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Résumé: Nous étudions le diagramme de
phase à température nulle d’une chaîne de
spin unidimensionnelle couplée localement
à des bains dissipatifs, chaque bain étant
composé d’une multitude d’oscillateurs har-
moniques. Dans le cas d’une magnétisa-
tion totale finie, ce problème quantique peut
être bosonisé et ainsi réécrit via une ac-
tion effective bidimensionnelle. L’étude de
cette théorie des champs classique montre
une transition de phase de type BKT en-
tre la phase préexistante au bain (liquide
de Luttinger) et une nouvelle phase dissi-
pative à température nulle. Cette nouvelle
phase est une onde de densité de spin sans
gap qui présente une susceptibilité égale à

celle du liquide luttinger et une densité su-
perfluide nulle. Des simulations numériques
de l’équation de Langevin associée à l’action
effective confirment ces prédictions analy-
tiques. Nous montrons également que ces
bains locaux peuvent s’interpréter comme un
désordre dynamique affectant les propriétés
de transport du système quantique. En par-
ticulier, pour des bains subohmiques, la con-
ductivité statique s’annule, signalant un ef-
fet de localisation induit par la présence du
désordre dynamique. Par ailleurs, l’analyse
de ce modèle pour une magnétisation totale
nulle révèle que, dans ce cas, la nouvelle
phase dissipative sans gap est remplacée par
une phase antiferromagnétique avec un gap.

Title: Localization in Open Quantum Systems
Keywords: Localization, Bosonization, Open quantum systems, Luttinger
liquid, Langevin dynamics

Abstract: We investigate the zero-
temperature phase diagram of a one-
dimensional XXZ spin chain coupled with
local dissipative baths composed of simple
harmonic oscillators. In a finite magnetiza-
tion sector, we map this system onto a two-
dimensional classical action using bosoniza-
tion. From this classical field theory, we find
the existence of a BKT phase transition be-
tween the pre-existing Luttinger liquid phase
and a new dissipative phase at zero tempera-
ture. This new phase is a gapless spin density
wave with unaltered susceptibility and van-

ishing spin stiffness. These analytical predic-
tions are verified against numerical Langevin
dynamics simulations of the action. The lo-
cal baths in the spin chain can also be in-
terpreted as annealed disorder and they af-
fect the transport properties. Particularly
for subohmic baths, the static conductivity
vanishes, which can be interpreted as a lo-
calization effect induced by the presence of
dynamical disorder. We also solve the model
at zero magnetization and show that in that
case, the gapless spin density wave is re-
placed by a gapped antiferromagnetic phase.



Contents

Acknowledgment I

Introduction 1

1 Open Quantum Systems 5

2 Model 9

2.1 Microscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Jordan-Wigner transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Bosonization and Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Bosonization of 1D XXZ spin chain . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.1 Non-interacting hamiltonian . . . . . . . . . . . . . . . . . . . . 16

2.3.1.2 Interacting part . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Effective action: Path integral and integrating out the baths . . . . . . . 22

2.4 Luttinger liquid and sine-Gordon model . . . . . . . . . . . . . . . . . . . . . . . 25

3 Methods 28

3.1 Perturbative Renormalization Group . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Renormalization Group of Sine-Gordon model . . . . . . . . . . . . . . . 29

3.2 Variational ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Example: Sine-Gordon model . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



4 The Incommensurate case: Phase diagram 39
4.1 RG analysis of the Incommensurate case . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Derivation of the RG flow equation . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Analysis of the RG flow equations . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Variational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Dissipative phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 LL phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Numerical solution of the self-consistent equation . . . . . . . . . . . . . 52

4.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 The Incommensurate case: Thermodynamics and Transport 55
5.1 Thermodynamical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.1.1 Statistical Tilt Symmetry . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2.1 LL phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2.2 Dissipative phase . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2.3 Behaviour of the order parameter . . . . . . . . . . . . . . . . . 63

5.1.3 Spin-spin correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.4 Spatial spin-spin correlation . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.5 Imaginary time spin-spin correlation . . . . . . . . . . . . . . . . . . . . 66
5.1.6 Nature of the dissipative phase . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Dynamical properties: Conductivity and Charge stiffness . . . . . . . . . . . . . 68
5.2.1 LL phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Dissipative phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Charge stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Commensurate Phase 79
6.1 Variational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4



6.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Conclusions 88

Publications 90

Résumé en Français 112

A Details of Bosonization 118
A.1 Commutation of density fluctuation operators . . . . . . . . . . . . . . . . . . . 118
A.2 Exact form of the bosonic operators . . . . . . . . . . . . . . . . . . . . . . . . . 119

B Details of Path Integral and Correlation functions 121
B.1 Gaussian integral over complex variable . . . . . . . . . . . . . . . . . . . . . . . 121
B.2 Behaviour of roughness function in the LL phase . . . . . . . . . . . . . . . . . . 122
B.3 Correlation of exponential functions . . . . . . . . . . . . . . . . . . . . . . . . . 125

C Numerical methods 127

D Supplementary Results 130

5



Acknowledgement

As I start writing this acknowledgment section and reflect upon my journey of three years,
my mind is filled with bliss and gratitude. Firstly, I would like to thank both of my advisors,
Alberto Rosso (DR CNRS, LPTMS) and Laura Foini (CR CNRS, IPhT). I have worked with
both of them in close proximity for these three years; and I have had the opportunity of learning
a plethora of things from them both in personal and professional capacity, which has helped
me grow as a person and a researcher. I would like to thank them for not giving up on me, and
for motivating me whenever it was required. I would also like to thank my collaborators and
co-authors of my publications Thierry Giamarchi (Professor, DQMP, University of Geneva),
Oscar Bouverot-Dupuis (intern, LPTMS), and Thibaud Maimbourg (ex Post-doctoral student,
IPhT). I have had plenty of fruitful and interesting discussions with them, and they have made
important contributions to solving the puzzle we were interested in. Next, I would like to thank
the rapporteurs Edmond Orignac (DR CNRS, ENS Lyon) and Rozario Fazio (Professor, ICTP
Trieste), and the examinateurs Inès Safi (Chercheuse CNRS, LPS) and Grégory Schehr (DR
CNRS, LPTHE), who took out their precious time and gave me invaluable suggestions based
on my thesis and defense presentation. I also thank Satya Majumdar for giving me important
advices.
I have been immensely fortunate to be able to do my doctoral studies in LPTMS, and I would
like to take this opportunity to thank the people in the administration who supported us
in maintaining a friendly environment in the laboratory. First and foremost, I thank the
two directors Emmanuel Trizac and Alberto Rosso for encouraging us to engage in scientific
activities. I would also like to thank Claudine Le Vaou and Delphine Hannoy, to whom I could
go at any point in time to ask for help regarding personal and professional bureaucratic advice.
I also especially thank Karolina Kolodziej, who has been nothing short of extremely helpful,
caring, and patient with me; and I am fortunate to have her as a friend.
Now comes the most important part: My colleagues and friends. It feels bizarre and at the
same time extremely lucky that all of us were at the same place at the same time, and I would

I



like to thank all of them for helping me get through these three years. I thank Marco B., Mauro,
Fabian, Francesco M., Lorenzo R., Lorenzo G., Maya, Guido, Alessandro S., Andrea T., Andrea
P., Lenart, Kemal, Vanja, Ivan, Alessandro P., Giovanni, Sharon, and Zeynep for being good
friends and mentors. A special shout out to Charbel, Jules, and Benoît, who shared the same
office with me and made it the most comfortable professional space I have ever experienced. I
thank, from the deepest part of my heart, the Ph.D. students who started their journey with me:
Li Gan, who first introduced the concept of calling everyone together for lunch; Saverio, from
whom I learned patience and levelheadedness; Lara, who taught me unconditional kindness and
how to be hosting and accommodating; Benjamin, who was funny yet always logical; Federico,
who taught me perseverance and hard work; and Flavio, whose wisdom mixed with sense of
humor inspired me a lot. I would like to provide a special mention to two other people from
the lab - Vincenzo, who I wish were my own brother and with whom I share the pleasure of
organizing multiple fun events; and Ana, who has seen me during the worst moments of my life
and yet chose to stick with me while providing mental support. I truly thank both of them for
being there.
I also had the good luck of having close friends outside my laboratory. My first and foremost
thanks go out to my neighbors who shared the same floor and kitchen with me: Lata, Sundar,
Divya R., Ram, Divya, Urvi, Shweta, Jiya, Harshini, Shubho, David, Uttiya, Silvia, and Anita.
I would also like to especially thank Jael and Elisa, whose comfortable companies I have always
enjoyed. Apart from my floormates, I express my gratitude to two other friends from my Maison:
Riddhi, whose kindness, intelligence, logical thinking, and political ideologies have inspired me;
And Sakshi, with whom I shared countless studying sessions and who has provided me mental
comfort during my tough times. Last but not least, I also would like to thank Martina R.,
Hélène, Miha, Lucija, Maite, Elena, Gautham, Giulia, Alexa, Ella, Francesco C., and Denise.
I came across them at different periods of my life and I appreciate their contributions to my
experience and growth. I thank also my friends from India: Satyaki, Moitreyi, Mayurika,
Alakta, Adwitia, Arani, Bikram, Jahnvi, Angana, and Soumyadeep, thank you for keeping me
in touch with my roots.
Finally, I would like to thank my parents for being supportive of my career-related decisions.
They have provided me with the necessary mental and economic support, and I thank them for
being brave and strong enough to let their only child go away from home to a far-away country
in pursuit of higher education.

II



Introduction

The discovery of localization in quantum and classical systems has remained a pivotal instance
to date. Originally, it was introduced by P.W.Anderson in his seminal paper in 1958 [1], where
it was argued that the wave function of a single quantum degree of freedom (such as a par-
ticle or a spin) stops spatially diffusing in a lattice in the presence of impurities, which was
modeled through random local potential. Instead, the wave function ψ exponentially decays
over a finite length as ∼ e−x/ξ, where ξ is known as the localization length as it quantifies the
extension of localization of the system. This work was further extended in the famous ‘Gang
of Four’ letter [2], where it was shown, via a system size scaling argument of the conductance,
that a localization-delocalization phase transition as a function of temperature via the exis-
tence of a mobility edge in a non-interacting system is only possible for a spatial dimension
d ≥ 3. This initially brought an impression that localization phase transitions are absent in
one-dimensional quantum systems; however in the renowned Aubry-André-Harper model [3–5],
it was shown that mobility edge can exist even in a one-dimensional system in the presence
of a quasiperiodic potential, i.e., a periodic potential incommensurate with the periodicity
of the lattice. Furthermore, localization-delocalization phase transition at zero temperature
was proved to exist in disordered systems in lower dimensions in the presence of interaction.
Important examples of such phenomena have been found in one dimension in the superfluid-
bose glass transition in interacting bosonic systems analytically [6, 7] and numerically [8]. In
fermionic systems, coupled chains of spinless and spinful fermions have been shown to have a
superconductor-localized phase transition [9], specifically when the interaction is attractive in
nature.

One of the many interesting aspects of this phenomenon is that the system becomes insu-
lating in nature as transport is rendered impossible due to the lack of diffusion in the localized
phase. Until now, localization has been observed in different systems in the presence of static
(quenched) disorder as discussed above. But can localization be induced in a one-dimensional
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many-body system via a dissipative environment at zero temperature? Intuitively, one can
understand that the environment can be imagined as a source of phonons (or classically, simple
harmonic oscillators). If these phonons are coupled to the system in such a way that each degree
of freedom of the system has its own, independent reservoir of phonons that are uncorrelated
to each other, then they act as a source of dynamic (annealed) but random local potential for
the system. Particularly, if the phonons are dynamically slow, in a strong coupling limit they
can inhibit the transport properties in the system, inducing a phase transition in the system.
We address this scenario in this thesis.

Another motivation behind our work comes from the point of view of Open Quantum systems.
Previously, it has been shown that at zero dimension, certain types of dissipative environment
can induce localization at zero temperature on a single quantum degree of freedom (particle or
spin) via freezing it in its initial state. This motivated us to extend this work to one-dimensional
many-body systems. In the absence of a bath, a one-dimensional interacting system can stay
in a perfectly conducting phase. Another set of questions that we wanted to address is: Can
these dissipative baths induce phase transition on this conducting phase at zero temperature?
If yes, is it possible to have a good effective low-energy description of the phase? And finally,
what are the thermodynamic and dynamic properties of this new dissipative phase? We answer
these questions here and corroborate them with the previously described localization scenario.

Here, we present an overview of the work, which will act as a guide to navigate the readers
through the chapters of this thesis. In chapter 1, we describe in detail the current state-of-the-
art in the field of ‘Open Quantum Systems’, which deals with characterizing the behavior of
quantum models and materials in the presence of an external environment. This environment
can be in the form of measurements, or in the form of external phonons coupling with the
system (as motivated in the previous paragraph), and we will discuss these approaches in detail
while making our formulation of the environment more mathematically compact.

Chapter 2 introduces the quantum model that we investigate, namely, a 1D XXZ spin chain
coupled with local dissipative baths. These baths act on the system as an annealed or dynami-
cal disorder. We introduce an important technique called bosonization and apply it to the spin
chain to arrive at a two-dimensional classical field theory. In this scenario, the effect of the local
baths is captured by a long-range cosine potential acting along only imaginary time direction,
and we argue that it’s able to induce a phase transition on the already existing Luttinger liquid
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phase by spontaneously breaking symmetry at zero temperature due to its long-range nature.
We also show that two limits of this model should be clearly differentiated: The field theoret-
ical actions for the spin chain at zero magnetization and at a finite magnetization should be
investigated separately.

To describe the phase transition and the new dissipative phase, we use certain analytical and
numerical techniques which we describe in detail in Chapter 3. In particular, we describe the
procedure of the perturbative renormalization group and the variational approximation method.
As an example, we show the use of these methods on the renowned Sine-Gordon model, which
can be obtained as a non-dissipative limit of the system that we investigate. In the final section,
we describe the theory of Langevin dynamics, which is the main principle behind the numerical
technique that we use, and show that this method can be used as a Monte-Carlo technique for
our system and it can help us traverse the configurational phase space of the action.

We focus on the investigation of the system at finite magnetization in the next two chapters
(Chapter 4 and 5). Using perturbative RG, we locate a Berezinski-Kosterlitz-Thouless type
critical point. This tells us that in the parametric phase space of dissipation coupling strength
and Luttinger parameter, either the system stays in the original Luttinger liquid phase with
renormalized values of the parameter, or in a new dissipative phase where the cosine potential
becomes relevant. In the Luttinger liquid phase, the renormalization procedure indicates that
the value of the Luttinger parameter is reduced. Similar kinds of effects were investigated
in [10], where it was shown that the Luttinger parameter K of a Luttinger liquid gets dimin-
ished to K ′ when the system is coupled with an external dissipative environment with finite
resistance R as 1/K ′ = 1/K + (e2R)/h. On the other hand, to understand the dissipative
phase we employ a variational analysis of the action, which tells us that the low energy exci-
tations of this phase can be described via a Gaussian action which is gapless and fractional in
bosonic Matsubara frequency modes. To characterize the dissipative phase, we analyze its ther-
modynamic and dynamic properties such as susceptibility, spin-spin correlation, conductivity,
charge stiffness, etc. We define an order parameter for the phase transition, which we relate
to the amplitude of a spin density wave via bosonization. As this quantity remains finite at
zero temperature and thermodynamic limit in the dissipative phase, we argue that this phase
is a gapless spin density wave with unaltered susceptibility and vanishing superfluid density.
Specifically for subohmic baths, the DC conductivity of the dissipative phase vanishes, which
is the signature of a conductor-insulator phase transition. Additionally, we simulate the action
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with the cosine potential to generate equilibrated configurations. We support our analytical
predictions by calculating the above-mentioned correlation functions from these numerically
generated configurations. These works have led to a publication [11] and a pre-print [12].

The 6th chapter focuses on another limit of this model, where we take the XXZ spin chain
to be in zero magnetization. This work is currently ongoing; however, we are able to predict
that in this scenario, the zero-temperature physics of the system turns out to be quite different
than the previously described picture. In particular, the gapless spin density wave is replaced
with a gapped phase, which we suspect to be an antiferromagnetic (Mott insulator) phase. We
also provide supporting preliminary numerical evidence. All the important results throughout
the thesis have been highlighted with boxes.
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Chapter 1

Open Quantum Systems
The quantum mechanical description of a system has been proven many times to be extremely
useful in understanding different physically observable properties of the system. One of the
basic assumptions that have been made for a long time while solving these models is that they
are isolated from the surrounding environment and the physics of the degrees of freedom in the
system is solely governed by the hamiltonian of the system itself. But in reality, this is not
true: During experimental realization, it is often possible that external electromagnetic waves
or phonons get coupled with the system. If left uncontrolled, these environmental factors can
affect the system significantly. Thus the field of open quantum systems was born, which spe-
cializes in understanding the effect of various types of environments on a quantum mechanical
system.

One of the earliest works in this regard was done in measurement theory. In the late ’70s,
it was hypothesized that the decay of a particle from a prepared state is stopped by a contin-
uous measurement procedure performed on the particle to observe its decay. Closely related
works were being done for some time, including Sir Alan Turing’s paradox. However, a proper
formulation was first done by B. Misra and E.C.G Sudarshan in their pioneering work [13],
where they named it ‘Quantum Zeno paradox’ (named after the famous ‘Arrow paradox’ of
Greek philosopher Zeno). Subsequent works, such as experiments with short light pulses on
Beryllium atoms [14], solidified the ground of this field; and it was confirmed that in the Zeno
localized phase, the particle retains memory of the initially prepared state due to the rapidly
collapsing wavefunction. Note that this localization is fundamentally different from Anderson
localization; as a matter of fact, a transition between Anderson and Zeno localized phases
was found in a single-particle system in the presence of disorder and strongly coupled with a
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measurement-inducing bath [15]. Another important effect of measurement-induced localization
is that it affects the entanglement entropy of the system. Indeed, it was shown using toy models
known as quantum circuits, where the hamiltonian of the system and the measurement are en-
coded as local unitary gate and projective measurement respectively, that there exists a phase
transition in terms of entanglement entropy between an area law (high measurement phase)
and a volume law (low measurement phase). Signatures of this transition have been reported in
Bell pairs [16], in one dimension [17], and in two dimensions [18] (Recently, a low measurement
phase with logarithmic entanglement law has been reported in absence of interaction using
exact diagonalization [19]). Another popular approach for investigating phase transition with
respect to entanglement entropy is solving the Lindblad equation [20], where one treats the
measurement as a perturbation to the system. Using this formalism, the presence of Zeno lo-
calization has been shown in one-dimensional non-interacting [21] and many-body systems [22].

However, until now all the approaches described above have the inherent assumption that
the environment acts in a markovian manner on the system, i.e., the action of the environment
(measurements, in this case) is instantaneously fast in this case. The formalism that we follow
in this thesis takes account of the environment in a non-markovian, non-perturbative manner.
This was first introduced by A.O. Caldeira and A.J. Leggett in their work on quantum brown-
ian motion [23], where they showed that the Langevin equation corresponding to the quantum
version of a brownian motion of a particle md2x

dt2
+ αdx

dt
+ V ′(x) = F (t) (where m is the mass of

the particle, α is a damping constant, V is a generic potential and F is the random force) with
the correlation ⟨F (t)F (t′)⟩ = 1

2π
∫
e−iω(t−t′)αℏω coth

(
ℏω

2KT

)
dω can be mapped onto a system in

contact with a reservoir via the Feynman-Vernon path integral formalism [24]. More specifi-
cally, the dissipative system is described by a particle in a potential V (x) coupled to a bath of
simple harmonic oscillators, given by the hamiltonian:

Hsys = p2

2m + V (x)

Hbath = 1
2
∑
k

[
P 2
k

Mk

+MkΩ2
kR

2
k

]
HSB = x

∑
k

CkRk

Where Rk, Ωk, and Pk are the displacement, frequency, and momenta of the kth oscillator in
the reservoir respectively. Ck denotes the coupling energy of the particle to the kth oscillator.
Caldeira and Leggett showed that these two systems are equivalent when the low-energy spec-
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tral density of the harmonic oscillators, defined as J(ω) = π
2
∑
k

C2
k

mkΩk
δ(ω − Ωk), is linearly

proportional to the frequency as αω. In this case, the effect of the bath is equivalent to that
of a resistor in an LRC circuit, thus this kind of environment was named the ‘Ohmic bath’.
This work was followed by a plethora of interesting developments [25–27], including a study of
dissipative two-state systems [28]. This model is currently known as the ‘Spin-Boson model’,
where the two-state system is described by a single quantum spin-1/2 particle in a constant
magnetic field along z and x direction: Hsys = 1

2 (ϵσz − ℏ∆0σ
x). The dissipation for this model

is the same as the quantum brownian motion (described by Hbath), and the coupling between
the bath and the system was given by HSB = 1

2σ
z∑
k
CkRk, i.e. the position co-ordinate of

the brownian particle is replaced by the z-component of the spin. This system in certain limits
can be mapped onto a system with a particle in a double well potential. In the absence of
dissipation and in the limit ℏ∆0/ϵ >> 1, the spin is known to constantly oscillate between spin
up and down state (equivalently, the particle jumping between the left and the right well of
the potential in the classical picture). More precisely, if P (t) denotes the difference between
the probability of finding the spin (particle) in the spin up (left well) and in the spin down
(right well) states, then P (t) = cos ∆0t given that P (0) = 1. However, this behavior changes
drastically when coupled with a dissipative bath having a more generalized spectral function
J(ω) ∼ αωs. The dynamics of the bath can be controlled in this formalism with the expo-
nent s; a smaller value of s denotes a bath with slower dynamics. This type of environment is
in contrast to the previously explained random measurement picture, where the dissipation is
instantaneous and corresponds to J(ω) = const. Compared with [23], the case corresponding
to s = 1 is called the ohmic bath, 1 < s < 2 is called the superohmic bath and 0 < s < 1
is called the subohmic bath. One of the interesting results of the spin-boson model is that at
zero temperature for a subohmic bath, the spin retains memory of the initial state instead of
oscillating between the two states (equivalently, the particle stays localized in the well it was
initially situated in). This can be interpreted as a signature of localization induced by dissipa-
tion in a zero-dimensional quantum system. This was in contrast to the popular belief at that
time as it was previously shown that delocalized acoustic phonons can induce conductivity in
a localized system via a mechanism known as variable range hopping [29–31].

In our thesis, we treat the dissipation in the system à la Caldeira-Leggett. In Chapter 2,
we describe our quantum model in detail, which is a one-dimensional XXZ spin chain locally
coupled with Caldeira-Leggett-type baths. In chapter 3 and 4, we investigate the possibility of
a quantum phase transition induced on the spin chain by dissipation. Then, we analyze various
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thermodynamic and dynamic quantities of the dissipative phase in chapter 5, which tells us
about signatures of localization in the new dissipative phase.
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Chapter 2

Model
In this chapter, we describe the model in detail that we study to understand the effect of
dissipation in one-dimensional many body systems. In the first section, we first discuss the mi-
croscopic model, namely, a one-dimensional XXZ spin chain coupled with local phonon baths.
In the next section, we use bosonization formalism to convert this model to a two-dimensional
classical field theory, which will be essential in understanding the zero-temperature phase dia-
gram of the spin chain. In particular, in the finite magnetization sector, this action is described
by:

Stot = SLL + Sint

SLL = 1
2πK

∫
dxdτ

[
u(∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
Sint = − α

4π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) − ϕ(x, τ ′))}]

|τ − τ ′|1+s (2.1)

Where ϕ(x, τ) is a real field in the two-dimensional space of x, the spatial dimension of the spin
chain, and τ , the imaginary time coordinate. α is the coupling strength to the bath and s is
the bath exponent. For the majority of this thesis, we limit our discussion to the spin chain at
finite magnetization. We also show that at zero magnetization there are extra terms present in
this action that change the physical properties of the system:

Stot,C = SSG + Sint + Sint,C

SSG = SLL − g

2π2

∫
dxdτ cos (4ϕ(x, τ))

Sint,C = − α

4π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) + ϕ(x, τ ′))}]

|τ − τ ′|1+s (2.2)

9



<latexit sha1_base64="l/C5cn4Gco8GlZZ/6niOaQ8+lWw=">AAAB/HicdVBLSwMxGMzWV62v1R69BIvgacmutttj0Yt4qmAf0C4lm6ZtaPZBkhWXpf4VLx4U8eoP8ea/MdtWUNGBkGHm+8hk/JgzqRD6MAorq2vrG8XN0tb2zu6euX/QllEiCG2RiEei62NJOQtpSzHFaTcWFAc+px1/epH7nVsqJIvCG5XG1AvwOGQjRrDS0sAs9/2ID2Ua6Cu7GmR36Ww2MCvIQlXbqbsQWY7jolpObOe0ilxoW2iOCliiOTDf+8OIJAENFeFYyp6NYuVlWChGOJ2V+omkMSZTPKY9TUMcUOll8/AzeKyVIRxFQp9Qwbn6fSPDgczz6ckAq4n87eXiX14vUaO6l7EwThQNyeKhUcKhimDeBBwyQYniqSaYCKazQjLBAhOl+yrpEr5+Cv8nbceya1b1+qzSOF/WUQSH4AicABu4oAEuQRO0AAEpeABP4Nm4Nx6NF+N1MVowljtl8APG2yc2r5XR</latexit>

Jxy

<latexit sha1_base64="3zW00TyRKKWDj9vH7RHKkNgnFaE=">AAAB+3icdVDLSsNAFJ3UV62vWJduBovgKiTS1LoruhFXFawttCFMJpN26OTBzESsIb/ixoUibv0Rd/6NkzaCih5muIdz72XOHC9hVEjT/NAqS8srq2vV9drG5tb2jr5bvxFxyjHp4ZjFfOAhQRiNSE9Sycgg4QSFHiN9b3pe9Pu3hAsaR9dylhAnROOIBhQjqSRXr4+8mPliFqqSXbrZfZ67esM0mvap1bahaZhzKNKyW+pAq1QaoETX1d9HfozTkEQSMyTE0DIT6WSIS4oZyWujVJAE4Skak6GiEQqJcLK59xweKsWHQczVjSScq983MhSKwp6aDJGciN+9QvyrN0xl0HYyGiWpJBFePBSkDMoYFkFAn3KCJZspgjCnyivEE8QRliqumgrh66fwf3JzbFgtw75qNjpnZRxVsA8OwBGwwAnogAvQBT2AwR14AE/gWcu1R+1Fe12MVrRyZw/8gPb2CVbqlVE=</latexit>

Jz

<latexit sha1_base64="1Yw5wafzZd4CLNqW0bN/bkffhQY=">AAAB/3icdVBLS8NAGNz4rPUVFbx4WSyCp5CU1tRb0YvHCvYBTQibzaZdunmwuxFK7MG/4sWDIl79G978N27aCCr6wbLDzDfs7Pgpo0Ka5oe2tLyyurZe2ahubm3v7Op7+z2RZByTLk5Ywgc+EoTRmHQllYwMUk5Q5DPS9yeXhd6/JVzQJL6R05S4ERrFNKQYSUV5+qHjJywQ00hducOUMUDeZObpNdNoNU37vA5Nw5xPARotu2FDq2RqoJyOp787QYKziMQSMyTE0DJT6eaIS4oZmVWdTJAU4QkakaGCMYqIcPN5/hk8UUwAw4SrE0s4Z787chSJIqLajJAci99aQf6lDTMZttycxmkmSYwXD4UZgzKBRRkwoJxgyaYKIMypygrxGHGEpaqsqkr4+in8H/TqhnVmNK8btfZFWUcFHIFjcAosYIM2uAId0AUY3IEH8ASetXvtUXvRXherS1rpOQA/Rnv7BCw8luA=</latexit>

�k

<latexit sha1_base64="UnocdcxKF4PaTbhVR+GO/KIrlQU="></latexit>

J(⌦) ⇠ ↵⌦s

<latexit sha1_base64="OBRRhN6wYmDe/obgGYj4Y/EvONY=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVQniNVbAwFgk2ka0UeW4TmvVcSL7BlFFnVn4FRYGEGLlC9j4G9y0AxSOdK+OzrlX9j1BIrgGx/myCnPzC4tLxeXSyura+oa9udXQcaooq9NYxMoLiGaCS1YHDoJ5iWIkCgRrBoOLsd+8Y0rzWN7AMGF+RHqSh5wSMFLH3m0Du4cs70GYuZfY826xTrjEtE+4HI06dtmpODnwX+JOSRlNUevYn+1uTNOISaCCaN1ynQT8jCjgVLBRqZ1qlhA6ID3WMlSSiGk/y08Z4X2jdHEYK1MScK7+3MhIpPUwCsxkRKCvZ72x+J/XSiE88zMukxSYpJOHwlRgiPE4F9zlilEQQ0MIVdz8dRyAIhRMeiUTgjt78l/SOKy4J5Xj66Ny9XwaRxHtoD10gFx0iqroCtVQHVH0gJ7QC3q1Hq1n6816n4wWrOnONvoF6+MbLxmalQ==</latexit>

1D XXZ spin chain

<latexit sha1_base64="sspfJPD+gChKy3KD2SGcGvcjZQ8=">AAAB+nicbVC7TsMwFHXKq5RXCiOLRYXEVCWI11jBwsBQJPqQ2qpyXKe16jiRfQNUIZ/CwgBCrHwJG3+Dm2aAliPdq6Nz7pWvjxcJrsFxvq3C0vLK6lpxvbSxubW9Y5d3mzqMFWUNGopQtT2imeCSNYCDYO1IMRJ4grW88dXUb90zpXko72ASsV5AhpL7nBIwUt8ud4E9QpJ1z09u0rRvV5yqkwEvEjcnFZSj3re/uoOQxgGTQAXRuuM6EfQSooBTwdJSN9YsInRMhqxjqCQB070kOz3Fh0YZYD9UpiTgTP29kZBA60ngmcmAwEjPe1PxP68Tg3/RS7iMYmCSzh7yY4EhxNMc8IArRkFMDCFUcXMrpiOiCAWTVsmE4M5/eZE0j6vuWfX09qRSu8zjKKJ9dICOkIvOUQ1dozpqIIoe0DN6RW/Wk/VivVsfs9GCle/soT+wPn8AO2WUpQ==</latexit>

L

<latexit sha1_base64="Zge9uCSMD5s3CVZdGOsPTMFu2zQ=">AAACCnicbVC7SgNBFJ31GeMramkzGgSrsCu+yqAWlhHMA5IQZid3kyGzD2buBsOytY2/YmOhiK1fYOffOEm20MQDMxzOuZd773EjKTTa9re1sLi0vLKaW8uvb2xubRd2dms6jBWHKg9lqBou0yBFAFUUKKERKWC+K6HuDq7Hfn0ISoswuMdRBG2f9QLhCc7QSJ3CQQvhAZPJ73rJjdBaRMYbAnUZ9nWadgpFu2RPQOeJk5EiyVDpFL5a3ZDHPgTIJdO66dgRthOmUHAJab4Va4gYH7AeNA0NmA+6nUxOSemRUbrUC5V5AdKJ+rsjYb7WI981lf54v1lvLP7nNWP0LtuJCKIYIeDTQV4sKYZ0nAvtCgUc5cgQxpUwu1LeZ4pxNOnlTQjO7MnzpHZScs5LZ3enxfJVFkeO7JNDckwcckHK5JZUSJVw8kieySt5s56sF+vd+piWLlhZzx75A+vzB+vYm7A=</latexit>

Dissipative baths

<latexit sha1_base64="6ekoWtBwybv8mUDKGPSHcij1lu0=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzIjvjZC0Y3LCn1BO5RMJtOGZpIhyRTK0D9x40IRt/6JO//GTDsLbT0QcjjnXnJygoRRpV332yqtrW9sbpW3Kzu7e/sH9uFRW4lUYtLCggnZDZAijHLS0lQz0k0kQXHASCcYP+R+Z0KkooI39TQhfoyGnEYUI22kgW33A8FCNY3NlTXv3NnArro1dw5nlXgFqUKBxsD+6ocCpzHhGjOkVM9zE+1nSGqKGZlV+qkiCcJjNCQ9QzmKifKzefKZc2aU0ImENIdrZ67+3shQrPJwZjJGeqSWvVz8z+ulOrr1M8qTVBOOFw9FKXO0cPIanJBKgjWbGoKwpCarg0dIIqxNWRVTgrf85VXSvqh517Wrp8tq/b6oowwncArn4MEN1OERGtACDBN4hld4szLrxXq3PhajJavYOYY/sD5/AJJbk6E=</latexit>

T = 0

Figure 2.1: Schematic diagram of the microscopic system, i.e. a 1D XXZ spin chain (blue
arrows) of length L coupled with spatially uncorrelated dissipative baths (red boxes). The sys-
tem and the baths are kept at zero temperature. The spins have nearest-neighbour interaction
Jxy in the XY plane and Jz along the z-axis. The baths are collections of simple harmonic
oscillators, and the kth oscillator is coupled to the corresponding spin with strength λk. The
bath is characterized by its spectral density function J(Ω) ∼ αΩs (see text in Chapter 1).

After the derivation of the action, we describe the well-known properties of the system in the
absence of the baths.

2.1 Microscopic model

From the beginning, we work in a system of units where ℏ = c = kB = 1. The microscopic
model that we consider here is a one-dimensional XXZ spin-1/2 chain with N spins in the
presence of local dissipative baths at zero temperature. The hamiltonian of the full system is
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given by:

HXXZ = Jxy

N∑
j=1

(
σxj σ

x
j+1 + σyjσ

y
j+1

)
+ Jz

N∑
j=1

σzjσ
z
j+1 +H

N∑
j=1

σzj

HB =
j=N∑
j=1,k

1
2

(
P 2
jk

mk

+mkΩ2
kX

2
jk

)

HSB =
N∑
j=1

σzj
∑
k

λkXjk

Htot = HS + HB + HSB

(2.3)

(2.4)

(2.5)

(2.6)

with the periodic boundary condition (PBC) σN+1 = σ1. The microscopic hamiltonian of the
full system Htot consists of three parts: hamiltonian of the XXZ spin chain HXXZ, hamiltonian
of the dissipative baths HSB, and the coupling between the baths and the spin chain HB. In
each site j, there is a quantum spin-1/2 and they can have a rotational configuration confined
within a sphere of unit radius. They are denoted by the three-dimensional vector σ⃗j = S⃗j/2,
where the components of S⃗j are the Pauli matrices:

Sx =
(

0 1
1 0

)
, Sy =

(
0 −i
i 0

)
, Sz =

(
1 0
0 −1

)

The vector components of the spin-1/2 particles obey the following commutation relationship:

[
σaj , σ

b
j′

]
= iδj,j′ϵabc σ

c
j (2.7)

Where a, b, c ∈ (x, y, z) and, ϵabc is the totally antisymmetric tensor , i.e., ϵabc = 1 = −ϵbac etc.
and ϵabc = 0 if any two indices are equal. The rotational symmetry between the XY plane and
the Z axis is broken in this model by having two different interactions Jxy and Jz working on
the x, y, and z components of the spins, respectively. When Jxy = Jz, this model reduces to
the famous Heisenberg model. The spin chain is present in a magnetization H⃗ = gµBhẑ, where
g is the Lande factor, µB is Bohr magneton and h is a constant magnetic field along the z axis.
Later, we will consider the cases h ̸= 0 and h = 0 separately, as they lead to very different
physical pictures.

We consider the dissipative baths à la Caldeira-Leggett, i.e., each bath is composed of a collec-
tion of simple harmonic oscillators. One important thing to note here: The baths are local to
the spins and spatially uncorrelated to each other. This is clarified by eq. (2.4), where it can
be observed that a spin located on a site j is acted upon by its own independent dissipative
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bath, governed by the position degrees of freedom Xjk and momentum degrees of freedom Pjk.
mk and Ωk denotes the mass and frequency of the k-th harmonic oscillator. Inspired by the
Spin-Boson model [28], the z-component of the spin σzj is coupled to Xjk via coupling energy
λk. From the hamiltonian (eq. (2.5)), the effect of the bath can be viewed as a time-dependent
annealed disorder hj(t) = ∑

k
λkXjk(t) present in the spin chain. The effect of quenched disorder

in a one-dimensional many-body interacting system was already shown in [6, 7]. A schematic
diagram of the system is represented by fig. (2.1).

This microscopic hamiltonian, as it is, is hard to analyze due to the presence of spin operators,
numerous degrees of freedom, and many-body interactions. In the following sub-sections, we
apply different techniques that get rid of these complications one by one and help us arrive
at a field theory. This makes it easier for us to understand the zero-temperature, low-energy
physics of this model.

2.2 Jordan-Wigner transformation

The first technique that we apply to our microscopic model is known as the Jordan-Wigner
transformation. This transformation converts a spin-1/2 chain into a spinless fermionic chain,
which automatically implies that HB (eq. (2.4)) will be unaltered after this procedure. Below,
we first describe the general idea about the transformation, and then we apply them to eq. (2.6).

To understand this transformation, we first define two new spin operators :

σ±
j ≡ σxj ± iσyj (2.8)

Using eq. (2.8) in eq. (2.3), we replace the σx and σy operators:

Jxy
4

N∑
j=1

[(
σ+
j + σ−

j

) (
σ+
j+1 + σ−

j+1

)
−
(
σ+
j − σ−

j

) (
σ+
j+1 − σ−

j+1

)]
= Jxy

2

N∑
j=1

(
σ+
j σ

−
j+1 + σ−

j σ
+
j+1

)

=⇒ HXXZ = Jxy
2

N∑
j=1

(
σ+
j σ

−
j+1 + σ−

j σ
+
j+1

)
+ Jz

N∑
j=1

σzjσ
z
j+1 + H

N∑
j=1

σzj (2.9)

Note that the total magnetization ∑
j

⟨σzj ⟩ is conserved. If we don’t restrict the system to

some sector of magnetization, the dimension of the corresponding Hilbert space is 2N as the
eigenvalues of σz for a spin-1/2 particle correspond to either spin-up (σz = 1/2) or spin-
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down (σz = −1/2) state. To map the spin-chain on a system of fermions, we first define the
corresponding creation(destruction) operators c†

j(cj). These operators should obey the anti-
commutation rule: {

cj, c
†
j′

}
= δj,j′ , {cj, cj′} =

{
c†
j, c

†
j′

}
= 0 (2.10)

The system can now be diagonalized in the Fock space:

|n⟩ = |n1n2 . . . nN⟩

=
(
c†

1

)n1 (
c†

2

)n2
. . .
(
c†
N

)nN |0⟩ (2.11)

where nj denotes the number of fermions in the j-th site and |0⟩ is the vacuum state. Assuming
that a mapping between the spin-1/2 system and the fermionic system exists, it should obey
the following conditions:

• The Fock space should also have a dimension of 2N . This constraint hints at the fact
that one can map the spin-up and spin-down states to a site with one fermion or zero
fermion (nj = 0 or 1), respectively. Thus, the Pauli exclusion principle also restricts the
fermions to be spinless, as a one-dimensional system of fermions with spins has a fock
space of dimension 4N .

• Intuitively, one can understand that σ+
j (σ−

j ) and σzj can be mapped onto c†
j (cj) and

nj = c†
jcj, respectively. However, σ±

j on different sites commute, whereas the fermionic
operators anti-commute.

In one dimension, this problem was first solved by P. Jordan and E. Wigner in [32], where they
proposed the following mapping:

σ+
j → c†

j exp
iπ j−1∑

k=1
nk

 (2.12)

σ−
j → cj exp

−iπ
j−1∑
k=1

nk

 (2.13)

σzj → nj − 1
2 (2.14)

exp
(
iπ

j−1∑
k=1

nk

)
is known as the string operator. From the fact that

[
c†
j, nk

]
= 0 for j ̸= k and{

c†
j, nk

}
= 0 for j = k, it can be easily understood that the string operator commutes with

all the fermionic operators out of the string and anti-commutes with the fermionic operators
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inside the string. Applying the Jordan-Wigner transformation on eq. (2.9) and using the string
operator commutation relationships, we see that:

σ+
j σ

−
j+1 = c†

j exp
iπ j−1∑

k=1
nk

 exp
−iπ

j∑
k=1

nk

 cj+1

= c†
j exp (−iπnj) cj+1 (2.15)

The factor of exp(−iπnj) doesn’t have any effect on the eigenbasis of the fermionic system,
hence, c†

j exp (−iπnj) cj+1 = c†
jcj+1. Similarly, it can be observed that σ−

j σ
+
j+1 =

(
σ+
j σ

−
j+1

)†
=

c†
j+1cj. Due to the PBC in the spin chain, the boundary terms such as σ+

Nσ
−
1 transform as

(−1)N+1c†
Nc1, etc. This affects the allowed values of momenta for the fermionic chain depending

on the parity of the fermion number. However, as we are interested in the thermodynamic limit
L = Na → ∞, where L is the length of the spin chain and a is the lattice spacing, this boundary
term’s contribution becomes irrelevant. Applying the canonical transformation ci → (−1)ici
(shifting the fermionic momenta by π), we obtain:

HXXZ = −Jxy
2

N∑
j=1

(
c†
j+1cj + c†

jcj+1
)

+ Jz
N∑
j=1

(
nj − 1

2

)(
nj+1 − 1

2

)
+H

N∑
j=1

(
nj − 1

2

)
(2.16)

Eq. (2.16) represents the hamiltonian of a one-dimensional chain of interacting fermions. For
this model, Jxy acts as the hopping or kinetic energy of the system, and Jz acts as the nearest-
neighbor interaction. The magnetic field h acts as a chemical potential for the fermionic chain.
When h = 0, the average magnetization ⟨σzj ⟩ = 0. In the fermionic language, this corresponds
to ⟨nj⟩ = 1/2, which implies that the system is at half-filling and the corresponding fermi
momentum is kF = π/2a. The effect of h is to dope the system away from half-filling, which
shifts the value of kF . We will come back to this term at the end of Section 2.3 and show the
effect of the finite magnetization more precisely.

Note that one can also map the XXZ spin chain on a one-dimensional system of interact-
ing hard-core bosons via the mapping σ+

j → b†, σzj → nb − 1/2, where b† and nb = b†b are
the bosonic creation and number operators, respectively. In that case, the zero magnetization
limit leads to a commensurate bosonic chain; finite magnetization destroys the commensura-
tion of the system. This renders the XXZ spin chain as a quite generalized description of
one-dimensional many-body systems. However, we limit our discussion here to Jordan-Wigner
transformation as the fermionic description will be useful for the next step.
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Figure 2.2: Top: The original cosine spectrum of the non-interacting spectrum (left). To analyze
the low energy excitations, the spectrum is linearized at E = EF (right). Consequently, the
spectrum has two bands: left (−kF ) and right (kF ). The excitations are majorly divided into
two processes: q ≃ 0 or forward scattering (green arrow), and q ≃ 2kF or backward scattering
(purple arrow). Bottom: The particle-hole excitation spectrum of the quadratic spectrum (left)
and the linear spectrum (right). At small q ∼ 0, the excitations have well-defined momenta
and energy, and their energies depend only on q linearly.

2.3 Bosonization and Field theory

In general, many-body hamiltonians can’t be diagonalized in the Fourier space due to the in-
teraction term being quartic in fermionic operators. One has to apply certain techniques to
understand the effect of interactions on a non-interacting system of fermions, also known as
Fermi gas. For systems in two or higher dimensions and at zero or sufficiently low tempera-
ture, Fermi Liquid Theory (FLT) [33–36] captures these effects magnificently. In a nutshell,
FLT proves that a system, in the presence of interaction, is extremely similar to Fermi gas:
The ground state of the non-interacting system adiabatically goes to that of the interacting
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system. The free fermions of Fermi gas are replaced by quasiparticles in an interacting system,
and they remain essentially free (barring some residual interaction). These quasiparticles are
fermions surrounded by particle-hole excitations and hence they are also fermionic in nature.
Close to the fermi surface, the only parameter that changes is the mass of the quasiparticles.
Even though one can reproduce these results via a perturbation of the interaction, FLT is not
limited to only weak interactions.

However, FLT becomes invalid in one dimension. In this case, when a fermion wants to propa-
gate, it must perturb its neighbors. This immediately points to the fact that in one-dimensional
systems, excitations have to be collective in nature and the nearly free movements of quasi-
particles are impossible. It can also be confirmed that a perturbation theory in interaction for
one-dimensional many-body systems doesn’t converge, which emphasizes the fact the ground
state of the one-dimensional fermi sea drastically changes when an interaction is turned on in
the system. Hence, one needs to find an alternative technique.

At low temperatures, the excitation in an interacting system is caused by the destruction
of a particle with momentum k and the creation of a particle with momentum k + q (q > 0)
below and above the fermi level, respectively. In one dimension, the fermi level of the system
consists of only two points. Hence, a low-energy excitation is limited to q = 0 and q = 2kF ,
where kF is the fermi momentum of the system, and depends only on q. For example, in a one-
dimensional system with quadratic dispersion ϵk = (k2 − k2

F )/2m, the particle-hole excitation
spectrum E(q) = ϵk+q − ϵk for q ≃ 0 and k ∈ [kF − q, kF ] is well-defined and depends only on q
via E(q) = (kF q)/m (fig. (2.2), bottom left). These excitations are composed of an even number
of fermionic operators (one destruction and one creation operator), hence they are bosonic in
nature. The bosonic quasiparticles can be used to analyze one-dimensional interacting systems
and the technique is known as bosonization [37–39]. In the next subsection, we will apply the
technique to our system (eq. (2.6)) and arrive at a field theory.

2.3.1 Bosonization of 1D XXZ spin chain

2.3.1.1 Non-interacting hamiltonian

Let’s first focus on the non-interacting part of the hamiltonian which is responsible for the
hopping of the fermions. I will denote this part as HXY from now on. Using Fourier transfor-
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mation cj = 1√
N

∑
k
eikxjck (xj = aj), we can diagonalize the hamiltonian to calculate the energy

dispersion:

HXY = −Jxy
2N

N∑
j=1

∑
k,k′

(
ei(kxj−k

′xj+1) + e−i(k′xj−kxj+1)
)
c†
k′ck

= −Jxy
2
∑
k,k′

(
e−ik′a + eika

)
c†
k′ckδk,k′

= −Jxy
∑
k

cos (ka) c†
kck (2.17)

The momenta k can takeN values, and due to the PBC, k = 2πn/(aN), where n ∈ [−N/2, N/2).
The energy dispersion E(k) = −Jxy cos(ka) and from here one can calculate the fermi velocity
vF = dE(k)

dk
|k=kF = aJxy sin(ka).

We are interested in understanding the zero temperature, low-energy fluctuations of the hamil-
tonian in eq. (2.6), which is governed by particle-hole excitations close to the fermi surface.
Hence, we first linearize the original dispersion relation at kF (fig. (2.2), top). Note that this
gives rise to two channels: The left channel (L) corresponds to the negative momenta, and
the right channel (R) contains fermions of positive momenta. The non-interacting part of the
system can thus be written as:

HXY ≃
∑
k

r=±

vF (rk − kF ) c†
r,kcr,k (2.18)

Where r = + corresponds to R and r = − corresponds to L. This model is known as the
Tomonaga-Luttinger model [40, 41]. The particle-hole excitations of this model, given by
vF [r(k + q) − rK] = rvF q, are independent of k and well-defined (fig. (2.2), bottom right),
hence we can convert the hamiltonian on this basis. Note that the q ∼ 0 behavior of the
excitations is linear in q, which mimics the particle-hole excitation spectrum of models with
low-energy quadratic dispersion. We define the density fluctuation operators as:

ρ(q) =
∑
k

c†
kck+q, ρ

†(q) =
∑
k

c†
k+qck (2.19)

The density fluctuation operators have two fermionic operators in them, hence they are bosonic
in nature. Hence, we will be able to define some bosonic operators bq and b†

q as the linear com-
binations of ρ(q) and ρ†(q). Before we proceed with the mapping, there is another detail to be
noticed: In the linearized spectrum, the number of occupied states now extends to infinity. To
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Figure 2.3: The physical interpretation of the fields ϕ and θ in context of the original microscopic
system. The spin (blue arrow) can rotate in three dimensions. 2ϕ (red) is the angle it makes
with the z-axis, and θ (green) represents the angle between x-axis and the spin’s projection on
the x− y plane.

get rid of these divergences, we introduce normal-ordered operators: : AB := AB − ⟨0|AB |0⟩,
where A and B are arbitrary operators. In Appendix A, we show that this procedure helps us
ensure that the commutation relationship between the density fluctuation operators is bosonic
in nature up to a normalization factor.

With these definitions, we are now ready to lay out a precise mapping of a fermionic chain
to a bosonic field theory. It can be done in the two following steps:

• First, we convert the original fermionic operators to single-particle excitation operators
close to the fermi momentum as follows:

cj ≃ 1√
N

∑
k≃rkF

eikxcr,k =
√
a
∑
r

ψr(x) (2.20)

• Then, we convert these operators to two bosonic field operators ϕ(x) and θ(x) with the
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following mappings (For more details, see Appendix A):

ψr(x) = eirkF xψ̃r(x)

ψ̃r(x) = Ur√
2πa

e−i[rϕ(x)−θ(x)] (2.21)

Here Ur, etc. are known as the Klein factors, which follow majorana fermion-like anti-
commutation rules:

{U †
r , U

†
r′ , } = {U ,

rUr′ , } = 0

{U †
r , Ur′} = 2δr,r′ , U †

rUr = UrU
†
r = 1 (2.22)

ψr(x) is fermionic in nature, and ϕ(x) and θ(x) are bosonic operators, hence the Klein
factors are important for rigorous mapping of fermionic operators to bosonic ones. The
fast oscillating part is contained within the erikF x factor and ϕ(x) and θ(x) are slowly
varying bosonic fields. They are also related to each other: The canonical momentum
Π(x) conjugate to ϕ(x) is given by Π(x) = 1

π
∇θ(x).

The bosonic fields ϕ and θ have physical significance in the context of the XXZ spin chain.
As the spins can rotate within a three-dimensional sphere, their rotational configuration can
be described with ϕ and θ. The polar angle of the spin is represented by 2ϕ, and θ represents
the azimuthal angle of the spin, as shown in fig. (2.3). With these definitions laid out, we are
now ready to convert HXY (eq. (2.18)) to a bosonic field theory. Applying eq. (2.20) on the
k-dependent part of the linear hamiltonian, we obtain :

HXY = vF
∑
k

c†
+,k (kc+,k) + vF

∑
k

c†
−,k (−kc−,k)

= vF
Na

∑
k

∑
x,x′

[
ψ†

+(x) (−i∂x′)ψ+(x′)eik(x−x′) + ψ†
−(x) (i∂x′)ψ−(x′)eik(x−x′)

]
= avF

2
∑
x

[
ψ†

+(x) (−i∂x)ψ+(x) + ψ†
−(x) (i∂x)ψ−(x)

] (2.23)

From eq. (2.21), we see that i∂xψr(x) = − (rkF − r∇ϕ(x) + ∇θ(x))ψr(x). Before we proceed,
there is one more observation we need to make. Using eq. (A.5) and (A.6), we see that in the
thermodynamic limit via ψ†

+ψ+ = (∇θ(x) − ∇ϕ(x)) /2π and ψ†
−ψ− = − (∇θ(x) + ∇ϕ(x)) /2π.

In the continuum limit a → 0, we can convert the sum over x to an integral via ∑
x

→ 1
a

L∫
0
dx.

Putting them back, we find:

. HXY = vF
4π

∫
dx
[
(∇θ(x) − ∇ϕ(x))2 + (∇θ(x) + ∇ϕ(x))2 − 2kF∇ϕ(x)

]
(2.24)
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The 2kF∇ϕ(x) term cancels the constant term in eq. (2.18). Hence, the bosonized version of
the non-interacting hamiltonian is given by:

HXY = vF
2π

L∫
0

dx
[
(πΠ(x))2 + (∇ϕ(x))2

]
(2.25)

2.3.1.2 Interacting part

Now, we bosonize the interaction which takes the following form (h.c. denotes hermitian con-
jugate):

HZ = Jz
∑
j

njnj+1

= a2Jz
Na∑
x=a

[
ψ̃†

+(x)ψ̃+(x) + ψ̃†
−(x)ψ̃−(x) +

(
e−2ikF xψ̃†

+(x)ψ̃−(x) + h.c.
)]

(2.26)

×
[
ψ̃†

+(x+ a)ψ̃+(x+ a) + ψ̃†
−(x+ a)ψ̃−(x+ a) +

(
e−2ikF (x+a)ψ̃†

+(x+ a)ψ̃−(x+ a) + h.c.
)]

To simplify the multiplication, we use eq. (A.5) for the ψ†ψ terms. We also drop the fastly
oscillating e2ikF x terms:

. HZ = a2Jz
π2

Na∑
x=a

∇ϕ(x+ a)∇ϕ(x) + Jz
4π2

Na∑
x=a

[
e−2ikF ae2i(ϕ(x+a)−ϕ(x)) + h.c.

]

+ Jz
4π2

Na∑
x=a

(
U †

+U−
)2 [

e−2ikF (2x+a)e2i(ϕ(x+a)+ϕ(x)) + h.c
]

(2.27)

In the continuum limit a → 0, the first term becomes (∇ϕ(x))2 and ϕ(x+ a) −ϕ(x) ≃ a∇ϕ(x).
The exponential of the bosonic field in the second term can be expanded as e2i(ϕ(x+a)−ϕ(x)) ≃
1 + 2ai∇ϕ(x) − 2a2 (∇ϕ(x))2. The constant term can be discarded and the linear terms of the
hermitian conjugates cancel each other. Two different cases arise from the third term depending
on the value of magnetization h:

• h ̸= 0: When the spin chain is at finite magnetization sector, the third term sums to
zero because of the highly oscillating factor e4ikF x. The second term, after summing the
hermitian conjugates, becomes −(a2Jz/π) cos (kFa). After summing up all the terms
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and converting the sum over x to an integral, we find:

HXXZ, incomm = 1
2π

∫ L

0
dx
[
u

K
(∇ϕ(x))2 + uK (πΠ(x))2

]
uK = vF = aJxy sin(kFa)

u

K
= vF

[
1 + 2aJz

πvF
(1 − cos(kFa))

] (2.28)

• h = 0: In this case, the first two terms behave exactly like the previous case with the
replacement of kF = π/2a. However, now e±4ikF x behaves as 1x and hence the third term
survives. In the continuum limit, 2 (ϕ(x+ a) + ϕ(x)) ≃ 2ϕ(x). We drop the factors U+

etc. because they are irrelevant for computing correlation functions and the hamiltonian
is now given by

HXXZ, comm = HXXZ, incomm − g

2π2

∫ L

0
dx cos (4ϕ(x))

uK = aJxy

u

K
= aJxy

[
1 + 4Jz

πJxy

]
g = aJz

(2.29)

The effect of the magnetization can be observed from the bosonization perspective as well. We
can map σzj to the bosonic field operators via:

σzj = nj − 1
2 = a

[
ψ†

+ψ+ + ψ†
−ψ− +

(
e−2ikF xψ†

+ + ψ− + h.c
)]

]

= 1
π

[−a∇ϕ(x) + cos (2ϕ(x) − 2kFx)] (2.30)

With this mapping, it’s easy to see that the term with the magnetic fieldH∑
j
nj in the bosonized

version is given by −(H/π)
∫
dx∇ϕ(x). In a fixed magnetization sector, this term can be

absorbed into the quadratic hamiltonian by defining a new field ϕ̃(x) = ϕ(x) − (HKx/u). The
magnetization M thus affects the fermi momentum as kF = π(1−(M/N))

2a . At zero magnetization
(h = 0), the fermi momentum kF = π/2a is commensurate with the lattice spacing, and
hence we will be referring to this case as the ‘commensurate model’. Similarly, in a non-zero
magnetization sector (h ̸= 0), the model remains incommensurate.
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2.3.2 Effective action: Path integral and integrating out
the baths

Until now, we have only discussed the XXZ spin chain. With the help of bosonization, we have
been able to get rid of the quartic interaction term; the bath degrees are still intact. Hence,
we apply Feynmann Path Integral formalism to the bosonized hamiltonian. In a nutshell, this
procedure maps an N dimensional quantum system to a N + 1 dimensional classical system.
Applying Path Integral allows us to integrate out the baths and arrive at an effective action
of the system, where the effect of the bath is captured in a non-perturbative manner. The
technical details of Path Integral itself was first discovered in [42] and can be found in [43,44].
Here, we will restrict the discussion to the application of the formalism to our model.

Writing the Path Integral for the bosonized XXZ spin chain, we obtain

Tre−βHXXZ =
∫

DΠ(x, τ)Dϕ(x, τ)e−SXXZ[Π,ϕ] (2.31)

SXXZ,IC [Π, ϕ] =
β∫

0

dτ

L∫
0

dx
[
u

2π

{ 1
K

(∇ϕ(x, τ))2 +K (πΠ(x, τ))2
}

− iΠ(x, τ)∂τϕ(x, τ)
]

SXXZ,C [Π, ϕ] = SXXZ,IC − g

2π2

β∫
0

dτ

L∫
0

dx cos (4ϕ (x, τ))

Where SXXZ,IC corresponds to the microscopic system at h = 0 and SXXZ,CC corresponds to
finite h. For the path integral, we integrate over all possible Π and ϕ, where ϕ satisfies periodic
boundary conditions both in x and τ , i.e., ϕ(x, τ + β) = ϕ(x, τ), ϕ(x + L, τ) = ϕ(x, τ). τ is
called the imaginary time. It acts as an additional dimension for the classical statistical action
SXXZ and has a length β = 1/T , where T is the temperature of the system. By sending both
β and L to infinity, one can recover the thermodynamic limit of the microscopic model at zero
temperature. One can re-write the quadratic part of the action (SXXZ,IC of eq. (2.31)) in terms
of only ϕ. To do so, we complete the square with Π(x, τ) and obtain

SXXZ,IC =
∫∫

dxdτ

[
u

2πK (∇ϕ(x, τ))2 + uKπ

2

(
Π(x, τ) + i

πuK
∂τϕ(x, τ)

)2
+ 1

2πuK (∂τϕ(x, τ))2
]
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We define a new variable Π̃(x, τ) = Π(x, τ) + i
πuK

∂τϕ(x, τ), which can be integrated out as a
gaussian variable. This gives us

SXXZ,IC = 1
2πK

β∫
0

dτ

L∫
0

dx
[
u (∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
(2.32)

Similarly, one can write a Path Integral formulation for the dissipative baths and the coupling
of the baths to the spin chain:

Tre−β(HB+HSB) =
∫

Dϕ (x, τ)
∏
k

DXk(x, β)e−(SB[{Pk,Xk}]+SSB[ϕ,{Xk}])

SB [{Pk, Xk}] = 1
2

β∫
0

dτ

L∫
0

dx
∑
k

ρk
[
Ω2
kX

2
k(x, τ) + (∂τXk(x, τ))2

]
(2.33)

SSB [ϕ, {Xk}] = 1
π

β∫
0

dτ

L∫
0

dx
[
−∇ϕ(x, τ) + 1

a
cos (2ϕ(x, τ) − 2kFx)

]∑
k

λkXk(x, τ)

Where we have already taken the continuum limit a → 0 and ρk = mk/a is the mass density
of the oscillators. Now, we proceed to integrate out the bath degrees of freedom from the total
action Seff = SXXZ + SSB + SB. We calculate the following normalized partition function:

Ztot

ZB
=

∫
Dϕe−SXXZ

∫
Dϕ∏

k
DXke

−SSBe−SB∫ ∏
k

DXke−SB

=
∫

Dϕe−SXXZ⟨e−SSB⟩

=
∫

Dϕe−SXXZe
1
2 ⟨S2

SB⟩ (2.34)

Where in the last line, we use the fact that the action is Gaussian in bath degrees of freedom.
Inserting the form of SSB in eq. (2.34), we obtain:

Stot = SXXZ − Sint

Sint = 1
2π2

∫∫
dxdτ

[
−∇ϕ(x, τ) + 1

a
cos (2ϕ(x, τ) − 2kFx)

]∑
k,k′

λkλk′ ⟨Xk (x, τ)Xk (x′, τ ′)⟩


×
∫∫

dx′dτ ′
[
−∇ϕ(x′, τ ′) + 1

a
cos (2ϕ(x′, τ ′) − 2kFx′)

]
(2.35)
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We know that the bath degrees of freedom are spatially uncorrelated from each other; however,
they are correlated in τ , and it’s given by

⟨Xk(x, τ)Xk(x′, τ ′)⟩ = 1
β

∑
ωn

e−iωn(τ−τ ′)

ρk (ω2
n + Ω2

k)
δ (x− x′) δk,k′

Where ωn = 2πn/β, n ∈ [−β/2, β/2) is the fourier mode corresponding to τ and is known as
Matsubara frequency. Using this relation and observing that 1/(ω2

n+Ω2
k) = 1

Ωk

∫
dΩ Ω

ω2
n+Ω2 δ (Ω − Ωk),

we obtain:

Sint = 1
2π2

∫∫
dxdτ

[
−∇ϕ(x, τ) + 1

a
cos (2ϕ(x, τ) − 2kFx)

]
D (τ − τ ′)

×
∫
dτ ′

[
−∇ϕ(x, τ ′) + 1

a
cos (2ϕ(x, τ ′) − 2kFx)

]
D (τ − τ ′) =

∫
dΩ

(∑
k

λ2
k

ρkΩk

δ (Ω − Ωk)
1
β

∑
ωn

e−iωn(τ−τ ′) Ω
ω2
n + Ω2

)
(2.36)

D(τ − τ ′) is the kernel introduced due to the contribution of the dissipative baths. It de-
pends on the spectral density of the baths (as described in Chapter 1), given by J(Ω) =
(π/2)∑

k

λ2
k

ρkΩk
δ (Ω − Ωk) = παΩs ∀ Ω ∈ (0,ΩD), where ΩD is the Debye frequency. Using

that, one can find out that at times larger than a characteristic time scale τc, D(τ − τ ′) ∼
α/ |τ − τ ′|1+s. Furthermore, we put a = 1, which was there for dimensional purposes. With
this, we are able to contract Sint as:

Sint = α

2π2

∫ dxdτdτ ′

|τ − τ ′|1+s

[
−∇ϕ(x, τ) + 1

a
cos (2ϕ(x, τ) − 2kFx)

]

×
[
−∇ϕ(x, τ ′) + 1

a
cos (2ϕ(x, τ ′) − 2kFx)

]
(2.37)

Expanding the multiplication, we make the following observations:

• The ∇ϕ(τ)∇ϕ(τ ′) term is the forward scattering term and can be neglected from power
counting.

• The ∇ϕ(τ) cos (2ϕ(τ ′)) terms oscillate rapidly due the presence of the 2kFx term for any
magnetization.

• The cos (2ϕ(τ)) cos (2ϕ(τ ′)) term survives, and we expand it into two cosine terms. One
of these terms is cos (2 (ϕ(τ) − ϕ(τ ′))), and it’s independent of the magnetization of the
microscopic system. The other term is cos (2 (ϕ(τ) + ϕ(τ ′)) + 4kFx), and it only survives
at zero magnetization or half-filling when kF = π/2a.
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Gathering all this information together, we arrive at the final action of the system. For the
incommensurate case, the action is given by:

Stot = SXXZ − Sint

SXXZ = 1
2πK

∫
dτdx

[
u (∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
Sint = α

4π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) − ϕ(x, τ ′))}]

|τ − τ ′|1+s

Whereas for a commensurate spin chain, the action of the system is:

Stot,C = SXXZ,C − Sint,C

SXXZ,C = 1
2πK

∫
dτdx

[
u (∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
− g

2π2

∫
dxdτ cos [4ϕ(x, τ)]

Sint,C = α

4π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) − ϕ(x, τ ′))}] + cos [2 {(ϕ(x, τ) + ϕ(x, τ ′))}]

|τ − τ ′|1+s

2.4 Luttinger liquid and sine-Gordon model

Before we proceed with analyzing the effect of the bath, we discuss the phase diagram of the
original model without the bath present. Putting α = 0 in eq. (2.1), we find that the 1D
incommensurate XXZ spin chain can be described by the action:

SLL = 1
2πK

∫
dτdx

[
u (∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
(2.38)

In the literature, this is known as the Luttinger Liquid (LL) action [40,41,45,46]. It is an effec-
tive low-temperature description of the massless regime for one-dimensional systems [47–49].
The occupation factor of LL has an exponential singularity at k = kF instead of a discontinuous
jump, which is usually observed in higher dimensional interacting systems. This proves that the
low-energy excitation is bosonic in nature in one dimension and not fermionic. LL has a gapless
low-energy spectrum, is quasi-ordered, and the excitations in this phase are a mixture of diverg-
ing superfluid and charge density wave fluctuations [37]. At zero temperature, the conductivity
of LL is a Drude peak, i.e., the system is perfectly conducting. We will discuss more prop-
erties of this phase, specifically certain thermodynamical responses, in Chapter 4 in more detail.

Bosonization shows us that this dissipative environment acts as a cosine potential along only
the τ direction for an incommensurate spin chain. One can intuitively understand see that SLL
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Figure 2.4: Phase diagram of 1D commensurate XXZ spin chain. The system can be solved
exactly with Bethe Ansatz, and bosonization captures the XY phase (described by LL theory)
and the AFM system (described by Mott Insulator theory). The LL parameter K calculated
via bosonization Kbos (black solid line) matches well with the value obtained from Bethe Ansatz
KBA (red dashed line) in the region Jz << Jxy and diverges at the Ferromagnetic transition.

contains the momenta Π(x, τ) conjugate to ϕ(x, τ) and promotes fluctuations in the field that
scales as the system size, resulting in unbounded fluctuations in the thermodynamic limit. On
the other hand, the cosine potential tries to pin the field in one of its minima. This, along with
the fact that Sint is long-range in imaginary time τ for 0 < s < 2 [50], hints at the presence
of a quantum phase transition at zero temperature. In the subsequent chapters, we locate this
critical point and classify the behavior of the dissipation-induced phase using analytical and
numerical techniques.

Note that when the spin chain is commensurate, the action of the XXZ spin chain is different
and can be observed by putting α = 0 in eq. (2.2):

SSG = SLL − g

2π2

∫
dxdτ cos (4ϕ(x, τ)) (2.39)

This action belongs to a class of model, popularly known as the two-dimensional Sine-Gordon
model [51–53] and has been previously studied in context to many other physical systems such
as the XY model [54, 55], the Thirring model [56, 57], models with spin and charge, etc. This
model undergoes a phase transition [58], which belongs to the Berezinski-Kosterlitz-Thouless
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universality class [59–62]. For K larger than a critical value Kc = 1/2 and for sufficiently large
g, the system enters into a gapped Mott Insulator phase [63,64] due to breaking of the discrete
symmetry ϕ → ϕ+ (2n+ 1)π/2, n ∈ Z. We will discuss the effect of the bath on this action in
Chapter 6.

The one-dimensional XXZ model has also been solved exactly with the help of Bethe ansatz
[65,66]. The LL parameter K can also be calculated via this method (e.g., for a commensurate
spin chain, 1/KBA = (2/π) cos−1 (−Jz/Jxy)), which corresponds to that from bosonization (eq.
(2.28) and (2.29)) at a small Jz/Jxy limit. The bosonization method is not able to capture
the Ferromagnetic phase of the XXZ spin chain (Jz/Jxy < −1) due to the quadratic nature of
energy dispersion ω ∼ k2; however, the XY phase and the Ising AFM phase are well described
by the LL phase and the Sine-Gordon Mott insulating phase, respectively (fig. (2.4), left).
Note that For an incommensurate 1D XXZ spin-1/2 chain, the complete phase diagram of the
microscopical system [67] is not described by only the LL action (eq. (2.32)). In this thesis,
we focus on understanding the effect of the dissipation on the spin chain existing in the LL
phase. In this regime, we are able to neglect oscillating terms such as e4ikF x due to the system
being sufficiently incommensurate (see derivation of eq. (2.28)). This assumption will be used
multiple times in further calculations.
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Chapter 3

Methods
In this chapter, we discuss the theories behind the numerical and analytical techniques that we
will use in our thesis for analyzing our system. In a nutshell, we first talk about the perturbative
Renormalization Group (RG) procedure, which is useful for detecting the critical point and the
nature of the phase transition. Then we describe the procedure for variational ansatz, which
effectively captures the behavior of the low-energy physics of the two phases. As an example,
we show the applications of these techniques on the Sine-Gordon model (eq. (2.39)). These
results will be useful to understand the application of the processes to our problem as well.
Finally, we describe the numerical Langevin dynamics procedure, through which we simulate
our action to explore the phase space of the action Stot.

3.1 Perturbative Renormalization Group

As explained in Section 2.3, one of the biggest challenges in solving one-dimensional systems is
the copious amount of singularities encountered, specifically at the low energy regime that we
are interested in. For example, the effective interaction between two particles Γ ∼ g ln(E/ω)
is logarithmically divergent at small frequencies [37, 68], where g is some microscopic coupling
parameter. However, if ω is large, then the logarithmic quantity is of O(1) and doesn’t pose
any problem. The fundamental idea of the RG procedure is to scale g → g′ in such a way that
the UV cut-off of the new theory is smaller than the previous one, with the condition that g′

remains controlled. By doing so, one can get rid of unnecessary degrees of freedom and the
theory becomes less divergent at a given scale of ω. From the behavior of the parameter flow as
a function of the length scale, the critical point of a phase transition and its universality class
can be detected.
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Many different methods of perturbative RG have been discovered and well-established in the
literature, such as the Kadanoff method [69], Wilson RG method [70] etc. However, the one we
will use in this thesis is via calculating the correlation function of the form ⟨eibϕ(x,τ)e−ibϕ(x′,τ ′)⟩,
where b is a constant. This is inspired by [71], where they investigated the phase transition in a
two-dimensional planar Heisenberg model as a function of temperature. Furthermore, the same
technique was used in [37] to analyze the aforementioned Sine-Gordon model (eq. (2.39)). We
will not show the derivation of the RG equations for the Sine-Gordon model here, as it is very
similar to the one done in Section 4.1; however, we will discuss the results to understand the
nature of the phase transition and the location of the critical point.

3.1.1 Renormalization Group of Sine-Gordon model

The RG equations for the parameters K and g of eq. (2.39) is given by [37]:

dK(l)
dl

= −g2(l)K2(l)
2

dg(l)
dl

= (2 − 4K(l)) g(l)

(3.1)

(3.2)

Where l is a dimensionless length scale, parametrized by Λ(l) = Λ0e
−l, Λ0 being the bare high-

energy cut-off of the theory (equivalently, a(l) = a0e
l, where a is a small length cut-off). It is

evident from eq. (3.2) that the behavior of the RG flow of α depends on the initial value of K.
When K < Kc = 1/2, the coefficient of g(l) is positive in eq. (3.2). In this case, the flow of g(l)
is uncontrolled, i.e., the renormalized value g(l = ∞) = gr goes to infinity. This indicates that
the system is in a new phase and in this phase, the cosine operator of eq. (2.39) is relevant. Due
to the perturbative nature of the RG, the procedure fails to capture the renormalized values
of the parameters in this phase. However, if K ≥ Kc, for g smaller than or equal to a critical
value of gc, the system stays in the LL phase with finite K(l = ∞) = Kr and gr = 0 (irrelevant
cosine potential). For larger values of g, the system enters into the other phase. The value of gc
turns out to be K −Kc from the linear stability analysis of the RG equations; this determines
the separatrix or the boundary of the phase transition. On the phase boundary, marked by the
points (Kc, αc), it can be shown that the system remains in the existing LL phase, which is a
characteristic of the BKT universality class (fig. (3.1)). It can also be understood from the
structure of the flow equations (eq. (3.1) and (3.2)) [62].
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Figure 3.1: RG flow of Sine-Gordon model. The red line corresponds to the LL phase, where
Kr is finite and gr = 0 (see text). The separatrix is given by the solid black line gc = K −Kc.
For g > gc with K ≥ Kc and for any value of α with K < Kc, the cosine term becomes relevant
as gr = ∞ and Kr = 0, indicating the presence of a new phase. The arrowheads denote the
direction of the flow.

The nature of the phase transition can also be determined from the RG equations via scal-
ing arguments. One can approximate the cosine in eq. (2.39) via its quadratic expansion in
the other phase as g goes to infinity and thus one can assume that the field ϕ is pinned in
one of the minima of the cosine potential. By Fourier transforming this quadratic action, it
can be observed that the other phase has a gap ∆ in the low energy spectrum. This gap can
be associated with a correlation length. The critical value of this correlation length ξc can be
estimated as ξc ∼ el

∗ , where l∗ is a lengthscale such that g(l∗) ≃ O(1). From dimensional
analysis, it can be observed that near the critical point, the gap behaves as ∆ ∼ ξ−1

c ≃ e−l∗ .

With this information, one can now try to analyze how the gap behaves as a function of g
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in the new phase in different regions of the phase. In the region g << |K − Kc| (deep in
the ordered phase) for small g, the flow is almost vertical, hence one can approximate that
dK/dl = 0. From the RG flow, it can then be seen that g(l) ≃ g0e

(2−4K)l. Hence at the length
scale l∗, el∗ ∼ (1/g0)1/(2−4K), and the gap behaves as ∆ ∼ g

1/(2−4K)
0 . As we will see in the

next section, this behavior is the same as eq. (3.8); and we will use this as an argument for the
validity of the variational ansatz.

However, one can also approach the critical line Kc from the symmetric phase. In this regime,
the flow equations don’t converge, but one can run the equation up to the length-scale l = l∗. In
this regime, g is of order 1, and K flows as Al = tan−1 ((K0 −Kc) /A) − tan−1 ((K −Kc) /A),
where A =

√
g2

0 − (K0 −Kc)2 and K0 = K(l = 0). If one starts close to the critical line,
A ≈ 0. Following the blue flow line on the top in fig. (4.1), one can see that K0 −Kc > 0 and
K(l∗) −Kc < 0, hence (K0 −Kc) /A = +∞ and (K −Kc) /A = −∞. Using the flow equation,
we thus obtain that l∗ = π/A, and hence the gap in this regime behaves as ∆ ∼ e−π/A. From
the definition of A, we see that this quantity is the square root of the distance of the point
from the phase boundary; which means as one approaches the critical line, the gap vanishes
exponentially. This result is highly non-perturbative.

3.2 Variational ansatz

Perturbative RG is an important technique to locate the critical point of a phase transition. It is
also useful for analyzing the flow of parameters near the critical point in the symmetric phase.
However, deep in the ordered phase, the coupling of the relevant term goes to infinity very
fast. Hence, perturbative RG can’t be used to analyze the physical properties of the ordered
phase. There are other non-perturbative RG techniques that allow one to control the flow of
parameters in the ordered phase, such as strong disorder RG [72, 73], functional RG [74] etc.
However, here we use a method known as the variational method (or self-consistent harmonic
approximation) to understand the two phases quantitatively and qualitatively away from the
critical point. This method was first introduced in [75] to illustrate the usefulness of the path
integral approach in condensed matter systems. Below, we describe the principles behind this
method, and as an example, show its application to the Sine-Gordon model (eq. (2.39)).
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Figure 3.2: Geometrical interpretation of the inequality of e−⟨f⟩ < ⟨e−f⟩, where f is an arbitrary
function. Due to the convex nature of the exponential, e−⟨f⟩ (marked in purple) is always smaller
than ⟨e−f⟩ (red).

3.2.1 Theory

Generally, the action of a system S can be non-gaussian, hence it is impossible to compute
any correlation function or observable with this action. The main objective of the variational
method is to obtain an effective gaussian action Svar = 1

2βL
∑
q,ωn

ϕ∗(q, ωn) G−1
var ϕ

∗(q, ωn), where
ϕ∗(q, ωn) = ϕ(−q,−ωn) as ϕ(x, τ) are real fields and G−1

var(q, ωn) is the propagator of the varia-
tional gaussian action in momentum and matsubara frequency. Note that for a general action
S(q, ωn), G(q, ωn) is known as Green’s function. The partition function Z of the action is given
by:

Z =
∫

Dϕe−S

=
∫

Dϕe−(S−Svar)−Svar

= Zvar⟨e−(S−Svar)⟩Svar
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Where Zvar =
∫

Dϕe−Svar ∼ ∏
q,ωn

√
Gvar (For more details of the derivation, see eq. (B.3)) and

⟨. . .⟩Svar is averaged over the variational action. The variational ansatz can now be demonstrated
in the following steps:

• The Free energy of the non-gaussian action F can be calculated as F = − 1
β

lnZ =
F0 − 1

β
ln⟨e−(S−Svar)⟩Svar , where F0 = − 1

β
lnZvar.

• The following observation can be made: Due to the convexity of the function e−x, the
following inequality e−⟨(S−Svar)⟩ < ⟨e−(S−Svar)⟩ is always satisfied (fig. (3.2)). We now
define a quantity called Variational free energy Fvar = F0 + 1

β
⟨(S − Svar)⟩Svar . Using

this inequality, it can be easily observed that Fvar is an upper bound for the actual free
energy F :

F = F0 − 1
β

ln⟨e−(S−Svar)⟩Svar

≤ F0 − 1
β

ln e−⟨(S−Svar)⟩Svar

= F0 + 1
β

⟨(S − Svar)⟩Svar

=⇒ F ≤ Fvar

• Now, one can choose a convenient and quadratic form of Svar (or, alternatively Gvar)
which can be easily analyzed. Then, the variational free energy should be minimized
∂Fvar
∂Gvar

= 0 and the optimal parameters for the chosen Gvar can be obtained.

This protocol is analogous to the variational method used in quantum systems [76], which
is used to obtain the ground-state wave function and energy in complicated systems, such as
molecular orbits [77].

3.2.2 Example: Sine-Gordon model
In this section, we will use the previously described variational ansatz to obtain the phase dia-
gram of the sine-Gordon model described by eq. (2.39). Details of this calculation can be found
in [57,78]. The result of this analysis will later be used in Chapter 4 to highlight an important
difference between the Sine-Gordon model and our incommensurate system (eq. (2.1)).

Assuming the previously mentioned quadratic form of Svar, it can be seen from eq. (B.3)
that F0 = − 1

2β
∑
q,ωn lnGvar(q, ωn). ⟨Svar⟩Svar is a constant and can be discarded while taking
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Figure 3.3: Left: Behaviour of ∆2

πuK
as a function of K, obtained from eq. (3.8). As K is

increased, ∆2

πuK
monotonically decreases. The quantity goes to zero at K = Kc = 0.5. Right:

Variational phase diagram of the Sine-Gordon model. The critical point obtained with this
method Kc = 0.5 is the same as the perturbative RG. However, the shape of the phase boundary
is not correctly captured (vertical instead of a tilted line). For K ≥ Kc, the system stays in
the LL phase (red) and K doesn’t get renormalized. When K < Kc, the system enters into a
phase with a finite gap (blue) and this phase is known as mott insulator or antiferromagnet.

the derivative with respect to Gvar. Within the scope of the thesis, the action is generally of
the form S = SLL +Sint, where Sint contains the non-gaussian part. The quantity ⟨SLL⟩Svar can
be computed exactly and is given by 1

2πK
∑
q,ωn

(uq2 + ω2
n/u)Gvar(q, ωn). Using the minimization

condition for Fvar, we obtain:

.
∂

∂Gvar

(
−1

2
∑
q,ωn

lnGvar + 1
2πK

∑
q,ωn

(
uq2 + ω2

n

u

)
Gvar + ⟨Sint⟩Svar

)
= 0

=⇒ G−1
var = 1

πK

(
uq2 + ω2

n

u

)
+ 2∂⟨Sint⟩Svar

∂Gvar
(3.3)

Eq. (3.3) is a self-consistent equation for Gvar. By using the proper form of Sint one can
obtain the self-consistent equation for different systems. For Sine-Gordon action, Sint =
− g

2π2

∫
dxdτ cos (4ϕ(x, τ)). As Svar is gaussian, one can compute the derivative of ⟨Sint⟩Svar
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using eq. (B.22):

⟨Sint⟩Svar = −gβL

2π2 exp
(
−8⟨ϕ2(x, τ)⟩

)
= −gβL

2π2 exp
− 8

βL

∑
q′,ω′

n

Gvar(q′, ωn′)


=⇒ 2 ∂⟨Sint⟩Svar

∂Gvar(q, ωn) = 8g
π2 exp

− 8
βL

∑
q′,ω′

n

Gvar(q′, ωn′)
 (3.4)

The extra factor of βL in the first step of the equation comes from the integration over τ and
x respectively in Sint. In the last step, it should be noted that the differentiation is done with
respect to each fourier component of Gvar(q, ωn). Putting eq. (3.4) in eq. (3.3), we obtain:

G−1
var(q, ωn) = 1

πK

(
uq2 + ω2

n

u

)
+ 8g
π2 exp

− 8
βL

∑
q′,ω′

n

Gvar(q′, ωn′)
 (3.5)

We now hypothesize thatGvar(q, ωn) = πK
[
uq2 + ω2

n

u
+ ∆2

u

]−1
, where ∆ is a constant term.

Putting this ansatz in the self-consistent equation, in the thermodynamic zero temperature limit
β, L → ∞ where we can convert 1

βL

∑
q,ωn

→ 1
π2

∞∫∫
0
dqdωn, we obtain:

∆2

uK
= 8g

π
e

− 8K
π

∞∫∫
0

dqdωn

uq2+
ω2
n
u + ∆2

u

= 8g
π
e

−4K
∞∫
0

dωn√
ω2
n+∆2 (3.6)

To compute the integration of the argument of the exponential, we first put a UV cut-off Λ
on matsubara frequency to make the integral converge. This doesn’t affect the low-energy
physics of the system, which is governed by small ωn. One can compute this integral exactly:
Λ∫
0

dωn√
ω2
n+∆2

= 1
2 ln

[
1 + 2Λ(Λ+

√
∆2+Λ2)

∆2

]
, which can be approximated to ln (Λ/∆) for small ∆.

Plugging it back, we find:

∆2 = 8guK
π

(
∆
Λ

)4K

(3.7)

Eq. (3.7) is a self-consistent equation for ∆, which is the gap in the low-energy spectrum (mass
of the low-energy fluctuations). The non-trivial solution of ∆ given by:

∆ =
[8guK
πΛ4K

] 1
2−4K

(3.8)
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From eq. (3.8), it can be understood that ∆ ̸= 0 only for K < 0.5 (fig. (3.3), left). Hence,
the critical point for the phase transition of the Sine-Gordon model corresponding to a 1D
commensurate XXZ spin chain is Kc = 0.5 (fig. (3.3), right). For K < Kc, the system exhibits
a gapped phase, with the value of the gap given by eq. (3.8). This gapped phase corresponds to
the antiferromagnet phase for a spin system or a mott insulator phase for a fermionic system.
For K ≥ Kc, the gap goes to zero and the system remains in the LL phase.

One can also verify that for the Sine-Gordon model, the LL propagator is a valid solution
by assuming the ansatz G−1

var = πKr

[
urq

2 + ω2
n

ur

]−1
, where Kr and ur are variationally renor-

malized Luttinger parameters. This ansatz produces the following self-consistent equation :
1

πKr

[
urq

2 + ω2
n

ur

]
= 1

πK

[
uq2 + ω2

n

u

]
+ 8gΛ−4Kr

π
. For large Λ, the last term goes to zero, and we see

that Kr = K, ur = u. Hence, the variational ansatz keeps the flow of the Luttinger parameters
vertical, which corresponds to their RG behaviors for small g and deep in the phase [37]. How-
ever, as we will see from Chapter 4, this is always not true. In the gapped phase, ∆ vanishes as
a power law, which is also equivalent to replacing the correct RG behavior with a vertical flow
(fig. (3.3), right). However, variational ansatz helps us understand the behavior of the system
deep inside the two phases.

3.3 Langevin dynamics

In this section, we discuss the main principle behind the numerical results in Chapter 5, which
is solving the Langevin dynamics equation for the action Stot. In a nutshell, the Langevin
equation is a differential equation, which tells us how a system evolves under a combination of
deterministic forces and random (stochastic) forces. This technique has been previously used
particularly in statistical mechanics in many different contexts, e.g. - Brownian motion of a
particle [79], thermal fluctuation inside an electrical circuit [80] etc. However, in our project,
we use this method as a Monte Carlo technique to explore the configurational phase space of
the action [81].

Let us start by directly writing the Langevin equation for the action that we solve numeri-
cally:

dϕ(x, τ ; t)
dt

= − δStot [ϕ]
δϕ (x, τ ; t) + η (x, τ ; t) (3.9)
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Here, t denotes the Langevin time, i.e., the time of the simulation. η(t) is a Gaussian white
noise with mean ⟨η(x, τ ; t)⟩ = 0 and variance ⟨η(x, τ ; t)η(x′, τ ′; t′)⟩ = 2δ(x−x′)δ(τ−τ ′)δ(t− t′).
Note that η is the noise that equilibrates the configuration and is different from the dissipa-
tive noise. The latter is already encoded in the action Stot. Starting from eq. (3.9), we will
now derive an expression for the probability distribution of stationary solutions P (ϕeq) under
Langevin dynamics.

Let’s assume that t is discrete and each time step increment is denoted by dt. Then the
increment in the deterministic part of eq. (3.9), given by V [ϕ] ≡ −δStot/δϕ, is trivial and
proportional to dt. However, we need to determine the increment of the noise, which we will
denote by ηdt(t). To maintain the white nature, one can safely assume that ⟨ηdt(t)⟩ = 0 and is
markovian in t. To deduce the dt-dependence of ηdt(t), we set the V [ϕ] to zero. This reduces
eq. (3.9) to ϕ(t + ndt) = ϕ(t) + ηdt(t) + ηdt(t + dt) + . . . + ηdt(t + (n − 1)dt), where n is the
number of steps in time. From this, one can determine the average mean square displacement
of the field:

⟨[ϕ(t+ ndt) − ϕ(t)]2⟩ = ⟨[ηdt(t) + ηdt(t+ dt) + . . .+ ηdt(t+ (n− 1)dt)]2⟩

=
n−1∑
j=0

⟨η2
dt(t+ jdt)⟩

= n⟨η2
dt(t)⟩

However, from Brownian motion, we know that the mean square displacement should be equal
to 2ndt [82]. Comparing the results, we see that ⟨η2

dt(t)⟩ = 2dt. This result, coupled with the
Gaussian nature of the noise, tells us that

P (ηdt) = 1√
4πdt

e−
η2
dt

4dt (3.10)

The increment in the noise is proportional to P (ηdt) dt ∼
√
dt. P (ηdt) will be required to

derive the probability of the field having a certain magnitude at (x, τ) coordinate at time t+dt,
given by P [ϕ(x, τ); t+ dt], which we derive using the Kolmogorov-Chapman equation [83].
This equation is applied for integrating away dummy variables from a multivariate probability
distribution. Applying this, we can write:

P [ϕ(x, τ); t+ dt] =
∞∫

−∞

W (ϕ(x, τ), ϕ(x′, τ ′); dt)P [ϕ(x′, τ ′); t] dϕ(x′, τ ′) (3.11)

37



Where W is the probability that the field moves from (x′, τ ′) at time t to (x, τ) at the time
t + dt. This is only possible if ϕ(x′, τ ′) = ϕ(x, τ) + V [ϕ(x′, τ ′)]dt + ηdt(t). Eq. (3.10) tells us
that the probability of having such a value of ηdt is:

P (ηdt = ϕ(x′, τ ′) − ϕ(x, τ) − V [ϕ(x′, τ ′)]dt) = 1√
4πdt

e− (ϕ(x′,τ ′)−ϕ(x,τ)−V [ϕ(x′,τ ′)])2

4dt

This probability is the same as W . Plugging it back in eq. (3.11), and expanding both sides in
the first order of dt, we obtain:

∂P [ϕ(x, τ ; t)]
∂t

= − ∂

∂ϕ
[V [ϕ(x, τ ; t)]P [ϕ(x, τ ; t)]] + ∂2P [ϕ(x, τ ; t)]

∂ϕ2 (3.12)

Eq. (3.12) is known as the Fokker-Planck equation, which describes the time evolution of
probability density under stochastic noise [84, 85]. For ϕ to be equilibrated, the probability
current should be zero, i.e., ∂P [ϕ(x,τ);t]

∂t
= 0. It can be then shown that the solution P [ϕeq],

which satisfies eq. (3.12), is given by:

P [ϕeq(x, τ)] = 1
Z
e−Stot[ϕ(x,τ)] (3.13)

From the result of eq. (3.13), we see that the configurations equilibrated under Langevin dynam-
ics belong to the phase space of Stot. The algorithm to solve eq. (3.9) and its implementation
has been discussed in detail in Appendix C.
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Chapter 4

The Incommensurate case:
Phase diagram

For the next two chapters, we will focus on the problem of the incommensurate spin chain in the
presence of local dissipative baths, which we will refer to as the “incommensurate dissipative
spin chain” from now on. To start with our analysis, we apply the previously described pertur-
bative RG and variational method to the action, described by eq. (2.1). The perturbative RG
analysis establishes the existence of a BKT-type critical point at Kc = 1 − (s/2) for small α,
where s is the exponent of the bath spectral density. With the help of the variational ansatz,
we discover that the “dissipative” phase is a gapless phase, whose low energy properties can be
described by the following fractional propagator:

G−1
diss = 1

πKr

(
urq

2 + ω2
n

ur
+ η(α)

ur
|ωn|s

)
(4.1)

Where η is a coefficient that depends on α and ur and Kr are renormalized values of u and
K. The variational method corroborates the RG analysis, identifying the phase transition at
K = Kc for small α. We also show that this variational method predicts the renormalization
of the LL parameters in the LL phase, in contrast with the Sine-Gordon model. We argue that
this is a consequence of the fact that the contribution of the bath is non-local in τ .
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4.1 RG analysis of the Incommensurate case
To recall from Chapter 2, we are interested in locating the existence of phase transition in the
following action:

Stot = 1
2πK

∫ [
u(∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
− α

4a2π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) − ϕ(x, τ ′))}]

|τ − τ ′|1+s

Where we have put the lattice spacing a back in the cosine part of the action, as we will use
this small length cut-off to scale and extract the RG flow of the parameters. As described in
Chapter 3, we will use a correlation function approach, where we will calculate:

R(r1 − r2) = ⟨eibϕ(r1)e−ibϕ(r2)⟩, r = (x, uτ) (4.2)

This section will be divided into two subsections. In the first part, we will show the derivation
of the RG differential equations in detail. This part heavily follows the same steps as the Sine-
Gordon action, whose details can be found in Section 2.3.2 of [37]. In the latter subsection, we
will analyze the flow differential equations near the critical point.

4.1.1 Derivation of the RG flow equation

To check the RG flow of the parameters, we expand eq. (4.2) perturbatively in Sint as:

R(r1 − r2) = ⟨eibϕ(r1)e−ibϕ(r2)⟩Stot

=
∑
n

(−1)n
n! ⟨e−ibϕ(r1)eibϕ(r2)(Sint)n⟩SLL∑

n
(−1)n
n! ⟨(Sint)n⟩SLL

(4.3)

we now calculate R(r1 −r2) after perturbatively expanding the denominator at different or-
ders of α. The 0th order quantity is simplyR0(r1−r2)⟨eibϕ(r1)e−ibϕ(r2)⟩SLL . From Appendix B (eq.
B.17), it can be calculate as R0(r1 −r2) = exp(−b2K

2 F (r1 −r2)), where F (r) = log
(
x2+(u|τ |+a)2

a2

)
.

The contribution from the first-order in α comes from the difference between two terms, namely
⟨e−ibϕ(r1)eibϕ(r2)⟩SLL⟨Sint⟩SLL and ⟨e−ibϕ(r1)eibϕ(r2)Sint⟩SLL . Note that this contribution is non-zero,
which is different from the Sine-Gordon case where the first-order contribution is zero and the
lowest order of renormalization starts at the second order of the coupling g. This is due to the
fact that in our model, Sint is non-local and long-ranged. We will discuss the consequence of
this observation in Section 4.2.2.
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The 1st order terms can be separately calculated as:

1) ⟨e−ibϕ(r1)eibϕ(r2)⟩SLL⟨Sint⟩SLL = − α

4a2π2 e
− b2

2 ⟨[ϕ(r1)−ϕ(r2)]2⟩
∫
dx′dτ ′dτ ′′ e

−2⟨[ϕ(x′,τ ′)−ϕ(x′,τ ′′)]2⟩

|τ ′ − τ ′′|1+s

= − α

4a2π2 e
− b2K

2 F (r1−r2)
∫
dx′dτ ′dτ ′′ e

−2KF (x′−x′,τ ′−τ ′′)

|τ ′ − τ ′′|1+s

2) ⟨e−ibϕ(r1)eibϕ(r2)Sint⟩SLL = α

4a2π2

∫
dx′dτ ′dτ ′′ ∑

ϵ=±

⟨eibϕ(r1)e−ibϕ(r2)e2iϵϕ(x′,τ ′)e−2iϵϕ(x′,τ ′′)⟩
|τ ′ − τ ′′|1+s

= α

8a2π2 e
− b2K

2 F (r1−r2)

×
∫
dx′dτ ′dτ ′′ ∑

ϵ=±

e−2KF (x′−x′,τ ′−τ ′′)ebKϵ(F (x1−x′,τ1−τ ′)−F (x1−x′,τ1−τ ′′)−F (x2−x′,τ2−τ ′)+F (x2−x′,τ2−τ ′′))

|τ ′ − τ ′′|1+s

Writing all the terms together, we find :

. R(r1 − r2) = e
−b2K

2 F (r1−r2)
[
1 + α

8π2u2a2

∫
d2r′d2r′′e−2KF (r′−r′′) D(τ ′ − τ ′′)δ(x′ − x′′)

×
∑
ϵ=±

{
ebKϵ(F (r1−r′)−F (r1−r′′)−F (r2−r′)+F (r2−r′′)) − 1

}]
(4.4)

Where we have introduced the delta function δ(x′ − x′′) and converted the integral over r′ =
(x′, uτ ′) and r′ = (x′′, uτ ′′). D(τ ′ − τ ′′) denotes the long-range kernel in imaginary time 1/|τ ′ −
τ ′′|1+s. Now we convert the integral to Center of Mass and relative coordinates via r = r′ − r′′,
R = r′+r′′

2 . Now we can expand the functions F for small r value as following :

F (rj − r′) = F (rj −R − r

2) = F (−R) + r

2∇RF (rj −R)

F (rj − r′′) = F (rj −R + r

2) = F (−R) + 3r
2 ∇RF (rj −R)

Where j = 1, 2. Putting this back in eq. (4.4), we obtain

R(r1 − r2) = e
−b2K

2 F (r1−r2)
[
1 + α

8π2u2a2

∫
d2rd2R e−2KF (r) D(τ)δ(x)

×
∑
ϵ=±

{
ebKϵ(r.∇R[F (r1−R)−F (r2−R)]) − 1

}]

Now, we expand the exponential inside the summation for a small value of r. The 0th order
term cancels the constant and the first order terms cancel each other due to the sign difference
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coming from ϵ. The lowest-order term that survives is the second-order term,

R(r1 − r2) = e
−b2K

2 F (r1−r2)
[
1 + α

8π2u2a2

∫
d2rd2R e−2KF (r) D(τ)δ(x)

× b2K2 {r.∇R [F (r1 −R) − F (r2 −R)]}2
]

(4.5)

The term with the gradient inside the square produces terms like :

rirj(∇Ri [F (r1 −R) − F (r2 −R)]))(∇Rj [F (r1 −R) − F (r2 −R)]))

where i, j denotes the two possible coordinates x, y = uτ . For the integral over d2r and by
symmetry x → −x, y → −y, only the diagonal i = j terms survive. Like [6], our system is
anisotropic. We can include the effect of this anisotropy with an additional term in F of the
form d cos(2θ), where θ is the angle between vector (x, uτ) and x axis and d is the measure of
anisotropy. After expanding the gradient terms and integrating by parts over R, we obtain two
terms I±, where:

I± =
∫
d2R

[
F (r1 −R) − F (r2 −R)](∇2

X ± ∇2
Y )[F (r1 −R) − F (r2 −R)

]
The I+ term renormalizes K and α, whereas I− renormalizes the anisotropy which we are not
interested in. Hence,

R(r1 − r2) = e
−b2K

2 F (r1−r2)
[
1 − αb2K2

16π2u2a2

∫
r2d2rd2R e−2KF (r) D(τ)δ(x)

× [F (r1 −R) − F (r2 −R)] (∇2
X + ∇2

Y ) [F (r1 −R) − F (r2 −R)] (4.6)

As F is a logarithmic function, we know that (∇2
X +∇2

Y )F (R) = 2πδ(R), as is the case with the
laplacian of 2D coulomb potential [86]. Using this, one can observe that [F (r1 −R) − F (r2 −R)] (∇2

X+
∇2
Y ) [F (r1 −R) − F (r2 −R)] = −4πF (r1 − r2). Note that terms such as F (r1 − r1) can be dis-

carded as they are finite, whereas F (r1 − r2) are divergent for large distances. Plugging this
back, we find:

R(r1 − r2) = e
−b2K

2 F (r1−r2)
[
1 + αb2K2F (r1 − r2)

4πu2a2

∫
r2d2r e−2KF (r)D(τ)δ(x)

]

Now, we re-exponentiate the terms inside the bracket. This produces a correlation function
R(r1 − r2) of the form exp

(
− b2Keff

2 F (r1 − r2)
)
, where the Keff is defined as:

Keff = K − αK2

2πa2u2

∫
r>a

d2rr2e−2KF (r)D(τ)δ(x) (4.7)
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To simplify the equation above, we express d2r and r2 in terms of x, uτ and compute the integral
over δ(x). We absorb a factor of us−1a−s into α to make it dimensionless. This produces

Keff = K − αK2

2π

∫ ∞

a

dy

a

(
y

a

)1−s−2K
(4.8)

Eq. (4.8) should remain invariant with changing the lower cut-off. Sending a to a′ = a + da,
we find:

Keff = K − αK2

2π
da

a
− αK2

2π

∫ ∞

a′

dy

a

(
y

a

)1−s−2K
(4.9)

To keep eq. (4.8) invariant, the condition that must be satisfied is:

K(a′) = K(a) − α(a)K2(a)
2π

da

a
(4.10)

Similarly, one obtains for α that:

α(a′) = α(a)
(
a′

a

)2−s−2K(a)

(4.11)

The form of these differential equations prompts us to parametrize a = a0e
l, where a0 is a

microscopic bare constant. Substituting this, we obtain the following flow equations:

dK

dl
= −αK2

2π
dα

dl
= (2 − s− 2K)α

(4.12)

(4.13)

Eq. (4.12) and (4.13) are the coupled differential equations for the RG flow of K and α. A
similar action in the context of a 1D quantum wire coupled with a metallic gate was analyzed
with perturbative RG in [87]. Their analysis corroborates with the value of Kc that we obtain
from our RG calculation. However, in their case, the coefficient of α is different in the action.
That doesn’t change the physical properties of the systems, it only scales the value of αc. In
the next subsection, we will perform a linear stability analysis on them to locate the critical
point.

4.1.2 Analysis of the RG flow equations

From eq. (4.13), we observe that for K > 1 − s
2 , α remains controlled; whereas K < 1 − s

2 , it
diverges. Hence, we identify Kc = 1 − s

2 as the critical point of the transition for infinitesimally
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Figure 4.1: RG flow for the incommensurate case, obtained from the numerical solution of eq.
(4.12) and eq. (4.13) for s = 1 (left) and s = 0.5 (right). For s = 1, Kc = 0.5 and for s = 0.5,
Kc = 0.75; which match with the prediction of Kc = 1 − s

2 for a general bath exponent s. The
phase boundaries are given by the black line and are parabolic in shape. For K ≥ Kc and
α ≤ αc, Kr is finite and αr = 0 (red lines); and the system stays in the LL phase. For K < Kc,
αr → ∞, the cosine becomes relevant (blue lines) and the system enters into a new, dissipative
phase (DP).

small α. To understand the behavior of K and α near Kc, we expand K = Kc +K⊥. Putting
this back in eq. (4.12) and (4.13) and keeping only the lowest-order terms, we find:

dK⊥

dl
= −K2

c

2π α (4.14)
dα

dl
= −2K⊥α (4.15)

Multiplying eq. (4.14) by K⊥ on both sides and then substituting eq. (4.15), we obtain the
constant of the RG, denoted as C2:

K2
⊥ − K2

c

2π α = C2 (4.16)

The form of the constant of motion tells us that the flow trajectory in this case is parabolic
in nature, as opposed to the Sine-Gordon model where the trajectories are hyperbolic. The
separatrix of the phase transition occurs when C2 = 0, which implies that αc = 2π((K/Kc)−1)2.
We solve the flow equations in three different regions:
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• C2 > 0: In this regime, eq. (4.14) and (4.15) can be re-written as:

dK⊥

dl
= C2 −K2

⊥ (4.17)

dα

dl
= −2α

√
C2 + K2

c

2π α (4.18)

In a region where αc > α > 0, these equations can be exactly integrated. As an example,
I show the solution of the eq. (4.17) here in detail. Note that in the region specified
above, C < K⊥. Hence,

∫
dl =

∫ dK⊥

C2 −K2
⊥

= 1
2C

[∫ dK⊥

C +K⊥
+
∫ dK⊥

C −K⊥

]

=⇒ l + c1 = 1
2C [ln |C +K⊥| − ln |C −K⊥|]

= 1
C

tanh−1
(
C

K⊥

)

Where c1 is the integration constant. Assuming that K⊥(l = 0) = K⊥0 is the bare
coupling constant, it can be easily deduced that c1 = tanh−1 (C/K⊥0) /C. Putting this
back, we obtain:

1
C

tanh−1
(
C

K⊥

)
= Cl + 1

C
tanh−1

(
C

K⊥0

)

=⇒ K⊥(l) = C

tanh
(
Cl + tanh−1

(
C
K⊥0

)) (4.19)

The flow equation for α can now be easily obtained from the constant of motion:

α(l) = 2π
K2
c

(
K2

⊥(l) − C2
)

= 2π
K2
c

C2

sinh2
(
Cl + tanh−1

(
C
K⊥0

)) (4.20)

At l → ∞ limit, the parameters flow to their stable renormalized values, given by
K⊥(l = ∞) = C and α(l = ∞) = αr = 0 respectively. This tells us that in this region
the system remains in the LL phase with a renormalized finite value of K and the cosine
is irrelevant. A diagrammatic representation of this flow can be seen by the red line in
fig. (4.1).
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• C2 = 0: This condition is fulfilled on the separatrix. Putting C2 = 0 in eq. (4.17) and
(4.18), we obtain by integrating:

K⊥ = K⊥0

1 +K⊥0l
(4.21)

α = 2π
K2
c

(
K⊥0

1 +K⊥0l

)2

(4.22)

In this case, when l → ∞, K⊥(l = ∞) = α(l = ∞) = 0. Which implies that Kr = Kc

and αr = 0. This shows that C2 = 0 is satisfied at the phase boundary, however, on this
line the system still remains in the LL phase and the cosine term is marginally relevant.
This is denoted by the black line in fig. (4.1).

• C2 < 0: This condition is satisfied in the region with the blue lines in fig. (4.1). In this
region, the coefficient of α in eq. (4.13) is negative, hence αr and Kr becomes infinity and
0, respectively. However, below a lengthscale l∗ where α(l∗) ∼ O(1), the flow equation
for K can be integrated by substituting C2

1 = −C2 = K2
c

2π α−K2
⊥, where C2

1 > 0:

−
∫
dl =

∫ dK⊥

C2
1 +K2

⊥

=⇒ C1l = tan−1
[
K⊥0

C1

]
− tan−1

[
K⊥

C1

]
(4.23)

4.2 Variational analysis

Perturbative RG analysis of the incommensurate action (eq. (2.1)) tells us the existence of a
phase transition at K = Kc = 1 − s

2 . However, as the RG flow of α diverges in the dissipative
phase, its properties can’t be analyzed using the RG method mentioned above. Therefore, we
will use the variational method, that we have previously described in Section 3.2 to analyze its
zero-temperature behavior.

We will directly start from the self-consistent equation for Gvar, given by eq. (3.3). In the
incommensurate case, Sint is the long-range cosine function in eq. (2.1). Using eq. (B.22), we
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obtain:

⟨Sint⟩Svar = − αL

4π2

∫
dτdτ ′ ⟨cos [2 {(ϕ(x, τ) − ϕ(x, τ ′))}]⟩Svar

|τ − τ ′|1+s

= − αL

4π2

∫
dτdτ ′ e

−2⟨[ϕ(x,τ)−ϕ(x,τ ′)]2⟩

|τ − τ ′|1+s (4.24)

Where the factor of L in the numerator comes from integrating over x in the action Sint.
Using eq. (B.5), we identify the argument of the exponential as the roughness function in the
imaginary time direction B(τ − τ ′). To compute the integral, we use eq. (B.8) and obtain:

⟨Sint⟩Svar = − αL

4π2

∫
dτdτ ′ e

− 4
βL

∑
q,ωn

(1−cos(ωn(τ−τ ′)))Gvar(q,ωn)

|τ − τ ′|1+s

=⇒ 2 ∂⟨Sint⟩Svar

∂Gvar(q, ωn) = 2α
π2β

∫
dτdτ ′ (1 − cos (ωn(τ − τ ′))) e

− 4
βL

∑
q′,ωn′

(1−cos(ωn′ (τ−τ ′)))Gvar(q′,ωn′ )

|τ − τ ′|1+s

Observing the fact that the integrals depend on only the difference τ−τ ′, we convert the integral
to relative and CoM coordinates τr = τ − τ ′ and τCoM = (τ + τ ′)/2. Then we can integrate over
τCoM , which cancels the factor of β in the denominator. Hence, the self-consistent equation for
Gvar for the incommensurate dissipative action is given by:

G−1
var(q, ωn) = 1

πK

(
uq2 + ω2

n

u

)
+ 2α
π2

∫
dττ−(1+s) (1 − cos (ωnτ)) e

− 4
βL

∑
q′,ωn′

(1−cos(ωn′τ))Gvar(q′,ωn′ )

(4.25)
Note that in eq. (4.25) the correction coming from the cosine part depends only on ωn. Hence,
we propose the following ansatz for G−1

var = 1
πK

[
uq2 + ω2

n

u
+ F (ωn)

u

]
. We can use this to reduce

eq. (4.25) to the following form:

F (ωn)
uK

= 2α
π

∫
dττ−(1+s) (1 − cos (ωnτ)) e

− 4K
π

∞∫
0
dq′dωn′

1−cos(ωn′τ)
uq′2+

ω2
n′
u +

F (ωn′ )
u (4.26)

Where in the exponential, we have converted 1
βL

∑
q,ωn

→ 1
π2

∞∫
0
dqdωn assuming thermodynamic

and zero-temperature limit. In the following subsections, we will solve for the form of F (ωn),
both for the dissipative phase and the LL phase. We will show that in both phases, the
variational solutions behave quite differently than the ones of the Sine-Gordon model.
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Figure 4.2: Behavior of F (ωn) in different phases for s = 1 (left) and s = 0.5 (right), obtained
from numerical solution of eq. (4.35) (with β=1024 and α = 5). For K < Kc = 1 − s

2 , F (ωn)
behaves as 0.301|ωn| for s = 1, K = 0.15 (left, purple square points), and for s = 0.5, K = 0.3,
it behaves as 0.415

√
|ωn| (right, purple circular points). In the LL phase (K = 1), F (ωn) always

behaves as ω2
n; particularly, 0.06ω2

n for s = 1 (left, black square points) and 0.054ω2
n for s = 0.5

(right, black circular points).

4.2.1 Dissipative phase

The first observation we make regarding the dissipative phase is that it can’t be gapped. The
RHS of eq. (4.26) tells us that the gap ∆ = G−1

var(q = ωn = 0) = 0. Hence, a logical choice for
the form of F (ωn) would be F (ωn) = η(α) |ωn|ψ1 + p(α) |ωn|ψ2 , where both ψ1 and ψ2 are
non-zero. This expression is intended for small-ωn. The reason for computing the sub-leading
exponent is so that we can take account of finite size corrections to match with our numerical
simulations in Chapter 5. Below, we will use this form of F (ωn) to determine the value of the
exponents and the coefficients.

• Determination of the exponents ψ: We observe that the argument of the exponent
in eq. (4.26) is independent of q except from the denominator, so one can easily integrate
it out. Doing so produces:

ηωψ1
n + pωψ2

n

uK
= 2α

π

∫
dττ−(1+s) (1 − cos (ωnτ)) e

−2K
∞∫
0
dωn′

1−cos(ωn′τ)√
ω2
n′ +ηωψ1

n′ +pωψ2
n′ (4.27)
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Where we have dropped the absolute sign from ωn because the integral is limited to
positive ωn only. Now we make an assumption that 0 < ψ1 < ψ2 < 2. In the large-τ
limit, one can now compute the integral:

Λ1∫
0

dωn′
1 − cos (ωn′τ)√
ω2
n′ + ηωψ1

n′ + pωψ2
n′

≃
Λ1∫
0

dωn′
1 − cos (ωn′τ)

√
ηω

ψ1/2
n′

+
Λ∫

Λ1

dωn′
1 − cos (ωn′τ)

ωn′

large−τ≈ C − ζτ
ψ1
2 −1

Where Λ1 are Λ are frequency cut-offs, and C and ζ are constants. One can now expand
the exponential with the large-τ assumption as ψ1/2 − 1 is negative for the whole range
of allowed values of ψ1. Doing so reduces the self-consistent equation to:

ηωψ1
n + pωψ2

n ∼
∫
dττ−(1+s) (1 − cos (ωnτ))

(
1 + ζτ

ψ1
2 −1

)
= ωsn

∫
dxx−(1+s) (1 − cosx)

(
1 + ζx

ψ1
2 −1ω

1−ψ1
2

n

)
(4.28)

Where in the last line we have performed the change of variable ωnτ → x. Comparing the
powers on both side, we find that ψ1 = s and ψ2 = 1 + s

2 > ψ1∀s ∈ (0, 2). Hence,
ψ2 remains sub-leading in the region of s where the action is long-range in nature and
accounts for finite-size corrections; however, the low-energy physics is governed by |ωn|s.
Note that this result is also consistent with the harmonic approximation, i.e., fourier
transformation of the expansion of the cosine function up to quadratic order leads to
the same result.

• Determination of the coefficient η(α): After determining the exponents, we are
now interested in understanding the behavior of the coefficient of the leading term,
indicated by η(α) in the ansatz. From eq. (4.28), it can be observed that the |ωn|s is
regulated by the constant term in the argument of the exponential; hence we will ignore
the cos(ωn′τ) while determining η. Using the leading terms, we find:

Λ∫
0

dωn′√
ω2
n′ + ηωψsn′

≃
η

1
2−s∫
0

dωn′

√
ηω

ψs/2
n′

+
Λ∫

η
1

2−s

dωn′

ωn′

= 2
2 − s

+ 1
2 − s

ln
(

Λ2−s

η

)
(4.29)

At a small-η limit, the exponential is governed by the log term. Ignoring the constant,
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the self-consistent equation takes the following form after integrating over τ :

ηωsn
uK

= α′
(

η

Λ2−s

) 2K
2−s

ωsn (4.30)

Where α′ = −2α cos(πs2 )Γ(−s)
π

is a positive, α dependent constant for s ∈ (0, 2). Comparing
the coefficient of ωsn on both sides of eq. (4.30), it can be seen that η has a finite, non-zero
solution for K < 1 − s

2 , given by:

η =
(
α′uK

Λ2K

) 2−s
2−s−2K

(4.31)

For K ≥ 1 − s
2 , the solution of eq. (4.30) is η = 0. From this, we can identify Kc = 1 − s

2

for infinitesimal α as the critical point for the phase transition, which also matches our
RG prediction.

The variational analysis of the incommensurate dissipative action re-confirms our prediction
about the location of the critical point Kc for small α and characterizes the low-energy spectrum
of the dissipative phase as gapless and fractional in nature. However, this calculation only
quantifies the lowest order of the ωn-dependence. The next order of excitations are regulated
by |ωn|1+ s

2 and |ωn|2, and this will eventually renormalize the parameters u and K in the
dissipative phase. We don’t, however, analytically quantify the renormalization of the LL
parameters in the scope of this thesis. We are working on this from the perspective of the
commensurate case, which will be discussed in Chapter 6.

4.2.2 LL phase

To check the validity of the variational ansatz in the LL phase, we assume that in this phase,
F (ωn) = νω2

n. To evaluate ν, we replace the Gvar on the right-hand side of the eq. (4.25) with
the bare LL propagator GLL = πK

(
uq2 + ω2

n

u

)−1
. This step comes with the assumption that

the variational correction ν is small compared to K, and we just provide an estimation for ν.
By doing so, the self-consistent equation converts to:

νω2
n

uK
= 2α

π

∫ ∞

τc
dτ

1 − cosωnτ
τ 1+s e

−2K
∫ Λ

0 dω′
n

1−cosω′
nτ

ω′
n (4.32)

Where τc is the time scale after which the system shows the LL behavior. The integral over ωn′

in the argument of the exponential can be exactly calculated as γE + ln(Λτ), where γE is the
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Figure 4.3: Behavior of η (top) and ν (bottom) for subohmic and ohmic bath, obtained from
the solutions of eq. (4.35). For η, the fitting parameters are α′ and Λ. For the ohmic case
s = 1 (left top, purple square), α′ = 10.096 and Λ = 1.963, and for the subohmic case s = 0.5
(right top, purple circle), α′ = 8.29 and Λ = 3.29. For analyzing the behavior of ν, we use τc
and Λ as fitting parameters. For s = 1 (left bottom, black square), τc = 1.68 and Λ = 0.272;
and for s = 0.5 (right bottom, black circle), τc = 1.241 and Λ = 0.415. β = 1024 and α = 5 for
all the simulations.

Euler-gamma constant. Putting that back, and expanding cosωnτ for small ωn upto quadratic
order, we find:

νω2
n

uK
=
α
π

e−2KγE

Λ2K

∞∫
τc

dττ 1−s−2K

ω2
n (4.33)

In the region of the parameter space where we do this calculation, K > 1 − s
2 . In this limit,

the exponent of τ in the integral is smaller than −1, so the integral is convergent within the
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limit. Computing the integral and comparing coefficients from both sides, we obtain:

ν

uK
= α̃e−2KγE

Λ̃2K (2K + s− 2)
(4.34)

Where α̃ = ατs−2
c

π
and Λ̃ = Λτc. Eq. (4.34) diverges at K = Kc = 1 − s

2 , which indicates that
the validity of this estimation is strictly limited by the lower bound of K > Kc. The effect of
the correction ν is that it renormalizes K and u. If we denote the variational LL propagator as
GLL,var = πKr,var

(
ur,varq

2 + ω2
n

ur,var

)
, then comparing with the bare LL propagator, we see that:

Kr,var

ur,var
= K

u
1

Kr,varur,var
= 1

uK
(1 + ν)

From these equations, one can deduce that Kr,var = K/
√

1 + ν. As ν is always positive, the
variational renormalization effectively decreases the bare value of K. The fact that ν is non-zero
for the incommensurate dissipative spin chain is already a stark contrast to the Sine-Gordon
model. This is a consequence of the fact that the variational method captures the RG up to
the first order of the coupling. For the Sine-Gordon model, the contribution of the first order
is zero; whereas, in the dissipative spin chain, K gets renormalized at the first order of α itself.
As the action corresponding to the bath is non-local in τ , even the variational method captures
the renormalization of K in the LL phase.

4.2.3 Numerical solution of the self-consistent equation

Until now, we have only provided different ansatz for the variational method and supported
it with physical reasoning. To support our claims, we numerically solve the self-consistent
equation for F (ωn):

F (ωn) = 2αuK
π

β−1∑
τ=1

D(τ)(1 − cosωnτ) e
− 2πK

β

β
2 −1∑

n′=−β
2

1−cosωn′τ√
2(1−cosωn′)+F (ωn′ ) (4.35)

Eq. (4.35) is the discretized and β-periodic version in the τ direction of eq. (4.26). D(τ) =
β/2−1∑
k=β/2

B
(
(τ + kβ) − s

2 , s− 1
)

(B is the Beta function) is discretized and β/2 symmetric version
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Figure 4.4: A sketch of the zero-temperature phase diagram of the system (eq. (2.1)), obtained
from variational ansatz (not quantitative in nature). In the LL regime, this method predicts
a renormalization of K to Kr,var; which indicates the presence of a tilted phase boundary as
opposed to the vertical boundary of Sine-Gordon model (fig. (3.3)). The low energy spectrum
of the dissipative phase is governed by the fractional excitation |ωn|s and is gapless in nature.

of the long-range kernel τ−(1+s) (For more details, see Appendix C). Due to the discretized
nature, all integrals have been replaced with sums, and the ω2

n in the denominator of the argu-
ment of the exponential has been discretized to 2(1 − cosωn).

We solve eq. (4.35) for s = 1 (ohmic) and s = 0.5 (subohmic) for different values of K.
First, we inspect the behavior of F (ωn) as a function of ωn. Then we extract η or ν, depending
on which phase it is in, and try to fit those data according to eq. (4.31) or eq. (4.34). The
results are shown in fig. (4.2) and fig. (4.3). The plots corroborate with our analytic predic-
tions: The dissipative phase is indeed gapless, with the leading term behaving as |ωn|s; and the
estimation for η and ν are quite accurate.

4.3 Phase diagram
The first observation that we make from eq. (4.21) and eq. (4.22) that Kr = Kc and αr = 0
on the critical line.. This means that at the phase boundary, the system still remains in the
LL phase, which is a signature of the BKT phase transition.
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From the variational method, we know that in the dissipative phase, the gap ω2
n of the LL

phase is replaced by fractional excitations η|ωn|s. We can associate a correlation length ξc to
η and analyze how η behaves at different regimes. Comparing with the Sine-Gordon model,
we observe that η|ωn|s has the dimension of L−2, which implies that η has the dimensionality
of Ls−2, which is negative for 0 < s < 2. Now if we stop the RG at a lengthscale l∗ where
α(l∗) ∼ O(1), then ξc ∼ el

∗ and hence η ∼ e−(2−s)l∗ . Deep in the dissipative phase, where
dK/dl = 0 (K is constant), α(l∗) = α0e

(2−s−2K)l∗ =⇒ el
∗ ∼ (1/α0)

1
2−s−2K . Hence, η behaves

as η ∼ α
2−s

2−s−2K

0 , which is what we find from our variational calculation (eq. (4.31)).

One can also check the behavior of η near the critical line, where C1 ≈ 0. In this regime,
K⊥0/C1 = ∞ and K⊥/C1 = −∞. Hence, from eq. (4.23), we see that l∗ = π/C1. As C2

1 is a
constant of the RG flow, we can choose it to be K2

c

2π α0 −K2
⊥0 . Hence, η behaves in this regime

as η ∼ e
−(2−s)/

√
K2

c
2π
α0−K2

⊥0 , which is similar to the non-perturbative behaviour of ∆ in the
gapped phase of Sine-Gordon model.

The correspondence between the variational ansatz and the RG for the incommensurate dissi-
pative spin chain is quite similar to that of the Sine-Gordon model. However, in the LL phase,
the variational method does hint at a renormalization of K. Just like the RG, it shows that the
Kr,var = K/(

√
1 + ν) is smaller than the bare K. This hints at a tilted phase boundary, rather

than a vertical one like the Sine-Gordon model (fig. (4.4)).
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Chapter 5

The Incommensurate case:
Thermodynamics and
Transport

To briefly recall, we establish a phase diagram of the Incommensurate dissipative spin chain
(eq. (2.1)) using perturbative RG and variational ansatz. With these techniques, the existence
of a BKT type critical point Kc = 1− s

2 for an infinitesimally small value of α is established. We
also understand that deep within the phases, the low-energy excitation physics can be captured
by a gaussian action with the following propagators:

G−1
LL(q, ωn) = 1

πKr

(
urq

2 + ω2
n

ur

)
(5.1)

G−1
diss(q, ωn) = 1

πKr

(
urq

2 + η|ωn|s

ur

)
(5.2)

In this section, we will compute different thermodynamic and dynamic quantities with these
propagators, which help us to physically characterize the dissipative phase. In particular, we
show that the dissipative phase has unaltered susceptibility (also known as compressibility) and
vanishing spin stiffness. We also define an order parameter to identify the two phases, given
by O = ⟨cos (2ϕ(x, τ))⟩. With the help of bosonization mapping, we are able to relate this
order parameter to the amplitude of a Spin Density Wave (SDW). Thus, we discover that the
dissipative phase is a gapless SDW with long-range order, which is the result of the spontaneous
breaking of the continuous symmetry ϕ → ϕ + c due to the long-range nature of the action
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coming from the bath.

To support our theoretical predictions, we numerically simulate the original action (eq. (2.1))
via Langevin dynamics (as described in Chapter 3) to generate equilibrated configurations.
From these configurations, we numerically calculate the same correlation functions and match
them against our analytical formulations to verify our predictions. Specifically, we do the sim-
ulations for ohmic (s = 1) and subohmic (s = 0.5) baths. For each type of bath, we take a
K > Kc and simulate the configurations for different values of α. This enables us to predict a
phase diagram of the system for different values of the parameters.

5.1 Thermodynamical properties

We start our phase characterization with the calculation of two thermodynamic quantities for
the different phases, Namely: a) The susceptibility χ and b) the order parameter ⟨cos 2ϕ⟩ of
the spin chain. In the next two sections, we will relate these quantities to the bosonized field
theory via the two-point correlation function and calculate them for the two different phases.

5.1.1 Susceptibility

The susceptibility χ of a 1D spin chain is defined as the response of the system when a finite
magnetic field h(x, t) is added to the system. In general, the magnetic field can be time and
space-dependent; however, for our purpose, we will consider it to be a constant field h(x, t) = h.

Adding a constant magnetic field to the XXZ spin chain adds a term of the form h
∑
i
σzi .

As we have seen already in Chapter 2, Section 2.3 under the discussion of the commensu-
rability of the spin chain, the microscopic magnetic term is equal to a contribution of Sh =
−h
π

∫
dxdτ (∇ϕ(x, τ)) to the bosonized action. Note that the integral over the cos(2 (ϕ− qFx))

term goes to zero as the field h is constant in space and cosine oscillates rapidly. This can
also be understood as changing the density of the system ρ(x, τ) via the addition of a chemical
potential h; hence the thermodynamic limit of the susceptibility χ of the spin chain is equiv-
alent to the compressibility of the bosonic field κ. Note that the standard definition of κ in
the literature is κT = (1/ρ2)(∂ρ/∂h), however here we will calculate κ = (∂ρ/∂h) as they are
directly related to each other. With this definition, from linear response theory [37, 88], χ can
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be calculated from the response to the density-density correlation function via:

χ(x, τ) = ⟨Tτδρ(x, τ)δρ(0, 0)⟩ (5.3)

Where ⟨Tτ . . .⟩ denotes time-ordered correlation to respect the causality of the response. From
the form of our perturbation Sh, we understand that δρ(x, τ) ≃ − 1

π
∇ϕ(x, τ). Fourier trans-

forming both sides of eq. (5.3), we obtain:

1
βL

∑
q,ωn

χ(q1, ωn1)ei(q1x−ωn1τ) = 1
(βL)2

∑
q1,ωn1
q2,ωn2

⟨δρ(q1, ωn1)δρ(q2, ωn2)⟩ei(q1x−ωn1τ)

=⇒ χ(q, ωn) = 1
βL

∑
q2,ωn2

⟨δρ(q, ωn)δρ(q2, ωn2)⟩ (5.4)

The Fourier components of δρ(q, ωn) are given by −(1/π)(iq)ϕ(q, ωn). Substituting this in the
previous equation, we obtain:

χ(q, ωn) = − q

(π)2βL

∑
q2,ωn2

q2⟨ϕ(q, ωn)ϕ(q2, ωn2)⟩ (5.5)

We can use eq. (5.5) to compute the susceptibility in both phases now, whose quadratic
description we have obtained using the variational method. Let’s compute them in both phases
now:

• LL: In this phase, SLL = 1
2πKβL

∑
q,ωn

ϕ∗(q, ωn)(uq2 + ω2
n/u)ϕ(q, ωn). Hence, using eq.

(B.6), the susceptibility can be calculated as:

χLL = −qKr

π

∑
q2,ωn2

q2

urq2
2 + ω2

n2
ur

δq,−q2δωn,−ωn2

= Kr

π

q2

urq2 + ω2
n

ur

(5.6)

We are interested in the thermodynamic limit of χ, which we obtain by taking ωn → 0
limit (static perturbation) first, and then q → 0 (spatially independent perturbation).
Doing so, we find:

χLL(q → 0) = Kr

urπ
(5.7)

• Dissipative phase: The dissipative phase is described by the variational action Sdiss =
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1
2πKβL

∑
q,ωn

ϕ∗(q, ωn)(uq2 + η|ωn|s/u)ϕ(q, ωn). Similarly as the LL phase, we see that:

χdiss = −qKr

π

∑
q2,ωn2

q2

urq2
2 + η|ωn2 |s

ur

δq,−q2δωn,−ωn2

= Kr

π

q2

urq2 + η|ωn|s
ur

=⇒ χdiss(q → 0) = Kr

urπ
(5.8)

Eq. (5.7) and (5.8) tell us that the susceptibility remains unaltered in both the phases and
proportional to the initial value of K/u, as we have seen from our variational calculation of the
phases. This might seem shocking at a first glance; however, this phenomenon occurs due to
the fact that the dissipative action is invariant under statistical tilt symmetry (STS) [89, 90].
We dedicate the next part to the discussion of this symmetry.

5.1.1.1 Statistical Tilt Symmetry

To understand the STS, we need to go back to the statistical point of view. The partition
function of the system in the presence of a magnetic field h is given by:

Z[h] =
∫

Dϕe[−SLL−Sint+ h
π

∫
dxdτ∇ϕ(x,τ)] (5.9)

One can now complete the square with the (∇ϕ)2 term from the LL : − u
2πK

∫
(∇ϕ)2 + h

π

∫
(∇ϕ) =

− u
2πK

∫ (
∇
(
ϕ− hKx

u

))2
+ h2KβL

2πu . We now define a new field ϕ̃ = ϕ− hKx
u

and re-write the whole
action in terms of ϕ̃. The key observation here is that Sint remains invariant due to this tilt
transformation. Eq. (5.9) can be written as:

Z[h] =
∫

Dϕe
[

−SLL[ϕ̃]−Sint[ϕ̃]+h2KβL
2πu

]
(5.10)

The compressibility of this system (or static limit of susceptibility of the spin chain χ(q → 0))
can be now computed via the following calculation:

χ = 1
βL

∂2

∂2h
lnZ[h]

= 1
βL

∂2

∂2h

(
lnZ

[
Stot

[
ϕ̃, h = 0

]]
+ h2KβL

2πu

)

= K

πu
(5.11)
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Figure 5.1: Numerical results for χ for ohmic (s = 1) (left) and subohmic (s = 0.5) (right)
bath. For the ohmic case, the initial K/u value is 0.75, and this remains invariant for both
α = 1 (LL phase) and α = 8. Similarly for the subohmic bath, Kr/ur = K/u = 1 for both
α = 2 (LL phase) and α = 6 (dissipative phase). For both baths, the red points indicate a
system size of L = β = 128. The blue points indicate a system size of L = β = 384 for s = 1
and L = β = 320 for s = 0.5.

From this calculation, it can be understood that even though local dissipative baths can induce
a phase transition in a one-dimensional many-body incommensurate system, the susceptibility
of the system remains invariant and independent of the dissipative coupling. As the coupling
is increased, both K and u get renormalized in such a way that the ratio K/u stays constant
and equal to the initial value.
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5.1.2 Order Parameter
This section will be very crucial in understanding the true form of the dissipative phase. From
eq. (2.30), we observe that the average value of the z-component of the spin is given by:

⟨σz(x)⟩ = 1
πa

(−a∇⟨ϕ(x, τ)⟩ + ⟨cos (2ϕ(x, τ) − 2qFx)⟩)

= 1
πa

(−a∇⟨ϕ(x, τ)⟩ + ⟨cos(2ϕ(x, τ))⟩ cos 2qFx+ ⟨sin(2ϕ(x, τ))⟩ sin 2qFx)(5.12)

Where qF is the fermi momentum of the system and we have put back the lattice spacing
a to explicitly show the dimensionless nature of the quantity. Now we make a key obser-
vation: eq. (5.12) is extremely similar to the formation of a spin density wave (SDW)
⟨σz(x)⟩ = σ0 + σ1 cos (2qFx), where σ0 is the average magnetization M/N and σ1 is the
amplitude of the SDW [91]. The periodicity of the SDW is π/qF . One can determine the values
of σ0 and σ1 via multiple physical arguments:

• Firstly, we observe that σ0 = 0. This is due to the fact that the effect of the finite
polarization in the spin chain simply offsets the fermi momentum qF of the system to
incommensuration, which is already encoded in our bosonization procedure. Hence, in
this bosonized action, the average magnetization is 0. This also supports the fact that
the parity symmetry of the field ϕ → −ϕ is not broken, hence πσ0 = −∇ϕ = 0.

• As the parity symmetry is preserved, it’s easy to see that the last term in eq. (5.12)
also goes to 0. Hence, comparing the form of the SDW with the surviving terms of eq.
(5.12), the amplitude of the SDW is given by σ1 = 1

πa
⟨cos(2ϕ)⟩, which is the quantity

we will use as an order parameter for the phase transition. In the following part of this
subsection, we will show that in the LL phase, σ1 goes to 0 at zero temperature and
thermodynamic limit, whereas in the dissipative phase, it goes to a constant.

• The formation of the SDW in this system doesn’t correspond to the standard Peierls
mechanism [92], where the amplitude σ1 opens a gap in the low-energy spectrum of
the system. Indeed, in our case, the system is gapless: The SDW excitations are the
gapless Goldstone modes corresponding to the spontaneous breaking of the continuous
translational symmetry of the field ϕ → ϕ+ c. In the incommensurate dissipative spin
chain, this symmetry breaking becomes possible due to the long-range nature of the
action corresponding to the local dissipative baths.

• The global shift ϕ → ϕ+c doesn’t cost any energy; however in the dissipative phase, the
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symmetry is broken in the presence of any impurity or local field. Hence, it’s convenient
to fix the constant by setting the center of the mass of the field ϕCoM = ϕ(q = 0, ωn = 0)
to 0.

• As the action is symmetric under ϕ → ϕ+ c for all values of c, one can choose different
order parameters to identify the phase transition. For example, by setting c = π, it
can be easily observed that a choice of the order parameter can be ⟨cosϕ⟩ (⟨cosϕ⟩ =
⟨cos(ϕ + π)⟩ =⇒ ⟨cosϕ⟩ = 0 unless the symmetry is broken). We will mostly stick
to the choice of ⟨cos 2ϕ⟩ as the order parameter as it holds the most physical relevance
in understanding the characteristics of the dissipative phase, however ⟨cosϕ⟩ will be
relevant in understanding some parts of the numerical results in Section 5.3.

With these motivations detailed above, we will now proceed with the calculation of the order
parameter σ1 = 1

πa
⟨cos 2ϕ⟩ in the LL phase (eq. (5.1)) and in the dissipative phase (eq. (5.2))

with their corresponding variational propagators. As both the propagators are gaussian in
nature, the order parameter can be simplified in fourier space in terms of the propagator using
eq. (B.22):

1
πa

⟨cos 2ϕ⟩ = 1
πa
e−2⟨ϕ2(x,τ)⟩

= 1
πa
e

− 2
(βL)2

∑
q1,ωn1
q2,ωn2

⟨ϕ(q1,ωn1 )ϕ(q2,ωn2 )⟩ei{(q1+q2)x−(ωn1 +ωn2 )τ}

= 1
πa
e

− 2
βL

∑
q,ωn

G(q,ωn)
(5.13)

Where the sum over q and ωn is to be understood without the q = ωn = 0 mode. Hence, at
zero temperature (β → ∞) and in the thermodynamic limit (L → ∞) the true value of the
order parameter is given by:

σ1 = 1
πa
e− 2

π2
∫ Λ

0 dωn
∫∞

0 dq G(q,ωn) (5.14)

However, it is imperative for us to understand the effect of finite size and temperature on the
order parameter, hence we will calculate the quantity from eq. (5.13), and we will denote this
quantity as ⟨cos 2ϕ⟩L,β from now on. The summation in the exponential of eq. (5.13) can be
broken down into three different types of terms:

• The contribution from ωn = 0, q ̸= 0 terms, which account for finite size effect.

• The contribution from ωn ̸= 0, q = 0 terms, which demonstrate the effect of finite
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temperature.

• The contribution from ωn ̸= 0, q ̸= 0 terms, which can be approximated by σ1 (eq.
(5.14)) with sub-leading corrections.

5.1.2.1 LL phase

In the LL phase, the propagator is given by GLL = πKr

(
urq

2 + ω2
n

ur

)−1
, where Kr = K/

√
1 + ν

and ur = u/
√

1 + ν. Using this, one can show that:

2
βL

∑
q ̸=0

GLL(q, 0) = 4πK
uβL

∞∑
m=1

1(
2πm
L

)2

= πKL

6uβ (5.15)

2
βL

∑
ωn ̸=0

GLL(0, ωn) = 4πKu
(1 + ν)βL

∞∑
n=1

1(
2πn
L

)2

= πuKβ

6(1 + ν)L (5.16)

The third term with the sum over non-zero q and ωn, given by 2
βL

∑
q ̸=0,ωn ̸=0

G(q, ωn) is slightly
more tricky to calculate. One can estimate this sum by converting it into an integral
2K
π

Λ1∫
2π/L

dq
Λ2∫

2π/β

dωn

uq2+ω2
n
u

(1+ν)
(Λ1 and Λ2 are UV cut-offs) and observing that if the lower and

upper limit of the integral over q is sent to 0 and ∞ respectively, the integral is approximated by
K/

√
1 + ν ln(Λ2β); similarly, when the limit of ωn is sent to 0 and ∞, the integral approximately

equals to K/
√

1 + ν ln(Λ1L). From this, it can then be estimated that :

2
βL

∑
q ̸=0,ωn ̸=0

GLL(q, ωn) ∼ K√
1 + ν

ln min(L, β) (5.17)

Putting all the terms together, it can then be seen that:

⟨cos 2ϕ⟩LL
L,β ∼ e−π2

6 (χLβ +ρs βL)−Kr ln min(β,L) (5.18)

Where ρs = urKr/π is the spin-stiffness (superfluid density) or charge stiffness of the system,
which we will discuss in Section 5.2.3.
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5.1.2.2 Dissipative phase

In the dissipative phase, the variational propagator is given by Gdiss = πKr

(
urq

2 + η|ωn|s
ur

)−1
.

The summation over ωn = 0, q ̸= 0 is the same as that in the LL phase (eq. (5.15)). The sum
over q = 0 terms are given by:

2
βL

∑
ωn ̸=0

Gdiss(0, ωn) = 2urKr

η

∞∑
n=1

2π
β
dn(

2nπ
β

)s (5.19)

Where dn = 1. One can convert the summation into an integral over ωn = (2πn)/β, given by
Λ1∫

2πn/β
dωn ω

−s
n . Note that this cut-off Λ1 is necessary in eq. (5.19) when the bath is subohmic

or ohmic in nature. This integral behaves differently for different values of s, and after taking
the leading order term for large β, we see that:

2
βL

∑
ωn ̸=0

Gdiss(0, ωn) = 2urKr

η

b0(s)
(2π)s−1

βf(s)

L
(5.20)

Where f(s) = 0 and b0(s) ∼ 1
1−s for subohmic bath (0 < s < 1), and f(s) = s − 1 and

b0(s) = ζ(s) for superohmic bath (1 < s < 2). For an ohmic bath (s = 1), b0(s)βf(s) is replaced
by ln(β) + γE. The contribution of the third term can now be calculated for large-β as:

2
βL

∑
q ̸=0,ωn ̸=0

Gdiss(q, ωn) = 2Kr

π

∞∫
2π/L

dq

Λ1∫
2π/β

dωn

uq2 + ηωsn
ur

≈ c0 − c1β
s
2 −1 (5.21)

Where c0 and c1 are positive constants that depend on Kr, ur, η, s and Λ1. Hence in the
dissipative phase, we obtain:

⟨cos 2ϕ⟩diss
L,β ∼ σ1e

−χπ
2

6
L
β

− 2urKr
η

b0(s)
(2π)s−1

βf(s)
L

+c1βs/2−1
(5.22)

Where we understand that σ1 = e−c0 is the true order parameter from eq. (5.14).

5.1.2.3 Behaviour of the order parameter

From eq. (5.18) and eq. (5.22), We can now extract the behavior of the order parameter in
both phases in different limits.

• In the thermodynamic limit L → ∞ and finite temperature, the order parameter in both
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s = 1, K = 0.75
<latexit sha1_base64="elsz5nAT8GOM1vpfpfhOQhah/A0=">AAAB/3icbVBLSwMxGMz6rPW1KnjxEiyCB1l2xaqXQtGL4KWCfUC7lGw224ZmkyXJCmXtwb/ixYMiXv0b3vw3ZtsetHUgZJj5PjKZIGFUadf9thYWl5ZXVgtrxfWNza1te2e3oUQqMaljwYRsBUgRRjmpa6oZaSWSoDhgpBkMrnO/+UCkooLf62FC/Bj1OI0oRtpIXXu/EwgWqmFsrkxVXKd8clvxRl275DruGHCeeFNSAlPUuvZXJxQ4jQnXmCGl2p6baD9DUlPMyKjYSRVJEB6gHmkbylFMlJ+N84/gkVFCGAlpDtdwrP7eyFCs8ohmMka6r2a9XPzPa6c6uvQzypNUE44nD0Upg1rAvAwYUkmwZkNDEJbUZIW4jyTC2lRWNCV4s1+eJ41Txzt3yndnperVtI4COACH4Bh44AJUwQ2ogTrA4BE8g1fwZj1ZL9a79TEZXbCmO3vgD6zPH7nSlUQ=</latexit>

s = 0.5, K = 1
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<latexit sha1_base64="jcdlS8tN4tknjHSd6cg/7qWfAlM=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BIvgxbIrvo5FL4IeKtgHtOuSzaZtaDZZkqxQlgX/ihcPinj1d3jz35ht96CtAyHDzPeRyQQxo0o7zrc1N7+wuLRcWimvrq1vbNpb200lEolJAwsmZDtAijDKSUNTzUg7lgRFASOtYHiV+61HIhUV/F6PYuJFqM9pj2KkjeTbu91AsFCNInOltw/p0Y0vs8y3K07VGQPOErcgFVCg7ttf3VDgJCJcY4aU6rhOrL0USU0xI1m5mygSIzxEfdIxlKOIKC8dx8/ggVFC2BPSHK7hWP29kaJI5QnNZIT0QE17ufif10l078JLKY8TTTiePNRLGNQC5l3AkEqCNRsZgrCkJivEAyQR1qaxsinBnf7yLGkeV92z6undSaV2WdRRAntgHxwCF5yDGrgGddAAGKTgGbyCN+vJerHerY/J6JxV7OyAP7A+fwC395X9</latexit>

L�Kr

<latexit sha1_base64="demy9U5dHSYIkfOBp7cM78NYisE=">AAACC3icbVDLSsNAFJ34rPUVdekmtAgutCTia1l0I+iign1AE8NkMm2HTh7M3BRL6N6Nv+LGhSJu/QF3/o2TNgttPTDM4Zx7ufceL+ZMgml+a3PzC4tLy4WV4ura+samvrXdkFEiCK2TiEei5WFJOQtpHRhw2ooFxYHHadPrX2Z+c0CFZFF4B8OYOgHuhqzDCAYluXrJ9iLuy2GgvvTmPj28dlNxYAN9gHSAxUjB1ctmxRzDmCVWTsooR83Vv2w/IklAQyAcS9m2zBicFAtghNNR0U4kjTHp4y5tKxrigEonHd8yMvaU4hudSKgXgjFWf3ekOJDZuqoywNCT014m/ue1E+icOykL4wRoSCaDOgk3IDKyYAyfCUqADxXBRDC1q0F6WGACKr6iCsGaPnmWNI4q1mnl5Pa4XL3I4yigXVRC+8hCZ6iKrlAN1RFBj+gZvaI37Ul70d61j0npnJb37KA/0D5/AIcfnAU=</latexit>

L�Kr,var

<latexit sha1_base64="9GUcQG6+u+ISkpe7fTJ0fqqaKXI=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXEhJf1YVQdCO4qWAf0IQymUzboZMHMzfFEvIBbvwVNy4UcesHuPNvnLRZaOuFYQ7nnMu997gRZxJM81ubm19YXFourBRX19Y3Nktb2w0ZxoLQOgl5KFoulpSzgNaBAaetSFDsu5w23cF1pjeHVEgWBvcwiqjj417AuoxgUFSnVLbdkHty5Ksvue0k4tAG+gDJEIs0vTSNi8pxqlymYY5LnwVWDsoor1qn9GV7IYl9GgDhWMq2ZUbgJFgAI5ymRTuWNMJkgHu0rWCAfSqdZHxMqu8rxtO7oVAvAH3M/u5IsC+zfZXTx9CX01pG/qe1Y+ieOwkLohhoQCaDujHXIdSzZHSPCUqAjxTARDC1q076WGACKr+iCsGaPnkWNI4M68w4vTspV6/yOApoF+2hA2ShCqqiG1RDdUTQI3pGr+hNe9JetHftY2Kd0/KeHfSntM8f4M+bfg==</latexit>

Kr,var = 0.973

<latexit sha1_base64="zNkmugMkCmzGK0CsG5Boq3cUoi4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXIVErI+FUHQjuKlgH9CGMJlM2qGTSZiZCCXEjb/ixoUibv0Ld/6Nk7YLbT0wzOGce7n3Hj9hVCrb/jZKC4tLyyvl1cra+sbmlrm905JxKjBp4pjFouMjSRjlpKmoYqSTCIIin5G2P7wu/PYDEZLG/F6NEuJGqM9pSDFSWvLMvZ4fs0COIv1lt14m8kvbunBquWdWbcseA84TZ0qqYIqGZ371ghinEeEKMyRl17ET5WZIKIoZySu9VJIE4SHqk66mHEVEutn4ghweaiWAYSz04wqO1d8dGYpksaSujJAayFmvEP/zuqkKz92M8iRVhOPJoDBlUMWwiAMGVBCs2EgThAXVu0I8QAJhpUOr6BCc2ZPnSevYck6t2t1JtX41jaMM9sEBOAIOOAN1cAMaoAkweATP4BW8GU/Gi/FufExKS8a0Zxf8gfH5A9b5ln4=</latexit>

Kr = 0.915

<latexit sha1_base64="NRIb6ZJcWTg9IlZJNEJpXnjwnpY=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2ARXJWZ4msjFN24rGBboTOUTCZtQzOZIckIZSj4K25cKOLW73Dn35hpZ6GtB0IO59xLTk6QcKa043xbpaXlldW18nplY3Nre8fe3WurOJWEtkjMY/kQYEU5E7Slmeb0IZEURwGnnWB0k/udRyoVi8W9HifUj/BAsD4jWBupZx94QcxDNY7MlXmYJ0N8VZ/07KpTc6ZAi8QtSBUKNHv2lxfGJI2o0IRjpbquk2g/w1Izwumk4qWKJpiM8IB2DRU4osrPpvEn6NgoIerH0hyh0VT9vZHhSOUJzWSE9VDNe7n4n9dNdf/Sz5hIUk0FmT3UTznSMcq7QCGTlGg+NgQTyUxWRIZYYqJNYxVTgjv/5UXSrtfc89rZ3Wm1cV3UUYZDOIITcOECGnALTWgBgQye4RXerCfrxXq3PmajJavY2Yc/sD5/AJHeleM=</latexit>

↵ = 2
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L

<latexit sha1_base64="DgYnxE+gQnlWOkif5ZMQZVEFDnQ=">AAACFXicbVC7TsMwFHXKq5RXgJHFokJCKkRJoZSxgoWBoUj0IbUhchynteo8ZDtIVZSfYOFXWBhAiBWJjb/BbTNA4UiWj8+5V773uDGjQprml1ZYWFxaXimultbWNza39O2dtogSjkkLRyziXRcJwmhIWpJKRroxJyhwGem4o8uJ37knXNAovJXjmNgBGoTUpxhJJTn6Ud+NmCfGgbpS7FgV7FTh9V16bBr1WlaB2DmZPi2jlmWOXjYNcwr4l1g5KYMcTUf/7HsRTgISSsyQED3LjKWdIi4pZiQr9RNBYoRHaEB6ioYoIMJOp1tl8EApHvQjrk4o4VT92ZGiQEwGV5UBkkMx703E/7xeIv1zO6VhnEgS4tlHfsKgjOAkIuhRTrBkY0UQ5lTNCvEQcYSlCrKkQrDmV/5L2lXDOjNqN6flxkUeRxHsgX1wCCxQBw1wBZqgBTB4AE/gBbxqj9qz9qa9z0oLWt6zC35B+/gGji2chg==</latexit>

c1 + c2L�0.75 + c3L�1.5

<latexit sha1_base64="CeNeGobvXwFglBAXug0YZYNyih0=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCp9GKTj0IQy8eJ7gP2EpJ03QLS5OSpMKoO/ivePGgiFf/DW/+N6ZbD7r5IOTx3u9HXl6QMKq043xbC4tLyyurpbXy+sbm1ra9s9tSIpWYNLFgQnYCpAijnDQ11Yx0EklQHDDSDoY3ud9+IFJRwe/1KCFejPqcRhQjbSTf3u8FgoVqFJsrw7575VSdy9rYtyuGTADniVuQCijQ8O2vXihwGhOuMUNKdV0n0V6GpKaYkXG5lyqSIDxEfdI1lKOYKC+b5B/DI6OEMBLSHK7hRP29kaFY5RHNZIz0QM16ufif1011dOFllCepJhxPH4pSBrWAeRkwpJJgzUaGICypyQrxAEmEtamsbEpwZ788T1onVbdWPbs7rdSvizpK4AAcgmPggnNQB7egAZoAg0fwDF7Bm/VkvVjv1sd0dMEqdvbAH1ifP8HilUk=</latexit>

c1 = 0.096

<latexit sha1_base64="RE9xH72txgxG5fr+465TTXlzFyI=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgqsyIVjdC0Y3LCvYBnaHcyWTa0ExmSDJCGQr+ihsXirj1O9z5N2baLrT1QMjhnHvJyQlSzpR2nG9raXlldW29tFHe3Nre2bX39lsqySShTZLwRHYCUJQzQZuaaU47qaQQB5y2g+Ft4bcfqVQsEQ96lFI/hr5gESOgjdSzD70g4aEaxebKPeDpAK5r455dcarOBHiRuDNSQTM0evaXFyYki6nQhINSXddJtZ+D1IxwOi57maIpkCH0addQATFVfj6JP8YnRglxlEhzhMYT9fdGDrEqEprJGPRAzXuF+J/XzXR05edMpJmmgkwfijKOdYKLLnDIJCWajwwBIpnJiskAJBBtGiubEtz5Ly+S1lnVrVUv7s8r9ZtZHSV0hI7RKXLRJaqjO9RATURQjp7RK3qznqwX6936mI4uWbOdA/QH1ucPl/KV5w==</latexit>

↵ = 6
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L

<latexit sha1_base64="3E7iCjQW+pbCvDkAgetGeTXSWq4=">AAACCHicbVC7TsMwFHV4lvIKMDIQUSGxUCWoPMYKFiQYikQfUhMqx3Faq44d2Q5SFWVk4VdYGECIlU9g429w2gzQciTLR+fcq3vv8WNKpLLtb2NufmFxabm0Ul5dW9/YNLe2W5InAuEm4pSLjg8lpoThpiKK4k4sMIx8itv+8DL32w9YSMLZnRrF2Itgn5GQIKi01DP3XJ/TQI4i/aU39+mRGwqI0uueyNJalmU9s2JX7TGsWeIUpAIKNHrmlxtwlESYKUShlF3HjpWXQqEIojgru4nEMURD2MddTRmMsPTS8SGZdaCVwAq50I8pa6z+7khhJPNddWUE1UBOe7n4n9dNVHjupYTFicIMTQaFCbUUt/JUrIAIjBQdaQKRIHpXCw2gTkLp7Mo6BGf65FnSOq46p9WT21qlflHEUQK7YB8cAgecgTq4Ag3QBAg8gmfwCt6MJ+PFeDc+JqVzRtGzA/7A+PwBzPSafQ==</latexit>

L�Kr
4

<latexit sha1_base64="BUqRevtM77+8bmRv+nQXRZyP5kA=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2ARXJUZ8bURim5cVrAP6Awlk0nb0ExmSDJCGQr+ihsXirj1O9z5N2baWWjrgZDDOfeSkxMknCntON9WaWl5ZXWtvF7Z2Nza3rF391oqTiWhTRLzWHYCrChngjY105x2EklxFHDaDka3ud9+pFKxWDzocUL9CA8E6zOCtZF69oEXxDxU48hcmYd5MsTX7qRnV52aMwVaJG5BqlCg0bO/vDAmaUSFJhwr1XWdRPsZlpoRTicVL1U0wWSEB7RrqMARVX42jT9Bx0YJUT+W5giNpurvjQxHKk9oJiOsh2rey8X/vG6q+1d+xkSSairI7KF+ypGOUd4FCpmkRPOxIZhIZrIiMsQSE20aq5gS3PkvL5LWac29qJ3fn1XrN0UdZTiEIzgBFy6hDnfQgCYQyOAZXuHNerJerHfrYzZasoqdffgD6/MHkFmV4g==</latexit>

↵ = 1

<latexit sha1_base64="HTe6dMaYXjy+BiqZpY87nYHm3Ns=">AAACFXicbVDLSgMxFM3UV62vUZduBovgopYZqY9l0Y2giwr2AZ1aMmmmDc08SO4US5ifcOOvuHGhiFvBnX9j+lho64Ekh3PuJfceL+ZMgm1/G5mFxaXllexqbm19Y3PL3N6pySgRhFZJxCPR8LCknIW0Cgw4bcSC4sDjtO71L0d+fUCFZFF4B8OYtgLcDZnPCAYttc2C60W8I4eBftTNvTpyfYGJum4rUXCBPoAaYJGmqSrpq23m7aI9hjVPnCnJoykqbfPL7UQkCWgIhGMpm44dQ0thAYxwmubcRNIYkz7u0qamIQ6obKnxVql1oJWO5UdCnxCssfq7Q+FAjgbXlQGGnpz1RuJ/XjMB/7ylWBgnQEMy+chPuAWRNYrI6jBBCfChJpgIpme1SA/rWEAHmdMhOLMrz5PacdE5LZ7clvLli2kcWbSH9tEhctAZKqMrVEFVRNAjekav6M14Ml6Md+NjUpoxpj276A+Mzx/TD6CF</latexit>

L�Kr,var
4

<latexit sha1_base64="zxFvXwNzbA/rYvlT/llILaYQC24=">AAACFnicbVC7SgNBFJ31GeMrammzGAQLDbsSjY0QtBFsIpgHZJdldjKbDJl9MHM3GIb9Cht/xcZCEVux82+cPApNPDDM4Zx7ufceP+FMgmV9GwuLS8srq7m1/PrG5tZ2YWe3IeNUEFonMY9Fy8eSchbROjDgtJUIikOf06bfvx75zQEVksXRPQwT6oa4G7GAEQxa8gonjh/zjhyG+lNOIDBRt54Sxw7QB1ADLLIsU+Xs0irZlUrmFYpWyRrDnCf2lBTRFDWv8OV0YpKGNALCsZRt20rAVVgAI5xmeSeVNMGkj7u0rWmEQypdNT4rMw+10jGDWOgXgTlWf3coHMrR5royxNCTs95I/M9rpxBcuIpFSQo0IpNBQcpNiM1RRmaHCUqADzXBRDC9q0l6WGcDOsm8DsGePXmeNE5L9nnp7K5crF5N48ihfXSAjpCNKqiKblAN1RFBj+gZvaI348l4Md6Nj0npgjHt2UN/YHz+AC4Wn/o=</latexit>

Kr,var

4
= 0.177

<latexit sha1_base64="gM5q8zhKEFtMIgu3TahnRldbbeQ=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwFRKp1o1QdCO4qWAf0IQwmU7awckkzEyEErJ146+4caGIW//AnX/jpM1CWw8MczjnXu69J0gYlcq2v43K0vLK6lp1vbaxubW9Y+7udWWcCkw6OGax6AdIEkY56SiqGOkngqAoYKQX3F8Vfu+BCEljfqcmCfEiNOI0pBgpLfkmdIOYDeUk0l/mhgLh7MYXedbIL2zLaTZy36zblj0FXCROSeqgRNs3v9xhjNOIcIUZknLg2InyMiQUxYzkNTeVJEH4Ho3IQFOOIiK9bHpJDo+0MoRhLPTjCk7V3x0ZimSxrK6MkBrLea8Q//MGqQrPvYzyJFWE49mgMGVQxbCIBQ6pIFixiSYIC6p3hXiMdBxKh1fTITjzJy+S7onlnFmnt41667KMowoOwCE4Bg5ogha4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AGN6Z7w==</latexit>

Kr

4
= 0.174
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L

<latexit sha1_base64="RrUf8TEK9SksVJKjKsaySHcGzco=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgqsyIj26EohuXFewDOkO5k8m0oZnMkGSEMhT8FTcuFHHrd7jzb8y0XWjrgZDDOfeSkxOknCntON/W0vLK6tp6aaO8ubW9s2vv7bdUkklCmyThiewEoChngjY105x2UkkhDjhtB8Pbwm8/UqlYIh70KKV+DH3BIkZAG6lnH3pBwkM1is2Ve8DTAVzXxj274lSdCfAicWekgmZo9OwvL0xIFlOhCQeluq6Taj8HqRnhdFz2MkVTIEPo066hAmKq/HwSf4xPjBLiKJHmCI0n6u+NHGJVJDSTMeiBmvcK8T+vm+mo5udMpJmmgkwfijKOdYKLLnDIJCWajwwBIpnJiskAJBBtGiubEtz5Ly+S1lnVvaxe3J9X6jezOkroCB2jU+SiK1RHd6iBmoigHD2jV/RmPVkv1rv1MR1dsmY7B+gPrM8fmvyV6Q==</latexit>

↵ = 8

<latexit sha1_base64="em+7060D3vJolNQAM3Ed6Kfpu/c=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4CokRasboejGZQX7gDaEyWTSDp1kwsxEKCEbf8WNC0Xc+hnu/BsnbRbaemCYwzn3cu89fsKoVLb9bVRWVtfWN6qbta3tnd09c/+gK3kqMOlgzrjo+0gSRmPSUVQx0k8EQZHPSM+f3BZ+75EISXn8oKYJcSM0imlIMVJa8syjoc9ZIKeR/jLsOfAa2lazkXtm3bbsGeAycUpSByXanvk1DDhOIxIrzJCUA8dOlJshoShmJK8NU0kShCdoRAaaxigi0s1mB+TwVCsBDLnQL1Zwpv7uyFAkix11ZYTUWC56hfifN0hVeOVmNE5SRWI8HxSmDCoOizRgQAXBik01QVhQvSvEYyQQVjqzmg7BWTx5mXQbltO0Lu7P662bMo4qOAYn4Aw44BK0wB1ogw7AIAfP4BW8GU/Gi/FufMxLK0bZcwj+wPj8Afs8lVw=</latexit>

c1 = 0.62

<latexit sha1_base64="lODPRsSHAEATPqLWvaIQBl+PZs4=">AAACEXicbVC7TsMwFHV4lvIKMLJYVEiVEFFSKDBWsDAwFIk+pDZEjuO2Vp2HbAepivILLPwKCwMIsbKx8Tc4aQZoOZLlc8+9V/fe40aMCmma39rC4tLyympprby+sbm1re/stkUYc0xaOGQh77pIEEYD0pJUMtKNOEG+y0jHHV9l+c4D4YKGwZ2cRMT20TCgA4qRVJKjV/tuyDwx8dWXYMc6wk4N3twnx6ZRT1VwkgdWmjp6xTTMHHCeWAWpgAJNR//qeyGOfRJIzJAQPcuMpJ0gLilmJC33Y0EihMdoSHqKBsgnwk7yi1J4qBQPDkKuXiBhrv7uSJAvsqVVpY/kSMzmMvG/XC+Wgws7oUEUSxLg6aBBzKAMYWYP9CgnWLKJIghzqnaFeIQ4wlKZWFYmWLMnz5N2zbDOjPrtaaVxWdhRAvvgAFSBBc5BA1yDJmgBDB7BM3gFb9qT9qK9ax/T0gWt6NkDf6B9/gCtFZuk</latexit>

c1 + c2L�0.5 + c3L�1

Figure 5.2: Behavior of the order parameter for the ohmic bath (left) and the subohmic bath
(right). ⟨cosϕ⟩ for s = 1, α = 1, and ⟨cos 2ϕ⟩ s = 0.5, α = 2 (top) (deep green) decay as power
laws, from which we can extract Kr/4 = 0.174 for the ohmic and Kr = 0.915 for the subohmic
bath, respectively. For s = 1, α = 8 and s = 0.5, α = 6, however, the order parameters saturate
to a constant. From fitting, we obtain c1 = 0.62, c2 = 0.603, c3 = −0.531 for the ohmic and
c1 = 0.096, c2 = 0.112, c3 = 3.37 for the subohmic case. From the variational self-consistent
solution, we find good quantitative matches in the LL liquid, where it predicts Kr,var/4 = 0.177
for the ohmic and Kr,var = 0.973 for the ohmic bath.

the phases vanishes exponentially as ∼ e−χπ2
6

L
β .

• The zero temperature limit β → ∞ and finite size regime is more interesting. In the LL
regime, the order parameter ⟨cos 2ϕ⟩LL

L,∞ vanishes again exponentially as ∼ e−ρs
π2
6

β
L .

In the dissipative phase, however, ⟨cos 2ϕ⟩diss
L,∞ either vanishes as a stretch exponential

∼ e− βs−1
L for superohmic bath, or it saturates to a constant for subohmic bath.

This is evidence of the fact that order is established even at finite size in the XXZ spin
chain at zero temperature when the baths are subohmic in nature and it is destroyed
when the baths are superohmic in nature. This ordering phenomenon can be related to
the phase transition observed in the Spin-boson (single particle) model in the presence
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of a subohmic bath [93,94].

• For our numerical simulations, we set L = β and send β → ∞. In this limit, one can
observe that:

⟨cos 2ϕ⟩LL
L=β=∞ ∼ L−Kr

⟨cos 2ϕ⟩diss
L=β=∞ ∼ σ1e

−π2
6 χ
(
1 + c1L

s
2 −1 + c2L

s−2
) (5.23)

(5.24)

where c2 is also a positive constant and accounts for finite-size corrections. Note that for a
generalized choice order parameter ⟨cosnϕ⟩, n ∈ Z, it decays as L−n2Kr

4 in the LL phase.
In the dissipative phase, however, the algebraic decay retains the same exponentials and
only the constants σ1, c1, and c2 get modified.

5.1.3 Spin-spin correlation
In this section, we calculate the spin-spin correlations, which tell us about the nature of the
order established due to the quantum phase transition in the system. The two-point spin
correlators, using eq. (2.30), are defined as:

⟨σzx,τσz0,τ ⟩ ∼ ⟨e2iϕ(x,τ)e−2iϕ(0,τ)⟩ cos (2qFx)
⟨σzx,τσzx,0⟩ ∼ ⟨e2iϕ(x,τ)e−2iϕ(x,0)⟩

(5.25)
(5.26)

While writing the definitions of the spatial and imaginary-time spin correlations, we use the
fact that the correlations will be governed by the behavior of the 2qF components, namely
the cos functions; and the ∇ϕ − ∇ϕ correlations add insignificant corrections to the calcu-
lation. As our variational propagators are quadratic in the fourier space, using eq. (B.22)
with eq. (B.4) and (B.5) respectively, the spatial spin-spin correlation can be re-written as
e−2⟨[ϕ(x,τ)−ϕ(0,τ)]2⟩ = e−2B(x) and similarly the imaginary time spin-spin correlation is equal to
e−2⟨[ϕ(x,τ)−ϕ(x,0)]2⟩ = e−2B(τ). Hence, we need to compute the roughness functions in the dif-
ferent phases to understand the spin-spin correlations. We will divide the roughness function
according to the contributions from zero and non-zero q and ωn components.

5.1.4 Spatial spin-spin correlation
To recall from eq. (B.7), the spatial roughness function in the fourier space is given by:

B(x) = 2
βL

∑
q,ωn

(1 − cos (qx))G(q, ωn) (5.27)
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One can immediately observe that the q = 0, ωn ̸= 0 terms go to 0 due to the cos qx term in the
numerator. The ωn = 0, q ̸= 0 contributions are the same for both the LL and the dissipative
phase:

2
βL

∑
q ̸=0

(1 − cos (qx))G(q, 0) = 4πχ
βL

∞∑
m=1

1 − cos qx
q2

∼ π2χ|x|
β

(5.28)

The q ̸= 0, ωn ̸= 0 term is different for the two different phases. For the LL phase, we can see
that this term will behave as ∼ Kr ln x for large x by replacing K with Kr and putting τ = 0
in eq. (B.17). In the dissipative phase, this contribution is given by:

2
βL

∑
q,ωn

(1 − cos (qx))Gdiss(q ̸= 0, ωn ̸= 0) = 2Kr

π

∞∫
0

dωn

Λ∫
0

dq
1 − cos (qx)
urq2 + ηωsn

ur

∼ c0 − a2|x|1− 2
s (5.29)

Where a2 = 2Kru
2
s−1
r η− 1

s Γ( 2
s

−1)
s

is a positive constant and c0 is the same constant from the order
parameter calculation. Putting all the terms together, we find for finite temperature in the
thermodynamic limit for large x, the spatial spin-spin correlators behave as:

⟨σzx,τσz0,τ ⟩LL ∼ e− 2π2χx
β x−2Kr cos(2qFx)

⟨σzx,τσz0,τ ⟩diss ∼ σ2
1e

− 2π2χx
β

(
1 + a2x

1− 2
s

)
cos(2qFx)

(5.30)

(5.31)

Where for the dissipative phase, we have expanded the exponential term ea2x
1− 2

s under the
large-x assumption up to the first order.

5.1.5 Imaginary time spin-spin correlation

The imaginary-time spin-spin correlation, just like the spatial one, can be expressed in Fourier
space as:

B(τ) = 2
βL

∑
q,ωn

(1 − cos (ωnτ))G(q, ωn) (5.32)

In this case, the ωn = 0, q ̸= 0 terms vanish due to the cosωnτ in the numerator. The summation
over q = 0, ωn ̸= 0 terms is different in the LL phase and the dissipative phase. For the LL
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Figure 5.3: A schematic diagram of the dissipative phase. The black arrows denote the spins
and the red boxes are the dissipative Caldeira-Leggett baths. The dissipative phase is a gapless
SDW with long-range order with periodicity π/qF .

phase, it can be calculated as:

2
βL

∑
ωn ̸=0

(1 − cos (ωnτ))GLL(0, ωn) = 4πKrur
βL

∞∑
n=1

1 − cos(ωnτ)
ω2
n

∼ π2ρsτ

L
(5.33)

And for the dissipative phase, it’s given by:

2
βL

∑
ωn ̸=0

(1 − cos (ωnτ))Gdiss(0, ωn) = 4πKrur
βLη

∞∑
n=1

1 − cos(ωnτ)
ωsn

∼ Krur
η

τ f1(s)

L
(5.34)

Where f1(s) = 0 for subohmic bath and f1(s) = 1 − s for superohmic bath. For ohmic bath,
τ f1(s) is replaced by ln τ . The contribution of the third term with q ̸= 0, ωn ̸= 0 terms for the
LL phase can be calculated to be Kr ln (urτ) from eq. (B.17). For the dissipative phase, it can
be calculated as:

2
βL

∑
q ̸=0,ωn ̸=0

(1 − cos (ωnτ))G(q, ωn) = 2Kr

π

∫ Λ

0
dωn

∫ ∞

0
dq

1 − cos(ωnτ)
urq2 + ηωsn

ur

∼ c0 − a1τ
s
2 −1 (5.35)
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Where a1 = K
η

Γ
(
1 − s

2

)
sin

(
πs
4

)
. Combining all the terms together, we find that for zero

temperature and finite L at large τ , the imaginary time correlations are given by:

⟨σzx,τσzx,0⟩LL ∼ e− 2π2ρsτ
L (urτ)−2Kr

⟨σzx,τσzx,0⟩diss ∼ σ2
1e

−Kuτf1(s)
ηL

(
1 + a1τ

s
2 −1

) (5.36)

(5.37)

5.1.6 Nature of the dissipative phase

From the order parameter analysis, we already understood that symmetry is broken in the
dissipative phase at zero temperature, and even at finite temperature for subohmic bath. From
eq. (5.31), we understand that the order starts decaying exponentially fast after a length scale
of ∼ β/(2π2χ) at finite β in the dissipative phase. However, at 0 temperature (β → ∞), the
connected spatial and imaginary time correlations exhibit a decay in power-law fashion, and
the exponents increase as s decreases, i.e., the bath becomes slower in nature. In particular, at
large-x we see the signature of spatial long-range order :

lim
x→∞

⟨σzx,τσz0,τ ⟩diss = σ2
1 cos(2qFx) (5.38)

All these pieces of evidence point towards the fact that there is, indeed, a quantum phase
transition (phase transition at 0 temperature) induced in the LL phase by the dissipative
environment. The new, dissipative phase is a SDW with spatial long-range order of
period π/qF (fig. (5.3)). The order is established by the spontaneous breaking of the symmetry
ϕ → ϕ+c due to the long-range nature of the contribution from the baths. The SDW excitations
are bosonic modes resulting from the symmetry breaking, and as the symmetry is continuous
in nature, these modes are gapless, obeying the Goldstone theorem.

5.2 Dynamical properties: Conductivity and
Charge stiffness

We have discussed the thermodynamical properties of the incommensurate dissipative spin
chain until now. In this section, we will analyze various dynamical properties of the system. In
particular, we will focus on two quantities: Charge stiffness and DC Conductivity of the dissi-
pative phase. In the following calculations, we will use the concepts of analytical continuation
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and response function formalism heavily. More details can be found in [37,88].

We start with the microscopic Ohmic law, which makes a correlation between current density,
conductivity, and electric field respectively via j(q, ω) = σ(q, ω)E(q, ω). Note that ω corre-
sponds to the frequency modes corresponding to real-time t. Using the Kubo procedure, we ap-
ply an electric field E(t) = E0e

−i(ω+iϵ)t to the system, where ϵ = 0+ is a small positive quantity.
This electric field can be associated with a time-dependent potential E(x, t) = −∂A(x, t)/∂t.
The current operator can thus be derived as a functional derivative of the Hamiltonian (not
the action) of the system, given by j(x, τ) = −∂H/∂A(x, t).

Considering response up to the linear order in A, one can show that the average current density
is given by:

⟨j(x, t)⟩ =
∫
dx′dt′

[
∂2H

∂A(x, t)∂A(x′, t′)

∣∣∣∣∣
A=0

− ⟨j(x, t)j(x′, t′)⟩ret

]
A(x′, t′) (5.39)

Where ⟨. . .⟩ret denotes retarded correlation function. The first term is known as the diamagnetic
term. In our case, the Hamiltonian of the spin chain H, given by eq. (2.25) is quadratic in
Π(x). In the presence of the vector potential A, one needs to substitute Π → Π − eA

π
; and thus

the diamagnetic term D can be computed by:

D = uK

2π
∂2

∂A(x, t)∂A(x′, t′)

∫
dx

[(
πΠ(x) − eA

π

)2
+ (∇ϕ(x))2

] ∣∣∣∣∣
A=0

= uKe2

π
δ(x− x′)δ(τ − τ ′) (5.40)

The 2nd term in eq. (5.39) is easier to compute in the imaginary time formalism as ⟨j(x, t)j(x′, t′)⟩ret =
−⟨j(x, τ)j(x′, τ ′)⟩ = −(euK)2⟨Π(x, τ)Π(x′, τ ′)⟩, as j(x, τ) = e(uK)Π(x, τ). The action S is
quadratic in Π(x, τ) as well (eq. (2.31)), hence one can complete the square with Π(x, τ) to
obtain a gaussian action with average i

uKπ
∂τϕ and variance 1

πuK
δ(x − x′)δ(τ − τ ′). Thus, the

correlation function is given by:

(euK)2⟨Π(x, τ)Π(x′, τ ′)⟩ = uKe2

π
δ(x− x′)δ(τ − τ ′) − e2

π2 ⟨∂τϕ(x, τ)∂τ ′ϕ(x, τ ′)⟩ (5.41)

Thus, the first term from eq. (5.41) cancels the diamagnetic term exactly, the surviving cor-
relation term determines the behavior of the conductivity in the system. In eq. (5.39), us-
ing the relationship between the electric field and the vector potential in the fourier space

69



A(q, ω) = −i
ω+iϵE(q, ω) = −1

ωn
E(q, ωn), we see that:

⟨j(q, ω)⟩ = e2

π2βL
[ωn⟨ϕ(q = 0, ωn)ϕ∗(q = 0, ωn)⟩]iωn→ω+iϵE(q, ωn)

=⇒ σ(ω) = e2

π2βL
[ωn⟨ϕ(q = 0, ωn)ϕ∗(q = 0, ωn)⟩]iωn→ω+iϵ (5.42)

Where we have used the standard analytical continuation between real frequency ω and mat-
subara frequency ωn, given by iωn → ω + iϵ. Note that the conductivity depends only on the
0 mode of the momentum as it is independent of the position x. This derivation is powerful
as it relates the conductivity of the system to the ϕ − ϕ correlator. Even in the presence of
the dissipative bath, this derivation remains unchanged because the contribution of the bath is
independent of Π(x), so we can use this formulation to compute the conductivity of both the
LL phase and the dissipative phase.

5.2.1 LL phase

In the LL phase, ⟨ϕ(q = 0, ωn)ϕ∗(q = 0, ωn)⟩ = βLπurKr
ω2
n

. Substituting this in eq. (5.42), we
find:

σ(ω)LL = (urKr)
e2

π

( 1
ωn

) ∣∣∣∣∣
iωn→ω+iϵ

= ie2

π
(urKr)

ω − iϵ

ω2 + ϵ2 (5.43)

When the applied electric field is constant in time E(t) = E0, the relevant physical observable
is DC conductivity, given by σDC = lim

ω→0
Re[σ(ω)], where Re[. . .] denote the real part of the

quantity. Setting ω → 0, we can see that for ϵ = 0+:

lim
ω→0

Re[σ(ω)] = e2(urKr)δ(ω) (5.44)

The DC conductivity in the LL phase displays a Drude peak [95, 96], which indicates that the
system is perfectly conducting in nature with infinite DC conductivity. The quantity (urKr)/π
is known as the charge stiffness [97] and we will discuss it in more detail in the last section.
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5.2.2 Dissipative phase

In the dissipative phase, the two-point correlation function is given by ⟨ϕ(q = 0, ωn)ϕ∗(q =
0, ωn)⟩ = βLπurKr

η|ωn|s . Using eq. (5.42), We find that:

σ(ω)diss = e2

π

(
urKr

η

)(
ωn

|ωn|s

) ∣∣∣∣∣
iωn→ω+iϵ

= e2

π

(
urKr

η

)
ϵ− iω

(ω2 + ϵ2)s/2 (5.45)

Just like the LL phase, the static limit or the DC conductivity can be calculated by taking the
real part of the conductivity and going to the ω → 0 limit. That gives us:

σdiss
DC = e2

π

(
urKr

η

)
ϵ1−s (5.46)

Eq. (5.46) is very interesting. It tells us that the DC conductivity of the dissipative phase
behaves very differently depending on the bath exponent s.

• If the bath is superohmic (s > 1), the exponent of the ϵ is negative. This means that
the static conductivity diverges, and it diverges slower compared to the Drude peak
in the LL phase. However, the system still remains conducting in nature.

• For an ohmic bath, σLL
DC ∼ e2

η(α) is a constant. The static conductivity is finite and
inhibited, and it decreases as the coupling to the bath is increased.

• The most interesting case corresponds to the subohmic bath (s < 1). In that case, the
DC conductivity vanishes to 0, which is the signature of an insulating phase.

The absence of DC conductivity in the dissipative phase can also be interpreted as a signature
of “localization”. This localization phenomenon is different than the famous Anderson local-
ization [1], in which case the spatial two-point correlation decays exponentially (Recall that
in the dissipative phase, they are long-range ordered with power-law decay). It would also
be interesting to investigate the conductivity of this phase at a finite temperature. The true
nature of this localization is yet to be understood.
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5.2.3 Charge stiffness

Here we discuss the charge stiffness of the system D, which is a measure of the system’s ability
to sustain current. It can be derived in many different ways, e.g. - by considering the system
as a ring and measuring the current in it when a magnetic flux is present or by taking double
derivative of the ground state energy of the system with respect to the magnetic flux [98, 99],
etc. However, here we show the simplest derivation from the correlation function perspective.
This is very similar to the derivation of susceptibility χ (Section 5.1.1), so we don’t show it
separately here and provide the final result. The charge stiffness is given by:

D = lim
ωn→0

lim
q→0

− ωn
π2βL

∑
q2,ωn2

ωn2⟨ϕ(q, ωn)ϕ(q2, ωn2)⟩ (5.47)

Note that to calculate D, one needs to first take the q → 0 limit and then the ωn → 0 limit
as this is a transport-related quantity. Just like previous calculations, one can see that in the
LL phase DLL = (urKr)/π, whereas in the dissipative phase for any s < 2, Ddiss = 0. This
signifies that the Drude peak vanishes in the dissipative phase, which we have already seen
from the conductivity calculation.

At zero temperature, the charge stiffness is equal to another quantity known as spin stiffness
or superfluid density ρs [100]. A finite value of ρs indicates the presence of superfluid
excitations in the system. As we already know, the LL phase contains superfluid excitations,
hence ρsLL = urKr/π is finite in this phase. In the dissipative phase, the excitations are SDW,
hence ρsdiss = 0.

5.3 Numerical results

In this section, we will discuss the results of the numerical simulations of the incommensurate
dissipative system, specifically, of the action given by eq. (2.1). As we have discussed in Section
3.3 and Appendix C, we numerically simulate the Langevin dynamics of the action to generate
equilibrated configurations. We calculate various correlation functions on these configurations,
and then we verify their behaviors against the analytical predictions. For the simulations, we
chose an ohmic bath (s = 1) and a subohmic bath (s = 0.5). For the ohmic case, Kc = 0.5,
and we chose the initial value of K = 0.75. On the other hand, KC = 0.75 for s = 0.5, and here
we took the initial value to be K = 1. We traverse the K − α phase space by fixing the value
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Figure 5.4: Behavior of C(ωn) in the two different phases for the ohmic (left) and the subohmic
bath (right). For s = 1, α = 1 and s = 0.5, α = 2 (top), ωnC(ωn) converges to a constant for
small ωn. The extracted value of Kr = 0.698 for the ohmic and Kr = 0.92 for the subohmic
bath from this analysis. However, √

ωnC(ωn) and ω1/4
n C(ωn) goes to constant 1/√αr = 0.392

and 1/√αr = 1.072 for small-ωn for s = 1, α = 8 and s = 0.5, α = 6 (bottom), respectively.
The averages were done over 6000 to 12000 configurations. The variational analysis (green
points) has a good quantitative prediction in the LL phase with Kr,var = 0.726 for the ohmic
and Kr,var = 0.968 for the subohmic bath. However, it overestimates the prediction and doesn’t
capture the dissipative phase quantitatively.

of K and then increasing the value of α. For each value of α, we simulate configurations of
different sizes while keeping β = L, i.e., the configurations are square-shaped. We also enforce
periodic boundary conditions on both x and τ direction. The value of u is fixed to be 1 for
all the simulations. Keeping all these parameters in mind, let us now look at the numerical
results:

• Calculation of χ: Instead of directly calculating χ, we instead calculate q2G(q, ωn = 0)
as a function of q, where G(q, ωn) = βL⟨ϕ∗(q, ωn)ϕ(q, ωn)⟩. From eq. (5.5), one can see
that this quantity is equal to the ratio πχ = Kr/ur. From fig. (5.1), we see that
q2G(q, ωn = 0) is equal to the initial value of K/u for all values of q, which is equal to
0.75 for the ohmic case and 1 for the subohmic case. Thus, we are able to numerically
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establish the existence of statistical tilt symmetry in the action.

• Calculation of C(ωn): One of the fundamental results that we found during our anal-
ysis is that the low-energy propagator of the dissipative phase has a gapless |ωn|s de-
pendence. To see this behavior explicitly, we definite a quantity C(ωn) = 1

πL

∑
q
G(q, ωn).

Using eq. (5.1) and eq. (5.2), one can average over the q modes of the variational prop-
agators of both phases in the thermodynamic limit. The small-ωn behavior of C(ωn) is
then given by:

C(ωn → 0)LL = Kr

2ωn
C(ωn → 0)diss = 1

√
αrωsn

(5.48)

(5.49)

Where in eq. (5.49), αr = 4η/K2
r . From fig. (5.4), top, we see that indeed for s = 1, α = 1

and s = 0.5, α = 2, ωnC(ωn) goes to a constant. From eq. (5.49), we see that this con-
stant is Kr/2. Thus we are able to extract Kr in the LL phase from the numerical
solution. However, for s = 1, α = 8 and s = 0.5, α = 6 (fig. (5.4), bottom), we see
that the convergence at small ωn is obtained from ω

s
2
nC(ωn). In this phase, the physical

meaning of Kr is lost as we understood from the RG and variational analysis; instead,
the quantities that regulate the phase are Kr/ur and αr. From the saturation value of
the plot 1/√αr, we can extract this quantity as well.

We also numerically simulated the self-consistent equation (eq. (4.35)) for the same
values of s,K, and α to check how good the variational ansatz quantitatively is. Fig.
(5.4), top tells us that in the LL phase for moderate values of α, the variational ansatz is
pretty good in predicting the renormalized values of the LL parameters. However, as α
is increased, the quantification starts becoming more and more unreliable. Specifically,
the variational method overestimates the phase transition. We can understand from
fig. (5.4), bottom that the variational method predicts that the system is still in the LL
phase, whereas the actual simulation indicates that the system is in the dissipative phase.

Note that another quantity that trivially comes to mind for analyzing the ωn-dependence
of the propagator is G(q = 0, ωn). We started our analysis with this quantity; however,
the simulation data for G(q = 0, ωn) turned out to be extremely noisy. However, inte-
grating out the q modes reduces the noise, thus making it easier for us to understand
the saturation of the above-mentioned quantities and to extract the renormalized values
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Figure 5.5: Phase diagram for the ohmic bath (left) and the subohmic bath(right). The ratio
Kr/ur (red squares) remains constant for all values of α. As α increases, Kr, both obtained from
⟨cos 2ϕ⟩ (purple circles) and C(ωn) (blue triangle) decreases and approaches Kc = 1 − (s/2).
In the dissipative phase, αr increases (green solid circles) rapidly as α increases. We identify
the critical regime for both cases to be αC ∈ (3, 4).

of the parameters.

• Calculation of order parameter : Finally, we calculate the order parameter
⟨cosn (ϕ− ϕCoM)⟩ with n = 1 for the ohmic case and n = 2 for the subohmic case.
Recall that ϕCoM is the same as ϕ(q = ωn = 0), which we set to zero in our analytical
calculation as well (Section 5.1.2). As we took L = β, the analytical predictions for
the LL and the dissipative phase are given by eq. (5.23) and eq. (5.24), respectively.
Indeed, from fig. (5.2), top, we see that for s = 1, α = 1, ⟨cos((ϕ− ϕCoM))LL⟩ ∼ L−Kr/4,
and for s = 0.5, α = 2, ⟨cos(2 (ϕ− ϕCoM))LL⟩ ∼ L−Kr . We are also able to extract the
value of Kr from this fitting, and they match quite closely with the ones extracted from
the C(ωn) analysis. On the other hand, for s = 1, α = 8 and s = 0.5, α = 6, the order
parameter saturates to a constant with an algebraic decay as ⟨cos(n (ϕ− ϕCoM))diss⟩ ∼
c1+c2L

1− s
2 +c3L

2−s (fig. (5.2), bottom), which is exactly the decay that was predicted by
the variational method. We also calculated the order parameter from the variational self-
consistent equation for the LL phase (as we saw before, it overestimates the transition in
the dissipative phase), and as expected, the ansatz is quantitatively close to the actual
simulations.

The numerical results in Section 5.3 confirm our predictions about the behavior of the two
phases. We see that the system either remains in the LL phase with renormalized values of Kr

(and thus ur as Kr/ur remains invariant and equal to K/u), or it enters into a gapless ordered
phase with a fractional low-energy behavior of |ωn|s. We also plot Kr and αr as a function
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of α for both ohmic and subohmic cases (fig. (5.2)). From these results, we can see the flow
of the parameter as the coupling to the dissipative environment is increased. We see that for
both the ohmic and the subohmic case, Kr/ur always remains constant obeying the statistical
tilt symmetry. However, as α is increased, Kr starts to decrease and approach Kc = 1 − s/2.
It can then be inferred that ur also decreases, hence the spin stiffness and charge stiffness
ρs = D = urKr/π decreases as the system approaches the critical point. In the dissipative
phase, Kr loses physical meaning. However, αr starts rapidly increasing as α increases and the
phase becomes more dissipative in nature. From the plots, we identify the critical regime as
αc ∈ (3, 4) for the ohmic bath and the subohmic bath.

5.4 Discussion

This section is dedicated to a comprehensive discussion of our results in comparison to some of
the other important contemporary works that have been done on similar open quantum systems.
While doing a bibliographical survey, we found two important papers that turned out to be
extremely relevant to this work. The first one was [87], where they studied the quantum phase
transition in a one-dimensional quantum wire coupled with a dissipative metallic gate. The
study was fully analytical in nature with an emphasis on the bosonization method which they
used to arrive at a similar 1 + 1 dimensional long-range cosine potential coming from the gate,
and the perturbative RG method which results in the same flow equations as our incommen-
surate system (eq. (4.12) and eq. (4.13)). They predicted the dissipative phase to be gapless
and spatially long-range ordered and also commented about the dissipative phase having finite
DC conductivity for an ohmic bath; however, their analysis lacked numerical evidence and a
deeper insight into the physical nature of the dissipative phase. The other relevant work [101]
was fully numerical in nature: Quantum Monte-Carlo techniques were implemented on a one-
dimensional system of many-body interacting hardcore bosons with local Caldeira-Leggett type
baths, and the authors found the dissipative phase (referred in the letter as bath induced Bose
Liquid) to have increased susceptibility, non-zero conductivity, and zero gap. Moreover, they
deemed the phase transition to have a dynamical exponent z = 2, which contradicts the results
of [87] where the transition was found to be of BKT type (z = 1).

This motivated us to do a thorough study of the system with both numerical and analyti-
cal techniques that, first of all, would be self-contained, and would also be able to corroborate
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the previously mentioned studies. Analytically, we chose a variational approach, which is more
powerful than the harmonic expansion done in [87]; the self-consistent nature of this technique
allowed us to verify the location of the critical point, and arrive at a powerful low-energy descrip-
tion of the dissipative phases with additional finite size corrections which allows us to be more
precise regarding our numerical analysis. Additionally, we were able to observe a variational
renormalization of the LL parameters in the LL phase. To be able to properly characterize the
dissipative phase against the existing LL phase, we wanted to calculate both thermodynamical
and dynamical (transport-related) quantities. With a simple statistical tilt symmetry argu-
ment, we showed the invariance of χ in the dissipative phase, which refuted the claim of the
numerical work. We also defined an order parameter for this transition ⟨cos 2ϕ⟩ and related it
to a physical observable (amplitude of an SDW), thus being able to pinpoint the exact nature
of the dissipative phase. Our analyses also showed that the system has spatial long-range order
and gapless fractional low-energy excitation in ωn, however, we made additional arguments
regarding the presence or absence of the order at the finite size and finite temperature limit of
the system for different types of baths. Finally, from our transport analysis, we showed that
the dissipative phase is specifically insulating when the baths are subohmic. This observation
was missing from the previous works. However, The authors claimed the existence of a third
gapped, Bose-Einstein condensation-like phase in [87] by performing a large-N approximation
of the action, which we don’t find via our analysis.

Our work fortifies the results of [87] accompanied by additional observations and refutes some
of the claims in [101]. We have certain hypotheses regarding the disparities. One possibility is
that the incommensuration parameter that they used in their simulations is really small, which
could have resulted in a different kind of phase transition than the one observed in our system.
Also, the system sizes in the Monte Carlo simulations were quite small, which could potentially
give rise to large finite-size effects. The implementation of the bosonization method ensured
that the system was incommensurate enough, and the numerical Langevin analysis enabled us
to arrive at much larger system sizes. Also, in [101], they perform the numerical analyses on
the microscopical system itself, whereas we map the system onto a classical system; so there
could be some microscopic phenomenon that might not have been captured by the bosonization
procedure. However, this possibility remains remote.

The discussions and results until now (from Chapter 2 to 5) have resulted in one publica-
tion [11] and one pre-print in Arxiv [12]. For the convenience of the readers, we have put the
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two papers before the bibliography. In the final chapter (Chapter 6), we will briefly discuss our
analysis of the commensurate case, which is an ongoing work.
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Chapter 6

Commensurate Phase

In this chapter, we discuss the zero-temperature phase diagram of the 1D XXZ spin chain at
zero magnetization coupled with local dissipative baths. As it has already been derived in
Chapter 2, this system can also be mapped onto a classical action, given by eq. (2.2). This
is an ongoing work with O. Bouverot-Dupuis, L. Foini, and A. Rosso, and here we describe
only certain important developments that we have made. Specifically, we show that just like
the incommensurate model, there exists a BKT phase transition in the commensurate case.
However, the location of the critical point Kc = 1 − s

2 for subohmic bath, and Kc = 1/2 for
ohmic and superohmic bath. We also find that here, the previously described gapless SDW
phase is replaced by a gapped AFM phase, described by the effective gaussian action:

Sdiss,comm = 1
2πKr

(
urq

2 + ω2
n

ur
+ ∆2

ur

)
(6.1)

Where ∆ has the dimension of energy (in natural units, L−1) and is independent of ωn or q. It
represents the mass of the excitations or the gap in the low energy spectrum of the system.
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6.1 Variational analysis

To recall from before, the action of the commensurate spin chain in the presence of local
dissipative baths is given by:

Stot,C = SSG + Sint + Sint,C

SSG = 1
2πK

∫
dxdτ

[
u(∇ϕ(x, τ))2 + 1

u
(∂τϕ(x, τ))2

]
− g

2π2

∫
dxdτ cos (4ϕ(x, τ))

Sint = − α

4π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) − ϕ(x, τ ′))}]

|τ − τ ′|1+s

Sint,C = − α

4π2

∫
dxdτdτ ′ cos [2 {(ϕ(x, τ) + ϕ(x, τ ′))}]

|τ − τ ′|1+s (6.2)

A perturbative RG analysis of a similar action was done in [102] in the context of superfluid
to mott insulator transition in a mixture of heavy bosons confined to move in one dimension and
light fermions acting as ohmic dissipative baths for the bosons. The existence of a BKT phase
transition was discovered in this system in the parametric plane of K − g, and the dissipative
phase was found to be a fractional mott phase. However in our case, we investigate the system
in the presence of a bath with general exponent s, and we are interested in understanding the
phase diagram in the K − α plane. To do that, we once again rely on the variational method
to understand the nature of the dissipative phase.

We start from eq. (3.3), where we replace Sint with SSG + Sint + Sint,c from eq. (2.2). We
have already done these averages previously in the thesis. ⟨Sint⟩Svar has been calculated in the
discussion of the variational method of the Sine-Gordon model (eq. (3.4)), and similarly the
average ⟨Sint⟩Svar is discussed in the variational analysis of the incommensurate spin chain (eq.
(4.24)). For ⟨Sint,C⟩Svar , it will be the same term as the incommensurate term, with 1 + cosωnτ
in the argument of the exponential instead of 1 − cosωnτ . Putting all these terms together, we
find that in the thermodynamic limit,

G−1
var = 1

πK

(
uq2 + ω2

n

u

)
+ 2α
π2

∫
dτ

(1 − cosωnτ)
τ 1+s e− 4

π2
∫∞

0 dq′dωn′Gvar(q′,ωn′ )(1−cosωn′τ)

+8g
π2 e

− 8
π2
∫∞

0 dq′dωn′Gvar(q′,ωn′ ) + 2α
π2

∫
dτ

(1 + cosωnτ)
τ 1+s e− 4

π2
∫∞

0 dq′dωn′Gvar(q′,ωn′ )(1+cosωn′τ) (6.3)

Let us assume that the dissipative phase of this system is described by the following variational
propagator Gvar = πKr

[
urq

2 + η|ωn|s
ur

+ ∆2

ur
+ ω2

n

ur

]−1
, as it was suggested in [102]. One can

80



expect in general a ω2
n term coming from the cosωnτ terms in eq. (6.3) which will eventually

renormalize the LL parameters to Kr and ur. Now we analyze eq. (6.3) to understand the
behavior of η and ∆.

• Determination of η: Let us first try to analyze the coefficient of the fractional term η

and understand what contributes to this coefficient. In the argument of the exponential
in the 2nd and the 4th term in eq. (6.3), the integrals produce a constant and a τ -
dependent term. The constant, multiplied with the cosωnτ produces the |ωn|s term
when integrated over τ . However, the two cosωnτ terms, corresponding to the 2nd and
the 4th term, have the same coefficient and with opposite signs. Thus, they must cancel
each other, resulting in η = 0, implicating that the fractional excitation term |ωn|s is
absent in the commensurate dissipative spin chain.

• Behavior of ∆: Before we proceed to analyze the behavior of the gap, let us first
elaborate on the reasoning behind putting a gap term in the variational ansatz. The
third term in eq. (6.3) is the same term that is responsible for the gap in the Sine-Gordon
model. Thus, we can expect it to do the same in the commensurate dissipative case. To
calculate the analytical form of ∆, we set q = ωn = 0 on both sides of eq. (6.3). The
1st and the 2nd term vanish and we obtain a self-consistent equation for the gap:

∆2

urKr

= 8g
π
e− 8

π2
∫∞

0 dq′dωn′Gvar(q′,ωn′ ) + 4α
π

∫ dτ

τ 1+s e
− 4
π2
∫∞

0 dq′dωn′Gvar(q′,ωn′ )(1+cosωn′τ) (6.4)

Now we can compute the integrals in the exponential functions in eq. (6.4) using Gvar =
πKr

[
urq

2 + ∆2

ur
+ ω2

n

ur

]−1
(where we have already put η = 0) to understand the behavior

of ∆. Just like before, we integrate out the q′ modes, and find:

∆2

urKr

= 8g
π
e

−4Kr
∫ Λ

0
dωn′√
∆2+ω2

n′ + 4α
π

∫ dτ

τ 1+s e
−2Kr

∫ Λ
0 dωn′

1+cosωn′τ√
∆2+ω2

n′ (6.5)

Where Λ is a high-energy cut-off. The first integral on the right-hand side was already
computed in Section 3.2.2 and it is approximately equal to ln(Λ/∆) for small-∆ expan-
sion. Similarly, the second integral produces ln(Λ/∆2)− ln τ −γE. Putting all the terms
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AFM

Figure 6.1: Tentative phase diagram for the commensurate dissipative spin chain. left: In the
K − s plane for small α, the system is in the dissipative phase for K < Kc = 1 − (s/2) for
subohmic bath 0 < s < 1 and for K < Kc = 1/2 for ohmic and superohmic bath (s ≥ 1),
and remains in the LL phase for K ≥ Kc. right: For a fixed value of s, the commensurate
dissipative spin chain is in the LL phase for K ≥ Kc, α ≤ αc. For K < Kc or K > Kc, α > αc,
the system enters into a gapped antiferromagnetic phase.

together, we find:

.
∆2

urKr

= 8g
π

(
∆
Λ

)4Kr

+ 4α
π
e2KrγE

(
∆2

Λ

)2Kr ∫ 1/∆

τc
dτ 2K−1−s

=⇒ ∆2

urKr

= 8g
π

(
∆
Λ

)4Kr

+ 4α
π
e2KrγE

(
∆2

Λ

)2Kr ∆s−2Kr − τ 2Kr−s
c

2Kr − s
(6.6)

Where τc is the timescale after which the bath behaves as the power law. Eq. (6.6)
can be reformulated and simplified as ∆2 ∼ a1∆4Kra1 − a2

s−2Kr
∆4Kr+(s−2Kr) (I have

written the exponents in this form for a better understanding of the discussions in the
following paragraphs), where a1 = 8g

πΛ4Kr + 4ατ2Kr−s
c e2KrγE

π(s−2Kr)Λ2Kr and a2 = 4αe2KrγE
πΛ2Kr are constants

smaller than 1. A careful examination of this equation tells us the value of the critical
point Kc for small values of α and g.

6.2 Phase diagram
In this section, we analyze the self-consistent equation for the gap ∆ (eq. (6.6)) for different
types of baths, which lets us sketch out a plausible phase diagram of this system.

• s − 2Kr > 0: When Kr < s/2, the right hand side of eq. (6.6) is dominated by the
first term with ∆4Kr . In this case, the non-trivial finite solutions for ∆ are given by
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∆ ∼ a
1

2−4Kr
1 . The form of the exponential tells us that the critical point Kc = 1/2 for

the phase transition, i.e., ∆ is finite only for Kr < 1/2. We also understand that for
the gapped phase, 2Kr < 1 =⇒ −2Kr > −1, hence 1 < s < 2 to satisfy the initial
condition of s− 2Kr > 0. Thus, this solution is valid for superohmic baths.

• s − 2Kr < 0: On the other hand for Kr > s/2, 4Kr > 4Kr + (s − 2Kr). Thus, the
leading term on the right-hand side of eq. (6.6) is ∆4Kr+(s−2Kr) = ∆s+2Kr . Now, the
finite non-trivial solution of ∆ is given by ∆ ∼ a

1
2−s−2Kr
2 , signifying that Kc = 1 − s

2

and ∆ is non-zero only for Kr < Kc. We also see that in this regime, s < 2Kr < 2 − s,
and this condition is only satisfied when 0 < s < 1. Hence, we understand that this
behavior of ∆ is satisfied only for subohmic baths.

• s = 2Kr: From the previous two cases, we see that they are continuous and match with
each other for s = 1, Kc = 1/2, and this corresponds to s = 2Kr. However, in this case,
the denominator s−2Kr in eq. (6.6) blows up, leading us to believe that there is a small
logarithmic correction for Kc that regulates this divergence. Indeed, expanding the 2nd
term as as−2Kr ≈ 1 + (s− 2Kr) ln a for small s− 2K, we find:

∆2 ≈ g∆4Kr + α∆4Kr

2Kr − s
[(1 + (s− 2Kr) ln ∆) − (1 + (2Kr − s) ln τc)]

= ∆4Kr (g + 2α ln ∆τc) (6.7)

Thus the second term leads to a small logarithmic correction, which needs to be inves-
tigated more.

From these results, we understand that in the commensurate case, the dissipative phase is a
gapped phase and expect fig. (6.1) to be the tentative phase diagram of the commensurate
dissipative system in K − s plane for α → 0 (left) and in the α −K plane for a fixed value of
s (right).

6.3 Numerical Results
With the variational analysis done above, we are currently doing the numerical simulation of
the commensurate dissipative spin chain as before. In this section, we show the results for the
superohmic bath (s = 1.5), K = 0.75 > Kc = 0.5 and g = 1. For all values of α, we increase L
as β. As the symmetric phase of the commensurate action is still LL, we expect the behavior
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L�Kr

Figure 6.2: Different correlation functions and the order parameter in the commensurate case
for superohmic bath (s = 1.5) for α = 0.65 (top row) and α = 8 (bottom row). The values of
the parameters are K = 0.75, g = 1, and u = 1, respectively. left: πχ is finite and equal to the
initial value 0.75 for α = 0.65 and vanishes for α = 8. middle: For α = 0.65, ωnC(ωn) saturates
to Kr/2 = 0.348, whereas for α = 8, C(ωn) saturates to 1/∆r = 0.021 for small ωn. right: The
order parameter ⟨cos 2ϕ⟩ decays with size as a power law L−Kr with Kr = 0.681 for α = 0.65,
whereas it remains constant c1 = 0.914 for α = 8.

of the correlation functions as we have discussed in Chapter 5. In the upcoming sections, we
will show that indeed the dissipative phase in this case is a gapped AFM phase with vanishing
susceptibility.

• Calculation of χ: Using the formulations of eq. (5.5), We see that in the dissipative
phase:

χdiss,com = −qKr

π

∑
q2,ωn2

q2

urq2 + ω2
n

ur
+ ∆2

ur

δq1,−q2δωn1 ,−ωn2

= Kr

π

q2

urq2 + ω2
n

ur
+ ∆2

ur

(6.8)

This shows that in the dissipative phase in the thermodynamic limit,
χ(q → 0, ωn → 0)diss,com = 0. Indeed, it can be observed from eq. (2.2) that the action
of the system Stot,C is not invariant under the statistical tilt symmetry ∇ϕ → ∇ϕ + c,
hence χ is not preserved in the dissipative phase, unlike the incommensurate case. From
fig. (6.2), left, we see that for small α, the susceptibility χ is finite and equal to the bare
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Figure 6.3: (1/∆r) − C(ωn) for the dissipative phase (s = 1.5, K = 0.75, g = 1, α = 8). This
quantity fits well with 9 × 10−5ω2

n for small ωn, which is the sub-leading ωn dependence of the
propagator in the commensurate dissipative phase.

value K/u = 0.75, indicating that the system is in the LL phase. However, for α = 8,
χ(q → 0) vanishes rapidly, which corresponds to the dissipative phase.

• Calculation of C(ωn): Just like the incommensurate case, one can calculate C(ωn) =
1
πL

∑
q
G(q, ωn) for the commensurate case as well. In this case, we see that

C(ωn → 0)LL = Kr

2ωn
C(ωn → 0)diss = 1

∆r

(6.9)

(6.10)

where ∆r = 2∆/Kr. Thus, in the commensurate dissipative case, C(ωn) itself goes to a
constant due to the presence of the gap for small values of ωn. Indeed, from fig. (6.2),
middle, we see that for α = 0.65, ωnC(ωn) saturates to a constant Kr/2; whereas for
α = 8, C(ωn) plateaus, which is a signature of the dissipative phase having a gap.

We also previously argued that the fractional term |ωn|s is absent in this system. To
extract the sub-leading ωn-dependence, we subtract the constant 1/∆r from C(ωn). For
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small-ωn, one can see that,

1
∆r

− Kr

2
√

∆2 + ω2
n

≈ 1
∆r

− Kr

2∆

[
1 − 1

2

(
ωn
∆

)2
]

= 1
∆r

(
ωn
∆

)2

In fig. (6.3), we plot (1/∆r) −C(ωn) as a function of ωn in log-log scale. This quantity,
for the small-ωn range, fits well with ω2

n, which points to the fact the sub-leading ωn

behavior is indeed ω2
n and the fractional laplacian term |ωn|s is absent.

• Calculation of ⟨cos 2 (ϕ− ϕCoM)⟩: Without calculating explicitly, we expect the
order parameter of the phase transition to decrease in the symmetric phase and saturate
to a constant in the ordered phase as system size L and β is increased. From fig. (6.2),
right we expect that for α = 0.65, ⟨cos 2 (ϕ− ϕCoM)⟩ ∼ L−Kr indeed decreases as a
power law, whereas for α = 8 it remains constant and finite for all values of L. The
value of Kr extracted from the order parameter analysis 0.681 is also quite close to that
from the C(ωn) analysis 0.696. All this information points towards the fact that in the
commensurate case, the dissipative phase is gapped and has vanishing susceptibility.

6.4 Discussion
In this section, we make a couple of remarks regarding the commensurate dissipative phase.
Firstly, unlike the incommensurate case, the action of the commensurate case (eq. (2.2)) is in-
variant under the discrete symmetric transformation ϕ → ϕ+ π/2. This is the same symmetry
that gets broken in the Sine-Gordon model, leading to a gapped antiferromagnetic case; and
one can expect the same scenario to happen in the commensurate dissipative spin chain. But
how to draw parallels with the incommensurate system? Putting qF = π/2a in eq. (5.12), we
see that in the commensurate case, ⟨σz(x)⟩ = σ0 + (−1)j⟨cos 2ϕ⟩, where we have assumed the
system is described by x = xj = aj on a discrete lattice. In the dissipative phase, when the
ϕ → ϕ + π/2 symmetry is broken, ⟨cos 2ϕ⟩ is finite, and the alternatively changing sign (−1)j

signifies the presence of an antiferromagnetic phase.

Physically, one can view the effect of the cos(2ϕ(τ) + 2ϕ(τ ′)) term coming from the dissi-
pative bath as an enhancer to the already existing cos 4ϕ term. This can be understood in
two ways. Firstly, for τ ≈ τ ′, cos(2ϕ(τ) + 2ϕ(τ ′)) ≈ cos 4ϕ(τ) is the same as the sine-gordon
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term. This claim is also supported by [103], where a 1D XXZ spin chain coupled with opti-
cal phonons was studied using bosonization, perturbative RG, and variational ansatz. In the
commensurate case, the bosonized action coming from the phonons in their work is given by∑
r=±

∫∫
dxdτdτ ′ cos [2 (ϕ(x, τ) − rϕ(x, τ ′))]D(|τ − τ ′|), where D(|τ − τ ′|) ∼ e−|τ−τ ′|. Even in the

absence of the Sine-Gordon term, the existence of a gap was found with the variational analysis
of the action as the dissipative kernel D(|τ − τ ′|) is short-range in this case and the exponential
decay restricts the majority of the contribution for τ ≈ τ ′, which effectively turns the contribu-
tion of the bath into a Sine-Gordon term. Secondly, we can see from eq. (6.6) that ∆ depends
on α + g and α in the superohmic and the subohmic cases, respectively. This shows that for
superohmic baths, α assists g to create the gap; and for subohmic baths, the shifting of Kc

away from 1/2 is solely regulated by the α term.

From our variational analysis, it may initially seem that they don’t match with the results
from [102] as they reported the variational propagator of the ordered phase to also have the
fractional term |ωn|s (fractional with respect to the laplacian). However in their case, the
coupling strengths α1 and α2 for the two long-range terms, given by cos(2ϕ(τ) − 2ϕ(τ ′)) and
cos(2ϕ(τ)+2ϕ(τ ′)) respectively, are different. Indeed, in that case the coefficient of |ωn|s, which
is proportional to α1 − α2, is finite. The dissipative commensurate spin chain is a more special
limit of their model where α1 = α2, and thus the fractional term |ωn|s disappears completely,
rendering the system to be a standard antiferromagnetic phase. This is also supported by
eq. (32) of [103], where the variational propagator of the system is free of any such fractional
laplacian term. Note that the usage of the term ‘fractional’ here shouldn’t be confused with
excitations with fractional charges, which can arise from soliton-anti soliton excitations in such
systems. Such excitations may be present in the commensurate dissipative spin chain system
described here due to the sine-Gordon potential [104,105] and the variational analysis is unable
to capture them. We are also separately investigating the possibility of excitations of such a
nature.

Regarding the ongoing work, we are currently in the process of properly quantifying the renor-
malization of the LL parameters ur and Kr in both the dissipative phase and the LL phase. This
process is much more complicated for the dissipative phase in the incommensurate case and
ultimately qualitatively not so interesting, that’s why we skipped it in the previous chapters.
We are also producing more numerical Langevin simulations for this system in the presence of
subohmic and ohmic baths.
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Conclusion

The works on the Spin-Boson model by Leggett et al inspired us to extend the results to a
generalized description of one-dimensional many-body systems and understand the effect of
dissipation on an interacting system. With bosonization, we were able to map the quantum
system on a two-dimensional interface, where the dissipation acts as a long-range cosine poten-
tial. A perturbative RG analysis of the action shows the existence of a BKT-type critical point,
and with the help of the variational method, we predicted the low-energy spectrum of the dissi-
pative phase to be gapless with fractional excitation. We were also able to show the existence of
a quantum BKT phase transition as a function of the dissipation strength, the new dissipative
phase being a gapless SDW with inhibited conductivity for an incommensurate spin chain and
back up our claims with numerical simulation of the Langevin dynamics equation associated
to the field theory. Particularly for a subohmic bath, the conductivity completely vanishes,
rendering the system into an insulator, which can be interpreted as a dissipation-induced lo-
calization in one-dimensional interacting systems. Apart from the ongoing work regarding the
commensurate dissipative spin chain, we also have certain extensions in mind that could be
interesting to tackle.

A very interesting aspect would be to study the characteristics of the dissipative phase in
finite temperature. In the original Spin-Boson model, it was shown that the localized phase
can relax (mostly exponentially) depending on the temperature and the nature of the bath [28].
It would be interesting to calculate the conductivity of the incommensurate dissipative phase
as a function of frequency at zero temperature and as a function of temperature at finite
temperature. In the commensurate case, we suspect the dissipative phase to be a Mott Insu-
lator and its conductivity has been already thoroughly investigated in different temperature
and frequency regimes [37]. We believe our approach is prepared to handle this question as
bosonization has been used previously to investigate transport properties at finite temperatures
on one-dimensional systems connected to semi-infinite non-interacting leads [106,107].
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Another angle that we would like to address in the future is the investigation of the phase
transition and signature of localization when the baths are coupled differently to the system.
In our work, the baths are connected to the σz component of the spin as in the original Caldeira-
Leggett work. it would be interesting to analyze the system with the baths being coupled to
the σx and σy components as well, which will be equivalent to coupling to the θ(x, τ) fields
in the bosonized language. We believe that this scheme can lead to the genesis of the third
disordered phase reported in [87].

A different limit of the dissipation, in which case the bath is global (spatially correlated to
each other), should be investigated thoroughly. One can also investigate the effect of annealed
disorder coming from dissipation on a pre-existing quenched disordered system. For example,
previously a study was conducted on the effect of ohmic dissipation on a random-field transverse
ising model in [108,109], where it was shown, using real space RG and SDRG, that dissipation
can affect thermodynamic quantities such as susceptibility and specific heat in a strongly dis-
ordered model.

Finally, we are interested in understanding the connection between Zeno localization and lo-
calization induced by Caldeira-Leggett baths. In the beginning, they seem to be the opposite
poles of a spectrum: Measurement acts in a markovian way on the system, whereas the local-
ization induced due to the Caldeira-Leggett baths happens when the dissipation is extremely
non-markovian and has a slow time dynamics. However, recently in [110] the authors have
studied the entanglement transition in a many-body system in the presence of a non-markovian
bath, and their protocol can be used to bridge the gap between these two types of localization
by analyzing the quantum dynamics of our system.
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We study an XXZ spin chain, where each spin is coupled to an independent ohmic bath of harmonic
oscillators at zero temperature. Using bosonization and numerical techniques, we show the existence of two
phases separated by a Kosterlitz-Thouless transition. At low coupling with the bath, the chain remains in a
Luttinger liquid (LL) phase with a reduced but finite spin stiffness, while above a critical coupling, the system is
in a dissipative phase characterized by a vanishing spin stiffness. We argue that the transport properties are also
inhibited: The LL is a perfect conductor, while the dissipative phase displays finite resistivity. Our results show
that the effect of the bath can be interpreted as annealed disorder-inducing signatures of localization.
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I. INTRODUCTION

Localization is a spectacular quantum effect in which trans-
port properties are totally suppressed. It is mainly due to the
presence of quenched impurities, as predicted by Anderson
[1] for free fermions and recently argued to persist in the pres-
ence of interactions via the so-called many-body localization
(MBL) [2–7]. However, localization can also be induced by
quantum measurements or by the presence of an external bath.
The first case gives rise to the Zeno effect, originally intro-
duced as the mechanism that froze the dynamics of a two-level
system [8,9]. Today, it is generalized to many-body systems in
which the frequency of quantum measurement is at the origin
of phase transitions from a volume law to an area law for en-
tanglement entropy [10–19]. Localization induced by external
bath is much less studied. It is known that a subohmic bath at
zero temperature can freeze the quantum dynamics of simple
systems, such as a single spin or particle [20–23]. In this
paper, we investigate if these mechanisms are also relevant
in a many-body system. We show that a bath that produces
local phonons is a source of annealed disorder and study how
this disorder affects the transport properties. We focus on a
one-dimensional (1D) system that can be mapped to a two-
dimensional (2D) field theory, already studied by bosonization
[24] and Monte Carlo techniques [25] in a different context.
However, its phase diagram remains controversial, and it is
not clear how many phases appear varying the strength of the
coupling between the bath and the system. Here, we introduce
an approach which directly simulates the bosonized action
and allows us to reach large system sizes. Our results show a
simple scenario of two phases with a Kosterlitz-Thouless (KT)
transition between them. Increasing the coupling strength, a
dissipative phase with suppressed transport takes over a per-
fectly conducting Luttinger liquid (LL) phase.

*saptarshi.majumdar@universite-paris-saclay.fr

II. MODEL

We consider an XXZ spin chain with the Hamiltonian
HS = ∑N

j=1 JzS
z
jS

z
j+1 + Jxy(Sx

j S
x
j+1 + Sy

j S
y
j+1) and Jz/Jxy ∈

(−1, 1). This model displays a gapless low-energy spectrum,
and it is in a perfectly conducting phase known as LL [26].
Each spin j of the chain is in contact with its own indepen-
dent bath of harmonic oscillators with the Hamiltonian HB =∑

jk
P2

jk

2mk
+ mk�

2
k

2 X 2
jk (see Fig. 1). A different choice for local

baths was studied in Ref. [27]. The complete Hamiltonian is
given by

H = HS + HB + HSB,

HSB =
N∑

j=1

Sz
j

∑
k

λkXjk . (1)

Note that the coupling term h j (t ) = ∑
k λkXjk is equiva-

lent to a time-dependent magnetic field interacting with the
spins. The time-independent limit hj (t ) = h j corresponds to
a quenched disordered magnetic field. This case is well stud-
ied by bosonization [28] or powerful simulation techniques
[29], and a zero temperature localization transition from LL
toward a Bose glass phase takes place by varying the disorder
strength. Here, we employ bosonization to study the time-
dependent (annealed disorder) case. To fully characterize the
bath, we need to specify the low-frequency behavior of the
spectral function, defined as

J (�) = π

2

∑
k

(
λ2

k

mk�k

)
δ(� − �k ). (2)

In general, one has J (�) = πα�s for � ∈ (0,�D). Here,
α denotes the effective coupling strength with the bath, the
cutoff �D is the Debye frequency, and s sets the nature of the
bath. For our study, we take s = 1, which corresponds to an
ohmic bath.
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FIG. 1. Schematic representation of the microscopic system: A
one-dimensional XXZ spin chain (blue color) with each spin coupled
to its individual dissipative bath (red color). The baths are described
by a collection of simple harmonic oscillators kept at zero tempera-
ture. The parameter α is a measure of the coupling strength between
the bath and the associated spin.

III. BOSONIZED ACTION

The bosonization procedure of the XXZ spin chain is
well known [26]. We map the chain with periodic condition
into a 1D fermionic system using Jordan-Wigner transforma-
tion. For Jz = 0, we recover the free-fermion problem that
can be diagonalized in the momentum space q = 2π l/(Na)
with a as lattice spacing and l ∈ (−N/2, N/2). The Fermi
momentum depends on the total magnetization M of the
spin chain, namely, qF = π (N − M )/(2Na), where qF is the
Fermi momentum of the spin chain and a is the lattice spacing
kept for dimensional matching reasons. Two cases should
be distinguished: In the zero sector of magnetization, qF is
commensurate with the lattice space, while it is incommen-
surate for the nonzero magnetization sector. Here, we focus
on the incommensurate case. Away from the sector of zero
magnetization, by linearizing the spectrum around qF , one
recovers the action for the well-known LL model:

SLL = 1

2π

∫
dxdτ

{
1

uK
[∂τφ(x, τ )]2 + u

K
[∂xφ(x, τ )]2

}
.

(3)

Here, φ(x, τ ) is a 2D field living in the physical space x ∈
(0, L) and in imaginary time τ ∈ (0, β ), β being the inverse
temperature of the system. At zero magnetization, there is
an extra term in the action Scos = − Jz

2π2

∫
dxdτ cos[4φ(x, τ )],

which is irrelevant for K > 1
2 . The constants u and K are

called LL parameters, and they depend on Jxy and Jz. These
parameters can be exactly calculated from the Bethe ansatz
(e.g., K−1

Bethe ansatz = (2/π ) arccos[−Jz/Jxy]), and they match
with the bosonization prediction in the regime Jz � Jxy

(K−1
bosonization =

√
1 + 4Jz/πJxy). However, away from half-

filling (nonzero magnetization sector), the bosonization pre-

diction between the LL parameters and the spin chain are
slightly more complicated and given by uK = aJxy sin(qF a)
and u/K = uK{1 + 2aJz

πvF
[1 − cos(2qF a)]}.

To tackle the dissipative problem, there are two different
approaches. Here, we map to an equivalent fermionic system
via Jordan-Wigner transformation and apply bosonization to
arrive at a 2D field theory. Alternatively, the quantum Hamil-
tonian can be mapped onto a hard-core bosonic system via
Holstein-Primakoff transformation and then numerically sim-
ulated via quantum Monte Carlo methods (indeed, bosons do
not suffer from the sign problem). In both cases, to integrate
the bath degrees of freedom, one must introduce the path
integral description of the system. The action associated with
the bath and the interaction between the bath and the system
are identical for bosons and fermions and are given by

SB + SSB =
∫ β

0
dτ

N∑
j=1

[
n j (τ ) − 1

2

] ∑
k

λkXk j

+
N∑

j=1

∑
k

(
mkẊ 2

k j + mk�
2
k

2
X 2

k j

)
, (4)

where n j = Sz
j + 1

2 is the density operator. Now, we can inte-
grate out the bath degrees of freedom and arrive at an effective
action for the system degrees of freedom only, where the effect
of the bath is encoded in the interacting part Sint:

Sint = −
∫∫ β

0
dτdτ ′

N∑
j=1

[
n j (τ ) − 1

2

]

× D(τ − τ ′)
[

n j (τ
′) − 1

2

]
. (5)

Here, D(τ − τ ′) is the dissipative kernel which is produced
from integrating over the bath modes. Its Fourier transform
can be expressed in terms of the bath spectral function J (�):

D(ωn) = 2

π

∫ ∞

0
J (�)

�

ω2
n + �2

. (6)

Using the form J (�) = πα� (s = 1), we get D(τ − τ ′) ∼
α|τ − τ ′|−2.

To bosonize Eq. (5), we recall that the bosonized version
of Sz

j is given by

Ŝz = − 1

π
∇φ + 1

πa
cos(2φ − 2qF x). (7)

Using Eq. (5), the dissipative part of the action is given by

Sint = − 1

2π2

∫ L

0
dx

∫∫ β

0
dτdτ ′

×
{
−∇φ(x, τ ) + 1

a
cos[2φ(x, τ ) − 2qF x]

}

× D(τ − τ ′)
{
−∇φ(x, τ ′) + 1

a
cos[2φ(x, τ ′) − 2qF x]

}
.

(8)

After multiplying all the terms, one can put a = 1, which was
there for dimensional purposes. For the expansion, we will be
making a few observations here:
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(1) At equal time (τ = τ ′), the dissipative action is (Sz
j )

2,
which is identity. Hence, this term does not contribute
anything to the physics, and we can neglect the con-
stant term in D(τ − τ ′).

(2) The terms of the form ∇φ(τ ) cos[2φ(τ ′) − 2qF x] will
oscillate rapidly for nonzero magnetization due to the
2qF x term, and hence, it will integrate to zero. Simi-
larly, the cos[2φ(τ ) − 2qF x] cos[2φ(τ ′) − 2qF x] term
can be broken up into two terms; one of these terms
will be of the form cos{2[φ(τ ) + φ(τ ′)] − 4qF x}. This
term can also be integrated to zero due to the rapidly
oscillating term 4qF x.

(3) The ∇φ(τ )∇φ(τ ′) term is the forward scattering term
and is irrelevant by power counting.

Hence, the action of the full system turns out to be

Stot = SLL + Sint, (9)

Sint = − α

4π2

∫
dxdτdτ ′ cos{2[φ(x, τ ) − φ(x, τ ′)]}

|τ − τ ′|2 . (10)

IV. OBSERVABLES AND BOSONIZATION

Thermodynamic quantities of the spin chain can be ex-
pressed in terms of the correlation functions of the field φ.
The propagator G(q, ωn) = 〈φ(q, ωn)φ(−q,−ωn)〉 can be re-
lated to the susceptibility χ and spin stiffness ρs by the two
equations:

χ = lim
q→0

lim
ωn→0

q2

π2
G(q, ωn), (11)

ρs = lim
ωn→0

lim
q→0

ω2
n

π2
G(q, ωn). (12)

Here, ωn = 2πn/β, n ∈ (−∞,∞) are the Matsubara frequen-
cies. In the LL phase, GLL(q, ωn) = πK/(ω2

n/u + uq2), and
hence, χ = K/(uπ ) and ρs = uK/π = K2/(π2χ ). The bath
introduces a long-range cosine interaction in the τ direction
only, and the strength of this potential is controlled by the
parameter α. A perturbative renormalization group study [24]
shows that, for K < Kc = 0.5, the cosine term is relevant, and
the LL phase is destroyed, whereas for K > Kc and small α,
the system stays in the LL phase but with renormalized LL
parameters Kr and ur . For K � Kc, the transition is of the KT
type: The critical point αc(K ) is still LL with Kr = Kc = 0.5.
The nature of the dissipative phase is not clear: For mod-
erate K and very large α, the action should be gapless and
harmonic, obtained by the quadratic expansion of the cosine
term. For K � Kc, a large-N argument suggests the existence
of a gapped disordered phase. Monte Carlo simulations [25]
were performed on the 1D hard-core bosonic chain, which
can be mapped to free fermions (K = 1). Increasing α, they
found that χ increases, and at αc, the system undergoes a
continuous second-order phase transition with vanishing ρs.
Below, we propose a simple scenario able to conciliate the
puzzle of contradictory results.

V. METHODS

To make progress, on one side, we compute the correla-
tion function G(q, ωn) numerically by generating equilibrated
configurations φ(x, τ ) from the action in Eq. (9) with the help

of Langevin dynamics (see Appendix C). The long-distance,
low-energy behavior of this correlation function allows us to
classify the system in two possible phases. One possibility is
that the system remains in the LL phase with renormalized
values of u and K . The second possibility is the appearance
of a new dissipative phase, where α becomes relevant. The
analytical behavior of G(q, ωn) in this new phase was pro-
posed in Ref. [24] using a harmonic expansion around the
cosine potential. Here, we use a variational approach and
propose an improved expression of the correlation function
in the dissipative phase:

G−1
var (q, ωn) = urq2

2πKr
+ αr

π2
|ωn| + a1|ωn|3/2 + a2ω

2
n. (13)

The macroscopic behavior of this phase depends only on
the two parameters ur/Kr and αr . The parameters a1 and a2

are introduced to account for finite-sized effects. From the
analysis of our result, we will show that, by varying α, the
long-distance properties are always captured either by the LL
or by the variational propagator [Eq. (13)} with renormalized
parameters ur, Kr , and αr .

A. Variational ansatz

To derive the correlation function of Eq. (13), we
need to find an effective quadratic action of the form
Svar = 1

2βL

∑
q,ωn

φ∗(q, ωn)G−1
var (q, ωn)φ(q, ωn). We use the

variational method: We minimize the free energy Fvar =
− 1

β

∑
q,ωn

log Gvar + 1
β
〈S − Svar〉Svar [with (S − Svar) aver-

aged over Svar] with respect to the variational Green’s
function:

G−1
var = 1

2πK

(
uq2 + ω2

n

u

)
+ α

π2

∫
dτD(τ )(1 − cos ωτ )

× exp

{[
− 1

π2

∫ ∞

−∞
dqdω Gvar(q, ω)(1 − cos ωτ )

]}
.

(14)

We try to solve this self-consistent equation by making

the following ansatz: G−1
var (q, ω) = 1

2πK (uq2 + ω2
n

u ) + α
π2 F (ω),

where F (ω) = a(α)|ω|ψ + b(α)|ω|. With this assumption,
for large τ , the behavior of G(ω) is governed by the |ω|
term. It can be easily shown that

∫ ∞
∞ dqdω Gvar(q, ω)(1 −

cos ωτ ) ≈ C(α) − [ τc (α)
τ

]1/2, where C(α) and τc(α) are α-
dependent constants. For a more systematic expansion in
powers of 1/τ , one can use the results in Ref. [30]. Putting
this back into the self-consistent equation for F (ω), we
obtain

a(α)|ω|ψ + b(α)|ω| =
∫

dτD(τ )(1 − cos ωτ )

× exp

(
−

{
C(α) −

[
τc(α)

τ

]1/2
})

large τ≈
∫

dτD(τ )(1 − cos ωτ )

× e−C(α)

{
1 +

[
τc(α)

τ

]1/2
}

. (15)
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FIG. 2. Calculation of different quantities for K = 0.75 that characterizes Luttinger liquid (LL; α = 1, top row) and dissipative phase
(α = 8, bottom row). Blue and red points correspond to L = β = 384 and 128, respectively. The average is performed over 6000 to 12 000
configurations. (left) Due to symmetry, πχ = Kr/ur is equal to K/u = 0.75 for all values of α and all length scales. (middle) For α = 1,
ωnC(ωn) saturates to Kr/2 = 0.349 as ωn → 0; whereas for α = 8,

√
ωnC(ωn) saturates to [Krπ/(8αrur )]1/2 = 0.392. The other fitting

constants are a1 = 0.2493 and a2 = 3.572. (right) For α = 1, 〈cos(φ)〉 decays as a power law, which allows us to extract Kr = 0.694, consistent
with the fit of ωnC(ωn). For α = 8, it saturates to a constant, as predicted by the variational ansatz (the fit gives c1 = 0.62, c2 = 0.603, and
c3 = −0.531).

The ω dependence can be easily extracted from these equa-
tions, which turns out to be |ω| and |ω|3/2. The coefficient of
|ω| should be determined self-consistently, and in our analy-
sis, we take it as a fitting parameter αr/π

2. The coefficient in
front of ω2 will be renormalized by higher-order terms from
variational analysis. Hence, the variational propagator is given
at low order in ω by Eq. (13).

VI. RESULTS

A. Phase diagram

In the following, we present our results for the correlation
functions of the action S = Sint + SLL, with u = 1, K = 0.75,
and different α. For our simulations, we set β = L. The first
observation is that the action of Eq. (10) is invariant under
tilt transformation (see Appendix B). As a consequence, χ

is not affected by the presence of Sint. We measure Kr/ur

both at low and high α, as shown in Fig. 2, left. Note that
the susceptibility corresponds to the q → 0 limit, but due to
the symmetry, Kr/ur is invariant at all length scales and all
values of α. We conclude that Kr/ur = K/u for all values
of α. In Fig. 2, middle, we present our results for C(ωn) =
(1/πL)

∑
q〈|φ(q, ωn)|2〉 = 1

πL

∑
q G(q, ω). Using the LL and

the variational propagator, we find that

C(ωn → 0) =

⎧⎪⎨
⎪⎩

Kr
2ωn

LL

√
Krπ

8αr ur

1√
ωn

variational.
(16)

We see that, indeed, for small α, C(ωn) behaves as expected
for the LL phase, while for large α, C(ωn) shows an agree-
ment with the variational approach. To confirm our prediction,

we compute an independent quantity, namely, 〈cos(φ)〉. This
quantity decreases with a characteristic finite-sized behavior:
It goes to zero as 〈cos(φ)〉LL ∼ L−Kr/4 in the LL phase and
saturates to a constant as 〈cos(φ)〉var ∼ c1 + c2/

√
L + c3/L

within the variational ansatz (here, c1, c2, and c3 are fitting
cutoff-dependent parameters, see Appendix A). Figure 2,
right, confirms the scenario of a transition between a LL to
a dissipative phase described by the variational ansatz. More-
over, the value of Kr extracted from 〈cos(φ)〉 matches nicely
with the prediction of C(ωn). In Fig. 3, we rationalize our
results of the renormalized parameters, obtained by varying α.
For K = 0.75, we observe that the stiffness decreases with α

in the LL phase and vanishes in the critical region α ∈ (3, 4).
Moreover, just before the transition, Kr approaches Kc = 0.5
and ρsc = 1/(4π2χ ), as predicted by the KT transition. In the
Appendix, we provide further results for u = 1, K = 0.55 (see
Fig. 4), which are also in agreement with this picture.

B. Transport properties

With our approach, one can compute thermodynamic quan-
tities without direct access to transport properties. However,
via Wick rotation, the conductivity can be related to the
propagator:

σ (ω) = e2

π2h̄
[ωnG(q = 0, ωn)]iωn→ω+iε .

For LL, the DC conductivity σDC ≡ Re[σ (ω → 0)] =
(e2uK/h̄)δ(ω), which shows the system is perfectly conduct-
ing. For the dissipative phase, we use Eq. (13) for Wick rota-
tion and get σDC = e2/h̄αr , proving that the system has finite
conductivity. For a generic bath, G(q = 0, ωn) ∼ 1/(αr |ωn|s),
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FIG. 3. Behavior of different renormalized parameters as a func-
tion of dissipative coupling α. Kr/ur (red square points) remains
constant and equal to K/u = 0.75 for all values of α. Kr , extracted
from 〈cos(φ)〉 analysis (purple circular points) agrees with the one
from the C(ωn) analysis (blue triangular points). It approaches Kc =
0.5 as α reaches the critical point. The parameter αr (green circular
points) starts to be defined in the dissipative phase and increases
rapidly with increase in α. This behavior of the parameter allows us
to locate the different phases: For α < 3, the system is in Luttinger
liquid (LL) phase, whereas for α > 4, the system is in dissipative
phase. The phase transition takes place for α ∈ (3, 4).

and hence, Re[σ (ω)] = (e2/h̄αr )(ε/(ω2 + ε2)s/2). Especially
when the bath is subohmic (s < 1), the DC conductivity of
the system goes to zero, which is a signature of bath-induced
localization in the system.

VII. DISCUSSION AND CONCLUSIONS

It remains important to clarify how to conciliate our
observations of a KT transition with Kc = 0.5 and the hard-
core bosonic Monte Carlo simulations (at K = 1 instead of
K = 0.75) that show a vanishing stiffness at the transition
[25]. A possibility is that it is an artifact of the commensurate-
incommensurate crossover of the system as the system size,

as well as the incommensurate parameter, used in the Monte
Carlo study is small. Another possibility remains that our
action misses some term that is relevant for the microscopic
lattice model.

On a more general framework, many efforts are currently
being made to observe localization transition in open quan-
tum systems. The most popular approach is to consider the
bath as a perturbative source of quantum measurements. In
this Markovian limit, one can rely either on the Lindblad
formalism [31], which is microscopically more accurate but
is limited to very small system sizes, or introduce models
with quantum circuits which display localization transitions
but are very simplistic. In both cases, localization appears as
a many-body Zeno effect. Here, the bath is non-perturbative
and equivalent to annealed disorder. Hence, the localization
observed here is a non-Markovian effect, more like the lo-
calization due to quenched impurities. It remains an open
question to compare the differences of these two kinds of
bath-induced localization.
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APPENDIX A: SYSTEM SIZE DEPENDENCE
OF ORDER PARAMETER

In this section, we find an analytical expression for the
quantity 〈cos[φ(x, τ )]〉, which is equal to exp{− 1

2 〈[φ(�r)]2〉}
for Gaussian theories.

For our variational ansatz, we need to calculate

〈cos[φ(�r)]〉 = exp(S1) = exp

⎛
⎝− 1

2βL

∑
q,ωn

1
u

πK q2 + 2α
π2 |ωn| + 2a1|ωn|3/2 + 2a2ω2

n

⎞
⎠.

To calculate the sum inside the exponential, we send the limit
of integration over q from zero to infinity and the integral over
ω from 1/β to 1/l0, where l0 is the microscopic cutoff. By
doing so, one can find the small ω behavior of the sum as
below:

S1 = 1

4

√
K

πu

[
a1π

3

(2α)3/2l0
− 2π√

2αl0

]
+

√
πK

8uα

1√
β

− a1π
3

4

√
K

8uα3

1

β
. (A1)

We put this back into the expression of 〈cos[φ(�r)]〉, and from
a large β (zero temperature limit) expansion, we obtain the

finite-sized dependence of the order parameter:

〈cos[φ(�r)]〉var = c1 + c2√
β

+ c3

β
,

c1 = exp

{
1

4

√
K

πu

[
a1π

3

(2a)3/2l0
− 2π√

2αl0

]}
,

c2 = c1

√
πK

8uα
,

c3 = c1

(
πK

16uα
− a1π

3

4

K

8uα3

)
. (A2)
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FIG. 4. Calculation of different quantities for K = 0.55 that characterizes Luttinger liquid (LL; α = 0.05, top row) and dissipative phase
(α = 10, bottom row). Blue and red points correspond to L = β = 384 and 128, respectively. (left) Due to symmetry, πχ = Kr/ur is equal
to K/u = 0.55 for all values of α and all length scales. (middle) For α = 0.05, ωnC(ωn) saturates to Kr/2 = 0.273 as ωn → 0; whereas for
α = 10,

√
ωnC(ωn) saturates to [Krπ/(8αrur )]1/2 = 0.156. The other fitting constants are a1 = 16.61 and a2 = 571.4. (right) For α = 0.05,

〈cos(φ)〉 decays as a power law, which allows us to extract Kr = 0.546, consistent with the fit of ωnC(ωn). For α = 10, it saturates to a constant,
as predicted by the variational ansatz (the fit gives c1 = 0.788, c2 = 0.215, and c3 = 0.012). (bottom row) Behavior of different renormalized
parameters as a function of dissipative coupling α. Kr/ur (red square points) remains constant and equal to K/u = 0.55 for all values of α.
Kr , extracted from 〈cos(φ)〉 analysis (purple circular points) agrees with the one from the C(ω) analysis (blue triangular points). It approaches
Kc = 0.5 as α reaches the critical point. The parameter αr (green circular points) starts to be defined in the dissipative phase and increases
rapidly with increase in α. This behavior of the parameter allows us to locate the different phases: For α < 0.25, the system is in LL phase,
whereas for α > 2, the system is in dissipative phase. The phase transition takes place for α ∈ (0.25, 2). We believe α = 0.25 to be in the
critical region as Kr extracted from 〈cos(φ)〉 is very close to Kc = 0.5, αr is very small, and ωnC(ωn) saturates for a long range of ωn but then
starts decreasing.

APPENDIX B: TILT SYMMETRY OF THE ACTION

In this section, we explain why the parameter K/u, which
identifies with the susceptibility χ , remains constant for all
dissipative coupling α [32,33]. To compute the susceptibility,
we introduce a finite magnetic field h in the z direction. Then
the susceptibility can be written as χ = ∂2

∂ (hβ )2 (ln Z[h]), where
Z is the partition function and β is the inverse temperature of
the system. In the bosonized language, the term −h

∑
j Sz

j in

the Hamiltonian gives rise to the term − h
π

∫
[∇φ(x, τ )]dxdτ

in the action. Hence, the partition function of the system can

be written as

Z[h] =
∫

D[φ] exp

{[
−SLL − Sint + h

π

∫
∇φ(x, τ )dxdτ

]}
.

(B1)

One can rewrite the terms u
2πK (∇φ)2 − h

π
∇φ as u

2πK (∇φ −
hK
u )2 − h2K

2πu . Introducing the tilt φ̃ → φ − hKx
u , the partition

function can be rewritten:

Z[h] =
∫

D[φ̃] exp

{(
−SLL[φ̃] − Sint[φ̃] + β2h2K

2uπ

)}
.

(B2)
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The key point is that the interacting action Sint is invariant
under the tilt transformation Sint(φ̃ + hkx

u ) = Sint(φ̃). From the
previous equation, it can be easily seen that

ln Z[h] = β2h2K

2uπ
+ ln Z[h = 0]. (B3)

From this expression, the susceptibility can be easily com-
puted, which is finally given by

χ = ∂2

∂ (βh)2

β2h2K

2uπ
= K

uπ
. (B4)

APPENDIX C: NUMERICAL DETAILS

In this section, we describe the numerical procedure for
this paper. We denote the discretized two-dimensional field
as φi j , where i ∈ [1, L] and j ∈ [1, β] with periodic boundary
conditions in both directions. Our strategy is to start from a
flat interface φi j = 0 at t = 0 and then let it evolve according
to the Langevin equation [34]:

dφi j (t )

dt
= −δS[φi j (t )]

δφi j
+ ηi j (t ), (C1)

where ηi j (t ) is a white noise, specified by the correlations
〈ηi j (t )〉 = 0 and 〈ηi j (t )ηi′ j′ (t ′)〉 = 2δi,i′δ j, j′δ(t − t ′). Note that
the time t that appears in Eq. (C1) should not be confused
with the imaginary time τ . When t → ∞, the surface φi, j (t )
obtained by direct integration of Eq. (C1) is equilibrated with
the action S[φ]. Hence, the Langevin equation, which we

numerically simulate, is given by

dφi j (t )

dt
= α

π2

∑
j′

D(| j − j′|) sin[2(φi j′ − φi j )]

+ 1

uKπ
[φi, j+1 + φi, j−1 − 2φi, j]

+ u

Kπ
[φi+1, j + φi−1, j − 2φi, j] + ηi j (t ). (C2)

To obtain a correct discretization of the long-range kernel
D( j − j′), we use the same protocol as in Ref. [35]. For β →
∞, we set

D( j − j′) =
∫ 2π

0

dω

2π
exp[iω( j − j′)]{2[1 − cos(ω)]}1/2

= 1

( j − j′)2 − 1
4

.

At finite β, the periodic boundary conditions are implemented
as

D( j − j′) =
β/2∑

k=−β/2

1

(| j − j′| + kβ )2 − 1
4

. (C3)

To conclude, we remark that, in the numerical integration,
the term δS[φi j (t )]

δ(φ) is multiplied by �t , whereas ηi j (t ) is mul-

tiplied by
√

�t . Here, we use the stochastic second-order
Runge-Kutta algorithm for white noise [34]. Using this is
preferable, as this is much faster than the standard Euler’s al-
gorithm. We choose the value of the Langevin time step �t =
0.05. To benchmark the equilibration time of the surface,
we used the harmonic approximation sin[2(φi j′ − φi j )] →
2(φi j′ − φi j ) that can be analytically solved.
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We study an incommensurate XXZ spin chain coupled to a collection of local harmonic baths.
At zero temperature, by varying the strength of the coupling to the bath the chain undergoes a
quantum phase transition between a Luttinger liquid phase and a spin density wave (SDW). As
opposed to the standard mechanism, the SDW emerges in the absence of the opening of a gap,
but it is due to “fractional excitations” induced by the bath. We also show, by computing the DC
conductivity, that the system is insulating in the presence of a subohmic bath. We interpret this
phenomenon as localization induced by the bath à la Caldeira and Leggett.

I. INTRODUCTION

Open quantum systems, namely systems coupled
with external degrees of freedom, are often studied
in order to understand the phenomenon of decoher-
ence and the emergence of classical laws from a quan-
tum mechanical description. A common setup is to
consider the Markovian dynamics of quantum sys-
tems subject to repeated measurements [1, 2]. One
of the most intriguing results is the possibility to ob-
serve a phase transition in the behavior of the quan-
tum trajectories. The transition is controlled by the
measurement rate: For a low rate the entanglement
grows linearly in time while at a high measurement
rate, it saturates at a finite value [3–12]. Another
important setup is to consider the effect of a ther-
mal bath on the system. Following the pioneering
works [13–16], we expect that a slow bath (i.e. sub-
ohmic and ohmic) can induce localization in simple
systems, such as a particle or a spin. Note that
this dynamical transition cannot be described by a
Lindblad equation [17]. Indeed, in order to capture
this localization phenomenon it is crucial to relax the
Markovian assumption which is behind the Lindblad
equation. Moreover from several variational studies
of the ground state of the spin-boson model (namely,
the Caldeira Leggett model for a single spin), a gen-
uine thermodynamic transition has been shown to
exist for strongly coupled subohmic bath [18, 19].

In this work, we investigate the possibility of such
non-Markovian transition in many body systems. In
particular, we focus on a one-dimensional (macro-
scopic) interacting and incommensurate spin chain
coupled to local baths of harmonic oscillators (fig.
1). This problem was studied in [20] with a spe-
cial focus on the ohmic case. Here we generalize the

study to the superohmic and subohmic case, with
particular emphasis on the nature of the dissipative
phase both for thermodynamic and transport prop-
erties. In particular, we show that the dissipative
phase is an incommensurate spin density wave of pe-
riod π/qF , where qF is the Fermi momentum of the
system. Unlike the Peierls scenario [21], this spin
density wave emerges in the absence of the opening
of a gap, but it is due to “fractional excitations” in-
duced by the slow varying bath. The spin density
wave order is not only particular to subohmic baths,
but also survives in the presence of superohmic baths
described by an exponent s < 2. However, for sub-
ohmic bath, i.e. s < 1, the environment can induce
“localization” with a gapless insulating phase. The
nature and the details of these “fractional” dissipa-
tive phases are derived by studying the bosonized ac-
tion with a thorough variational approach and tested
with respect to the exact action with numerical sim-
ulations for the subohmic case (s = 0.5).

The metal-insulator transition for subohmic baths
is reminiscent of the (zero temperature) localiza-
tion transition which occurs in interacting one-
dimensional systems due to the presence of quenched
disorder [22, 23]. Indeed, local baths can be thought
of as spatially uncorrelated annealed disorder. In
the dissipative phase, the degrees of freedom of the
system and those of the bath optimize collectively
to find a low energy configuration [24].

We also describe the finite size and finite temper-
ature effects. At finite temperature, the order pa-
rameter vanishes but the spin density wave can be
observed from correlation functions below a length
scale which grows as β, where β is the inverse tem-
perature of the system. For finite system size (and
zero temperature) the order parameter vanishes for
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FIG. 1. Schematic diagram of a one-dimensional quantum XXZ spin chain coupled with local dissipative baths.
Jxy denotes the hopping energy and Jz is the interaction between the two nearest neighbour spins. The baths are
characterized by their spectral function J(Ω) ∼ αΩs. At zero temperature, the baths induce an SDW phase with
periodicity π/qF , where qF is the Fermi-momentum related to the magnetization of the chain (see text).

s > 1 and one recovers the phase transition that
occurs for the spin-boson model with for subohmic
baths [19].

The manuscript is organized as follows: in Sec-
tion II we introduce the model. The analytical vari-
ational solution of the model is described in Section
III. Section IV consists of detailed discussions about
the nature of the order parameter and the dissipative
phase, followed by the comparison of the analytical
solution obtained with the variational ansatz with
exact numerical simulation; in Section V. In Section
VI, we discuss the transport properties of the model,
and in Section VII we conclude about the nature of
the dissipative phase and the absence of linear re-
sponse transport in the system.

II. MODEL

We investigate the zero-temperature low-energy
phase diagram of an incommensurate XXZ spin
chain in the presence of local subohmic baths. The

Hamiltonian of the system is given by:

H = HS +HB +HSB

HS =
L∑

j=1

Jzσ
z
jσ

z
j+1 + Jxy

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
+ hσzj

HB =
∑

jk

P 2
jk

2mk
+
mkΩ

2
k

2
X2
jk

HSB =

N∑

j=1

σzj
∑

k

λkXjk

(1)

The dissipative baths are characterized by their
spectral function J(Ω) ≡ π

2

∑
k(λ

2
k/mkΩk)δ(Ω −

Ωk) = παΩs. In one dimension, XXZ spin chain
is a general description of an interacting many-
body system as it can be mapped onto spinless
Fermionic chain and hard-core Bosonic chain via
Jordan-Wigner [25] and Holstein-Primakoff trans-
formation [26] respectively. Its phase diagram is
well known; particularly, at zero temperature and
in finite magnetization sector (h ̸= 0), one can use
bosonization to arrive at the so-called Luttinger Liq-
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uid (LL) action [27]:

SLL =
1

2πK

∫
dxdτ

[
1

u
(∂τϕ(x, τ))

2 + u(∂xϕ(x, τ))
2

]

(2)
where ϕ(x, τ) is a bosonic field defined in the two-
dimensional space of position x ∈ (0, L) and imag-
inary time τ ∈ (0, β), β being the inverse tem-
perature of the system. u is the speed of sound,
K is called Luttinger parameter and depends on
the values of Jz and Jxy. The contribution com-

ing from the magnetic field, given by −h
π

∫
∂xϕ in

the bosonic language, can be absorbed into the ac-
tion by using a tilt transformation ϕ→ ϕ− hKx/u.
In this case, the Fermi momentum of the system
qF = π(1− (M/N))/2a is incommensurate with the
lattice spacing, hence we refer to the system as ’in-
commensurate spin chain’. Here N is the total num-
ber of spins, M is the total magnetization of the
chain and a is the lattice spacing. This action is
known to describe a metallic, perfectly conducting,
and gapless phase.

To analyze the effect of the bath on the spin chain,
we apply bosonization to map the σzj operator onto
the bosonic fields ϕ [27]:

σz(x) =
1

π

(
−∇ϕ+

1

a
cos
(
2ϕ(x)− 2qFx

))
(3)

Then we integrate out the bath degrees of freedom
to arrive at an effective field theory (more details
can be found in Sec. III, [20]):

Seff = SLL + Sdiss (4)

Sdiss = − α

4π2

∫
dxdτdτ ′

cos
(
2
(
ϕ(x, τ)− ϕ(x, τ ′)

))

|τ − τ ′|1+s

The local dissipative baths introduce a long-range
cosine potential acting only along the τ direction,
which can break symmetry and induce phase tran-
sition on the existing LL phase [28, 29]. A similar
problem but with a single degree of freedom (par-
ticle) was shown to lead to phase transitions as a
function of the exponent s [30, 31]. In the subse-
quent sections, we show that the ordered dissipative
phase is described by an SDW of the form:

⟨σz(x)⟩ = σ0 + σ1 cos(2qFx) (5)

Here σ0 is the magnetization per spin σ0 = M/N ,
while σ1 is the amplitude of the SDW, which is the
order parameter of the transition.

III. VARIATIONAL ANSATZ

The action from eq. (4) can’t be exactly solved
due to the presence of the cosine term. One can
estimate the critical properties of the action us-
ing a perturbative RG method [32] (see also Ap-
pendix B). However, here we rely on the varia-
tional method [33] to describe the nature of the
different phases: We find the best quadratic ac-
tion Svar =

1
2πβL

∑
q,ωn

ϕ∗(q, ωn)G−1
var(q, ωn)ϕ(q, ωn)

that describes the original action effectively at
zero temperature. One can write the free en-
ergy of the original system as Feff = T logZeff =
F0 − T log

[
⟨exp(Seff − Svar)⟩Svar

]
, where F0 =

−T lnZvar, Zeff is the exact partition function of the
action that one wants to study and T is the temper-
ature of the system. Now, we define a variational
free energy Fvar = − 1

β

∑
q,ωn

logG(q, ωn) +
1
β ⟨Seff −

Svar⟩Svar . Due to the inequality ⟨exp(−(Seff −
Svar))⟩ > exp(−⟨(Seff − Svar)⟩), it can be easily ob-
served that Fvar ≥ Feff. Hence, we minimize Fvar

with respect to the variational propagator by set-
ting ∂Fvar

∂Gvar
= 0 to obtain a quadratic propagator that

describes the system effectively. Applying this pro-
tocol to the action eq. (4), we find a self-consistent
equation for G−1

var:

G−1
var =

1

πK

(
uq2 +

ω2
n

u

)
+

α

π2

∞∫

τc

dτ
1− cosωnτ

τs+1

× exp


− 4

π2

∞∫

0

dq′dωn′ Gvar (1− cosωn′τ)


 (6)

Where τc is the time-scale after which the bath dis-
plays the power-law behavior. In the next two sub-
sections, we describe the analytical solution of this
self-consistent equation. In the third subsection, we
provide numerical evidence that supports this solu-
tion.

A. Dissipative phase

We first observe that the dissipative phase is gap-
less. Namely, for q = ωn = 0, from eq. (6), we get
∆ ≡ G−1

var(q = 0, ωn = 0) = 0. Secondly, since Sdiss

is invariant under a tilt transformation ϕ → ϕ −
hϕx
π , the susceptibility is not affected by the poten-

tial, namely χ = limq→0 limωn→0(q
2/π2)G(q, ωn) =

K/(uπ) (See also Appendix B in [20]). Hence, to
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FIG. 2. F (ωn) for ohmic (s = 1, left) and subohmic (s = 0.5, right) bath obtained by numerical solution of Eq. (12)
(with β = 1024 and α = 5). In the dissipative phase, F (ωn) behaves as 0.301|ωn| (purple square points) for ohmic

(K = 0.15) and 0.415
√

|ωn| for (purple circular points) subohmic bath (K = 0.3). In the LL phase, F (ωn) = 0.06ω2
n

for ohmic bath (black square points) and F (ωn) = 0.054ω2
n for subohmic bath (K = 1) (black circular points).

solve this self-consistent equation, we assume that:

G−1
var(q, ωn) =

1

πK

(
uq2 +

ω2
n

u
+
F (ωn)

u

)
(7)

where in the small ωn limit, F (ωn) = η(α) |ωn|ψ1 +

a(α) |ωn|ψ2 . We determine these parameters in the
small ωn limit.

Determination of ψ1: Using this form of the prop-
agator, it can be easily seen that at large τ limit,
one has

∫∞
−∞ dq′dωn′Gvar(q

′, ωn′) (1− cosωn′τ) ≈

C(α) −
(
ζτ (α)
τ

)1−ψ1
2

, where C(α) and ζτ (α) are α-

dependent constants. Using this, we obtain:

η(α) |ωn|ψ1 + a(α) |ωn|ψ2
large τ≈

∫
dτ

(1− cosωnτ)

τs+1


1 +

(
ζτ (α)

τ

)1−ψ1
2


 (8)

From power counting of both sides, we find out that
ψ1 = s and ψ2 = 1+ s

2 . Note that ψ2 is sub-leading
for s > 0.

Determination of η: The behavior of the coef-
ficient of |ωn|s (η(α)) is important to locate the

transition point between the LL and the dissipa-
tive phase. It can be estimated from the variational
method. Indeed, neglecting the subleading term, we

get G−1
var(q, ωn) = 1

πK

(
uq2 +

ω2
n

u + η
u |ωn|s

)
. Using

this form of the propagator, it can be easily seen that∫∞
0
dq
∫ Λ

0
dωn Gvar(q, ωn) ≈ 2K

2−s log
4Λ2−s

η , where Λ

is an ultraviolet cut-off. Plugging this result in eq.
(6), we obtain:

ηωsn
uK

small ωn≈ α′
(

η

Λ′2−s

) 2K
2−s

ωsn (9)

Where α′ depends on α, s and Λ, and Λ′ = 4
1

2−sΛ.
Comparing the coefficient of ωsn on both sides, we
see that there is a critical point at Kc = 1− s

2 where
η goes to zero. For K < Kc, the solution reads:

η =
[
α′uKΛ′−2K

] 2−s
2−s−2K

(10)

B. LL phase

To calculate the (eventual) renormalization of
the coefficient of ω2

n in the LL phase we con-
sider that F (ωn) = νω2

n. We assume that the
correction coming from ν is small compared to

4
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FIG. 3. The parameters η and ν obtained from the numerical solution of eq. (12) (with β = 1024 and α = 5).
For η (top row), we use α′ and Λ from eq. (10) as fitting parameters. For the ohmic case (purple square), α′ =
10.096,Λ = 1.963, and for the subohmic case (purple circle), α′ = 8.29,Λ = 3.29. For the plot of ν (bottom row), the
fitting parameters are τc and Λ from eq. (11). For the ohmic case (black square), τc = 1.68,Λ = 0.272, and for the
subohmic case (black circle), τc = 1.241,Λ = 0.415.

K. Hence, to estimate ν, we replace Gvar on the
right side of the eq. (6) by the bare LL propa-

gator πK
[
uq2 +

ω2
n

u

]−1

. Hence, we find νω2
n =

α
π2

∫∞
τc
dτ 1−cosωnτ

τ1+s exp
(
−2K

∫ Λ

0
dω′

n
1−cosω′

nτ
ω′
n

)
.

The integral over ωn′ yields (γE + lnΛτ), and after
expanding cosωnτ for small ωn, we find:

ν =
α̃ exp(−2Kγ)

Λ̃2K (2K + s− 2)
(11)

Where α̃ =
ατ2−s
c

2π2 and Λ̃ = Λτc. We see that this
estimate for K > 1 − s/2, large Λ and small α rep-
resents a small correction to the action [34]. From
the variational ansatz, we see that the Luttinger pa-
rameter K is normalized to Kr = K/

√
1 + ν. This

renormalization results from the fact that the vari-
ational procedure captures the perturbative renor-
malization group (RG) flow of K up to the first or-

der in α. In the Sine-Gordon model, the variational
solution does not renormalize the parameters K,u
and α [27]. Indeed, as we show in Appendix B, the
perturbative RG flow of K is non-zero even in the
first order, which is also captured by the variational
method.

C. Numerical solution of the self-consistent
equation

To support our claim, we also numerically solved
the following self-consistent equation for F (ωn) by

5



plugging eq. (7) in eq. (6):

F (ωn) =
uKα

π

β−1∑

τ=1

D(τ)(1− cosωnτ)

× exp


−2πK

β

β
2 −1∑

n′=− β
2

1− cosωn′τ√
ω2
n′ + F (ωn′)




(12)

where D(τ) is the long-range kernel of eq.
(6), realized on a discretized lattice with pe-
riodic boundary condition, namely D(τ) =∑β/2−1
k=β/2 B

(
(τ + kβ)− s

2 , s− 1
)
, where B() is the

Beta-function (For more details, see App. C of [20]).
In Fig. (2), we check the behavior of F (ωn) for
ohmic and subohmic baths in both LL and dissipa-
tive phases. Fig. (3) shows us the behavior of η and
ν for dissipative phase and LL respectively for ohmic
and subohmic baths. For fitting purposes, we use α′

and Λ for η and τc and Λ for ν as fitting parameters
because they depend on the boundary condition and
discretization. The plots show us that indeed our an-
alytical predictions of Eq. (10) and Eq. (11) are in
fair agreement with the direct numerical solution of
Eq. (12).

IV. ORDER PARAMETER AND
DISSIPATIVE PHASE

In the dissipative phase, the spin chain develops a
long-range order spin density wave. To better under-
stand the properties of this phase we first study the
order parameter of the transition, namely the ampli-
tude of the SDW. Using Eq. (3), together with the
symmetry ϕ → −ϕ to remove the terms ⟨∇ϕ⟩ and
⟨sin(2ϕ)⟩, we see:

⟨σz(x)⟩ = 1

πa
⟨cos(2ϕ)⟩ cos(2qFx) (13)

Comparing with eq. (5), we identify the amplitude
of the SDW :

σ1 =
1

πa
⟨cos(2ϕ(x, τ))⟩ . (14)

We note two important points:

• In contrast with the standard Peierls mech-
anism, the amplitude of the SDW is not
associated with the formation of a gap.
Indeed, the spin chain is gapless.

• For the incommensurate case the global shift
ϕ→ ϕ+ c does not cost any energy, but in the
dissipative phase, this symmetry will be bro-
ken by the presence of local field or impurity.
It is then convenient to fix this constant by
setting the center of mass of the interface to
zero, namely ϕ(q = 0, ωn = 0) = 0.

.
In the thermodynamic limit L→ ∞ and zero tem-

perature limit β → ∞, the order parameter is zero,
in the LL phase (no true long-range order) whereas
it is constant in the dissipative phase. Indeed, we
can estimate the value of the order parameter in
the dissipative phase, using the variational ansatz

Gvar(q, ωn) = πK
[
uq2 + η |ωn|s

u +
ω2
n

u

]−1

:

σ1 =
1

πa
⟨cos(2ϕ)⟩ = 1

πa
e
− 2
π2

Λ∫
0

dωn
∞∫
0

dq Gvar(q,ωn)

(15)
It is instructive to consider the effect of finite tem-

perature and finite size. One can easily find out that
in the Fourier space, the order parameter is given by

⟨cos 2ϕ⟩L,β = exp


− 2

βL

∑
q,ωn
q,ωn ̸=0

Gvar(q, ωn)


.

As shown in Appendix A, this sum can be decom-
posed into three contributions :

• The contribution of ωn = 0, q ̸= 0 terms,
which account for finite size effect.

• The contribution of ωn ̸= 0, q = 0 terms,
which account for finite temperature effect.

• The contribution of ωn ̸= 0, q ̸= 0 terms, which
can be approximated by eq. (15) with sub-
leading corrections.

Using the variational action (eq. (7)) with the LL
ansatz F (ωn) = νω2

n, one can find that (For details,
see Appendix A):

⟨cos 2ϕ⟩LLL,β ∼ e
−π2

6

[
χLβ+ρs

β
L

]
−Kr lnmin(β,L)

(16)

Here χ is the susceptibility (πχ = K/u = Kr/ur)
and ρS = limq→0 limωn→0(ω

2
n/π

2)G(q, ωn) is the
spin stiffness (πρs = Krur).

Using the variational action with dissipative phase
ansatz F (ωn) = η|ωn|s, it behaves as:

⟨cos 2ϕ⟩dissL,β ∼ σ1e
−χπ2

6
L
β+ 2uK

η
b0(s)

(2π)s−1
βκ(s)

L +c1β
s
2
−1

(17)
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Three limits should be discussed :

• In the thermodynamic limit L→ ∞ and finite
temperature, both order parameters vanish as
∼ exp(−π2χL/6β).

• In the zero temperature limit β → ∞ and
for a finite length L, in the LL regime, the
order parameter σLL

1L,∞ vanishes exponentially

as ∼ exp(−π2ρsβ/6L). In the dissipative
regime, the order parameter σdiss

1L,∞ vanish

as a stretched exponential ∼ exp(−βs−1/L)
for superohmic bath, while it converges to a
constant in the subohmic case. This ordered
phase at finite L can be related to the transi-
tion observed for single particle models in the
presence of a subohmic bath [30, 31].

• In the numerical simulation, we set L = β and
send β → ∞. In this limit, we find:

⟨cos 2ϕ⟩LLL=β=∞ ∼ L−Kr (18)

⟨cos 2ϕ⟩dissL=β=∞ ∼ σ1e
−π2χ

6

(
1 + c1L

s
2−1 + c2L

s−2
)

A. Two-point correlation function

To understand the nature of the order in the dis-
sipative phase, it’s important to introduce the two-
point correlation functions:

⟨σzx,τσz0,τ ⟩ ∼ ⟨ei2ϕ(x,τ)e−i2ϕ(0,τ)⟩ cos (2qFx)
⟨σzx,τσzx,0⟩ ∼ ⟨ei2ϕ(x,τ)e−i2ϕ(x,0)⟩ (19)

Note that The spatial spin-spin correlator has an
overall oscillating factor of cos(2qFx), which doesn’t
affect the decay of the correlator at large x. Under
the gaussian variational approximation, one can see

that ⟨ei2ϕ(x,τ)e−i2ϕ(0,τ)⟩ = e−2⟨(ϕ(x,τ)−ϕ(0,τ))2⟩ ≡
e−2B(x) and similarly for ⟨ei2ϕ(x,τ)e−i2ϕ(x,0)⟩ =
e−2B(τ). From eq. (B7) and eq. (B11) of Appendix
B, one can easily see that for large x at finite tem-
perature and in the thermodynamic limit :

⟨σzx,τσz0,τ ⟩LL ∼ exp

(
−2π2χx

β

)
x−2Kr cos (2qFx)

⟨σzx,τσz0,τ ⟩diss ∼ σ2
1 exp

(
−2π2χx

β

)(
1 + a2x

1− 2
s

)

× cos(2qFx) (20)

and for large τ at zero temperature and for finite L:

⟨σzx,τσzx,0⟩LL ∼ exp

(
−2π2ρsτ

L

)
(urτ)

−2Kr (21)

⟨σzx,τσzx,0⟩diss ∼ σ2
1 exp

(
−Kuτ

f(s)

ηL

)(
1 + a1τ

s
2−1
)

Where f(s) = 0 for subohmic bath and f(s) = 1− s
for superohmic bath.

These results show that in the limit of finite tem-
perature, above a lengthscale β/2π2χ, both the or-
der in the dissipative phase as well as the quasi-order
in the LL phase are exponentially suppressed. On
the other hand at T = 0 there is long-range order:

lim
x→∞

⟨σzx,τσz0,τ ⟩diss = σ2
1 cos (2qFx) (22)

Connected spatial and imaginary time correla-
tions decay in a power law fashion at T = 0, with an
exponent which increases upon decreasing s. These
results, along with the behavior of the order param-
eter, show that at zero temperature, the dissipative
phase is indeed an SDWwith a gapless spectrum and
long-range order. This ordered phase exists due to
the spontaneous breaking of the continuous symme-
try ϕ→ ϕ+ c due to the presence of the long-range
dissipative action Sint.

V. NUMERICAL SIMULATIONS

We verify the validity of our variational ansatz,
both qualitatively and quantitatively, via numerical
simulation of the original action with the cosine po-
tential, Eq. (4). We numerically solve the Langevin
dynamics differential equation associated with the
action, namely the stochastical differential equation
dϕ(t)
dt = −∂Seff

∂ϕ + Γ(t), where Γ(t) is Gaussian white

noise with ⟨Γ(t)⟩ = 0, ⟨Γ(t)Γ(t′)⟩ = 2δ(t− t′). Note
that Γ is the noise that thermalizes to exp(−Seff)
and is not related to the temperature of the dissi-
pative bath, which is zero. Discretizing the action
and applying periodic boundary conditions in both x
and τ direction, we obtain the following differential
equation that we simulate numerically:

dϕij(t)

dt
=

1

Kπu

(
ϕi+1,j + ϕi+1,j − 2ϕi,j

)

+
u

Kπ

(
ϕi,j+1 + ϕi,j−1 − 2ϕi,j

)
+ Γij(t)

+
α

π2

∑

i′

D(
∣∣i− i′

∣∣) sin
[
2
(
ϕi′j − ϕij

)]

(23)
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FIG. 4. Calculation of different quantities for K = 1 that characterizes LL (α = 2, top row) and dissipative phase
(α = 6, bottom row). Red points correspond to L = β = 128 and blue points correspond to L = β = 320. Green
points correspond to ωnC(ωn) calculated from numerically solving the self-consistent variational eq. (6). (left) πχ
remains unrenormalized for all values of α and q. (middle) For α = 2, ωnC(ωn) saturates to Kr/2 = 0.46 for small ω,
whereas ω0.25

n C(ωn) saturates to 1/αr = 1.072 for α = 6. The variational solution saturates to Kr,var/2 = 0.486 for
α = 2 and fails to correctly predict the dissipative phase for α = 6. (right) For α = 2, ⟨cosϕ⟩ decays as a power law
with the exponent Kr = 0.915. However, it saturates to a constant c1 algebraically for α = 6. The fit for the order
parameter in the dissipative phase gives c1 = 0.096, c2 = 0.112, and c3 = 3.37. In the LL phase, ⟨cos(2ϕ)⟩ calculated
with variational method decays with Kr,var = 0.973.

Where i ∈ (1, β) and j ∈ (1, L) represents the dis-
cretized τ and x indices respectively. We solve this
differential equation at long time and obtain equi-
librated configurations ϕeq(x, τ). We then calcu-
late various correlation functions on these configu-
rations and match them against our analytical pre-
dictions. We compare the Langevin equation sim-
ulation with the variational method prediction, ob-
tained from numerically solving Eq. (6). The values
of the parameters chosen for both simulations are
K = 1, u = 1, s = 0.5 and dt = 0.05, where dt is the
Langevin time-step. We varied the value of α, and
for each value of α, we simulate Eq. (23) for different
sizes, scaling L = β. From the variational study, we
expect that there exists a critical dissipative strength
αc(K) such that for α < αc, the correlation func-
tions will correspond to the LL propagator G−1

LL =
1
πK

(
uq2 +

ω2
n

u (1 + ν)
)
, and for α > αc, they will

behave according to the dissipative phase propaga-

tor G−1
var = 1

πK

(
uq2 + η|ωn|s

u + a1|ωn|1+
s
2

u +
a2ω

2
n

u

)
.

In Fig. 4, we show the results for α = 2 (top
row), which we find to be in the LL phase, and
α = 6, which turns out to be in the dissipative phase.
The first quantity we compute is (q2/π)G(q, ωn).
Fig. 4, left, shows that this quantity, both with
the Langevin method and the variational method,
remains unrenormalized and equal to K/u for all
values of q and both values of α. This is in agree-
ment with our variational ansatz. Next, we compute
C(ωn) =

1
πL

∑
q
G(q, ωn). This quantity is useful for

extracting and differentiating between the ωn depen-
dence of G(q, ωn) in the two phases. Indeed, for
small ωn, C(ωn) behaves as:

C(ωn → 0) =

{
Kr
2ωn

, LL
1√
αrωsn

dissipative
(24)
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where Kr =
K√
ν+1

and αr = 4η/K2. We denote the

renormalized value of K obtained from the Langevin
simulation as Kr and the numerical variational so-
lution as Kr,var. Fig. 4, middle, shows that indeed
for α = 2, ωnC(ωn) saturates to a constant, whereas
for α = 6, ω0.25

n C(ωn) goes to a constant as ωn → 0,
indicating that α = 2 is in LL phase and α = 6
is in the dissipative phase. The variational solution
also shows a renormalization of K, for example for
α = 2, we get Kr,var = 0.968. This result is in fair
agreement with the Langevin simulation, Kr = 0.92.
However, at large α, the variational method fails and
estimates the transition at αc = 10. From fig. 4,
middle bottom, for α = 6 the system is already in
the dissipative phase. For our third and final check,
we show the behavior of the order parameter (eq.
(14)). To extrapolate to the zero temperature be-
havior, we compute ⟨cos(2 (ϕ− ϕCoM))⟩. Fig. (4),
left, shows that this quantity decays as a power law
of the system size for α = 2 (top) and saturates to
a constant for α = 6 (bottom). Therefore, we con-
firm the existence of a phase transition between LL
and a new dissipative phase induced by the bath.
This new phase has unaltered susceptibility, gapless
spectrum, and vanishing spin stiffness ρs. In Fig.
5, we show the renormalized values of different pa-
rameters as a function of α, which tells us that for
K = 1, αc ∈ (3, 4).
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region

FIG. 5. Renormalized value of different parameters of
the action for K = 1, s = 0.5. Kr/ur (red square) re-
mains constant and equal to 1 for all values of α. Kr

decreases from K = 1 to Kc = 0.75 as α increases and
approaches αc. αr becomes relevant in the dissipative
phase and increases as a function of α. This behav-
ior of the parameters helps us locate the critical region
αc ∈ (3, 4).

VI. CONDUCTIVITY

From Linear Response theory, the conductivity
can be determined via the analytic continuation of
the propagator [27]:

σ(ω) =
e2

π2ℏ
[
ωnG(q = 0, ωn)

]
iωn→ω+iϵ

(25)

Where ϵ is a small positive number close to zero.
Using our ansatz we find that the DC conductivity
σDC ≡ Re(σ(ω → 0)) = limϵ→0(e

2/π2ℏ)ϵ1−s, which
goes to zero for subohmic (s < 1) baths. This sup-
ports our claim that the system for a subohmic bath
in the dissipative phase is insulating at zero temper-
ature.

VII. CONCLUSIONS

In this work, exploiting the bosonization formal-
ism, we have shown via analytical and numerical
methods that an incommensurate XXZ spin chain
coupled to local baths undergoes an LL-dissipative
phase transition at T = 0. At transition, the chain
undergoes a spontaneous symmetry breaking, with
an order parameter ⟨cos(2ϕ)⟩, that identifies with
the amplitude of a long-range ordered spin density
wave. Remarkably, the spin wave is gapless and the
order originates from the fractional nature of the
excitations of the dissipative phase. Moreover, from
the linear response, we observe a suppression of the
DC conductivity that vanishes for subohmic baths.
Hence, it is tempting to compare this dissipative
transition with the localization transition observed
for quenched disorder [22, 23, 35]. There, the local-
ized phase is also gapless and the fluctuations along
the imaginary time direction are suppressed. How-
ever, the order parameter ⟨cos(2ϕ)⟩ is zero (as there
is no spontaneous breaking of a continuous symme-
try) and the spatial spin-spin correlations decay to
zero exponentially above a finite localization length.
in the dissipative phase instead, the spin-spin corre-
lations decay to a finite value with an s-dependent
power law. For slower baths (small s), the decay be-
comes faster, and the exponent diverges in the limit
s → 0, signaling that (connected) correlations can
decay exponentially.

In the future, we would like to study the properties
of the model at finite temperatures by variational
methods and numerical simulations. This would be
very interesting in view of our interpretation of the
bath as annealed disorder and this study could pos-
sibly shed some light on the ongoing discussion on
the many-body localization transition.
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Another direction that we we have taken is the
study of the same model at half-filling. This was
partially done in [36] and we plan to do it in full
generality.
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Appendix A: System size dependence of Order
Parameter

In this section, we compute ⟨cos 2ϕ⟩L,β =

exp


− 2

βL

∑
q,ωn

q=ωn ̸=0

Gvar(q, ωn)


. This sum can be

decomposed into three terms:

S1 =
2

βL


∑

q ̸=0

Gvar(q, 0) +
∑

ωn ̸=0

Gvar(0, ωn)

+
∑

q ̸=0,ωn ̸=0

Gvar(q, ωn)


 (A1)

The q ̸= 0, ωn ̸= 0 contributions can be converted as
1
βL

∑
q ̸=0,ωn ̸=0

→ 1
π2

∫
1/L

dq
∫

1/β

dωn. Using the eq. (7)

with F (ωn) = νω2
n, we see that:

2

βL

∑

q ̸=0

G(q, 0) =
4πK

uβL

∞∑

m=1

1
(
2πm
L

)2

=
πKL

6uβ

2

βL

∑

ωn ̸=0

G(0, ωn) =
4πKu

(1 + ν)βL

∞∑

n=1

1
(

2πn
β

)2

=
πuKβ

6(1 + ν)L

2

βL

∑

q ̸=0,ωn ̸=0

Gvar(q, ωn) =
2K

π

Λ1∫

1/L

Λ2∫

1/β

dωndq

uq2 +
ω2
n

u (1 + ν)

∼ K√
1 + η

lnmin(β, L)

Similarly, with F (ωn) = η|ωn|s, we find that the
contribution from the first term is the same. The
contribution from the second term can be written
as:

2

βL

∑

ωn ̸=0

G(0, ωn) =
2uK

η

b0(s)

(2π)s−1

βκ(s)

L
(A2)

Where κ(s) = 0 and b0(s) ∼ 1
1−s for a subohmic

bath (0 < s < 1), κ(s) = s − 1 and b0(s) ∼ ζ(s)
for a superohmic bath (1 < s < 2). The ohmic case
(s = 1) is special and b0(s)β

κ(s) should be replaced
with lnβ+γE . The contribution from the third term
is given by:

2

βL

∑

q ̸=0,ωn ̸=0

G(q, ωn) =
2K

π

∞∫

1/L

Λ∫

1/β

dωndq

uq2 +
ω2
n

u +
ηωsn
u

∼ c0 − c1β
s
2−1 (A3)

Where c0 and c1 are positive constants that depend
on K,u, η, s, and ultra-violet cut-off Λ. Putting
these terms together, we find eq. (16) and (17).

Appendix B: Roughness of ϕ(x, τ) in the
dissipative phase

At zero temperature, in the Luttinger liquid
phase, the field ϕ(x, τ) grows logarithmically in both
directions x and τ . Here we characterize the rough-
ness of the field ϕ(x, τ) in the dissipative phase.
In particular, We compute the following correlation
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functions:

B(τ) ≡ ⟨
[
ϕ(x, 0)− ϕ(x, τ)

]2⟩ (B1)

B(x) ≡ ⟨
[
ϕ(x, τ)− ϕ(0, τ)

]2⟩ (B2)

In the dissipative phase, using eq. (7) with F (ωn) =
ν|ωn|s, eq. (B1) can be written in the Fourier space
as

B(τ) =
2

βL

∑

q,ωn

(1− cosωnτ)Gvar(q, ωn) (B3)

The ωn = 0 terms vanish due to the presence of
the cosine term in the numerator. Hence, we write
the contributions from the terms q = 0, ωn ̸= 0 and
q ̸= 0, ωn ̸= 0 separately:

B(τ) =
2

βL

∑

ωn ̸=0

(1− cosωnτ)Gvar(0, ωn) (B4)

+
2

βL

∑

q ̸=0,ω ̸=0

(1− cosωnτ)Gvar(q, ωn)

The summation of the first term on the RHS of eq.
(B4) gives:

2

βL

∑
ωn ̸=0

(1− cosωnτ)Gvar(0, ωn)

=
4πKu

βL

∞∑

n=1

1− cosωnτ

ω2
n + ηωsn

(B5)

∼ Ku

η

τf(s)

L

Where f(s) = 0 for subohmic bath (0 < s < 1) and
f(s) = 1 − s for superohmic bath (1 < s < 2). For
the ohmic case (s = 1), τf(s) should be replaced by
ln τ . For the second term on the RHS of eq. (B4),
we convert the sum 1

βL

∑
q ̸=0,ωn ̸=0

→ 1
π2

∫
dqdωn to

find:

2

βL

∑
q ̸=0,ω ̸=0

(1− cosωnτ)Gvar(0, ωn) (B6)

=
2K

π

∫ Λ

0

dωn

∫ ∞

0

dq
(1− cosωnτ)

uq2 +
ω2
n

u +
ηωsn
u

The integral over 1 in eq. (B7) gives us the same
constant c0 from eq. (A3). The integral over cosωnτ
gives us the τ dependence of B(τ), and we see that
for large τ :

B(τ) ∼ Ku

η

τf(s)

L
+ c0 − a1τ

s
2−1 (B7)

Where a1 = K
η Γ(1− s

2 ) sin
(
πs
4

)
.

Similarly, eq. (B2) can be written in the Fourier
space and calculated :

B(x) =
2

βL

∑

q ̸=0

(1− cos qx)Gvar(q, 0) (B8)

+
2

βL

∑

q,ωn

(1− cos qx)Gvar(q, ωn)

Like B(τ), we compute B(x) termwise:

2

βL

∑
q ̸=0

(1− cos qx)Gvar(q, 0) (B9)

=
4πχ

βL

∞∑

n=1

1− cos qx

q2
∼ π2χx

β

2

βL

∑
q,ωn

(1− cos qx)Gvar(q, ωn) (B10)

=
2K

π

∫ ∞

0

dωn

∫ Λ

0

dq
(1− cos qx)

uq2 +
ω2
n

u +
ηωsn
u

∼ c0 − a2x
1− 2

s

where a2 =
2Ku

2
s
−1η−

1
s Γ( 2

s−1)
s . Putting all the

terms together, we obtain that for large-x:

B(x) ≈ π2χx

β
+ c0 − a2x

1− 2
s (B11)

In conclusion, in the thermodynamic limit where
L → ∞, the interface is flat in the τ direction.
Along the x direction, it is rough at finite tempera-
ture and becomes flat at zero temperature. In this
limit, both B(x) and B(τ) algebraically saturate to
the same constant but with different power laws,
showing that there is long-range order in this phase.

Appendix C: RG calculation

In this section, we systematically derive the RG
flow equations of the LL parameter K and the cou-
pling strength α. To analyze the RG flow of the
parameters, we calculate the following correlation
function :

R(r1 − r2) = ⟨eiaϕ(r1)e−iaϕ(r2)⟩, r = (x, uτ) (C1)
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We know that for the quadratic LL action, R(r1 −
r2) ∼

(
r1−r2
b

)−a2K/2
, where b is some short-scale

length cut-off. We perturbatively expand the cor-
relation function with respect to Sdiss. The per-
turbative series up to first order of α is given by
⟨eiaϕ(r1)e−iaϕ(r2)⟩S0 + ⟨eiaϕ(r1)e−iaϕ(r2)⟩S0⟨Sint⟩S0 −

⟨eiaϕ(r1)e−iaϕ(r2)Sint⟩S0 . The 0th order term can be

easily computed and is given by exp(−a
2K
2 F (r1 −

r2)), F (r) = 1
2 log

[
x2+(u|τ |+b)2

b2

]
. After computing

the first-order contribution, we obtain:

R(r1 − r2) = e
−a2K

2 F (r1−r2)[1 +
α

2πbu2

∫
d2r′d2r′′e−2KF (x′−x′,τ ′−τ ′′)B

∑

ϵ=+−

[
eaKϵ(F (r1−r′)−F (r1−r′′)−F (r2−r′)+F (r2−r′′)) − 1

]
] (C2)

where B = δ(x′−x′′)D(τ ′−τ ′′). After transforming

the equation into CoM R = r′+r′′

2 and relative co-
ordinates r = r′ − r′′ and taylor expanding F for
small r, we expand the exponential for small value
of r:

R(r1 − r2) = e
−a2K

2 F (r1−r2)[1 +

αa2K2

2πbu2

∫
d2rd2Re−2KF (r)B

×(r.∇R[F (r1 −R)− F (r2 −R)])2 (C3)

The term inside the square produces terms like

rirj(∇Ri [F (r1−R)−F (r2−R)]))(∇Rj [F (r1−R)−
F (r2 −R)])), where i, j denotes the two possible co-
ordinates x, y = uτ . For the integral over d2r and
by symmetry x → −x, y → −y, only the diagonal
i = j terms survive. The action is anisotropic whose
effect can be included with an additional term in F
of the form d cos(2θ), where θ is the angle between
vector (x, uτ) and x axis and d is the measure of
anisotropy. After expanding the gradient terms and
integrating by parts over R, we obtain two terms
I± =

∫
d2R[F (r1−R)−F (r2−R)](∂2X±∂2Y )[F (r1−

R)−F (r2−R)]. The I+ term renormalizes K and α,
whereas the other term renormalizes the anisotropy
which we are not interested in. Hence,

R(r1 − r2) = e
−a2K

2 F (r1−r2) ×

[1− αa2K2

4πbu2

∫
d2rd2Re−2KF (r)r2B[F (r1 −R)− F (r2 −R)](∇2

X +∇2
Y )[F (r1 −R)− F (r2 −R)](C4)

As F is a logarithmic function, we know that (∇2
X+

∇2
Y )F (R) = 2πδ(R). After re-exponentiating the

term inside the bracket, we obtain :

Keff = K − 2αK2

bu2

∫

r>b

d2rr2 exp(−2KF (r))B

(C5)

To understand the scaling of K and α, we express
d2r and r2 in terms of x, uτ and compute the integral
over δ(x). Noticing that D(τ) cancels out τ2, we
find:

Keff = K − 2αK2

∫ ∞

b

dy

b
(
y

b
)−2K , y = uτ (C6)

Sending b to b′ = b+ db, we find :

Keff = K − 2αK2 db
b − 2αK2

∫∞
b′

dy
b (

y
b )

−2K

=⇒ K(b′) = K(b)− 2α(b)K2(b)dbb (C7)

Similarly,

α(b′) = α(b)

(
b′

b

)1−2K

(C8)

If we parametrize b = b0e
l, we obtain the following

flow equations:

dK

dl
= −2αK2

dα

dl
= (2− s− 2K)α

(C9)
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These equations indicate the existence of a critical
point Kc = 1 − s

2 , as in [32], but the precise value
of the numerical coefficient in the first equation of
(C9) differs of a factor of 2.
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[21] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
[22] T. Giamarchi and H. J. Schulz, Europhysics Letters

(EPL) 3, 1287 (1987).
[23] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37,

325 (1988).
[24] L. Foini and J. Kurchan, SciPost Phys. 12, 080

(2022).
[25] P. Jordan and E. Wigner, Zeitschrift für Physik 47,

631 (1928).
[26] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098

(1940).
[27] T. Giamarchi, Quantum Physics in One Dimension,

International Series of Monographs on Physics
(Clarendon Press, 2004).

[28] G. Giachetti, A. Trombettoni, S. Ruffo, and N. De-
fenu, Phys. Rev. B 106, 014106 (2022).

[29] A. M. Lobos, A. Iucci, M. Müller, and T. Giamarchi,
Phys. Rev. B 80, 214515 (2009).

[30] B. Horovitz, T. Giamarchi, and P. Le Doussal, Phys.
Rev. Lett. 111, 115302 (2013).

[31] B. Horovitz, T. Giamarchi, and P. Le Doussal, Phys.
Rev. Lett. 121, 166803 (2018).

[32] M. A. Cazalilla, F. Sols, and F. Guinea, Phys. Rev.
Lett. 97, 076401 (2006).

[33] R. Feynman, Statistical Mechanics: A Set Of Lectures,
Advanced Books Classics (Avalon Publishing,
1998).

[34] For more details, see O. Bouverot-Dupuis, S. Ma-
jumdar, A. Rosso and, L. Foini, in preparation.

[35] E. V. H. Doggen, G. Lemarié, S. Capponi, and
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Résumé en Français

La découverte de la localisation dans les systèmes quantiques et classiques demeure majeure
à ce jour. Le phénomène a été introduit par P.W. Anderson dans son article fondateur de
1958 [1], dans lequel il était démontré que la fonction d’onde d’un seul degré de liberté quan-
tique (tel qu’une particule ou un spin) cessait de diffuser spatialement dans un réseau en
présence d’impuretés (modélisées par un potentiel local et aléatoire). Dans ce cas, la fonc-
tion d’onde du degré de liberté ψ décroît exponentiellement sur une longueur charactéristique
finie comme ∼ e−x/ξ , où ξ est la ’longueur de localisation’ qui quantifie l’extension spatiale
de la localisation du système. Ce travail a été approfondi dans la fameuse lettre du ‘Gang of
Four’ [2], qui démontre, via un argument d’échelle, l’impossibilité d’avoir une transition de lo-
calisation à température finie dans les conditions suivantes : un système sans interaction, ayant
un ‘bord de mobilité’ (’mobility edge’) et en dimension spatiale d ≥ 3. Cela a d’abord donné
l’impression que les transitions de phase de localisation étaient absentes des systèmes quan-
tiques unidimensionnels; cependant, dans le célèbre modèle Aubry-André-Harper [3–5], il a été
montré qu’un bord de mobilité peut exister dans les systèmes quantiques unidimensionnels en
présence d’un potentiel quasi-périodique, c’est-à-dire un potentiel ayant une période incommen-
surable avec celle du réseau. En outre, l’existence d’une transition de phase localisée-délocalisée
à température zéro a été prouvée dans les systèmes désordonnés de dimensions inférieures et
en présence d’interaction. Des exemples importants de ces phénomènes ont été trouvés en
une dimension dans la transition de verre de Bose-superfluide en présence d’interactions dans
des systèmes bosoniques, d’abord de manière analytique [6, 7] puis numérique [8]. Dans les
systèmes fermioniques, il a été démontré que des chaînes fermioniques couplées, avec et sans
spin, présentent une transition entre des phases localisée et supraconductrice [9], en particulier
lorsque l’interaction est de nature attractive.

L’un des nombreux aspects intéressants de ce phénomène est que le système devient isolant
car le transport est rendu impossible par l’absence de diffusion dans la phase localisée. Jusqu’à
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présent, la localisation a été observée dans différents systèmes présentant un désordre statique
(gelé). Mais peut-elle être induite à température nulle dans un système 1D couplé à des bains
dissipatifs? Intuitivement, on peut comprendre que l’environnement puisse être assimilé à une
source de phonons (ou à de simples oscillateurs harmoniques). Si ces phonons sont couplés
au système de telle sorte que chaque degré de liberté du système possède son propre réservoir
de phonons indépendant des autres, ils agissent alors comme un potentiel local, dynamique et
aléatoire (désordre recuit) pour le système. En particulier, si les phonons sont dynamiquement
lents, ils peuvent, dans une limite de couplage fort, inhiber les propriétés de transport du sys-
tème, induisant une transition de phase. C’est ce scénario que nous abordons dans cette thèse.

Notre travail est également motivé par le point de vue des systèmes quantiques ouverts. Le
formalisme que nous adoptons dans cette thèse tient compte de l’environnement d’une manière
non markovienne et non perturbative. Celui-ci a été introduit pour la première fois par A.O.
Caldeira et A.J. Leggett dans leur travail sur le mouvement brownien quantique [23], où ils
ont montré que l’équation de Langevin correspondant à la version quantique du mouvement
brownien md2x

dt2
+ αdx

dt
+ V ′(x) = F (t) (où m est la masse de la particule, α est une constante

d’amortissement, V est un potentiel générique et F est la force aléatoire avec la corrélation
⟨F (t)F (t′)⟩ = 1

2π
∫
e−iω(t−t′)αℏω coth

(
ℏω

2KT

)
) peut être transposée à un système en contact avec

un réservoir via le formalisme de l’intégrale de chemin de Feynman-Vernon [24]. Plus précisé-
ment, le système dissipatif est composé d’une particule dans un potentiel V(x) couplée à un
bain d’oscillateurs harmoniques simples, donné par le Hamiltonien :

Hsys = p2

2m + V (x)

Hbain = 1
2
∑
k

[
P 2
k

Mk

+MkΩ2
kR

2
k

]
HSB = x

∑
k

CkRk

où Rk, Ωk et Pk sont respectivement le déplacement, la fréquence propre et l’impulsion du
k-ème oscillateur dans le réservoir. Ck représente l’énergie de couplage de la particule au k-ème
oscillateur. Caldeira et Leggett ont montré que ces deux systèmes, la particule brownienne et
le système dissipatif, sont équivalents lorsque la densité spectrale de basse énergie des oscilla-
teurs harmoniques, définie par J(ω) = π

2
∑
k

C2
k

mkΩk
δ (ω − Ωk), est linéairement proportionnelle à

la fréquence comme αω. Dans ce cas, l’effet du bain est équivalent à celui d’une résistance dans
un circuit électrique. C’est pourquoi ce type d’environnement a été qualifié de ‘bain ohmique’.
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Ce travail a suscité de nombreux développements intéressants [25–27], dont une étude des sys-
tèmes dissipatifs à deux états [28]. Ce modèle est actuellement connu sous le nom de modèle
‘Spin-Boson’, où le système à deux états considéré est une unique particule quantique de spin-
1/2 dans un champ magnétique constant le long des directions z et x: Hsys = 1

2 (ϵσz − ℏ∆oσ
z).

La dissipation pour ce modèle est la même que pour le mouvement brownien quantique (décrit
par Hbain), et le couplage entre le bain et le système est donné par HSB = 1

2σ
z∑
k
CkRk, c’est-à-

dire que la coordonnée de la particule brownienne est remplacée par la composante z du spin.
Dans certaines limites, ce système peut être mis en correspondance avec un système où une
particule se trouve dans un potentiel à double puits. En l’absence de dissipation et dans la
limite ℏ∆0/ϵ ≫ 1, on sait que le spin oscille constamment entre l’état de spin haut et l’état de
spin bas (ce qui revient à dire que la particule saute entre le puits gauche et le puits droit du
potentiel). Plus précisément, si P (t) représente la différence entre la probabilité de trouver le
spin (particule) dans l’état de spin haut (puits de gauche) et dans l’état de spin bas (puits de
droite), alors P (t) = cos ∆0t, en supposant que P (0) = 1. Cependant, ce comportement change
radicalement lorsque le système est couplé à un bain dissipatif ayant une fonction spectrale de
la forme plus générale J(ω) ∼ αωs. La dynamique du bain peut être contrôlée dans ce contexte
par l’exposant s ; une valeur plus petite de s dénote un bain avec une dynamique plus lente. Ce
type d’environnement contraste avec l’image de la mesure aléatoire expliquée précédemment,
où la dissipation est instantanée et correspond à J(ω) = const. En référence à [23], le cas cor-
respondant à s = 1 est appelé un ‘bain ohmique’, 1 < s < 2 est appelé ‘le bain superohmique’
et 0 < s < 1 est appelé un ‘bain subohmique’. L’un des résultats intéressants du modèle spin-
boson est qu’à une température nulle, pour un bain subohmique, le spin conserve la mémoire
de son état initial au lieu d’osciller entre les deux états (en d’autres termes, la particule reste
localisée dans le puits où elle se trouvait initialement). Cela peut être interprété comme une
signature de localisation induite par la dissipation dans un système quantique à zéro dimension.
Cela va à l’encontre du consencus général de l’époque, car il avait été démontré précédemment
que des phonons acoustiques délocalisés pouvaient induire une conductivité non nulle dans un
système localisé par un mécanisme connu sous le nom de ‘Variable Range Hopping’ [29–31].

Notre travail a été d’étendre ce travail aux systèmes unidimensionnels en interaction. Une autre
série de questions que nous voulions aborder était la suivante: ces bains dissipatifs peuvent-ils
induire une transition de phase à température nulle ? Si oui, est-il possible d’avoir une bonne
description effective de la phase à basse énergie ? Enfin, quelles sont les propriétés thermody-
namiques et dynamiques de cette nouvelle phase dissipative ? Nous répondons ici à ces questions
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et montrons que les résultats corroborent le scénario de localisation décrit précédemment.

Panorama de la thèse

Nous présentons ici une vue d’ensemble du travail, qui servira de guide pour orienter les lecteurs
à travers les chapitres de cette thèse. Dans le chapitre 1, nous décrivons en détail l’état actuel
de l’art dans le domaine des ‘systèmes quantiques ouverts’, qui traite de la caractérisation du
comportement des modèles et matériaux quantiques en présence d’un environnement externe.
Cet environnement peut se présenter sous la forme de mesures, ou sous la forme de phonons
externes se couplant avec le système, et nous discuterons de ces approches en détail, tout en
rendant notre formulation de l’environnement plus compacte d’un point de vue mathématique.

Le chapitre 2 présente le modèle quantique que nous étudions, à savoir une chaîne de spin
XXZ 1D couplée à des bains dissipatifs locaux. Ces bains agissent sur le système comme un
désordre recuit ou dynamique. Nous introduisons une technique importante appelée ‘boson-
isation’ et l’appliquons à la chaîne de spin pour obtenir une théorie des champs classique à
deux dimensions. Dans ce scénario, l’effet des bains locaux est capturé par un potentiel en
cosinus à longue portée agissant seulement le long de la direction du temps imaginaire, et nous
soutenons qu’il est capable d’induire une transition de phase sur le liquide de Luttinger déjà
existant en brisant spontanément la symétrie à température zéro. Nous montrons également
que deux limites de ce modèle doivent être clairement différenciées : l’action issue de la théorie
des champs effective pour la chaîne de spin doit être étudiée séparément selon que l’on considère
une magnétisation nulle ou une magnétisation finie.

Pour décrire la transition de phase et la nouvelle phase dissipative, nous utilisons des tech-
niques analytiques et numériques que nous décrivons en détail au chapitre 3. En particulier,
nous utilisons le groupe de renormalisation (GR) perturbatif et une méthode d’approximation
variationnelle. A titre d’exemple, nous montrons l’application de ces méthodes au célèbre mod-
èle de sine-Gordon, qui peut être vu comme une limite non-dissipative du système que nous
étudions. Dans la dernière section, nous abordons la théorie de la dynamique de Langevin,
qui est à la base de nos simulations numériques. Nous montrons que cette méthode peut être
utilisée comme une technique de Monte-Carlo pour notre système et qu’elle peut nous aider à
échantilloner l’espace des configurations de l’action.
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Figure 6.4: Schéma de la phase dissipative. Les flèches noires désignent les spins et les boîtes
rouges les bains dissipatifs de Caldeira-Leggett. La phase dissipative est un SDW sans gap avec
un ordre à longue portée avec une périodicité π/qF .

Nous nous concentrons sur l’étude du système à magnétisation finie dans les deux chapitres
suivants (chapitres 4 et 5). En utilisant le GR perturbatif, nous localisons un point critique de
type Berezinski-Kosterlitz-Thouless. Cela nous indique que dans l’espace de phase du couplage
dissipatif et du paramètre de Luttinger, soit le système reste dans la phase liquide de Luttinger
originale avec des paramètres renormalisés, soit il part dans une nouvelle phase dissipative où
le potentiel en cosinus devient pertinent. Dans la phase liquide de Luttinger, la procédure de
renormalisation indique que la valeur du paramètre de Luttinger est réduite. Des effets simi-
laires ont été étudiés dans [10], où il a été montré que le paramètre de Luttinger K d’un liquide
de Luttinger est réduit à K ′ lorsque le système est couplé à un environnement dissipatif externe
avec une résistance finie R comme 1/K ′ = 1/K + (e2R)/h. D’autre part, pour comprendre
la phase dissipative, nous utilisons une analyse variationnelle de l’action, et trouvons que les
excitations de basse énergie de cette phase peuvent être décrites par une action gaussienne
sans gap et avec un terme fractionnaire en les fréquences de Matsubara. Pour caractériser la
phase dissipative, nous analysons ses propriétés thermodynamiques et dynamiques telles que
la susceptibilité, la corrélation spin-spin, la conductivité, la rigidité de la charge, etc. Nous
définissons un paramètre d’ordre pour la transition de phase, que nous relions à l’amplitude
d’une densité de spin via la bosonisation. Comme cette quantité reste finie à température zéro
et dans la limite thermodynamique dans la phase dissipative, nous soutenons que cette phase
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est une onde de densité de spin sans gap (fig. (6.4)) avec une susceptibilité inaltérée et une
densité superfluide nulle. Dans le cas d’un bain subohmique, la conductivité DC de la phase
dissipative s’annulle, signalant une transition de phase conducteur-isolant. En outre, nous
simulons l’action avec le potentiel en cosinus pour générer des configurations équilibrées par
cette action. Nous étayons nos prédictions analytiques en calculant les fonctions de corrélation
susmentionnées à partir de ces configurations générées numériquement. Ces travaux ont donné
lieu à une publication [11] et à une préimpression [12].

Le 6ème chapitre se concentre sur une autre limite de ce modèle, où l’on considère la chaîne de
spin XXZ à une magnétisation nulle. Ce travail est actuellement en cours, mais nous sommes
en mesure de prédire que dans ce scénario, la physique à température zéro du système s’avère
être très différente de la situtation à magnétisation finie décrite précédemment. En particulier,
l’onde de densité de spin sans gap est remplacée par une phase gappée, que nous pensons être
antiferromagnétique (isolant de Mott). Nous fournissons des preuves numériques préliminaires
pour appuyer ce résultat. Tous les résultats importants de la thèse ont été mis en évidence par
des encadrés.
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Appendix A

Details of Bosonization

In Chapter 2, we limit our discussion to the application of bosonization to our model. In this
appendix, we discuss certain details of bosonization that can be referred to understand different
technical aspects of the technique.

A.1 Commutation of density fluctuation oper-
ators

Previously, we have defined ρ†
r(q) = ∑

k
c†
r,k+qcr,q and ρr(q) = ρ†

r(−q), r = ± to be the density
fluctuation creation and destruction operators, respectively. Here we show the calculation of
the commutation relationship of

[
ρ†
r(q), ρr(−q)

]
=
[
ρ†
r(q), ρ†

r(−q′)
]
, which will highlight the

bosonic nature of these operators and the importance of normal ordering. Using [AB,C] =
A {B,C} − {A,C}B and usual fermionic commutation relationships, we find that:

[
ρ†
r(q), ρ†

r(−q′)
]

=
∑
k1,k2

[
c†
r,k1+qcr,k1 , c

†
r,k2−q′cr,k2

]
=

∑
k1,k2

(
c†
r,k1+q

{
cr,k1 , c

†
r,k2−q′

}
cr,k2 − c†

r,k2−q′

{
c†
r,k1+q, cr,k2

}
cr,k1

)
=

∑
k1,k2

(
c†
r,k1+qcr,k2δk1,k2−q′ − c†

r,k2−q′cr,k1δk1+q,k2

)
=

∑
k2

(
c†
r,k2+q−q′cr,k2 − c†

r,k2−q′cr,k2−q
)

(A.1)

At first glance, it seems that one can redefine the variable k2 − q′ → k′
2 in the first term and

that cancels out the second term exactly. However, that is not feasible here as there is an
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infinite number of states due to the linear nature of the dispersion of the Tomonaga-Luttinger
hamiltonian (eq. (2.18)). Hence, we need to use normal ordering to get the correct commutation
relationship. Doing that, the normal-ordered operators cancel each other and the commutator
is given by:

[
ρ†
r(q), ρ†

r(−q′)
]

=
∑
k2

(
⟨0| c†

r,k2+q−q′cr,k2 |0⟩ − ⟨0| c†
r,k2−q′cr,k2−q |0⟩

)
= δq,q′

(
⟨0| c†

r,k2cr,k2 |0⟩ − ⟨0| c†
r,k2−qcr,k2−q |0⟩

)
= −δq,q′

rLq

2π (A.2)

We see that the commutation relationship
[
ρ†(q), ρ(q′)

]
= δq,−q′ is bosonic upto some normal-

ization constant. This tells us the validity of the ρ(q) operators as a basis for the construction
of bosonic operators.

A.2 Exact form of the bosonic operators

This section will act as a set of dictionaries for mapping out exact relationships between different
relevant operators. In the basis of ρr(q), the bosonic operators are given by:

b†
q =

(
2π
L|p|

) 1
2 ∑

r

Y (rq)ρ†
r(q)

bq =
(

2π
L|p|

) 1
2 ∑

r

Y (rq)ρr(q) (A.3)

Where Y is the step function. One can also map the bosonic fields ϕ and θ to the density
fluctuation operators in the following way:

ϕ(x) = −π

L

(N+ +N−)x+ i
∑
q ̸=0

e−a|q|
2 −iqx

q

(
ρ†

+(q) + ρ†
−(q)

)
θ(x) = π

L

(N+ −N−)x+ i
∑
q ̸=0

e−a|q|
2 −iqx

q

(
ρ†

+(q) − ρ†
−(q)

) (A.4)

Where N± are the number of particles on the corresponding bands and a is a UV cut-off for
the momentum, usually taken as the lattice spacing. In the thermodynamic continuum limit
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L → ∞, a → 0, it is easy to see that:

∇ϕ(x) = −π [ρ+(x) + ρ−(x)] = −π
[
ψ†

+(x)ψ+(x) + ψ†
−(x)ψ−(x)

]
(A.5)

∇θ(x) = π [ρ+(x) − ρ−(x)] = π
[
ψ†

+(x)ψ+(x) − ψ†
−(x)ψ−(x)

]
(A.6)

Where ψ†
±(x) are single-particle creation operators. We finally check one more commutation

relationship in the thermodynamic limit:

[ϕ(x1),∇θ(x2)] = i
∫ ∞

0
dq cos (q (x2 − x1)) e−a|q|

= iπδ(x2 − x1) (A.7)

This confirms that Π(x) = 1
π
∇θ(x) is the canonically conjugate momemntum to ϕ(x).
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Appendix B

Details of Path Integral
and Correlation functions

B.1 Gaussian integral over complex variable

In this section, we will show how to compute a Gaussian integral of the form

Z =
∫

Dϕ (x, τ) e− 1
2πK

∫
dτdx[u(∇ϕ(x,τ))2+ 1

u
(∂τϕ(x,τ))2] (B.1)

To solve this integral, first, we apply the following fourier transform on the field ϕ(x, τ) =
1
βL

∑
q,ωn

ϕ(q, ωn)ei(qx−ωnτ). Using this and changing the path integral measure, the Gaussian
integral transforms into

Z =
[∏
q,ωn

N
∫

Dϕ (q, ωn) Dϕ∗ (q, ωn)
]
e

− 1
2πKβL

∑
q,ωn

G−1(q,ωn)|ϕ(q,ωn)|2

=
∏
q,ωn

[
N
∫

Dϕ (q, ωn) Dϕ∗ (q, ωn) e− 1
2πKβLG

−1(q,ωn)|ϕ(q,ωn)|2
]

(B.2)

Where ϕ∗(q, ωn) = ϕ(−q,−ωn) as the field is real, N is a normalization constant coming from
the change of the path integral measure, which can be chosen accordingly, and G−1(q, ωn) =
(uq2 +ω2

n/u) is the propagator of the LL. In the last step of eq. (B.2), we convert the sum inside
the exponential into a product, which turns the path integral into the product of independent
Gaussian integrals. Each of these Gaussian integral produces a factor of π

√
2KβLG(q, ωn), and
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hence the complete integral is given by:

Z =
∏
q,ωn

Nπ
√

2KβLG(q, ωn) (B.3)

B.2 Behaviour of roughness function in the LL
phase

The spatial and temporal roughness functions, B(x) and B(τ), are respectively defined as:

B(x) = ⟨[ϕ(x, τ) − ϕ(0, τ)]2⟩ (B.4)

B(τ) = ⟨[ϕ(x, τ) − ϕ(x, 0)]2⟩ (B.5)

Before we proceed with the calculation, I will note down an important formula below, which will
be used repeatedly throughout the thesis for calculating different correlation functions. This
formula is for calculating a two-point correlation function in the fourier space for a gaussian
action:

⟨ϕ∗(q1, ωn1)ϕ(q2, ωn2)⟩ =
∫

Dϕ[q]ϕ∗(q1, ωn1)ϕ(q2, ωn2)e
− 1

2
∑
q,ωn

ϕ∗(q,ωn)A(q,ωn)ϕ(q,ωn)

∫
Dϕ[q]e

− 1
2
∑
q,ωn

ϕ∗(q,ωn)A(q,ωn)ϕ(q,ωn)

= A−1(q1, ωn1)δq1,q2δωn1 ,ωn2
(B.6)

With this formula, we are ready to compute the correlation functions of eq. (B.4) and eq.
(B.5). I will show a step-by-step derivation of B(x) here, B(τ) can be obtained similarly. First,
we do a fourier transform of the field ϕ(x, τ) = 1

βL

∑
q,ωn

ei(qx−ωnτ)ϕ(q, ωn). Plugging this back, we
obtain:

B(x) = 1
(βL)2

〈 ∑
q1,ωn1

ei(q1x−ωn1τ)ϕ(q1, ωn1) −
∑
q2,ωn2

e−iωn2τϕ(q2, ωn2)
2〉

= 1
(βL)2

∑
q1,ωn1
q2,ωn2

⟨ϕ(q1, ωn1)ϕ(q2, ωn2)⟩
(
ei(q1x−ωn1τ) − e−iωn1τ

)(
ei(q2x−ωn2τ) − e−iωn2τ

)
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A quadratic action can be generally written as S = 1
2βL

∑
q,ωn

ϕ∗(q, ωn)G−1(q, ωn)ϕ(q, ωn). Using
eq. (B.6), we obtain:

B(x) = 1
βL

∑
q1,ωn1
q2,ωn2

(
ei(q1x−ωn1τ) − e−iωn1τ

)(
ei(q2x−ωn2τ) − e−iωn2τ

)
δq1,−q2δωn1 ,−ωn2

G(q1, ωn1)

= 2
βL

∑
q,ωn

(1 − cos (qx))G(q, ωn) (B.7)

Similarly, it can be shown that the temporal roughness function in Fourier space can be written
as:

B(τ) = 2
βL

∑
q,ωn

(1 − cos (ωnτ))G(q, ωn) (B.8)

Together for a general form of the roughness function B(x, τ) = ⟨[ϕ(x, τ) − ϕ(0, τ)]2⟩, it can be
shown that B(x, τ) = 2

β

∑
ωn

∞∫
−∞

dq
2π (1 − cos (qx+ ωnτ))G(q, ωn), where we have already taken the

thermodynamic limit 1
L

∑
q =

∞∫
−∞

dq
2π . In the LL phase, GLL = πuK [(uq)2 + ω2

n]−1. To compute

B(x, τ) in this phase, we introduce a large momentum cut-off Λ by multiplying a term e−Λ|q|.
Thus, the roughness function B(x, τ) can be equated to KF1(x, τ), where F1(x, τ) is given by:

F1(r) = u

β

∞∑
n=−∞

∫ ∞

∞
dq

[(1 − cos(qx+ ωnτ)]
ω2
n + u2qk2

(
e−Λ|q|

)
= 2u

β

∞∑
n=−∞

∫ ∞

0
dq

[(1 − cos(qx− i(iωn)τ)]
ω2
n + u2q2

(
e−Λq

)
(B.9)

Where ωn are the Bosonic matsubara frequencies 2πn
β

. We can compute the sum over ωn using
the matsubara sum technique [88]. Let’s define z = iωn. Now,

cos(qx− iωnτ) = cos(qx) cosh(zτ) + i sin(qx) sinh(zτ)

= cos(qx)e
zτ + e−zτ

2 + i sin(qx)e
zτ − e−zτ

2

= ezτ

2 eiqx + e−zτ

2 e−iqx (B.10)

=⇒ F1(r) = 2u
β

∞∑
n=−∞

∫ ∞

0
dq

1 − eiqx

2 eiωnτ − e−iqx

2 e−iωnτ

ω2
n + u2q2

(
e−Λq

)
(B.11)

Let’s take β > τ > 0. In the second term of the numerator, set ωn → −ωn. These won’t affect
the sum because we are summing over both positive and negative matsubara frequencies. Then

123



<latexit sha1_base64="sPINs9s43sR/z3mLmgR34Tnxp0Q=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoQr7GChbEg+pCaqHIcp7Xq2JHtIEVRxcKvsDCAECtfwcbf4LQZoOVIlo/OuVf33hMkjCrtON/WwuLS8spqZa26vrG5tW3v7LaVSCUmLSyYkN0AKcIoJy1NNSPdRBIUB4x0gtF14XceiFRU8HudJcSP0YDTiGKkjdS3971AsFBlsfnyO+hpAT3KI52N+3bNqTsTwHnilqQGSjT79pcXCpzGhGvMkFI910m0nyOpKWZkXPVSRRKER2hAeoZyFBPl55MTxvDIKCGMhDSPazhRf3fkKFbFlqYyRnqoZr1C/M/rpTq69HPKk1QTjqeDopRBc2iRBwypJFizzBCEJTW7QjxEEmFtUquaENzZk+dJ+6TuntfPbk9rjasyjgo4AIfgGLjgAjTADWiCFsDgETyDV/BmPVkv1rv1MS1dsMqePfAH1ucPliGXkQ==</latexit>

R
!

1

<latexit sha1_base64="qcBUVkFfjrnA2QLO3sFsA+ibC2c=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJhSpBvMYKFsYi0YfURpXjOK1Vxwm2U6mK+icsDCDEyp+w8Tc4bQZoOZLlo3PulY+Pn3CmtON8W6WV1bX1jfJmZWt7Z3fP3j9oqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsf3eV+e0ylYrF41JOEehEeCBYygrWR+rbd82MeqElkruwsfZr27apTc2ZAy8QtSBUKNPr2Vy+ISRpRoQnHSnVdJ9FehqVmhNNppZcqmmAywgPaNVTgiCovmyWfohOjBCiMpTlCo5n6eyPDkcrDmckI66Fa9HLxP6+b6vDGy5hIUk0FmT8UphzpGOU1oIBJSjSfGIKJZCYrIkMsMdGmrIopwV388jJpndfcq9rlw0W1flvUUYYjOIZTcOEa6nAPDWgCgTE8wyu8WZn1Yr1bH/PRklXsHMIfWJ8/Du6T8w==</latexit>�uq <latexit sha1_base64="kSNXpdYwTYe87hUKI1JxUEsunQ8=">AAAB+HicbVA7T8MwGHTKq5RHA4wsFhUSU5UgXmMFC2OR6ENqo8pxnNaqYwc/kErUX8LCAEKs/BQ2/g1OmwFaTrJ8uvs++XxhyqjSnvftlFZW19Y3ypuVre2d3aq7t99WwkhMWlgwIbshUoRRTlqaaka6qSQoCRnphOOb3O88Eqmo4Pd6kpIgQUNOY4qRttLArfZDwSI1SeyVmYfpwK15dW8GuEz8gtRAgebA/epHApuEcI0ZUqrne6kOMiQ1xYxMK32jSIrwGA1Jz1KOEqKCbBZ8Co+tEsFYSHu4hjP190aGEpVns5MJ0iO16OXif17P6PgqyChPjSYczx+KDYNawLwFGFFJsGYTSxCW1GaFeIQkwtp2VbEl+ItfXibt07p/UT+/O6s1ros6yuAQHIET4INL0AC3oAlaAAMDnsEreHOenBfn3fmYj5acYucA/IHz+QOf95O8</latexit>uq

<latexit sha1_base64="td3klWo6XaVaSB+dz+3UjBHVxaQ=">AAAB/nicdVBLSwMxGMzWV62vqnjyEiyCp2W3bh97K3rxWMG2QltKNs22odlkSbJCWQr+FS8eFPHq7/DmvzHbVlDRgZBh5vvIZIKYUaUd58PKrayurW/kNwtb2zu7e8X9g7YSicSkhQUT8jZAijDKSUtTzchtLAmKAkY6weQy8zt3RCoq+I2exqQfoRGnIcVIG2lQPOoFgg3VNDJX2hMRGaEBnw2KJcd2Kr5XK0PHrjiu750b4vt1r1qBru3MUQJLNAfF995Q4CQiXGOGlOq6Tqz7KZKaYkZmhV6iSIzwBI1I11COIqL66Tz+DJ4aZQhDIc3hGs7V7xspilSW0ExGSI/Vby8T//K6iQ7r/ZTyONGE48VDYcKgFjDrAg6pJFizqSEIS2qyQjxGEmFtGiuYEr5+Cv8n7bLtVu3KtVdqXCzryINjcALOgAtqoAGuQBO0AAYpeABP4Nm6tx6tF+t1MZqzljuH4Aest0+nZ5ae</latexit>!n

<latexit sha1_base64="MuXCaubLqJqMXGrDCxmlWt57a5g="></latexit>

f(z) =
e�z⌧

z2 � (uq)2
(1 + nB(z))

Figure B.1: Diagrammatic representation of the matsubara sum technique. The function f(z)
has two poles on the real axis uq and −uq; and the poles on the imaginary axis correspond to
the matsubara frequencies ωn. As the radius of the circle R → ∞, the integral over the circle
goes to 0, which lets us convert the sum over ωn to a sum over q.

summing the second and third terms, we get:

F1(x, τ) = 2u
β

∞∑
n=−∞

∫
dq

1 − cos(qx)e−iωnτ

ω2
n + u2q2

(
e−Λq

)
(B.12)

One can now make the observation that ωn are the poles of the bose-einstein function nB(z) =
1/(eβz − 1); also nB(−z) = −(1 + nB(z)). Thus, the sum over the Matsubara frequencies is
given by:

1
β

∞∑
n=−∞

1
ω2
n + u2q2 = nB(uq)

2uq − nB(−uq)
2uq = nB(uq)

uq
+ 1

2uq (B.13)

1
β

∞∑
n=−∞

e−iωnτ

ω2
n + u2q2 = e−uqτ

2uq + 1
uq

cosh(uqτ)nB(uq) (B.14)

In these equations, to calculate (B.14) (let’s call the sum S), We take a look at the function
e−zτ

z2−(uq)2 (1 + nB(z)). This function converges everywhere on the whole complex plane at this
limit, so we calculate the integral I = limR→∞

∮ dz
2πi

e−zτ

z2−(uq)2 (1 +nB(z)). At this particular limit,
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this integral is 0 by Jordan’s lemma [111]. On the other hand, using the residue method [112],
we get (fig. (B.1)) :

I = −S + e−uqτ

2uq (1 + nB(uq)) − euqτ

2uq (1 + nB(−uq))

=⇒ S = nB(uq)cosh(uqτ)
uq

+ e−uqτ

2uq (B.15)

Putting it back in (B.12), we get :

F1(r) =
∫ ∞

0
dq

(
2nB(uq)

q
[1 − cos(qx) cosh(uqτ)] + 1

q

[
1 − cos(qx)e−uqτ

])
(B.16)

In the zero temperature limit β → ∞, nB(z) = 0. Thus F1(x, τ) reduces to
∫∞

0 dq 1
q

[1 − cos(qx)e−uqτ ].
Now this integral can be calculated exactly, and thus the roughness function is given by:

B(x, τ) = K

2 ln
(
x2 + (u|τ | + a)2

a2

)
(B.17)

B.3 Correlation of exponential functions

In this section, we will show how to compute a correlation function of the generalized form:

I =
〈
e
i
∑
x,τ

A(x,τ)ϕ(x,τ)〉

By applying the fourier transformation A(x, τ) = 1
βL

∑
q,ωn A(q, ωn)ei(qx−ωnτ), we find:

∑
x,τ

A(x, τ)ϕ(x, τ) = 1
(βL)2

∑
x,τ

∑
q1,ωn1
q2,ωn2

A(q1, ωn1)ϕ(q2, ωn2)ei((q1+q2)x−(ωn1 +ωn2 )τ)

= 1
βL

∑
q,ωn

A(q, ωn)ϕ(−q,−ωn) (B.18)

Assuming that we are calculating the correlation function with respect to a gaussian action
of the form S[ϕ] = 1

2βL
∑
q,ωn

ϕ∗(q, ωn)G−1(q, ωn)ϕ(q, ωn). One can then re-write the correlation
function as:

I = 1
Z

∫
Dϕe

− 1
2βL

∑
q,ωn

(ϕ∗(q,ωn)G−1(q,ωn)ϕ(q,ωn)−2iA(q,ωn)ϕ(−q,−ωn))

= 1
Z

∫
Dϕe

− 1
2βL

∑
q,ωn

(ϕ∗(q,ωn)G−1(q,ωn)ϕ(q,ωn)−iA(q,ωn)ϕ(−q,−ωn)−iA(−q,−ωn)ϕ(q,ωn))
(B.19)
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By performing the gaussian integral over ϕ, we find:

I = e
− 1

2βL
∑
q,ωn

A(−q,−ωn)G(q,ωn)A(q,ωn)
(B.20)

Now let us calculate a different quantity
〈(∑⃗

x
A(x⃗)ϕ(x⃗)

)2〉
, where we will use the shortened

notation x⃗ = (x, τ) and q⃗ = (q, ωn) for better presentation. This quantity can be fourier
transformed to the following:

〈(∑
x⃗

A(x⃗)ϕ(x⃗)
)2〉

=
∑
x⃗1x⃗2

A(x⃗1)A(x⃗2)⟨ϕ(x⃗1)ϕ(x⃗2)⟩

= 1
(βL)4

∑
x⃗1x⃗2

∑
q⃗1q⃗2
q⃗3q⃗4

A(q⃗1)A(q⃗2) ⟨ϕ(q⃗3)ϕ(q⃗4)⟩ ei((q⃗1+q⃗3).x⃗1+(q⃗2+q⃗4).x⃗2)

= 1
(βL)3

∑
x⃗1x⃗2

∑
q⃗1q⃗2
q⃗3

A(q⃗1)A(q⃗2)G(q⃗3)ei((q⃗1+q⃗3).x⃗1+(q⃗2−q⃗3).x⃗2)

= 1
βL

∑
q⃗

A(q⃗)G(q⃗)A(−q⃗) (B.21)

This is the same as the argument of the exponential in eq. (B.20). Hence comparing,
we find the following equation, which is known from the computation of the Debye-Waller
factor [113,114]: 〈

e
i
∑
x,τ

A(x,τ)ϕ(x,τ)〉
= e

− 1
2

〈(∑
x,τ

A(x,τ)ϕ(x,τ)
)2
〉

(B.22)
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Appendix C

Numerical methods

In Section 3.3, we have discussed the physical concepts behind the numerical analysis of the
dissipative systems. Namely, we write the associated Langevin equation for the dynamics of
the field, which is a differential equation. In this appendix, we elaborate on the more technical
details of the numerical procedure.

We start by discretizing the field ϕ(x, τ), now described by the two indices ϕij(t), where
i ∈ (1, β) and j ∈ (1, L) represents the τ and x indices respectively of the original field theory. t
represents the Langevin time, i.e., the time of the simulation, and should not be confused with
the imaginary time τ . We take a flat surface as our initial condition, i.e., ϕij(0) = 0 ∀ (i, j). We
also implement periodic boundary conditions in both x and τ direction, i.e. ϕ(i+β, j) = ϕ(i, j)
and ϕ(i, j+L) = ϕ(i, j). In the discretized language, the Langevin differential equation is given
by:

dϕij(t)
dt

= −δStot[ϕij]
δϕij

+ ηij(t)

= 1
πK

[
u (ϕi,j+1(t) + ϕi,j−1(t) − 2ϕi,j(t)) + 1

u
(ϕi+1,j(t) + ϕi−1,j(t) − 2ϕi,j(t))

]
+ α

π2

∑
i′
D (|i− i′|) sin (2 (ϕij(t) − ϕi′j(t))) + ηij(t) (C.1)

Where ηij is a white gaussian noise with mean ⟨ηij(t)⟩ = 0 and variance ⟨ηij(t)ηi′j′(t′)⟩ =
2δi,i′δj,j′δt,t′ (note that the Langevin time t is discretized as well). D (|i− i′|) is the discretized,
periodic long-range kernel 1/|τ − τ ′|1+s and we discuss its implementation in the numerics in
the next paragraph. From the principle of the Langevin equation, we expect the ϕij, obtained
by integrating eq. (C.1), to be equilibrated under Stot (eq. (2.1)).
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To discretize the long-range kernel correctly, we make an observation that it is equivalent
to |ωn|s in the fourier space. The discretization of this term is obvious and it can be one
by substituting |ωn| =

√
2 (1 − cosωn). Now one can use the results from [115] to obtain for

β → ∞:

D(|i− i′|) =
2π∫
0

dωne
iωn(i−i′) [2 (1 − cosωn)]

s
2

= B
(

|i− i′| − s

2 , s+ 1
)

(C.2)

Where B denotes the Beta function. Eq. (C.2) is discrete, but not β-periodic yet. To make
D(|i−i′|) symmetric with respect to β/2 and periodic, one can make the substitution f(|i−i′|) →

β
2∑

k=−β
2

f(|i− i′|+kβ). This essentially sums the distance between two points on a circular lattice

from different directions. Note that a trivial implementation of the periodic boundary condition
can also be |i − i′| → min (|i− i′|, β − |i− i′|). However, this makes the kernel very sharp by
leaving a cusp at |i− i′| = β/2. On the other hand, our implementation smoothens D(|i− i′|)
at the point of symmetry and we have benchmarked it to be more efficient and precise for these
simulations. Thus, the final form of the long-range kernel that we use in the numerical solution
is given by:

D(|i− i′|) =
β
2∑

k=−β
2

B
(

|i− i′| + kβ − s

2 , s+ 1
)

(C.3)

To integrate eq. (C.1), we use the Runge-Kutta (RK) algorithm [116,117] which is an improved
version of the Euler algorithm. This method calculates multiple slopes between n and n+ 1-th
time step as opposed to the single slope calculation in Euler method, thus rendering this method
faster and more accurate for integrating differential equations numerically. The second-order
Runge-Kutta algorithm customized for gaussian white noise is well described in [118]. The
reader is encouraged to look in the publication to understand the derivation of the algorithm,
here we just write the formulation that we use in our numerical procedure:

ϕi,j(t+ dt) = ϕ(t) + dt

2 [K1 +K2] +
√

2dtηij(t)

K1 = F (ϕ(t))

K2 = F
(
ϕ(t) +K1dt+

√
2dtηij(t)

)
(C.4)
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Where dt denotes the value of the increment in Langevin time and F (ϕ) = − δStot[ϕij ]
δϕij

has
already been described in eq. (C.1). For our simulations, we keep dt = 0.05. Note that in
eq. (C.4), the noise is incremented with

√
dt, which we have already seen in Section 3.3. To

benchmark the equation, we use the harmonic approximation sin [2(ϕij − ϕi′j)] → 2(ϕij − ϕi′j).
With this transformation, the problem becomes exactly solvable, thus making it possible to
compare numerical results against analytical formulations.
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Appendix D

Supplementary Results
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p
↵r

= 0.156

Figure D.1: Additional numerical results for the incommensurate Ohmic case with K = 0.55,
α = 0.05 (top) and α = 0.05 (bottom). The system sizes correspond to L = 128 (red) and
L = 384, and averages were done over 10000 to 12000 configurations. left: πχ = Kr/ur is
invariant for both values of α which shows the existence of statistical tilt symmetry in the
system. middle: For small-ωn, ωnC(ωn) and √

ωnC(ωn) saturates to a constant Kr/2 = 0.273
and 1/√αr = 0.156 for α = 0.05 and α = 10, respectively. right: For α = 0.05, ⟨cosϕ⟩ goes to
zero as L−Kr/4 with Kr = 0.546 and saturates to a constant c1 = 0.788 as c1 + c2/

√
L + c3/L

with c2 = 0.215 and c3 = 0.012.

In this appendix, we show additional numerical results that we obtained during our analysis
of the incommensurate system in the presence of dissipative ohmic baths [11]. It’s going to be
a short section with similar numerical analysis as Section 5.3 for s = 1, K = 0.55, and u = 1.
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Figure D.2: Phase diagram of the incommensurate Ohmic case with K = 0.55. The ratio
Kr/ur (red squares) remains constant for all values of α. As α increases, Kr, both obtained
from ⟨cos 2ϕ⟩ (purple circles) and C(ωn) (blue triangle) decreases and approaches Kc = 1/2. In
the dissipative phase, αr increases (green solid circles) rapidly as α increases. We identify the
critical regime for both cases to be αC ∈ (0.25, 2).

Here we present the correlation functions for two values of α, i,e., α = 0.05 and α = 10. We
scale L = β for all the sizes.

Due to the incommensurate action having statistical tilt symmetry, the susceptibility χ =
Kr/(urπ) of the system remains invariant and independent from the value of α (fig. (D.1),
left). However, fig. (D.1), middle tells us that for α = 0.05, ωnC(ωn) saturates to a constant
Kr/2 = 0.273, whereas √

ωnC(ωn) goes to a constant for α = 10. Thus, we understand that for
K = 0.55, α = 0.05 is in the LL phase and α = 10 is in the dissipative phase. This is further
supported by the order parameter ⟨cos(ϕ−ϕCoM)⟩, which decreases as a power law L−Kr/4 with
Kr = 0.546 for α = 0.05 and saturates to a constant c1 = 0.788 while decaying algebraically for
α = 10 (fig. (D.1), right). We find the corresponding phase diagram in fig. (D.2), where we see
that as α is increased, Kr/ur remains constant, but Kr decreases and flows towards Kc = 0.5.
In the dissipative phase, αr increases rapidly. From this behavior, we identify αc ∈ (0.25, 2).
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[60] V. L. Berezinskǐi, “Destruction of Long-range Order in One-dimensional and Two-
dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems,”
Soviet Journal of Experimental and Theoretical Physics, vol. 34, p. 610, Jan. 1972.

[61] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in
two-dimensional systems,” Journal of Physics C: Solid State Physics, vol. 6, p. 1181, apr
1973.

136



[62] J. M. Kosterlitz, “The critical properties of the two-dimensional xy model,” Journal of
Physics C: Solid State Physics, vol. 7, p. 1046, mar 1974.

[63] N. F. Mott and R. Peierls, “Discussion of the paper by de boer and verwey,” Proceedings
of the Physical Society, vol. 49, p. 72, aug 1937.

[64] N. F. Mott, “The basis of the electron theory of metals, with special reference to the
transition metals,” Proceedings of the Physical Society. Section A, vol. 62, p. 416, jul
1949.

[65] H. A. Bethe, “Zur theorie der metalle,” Zeitschrift für Physik, vol. 71, pp. 205–226, 1931.

[66] R. J. Baxter, Exactly solved models in statistical mechanics. Elsevier, 2016.

[67] T. Barthel, “Precise evaluation of thermal response functions by optimized density matrix
renormalization group schemes,” New Journal of Physics, vol. 15, p. 073010, jul 2013.
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