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Titre: Le cycle du carbone affecté par l’érosion des sols en Europe
Mots clés: Erosion des sols, cycle du carbone, modélisation du climat
Résumé: Si l’importance de l’impact de l’érosion dessols sur le cycle du carbone est désormais bien recon-nue dans la littérature, la représentation de ce proces-sus dans les modèles de surface terrestre doit encoreêtre améliorée, en particulier à grande échelle. Demême, l’adoption de cultures de couverture en tantqu’alternative de gestion durable des sols a suscité unintérêt politique croissant ces dernières années, mal-gré des impacts encore non quantifiés sur le carboneorganique du sol et l’érosion. Dans cette thèse, nousavons abordé ces problématiques de trois manières.Premièrement, nous avons amélioré le modèle CE-DYNAM, qui couple le mouvement latéral des partic-ules du sol à un émulateur du cycle du carbone or-ganique du sol, permettant son application à des do-maines plus larges et à des résolutions spatiales plusfines. Ce travail a également introduit une procédurede calibration pour CE-DYNAM afin de rendre ses ré-sultats plus réalistes et plus cohérents avec les obser-vations de décharge de sédiments dans les stationsfluviales.Deuxièmement, nous avons développé un modèlede désagrégation statistique afin générer la première

carte spatialement explicite des cultures de couver-ture pour l’Europe. Les résultats ont montré que lesdonnées des radars à synthèse d’ouverture pouvaientcontribuer à la détection à distance des cultures decouverture et ont mis en évidence l’importance demettre à la disposition des chercheurs des donnéessur la gestion des terres. Cette carte devrait être util-isée par les chercheurs et les praticiens dans le cadrede travaux ultérieurs.Enfin, nous avons combiné les développements deschapitres précédents pourmodéliser l’impact des scé-narios politiques concernant les cultures de couver-ture sur le cycle du carbone. Nos résultats indiquentque les cultures de couverture peuvent simultané-ment augmenter le stockage de carbone organiquedans le sol tout en réduisant l’exportation de carboneorganique particulaire vers les océans, mais qu’il ex-iste une limite à ces deux effets. Le pic d’accumulationde carbone organique dans le sol se produit avantla stabilisation de l’exportation vers les océans, indi-quant undélai qui peut s’expliquer par le tempsnéces-saire aux particules pour se déplacer dans le paysage.

Title: Carbon cycle as affected by soil erosion in Europe
Keywords: Soil erosion, carbon cycle, climate modeling
Abstract: While the importance of the impact of soilerosion on the carbon cycle is now well-recognizedin the literature, the representation of this processin land surface models still needs to be better devel-oped, especially at a large scale. Similarly, adoptingcover crops as a sustainable soil management alter-native has had growing policy interest in recent yearsdespite the still unquantified impacts on soil organiccarbon and erosion. In this thesis, we addressed theseproblems in three ways.First, we advanced the development of the CE-DYNAMmodel, which couples the lateral movement of soilparticles to an emulator of the soil organic carboncycle, enabling its application at larger domains andfiner spatial resolutions. This work also introduced acalibration procedure for CE-DYNAM to make its re-sults more realistic and coherent with sediment dis-charge observations in river stations.

Second, we developed a statistical disaggregationmodel to generate the first spatially explicit map ofcover crops for Europe. This work indicated that syn-thetic aperture radar data could assist the remote de-tection of cover crops, and highlighted the importanceof making land management data publicly availablefor researchers. The map is expected to be used byresearchers and practitioners in further works.Finally, we combined the developments of the previ-ous chapters to model the impact of policy scenariosfor cover crops on the carbon cycle. Our results indi-cate that cover crops can simultaneously increase soilorganic carbon storage while reducing particulate or-ganic carbon export to the oceans, but a limit existsfor both effects. The peak in soil organic carbon ac-cumulation happens before the stabilization of oceanexport, indicating a delay that can be explained by thetime taken by particles to travel across the landscape.
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And what did you hear, my blue-eyed son?
And what did you hear, my darling young one?
I heard the sound of a thunder that roared out a warning
I heard the roar of a wave that could drown the whole world
I heard one hundred drummers whose hands were a-blazing
I heard ten-thousand whispering and nobody listening
I heard one person starve, I heard many people laughing
I heard the song of a poet who died in the gutter
I heard the sound of a clown who cried in the alley
(...) It’s a hard rain’s a-going to fall

— Bob Dylan
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List of abbreviations

Throughout this thesis, the reader will encounter the following
Abbreviations:
· AUC - Area Under the Curve
· C - Carbon
· CAP - Common Agricultural Policy
· CCs - Cover crops
· CR - Cross-polarization Ratio
· CSR - Compressed Sparse Row
· EFAs - Ecological Focus Areas
· ESDAC - European Soil Data Centre
· ETD - Erosion, Transport and Deposition
· EU - European Union
· FSS - Farm Structure Survey
· GSAA - Geospatial Aid Application
· IACS - Integrated Administration and Control System
· LPIS - Land Parcel Identification System
· LSM - Land surface model
· LUCAS - Land Use/Cover Area frame statistical Survey
·ME - Model efficiency
·MSs - Member States
· NUTS - Nomenclature of Territorial Units for Statistics
· PFT - Plant functional types
· POC - Particulate organic carbon
· ROC - Receiver Operating Characteristic
· RPG - Registre Parcellaire Graphique
· (R)USLE - (Revised) Universal Soil Loss Equation
· SAR - Synthetic Aperture Radar
· SOC - Soil organic carbon
· UK - United Kingdom
Units:
· Gg - Giga grams (= 109 grams)
· Tg - Tera grams (= 1012 grams)
· Pg - Peta grams (= 1015 grams)
· t/ha/year - Tonnes per hectare per year

1 / 146



2 / 146



1 - General introduction

1.1 . Soil erosion and climate change

Human activities have been significantly affecting our climate system for the past 12,000
years (Brooke, 2018), causing impacts that pose risks to natural systems. Increases in sea level
rise rates, the number of heavy precipitation events, ocean temperatures, and the frequency
and duration of heat waves are examples of impacts that are at least likely to have happened
due to human alterations (IPCC, 2013a, 2014). Because of these and other consequences,
climate change is among themajor environmental challenges for humanity in the 21st century
(Jones et al., 2012; King, 2004; Lorey, 2003; United Nations Environment Programme, 2012)

Climate change is formally defined as the alterations in global atmospheric composition
that can be directly or indirectly attributed to human activity, therefore additional to the nat-
ural variability observed (United Nations, 1992). The emissions from human activities have
intensified since the First Industrial Revolution (nearly 1760), leading to an ever-increasing
concentration of greenhouse gases in the atmosphere. Past data show that fossil fuel emis-
sions increased from zero in pre-industrial years to 9.5 PgC year−1 in the 2010s (IPCC, 2013b).
Several recent extreme events show that the effects of climate change are already being
perceived throughout the globe, which highlights the need for actions and for a deep un-
derstanding of its physical processes (Walsh et al., 2018; Fosu et al., 2018; Herring et al., 2015;
Zhou et al., 2018; CarbonBrief, 2021).

In the context of the Earth’s climate system, soils are an essential natural resource. Many
of the ecosystem services provided by soils are fundamental to supporting human liveli-
hood and are affected by climate change. These include the production of food, freshwater,
energy, and habitat provision for biodiversity. The human demand for these services, and
consequently the pressure on soils, tends to increase with the projected global population
growth (IPCC, 2019). Furthermore, world soils contain 1500-2400 PgC, more than the atmo-
sphere (589 PgC) and the surface ocean (900 PgC) together (Ciais et al., 2013). Therefore, even
small disturbances in soil carbon pools can substantially impact their emissions to the atmo-
sphere. For example, more sustainable management actions, such as retaining residues in
cropping systems, can increase the soil’s organic carbon content and help sequester carbon
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from the atmosphere (Robert, 2001), and mitigate a major soil threat, soil erosion.
Accelerated soil erosion is the most widespread process of soil degradation caused by

agricultural activities (Robert, 2005), a list that includes compaction, nutrient depletion, break-
downof aggregates, andothers. According toHillel (2004), the physical process of soil erosion
can be described in three steps: i) First, particles are detached from the soil. Themost vulner-
able particles are those of the soil surface, which is the most fertile part of the profile for the
large amounts of organic matter (humus) and microorganisms. The loss of fertility caused
by the detachment of topsoil particles usually demands the use of chemical fertilizers, which
leads to an increasing threat to groundwater pollution. ii) Second, the detached particles are
transported through the landscape; and iii) Third, particles are deposited in a different place
where they originally belonged. Alternatively, authors sometimes include the breakdown of
macroaggregates as an intermediate process between the first and the second above (Lal,
2005). Soil erosion can be triggered by water or wind, the former being the most common.
The schema of Figure 1.1 represents the three steps described by Hillel (2004).

Figure 1.1: The three steps of soil erosion by water. V represents water flow velocity. Adaptedfrom: Julien (2010).

The flow of particles through the landscape is guided by gravity and follows the geomor-
phological characteristics of the terrain. Consequently, soil erosion can have on-site impacts,
such as the loss of productivity, and off-site impacts, such as the eutrophication of rivers and
reservoirs. For this reason, soil erosion is understood as a key transport mechanism to carry
the environmental effects of agricultural chemicals to farther areas (Hillel, 2004). Yearly, 20
- 30 Gt of soils worldwide are lost because of water erosion, with the rates per unit of area
varying according to the climatic zone. In temperate regions, average values are usually up
to 10 t ha−1 year−1 but may reach 20 t ha−1 year−1 in hilly cropland areas. In tropical regions,
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which concentrate the world’s highest erosion rates, values often range from 10 to 20 t ha−1

year−1, and may be as high as 50 t ha−1 year−1 in more extreme cases (FAO, 2014; van Oost
et al., 2007). These values are supported by the more recent results of Borrelli et al. (2018a),
which reported an average soil loss of 35 Gt in 2001 and 35.9 Gt in 2012, with the highest
area-specific rates in South America, Africa, and Asia, respectively.

The convergence of erosion predictions in the literature implies that regardless of the
database used, the values are much higher than the soil formation rates (Julien, 2010). These
are estimated to be generally lower than 1 t ha−1 year−1, with a median of 0.15 t ha−1 year−1

(FAO, 2014). Such an imbalance between soil formation and loss means world soils could be
treated as a non-renewable instead of a renewable natural resource. Besides, in the long-
term scale of decades or centuries, these erosion rates are likely to directly reduce crop yield
due to lower water holding capacity and root space accommodation (FAO, 2014).

The link between soil erosion and the carbon cycle is shown in Figure 1.2. On-site, all
mechanisms are understood to lead to increased atmospheric emissions. These include the
removal of clay and soil organic carbon, the increase in mineralization rates by alterations
in soil moisture, the subsurface exposure, and the breakdown of aggregates. Off-site, some
of the effects, such as the transport to other landscape elements, such as floodplains and
aquatic systems, could lead to the protection and sequestration of carbon. The intensity of
each of these effects has led to a long ongoing scientific debate to understand if soil erosion
corresponds to a source or a sink of atmospheric carbon, with results pointing to different
directions.

On the one hand, Stallard (1998) constructed hundreds of simulations to span multiple
possible scenarios and concluded that the thesis of erosion being a C sink is plausible. More
recently, van Oost et al. (2007) revisited this hypothesis in an assessment that found that soil
erosion can be a global sink of C with a magnitude of 1 PgC year−1. On the other hand, Lal
(2003) argues that soil erosion is a C source, with amagnitude comparable to that of vanOost
et al. (2007). Such an argument was also reinforced by the continental assessment of Lugato
et al. (2018). In the future, other results can come from further developments in representing
the erosion process in land carbon models.
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Figure 1.2: The physical mechanisms that link the carbon cycle to erosion, transport anddeposition processes. Source: Lal (2005).

1.2 . Modeling erosion, transport, and deposition

Although mentions of soil erosion as an agricultural issue date back to the 1810s, it was
only in the 1920s that soil erosion began to be recognized as an important problem for soils
in the United States. The effort of scientists to gather public support to fight the "menace to
the national welfare" precedes the so-called "golden years" of conservation research (1930-
1942), when agricultural plots for erosion research were installed across the country. In the
meantime, the great dust storm of 1934 had already increased public awareness to conserve
soil resources and from the 1940s on, different numerical approaches tried to take advantage
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of the data gathered so far to explain and predict erosion based on various factors, such as
land slope, slope length, storm rainfall energy, and others. The progress was harmed by
the advent of World War II, which led to an abrupt interruption of erosion research. Even
so, the Musgrave equation proposed in 1947 combined many models developed so far, such
as those developed by Zingg, Smith and Browning (Laflen and Flanagan, 2013), and can be
seen as one of the first attempts to obtain a general model for soil erosion (Laflen, 2003). Its
formulation was:

A
′
=

(
P30

1.25

)1.75

K
′
(
L

72

)0.35(
S

10

)1.35

C∗

with A
′ being the soil loss (inches of depth), P30 being the maximum precipitation amount

in 30 minutes of storm (inches),K ′ being the Musgrave soil erodibility factor (inches/year), L
being the slope length (feet), S being the slope gradieng (%), and C∗ being the vegetal cover
factor (Laflen and Flanagan, 2013).

The Musgrave equation was widely adopted during the following years. However, later
works showed that some of its assumptions could not be justified and that its rainfall factor
needed to be revised for different situations in the United States. Therefore, it was the mo-
ment to reevaluate theMusgrave equation, and in the 1950s, workshops were held to extract
knowledge from the data collected so far. After compiling data for 10,000 plots across the
country, it was in 1959 that Wischmeier (1959) published his work "A rainfall erosion index for
a Universal Soil Loss Equation", which represents the first time that the term Universal Soil
Loss Equation (USLE) was formally mentioned. However, despite the suggestive name, W. H.
Wischmeier later declared, in 1984, that the model was suitable for local or regional applica-
tions and that the term universal referred to the equation’s general concept. For this reason,
the USLE was revised several times after its publication, giving rise tomodified versions, such
as the Revised USLE (RUSLE), and alternative approaches, such as the Water Erosion Predic-
tion Project (WEPP) (Laflen, 2003).

In recent years, the popularization of resourceful computers has allowed a wide dis-
semination of different modeling approaches. The systematic review of Borrelli et al. (2021)
showed that 1,697 papers published 3,030 erosion modeling applications from 1994 to 2017.
Their analysis showed the predominance of water erosion studies at a national scale and
a clear temporal trend of increase in applications, ranging from 55 in 1994-1997 to 340 in
2014-2017. The authors also found as many as 435 different erosion models, with a clear

7 / 146



predominance of USLE-based approaches, corresponding to 41% of all applications. One of
the reasons for the huge popularity of USLE-based methods is a relatively good tradeoff be-
tween input data requirements and the reliability of soil loss estimates. However, on the
other hand, some limitations include: i) that applications often constitute extrapolations of
the original farm-level scale for which the model was developed, and ii) the lack of a rep-
resentation of sediment transport and deposition (Quine and van Oost, 2020). The second
limitation is often addressed by including an external sediment routing scheme in the mod-
eling framework, e.g. (Rompaey et al., 2001).

Historically, the development of erosion models was done in parallel to that of land sur-
face models. Land surface models aim at integrating multiple equations to simulate terres-
trial processes, including: the physical processes and chemical transformations (e.g., leaf
growth), the column interactions (e.g., precipitation falling), the exchange between compo-
nents (e.g., precipitated water entering the soil), the exchange of heat, and the motion of
substances (e.g., water flows). Through these processes, calculations are constrained by
fundamental physical laws, such as the conservation of mass and energy (Gettelman and
Rood, 2016).. According to Doetterl et al. (2016), no land surface model currently contains
a sufficiently detailed representation of the relationship between soil organic carbon and
erosion, transport and deposition. The authors argue that this stems from inadequate in-
put data, problems generalizing model parameters, an insufficient understanding of erosion
processes, and large computational requirements.

Several works in the literature aimed at coupling erosion, transport and deposition to
the biogeochemical cycle of carbon, with approaches varying in detail, complexity and scale.
Lal (2003), for example, assumed a fixed delivery ratio of sediments to estimate aggregated
global values of carbon displacement. This approach is similar to Chappell et al. (2015), which
accounted for erosion as an extra carbon flux, but did not account for any particle transport.
In the spatially explicit approach of Lugato et al. (2016), erosion was also accounted for as
an extra flux, and particle transport to the rivers was assumed to be a constant share of
the total eroded soil in each grid cell. Wang et al. (2017) also adopted a spatially explicit
transport model, where the landscape was divided into regions named “virtual catchments”
to accommodate an extra transport flux. At the continental scale, Borrelli et al. (2018a) cou-
pled soil organic carbon data to an erosionmodel representing the transport of particles in a
process-based distributedmanner. This approach, however, is lumped and does not include
any other elements of the carbon cycle. At the catchment scale, Nadeu et al. (2015) inserted

8 / 146



a spatially distributed routing scheme into a detailed carbonmodel in central Belgium. How-
ever, the limitation of this approach is the scale in which the model can be applied.

To address the problems mentioned above, Naipal et al. (2020) proposed the CE-DYNAM
model for the non-Alpine part of the Rhine basin, a region whose area equals 185,000 km2.
It combines erosion and transport modules to an emulator of the soil carbon dynamics of
any land surface model based on CENTURY (Parton et al., 1983). CE-DYNAM uses a RUSLE-
based approach adapted formodeling erosion at a large scale and a coarse spatial resolution
(Naipal et al., 2015), and the transport module is a routing scheme that follows the topogra-
phy to redistribute the soil particles (Naipal et al., 2016). These elements are formally incor-
porated into the model dynamics as additional fluxes between pools beyond those initially
present in the first-order kinetics of CENTURY.

In its first version, CE-DYNAM was suitable for use at the catchment scale and could not
be properly scaled to larger domains for several reasons. First, the run times ranged from
hours to days at the catchment scale, indicating that calculations at larger domains could take
weeks to complete. Such a limitation also precluded the execution of a calibration procedure
since optimization routines often demand several function evaluations. Second, computer
memory availability was a limiting factor since all datasets for the whole domain needed to
be loaded and read before processing. Third, the code implementation of CE-DYNAM con-
tained details that made it impractical for application when the number of sub-catchments
in the domain increased. Finally, the intensity of the lateral fluxes had to be imposed and not
calibrated with observed data, which could generate unrealistic results. All these problems
were connected and indicated that, despite the potentialities, further work was necessary to
improve CE-DYNAM.

1.3 . Policy initiatives for erosion and carbon

The New European Green Deal endorsed in 2020 includes the target to have all European
soils healthy by 2050. Such an ambitious target contrasts with the current condition since 60-
70% of the European soils are considered to be in an unhealthy state (Panagos et al., 2022b).
The need for action in this field is therefore imperative. The European Union (EU) Soil Strat-
egy for 2030 includes actions to facilitate the transition towards healthy soils through climate
change mitigation, biodiversity preservation, soil restoration, and others. The Strategy, to-
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gether with the recently established EU Soil Observatory, complements existing policies af-
fecting soils at the European level, such as the Common Agricultural Policy (CAP) (Panagos
et al., 2022b).

The Green Deal also extends the effort to recognize the importance of soils started by
the EU in 2002, when the Thematic Strategy on Soil Protection, considered the first milestone
for a continental soil protection policy, was established. Before this strategy, the funding for
soil-related research cameonly indirectly through urban development, water protection, and
biodiversity projects. A Soil Framework Directive was later proposed by the European Com-
mission in 2005 after a Soil Advisory Forum with over 100 representatives and 350 experts
produced final reports to guide the development of policies (Prokop, 2005). This directive
faced significant opposition from countries such as France, Germany, the Netherlands, and
others. Several points of disagreement existed, including doubts about the effectiveness
of supranational policies for soils and the extra burden that it would put on countries that
already had soil legislation at the national level. For these reasons, in 2014, the European
Commission withdrew the proposal of the Soil Framework Directive (Azam, 2016).

The ecosystem services provided by soils are relevant to 13 out of the 17 Sustainable De-
velopment Goals (Keesstra et al., 2016), and in the EU, they are essential to achieve a variety
of actions listed in the Green Deal, such as the achievement of climate neutrality by 2050
envisaged by the Climate Law. Soils are also explicitly mentioned in the Biodiversity Strat-
egy, the Farm to Fork Strategy, and the Zero Pollution action plan. For example, the Farm to
Fork Strategy aims to improve food systems by making them more fair and healthy. It pro-
poses reducing fertilizer usage by 20% and halving nutrient losses and the use of pesticides
by 2030. In the Biodiversity Strategy, the reversion of negative trends will be addressed by
aiming at land degradation neutrality, reducing soil erosion, increasing soil organic matter,
and restoring severely eroded agricultural land (Montanarella and Panagos, 2021).

Another central policy to affect agricultural land management in the EU is the CAP. Pay-
ments are currently linked with Good Agricultural and Environmental Conditions (GAECs),
which establish minimum land management conditions for crop systems (Panagos et al.,
2022b). One example of a GAEC introduced in the upcoming CAP 2023-2027 is the adoption
of cover crops (CCs) to protect soils during rainy periods. The implementationwas supported
by a scenario analysis from the European Commission, which indicated that erosion rates in
arable lands and permanent crops could reduce by 15 and 30%, respectively, with the adop-
tion of CCs at a cover rate of 75% (Panagos et al., 2021). Consequently, even though the new
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CAP rules can reduce the effective CC area in some farms, the net area of CCs across the EU
is expected to increase after the updates.

Besides, the European climate target also intersectswith soil, as sustainablemanagement
practices can increase the organic carbon stocks in agricultural land. To this end, policies
related to the Green Deal are dependent on scientific evidence about alternative sustain-
able management strategies to provide environmental benefits. Actions focused on carbon,
for example, include developing soil management plans by Member States, planting 3 bil-
lion trees across the European Union, promoting wetlands maintenance, and reducing CO2
emissions. In this context, advancing modeling studies to represent management alterna-
tives can be helpful to inform the decisions to be made, and to understand the limits of
proposed actions.

1.4 . Thesis structure

The present PhD thesis had three objectives. The first objective (Chapter 2) was to pro-
pose an alternative formulation for CE-DYNAM to allow the upscaling of its calculations to
the continental level. This was done by formalizing the model formulation, representing the
model’s first-order dynamics in matrix form, and introducing a calibration procedure based
on sediment discharge measurements. In this chapter, a second version of CE-DYNAM (i.e.,
v2) was presented, which consists of v1 plus the matrix form and a few modifications. The
first chapter dealt withmechanistic modeling.

The second objective (Chapter 3) was to generate the first satellite-based map of cover
crops in Europe. Since the adoption of cover crops is a management action with direct im-
pacts on both the soil organic carbon cycle and in erosion prevention, this chapter aimed at
gaining more understanding of their spatial distribution at a continental scale. The second
chapter dealt with empirical modeling.

Finally, the third objective (Chapter 4) was to evaluate the potential impacts of cover
crops on soil carbon stocks and the export of particulate organic carbon to the oceans in
Europe. This work combined the developments of Chapter 1 and Chapter 2, and a third ver-
sion of CE-DYNAM (i.e., v3) was presented. This version consisted of v2 plus several major
modifications added to improve the model’s physical representation of erosion, transport,
and deposition processes. The third chapter dealt with the evaluation of policy alternatives.
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2 - Matrix representation of lateral soil movements: scaling
and calibrating CE-DYNAM (v2) at a continental level

This chapter was written by Arthur Nicolaus Fendrich, with contributions from Philippe Ciais,
Emanuele Lugato,MarcoCarozzi, BertrandGuenet, Pasquale Borrelli, VictoriaNaipal, Matthew
McGrath, Philippe Martin, and Panos Panagos.

Promoting sustainable soilmanagement is a possible option for achieving net-zero green-
house gas emissions in the future. Several efforts in this area exist, and the application of
spatially explicit models to anticipate the effect of possible actions on soils at a regional scale
is widespread. Currently, models can simulate the impacts of changes on land cover, land
management, and the climate on the soil carbon stocks. However, existingmodeling tools do
not incorporate the lateral transport and deposition of soil material, carbon, and nutrients
caused by soil erosion. The absence of these fluxes may lead to an oversimplified represen-
tation of the processes, which hinders, for example, a further understanding of how erosion
has been affecting the soil carbon pools and nutrient through time. The sediment transport
during deposition and the sediment loss to rivers create dependence among the simulation
units, forming a cumulative effect through the territory. If, on the one hand, such a charac-
teristic implies that calculations must be made for large geographic areas corresponding to
hydrological units, on the other hand, it also can make models computationally expensive,
given that erosion and redeposition processes must be modeled at high resolution and over
long time scales. In this sense, the present work has a three-fold objective. First, we provide
the development details to represent in matrix form a spatially explicit process-basedmodel
coupling sediment, carbon, and erosion, transport and deposition processes (ETD) of soil
material in hillslopes and valley bottoms (i.e., the CE-DYNAM model). Second, we illustrate
how themodel can be calibrated and validated for Europe, where high-resolution datasets of
the factors affecting erosion are available. Third, we presented the results for a depositional
site, which is highly affected by incoming lateral fluxes from upstream lands. Our results
showed that the benefits brought by the matrix approach to CE-DYNAM enabled the before
precluded possibility of applying it to a continental scale. The calibration and validation pro-
cedures indicated: i) a close match between the erosion rates calculated and previous works
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in the literature at local and national scales; ii) the physical consistency of the parameters
obtained from the data; and iii) the capacity of the model in predicting sediment discharge
to rivers in locations observed and unobserved during its calibration (Model efficiency (ME)
= 0.603, R2 = 0.666; and ME = 0.152, R2 = 0.438, respectively). The prediction of the car-
bon dynamics on a depositional site illustrated the model’s ability to simulate the non-linear
impact of ETD fluxes on the carbon cycle. We expect that our work advances ETD models’
description and facilitates its reproduction and incorporation in land surface models such
as ORCHIDEE. We also hope that the patterns obtained in this work can guide future ETD
models at a European scale.

2.1 . Introduction

The adoption of more sustainable land management actions constitutes a critical alter-
native for mitigating climate change and sustaining food production (Roe et al., 2019). Soils
constitute a vital carbon (C) pool for the world, storing 1500-2400 petagrams of carbon (PgC),
more than the atmosphere (589 PgC) the surface ocean (900 PgC) together, and the way
humans interact with soils affects how soils and the atmosphere interact, including the se-
questration of carbon (Ciais et al., 2013). It is understood that evenminor disturbances to soil
pools can have significant impacts on the global C cycle: increases of 4‰ in global agricultural
stocks, for example, could result in additional C sequestration of 2 to 3 PgC per year, which
would contribute significantly to the Paris agreement targets (Guenet et al., 2020; Minasny
et al., 2017; Soussana et al., 2019). Alternatives to rapidly increase the content of soil organic
matter, and consequently the C sequestration from the atmosphere, include conservation
agriculture (e.g., the retention of residues and zero or no-tillage) (Robert, 2001), agroforestry
and afforestation. In the future, however, the projected population growth poses an increas-
ing demand for food, feed, energy, and water, resulting in additional pressures that, if not
properly dealt with, can even aggravate the problem (IPCC, 2019). An iconic example is the
Southeastern Amazon forest, which has long been understood as a C sink, but after decades
of deforestation, it is becoming a source of C to the atmosphere (Gatti et al., 2021; Nobre
et al., 2016).

One of the possible strategies for evaluating the impacts of different alternatives on the
C stocks is the use of numerical models that represent the physical, chemical, and biolog-
ical processes of the soil-plant-atmosphere system, such as fixation by plants for biomass
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growth and the respiration by microorganisms (Gettelman and Rood, 2016). Models repre-
senting the interaction between soils and the atmospheric system allow the evaluation of
how future climate change will impact soils and the opposite relationship. For example, land
surfacemodels (LSM) have allowed studies on different topics, such as assessing the impacts
of climate change on crops, habitat, and water availability (Leng and Hall, 2019; Schewe et al.,
2019; Hamaoui-Laguel et al., 2015; Bonan and Doney, 2018), evaluating strategies to achieve
global environmental targets (Harper et al., 2018; Chang et al., 2021), forecasting future sce-
narios of change (Friedlingstein et al., 2006; Friedlingstein, 2015), among others. However,
the implementation state of LSMs currently does not cover some relevant processes, such
as lateral displacement of nutrients in the soil due to erosion, transport, and deposition (ETD)
processes (Quine and van Oost, 2020). ETD is argued to affect the carbon cycle dynamically
during its occurrence by inducing lateral fluxes of C in the landscape and vertical fluxes be-
tween soil layers (Lal, 2003; Lugato et al., 2018), and their absence in LSMs leads to an over-
simplified representation of the reality. The modeling complexity, along with the scarcity
of empirical data for the phenomenon and the non-standardized nomenclature in the litera-
ture, hinder, for example, a further understanding of how erosion has been affecting the soil
C pools through time (Lal, 2019; Lugato et al., 2018; Wang et al., 2017; van Oost et al., 2007).

Including the complex ETD-related processes into existing LSMs comes at the cost of in-
creasing the inherent technical complexity of these mechanistic models, such as requiring
massive amounts of codes, demanding costly computational resources, and being hard to
diagnose thoroughly (Lu et al., 2020). For example, even without ETD-related processes, ex-
isting LSMs are so complex with their detailed soil-vegetation-atmosphere feedbacks and
multitude of spatial or temporal scales that simulations often must be performed repeat-
edly for hundreds or thousands of years until a stable condition is reached (Huang et al.,
2018). In these cases, calculations can take hundreds of processor hours, and researchers
often adopt less detailed or simplified processes to avoid prohibitively slow simulation times
(Washington et al., 2008). Practically, such technical problems may hinder their operation
by users, which are often individuals with different backgrounds and abilities. Since such
problems can have an impact on model testing, validation, and ultimately acceptance by the
scientific community, approaches to overcome them have been studied in the recent past.
It is, for example, the case of the matrix approach, which consists of representing all carbon
fluxes explicitly in matrix form (Luo et al., 2017), which has been reported to increase modu-
larity, facilitate diagnostics, and accelerate spin-up calculations (Lu et al., 2020; Xia et al., 2012;
Huang et al., 2017, 2018). For ETD-related processes, the incorporation and development of
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such approaches are advisable, encouraged and necessary to enable the complexity of rep-
resenting the vertical and lateral dynamics of C and sediments on the landscape.

In this work, we address the problem of scaling the calculations of CE-DYNAM, a hybrid
empirical-mechanistic ETD model based on a physical emulator of the carbon cycle in soils
(Naipal et al., 2020) to a continental scale. First, we describe themodel formulation and show
how the matrix approach leads to a sparse linear system, thus making calculations feasible.
We expect our mathematical development of CE-DYNAM to facilitate its reproduction and
incorporation in LSMs such asORCHIDEE, DayCent, andothers. We then calibrated themodel
for the study area (i.e., Europe) for the last 150 years using climate forcings with a monthly
temporal and a 0.125° spatial resolution (approx. 12.5km at the Equator) using sediment
concentration in rivers data collected on the field. Comparing the predictions against such
observed values is important to evaluate the cumulative effect of all model assumptions, as
well as its performance on catchments with different characteristics. Internal and external
validation of the results is presented to show their consistency and physical realism. Finally,
we exemplify the practical use of CE-DYNAM by presenting the results of the impact of ETD-
related processes in a chosen depositional area in the territory. With the model in a matrix
form, the calibration, and the pattern obtained at the depositional area, we expect to form
the basis for future large-scale model applications.

2.2 . Materials and Methods

2.2.1 . Methodological proposal: the matrix approach

Definitions

TheCE-DYNAMmodel (Naipal et al., 2020) consists of coupling erosion and transportmod-
ules to the soil carbon dynamics of any land surface model based on CENTURY (Parton et al.,
1983, 1988). Typically, CE-DYNAM uses the Revised Universal Soil Loss Equation (RUSLE - Re-
nard, 1997), an approach adapted for predicting erosion at a large scale and a coarse spatial
resolution, but any other existing option such as the LISEM model (de Roo et al., 1998) could
be used. The transport module is a topography-based routing scheme, which uses the alti-
tude (or an approximate digital elevation model) to distribute the sediments and their cor-
responding organic carbon. The scheme is calibrated with field sediment discharge data to
generate realistic values, and the elements are incorporated into the soil organic C dynamics
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as additional fluxes between pools beyond those initially present in the first-order kinetics
of CENTURY (Naipal et al., 2015, 2016). As a remark, CE-DYNAM could be coupled to other
carbon models as long as they adopt a first-order kinetics. Some advantages of the coupled
approach of CE-DYNAM include the current incorporation of interactions such as the feed-
back between land use, climate, and erosion (Borrelli et al., 2020; Quine and van Oost, 2020),
and the potential for the future implementation of other components such as soil properties.
Figure 2.1 presents a simplified representation of all fluxes of hillslopes and valley bottom soil
pools in CE-DYNAM.

Figure 2.1: A simplified representation of all fluxes in CE-DYNAM. All colors represent thesame flux (e.g., the blue arrow represents the input from litter). The example shown cor-responds to a specific moment in time, spatial location, plant functional type (PFT), and soilpool. All fluxes with written descriptions are directly affected by the parameters to be cal-ibrated (i.e., γ1, γ2 etc.), except for those with an underline. Fluxes whose description is in
bold interact with one or more spatial locations, soil pools, or PFTs (right, gray squares)

CE-DYNAM has only been applied at a local scale, such as in the non-alpine region of the
Rhine basin (whose total area equals 185.000 km2) (Naipal et al., 2020). However, scaling the
model to the continental scale, where the area can be tens of times larger than the applica-
tion mentioned above, still faces practical implementation difficulties that we address in our
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current work. A careful evaluation of CE-DYNAM’s original implementation allows the iden-
tification of three important remarks. First, from a computational point of view, the original
implementation requires the storage of a large amount of data in the computer’s memory
for its execution, which in practice becomes prohibitive as the geographical area or spatial
resolution increases. Second, the original strategy is based on the subdivision of the prob-
lem in smaller and adjacent units – generally the sub-basins of a hydrographic basin. This
procedure naturally restricts the ability to distribute the solution over different processing
units and requires the continuous execution of additional steps of integration of all smaller
units, which leads to a significant performance reduction. Third, the equilibrium calculation
procedure of the original method consists of the successive iteration of the model, which
can be very inefficient (Huang et al., 2018). Alternatives for these problems are more easily
perceived when the models’ mathematical notation is properly developed and stated.

Thus, to solve the problems above, we first clarify the notation to facilitate the compre-
hension of details and ensure reproducibility. We do so by adopting a general description
and, when necessary, including examples based on ORCHIDEE (Krinner et al., 2005) to illus-
trate the concepts. The formulation accompanies Table 2.1, containing all input variables for
the model, which helps clarification. The indices in Table 2.1 refer to five dimensions: the
soil pool (c), the spatial location (x, interpreted here as a point of a lattice X representing
an area in the surface), the plant functional type (PFT) (p), the soil depth (d). Besides those
dimensions, most variables also evolve in time (t). Some data sets are assumed constant on
one or more dimensions during simulations: the geographic area of each cell, for example,
varies in space but does not change according to the soil pools, PFTs, soil depth, nor time.
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Table 2.1: The external input variables for CE-DYNAM calculation.
Notation Description Source

ux,pl(t)

The percentage of each plantfunctional type (PFT) in each cell.
0 < ux,pl(t) < 1, so one cell can-not be more than 100% coveredby a PFT; and∑l ux,pl(t) = 1.

This information comes from the landsurface model.

ax
The geographic area (km2) ofeach cell. Derived from each cell’s boundingbox.

bx,dk The bulk density (g/cm3).
Several potential sources are avail-able, for example the Global SoilDataset for Earth System Modeling(≈1km) (Shangguan et al., 2014) andSoilGrids (250m) (Poggio et al., 2021).

αx The depth to bedrock (cm). SoilGrids (250m) (Poggio et al., 2021).
νx,dk

The soil organic carbon stock(tonnes). Derived from SoilGrids (250m) (Poggioet al., 2021).

κi,j
x,pl

(t)

When i = j, it represents an out-put rate from the pool i. When
i ̸= j, it represents a transferrate between (from) carbon pool
ci and (to) carbon pool cj (1/day).

These rates are calculated from theoutput of the land surface model.

ρix,pl(t)
The respiration rates of carbonpool ci (1/day). Idem as above.

Ijx,pl(t)
The input from litter pools to car-bon pool cj (gC/(m2.day)). Idem as above.

ex,pl(t)
The average erosion rate(tonnes/(ha.day)).

Calculated from any erosion modelsuch as the Universal Soil Loss Equa-tion, the Water Erosion PredictionProject etc.
sx The terrain slope (degrees). Derived from any digital elevationmodel, such as from the Shuttle RadarTopographyMission (Farr et al., 2007).
1/wx

The adimensional flow accumu-lation (i.e., the cumulative num-ber of upstream drainage cells).
Idem as above, preferably from thesame source as the terrain dataset.

hx

The fraction of each cell belong-ing to hillslopes. (1 − hx) is thefraction of valley bottoms. Pelletier et al. (2016).

lx The river width (m). Derived from HydroSheds (Lehneret al., 2008).
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Mimicking the carbon dynamics of the LSM (in our case, ORCHIDEE) is themost important
pillar of CE-DYNAM (Naipal et al., 2020). In general, we can represent the soil carbon pools
setting of such LSMs with a set Cs = {c1, c2, . . . , cn}. However, in comparison to the LSM in
which it is based, CE-DYNAMmakes additional assumptions to those described above. Oneof
these assumptions is that the soil carbon pools are divided into two fractions: hillslopes and
valley bottoms (i.e.,Cs = Ch

⋃
Cv), in such away that the original number of soil carbon pools

is twice the number of that in the LSMs. Such an assumption affects the original calculation
depending on the fraction under consideration. For the hillslopes, calculations are modified
by the inclusion of an extra flux proportional to the erosion predicted by a chosen model
such as the RUSLE. For the valley bottoms, such a flux from hillslopes becomes a new input,
and a new lateral dynamics of sediments across the landscape induced by the terrain slope
(sx) and the flow accumulation (1/wx), is added. These lateral dynamics give rise to most
computational challenges in CE-DYNAM since they make the stock in one simulation unit
dependent on its neighbors.

Another assumption introduced by CE-DYNAM is a discretization of soil depth, which al-
lows the evaluation of the vertical movement of carbon in layers even when the LSM does
not. This is done by first setting m = 3 soil layers (that is, surface, middle and bottom layer)
and then defining a set D = {d1, d2, · · · , dm} of soil layers. For example, if one let d1 = 10cm,
d2 = 20cm and d3 = 30cm, then one is identifying the segment of soil from zero to 10cm as
the surface, the segment from 10cm to 30cm as the middle layer and from 30cm to 60cm as
the bottom layer. Throughout this text, we also use the symbol dk, k ∈ {1, 2, · · · ,m}, to refer
to the k-th layer. Then, the input from litter to soil pools is distributed along D to calculate
the share of input to each soil layer. We describe such a vertical discretization procedure in
Equation 2.2.1, and we denote the vertically-discretized version of Ijx,pl(t) as I∗jx,pl,d(t) (Equa-tion 2.5).

Because the LSM used in this work is based on CENTURY, carbon pool kinetics will always
follow a first-order differential equation. Furthermore, soil carbon is divided into three pools
(active, slow, passive) with different turnover rates that vary with temperature, moisture, clay
content, and other modifiers (e.g., tillage) (Camino-Serrano et al., 2018). The set of v = 15

plant functional types used to represent land cover in the model is denoted here as P =

{p1, p2, · · · , pv}. Then, for a fixed layer dk ∈ D, a fixed lattice point x ∈ X , a fixed PFT pl ∈ P ,
a fixed pool ci ∈ Cs and a fixed time t we let Si

x,pl,dk
(t) denote its carbon stock.

The formulas for the CE-DYNAM rates are detailed in later sections of the text. However,
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we can essentially represent how the model evolves in time with Equation 2.1. While such
a representation omits most model dimensions, it’s useful to clarify its dynamics as that of
a linear and non-autonomous model (Sierra et al., 2018, Table 1). As we will describe in the
following subsections, the coupling of erosion-related processes will always respect this gen-
eral structure, with the changes consisting of modifications to each of its elements according
to the particular case.
dS

dt
= I(t)− κ(t) · S(t) (2.1)

withS(t) denoting the carbon stock at time t in the pool, I(t) denoting all the pool’s input, and
κ(t) denoting the output rates. In the equilibrium calculation, themodel was iterated several
times over the period 1860-1869 until convergence to the pullback attracting trajectory (Sierra
et al., 2018). In the transient period, all the elements on the right-part of the equation will be
known and dS/dt calculated will correspond to the increment in carbon stocks at each time
step. Essentially, we are interested in evaluating how the carbon stocks S(t) change over the
transient period. Through the rest of the text, we frequently refer to Equation 2.1 as the basis
to form the carbon budget in all cases.

In the matrix approach, we discretize Equation 2.1 and represent all fluxes between pools
as a linear system. Hypothetically, if no fluxes between pools existed, we would have
S(t+∆t) = S(t) + I(t) ·∆t− A(t)S(t) ·∆t, (2.2)
where S(t) =

[
Si
x,pl,dk

(t)
]
x∈X
l∈[v]
k∈[m]
i∈[n]

∈ R|X|×v×m×n, I(t) = [I ix,pl,dk(t)] x∈X
l∈[v]
k∈[m]
i∈[n]

∈ R|X|×v×m×n and A(t) is

a diagonal matrix with diagonal [κi,i
x,pl,dk

(t)
]
x∈X
l∈[v]
k∈[m]
i∈[n]

∈ R|X|×v×m×n.

However, interactions tend to be complex in more general situations. The following
sections show that the routing scheme for valley bottoms creates a dependence between
pools of different grid cells, PFTs, and soil layers. While such a property replaces several
off-diagonal zero elements of A(t) by non-zero rates, it still preserves the inherently sparse
structure of A(t).

Next, we detail how the elements of A(t) and I(t) can be calculated. For simplicity, we
exemplify with the first timestep of the equilibrium period (t = t0), but calculations are anal-
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ogous for all timesteps.

Vertical discretization

As mentioned in subsection 2.2.1, CE-DYNAM vertically discretizes the soil, which has a di-
rect impact on the respiration, erosion, and turnover rates of the original LSM. An exponen-
tial increase of the profile depth is assumed, so each soil layer thickness in the discretization
profile is calculated from the depth to bedrock, αx, using two real-valued parameters γ1 and
r:

dm−k+1 =

∫ z=k/m

z=(k−1)/m

αx · exp(γ1 + r · z)dz =
αx

r
·
[
exp

(
γ1 + r · k

m

)
− exp

(
γ1 + r · k − 1

m

)]
(2.3)

∀k = 1, 2, · · · ,m.

For any choice of γ1, the parameter r is calculated by constraining the sum of all vertical
layers to match the total distance to bedrock. By using the general properties of definite
integrals, it is possible to show that it can be analytically calculated with the closed-form
solution

r = − exp(γ1)−W[− exp(γ1 − exp(γ1))] , (2.4)
where W(·) representing the Lambert W function (see Corless et al., 1996). The example
notation of Equation 2.3 and Equation 2.4 shows an important property of the vertical dis-
cretization scheme: the γ1 parameter depends solely on the soil discretization setting, which
is assumed to be identical for all cells in CE-DYNAM. For this reason, there is a single γ1 value
independent of all factors being different (e.g., the spatial location, the PFT or the variable
to be discretized). Besides, this property also means that the vertical discretization is not
scale-invariant, and thus the depth scheme must be defined with extra care. In Figure 2.2,
we show how a possible vertical profile of depth equal to 2m varies with γ1: for values closer
to zero (left), the profile tends towards a flat one, while for larger values (right), the model
tends to calculate a smaller surface layer. The realistic choice of γ1 must come from the
model calibration procedure.

22 / 146



Figure 2.2: Possible options for the vertical discretization parameter in CE-DYNAM. The verti-cal axis shows the layer heights in centimeters, and the horizontal axis shows some possible
γ1 values.

In the carbon simulation, the input from litter to soil pools is also vertically discretized.
This is done bymultiplying the original quantity (i.e., Ijx,pl(t)) by the percentage of soil organiccarbon in each soil layer (Poggio et al., 2021).

I∗jx,pl,dk(t) = Ijx,pl(t) ·
νx,dk∑
d νx,d

, (2.5)

The erosion rates correspond to the share of the total mass of soil that is eroded in each
vertical layer. Since not all the carbon eroded in hillslopes goes to valley bottoms, the term is
multiplied by a fraction from zero to one, assumed to vary with terrain slope and land cover.
A different curve is assumed for forests, croplands, and grasslands, and their calibration is
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made using field observations.

λx,pl,dk(t) =

RUSLE rate︷ ︸︸ ︷
ex,pl(t)

bx,dk · dk · hx,pl · ax︸ ︷︷ ︸
Total mass of soil

·

% of erosion that goes to valley bottoms︷ ︸︸ ︷
1

1 + exp(gf (sx))
, (2.6)

with the multiplication by hx,pl varying for hillslopes and valley bottoms according to their
fractions, and gf (sx) being the weighted sum of the different smoothing function for forests,
croplands, and grasslands multiplied by their corresponding land cover fractions. Although
not explicit in the notation, such a function also varies on time, since land cover varies each
year.

Fluxes: hillslopes soil carbon pools

Bottom soil layer: dm We describe the carbon dynamics in hillslopes in terms of three
general pools c1, c2, c3 ∈ Ch, which can be interpreted in terms of the active, slow, and passive
soil pools of ORCHIDEE. For the deepest soil layer, the rearrangement of Equation 2.1 leads
to the following equations for c1, c2 and c3, respectively:

24 / 146



dS1
x,pl,dm

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I∗1x,pl,dm(t0)+

Input: c2 pool︷ ︸︸ ︷
κ2,1
x,pl

(t0) · S2
x,pl,dm

(t0)+

Input: c3 pool︷ ︸︸ ︷
κ3,1
x,pl

(t0) · S3
x,pl,dm

(t0)


−


Respiration rate︷ ︸︸ ︷
ρx,pl(t0)

1 +

Output: c2 pool︷ ︸︸ ︷
κ1,2
x,pl

(t0) +

Output: c3 pool︷ ︸︸ ︷
κ1,3
x,pl

(t0) +

Output: erosion b → t︷ ︸︸ ︷
λx,pl,dm(t0)

 ·

c1 stock︷ ︸︸ ︷
S1
x,pl,dm

(2.7)
dS2

x,pl,dm
(t0)

dt
=

(∑
ci∈Cl

I∗2x,pl,dm(t0) + κ1,2
x,pl

(t0) · S1
x,pl,dm

+ κ3,2
x,pl

(t0) · S3
x,pl,dm

(t0)

)
−
(
ρ2x,pl(t0) + κ2,1

x,pl
(t0) + κ2,3

x,pl
(t0) + λx,pl,dm(t0)

)
· S2

x,pl,dm
(t0) (2.8)

dS3
x,pl,dm

(t0)

dt
=

(∑
ci∈Cl

I∗3x,pl,dm(t0) + κ1,3
x,pl

(t0) · S1
x,pl,dm

+ κ2,3
x,pl

(t0) · S2
x,pl,dm

(t0)

)
−
(
ρ3x,pl(t0) + κ3,1

x,pl
(t0) + κ3,2

x,pl
(t0) + λx,pl,dm(t0)

)
· S3

x,pl,dm
(t0) (2.9)

Since CE-DYNAM does not affect litter pools, all quantities on the equations above should
be known, except the three hillslope soil carbon pools in equilibrium calculation. In Equa-
tion 2.7, we denote as b → t the flux from the bottom layer to the layer above.

Middle and top soil layers In hillslopes, the structure for middle and top soil layers will
be identical as for bottom layers, except for the b → t loss from the layers below (i.e., the
fourth term of Equation 2.7), which becomes a new input to the layers above. This results in
an additional input equal to λx,pl,dk+1

(t0) · Sj
x,pl,dk+1

(t0), in case of pool cj and depth dk. One
important final remark is that, for the top soil layer, the interpretation of the “Output: erosion
b → t” rate becomes “Output: erosion hillslopes→ valley bottoms”.

Fluxes: valley bottoms soil carbon pools

Preliminary assumptions In the hillslopes soil carbon pools described above, the move-
ment of C was spatially static, which means that all calculations were performed within the
same spatial unit (i.e., grid cell). However, the physical definition of valley bottoms extends
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the movement to other cells since connected areas exchange sediments and C according
to the terrain and land cover configuration. This characteristic is incorporated into the CE-
DYNAMmodel by defining a routing scheme that transports sediments along the landscape.

To represent the lateral transport, a new rate τx derived from the sediment residence
time is added. Its calculation is performed as:

Sediment rate︷︸︸︷
τx =

1

gτ (1/wx)︸ ︷︷ ︸
Residence time

(2.10)

with gτ (1/wx) representing a smoothing function between the sediment residence time
and the flow accumulation (i.e., upstream area), to be calibrated from the observations. In
this work, we adopted 3rd degree B-Spline to represent all smoothing functions. Besides, the
flow accumulation information is also used in the routing scheme to generate an approxi-
mated digital elevation model, wx. Such an approximation is used instead of the original
terrain to ensure a hydrologically consistent topography for the lateral movements.

Also, let P+
x (t) be the number of non-zero PFTs in cell x at time t and Q(x) be the set of

queen neighbors (Figure 2.3) (Quinn et al., 1991) of a given cell x formed as:
Q(x) = {y : y − x ∈ {−1, 0, 1} × {−1, 0, 1}, y ̸= x}
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Figure 2.3: Queen neighbor setting used for the routing scheme. The center cell (red) is x.

With these definitions, the routing scheme for a given cell consists of two elements in-
corporated into its C balance. First, at the surface depth, d0, there is loss from the cell to its
neighbors, but some definitions are necessary to dictate how the process occurs:

1. The routing scheme works only within the same carbon pool. For example, the active
carbon routed fromone cell is added exclusively to the active carbon pool of its neighbor
cells.

2. The C from one PFT in the source cell is transferred equally to all non-zero PFTs of the
target cell.

3. The bare soil PFT (conventionally denoted here by p0) loses and gains no C on the rout-
ing scheme.

The rate of routed C from a PFT pr of the source cell x to a PFT pl of the target cell y can
then be calculated as:

Lateral transfer rate︷ ︸︸ ︷
θ[ x , y︸︷︷︸

Source, Target
] =

Indicator function︷ ︸︸ ︷
1(wy<wx) ·

Slope: rise/run︷ ︸︸ ︷
wx − wy

||x− y||2
(2.11)
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Rate of routed carbon︷ ︸︸ ︷
ζx,pr,y,pl(t) =

Indicator︷ ︸︸ ︷
1(pl ̸=p0,pr ̸=p0) ·

Sediment rate︷︸︸︷
τx ·

Local % of lateral transfer︷ ︸︸ ︷
θx,y∑

y∈Q(x) θx,y
·

Local % of target PFT︷ ︸︸ ︷
uy,pl(t)∑v
s=1 uy,ps(t)

(2.12)
where the indicator function, 1, equals to one when the condition is met or zero otherwise.
Together, Equation 2.11 and Equation 2.12 result in the important remark: the total loss of C
in PFT pr ̸= p0 of the source cell is equal to τx times the corresponding C stock at the surface,
which varies according to the pool under consideration (for example, S1

x,pr,d0
(t0) for pool c1).

Also, the flux is equal to zero for the remaining case of pr = p0 since the bare soil does not
participate in the routing scheme. At the surface, the equilibrium value of C stock in one cell
and PFTwill depend on the equilibrium value of C stock in all the PFTs of all its neighbors. This
property of the routing scheme is essential andmakes several zero off-diagonal elements be
represented as rates from/to different grid cells, PFTs or soil layers.

Besides, despite affecting more directly the soil surface layer, the routing scheme is also
assumed to affect the vertical movement of C earlier described in Equation 2.2.1 for the case
of hillslopes. The same total rate routed from one PFT to the neighbors also moves through
the layers, from the bottom to the top (b → t) (i.e., subsoil exposure). In the other way
(t → b), the rate received from the neighbors is transmitted vertically from each layer to the
layer below (i.e., burial). The only exception is naturally dm, which has no layers below. Such
input rate to pl can be denoted as:∑y∈Q(x)

∑v
r=1 ζy,pr,x,pl(t).

Top soil layer: d0 The equations for the C dynamics in valley bottoms can be obtained
by putting the new fluxes along with the other ones from the original LSM. This implicitly
assumes that litter input and PFT in valley bottoms are the same as in the standard LSM.
Again, we make this section using a general notation of c1, c2, c3 ∈ Ch and its respectively
correspondent pools c4, c5, c6 ∈ Cv. For example, if c1 is the hillslope soil active carbon pool,
then c4 is the valley bottoms soil active carbon pool. Below, we describe the fluxes for PFT pl
of pool c4 using element-wise notation. For the topsoil layer, d0, we have input from below
but not from above, and also have inputs from some neighbor cells via the routing scheme
and losses for other neighbors for the same reason.
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dS4
x,pl,d0

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I∗4x,pl,d0(t0)+

Input: c6 pool︷ ︸︸ ︷
κ6,4
x,pl

(t0) · S6
x,pl,d0

(t0)+

Input: c5 pool︷ ︸︸ ︷
κ5,4
x,pl

(t0) · S5
x,pl,d0

(t0)

+

Input: hillslopes︷ ︸︸ ︷
λx,pl,d0(t0) · S1

x,pl,d0
(t0)+

Input: vertical flow b → t︷ ︸︸ ︷∑
y∈Q(x)

P+
y (t0) · τx · S4

x,pl,d1
(t0)

+

Input: routing scheme︷ ︸︸ ︷∑
y∈Q(x)

∑v

r=1
ζy,pr,x,pl(t0) · S4

y,pr,d0
(t0)



−


Respiration rate︷ ︸︸ ︷
ρ4x,pl(t0) +

Output: c5 pool︷ ︸︸ ︷
κ4,5
x,pl

(t0) +

Output: c6 pool︷ ︸︸ ︷
κ4,6
x,pl

(t0) +

Output: routing scheme + extra respiration︷ ︸︸ ︷∑
y∈Q(x)

P+
y (t0) · τx

+

Output: erosion t → b︷ ︸︸ ︷
λx,pl,d0(t0) +

Output: vertical flow t → b︷ ︸︸ ︷∑
y∈Q(x)

∑v

r=1
ζy,pr,x,pl(t0)

 ·

c4 stock︷ ︸︸ ︷
S4
x,pl,d0

(t0) (2.13)

For the other pools c5 and c6, the equations are analogous.

Middle layers The routing scheme for valley bottoms also affects the middle layers with
its vertical components. For having layers above and below, such layers have fluxes in both
directions. For a PFT pl of pool c4, the equation for dk, 0 < k < m, is:
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dS4
x,pl,dk

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I∗4x,pl,dk(t0)+

Input: c6 pool︷ ︸︸ ︷
κ6,4
x,pl

(t0) · S6
x,pl,dk

(t0)+

Input: c5 pool︷ ︸︸ ︷
κ5,4
x,pl

(t0) · S5
x,pl,dk

(t0)

+


Input: erosion t → b︷ ︸︸ ︷
λx,pl,dk−1

(t0) +

Input: vertical flow t → b︷ ︸︸ ︷∑
y∈Q(x)

∑v

r=1
ζy,pr,x,pl(t0)

 · S4
x,pl,dk−1

(t0)

+

Input: vertical flow b → t︷ ︸︸ ︷∑
y∈Q(x)

P+
y (t0) · τx · S4

x,pl,dk+1
(t0)



−


Respiration rate︷ ︸︸ ︷
ρ4x,pl(t0) +

Output: c5 pool︷ ︸︸ ︷
κ4,5
x,pl

(t0) +

Output: c6 pool︷ ︸︸ ︷
κ4,6
x,pl

(t0) +

Output: vertical flow t → b︷ ︸︸ ︷∑
y∈Q(x)

∑v

r=1
ζy,pr,x,pl(t0)

+

Output: erosion t → b︷ ︸︸ ︷
λx,pl,dk(t0) +

Output: vertical flow b → t︷ ︸︸ ︷∑
y∈Q(x)

P+
y (t0) · τx

 ·

c4 stock︷ ︸︸ ︷
S4
x,pl,dk

(t0) (2.14)

Bottom soil layer: dm Finally, for the bottom soil layer, the equation is identical as Equa-
tion 2.14, the exception being the inexistence of b → t input or t → b output rates, since
there are no bottom layers. In this case, for a given PFT pl of pool c4, we have:
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dS4
x,pl,dm

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I∗4x,pl,dm(t0)+

Input: c6 pool︷ ︸︸ ︷
κ6,4
x,pl

(t0) · S6
x,pl,dm

(t0)+

Input: c5 pool︷ ︸︸ ︷
κ5,4
x,pl

(t0) · S5
x,pl,dm

(t0)

+


Input: erosion t → b︷ ︸︸ ︷
λx,pl,dm−1(t0) +

Input: vertical flow t → b︷ ︸︸ ︷∑
y∈Q(x)

∑v

r=1
ζy,pr,x,pl(t0)

 · S4
x,pl,dm−1

(t0)



−


Respiration rate︷ ︸︸ ︷
ρ4x,pl(t0) +

Output: c5 pool︷ ︸︸ ︷
κ4,5
x,pl

(t0) +

Output: c6 pool︷ ︸︸ ︷
κ4,6
x,pl

(t0) +

Output: vertical flow b → t︷ ︸︸ ︷∑
y∈Q(x)

P+
y (t0) · τx

 ·

c4 stock︷ ︸︸ ︷
S4
x,pl,dm

(t0)

(2.15)

2.2.2 . Study area

In this work, the study area comprises the European Union member states (EU27), plus
Switzerland, the United Kingdom, and the Balkan states (i.e., Albania, Bosnia and Herzegov-
ina, Kosovo, Montenegro, NorthMacedonia and Serbia). The EU27 is a political and economic
block of 27 countries, covering 410 million hectares – larger than the seventh-largest country
in the world (India) – and 447 million inhabitants. Switzerland, the United Kingdom, and the
Balkan States were included for being spatially adjacent territories. The food and farming
sector of EU27 used 156.7 million hectares of land (i.e., 38.2% of the total area) for agricul-
tural production in 2016 and currently provides nearly 40 million jobs (i.e., 9.75% of the total
population) (Statistical Office of the European Union, 2020; European Union, 2021).

EU27 has been promoting changes to shift its agriculture towards more sustainable prac-
tices. In 2019, for example, the European Commission proposed the European Green Deal,
a growth strategy for the continent that proposes environmental targets, including climate
neutrality by 2050. Some of the targets include increasing the share of organic farming from
8.5% of the total agricultural land to 30% by 2030 and increasing tree cover by planting 3
billion additional trees also by 2030 (European Commission, 2021). Such actions come as an
anticipated response to projections of future environmental conditions. For example, the
projected patterns of rainfall erosivity for the future indicate an increase in 81% of the Euro-
pean territory by 2050 (Panagos et al., 2017), which will consequently affect soils, a very rele-
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vant natural resource for the achievement of the European Green Deal’s goals (Montanarella
and Panagos, 2021).

Input data: LSM emulator and erosion rates

The first step to running CE-DYNAM is to build a standalone version of the soil carbon
dynamics of an existing LSM, i.e., an emulator. Such procedure is done by carefully an-
alyzing and modifying the source code of the original LSM to allow the export of all nec-
essary variables for reproducing calculations externally. In this work, we ran ORCHIDEE, a
process-based model that simulates vegetation, energy, water, and carbon fluxes (Krinner
et al., 2005), with the following settings: i) version: ORCHIDEE 2.2; ii) time step and range:
daily, from 01/01/1860 to 31/12/2018; ii) climate: monthly forcings at a 0.125° spatial resolution
from the VERIFY project (see https://verify.lsce.ipsl.fr/index.php/presentation); iii)
land cover: annual forcing – derived from the ESA CCI Land Cover dataset (European Spatial
Agency, 2021; LSCE, 2021).

For the calculation of erosion rates, we applied thewell-knownRevisedUniversal Soil Loss
Equation (RUSLE) model, using the values recently developed by the European Commission
specifically for our study area (Panagos et al., 2015e). For a given year (y) and month (m),
monthly erosion rate (E), in t/(ha · year · PFT ) was calculated as:

E(y,m) = R(y,m) ·K · C(y) · LS · P (2.16)
withR(y,m) being the rainfall erosivity factor1 inMJ ·mm ·ha−1 ·h−1 · yr−1,K being the soil
erodibility factor2 in t·ha·h·ha−1 ·MJ−1 ·mm−1,C(y) being the dimensionless land cover and
management factor3, LS being the dimensionless slope length and steepness factor4, and P

being the dimensionless support practices factor5. When collapsing the PFT dimension for
1It represents the “kinetic energy of raindrop’s impact and the rate of associated runoff” (Panagos et al.,2015a; Wischmeier et al., 1978)2It “represents an integrated annual value of the soil profile reaction to the process of soil detachment andtransport by raindrops and surface flow” (Panagos et al., 2014; Renard, 1997)3It “accounts for how land cover, crops, and crop management cause soil loss to vary from those lossesoccurring in bare fallow areas” (Panagos et al., 2015c; Kinnell, 2010)4It describes “the effect of topography on soil erosion” (Panagos et al., 2015b)5It “accounts for control practices that reduce the erosion potential of runoff by their influence on drainagepatterns, runoff concentration, runoff velocity and hydraulic forces exerted by the runoff on the soil surface”(Panagos et al., 2015d; Renard et al., 1991)
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the calculation of annual or monthly averages, E(y,m) was multiplied by the corresponding
land cover fraction pi for PFT i (Table 2.1). All the data was aligned and processed on a 0.125°
grid.

As seen in Equation 2.16, factors K , LS and P were assumed constant for the whole
period 1860 – 2018, while R(y,m) varies per month and C(y) varies annually. The source of
K is the extrapolated version of Panagos et al. (2014) including stoniness, LS comes from
the completely harmonized version of Panagos et al. (2015b) for the whole study area, and P

comes from the database provided by Panagos et al. (2015d). The first and the second factors
cover the whole study area originally, but the third does not, so an additional assumption
was added: in places where P was not available (i.e., Switzerland and the Balkan states), it
was assumed to be equal to 1. According to the authors mentioned above, K and P were
derived from field survey data carried out in 2009 and 2012, respectively.

For C , we used the spatial dataset of Panagos et al. (2015c), but an additional procedure
was made to minimize the differences arising from the mismatch in the land cover classes
definition and spatial resolution. Such a procedure consisted of fitting a linear regression
model to the upscaled version of the original C factor using the target land cover classes
as explanatory variables (i.e., C =

∑
i βipi + ϵ, ϵ ∼ N(0, σ2)). An intercept term was inten-

tionally not added to the linear regression, and pi is the average land cover from the period
2010-2018, approximately the period of data collection of Panagos et al. (2015c).

The rainfall erosivity also demanded an extra processing step. The main source for cal-
culations was the monthly erosivity derived and provided by Ballabio et al. (2017). To extrap-
olate for the past, we assumed a constant erosivity density for the whole simulation period,
1860-2018. That was made by calculating:

R(y,m) = r(y,m) · R
∗(m)

r(m)

with R∗(m) being the original monthly erosivity data set upscaled to a 0.125° spatial resolu-
tion, r(m) being the averagemonthly precipitation of the period 2010-2018 (roughly the same
data collection period of Ballabio et al. (2017)), and r(y,m) being the monthly precipitation
for the monthm of year y.
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Calibration and validation

Calibration Calibrating CE-DYNAM means ensuring that the values predicted by the rout-
ing scheme introduced are realistic and consistentwith field observations. To do so, wemade
an exact copy of the model described in Equation 2.2.1 and Equation 2.2.1, but replacing the
carbon quantities with sediment quantities. Then, we used as field data the information
of total suspended solids and river discharge from the GEMStat database (United Nations
Environment Programme, 2018b) for the whole Europe. We adopted a squared error cost
function between the model predictions and the observations. Because the calculation of
analytical derivatives of the cost function with respect to the parameters is hard in our case,
minimization was performed using the NEWUOA solver (Powell, 2006, 2008) with early stop-
ping to prevent overfitting.

Like most optimization methods, NEWUOA requires several evaluations of the cost func-
tion, which is computationally expensive in our case. For this reason, we calibrated themodel
using annual averages instead of monthly inputs to accelerate calculations. We also pre-
processed our observations by first aggregating annually the total of 10,552 instantaneous
observations available, which resulted in 391 annual median values for 40 rainfall stations
distributed across Europe from 1979 to 2003. Then, we calculated the 5-year moving aver-
ages of the median annual values to simultaneously smooth extreme values from floods
that are not modeled in CE-DYNAM and remove stations with a few observations. The final
dataset contained 241 observations in 30 stations, whose contributing areas covered nearly
one-fourth (23.34%) of the study area. For each set of parameters, we calculated the pre-
dicted sediment stock in the river fraction of the cell (from variable lx, see Table 2.1), and the
objective function adopted was the squared error between this quantity and the product be-
tween the total suspended sediments observed and the water volume in a day (derived from
the instantaneous discharge). As in similar works such as Borrelli et al. (2018b), themodel was
assessed using the Nash-Sucliffe model efficiency (ME) coefficient (Nash and Sutcliffe, 1970),
and the coefficient of determination (R2) as defined by Everitt and Skrondal (2010).

Validation The hillslope erosion rates were externally validated by comparing our esti-
mateswith somefield observations andmodeled values in the literature. Weused the compi-
lation of observations by Cerdan et al. (2010) in two ways: i) we aggregated our and their land
cover classes into four common categories (i.e., croplands, grasslands, forest, and bare soil),
and compared the distribution of our calculations with their reported point estimates; ii) we
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compared our country averages with their extrapolated calculations for the whole Europe.
We also compared our erosion values to the compilation of local-scale field observations
from different sources reported by Panagos et al. (2020) and modeled country averages of
(Panagos et al., 2015e) to evaluate the model behavior at a local and regional scale, respec-
tively.

The calibration of the lateral movements on the model was validated both internally and
externally. The model’s internal consistency was checked by comparing the physical quan-
tities obtained empirically by the calibration procedure with the results previously obtained
in the literature. We checked the model’s ability to predict the sediment concentrations in
places unobserved during the calibration process. For this purpose, the 30 rainfall stations
of the final dataset were divided between 24 stations for calibration - i.e., 80% observed by
the model - and six stations for validation - i.e., 20% unobserved by the model.

2.2.3 . Simulations

In order to evaluate the behavior of CE-DYNAM under different scenarios, two simula-
tions were made after model calibration. In Simulation #1 (S1), all ETD-related processes are
considered. In Simulation #2 (S2), no ETD-related processes are added to the original LSM
fluxes. In this case, the original model is only affected by the vertical discretization of fluxes
and the division of soil carbon pools into hillslopes and valley bottoms soil carbon pools.
With such assumptions, the summation of all the results for soil layers of S2 recovers the
original LSM results. In both cases, simulations were run from 01/01/1860 to 31/12/2018.

2.3 . Results and discussion

2.3.1 . LSM emulator and erosion rates

Themain result for the LSM emulator is presented in Figure 2.4: a comparison of the true
values of ORCHIDEE against the predicted ones from the emulator with ETD not enabled. The
simulation was made in one random grid cell representative of the model behaviors over
the entire studied region. A slight mismatch between original and predicted values exists at
early timesteps, but as expected, values tend to a nearly identical curve after a few timesteps,
indicating the adequacy of the emulator to replace the full LSM for erosion calculations with
CE-DYNAM. In general, the adoption of an emulator has advantages and disadvantages for
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CE-DYNAM compared to its implementation directly on an LSM. On the one hand, one can
list its simplicity, agility, and flexibility as an advantage to be easily modified for the inclusion
of new dynamics, such as the ETD fluxes in the present research, or for other LSMs. It could
be noted at this point that practically all existing soil carbon model implementations can be
represented in a linear form, and therefore, thematrix approach could be applicable and CE-
DYNAM, coupled (Huang et al., 2018). In fact, Sierra and Müller (2015) and Metzler et al. (2020)
demonstrate how the approach could be used even for more complex nonlinear models.
On the other hand, the use of a standalone version of the LSM allows the processes to be
represented only in a simplified way. In the present work, for example, the respiration and
litter input rates simulated by the LSM are unchanged in CE-DYNAM, whereas the literature
suggests that, in fact, they should also be affected by ETD fluxes (Olson et al., 2016). Such a
limitation also exists for other important interactions affecting the fate of transported carbon
that cannot be properly incorporated into the emulator, such as variation in soilmoisture and
temperature, as well as in organic matter quality and soil fractions (Lal, 2003).

Figure 2.4: Comparison between the results of the original LSM (i.e., ORCHIDEE, continuouslines) and the results of the emulator constructed for the present work (dashed lines), for 10years of pools initialization. ORCHIDEE does not have a hillslope-valley bottoms differentia-tion of pools, while the line for the emulator corresponds to their sum. Ideally, the emulatorwould be a perfect standalone version of the LSM.

For the erosion rates, Figure 2.5 and Figure 2.6 present the historical spatio-temporal
variability reconstructed. On the top subfigure of Figure 2.5, the absolute erosion rates in
1860 are shown on the left, while the maps for 1910, 1960, and 2010 represent the difference
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with respect to 1860. It can be seen that the annual variations do not follow a linear pat-
tern through time, thus affecting erosion calculations unequally. A decrease in erosion rates
from 1860 to 2010 can be noted in Central Europe, and a strong pattern on countries’ bor-
ders follows from the assumptions of the reconstructed land cover database used (LSCE,
2021). Although partially, this result is related to those reported by Bork and Lang (2003) and
Dotterweich (2008), who in historical reconstructions in Germany and Central Europe found
peaks in erosion rates in the second half of the 18th century, a period for which there is doc-
umentary evidence of extreme rainfall events, and in the early 19th century. In Figure 2.5, the
1860 erosion map also shows points in four different locations (i.e., P1, P2, P3, and P4, plus
the whole study area (WSA)). Within a year, the monthly variations in erosion rates are due
solely to changes in the rainfall and the erosivity factor, and as seen on the bottom graph of
Figure 2.5, the pattern of such changes also vary non-linearly in space and may differ from
the average pattern of the study area. Additionally, Figure 2.6 shows the annual average ero-
sion rates, calculated as 2.96 t/ha for 2018. Such a value is higher than the 2.46 t/ha reported
by Panagos et al. (2015e), which can be justified by the different spatial resolution, land cover
database, and study area since, in our case, we include Switzerland and the Balkan states,
which have erosion rates that are relatively higher compared to their neighbors (Figure 2.5,
top left). Figure 2.6 also shows the average effect of the two time-varying factors adopted
for RUSLE calculation, i.e., the R- and the C-factors of Equation 2.16. Two distinct patterns
of variation can be seen through time, with the R-factor having a higher annual variability
and the C-factor being less abrupt, except for the evident breaks during the twoWorld Wars.
The R-factor shows a cyclic pattern from 1860 to 1901 due to the recycling of (i.e., repetition
of climate) forcings adopted by ORCHIDEE for this period. The calculations also indicate an
overall increase in erosion rates from 1860-to 1960 due mainly to land cover changes and a
peak in rainfall erosivity, followed by an overall decrease from 1960-to 2018. Despite such
a pattern in the nearer past, the literature indicates a tipping point in the present. Future
projections from Panagos et al. (2021) indicate that water erosion in Europe is expected to
increase between 13 and 22.5% by 2050, and Borrelli et al. (2020) estimate an increase in 2015
water erosion rates of 33 to 66% by 2070 worldwide. Under these scenarios, future values
could be even higher than the past values calculated and shown in Figure 2.6.
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Figure 2.5: Erosion rates calculated in this work. On the top subfigure, the top-leftmap showsthe erosion rates for 1860 and four points (P1, P2, P3, and P4), while the top-right, bottom-left, and bottom-right maps show the anomalies for 1910, 1960, and 2010, respectively. Thebottom subfigure shows the changes in erosion rates due to variations in themonthly rainfalland erosivity for P1, P2, P3, P4, and the whole study area (WSA) within the same year, 1860.38 / 146



Figure 2.6: The average impact of the reconstructed R and C-factors on the erosion rates forthe period 1860-2018.

Also for the erosion rates, the annual country averages were compared against values
reported in the literature. The results of Figure 2.7 (left) show a positive agreement between
all databases considered, as highlighted by the positive slope of the robust linear models
fitted to the data. The steepness of curves suggests that the model’s ability to reproduce the
continent-scale patterns is higher than local-scale predictions, which can be interpreted as a
consequence of the model’s relatively coarse resolution to represent local-scale hydrology.
On the right part of Figure 2.7, the comparison per land cover class shows a close match for
croplands and bare soil, the highest rates in our model. On the other hand, our model tends
to underestimate erosion in forests and grasslands compared to the external sources, with
our values lying on the lower tail of the distribution of Panagos et al. (2015e) and Cerdan et al.
(2010).
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Figure 2.7: Comparison between the average erosion rates calculated by external sourcesversus the values calculated in our work, alongwith an identity line (left); and the comparisonof the distribution of erosion rates per land cover (right). In the right plot, the values for ourwork are the average for the period 1970-2018, and the values for Cerdan et al. (2010) are thereported mean ± standard deviation.

2.3.2 . Model calibration

The NEWUOA algorithm performed several hundred function evaluations until stop. Us-
ing averaged annual instead of monthly forcings and performing the calculation only for the
catchments areas of stations, each evaluation took around 6 minutes of processing time.
The vertical discretization parameter obtained was γ1 = 0.1, approximately the left pattern
from Figure 2.2. Calibration also indicated that the input of sediments from hillslopes into
valley bottoms varies from 0.4 to 11.8% in croplands, from 4.9 to 10.9% in forests, and from
0.3 to 3.8% in grasslands (Figure 2.8, left). These values can be interpreted in several ways.
First, the absolute magnitude of the values is relatively small, following what was suggested
by Hoffmann et al. (2013a), with the maximum values being comparable to the 15% of on-
site erosion reaching riverine systems presented by Borrelli et al. (2018b) for the same study
area. However, the direct comparison of these values should be read with caution because
of the large methodological differences between works. For example, the authors defined
the rivers explicitly and used a higher spatial resolution for a single moment in time, char-
acteristics that contrast with those of CE-DYNAM (Naipal et al., 2020). Furthermore, despite
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the similar interpretation, the quantities comparedmay themselves differ between themod-
els adopted (Rompaey et al., 2001). Second, regarding the shape of the curves, there is an
increasing relation in parameter gf as a function of slope for forests and croplands but a
decreasing relation for grasslands. The increase in two of the three land-use classes can
be readily explained by the important effect of gravity on sediment transport (Bridge, 2003;
Huggett, 2017), while its generally low range of values can partially explain the unexpected
decrease in grasslands compared to that of forests and croplands. Third, with respect to the
ordering of the curves, two patterns are observed. In flat areas, with a slope less than 1.5°, the
pattern is forests having higher transport than grasslands, followed by croplands. In steeper
areas, with slopes above 1.5°, there is a rapid change in the ordering, leading to a situation
where croplands generally have higher sediment transport than forests and grasslands. The
low influence of this region on sediment production can explain the non-intuitive relationship
between the classes. For example, areas with slopes less than 1.5° were responsible for only
5.43% of Europe’s total erosion in 2018, with the remaining 94.57% occurring in the steeper
areas. Therefore, it is reasonable to expect that the steeper areas will be better represented
in the model. Thus, the latter pattern of Figure 2.8 can be explained by the lower cohesive
properties of the less vegetated covers relative to the more vegetated ones, consequently
offering less resistance to water and sediment flow (Osterkamp et al., 2011; Hoffmann et al.,
2013a; Huggett, 2017). Figure 2.8, right, also shows the sediment residence time, which was
estimated to vary from 0.5 years (180 days) to 24.5 years, indicating that sediment retention
increases with watershed size, in agreement with that described by Hoffmann et al. (2013b).
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Figure 2.8: Results from the calibration procedure: the fraction of sediments that go fromhillslopes to valley bottoms (left), and sediment residence time (right).

The validation for the best set of parameters is summarized in Figure 2.9, which shows
a plot of actual against predicted values (using annual forcings) for the observed and the
unobserved locations. In all cases, the prediction value used for this comparison are those
from the same year as the observation. The red diagonal is a 1:1 line, and each group of dots
connected by a line represents a different station. The best set of parameters found yielded
ME = 0.603 and R2 = 0.666 for the observed stations, and ME = 0.152 and R2 = 0.438 for the
unobserved stations. Overall, for the full dataset, themodel has aME= 0.578 and R2 = 0.640.
The values obtained are relatively highwhen compared to similar studies. Works such as that
of Feng et al. (2010) and Rompaey et al. (2005) in China and Italy, respectively, reported neg-
ative ME values, which indicate that sometimes distributed models are unable to represent
sediment dynamics, especially when there is high heterogeneity in the data (Rompaey et al.,
2005). In Quijano et al. (2016), where the authors studied four adjacent hydrological units at
a local scale in Spain, distributed models could represent well the dynamics involved. The
overall value obtained for the study region was ME = 0.11, while the value calculated indi-
vidually per hydrological unit ranged from ME = −0.11 to ME = 0.49. In what is probably
the most similar to our work in terms of the study area, Borrelli et al. (2018b) initially con-
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sidered a total of 24 semi-natural and agricultural basins in Europe, for which they obtained
ME = 0.38. The result motivated the authors to further remove basins as a fine-tuning of the
model calibration used, which led to a ME= 0.89 for ten basins. The results from these other
studies help us to compare the performance of the model presented in the current work. It
can be noted that the present work uses more observations and calibrates the model with
time-varying data (i.e., not long-term averages), which requires a more complex model ar-
chitecture and highlight the robustness of the calibration performed. It is also an important
remark that the comparison with other works was only possible after themethodological im-
provements in the new version of CE-DYNAM compared to that of Naipal et al. (2020): i) the
possibility of calibrating the lateral fluxes using sediment data collected in the field and rela-
tively abundant in the literature (see United Nations Environment Programme, 2018b); ii) the
possibility of performing validation with field data, using the model as a basis for prediction
for locations unobserved during its fit.
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Figure 2.9: Plot of the predicted annual averages against the observed annual sediment dis-charged values in log scale. Each dot or triangle corresponds to one of the 241 observations,and the connected icons correspond to one of the 30 different stations of the database. Thered line is an identity line. The unobserved dataset contains the observations not includedin the model calibration procedure.

We also used the same best set of parameters with monthly forcings to quantify how
distant the simplified calibration with annual forcings is from the optimal condition. Using
monthly forcings for a full calibration remains precluded, since a single function evaluation
took almost one day to complete. In that experiment, values dropped to ME = 0.464 and
R2 = 0.616 for the entire dataset, indicating a relatively small change in predictions compared
to the simplification using annual forcings.

2.3.3 . Model behavior under the matrix approach
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In both scenarios, the two Amatrices (i.e., one for hillslopes and the other for valley bot-
toms calculation) are square with a size equal to the product between the number of cells,
the number of PFTs, the number of soil layers and the number of soil carbon pools, which
for the setting used in the present work equals 1.85 · 107 rows and columns. In S1, where all
fluxes are considered, the average number of non-zero elements on the A matrices of hill-
slopes and valley bottoms were 7.4 ·106 and 1.7 ·107, respectively, corresponding to densities
of 21.6 ppb (i.e., 10−9) and 49.7 ppb. In S2, where fewer fluxes are simulated, the Amatrices
for hillslopes and valley bottoms contained 5.9 ·106 and 7.4 ·106, yielding a density of 17.2 ppb
and 21.6 ppb, respectively. Simulations were run on a High-Performance Computer having
19 Intel(R) Xeon(R) CPU E5-2640 v4 2.40 GHz processors. The number of cores used for cal-
culations varied, as specified next. In both scenarios, the generation ofA and B took around
3 to 6 minutes for each simulation month at the continent scale. After the generation of all
matrices, equilibrium calculation took around 10 minutes on a single core. As a comparison,
the calculation for the non-alpine region of the Rhine basin of Naipal et al. (2020) used to
take two days in seven cores of the same machine. The drastic reduction is a consequence
of thematrix approach adopted. While in their work all fluxes had to be recalculated for each
month of equilibrium calculation, in our case we just had to precalculate A and B once.

The matrix approach brought several benefits for speeding up the model. First, the ana-
lytical representation of the model allowed the derivation of first-order approximations for
the monthly averages, which are faster to calculate than summing the daily simulations and
dividing by the number of days. Second, despite the different settings of S1 and S2, imple-
mentation was straightforward thanks to the natural interpretation of each element of A as
a flux of carbon from one to another uniquely identified combination carbon pool. Third, the
calculation ofA andB are independent for eachmonth, which drastically increases the num-
ber of possible concurrent execution threads in comparison to the original model of Naipal
et al. (2020). These results are similar to those found in the literature. For example, Xia et al.
(2012) and Huang et al. (2018) reported reduced processing time and computational cost of
the calculations. In our case, it is not possible to compare the processing times as done by
Xia et al. (2012) because the previous version of the CE-DYNAM from Naipal et al. (2020) does
not support the calculation at a continental scale in a feasible time. In this sense, the very
possibility of applying the model at this scale, now allowed because of the matrix approach,
is an indicator of such improvements. However, the matrix approach may require changes
for applications at even larger scales, such as the global scale. As shown in Equation 2.2, the
approach simplifies the simulation by representing the variation of fluxes with additions and
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matrix-vector multiplications. Such operations are typically efficient in the format known as
Compressed Sparse Row (CSR) (Bai, 2000; Greathouse and Daga, 2014), which requires the
storage of three vectors for its construction. In global scale problems, it is possible that the
amount of memory required for such storage is excessively large, so alternative representa-
tions should be explored. A possible solution may come from an analogous problem in the
statistical regression literature, where authors seek low-rank representations of models in
order to reduce the dimensionality of the problemwhile still largely preserving the character-
istics of the original model (see Wang and Ranalli (2006) and Wood (2006) for two examples).
However, while procedures that are central for dimensionality reduction problems such as
singular value decomposition are well established for dense matrices (Strang, 2016) or even
sparse matrices of reasonable size, the problem can be complicated when the dimensions
are huge. Therefore, further research andwork to search for applicablemethods are needed.

The calculation for a depositional site indicates that the additional incoming fluxes from
its upstream area due to ETD processes tend to increase the equilibrium carbon stock at the
site from 6,800 to 7,150 g/m2, equivalent to a 5.1% increase (Figure 2.10, top). The relative
increase compared to the equilibrium stock showed in Figure 2.10 bottom, illustrates the
ability of the model to emulate non-linearities on the impact of ETD fluxes on the carbon
cycle at a depositional area. According to van Oost et al. (2005), Li et al. (2007), and Wang
et al. (2015), some expected changes in the dynamics include an increase in the C burial,
resulting in an increase of the soil organic carbon, as well as enhanced respiration of the
carbon buried with time (Naipal et al., 2020). In fact, in the early period of the curve, from
1860 to approximately 1940, the curve of the S1 simulation (i.e., with ETD fluxes) is above that
of the S2 simulation, indicating that the immediate impact of adding new fluxes to an area is
to increase the rates of carbon burial. However, in the final period of the curve, from 1941 to
2018, the variation curve of S1 moves below the S2 curve (i.e., without ETD fluxes), indicating
a decrease in the lateral input and the rate of carbon burial, as well as a higher respiration
by microorganisms due to the carbon previously buried.
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Figure 2.10: Results for the depositional site: absolute values of carbon stock (g/m2) (top),relative difference compared to the stock at the first simulation month (bottom). Scenario S1contains all ETD fluxes, while scenario S2 represents the dynamics of the original LSM.

Furthermore, to check themass balance closure, all the fluxes from this depositional area
were calculated from 1860 to 2018. On the cell’s hillslope fraction, litter input added 25,404.47
gC/m2 and land cover added 128.71 gC/m2, of which 25,286.00 gC/m2 were respired, and 0.39
gC/m2 were sent to the valley bottoms. On the valley bottom fraction, the inputs were: 0.39
gC/m2 coming from the hillslopes, 722.16 gC/m2 from upstream lands, and 6,039.23 gC/m2

from litter. Of this, 6,764.07 gC/m2 was respired, and 23.91 gC/m2 was lost due to land cover
change. These values indicate that local erosion at this depositional area is not relevant to
the carbon cycle, in contrast to the carbon input from upstream lands, which corresponded
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to 10.68% of all the valley bottom fraction inputs.

2.4 . Limitations

Despite the advances presented in this work, there are still limitations that need to be ad-
dressed with future modifications. Concerning its structure, incorporating sediment data in
CE-DYNAM is only possible by assuming that sediment and carbon follow the samedynamics.
While this is convenient for calibration, it might not be realistic, so further work is necessary
to improve this important assumption. Besides, the physical representation of the fluxes
could be improved. For example, no transformation of C pools during the transport process
is represented, such as the breakdown of aggregates. In practice, they could increase the
turnover rates of soil organic carbon compared to the simulations we presented.

Regarding the calibration presented here, other limitations concern the spatial resolution
and historical reconstructions. First, finding the optimal resolution for CE-DYNAMwill always
be a problem, since it is halfway between the fine-scale hydrological processes it represents
and the coarse resolution of the current climate models. Second, the historical reconstruc-
tions presented are highly sensitive to the assumptions adopted andpresented. Even though
these assumptions are properly evaluated during the calibration and validation process, bet-
ter results will be possible the better the input maps for the model are.

Another important limitation refers to the structure of the calibration parameters. The
structure presented in this work contains a certain tradeoff between the share of sediments
that move from hillslopes to valley bottoms versus the sediment residence time, so the opti-
mization may sometimes tend to yield physically unrealistic results. In the present work, we
attempted to solve this issue by usingmultiple starting points to the optimization procedure.
In a more robust implementation, a better solution should come from the development of
the model itself, which should mathematically penalize solutions that do not have a mean-
ingful physical interpretation. Finally, ourmodel also naturally inherits the problems of some
necessary assumptions. Even the fundamental assumption that calculations converge to the
pullback attracting trajectory in 1860-1869 might not be correct and affect the results largely
(Sanderman et al., 2017; Dimassi et al., 2018). Analogously, the RUSLE-based approach for
erosion modeling is widely criticized, but remains the sole alternative for large-scale quanti-
tative applications (Panagos et al., 2016).
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2.5 . Conclusions

In this work, we addressed the challenge of scaling CE-DYNAM, an erosion-transport-
deposition model, in a relatively high spatial resolution and long period at the European
scale. First, we show how the lateral fluxes of CE-DYNAM can be represented in a matrix
form, an alternative that allows the acceleration of the computations performed, making
them feasible for large-scale applications. Our work, therefore, enabled the previously pre-
cluded possibility of applying CE-DYNAM to large spatial domains or high spatial resolutions.
We also improved the model’s physical representation of sediment movement to allow for
proper calibration and validation procedures using observations of sediment discharge col-
lected on the field. With these changes, the presentedmodel can be readily adapted to other
study regions, the main limiting factor being the availability of inputs from external sources.
We also describe how the proposed technical solution might not work on an even larger
scale (global scale, for example), so further work may be needed to improve the proposed
approach, such as the search for computation of low-rank representations of the model ma-
trices.

Second, amore practical contribution of our work was the calibration of themodel for the
whole of Europe from field-collected data. Our results show that the patterns obtained are
internally consistent and coherent with those previously reported in the literature in similar
work. We expect the patterns obtained in this work to serve as a reference for future mod-
els for this study region. Since the calibration of the lateral fluxes is done using sediment
data, the results form the basis for simulations of the impact of erosion on the carbon cy-
cle and the future incorporation of other nutrients, such as nitrogen and phosphorus, into
CE-DYNAM. These works could advance our understanding of the role of ETD processes on
nutrient cycles.

Third, we used the calibrated model to predict the movement of carbon at a depositional
site, the type of site that tends to be highly affected by incoming lateral fluxes from upstream
lands. This simulation evaluated the model’s impact on soil carbon pools and showed how
the effect of erosion on the carbon cycle could be nonlinear in time. In this sense, this result
shows that time-static models can only partially disclose the correct effect of ETD on the
carbon cycle.
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2.6 . Learnings

The first version of CE-DYNAM had design limitations that did not allow its application for
large domains or higher resolutions. In this chapter, we focused on loosening these restric-
tions by formalizing the model equations and representing the lateral fluxes in matrix form.
With these changes, we found that:

• Representing CE-DYNAM fluxes in matrix form simultaneously decreased its required
runtime and allowed it to run at a continental level.

• The comparison between the erosion rates in CE-DYNAM showed a positive correlation
with other sources measured or calculated at different scales.

• The historical reconstructions indicated that erosion rates increased from 1860 to 1960,
followed by a decrease until the current years. Land cover and rainfall were found to
drive long-term changes and short-term variability, respectively.

• A calibration procedure was introduced to overcome the imposed parameters in CE-
DYNAM (v1).

The technical advances made in this chapter consisted of a necessary but not sufficient
condition to use CE-DYNAM as a practical tool. At this point, CE-DYNAM (v2) could be run at a
continental scale, but the physical representation of fluxes in the model needed further im-
provements. In the next chapters, we focused on some of these improvements: generating
spatially-explicit cover crops information (Chapter 3) and redesigning the model structure
and the calibration procedure (Chapter 4).
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3 - From regional to parcel scale: a high-resolution map of
cover crops across Europe combining satellite data with
statistical surveys

This chapterwaswritten byArthurNicolaus Fendrich, with contributions fromFrancisMatthews,
Elise Van Eynde, Marco Carozzi, Zheyuan Li, Raphael d’Andrimont, Emanuele Lugato, Philippe
Martin, Philippe Ciais, and Panos Panagos.

The reformed Common Agricultural Policy of 2023-2027 aims to promote a more sustain-
able and fair agricultural system in the European Union. Among the proposed measures,
the incentivised adoption of cover crops to cover the soil during winter provides numerous
benefits such as improved soil structure and reduced nutrient leaching and erosion. Despite
this recognised importance, the availability of spatial data on cover crops is scarce. The in-
creasing availability of field parcel declarations in the European Union has not yet filled this
data gap due to its insufficient information content, limited public availability and a lack of
standardization at continental scale. At present, the best information available is regionally
aggregated survey data, which although indicative, hinders the development of spatially ac-
curate studies. In this work, a statistical model is proposed relating Sentinel-1 data to the ex-
istence of cover crops at the 100-m spatial resolution over the entirety of the European Union
and United Kingdom and estimate its parameters using the spatially aggregated survey data.
To validate the method in a spatially-explicit way, predictions were compared against farm-
ers’ registered declarations in France, where the adoption of cover crops is widespread. The
results indicate a good agreement between predictions and parcel-level data. When inter-
preted as a binary classifier, the model yielded an Area Under the Curve (AUC) of 0.74 for the
whole country. When the country was divided into five regions for the evaluation of regional
biases, the AUC values were 0.77, 0.75, 0.74, 0.70, and 0.65 for the North, Center, West, East,
and South regions respectively. Despite limitations such as the lack of data for validation out-
side France, and the non-standardized nomenclature for cover crops amongMember States,
this work constitutes the first effort to obtain a relevant cover crop map at a European scale
for researchers and practitioners.
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3.1 . Introduction

The Common Agricultural Policy (CAP), 2023-2027 introduces a series of reforms in key
areas for the European Union (EU) Member States (MSs). These reforms aim to promote
more intelligent, competitive, sustainable, and diversified agriculture and forestry, develop
the socioeconomic structure of rural areas, and protect the environment. In particular, cli-
mate action, including carbon sequestration, is one of the EU’s main priorities since it helps
achieve the commitmentsmade under the Paris Agreement. In this sense, conservation agri-
culture practices can help promote a shift of existing fields towards more sustainable sys-
tems. Such practices include minimizing soil disturbance, maintaining permanent ground
cover, and adopting combined rotations (Hobbs et al., 2007; Palm et al., 2014). Among the
existing options, the adoption of cover crops (CCs) constitutes one important example of a
conservation measure to protect the soil surface against soil erosion. CCs are plants grown
with the purpose of protecting the soil and improving its quality and health (Delgado et al.,
2017). If CC biomass is incorporated into the soil, it positively impacts agronomic and en-
vironmental outcomes, such as soil carbon stocks (McClelland et al., 2021; McDaniel et al.,
2014; Ruis and Blanco-Canqui, 2017). The adoption of CCs also has additional benefits, such
as reducing nutrient leaching (Nyakatawa et al., 2001), improving soil structure through in-
creased infiltration and water holding capacity (Nyakatawa et al., 2001; Panagos et al., 2015c;
Smith et al., 1987), and improving the biological quality of the soil (Muhammad et al., 2021;
Kim et al., 2020). CCs thereby play a strategic role in soil conservation policies since they are
one of the few components of the erosion process that can be directly mitigated through
human interventions by farmers and policy-makers (Panagos et al., 2015c). For their general
contribution to soil health and climate changemitigation, CCs have been receiving increasing
attention (Koudahe et al., 2022).

A key process justifying the implementation of CCs is soil erosion. Accelerated by hu-
man activities for more than 4,000 years (Jenny et al., 2019), soil erosion is currently the most
common form of land degradation in the world, affecting over 1 billion ha of the Earth’s sur-
face (Borrelli et al., 2020). The average erosion rates worldwide are estimated to be 2.8-2.9
t ha−1yr−1 (Borrelli et al., 2017), around 3 to 20 times higher than the natural soil formation
rates, of 0.15 - 1 t ha−1yr−1 (FAO, 2014). For the future, model forecasts indicate that current
erosion rates may further increase from 30 to 66% worldwide (Borrelli et al., 2020), with local
variations. In Europe, for example, the expected increase in soil erosion rates ranges from
13 to 22.5% (Panagos et al., 2021). As an established tool to combat erosion (Borrelli et al.,
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2022), CC uptake has been shown to decrease erosion rates by 15 to 23% (Nyakatawa et al.,
2001; Verstraeten et al., 2006) and mitigate on- and off-site damages (Montgomery, 2007),
such as degradation of arable areas, pollution and eutrophication of rivers and lakes, and
contamination of aquatic and marine ecosystems (Poesen, 2017; Amundson et al., 2015).

With the modern-day availability of Integrated Administration and Control System (IACS)
data in the EU, another potential source of CC information is farmers’ declaration, such as
the Land Parcel Identification System (LPIS) and the Geospatial Aid Application (GSAA). These
large-scale spatial databases contain annual declarations made for CAP measures by EU
farmers, and their elements correspond to the boundaries of agricultural parcels and their
correspondingmain crops. While seemingly promising, these can bemanaged and operated
independently at the regional or country level, so reporting secondary crops or CCs is some-
times possible but not consistent across MSs. Therefore, despite the increasing importance
given to CCs, the availability of data about their use and presence remains primarily limited
to coarse-scale statistical surveys. Among the European Union MSs, the best information
available about CCs can be found in the Farm Structure Survey (FSS), which surveyed the 27
European countries down to the NUTS3 (the third level of the Nomenclature of Territorial
Units for Statistics classification) regional level every 3 or 4 years (Commission, 2022a), and
the Survey on Agricultural Production Methods carried out in 2010 (Commission, 2022e) at
farm scale. While such information can be helpful for applications permitting spatial general-
ization, it does not provide sufficient spatial detail to allow, for example, a precise evaluation
of the local impacts of CCs on soil erosion and carbon content.

Some consequences of lacking detailed and georeferencedCCdata canbe found through-
out continental-scale modeling exercises. For example, when modeling the C-factor of the
Universal Soil Loss Equation, Panagos et al. (2015c) used the CC area at NUTS2 level, the
best available information at a European scale comprising 216 regions in the 27 MSs plus the
United Kingdom (UK). In this case, the authors adopted the same value for all pixels within
a NUTS2 region. Such an assumption is very strong and unlikely to represent field reality
since it implicitly assumes that all detailed units (e.g., farms or parcels) behave identically.
A similar assumption was also adopted in coupling erosion and carbon models to assess
the combined effect of good agricultural and environmental practices on erosion and car-
bon budget at the national level (Borrelli et al., 2016). While the same assumption was not
adopted by Borrelli and Panagos (2020), the lack of spatially detailed information about CCs
was the limiting factor in their input datasets. In all these examples, a detailed CCmapwould
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have represented an improvement in the characterization of physical processes.
While several initiatives to gather CC data exist, the information is not always publicly

available, and no harmonized dataset is available at the EU level. This latter issue is diffi-
cult because the CC eligibility for CAP subsidies differs in each MS/region because of policy,
management, and climate reasons. At the EU scale, the continent-wide Land Use/Cover Area
frame statistical Survey Soil (LUCAS) field survey (Commission, 2022f; Orgiazzi et al., 2017) of-
fers limited opportunity because it is predominantly made during the main cropping season
and therefore cannot capture CC information. In addition to this, optical satellite imagery for
the spatial monitoring of CC uptake often faces the challenge of a high incidence of clouds
during rainy winter months in which CCs can be detected (Beriaux et al., 2021). The combina-
tion of these factors limits the availability of input data for automated computational tech-
niques of CC detection with European-scalability. Even though the methodology for survey
collections might change in the future, these reasons are probably why most recent compu-
tationally and data-intensive efforts using new technologies such as Copernicus Sentinel-1/2
satellites focus on mapping the main crop of the cropping season (d’Andrimont et al., 2021;
Meroni et al., 2021).

Given the outlined scarcity of primary and auxiliary data, one possible alternative is us-
ing spatial disaggregationmethods. Such a category of methods attempts to reconstruct the
fine-resolution information from areal features (e.g. regional statistics polygons) to allow de-
tailed spatial analysis (Comber and Zeng, 2019). With different approaches and assumptions,
the application of disaggregation methods can be found in different disciplines, such as soil
mapping (Møller et al., 2019), epidemiology (Utazi et al., 2018), disease mapping (Weiss et al.,
2019), demography (Jia and Gaughan, 2016), among others.

This work focuses on the problem of disaggregating existing CC data in the EuropeanMSs
and the UK from NUTS2 level to a finer spatial resolution using satellite data. The objectives
are: a) to develop the first dataset of predicted CCoccurrence at a high (i.e., 100-m) spatial res-
olution for Europe for 2016-2017; b) to develop the assumptions of a statistical model for the
occurrence of CCs, which can be transposed to other study areas; c) to validate these newly
producedmaps quantitatively against parcel-scale observations; and d) to discuss some pos-
sible implications and applications of this new CC dataset. A statistical model for the occur-
rence of CCs is first built. The model uses 12-day median composites of remotely-sensed
synthetic aperture radar (SAR) data from Sentinel-1. Its parameters are estimated iteratively
in such a way that the aggregation of predicted values approximates the values reported by
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statistical surveys at the coarse regional level. Then, parcel-level data from France’s Registre
Parcellaire Graphique (RPG) (Institut National de l’Information Géographique et Forestière,
2022), one of the few systems in European countries where declarations of CCs are public,
is used to validate model predictions at the finest possible (i.e., parcel) spatial scale. Such
an analysis allows understanding the predictions’ strengths and limitations. Finally, some
policy-relevant aspects of CCs are discussed.

3.2 . Methods

3.2.1 . Study area

The study area includes all croplands of the current EU MSs plus the UK, which covers
about 156 million ha and 67 million parcels. Switzerland was not included due to the lack
of harmonized survey data on cover crops. According to the Farm Field Survey (FSS), CC
application has increased from 6.5% of all agricultural lands in 2010 to 8.9% in 2016 (Borrelli
and Panagos, 2020). The adoption of CCs is currently an underused farming practice (Kathage
et al., 2022) which is likely to increase in the EU in the future.

3.2.2 . Input data

Multi-temporal Sentinel-1 data was used to monitor changes in the landscape surface
condition through time. The Sentinel-1 SAR constellation revisits the EU territory with a min-
imum 6-day revisit period since 2016 (until the Sentinel-1B defect in December 2021), pro-
viding a dense temporal time series for phenological monitoring. Compared to optical sen-
sors (e.g. Sentinel-2), its microwave backscatter retrieval is practically uninfluenced by atmo-
spheric conditions. In the agricultural context, microwave backscattering is sensitive to crop
canopy structure, whichmeans it can detect plant growth at the parcel spatial resolution. For
these reasons, Sentinel-1 data offers a consistent source of plant phenological data in win-
ter months for mapping CCs in combination with other computational techniques. Spatio-
temporally consistent time-series of Sentinel-1 data were generated as follows: i) analysis-
ready Sentinel-1 data was accessed in Google Earth Engine (Gorelick et al., 2017) (i.e., COPER-
NICUS/S1_GRD), already pre-processed to account for thermal-noise removal, radiometric
calibration, and terrain correction; ii) a temporal stack of 31 rasters of the VV and VH bands
was created, for both ascending and descending orbits, giving 12-day composites from the
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10th of August 2016 to the same date in 2017; iii) the cross-polarization ratio (CR) was calcu-
lated as CR = VV/VH, giving 31 spatio-temporal layers for the period of study. Finally, the data
was resampled using the median statistic to a 100-m spatial resolution, the target resolution
adopted for the new spatially explicit CC dataset for reasons of computational trade-offs vs
spatial resolution (data size) in spatial disaggregation models.

The choice of the CR time series as an indicator of the existence of CCs came from recent
evidence highlighting the correlation of this index with themore well-known Normalized Dif-
ference Vegetation Index in the context of crop phenology (Meroni et al., 2021), crop dynamics
(Veloso et al., 2017) and vegetation dynamics (Ma et al., 2022; Vreugdenhil et al., 2020). The
choice of the period of analysis (i.e., 10th of August 2016-2017) was mainly driven by the need
to match the period of most recent the coarse CC data available in Europe. In this case, it
corresponds to the 2016 dataset on CCs per NUTS2 region published by the European Com-
mission, which estimates the total CC area in arable lands (Commission, 2022b). The exact
definition of the variable used (i.e., “cover or intermediate crops”) reads:

An area of arable land on which plants are sown specifically to re-
duce the loss of soil, nutrients and plant protection products during
the winter or other periods when the land would otherwise be bare
and susceptible to losses. The economic interest of these crops is
low, and the main goal is soil and nutrient protection. (. . . ) These
crops should not be mistaken for normal winter crops or grassland
(Commission, 2022c).

In order to filter the location of arable lands, the CORINE Land Cover 2018 at a 100-m
spatial resolution and with a minimum mapping unit of 25 ha was used (Copernicus, 2022).
By doing so, predictions of CC existence were restriced to a spatial domain where agricul-
tural activity was previously detected in an external dataset. From the complete CORINE
database, the class arable land was created by selecting the classes “non-irrigated arable
land”, “permanently irrigated land”, and “rice fields”. Additionally, other agricultural classes
were included1 to avoid having an overly restrictive spatial domain. Even though the pe-
riod of CORINE does not match the period of 2016-2017, it can be accepted as adequate un-
der the assumption that no drastic changes occurred in European arable lands from 2016

1Namely, “Vineyards”, “Fruit trees and berry platforms”, “Olive groves”, “Annual crops associated with per-manent crops”, “Complex cultivation patterns”, and “Land principally occupied by agriculture with significantareas of natural vegetation”.
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to 2017, the year where CORINE Land Cover 2018 images were mainly taken (Büttner and
Kosztra, 2022). Then, because the amount of arable land calculated using FSS (Commission,
2022b) and CORINE are different, the CC area consistent with CORINE was defined by multi-
plying the original CC area from FSS by the ratio of CORINE to FSS arable land area (A), giving
CCCorine = CCFSS ·ACorine/AFSS . Such an arable land ratio varies from 0.02 to 3.69, with an
average of 1.02 (AP A.1).

3.2.3 . Disaggregation model

In order to disaggregate CC information from the (215) NUTS2 to the (156 million) pixels at
100-m resolution, the estimation method proposed by Fendrich et al. (2022b) was used. As
in any other regression modeling approach, the technique consists of first making assump-
tions about the relationships between explanatory and dependent variables at the fine scale
(Figure 3.1).

Figure 3.1: Summary of the method used in the present work. Left: area of cover crops in2016 visualized using the cover crop extent per region from the Farm Structure Survey.

It was assumed that the fraction of CCs in a pixel varies in three dimensions, namely:
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space, time, and the observed Sentinel-1 CR. Each of these dimensions are assumed to vary
(possibly smoothly) with nonlinear interactions between them. Such an assumption is equiv-
alent to assuming that the interpretation of a given CR time series varies so that it might in-
dicate the existence of CCs in one particular place and its neighboring areas but not in other
more distant regions. In mathematical notation, this can be represented as:

yi = g

[∑
t

s (lati, longi, t, CRi(t))

]
+ ϵ, ϵ ∼ N(0, σ2) (3.1)

with yi being the fraction from 0 to 100% of CCs within pixel indexed i; lati, longi, t, CRi(t)

being latitude, longitude, time and the CR time-series with a timestep of 12 days, respectively.
The function g(x) = 1/(1+exp(x))was chosen to be the link function, since yi varies from 0 to
100%. The term ϵ is the residual term, assumed to be normally distributed, and s(·) is the joint
function to be estimated from the data. Penalized smoothers that can be represented using
basis expansions and a penalty matrix to control function smoothness are a common choice
for the one-dimensional smoothers inside s(·), and the interaction is often represented as
tensor products (Wood, 2017). Under such a representation, Equation 3.1 could be recognized
as a nonlinear mixed model (Bates and Watts, 1988; Wolfinger, 1993).

In the representation of Equation 3.1, the fraction of CC at the pixel level is assumed to be
a random variable. Consequently, the sum of the CC fractions in the pixels that belong to a
NUTS2 region creates another random variable representing the CC area at the NUTS2 level.
It can be shown that, in this case, a second nonlinear mixed model can be derived for the
NUTS2 level, and it preserves the original parameters necessary to construct the pixel-level
smoothers of Equation 3.1. Such a NUTS2-level model allows us to attempt to reconstruct
the pixel-level information by performing regression analysis on the coarse data. During
the parameter estimation phase, an optimization procedure handles the tradeoff between
i) approximating the reconstructed to the observed values at the NUTS2 level; and ii) enforc-
ing the mathematical assumptions for the function s(·) described above (i.e., that the one-
dimensional smoothers are continuous functions, that the effect of the CR varies in space
and time etc.).

Parameter estimation is done through a numerical optimization procedure, which maxi-
mizes the chance of observing the aggregated data given the assumptions made at the pixel
level (i.e., maximum likelihood estimation). In this work, we slightly modified the original
method of Fendrich et al. (2022b) to use a quadratic instead of a first-order approximation
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to the log-likelihood in each iteration. Such a modification led to the natural interpretation
of each iteration as a Newton-Raphson step of the original guess toward the maximum a
posteriori estimates, similar to the scheme proposed by Rossell et al. (2021).

As disaggregationproblems are fundamentally undeterminedwith infinite solutions, choos-
ing proper assumptions is essential for narrowing the possibilities. Therefore, s(·) was as-
sumed to be a tensor product, and several possibilities for the one-dimensional smoothers
of Equation 3.1 were tested, including P-, cubic and thin-plate splines, with different basis
dimensions. AP A.4 shows the results for the four best models found during model selection
according to the area under the curve (AUC) performance metric (see subsection 3.2.4 for
details about the validation dataset). The final alternative was chosen to be four P-splines
(Wood, 2016), with basis dimensions 9 for the longitude and 8 for latitude (AP A.3), time and
CR. After the estimation of model parameters, the expected value of s(·) given the parame-
ters was calculated and plotted to allow the visualization of the estimated one-dimensional
smoothers. The predicted CC fraction and the corresponding uncertainty were calculated
as the point estimate of the median and the bounds of the 90% confidence intervals for the
expected value of the response variable of Equation 3.1 given the parameters, respectively.

3.2.4 . Validation

Qualitative validation

Validating a disaggregation model is a challenging task. First and foremost, no fine-scale
information is available for the whole study area. Otherwise, if such data were available for
comparison against model predictions, it would be preferable not to use a disaggregation
model but instead to use such information as an input to traditional mapping techniques.
Given these considerations, the validation procedure was split into: i) a qualitative validation
of the model’s internal behavior; and ii) a quantitative validation of the external behavior
(classification accuracy), consisting of a comparison against publicly available parcel data for
France.

Developing a reasonable interpretation of the results obtained from a prediction is a vi-
tal step in regression modeling (Nisbet et al., 2009). Therefore, in the qualitative validation,
the estimated smoother (Equation 3.1) was investigated to check its representation of logical
aspects of CC phenology that should reasonably result in their identification. To do so, nec-
essary but not sufficient conditions were first established for the model to be realistic. The
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first condition is for the model to assign a higher weight to the satellite observations made
during cold months compared to hot months since that is when CCs can be observed in the
field. The second condition is for the model to capture the different regional patterns of
CC production properly based on the known a priori information. This secondary condition
checked, for example, if themodel could capture the regionalized temporal pattern of CCs in
France, where sowing dates may vary from the end of July in the Moselle region (North-West
France) until the beginning of November in the Pyrénées-Atlantiques (South-West France)
(Journal Officiel de la République Française, 2018). In order to identify this information from
Equation 3.1, a first-order expansion of g(x) around x = 0 was used to calculate the approxi-
mate marginal contribution of the CR to the predicted fraction of CCs at the pixel level. Then,
since themodel of Equation 3.1 is an interaction between several variables, only themarginal
results were presented.

Quantitative validation

To complement the qualitative evaluation of themodel, a quantitative validation was also
developed to confrontmodel predictions against comparable parcel-scale declarationsmade
by farmers in the CAP context. Such a validation started by searching for the most accurate
classification of parcels between those with or without CCs in 2016. To do so, databases of
European countries (Schneider et al., 2021) were inspected, and it was found that in most
cases, farmers are only required to report their parcel’s main crop. Nevertheless, in some
countries, such as Portugal and France, farmers can, but are not required to, report multiple
crops per year.

For the present work, the French RPG dataset was chosen, which gathers all annual decla-
rations made by farmers to receive CAP subsidies (Levavasseur et al., 2016) and provides the
cultivated crop or crop groups for each farmer at the parcel scale. This private and confiden-
tial information concerns the parcels belonging to farmers provided by the FrenchMinistry of
Environment. The RPG dataset was used to validate the predictions for three reasons. First,
France is representative for being the largest MS, with a large share of its territory devoted to
agricultural activity, and for covering several environmental conditions such as continental,
Mediterranean and oceanic climates (Ols et al., 2020). Second, as shown in Figure 3.1, France
contains a large area of CCs, and the inclusion of CCs in the cropping system is, in some cases,
mandatory to comply with the Nitrate directive (of the European Union, 1991) and the CAP
Greening (J. Kathage, I Pérez Domínguez, 2019). Third the French Ministry of Agriculture and
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Food Sovereignty provides a list of the 44 crops that are considered to be CCs (Ministère de
l’Agriculture te de l’Alimentation, 2022) to comply with the dedicated Ecological Focus Areas
(EFAs) to safeguard and improve biodiversity, requested by the green direct payment of the
CAP. Such a list facilitates farmers’ declarations, which have to declare two of these crops in
a mixture per parcel to be retained as EFAs.

However, the construction of the validation dataset faces some challenges. As the dataset
is attached to compliance with regulations, motivations to meet the minimum requirements
in the CAP can bias the area of CCs declared by farmers. For example, a farmer with more
CCs than the minimum requirements may feel inclined to declare only the minimum, which
would generate a bias towards underestimating CCs. Conversely, a farmer with half the min-
imum requirement could tend to overestimate the area of CCs in the declaration. Besides,
the declaration of CCs is not mandatory in France due to other EFAs that can be present on
the farm. Therefore, it is not possible to affirm with certainty whether a random parcel con-
tains CCs or not. This problem was overcome by applying additional filters on the dataset to
increase the confidence in the presence or absence of CCs on the parcels. Such a procedure
aimed at obtaining a sample of parcels that could be used with greater certainty to validate
the model at the scale of reference using the available data. The filters are described next.

First, three groups of parcels according to the different levels of uncertainty of CC exis-
tence were defined a priori: parcels without CCs in farms that did not declare CCs (PnFn,
lower certainty); parcels without CCs in farms that declared CCs (PnFy, medium certainty);
parcels with CCs in farms that declared CCs (PyFy, higher certainty). The sampling procedure
for the PnFn group consisted of first filtering farms without CCs declared, and then randomly
sampling parcels inside these farms. This group has the lowest certainty among the three
because as no CCs are declared within the farms, the farmers may have chosen to declare
other EFAs in their farms instead of CCs. In this case, some farmsmight have CCs on the field
but not registered in the database.

For PnFy and PyFy, two filters were added at the farm level: i) only those with a sufficiently
high ratio of surface as CCs on the farm (i.e., 20%), compared to the minimum cover limit
imposed by the CAP (5%); and ii) only those with a large area (over 50 ha) to increase the
chance of having a heterogeneous configuration of parcels. These filters assume that if a
farmer has declared well beyond the required minimum of 5%, then he has declared the
entire area of CCs in his parcels. However, since this assumption may not be true in some
cases, more confidence can be assumed for the presence (PyFy) than the absence (PnFy) of
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CCs in this case, which justify their certainty assigned above. Finally, parcels whose polygons
fall entirely inside the CORINE land cover classes described in subsection 3.2.2were randomly
sampled for each of the three classes.

After these procedures, 19,390 parcels were used for validation: 8,441 PnFn, 11,112 PnFy,
and 12,256 PyFy, each with information about CC’s existence and its main crops in 2016.
Among the 19,553 sampled parcels without CCs (i.e., PnFn + PnFy), 5,968 had a winter com-
mercial crop as the main crop. Finally, because the size and shape of each land parcel are
different, they were compared by calculating the weighted median value of all model pre-
dictions intersecting their boundaries. Boxplots were plotted to compare the distribution
of predictions within the three classes of parcels described above, and receiver operating
characteristic curves (i.e., ROC curves) were generated to assess the model’s discrimination
abilities.

For each ROC curve, the corresponding AUC was calculated. Their interpretation was
made using the classification proposed by Bera et al. (2020). Weak: 0.5 ≤ AUC < 0.6; Mod-
erate: 0.6 ≤ AUC < 0.7; Good : 0.7 ≤ AUC < 0.8; Very good: 0.8 ≤ AUC < 0.9; Perfect:
AUC ≥ 0.9. Analogous quantitative-qualitative relationships can be found in works such as
Roy et al. (2020); Panahi et al. (2022), and others.

3.2.5 . Implementation

All codes used were written in R 4.2.0 (R Core Team, 2022). The P-splines implementation
usedwas that of themgcv package (Wood, 2017), spatial datawasmanipulated using the terra
package (Hijmans, 2022), and parallel computations were made with the snow package (Tier-
ney et al., 2021). The row-wise Kronecker product and the log-likelihood were implemented
with Rcpp and RcppArmadillo (Eddelbuettel and Balamuta, 2018; Eddelbuettel and Sander-
son, 2014). All source codes and input datasets used, except for the parcels’ boundaries used
for validation, are publicly available in a dedicated GitHub repository.

3.3 . Results and discussion

3.3.1 . A qualitative evaluation of the model response
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For themarginal spatial effect, Figure 3.2 shows the results for a wintermonth, December
2016. Six different locations are shown to highlight that each location has a distinct pattern
for the effect of CR on the calculated fraction of CCs. For example, in Figure 3.2, the model
curves for South Italy and Bulgaria show that the low CC fractions (expected in these regions
according to Figure 3.1, left) are represented through a negative effect of the CC fraction
for practically the full CR range. Conversely, for the other four locations where CCs tend to
be more widespread, according to Figure 3.1 (left), a different pattern can be observed. In
these cases, Figure 3.2 shows that an increase in the CC fraction is predicted for most of
the CR range, and regional variability in the shape of the curve seems to be captured. As a
reference for the CR values, Meroni et al. (2021) suggests a range from 0.1-0.2 in the trough
(minimum) to 0.4-0.5 in the peak (maximum) of temporal series of crop fields in Europe (i.e.,
common wheat, rape, and maize), approximately the same range reported by Maurya et al.
(2022) and Vavlas et al. (2020) in wheat fields in the North of India and the UK, respectively.

A distinct pattern in the marginal spatial effect can be seen in North-West France, where
the effect on the CC fraction quickly peaks around 0.20 and decreases, and in Denmark,
where the effect has a double peak, with the second starting around 0.20 and reaching its
maximum around 0.30 (Figure 3.2). In both cases, the fact that the model assigns the highest
increase in CC fractions to relatively low CR values could mean that it is attempting to distin-
guish CCs from commercial winter crops, which could present a different signal due to fer-
tilizer application. Such an interpretation is however uncertain since it could also represent
other factors that affect the CR value, such as soil surface roughness from tillage operations
(Vreugdenhil et al., 2020).
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Figure 3.2: Qualitative validation, marginal spatial effect: (approximate) isolated effect of theCross-ratio (CR) on the predicted cover crop (CC) fraction as estimated by the model, for oneof the 12-day median CR values in December/2016.

For themarginal temporal effect, the results of Figure 3.3 are presented for Denmark (i.e.,
the blue line of Figure 3.2). The Figure shows that, whenweighing between available observa-
tions, the model attributes a relevant effect from the observations made in all months of the
year, which can be seen by the large overall positive and negative effect on the CC fraction.
For example, for low CR values ranging from 0.1 to 0.2, spring months have a comparable
effect to that of winter but in the opposite direction. Such a result resembles the observa-
tions made by Nowak et al. (2021), who showed that different spring-grown crops in France
present different soil cover patterns during cold months. The hypothesis that cold months
could have a higher influence than hot months seems to be valid only for CR values above
0.2. In practice, these results suggest that the approach to detect winter soil cover based on
satellite data for winter months only proposed by Nowak et al. (2021) might be insufficient for
CCs. It also suggests that a complete time series must be considered to separate CCs from
commercial winter crops. In the latter case, the combination of complete time series and a
flexible and probabilistic model could better identify what is a CC within a crop succession in
a context-dependent way.
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Figure 3.3: Qualitative validation, marginal temporal effect: (approximate) isolated effect ofthe Cross-ratio (CR) on the predicted cover crop (CC) fraction as estimated by the model, fora random location in Denmark. Every line corresponds to one of the 12-daymedian CR valuesused for fitting the model.

3.3.2 . A quantitative evaluation of model performance

The calculation of weighted median predictions for all parcels (i.e., n >= 1 pixel) and only
parcels intersecting more than 10 pixels (i.e., n >= 10 pixels) is shown in Figure 3.4. For the
case of all parcels included, the model could predict higher values for PyFy (right) than PnFn
and PnFy (left, center), which indicates an ability to distinguish between parcels with and
without CCs, respectively. The proximity between the distributions of PyFy and PnFy seems
to indicate some confusion between parcels of farms known to have CCs. Such a result could
indicate that the model performs better when the adoption of CCs is widespread at the farm
level. However, such confusion seems to be minimized when only parcels intersecting more
than 10 pixels are included in the analysis. In this case, PnFy approaches PnFn, with lower
values predicted than PyFy.
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Figure 3.4: Quantitative validation: distribution of the weighted median values calculatedfor French parcels in arable lands. Two cases: all parcels included (i.e., n >= 1 pixel, meanarea of 5.2 ha) (left), and only parcels intersecting more than 10 pixels included (i.e., n >= 10pixels, mean area of 9.6 ha) (right). PnFn are parcels without cover crops in farms that didnot declare cover crops; PnFy are parcels without cover crops in farms that declared covercrops; PyFy are parcels with cover crops in farms that declared cover crops. The separationbetween n >= 1 and n >= 10 was made to evaluate the impact of sub-pixel confusion (a mix oflandscape dynamics at the sub-pixel level) in the input data

Despite the results shown in Figure 3.4, a question could be posed about themodel’s abil-
ity to distinguish between different types of winter cover. To evaluate this matter, Figure 3.5
shows the analysis results that use crop information at the parcel level to separate winter
commercial crops from CCs. Parcels with winter commercial crops were selected based on
the sowing period of themain crop reported to the RPG, excluding CC species. It can be seen
that a similar pattern as Figure 3.4 is found, indicating a higher predicted fraction of CCs in
parcels that truly contain CCs. Such a result is relevant, as it indicates that the assumption
hypothesized in Equation 3.1 of a nonlinear effect of CR on the CC fraction is adequate to
differentiate between the multiple signal patterns of soil cover in winter.
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Figure 3.5: Quantitative validation: distribution of the weightedmedian values calculated forFrench parcels with winter commercial crops and cover crops. The left boxplot merges allparcels with winter commercial crops within the groups PnFn (parcels without cover crops infarms that did not declare cover crops) and PnFy (parcels without cover crops in farms thatdeclared cover crops).

While Figure 3.4 and Figure 3.5 show the general pattern of model validation in France,
regional patterns to understand the model’s biases were also investigated. Figure 3.6 shows
the reclassification of the French NUTS2 areas into five contiguous regions (namely, South,
East, North, West, and Center), and the model validation within these five areas. For each re-
gion, the ROC curve shows the true positive rate in the vertical axis against the false positive
rate in the horizontal axis, summarizing the model performance when used as a binary clas-
sifier for the presence/absence of CCs in French parcels. The ROC curve is presented here,
along with its corresponding AUC (Maimon and Rokach, 2010). In all regions and the whole
of France, the AUC calculated is greater than 0.5, indicating that the model performs better
than random chance. The results also show that, compared to the overall performance of
AUC = 0.74, the West region of France yields an identical AUC, the North and Center regions
yield a higher AUC (0.77 and 0.75, respectively), and the South and East regions a lower AUC
(0.70 and 0.65, respectively). According to the classification presented in subsection 3.2.4,
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this means that the overall classification and 4 out of 5 regions presented a good perfor-
mance, while the East region had a moderate performance. The variable pattern across the
country also shows that regional classification biases exist in themodel and that more errors
tend to happen in the South and East regions of France.

Figure 3.6: Quantitative validation: regional variability of model predictions across France.

For the European-widemodel (Figure 3.6, bottom left), a threshold valuewas calculated as
being the point in the ROC curve at which the Euclidean distance to the theoretical optimum
is minimized (i.e., the top-left corner). The confusion matrix generated for this threshold
value (Table 3.1) shows that when parcels contained CCs in the RPG, the model predictions
were correct in 68.1% of the cases. When the parcels did not contain CCs, the model was
correct 74.6% and 67.5% for PnFn and PnFy, respectively. It also shows that, when themodel
predicted the inexistence of CCs, it was wrong in 22.1% of the cases, and therefore correct
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in 77.9% of them. When the model predicted the existence of CCs, it was correct in 59.2%
of the cases and thus wrong in 40.8% of them. In this case, this model seems to assign
more false positives to PnFy (25.6%) than to PnFn (15.2%), which can be possibly explained by
some farmers not declaring all their CCs due to other EFAs in the farm (see subsection 3.2.4).
While these results suggest a limited power of the model in differentiating CC presence, it is
necessary to highlight that: i) they implicitly assume a single threshold value for the whole
of France, which can be suboptimal according to the heterogeneous results presented in
Figure 3.6, and ii) another threshold to improve model’s precision could be chosen. In this
context, the use of continuous values (e.g., Figure 3.7) might be appropriate depending on
the application intended.

Table 3.1: Quantitative validation: confusion matrix for the overall model in France. Theresults are based on the assumption of a single threshold for the whole country.

Figure 3.7 shows the model predictions for the arable land in the whole of Europe. The
continental level map shows that the fraction predicted in most pixels with arable land tends
to be zero and that CCs occur in concentrated regions but with local variations (Figure 3.7,
zoom). Themarginal distributions show that CC fractions tend to be higher in the regions cor-
responding to Northern France, Germany, and Denmark, following Figure 3.1. The standard
deviation of model predictions, as well as the 0.05 and 0.95 quantiles are provided in the Ap-
pendix (AP A.5 and AP A.6). These uncertainty margins were generated using the uncertainty
around the estimated smoothers.
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Figure 3.7: Left: model predictions of the occurrence of cover crops (CCs) in Europe. Right:Three zooms: Predictions on the East, West and South of France (a, b and c, respectively).

3.3.3 . Future policy opportunities offered by spatially explicit cover crop predictions

The map produced in this work is the first European product at a 100-m spatial resolu-
tion predicting the fraction of CCs for the winter season of 2016-2017. Despite the limitations,
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with a lack of validation outside France and the existence of mixed satellite signals (subsec-
tion 3.3.4), our dataset fills a gap and canbe tested in several future applications ranging from
fine-resolution input data for analysis of soil loss by water erosion, organic carbon seques-
tration, nutrient application, and to assist the implementation of soil conservation policies at
a regional or national scale. Given that the FSS survey data for 2023/24 is still under collection
at the time of writing, the current work also provides a referencemethodology to be used for
the spatial disaggregation of CCs and other policy-relevant information (e.g. reduced tillage).
Such a temporal analysis would enable the possibility of evaluating trends in CC adoption in
recent years.

Two main policies are currently responsible for driving European farmers’ adoption of
CCs; the Nitrates Directive, and the CAP. Such policies, especially the Nitrates Directive, are
now the strongest determinants of the adoption rates and intensities of CCs by farmers
(Kathage et al., 2022). Such factors overcome agronomy or environmental motivations, al-
though this scenario might change in the future as CCs become economically incentivized,
for example, for energy production (Launay et al., 2022). The spatial pattern of the vulnerable
zones under the Nitrate Directive in France resembles the areas with high fractions of CCs in
the map produced by this study (Figure 3.7) (JRC, 2022). Furthermore, covering the soil in the
most sensitive periods, a practice that includes adopting CCs, constitutes one of the Good
Agricultural and Environmental Conditions (GAECs) introduced in the upcoming CAP 2023-
2027 to protect soils in rainy susceptible seasons (e.g winter). In the proposal, the European
Commission introduced various scenarios to protect soils using soil conservation measures
such as the minimum green cover. The adoption of CCs with a cover rate of 75% in one of
the policy scenarios led to a reduction of soil erosion in arable lands and permanent crops
by 15 and 30%, respectively (Commission, 2018; Panagos et al., 2021). Therefore, the new CAP
2023-2027 is likely to increase the area of agricultural land with CCs in the EU.

One of the GAECs of the new CAP prescribes that MSsmust require farmers to apply crop
rotation (Commission, 2022g), a practice that also composes the list that can be supported
by eco-schemes (Commission, 2021), and a summary of the first strategic plans shows that 16
MSs include the practice of crop rotation with a secondary or CCs during the winter season
to protect soils (Commission, 2022g). In this sense, while the currently available CC data
at the NUTS2 level collected by the FSS is useful to monitor the overall adoption rates and
intensities of CCs, these coarse data are less suitable for evaluating the effect agricultural
practices by farmers on the environmental and climatic objectives that are set by European
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policies (Matthews et al., 2023). By contrast, the use of techniques to develop refined spatial
datasets as produced in this study is highly valuable to assess the influence of European
policies on the on-ground-farmers decisions and the subsequent impact on climate and the
environment. Since the new CAP emphasizes performance and results, assessments with
detailed data like the one produced in this study will become more important.

3.3.4 . Model limitations and future improvements

While the present results represent an advance for CCmapping, several limitations of the
current approach can be listed and possibly developed in further works. The disaggregation
model is strongly dependent on the FSS CC data at the NUTS2 level. In the last decades and
once every ten years, the FSS has been a part of the Census of Agriculture, which guaran-
tees high reliability of the values provided. However, the values available for 2016 and used
in the current work correspond to sample estimates (Commission, 2022d). This means that
not only is the sample size used relatively small, but also the data itself contains uncertain-
ties. Although the disaggregation model mitigates the problem by not enforcing the equality
constraint but only approximating (Fendrich et al., 2022b) (AP A.2), more reliable data could
potentially lead to more precise results. In the near future, area monitoring systems have
the potential to provide more information about CCs at the EU level (of the European Union,
2021).

Here, the spatial resolution of 100-m was adopted, approximately ten times the origi-
nal resolution of the Sentinel-1 data. In practice, this means that the pixels in the present
work can potentially have mixed signals in areas of high heterogeneity, which adds an extra
layer of uncertainty where non-unique cultivations are found in close proximity. As shown in
Figure 3.4, this effect directly impacts the predictions for smaller parcels but tends to bemin-
imized for larger units. Even though the model could be run at 10-m resolution, this would
bring new computational andpractical challenges since thenumber of pixels to predictwould
increase 100-fold. Such a high-resolution application would also require highly accurate land
cover masks to be used as spatial input data. While the CORINE croplands dataset, as used
in this study, is widespread in academic studies, it does not capture the fine-scale variability
at the parcel level. Replacing it in the future can be a direction for further work.

The added additional benefit of a standardized validation dataset at a continental scale
would be very relevant, since management practices present a high variability across the EU
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(Panagos et al., 2015c). Due to the current lack of information, it was necessary to assume
in this work that if the model presents reasonable results for France, then it is appropriate
for other regions. France is a particularly good choice of MS due to data availability, the
current status of CC implementation, and its high diversity of climate regions. However,
the fact that the performance of the results in other regions is still unknown and must be
improved in further work. Therefore, we highlight the need for increased data availability
and an accompanying definition of what does or does not belong to the CCs group among
EU countries. In this sense, it is necessary to reinforce that the results obtained in the present
work are conditional on the broad definition presented in subsection 3.2.2. As an outcome
of this work, we justify the need for a move towards a consistent terminology in the EU in
order to facilitate the synergistic use of datasets and improve future prediction exercises.

3.4 . Data availability

The datasets of predicted CC fraction, standard deviation, and the 5% and 95% quantiles
at 100-m spatial resolution are available in the European Soil Data Centre (ESDAC) (JRC, 2023;
Panagos et al., 2022a).

73 / 146



3.5 . Conclusions

In this work, a statistical disaggregation model is proposed to derive CC information at
100-m resolution from aggregated statistics reported in the Farm Field Survey at the NUTS2
level in Europe (i.e., 215 regions with CC information). The transference from the coarse (re-
gional aggregations) to the fine (pixel) level wasmade through a statisticalmodel constructed
based on assumptions relating CC phenology in arable lands to a full annual time series of
the cross ratio (CR) from Sentinel-1. To then quantify the model accuracy, the best avail-
able data sampled from spatially-explicit farmers’ declarations in the French RPG was used
to validate the model at the field parcel scale. The models’ interior behavior was shown to
be coherent with reality, modifying its sensitivity to the Sentinel-1 CR time series according
to the region and moment of the year under consideration. In regions with known CC im-
plementation, the model properly identified the importance of considering a complete time
series to generate context-dependent model predictions. This multi-temporal approach was
important in the model’s successful distinction of different types of winter cover, in which
lower fractions of CCs were predicted in places with winter commercial crops. The results
showed that in general the model was able to successfully predict higher CC fractions in ar-
eas where they are planted in fields. Overall, when interpreted as a binary classifier for the
whole of France, the model yielded an Area Under the Curve (AUC) of 0.74. On a regional
basis, the AUC values were 0.77, 0.75, 0.74, 0.70, and 0.65 for the North, Center, West, East,
and South regions, respectively, showing geographical variation in the model accuracy. De-
spite discussed limitations, this derived data layer can provide an important and updateable
information source for researchers and practitioners requiring a spatially explicit knowledge
of CC implementation.
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3.6 . Learnings

In this chapter, we investigated the possibility of generating spatially explicit cover crop
information using a disaggregation model to combine fine-scale satellite data and coarse-
scale statistics about cover crops. The results pointed to the following learnings:

• Despite the data scarcity setting, the cross-ratio (CR) signal from Sentinel 1 is a potential
good source to indicate cover crop existence in Europe, with evidence suggesting an
ability to separate cover crops even from winter cash crops.

• The assumption that theCR signal indicating cover crop existence varies in space seemed
valid, given the different curve patterns obtained for different countries sampled in Eu-
rope.

• The variablemodel performance across regions in France indicates that other variables
could help refine the results, and further work is necessary to investigate this possibil-
ity.

• The lack of publicly available parcel data precludes research on cover crops. Even
though cover crops are a particularly tricky subject to work with at a large scale due
to the lack of information from optical satellites in winter months, parcel data availabil-
ity could be an essential source of information for researchers.

Despite the limitations of validating the results only for France and not the other Euro-
pean countries, this chapter produced the first map of cover crops at a continental scale. We
hope it will be helpful for other researchers to improve assumptions that are often made
when modeling cover crops. In this thesis, combined with the model developments made
during this thesis, the newmap allowed us to simulate policy-related scenarios in Chapter 4.
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4 - Improving land management representation in a
constrained European carbon scheme with lateral
displacement to oceans

This chapter was written by Arthur Nicolaus Fendrich, with contributions from Philippe Ciais,
Panos Panagos, Philippe Martin, Marco Carozzi, Bertrand Guenet, and Emanuele Lugato.

The use of cover crops (CCs) is a promising cropland management practice with multi-
ple benefits, notably in reducing soil erosion and increasing soil organic carbon (SOC) stor-
age. However, the current ability to represent these factors in land surface models remains
limited to small scales or simplified and lumped approaches due to the lack of a sediment-
carbon erosion displacement scheme. This precludes a thorough understanding of the con-
sequences of introducing a CC into agricultural systems. In this work, this problem was ad-
dressed in two steps with the spatially distributed CE-DYNAM model. First, the historical
effect of soil erosion, transport, and deposition on the soil carbon budget at a continental
scale in Europe was characterized since the early industrial era, using reconstructed climate
and land use forcings. Then, the impact of two distinct policy-oriented scenarios for the in-
troduction of CCs were evaluated, covering the European cropping systems where surface
erosion rates or nitrate susceptibility are critical. The evaluation focused on the increase in
SOC storage and the export of particulate organic carbon (POC) to the oceans, compiling
a continental-scale carbon budget. The results indicated that CCs simultaneously increase
SOC storage while reducing POC export to the oceans. Compared to the simulation with-
out CCs, the additional rate of SOC storage induced by CCs peaked after 10 years of their
adoption, followed by a decrease, and the cumulative POC export reduction stabilized after
around 13 years. The findings indicate that the impacts of CCs on SOC and reduced POC
export are persistent regardless of their spatial allocation adopted in the scenarios. Despite
some known limitations, the current work constitutes the first approach to successfully cou-
ple a distributed routing scheme of eroded carbon to a land carbon model emulator at a
reasonably high resolution and continental scale.
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4.1 . Introduction

Among themanymanagement options for amore sustainable cultivation, the adoption of
cover crops (CCs) has recently received increasing attention for its potential benefits (Scavo
et al., 2022). CCs are grown during the fallow period and between two successive main crops,
interrupting their cycle before competing with the next main crop. This practice, often as-
sociated with reduced tillage techniques, improves soil fertility through root exudates and
the return of litter and biomass to the soil. Similar actions are also referred to as ’green ma-
nure’ or ’catch crops’ when CCs are introduced specifically to add carbon and nitrogen, or
to retain nitrogen by reducing leaching, respectively (Shackelford et al., 2019). In 2009-2015,
the United States of America’s Environmental Quality Incentives Program reported CCs as
one of the most common conservation agriculture practices, with an incentive funding that
increased from US$ 15 million to US$ 56 million per year (U.S.Government Acocuntability Of-
fice, 2017). In 2015, the European Union (EU) introduced the adoption of CCs in the Common
Agricultural Policy (CAP) as an option for the Ecological Focus Areas (EFAs), requiring farms
withmore than 15 ha to devote at least 5% of their arable land to environmental and climate-
related activities, including the use of cover crops. In its first year of application, 27.7% of the
land devoted to EFAs in the continent were under CCs (Pe'er et al., 2017), and even though
the new rules in the CAP (2023-2027) may reduce the area effectively covered by CCs in some
farms, incentives to shift existing farms towards more sustainable systems are likely to in-
crease the adoption of CCs in the future (Panagos et al., 2021).

CCs are known to affect agricultural fields in multiple ways. A recent compilation of 269
studies, mainly from North America, Europe, Africa, and Asia, indicated that CCs significantly
influenced 28 out of 38 physical, chemical, biological, environmental, and agronomic indi-
cators (Jian et al., 2020). Some of the relevant benefits included the reduction of soil bulk
density, water holding capacity, weed presence, crop diseases, soil erosion, runoff and nu-
trient leaching, and the increase of soil porosity, cation exchange capacity, soil fauna, miner-
alizable carbon and nitrogen, and cash crop’s yield (Jian et al., 2020). Such results align with
others, indicating that CCs can increase infiltration rates and attenuate soil detachment and
transport (Stewart et al., 2018; Kaspar and Singer, 2015), reducing surface runoff, soil erosion,
and the leaching of nutrients (Stewart et al., 2018; Olson et al., 2014). Attempts to quantify
such effects at the field scale indicate that the reduction in erosion rates can vary from 15 to
23%, depending on the cropping system under consideration (Panagos et al., 2015c). Plots
with CCs were also reported to have more microbial biomass and fewer weeds compared to
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plots left fallow or bare (Shackelford et al., 2019), and the increase in albedo during winter
months can potentially lead to the mitigation of 15.91 gCO2-eq/year/m2 in Europe, with re-
gional variations (Carrer et al., 2018). All the examples mentioned above illustrate how CCs
can have potentially synergistic effects, as also observed by Garland et al. (2021), who found
a joint increase in crop yield, soil functioning, and habitat provision for microorganisms after
CCs adoption.

Concerning the impacts on the cycle of carbon and nutrients, CCs are reported to affect
CO2, CH4, and N2O emissions significantly (Jian et al., 2020; Grados et al., 2022), although the
effect on N2O appears non-significant in other works (Grados et al., 2022; Han et al., 2017).
Some of this variability may come from the species adopted, which can also affect how the
cover cropping scheme competes for nutrients with the main crop (Launay et al., 2022). In
addition, CCs increase soil organic carbon (SOC) stocks significantly (Jian et al., 2020) with an
average topsoil accumulation rate of 0.32 MgC/ha/year for 54 years after its implementa-
tion (Poeplau and Don, 2015). Even though the enhanced SOC may have the side effect of
increasing N2O emissions, meta-analysis results indicate that the greenhouse gas emission
reductions of CCs on average outweighs the emissions (Guenet et al., 2020). The increase in
SOC stocks can be attributed to the larger carbon input to the soil and the reduced C loss over
arable land that would otherwise remain fallow or bare, susceptible to erosion (Guenet et al.,
2020). Most of the studies in the literature, however, focus on relatively short timescales. As
noted by Guenet et al. (2020), the impact of CCs varies with the duration and the frequency
of their implementation, and decades may be necessary to detect a significant increase in
organic carbon concentrations (Poeplau and Don, 2015). Therefore, the effects must be as-
sessed for longer periods, as many short-term experiments may overestimate the real im-
pact of CCs on SOC increases (Guenet et al., 2020).

Another relevant effect of CCs concerns the changes in the delivery of eroded sediments
and carbon to the oceans. Approximately 8.3 to 51.1 Pg of sediments are transferred to the
world’s oceans each year by erosion processes (Syvitski et al., 2005; Harrison, 1994), denud-
ing the continent and affecting coastal ecosystems functioning, landforms evolution, and
biogeochemical cycles (Walling, 2006). Organic carbon, for example, can be transferred to
the ocean in particulate (POC) form, i.e. leaf litter, debris, and soil organic matter, or in dis-
solved forms, i.e. soluble particles from the decomposition of eroded organic matter (Lal,
1995). The transfer of carbon to the oceans is considered critical for the proper constraint
of biogeochemical land surface models (Blair and Aller, 2012), since they affect carbon stocks
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over different timescales: in the short scale, for example, the exchange of carbon between
terrestrial andmarine reservoirs canmodulate atmospheric CO2 levels (Galy et al., 2015). The
lateral transfers and the export of POC to the oceans are controlled by the SOC stocks and,
mostly, by the physical processes of soil erosion and particle detachment (Galy et al., 2015),
two quantities that are affected by the adoption of CCs (Stewart et al., 2018; Jian et al., 2020;
Olson et al., 2014; Poeplau and Don, 2015; Guenet et al., 2020).

The adoption of CCs affects the lateral transfers of carbon in two opposing directions:
the additional carbon input to the soil and the increase of SOC stocks tends to enhance the
lateral export to the oceans, but the reduction in the detachment and transport of particles
tends to contribute towards the opposite direction. Therefore, a relevant question is which
of these two effects has a more significant influence. Answering this question, however,
is not straightforward, given the lack of sediment transport and deposition movements in
land carbon models. Ideally, coupled land carbon and erosion models must represent both
short-term local and long-term landscape processes, with the ability to be run through a
sufficiently long time range and at a sufficiently high spatial resolution to capture the effect
of terrain on erosion-related processes. However, no model has achieved such goals so
far due to the lack of input data, poor spatial generalization of parameters, and "immense
computing power requirements" (Doetterl et al., 2016). Therefore, despite the acknowledged
need to move towards more physically-based representations of erosion-related impacts on
sediments and carbon transport along the landscape (Walling, 2006), large-scale land surface
models often adopt simplified approaches, such as omitting the representation of transport
and deposition processes (Chappell et al., 2015; Lugato et al., 2016) or setting fixed ratios for
the delivery rates at the grid-cell or catchment scales (Lugato et al., 2018;Wang et al., 2017). On
the other hand, process-oriented carbon erosion models compute a more realistic routing
of the sediment along the landscape, but they are often limited to small domains (Nadeu
et al., 2015) or to lumped simulations and short time scales when upscaled for large domains
(Walling, 2006).

In this work, we focus on evaluating how CCs affect the carbon cycle over the European
continent, by: i) improving the understanding of the dynamics of POC export to the oceans
at a continental level; ii) quantifying whether the enhanced input or the erosion reduction
due to CCs prevails on controlling the export of POC to the oceans; and iii) quantifying how
a hypothetical policy of widespread CC adoption could affect the SOC budget. To do so,
we first quantify the lateral transfers of carbon and sediments at the continental level from
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early industrial levels (i.e., 1860) to 2050 at a daily temporal resolution with monthly forcings
and 10 x 10km spatial resolution. Then, we simulate two scenarios of CCs adoption under
the current climate and land use conditions with the recently developed CE-DYNAM model
(Naipal et al., 2020; Fendrich et al., 2022a), which couples a spatially-explicit routing scheme
to the carbon cycle of the detailed biogeochemistry land surface model ORCHIDEE (Krinner
et al., 2005) to represent both ecosystem carbon fluxes and lateral movements in a spatially
distributedmanner (see Appendix). The strength of the approach used comes from the com-
bination between empirically calibrated erosion rates, detailed ecosystem carbon exchange,
and process-based lateral fluxes, which vary according to the terrain geomorphology and
changes on the climatic and land use forcings, as well as on management activities repre-
sented through spatially-explicit maps of cover crops adoption.

4.2 . Methods

4.2.1 . Modeling

CE-DYNAM couples an emulator of the land-surface model ORCHIDEE (Krinner et al.,
2005), the RUSLE-2015 (Panagos et al., 2015e) erosionmodel developed for Europe andadapted
to include carbon erosion, and a sediment routing scheme describing the lateral movement
of eroded soil and carbon in the landscape, including the transfer of particulate organic car-
bon to the ocean. The model was set up to run in a grid of 10 × 10 km, consistent with the
highest resolution available for climate reconstruction datasets (IPSL/LSCE, 2021), which rep-
resents a compromise between the fine scale of hydrological processes and the large scale
of most carbon models. A calibration was done to ensure that simulated values of sedi-
ment in rivers approximate both sediment discharge observations in river stations from the
GEMSTAT database (United Nations Environment Programme, 2018a) and the aggregated
ocean POC output values derived from [20]. The strength of the model is that climate, land
cover, soil characteristics, and management practices directly affect all model components
and their interactions. The model results were then summarized in terms of the exports
of POC to the ocean (Figure 4.1 and Figure 4.2). More information about the model and its
limitations are presented in the Appendix.

For the calculation of future simulations (Table 4.1), the target spatial distribution of CCs in
CC_Current was defined to be the high-resolution observation-based map of Fendrich et al.
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(2023) for 2016, resulting in a total area of 13 Mha. In CC_Theoretic, the expansion of CCs
occurred over all croplands where erosion rates exceed 2 t/ha/year or located inside the
Nitrate Vulnerable Zones (Kathage et al., 2022), reaching amuch larger hypothetical CCs area
of 118Mha. Variations in the carbon budget and lateral fluxeswere calculated for all scenarios
and compared. The additional litter input from CCs, which cannot bemodeled by ORCHIDEE,
was diagnosed from a separate simulation with DayCent (Lugato et al., 2018), which provided
spatially explicit gridded values (1 km resolution) at monthly time step. Such a simulation
included CCs by adding an additional crop (i.e., permanent ryegrass) to the rotation when a
period of at least 2 months was expected between the harvest of a cash crop and the sowing
of the next cash crop. Our attempt to overcome the unavailability of climate and land use
forcings until 2050 consisted of repeating the data for 2010-2017 in a loop until 2050.

Table 4.1: The variation of carbon (top) and sediment (bottom) export through time. Theland-redistributed carbon can be either buried, laterally displayed or respired (for carbon).The total is the sum of redistributed and exported, and the delivery rate (DR) is calculated asthe fraction of exported over the total flux redistributed on land and exported to ocean.

In order to isolate the impact of CCs, two analyses weremade. The first analysis consisted
of pooling together the results of CC_Current and CC_Theoretic to calculate the relative in-
crease of their SOC stocks and the changes of ocean exports compared to simulation With-
ETD. We opted for pooling these two CCs scenarios for this analysis to search for common
patterns that appear despite their different spatial distribution (AP B.5). Then, we calculated
the model’s response on SOC stocks (Figure 4.3) and on the lateral fluxes to the ocean (Fig-
ure 4.4). For the SOC stocks, calculations were grouped per classes of CCs application at the
pixel level. The rate of SOC change per year was then calculated to assess the variation of the
CC impact over time. For the ocean exports of POC, the resultswere grouped according to the
average share of CC application on each basin. The second analysis consisted of calculating
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the SOC budget for each scenario separately (Figure 4.5), which allowed the quantification
of impacts at the continental scale.

4.3 . Results

4.3.1 . Historical and present-day simulations

Our first set of results are CE-DYNAM simulations of the impacts of erosion, transport,
and deposition (ETD) on the carbon cycle from 1860 to present. Those impacts include the
exposure of subsoil organic carbon due to the transfer of detached particles to downstream
areas and the corresponding burial of particles at the target locations. Apart from cropland
management practices, erosion rates and ocean export are affected by rainfall regime varia-
tions and land cover change (Panagos et al., 2015e), with the spatial distribution of these fac-
tors playing an important role. The height of the bars in Figure 4.1 equals the total amount of
eroded material in each year. The total value is split between a fraction redistributed within
the land (yellow) and another part that reaches the oceans (blue). The orange line depicts
the evolution of the delivery rate delivery rate (DR, defined as the share of the eroded soil
material flowing to the ocean). Our results of Figure 4.1 indicate that the DR ranges from
14.9 to 19.9% for carbon, and from 11.1 to 20.8% for sediments, respectively. These values are
similar to those reported in other large-scale studies, of 10% on a global scale (Lal, 2003) or
11% and 15.3% (Borrelli et al., 2018a; Lugato et al., 2018) for Europe. For both sediment and
carbon, a peak of DR between 1940 to 1960 coincides with a period where low erosion rates
happened (Fendrich et al., 2022a). This pattern indicates the existence of a time delay in the
response of lateral movements to a reduction in the erosion rates.
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Figure 4.1: The variation of carbon (top) and sediment (bottom) export through time. Theland-redistributed carbon can be either buried, laterally displayed or respired (for carbon).The total is the sum of redistributed and exported, and the delivery rate (DR) is calculated asthe fraction of exported over the total flux redistributed on land and exported to ocean.
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Themap of lateral fluxes (Figure 4.2) shows the local imbalance between erosion removal,
transport, and carbon export to the oceans. Sincemost CE-DYNAM cells simultaneously gain
and lose carbon during the lateral transfer, areas with a higher net loss (i.e., in red tone)
correspond to those where the topsoil removal by erosion exceeds the gains of sediment
material from upstream sites. The figure also shows the magnitude of the flux of POC ex-
port to the oceans, represented with grey circles. It can be seen that most carbon lost to
the ocean comes from a reduced number of regions, namely Great Britain, Italy, Greece, the
Balkan States at the Adriatic Sea, and the south of Spain. In all cases, the regions belong to
the Mediterranean or North Atlantic basins (see Appendix), inducing their large ocean ex-
port. Out of the total average of 1.95 TgC/year exported for 2000-2017, the contribution of
each group of basins corresponded to 46.09% for the North Atlantic Ocean, 43.44% to the
Mediterranean, 8.06% to the Baltic Sea, 1.98% to the Black Sea and 0.43% to other regions
(AP B.1). An underlying process for those high carbon exports is the proximity between re-
gions with high erosion rates and the coast. This result suggests that catchment elongation
plays an important role in controlling ocean export. Another element that supports this ex-
planation is that the opposite effect can be perceived in the Black Sea, where the high losses
in Austria, Romania, and Bulgaria do not necessarily convert into a high export to the sea for
these basins. However, other factors such as landscape connectivity can not be discarded
since their effect is not properly captured at the spatial resolution adopted, i.e., 10 x 10 km.
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Figure 4.2: Net lateral carbon transport and carbon export to the oceans, average for theperiod 2010-17. Results refer to the simulation WithCC with enrichment factor equal to 1 (seeAppendix). In order to enhance visualization, the diameter of each circle is proportional tothe carbon export raised to the power of 1/3. Carbon export ranges from 0 (no circle) to 0.5(largest circle) TgC/year.

4.3.2 . The future impacts of cover crops

Four scenarios were designed to evaluate the impact of ETD with and without CCs on soil
carbon fluxes and stocks until 2050. In scenario WithoutETD, a default land surface model
simulation was used, therefore not including ETD or CCs. Then, WithETD included the soil
erosion rates and the ETD processes but no CCs. The comparison of the results of With-
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outETD and WithETD allowed us to isolate the effect of ETD processes. Then, the scenario
CC_Current consisted of WithETD plus a realistic application of 13 Mha of CCs. Finally, sce-
nario CC_Theoretic assumes a maximum CC expansion up to 118 Mha based on Panagos
et al. (2021), corresponding to a strong policy incentive to reduce soil losses of soil and pre-
vent eutrophication (Shackelford et al., 2019; Jian et al., 2020; Martin, 2019). Table 4.1 in the
Materials and Methods section summarizes the characteristics of each scenario, and more
information can be found in the Appendix.

Figure 4.3 shows the relative change of SOC stocks during the CCs expansion period. The
left image shows the cumulative increase, while the right one shows the annual SOC rate of
change for different classes of CC application in percent coverage of arable land. The contin-
uous lines representing the averages indicate higher increases in SOC stocks for higher rates
of CC application. The uncertainty bands presented correspond to the standard deviation of
15 sensitivity simulations run (see Appendix). The increase of SOC induced by CCs is more
uncertain for CC fractions below 30%. Above this level, the number of pixels in CC_Current
is low, leading to a lower inter-scenario variability and therefore to narrower uncertainty
bands. For CC fractions higher than 30%, the average additional increase of SOC in the CC
scenarios compared to WithETD reaches 34.5 ± 0.4 ‰ after 50 years. Such an increase is,
however, not linear. The yearly average rates of change show that the SOC sequestration
rate induced by CCs increases to reach a maximum after 10 years, and then declines. This
means that SOC continues to accumulate, albeit at a slower rate, even after CC has reached
its maximum expansion.

63.5 ± 2.4% out of the total additional storage in Figure 4.3 happened after 2017, when the
fraction of CCs had already reached its maximum expansion. For pixels with high CC frac-
tions, a peak of additional SOC sequestration rate at 1.3 ± 0.1‰/year was obtained around
10 years after the beginning of their application. After the peak, the sequestration rate de-
creases gradually until the end of the simulation period. Combined, the narrow uncertainty
band for such a result and the fact that the CCs scenarios are pooled together indicate that
the effect is significant and does not depend on other factors that vary spatially across the
continent, such as climatic andbiological elements that affect the SOC cycle. Overall, applying
CCs at the current rate would have a maximum increase of 0.03‰/year and applying them
at a maximum rate would peak at 0.19‰/year. In a country level, the two countries with the
overall highest increases in CC_Current would be Denmark and Poland, with peaks of 0.23
and 0.20‰/year, respectively, while in CC_Theoretic those countries would be Hungary and
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Italy, with peaks of 1.23 and 0.84‰/year, respectively.

Figure 4.3: SOC stocks variation as a function of the pixel’s share of cover crops (CCs): relativecumulative increase permonth (left) and annual changes (right). The bands around themeanare the standard deviation of the 15 parameters’ sensitivity simulations (see Appendix). Thenumber of pixels in each class is reported as: (n = <number in CC_Current> | <number inCC_Theoretic>).

For ocean export, Figure 4.4 shows a clear inverse relationship between the average rate
of CCs application and the carbon export to the oceans. Analogously to the case of SOC
stocks, the decrease in carbon export stabilizes at some point. After around 13 years of CCs
application, the decrease of C export stabilizes at around -43.1 ± 24.8 ‰ compared to the
WithETD scenario when the basins contain more than 15% of CCs in croplands. It must be
noted that, similarly to the SOC stocks, the classes below 15% have narrower uncertainty
bands due to a lower inter-scenario variability. The results indicate a delayed response of
the ocean export compared to the 10 years response time observed for the peak of SOC
storage. When the scenarios are considered separately, the same plateau is reached on the
class above 15% of CCs in croplands, but amounting to -20.9 ± 4.1‰ in CC_Current and -65.3
± 12.5‰ in CC_Theoretic.
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Figure 4.4: Carbon export variation as a function of basins’ share of cover crops (CCs). Thebands around the mean are the standard deviation of the 15 simulations incorporating un-certainty on model parameters (see Appendix). The period corresponds to 2000 to 2020, theperiod 2021-2050 was removed due to lack of relevant changes in the pattern displayed. Thenumber of basins in each class is reported as: (n = <number in CC_Current> | <number inCC_Theoretic>).

The SOC budgets for all scenarios in Figure 4.5 show that, compared toWithoutETD,With-
ETD has a slightly lower soil respiration rate (933.22 vs. 932.75 TgC/year) due to the continu-
ous removal of carbon from the topsoil by ETD processes. Scenario WithETD also sets up ref-
erence values that can be compared against CC_Current and CC_Theoretic. The gross eroded
carbon in WithETD, CC_Current and CC_Theoretic are 14.13, 14.06 (-0.5%) and 13.09 TgC/year
(-7.4%), indicating a more considerable decrease when more CCs are adopted. The same re-
lationship is found for ocean export, which remains equal to 1.95 TgC/year for WithETD and
CC_Current but decreases up to 1.84 TgC/year (-5.6%) in CC_Theoretic, and for burial and sub-
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soil exposure. The former varies from 12.18 TgC/year in WithETD to 12.11 and 11.23 TgC/year
(-0.6% and -7.8%, respectively) in CC_Current and CC_Theoretic, respectively, while the later
reduces from 7.68 TgC/year in WithETD to 7.65 TgC/year (-0.2%) in CC_Current and to 7.19
TgC/year (-6.4%) in CC_Theoretic. Two fluxes that increase in CC_Current and CC_Theoretic
are the litter input and respiration rates due to the enhanced input caused by adding a new
species to the crop succession. In WithoutETD and WithETD, the litter input equals 989.61
TgC/year (2.01 MgC/ha/year), and increases +1.49% to 1002.37 TgC/year (2.04 MgC/ha/year) in
CC_Current and +7.96% to 1065.77 TgC/year (2.17 MgC/ha/year) in CC_Theoretic.

Figure 4.5: SOC budget for scenarios WithoutETD (top left), WithETD (top right), CC_Current(bottom left) and CC_Theoretic (bottom right). Values are reported as: “average [min, max]”of the 15 parameters’ sensitivity simulations (see Appendix).
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4.4 . Discussion

In the historical and present simulations, the difference in range between sediment and
carbon DRs (Figure 4.1) arrives from a combination of two factors. The first factor is the
mismatch between areas with high erosion rates and those with high exposed SOC stocks.
Figures S6 and S7 show that carbon-rich soils often have low erosion rates and vice-versa.
Two clear examples are Italy, with low SOC stock and high erosion rates, and Sweden, with
the opposite combination, i.e., high SOC stock and low erosion rates. Three particularly rel-
evant regions where the agricultural area increased from 2000 to 2017, and where both SOC
stocks and erosion rates are predominantly high, are Bosnia and Herzegovina, Montenegro
and Albania (AP B.7), contributing to the high export to the Mediterranean Sea (AP B.1). The
same pattern is also found in the United Kingdom and Ireland (AP B.7). The second factor
affecting the DR of carbon distinctly from sediment is the fact that after particle detachment,
the carbon transported and buried off-site is partially released to the atmosphere through
respiration by microorganisms. Such an effect is particularly relevant in inland mountain
regions such as Switzerland (AP B.6), which are far from the ocean and have high losses of
carbon (Figure 4.2). In these regions, burial and respiration happen during the journey of
eroded carbon along the landscape, before reaching the rivers and the ocean.

When cover crops are considered, the period of 13 years for POC export stabilization (Fig-
ure 4.4) indicates the presence of a delayed effect compared to the peak in SOC increase
rates after 10 years (Figure 4.3). A possible explanation for such a lag can be the time needed
for particles to reach the ocean after erosion events. The residence time of carbon parti-
cles varies across the landscape, as their stability relates to geomorphological characteristics
such as the dominant grain size (37). The results indicate that in the tradeoff between the
enhanced carbon input, which increases POC availability, versus the reduction of soil losses
from erosion, which decreases POC availability, the second factor prevails over the first in
controlling ocean POC exports. Considering that CC_Current and CC_Theoretic are pooled
together in the analysis, such an effect obtained is persistent regardless of the spatial con-
figuration of CCs. Other factors, such as basin elongation and land use, seem to affect only
its magnitude but not its direction. Even though the model is sensitive to climatic, pedologic,
and watersheds’ morphological properties, all effects found seemed persistent despite the
different spatial distribution of CCs application in the scenarios considered.

The increases in carbon input in the CCs scenarios (Figure 4.5) can be compared to the
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target of the 4‰ initiative, which aims at increasing SOC stocks by 0.4% per year. Gener-
ally, the effects of CCs are very low compared to the estimated increase of 30-93% (38, 39,
40) necessary to achieve this target. As shown in Figure 4.3, the maximum annual contribu-
tion when the CC fraction exceeds 30% is only approximately one-third of the 4‰ initiative’s
target. Overall, the maximum annual increase would correspond to 0.75% of the target in
the scenario with a realistic CC application and 4.75% in the scenario with a theoretic CC ap-
plication. With the highest increase at the country level, Denmark and Poland would have
a maximum additional SOC storage of 5.75 and 5% of the 4‰ target in CC_Current, while
Hungary and Italy would reach a maximum of 30.75% and 21% of it in CC_Theoretic. Fur-
thermore, the highest increase in inputs obtained here, of 0.16 MgC/ha/year in CC_Theoretic
(Figure 4.5), is also very low compared to reference absolute values for the 4‰ initiative,
amounting to only half the lower uncertainty bound estimated by Riggers et al. (2021). These
results reinforce the idea that CCs are insufficient to achieve the 4‰ targets without other
additional measures, such as the adoption of reduced tillage and the conversion of marginal
croplands to grasslands (Minasny et al., 2017).

It must be noted that our results have known limitations (see Appendix). For example,
they were generated using recent climate forcing repeated in a loop for the future, meaning
that the uncertainties and impacts of future climate change are not taken into account. They
also neglect that over such a long period of 50 years, cropping systems may change dramat-
ically with effects of major importance compared to those of CCs. The results also do not
quantify important co-benefits of cover crops that are likely to occur, such as the avoided
losses of eroded phosphorus, the reduced nitrogen leaching and the potential benefits for
crop yields. Despite these drawbacks, we attempted to capture the impact of CCs on the
transport of soil particles and the SOC cycle changes in space and time, a dynamic that is
not yet fully captured by most land surface models. To the best of our knowledge, our ap-
proach constitutes the first successful attempt to represent such dynamics with a spatially
distributed approach at a continental level and a sufficiently high spatial resolution, allow-
ing a more detailed understanding of the fluxes from the detachment of particles until their
export to the oceans.

Therefore, despite the limitations of our work, we hope our results shed some light on the
fluxes involved in carbon transport from the land to the ocean. We highlight that increased
rainfall variability due to climate change may significantly impact the results reported in this
work, potentially creating lateral carbon fluxes in the same order of carbon farming activities.
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Increasing the knowledge on the integrated carbon cycle is fundamental to properly separate
real net removals from the confounding effect of carbon displacement.
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4.5 . Learnings

This chapter evaluated the impacts of different cover crops scenarios on the SOC stocks
and POC export to oceans in Europe. The results led us following learnings:

• The delivery rate of sediments presents a different variability and range than carbon
due to spatial mismatch between erosion rates and carbon stocks.

• Cover crops tend to increase SOC stocks even after their application reaches a maxi-
mum. After this moment, however, the accumulation rate decreases.

• The peak in SOC accumulation happens before the stabilization of ocean export, indi-
cating a delay in the former process. The delay can be explained by the time taken by
particles to travel across the landscape after erosion events.

• The magnitude of effects is low if compared to the targets of relevant policy initiatives
such as the 4‰ target. The highest increase simulated reached only half the lower
uncertainty bound found in the literature for achieving the target.

• The spatially explicit representation of carbonmovement across the landscape attempts
to increase the realismof land surfacemodels by reducing existing confounding effects.

Before this chapter, this thesis had two parallel development lines: the mechanistic ap-
proach for CE-DYNAM development and the empirical modeling for cover crops mapping.
This chapter attempted to combine these lines to produce meaningful simulation results to
understand better the impacts of cover crops and soil erosion in the carbon cycle.
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5 - Conclusions and perspectives

5.1 . Conclusions

In this thesis, we upscaled and calibrated CE-DYNAMover the European continent to allow
its use as a tool to inform agricultural decision-making. In the first chapter, we re-designed
the CE-DYNAM model with a focus on performance and scalability, including a calibration
procedure to make its predictions more realistic. The new version (v2) greatly improved run-
time and memory usage, making continental-level computations feasible. According to our
literature review, the computational problem we addressed is one of the major challenges
of coupling erosion to the soil organic carbon cycle. In the second chapter, we focused on
land management, the interface between erosion and carbon. Since a common problem of
representing land management, specifically cover crops, in models is the need for spatially
explicit data about their occurrence, we attempted to disclose the fine-level patterns hidden
in the aggregated-level statistics provided to the public by the European statistical agency.
The results constitute the first-ever map of cover crops produced at the European level, val-
idated for France using parcel-level information. Finally, in the third chapter, we improved
the physical realism of CE-DYNAM to its third version (v3), and used it to reconstruct the his-
torical export of particulate organic carbon to the oceans and to evaluate the impacts of two
cover crop scenarios on the European carbon budget.

These works led us to the following conclusions:
• Given the target spatial resolution of this work, 10km, the matrix representation of lat-
eral fluxes could upscale CE-DYNAM up to the continental level. However, the dimen-
sion of the resulting sparse matrix equals the product between the number of grid
cells, plant functional types, vertical soil layers, and soil carbon pools. This means that
going from the continental to the global scale would directly increase complexity, and
the application would only be viable by simplifying the other model components or
with further model developments. We opted for coupling CE-DYNAM to ORCHIDEE, a
model that has the particular characteristic of representing land cover as fractional,
with n proportions summing to 100%. In DayCent, land cover is represented with a sin-
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gle map, which means that connecting CE-DYNAM to DayCent is a potential way to run
the model in a√1/n times higher spatial resolution without increasing complexity.

• The results of the first chapter allowed us to understand the dynamics of soil erosion
since the early-industrial age. Coupling historical climate and land cover forcings to
the erosionmodel yielded present-day erosion rates with a positive correlation against
other modeling studies and local- and national-scale predictions. When extrapolated
to the past, the same model described an increase of the aggregated rates from 3.18
t ha−1 year−1 in the decade 1860-1870 to a peak of 3.76 t ha−1 year−1, followed by
a decrease to 3.04 t ha−1 year−1 in 2010-2018. The individual analysis of the driving
factors allowed us to identify the land cover as a driver of the long-term trends in the
erosion rates and the rainfall variability as a driver of the short-term fluctuations.

• The results of the second chapter allowed us to verify that the satellite data from Sen-
tinel 1, although not optical, can be useful in identifying the existence of cover crops
on the field due to its high temporal and spatial resolution and the lack of gaps on
the time-series. The disaggregation model could properly identify the difference be-
tween cover crop and winter cash crops in several situations in France, which indicates
that it was able to capture the proper phenology patterns. The spatial pattern of cover
crops at 100m in Europe allowed us to findwhere cover crops aremore widely adopted,
namely the North of France, Germany, and Denmark. The production of this dataset
constituted a new piece of information to be used by future modeling studies, and the
validation for other countries remains subject to further work.

• In the third chapter, we generated the sediments and carbon delivery rate from the
European countries to the oceans since the early-industrial age. The data suggested a
higher variability in sediment than carbon export, indicating that other processes, such
as burial and respiration by microorganisms, have a significant impact on the eroded
carbonbefore its export. The results also showed that the increase in soil organic stocks
induced by cover crops tends to reach amaximum after 10 years of their adoption, and
then decrease. The export of particulate organic carbon to the ocean decreases in all
cases, reaching aminimumafter 13 years of the adoption of cover crops. The difference
between these two values (i.e. 13 and 10 years) indicates that the ocean export has a
lagged effect due to the time needed for sediments to cross the landscape and reach
the ocean. At the continental scale, we found that most of the carbon exported comes
from a limited number of regions, including the United Kingdom, Italy, Greece, and the
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Balkan States.
• The results of the third chapter also indicated that the modifications on the carbon
budget induced by cover crops are relatively small and not sufficient to achieve the tar-
gets of the 4‰ initiative according to the current literature. Overall, the current rate of
cover crops would contribute to a maximum of 0.75% of the target, and a hypothetical
scenario of full application would peak at 4.75% of it. Together, these results indicate
that additional management measures are necessary to reach the 4‰ goal. These re-
sults, however, do not include the impacts of climate change due to the unavailability
of forcings in the relatively high resolution used.

5.2 . Perspectives

Despite the progress made during this thesis, further work is necessary to address the
following issues:

• Even in its final version, CE-DYNAM still does not represent some important carbon
processes related to soil erosion, namely the greater susceptibility of the soil organic
carbon’s light fraction to the detachment of particles, the breakdown of particles dur-
ing transport and the corresponding reaggregation during deposition. The final ver-
sion also does not include the conversion from particulate to dissolved organic carbon
during transport, nor the specific dynamics of dissolved organic carbon. Dams are an-
other missing component of the river network that can have a significant impact on the
model’s results.

• The map of cover crops generated is only validated using parcel data in France due to
the lack of publicly available data in the other European countries. More information
is expected to be released to the public in the future, which could lead to better disag-
gregation results. Therefore, validating and updating the current map could be done
as further work.

• Other aspects of land management must be better developed in CE-DYNAM, including
the gradients of residues management and tillage adoption. These topics present sim-
ilar challenges as cover crops in terms of data availability, and have received growing
attention in environmental policies.
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• Both erosion and cover crops affect the water holding capacity of a soil, which in turn
impact its productivity. Currently, a known limitation of CE-DYNAM is that it lacks a
proper representation of the impacts on the net primary productivity (NPP), which can
greatly affect the results. During the development of this thesis, it was understood that
investigating the relationship between erosion and NPP would be a work on its own,
and that can be addressed by further work.
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A - Appendix to: From regional to parcel scale: a
high-resolution map of cover crops across Europe
combining satellite data with statistical surveys

AP A.1: Comparison between the amount of arable land in Corine and the Farm StructureSurvey (FSS)
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AP A.2: Comparison of the total area of cover crops predicted by the model and reported bythe Farm Structure Survey (FSS)
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AP A.3: Knot placement for the spatial basis used in the current work

AP A.4: Four best models found during the model selection procedure, and their regionalArea Under the Curve (AUC) values. Option #3 was chosen and presented in this work.
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AP A.5: Model uncertainty: standard deviation of model predictions. Values calculated usingthe smoothers’ estimated variance-covariance matrix.
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AP A.6: Model uncertainty: 0.05 and 0.95 quantiles of model predictions (top and bottom,respectively). Values calculated using the smoothers’ estimated variance-covariance matrix.
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B - Appendix to: Improving land management
representation in a constrained European carbon
scheme with lateral displacement to oceans

Model framework

In this work, we use the CE-DYNAM (v3) model (Naipal et al., 2020; McClelland et al., 2021)to represent the feedback between the carbon cycle and erosion, transport, and deposition(ETD). The model contains three modules that interact: a carbon cycle emulator, an erosionmodel, and a sediment routing scheme. A formal description of model v2 equations can befound in Fendrich et al. (2022a). The description of v3 below, its parameters, and its differ-ences against v2 is written in plain language without the long mathematical formulation.
The carbon cycle emulator used was an offline version of the outputs produced by an OR-CHIDEE 2.2 (Krinner et al., 2005) run at a 0.125-degree spatial resolution (i.e., approximately10km at the Equator) from 1860 to 2017. When CE-DYNAM runs without the two ETDmodules,its results coincide with those produced by ORCHIDEE. When ETD is enabled, the carbon isaffected in multiple ways. First, the land use and rainfall precipitation lead to erosion ratescalculated using RUSLE2015 (Panagos et al., 2015e). Such rates induce two in-site fluxes: onefor topsoil carbon removal and another for subsoil exposure. Next, off-site effects are alsoinduced. Depending on the terrain, the detached carbon sediment is routed downstreamacross the landscape, and when an area receives an incoming flux of carbon from an up-stream region, the carbon can be either buried or re-routed. After several timesteps, thecarbon, once buried, can be re-exposed. The terrain is preprocessed to fill routing sinks, i.e.pixels in the middle of the continent that block the sediment from flowing downstream, inorder to ensure hydrologically correctness.
In comparison to its previous version (v2), CE-DYNAM v3 presents several modifications,which include the reduction of redundant and duplicated fluxes, the enforcement of massconservation, and the removal of the distinction between hillslopes and valley bottoms usingterrain data, which proved unhelpful at the desired spatial resolution. Three major modifi-cations were also made to the model structure and calibration. The first consisted of re-moving the vertical soil discretization from the calibration procedure. The second consistedof removing splines to reduce particle detachment, an artifice used to facilitate calibrationin CE-DYNAM v2. In CE-DYNAM v3, particle detachment is only controlled by the erosionrates, and what is subject to calibration is the intensity of the lateral movements. The thirdchange consisted of modifying the calibration procedure by changing the model’s objective
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function. In CE-DYNAM v2, the observations of sediment flux were compared to CE-DYNAM’sstocks, which led to overly optimistic and inflated results. In CE-DYNAM v3, the model’s lat-eral sediment output is set tomatch the observed data. With these changes, more physically-consistent results and non-inflated metrics could be produced.

Model parameters and calibration

CE-DYNAM v3 contains three components for calibration. The first component is a curverelating the flow accumulation to the share of sediments that are routed downstream, whichwe assume to be represented with a generalized logistic curve. The second and third compo-nents consist of the intensity of the lateral and vertical fluxes, which can be easily controlledthanks to thematrix representation of fluxes developed by Fendrich et al. (2022a). In order tofind the best set of parameters for the three components, the calibration procedure consistsof running the routing scheme for sediments only and comparing the lateral fluxes predictedagainst sediment discharged measured data.
However, since several combinations of parameters can lead to acceptable results, anadditional constraint is added: that the amount of sediment exported to the ocean by thebasins approximate asmuch as possible those values predicted by Borrelli et al. (2018a). Thisadditional constraint adds complexity by converting the problem from a single- to a multi-optimization problem. Two further complications of model calibration are the domain ofthe variables and the computational complexity. Even though the generalized logistic curveonly contains real-value parameters, the intensity of lateral and vertical fluxes are controlledby integers, which precludes the use of many methods that require continuous and differ-entiable functions. Besides, one single function evaluation for sediments only takes severalhours in an Intel(R) Xeon(R) CPU E5-2640 v4 2.40 GHz processor, which complicates the pro-cess of finding a solution.
Given all the complications mentioned above, we opted to simplify the function evalu-ation and optimize it using a random search across the domain of parameters. Since theultimate goal of calibration is to apply the lateral movements for carbon simulations, thecalibration with sediments replicates the same routing scheme behavior. Therefore, a com-plete function evaluation consists of: i) generating monthly model matrices (see Fendrichet al. (2022a)) as a function of the set of parameters; ii) calculating equilibrium for the early-industrial period; iii) running the model monthly from 1860 to the date of observations; iv)calculating difference between predictions and observations. The simplified procedure cutssimulation time by modifying the temporal resolution. This definition leads to the follow-ing procedure: i) generating annual model matrices; ii) calculating equilibrium for the early-industrial period; iii) calculating the difference between predictions at equilibrium and obser-vations. Thus, due to the computational complexity of the process, the simplified calibrationcan be seenmore as an attempt to lead the model execution toward the correct magnitudes
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than to predict the exact observed value in the exact observed date. The simplificationsreduced the running time from several hours (complete version) to two hours (simplifiedversion).
For the random search, we randomly sampled and evaluated 1350 points in parallel, andfor each simplified evaluation, we reported the absolute error between model predictionsvs. observations for both: i) sediment discharge measured data and ii) aggregated ocean ex-ports. Then, for the multi-optimization solution, we used an interactive a posteriori method(Miettinen, 1998), which relied on manually inspecting the group of possible solutions (i.e.,that of low absolute error for both objective functions) to choose themost physically-relevantset of parameters. The choice of an interactive over a non-interactive method proved nec-essary due to the small number and variable range of the aggregated ocean output data(ii), which created a problem: in several cases, a low absolute error was obtained when themodel predicted correctly the observation with the largest magnitude, but zero for all theother basins. Even though the use of the absolute error improved this issue compared toother alternatives, for instance the squared error, it could not solve it completely.
The sediment discharge observations used consisted of observations of total suspendedsolids and river discharge made available by GEMStat for Europe. The preprocessing stepconsisted of first filtering only the catchments whose reported catchment area is similar tothat calculated using our digital elevation model and then calculating yearly averages. Thedataset used consists of 372 yearly averages on 38 European rivers from 1979 to 2003. Fromthis total, 31 were used for model fitting and 7 (around 18%), for validation. Even thoughthe simplified calibration procedure can not capture multi-year variation, we retained therepeated measures in the dataset to give more weight to the basins where more observa-tions are available. The 38 catchments cover 27.18% of the study area’s surface. AP B.1 showsthe location of the catchments, most in the North Atlantic and Baltic basins, reinforcing theneed for the additional constraint for calibration described earlier in this section. AP B.1 listssome of the rivers included in each catchment.
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AP B.1: Location of the catchments with observations for model calibration. The red trans-parency is proportional to the number of observations (more transparency meaning lessobservations).
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AP B.1: List of some of the rivers included in each model catchment. For limitations, seeSection S5.

The normalized results for the 1350 random points are shown in AP B.2, left. The groupof points in the bottom left (in blue) was manually inspected for presenting small errors forthe sediment discharge observations and the aggregated basins data simultaneously (hor-izontal and vertical axis, respectively). The plot of predicted vs. observed for the best setof parameters after such inspection is shown in AP B.2, right. In this case, the Pearson cor-relation between datasets was calculated as t =0.41 and v =0.15 for training and validation,respectively. For the training dataset, the average observed value was 1035.49 t/day, with amedian absolute error of 842.13 t/day. For the validation, the values were 610.98 t/day and528.87 t/day for the average observed and median absolute error, respectively.
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AP B.2: Calibration results: random search (left) and predictions for the best set of parame-ters (right). The “Observed dataset” was used for model calibration, while the “Unobserveddataset” was used for validation.

Dynamic replacement

In eroding areas, ETD induces a lateral carbon loss likely to be offset by a higher stabi-lization of carbon from the atmosphere by photosynthesis, leading to a process known as adynamic replacement. Thus, understanding the intensity of the dynamic replacement repre-sentation within themodel is relevant, as it can point towards the under or overestimation ofthe continuous carbon sink effect induced by erosion. In order to evaluate such an effect, wecompared our results to the inventory made by Oost et al. (2007) and the simulation resultsof Lugato et al. (2018). As shown in AP B.3, our simulated results are reasonable for all classesof lateral carbon flux, presenting median values that nearly coincide with the averages re-ported by Oost et al. (2007), and presenting a distribution slightly shifted to higher values ifcompared against Lugato et al. (2018). The class of 0.35 - 0.5 MgC/ha/year seems particularfor having an increased median if compared to the other works.
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AP B.3: Comparison between the dynamic replacement for croplands in CE-DYNAM andother works (Lugato et al., 2018; Oost et al., 2007)
.

Assumptions for the cover crop scenarios and uncertainties

Due to the low availability of spatially-explicit data for cover crops (CCs), elaborating theirapplication scenarios was only possible with extra assumptions. For instance, CC_Currentand CC_Theoretic are defined in terms of their target CC spatial distribution. This meansthat, despite the known distribution around the end of simulations, nothing is said or knownabout the initial moment nor the rate of their implementation. Here, we tried to overcomethis problem by introducing a function relating the years to the share of CC implementation,which is included in the calculation as a multiplier to the CC map of the scenario. This way,when the spatial distribution is known, the multiplier equals 100% at the target year.
In order to construct the multiplier function, we searched for relevant clues to guide ourassumed trajectory. The major clue used was the Nitrates Directive, which is known to bea driver of CC application in Europe (Kathage et al., 2022). The directive was created in 1991,
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and was "severely behind schedule" in 1998 (Goodchild, 1998), but in 2000, Member Statesdemonstrated commitment to improve its implementation (European Environment Agency,2022). Furthermore, the Farm Structure Survey (European Commission, 2022), which con-tains the official statistics of farm management across Europe, indicates a stagnation of CCimplementation around 2010 if compared to 2016. To combine these pieces of information,we opted to construct our assumption based on fitting a logistic curve to three reasonablepoints: the slow start of CC implementation around 2000, the stagnation in 2010, and the fullimplementation around 2016 (AP B.4).

AP B.4: Assumed function relating the year to the share of CC implementation.

Another assumption concerned the incremental carbon input due to the adoption of CCs.Because CE-DYNAM uses only an emulator of the carbon cycle, it is impossible to representsuch additional input mechanistically. In order to overcome this problem, we ran two Day-Cent simulations (Parton et al., 1998; Lugato et al., 2018), one without and one with CC ap-plication in the whole area of croplands in Europe. Then, we isolated the extra net primaryproductivity (NPP) input due to CCs by subtracting the two simulation outputs. Because theNPP input without CCs proved to be comparable between DayCent and ORCHIDEE, such iso-lated input was inserted directly into CE-DYNAM proportional to the CC application of eachscenario. The target CC application of CC_Current and CC_Theoretic can be seen in AP B.5,left and right, respectively. For reference, AP B.6 shows the SOC stocks before erosion (left)and the corresponding eroded carbon (right) and AP B.7 shows the combinations betweena reclassification of ‘low’ and ‘high’ for both.
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AP B.5: Target CCs spatial distribution for CC_Current (left) and CC_Theoretic (right). Theshares refer to the total land and do not exceed the shares of croplands in each pixel.

AP B.6: SOC stocks for non-eroded carbon (left) and total eroded carbon per year (right).
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AP B.7: Combinations of classes with low/high erosion and low/high SOC stock. Foreach variable, the threshold was set to be its median. The legend format is <vari-able>:<reclassification>, so E:L means erosion: low and S:H means stock: high.

In CE-DYNAM, the incorporation of model uncertainties through standard methods suchas Monte Carlo simulations is precluded by the long model runtimes (see section S2). There-fore, an alternative method had to be used to include the uncertainty in carbon simulationsdue to two of its parameters: the enrichment factor, corresponding to the carbon concen-tration in the sediment laterally transported, and the effect of CCs on erosion reduction. Themethod consisted of setting the fixed values that each parameter is allowed to assume andthen simulating all possible combinations. For the enrichment factor, we set 2 possible val-ues: 1.0, indicating no enrichment, and 2.0, based on Lugato et al. (2018). For the effect ofCCs on erosion reduction, we set 3 possible values: 15%, 20%, and 23%, corresponding to theresults of Nyakatawa et al. (2001), Verstraeten et al. (2006) and G. J. Wall and Shelton (2002),respectively. Consequently, a total of 15 carbon simulations were run:

N =

CCs scenarios︷︸︸︷
2 ∗

Enr. factors︷︸︸︷
2 ∗

Eros. reduction︷︸︸︷
3 +

No CCs, With ETD︷︸︸︷
1 ∗

Enr. factors︷︸︸︷
2 +

No CCs, No ETD︷︸︸︷
1 = 15
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Model limitations

This section describes some of the limitations of the current approach. First, the carbonemulator only imitates land surface models, representing in an implicit way the many pro-cesses (i.e., ploughing, harvesting etc.) that are present explicitly in ORCHIDEE or DayCENT.This means that the erosion feedback on, for example, microbial respiration, is not capturedin CE-DYNAM. Second, the model currently does not include the effect of erosion on the netprimary productivity, which may lead to under or overestimation of effects. Third, rivers arenot explicitly represented in the model, which does not allow us to calculate the transfer torivers and dams. Even though this could be done by setting thresholds to the flow accu-mulation information, as done by similar models such as Watem-SEDEM, we opted for notincluding additional assumptions. Fourth, for the same reason, the dynamics of dissolved or-ganic carbon (DOC) is not yet represented in CE-DYNAM. Fifth, even though large basins canbe relatively well represented in a 10km spatial resolution, most of the small-scale variationcan not be captured. One major limitation found about this aspect was that the Elbe river,which flows to the Atlantic Ocean, is here represented as flowing to the Baltic Sea. For allthese issues, further work is necessary to increase the realism in the model representationof ETD fluxes.
Concerning the scenarios, we had to assume that the application of CCs started with theircontinental policies, around 2000. Even though this is not true in practice, a better assump-tion could not be made due to the lack of data on CCs occurrence.
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Résumé long en français

Dans le contexte du système climatique terrestre, les sols constituent une ressource na-turelle essentielle. Bon nombre des services écosystémiques fournis par les sols sont essen-tiels au maintien des moyens de subsistance de l’homme et sont affectés par le changementclimatique. Il s’agit notamment de la production de nourriture, d’eau douce, d’énergie etd’habitats pour la biodiversité. La demande humaine pour ces services, et par conséquent lapression sur les sols, tend à augmenter avec la croissance démographique mondiale prévue(IPCC, 2019). En outre, les sols de la planète contiennent entre 1 500 et 2 400 pétagrammesde carbone (PgC), soit plus que l’atmosphère (589 PgC) et l’océan de surface (900 PgC) réunis(Ciais et al., 2013). Par conséquent, même de petites perturbations dans les réservoirs decarbone du sol peuvent avoir un impact substantiel sur leurs émissions vers l’atmosphère.Par exemple, des mesures de gestion plus durables, telles que la conservation des résidusdans les systèmes de culture, peuvent augmenter la teneur en carbone organique du sol etcontribuer à séquestrer le carbone de l’atmosphère (Robert, 2001), et atténuer une menacemajeure pour les sols, à savoir l’érosion des sols.
L’érosion accélérée des sols est le processus le plus répandu de dégradation des solscausée par les activités agricoles (Robert, 2005), aux côtés du compactage, l’épuisement desnutriments, la décomposition des agrégats, et d’autres phénomènes. Selon Hillel (2004), leprocessus physique de l’érosion des sols peut être décrit en trois étapes : i) Tout d’abord, lesparticules sont détachées du sol. Les particules les plus vulnérables sont celles de la surfacedu sol, qui est la partie la plus fertile du profil en raison des grandes quantités de matièreorganique (humus) et de micro-organismes qu’y sont présents. La perte de fertilité causéepar le détachement des particules de la couche arable nécessite généralement l’utilisationd’engrais chimiques, ce qui entraîne une menace croissante de pollution des eaux souter-raines. ii) Deuxièmement, les particules détachées sont transportées à travers le paysage ;et iii) Troisièmement, les particules sont déposées à un endroit différent de celui où elles setrouvaient à l’origine. Par ailleurs, les auteurs incluent parfois la décomposition des macroa-grégats commeunprocessus intermédiaire entre le premier et le deuxièmeprocessus précé-dents (Lal, 2005). L’érosion du sol peut être déclenchée par l’eau ou le vent, le premier étantle plus courant.
Le flux de particules à travers le paysage est guidé par la gravité et suit les caractéristiquesgéomorphologiques du terrain. Par conséquent, l’érosion du sol peut avoir des impacts sursite, tels que la perte de productivité, et des impacts hors site, tels que l’eutrophisation desrivières et des réservoirs. C’est pourquoi l’érosion des sols est considérée comme un mé-canisme de transport essentiel permettant d’acheminer les effets environnementaux desproduits chimiques agricoles vers des zones plus éloignées (Hillel, 2004). Chaque année,20 à 30 Gt de sols sont perdus dans le monde à cause de l’érosion hydrique, les taux parunité de surface variant en fonction de la zone climatique. Dans les régions tempérées, lesvaleurs moyennes sont généralement de 10 t ha−1 an−1, mais peuvent atteindre 20 t ha−1
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an−1 dans les zones de cultures vallonnées. Dans les régions tropicales, qui concentrent lestaux d’érosion les plus élevés aumonde, les valeurs varient souvent entre 10 et 20 t ha−1 an−1,et peuvent atteindre 50 t ha−1 an−1 dans les cas les plus extrêmes (FAO, 2014; van Oost et al.,2007). Ces valeurs sont corroborées par les résultats plus récents de Borrelli et al. (2018a), es-timant une perte moyenne de sol de 35 Gt en 2001 et de 35,9 Gt en 2012, les taux spécifiquesles plus élevés étant enregistrés en Amérique du Sud, en Afrique et en Asie, respectivement.
La convergence des prévisions d’érosion dans la littérature implique que, quelle que soitla base de données utilisée, les valeurs sont beaucoup plus élevées que les taux de forma-tion des sols (Julien, 2010). Ces derniers sont généralement inférieurs à 1 t ha−1 an−1, avecune médiane de 0,15 t ha−1 an−1. Un tel déséquilibre entre la formation et la perte de solsignifie que les sols du monde pourraient être traités comme une ressource naturelle nonrenouvelable plutôt que renouvelable. En outre, à long terme, pendant des décennies oudes siècles, ces taux d’érosion sont susceptibles de directement réduire le rendement descultures en raison de la diminution de la capacité de rétention en eau et de la réduction del’espace réservé aux racines (FAO, 2014).
Il existe plusieurs liens entre l’érosion des sols et le cycle du carbone (Lal, 2005). Sursite, il est admis que tous les mécanismes conduisent à une augmentation des émissionsatmosphériques. Ces mécanisms incluent notamment l’élimination de l’argile et du carboneorganique du sol, l’augmentation des taux de minéralisation en raison des modificationsde l’humidité du sol, l’exposition du sous-sol et la décomposition des agrégats. Hors site,certains effets, tels que le transport vers d’autres éléments du paysage, comme les plainesd’inondation et les systèmes aquatiques, pourraient conduire à la protection et à la séques-tration du carbone. L’intensité de chacun de ces effets a conduit à un long débat scientifiquepour comprendre si l’érosion des sols correspond à une source ou à un puits de carbone at-mosphérique, avec des résultats allant dans des directions différentes. La modélisation dela relation entre l’érosion des sols et le cycle du carbone organique est toutefois une tâchecomplexe.
Ces dernières années, la popularisation d’ordinateurs puissants a permis une large dif-fusion de différentes approches de modélisation. L’examen systématique de Borrelli et al.(2021) a montré que 1 697 articles ont publié 3 030 applications de modélisation de l’érosionentre 1994 et 2017. Leur analyse amontré la prédominance des études sur l’érosion hydriqueà l’échelle nationale et une tendance temporelle claire à l’augmentation des applications,allant de 55 en 1994-1997 à 340 en 2014-2017. Les auteurs ont également trouvé 435 mod-èles d’érosion différents, avec une nette prédominance des approches basées sur l’USLE,correspondant à 41% de toutes les applications. L’une des raisons de la grande popularitédes méthodes basées sur l’USLE est un compromis relativement bon entre les exigences enmatière de données d’entrée et la fiabilité des estimations de la perte de sol. Cependant,certaines limitations existent : i) les applications constituent souvent des extrapolations del’échelle originale locale à laquelle le modèle a été développé, et ii) le manque de représen-tation du transport et du dépôt de sédiments (Quine and van Oost, 2020). La deuxième lim-itation est souvent résolue en incluant un schéma externe d’acheminement des sédimentsdans le cadre de modélisation, par exemple (Rompaey et al., 2001).
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Historiquement, le développement des modèles d’érosion s’est fait parallèlement à celuides modèles de surface terrestre. Les modèles de surface terrestre visent à intégrer de mul-tiples équations pour simuler les processus terrestres, notamment : les processus physiqueset les transformations chimiques (par exemple, la croissance des feuilles), les interactions en-tre les colonnes (par exemple, la chute des précipitations), l’échange entre les composants(par exemple, l’eau précipitée qui pénètre dans le sol), l’échange de chaleur et le mouve-ment des substances (par exemple, l’écoulement de l’eau). Tout au long de ces processus,les calculs sont limités par des lois physiques fondamentales, telles que la conservation de lamasse et de l’énergie (Gettelman and Rood, 2016). Selon Doetterl et al. (2016), aucun modèlede surface terrestre ne contient actuellement une représentation suffisamment détaillée dela relation entre le carbone organique du sol et l’érosion, le transport et le dépôt. Les au-teurs affirment que cela est dû à des données d’entrée inadéquates, à des problèmes degénéralisation des paramètres dumodèle, à une compréhension insuffisante des processusd’érosion et à d’importantes exigences en matière de calcul.
Plusieurs travaux dans la littérature ont visé à coupler l’érosion, le transport et le dépôtau cycle biogéochimique du carbone, avec des approches qui varient en termes de détail,de complexité et d’échelle. Lal (2003), par exemple, a supposé un acheminement fixe dessédiments pour estimer les valeurs globales agrégées du déplacement du carbone. Cetteapproche est similaire à celle de Chappell et al. (2015), qui a pris en compte l’érosion commeun flux de carbone supplémentaire, mais n’a pas tenu compte du transport de particules.Dans l’approche spatialement explicite de Lugato et al. (2016), l’érosion a également été priseen compte comme un flux supplémentaire, et le transport de particules vers les rivières a étésupposé être une part constante du sol érodé total dans chaque cellule de la grille. Wanget al. (2017) a également adopté un modèle de transport spatialement explicite, dans lequelle paysage a été divisé en régions appelées "bassins versants virtuels" pour tenir compte d’unflux de transport supplémentaire. À l’échelle continentale, Borrelli et al. (2018a) a couplé lesdonnées sur le carbone organique du sol à un modèle d’érosion représentant le transportde particules d’unemanière distribuée basée sur les processus. Cette approche est toutefoisagrégée et n’inclut aucun autre élément du cycle du carbone. À l’échelle du bassin versant,Nadeu et al. (2015) a inséré un schéma de routage spatialement distribué dans un modèlede carbone détaillé dans le centre de la Belgique. Toutefois, cette approche est limitée parl’échelle à laquelle le modèle peut être appliqué.
Pour résoudre les problèmesmentionnés ci-dessus, Naipal et al. (2020) a proposé lemod-èle CE-DYNAM pour la partie non alpine du bassin du Rhin, une région dont la superficie estégale à 185 000 km2. Ce modèle combine des modules d’érosion et de transport à un ému-lateur de la dynamique du carbone du sol de n’importe quel modèle de surface terrestrebasé sur CENTURY (Parton et al., 1983). CE-DYNAM utilise une approche basée sur le modèleRUSLE adaptée à la modélisation de l’érosion à grande échelle et à une résolution spatialegrossière (Naipal et al., 2015), et dont le module de transport est un schéma de routage quisuit la topographie pour redistribuer les particules de sol (Naipal et al., 2016). Ces élémentssont formellement incorporés dans la dynamique du modèle en tant que flux supplémen-taires entre les bassins au-delà de ceux initialement présents dans la cinétique de premierordre de CENTURY.
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Dans sa première version, CE-DYNAM était adapté à une utilisation à l’échelle du bassinversant et ne pouvait pas être correctement adapté à des domaines plus vastes pour plusieursraisons. Tout d’abord, les temps d’exécution allaient de quelques heures à quelques jours àl’échelle dubassin versant, ce qui indiqueque les calculs pour des domaines plus vastes pour-raient prendre des semaines. Une telle limitation empêchait également l’exécution d’uneprocédure d’étalonnage puisque les routines d’optimisation nécessitent souvent plusieursévaluations de fonctions. Deuxièmement, la disponibilité de la mémoire de l’ordinateur étaitun facteur limitant puisque tous les ensembles de données pour l’ensemble du domaine de-vaient être chargés et lus avant le traitement. Troisièmement, la mise en œuvre du code deCE-DYNAM contenait des détails qui le rendaient impraticable pour une application lorsquele nombre de sous-bassins versants dans le domaine augmentait. Enfin, l’intensité des fluxlatéraux devait être imposée et non calibrée avec des données observées, ce qui pouvaitgénérer des résultats irréalistes. Tous ces problèmes étaient liés et indiquaient que, malgréson potentiel, des travaux supplémentaires étaient nécessaires pour améliorer CE-DYNAM.
Dans ce contexte, la présente thèse de doctorat avait plusieurs objectifs. Le premier ob-jectif (Chapitre 2) était de proposer une formulation alternative pour CE-DYNAM afin de per-mettre la mise à l’échelle de ses calculs au niveau continental. Ceci a été fait en formalisantla formulation du modèle, en représentant la dynamique du premier ordre du modèle sousforme de matrice, et en introduisant une procédure de calibration basée sur des mesuresde décharge de sédiments. Dans ce chapitre, une deuxième version de CE-DYNAM (i.e. v2)a été présentée, qui consiste en sa version initiale (v1) plus la forme matricielle et quelquesmodifications. Le premier chapitre traite demodélisation mécaniste.
Le deuxième objectif (Chapitre 3) était de générer la première carte par satellite des cul-tures de couverture en Europe. L’adoption de cultures de couverture étant une mesure degestion ayant un impact direct sur le cycle du carbone organique du sol et sur la préven-tion de l’érosion, ce chapitre visait à mieux comprendre leur répartition spatiale à l’échellecontinentale. Le deuxième chapitre traite de la modélisation empirique.
Enfin, le troisième objectif (Chapitre 4) était d’évaluer les impacts potentiels des culturesde couverture sur les stocks de carbone du sol et l’exportation de carbone organique partic-ulaire vers les océans en Europe en utilisant CE-DYNAM. Ce travail a combiné les développe-ments des chapitres 1 et 2, et une troisième version de CE-DYNAM (i.e., v3) a été présentée.Cette version se compose de la v2 et de plusieurs modifications majeures ajoutées pouraméliorer la représentation physique des processus d’érosion, de transport et de dépôt. Letroisième chapitre traite de l’évaluation des alternatives politiques.
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