieux.

Stephen Hawking

La cosmologie, étude de l’Univers à ses plus grandes échelles, cherche à percer les mystères
de son origine, de son évolution et de son destin. Elle englobe un large éventail de sujets,

notamment la théorie du Big Bang, la structure et le comportement des structures à grande
échelle dans l’Univers, et la nature de la matière noire et de l’énergie noire.

La naissance de la cosmologie ”moderne” remonte aux travaux novateurs d’Albert Einstein
et à sa théorie de la relativité générale en 1915, qui a révolutionné notre compréhension de
la gravité en proposant un espace-temps dynamiquement influencé par la matière et l’énergie.
L’expansion de notre Univers a été prédite quelques années plus tard par Georges Lemâıtre et
Alexander Friedmann, qui ont résolu indépendamment les équations d’Einstein. La confirmation
observationnelle, connue sous le nom de loi de Hubble-Lemaitre, a été l’un des tournants les plus
importants de la physique moderne.

Longtemps remise en question, la théorie du Big Bang, qui décrit un Univers en expansion,
a été largement adoptée après la découverte en 1964 par Arno Penzias et Robert Wilson du
rayonnement de fond cosmologique. Cette découverte a confirmé de manière irréfutable que
notre Univers était plus chaud et plus dense à ses débuts. Le fond diffus cosmologique a été un
objet d’étude important dans le cadre des missions COBE, WMAP et Planck, et il est toujours
au cœur des principaux programmes d’observation.

En 1998, des observations de supernovae de type Ia, une classe particulière d’étoiles naines
blanches qui explosent, ont montré que l’expansion de l’Univers s’accélérait plutôt que de
décélérer sous l’influence seule de la gravité. Cela a conduit à la découverte de l’énergie noire,
dont l’existence et le comportement constituent actuellement la plus grande question en cos-
mologie.

Pour répondre à cette question, un autre ensemble de données est crucial : les observations
des structures à grande échelle de l’Univers. Les galaxies et les vides cosmiques forment une
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vaste toile cosmique, révélant la distribution de la matière dans l’Univers. L’observation des
décalages vers le rouge des galaxies, d’abord réalisée par le CfA Redshift Survey à la fin des
années 1970, puis étendue par le Sloan Digital Sky Survey dans les années 2000, et actuellement
réalisée par le Dark Energy Spectroscopic Instrument, nous permet de cartographier l’Univers
avec une grande précision, et de mesurer le taux d’expansion de l’Univers à différentes époques
afin de caractériser l’énergie noire.

Toutes ces observations cherchent également à mettre en lumière les premiers instants de
notre Univers. Depuis plusieurs décennies, l’inflation est considérée comme le paradigme prin-
cipal pour décrire les premiers instants de l’Univers. L’inflation est un ensemble de nombreux
modèles qui peuvent être testés et améliorés à partir de la mesure de différentes propriétés telles
que l’inclinaison du spectre de puissance scalaire primordial, les ondes gravitationnelles primor-
diales ou de non-gaussianité primordiale (PNG). La première est déjà bien contrainte par les
dernières données CMB de Planck, et la seconde suscite un intérêt croissant avec les futures
missions d’observation de la polarisation en mode B du fond diffus cosmologique. En ce qui
concerne la variance, le PNG reste à ce jour peu contraint par les expériences actuelles, et c’est
le sujet principal de cette dissertation.

Les modèles d’inflation les plus simples prédisent une distribution quasi gaussienne des fluc-
tuations primordiales i.e. une quantité minimale de PNG. En particulier, la détection de non-
gaussianité locale : O

(
f locNL

)
∼ 1 exclura l’inflation à champ unique et laissera entrevoir des

modèles plus complexes e.g. l’inflation à champs multiples.
Actuellement, les meilleures contraintes sur les PNGs sont obtenues à partir des données de

Planck : f locNL = −0.9 ± 5.1. Pour contourner la limite de variance cosmique des observations
du CMB, une possibilité serait d’utiliser l’énorme puissance statistique des regroupements de
galaxies en 3D, en sondant un grand volume de l’Univers. Une approche prometteuse consiste à
utiliser l’empreinte minuscule laissée à grande échelle sur le spectre de puissance de la matière
par la PNG locale, connue sous le nom de biais dépendant de l’échelle. Grâce à cette méthode,
l’instrument spectroscopique de l’énergie noire (DESI) devrait contraindre la PNG locale avec
une précision similaire à celle de Planck. Bien que la mesure dépende fortement de la valeur du
biais linéaire du traceur et de sa réponse au PNG, l’échantillon de quasars semble être la cible
de choix, puisqu’il sonde un très grand volume.

Ce résumé succinct donne un aperçu extrêmement bref de l’ensemble du manuscrit, tout en
essayant d’apporter les éléments clefs.

1 Cosmologie avec les structures à grande échelle

L’avènement de la relativité restreinte, développée par Albert Einstein en 1905, a marqué une
transformation significative de la physique classique en introduisant le concept d’espace-temps
et en reliant l’énergie et la masse. Si la relativité restreinte a posé les bases, il a fallu attendre
l’invention de la relativité générale par Einstein en 1915 pour qu’une théorie respectant la
relativité restreinte soit disponible pour expliquer la force gravitationnelle. Bien qu’elle ait
déjà expliqué la précession du périhélie de Mercure, la relativité générale a été validée pour la
première fois en 1919 avec la mesure de la déviation de la lumière par le soleil qu’elle avait
prédite (Eddington 1919, Dyson et al. 1920). Cela a ouvert la voie aux débuts de la cosmologie
moderne.

Pendant une grande partie du 20e siècle, l’idée que l’Univers était en expansion et donc
plus dense et plus chaud dans le passé était controversée. En fait, Fred Hoyle, qui croyait
en un Univers immobile, l’a même qualifiée de façon moqueuse de ”Big Bang”. Cependant,
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la découverte du rayonnement de fond cosmologique (CMB) par Penzias et Wilson en 1965 a
confirmé une prédiction faite par Gamow, Alpher et Herman en 1948.

Au fur et à mesure de l’expansion et du refroidissement de l’Univers, les protons et les
électrons se sont combinés pour former de l’hydrogène, empêchant les photons présents à l’époque
d’interagir par diffusion Thomson. Les photons ont alors été libérés dans l’Univers, créant le
rayonnement de fond cosmologique. Ce rayonnement ne peut exister que dans un Univers en
expansion dans lequel la température diminue avec le temps.

La chronologie, voir Fig. B1.1 résume l’histoire de l’Univers selon le modèle du ”Big Bang
chaud”. Elle peut être rapidement décrite comme suit :

• La phase initiale entre l’”instant zéro” et le début réel du modèle du ”Big Bang chaud”
correspond à l’Univers primitif et est actuellement expliquée par l’inflation cosmique. No-
tons qu’avant l’époque de Planck (tpl ∼ 10−43 s), la théorie actuelle de la gravitation ne
peut être appliquée puisque les 4 forces fondamentales doivent être considérées dans un
cadre unique.

• Au tout début (t ∼ 10−30 s), l’Univers était constitué d’un plasma extrêmement chaud
et dense, connu sous le nom de ”soupe primordiale”, composé des particules les plus fon-
damentales, comme les quarks et les gluons. Au fur et à mesure de l’expansion et du
refroidissement de l’Univers, la température a chuté jusqu’au point où les premiers noyaux
ont pu se former, limitant ainsi l’existence des particules les plus énergétiques.

• Le plasma était alors presque exclusivement constitué des particules les moins énergétiques,
comme les protons, les électrons, les neutrinos et les photons. Pendant une courte période
(t ∼ 10/103 s), le plasma était suffisamment chaud pour permettre la création de noyaux
plus lourds. C’est la nucléosynthèse primordiale (BBN) qui est responsable de la formation
de la plupart de l’hélium et du deutérium dans l’Univers. La quantité observée de ces deux
composants dans les galaxies (Aver et al. 2015, Cooke et al. 2018) ne peut être expliquée
que par la BBN et est également en faveur du modèle du ”Big Bang chaud”.

• Au fur et à mesure de l’expansion et du refroidissement de l’Univers, les protons et les
électrons se sont combinés. C’est la recombinaison (t ∼ 380 000 yr). Les photons se
détachent de la matière et se propagent librement dans l’Univers.

• Après la recombinaison, l’Univers n’était pas assez dense pour émettre de la lumière.
C’est ce qu’on appelle l’âge des ténèbres. Sous l’effet de la gravité, la matière est tombée
dans les régions les plus denses, créant les premières étoiles et galaxies. Ces premières
structures ont émis de nouvelles premières lumières qui sont responsables de la réionisation
(t ∼ 250/900 Myr) de l’Univers (Bromm and Yoshida 2011, Wise et al. 2012).

• Ensuite, les galaxies ont continué à se former sous l’effet de la compétition entre la gravité
et l’expansion de l’Univers, créant la toile cosmique telle qu’elle est observée aujourd’hui
avec une structure filamentaire et des amas.

Bien que le modèle du ”Big Bang chaud” ait reçu un soutien important grâce à la découverte
du rayonnement cosmique de fond et aux abondances observées des éléments légers produits lors
de la nucléosynthèse primordiale, il reste confronté à des défis qui ne peuvent être résolus sans
théories supplémentaires. Par exemple, les problèmes suivants doivent être expliqués :

I Problème de la platitude L’évolution de la courbure peut s’écrire à partir de (1.28)
comme suit

dΩK

d ln a = (3w + 1) (1− ΩK) ΩK , (B.1)
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Figure B1.1: Chronologie cosmologique du modèle du Big Bang chaud qui résume l’histoire de notre
Univers, longue de près de 14 milliards d’années. Depuis la phase initiale du cosmos, où les propriétés
de l’Univers étaient presque uniformes et ponctuées seulement par de minuscules fluctuations, jusqu’à
l’Univers bien formé et groupé que l’on observe aujourd’hui. Credits: ESA – C. Carreau

qui peut être intégré en fonction du décalage vers le rouge

ΩK = ΩK0
(1− ΩK0) (1 + z)3w+1 + ΩK0

(B.2)

Les observations actuelles sont en faveur d’un Univers plat, typiquement |ΩK0| = |Ω0 − 1| <
0.1. En négligeant la contribution de l’énergie noire, cela conduit à une égalité rayonnement-
matière (w = 0) à

|Ω (zeq )− 1| < 3× 10−5,

puis (w = 1/3) à un très faible aplatissement au temps de Planck

|Ω (zpl)− 1| < 10−60.

Par conséquent, la théorie devrait pouvoir soit expliquer pourquoi ΩK = 0 avec une grande
précision, soit identifier un mécanisme capable de produire une si petite courbure.

I Problème de l’horizon La température observée du CMB est prodigieusement isotrope,
la fluctuation relative étant d’environ 10−5. Cela nous amène à l’hypothèse fondamentale du
principe cosmologique.

Pour expliquer simplement cette isotropie, les régions qui émettent des photons CMB à zrec
doivent être causalement liées, c’est-à-dire que la lumière a pu voyager entre elles avant zrec.
Calculons l’horizon des particules à zrec, qui donne la distance maximale que les particules de
lumière auraient pu parcourir jusqu’à un observateur depuis le début de l’Univers. Il s’agit
exactement de la distance de rapprochement à zrec :

χ(zrec) =
∫ ∞
zrec

dz
H(z) ≈

2√
ΩmH0

1√
1 + zrec

. (B.3)

Comme la recombinaison se produit dans la zone dominée par la matière, H2(z) est approximé
à ΩmH

2
0 (1 + z)3 à partir de (1.34). La distance angulaire correspondante est dA(zrec) =

a(zrec)χ(zrec) ≈ 2◦ .
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Enfin, seules des taches d’un diamètre d’environ 2◦ , i.e. avec une surface d’environ 0.0012 sr,
sur la sphère céleste pourraient être causalement connectées au moment de la recombinai-
son. Par conséquent, le CMB devrait être constitué de 4π/0, 0012 ≈ 104 taches causalement
indépendantes qui devraient toutes avoir la même température. Une solution élégante consis-
terait à fournir un mécanisme qui augmente l’horizon des particules avant la recombinaison.

I Problème des monopoles Malheureusement, nombre de théories prédisent la création
de ”défauts topologiques” résultant de la transition de phase due à la brisure de symétrie lorsque
l’Univers se refroidit au fur et à mesure de son expansion. En particulier, la plupart des théories
GUT prédisent la création de monopôles magnétiques (voir Zeldovich and Khlopov 1978, Preskill
1979, Guth and Tye 1980) dont l’hypothèse avait déjà été émise par Maxwell ou Dirac. Dans
le cas de la transition GUT, les monopôles magnétiques devraient être la matière dominante de
l’Univers. Cependant, aucun monopôle n’a jamais été observé, directement ou indirectement,
par l’homme. Les monopôles sont appelés reliques indésirables car ils sont produits par la théorie
mais ne sont pas observés.

I Inflation, solution miraculeuse Ces deux premiers problèmes peuvent être résolus,
avec une grande pertinence expérimentale, en ajoutant une période supplémentaire d’expansion
accélérée au début de l’histoire de l’Univers : inflation. Le problème du monopôle a été l’une des
premières motivations de la physique inflationniste, car l’inflation nous permet de contrôler les
échelles d’énergie auxquelles les particules sont créées dans l’Univers, et le choix d’une échelle
d’énergie inférieure à la transition GUT résout ce problème. Cette description de l’Univers
primitif a été initiée par Guth (1981), Albrecht and Steinhardt (1982), Linde (1982a).

Les mécanismes qui peuvent créer l’inflation seront le sujet principal du chapitre 2. Notons
que l’inflation fournira, naturellement, une explication de la taille et de la forme des fluctuations
primordiales. Aujourd’hui, l’inflation et le modèle du Big Bang chaud constituent le modèle
cosmologique standard bien que la notion de modèle standard puisse être très variable dans le
temps.

Cette thèse vise à apporter quelques observations, malheureusement indirectes, à ce mécanisme
via l’observation de la distribution des galaxies.

2 L’Univers primordial

Bien que certains problèmes dans le modèle du Big Bang chaud puissent émerger comme les
problèmes de planéité, d’horizon et de monopôle, il semble que, dans l’ensemble, il décrive
correctement l’Univers. En particulier, la nucléosynthèse primordiale, la découverte du CMB et
la description théorique de ses anisotropies sont des prédictions fortes du modèle ΛCDM.

Il est donc naturel d’essayer de compléter ce modèle plutôt que de le changer complètement.
L’observation la plus lointaine que l’on puisse faire en collectant de la lumière provient du
CMB, et il reste en amont toute une partie de l’histoire de l’Univers qui est encore inconnue.
Une phase d’expansion accélérée au tout début de l’Univers, pourrait être le remède miracle
à tous nos maux. Afin de classer les différents candidats à ce paradigme, nous étudierons les
non-gaussianités primordiales et l’empreinte qu’elles ont laissée dans le clustering des galaxies.

Une approche prometteuse consiste à utiliser la petite empreinte inattendue laissée aux
grandes échelles sur le spectre de puissance de la matière par les PNGs locale, connue sous
le nom de biais dépendant de l’échelle. Cette relation, d’abord découverte par Dalal et al.
(2008) puis confirmée par (Desjacques et al. 2009, Grossi et al. 2009, Pillepich et al. 2010),
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a radicalement changé la recherche de la non-gaussianité primordiale au cours de la dernière
décennie, puisqu’elle permet de mesurer les PNGs uniquement avec le spectre de puissance, et
à des échelles où la théorie linéaire se vérifie.

Dans la Section 1.3.1.1, on a supposé que le biais des galaxies ne dépendait que du champ δ(x)
à l’ordre linéaire. Cependant, la présence de PNG locaux peut avoir un impact sur la formation
des galaxies. En effet, une valeur positive de f loc

NL dans (2.86) augmentera le champ gravitationnel
primordial là où le champ de densité est le plus dense de sorte que la matière s’agrégera dans les
puits de potentiel primordiaux formant des régions plus denses plus rapidement. Et le contraire
pour une valeur négative f loc

NL qui ralentira l’agrégation de la matière dans les puits de potentiel
primordiaux. La Fig. B2.2a montre des simulations avec des conditions initiales similaires mais
avec différentes valeurs de f loc

NL : -5000, -500, 0, 500, 5000 de haut en bas. L’impact de f loc
NL est

clairement visible en faisant correspondre les structures à grande échelle.

(a) (b)

Figure B2.2: Ces figures sont tirées de Dalal et al. (2008), qui a été le premier à remarquer l’impact des
PNGs locale sur le spectre de puissance des halos. (a) Simulation à z = 0 avec des conditions initiales
similaires mais avec f loc

NL = −5000,−500, 0,+500,+5000 de haut en bas. Chaque tranche a une largeur
de 375 h−1 Mpc et une hauteur et une profondeur de 80 h−1 Mpc. L’impact d’une valeur positive ou
négative de f loc

NL peut être visualisé en faisant correspondre les structures à grande échelle. Dans le cas
d’une valeur positive, les régions primordiales sur-denses sont plus regroupées. (b) Le panneau supérieur
montre les spectres de puissance croisée entre les halos et la matière noire. Les points sont des mesures
issues de simulations avec plusieurs valeurs de f loc

NL à z = 1 pour des halos de masse 1.6×1013M� < M <
3.2×1013M�. Les lignes noires et pointillées correspondent à la prédiction théorique donnée par (2.104).
Le panneau inférieur montre le rapport b(k, f loc

NL)/b(k, f loc
NL = 0). Les mesures avec f loc

NL = −500, 500
proviennent de simulations plus petites et ont donc des erreurs statistiques plus importantes. Le biais
dépendant de l’échelle modifie fortement la valeur du spectre de puissance aux grandes échelles i.e. aux
petits k. L’effet attendu est bien sûr beaucoup plus faible que celui montré ici.

Il faut donc compléter le biais des galaxies (1.111) (voir Desjacques et al. 2018) avec un terme
supplémentaire prenant en compte les modifications locales impliquées par le champ gravitation-
nel primordial,

δg(x) = b1δ(x) + bΦf
loc
NLΦprim(x) + ε, (B.4)

Le champ gravitationnel primordial Φprim peut être relié à la perturbation de la densité de
matière δ par une fonction de transfert (1.77) telle que δ(k) = α(k)Φprim(k). Notons que pour
correspondre à la définition (2.86), Φprim est normalisé dans la zone dominée par la matière de
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telle sorte que Φ = 3/5R. La transformée de Fourier du champ δg est

δg(k) =
(
b1 + bΦ

α(k)f
loc
NL

)
δ(k), (B.5)

où la contribution stochastique a été supprimée pour des raisons de commodité.
Enfin, en présence de PNG locale, le spectre de puissance des galaxies en ordre linéaire s’écrit

P (k, z) =
(
b1(z) + bΦ(z)

α(k, z)f
loc
NL

)2
× Plin(k, z), (B.6)

où α(k, z) peut être calculer directement avec la fonction de transfert à partir de CLASS

α(k, z) = TΦ→δ(k, z) =
√

Pδ(k, z)
PΦprim(k) , (B.7)

et puisque Φprim est normalisé dans la zone dominée par la matière de telle sorte que Φ = 3/5R,
et avec (1.82), le spectre de puissance primordial peut être écrit comme suit

PΦprim(k) = 9
25

2π2

k3 As

(
k

kpivot

)ns−1

. (B.8)

Le biais dépendant de l’échelle laisse une empreinte unique sur les grandes échelles (k <
0, 001 Mpc−1 h) dans le spectre de puissance, comme le montre la figure B2.2b. Bien que cette
relation soit théoriquement très prometteuse, puisqu’elle implique des échelles où la théorie est
linéaire, elle est malheureusement sujette à des effets systématiques très importants, connus sous
le nom de effets systématiques d’imagerie, ce qui les rend délicats à exploiter, comme nous le
verrons dans cette thèse.

3 Relevé de galaxies

La cartographie de l’Univers nécessite l’acquisition des coordonnées tridimensionnelles des galax-
ies qui nous entourent. Nous utilisons d’abord une étude photométrique pour détecter et localiser
les galaxies dans le ciel. Ensuite, nous utilisons la spectroscopie pour déterminer leurs décalages
vers le rouge (1.24), qui servent d’approximation pour leurs distances (1.26).

Un relevé photométrique capture des images du ciel avec ou sans filtres optiques. Des
temps d’exposition plus longs permettent de détecter des objets moins lumineux. La position de
chaque objet dans le ciel est généralement donnée en coordonnées équatoriales, représentées par
(R.A.,Dec.). La Déclinaison (Dec.) est analogue à la latitude terrestre, tandis que l’Ascension
droite (R.A.) est comparable à la longitude terrestre.

Alors que les mesures photométriques sont relativement rapides puisqu’elles ne dépendent
que du temps d’exposition, les mesures spectroscopiques prennent beaucoup plus de temps.
En effet, la lumière de chaque objet répartie sur un CCD doit être collectée dans une fibre
puis analysée individuellement à l’aide d’un spectrographe. Dans la suite nous utiliserons les
données collectées par le nouvel instrument DESI (Dark Energy Spectroscopic Instrument) qui
est montré schématiquement dans la Fig. B3.3.

4 Relevé de quasars de DESI

Au cours des deux dernières décennies, les quasars (ou objets quasi-stellaires, ou QSO) sont
devenus un élément clé de notre compréhension de la cosmologie et de l’évolution des galaxies.
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Figure B3.3: Modèle CAO 3D de DESI installé sur le télescope Mayall. Les parties les plus importantes
de l’instrument sont annotées.

Faisant partie des sources extragalactiques les plus lumineuses, ils sont devenus un pilier des
études cosmologiques telles que le 2dF Quasar Redshift Survey (2QZ ; Croom et al. 2001) et
le Sloan Digital Sky Survey (SDSS ; York et al. 2000), où ils sont les cibles privilégiées pour
étudier les structures à grande échelle à un décalage vers le rouge élevé.

Dans le cadre de la troisième génération du Sloan Digital Sky Survey (SDSS-III ; Eisenstein
et al. 2011), le Baryon Acoustic Oscillation Survey (BOSS ; Dawson et al. 2013) a mesuré le
spectre d’environ 300 000 quasars, dont 180 000 à z > 2, 15, jusqu’à une magnitude limite de
g ∼ 22. Dans le cadre de SDSS-IV, l’étude spectroscopique étendue de l’oscillation des baryons
(eBOSS ; Dawson et al. 2016) a observé 350 000 quasars avec des décalages vers le rouge de
0, 8 < z < 2, 2 à g ∼ 22, 5, en plus de cibler 60 000 nouveaux quasars à z > 2, 2 (Lyke et al.
2020). DESI vise à quadrupler le nombre de quasars connus et à obtenir les spectres de près de
trois millions de quasars, atteignant des magnitudes limites r ∼ 23.

DESI utilisera cet échantillon pour mesurer, voir Section 1.3.2.4, l’échelle des oscillations
acoustiques du baryon (BAO) et la croissance de la structure à travers les distorsions de l’espace
redshift (RSD) qui a été inaugurée pour les quasars par les études menées dans eBOSS (Zarrouk
et al. 2018, Hou et al. 2021, Neveux et al. 2020).

En raison de leur morphologie ponctuelle et de leurs caractéristiques photométriques qui
imitent les faibles étoiles bleues dans les longueurs d’onde optiques, en particulier pour les QSO
de Ly-α la sélection des QSO est un défi. La sélection réussie d’un échantillon de QSO très
complet et pur est généralement basée sur leur excès UV (Richards et al. 2002, Ross et al. 2012).

Les QSOs présentent généralement des spectres durs dans le régime des longueurs d’onde des
rayons X, une émission brillante de Ly-α dans l’UV au repos, et un spectre en loi de puissance se
comportant comme Fν ∝ να avec α < 0 dans les bandes de l’infrarouge moyen (Stern et al. 2005,
Donley et al. 2012). Dans les couleurs optiques moyennes, les QSOs à la plupart des redshifts ne
sont pas facilement distingués des étoiles beaucoup plus nombreuses. Une sélection réussie d’un
échantillon de QSOs pur et très complet doit utiliser la photométrie UV ou infrarouge. Avec
la mission étendue (WISE) qui a plus que quadruplé le temps d’exposition de l’étude originale
(WISE), et en l’absence d’imagerie en bande ’u’ sur l’ensemble de l’empreinte DESI, nous avons
décidé de nous appuyer sur la photométrie optique et infrarouge pour la sélection des QSO.
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Par conséquent, la sélection des cibles QSO de DESI est une combinaison de couleurs optiques
uniquement et optiques+IR. Afin d’illustrer cette stratégie, nous utilisons deux couleurs, grz−W
vs. g − z où grz est une moyenne pondérée des flux de la bande grz avec flux(grz) = [flux(g)
+ 0. 8×flux(r) + 0.5×flux(z)] / 2.3 et W une moyenne pondérée des flux W1 et W2 avec
flux(W )=0.75×flux(W1)+0.25×flux(W2). Dans le Legacy Imaging Surveys (Dey et al. 2019),
la conversion des flux linéaires en magnitudes est m = 22.5−2.5 log10(flux). La Fig. B4.4 montre
l’essentiel des cibles QSO qui sont identifiées dans une sélection optique+IR où l’excès d’émission
infrarouge des QSOs résulte en une ségrégation claire des étoiles avec des flux optiques similaires.
Les SEDs stellaires échantillonnent en effet la queue rapidement décroissante du spectre du corps
noir à ces longueurs d’onde, où les QSOs ont un SED beaucoup plus plat que les étoiles. Cette
méthode a été démontrée précédemment dans eBOSS et la Fig. 5 de Myers et al. (2015) montre
la même séparation entre les étoiles et les QSOs grâce à l’imagerie WISE.

Figure B4.4: Couleurs dans l’optique ou le proche infrarouge des objets classés photométriquement
comme étoiles (rouge) ou spectroscopiquement comme QSOs (points bleus à jaunes, en fonction de leur
redshift). La couleur grz −W nous permet de rejeter les étoiles en fonction de l’”excès infrarouge” des
QSOs.

Les algorithmes basés sur les réseaux neuronnes mis en œuvre dans BOSS (Yèche et al.
2010) ont permis d’augmenter l’efficacité de la sélection des QSO d’environ 20% par rapport
aux coupes colorées. De même, pour améliorer le taux de réussite de DESI, nous avons utilisé
un algorithme d’apprentissage automatique basé sur les forêts aléatoires.

Comme décrit dans la Section 2.2.3, une approche prometteuse pour sonder l’inflation est
l’empreinte minuscule laissée sur le spectre de puissance de la matière par la non-Gaussianité
primordiale induite par l’inflation. Cette mesure Ross et al. (2013), Castorina et al. (2019),
Mueller et al. (2022) est connue pour être limitée par des effets systématiques à grande échelle,
dont la plupart sont dus aux systématiques d’imagerie imprimées sur la densité des cibles spec-
troscopiques lors de la sélection des cibles.

Différentes stratégies ont été développées pour traiter les effets systématiques de l’imagerie
et améliorer la fiabilité des études de regroupement. Dans ce travail, nous suivons l’approche
qui a été utilisée pour les études SDSS (Myers et al. 2006, Ross et al. 2011, Ho et al. 2012,
Ross et al. 2017; 2020, Raichoor et al. 2021) et pour les études Dark Energy Survey (DES
Collaboration et al. 2021) (Leistedt et al. 2016, Elvin-Poole et al. 2018). Cette méthode modélise
la variation de la densité de la cible comme une fonction linéaire des caractéristiques d’imagerie
(voir Myers et al. 2015, Prakash et al. 2016) afin d’éliminer les fluctuations causées par les
systématiques d’imagerie. Un poids de correction est ensuite calculé et appliqué aux données.
Comme cette méthode lisse les fluctuations de densité, il faut vérifier dans quelle mesure la
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Figure B4.5: Densité relative des cibles QSO dans le nord en fonction de chaque caractéristique
d’observation. La densité relative des cibles QSO est une valeur moyenne après avoir rejeté les valeurs
aberrantes, c’est-à-dire les pixels dont la couverture est inférieure à 90%. Les lignes bleues représentent la
sélection brute des cibles QSO de DESI. Les lignes vertes (resp. jaune / noir) représentent la sélection des
cibles QSO après correction des effets systématiques à l’aide de la régression RF (resp. NN / linéaire).
L’histogramme représente la fraction d’objets dans chaque case pour chaque caractéristique observa-
tionnelle et les barres d’erreur sont l’écart-type estimé de la densité de cibles normalisée dans chaque
case. Les trois méthodes réussissent à aplanir la densité relative des cibles QSO en fonction de chaque
caractéristique d’observation. Cependant, la méthode linéaire est moins efficace que les deux autres
méthodes.

procédure d’atténuation affecte le signal cosmologique. Une autre approche moins courante
est basée sur la projection de mode (Rybicki and Press 1992, Tegmark et al. 1998, Leistedt
et al. 2013, Elsner et al. 2016, Kalus et al. 2019) : Les modes (dans l’espace de Fourier) ou les
pixels (dans l’espace de configuration) se voient attribuer une variance accrue lorsque la carte de
systématicité présente des valeurs importantes, de sorte que la matrice de covariance présente
des valeurs plus importantes en présence de systématicité. Il s’agit d’une méthode robuste
qui, toutefois, n’atténue la systématicité qu’en utilisant également une combinaison linéaire
des cartes d’imagerie. Elle ne peut pas modéliser les effets non linéaires qui sont maintenant
observés, comme illustré dans Ho et al. (2012). Les stratégies de pondération des corrections
et de projection des modes peuvent être combinées dans un cadre commun, comme l’explique
Weaverdyck and Huterer (2021).

Adoptant une approche similaire à Rezaie et al. (2020), j’ai développé ma propre méthode
de correction utilisant des régressions avec des réseaux de neurones ou des forets aléatoires. Le
résultat est montré sur la Fig. B4.5.
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5 Mesure des non-gaussianités primordiales avec les quasars de
DESI

Maintenant que DESI produit la plus grande carte 3D de l’Univers jamais réalisée, il est temps
de passer à l’étape suivante, en analysant toutes ces nouvelles données. DESI aura plusieurs
publications de données (DR) tout au long de son étude. Dans ce qui suit, nous travaillerons
avec DR1, les données de la première année d’observation, voir Section 3.2.2.3.

Cette première livraison de données (DR1) est particulièrement intéressante pour l’échantillon
des quasars, car ils ont la plus haute priorité pendant l’observation et sont donc collectés en
premier. Nous nous attendons donc déjà à des contraintes compétitives sur la mesure de la
non-gaussianité primordiale.

Le signal dans les données a été modifié suivant une valeur aléatoire de f loc
NL ∈ [−15, 15].

Le meilleur ajustement des paramètres sont indiqués dans le tableau 7.1 et les postérieurs
pour l’estimation du spectre de puissance sans pondération, avec les pondérations FKP et les
pondérations OQE sont indiqués dans la figure B5.6.

Table 7.1: Meilleures valeurs d’ajustement pour les données DESI QSO Y1. Les erreurs sont les 1σ
(68% CL) des postérités montrées dans la Fig. B5.6.

f loc
NL b sn,0 Σs χ2/(115− 4)

no weights 8+25
−26 2.110+0.043

−0.045 1050+460
−470 7.95+0.47

−0.47 1.53

FKP weights 6+22
−19 2.206+0.041

−0.048 810+440
−480 7.97+0.52

−0.41 1.38

OQE weights −17+15
−12 2.833+0.074

−0.069 −480+630
−670 8.71+0.52

−0.53 1.54

Comme prévu, le biais linéaire est plus élevé à un redshift effectif plus élevé, mais la valeur
trouvée ici est inférieure à la prédiction de Laurent et al. (2017) qui a travaillé avec le QSO
eBOSS. De plus, la différence entre les poids FKP et OQE est plus élevée qu’avec les EZmocks.
Ces deux effets seront discutés plus loin.

Les erreurs sur f loc
NL sont plus importantes que dans le cas des EZmocks car nous mesurons

un biais plus faible dans les données. Pour éviter cette discussion, nous devrions plutôt mesurer
bφf

loc
NL directement, et nous devrions alors trouver des erreurs similaires. Notons toutefois que

le taux d’erreur est à peu près similaire entre EZmocks et les données utilisant la même matrice
de covariance.

La figure B5.7 montre le modèle le mieux ajusté par rapport aux données pour le cas des
poids OQE, ainsi que les résidus correspondants. Nous représentons également le modèle à
la meilleure valeur lorsque nous modifions la valeur de f loc

NL pour obtenir la meilleure valeur
d’ajustement ±1σ. Notons que le quadripôle n’apporte pas trop de contraintes sur f loc

NL, mais
qu’il rompt les dégénérescences entre les différents paramètres du modèle.
Remarque: Par rapport à Castorina et al. (2019), nous trouvons une postériorité gaussienne
pour f loc

NL, comme dans Mueller et al. (2022). Cela s’explique par le fait que nous ne sondons
pas des valeurs suffisamment négatives de f loc

NL pour que la forme du biais dépendant de l’échelle
soit différente.

Pour évaluer notre mesure, nous devons quantifier la quantité de systématiques dans l’analyse.
Ils peuvent être classés de manière préliminaire comme suit :

• Atténuation de l’effet d’observation : Dans la section 5.2.2.2, nous avons vu que la correc-
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Figure B5.6: Postérieurs pour les données sans poids (vert), avec les poids FKP (orange) et les poids
OQE (bleu) aux différents redshifts effectifs donnés dans le Tableau 5.1. Notons que le biais linéaire b1
est inférieur à la prédiction au redshift effectif faite par Laurent et al. (2017).

tion regressis conduit à un décalage de f loc
NL d’environ 10. Une analyse préliminaire basée

sur quelques simulations FastPM, voir la Fig. 5.15, indique un décalage additif. Une fois ce
décalage entièrement calibré, nous pourrons calculer rigoureusement l’erreur systématique
associée. Pour l’instant, et par prudence, nous pouvons simplement considérer la moitié
du décalage comme une erreur systématique : σsys = 10/2 = 5.

• Procédure d’ajustement des éléments : Comme indiqué ci-dessus, l’utilisation de poids
OQE au lieu de poids FKP entrâıne un décalage de f loc

NL d’environ 6. Comme pour
le décalage précédent et pour être prudent, nous considérons une erreur systématique
d’environ σsys = 6/2 = 3.

• Erreur sur le modèle : Elle n’est pas discutée ici car nous n’avons pas assez de mocks
FastPM pour la valider. En particulier, nous n’étudions pas l’impact de l’utilisation du
modèle d’effondrement du halo sphérique dans (2.120). Pour une validation récente du
modèle, voir, par exemple, Biagetti et al. (2017). De même, la relation de masse universelle
(2.120) pourrait également être traitée comme une systématique théorique.

Ces erreurs systématiques seront additionnées en quadrature avec les erreurs statistiques finales.
Nous n’utilisons pas de coefficient de corrélation entre ces deux erreurs systématiques afin d’être
le plus conservateur possible. Dans le cas de l’OQE, nous avons trouvé une erreur statistique



259 6. Conclusion & perspective

103

104

105

P
`
(k

)
[(

M
p

c/
h

)3
]

` = 0

` = 2

bestfit f loc
NL - 1σ f loc

NL + 1σ

−2.5

0.0

2.5

∆
P

0
/σ

P
0

10−2

k [h/Mpc]

−2.5

0.0

2.5

∆
P

2
/σ

P
2

Figure B5.7: En haut : Spectre de puissance, estimé avec les pondérations OQE (p=1.6), de l’échantillon
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pointillés) pour f loc

NL, données dans le Tableau 5.7. En bas : Les résidus du monopôle et du quadripôle
sont comparés au modèle aux valeurs les mieux ajustées et avec +/- 1σ pour f loc

NL.

d’environ σstat = 13, 5, et l’inclusion des erreurs systématiques augmente les erreurs finales à
σtot =

√
σ2
stat +

∑
i σ

2
sys,i ' 14.2.

Pour cette analyse, les décalages systématiques observés sont suffisamment faibles par rap-
port à l’erreur statistique. Cependant, le budget systématique dominera les erreurs statistiques
avec les données Y5 à venir, la combinaison avec les autres traceurs, ou l’utilisation de méthodes
plus avancées. Il sera nécessaire de mieux comprendre ces décalages, qu’ils soient additifs ou
multiplicatifs, de les modéliser pour les corriger et d’estimer une erreur systématique dans la
correction.

6 Conclusion & perspective

Dans cette thèse, nous avons tenté d’observer l’empreinte que l’inflation, la théorie décrivant
l’Univers primitif, a pu laisser sur les structures à grande échelle de l’Univers. Pour ce faire,
nous avons utilisé le relevé spectroscopique des quasars de l’instrument DESI, dans lequel nous
mesurons la fonction de corrélation en 2 points, à savoir le spectre de puissance, pour mesurer
la présence d’une non-gaussianité primordiale grâce à la relation de biais dépendant de l’échelle.

Cette dissertation illustre le fait que pour mesurer les grandes échelles du spectre de puissance
avec des erreurs systématiques contrôlées, une attention particulière doit être portée à chaque
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étape de l’analyse : de la sélection de la cible au calcul du spectre de puissance.
Tout d’abord, j’ai été chargé de la sélection des cibles des quasars, l’un des quatre traceurs

principaux de DESI (Chapitre 4). Les quasars sont devenus un pilier des études cosmologiques
au cours des deux dernières décennies. Ils sont la source de choix pour étudier les structures à
grande échelle à un redshift élevé, soit comme traceurs directs de la matière noire dans la gamme
de redshifts 0.8 < z < 2.1, soit comme traceurs continus avec la forêt Lyman-α imprimée dans
leurs spectres à z > 2.1. Ce dernier cas a suscité un intérêt croissant depuis la tension potentielle
à grande distance dévoilée par eBOSS dans la mesure du Lyman-α BAO. DESI ayant un nombre
prédéfini de cibles pour chaque traceur, l’optimisation de la sélection des cibles est déterminante
pour les quasars dont le bruit de fond est limité et dont la sélection est fortement contaminée
par les étoiles.

En élargissant la classification color-cut d’eBOSS, j’ai développé une méthode basée sur la
classification Random Forest, afin d’augmenter l’efficacité de la sélection de 20%. De plus, j’ai
découvert que le pipeline spectroscopique de base manquait ∼ 10-15% de vrais quasars et pouvait
être optimisé en utilisant un détecteur de raies Mg II et un classificateur de réseau neuronal pour
augmenter l’efficacité de l’identification et éviter la confusion des raies. La combinaison finale
présentée atteint une efficacité de redshift de 98.0± 0.4% et une pureté de 99.5± 0.4%.

La sélection a été rendue difficile par une contamination stellaire inattendue provenant du
courant du Sagittaire. Pour valider la sélection, j’ai étudié en profondeur l’échantillon final
afin de m’assurer que les fluctuations de densité angulaire à grande échelle étaient expliquées
par l’ensemble des caractéristiques photométriques connues. En particulier, j’ai développé une
méthode de régression basée sur la régression Random Forest pour atténuer les systématiques
d’imagerie, regressis, en tenant compte de la relation non linéaire entre les caractéristiques
d’imagerie et en améliorant l’atténuation. Cette méthode est mise en œuvre et actuellement
utilisée dans le pipeline officiel de regroupement DESI.

Cette nouvelle sélection de cibles et le pipeline spectroscopique optimisé ont été largement
testés lors de la validation de l’enquête, avec un effort considérable d’inspection visuelle menée
par la collaboration à laquelle j’ai participé. Ce travail permet à DESI de collecter plus de 2,8
millions de spectres de quasars avec un redshift correct, dont près d’un million avec un redshift
z > 2.1, dépassant ainsi de 20% les exigences scientifiques de DESI. Grâce à cette priorité, DESI
a déjà collecté plus de 1,4 million de quasars au cours de la première année d’observation.

Enfin, j’ai utilisé les QSOs Y1 de DESI pour contraindre PNG avec la méthode du biais
dépendant de l’échelle. Pour cela, j’ai évalué l’efficacité de l’atténuation sur l’échantillon spec-
troscopique, j’ai développé un pipeline de bout en bout basé sur des simulations FastPM imitant
un tiers de l’échantillon, y compris la contamination due aux systématiques d’imagerie. Cette
analyse en cours a révélé un décalage systématique additif dû à la procédure d’atténuation et
devra être étudiée avec précision sous peu pour garantir une mesure non biaisée de la non-
gaussianité primordiale.

Afin d’éviter tout biais de confirmation lors de l’atténuation systématique de l’imagerie et de
la validation du catalogue de regroupement, j’ai également développé un système d’aveuglement
qui imite le comportement d’un faux biais dépendant de l’échelle, émulant une valeur incon-
nue de f loc

NL dans les données. Ce système d’aveuglement a été ajouté à la procédure globale
d’aveuglement de DESI. Une procédure complète de validation du catalogue doit être claire-
ment énoncée avant de lever l’aveuglement des données, et malheureusement, je n’ai travaillé
qu’avec les données en aveugle.

Avec les données en aveugle, nous avons exploré le QSO Y1 et trouvé un excellent accord du
spectre de puissance à grande échelle entre les différentes régions photométriques en appliquant
séparément l’atténuation systématique de l’imagerie dans deux bins de redshift. Après avoir
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validé le pipeline d’ajustement sur des mocks réalistes, j’ai ajusté les données en aveugle et j’ai
trouvé un biais linéaire plus faible que prévu augmentant les erreurs statistiques. J’ai trouvé
avec les poids FKP f loc

NL = 6+22
−19 et avec les poids OQE f loc

NL = −17+15
−12, avec p = 1.6. Le gain

statistique entre les deux méthodes provient principalement de l’augmentation du décalage vers
le rouge effectif.

Ces travaux ont donné lieu à plusieurs publications scientifiques : Chaussidon et al. (2022)
pour l’atténuation systématique de l’imagerie, Chaussidon et al. (2023) pour la sélection des
cibles quasars et Chaussidon et al. (2023) pour la procédure d’aveuglement. La mesure de f loc

NL
sera publiée avec la publication des données Y1 au cours de l’année prochaine. J’ai également
participé à d’autres publications, voir en particulier Alexander et al. (2023) ou Krolewski et al.
(2023).

I Prospects Des prévisions réalistes pour les données DESI de l’année 5, en utilisant les
pondérations FKP, donnent σ(fNL) = 22→ 14 pour p = 1, 6, et σ(fNL) = 11→ 7 pour p = 1, 0.
Bien qu’un gain supplémentaire d’environ 35% soit attendu en utilisant les poids OQE, les QSOs
seuls ne seront pas suffisants pour obtenir une mesure compétitive avec Planck. Cependant, cela
sera possible si toutes les données DESI sont prises en compte.

En effet, cette mesure peut être améliorée avec les données DESI soit en utilisant plusieurs
bins de redshift pour le QSO (redshift faible contre redshift élevé), l’autre traceur du temps
sombre comme les LRG qui semble être assez compétitif (déjà σ(fNL) ∼ 15 avec les données
Y1). En outre, une autre approche prometteuse consiste à utiliser l’effet de lentille du CMB
pour le mettre en corrélation croisée avec les traceurs DESI. Nous proposons ci-dessous deux
pistes de recherche détaillées :

• Améliorer la mesure du PNG avec le bispectre L’étude nominale de DESI de-
vrait contraindre le PNG local avec un biais dépendant de l’échelle jusqu’à σ

(
f locNL

)
∼ 5 DESI

Collaboration et al. (2016a). L’ajout d’informations sur le bispectre peut améliorer la con-
trainte sur f locNL par rapport à la mesure du spectre de puissance uniquement Tellarini et al.
(2016), Karagiannis et al. (2018), Moradinezhad Dizgah et al. (2021). Pour tester les PNGs à
un niveau permettant d’exclure les modèles d’inflation les plus simples, l’utilisation du bispectre
sera nécessaire.

La mesure de f locNL via le biais dépendant de l’échelle est dégénérée avec un terme de biais
inconnu bφ décrivant la réponse de la densité du traceur au PNG locale. Le travail fondateur
Slosar et al. (2008) fournit une description analytique de bφ, mais des études plus récentes
Barreira (2020; 2022a) basées sur des simulations hydrodynamiques montrent qu’elle peut ne pas
être correcte pour tous les traceurs. La dégénérescence est brisée par l’utilisation du bispectre,
qui permet de mesurer f locNL sans étendre l’a priori sur bφ et améliore la contrainte sur f locNL de
plus d’un facteur 5 par rapport à la mesure du spectre de puissance seul Moradinezhad Dizgah
et al. (2021). J’aimerais également étendre mon travail à d’autres formes de PNG, comme les
formes équilatérales et orthogonales, qui peuvent être sondées avec le bispectre Coulton et al.
(2023).

Les premières analyses utilisant le bispectre dans le contexte des PNGs sont apparues plus
tôt dans l’année Cabass et al. (2022), D’Amico et al. (2022). Cependant, il reste encore beau-
coup à faire pour atteindre la précision souhaitée ; en particulier, les effets systématiques des
observations ont été peu étudiés jusqu’à présent. Une attention particulière doit être portée à
ces effets car la configuration du squeeze (forme triangulaire avec deux grands côtés et un petit
: k1, k2 � k3) peut être contaminée par des effets observationnels à la fois à grande échelle
(systématiques d’imagerie) et à petite échelle (détermination du décalage vers le rouge).



Résumé 262

En outre, les effets géométriques tels que la fonction de fenêtre sont plus compliqués à
modéliser que dans le cas du spectre de puissance Pardede et al. (2022), en particulier pour
les multipôles élevés. Les analyses de pointe avec le bispectre Ivanov et al. (2022), Philcox
et al. (2022) n’ont utilisé que le monopôle, et une attention particulière serait nécessaire pour
les multipôles d’ordre supérieur. Ces effets géométriques peuvent être modélisés à l’aide d’une
approche basée sur la simulation afin d’éviter les calculs analytiques lourds.

• PNG avec successeur DESI Une fois la cartographie de l’Univers à grand décalage
vers le rouge achevée avec les quasars de DESI, le successeur de DESI pourrait être une étude
spécifique conçue pour cibler les objets à grand décalage vers le rouge, comme cela a été proposé
pour DESI-II (Schlegel et al. 2022). L’analyse précédente pourrait alors être réalisée avec des
Lymann-break galaxies (LBG) dans la gamme de redshift (2.2 < z < 3.6), sondant un plus
grand volume et devant fournir de meilleures contraintes sur les PNGs.

Par exemple, pour contourner la variance cosmique et réduire drastiquement les erreurs, il
semble séduisant de procéder à des corrélations croisées entre plusieurs traceurs ayant des biais
différents (Seljak 2009, Hamaus et al. 2011). Cette méthode pourrait être appliquée à DESI-II
avec deux traceurs principaux potentiels : Les émetteurs Lyman-α (LAEs) et les LBGs. Ces
deux sondes ouvrent de grandes opportunités pour contraindre f locNL avec le biais dépendant de
l’échelle et d’autres formes de non-gaussianité avec des analyses de bispectres (Yamauchi et al.
2017).

Des temps passionnants nous attendent.
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