
HAL Id: tel-04326611
https://theses.hal.science/tel-04326611

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Cryptanalysis in Multivariate Quantum-Safe
Cryptography
Jocelyn Ryckeghem

To cite this version:
Jocelyn Ryckeghem. Design and Cryptanalysis in Multivariate Quantum-Safe Cryptography. Cryp-
tography and Security [cs.CR]. Sorbonne Université, 2021. English. �NNT : 2021SORUS577�. �tel-
04326611�

https://theses.hal.science/tel-04326611
https://hal.archives-ouvertes.fr

Sorbonne Université
École Doctorale Informatique, Télécommunications et Électronique de Paris

Laboratoire d’Informatique de Sorbonne Université / ÉquipePolSys

Cryptographie post-quantique :
conception et analyse en cryptographie multivariée

Par JocelynRyckeghem
Thèse de doctorat d’Informatique

Dirigée par Jean-CharlesFaugère et Ludovic Perret

Présentée et soutenue publiquement le lundi 8 février 2021

Devant un jury composé de :

M. Jean-GuillaumeDumas Professeur Rapporteur
M. Jean-CharlesFaugère Directeur de recherche Directeur de thèse
Mme Aline Gouget Morin Directrice en cryptographie Examinatrice
M. Pierre Loidreau DGA et chercheur associé Examinateur
M. Ludovic Perret Maître de conférences Directeur de thèse
M. Mohab Safey El Din Professeur Président
M. Daniel Smith-Tone NIST and associate professor Rapporteur

To cite this PhD thesis
Jocelyn Ryckeghem. Cryptographie post-quantique : conception et analyse en cryptographie
multivariée. PhD dissertation, Sorbonne Université, February 2021. English, 284 pages.

Alternate title
Design and Cryptanalysis in Multivariate Quantum-Safe Cryptography

Funding
This work is financially supported by the French / Cette thèse est soutenue financièrement par le

Ministère des armées – Direction Générale de l’Armement.

License
Except where otherwise noted, this work is licensed under

Creative Commons License CC-BY-NC-ND 3.0.
https://creativecommons.org/licenses/by-nc-nd/3.0/

Printing this book
Color printing of pages 205, 206 and 207 is recommended. The cover page could also be considered.
The corresponding absolute page numbers are 239, 240 and 241 (if the cover page number is 1).

Note of the author
This PhD thesis presents theMQsoft software toolkit, which was entirely implemented by Jocelyn
Ryckeghem (2017–2020). The latter announces his decision to cease the development of this
toolkit. However, a larger project initiated by the author, the HP FA (High-Performance Finite
Field Arithmetic) library, could include equivalent features in the future.

Keywords
multivariate cryptography

efficient software implementation
GeMSS

DualModeMS
HFE

Approximate MQ
MQsoft

root finding
binary field

Mots clés
cryptographie multivariée

implémentation logicielle efficace
GeMSS

DualModeMS
HFE
AMQ

MQsoft
recherche de racines

corps binaire

https://creativecommons.org/licenses/by-nc-nd/3.0/

Science sans conscience n’est que ruine de l’âme.

François Rabelais , Pantagruel

À Paola,

R�e�m�e�r�c�i�e�m�e�n�t
s Le fait de ne pas croire au hasard,
et que le hasard existe et soit fait
de façon à ce qu’il ne se passe que
des coïncidences, serait une belle
coïncidence.

Jocelyn Ryckeghem , 2013

Bien que cette thèse soit rédigée en anglais, je profite de ces quelques pages pour écrire dans ma
langue maternelle, qui m’est si chère. J’ai rencontré d’innombrables personnes durant ma thèse à
Sorbonne Université, ce qui a été très motivant pour mon travail de recherche. Je les remercie donc
aujourd’hui.

Je souhaite d’abord remercier Jean-CharlesFaugère et Ludovic Perret , mes directeurs de
thèse. C’est grâce à eux que jadis, en master, je découvris la cryptographie multivariée et la réso-
lution des systèmes polynomiaux non-linéaires. J’ai ensuite pu contribuer en soumettantGeMSS et
DualModeMS au processus de standardisation de cryptographie post-quantique du NIST. Puis j’ai
continué en thèse pour obtenir davantage de résultats et défendre nos candidats, en plus d’acquérir
la compétence de chercheur. Ainsi,GeMSS est arrivé jusqu’au troisième tour de ce processus, et tout
cela n’aurait été possible sans Jean-Charles et Ludovic.

Ensuite, je remercie Jean-GuillaumeDumas et Daniel Smith-Tone , mes rapporteurs de thèse,
pour l’avoir rapportée dans des délais très courts ! Je remercie Jean-Guillaume pour ses remarques,
toutes très pertinentes, qui ne font qu’améliorer la qualité de ce tapuscrit. Especially to Daniel, it is
an honor for me to have the comments from a specialist in multivariate cryptography of the NIST
team.

Je remercie AlineGouget Morin , Pierre Loidreau et Mohab Safey El Din , ainsi que Jean-
Guillaume et Daniel, d’avoir participé à mon jury de thèse. Je remercie particulièrement Pierre
d’avoir été mon tuteur DGA, et plus largement, je remercie la DGA/AID pour son soutien financier.
Après avoir effectué mon stage de fin de master à l’ANSSI, cela est très motivant pour moi d’avoir
décroché une demi-bourse DGA. J’espère que cette thèse est à la hauteur de la confiance qui m’a
été accordée. J’en profite pour remercier Jean-PierreFlori et JérômePlût qui ont encadré mon
stage à l’ANSSI, et qui m’ont très bien formé, tel un prélude à cette thèse. Après six mois de travail
acharné sur la composition modulaire de polynômes, je ne m’attendais pas à la revoir ici ! Bien que
ce ne soit évidemment pas celle de Kedlaya–Umans. Merci aussi à l’INRIA et à Sorbonne Université
pour avoir complété les financements de la DGA.

Je remercie les membres de l’équipeGeMSS : Antoine Casanova , Gilles Macario-Rat et
JacquesPatarin . En particulier, merci à Jacques pour nos échanges surGeMSS, et sur HFE plus
généralement. C’est très motivant de discuter avec le créateur deHFE en personne.

Maintenant, je souhaite remercier toute l’équipe PolSys pour son accueil chaleureux. Merci
à Mohab Safey El Din que je connais depuis ma L2 Parcours Informatique et Mathématiques
Appliquées (PIMA), et qui aura accentué mon goût pour l’implantation efficace. Nous aurons eu des

i

discussions très intéressantes sur le sujet durant ma thèse. Merci à GuénaëlRenault de m’avoir
donné, dès la L3, le goût de la cryptographie ainsi que la manière de penser « crypto ». Si le
master Sécurité, Fiabilité et Performance du Numérique (SFPN) n’avait pas été créé, j’aurais sans
doute privilégié un master en mathématiques. . . un chemin bien différent ! Et merci pour tes visites
toutes fort sympathiques, et très instructives pour résoudre certains problèmes. Merci à Jérémy
Berthomieu de m’avoir enseigné le calcul formel. Tes enseignements resteront sans aucun doute ma
partie préférée du master SFPN, et j’ai bien aimé toutes nos conversations, qui auront été fortement
utiles pour ma thèse. Cela implique de te remercier pour ta grande disponibilité ! En somme, les
permanents dePolSys auront grandement contribué à tout ce que je sais faire aujourd’hui. Et je
n’oublie pas ÉliasTsigaridas , qui aura toujours eu un mot gentil en entrant dans mon bureau ! Je
remercie notre ancien gestionnaire financier, IrphaneKhan , qui a toujours fait du très bon travail,
et cela avec une grande humanité. Je remercie les ingénieurs KonstantinKabassanov et Pierre-
Emmanuel Le Roux pour la qualité de leur service. Difficile de lancer des tests de performance
avec un serveur hors-service ou avec une fiche de chargeur d’ordinateur portable défectueuse !

Je remercie aussi les permanents des autres équipes du troisième étage du couloir 26-00. Je remer-
cie Stef Graillat pour toutes ces conversations si sympathiques. Je remercie également Fabienne
Jézéquel pour nos quelques discussions en salle de convivialité. Je remercie PierreFortin pour
avoir si bien enseigné le calcul haute performance quand j’étais en master SFPN, ainsi que pour
nos discussions en la matière. Je n’aurai, hélas, pas eu l’opportunité de coder en AVX-512 ! Mais
ce n’est que partie remise. Je remercie ValérieMénissier-Morain pour ses conseils, tant sous la
casquette de vice-présidente de l’enseignement que sous celle de vice-directrice du master SFPN.
Je la remercie aussi pour toutes les anecdotes qu’elle m’aura racontées. Je remercie Jean-Marie
Chesneaux qui m’aura beaucoup appris quand j’enseignais LI217 (alias 2I011), et cela pendant
deux années consécutives ! Je te remercie également d’avoir participé à mon comité de suivi de thèse,
et de m’avoir fait part de tes conseils avisés avec une grande honnêteté. Je n’oublie pas Christoph
Lauter , qui en plus d’avoir dirigé LI217, m’aura lui-même donné le goût du calcul scientifique lors
de ma L2. Je remercie JulienTierny pour sa légendaire bonne humeur lors de nos nombreuses
rencontres inopinées. Et plus largement, merci à DominiqueBéréziat et à Marc Mezzarobba
pour nos quelques échanges.

L’enseignement aura été une part importante de ma thèse, et sans doute la plus grande source
de joie qu’elle m’ait apportée. Ayant déjà remercié la plupart des enseignants que j’ai rencontrés, je
termine le travail ici. Je remercie DamienVergnaud pour ses cours très intéressants d’introduction
à la sécurité. J’ai appris (et renforcé) pas mal de choses grâce à cela (incluant ton fameux livre).
Je remercie StéphaneDoncieux qui m’aura fait vivre l’organisation d’une UE aussi énorme que
LU2IN018 (C avancé), FrançoisBouchet pour le partage de son expérience de l’UE, et mon chargé
de TME Daniel pour sa bonne volonté. Un immense merci à tous mes étudiants, pour avoir égayé
mes journées. Vous instruire aura été ce qu’il y a de plus motivant durant ma thèse, et je vous
souhaite à tous d’exceller. J’adresse un petit clin d’œil à tous les étudiants en licence PIMA et en
master SFPN que j’ai rencontrés, ainsi qu’aux étudiants en spécialité MAIN de Polytech Sorbonne.
Pour ces derniers, j’ai grandement apprécié d’enseigner à un public de type ingénieur.

Les formations doctorales auront été un autre aspect de ma thèse, parfois un peu folklorique.
Je remercie le formateur du PSC1, Catherine pour ses excellentes formations de communication
et lecture rapide, puis Anne de l’association EnAct pour sa formation très originale d’expression
avec aisance grâce au théâtre. Histoire ! Raconte ! Je remercie aussi tous les doctorants que j’ai
rencontrés dans ce contexte, avec une petite pensée pour Sigrid qui m’aura appris ce que sont les
cyanobactéries et leur utilité.

ii

Je me souviens d’une expérience très enrichissante. Ma conférence à Atlanta (CHES 2019), qui
fut mon premier voyage à l’étranger seul. Il y a un grand nombre de personnes que j’ai croisées
ou rencontrées durant ce voyage, et je souhaite toutes les remercier, même celles qui n’ont aucune
chance de lire un jour ce passage. Je suis satisfait d’avoir rencontré la petite communauté française
en cryptographie à CHES 2019, auWestin Peachtree Plaza, et j’ai une pensée pour chaque personne
rencontrée. En particulier, merci à Luk Bettale qui est également l’un de mes prédécesseurs en
HFE ! Après avoir tant lu ta thèse, ce fut finalement à mon tour d’écrire la mienne. Et merci à
Pierre-Alain Fouque pour l’organisation de cette belle conférence. Je conclus les remerciements de
ce voyage en remerciant l’un de mes sympathiques étudiants que j’ai croisé juste avant de rentrer
dans l’avion (quelle coïncidence !), et Matthieu, pour cette super conversation dans l’avion alors
que tout le monde préférait dormir. Quelle coïncidence d’avoir pour voisin un étudiant en master
Mathématiques, Informatique de la Cryptologie et sécurité (MIC) qui semble partager pas mal de
points communs et centres d’intérêts.

J’en viens alors à mes chers camarades. Et oui, j’ai encore des mercis en réserve à distribuer !
D’abord à Matías pour avoir été un bon camarade de bureau, pour avoir élargi ma culture musicale,
et pour avoir voulu m’aider quand il pensait (pour ne pas dire savait) que je n’allais pas fort. ¡La vida
es dura e injusta! Puis à Paola, qui semble connaître Atlanta mieux que moi ! (Ultime coïncidence
de te rencontrer peu après mon voyage.) J’ai été ravi de partager avec toi ma connaissance de
HFE (le tableau s’en souvient encore), et j’ai été très satisfait de t’accueillir en 26-00-315. Sans le
savoir, ta bonté et ta manière naturelle de penser auront grandement contribué à ma construction
personnelle. Et je te remercie de m’avoir rappelé ce qui est le plus important. Je tâcherai de ne
jamais l’oublier. Un dernier mot à Rémi, qui est selon moi un digne successeur de 26-00-315. Nous
n’aurons pas vraiment eu l’occasion de partager ce bureau, mais cela aura été un grand plaisir de
parler par écrit de la multiplication dans les corps premiers. Et puis, la nouvelle disposition du
bureau me semble très prometteuse ! Je n’oublie pas mes camarades de 26-00-326, où j’ai passé mes
deux premiers mois. Ma chère Éliane. Je me souviens encore de mon premier jour auLIP6 1. Une
époque où l’anglais devait parfois prendre la place du français, et qui est révolue aujourd’hui. En
tant d’années, je ne compte plus nos conversations surHFE. Je suis content d’avoir pu côtoyer une
mathématicienne ayant un cœur aussi pur, et je te remercie donc pour ton bon cœur. Je remercie
également ton amie Nelly ! Viens ensuite Olive. La première fois où je suis (vraiment) forcé de
communiquer en anglais. Cela n’aura pas été facile au début, mais mon anglais s’est amélioré grâce
à toi. Te retournant l’ascenseur, je te laisse le soin de traduire ce passage. On aura eu quelques
fous rires, je vois encore le ventilateur de table s’exploser contre le sol. Ton sens de l’humour mérite
nettement des remerciements. Finalement, il reste Solane, qui techniquement n’a fait que récupérer
mon bureau. . . Je te remercie pour l’attention que tu as pu me porter, ainsi que pour nos nombreuses
conversations (sur une palette très large de sujets) !

Pour ce qui est des membres du bureau 26-00-325, je remercie Léo pour nos conversations
sophistiquées sur l’optimisation de l’utilisation du processeur. C’est rare de voir quelqu’un aussi
motivé par le sujet. Mon cher Guillaume, je suis très satisfait de toutes ces fois où je suis passé
discuter à ton bureau. Une petite pensée à Charles qui avait toujours des discours intéressants, peu
importe le sujet. Je n’oublie pas Jules qui aura quitté le couloir pour de nouvelles aventures (dans
le couloir d’à côté). Je remercie le duo de stagiaires Léa et Joseph, puis le trio de stagiaires Arthur,
Céline et Élodie, pour toutes nos conversations. Une pensée spéciale à Arthur qui aura été là alors
que la plupart de mes camarades avaient déjà quitté le laboratoire. Je te décerne le titre honorifique
de camarade de fin de thèse.

1Laboratoire d’Informatique de Sorbonne Université, jadis appelé Laboratoire d’Informatique de Paris 6.

iii

Je termine par les trois bureaux restants. Rachel, we did not spend a lot of time together. But
I miss your British accent, as well in French as in English! It was really a pleasure to talk to you.
Aniss, chacune de nos discussions aura été emplie de ta grande sympathie. Et Mathieu, merci pour
tes explications si sophistiquées, notamment sur les théories justifiant un manque de diversité dans
le code génétique humain.

Une pensée va également au quatrième étage du couloir 24-25, à Lucas et Jérôme mes anciens
camarades de la spécialité SFPN, et à ce cher Vincent dont les visites auront toujours été les
bienvenues.

Je suis content d’avoir croisé les PIMA de ma génération : Anne-Élisabeth, Arthur, Mickael, et
même Malik (quelle surprise) ! Sans oublier ces super pauses café avec ce très cher Étienne ! Et ces
quelques rencontres inopinées avec Pierre.

Mon cher Baptiste, que ce soit en tant que fidèle binôme de projet, camarade PIMA et SFPN,
ou en tant qu’ami, je te remercie pour tous ces moments que nous avons passés ensemble. Ce fut
toujours une bonne surprise de te voir passer au bureau.

Je remercie tous mes amis, avec en particulier quelques remerciements anonymisés. Je remercie
mon frère spirituel, ainsi que sa famille, pour tous ces super moments passés avec eux. Je remercie
mon ami de longue date, ce cher Envy, qui m’aura sauvé plus d’une fois lors des coupures réseaux de
ma Picardie natale (au moins, nous nous serons revus avant mon départ à CHES 2019). Je remercie
un certain professeur des écoles avec qui le nouvel an (mais pas que) aura toujours été un bon
moment. Je remercie ma professeur d’anglais préférée, pour son amitié et ses conseils en anglais.
Je remercie quelques amis de lycée pour des discussions épiques dans le train. Que des amis de
Picardie au final. Bien évidemment, d’autres périphrases me viennent à l’esprit. . . et je les remercie
tout particulièrement pour leur patience en mon absence.

Je conclus en remerciant tous les doctorants, contractuels, stagiaires et post-doctorants que
j’aurai rencontrés durant ma thèse. Comme le bouquet final des feux d’artifice, je fais fuser les
prénoms : Iryna, Amine, Reine, Nagarjun, Clothilde, Anastasia, Thi Xuan, Huu Phuoc, Andrew,
Jorge, Ramtin, Trung-Hieu, Clara, Marie et Jérémie.

J�e �v�o�u	s �r�e�m�e�r�c�i�e �t�o�u	s �d�’�a�v�o�i�r� �Ø�t�Ø �l�à�. J’�a�i� �Ø�t�Ø �e�n� �t�r�Ł
s �b�o�n�n�e �c�o�m	p�a�g�n�i�e �d�u�r�a�n�t �t�o�u�t�e
s

�c�e
s �a�n�n�Ø�e
s.

J�o�c�e�l�y�n�

iv

Table of Contents

Acknowledgments i

1 Introduction 1
1.1 Previous Work . 3
1.2 Organization of the Document . 4
1.3 Contributions . 5

I Preliminaries 11

2 Multivariate Cryptography 13
2.1 Public-Key Cryptography and NP-Completeness . 13
2.2 Introduction to Multivariate Cryptography . 14
2.3 MI-Based Public-Key Cryptography . 15

2.3.1 Keypair Generation . 15
2.3.2 Signing Process . 16
2.3.3 Verifying Process . 17

2.4 Families of Trapdoor . 17
2.4.1 Big Field Family . 18
2.4.2 Unbalanced Oil and Vinegar (UOV) . 20
2.4.3 Rainbow . 21

3 Public-Key Compression of Signature Schemes 23
3.1 Dual Keypair Generation . 23
3.2 Dual Signing Process . 24
3.3 Merkle Tree . 26
3.4 Dual Verifying Process . 27
3.5 Security . 29
3.6 SBP Transformation of MI-Based Signature Schemes 31

4 Cryptanalysis Techniques 35
4.1 Metrics and NIST Security Strength Categories . 35
4.2 Generic Attack and Feistel–Patarin Construction . 37
4.3 Direct Signature Forgery Attacks . 38

4.3.1 Exhaustive Search . 39

v

4.3.2 Approximation Algorithm . 39
4.4 Gröbner Bases . 40

4.4.1 Practically Fast Algorithms . 40
4.4.2 Asymptotically Fast Algorithms . 42

4.5 Direct Attack against Approximate PoSSo . 43
4.6 Key-Recovery Attacks againstHFE . 44

4.6.1 Exhaustive Search and Equivalent Keys . 44
4.6.2 MinRank . 45
4.6.3 Kipnis–Shamir Attack . 45

4.7 Side-Channel Attacks . 46

5 Arithmetic 49
5.1 Basic Arithmetic in the Polynomial Ring Fq[x] . 51

5.1.1 Addition and Subtraction . 51
5.1.2 Multiplication . 51
5.1.3 Squaring . 53
5.1.4 Euclidean Division . 53

5.2 Representation of Finite Field Extensions . 54
5.2.1 Polynomial Representation . 55
5.2.2 Representation using Normal Bases . 55

5.3 Arithmetic in Binary Fields . 55
5.3.1 Boolean Arithmetic . 56
5.3.2 Irreducibility Conditions of Binary Polynomials 56
5.3.3 Modular Reduction by Sparse Polynomials overF2 57
5.3.4 Modular Reduction by Cyclotomic Polynomials overF2 58

5.4 Advanced Arithmetic in Fq[x] . 59
5.4.1 Extended Euclidean Algorithm . 59
5.4.2 Modular Inversion . 61
5.4.3 Univariate Evaluation and Modular Composition 61
5.4.4 Multipoint Evaluation of Univariate Polynomial Systems 63
5.4.5 Frobenius Map . 64
5.4.6 Frobenius Trace . 66
5.4.7 Split Root Finding in Characteristic Two . 68
5.4.8 Root Finding . 70

6 Software Implementation 71
6.1 Hardware Considerations . 71

6.1.1 Processor . 71
6.1.2 Memory Cache . 72
6.1.3 Vector Instructions . 73
6.1.4 Compiler Flags . 75

6.2 Experimental Platform and Tools . 76
6.2.1 Library and Software . 76
6.2.2 Platform and Benchmarking Methodology . 77

6.3 Constant-Time Implementation . 77
6.3.1 Variable-Time Instructions . 77

vi

6.3.2 Constant-Time Conditional Statements . 78
6.3.3 Constant-Time Use of Tables . 79

II Main Contributions 81

7 GeMSS – a Gr eat Multivariate Short Signature 83
7.1 General Algorithm Specification (Round 3) . 83

7.1.1 Parameter Space . 83
7.1.2 Secret-Key and Public-Key . 84
7.1.3 Signing Process . 86
7.1.4 Verification Process . 87

7.2 List of Parameter Sets . 87
7.2.1 Parameter Sets for a Security of2128 (Level I) 88
7.2.2 Parameter Sets for a Security of2192 (Level III) 88
7.2.3 Parameter Sets for a Security of2256 (Level V) 89

7.3 Design Rationale . 89
7.4 Implementation . 90

7.4.1 Data Representation . 90
7.4.2 Representation of the Secret-Key . 90
7.4.3 Generating Invertible Matrices . 91
7.4.4 Constant-Time Gaussian Elimination . 92
7.4.5 GeneratingHFEv Polynomials . 93
7.4.6 Public-Key Generation via Quadratic Forms 93
7.4.7 Public-Key Generation by Evaluation-Interpolation 93
7.4.8 Packed Representation of the Public-Key . 94
7.4.9 Parallel Arithmetic in F2,F16 and F256 . 96
7.4.10 Choice of the Field Polynomial forF2d ext . 98
7.4.11 Constant-Time GCD of Polynomials . 98
7.4.12 Constant-Time Root Finding . 98
7.4.13 About the Use of Hash Functions . 99

7.5 Detailed Performance Analysis . 99
7.5.1 Experimental Platform . 99
7.5.2 Third-Party Open Source Library . 99
7.5.3 Reference Implementation . 100
7.5.4 Optimized (Haswell) Implementation . 101
7.5.5 Additional (Skylake) Implementation . 102
7.5.6 MQsoft . 103
7.5.7 Space . 105
7.5.8 How Parameters Affect Performance . 105

7.6 Expected Strength in General . 105
7.6.1 Number of Iterations . 106
7.6.2 Existential Unforgeability against Chosen Message Attack 106
7.6.3 Signature Failure . 108

7.7 Security . 108
7.7.1 Minimum Number of Equations . 109

vii

7.7.2 Trade-Off between Number of Equations and Number of Iterations 110
7.7.3 Experimental Results forHFEv- . 113
7.7.4 Minimum Number of Vinegar Variables . 116
7.7.5 Choice of Degree and Number of Modifiers 116

7.8 Design . 118
7.8.1 Set 1 of Parameters:GeMSS . 119
7.8.2 Set 2 of Parameters:RedGeMSS . 119
7.8.3 Set 3 of Parameters:BlueGeMSS . 119
7.8.4 Set 4 of parameters:WhiteGeMSS . 120
7.8.5 Set 5 of parameters:MagentaGeMSS . 120
7.8.6 Set 6 of parameters:CyanGeMSS . 120
7.8.7 A Family of Parameters for Low-End Devices 120
7.8.8 FGeMSS(dext) . 121
7.8.9 SparseGeMSS . 122
7.8.10 An Exhaustive Table for the Choice of the Parameters 122

7.9 Advantages and Limitations . 126
7.10 MI-Based Cryptography in the NIST PQC Standardization Process 126

8 DualModeMS – a Dual Mode for Multivariate-Based Signatures 131
8.1 General Algorithm Specification . 131

8.1.1 Parameter Space . 131
8.1.2 Cryptographic Operations . 132
8.1.3 Implementation . 132

8.2 List of Parameter Sets . 133
8.2.1 Parameter Sets for a Security of2128 (Level I) 133
8.2.2 Parameter Sets for a Security of2192 (Level III) 133
8.2.3 Parameter Sets for a Security of2256 (Level V), Version 1 133
8.2.4 Corrected Parameter Sets for a Security of2256 (Level V) 133

8.3 Design Rationale . 134
8.4 Detailed Performance Analysis . 134

8.4.1 Time . 134
8.4.2 Time (Updated) . 135
8.4.3 Time (Final Version) . 135
8.4.4 Space . 135

8.5 Security and Selection of Parameters . 136
8.5.1 Existential Unforgeability against Chosen Message Attack 136
8.5.2 Approximate PoSSo and Selection of Parameters 137
8.5.3 Safe Extension of the Dual Mode for Vulnerable Inner Layers 138
8.5.4 Minimizing the Size Public-Key Plus Signature 140
8.5.5 Smaller Signatures . 141

8.6 Design . 142
8.6.1 RedDualModeMS . 142
8.6.2 Dual GeMSS . 143
8.6.3 Dual Rainbow . 143
8.6.4 Performance with a Smaller Secret-Key . 144

8.7 Comparison ofDualModeMS to Other Signature Schemes 144

viii

8.8 Advantages and Limitations . 145

9 MQsoft – a Fast Multivariate Cryptography Library 147
9.1 Data Structure . 151
9.2 Arithmetic in F2d ext . 152

9.2.1 Polynomial Squaring overF2 . 153
9.2.2 Polynomial Multiplication over F2 . 154
9.2.3 Modular Reduction by Trinomials over F2 and Field Product 156
9.2.4 Modular Reduction by Pentanomials overF2 161
9.2.5 Multi-Squaring in F2d ext . 162
9.2.6 Modular Inverse inF×

2d ext . 163
9.2.7 Performance of the Arithmetic in F2d ext . 164

9.3 Efficient Implementation of Root Finding over F2d ext 166
9.3.1 Polynomial Squaring overF2d ext . 166
9.3.2 Polynomial Multiplication over F2d ext . 167
9.3.3 Polynomial Euclidean Division overFqd ext and Sparse Divisors 168
9.3.4 Modular Composition of Polynomials overF2d ext 174
9.3.5 Frobenius Map inF2d ext [X] . 174
9.3.6 Greatest Common Divisor of Polynomials overF2d ext 176
9.3.7 Performance of the Root Finding Algorithm overF2d ext 177

9.4 Generation and Evaluation of MQ Systems . 178
9.4.1 Generating the Components of aHFEv Polynomial 178
9.4.2 Evaluation of a MQ Polynomial over F2 . 180
9.4.3 Variable-Time Evaluation of MQ Systems overFq 182
9.4.4 Implementing an Efficient Evaluation of MQ Systems over F2 183
9.4.5 Multipoint Evaluation of a MQ Polynomial 186

9.5 Multipoint Evaluation of Univariate Polynomial Systems 189
9.5.1 Multiplication in Fqκ and Accumulators . 189
9.5.2 Structured Evaluation Point Set . 190
9.5.3 Random Evaluation Point Set . 190

9.6 Performance ofMQsoft (Final Version) . 192
9.6.1 Detailed Performance ofHFE-Based Keypair Generation 192
9.6.2 Performance ofHFE-Based Schemes . 193
9.6.3 Performance of the Dual Mode . 193

10 Approximate PoSSo 197
10.1 Reduction from APoSSo to Generalized MinRank . 197
10.2 Double Reduction betweenAPoSSo and PoSSo . 202
10.3 Experimental Attacks on APoSSo . 205

Conclusion 209

Bibliography 213

ix

Appendices 229

A Size of MI-Based NIST Candidates 231

B More Algorithms in Fq[x] 235
B.1 Karatsuba-Like Formulae . 235
B.2 Euclidean Division without Computing the Remainder 236
B.3 Newton Iteration . 236
B.4 FFT Variant of the Polynomial Evaluation . 237
B.5 Frobenius Map, Right-to-Left Version . 238
B.6 Structured Exponentiation and Frobenius Norm . 238
B.7 Degree-Two Split Root Finding in Characteristic Two 240
B.8 Constant-Time GCD for Berlekamp’s Algorithm . 244
B.9 List of Irreducible Polynomials over F2 . 246
B.10 Proof of Lemma 9 . 246

C Addition Chains for the ITMIA 247

Abstract 250

x

List of Acronyms

AOP All One Polynomial
AVX Advanced Vector Extensions
CHES Cryptographic Hardware and Embedded Systems
CPI Cycle Per Instruction
CPU Central Processing Unit
DGA Direction Générale de l’Armement
ECC Elliptic Curve Cryptography
ESP Equally Spaced Polynomial
EUF-CMA Existential UnForgeability against Chosen Message Attack
FFT Fast Fourier Transform
GB gigabytes
GCC GNU Compiler Collection
GCD Greatest Common Divisor
GNU GNU’s Not Unix!
HPFA High-Performance Finite Field Arithmetic
kB kilobytes
KiB kibibytes
LTS Long Term Support
MB megabytes
MiB mebibytes
MQ Multivariate Quadratic
NESSIE New European Schemes for Signature, Integrity and Encryption
NIST National Institute of Standards and Technology
NP Non-deterministic Polynomial time
OS Operating System
PhD Philosophiae Doctor
PIT Polynomial Identity Testing
PQC Post-Quantum Cryptography
RAM Random-Access Memory
RISC Reduced Instruction Set Computer
SBP Szepieniec–Beullens–Preneel
SIMD Single Instruction on Multiple Data
SSE Streaming SIMD Extensions
SSSE Supplemental Streaming SIMD Extensions
SWAR SIMD Within A Register

xi

AES Advanced Encryption Standard
AMQ Approximate MQ
APoSSo Approximate PoSSo
EIP Extended Isomorphism of Polynomials
FGeMSS Family GeMSS
FLINT Fast Library for Number Theory
GeMSS Great Multivariate Short Signature
GMP GNU Multiple Precision Arithmetic Library
GMR Generalized MinRank
HFE Hidden Field Equations
HTTPS HyperText Transfer Protocol Secure
HW Hamming weight
ITMIA Itoh–Tsujii Multiplicative Inversion Algorithm
LUOV Lifted Unbalanced Oil and Vinegar
MAC Message Authentication Code
MI Matsumoto–Imai
MQDSS MQ Digital Signature Scheme
NTL Number Theory Library
PKP-DSS Permuted Kernel Problem – Digital Signature Scheme
PoSSo Polynomial System Solving
RSA Rivest–Shamir–Adleman
SHA Secure Hash Algorithm
SHAKE Secure Hash Algorithm Keccak
SRA Successive Resultant Algorithm
SSL Secure Sockets Layer
TLS Transport Layer Security
UOV Unbalanced Oil and Vinegar
XKCP eXtended Keccak Code Package
XL eXtended Linearization

xii

List of Figures

1.1 Dependencies between the chapters. 4
1.2 (Figure 9.1) Dependencies between the different operations performed inMQsoft. . . 7

3.1 Merkle tree. 26
3.2 Security model of the dual mode. 30

5.1 Dependencies between the different arithmetic operations in characteristic two. . . . 50

7.1 Example of hybrid representation of a MQ system of 10 equations in 3 variables. . . 95

9.1 Dependencies between the different operations performed inMQsoft. 149
9.2 Example of (truncated) matrix F ∈M5

(
F2d ext

)
for D = 18 and s = 3 173

10.1 Degree of regularity ofAPoSSo(2, r + 1 , m, m, 2, r) in function of m − r 205
10.2 Degree of regularity ofAPoSSo(256, r + 1 , 2m, m, 2, r) in function of m − r 206
10.3 Degree of regularity ofAPoSSo(256, r + 1 , 17, 16, 2, r) in function of r 207

xiii

List of Tables

1.1 Performance ofGeMSS128 at the first round of the NIST PQC standardization process,
followed by the speed-up between the other rounds and the first round. 8

1.2 Performance ofRedGeMSS128 at the second round of the NIST PQC standardization
process, followed by the speed-up between the other rounds and the second round. . 8

1.3 Performance ofBlueGeMSS256 at the second round of the NIST PQC standardization
process, followed by the speed-up between the other rounds and the second round. . 8

1.4 (Table 9.27) Number of megacycles for each cryptographic operation with our library
for a Skylake processor (LaptopS), followed by the speed-up between the best imple-
mentation provided for the NIST submissions (Table 7.37) versus our implementation. 9

1.5 (Table 8.3) Number of megacycles for each cryptographic operation ofDualModeMS
with our implementation, for a Skylake processor (LaptopS), followed by the speed-
up between the Skylake implementation from [84] versus our implementation. 9

2.1 Theoretical probability of finding s distinct roots for a random HFE polynomial in an
extension field (s 6 D), followed by experimental tests. 20

3.1 Comparison of the inner and outer layers ofMI-based schemes, as proposed in [157, 25]. 33

4.1 NIST security strength categories. 36
4.2 Estimation of NIST security strength categories. 36
4.3 Degree of regularity ofm semi-regular quadratic boolean equations inm variables. . 41
4.4 Degree of regularity in the case ofHFE algebraic systems. 41

5.1 Complexity of main operations on degree-d elements ofFqd ext [x]. 50
5.2 Main operations in F2. 56

6.1 Cost of vector instructions on Intel processors. 75
6.2 Processors. 77
6.3 OS and memory. 77

7.1 Performance ofGeMSS for a 128-bit security level, with MQsoft. 88
7.2 Performance ofGeMSS for a 192-bit security level, with MQsoft. 88
7.3 Performance ofGeMSS for a 256-bit security level, with MQsoft. 89
7.4 Irreducible trinomials xdext + xk1 + 1 defining F2d ext for GeMSS. 98
7.5 Performance of the reference implementation. We use a Skylake processor (LaptopS). 100
7.6 Performance of the optimized implementation. We use a Haswell processor (ServerH).101

xv

7.7 Performance of the additional implementation. We use a Skylake processor (LaptopS).102
7.8 Performance ofMQsoft. We use a Skylake processor (LaptopS). 103
7.9 Performance ofMQsoft. We use a Haswell processor (ServerH). 104
7.10 Memory cost ofGeMSS. 105
7.11 Complexity of solving a multivariate quadratic system of m equations in m variables

in F2, with the exhaustive search. 109
7.12 Lower bound on the complexity of solving a multivariate quadratic system ofm

equations in m variables in F2, with asymptotically fast algorithms. 109
7.13 Lower bound on the complexity of finding a collision with a generic attack (Lemma 4).111
7.14 Minimum ratio of the cost of evaluating a boolean system ofm equations in m

variables by that of SHA-3. 112
7.15 Lower bound on the complexity of finding a collision with the generic attack (Equa-

tion (7.4)). 113
7.16 HFE- with D = 4 ; 32 and 41 equations. 114
7.17 HFE- with D = 17; 32 and 41 equations. 114
7.18 HFEv with D = 6 and 32 equations. 115
7.19 HFEv with D = 9 and 25 equations. 115
7.20 HFEv with D = 16; 25 and 32 equations. 115
7.21 Values of∆ and v which achieve the security levels againstMinRank-based attacks. . 116
7.22 Values ofv which achieve the security levels againstMinRank-based attacks, for∆ = 0 .116
7.23 Lower bound on the complexity of the Support Minors technique against parameters

of round 2 proposals ofGeMSS. 117
7.24 Smallest degree of regularity required (ω = 2). 117
7.25 Number of modifiers required inGeMSS. 118
7.26 Summary of the parameters ofGeMSS. 119
7.27 Summary of the parameters ofRedGeMSS. 119
7.28 Summary of the parameters ofBlueGeMSS. 119
7.29 Summary of the parameters ofWhiteGeMSS. 120
7.30 Summary of the parameters ofMagentaGeMSS. 120
7.31 Summary of the parameters ofCyanGeMSS. 120
7.32 Slight modification of GeMSS for low-end devices. 121
7.33 Parameters ofFGeMSS. 121
7.34 Performance of an exhaustive set of security parameters achieving the level I, with

MQsoft. 123
7.35 Performance of an exhaustive set of security parameters achieving the level III, with

MQsoft. 124
7.36 Performance of an exhaustive set of security parameters achieving the level V, with

MQsoft. 125
7.37 Performance in megacycles ofGeMSS and Gui best implementations submitted to the

first round of the NIST PQC standardization process. 127
7.38 Size of the keys and signature of theHFEv--based schemes submitted to the NIST

PQC standardization process, as well asQUARTZ from the NESSIE project [145]. . . 128
7.39 Size of the keys and signature ofRainbow submitted to the NIST PQC standardiza-

tion process. 129

xvi

8.1 Performance ofDualModeMS128 at the first round of the NIST PQC standardization
process. 134

8.2 Number of megacycles for each cryptographic operation ofDualModeMS with the
version of MQsoft used in [84]. 135

8.3 Number of megacycles for each cryptographic operation ofDualModeMS with our
implementation, for a Skylake processor (LaptopS), followed by the speed-up between
the Skylake implementation from [84] versus our implementation. 135

8.4 Memory cost of DualModeMS. 136
8.5 Size of the keys and signature of the inner and dual modes. 142
8.6 Size of the keys and signature of the dual mode ofBlueGeMSS and RedGeMSS. 143
8.7 Size of the keys and signature of the dual mode ofRainbow. 143
8.8 Performance of the dual mode in function ofγ. 144
8.9 Comparison of the dual mode to the second round candidates (exceptPKP-DSS [23]),

for a 128-bit security level. 145

9.1 (Table 9.27) Number of megacycles for each cryptographic operation with our library
for a Skylake processor (LaptopS), followed by the speed-up between the best imple-
mentation provided for the NIST submissions (Table 7.37) versus our implementation.149

9.2 Performance of thePCLMULQDQ instruction in function of the architecture, as pre-
sented in the Intel Intrinsics Guide. 153

9.3 Number of cycles for computing the square of an element ofF2[x] of degreedext− 1,
with MQsoft. 154

9.4 Number of cycles to multiply two elements ofF2[x] of degreedext − 1. 156
9.5 Number of cycles to compute the modular reduction of an element ofF2[x] of degree

2dext − 2 by xdext + xk1 + 1 , with MQsoft. 158
9.6 Number of cycles to compute the multiplication in F2d ext in function of the modular

reduction, with MQsoft. 158
9.7 Number of cycles to compute the squaring inF2d ext in function of the enabled in-

structions, with MQsoft. We use a Skylake processor (LaptopS). 159
9.8 Number of cycles to compute the squaring inF2d ext in function of the enabled in-

structions, with MQsoft. We use a Haswell processor (ServerH). 159
9.9 Number of cycles to compute the modular reduction of a square, the squaring in

F2d ext and the inverse inF×
2d ext , in function of dext and k1, with MQsoft. 160

9.10 Number of cycles to compute the modular reduction of an element ofF2[x] of degree
2dext−2 by xdext + xk3 + xk2 + xk1 + 1 or xdext + xk1 + 1 , with MQsoft and the SSSE3
instruction set. 162

9.11 Number of cycles by operation inF2d ext . We use a Skylake processor (LaptopS). . . . 165
9.12 Number of cycles by operation inF2d ext , for [30] (Haswell Core i7-4770 CPU at 3.4

GHz) and MQsoft (LaptopS). 165
9.13 Number of megacycles to compute the multiplication of twoD -coefficient polynomials

over F2d ext . We use a Skylake processor (LaptopS). 168
9.14 Impact of d = D(H) on both the cost of Algorithm 37 and D Exp

reg the degree of
regularity of the corresponding HFE algebraic system of 30 equations in 30 variables
over F2. 172

9.15 Degree of regularity in the case ofHFE algebraic systems ofm equations inm variables
over F2, in function of s. 172

xvii

9.16 Number of megacycles to compute the remainder of the Euclidean division of a
degree-(2D − 2) polynomial by a degree-D monic polynomial over F2d ext . We use a
Skylake processor (LaptopS). 174

9.17 Number of megacycles to compute the modular composition of twoD -coefficient
polynomials modulo a monic HFE polynomial of degreeD over F2d ext . We use a
Skylake processor (LaptopS). 175

9.18 Number of megacycles to compute the Frobenius map modulo aHFE polynomial over
F2d ext . We use a Skylake processor (LaptopS). 176

9.19 Number of megacycles to compute the GCD of two polynomials of degreeD and
D − 1 over F2d ext . We use a Skylake processor (LaptopS). 176

9.20 Number of megacycles to find the roots of aHFE polynomial of degreeD over F2d ext .
We use a Skylake processor (LaptopS). 177

9.21 Number of kilocycles to evaluate a MQ system ofm equations in m variables over
F2. We use a Haswell processor (ServerH) with the AVX2 instruction set. 186

9.22 Number of kilocycles to evaluate a MQ system ofm equations in m variables over
F2. We use a Skylake processor (DesktopS) with the AVX2 instruction set. 186

9.23 Performance of the evaluation ofα = 1 MQ equation in Fq[x1, . . . , xn var] in σ points. 188
9.24 Performance of the evaluation of a univariate polynomial of degreeDMAC over F2κ ′ in

τ points. 190
9.25 Performance of the evaluation of univariate polynomial systems of degreeDMAC over

F2κ ′ . 192
9.26 Number of megacycles for main steps of the keypair generation with our library. We

use a Skylake processor (LaptopS). 192
9.27 Number of megacycles for each cryptographic operation with our library for a Skylake

processor (LaptopS), followed by the speed-up between the best implementation
provided for the NIST submissions (Table 7.37) versus our implementation. 193

9.28 Performance of the inner mode in megacycles. We use a Skylake processor (LaptopS),
with PCLMULQDQ and the AVX2 instruction set. 194

9.29 Performance of the dual mode in megacycles. We use a Skylake processor (LaptopS),
with PCLMULQDQ and the AVX2 instruction set. 195

9.30 Performance of the dual mode in megacycles. We use a Haswell processor (ServerH),
with PCLMULQDQ and the AVX2 instruction set. 195

10.1 Practical dimension ofAPoSSo over F65521 , for D = 2 201
10.2 Practical dimension ofAPoSSo over F65521 , for D = 2 201

A.1 Exact size of the keys and signature of theHFEv--based schemes submitted to the
NIST PQC standardization process, as well asQUARTZ from the NESSIE project. . . 233

A.2 Exact size of the keys and signature ofRainbow submitted to the NIST PQC stan-
dardization process. 234

C.1 Proposed addition chains to minimize the number of multiplications in F2d ext 247

xviii

List of Algorithms

1 Keypair generation of MI-based schemes. 16
2 Inverse map of the public-key. 17
3 Signing process ofMI-based schemes. 17
4 Verifying process ofMI-based schemes. 17
5 Construction of a MAC polynomial. 24
6 Keypair generation in the dual mode. 25
7 Signing process in the dual mode. 25
8 Generation of 2δ Merkle trees as a truncated Merkle tree. 27
9 Generation of an authentication path. 27
10 Verification of a leaf via its authentication path and the roots. 28
11 Verifying process in the dual mode. 28
12 MI-based signature process using the Feistel–Patarin construction. 37
13 MI-based verification process using the Feistel–Patarin construction. 38
14 Left-to-right square-and-multiply exponentiation. 47
15 Constant-time left-to-right square-and-multiply exponentiation. 47
16 Polynomial Euclidean division with remainder. 53
17 Fast Euclidean division with remainder. 54
18 Traditional Euclidean algorithm. 59
19 Traditional extended Euclidean algorithm. 60
20 Polynomial evaluation using the baby-step giant-step approach. 62
21 Frobenius map using the left-to-right square-and-multiply algorithm on qk 64
22 Frobenius map using a multi-squaring table. 65
23 Frobenius trace using the left-to-right square-and-multiply algorithm on k − 1. . . . 67
24 Algorithm to find the roots of a split and squarefree monic univariate polynomial in

characteristic two. 68
25 Algorithm to find the roots of a univariate polynomial. 70
26 Variable-time conditional move from a to c, with x a boolean. 78
27 Constant-time conditional swap. 79
28 Constant-time access to thej -th element from a table T of ` elements. 79
29 Keypair generation in GeMSS. 85
30 Inversion in GeMSS. 86
31 Signing process inGeMSS. 87
32 Verifying process inGeMSS. 87
33 Constant-time Gaussian elimination on the rows of a matrix inMn

(
F2

)
. 92

34 Modified inverse map of the public-key forHFEv--based signature schemes. 107

xix

35 Generic attack against the Feistel–Patarin construction. 110
36 ITMIA for a specific addition chain. 163
37 Polynomial Euclidean division of A by a degree-D HFE polynomial over Fqd ext 169
38 Classical 64-bit implementation in C programming language of the SWAR algorithm. 181
39 Variable-time evaluation of a MQ system ofm equations in nvar variables overF2. . 182
40 Variable-time evaluation of a MQ system overF2 using the differential trick. 183
41 Constant-time evaluation of a MQ system ofm equations in nvar variables overF2. . 184
42 Improvement of Algorithm 41 with AVX2, VPMASKMOVQ and VPBROADCASTQ. 185
43 Improvement of Algorithm 41 with AVX2, VPMASKMOVQ and VPERMQ. 185
44 Multipoint evaluation of one MQ polynomial. 188
45 Horner precomputation (with a step of 4). 191
46 Horner by block for the evaluation of a degree-d univariate polynomial G in a. . . . 191
47 Polynomial Euclidean division without computing the remainder. 236
48 Newton iteration. 236
49 Polynomial evaluation using the FFT decomposition. 237
50 Frobenius map using the right-to-left square-and-multiply algorithm on qk 238
51 Itoh–Tsujii exponentiation for a specific (left-to-right) addition chain. 239
52 ITMIA for a specific (left-to-right) addition chain. 240
53 Constant-time GCD of F and H , where dh is public and df is a public upper bound

on deg(F). 245

xx

List of Definitions and Examples

Definition 1 NP-completeness . 13
Definition 2 Equivalent keys . 44
Definition 3 EUF-CMA security of a signature scheme in the random oracle model . . 106
Definition 4 EUF-CMA security of a MI-based function generator 106

Problem 1 Polynomial System Solving . 14
Problem 2 Extended Isomorphism of Polynomials . 14
Problem 3 Approximate MQ . 29
Problem 4 Approximate PoSSo . 43
Problem 5 MinRank . 45
Problem 6 Approximate PoSSo, matrix version . 197
Problem 7 Generalized MinRank . 198

Example 1 Storing a binary polynomial . 152
Example 2 Storing a dense polynomial . 152
Example 3 Storing a HFE polynomial . 152
Example 4 Square of a binary polynomial . 153
Example 5 Double product via PCLMULQDQ . 189
Example 6 Cubic root in F2d ext . 240

xxi

List of Theorems

Theorem 1 EUF-CMA security of the outer layer for σ = 1 [157] 29
Theorem 2 EUF-CMA security of the outer layer [157] 29
Theorem 3 Irreducibility conditions of an ESP [109, Theorem 3] 58
Theorem 4 Complexity of the root finding algorithm [161, Corollary 14.16] 70
Theorem 5 Choosing the number of iterations of the Feistel–Patarin construction [58] . 106
Theorem 6 EUF-CMA security of the modified HFEv--based signature scheme [148] . . 107
Theorem 7 Classical and quantum EUF-CMA security of the outer layer forσ = 1 . . 136
Theorem 8 Classical and quantum EUF-CMA security of the outer layer [157, 25] . . . 137
Theorem 9 Generic attack ofx signatures amongσ signatures 138
Theorem 10 Faster classical Euclidean division of a square by a sparseHFE polynomial . 170
Theorem 11 APoSSo(q, σ, m, nvar, D, r) 6 GMR(q, σ, m, σ · nvar, D, r) 198
Theorem 12 Dimension ofAPoSSo (with an extra assumption) 198
Theorem 13 APoSSo(q, σ, m, nvar, D, r) 6 PoSSo(q, m− r, n var, D) 202
Theorem 14 PoSSo(q, m− r, n var, D) 6 APoSSo(q, r + 1 , m, nvar, D, r) 203
Theorem 15 APoSSo(q, σ, m, nvar, D, r) ≡ PoSSo(q, m− r, n var, D) 204

Corollary 1 SafeMI-based outer layer for ultra-short inner signatures 139
Corollary 2 Dimension of APoSSo . 200
Corollary 3 Reduction from APoSSo to the minus variant of PoSSo 203

Lemma 1 Irreducibility conditions of an AOP [109, Lemma 1] 58
Lemma 2 Cost of generating a multi-squaring table . 65
Lemma 3 Cost of the Frobenius map with a precomputed table 66
Lemma 4 Complexity of the generic attack against the Feistel–Patarin construction . . 110
Lemma 5 ` minimizing CG in the lower bound (7.4) of Lemma 4 113
Lemma 6 δ minimizing the size public-key plus signature of the outer layer. 140
Lemma 7 Maximum number of nodes required to verify the Merkle leaves 141
Lemma 8 Impact of the odd degree terms of the divisor on the quotient 170
Lemma 9 Impact of the even degree terms of the divisor on the quotient 173
Lemma 10 APoSSo is in NP . 204
Lemma 11 Index ofF2-linearly dependent columns ofM 2 for irreducible trinomials . . . 241

xxiii

List of Remarks

Remark 1 . 57
Remark 2 . 58
Remark 3 . 79
Remark 4 . 84
Remark 5 . 86
Remark 6 . 91
Remark 7 . 94
Remark 8 . 94
Remark 9 . 94
Remark 10 . 95
Remark 11 . 97
Remark 12 . 99
Remark 13 . 108
Remark 14 . 108
Remark 15 . 133
Remark 16 . 144
Remark 17 . 180
Remark 18 . 187
Remark 19 . 189
Remark 20 . 195
Remark 21 . 203
Remark 22 . 203
Remark 23 . 237
Remark 24 . 244
Remark 25 . 245
Remark 26 . 245

xxv

Chapter 1

Introduction

In a world where Internet is omnipresent, the security of communications is a fundamental stake.
The rise of quantum computers has shaken the modern public-key cryptography, which is based
on the integer factorization problem [147] or discrete logarithm problem [149]. These problems
will be solved with Shor’s algorithm [152] when quantum computers are powerful enough. As a
consequence, the Transport Layer Security (TLS) cryptographic protocol will become insecure.TLS
is widely used nowadays, via theHTTPS protocol. To prevent this danger, National Institute of
Standards and Technology (NIST) started a Post-Quantum Cryptography (PQC) standardization
process. This is the first public-key cryptography standardization process for more than thirty
years. In December 2016, NIST called for proposals [127]. It resulted that eighty-two proposals
were submitted to the PQC standardization process on November 30, 2017. Among these pro-
posals, sixty-nine candidates met the minimum acceptance criteria considered by NIST. These
candidates were published on the NIST webpage on December 20, 2017 [128]. This was the be-
ginning of the first round of the NIST PQC standardization process. Candidates were divided
into two groups: forty-nine public-key encryption schemes and twenty digital signature schemes.
With my PhD advisors, we have submitted two digital signature schemes to the PQC standard-
ization process: GeMSS, a Great Multivariate Short Signature [48] (Chapter 7), and DualModeMS,
a Dual Mode for Multivariate-Based Signature [83] (Chapter 8). The GeMSS team includes other
members: A. Casanova, G. Macario-Rat and J. Patarin. GeMSS is a multivariate-based signature
scheme (Chapter 2). The public-key is a boolean multivariate quadratic system, following the
hash-and-sign paradigm. The verification of a signed document consists in evaluating this system
in the signature, and verifying if this signature is equal to the hash value (or digest) of the signed
document. The signing process consists in signing the hash value of the document.GeMSS is a
HFEv--based signature scheme (Section 2.4.1). This means that the signature is obtained as the
root of a secret univariate polynomial in an extension field (F2d ext). Another HFEv--based signature
scheme,Gui [62], was proposed to the PQC standardization process. Both schemes are similar and
vary according to the selected security parameters. NIST selectedGeMSS to move to the second
round. Other multivariate-based signature schemes were also proposed.LUOV (Lifted Unbalanced
Oil and Vinegar) [26] (Section 2.4.2) andRainbow [63] (Section 2.4.3) are schemes rather similar
to GeMSS. The fundamental difference is in the signing process, which consists in solving a secret
linear system. TheLUOV signature scheme was broken during the second round [66], because of the
lifted character of this scheme, and so did not move to the third round. These four schemes share a

1

classical property of multivariate-based schemes. The public-key is rather large, because the latter
is a multivariate quadratic system, whereas signatures are the shortest of the NIST PQC standard-
ization process. InDualModeMS, the dual mode of GeMSS, we propose to invert this trade-off. The
dual mode [157, 25] is a compression technique of public-key (Chapter 3). It is based on a proven
secure dual transformation, which allows to decrease the public-key size. On the other hand, the
signature size is large, but the sum of both sizes is smaller than the original. The technique used
in DualModeMS was very recent (July 2017 for a submission end of November). So, we proposed
the first practical implementation, based on HFEv--based signature schemes. The latter was very
challenging. The keypair generation was very long, with a time of seven hundred seconds, whereas
the signing process takes at least several seconds. Moreover, the secret-key size is about eighteen
megabytes. All these drawbacks explain thatDualModeMS did not move to the second round of
the NIST PQC standardization process. We propose drastic improvements of the dual mode in the
thesis (Chapter 8), with in particular the dual mode of Rainbow, so-calledDual Rainbow. The latter
has a very interesting trade-off between memory and practical performance. Finally, we mention a
last kind of cryptography multivariate: these which are based on the Fiat–Shamir transform [85].
MQDSS (MQ Digital Signature Scheme) [54] is a scheme of this kind. This signature size is larger
than traditional multivariate schemes, but the public-key is much shorter. NIST chose to move
MQDSS to the second round, but not to the third round. The latter knew new attacks, implying to
increase security parameters. This decreased performance, and made it uncompetitive.

Among the sixty-nine candidates, five were withdrawn during the first round. On January 30,
2019, twenty-six candidates moved to the second round of the NIST PQC standardization process
[129]. Among these candidates, nine are digital signature schemes, and four are multivariate-based
(GeMSS, LUOV, Rainbow, MQDSS). NIST proposed to submit improvements and tweaks of parameters,
until April 1 st , 2019. To respond to the comments of NIST [2], we proposed the creation ofRedGeMSS
and BlueGeMSS [49]. These are faster variants ofGeMSS. The Rainbow team proposed the creation
of cyclic Rainbow and compressed Rainbow [64]. In cyclic Rainbow, a part of the public-key is
generated from a seed. This implies a smaller public-key size. Then, the compressed version allows
to generate a part of the secret-key from a seed. Instead of storing the secret-key, the seed is used
to generate the secret-key again during each signature generation. We have been using this idea
since April 15, 2020, last deadline to submit improvements before the selection for the third round.
With this change, GeMSS is the candidate with the smallest secret-key and signature. In return,
GeMSS also has the largest public-key.

On July 22, 2020, NIST announced candidates which moved to the third round [130]. Here,
two kinds of candidates were considered. Seven candidates moved as finalist candidates, including
among themRainbow [65]. They will be considered for standardization at the end of the third round.
Then, eight candidates moved as alternate candidates, including among themGeMSS [50]. Alternate
candidates have a potential for standardization. They are still considered for standardization, but
will probably not be standardized at the end of the third round. Some of these candidates will be
selected for the fourth round, to keep studying them. Both, third and fourth rounds, should be
achieved in twelve or eighteen months.

On October 1st , 2020, improvements and tweaks of parameters were submitted to the third
round of the NIST PQC standardization process. ForGeMSS, our goal was to improve performance,
in particular on low-end devices.

2

1.1 Previous Work

GeMSS [48], Gui [62], Rainbow [63] and LUOV [26] areMI-based signature schemes [119] (Chapter 2).
The public-key is a multivariate quadratic system p ∈ Fq[x1, . . . , xn var]m

′
having the following form:

p = T ◦ F ◦ S,

with S, T ∈ Aff −1
n var

(
Fq

)
×Aff −1

m ′

(
Fq

)
being two invertible affine transformations, and F ∈ Fq[x1, . . . ,

xn var]m
′

being a multivariate quadratic system easily invertible thanks to a special shape. The
security of these schemes rely on the hardness of thePoSSo problem.

Problem 1. Polynomial System Solving(PoSSo(q, m, nvar, D)) . Let q, m, nvar and D be integers.
Given p a system of m degree-D multivariate polynomials in Fq[x1, . . . , xn var]m , the problem is to
find, if any, a vector x s in Fn var

q such that p(x s) = (0 , . . . , 0) = 0m .

In this thesis, we focus onHFE-based signature schemes [133] (Section 2.4.1). The central map
F is generated from a univariate polynomialF defined in a degree-dext extension field ofFq. The
signing process requires invertingS and T , as well as inverting F . This implies finding roots of
F . The verifying process requires evaluating the public-keyp ∈ Fq[x1, . . . , xn var]m

′
, a multivariate

quadratic system.

QUARTZ [134], Gui [144] andGeMSS [48] areHFE-based signature schemes. The signatures require
only several hundred bits, whereas the public-key is large (several hundred kilobytes (kB)). The
verifying process is very fast (several hundred nanoseconds), unlike the signing process which can
take up to several seconds. The root finding step is the core of the signing process. We use
Berlekamp’s algorithm [161, Algorithm 14.15], which is divided into three steps.

1. Computation of the Frobenius map, i.e. R2 = X qd ext − X mod F ∈ Fqd ext [X].

2. Computation of G ∈ Fqd ext [X] the GCD of R2 and F . G is split and squarefree, and contains
exclusively the roots ofF .

3. Computation of the roots of G with a split root finding algorithm.

In [157], the authors introduced a technique to invert the trade-off between public-key size
and signature size, so-called SBP transformation (Chapter 3). This technique applies toMI-based
schemes such asHFE [133] andRainbow [69]. DualModeMS [83] is the direct application of the SBP
transformation to GeMSS, and was submitted to the first round of the NIST PQC standardization
process [128]. We also submitted the first implementation of the SBP transformation, which was
rather challenging to make. For example, the keypair generation ofDualModeMS is achieved in 708
seconds for a 128-bit security level. No method is presented in [157] to implement efficiently the
SBP transformation. In this thesis, we introduce methods to make an efficient dual mode, and we
study the SBP transformation of HFE-based schemes andRainbow-based schemes.

Moreover, the SBP transformation relies on the hardness of solving a new problem: Approximate
MQ [157].

3

Problem 3. Approximate MQ (AMQ(q, σ, m, nvar, r)) .
Input. A set of quadratic polynomialsp = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m ,
σ vectors y1, . . . , yσ ∈ Fm

q and r ∈ N such that r < min(m, σ).
Question. Find x1, . . . , xσ ∈ Fn var

q such that

dim
(

Vec
(
p(x1) − y1, . . . , p(xσ) − yσ

))
6 r,

where Vec stands for the vector space generated byp(x1) − y1, . . . , p(xσ) − yσ .

When r = 0 , the AMQ problem is an instance ofPoSSo and so is hard to solve. Whenr > 0,
the authors of [157] proposed several attacks supporting that solvingAMQ should be exponential in
m − r . In particular, an instance of AMQ with m equations can be solved as an instance ofPoSSo
with m − r equations. However, the question of the hardness ofAMQ is an open question. We will
demonstrate in Chapter 10 that AMQ is hard to solve (i.e. NP-complete).

1.2 Organization of the Document

The structure of this thesis is depicted in Figure 1.1. We introduce theMI-based cryptography, as
well as HFE, in Chapter 2. In Chapter 3, we present the SBP transformation applied to MI-based
signature schemes. Then, the attacks against theHFE-based schemes and the SBP transformation
are studied in Chapter 4. In Chapter 5, we describe arithmetic in polynomial rings, whereas
supplemental techniques are deferred to Appendix B. This is followed by a description of important
considerations about software implementations and hardware operations (Chapter 6). In Chapters
7 and 8, we present respectively the NIST submissionsGeMSS and DualModeMS. These schemes are
implemented efficiently thanks to MQsoft: a fast multivariate cryptography library (Chapter 9).
Finally, we study the hardness of the APoSSo problem, on which the security of DualModeMS is
based (Chapter 10).

Chapter 4Chapter 3 Chapter 5Chapter 2 Chapter 6

Chapter 7 Chapter 8 Chapter 9 Chapter 10

Appendix B

Figure 1.1: Dependencies between the chapters.
The dotted arrows represent partial dependencies.

4

1.3 Contributions
Design and cryptanalysis. The design of secure cryptosystems such asGeMSS and DualModeMS
requires studying attacks. The security ofGeMSS is based on a vast state-of-the-art of twenty years
of cryptanalysis on HFE (Chapter 4), including exhaustive search, direct attack and key recovery.
In Section 7.7, we show how to select security parameters ofGeMSS. In particular, a fundamental
point is the choice of modifiers ofHFE, i.e. in the case ofGeMSS, the minus and vinegar modifiers.
We study the impact of such modifiers on the security ofHFE against Gröbner basis attacks, then
we deduce an experimental rule to select them. We use the Gröbner basis solver fromMagma [34] to
perform these experiments. The security ofDualModeMS is based on theAMQ problem (Problem 3),
that we generalize asAPoSSo problem (Chapter 10). We introduce several new reductions. On the
one hand, theAPoSSo problem can be reduced to theGeneralized MinRank and PoSSo problems.
This allows to attack APoSSo by using known attacks against Generalized MinRank and PoSSo,
i.e. Gröbner basis attacks. We also obtain the dimension ofAPoSSo (Corollary 2), which we permit
to know the number of variables to fix to solve APoSSo in dimension zero. The Gröbner basis
algorithms are more efficient in dimension zero.

Corollary 2. Let q, m, nvar, D, σ and r < min(σ, m) be integers,p ∈ Fq[x1, . . . , xn var]m be a system
of m degree-D polynomials in nvar variables, and p∗ ∈ Fq[x1, . . . , xn var]m be p without its constant
terms. If the polynomials of p∗ are Fq-linearly independent, and if σ · nvar > (σ− r)(m − r), then
the dimension of APoSSo(q, σ, m, nvar, D, r) instantiated with p is σ · nvar − (σ− r)(m − r).

On the other hand, we reducePoSSo to APoSSo in polynomial time, implying an important result:
APoSSo is NP-complete. The question of the hardness ofAPoSSo was an open question. Finally, the
double reduction betweenPoSSo and APoSSo highlights an interesting link between these two prob-
lems. The hardness ofPoSSo having m equations is similar to the hardness ofAPoSSo instantiated
with a system of m − r equations, wherer is the target rank of APoSSo (Theorem 15).

Theorem 15. Let q, m, nvar, D, σ and r < min(σ, m) be integers, p ∈ Fq[x1, . . . , xn var]m be a
system of m degree-D polynomials in nvar variables, c ∈ Fm

q be the vector of constant terms ofp,
and y1, . . . , yσ ∈ Fm

q . If c, y1, . . . , y r are linearly independent, then APoSSo(q, σ, m, nvar, D, r) ≡
PoSSo(q, m− r, n var, D).

The APoSSo problem can be solved as the minus variant ofPoSSo. These results are confirmed by
experiments using Gröbner basis.

Efficient algorithms. In Chapter 5, we present a large number of state-of-the-art algorithms
useful for arithmetic in Fqd ext and univariate root finding over Fqd ext . In Chapter 9, we propose
improved algorithms for the public-key generation ofHFEv-, as well as for the Frobenius map which
is the core of the root finding algorithm. Then, we improve the constant-time algorithm for GCD,
and we propose a constant-time root finding of split polynomials.

• In Section 7.4, we propose to accelerate the public-key generation ofHFE polynomials. We
study two methods. The evaluation-interpolation strategy seems the most efficient on modern
computers. Its efficiency is based on a fast evaluation of quadratic forms. Moreover, we
improve the state-of-the-art by taking advantage of the structure of evaluation points, which
have their Hamming weight less or equal to two. Then, we also improve the direct computation

5

of the public-key, i.e. to directly compute:

p(x) = (π◦ T ◦ F ◦ S)(x) ∈ Fq[x]m .

In particular, we note that for HFEv-, it is faster to compute firstly π ◦ T ◦ F , because the
minus variant decreases the number of equations of the system. This computation requires the
knowledge ofF , which is the multivariate representation of a HFEv polynomial. We improve
this step with a smart use of matrix representations of quadratic forms.

• In Section 9.3.3, we study different methods to improve the modular reduction of polynomials
over Fqd ext . We start by highlighting that modular reduction by HFE polynomials requires
only O

(
D logq(D)2)

field operations, due to theHFE structure. Then, we introduce a method
to modify HFE polynomials which accelerates the modular reduction when the dividend is a
square. We improve it by a factor at most two. We also make some experiments to show that
this change is secure against direct attack. This technique directly improves the Frobenius
map based on repeated squaring.

• In Section 7.4.12, we propose a constant-time implementation of root finding algorithm over
F2d ext , when the operand is a split polynomial of degree one, two or three. To do it, we
study the existing solvers of degree-two and degree-three polynomials. For degree-two split
polynomials, the so-called half trace can be used ifdext is odd. Else, we compute the roots
with just one vector-matrix product over F2. For degree-three split polynomials, we build a
matrix whose kernel is a basis of solutions.

Design of a MI-based library. During this thesis, we have elaborated then improvedMQsoft [84]
(Chapter 9). MQsoft is an efficient C library using vector instruction sets via intrinsics. This library
outperforms the state-of-the-art, i.e. NTL [153] andMagma for arithmetic in F2d ext and F2d ext [X], and
the Gui implementation [62] submitted to the first round of the NIST PQC standardization process
for HFEv--based signature schemes.

• MQsoft is based on an efficient arithmetic in F2d ext (Section 9.2). We present our imple-
mentation choices about squaring, multiplication, field modular reduction and inversion. The
arithmetic is state-of-the-art, and is on average four times faster thanNTL. For the square and
the multiplication, the selected method depends on the processor. For the modular reduction,
we study a large number of ways to improve the modular reduction by the field polynomial.
We use irreducible trinomials or pentanomials.

• Based on the previous arithmetic,MQsoft proposes an efficient algorithm of root finding over
F2d ext (Section 9.3). Our implementation of the root finding of HFEv- polynomials is very
efficient: between six to thirteen times faster than NTL. The core of the root finding is the
Frobenius map. On the one hand, the use of sparse Euclidean division improves the Frobenius
map. On the other hand, the modular composition based on an efficient implementation of
Karatsuba’s multiplication algorithm allows more speed-ups.

• In Section 9.5, we implement efficiently the multipoint evaluation of univariate polynomials
over a small extension ofF2. This operation is important because used in all operations of
the dual mode. In function of the instances of the multipoint evaluation, we adapt our way
to implement it.

6

• In Section 9.4, we study efficient evaluations of multivariate quadratic systems. Over F2,
our variable-time evaluation is state-of-the-art, whereas we generate speed-ups of 10% for the
constant-time evaluation, on Skylake processors. In practice, evaluations are more efficient
when data are 8-bit aligned. This is not always possible, in particular when the data is
packed. So, we study the hybrid representation of the public-key. We store a large number of
equations from the public-key with an optimal format for evaluation, without loosing one bit.
Then, we study the optimal way to store the remaining equations. We take into account the
time to unpack these equations, plus the time to perform nb_ite evaluations for each equation.
When q ∈ {16, 256}, we propose an efficient implementation of the multipoint evaluation of a
multivariate polynomial over Fq (Section 9.4.5). To do it, we use amonomial representation
of the points.

• In Section 9.6, we conclude by the performance ofMQsoft. We study the obtained performance
of GeMSS and Gui, with a detailed cost of the main steps of the keypair generation. Since the
beginning of this thesis, we have obtained large speed-ups onGeMSS. We also have large
speed-ups on the first round implementation of Gui, which seems to be the best efficient
implementation of HFEv--based signature schemes inC language. The keypair generation
of MQsoft is between thirty and ninety times faster than the round 1 implementation. For
the signing and verifying processes, we obtain respectively factors 2.5 and 1.8. Then, we
study the performance of DualModeMS and Dual Rainbow. The performance of DualModeMS
becomes reasonable (some seconds for the keypair generation and signature generation). Our
implementation of Dual Rainbow is very competitive with NIST digital signature proposals.

The structure of MQsoft is depicted in Figure 1.2, and summarizes the main tasks required for each
cryptographic operation. The critical part of an operation is represented by a plain arrow, whereas
less important operations are represented by dotted arrows.

Computation or
evaluation of F

(Sections 9.4.1 and 7.4.7)

Root finding over F2d ext
(Sections 9.3 and 9.3.7)

Evaluation of a MQ
system (Section 9.4)

Frobenius map
in F2d ext [X]

(Section 9.3.5)
GCD in F2d ext [X]

(Section 9.3.6) Split root finding over
F2d ext (Section 5.4.7)

Multiplication in F2d ext Inversion in F×
2d ext

(Section 9.2.6)
Multi-squaring in F2d ext

(Section 9.2.5)

Modular reduction in
F2 [x] (Section 9.2.3) Squaring in F2d ext Squaring in F2 [x]

(Section 9.2.1)

Multiplication in F2 [x]
(Section 9.2.2)

Keypair generation
(Sections 2.3.1 and 7.1.2)

Signing process
(Sections 2.3.2 and 7.1.3)

Verifying process
(Sections 2.3.3 and 7.1.4)

if v 6= 0

Figure 1.2: Dependencies between the different operations performed inMQsoft.

7

We show in Table 1.1 (respectively Table 1.2 and 1.3) the evolution of the performance of
GeMSS128 (respectively RedGeMSS128 and BlueGeMSS256). The slow-downs between NIST round 2
and NIST round 2 (V2) are due to an improvement of the implementation about the size of the
public-key, as well as the compression of a secret-key in a seed. For the signing process ofGeMSS128,
the round 3 implementation of the signing process is slightly slower, due to an enhancement of the
security of the implementation.

operation NIST round 1 NIST round 2 NIST round 2 (V2) NIST round 3
keypair generation 118 Mc × 3.07 × 3.05 × 6.03

signing process 1270 Mc × 1.69 × 2.39 × 2.09
verifying process 0.166 Mc × 2.03 × 1.57 × 1.57

Table 1.1: Performance ofGeMSS128 at the first round of the NIST PQC standardization process,
followed by the speed-up between the other rounds and the first round. For each round, we use the
correspondingMQsoft version with a Skylake processor (LaptopS). Mc stands for megacycles. The
results have three significant digits. For example,×3.05 means a performance of118/ 3.05 = 38.7
Mc with the NIST round 2 (V2) implementation of MQsoft, for the keypair generation.

operation NIST round 2 NIST round 2 (V2) NIST round 3
keypair generation 39.2 Mc × 0.992 × 2.41

signing process 2.79 Mc × 1.20 × 1.36
verifying process 0.109 Mc × 0.772 × 0.774

Table 1.2: Performance ofRedGeMSS128 at the second round of the NIST PQC standardization
process, followed by the speed-up between the other rounds and the second round. For each round,
we use the correspondingMQsoft version with a Skylake processor (LaptopS). Mc stands for
megacycles. The results have three significant digits. For example,×2.41 means a performance of
39.2/ 2.41 = 16.3 Mc with the NIST round 3 implementation of MQsoft, for the keypair generation.

operation NIST round 2 NIST round 2 (V2) NIST round 3
keypair generation 529 Mc × 0.998 × 3.47

signing process 545 Mc × 1.37 × 2.20
verifying process 0.583 Mc × 0.852 × 0.857

Table 1.3: Performance ofBlueGeMSS256 at the second round of the NIST PQC standardization
process, followed by the speed-up between the other rounds and the second round. For each round,
we use the correspondingMQsoft version with a Skylake processor (LaptopS). Mc stands for
megacycles. The results have three significant digits. For example,×3.47 means a performance of
529/ 3.47 = 152 Mc with the NIST round 3 implementation of MQsoft, for the keypair generation.

8

In Table 1.4, we show the evolution of the performance ofGeMSS and Gui since the first round
of the NIST PQC standardization process. The speed-ups are obtained with the final version of
MQsoft. For GeMSS, the scheme has evolved during the NIST PQC standardization process. The
obtained factors are larger in the conditions of the original scheme, but we decrease the performance
to minimize the keys size.

scheme key gen. sign verify
GeMSS128 19.6 × 6.03 608 × 2.09 0.106 × 1.57
GeMSS192 69.4 × 7.9 1760 × 1.83 0.304 × 1.47
GeMSS256 158 × 9.32 2490 × 2.16 0.665 × 1.76

FGeMSS(266) 53.7 × 8.22 44 × 2.9 0.0365 × 2.64
Gui-184 23.5 × 31.7 28.5 × 2.6 0.0712 × 1.89
Gui-312 116 × 41.9 308 × 2.53 0.161 × 1.85
Gui-448 356 × 91.7 5710 × 3.44 0.562 × 1.62

Table 1.4: Number of megacycles (Mc) for each cryptographic operation with our library for a
Skylake processor (LaptopS), followed by the speed-up between the best implementation provided
for the NIST submissions (Table 7.37) versus our implementation. For example, 19.6× 6.03
means a performance of 19.6 Mc withMQsoft, and a performance of19.6× 6.03 = 118 Mc for the
NIST implementations.

Finally, we present the evolution on DualModeMS since [84] (Table 1.5). We obtain large speed-
ups thanks to MQsoft.

scheme key gen. sign verify
DualModeMS128 3710 × 512 2800 × 1.97 0.643 × 15.6
DualModeMS192 6770 × 1010 8470 × 2.23 1.73 × 10.5
DualModeMS256 12700 × 1360 38000 × 2.53 3.95 × 7.69

Table 1.5: Number of megacycles (Mc) for each cryptographic operation ofDualModeMS with our
implementation, for a Skylake processor (LaptopS), followed by the speed-up between the Skylake
implementation from [84] versus our implementation. For example, 3710 × 512 means a per-
formance of 3710 Mc with our implementation, and a performance of3710× 512 = 1 900 000Mc
for [84]. Note that [84] is similar to the first round implementation of DualModeMS, except for the
signing process which is faster.

9

Part I

Preliminaries

11

Chapter 2

Multivariate Cryptography

In this chapter, we introduce basic concepts on the public-key cryptography and its security (Section
2.1), then we introduce the public-key multivariate cryptography based on Matsumoto and Imai
[119] (Section 2.2). In Section 2.3, we describe theMI-based digital signature schemes. Finally, we
present the most important MI-based signature schemes in Section 2.4.

2.1 Public-Key Cryptography and NP-Completeness
In public-key cryptography, we distinguish two important kinds of algorithms: the public-key en-
cryption and the digital signature. The encryption of a plaintext and the verification of the signature
of a document are public operations, which require the knowledge of a public-key. The decryption of
a ciphertext and the generation of the signature of a document are secret operations, which require
the knowledge of a secret-key. The security of a cryptosystem is based on the hardness of perform-
ing the secret operation without the knowledge of the secret-key. In general, this is equivalent to
solving a specific problem. On the one hand, solving this problem has to be infeasible in practice.
On the other hand, we need to perform efficiently the cryptographic operations for concrete uses.
The class of NP-complete problems [94] satisfies both properties.

Definition 1 (NP-completeness). A problem of decision Π is NP-complete if:

• Π is in NP, i.e. a candidate solution of Π can be verified in polynomial time,

• Π is NP-hard: all problems in NP can be reduced intoΠ in polynomial time.

On the one hand, NP-complete problem is in NP. We can verify a solution quickly (i.e. in
polynomial time). On the other hand, the problem is NP-hard. This implies that the problem is
hard to solve. Indeed, if we can solve it in polynomial time, then we will be able to solve all problems
in NP in polynomial time. For the moment, the best algorithms solve NP-complete problems in
exponential time.

The modern cryptography is based on the integer factorization problem [147] or discrete log-
arithm problem [149]. Nowadays, no algorithm is known to solve them in polynomial time on
classical computers, but we do not know if these problems are NP-complete. In contrast, these

13

problems can be solved in polynomial time on quantum computers [152], making them insecure.
In this thesis, we consider cryptosystems based on NP-complete problems, which are in particular
more secure against quantum computers.

2.2 Introduction to Multivariate Cryptography
Introduced by T. Matsumoto and H. Imai in 1988 [119], MI-based multivariate cryptography is
based on the hardness of solving a system ofm non-linear polynomials in nvar variables. This
problem is calledPoSSo (Problem 1).

Problem 1. Polynomial System Solving(PoSSo(q, m, nvar, D)) . Let q, m, nvar and D be integers.
Given p a system of m degree-D multivariate polynomials in Fq[x1, . . . , xn var]m , the problem is to
find, if any, a vector x s in Fn var

q such that p(x s) = (0 , . . . , 0) = 0m .

The PoSSo problem was demonstrated NP-complete [135] when solved over a finite field with
D > 2. The NP-completeness implies thatPoSSo is hard to solve for worst-case instances (Section
2.1). However, this does not necessarily make secure a cryptosystem, because easy-to-solve instances
of PoSSo could be used. So, we need a careful study of best attacks against concrete instances of
PoSSo. We study them in Sections 4.3 and 4.4.

Based on thePoSSo problem, the public-key of MI-based cryptography is a systemp ∈ Fq[x1, . . . ,
xn var]m of m equations in nvar variables. Whenq = 2 , the public operation (encryption or signature
verification) is the evaluation of p in the bits of a plaintext or a signature. Then, the secret
operation (decryption or signature generation) cannot be performed efficiently (i.e. in polynomial
time) because this is equivalent to solving an instance ofPoSSo. Therefore, we need to introduce a
secret which will allow to invert efficiently p.

For the moment, let m′ = m. The idea of T. Matsumoto and H. Imai [119] is to generate
p ∈ Fq[x1, . . . , xn var]m with the following structure:

p = T ◦ F ◦ S, (2.1)

with S, T ∈ Aff −1
n var

(
Fq

)
×Aff −1

m ′

(
Fq

)
being two invertible affine transformations, and F ∈ Fq[x1, . . . ,

xn var]m
′

being a multivariate system easily invertible thanks to a special shape.F is called the
central map of p. The affine transformations are used to hide the structure of the central map.
S corresponds to a change of variables, whereasT mixes equations. There exist few choices in
the literature for constructing F . For example, F can be generated from a univariate polynomial
F ∈ Fqm ′ [X] (Section 2.4.1), orF can be a multivariate system with an oil and vinegar structure
(Section 2.4.2), which can be coupled to a triangular structure (Section 2.4.3).

The structure of p induces another category of attacks. Given the public-keyp, an adversary
can try to recover its secret structure. This problem is called Extended Isomorphism of Polynomials
[133], and is NP-complete [133].

Problem 2. Extended Isomorphism of Polynomials(EIP). Let q, m′, nvar and D be integers. Given
p a system of m′ degree-D multivariate polynomials in Fq[x1, . . . , xn var]m

′
, and a target shape, the

problem is to find S, T ∈ Aff −1
n var

(
Fq

)
× Aff −1

m ′

(
Fq

)
and F ∈ Fq[x1, . . . , xn var]m

′
having the target

shape, such thatp = T ◦ F ◦ S.

14

As for PoSSo, the hardness of this problem depends on the target shape. We evaluate the complexity
of solving it for specific shapes in Section 4.6.

In this thesis, we often considerS and T in GLn var

(
Fq

)
× GLm ′

(
Fq

)
as being secret linear

transformations, instead of affine transformations. The concept of equivalent keys (Section 4.6.1)
allows this change without any impact on the security. We representS and T respectively by
invertible matrices S and T in GLn var

(
Fq

)
×GLm ′

(
Fq

)
. Thus, we can write Equation (2.1) as:

p(x) = F (x · S) · T .

Moreover, we consider the possibility to use the minus variant [151]. Letm′ > m. This consists in
discarding the last ∆ = m′ −m > 0 equations from T ◦ F ◦ S. So, p ∈ Fq[x1, . . . , xn var]m has the
following form:

p = π◦ T ◦ F ◦ S, (2.2)

where π: Fq[x1, . . . , xn var]m
′ → Fq[x1, . . . , xn var]m is the projection map keeping the first m equa-

tions. The name of schemes using the minus variant (i.e. ∆ > 0) are followed by the - symbol (e.g.
HFE-).

We start by presenting the MI-based digital signature in Section 2.3, then we present some
trapdoors for F in Section 2.4.

2.3 MI-Based Public-Key Cryptography

Here, we present the digital signature based on Matsumoto–Imai. The digital signature schemes
are divided into three operations: keypair generation (Section 2.3.1), signing process (Section 2.3.2)
and verifying process (Section 2.3.3).

2.3.1 Keypair Generation

We summarize the public-key/secret-key generation in Algorithm 1. This algorithm takes the
unary representation of λ , i.e. 1λ , and returns a couple secret-key public-key ofMI-based schemes.
This unary representation is only used in theory, to explain that cryptography attacks have to be
exponential in λ . The linear transformations S ∈ GLn var

(
Fq

)
and T ∈ GLm ′

(
Fq

)
are respectively

represented as invertible matricesS and T in GLn var

(
Fq

)
×GLm ′

(
Fq

)
. Their generation is explained

in Section 7.4.3. Then, letH be the set of elements allowing to generateF ∈ Fq[x1, . . . , xn var]m
′

and to easily invert it. The nature of H depends on the trapdoor ofF (Section 2.4). We randomly
sampleF in H, and the final secret-key corresponds to

(
F, S−1, T −1)

∈ H×GLn var

(
Fq

)
×GLm ′

(
Fq

)
.

Here, the matricesS and T are only used during the generation of the public-key. After, we are only
using the inverse of these matrices, it is why we store them instead ofS and T . Several strategies
are possible to generatep = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m and are described in Sections 7.4.6
and 7.4.7. In particular, Steps 5 and 6 can be merged by removing the last∆ columns ofT during
the vector-matrix product.

15

Algorithm 1 Keypair generation of MI-based schemes.

1: function origin.KeyGen
(
1λ)

2: Randomly sample(S, T) ∈ GLn var

(
Fq

)
×GLm ′

(
Fq

)
.

3: Randomly sampleF ∈ H in function of the shape ofF .
4: sk←

(
F, S−1, T −1)

∈ H ×GLn var

(
Fq

)
×GLm ′

(
Fq

)
. Sections 7.4.3 and 7.4.4.

5: (p1, . . . , pm ′) ← T ◦ F ◦ S ∈ Fq[x1, . . . , xn var]m
′

. Sections 7.4.6, 7.4.7 and 9.4.1.
6: pk ← p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m . Take the first m = m′ − ∆ polynomials

computed in Step 5.
7: return (sk, pk)
8: end function

The secret-key size is given by the size of invertible matrices,
(
n2

var + m′2)
· log2(q) bits, plus

the size of F . The latter depends on the trapdoor (Section 2.4). Then, the public-key size is
mN log2(q) bits, where N is the number of monomials of a quadratic multivariate polynomial in
Fq[x1, . . . , xn var]/ 〈x

q
i − x i 〉16i6n var . When q > 2, N is given by the classical formula:

N =
d∑

i =0

(
nvar + i − 1

i

)
=

(
nvar + d

d

)
, (2.3)

where
(n var+ i −1

i

)
corresponds to the number of monomials of degree exactlyi , and d corresponds to

the degree of the multivariate polynomial (which is two here). When q = 2 and d > 2, the terms
x2

i have to be removed. We obtain:

N =
(

nvar + d
d

)
− nvar. (2.4)

2.3.2 Signing Process

The main step of the signing process requires inverting the public-key polynomialsp = (p1, . . . , pm)
in Fq[x1, . . . , xn var]m , i.e. solving:

p1(x1, . . . , xn var) − d1 = 0 , . . . , pm (x1, . . . , xn var) − dm = 0

for d = (d1, . . . , dm) ∈ Fm
q .

To do so, we take advantage of the structure ofp. We randomly sample r = (r 1, . . . , r ∆) ∈ F∆
q

and append it to d. This gives d ′ = (d, r) ∈ Fm ′

q . Thus, we can computey = T −1(d ′) ∈ Fm ′

q .
Then, we randomly samplev = (v1, . . . , vn var−m ′) ∈ Fn var−m ′

q , and if F (x1, . . . , xm ′ , v) = y has at
least one solution, we randomly choosez ∈ Fm ′

q one of the solutions and we returnS−1(z, v) ∈ Fn var
q .

Else, we can choose to try again to solveF (x1, . . . , xm ′ , v) = y with a new random v , or we can
choose to randomly sample anotherr by keeping the samev . We can also randomly sample both
r and v . In Algorithm 2, we choose the latter possibility.

16

Algorithm 2 Inverse map of the public-key.

1: function Inv p
(
d ∈ Fm

q , sk =
(
F, S−1, T −1)

∈ H ×GLn var

(
Fq

)
×GLm ′

(
Fq

))

2: repeat
3: r ∈R F∆

q . The notation ∈R stands for randomly sampling.
4: d ′ ← (d, r) ∈ Fm ′

q

5: y ← d ′ · T −1 ∈ Fm ′

q

6: v ∈R Fn var−m ′

q
7: L Sol ← Solve(F (x1, . . . , xm ′ , v) = y) . Use the special shape ofF with the knowledge of

F to solve efficiently this system. The result is the list of solutions.
8: until L Sol 6= ∅
9: z ∈R L Sol

10: return (z, v) · S−1 ∈ Fn var
q

11: end function

We can now present a way to define the signature algorithm (Algorithm 3), leading to a signa-
ture of size nvar log2(q) bits. The signature is obtained by signing the hash value of a document,
H1 : {0, 1}∗ → Fm

q being the used hash function. In Section 4.2, we present the Feistel–Patarin
construction which generalizes Algorithm 3 with an iterative process.

Algorithm 3 Signing process ofMI-based schemes.

1: function origin.Sign1
(
M ∈ {0, 1}∗, sk ∈ H ×GLn var

(
Fq

)
×GLm ′

(
Fq

)
, Inv p

)

2: D 1 ← H1(M) . D 1 ∈ Fm
q .

3: (S1, X 1) ← Inv p (D 1, sk) . S1 ∈ Fm
q and X 1 ∈ Fn var−m

q .
4: return sm = (S1, X 1) ∈ Fn var

q
5: end function

2.3.3 Verifying Process

The corresponding verification process is described in Algorithm 4.

Algorithm 4 Verifying process ofMI-based schemes.

1: function origin.Verify1
(
M ∈ {0, 1}∗, sm∈ Fn var

q , pk = p ∈ Fq[x1, . . . , xn var]m
)

2: (S1, X 1) ← sm
3: D 1 ← H1(M) . D 1 ∈ Fm

q .
4: return VALID if p(S1, X 1) = D 1 and INVALID otherwise . Sections 9.4.2, 9.4.3 and 9.4.4.
5: end function

2.4 Families of Trapdoor

Here, we study the main classes of trapdoors. For each of them, the size of the secretF ∈ H is
computed in Appendix A.

17

2.4.1 Big Field Family
In this part, we consider m′ = dext, wheredext is the degree of an extension field ofFq. We start by
assuming that nvar = dext. The idea of the big field family is to build F from a mapF∗ ∈ Fqd ext [X].
Let θ =

(
θ1, . . . , θdext

)
∈

(
Fqd ext

) dext be a basis ofFqd ext over Fq. We set

ϕ : E =
dext∑

k=1

ok · θk ∈ Fqd ext 7−→ ϕ(E) = (o1, . . . , odext) ∈ Fdext
q (2.5)

an isomorphism betweenFqd ext and Fdext
q . Then, we can writeF = ϕ ◦ F∗ ◦ ϕ−1. For such a family,

F∗ is represented by a degree-D univariate polynomial over the extension fieldFqd ext . Its inversion
is the problem of finding the roots of a degree-D univariate polynomial, which can be solved in
quasi-linear time in D (Section 5.4.8).

The C∗ scheme. The first scheme using a univariate polynomial,C∗, was introduced by T. Mat-
sumoto and H. Imai [119]. They considered the univariate polynomialX qϑ +1 (0 6 ϑ < d ext).
The integer ϑ is chosen such thatGCD

(
qϑ + 1 , qdext − 1

)
= 1 . Thus, qϑ + 1 is invertible modulo

qdext − 1, allowing to compute a (qϑ + 1) -th root in Fqd ext by raising an element to the power of
(qϑ +1) −1 mod qdext−1. As a consequence, we can efficiently invertF (i.e. in polynomial time in ϑ)
with this special choice of univariate polynomial, and in particular when ϑ is close todext. However,
C∗ was broken by J. Patarin [132], who introduced its generalization: Hidden Field Equations (HFE)
[133].

Hidden Field Equations. In the HFE scheme, the univariate polynomial has the following form:
∑

06j 6i<d ext

qi + qj 6D

A i,j X qi + qj
+

∑

06i<d ext

qi 6D

B i X qi
+ C ∈ Fqd ext [X], (2.6)

with A i,j , B i , C ∈ Fqd ext , and A i,i = 0 when q = 2 . The choice of non-zero terms directly impacts
the degree ofF . SinceF = ϕ ◦ F∗ ◦ ϕ−1, we replaceX by ϕ−1(x1, . . . , xdext) in F and we obtain a
multivariate polynomial. In particular, we have that

X qi
=

(dext∑

k=1

θk · xk

) qi

=
dext∑

k=1

θqi

k · xk mod 〈xq
1 − x1, . . . , xq

n var
− xn var〉 for i ∈ N, (2.7)

is linear. Thus,

X qi + qj
=

(dext∑

k=1

θk · xk

) qi

·

(dext∑

k=1

θk · xk

) qj

=
∑

16k6dext
16k ′6dext

θqi

k θqj

k ′ · xk xk ′ mod 〈xq
1 − x1, . . . , xq

n var
− xn var〉 for i, j ∈ N, (2.8)

is quadratic (or linear if q = 2 and i = j). By using (2.8), we know that a HFE polynomial has
a multivariate quadratic representation if D > 2 when q 6= 2 , or if D > 3 otherwise. In the HFE

18

scheme, the inversion ofF is equivalent to finding a root of a HFE polynomial. This can be computed
efficiently with a root finding algorithm (Section 5.4.8) when the degree is small enough. We will
see in Chapter 7 how to selectD .

Vinegar variant. Now, we assumenvar > dext. In [110], the authors proposed theHFEv variant
of HFE, based on the idea ofUOV (Section 2.4.2). In this variant, we consider aHFEv polynomial
defined by

∑

06j 6i<d ext

qi + qj 6D

A i,j X qi + qj
+

∑

06i<d ext

qi 6D

βi (v1, . . . , vv) X qi
+ γ(v1, . . . , vv) ∈ Fqd ext [X, v 1, . . . , vv], (2.9)

where A i,j ∈ Fqd ext , with A i,i = 0 when q = 2 , eachβi : Fv
q → Fqd ext is linear and γ : Fv

q → Fqd ext is
quadratic modulo vq

i − vi . The variables v1, . . . , vv are calledvinegar variables. We shall say that a
polynomial F ∈ Fqd ext [X, v 1, . . . , vv] with the form of (2.9) has a HFEv-shape. The particularity of a
polynomial F (X, v 1, . . . , vv) with HFEv-shape is that for any specialization of the vinegar variables,
the polynomial F becomes aHFE polynomial (Equation (2.6)). By abuse of notation, we will
refer to D as the degree of theHFEv polynomial. We also make the correspondence between
(xdext+1 , . . . , xn var) and (v1, . . . , vv).

The special structure of (2.9) is chosen such that its multivariate representation over the base
field Fq is composed of quadratic polynomials inFq[x1, . . . , xn var]. When the exponents chosen in
X have a decomposition in baseq of Hamming weight equal to two, its multivariate representation
is quadratic in x1, . . . , xdext . When the Hamming weight is equal to one, the monomials are multi-
plied by linear terms in v1, . . . , vv , thus its multivariate representation is quadratic in x1, . . . , xn var .
Finally, when the exponent is zero, the monomial is multiplied by quadratic terms in v1, . . . , vv ,
implying its multivariate representation is quadratic in v1, . . . , vv .

Security and modifiers. The original HFE scheme is broken [96]. A fundamental element in
the design of secureHFE-based schemes is the introduction of perturbations. Here, we give some of
them. More perturbations can be found in [164].

• The vinegar modifier [110] consists in using aHFEv polynomial (Equation (2.9)) with v vinegar
variables. The obtained scheme isHFEv.

• The minus modifier [151, 133] consists in removing∆ = dext −m equations from the public-
key. This change corresponds to the projection mapπ in Equation (2.2). The obtained scheme
is HFE-, and the ∆ removed equations are calledminus equations. Here, dext > m .

• The plus modifier [133, 162] consists in addinga = m − dext random quadratic equations in
Fq[x1, . . . , xn var] to F ◦ S, then mixing equations with T ∈ GLm

(
Fq

)
. The obtained scheme

is HFE+. Here, m > d ext.

The minus and vinegar variants ofHFE, i.e. HFE-, HFEv and HFEv-, are still secure. Their security has
been extensively studied for more than twenty years. Currently, theHFEv--based signature scheme
GeMSS (Chapter 7) is an alternate candidate of the third round of the NIST PQC standardization
process [130].

19

About the probability of finding s roots from a HFE polynomial. The cost of the inversion
of the public-key (Algorithm 2) depends on the distribution of the number of roots of a univariate
polynomial. A HFE polynomial has a HFE-shape (Equation (2.6)). As a consequence, its roots
correspond to the zeros of a system ofdext equations in dext variables. In [88], the authors studied
the distribution of the number of zeros of algebraic systems. In particular, a random system of
dext degree-d equations in dext variables in Fq has exactly s solutions with probability exp(−1) · 1

s! ,
when q is prime and d > 2 [88, Corollary 2]. Although F is not random, experiments for d = 2 ,
D = 4097, dext = 13 and q = 2 (Table 2.1) show that the probability of finding s roots seems to
coincide with exp(−1) · 1

s! . We also obtain this result for dense polynomials.

s 0 1 2 3 4 5 34
exp(−1) · 1

s! 36.79% 36.79% 18.39% 6.13% 1.53% 0.31% 2−129.2

dense polynomial 37.04% 37.09% 18.10% 6.09% 1.27% 0.35% 0
HFE polynomial 36.47% 36.71% 18.69% 6.28% 1.51% 0.28% 0

Table 2.1: Theoretical probability of finding s distinct roots for a random HFE polynomial in an
extension field (s 6 D), followed by experimental tests. We study the distribution of the number
of roots of 10000 random polynomials generated withMagma (Section 6.2.1).

2.4.2 Unbalanced Oil and Vinegar (UOV)
The UOV scheme [110] is based on the use of two types of variables: oil and vinegar. The se-
cret map F corresponds to a multivariate system ofm′ equations in the nvar = m′ + v variables
o1, . . . , om ′ , v1, . . . , vv = x1, . . . , xn var . This system is quadratic in the v vinegar variables but linear
in the m′ oil variables. Each equation is as follows:

∑

16j 6i6v

γi,j vi vj +
∑

16i6v
16j 6m ′

βi,j vi oj +
∑

16i6v

µi vi +
∑

16i6m ′

B i oi + C, (2.10)

with γi,j , βi,j , µi , B i and C in Fq, and γi,i = 0 when q = 2 . Then, the structure of F is hidden
with the use of S ∈ GLn var

(
Fq

)
(Section 2.2). The latter mixes the oil variables with the vinegar

variables. The security of the UOV scheme is based on the assumption that inp (Equation (2.1)),
the oil variables are indistinguishable from the vinegar variables. For this reason,T ∈ GLm ′

(
Fq

)
is

set to the identity map and we have p = F ◦ S.
The mapF is quadratic. The strategy of UOV is to randomly sample the vinegar variables. Thus,

the new (square) system becomes linear, and the oil variables can be efficiently computed with a
Gaussian elimination. However, all linear systems do not necessarily admit a solution. When the
set of solutions is empty, the vinegar variables have to be changed (similarly to Algorithm 2).

Lifted Unbalanced Oil and Vinegar (LUOV). In [24], the authors proposedLUOV: a variant of
the UOV scheme. That is also a NIST candidate [26]. The public and secret maps are generated
in Fq, but are used as maps in a degree-r extension ofFq. Compared to a classicalUOV scheme in
Fqr , this transformation allows to divide by r the size of the public and secret maps. However, this
scheme was broken in [66], and was not selected to the third round. The authors were able to take
advantage of the structure to speed up known attacks.

20

2.4.3 Rainbow
The Rainbow scheme [69] is a generalization of theUOV scheme, based on the use of severalUOV
layers. In the UOV scheme, we have one quadratic system, which once specified in the vinegar
variables, becomes linear and so the oil variables can be found. In theRainbow scheme, we have
a lower triangular system by block. Each of the u blocks is a UOV system. They share the same
vinegar variablesx1, . . . , xv1 . Then, the oil variables are divided into u groups of variables. Letok
be the size of thek-th group of variables, and let vk+1 = vk + ok be the number of variables of
the k-th block. The k-th block is a system ofok equations in vk + ok variables, which has the first
k groups of oil variables. We consider that the first vk variables are vinegar, whereas the lastok
variables are oil. Each equation of thek-th block is given by:

∑

16j 6i6vk

γi,j x i x j +
∑

16i6vk
vk +1 6j 6vk + ok

βi,j x i x j +
∑

16i6vk

µi x i +
∑

vk +1 6i6vk + ok

B i x i + C,

with γi,j , βi,j , µi , B i and C in Fq, and γi,i = 0 when q = 2 . The coefficients γi,j and µi correspond
to the vinegar variables, whereasβi,j is a mix between oil and vinegar variables, andB i corresponds
to the oil variables.

The public map of Rainbow is a multivariate quadratic system of m′ = vu+1 − v1 equations
in nvar = vu+1 variables. Here, we considerF (xv1 +1 , . . . , xn var , x1, . . . , xv1) to be consistent with
Algorithm 2 which randomly samples the last v1 variables. Whenu = 1 , we obtain the UOV scheme,
but unlike UOV, the affine transformation T ∈ Aff −1

m ′

(
Fq

)
in Rainbow is not set to the identity

transformation. When u = 2 , we obtain the Rainbow signature scheme [69, 65], which is a finalist
candidate of the third round of the NIST PQC standardization process [130].

We will use Rainbow in Chapter 8, as inner layer of the so-calledDual Rainbow signature
scheme.

21

Chapter 3

Public-Key Compression of
Signature Schemes

In Chapter 2, we presentedMI-based signature schemes. For typical parameters (Chapter 7), the
public-key of such schemes is large whereas the signatures are very short. In this chapter, we study
a transformation which provides a dual trade-off leading to a small public-key but a large signature
size. This transformation is composed of two distinct layers. The first one (inner layer) is a classical
MI-like multivariate scheme (Chapter 2). The second part (outer layer) is the core of the method
proposed by A. Szepieniec, W. Beullens and B. Preneel (SBP) in [157].

The Szepieniec, Beullens and Preneel (SBP) technique [157] allows to transform the public-key
origin.pk = p ∈ Fq[x1, . . . , xn var]m of the inner layer into a new public-key pk that is going to be the
root of one (or several) binary tree (Section 3.1). The new secret-key sk will include the original
secret-key and public-key of the inner layer. The new signature process (Section 3.2) will require
generating σ > 1 signatures from the inner layer. A (new) signature from the outer layer will also
include a set ofα random linear combinations h ∈ Fq[x1, . . . , xn var]α from p, together with a set of
nodes allowing to check thath has been correctly derived fromp (Section 3.4).

The security of the SBP transformation is based on the security of the inner layer, as well as on
the hardness of a new problem: Approximate MQ (AMQ) (Section 3.5).

3.1 Dual Keypair Generation
We describe the generation of the secret-key and public-key in the SBP transformation. This process
uses the function origin.KeyGen (Algorithm 1) that returns the secret-key and public-key of the
inner MI-based scheme. That is(origin.sk, origin.pk) ← origin.KeyGen

(
1λ)

with:

origin.sk←
(
F, S−1, T −1)

∈ H ×GLn var

(
Fq

)
×GLm ′

(
Fq

)
,

origin.pk ← p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]
m .

The signature process in the outer layer requires generatingσ signatures from origin.Sign1 (Algo-
rithm 3). In addition, a signature will also include a set of random linear combinations

h = (h1, . . . , hα) ∈ Fq[x1, . . . , xn var]
α , 1 6 α 6 m

23

of origin.pk. A key point in the construction of [157] is a mechanism allowing to check that
h ∈ Fq[x1, . . . , xn var]α has been indeed correctly derived from origin.pk. To do so, SBP introduced
the concept ofMAC (Message Authentication Code) polynomial. TheMAC polynomial is a univariate
polynomial obtained from a multivariate polynomial by taking its N coefficients (Equation (2.3))
by block of κ elements to build

⌈ N
κ

⌉
elements inFqκ . This yields a polynomial in Fqκ [y] of degree

DMAC, with DMAC =
⌈ N

κ

⌉
− 1. This process is described in Algorithm 5.

Algorithm 5 Construction of a MAC polynomial.

1: function MacPoly
(
f ∈ Fq[x1, . . . , xn var]

)

2: L coefs ← list of all coefficients of f , sorted according to a fixed monomial order
3: DMAC ←

⌈ N
κ

⌉
− 1

4: for i from 0 to DMAC do
5: ci ← cast L coefs[i · κ + 1 , . . . , (i + 1) · κ] to Fqκ

6: end for
7: f̂ ←

∑ DMAC
i =0 ci · yi ∈ Fqκ [y]

8: return f̂
9: end function

The MAC polynomials have an important property. The transformation is invariant under linear
combinations:

h = p · t ⇒ ĥ = p̂ · t , for all t ∈Mm,α
(
Fq

)
,

where p̂ ∈ Fqκ [y]m and ĥ ∈ Fqκ [y]α are respectively theMAC polynomials of p and h . So, if h is
derived from p, then p̂ and ĥ have to coincide. This is verified by evaluating theMAC polynomials
on a random subsetO ⊆ Z , whereZ ⊆ Fqκ is a set ofτ points whose evaluations in the polynomial
system p̂ are publicly known. The evaluations of p̂ on Z could be the public-key, but its size
would be larger than the inner public-key. Thus, this set of points is compressed in aMerkle tree
[122]. Let δ ∈ N be a parameter. Whenδ = 0 , the function Merkle.generate_tree (Algorithm 8,
Section 3.3) takes a set ofτ elements inFm

qκ and constructs the corresponding Merkle tree. Else,
the function Merkle.generate_tree returns 2δ Merkle subtrees, each corresponding to a Merkle tree
of τ / 2δ elements. These trees can be considered as an incomplete Merkle tree, or truncated Merkle
tree. The leaves of the truncated Merkle tree are elements inFm

qκ whilst the inner nodes are digests.
The root of the 2δ Merkle trees is published instead of theτ evaluations of the MAC polynomials of
p, whereas the other nodes are stored in the secret-key.

We now have all the tools to describe the public-key/secret-key generation process in the dual
mode (Algorithm 6). The public-key is the root of 2δ Merkle trees, which implies storing2δ digests
for a small δ > 0. On the other hand, the secret is large since it will include – in particular –
the truncated Merkle tree containing 2τ − 2δ+1 digests (typically, τ > 218), but also the inner
public-key.

3.2 Dual Signing Process
The signature process of the dual mode is derived from origin.Sign1 (Algorithm 3, Chapter 2),
which returns the signature of the inner layer. The novelty in new.Sign (Algorithm 7) is the use of
a Merkle tree that provides an authentication tag. In particular, the function Merkle.path takes a

24

truncated Merkle tree and a leaf of this tree, and returns a list of nodes allowing to compute the
corresponding node of the public-key from its leaf (Algorithm 9, Section 3.3).

Algorithm 6 Keypair generation in the dual mode.

1: function new.KeyGen
(
1λ)

2: (origin.sk, origin.pk) ← origin.KeyGen
(
1λ)

3: p ← origin.pk = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m
4: for i from 1 to m do
5: p̂i ← MacPoly(pi) . Algorithm 5.
6: end for
7: p̂ ← (p̂1, . . . , p̂m)
8: Z ← choose a set ofτ distinct points z1, . . . , zτ ∈ Fqκ

9: mt ← Merkle.generate_tree
(
{p̂(z)z∈Z }

)
. Algorithm 8.

10: pk ← Merkle.roots(mt) . The (new) public-key is the root of 2δ Merkle trees.
11: sk← (origin.sk, origin.pk , mt) . The truncated Merkle tree is stored without its 2δ roots.
12: return (sk, pk)
13: end function

The signature process is described in Algorithm 7.σ inner signatures are computed from the
digest of small variations of a messageM ∈ {0, 1}∗. Then, the derived systemh ∈ Fq[x1, . . . , xn var]α
is obtained by linear combinations of the polynomials ofp ∈ Fq[x1, . . . , xn var]m . The corresponding
map is represented by a full-rank matrix t ∈Mm,α

(
Fq

)
, which can be generated from a deterministic

random bytes generator such asSHAKE [126]. This generator is also used to create a random setO
of ν points from Z . Finally, the evaluations of p̂ in the points of O are computed and stored in the
signature, as well as the corresponding authentication paths.

Algorithm 7 Signing process in the dual mode.

1: function new.Sign
(
M ∈ {0, 1}∗, sk = (origin.sk, origin.pk , mt)

)

2: p ← origin.pk = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m
3: for i from 0 to σ− 1 do
4: si ← origin.Sign1

(
M ‖i, origin.sk, Inv p

)
. Get σ signatures from the inner layer.

5: end for
6: t ← cast mα log2(q) bits of SHAKE(M ‖s0‖ · · · ‖sσ−1) into a full-rank matrix in Mm,α

(
Fq

)

7: h = (h1, . . . , hα) ← p · t ∈ Fq[x1, . . . , xn var]α
8: i 1, . . . , i ν ← cast ν log2(τ) bits of SHAKE(M ‖s0‖ · · · ‖sσ−1‖h) into a set of ν integers, each in

J0, τ − 1K, not necessarily distinct
9: O← {zi 1 , . . . , zi ν } ⊆ Z . A random subset ofZ ⊆ Fqκ of sizeν.

10: p̂ ←
(
MacPoly(p1), . . . , MacPoly(pm)

)

11: for j from 1 to ν do . Get the list of digests allowing to generate a Merkle path from
each of theν leaves.

12: L mp[j]← Merkle.path
(
mt, p̂(zi j)

)
. Algorithm 9.

13: end for
14: return sm =

(
s0, . . . , sσ−1, h , p̂(zi 1), . . . , p̂(zi ν), L mp

)

15: end function

25

The size of a signature is then:

σ · |origin.sm| + (α · N + ν ·m · κ) · log2(q) + ν · (log2(τ) − δ) · 2λ bits, (3.1)

where |origin.sm| corresponds to the size in bits of an inner signature. In general,|origin.sm| is
equal to nvar log2(q) bits, or nvar log2(q) + 128 bits when a 128-bit salt is added (Section 7.6.2).

3.3 Merkle Tree
As mentioned above, the SBP transformation requires the use of Merkle trees [122] to guarantee
the validity of MAC polynomials. Merkle trees are compression trees. Givend0, . . . , dτ −1 in {0, 1}∗

and τ a power of two, the corresponding Merkle tree is built by setting the i -th leaf to the hash
value of di (Figure 3.1). Then, each parent node is the hash of the concatenation of these two child
nodes. The root of the Merkle tree is a single digest which contains information about all digests.

H1

(
H1

(
H1(d0)‖H1(d1)

) ∥∥ H1
(
H1(d2)‖H1(d3)

))

H1
(
H1(d0)‖H1(d1)

)

H1(d0)

d0

H1(d1)

d1

H1
(
H1(d2)‖H1(d3)

)

H1(d2)

d2

H1(d3)

d3

Figure 3.1: Merkle tree. H1 is a hash function.

To check if a bit sequenced′
i for 0 6 i < τ corresponds todi , the Merkle tree can be used as

follows. We compute the i -th leaf of the Merkle tree with d′
i instead of di . Then, we build a path

in the tree until the root node. This requires the knowledge of all sibling nodes. Finally, we check
that the computed root corresponds to the public-key.

We present this principle in Figure 3.1 for i = 1 . The receiver needs to received1, as well
as the authentication path composed ofH1(d0) and H1(H1(d2)‖H1(d3)) . Then, he can compute
H1(d1), H1(H1(d0)‖H1(d1)) and H1(H1(H1(d0)‖H1(d1))‖H1(H1(d2)‖H1(d3))) . Finally, he verifies
that H1(H1(H1(d0)‖H1(d1))‖H1(H1(d2)‖H1(d3))) is the public-key.

We can also truncate the Merkle tree, and publish the floor containing2δ nodes instead of
the root, for δ ∈ N. For example, the public-key corresponding to Figure 3.1 andδ = 1 is the
floor having 21 nodes,i.e. H1

(
H1(d0)‖H1(d1)

)
, H1

(
H1(d2)‖H1(d3)

)
. This increases the size of the

public-key, but decreases the size of paths in the truncated Merkle tree. We present the process
of generation of a truncated Merkle tree in Algorithm 8. The truncated Merkle tree is a tree of
2τ − 2δ digests of size2λ bits.

26

Algorithm 8 Generation of 2δ Merkle trees as a truncated Merkle tree.

1: function Merkle.generate_tree
(
{d0, . . . , dτ −1}

)

2: for i from 0 to τ − 1 do
3: mt[i]← H1(di)
4: end for
5: j ← 0
6: for i from τ to 2τ −1−2δ do . Each node is the hash of the concatenation of these leaves.
7: mt[i]← H1

(
mt[j]

∥∥ mt[j + 1]
)

8: j ← j + 2
9: end for

10: return mt . Return a truncated Merkle tree with τ leaves and2δ roots.
11: end function

In Algorithm 9, we generate an authentication path. From a leaf of the Merkle tree, the user
has to be able to generate a branch until the2δ-node floor. To do it, at each floor of the tree, the
user has to know the couple of digests allowing to generate the digest of the next floor. At the end,
he will be able to verify if the obtained digest at the 2δ-node floor corresponds to the public-key.
This process is described in Algorithm 10.

Algorithm 9 Generation of an authentication path.
1: function Merkle.path(mt, leaf)
2: ind← index of leaf in mt
3: ` ← 0 . Index of the beginning of the i -th floor.
4: for i from 0 to log2(τ) − δ− 1 do . For each floor of the truncated Merkle tree (without

the 2δ roots).
5: mp[i]← mt[` + (ind XOR 1)] . Sibling node of the current node.
6: ` ← ` + τ

2i . Add the size of the current floor.
7: ind← bind/ 2c
8: end for
9: return mp

10: end function

3.4 Dual Verifying Process

The verification process in the outer layer is described in Algorithm 11. We need to verify the validity
of signatures from the inner layer, the validity of h ∈ Fq[x1, . . . , xn var]α , as well as the validity of
evaluations of p̂ ∈ Fqκ [y]m . To do so, we verify each point step by step. We start by verifying the
inner signatures by assuming thath is derived from linear combinations ofp ∈ Fq[x1, . . . , xn var]m .
In a similar way, we verify h by evaluating ĥ ∈ Fqκ [y]α in random points, then by comparing the
result to the evaluations of p̂. Finally, we verify the previous evaluations by using the function
Merkle.verify (Algorithm 10), that takes the root of 2δ Merkle trees and a set of nodes, and checks
that the root can be indeed generated from the nodes.

27

Algorithm 10 Verification of a leaf via its authentication path and the roots.
1: function Merkle.verify(pk , mp, dind)
2: h−1 ← H1(dind)
3: ind← index of h−1 in mt
4: for i from 0 to log2(τ) − δ− 1 do . For each floor of the truncated Merkle tree (without

the 2δ roots).
5: if ind mod 2 = 0 then
6: hi ← H1

(
hi −1‖mp[i]

)

7: else
8: hi ← H1

(
mp[i]‖hi −1

)

9: end if
10: ind← bind/ 2c
11: end for
12: if hlog 2 (τ)−δ−1 = pk[ind] then
13: return VALID
14: else
15: return INVALID
16: end if
17: end function

Algorithm 11 Verifying process in the dual mode.

1: function new.Verify
(

M ∈ {0, 1}∗, sm, pk ∈ {0, 1}2λ ·2δ
)

2:
(
s0, . . . , sσ−1, h , p̂(zi 1), . . . , p̂(zi ν), L mp

)
← sm

3: t ← cast mα log2(q) bits of SHAKE(M ‖s0‖ · · · ‖sσ−1) into a full-rank matrix in Mm,α
(
Fq

)

4: for i from 0 to σ− 1 do
5: D i ← H1(M ‖i) ∈ Fm

q . The field element has to be generated according the method
used in origin.Sign1.

6: if h(si) 6= D i · t then
7: return INVALID
8: end if . We use the verification process of the inner mode withh as a public-key.
9: end for

10: ĥ ←
(
MacPoly(h1), . . . , MacPoly(hα)

)
. Algorithm 5.

11: i 1, . . . , i ν ← cast ν log2(τ) bits of SHAKE(M ‖s0‖ · · · ‖sσ−1‖h) into a set of ν integers, each in
J0, τ − 1K, not necessarily distinct

12: O← {zi 1 , . . . , zi ν } ⊆ Z
13: for j from 1 to ν do
14: mp← L mp[j]
15: if Merkle.verify

(
pk, mp, p̂(zi j)

)
= INVALID or ĥ(zi j) 6= p̂(zi j) · t then . Algorithm 10.

16: return INVALID
17: end if
18: end for
19: return VALID
20: end function

28

3.5 Security
The SBP transformation is proven secure, and has the Existential UnForgeability against Chosen
Message Attack (EUF-CMA) property (Chapter 4). This property is given by Theorem 1 [157],
when the number of inner signaturesσ = 1 . The authors of [157] consideredδ = 0 .

Theorem 1. Let σ = 1 be the number of inner signatures included in a signature of the outer
layer. If there is an adversary A against the EUF-CMA property of the outer layer of the SBP
transformation in time T with Q random oracle queries and with success probabilityε , then there
exists an adversaryB A against the EUF-CMA property of the inner layer in time O(T) with success
probability at least

ε − (Q + 1) · q−α − (Q + 1) ·

(⌈ N
κ

⌉
− 1

τ

) ν

− (Q + 1) · 2τ − 1
22λ .

When σ > 1, the security of the SBP transformation relies then on a new hard problem, so-called
Approximate MQ (AMQ) problem, which is defined below.

Problem 3. Approximate MQ (AMQ(q, σ, m, nvar, r)) .
Input. A set of quadratic polynomialsp = (p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m ,
σ vectors y1, . . . , yσ ∈ Fm

q and r ∈ N such that r < min(m, σ).
Question. Find x1, . . . , xσ ∈ Fn var

q such that

dim
(

Vec
(
p(x1) − y1, . . . , p(xσ) − yσ

))
6 r,

where Vec stands for the vector space generated byp(x1) − y1, . . . , p(xσ) − yσ .

Under the assumption that AMQ is hard for a fixed σ and r , we obtain Theorem 2 [157].

Theorem 2. If there is an adversary A against the EUF-CMA property of the outer layer of the
SBP transformation in time T with Q random oracle queries and with success probabilityε , and if
AMQ(q, σ, m, nvar, r) is hard, then there exists an adversaryB A against the EUF-CMA property of
the inner layer in time O(T) with success probability at least

ε − (Q + 1) · q−α ·(r +1) − (Q + 1) ·

(⌈ N
κ

⌉
− 1

τ

) ν

− (Q + 1) · 2τ − 1
22λ .

In Figure 3.2, we propose a simplified vision of the security model of the SBP transformation
(Theorem 2). We do not consider the EUF-CMA property, but we provide more details than in
[157, 25] about why the transformation is secure. In particular, we explain how an adversary can
perform a signature forgery in practice. In the security model of SBP, we assume that an adversary
does not know the inner secret-key, but knows the inner public-key and so the Merkle tree. This
implies that he can always provide a correct(h ′, pzi 1 , . . . , pzi ν , L ′). This assumption is important,
because each valid signature reveals information about the inner public-key. In particular, an
adversary can recoverp by multivariate interpolation with at least

⌈ N
σ

⌉
distinct valid signatures,

thanks to the inner signatures. He can also recover̂p (and so p) by univariate interpolation with
at least

⌈ DMAC+1
ν

⌉
distinct valid signatures, thanks to the evaluations of p̂.

29

p(s′
i)

?= H1(M ‖i)

Attack of the inner mode.

Yes

h ′(s′
i)

?= H1(M ‖i) · t

Attack of AMQ.

Yes

ĥ ′(zi j) ?= pzi j · t

Attack of PIT.

Yes

Attack of the Merkle tree.

No ⇒ pzi j 6= p̂(zi j) is forged.

No ⇒ h ′ 6= h is forged to pass the test.

No ⇒ s′
i is not a valid inner signature.

Figure 3.2: Security model of the dual mode. We verify sm= (s′
0, . . . , s′

σ−1, h ′, pzi 1 , . . . , pzi ν , L ′)
provided by an adversary. PIT means Polynomial Identity Testing (Equations (3.2) and (3.3)).

Now, we present possible attacks with this assumption.

• The adversary forges correct inner signatures, and provides a correct(h ′, pzi 1 , . . . , pzi ν , L ′).
This forgery requires attacking the inner mode, which should have aλ-bit security level.
Automatically, the three tests of the verifying process (Algorithm 11) are passed with success.

• The adversary provides incorrect random inner signatures and a correct(h ′, pzi 1 , . . . , pzi ν , L ′).
In this case, the probability of passing the testh ′(s′

i)
?= H1(M ‖i) · t is q−σα .

The adversary can also choose a non-negative integerr < min(σ, m) and forge s′
0, . . . , s′

σ−1
by solving the instance ofAMQ(q, σ, m, nvar, r + 1) associated top and y = H1(M ‖i) · t . This
implies that each forged inner signature can be generated from a basis ofr + 1 signatures.
As a consequence, if theser + 1 signatures pass the test, then theσ signatures pass the test.
This occurs with probability q−(r +1) α .

• The adversary provides incorrect inner signatures, forgesh ′ by multivariate interpolation
to pass the first test, provides random valuespzi 1 , . . . , pzi ν and a correct L ′. In this case,
h ′ 6= p · t implies that at least one univariate polynomial of ĥ ′ − p̂ · t is different from zero.
Its maximum number of roots is bounded by its degree. So, the maximum probability that
ĥ ′ − p̂ · t vanishes onν distinct random points is

ν∏

i =1

(⌈ N
κ

⌉
− i

τ + 1 − i

)

, (3.2)

which is bounded by the maximum probability that ĥ ′ − p̂ · t vanishes onν random points
(not necessarily distinct), i.e. (⌈ N

κ

⌉
− 1

τ

) ν

. (3.3)

SinceL ′ is correct, the last test is always passed with success.

30

• The adversary provides incorrect inner signatures, and forges(h ′, pzi 1 , . . . , pzi ν , L ′). As pre-
viously, a multivariate interpolation gives h ′. Then, he can forgepzi 1 , . . . , pzi ν as a solution of
the classical linear algebra problem̂h ′(zi j) = pzi j · t for 1 6 j 6 ν. Finally, the authentication
paths have to be forged to lead to a root equal to the public-key. This implies attacking the
Merkle tree (Section 3.3) and so the underlying hash function. The latter should have a2λ-bit
security level against the second preimage search.

We deduce from the previous attacks (i.e. Theorem 2) a method to choose the parameters.
Firstly, κ, ν and τ have to be chosen such that Equation (3.3) is lower bounded by2−λ . Secondly,
α and σ have to be chosen such thatq−ασ is lower bounded by2−λ , assuming the instance ofAMQ
is hard to solve for r < min(σ, m) (Section 4.5). Naturally, this assumption is true for σ = 1 since
AMQ with r = 0 becomes an instance ofPoSSo (Problem 1).

3.6 SBP Transformation of MI-Based Signature Schemes
In Table 3.1, we summarize the practical sizes of the SBP transformation [157, 25] onMI-based
schemes.

Dual mode of HFEv-. Gui [144] is a HFEv--based signature scheme (Section 2.4.1). Its dual
transformation allows to obtain a dual signature nine or ten times smaller than the inner public-
key. However, this result relies on stronger assumptions sinceσ > 1 (Theorem 2). The security of
Gui is based on a new parameter, nb_ite, that we will study in Section 4.2. However, we note that
the designers ofGui set this parameter to four, whereas SBP [157] set this parameter to one (this
parameter is not mentioned in [157], but we can deduce its value). This makes insecure the inner
layer.

Public-key compression from a seed. Here, we present the method to compress a part of the
public-key from a seed, forUOV (Section 2.4.2) andRainbow (Section 2.4.3). This method is used
by SBP [157, 25].

In [141, 142], the authors proposed cyclicUOV, which is based on a compression trick to reduce
the public-key size of theUOV-based schemes. The main idea1 is to generate a part of the public-
key from a public seed. Then, we can deduceF by evaluation-interpolation principle (Equation
(2.1)), and finally compute the remaining part of the public-key. By using this method on the
quadratic terms of p, up to v1 (v1 +1)

2 + v1o1 monomials can be saved. This bound is exactly the
number of quadratic terms ofF : the evaluation-interpolation principle implies that each fixed term
in p = F ◦ S implies fixing a term in F .

Then, this principle was extended for u = 2 with cyclic Rainbow [143]. Based on the previous
compression trick, this method saves aboutv1 (v1 +1)

2 + v1o1 elements ofFm
q (similarly to cyclic UOV)

and o1 (o1 +1)
2 elements ofFo2

q . The authors noted that this compression trick can be generalized for
u > 2.

1 In fact, a partially cyclic public-key was used. A part of the terms from the first equation were randomly sampled
and stored in the public-key. Then, the corresponding terms in other equations were computed via a circular shift of
the previous equation (and were not stored). Unlike the partially cyclic public-key, the generation of a non structured
public-key from a public seed [64], sometimes called circumzenithal variant [65], does not have any impact on the
security.

31

Dual UOV and dual Rainbow. In [157], the authors noted an interesting fact: the SBP transforma-
tion is perfectly compatible with the cyclic version of UOV. We can use it to generatev1 (v1 +1)

2 + v1o1
monomials from a public seed, whereas the remaining part of the public-key can be compressed
with the SBP transformation. In this case, we can apply Equations (3.1), (3.2) and (3.3) with
N − v1 (v1 +1)

2 − v1o1 instead of N , which generates smaller parameters and signature sizes. As
mentioned in [25], this is also true forRainbow. The only difference is that the SBP transformation
is (partially) compatible with cyclic Rainbow. The compression trick allows to compress more than
v1 (v1 +1)

2 + v1o1 monomials, but this would not be compatible with the SBP transformation. This is
due to the dual verifying process (Algorithm 11). The monomials which are not present inh have
to be generated from the public seed. We need to know the monomials from each equation, in order
to complete h . In the case of Rainbow, the public seed allows to generate theo1 (o1 +1)

2 monomials
of the last o2 equations. This is not enough to generate the corresponding monomials inh .

In Table 3.1, the dual transformation is applied to UOVrand [139], which is cyclic. The dual
transformation of UOVrand allows to obtain a dual signature two times smaller than the inner
public-key. Unlike dual Gui, this transformation is proven secure without assumptions relied on the
hardness ofAMQ (Theorem 1). For dual Rainbow-IIIc, we have the same result. We note that the
compression trick was not used in the originalRainbow-IIIc scheme [63] from the first round of the
NIST PQC standardization process. Finally, another version of dualRainbow-IIIc is proposed,
based on stronger security assumptions. Here, the factor between the inner public-key size and the
dual signature size is eleven, which is similar to dualGui.

Public-key compression of constrained linear signature schemes. In [25], the authors gen-
eralize the SBP transformation for constrained linear signature schemes. The SBP transformation
can be applied to other categories of signature schemes such as code-based schemes and lattices-
based schemes, under the assumption that the public-key can be represented as an affine system.
Of course, this assumption is true for theMI-based schemes since the public-key is the sum ofN
monomials. In [25], the SBP transformation is applied toRainbow. The proposed parameters target
a 128-bit quantum security level (we refer to Section 8.5.1 about quantum EUF-CMA). The inner
scheme used isRainbow-IIIc, which targets at least a 192-bit classical security level, and at least
a 128-bit quantum security level. However, the authors did not have an efficient implementation
permitting to adapt the parameters to a practical application. So, we propose an implementation
of the dual mode of Rainbow in MQsoft (Chapter 9) to have practical running times, and we use
them to set the parameters.

Smaller signatures. In Section 8.5.5, we show that by removing redundant digests in the au-
thentication paths, we can slightly decrease the signature size. By applying this idea on Table 3.1,
we obtain the following signature sizes (via Equation (8.8)):

• 5.48 kB and 11.6 kB respectively for dualGui-94 and dual Gui-127,

• 24.1 kB, 76.6 kB and 179.3 kB for dualUOVrand,

• 179.2 kB and 29.0 kB for dualRainbow-IIIc.

32

scheme security parameters sec. lvl. λ |pk| |sign|
Gui-94 q = 2 , dext = 94, D = 17 80 54.6 kB(2) 98 bits
(HFEv-) ∆ = 4 , v = 4 , nb_ite = 1 (1)

dual Gui-94 σ = 80, α = 1 , κ = 21, ν = 7 80? 160 bits 6.04 kB(3)

Gui-127 q = 2 , dext = 127, D = 9 120 137.0 kB(2) 133 bits(4)

(HFEv-) ∆ = 4 , v = 6 , nb_ite = 1 (1)

dual Gui-127 σ = 120, α = 1 , κ = 21, ν = 11 120? 240 bits 13.3 kB(3)

UOVrand q = 256, v1 = 90, o1 = 45 128 46.6 kB 1080 bits
dual UOVrand σ = 1 , α = 16, κ = 3 , ν = 12 128 384 bits 26.0 kB(3)

UOVrand q = 256, v1 = 140, o1 = 70 192 174.0 kB 1680 bits
dual UOVrand σ = 1 , α = 24, κ = 3 , ν = 19 192 576 bits 82.1 kB(3)

UOVrand q = 256, v1 = 190, o1 = 95 256 433.2 kB 2280 bits
dual UOVrand σ = 1 , α = 32, κ = 3 , ν = 28 256 768 bits 190.0 kB(3)

Rainbow-IIIc q = 256, v1 = 68, o1 = o2 = 36 128 365.5 kB 1120 bits(5)

dual Rainbow-IIIc σ = 1 , α = 32, κ = 3 , ν = 25 128 512 bits 184.0 kB
dual Rainbow-IIIc σ = 16, α = 2 , κ = 3 , ν = 25 128? 512 bits 33.8 kB
(1) The original scheme [144] considers nb_ite = 4 , but the signature size from [157] indicates that the authors

consider nb_ite = 1 .
(2) The public-key sizes of [144, Table 9] are wrong. We have corrected them.
(3) The formula of signature size in [157] is wrong, and was corrected in [25]. We have updated the signature

sizes accordingly (cf. Equation (3.1)).
(4) We have corrected the signature size from [157], which was 123 bits.
(5) The 128-bit salt is not considered here.

Table 3.1: Comparison of the inner and outer layers ofMI-based schemes, as proposed in [157, 25].
For all parameter sets, τ = 2 20 and δ = 0 . We note that for UOVrand [139] and Rainbow-IIIc
[63], the authors of [157, 25] only considered the quadratic terms of the inner public-key, unlike
original schemes. Rainbow-IIIc targets a 192-bit classical security level and a 128-bit quantum
security level. It is used by compressingv1 (v1 +1)

2 + v1o1 monomials from a public seed of 32 bytes,
and without the 128-bit salt in the signature. We have also corrected some errors from [157]. In
particular, we have replaced the digest size by2λ bits instead of λ bits.

33

Chapter 4

Cryptanalysis Techniques

This chapter provides a summary of the main attacks against theHFE-based signature schemes
(Section 2.3), as well as the known attacks against the SBP transformation (Chapter 3). In cryp-
tography, attacks against signature schemes are traditionally divided into four categories. An
adversary who can perform one of them can perform all the previous ones.

• Existential forgery. An adversary can generate a valid couple message-signature.

• Selective forgery. An adversary can select a message prior to the attack, then forge its
signature.

• Universal forgery. An adversary can sign any message.

• Total break. An adversary recovers the secret-key for a given public-key, allowing to sign
any message.

In Section 4.1, we present several metrics to evaluate the cost of attacks. Then, we consider
existential forgery for signature schemes having a very short signature (Section 4.2). In Sections
4.3, 4.4 and 4.5, we study selective forgery and universal forgery by inverting the public-key for a
fixed message. This includes, in particular, the analysis of known quantum attacks (Sections 4.3.1
and 4.4.2) and Gröbner basis attacks (Section 4.4). In Section 4.6, we consider the total break with
key-recovery attacks, including solving the MinRank problem (Problem 5). Finally, the physical
information leakages of an implementation can lead to side-channel attacks (Section 4.7), going to
the total break.

The attacks against the HFE-based signature schemes (Section 2.4.1) that we here present will
allow to evaluate the security and set precisely the parameters of our NIST submissions:GeMSS
(Chapter 7) and DualModeMS (Chapter 8).

4.1 Metrics and NIST Security Strength Categories
The security of a cryptosystem is evaluated by counting the number of operations required to forge
a valid signature. These operations can be for example evaluations of a certain map, arithmetic
operations or binary operations. In general, the security of a cryptosystem is quantified by the

35

number of bit operations, or logical gates, required to forge a valid signature. A cryptosystem
reaches aλ-bit security level if the best attack requires at least 2λ bit operations. The cost of an
attack is also quantified by the maximal quantity of memory used to perform it, and by the number
of calls to an oracle of signature in the case of existential forgery under chosen message attack.

The security against quantum computers is slightly different from classical (binary) comput-
ers. The cost of quantum algorithms is measured by counting the number of quantum logical
gates (similarly to classical gates on binary architectures). It can also be important to count the
qubits (quantum bits) required by these algorithms. The number of available qubits on quantum
architectures is so far limited, due to questions about instabilities and quantum entanglement.

In the NIST PQC standardization process [127], six categories of security strength are intro-
duced. NIST defines these categories with respect to existing NIST standards in symmetric cryp-
tography (Table 4.1).

security strength security description
I At least as hard to break asAES128 (exhaustive key search)
II At least as hard to break asSHA3-256 (collision search)
III At least as hard to break asAES192 (exhaustive key search)
IV At least as hard to break asSHA3-384 (collision search)
V At least as hard to break asAES256 (exhaustive key search)
VI At least as hard to break asSHA3-512 (collision search)

Table 4.1: NIST security strength categories.

The definition of these levels requires specifying the security level ofAES and SHA-3. We sum-
marize in Table 4.2 the estimations given by NIST [127], for both classical security and quantum
security.

security strength underlying standard classical attack quantum attack
I AES128 2143 gates 2170/ MAXDEPTH gates
II SHA3-256 2146 gates
III AES192 2207 gates 2233/ MAXDEPTH gates
IV SHA3-384 2210 gates
V AES256 2272 gates 2298/ MAXDEPTH gates
VI SHA3-512 2274 gates

Table 4.2: Estimation of NIST security strength categories. MAXDEPTH is the circuit depth.

For the classical security, exhaustive key search (respectively collision search) requires2128 calls
to AES128 (respectively SHA3-256) for the level I (respectively II). Then, the number of gates is
obtained by multiplying 2128 by the cost of evaluatingAES128 (respectively SHA3-256). The method
is similar for other levels. The cost of evaluating is estimated to215 (classical) gates forAES128
and AES192, 216 gates for AES256, and 218 gates for SHA-3.

36

For the quantum security, the cost of exhaustive search againstAES is given in [98]. In Table
4.2, the number of quantum gates is multiplied by the circuit depth (both from [98, Table 5]), then
the result is divided by MAXDEPTH. NIST takes into account that too large circuit depths may not
be usable in practice, due to quantum instabilities. Instead, several smaller circuits can be run
in parallel. The parameter MAXDEPTH is introduced to quantify a fixed circuit depth, or running
time. NIST considers that this value can be chosen between240 and 296, in function of certain
assumptions on the running time.

4.2 Generic Attack and Feistel–Patarin Construction

The MI-based signature schemes presented in Section 2.3 follow the hash-and-sign paradigm. Let
G : Fn var

q → Fm
q be a trapdoor function and H1 : {0, 1}∗ → Fm

q be a hash function. Roughly, the
signature sm∈ Fn var

q of a messaged ∈ {0, 1}∗ is obtained as

sm = G−1(
H1(d)

)
.

When m log2(q) is strictly less than 2λ , these schemes are vulnerable to collision attacks on the
hash function. As proposed in [58], the attack requires generating from random inputs, a first hash
table of q1

2 m hash values and a second hash table ofq1
2 m evaluations of G. Thanks to the birthday

paradox, the intersection of these tables should be non-empty, creating an existential forgery since
we obtain (x, y) ∈ Fn var

q × {0, 1}∗ such that G(x) = H1(y). This method requires computing q1
2 m

evaluations of G and H1. The memory cost has the same order of magnitude (note that only one
hash table really needs to be stored). To circumvent this issue, we can choose to fixm log2(q) > 2λ ,
but this choice implies lower bounding the public-key sizes which are large, as well as the signature
sizes which could be even smaller.

In order to avoid both the attack and such a countermeasure, J. Patarin introduced an iterative
construction [133]. The latter was extended by [58] and called Feistel–Patarin construction. Based
on the Feistel scheme, the inversion process is repeated nb_ite times as explained in Algorithm 12.
The signature size is

(
m + nb_ite · (nvar −m)

)
· log2(q) bits.

Algorithm 12 MI-based signature process using the Feistel–Patarin construction.

1: function sign_Feistel_Patarin
(
M ∈ {0, 1}∗, G−1 : Fm

q → Fn var
q

)

2: S0 ← 0m
3: for i from 0 to nb_ite − 1 do . Iterations with the Feistel–Patarin scheme.
4: D i +1 ← H1(M ‖i) . D i +1 ∈ Fm

q .
5:

(
Si +1 , X i +1

)
← G−1(

Si − D i +1
)

. Si +1 ∈ Fm
q , X i +1 ∈ Fn var−m

q .
6: end for
7: return sm =

(
Snb _ite , X nb _ite , X nb _ite −1, . . . , X 1

)

8: end function

The corresponding verification process is given in Algorithm 13.

37

Algorithm 13 MI-based verification process using the Feistel–Patarin construction.

1: function verify_Feistel_Patarin
(

M ∈ {0, 1}∗, sm∈ Fm + nb _ite ·(n var−m)
q , G : Fn var

q → Fm
q

)

2:
(
Snb _ite , X nb _ite , X nb _ite −1, . . . , X 1

)
← sm

3: for i from nb_ite − 1 to 0 by −1 do
4: D i +1 ← H1(M ‖i) . D i +1 ∈ Fm

q .
5: Si ← G

(
Si +1 , X i +1

)
+ D i +1

6: end for
7: return VALID if S0 = 0m and INVALID otherwise
8: end function

In [58], the author proved that an attack can be mounted in

O
(

q
nb _ite

nb _ite +1 m
)

evaluations of G and H1,

with a memory cost of

O
(

q
nb _ite

nb _ite +1 m nvar log2(q)
)

.

This generic attack was firstly proposed by J. Patarin for nb_ite = 2 [133, Remark 2]. He also noted
the possibility to increase the number of iterations [133, Remark 3], and its impact on the generic
attack.

In HFEv--based signature schemes such asQUARTZ, Gui and GeMSS (Chapter 2), the Feistel–
Patarin construction is used because the signature size is very short. In Section 7.7.2, we propose a
more accurate study of the generic attack, slightly decreasing its cost. Our results allow to improve
the performance ofGeMSS.

4.3 Direct Signature Forgery Attacks

The public-key of MI-based signature schemes is given by a set of non-linear equationsp =
(p1, . . . , pm) ∈ Fq[x1, . . . , xn var]m (Chapter 2). Given a digest (d1, . . . , dm) ∈ Fm

q , the problem
of forging a signature (Section 2.3.2) is equivalent to solving the following system of non-linear
equations:

{
p1(x1, . . . , xn var) − d1 = 0 , . . . , pm (x1, . . . , xn var) − dm = 0 ,
xq

1 − x1 = 0 , . . . , xq
n var
− xn var = 0 ,

(4.1)

where xq
i − x i = 0 for 1 6 i 6 nvar are called field equations, because it is equivalent tox i ∈ Fq.

Stated differently, the task is to invert the public map without the knowledge of the secret-key.
For HFE-based schemes (Section 2.4.1) andRainbow (Section 2.4.3), the system is under-defined,

i.e. nvar > m . As a consequence, we can randomly fixnvar − m variables in (4.1) (let r =
(r 1, . . . , r n var−m) ∈ Fn var−m

q be these random values) and try to solve for the remaining variables.
Note that this is similar to the (legitimate) signature process which requires randomly fixing vari-
ables.

38

Thus, the problem of forging a signature is reduced to solving a system ofm quadratic equations
in m variables overFq:

{
p1(x1, . . . , xm , r) − d1 = 0 , . . . , pm (x1, . . . , xm , r) − dm = 0 ,
xq

1 − x1 = 0 , . . . , xq
m − xm = 0 .

(4.2)

4.3.1 Exhaustive Search

Classical Exhaustive Search. Equation (4.2) can be solved by evaluating the system in the
qm possible inputs, then by verifying if each evaluation is equal to the digest. This requiresO(qm)
operations in Fq.

In [38], the authors describe a faster exhaustive search for solving systems of boolean quadratic
equations. They also provide a detailed cost analysis of their approach. To recover a solution of
(4.2), the approach from [38, Theorem 2] requires:

4 log2(m) · 2m binary operations. (4.3)

Quantum Exhaustive Search. Exhaustive search can be improved with quantum computers.
Grover’s algorithm [102] is a quantum algorithm which, given a function having a domain of sizek,
and a target output, returns an input producing this output with only Θ

(√
k

)
evaluations of this

function. Grover’s algorithm requires Θ(qm
2) evaluations of the public polynomialsp to solve (4.2).

[150] demonstrated that we can solve a system ofm − 1 binary quadratic equations in nvar − 1
binary variables using m + nvar + 2 qubits and evaluating a circuit of:

2
n var

2 ·
(

2m ·
(
n2

var + 2nvar
)

+ 1
)

quantum gates. (4.4)

They also describe a variant using less qubits,i.e. 3 + nvar + dlog2(m)e qubits, but requiring to
evaluate a larger circuit, i.e. with:

≈ 2× 2
n var

2 ·
(

2m ·
(
n2

var + 2nvar
)

+ 1
)

quantum gates. (4.5)

4.3.2 Approximation Algorithm

The authors of [117] proposed an algorithm for solving systems of non-linear equations that is faster
than a direct exhaustive search. The technique from [117] uses an approximation of a non-linear
system, such as (4.2), by a single high-degree multivariate polynomialP ∈ Fq[x1, . . . , xm 0] with
m0 < m . The polynomial P is constructed such that it vanishes on the same zeros as the original
non-linear system with high probability. We then perform an exhaustive search onP to recover,
with high probability, the zeros of the non-linear system. This leads to an algorithm for solving
(4.2) whose asymptotic complexity is

O∗
(

20.8765m
)

(4.6)

when q = 2 [117, Theorem 1.1]. TheO∗ notation omits polynomial factors.

39

4.4 Gröbner Bases
To date, the best methods for solving non-linear equations, including the signature forgery (System
(4.1)), utilize Gröbner bases [45, 46]. The historical method for computing such bases – known as
Buchberger’s algorithm – has been introduced by B. Buchberger in his PhD thesis [45, 46]. Many
improvements on Buchberger’s algorithm have been done leading – in particular – to more efficient
algorithms such as the F4 and F5 algorithms of J.-C. Faugère [76, 77]. The F4 algorithm, for
example, is the default algorithm for computing Gröbner bases in the computer algebra software
Magma [34]. The F5 algorithm, which is available through the FGb [79] software1, provides today
the state-of-the-art method for computing Gröbner bases.

Besides F4 and F5, there is a large literature of algorithms computing Gröbner bases. We
mention for instance PolyBory [43] which is a general framework to compute Gröbner basis in
F2[x1, . . . , xn var]/ 〈x2

i − x i 〉16i6n var . It uses a specific data structure – dedicated to the Boolean ring
– for computing Gröbner basis on top of a tweaked Buchberger’s algorithm2. Another technique
proposed in cryptography is theXL algorithm [60]. It is now clearly established that XL is a special
case of Gröbner basis algorithm [7]. More recently, a zoo of algorithms such asG2V [91], GVW [92],
. . . flourished building on the core ideas of F4 and F5. This literature is vast and we refer to [75]
for a recent survey of these algorithms.

Despite this important algorithmic literature, it is fair to say that Magma and FGb remain the
reference softwares for polynomial system solving over finite fields. We have chosenMagma to
perform practical experiments requiring Gröbner basis computations.

4.4.1 Practically Fast Algorithms
The direct attack described in [78, 82] provides reference tools for evaluating the security ofHFE
and HFEv- against a direct message-recovery attack. This attack uses the F5 algorithm [77, 12] and
has the following complexity:

O
(
poly(m, nvar)ω·D reg

)
, (4.7)

with 2 6 ω < 3 being the so-calledlinear algebra constant [161], i.e. the smallest constant ω such
that two matrices of size N × N over a field F can be multiplied in O(N ω) arithmetic operations
over F. The best current bound is ω < 2.3728639[90]. The poly(m, nvar) notation means the
complexity is polynomial in m and nvar.

Complexity (4.7) is exponential in the degree of regularity D reg [9, 14, 11]. However, this
degree of regularity can be difficult to predict in general; as difficult as computing a Gröbner basis.
Fortunately, there is a particular class of systems for which this degree can be computed efficiently
and explicitly: semi-regular sequences[9, 14, 11]. This notion is supposed to capture the behavior
of a random system of non-linear equations. In order to set the parameters forHFE and variants as
well as for performing meaningful experiments on the degree of regularity, we can assume that no
algebraic system has a degree of regularity higher than a semi-regular sequence.

In F2, the degree of regularity of a semi-regular system ofm quadratic boolean equations in
nvar variables is the smallest indexi such that the term zi of the Hilbert series G (Equation (4.8))
is non-positive (i.e. negative or null) [14, Proposition 10].

G(z) =
(1 + z)n var

(1 + z2)m . (4.8)

1http://www-polsys.lip6.fr/~jcf/FGb/index.html
2http://polybori.sourceforge.net

40

http://www-polsys.lip6.fr/~jcf/FGb/index.html
http://polybori.sourceforge.net

In Table 4.3, we provide these degrees of regularity whennvar = m, for various values ofm.

m D reg
4 6 m 6 8 3
9 6 m 6 15 4
166 m 6 23 5
246 m 6 31 6
326 m 6 40 7
416 m 6 48 8
496 m 6 57 9
586 m 6 66 10

1546 m 6 163 20
2346 m 6 243 28
3166 m 6 325 36

Table 4.3: Degree of regularity ofm semi-regular quadratic boolean equations inm variables.
The field equations are used.

In the case ofHFE, when q = 2 , the degree of regularity for solving (4.2) has been experimentally
shown to be smaller thanlog2(D) [78, 82]. This behavior has been further demonstrated in [96, 74].
In particular, [96, Theorem 1] claims that the degree of regularity reached inHFE is asymptotically
upper bounded by:

(
2 + ε

)
·

(
1−

√
3/ 4

)
·min

(
m, log2(D)

)
, for all ε > 0. (4.9)

This bound is obtained by estimating the degree of regularity of a semi-regular system of3dlog2(D)e
quadratic equations in 2dlog2(D)e variables. We emphasize that an asymptotic bound such as (4.9)
is not necessarily tight for specified values of the parameters. Thus, (4.9) cannot be directly used
to derive actual parameters but still provides a meaningful asymptotic trend.

Indeed, the behavior ofHFE algebraic systems is then much different from a semi-regular system
of m quadratic boolean equations inm variables where the degree of regularity increases linearly
with m. Roughly, D reg grows like m/ 11.11 in the semi-regular case [9, 14, 11].

We report below the degree of regularity D Exp
reg observed in practice for HFE. These bounds

are only meaningful for a sufficiently large m which is given in the first column. Indeed, as we
already explained, we can assume that the values from Table 4.3 are upper bounds on the degree
of regularity of any algebraic system of boolean equations.

m HFE degreeD D Exp
reg

> 4 3 6 D 6 16 3
> 9 176 D 6 128 4
> 16 1296 D 6 512 5
> 24 5136 D 6 4096 6
> 32 40976 D > 7

Table 4.4: Degree of regularity in the case ofHFE algebraic systems.

41

Following [82], we lower bound the complexity of F5 againstHFE, i.e. for solving System (4.2).
The principle [14] is to only consider the cost of performing a row-echelon computation on a full-
rank sub-matrix of the biggest matrix occurring in F5. At the degree of regularity, this sub-matrix
has

(m
D reg

)
columns and (at least)

(m
D reg

)
rows. Thus, we can bound the complexity of a Gröbner

basis computation againstHFE by:

O
((

m
D reg

) ω)
operations in F2. (4.10)

This is a conservative estimate on the cost of solving (4.2). This represents the minimum compu-
tation that has to be done in F5. We can also assume that the linear algebra constantω is 2; the
smallest possible value.

From Table 4.4, we can see that noHFE has a degree of regularity sufficiently large to be used in
practical applications. For D reg = 7 , more than 220 equations and variables are required to reach a
128-bit level of security, implying a public-key size of259 bits. So, we need to use modifiers ofHFE
(Section 2.4.1) for increasing the degree of regularity.

In particular, the practical effect of the minus and vinegar modifiers have been considered in
[78, 82]. This has been further investigated in [67, 71] who presented a theoretical upper bound on
the degree of regularity arising inHFEv-. Let ∆ be the number of minus equations,v the number of
vinegar variables andRq = blogq(D − 1)c + 1 . Then, the degree of regularity forHFEv- is bounded
from above by






(q− 1)(Rq + ∆ + v − 1)
2

+ 2 , if q is even andRq + ∆ is odd,

(q− 1)(Rq + ∆ + v)
2

+ 2 , otherwise.
(4.11)

We observe that the degree of regularity seems to increase linearly withnvar −m. This is the sum
of the modifiers: number of minus equations plus number of vinegar variables.

[140] derived an experimentallower bound on the degree of regularity in HFEv-. The authors
[140] obtained that the degree of regularity forHFEv- when q = 2 should be at least:

⌊
R2 + ∆ + v + 1

3

⌋
+ 2 . (4.12)

4.4.2 Asymptotically Fast Algorithms
BooleanSolve [13] is the fastest asymptotic algorithm for solving systems of non-linear boolean
equations. BooleanSolve is a hybrid approach that combines exhaustive search and Gröbner bases
techniques. For a system with the same number of equations and variablesm, the deterministic
variant of BooleanSolve has complexity bounded by O

(
20.841m)

, while a Las Vegas variant has
expected complexity

O
(

20.792m
)

. (4.13)

It is mentioned in [13] that BooleanSolve is better than exhaustive search whenm > 200. This is
due to the fact that large constants are hidden in thebig Oh notation. As a conservative choice,
we lower bound the cost of this attack by 20.792m in GeMSS (Section 7.7.1).

42

QuantumBooleanSolve. In [81], the authors present a quantum version ofBooleanSolve that
takes advantages of Grover’s quantum algorithm [102]. QuantumBooleanSolve is a Las Vegas
quantum algorithm allowing to solve a system ofm boolean equations inm variables. It usesO(m)
qubits and requires the evaluation of, on average,

O
(

20.462m
)

quantum gates. (4.14)

This complexity is obtained under certain algebraic assumptions. Note that [18] also proposed a new
(Gröbner-based) quantum algorithm for solving quadratic equations with a complexity comparable
to QuantumBooleanSolve (we refer to [81] for further details).

4.5 Direct Attack against Approximate PoSSo

The security of the SBP transformation (Chapter 3) depends on theAMQ problem (Problem 3).
Here, we generalizeAMQ by considering degree-D equations instead of quadratic equations. We call
APoSSo this new problem.

Problem 4. Approximate PoSSo (APoSSo(q, σ, m, nvar, D, r)) . Let q, m, nvar, D, σ and r be non-
negative integers such thatr < min(σ, m). Given p a degree-D multivariate polynomial system
in Fq[x1, . . . , xn var]m and y1, . . . , yσ in Fm

q , the problem is to find vectorsx1, . . . , xσ in Fn var
q such

that the dimension of the vector space generated byp(x1)− y1, . . . , p(xσ)− yσ is less or equal tor .

When r = 0 , it is clear that APoSSo corresponds toσ independent instances ofPoSSo (Problem 1),
and so can be solved as such. Whenr > 0, the authors of [157] present three attacks againstAMQ,
that we generalize forAPoSSo.

1. Exhaustive search. Randomly choose the values ofx1, . . . , x r in Fn var
q . Then, for r < i 6 σ,

randomly samplex i ∈ Fn var
q until p(x i)−y i is a linear combination ofp(x j)−y j for 1 6 j 6 r .

A correct value x i is found with probability q−(m −r) . Therefore, this strategy requires roughly
r + (σ− r)qm −r evaluations of p and c · (σ− r)qm −r + O

(
r 2 · (nvar − r)

)
operations in Fq, for

c = O
(
r · (nvar − r)

)
.

2. Quantum exhaustive search. As in Section 4.3.1, the exhaustive search can be accelerated
with Grover’s algorithm. This strategy requires roughly Θ

(√
σ− r · q1

2 (m −r))
evaluations of

p.

3. Algebraic attack. Here, we write the rank condition for each variablex i for r < i 6 σ.
For any i , we introduce r new variablesz1, . . . , zr . Then, we have that p(x i) − y i is a linear
combination of p(x j) − y j means




r∑

j =1

zj (p(x j) − y j)



 + p(x i) − y i = 0m . (4.15)

The authors proposed two strategies. We can directly solve the system generated by Equation
(4.15) for r < i 6 σ. This system is an instance ofPoSSo(q,(σ− r)m, σnvar + (σ− r)r, D + 1)
(Problem 1). We can also randomly fix the values ofx1, . . . , x r . After applying a linear
transformation, we obtain values of z1, . . . , zr such that r elements of Equation (4.15) vanish

43

on them. In this case, Equation (4.15) becomes a system ofm − r equations in only nvar
variables. Applying this strategy for each variablex i for r < i 6 σ, we obtain σ−r independent
instances ofPoSSo(q, m− r, n var, D).

These attacks show that solvingAPoSSo should be exponential in m − r . In Chapter 10, we
study this problem more accurately.

4.6 Key-Recovery Attacks against HFE

We conclude attacks againstHFE by covering key-recovery attacks. This part discusses the so-called
Kipnis–Shamir attack [111] (Section 4.6.3) based on theMinRank problem (Section 4.6.2). The
Section 4.6.1 deals with equivalent keys. The existence of equivalent keys does not make dangerous
an exhaustive search, but this concept is a practical tool to simplify attacks and implementations
via the use of normal forms of the secret-key.

4.6.1 Exhaustive Search and Equivalent Keys
The secret-key of anyMI-based scheme can be attacked with an exhaustive search. At first glance,
this attack is very inefficient because the size of the key space is very large. Just by considering
the affine transformations S ∈ Aff −1

n var

(
Fq

)
and T ∈ Aff −1

m ′

(
Fq

)
, and by using that the number of

invertible matrices in Mn
(
Fq

)
[116] is

qn 2
n∏

j =1

(
1− q−j

)
,

we obtain a lower bound on the number of secret-keys, which is slightly less thanqn 2
var+ n var+ m ′2 + m ′

.
However, the authors of [165] introduced the notion of equivalent keys. Indeed, we can remark that
several distinct secret-keys can lead to the same public-key. In this case, these secret-keys are called
equivalent keys.

Definition 2 (Equivalent keys). Two secret-keys
(
S,F , T

)
and

(
S ′,F ′, T ′) in Aff −1

n var

(
Fn var

q
)
×(

Fn var
q → Fm ′

q

)
× Aff −1

m ′

(
Fm ′

q

)
are equivalent if

p = T ◦ F ◦ S = T ′ ◦ F ′ ◦ S ′.

By using this concept, the authors of [165] demonstrated that forHFEv--based schemes, each secret-
key has at least

dext · q∆+2 dext+ vdext ·
(

qdext − 1
) 2
·

v−1∏

i =0

(
qv − qi

)
·
dext−1∏

i = m −1

(
qdext − qi

)
equivalent keys.

The size of the key space without these equivalent keys is too large to make dangerous an exhaustive
search. However, the use of equivalent keys allows to restrict attacks to a specific type of keys. In
particular, for each couple of affine transformations S ′ and T ′, there exists an equivalent secret-key
whereS and T are linear transformations (cf. the additive sustainer in [165]). For this reason, the
affine part of S ′ and T ′ are not considered in both implementation and attack. Moreover, we can
use the concept of equivalent keys to choose a monicHFEv polynomial, as explained in Section 7.4.2.

44

4.6.2 MinRank
The MinRank problem was firstly studied in [47] where authors demonstrated its NP-completeness
in Fq. The problem is as follows: given integersq, n, k, r and a matrix M in Mn

(
Fq ∪{t1, . . . , tk}

)
,

find, if any, t̃1, . . . , t̃k ∈ Fq such that

rank
(

M
(
t̃1, . . . , t̃k

))
6 r.

Then, MinRank was re-stated in [57], as follows.

Problem 5. MinRank (MinRank(q, m, n, k, r)) . Let q, m, n, k and r be integers. LetM 0, M 1, . . . , M k
be matrices inMm,n

(
Fq

)
. Find, if any, elements t̃1, . . . , t̃k ∈ Fq such that the rank of

M =
k∑

i =1

t̃ i M i −M 0,

is at most r .

The MinRank problem is crucial for key-recovery attacks againstHFE. We present in the next section
the best known attacks whenr is very small compared tomin(m, n).

4.6.3 Kipnis–Shamir Attack
In [111], A. Kipnis and A. Shamir demonstrated that the key-recovery in HFE is essentially equivalent
to the problem of finding a low-rank linear combination of a set ofm matrices of sizenvar× nvar in
Fq. This is a particular instance of the MinRank problem (Problem 5).

We briefly review the principle of this attack for HFE. In the context of this attack, we can
assume, without loss of generality, that theHFE polynomial has a simpler form:

∑

06j 6i<d ext

qi + qj 6D

A i,j X qi + qj
∈ Fqd ext [X]. (4.16)

Let X =
(

X, X q, X q2
, . . . , X qd ext−1

)
. We can then write (4.16) in matrix form, which is:

X · F · X T ,

where X T stands for transpose ofX and F ∈ Mdext

(
Fqd ext

)
is a symmetric matrix if q is odd, and

is triangular otherwise. Since the degree ofF is bounded by D , it is easy to see thatF has rank
at most dlogq(D)e. This implies that there exists a linear combinations of rank dlogq(D)e of the
public matrices representing the public quadratic forms [22]. Then, the secret-key can be easily
recovered from a solution ofMinRank(q, dext, dext, dext, dlogq(D)e) [111, 22].

In [22], the authors evaluated the cost of the Kipnis–Shamir key-recovery attack with the best
known tools [76, 77] for solving the instance ofMinRank(q, dext, dext, dext, dlogq(D)e) that occurs in
HFE. Following [22], the cost of the Kipnis–Shamir attack againstHFE can be estimated to:

O

((
dext + dlogq(D)e + 1
dlogq(D)e + 1

) ω
)

' O
(

d
ω(dlog q (D)e+1)
ext

)
,

45

where ω is the linear algebra constant andD is the degree of the secret univariate polynomial.
When one equation is removed from the public-key, there is a method of reconstructing the

removed equation during the Kipnis–Shamir key-recovery attack [160]. Until recently, it was not
clear how to apply the key-recovery attack from [111, 22] toHFE- when at least two equations
are removed. In [160], the authors explained how to extendMinRank-based key-recovery for all
parameters ofHFE-. Their results can be summarized as follows. From key-recovery point of view,
HFE- with dext variables based on a secret univariate polynomial of degreeD is equivalent to a HFE
with m variables based on a secret univariate polynomial of degreeD · 2∆ . Combining with [22],
we obtain a MinRank(q, dext, dext, m, ∆ + dlogq(D)e)-based key-recovery attack againstHFE- whose
cost is then:

O

((
m + ∆ + dlogq(D)e + 1

∆ + dlogq(D)e + 1

) ω
)

' O
(

mω(∆+ dlog q (D)e+1)
)

.

For MinRank-based key-recovery, the minus modifier has then a strong impact on the security.
In the case ofHFEv, one can see that the rank of the corresponding matrix (see, for example

[144]) will be increased by the number of vinegar variables. Combining with the previous result,
the cost of solvingMinRank in the case ofHFEv- is then:

O

((
m + v + ∆ + dlogq(D)e + 1

v + ∆ + dlogq(D)e + 1

) ω
)

' O
(

mω(v+∆+ dlog q (D)e+1)
)

, (4.17)

where D is the degree of the secret univariate polynomial. Here, we consider an instance of
MinRank(q, dext + v, dext + v, m, v + ∆ + dlogq(D)e).

4.7 Side-Channel Attacks

In the previous sections, we study the hardness of solving mathematical problems. This is not
enough to guarantee security because hardware and software implementations can have physical
information leakages. Side-channel attacks are based on these leakages. They can be leaded,
for example, by exploiting power consumption measurements, or by generating fault injections
[32, 8]. A famous side-channel attack [113] breaks the implementation of the square-and-multiply
exponentiation algorithm (Algorithm 14) used in the RSA cryptosystem. Let K be a secret exponent.
At each step of Algorithm 14, a square is computed. But if the i -th bit of K is one, an extra
multiplication is performed. Thus, the number of operations depends on the secret-key. We can
then try to exploit time measurements or power consumption to recover the secret-key. For the
power consumption attack, the adversary requires a physical access to obtain measurements. For a
timing attack, these measurements can be obtained remotely, for example by measuring the response
time of a server. This attack can seem unrealistic because of different instabilities (e.g. fluctuation
of the Internet connection, swap of the current process). In 2005, D. Brumley and D. Boneh [44]
succeed to remotely attack theRSA implementation of the famous OpenSSL library.

46

In Algorithm 14, a timing attack is based on the fact that a conditional statement depends on a
secret integer, generating a difference in the time used to perform one step. Another famous type of
timing attack is the cache-timing attack. Here, the timing leakage is due to the delay of a memory
access (Section 6.1.2), which can be usede.g. to recover the index of a lookup table. If the memory
access depends on secret data, then the secret can be compromise. This type of attacks was used
to break the OpenSSL library in 2005 [16].

Algorithm 14 Left-to-right square-and-multiply exponentiation. R is a ring.
1: function Exp(A ∈ R, K ∈ N∗)
2: AK ← A
3: for i from blog2(K)c − 1 to 0 by −1 do
4: AK ← A2

K . Square.
5: if

⌊ K
2i

⌋
mod 2 = 1 then . Extraction of the i -th bit of K .

6: AK ← AK × A . And multiply.
7: end if
8: end for
9: return AK . A K .

10: end function

Nowadays, the timing attacks are considered as very dangerous, and are still present. In 2019,
the authors of [3] broke the keypair generation of theRSA implementation from the OpenSSL library.
To do it, they used the fact that the operations performed during the binary GCD algorithm depend
on the binary representation of the inputs. They motivated the danger of their attack by a typical
application: the generation of certificates for the websites using theTLS protocol. On well-known
and widely deployed services, the keys are often generated on shared cloud environments. Malicious
adversaries could be present and measure the time of keypair generation to recover the secret-key.
All in all, it is mandatory that all operations involving secret data are performed in constant-time
(Section 6.3). This can generate an additional cost, as in Algorithm 15 where we replace the
conditional statement of Algorithm 14 by a mathematical formula. Our library MQsoft (Chapter 9)
takes into consideration these criteria about security and performance evaluation. We minimize the
penalty generated by the protection of secret data.

Algorithm 15 Constant-time left-to-right square-and-multiply exponentiation. R is a ring.
1: function CstExp(A ∈ R, K ∈ N∗)
2: A ′ ← A − 1
3: AK ← A
4: for i from blog2(K)c − 1 to 0 by −1 do
5: AK ← A2

K . Square.
6: b←

⌊ K
2i

⌋
mod 2 . Extraction of the i -th bit of K .

7: AK ← AK × (A ′ × b+ 1) . Conditional multiplication by A.
8: end for
9: return AK . A K .

10: end function

47

We conclude by noting that other attacks, and in particular fault attacks [8], can really be
dangerous in some contexts. With a simple laser, fault attacks can be generated and used to break
the use of cryptography on smart cards. The first fault attacks were introduced by the authors of
[32], demonstrating the major impact of fault attacks. The authors presented several attacks on
RSA:

• on a typical implementation of the RSA-based signature schemes, the complete secret-key
can be recovered with only a correct signature and a faulty signature, both from the same
document,

• with a fairly large number of faulty encryptions, the secret exponent ofRSA implementations
using Algorithm 14 can be recovered.

No fault attacks were reported against our implementations submitted to the NIST PQC standard-
ization process [128].

48

Chapter 5

Arithmetic

In this chapter, we present arithmetic in polynomial rings, as well as the representation of finite field
extensions. Arithmetic is crucial for the performance ofMI-based schemes (Chapter 2) and their
dual mode (Chapter 3). In particular, the HFE-based schemes (Section 2.4.1) require arithmetic
operations in Fqd ext and a root finding algorithm in Fqd ext [x]. In Section 5.1, we present arithmetic
operations in Fq[x]. Then, we study different representations of extension fields in Section 5.2. We
use the polynomial basis inMQsoft (Chapter 9), whose operations are these described in Section
5.1. When the finite field is F2d ext (Section 5.3), we present some classical optimizations to improve
arithmetic from Section 5.1. This field is used inGeMSS (Chapter 7) and DualModeMS (Chapter 8),
and we will study an efficient implementation of field operations in Chapter 9. Once arithmetic
in Fqd ext is defined, we can define basic operations inFqd ext [x] as in Section 5.1 (by replacingq by
qdext). In Section 5.4, we define advanced operations inFqd ext [x]. These operations are parts of the
root finding algorithm (Section 5.4.8), except for the polynomial evaluations which are used in the
dual mode.

Let p be a prime number, the prime fieldFp is defined as:

Fp = Z/ (pZ).

Fp is obtained from the integer ring by adding the relationship p = 0 . Then, we can define a
degree-k extension field of Fp by adding α a root of an irreducible polynomial f of degreek in
Fp[x], i.e. we add the relationship f (α) = 0 . We obtain:

Fpk = Fp[α]/ (f (α)) , k > 1.

In this chapter, we present arithmetic in Fq[x] for q = p` , ` > 1, or in Fqd ext [x] when the extension
degree has a major role in the studied operation (e.g. the Frobenius map, Section 5.4.5). The prime
p corresponds to the characteristic of this field. The dependencies between the different arithmetic
operations are depicted in Figure 5.1. Then, we summarize the complexity of main polynomial
operations in Fqd ext [x] (Table 5.1).

49

Modular composition in
Fqd ext [X] (Section 5.4.3)

Modular composition in
Fqd ext [X] (Section)

Modular composition in
Fqd ext [X] (Section)

Inversion in F×
qd ext

(Section 5.4.2)

Multiplication in Fq [x]
(Section 5.1.2)

Modular reduction in
Fq [x] (Section 5.1.4)

Squaring in Fq [x]
(Section 5.1.3)

Squaring in Fqd extMultiplication in Fqd ext

Multiplication in Fqd ext [X]
(Section 5.1.2)

Division in Fqd ext [X]
(Section 5.1.4)

Squaring in Fqd ext [X]
(Section 5.1.3)

GCD in Fqd ext [X]
(Section 5.4.1)

Frobenius map in
Fqd ext [X] (Section 5.4.5)

Frobenius trace in
Fqd ext [X] (Section 5.4.6)

Split root finding over
Fqd ext (Section 5.4.7)

Root finding over Fqd ext

(Section 5.4.8)

Figure 5.1: Dependencies between the different arithmetic operations in characteristic two.

operation Section method complexity
addition 5.1.1 classical d + 1 (field additions)

multiplication 5.1.2
classical M(d) = O(d2)

Karatsuba’s M(d) = O(d1.585)
fast M(d) = O(d log(d))

square 5.1.3 classical O(d2)
q is even d + 1 (field squarings)

Euclidean division 5.1.4 classical O(d2)
fast O(M(d))

GCD 5.4.1 classical O(d2)
fast O(M(d) log(d))

modular composition 5.4.3 Horner CC (d) = O(M(d) · d)

Brent–Kung CC (d) = O(d0.5M(d) + d
ω +1

2)

Frobenius map 5.4.5
classical CF = O((dext − dlogq(d)e) log2(q)M(d))

mod. comp. CF = O(log2(dext)CC (d) + dext log2(q) · d)
multi-squaring CF = O(qk ′

· d2 + dext
k ′ · d · (d + k′ log2(q)))

root finding 5.4.8 classical O(CF + d2) (on average)
fast O(M(d)(dext log2(q) + log(d))) (on average)

Table 5.1: Complexity of main operations on degree-d elements ofFqd ext [x], in number of operations
in Fqd ext . The integer k′ is a parameter such that1 6 k′ 6 dext.

50

5.1 Basic Arithmetic in the Polynomial Ring Fq[x]
In this section, we present elementary operations inFq[x], for q a prime number or a power of a
prime number. We note that arithmetic in Fq for q = pk , with p a prime number and k > 1, can
be built recursively thanks to arithmetic in Fp[x] (Section 5.2).
Let A and B be polynomials in Fq[x], with na > nb > 1, such that:

A =
n a −1∑

i =0

ai x i , B =
n b −1∑

i =0

bi x i .

In the next parts, we study operations betweenA and B . For convenience, letda = na − 1 and
db = nb−1 be respectively the degree ofA and B . We introduce the same notations for the quotient
Q and the remainder R of the Euclidean division (Section 5.1.4):

Q =
n q −1∑

i =0

qi x i , R =
n r −1∑

i =0

r i x i .

5.1.1 Addition and Subtraction
The polynomial addition [161, Algorithm 2.2] of A and B is the termwise addition of the coefficients,
which has a cost ofnb field additions.

A + B =

(n b −1∑

i =0

(ai + bi)x i

)

+

(n a −1∑

i = n b

ai x i

)

.

The principle is similar for the subtraction, which costs nb field subtractions, with na − nb extra
negations for the computation of B − A.

5.1.2 Multiplication
With the addition, the polynomial multiplication is the most crucial operation. The complexity of
all algorithms used after, such as the fast Euclidean division algorithm, the fast GCD algorithms
and the polynomial modular composition (respectively Sections 5.1.4, 5.4.1 and 5.4.3), relies on it.
We denote by M(d) the number of field operations to multiply two degree-d polynomials in Fq[x].

Classical multiplication. The classical multiplication [161, Algorithm 2.3] of A by B consists in
computing the sum of all ai bj x i + j for 0 6 i < n a and 0 6 j < n b. Here, we propose a formulation
which allows to compute all terms of the result from x0 to xn a + n b −2.

A ×B =




n b −1∑

i =0

i∑

j =0

ai −j bj x i



 +




n a −1∑

i = n b

n b −1∑

j =0

ai −j bj x i



 +




n b −1∑

i =1

n b −i −1∑

j =1

an a −1−j bi + j xn a −1+ i



 . (5.1)

The cost of the classical multiplication is quadratic: exactly nanb field multiplications and (na −
1)(nb−1) field additions are required. WhenFq is a degree-̀ extension field represented in polyno-
mial basis (Section 5.2.1), we can accumulate the products, then only performna + nb−1 modular
reductions by the irreducible field polynomial. Therefore, the number of modular reductions is lin-
ear. We apply the same idea on Karatsuba’s algorithm and the Euclidean division (Section 5.1.4).
In this way, the modular reduction is completely negligible compared to the multiplication.

51

Karatsuba’s multiplication algorithm. The cost of the classical multiplication is quadratic.
Historically, Karatsuba’s multiplication algorithm [161, Algorithm 8.1] is the first algorithm sub-
quadratic in the degree. The idea is the following. Let:

A = A ` + Ah xb
n a
2 c, B = B ` + Bh xb

n a
2 c,

with A ` , B `
⌊ n a

2

⌋
-coefficient polynomials in Fq[x] and Ah , Bh

⌈ n a
2

⌉
-coefficient polynomials in Fq[x].

A classical approach would be to computeA × B with four products:

A × B = A ` B ` + (A ` Bh + Ah B `)xb
n a
2 c + Ah Bh x2b n a

2 c.

Karatsuba computes it with only three multiplications, which are:

P1 = A ` × B ` , P2 = Ah × Bh and P3 = (A ` + Ah) × (B ` + Bh).

In particular, he remarks that P3 = P1 + P2 + (A ` Bh + Ah B `). The latter product is exactly the
middle term of A×B . So, we obtain that A×B can be written with P1, P2, P3 and some additions:

A × B = P1 +
(
P3 − (P1 + P2)

)
xb

n a
2 c + P2x2b n a

2 c.

In one step of Karatsuba, three half-degree multiplications are required to multiply A by B . Now,
this process can be applied recursively to computeP1, P2 and P3. At each step, the degree of each
operand is divided by two. When the degree is small enough (i.e. strictly smaller than a fixed
threshold t > 0), we can choose to stop the recursive calls and use the classical multiplication to
multiply the operands. This case is commonly called base case. Whent = 1 , this approach requires
O

(
nlog 2 (3)

a

)
' O

(
n1.585

a
)

field operations [161, Theorem 8.3].

Karatsuba-like formulae. When the number of coefficients is not a power of two, the number
of multiplications is not minimal. For a power of three, we can use the three-term Karatsuba-
like formulae [124] (Section B.1), which allows to multiply two degree-two polynomials with only
six multiplications (instead of seven with the previous method). This method allows to improve
multiplications in F2[x] on certain processors (Section 9.2.2).

Faster multiplications. Other methods, such as the Toom–Cook multiplication [112], allow
to decrease the exponent of the complexity of the multiplication. With Toom–Cook algorithm,
we can multiply two degree-two polynomials with five multiplications instead of six for a three-
term Karatsuba-like formula. Nowadays, the best multiplication algorithm is the fast convolution
algorithm [161, Algorithm 8.16] that uses Fast Fourier Transform (FFT). The complexity is quasi-
linear in the number of coefficients. However, this method is based on the existence of a primitive
2k -th root of unity. In binary fields, such roots do not exist. A variant based on a primitive 3k -th
root of unity can be used [161, Algorithm 8.30], but is considerably slower than the standard FFT.
For this reason, we do not consider the FFT-based multiplications in our implementation.

52

5.1.3 Squaring
The computation of a square is a particular case of the multiplication. The symmetry of the
operands allows to divide by two (approximately) the number of field multiplications. From Equa-
tion (5.1) with A = B , we obtain

A2 =

(n a −1∑

i =0

a2
i x2i

)

+



 2
n a −1∑

i =1

b i
2 c∑

j =0

ai −j aj x i



 +



 2
n a −2∑

i =1

b n a −1−i
2 c∑

j =0

an a −1−j ai + j xn a −1+ i



 . (5.2)

In characteristic two, the computation of the square is linear, costing only na field squarings
(cf. Equation (5.2) by specifying 2 = 0). This property is due to the linearity of the Frobenius
endomorphism:

(a + b)q = aq + bq, with a, b∈ Fqd ext , dext > 1. (5.3)

5.1.4 Euclidean Division
Euclidean division of A by B [161, Algorithm 2.5] consists in finding Q, R in Fq[x] such that
A = BQ + R with deg(R) < deg(B). The polynomial Q corresponds to the quotient of the Euclidean
division, whereasR corresponds to the remainder. Euclidean division is crucial to compute the GCD
and perform the extended Euclidean algorithm (Section 5.4.1). In particular, the computation of
the remainder is crucial to perform the modular multiplication in the extension fields represented
with the polynomial basis (Section 5.2.1), as well as to compute the modular composition (Section
5.4.3), and the Frobenius map and trace (Sections 5.4.5 and 5.4.6) during the root finding algorithm
(Section 5.4.8).

We present in Algorithm 16 the Euclidean division with remainder. We repeat the process of
adding to A a multiple of B such that the current leading term of A will vanish. Since this term
vanishes, we do not compute it (i.e. we replaceB by B − bdb xdb in Algorithm 16), but we directly
set it to zero. Algorithm 16 is strictly equivalent to computing R = A−BQ , by taking into account
that Q is computed asb−1

db
× Q′, for any Q′ ∈ Fq[x]. In the worst case, Algorithm 16 requires

computing one inverse inF×
q , (da − db + 1)(db + 1) field multiplications and (da − db + 1) db field

subtractions.

Algorithm 16 Polynomial Euclidean division with remainder.

1: function EuclideanDivRem
(
A ∈ Fq[x], B ∈ Fq[x]∗

)

2: c← b−1
db

3: Q← 0
4: R ← A
5: for i from da to db by −1 do
6: qi −db ← r i × c . Update of the quotient.
7: R ← R − qi −db ×

(
B − bdb xdb

)
x i −db

8: r i ← 0 . The new R has a degree at mosti − 1.
9: end for

10: return (Q, R)
11: end function

53

Naturally, the computation of the quotient can be separated from the computation of the re-
mainder, because the quotient depends only on the higher degree terms ofA. We can firstly compute
the quotient without updating the db smallest degree terms ofA, then secondly compute the re-
mainder as(A−B ×Q) mod xdb . The remainder can be computed withM(db) field operations and
accelerated by using a fast multiplication (Section 5.1.2). The computation of the quotient can be
performed without the computation of the remainder (Section B.2). However, Algorithm 16 does
not allow to use fast multiplications. Thus, we present the principle of the fast Euclidean division
[161, Algorithm 9.5].

Let Reci (A) = x i · A(1/x) be the reciprocal polynomial of A. The fast Euclidean division
(Algorithm 17) of A by B consists in writing A = BQ + R with Q, R ∈ Fq[x], and remarking that:

Recda (A) = Recdb (B) Recda −db (Q) + xda −db +1 Recdb −1(R). (5.4)

Because the degree ofQ is at most da − db, we can compute Equation (5.4) moduloxda −db +1 . So,
we obtain the following formula for Q:

Recda −db (Q) = Recda (A) Recdb (B)−1 mod xda −db +1 . (5.5)

Equation (5.5) requires computing Recdb (B)−1 modulo a power of x. This can be performed
efficiently with Newton iteration (Section B.3), requiring at most 3M(da − db) + O(da − db) field
operations [161, Exercise 9.6]. Note thatRecdb (B)−1 can be precomputed one time for several
Euclidean division by B . Then, Q is obtained with one polynomial multiplication and by reversing
the order of coefficients, costing M(da − db) field operations. Finally, the fast Euclidean division
with remainder can be computed with 4M(da − db) + M(db) + O(da − db) field operations.

Algorithm 17 Fast Euclidean division with remainder.

1: function FastEuclideanDivRem
(
A ∈ Fq[x], B ∈ Fq[x]∗

)

2: recB_inv← Recdb (B)−1 mod xda −db +1 . Newton iteration [161, Algorithm 9.3].
3: recQ← Recda (A) · recB_inv mod xda −db +1 . Recda −db (Q).
4: Q← Recda −db (recQ)
5: R ← A − B ·Q mod xdb . The modular reduction saves computations.
6: return (Q, R)
7: end function

5.2 Representation of Finite Field Extensions
Each elementC of Fqd ext can be represented by using a basisB =

(
θ0, . . . , θdext−1

)
of Fqd ext over Fq.

We can write:

C =
dext−1∑

i =0

ci θi , (5.6)

and vC = (c0, c1, . . . , cdext−1) ∈ Fdext
q is a representation ofC over B. Here, we present the common

representations ofFqd ext = Fq[α]/ (f (α)) with f ∈ Fq[x]. When q = 2 , the polynomial representation
(Section 5.2.1) seems optimal on Haswell processors and later. The normal representation (Section
5.2.2) may be faster when the available vector instructions are limited (Section 6.1.3).

54

5.2.1 Polynomial Representation

Let α ∈ Fqd ext be a root of f . Then, 1, α, α 2, α3, . . . , αdext−1 are linearly independent overFqd ext and
B =

(
θ0, . . . , θθd ext−1

)
with θi = α i is the canonical basis. The representation of anyC ∈ Fqd ext over

B is called polynomial representation becauseC is a degree-(dext − 1) polynomial in Fq[α].

With such a representation, the operations inFqd ext can be naturally performed with the op-
erations in Fq[x] presented in Section 5.1, Moreover, when a product inFqd ext is computed, the
result C can be represented as(c0, c1, . . . , c2dext−2). Then, an unlimited number of products can
be accumulated with this representation, before performing the modular reduction byf to ob-
tain a dext-coefficient representation. The accumulation of coefficients allows to perform the main
operations in Fqd ext [x] with a complexity linear in the number of field modular reductions in Fqd ext .

5.2.2 Representation using Normal Bases

Let β ∈ Fqd ext . When β, βq, . . . , βqd ext−1
are linearly independent overFqd ext , B =

(
θ0, . . . , θθd ext−1

)

with θi = βqi
is a normal basis ofFqd ext overFq. Let C, D ∈ Fqd ext , and vC , vD ∈ Fdext

q be respectively
their normal representation over B. The operations in Fqd ext can be performed as follows:

• C + D is represented byvC + vD ,

• C × D is represented byvC ·M · vT
D for a specific matrix M ∈Mdext

(
Fq

)
,

• Cqk
=

∑ dext−1
i =0 ci −k mod dext · θi is represented by the right circular shift by k positions of vC .

The q-exponentiation is efficient in the normal basis, because it corresponds to a circular shift of
the coefficients. The multiplication can be performed as a vector-matrix-vector product, once M is
known. The matrix M depends only onf and can be precomputed [106]. In fact, the computation
of vC · M · vT

D is the evaluation of a MQ polynomial pM ∈ Fq[c0, . . . , cdext−1, d0, . . . , ddext−1]. It is
well-known that for q = 2 , the number of ones inM , which is also the number of non-zero terms of
pM , is greater or equal to2dext − 1 [125]. When this bound is reached,B is called optimal normal
basis [125], since it minimizes the cost of the sparse evaluation ofpM .

5.3 Arithmetic in Binary Fields

In this section, we study how to perform efficiently arithmetic in F2d ext when the polynomial repre-
sentation is used (Section 5.2.1). The elements are represented as coefficient vectors inF2 and can
be easily added in parallel (Section 5.3.1). Once elements are multiplied as degree-(dext−1) binary
polynomials (via Sections 5.1.2 or 5.1.3), the modular reduction can be performed efficiently by
using sparse field polynomials (Section 5.3.3) or cyclotomic field polynomials (Section 5.3.4). For
an efficient arithmetic in small binary fields, we refer to Sections 7.4.9 and 9.5.1. For a complete
arithmetic in F2d ext with implementation techniques and timings, we refer to Section 9.2.

55

5.3.1 Boolean Arithmetic
We summarize the main operations inF2 in Table 5.2. The addition corresponds to theXOR boolean
operator, whereas the multiplication corresponds to theAND boolean operator. The squaring does
not require any computation. These boolean operations are computed efficiently in parallel on all
classical architectures (Section 6.1.3).

a b a⊕ b a× b a2

0 0 0 0 0
0 1 1 0 0
1 0 1 0 1
1 1 0 1 1

Table 5.2: Main operations in F2.

5.3.2 Irreducibility Conditions of Binary Polynomials
The choice of the irreducible polynomial f of degreedext defining F2d ext is important for the per-
formance of the modular reduction, when the polynomial representation is used (Section 5.2.1). It
is well-known that sparse polynomials are more efficient (Section 5.3.3). In this section, we study
properties on these irreducible polynomials.

Let f =
∑ `

i =0 xk i ∈ F2[x] for 0 6 k0 < k 1 < · · · < k ` = dext. For dext > 1, we know that f is
irreducible only if k0 = 0 and ` is even (respectively because zero and one are not roots off). This
implies that the most sparse irreducible polynomials overF2 are trinomials. When it exits, we can
choosek1 6

⌊ dext
2

⌋
(sinceRecdext (f) is irreducible). Else, we can choose an irreducible pentanomial.

For dext > 4, it is conjectured that an irreducible pentanomial of degreedext exists. Therefore, the
use of irreducible trinomials and pentanomials is enough to representF2d ext for all dext > 1.

In cryptography, when a cryptosystem is being designed, the designer can choosedext which
optimizes the performances. In particular, he can choosedext such that an irreducible trinomial
f of degreedext exists. But between different trinomials, some values of dext and k1 are more
efficient in practice. Therefore, we propose to study what are the possible values. If a trinomial f
is irreducible over F2, then the following properties are verified:

1. dext 6= 0 mod 8.

2. If k1 = 0 mod 2, then dext = 1 mod 2.

3. If k1 = 0 mod 4, then dext = ±1 mod 8.

4. If dext − k1 = 0 mod 4, then dext = ±1 mod 8.

5. If dext − 2k1 = 0 mod 8, then k1 = 1 mod 8 or k1 = 3 mod 8.

These properties are obtained from a reformulation of [156, Corollary 5]. The latter enumerates
all cases wheref has an even number of factors (and hence is reducible) overF2. We will show in
Section 9.2.3 that the modular reduction can be accelerated whendext, k1, dext − k1 or dext − 2k1
are multiple of eight.

56

5.3.3 Modular Reduction by Sparse Polynomials over F2

In this section, we want to reduceR =
∑ 2dext−2

i =0 r i x i the result of a multiplication/squaring in F2d ext ,
when the polynomial representation is used (Section 5.2.1). The choice of the irreducible polynomial
f defining F2d ext (Section 5.3.2) is important for the modular reduction: it is faster when f is a
trinomial or pentanomial [101, 6, 5]. The classical method to perform the sparse modular reduction
is to specify the classical Euclidean division (Algorithm 16) for a sparse polynomial. Naturally, the
computation of the remainder is equivalent to computing R− fQ for any Q ∈ F2[x] with a classical
polynomial multiplication (Section 5.1.4). The multiplication of f by Q is a multiplication by a
sparse polynomial, which requires onlyO

(
dext`

)
operations in F2 instead of O

(
d2

ext

)
for a dense

polynomial. Then, we remark that when 2(k` −1 − 1) < d ext, the order of operations can be easily
changed to optimize the computation with the polynomial representation (Section 5.2.1). This is
due to the fact that Recdext (f)−1 mod xdext−1 is very sparse (Section 5.1.4), sinceRecdext (f)−1 =
Recdext (f) = 1 mod xdext−k ` −1 . We specify this behavior for trinomials.

Modular reduction by a trinomial. Here, we explain the principle of modular reduction by
a trinomial. Let f 3 = xdext + xk1 + 1 such that 0 < k 1 6

⌈ dext
2

⌉
. Let R0 =

∑ dext−1
i =0 r i x i , Rk1 =

∑ 2dext−k1 −1
i = dext

r i x i −dext and Sk1 =
∑ 2dext−2

i =2 dext−k1
r i x i −2dext+ k1 , we have:

R = R0 +
(

Rk1 + Sk1 xdext−k1
)

xdext . (5.7)

We perform a first step of reduction by f 3 by replacing xdext by f 3 − xdext in (5.7). We obtain:

R = R0 +
(

Rk1 + Sk1 xdext−k1
)

+
(

Rk1 xk1 + Sk1 xdext

)
mod f 3.

We iterate a new step of reduction:

R = R0 + Rk1 + Sk1 xdext−k1 + Rk1 xk1 + Sk1

(
f 3 − xdext

)
mod f 3. (5.8)

In Equation (5.8), the degree ofR is max
(
dext − 1, 2(k1 − 1)

)
. So, R is reduced modulof 3 if and

only if 2(k1− 1) < d ext. In two steps of reduction, we have then a method to compute the modular
reduction for all trinomial such that k1 6

⌈ dext
2

⌉
.

Remark 1. When k1 = 1 , Sk1 = 0 and R is reduced in only one step.

Modular reduction by a sparse polynomial. Similarly to trinomials, we explain the prin-
ciple of modular reduction by f for k0 = 1 and k` −1 6

⌈ dext
2

⌉
. Let R0 =

∑ dext−1
i =0 r i x i , Rk j =

∑ 2dext−k j −1
i = dext

r i x i −dext and Sk j =
∑ 2dext−2

i =2 dext−k j
r i x i −2dext+ k j for j ∈ J1, ` − 1K, we have:

R = R0 +
(

Rk j + Sk j xdext−k j
)

xdext . (5.9)

We perform a first step of reduction by f by replacing xdext by f − xdext in Equation (5.9). We
compute

(
Rk j + Sk j xdext−k j

)
×

(
1+

∑ ` −1
j =1 xk j

)
by multiplying the left operand by xk j for j ∈ J1, `−1K,

and we choosej = 1 when we multiply the left operand by 1. We obtain:

R = R0 +
(

Rk1 + Sk1 xdext−k1
)

+
` −1∑

j =1

(
Rk j xk j + Sk j xdext

)
mod f.

57

We iterate a new step of reduction:

R = R0 + Rk1 + Sk1 xdext−k1 +
` −1∑

j =1

Rk j xk j +
(

f − xdext

) ` −1∑

j =1

Sk j mod f. (5.10)

In Equation (5.10), the degree ofR is max
(
dext − 1, 2(k` −1 − 1)

)
. So, R is reduced modulof if

and only if 2(k` −1 − 1) < d ext. In two steps of reduction, we have then a method to compute the
modular reduction for all polynomial such that k` −1 6

⌈ dext
2

⌉
.

Remark 2. When k1 = 1 , Sk1 = 0 and Equation (5.10) can be simplified accordingly.

5.3.4 Modular Reduction by Cyclotomic Polynomials over F2

In the previous section, we study how to take advantage of the sparse polynomials to improve the
field modular reductions. But we can also take advantage of structured polynomials. In this section,
we deal with irreducible cyclotomic polynomial, also called All One Polynomial (AOP) [109, 154],
and s-Equally Spaced Polynomial (s-ESP) [109] its generalization (s ∈ N∗). An AOP is a one-ESP.
In polynomial basis, the cyclotomic polynomials allow to perform modular reductions faster than
by using trinomials. However, the conditions ondext for that the degree-dext cyclotomic polynomial
is irreducible are strong.

Straightforward modular reduction. The s-ESP of degreedext is:

f =

d ext
s∑

i =0

xs·i =
xdext+ s − 1

xs − 1
.

Thus, we obtain that:
xdext+ s − 1 =

(
xs − 1

)
· f = 0 mod f.

So, the modular reduction is straightforward in polynomial basis. All terms greater or equal to
xdext+ s can be reduced with a right shift by dext + s of the coefficients. Finally, the terms greater
or equal to xdext are just the product of a s-coefficient polynomial by the (dext − s)-degrees-ESP.

Irreducibility condition. Wah and Wang introduced the following lemma [109, Lemma 1] to
know if an AOP is irreducible, then a theorem [109, Theorem 3] for the irreducibility of s-ESP.

Lemma 1. An AOP of degree dext is irreducible over F2 if and only if (dext + 1) is a prime and 2
is the generator of F×

dext+1 , where F×
dext+1 is the multiplicative group in Fdext+1 .

Theorem 3. A s-ESP of degreedext = sn is irreducible over F2 if and only if the n-degree AOP
is irreducible over F2 and for some integer t, s = (n + 1) t −1 and 2n (n +1) t −2 6= 1 mod (n + 1) t .

So, we obtain that the degree-dext AOP is reducible whendext > 1 is odd. Moreover, the quadratic
reciprocity theorem [156] implies that 2 is a square modulodext+1 if and only if dext+1 = ±1 mod 8.
In this case, 2 is not a generator ofF×

dext+1 . We deduce that if the degree-dext AOP is irreducible,
then dext = 2 mod 8 or dext = 4 mod 8. This condition is clearly stronger than for irreducible
trinomials. For dext from 2 to 576, only 44 AOPs and 55s-ESPs are irreducible (with 52 distinct
degrees), whereas there exist irreducible trinomials for 320 values ofdext (cf. Section B.9).

58

5.4 Advanced Arithmetic in Fq[x]
In this section, we study arithmetic operations which will allow to introduce a root finding algorithm
in Fqd ext [x] (Section 5.4.8), as for example the Euclidean algorithm (Section 5.4.1), the modular
composition (Section 5.4.3) and the Frobenius map (Section 5.4.5). We also study the evaluation
of univariate polynomials in one or several points (Sections 5.4.3 and 5.4.4), which are crucial for
the performance of the dual mode (Chapter 3). For each operation, we present different strategies
to perform them, and we study the number of field operations.

Similarly to Section 5.1, let F, G and H be respectively degree-df , degree-dg and degree-dh
polynomials in Fq[x], such that:

F =
df∑

i =0

f i x i , G =
dg∑

i =0

gi x i , H =
dh∑

i =0

hi x i .

In Sections 5.4.5, 5.4.6, 5.4.7 and 5.4.8, we study the impact of the extension degree on the current
operation. Therefore, we considerF , G and H in Fqd ext [x] instead of Fq[x] for these sections.

5.4.1 Extended Euclidean Algorithm
The computation of the Greatest Common Divisor (GCD) of F and H in Fq[x], via Euclidean
algorithm [161, Section 3], is a central operation inFq[x]. This is particularly useful for root finding
(Section 5.4.8) and split root finding algorithms (Section 5.4.7). Moreover, the extended version of
the Euclidean algorithm allows to build a Bezout relationship betweenF and H , i.e. finding U and
V in Fq[x] such that:

F U + HV = GCD(F, H).
The Bezout relationship permits to compute the inverse ofF modulo H when the latter exists
(Section 5.4.2). We present in this section Euclidean algorithm and its extended version. In
particular, we remark that less popular methods are efficient for small degree inputs.

Euclidean algorithm. Euclidean algorithm [161, Algorithm 3.5] is based on the following rela-
tionship:

GCD(F, H) = GCD(H, F mod H).
By repeating this process (Algorithm 18), we compute the remainders of the successive Euclidean
divisions of F by H , until GCD(G, 0) = G. The last non-null remainder is GCD(F, H).

Algorithm 18 Traditional Euclidean algorithm.

1: function EA
(
F ∈ Fq[x], H ∈ Fq[x]

)

2: R0, R1 ← F, H
3: i ← 1
4: while Ri 6= 0 do
5: Ri +1 ← Ri −1 mod Ri
6: i ← i + 1
7: end while
8: return Ri −1 . GCD(F, H) = GCD(Ri −1, 0) = Ri −1.
9: end function

59

The core of Algorithm 18 is the computation of Ri −1 mod Ri . This step can be optimized or
modified by using properties on GCD. Assume we want to computeF mod H . We can consider
the following methods:

1. directly compute the Euclidean division of F by H ,

2. useGCD(F, H) = GCD
(
F, h−1

dh
H

)
to obtain a monic divisor,

3. use the Euclid–Stevin strategy [155, 19]. GivenF and H such that df > dh , we compute
F = hdh F − f df Hx df −dh until df < d h . Let F1 be the last computed value ofF . We have:

GCD(F, H) = GCD(H, F 1).

By using the classical Euclidean algorithm (Algorithm 16), Methods 1 and 2 require one inversion in
F×

q , then Method 1 multiplies the quotient by the inverse, whereas Method 2 multiplies the divisor
by the inverse. So, Method 1 requires(df − dh + 1)(dh + 1) field multiplications whereas Method 2
requires (df − dh + 2) dh field multiplications. Method 2 is strictly better when 2dh − 1 > d f ,
which is rare in practice. Method 3 requires at most(df − dh + 1)(df + dh − 1)− (df −dh −1)(df −dh)

2
field multiplications, but no inversion in F×

q . This method is the best when the inversion inF×
q is

expensive compared to the field multiplication.

Extended Euclidean algorithm. It is well-known that Euclidean algorithm can be extended
to compute Bezout coefficients [161, Algorithm 3.6]. We present it in Algorithm 19.

Algorithm 19 Traditional extended Euclidean algorithm.

1: function EEA
(
F ∈ Fq[x], H ∈ Fq[x]

)

2: R0, R1 ← F, H
3: U0, U1 ← 1, 0
4: V0, V1 ← 0, 1
5: i ← 1
6: while Ri 6= 0 do
7: Qi ← Ri −1/R i . Quotient of the Euclidean division.
8: Ri +1 ← Ri −1 −Qi Ri . Remainder of the Euclidean division.
9: Ui +1 ← Ui −1 −Qi Ui

10: Vi +1 ← Vi −1 −Qi Vi
11: i ← i + 1
12: end while
13: return (Ri −1, Ui −1, Vi −1) . F U i −1 + HVi −1 = Ri −1 = GCD(F, H).
14: end function

Fast extended Euclidean algorithm. The extended Euclidean algorithm can be performed by
doing giant steps in the list of successive remainders, by using the so-called half-GCD algorithm
([161, Algorithm 11.6], [36, Algorithm 6.9]). Coupled to a divide-and-conquer approach, we obtain
a fast extended Euclidean algorithm ([161, Algorithm 11.8], [36, Algorithm 6.8]). Its complexity
is O(M(df) log(df)) field multiplications and additions plus at most df + 2 inversions in F×

q [161,

60

Corollary 11.9]. In 2019, the authors of [19] introduced a fast constant-time GCD. Its complexity
is Θ(M(df) log(df)) field multiplications and additions. Unlike the previous fast GCD which is
based on polynomial multiplications and Euclidean divisions, the method of [19] is only based on
the polynomial multiplication.

5.4.2 Modular Inversion
The inversion of F mod H is the problem of finding, if any, a polynomial G such that F × G =
1 mod H , i.e. G = F −1 mod H . This operation is critical to compute the inverse in the extension
fields. There are mainly two strategies to compute it: the extended Euclidean algorithm [161,
Theorem 4.1] and the modular exponentiation via Fermat [161, Section 4.4]. These methods can
be easily adapted to compute inverses in prime fields (by takingF ∈ Fp and H = p).

Euclid-based inversion. By definition of the inverse, we searchG such that F G + HV = 1 ,
with V ∈ Fq[x]. In other words, we want to write 1 with a Bezout relationship between F and H .
This relationship exists if and only if GCD(F, H) = k for k ∈ F×

q . When F is invertible, the Bezout
relationship betweenF and H is:

F U + HV = GCD(F, H) = k, with U, V ∈ Fq[x].

In this case, k−1F U = 1 mod H and k−1U is the inverse ofF mod H . Naturally, the Euclidean
algorithm (Section 5.4.1) applied to F and H allows to know if the inverse exists, and can be
computed with its extended version. The latter can be improved by computing only the first
Bezout coefficient.

Fermat-based inversion. When H is irreducible, Fq[x]/ (H) is the field having qdh elements.
Based on Fermat’s little theorem, we have:

F qd h = F mod H,

and when F 6= 0 mod H ,
F qd h −2 = F −1 mod H. (5.11)

So, F −1 can be computed with a modular exponentiation. The latter can be performed efficiently
by using the Itoh–Tsujii Multiplicative Inversion Algorithm (Sections 9.2.6 and B.6).

5.4.3 Univariate Evaluation and Modular Composition
In this section, we present the polynomial evaluation ofG ∈ Fq[x] in an element a ∈ R, for R a
ring. We denote by 1R the zero element of the multiplicative group of R. This ring can be Fq,
Fq[x]/ (H), M

(
Fq

)
, . . . When R = Fq[x]/ (H), the computation of G(a) mod H is called modular

composition. The latter is useful to compute xk mod H for k ∈ N, which appears during the
Fermat-based modular inversion (Section 5.4.2) and during the Frobenius map (Section 5.4.5).

Dot product strategy. A classical strategy to perform the evaluation is to compute the vector
of the powers ofa, then compute its dot product with the vector of coefficients of G. The powers
of a can be computed with

⌊
dg −1

2

⌋
multiplications in R and

⌊
dg
2

⌋
squarings inR. Then, the dot

product requires dg − 1 additions in R, one scalar addition anddg scalar multiplications.

61

Horner’s rule. The polynomial evaluation can be performed without the computation of the
powers ofa, by using Horner’s rule:

G(a) = ((· · · ((gdg · a + gdg −1 · 1R) × a + gdg −2 · 1R) · · ·) × a + g1 · 1R) × a + g0 · 1R.

This rule is well-known to minimize the number of additions and multiplications, which is dg.
However, dg − 1 multiplications (denoted by ×) are computed inR, whereas the other operations
are scalar. WhenR is not a subset ofFq, the operations inR are more expensive than the scalar
operations. So, we study other strategies which minimize the number of these operations.

Baby-Step Giant-Step approach. The number of operations inR can go down to O
(√

dg
)
.

To do it, M. Paterson and L. Stockmeyer proposed to use a Baby-Step Giant-Step approach [136,
Algorithm B]. The idea is to split G into b blocks of s-coefficient polynomials, evaluate each block,
then evaluate G which is become ab-coefficient polynomial in R[x]. In Algorithm 20, we present
this strategy by introducing a matrix-vector product. This idea is an adaptation of the Brent and
Kung algorithm [42, Algorithm 2.1]. R. Brent and H. Kung remarked that when R = Fq[x]/ (H),
the matrix-vector product can be written as a matrix product over Fq, allowing to use fast ma-
trix products during the modular composition. Algorithm 20 is a generalization of the previous
approaches. Algorithm 20 with b = 1 corresponds to the dot product strategy, whereasb = dg
corresponds to the direct use of Horner’s rule.

Algorithm 20 Polynomial evaluation using the baby-step giant-step approach.
Input: G ∈ Fq[x], a ∈ R, b∈ N∗ such that b6 dg.
Output: G(a).

0. Let s =
⌈

dg
b

⌉
and G(x) =

(∑ b−1
i =0 Gi (x) ·

(
xs) i

)
+ gbs · xbs, with Gi ∈ Fq[x], deg(Gi) < s .

1. Compute a2, a3, . . . , as (e.g. with Algorithm 45). These are the baby steps.

2. Re-use them to evaluateG0, . . . , Gb−1 in a. These evaluations can be performed with the
following matrix-vector product:





g0 · · · gs−1 0
gs · · · g2s−1 0
...

. . .
...

...
g(b−2)s · · · g(b−1)s−1 0
g(b−1)s · · · gbs−1 gbs




.





1R
a
...

as−1

as




=





G0(a)
G1(a)

...
Gb−2(a)

Gb−1(a) + gbs · as




.

3. Compute G(a) as:
(

b−2∑

i =0

Gi (a) ×
(
as) i

)

+
(
Gb−1(a) + gbs · as)

×
(
as) b−1. (5.12)

Equation (5.12) can be performed with Horner’s rule (cf. Algorithm 46), which allows to save
the computation of the powers ofas. These are the giant steps.

62

By choosing b =
⌊ √

dg
⌋
, we can minimize the complexity, with approximately 3

2

√
dg multipli-

cations in R, and 1
2

√
dg squarings inR. Independently, Step 2 requires roughlydg multiplications

between elements ofFq and R. In Section B.4, we propose a variant with a similar complexity.

About evaluation of polynomial systems. In the case where several polynomials are evaluated
in a, some optimizations can be applied to Algorithm 20. Step 1 should be performed only one
time. Step 3 can be optimized by precomputing one time the powers of(as) i for i < b , then by
replacing Horner’s rule by a dot product.

5.4.4 Multipoint Evaluation of Univariate Polynomial Systems
In all cryptographic operations of the dual mode (Chapter 3), we have to evaluate a univariate
polynomial system whose coefficients live in Fqκ , a small extension ofFq. The number of equations
and evaluation points depends on the cryptographic operations, so we need to adapt the strategies
used accordingly. Here, we present several strategies.

Classical polynomial and multipolynomial evaluation. The simplest method is to use the
strategies described in Section 5.4.3. We note that:

• The powers of a point should be computed only one time for all polynomials of the system,
and can be performed in parallel.

• During the matrix-vector product, the multiplications do not require modular reductions and
can be performed in parallel. Forq = 2 , the size ofFqκ is small enough to directly compute the
multiplication with one call to PCLMULQDQ (Section 6.1.3). So, avoiding the modular reduction
improves drastically the implementation.

Fast multipoint evaluation of polynomial systems. Let M(d) be the cost of multiplying
two degree-d polynomials. The evaluation of a degree-d polynomial in d points can be achieved in
O(M(d) log(d)) field multiplications with the fast multipoint evaluation algorithm [161, Algorithm
10.7]. For a polynomial system, the subproduct tree can be computed one time for all polynomials.
When the point set can be chosen, the previous algorithm can be improved. With a geometric
sequence, this can be solved inO(M(d)) field multiplications [37].

Additive FFT in binary fields. When the evaluation point set is large, it can be interesting to
evaluate polynomials with the Fast Fourier Transform. The classical FFT uses a divide-and-conquer
approach by splitting a polynomial f ∈ Fqκ [X] into f 0(X 2) + Xf 1(X 2), with f 0 and f 1 half-degree
polynomials. So, computing f (a) and f (−a) for a a field element is reduced to computingf 0(a2)
and f 1(a2). However, this classical approach cannot be applied in characteristic two, sincea and
−a are the same element. So, S. Gao and T. Mateer [93] introduced the additive FFT. The main
idea is to split f ∈ F2κ [X] into f 0(X 2 − X) + Xf 1(X 2 − X), becauseX 2 − X is the field equation
of F2. Then, computing f (a) and f (a + 1) is reduced to computing f 0

(
a2 − a

)
and f 1

(
a2 − a

)
. For

the classical FFT, f 0 (respectively f 1) is generated from the even (respectively odd) degree terms
of f . For the additive FFT, the computation is a bit more complicated, but is performed efficiently
with the so-called radix conversion. The complexity of the additive FFT [17] is (κ − 1)2κ +1 + 1
multiplications in Fqκ and (κ + 3) κ2κ −2 − 2κ −1 additions in Fqκ . Since 2010, several tricks have
been proposed to decrease the number of operations [17].

63

5.4.5 Frobenius Map

An important step during the univariate root finding (Section 5.4.8) is to compute xqk
mod H , for

k > 1. This problem is so-called Frobenius map. Several strategies are possible to compute it. Note
that for each of them, when the fast Euclidean division (Section 5.1.4) is used,Recdh (H)−1 mod
xdh −1 can be computed one time for all modular reductions.

Classical repeated squaring algorithm. We can computexqk
mod H by using the square-and-

multiply algorithm (Algorithm 14). Let d = qk−dlog q (dh)e. By remarking that xqdlog q (d h) e−1 is already
reduced moduloH , this method requires one modular reduction to computexqdlog q (d h) e

mod H , then
blog2(d)cmodular squarings andHW(d)−1 modular multiplications in Fqd ext [x]/ (H), whereHW stands
for Hamming weight. We can also just repeatk − dlogq(dh)e times the modular exponentiation to
the power q. Note that these methods are different only in odd characteristic.

Use of the modular composition. We can computexqk
mod H by using the following property:

G(x)qj
mod H =

(dh −1∑

i =0

gi x i

) qj

=
dh −1∑

i =0

gqj

i

(
xqj

) i
= G̃(j)

(
xqj

)
mod H, (5.13)

where G̃(j) (x) =
∑ dh −1

i =0 gqj

i x i ∈ Fqd ext [x]. Thus, we can use the square-and-multiply algorithm
to compute qk instead of xqk

mod H . Once k is decomposed in base two with the square-and-
multiply method, the power k′ in xqk ′

can be multiplied by two by using j = k′ and G(x) =
xqk ′

mod H in Equation (5.13), whereas the addition with any k′′ is obtained by using j = k′′ and
G(x) = xqk ′

mod H in Equation (5.13). This idea was already proposed in [161, Algorithm 14.55],
and recently used in [120] to improve the root finding ofHFE polynomials. Both use a right-to-
left square-and-multiply algorithm on qk (Section B.5). However, this strategy does not minimize
the number of modular compositions. Therefore, we perform a left-to-right square-and-multiply
exponentiation on qk . We present this method in Algorithm 21, which is currently used in NTL.

Algorithm 21 Frobenius map using the left-to-right square-and-multiply algorithm on qk .

1: function FrobMapLR
(
H ∈ Fqd ext [x], k ∈ N∗)

2: r ← blog2(k)c
3: X 0 ← xq mod H . X 0 = xq20

mod H .
4: for i from 1 to r do
5: X i ← X̃ (b k

2 r −i +1 c)
i −1 ◦ X i −1 mod H . Square: X i = xq

2b k
2 r −i +1 c mod H .

6: if
⌊ k

2r −i

⌋
mod 2 = 1 then

7: X i ← X q
i mod H . And multiply: X i = xq

2b k
2 r −i +1 c+1

mod H .

8: end if . Here, X i = xqb
k

2 r −i c mod H .
9: end for

10: return X r . i = r and X r = xqk
mod H .

11: end function

64

Algorithm 21 requires blog2(k)c modular compositions inFqd ext [x], (k − HW(k)) · dh exponentia-
tions to the power q in Fqd ext (or blog2(k)c · dh calls to Algorithm 22, via blog2(k)c multi-squaring
tables) andHW(k)−1 modular exponentiations to the powerq in Fqd ext [x]/ (H). Note that these expo-
nentiations can also be computed with the modular composition, by writingX q

i = X̃ (1)
i ◦X 0 mod H .

Repeated squaring algorithm using multi-squaring tables. Here, the idea is to performk′

times the q-exponentiation in one step, as presented in Algorithm 22. This can be computed effi-
ciently by remarking that the linearity of the Frobenius endomorphism (Equation (5.3)) implies that
a dh -coefficient polynomial raised to the power of qk ′

has onlyk′ non-zero terms. The corresponding
monomials can be computed once and for all moduloH (Step 1). This is the multi-squaring table
of H [33, 159]. Then, eachqk ′

-exponentiation can be performed as the dot product of the vector of
qk ′

-powers of the input coefficients by the vector of monomials modulo H (Step 2).

Algorithm 22 Frobenius map using a multi-squaring table.
Input: H ∈ Fqd ext [x], k ∈ N∗, k′ 6 k.
Output: xqk

mod H .

0. Let ` =
⌊

dh −1
qk ′

⌋
, j 0 =

⌊
logq(dh − 1)

⌋
, I q =

⌊
k−j 0

k ′

⌋
and I r = k − j 0 mod k′.

1. Compute T1 = xqk ′

mod H , then Tj = x jq k ′

mod H for 1 < j < d h . Note that Tj = x jq k ′

without the modular reduction by H for j 6 ` .

2. Set X j 0 + k ′ = Tqj 0 = xqj 0 + k ′

mod H .
For 2 6 i 6 I q, let X j 0 +(i −1)k ′ =

∑ dh −1
j =0 cj x j and compute:

X j 0 + ik ′ = X̃ (k ′)
j 0 +(i −1)k ′ ◦ xqk ′

mod H = cqk ′

0 +
dh −1∑

j =1

cqk ′

j Tj .

Note that deg(X j 0 + ik ′) < d h without computing the modular reduction by H .

3. Return X k = (X j 0 + I q k ′)qI r mod H , computed with the classical repeated squaring algorithm.

We start by measuring the cost of Step 1 in Lemma 2. This step is quadratic indh and
polynomial in q, so only small values ofk′ are interesting in practice. However, this step can be
precomputed whenH is known, which is the case for the field modular reductions. From a memory
point of view, the multi-squaring table costs (dh − 1− `)dh field elements, which is quadratic indh .

Lemma 2 (Cost of generating a multi-squaring table). Step1 of Algorithm 22 takes at most
one qk ′

-exponentiation in Fqd ext [x]/ (H), (dh−1− `)(dh +1) qk ′
field multiplications, (dh−1− `)dh qk ′

field subtractions and one inverse inF×
qd ext .

65

Proof. Step 1 costs oneqk ′
-exponentiation for the computation of T1 if ` = 0 , else the cost is null

becausexqk ′

is already reduced moduloH . Else, the modular reduction is performed to compute
Tj for j > ` . In this case, Tj can be computed asTj −1xqk ′

, which is a shift of coefficients, then
we reduce a degree-

(
dh − 1 + qk ′)

polynomial by a degree-dh polynomial. This can be computed
with the classical Euclidean division (Algorithm 16), requiring one inverse inF×

qd ext , qk ′
(dh +1) field

multiplications and qk ′
dh field subtractions. Finally, the number of these Euclidean divisions is

dh −1− ` , implying (dh −1− `)(dh + 1) qk ′
field multiplications, (dh −1− `)dh qk ′

field subtractions
but only one inverse inF×

qd ext since the divisor H does not change. �

Then, we evaluate the cost of Steps 2 and 3, which corresponds to the cost of Algorithm 22
when the multi-squaring table of H is precomputed.

Lemma 3 (Cost of the Frobenius map with a precomputed table). Steps 2 and 3 of Al-
gorithm 22 take at most (I q−1)dh field exponentiations to the powerqk ′

, I r exponentiations to the
power q in Fqd ext [x]/ (H), (I q − 1)(dh − 1− `)dh field multiplications and (I q − 1)` field additions.

Proof. Step 2 requiresI q−1 steps of multi-squarings. Each step costsdh field exponentiations to
the power qk ′

, dh −1− ` multiplications of a scalar by a degree-dh polynomial and ` field additions.
Then, Step 3 requiresI r exponentiations to the powerq in Fqd ext [x]/ (H). By multiplying I q − 1 by
the cost of one multi-squaring, and by adding the cost of Step 3, we obtain the announced result.�

When dh is small enough compared tok, the cost of generating the multi-squaring table is small
enough to make attractive the steps of sizek′. Otherwise, doing steps of size one with the classical
repeated squaring algorithm is the most interesting method. For both methods, we can use the
modular composition to reduce the number of steps. Each modular composition divides by two the
number of steps that we will perform with one of both previous methods.

5.4.6 Frobenius Trace
The problem of the Frobenius trace is to compute

Tr k (x) =
k−1∑

i =0

xqi
mod H,

or more generally,Tr k (X) for X = r 0x and r 0 ∈ F×
qd ext . The Frobenius trace is particularly useful

to compute the roots of split and squarefree polynomials in characteristic two (Section 5.4.7).
Moreover, we have a direct link between Frobenius map and Frobenius trace:

xqk
− x = Tr k (x)q − Tr k (x).

We can adapt the strategies of Section 5.4.5 to compute the trace.

Repeated squaring algorithm. The powers qi of x can be computed with k − 1− dlogq(dh)e
modular exponentiations to the power q in Fqd ext [x]/ (H). Then, the trace is obtained by summing
them.

66

Big step in the repeated squaring algorithm. Tr k (x) is a polynomial whose all non-zero
coefficients are one. As in Algorithm 21, we can double the degree ofTr k (x) by using the modular
composition [161, Algorithm 14.55]. To do it, the following properties based on the linearity of the
Frobenius endomorphism (Equation (5.3)) are useful:

{
Tr 2k (x) = Tr k (x)qk

+ Tr k (x) mod H
Tr k+1 (x) = Tr k (x)q + x mod H.

(5.14)

We propose Algorithm 23 which is an adaptation of [161, Algorithm 14.55] for computing the
trace. This version computes the Frobenius map to perform theqk -exponentiation with the modular
composition. The latter can be replaced by repeatedq-exponentiations (cf. Section B.6) or by using
a multi-squaring approach (Section 5.4.5).

Algorithm 23 Frobenius trace using the left-to-right square-and-multiply algorithm on k − 1.
This requires 2r − 2 modular compositions.

1: function FrobTraceLR
(

r 0 ∈ F×
qd ext , H ∈ Fqd ext [x], k ∈ N∗

)

2: r ← blog2(k − 1)c
3: y ← r 0x
4: Y0 ← y

. i = 1 .
5: X 0 ← xq mod H
6: Y1 ← yq + y mod H . Square step.
7: b0 ← 1
8: b1 ←

⌊ k−1
2r −1

⌋

9: if b1 mod 2 = 1 then . Multiply step.
10: Y1 ← Y q

1 + y mod H . Tr b1 (y) = Tr b1 −1(y)q + y.
11: end if

12: for i from 2 to r do
13: X i −1 ← X̃ (bi −2)

i −2 ◦ X i −2 mod H . Square step fromi − 1.
14: if bi −1 mod 2 = 1 then . Multiply step from i − 1.
15: X i −1 ← X q

i −1 mod H
16: end if . Square step.
17: Yi ← Ỹ (bi −1)

i −1 ◦ X i −1 + Yi −1 . Tr 2bi −1 (y) = Tr bi −1 (y)qbi −1 + Tr bi −1 (y).
18: bi ←

⌊ k−1
2r −i

⌋

19: if bi mod 2 = 1 then . Multiply step.
20: Yi ← Y q

i + y mod H . Tr bi (y) = Tr bi −1(y)q + y.
21: end if
22: end for
23: return Yr . i = r and Yr = Tr k (r 0x) mod H .
24: end function

67

5.4.7 Split Root Finding in Characteristic Two
In this section, the root finding algorithms are dedicated to split and squarefree polynomials in
characteristic two [161, Exercise 14.16]. Algorithms in odd characteristic can be found in [161,
Algorithms 14.8 and 14.10]. Algorithm 24 finds the roots of a degree-s polynomial with O((dext +
log(s))M(s) log(s)) operations in F2d ext [161, Theorem 14.11 adapted forr = s and d = 1].

Algorithm 24 Algorithm to find the roots of a split and squarefree monic univariate polynomial
in characteristic two.

1: function FindRootsSplit
(
H ∈ F2d ext [x]

)

2: if deg(H) < 1 then
3: return ∅
4: else if deg(H) = 1 then
5: return List(h0) . We create a list with the root of H and return it.
6: else
7: repeat
8: r ∈R F×

2d ext . The notation ∈R stands for randomly sampling.
9: T ← Tr dext (rx) mod H

10: P ← GCD(H, T) . We can assume thatP is chosen monic.
11: until P is a non trivial divisor of H
12: Q← H/P . Quotient of the Euclidean division.
13: return Concat(FindRootsSplit(P),FindRootsSplit(Q)) . The concatenation of the lists is

returned.
14: end if
15: end function

Solving X 2 + X + A = 0 with the half-trace. Algorithm 24 can be accelerated by optimizing
the base cases. Whendext is odd, the degree-two polynomials can be solved more efficiently [159].
To do it, note that solving an equation x2 + Bx + C = 0 , with B ∈ F×

2d ext and C ∈ F2d ext , is
equivalent to solving X 2 + X + A = 0 with BX = x and A = CB −2. If R is a solution of this new
equation, then R + 1 is the other root by linearity of the Frobenius endomorphism. When dext is
odd, R is the so-called half-trace [159]:

R = HTr dext (A) =

d ext−1
2∑

i =0

A22 i
=

d ext−1
2∑

i =0

A4i
. (5.15)

The latter can be computed efficiently with the strategies of Section 5.4.6 (by considering R =
Tr d ext+1

2
(A) with q = 4). Finally, the roots of the initial equation are BR and BR + B .

Solving X 2 + X + A = 0 as a linear system over F2. Here, the idea is to search the binary
coefficients of ϕ(R) (Equation (2.5)). Let:

R =
dext−1∑

i =0

r i θi , A =
dext−1∑

i =0

ai θi , with r i , ai ∈ F2.

68

We searchR such that R2 + R = A. This implies that:

dext−1∑

i =0

r i θi + r 2
i θ2

i =
dext−1∑

i =0

r i
(
θi + θ2

i
)

=
dext−1∑

i =0

ai θi .

So, let M 2 be the following matrix:

M 2 =





ϕ
(
θ2

0 + θ0
)

ϕ
(
θ2

1 + θ1
)

...
ϕ

(
θ2

dext−1 + θdext−1
)




= I dext +





ϕ
(
θ2

0
)

ϕ
(
θ2

1
)

...
ϕ

(
θ2

dext−1
)




∈Mdext

(
F2

)
. (5.16)

Thus, we can find R by solving the following classical linear algebra problem:
(
r 0 r 1 · · · r dext−1

)
·M 2 =

(
a0 a1 · · · adext−1

)
.

With this method, R is obtained by solving a linear system whose matrix depends only on the field
representation (Section 5.2) and so can be precomputed. Note thatrank(M 2) = dext−1 sinceR +1
is also solution.

Then, we can slightly modify M 2 to obtain an invertible matrix M̃ 2 ∈ GLdext

(
F2

)
. Its inverse

can be precomputed, then re-used to findR with a vector-matrix product over F2. In practice, B
is the canonical basis. This implies that the first row of M 2 is null. To obtain an invertible matrix
which gives R from A, we set one of the coefficients of this row to one. We remark that for the
irreducible trinomials or pentanomials used to defineF2d ext (Section 5.3.3), if dext is odd then we
can set the coefficient (0, 0) of M 2 to one. Else, we can set the coefficient (0, dext − k1) of M 2 to
one. We refer to Section B.7 for more details.

Solving X 3 + sX + p = 0 as a linear system over F2. Now, we study how to find the roots
of a degree-three split polynomialx3 + Bx 2 + Cx + D ∈ F2d ext [x]. By using the classical change of
variable X = x + B , we obtain X 3 + sX + p = 0 with s = B 2 + C and p = D + BC . Then, we
multiply X 3 + sX + p by X to obtain X 4 + sX 2 + pX . The result is F2-linear: all powers ofX are
powers of two. Similarly to the previous method, we can solveX 4 + sX 2 + pX with linear algebra.
Here, we obtain:

M 3 =





ϕ
(
θ4

0 + sθ2
0 + pθ0

)

ϕ
(
θ4

1 + sθ2
1 + pθ1

)

...
ϕ

(
θ4

dext−1 + sθ2
dext−1 + pθdext−1

)




∈Mdext

(
F2

)
.

Then, a solution R of X 4 + sX 2 + pX is given by
(
r 0 r 1 · · · r dext−1

)
·M 3 =

(
0 0 · · · 0

)
,

i.e. R is in the kernel of M 3. On the one hand, the extra solutionX = 0 is absorbed by the kernel
of M 3. On the other hand, zero cannot be solution ofX 3 + sX + p. Indeed, p = 0 would imply that
X 3 + sX admits a double (or triple) root, which is impossible sincex3 + Bx 2 + Cx + D is assumed
split. So, the non-zero solutions ofX 4 + sX 2 + pX are the solutions ofX 3 + sX + p. This implies
that the dimension of the kernel of M 3 is two, and its basis allows to generate the three (distinct)
roots of X 3 + sX + p.

69

5.4.8 Root Finding
Finally, we have all tools to introduce a root finding algorithm of H ∈ Fqd ext [x]. Algorithm 25
describes Berlekamp’s algorithm [161, Algorithm 14.15]. The main idea is to remark thatxqd ext − x
vanishes on all elements ofFqd ext . We can then computeG the GCD of H and xqd ext − x. G has the
same roots asH but with a minimum degree (which is the number of roots). In general, the degree
of G is small. The strategy is then to apply the so-called equal-degree factorization, which returns
the factorization in irreducible polynomials of equal degree. Used in Berlekamp’s algorithm, we
obtained degree-one factors, and so all roots ofG. This is turned to be cheap. Indeed, lets be the
degree ofG, the equal-degree factorization costsO

(
(dext log(q) + log(s))M(s) log(s)

)
operations in

Fqd ext [161, Theorem 14.11 adapted forr = s and d = 1]. Because the degree ofxqd ext − x is big,
we reducexqd ext − x by H by using methods described in Section 5.4.5, before computing the GCD
(Section 5.4.1).

Algorithm 25 Algorithm to find the roots of a univariate polynomial.

1: function FindRoots
(
H ∈ Fqd ext [x]

)

2: R2 ← xqd ext − x mod H . Computation of the Frobenius map.
3: G← GCD(H, R 2) . Computation of the GCD.
4: s← deg(G) . Number of roots of H .
5: if s > 0 then
6: L roots ← list of all roots of G, computed by the equal-degree factorization algorithm

described in [161, Section 14.3] . In characteristic two, call to Algorithm 24.
7: return (s, L roots)
8: end if
9: return (s,∅)

10: end function

The complexity of Algorithm 25 is given by the following general result [161, Corollary 14.16].

Theorem 4. Let Fq be a finite field, and Mq(D) be the number of operations inFq to multiply two
polynomials of degree less or equal toD . Given f ∈ Fq[x] of degreeD , we can find all roots of f
in Fq using an expected number of

O
(
Mq(D) log(D) log(Dq)

)

or Õ
(
D log(q)

)
operations in Fq.

70

Chapter 6

Software Implementation

In this chapter, we present important considerations [104] about the processor and memory caches,
allowing to write an efficient code (Section 6.1). Then, we describe the methodology of benchmark-
ing, as well as state-of-the-art libraries (Section 6.2). Finally, we present classical techniques to
make constant-time our implementation (Section 6.3). We use secret data in constant-time to be
immune against timing attacks (Section 4.7).

6.1 Hardware Considerations
In this section, we study the processor and the cache hierarchy (Sections 6.1.1 and 6.1.2). We high-
light crucial points which impact security and performance. Then, we introduce vector instructions
that we use to improve the performance by significant speed-ups (Section 6.1.3). We conclude by
the use of the compiler (Section 6.1.4). The compiler flags directly impact security and performance.

6.1.1 Processor

Here, we give a simplified view of how processors work. A processor has a fixed number ofω-bit
registers,ωdepending on the architecture (typically, ω = 64 on modern computers). These registers
can be filled with a load instruction, and saved with a store instruction, both by using a memory
access. Then, operations between registers are hardware instructions. These instructions flow in a
pipeline, which processes them one by one like an assembly line. The latter is divided into several
stages. For example, the classical RISC pipeline [104] contains the following five stages:

1. Instruction fetch: the instruction is loaded from the L1 instruction cache (Section 6.1.2),

2. Instruction decode: the instruction is decoded and the registers corresponding to operands
are read from the register file (register fetch),

3. Execute: a logical or arithmetic instruction is executed here, or a memory address is computed
for the load and store instructions,

4. Memory access: the memory access of aload or store instruction is executed here,

71

5. Register write back: the result of the instruction is written in the register file. This stage
does not have effect for astore instruction, because the latter does not have result.

At each cycle, one instruction is performed for each stage. In practice, the cost of one stage can
be slower than one cycle. In particular, the number of cycles to perform Stage 3 depends on the
instruction. This number is commonly called Cycle Per Instruction (CPI) or throughput. Then,
once one instruction is executed, the result is not instantly available. The required number of cycles
to obtain the result is called latency, and is specific to each instruction. If an instruction requires
the result of a previous instruction, these instructions have a data dependency. In this case, the
instruction is not launched while the result is not available, and no-op (no operation) instructions
are placed before this instruction. So, data dependency instructions can penalize performance,
particularly if the first dependent instruction has a large latency.

6.1.2 Memory Cache

In the previous section, we do not consider the number of cycles to load and store data. The
memory is managed according a complex system of memory hierarchy.

Concept and use of the memory hierarchy. Here again, we give a simplified view, assuming
that the processor has a memory cache.

• When a load instruction is performed, the data is sought in the first level of cache (L1 data
cache). If the data is present, it is a cache hit. The data is loaded, costing a small number
of cycles. If the data is missing, it is a cache miss. In this case, the data is sought in the
upper memory level (in general, it is the L2 cache). If the data is present in the L2 cache,
it is a cache hit. Then the sought data, as well as some contiguous data, are transferred in
the L1 cache. This generates a larger cycle penalty than a L1 cache memory access. If the
data is missing in the L2 cache, it is a cache miss and the principle described here is applied
recursively, increasing each time the penalty cache to transfer data from a level̀ + 1 to a
level ` .

• When instructions have to be fetched, they are sought in the L1 instruction cache. If the
instruction is missing, the previous process is applied. Note that for certain processors, data
and instructions are stored is the same L1 cache.

• When a store instruction is performed, the process used to update different memory levels
is slightly more complex [104], and is not described here.

Derived principles. All in all, these lead to the following general rules. Firstly, we know that the
memory complexity of an algorithm has an impact on the performance, depending on the highest
memory level which is required to load and store all data used. The size of data and caches directly
impacts the performance. Secondly, we know that the data are loaded by contiguous data block.
So, contiguous memory accesses are really efficient and have to be preferred. Finally, the time
of accessing a table from a secret index depends on this secret data, and so reveals information.
Cache-timing attacks exploit this kind of information leakage (Sections 4.7 and 6.3.3).

72

Multicore processor and cache. Modern processors often have three levels of cache. On
modern Intel processors, including these of our experimental platform (Section 6.2.2), all cores
have a dedicated L1 instruction cache, L1 data cache and L2 cache, whereas the L3 cache is unique
and shared by all cores.

6.1.3 Vector Instructions
On a ω-bit architecture (typically, ω = 64 on modern computers), the hardware instructions are
performed on ω-bit registers. However, almost all modern processors have Single Instruction on
Multiple Data (SIMD) instruction sets. These instructions compute independent instructions in
parallel on larger registers, allowing to accelerate the implementations. InMQsoft (Chapter 9),
we exploit vector instructions. We use C intrinsics which generate vector instructions during the
compilation step. Unlike assembly code, the use of intrinsics does not depend on the targeted
architecture. This makes the code portable.

Intel processors. Nowadays, Intel processors are widely used and propose a large number of
SIMD instruction sets [107]. The main instruction sets are:

• The Streaming SIMD Extensions (SSE) family. The computations are performed on 128-
bit registers. The SSE instruction set only supports floating-point data whereas the SSE2
instruction set supports floating-point and integer data. The SSE3, SSSE3, SSE4.1 and SSE4.2
instruction sets provide new instructions to improve performances of certain operations.

• The Advanced Vector Extensions (AVX) family. The computations are performed on 256-
bit registers, or on 128-bit registers thanks to the backward compatibility. As for the SSE
instruction set, the AVX instruction set only supports floating-point data whereas the AVX2
instruction set supports floating-point and integer data.

• The AVX-512 family. As indicated by its name, the computations are performed on 512-bit
registers. The AVX-512 instruction set is divided into subsets of instructions. Each of them
has a specific feature.

In MQsoft, we exploit the SSE and AVX families of instruction set, as well as certain non parallel
instructions (e.g. POPCNT and PCLMULQDQ).

Main vector instructions. All classical operations on 64-bit registers, such as the logical bit
shifts, the mathematical operatorsADD, SUB, MUL, the bitwise logical AND, OR, XOR operators, and the
equality and comparison tests, can be performed in parallel on larger registers. Here, we explain
other vector instructions1 that MQsoft exploits.

• POPCNT2: this instruction counts the number of bits set to one in 64-bit integers. It is used to
speed up the dot product of vectors inF2.

• PCLMULQDQ2 (carry-less multiplication): this instruction computes the product of two binary
polynomials such that their degree is strictly less than 64. Inputs and output are 128-bit
registers.

1For further information, we refer to the Intel Intrinsics Guide (https://software.intel.com/sites/landingpa
ge/IntrinsicsGuide/#).

2This instruction is available in a instruction set of one instruction.

73

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

• PSLLDQ3 and PSRLDQ3: these instructions from SSE2 compute respectively the logical left shift
and logical right shift of a 128-bit register by a multiple of eight bits.

• PALIGNR3: this instruction from SSSE3 concatenates two 128-bit registers, shifts the concate-
nation to the right by a multiple of eight bits, then returns the 128 lower bits of the result.

• PSHUFB3: this instruction from SSSE3 takes sixteen indices on four bits, and looks up the
corresponding 8-bit elements in a 16-byte lookup table. In fact, each index is on eight bits,
but only the four lower bits are considered. However, if the highest bit is set, then the
corresponding output will be null.

• VPERMQ: this instruction from AVX2 permutes the 64-bit parts of a 256-bit register. In par-
ticular, it can duplicate one 64-bit part four times.

• VPMASKMOVQ: when called with two operands, this instruction from AVX2 loads four contiguous
64-bit integers from an array, then applies a mask which permits to set to zero some of these
64-bit integers. VPMASKMOVQ can also be called with three operands. In this case, the third
operand is stored as four contiguous 64-bit integers in an array. Here, the mask allows to
choose what integers are stored. TheVPMASKMOVQ instruction may not be constant-time, in
particular if the execution of the load instruction depends on the mask.

The prefix P (respectively VP) of an instruction means that it is a part of the SSE (respectively
AVX) family. The suffixes B, W, D, Q and DQ, respectively for Byte, Word, Doubleword, Quadword
and Double Quadword, mean that registers are respectively used as 8-bit, 16-bit, 32-bit, 64-bit and
128-bit data blocks. When two suffixes are used, the first corresponds to the input, whereas the
second corresponds to the output. For example,PCLMULQDQ computes the carry-less multiplication
(CLMUL) of two quadwords, which generates a double quadword. So, the suffixQDQ is used.

The PCLMULQDQ instruction is a crucial instruction for multiplying in F2[x]. This instruction can
be performed two or four times in parallel with the VPCLMULQDQ2 instruction. Unlike the previous
instructions, the VPCLMULQDQ instruction requires the use of AVX-512. This instruction is recent
(September 2019 on Ice Lake Intel processors) and we do not consider it inMQsoft.

Performance of vector instructions. Most of instructions require one cycle per instruction,
then the result is available after one cycle of latency. In Table 6.1, we highlight faster and slower
instructions on Intel processors. The processors Ivy Bridge, Haswell, Broadwell and Skylake are
respectively the third, fourth, fifth and sixth generations of Intel processor. The bitwise logical
operators are the fastest instructions. They cost one third of cycle per instruction. This means
that in one cycle, the same instruction can be computed up to three times in parallel. This also
means that one instruction alone costs one complete cycle per instruction. In order to improve
the performances of a software, we can take advantage of this behavior to decrease the practical
number of cycles. Then, we remark that the cost of certain instructions (e.g. PCLMULQDQ) varies in
function of the processors. In this case, the implementation should be specialized for each kind of
processor. Finally, the large latency should be covered by calling instructions independent of the
result, when it is possible.

3This instruction can be performed two times in parallel in AVX (and four times in AVX-512). The corresponding
name takes the letter V at the beginning of the instruction name.

74

instruction processor latency CPI
PAND, POR, PXOR all 1 1/3
PSLL*, PSRL* Skylake 1 1/2
* ∈ { W, D, Q} Haswell 1 1

PSLLDQ, PSRLDQ
Skylake 1 1
Haswell 1 1

PCMPEQ{ B, W, D, Q} all 1 1/2

PCLMULQDQ

Skylake 6 1
Broadwell 5 1
Haswell 7 2
Ivy Bridge 14 8

POPCNT all 3 1
VPERMQ all 3 1
VPMASKMOVQ Skylake 8 1/2
(load) Haswell 8 2
VPMASKMOVQ Skylake 6 1
(store) Haswell - 2

Table 6.1: Cost of vector instructions on Intel processors. ThePSLL*
and PSRL* instructions correspond to logical shifts by block, whereas
PCMPEQ{ B, W, D, Q} is the equality test by block.

6.1.4 Compiler Flags

In the previous sections, we studied how to optimize the instructions on a processor. InMQsoft, we
use aC implementation. Therefore, the generation of these instructions is done by the compiler. In
our tests, we use the GNU Compiler Collection (GCC). Here, we study the options which firstly,
allow the compiler to interpret the intrinsics, then secondly, improve the efficiency of the generated
code. We also note that the optimization options can impact the security of the implementation.

• -msse, -msse2, -msse3, -mssse3, -msse4.1, -msse4.2, -mavx, -mavx2, -mpclmul and
-mpopcnt: these flags enable the vector instruction sets described in Section 6.1.3.

• -march=native: this flag enables all available vector instruction sets on the current machine.

• -mtune=native: this flag optimizes the use of instructions in function of the targeted archi-
tecture. The target native can be replaced byhaswell, skylake or other architectures.

• -O1, -O2, -O3 and -O4: these flags provide four levels of optimization of the code by the
compiler. Each of them combines a set of options to accelerate the generated code. The use
of these options modifies the initial implementation, and can generate insecure instructions
against timing attacks.

• -funroll-loops: this flag unrolls loops whose number of iterations is known. The code
becomes larger and may or may not run faster.

75

6.2 Experimental Platform and Tools

6.2.1 Library and Software

The MQsoft library [84] requires external supports for random bytes generation and hash functions.
Natively, we use the following C libraries.

• XKCP (Extended Keccak Code Package) [89].XKCP is a software interface for Keccak-based
functions. This implementation is immune against timing attacks (Section 4.7). MQsoft uses
it mainly for the SHA-3 hash functions andSHAKE extendable-output hash functions [126].

• OpenSSL [146]. OpenSSL is a cryptographic toolkit implementing, in particular, the Transport
Layer Security (TLS) protocol. We use OpenSSL for compatibility with the deterministic
random bytes generator provided by NIST during the PQC standardization process (which
is based onAES from OpenSSL). We also propose options inMQsoft to use the SHA-1, SHA-2,
SHA-3 and SHAKE functions from OpenSSL.

The performance of MQsoft is based on an efficient arithmetic (Chapter 5). In the next chapters,
we will benchmark our software toolkit against the following softwares or libraries, which are state-
of-the-art about computer algebra.

• Magma [34, version 2.23-6]. Magma is a computer algebra software, well-known to be very
efficient over finite fields. Magma is also a reference to compute Gröbner bases (Section 4.4).
In Section 9.3, we use the version 2.24-2 for benchmarks.

• NTL [153, version 10.5.0], installed withGMP [97, version 6.1.2].NTL is one of the best libraries
for number theory. It is implemented in C++ programming language. In Section 9.3, we use
the last versions ofNTL and GMP, which are respectively 11.4.3 and 6.2.0. We will conclude
that our library MQsoft is still faster than NTL.

• gf2x4 [41, version 1.2]. gf2x is a C implementation of the state-of-the-art multiplications in
F2[x]. The multiplication algorithm depends on the degree of the operands and the available
vector instruction sets. An option of MQsoft allows to use thegf2x multiplication instead of
the native multiplication. This is especially useful to accelerate the implementation when the
PCLMULQDQ instruction is not available. However, some multiplications of the software are not
implemented in constant-time. For example, thegeneric64 implementation is vulnerable to
cache-timing attacks (Section 4.7).

We have also studied the performance ofFLINT [103, version 2.5.3], which is a fastC library for
number theory. However, its use is irrelevant in our context, because the implementation is not
optimized for binary fields.

Some of the softwares used can be optimized during the installation process. We use the Haswell
implementation of the XKCP to improve performances ofMQsoft by using the AVX2 instruction set.
Magma is used with magma.avx64.dyn.exe to take advantage of vector instructions. In our tests,
the avx64 version mainly optimizes the performance of multiplication in binary fields.

4https://gitlab.inria.fr/gf2x/gf2x

76

https://gitlab.inria.fr/gf2x/gf2x

6.2.2 Platform and Benchmarking Methodology

computer processor cores frequency max freq. architecture
LaptopS Intel Core i7-6600U CPU 2 2.6 GHz 3.4 GHz Skylake
ServerH Intel Xeon CPU E3-1275 v3 4 3.5 GHz 3.9 GHz Haswell
DesktopS Intel Core i7-6700 CPU 4 3.4 GHz 4.0 GHz Skylake

Table 6.2: Processors.

computer operating system L1d L1i L2 L3 RAM
LaptopS Ubuntu 16.04.5 LTS

32 KiB 32 KiB 256 KiB
4 MiB 32 GB

ServerH CentOS Linux 7 (Core) 8 MiB
DesktopS Debian GNU/Linux 9 16 GB

Table 6.3: OS and memory. All cores have the same cache size. The L3 cache is shared.

Tables 6.2 and 6.3 summarize the main information about the platform used in the experimen-
tal measurements. The measurements used one core of the CPU, and theC code was compiled
with gcc -O3 -mavx2 -mpclmul -mpopcnt -funroll-loops. We used the version 6.4.0 of GCC.
Turbo Boost and Enhanced Intel Speedstep Technology were disabled to have more accurate mea-
surements, except when we used DesktopS. Turbo Boost allows the processor to reach its maximum
frequency while its temperature is less than its physical limit. As soon as this limit is reached, the
frequency decreases drastically to permit its cooling. Enhanced Intel Speedstep Technology allows
the operating system to modify the frequency, in order to optimize the threshold between power
consumption and performance. Disabling Turbo Boost decreases performances whilst disabling En-
hanced Intel Speedstep Technology increases power consumption. On the other hand, the frequency
of the processor remains constant, which stabilizes running time measurements. In practice, Turbo
Boost generates a speed-up of 1.2 on LaptopS and 1.1 on ServerH.

6.3 Constant-Time Implementation
Here, we present classical methods to circumvent some timing attacks (Section 4.7). We use similar
techniques to makeMQsoft constant-time. In particular, we explain in Section 7.4.4 how to remove
the information leakages of the Gaussian elimination (operation used, for instance, inGeMSS during
the keypair generation, Chapter 7), due to the null pivots. In Section 7.4.11, we present the
constant-time GCD algorithm (key step in GeMSS signing process) which was only introduced in
2019 [19]. Our adaptation of this GCD algorithm for GeMSS is detailed in Section B.8.

6.3.1 Variable-Time Instructions
In Section 6.1.1, we remarked that the number of spent cycles depends on the instruction used. On
certain architectures and for certain instructions, the number of cycles depends on the inputs. This
behavior is dangerous when secret data are used, and so these instructions should be prohibited in
this context. Here, we list some instructions which are not always implemented in constant-time:

77

• Mathematical functions, such ascos, sin, tan, . . . but in general, these instructions are not
used in cryptography.

• Integer multiplications. This operation is crucial for arithmetic in odd prime fields and their
extension fields [51].

• Integer and floating-point divisions. These operations can be used for arithmetic in odd prime
fields and their extension fields.

In MQsoft, we avoid using these instructions with secret data.

6.3.2 Constant-Time Conditional Statements

In Algorithm 15, we removed the information leakage of the square-and-multiply algorithm via a
constant-time conditional multiplication. Here, we study a typical example of insecure algorithm
against timing attacks on conditional statements. Let Algorithm 26 be a possible implementation
of the conditional move (cmov) instruction.

Algorithm 26 Variable-time conditional move from a to c, with x a boolean.
1: function cmov_var(c, a, x)
2: if x = 1 then
3: c← a
4: end if
5: return c
6: end function

Algorithm 26 generates an information leakage onx because of the conditional statement. The
latter can be easily avoided with the following formula:

c = a · x + c · (1− x).

When x is one, the right operand is null and c is replaced bya, whereas whenx is zero, the left
operand is null and c is replaced byc. This method allows to choose one operand in constant-time.
It can be accelerated by replacing the addition by the bitwiseOR, and by replacing the multiplication
by the bitwise AND and by using a mask. Ifx is a boolean, and ifx is stored with two’s complement,
then the memory representation of−x is the boolean duplicated on each bit. We obtain:

c =
(
a AND (−x)

)
OR

(
c AND (x − 1)

)
.

In practice, it seems slightly better to implement the cmov instruction as follows:

c = c XOR
(
(a XOR c) AND (−x)

)
. (6.1)

When x is one, c is replaced byc XOR a XOR c which is equal to a, whereas whenx is zero, c is
replaced by c.

78

The strategy of Equation (6.1) can be used to implement a conditional swap of two elements
(Algorithm 27). We use it for constant-time implementations of sort [17] required in Section 7.1.3
and GCD required in Section 7.4.11 and detailed in Section B.8.

Algorithm 27 Constant-time conditional swap. Swapa and c if x is one.
1: function cswap(a, c, x)
2: s← (a XOR c) AND (−x)
3: a← a XOR s
4: c← c XOR s
5: return (a, c)
6: end function

Remark 3. We often generate a maskm ∈ {−1, 0} from the i -th bit of a ω-bit word c, for 0 6 i < ω .
This can be achieved in constant-time as follows:

• m ← −
(
(c� i) AND 1

)
, where� stands for logical right shift,

• m ←
(
c� (ω− 1− i)

)
�a (ω− 1), where�a stands for arithmetic right shift.

The latter is particularly efficient to generate a mask from the sign bit of a signed integer, since
this is equivalent to c�a (ω− 1). In this thesis, we only use logical shifts.

6.3.3 Constant-Time Use of Tables
Accessing a table reveals information about the index, which can be exploited by cache-timing
attacks (Section 4.7). This leakage can be avoided by reading all elements of the table, and by
selecting the targeted element with a conditional move. By optimizing the conditional move, we
obtain Algorithm 28. Here, == is the equality operator of the C programming language, which
returns 1 for true and 0 for false. This instruction is constant-time, but the compiler can replace
it by a dangerous conditional statement. So in practice, this instruction (as well as the compiler)
should be used carefully.

Algorithm 28 Constant-time access to thej -th element from a table T of ` elements.
1: function accessTable(T, `, j)
2: a← 0
3: for i from 0 to ` − 1 do
4: a← a OR (T [i] AND − (j == i)) . Optimized conditional move.
5: end for
6: return a
7: end function

In a variable-time implementation, the use of lookup tables allows to obtain the result in only
one memory access. A constant-time implementation such as Algorithm 28 makes this strategy
slow, with ` memory accesses instead of one.

79

Part II

Main Contributions

81

Chapter 7

GeMSS – a Gr eat Multivariate
Short Signature

The purpose of this chapter is to presentGeMSS: a Great Multivariate Short Signature. GeMSS [50] is
an alternate candidate of the third round of the NIST PQC standardization process [130]. As sug-
gested by its name,GeMSS is a multivariate-based (Chapter 2) signature scheme producing small sig-
natures. It has a fast verification process, and a medium/large public-key.GeMSS is in direct lineage
from QUARTZ [134] and borrows some design rationale of theGui multivariate signature scheme [144].
The former schemes are built from theHidden Field Equations cryptosystem (HFE) [133, published
in 1996] by using the so-called minus and vinegar modifiers,i.e. HFEv- [110] (Section 2.4.1). It is fair
to say that HFE, and its variants, are the most studied schemes in multivariate cryptography.QUARTZ
produces signatures of 128 bits for a security level of 80 bits and was submitted to the NESSIE
competition [145] for public-key signatures. In contrast to many multivariate schemes, no practical
attack has been reported againstQUARTZ. This is remarkable knowing the intense activity in the
cryptanalysis of multivariate schemes,e.g. [132, 111, 78, 82, 96, 95, 73, 86, 70, 29, 39, 22, 137, 160, 68]
(Chapter 4). The best known attack remains [82] (Section 4.4) that serves as a reference to set the
parameters for GeMSS.

GeMSS is a fast variant of QUARTZ that incorporates the latest results in multivariate cryptography
to reach higher security levels thanQUARTZ whilst improving efficiency. The main sections of this
chapter follow the algorithm specification and supporting documentation from the call for proposals
[127].

7.1 General Algorithm Specification (Round 3)

7.1.1 Parameter Space
The main parameters involved in GeMSS are:

• λ , the security level of GeMSS,

• D , a positive integer that is the degree of a secret polynomial.D is such that D = 2 i for
i > 0, or D = 2 i + 2 j for i 6= j and i, j > 0,

83

• m, the number of equations in the public-key,

• nvar, the number of variables in the public-key,

• nb_ite > 0, the number of iterations in the signature and verification processes (Section 4.2),

• dext, the degree of an extension field ofF2,

• v, the number of vinegar variables (the number of variables in the public-key isnvar = dext+ v),

• ∆ , the number of minus equations (the number of equations in the public-key ism = dext−∆).

In Section 7.2, we specify precisely these parameters to achieve a security levelλ ∈ {128, 192, 256}.

7.1.2 Secret-Key and Public-Key
The public-key in GeMSS is a set p1, . . . , pm ∈ F2[x1, . . . , xn var] of m quadratic equations in nvar
variables. These equations are derived from a multivariate polynomialF ∈ F2d ext [X, v 1, . . . , vv]
with a specific form – as recalled in (7.1) – such that generating a signature is essentially equivalent
to finding the roots of F (Section 2.4.1).

Secret-key. It is composed of a couple of invertible matrices(S, T) ∈ GLn var

(
F2

)
× GLdext

(
F2

)

and a polynomial F ∈ F2d ext [X, v 1, . . . , vv] with the following structure:
∑

06j<i<d ext

2i +2 j 6D

A i,j X 2i +2 j
+

∑

06i<d ext

2i 6D

βi (v1, . . . , vv) X 2i
+ γ(v1, . . . , vv) ∈ F2d ext [X, v 1, . . . , vv], (7.1)

where A i,j ∈ F2d ext , eachβi : Fv
2 → F2d ext is linear and γ : Fv

2 → F2d ext is quadratic modulo v2
i − vi .

The variables v1, . . . , vv are called vinegar variables. A polynomial F ∈ F2d ext [X, v 1, . . . , vv] with
the form of (7.1) has aHFEv-shape. By abuse of notation, we will call degree ofF the (max) degree
of its correspondingHFE polynomial, i.e. D .

Remark 4. The particularity of a polynomial F (X, v 1, . . . , vv) with HFEv-shape is that for any
specialization of the vinegar variables, the polynomialF becomes aHFE polynomial (Equation
(2.6), Section 2.4.1).

The special structure of (7.1) is chosen such that itsmultivariate representation over the base
field F2 is composed of quadratic polynomials inF2[x1, . . . , xn var]. This is due to the special expo-
nents chosen inX (Equations (2.7) and (2.8)) that have all a binary decomposition of Hamming
weight at most two.

Let θ =
(
θ1, . . . , θdext

)
∈

(
F2d ext

) dext be a basis ofF2d ext over F2. We set

ϕ : E =
dext∑

k=1

ok · θk ∈ F2d ext 7−→ ϕ(E) = (o1, . . . , odext) ∈ Fdext
2 .

We can now define a set of multivariate polynomialsf = (f 1, . . . , f dext) ∈ F2[x1, . . . , xn var]dext derived
from a HFEv polynomial F ∈ F2d ext [X, v 1, . . . , vv] by:

F
(
ϕ−1(x1, . . . , xdext), v1, . . . , vv

)
= F

(dext∑

k=1

xk · θk , v1, . . . , vv

)

=
dext∑

k=1

f k · θk = ϕ−1(f). (7.2)

84

To ease notations, we now identify the vinegar variables(v1, . . . , vv) = (xdext+1 , . . . , xn var). Also, we
shall say that the polynomials f 1, . . . , f dext ∈ F2[x1, . . . , xn var] are the componentsof F over F2.

Public-key. It is given by a set of m square-free quadratic polynomials innvar variables overF2.
That is, the public-key is p = (p1, . . . , pm) ∈ F2[x1, . . . , xn var]m . It is obtained from the secret-key
by taking the first m = dext − ∆ polynomials of:

(
f 1

(
(x1, . . . , xn var) · S

)
, . . . , f dext

(
(x1, . . . , xn var) · S

))
· T ,

and reducing it modulo the field equations,i.e. modulo 〈x2
1−x1, . . . , x2

n var
−xn var〉. We denote these

polynomials by p = (p1, . . . , pm) ∈ F2[x1, . . . , xn var]m .

Keypair generation. We summarize the public-key/secret-key generation in Algorithm 29. It
takes the unary representation of the security parameterλ as input. As we will see in Section 7.7, the
security level of GeMSS will be a function of D, ∆ , v and m. For more details on the implementation,
we refer to Section 7.4.

Algorithm 29 Keypair generation in GeMSS.

1: function GeMSS.KeyGen
(
1λ)

2: Randomly sample(S, T) ∈ GLn var

(
F2

)
×GLdext

(
F2

)
. . Section 7.4.3.

3: Randomly sampleF ∈ F2d ext [X, v 1, . . . , vv] with HFEv-shape of degreeD . . Section 7.4.5.
4: sk←

(
F, S−1, T −1)

∈ F2d ext [X, v 1, . . . , vv]×GLn var

(
F2

)
×GLdext

(
F2

)
. Section 7.4.4.

5: Compute f = (f 1, . . . , f dext) ∈ F2[x1, . . . , xn var]dext such that:

F

(dext∑

k=1

xk · θk , v1, . . . , vv

)

=
dext∑

k=1

f k · θk .

. See Section 9.4.1 for details on Step 5.
6: Compute (p1, . . . , pdext) =

(
f 1

(
(x1, . . . , xn var) · S

)
, . . . , f dext

(
(x1, . . . , xn var) · S

))
· T mod 〈x2

1 − x1, . . . , x2
n var
− xn var〉

which lives in F2[x1, . . . , xn var]dext . . Sections 7.4.6 and 7.4.7.
7: pk ← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn var]m . Take the first m = dext − ∆ polynomials

computed in Step 6.
8: return (sk, pk) . The format is further detailed in Sections 7.4.1 and 7.4.8.
9: end function

85

7.1.3 Signing Process

The main step of the signature process requires solving:

p1(x1, . . . , xn var) − d1 = 0 , . . . , pm (x1, . . . , xn var) − dm = 0

for d = (d1, . . . , dm) ∈ Fm
2 . To do so, we randomly sampler = (r 1, . . . , r dext−m) ∈ Fdext−m

2 and
append it to d. This gives d ′ = (d, r) ∈ Fdext

2 . We then compute Y = ϕ−1(
d ′ · T −1)

∈ F2d ext and
try to find a root (Z, v) ∈ F2d ext × Fv

2 of the multivariate equation:

F (X, x dext+1 , . . . , xn var) − Y = 0 .

To solve this equation, we take advantage of the specialHFEv-shape. That is, we randomly sample
v ∈ Fv

2 and consider the univariate polynomial F (X, v) ∈ F2d ext [X]. This yields a HFE polynomial
according to Remark 4. We then find the roots of the univariate equation:

F (X, v) − Y = 0 .

If there is a root Z ∈ F2d ext , we return
(
ϕ(Z), v

)
· S−1 ∈ Fn var

2 .
The core part of the signature generation is to compute the roots ofFY (X) = F (X, v) −Y . To

do so, we use Berlekamp’s algorithm as described in Algorithm 25, Section 5.4.8. Forq = 2 dext , we
get that finding all the roots of a polynomial of degreeD can be done in (expected) quasi-linear
time (Theorem 4, Section 5.4.8),i.e.:

Õ
(
D · dext

)
.

We can now present the inversion function (Algorithm 30).

Algorithm 30 Inversion in GeMSS.

1: function GeMSS.Inv p
(
d ∈ Fm

2 , sk =
(
F, S−1, T −1)

∈ F2d ext [X, v 1, . . . , vv] × GLn var

(
F2

)
×

GLdext

(
F2

))

2: repeat
3: r ∈R F∆

2 . The notation ∈R stands for randomly sampling.
4: d ′ ← (d, r) ∈ Fdext

2
5: Y ← ϕ−1(

d ′ · T −1)
∈ F2d ext

6: v ∈R Fv
2

7: FY (X) ← F (X, v) − Y
8: (n, L roots) ← FindRoots(FY) . Sections 5.4.8, 7.4.12 and 9.3.
9: until n 6= 0 . F Y has n roots.

10: Z ∈R L roots
11: return

(
ϕ(Z), v

)
· S−1 ∈ Fn var

2
12: end function

Remark 5. We always sample a root at Step 10 in the same way. Firstly, we sort the elements
of L roots as unsigned integers (i.e. θi < θ i +1 in the chosen representation ofF2d ext (Section 5.2))
in ascending order. We then computeSHA-3(Y), and take H64 the first 64 bits of this digest. We
considerH64 as an unsigned integer, and finally return the(H64 mod n)-th element in L roots.

86

Let d ∈ Fm
2 and x s ← GeMSS.Inv p

(
d, sk =

(
F, S−1, T −1))

∈ Fn var
2 . By construction, we have

p(x s) = d, where p is the public-key associated to sk. Thus,x s ∈ Fn var
2 could be directly used as

a signature for the corresponding digestd ∈ Fm
2 (Algorithm 3). In the case of GeMSS, m is small

enough to make the cost of simple birthday-paradox attack (Section 4.2) against the hash function
more efficient than all possible attacks (as those listed in Section 7.7). This problem was already
identified in QUARTZ and Gui [134, 58, 59, 144]. Their authors proposed to handle this issue by
using the so-calledFeistel–Patarin scheme [58] (Section 4.2).

The basic principle of the Feistel–Patarin scheme is to roughly iterate Algorithm 30 several
times. The number of iterations is a parameter nb_ite that will be discussed in Section 7.6.1.

Algorithm 31 Signing process inGeMSS.

1: function GeMSS.Sign
(
M ∈ {0, 1}∗, sk ∈ F2d ext [X, v 1, . . . , vv] × GLn var

(
F2

)
× GLdext

(
F2

)
,

GeMSS.Inv p
)

2: S0 ← 0m
3: for i from 0 to nb_ite − 1 do . Iterations of the Feistel–Patarin scheme.
4: h← SHA-3(M ‖i) . Section 7.4.13.
5: D i +1 ← first m bits of h . D i +1 ∈ Fm

2 .
6:

(
Si +1 , X i +1

)
← GeMSS.Inv p

(
Si + D i +1 , sk

)
. Si +1 ∈ Fm

2 and X i +1 ∈ Fn var−m
2 .

7: end for
8: return sm =

(
Snb _ite , X nb _ite , X nb _ite −1, . . . , X 1

)

9: end function

7.1.4 Verification Process

Naturally, the verifying process is also iterative as shown in Algorithm 32.

Algorithm 32 Verifying process in GeMSS.

1: function GeMSS.Verify
(

M ∈ {0, 1}∗, sm∈ Fm + nb _ite (n var−m)
2 , pk = p ∈ F2[x1, . . . , xn var]m

)

2:
(
Snb _ite , X nb _ite , X nb _ite −1, . . . , X 1

)
← sm

3: for i from nb_ite − 1 to 0 by −1 do
4: h← SHA-3(M ‖i) . Section 7.4.13.
5: D i +1 ← first m bits of h . D i +1 ∈ Fm

2 .
6: Si ← p

(
Si +1 , X i +1

)
+ D i +1 . Sections 9.4.2, 9.4.3 and 9.4.4

7: end for
8: return VALID if S0 = 0m and INVALID otherwise
9: end function

7.2 List of Parameter Sets
Following the analysis of Section 7.7, we propose several parameters for 128, 192 and 256 bits
of classical security. Namely, we propose six sets of parameters:GeMSS, BlueGeMSS, RedGeMSS,
WhiteGeMSS, CyanGeMSS and MagentaGeMSS. GeMSS corresponds to the same parameters that those
proposed for the first round. This choice is conservative in term of security. As advised in [2] for

87

the second round, we explored more aggressive choice of parameters. This leaded to more efficient
schemes: BlueGeMSS and RedGeMSS (especially, regarding the signing timings). The parameters
were extracted from Section 7.8.10 where we propose a rather exhaustive choice of possible pa-
rameters and trade-offs between public-key size, signature size and efficiency. For the third round,
[1] suggested evaluating the cost of the generic attack against the Feistel–Patarin scheme more
accurately (Section 7.6.1), in order to improve performance ofGeMSS. Following this analysis, we
introduce WhiteGeMSS, CyanGeMSS and MagentaGeMSS. These schemes are respectively variants of
GeMSS, BlueGeMSS, RedGeMSS, where nb_ite is set to three (instead of four). Compared to param-
eters from Section 7.8.10, we choose a smaller nb_ite thanks to a more accurate lower bound of
the generic attack against the Feistel–Patarin scheme. The other security parameters are adjusted
accordingly.

7.2.1 Parameter Sets for a Security of 2128 (Level I)

scheme (D, dext, ∆ , v, nb_ite) key gen. sign verify |pk| |sk| |sign|
(Mc) (Mc) (kc) (kB) (bits) (bits)

GeMSS128 (513, 174, 12, 12, 4) 19.6 608 106 352.19
128

258
BlueGeMSS128 (129, 175, 13, 14, 4) 18.4 67.2 134 363.61 270
RedGeMSS128 (17, 177, 15, 15, 4) 16.3 2.05 141 375.21 282

WhiteGeMSS128 (513, 175, 12, 12, 3) 20 436 91.7 358.17
128

235
CyanGeMSS128 (129, 177, 14, 13, 3) 18.5 49.8 91 369.72 244

MagentaGeMSS128 (17, 178, 15, 15, 3) 16.7 1.82 101 381.46 253

Table 7.1: Performance ofGeMSS for a 128-bit security level (λ = 128), with MQsoft. We use a
Skylake processor (LaptopS). Mc (respectively kc) stands for megacycles (respectively kilocycles).
The results have three significant digits.

7.2.2 Parameter Sets for a Security of 2192 (Level III)

scheme (D, dext, ∆ , v, nb_ite) key gen. sign verify |pk| |sk| |sign|
(Mc) (Mc) (kc) (kB) (bits) (bits)

GeMSS192 (513, 265, 22, 20, 4) 69.4 1760 304 1237.96
192

411
BlueGeMSS192 (129, 265, 22, 23, 4) 65 173 325 1264.12 423
RedGeMSS192 (17, 266, 23, 25, 4) 57.1 5.55 335 1290.54 435

WhiteGeMSS192 (513, 268, 21, 21, 3) 73.1 1330 263 1293.85
192

373
CyanGeMSS192 (129, 270, 23, 22, 3) 68.2 131 269 1320.80 382

MagentaGeMSS192 (17, 271, 24, 24, 3) 60.3 4.53 274 1348.03 391

Table 7.2: Performance ofGeMSS for a 192-bit security level (λ = 192), with MQsoft. We use a
Skylake processor (LaptopS). Mc (respectively kc) stands for megacycles (respectively kilocycles).
The results have three significant digits.

88

7.2.3 Parameter Sets for a Security of 2256 (Level V)

scheme (D, dext, ∆ , v, nb_ite) key gen. sign verify |pk| |sk| |sign|
(Mc) (Mc) (kc) (kB) (bits) (bits)

GeMSS256 (513, 354, 30, 33, 4) 158 2490 665 3040.70
256

576
BlueGeMSS256 (129, 358, 34, 32, 4) 152 248 680 3087.96 588
RedGeMSS256 (17, 358, 34, 35, 4) 143 8.76 709 3135.59 600

WhiteGeMSS256 (513, 364, 31, 29, 3) 163 1920 516 3222.69
256

513
CyanGeMSS256 (129, 364, 31, 32, 3) 159 190 535 3272.02 522

MagentaGeMSS256 (17, 366, 33, 33, 3) 148 7.61 535 3321.72 531

Table 7.3: Performance ofGeMSS for a 256-bit security level (λ = 256), with MQsoft. We use a
Skylake processor (LaptopS). Mc (respectively kc) stands for megacycles (respectively kilocycles).
The results have three significant digits.

7.3 Design Rationale

A multivariate scheme. The first design rational of GeMSS is to construct a signature scheme pro-
ducing short signatures. It is well-known that multivariate cryptography [164, 29, 70] (Chapter 2)
provides the schemes with the smallest signatures among all post-quantum schemes. Multivariate-
based signature schemes are even competitive with ECC-based, pre-quantum, signature schemes
(see, for example [31, 123]). This explains the choice of a multivariate cryptosystem forGeMSS.

A HFE-based scheme. HFE [133] (Section 2.4.1) is probably the most popular multivariate cryp-
tosystem. Its security has been extensively studied for more than twenty years. The complexity of
the best known attacks againstHFE are all exponential in O

(
log2(D)

)
(Sections 4.4 and 4.6), where

D is the degree of the secret univariate polynomial. WhenD is too small, then HFE can be broken,
e.g. [111, 82, 22]. In contrast, solvingHFE is NP-hard when D = O

(
2dext

)
[111]. However, the

complexity of the signature generation – which requires finding the roots of a univariate polynomial
– is quasi-linear in D (Theorem 4). All in all, there is essentially one parameter, the degreeD
of the univariate secret polynomial, which governs the security and efficiency of HFE. The design
challenge inHFE is to find a proper trade-off between efficiency and security.

Variants of HFE. A fundamental element in the design of secure signature schemes based on
HFE is the introduction of perturbations. These create manyvariants of the scheme (Section 2.4.1).
Classical perturbations include theminus modifier (HFE-, [151, 133]) and thevinegar modifier (HFEv,
[110, 134]). Typically, QUARTZ is a HFEv- signature scheme whereD = 129, q = 2 , dext = 103, v = 4
vinegar variables and∆ = 3 minus equations. The resistance, up to now, ofQUARTZ against all
known attacks illustrates that minus and vinegar variants permit to indeed strengthen the security
of a HFE-based signature. Anude HFE, i.e. without any perturbation, with D = 129 and dext = 103
would be insecure whilst no practical attack againstQUARTZ has been reported in the literature.
The best known attack is [82] that serves as a reference to set the parameters forGeMSS. Besides,
[68] gave new insights on how to choose the vinegar and minus modifiers.

89

QUARTZ has the reputation to be solid but with a rather slow signature generation process. The
authors of [134] reported a signature generation process taking about a minute. Today, the same
parameters will take less than one hundred milliseconds. This is partly due to the technological
progress on the speed of processors. In fact, it is mostly due to a deeper understanding on algorithms
finding the roots of univariate polynomials. This is further detailed in Section 9.3.

Large set of parameters. We propose a general methodology to derive parameters (Section
7.7). This permits to derive a large selection of parameters with various trade-offs between sizes
and efficiency (Section 7.8.10).

7.4 Implementation
Here, we detail some of the choices we have made for implementingGeMSS.

7.4.1 Data Representation
Compressed secret-key. The size of the secret-key, as computed in Appendix A, can be drasti-
cally reduced. For that, we expand the secret-key from a random seed. This is classical and implies
considering a new attack: the exhaustive search of the seed. Thus, we set the size of the seed toλ
bits to reach a λ-bit security level. This change increases the cost of the signing process, since the
secret-key has to be generated for each operation. However, the expansion of the seed is negligible
in comparison to the cost of the root finding algorithm.

In MQsoft (Chapter 9) and in the NIST submission of GeMSS [50], the use of a seed is controlled
with the ENABLED_SEED_SK macro (set to 1 by default) from config_HFE.h. When enabled, the
seed is expanded withSHAKE (Section 6.2.1).

Data structure for MQ systems. The first idea [56] is to seem equations ofF2[x1, . . . , xn var] as
one element inF2m [x1, . . . , xn var]. The second idea is to use quadratic forms. Letx = (x1, . . . , xn var),
c ∈ F2m and Q , Q ′ ∈ Mn var

(
F2m

)
, then a square-free quadratic polynomial inF2m [x1, . . . , xn var]

can be written as
c + x ·Q ′ · xT ,

where xT stands for transpose ofx . The coefficient Q ′
i,j corresponds to the term x i x j in the

polynomial. Since x2
i = x i , the linear term can be stored on the diagonal ofQ ′. To minimize the

size,Q ′ can be transformed into an upper triangular matrix Q . By construction, Q ′
i,j and Q ′

j,i are
the coefficients of the same term x i x j (i 6= j). The matrix Q is such that:

Q i,j =






Q ′
i,j if i = j,

Q ′
i,j + Q ′

j,i if i < j,

0 otherwise.

7.4.2 Representation of the Secret-Key
The existence of equivalent keys (Section 4.6.1) allows to choose a representation of the secret-key.
Here, we present our choice forGeMSS.

90

Additive sustainer. In [165], the authors introduced the additive sustainer. Applied to HFEv-,
we have that for any Cs, Ct ∈ F2d ext and a HFEv polynomial F ∈ F2d ext [X, v 1, . . . , vv], there exist
two equivalent keys corresponding toF (X) and F (X + Cs) + Ct . So, for any random F , we can
chooseCs and Ct to have a unique representation of the secret-key. We can easily show [165] that
we can chooseCs and Ct to have linear transformations S and T instead of affine transformations.

Big sustainer. Similarly to the additive sustainer, the big sustainer [165] gives the existence of
equivalent keys betweenF (X) and B t · F (Bs · X) for any Bs, B t ∈ F×

2d ext . So, for any random
F ∈ F2d ext [X, v 1, . . . , vv], we can setBs to one and B t to the inverse of the leading coefficient of F
to obtain a monic HFEv polynomial. We generate monicHFEv polynomials in GeMSS, and so we do
not store its leading term.

Remark 6. AssumeD = 2 I + 2 J for 0 6 J < I . With a smart choice of Bs and B t , we could set
the term X D and one of termsX D −2I −1

(I > 0 and J 6= I − 1) or X D −2J −1
(J > 0) of F to one.

7.4.3 Generating Invertible Matrices
Algorithm 29 requires, at Step 2, generating a pair of invertible matrices(S, T) ∈ GLn var

(
F2

)
×

GLdext

(
F2

)
. This problem was already discussed in [119]. The authors presented two (natural)

methods to generate invertible matrices.

Trial and error. The first one (trial and error) samples random matrices until one is invertible.
The probability that a random matrix in Mn

(
Fq

)
is invertible [116] is given by

n∏

j =1

(
1− q−j

)
.

This probability is especially small whenq is small, implying a large number oferrors before finding
an invertible matrix. For n = 128 and q = 2 , the probability of success is 28.9%.

LU decomposition. The second one uses the so-called LU decomposition [99]. This method has
the advantage to directly return an invertible matrix. It is as follows.

• Generate a random lower triangular matrix L ∈ GLn
(
F2

)
and a random upper triangular

matrix U ∈ GLn
(
F2

)
, both with ones on the diagonal (to have a non-zero determinant).

• Return L · U ∈ GLn
(
F2

)
.

It is known [119] that this method is slightly biased. A small part of the invertible matrices cannot
be generated with this method. For a square matrix of sizen, the number of invertible upper
triangular matrices is 2(n 2 −n) / 2 (the exponent is

∑ n −1
i =1 i). So, the number of matrices that can be

generated with the LU decomposition is2n 2 −n . Still, this does not reduce the search space on the
secret matrices sufficiently to impact the security of GeMSS.

In MQsoft (Chapter 9) and in the NIST submission of GeMSS [50], we have implemented both
generation methods. The implementation gives the possibility to switch the method with the
GEN_INVERTIBLE_MATRIX_LU macro, which is in the file config_HFE.h. It is set to 1 by default.

The matrices (S, T) ∈ GLn var

(
F2

)
× GLdext

(
F2

)
are only used during the generation of the

public-key. After, we are only using the inverse of these matrices. So,S−1 and T −1 are computed
during the generation and stored in the secret-key (except when the secret-key is compressed).

91

Computation of L · U and inversion. During the keypair generation, we generate random
invertible matrices and their inverse (when the secret-key is compressed, the inverses are generated
during the signing process). When the LU decomposition is used, several ways to computeL · U
and (L · U)−1 are possible.

• L ·U can be directly computed with a matrix product. Similarly, (L ·U)−1 can be computed
as U−1 · L −1.

• By using the fact that the Gaussian elimination applied on L · U gives U, and that the
operations used are stored inL , we can reverse this Gaussian elimination to obtainL ·U from
U. Similarly, we know that we can obtain

(
I (L · U)−1)

from a Gaussian elimination on(
L · U I

)
. So, we can useL then U to transform the identity matrix to (L · U)−1.

In our implementation, we compute L · U with a matrix product, whereas (L · U)−1 is computed
with the Gaussian elimination. When the secret-key is compressed, we assume that the matrix
product is faster than the Gaussian elimination. So, we modify the previous process by usingL −1

and U−1 instead of L and U (the seed directly generatesL −1 and U−1 for the signing process).

7.4.4 Constant-Time Gaussian Elimination
The trial and error method (Section 7.4.3) requires the generation and inversion of two boolean
invertible matrices. The classical way to do it is to use a Gaussian elimination. Unlike the LU
decomposition, the main problem is that the pivot may be null. Searching a row with a non-zero
pivot reveals information on the matrix. The operation allowing to select one row ofM has to be
performed on all rows, in order to avoid information leakages (Section 4.7). In [17], the authors
proposed a constant-time Gaussian elimination. LetM ∈ Mn

(
F2

)
. The idea is to multiply (in

constant-time) each row ofM by a boolean, then add them to the pivot row. This boolean is used
as a switch. While the pivot is null, this switch is set to one and the next row will be added to the
pivot row. But as soon as the pivot is not null, the switch is definitely set to zero, implying that
the pivot row will no longer be modified. We propose a possible implementation of this strategy in
Algorithm 33. According to Section 6.3.2, the multiplications in F2 have to be replaced by the use
of masks.

Algorithm 33 Constant-time Gaussian elimination on the rows of a matrix inMn
(
F2

)
.

M [i] corresponds to thei -th row of M , and M [i][j] corresponds toM i,j .

1: function cstGauss
(
M ∈Mn

(
F2

))

2: for i from 1 to n − 1 do
3: for j from i + 1 to n do . We search a non-zero pivot for the pivot row.
4: M [i]← M [i] +

(
1−M [i][i]

)
·M [j] . M [i][i] is the pivot.

5: end for
6: for j from i + 1 to n do . We eliminate the coefficients of the i -th column with the

pivot row.
7: M [j]← M [j]−M [j][i] ·M [i]
8: end for . Note that both loops could be merged.
9: end for

10: return M
11: end function

92

7.4.5 Generating HFEv Polynomials
Algorithm 29 requires, at Step 3, the generation of a polynomialF ∈ F2d ext [X, v 1, . . . , vv] with a
HFEv-shape of degreeD (Equation (7.1)). The polynomial F can be considered as a polynomial in
X whose coefficients live in F2d ext [v1, . . . , vv]. We randomly generate and store theND,v, 2 terms of
F (Equation (A.1)). In fact, we only store ND,v, 2 − 1 terms. The polynomial F is chosen monic
and so the leading coefficient is not stored (Section 7.4.2). This choice makes easier the root finding
part (Algorithm 25).

7.4.6 Public-Key Generation via Quadratic Forms
According to Section 7.4.1,f ∈ F2[x1, . . . , xn var]dext is stored asc + x ·Q · xT ∈ F2d ext [x1, . . . , xn var].
We first compute

(
f 1

(
(x1, . . . , xn var) · S

)
, . . . , f dext

(
(x1, . . . , xn var) · S

))
(Step 6, Algorithm 29) with

our representation. To do so, we just replacex by x · S. The linear change of variablesS can be
represented as:

c + x ·Q ′ · xT ∈ F2d ext [x1, . . . , xn var]

for Q ′ = S·Q ·ST . We then symmetrize the matrix Q ′ as in Section 7.4.1 to get an upper triangular
matrix. To obtain the public-key, we now need to perform linear combinations with the matrix T .
With our representation, this is equivalent to multiplying ϕ of each coefficient by T (by removing
its last ∆ columns) to obtain the public-key in the form:

cpk + x ·Qpk · xT ∈ F2m [x1, . . . , xn var],

with cpk ∈ F2m and Qpk ∈Mn var

(
F2m

)
.

In this form, the evaluation of the public-key is reduced to a matrix-vector product and a dot
product. However, the practical use of this representation is not optimal in memory whenm is not
a multiple of eight. So, we have to pack the bits of the public-key (Section 7.4.8).

7.4.7 Public-Key Generation by Evaluation-Interpolation
As mentioned in the seminal paper of Matsumoto–Imai [119], the public-key polynomialsp =
(p1, . . . , pm) ∈ F2[x1, . . . , xn var]m can be generated by evaluation-interpolation:p is evaluated in N
distinct evaluation points in Fn var

2 , then a multivariate interpolation allows to find the coefficients
of p. Sincep is not yet known, each evaluation ofp in a ∈ Fn var

2 is computed from the secret-key
as follows:

p(a) = (π◦ T ◦ F ◦ S)(a) = F (a · S) · T̃ ∈ Fm
2 ,

where T̃ is T without its last ∆ columns (cf. Equation (2.2)). This method can be easily simplified
with a smart choice of the evaluation points. In [119], the authors consider points having their
Hamming weight less or equal to two. Let ei be the i -th row of I n var the identity matrix in
Mn var

(
F2

)
, and let pk be as follows:

pk =
n var∑

i =1

i −1∑

j =1

ci,j x i x j +
n var∑

i =1

ci x i + c ∈ F2[x1, . . . , xn var],

with ci,j , ci , c ∈ F2, for all i, j, 1 6 j < i 6 nvar.

93

Then, we have:

1. pk (0n var) = c,

2. pk (ei) = c + ci , for all i, 1 6 i 6 nvar,

3. pk (ei + ej) = c + ci + cj + ci,j , for all i, j, 1 6 j < i 6 nvar.

We easily deduce the coefficients of the public-key. This method is adapted for low-end devices
(Section 7.8.7), since quadratic terms of the public-key can be computed one by one.

Remark 7. As mentioned in [163], the multiplication by S is trivial since the Hamming weight
of the vectors is less or equal to two. We just sum thei -th and j -th rows of S. Note that the
evaluation points are public and so do not require a constant-time use.

Remark 8. In the implementation, we compute F ◦ S by evaluation-interpolation instead of p.
Then, we apply T̃ on each coefficient to obtain the public-key.

Evaluation of a HFEv polynomial. The evaluation-interpolation strategy requires evaluating N
times the map F . To do it, we need an efficient multipoint evaluation of HFEv polynomial. We use
the matrix representation of F (Equation (9.3)) that we will present in Section 9.4.1.

Remark 9. When a quadratic form (e.g.F and F) is evaluated in several points, some computa-
tions can be re-used to accelerate its evaluation in a linear combination of these points.

7.4.8 Packed Representation of the Public-Key
The implementation of GeMSS submitted to the second round of the NIST PQC standardization
process used the monomial representation of the public-key (Section 7.4.1). However, the latter
does not reach the minimum theoretical size. We have solved this problem in our implementation
for the third round. We use a public-key format allowing to pack the bits of the public-key, while
maintaining a quick use during the verifying process. On one hand, we save up to 18% of the
public-key size. On the other hand, the verifying process is slightly slower (up to 31%).

This format is based on the so-calledhybrid representation [84]. Let m = 8 × k + r be the
Euclidean division of m by 8. We store the first 8k equations with the monomial representation
(Section 9.4.4), then we store the lastr equations one by one (Section 9.4.2). This process is
illustrated by Figure 7.1. Firstly, we pack monomial by monomial the coefficients of the first 8k
equations. This corresponds to take the vertical rectangles from left to right, then take coefficients
from up to down. Secondly, we pack equation by equation the coefficients of the lastr equations.
This corresponds to take the horizontal rectangles from up to down, then take coefficients from left
to right.

Our aim is to decrease the cost of unpacking the bits of the public-key during the verifying
process. With our format, a big part of the public-key uses the monomial representation. At the
beginning of the second round, this representation was used to store them equations (instead of8k
equations). So, the evaluation of the first8k equations is performed as efficiently as before. They
do not need to be unpacked. This implies that only the last r equations generate an additional
cost, which is slight (r 6 7 is small compared to8k). These equations can be evaluated packed, but
when nb_ite > 1, unpacking them permits to accelerate the evaluation (which is repeated nb_ite
times).

94

c(1) + p(1)
1,1x2

1 + p(1)
1,2x1x2 + p(1)

1,3x1x3 + p(1)
2,2x2

2 + p(1)
2,3x2x3 + p(1)

3,3x2
3

c(2) + p(2)
1,1x2

1 + p(2)
1,2x1x2 + p(2)

1,3x1x3 + p(2)
2,2x2

2 + p(2)
2,3x2x3 + p(2)

3,3x2
3

c(3) + p(3)
1,1x2

1 + p(3)
1,2x1x2 + p(3)

1,3x1x3 + p(3)
2,2x2

2 + p(3)
2,3x2x3 + p(3)

3,3x2
3

c(4) + p(4)
1,1x2

1 + p(4)
1,2x1x2 + p(4)

1,3x1x3 + p(4)
2,2x2

2 + p(4)
2,3x2x3 + p(4)

3,3x2
3

c(5) + p(5)
1,1x2

1 + p(5)
1,2x1x2 + p(5)

1,3x1x3 + p(5)
2,2x2

2 + p(5)
2,3x2x3 + p(5)

3,3x2
3

c(6) + p(6)
1,1x2

1 + p(6)
1,2x1x2 + p(6)

1,3x1x3 + p(6)
2,2x2

2 + p(6)
2,3x2x3 + p(6)

3,3x2
3

c(7) + p(7)
1,1x2

1 + p(7)
1,2x1x2 + p(7)

1,3x1x3 + p(7)
2,2x2

2 + p(7)
2,3x2x3 + p(7)

3,3x2
3

c(8) + p(8)
1,1x2

1 + p(8)
1,2x1x2 + p(8)

1,3x1x3 + p(8)
2,2x2

2 + p(8)
2,3x2x3 + p(8)

3,3x2
3

c(9) + p(9)
1,1x2

1 + p(9)
1,2x1x2 + p(9)

2,2x2
2 + p(9)

1,3x1x3 + p(9)
2,3x2x3 + p(9)

3,3x2
3

c(10) + p(10)
1,1 x2

1 + p(10)
1,2 x1x2 + p(10)

2,2 x2
2 + p(10)

1,3 x1x3 + p(10)
2,3 x2x3 + p(10)

3,3 x2
3

Figure 7.1: Example of hybrid representation of a MQ system of 10 equations in 3 variables.
Each row corresponds to one equation, and thec(k) and p(k)

i,j are in F2 for 1 6 k 6 10.

Implementation details. An important point in our implementation is the memory alignment.
All data have to be 8-bit aligned. This permits to have simpler and more efficient implementations.
In the previous implementation, we used a zero padding when necessary. However, this implied
that the theoretical size was not reached.

Firstly, the first 8k equations are stored without loss. Since for each monomial,8k coefficients
in F2 are packed, we obtain thatk bytes are required to store them. So, we do not require padding
to align data to 8 bits. The monomials are stored in the graded lexicographic order (as on Figure
7.1). Secondly, the last r equations are stored in the graded reverse lexicographic order (as on
Figure 7.1). Each equation requires storingN elements ofF2. The alignment of the equations
requires using a zero padding whenN is not multiple of eight. In this case, the padding size is
Np = 8 − (N mod 8) bits. We solve this problem by using the last(r −1)Np bits of the last equation
to fill the padding of the r −1 other equations. In particular, we take these last bits by pack ofNp,
and the ` -th pack is used to fill the padding of the (8k + `)-th equation. For example, on Figure
7.1, the 9-th equation contains 7 coefficients. So, with our process, we would removep(10)

3,3 from the
10-th equation to store it just after p(9)

3,3. Thus, the 10-th equation would be 8-bit aligned.

Remark 10. If rN p 6 ((8−(rN mod 8)) mod 8), then the minimum size of the public-key (rounded
up to the next byte) is also reached by using the zero padding of each equation.

95

7.4.9 Parallel Arithmetic in F2,F16 and F256

Here, we study the classical strategies to perform operations in parallel inFq, for q ∈ {2, 16, 256}.
We useF2 for GeMSS, whereasF16 and F256 are used for low-end devices (Section 7.8.7). The fields
F16 and F256 are also used inRainbow (Section 7.10).

Tower fields defining F16 and F256. Here, we present how we defineF4,F16 and F256. These
representations [56] are the same that these used inRainbow [64], which allows a compatibility
between theRainbow implementations and our implementation of its dual mode (Section 8.6.3).

• F4 is (necessarily)F2[e1]/
(
e2

1 + e1 + 1
)
,

• F16 is F4[e2]/
(
e2

2 + e2 + e1
)
,

• F256 is F16[e3]/
(
e2

3 + e3 + e2e1
)
.

We can perform efficiently arithmetic operations in parallel via vector instructions (Section 6.1.3).
By defining F16 and F256 with tower fields, we can take advantage of subfields to accelerate field
operations, in particular the (general) multiplication in F256. Other operations that we present
here do not require defining fields with tower fields. In fact, we can use any representation of
Fq (q ∈ {2, 16, 256} here), if the representation of all its elements corresponds to the same basis
B of Fq over F2 (Section 5.2). This is true for tower fields respecting Equation (5.6) (e.g. B =
(1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3) if F4,F16 and F256 are represented with the canonical basis).
Except for the (general) multiplication in F256, these parallel operations can also be used inF2k for
1 6 k 6 log2(q) (with a relevant data alignment).

Packed representation. The elements ofF2,F16 and F256 require respectively one bit, four bits
and one byte. Naturally, we store elements as a vector of bytes, with in particular two elements of
F16 by byte. By using 128-bit registers available in SSE, we can store 128

log 2 (q) elements ofFq, which
makes 128, 32 and 16 elements respectively forF2,F16 and F256.

Addition. The addition in Fq corresponds to the bitwise logicalXOR, since each element is a
binary polynomial. With the PXOR instruction, 128

log 2 (q) additions can be performed in parallel.

Squaring. The square inFq can be computed with one or two calls to thePSHUFB instruction.

Parallel multiplication by a scalar. In F2, the multiplication of 128 elements a0, . . . , a127 by
a scalar c ∈ F2 can be easily implemented. To do it, we duplicatec in a 128-bit register, then
the multiplication is performed via the PAND instruction. The duplication of c is performed by
duplicating it firstly on each 64-bit block, then by computing −c in parallel on each block. This can
be computed as0− c via the PSUB instruction from SSE2. However, we remark that the equality
test c== 1 via the (constant-time) PCMPEQ instruction from SSE4.1 seems faster.

In F16, the idea [51] is to use multiplication tables coupled to thePSHUFB instruction. This
instruction takes 16 indices on 4 bits, and looks up the corresponding 8-bit elements in a 16-byte
lookup table. Since each result only uses 4 bits, we can multiply by one or two scalars in one call
to PSHUFB [51]. Let a0, . . . , a15 ∈ F16, and let Tc (respectively Tc,d) be the lookup table whose
i -th index corresponds to the i -th element of F16 multiplied by c (respectively c and d) in F16.

96

The PSHUFB instruction permits to perform the 16 multiplications by c (respectively c and d) in
one instruction (once the coefficients and Tc (respectively Tc,d) are loaded in 128-bit registers).
Here, note that the loaded table depends onc, d ∈ F16. So, this implementation is variable-time
about c and d (Section 6.3.3). Naturally, the same method applied toF4 permits to perform 32
multiplications by one or two scalars, in one instruction (and 64 multiplications for F2).

In F256, the idea [51] is similar toF16. We just split the memory representation of each element
of F256 into two packs of four bits, then we use one lookup table by pack. Leta0, . . . , a15 ∈ F256,
and let P be the map which generates an element ofF256 from its memory representation: an
integer in J0, 255K. For 0 6 i 6 15, let bi = P−1(ai) ∈ J0, 255K be the memory representation ofai .
We have ai = P(bi mod 16) + P(16 ·

⌊ bi
16

⌋
). Let Tc (respectively Uc) be the lookup table whosei -th

index corresponds toP(i) (respectivelyP(16· i)) multiplied by c in F256. The 16 multiplications by
c ∈ F256 can be performed by splitting bi into

⌊ bi
16

⌋
, bi mod 16 for 0 6 i 6 15, by multiplying each

P(bi mod 16) (respectively P
(
16 ·

⌊ bi
16

⌋)
) by c with Tc (respectively Uc) and one call to the PSHUFB

instruction, then by summing both results with the PXOR instruction.

General multiplication. In F2, the multiplication corresponds to the bitwise logical AND. The
PAND instruction permits to compute 128 multiplications in parallel.

In F16, the strategy [56] is to remark that for a, b ∈ F×
16, a · b = glog g (a)+log g (b) , where g is

a generator of the multiplicative group F×
16. The Zech logarithm representation [35] consists in

writing any non-zero element of a finite field Fq as the power of a generator of the multiplicative
group, and allows to perform the multiplication as the addition of powers modulo q− 1. There-
fore, the multiplication can be parallelized with logarithm and exponential tables, coupled to the
PSHUFB instruction. Here, we just set logg(0) to 256− 42, and we put s +

⌊ s
16

⌋
as input of the

PSHUFB instruction, for s = (log g(a) + log g(b)) mod 256. If a and b are not zero, thenPSHUFB only
considers the first four bits of this 8-bit block in input, and returns the corresponding block from
the exponential table. Otherwise, the last bit of the 8-bit block is one and the peculiar property
of PSHUFB implies that a null block is returned. This strategy is more expensive than the previous
methods, but is constant-time.

In F256, the strategy [56] is to perform Karatsuba’s multiplication algorithm (Section 5.1.2) on
degree-one elements ofF16[e3] via the tower field representation. The three products in F16 are
computed via logarithm and exponential tables, and the resulting degree-two term is multiplied by
e3 + e2e1. By using notations from Section 5.1.2, the result isP1 + P2 · e2e1 + (P1 + P3)e3. The
multiplication of P2 ∈ F16 by the public scalar e2e1 ∈ F16 can be performed with one call to the
PSHUFB instruction, but it is more efficient to directly compute P2 · e2e1 instead of computing P2
then P2 ·e2e1. To do it, let P2 = a·b for a, b∈ F16, and use a logarithm table returning logg(a·e2e1)
from a during the computation of P2 in order to directly compute P2 · e2e1.

Remark 11. By using the AVX2 instruction set, all previous 128-bit instructions can be performed
two times in parallel, improving the performance of arithmetic operations in Fq.

97

7.4.10 Choice of the Field Polynomial for F2dext

Keypair generation and signing process require arithmetic operations inF2d ext (Section 9.2). In the
implementation, the field F2d ext is defined asF2[α]/ (f (α)) with f being an irreducible trinomial of
degreedext in F2[x] (Section 9.1). In Table 7.4, we present our implementation choice forGeMSS.
This choice does not impact the security.

dext 174 175 177 178 265 266 268 270 271 354 358 364 366 537
k1 13 16 8 31 42 47 25 53 58 99 57 9 29 94

Table 7.4: Irreducible trinomials xdext + xk1 + 1 defining F2d ext for GeMSS.

7.4.11 Constant-Time GCD of Polynomials

During the GCD algorithm (Section 5.4.1), the potential jumps in the degree of the successive re-
mainders generate an information leakage (Section 4.7). In [19], the authors introduced a constant-
time GCD. The latter is based on the Euclid–Stevin relationship [155] (Section 5.4.1). GivenF and
H in F2d ext [X] of degreesdf > dh respectively, we computeF = hdh F − f df HX df −dh until df < d h .
Let F1 be the last computed value ofF . Thus, we have GCD(F, H) = GCD(H, F 1). The idea
of [19] is to use this relationship in constant-time. This implies computing df + dh Euclid–Stevin
relationship, by swapping F and H in constant-time when df < d h . In practice, the constant-time
version of the Euclid–Stevin algorithm is a bit more tricky and we refer to [19] for more details.

7.4.12 Constant-Time Root Finding

We propose to modify the GeMSS implementation to obtain a constant-time signing process. The
root finding algorithm (Algorithm 25) is currently implemented with a constant-time Frobenius
map and a constant-time GCD (Section 7.4.11), but the root finding of split polynomials (Section
5.4.7) has a time that depends on the degree (which is the number of roots). InQUARTZ [134] and
Gui (round 1 candidate), the strategy is to select one root only if the latter is unique. However, this
method generates a theoretical slow-down factor of 1.72 [88] (Table 2.1), compared to the selection
of roots when they exist.

So, we propose to extend this strategy by introducing constant-time solvers for degree-two and
degree-three split polynomials inF2d ext [X]. By selecting roots only if there are one or two roots, the
theoretical slow-down factor drops to 1.15. Then, an additional slow-down is due to the fact that
solving degree-one polynomials has to be as slow as solving degree-two polynomials. This process
can also be performed by selecting roots only if there are one, two or three roots. In this case, the
theoretical slow-down factor drops to 1.03. In return, the cost of solving degree-three polynomials
in constant-time is larger than degree-two polynomials, which can give worse performance than the
previous method. Therefore, the best strategy between allowed one or two roots, or one, two or
three roots, should be chosen in function of the available implementation and security parameters.
Note that the rate of signature failure is still very small (Section 7.6.3).

Solvers of degree-two and degree-three split polynomials can be implemented with linear algebra,
respectively by using that X 2 + X + A and X 4 + sX 2 + pX = X · (X 3 + sX + p) are F2-linear
(Section 5.4.7). For degree-two split polynomials, we can also use the half-trace (Equation (5.15))
when dext is odd.

98

7.4.13 About the Use of Hash Functions

In GeMSS, we use theSHA3-256 function for security levels I and II (Section 4.1), the SHA3-384
function for security levels III and IV, and the SHA3-512 function for security levels V and VI.
When the secret-key is generated from a seed (Section 7.4.1), we useSHAKE128 (Section 6.2.1) for
security levels I and II, and SHAKE256 for security levels III, IV, V and VI.

Remark 12. For nb_ite > 1 and a large messageM , the repeated computation of SHA-3(M ‖i)
penalizes Algorithms 31 and 32. In this case, the implementation should store relevant results
during the computation of SHA-3(M), then use them to computeSHA-3(M ‖i) for 0 6 i < nb_ite.
If this option is not suitable (for example, because a third library is used for SHA-3), then the
classical strategy consists in precomputinghM ← SHA-3(M), then computing SHA-3(hM ‖i) instead
of SHA-3(M ‖i).

7.5 Detailed Performance Analysis

7.5.1 Experimental Platform

The measurements in Sections 7.5.3, 7.5.4, 7.5.5 and 7.5.6 are forGeMSS. For signature, it signs
and verifies a document of 32 bytes. For the measurements, it runs a number of tests such that
the elapsed time is greater than 2 seconds, and this time is divided by the number of tests. For
the signature, the lower bound of the number of tests is 256. The times of the signing process are
unstable, since it depends on the probability of finding a root of a univariate polynomial (Table 2.1).
So, we have taken a large number of signatures.

The measurements used one core of the CPU, and the reference implementation was compiled
with gcc -O2 -msse2 -msse3 -mssse3 -msse4.1 -mpclmul. The SIMD is enabled only to inline
the (potential) vector multiplication functions from the gf2x library (Section 6.2.1). The reference
implementation does not exploit these instruction sets. For the optimized and additional imple-
mentations, the code was compiled withgcc -O3 -mavx2 -mpclmul -mpopcnt -funroll-loops.
Turbo Boost and Enhanced Intel Speedstep Technology are disabled to have more accurate mea-
surements (Section 6.2.2).

7.5.2 Third-Party Open Source Library

For all implementations, we have used theSHA-3 and SHAKE functions from the Extended Keccak
Code Package (Section 6.2.1). TheHFE-based schemes require using arithmetic inF2d ext [X] (Section
9.3). In particular, the multiplication in F2d ext is the most critical operation. In the optimized and
additional implementations, we have implemented this operation by using thePCLMULQDQ instruction
(Section 6.1.3). This instruction computes the product of two binary polynomials such that their
degree is strictly less than 64. In the reference implementation, we use the fast multiplications of
binary polynomials implemented in the gf2x library. In all implementations, the use of the gf2x
library can be enabled (or disabled) by setting to 1 (or 0) theENABLED_GF2X macro from arch.h.

99

7.5.3 Reference Implementation
In Table 7.5, we summarize timings of the reference implementation.

scheme (λ, D, d ext, ∆ , v, nb_ite) key gen. (Mc) sign (Mc) verify (kc)
GeMSS128 (128, 513, 174, 12, 12, 4) 140 2420 211

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 108 473 236
RedGeMSS128 (128, 17, 177, 15, 15, 4) 89.2 49.4 242

GeMSS192 (192, 513, 265, 22, 20, 4) 600 6310 591
BlueGeMSS192 (192, 129, 265, 22, 23, 4) 506 1290 603
RedGeMSS192 (192, 17, 266, 23, 25, 4) 413 121 596

GeMSS256 (256, 513, 354, 30, 33, 4) 1660 10600 1140
BlueGeMSS256 (256, 129, 358, 34, 32, 4) 1500 2060 1180
RedGeMSS256 (256, 17, 358, 34, 35, 4) 1290 200 1170

WhiteGeMSS128 (128, 513, 175, 12, 12, 3) 138 1810 163
CyanGeMSS128 (128, 129, 177, 14, 13, 3) 117 383 172

MagentaGeMSS128 (128, 17, 178, 15, 15, 3) 92.4 37 170
WhiteGeMSS192 (192, 513, 268, 21, 21, 3) 620 4940 464
CyanGeMSS192 (192, 129, 270, 23, 22, 3) 529 929 468

MagentaGeMSS192 (192, 17, 271, 24, 24, 3) 433 86 464
WhiteGeMSS256 (256, 513, 364, 31, 29, 3) 1740 8020 956
CyanGeMSS256 (256, 129, 364, 31, 32, 3) 1540 1700 990

MagentaGeMSS256 (256, 17, 366, 33, 33, 3) 1350 157 985

Table 7.5: Performance of the reference implementation. We use a Skylake processor (LaptopS). Mc
(respectively kc) stands for megacycles (respectively kilocycles). The results have three significant
digits.

100

7.5.4 Optimized (Haswell) Implementation
In Table 7.6, we summarize timings of the optimized implementation. The use of the evaluation-
interpolation method (Section 7.4.7) for generating the public-key is rather efficient for small degrees
such as 17. For large degrees such as 129 and 513, we use the round 2 keypair generation (Section
7.4.6). To do it, we set to zero theINTERPOLATE_PK_HFE macro in the file sign_keypairHFE.c.

scheme (λ, D, d ext, ∆ , v, nb_ite) key gen. (Mc) sign (Mc) verify (kc)
GeMSS128 (128, 513, 174, 12, 12, 4) 51.6 1340 163

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 52.1 195 168
RedGeMSS128 (128, 17, 177, 15, 15, 4) 40.5 4.93 179

GeMSS192 (192, 513, 265, 22, 20, 4) 270 3550 455
BlueGeMSS192 (192, 129, 265, 22, 23, 4) 268 474 468
RedGeMSS192 (192, 17, 266, 23, 25, 4) 228 12.8 477

GeMSS256 (256, 513, 354, 30, 33, 4) 816 5670 979
BlueGeMSS256 (256, 129, 358, 34, 32, 4) 810 736 990
RedGeMSS256 (256, 17, 358, 34, 35, 4) 793 20.4 1010

WhiteGeMSS128 (128, 513, 175, 12, 12, 3) 52.4 997 118
CyanGeMSS128 (128, 129, 177, 14, 13, 3) 53.5 157 125

MagentaGeMSS128 (128, 17, 178, 15, 15, 3) 41.3 4.03 129
WhiteGeMSS192 (192, 513, 268, 21, 21, 3) 281 2640 357
CyanGeMSS192 (192, 129, 270, 23, 22, 3) 281 370 364

MagentaGeMSS192 (192, 17, 271, 24, 24, 3) 231 9.93 368
WhiteGeMSS256 (256, 513, 364, 31, 29, 3) 844 4400 819
CyanGeMSS256 (256, 129, 364, 31, 32, 3) 846 553 833

MagentaGeMSS256 (256, 17, 366, 33, 33, 3) 770 16.4 845

Table 7.6: Performance of the optimized implementation. We use a Haswell processor (ServerH). Mc
(respectively kc) stands for megacycles (respectively kilocycles). The results have three significant
digits.

101

7.5.5 Additional (Skylake) Implementation
In Table 7.7, we summarize timings of the additional implementation. The additional and optimized
implementations are based on the same implementation. We have only set thePROC_SKYLAKE macro
to 1, whereas in the optimized implementation, we set thePROC_HASWELL macro to 1. These macros
from arch.h impact mainly the multiplication in F2d ext .

scheme (λ, D, d ext, ∆ , v, nb_ite) key gen. (Mc) sign (Mc) verify (kc)
GeMSS128 (128, 513, 174, 12, 12, 4) 51.9 1080 163

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 51.5 154 174
RedGeMSS128 (128, 17, 177, 15, 15, 4) 41.1 4.37 183

GeMSS192 (192, 513, 265, 22, 20, 4) 274 3170 495
BlueGeMSS192 (192, 129, 265, 22, 23, 4) 262 445 509
RedGeMSS192 (192, 17, 266, 23, 25, 4) 221 12 514

GeMSS256 (256, 513, 354, 30, 33, 4) 915 5300 1120
BlueGeMSS256 (256, 129, 358, 34, 32, 4) 856 658 1130
RedGeMSS256 (256, 17, 358, 34, 35, 4) 765 19.5 1140

WhiteGeMSS128 (128, 513, 175, 12, 12, 3) 52.9 815 112
CyanGeMSS128 (128, 129, 177, 14, 13, 3) 54.4 119 116

MagentaGeMSS128 (128, 17, 178, 15, 15, 3) 41.9 3.51 125
WhiteGeMSS192 (192, 513, 268, 21, 21, 3) 287 2380 388
CyanGeMSS192 (192, 129, 270, 23, 22, 3) 289 339 396

MagentaGeMSS192 (192, 17, 271, 24, 24, 3) 223 9.38 401
WhiteGeMSS256 (256, 513, 364, 31, 29, 3) 960 3910 914
CyanGeMSS256 (256, 129, 364, 31, 32, 3) 963 529 911

MagentaGeMSS256 (256, 17, 366, 33, 33, 3) 750 15.6 936

Table 7.7: Performance of the additional implementation. We use a Skylake processor (LaptopS).
Mc (respectively kc) stands for megacycles (respectively kilocycles). The results have three signifi-
cant digits.

102

7.5.6 MQsoft

MQsoft [84] (Chapter 9) is a new efficient library in C programming language forHFE-based schemes
such asGeMSS, Gui and DualModeMS. In [84], we improved the complexity of several fundamental
building blocks for such schemes and improved the protection against timing attacks. This gives
the best implementation of the GeMSS family. Here, we give the timings (Tables 7.8 and 7.9) with
the final version of MQsoft that uses the SSE2, SSSE3, SSE4.1 and AVX2 instruction sets to be
faster.

scheme (λ, D, d ext, ∆ , v, nb_ite) key gen. (Mc) sign (Mc) verify (kc)
GeMSS128 (128, 513, 174, 12, 12, 4) 19.6 608 106

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 18.4 67.2 134
RedGeMSS128 (128, 17, 177, 15, 15, 4) 16.3 2.05 (1.57) 141

GeMSS192 (192, 513, 265, 22, 20, 4) 69.4 1760 304
BlueGeMSS192 (192, 129, 265, 22, 23, 4) 65 173 325
RedGeMSS192 (192, 17, 266, 23, 25, 4) 57.1 5.55 (3.88) 335

GeMSS256 (256, 513, 354, 30, 33, 4) 158 2490 665
BlueGeMSS256 (256, 129, 358, 34, 32, 4) 152 248 680
RedGeMSS256 (256, 17, 358, 34, 35, 4) 143 8.76 (5.32) 709

WhiteGeMSS128 (128, 513, 175, 12, 12, 3) 20 436 91.7
CyanGeMSS128 (128, 129, 177, 14, 13, 3) 18.5 49.8 91

MagentaGeMSS128 (128, 17, 178, 15, 15, 3) 16.7 1.82 (1.27) 101
WhiteGeMSS192 (192, 513, 268, 21, 21, 3) 73.1 1330 263
CyanGeMSS192 (192, 129, 270, 23, 22, 3) 68.2 131 269

MagentaGeMSS192 (192, 17, 271, 24, 24, 3) 60.3 4.53 (2.84) 274
WhiteGeMSS256 (256, 513, 364, 31, 29, 3) 163 1920 516
CyanGeMSS256 (256, 129, 364, 31, 32, 3) 159 190 535

MagentaGeMSS256 (256, 17, 366, 33, 33, 3) 148 7.61 (4.07) 535

Table 7.8: Performance ofMQsoft. We use a Skylake processor (LaptopS). Mc (respectively kc)
stands for megacycles (respectively kilocycles). The results have three significant digits. The second
value of the signing process corresponds to the time to sign without decompressing the secret-key.

103

scheme (λ, D, d ext, ∆ , v, nb_ite) key gen. (Mc) sign (Mc) verify (kc)
GeMSS128 (128, 513, 174, 12, 12, 4) 18.8 809 95.1

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 18.6 88.2 116
RedGeMSS128 (128, 17, 177, 15, 15, 4) 15.7 2.31 121

GeMSS192 (192, 513, 265, 22, 20, 4) 69.6 2280 289
BlueGeMSS192 (192, 129, 265, 22, 23, 4) 65.8 220 309
RedGeMSS192 (192, 17, 266, 23, 25, 4) 57.3 6.01 309

GeMSS256 (256, 513, 354, 30, 33, 4) 167 3030 617
BlueGeMSS256 (256, 129, 358, 34, 32, 4) 159 300 620
RedGeMSS256 (256, 17, 358, 34, 35, 4) 145 8.86 636

WhiteGeMSS128 (128, 513, 175, 12, 12, 3) 18.9 589 77.2
CyanGeMSS128 (128, 129, 177, 14, 13, 3) 17.7 65.3 78.5

MagentaGeMSS128 (128, 17, 178, 15, 15, 3) 16.2 1.91 85.8
WhiteGeMSS192 (192, 513, 268, 21, 21, 3) 72.8 1740 245
CyanGeMSS192 (192, 129, 270, 23, 22, 3) 67.7 170 247

MagentaGeMSS192 (192, 17, 271, 24, 24, 3) 58.8 4.81 255
WhiteGeMSS256 (256, 513, 364, 31, 29, 3) 173 2360 487
CyanGeMSS256 (256, 129, 364, 31, 32, 3) 166 228 491

MagentaGeMSS256 (256, 17, 366, 33, 33, 3) 150 7.34 494

Table 7.9: Performance ofMQsoft. We use a Haswell processor (ServerH). Mc (respectively kc)
stands for megacycles (respectively kilocycles). The results have three significant digits.

104

7.5.7 Space

In Table 7.10, we provide the sizes of the public-key, secret-key and signature. Since the secret-key
is generated from a seed (Section 7.4.1), the secret-key is very small: just several hundred bits. In
contrast, the decompressed secret-key size is between 10 and 80 kB (Table A.1).

scheme (λ, D, d ext, ∆ , v, nb_ite) |pk| (kB) |sk| (B) |sign| (B)
GeMSS128 (128, 513, 174, 12, 12, 4) 352.188

16

32.25
BlueGeMSS128 (128, 129, 175, 13, 14, 4) 363.609 33.75
RedGeMSS128 (128, 17, 177, 15, 15, 4) 375.21225 35.25

WhiteGeMSS128 (128, 513, 175, 12, 12, 3) 358.172125 29.375
CyanGeMSS128 (128, 129, 177, 14, 13, 3) 369.72475 30.5

MagentaGeMSS128 (128, 17, 178, 15, 15, 3) 381.46075 31.625
GeMSS192 (192, 513, 265, 22, 20, 4) 1237.9635

24

51.375
BlueGeMSS192 (192, 129, 265, 22, 23, 4) 1264.116375 52.875
RedGeMSS192 (192, 17, 266, 23, 25, 4) 1290.542625 54.375

WhiteGeMSS192 (192, 513, 268, 21, 21, 3) 1293.84775 46.625
CyanGeMSS192 (192, 129, 270, 23, 22, 3) 1320.801625 47.75

MagentaGeMSS192 (192, 17, 271, 24, 24, 3) 1348.033375 48.875
GeMSS256 (256, 513, 354, 30, 33, 4) 3040.6995

32

72
BlueGeMSS256 (256, 129, 358, 34, 32, 4) 3087.963 73.5
RedGeMSS256 (256, 17, 358, 34, 35, 4) 3135.591 75

WhiteGeMSS256 (256, 513, 364, 31, 29, 3) 3222.69075 64.125
CyanGeMSS256 (256, 129, 364, 31, 32, 3) 3272.016375 65.25

MagentaGeMSS256 (256, 17, 366, 33, 33, 3) 3321.716625 66.375

Table 7.10: Memory cost ofGeMSS. 1 kB is 1000 bytes.

7.5.8 How Parameters Affect Performance

Signature generation is mainly affected bydext and the degreeD of the secret univariate polynomial.
According to Theorem 4, we can find the roots ofF ∈ F2d ext [X] in Õ(D · dext) binary operations.
So, dext and D are the main parameters which influence the efficiency. In Section 7.7, we will see
how to choose these parameters in function of the other security parameters.

7.6 Expected Strength in General

We review in this part known results on the provable security ofGeMSS. This includes the required
number of iterations in the Feistel–Patarin scheme (Section 7.6.1) as well as the security (Section
7.6.2) in the sense of the existential unforgeability against adaptive chosen-message attack (EUF-
CMA). Finally, we demonstrate in Section 7.6.3 that the failure probability of the signing process
is completely negligible.

105

7.6.1 Number of Iterations

Here, we explain how the number of iterations nb_ite > 0 has to be chosen in Algorithms 31 and
32. Until round 3, we used the following result from QUARTZ [134, 58].

Theorem 5. The number of iterations nb_ite has to be chosen such that

2
nb _ite

nb _ite +1 m > 2λ .

We used this result to derive the number of iterations forGeMSS, BlueGeMSS and RedGeMSS.

The round 3 report [1] pointed that “It is possible that there may yet be additional trade-offs
to further improve performance. In particular, the consideration of the number of bit operations
involved in a hash collision attack may warrant a reevaluation of the number of iterations required
in the Feistel–Patarin transformation”. We study this point in Section 7.7.2.

7.6.2 Existential Unforgeability against Chosen Message Attack

EUF-CMA of HFEv--based signature schemes, such asGeMSS, has been mainly investigated in [148].
The authors demonstrated that a minor, but costly, modification of Inv p (Algorithm 2), permits to
achieve EUF-CMA for HFEv-. In fact, the result of [148] applies to Algorithms 3 and 4, i.e. when
nb_ite is equal to one. In this case, the EUF-CMA of (modified) HFEv--based signature schemes
follows easily from [148].

We first formalize (in the random oracle model) the existential unforgeability of any signature
scheme against chosen message attacks [148, Definition 2].

Definition 3. We say that a signature scheme(KeyGen, Sign, Verify) is
(
ε (λ), t(λ), qH (λ), qs(λ)

)
-

secure if there is no forgerA who takes a public-keypk generated via(·, pk) ← KeyGen
(
1λ)

, after
at most qH (λ) queries to the random oracle,qs(λ) signature queries, andt(λ) processing time, then
outputs a valid signature with probability at leastε (λ).

We want to provably reduce the EUF-CMA of any MI-based signature scheme to the hardness of
inverting the public-key of this one. Formally [148, Definition 6]:

Definition 4. We say that theMI-based function generatororigin.KeyGen is
(
ε (λ), t(λ)

)
-secure if

there is no inverting algorithm that takes pk = p generated via(·, pk) ← origin.KeyGen
(
1λ)

and a
challenged ∈R Fm

q , then finds a preimagex s ∈ Fn var
q such that

p(x s) = d

at t(λ) processing time with probability at leastε (λ).

Following [148], we now explain how to modify HFEv--based signing and verifying processes for
proving EUF-CMA. Recall that D is degree of the secret polynomial withHFEv-shape. The main
modification proposed by [148] is roughly to repeatD times the inversion step described in Algo-
rithm 2. Let ` be the length (in bits) of a random salt. The modified inversion process is given in
Algorithm 34.

106

Algorithm 34 Modified inverse map of the public-key forHFEv--based signature schemes.

1: function Inv ∗
p

(
M ∈ {0, 1}∗, sk =

(
F, S−1, T −1)

∈ Fqd ext [X, v 1, . . . , vv] × GLn var

(
Fq

)
×

GLdext

(
Fq

))

2: v ∈R Fn var−dext
q . The notation ∈R stands for randomly sampling.

3: repeat
4: r ∈R F∆

q
5: salt ∈R {0, 1}`

6: h← SHA-3(M ‖salt)
7: d ← first dm log2(q)e bits of h . d ← H1(M ‖salt) ∈ Fm

q .
8: d ′ ← (d, r) ∈ Fdext

q
9: Y ← ϕ−1(

d ′ · T −1)
∈ Fqd ext

10: FY (X) ← F (X, v) − Y
11: (n, L roots) ← FindRoots(FY) . Algorithm 25.
12: u ∈R J1, D K
13: until 1 6 u 6 n . F Y has n roots.
14: Z ← L roots[u]
15: return

(
salt, (ϕ(Z), v) · S−1)

∈ {0, 1}` × Fn var
q

16: end function

Given Algorithm 34, we can define origin.Sign1∗ as the signature algorithm 3 instantiated with
Inv ∗

p , and including the salt in the signature. This increases the signature size bỳ bits. Since
d is computed in Algorithm 34, Algorithm 3 has to be modified by giving directly M as first
argument of Inv ∗

p (because nb_ite = 1 , we obtain that origin.Sign1∗ is exactly Inv ∗
p here). Similarly,

origin.Verify1 ∗ is the verification algorithm 4, by computing d in accordance with Algorithm 34.
The same modifications could be applied to the signing and verifying processes ofGeMSS, with the
possibility to use a unique salt for nb_ite inversion steps.

Theorem 6. [148, Theorem 2]. Let SignHFEv-∗ be the modifiedHFEv--based signature scheme
defined by(origin.KeyGen, origin.Sign1∗, origin.Verify1 ∗). If the function generator origin.KeyGen
is

(
ε ′, t ′) -secure, thenSignHFEv-∗ is

(
ε, t, q H , qs

)
-secure, where:

ε =
ε ′(qH + qs + 1)

1− (qH + qs)qs2−` ,

t = t ′ − (qH + qs + 1)(tHFEv- + O(1)) ,

and tHFEv- is running time to evaluate the public-key.

The modified scheme introduces three major changes. First,Inv ∗
p is more costly than Inv p . The

expected number of calls to the root finding algorithm (Step 11) in Inv ∗
p is D [148]. In Inv p , the

average number of calls to the root finding algorithm (Step 8) is 1
1−1/e ≈ 1.58. In GeMSS, we are

typically considering D between 17 and 513. For efficiency reasons, we did not incorporate this
modification in our implementation.

107

Remark 13. The threshold D at Step 12 of Inv ∗
p corresponds to a bound on the number of roots

of the univariate polynomial FY at Step 11. As shown in Table 2.1, the probability of finding a
large number of roots is almost null. Thus, as also mentioned in [148], the thresholdD at Step 12
can be theoretically much decreased without compromising the proof of Theorem 6. The authors
of [148] mentioned a value around 30 for the threshold.

Remark 14. For a fairly large messageM , we can use Remark 12 to decrease the cost of repeating
SHA-3(M ‖salt) in Inv ∗

p . However, we note that precomputing hM ← SHA-3(M), then computing
SHA-3(hM ‖salt) instead of SHA-3(M ‖salt), necessarily decreases the performance of the verifying
process (because nb_ite = 1).

The second change is the use of a salt, which increases the signature size of` bits. From Theorem 6,
the authors of [148] considered that the length of the salt has to bè = log 2

(
qs · (qH + qs)

)
bits.

Since NIST proposed to consider that any adversary has access to signatures for no more than264

chosen messages, independently of the security level [127], we consider 128-bit salts.
The last change is about the number of iterations. The treatment of [148] did not include the use

of a Feistel–Patarin transform (Section 4.2). It is an interesting open problem of formally proving
the EUF-CMA for nb _ite > 1.

7.6.3 Signature Failure
This analysis is essentially similar to the one performed forQUARTZ [134]. A failure can occur in
Inv p (Algorithm 2) if L Sol = ∅ for all (r , v) ∈ F∆

q ×Fv
q . For HFEv-, the probability that L Sol is empty

for a given (d ′, v) ∈ Fdext
q × Fv

q is exp(−1) (Table 2.1). Thus, Algorithm 2 fails with probability
exp(−qn var−m). Finally, Inv p is called nb_ite times during the signing process. By using that
(1− a)n > 1− na for n ∈ N and a ∈ R such that a 6 2, the probability of failure is then:

1−
(

1− exp
(
−qn var−m)) nb _ite

6 nb_ite · exp
(
−qn var−m)

.

This probability is completely negligible. For q > 2, ∆ + v > 8 and nb_ite 6 4, this probability is
less than22−256/ ln(2) < 2−367. For GeMSS128, the failure probability is less than 2−24204404 .

Similarly, the failure probability of origin.Sign1 ∗ (Section 7.6.2) is that of Inv ∗
p , which is:

exp
(
−min

(
2` , qm)

· qdext−m
)

.

In Section 7.4.12, we propose (for example) to select one root only if the latter is unique. In this
case, the probability of failure for the signing process is upper bounded by:

nb_ite ·
(
1− exp(−1)

) qn var−m

< nb_ite · exp
(
−qn var−m)

· 2qn var−m
.

7.7 Security
Here, we study the choice of security parameters in function of known attacks presented in Chapter
4, in order to achieve the NIST security levels (Section 4.1). We deduce a general protocol to design
a secureHFEv--based signature scheme. In this part, we study the security ofGeMSS, but also that
of Inner.DualModeMS (Chapter 8) which is based on another set of parameters.

108

7.7.1 Minimum Number of Equations

We start by studying constraints on the number of equations. To do it, we evaluate the cost of all
attacks implying only m (and linear in nb_ite). These attacks have to be repeated nb_ite times
because we use the Feistel–Patarin construction (Section 4.2), so we take a lower bound by setting
nb_ite to one. We obtain that BooleanSolve is the most dangerous attack. This implies that m
cannot be smaller than 162, 243 and 324 respectively to reach 128-bit, 192-bit and 256-bit security
level. Of course, we considered that the constant in thebig Oh notation is one (Section 4.4.2).
In practice, the constant is large, and in particular larger than the cost of the SHA-3 function.
Therefore, setting m to 162, 243 and 324 permits to reach respectively the security level II, IV and
VI. We summarize in Tables 7.11 and 7.12 the cost of best attacks for these values ofm. We also
considerm = 2λ for λ ∈ {128, 192, 256}, that we use in Inner.DualModeMS. The exhaustive search
attacks are considered in Table 7.11. The given costs are exact, unlike Table 7.12 where the cost
of attacks is a lower bound. These attacks are asymptotically better, which means they are more
efficient only from a threshold value of m. We note that for m = 2λ, the security is largely satisfied,
even assuming that the constant in the big Oh notation is one.

m fast ex. search (4.3) quantum ex. search (4.4) quantum ex. search (4.5)
162 2166.87 2104.56 328 qubits ≈ 2105.56 174 qubits
243 2247.98 2146.80 490 qubits ≈ 2147.80 255 qubits
324 2329.06 2188.54 652 qubits ≈ 2189.54 337 qubits

256 2261 2153.52 516 qubits ≈ 2154.52 269 qubits
384 2389.10 2219.27 772 qubits ≈ 2220.27 397 qubits
512 2517.16 2284.51 1028 qubits ≈ 2285.51 526 qubits

Table 7.11: Complexity of solving a multivariate quadratic system of m equations in m variables
in F2, with the exhaustive search. In practice, these attacks have to be repeated nb_ite times.

m approximation (4.6) BooleanSolve (4.13) QuantumBooleanSolve (4.14)
162 2141.99 2128.30 274.84 O(m) qubits
243 2212.98 2192.45 2112.26 O(m) qubits
324 2283.98 2256.60 2149.68 O(m) qubits

256 2224.38 2202.75 2118.27 O(m) qubits
384 2336.57 2304.12 2177.40 O(m) qubits
512 2448.76 2405.50 2236.54 O(m) qubits

Table 7.12: Lower bound on the complexity of solving a multivariate quadratic system ofm equa-
tions in m variables in F2, with asymptotically fast algorithms. In practice, these attacks have to
be repeated nb_ite times.

109

7.7.2 Trade-Off between Number of Equations and Number of Iterations
Now, we study the cost of the generic attack described in Section 4.2, in order to setm and nb_ite.

Slight improvement of the generic attack. Following [133, Remark 2], as well as the idea of
the proof of [58], we describe a way to implement the generic attack in Algorithm 35, as well as its
cost in Lemma 4.

Algorithm 35 Generic attack against the Feistel–Patarin construction.
Input: a function G : Fn var

q → Fm
q , and an integer ` such that 1 6 ` 6 qn var .

Output: a message and its signature respecting the Feistel–Patarin construction associated toG.

0. Let F be a hash table such thatF [i] returns a value corresponding to the indexi if the latter
exists (note that several values can have the same index).

1. Let s1, . . . , s` be random elements ofFn var
q and set F [G(si)] = si for 1 6 i 6 ` . F is an

inversion table of the G function.

2. Try to sign a random messaged by using Algorithm 12. Perform each inversion by G by
using the inversion table. If a use of the inversion table fails to return a result, then abort
and repeat this step with a new random messaged.

3. Return d and the forged signature at Step 2.

Lemma 4. Let H1 : {0, 1}∗ → Fm
q be a hash function, andG : Fn var

q → Fm
q be a function. Then,

Algorithm 35 requires storing ` (m + nvar) log2(q) bits, computing ` evaluations of G and on average
nb _ite∑

i =1

(
qm

`

) nb _ite +1 −i

evaluations of H1.

Proof. For convenience, letx = qm

` . Step 1 requires generating a hash table of̀ couples of index
and evaluation, which requires computing ` evaluations of G and storing ` (m + nvar) log2(q) bits.
Then, the probability of successfully inverting nb_ite times G, for a random input, is x−nb _ite .
So, Step 2 requires on averagexnb _ite attempts to succeed the forge of a valid signature, implying
to evaluate H1 for xnb _ite messages. If the inversion fails, then Step 2 aborts. The probability of
successfully inverting one random message isx−1. So,xnb _ite −1 messages succeed to continue Step 2.
Repeating this process, we obtain thatxnb _ite −1 evaluations ofH1, then xnb _ite −2 evaluations ofH1,
. . . until x evaluations of H1 are computed. We also have thatx0 = 1 message succeeds the final
inversion. So, Algorithm 35 requires on averagexnb _ite +1 −i evaluations of H1 for 1 6 i 6 nb_ite,
which concludes the proof. �

The generic attack of [58] only considers̀ =
(

qm

`

) nb _ite
= q

nb _ite
nb _ite +1 m , because this value balances

the number of evaluation of H1 and G for nb_ite = 1 . In practice, these evaluations have probably
different costs. Moreover, multipoint evaluation can be used to minimize the practical cost (e.g.
Remark 12), it is why each complexity was given in function of the number of evaluation. So,̀
should be chosen to minimize the overall cost of Algorithm 35, and by taking account the required
memory.

110

Theoretical estimation of the cost of G. Here, we consider thatG is p in Algorithm 35, and
H1 is SHA-3 in Lemma 4. On the one hand, we estimate the cost of the evaluation of a multivariate
quadratic system overF2 as follows. Let n′

var =
⌊ n var

2

⌋
. On average, the evaluation vector hasn′

var
or n′

var + (nvar mod 2) non-null components. We deduce the number of non-null monomials is on
average:

N ′ =
(
n′

var + (nvar mod 2)
)
(n′

var + 1)
2

+ 1 ' 1
4

N.

Thus, we can lower bound the average cost of an evaluation ofp by mN ′ bit operations. On the
other hand, the cost of the evaluation ofSHA-3 is estimated to 218 gates (Section 4.1). With these
estimations, we can now use Lemma 4 to estimate the cost of Algorithm 35.

For nvar > m > 128, the cost of the evaluation ofp is greater than that of SHA-3. Therefore, a
generic attack requiring 2λ evaluations is necessarily more expensive against anyMI-based signature
scheme than againstSHA-3, for λ ∈ {128, 192, 256}. This allows to achieve a security level II, IV
or VI if the cost of generic attack is greater or equal to 2λ evaluations. Thus, we can propose
a simple way to choosem and nb_ite. We lower bound the cost of the generic attack by using
` = 2

nb _ite
nb _ite +1 ·m , since the latter balances evaluations ofp and SHA-3. Then, we can lower bound the

cost of Algorithm 35 by 2
nb _ite

nb _ite +1 ·m evaluations of SHA-3, which implies choosingm and nb_ite such
that

λ 6
nb_ite

nb_ite + 1
·m. (7.3)

This method was used to setm and nb_ite in GeMSS and Inner.DualModeMS. For GeMSS, we consider
the minimum value of m to obtain the smallest public-key size. This implies setting nb_ite to 4.
For Inner.DualModeMS, necessarily, nb_ite has to be set to one. So, the number of equations is2λ .

In Table 7.13, we propose to study the minimum cost of generic attacks more accurately. Since
the number of variables depends on the underlying scheme, we give lower bounds by considering
nvar = m. Moreover, we lower bound the cost given by Lemma 4 by

min
` ∈N∗

(

CG · ` + CH 1 ·
(

2m

`

) nb _ite
)

, (7.4)

where CG is the cost of evaluatingG and CH 1 is the cost of computing H1.

m nb_ite evaluation optimal ` generic attack memory (bits)
162

4
219.04 2129.79 2149.15 2137.13

243 220.79 2194.24 2215.35 2202.17

324 222.03 2258.79 2281.14 2267.13

168 3 219.19 2126.10 2145.70 2133.49

256
1

221.01 2126.49 2148.50 2134.49

384 222.76 2189.62 2213.38 2198.20

512 224.01 2253.00 2278.00 2262.00

Table 7.13: Lower bound on the complexity of finding a collision with a generic attack (Lemma 4).
Here, we considernvar = m, ` calls to p,

(2m

`

) nb _ite calls to the hash function, and a memory cost
of `m bits. The cost of evaluating p is lower bounded bymN ′ bit operations.

111

The optimal ` is given by ` = b` ′c or ` = d` ′e, for ` ′ =
(
nb_ite · CH 1 · C−1

G · 2m ·nb _ite) 1
nb _ite +1 .

For GeMSS and Inner.DualModeMS, the generic attack is slightly harder to perform than on SHA-3,
confirming the correctness to use Equation (7.3). ForGui-184, the authors fixed m to 168, and
our lower bound is too small to achieve the level II of security. So, we consider a more accurate
lower bound by consideringnvar = m + 32. This implies the generic attack requires2146.08 gates
and 2133.36 bits (with ` = 2 125.97 and CG = 2 19.69), which allows to reach the level II of security,
and confirms the choice to set nb_ite to three, despite the fact that nb _ite

nb _ite +1 ·m = 126 < 128.

Practical estimation of the cost of G. In Table 7.14, we summarize some experiments to
estimate the ratio CG /C H 1 . We compare our best and state-of-the-art (variable-time) evaluation
function (in AVX2) to the best implementations of SHA-3 from XKCP (i.e. the Haswell implemen-
tation). We consider the hash value of λ

2 -bit sequences whenSHA3-λ is used. We useSHA3-256
(respectively SHA3-384 and SHA3-512) for level I (respectively III and V). The minimum ratio re-
quired to reach the given security level (third column) is obtained from Equation (7.4) by taking
nb_ite = 3 , CH 1 = 2 18 and the value of ` minimizing CG (cf. Lemma 5 by taking g from Table 4.2).
The experimental (exp.) ratio corresponds to the ratio of the running time of our public-key eval-
uation by that of SHA-3. Sequential means thatCH 1 corresponds to the running time to compute
oneSHA-3 hash (in AVX2), whereas the parallel version considers the cost of computing fourSHA-3
hashes (in AVX2), divided by four to obtain the cost of one SHA-3 hash.

level m CG / 218 (7.4) experimental CG /C H 1

sequential SHA-3 parallel SHA-3

I

162 12 10.87 26.79
163 6

> 10.87 > 26.79164 3
165 1.5
166 0.75

III

243 241.90 24.47 60.60
244 120.95

> 24.47 > 60.60
245 60.48
246 30.24
247 15.12
248 7.56

V

324 12288 55.20 135.15
332 48

> 55.20 > 135.15333 24
334 12

Table 7.14: Minimum ratio of the cost of evaluating a boolean system ofm equations inm variables
by that of SHA-3. For example, for m = 163, 6 means that SHA-3 should be at least 6 times faster
than evaluating a boolean system ofm polynomials in m variables to reach the first security level.
We give the experimental ratio on a Skylake processor (LaptopS) using the AVX2 instruction set.
We consider the sequential and parallel versions ofSHA-3 from the Extended Keccak Code Package
(XKCP), both using the AVX2 instruction set.

112

From Table 7.14, we see that slightly increasing the number of equations allows to reduce the
number of iterations to three. The results are summarized in Table 7.15. We assume thatCH 1 = 2 18,
and we give the minimum ratio CG /C H 1 (cf. Lemma 5) required to reach security levels I, III and
V. These parameters are used in Sections 7.8.4, 7.8.5 and 7.8.6, where we introduceWhiteGeMSS,
MagentaGeMSS and CyanGeMSS.

m nb_ite CG /C H 1 optimal ` generic attack memory (bits)
163

3
6 2122 2143 2129.35

247 15.12 2184+ 2
3 2207 2192.62

333 24 2249 2272 2257.38

Table 7.15: Lower bound on the complexity of finding a collision with the generic attack, i.e.
Equation (7.4). Here, we considerCH 1 = 2 18, ` calls to p,

(2m

`

) nb _ite calls to the hash function,
and a memory cost of`m bits.

Lemma 5. If (7.4) is equal to g ∈ R∗
+ , then ` ∈ N∗ minimizing CG is ` = b` ′c or ` = d` ′e, for

` ′ = 2 m ·
(
(nb_ite + 1) · CH 1 · g−1) 1

nb _ite ∈ R∗
+ .

7.7.3 Experimental Results for HFEv-

The main question in the design of GeMSS is to quantify, as precisely as possible, the effect of
the modifiers (Section 2.4.1) on the degree of regularity (Section 4.4.1). To do so, we performed
experimental results on the behavior of a direct attack againstHFEv-, i.e. computing a Gröbner
basis of (4.2). We mention that similar experiments were performed in [144].

We first consider v = 0 , and denote by ∆ the number of minus equations,i.e. m = dext − ∆ .
According to the upper bound (4.11), the degree of regularity should increase by 1 when 2 equations
are removed. In Tables 7.16 and 7.17, we report the degree of regularityD Exp

reg reached during a
Gröbner basis computation of a system ofm = dext − ∆ equations in m variables coming from a
HFE- public-key, generated from a univariate polynomial inF2d ext [X] of degreeD . We also reported
the degree of regularityD Theo

reg of a semi-regular system of the same size (as in Table 4.3).
The experimental results onHFE-, no vinegar, are not completely conclusive. Whilst the degree

of regularity appears to increase, it seems difficult to predict its behavior in function of the number
of minus equations. This was also observed in [144] where the authors advised against using the
minus modifier alone. Thus, the minus modifier should not be used alone.

We now consider the opposite situation,i.e. no minus equations and we increase the number
of vinegar variables, i.e. HFEv. In Tables 7.18, 7.19 and 7.20,D Exp

reg corresponds to the degree of
regularity reached during a Gröbner basis computation of a system ofm = nvar − v equations in
m variables coming from HFEv public-key, generated from a univariate polynomial in F2d ext [X] of
degreeD .

The experimental results are more stable. In all cases, we need to add 3 vinegar variables to
increase the degree of regularity by 1.

We also performed experimental results with a combination of vinegar and minus. Similarly to
[144], we observed that the behavior obtained seems similar forHFEv- with ∆ = 0 and v vinegar
variables than for a HFEv- with ∆ = v/ 2 and v/ 2 vinegar variables.

113

dext ∆ m D D Theo
reg D Exp

reg

32 0
32 4 7

3
33 1 3
34 2 3
35 3

32 4 7

4
36 4 4
37 5 4
38 6 4
39 7 4
40 8

32 4 7

5
41 9 5
42 10 5
43 11 5
44 12 5
45 13 5
46 14

32 4 7

6
47 15 6
48 16 6
49 17 6
50 18 6
51 19 6
52 20 6

dext ∆ m D D Theo
reg D Exp

reg

41 0
41 4 8

3
42 1 3
43 2 3
44 3

41 4 8

4
45 4 4
46 5 4
47 6 4
48 7 4

Table 7.16: HFE- with D = 4 ; 32 and 41 equations.

dext ∆ m D D Theo
reg D Exp

reg

32 0
32 17 7

4
33 1 4
34 2 4
35 3 32 17 7 5
36 4 5
37 5

32 17 7
6

38 6 6
39 7 6

dext ∆ m D D Theo
reg D Exp

reg

41 0
41 17 8

4
42 1 4
43 2 4
44 3 41 17 8 5
45 4 5

Table 7.17: HFE- with D = 17; 32 and 41 equations.

114

nvar v m = nvar − v D D Theo
reg D Exp

reg

32 0 32 6 7 3
39 7 32 6 7 5
40 8

32 6 7
6

41 9 6
42 10 6
43 11 32 6 7 7
44 12 7
47 15 32 6 7 7

Table 7.18: HFEv with D = 6 and 32 equations.

nvar v m = nvar − v D D Theo
reg D Exp

reg

25 0 25 9 6 3
26 1

25 9 6
4

27 2 4
28 3 4
29 4

25 9 6
5

30 5 5
31 6 5
32 7 25 9 6 6

Table 7.19: HFEv with D = 9 and 25 equations.

nvar v m D D Theo
reg D Exp

reg

25 0 25 16 6 3
26 1

25 16 6
4

27 2 4
28 3 4
29 4

25 16 6
5

30 5 5
31 6 5
32 7 25 16 6 6

nvar v m D D Theo
reg D Exp

reg

32 0 32 16 7 3
33 1

32 16 7
4

34 2 4
35 3 4
36 4 32 16 7 5
37 5 5

Table 7.20: HFEv with D = 16; 25 and 32 equations.

115

7.7.4 Minimum Number of Vinegar Variables
In Tables 7.21 and 7.22, we study values ofv which achieve the security levels againstMinRank-
based attacks. In particular, we considerMinRank-based attacks with projections [68]. In Table
7.21, we take∆ = v. In Table 7.22, we take ∆ = 0 . Both behaviors seem similar, except for the
project-then-MinRank attack. The latter implies upper bounding the number of vinegar variables
for ∆ = 0 , which can be dangerous for practical values of∆ + v. So, we advise against using the
vinegar modifier alone. However, we note that the security can be achieved by increasingD .

(level, m, D) MinRank (4.17) MinRank-then-project [68] project-then-MinRank [68]
(II , 162, 17) ∆ + v > 10 ∆ = v > 5 ∆ = v > 4
(IV , 243, 17) ∆ + v > 16 ∆ = v > 8 ∆ = v > 7
(VI , 324, 17) ∆ + v > 22 ∆ = v > 11 ∆ = v > 9
(II , 256, 17) ∆ + v > 8 ∆ = v > 4 ∆ = v > 3
(IV , 384, 17) ∆ + v > 13 ∆ = v > 6 ∆ = v > 5
(VI , 512, 17) ∆ + v > 18 ∆ = v > 9 ∆ = v > 8

Table 7.21: Values of∆ and v which achieve the security levels againstMinRank-based attacks.

(level, m, D) MinRank (4.17) MinRank-then-project [68] project-then-MinRank [68]
(II , 162, 17) v > 10 v > 9 8 6 v 6 29
(IV , 243, 17) v > 16 v > 15 146 v 6 32
(VI , 324, 17) v > 22 v > 21 196 v 6 33
(II , 256, 17) v > 8 v > 7 6 6 v 6 37
(IV , 384, 17) v > 13 v > 12 116 v 6 42
(VI , 512, 17) v > 18 v > 17 166 v 6 46

Table 7.22: Values ofv which achieve the security levels againstMinRank-based attacks, for∆ = 0 .

In [10], the authors introduced the Support Minors technique to solve theMinRank-based prob-
lems. The complexity of this attack against parameters of round 2 proposals ofGeMSS is as presented
in Table 7.23. This technique is more efficient than all previous MinRank-based attacks. However,
the degree of minors equations is already bigger than the degree of regularity considered in a direct
attack. So, we can just choose parameters secure against the direct attack to be immune against
the Support Minors technique.

7.7.5 Choice of Degree and Number of Modifiers
At this stage, we have a methodology for fixing the minimum number of equationsm (Table 7.12),
as well as the number of iterations nb_ite (Table 7.13). We now need to derive the number of vinegar
variables v and minus equations∆ required to achieve the degree of regularity corresponding to a
given security level (Table 7.24). This is the most delicate point. According to the experiments
performed in Section 7.7.3, and the insight provided by the key-recovery attacks (Section 7.7.4), we
make the choice to balancev and ∆ .

116

(level, D, dext, ∆ , v) Support Minors technique [10]
(II , 513, 174, 12, 12) 2158

(IV , 513, 265, 22, 20) 2224

(VI , 513, 354, 30, 33) 2304

(II , 129, 175, 13, 14) 2162

(IV , 129, 265, 22, 23) 2229

(VI , 129, 358, 34, 32) 2305

(II , 17, 177, 15, 15) 2160

(IV , 17, 266, 23, 25) 2227

(VI , 17, 358, 34, 35) 2305

Table 7.23: Lower bound on the complexity of the Support Minors technique against parameters
of round 2 proposals ofGeMSS. Here, we consider that the constant in the big Oh notation is one.

In addition, we need to fix the degreeD of the HFEv polynomial. This will give the initial degree
of regularity for a nude HFE (Table 4.4). For GeMSS, we consider a secret univariate polynomial of
degreeD = 513. This corresponds to a degree of regularity of six for a nudeHFE, i.e. without any
modifier. The variants consider smaller degrees, in order to speed up the signing process.

From our experiments, we consider that 3 modifiers allow to increase the degree of regularity
by one. Independently of theGeMSS submission [48], the author of [140] also derived a similar rule;
as one can see from (4.12). In Table 7.25, we then derive the number of modifiers required as
∆ + v = 3 ×Gap, Gap being the targeted degree of regularity minus the initial degree of regularity.
We consider the number of equationsm and the targeted degree of regularity as in Table 7.24. The
last column of Table 7.25 gives the number of modifiers required. We present below the results for
GeMSS, RedGeMSS, BlueGeMSS, WhiteGeMSS, MagentaGeMSS, CyanGeMSS and FGeMSS.

m minimum D reg required lower bound on the cost of a Gröbner basis
as given in (4.10)

162 14 2131.16

243 20 2192.51

324 27 2260.86

333 26 2256.07

256 12 2133.57

384 17 2194.17

512 23 2263.64

Table 7.24: Smallest degree of regularity required (ω = 2). In practice, the Gröbner basis attack
has to be repeated nb_ite times.

117

scheme m D Gap ∆ + v
GeMSS128

162
513 14− 6 = 8 24

BlueGeMSS128 129 14− 5 = 9 27
RedGeMSS128 17 14− 4 = 10 30

GeMSS192
243

513 20− 6 = 14 42
BlueGeMSS192 129 20− 5 = 15 45
RedGeMSS192 17 20− 4 = 16 48

GeMSS256
324

513 27− 6 = 21 63
BlueGeMSS256 129 27− 5 = 22 66
RedGeMSS256 17 27− 4 = 23 69

WhiteGeMSS256
333

513 26− 6 = 20 60
CyanGeMSS256 129 26− 5 = 21 63

MagentaGeMSS256 17 26− 4 = 22 66
FGeMSS(266)

256 129 12− 5 = 7 21
Inner.DualModeMS128

Inner.RedDualModeMS128 17 12− 4 = 8 24
FGeMSS(402)

384
640 17− 6 = 11 33(1)

Inner.DualModeMS192 129 17− 5 = 12 36
Inner.RedDualModeMS192 17 17− 4 = 13 39

FGeMSS(537)
512

1152 23− 6 = 17 51
Inner.DualModeMS256 129 23− 5 = 18 54

Inner.RedDualModeMS256 17 23− 4 = 19 57
(1) Here, ∆ + v > 33 is required. But the scheme uses ∆ + v = 36 .

Table 7.25: Number of modifiers required inGeMSS. Except for the level V of security, the number
of modifiers of WhiteGeMSS, CyanGeMSS and MagentaGeMSS are respectively obtained as these of
GeMSS, BlueGeMSS and RedGeMSS.

7.8 Design
In [2, 1], NIST announced the second round and third round candidates. They also provided some
recommendations for the selected candidates. The goal of this part is to address the comments from
[2, 1] regardingGeMSS. The parameters proposed forGeMSS in the first round were very conservative
in term of security. [2, 1] suggested exploring different parameters in order to improve efficiency.
We address this comment as follows.

• We suggest six sets of parameters for each security level with several trade-offs. This in-
cludes the initial parameters ofGeMSS proposed for the first round, and two new more aggres-
sive parameters (BlueGeMSS and RedGeMSS). We also introduce WhiteGeMSS, CyanGeMSS and
MagentaGeMSS thanks to a tighter analysis of the Feistel–Patarin construction (Section 7.7.2).

• In Section 7.8.7, we propose a slight modification of the extension degree to improve multi-
plications in F2d ext on low-end devices.

• We then design a family of parameters that depends on only one parameterdext. We call this
family FGeMSS(dext) (Section 7.8.8).

118

• In Section 7.8.9, we explore the use of sparse polynomials inGeMSS to improve the efficiency
of the signing process.

• Finally, we present an exhaustive table including possible parameters and the corresponding
timings in Section 7.8.10.

7.8.1 Set 1 of Parameters: GeMSS

The first set, that we call GeMSS (Table 7.26), was the parameters proposed for the first round.

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
GeMSS128 (128, 513, 174, 12, 12, 4, 162, 186) 352.19 13.44 16 32.25
GeMSS192 (192, 513, 265, 22, 20, 4, 243, 285) 1237.96 34.07 24 51.375
GeMSS256 (256, 513, 354, 30, 33, 4, 324, 387) 3040.70 75.89 32 72

Table 7.26: Summary of the parameters ofGeMSS.

7.8.2 Set 2 of Parameters: RedGeMSS

We call RedGeMSS the schemes described in Table 7.27. The public-key ofRedGeMSS128 is 1.065
times larger than GeMSS128, the time to sign with RedGeMSS128 is 296 times faster thanGeMSS128.
This is because we use a smallerD .

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
RedGeMSS128 (128, 17, 177, 15, 15, 4, 162, 192) 375.21 13.10 16 35.25
RedGeMSS192 (192, 17, 266, 23, 25, 4, 243, 291) 1290.54 34.79 24 54.375
RedGeMSS256 (256, 17, 358, 34, 35, 4, 324, 393) 3135.59 71.89 32 75

Table 7.27: Summary of the parameters ofRedGeMSS.

7.8.3 Set 3 of Parameters: BlueGeMSS

We call BlueGeMSS the schemes described in Table 7.28. The public-key ofBlueGeMSS128 is 1.032
times larger than GeMSS128, the time to sign with BlueGeMSS128 is 9.05 times faster thanGeMSS128.
This is because we use a smallerD .

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
BlueGeMSS128 (128, 129, 175, 13, 14, 4, 162, 189) 363.61 13.70 16 33.75
BlueGeMSS192 (192, 129, 265, 22, 23, 4, 243, 288) 1264.12 35.38 24 52.875
BlueGeMSS256 (256, 129, 358, 34, 32, 4, 324, 390) 3087.96 71.46 32 73.5

Table 7.28: Summary of the parameters ofBlueGeMSS.

119

7.8.4 Set 4 of parameters: WhiteGeMSS

We call WhiteGeMSS the schemes described in Table 7.29.

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
WhiteGeMSS128 (128, 513, 175, 12, 12, 3, 163, 187) 358.17 13.56 16 29.375
WhiteGeMSS192 (192, 513, 268, 21, 21, 3, 247, 289) 1293.85 35.77 24 46.625
WhiteGeMSS256 (256, 513, 364, 31, 29, 3, 333, 393) 3222.69 70.99 32 64.125

Table 7.29: Summary of the parameters ofWhiteGeMSS.

7.8.5 Set 5 of parameters: MagentaGeMSS

We call MagentaGeMSS the schemes described in Table 7.30.

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
MagentaGeMSS128 (128, 17, 178, 15, 15, 3, 163, 193) 381.46 13.22 16 31.625
MagentaGeMSS192 (192, 17, 271, 24, 24, 3, 247, 295) 1348.03 34.69 24 48.875
MagentaGeMSS256 (256, 17, 366, 33, 33, 3, 333, 399) 3321.72 70.41 32 66.375

Table 7.30: Summary of the parameters ofMagentaGeMSS.

7.8.6 Set 6 of parameters: CyanGeMSS

We call CyanGeMSS the schemes described in Table 7.31.

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
CyanGeMSS128 (128, 129, 177, 14, 13, 3, 163, 190) 369.72 13.41 16 30.5
CyanGeMSS192 (192, 129, 270, 23, 22, 3, 247, 292) 1320.80 35.26 24 47.75
CyanGeMSS256 (256, 129, 364, 31, 32, 3, 333, 396) 3272.02 73.20 32 65.25

Table 7.31: Summary of the parameters ofCyanGeMSS.

7.8.7 A Family of Parameters for Low-End Devices
The multiplication in F2d ext is a crucial operation for the performance ofGeMSS. On low-end devices,
this operation is naturally very expensive. So, we design new parameters especially for these devices.
It is well-known that multiplications in F16 and F256 can be efficiently computed in parallel, with
vector instructions and logarithm tables (Section 7.4.9). A solution to improve performance of the
multiplication in F2d ext is to choosedext multiple of four or eight. This allows to use an isomorphism
betweenF2d ext and F16d ext / 4 or F256d ext / 8 . We base our new parameters on these ofGeMSS, by slightly
modifying the balance between minus and vinegar. We obtain Table 7.32.

These parameters are a proposal to improve the performance ofGeMSS on low-end devices. We do
not have implementations exploiting the tower field representation ofF2d ext . Therefore, we cannot
estimate obtained speed-ups whenPCLMULQDQ is not available.

120

level nb_ite m D ∆ + v dext = 0 mod 4, ∆ , v dext = 0 mod 8, ∆ , v

I

4

162
513 24 172, 10, 14 176, 14, 10
129 27 176, 14, 13
17 30 176, 14, 16

III 243
513 42 264, 21, 21
129 45 264, 21, 24
17 48 268, 25, 23 264, 21, 27

V 324
513 63 356, 32, 31 352, 28, 35
129 66 356, 32, 34 360, 36, 30
17 69 360, 36, 33

Table 7.32: Slight modification of GeMSS for low-end devices.

7.8.8 FGeMSS(dext)

In multivariate schemes, we have many parameters that can be adjusted. This is an advantage since,
for example, we can decrease the time to sign for a given security level if we increase the length of
the public-key, i.e. some interesting trade-offs are possible. However, when a new cryptanalysis idea
is found, it is not always easy for a non multivariate specialist to see how to adjust the parameters
in order to maintain a given security level against the best known attacks. For example, when
RSA-512 was factored, it was natural to suggest using a larger modulon and looking at what value
of n should be used from the best known attacks (instead of designing another scheme). But when
an attack on QUARTZ was published with a security expected [82] to be slightly smaller than280, it
was not so easy to adjust the security parameters since we have many possibilities here. Therefore,
we see that it is sometime convenient to have adimension 1 family instead of a single point (like
QUARTZ) or a many dimension family (like the variants of HFE).

Here, we present suchdimension 1 family, called FGeMSS(dext). It is such that:

• nb_ite = 1 ,

• dext is again m + ∆ ,

• ∆ + v = 21 +
⌈
0.11 · (dext − 266)

⌉
, ∆ =

⌊ ∆+ v
2

⌋
and v =

⌈ ∆+ v
2

⌉
,

• D is the largest sum of two powers of two less or equal to129 +
⌈
4.2 · (dext − 266)

⌉
.

The public-key is a system ofm = dext − ∆ equations in nvar = dext + v variables overF2. For
example, we obtain the following parameters.

scheme (λ, D, d ext, ∆ , v, nb_ite, m, nvar) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
FGeMSS(266) (128, 129, 266, 10, 11, 1, 256, 277) 1232.13 24.55 16 34.625
FGeMSS(402) (192, 640, 402, 18, 18, 1, 384, 420) 4243.73 62.60 24 52.5
FGeMSS(537) (256, 1152, 537, 25, 26, 1, 512, 563) 10161.09 122.72 32 70.375

Table 7.33: Parameters ofFGeMSS.

121

It can be emphasized thatFGeMSS can be nicely combined withDualModeMS [83] (Chapter 8).
In the case ofFGeMSS(266), we will typically get a public-key of 512 bytes with a signature size of
about 32 kB.

7.8.9 SparseGeMSS

In this section, we introduces, a new security parameter. We propose to removes terms in F2d ext [X]
from the HFEv polynomial to improve the efficiency of the signing process, as introduced in Section
9.3.3. Whens is small, we think the security is not impacted by this change, whereas we can obtain
a factor at most two for the signing process. This method is new and so a new analysis of security
is required. We will present some experiments in Section 9.3.3.

The improvement is based on the fact that during the computation of the Frobenius map, a
degree-(2D − 2) square inF2d ext [X] is computed, then is reduced moduloH , a HFE polynomial in
F2d ext [X]. In binary fields, all odd degree terms of a square are null, thanks to the linearity of the
Frobenius endomorphism. Then, we remark that the Euclidean division of a squareB by a square
implies that the quotient Q is a square. H is not a square because it contains the termsX 20

and
X 2i +1 for 0 < i 6 k = blog2(D)c. However, the gap between the odd degrees2j + 1 and 2j +1 + 1
is 2j . This gap increases quickly whenj increases. So, if we takeD = 2 k + 2 , then we remove
the s largest odd degrees (s 6 k), we obtain a HFE polynomial H = H0 + X 2k −s +2 H1 for H0 a
degree-(2k−s + 1) polynomial and H1 a degree-(2k − 2k−s) square. By removing only one term (i.e.
s = 1), the higher half of H is a square.

Now, we exploit the fact that H1 is a square. This impliesQ = Q0 + X 2k −s
Q1 for Q0 a degree-

(2k−s−1) polynomial and Q1 a degree-(2k−2k−s) square. Moreover, the classical Euclidean division
algorithm (Algorithm 16) is equivalent to performing the classical multiplication of Q by H , then
add it to B . So, if Q1 is a square, we avoid the half of the multiplications for this part of Q. The
size ofQ1 is 2k − 2k−s + 1 , so we avoid2k−1 − b2k−s−1c multiplications in F2d ext .

With our sparse trick, all previous families of GeMSS could become more efficient by using their
sparseversion. To apply this transformation, we increment D if D is odd and we sets = 3 . In this
way, we avoid 43.75% of the field multiplications (forD = 2 k + 2) during the modular reduction by
H . The speed-up forD > 2k + 2 is different because our trick improves the modular reduction for
s = 0 (becauseQ = Q0 + X 2k

Q1 with Q1 a degree-(D − 2k − 2) square, so we avoidD −2k −2
2 > 0

multiplications in F2d ext). We take a small value of s to be secure, but large enough to obtain an
interesting speed-up. The Frobenius map is the core of the signing process, so this factor remains
approximately the same for the signing process. However, this method is not interesting for small
degrees, because the Frobenius map can be computed more quickly with multi-squaring tables
(Algorithm 22). Experimentally, we keep the previous speed-up forD > 514, we loose a part for
D = 130 and dext > 196, and the method is completely useless forD 6 34. For this reason, we give
the possibility to use SparseGeMSS only for D > 128 (Tables 7.34, 7.35 and 7.36).

7.8.10 An Exhaustive Table for the Choice of the Parameters

Here, we propose a large number of security parameters. For different values ofD and for nb_ite
from 1 to 4, we take the smallestm such that (m, nb_ite) respects (7.3). Then, we deduce the
number of modifiers, and so∆ and v. Finally, for D > 128, we take s = 0 then s = 3 (as described

122

in Section 7.8.9). In Tables 7.34, 7.35 and 7.36, we give the performance of these parameters with
the final version of MQsoft (Chapter 9).

For nb_ite < 3, the number of equations is a multiple of eight. So, the public-key is naturally
stored with the packed representation (Section 7.4.8). This implies the theoretical size of the public-
key is reached without decreasing performances. For the other values ofm, the performance of the
verifying process decreases whenm mod 8 increases.

(λ, D, d ext, ∆ , v, nb_ite, s) key gen. sign verify |pk| |sk| |sign|
(Mc) (Mc) (kc) (kB) (B) (bits)

(128, 17, 268, 12, 12, 1, 0) 47.4 2.15 38 1260 16 280
(128, 17, 204, 12, 15, 2, 0) 20.2 1.89 53.5 578 16 246
(128, 17, 186, 15, 15, 3, 0) 18.6 1.81 95.1 434 16 261

(128, 17, 177, 15, 15, 4, 0) 16.3 2.05 141 375 16 282
(128, 33, 268, 12, 12, 1, 0) 49.3 4.59 38.4 1260 16 280
(128, 33, 204, 12, 15, 2, 0) 20.8 4.79 53.9 578 16 246
(128, 33, 186, 15, 15, 3, 0) 19.7 4.78 95.3 434 16 261
(128, 33, 177, 15, 15, 4, 0) 17.1 5.78 142 375 16 282
(128, 129, 266, 10, 11, 1, 0) 54.1 44.1 38.2 1230 16 277
(128, 130, 266, 10, 11, 1, 3) 54.9 34.4 36.8 1230 16 277
(128, 129, 204, 12, 12, 2, 0) 21.4 53.7 51.4 562 16 240
(128, 130, 204, 12, 12, 2, 3) 21.4 39.1 51.6 562 16 240
(128, 129, 185, 14, 13, 3, 0) 20.9 51.7 106 421 16 252
(128, 130, 185, 14, 13, 3, 3) 20.9 39.3 107 421 16 252

(128, 129, 175, 13, 14, 4, 0) 18.4 67.2 134 364 16 270
(128, 130, 175, 13, 14, 4, 3) 18.4 49 138 364 16 270
(128, 513, 265, 9, 9, 1, 0) 57.6 442 36.2 1210 16 274
(128, 514, 265, 9, 9, 1, 3) 57 293 36.2 1210 16 274

(128, 513, 202, 10, 11, 2, 0) 22.2 494 50.2 547 16 234
(128, 514, 202, 10, 11, 2, 3) 21.6 297 49.9 547 16 234
(128, 513, 183, 12, 12, 3, 0) 22.6 452 102 408 16 243
(128, 514, 183, 12, 12, 3, 3) 22.2 303 104 408 16 243

(128, 513, 174, 12, 12, 4, 0) 19.6 608 106 352 16 258
(128, 514, 174, 12, 12, 4, 3) 19.8 372 107 352 16 258

Table 7.34: Performance of an exhaustive set of security parameters achieving the level I,
with MQsoft. We use a Skylake processor (LaptopS). The results have three significant
digits. The parameters in bold correspond toRedGeMSS, BlueGeMSS and GeMSS.

123

(λ, D, d ext, ∆ , v, nb_ite, s) key gen. sign verify |pk| |sk| |sign|
(Mc) (Mc) (kc) (kB) (B) (bits)

(192, 17, 404, 20, 19, 1, 0) 180 5.61 126 4300 24 423
(192, 17, 310, 22, 23, 2, 0) 85 4.25 159 2000 24 378
(192, 17, 279, 23, 25, 3, 0) 61.3 4.45 202 1480 24 400

(192, 17, 266, 23, 25, 4, 0) 57.1 5.55 335 1290 24 435
(192, 33, 404, 20, 19, 1, 0) 190 10.1 125 4300 24 423
(192, 33, 310, 22, 23, 2, 0) 90.1 8.87 159 2000 24 378
(192, 33, 279, 23, 25, 3, 0) 65.1 11.9 199 1480 24 400
(192, 33, 266, 23, 25, 4, 0) 61.3 15 336 1290 24 435
(192, 129, 402, 18, 18, 1, 0) 204 89.2 124 4240 24 420
(192, 130, 402, 18, 18, 1, 3) 204 73.7 125 4240 24 420
(192, 640, 402, 18, 18, 1, 0) 224 1560 122 4240 24 420
(192, 640, 402, 18, 18, 1, 3) 223 999 123 4240 24 420
(192, 129, 308, 20, 22, 2, 0) 96.1 88.2 159 1970 24 372
(192, 130, 308, 20, 22, 2, 3) 96.1 72.7 160 1970 24 372
(192, 129, 278, 22, 23, 3, 0) 70.4 139 191 1450 24 391
(192, 130, 278, 22, 23, 3, 3) 70.7 114 195 1450 24 391

(192, 129, 265, 22, 23, 4, 0) 65 173 325 1260 24 423
(192, 130, 265, 22, 23, 4, 3) 66 141 323 1260 24 423
(192, 513, 399, 15, 18, 1, 0) 219 960 119 4180 24 417
(192, 514, 399, 15, 18, 1, 3) 219 795 120 4180 24 417
(192, 513, 308, 20, 19, 2, 0) 101 864 155 1930 24 366
(192, 514, 308, 20, 19, 2, 3) 102 604 154 1930 24 366
(192, 513, 276, 20, 22, 3, 0) 75.3 1360 198 1430 24 382
(192, 514, 276, 20, 22, 3, 3) 75.3 905 191 1430 24 382

(192, 513, 265, 22, 20, 4, 0) 69.4 1760 304 1240 24 411
(192, 514, 265, 22, 20, 4, 3) 69.9 1180 304 1240 24 411

Table 7.35: Performance of an exhaustive set of security parameters achieving the level III,
with MQsoft. We use a Skylake processor (LaptopS). The results have three significant
digits. The parameters in bold correspond toRedGeMSS, BlueGeMSS and GeMSS.

124

(λ, D, d ext, ∆ , v, nb_ite, s) key gen. sign verify |pk| |sk| |sign|
(Mc) (Mc) (kc) (kB) (B) (bits)

(256, 17, 540, 28, 29, 1, 0) 545 10 380 10400 32 569
(256, 17, 415, 31, 32, 2, 0) 221 7.59 380 4810 32 510
(256, 17, 375, 33, 33, 3, 0) 159 7.36 605 3570 32 540

(256, 17, 358, 34, 35, 4, 0) 143 8.76 709 3140 32 600
(256, 33, 540, 28, 29, 1, 0) 569 18.7 380 10400 32 569
(256, 33, 415, 31, 32, 2, 0) 233 16.4 385 4810 32 510
(256, 33, 375, 33, 33, 3, 0) 164 17.3 609 3570 32 540
(256, 33, 358, 34, 35, 4, 0) 149 21.9 697 3140 32 600
(256, 129, 540, 28, 26, 1, 0) 607 153 379 10300 32 566
(256, 130, 540, 28, 26, 1, 3) 603 133 382 10300 32 566
(256, 129, 414, 30, 30, 2, 0) 246 185 379 4740 32 504
(256, 130, 414, 30, 30, 2, 3) 245 139 369 4740 32 504
(256, 129, 372, 30, 33, 3, 0) 171 191 579 3510 32 531
(256, 130, 372, 30, 33, 3, 3) 169 154 596 3510 32 531

(256, 129, 358, 34, 32, 4, 0) 152 248 680 3090 32 588
(256, 130, 358, 34, 32, 4, 3) 153 202 682 3090 32 588
(256, 513, 537, 25, 26, 1, 0) 651 1630 364 10200 32 563
(256, 514, 537, 25, 26, 1, 3) 645 1520 369 10200 32 563
(256, 1152, 537, 25, 26, 1, 0) 674 7430 367 10200 32 563
(256, 1152, 537, 25, 26, 1, 3) 672 4870 360 10200 32 563
(256, 513, 414, 30, 27, 2, 0) 258 1830 361 4680 32 498
(256, 514, 414, 30, 27, 2, 3) 261 1450 364 4680 32 498
(256, 513, 372, 30, 30, 3, 0) 175 1990 565 3460 32 522
(256, 514, 372, 30, 30, 3, 3) 175 1420 573 3460 32 522

(256, 513, 354, 30, 33, 4, 0) 158 2490 665 3040 32 576
(256, 514, 354, 30, 33, 4, 3) 159 1800 663 3040 32 576

Table 7.36: Performance of an exhaustive set of security parameters achieving the level V,
with MQsoft. We use a Skylake processor (LaptopS). The results have three significant
digits. The parameters in bold correspond toRedGeMSS, BlueGeMSS and GeMSS.

125

7.9 Advantages and Limitations
Since the first scheme of Matsumoto and Imai [119] in 1988, almost thirty years ago, multivariate-
based cryptosystems have been extensively analyzed in the literature. We have designedGeMSS
using this knowledge and derive a general methodology to derive parameters. We then proposed
three sets of parameters:GeMSS, the most conservative, andBlueGeMSS/ RedGeMSS that are more
efficient (but also, more aggressive in term of security). We also performed practical experiments
using the best known tools for computing Gröbner bases.

From a practical point of view, the main drawback of GeMSS is the size of the public-key. However,
we mention that the generation of a (public-key, secret-key) remains rather efficient in GeMSS. The
main advantages ofGeMSS are the size of the signatures generated, about2λ bits, and the fast
verification process.

7.10 MI-Based Cryptography in the NIST Post-Quantum
Cryptography Standardization Process

SeveralMI-based signature schemes were proposed to the NIST PQC standardization process [128].

• GeMSS [50], aHFEv--based scheme which is currently an alternate candidate of the third round.

• Gui [62], another HFEv--based scheme not selected to the second round.

• DualModeMS [83], a HFEv--based scheme using the transformation described in Chapter 3.
DualModeMS can be considered as the dual mode ofGeMSS. It did not go to the second round.

• LUOV [27]. This variant of UOV (Section 2.4.2) was broken in [66] and so did not go to the
third round.

• Rainbow [65], a Rainbow-based scheme (Section 2.4.3) usingu = 2 . Currently, Rainbow is a
finalist candidate of the third round.

We summarize security parameters and sizes of these candidate in Tables 7.38 and 7.39. The
exact sizes are available in Appendix A.QUARTZ [134] is aHFEv--based signature scheme submitted
to the NESSIE project [145]. This scheme was broken because the number of minus equations and
vinegar variables used was too small.Gui has large public-keys. The goal ofGui is to minimize
the signature size as well as the running time of signing and verifying processes. UnlikeGui,
GeMSS minimizes the public-key size by setting nb_ite to four. This allows to minimize the number
of equations, which also minimizes the number of variables. The originalGui-184 scheme used
nb_ite = 2 , which is insecure. The generic attack from Section 7.7.2 breaks it in2112 evaluations
of the public-key. So, the submitters incremented nb_ite to reach the announced security level.
DualModeMS is a signature scheme with two layers (Chapter 3). The inner layer is aHFEv--based
signature scheme, which can be used to have a large public-key but a small signature. Because
of a particularity of the outer layer, the inner layer cannot use the Feistel–Patarin construction,
implying to set nb_ite to one.

Table 7.39 summarizes the parameters and sizes ofRainbow during the NIST PQC standardiza-
tion process. For the first round of this process,Rainbow [63] was proposed as described in Section
2.4.3, for the fieldsF16,F31 and F256. The roman numbers correspond to the NIST security level

126

(Section 4.1), whereasa, b and c correspond respectively toF16,F31 and F256. We note that S
and T were affine transformations. Then, some changes were announced for the second round [64].
Only one field was kept by security level, then two new variants were proposed:

• cyclic Rainbow, which uses the trick described in Section 3.6 to decrease the public-key size
by generating a part from a public seed,

• compressed Rainbow, which applies the technique from Section 7.4.1 tocyclic Rainbow for
generating the (decompressed) secret-key from a secret seed. The public seed is also stored in
the secret-key, because it is used during the signing process for generating the (decompressed)
secret-key again.

We note another changes. The secret seed is also stored and used inRainbow and cyclic Rainbow.
Then, S and T are linear transformations with a special structure. Moreover, the authors only
considered the quadratic terms ofF . Coupled to linear transformations, this choice leads to a
public map p without linear and constant terms, implying N =

(n var+1
2

)
. For the third round [65],

the parameters were modified to take into account new attacks [10]. Thecyclic Rainbow variant
becomesCZ-Rainbow (circumzenithal Rainbow).

Table 7.37 summarizes the performance measurements ofGeMSS additional (best) implementa-
tion and Gui PCLMULQDQ implementation which were submitted to the NIST PQC standardization
process (first round). The implementations ofGeMSS have been corrected since the submission. The
parameter D was mistakenly set to 512 in the implementation. Because the Frobenius map was not
implemented in constant-time (Section 6.3), D = 512 allowed to save 27% of computations in the
critical part of the signature generation (cf. Table 9.14). We refer to Section 6.2 about experimental
platform and third libraries used.

scheme (level, q, dext, D, ∆ , v, nb_ite) key gen. sign verify
GeMSS128 (I, 2, 174, 513, 12, 12, 4) 118 1270 0.166
GeMSS192 (III , 2, 265, 513, 22, 20, 4) 549 3220 0.448
GeMSS256 (V, 2, 354, 513, 30, 33, 4) 1470 5380 1.17

FGeMSS(266) (I, 2, 266, 129, 10, 11, 1) 442 128 0.0964
Inner.DualModeMS128

Gui-184 (II , 2, 184, 33, 16, 16, 2) 732 24.9 0.0911
Gui-184 (updated) (II , 2, 184, 33, 16, 16, 3) 744 74.3 0.134

Gui-312 (IV , 2, 312, 129, 24, 20, 2) 4860 781 0.298
Gui-448 (VI , 2, 448, 513, 32, 28, 2) 32600 19700 0.910

Table 7.37: Performance in megacycles ofGeMSS and Gui best implementations submitted to the
first round of the NIST PQC standardization process. We use a Skylake processor (LaptopS). The
results have three significant digits.

GeMSS has much bigger public-key sizes and much slower signing processes thanRainbow (Table
9.28). In return, its signature size is slightly smaller. The public-key size is the main drawback
of the MI-based cryptography, which gives an advantage toRainbow. Therefore, NIST selected
Rainbow as finalist candidate, whereasGeMSS is an alternate candidate. We note that new attacks
would compromise the possible standardization ofRainbow and GeMSS.

127

scheme (level, q, dext, D, ∆ , v, nb_ite) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
QUARTZ (80(1) , 2, 103, 129, 3, 4, 4) 72.24(2) 3.733(3) 16 16

Gui-184 (II (4) , 2, 184, 33, 16, 16, 2)
422.1(5) 14.98(5) no seed 29(6)

Gui-184 (updated) (II , 2, 184, 33, 16, 16, 3) 33(6)

Gui-312 (IV , 2, 312, 129, 24, 20, 2) 1990(5) 41.75(5) no seed 47(6)

Gui-448 (VI , 2, 448, 513, 32, 28, 2) 5903(5) 94.76(5) no seed 67(6)

GeMSS128 (I , 2, 174, 513, 12, 12, 4) 352.2 13.44

16

32.25
BlueGeMSS128 (I , 2, 175, 129, 13, 14, 4) 363.6 13.70 33.75
RedGeMSS128 (I , 2, 177, 17, 15, 15, 4) 375.2 13.10 35.25

WhiteGeMSS128 (I , 2, 175, 513, 12, 12, 3) 358.2 13.56 29.375
CyanGeMSS128 (I , 2, 177, 129, 14, 13, 3) 369.7 13.41 30.5

MagentaGeMSS128 (I , 2, 178, 17, 15, 15, 3) 381.5 13.22 31.625
GeMSS192 (III , 2, 265, 513, 22, 20, 4) 1238 34.07

24

51.375
BlueGeMSS192 (III , 2, 265, 129, 22, 23, 4) 1264 35.38 52.875
RedGeMSS192 (III , 2, 266, 17, 23, 25, 4) 1291 34.79 54.375

WhiteGeMSS192 (III , 2, 268, 513, 21, 21, 3) 1294 35.77 46.625
CyanGeMSS192 (III , 2, 270, 129, 23, 22, 3) 1321 35.26 47.75

MagentaGeMSS192 (III , 2, 271, 17, 24, 24, 3) 1348 34.69 48.875
GeMSS256 (V , 2, 354, 513, 30, 33, 4) 3041 75.89

32

72
BlueGeMSS256 (V , 2, 358, 129, 34, 32, 4) 3088 71.46 73.5
RedGeMSS256 (V , 2, 358, 17, 34, 35, 4) 3136 71.89 75

WhiteGeMSS256 (V , 2, 364, 513, 31, 29, 3) 3223 70.99 64.125
CyanGeMSS256 (V , 2, 364, 129, 31, 32, 3) 3272 73.20 65.25

MagentaGeMSS256 (V , 2, 366, 17, 33, 33, 3) 3322 70.41 66.375

FGeMSS(266) (I , 2, 266, 129, 10, 11, 1) 1232 24.55 16 34.625
Inner.DualModeMS128

FGeMSS(402) (III , 2, 402, 640, 18, 18, 1) 4244 62.60 24 52.5
Inner.DualModeMS192 (III , 2, 402, 129, 18, 18, 1) 59.59

FGeMSS(537) (V , 2, 537, 1152, 25, 26, 1) 10161 122.7 32 70.375
Inner.DualModeMS256 (V , 2, 540, 129, 28, 26, 1)(7) 10270 116.3 70.75
(1) Original security level in bits, but QUARTZ was broken.
(2) The authors did not provide the exact size, and seemed to consider the linear terms of p . We compute the

public-key size without these terms to be consistent with other schemes.
(3) The authors did not provide the exact size. However, they claimed to use 30497 random bits to generate the

secret-key from the seed, when the LU decomposition is used. They considered T in Aff −1
n var

(
Fq

)
, but in reality

T is in Aff −1
dext

(
Fq

)
. So, the correct number is 29657 bits. We deduce the secret-key size by adding 210 bits,

corresponding to the fact that the LU decomposition in F2 allows to save the random generation of the diagonal.
(4) The original security level was 128 bits, but the generic attack from Section 7.7.2 breaks it in 2112 evaluations.
(5) The sizes of [62, Table 2] are wrong. In particular, the public-key size contains the size of quadratic terms x2

i .
The sizes that we compute here are consistent with the practical implementation provided by [62] (by removing
an extra useless byte from this implementation).

(6) The signature size is given without the 128-bit salt.
(7) The original scheme used dext = 544 and ∆ = v = 32 . However, the correction of an error in [83, Table 13]

implies ∆ + v = 54 instead of 64. So, we update parameters according the philosophy of GeMSS.

Table 7.38: Size of the keys and signature of theHFEv--based schemes submitted to the NIST PQC
standardization process, as well asQUARTZ from the NESSIE project [145].

128

round scheme (q, v1 , o1 , o2) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)

1

Rainbow-Ia (16, 32, 32, 32) 152.1 100.2

no seed

64
Rainbow-Ib (31, 36, 28, 28) 151.6 106.2 78
Rainbow-Ic (256, 40, 24, 24) 192.2 143.4 104

Rainbow-IIIb (31, 64, 32, 48) 524.4 380.4 112
Rainbow-IIIc (256, 68, 36, 36) 720.8 537.8 156
Rainbow-IVa (16, 56, 48, 48) 565.5 376.1 92
Rainbow-Vc (256, 92, 48, 48) 1724 1274 204
Rainbow-VIa (16, 76, 64, 64) 1351 892.1 118
Rainbow-VIb (31, 84, 56, 56) 1353 944.6 147

2

Rainbow-Ia (16, 32, 32, 32) 149.0 92.99 no seed 64
cyclic Rainbow-Ia 58.14 64(2)

Rainbow-Ic(1)
(256, 40, 24, 24) 188.0 132.6 no seed 104

cyclic Rainbow-Ic(1) 58.50 64(2)

Rainbow-IIIc (256, 68, 36, 36) 710.6 511.5 no seed 156
cyclic Rainbow-IIIc 206.7 64(2)

Rainbow-Vc (256, 92, 48, 48) 1706 1227 no seed 204
cyclic Rainbow-Vc 491.9 64(2)

3

Rainbow-Ia (16, 36, 32, 32) 161.6 103.6 no seed 66
CZ-Rainbow-Ia(3) 60.19 64(2)

Rainbow-IIIc (256, 68, 32, 48) 882.1 626.0 no seed 164
CZ-Rainbow-IIIc(3) 264.6 64(2)

Rainbow-Vc (256, 96, 36, 64) 1931 1409 no seed 212
CZ-Rainbow-Vc(3) 536.1 64(2)

(1) Rainbow-Ic is not submitted to the second round of the NIST PQC standardization process. However,
this implementation is available in the submitted implementation. We use this scheme in Section 8.6.3.

(2) The secret-key contains the 32-byte public seed. The latter is also stored in the public-key.
(3) circumzenithal Rainbow, new name of cyclic Rainbow.

Table 7.39: Size of the keys and signature ofRainbow submitted to the NIST PQC standardization
process. We consider the evolution of these schemes during the three rounds.

129

Chapter 8

DualModeMS – a Dual Mode for
Multivariate-Based Signatures

The purpose of this chapter is to presentDualModeMS [83]; a multivariate-based signature scheme
with a rather peculiar property. Its public-key is small whilst the signature is large. This is in
sharp contrast with traditional multivariate signature schemes (Chapter 2) based on the so-called
Matsumoto and Imai (MI) construction [119], such asQUARTZ [134] orGui [144], that produce short
signatures but have larger public-keys.

DualModeMS is based on the method proposed by A. Szepieniec, W. Beullens, and B. Preneel
(SBP) in [157] (Chapter 3) who describe a generic technique permitting to transform anyMI-
based multivariate signature scheme into a new scheme with much shorter public-key but larger
signatures. We emphasize that the technique from [157] can be viewed as amode of operationsthat
offers a new flexibility for MI-like signature schemes. Thus,DualModeMS is also useful for others
multivariate-based signature candidates proposed to NIST.

DualModeMS is composed of two distinct layers. The first one (Inner.DualModeMS), that we
shall call inner layer, is a classicalMI-like multivariate scheme based onHFEv- (Section 2.4.1). The
second part,outer layer, is the mode of operations specified in [157] (Chapter 3).

This submission is somewhat a complement to another multivariate-based signature scheme
proposed to NIST:GeMSS [48] (Chapter 7). In particular, the security analysis for Inner.DualModeMS
is largely similar to the one performed forGeMSS. In fact, Inner.DualModeMS is a re-parametrization
of GeMSS imposed by a specificity of SBP [157].

The main sections of this chapter follow the algorithm specification and supporting documen-
tation from the call for proposals [127].

8.1 General Algorithm Specification

8.1.1 Parameter Space
The main parameters involved in Inner.DualModeMS are:

• λ , the security level of Inner.DualModeMS (and DualModeMS),

• q, a prime or a power prime that is the order of the finite field Fq,

131

• D , a positive integer that is the degree of a secret polynomial.D is such that D = qi for
i > 0, or D = qi + qj for i, j > 0,

• m, the number of equations in the public-key,

• nvar, the number of variables in the public-key,

• nb_ite = 1 , the number of iterations in the signature and verification processes,

• dext, the degree of an extension field ofFq,

• v, the number of vinegar variables (the number of variables in the public-key isnvar = dext+ v),

• ∆ , the number of minus equations (the number of equations in the public-key ism = dext−∆).

Then, the main parameters involved in DualModeMS are:

• σ, the number of signatures ofInner.DualModeMS included in a final signature of DualModeMS,

• α, the number of MQ polynomials included in a signature of DualModeMS,

• τ > 1, the size of an evaluation point set; must be a power of two,

• κ, the degree of the extension field forMAC polynomials (Algorithm 5); constrained by qκ > τ ,

• ν, the number of Merkle paths that are opened during the signing and verifying processes,

• N , number of square-free monomials innvar variables of degree6 2 (Equation (2.3) or (2.4)).

In Section 8.2, we specify precisely these parameters to achieve a security levelλ ∈ {128, 192, 256}.

8.1.2 Cryptographic Operations
For the inner layer, we refer to Section 7.1. The keypair generation, signing process and verifying
process are respectively described in Algorithms 29, 3 and 4. We setq to two and nb_ite to one.
For the outer layer, we refer to Chapter 3. The keypair generation, signing process and verifying
process are respectively described in Algorithms 6, 7 and 11.H1 is SHA-3 (we follow Section 7.4.13).

8.1.3 Implementation
For the inner layer, we refer to Section 7.4. For the outer layer, we have proposed new techniques
since the submission ofDualModeMS [83] to the NIST PQC standardization process. Two crucial
operations are present in all cryptographic operations of the outer layer: the multipoint evaluation
of MAC polynomials (Algorithm 5) and the computation of the digests for Merkle trees (Section 3.3).
In Section 9.5, we improve the multipoint evaluations of MAC polynomials. Then, the computation
of Merkle trees can be naturally parallelized. We use the hash functions as described in Section
7.4.13. In particular, we use a parallel implementation in AVX2 of the SHA-3 and SHAKE functions.
These functions compute four hash values in parallel, and are based on theXKCP (Section 6.2.1).
We note that the XKCP only provides an implementation of the core ofSHA-3 and SHAKE (function
KeccakP1600times4_PermuteAll_24rounds). So, we have implemented an interface allowing to
use this implementation. A similar work can be found e.g. in the shake256-avx2 implementation
of SPHINCS+ [105]. For DualModeMS, we have also specified our implementation for inputs of4λ
bits. This further accelerates the implementation of Merkle trees, since each node of size2λ bits is
the hash value of the concatenation of its two child nodes.

132

8.2 List of Parameter Sets
In Inner.DualModeMS, we considerq = 2 . New schemes are proposed in Section 8.6, based on the
inner layers GeMSS and Rainbow, as well as a variant of Inner.DualModeMS for D = 17.

8.2.1 Parameter Sets for a Security of 2128 (Level I)
We chooseD = 129, dext = 266, ∆ = 10 and v = 11. This gives m = 256, nvar = 277 and λ = 128.
The extension field is defined asF2d ext = F2[α]/

(
αdext + α47 + 1

)
. For Inner.DualModeMS128, the

public-key size is then 1232.128 kB and the signature size is 277 bits.
For the outer layer, we chooseα = 2 , σ = 64, τ = 2 18, κ = 21, ν = 18 and δ = 4 . The extension

field is defined asF2κ = F2[α]/
(
ακ + α2 + 1

)
. For DualModeMS128, this gives a public-key of 512

bytes and a signature of 32.002 kB.

8.2.2 Parameter Sets for a Security of 2192 (Level III)
We chooseD = 129, dext = 402, ∆ = 18 and v = 18. This gives m = 384, nvar = 420 and λ = 192.
The extension field is defined asF2d ext = F2[α]/

(
αdext + α171 + 1

)
. For Inner.DualModeMS192, this

gives a public-key of 4243.728 kB and a signature of 420 bits.
For the outer layer, we chooseα = 2 , σ = 96, τ = 2 18, κ = 20, ν = 33 and δ = 5 . The extension

field is defined asF2κ = F2[α]/
(
ακ + α3 + 1

)
. For DualModeMS192, this gives a public-key of 1536

bytes and a signature of 79.41475 kB.

8.2.3 Parameter Sets for a Security of 2256 (Level V), Version 1
We chooseD = 129, dext = 544, ∆ = 32 and v = 32. This gives m = 512, nvar = 576 and λ = 256.
The extension field is defined asF2d ext = F2[α]/

(
αdext + α8+ α3+ α+1

)
. For Inner.DualModeMS256v1 ,

this gives a public-key of 10635.328 kB and a signature of 576 bits.
For the outer layer, we chooseα = 1 , σ = 256, τ = 2 18, κ = 20, ν = 52 and δ = 5 . The extension

field is defined asF2κ = F2[α]/
(
ακ + α3 + 1

)
. For DualModeMS256v1 , this gives a public-key of 2048

bytes and a signature of 149.028125 kB.

Remark 15. In the final version of MQsoft, we useF2d ext = F2[α]/
(
αdext + α128 + α3 + α + 1

)
to

speed up the field modular reduction (Section 9.2.4).

8.2.4 Corrected Parameter Sets for a Security of 2256 (Level V)
The original DualModeMS256 scheme usesdext = 544 and ∆ = v = 32. However, the correction
of an error in [83, Table 13] implies∆ + v = 54 instead of 64. So, we update parameters follow-
ing the methodology of Section 7.7 (Table 7.36). The lower number of monomials in the inner
public-key allows to decrementν (Equation (3.3)). We note that the security level of the original
DualModeMS256 scheme is not impacted by the error.

We chooseD = 129, dext = 540, ∆ = 28 and v = 26. This gives m = 512, nvar = 566 and
λ = 256. The extension field is defined asF2d ext = F2[α]/

(
αdext + α9+1

)
. For Inner.DualModeMS256,

this gives a public-key of 10269.568 kB and a signature of 566 bits.
For the outer layer, we chooseα = 1 , σ = 256, τ = 2 18, κ = 20, ν = 51 and δ = 5 . The extension

field is defined asF2κ = F2[α]/
(
ακ + α3 + 1

)
. For DualModeMS256, this gives a public-key of 2048

bytes and a signature of 145.88175 kB.

133

8.3 Design Rationale
The main design rationale of DualModeMS is to propose SBP [157] (Chapter 3) as amode of op-
erations for multivariate schemes (Chapter 2). In order to demonstrate the drastic effect of SBP
on public-key sizes, we tailored a specificinner multivariate-based scheme. Inner.DualModeMS is
a HFEv--based scheme [133, 110, 134] since [157] identified that such a family is well suited in the
context for SBP.

The design of Inner.DualModeMS follows from the analysis performed forGeMSS (Chapter 7), a
HFEv--based scheme, proposed in [48]. The SBP imposes to have a scheme without the iterative
procedure proposed inGeMSS (Sections 7.1.3 and 7.1.4). It is then rather natural (Equation (7.3))
to take the number of equationsm equals the double of the security level ofInner.DualModeMS. We
then use the methodology proposed inGeMSS (Section 7.7 and Tables 7.34, 7.35 and 7.36) to derive se-
cure parameters. A signature of SBP requires generating many signatures fromInner.DualModeMS.
This leads toward the choice of a smallD = 129 to make the signature process ofInner.DualModeMS
efficient. We detail these choices in Section 8.5.

8.4 Detailed Performance Analysis

8.4.1 Time
Here, we consider the parameters ofDualModeMS128. The implementation submitted to NIST does
not support DualModeMS192 and DualModeMS256v1 . We refer to Section 7.5 about experimental
conditions. The only difference is that the time measurements are obtained on LaptopS with Turbo
Boost enabled. Here are our performance results:

• For the reference implementation, we do not give measurements. We estimate that the keypair
generation requires several days to be achieved.

• For the optimized implementation, the keypair generation takes 797 seconds, the time to sign
is 2.31 seconds, and the verification takes 2.69 milliseconds.

• For the additional implementation, the keypair generation takes 552 seconds, the time to sign
is 2.05 seconds, and the verification takes 2.84 milliseconds.

Since the submission ofDualModeMS to the NIST PQC standardization process, we have run the
additional implementation on LaptopS by disabling Turbo Boost. The keypair generation takes 1990
gigacycles (708 seconds), the time to sign is 7870 megacycles (2.80 seconds), and the verification
takes 9.87 megacycles (3.51 milliseconds).

implementation Turbo Boost key gen. sign verify
optimized enabled 797 s 2.31 s 2.69 ms

additional enabled 552 s 2.05 s 2.84 ms
disabled 708 s 2.80 s 3.51 ms

Table 8.1: Performance ofDualModeMS128 at the first round of the NIST PQC standardization
process. We use a Skylake processor (LaptopS).

134

8.4.2 Time (Updated)

In [84], we extendedMQsoft (Chapter 9) to support DualModeMS192 and DualModeMS256v1 . We
also improved the inner layer, which mainly impacts the performance of the dual signing process.
We report the time measurements in Table 8.2. They are obtained in the conditions described in
Section 6.2.

scheme key gen. sign verify
DualModeMS128 1 900 000 5 530 10.0
DualModeMS192 6 860 000 18 900 18.1

DualModeMS256v1 17 300 000 95 900 30.4

Table 8.2: Number of megacycles for each cryptographic operation ofDualModeMS with the version
of MQsoft used in [84]. We use a Skylake processor (LaptopS). Turbo Boost is disabled.

8.4.3 Time (Final Version)

Since the implementation used in [84], we have drastically improved the inner and outer layers. In
Table 8.3, we report our best time measurements. For the signing process, the largest part of the
speed-up is obtained by using the Frobenius map based on the modular composition (Section 9.3.5).
Sincedext is large compared toD , this method is very efficient. The remaining part of the speed-up
is due to our new multipoint evaluation of MAC polynomials in random points (Section 9.5.3). This
new evaluation also improves the verifying process. The keypair generation is drastically faster.
This is due to the multipoint evaluation of MAC polynomials in structured points via the additive
FFT (Section 9.5.2). Then, the parallel implementation of SHA-3 amplifies the obtained speed-up
(Section 8.1.3). This implementation also improves the verifying process.

scheme key gen. sign verify
DualModeMS128 3710 × 512 2800 × 1.97 0.643 × 15.6
DualModeMS192 6770 × 1010 8470 × 2.23 1.73 × 10.5
DualModeMS256 12700 × 1360 38000 × 2.53 3.95 × 7.69

Table 8.3: Number of megacycles (Mc) for each cryptographic operation ofDualModeMS with our
implementation, for a Skylake processor (LaptopS), followed by the speed-up between the Skylake
implementation from [84] versus our implementation. For example, 3710 × 512 means a per-
formance of 3710 Mc with our implementation, and a performance of3710× 512 = 1 900 000Mc
for [84]. Note that [84] is similar to the first round implementation of DualModeMS, except for the
signing process which is faster.

8.4.4 Space

In Table 8.4, we present the theoretical sizes of public-key, secret-key and signature. The imple-
mentation does not optimize the size, so it explains the difference with theoretical sizes. For the
practical sizes of DualModeMS128, we have: public-key is 512 bytes, secret-key is 18038184 bytes,
signatures are 32640 bytes. In Section 8.6.4, we propose a technique to decrease the secret-key size.

135

scheme (λ, σ, α, κ, log2(τ), ν, δ) |pk| (B) |sk| (kB) |sign| (kB)
DualModeMS128 (128, 64, 2, 21, 18, 18, 4) 512 18032.889625 32.002
DualModeMS192 (192, 96, 2, 20, 18, 33, 5) 1536 29466.09075 79.41475

DualModeMS256v1 (256, 256, 1, 20, 18, 52, 5) 2048 44319.512 149.028125
DualModeMS256 (256, 256, 1, 20, 18, 51, 5) 2048 43819.936 145.88175

Table 8.4: Memory cost of DualModeMS. 1 kB is 1000 bytes.

8.5 Security and Selection of Parameters
In Section 7.7, we studied the security of the inner layer. In this part, we study the security of the
outer layer. We obtain rules for selecting security parameters. In particular, we prove in Section
8.5.3 that the generic attack against the inner layer can be avoided by increasing the number of inner
signatures, as if their generation was a Feistel–Patarin construction. In Sections 8.5.4 and 8.5.5, we
study the trade-off between signature size, public-key size and size public-key plus signature.

8.5.1 Existential Unforgeability against Chosen Message Attack
We consider the EUF-CMA property of DualModeMS. Both fundamental theorems are derived from
[157, 25]. Note that these theorems are more advanced than in Section 3.5.

Theorem 7. Let σ = 1 be the number of signatures ofInner.DualModeMS included in a signa-
ture of DualModeMS. If there is an adversary A against the EUF-CMA property of DualModeMS
in time T with Q random oracle queries (respectivelyQ̃ quantum random oracle queries) and
with success probabilityε , then there exists an adversaryB A against the EUF-CMA property of
Inner.DualModeMS in time O(T) with success probability at least

ε − (Q + 1) · q−α − (Q + 1) ·

(⌈ N
κ

⌉
− 1

τ

) ν

− (Q + 1) · 2τ − 2δ

22λ (8.1)

in the classical random oracle model, and respectively at least

ε −Θ
((

Q̃ + 1
) 2
· q−α

)
−Θ

((
Q̃ + 1

) 2
·

(⌈ N
κ

⌉
− 1

τ

) ν)

−Θ

((
Q̃ + 1

) 2
· 2τ − 2δ

22λ

)

in the quantum random oracle model.

Here, we consider aλ-bit classical security level and a λ
2 -bit quantum security level. Theorem 7

provides a guidance for choosing the various parameters involved inDualModeMS. The last term in
(8.1) corresponds to the probability of finding a second preimage for one of the(2τ − 2δ) nodes of
the Merkle tree. We generalize the original result of [157, 25] which have consideredδ = 0 . The
third term in (8.1) is the probability that an invalid set of polynomials h ′ ∈ Fq[x1, . . . , xn var]α passes
the test of the dual verifying process (Algorithm 11). Thus, we need to choose the parameters such
that: (⌈ N

κ

⌉
− 1

τ

) ν

6 2−λ . (8.2)

136

When σ = 1 , Theorem 7 impliesα · log2(q) > λ. Otherwise, Theorem 7 is meaningless. The security
of the SBP transform relies then on a new hard problem, so-calledApproximate PoSSo (APoSSo)
problem (Section 4.5), that is defined below.

Problem 4. Approximate PoSSo (APoSSo(q, σ, m, nvar, D, r)) . Let q, m, nvar, D, σ and r be non-
negative integers such thatr < min(σ, m). Given p a degree-D multivariate polynomial system
in Fq[x1, . . . , xn var]m and y1, . . . , yσ in Fm

q , the problem is to find vectorsx1, . . . , xσ in Fn var
q such

that the dimension of the vector space generated byp(x1)− y1, . . . , p(xσ)− yσ is less or equal tor .

Under the assumption that APoSSo is hard for a fixed σ and r , we obtain Theorem 8.

Theorem 8. If there is an adversary A against the EUF-CMA property of DualModeMS in time T
with Q random oracle queries (respectivelyQ̃ quantum random oracle queries) and with success
probability ε , and if APoSSo(q, σ, m, nvar, D, r) is hard, then there exists an adversaryB A against
the EUF-CMA property of Inner.DualModeMS in time O(T) with success probability at least

ε − (Q + 1) · q−α ·(r +1) − (Q + 1) ·

(⌈ N
κ

⌉
− 1

τ

) ν

− (Q + 1) · 2τ − 2δ

22λ

in the classical random oracle model, and respectively at least

ε −Θ
((

Q̃ + 1
) 2
· q−α ·(r +1)

)
−Θ

((
Q̃ + 1

) 2
·

(⌈ N
κ

⌉
− 1

τ

) ν)

−Θ

((
Q̃ + 1

) 2
· 2τ − 2δ

22λ

)

in the quantum random oracle model.

Thus, we need to chooseσ > r and m > r such that APoSSo is hard for small values ofr > 0, i.e:

r <
⌈

λ
α · log2(q)

⌉
. (8.3)

The hardness ofAPoSSo is discussed in Chapter 10. Some classical attacks were presented in Section
4.5. In Section 8.5.2, we chooseα and σ for practical parameters.

8.5.2 Approximate PoSSo and Selection of Parameters
For σ > 1, we need to assume the hardness ofAPoSSo for r respecting Equation (8.3). Indeed,
if the best attack against APoSSo is the exhaustive search from Section 4.5, then we repeat this
attack on averageqα ·r times to break the dual mode, requiring at leastqm +(α −1) ·r evaluations of p
(or Θ

(
q1

2 ·(m +(α −1) ·r)
)

for the quantum exhaustive search). This attack is more expensive than to
break the inner layer. Therefore, the initial security is not impacted.

For our parameters, α equals 1 or 2, which minimizes the signature size. Precisely,r is strictly
bounded by σ equals 64, 96 and 256 respectively for the three parameter sets proposed in Section
8.2. We make the assumption thatAPoSSo is hard for σ =

⌈
λ

α ·log 2 (q)

⌉
. It can also be mentioned that

APoSSo is related to the so-calledGeneralized MinRank ([80], Problem 7). Given a matrix whose
coefficients are multivariate polynomials, the goal is to find an assignment of the variables that
makes the rank of the matrix smaller than a given rank. Thus, we have a problem which is in some
sense harder than the Kipnis–Shamir attack described in Section 4.6.3.APoSSo is Generalized
MinRank with σ · nvar variables, a matrix of size σ × m and a target rank r (Chapter 10). [80]
provides then the degree of regularity for solving the corresponding determinantal system.

137

8.5.3 Safe Extension of the Dual Mode for Vulnerable Inner Layers
The Feistel–Patarin construction (Section 4.2) is not compatible with the SBP transform. So, we
designedDualModeMS without using such a construction, i.e. nb_ite = 1 in the inner layer. This
implies m · log2(q) > 2λ . In this section, we show that by slightly increasing σ, we can apply the
SBP transform on GeMSS by setting nb_ite to four in the inner layer. The main idea is to remark
that a generic attack on σ signatures is similar to an attack on nb_ite signatures. If both attacks are
identical, then by taking σ+ nb_ite−1 inner signatures, an adversary can break at most nb_ite−1 of
them and we obtain the original security. In practice, the forgery of nb_ite inner signatures among
σ + nb_ite − 1 is slightly easier than among nb_ite inner signatures. We introduce Theorem 9 to
evaluate the cost of this attack. Then, we obtain by Corollary 1 that generating σ + nb_ite inner
signatures instead ofσ seems enough to be immune against this new generic attack.

Theorem 9. Let x ∈ J1, σK be an integer, andP = `
qm ∈

(
0, 1

]
. If the inner layer is a MI-based

signature scheme (without the Feistel–Patarin construction, and during the verifying process, the
evaluation of p has to be compared to a unique digest for a fixed document), and ifσ is negligible
against P−1, then at least x inner signatures of the outer layer can be forged in approximately

` = q
x

x +1 ·m ·
(

σ− 1
x − 1

) − 1
x +1

(8.4)

evaluations of the inner public-key, with a memory cost of̀ (m + nvar) log2(q) bits. The number of
digests required is` + ` ·P ·

(
σ− x + 1 + (x − 2)

(
1− (1−P)σ−x +1))

6 ` + ` ·P · (σ− 1). When σ is
not negligible againstP−1, Equation (8.4) is only a lower bound on the cost of this generic attack.
Note that the generic attack is not completely balanced since the number of digests is greater than` .

Proof. The proof is similar to this of Lemma 4. Here, we extend the generic attack for an adversary
forging x 6 σ inner signatures instead ofx = σ.

Assume that an adversary uses a generic attack to generate an outer signature such thatx
among the σ inner signatures are valid. Then, he can proceed as follows. He starts by building
an inversion table of ` elements. Since the hash function is modelized as a random oracle, this
implies that the probability of inverting the public-key is P = `

qm . Then, he iterates the following
process. He chooses a document, and tries to sign it as one of theσ inner signatures. If he fails,
the document is changed. Else, the adversary knows one valid inner signature. Thus, he keeps
the current document, and tries to forge at leastx − 1 inner signatures from the σ− 1 remaining
signatures. Since the hash function is modelized as a random oracle (note that once the first
signature is found, the other digests are fixed and independent), this event occurs with probability∑ σ−1

i = x −1
(σ−1

i

)
P i (1− P)σ−1−i . We can write this probability in the form P x −1 ·

(σ−1
x −1

)
· S, for

S =
σ−x∑

i =0

(
x − 1 + i

i

) −1

·
(

σ− x
i

)
· P i · (1− P)σ−x −i 6

(
P + (1 − P)

) σ−x .

So, this event has to be repeated
(
P x −1 ·

(σ−1
x −1

)
· S

) −1 times on average to succeed at leastx − 1
forgeries. Now, we balance the cost of the inversion table and the cost of forging at leastx inner
signatures, by solving:

` =
(

qm

`

) x −1

·
(

σ− 1
x − 1

) −1

· S−1 ·

((
qm

`

)
+ σ− x + 1 + (x − 2)

(
1− (1− P)σ−x +1

))

. (8.5)

138

Here, we consider that if the adversary fails to forge at least one signature amongσ− x + 1 , then
he does not try to forge the x − 2 remaining signatures. We multiply by ` x in Equation (8.5),
then we apply the (x + 1) -th root. Since we assume thatσ is negligible againstP−1, we obtain
approximately:

` = q
x

x +1 ·m ·
(

σ− 1
x − 1

) − 1
x +1

· S− 1
x +1 ,

which coincides with the announced result whenS = 1 . For x = 1 and x = σ, S = 1 and we obtain
the cost of the standard generic attack (Section 4.2).

Now, we show thatS is close to 1. We lower boundS
1

x +1 by (1−P)
σ −x
x +1 > 1−s, for s =

⌈ σ−x
x +1

⌉
·P .

We obtain that:
1 6 S− 1

x +1 6 1 +
s

1− s
.

Therefore,
∣∣∣S− 1

x +1 − 1
∣∣∣ 6 ε for ε > 0. Thus, we have that if s < σ is negligible againstP−1, then

S− 1
x +1 is close to 1. �

Corollary 1. Let x > 1 be the smallest integer such that

q
x

x +1 ·m ·
(

σ + x − 2
x − 1

) − 1
x +1

> 2λ . (8.6)

If the inner layer is a MI-based signature scheme, having aλ-bit security level except against the
generic attack, and if Theorem 9 describes the best generic attack against the outer layer, then the
SBP transform is safe by taking σ + x − 1 inner signatures, where σ is the number of required
signatures for a safe outer layer based on a safe inner layer (including a safe choice ofnb_ite).

Proof. Assume that an adversary wants to generate at leasty > 1 valid inner signatures among
the σ + x − 1 inner signatures. Since the inner layer is safe except against the generic attack, the
adversary has to use the generic attack. We assume that Theorem 9 provides the best generic attack
against the outer layer. By applying Equation (8.4) with y instead of x and σ + y − 1 instead of
σ, we obtain the left part of Equation (8.6) (with y instead of x). This implies that if y > x, the
attack necessarily fails. If y is chosen strictly smaller than x, the generic attack can be performed.
Then, the y forged signatures only impact the probability of passing the verification ofσ + x − 1
inner signatures with the derived public-key (cf. Figure 3.2). By removing thesey signatures, we
obtain a dual mode having σ + x − 1− y > σ inner signatures, immune against generic attacks,
where the document is fixed. Moreover, directly solvingAPoSSo(q, σ+ x−1, m, nvar, D, r) is harder
than solving APoSSo(q, σ, m, nvar, D, r) for r < σ . Therefore, we obtain a reduction to the original
security level of the outer layer (based on a safe inner layer). �

Corollary 1 allows to apply the SBP transform on signature schemes having a smaller public-key,
as GeMSS (Section 8.6.2). This improves drastically the performance of the dual mode. Indeed, by
taking a smaller m, we decreasenvar and soN , which is quadratic in nvar. This directly decreases
the size of inner signatures, polynomials from the derived public-key and evaluations of̂p, as well
as the probability that an invalid set of polynomials passes the PIT (Equation (8.2)). So, ν can be
chosen smaller for fixedκ and τ . Smaller parameters imply faster cryptographic operations.

However, Corollary 1 cannot be coupled to the use of salt (e.g. Section 7.6.2) without drastically
increasing x or m. Theorem 9 requires the verification of a unique digest for a fixed document,

139

whereas the concatenation of the document and a (variable) salt generates a large number of
possible digests. This would imply a standard generic attack (Section 4.2) independent of each
inner signature, requiring ` evaluations and ` hash values for` =

√
x · q1

2 ·m . Corollary 1 could be
used by replacing Equation (8.6) by ` > 2λ , in particular for small values of x (e.g. q or q2).

8.5.4 Minimizing the Size Public-Key Plus Signature
Initially, the authors of [157] took the Merkle root as a public-key. Then, they proposed to decrease
the size of the signature by taking shorter authentication paths, but by multiplying by 2δ the
public-key size. This process is described in Section 3.3. In this part, we show two options for
minimizing the size public-key plus signature. We can chooseδ minimizing it (option 1). Then we
can modify this option to decrease the public-key size (option 2). For the first option, we introduce
Lemma 6.

Lemma 6. δ = dlog2(ν)e ∈ N minimizes the size public-key plus signature of the outer layer.

Proof. On the one hand, the public-key contains2δ digests. On the other hand, the signature
contains ν ∈ N∗ authentication paths of log2(τ)−δ digests. The value ofδ which minimizes the size
of both is given by the minimum of f (δ) = 2 δ − δν. We compute it by looking when the derivative
of f is equal to zero,i.e. we solve:

ln(2) · 2δ − ν = 0 .
Let u ∈ R∗

+ be the solution of the previous equation. We have thatblog2(ν)c < u < dlog2(ν)e + 1 .
Moreover, f is continuous, decreasing beforeu and increasing after. So, we have three integers
which could minimize f . We conclude this proof by comparing f

(
blog2(ν)c

)
, f

(
dlog2(ν)e

)
and

f
(
dlog2(ν)e + 1

)
. We have:

{
f

(
dlog2(ν)e

)
= f

(
blog2(ν)c

)
+ 2 blog 2 (ν)c − ν,

f
(
dlog2(ν)e + 1

)
= f

(
dlog2(ν)e

)
+ 2 dlog 2 (ν)e − ν.

We know that 2blog 2 (ν)c 6 ν and 2dlog 2 (ν)e > ν, so δ = dlog2(ν)e is the integer which minimizes f .�
For the second option, we propose a technique which allows to decrease the public-key size with

a slight impact on the size public-key plus signature, when1 6 δ 6 dlog2(ν)e. Let δ′ be an integer
in J0, δ− 1K. We propose to add the public-key in the signature, then take2δ′

nodes of the Merkle
tree as a new public-key. Compared to the possibility to takeδ = δ′, the user traces shorter Merkle
paths. In return, he verifies that the old public-key of 2δ nodes leads to the2δ′

nodes of the new
public-key. With this process, we remark that δ only impacts the signature size. So, we can take
the value of δ which minimizes the size of the new signature. As explained previously (Lemma 6),
this value is dlog2(ν)e. For the new public-key of size2δ′ · 2λ bits, we can minimize its size by
setting δ′ = 0 . However, someone who would also wish to accelerate the verifying process should
chooseδ′ > 0.

With the first option, when we minimize the size public-key plus signature (i.e. δ = dlog2(ν)e),
the latter is:

σ · |origin.sm| + (α ·N + ν ·m · κ) · log2(q) +
(

2dlog 2 (ν)e + ν ·
(
log2(τ) − dlog2(ν)e

))
· 2λ bits. (8.7)

With the second option, we can choose to have a smaller public-key of size2δ′ · 2λ bits. In this
case, we keepδ = dlog2(ν)e, and we just modify the verifying process by checking if the2δ-element
Merkle floor leads to the new public-key. The signature size is also given by Equation (8.7).

140

8.5.5 Smaller Signatures

During the outer signing process, we remark that certain nodes from the Merkle tree appear several
times, in particular for the nodes close to the root. These nodes are redundant. During the outer
verifying process, other nodes are redundant because we compute them thanks to theν evaluations.
The first traced paths provide useful nodes for verifying other evaluations. Each redundant node
allows to speed up the verification, since redundant nodes should be computed only one time.
The outer cryptographic operations could be easily modified to speed up the verifying process and
minimize the number of necessary digests. Lemma 7 provides the largest signature size with this
consideration.

Lemma 7 (Maximum number of nodes required to verify the Merkle leaves).
Let τ > 1 be a power of two,ν ∈ J1, τ K, x ∈ J1, τ

2 K and y ∈ J0, xK be integers such thatν = x + y.
If ν distinct nodes in the largest floor of a Merkle tree of size2τ − 1 are known, if y is the number
of known couples of sibling nodes in this floor, and if the root of the Merkle tree is known, then
the maximum number of new nodesz that requires the verification of the ν nodes by tracing their
corresponding path until the root is less or equal toτ

2 − y.

Proof. We use a proof by induction onlog2(τ) > 1. For τ = 2 , we have two possibilities. Ifν = 1 ,
then y = 0 and the verification requires the sibling node. Else,ν = 2 and we know a node and its
sibling node, soy = 1 and no new node is required. In both cases,z = τ

2 − y.
Now, we assume that Lemma 7 is true for a tree of size2τ − 1, and we consider a tree of size

4τ − 1. We study z in function of the τ -element floor. Let x ∈ J1, τ K be the number of distinct
nodes of this floor that we have to compute for the verification of theν nodes. This implies that
the 2τ -element floor hasν = x + y known nodes fory ∈ J0, xK, and requires storingx−y new nodes
for this floor. Note that y is the number of known couples of sibling nodes in the2τ -element floor.
Let x ′ ∈ J1, τ

2 K and y′ ∈ J0, x ′K be integers such that x = x ′ + y′. By induction hypothesis, we
obtain z 6 τ

2 − y′ + x − y = τ
2 + x ′ − y. Thus, z 6 τ − y. �

For any outer signature, Lemma 7 allows to decrease the number of digests corresponding to
the n + 1 smallest floors (which correspond to a tree of size2 ·2n −1) of the Merkle tree. For δ < n ,
we can replaceν · (n − δ) digests by at most 2n −1 digests in the outer signature. The values ofn
minimizing the signature size aremin

(
blog2(ν)c + 2 , log2(τ)

)
and min

(
dlog2(ν)e + 1 , log2(τ)

)
. For

n = dlog2(ν)e + 1 6 log2(τ), we obtain the following signature size:

σ · |origin.sm|+(α ·N + ν ·m ·κ) · log2(q)+
(

2dlog 2 (ν)e + ν ·
(
log2(τ)−dlog2(ν)e−1

))
·2λ bits. (8.8)

In this case, Lemma 7 saves at leastν−2δ digests in the size public-key plus signature compared
to the first option, and saves at leastν digests in the outer signatures compared to the second option
(defined in Section 8.5.4). The size of the public-key is2δ digests for any δ ∈

q
0, dlog2(ν)e

y
. We

can choose to simplify the cryptographic operations by removing redundant digests only from the
min

(
dlog2(ν)e + 1 , log2(τ)

)
− δ− 1 smallest floors (the δ + 1 smallest floors are removed), or we

can remove all redundant digests for decreasing the signature size on average. In both cases, the
signature size is upper bounded by Equation (8.8). The verifying process requires computing at
most 2dlog 2 (ν)e − 2δ + ν ·

(
log2(τ) − dlog2(ν)e

)
digests from 4λ-bit sequences.

141

8.6 Design
In [83] (Section 8.2), we proposed three sets of parameters forDualModeMS. In this section, we
propose new parameters:

• In Section 8.6.1, we setD to 17 to accelerate the signing process. We obtainRedDualModeMS.

• In Section 8.6.2, we apply the technique from Section 8.5.3. We remark that for our param-
eters, if nb_ite > 1 is chosen to avoid the generic attack against the inner layer, then we can
set nb_ite = 1 if we take σ + nb_ite inner signatures instead ofσ. Therefore, we can apply
the SBP transform to GeMSS and improve drastically both signature size and performance.

• Then, we propose security parameters for the dual mode ofRainbow in Section 8.6.3.

• Finally, we introduce a new parameter to control the trade-off between secret-key size and
performance of the signing process in Section 8.6.4.

In this part, we compress the inner secret-key ofHFEv--based schemes from a seed, as described in
Section 7.4.1. We use the technique from Section 8.5.5 which minimizes the size public-key plus
signature. We reach a public-key size of2λ bits by setting δ to zero. The signature size is given by
Equation (8.8). Performance measurements are available in Sections 8.7 and 9.6.3.

8.6.1 RedDualModeMS

In Section 7.8.2, we proposed a red version ofGeMSS. The idea is to set D to 17 to speed up
the signing process. We propose to apply this idea onDualModeMS. The obtained scheme is
called RedDualModeMS, and is described in Table 8.5. The parameters ofInner.RedDualModeMS are
extracted from Tables 7.34, 7.35 and 7.36. Forκ = 18, the field polynomial defining F2κ is the
degree-κ 9-ESP (i.e. α18 + α9 + 1), but could also be the degree-κ AOP (Section 5.3.4).

inner layer (λ, D, d ext, ∆ , v, nb_ite) |pk| (MB) |sk| (B) |sign| (bits)
Inner.DualModeMS128 (128, 129, 266, 10, 11, 1) 1.23 16 277

Inner.RedDualModeMS128 (128, 17, 268, 12, 12, 1) 1.26 280
Inner.DualModeMS192 (192, 129, 402, 18, 18, 1) 4.24 24 420

Inner.RedDualModeMS192 (192, 17, 404, 20, 19, 1) 4.30 423
Inner.DualModeMS256 (256, 129, 540, 28, 26, 1) 10.3 32 566

Inner.RedDualModeMS256 (256, 17, 540, 28, 29, 1) 10.4 569
outer layer (λ, σ, α, κ, log2(τ), ν, δ) |pk| (B) |sk| (MB) |sign| (kB)

DualModeMS128 (128, 64, 2, 21, 18, 18, 0) 32 18.0 31.9
RedDualModeMS128 (128, 128, 1, 18, 18, 19, 0) 18.0 28.7

DualModeMS192 (192, 96, 2, 20, 18, 33, 0) 48 29.4 79.3
RedDualModeMS192 (192, 192, 1, 18, 18, 34, 0) 29.5 71.8

DualModeMS256 (256, 256, 1, 20, 18, 51, 0) 64 43.8 143
RedDualModeMS256 (256, 256, 1, 18, 18, 53, 0) 43.9 141

Table 8.5: Size of the keys and signature of the inner and dual modes. We compress the inner
secret-key from a seed (Section 7.4.1).

142

8.6.2 Dual GeMSS

Here, we apply the idea from Section 8.5.3 onGeMSS. We choose nb_ite > 1 providing a safe inner
layer, then we remove the Feistel–Patarin construction in the inner layer when we use it in the
outer layer. For our practical values of m, we obtain that when σ = λ

α , x = nb_ite + 1 satisfies
Corollary 1. Thus, we obtain a very efficient dual mode of GeMSS (Table 8.6). The use of the dual
mode of GeMSS allows a faster signing process thanDualModeMS (since dext is smaller), as well as
smaller signature sizes (sincem and nvar are smaller). The signature sizes ofDual RedGeMSS are
between 1.38 and 1.51 times smaller than these ofRedDualModeMS. For κ = 19, the extension field
is defined asF2κ = F2[α]/ (ακ + α6 + α5 + α + 1) . For κ = 18, we refer to Section 8.6.1.

scheme (λ, σ, α, κ, log2(τ), ν, δ) |pk| (B) |sk| (MB) |sign| (kB)
Dual BlueGeMSS128 (128, 68, 2, 18, 18, 16, 0) 32 17.1 20.2
Dual RedGeMSS128 (128, 68, 2, 19, 18, 16, 0) 17.2 20.7
Dual BlueGeMSS192 (192, 196, 1, 18, 18, 29, 0) 48 26.4 49.5
Dual RedGeMSS192 26.5 49.7
Dual BlueGeMSS256 (256, 260, 1, 18, 18, 44, 0) 64 36.6 93.5
Dual RedGeMSS256 36.7 93.8

Table 8.6: Size of the keys and signature of the dual mode ofBlueGeMSS and RedGeMSS. We remove
the Feistel–Patarin construction in the inner layer.

8.6.3 Dual Rainbow

In Table 8.7, we propose new parameters for the dual mode ofRainbow (Section 2.4.3), calledDual
Rainbow. The parameters proposed in [25] (Section 3.6) target a 128-bit quantum security level
(and a 192-bit classical security level), whereas we consider aλ2 -bit quantum security level. We have
considered theRainbow schemes [64] submitted to the second round of the NIST PQC standard-
ization process, as well asRainbow-Ic which is supported by the second round implementation.
This choice allows to study the impact of q on the dual mode of Rainbow. The parameters and
sizes of the inner layer ofRainbow are described in Table 7.39 (Section 7.10). As in [25], we could
also propose the dual mode ofcyclic Rainbow to reduce the size of the outer signature (Section
3.6). This possibility is not supported by MQsoft (Chapter 9). In Section 9.6.3, we present the
performance ofDual Rainbow with MQsoft.

We defineF16 and F256 as in Section 7.4.9. Forκ = 5 , the extension field is defined asF16κ =
F16[α]/ (ακ + α2 + 1) . For κ = 3 , the extension field is defined asF256κ = F256[α]/ (ακ + α + 1) .

scheme (λ, σ, α, κ, log2(τ), ν, δ) |pk| (B) |sk| (MB) |sign| (kB)
Dual Rainbow-Ia (128, 32, 1, 5, 18, 16, 0) 32 17.0 14.1
Dual Rainbow-Ic (128, 16, 1, 3, 18, 17, 0) 32 17.1 15.6

Dual Rainbow-IIIc (192, 24, 1, 3, 18, 31, 0) 48 26.4 39.7
Dual Rainbow-Vc (256, 32, 1, 3, 18, 47, 0) 64 36.5 75.0

Table 8.7: Size of the keys and signature of the dual mode ofRainbow.

143

8.6.4 Performance with a Smaller Secret-Key

In this section, we introduce γ ∈ N, a new parameter corresponding to the number of floors, from
the leaves of the Merkle tree, that we remove from the secret-key. This divides the size of the tree
(approximately) by 2γ . In return, we generate again these floors during the signing process. So, this
process only impacts the signing process:ν ·2γ evaluations ofm MAC polynomials, ν · (2γ −1) digests
from (mκ log2(q)) -bit sequences andν · (2γ −1− γ) digests from4λ-bit sequences are required. For
small values ofγ, we obtain interesting trade-offs between size of secret-key and performance of the
signing process (Table 8.8).

γ
0 1 2 3 4 5 6

DualModeMS128
secret-key (MB) 18.0 9.62 5.43 3.33 2.28 1.76 1.49
signing process 1.00 1.00 1.00 1.01 1.02 1.04 1.09

RedDualModeMS128
secret-key (MB) 18.0 9.65 5.45 3.36 2.31 1.78 1.52
signing process 1.00 1.05 1.14 1.33 1.67 2.38 3.80

Dual Rainbow-Ia
secret-key (MB) 17.0 8.63 4.44 2.34 1.29 0.766 0.504
signing process 1.00 1.21 1.63 2.43 4.03 7.21 13.6

Dual Rainbow-Ic
secret-key (MB) 17.1 8.71 4.51 2.42 1.37 0.845 0.583
signing process 1.00 1.27 1.81 2.85 5.00 9.22 17.7

Table 8.8: Performance of the dual mode in function ofγ. For the signing process, we give the
slow-down factor compared toγ equals 0. We use a Skylake processor (LaptopS), withPCLMULQDQ
and the AVX2 instruction set. Turbo Boost is not used.

Remark 16. The inner secret-key ofRainbow can be generated from a small seed (Section 7.4.1),
permitting to decrease the size of the dual secret-key. As for theHFE-based schemes, the secret-key
can be decompressed one time forσ inner signatures.

8.7 Comparison of DualModeMS to Other Signature Schemes

In Table 8.9, we compareDualModeMS and Dual Rainbow to the other second round signature
schemes of the NIST PQC standardization process.GeMSS, picnic and SPHINCS+ are currently
alternate candidates of the third round, whereasMQDSS [55] was not selected for the third round.
Clearly, Dual Rainbow is very competitive compared to the other second round schemes. It has the
fastest verifying process, and the signing process is one of the fastest. The compromise between
speed and signature size seems optimal. Moreover, the inner layer ofDual Rainbow is currently
a finalist candidate of the third round (except Rainbow-Ic that we take from the first round).
DualModeMS would be competitive by using the dual mode ofGeMSS as proposed in Section 8.6.2.
The secret-key sizes are very large, but can be drastically reduced by settingγ > 0 (Section 8.6.4).

144

scheme key gen. sign verify |pk| (B) |sk| |sign| (kB)
DualModeMS128 3740 2800 0.684 32 18 MB 31.9

RedDualModeMS128 3790 136 0.801 32 18 MB 28.7
Dual Rainbow-Ia 998 3.20 0.296 32 17 MB 14.1
Dual Rainbow-Ic 995 5.54 0.338 32 17.1 MB 15.6

picnic-L1-FS 0.0170 5.87 4.61 32 16 B1 34.0
picnic-L1-UR 0.0170 7.03 5.66 32 16 B1 54.0
picnic2-L1-FS 0.0167 254 115 32 16 B1 13.8

SPHINCS+ -SHAKE256-128s-s 141 2260 4.53 32 32 B1 8.08
SPHINCS+ -SHAKE256-128s-r 276 4100 8.40 32 32 B1 8.08
SPHINCS+ -SHAKE256-128f-s 4.47 145 10.0 32 32 B1 17.0
SPHINCS+ -SHAKE256-128f-r 8.83 270 20.4 32 32 B1 17.0

MQDSS-31-482 0.916 4.49 2.80 46 16 B 28.4
PKP-DSS-128 0.0775 2.67 1.01 57 16 B 20.9

1 The public-key is used during the signing process, but its size is not included in the secret-key size.
2 Version 2.1.

Table 8.9: Comparison of the dual mode to the second round candidates (exceptPKP-DSS [23]), for
a 128-bit security level. Here, the dual mode minimizes the size of the public-key (δ = 0 , cf. Section
8.5.5). The cryptographic operations are measured in megacycles. We use a Skylake processor
(LaptopS), with PCLMULQDQ and the AVX2 instruction set. Turbo Boost is not used.

8.8 Advantages and Limitations
The SBP construction allows to greatly decrease the public-key size ofInner.DualModeMS and
Rainbow. In return, the signature size is larger, but much smaller than the inner public-key size.
The secret-key size is much bigger, but can be reduced. The time to sign/verify is larger, but
this provides very interesting trade-offs for multivariate schemes. The obtained schemes are very
competitive with the NIST candidates. Dual Rainbow is faster than DualModeMS and has smaller
signature sizes, but the use ofDual GeMSS allows to reduce this gap. Finally, the SBP construction
can be applied to other categories of signature schemes [25] such as code-based schemes and lattices-
based schemes.

145

Chapter 9

MQsoft – a Fast Multivariate
Cryptography Library

Here, we present software tools [84] that allow the efficient implementation of HFE-based schemes
(using arithmetic in F2d ext). In particular, our software tools allow to speed up theGeMSS [50] (Chap-
ter 7), Gui [62] andDualModeMS [83] (Chapter 8) signature schemes, which are candidates submitted
to the NIST post-quantum cryptography standardization process [128]. The advantage ofF2d ext is
that each element can be represented as a vector of bits, which corresponds to the architecture
of binary computers and can be naturally improved by vector instructions (Section 6.1.3). The
signature generation requires arithmetic inF2d ext [X], and its implementation is already provided
by various libraries. Among the best, NTL [153] (Section 6.2.1) provides high-quality implementa-
tions of state-of-the-art algorithms. But these algorithms are not dedicated to sparse polynomials.
Moreover, the implementations are not constant-time (Section 6.3) and so are vulnerable to timing
attacks (Section 4.7). For these reasons, we need to adapt the algorithms used. We have chosen
to create a new library, which is based on constant-time arithmetic inF2d ext . Unlike NTL, which
offers a general implementation, the value ofdext can be fixed in the code of our library, allowing
a more efficient arithmetic. Moreover, we exploit the sparse polynomial structure to improve the
performance. More generally, our implementation uses the Intel vector instructions (Section 6.1.3)
to obtain interesting speed-ups.

Our library supports DualModeMS [83] (Chapter 8), which is one of the candidates of the NIST
PQC standardization process. By improving the implementation of HFE-based schemes, we au-
tomatically improve the implementation of DualModeMS. The main results of this chapter were
published in [84]. Compared to [84], we propose crucial improvements. Firstly, we improve our
implementation of polynomial multiplication (Section 9.3.2), in order to add an efficient modular
composition (Section 9.3.4), used to speed up the Frobenius map (Section 9.3.5). Secondly, we
implement the constant-time GCD of [19] (Section 9.3.6). Thirdly, the performance results ofHFE
(Section 9.6.1) are based on an efficient keypair generation via evaluation-interpolation (Section
7.4.7). Fourth, we propose more implementations of arithmetic inF2d ext , including Haswell proces-
sors. Finally, we introduce new algorithms (Sections 9.4.5 and 9.5) to improve the performance of
all cryptographic operations of DualModeMS and Dual Rainbow (Section 8.6.3).

147

Evaluation of multivariate quadratic systems. Many multivariate cryptosystems (Chapter
2) require evaluating a multivariate quadratic system to encrypt data or verify a signature (e.g.
[62, 50, 53]). Encryption uses secret data and should be performed in constant-time (Section 6.3),
whereas verification is a public process and does not have this constraint. InHFEv- signature
schemes (Section 2.4.1), the evaluation step is the main part of verification. Efficient implementa-
tions of evaluation were studied in [15, 51, 53, 56]. The authors of [15] proposed different strategies
for the evaluation over F2,F16 and F256. In [51], the evaluation overF31,F16 and F256 is vectorized
with SSSE3 instructions. In [53], the authors proposed to optimize the evaluation overF31 and F2
by evaluating the public-key equations one by one. Their implementation is vectorized with the
AVX2 instruction set. In [56], the authors presented a faster evaluation overF2 with the same in-
struction set. To do so, they used amonomial representation of the public-key: for each monomial,
the corresponding coefficients in each equation are stored together. We optimize the evaluation
with this representation to obtain new speed records.

Root finding of a HFE polynomial. The main part of the signature generation inGui and GeMSS
is to find the roots of a polynomial F over F2d ext with a specific form. Root finding (Section 5.4.8)
is a fundamental problem in computer algebra with various applications in discrete mathematics.
A survey of the main root finding methods can be found in [161]. Recently, the successive resultant
algorithm (SRA) [138] has been proposed to find the roots of a polynomial in small characteristic.
In [61], SRA has been extended to arbitrary finite fields. In particular, root finding is improved for
split and separable polynomials, when the cardinality of the multiplicative group is smooth.

In the case of theHFE polynomial F ∈ F2d ext [X], F has a sparse structure and its coefficients
are in a field of small characteristic. Moreover, the number of roots is generally small (it is almost
always less than ten for our parameters). The main challenge is to exploit the sparse structure ofF
to improve the complexity of the root finding: it should depend on the number of coefficients of F
and not on its degree. In practice, Berlekamp’s algorithm [161, Algorithm 14.15], which computes
GCD(F, X 2d ext −X mod F), is used. The most costly task is the computation ofX 2d ext mod F , also
called Frobenius map, and theHFE structure of F can be exploited during the modular reduction.
In [144], the authors proposed a method to compute the Frobenius map (Section 5.4.5) with multi-
squaring tables, which is interesting when the degree ofF is (approximately) smaller than dext. We
study how to implement the Frobenius map efficiently, optimizing as a function of the parameters.

Arithmetic in F2d ext . Arithmetic in F2d ext (Section 5.3) is a critical part of the root finding algo-
rithm, because all operations inF2d ext [X] require it, and is studied in [6, 5, 159, 30]. In particular,
multiplication in F2d ext is the most critical operation. This is a well-known task and is studied in
[41, 72, 121, 52]. Here, we choose to use thePCLMULQDQ instruction (Section 6.1.3) to obtain an
efficient implementation. This instruction computes the product of two binary polynomials, each
of degree strictly less than 64.

Organization of the Chapter and Main Results
We presentMQsoft [84]: an efficient library in C programming language forHFE-based schemes such
as GeMSS, Gui and DualModeMS. MQsoft is an improved version of theGeMSS additional implemen-
tation submitted to the NIST post-quantum cryptography competition [128]. Our library permits
to improve the fastest known implementations for GeMSS, Gui and DualModeMS. The performance
results are studied in Section 9.6. Table 9.1 summarizes the obtained speed-ups.

148

The structure of MQsoft is depicted in Figure 9.1 which summarizes the main tasks required
for each cryptographic operation. The critical part of an operation is represented by a plain arrow,
whereas less important operations are represented by dotted arrows.

Computation or
evaluation of F

(Sections 9.4.1 and 7.4.7)

Root finding over F2d ext
(Sections 9.3 and 9.3.7)

Evaluation of a MQ
system (Section 9.4)

Frobenius map
in F2d ext [X]

(Section 9.3.5)
GCD in F2d ext [X]

(Section 9.3.6) Split root finding over
F2d ext (Section 5.4.7)

Multiplication in F2d ext Inversion in F×
2d ext

(Section 9.2.6)
Multi-squaring in F2d ext

(Section 9.2.5)

Modular reduction in
F2 [x] (Section 9.2.3) Squaring in F2d ext Squaring in F2 [x]

(Section 9.2.1)

Multiplication in F2 [x]
(Section 9.2.2)

Keypair generation
(Sections 2.3.1 and 7.1.2)

Signing process
(Sections 2.3.2 and 7.1.3)

Verifying process
(Sections 2.3.3 and 7.1.4)

if v 6= 0

Figure 9.1: Dependencies between the different operations performed inMQsoft.

scheme key gen. sign verify
GeMSS128 19.6 × 6.03 608 × 2.09 0.106 × 1.57
GeMSS192 69.4 × 7.90 1760 × 1.83 0.304 × 1.47
GeMSS256 158 × 9.32 2490 × 2.16 0.665 × 1.76

FGeMSS(266) 53.7 × 8.22 44 × 2.90 0.0365 × 2.64
DualModeMS128 3710 × 537 2800 × 2.81 0.643 × 15.3

Gui-184 23.5 × 31.7 28.5 × 2.60 0.0712 × 1.89
Gui-312 116 × 41.9 308 × 2.53 0.161 × 1.85
Gui-448 356 × 91.7 5710 × 3.44 0.562 × 1.62

Table 9.1: Number of megacycles (Mc) for each cryptographic operation with our library for a
Skylake processor (LaptopS), followed by the speed-up between the best implementation provided
for the NIST submissions (Table 7.37) versus our implementation. For example, 19.6× 6.03
means a performance of 19.6 Mc withMQsoft, and a performance of19.6× 6.03 = 118 Mc for the
NIST implementations.

149

It is clear from Figure 9.1 that HFE-based schemes require an efficient implementation of arith-
metic in F2d ext [X] and so inF2d ext . This is studied in Section 9.2. We have implemented state-of-the-
art algorithms for arithmetic in F2d ext that use vectorization (SSE2 and AVX2) and the PCLMULQDQ
instruction to improve multiplication in F2d ext (Section 9.2.2). The multiplication is computed
with the schoolbook algorithm by block of 64 bits or with Karatsuba’s algorithm, in function of
the number of blocks and the processor used. WhenPCLMULQDQ is not available, MQsoft uses the
multiplication in F2[x] of the gf2x library (Section 6.2.1). MQsoft also proposes straightforward
algorithms to assure a constant-time implementation, but the performance could be improved. The
modular inverse is computed with the Itoh–Tsujii Multiplicative Inversion Algorithm (Section 9.2.6)
together with multi-squaring tables (Section 9.2.5).

To optimize the arithmetic in F2d ext , the choice ofdext has to be made before the compilation.
This permits the specialization of the implementation. The library is flexible and allows the choice of
any dext 6 576. F2d ext is built as F2 quotiented by an irreducible polynomial f of degreedext. When
it is possible, we choose an irreducible trinomial forf to accelerate the modular reduction (Section
9.2.3). The modular reduction by f is vectorized for trinomials such that the degree off − xdext is
strictly less than 128, and for the parameters of studied schemes. We have vectorized the modular
reduction by a pentanomial exclusively fordext ∈ {184, 312, 448, 544} (Section 9.2.4), because they
are the parameters ofGui and DualModeMS256v1 . Otherwise, the modular reduction is implemented
for pentanomials such that the degree off −xdext is strictly less than 33. For dext 6 576, 56% of the
finite fields can be created with an irreducible trinomial (cf. Section B.9). Our library vectorizes
modular reduction for 92% of these cases. We obtain approximately a speed-up of a factor of four
compared to the arithmetic in F2d ext of NTL.

In Section 9.4, the verifying process is accelerated via an efficient evaluation of multivariate
quadratic systems using AVX2 instruction set. We obtain new speed records for the constant-
time and variable-time evaluations of binary multivariate polynomials. To do it, we have chosen
to use the monomial representation as in [56]. We have stored MQ systems ofm equations in
F2[x1, . . . , xn var] as a pair (C, Q) ∈ F2m ×Mn var

(
F2m

)
, where Q is an upper triangular matrix such

that Qi,j corresponds to the termx i x j , and C is the constant term. Since the MQ systems will be
evaluated overF2, x2

i = x i and so, the linear term x i is stored with the term x2
i of Q. With this

representation, the evaluation in x ∈ Fn var
2 is computed asC + x ·Q · xT . For 256 equations in 256

variables overF2, our variable-time evaluation is 1.38 times faster than in [56]. To obtain this, we
use unrolled loops and a specific way to extract the termsx i . For the constant-time evaluation,
we obtain a performance similar to [56], which targets Haswell processors. However, on Skylake
processors, the evaluation can be faster by using vector instructions in a specific way, as explained
in Section 9.4.4. This method saves a factor 1.1 on Skylake (for 256 equations in 256 variables).

The core of the signing process is to find the roots of a univariateHFE polynomial F in F2d ext [X],
which has a special structure. In particular, F is in the following note:

∑

06j<i<d ext

2i +2 j 6D

A i,j X 2i +2 j
+

∑

06i<d ext

2i 6D

B i X 2i
+ C ∈ F2d ext [X].

Our goal is to exploit this structure to accelerate the root finding. We address this question in
Section 9.3. We have been able to tweak Berlekamp’s algorithm [161, Algorithm 14.15] to take
advantage of the sparse structure ofF .

150

When D > d ext, the computation of X 2d ext mod F is done with the repeated squaring algorithm
[161, Algorithm 4.8]. The core of this algorithm is to compute the modular reduction of the square
of an elementB ∈ F2d ext [X] by F . The classical Euclidean division ofB 2 by F requires computing
B 2−QF , whereQ is the quotient of this division. With a naive implementation, the multiplication
of Q by F costsO

(
D 2)

field multiplications. Using a sparse representation ofF , the multiplication
only costs O

(
D log2(D)2)

field multiplications.
So, with a sparse polynomial, the computation of the roots is faster. This suggests considering

sparseHFE polynomials. In Theorem 10, we prove that makingF more sparse improves the com-
plexity. BecauseF is a part of the secret-key, the nature of this change requires a new analysis of
security. We observe in practice that removing a small number of odd degree terms appears not to
affect the security. However, the security of this method has to be studied in depth. With Theorem
10, we can save 43.75% of the computations we would have done, by removing only three terms
having an odd degree inF . The general idea to makeF more sparse has already been proposed
in HFEBoost1, but independently of this, the proof of Theorem 10 (cf. Section 9.3.3) provides a
concrete method to improve the complexity. It has the advantage of being in constant-time because
the useless computations are known and so can be avoided.

Theorem 10. Let H be a HFE polynomial of degreeD in Fqd ext [x] where the s terms of highest
odd degree have been removed(0 6 s 6 dlogq(D)e), and let A ∈ Fqd ext [x] be a square of degree
at most 2D − 2. If D and q are even, then the computation of the classical Euclidean division
(Algorithm 37) of A by H can be accelerated by a factor(D − 1)/

(D
2 + bqdlog q (D)e−s−2c

)
.

When D < d ext, the strategy of [144] becomes more efficient for computing the Frobenius map.
The idea is to compute a lookup table ofX 2i mod F to accelerate the modular reduction. Thus,
the squaring modulo F is computed by multiplying its i -th coefficient by the element X 2i mod F
from the table for i ∈ J0, D − 1K. The authors of [144] also suggest doing several squarings in one
step, with multi-squaring tables. In Section 5.4.5, we describe an explicit strategy for doing this
efficiently, and how to choose the number of squarings to perform before the modular reduction. In
Section 9.3.5, we show the results obtained by exploiting theHFE structure of F when it is possible.

The performance of both strategies described above depends on the required number of field
multiplications. The accurate number of multiplications of each method which is given in Section
5.4.5 allows to choose the best strategy as a function of the parameters. Finally, whenD is small
enough compared todext, both previous strategies can be embedded with the use of modular
composition (Section 9.3.4). This method generates speed-ups which are proportional to the gap
betweenD and dext.

9.1 Data Structure
Here, we describe the data structure used to store elements ofF2d ext and F2d ext [X]. This represen-
tation is crucial for the efficiency of our implementation. This is especially true for binary fields
since operations inF2 can be naturally vectorized (Section 5.3.1). Arithmetic in F2d ext [X] is used
during the root finding of a HFE polynomial. To be efficient, it is important to distinguish dense
polynomials which appear during the computation of the Frobenius map and the GCD, from aHFE
polynomial which is used to reduceX 2d ext − X . We can notice that the HFE polynomial is sparse
since it only has K = O

(
log2(D)2)

non-zero coefficients.
1https://www-polsys.lip6.fr/Links/hfeboost.html

151

https://www-polsys.lip6.fr/Links/hfeboost.html

Representation of elements in F2d ext . The field F2d ext is defined asF2[α]/ (f (α)) with f being
an irreducible polynomial of degreedext in F2[x]. We have chosen the polynomial basis (Section
5.2.1). An element ofF2d ext is represented by a polynomial inF2[α] of degree at mostdext− 1. The
coefficients are stored as a vector of bits, requiring

⌈ dext
w

⌉
words, wherew is the word size (in bits).

The j -th bit of the i -th word is the coefficient of the term of degree wi + j , for i ∈ J0,
⌈ dext

w

⌉
− 1K

and j ∈ J0, w − 1K. It is set to zero when (wi + j) > dext.

Example 1 (Storing a binary polynomial). Let w = 64 and P = α36 + α4 ∈ F240 . To simplify
the notations, we represent vectors of bits as 64-bit integers.P is stored as0x0000001000000010.
In particular, the bits from 37 to 63 are set to zero.

Representation of dense polynomials in F2d ext [X]. An element of F2d ext [X] is represented by
its degree d and a vector of d + 1 coefficients. The coefficients are stored from lower to higher
degree of the corresponding terms in an array. The degree is stored in a local variable, except for
the implementation of the fast GCD in Section 9.3.6, because it requires matrices inM2

(
F2d ext [X]

)
.

In this case, we use aC structure to store the degree and the pointer toward the array of coefficients.

Example 2 (Storing a dense polynomial). Let P = X 8 + αX 7 +(α+1) X 6 + X 5 + αX ∈ F4[X].
P is stored as8, (0, α, 0, 0, 0, 1, α + 1 , α, 1).

Representation of HFE polynomials in F2d ext [X]. In HFEv-based schemes, theHFEv polynomial
is a part of the secret-key. During the signature generation (cf. Section 2.3.2), the vinegar variables
of the HFEv polynomial are evaluated to obtain a HFE polynomial. Its degree D is a parameter of
security and is assumed to be known. It is defined by theC directive #define. A HFE polynomial in
F2d ext [X] is represented as a vector of coefficients where only termsX 0, X 2i

and X 2i +2 j
are stored.

It is chosen monic and so the leading term is not stored. IfP is in F2d ext [X], we denote byPHFE its
HFE representation.

Example 3 (Storing a HFE polynomial). Let P = X 16 + αX 12 + (α + 1) X 10 + αX ∈ F4[X].
PHFE is stored as(0, α, 0, 0, 0, 0, 0, 0, 0, α + 1 , α). Only the coefficients of terms with a degree in
{0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12} are stored.

9.2 Arithmetic in F2dext

Arithmetic in Fqd ext is the core of the signature generation (Section 7.1.3) and keypair generation
(Section 7.1.2). In Section 9.4.1, we explain how to generate efficiently the inner secret polynomials
of f (Equation (7.2)). This requires O

(
dext logq(D) log2(q)

)
squarings in Fqd ext (precomputation

step), O
(
dext logq(D)(nvar + log q(D))

)
operations in Fq[x] and O

(
dext(nvar + log q(D))

)
modular

reductions. In Section 7.4.7, we generate the public-key by evaluation-interpolation. This requires
N = O

(
n2

var

)
evaluations of aHFEv polynomial. Once the vinegar variables are evaluated, we have

to evaluate a HFE polynomial, which implies an overall cost of O
(
N logq(D) log2(q)

)
squarings in

Fqd ext , O
(
N logq(D)2)

operations inFq[x] and O
(
N logq(D)

)
modular reductions. With a multipoint

evaluation (Section 7.4.7), the computation ofF ◦S requires onlyO
(
nvar logq(D) log2(q)

)
squarings

in Fqd ext , O
(
nvar logq(D) ·(nvar+log q(D))

)
operations inFq[x] and O

(
nvar ·(nvar+log q(D))

)
modular

reductions, as well asO
(
nvardextv · (nvar + v + log q(D))

)
operations in Fq due to the vinegar part,

and the extra memory cost is approximatelynvar ·
(
v + 2 ·

⌊
logq(D)

⌋
+ 1

)
elements ofFqd ext .

152

In Section 9.3, the signature generation can be performed withO
(
nb_ite ·D 2)

field operations,
O

(
nb_ite · dextD logq(D)2 log2(q)

)
operations in Fq[x], O

(
nb_ite · dextD log2(q)

)
squarings inFq[x],

O
(
nb_ite · dextD log2(q)

)
modular reductions and (optionally) O

(
nb_ite · D

)
field inversions.

In GeMSS, q = 2 . We use the polynomial representation defined in Section 9.1. It is the most
efficient representation when PCLMULQDQ is available [159]. To compute the square (respectively the
multiplication) of B in F2d ext , we choose to compute the square (respectively the multiplication) of
B in F2[x] before performing the reduction by the univariate polynomial defining the extension.

architecture Skylake Broadwell Haswell Ivy Bridge
latency 6 5 7 14
throughput (CPI) 1 1 2 8

Table 9.2: Performance of thePCLMULQDQ instruction in function of the architecture, as
presented in the Intel Intrinsics Guide. We note that the latency on Skylake was evaluated
to 7 until early 2020. This explains why we find this value in older articles, as in [84, 62, 72].

Table 9.2 presents the cost ofPCLMULQDQ in function of the architecture. The choice of the
best algorithm of multiplication in F2d ext depends on the processor. Our choices target the Skylake
processors, which use only one CPI (Cycle Per Instruction) to performPCLMULQDQ. We have also
extended MQsoft to support Haswell processors, because it is the most studied architecture in the
scientific world. On Haswell, PCLMULQDQ requires two CPI. This makes optimal methods using less
calls to PCLMULQDQ.

This section contains mainly the results of [84]. We have added some details on the best methods
to compute the square and the multiplication in F2d ext on Haswell, which are currently used in the
optimized implementation of GeMSS (Section 7.5.4). We have completed Table 9.3. In [84], the
AVX2 implementation of the squaring was available only for

⌈ dext
64

⌉
= 0 mod 4. We also improve the

modular reduction for specific trinomials (Table 9.9), and we give the performance of the reduction
modular by pentanomials that we use (Table 9.10), based on several kinds of optimization.

9.2.1 Polynomial Squaring over F2

Squaring is used during the root finding algorithm (Section 5.4.8) which is the core of the signature
generation (Section 7.1.3). It is also used during the so-called Itoh–Tsujii Multiplicative Inversion
Algorithm which computes the modular inverse in F×

2d ext (Section 9.2.6).
In binary fields, the squaring of B =

∑ dext−1
i =0 bi α i ∈ F2d ext can be performed in linear time

(Section 5.1.3). The linearity of the Frobenius endomorphism implies that B 2 =
∑ dext−1

i =0 bi α2i .
Since we have storedB as a vector of bits, squaring corresponds to insert a null bit between each
bit of B .

Example 4 (Square of a binary polynomial). Let B = α3 + α2 + 1 ∈ F24 . B is stored as the
binary integer 1101. Its square isB 2 = α6 + α4 + 1 , which is represented as1010001.

To compute the square of adext-bit element on Skylake processors and newer, we divide it into
words of 64 bits. For each one, thePCLMULQDQ instruction directly computes the binary polynomial
multiplication of the 64-bit element by itself. This method requires

⌈ dext
64

⌉
calls to PCLMULQDQ.

153

On Haswell processors, we use the previous method for
⌈ dext

64

⌉
6 3. For

⌈ dext
64

⌉
> 4, the use of

lookup tables [5] is faster (in AVX2). We have implemented Algorithm 1 of [5] which uses SSE2
instructions and PSHUFB from SSSE3, and a variant in AVX2 that uses the VPSHUFB instruction.
The PSHUFB instruction performs the lookup of the square of 16 elements on 4 bits in a lookup table
in constant-time, and the VPSHUFB instruction performs two times PSHUFB (Section 6.1.3).

Table 9.3 summarizes the performance of squaring functions which are proposed in our library.
The experimental process consists in computing the square of elements from a small array, then
measuring the average cost of one operation. We have added the SSE2 column to highlight the
impact of the PSHUFB instruction. This SSE2 implementation emulates our specific use ofPSHUFB
by using some shifts,XOR instructions and masks (we start by inserting two null bits between each
pair of bits, then we insert one null bit between each bit). For the squaring usingVPSHUFB, the
implementation for odd values of

⌈ dext
64

⌉
is slower than for the even values. It is due to theload and

store instructions, which are less efficient. On the Skylake processors, the best squaring is the one
using the PCLMULQDQ instruction: this instruction costs only one cycle of throughput, but six cycles
of latency (Table 9.2). However, the latency can be used to run other instructions, which improves
the performance.

⌈ dext
64

⌉ Skylake Haswell
SSE2 PSHUFB VPSHUFB PCLMULQDQ SSE2 PSHUFB VPSHUFB PCLMULQDQ

1 5.9 5.7 5.9 2.2 4.9 4.9 5.1 2.1
2 8.7 5.7 5.6 5.0 8.2 5.9 5.3 4.9
3 13.0 8.0 8.1 6.2 12.2 7.0 7.8 6.9
4 16.1 9.0 7.5 6.3 14.9 8.8 7.4 8.4
5 19.7 12.2 9.3 7.2 19.5 10.6 8.9 10.5
6 23.7 13.3 9.1 7.9 21.4 12.4 9.7 12.4
7 27.3 16.6 13.8 9.4 26.4 14.5 12.9 14.6
8 30.9 17.6 11.3 10.6 29.9 16.3 12.1 16.3
9 35.7 20.8 14.7 11.8 35.3 18.5 14.2 18.7

Table 9.3: Number of cycles for computing the square of an element ofF2[x] of degreedext − 1,
with MQsoft. We use a Skylake processor (LaptopS) then a Haswell processor (ServerH).

9.2.2 Polynomial Multiplication over F2

The multiplication of two distinct elements in F2d ext is a central operation involved in the keypair
generation and the signing process. InMQsoft, we adapt the multiplication algorithm in function
of dext. We start by optimizing it on the Skylake processors.

When
⌈ dext

64

⌉
∈ {1, 2, 3, 5, 6}, we use a schoolbook multiplication by block of 64 bits. We use the

PCLMULQDQ instruction for multiplying each block. Then,
⌈ dext

64

⌉ 2
calls to PCLMULQDQ are required.

This method is naturally constant-time. Our implementation uses PCLMULQDQ which implies the use
of SSE2 instructions. We also use thePALIGNR instruction from SSSE3 to improve the implemen-
tation. This instruction concatenates two 128-bit registers, shifts the concatenation to the right by
a multiple of eight bits, then returns the 128 lower bits of the result. We use it to align the output
of PCLMULQDQ (which is at least 64-bit aligned) to 128 bits. When PALIGNR is not available, we use
SHUFPD (or SHUFPS) for this kind of alignment.

154

When
⌈ dext

64

⌉
∈ {4, 7, 8, 9}, Karatsuba’s multiplication algorithm (Section 5.1.2) becomes faster

than the schoolbook method. We use the schoolbook multiplication as base case for size words 2, 3
and 5. For

⌈ dext
64

⌉
= 8 , we call three times Karatsuba’s method on four words, the latter also calling

three times Karatsuba’s method on two words. The number of calls toPCLMULQDQ for
⌈ dext

64

⌉
∈ {4, 8}

is respectively 12 and 36. For
⌈ dext

64

⌉
∈ {7, 9}, we split each input in two: the 256 lower bits create

a degree-255 polynomial, and the remaining bits create a degree-(dext − 257) polynomial. Thus,
Karatsuba’s algorithm requires one multiplication of degree-255 polynomials, one multiplication of
degree-(dext−257) polynomials and one multiplication of degree-max(255, dext−257) polynomials.
This method requires 33 calls toPCLMULQDQ for

⌈ dext
64

⌉
= 7 and 62 calls2 for

⌈ dext
64

⌉
= 9 . Here, the

way to split inputs is important. The k lower bits have to generate ak-bit polynomial such that k
is a multiple of 128. This allows to efficiently add it to the higher part of the input, without any
use of shifts. Moreover, the result of each recursive call will also be 128-bit aligned, simplifying the
recombination step.

The trade-off between the schoolbook multiplication and Karatsuba’s algorithm depends on the
performance ofPCLMULQDQ (Table 9.2). For the Skylake processors, this instruction costs one CPI,
which makes schoolbook multiplication more efficient for 6-word multiplication. For the Haswell
processors,PCLMULQDQ costs two CPI. This decreases the trade-off because each call toPCLMULQDQ
is more penalizing. When

⌈ dext
64

⌉
is equal to 3, we remark that the Karatsuba multiplication is

already faster on Haswell. We have compared the schoolbook multiplication to the three-term
Karatsuba-like formulae described in Section B.1. The latter is slightly faster and requires only 6
calls to PCLMULQDQ.

Then, we proceed as follows for Haswell. For
⌈ dext

64

⌉
= 8 , we call Karatsuba’s algorithm recur-

sively until a base case on one word. This requires 27 calls toPCLMULQDQ. For
⌈ dext

64

⌉
∈ {4, 5, 6, 7, 9},

we use base cases on two words (using the schoolbook method) and three words (using the three-
term Karatsuba-like formula). The case

⌈ dext
64

⌉
equals 4 (respectively 6) is computed with 3 calls

to the 2-word (respectively 3-word) multiplication. For
⌈ dext

64

⌉
= 5 , we split each input in two: the

128 lower bits create a degree-127 polynomial, and the remaining bits create a degree-(dext − 129)
polynomial. This method requires 2 calls to the 3-word multiplications and 1 call to the 2-word
multiplication. Finally, for

⌈ dext
64

⌉
∈ {7, 9}, we use the same strategy that for Skylake. We just

perform the base cases with Haswell multiplications instead of Skylake multiplications.

Table 9.4 compares our multiplication to gf2x. As in Section 9.2.1, we measure the average cost
of multiplying elements from a small array. The multiplication of gf2x is sometimes abnormally
slow. This is probably due to the fact that the implementation uses vector and no vector instructions
in the same function, which penalizes it. This is the first reason to explain that our multiplication is
faster. The second reason is thatgf2x uses Karatsuba’s algorithm, which is slower than schoolbook
multiplication for 6-word multiplications on Skylake. The gf2x code may target Haswell processors.
We have also remarked that installing NTL with gf2x slightly decreases the performance. For this
reason,NTL is not installed with gf2x on our experimental platform.

2The use of a 8-word multiplication followed by a classical multiplication for each last block may be slightly faster.
This requires 53 calls to PCLMULQDQ.

155

⌈ dext
64

⌉ Skylake Haswell
gf2x MQsoft gf2x MQsoft

1 3.2 3.2 2.1 2.1
2 7.7 6.8 8.5 8.5
3 37.0 15.5 34.2 18.4
4 23.1 19.9 27.6 24.6
5 47.0 34.9 52.2 43.7
6 54.3 45.7 58.1 57.3
7 142.2 55.4 136.2 73.2
8 91.1 59.9 110.6 87.4
9 131.8 91.3 146.2 117.5

Table 9.4: Number of cycles to multiply two elements ofF2[x] of degreedext− 1. We use a Skylake
processor (LaptopS) then a Haswell processor (ServerH).

9.2.3 Modular Reduction by Trinomials over F2 and Field Product

In this section, we want to reduce R =
∑ 2dext−2

i =0 r i x i the result of the previous multiplication or
squaring in F2[x]. The choice of the irreducible polynomial f =

∑ `
i =0 xk i (k0 = 0 < k 1 < · · · <

k` = dext) defining F2d ext (Section 9.1) is important for the modular reduction. In Section 5.3.3,
we presented classical techniques whenf is sparse. For trinomials, we optimize the computation of
(5.8) by factoring by f 3 − xdext . In this way, we can write R as:

R = R0 + Sk1 xdext−k1 +
(
Rk1 + Sk1

)
·
(

f 3 − xdext

)
mod f 3. (9.1)

For k1 6
⌈ dext

2

⌉
, there are mainly two methods [30] to compute (9.1). The first is the shift-and-add

strategy:
(
Rk1 + Sk1

)
·
(
f 3−xdext

)
is computed asQ+ Q ·xk1 with Q = Rk1 + Sk1 . The second is the

mul-and-add strategy: the multiplication by f 3−xdext is computed with the PCLMULQDQ instruction.
In this case, it is recommended to choosek1 + 64 ·

⌈ dext
64

⌉
− dext strictly less than 64. In this way,

f 3−xdext can be shifted then used for multiplying 64-bit blocks ofR via the PCLMULQDQ instruction.
We choose the first method because it requires a small number of low-cost instructions.

Shift-and-add strategy in practice. For the shift-and-add strategy, the main operations are
shifts of coefficients. This operation is not trivial. When a binary polynomial is stored on several
registers, we need the bits coming out of a register are coming into the next register. Moreover, the
use of parallel shifts implies that the bits coming out of a block are not coming into the next block.
We study the shifts of coefficients for 128-bit registers. Firstly, the shift by a multiple of eight
coefficients is native. We can do it with the PSLLDQ and PSRLDQ instructions, or with the PALIGNR
instruction. Secondly, when we require a shift by64k + j positions for k ∈ {0, 1} and 0 < j < 64,
we start by using a shift by 8 bytes only if k = 1 , then we use aj -bit shift by block of 64 bits (PSLLQ
or PSRLQ). However, a j -bit shift implies loosing j bits between each block. Fork = 0 , we need
to compute thesej bits with a complementary shift, then we xor them to the previous result. The
complementary shift requires a shift by 8 bytes followed by a shift by64− j bits in the opposite
direction. For shifts of successive registers, we usePALIGNR instead of PSLLDQ and PSRLDQ. When
PALIGNR is not available, we perform shifts by 8 bytes with SHUFPD (or SHUFPS). Now, we propose
to study irreducible polynomials which simply the use of shifts.

156

Optimization for specific values of dext and k1. The shift-and-add and mul-and-add methods
can be optimized for specific values ofk1 and dext. Firstly, the case k1 = 1 permits to avoid
computations becauseSk1 = 0 . Secondly, we previously note that shifting by a multiple of eight
bits is faster, thanks to the PSLLDQ, PSRLDQ and PALIGNR instructions. Here, we list cases where
these instructions could be used:

• for the extraction of Sk1 from R when 2dext − k1 is a multiple of eight,

• to obtain Sk1 xdext−k1 from Sk1 when dext − k1 is a multiple of eight,

• for the multiplication by xk1 when k1 is a multiple of eight,

• for the extraction of Rk1 + Sk1 xdext−k1 from R when dext is a multiple of eight. However,
irreducible trinomials such that dext is a multiple of eight do not exist (Section 5.3.2).

For the shift-and-add strategy, we can also compute
(
Rk1 + Sk1

)(
f 3 − xdext

)
as Q ′

x k 1 + Q′ with
Q′ = Rk1 xk1 + Sk1 xk1 . In this case, the bytewise shifts improve the implementation in the following
cases:

• for the extraction of Rk1 xk1 from R when dext − k1 is a multiple of eight,

• for the extraction of Sk1 xk1 from R when 2dext − 2k1 is a multiple of eight,

• to obtain Sk1 xdext−k1 from Sk1 xk1 when dext − 2k1 is a multiple of eight,

• for the division by xk1 when k1 is a multiple of eight.

Note that the previous shifts can be completely removed when the value is a multiple of the register
size. In this case, a shift corresponds to a choice of register. WhenR is a square, we use similar
optimizations by removing useless shifts (i.e. whose result is necessarily zero due to the square
structure, as in [131, Algorithm 2]). A shift by one bit using PSLLQ (respectively PSRLQ) does not
require a complementary shift if and only if the highest (respectively lowest) bit of each block is
null. In this case, we improve the shifts by8k + j bits for j = 1 or j = 7 (since8k +7 = 8(k +1) −1).

Results. We have implemented the shift-and-add method for trinomials with different SIMD
instruction sets. SSSE3 is used to improve the implementation with thePALIGNR instruction. We
have also implemented the shift-and-add method for pentanomials, but it is vectorized only for
dext ∈ {184, 312, 448, 544}, because they are the parameters ofGui and DualModeMS256v1 . The
method used is described in Section 9.2.4. For the design ofHFE-based schemes, we choosedext
such that there exists an irreducible trinomial of degreedext (Section 7.4.10).

The performance of the modular reduction depends on the context. In Table 9.5, we reduce
products from a small array, then we measure the cost of one modular reduction on average. Here
(including Tables 9.5, 9.6, 9.7, 9.8 and 9.11), we do not exploit the values ofdext and k1 (as explained
above) to improve the implementation. This allows to have comparable measurements in function
of

⌈ dext
64

⌉
. In practice, they are used (for example, the SSSE3 modular reduction fordext = 177

and k1 = 8 takes 8.7 cycles on Skylake with these optimizations). The SSSE3 version is two times
faster than without vector instructions because SSE2 permits to perform two 64-bit instructions in
one instruction. On Skylake, the AVX2 implementation is slightly faster than the SSSE3 version,
probably because the AVX2 is faster to load and store data.

157

(dext, k1) Skylake Haswell
no SIMD SSSE3 AVX2 no SIMD SSSE3 AVX2

(62, 29) 6.6 6.6 × 5.3 5.3 ×
(126, 21) 10.0 7.1 × 10.6 6.9 ×
(186, 11) 14.5 10.5 10.7 14.8 10.4 11.1
(252, 15) 18.4 11.1 10.4 18.8 10.8 11.5
(314, 15) 23.9 14.9 × 23.5 13.7 ×
(366, 29) 28.6 15.0 × 28.3 13.9 ×
(425, 12) 33.5 18.4 × 32.5 18.0 ×
(506, 23) 37.9 19.2 17.5 36.9 18.1 20.7
(574, 13) 40.6 24.0 × 38.3 23.5 ×

Table 9.5: Number of cycles to compute the modular reduction of an element ofF2[x] of degree
2dext − 2 by xdext + xk1 + 1 , with MQsoft. We use a Skylake processor (LaptopS) then a Haswell
processor (ServerH).

In Table 9.6, the modular reduction is also measured when it is used with multiplication in
F2[x]. The performance of multiplication in F2d ext depends on the context. For this reason, we
measure it in two ways:

• Left value: we measure the cost of one field multiplication on average during the computation
of the naive exponentiation function (x i is computed asx i −1 · x). Each result depends on the
previous result, and the data are already loaded.

• Right value: we measure the cost of one field multiplication on average to compute the
multiplication of elements of two arrays. The data are independent but each multiplication
requires loading input and storing output.

(dext, k1)
Skylake Haswell

SSSE3 AVX2 SSSE3 AVX2
exp. array exp. array exp. array exp. array

(62, 29) 17.4 9.3 × × 17.0 8.9 × ×
(126, 21) 26.4 15.2 × × 27.1 22.2 × ×
(186, 11) 32.1 24.5 44.3 25.3 32.7 30.4 47.7 33.7
(252, 15) 39.8 34.7 52.4 37.0 44.8 55.4 59.8 74.3
(314, 15) 54.0 50.2 × × 53.0 55.6 × ×
(366, 29) 66.3 63.8 × × 68.2 72.4 × ×
(425, 12) 78.4 79.9 × × 85.2 89.1 × ×
(506, 23) 84.7 87.4 95.5 90.1 94.9 111.1 109.0 112.5
(574, 13) 112.2 118.3 × × 127.2 140.9 × ×

Table 9.6: Number of cycles to compute the multiplication in F2d ext in function of the modular
reduction, with MQsoft. We use a Skylake processor (LaptopS) then a Haswell processor (ServerH).

158

We remark that for
⌈ dext

64

⌉
less or equal to 6, the multiplication on independent data is faster on

Skylake. It is probably due to the latency of the PCLMULQDQ instruction. The field multiplication
with modular reduction using SSE2 is the fastest, because thePCLMULQDQ instruction requires using
128-bit registers. When SSE2 is used with AVX2, the implementation pays a penalty. But this
problem should be solved with theVPCLMULQDQ instruction on Ice Lake processors (Section 6.1.3).

(dext, k1) PSHUFB VPSHUFB PCLMULQDQ PCLMULQDQ, AVX2
multi-sqr array multi-sqr array multi-sqr array multi-sqr array

(62, 29) 14.1 8.8 × × 17.4 8.0 × ×
(126, 21) 18.5 12.1 × × 21.3 10.5 × ×
(186, 11) 21.8 17.4 32.5 19.1 21.1 14.4 35.0 15.6
(252, 15) 25.2 19.9 30.6 17.0 22.3 15.5 37.1 16.4
(314, 15) 28.1 25.5 × × 25.9 21.1 × ×
(366, 29) 30.6 26.9 × × 26.9 20.4 × ×
(425, 12) 35.3 33.6 × × 27.0 24.3 × ×
(506, 23) 37.7 37.7 36.5 27.6 28.1 24.2 40.4 29.5
(574, 13) 43.4 43.2 × × 29.8 31.0 × ×

Table 9.7: Number of cycles to compute the squaring inF2d ext in function of the enabled instructions,
with MQsoft. We use a Skylake processor (LaptopS).

(dext, k1) PSHUFB VPSHUFB PCLMULQDQ PCLMULQDQ, AVX2
multi-sqr array multi-sqr array multi-sqr array multi-sqr array

(62, 29) 13.0 8.1 × × 17.0 8.5 × ×
(126, 21) 16.5 11.5 × × 21.0 12.5 × ×
(186, 11) 19.8 16.6 34.1 18.2 22.9 18.0 35.5 17.5
(252, 15) 20.4 18.1 29.9 17.3 25.4 19.9 38.3 19.9
(314, 15) 23.9 24.5 × × 28.7 27.3 × ×
(366, 29) 27.7 26.0 × × 30.4 29.2 × ×
(425, 12) 32.9 32.3 × × 35.1 35.4 × ×
(506, 23) 36.0 38.0 34.4 28.1 37.8 37.2 44.0 36.7
(574, 13) 40.1 41.8 × × 43.1 43.6 × ×

Table 9.8: Number of cycles to compute the squaring inF2d ext in function of the enabled instructions,
with MQsoft. We use a Haswell processor (ServerH).

In Tables 9.7 and 9.8, the modular reduction is measured when it is used with squaring inF2[x].
As for the multiplication in F2d ext , the performance of squaring depends on the context. For this
reason, we measure it in two ways:

• Left value: we measure the cost of one field squaring on average during the raising of an
element ofF2d ext to the power of 2i (x2i

is computed as(x2i −1
)2). Each result depends on the

previous result, and the data are already loaded.

159

• Right value: we measure the cost of one field squaring on average to compute the squaring
of elements of one array. The data are independent but each squaring requires loading input
and storing output.

Table 9.7 shows the performance of squaring inF2d ext on Skylake. The squaring usingPCLMULQDQ
is the most efficient. For the same reasons that for the multiplication in F2d ext , the best modular
squaring is the one using only SSE2 modular reduction. This is the default setting inMQsoft. On
Haswell (Table 9.8), the squaring usingPSHUFB is the most efficient, and could be improved with
the AVX2 instruction set.

Advanced results. Now, we exploit the values ofdext and k1 to improve the implementation.
In Table 9.9, we present some results, comparing several kinds of optimization. In particular, we
highlight the improvements due to the square structure (dext = 7 mod 8 or k1 = ±1 mod 8).

(dext, k1) remsqr squarePSHUFB squarePCLMULQDQ inv ITMIA
array multi-sqr array multi-sqr array array

(172, 1) 8.3 16.5 13.4 17.6 10.7 3290(1)

(172, 7) 10.5 21.8 17.5 21.1 14.5 4160(1)

(174, 13) 10.7 21.9 17.5 21.1 14.5 2120
(174, 57) 9.9 21.2 15.5 21.8 13.3 2110
(175, 6) 9.3 18.9 15.5 18.8 12.8 2031

(175, 16) 7.7 16.9 12.5 16.5 9.7 1890
(177, 8) 8.7 19.3 14.1 19.7 11.7 1930

(239, 36) 9.9 22.3 18.2 20.7 13.9 5540(1)

(265, 42) 16.0 28.4 25.8 26.1 21.3 3610
(265, 127) 12.8 26.0 22.1 22.1 16.9 3440
(266, 47) 16.0 28.4 25.8 26.1 21.6 3720
(354, 99) 15.1 31.1 26.3 27.3 20.3 5088
(358, 57) 13.9 30.6 24.6 25.3 18.3 5230
(402, 171) 20.5 36.0 34.5 28.5 25.7 6470
(409, 87) 18.6 34.2 30.6 24.7 23.4 11300(1)

(1) ITMIA without multi-squaring tables (cf. Sections 9.2.5 and 9.2.6).

Table 9.9: Number of cycles to compute the modular reduction of a square, the squaring inF2d ext

and the inverse in F×
2d ext , in function of dext and k1, with MQsoft. We use a Skylake processor

(LaptopS). Here, the AVX2 instruction set is used only for the multi-squaring tables. The bold
values allow a speed-up due to the division byxdext or the multiplication by xk1 .

The modular reduction of a square is important for multi-squaring algorithm. The latter is
the main algorithm where the products cannot be accumulated inF2[x], justifying the importance
of improving the modular reduction. In Table 9.9, we obtain that several irreducible trinomials
are very efficient. Using x172 + x + 1 is naturally a bit faster since Sk1 = 0 , but for squares, the
computation of Rk1 xk1 is just a left shift by one bit (without 8-bit alignments), because dext is

160

even. Usingx175 + x16 + 1 is naturally faster since k1 = 0 mod 8, and the property dext = 7 mod 8
improves the division by xdext for squares. We also note that our strategy has applications for elliptic
curves [30]. Arithmetic for dext = 239 can be improved independently ofk1, sincedext = 7 mod 8.
For dext = 409, the choice ofk1 = 87 allows a speed-up sincedext is odd and k1 = 7 mod 8. We
emphasize that all functions measured in this section are implemented in constant-time.

9.2.4 Modular Reduction by Pentanomials over F2

Similarly to trinomials (Section 9.2.3), we start by optimizing the computation of (5.10). We
compute Rk1 +

∑ ` −1
j =1 Rk j xk j as Rk1 ·

(
f − xdext

)
mod xdext . For k` −1 6

⌈ dext
2

⌉
, we can write R as:

R = R0 + Sk1 xdext−k1 +

((

Rk1 + Sk1 +
` −1∑

j =2

Sk j

)

·
(

f − xdext

)
mod xdext

)

mod f.

The product
(
Rk1 + Sk1 +

∑ ` −1
j =2 Sk j

)
·
(
f − xdext

)
can be computed with the same methods that for

trinomials: directly with several calls to the PCLMULQDQ instruction, or else with the shift-and-add
strategy. From now, we consider ` = 4 , i.e. pentanomials. Our library uses the shift-and-add
strategy which has the advantage to be portable since it does not requirePCLMULQDQ.

Optimization for specific values of dext and k1, k2, k3. As for trinomials, we study different
choices of pentanomials. Firstly, we always choosek3 such that the modular reduction requires
two steps (Section 5.3.3). The part greater or equal toxdext during the first step of reduction has
to be reduced during the second step. This part isSk1 + Sk2 + Sk3 . Naturally, when we compute
the highest terms strictly less than xdext , we compute the lowest terms ofRk1 + Sk1 + Sk2 + Sk3

(because we extractR0 and Rk1 by keeping useless bits on the last 128-bit block to be faster). In
fact, we compute exactly

(
(Rk1 + Sk1 + Sk2 + Sk3) mod x128·d d ext

128 e−dext
)
· xdext if dext = 0 mod 8.

So, we can save some instructions whenk3 − 1 6 128 ·
⌈ dext

128

⌉
− dext. The extraction of the last

block of Rk1 followed by a multiplication by f 5 − xdext generatesRk1 + Sk1 + Sk2 + Sk3 in the first
block of Rk1 , then we conclude the first step by extracting the remaining blocks ofRk1 (which was
transformed into Rk1 + Sk1 + Sk2 + Sk3). The technique of updating R during the modular reduction
is classical (Algorithm 16). Secondly, the authors of [30] noted that the multiplication by f 5− xdext

can be optimized. By computing one time the operand (Rk1 + Sk1 + Sk2 + Sk3 here) multiplied
by x64, we can avoid repeating an operation of alignment for each of three shifts. We note that
the use of bytewise shifts does not require this alignment. Then, we remark that the alignment to
64 bits can be replaced by an alignment tot bits (respectively to 128− t bits) for t ∈ {16, 32, 64},
thanks to shifts by block of t bits instead of 64 bits. This is possible whenki 6= 0 mod 8 implies
ki ∈ J0, tK (respectively ki ∈ J128− t, 128K) for 1 6 i 6 3: the multiplication by xk i is coupled
to the division of the aligned data by x t −k i (respectively x128−k i), both using shifts by block of
t bits. In addition, this alignment is already computed if k3 = t (respectively k1 = 128 − t) or
if t = dext mod 128 (respectively t = −dext mod 128). For the latter, the input provides only
Rk1 · xdext , but the previous method allows to replaceRk1 by Rk1 + Sk1 + Sk2 + Sk3 without any
extra computation. Thirdly, multiplying by f 5 − xdext = 1 + xk1 + xk2 + xk3 can be accelerated
when k3 = k1 + k2. The authors of [4] remarked that f 5− xdext = (1 + xk1)(1 + xk2), which requires
two multiplications (or shifts) instead of three. This method is not compatible with the previous
one, except fort = ±dext mod 128which saves only one alignment. Fourth, the methods used for
trinomials can be adapted for pentanomials, by taking into account the previous techniques.

161

Selection of irreducible pentanomials. The parameters of Gui and DualModeMS256v1 require
the use of irreducible pentanomials, becausedext is a multiple of 8. This constraint allows to speed
up the extraction of Rk1 from R by using bytewise shifts (PSRLDQ and PALIGNR instructions). We
have chosenx184 + x16 + x9 + x7 + 1 , x312 + x128 + x15 + x5 + 1 , x448 + x64 + x39 + x33 + 1
and x544 + x128 + x3 + x + 1 . For dext = 184, we choosek3 = 16 because it is a multiple of 8.
This permits to improve the multiplication by x16 by using bytewise shifts (PSLLDQ and PALIGNR
instructions). Moreover, we save two alignments (sincek2 6 16) thanks to shifts by block of 16
bits. For dext = 312 and dext = 544, we choosek3 = 128. This improves the multiplication by
x128, which does not require shifts when the data are stored on 64-bit or 128-bit registers. For
dext = 544, the input provides Rk1 · x32, which is used for saving two alignments (sincek2 6 32)
thanks to shifts by block of 32 bits. For dext = 448, we choosek3 = 64 becausedext is a multiple of
64. The multiplication of Rk1 by x64 is already available in the input. Once that Sk1 + Sk2 + Sk3

is added, we obtain the multiplication by xk3 = x64, which saves two alignments.

Results. In Table 9.10, we summarize the results fordext ∈ {184, 312, 448, 544}, and we com-
pare them to the modular reduction by trinomials for similar sizes (without specific optimizations
depending ondext or k1). We also propose implementations of the strategy usingk3 = k1 + k2.
Both methods seem to have the same efficiency, and are approximately 23% slower than by using
trinomials. For dext = 184, the use ofk3 = 16 for saving two alignments is as efficient as k3 = k1+ k2.

(dext, k3, k2, k1) SSSE3 SSSE3 (dext, k1)
(184, 16, 9, 7) 13.9 10.5 (186, 11)
(184, 16, 9, 7) 13.9
(312, 12, 9, 3) 18.6 14.9 (314, 15)

(312, 128, 15, 5) 18.8
(448, 64, 39, 33) 22.7 18.4 (425, 12)
(544, 128, 3, 1) 27.5 24.0 (574, 13)

Table 9.10: Number of cycles to compute the modular reduction of an element ofF2[x] of degree
2dext − 2 by xdext + xk3 + xk2 + xk1 + 1 or xdext + xk1 + 1 , with MQsoft and the SSSE3 instruction
set. We use a Skylake processor (LaptopS). The bold values allow a speed-up due to the division
by xdext or the multiplication by xk3 . We also exploit (dext mod 128)∈ {32, 64}.

9.2.5 Multi-Squaring in F2dext

The multi-squaring [159] is an operation computing successively several squarings. This operation
is important to compute the inverse in F×

2d ext (in Section 9.2.6), as well as the Frobenius map
based on multi-squaring or on modular composition (Section 5.4.5). These algorithms require
computing B 2k ′

, for B ∈ F2d ext and various values ofk′. This is exactly a computation of Frobenius
map, where H = f is the degree-dext field polynomial defining F2d ext . For small values of k′,
the best way is to raise B to the power of two k′ times (as in Table 9.7). For larger values of
k′, the best method is to use Algorithm 22 with k = k′ and with precomputed multi-squaring
tables to save Step 1. LetB =

∑ dext−1
j =0 bj α j ∈ F2d ext for F2d ext = F2[α]/ (f (α)) (Section 9.1),

then B 2k ′

=
∑ dext−1

j =0 bj α j 2k ′

mod f . The idea of multi-squaring tables is to storeα j 2k ′

mod f for

162

0 6 j 6 dext−1. Then, multi-squaring is equivalent to the dot product of the vectors (b0, . . . , bdext−1)
and

(
1, α2k ′

mod f, . . . , α (dext−1)2 k ′

mod f
)
. The table requires storingdext−1 elements inF2d ext (1

is not formally stored), and the multi-squaring requires dext−1 multiplications between elements of
F2 and F2d ext , and dext−1 additions in F2d ext . In a variable-time implementation, the multiplication
by bj can be done by a conditional statement. In a constant-time implementation, the value ofbj
is duplicated in the mask variable to replace the multiplication by a bitwise AND with this mask.

In a variable-time implementation, the performance can be improved with larger tables [118].
Instead of computing bj α j 2k ′

mod f coefficient by coefficient, the coefficients can be grouped by
block of b, and the 2b possibilities of

∑ b−1
j =0 bib+ j α(ib+ j)2 k ′

can be precomputed for0 6 i 6
⌈ dext

b

⌉
−1.

This method cannot be used in a constant-time implementation because of the timing attack on
the memory latency (Section 4.7). It permits to attack the index of the lookup table. Moreover,
the classical countermeasure (Section 6.3.3) makes this strategy exponentially slower inb, since
each element of the2b-element table has to be used. So, we use a constant-time implementation of
multi-squaring without larger tables. Note that this choice is different from setting b = 1 , since the
latter requires storing dext extra null field elements.

9.2.6 Modular Inverse in F×
2dext

The computation of the inverse in F×
2d ext is often required for the arithmetic in F2d ext [X]. In our

case, it is required to compute the GCD (Algorithm 18) and the split root finding (Section 5.4.7).
To compute the modular inverse of A ∈ F×

2d ext , there are mainly two methods (Section 5.4.2).
The first is to use the constant-time extended Euclid–Stevin algorithm [19]. We have coded a
first version of this algorithm (optimized for F2), but the latter seems naturally slow. Maybe an
implementation of the fast version could be better. The second is to computeA−1 = A2d ext −2 by
Fermat’s little theorem. The exponentiation can be done with the square-and-multiply method
(Algorithm 14), costing dext − 1 squarings anddext − 2 multiplications in F2d ext . The Itoh–Tsujii
Multiplicative Inversion Algorithm (ITMIA) [108] permits to modify the way to compute the power
with an addition chain. It requires dext − 1 squarings and only O

(
log2(dext)

)
multiplications in

F2d ext . The number of multiplications depends on the length of the chosen addition chains.

Algorithm 36 ITMIA for a specific addition chain.

1: function Inverse
(
A ∈ F×

2d ext

)

2: m ← 1 . Casei = blog2(dext − 1)c.
3: AK ← A . A 2m −1 = A.
4: for i from blog2(dext − 1)c − 1 to 0 by −1 do
5: Q← A2m

K . Multi-squaring to obtain A22m −2m
.

6: AK ← Q × AK . A 22m −1.
7: m ←

⌊ dext−1
2i

⌋

8: if m mod 2 = 1 then
9: AK ← A2

K × A .
(
A2m −1 −1) 2 × A = A2m −1.

10: end if
11: end for . m = dext − 1 and soAK = A2d ext−1 −1.
12: return A2

K . A 2d ext −2 = A−1.
13: end function

163

ITMIA is described in Algorithm 36 for a specific addition chain which consists in reading the
bits of dext−1 from left to right. It requires computing m successive squarings. The multi-squaring
can be computed more quickly with lookup tables (Section 9.2.5).

Algorithm 36 is useful because it automatically proposes an addition chain for all values ofdext,
but it is not always optimal. The choice of the best addition chain is not easy, because it depends
on the performance of multiplication, squaring and multi-squaring. Moreover, there is a large set of
addition chains. This problem is studied in [118], which proposes a software generating an efficient
C++ inversion code. This software searches the addition chain which maximizes the performance of
the generated code. However, the generator does not propose implementations of multi-squaring
tables in constant-time. For the moment, MQsoft uses Algorithm 36, but we propose in Appendix
C examples of addition chains chosen to minimize the number of field multiplications. We have
improved Algorithm 36 with multi-squaring tables to compute the variable Q when i is zero or one.
Because multi-squaring tables are huge, we use them only for the parameters of certain schemes as
GeMSS, DualModeMS and Gui, and for the values ofdext used to evaluate the performance ofMQsoft.
The corresponding file in MQsoft requires 4.5 MB. We could decrease the size. As for the FFT

(Section 5.4.4), we could computeB 2k ′

as
∑ b d ext−1

2 c
j =0 b2j α j 2k ′+1

+ α2k ′ ∑ b d ext
2 c−1

j =0 b2j +1 α j 2k ′+1
mod f .

For one extra field multiplication, we only need the half of the table (which is used two times).
Obviously, we could also use Horner’s rule by block (Sections 5.4.3 and 9.5.3).

9.2.7 Performance of the Arithmetic in F2dext

Table 9.11 compares the performance of arithmetic operations in our library with respect to several
open source libraries (listed in Section 6.2.1). We choose the irreducible trinomialf = xdext + xk1 +1
with k1 ∈ J2, 31K to create the fieldF2d ext . All operations use modular reduction. We have measured
the performance of FLINT, but the times are not relevant in our context. It turns out that for
dext = 252, NTL is 100 to 200 times faster thanFLINT. The main reason is thatFLINT does not have
a special implementation for binary fields. We have used the typefq_nmod_t which stores each
element ofF2d ext as a polynomial in F2[x] where each coefficient is stored on one word (instead of
one bit). Magma is also taken into account. The results are not significant becauseMagma is slowed
down by its user interface. We remark that the squarings and multiplications of NTL are faster for
dext = 126 than for dext = 62. It can probably be explained by the fact that NTL does not use a
trinomial for dext = 62. Our implementation is 3.5 to 4.5 times faster than NTL for multiplication
and 5 to 6 times faster for squaring. We think that NTL is slowed down by its interface. For the
inversion, the measurements are not comparable becauseNTL is not implemented in constant-time.
However, we have a speed-up of two on average.

We now compareMQsoft to the constant-time arithmetic of [30], when trinomials are used to
build F2d ext (Table 9.12). In F2233 , they compute the squaring in 18 cycles and the multiplication
in 38 cycles. We have approximately the same performance fordext = 239: 13.9–20.7 cycles for
squaring and 34.7–39.8 cycles for multiplying (on LaptopS).MQsoft is slower with dependencies but
faster with arrays. We note that the processor of [30] is a Haswell, which penalizes the performance,
but is 31% faster than this of LaptopS. In F2409 , they compute the square in 28 cycles and the
multiplication in 97 cycles. MQsoft is slightly faster, with 23.4–24.7 cycles for squaring and 78.1–
81.2 cycles for multiplying. For the inversion, [30] is approximately two times slower. Our library
takes advantage of the use of multi-squaring tables. We replacedext−1 squarings by approximately
1
4 dext squarings and two multi-squarings.

164

(dext, k1) operation Magma NTL
MQsoft (PCLMULQDQ + AVX2)
dependencies array

(62, 29)
squaring 416 220 14.1 8.0

mul 444 231 17.4 9.3
inverse 13 183 1 868 × 1 154

(126, 21)
squaring 440 105 18.5 10.5

mul 494 124 26.4 15.2
inverse 27 353 3 457 × 1 509

(186, 11)
squaring 437 119 21.1 14.4

mul 529 144 32.1 24.5
inverse 40 200 4 918 × 2 281

(252, 15)
squaring 455 128 22.3 15.5

mul 558 169 39.8 34.7
inverse 51 720 7 809 × 3 166

(314, 15)
squaring 480 139 25.9 21.1

mul 629 211 54.0 50.2
inverse 66 220 9 515 × 4 345

(366, 29)
squaring 490 150 26.9 20.4

mul 653 238 66.3 63.8
inverse 76 704 11 813 × 5 352

(425, 12)
squaring 500 163 27.0 24.3

mul 714 286 78.4 79.9
inverse 94 846 14 974 × 6 562

(506, 23)
squaring 510 174 28.1 24.2

mul 761 320 84.7 87.4
inverse 115 681 18 601 × 7 778

(574, 13)
squaring 521 201 29.8 31.0

mul 922 579 112.2 118.3
inverse 129 266 23 185 × 11 467

Table 9.11: Number of cycles by operation inF2d ext . We use a Skylake processor (LaptopS).

dext implementation squaring multiplication inversion
233 [30] 18 38 6074
239 MQsoft 13.9–20.7 34.7–39.8 < 3166

409 [30] 28 97 15182
MQsoft 23.4–24.7 78.1–81.2 6470

Table 9.12: Number of cycles by operation inF2d ext , for [30] (Haswell Core i7-4770 CPU at 3.4
GHz) and MQsoft (LaptopS).

165

9.3 Efficient Implementation of Root Finding over F2dext

The most expensive part of the signature generation is to find the roots of aHFE polynomial
F ∈ F2d ext [X] as defined in Equation (2.6). F is a degree-D monic polynomial which is sparse
because it has approximately 1

2 log2(D)2 non-zero coefficients. We have chosen to implement
Berlekamp’s algorithm [161, Algorithm 14.15] which finds the roots with an asymptotic complexity3

of O
(
dextD 2 + (dext + log(s))s2 log(s)

)
operations in F2d ext , where s is the number of roots of F

[161, Theorem 14.11 adapted forr = s and d = 1]. For HFE polynomials, the factor O
(
dextD 2)

can be easily transformed intoO
(
dextD log2(D)2 + D 2)

operations in F2d ext , by using the sparse
structure of F during the classical Frobenius map (Section 5.4.5). We can also transform it into
O

(
log2(dext)D 2.085+ dextD

)
operations inF2d ext by using the modular composition coupled to Karat-

suba’s polynomial multiplication algorithm. Moreover, the HFE polynomial does not have many
roots, so we can assume thats is negligible, yielding a final complexity of O

(
dextD log2(D)2 + D 2)

or O
(
log2(dext)D 2.085 + dextD

)
operations in F2d ext .

For the general polynomials, the author of [138] proposed the successive resultant algorithm
(SRA). It requires O

(
d3

extD 2 + d4
ext

)
operations inF2 to find roots. Fast SRA requiresÕ

(
d2

extD + d3
ext

)

operations in F2 with fast arithmetic. The step in O
(
d4

ext

)
(or Õ

(
d3

ext

)
) can be precomputed for a

fixed finite field. In comparison to Berlekamp, SRA is interesting only when the polynomial has many
roots. In our case,HFE polynomials do not have many roots (Table 2.1). In [100] and [61], the root
finding is improved for split and separable polynomials, when the cardinality of the multiplicative
group (2dext − 1 here) is smooth.

Improving root finding for sparse polynomials is a hard task. In [28], the authors proposed the
first sub-linear (in q) algorithm which detects the existence of roots fort-monomials overFq. Its
complexity is 4t + o(1) q

t −2
t −1 + o(1) bit operations. This method is not interesting for HFE polynomial

because it is not sparse enough and because in practicedext is greater than the level of security. It
costs approximately 4o(1) 2dext+ o(dext) D log 2 (D) bit operations in our case.

In this section, we study the performance of our implementation of Berlekamp’s algorithm. For
each operation required, we study different strategies and compare their practical performance to
choose the best, in function of security parameters. Since the version ofMQsoft used in [84], we
have obtained important speed-ups. The results described in this section have been updated. In
particular, we introduce the use of modular composition to speed up the Frobenius map, and the
GCD is implemented in constant-time via the Euclid–Stevin algorithm.

9.3.1 Polynomial Squaring over F2dext

The computations of Frobenius map (Section 5.4.5) and trace (Section 5.4.6) require computing
repeated squarings inF2d ext [X]. As explained in Section 5.1.3, squaring is linear. For aD -coefficient
polynomial, this operation requires D squarings inF2d ext . This fact is confirmed in practice (Table
9.13). For dext = 175 and k1 = 16, squaring in F2d ext requires approximately 9.7 cycles (Table 9.9).
The cost of squaring inF2d ext [X] is approximately 9.7 ·D cycles. ForD = 4097, the performance is
rather 19.4 ·D cycles. It is due to the size of the input, which is greater than the L1 cache (i.e. 32
KiB). This generates cache misses (Section 6.1.2).

3More generally, the complexity is O((dext + log(D))M(D) + (dext + log(s))M(s) log(s)) operations in F2d ext .

166

9.3.2 Polynomial Multiplication over F2dext

Fast algorithms which are presented in Sections 5.1.4, 5.4.1, 5.4.3 and 5.4.5 require fast polynomial
multiplications. As explained in Section 5.1.2, the main fast multiplication in binary fields is
Karatsuba’s method. In MQsoft, we propose efficient implementations of the classical multiplication
and Karatsuba’s algorithm over F2d ext .

Optimized implementation of Karatsuba’s algorithm. Let ` be the number of coefficients
of the input polynomials. Karatsuba’s multiplication algorithm is well-known when ` is a power of
two [161, Algorithm 8.1], and can be easily extended for all degrees (Section 5.1.2). We allocate
an array before the first call to Karatsuba’s algorithm to save a subquadratic number of memory
allocations. Here, the order of recursive calls is important to minimize the required memory. For
each call to Karatsuba’s algorithm, we store the result of the first two recursive calls (P1 and P2)
in the original output. Then, the third recursive call requires storing its result (P3), as well as the
sum of the lower part and higher part of each input. We use the first half of this array for this. For
the three recursive calls, we use the second half as a new array in the recursive call.

When ` is a power of two, an allocation of 4` coefficients for the array is enough. Else, we
need to allocate some extra coefficients. Each recursive call requires one extra coefficient when the
current number of coefficients is odd (

⌈ `
2

⌉
=

⌊ `
2

⌋
+1). Thus, we assume the worst case. We consider

` = 2 30 − 1 as a reasonable maximum value, which corresponds to the case where all recursive calls
have an odd number of coefficients. Each recursive call requires one extra coefficient to store both
sums of half-inputs, as well as for the result. So we need three extra coefficients during a recursive
call. For 30 recursive calls, we require allocating 90 coefficients. So, we upper bound the allocation
size of the array by 4` + 90. Of course, this bound can be adapted in function of the Hamming
weight of ` , and in function of the threshold where the classical multiplication is called instead
of Karatsuba’s algorithm. In our implementation, we use an inlined classical multiplication for
polynomials having a degree strictly less than four.

Minimizing the number of modular reductions. For the classical multiplication and Karat-
suba’s algorithm, we perform multiplications in F2d ext without the field modular reduction, and
we accumulate the results (as a dot product overF2d ext). Finally, each coefficient of the output
is reduced, when it is necessary. Indeed, in some contexts, we can also accumulate products in
F2d ext [X], and accumulate their coefficients in F2d ext without the field modular reduction (as for
a dot product over F2d ext [X]). This strategy doubles the cost of additions, as well as this of the
memory allocation of coefficients for Karatsuba’s algorithm. In return, we avoid a quadratic (or
subquadratic) number of modular reductions, which accelerates the polynomial multiplication.

About multiplications of different degree operands. Sometimes, fast algorithms require
multiplications of two polynomials having different degrees (Section 5.4.1). To multiply A, B in
F2d ext [X] respectively of degreeda , db such that da > db, we just split A into blocks of sizedb + 1 in
order to apply the multiplication of each block by B . In practice, it is slightly faster to compute the
product of the last block with a recursive call, since the latter can have less thandb + 1 coefficients.

Results. We summarize in Table 9.13 the performance of the multiplication of two equal-degree
polynomials. We recall that the cost of one multiplication in F2[x], for polynomials requiring three
64-bit words, is approximately 15.5 cycles (Table 9.4). Our multiplications are very efficient. The

167

classical multiplication costs approximately 15.5 · D 2 cycles, whereas Karatsuba’s multiplication
algorithm costs approximately 15.5 · 3D log 2 (3) . Karatsuba’s algorithm is always faster than the
classical multiplication. We use it to have an efficient modular composition (Section 9.3.4). NTL is
on average four times slower thanMQsoft. We have also tested the multiplication of Magma. The
latter is on average three times slower thanNTL.

dext D squaring classical mul. Karatsuba’s mul.
MQsoft NTL MQsoft NTL MQsoft NTL

175

17 0.000179 0.00219 0.00564 0.0246 0.00492 0.0209
129 0.00131 0.0163 0.277 0.410 0.113 1.16
513 0.00515 0.0691 4.34 19.8 0.989 3.60
4097 0.0811 0.528 275 1170 25.9 87.2

Table 9.13: Number of megacycles to compute the multiplication of twoD -coefficient polynomials
over F2d ext . We use a Skylake processor (LaptopS).

9.3.3 Polynomial Euclidean Division over Fqdext and Sparse Divisors
In this section, we generalize our results forFqd ext instead ofF2d ext . During the root finding algorithm
(Algorithm 25), the Frobenius map can be computed with dext q-exponentiations in Fqd ext [x]/ (H)
(Section 5.4.5). In characteristic two, this corresponds todext log2(q) modular squarings. A square
has the property that all odd degree terms are null. We propose to exploit this property to speed
up the modular reduction by H . Moreover, the HFE-based schemes require finding the roots of a
HFE polynomial. In this case,H is a HFE polynomial, which is sparse. Here, we study how to exploit
the structure of H , then we propose to modify it to improve the Euclidean division of a square
by H . In this section, we assume that we want to perform the Euclidean division of a degree-da
polynomial A by a degree-dh polynomial H over Fqd ext . When H is a HFE polynomial, we call D
its degree. Except in Algorithm 37 which introduces the classical way to perform a sparse modular
reduction, the results are specialized in characteristic two. Here, we list the use of the modular
reduction by a HFE polynomial during the signing process:

• during the Frobenius map (Section 5.4.5) using the classical repeated squaring algorithm,

• during the Frobenius map using the modular composition by aHFE polynomial (Algorithm
21),

• during the generation of the multi-squaring table in Algorithm 22.

Classical Euclidean division by a sparse polynomial. The classical Euclidean division (Al-
gorithm 16) is naturally faster when the divisor is sparse. Let K be the number of non-zero
coefficients of H . For a fixed i , each term ofH −hdh ·xdh is multiplied by −qi −dh ·x i −dh . Then, the
result is added toR. When H is monic, one step of Algorithm 16 requiresK −1 field multiplications
and additions. So, the total complexity is (da − dh + 1)(K − 1) field multiplications and additions,
and the number of field modular reductions can go down toda + 1 with the accumulator principle.
When H is not monic, Algorithm 16 costsda−dh +1 additional field multiplications and one inverse
in F×

qd ext . This additional cost can be avoided by precomputingh−1
dh
· H .

168

During the signing process ofHFEv--based schemes, we reduce a product or a square modulo
H . So, we can considerda = 2dh − 2, implying a cost of (dh − 1)(K − 1) field multiplications and
additions for each modular reduction.

Algorithm 37 Polynomial Euclidean division of A by a degree-D HFE polynomial over Fqd ext .

1: function EuclideanDivRemHFE
(
A ∈ Fqd ext [x], H ∈ Fqd ext [x]∗

)

2: c← LeadingCoefficient(H)−1

3: Q← 0
4: R ← A
5: for k from da to D by −1 do
6: qk−D ← r k · c

. Sparse computation ofR − qk−D ·
(
H − c−1 · xD)

· xk−D .
7: R ← R − qk−D · C · xk−D . Constant term of H .
8: for i from 0 to blogq(D)c − 1 do
9: R ← R − qk−D · B i · xqi · xk−D . Linear term of H .

10: for j from 0 to i do . Quadratic terms of H .
11: R ← R − qk−D · A i,j · xqi + qj · xk−D

12: end for
13: end for
14: i ← blogq(D)c
15: if D 6= qi then . In this part, the leading term is avoided.
16: R ← R − qk−D · B i · xqi · xk−D . Linear term of H .
17: for j from 0 to logq

(
D − qi) − 1 do . Quadratic terms of H .

18: R ← R − qk−D · A i,j · xqi + qj · xk−D

19: end for
20: end if
21: r k ← 0 . The new R has a degree at mostk − 1.
22: end for
23: return (Q, R)
24: end function

When H is a HFE polynomial (Equation (2.6)), we obtain Algorithm 37. Since K = O
(
logq(D)2)

coefficients, this Euclidean division requires O
(
D logq(D)2)

field operations (by consideringda =
2D − 2 here). This bound is much better than the O

(
D 2)

field operations required by the dense
divisors. It seems hard to propose better algorithms. Firstly, the fast Euclidean division of dense
inputs cannot be better than Õ(D) field operations. The complexity of the naive approach is already
close to this bound, and moreover, the fast multiplications (in particular the FFT) are slower in
characteristic two. Secondly, the fast algorithms do not exploit the structure of inputs, in general.
Therefore, we propose some methods to improve the number of operations by constant factors.

Improving the Euclidean division of a square by special HFE polynomials. Here, we
exploit the fact that the dividend is a square to improve Algorithm 37 (for da = 2D −2). All terms
of odd degree are null. We show that the complexity can be divided by a maximum factor of two.
This factor depends on the largest odd degree such that the corresponding term in the divisor is
non-null. We introduce a new notation to define such an integer. LetQ be a univariate polynomial.

169

We denote by D(Q) the largest odd integer i such that the degree-i term of Q is not null (i.e.
qi 6= 0). If it does not exist, we setD(Q) = −∞. The following lemma permits to demonstrate the
main result (Theorem 10) of this part.

Lemma 8. Let A ∈ Fqd ext [x] be a polynomial of degree at most2D − 2, H ∈ Fqd ext [x] be of degree
D , Q, R ∈ Fqd ext [x] be respectively the quotient and remainder of the Euclidean division ofA by H
and d = D(H). If D(A) = −∞ and if D is even, thenD(Q) 6 d− 2.

Proof. Let H =
∑ D

j =0 hj x j and Q =
∑ D −2

j =0 qj x j . By definition of D, D(Q) 6 d− 2 is equivalent
to qi = 0 for all odd i such that i > d − 2. By definition of Q, qi = 0 for i < 0 and i > D − 2, so
we show the lemma for the values ofqi such that D − 2 > i > max(−1, d− 2).

To do it, we use a proof by induction on an oddj such that D − 1 > j > max(−1, d− 2). The
base case,j = D − 1, is trivial since qj = 0 for j > D − 2. Now, assume thatqk = 0 for all odd k
such that D−1 > k > j > max(−1, d−2), and consider the coefj (H) notation which corresponds to
the coefficient of the power j of x in H . To show that qj = 0 , firstly we show these two properties:

(1) coefD + j (HQ) = 0 ,

(2) coefD + j (HQ) = qj hD .

Proof of these two properties:

(1) By definition, A = HQ + R and so A − R = HQ . BecauseD(A) = −∞ by hypothesis,
D(A − R) = D(R) 6 D − 1 < D + j and D + j is odd so coefD + j (A − R) = 0 .

(2) HQ =
∑ 2D −2

r =0
∑ r

` =0 q̀ hr −` x r , so coefD + j (HQ) =
∑ D + j

` =0 q̀ hD + j −` . But q̀ = 0 for ` > D − 2
and hD + j −` = 0 for D + j − ` > D , so coefD + j (HQ) =

∑ D −2
` = j q̀ hD + j −` . When ` > j is odd,

q̀ = 0 by induction hypothesis. When ` is even,hD + j −` = 0 becauseD + j − ` is odd and
D(H) = d < D + j − ` . So

∑ D −2
` = j q̀ hD + j −` = qj hD .

These two properties imply coefD + j (HQ) = qj hD = 0 . BecausehD 6= 0 , this implies that qj = 0 .�

We can now demonstrate Theorem 10.

Theorem 10. Let H be a HFE polynomial of degreeD in Fqd ext [x] where the s terms of highest
odd degree have been removed(0 6 s 6 dlogq(D)e), and let A ∈ Fqd ext [x] be a square of degree
at most 2D − 2. If D and q are even, then the computation of the classical Euclidean division
(Algorithm 37) of A by H can be accelerated by a factor(D − 1)/

(D
2 + bqdlog q (D)e−s−2c

)
.

Proof. During Algorithm 37, A is a square andq is even soD(A) = −∞, and so Lemma 8 can
be applied. Let d = D(H), the iterations for k odd and strictly greater than D + d − 2 can be
removed becauseqk−D = 0 . So, the number of iterations fork odd is max

((D + d−2)−(D +1)
2 + 1 , 0

)
=

max
(d−1

2 , 0
)
, whereas the number of iterations fork even is D

2 . So, Algorithm 37 can be used with
max

(D + d−1
2 , D

2

)
iterations.

Then, H is a HFE polynomial and q is even, sod = −∞, d = 1 or d = qi + 1 for i > 0. Assume
s < dlogq(D)e, implying d > 0. By removing the degree-(qi + 1) terms for i from dlogq(D)e − 1 to
dlogq(D)e−s by −1, d is equal to 1 orqdlog q (D)e−s−1 +1 . This implies that the number of iterations
can be written as D

2 + bqdlog q (D)e−s−2c. Note that the floor of qdlog q (D)e−s−2 is useful only if d 6 1,
which makes D

2 iterations. This number cannot be smaller: all odd degree terms of the quotient

170

are null. Now, assume thats = dlogq(D)e, implying d = −∞. As previously stated, we cannot do
better than D

2 iterations. So, the previous formula is still correct.
Finally, Algorithm 37 requires D − 1 iterations, so the proposed modification accelerates it of a
factor (D − 1)/

(D
2 + bqdlog q (D)e−s−2c

)
. This factor is at most two. �

Let K be the number of terms of theHFE polynomial (without removed terms), and s be the
number of removed terms. For s = 0 , the modular reduction costs (D − 1)(K − 1) multiplica-
tions and additions in Fqd ext , whereas by removing terms (with an even value ofD), the cost is
max

(D + d−1
2 , D

2

)
(K −1−s) field multiplications and additions. The main gain is due to the smaller

number of loop rounds during Algorithm 37, which is given by Theorem 10. However, there is also
a slight speed-up generated by the fact that terms are removed. Algorithm 37 has to be slightly
modified to take into account this remark (j can start to one instead of zero wheni is greater or
equal to dlogq(D)e − s).

Security and performance. When H has no term of odd degree, we obtain that during the
computation of xqd ext mod H , no odd degree term appears becauseR = A − HQ and A, H and Q
do not have odd degree terms. This result allows to perform computations only for even degree
terms, dividing by two the cost of the squaring and this of the modular reduction. But in practice,
removing all terms of odd degree of theHFE polynomial decreases the security. By using the
Frobenius sustainer [165], there exists an equivalent key betweenH

(
x 1

2
)

and H (x) for q = 2 . So,
the security is equivalent to a degree-D2 HFE polynomial. We will show in Table 9.14 that in this
case,D has to be multiplied by two to obtain the original security. We note that for q > 2, if we
remove all odd degree terms as well asx2, then there exists an equivalent key betweenH

(
x

1
q

)
and

H (x). This fact implies a security corresponding to a degree-Dq HFE polynomial.

Table 9.14 studies the impact ofd = D(H) on both the security and the theoretical speed-up
over the classical Euclidean division compared to the caseD = 513. We have done an experimental
test to analyze the degree of regularity [82, 11, 14, 22] (Section 4.4.1) in function of the number
of removed terms. We measure it during the Gröbner basis attack onHFE for dext = m = 30.
We observe that removing a small number of odd degree terms appears not to affect the security.
The security decreases as soon as eight terms are removed. The results confirm that the security
to attack H of degreeD without odd degree terms is the same as attacking aHFE polynomial of
degreeD

2 : the degree of regularity increases betweenD2 = 512 and D
2 = 513. The cased = 1 seems

to have the same behavior, but in the general case, the degree of regularity does not necessarily
decrease (forD = 130, the degree of regularity is 4 ford = −∞ but 5 for d = 1 , cf. Table 9.15).

The column speed-up onk corresponds to the obtained speed-up by decreasing the number of
iterations during Algorithm 37. The other speed-up column is the overall speed-up, which uses
the fact that removing terms decreases the number of multiplications for one iteration. Removing
the highest terms generates the main part of the overall speed-up. In Section 7.8.9, we propose to
chooses = 3 for D > 128.

Degree of regularity. We have measured theD Exp
reg observed in practice forHFE in function of s.

The results are summarized in Table 9.15. Whens is small, the degree of regularity is not impacted.
For the largest values ofs, the degree of regularity decrements. As soon asD is multiplied by two,
we have observed that the degree of regularity does not decrement anymore.

171

D d removed terms D Exp
reg nb. of it. speed-up onk speed-up

512 257 none 5 384 25% 27%
513 513 none 6 512 reference ref.

514

257 x513

6

385 25% 25%
129 x513, x257 321 37% 39%
65 x513, x257, x129 289 44% 46%
33 x513, . . . , x65 273 47% 50%
17 x513, . . . , x33 265 48% 53%
9 x513, . . . , x17 261 49% 54%
5 x513, . . . , x9 259 49% 56%
3 x513, . . . , x5

5
258 50% 57%

1 x513, . . . , x3 257 50% 58%
−∞ all odds 257 50% 59%

1024 1 x513, . . . , x3
5 512 0% 0%

−∞ all odds 512 0% 2%

1026 1 x1025 , . . . , x3
6 513 0% −4%

−∞ all odds 513 0% −2%

Table 9.14: Impact of d = D(H) on both the cost of Algorithm 37 and D Exp
reg the degree of regularity

of the correspondingHFE algebraic system of 30 equations in 30 variables overF2.

minimum m D s D Exp
reg

> 9 17 0 4
> 15 18 s 6 3 4

160> m > 5 4 6 s 6 5 3
> 16 129 0 5
> 16

130

s 6 5 5
> 18 6 5
> 23 7 5

70> m > 9 8 4
> 24 513 0 6
> 24

514
s 6 6 6

> 25 7 6
35> m > 16 8 6 s 6 10 5

> 32 4097 0 7
> 32

4098
s 6 10 7

> 33 11 7
35> m > 24 126 s 6 13 6

Table 9.15: Degree of regularity in the case ofHFE algebraic systems ofm equations in m variables
over F2, in function of s. The maximum value of s is dlog2(D)e.

172

About the MinRank attacks. The security of HFE against the Kipnis–Shamir attack (Section
4.6.3) seems not to be impacted by the parameters. Compared to a plain HFE polynomial (i.e.
s = 0), we set to zero the lasts coefficients in the first column of F (Figure 9.2). However, the first
coefficient of F corresponds tox2 which has an even degree, so the rank does not decrease. We
also remark that the last row of F is not null, since the leading coefficient corresponding to x24 +2

is present.

F =





∗ 0 0 0 0
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 ∗ 0 0 0





Figure 9.2: Example of (truncated) matrix F ∈ M5
(
F2d ext

)
for D = 18

and s = 3 . The three removed coefficients are in bold.

Removing even degree terms in characteristic two. We can also remove some even degree
terms. AssumeD = qI + 1 for I > 0. Thus, by removing the terms of highest even degree, a part
of even degree terms in the quotient becomes null. Similarly to theD notation, we introduce De,
which corresponds to the largest even integer instead of odd integer in the definition ofD.

Lemma 9. Let A ∈ Fqd ext [x] be a polynomial of degree at most2D − 2, H ∈ Fqd ext [x] be of degree
D , Q, R ∈ Fqd ext [x] be respectively the quotient and remainder of the Euclidean division ofA by H
and d = De(H). If D(A) = −∞ and if D is odd, thenDe(Q) 6 d− 2.

Proof. The proof (Section B.10) is similar to this of Lemma 8. The fundamental idea is to remark
that the first odd degree term appearing in the current remainder during the Euclidean division is
xD −2+ d. To make it vanish, we use the termxd−2 in the quotient, which will be the first even degree
term appearing. So, terms of odd degree strictly greater thanD − 2 + d are null in the current
remainder, implying terms of even degree strictly greater thand− 2 are null in the quotient. �

With Lemma 9, we obtain that at most max
(D + d−1

2 , D
2

)
terms of the quotient are not null,

as when we removed odd degree terms. However, the default of this method is the value ofd.
Whereas by removing one odd degree term (withD even), D(H) = qdlog q (D)e−2 + 1 , we need
removing dlogq(D)e−1 terms to obtain De(H) = qdlog q (D)e−2. So, it is faster to remove odd degree
terms with an even D . Moreover, removing even degree terms could be dangerous for the security,
especially because the termxqblog q (D) c

corresponds to vinegar variables in theHFEv polynomial.

Results. In MQsoft, we have implemented in constant-time the classical Euclidean division and
its fast version (Section 5.1.4). Then we have implemented Algorithm 37 which exploits the sparse
structure of HFE polynomials. In Table 9.16, we compare these methods. The classical Euclidean
division requires approximately D 2 multiplications, like the classical multiplication. So, times are
similar to these of Table 9.13. For the fast Euclidean division, we do not take into account the time
to generate the inverse of the reciprocal polynomial of the divisor. In our practical applications,
the latter can be computed one time for all modular reductions. So, the fast Euclidean division
requires the lower half of the result of two multiplications. Except for D = 17, we use Karatsuba’s
multiplication algorithm. The obtained timings correspond approximately to two times these of

173

Table 9.13. Then, when the dividend is a square, one of the two multiplications has a square
as operand. We take advantage of this in our implementation of Karatsuba’s algorithm, which
divides (approximately) by two the cost of the corresponding multiplication. The obtained timings
correspond to 1.5 times these of Table 9.13, which is consistent with our improvement.

Finally, we compare our general Euclidean divisions with the division by a sparseHFE polynomial.
The latter is very efficient because it requires approximately 1

2 D log2(D)2 multiplications, and a
speed-up of approximately 44% is obtained by removing three terms in theHFE polynomial. We do
not succeed to obtain a speed-up with the fast Euclidean division. This is explained by the use of
Karatsuba’s multiplication algorithm. The cost of the latter is not quasi-linear, compared to the
1
2 D log2(D)2 multiplications of the sparse Euclidean division.

dext D Euclidean div. fast Euclidean div. HFE Euclidean div.
div. div. sqr. div. div. sqr.

175

17 0.00509 0.00575 0.00465 0.00392 ×
129 0.274 0.214 0.171 0.0700 0.0383
513 4.28 1.92 1.54 0.436 0.237
4097 274 51.1 41.0 5.81 3.30

Table 9.16: Number of megacycles to compute the remainder of the Euclidean division of a degree-
(2D − 2) polynomial by a degree-D monic polynomial over F2d ext . We use a Skylake processor
(LaptopS). In the div. sqr. column, we consider the division of a square. For the division by aHFE
polynomial, we increment D and considers = 3 .

9.3.4 Modular Composition of Polynomials over F2dext

We have implemented our adaptation (Algorithm 20) of the modular composition of polynomials
of Brent and Kung [42] over F2d ext , without using matrix product over F2d ext . Coupled to our
efficient implementation of Karatsuba’s multiplication algorithm (Section 9.3.2), we obtain the
results described in Table 9.17. Our modular composition is on average seven or eight times faster
than the CompMod function from NTL. As for the polynomial multiplication over F2d ext , Magma is
three times slower thanNTL (we used theModularComposition function). Finally, we have studied
the performance for s = 3 , meaning we remove the terms of degree 33, 65 and 129 (respectively
129, 257 and 513) in theHFEv polynomial for D = 130 (respectively D = 514). We obtain a very
small speed-up, due to the improvement of the modular reduction of polynomials overF2d ext when
operands are squares (Section 9.3.3).

9.3.5 Frobenius Map in F2dext [X]

The core of Algorithm 25 (Section 5.4.8) is to computeX 2d ext mod H . In Section 5.4.5, we show that
this computation can be done with the classical repeated squaring algorithm, using or not multi-
squaring tables as in Section 9.2.5. The main difference with Section 9.2.5 is that the coefficients
are in F2d ext instead of F2. So, the tables are too large to be precomputed. However, they can be
computed more quickly whenH is a HFE polynomial. Then, these two strategies can be embedded
with the use of modular composition (Algorithm 21). We can replace the last dext

2 squarings by
a modular composition, coupled to a2

d ext
2 -exponentiation of the coefficients. For the first dext

2

174

squarings, we can repeat this process recursively by replacing the half of squarings by a modular
composition, as done previously. So, an efficient modular composition allows interesting speed-ups
on the computation of the Frobenius map. Fordext 6 576and D 6 514, we use up to three modular
compositions to speed up the repeated squaring algorithm.

dext D s modular composition
Magma NTL MQsoft (b)

175

17 0 1.07 0.304 0.0474 (4)
129 0 64.0 26.4 3.49 (8)
130 3 62.8 30.8 3.27 (11)
513 0 510 444 56.5 (16)
514 3 499 501 53.0 (20)
4097 0 94300 30400 3590 (50)
4098 3 93900 30600 3400 (50)

Table 9.17: Number of megacycles to compute the modular composition of twoD -coefficient poly-
nomials modulo a monic HFE polynomial of degreeD over F2d ext . We use a Skylake processor
(LaptopS). (b) corresponds to the chosen number of blocks for Algorithm 20. ForD = 33, we
recommendb = 4 .

Let CF be the cost of the Frobenius map inFqd ext [X]. When the input is a HFE polynomial, we
have three possible complexities, which correspond respectively to the classical Frobenius map, this
based on the modular composition, and finally the Frobenius map using multi-squaring tables:

CF =






O
((

dext − dlogq(D)e
)
· log2(q) · D logq(D)2)

operations in Fqd ext ,

O
(
log2(dext) · D 2.085 + dext · log2(q) · D

)
operations in Fqd ext ,

O
(

qk ′
· D logq(D)2 +

dext

k′ · D ·
(
D + k′ log2(q)

))
operations in Fqd ext .

These complexities are obtained from Section 5.4.5, by replacing the cost of the modular reduction
by this of Algorithm 37. The factor D 2.085 corresponds toO

(
D 0.5)

uses of Karatsuba’s polynomial
multiplication algorithm over Fqd ext .

Table 9.18 summarizes the performance of both strategies for the Frobenius map, and com-
pares our implementation to NTL and Magma. We use the Modexp function from Magma and the
PlainFrobeniusMap and ComposeFrobeniusMap functions from NTL, both computing X 2d ext mod
H . We have also studied the strategy from Section 9.3.3 which permits to improve the Frobenius
map by removing odd degree terms in theHFE polynomial. We remove three terms whenD = 130
or D = 514. The results confirm the theoretical speed-ups: when the classical Frobenius map is
used without the modular composition, MQsoft saves approximately 44% of computations by re-
moving three terms. Magma is also improved by this trick, probably because it also uses the classical
Euclidean division, and does not compute multiplication by zero. It is not the case forNTL because
it uses the fast Euclidean division (Algorithm 17).

The multi-squaring strategy is the fastest when D is small compared todext, and is improved
thanks to modular composition. When D is larger, we find a threshold where the classical Frobenius
map with modular composition is faster than the use of multi-squaring tables. Finally, we observe

175

a last threshold where the use of modular composition is clearly inefficient becauseD is too large.
Removing odd degree terms is interesting forHFE-based NIST submissions which useD equals 129
or more. This implies increasing by one the original parameters (D = 129 and D = 513). Without
taking into account this change, our best Frobenius map is 6 to 14 times faster thanNTL. Magma is
faster than NTL for fairly large degrees such as 513.

dext D s Magma NTL MQsoft (rep. sqr) MQsoft (multi-sqr)
Modexp normal comp. normal comp. normal comp.

175

17 0 11.3 4.46 2.12 0.696 0.280 0.274 0.204
129 0 159 130 123 12.0 9.30 11.2 9.88
130 3 101 146 134 6.73 6.65 11.2 9.67
513 0 957 1050 1870 74.9 92.6 151 139
514 3 606 1150 2050 41.6 73.4 150 135

358

17 0 36.5 15.0 4.31 3.95 0.892 1.43 0.694
129 0 539 466 257 72.0 35.5 61.7 37.9
130 3 329 524 280 39.4 26.8 61.2 36.5
513 0 3260 3460 3950 447 364 853 614
514 3 1980 3860 4260 245 256 845 600

Table 9.18: Number of megacycles to compute the Frobenius map modulo aHFE polynomial over
F2d ext . We use a Skylake processor (LaptopS).

9.3.6 Greatest Common Divisor of Polynomials over F2dext

The second most important step of the root finding algorithm (Algorithm 25) is the computation
of the GCD of two degree-D polynomials over F2d ext (Sections 5.4.1, 7.4.11 and B.8). We have
implemented variable-time and constant-time GCD algorithms which require O

(
D 2)

field multipli-
cations. We have also implemented the half-GCD algorithm ([161, Algorithm 11.8], [36, Algorithm
6.8]), which usesO

(
M(D) log(D)

)
field multiplications. Our implementation is based on Karat-

suba’s polynomial multiplication algorithm (Section 9.3.2) and the fast Euclidean division. The
half-GCD algorithm is variable-time, and is not interesting for a degree 514 or less. So, we do not
consider it here. All algorithms used are implemented with a constant-time arithmetic, but the
variable-time GCD algorithm is variable because of the variable number of successive remainders.
We use Methods 1 and 3 from Section 5.4.1 in Algorithm 18. Its constant-time implementation
follows the principle of Algorithm 53, with optimizations due to the characteristic two.

dext D Magma NTL MQsoft (var.) MQsoft (cst)

175
17 0.716 0.236 0.0137 0.0213
129 10.0 3.94 0.649 1.17
513 125 40.6 7.42 15.6

358
17 1.71 0.597 0.0389 0.0528
129 21.5 7.94 1.76 3.14
513 228 75.0 20.7 39.5

Table 9.19: Number of megacycles to compute the GCD of two polynomials of degreeD and D −1
over F2d ext . We use a Skylake processor (LaptopS).

176

Table 9.19 compares the performance of GCD algorithms. Our classical variable-time GCD is 3.5
to 4.5 times better than NTL. This results of the difference of performance between our operations
in F2d ext , except for small degrees such as 17 where we obtain a factor 15 or 17. In this case, the
use of the Euclid–Stevin strategy which does not compute inverse inF×

2d ext is really efficient. This
strategy is rather recent (2019), which can explain thatNTL does not use it for the moment.

9.3.7 Performance of the Root Finding Algorithm over F2dext

Table 9.20 compares the best implementation of root finding algorithm of each library for the
parameters ofGeMSS and Gui. The results are similar to the performance of Frobenius map, which
is the critical part of the root finding algorithm. MQsoft is six to thirteen times faster than NTL.

dext D s Magma NTL MQsoft
177 17 0 13.8 2.49 0.241
266 17 0 27.3 4.03 0.604
358 17 0 40.7 5.27 0.835
184 33 0 40.6 9.11 0.901

175 129 0 174 136 10.5
130 3 114 145 7.89

265 129 0 380 216 27.9
130 3 241 226 22.4

312 129 0 437 235 28.4
130 3 275 236 22.5

358 129 0 571 273 39.3
130 3 356 274 30.5

174 513 0 1140 1120 91.1
514 3 769 1140 58.7

265 513 0 2410 2360 281
514 3 1580 2380 183

354 513 0 3690 4520 399
514 3 2340 4550 285

448 513 0 4700 5560 580
514 3 2850 5430 457

Table 9.20: Number of megacycles to find the roots of aHFE polynomial of degreeD over F2d ext .
We use a Skylake processor (LaptopS).

We have presented in this section the main algorithms that we have implemented inMQsoft to
find the roots of HFE polynomials efficiently. However, our library proposes extra functions. The
half-GCD requires implementing Karatsuba’s polynomial multiplication algorithm and the fast
Euclidean division overF2d ext . So, we propose a fast version of the root finding algorithm, based on
a Frobenius map using the fast Euclidean division. This permits to have an efficient implementation
of root finding for general applications, using a constant-time arithmetic in the base field.

177

9.4 Generation and Evaluation of MQ Systems

In this section, we study how to implement efficiently important steps of the keypair generation
(Algorithm 29) and verifying process (Algorithm 32) of GeMSS, as well as for the verifying process
(Algorithm 11) of DualModeMS. These steps are based on multivariate quadratic (MQ) systems that
we represent as quadratic forms.

In Section 9.4.1, we compute the multivariate representation (innvar variables) of HFEv poly-
nomials. Then, we study efficient implementations about multivariate quadratic systems. The
evaluation can be implemented in variable-time to evaluate the public-key, unlike theHFEv poly-
nomial where the evaluation of the vinegar part has to be achieved in constant-time. We also note
that for multivariate-based encryption schemes, we can re-use our constant-time implementation
to evaluate the public-key. In addition, the performance of an evaluation depends mainly on the
storage format. It is often faster to use padding to align data, but this increases the required size
to store the multivariate quadratic system. To obtain the smallest size of public-key, we can pack
data, then unpack it before performing the evaluation. However, the extra cost of unpacking can
significantly impact the performance. So, we propose two kinds of algorithms. The first allows to
directly evaluate the system, whereas the second minimizes the time to unpack and evaluate the
system. Especially during the verifying process, we take into account that a system is sometimes
unpacked one time for several evaluations.

Finally, the inner verifying process (Algorithm 4) cannot be re-used during the dual verifying
process (Algorithm 11). It is due to the number of equations, which falls toα 6 2 equations instead
of m. Moreover, this small number of equations is evaluated a large number of times. In Section
9.4.5, we introduce the idea of multipoint evaluation via a monomial representation of points. This
method turns to be very efficient over small fields in characteristic two, such as F16 and F256, but
inefficient over F2. Over F2, we evaluate each equation in each point with the technique described
in Section 9.4.2.

9.4.1 Generating the Components of a HFEv Polynomial

Here, we explain how to obtain the multivariate polynomials f 1, . . . , f dext ∈ Fq[x1, . . . , xn var] of f
from a HFEv polynomial F ∈ Fqd ext [X, v 1, . . . , vv] (Section 7.1.2). The principle is to symbolically
compute F

(∑ dext
k=1 xk ·θk , v1, . . . , vv

)
∈ Fqd ext [x1, . . . , xn var] in the form

∑ dext
k=1 f k ·θk (Equation (7.2)).

To do it, we start by introducing the matrix representation of F overFqd ext based on quadratic forms.
Then, we replaceX by

∑ dext
k=1 xk · θk to obtain the multivariate representation of F . This method

is described in [84].

Matrix representation of HFEv polynomials as quadratic forms. HFE polynomials (Equa-
tion (2.6)) can be naturally represented by using the matrix representation of quadratic forms [111]
(Section 4.6.3), as for multivariate quadratic systems (Section 7.4.1). LetR = blogq(D)c + 1 and

X =
(

X, X q, X q2
, X q3

, . . . , X qR −1
)

.

Then, we have:
F (X) = X ·Q · X T + L · X T + C, (9.2)

178

with L = (B0, . . . , BR −1) ∈M1,R
(
Fqd ext

)
representing the linear terms ofF , and where the matrix

Q ∈MR
(
Fqd ext

)
is upper triangular such that:

Qi,j =






A i,i if i = j and q 6= 2 ,
A j,i if i < j,
0 otherwise.

Now, we extend this definition to include vinegar variables. Let v = (v1, . . . , vv) be the vector
of vinegar variables. Theγ(v1, . . . , vv) map (Equation (2.9)) is quadratic in the vinegar variables.
So, we can write it as

γ(v) = v ·W · vT + V · vT + C,

where W ∈ Mv
(
Fqd ext

)
, V ∈ M1,v

(
Fqd ext

)
and C ∈ Fqd ext correspond respectively to the quadratic,

linear and constant terms of γ, and W is upper triangular. Similarly, the βi (v) are linear in the
vinegar variables, and can be written as

βi (v) = V (i)
X · vT + B i , for 0 6 i < R,

whereV (i)
X ∈M1,v

(
Fqd ext

)
and B i ∈ Fqd ext correspond respectively to the linear and constant terms

of βi . Let VX ∈ MR,v
(
Fqd ext

)
be the matrix generated from the row vectorsV (i)

X . Thus, Equation
(9.2) becomes:

F (X, v) =
(
X v

)
·

(
Q VX

0v,R W

)
·
(
X v

) T +
(
L V

)
·

(
X v

) T + C. (9.3)

Note that the matrix of quadratic terms of F is upper triangular.

Matrix representation of F from F . Now, we know the matrix representation of F , and we
want to deduce this ofF . We start by replacing X by ϕ−1(x) in F . By using Equation (2.7), it is
easy to check thatX = x · Γ where Γ ∈Mdext,R

(
Fqd ext

)
is such that Γ i,j = θqj

i +1 . So, we deduce the
multivariate quadratic form of F from Equation (9.3):

F
(
ϕ−1(x), v

)
=

(
x v

)
·

(
Γ ·Q · ΓT Γ · VX

0v,d ext W

)
·
(
x v

) T +
(
L · ΓT V

)
·
(
x v

) T + C. (9.4)

Note that the matrix of quadratic terms of F
(
ϕ−1(x), v

)
can be chosen upper triangular. To do

it, we take the matrix generated by the lower triangular terms (without the diagonal) of Γ ·Q · ΓT ,
and we add its transposed toΓ ·Q · ΓT .

Finally, we obtain F as ϕ
(
F

(
ϕ−1(x), v

))
, which is equivalent to applying ϕ on each of theN

field elements ofF
(
ϕ−1(x), v

)
.

Complexity. We start by evaluating the cost of computing F
(
ϕ−1(x)

)
via Equation (9.4), when

no vinegar variable is considered.

• Firstly, the computation of Γ requires O
(
dext logq(D)

)
field q-exponentiations. This ma-

trix does not depend on F and so can be precomputed. The memory cost of storingΓ is
dext

(
blogq(D)c + 1

)
elements ofFqd ext .

179

• Secondly, the computation ofL ·ΓT requiresO
(
dext logq(D)

)
operations in Fq[x] and O

(
dext

)

modular reductions (which is better than O
(
dext logq(D)

)
operations in Fqd ext).

• Then, we computeΓ ·Q with a classical matrix product, requiring O
(
dext logq(D)2)

operations
in Fq[x] and O

(
dext logq(D)

)
modular reductions.

• Finally, we multiply the previous result by ΓT , requiring O
(
d2

ext logq(D)
)

operations in Fq[x]
and O

(
d2

ext

)
modular reductions.

Now, we consider vinegar variables. We add the following step.

• The computation of Γ ·VX requiresO
(
dextv logq(D)

)
operations inFq[x] and O

(
dextv

)
modular

reductions.

By removing the precomputation step which requiresO
(
dext logq(D) log2(q)

)
operations in Fqd ext ,

we obtain an overall cost ofO
(
dext logq(D) ·(nvar +log q(D))

)
operations inFq[x] and O

(
dext ·(nvar +

logq(D))
)

modular reductions.

Remark 17. For certain choices ofθ, the computation of Γ, as well as the computations using it,
could be less expensive. In the implementation ofGeMSS, θ is the canonical basis ofF2d ext , and the
field polynomial f of F2d ext is a trinomial. This implies that the elements of Γ are sparse, which
simplifies the multiplication. When f is a field AOP (Section 5.3.4), the (field) multiplication by
x i ·qj

= x i ·qj mod dext+1 mod f is roughly a left (circular) shift by i · qj mod (dext + 1) positions.

9.4.2 Evaluation of a MQ Polynomial over F2

Here, we describe how to evaluate efficiently a multivariate quadratic polynomial p, such that

p =




n var∑

i =1

i∑

j =1

pi,j x i x j



 +

(n var∑

i =1

pi x i

)

+ c ∈ Fq[x1, . . . , xn var].

This operation is used during the verifying process ofMI-based schemes (Section 2.3.3), in particular
when we use the hybrid representation of the public-key (Section 7.4.8). We also use it during the
dual verifying process, when we verify the validity of σ inner signatures with a derived public-key
of α 6 2 equations (Section 3.4).

By using the matrix representation of quadratic forms, we can write p as

p(x) = x ·
(

Q · xT
)

+ x · L T + c, (9.5)

wherec ∈ Fq, L ∈M1,n var

(
Fq

)
and Q ∈Mn var

(
Fq

)
is a lower triangular matrix. We emphasize that

Q is not upper triangular here. This choice allows to improve the performance when theintuitive
strategy is used. Thus, we store thei -th row of Q over F2 as anvar-bit integer for 1 6 i 6 nvar.

From now, we considerq = 2 , and we storeL on the diagonal ofQ. An intuitive constant-time
strategy is to directly compute Equation (9.5). In order to compute efficiently Q ·xT , we storeQ in
the row-major order such that each row is a vector of bits. Thus, each dot product can be computed
with a bitwise logical AND, followed by the computation of the parity bit of the Hamming weight.
However, the latter is rather expensive compared to a simple logicalAND. So, we do not compute it

180

fully. For each row of Q, we xor the products (which useAND) in a ω-bit register, then we directly
multiply this non-reduced result by the corresponding value from x . We accumulate vectors ofω
bits instead of bits, and at the end of the evaluation, we compute only one time the parity bit of
the Hamming weight. The latter can be computed by repeating the process of aligning the lower
and higher parts, then xoring them, until a 64-bit (or 32-bit) vector is obtained. For these sizes,
we could continue to repeat the previous dichotomic process, but the use of thePOPCNT instruction
(which computes the Hamming weight) is faster. When this instruction is not available, we can
use the variable-precision SWAR (SIMD Within A Register) algorithm, our variant computing the
parity of the Hamming weight, or the PCLMULQDQ instruction to multiply the 64-bit vector (as a
binary polynomial) by the degree-63 binary AOP, followed by a logical right shift by 63 positions.

Algorithm 38 Classical 64-bit implementation in C programming language of the SWAR algorithm.
1: /* n is the input, a 64-bit register. */
2: /* n is the output. n contains the Hamming weight of the input. */
3: #define COUNTBITS64_SWAR(n) \
4: n-= (n >> 1) & ((uint64_t)0x5555555555555555); /* HW of each 2-bit block */\
5: n= (n & ((uint64_t)0x3333333333333333))\
6: +((n >> 2) & ((uint64_t)0x3333333333333333));/* HW of each 4-bit block */\
7: n=(((n + (n >> 4)) & ((uint64_t)0xF0F0F0F0F0F0F0F)) /* HW of each byte */\
8: * ((uint64_t)0x101010101010101)) >> 56; /* sum of the 8 HWs */

9: #define PARITY_COUNTBITS64_SWAR(n) /* our variant computing the parity bit */\
10: n^=n >> 1; /* parity of the HW of each 2-bit block */\
11: n^=n >> 2; /* parity of the HW of each 4-bit block */\
12: n=((n&((uint64_t)0x1111111111111111))\
13: * ((uint64_t)0x8888888888888888)) >> 63;/* sum of the 16 HWs modulo 2 */

The evaluation of p can be optimized with an unpacked representation ofQ, where each row of
Q is aligned to the used register size, with a zero padding. Compared to a packed representation,
this avoids having to align xT for each dot product and turns to be more efficient. However, a
packed representation minimizes the required memory. So, the unpacked representation implies a
memory penalty or adding an unpacking step, which can be expensive. We study this point in
Section 7.4.8.

We note that [53] proposed a method which balances the size of the rows ofQ. We denote this
idea the diagonal strategy, since adiagonal representation of Q is used. The idea is to generate a
matrix Q′ whose i -th row is the diagonal of sizenvar − i of Q (from up to down) followed by this
of size i , for 0 6 i 6

⌊ n var
2

⌋
. The obtained matrix has

⌊ n var
2

⌋
+ 1 plain rows. This representation

can seem better, since the number of rows is divided by two, and the balanced rows make easier
the memory management. However, this representation requires shifting

⌊ n var
2

⌋
times the vector of

variables during the evaluation. The implementation of this operation is rather slow overF2. That
is why we use the intuitive strategy.

In our variable-time implementation over F2, we improve the intuitive strategy by using the fact
that a random value of x i is null with probability 0.5. We know that each row of Q · xT will be
multiplied by x i . So, whenx i = 0 , we do not compute the corresponding row. When the rows ofQ
have to be unpacked, we can avoid unpacking itsi -th row if x i = 0 , also improving the unpacking
step.

181

9.4.3 Variable-Time Evaluation of MQ Systems over Fq

Now, we study how to take advantage of the structure of a multivariate quadratic system to evaluate
it efficiently. The evaluation of MQ systems in variable-time is important for the verifying process
of MI-based schemes (Section 2.3.3). Similarly to the previous section, letp ∈ Fqm [x1, . . . , xn var] be
the monomial representation of a MQ system ofm equations in nvar variables overFq, such that

p(x) = x ·Q · xT + L · xT + c,

where c ∈ Fqm , L ∈M1,n var

(
Fqm

)
and Q ∈Mn var

(
Fqm

)
is upper triangular. We can write p as:

p(x) = x ·
(

Q · xT + L T
)

+ c.

In variable-time, and when q is small enough, the classical trick [15] is to look the value ofx i ∈ Fq
before computing thei -th row of Q ·xT + L T . If x i is null, then we do not compute the i -th row since
the latter will be multiplied by zero. This happens with probability 1

q for a random value ofx i . Else,
the computation of the i -th row requires multiplying the i -th row of Q by xT . Here again, we can
optimize the multiplication by x j ∈ Fq for i 6 j 6 nvar. If x j is null, then the multiplication can be
avoided. We also note that whenx i or x j is equal to one (or minus one), the multiplication becomes
trivial. This strategy is very efficient on F2 (Algorithm 39), because approximately a quarter of the
monomials are non-null. The average cost of this strategy is approximatelym · n var·(n var+1)

2 · (q−1) 2

q2

multiplications in Fq. In our implementation, this strategy seems to give apparent speed-ups for
q 6 16. We also observe that the verification ofx i alone can be more efficient.

Algorithm 39 Variable-time evaluation of a MQ system of m equations in nvar variables overF2.

1: function Evaluation_MQsystem
(
p ∈ F2m [x1, . . . , xn var], y = (y1, . . . , yn var) ∈ Fn var

2
)

2: acc← c . Constant term of p.
3: for i from 1 to nvar do
4: if yi = 1 then
5: acc← acc+ p i . Linear term of p.
6: for j from i + 1 to nvar do
7: if yj = 1 then
8: acc← acc+ p i,j . Quadratic term of p.
9: end if

10: end for
11: end if
12: end for
13: return acc
14: end function

The previous method exploits the potential low Hamming weight of x . However, this method
is expensive for large Hamming weights. The authors of [15] proposed a differential trick overF2.
Let L 1 (x) be the following multivariate linear polynomial over Fq:

L 1 (x) = c − p
(
1n var

)
−

n var∑

i =1

(

2 · p i,i +
i −1∑

j =1

p j,i +
n var∑

j = i +1

p i,j

)

x i .

182

Thus, we have the following differential property:

p(x) − p
(
x + 1n var

)
= L 1 (x).

So, the difference betweenp(x) and p(x + 1n var) is linear. This property is well-known for MQ
polynomials [58], by replacing1n var by any vector over Fq. However, the choice of1n var allows the
following strategy [15] to evaluatep over F2. If the Hamming weight of x is smaller than a certain
threshold t (e.g.

⌊ n var
2

⌋
), then p(x) is directly computed. Else, p(x + 1n var) + L 1 (x) is computed.

We summarize this strategy in Algorithm 40. The interest of Algorithm 40 is that Step 0 can be
precomputed for a fixed public-keyp. This requires storing m · (nvar + 1) bits.

Algorithm 40 Variable-time evaluation of a MQ system overF2 using the differential trick.
Input: p ∈ F2m [x1, . . . , xn var], y = (y1, . . . , yn var) ∈ Fn var

2 , t ∈ N.
Output: p(y) ∈ F2m .

0. Precompute L 1 (x) = c − p
(
1n var

)
−

∑ n var
i =1

(∑ i −1
j =1 p j,i +

∑ n var
j = i +1 p i,j

)
x i . The latter depends

only on p.

1. Compute h the Hamming weight of y , e.g. with several calls to the POPCNT instruction or the
SWAR algorithm 38.

2. If h 6 t, then return p(y) by using Algorithm 39.

3. Else, return p
(
y + 1n var

)
+ L 1 (y) by using Algorithm 39. Note that the computation of L 1 (y)

can be trivially included in the evaluation of p.

However, Algorithm 40 does not speed up the evaluation of the public-key inGeMSS. We think this
is due to the Hamming weight, which is close ton var

2 for random vectors. Finally, we emphasize
that we cannot use specific values ofx i to speed up a constant-time implementation.

9.4.4 Implementing an Efficient Evaluation of MQ Systems over F2

Here, we study how to implement efficiently the evaluation of multivariate quadratic systems over
F2. The evaluation of the public-key is the main part of the verifying process ofGeMSS (Section
7.1.4). It is iterated nb_ite times. Since the verification is a public process, it does not need to be
protected against timing attacks. As in Section 9.4.3, we can exploit the fact that for a random
input, the evaluation of a monomial x i x j in F2 is null with probability 0.75, and so avoid 75% of
computations. However, the evaluation in constant-time is required during the signature generation
(Section 7.1.3) and keypair generation by evaluation-interpolation (Section 7.4.7) to evaluate theγ
map of the HFEv polynomial (Equation (7.1)), which is quadratic in the vinegar variables. It is also
used in other contexts, for example to encrypt a message for theHFE-based encryption schemes. In
this section, we study both variable-time evaluation and constant-time evaluation.

To evaluate the public-key p, we can use different representations. The representation by equa-
tion consists in storing the m equations ofp separately (p ∈ F2[x1, . . . , xn var]m), whereas the rep-
resentation by monomial consists in storing the monomials ofp separately (p ∈ F2m [x1, . . . , xn var]).

183

In the previous section, we studied the fast evaluation of [53], which applies naturally on the
representation by equation (with a diagonal representation of each equation). In [56], the authors
presented a faster evaluation. To do so, they used a monomial representation of the public-key.
Both, [53] and [56], used the AVX2 instruction set. We have chosen the monomial representation
as in [56], because it naturally exploits the fact that on average, 75% of monomials are null.

Our variable-time evaluation only uses the classical method [15], as presented in Algorithm 39.
We initialize an accumulator acc to the constant term c ∈ F2m of p, and for each term p i,j x i x j
with p i,j ∈ F2m for 1 6 i < j 6 nvar, we add p i,j to acc if and only if x i = x j = 1 .

Then, we have vectorized Algorithm 39. To do it, we just storeacc with 256-bit registers, and
we use 256-bitload, store and bitwise XOR instructions to perform vectorial computations. When⌈ m

64

⌉
is not a multiple of four, we sometimes add the use of 64-bit or 128-bit registers to speed up

the implementation. Algorithm 39 is vulnerable to timing attacks (Section 4.7), since the bitwise
XOR is used if and only if x i = x j = 1 . The traditional way to avoid this attack (Section 6.3.2) is
to replace the conditional statement by a multiplication by x i (respectively x j). But x i and x j are
in F2, so the multiplication can be accelerated: it is equivalent to applying a mask which is the
duplication of x i (respectively x j) m times. With this strategy, we obtain Algorithm 41.

Algorithm 41 Constant-time evaluation of a MQ system ofm equations in nvar variables overF2.

1: function Cst-time_evaluation_MQsystem
(
p ∈ F2m [x1, . . . , xn var], y = (y1, . . . , yn var) ∈ Fn var

2
)

2: for i from 1 to nvar do
3: Tmask[i]← −yi . Duplicate the bit yi to create a mask.
4: end for
5: acc← c . Constant term of p.
6: for i from 1 to nvar do
7: L ← p i
8: for j from i + 1 to nvar do
9: L ← L +

(
p i,j AND Tmask[j]

)
. Apply the mask on p i,j (compute p i,j yj).

10: end for
11: acc← acc+

(
L AND Tmask[i]

)
. Apply the mask on L (compute L · yi).

12: end for
13: return acc
14: end function

To vectorize Algorithm 41, accand L are stored in 256-bit registers. However, the optimal way
to put each mask in a 256-bit register is not trivial. On the one hand, we can store 256-bit masks
in the array Tmask. In this way, the load instruction permits to create the 256-bit register. On the
other hand, we can store 64-bit masks in the arrayTmask. The creation of the 256-bit register is
done by one call toVPBROADCASTQ, which duplicates a 64-bit mask in a 256-bit register. This idea
is described in Algorithm 42. We propose a new idea, described in Algorithm 43. Firstly, we unroll
with a depth four the loop in j . Secondly, we store 64-bit masks in the arrayTmask, but we load
four 64-bit masks in one 256-bit register. Then, to create a 256-bit mask from one of the four 64-bit
masks, we use theVPERMQ instruction. It permits to create a 256-bit register where each 64-bit part
is one of the four 64-bit part of the input. In particular, we use it to duplicate one 64-bit part of
the input (which is a mask) in a 256-bit register. This method is the best: it requires only one load
for four masks, unlike the two previous methods which require four loads (four 256-bit loads for the
first method and four 64-bit loads for the second method).

184

Then, to apply the mask on p i,j , we remark that the VPMASKMOVQ instruction permits to load
data and apply the mask in only one instruction. It permits to accelerate the evaluation.

More generally, our new method usingVPERMQ permits to improve the constant-time vector-
matrix product over F2, but is interesting only when the variable Tmask is computed one time
for several products sharing the same vector. We remark that this method is faster on Skylake
processors, but on Haswell processors, the use ofVPBROADCASTQ (Algorithm 42) remains faster.

Algorithm 42 Improvement of Algorithm 41 with AVX2, VPMASKMOVQ and VPBROADCASTQ.
8: for j from i + 1 to nvar do
9: L ← L + VPMASKMOVQ(p i,j , VPBROADCASTQ(Tmask[j])) . Compute p i,j yj .

10: end for

Algorithm 43 Improvement of Algorithm 41 with AVX2, VPMASKMOVQ and VPERMQ.
8: for j from i + 1 to nvar − 3 by 4 do
9: y64x4← VMOVDQU(Tmask + j) . Load Tmask[j], Tmask[j + 1] , Tmask[j + 2] and Tmask[j + 3] .

10: y0← VPERMQ(y64x4, 0x00) . Duplicate Tmask[j].
11: y1← VPERMQ(y64x4, 0x55) . Duplicate Tmask[j + 1] .
12: y2← VPERMQ(y64x4, 0xAA) . Duplicate Tmask[j + 2] .
13: y3← VPERMQ(y64x4, 0xFF) . Duplicate Tmask[j + 3] .
14: L ← L + VPMASKMOVQ(p i,j , y0) . Load p i,j and apply the mask (computep i,j yj).
15: L ← L + VPMASKMOVQ(p i,j +1 , y1) . Compute p i,j +1 yj +1 .
16: L ← L + VPMASKMOVQ(p i,j +2 , y2) . Compute p i,j +2 yj +2 .
17: L ← L + VPMASKMOVQ(p i,j +3 , y3) . Compute p i,j +3 yj +3 .
18: end for
19: for j from j to nvar do
20: L ← L + VPMASKMOVQ(p i,j , VPBROADCASTQ(Tmask[j])) . Compute p i,j yj .
21: end for

Table 9.21 shows the performance of the evaluation that uses the AVX2 instruction set. To im-
prove the performance, we use the-funroll-loops option of GCC which unrolls loops to improve
the use of the pipeline. The factor of performance between variable-time and constant-time imple-
mentation depends onm: the factor is two for small values of m and four for larger values. The
performance is affected by cache penalties when the public-key is too large. Form = nvar = 256, we
compare our code with the efficient implementation of [56], by using a similar processor (ServerH).
We have similar times for the constant-time evaluation, and a speed-up of 1.38 for the variable-time
evaluation. This speed-up is mainly due to unrolled loops. Moreover, we have split the loopi
(respectively the loop j) into two loops with an Euclidean division by 64: the first is a loop for iq
from 0 to

⌊ i
64

⌋
, and the second is a loop forir from 0 to 63. In this way, for extracting x i which

is the i -th bit from a vector of 64-bit words, we take the ir -th bit of the iq-th word. It permits to
simplify the extraction of bits from 64-bit registers.

For the constant-time evaluation, we have obtained our best times on Haswell by using Algorithm
42. However, on Skylake, Algorithm 43 is faster. For a MQ system of 256 equations in 256 variables
over F2 (cf. Table 9.22), we obtain 61.4 kc with Algorithm 42 against 55.5 kc with Algorithm 43.
Since Algorithm 42 is state-of-the-art on Haswell, we have obtained a new speed record on Skylake,
by a factor 1.1. For comparison, we obtain 23.2 kc for the variable-time evaluation.

185

For m requiring one 64-bit word (respectively two 64-bit words), we use the 256-bit registers to
perform computations in F2m by pack of four elements (respectively two elements). This method
implies the use of masks to computep i,j x j for four (respectively two) successive values ofj . Opti-
mizing the casesm requiring one or two 64-bit words permits to use a new strategy of parallelization:
with k cores, the public-key can be split intok packets of 64 equations (respectively 128 equations),
and each core can apply one time the evaluation for its part of the public-key. In a general way,m
can be split in the way to use evaluation algorithms for smaller number of equations.

m 64 128 192 256 320 384 448 512
constant-time 2.01 14.1 44.7 89.1 196 318 478 853
variable-time 1.15 6.46 17.1 37.3 74.5 120 191 205

Table 9.21: Number of kilocycles to evaluate a MQ system ofm equations in m variables overF2.
We use a Haswell processor (ServerH) with the AVX2 instruction set. Turbo Boost is not used.

m 64 128 192 256 320 384 448 512
constant-time 1.49 7.04 30.1 55.5 142 202 341 610
variable-time 0.841 3.87 12.3 23.2 51.0 75.5 133 144

Table 9.22: Number of kilocycles to evaluate a MQ system ofm equations in m variables overF2.
We use a Skylake processor (DesktopS) with the AVX2 instruction set. Turbo Boost is used.

9.4.5 Multipoint Evaluation of a MQ Polynomial
Here, we study how to perform efficiently the evaluation of a multivariate quadratic polynomial

p =




n var∑

i =1

n var∑

j = i

pi,j x i x j



 +

(n var∑

i =1

pi x i

)

+ c ∈ Fq[x1, . . . , xn var]

in a set of evaluation points z1, . . . , zσ ∈ Fn var
q . This operation is used when we verify the validity

of σ inner signatures with a derived public-key of α 6 2 equations (Section 3.4). For the sake of
simplicity, we only consider the evaluation of the quadratic terms. As in Section 9.4.3, the quadratic
terms of p can be written as a quadratic form, i.e. x ·Q · xT , whereQ is an upper triangular matrix
in Mn var

(
Fq

)
such that for 1 6 i 6 j 6 nvar, the coefficient (i, j) of Q corresponds to the monomial

x i x j of p. We have:

Qi,j =

{
pi,j if i 6 j,

0 otherwise.

It is well-known that in characteristic two, the monomial representation of a MQ system is optimal
for its evaluation in a point [15, 64]. It is due to the vectorization of the product of each monomial
x i x j by the corresponding coefficient from each equation. In our case, this representation is not
optimal since we only haveα 6 2 equations to evaluate (Section 8.6). So, we cannot re-use the code
of the evaluation available in the inner mode to verify inner signatures during the dual verifying

186

process. However, we have a fairly large set of evaluation points (16 6 σ 6 256). We propose the
dual idea of the previous evaluation. We store each equation one by one, but we use a monomial
representation of the evaluation points. Then, we will be able to multiply efficiently each coefficient
of p by the corresponding variables from each evaluation point.

Let zk =
(

z(k)
1 · · · z(k)

n var

)
∈ Fn var

q for 1 6 k 6 σ, and z ∈ Mn var,σ
(
Fq

)
be the monomial

representation of z1, . . . , zσ , i.e. z is the following matrix stored in the row-major order:

z =





z(1)
1 z(2)

1 · · · z(σ)
1

z(1)
2 z(2)

2 · · · z(σ)
2

...
...

. . .
...

z(1)
n var z(2)

n var · · · z(σ)
n var




.

Then, we demonstrate that:
(
p(z1) p(z2) · · · p(zσ)

)
=

(
1 · · · 1

)
·
(
z � (Q · z)

)
,

where� stands for pointwise product.

Proof. Let k be an integer such that1 6 k 6 σ. By definition, we have:

p(zk) =
n var∑

i =1

n var∑

j = i

pi,j z(k)
i z(k)

j .

The coefficient (i, k) of Q·z is
∑ n var

j = i pi,j z(k)
j , and its pointwise product with z givesz(k)

i
∑ n var

j = i pi,j z(k)
j .

Finally, the coefficient (1, k) of
(
1 · · · 1

)
·
(
z � (Q · z)

)
is

n var∑

i =1



 z(k)
i

n var∑

j = i

pi,j z(k)
j



 ,

which is exactly p(zk). �

The matrix product Q · z is the core of this evaluation. By multiplying each coefficient of
Q by the corresponding row of z, we can re-use the efficient parallel multiplication by a scalar
proposed in Section 7.4.9. Finally, the pointwise product can be performed with the parallel general
multiplication also described in Section 7.4.9. This process is summarized in Algorithm 44.

Remark 18. The matrix product Q · z could be performed with a fast matrix product, but this
would be inefficient for our practical sizes of parameters.

We summarize the results obtained with Algorithm 44 in Table 9.23. The chosen parameters
correspond to the 128-bit and 256-bit security levels ofRainbow and DualModeMS (Section 8.6).
The multipoint evaluation is efficient over F16 and F256: for each point, in one cycle, approximately
10 monomials ofp are evaluated forq = 16, and 5 monomials ofp are evaluated forq = 256. The

187

elements ofF256 are two times larger than in F16, which explains the previous factor two. Over
F2, the evaluation seems not to be efficient: only 26 monomials ofp are evaluated in one cycle,
whereas 256 elements ofF2 can be multiplied in parallel. The monomial representation of points is
not optimal for F2, so our final implementation uses another approach (Section 9.4.2). However, it
allows to easily vectorize the evaluation of a compressed equation, since the coefficients ofp are bits
extracted one by one. Then, fornvar equals 88 and 96, we propose two values ofσ. The first requires
storing σ monomials on 128 bits, whereas the second requires 256 bits. On 256 bits, we completely
exploit the AVX2 instruction set, whereas on 128 bits, the half of the register is not used. So, we
have proposed specific implementations to fully exploit these registers. It is very efficient overF256:
the number of cycles by point is similar betweenσ = 16 and σ = 32. The implementation is less
efficient over F16, with a loss of a factor of 29% forσ = 32.

Algorithm 44 Multipoint evaluation of one MQ polynomial (with linear part and constant).

1: function Multipoint_evaluation_MQ
(
p ∈ Fq[x1, . . . , xn var], z1, . . . , zσ ∈ Fn var

q
)

2: acc←
(
c · · · c

)
∈ Fσ

q . Duplication of the constant term of p.
3: for i from 1 to nvar do
4: L ←

(
pi · · · pi

)
∈ Fσ

q . Duplication of a linear term of p.
5: for j from i to nvar do
6: if pi,j 6= 0 then . Optional improvement.
7: if pi,j = 1 then . Optional improvement.
8: L ← L +

(
z(1)

j · · · z(σ)
j

)

9: else
10: L ← L +

(
z(1)

j · · · z(σ)
j

)
· pi,j . Multiplication by a scalar.

11: end if
12: end if
13: end for
14: acc← acc+ L �

(
z(1)

i · · · z(σ)
i

)
. Pointwise product of vectors.

15: end for
16: return acc . Return

(
p(z1) · · · p(zσ)

)
the vector of the σ evaluations of p.

17: end function

q nvar N σ nb. kilocycles nb. cycles by point
2 566 160462 256 1570 6140

16 96 4656 32 18.0 563
64 28.0 437

256 88 3916 16 12.4 774
32 22.5 720

188 17766 32 90.6 2830

Table 9.23: Performance of the evaluation ofα = 1 MQ equation in Fq[x1, . . . , xn var] in σ points.
We use a Skylake processor (LaptopS), with the AVX2 instruction set. Turbo Boost is not used.
The cost of computing the monomial representation of the points is included in the measurements.

188

9.5 Multipoint Evaluation of Univariate Polynomial Systems
For each cryptographic operation of the dual mode (Chapter 3), we have to evaluate one or several
univariate polynomials (the MAC polynomials), whose coefficients live in a small degree extension of
Fq. Typically, we have q = 2 for DualModeMS and q = 16 or q = 256 for Dual Rainbow (Section
8.6). Moreover, the extension field contains between218 and 224 elements, and the degree of the
MAC polynomials is between29 and 213. The number of equations and evaluation points depend on
the cryptographic operations. So, we adapt our choice of algorithms accordingly.

9.5.1 Multiplication in Fqκ and Accumulators
The core of the multipoint evaluation of the MAC polynomials is the multiplication in Fqκ . Here,
we propose efficient multiplications when q = 2 . When q = 16 or q = 256, we use an isomorphism
betweenFqκ and F2κ ′ with κ ′ = κ log2(q), permitting to exploit these multiplications. For κ ′ 6 8,
the multiplication can be performed in parallel with the field representation used in Section 7.4.9.
For larger extension degrees ofF2, it seems hard to have an efficient parallel multiplication. The
optimal way seems be to compute sequentially each multiplication with thePCLMULQDQ instruction,
which computes the product of two degree-63 polynomials inF2[x]. So, we use the polynomial
representation (Section 5.2.1). We defineF2κ ′ asF2 quotiented by an irreducible trinomial of degree
κ ′, if the latter exists (cf. Section B.9), or by an irreducible pentanomial of degreeκ ′ otherwise.
This choice permits to compute the multiplication with the PCLMULQDQ instruction, followed by the
field modular reduction based on algorithms dedicated to sparse polynomials (Section 5.3.3). We
can also use an irreducible AOP or ESP (Section 5.3.4) for certain extension degrees.

Then, we propose a trick to perform two multiplications in F2κ ′ when κ ′ 6 21, with only one call
to PCLMULQDQ. Let a0, a1, b0, b1 ∈ F2κ ′ . The computation of a0 × b0 and a1 × b1 can be performed
as following. We put the κ ′ bits of a0 in the lower bits of a 64-bit register, and the κ ′ bits of a1
in the higher bits. We repeat this process forb0, b1. Then, we call PCLMULQDQ which returns the
product in a 128-bit register R. Finally, the 2κ ′ − 1 lower bits of R are a0 × b0, whereas the2κ ′

higher bits of R are a1 × b1 (with the last bit which is necessarily null and so is useless). We have
also computeda0 × b1 + a1 × b0 in the 2κ ′ − 1 middle bits of R, and the remaining bits are null.

Example 5 (Double product via PCLMULQDQ). Let a0, a1, b0, b1 ∈ F221 . We set A = a0 + a1X 43

and B = b0 + b1X 43. The multiplication of A by B givesa0b0 + (a0b1 + a1b0)X 43 + a1b1X 86. Since
the products are 41-coefficient polynomials over F2, the three parts of A × B are disjoint.

The structure of the result is inefficient if the products have to be reduced directly after the
multiplication, because it requires extracting them before performing the modular reduction. How-
ever, this structure is adapted to the concept of accumulator. Coupled to Algorithms 45 and 46
from Section 9.5.3, this trick permits to speed up the implementation by a factor two whenκ ′ 6 21.
This factor can be improved with the VPCLMULQDQ instruction, available since September 2019 on
the Ice Lake processors (Section 6.1.3). TheVPCLMULQDQ instruction performs four times in parallel
the PCLMULQDQ instruction, multiplying by four the performance of the Horner strategy.

Remark 19. Our trick can also be used to accumulate products of degree-1 polynomials overF2κ ′

when κ ′ 6 21. The terms of degree zero, one and two from the result are respectively at the position
0, 64− κ ′ and 128− 2κ ′.

189

Finally, we perform the modular reduction with the shift-and-add strategy (Section 9.2.3). When
the products are 64-bit aligned, this permits to compute two modular reductions in parallel with the
SSE2 instruction set. For κ ′ = 19 and κ ′ = 24, we cannot defineF2κ ′ with an irreducible trinomial.
So, we take an irreducible pentanomial, which slows down the performance of the modular reduction.
We use the irreducible pentanomialsx19 + x6 + x5 + x + 1 and x24 + x4 + x3 + x + 1 . The fact
that x1 appears allows a small optimization. Moreover, the modular reduction can be accelerated
thanks to the specific relation xk3 + xk2 + x + 1 = (1 + x) · (1 + xk2) (Section 9.2.4).

9.5.2 Structured Evaluation Point Set
During the keypair generation of the dual mode, the number of equations is fairly large (between
48 and 512) and the number of evaluation pointsτ is very large (between218 and 224). However,
we can choose theseτ points. We use the very efficient additive FFT over F2κ presented in Section
5.4.4. This method allows to choose a subset ofτ points corresponding to a basis oflog2(τ)
elements in F2κ . When q = 16 or q = 256, we use an isomorphism betweenFqκ and F2κ ′ with
κ ′ = κ log2(q), then we use the previous method to solve the multipoint evaluation problem. Here,
the multiplication in F2κ ′ is the core of the FFT. More particularly, the results have to be reduced
after each multiplication. Therefore, we cannot vectorize them with the trick from Section 9.5.1.

In Table 9.24, we summarize the results obtained with the additive FFT. The chosen parameters
correspond to the 128-bit and 256-bit security levels ofDualModeMS and Dual Rainbow. The additive
FFT is very efficient: the cost of each point is between 20 and 50 cycles, whereas the univariate
polynomial has between 1000 and 8000 coefficients. The results are slower inF224 because we cannot
define this field with an irreducible trinomial over F2.

κ ′ DMAC τ nb. megacycles nb. cycles by point
21 1833 218 7.00 26.7

20 931 218 6.14 23.4
8023 218 11.1 42.3

24 1305 218 8.27 31.5
5921 218 12.0 45.9

Table 9.24: Performance of the evaluation of a univariate polynomial of degreeDMAC over F2κ ′ in τ
points. We use a Skylake processor (LaptopS), withPCLMULQDQ and the AVX2 instruction set.

9.5.3 Random Evaluation Point Set
During the signing and verifying processes of the dual mode, the univariate polynomial system has
to be evaluated in a small numberν of random points (between 16 and 53) inFqκ . In this case, the
additive FFT cannot be used because the evaluation point set has to be generated from a sub-basis
of Fqκ . So, we use Algorithm 20 as a variant of Horner’s rule (Section 5.4.3). Leta be an evaluation
point from a ring. The original rule consists in repeating the process of multiplying a degree-0
polynomial by a1 and adding it another degree-0 polynomial. In our variant (Algorithm 46), we
multiply a degree-(s− 1) polynomial by as, with s a tuned parameter in function of the number of
equations. This method requires a precomputation step (Algorithm 45): for each point, we have
to compute the vector of its powers until s. Then, we use them to evaluate each degree-(s − 1)
polynomial via a dot product of the coefficient vector by this of the powers of the current point.

190

Algorithm 45 Horner precomputation (with a step of 4).

1: function powers
(
a ∈ R, s ∈ N∗)

2: a0 ← 1, a1 ← a, a2 ← a× a, a3 ← a2 × a, a4 ← a3 × a . Initialization step, ai is ai ∈ R.
3: for i from 1 to

⌊ s+1
4

⌋
− 1 do . The products are independent and reduced inR.

4: a4i ← a4i −4 × a4
5: a4i +1 ← a4i −3 × a4
6: a4i +2 ← a4i −2 × a4
7: a4i +3 ← a4i −1 × a4
8: end for
9: for j from 0 to s + 1 mod 4 do

10: a4(i +1)+ j ← a4i + j × a4
11: end for
12: return (a0, a1, . . . , as)
13: end function

Algorithm 46 Horner by block for the evaluation of a degree-d univariate polynomial G in a.

1: function Horner_by_block
(
G ∈ Fqκ [X], a ∈ Fqκ , s ∈ N∗)

2: (a0, a1, . . . , as) ← powers(a, s) . Precomputation step for a fixed a.
3: b←

⌊ d+1
s

⌋
, r ← d + 1 mod s

4: acc← 0
5: for i from 0 to b− 1 do
6: for j from 0 to s− 1 do . This loop can be unrolled (as in Algorithm 45).
7: acc← acc+ gi ·s+ j × aj . Multiplication without the modular reduction.
8: end for
9: acc∈ Fqκ . Reduction in Fqκ .

10: acc← acc× as . Multiplication without the modular reduction.
11: end for
12: if r 6= 0 then
13: for j from 0 to r − 1 do . This loop can be unrolled.
14: acc← acc+ gi ·s+ j × aj . Multiplication without the modular reduction.
15: end for
16: acc∈ Fqκ . Reduction in Fqκ .
17: acc← acc× as . Multiplication without the modular reduction.
18: end if
19: return acc∈ Fqκ . Reduction in Fqκ .
20: end function

In Algorithms 45 and 46, we propose to unroll loops to remove dependencies between the multi-
plications. In this way, the implementation can be improved with vectorized multiplications in F2κ ′

(Section 9.5.1). We summarize the results obtained in Table 9.25. The chosen parameters corre-
spond to the 128-bit security level ofDualModeMS and Dual Rainbow. The evaluations are efficient.
The number of cycles to evaluate one polynomial is approximately its number of coefficients, so the
evaluation of one coefficient costs just one cycle. We obtain a better performance forκ ′ 6 21 by
using the parallel multiplication presented in Section 9.5.1. Finally, when the number of equations

191

is 256 or more, the use of Algorithm 46 is similar to computing the dot product of the coefficient
vector of G by the vector of the powers ofa until DMAC.

κ ′ DMAC nb. equations s nb. kilocycles nb. cycles by equation

21 1833
256 1834 282 1102
2 108 2.70 1348
1 72 1.50 1504

20 931 64 156 37.6 587
1 72 0.964 964

24 1305 48 264 77.4 1612
1 44 2.12 2121

Table 9.25: Performance of the evaluation of univariate polynomial systems of degreeDMAC over F2κ ′ .
We use a Skylake processor (LaptopS), withPCLMULQDQ and the AVX2 instruction set.

9.6 Performance of MQsoft (Final Version)

9.6.1 Detailed Performance of HFE-Based Keypair Generation
Table 9.26 summarizes the time of most important steps of the keypair generation (Section 7.1.2).
These steps are achieved in constant-time. The generation off is computed as explained in Section
9.4.1. We have vectorized the multiplication by S and T̃ , which is based on vector-matrix products
over F2 implemented with the AVX2 instruction set. When we use f , the multiplication by S is the
crucial part of the keypair generation (if PCLMULQDQ is available). For the evaluation-interpolation
strategy (Section 7.4.7), the computation ofF ◦ S via our multipoint evaluation is very efficient.

scheme (dext, D, ∆ , v) gen. f f (x · S) F ◦ S apply T̃
GeMSS128 (174, 513, 12, 12) 4.87 25.7 25.8 11.0 7.02

BlueGeMSS128 (175, 129, 13, 14) 3.80 26.8 26.9 9.42 7.30
RedGeMSS128 (177, 17, 15, 15) 2.28 28.1 28.6 6.89 7.63

GeMSS192 (265, 513, 22, 20) 25.3 121 100 41.5 24.8
BlueGeMSS192 (265, 129, 22, 23) 20.1 126 97.2 37.4 25.8
RedGeMSS192 (266, 17, 23, 25) 12.1 129 106 28.5 26.5

GeMSS256 (354, 513, 30, 33) 59.7 380 384 75.4 74.7
BlueGeMSS256 (358, 129, 34, 32) 47.8 393 394 67.5 76.6
RedGeMSS256 (358, 17, 34, 35) 28.6 405 410 57.4 78.1

Gui-184 (184, 33, 16, 16) 3.29 32.0 32.0 8.58 8.56
Gui-312 (312, 129, 24, 20) 27.3 197 199 47.2 48.0
Gui-448 (448, 513, 32, 28) 114 995 994 163 146

Table 9.26: Number of megacycles for main steps of the keypair generation with our library. We
use a Skylake processor (LaptopS).F ◦ S is computed from F with the evaluation-interpolation
strategy. The column f (x · S) is split in two. The first column corresponds to the composition of
F with S, whereas the second column corresponds to the composition ofπ◦ T ◦ F with S.

192

9.6.2 Performance of HFE-Based Schemes
In this part (Table 9.27), we give the last results of performance on theHFEv--based signature
schemesGeMSS and Gui. The performance for the variants of GeMSS is available in Section 7.5.6,
whereas the performance for a large set of parameters is given in Section 7.8.10. We have ob-
tained interesting speed-ups compared to [84]. ForGui, we obtain big speed-ups on the keypair
generation. The keypair generation ofMQsoft is between 30 and 90 times faster than the round 1
implementation. This is due to our efficient evaluation-interpolation algorithm, but also to the Gui
implementation which does not consider important optimizations in their evaluation-interpolation
algorithm. For the signing and verifying processes, we obtain respectively factors 2.5 and 1.8. The
signing process ofGui costs approximately

∑ nb _ite
i =1 exp(i) times the cost of root finding (Table 9.20),

which is consistent. The authors of Gui [62] claimed to achieve the EUF-CMA property (Section
7.6.2). Their method implies aborting as soon as one of the nb_ite calls to the root finding algorithm
fails to find a unique root.

scheme (dext, D, ∆ , v, nb_ite) key gen. sign verify
GeMSS128 (174, 513, 12, 12, 4) 19.6 × 6.03 608 × 2.09 0.106 × 1.57
GeMSS192 (265, 513, 22, 20, 4) 69.4 × 7.9 1760 × 1.83 0.304 × 1.47
GeMSS256 (354, 513, 30, 33, 4) 158 × 9.32 2490 × 2.16 0.665 × 1.76

FGeMSS(266) (266, 129, 10, 11, 1) 53.7 × 8.22 44 × 2.9 0.0365 × 2.64
Gui-184 (184, 33, 16, 16, 3) 23.5 × 31.7 28.5 × 2.6 0.0712 × 1.89
Gui-312 (312, 129, 24, 20, 2) 116 × 41.9 308 × 2.53 0.161 × 1.85
Gui-448 (448, 513, 32, 28, 2) 356 × 91.7 5710 × 3.44 0.562 × 1.62

Table 9.27: Number of megacycles (Mc) for each cryptographic operation with our library for a
Skylake processor (LaptopS), followed by the speed-up between the best implementation provided
for the NIST submissions (Table 7.37) versus our implementation. For example, 19.6× 6.03
means a performance of 19.6 Mc withMQsoft, and a performance of19.6× 6.03 = 118 Mc for the
NIST implementations.

9.6.3 Performance of the Dual Mode
In Section 8.4.3, we presented large speed-ups obtained withMQsoft on DualModeMS. In Tables 9.28
and 9.29, we summarize the performance of the inner and dual modes. In Table 9.28, we provide
two measurements for the signing process of theHFE-based schemes. The first corresponds to the
signing process with the time to decompress the secret-key, whereas the second assumes that the
secret-key is already decompressed. This second value is useful to measure the impact of the inner
mode on the dual mode: the secret-key is decompressed one time forσ inner signatures.

Impact of the inner mode. The keypair generation of the dual mode requires generating the
keypair of the inner mode. This has a slight impact on the performance (at most 6% of the dual
keypair generation). Then, the dual signing process requires generatingσ inner signatures. This
is the core of the signing process, taking between 41% and 68% forDual Rainbow, between 79%
and 92% for RedDualModeMS, and at least 94% forDualModeMS which has a long signing process.

193

Finally, for Dual Rainbow, the multipoint evaluation of α multivariate quadratic equations (Section
9.4.5) is faster than the inner verifying process. Its impact is very low on the dual verifying process
(7%, cf. Table 9.23). For the HFE-based schemes, the field isF2 so the multipoint evaluation is
slower, but its impact on the dual mode is limited.

scheme (λ, q, nvar, m) key gen. sign verify
FGeMSS(266) (128, 2, 277, 256) 53.1 44.0 (/ 43.8) 0.0368

Inner.DualModeMS128
Inner.DualModeMS192 (192, 2, 420, 384) 203 89.2 (/ 88.3) 0.124
Inner.DualModeMS256 (256, 2, 566, 512) 609 153 (/ 145) 0.377

Inner.RedDualModeMS128 (128, 2, 280, 256) 45.7 2.24 (/ 0.973) 0.0378
Inner.RedDualModeMS192 (192, 2, 423, 384) 179 5.51 (/ 1.76) 0.125
Inner.RedDualModeMS256 (256, 2, 569, 512) 543 10.0 (/ 3.11) 0.375

Rainbow-Ia (128, 16, 96, 64) 10.5 0.0692 0.0193
Rainbow-Ic (128, 256, 88, 48) 23.1 0.231 0.0591

Rainbow-IIIc (192, 256, 140, 72) 97.3 0.637 0.114
Rainbow-Vc (256, 256, 188, 96) 137 0.856 0.210

Table 9.28: Performance of the inner mode in megacycles. We use a Skylake processor (LaptopS),
with PCLMULQDQ and the AVX2 instruction set. Turbo Boost is not used. The second value of the
signing process corresponds to the time to sign without decompressing the secret-key.

Impact of the MAC polynomials. During the keypair generation, m univariate polynomials are
evaluated in τ points of F2κ log 2 (q) . For τ = 2 18, this takes between 39% and 48% of the dual keypair
generation (cf. Table 9.24). For the signing process, the same polynomials are evaluated inν points
of F2κ log 2 (q) . This takes a part of the signing process ofDual Rainbow (18% for Dual Rainbow-Ia
and 24% forDual Rainbow-Ic, cf. Table 9.25), and is negligible compared to the generation of the
σ inner signatures inDualModeMS (less than 3% of the dual signing process). Finally, the evaluation
of α MAC polynomials in ν points is very negligible for the dual verifying process. Sinceα 6 2,
the evaluations are fast (between 6% and 12% of the dual verifying process for the 128-bit security
level, cf. Table 9.25).

Impact of the Merkle tree. During the keypair generation, the creation of the Merkle tree re-
quires computingτ digests from(mκ log2(q)) -bit sequences andτ−2δ digests from4λ-bit sequences.
For large values ofτ , the number of computations is large and implies a slow keypair generation.
The generation of the Merkle tree takes between 31% and 39% of the dual keypair generation for
Dual Rainbow, whereas it takes between 21% and 24% for theHFE-based dual modes. Then, the
verifying process requires computingν digests from(mκ log2(q)) -bit sequences andν · (log2(τ)− δ)
digests from 4λ-bit sequences. That makes between 200 and 700 digests for our parameters. The
impact of the hash function on the dual verifying process is between 37% and 48% forDual Rainbow,
and between 21% and 32% for theHFE-based dual modes. The performance of the hash function
gives a lower bound on the practical efficiency of the keypair generation and verifying process.

194

Remark 20. Here, we do not use the technique from Section 8.5.5 which minimizes the size public-
key plus signature. The latter requires computing at most2dlog 2 (ν)e − 2δ + ν ·

(
log2(τ) − dlog2(ν)e

)

digests from 4λ-bit sequences during the verifying process, which does not significantly change the
performance compared to the parameter sets from Section 8.6 (whereδ = 0).

scheme (λ, σ, α, κ, log2(τ), ν, δ) key gen. sign verify
DualModeMS128 (128, 64, 2, 21, 18, 18, 4) 3710 2800 0.643
DualModeMS192 (192, 96, 2, 20, 18, 33, 5) 6770 8470 1.73
DualModeMS256 (256, 256, 1, 20, 18, 51, 5) 12700 38000 3.95

RedDualModeMS128 (128, 128, 1, 18, 18, 19, 5) 3800 136 0.743
RedDualModeMS192 (192, 192, 1, 18, 18, 34, 6) 6870 409 1.85
RedDualModeMS256 (256, 256, 1, 18, 18, 53, 6) 13000 1040 3.95
Dual Rainbow-Ia (128, 32, 1, 5, 18, 16, 4) 999 3.21 0.265
Dual Rainbow-Ic (128, 16, 1, 3, 18, 17, 4) 969 5.49 0.299

Dual Rainbow-IIIc (192, 24, 1, 3, 18, 31, 5) 1610 26.2 0.752
Dual Rainbow-Vc (256, 32, 1, 3, 18, 47, 6) 2540 66.3 1.63

Table 9.29: Performance of the dual mode in megacycles. We use a Skylake processor (LaptopS),
with PCLMULQDQ and the AVX2 instruction set. Turbo Boost is not used.

Performance on Haswell. In Table 9.30, we show the impact of the processor on the dual mode.
The performance of thePCLMULQDQ instruction impacts the use of MAC polynomials in all crypto-
graphic operations. Moreover, the arithmetic in Fq of Rainbow is impacted by the performance of
the AVX2 instruction set, which is slower on Haswell.

scheme (λ, σ, α, κ, log2(τ), ν, δ) key gen. sign verify
DualModeMS128 (128, 64, 2, 21, 18, 18, 4) 3750 3650 0.635
DualModeMS192 (192, 96, 2, 20, 18, 33, 5) 6720 10800 1.77
DualModeMS256 (256, 256, 1, 20, 18, 51, 5) 11900 45200 3.84

RedDualModeMS128 (128, 128, 1, 18, 18, 19, 5) 3840 169 0.694
RedDualModeMS192 (192, 192, 1, 18, 18, 34, 6) 6820 498 1.76
RedDualModeMS256 (256, 256, 1, 18, 18, 53, 6) 12100 1260 3.88
Dual Rainbow-Ia (128, 32, 1, 5, 18, 16, 4) 938 3.78 0.268
Dual Rainbow-Ic (128, 16, 1, 3, 18, 17, 4) 992 7.74 0.329

Dual Rainbow-IIIc (192, 24, 1, 3, 18, 31, 5) 1910 41.8 0.913
Dual Rainbow-Vc (256, 32, 1, 3, 18, 47, 6) 3340 120 2.04

Table 9.30: Performance of the dual mode in megacycles. We use a Haswell processor (ServerH),
with PCLMULQDQ and the AVX2 instruction set. Turbo Boost is not used.

195

Chapter 10

Approximate PoSSo

In Chapter 8, we proposedDualModeMS and Dual Rainbow, the dual modes respectively based on
HFEv- and Rainbow. Their security relies on the hardness ofAPoSSo (Problem 4), which is an open
question (Section 4.5). We close the gap by proving thatAPoSSo is NP-complete (Definition 1).
In Section 10.1, we studyAPoSSo by using a reduction to the Generalized MinRank problem [80],
which provides a method to solveAPoSSo. Then, we compute the dimension ofAPoSSo. The
obtained result is identical to the dimension of Generalized MinRank. In Section 10.2, we study
the relation betweenAPoSSo and PoSSo. We obtain that APoSSo is similar to solving an instance of
PoSSo whose considered system is the minus variant of the one considered inAPoSSo. The number of
minus equations is the target rank ofAPoSSo. In particular, we introduce a reduction in polynomial
time from APoSSo to PoSSo, which leads to demonstrate the NP-completeness ofAPoSSo. Finally,
we confirm our results with practical experiments highlighting the behavior of APoSSo (Section
10.3).

10.1 Reduction from APoSSo to Generalized MinRank

We propose to consider the matrix representation of theAPoSSo problem (Problem 4).

Problem 6. Approximate PoSSo (APoSSo(q, σ, m, nvar, D, r)) , matrix version. Let q, m, nvar, D, σ
and r be non-negative integers such thatr < min(σ, m). Given p a degree-D multivariate polynomial
system in Fq[x1, . . . , xn var]m and y1, . . . , yσ in Fm

q , the problem is to find vectorsx1, . . . , xσ in Fn var
q

such that the rank of the matrix

M =





p(x1) − y1
...

p(xσ) − yσ



 ∈Mσ,m
(
Fq

)
(10.1)

is less or equal tor .

This problem is similar to the Generalized MinRank problem [80] (Problem 7). Here, we
introduce a reduction from APoSSo to Generalized MinRank.

197

Problem 7. Generalized MinRank (GMR(q, σ, m, k, D, r)) . Let q, m, k, D, σ and r be non-negative
integers such that r < min(σ, m), and K be a field. Given M a matrix in Mσ,m whose entries
are degree-D polynomials in K[x1, . . . , xk], the problem is to find the set of points at which the
evaluation of M has rank at most r . In this thesis, we considerK = Fq.

Theorem 11. Let q, m, nvar, D, σ and r < min(σ, m) be integers.
Then, APoSSo(q, σ, m, nvar, D, r) 6 GMR(q, σ, m, σ · nvar, D, r).

Proof. Let M be the matrix defined by Equation (10.1). By definition of the APoSSo problem, we
searchx1, . . . , xσ in Fn var

q such that rank(M) 6 r . Here, we do not have an instance ofGeneralized
MinRank: the variables ofp are shared by the columns ofM , but the solution vector changes between
each row. Therefore, we just extend the number of variables toσ·nvar, then we create the matrix M ′

in Mσ,m
(
Fq[x1,1, . . . , xσ,n var]

)
such that its i -th row only contains the i -th block of nvar variables.

M ′ is as follows:

M ′ =





p(x1,1, . . . , x1,n var) − y1
...

p(x i, 1, . . . , x i,n var) − y i
...

p(xσ,1, . . . , xσ,n var) − yσ




. (10.2)

We obtain an instance of GMR(q, σ, m, σ · nvar, D, r), which once solved, returns a solution vector
(x1, . . . , xσ) ∈ Fσ·n var

q . The evaluation of M ′ in (x1, . . . , xσ) is equal to M . So, its rank is at most
r and (x1, . . . , xσ) solves the instance of theAPoSSo problem. �

This reduction allows to use the known attacks againstGeneralized MinRank to study the
hardness ofAPoSSo and its dimension. In Section 10.3, we propose experiments to evaluate the
practical hardness of solving theAPoSSo problem. To do it, we modelize the APoSSo problem as
a non-linear multivariate system whose equations live inFq[x1,1, . . . , xσ,n var], then we solve it by
computing its Gröbner basis (as in Section 4.4). The complexity of the Gröbner basis algorithms
is exponential in the number of solutions. In DualModeMS (Chapter 8), we only need one solution
to forge a signature. Thus, we fix variables to solve a zero dimensional system. Since each fixed
variable decrements the dimension ofAPoSSo, the number of variables that we fix is the dimension
of APoSSo. We compute it in Theorem 12 under the assumption that the top left block of size
r × r of M ′ (Equation (10.2)) is invertible in the fraction field, then we remove this assumption in
Corollary 2. The result coincides with the dimension of Generalized MinRank [80, Theorem 10].

Theorem 12. Let q, m, nvar, D, σ and r < min(σ, m) be integers, p ∈ Fq[x1, . . . , xn var]m be a
system of m degree-D polynomials in nvar variables, p∗ ∈ Fq[x1, . . . , xn var]m be p without its con-
stant terms, and y1, . . . , yσ ∈ Fm

q . If the top left r × r block of M ′ (Equation (10.2)) is invert-
ible in the fraction field, if the polynomials of p∗ are Fq-linearly independent, and if σ · nvar >
(σ− r)(m− r), then the dimension ofAPoSSo(q, σ, m, nvar, D, r) instantiated with p and y1, . . . , yσ
is σ · nvar − (σ− r)(m − r).

Proof. In the APoSSo problem, we search(x1, . . . , xσ) such that rank(M) 6 r (Equation (10.1)).
We propose to use a reduction to thePoSSo problem. To do it, we use linear combinations of the
first r rows of M ′ (Equation (10.2)) to make the first r columns of its last σ− r rows vanish, then
we build an instance ofPoSSo with the last σ− r rows of M ′.

198

Let
M ′

r =
(
M ′

r,r M ′
r,m −r

)
∈Mr,m

(
Fq[x1,1, . . . , x r,n var]

)

be the submatrix of M ′ created from its first r rows. We want to make the first r columns of the
last σ− r rows of M ′ vanish, i.e. for r < i 6 σ, we search a vectorzi = (zi, 1, . . . , zi,r) such that:

M ′′ =





I r 0r,σ −r
zr +1

... I σ−r
zσ




·M ′ =





M ′
r,r M ′

r,m −r
0r ∗
...

...
0r ∗




∈Mσ,m

(
Fq(x1,1, . . . , xσ,n var)

)
. (10.3)

Let y k = (yk, 1, . . . , yk,m) ∈ Fm
q for 1 6 k 6 σ. For a fixed i , we searchzi such that:

zi ·M ′
r,r = −

(
p1(x i, 1, . . . , x i,n var) − yi, 1, . . . , pr (x i, 1, . . . , x i,n var) − yi,r

)
.

This is equivalent to solving a classical linear algebra system. Under the assumption thatM ′
r,r is

invertible in the fraction field, i.e. in Fq(x1,1, . . . , x r,n var), we solve this system by usingM ′−1
r,r in

Mr
(
Fq(x1,1, . . . , x r,n var)

)
. We only use the fraction field to allow the use of Gaussian elimination

(represented byM ′−1
r,r). We obtain:

zi = −
(
p1(x i, 1, . . . , x i,n var) − yi, 1, . . . , pr (x i, 1, . . . , x i,n var) − yi,r

)
.M ′−1

r,r .

Now that zi ∈ Fq(x1,1, . . . , x r,n var , x i, 1, . . . , x i,n var)r is known, we conclude by computing Equation
(10.3). For r < i 6 σ, the i -th row of M ′′ is given by:

zi ·M ′
r + p(x i, 1, . . . , x i,n var) − y i =

(
p(x i, 1, . . . , x i,n var) − y i

)
· I m

−
(
p1(x i, 1, . . . , x i,n var) − yi, 1, . . . , pr (x i, 1, . . . , x i,n var) − yi,r

)
·M ′−1

r,r ·
(
M ′

r,r M ′
r,m −r

)
.

(10.4)

We remark that this transformation is equivalent to the computation of
(
p(x i, 1, . . . , x i,n var)−y i

)
·T ′,

for T ′ ∈Mm
(
Fq(x1,1, . . . , x r,n var)

)
such that:

T ′ = I m −
(

M ′−1
r,r ·M ′

r
0m −r,m

)
=

(
0r,r −M ′−1

r,r ·M ′
r,m −r

0m −r,r I m −r

)
.

We deduce that M ′′ is as follows:

M ′′ =





p(x1,1, . . . , x1,n var) − y1
...

p(x r, 1, . . . , x r,n var) − y r(
p(x r +1 ,1, . . . , x r +1 ,n var) − y r +1

)
.T ′

...(
p(xσ,1, . . . , xσ,n var) − yσ

)
.T ′





∈Mσ,m
(
Fq(x1,1, . . . , xσ,n var)

)
.

We have built M ′′ from M ′ by using operations on rows ofM ′, implying rank(M ′) = rank(M ′′).
Now, we study whenrank(M ′′(x1, . . . , xσ)) 6 r . On the one hand,M ′′(x1, . . . , xσ) is defined only
if we choosex1, . . . , x r in Fn var

q such that det(M ′
r,r (x1, . . . , x r)) 6= 0 . So, rank(M ′

r (x1, . . . , x r)) = r .
On the other hand, the last σ−r rows ofM ′′(x1, . . . , xσ) are independent of the firstr rows because

199

det(M ′
r,r (x1, . . . , x r)) 6= 0 and the first r columns of the lastσ− r rows are null (Equation (10.3)).

Thus, we obtain rank(M ′′(x1, . . . , xσ)) 6 r if and only if the last σ− r rows of M ′′(x1, . . . , xσ) are
null. The corresponding rows ofM ′′ generate an instance ofPoSSo of at most (σ− r)(m − r) non-
zero equations inσ ·nvar variables. To obtain the dimension of this system, we have to demonstrate
that these equations areFq-linearly independent.

We start by demonstrating under what assumptions these(σ− r)(m− r) equations are non-zero.
Let r < i 6 σ and r < j 6 m. From Equation (10.4), the coefficient (i, j) of M ′′ is zero if and only
if pj (x i, 1, . . . , x i,n var) − yi,j is equal to the (j − r)-th component of:

(
p1(x i, 1, . . . , x i,n var) − yi, 1, . . . , pr (x i, 1, . . . , x i,n var) − yi,r

)
·M ′−1

r,r ·M ′
r,m −r .

Since the set of variables ofpj (x i, 1, . . . , x i,n var) − yi,j is disjoint from these of M ′−1
r,r ·M ′

r,m −r , this
equality is possible if and only if p1 − yi, 1 = · · · = pr − yi,r = pj − yi,j = 0 or if the (j − r)-th
column of M ′−1

r,r ·M ′
r,m −r lifts in Fq. So, we assume the negation of both previous cases. Here, we

note that the second case implies thatpj (x i, 1, . . . , x i,n var) − yi,j is the Fq-linear combination of the
pk (x i, 1, . . . , x i,n var) − yi,k for 1 6 k 6 r , defined by the (j − r)-th column of M ′−1

r,r ·M ′
r,m −r .

Then, we demonstrate under what new assumptions the(σ− r)(m− r) equations areFq-linearly
independent. Since the set of variables ofpj (x i, 1, . . . , x i,n var) − yi,j depends oni > r , we just verify
that for a fixed i , the pj (x i, 1, . . . , x i,n var)−yi,j −

(
p1(x i, 1, . . . , x i,n var)−yi, 1, . . . , pr (x i, 1, . . . , x i,n var)−

yi,r
)
.M ′−1

r,r .M ′
r,m −r for j > r are Fq-linearly independent. Previously, we assumed that the columns

of M ′−1
r,r ·M ′

r,m −r do not lift in Fq. So, we can just consider the partpj (x i, 1, . . . , x i,n var)−yi,j of each
equation. We obtain that the pj (x i, 1, . . . , x i,n var)−yi,j for j > r have to beFq-linearly independent.

Finally, these assumptions are equivalent to considering that for all i > r , the vectors of
p(x1, . . . , xn var)−y i have to beFq-linearly independent. We satisfy the latter by assuming that the
polynomials of p∗ are Fq-linearly independent.

By construction, if we find (x1, . . . , xσ) such that rank(M ′′(x1, . . . , xσ)) 6 r , we obtain that
rank(M (x1, . . . , xσ)) 6 r , and so (x1, . . . , xσ) solves the instance ofAPoSSo. If σ · nvar > (σ −
r)(m − r), the dimension of the studied instance ofPoSSo is σ · nvar − (σ − r)(m − r), and this
dimension is the dimension ofAPoSSo. �

In Theorem 12, we give the dimension ofAPoSSo by assuming that the top left block of size
r × r of M ′ is invertible. Without loss of generality, this assumption allows to simplify the proof
by considering this block for the Gaussian elimination. In the proof of Corollary 2, we demonstrate
that the existence of an invertible block of sizer × r in M ′ is enough.

Corollary 2. Let q, m, nvar, D, σ and r < min(σ, m) be integers,p ∈ Fq[x1, . . . , xn var]m be a system
of m degree-D polynomials in nvar variables, and p∗ ∈ Fq[x1, . . . , xn var]m be p without its constant
terms. If the polynomials of p∗ are Fq-linearly independent, and if σ · nvar > (σ− r)(m − r), then
the dimension of APoSSo(q, σ, m, nvar, D, r) instantiated with p is σ · nvar − (σ− r)(m − r).

Proof. Let y1, . . . , yσ ∈ Fm
q . We start by permuting rows and columns of M ′ (Equation (10.2))

in order to make invertible in the fraction field the top left block of size r × r of the transformed
M ′. This permutation exists because if the polynomials ofp∗ are Fq-linearly independent, then we
can find r columns which areFq-linearly independent, and sorank(M ′) > r .

200

• Firstly, assume that σ1, . . . , σr are indices such that the corresponding rows ofM ′ are Fq-
linearly independent. In this case, there exists a permutation matrixP1 ∈Mσ

(
Fq

)
such that

P1 ·M ′ is the matrix M ′ where the rowsi and σi have been permuted for1 6 i 6 r . The new
APoSSo problem corresponds to search(x ′

1, . . . , x ′
σ)T = P1 · (x1, . . . , xσ)T in Fσ·n var

q such that
the dimension of the vector space generated byp(x ′

1) − y ′
1, . . . , p(x ′

σ) − y ′
σ is less or equal to

r , for (y ′
1, . . . , y ′

σ)T = P1 · (y1, . . . , yσ)T in Fσ·m
q .

• Secondly, assume thatσ′
1, . . . , σ′

r are indices such that the corresponding columns of the first
r rows of P1 ·M ′ are Fq-linearly independent. Once again, there exists a permutation matrix
P2 ∈ Mm

(
Fq

)
such that P1 ·M ′ · P2 is the matrix P1 ·M ′ where the columnsi and σ′

i have
been permuted for1 6 i 6 r . The new APoSSo problem corresponds to searchx ′

1, . . . , x ′
σ in

Fn var
q such that the dimension of the vector space generated byp ′(x ′

1) − y ′′
1 , . . . , p ′(x ′

σ) − y ′′
σ

is less or equal tor , for p ′ = p · P2 and (y ′′
1 , . . . , y ′′

σ)T = (y ′
1, . . . , y ′

σ)T · P2 in Fσ·m
q .

So, the instances ofAPoSSo associated toM ′ and P1 ·M ′ ·P2 are equivalent. We conclude by calling
Theorem 12 on the latter instance to obtain the expected dimension. �

We confirm Corollary 2 by experiments in Magma (Section 6.2.1). We have measured the di-
mension of random instances ofAPoSSo verifying the assumptions of Corollary 2. To do it, we use
the reduction to Generalized MinRank described in Theorem 11. Then, we compute the Gröbner
basis of the obtained system via the F4 algorithm (Section 4.4). Thereby, we obtain the dimen-
sion. However, the degree of regularity increases quickly for small parameters, whereas the F4
algorithm is exponential in the degree of regularity. This reduces the number of parameter sets in
our experiments.

In Table 10.1, we instantiate APoSSo with square systems. The practical dimension coincides
with the theory. When m, nvar and r are fixed, we increaseσ. Thus, the dimension grows likeσr .

r m = nvar dimension
1 2 3 4 5 6 7 8 9 10 11 12 13
1 3 4 5
2 3 × 8 10 12 14 16 18

σ −→ 2 3 4 5 6 7 8 9 10 11 12

Table 10.1: Practical dimension ofAPoSSo over F65521 , for D = 2 .

In Table 10.2, we take smaller values ofσ, but we propose a larger variation of other parameters.
Once again, the practical dimension coincides with the theory.

σ 2 3 4
m 2 3 4 2 3 4 2 3 4

nvar 2 3 4 2 3 4 3 4 2 3 4 2 3 4 2 3 4 3 4 2 3 3 4
r 1 1 2 1 2 3

dim 3 5 7 2 4 6 3 5 4 7 10 2 5 8 5 8 11 7 10 5 6 10 15

Table 10.2: Practical dimension ofAPoSSo over F65521 , for D = 2 .

201

10.2 Double Reduction between APoSSo and PoSSo

In [157], the authors quickly gave a reduction fromAPoSSo of m equations to PoSSo (Problem 1) of
m − r equations. This reduction is explained in Section 4.5. Here, we further study this reduction
and how the structure of p in APoSSo impacts that of PoSSo. Then, we introduce the reduction in
the opposite direction, allowing to have the equivalence. We recall that the question of the hardness
of APoSSo was an open question. We start by demonstrating the reduction fromAPoSSo to PoSSo.

Theorem 13. Let q, m, nvar, D, σ and r < min(σ, m) be integers, p ∈ Fq[x1, . . . , xn var]m be a
system of m degree-D polynomials in nvar variables, c ∈ Fm

q be the vector of constant terms ofp,
y1, . . . , yσ ∈ Fm

q , and T ′ be a matrix inMm
(
Fq

)
such that r columns are null andrank(T ′) = m−r .

If c, y1, . . . , y r are linearly independent, then we haveAPoSSo(q, σ, m, nvar, D, r) 6 PoSSo(q, m−
r, n var, D). Moreover, an instance of APoSSo instantiated with p and y1, . . . , yσ is reduced to
instances ofPoSSo instantiated with p ′

i = (p − y i) · T ′ for r < i 6 σ.

Proof. We search(x1, . . . , xσ) such that rank(M) 6 r (Equation (10.1)). The idea of this reduc-
tion is to fix r rows of M to reach a rank r , then use linear combinations of these rows to make
r elements in the other rows ofM vanish. We finish by solving instances ofPoSSo to make the
remaining elements vanish.
We start by randomly fixing x1, . . . , x r . Let R be the matrix in Mr,m

(
Fq

)
generated by the first

r rows of M , and assumerank(R) = r . Let R1 and R2 be the matrices respectively inMr
(
Fq

)

and Mr,m −r
(
Fq

)
such that R =

(
R1 R2

)
. Without loss of generality, we can assume thatR1

is invertible. Else, we can swap columns ofM in the initial problem without changing the set of
solutions.
Now, we want to make the first r columns of the last σ− r rows of M vanish. For r < i 6 σ, we
search a vectorzi = (zi, 1, . . . , zi,r) such that for 1 6 j 6 r ,

r∑

k=1

zi,k
(
pj (x k) − yk,j

)
= −

(
pj (x i, 1, . . . , x i,n var) − yi,j

)
,

i.e. the linear combination of the rows ofR makesM i,j vanish. This is equivalent to solving classical
linear algebra systems.R1 is invertible so we can findzi such that

zi · R1 = −
(
p1(x i, 1, . . . , x i,n var) − yi, 1, . . . , pr (x i, 1, . . . , x i,n var) − yi,r

)
.

We conclude by adding this linear combination to the i -th row of M . We obtain:

p − y i + zi ·R = (p − y i) · I m −
(
p1(x i, 1, . . . , x i,n var)− yi, 1, . . . , pr (x i, 1, . . . , x i,n var)− yi,r

)
·R−1

1 ·R.

So, this transformation is equivalent to the computation of (p − y i) · T ′, with T ′ such that:

T ′ =
(

0r,r −R−1
1 · R2

0m −r,r I m −r

)
∈Mm

(
Fq

)
.

The new instances ofPoSSo have at most m − r non-zero components. The transformation
by T ′ keeps the original degree ofp. So, we obtain (σ − r) instances ofPoSSo(q, m− r, n var, D),
which once solved, returnx r +1 , . . . , xσ . By construction, the last σ− r rows of M are null, and so
(x1, . . . , xσ) solves the instance ofAPoSSo.

202

However, we assumed thatrank(R) = r . If rank(R) < r , we can change the choice ofx1, . . . , x r .
Since we assume thatc, y1, . . . , y r are linearly independent, we propose to setx1, . . . , x r to zero.
In this way, the rows of R are composed ofc− y1, . . . , c− y r , and sorank(R) = r by hypothesis.�

Remark 21. In a realistic attack, the adversary does not setx1, . . . , x r to zero, but uses the fact
that rank(R) < r to speed up the attack. Indeed, the adversary can randomly fixx1, . . . , x r ′ such
that the rank of the first r ′ rows of M is exactly r . If he finds x1, . . . , xσ such that rank(M) 6 r ,
then the instance ofAPoSSo is solved. Else, he attacks the lastσ− r ′ rows of M , generating σ− r ′

instances ofPoSSo(q, m− r, n var, D).

So, the obtained instances ofPoSSo are linear combinations of the original system. We use this
property to study the structure of the MI-based systems in the instances ofPoSSo. In particular,
Corollary 3 shows that Theorem 13 reduces aHFE-based instance ofAPoSSo in instances of HFE-
with r minus equations.

Corollary 3. Let q, m, nvar, D, σ and r < min(σ, m) be integers,p ∈ Fq[x1, . . . , xn var]m be a MI-
based system (likeHFE and Rainbow) of m degree-D polynomials in nvar variables, i.e. p = T ◦F◦S,
c ∈ Fm

q be the vector of constant terms ofp, and y1, . . . , yσ ∈ Fm
q . If APoSSo(q, σ, m, nvar, D, r) is

instantiated with p and y1, . . . , yσ , and if c, y1, . . . , y r are linearly independent, then the reduction
to PoSSo(q, m − r, n var, D) corresponds to solve the minus variant of a new system keeping the
structure of p.

Proof. Let p = T ◦ F ◦ S be the MI-based system which instantiatesAPoSSo(q, σ, m, nvar, D, r).
According to Theorem 13, for r < i 6 σ, the instance of PoSSo(q, m− r, n var, D) is instantiated
with p ′′

i = T ′′
i ◦ F ◦ S for T ′′

i a map such that:

T ′′
i : Fm ′

q → Fm
q

v 7→ v · T ′′ + t ′′
i ,

where T ′′ = TT ′ and t ′′
i = (t − y i)T ′. The first r columns of T ′ are null, implying the first r

columns of T ′′ and t ′′
i are null. So, p ′′

i has exactly m − r non-zero equations, and the underlying
structure corresponds to aMI-based system withr minus equations.

We note that when m′ > m , the initial MI-based system uses the minus variant. In this case, we
have to only take the first m polynomials of p (Section 2.2). To be consistent, we set̃T the matrix
generated by the first m columns of T , and set T ′′ = T̃T ′. �

Remark 22. Theorem 13 can be used with a reduction toPoSSo(q, m− r ′, nvar, D), where r ′ 6 r .
This allows to choose the value ofr ′ which minimizes the complexity of attacks againstHFE-based
instances ofAPoSSo.

Then, we introduce the reduction from PoSSo to APoSSo.

Theorem 14. Let q, m, nvar, D, σ and r < min(σ, m) be integers. If 0 6 r < m , then PoSSo(q, m−
r, n var, D) 6 APoSSo(q, r + 1 , m, nvar, D, r). Moreover, an instance of PoSSo instantiated with p =
(p1, . . . , pm −r) ∈ Fq[x1, . . . , xn var]m −r can be reduced to an instance ofAPoSSo instantiated with
p ′ = (0 , . . . , 0, p1, . . . , pm −r) ∈ Fq[x1, . . . , xn var]m .

203

Proof. The idea of this proof is to create an instance ofAPoSSo such that solving it is equivalent
to finding the zeros of p. To do it, we have to take p as input of APoSSo. Then, we would like
to have rank(M) 6 r if and only if (for example) its last row is null. So, we propose to choose
y1, . . . , y r to force the first r rows of M to be independent, for any choice ofx1, . . . , x r . This choice
does not seem trivial. So, we propose to expandM with the r columns of the identity matrix.

Let p ′ = (0 , . . . , 0, p1, . . . , pm −r) ∈ Fq[x1, . . . , xn var]m and y1, . . . , y r +1 ∈ Fm
q such that y r +1

is the null vector, and for 1 6 i 6 r , y i is the vector whose i -th component is minus one, and
the other components are null. Assume we can solve an instance ofAPoSSo(q, r + 1 , m, nvar, D, r)
instantiated with p ′ and y1, . . . , y r +1 . We obtain x1, . . . , x r +1 ∈ Fn var

q such that rank(M) 6 r ,
where M ∈Mr +1 ,m

(
Fq

)
from Equation (10.1) becomes:

M =





1 0 · · · 0 p(x1)

0 1
. . .

... p(x2)
...

. 0
...

0 · · · 0 1 p(x r)
0 · · · 0 0 p(x r +1)




.

The first r rows of M are independent, sorank(M) = r . Moreover, M is in row echelon form,
so p(x r +1) = 0m −r and x r +1 is a solution of the instance ofPoSSo(q, m− r, n var, D). Here, we
assume the existence of solutions. By construction, the instance ofAPoSSo does not have solutions
if and only if the instance of PoSSo does not have solutions (sincerank(M) = r + 1 for any choice
of x1, . . . , x r +1). �

Since PoSSo is NP-complete when solved over a finite field withD > 2 [135] (Section 2.2), we
obtain by Theorem 14 that APoSSo is NP-hard. In fact, APoSSo is NP-complete, because we also
have that a candidate solution of APoSSo can be verified in polynomial time (Lemma 10).

Lemma 10. APoSSo is in NP.

Proof. For demonstrating this, we provide the following verifier. In input, we consider an instance
of APoSSo(q, σ, m, nvar, D, r), and a certificate (x1, . . . , xσ) ∈ Fσ·n var

q (note that its size is polynomial
in the size of the instance). We evaluate them polynomials of p in each point of this certificate,
in polynomial time. Thus, we obtain the M matrix (Equation (10.1)) whose coefficients live in Fq.
Then, we compute in polynomial time its row echelon form with a classical Gaussian elimination
in Mσ,m

(
Fq

)
, which directly gives its rank. Finally, we check if the latter is less or equal to r . If

the verification succeeds, then we return accept. Else, we return reject. �

We conclude by the reciprocal reduction betweenPoSSo and APoSSo (Theorem 15).

Theorem 15. Let q, m, nvar, D, σ and r < min(σ, m) be integers, p ∈ Fq[x1, . . . , xn var]m be a
system of m degree-D polynomials in nvar variables, c ∈ Fm

q be the vector of constant terms ofp,
and y1, . . . , yσ ∈ Fm

q . If c, y1, . . . , y r are linearly independent, then APoSSo(q, σ, m, nvar, D, r) ≡
PoSSo(q, m− r, n var, D).

Proof. By Theorems 13 and 14, and by using the trivial reductionAPoSSo(q, r+1 , m, nvar, D, r) 6
APoSSo(q, σ, m, nvar, D, r), we have the double implication. �

204

10.3 Experimental Attacks on APoSSo

Finally, we propose some experiments to confirm the behavior ofAPoSSo after reduction to PoSSo.
To do it, we study the hardness of solving:

• random instances ofAPoSSo compared to random systems (PoSSo),

• HFE-based instances ofAPoSSo compared to instances ofHFE- (Section 2.4.1),

• Rainbow-based instances ofAPoSSo compared to instances ofRainbow- (Section 2.4.3).

We compute the Gröbner basis of these instances and compare the reached degree of regularity
(Section 4.4.1). We optimize the attacks by randomly fixing variables until a square system is
obtained, i.e. a zero dimensional system. We also fixσ = r + 1 to reduce the APoSSo problem to
just one instance ofPoSSo. We note that Rainbow- is introduced only to observe the behavior of
the degree of regularity.

HFE-based instances of APoSSo over F2. We compute the Gröbner basis overF2 by adding the
field equations to the PoSSo system (Sections 4.3 and 4.4.1). In this case, the degree of regularity
of a random system ofm quadratic equations in nvar variables is the smallest indexi such that the
term zi of the Hilbert series G (Equation (4.8)) is non-positive.

In Figure 10.1, we show the evolution of the degree of regularity in function ofm−r , for instances
of APoSSo instantiated with random square systems andHFE square systems. The instances of
APoSSo instantiated with random systems of m equations have exactly the same degree of regularity
as a random system ofm − r equations, confirming Theorem 13. Then, for aHFE degree 17, the
degree of regularity of theHFE-based instances ofAPoSSo is bounded by 4 for r ∈ {1, 2}, by 5 for
r ∈ {3, 4}, and by 6 for r = 5 . It is exactly the behavior of a HFE- system ofm − r equations in m
variables (oncer variables are randomly fixed), as studied in Table 7.17, and confirms Corollary 3.

5 10 15 20 25 30 35

3

4

5

6

7

m − r

de
gr

ee
of

re
gu

la
rit

y

random PoSSo
random m 6 32
HFE-basedr 6 2
HFE-basedr = 4
HFE-basedr = 5

Figure 10.1: Degree of regularity ofAPoSSo(2, r + 1 , m, m, 2, r) in function of m − r .
The HFE-based instances ofAPoSSo have aHFE degree 17.

205

Rainbow-based instances of APoSSo over F256. We compute the Gröbner basis overF256 without
adding the field equations to the PoSSo system. In this case, the degree of regularity of a random
system ofm degree-d equations in nvar variables is the smallest indexi such that the term zi of the
Hilbert series H (Equation (10.5)) is non-positive [14, Proposition 6].

H (z) =
(
1− zd) m

(1− z)n var
. (10.5)

When d = 2 and nvar = m, it is well-known that the degree of regularity is m + 1 . Then, we
propose to use the hybrid approach [20, 21]. We randomly fixnvar−m + ` variables to decrease the
degree of regularity. For a random system, Equation (10.5) withnvar = m − ` gives the degree of
regularity. In a realistic attack, an exhaustive search is performed on thè variables, requiring to
solveq` instances ofPoSSo. In our experiments, we do not try to find a solution. We just compare
the degree of regularity between instances ofPoSSo and APoSSo to confirm the behavior of APoSSo.

In Figure 10.2, we show the evolution of the degree of regularity in function ofm−r , for instances
of APoSSo instantiated with random systems and Rainbow systems. Each curve corresponds to the
behavior of a Rainbow-basedAPoSSo system by using the hybrid approach (we removè variables).
These curves also correspond to the behavior of an instance ofRainbow- with r minus equations,
since we obtain exactly the same results for these systems. Our experiments are consistent with
Corollary 3. We also obtain that these curves coincide with the behavior of a random instance of
APoSSo, as well as a random system ofm − r equations. It is due to the secure choice ofo1, o2 and
v1, which is similar to the Rainbow schemes [64] of the NIST PQC standardization process.

4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

m − r

de
gr

ee
of

re
gu

la
rit

y

` = 0
` = 1
` = 2
` = 3

Figure 10.2: Degree of regularity ofAPoSSo(256, r + 1 , 2m, m, 2, r) in function of
m − r , by using the hybrid approach. In the Rainbow-based instances ofAPoSSo,
o1 =

⌈ m
2

⌉
, o2 =

⌊ m
2

⌋
and v1 = 2m. Here, we complete some missing experimental

results, represented by empty geometric forms, by using the Hilbert series (Equation
(10.5)). The other empty geometric forms are not visible because of the perfect
superposition with their respective full geometric forms.

206

In Figure 10.3, we fix m = 16, and we study the degree of regularity in function of r . Here,
we have chosenv1 = 1 to have low instances ofRainbow. The results obtained for Rainbow-based
instances ofAPoSSo of m−r equations are identical to instances ofRainbow- with r minus equations,
confirming Corollary 3. As for the HFE--based schemes, the minus variant increases the security
(when r is reasonable). Forr > 7, the degrees of regularity coincide with the values ofm − r in
Figure 10.2, which are also the degrees of regularity of a random system ofm − r equations.

0 2 4 6 8 10 12 14

2

4

6

8

10

r

de
gr

ee
of

re
gu

la
rit

y
` = 0
` = 1
` = 2
` = 3

Figure 10.3: Degree of regularity ofAPoSSo(256, r + 1 , 17, 16, 2, r) in function of r ,
by using the hybrid approach. Rainbow is used with o1 = o2 = 8 and v1 = 1 .

207

Conclusion

In this PhD thesis, we improve the efficiency of HFE-based schemes and the SBP transformation.HFE
is a 25-year-oldMI-based scheme, which provides a large public-key but very short signatures. Its
signing process is equivalent to finding the roots of a sparse polynomial, which is rather slow, whereas
its verifying process is fast since this corresponds to the evaluation of a multivariate quadratic
system. Introduced in July 2017, the SBP technique is a secure transformation which provides
dual sizes. Its security is based on theAPoSSo problem, which is assumed hard to solve. Here, we
summarize how this PhD thesis contributes to the history of HFE and the SBP transformation.

• We proposed two digital signature schemes to the NIST PQC standardization process. On
the one hand, DualModeMS is based on a new technique, implying that it was not worked
enough to be competitive with other candidates. Therefore,DualModeMS was not selected to
the second round, but we greatly improve its performance in this PhD thesis. On the other
hand, GeMSS is currently an alternate candidate of the third round. This scheme proposes
the smallest signature size of the NIST candidates. We propose an important state-of-the-
art of cryptanalysis techniques, as well as a method to select security parameters. At each
round of the competition, we proposed new parameters to improve the performance ofGeMSS.
Unfortunately, a recent attack (November 2020 [158]) seriously impacts the security ofGeMSS,
as well asHFEv- in general. For the future, we should study this attack in order to repair
HFE, if it is possible.

• We propose a large range of algorithms to compute efficiently arithmetic operations in finite
fields, leading to a root finding algorithm in an extension field. Some of them are specialized
in characteristic two. In particular, we exploit the structure of squares. We also minimize the
number of modular reductions to improve the core of polynomial arithmetic. Our algorithms
are dedicated to sparse polynomials, including optimizations forHFE polynomials. When
several strategies are possible to solve a problem, we select the best by comparing their
performance in function of the parameters.

• MQsoft is a new library which implements efficiently these algorithms. MQsoft outperforms
the implementation of arithmetic in binary fields from NTL or Magma, as well as the existing im-
plementations of HFEv--based schemes. We use the AVX2 instruction set and thePCLMULQDQ
instruction to accelerate them. We are careful about the use of secret data, which is always
used in constant-time. An exception is made about the degree ofGCD(H, x qd ext − x mod H)
during the root finding algorithm, but we propose constant-time split root finding algorithms
when the degree is strictly less than four.

209

• MQsoft supports the HFEv--based schemes for a large number of parameter sets. This feature
allows a better understanding of the impact of the parameters on the performance.

• We propose the first efficient implementation of the SBP transformation. We succeed to obtain
interesting performance, makingDual GeMSS and Dual Rainbow competitive with the other
NIST candidates. These results are obtained from algorithms adapted to the parameters, an
efficient use of vector instructions, as well as proposals to optimize parameters without loss
of security.

• The APoSSo problem is the core of the security of the SBP transformation. We study the
dimension of APoSSo, then we make the link between theAPoSSo problem of a polynomial
system, and thePoSSo problem of its minus variant. Both results are supported by experi-
ments.

• We introduce the proof that APoSSo is hard in the worst case. Now, we should study ifAPoSSo
is hard on average.

MQsoft being a new library, it can be improved. We propose some ideas to improve it.

• Our implementation of matrix operations over F2, such as the matrix product, determinant,
Gaussian elimination and matrix inversion, does not exploit vector instructions. This could
slightly improve the keypair generation of HFE-based schemes, as well as the signing process
when the secret-key is generated from a seed.

• MQsoft does not exploit the AVX-512 instruction set. Our implementation could be easily
extended to support it, which would significantly improve the performance.

• MQsoft does not exploit theVPCLMULQDQ instruction. The latter allows to significantly improve
the polynomial multiplication over F2, which significantly impacts the keypair generation and
signing process. However, finding the best implementation of the polynomial multiplication
requires a serious and careful study.

• When the PCLMULQDQ instruction is not available, the multiplication in F2d ext of MQsoft is
slow. We have proposed a SSE2 implementation to decrease the slow-down, but we think the
best solution is to use isomorphisms betweenF2d ext and F16d ext / 4 or F256d ext / 8 , as suggested
for the third round. This implies implementing efficient multiplications in F2d ext , based on
parallel multiplications in F16 and F256.

• Our polynomial operations over F2d ext are based on the classical multiplication and Karat-
suba’s algorithm. It could be interesting to try faster multiplications such as the Toom–Cook
multiplication or the FFT convolution algorithm.

• The keypair generation of the dual mode is based on an additive FFT. We use thePCLMULQDQ
instruction to perform multiplications, but we should compare this method to the use of
bitslicing.

• Rainbow, as submitted to the second round [64], is broken [10]. We have to updateMQsoft
according to the third round submission of Rainbow [65].

210

• We proposeDual Rainbow, the dual mode of Rainbow, but we do not consider the dual mode
of cyclic Rainbow, which allows to generate a large part of the public-key from a seed. This
process allows to decrease the size of the signature of its dual mode. Our implementation
could be updated to support this technique.

• Finally, we could propose an implementation ofRainbow in MQsoft. For the moment, we use
this of Rainbow [64] for an experimental use of its dual mode.

The author of this PhD thesis entirely implemented MQsoft, which can be improved. However,
the end of this PhD thesis sounds like the end ofMQsoft. We have studied many algorithms
to obtain an efficient arithmetic. Proposing a new library in this direction seems to be a very
interesting perspective of research. Moreover, we could improve the parallelism by coupling parallel
algorithms to the use of several cores, as well as SIMD instruction sets, on the core of arithmetic.
In this sense, the new HPFA (High-Performance Finite Field Arithmetic) library could fully exploit
the power of computers.

211

Bibliography

[1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey,
Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and
Daniel Smith-Tone. Status report on the second round of the NIST post-quantum cryptog-
raphy standardization process. National Institute of Standards and Technology Interagency
or Internal Report 8309, July 2020. https://doi.org/10.6028/NIST.IR.8309.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, Yi-Kai
Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel
Smith-Tone. Status report on the first round of the NIST post-quantum cryptography stan-
dardization process. National Institute of Standards and Technology Internal Report 8240,
January 2019. https://doi.org/10.6028/NIST.IR.8240.

[3] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and Billy Bob
Brumley. Cache-timing attacks on RSA key generation.IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(4):213–242, 2019.

[4] Diego F. Aranha, Armando Faz-Hernández, Julio López Hernandez, and Francisco Rodríguez-
Henríquez. Faster implementation of scalar multiplication on Koblitz curves. In Alejandro
Hevia and Gregory Neven, editors,Progress in Cryptology - LATINCRYPT 2012 - 2nd In-
ternational Conference on Cryptology and Information Security in Latin America, Santiago,
Chile, October 7-10, 2012. Proceedings, volume 7533 ofLecture Notes in Computer Science,
pages 177–193. Springer, 2012.

[5] Diego F. Aranha, Julio López Hernandez, and Darrel Hankerson. Efficient software imple-
mentation of binary field arithmetic using vector instruction sets. In Michel Abdalla and
Paulo S. L. M. Barreto, editors, Progress in Cryptology - LATINCRYPT 2010, First Interna-
tional Conference on Cryptology and Information Security in Latin America, Puebla, Mexico,
August 8-11, 2010, Proceedings, volume 6212 ofLecture Notes in Computer Science, pages
144–161. Springer, 2010.

[6] Diego F. Aranha, Julio López Hernandez, and Darrel Hankerson. High-speed parallel software
implementation of the ηT pairing. In Josef Pieprzyk, editor, Topics in Cryptology - CT-RSA
2010, The Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA, USA,
March 1-5, 2010. Proceedings, volume 5985 ofLecture Notes in Computer Science, pages
89–105. Springer, 2010.

[7] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita.
Comparison between XL and Gröbner basis algorithms. In Pil Joong Lee, editor,Advances in

213

https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8240

Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory and Application
of Cryptology and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings,
volume 3329 ofLecture Notes in Computer Science, pages 338–353. Springer, 2004.

[8] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan. The
sorcerer’s apprentice guide to fault attacks.Proceedings of the IEEE, 94(2):370–382, 2006.

[9] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes cor-
recteurs et à la cryptographie. PhD thesis, Université Pierre et Marie Curie - Paris VI,
December 2004.

[10] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray A. Perlner, Daniel
Smith-Tone, Jean-Pierre Tillich, and Javier A. Verbel. Algebraic attacks for solving the rank
decoding and MinRank problems without Gröbner basis.CoRR, abs/2002.08322, 2020.

[11] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of Gröbner basis
computation of semi-regular overdetermined algebraic equations. InInternational Conference
on Polynomial System Solving – ICPSS, pages 71–75, 2004.

[12] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the F5 Gröbner
basis algorithm. J. Symb. Comput., 70:49–70, 2015.

[13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the
complexity of solving quadratic boolean systems.J. Complex., 29(1):53–75, 2013.

[14] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang. Asymptotic behaviour
of the degree of regularity of semi-regular polynomial systems. InThe Effective Methods in
Algebraic Geometry Conference – MEGA 2005, pages 1–14, 2005.

[15] Côme Berbain, Olivier Billet, and Henri Gilbert. Efficient implementations of multivariate
quadratic systems. In Eli Biham and Amr M. Youssef, editors,Selected Areas in Cryptography,
13th International Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006 Revised
Selected Papers, volume 4356 ofLecture Notes in Computer Science, pages 174–187. Springer,
2006.

[16] Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.

[17] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time code-based
cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors,Cryptographic Hardware
and Embedded Systems - CHES 2013 - 15th International Workshop, Santa Barbara, CA,
USA, August 20-23, 2013. Proceedings, volume 8086 ofLecture Notes in Computer Science,
pages 250–272. Springer, 2013.

[18] Daniel J. Bernstein and Bo-Yin Yang. Asymptotically faster quantum algorithms to solve
multivariate quadratic equations. In Lange and Steinwandt [114], pages 487–506.

[19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular in-
version. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(3):340–
398, 2019.

214

[20] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving multi-
variate systems over finite fields.J. Mathematical Cryptology, 3(3):177–197, 2009.

[21] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial systems over
finite fields: improved analysis of the hybrid approach. In Joris van der Hoeven and Mark van
Hoeij, editors, International Symposium on Symbolic and Algebraic Computation, ISSAC’12,
Grenoble, France - July 22 - 25, 2012, pages 67–74. ACM, 2012.

[22] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of HFE, multi-HFE
and variants for odd and even characteristic.Des. Codes Cryptogr., 69(1):1–52, 2013.

[23] Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat, Jacques Patarin,
and Ludovic Perret. PKP-based signature scheme. In Feng Hao, Sushmita Ruj, and
Sourav Sen Gupta, editors,Progress in Cryptology - INDOCRYPT 2019 - 20th International
Conference on Cryptology in India, Hyderabad, India, December 15-18, 2019, Proceedings,
volume 11898 ofLecture Notes in Computer Science, pages 3–22. Springer, 2019.

[24] Ward Beullens and Bart Preneel. Field lifting for smaller UOV public keys. In Arpita Patra
and Nigel P. Smart, editors, Progress in Cryptology - INDOCRYPT 2017 - 18th International
Conference on Cryptology in India, Chennai, India, December 10-13, 2017, Proceedings, vol-
ume 10698 ofLecture Notes in Computer Science, pages 227–246. Springer, 2017.

[25] Ward Beullens, Bart Preneel, and Alan Szepieniec. Public key compression for constrained
linear signature schemes. In Carlos Cid and Michael J. Jacobson Jr., editors,Selected Areas
in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB, Canada, August
15-17, 2018, Revised Selected Papers, volume 11349 ofLecture Notes in Computer Science,
pages 300–321. Springer, 2018.

[26] Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren. LUOV. Submission
to the NIST Post-Quantum Cryptography Standardization Process, December 2017.https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.

[27] Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren. LUOV. Submission
to the Second Round of the NIST Post-Quantum Cryptography Standardization Process,
April 2019. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-s
ubmissions.

[28] Jingguo Bi, Qi Cheng, and J. Maurice Rojas. Sub-linear root detection, and new hardness
results, for sparse polynomials over finite fields. In Manuel Kauers, editor,International
Symposium on Symbolic and Algebraic Computation, ISSAC’13, Boston, MA, USA, June
26-29, 2013, pages 61–68. ACM, 2013.

[29] Olivier Billet and Jintai Ding. Overview of cryptanalysis techniques in multivariate public key
cryptography. In Massimiliano Sala, Shojiro Sakata, Teo Mora, Carlo Traverso, and Ludovic
Perret, editors, Gröbner Bases, Coding, and Cryptography, pages 263–283. Springer, 2009.

[30] Manuel Bluhm and Shay Gueron. Fast software implementation of binary elliptic curve
cryptography. J. Cryptogr. Eng., 5(3):215–226, 2015.

215

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[31] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf. Time-area op-
timized public-key engines: MQ-cryptosystems as replacement for elliptic curves? IACR
Cryptol. ePrint Arch. , 2008:349, 2008.

[32] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In Walter Fumy, editor, Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233
of Lecture Notes in Computer Science, pages 37–51. Springer, 1997.

[33] Joppe W. Bos, Thorsten Kleinjung, Ruben Niederhagen, and Peter Schwabe. ECC2K-130
on Cell CPUs. In Daniel J. Bernstein and Tanja Lange, editors, Progress in Cryptology -
AFRICACRYPT 2010, Third International Conference on Cryptology in Africa, Stellenbosch,
South Africa, May 3-6, 2010. Proceedings, volume 6055 ofLecture Notes in Computer Science,
pages 225–242. Springer, 2010.

[34] Wieb Bosma, John J. Cannon, and Graham Matthews. Programming with algebraic struc-
tures: Design of the MAGMA language. In Malcolm A. H. MacCallum, editor, Proceedings
of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’94, Oxford,
UK, July 20-22, 1994, pages 52–57. ACM, 1994.

[35] Wieb Bosma, John J. Cannon, and Allan K. Steel. Lattices of compatibly embedded finite
fields. J. Symb. Comput., 24(3/4):351–369, 1997.

[36] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf, Bruno Salvy,
and Éric Schost. Algorithmes efficaces en calcul formel, August 2017. 686 pages. Édition 1.0.

[37] Alin Bostan and Éric Schost. Polynomial evaluation and interpolation on special sets of
points. J. Complex., 21(4):420–446, 2005.

[38] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen,
Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems inF 2. In Ste-
fan Mangard and François-Xavier Standaert, editors,Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-
20, 2010. Proceedings, volume 6225 ofLecture Notes in Computer Science, pages 203–218.
Springer, 2010.

[39] Charles Bouillaguet, Pierre-Alain Fouque, and Gilles Macario-Rat. Practical key-recovery
for all possible parameters of SFLASH. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea, December 4-
8, 2011. Proceedings, volume 7073 ofLecture Notes in Computer Science, pages 667–685.
Springer, 2011.

[40] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 ofLecture Notes in Computer Science. Springer, 1990.

[41] Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann. Faster mul-
tiplication in GF(2)[x]. In Alfred J. van der Poorten and Andreas Stein, editors, Algorithmic

216

Number Theory, 8th International Symposium, ANTS-VIII, Banff, Canada, May 17-22, 2008,
Proceedings, volume 5011 ofLecture Notes in Computer Science, pages 153–166. Springer,
2008.

[42] Richard P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J.
ACM , 25(4):581–595, 1978.

[43] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Gröbner-basis com-
putations with boolean polynomials. J. Symb. Comput., 44(9):1326–1345, 2009.

[44] David Brumley and Dan Boneh. Remote timing attacks are practical. Comput. Networks,
48(5):701–716, 2005.

[45] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis
elements of the residue class ring of a zero dimensional polynomial ideal.J. Symb. Comput.,
41(3-4):475–511, 2006.

[46] Bruno Buchberger, George E. Collins, Rüdiger Loos, and R. Albrecht. Computer algebra
symbolic and algebraic computation. SIGSAM Bull. , 16(4):5, 1982.

[47] Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and Jeffrey O. Shallit. The computational
complexity of some problems of linear algebra.J. Comput. Syst. Sci., 58(3):572–596, 1999.

[48] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic Per-
ret, and Jocelyn Ryckeghem. GeMSS: A Great Multivariate Short Signature. Submis-
sion to the NIST Post-Quantum Cryptography Standardization Process, December 2017.
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.

[49] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic Per-
ret, and Jocelyn Ryckeghem.GeMSS: A Great Multivariate Short Signature. Submission to the
Second Round of the NIST Post-Quantum Cryptography Standardization Process, April 2019.
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[50] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic Per-
ret, and Jocelyn Ryckeghem.GeMSS: A Great Multivariate Short Signature. Submission to
the Third Round of the NIST Post-Quantum Cryptography Standardization Process, October
2020. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submi
ssions.

[51] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng, Jintai Ding,
Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE implementation of mul-
tivariate PKCs on modern x86 CPUs. In Christophe Clavier and Kris Gaj, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lau-
sanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 ofLecture Notes in Com-
puter Science, pages 33–48. Springer, 2009.

[52] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang. Faster
multiplication for long binary polynomials. CoRR, abs/1708.09746, 2017.

217

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[53] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. From 5-passMQ -based identification to MQ -based signatures. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II, volume 10032 ofLecture Notes in
Computer Science, pages 135–165, 2016.

[54] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. MQDSS. Submission to the NIST Post-Quantum Cryptography Standardization
Process, December 2017.https://csrc.nist.gov/projects/post-quantum-cryptograp
hy/round-1-submissions.

[55] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. MQDSS. Submission to the Second Round of the NIST Post-Quantum Cryp-
tography Standardization Process, April 2019. https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions.

[56] Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang, and Chen-Mou Cheng. Im-
plementing 128-bit secure MPKC signatures. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., 101-A(3):553–569, 2018.

[57] Nicolas T. Courtois. Efficient zero-knowledge authentication based on a linear algebra problem
minrank. In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 ofLecture Notes in
Computer Science, pages 402–421. Springer, 2001.

[58] Nicolas T. Courtois. Generic attacks and the security of Quartz. In Yvo Desmedt, editor,
Public Key Cryptography - PKC 2003, 6th International Workshop on Theory and Practice
in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567
of Lecture Notes in Computer Science, pages 351–364. Springer, 2003.

[59] Nicolas T. Courtois. Short signatures, provable security, generic attacks and computational
security of multivariate polynomial schemes such as HFE, Quartz and Sflash.IACR Cryptol.
ePrint Arch. , 2004:143, 2004.

[60] Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding,
volume 1807 ofLecture Notes in Computer Science, pages 392–407. Springer, 2000.

[61] James H. Davenport, Christophe Petit, and Benjamin Pring. A generalised successive re-
sultants algorithm. In Sylvain Duquesne and Svetla Petkova-Nikova, editors,Arithmetic of
Finite Fields - 6th International Workshop, WAIFI 2016, Ghent, Belgium, July 13-15, 2016,
Revised Selected Papers, volume 10064 ofLecture Notes in Computer Science, pages 105–124,
2016.

[62] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Gui.
Submission to the NIST Post-Quantum Cryptography Standardization Process, December

218

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

2017. https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submi
ssions.

[63] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rain-
bow. Submission to the NIST Post-Quantum Cryptography Standardization Process, Decem-
ber 2017. https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-sub
missions.

[64] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rain-
bow. Submission to the Second Round of the NIST Post-Quantum Cryptography Standard-
ization Process, April 2019. https://csrc.nist.gov/projects/post-quantum-cryptogr
aphy/round-2-submissions.

[65] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin Yang, Matthias
Kannwischer, and Jacques Patarin. Rainbow. Submission to the Third Round of the NIST
Post-Quantum Cryptography Standardization Process, October 2020.https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions.

[66] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang. Cryptanalysis of the
lifted unbalanced oil vinegar signature scheme. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part III , volume 12172 ofLecture Notes in Computer Science, pages 279–298. Springer, 2020.

[67] Jintai Ding and Thorsten Kleinjung. Degree of regularity for HFE-. IACR Cryptol. ePrint
Arch. , 2011:570, 2011.

[68] Jintai Ding, Ray A. Perlner, Albrecht Petzoldt, and Daniel Smith-Tone. Improved cryptanal-
ysis of HFEv- via projection. In Lange and Steinwandt [114], pages 375–395.

[69] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature scheme.
In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, Applied Cryptography and
Network Security, Third International Conference, ACNS 2005, New York, NY, USA, June
7-10, 2005, Proceedings, volume 3531 ofLecture Notes in Computer Science, pages 164–175,
2005.

[70] Jintai Ding and Bo-Yin Yang. Multivariate public key cryptography. In Daniel J. Bernstein,
Johannes Buchmann, and Erik Dahmen, editors,Post-Quantum Cryptography, pages 193–241.
Springer, Berlin, Heidelberg, 2009.

[71] Jintai Ding and Bo-Yin Yang. Degree of regularity for HFEv and HFEv-. In Philippe Gaborit,
editor, Post-Quantum Cryptography - 5th International Workshop, PQCrypto 2013, Limoges,
France, June 4-7, 2013. Proceedings, volume 7932 ofLecture Notes in Computer Science,
pages 52–66. Springer, 2013.

[72] Nir Drucker and Shay Gueron. A toolbox for software optimization of QC-MDPC code-based
cryptosystems. J. Cryptogr. Eng., 9(4):341–357, 2019.

[73] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical cryptanaly-
sis of SFLASH. In Alfred Menezes, editor,Advances in Cryptology - CRYPTO 2007, 27th

219

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007,
Proceedings, volume 4622 ofLecture Notes in Computer Science, pages 1–12. Springer, 2007.

[74] Vivien Dubois and Nicolas Gama. The degree of regularity of HFE systems. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December
5-9, 2010. Proceedings, volume 6477 ofLecture Notes in Computer Science, pages 557–576.
Springer, 2010.

[75] Christian Eder and Jean-Charles Faugère. A survey on signature-based algorithms for com-
puting Gröbner bases.J. Symb. Comput., 80:719–784, 2017.

[76] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4).Journal
of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[77] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduc-
tion to zero: F5. In ISSAC’02, pages 75–83. ACM press, 2002.

[78] Jean-Charles Faugère. Algebraic cryptanalysis of HFE using Gröbner bases. Research Report
RR-4738, INRIA, 2003.

[79] Jean-Charles Faugère. FGb: A library for computing Gröbner bases. In Fukuda et al. [87],
pages 84–87.

[80] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. On the complexity
of the generalized MinRank problem. J. Symb. Comput., 55:30–58, 2013.

[81] Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi, and
Ludovic Perret. Fast quantum algorithm for solving multivariate quadratic equations. CoRR,
abs/1712.07211, 2017.

[82] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden field equation
(HFE) cryptosystems using Gröbner bases. In Dan Boneh, editor,Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 ofLecture Notes in Computer Science,
pages 44–60. Springer, 2003.

[83] Jean-Charles Faugère, Ludovic Perret, and Jocelyn Ryckeghem.DualModeMS: A Dual Mode
for Multivariate-based Signature. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Process, December 2017.https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions.

[84] Jean-Charles Faugère, Ludovic Perret, and Jocelyn Ryckeghem. Software Toolkit for HFE-
based Multivariate Schemes.IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(3):257–304, 2019.

[85] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86,
Santa Barbara, California, USA, 1986, Proceedings, volume 263 ofLecture Notes in Computer
Science, pages 186–194. Springer, 1986.

220

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[86] Pierre-Alain Fouque, Gilles Macario-Rat, Ludovic Perret, and Jacques Stern. Total break of
the l -IC signature scheme. In Ronald Cramer, editor,Public Key Cryptography - PKC 2008,
11th International Workshop on Practice and Theory in Public-Key Cryptography, Barcelona,
Spain, March 9-12, 2008. Proceedings, volume 4939 ofLecture Notes in Computer Science,
pages 1–17. Springer, 2008.

[87] Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors.Math-
ematical Software - ICMS 2010, Third International Congress on Mathematical Software,
Kobe, Japan, September 13-17, 2010. Proceedings, volume 6327 ofLecture Notes in Computer
Science. Springer, 2010.

[88] Giordano Fusco and Eric Bach. Phase transition of multivariate polynomial systems. In
Jin-yi Cai, S. Barry Cooper, and Hong Zhu, editors, Theory and Applications of Models of
Computation, 4th International Conference, TAMC 2007, Shanghai, China, May 22-25, 2007,
Proceedings, volume 4484 ofLecture Notes in Computer Science, pages 632–645. Springer,
2007.

[89] M. Peeters G. Bertoni, J. Daemen and G. Van Assche. A software interface for Keccak. 2013.

[90] François Le Gall. Algebraic complexity theory and matrix multiplication. In Katsusuke
Nabeshima, Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors,International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014,
page 23. ACM, 2014.

[91] Shuhong Gao, Yinhua Guan, and Frank Volny. A new incremental algorithm for computing
Groebner bases. In Wolfram Koepf, editor,Symbolic and Algebraic Computation, Interna-
tional Symposium, ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings, pages
13–19. ACM, 2010.

[92] Shuhong Gao, Frank Volny IV, and Mingsheng Wang. A new framework for computing
Gröbner bases.Math. Comput., 85(297):449–465, 2016.

[93] Shuhong Gao and Todd D. Mateer. Additive fast Fourier transforms over finite fields. IEEE
Trans. Inf. Theory , 56(12):6265–6272, 2010.

[94] M. R. Garey and David S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[95] Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosystem. In Tatsuaki
Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th International Conference
on the Theory and Application of Cryptology and Information Security, Kyoto, Japan, De-
cember 3-7, 2000, Proceedings, volume 1976 ofLecture Notes in Computer Science, pages
44–57. Springer, 2000.

[96] Louis Granboulan, Antoine Joux, and Jacques Stern. Inverting HFE is quasipolynomial. In
Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings,
volume 4117 ofLecture Notes in Computer Science, pages 345–356. Springer, 2006.

[97] Torbjörn Granlund and al. GNU multiple precision arithmetic library 6.1.2, December 2002.
https://gmplib.org/.

221

https://gmplib.org/

[98] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Apply-
ing Grover’s algorithm to AES: quantum resource estimates. In Tsuyoshi Takagi, editor,
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings, volume 9606 ofLecture Notes in Computer Science, pages
29–43. Springer, 2016.

[99] Joseph F. Grcar. How ordinary elimination became gaussian elimination.Historia Mathe-
matica, 38(2):163–218, 2011.

[100] Bruno Grenet, Joris van der Hoeven, and Grégoire Lecerf. Randomized root finding over
finite FFT-fields using tangent Graeffe transforms. In Kazuhiro Yokoyama, Steve Linton,
and Daniel Robertz, editors, Proceedings of the 2015 ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2015, Bath, United Kingdom, July 06 - 09,
2015, pages 197–204. ACM, 2015.

[101] Johann Großschädl and Guy-Armand Kamendje. Instruction set extension for fast elliptic
curve cryptography over binary finite fields GF(2m). In 14th IEEE International Conference
on Application-Specific Systems, Architectures, and Processors (ASAP 2003), 24-26 June
2003, The Hague, The Netherlands, page 455. IEEE Computer Society, 2003.

[102] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.

[103] William B. Hart. Fast library for number theory: An introduction. In Fukuda et al. [87],
pages 88–91.

[104] John L. Hennessy and David A. Patterson.Computer Architecture - A Quantitative Approach,
5th Edition . Morgan Kaufmann, 2012.

[105] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen,
Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe,
and Jean-Philippe Aumasson. SPHINX+. Submission to the Second Round of the NIST
Post-Quantum Cryptography Standardization Process, April 2019. https://csrc.nist.go
v/projects/post-quantum-cryptography/round-2-submissions.

[106] IEEE standard specifications for public-key cryptography. IEEE Std 1363-2000, pages 1–228,
2000.

[107] Intel architecture instruction set extensions and future features programming reference, March
2020. https://software.intel.com/sites/default/files/managed/c5/15/architect
ure-instruction-set-extensions-programming-reference.pdf.

[108] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases.Inf. Comput. , 78(3):171–177, 1988.

[109] Toshiya Itoh and Shigeo Tsujii. Structure of parallel multipliers for a class of fields GF(2m).
Inf. Comput. , 83(1):21–40, 1989.

222

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf

[110] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor,Advances in Cryptology - EUROCRYPT ’99, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 ofLecture Notes in Computer Science,
pages 206–222. Springer, 1999.

[111] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem by relin-
earization. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 ofLecture Notes in Computer Science, pages 19–30. Springer, 1999.

[112] Donald Ervin Knuth. The art of computer programming, Volume II: Seminumerical Algo-
rithms, 3rd Edition . Addison-Wesley, 1998.

[113] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 ofLecture Notes in Computer Science, pages 104–113. Springer,
1996.

[114] Tanja Lange and Rainer Steinwandt, editors.Post-Quantum Cryptography - 9th International
Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, vol-
ume 10786 ofLecture Notes in Computer Science. Springer, 2018.

[115] Tanja Lange and Tsuyoshi Takagi, editors.Post-Quantum Cryptography - 8th International
Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, volume
10346 ofLecture Notes in Computer Science. Springer, 2017.

[116] A. A. Levitskaya. Systems of random equations over finite algebraic structures.Cybernetics
and Systems Analysis, 41:67–93, January 2005.

[117] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–
2202. SIAM, 2017.

[118] Jeremy Maitin-Shepard. Optimal software-implemented Itoh-Tsujii inversion for GF(2m).
IACR Cryptol. ePrint Arch. , 2015:28, 2015.

[119] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In Christoph G. Günther, editor,Advances
in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Application of of Crypto-
graphic Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330 ofLecture
Notes in Computer Science, pages 419–453. Springer, 1988.

[120] Alexander Maximov. On roots factorization for PQC algorithms. IACR Cryptol. ePrint Arch. ,
2020:27, 2020.

[121] Alexander Maximov and Helena Sjoberg. On fast multiplication in binary finite fields and
optimal primitive polynomials over GF(2). IACR Cryptol. ePrint Arch. , 2017:889, 2017.

223

[122] Ralph C. Merkle. A certified digital signature. In Brassard [40], pages 218–238.

[123] Mohamed Saied Emam Mohamed and Albrecht Petzoldt. The shortest signatures ever. In Orr
Dunkelman and Somitra Kumar Sanadhya, editors,Progress in Cryptology - INDOCRYPT
2016 - 17th International Conference on Cryptology in India, Kolkata, India, December 11-14,
2016, Proceedings, volume 10095 ofLecture Notes in Computer Science, pages 61–77, 2016.

[124] Peter L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Trans.
Computers, 54(3):362–369, 2005.

[125] Ronald C. Mullin, I. M. Onyszchuk, Scott A. Vanstone, and R. M. Wilson. Optimal normal
bases in GF(pn). Discret. Appl. Math. , 22(2):149–161, 1989.

[126] National Institute of Standards and Technology. SHA-3 standard: Permutation-based hash
and extendable-output functions. Federal Information Processing Standards (FIPS) Publica-
tion 202, August 2015. http://dx.doi.org/10.6028/NIST.FIPS.202.

[127] National Institute of Standards and Technology. Submission requirements and evaluation
criteria for the post-quantum cryptography standardization process, December 2016.https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call
-for-proposals-final-dec-2016.pdf.

[128] National Institute of Standards and Technology. Round 1 submissions - post-quantum cryp-
tography | CSRC, December 2017.https://csrc.nist.gov/projects/post-quantum-cr
yptography/round-1-submissions.

[129] National Institute of Standards and Technology. Round 2 submissions - post-quantum cryp-
tography | CSRC, January 2019. https://csrc.nist.gov/projects/post-quantum-cryp
tography/round-2-submissions.

[130] National Institute of Standards and Technology. Round 3 submissions - post-quantum cryp-
tography | CSRC, July 2020. https://csrc.nist.gov/projects/post-quantum-cryptogr
aphy/round-3-submissions.

[131] Thomaz Oliveira, Julio López Hernandez, Diego F. Aranha, and Francisco Rodríguez-
Henríquez. Two is the fastest prime: lambda coordinates for binary elliptic curves.J. Cryptogr.
Eng., 4(1):3–17, 2014.

[132] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt’88. In Don Coppersmith, editor, Advances in Cryptology - CRYPTO ’95, 15th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 27-31, 1995,
Proceedings, volume 963 ofLecture Notes in Computer Science, pages 248–261. Springer, 1995.

[133] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Ueli M. Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 ofLecture Notes in
Computer Science, pages 33–48. Springer, 1996.

224

http://dx.doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[134] Jacques Patarin, Nicolas T. Courtois, and Louis Goubin. QUARTZ, 128-bit long digital signa-
tures. In David Naccache, editor,Topics in Cryptology - CT-RSA 2001, The Cryptographer’s
Track at RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings,
volume 2020 ofLecture Notes in Computer Science, pages 282–297. Springer, 2001.

[135] Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and multivariate poly-
nomials. In Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors,Information and Com-
munication Security, First International Conference, ICICS’97, Beijing, China, November
11-14, 1997, Proceedings, volume 1334 ofLecture Notes in Computer Science, pages 356–368.
Springer, 1997.

[136] Mike Paterson and Larry J. Stockmeyer. On the number of nonscalar multiplications necessary
to evaluate polynomials. SIAM J. Comput. , 2(1):60–66, 1973.

[137] Ludovic Perret. Bases de Gröbner en Cryptographie Post-Quantique. (Gröbner bases tech-
niques in Quantum-Safe Cryptography). 2016.

[138] Christophe Petit. Finding roots in GF(p n) with the successive resultant algorithm. LMS
Journal of Computation and Mathematics (special issue for ANTS-XI), 17-A:203–217, 2014.

[139] Albrecht Petzoldt. Selecting and reducing key sizes for multivariate cryptography. PhD thesis,
Darmstadt University of Technology, Germany, 2013.

[140] Albrecht Petzoldt. On the complexity of the hybrid approach on HFEv-. IACR Cryptol.
ePrint Arch. , 2017:1135, 2017.

[141] Albrecht Petzoldt and Johannes A. Buchmann. A multivariate signature scheme with an
almost cyclic public key. IACR Cryptol. ePrint Arch. , 2009:440, 2009.

[142] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. A multivariate signature
scheme with a partially cyclic public key. In Carlos Cid and Jean-Charles Faugère, editors,
Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography
(SCC 2010), pages 229–235, June 2010.

[143] Albrecht Petzoldt, Stanislav Bulygin, and Johannes A. Buchmann. CyclicRainbow - A multi-
variate signature scheme with a partially cyclic public key. In Guang Gong and Kishan Chand
Gupta, editors, Progress in Cryptology - INDOCRYPT 2010 - 11th International Conference
on Cryptology in India, Hyderabad, India, December 12-15, 2010. Proceedings, volume 6498
of Lecture Notes in Computer Science, pages 33–48. Springer, 2010.

[144] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jintai Ding. Design
principles for HFEv- based multivariate signature schemes. In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International Confer-
ence on the Theory and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452 ofLecture Notes
in Computer Science, pages 311–334. Springer, 2015.

[145] Bart Preneel. New european schemes for signature, integrity and encryption (NESSIE): A
status report. In David Naccache and Pascal Paillier, editors,Public Key Cryptography, 5th
International Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002,

225

Paris, France, February 12-14, 2002, Proceedings, volume 2274 ofLecture Notes in Computer
Science, pages 297–309. Springer, 2002.

[146] OpenSSL Project. OpenSSL version 1.1.1b.https://www.openssl.org/.

[147] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems.Commun. ACM, 21(2):120–126, 1978.

[148] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. On provable security of UOV and
HFE signature schemes against chosen-message attack. In Bo-Yin Yang, editor,Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29
- December 2, 2011. Proceedings, volume 7071 ofLecture Notes in Computer Science, pages
68–82. Springer, 2011.

[149] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Brassard [40],
pages 239–252.

[150] Peter Schwabe and Bas Westerbaan. Solving binaryMQ with Grover’s algorithm. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors,Security, Privacy, and Applied Cryp-
tography Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, De-
cember 14-18, 2016, Proceedings, volume 10076 ofLecture Notes in Computer Science, pages
303–322. Springer, 2016.

[151] Adi Shamir. Efficient signature schemes based on birational permutations. In Douglas R.
Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773
of Lecture Notes in Computer Science, pages 1–12. Springer, 1993.

[152] Peter W. Shor. Polynominal time algorithms for discrete logarithms and factoring on a
quantum computer. In Leonard M. Adleman and Ming-Deh A. Huang, editors, Algorithmic
Number Theory, First International Symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994,
Proceedings, volume 877 ofLecture Notes in Computer Science, page 289. Springer, 1994.

[153] Victor Shoup. NTL: A library for doing number theory. January 2003. http://www.shoup.
net/ntl/.

[154] Joseph H. Silverman. Fast multiplication in finite fields GF(2n). In Çetin Kaya Koç and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems, First International
Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717
of Lecture Notes in Computer Science, pages 122–134. Springer, 1999.

[155] Simon Stevin.L’arithmétique . Imprimerie de Christophe Plantin, 1585.

[156] Richard G. Swan. Factorization of polynomials over finite fields.Pacific J. Math. , 12(3):1099–
1106, 1962.

[157] Alan Szepieniec, Ward Beullens, and Bart Preneel. MQ signatures for PKI. In Lange and
Takagi [115], pages 224–240.

[158] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Improved key recovery of the HFEv-
signature scheme.IACR Cryptol. ePrint Arch. , 2020:1424, 2020.

226

https://www.openssl.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

[159] Jonathan Taverne, Armando Faz-Hernández, Diego F. Aranha, Francisco Rodríguez-
Henríquez, Darrel Hankerson, and Julio López Hernandez. Software implementation of binary
elliptic curves: Impact of the carry-less multiplier on scalar multiplication. In Bart Preneel
and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 ofLecture Notes in Computer Science, pages 108–123. Springer, 2011.

[160] Jeremy Vates and Daniel Smith-Tone. Key recovery attack for all parameters of HFE-. In
Lange and Takagi [115], pages 272–288.

[161] Joachim von zur Gathen and Jürgen Gerhard.Modern Computer Algebra (3. ed.). Cambridge
University Press, 2013.

[162] Christopher Wolf. “Hidden Field Equations" (HFE) - variations and attacks. Master’s thesis,
Universität Ulm, December 2002. http://www.christopher-wolf.de/dpl.

[163] Christopher Wolf. Efficient public key generation for HFE and variations. In Ed Dawson and
Wolfgang Klemm, editors, Cryptographic Algorithms and their Uses - 2004, International
Workshop, Gold Coast, Australia, July 5-6, 2004, Proceedings, pages 78–93. Queensland Uni-
versity of Technology, 2004.

[164] Christopher Wolf. Multivariate quadratic polynomials in public key cryptography. Univ. Leu-
ven Heverlee, 2005.

[165] Christopher Wolf and Bart Preneel. Equivalent keys in multivariate quadratic public key
systems. IACR Cryptol. ePrint Arch. , 2005:464, 2005.

227

http://www.christopher-wolf.de/dpl

Appendices

229

Appendix A

Size of MI-Based NIST Candidates

The secret-key ofMI-based schemes (Section 2.4) is composed of two affine (or linear) maps, and
a trapdoor function. In this part, we compute exactly the size of the trapdoor for HFEv, UOV and
Rainbow. Then, we give the exact sizes of the corresponding NIST candidates (Tables A.1 and
A.2), by taking into account their specificity.

HFEv trapdoor. We compute the number of coefficients of a HFEv polynomial, which permits to
derive the secret-key size. Letr = blogq(D)c. From Equation (2.9), we observe that:

• The number of coefficients of γ(v1, . . . , vv) is given by Equation (2.3) specialized forv variables
and d equals two. We obtain

(v+2
2

)
coefficients in Fqd ext if q 6= 2 , and

(v+1
2

)
+ 1 coefficients

otherwise.

• The number of coefficients of each βi (v1, . . . , vv) is given by Equation (2.3) specialized forv
variables andd equals one. We obtain

(v+1
1

)
= v +1 coefficients in Fqd ext . Then, βi (v1, . . . , vv)

is defined for 0 6 i 6 r , implying a total of (r + 1)(v + 1) coefficients in Fqd ext .

• The number of coefficients corresponding to A i,j is
(r +1

2

)
+ blogq(D + 1 − qr)c if q 6= 2 , and(r

2

)
+ blogq(D + 1 − qr)c otherwise. The part with the binomial corresponds to exponents

strictly less than qr , whereas the part with the logarithm counts the number of exponents
strictly greater than qr .

Therefore, the total number of coefficients of a HFEv polynomial in Fqd ext [X, v 1, . . . , vv] is:

ND,v,q =






(v + r + 2) 2 + v − r
2

+
⌊
logq(D + 1 − qr)

⌋
if q 6= 2 ,

3 + (v + r + 1) 2 + v − r
2

+
⌊
logq(D + 1 − qr)

⌋
otherwise.

(A.1)

Observe that HFE polynomials are sparse: onlyND, 0,q = O
(
logq(D)2)

coefficients are non-zero.
This property is important to accelerate the root finding algorithm (Section 5.4.8) used during the
signing process (Section 2.3.2).

231

UOV trapdoor. For one equation ofF (Equation (2.10)), its number of coefficients in Fq is:

NF =






(v + 1)(v + 2)
2

+ (v + 1) m′ if q 6= 2 ,

v(v + 1)
2

+ 1 + (v + 1) m′ otherwise.

(A.2)

Thus, the size ofF is m′NF log2(q) bits.

Rainbow trapdoor. The size ofF is the sum of u trapdoors of UOV. Via Equation (A.2), we
obtain that F contains:






u∑

k=1

ok ·
(

(vk + 1)(vk + 2)
2

+ (vk + 1) ok

)
elements ofFq if q 6= 2 ,

u∑

k=1

ok ·
(

vk (vk + 1)
2

+ 1 + (vk + 1) ok

)
elements ofFq otherwise.

232

scheme (level, q, dext, D, ∆ , v, nb_ite) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)
QUARTZ (80(1) , 2, 103, 129, 3, 4, 4) 72.2375(2) 3.733375(3) 16 16

Gui-184 (II (4) , 2, 184, 33, 16, 16, 2)
422.121(5) 14.984(5) no seed 29(6)

Gui-184 (updated) (II , 2, 184, 33, 16, 16, 3) 33(6)

Gui-312 (IV , 2, 312, 129, 24, 20, 2) 1990.044(5) 41.754(5) no seed 47(6)

Gui-448 (VI , 2, 448, 513, 32, 28, 2) 5903.404(5) 94.756(5) no seed 67(6)

GeMSS128 (I , 2, 174, 513, 12, 12, 4) 352.188 13.43775

16

32.25
BlueGeMSS128 (I , 2, 175, 129, 13, 14, 4) 363.609 13.696375 33.75
RedGeMSS128 (I , 2, 177, 17, 15, 15, 4) 375.21225 13.104 35.25

WhiteGeMSS128 (I , 2, 175, 513, 12, 12, 3) 358.172125 13.558625 29.375
CyanGeMSS128 (I , 2, 177, 129, 14, 13, 3) 369.72475 13.40675 30.5

MagentaGeMSS128 (I , 2, 178, 17, 15, 15, 3) 381.46075 13.222375 31.625
GeMSS192 (III , 2, 265, 513, 22, 20, 4) 1237.9635 34.069375

24

51.375
BlueGeMSS192 (III , 2, 265, 129, 22, 23, 4) 1264.116375 35.377375 52.875
RedGeMSS192 (III , 2, 266, 17, 23, 25, 4) 1290.542625 34.791125 54.375

WhiteGeMSS192 (III , 2, 268, 513, 21, 21, 3) 1293.84775 35.766125 46.625
CyanGeMSS192 (III , 2, 270, 129, 23, 22, 3) 1320.801625 35.26175 47.75

MagentaGeMSS192 (III , 2, 271, 17, 24, 24, 3) 1348.033375 34.69225 48.875
GeMSS256 (V , 2, 354, 513, 30, 33, 4) 3040.6995 75.892125

32

72
BlueGeMSS256 (V , 2, 358, 129, 34, 32, 4) 3087.963 71.4595 73.5
RedGeMSS256 (V , 2, 358, 17, 34, 35, 4) 3135.591 71.887375 75

WhiteGeMSS256 (V , 2, 364, 513, 31, 29, 3) 3222.69075 70.994125 64.125
CyanGeMSS256 (V , 2, 364, 129, 31, 32, 3) 3272.016375 73.201 65.25

MagentaGeMSS256 (V , 2, 366, 17, 33, 33, 3) 3321.716625 70.408125 66.375

FGeMSS(266) (I , 2, 266, 129, 10, 11, 1) 1232.128 24.553625 16 34.625
Inner.DualModeMS128

FGeMSS(402) (III , 2, 402, 640, 18, 18, 1) 4243.728 62.60175 24 52.5
Inner.DualModeMS192 (III , 2, 402, 129, 18, 18, 1) 59.586750

FGeMSS(537) (V , 2, 537, 1152, 25, 26, 1) 10161.088 122.721875 32 70.375
Inner.DualModeMS256 (V , 2, 540, 129, 28, 26, 1)(7) 10269.568 116.252 70.75
(1) Original security level in bits, but QUARTZ was broken.
(2) The authors did not provide the exact size, and seemed to consider the linear terms of p . We compute the

public-key size without these terms to be consistent with other schemes.
(3) The authors did not provide the exact size. However, they claimed to use 30497 random bits to generate the

secret-key from the seed, when the LU decomposition is used. They considered T in Aff −1
n var

(
Fq

)
, but in reality

T is in Aff −1
dext

(
Fq

)
. So, the correct number is 29657 bits. We deduce the secret-key size by adding 210 bits,

corresponding to the fact that the LU decomposition in F2 allows to save the random generation of the diagonal.
(4) The original security level was 128 bits, but the generic attack from Section 7.7.2 breaks it in 2112 evaluations.
(5) The sizes of [62, Table 2] are wrong. In particular, the public-key size contains the size of quadratic terms x2

i .
The sizes that we compute here are consistent with the practical implementation provided by [62] (by removing
an extra useless byte from this implementation).

(6) The signature size is given without the 128-bit salt.
(7) The original scheme used dext = 544 and ∆ = v = 32 . However, the correction of an error in [83, Table 13]

implies ∆ + v = 54 instead of 64. So, we update parameters according the philosophy of GeMSS.

Table A.1: Exact size of the keys and signature of theHFEv--based schemes submitted to the NIST
PQC standardization process, as well asQUARTZ from the NESSIE project [145].

233

round scheme (q, v1 , o1 , o2) |pk| (kB) |sk| (kB) |seed| (B) |sign| (B)

1

Rainbow-Ia (16, 32, 32, 32) 152.096 100.208

no seed

64
Rainbow-Ib (31, 36, 28, 28) 151.583625 106.180875 78
Rainbow-Ic (256, 40, 24, 24) 192.24 143.384 104

Rainbow-IIIb (31, 64, 32, 48) 524.40175 380.3535 112
Rainbow-IIIc (256, 68, 36, 36) 720.792 537.78 156
Rainbow-IVa (16, 56, 48, 48) 565.488 376.14 92
Rainbow-Vc (256, 92, 48, 48) 1723.68 1274.316 204
Rainbow-VIa (16, 76, 64, 64) 1351.36 892.078 118
Rainbow-VIb (31, 84, 56, 56) 1352.70375 944.5795 147

2

Rainbow-Ia (16, 32, 32, 32) 148.992 92.992 no seed 64
cyclic Rainbow-Ia 58.144 64(2)

Rainbow-Ic(1)
(256, 40, 24, 24) 187.968 132.64 no seed 104

cyclic Rainbow-Ic(1) 58.496 64(2)

Rainbow-IIIc (256, 68, 36, 36) 710.64 511.480 no seed 156
cyclic Rainbow-IIIc 206.744 64(2)

Rainbow-Vc (256, 92, 48, 48) 1705.536 1227.136 no seed 204
cyclic Rainbow-Vc 491.936 64(2)

3

Rainbow-Ia (16, 36, 32, 32) 161.6 103.648 no seed 66
CZ-Rainbow-Ia(3) 60.192 64(2)

Rainbow-IIIc (256, 68, 32, 48) 882.08 626.048 no seed 164
CZ-Rainbow-IIIc(3) 264.608 64(2)

Rainbow-Vc (256, 96, 36, 64) 1930.6 1408.736 no seed 212
CZ-Rainbow-Vc(3) 536.136 64(2)

(1) Rainbow-Ic is not submitted to the second round of the NIST PQC standardization process. However, this
implementation is available in the submitted implementation. We use this scheme in Section 8.6.3.

(2) The secret-key contains the 32-byte public seed. The latter is also stored in the public-key.
(3) circumzenithal Rainbow, new name of cyclic Rainbow.

Table A.2: Exact size of the keys and signature ofRainbow submitted to the NIST PQC standard-
ization process. We consider the evolution of these schemes during the three rounds.

234

Appendix B

More Algorithms in Fq[x]

In this appendix, we give more details about methods used for arithmetic inFq[x] (or Fqd ext [x] when
relevant). In particular, we present some algorithms mentioned in Chapter 5.

B.1 Karatsuba-Like Formulae
In Section 5.1.2, we mentioned the three-term Karatsuba-like formulae [124], which allows to mul-
tiply two degree-two polynomials with only six multiplications (instead of seven with the standard
method). Here, we explain one of these formulae [124, Equation (3) withC = 0].

Let A, B be polynomials in Fq[x] such that

A = A0 + A1x + A2x2, B = B0 + B1x + B2x2.

One way to computeA × B is to compute the six following products:

• P0 = A0 × B0,

• P1 = A1 × B1,

• P2 = A2 × B2,

• Q0 = (A0 + A1) × (B0 + B1),

• Q1 = (A0 + A2) × (B0 + B2),

• Q2 = (A1 + A2) × (B1 + B2).

Then, we write A × B with these six products:

A × B = P0 + (Q0 − P0 − P1)x + (Q1 − P0 + P1 − P2)x2 + (Q2 − P1 − P2)x3 + P2x4.

In characteristic two, we can save an addition by computing only one timeP0 + P1 or P1 + P2.

235

B.2 Euclidean Division without Computing the Remainder
In Section 5.1.4, we explained that the computation of the quotient can be separated from the
computation of the remainder, because the quotient depends only on the higher degree terms ofA.
We present this idea in Algorithm 47. We compute the quotient without updating the db smallest
degree terms ofA. Thus, the remainder could be computed as(A − B ×Q) mod xdb .

Algorithm 47 Polynomial Euclidean division without computing the remainder.

1: function EuclideanDiv
(
A ∈ Fq[x], B ∈ Fq[x]∗

)

2: c← b−1
db

3: Q← A/x db . Quotient of the Euclidean division of A by xdb .
4: for i from da − db to max(1, db) by −1 do
5: qi ← qi × c
6: Q← Q − qi ×

((
B − bdb xdb

)
× x i −db

)

7: end for
8: for i from max(1, db) − 1 to 1 by −1 do
9: qi ← qi × c

10: Q← Q − qi ×
((

B − bdb xdb
)
/x db −i

)

11: end for
12: q0 ← q0 × c
13: return Q
14: end function

B.3 Newton Iteration
The fast Euclidean division (Section 5.1.4) requires computing the modular inverse ofF mod H , for
H = x ` with ` ∈ N∗. This can be performed efficiently with Newton iteration [161, Algorithm 9.3].
The latter is presented in Algorithm 48, which requires f 0 = 1 . When f 0 = 0 , F is not invertible
sincex divides F . Else, whenf 0 6= 1 , we can call Algorithm 48 with F ′ = f −1

0 · F . The latter will
return G′ such that F ′ ·G′ = 1 mod x ` , and so f −1

0 ·G′ is the inverse ofF modulo x ` .

Algorithm 48 Newton iteration.

1: function NewtonIter
(
F ∈ Fq[x] such that f 0 = 1 , ` ∈ N∗)

2: r ← dlog2(`)e
3: G0 ← 1 . F ·G0 = 1 mod x.
4: for i from 1 to r do
5: Gi, 0 ← Gi −1

6: Gi, 1 ←
(
−F ·G2

i −1 mod xd
`

2 r −i e
)

/x d
`

2 r −i +1 e . The quotient of the Euclidean division is
the higher half of the result.

7: Gi ← Gi, 0 + Gi, 1 · xd
`

2 r −i +1 e . F ·Gi = 1 mod xd
`

2 r −i e.
8: end for
9: return Gr . F ·Gr = 1 mod x ` .

10: end function

236

Newton iteration is an iterative process which computesF −1 with a precision of ` coefficients
(i.e. F · F −1 = 1 mod x `). It starts with a precision of one coefficient, then doubles the precision
at each iteration until it reaches a precision of ` coefficients. So, at each step, the lower half of
Gi is Gi −1, whereas its higher half is computed with one squaring and one multiplication inFq[x].
The size of the polynomials increases during the algorithm, so the cost of Algorithm 48 is much
less than2dlog2(`)e operations in Fq[x]. Its cost is bounded by3M(`) + O(`) field operations [161,
Exercise 9.6].

Remark 23. In characteristic two, squaring is linear and so the cost of Algorithm 48 is bounded
by 2M(`) + O(`) field operations.

B.4 FFT Variant of the Polynomial Evaluation
In Section 5.4.3, we proposed a Baby-Step Giant-Step approach to compute the evaluation of
G ∈ Fq[x] in an element a ∈ R, for R a ring. Here, we note that G can also be split by using
the FFT decomposition (Section 5.4.4). In Algorithm 49, the b blocks are generated from the
coefficients whose indices are equal modulob. This strategy is very similar to the Baby-Step Giant-
Step strategy. Roughly, we just swapa and c compared to Algorithm 20, and the matrix from
Step 2 is transposed.

Algorithm 49 Polynomial evaluation using the FFT decomposition.
Input: G ∈ Fq[x], a ∈ R, b∈ N∗ such that b6 dg + 1 .
Output: G(a).

0. Let s =
⌈

dg +1
b

⌉
and G(x) =

∑ b−1
i =0 Gi

(
xb)
· x i , with Gi ∈ Fq[x], deg(Gi) < s .

1. Let c = ab and computec, c2, c3, . . . , cs−1 (e.g. with Algorithm 45). These are the baby steps.

2. Re-use them to evaluateG0, . . . , Gb−1 in c. These evaluations can be performed with the
following matrix-vector product:





g0 · · · gb(s−2) gb(s−1)
g1 · · · gb(s−2)+1 gb(s−1)+1
...

. . .
...

...
gb−1 · · · gb(s−1)−1 gbs−1




.





1R
c
...

cs−1




=





G0(c)
G1(c)

...
Gb−1(c)




.

3. Compute G(a) as:
b−1∑

i =0

Gi (c) × ai . (B.1)

Equation (B.1) can be performed with Horner’s rule, which allows to save the computation
of the powers ofa. These are the giant steps.

The cost of Algorithm 49 is similar to Algorithm 20, with an additional penalty to compute ab

during Step 1.

237

B.5 Frobenius Map, Right-to-Left Version
Here, we present the right-to-left square-and-multiply algorithm of the Frobenius map (Algorithm
50) described in Section 5.4.5. Algorithm 50 requiresblog2(k)c + HW(k) − 1 modular compositions
in Fqd ext [x] and (k − 1) · dh q-exponentiations in Fqd ext . However, the latter can be computed with(
blog2(k)c+ HW(k)−1

)
·dh calls to Algorithm 22, using blog2(k)c+ HW(k)−1 multi-squaring tables.

Algorithm 50 Frobenius map using the right-to-left square-and-multiply algorithm on qk .

1: function FrobMapRL
(
H ∈ Fqd ext [x], k ∈ N∗)

2: r ← blog2(k)c
3: X 0 ← xq mod H . X 0 = xq20

mod H .
4: for i from 1 to r do
5: X i ← X̃ (2i −1)

i −1 ◦ X i −1 mod H . Square: X i = xq2 i

mod H .

6: end for . We can computeX̃ (k mod 2 i)
i then X̃ (2i)

i for
⌊ k

2i

⌋
mod 2 = 1.

7: i 0 ← 0
8: while

⌊ k
2i

⌋
mod 2 = 0 do

9: i 0 ← i 0 + 1
10: end while . i 0 is the greatest integer such that2i 0 divides k.
11: Yi 0 ← X i 0 . Y i 0 = xq2 i 0

= xqk mod 2 i 0 +1

mod H .
12: for i from i 0 + 1 to r do
13: if

⌊ k
2i

⌋
mod 2 = 1 then . All steps of multiply are computed here.

14: Yi ← X̃ (k mod 2 i)
i ◦ Yi −1 mod H . Y i = xqk mod 2 i +1

mod H .
15: else
16: Yi ← Yi −1
17: end if
18: end for
19: return Yr . i = r and Yr = xqk

mod H .
20: end function

B.6 Structured Exponentiation and Frobenius Norm
In Section 5.4.5, we studied how to optimize the exponentiation to the powerqk . The Hamming
weight of qk in baseq is one and so can be performed withk exponentiations to the powerq or by
using multi-squaring tables. Here, we study how to optimize the exponentiation to the powerqk −1
for k ∈ N, which is useful to compute the inverse by Fermat’s little theorem (Equation (5.11)).
The inversion in F×

qd ext requires the exponentqdext − 2 that we can write as (qk − 1)× q+ q− 2, for
k = dext − 1 (cf. Algorithm 52). We show that the exponentiation algorithm used in ITMIA [108]
can be generalized when the power is the sum of the terms of a geometric sequence with common
ratio q. In particular, this concerns the Frobenius norm, defined by:

Nk (x) =
k−1∏

i =0

xqi
= x

∑ k −1

i =0
qi

. (B.2)

238

Raising an elementA to the power of qk − 1 with the square-and-multiply algorithm (where
square is aq-exponentiation) is expensive. The Hamming weight ofqk − 1 in baseq is k, implying
k−1 steps of multiplication. In 1988, T. Itoh and S. Tsujii introduced the Itoh–Tsujii Multiplicative
Inversion Algorithm (ITMIA) [108]. This algorithm allows to compute the power qk − 1 with only
O

(
log2(k)

)
steps of multiplication. Firstly introduced for q = 2 (Algorithm 36), we remark that

the strategy used can be naturally generalized for any power having the form

K = c

k
` −1∑

i =0

q` ·i = c× qk − 1
q` − 1

, ` ∈ N∗, c < q ` .

In fact, K is the (k− `)-degree` -ESP [109] evaluated inq and multiplied by the constant c (Section
5.3.4). This form allows to perform operations directly on the power ofq (from the numerator)
instead of the power ofA. Similarly to Equation (5.14), the following properties are used to perform
the multiplication by two and the addition on the power of q:






Ac q2k ′
−1

q ` −1 =

(

Ac qk ′
−1

q ` −1

) qk ′

× Ac qk ′
−1

q ` −1

Ac qk ′+ k ′′
−1

q ` −1 =

(

Ac qk ′
−1

q ` −1

) qk ′′

× Ac qk ′′
−1

q ` −1 .

(B.3)

So, K can be computed by decomposingk
` in base two, then by applying the square-and-multiply

algorithm, where squaring corresponds to multiply the exponent by two, whereas multiply corre-
sponds to add ` to the exponent (i.e. k′′ = ` in Equation (B.3)). We obtain Algorithm 51, which
requires only O

(
log2

(k
`

))
steps of multiplication.

Algorithm 51 Itoh–Tsujii exponentiation for a specific (left-to-right) addition chain. R is a ring.

1: function ITexp
(
A ∈ R, q > 2, k ∈ N∗, ` ∈ N∗, c < q `)

2: n ← k
`

3: m ← 1 . Casei = blog2(n)c.
4: AK ← Ac . A c

∑ m −1

i =0
q`i

= Ac.
5: for i from blog2(n)c − 1 to 0 by −1 do
6: Q← Aq` ·m

K . Multi-squaring to obtain Ac
∑ 2m −1

i = m
q`i

.

7: AK ← Q × AK . A c
∑ 2m −1

i =0
q`i

.
8: m ←

⌊ n
2i

⌋

9: if m mod 2 = 1 then

10: AK ← Aq`

K × Ac .
(

Ac
∑ m −2

i =0
q`i

) q`

× Ac = Ac
∑ m −1

i =0
q`i

.
11: end if
12: end for . m = n and soAK = Ac

∑ k
` −1

i =0
q`i

.
13: return AK
14: end function

239

Link with the Frobenius trace. Consider the modified Algorithm 51 where the multiplications
are replaced by additions (i.e. × becomes+). Thus, we obtain Algorithm 23 where y is initialized to
A and the modular composition is replaced by an exponentiation (the Frobenius map is removed).
With this change, we can computeTr k (r 0x) ∈ R = Fqd ext [x]/ (H) with ITexp(r 0x, q, k, 1, 1) and
HTr k (A) ∈ R = F2d ext with ITexp(A, 2, k + 1 , 2, 1), both with only O

(
log2(k)

)
additions.

Use of the modular composition. As in Section 5.4.6, the modular composition can be used
when the exponentiation is computed modulo a univariate polynomial. A first version of this
strategy is proposed in [161, Algorithm 14.55] to compute the Frobenius norm (Equation (B.2)).
This algorithm can be improved and generalized by coupling Algorithms 50 and 51, or by modifying
Algorithm 23.

Applications. The inverse inF×
qd ext can be computed by using Algorithm 52, which is the so-called

Itoh–Tsujii Multiplicative Inversion Algorithm when q = 2 (Algorithm 36).

Algorithm 52 ITMIA for a specific (left-to-right) addition chain.

1: function Inverse
(
A ∈ F×

qd ext

)

2: AK ← ITexp(A, q, dext − 1, 1, q− 1) . A K = A
∑ d ext−2

i =0
(q−1)qi

= Aqd ext−1 −1.
3: return Aq

K × Aq−2 . A qd ext −2 = A−1.
4: end function

The Itoh–Tsujii exponentiation can be used for other structured powers. In Example 6, we
propose a simple idea to compute the cubic root. This method can be used to computer -th roots
in F2d ext for certain values of r and dext.

Example 6 (Cubic root in F2d ext). Let dext be an odd positive integer,K = 1
3

(
2dext+1 − 1

)
∈ N

and A ∈ F2d ext . We have K = 1 × 2d ext+1 −1
22 −1 =

∑ d ext+1
2 −1

i =0
(
22) i , i.e. K = 111 . . . 111 in base four.

So, we can computeAK with ITexp(A, 2, dext + 1 , 2, 1). Note that AK is the cubic root of A, since
A3K = A2d ext+1 −1 = A2d ext A2d ext −1 = A.

B.7 Degree-Two Split Root Finding in Characteristic Two
In Section 5.4.7, we presented classical methods to solveX 2 + X + A = 0 in F2d ext [X]. Here, we
show that the computation of the half-trace is equivalent to computing a vector-matrix product
over F2, whose matrix depends only on the field polynomial ofF2d ext . Then we study the behavior
of M 2 (Equation (5.16)) for irreducible trinomials and AOPs when we solveX 2 + X + A = 0 as a
linear system overF2. We also study how to solve efficiently this equation in normal basis.
When dext is odd, we have:

R = HTr dext (A) =

d ext−1
2∑

i =0

A4i
=

dext−1∑

j =0

aj HTr dext (θj).

Thus, we have: (
r 0 r 1 · · · r dext−1

)
=

(
a0 a1 · · · adext−1

)
·M H

240

where

M H =





ϕ(HTr dext (θ0))
ϕ(HTr dext (θ1))

...
ϕ(HTr dext (θdext−1))




∈Mdext

(
F2

)
.

This method is roughly equivalent to proposing the inverse of a specific̃M 2 ∈ GLdext

(
F2

)
for solving

the following classical linear algebra problem:
(
r 0 r 1 · · · r dext−1

)
·M 2 =

(
a0 a1 · · · adext−1

)

where

M 2 =





ϕ
(
θ2

0 + θ0
)

ϕ
(
θ2

1 + θ1
)

...
ϕ

(
θ2

dext−1 + θdext−1
)




= I dext +





ϕ
(
θ2

0
)

ϕ
(
θ2

1
)

...
ϕ

(
θ2

dext−1
)




∈Mdext

(
F2

)
.

Solving X 2 + X + A = 0 in the canonical basis for a field trinomial. Now, we consider
B the canonical basis ofF2d ext . We start by making the sparse structure of M 2 explicit for field
trinomials. By using results from Section 5.3.3, we obtain:

M 2 = I dext +




ϕ(θ2i)
ϕ(θ2j −dext + θ2j −dext+ k1)
ϕ(θ2k−dext + θ2k−2dext+ k1 + θ2k−2dext+2 k1)










0 6 2i < d ext

dext 6 2j < 2dext − k1

2dext − k1 6 2k 6 2dext − 2.
(B.4)

Then, we study how to makeM 2 invertible. To do it, we introduce the following lemma.

Lemma 11. Let f 3 = xdext + xk1 + 1 ∈ F2[x] for 0 < k 1 6
⌈ dext

2

⌉
, and f ∈ F2[x] be an irreducible

polynomial of degreedext. We define F2d ext as F2[α]/ (f (α)) . We have the following properties:

1. If dext is odd and if De(f) 6 0, then the zero-th column of M 2 is null.

2. If dext is even, if k1 is odd and if f = f 3, then the (dext − k1)-th column of M 2 is null.

3. If dext is odd, if k1 is even and if f = f 3, then the zero-th and(dext− k1)-th columns of M 2
are equal. Moreover, only their (dext − k1

2)-th row is set.

Proof. Let d = dext − k1. We prove each property.

1. Let Qi and Ri in F2[x] be respectively the quotient and the remainder of the Euclidean
division of x2i by f for 0 6 i < d ext. From Lemma 9, we know that De(Qi) = −∞, i.e. Qi
does not have even degree terms. In particular,x divides Qi . For 0 < i < d ext, we obtain
that x divides x2i − f ·Qi = Ri , and sox divides the reduced form ofx2i + x i . For i = 0 , x
divides x2i + x i = 0 . All in all, the zero-th column of M 2 is null.

2. We check that the d-th column of each row ofM 2 (Equation (B.4)) is null.

• For 0 6 2i < d ext, d is odd soθd 6= θ2i .

241

• For dext 6 2j < 2dext − k1, we have j = 2 j − dext + k1 and so θ2j −dext+ k1 + θj = 0 for
j = d. Otherwise, θd 6= θ2j −dext+ k1 . Note that θd 6= θ2j −dext since2j − dext < d .

• For 2dext − k1 6 2k 6 2dext − 2, d is odd soθd 6= θ2k−2dext+2 k1 . Moreover, dext is even
implies θd 6= θ2k−dext and k1 6

⌈ dext
2

⌉
implies θd 6= θ2k−2dext+ k1 .

3. We check that the zero-th and d-th columns of each row ofM 2 (Equation (B.4)) are null
except for the (dext − k1

2)-th row.

• For 0 6 2i < d ext, d is odd soθd 6= θ2i , whereasθ2×0 + θ0 = 0 and θ0 6= θ2i otherwise.
• For dext 6 2j < 2dext − k1, we have j = 2 j − dext + k1 and so θ2j −dext+ k1 + θj = 0

for j = d. Otherwise, θd 6= θ2j −dext+ k1 . Then, dext is odd soθ0 6= θ2j −dext . Note that
θd 6= θ2j −dext and θ0 6= θ2j −dext+ k1 since2j − dext < d and 2j − dext + k1 > k1 > 0.

• For 2dext − k1 6 2k 6 2dext − 2, d is odd soθd 6= θ2k−2dext+2 k1 . Moreover, k1 6
⌈ dext

2

⌉

implies θd 6= θ2k−2dext+ k1 . Finally, k1 is even impliesθ2k−2dext+ k1 = θ0 and θ2k−dext = θd
when k = dext − k1

2 . Otherwise, θd 6= θ2k−dext and θ0 6= θ2k−2dext+ k1 . Note that θ0 6=
θ2k−dext and θ0 6= θ2k−2dext+2 k1 since2k − dext > dext − k1 and 2k − 2dext + 2k1 > k1. �

From Lemma 11, coupled to the fact that the zero-th row of M 2 is null, we deduce:

• When k1, . . . , k` = dext are odd, including irreducible trinomials (` = 2) and pentanomials
(` = 4), the zero-th column of M 2 is null and this implies that a0 = 0 . We can makeM 2
invertible by setting to one the coefficient (0, 0) of M 2.

• For trinomials, when dext is even andk1 is odd, the (dext − k1)-th column of M 2 is null and
this implies that adext−k1 = 0 . We can makeM 2 invertible by setting to one the coefficient
(0, dext − k1) of M 2.

• For trinomials, when dext is odd and k1 is even, the zero-th and(dext− k1)-th columns of M 2
are equal and this implies that a0 = adext−k1 (we also know that r dext− k 1

2
= a0). We can make

M 2 invertible by setting to one the coefficient (0, 0) or the coefficient (0, dext − k1) of M 2.

Lemma 11 allows to precompute more easily the inverse of a chosenM̃ 2 for irreducible trinomials
such that k1 6

⌈ dext
2

⌉
, as well as for certain pentanomials. We can also useM H when dext is odd.

Solving X 2 + X + A = 0 in the normal basis. When we considerB the normal basis ofF2d ext

(Section 5.2.2), X 2 + X + A = 0 can be solved very efficiently. This is due to the relationship
(r i · θi)2 = r i · θi +1 mod dext , which implies that:

{
r 0 = r dext−1 + a0,
r i +1 = r i + ai +1 for 0 6 i < d ext − 1.

SinceR and R + 1 are solutions ofX 2 + X + A = 0 , with ϕ(1) = (1 , . . . , 1), we can set one variable
to zero or one, e.g. r dext−1 = 0 . Thus, we obtain an iterative process to compute a solution of
X 2 + X + A = 0 , requiring only O(dext) operations in F2. In fact, we have:






r dext−1 = 0 ,

r i =
i∑

j =0

aj =
dext−1∑

j = i +1

aj for 0 6 i < d ext.

242

This process is iterative but we can computeω successiver i in parallel. To do so, duplicate the
current r i in a ω-bit word acc. Then, compute r i +1 , . . . , r i + ω with ω parallel additions in F2 as
follows: for 1 6 j 6 ω, duplicate ai + j in a ω-bit word, use a precomputed mask to mask its first
j −1 elements, and finally xor it to acc. Store the obtained result and repeat this process withi + ω
instead of i as times as necessary.

Additionally, we make M 2 explicit. Note that the previous method is a sophisticated multipli-
cation of ϕ(A) by the inverse of M̃ 2, and so is necessarily faster than the latter.

M 2 =





1 1 0 · · · 0

0 1 1
. . .

...
...

. 0
0 · · · 0 1 1
1 0 · · · 0 1




.

Solving X 2 + X + A = 0 in the canonical basis for a field AOP. When the field polynomial
f is an AOP (Section 5.3.4),dext is even andM 2 has the following form:

M 2 = I dext +




ϕ(θ2i)

ϕ(f (θ1) − θdext
1)

ϕ(θ2j −1−dext)




{

0 6 i < dext
2

dext
2 < j < d ext.

The columns of M 2 generate the following system:





r d ext
2

= a0,

r i + ai + r d ext
2

=

{
r i

2
if i is even, for0 6 i < d ext − 1,

r d ext
2 + i +1

2
if i is odd, for 0 6 i < d ext − 1,

r dext−1 = r d ext
2

+ adext−1.

Once again, we can solveX 2 + X + A = 0 with an iterative process [154]. Froma d ext
2

, we deduce
r I for a certain I ∈ N∗. Then, we compute r I + aI + a0 and obtain r J for a certain J ∈ N∗. By
repeating this process, we obtain all values ofr i for 0 < i < d ext. Indeed, from Lemma 1, 2 is a
generator ofF×

dext+1 , and J = I ·2−1 = I ·
(dext

2 + 1
)

mod (dext+1) . Moreover, we stop this process as
soon asI = dext−1, avoiding the indicesdext and dext

2 of r J . Thus, we avoid dext and set r d ext
2

= a0.

Let gj = dext
2 ·

(dext
2 + 1

) j ∈ F×
dext+1 for j ∈ N. In fact, we have:






dext−2∑

j =0

agj =
dext−1∑

j =1

aj = 0 ,

r g0 = a0,

r gi + (1 − i mod 2) · a0 =
i −1∑

j =0

agj =
dext−2∑

j = i

agj for 0 6 i < d ext − 1.

243

Once gj is known (or precomputed) for 0 6 j < d ext − 1, solving this system requires onlyO(dext)
operations in F2. We remark that r gi = r gi −1 + agi −1 + a0 for 0 < i < d ext − 1, and the division by
two is cheap sincen · 2−1 mod (dext + 1) is exactly b n

2 c + (n mod 2) ·
(dext

2 + 1
)

for 0 6 n 6 dext.

B.8 Constant-Time GCD for Berlekamp’s Algorithm
In this section, we present an adaptation of the constant-time GCD algorithm of [19] (Section
7.4.11) for the root finding algorithm (Algorithm 25). This adaptation works in Fq[x] for any q. Its
extended version can be used for computing the inverse inF×

q (Section 5.4.2).
During the root finding algorithm, GCD(R2, H) has to be computed. We could compute it in

constant-time via [19], but the strategy used requires the degree of inputs is public and reached.
The polynomial H has exactly a degreedh , but R2 is the result of the Frobenius map moduloH .
Its degree is secret, and less or equal todh − 1.

However, we observe that the constant-time GCD algorithm of [19] can be used with only one
(non-zero) operand whose degree is public and reached. A public upper bound on the degree of the
other operand is enough. The algorithm takes this upper bound, and while the current (assumed)
leading term is null, the degree will decrement. If a non-zero term is found, then the exact degree
is found, and the algorithm runs with the original requirements.

In Algorithm 53, we present a constant-time implementation of this idea, accepting an upper
bound on the degree of the left operand. Our description is a bit different from the original [19,
Figure 5.1], for several reasons.

• We do not take the reciprocal polynomial of inputs. This implies the use of multiplications
by x instead of divisions by x. We think it simplifies the implementation.

• We swap the operands. This multipliesδ by minus one compared to the original algorithm.
This choice is consistent with the Euclidean division algorithm. The (assumed) higher degree
is naturally the left operand in a Euclidean division (since it is common to write the dividend
at the left of the divisor).

• The original algorithm deals with power series field. For our practical use, we restrict it to the
polynomial ring. We make this change carefully, in particular about the precision of computa-
tions in power series field. To do that, we do not consider the monomialsx0, . . . , xdmax−nb_step

during Steps 16, 17 and 18 ifnb_step 6 dmax. In fact, the new F from Step 18 is multi-
ple of xmax(0 ,dmax+1 −nb_step) because the oldF is zero, or H and the old F are multiple of
xmax(0 ,dmax+1 −nb_step) . We know that f 0, . . . , f dmax−nb_step are null.

With Algorithm 53, we can now compute GCD(R2, H) asGCD_EuclidStevin(R2, H, dh−1). This
method requires3 · (d2

h − dh) field multiplications.

Remark 24. As explained in Section 5.4.1, the Euclid–Stevin relationship (Step 18) can be re-
placed by a classical Euclidean relationship,i.e. F ← F − f dmax · h−1

dmax
· H . Thus, we obtain a

constant-time version of the classical Euclidean algorithm. We know thathdmax is always invertible.
The computation of f dmax · h−1

dmax
requires one inversion field but divides by two the number of field

multiplications.

244

Algorithm 53 Constant-time GCD of F and H , wheredh is public and df is a public upper bound
on deg(F).

1: function GCD_EuclidStevin
(
F ∈ Fq[x], H ∈ Fq[x]∗, df > deg(F)

)

2: dh ← deg(H), dmax ← max(df , dh)
3: δ← df − dh . Gap betweendf and dh .
4: if δ < 0 then . Alignment of the leading terms of F and H .
5: F ← F · x−δ

6: else
7: H ← H · xδ

8: end if
9: for nb_step from df + dh to 1 by −1 do

10: if f dmax 6= 0 and δ < 0 then . Use of constant-time comparison.
11: bs ← 1
12: else
13: bs ← 0
14: end if
15: δ← δ XOR (δ XOR − δ) · bs . When F and H are swapped,δ← −δ.
16: G← (F XOR H) · bs
17: F ← F XOR G, H ← H XOR G . Conditional swap.
18: F ← hdmax · F − f dmax · H . Note that the new f dmax is necessarily null.

. Moreover, if nb_step6 dmax, then the new f 0, . . . , f dmax−nb_step are necessarily null.
19: F ← F · x, δ← δ− 1
20: end for
21: d← δ

2 . Integer division (δ is even).
22: return H/x dmax+ d,−d . Return the GCD and its degree. The division (a simple shift of

coefficients) has to be performed in constant-time.
23: end function

Remark 25. In characteristic two, the conditional swap of F and H does not modify the result
of hdmax · F − f dmax · H . It is due to the symmetry that appears in this relationship. Instead of the
conditional swap, H should be updated independently ofF once the relationship is computed.

About the constant-time computation of H/x dmax+ d. At the end of Algorithm 53, we have
to compute H/x dmax+ d. This operation is equivalent to shifting by dmax + d positions the coefficients
of H . Since−d 6 dh , we can perform in variable-time H ′ = H/x dmax−dh , then compute H ′/x dh + d

in constant-time. Our approach is to perform secretlydh shifts by one position. The first dh + d are
true shifts of coefficients, unlike the last −d shifts which are dummy shifts. This approach requires
1
2 · dh · (dh + 1) uses of masks and xor on elements ofFq. In our practical use, when we reject
polynomials having more than x roots (Section 7.4.12), we can apply the previous strategy withx
instead of dh . This turns to be cheap for small values ofx.

Remark 26. We propose to keep secret the degree of the GCD during the root finding algorithm.
However, we do not have constant-time split root finding algorithm, except for small degrees. So,
when we use a variable-time split root finding algorithm, the division by xdmax+ d is performed in
variable-time.

245

B.9 List of Irreducible Polynomials over F2

In Section 5.3, we propose several kinds of irreducible polynomials overF2 to create a degree-dext
extension field ofF2, for dext > 2. Here, we enumerate the possibilities for small enough extension
degrees. Fordext > 4, it is conjectured that an irreducible pentanomial of degreedext exists.

For dext < 593, there exist irreducible trinomials of degreedext over F2 if and only if dext ∈ {2, 3, 4,
5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 44, 46, 47, 49,
52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 71, 73, 74, 76, 79, 81, 84, 86, 87, 89, 90, 92, 93, 94, 95, 97, 98, 100,
102, 103, 105, 106, 108, 110, 111, 113, 118, 119, 121, 123, 124, 126, 127, 129, 130, 132, 134, 135, 137, 140,
142, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 159, 161, 162, 166, 167, 169, 170, 172, 174, 175, 177,
178, 180, 182, 183, 185, 186, 191, 193, 194, 196, 198, 199, 201, 202, 204, 207, 209, 210, 212, 214, 215, 217,
218, 220, 223, 225, 228, 231, 233, 234, 236, 238, 239, 241, 242, 244, 247, 249, 250, 252, 253, 255, 257, 258,
260, 263, 265, 266, 268, 270, 271, 273, 274, 276, 278, 279, 281, 282, 284, 286, 287, 289, 292, 294, 295, 297,
300, 302, 303, 305, 308, 310, 313, 314, 316, 318, 319, 321, 322, 324, 327, 329, 330, 332, 333, 337, 340, 342,
343, 345, 346, 348, 350, 351, 353, 354, 358, 359, 362, 364, 366, 367, 369, 370, 372, 375, 377, 378, 380, 382,
383, 385, 386, 388, 390, 391, 393, 394, 396, 399, 401, 402, 404, 406, 407, 409, 412, 414, 415, 417, 418, 420,
422, 423, 425, 426, 428, 431, 433, 436, 438, 439, 441, 444, 446, 447, 449, 450, 455, 457, 458, 460, 462, 463,
465, 468, 470, 471, 473, 474, 476, 478, 479, 481, 484, 486, 487, 489, 490, 492, 494, 495, 497, 498, 500, 503,
505, 506, 508, 510, 511, 513, 514, 516, 518, 519, 521, 522, 524, 526, 527, 529, 532, 534, 537, 538, 540, 543,
545, 550, 551, 553, 556, 558, 559, 561, 564, 566, 567, 569, 570, 574, 575, 577, 580, 582, 583, 585, 588, 590}.

For dext < 1116, the degree-dext AOP over F2 is irreducible if and only if dext ∈ {1, 2, 4, 10, 12, 18,
28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348,
372, 378, 388, 418, 420, 442, 460, 466, 490, 508, 522, 540, 546, 556, 562, 586, 612, 618, 652, 658, 660, 676,
700, 708, 756, 772, 786, 796, 820, 826, 828, 852, 858, 876, 882, 906, 940, 946, 1018, 1060, 1090, 1108}.

For dext < 3660and s > 1, the degree-dext s-ESP over F2 is irreducible if and only if (dext, s) ∈ {
(6, 3), (18, 9), (20, 5), (54, 27), (100, 25), (110, 11), (156, 13), (162, 81), (342, 19), (486, 243), (500, 125),
(812, 29), (1210, 121), (1332, 37), (1458, 729), (2028, 169), (2500, 625), (2756, 53), (3422, 59)}.

B.10 Proof of Lemma 9
Proof. Let H =

∑ D
j =0 hj x j and Q =

∑ D −2
j =0 qj x j . By definition of De, De(Q) 6 d−2 is equivalent

to qi = 0 for all even i such that i > d − 2. By definition of Q, qi = 0 for i < 0 and i > D − 2, so
we show the lemma for the values ofqi such that D − 2 > i > max(−1, d− 2).

To do it, we use a proof by induction on an evenj such that D − 1 > j > max(−1, d − 2).
The base case,j = D − 1, is trivial since qj = 0 for j > D − 2. Now, assume that qk = 0 for
all even k such that D − 1 > k > j > max(−1, d − 2). On the one hand, D(A − R) = D(R)
becauseD(A) = −∞ by hypothesis, thenD(R) 6 D − 1 < D + j and D + j is odd. We obtain
coefD + j (HQ) = coefD + j (A − R) = 0 . On the other hand, HQ =

∑ 2D −2
r =0

∑ r
` =0 q̀ hr −` x r , so

coefD + j (HQ) =
∑ D + j

` =0 q̀ hD + j −` . But q̀ = 0 for ` > D − 2 and hD + j −` = 0 for D + j − ` > D , so
coefD + j (HQ) =

∑ D −2
` = j q̀ hD + j −` . When ` > j is even, q̀ = 0 by induction hypothesis. When ` is

odd, hD + j −` = 0 becauseD + j − ` is even andDe(H) = d < D + j − ` . So
∑ D −2

` = j q̀ hD + j −` = qj hD .
Finally, we have that coefD + j (HQ) = qj hD = 0 . BecausehD 6= 0 , this implies that qj = 0 . �

246

Appendix C

Addition Chains for the ITMIA

In Table C.1, we propose addition chains for the Itoh–Tsujii Multiplicative Inversion Algorithm in
F2d ext (Sections 9.2.6 and B.6). The values ofdext are used in multivariate cryptography (Table
7.38). In Algorithm 36, we read the binary decomposition ofdext−1 from left to right for generating
the addition chain. This implies restricting k′′ to 1 · ` (and k′ · `) in Equation (B.3). This choice
seems minimized the number of multiplications for certain values ofdext (corresponding to yes in
the last column of Table C.1). For other values ofdext, we decrease this number by allowing other
values ofk′′ (represented in bold in the addition chain). For example, we compute 51 as48 + 3 in
the first addition chain. We take small bold values for improving the use of multi-squaring tables.

dext addition chain of dext − 1 nb. of mul used in Algorithm 36?
103 1, 2, 3, 6, 12, 24, 48, 51, 102 8 no – 9 multiplications
174 1, 2, 4, 5, 10, 20, 21, 42, 84, 168, 173 10 no – 11 multiplications
175 1, 2, 4, 5, 10, 20, 40, 41, 82, 87, 174 10 no – 11 multiplications
177 1, 2, 4, 5, 10, 11, 22, 44, 88, 176 9 yes
184 1, 2, 3, 4, 7, 11, 22, 44, 88, 176, 183 10 no – 12 multiplications
185 1, 2, 4, 5, 10, 11, 22, 23, 46, 92, 184 10 yes
265 1, 2, 4, 8, 16, 32, 33, 66, 132, 264 9 yes
266 1, 2, 4, 8, 16, 32, 33, 66, 132, 264, 265 10 yes
312 1, 2, 4, 5, 7, 14, 19, 38, 76, 152, 304, 311 11 no – 13 multiplications
313 1, 2, 3, 6, 9, 18, 36, 39, 78, 156, 312 10 no – 11 multiplications
354 1, 2, 4, 5, 10, 11, 22, 44, 88, 176, 352, 353 11 yes
358 1, 2, 4, 5, 10, 11, 22, 44, 88, 176, 352, 357 11 no – 12 multiplications
364 1, 2, 4, 5, 10, 11, 22, 44, 88, 176, 352, 363 11 no – 13 multiplications
366 1, 2, 4, 5, 10, 20, 40, 45, 90, 180, 360, 365 11 no – 13 multiplications
402 1, 2, 3, 6, 12, 24, 25, 50, 100, 200, 400, 401 11 yes
448 1, 2, 3, 6, 12, 24, 27, 54, 108, 111, 222, 444, 447 12 no – 15 multiplications
540 1, 2, 3, 4, 8, 16, 32, 64, 67, 134, 268, 536, 539 12 no – 13 multiplications
544 1, 2, 3, 6, 12, 15, 30, 33, 66, 132, 264, 528, 543 12 no – 14 multiplications

Table C.1: Proposed addition chains to minimize the number of multiplications in F2d ext .
The bold numbers are used to create the underlined numbers of the chain.

247

Résumé

Dans cette thèse, nous étudions la conception de cryptosystèmes multivariés qui sont
résistants contre les ordinateurs classiques et quantiques. En particulier, nous proposons
deux schémas de signature digitale que j’ai soumis au processus de standardisation de
cryptographie post-quantique du NIST :GeMSS et DualModeMS. Ces schémas sont basés sur
la famille HFE. Nous proposons des paramètres de sécurité basés sur un état de l’art de vingt
ans de cryptanalyse intensive. Puis, nous sélectionnons des paramètres qui maximisent
l’efficacité. Nous la mesurons avec une nouvelle bibliothèque :MQsoft. MQsoft est une
bibliothèque efficace en C qui supporte un large ensemble de paramètres pour les schémas
basés surHFE. Sa performance surpasse toutes les bibliothèques existantes. Nous expliquons
dans cette thèse comment nous obtenons une telle performance. Tandis queGeMSS est un
schéma qui a une grande clé publique, mais une signature très courte,DualModeMS est
basé sur une transformation qui inverse ce comportement. Cependant, sa sécurité est basée
sur l’hypothèse que le problèmeAMQ est difficile. Nous démontrons que cette hypothèse est
vérifiée, et nous confirmons nos résultats avec des expériences utilisant les bases de Gröbner.
Finalement, nous proposons la première implémentation deDualModeMS. Nous étudions
comment l’implémenter efficacement, et comment optimiser le choix des paramètres de
sécurité. Nous étendons aussiDualModeMS à l’utilisation du cryptosystème Rainbow à la
place deHFE. Ceci permet d’obtenir des tailles de clés et signature intéressantes.

Abstract

In this thesis, we study the design of multivariate cryptosystems, which are resistant against
classical and quantum computers. In particular, we study two digital signature schemes that
I submitted to the NIST Post-Quantum Cryptography standardization process:GeMSS and
DualModeMS. These schemes are based on theHFE family. We propose security parameters
based on a state-of-the-art of twenty years of intensive cryptanalysis. Then, we select secure
parameters which maximize the practical efficiency. We measure this with a new library:
MQsoft. MQsoft is a fast library in C which supports a large set of parameters forHFE-based
schemes. Its performance outperforms all existing libraries. We explain in this thesis how
we obtain this result. WhereasGeMSS is a scheme which has a large public-key but a very
short signature,DualModeMS is based on a transformation inverting this trade-off. However,
its security is based on the assumption that theAMQ problem is hard. We demonstrate that
this assumption is verified, and we confirm our results with experiences using Gröbner basis.
Finally, we propose the first implementation ofDualModeMS. We study how to implement
it efficiently, as well as how to optimize the choice of security parameters. We also extend
DualModeMS to the Rainbow cryptosystem instead ofHFE. This allows to have interesting
key sizes and signature sizes.

	Acknowledgments
	Table of Contents
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	List of Definitions and Examples
	List of Theorems
	List of Remarks

	Introduction
	Previous Work
	Organization of the Document
	Contributions

	I Preliminaries
	Multivariate Cryptography
	Public-Key Cryptography and NP-Completeness
	Introduction to Multivariate Cryptography
	MI-Based Public-Key Cryptography
	Keypair Generation
	Signing Process
	Verifying Process

	Families of Trapdoor
	Big Field Family
	Unbalanced Oil and Vinegar (UOV)
	Rainbow

	Public-Key Compression of Signature Schemes
	Dual Keypair Generation
	Dual Signing Process
	Merkle Tree
	Dual Verifying Process
	Security
	SBP Transformation of MI-Based Signature Schemes

	Cryptanalysis Techniques
	Metrics and NIST Security Strength Categories
	Generic Attack and Feistel–Patarin Construction
	Direct Signature Forgery Attacks
	Exhaustive Search
	Approximation Algorithm

	Gröbner Bases
	Practically Fast Algorithms
	Asymptotically Fast Algorithms

	Direct Attack against Approximate Posso
	Key-Recovery Attacks against HFE
	Exhaustive Search and Equivalent Keys
	MinRank
	Kipnis–Shamir Attack

	Side-Channel Attacks

	Arithmetic
	Basic Arithmetic in the Polynomial Ring Fq[x]
	Addition and Subtraction
	Multiplication
	Squaring
	Euclidean Division

	Representation of Finite Field Extensions
	Polynomial Representation
	Representation using Normal Bases

	Arithmetic in Binary Fields
	Boolean Arithmetic
	Irreducibility Conditions of Binary Polynomials
	Modular Reduction by Sparse Polynomials over F₂
	Modular Reduction by Cyclotomic Polynomials over F₂

	Advanced Arithmetic in Fq[x]
	Extended Euclidean Algorithm
	Modular Inversion
	Univariate Evaluation and Modular Composition
	Multipoint Evaluation of Univariate Polynomial Systems
	Frobenius Map
	Frobenius Trace
	Split Root Finding in Characteristic Two
	Root Finding

	Software Implementation
	Hardware Considerations
	Processor
	Memory Cache
	Vector Instructions
	Compiler Flags

	Experimental Platform and Tools
	Library and Software
	Platform and Benchmarking Methodology

	Constant-Time Implementation
	Variable-Time Instructions
	Constant-Time Conditional Statements
	Constant-Time Use of Tables

	II Main Contributions
	GeMSS – a Great Multivariate Short Signature
	General Algorithm Specification (Round 3)
	Parameter Space
	Secret-Key and Public-Key
	Signing Process
	Verification Process

	List of Parameter Sets
	Parameter Sets for a Security of 2¹²⁸ (Level I)
	Parameter Sets for a Security of 2¹⁹² (Level III)
	Parameter Sets for a Security of 2²⁵⁶ (Level V)

	Design Rationale
	Implementation
	Data Representation
	Representation of the Secret-Key
	Generating Invertible Matrices
	Constant-Time Gaussian Elimination
	Generating HFEv Polynomials
	Public-Key Generation via Quadratic Forms
	Public-Key Generation by Evaluation-Interpolation
	Packed Representation of the Public-Key
	Parallel Arithmetic in F₂, F₁₆ and F₂₅₆
	Choice of the Field Polynomial for GF(2,dₑₓₜ)
	Constant-Time GCD of Polynomials
	Constant-Time Root Finding
	About the Use of Hash Functions

	Detailed Performance Analysis
	Experimental Platform
	Third-Party Open Source Library
	Reference Implementation
	Optimized (Haswell) Implementation
	Additional (Skylake) Implementation
	MQsoft
	Space
	How Parameters Affect Performance

	Expected Strength in General
	Number of Iterations
	Existential Unforgeability against Chosen Message Attack
	Signature Failure

	Security
	Minimum Number of Equations
	Trade-Off between Number of Equations and Number of Iterations
	Experimental Results for HFEv−
	Minimum Number of Vinegar Variables
	Choice of Degree and Number of Modifiers

	Design
	Set 1 of Parameters: GeMSS
	Set 2 of Parameters: RedGeMSS
	Set 3 of Parameters: BlueGeMSS
	Set 4 of parameters: WhiteGeMSS
	Set 5 of parameters: MagentaGeMSS
	Set 6 of parameters: CyanGeMSS
	A Family of Parameters for Low-End Devices
	FGeMSS(dₑₓₜ)
	SparseGeMSS
	An Exhaustive Table for the Choice of the Parameters

	Advantages and Limitations
	MI-Based Cryptography in the NIST PQC Standardization Process

	DualModeMS – a Dual Mode for Multivariate-Based Signatures
	General Algorithm Specification
	Parameter Space
	Cryptographic Operations
	Implementation

	List of Parameter Sets
	Parameter Sets for a Security of 2¹²⁸ (Level I)
	Parameter Sets for a Security of 2¹⁹² (Level III)
	Parameter Sets for a Security of 2²⁵⁶ (Level V), Version 1
	Corrected Parameter Sets for a Security of 2²⁵⁶ (Level V)

	Design Rationale
	Detailed Performance Analysis
	Time
	Time (Updated)
	Time (Final Version)
	Space

	Security and Selection of Parameters
	Existential Unforgeability against Chosen Message Attack
	Approximate PoSSo and Selection of Parameters
	Safe Extension of the Dual Mode for Vulnerable Inner Layers
	Minimizing the Size Public-Key Plus Signature
	Smaller Signatures

	Design
	RedDualModeMS
	Dual GeMSS
	Dual Rainbow
	Performance with a Smaller Secret-Key

	Comparison of DualModeMS to Other Signature Schemes
	Advantages and Limitations

	MQsoft – a Fast Multivariate Cryptography Library
	Data Structure
	Arithmetic in GF(2,dₑₓₜ)
	Polynomial Squaring over F₂
	Polynomial Multiplication over F₂
	Modular Reduction by Trinomials over F₂ and Field Product
	Modular Reduction by Pentanomials over F₂
	Multi-Squaring in GF(2,dₑₓₜ)
	Modular Inverse in GF(2,dₑₓₜ)ˣ
	Performance of the Arithmetic in GF(2,dₑₓₜ)

	Efficient Implementation of Root Finding over GF(2,dₑₓₜ)
	Polynomial Squaring over GF(2,dₑₓₜ)
	Polynomial Multiplication over GF(2,dₑₓₜ)
	Polynomial Euclidean Division over GF(q,dₑₓₜ) and Sparse Divisors
	Modular Composition of Polynomials over GF(2,dₑₓₜ)
	Frobenius Map in GF(2,dₑₓₜ)[X]
	Greatest Common Divisor of Polynomials over GF(2,dₑₓₜ)
	Performance of the Root Finding Algorithm over GF(2,dₑₓₜ)

	Generation and Evaluation of MQ Systems
	Generating the Components of a HFEv Polynomial
	Evaluation of a MQ Polynomial over F₂
	Variable-Time Evaluation of MQ Systems over Fq
	Implementing an Efficient Evaluation of MQ Systems over F₂
	Multipoint Evaluation of a MQ Polynomial

	Multipoint Evaluation of Univariate Polynomial Systems
	Multiplication in GF(q,κ) and Accumulators
	Structured Evaluation Point Set
	Random Evaluation Point Set

	Performance of MQsoft (Final Version)
	Detailed Performance of HFE-Based Keypair Generation
	Performance of HFE-Based Schemes
	Performance of the Dual Mode

	Approximate PoSSo
	Reduction from APoSSo to Generalized MinRank
	Double Reduction between APoSSo and PoSSo
	Experimental Attacks on APoSSo

	Conclusion
	Bibliography
	Appendices
	Size of MI-Based NIST Candidates
	More Algorithms in Fq[x]
	Karatsuba-Like Formulae
	Euclidean Division without Computing the Remainder
	Newton Iteration
	FFT Variant of the Polynomial Evaluation
	Frobenius Map, Right-to-Left Version
	Structured Exponentiation and Frobenius Norm
	Degree-Two Split Root Finding in Characteristic Two
	Constant-Time GCD for Berlekamp's Algorithm
	List of Irreducible Polynomials over F₂
	Proof of Lemma 9

	Addition Chains for the ITMIA

	Abstract

