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Résumé: La raison d’être de l’analyse

topologique des données est d’extraire de

l’information de nature topologique afin d’aider

à analyser des jeux de données. Cette infor-

mation peut alors être aisément incluse dans

une chaîne de traitement pour effectuer diverses

tâches d’apprentissages sur les données. Un des

objets les plus présents dans ce cadre est le di-

agramme de persistance. Mathématiquement,

cet objet est une mesure discrète où les coor-

données de chaque point correspondent à des

échelles auxquelles une composante topologique

est présente dans les données. Supposons que

l’on ait accès à des observations bruitées d’une

fonction lisse, le diagramme de persistance peut

alors être scindé en une composante de bruit et

une composante de signal. La première contri-

bution de cette thèse est d’exploiter cette in-

formation pour un problème de régression afin

de reconstruire une fonction bruitée. En min-

imisant un critère topologique, on parvient à an-

nuler le bruit et récupérer un signal lisse. Cepen-

dant, cette dichotomie entre le signal et le bruit

est assez grossière, et les diagrammes de persis-

tance contiennent beaucoup d’information pou-

vant permettre de classifier des données. En

raison de leur structure de mesures, ils ne peu-

vent être mis tels quels en entrée d’algorithmes

d’apprentissage automatique standards. La

deuxième contribution de cette thèse est de pro-

poser une méthode de classification de mesures,

et l’adaptation des principes fondateurs de

la théorie de l’apprentissage statistique dans

ce contexte. On a également contribué à

l’étude asymptotique des diagrammes de per-

sistance dans un cadre aléatoire. En pra-

tique, l’information utile contenue dans les di-

agrammes peut être redondante et on peut être

intéressés par seulement quelques statistiques

bien choisies extraites du diagramme. Dans une

troisième contribution, on a développé des de-

scripteurs basés sur le calcul de la caractéris-

tique d’Euler, qui sont bien plus rapides à cal-

culer que les diagrammes de persistance, tout

en conservant une performance similaire. De

plus, ces descripteurs peuvent être adaptés à

une évolution multi-paramètre de la topologie

des données, permettant de dépasser une restric-

tion théorique des diagrammes de persistance

qui contraint à l’utilisation d’un seul paramètre

d’évolution.
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Abstract: Topological data analysis consists

in extracting topological information to help an-

alyze data sets. This information can be eas-

ily included in a workflow to perform various

learning tasks on the data. One of the most

ubiquitous objects is the persistence diagram.

It is a discrete measure where the coordinates

of each point correspond to a range of scales

at which a topological feature is present in the

data. Assuming we observe a noisy observation

of a smooth function, persistence diagrams can

be separated into a noise and a signal compo-

nent. The first contribution of this thesis is to

use this information in a regression framework

to estimate a noisy function. By minimizing a

topological criterion, we manage to cancel the

noise and retrieve a smooth signal. However,

such a noise-signal dichotomy is very coarse, and

persistence diagrams contain much information

that can help classify data. As they are mea-

sures, they cannot be input as such in a standard

machine learning pipeline. In a second contribu-

tion, we have developed a method that classi-

fies measure data and adapted elements of sta-

tistical learning theory in this framework. We

have also contributed to the study of the asymp-

totic persistence diagrams built in a random set-

ting. In practice, we are only interested in using

limited information from persistence diagrams.

In a final contribution we demonstrate that a

few well chosen statistics are enough to obtain

competitive accuracy in classification problems.

These descriptors are typically based on the Eu-

ler characteristic and are much faster to com-

pute than persistence diagrams since we do not

compute the coordinates of all the points in the

diagram. Furthermore, these descriptors can be

adapted to a multi-valued evolution of the topol-

ogy of the data, going beyond a theoretical lim-

itation of persistence diagrams that restricts to

the use of a single evolution parameter.
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I Introduction (English)

The explosion of data availability of all natures has been the source of a genuine revolution.
Whether generating texts, classifying images or forecasting time series, data sciences have
triggered a keen interest in developing corresponding mathematical tools. One of the current
challenges in machine learning is the study of high-dimensional data sets, especially when
a small number of data is available. Defying all intuition as illustrated in the first chapter
of [Gir14], these data sets often make classical methods fail. However, some data are often
considered to lie in a much simpler structure. In particular, the manifold assumption states
that many high-dimensional data sets from real-world applications are supported on low-
dimensional non-flat structures. The most stereotypical example is that of natural images:
apparently having a dimension equal to the number of pixels, the numerous constraints (large
constant zones, edges, corners) firmly lower the number of degrees of freedom such that images
from a specific data set are often considered to live in a low-dimension manifold.

Developing tools to analyze such geometric data sets has been the motto of topological
data analysis (TDA). Using techniques from algebraic topology, TDA extracts topological and
geometric information from all sorts of data sets. The objective of applied TDA is twofold:

• Building topological descriptors from the data in order to achieve an automated machine
learning task such as classification, regression, or clustering, see [CM21].

• Help bringing a qualitative understanding of the data from a topological perspective,
see [Hes20] and [RB19].

Finding its origins in the works on persistent homology of [ELZ00] and [CZCG04], topo-
logical data analysis has encountered a sought-after success due to its wide variety of ap-
plications, for instance, in health, [RYB+20, FM22, ACC+21], neurology [KDS+18], biology,
[IOH20, RB19], material sciences, [LBD+17, HNH+16], cosmology [PEVdW+17] and more
recently music theory, [AAPL22, MBP22].

One of the most ubiquitous objects in TDA is the persistence diagram which summarizes
all the topological information contained in the data. This descriptor will be the unifying
thread of this dissertation and we will study how to use it to perform various data analysis
tasks and how to overcome its limitations. This dissertation is based on the three following
research papers:

• The article [HBB+22], joint with Gilles Blanchard, Krishnakumar Balasubramanian,
Clément Levrard and Wolfgang Polonik, where we study how to use persistence diagrams
to enforce smoothness in a regression set-up.

• The preprint [HBL23], joint with Gilles Blanchard and Clément Levrard, where we
study structural properties of persistence diagrams, and develop new tools in measure
classification to extract information from the diagrams and classify data.

• The preprint [HL23], joint with Vadim Lebovici, where we study descriptors that achieve
a better performance than persistence diagrams at a lower computational cost, while
preserving some interpretability properties.

After a short introduction to topological data analysis and its key concepts in Section I.1,
we will expose the ideas and main contributions of each of these papers in Sections I.2, I.3
and I.4. Each main section of this dissertation then corresponds to a different article.
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I.1 A short introduction to topological data analysis and persistence dia-
grams

We refer to the textbooks [EH22] and [BCY18] for a detailed introduction to computational
topology and topological data analysis, and we recall the principal concepts and notions, as
well as some typical strategies in TDA.

I.1.1 Simplicial homology and persistence diagrams

Before introducing the foundations of persistence theory, we start with a few notions on
simplicial complexes in order to build intuition about the topological nature of data in a
simple discrete framework:

Definition I.1. A (finite) abstract simplicial complex K, or simplicial complex, is a finite
collection of finite sets that is closed under taking subsets. An element σ ∈ K is called a
simplex, and subsets of σ are called faces of σ. The dimension of a simplicial complex is the
maximal dimension of one of its simplices.

It can be shown, see Chapter III of [EH22], that by mapping each abstract vertex to a
point in R2d+1, every simplicial complex of dimension d has a geometric realization in R2d+1,
where a (geometric) k-dimensional simplex is the convex hull of k + 1 affinely independent
points. A 0 (resp. 1, 2, 3)-dimensional simplex is called a vertex (resp. an edge, a triangle, a
tetrahedron). One of the primary examples of geometric simplicial complex built over a point
cloud is the Čech complex:

Definition I.2. Let X ⊆ Rd be finite. The Čech complex at scale t ≥ 0 is the simplicial
complex Č(X, t) defined as follows: for (x0, . . . , xk) ∈ Xk+1, the simplex {x0, . . . , xk} is in
Č(X, t) if the intersection of closed balls ∩kl=0B(xl, t) is non-empty.

In Figure 1, taken from [Wik23], we illustrate the construction of the Čech complex for a
small sample of points on a circle.

(a) Balls centered on each point (b) Corresponding Čech complex

Figure 1: Construction of a Čech complex for points sampled on a circle.

We see on Figure 1b that this simplicial complex looks like a ”simplified” circle as it is
connected and has a single large cycle.

Questions I.3. The two natural questions that come to mind are the following:

• How to algebraically characterize a cycle and the fact that the simplicial complex here
is connected and only has a single cycle?
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• Here, the union of balls has the same topology as a cycle for a range of scales t, including
the one from Figure 1a. However, if the scale taken is typically larger than the circle’s
radius or smaller than the largest distance between two consecutive points, the topology
of the union of balls will be different from that of a circle. How to choose the radius of
the balls, i.e. the scale parameter of the Čech complex, without any prior knowledge of
the data?

To answer the first question, we must introduce some notions of simplicial homology. We
start with the definitions of a k-chain and of the boundary operator.

Definition I.4. Let K be a simplicial complex. A simplicial k-chain is a finite formal sum∑N
i=1 ciσi where each σi is a k-simplex from K and ci ∈ Z/2Z. The group of k−chains is

denoted by Ck.

Definition I.5. The boundary operator ∂k : Ck → Ck−1 is a homomorphism defined by:

∂k(σ) =
k∑

i=0

{v0, . . . , v̂i, . . . , vk},

where σ = {v0, . . . , vk}, and the (k− 1)-dimensional simplex {v0, . . . , v̂i, . . . , vk} is the face of
σ obtained by removing the vertex vi. We further define two subgroups of Ck: the group of
cycles Zk = Ker ∂k and the group of boundaries Bk = Im ∂k+1.

For instance, the boundary of a triangle is the sum of its three edges. It is an easy exercise
to check that ∂k+1∂k = 0, i.e. that the boundary of the boundary of a chain is always equal
to 0. This implies that Bk is a subgroup of Zk. Intuitively, a topological ”k-dimensional hole”
is a cycle of dimension k, which is not the boundary of a simplicial subcomplex. Topological
holes can be rigorously defined in the following way:

Definition I.6. The k-th homology group Hk of K is defined as the quotient abelian group
Hk(K) = Zk/Bk. Its rank βk = rank (Hk(K)) is called the k-th Betti number.

Intuitively, the k-th Betti number βk counts the number of k-dimensional holes for k ≥ 1,
and β0 is the number of connected components. Back to the example of Figure 1b, there is
a long chain that is not a boundary; thus β1 = 1. Since the simplicial complex is connected
here, we have β0 = 1. The Betti numbers of a d-dimensional simplex appear as signatures
of the topology of a simplicial complex. In that vein, another invariant is given by the Euler
characteristic:

Definition I.7. The Euler characteristic of a d-dimensional simplicial complex K is the
integer defined as

χ(K) =
∑

σ∈K

(−1)dim σ =

d∑

k=0

(−1)kβk(K).

The Euler characteristic is less informative than the collection of all βk for k ∈ {0, . . . , d}.
However, its expression as a simplices count makes it a much simpler invariant than the Betti
numbers and is, therefore, much faster to compute in practice. Still, we will extensively use
the Euler characteristic in Section V and demonstrate that it is a very powerful descriptor in
data analysis when considered with a multi-scale lens for a family of simplicial complexes.

We can now carry on to the second question in I.3, which is the purpose of persistent
homology. A high-level answer to this question would be that the best way of picking a radius
parameter for the balls of the Čech complex would be to consider all possible radii. Formally,
we start by defining a filtration of simplicial complexes:

10



Definition I.8. Consider a finite simplicial complex K and a non-decreasing function f :
K → R, in the sense that f(σ) ≤ f(τ) whenever σ is a face of τ . We have that for every
a ∈ R, the sublevel set K(a) = f−1((−∞, a]) is a simplicial subcomplex of K. Considering all
possible values of f leaves us with a nested family of subcomplexes

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,

called a filtration, where a0 = −∞ < a1 < a2 < . . . < an are the values taken by f on the
simplices of K.

The Čech complex previously introduced on a point set X naturally defines a filtration
over the complete simplicial complex K = 2X:

∅ ⊂ Č(X, 0) = X ⊂ Č(X, t1) ⊂ Č(X, t2) ⊂ . . . ⊂ Č(X, tn) = K,
where 0 < t1 < t2 < . . . < tn are the times at which we observe a change of topology for

the Čech complex. This filtration is simply called the Čech filtration and denoted by Č(X).
The simplicial complex K being finite, the number of critical times ti for the Čech complex is
finite. Furthermore, it can be shown, see [BE17], that these times are radii of circumscribed
balls of simplices of K.

Here, the idea is to consider a nested family of simplicial complexes and to track when
topological features get created and destroyed, i.e. the evolution of Betti numbers. This can
be formalized in the following way: for i ≤ j, the canonical inclusion map Ki → Kj induces a

homomorphism f i,jk : Hk(Ki) → Hk(Kj) on the homology groups for every k, therefore leading
to a sequence of homology groups:

0 = Hk(K0) → Hk(K1) → . . .→ Hk(Kn) = Hk(K).

We then define the persistent homology :

Definition I.9. The k-th persistent homology groups are the images of the homomorphisms
defined above: H i,j

k = im f i,jk . Similarly to homology, we define the k−th persistent Betti

number by βi,jk = rank H i,j
k .

As the name suggests, the k-th persistent Betti number βi,jk corresponds to the number of
k-dimensional holes that persist between Ki and Kj . Given a class γ in Hk(Ki), we say that

this class if born at Ki if γ /∈ H i−1,i
k . Similarly, the death time of γ (possibly infinite) is the

smallest index j such that f i,jk (γ) ∈ H i−1,j
k . We are now in a position to define the object

that is at the core of this dissertation:

Definition I.10. The k-th persistence diagram is the multi-set of R
2

of (birth, death) coor-
dinates for every class γ that exists in the persistent homology sequence.

This multi-set can be turned into a discrete measure, introducing a convenient viewpoint
in Section IV. Furthermore, note that the persistent Betti number βi,jk equals the number
of points in the infinite upper-left quadrant with angle (ai, aj). In Figure 2, adapted from
[RCL+21], we can see an example of the construction of the persistence diagram of a Čech
complex built over a point cloud.

Here, the points are arranged near two circles, and we can see two cycles. The topology
of the point cloud itself is constituted of as many connected components as the number of
points in the input cloud. In order to construct the Čech complex of this point cloud, we
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Figure 2: Persistence diagram of the Čech complex of a point cloud

center balls around each point and let the radius grow from 0 to ∞. One after the other,
balls of points next to each other will start having a non-empty intersection, creating edges
in the Čech filtration and thus merging connected components. Topologically, a merging
corresponds to the death of one of the components. Thus, the persistence diagram for the
0-homology (connected components) contains points of coordinates (0, di) and a point with
coordinates (0,∞) since when the Čech radius is large enough (Figure 2, E), the union of
balls remains connected. As for the cycles, the union of balls does not contain any cycle for
smaller radii (Figure 2, B). As the radius becomes large enough (Figure 2, C), we see two
cycles appearing in the Čech complex. The critical radius at which a cycle starts existing is
its birth time. Finally, when the radius grows as in Figure 2, D and E, three-fold intersections
of balls create triangles in the Čech complex that fill the cycles. The corresponding critical
radius is the death time of the cycle. Finally, this leaves us with two points in the persistence
diagram for the 1-homology. In addition to characterizing the topology of a point cloud (here
that it has two cycles), persistence diagrams also give information about the geometric size
of the holes. Furthermore, information about the sampling and the inter-distance between
points can be extracted from the death times of the 0-dimensional topological features.

The success of topological data analysis comes from the possibility of comparing persis-
tence diagrams. The most popular way is to compute the bottleneck distance defined as:

Definition I.11. Let ∆ = {(x, x)|x ∈ R} be the diagonal of R2.
The bottleneck distance dB between two persistence diagrams D and D′ is defined by:

dB(D,D′) = inf
η:D∪∆→D′∪∆

sup
x∈D∪∆

∥x− η(x)∥∞,

where the infimum is taken over all bijections η from D ∪ ∆ to D′ ∪ ∆.

This distance inspired by optimal transport can be generalized to any p-Wasserstein dis-
tance. We illustrate the optimal matching between two diagrams in Figure 3, adapted from
[Cha23]. The bottleneck distance here is the length of the longest edge (in infinity norm). We

12



refer to [DL21] for more information about the structure of the space of persistence diagrams
endowed with such metrics. A strength of persistence diagrams is their stability property, see
[CSEH07], which states that a small perturbation in the input data induces a small pertur-
bation of the persistence diagrams in terms of bottleneck distance. We will state the precise
result in a specific case in Section I.1.2.

Figure 3: Optimal matching of two persistence diagrams with different numbers of points

Thanks to its multi-scale approach, persistence diagrams carry much information of a topo-
logical nature about the input data. These descriptors can then be used to perform learning
tasks such as classification, regression, or clustering. We refer to the survey [HMR21] for
applying persistence diagrams to machine learning in practice. Because of its representation

as a multi-set of R
2

(or a discrete measure), persistence diagrams are not suited for classical
machine learning algorithms. A typical strategy is to turn these descriptors into features in a
Banach space, as done with Betti curves [RSL20], persistence images [AEK+17], landscapes
[B+15], and more recently measure-oriented vectorizations in [RCL+21] and neural network
methods in [CCI+20, RCB21]. We will see in Section IV a method to perform statistical
learning directly in the space of measures without any vectorization.

On the numerical side, simplicial complexes, persistent homology, and persistence dia-
grams are computed using the Gudhi library, [MBGY14]. The first algorithm to compute
persistence is in [ZC04]. Computing a persistence diagram for a simplicial complex K has
worst-case time complexity O(|K|ω) where 2 ≤ ω < 2.373 is the exponent for matrix multi-
plication; see [MMS11]. Although computing persistence diagrams is reasonable, having an
algorithm that scales well for large complexes or in high dimensions remains an open ques-
tion. Indeed, for a typical complex, the number of simplices grows exponentially with the
dimension.

Finally, persistence diagrams can be computed for a much larger class of input than Čech
complexes of point clouds. In Section V, we will explore several filtrations on point clouds,
while in Sections IV and V, we will see how to apply it to graph data. This framework can
also be used on images and 3D volumes by computing cubical complexes instead of simplicial
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complexes. This approach has been booming to the study of medical images, for instance in
[ACC+21] or [JKN20]. Furthermore, the theory of persistent homology extends beyond finite
complexes. It can be applied to more general nested sequences of topological spaces, always
to track the birth and death times of topological features. The leading example is the study
of sublevel sets f−1((−∞, t]) of a Morse function f : Rd → R that is indeed a nested sequence
of subspaces of Rd. This example motivates the Section III of the present work, and we will
expose some of its aspects in Section I.1.2.

I.1.2 Topological persistence for Morse functions

We start this section by defining Morse functions and will demonstrate why they are partic-
ularly suitable in topological data analysis.

Definition I.12. Let f : Ω → R be a C2 function where Ω is a subset of Rd.

• A critical point of f is a point x ∈ Ω such that ∇f(x) = 0. The corresponding value
f(x) is called a critical value.

• Let x0 be a critical point of f . Its index is the number of negative eigenvalues of the
Hessian matrix of f at x0.

Definition I.13. We say that a real-valued function f defined on a differentiable manifold is
Morse if it is C2 and all its critical points are non-degenerate, in the sense that the Hessian
matrix at each critical point is non-degenerate.

Note that the set of Morse functions is an open dense subset of smooth functions. One of
the main properties of Morse functions is summed up in the following theorem, adapted from
Theorems 3.1 and 3.2 from [Mil63]:

Theorem I.14. Let f be a Morse function on a smooth manifold M and denote by Ma the
sublevel set f−1((−∞, a]).

• Assume there is no critical value between a < b. Then Ma and Mb are diffeomorphic
and Mb deformation retracts onto Ma.

• Assume p is a non-degenerate critical point of f with index s and that f(p) = q. We
further assume there are no other critical points p′ with f(p′) = q. Then for ε small
enough, Mq+ε is homotopy equivalent to Mq−ε with a s-handle attached.

This theorem illustrates that topological changes in the sublevel sets occur at critical values
for Morse functions. Similarly to simplicial homology, let us now consider the evolution of the
homology groups of sublevel sets f−1((−∞, t]) as t traverses R from −∞ to +∞, and note
in a persistence diagram the values at which topological components are born and die. We
illustrate this in Figure 4, adapted from [CM21], where we consider the height function of a
”nosy torus” surface with its 0 and 1-persistence diagrams, respectively in red and blue.

Consider a plane of equation z = t and let t grow from −∞ to +∞. The sublevel sets
are all empty before reaching the global minimum a0. Then in a0, a connected component is
born, and the sublevel sets are cup-shaped. Another connected component is created at the
local minimum a1, and the two connected components eventually merge at the saddle point
a3. By a convention called the Elder rule, we consider that the youngest component dies first,
hence a point at coordinate (a1, a3) in the 0-dimensional persistence diagram. Starting from
a2, the sublevel sets contain a 1-cycle, and in a4, a second cycle gets created, corresponding
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Figure 4: Sublevel sets filtration of a nosy torus and corresponding persistence diagrams

to the homological features of a torus. A third cycle is created at the saddle-point a5, which
only persists until the local maximum a6 closes it, hence a point of coordinates (a5, a6) in the
1-persistence diagram. After a7, the sublevel sets have the same topology as the torus. They
remain connected forever so that the connected component initially created in a0 never dies.
Similarly, the two cycles created in a2 and a7 never dies. As a convention in order to avoir
point with infinite coordinates, we set their death times to the maximum of the function, a7.

Here, we see the impact of Theorem I.14 for computing persistence diagrams since the co-
ordinates of all the points in the persistence diagram are critical values of the height function.
More precisely, for this 2-dimensional function, minima always create connected components
while maxima always kill cycles. As for saddle points, they can either merge two connected
components or give birth to a cycle.

We are now armed with a multi-set that describes a Morse function and its critical points
from a topological perspective. Being interested in applications in statistics, a natural question
that comes to mind is the behaviour of this descriptor when adding noise to the function. If
we add a noise bounded by ε, we can expect each critical point to be displaced from at most
ε, and many critical points that do not persist more than ε are created. We make this fact
more precise in the following stability result, taken from [CSEH07], in terms of the bottleneck
distance introduced in Definition I.11. We denote by Df the persistence diagram for the
sublevel sets of a Morse function f .

Theorem I.15. Let M be a topological space and let f and g be two Morse functions from
M to R. We have that:

dB(Df , Dg) ≤ ∥f − g∥∞.
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Having such a stable metric over the space of diagrams seems very interesting at first
glance for data analysis because it shows some robustness to bounded noise. In our context,
we would investigate how to denoise a function using such topological regularizers. To do so,
we introduce the persistence of a function:

Definition I.16. • For a feature (b, d) of a persistence diagram, its persistence is equal
to its lifetime d− b.

• The persistence of a diagram D is equal to the sum of all individual lifetimes:

Pers(D) =
∑

(b,d)∈D

(d− b).

When there is no possible confusion, we denote by Persk(f) the persistence of the k-th
persistence diagram of the sublevel sets of a given function f , and by Pers(f) =

∑
k Persk(f)

its total persistence.

We illustrate in Figure 5 the behaviour of persistence and bottleneck distances when adding
Gaussian noise to measurements of a smooth function. In this setup, we consider observations
Yi = f⋆(Xi) + εi where points (Xi)

1000
i=1 are uniformly sampled on the unit square, f⋆ is the

function displayed in Figure 5a which is a sum of four Gaussians, and ε ∼ N (0, σIn). We
display an interpolation of the observations in Figures 5a and 5c. When adding noise to
each measurement, many critical points with a small lifetime are created and mapped to the
diagonal when computing the bottleneck distance, which illustrates the stability Theorem I.15
with high probability. The bottleneck distance here measures the noise added to the function.
However, it requires knowledge of the true regression function f⋆. Similarly, 0-persistence
and 1-persistence measure how much noise has been added to a function. There are stability
results in some sense for persistence, but they involve the number of points in the persistence
diagrams, which can only be roughly bounded. We will make this claim more precise later in
Lemma III.2.

We now have all the tools to move on to the first contribution where we investigate the
use of total persistence in a regression setting.

I.2 Enforcing regularity using persistence diagrams

Total persistence captures small oscillations of a function and is therefore indicated as a
regularizer in a regression framework. This observation is at the core of section III, published
in [HBB+22]. The goal here will be to use total persistence as a penalty term, in order to
cancel the observation noise, resulting in a smoother and more accurate prediction. This work
focuses on a regression setting where we observe data on a manifold.

I.2.1 Topological regularization

We consider a regression problem on a compact manifold M. We assume data points (Xi)
n
i=1

are sampled uniformly and independently over M and that we observe real responses:

Yi = f⋆(Xi) + εi,

where (εi)1≤i≤n are i.i.d. zero-mean sub-Gaussian noise variables independent of all the Xi’s.
Our goal is to retrieve the function f⋆ to denoise the input or predict the response’s value at
an unobserved data point.
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(a) Original function (b) Corresponding persistence diagram

(c) Noisy function (d) Corresponding persistence diagram

(e) Bottleneck distances and persistences as functions of the noise standard deviation

Figure 5: Stability of bottleneck distance and persistence to Gaussian noise

We first start by considering a basis of functions (Φi)i≥0 adapted to the manifold, called
the eigenfunctions of the Laplace-Beltrami operator, see [Ros97]. This basis is a generalization
of the Fourier basis of functions to compact manifolds. In practice, we do not have access
to these eigenfunctions (Φi)i≥0 in most cases. However, we can approximate them using the
spectrum of the graph Laplacian matrix, see [Chu97], which can be computed easily from the
data. In order to find the best coefficients for approximating f⋆ with the first p eigenfunctions
of the Laplace-Beltrami operator (or graph Laplacian), we minimize the following criterion:

L(θ) =

n∑

i=1

(
Yi −

p∑

j=1

θjΦj(xi)

)2

+ µΩ(θ),
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where Ω is a penalty term introduced to prevent overfitting and is calibrated by the scalar µ.

Examples of classical penalties include L1-regularization, also called Lasso (see [Bv11]
for an exhaustive treatment), L2-regularization also called Ridge regression, [HK70], or total
variation penalty, [HR16], which is the most similar to our work since it aims at penalizing
large oscillations. In our work, we have considered two penalties:

• Ω1(θ) =
∑p

j=1 |θj |Pers(Φj) is a weighted-lasso type penalty, fast and easy to implement,
and which acts as a variable selector, favoring eigenfunctions with a small persistence,
i.e. that do not oscillate too much.

• Ω2(θ) = Pers
(∑p

j=1 θjΦj

)
is a non-convex penalty where we used techniques from

[CCG+21] to minimize the loss function L. Following the logic previously described
in Figure 5, this penalty acts as a denoizer, removing low-persistence points from the
persistence diagram, thus providing a smoother estimate of the function.

In practice, we combine these two penalties by selecting a subset of eigenfunctions thanks
to Ω1 and then perform denoising using the regularizer Ω2. We can see the effect of the Ω2

regularizer itself on Figure 6 where we denoise the function from Figure 5c. The reconstruction
from a noisy sample with a topological penalty is compared to a reconstruction on the Laplace
eigenbasis with a simple Lasso penalty. We can see that the reconstruction penalized by Ω2

is smoother, and although there has been a loss of information, we manage to reconstruct the
four peaks of the original signal. This smoothing is attested by the persistence diagrams: the
topological reconstruction has four very persistent features and very little topological noise,
as opposition to the Lasso reconstruction, which has only two significantly persistent features,
and a fair number of points close to the diagonal, resulting in a much coarser estimate.

(a) Function estimated by a
Lasso

(b) Function estimated by the
topological penalty Ω2

(c) Persistence diagram of the
Lasso estimate

(d) Persistence diagram of the
Ω2 penalty estimate

Figure 6: Reconstruction of the sum of four Gaussians.
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I.2.2 Detailed list of contributions

The contributions of this work are the following:

(i) We perform a thorough qualitative and quantitative analysis on synthetic and real data,
comparing topologically penalized methods to other standard regression methods. Our
method is comparable to Kernel Ridge Regression, [Vov13] and outperforms other reg-
ularization techniques, including total variation.

(ii) We provide several oracle results for the penalties Ω1 and Ω2. In particular, we show that
assuming that the regression function writes as f⋆ =

∑p
j=1 θ

⋆
jΦj , the optimal parameter

θ⋆ is approximated at a rate O(p/n). In addition, we have a theoretical result on the
persistence of the reconstructed function that guarantees its ”topological smoothness”.

(iii) We provide a negative result about the capacity of the set of functions of bounded
persistence.

This work is the first occurrence of theoretical guarantees for topologically regularized
models. Although the experimental results are promising, they have a major computational
drawback. Indeed, in order to minimize L with penalty Ω2, we need to compute hundreds
of persistence diagrams (namely one per gradient step) which turns out to be quite costly.
In addition, we have adopted a very simplistic point of view in the analysis of persistence
diagrams, that we split between a signal component assumed to correspond to the diagram of
the true function f⋆, and a clump of points near the diagonal that we assume correspond to
the noise ε and that we aim at destroying by minimizing the total persistence. We will now
see that much information about the data is contained close to the diagonal and can be used
for classification purposes.

I.3 Reading information in the low-persistence features

We now focus on the case of persistence diagrams built with the Čech filtration of a point
cloud in Rd and how to classify them. This work has led to the preprint [HBL23]. We consider
a supervised binary classification problem where we observe data DN = (µ1, Y1), . . . , (µN , YN )
where µi is a persistence diagram and Yi is a label in {0, 1}. Typically, this originates from
a classification problem on raw data turned into persistence diagrams (e.g. graphs, images,
time series or point clouds) because it is assumed that they carry some topological information
that can be relevant for discriminating between two classes.

I.3.1 The torus versus sphere flagship example

As a toy example, consider the problem of discriminating between point clouds on a sphere
S2 and point clouds on a torus T2. One way to tackle this problem in a translation and
rotation invariant way is to construct the 1-persistence diagrams of the Čech filtrations of
the data. We have that β1(T

2) = 2 and β1(S
2) = 0. Stated otherwise, the torus has two

independent cycles while any closed loop on the sphere retracts onto a point. In Figure 7, we
show an example of persistence diagrams of the Čech filtration over a point cloud of varying
size sampled uniformly on a torus or a sphere.

Therefore, it is to be expected that as long as we sample enough points, the 1-persistence
diagram of the Čech filtration of the point cloud on a torus has two very persistent cycles,
while that of a sphere has no cycle that persists for a long time.

Due to their structure as a multi-set of points (or a discrete measure on R
2
), persistence

diagrams are not suited for standard classification algorithms. As previously discussed, a
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(a) Torus, n = 100 (b) Torus, n = 500

(c) Sphere, n = 100 (d) Sphere, n = 500

Figure 7: 0, 1 and 2-persistence diagrams for n points uniformly sampled.

common strategy is to map persistence diagrams in a Banach space, [DP19] and turn them
into vectors of a given size. We propose to solve the two following problems:

• Is it possible to circumvent this vectorization step and directly develop a classification
method that takes measures as input while having good theoretical guarantees?

• In this torus versus sphere experiment, likewise to Section I.2, we again treat the persis-
tence diagrams as high-persistence features corresponding to homological components
of the underlying manifold and low-persistence features that correspond to noise. Can
we go beyond this topological signal-noise dichotomy and what relevant information lies
in the low-persistence features?

I.3.2 The measure-classification problem

We develop in Section IV a vectorization-free method to classify measures in a supervised
fashion. Roughly speaking, for measures defined on some compact metric space X , we look at
different zones of X and discriminate according to the mass put in each zone. For instance,
in the torus versus sphere problem, looking at whether the discrete point measure associated
with the persistence diagram puts more than two points above a certain death level is enough
to classify it as a torus. We provide two algorithms to learn these zones and the corresponding
activation thresholds, which are then aggregated using a boosting procedure. In addition, we
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describe a broader class of measure classifiers and derive statistical guarantees. Roughly
speaking, consider a class of functions F on X , and a corresponding class F̃ defined on the
space M(X ) of measures on X by

f̃ [µ] = EX∼µ[f(X)] =

∫

X
f(x)dµ(x) for f ∈ F .

We relate capacity measures of F̃ in terms of corresponding quantities for F , which are, in
general, much simpler to compute. More precisely, for a class of function F , we define the
empirical Rademacher complexity on a sample (Zi)

N
i=1 as

RN (F) =
1

N
Eσ

[
sup
f∈F

∣∣∣∣∣

N∑

i=1

σif(Zi)

∣∣∣∣∣

]
,

where (σ1, . . . , σN ) are independent Rademacher random variables, i.e. for every i, P(σi =
1) = P(σi = −1) = 1/2. This quantity measures the correlation of the class of function F
with a vector of random Rademacher noise. Under some mild assumptions, the predictive risk
is usually upper-bounded by the Rademacher complexity with high probability; see [SSBD14].
Having a low Rademacher complexity, therefore, translates into good generalization proper-
ties. In our case, we have established the following upper-bound:

Theorem I.17. There exists an absolute constant K such that

RN (F̃) ≤ KM2

√
VC(F)√
N

,

where M2 =
(

1
N

∑N
i=1 µi(X )2

) 1
2
, and VC is another capacity measure called the Vapnik-

Chervonenkis dimension. We denote that the empirical Rademacher complexity of F̃ is upper-
bounded by a capacity measure on the class F , which is usually more informative and much
simpler to compute. In Section IV, we will establish a lower-bound of the same order and see
how these results can translate into comprehensive prediction bounds for the classifiers on the
space of measures we have built.

I.3.3 Asymptotic results for Čech complexes of random point clouds

Back to persistence diagrams, it turns out that in many practical situations, our algorithm
will find that the most discriminatory zones lie near the diagonal, which means that some
relevant information is contained in what we unjustly called the topological noise. Some
solid theoretical guarantees back this observation up. Indeed, in [BHPW20], the authors
claim that information about the curvature of the underlying space can be extracted from
low-persistence features. Furthermore, these features can be analyzed to extract information
about the sampling density.

Given n points Xn = (X1, . . . , Xn) i.i.d. sampled according to a density f on Rd, it is
a very natural question to wonder about the convergence of the persistence diagrams of the
Čech complex of Xn as n tends to infinity. We refer to [BK18] for a survey of existing limit
results for topological quantities. We must introduce a re-scaling sequence (rn)n∈N that tends
to 0 to make the limit non-trivial. The speed at which (rn) tends to 0 is crucial: denote by
Λ := lim

n→∞
nrdn ∈ [0,∞]. In order to illustrate our claim, we consider the most favourable case

Λ = 0 called the sparse regime, and cite a result from [Owa22]:
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Theorem I.18. Let Xn = (X1, . . . , Xn) be an i.i.d. sample drawn according to an a.e.
continuous bounded Lipschitz density g on Rd. Consider a sequence (rn)n ∈N such that we are

in the sparse regime nrdn → 0. Further assume that nk+2r
d(k+1)
n → ∞ as n → ∞. Denote by

ξk,n the k-th persistence diagram of Č( 1
rn

Xn). Denote by µk the measure on ∆+ = {(x, y) :
0 ≤ x < y ≤ ∞} defined on the rectangles Rs,t,u,v = [s, t) × [u, v) by

µk(Rs,t,u,v) =

∫
Rd f

k+2

(k + 2)!

∫

(Rd)k+1

Hs,t,u,v(0, y1, . . . , yk+1)dy1 . . . dyk+1,

for 0 < s ≤ t ≤ u ≤ v, where H is a geometric function that depends on the mutual positions
of its arguments. Then, we have the vague convergence:

ξk,n

nk+2r
d(k+1)
n

v→ µk almost surely.

Similar results are cited in [Owa22] for other sub-regimes of the sparse regime nk+2r
d(k+1)
n →

0 and nk+2r
d(k+1)
n → c > 0.

Remark I.19. We can make a few comments about this rather surprising result.

• The limiting measure µk only depends on the sampling density through the multiplica-
tive constant

∫
Rd f

k+2, showing some universality of the limiting object.
• This constant

∫
Rd f

k+2 is a global quantity, although persistence diagrams account for
local effects.

• Assume we try to classify whether a point cloud has been generated according to a den-
sity f1 or a density f2 such that there exists k such that

∫
Rd f

k+2
1 ̸=

∫
Rd f

k+2
2 . Counting

the number of points of the persistence diagrams that fall in any rectangle (after a
suited rescaling) will identify the correct model when the number of sample points is
large enough. In particular, for this classification task where there is no homological
signal to retrieve, the ”topological noise” contains discriminative information about the
sampling.

I.3.4 Detailed list of contributions

The contributions of this work are the following:

(i) We have proposed a vectorization-free method to classify measures, have implemented
it and tested it against benchmark methods on topological data analysis data sets, and
also on time series and flow cytometry data sets.

(ii) We have developed a theory encompassing this method and given lower and upper
bounds for the Rademacher complexity of the class of functions F̃ previously defined.

(iii) We have derived theoretical guarantees, specifically in the case of persistence diagrams
classification, to discriminate either between manifolds with different homology or sam-
plings on the same manifold. This work has been the occasion to generalize Theorem I.18
to samplings on manifolds while using an alternative proof technique.

I.4 Beyond persistence diagrams: Euler tools and multi-persistence

We have now demonstrated that there is relevant information both away and close to the
diagonal. Another drawback of the method of Section I.2 is its computational cost. Indeed,
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to minimize the total persistence Ω2, we need to compute a persistence diagram per gradient
step. In addition, for a persistence diagram D, we were only interested in the quantity∑

(b,d)∈D(d − b), so that computing the entire diagram and the exact coordinates of every
point clearly overshoots the problem. It does not seem that there is a way to circumvent this
technical issue. However, this observation has led to the following question:

Question I.20. What type of statistics on persistence diagrams can be computed in linear
time from the filtration values? How can they be used in a data analysis context?

I.4.1 Euler characteristic curves and their integral transforms

Question I.20 is the object of Section V and has been pre-published in [HL23]. To find
descriptors that do not require computing persistence, let us return to the Euler characteristic
of a simplicial complex defined in Definition I.7. We have noticed that for a simplicial complex
K of dimension d, computing

∑d
k=0(−1)kβk(K) can be done very simply by counting simplices

thanks to the formula of Definition I.7. On the other hand, there is no such trick to compute∑d
k=0 βk(K) and each βk needs to be computed individually using the homology groups of K,

which is significantly more costly. Therefore, alternating over homological dimensions seems
key to accessing fast descriptors. In that logic, we define the Euler characteristic curve (ECC):

Definition I.21. Consider a finite simplicial complex K and a filtration (Kt)t∈R. The Euler
characteristic curve is the function

χK : t ∈ R 7→ χ(Kt) ∈ Z.

In Figure 8, we show the construction of the Euler characteristic curve for a simple filtration
taken from [ZC04].

(a) Filtration (b) Corresponding ECC

Figure 8: Construction of the Euler characteristic curve of a filtration.

In practice, the Euler characteristic curve is a finite vector used as a feature to perform
various learning tasks such as classification, regression, or clustering. Although this seems like
a very simple descriptor, it has often been used in applications, see [SZ21, JKN20, AQO+22],
and we will demonstrate in Section V that it has a strong predictive power comparable to
that of persistence diagrams for a much reduced computational cost.

In order to extract relevant information from the Euler characteristic curves, we consider
integral transforms of these functions. This object has been studied theoretically in [Leb22]
under the denomination of hybrid transforms (HT).

Definition I.22. Let (Kt)t∈R be a filtration of a simplicial complex K and χK its correspond-
ing Euler curve. Let κ ∈ L1(R). The hybrid transform with kernel κ is the function defined
by:

23



ψκ : ξ ∈ R
⋆
+ 7→ ξ ·

∫

R

κ(ξs)χK(s) ds.

Up to multiplication by ξ, hybrid transforms are classical integral transforms of Euler
curves. For instance, if κ = cos, it corresponds to the cosine Fourier transform. We will
demonstrate that hybrid transforms constitute robust descriptors in data analysis once dis-
cretized, especially for unsupervised problems. In addition, the following lemma connects
them directly to persistence diagrams and provides a partial answer to Question I.20:

Lemma I.23. Let (Kt)t∈R be a filtration, and ψκ its hybrid transform with kernel κ. Let κ be
a primitive of κ such that κ(x) −→

x→∞
0. Denote by Dk = {(bki , d

k
i )}i=1,...,nk

the k-th persistence

diagram of (Kt). For a simplex σ ∈ (Kt), we denote by t(σ) the first time it appears in the
filtration. We therefore have, for every ξ ∈ R⋆+:

ψκ(ξ) =
∑

k≥0

nk∑

i=1

(−1)k
(
κ(ξ · bki ) − κ(ξ · aki )

)
. (I.1)

In addition, we have:

ψκ(ξ) = −
∑

σ∈K

(−1)dimσκ
(
ξ · t(σ)

)
. (I.2)

This lemma shows that for every κ that vanishes at infinity, the function defined by
Equation (I.1) can be computed linearly in terms of filtration values by Equation (I.2). If κ
does not vanish at infinity, we can still use Equation (I.2) as a proxy for the hybrid transform
with kernel κ. Finally, in addition to bringing fast and powerful classification features without
computing any diagram, hybrid transforms also bring a gain in understanding the structure
of the topological noise. Indeed, in Section I.3, we have demonstrated that low-persistence
features for the Čech complex of a point cloud sampled on a manifold carry information
about the sampling density and local quantities of the manifold. However, how they manifest
explicitly in the topological noise is still unclear. We can use hybrid transforms to go beyond
this interpretation in the following classification problem.

Consider 500 points sampled on a torus embedded in R3. The first class corresponds
to points uniformly sampled on the torus; see [DHS+13]. The second class corresponds to
drawing two angles (θ, φ) uniformly in [0, 2π]2 and obtain a point on the torus through the
embedding ΨT2 : (θ, φ) 7→ (x1, x2, x3), where:





x1 = (2 + cos(θ)) cos(φ),
x2 = (2 + cos(θ)) sin(φ),
x3 = sin(θ).

Note that this does not produce a uniform sampling on the torus. We consider a similar
set-up on the sphere, where one class corresponds to 500 points sampled uniformly. At the
same time, for the other, we draw 500 angles θ uniformly in [0, π] and φ according to a
normal distribution centred on π. We obtain a point on the sphere via the classical spherical
coordinates parametrization ΨS2 : (θ, φ) 7→ (x1, x2, x3) where:





x1 = sin(θ) cos(φ),
x2 = sin(θ) sin(φ),
x3 = cos(θ).
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(a) HT, torus data (b) HT, sphere data

Figure 9: ECC and HT, two sampling on a torus and sphere

In Figure 9, we plot the beginning of hybrid transforms with kernel κ = sin of the Čech
complex of a few samples of each class for both set-ups.

We remark that the oscillations of the transforms are in phase and have the same ampli-
tude. However, from one manifold to another, the phase and amplitude of the oscillations of
the transforms differ significantly. It suggests that they are related to global quantities and
are signatures of the support manifold. In contrast, the samplings show up in the vertical
shifts of the oscillations of the transforms. This experiment is the first step towards a more
thorough understanding of the quantities involved in the low-persistence features.

I.4.2 The challenge of multi-persistence

So far, we have only discussed filtrations on simplicial complexes where the filtration function
is real-valued, see Definition I.8. However, we may want to study the sublevel sets of multiple
functions defined on a simplicial complex. In topological data analysis, taking multi-parameter
filtrations is known as multi-persistence. The most prominent example couples the Čech
filtration repeatedly mentioned and a function on the point cloud itself, such as a density
estimator, see [CB20] for instance. In this case, the density estimator can filter the outliers
that would make the Čech filtration unstable. This simple and natural extension is the source
of many theoretical and practical challenges in persistence theory. Most importantly, there is
no equivalent to the persistence diagram for multi-persistence; see [CZ09]. There have been a
few attempts to design vectorizations adapted to bi-persistence, such as persistence landscapes
in [Vip20], and persistence images in [CB20]. Similarly, our tools naturally generalize to multi-
persistence: the Euler characteristic curve becomes a Euler characteristic profile, see [DG22].
Even though there is no more equivalent to Equation (I.1), hybrid transforms can still be
computed using an analogue of Equation (I.2), and they now differ from classical integral
transforms. This method remains very competitive in complexity and allows us to use up to
five different filtrations in some settings. Indeed, if we aim at classifying graph data, many
natural functions can suggest structural differences between graphs from different classes.
More than enhanced and faster vectorizations of persistence diagrams, Euler characteristic
profiles and hybrid transforms, therefore, appear as a necessity to go beyond persistence
diagrams as the latter imposes the use of a single filtration function.
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I.4.3 Theoretical guarantees

Finally, we conclude this section with some theoretical guarantees for Euler characteristic
profiles and hybrid transforms. These results are of two different natures, and we start by
mentioning those related to the stability of these descriptors, in the particular case of sublevel
set filtrations defined over the same simplicial complex:

Stability Assume that we filter a finite simplicial complex K with two functions f, g :
K → Rm and denote by χf and χg the corresponding Euler profiles and by ψκf and ψκg
the corresponding hybrid transforms of bounded integrable kernel κ. We have the following
stability lemma for these two descriptors:

Lemma I.24. Let M > 0. We have that

∥(χf − χg)1[−M,M ]m∥1 ≤ (2M)m−1∥f − g∥1.

In addition, let q ∈ [1,∞]. There exists a constant C depending only on q such that

∥ψκf − ψκg ∥q ≤ C∥κ∥∞∥f − g∥1.

In this lemma, the L1 norm of a function f defined on a simplicial complex K is defined
as ∥f∥1 =

∑
σ∈K ∥f(σ)∥1. This lemma shows that these two descriptors demonstrate some

robustness to perturbations of filtrations. However, this stability only holds for the L1 norm,
that involves the total number of simplices in the complex K. This stability result is therefore
weaker than the bottleneck stability stated in Theorem I.15 that holds for the L∞ distance.

Limit theorems In addition to these stability results, we show that the descriptors from
this section verify some guarantees in an asymptotic setting. In the case of Euler characteristic
curves, this has been deeply studied in the literature, and we can cite [KRP21] for a functional
central limit theorem for the Euler characteristic curve in a random setting. In the case of
hybrid transforms, Equation I.1 states that for a given kernel κ and a mono-filtration (Kt)
having persistence diagrams Dk in homological dimension k ∈ {0, . . . , d− 1}, we have that

ψκ(ξ) =
d−1∑

k=0

⟨Dk, hξ⟩,

where hξ : (x, y) 7→ κ(ξy) − κ(ξx). The persistence diagrams are seen as discrete measures as
in Section I.3. This simple observation has the two following benefits for our work:

• The formulation of Section I.3.2 can be applied to hybrid transforms for a family of
kernels.

• Known asymptotic results for persistence diagrams translate in asymptotic guarantees
for hybrid transforms under some mild assumption on the kernel κ. More precisely, we
can cite a result in the case of mono-persistence that combines Theorem I.18 with the
above observation:

Theorem I.25. Let X1, . . . , Xn be an i.i.d. sample drawn according to an a.e. continuous
bounded Lipschitz density g on Rd. Consider a sequence (rn)n∈N such that nrdn → 0 and

nk+2r
d(k+1)
n → ∞ as n → ∞. We denote by ψκn the hybrid transform of the Čech filtration

associated with the rescaled sample 1
rn

(Xi)
n
i=1. Let T, a > 0 and κ ∈ L1(R). Further assume

26



that κ is supported on [0, T ]. Then there exist functions A0, . . . , Ad−1 on R∗
+ that depend only

on κ such that for every ξ > a,

1

nk+2r
d(k+1)
n

· ψκn(ξ) −→
n→∞

d−1∑

k=0

(−1)k

(k + 2)!
·Ak(ξ) ·

∫

Rd

gk+2(x) dx a.s..

As in Theorem I.18, the sampling density only appears through the global quantities∫
Rd g

k+2 for k = 0, 1, . . . , d − 1. Likewise to persistence diagrams, hybrid transforms can
discriminate between different sampling densities as soon as n is large enough at a reduced
computational cost. Finally, in Section V, we will establish similar limit results for multi-
persistence also inherited from Equation (I.1).

I.4.4 Detailed list of contributions

Our contributions regarding this work are the following:

(i) We perform an in-depth qualitative study of Euler characteristic profiles and hybrid
transforms in various settings while discussing the choice of the kernel parameter for
hybrid transforms.

(ii) We demonstrate that Euler profiles achieve state-of-the-art accuracy in supervised clas-
sification and regression tasks when coupled with a robust classifier, such as a random
forest, at a meagre computational cost.

(iii) We demonstrate that hybrid transforms act as highly efficient information compressors,
similar to Fourier transforms. Consequently, they outperform Euler profiles in unsuper-
vised classification tasks and supervised tasks when plugging a linear classifier. We also
illustrate their ability to capture fine-grained information on a real-world data set.

(iv) We provide several theoretical guarantees for these descriptors. First, we prove stability
properties in the flavour of Theorem I.15 that clarify the robustness of our tools concern-
ing perturbations. Expressed in terms of L1 norms, these are also hints of the sensitivity
of our tools to the underlying geometry of the data at hand. Then, we establish the
pointwise convergence of hybrid transforms associated with Čech filtrations of random
samples and their asymptotic normality. We also establish a law of large numbers in a
quite general multi-filtration set-up.
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Outline

The dissertation is organised as follows: Section II is the translation of this introduction in
French. In Section III, we study regression problems on manifolds using a topological penalty.
This work is based on the topological signal-noise paradigm discussed in Section I.2. This
is joint work with Krishnakumar Balasubramanian, Gilles Blanchard, Clément Levrard and
Wolfgang Polonik, published in [HBB+22]. In Section IV, we develop a method to perform
supervised classification on measure data. We provide two algorithms that fit within a more
general framework of statistical learning on measures, for which we establish several theoretical
guarantees. This work puts a strong emphasis on the classification of persistence diagrams.
It has been pre-published in [HBL23] and is a joint work with Gilles Blanchard and Clément
Levrard. Finally, in Section V, we break free of the computational burden and the mono-
persistence constraint of persistence diagrams by computing Euler characteristic type tools
and their integral transforms to perform multiple statistical learning tasks. This section is
joint work with Vadim Lebovici, pre-published in [HL23].
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II Introduction (Français)

L’explosion du nombre de donées disponibles est au coeur d’une véritable révolution scien-
tifique et sociétale. De la génération de texte à la classification d’images en passant par
la prédiction de tendance sur des séries temporelles, les sciences des données suscitent un
intérêt grandissant dans le développement d’outils mathématiques appropriés. Un des prin-
cipaux défis actuels en apprentissage automatique est le traitement de données vivant dans
des espaces de grande dimension. Remettant en cause toute intuition, comme illustré dans
le premier chapitre de [Gir14], ces jeux de données font généralement échouer les méthodes
d’apprentissage classiques. Cependant, certaines données peuvent être vues comme ayant
une structure beaucoup plus simple. En particulier, l’hypothèse de variété affirme que beau-
coup de jeux de données réels vivent en réalité sur des structures non-Euclidiennes de faible
dimension. Un exemple classique est celui des images naturelles : bien que la dimension
effective d’une donnée soit son nombre de pixels, les nombreuses contraintes (grandes zones
constantes, bords, coins...) réduisent fortement le nombre de degrés de liberté. Ainsi, les
images d’un jeu de données spécifique sont souvent considérés comme vivant sur une variété
de basse dimension.

Le développement d’outils permettant l’analyse de tels jeux de données ”géométriques”
est le credo de l’analyse topologique de données (TDA pour Topological Data Analysis). La
TDA permet l’extraction d’information topologique et géométrique de divers jeux de données
en utilisant des outils issus de la topologie algébrique. La TDA et ses applications permet de
répondre aux deux objectifs suivants :

• Construire des descripteurs topologiques sur les données afin d’effectuer une tâche
d’apprentissage automatique telle que de la classification ou de la régression, voir [CM21].

• Aider à la compréhension qualitative des données via une approche topologique, voir
par exemple [Hes20] et [RB19].

Trouvant ses origines dans les travaux sur l’homologie persistante de [ELZ00] et [CZCG04],
l’analyse topologique des données a rencontré un grand succès grâce à son large champ
d’applications, en particulier en médecine [RYB+20, FM22, ACC+21], en neurologie [KDS+18],
biologie [IOH20, RB19], science des matériaux [LBD+17, HNH+16], cosmologie [PEVdW+17],
et plus récemment en théorie musicale [AAPL22, MBP22].

Un des objets les plus omniprésents en TDA est le diagramme de persistance, qui résume
toute l’information topologique présente dans les données. Ce descripteur est le fil rouge
de cette dissertation et nous allons étudier son utilisation en apprentissage automatique, et
comment dépasser ses limites pratiques et théoriques. Cette thèse est basée sur les trois
articles de recherche suivants :

• L’article [HBB+22], en collaboration avec Gilles Blanchard, Krishnakumar Balasub-
ramanian, Clément Levrard et Wolfgang Polonik, où l’on étudie l’utilisation des dia-
grammes de persistance pour promouvoir la régularité de la fonction estimée dans un
problème de régression.

• La pré-publication [HBL23], en collaboration avec Gilles Blanchard et Clément Levrard,
où l’on étudie les propriétés structurelles des diagrammes de persistance, et propose
une approche et des outils novateurs en classification de mesures afin d’extraire de
l’information sur les diagrammes et classifier des données.

• La pré-publication [HL23], en collaboration avec Vadim Lebovici, où l’on étudie des
descripteurs qui permettent d’obtenir une meilleure performance que les diagrammes de
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persistance tout en ayant un coût de calcul plus faible et en préservant ses propriétés
d’interprétabilité.

Après une brève introcution à l’analyse topologique des données et ses concepts clés en
Section II.1, nous exposerons les idées et contributions principales de chacun de ces articles
dans les Sections II.2, II.3 et II.4. Chaque section principale de ce manuscrit correspond
ensuite à un de ces trois articles.

II.1 Une brève introduction à l’analyse topologique des données et aux
diagrammes de persistance

On se référera aux livres [EH22] et [BCY18] pour une introduction détaillée à la topologie
computationnelle et à l’analyse topologique des données. Nous présentons ici les concepts et
notions principales en TDA.

II.1.1 Homologie simpliciale et diagrammes de persistance

Avant de présenter les fondations de la théorie de la persistance, commençons par quelques no-
tions sur les complexes simpliciaux afin de se construire une intuition sur la nature topologique
des données dans un cas discret :

Définition II.1. Un complexe simplicial abstrait (fini) K est une collection finie d’ensembles
finis tels que leurs sous-ensembles appartiennent également à K. Un élément σ ∈ K est
appelé un simplexe, et les sous-ensembles de σ sont appelés les faces de σ. La dimension d’un
complexe simplicial est la plus grande dimension de l’un de ses simplexes.

On peut montrer, voir Chapitre III de [EH22], qu’en associant chaque sommet abstrait à
un point de R2d+1, tout complexe simplicial de dimension d peut être réalisé géométriquement
dans R2d+1, où un simplexe de dimension k est l’enveloppe convexe de k+ 1 points affinement
indépendants. Un simplexe de dimension 0 (resp. 1, 2, 3) est appelé un sommmet ou un
noeud (resp. une arête, un triangle, un tétrahèdre). Un des principaux exemples de complexe
simplicial construit sur un nuage de points est le complexe de Čech :

Définition II.2. Soit X ⊆ Rd un ensemble de points fini. Le complexe de Čech à l’échelle t ≥ 0
est le complexe simplicial Č(X, t) tel que pour tout (x0, . . . , xk) ∈ Xk+1, le simplexe {x0, . . . , xk}
appartient à Č(X, t) si l’intersection des boules fermées ∩kl=0B(xl, t) est non-vide.

Sur la Figure 10, empruntée à [Wik23], on illustre la construction du complexe de Čech
pour un échantillon sur un cercle. On peut voir sur la Figure 10b que ce complexe simplicial
ressemble à un cercle simplifié, puisqu’il possède une composante connexe et un seul grand
cycle.

On peut voir sur la Figure 10b que ce complexe simplicial ressemble à un cercle simplifié,
puisqu’il possède une composante connexe et un seul grand cycle.

Questions II.3. Se posent alors naturellement deux questions :

• Comment caractériser algébriquement un cycle et le fait qu’ici, le complexe simplicial
est connexe et possède un seul cycle ?

• Ici, l’union des boules centrées en chaque point à la même topologie qu’un cycle pour
une gamme de paramèters d’échelle t, y compris celui choisi en Figure 10a. Néanmoins,
si l’échelle choisie n’est pas adaptée, on peut avoir une union de boules qui n’a pas la
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(a) Boules centrées en chaque point (b) Complexe de Čech correspondant

Figure 10: Construction du complexe de Čech pour un échantillon de points sur un cercle.

topologie souhaitée, par exemple en observant plusieurs composantes connexes. Com-
ment choisir le rayon des boules, c’est à dire le paramètre d’échelle du complexe de Čech,
sans aucun a priori sur les données ?

Afin de répondre à la première question, il nous faut introduire quelques notions d’homologie
simpliciale. Commençons par les définitions d’une k-châıne et de l’opérateur de bord.

Définition II.4. Soit K un complexe simplicial. Une k-chaine simpliciale est une somme
finie (formelle)

∑N
i=1 ciσi où chaque σi est un k-simplexe de K et ci ∈ Z/2Z. L’ensemble des

k−chaines possède une structure de groupe et est noté Ck.

Définition II.5. L’opérateur de bord ∂k : Ck → Ck−1 est le morphisme de groupes tel que:

∂k(σ) =
k∑

i=0

{v0, . . . , v̂i, . . . , vk},

où σ = {v0, . . . , vk}, et le simplexe de dimension (k − 1) {v0, . . . , v̂i, . . . , vk} est la face de σ
obtenue en ôtant le sommet vi. On définit également les deux sous-groupes de Ck suivants :
le groupe des cycles Zk = Ker ∂k et le groupe des frontières Bk = Im ∂k+1.

Par exemple, le bord d’un triangle est la somme de ses trois côtés. On peut aisément
vérifier que ∂k+1∂k = 0, i.e. que le bord du bord d’une châıne est toujours égal à 0. Ceci
implique que Bk est un sous-groupe de Zk. Intuitivement, un ” trou de dimension k” est
un cycle de dimension k, qui n’est pas le bord d’un complexe simplicial. On peut alors
rigoureusement définir la notion de trou topologique :

Définition II.6. Le kème groupe d’homologie Hk de K est le groupe abélien quotient Hk(K) =
Zk/Bk. Son rang βk = rank (Hk(K)) est appelé kème nombre de Betti.

Intuitivement, le kème nombre de Betti βk compte le nombre de k-trous pour k ≥ 1, et
β0 est le nombre de composantes connexes. Revenons à l’exemple de Figure 10b. Il y a une
longue châıne qui n’est pas une frontière. Ainsi, β1 = 1. Puisque le complexe simplicial est
connexe, on a β0 = 1. L’ensemble des nombres de Betti d’un complexe simplicial apparâıt
donc comme une signature de la topologie d’un complexe simplicial. Dans cette logique, on
peut définir un autre invariant appelé caractéristique d’Euler :
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Définition II.7. La caractéristique d’Euler d’un complexe simplicial K de dimension d est
l’entier relatif χ(K) défini par

χ(K) =
∑

σ∈K

(−1)dim σ =
d∑

k=0

(−1)kβk(K).

La caractéristique d’Euler est moins informative que la collection de tous les βk pour
k ∈ {0, . . . , d}. Cependant, son expression obtenue en comptant les simplexes en fait un
invariant beaucoup plus simple à calculer que les nombres de Betti. Ainsi, nous ferons un
usage intensif de la caractéristique d’Euler en Section V et démontrerons qu’il s’agit d’un
descripteur extrêmement puissant en analyse de données.

On peut maintenant traiter la seconde question parmi les Questions II.3, ce qui est le but
de l’homologie persistante. Intuitivement, la meilleure manière de choisir la taille des boules
pour la construction du complexe de Čech est de ne pas la choisir, ou plutôt de considérer
toutes les tailles possible. Plus formellement, on peut commencer par définir une filtration
d’un complexe simplicial :

Définition II.8. Soit K un complexe simplicial fini et soit f : K → R une fonction crois-
sante au sens de l’inclusion : f(σ) ≤ f(τ) lorsque σ est une face de τ . Pour tout a ∈ R, le
sous-ensemble de niveau K(a) = f−1((−∞, a]) est un sous-complexe simplicial de K. En con-
sidérant toutes les valeurs possibles de f , on a une famille embôıtée de complexes simpliciaux
:

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,
appelée filtration, où a0 = −∞ < a1 < a2 < . . . < an sont les valeurs prises par f sur les
simplexes de K.

Le complexe de Čech défini précédemment sur un nuage de points X défini naturellement
une filtration sur le complexe simplicial complet K = 2X :

∅ ⊂ Č(X, 0) = X ⊂ Č(X, t1) ⊂ Č(X, t2) ⊂ . . . ⊂ Č(X, tn) = K,
où 0 < t1 < t2 < . . . < tn sont les rayons de boules auxquels on observe un changement

de topologie du complexe de Čech. Cette filtration est simplement appelée filtration de Čech
et notée Č(X). Le complexe simplicial K étant fini, le nombre de rayons critiques ti pour la
topologie du complexe de Čech est fini. On peut de plus montrer, voir [BE17], que les ti sont
des rayons de boules circonscrites aux simplexes de K.

Ici, l’idée est donc de considérer une famille imbriquée de complexes simpliciaux et de
prendre en compte la création et la destruction de composantes topologiques, c’est à dire
l’évolution des nombres de Betti. On peut formaliser cela ainsi : pour i ≤ j, l’application
inclusion canonique Ki → Kj induit un morphisme de groupes f i,jk : Hk(Ki) → Hk(Kj) sur
les groupes d’homologie pour tout k, donnant naissance à une suite de groupes d’homologies
imbriqués :

0 = Hk(K0) → Hk(K1) → . . .→ Hk(Kn) = Hk(K).

On peut alors définir l’homologie persistante :

Définition II.9. Les kème groupes d’homologie persistante sont les images des morphismes
définis ci-dessus : H i,j

k = im f i,jk . Comme pour l’homologie, on définit le k−ème nombre de

Betti persistant par βi,jk = rank H i,j
k .
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Comme son nom l’indique, le kème nombre de Betti persistant βi,jk correspond au nombre
de k-trous qui persistent entre Ki et Kj . Etant donné une classe d’éléments γ ∈ Hk(Ki), on dit

que cette classe est née en Ki si γ /∈ H i−1,i
k . De même, l’instant de mort de γ (éventuellement

infini) est le plus petit indice j tel que f i,jk (γ) ∈ H i−1,j
k . Nous avons désormais tous les outils

à notre disposition pour définir l’object central de cette dissertation.

Définition II.10. Le kème diagramme de persistance est le multi-ensemble de R
2

des coor-
données (naissance, mort) pour chaque classe γ qui a existé à un moment donné de la suite
d’homologie persistante.

Ce multi-ensemble peut aisément être vu comme une mesure discrète ce qui sera au coeur
de la Section IV. De plus, remarquons que le nombre de Betti persistant βi,jk correspond
au nombre de points dans le quadrant infini avec un angle en (ai, aj) en haut à gauche du
diagramme de persistance. Sur la Figure 11, adaptée de [RCL+21], on peut voir la construction
d’un diagramme de persistance d’un complexe de Čech d’un nuage de points.

Figure 11: Diagrammes de persistance du complexe de Čech sur un nuage de points.

Ici, les points sont échantillonnés sur un bouquet de deux cercles. La topologie d’un nuage
de points brut est simplement constituée d’autant de composantes connexes qu’il y a de
points. Afin de construire le complexe de Čech de ce nuage de points, on centre des boules en
chaque point et on fait varier leur rayon de 0 à +∞. L’une après l’autre, les boules de points
consécutifs vont se toucher, créant des arêtes dans la filtration de Čech et fusionnant ainsi
des composantes connexes. Topologiquement, une fusion correspond à la mort d’une des deux
composantes. Ainsi, le diagramme de persistance pour la 0-homologie contient uniquement
des points de coordonnées (0, di) ainsi qu’un point de coordonnées (0,∞) puisque lorsque les
boules sont suffisamment grandes (Figure 11, E), l’union des boules reste connexe. Quant
aux cycles, l’union des boules ne contient aucun cycle pour des petits rayons (Figure 11, B).
Lorsque le rayon devient suffisamment grand (Figure 11, C), on peut voir que deux cycles
apparaissent dans le complexe de Čech. Le rayon critique conduisant à l’apparition d’un
cycle est son temps de naissance. Finalement, quand le rayon devient suffisamment grand
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(Figure 11, D et E), la triple intersection de boules crée des triangles dans le complexe de
Čech qui remplissent les cycles. Le rayon critique correspondant est le temps de mort du cycle.
On a ainsi deux points dans le diagramme de persistance correspondant à la 1-homologie. En
plus de caractériser la topologie d’un nuage de points (ici le fait qu’il possède deux cycles), les
diagrammes de persistance donnent également de l’information sur la taille géométrique des
trous. De plus, on peut extraire de l’information sur l’échantillonnage et les distances entre
points du diagramme de persistance de dimension 0.

Le succès de l’analyse topologique de données vient entre autres de la possibilité de com-
parer des diagrammes de persistance. Une des approches les plus populaires à cette fin se fait
via la distance bottleneck définie ainsi :

Définition II.11. Soit ∆ = {(x, x)|x ∈ R} la diagonale de R2.

La distance bottleneck dB entre deux diagrammes de persistance D et D′ est :

dB(D,D′) = inf
η:D∪∆→D′∪∆

sup
x∈D∪∆

∥x− η(x)∥∞,

où l’infimum est pris sur toutes les bijections η entre D ∪ ∆ et D′ ∪ ∆.

On illustre l’appariement optimal entre deux diagrammes en Figure 12, inspirée de [Cha23].
La distance bottleneck est ici la longueur de la plus longue flèche (en norme infinie). On se
référera à [DL21] pour un traitement détaillé de la structure de l’ensemble des diagrammes
de persistance munis de métriques similaires. Une des forces des diagrammes de persistance
est leur propriété de stabilité, voir [CSEH07], qui affirme qu’une petite perturbation dans les
données induira une petite perturbation dans les diagrammes, mesurée en termes de distance
bottleneck. Nous citerons le résultat correspondant en section II.1.2

Figure 12: Appariement optimal entre deux diagrammes de persistance ayant des nombres de
points différents

Grâce à son approche multi-échelle, les diagrammes de persistance contiennent énormément
d’information de nature topologique sur les données. Ces descripteurs peuvent alors être
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utilisés pour diverses tâches d’apprentissage telles que la classification, la régression, ou le
partitionnement. On peut mentionner l’étude suivante [HMR21] qui traite de l’applications
des diagrammes de persistance à l’apprentissage automatique en pratique. En raison de sa

représentation en tant qu’ensemble de R
2

(ou de mesures discrètes), les diagrammes de persis-
tance ne peuvent être utilisés tels quels comme entrée d’algorithmes classiques d’apprentissage
machine. Une stratégie usuelle est de transformer les diagrammes en éléments d’espaces de
Banach. Citons entre autres les courbes de Betti [RSL20], les images persistantes [AEK+17],
les landscapes [B+15], et plus récemment des techniques de vectorisation de mesure, [RCL+21]
et des méthodes faisant appel à des réseaux de neurones [CCI+20, RCB21]. Nous verrons en
Section IV une méthode permettant de faire de l’apprentissage statistique directement dans
l’espace des mesures sans aucune étape de vectorisation.

D’un point de vue computationnel, les complexes simpliciaux, l’homologie persistante et
les diagrammes de persistance peuvent être calculés en utilisant la librairie Gudhi, [MBGY14].
L’algorithme originel permettant le calcul de la persistance peut être trouvé dans [ZC04]. Le
calcul d’un diagramme de persistance pour un complexe simplicial K a une complexité au
pire cas en O(|K|ω) où 2 ≤ ω < 2.373 est l’exposant pour la multiplication de matrices,
voir [MMS11]. Bien que le calcul des diagrammes de persistance paraisse raisonnable, les
algorithmes actuels se comportent mal en grande dimension. En effet, pour un complexe
géométrique typique, le nombre de simplexes crôıt exponentiellement avec la dimension.

Enfin, les diagrammes de persistance peuvent bien sûr être calculés dans un cadre beau-
coup plus général que celui de complexes de Čech sur des nuages de points. Dans la Section V,
on explorera d’autres filtrations sur les nuages de points, tandis que dans les Sections IV et
V, on verra comment appliquer cela à de l’apprentissage sur des graphes. Cette méthodologie
peut également être appliquée à l’étude d’images et de volumes 3D en considérant des com-
plexes cubiques à la place de complexes simpliciaux. Cette approche a en particulier permis
le développement de méthodes novatrices en analyse d’images médicales, par exemple dans
[ACC+21] ou encore [JKN20]. De plus, la théorie de l’homologie persistante va bien plus
loin que l’étude de complexes et de filtrations finis. Elle peut en particulier être appliquée
à des suites d’espaces topologiques imbriqués, toujours dans le but d’extraire des temps de
naissance et de morts de composantes topologiques. Un des exemples principaux est l’étude
des sous-niveaux de fonctions de Morse. Cet exemple motive la Section III de ce travail, et
nous allons maintenant exposer certains de ces aspects en Section II.1.2.

II.1.2 Persistance pour les fonctions de Morse

Commençons cette section par la définition des fonctions de Morse et en énonçant un résultat
sur la topologie de leurs sous-niveaux.

Définition II.12. Soit f : Ω → R une fonction C2 où Ω est inclus dans Rd.

• Un point critique de f est un point x ∈ Ω tel que ∇f(x) = 0. Son image f(x) est
appelée valeur critique.

• Soit x0 un point critique de f . Son indice est le nombre de valeurs propres négatives de
la Hessienne de f en x0.

Définition II.13. Une fonction f définie sur une variété différentielle est une fonction de
Morse si elle est C2 et que tous ses points critiques sont non-dégénérés, i.e. telle que la
matrice Hessienne en chaque point critique est non-dégénérée.
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L’ensemble des fonctions de Morse est un ouvert dense de l’ensemble des fonctions con-
tinues. Une des propriétés principales des fonctions de Morse est résumée dans le théorème
suivant, adaptée des Théorèmes 3.1 et 3.2 de [Mil63]:

Théorème II.14. Soit f une fonction de Morse sur une variété lisse M et soit Ma le
sous-ensemble de niveau f−1((−∞, a]).

• Soit a < b. Supposons qu’il n’y ait pas de valeur critique entre a et b. Alors Ma et Mb

sont difféomorphes et Mb se rétracte par déformation sur Ma.
• Soit p un point critique de f d’indice s tel que f(p) = q. Supposons de plus qu’il n’y ait
pas d’autre point critique p′ tel que f(p′) = q. Alors, pour ε suffisamment petit, Mq+ε

a le même type d’homotopie que Mq−ε auquel on a attaché une s-anse.

Ce théorème illsutre que les changements de topologie des sous-ensembles de niveau d’une
fonction de Morse se produisent aux valeurs critiques de la fonction. Par analogie avec
l’homologie simpliciale, considérons l’évolution des groupes d’homologie des sous-niveaux
f−1((−∞, t]) lorsque t parcourt R de −∞ à +∞, et notons dans un diagramme de per-
sistance les valeurs auxquelles les composantes topologiques naissent et meurent. On propose
d’illustrer cela en Figure 13, inspirée de [CM21], où l’on considère la fonction hauteur sur un
”tore perturbé” avec ses 0 et 1-diagrammes de persistance, respectivement en rouge et bleu.

Figure 13: Filtration par les sous-niveaux d’un tore perturbé et diagrammes de persistance
correspondant

Considérons un plan d’équation z = t et faisons évoluer t de −∞ à +∞. Les sous-niveaux
sont tous vides avant d’atteindre le minimum global a0. Ensuite en a0, une composante
connexe nâıt. Une autre composante connexe est créée au minimum local a1, et les deux
composantes connexes fusionnent finalement au point-selle a3. Par la convention de la règle
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de l’ancien, on considère que la composante la plus jeune meurt en premier, donnant lieu à
un point de coordonnées (a1, a3) dans le diagramme de persistance. A partir de a2, les sous-
niveaux contiennent un 1-cycle, et en a4, un deuxième cycle est créé. La figure a désormais
le type d’homologie d’un tore. Un troisième cycle est créé au point-selle a5, qui persiste
seulement jusqu’au maximum local a6, donnant un point de coordonnées (a5, a6) dans le 1-
diagramme de persistance. Après a7, les sous-niveaux ont de nouveau la même topologie que
le tore. Ils restent connexes pour toujours et la composante connexe créée en a0 ne meurt
jamais. De même, les cycles créés en a2 et a7 persistent pour toujours. Par convention, afin
d’éviter d’avoir des coordonnées infinies, on impose le temps de mort au maximum global de
la fonction, à savoir a7.

Ici, on peut voir l’impact du Théorème II.14 pour le calcul des diagrammes de persistance
puisque les coordonnées de tous les points sont des valeurs critiques de la fonction hauteur.
Plus précisément, pour cette fonction de R2 dans R, les minima créent systématiquement les
composantes connexes tandis que les maximas tuent systématiquement les cycles. Quant aux
points-selles, ils peuvent soit fusionner deux composantes connexes, soit donner naissance à
un cycle.

Nous disposons désormais d’un multi-ensemble qui décrit une fonction de Morse et ses
points critiques d’un point de vue topoloique. Etant donné les applications en apprentissage
statistique visées par ce manuscrit, une question naturelle est le comportement de ce descrip-
teur lorsque l’on ajoute du bruit à la fonction. Si le bruit est borné par ε, on peut s’attendre
à ce que chaque point critique soit déplacé d’au plus ε. Ainsi, de nombreux points critiques
qui ne persistent pas au-delà de ε vont apparâıtre. Nous précisons cette observation dans le
résultat de stabilité suivant, issu de [CSEH07], en terme de la distance bottleneck introduite
en Définition II.11. On note Df le diagramme de persistance des sous-niveaux d’une fonction
de Morse f .

Théorème II.15. Soit M un espace topologique et soit f et g deux fonctions de Morse de
M vers R. On a alors :

dB(Df , Dg) ≤ ∥f − g∥∞.

Disposer d’une métrique possédant de telles propriétés de stabilité parâıt très intéressant
dans un contexte d’analyse de données car elle démontre une certaine robustesse à un bruitage
borné. Dans notre contexte, on aimerait étudier le débruitage d’une fonction en utilisant de
tels régulariseurs topologiques. A cette fin, on introduit la persistance d’une fonction:

Définition II.16. • Pour un point (b, d) d’un diagramme de persistance, sa persistance
est égale à son temps de vie d− b.

• La persistance d’un diagramme D est la somme de tous les temps de vie de chacun de
ses points :

Pers(D) =
∑

(b,d)∈D

(d− b).

S’il n’y a pas d’ambigüıté, on notera Persk(f) la persistance du kème diagramme de
persistance des sous-niveaux d’une fonction f et Pers(f) =

∑
k Persk(f) sa persistance totale.

On illustre en Figure 14 le comportement de la persistance et de la distance bottleneck
lorsque l’on ajoute un bruit gaussien à des mesures d’une fonction lisse. Plus précisément,
considérons des observations Yi = f⋆(Xi) + εi où les points (Xi)

1000
i=1 sont échantillonnés
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uniformément sur le carré unité, f⋆ est une somme de quatre gaussiennes représentée en
Figure 14a, et ε ∼ N (0, σIn). On affiche une interpolation des fonctions lisses et bruitées au
carré unité en Figures 14a and 14c. Lorsque l’on ajoute du bruit à chaque mesure, de nombreux
points critiques avec une faible persistance sont ajoutés et envoyés sur la diagonale lors du
calcul de la distance bottleneck, illustrant ainsi le Théorème II.15 avec grande probabilité.
La distance bottleneck mesure ici le bruit ajouté à une fonction. Cependant, elle nécessite la
connaissance de la vraie fonction de régression f⋆. De même, la 0 et 1-persistance mesurent
la quantité de bruit ajouté à une fonction. Il existe également des résultats de stabilité pour
la persistance qui font intervenir le nombre total de points dans le diagramme, sur lequel on
n’a qu’un contrôle restreint. On énoncera ce résultat précis dans le Lemme III.2.

(a) Vraie fonction (b) Diagramme de persistance correspondant

(c) Fonction bruitée (d) Diagramme de persistance correspondant

(e) Distances bottleneck et persistance en fonction de l’écart-type du bruit

Figure 14: Stabilité de la distance bottleneck et de la persistance à un bruit Gaussien
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On dispose désormais de tous les outils pour passer au coeur de la première contribution
de cette dissertation, où l’on s’intéresse à l’utilisation de la persistance totale pour résoudre
un problème de régression.

II.2 Imposer de la régularité grâce aux diagrammes de persistance

La persistance totale capture les petites oscillations d’une fonction et est ainsi particulièrement
indiquée comme un régularisateur dans un contexte de régression. Cette observation est au
coeur de la Section III, publiée dans [HBB+22]. L’objectif ici est d’utiliser la persistance totale
comme un terme de pénalité dans le but d’annuler le bruit des observations, résultant en une
prédiction plus lisse et plus précise. Ce travail se focalise sur un problème de régression où
l’on observe des données sur une variété.

II.2.1 Régularisation topologique

On considère un problème de régression sur une variété compacte M. On suppose que les
données sont des points (Xi)

n
i=1 échantillonnés uniformément et indépendamment sur M et

que l’on observe des étiquettes réelles :

Yi = f⋆(Xi) + εi,

où (εi)1≤i≤n sont des variables aléatoires indépendantes entre elles et indépendantes de tous
les Xi, identiquement distribuées, sous-gaussiennes et de moyenne nulle. Notre but est de
retrouver la vraie fonction f⋆ dans une optique de débruitage ou de prédiction étant donné
une nouvelle observation sur la variété.

Commençons par considérer une base de fonctions (Φi)i≥0 adaptée à la variété, appelées
les fonctions propres de l’opérateur de Laplace-Beltrami, voir [Ros97]. Cette base peut être
vue comme une généralisation de la base de Fourier à un espace fonctionnel sur une variété
compacte. En pratique, on a rarement accès aux fonctions propres (Φi)i≥0. Cependant, on
peut les approcher en utilisant le spectre de la matrice Laplacienne d’un graphe construit sur
les données, voir [Chu97]. Afin de trouver les meilleurs coefficients pour décomposer f⋆ sur
la base des p premières fonctions propres de l’opérateur de Laplace-Beltrami (ou du graphe
Laplacien), on minimise le critère suivant :

L(θ) =

n∑

i=1

(
Yi −

p∑

j=1

θjΦj(xi)

)2

+ µΩ(θ),

où Ω est un terme de pénalité visant à empêcher les phénomènes de surinterprétation et est
calibré par le réel µ.

Parmi les exemples de pénalités classiques, on peut citer la régularisation L1 ou Lasso
(voir [Bv11] pour un traitement exhaustif) la régularisation L2 ou Ridge, [HK70], ainsi que
la pénalisation par variation totale, [HR16], qui est celle qui se rapproche le plus de notre
travail, puisqu’elle vise à pénaliser les fortes oscillations. Ici, on considère les deux pénalités
suivantes :

• Ω1(θ) =
∑p

j=1 |θj |Pers(Φj) est une pénalité de type Lasso pondéré qui s’implémente très
facilement et possède un coût de calcul très modéré. Cette pénalité permet d’effectuer
une sélection de variables en privilégiant les fonctions propres avec une persistance
restreinte, c’est à dire celles qui n’oscillent pas trop.
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• Ω2(θ) = Pers
(∑p

j=1 θjΦj

)
est une pénalité non-convexe, pour laquelle on utilise des

techniques introduites dans [CCG+21] afin de minimiser la fonction de perte L. Comme
illustré en Figure 14, cette pénalité va permettre de faire du débruitage, en éliminant
les points peu persistants du diagramme, et offrir ainsi une reconstruction lisse de la
fonction observée.

En pratique, on combine ces deux pénalités en sélectionnant un sous-ensemble de fonctions
propres grâce à Ω1, puis en faisant du débruitage en utilisant la pénalité Ω2. On peut voir
les effets de la régularisation par Ω2 dans la Figure 15 où l’on débruite la fonction de la Fig-
ure 14c. La reconstruction à partir d’un échantillon bruité est comparée à une régression sur
les fonctions propres du Laplacien avec une pénalité Lasso. On peut voir que la régularisation
via Ω2 est plus lisse, et bien qu’un peu d’information soit perdue au niveau de l’intensité des
pics, on parvient néanmoins à retrouver les quatre pics du signal initial. De plus, on peut
voir sur les diagrammes de persistance correspondant qu’il y a quatre points loin de la diag-
onale, correspondant à quatre maxima qui persistent relativement longtemps. En revanche,
la pénalisation par Lasso ne parvient à récupérer que deux ou trois pics du signal original et
son diagramme de persistance contient plus de points près de la diagonale.

(a) Fonction reconstruite par
Lasso

(b) Fonction estimée via la
pénalité topologique Ω2

(c) Diagramme de persistance
de l’estimation par Lasso

(d) Diagramme de persistance
de l’estimation par la pénalité
Ω2

Figure 15: Reconstruction de la somme de quatre gausiennes.

II.2.2 Liste détaillée des contributions

Les contributions de ce travail sont les suivantes :

(i) On a effectué une analyse approfondie, qualitative et quantitative sur des données
simulées et réelles, en comparant les méthodes par pénalisation topologique à des méthodes
de régression standard. Notre méthode est comparable en terme de performance à une
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régression à noyau avec pénalité Ridge, [Vov13] et surpasse les autres méthodes de
régularisation, y compris celles par variation totale.

(ii) On a établi plusieurs résultats oracles pour les pénalités Ω1 et Ω2. En particulier, sous
l’hypothèse que la fonction de régression se décompose f⋆ =

∑p
j=1 θ

⋆
jΦj , le paramètre

optimal θ⋆ est approché à une vitesse O(p/n). De plus, on a également un résultat
théorique sur la persistance totale de la fonction estimée garantissant que celle-ci est
”topologiquement régulière”.

(iii) On a établi un résultat négatif sur la capacité de l’espace des fonctions à persistance
bornée.

Ce travail contient la première occurence de garanties théoriques pour des modèles de
régularisation topologique, qui avaient déjà été utilisés dans la littérature. Bien que les
résultats expérimentaux soient prometteurs, le coût computationnel de la méthode reste son
principal défaut. En effet, afin de minimiser L avec la pénalité Ω2, il faut calculer des centaines
de diagrammes de persistance (un par pas de la descente de gradient). De plus, le point de
vue adopté ici est extrêmement simpliste en terme d’analyse des diagrammes de persistance.
En effet, ceux-ci sont séparés en une composante de signal loin de la diagonale correspon-
dant à peu de choses près au diagramme de la vraie fonction f⋆ et en une composante de
bruit topologique correspondant au bruit ε sur les observations et qui se manifeste comme un
agrégat de points près de la diagonale. On va voir qu’il y a en réalité beaucoup d’information
contenue près de la diagonale des diagrammes de persistance, et que celle-ci peut être utilisée
à des fins de classification.

II.3 Extraire l’information près de la diagonale

On va maintenant se concentrer sur le cas de diagrammes de persistance de la filtration de
Čech sur un nuage de points de Rd. Ce travail a donné lieu à la pré-publication [HBL23].
On considère un problème de classification binaire supervisée où l’on observe des données
DN = (µ1, Y1), . . . , (µN , YN ) où µi est un diagramme de persistance et Yi est un label binaire
dans {0, 1}. En pratique, ce type de situation provient d’un problème de classification binaire
sur des données brutes (graphes, images, séries temporelles, nuages de points...) transformées
en diagrammes de persistance en raison de l’information topologique qu’elles peuvent contenir.

II.3.1 Un exemple motivateur : distinguer un tore d’une sphère

On va essayer de discriminer des nuages de points echantillonnés sur une sphère S2 ou sur un
tore T2. Une façon de résoudre ce problème de façon invariante par translation et rotation est
de regarder les diagrammes de persistance de dimension 1 des complexes de Čech construits
sur les données. Sur la Figure 16, on observe des exemples de diagrammes de persistance de
complexes de Čech de nuages de points de taille variable, échantillonnés sur une sphère ou un
tore.

Ainsi, dès que le nombre de points échantillonnés est suffisamment grand, on peut s’attendre
à ce que le 1-diagramme de persistance de la filtration de Čech de l’échantillon sur un tore a
deux cycles très persistants tandis que celui de la sphère n’a pas de cycle loin de la diagonale.

En raison de leur structure de multi-ensemble (ou de mesure discrète sur R
2
), les dia-

grammes de persistance ne peuvent pas être entrés tels quels dans des algorithmes de clas-
siication supervisée standard. Comme mentionné précédemment, une stratégie usuelle est
d’envoyer les diagrammes de persistance dans un espace de Banach [DP19] puis de les trans-
former en vecteurs. On se propose ici de répondre aux deux questions suivantes :
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(a) Tore, n = 100 (b) Tore, n = 500

(c) Sphère, n = 100 (d) Sphère, n = 500

Figure 16: Diagrammes de persistance de dimension 0, 1 et 2 de la filtration de Čech sur un
échantillon de n points.

• Est-ce possible de contourner cette étape de vectorisation et développer une méthode
de classification directement sur les mesures, tout en possédant de bonnes garanties
théoriques ?

• Dans l’exemple de classification entre un tore et une sphère (comme dans la Section II.2),
on a traité les diagrammes de persistance comme d’une part des points très persis-
tants correspondant à un signal homologique et d’autre part des points peu persistants
correspondant à du bruit. Est-il possible de dépasser cette dichotomie, et quel type
d’information se cache dans les points près de la diagonale ?

II.3.2 Le problème de classification de mesures

On a développé dans la Section IV une méthode de classification supervisée de mesures
s’affranchissant de toute étape de vectorisation. Pour des mesures définies sur un espace
métrique compact X , on considère différentes zones de X et on discrimine entre les classes
selon la masse que chaque mesure met en ces zones. Par exemple, dans l’exemple précédent
de la sphère et du tore, regarder si les diagrammes de persistance (vus comme mesures) met-
tent plus de deux points au-dessus d’un certain seuil de mort adéquatement choisi suffit à
bien classifier une donnée comme étant issue d’un tore. On propose deux algorithmes afin
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d’apprendre les zones de discrimination ainsi que les seuils d’activation correspondant. Ces
différentes zones sont ensuite aggrégées en utilisant une procédure de boosting. De plus, on
fait rentrer ce type de classifieurs dans une classe plus large et on propose des garanties statis-
tiques correspondantes. Plus précisément on considère une classe de fonctions F sur X , et
une classe de fonctions correspondante F̃ définie sur l’espace M(X ) de mesures X , dont les
fonctions sont définies comme :

f̃ [µ] = EX∼µ[f(X)] =

∫

X
f(x)dµ(x) où f ∈ F .

On fait le lien entre des mesures de capacité sur F̃ et sur F , qui sont en général bien plus
simples à calculer pour cette seconde classe. Plus précisément, pour une classe de fonctions
générale F , on définit la complexité de Rademacher empirique sur un échantillon (Zi)

N
i=1

comme

RN (F) =
1

N
Eσ

[
sup
f∈F

∣∣∣∣∣

N∑

i=1

σif(Zi)

∣∣∣∣∣

]
,

où (σ1, . . . , σN ) est un vecteur de variables aléatoires indépendantes de Rademacher, i.e. pour
tout i, P(σi = 1) = P(σi = −1) = 1/2. Cette quantité mesure la corrélation de la classe de
fonctions F avec un vecteur de bruit de Rademacher. Sous des hypothèses assez générales, le
risque de prédiction est borné par la complexité de Rademacher avec grande probabilité, voir
[SSBD14]. Il est donc préférable pour une famille de classifieurs d’avoir une faible complexité
de Rademacher, ce qui signifie que la classe possède de bonnes propriétés de généralisation.
Dans notre cas, on a établi la borne supérieure suivante :

Théorème II.17. Il existe une constante universlle K telle que

RN (F̃) ≤ KM2

√
VC(F)√
N

,

où M2 =
(

1
N

∑N
i=1 µi(X )2

) 1
2
, et VC est une autre mesure de capacité, appelée dimension

de Vapnik-Chervonenkis. On remarque que la complexité de Rademacher empirique de F̃ est
bornée par une mesure de capacité de la classe F . Dans la Section IV, on propose également
une borne inférieure du même ordre de grandeur sur la complexité de Rademacher empirique,
et on fait le lien avec des bornes de prédiction pour les classifieurs de mesures proposés.

II.3.3 Résultats asymptotiques sur les complexes de Čech aléatoires

Dans le cas des diagrammes de persistance, l’algorithme précédemment décrit va, dans de
nombreux scénarios pratiques, utiliser des zones près de la diagonale pour discriminer entre
les deux classes. Cela montre qu’il y a de l’information pertinante contenue dans ce que
nous avions jusqu’à présent injustement appelé le bruit topologique. On appuie ce constat
expérimental par plusieurs garanties théoriques. En effet, dans [BHPW20], les auteurs af-
firment que les points près de la diagonale contiennent de l’information sur la courbure de
l’espace sur lequel les points ont été échantillonnés. En plus du support, ces points près de la
diagonale permettent d’extraire de l’information sur la densité d’échantillonnage.

Soit n points Xn = (X1, . . . , Xn) indépendamment échantillonnés selon une densité f
sur Rd. Les complexes de Čech ainsi que les diagrammes de persistance correspondant à la
filtration sont des objets aléatoires dont il est naturel d’étudier le comportement asymptotique
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lorsque n tend vers l’infini. On se référera à [BK18] pour une étude des comportements
asymptotiques de quantités topologiques sur des objets aléatoires. On introduit un terme
de renormalisation (rn)n∈N qui tend vers 0 afin de rendre la limite non-triviale. La vitesse à
laquelle (rn) tend vers 0 est cruciale : soit Λ := lim

n→∞
nrdn ∈ [0,∞]. Pour notre étude théorique,

on va se restreindre au cas Λ = 0 appelé régime parcimonieux, et citer un résultat de [Owa22]
:

Théorème II.18. Soit Xn = (X1, . . . , Xn) un échantillon tiré selon une densité g Lipschitz
sur Rd, continue et bornée presque partout. Soit (rn)n ∈N une suite telle que l’on est dans le

régime parcimonieux nrdn → 0. De plus, on suppose que nk+2r
d(k+1)
n → ∞ lorsque n → ∞.

Soit ξk,n le kème diagramme de persistance de Č( 1
rn

Xn). Soit µk la mesure sur ∆+ = {(x, y) :
0 ≤ x < y ≤ ∞} définie sur les rectangles Rs,t,u,v = [s, t) × [u, v) par

µk(Rs,t,u,v) =

∫
Rd f

k+2

(k + 2)!

∫

(Rd)k+1

Hs,t,u,v(0, y1, . . . , yk+1)dy1 . . . dyk+1,

pour 0 < s ≤ t ≤ u ≤ v, où H est une fonction qui dépend de l’arrangement géométrique de
ses arguments. On a alors la convergence vague :

ξk,n

nk+2r
d(k+1)
n

v→ µk presque sûrement.

Des résultats similaires sont également présentés dans [Owa22] pour les autres sous-régimes

du régime parcimonieux nk+2r
d(k+1)
n → 0 et nk+2r

d(k+1)
n → c > 0.

Remarque II.19. On peut faire les commentaires suivants sur ce résultat surprenant à
première vue :

• La mesure limite µk dépend de la densité d’échantillonnage uniquement via la constante
multiplicative

∫
Rd f

k+2.
• La constante

∫
Rd f

k+2 est une quantité globale, tandis que les diagrammes de persistance
correspondent plutôt à des effects locaux.

• Supposons que l’on cherche à savoir si un nuage de points a été généré selon une den-
sité f1 ou f2 telles qu’il existe k tel que

∫
Rd f

k+2
1 ̸=

∫
Rd f

k+2
2 . En comptant le nom-

bre de points du diagramme de persistance qui tombe dans n’importe quel rectangle
(après renormalisation) va bien identifier la densité d’échantillonnage lorsque n est suff-
isamment grand. En particulier, pour ce problème de classification où l’information
homologique est inexistante, le ”bruit topologique” contient de l’information discrimi-
nante sur l’échantillonnage.

II.3.4 Liste détaillée des contributions

Les contributions de ce travail sont les suivantes :

(i) On a proposé, implémenté et testé une méthode de classification de mesures sans vectori-
sation. On a comparé sa performance à des méthodes standards d’analyse topologique
de données, de classification de séries temporelles, et de cytométrie en flux sur des jeux
de données correspondant.

(ii) On a développé une théorie englobant cette méthode et établi des bornes inférieures
et supérieures sur la complexité de Rademacher de la classe de fonctions F̃ définie
précédemment.
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(iii) On a établi des garanties théoriques propres au problème de classification de diagrammes
de persistance, afin de dinstinguer soit des échantillonnages provenant de variétés ayant
des groupes d’homologie différents, soit des densités d’échantillonnage différentes sur
la même variété. Ce travail a été l’occasion de généraliser le Théorème II.18 à des
échantillons sur variétés, tout en proposant une technique de preuve différente de celle
du papier original [Owa22].

II.4 Au-delà des diagrammes de persistance : caractéristique d’Euler et
multi-persistance

Nous venons de démontrer que les diagrammes contiennent de l’information utile à la fois loin
et près de la diagonale, selon les applications visées. Un défaut déjà souligné de la méthode
décrite dans la Section II.2 est son temps de calcul. En effet, afin de minimiser la persistance
totale Ω2, il faut calculer un grand nombre de diagrammes de persistance. De plus, on est
uniquement intéressé par la quantité

∑
(b,d)∈D(d−b) étant donné un diagramme de persistance

D. Ainsi, le calcul précis de toutes les coordonnées de tous les points du diagramme n’est
absolument pas nécessaire et beaucoup d’information est volontairement perdue lors du calcul
de la persistance totale. Malheureusement, il n’existe pas, à notre connaissance, de façon
simple de contourner ce problème et de calculer rapidement la persistance totale sans calculer
le diagramme entier. Cette observation a donné lieu à la question suivante :

Question II.20. Quelles statistiques sur les diagrammes de persistance peuvent être cal-
culées en temps linéaire directement des valeurs de filtration et sans calculer le diagramme ?
Comment les utiliser pour faire de l’analyse de données ?

II.4.1 Courbes caractéristiques d’Euler et leurs transformées intégrales

La Question II.20 est au coeur de la Section V, pré-publiée dans [HL23]. Afin de trouver
des descripteurs topologiques ne nécessitant pas de calcul de persistance, on revient à la
définition de la caractéristique d’Euler d’un complexe simplicial, précédemment défini dans
la Définition II.7. On avait remarqué que pour un complexe simplicial K de dimension d,
la quantité

∑d
k=0(−1)kβk(K) peut s’exprimer très simplement comme la somme alternée de

tous les simplexes, d’après la formule de la Définition II.7. Cependant, il n’y a pas d’astuce
similaire permettant de calculer rapidement la quantité

∑d
k=0 βk(K), et chaque βk doit alors

être calculé séparément, ce qui résulte en un temps de calcul beaucoup plus grand. Ainsi, il
semblerait que le fait d’alterner sur les dimensions permette d’avoir accès à des descripteurs
rapides. Dans cette logique, on définit la Courbe caractéristique d’Euler ou ECC pour Euler
characteristic curve :

Définition II.21. Soit K un complexe simplicial fini muni d’une filtration (Kt)t∈R. La courbe
caractéristique d’Euler est la fonction

χK : t ∈ R 7→ χ(Kt) ∈ Z.

Sur la Figure 17, on illustre la construction de la courbe caractéristique d’Euler sur une
filtration simple issue de [ZC04].

En pratique, la courbe caractéristique d’Euler est vectorisée pour pouvoir être utilisée dans
des algorithmes d’apprentissage automatique. Bien que ce descripteur semble assez grossier
de prime abord, il a été utilisé plusieurs fois dans la littérature, voir [SZ21, JKN20, AQO+22],
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(a) Filtration (b) ECC correspondante

Figure 17: Construction de la courbe caractéristique d’Euler d’une filtration

et nous montrerons dans la Section V que son pouvoir prédictif est essentiellement comparable
à celui des diagrammes de persistance, tout en ayant un temps de calcul extrêmement faible.

Afin d’extraire de l’information des courbes caractéristiques d’Euler, on considère des
transformées intégrales de ces fonctions, également appelées transformées hybrides dans notre
contexte, ou HT pour Hybrid transforms. Cet objet a été précédemment étudié dans [Leb22]
pour quelques unes de ses propriétés théoriques.

Définition II.22. Soit (Kt)t∈R une filtration d’un complexe simplicial K et χK sa courbe
caractéristique d’Euler. Soit κ ∈ L1(R). La transformée hybride de noyau κ est la fonction :

ψκ : ξ ∈ R
⋆
+ 7→ ξ ·

∫

R

κ(ξs)χK(s) ds.

A multiplication par ξ près, les transformées hybrides cöıncident avec les transformées
intégrales usuelles de courbes caractéristiques d’Euler. Par exemple, si κ = cos, cela cor-
respond à la transforme de Fourier en cosinus. Nous montrerons qu’une fois discrétisées,
les transformées hybrides sont des descripteurs robustes en analyse de données, plus partic-
ulièrement pour faire de l’apprentissage non-supervisé. De plus, le lemme suivant fait le lien
entre transformées hybrides et diagrammes de persistance et permet de répondre partiellement
à la Question II.20 :

Lemme II.23. Soit (Kt)t∈R une filtration, et ψκ sa transformée hybride de noyau κ. Soit
κ la primitive de κ telle que κ(x) −→

x→∞
0. Soit Dk = {(bki , d

k
i )}i=1,...,nk

le kème diagrame de

persistance de (Kt). Pour un simplexe σ ∈ (Kt), on note t(σ) le premier instant auquel il
apparâıt dans la filtration. On a alors, pour tout ξ ∈ R⋆+ :

ψκ(ξ) =
∑

k≥0

nk∑

i=1

(−1)k
(
κ(ξ · bki ) − κ(ξ · aki )

)
. (II.1)

De plus,

ψκ(ξ) = −
∑

σ∈K

(−1)dimσκ
(
ξ · t(σ)

)
. (II.2)

Ce lemme montre que pour tout κ qui tend vers 0 en l’infini, la fonction définie par
l’Equation (II.1) peut être calculée linéairement en les valeurs de filtration par l’Equation (II.2).
Si κ ne tend pas vers 0, on peut toujours utiliser l’Equation (II.2) pour approcher la trans-
formée hybride de noyau κ à constante près. Enfin, en plus d’être des descripteurs rapides et
puissants ne nécessitant pas le calcul du diagramme de persistance, les transformées hybrides
permettent une compréhension plus profonde du bruit topologique dans les diagrammes de

47



persistance. En effet, dans la Section II.3, nous avons démontré que les composantes peu
persistantes contiennent de l’information liées à l’échantillonnage et à des quantités locales
sur la variété. Néanmoins, l’étude de la façon dont ces phénomènes se manifestent dans le
bruit topologique est encore ouverte. Les transformées hybrides permettent d’aller un cran
plus loin dans l’analyse du bruit topologique, comme nous allons l’illustrer dans l’exemple
suivant.

On considère des échantillons de 500 points échantillonnés sur un tore plongé dans R3. La
première classe correspond à des échantillonnages uniformes sur le tore, simulés grâce à un
algorithme présenté dans [DHS+13]. La seconde classe correspond à tirer deux angles (θ, φ)
uniformément dans [0, 2π]2 et obtenir un point sur le tore via l’application ΨT2 : (θ, φ) 7→
(x1, x2, x3), où :





x1 = (2 + cos(θ)) cos(φ),
x2 = (2 + cos(θ)) sin(φ),
x3 = sin(θ).

Les échantillons de la deuxième classe ne sont pas tirés uniformément sur le tore. On considère
un problème similaire sur la sphère, où une classe correspond à 500 points tirés uniformément.
Pour l’autre classe, on tire 500 angles θ uniformément dans [0, π] et φ selon une loi normale
centrée en π. On obtient un point sur la sphère via la paramétrisation sphérique usuelle ΨS2 :
(θ, φ) 7→ (x1, x2, x3), où :





x1 = sin(θ) cos(φ),
x2 = sin(θ) sin(φ),
x3 = cos(θ).

Sur la Figure 18, on affiche le début des transformées hybrides de noyau κ = sin pour le
complexe de Čech sur quelques échantillons de chaque classe, pour la sphère et le tore.

(a) HT, tore (b) HT, sphère

Figure 18: ECC et HT, deux types d’échantillonnages sur le tore et la sphère

On remarque que les oscillations des transformées hybrides sont en phase et ont la même
amplitude pour des données sur la même variété, et apparaissent donc comme des signatures
de quantités globales du support de l’échantillonnage. Par ailleurs, sur la même variété, des
échantillonnages différents sont décalés verticalement et permettent de distinguer les deux
classes. Cette expérience constitue un premier pas vers une compréhension plus profonde des
quantités jouant un rôle dans le bruit topologique.
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II.4.2 Le défi de la multi-persistence

Jusqu’à présent, nous avons seulement étudié des filtrations de complexes simpliciaux telles
que la fonction de filtration est à valeurs réelles, voir la Définition II.8. Cependant, on
peut vouloir considérer des sous-niveaux de fonctions multi-valuées définies sur un complexe
simplicial. En analyse topologique des données, l’étude de filtrations à plusieurs paramètres
est appelée multi-persistance. Un des exemples les plus fructueux est de coupler la filtration de
Čech avec une fonction sur le nuage de points lui-même, par exemple un estimateur de densité,
voir [CB20]. Dans ce cas, l’estimateur de densité permet de filtrer les donnéees aberrantes qui
rendent la filtration de Čech instable. Cette extension pourtant simple en apparence pose de
nombreux problèmes théoriques et pratiques en persistance

En particulier, d’après [CZ09], il n’existe pas de ”diagramme de multi-persistance”. Quelques
travaux ont adapté des vectorisations usuelles à la bi-persistance, comme les landscapes dans
[Vip20], et les images persistantes dans [CB20]. De même, nos outils se généralisent naturelle-
ment à la multi-persistance: la courbe caractéristique d’Euler devient le profil caractéristique
d’Euler, voir [DG22]. Bien qu’il n’y ait désormais plus d’équivalent à l’Equation (II.1), les
transformées hybrides peuvent toujours être calculées en utilisant une formule analogue à
celle de l’Equation (II.2), et se distinguent désormais des transformées intégrales usuelles.
Cette méthode conserve une complexité très compétitive et nous permet d’utiliser jusqu’à
cinq filtrations sur certains types de données. En particulier, pour faire de la classification de
graphes, de nombreuses fonctions sur les noeuds ou les sommets peuvent mettre en évidence
des différences structurelles dans les graphes et peuvent ainsi être utilisées comme filtrations.
En plus d’être des vectorisations rapides et puissantes des diagrammes de persistances, les pro-
fils caractéristiques d’Euler ainsi que les transformées hybrides deviennent même une nécessité
afin de dépasser la contrainte de mono-persistance imposée par les diagrammes de persistance.

II.4.3 Garanties théoriques

Concluons cette partie avec quelques garanties théoriques sur les profils caractéristiques d’Euler
et les transformées hybrides. Ces résultats sont de deux natures différentes, et nous allons
énoncer ceux liés à la stabilité de ces descripteurs, dans le cas-particulier de filtrations par
sous-niveaux de fonctions définies sur le même complexe simplicial.

Stabilité Supposons que l’on filtre un complexe simplicial K via les sous-niveaux de deux
fonctions f, g : K → Rm, soit χf et χg les profils caractéristiques d’Euler correspondant et
soit ψκf et ψκg les transformées hybrides correspondantes, pour un noyau intégrable borné κ.
On a les deux résultats de stabilité suivant :

Lemme II.24. Soit M > 0. Alors,

∥(χf − χg)1[−M,M ]m∥1 ≤ (2M)m−1∥f − g∥1.
De plus, q ∈ [1,∞]. Il existe une constante C qui dépend seulement de q tel que

∥ψκf − ψκg ∥q ≤ C∥κ∥∞∥f − g∥1.
Dans ce lemme, la norme L1 d’une fonction f définie sur un complexe simplicial K est

définie par ∥f∥1 =
∑

σ∈K ∥f(σ)∥1. Ce lemme montre que ces deux descripteurs sont robustes
à des perturbations des filtrations. Malheureusement, ce résultat de stabilité n’est vrai qu’en
norme L1, qui fait intervenir le nombre total de simplexes dans K. Ce résultat de stabilité
est ainsi plus faible que la stabilité en norme infinie du Théorème II.15 pour la distance
bottleneck.
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Théorèmes limites En plus des résultats de stabilité, on montre que les descripteurs
de cette section vérifient des garanties asymptotiques lorsque calculés sur des filtrations
d’échantillons aléatoires. Dans le cas des courbes caractéristiques d’Euler, ce problème a
déjà été étudié dans la littérature. Notamment, dans [KRP21] les auteurs établissent un
théorème central limite pour la courbe caractéristique d’Euler. Dans le cas des transformées
hybrides, l’Equation II.1 établit que pour un noyau κ et une mono-filtration (Kt) ayant un
diagramme de persistance Dk en dimension k ∈ {0, . . . , d− 1}, on a

ψκ(ξ) =
d−1∑

k=0

⟨Dk, hξ⟩,

où hξ : (x, y) 7→ κ(ξy) − κ(ξx). Les diagrammes de persistance sont ici traités en tant que
mesures discrètes, comme dans la Section II.3. Cette observation élémentaire a les deux
conséquences suivantes :

• Les résultats évoqués en Section II.3.2 peuvent être appliqués à l’étude de la capacité
des transformées hybrides pour une famille de noyaux.

• Les garanties asymptotiques sur les diagrammes de persistance permettent d’obtenir des
résultats limites sur les transformées hybrides sous des hypothèses générales sur le noyau
κ. Plus précisément, on peut énoncer le résultat suivant qui combine le Théorème II.18
avec l’observation ci-dessus.

Théorème II.25. Soit X1, . . . , Xn un échantillon tiré selon une densité g sur Rd Lipschitz,

continue et bornée presque partout. Soit (rn)n∈N une suite telle que nrdn → 0 et nk+2r
d(k+1)
n →

∞ lorsque n → ∞. Soit ψκn la transformée hybride de la filtration de Čech de l’échantillon
renormalisé 1

rn
(Xi)

n
i=1. Soit T, a > 0 et κ ∈ L1(R). On suppose de plus que le support de κ

est inclus dans [0, T ]. Il existe alors d fonctions A0, . . . , Ad−1 dépendant uniquement de κ tel
que pour tout ξ > a,

1

nk+2r
d(k+1)
n

· ψκn(ξ) −→
n→∞

d−1∑

k=0

(−1)k

(k + 2)!
·Ak(ξ) ·

∫

Rd

gk+2(x) dx p.s..

Comme pour le Théorème II.18, la densité de l’échantillonnage se retrouve seulement
dans les quantités globales

∫
Rd g

k+2 pour k = 0, 1, . . . , d− 1. Comme pour les diagrammes de
persistance, les transformées hybrides permettent de discriminer entre des échantillons issus
de densités différentes pour peu que n soit suffisamment grand. Finalement, en Section V, on
énoncera un théorème limite en multi-persistance qui découle également de l’observation de
l’Equation (II.1).

II.4.4 Liste détaillée des contributions

Nos contributions pour ce travail sont les suivantes :

(i) On a réalisé une étude qualitative approfondie des profils caractéristiques d’Euler et des
transformées hybrides sur des données synthétiques et réelles, et étudié l’influence du
paramètre de noyau pour les transformées hybrides.

(ii) On a montré que les profils caractéristiques d’Euler permettaient d’obtenir des scores
de classification proches de l’état de l’art lorsque mis en entrée d’un classifieur robuste
comme une forêt aléatoire tout en ayant un temps de calcul minimal.
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(iii) On a montré que les transformées hybrides permettaient de compresser efficacement de
l’information, comme le font les transformées de Fourier. En conséquence, elles sont
bien plus performantes que les profils caractéristiques d’Euler pour des problèmes non-
supervisés ou pour des problèmes supervisés avec une contrainte de budget sur la taille de
la vectorisation. Nous avons également illustré leur capacité à extraire de l’information
fine sur un jeu de données réel.

(iv) On a établi plusieurs garanties théoriques. On a obtenu des résultats de stabilité simi-
laires à ceux du Théorème II.15 qui explicitent la robustesse de ces objets à une perturba-
tion de la filtration. Nous avons également établi la convergence simple des transformées
hybrides associées à des filtrations de Čech sur des échantillons aléatoires ainsi que leur
normalité asymptotique. Finalement, nous avons établi une loi des grands nombres pour
les transformées hybrides sur des multi-filtrations.
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Plan détaillé de la thèse

Cette dissertation est organisée comme suit : dans la Section III, on étudie des problèmes de
régression sur variété en utilisant une pénalité topologique. Ce travail est basé sur le paradigme
d’une décomposition en signal et bruit topologique discuté en Section II.2. Ce travail a été ef-
fectué en collaboration avec Krishnakumar Balasubramanian, Gilles Blanchard, Clément Lev-
rard et Wolfgang Polonik, et a été publié dans [HBB+22]. Dans la Section IV, on a développé
une méthode de classification supervisée sur des mesures. On propose deux algorithmes qui
s’inscrivent dans un cadre plus générale d’apprentissage statistique sur des mesures, pour
lequel on a établi plusieurs garanties théoriques. Ce travail est particulièrement dédié à la
classification de diagrammes de persistance, tant pour la théorie que pour les expériences. Il
s’agit d’une collaboration avec Gilles Blanchard et Clément Levrard, pré-publié dans [HBL23].
Finalement, dans Section V, on s’affranchit des contraintes computationnelles et de mono-
persistance des diagrammes en calculant des descripteurs basés sur la caractéristique d’Euler,
ainsi que leurs transformées intégrales afin de réaliser diverses tâches d’apprentissage automa-
tique. Ce dernier travail a été réalisé en collaboration avec Vadim Lebovici et a été pré-publié
dans [HL23].
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III Topologically regularized models on manifolds

In this section, we study how can persistence diagrams help tackle a regression problem on a
compact manifold M. In order to take advantage of the underlying geometry and topology
of the data, the regression task is performed on the basis of the first several eigenfunctions of
the Laplace-Beltrami operator of the manifold, that are regularized with topological penalties.
The proposed penalties are based on the topology of the sublevel sets of either the eigenfunc-
tions or the estimated function, as described in Section I.2. The overall approach is shown to
yield promising and competitive performance on various applications to both synthetic and
real data sets. We also provide theoretical guarantees on the regression function estimates,
on both its prediction error and its smoothness (in a topological sense). Taken together,
these results support the relevance of our approach in the case where the targeted function
is “topologically smooth”. The work from this section has been published in [HBB+22] and
is joint work with Krishnakumar Balasubramanian, Gilles Blanchard, Clément Levrard and
Wolfgang Polonik.
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III.1 Introduction

Problems of regression on manifolds are of growing importance in statistical learning. Given
a manifold M, the specific goal is to retrieve a true regression function f⋆ : M → R from data
Xi (for i = 1, . . . n) that lie on the manifold M and noisy real-valued responses of the form
Yi = f⋆(Xi) + εi where εi are the additive noise. Such problems arise in many applications
where the data samples Xi, although represented by very high dimensional spaces like sets
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of images and 3D volumes, often have an underlying low-dimensional structure and lie on a
manifold. This is in particular the case in medical applications. For instance, [GWR+14]
and [JZC+15] study regression problems on a set of images of brains. While the set of all
images is of very large dimension (the number of pixels), the set of brain images turns out to
have a comparatively very small intrinsic dimension. Although there are ways to recover the
metric of the underlying unknown manifold [BMTY05], in this section we adopt an extrinsic
approach.

A standard approach for estimating f⋆ is based on expanding the function in a suitable
basis to take advantage of the underlying manifold structure. To this end, we consider the
Laplace-Beltrami operator [Ros97], which has been broadly studied, both for its theoretical
properties [Zel08, Zel17, SX10] and its great power of applicability in statistical data analysis
[Hen90, Lev06, CL06, Sai08, MM07, GBL18, KMK+20]. In our context, we chose the basis
to be the set of eigenfunctions of the Laplace-Beltrami operator. Since it is impossible to
have access to a closed form expression for the Laplace-Beltrami eigenfunctions for various
manifolds in full generality, we replace them by the eigenvectors of the Laplacian matrix of a
graph built on the data; see [Moh91] for a complete treatment. Using the eigenvectors of the
graph Laplacian for diverse learning tasks is an idea that has its roots in the works of [BN03]
and has become extremely popular since. There is a plethora of literature on this topic, and
we refer to [WSST15] for a theoretical treatment, and [BNS06] and [CGLS16] for two out of
many applications. The use of the graph Laplacian spectrum is backed-up by solid guarantees
regarding its convergence towards the spectrum of the Laplace-Beltrami operator. We refer
to [vLBB08] for general results adopting the point of view of spectral clustering, [BIK15] for a
more recent treatment, and [GTGHS20] for the recent generalization of the latter to random
data.

In order to efficiently estimate f⋆, we will use a penalization procedure; see [Gir14] or
[Mas07] for a complete treatment of these methods. Specifically, we will present two types of
penalties that both leverage topological information. These penalties are based on persistent
homology, a field that has its origins in algebraic topology and Morse theory [Mil63]. The
use of persistent homology has become increasingly popular over the past decade, popular-
ized, among others, by the books [EH22] and [BCY18]. It offers a new approach to data
representations. Penalties based on persistence follow a heuristic similar to the one based on
total variation (see, for instance, [ROF92, HR16]) which works by reducing the oscillations
of the estimated function in order to reconstruct a smooth function. While the heuristics
for total variation penalties and persistence based penalties are similar, they still work quite
differently, as discussed below.

Penalizing the persistence has been used recently in [CNBW19] for classification applica-
tions, and in [BGNDS20] in the context of Generative Adversarial Networks. Furthermore,
[CCG+21] has examined optimization with such penalizations in the context of various appli-
cations. The novelty of the present work resides in the use of such models in the framework
of a regression over a manifold and its joint utilization with a Laplace eigenbasis, enabling a
deeper understanding of its topology. It is also the opportunity to study higher dimensional
examples where the behavior of topological persistence is fundamentally different from the
one of total variation. Indeed, we will see that topological persistence is a very convenient
way to prevent the estimated functions from oscillating too much in a stronger way than more
standard approaches.

The rest of the section is organized as follows: in an intuitive fashion, Section III.2 presents
the motivation behind the introduction of a topological penalty for a Laplace eigenbasis
regression and how it can overcome the limitations of total variation denoising. Section III.4
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discusses two types of topological penalties: one is equivalent to solving a Lasso problem with
weights and therefore has a simple theoretical analysis and even has a closed-form solution,
while the other one is non-convex. Despite the lack of guarantees in non-convex optimization,
we will present an oracle result for the estimated parameter. We also present a result on
controlling the topology, or on topological sparsity, of one of our approaches. In Section III.5,
we will present the results of experiments conducted on both synthetic and real data, in
order to highlight the strengths and weaknesses of such an approach as opposed to standard
regression methods. We have made the code used in several examples available here.1

III.2 Motivation

III.2.1 Laplace eigenbasis regression

We study a regression problem on a compact, smooth submanifold M of dimension d of RD

without boundary. Throughout this section, we assume the data points (Xi)
n
i=1 are sampled

uniformly and independently over M. Furthermore, for i = 1, . . . , n, the responses Yi are
generated based on the model

Yi = f⋆(Xi) + εi, (III.1)

where (εi)1≤i≤n are i.i.d. zero-mean sub-Gaussian noise variables independent of all the Xi’s.
Our goal is to retrieve the function f⋆, also referred to as the regression function, from the
given observations (X1, Y1), . . . , (Xn, Yn).

A natural choice of basis to perform a regression and exploit the manifold-structure as-
sumption is the Laplace-Beltrami eigenbasis. Analogously to the Euclidean case, the Laplace-
Beltrami operator ∆ is (the negative of) the divergence of the gradient: ∆f = −∇·∇f . If we
denote by g the metric tensor and by gij the components of its inverse, we have the following
expression in local coordinates (with Einstein summation convention):

∆f = − 1√
det(g)

∂i(
√

det(g) gij∂jf).

We remark here that due to our uniform sampling assumption on the Xi, if suffices to consider
the standard Laplace-Beltrami operator as above. The methodology and theory we develop
will immediately extend to non-uniform sampling schemes based on weighted Laplace-Beltrami
operators [Ros97, Gri09] as long as the sampling distribution is sufficiently light-tailed (say,
it satisfies Poincaré inequality). In order for our exposition to convey our main contribution
on topological penalization, we stick to the uniform sampling assumption in the rest of this
section.

Notice that in the Euclidean case, where g is the identity matrix, we retrieve the usual well-
known formula for the Laplacian (up to a sign convention). The operator ∆ is a self-adjoint
operator with compact inverse which implies that its set of eigenvalues is discrete and that they
all are non-negative [Ros97]. We can then sort the eigenvalues (λj)j≥1 in nondecreasing order
and approximate f⋆ as a linear combination of the corresponding normalized eigenfunctions
(Φj)j≥1. Besides being an orthonormal basis of L2(M) with many smoothness properties, it
is a known fact that the functions (Φj)j≥1 are related to the topology of the manifold [Zel08].
In addition, the Laplace-Beltrami eigenbasis can be seen as an extension of the Fourier basis
to general manifolds. Indeed, on the two dimensional flat-torus R2/2πZ2, the eigenvalues of

1https://github.com/OlympioH/Lap_reg_topo_pen
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the Laplace-Beltrami operator are (n2 +m2)m,n∈N and possible corresponding eigenfunctions
are (x, y) 7→ sin(nx) sin(my) up to a normalization constant (see for instance Chapter 4.3 of
[Zel17]). By analogy with the approximation of a function by its truncated Fourier series in
classical analysis, it is natural to choose the eigenfunctions corresponding to the p smallest
eigenvalues as a suitable expansion basis for the signal.

Once the number p of features is chosen, the problem boils down to using the observed
data for finding θ ∈ Rp such that

∑p
i=1 θiΦi is a good approximation to f∗. To this end, we

introduce the design matrix X ∈ Rn×p, where Xij = Φj(Xi), and we let θ̂ be a minimizer of

L(θ) = ∥Y −Xθ∥22 + µΩ(θ), (III.2)

where Y = (Y1, . . . , Yn) is the response vector and Ω is a penalty term also depending on the
Laplace-Beltrami eigenfunctions. Our choices for Ω will be discussed below. The scalar µ is a
calibration factor aiming at reducing overfitting. In case we do not know the eigenfunctions
Φi, we will use eigenvectors of a graph Laplacian as sample approximation (see below for
details).

Examples of classical penalties include L1-regularization, also called Lasso (see [Bv11] for
an exhaustive treatment), and total variation penalty. Although the latter provides good
theoretical guarantees (see, for example [HR16] for oracle results and [DN18] for a metric
entropy based approach), it fails to capture some aspects of the geometry of the data. Indeed,
consider the square [0, 1]2 (or equivalently the 2D torus), discretize it as small squares of size
ε (we can assume ε to be equal to 1/N for some integer N to avoid boundary issues) and
consider a pyramidal function fε on each square with value 0 at the boundary of the square,
and a maximum of ε attained in the middle of the square (see Figure 19). The total variation
of the so obtained function is equal to

∑
cells

∫
|∇fε| = ♯cells

∫
cell |∇fε|. Since |∇fε| = 2,

it yields that TV (fε) = 2. In particular, it does not depend on ε, which means that total
variation is blind to very small perturbations of the function and is therefore not suited to
deal with such a type of noise. We are now going to see in the following subsection a type of
penalty that can capture such small oscillations.

Figure 19: Pyramidal function fε.
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Figure 20: Persistence diagram of a real-valued function.

III.2.2 Total Persistence

In this section, we present the most basic concepts of topological data analysis as introduced
in the reference textbooks by [EH22] and [BCY18]. We will try to keep the notions as intuitive
as possible and do not lay out the technical details of homology theory. Consider the sublevel
sets {f−1((−∞, t])}+∞

t=−∞ of a given function f . As t traverses R from −∞ to +∞, the topology
of the sublevel sets changes and we keep track of these changes in the so-called persistence
diagram. More precisely, suppose we are interested in k-dimensional topological features
present in a sublevel set (or in a topological space), namely a connected component for k = 0,
a cycle for k = 1, a void for k = 2, and so on. For simplicity, assume that f is a Morse
function (in particular, its critical points are non-degenerate), such that the topology of the
sublevel sets of f only changes at levels t corresponding to extremal points (see Theorem III.1
below). Then, as the level t increases, such k-dimensional features might start to exist at a
certain level tb and they might disappear by merging with another component at a different
level td, where td might be equal to +∞ if it never disappears. Then we place a point in the
plane with coordinates (tb, td). The set of all such points (each corresponding to a different
k-dimensional feature) along with the diagonal y = x (accounting for the fact that in general
features might appear and disappear at the same level or time) forms the k−th persistence
diagram of f . It is a multi-set of R2 as different features might appear and disappear at the
same levels. The example of a persistence diagram for a one-dimensional function shown in
Figure 20 is taken from [BCY18].

For the persistence diagram of a function f to be well-defined, we need the function to
satisfy a tameness assumption [EH22]. Sufficient for this is to assume f to be a Morse function.
The following result makes precise the above mentioned fact that for Morse functions the
topology of the sublevel sets of f can be simply described in terms of its critical points,
defined by ∇f(x) = 0. Recall that critical points of Morse functions are non-degenerate (non-
singular Hessian), and that the index of a critical point is the number of negative eigenvalues
of the Hessian.

Theorem III.1 ([Mil63]). Let f be a Morse function on a smooth manifold M and denote
by Ma the sublevel set f−1((−∞, a]).

58



• Suppose that there is no critical value between a < b. Then Ma and Mb are diffeomor-
phic and Mb deformation retracts onto Ma.

• Suppose p is a non-degenerate critical point of f with index s and that f(p) = q. We
further assume there are no other critical points p′ with f(p′) = q. Then for ε small
enough, Mq+ε is homotopy equivalent to Mq−ε with a s-handle attached.

As a consequence, for Morse functions all the coordinates of the points in the persistence
diagrams of every dimension are critical values of f . Furthermore, in the persistence diagram
of a feature dimension k, the birth times are critical values of index k and the death times are
critical values of index k+ 1. We define the persistence of a feature to be its lifetime, namely
its death time td minus its birth time tb, and define the k−persistence of a function, denoted
by Persk(f), as the sum of all individual persistences in dimension k. In the literature this
is sometimes also called the k-total persistence. When we talk about the persistence of a
function Pers(f), it is understood to be the sum of all persistences over all dimensions. The
total sum of all the k-th Betti numbers is called the total Betti number of this space.

Note that the existence of features with infinite persistence would make Pers(f) equal to
∞. To avoid this degeneracy, the quantity Pers(f) is modified (see [PRSZ20]) by replacing the
infinite persistence of a feature born at b by max(f) − b. The number of topological features
with infinite persistence equals the total Betti number ζ = ζ(M) of the manifold M. In what
follows, we will always consider persistences to be clipped as such. We also state a useful
result from Chapter 6 of [PRSZ20] in Lemma III.2 below. It can be seen as a corollary of the
famous stability inequality in topological data analysis from [CSEH07]. The result essentially
states that two functions close in uniform norm necessarily have close persistence.

Lemma III.2 ([PRSZ20]). Let f and h be two Morse functions on a manifold M with total
Betti number ζ. Denote by ν(f) the total number of points (with finite persistence) in the
persistence diagram of f . Then

Pers(f) − Pers(h) ≤ (2ν(f) + ζ)∥f − h∥∞.

This result remains true when f is Morse and h is only continuous. Under those circum-
stances, Pers(h) can be defined by the (possibly infinite) limit of the total persistence of a
sequence of Morse functions that uniformly converges towards h, as done in [PPS19]. It is
worth mentioning here that more precise stability results for difference of total persistences
with respect to the L1 metric (instead of L∞) are available in [ST20], in the case where func-
tions are defined on top of CW-complexes. Though adaptation of such results to sublevel sets
based filtration seems possible, applications to this particular case of regression on manifold
would lead to the same kind of bounds. Indeed, Lemma III.8 ensures that sup-norm bounds
are of the same order as L1 bounds in this case. Nonetheless, we believe that substantial
gains might be expected from using these refined bounds in more general regression settings.

III.3 Methodology

In applications we construct persistence diagrams from random data — think of a random
function, such as an estimated regression function, or a function with noise added; see below.
The standard paradigm in topological data analysis is that in such random persistence dia-
grams the features with a high persistence are true features, whereas the features with a low
persistence that lie near the diagonal are noisy perturbation of the topology. We denote that
recent results from [BHPW20] are changing this paradigm since relevant topological informa-
tion can be found in low-persistence features. Though it is likely that some local information
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may be retrieved from these small persistence features (such as geometrical characteristics of
the support), in a regression setting given a noisy input, topological smoothness of the regres-
sion function is enforced via discarding these small oscillations. We propose two penalization
strategies that intend to achieve this goal. We can see an example of the influence of noise on
the persistence diagram Figure 21 where we have computed the value of a function at 1000
points uniformly sampled in the square [0, 10] and where we have added Gaussian noise to
each entry with three different levels (σ = 0.01, σ = 0.05, and σ = 0.1), and then plotted
an interpolation. The function considered here is the sum of four Gaussian functions on a
square. This function has a single topological feature of dimension 0 (a connected component
is born at level 0 and never dies) and four topological components of dimension 1 (that die
at the height of the local modes of each Gaussian). When adding noise to this function,
the resulting persistence diagram has many points and the noisy function has a very large
persistence. The higher the noise level, the further the noisy features are from the diagonal,
until it is hard to distinguish the four true topological features from the noisy features. We
can see this observation reflected in the plots of the function itself. This motivates to consider
methods that sparsify the persistence diagram in order to denoise the input.

III.3.1 Two types of penalties

We will introduce two different ways of penalizing the persistence. The first one aims at
reducing the dimension of the problem by selecting a ‘small’ number of eigenfunctions, while
the second one is more focused on denoising and providing a smoother output.

We first consider the penalty

Ω1(θ) =

p∑

i=1

|θi|Pers(Φi), (III.3)

where the (Φi)
p
i=1 are eigenfunctions of the Laplace-Beltrami operator. From a theoretical

viewpoint, every homological dimension should be penalized in order to capture every possi-
ble oscillation of the regression function. To give an illustration, considering the pyramidal
oscillations of the function depicted in Figure 23 upward oscillations are captured by homol-
ogy of dimension one, whereas downward ones may be seen on the 0-dimensional persistence
diagram. Depending on the problem at hand, the persistence of only one or a few chosen
homological dimensions can be penalized as we will see in Section III.5. When treating high-
dimensional data, it actually becomes a computational necessity to only penalize by the first
homological dimensions, as we will discuss in Section III.5.4. The idea behind the penalty is
that the more a function oscillates, the more likely it is to overfit the data. The penalty Ω1

can be understood as a weighted Lasso penalty, with weights being the persistences of each
eigenfunction. The weighted Lasso is a broadly studied model (see [Bv11] for an exhaustive
reference). It induces sparsity in the representation of the function, and in our context it aims
at introducing an inductive bias towards discarding eigenfunctions with a large persistence.

The second persistence based penalty considered here is

Ω2(θ) = Pers

(
p∑

i=1

θiΦi

)
. (III.4)

While Ω2 does not induce sparsity over the parameter θ, it aims at inducing a certain kind
of ‘topological sparsity’. Indeed, the goal of this penalty is for the reconstructed function to
have a much smaller number of points in the persistence diagram than the noisy function.
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(a) Original function (b) σ = 0.03

(c) σ = 0.05 (d) σ = 0.1

(e) Original function (f) σ = 0.03

(g) σ = 0.05 (h) σ = 0.1

Figure 21: Influence of noise on persistence diagrams.
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(a) Eigenvalue (b) Total variation (c) Persistence

Figure 22: Various quantifiers of the oscillations of the eigenfunctions of the Laplacian.

Intuitively, this is achieved by optimizing θ so as to cancel out oscillations of the individual
eigenfunctions Φi when summing them up. A main computational issue with the penalty Ω2

is its non-convexity. Indeed, if we consider the two functions cos(nx) and cos(ny), they both
have a persistence of order n, yet the sum of the two has a persistence of order n2. However, a
result in [CCG+21] shows the convergence of a stochastic gradient descent algorithm towards
a critical point of the loss function for the penalty Ω2.

Finally, we remark that one can potentially consider variants of penalty Ω1, for instance,
a weighted Ridge penalty of the form

∑p
i=1 θ

2
i Pers(Φi). Preliminary experiments have shown

that the weighted Lasso performs better than the weighted Ridge. In addition, as we will see
in Section III.5, in applications a combination of the two penalties described above is quite
efficient, and we actually benefit of the selection properties of the weighted Lasso.

III.3.2 Contrasting persistence and total variation

While persistence at a first glance might appear to be a measure of the regularity of a func-
tion similar to total variation, this only is true for a function in one dimension, where the
persistence is half the total variation for functions on the circle S1 (see [PRSZ20]). In higher
dimensions these two penalties are no longer equivalent as discussed in the following.

A first indication of the differences between total variation and persistence is given in
Figure 22, showing Laplace-Beltrami eigenvalues on the flat torus along with persistences and
total variations of their eigenfunctions sin(nx) sin(my). Note that for this figure, the persis-
tence and the total variation have been computed numerically for eigenfunctions defined on
a regular grid. Within an eigenspace, the eigenvalues are sorted in lexicographical order on
(n,m). We defer to Section III.5.1 for more details on how to numerically compute persis-
tences. We remark here that the x-axis (corresponding to the index of eigenfunctions) in the
sub-figures are all aligned.

Figure 22 shows that the eigenvalues increase ‘smoothly’ and using them as weights for a
Lasso-type penalty is a way to regularize the oscillatory behavior of eigenfunctions of large
index. However, it can be seen in panel (c) in Figure 22 that while the persistences of the
eigenfunctions show an increasing trend with increasing eigenvalues, the persistences also show
an overlaid periodic behavior. A similar behavior can be seen for the total variation, but with
a much smaller periodic effect. The significant periodic behavior of the persistences means
that eigenfunctions can have similar persistences, even if their eigenvalues are quite differ-
ent. Vice versa, eigenfunctions with similar (or equal) eigenvalues can have quite different
persistences. Indeed, for even fixed integers n and m, let Φ : (x, y) 7→ sin(nx) sin(my) be a cor-
responding eigenfunction. Its gradient is ∇Φ(x, y) = (n cos(nx) sin(my),m sin(nx) cos(my))
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and it therefore has 2nm critical points. By using the fact that the number of saddle points
must be equal to the sum of the number of maxima and the number of minima because the
Euler characteristic of the torus equals 0, we obtain that Φ has exactly nm/2 maxima, nm/2
minima and nm saddles. One of the minima, two of the saddle points, and one of the max-
ima generate essential homology classes whose corresponding persistent homology classes live
forever. Following the convention taken, those are truncated at the maximum value of the
function. The persistence diagram of dimension 0 has a point of persistence 2 and mn/2 − 1
of persistence 1. Therefore, the 0-persistence is mn/2 + 1. For homological dimension 1, we
have mn/2 + 1 points, all of them have persistence 1, so the 1-persistence is mn/2 + 1. For
homological dimension 2, the only point in the persistence diagram has coordinates (1, 1).
The total persistence is therefore mn + 2. The case where n or m is odd is very similar
and also yields that the persistence is of order mn. This means that within an eigenspace
with eigenvalue λ = n2 + m2, a penalty on the persistence is proportional to mn, therefore
eigenfunctions sin(nx) sin(my) with n or m small are more likely to be kept in the model. For
instance, the eigenfunctions (x, y) 7→ sin(10x) sin(y) and (x, y) 7→ sin(8x) sin(6y) correspond
to eigenvalues 101 and 100 but have very different persistence, namely five times larger for
the latter eigenfunction. This effect is much less pronounced for the total variation penalty.

While the above already shows some differences between the two types of measures of reg-
ularity of functions, the following observation is perhaps even more relevant for our purposes.
To this end, let us reconsider the example of the 2-dimensional pyramidal function fε shown
in Fig. 19. We already observed above that the TV-penalty does not depend on the choice of
ϵ. To understand the behavior of the persistences of these functions, observe that the sublevel
sets of the function fε are empty for levels t < 0, and then for t ∈ (0, ε), the sublevel sets have
1/ε2 homology components of dimension 1, that all merge at ε. Therefore, the 1-persistence
diagram of fε has 1/ε2 points, all born at level 0 and dying at time ε. Thus, fε has a 1-
persistence of 1/ε, which thus increase to infinity as ϵ → 0. This is in stark contrast to the
behavior of the total variation. In a similar fashion, the sublevel sets of the function −fε have
1/ε2 connected components from −ε to 0 that all merge at 0. Therefore, Pers0(−fε) = 1/ε
while it also has a total variation that does not depend on ε.

∥ · ∥∞ Lip TV Pers1
ε 2 2 1/ε

Table 1: Quantities characterizing fε.

As an example of a function where both
Pers0 and Pers1 are of importance, consider
the same discretization of the space as above,
where this time we alternate between a pyra-
mid of height ε and a reversed pyramid of
height −ε (see Figure 23). Similarly to the
two previous cases, the persistence diagram of this function has 1/(2ε2) points of coordinate
(−ε, 0) (for the 0-homology) and 1/(2ε2) points of coordinate (0, ε) (for the 1-homology).
Therefore, its 0-persistence is equal to its 1-persistence, both equal to 1/(2ε), while the total
variation here again does not vary with ε.

It is straightforward to build similar examples in higher dimensions and the effect will
be even more striking: For instance, discretize the d−dimensional hypercube with cubes of
size 1/εd and consider a function increasing linearly towards the center of each cube until it
reaches a maximum of ε. Such a function still has a total variation of order 1 no matter the
value of ε, however, its (d− 1)-persistence will be equal to 1/εd−1.

The takeaway of the above discussion is as follows: Consider Table 1 which provides a
summary of various measures of regularity of the pyramidal function fε. We see that if we
penalize the supremum norm of this function, the penalty will have no effect as ε → 0. If
we try to penalize its Lipschitz constant or its total variation, the penalty will be the same,
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Figure 23: Alternating pyramids.

no matter the scaling ε and it will therefore have a very limited effect. In contrast to that,
when penalizing the persistence, the effect of the penalty will become quite important as ε
becomes small. Such a function fε is assimilated to noise as ε→ 0 and we want to penalize it
as much as possible, which is something that can be achieved by persistence but not by total
variation.

III.3.3 Complexity of functions with bounded persistence: A negative result

When penalizing persistence, a natural question that immediately arises is to measure the
complexity of the set of bounded-persistence functions. Loosely speaking, if the set of candi-
date functions has a large complexity, seeking for a candidate function (e.g. minimizing an
empirical loss) can be very challenging and furthermore, the control of the excess risk between
f⋆ and its estimation becomes non-informative (see [MRT18, Sections 3 and 11] for a more
detailed exposition). For regression problems, a standard measure of the size (complexity) of
a set of functions F is the so-called fat-shattering dimension introduced in [KS94].

Definition III.3. Let γ > 0. A set of points X = {X1, . . . , Xl} is said to be γ-shattered
if there exists thresholds r1, . . . , rl such that for any subset E ⊂ X, there exists a function
fE ∈ F such that fE(xi) ≥ ri + γ if xi ∈ E and fE(xi) < ri − γ if xi /∈ E for all i. The
fat-shattering dimension fatγ(F) of the class F is then equal to the cardinality of the maximal
γ-shattered set X.

Note that the fat-shattering dimension of the class F depends on the parameter γ > 0.
A class F has infinite fat-shattering dimension if there are γ-shattered sets of arbitrarily
large size. It is well-known that bounds on the fat-shattering dimension lead to bounds
on the covering number and hence the metric entropy and Rademacher complexity of the
function class. Furthermore, [BLW96] showed that a function class F is learnable (in the sense
of [BLW96, Definition 2]) if and only if it has finite fat-shattering dimension. Unfortunately,
in the case of bounded persistence functions, we have the following result:

Theorem III.4. Let HV = {f : [0, 1]d → [0, 1]|Pers(f) ≤ V }. Let 0 < γ < 1/2.

• If d = 1, fatγ(HV ) ≤ 1 + ⌊Vγ ⌋.
• If d ≥ 2, then fatγ(HV ) = ∞ if 2γ ≤ V, and fatγ(HV ) = 1 otherwise.
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Proof. First we note that if d = 1, for any function f : [0, 1] → [0, 1], we have that Pers(f) =
1
2(TV (f) + |f(1) − f(0)|), and therefore:

1

2
TV (f) ≤ Pers(f) ≤ TV (f).

We can therefore derive the claim for d = 1 using the fact that the γ−fat shattering dimension
of the set of functions with total variation smaller than V is equal to 1 + ⌊V/2γ⌋. We refer
to Corollary 4.3 from [Sim97] for a detailed proof. Note that if we had considered functions
on the circle, by effectively setting f(0) = f(1), we would have had Pers(·) = 1

2TV (·), and
therefore the claim for d = 1 would be an equality.

In general, in the case where 2γ > V , a point can be shattered by constant functions; on
the other hand, given two points x, y that are shattered, there must exist two real numbers
rx, ry and two functions f, g in the family such that f(x) > rx + γ > rx − γ > g(x) and
f(y) < ry − γ < ry + γ < g(y). Thus (depending if rx ≥ ry holds, or the opposite) either
f or g must necessarily have a range of values larger than 2γ and therefore its persistence
must be larger than 2γ, which yields a contradiction. Hence, in any dimension fatγ(HV ) = 1
if 2γ > V .

Assume now d = 2 and 2γ ≤ V . Consider a set of n points x1, . . . , xn in [0, 1]2 that form a
regular n−gon. Let E ⊆ {1, . . . , n} be an arbitrary subset of indices. We consider a function
f such that {

f(x) = −V/2 if x ∈ Conv(xi)i/∈E ,
f(xi) = V/2 if i ∈ E,

and f increases smoothly on Conv(xi)
n
i=1 \ Conv(xi)i/∈E and if x /∈ Conv(xi)

n
i=1,

f(x) = f(ΠConv(xi)ni=1
(x)) where ΠC(x) denotes the projection of x onto a convex set C. The

function f defined as such has a persistence of V and the set HV therefore γ-shatters this set
of n points. Similar examples can be built for d > 2.

This observation highlights a challenge to overcome when constructing penalties involving
topological persistence. This serves as our main motivation for our proposed penalties, in
order to restrict the size of the set of candidate functions based on eigenbasis expansions.

III.3.4 Empirical eigenfunctions

For simple manifolds (a flat open space, a torus or a sphere for instance), computing the
spectrum of the Laplace-Beltrami operator is analytically tractable. However, for general
manifolds this is not possible. Moreover, in practical problems, the manifold itself may be
unknown. To deal with this, we take the standard empirical approach and build an undirected
graph on the vertex set V = {X1, . . . , Xn}, with weights Wij between the vertex i and the
vertex j that are computed according to the ambient metric. In the following experimental
study, we consider nearest neighbor and Gaussian-similarity based graphs. We denote by
L = D − W the unnormalized graph Laplacian matrix with degree matrix D and weight
matrix W . The degree matrix is a diagonal matrix simply defined as

Dii =

n∑

j=1

Wij and Dij = 0 if i ̸= j.

The normalized Laplacian matrix is then given by L′ = D−1/2LD−1/2. Both the matrix
L and L′ are symmetric positive semi-definite and therefore admit a basis of orthogonal
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(a) EF 1 (b) EF 2 (c) EF 10

(d) EF 27 (e) EF 54 (f) EF 75

Figure 24: Several estimated eigenfunctions of the graph Laplacian, 10000 points sampled on
T2, 8-NN graph.

eigenvectors. We will only focus on the normalized Laplacian since it provides slightly better
convergence guarantees [vLBB08]. The use of these eigenvectors is justified by the fact that
they converge to the true eigenfunctions of the Laplace-Beltrami operator in various metrics
as the number of points n tends to infinity and the scaling parameter of the graph tends
to 0 [Kol98, GTGHS20]. A few estimated eigenfunctions based on nearest-neighbor graph
Laplacian are plotted in Figure 24, for points regularly sampled on the unit square folded
into a torus. The nearest-neighbor graph is built thanks to the ambient metric of R3 (and
not the metric on the torus). This is justified because the results of [GTGHS20] ensure the
convergence of the spectrum of the graph Laplacian built on the ambient metric. This is
due to the fact that locally, the metric on the manifold resembles the ambient metric (see
Proposition 2 of [GTGHS20]). In what follows, the i−th eigenvector of the Graph Laplacian
matrix is denoted by Φ̂i.

We also remark that while we previously defined the persistence for the true Laplace-
Beltrami eigenfunctions, we can simply extend the definition for estimated graph-Laplacian
eigenfunctions on V by considering f i :=

∑n
j=1 Φ̂i(Xj)1Vj where Vj is the Voronoi cell centered

on Xj . We also use the notation Pers(Φ̂i) = Pers(f i). Finally, we also mention that using the
spectrum of the Laplacian of a graph is a broadly developed idea to perform various statistical
learning tasks such as regression or clustering; see, for example, [CGLS16], [IS14], [NJW02]
and [vLBB08].
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III.4 Theoretical guarantees

We now provide novel theoretical guarantees for the proposed persistence regularization
methodology.

Assumption 1. We assume the true regression satisfies one of the two assumptions below.

A1 There exists θ⋆ ∈ Rp with ∥θ⋆∥0 = s such that f⋆ =
∑p

i=1 θ
⋆
i Φi, where Φj are the eigen-

functions of the Laplace-Beltrami operator with corresponding eigenvalue λj. In this case, we
say that f⋆ has a sparsity index of s over the basis (Φi)

p
i=1.

A2 There exists θ∗ ∈ Rp such that f⋆ =
∑p

j=1 θ
⋆
jΦj and f⋆ is a Morse function.

A remark is in order regarding the sparsity assumption on f∗ in Assumption 1-A1. As
discussed in Section III.3.2, the relationship between the topological regularity of the eigen-
functions and their ordering is not known to be monotone in general, and it only exhibits a
periodic trend. Hence, to maintain generality, we assume f∗ is a sparse linear combination of
the eigenfunctions.

III.4.1 Theoretical guarantees for the Ω1 penalization

We are first interested in the properties of the penalty Ω1 introduced in Section III.3.1. This
approach can simply be understood as a weighted Lasso with a random design. Since the
Laplace-Beltrami eigenfunctions form a basis of L2(M), the compatibility condition [vdGB09]
is verified and we have a fast rate of convergence.

Theorem III.5. Assume that f∗ satisfies Assumption 1-A1. Assume we observe Yi =
f⋆(Xi) + εi where εi are zero-mean sub-Gaussian random variables with parameter σ2. Let θ̂
be the minimizer of L given by (III.2) with penalty Ω1 given by (III.3). Then there exists a
constant C(M) that depends only on the manifold M such that for all x > 0, we have that if

µ ≥ 2σ

√
pC(M)(ln(p) + x)

n
,

then with probability larger than

1 − 2e−x − e
− 0.15n

C(M)p
+ln(p)

,

we have

1

n
∥X(θ̂ − θ⋆)∥22 + µ

p∑

i=1

Pers(Φi)|θ̂i − θ⋆i | ≤ µ2
s

2
.

The proof of the above theorem is provided in Section III.6. For the result in Theorem III.5
to hold with large probability, the number of samples n should be of order at least p ln(p).

Under those circumstances, if the trade-off parameter µ is chosen of order σ

√
p ln(p)
n as this

theorem suggests, it can be shown that the overall prediction error is of order σ2p ln(p)s
n , up

to multiplicative constants [vdGB09]. According to Lemma III.8 in Section III.6, the use of
a Laplace-Beltrami eigenbasis here translates into an additional multiplicative factor of p as
opposed to a standard Lasso with a design matrix satisfying the RIP conditions [Bv11].

In the case where we study an approximation of the Laplace-Beltrami eigenbasis by using
the estimated eigenfunctions Φ̂i of the graph Laplacian, the design matrix can be chosen to
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be orthonormal. Under those circumstances, the Lasso has an explicit solution, which we
illustrate next. Let a design matrix X̂ be built on the estimated eigenfunctions or the graph
Laplacian eigenvectors. Then, the minimizer θ̂ of the functional

L′(θ) = ∥Y − X̂θ∥22 + µ

p∑

i=1

|θi|Pers(Φ̂i), (III.5)

if a soft-thresholding type estimator given for all j by:

θ̂j = Pers(Φ̂j)Φ̂
T
j Y

(
1 − µPers(Φ̂j)

2|Φ̂T
j Y |

)

+

. (III.6)

To see this, consider a new design matrix X̂ such that X̂i,j = Φ̂j(Xi)/Pers(Φ̂j). Minimizing
the functional in (III.5) is then equivalent to minimizing the functional

L′(θ) = ∥Y − X̂θ∥2 + µ∥θ∥1,

by solving a standard Lasso problem. This function is convex in θ and therefore admits
a global minimum (not necessarily unique) that we will denote by θ̂. Although L′ is not
differentiable because of the L1 penalty, we can still write the optimality conditions in terms
of its sub-differential. Specifically, we have the sub-differential to be

∂L′(θ) = {−2X̂T (Y − X̂θ) + µz : z ∈ ∂∥θ∥1},

from which the optimality condition could be obtained as

X̂T X̂θ̂ = X̂TY − µ

2
ẑ,

where ẑ ∈ Rp is such that ẑj = sgn(θ̂j) whenever θ̂j ̸= 0 and ẑj ∈ [−1, 1] whenever θ̂j = 0.
Due to the orthogonal design, the term X̂T X̂ simplifies and a straightforward analysis of the
possible cases given the sign or the nullity of θ̂j , for all j leads to the solution of θj given
in (III.6) for all j. We therefore have an explicit condition on the eigenbasis selection process,
that is θ̂j = 0 if and only if |⟨Φ̂j , Y ⟩| ≤ µ

2Pers(Φ̂j). Stated otherwise, an eigenvector with a
high persistence has to explain the data significantly well to be kept in the model.

III.4.2 Theoretical guarantees for the Ω2 penalization

The penalty Ω2 being non-convex, a thorough theoretical study seems more complicated.
Nonetheless guarantees on the prediction error and on the persistence of the reconstruction
can be derived, as described below.

Theorem III.6. Let f∗ satisfy Assumption 1-A2. Assume we observe Yi = f⋆(Xi)+εi where
εi are zero-mean sub-Gaussian random variables with parameter σ2. We further assume that
for all i = 1, . . . , n, Xi is sampled uniformly from M and that εi is independent of Xi. Let θ̂
be the minimizer of L given by (III.2) with penalty Ω2 given by (III.4). Then for all x > 0,
the estimated parameter θ̂ verifies with probability larger than

1 − 2e−x − exp

( −0.1n

C(M)p
+ ln(2p)

)
,
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that

∥θ⋆ − θ̂∥2 ≤ 16
pσ2

n

[
1 + C(M)

√
2x

n

]
(1 +

√
x)2 + 4C(M)p (2ν(f⋆) + ζ)2µ2.

Here, we recall that µ is the trade-off parameter, C(M) is a constant that depends only on
the manifold M, ζ is the total Betti number of M and ν(f⋆) is the number of points in
the persistence diagram of f⋆. In addition, we also have under the same hypotheses with
f̂ =

∑p
j=1 θ̂iΦi:

Pers(f̂) ≤ Pers(f⋆) + 16
pσ2

µn

[
1 + C(M)

√
2x

n

]
(1 +

√
x)2 + 8C(M)p(2ν(f⋆) + ζ)2µ.

The proof of the above theorem is provided in Section III.6. This result holds with large
probability if the number of samples n is at least of order O(p ln(p)). Choosing µ = O(1/

√
n)

ensures that the trade-off term is of the same order as the main term, and we obtain a rate
of convergence of order O(p/n) for ∥θ̂ − θ∗∥, which is what we can expect from such a model
without any sparsity assumption. The second part of this theorem ensures the topological
consistency of the reconstructed function f̂ , namely that it has a persistence that remains
close to the persistence of the regression function f⋆ and is therefore topologically smooth to
some extent. Again choosing µ = O(1/

√
n) (as suggested above to keep a classical convergence

rate for the parameter) leads to a consistency of the persistence of f̂ towards that of f∗ at
a rate O(p/

√
n). We therefore need a larger sample size (of order at least O(p2)) to obtain

consistency of the total persistence.
Note that according to Equation 6.14 from [PRSZ20], the number of features with per-

sistence larger than some given value c can be upper bounded by (κ∥∇f∥∞/c)d where κ is a
constant that depends only on the metric of the manifold. This shows a connection between
the topological smoothness developed in this section and a more usual notion of smoothness.

III.4.3 Theoretical prospects

A first possible extension of the theoretical results presented in this section can be to generalize
Theorem III.6 to mis-specified models, that is, cases where the target function f⋆ no longer
belongs to Span(Φ1, . . . ,Φp) but can be any L2 function. To this end, a lower bound on the
bias incurred with such a model for a function with fixed total persistence may be found in
Proposition 2.1.1 from [PPS19] in the case of surfaces.

Theorem III.7. Let M be a compact orientable Riemannian surface without boundary. De-
note by Fλ the set of smooth functions over M, such that for every f ∈ Fλ, ∥f∥2 = 1 and
∥∆f∥2 ≤ λ. Then there exists a constant κ that only depends on M and its metric such that
for every Morse function f : M → R,

inf{∥f − h∥∞|h ∈ Fλ} ≥ 1

2(ν(f) + 1)
(Pers(f) − κ(λ+ 1)) .

This means that for a fixed λ, if the persistence of the target function f is too large, it will
be impossible to approximate it with eigenfunctions of corresponding eigenvalue smaller than
λ, and in order to have a chance of approximating it, we will have to allow for more oscillating
functions by letting λ increase. Balancing the estimation and approximation errors, based on
the above result might lead to a data-driven choice for selecting p.
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The other possibility of extension would be to establish consistency results for the case of
estimated eigenfunctions, based on the graph Laplacian approach. For example, in order to
derive an oracle inequality similar to that of Theorem III.6, we would need to establish the
convergence of the persistence of the eigenvectors towards the persistence of the eigenfunc-
tions. A potential approach is to leverage the stability results for persistence (for example,
Lemma III.2), and combine them with error rates for eigenfunction estimation (for exam-
ple, recent results by [DWW21] and [CGTL21] for the empirical uniform norm). However,
there are several technical challenges to overcome, in order to implement the above proof
strategy. For example, it is not clear if the estimated eigenfunctions satisfy the regularity
conditions required, for example, by stability results like Lemma III.2. Furthermore, the re-
sults from [DWW21] and [CGTL21] are existence results, and do not resolve the inherent
identifiability issue arising in eigenfunction estimation. In addition, the following two cases
are to be distinguished:

• Semi-supervised setting: This corresponds to the case when there is an additional set
of unlabeled observations (Xn+1, . . . , Xn+m) uniformly and independently sampled over
M. In this case, the eigenfunctions could first be estimated using the above unlabeled
observations and the regression coefficients could be subsequently estimated using the
estimated eigenfunctions.

• Supervised setting: In this case, the same set of observations (X1, . . . , Xn) is used to
estimate the eigenfunctions and the regression coefficients. Extra difficulties arise in
this case due to the dependency in estimating the eigenfunctions and the regression
coefficients using the same set of observations. We remark that this is the approach we
take in the experiments as we discuss in Section III.5.

III.5 Experimental results

III.5.1 Experimental design

We have applied the following experimental routine in order to estimate the function f⋆, given
a set of points (Xi)

n
i=1 in RD that are assumed to lie on a manifold M of dimension d and a

vector of real responses (Yi)
n
i=1.

• Build a proximity graph on the data points Xi. Many options are possible, in most
experiments we have taken a k−nearest neighbor graph with k ≃ log(n) but we also
sometimes consider Gaussian weighted graphs, for instance in Section III.5.3.

• Compute the normalized Laplacian matrix of the graph.
• For a fixed p ≤ n, compute the first p eigenvectors of the Laplacian matrix, which yields

a new design matrix in Rn×p where each column is an eigenvector.
• For the penalty Ω1, compute the persistence of each eigenvector, divide each column of

the design matrix by its persistence and solve a Lasso with cross-validation.
• For the penalty Ω2, we start from a random vector θ0 ∈ Rp and perform a stochastic

gradient descent of L, where we compute the persistence of
∑p

i=1 θiΦ̂i at each iteration,
similarly to what is done in [CCG+21].

The method that has been the most efficient is to take p = n for Ω1 to perform a variable
selection, using Lasso sparsity properties. We then perform a gradient descent of the loss
function with penalty Ω2 on the subset of eigenvectors previously selected. The ”vanilla”
penalty Ω2 (without pre-selection step) is itself numerically outperformed in terms of MSE
by Ω1. This can be explained by Theorem III.6 : without performing a preliminary variable
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selection, the dimension of the problem does not guarantee a good reconstruction of the source
function. This dimension reduction also offers a modest acceleration of the computational cost
for the optimization of the loss with penalty Ω2 as we will see in Section III.5.4. In the tables
below, the results for the penalty Ω2 are always understood to have been obtained this way.

The routine previously described works for the denoising problem where we have a label
for each data point. If we are interested in prediction problems, where the set of covariates
is split in two: one part with labels and one part without, we build the graph on all the data
points since all the points are assumed to lie on M but we train the model only on the points
for which we have a label at our disposal.

Numerically, to compute the persistence of a function f for which we know the values
at points x1, . . . , xn, we build the alpha-complex introduced in [EH22] on the vertex set
(x1, . . . , xn) where the filtration value of a k-dimensional simplex {xi0 , . . . , xik} is equal to

max
i∈{i0,...,ik}

f(xi). For the alpha-complex to convey the same topology as the underlying man-

ifold, we truncate it by keeping only simplices whose circumradius is small enough (namely
smaller than half the reach of the manifold, see e.g., [BCY18]). This reach parameter is
known in the simulations of Section III.5.2. Should it not be known, it could be estimated
(for instance, using methods developed by [BHHS22]). In the real data examples of Section
III.5.3, the underlying simplicial complex is the extension of the nearest-neighbor graph used
to compute the Laplacian eigenbasis. We claim that if the number of neighbors is chosen with
care, we will also retrieve the topology of the underlying manifold. If using Gaussian-weighted
graphs, we introduce a proximity parameter which is equivalent to considering a truncated
Rips-filtration. Note that this simplicial complex is only computed once, and does not impact
the overall computational cost, even when the ambient dimension is high. Here, we have used
the Gudhi library [MBGY14] to compute the persistence given this filtration.

In what follows, we will present the results of several experiments conducted both on
synthetic and real data to investigate the relevance of our approach in practice. We compare
our method to standard regression methods on manifolds: Kernel Ridge Regression (KRR),
Nearest-neighbour regression (k-NN), Total variation penalty (TV) as well as graph Lapla-
cian eigenmaps with a L1 penalty (Lasso) and a weighted Lasso where the weights are the
total variation of each eigenvector, computed on the graph (Lasso-TV). The performance is
measured in terms of root mean squared error between the estimated and the true functions
at the data points. Its expression is given by

RMSE(f̂) =

√√√√
n∑

i=1

(f ⋆(xi) − f̂(xi))2

n
.

All hyperparameters have been tuned by cross validation or grid-search. The code used for
data on a Swiss roll and the spinning cat in 2D is available here.2

III.5.2 Simulated data

Illustrative example In order to illustrate the behavior of the Ω2-penalization model,
we first look at a synthetic setting where the function we try to reconstruct is a sum of 4
Gaussians, to which we add a large noise (Figure 21).

The persistence diagram of the true function to be estimated has four points in its 1-
homology corresponding to the 4 cycles in each Gaussian, all being born at a neighboring

2https://github.com/OlympioH/Lap_reg_topo_pen
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saddle and dying at the corresponding local maximum, and one point in its 0-homology
dying at infinity corresponding to the only connected component. The 0-homology points
on the diagonal correspond to sampling noise. When noise is added, the visual chaos of the
observation is supported by its persistence diagram: it has a lot of features and the statistical
noise added to the measurement here is converted into topological noise.

In Figure 25 we compare the results of a stochastic gradient descent penalizing Ω2 against
a Lasso estimation. The reconstruction is visually better and is also better in terms of MSE.
Indeed, when penalizing the persistence, we have managed to keep the four most persistent
one-dimensional features in the persistent diagram (although their persistence has diminished)
and we still observe four peaks, while most of the noise has been removed. Although the Lasso
enables some denoising, it has only been able to reconstruct 2 to 3 peaks and does not offer
the same denoising performance. Note that it is also possible to consider a topological penalty
where we penalize the persistence of the function except the 4 most persistent points in 1-
homology and the most persistent point in 0-homology like in [BGNDS20]. In this case, we
can be more coarse in the choice of the trade-off µ since the penalty Ω2 must then be set to
0. This shows that if one is given an a priori on the topology of the function to reconstruct,
it can be included in the model very easily.

(a) Function estimated by a
Lasso

(b) Function estimated by the
topological penalty Ω2

(c) Persistence diagram of the
Lasso estimate

(d) Persistence diagram of the
Ω2 penalty estimate

Figure 25: Reconstruction of the sum of four Gaussians.

Torus data We simulate data on a torus which we recall is homeomorphic to S1 × S1,
parametrized by the embedding ΨT2 : (θ, φ) 7→ (x1, x2, x3):





x1 = (2 + cos(θ)) cos(φ),
x2 = (2 + cos(θ)) sin(φ),
x3 = sin(θ).

Following the approach of [DHS+13], sampling uniformly on the torus may be carried out
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Table 2: RMSE of the reconstruction for n points lying on a torus, average on 100 runs.

n σ Lasso Lasso-TV Ω1 Ω2 KRR k-NN TV

300 0.5 0.261 ± 0.019 0.241 ± 0.017 0.220 ± 0.019 0.223 ± 0.019 0.217 ± 0.012 0.237 ± 0.017 0.413 ± 0.016

300 1 0.381 ± 0.038 0.337 ± 0.043 0.281 ± 0.038 0.288 ± 0.037 0.292 ± 0.025 0.401 ± 0.029 0.509 ± 0.026

1000 0.5 0.174 ± 0.011 0.171 ± 0.010 0.157 ± 0.010 0.156 ± 0.011 0.172 ± 0.008 0.167 ± 0.009 0.421 ± 0.008

1000 1 0.290 ± 0.024 0.266 ± 0.021 0.212 ± 0.018 0.209 ± 0.018 0.222 ± 0.017 0.285 ± 0.013 0.513 ± 0.015

(a) Original function (b) Noisy observation

Figure 26: Regression function on a Swiss roll.

via sampling φ uniformly in [0, 2π] and θ according to the density g(θ) = 1
2π

(
1 + cos(θ)

2

)
on

[0, 2π]. In practice, this is performed by a rejection sampling. Note that sampling θ and φ
uniformly and independently does not provide a uniform sampling on the torus as we will
observe a higher density of points in the inside of the torus. A function on the torus is
identified with a function of (θ, φ). To set up the regression problem, we define the target
response f∗(θ, φ) = ξ[−17(

√
(θ − π)2 + (φ− π)2 − 0.6π)] where ξ is the sigmoid function.

Note that f∗ is radial symmetric, depending only on the distance between (θ, φ) and (π, π).
This signal function has been studied because it has a simple topology that illustrates the
topological denoising method. It has first been introduced by [NSJ07] for similar purposes.
The comparison of the RMSE for all methods can be found in Table 2.

Data on a Swiss roll We now consider data on a Swiss roll which is a two dimensional
manifold parametrized by the mapping (x, y) 7→ (x cosx, y, x sinx). We have set as target
function

f∗(x, y) = 4 exp(−((y − 7)2/20 + (x− 6)2/5)) + 2 cos2(x) sin2(y),

for (x, y) ∈ [1.5π, 3.5π] × [0, 21]. The function is plotted Figure 26.

Here, we observe that the penalty Ω2 performs the best and benefits from the selection
properties of the regularization with penalty Ω1. Data on a Swiss roll shows the limitations
of Kernel methods when the number of points is low, as the geodesic metric can be very
different from the ambient metric. The use of a k−NN graph is a solution to bypass this
problem since at a small scale the two metrics are close. We see in Table 3 that a topology-
based penalty is particularly efficient when the noise level becomes important. Although
Kernel Ridge regression and Total Variation penalties provide a very good reconstruction
and should be preferred when the noise is low, they become quite unstable as the noise level
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Table 3: RMSE of the reconstruction for 500 points on a Swiss roll, average on 100 runs.

σ Lasso Lasso - TV Ω1 Ω2 KRR k-NN TV

0.2 0.422 ± 0.035 0.421 ± 0.031 0.491 ± 0.065 0.398 ± 0.026 0.186 ± 0.006 0.505 ± 0.020 0.200 ± 0.006

0.5 0.498 ± 0.036 0.478 ± 0.026 0.472 ± 0.043 0.455 ± 0.020 0.476 ± 0.014 0.532 ± 0.020 0.494 ± 0.017

0.7 0.549 ± 0.041 0.525 ± 0.033 0.534 ± 0.032 0.489 ± 0.021 0.526 ± 0.017 0.549 ± 0.021 0.671 ± 0.022

1 0.628 ± 0.0430 0.593 ± 0.035 0.572 ± 0.0600 0.546 ± 0.030 0.637 ± 0.026 0.587 ± 0.023 0.920 ± 0.029

1.3 0.689 ± 0.049 0.648 ± 0.042 0.615 ± 0.064 0.595 ± 0.038 0.746 ± 0.026 0.646 ± 0.025 1.056 ± 0.043

(a) Baseline image (b) Image rotated by 30◦ (c) Image rotated by 90◦

Figure 27: Data set for the experiments on a one dimensional manifold with real data.

increases, whereas all Laplacian eigenmaps based methods as well as a k-NN regression are
somehow robust to noise. Note that among all possible penalties on Laplacian eigenmaps
based models, Ω2 ran on the eigenfunctions selected by Ω1 always yield the best results.

III.5.3 Real data

Spinning cat in 1D This model has also been tried on real data. We consider a data set
of n = 72 images of the same object rotated in space with increments of 5◦. The data lie on
a one-dimensional submanifold of R16384, the images having size 128 × 128 pixels. We can
see some of the images from the dataset Figure 27. For each image, we want to retrieve the
angle of rotation in radians of the object. The source vector we want to estimate is therefore
(0, 5π/180, 10π/180, . . . , 355π/180) ∈ R72 .

We have built a Gaussian weighted graph on the data points, using the ambient L2 metric
between images for the weights. Using a geodesic distance between images would probably
yield better results, but the use of the ambient metric is enough to have convergence of the
graph Laplacian eigenvectors towards the eigenfunctions of the Laplace-Beltrami operator on
the manifold according to [GTGHS20].

We have tried different values of the scaling parameter t in the Gaussian weights

Wij =
1

n

1

t(4πt)d/2
e−

∥xi−xj∥2

4t .

We depict in Figure 28 the aspect of some eigenfunctions as a function of the rotation
degree of the baseline image for t = 1 and t = 10. Here, we can see that the value t = 1 is
too small: indeed, although the graph-Laplacian eigenvectors converge to the true Laplace-
Beltrami eigenfunctions as n→ ∞ and t→ 0, this only occurs if t verifies a particular scaling
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(a) t=1, EF 1 (b) t=1, EF 13 (c) t=1, EF 47

(d) t=10, EF 1 (e) t=10, EF 13 (f) t=10, EF 47

Figure 28: Estimated eigenfunctions of the manifold Laplacian evaluated at each image, as
functions of the degree of rotation of the object in the image.

Table 4: RMSE of the prediction of the angle of rotation of the spinning cat in 1D, average
on 100 runs.

σ Size train/test Lasso Lasso-TV Ω1 Ω2 KRR k-NN

0 68/4 0.79 ± 0.59 0.56 ± 0.52 0.38 ± 0.51 0.35 ± 0.49 0.22 ± 0.47 0.25 ± 0.50

0.5 68/4 0.89 ± 0.60 0.70 ± 0.51 0.59 ± 0.52 0.53 ± 0.48 0.47 ± 0.47 0.44 ± 0.47

0 60/12 0.96 ± 0.50 0.74 ± 0.46 0.58 ± 0.47 0.54 ± 0.46 0.45 ± 0.41 0.65 ± 0.41

0.5 60/12 1.04 ± 0.56 0.85 ± 0.50 0.71 ± 0.48 0.66 ± 0.49 0.57 ± 0.42 0.77 ± 0.44

with respect to n according to [GTGHS20]. Here, we only have a small number of data at
hand (n = 72), and therefore, the value t = 10 visually seems to be more satisfying. Indeed,
the data are on a circle (of some large dimensional Euclidean space) and we would expect the
eigenfunctions to converge towards the spherical harmonics for the circle, which are oscillating
functions. For t = 1, all the eigenfunctions are highly localized which is not quite satisfying.
In addition, a preliminary study yielded a much better performance of the parameter t = 10
over t = 1 for the corresponding regression task. For a larger index, the eigenfunctions start
to be localized around an image of the manifold, reminding a wavelet-type basis.

Unlike the synthetic experiments, where we have only focused on denoising, here we are
interested in the prediction properties of the method. To this aim, the data are randomly split
between a training set and a validation set. The graph is then built on the whole dataset (since
the data points are all assumed to lie on the same manifold). The optimization procedure is
then only performed on the labels from the training set, and we measure the mean square
error between the prediction on the new points and the true values from the validation set.

We see here that although an approach based on the penalization of the topological persis-
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Table 5: RMSE of the prediction, regression on a 2D manifold with real data, average of 100
runs.

train/test Lasso Lasso-TV Ω1 Ω2 KRR k-NN

900/100 0.346 ± 0.031 0.344 ± 0.036 0.302 ± 0.032 0.291 ± 0.029 0.281 ± 0.027 0.312 ± 0.035

800/200 0.351 ± 0.033 0.317 ± 0.030 0.283 ± 0.028 0.273 ± 0.029 0.290 ± 0.025 0.309 ± 0.024

700/300 0.348 ± 0.028 0.314 ± 0.029 0.293 ± 0.025 0.280 ± 0.024 0.296 ± 0.023 0.320 ± 0.023

600/400 0.344 ± 0.027 0.306 ± 0.025 0.304 ± 0.028 0.297 ± 0.027 0.290 ± 0.017 0.333 ± 0.024

tence yields results a lot better than a L1 or total variation penalty, it is still outperformed by
a kernel ridge regression. This might be due to the small number of data available on which
to build the graph or the fact that the topology of the manifold as well as the topology of the
source function are very simple and do not benefit fully from the method presented in this
section. We will see in the next subsection a set-up that shows the appeal of such a penalty.

Spinning cat in 2D We consider the data set from the previous subsection where in
addition each image is rotated in another direction by increments of 5◦. We thus dispose of a
two-dimensional manifold with the homotopy type of a torus, where the two parameters are
the degree of rotation of the object within the image θ and the degree of rotation of the image
itself φ. A few images of the dataset are plotted in Figure 29. We consider the same target
response as in the Subsection III.5.2:

f∗(θ, φ) = ξ[−17(
√

(θ − π)2 + (φ− π)2 − 0.6π)].

We add an i.i.d. Gaussian noise with standard deviation σ = 1 to the input. We select a
random subset of 1000 images over the dataset and randomly split it into a training set and a
testing set. In this example, we only penalize the 0−persistence since it has provided a better
performance on a preliminary study. The results can be found Table 5.

Among all prediction methods that make use of a Laplacian eigenbasis decomposition,
Ω2 on a subset of eigenvectors preselected thanks to Ω1 offers the best performance when
predicting to new data. Our method is overall comparable to Kernel Ridge Regression.

Electrical consumption dataset We have tried our method on the electrical consumption
dataset.3 The covariates are curves of temperature in Spain, averaged over a week. There
is a measurement for each hour of the day, thus each curve can be seen as a point of R24.
However, the possible profiles of temperature are very limited (namely, each curve is increasing
towards a maximum in the afternoon and is then decreasing), it is therefore believed that the
data lie on a manifold of smaller dimension. For each week, we try to predict the electrical
consumption in Spain in GW. Like in the previous experiments, the data are randomly split
between a training and a testing set, and the graph Laplacian is built on all the available
data. The results can be found Table 6.

On this dataset, we notice once again that a small training set is not really damaging
towards topological methods as opposed to more standard methods, illustrating once again
the generalization properties of the penalties Ω1 and Ω2. Here, all methods act relatively
similarly as they all predict well the electrical consumption over a week when it takes values
around its mean (see Figure 30). However, sometimes the electrical consumption over a week

3https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather
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(a) θ = 0◦, φ = 0◦ (b) θ = 30◦, φ = 0◦ (c) θ = 120◦, φ = 0◦

(d) θ = 0◦, φ = 30◦ (e) θ = 30◦, φ = 30◦ (f) θ = 120◦, φ = 30◦

(g) θ = 0◦, φ = 90◦ (h) θ = 30◦, φ = 90◦ (i) θ = 120◦, φ = 90◦

Figure 29: Dataset of images on a 2-dimensional manifold.

reaches a peak and all methods fail to capture the extreme values of the source function. It
makes perfect sense here that the knowledge of the temperature alone fails to explain perfectly
the global electrical consumption over an entire country, without taking into account any other
covariates.

III.5.4 Discussion on the computational cost

The good performance of topological penalties, both in terms of prediction and reconstruction
have to be nuanced by their computational cost. Table 7 shows the computational time in
seconds on a standard laptop without GPU for the example of Section III.5.2 (radial peak
function on a torus). All the methods have been implemented in Python using standard
libraries, except for Ω2 and TV for which the optimization of the loss function has been

Table 6: RMSE of the prediction of the average electrical consumption.

train/test Lasso Lasso-TV Ω1 Ω2 KRR k−NN

108/100 1.289 ± 0.067 1.216 ± 0.065 1.174 ± 0.072 1.251 ± 0.063 1.168 ± 0.072 1.188 ± 0.064

58/150 1.254 ± 0.044 1.265 ± 0.050 1.181 ± 0.048 1.165 ± 0.046 1.193 ± 0.051 1.211 ± 0.059
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Figure 30: Prediction of the electrical consumption using various methods.

implemented from scratch. This explains a higher cost as opposed to standard regression
methods that already benefit from an optimized implementation. This table presents the
cost for various methods for single-choices of parameters and without any cross validation.
We observe that computing the graph Laplacian and its spectrum is very fast (less than a
second if we have 1000 points and ask for the entire spectrum), and performing a Lasso has
a negligible cost. Most of the time is actually spent computing persistence diagrams : for
the penalty Ω1, we have to compute the persistence of each eigenfunction prior to performing
a standard Lasso. This turns out to be very costly if we ask for the whole spectrum and
somehow reasonable if we ask for a small value of p. Note that once these persistences have
been computed, estimating a new signal at the same data points can be done almost instantly.
Penalty Ω2 has a very high computational cost, which does not decrease significantly with the
dimension p. This is due to the fact that the persistence diagram of the entire function has
to be computed at each gradient step.

Computing the k−persistence of a simplicial complex with N simplices is done with the
Gudhi library [MBGY14] which relies on the algorithm of [EH22] and has an algorithmic
complexity of O(N3). Note that if we have n data-points, the number of k−dimensional
simplices is of order nk. This accounts for the very high computational cost of topological
penalties developed in this section. It is therefore infeasible to use this method in practice
for high homological dimensions, namely as soon as k ≥ 4; in practice we recommend to only
penalize k-persistences, for k up to 3. On the other hand, note that the computation time
is barely impacted by the intrinsic dimension of the manifold nor the ambient dimension.
We remark that when minimizing Ω2, the function does not change much from one epoch to
another and therefore, neither does its persistence diagram. Recomputing the diagram at each
iteration is therefore a naive approach and this is a possible way of improving the method on
the numerical side. We believe that using vineyards [CSEM06] would enable a computation
of the persistence diagram in linear time which would speed up the method, maybe at the
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Table 7: Computational time (in seconds), data on a torus

n p Lasso Ω1 Ω2 KRR k-NN TV

300 100 0.04 4.0 36.3 0.11 3.0 × 10−3 2.3

1000 100 0.19 14.2 129.9 0.13 5.6 × 10−3 3.6

300 300 0.11 8.5 39.7 0.11 3.0 × 10−3 2.3

1000 1000 0.94 132.3 195.9 0.13 5.6 × 10−3 3.6

cost of a higher space complexity.

III.5.5 Conclusion of the experiments

The methods developed in this section couple the use of a graph Laplacian eigenbasis and
a topological penalty. The first aspect enables to treat regression problems for data living
on manifolds with an extrinsic approach: nothing needs to be known on the manifold and
its metric, the graph Laplacian being computed on the ambient metric. Laplace eigenmaps
methods in general have proven to be useful when the manifold structure is quite strong,
illustrated here with the experiment on a Swiss roll. The use of a topological penalty has
multiple advantages: it acts as a generalization of total variation penalties in higher dimensions
and seems to be a more natural way to regularize functions, as observed in Section III.2.
Numerically, topological methods almost always provide better results than usual penalties
such as TV or L1 penalty. Here, we have developed two types of topological penalties: Ω1 aims
at performing a selection process of the regression basis functions, by discarding the ones that
oscillate too much in order to allow a good generalization to new data. On the other hand Ω2

directly acts on the topology of the source function and performs a strong denoising. Note that
the statistical noise on the data translates into a topological noise on the persistence diagram
of the corresponding function which is the one the regularization Ω2 acts onto, by providing
a powerful simplification of the persistence diagram of the reconstructed function. When the
underlying geometric structure is complex or the noise is important, Ω2 regularization on
the eigenfunctions selected by Ω1 provides a better reconstruction in terms of RMSE than
standard methods, including KRR which appears to be the most competitive one.

We have essentially penalized the total persistence of functions, but it would be possible
to numerically penalize any smooth function on the points of the persistence diagram. In
particular, establishing a penalty that would erase all low-dimensional persistence features
while keeping all the high-dimensional features could be of practical interest, likewise to the
smoothly clipped absolute deviation (SCAD) penalty developed by [FL01].

One major drawback of topological methods is their computational cost as opposed to a
simple KRR regression, especially when we need to compute topological persistence of high
dimensions.

III.6 Proofs for Section III.4

This section is devoted to the proofs of the main theoretical results of this section.
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III.6.1 Proof of Theorem III.6

We start by the proof of Theorem III.6 since it introduces a number of lemmas and results
that will also be useful to prove the other theorems. We start with a technical lemma based
on the celebrated Weyl’s Law [Cha84, Ivr16], reformulated for statistical regression purposes
in [BBM99]. It provides a control of the sup-norm of the sum of the squares of the first
Laplacian eigenfunctions.

Lemma III.8. Let M be a compact Riemannian manifold of dimension d and ∆ its Laplace-
Beltrami operator. Let λ1 ≤ λ2 ≤ . . . ≤ λp ≤ . . . be the eigenvalues of ∆, and for an eigenvalue
λi, we denote by Φi a normalized eigenfunction. Then there exists constants C ′(M) and
C(M) depending only on the geometry of M (with C(M) also potentially depending on the
dimension) such that for all p,

∥∥∥∥∥

p∑

i=1

Φ2
i

∥∥∥∥∥
∞

≤ C ′(M)λd/2p ≤ C(M)p,

where the last inequality follows by Weyl’s law.

We will also need the following concentration result, itself using Lemma III.8. Recall that
a random variable ϵ is called sub-Gaussian with parameter σ2 > 0 if E exp(λϵ) ≤ exp(σ2λ2/2)
for all λ ∈ R.

Lemma III.9. Denote for every X ∈ M, the tuple Φ(X) = (Φ1(X), . . . ,Φp(X)). Let
ε1 . . . , εn be i.i.d sub-Gaussian random variables with parameter σ2, independent of X1, . . . , Xn,
and let x > 0. Then, with probability larger than 1 − 2e−x,

∥∥∥∥∥
1

n

n∑

i=1

εiΦ(Xi)

∥∥∥∥∥ ≤ 2σ

√
p

n
(1 + 2

√
x)

√

1 + C(M)

√
2x

n
.

Proof. (of Lemma III.9). Our proof is based on a non-standard result by [Kon14], on con-
centration of Lipschitz functions of not necessarily bounded random vectors, which we briefly
introduce next.

For i = 1, . . . , n, let Zi be random objects living in a measurable space Mi with metric ρi,
endowed with measure µi. Define Z = (Z1, . . . , Zn) to be living on the product probability
space M1 × · · · ×Mn with product measure µ1 × · · · × µn, and metric ρ =

∑n
i=1 ρi. To each

(Zi, µi, ρi), we also associate symmetrized random objects Ξi = γiρi(Zi, Z
′
i), where Zi, Z

′
i ∼

µi are independent, and γi are Rademacher random variables (i.e. taking values ±1 with
probability 1/2) independent of Zi, Z

′
i. We also define ∆SG(Ξi) as the sub-Gaussian diameter

of Ξi, given by the smallest value of s for which we have EeλΞi ≤ es
2λ2/2 for all λ ∈ R.

Then using [Kon14, Proof of Theorem 1], we have for the random object Z as above, and a
1-Lipschitz function φ : M1 × · · · ×Mn → R, that

P(φ(Z) − Eφ(Z) > t) ≤ exp

(
− t2

2
∑n

i=1 ∆2
SG (Zi)

)
. (III.7)

In our context, for all 1 ≤ i ≤ n, we set Mi = Rp, and ρi = ∥ · ∥. For vi ∈ Rp, we define
the function φ as

φ : (v1, . . . , vn) 7→
∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥ .
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Note that, for two finite sets of vectors (vi)i and (wi)i, we have

∣∣∣
∥∥∑ vi

∥∥−
∥∥∑wi

∥∥
∣∣∣ ≤

∑
∥vi − wi∥.

Hence, the function φ is 1−Lipschitz with respect to the mixed ℓ1/ℓ2 norm of (Rp)n, meaning
that we will be able to apply Kontorovich’s result.

Now, considering ∥∑n
i=1 εiΦ(Xi)∥ , we proceed by conditioning on (Xi)1≤i≤n, that is, we

consider randomness only with respect to (εi)1≤i≤n, which are independent of the Xi’s; Eε

will denote the corresponding conditional expectation. First, note that we have the following
bound on the (conditional) expectation:

Eε

(∥∥∥∥∥

n∑

i=1

εiΦ(Xi)

∥∥∥∥∥

)
≤ Eε



∥∥∥∥∥

n∑

i=1

εiΦ(Xi)

∥∥∥∥∥

2



1
2

≤

√√√√σ2
n∑

i=1

∥Φ(Xi)∥2. (III.8)

Defining Zi = εiΦ(Xi), and considering the corresponding symmetrized object

Ξi = γi
∥∥εiΦ(Xi) − ε′iΦ(Xi)

∥∥ = γi|εi − ε′i|∥Φ(Xi)∥,

and since γi|εi− ε′i| has the same distribution as (εi− ε′i) by independence and symmetry, we
have

Eε (exp(λΞi)) = Eε

(
exp(λ(εi − ε′i)∥Φ(Xi)∥)

)
≤ exp(λ2σ2∥Φ(Xi)∥2)

since the εi, ε
′
i are independent sub-Gaussian of parameter σ2, hence we also have for the (con-

ditional) sub-Gaussian diameter ∆2
SG (Ξi) ≤ 2σ2∥Φ(Xi)∥2. Hence, by using (III.7) and (III.8),

we have that with probability larger than 1 − e−x,

∥∥∥∥∥
1

n

n∑

i=1

εiΦ(Xi)

∥∥∥∥∥ ≤ 2

√
σ2
∑n

i=1 ∥Φ(Xi)∥2x
n

+

√
σ2
∑n

i=1 ∥Φ(Xi)∥2
n

.

We now deal with removing the conditioning on Xi. Note that according to Lemma III.8,
we have for all i: ∥Φ(Xi)∥2 =

∑p
j=1 Φj(Xi)

2 ≤ C(M)p. We can therefore apply Hoeffding’s

inequality and obtain that with probability larger than 1 − e−x,

n∑

i=1

∥Φ(Xi)∥2 ≤ np+ C(M)p
√

2nx = np
(

1 + C(M)

√
2x

n

)
,

where we used that E∥Φ(Xi)∥2 = np, because the eigenfunctions are normalized. We therefore
obtain the desired result.

For a given function f on a probability space (X , π), we define the expectation operator
P (f) =

∫
fdπ. Given n i.i.d. random variables on X , we define the empirical measure

Pn(f) = 1
n

∑n
i=1 f(Xi). The following lemma provides a control of the empirical process of

the difference between the true function and its estimation:

Lemma III.10. With the same notation as before, we have that with probability larger than

1 − exp
(

−0.1n
C(M)p + ln(2p)

)
:

sup
∥β∥=1

(Pn − P )(⟨β,Φ(X)⟩2) ≤ 1

2
.
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Proof. (of Lemma III.10). First note that for the empirical process we have

sup
∥β∥=1

(Pn − P )(⟨β,Φ(X)⟩2) = sup
∥β∥=1

βt

(
1

n

n∑

i=1

Φ(Xi)Φ(Xi)
T − E[Φ(X)Φ(X)T ]

)
β

=

∥∥∥∥∥
1

n

n∑

i=1

Φ(Xi)Φ(Xi)
T − Ip

∥∥∥∥∥
op

,

where we have used E[Φ(X)Φ(X)T ] = Ip, since the components (Φi)1≤i≤p of Φ form an
orthonormal system of L2(M). Note that ∥Φ(Xi)Φ(Xi)

T ∥op = ∥Φ(Xi)∥2 is upper-bounded
by L = C(M)p according to Lemma III.8. We then use Theorem 5.1.1 from [Tro15] which
yields that:

P



∥∥∥∥∥

1

n

n∑

i=1

Φ(Xi)Φ(Xi)
T − Ip

∥∥∥∥∥
op

≥ 1

2


 ≤ 2pK

n
C(M)p . (III.9)

A simple calculation and evaluation of the numerical constant K = max
(

e−1/2

(1/2)1/2
, e1/2

(3/2)3/2

)

gives the required result.

We are now in a position to prove Theorem III.6. For fθ =
∑p

i=1 θiΦi, let the quadratic
loss be denoted by

γ(θ, (x, y)) = (fθ(x) − y)2 = (⟨θ,Φ(x)⟩ − y)2.

We first remark that since the Φi’s are an orthonormal system, E(fθ(X)−fθ⋆(X))2 = ∥θ−θ⋆∥2.
Moreover, it is a well-known property of the quadratic loss that the excess risk of any prediction
function f is the squared L2 distance to the optimal regression function f∗ = fθ∗ , so that
P (γ(θ, (X,Y ))) − P (γ(θ⋆, (X,Y ))) = E(fθ(X) − fθ⋆(X))2 = ∥θ − θ⋆∥2. Since the test data
point (X,Y ) ∼ P used to compute the risk is independent of the sample used to construct
the estimator θ̂, we also have P (γ(θ̂, (X,Y ))) − P (γ(θ⋆, (X,Y ))) = ∥θ̂ − θ∗∥2 (conditionally
on the training sample).

Since θ̂ is a minimizer of L given in (III.2) with Ω2(θ) = Pers(fθ), we have that

Pn(γ(θ̂, .)) − Pn(γ(θ⋆, .)) + µPers(fθ̂) − µPers(fθ⋆) ≤ 0. (III.10)

Therefore, we have

∥θ̂ − θ∗∥2 = Pγ(θ̂, ·) − Pγ(θ⋆, ·)
≤ (P − Pn)(γ(θ̂, ·) − γ(θ⋆, ·)) + µ(Pers(fθ⋆) − Pers(fθ̂)).

≤ (P − Pn)(−2(⟨θ⋆,Φ⟩ + ε)⟨θ̂,Φ⟩ + ⟨θ̂,Φ⟩2 + 2(⟨θ⋆,Φ⟩ + ε)⟨θ⋆,Φ⟩ − ⟨θ⋆,Φ⟩2)
+ µ(Pers(fθ⋆) − Pers(fθ̂))

≤ (Pn − P )(2ε⟨θ̂ − θ⋆,Φ⟩)︸ ︷︷ ︸
A

+ (Pn − P )(⟨θ̂ − θ⋆,Φ⟩2)︸ ︷︷ ︸
B

+µ(Pers(f⋆) − Pers(f̂))︸ ︷︷ ︸
C

.

We will now bound terms A, B and C below. First note that

A ≤ 2∥θ⋆ − θ̂∥sup
θ

〈
θ − θ⋆

∥θ − θ⋆∥ ,
1

n

n∑

i=1

εiΦ(Xi)

〉
≤ 2∥θ̂ − θ⋆∥

∥∥∥∥∥
1

n

n∑

i=1

εiΦ(Xi)

∥∥∥∥∥ ,
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and that Lemma III.9 provides control of the norm on the right-hand side. Next note that
according to Lemma III.10, we have

B ≤ 1

2
∥θ̂ − θ∗∥.

Finally, to control term C, we simply apply Lemma III.2, which yields

C = µ(Pers(f⋆) − Pers(f̂)) ≤ µ(2ν(f⋆) + ζ)∥f̂ − f⋆∥∞
= µ(2ν(f⋆) + ζ)∥⟨θ̂ − θ∗,Φ(·)⟩∥∞

≤ µ(2ν(f⋆) + ζ)∥θ̂ − θ⋆∥
∥∥∥∥∥

p∑

i=1

Φ2
i

∥∥∥∥∥

1/2

∞

≤ µ
√
C(M)(2ν(f⋆) + ζ)∥θ̂ − θ⋆∥√p,

where the second to last inequality uses the Cauchy-Schwarz inequality, and the last is using

Lemma III.8. Finally, we have, with probability larger than 1−2e−x− exp
(

−0.1n
C(M)p + ln(2p)

)
,

∥θ̂ − θ⋆∥2 ≤ 2∥θ̂ − θ⋆∥ 2σ

√
p

n
(1 +

√
x)

√

1 + C(M)

√
2x

n

+
1

2
∥θ̂ − θ⋆∥2 + ∥θ̂ − θ⋆∥µ

√
C(M)(2ν(f⋆) + ζ)

√
p.

A simple calculation then gives the first claim.
To prove the second claim of Theorem III.6, notice that from (III.10) we deduce that

Pers(fθ̂) ≤ Pers(fθ⋆) +
1

µ
(P − Pn)(γ(θ̂, ·) − γ(θ⋆, ·)) +

1

µ
(Pγ(θ⋆, ·) − Pγ(θ̂, ·)).

Since 1
µ(Pγ(θ⋆, ·) − Pγ(θ̂, ·)) ≤ 0, the claim immediately follows from the same arguments as

in the first part (control of terms A and B, and reinjecting the control for ∥θ̂ − θ⋆∥).

III.6.2 Proof of Theorem III.5

We want to use the results of [Bv11, Section 6] on the Lasso. The design matrix X here
is given by Xi,j = Φj(Xi), i.e. the i-th column of X is Φ(Xi), denoting as done earlier
Φ(x) = (Φ1(x), . . . ,Φp(x)) ∈ Rp. The empirical Gram matrix is

Σ̂ =
1

n
XTX =

1

n

n∑

i=1

Φ(Xi)Φ(Xi)
T .

Following the same argument as in the proof of Lemma III.10 leading up to (III.9), we have
E(Σ̂) = Ip and, according to Theorem 5.1.1 of [Tro15]:

P(Λmin(Σ̂) ≤ 1/2) ≤ p

(
e−1/2

√
1/2

) n
C(M)p

.

(The minor difference in comparison to (III.9) is due to the fact that we only need the upper
bound on the largest eigenvalue from Theorem 5.1.1 of [Tro15] here.) Therefore, we have

P(Λmin(Σ̂) ≥ 1/2) ≥ 1 − p exp

(
n

C(M)p
ln

(
2e−1/2

√
2

))
≥ 1 − exp

(
− 0.15n

C(M)p
+ ln(p)

)
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This shows that, for p log p/n large, the smallest eigenvalue of the empirical Gram matrix
is larger than 1/2 with high probability, and the compatibility condition is verified with a
constant larger than 1/2.

We can now use the results of [Bv11, Section 6]. Their Theorem 6.1 remains true for
the norm I(θ) =

∑p
i=1 |θi|Pers(Φi) and a compatibility constant larger than 1/2 with large

probability. For a given µ0, we therefore have, for µ ≥ 2µ0, with probability larger than

1 − exp
(
− 0.15n
C(M)p + ln(p)

)
,

1

n
∥X(θ̂ − θ⋆)∥22 + µ

p∑

i=1

Pers(Φi)|θ̂i − θ⋆i | ≤
µ2s

2
,

on the event

E :=

{
max
1≤j≤p

2

n

∣∣∣∣∣

n∑

i=1

εiΦj(Xi)

∣∣∣∣∣ ≤ µ0

}
.

For a well chosen value µ0, the event E is realized with large probability. Indeed, sub-
Gaussianity of the εi’s (with parameter σ2) yields, by using similar arguments as given in the
proof of Theorem III.6, that conditionally on the Xi’s, the random variable

∑n
i=1 εiΦj(Xi) is

sub-Gaussian with parameter σ2
∑n

i=1 Φj(Xi)
2. We thus obtain

Pε

(
1

n

∣∣∣∣∣

n∑

i=1

εiΦj(Xi)

∣∣∣∣∣ > µ0

)
≤ 2 exp

( −n2µ20
4σ2

∑n
i=1 Φj(Xi)2

)
,

where we use the fact that for any sub-Gaussian random variable Y with parameter τ2, we
have P (|Y | > λ) ≤ 2 exp(−λ2/4τ2) (e.g. see [Ver18]. Furthermore, Lemma III.8 gives that
Φj(Xi)

2 ≤∑p
j=1 Φj(Xi)

2 ≤ C(M)p almost surely, and thus we have

Pε

(
1

n

∣∣∣∣∣

n∑

i=1

εiΦj(Xi)

∣∣∣∣∣ > µ0

)
≤ 2 exp

( −nµ20
4σ2C(M)p

)
.

A simple union-bound and the choice

µ0 = 2σ

√
pC(M)(ln(p) + x)

n

directly gives the required result.
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IV Statistical learning on measures, an application to persis-
tence diagrams

In the previous section, we have seen that persistence diagrams can be split between a noise
and a signal component. By introducing an adequate penalty, we can eliminate the noisy
part, resulting in a smooth estimate of a function. This approach is particularly amenable
to a model where we observe a smooth function f⋆ and noisy observations of the form yi =
f⋆(xi) + εi, where εi is a noise term. However, in many cases, data cannot be modelled
in such a way. Especially when considering a classification problem, we are only interested
in grouping the data into different classes, with little consideration of whether they have
been corrupted by noise. On a high level, we assume that the data carry some topological
information that we want to use as classification features. We, therefore, transform the data
into persistence diagrams and consider the diagrams as our new input data. We are now
interested in using all the information in the diagrams, not only the one away from the
diagonal. As persistence diagrams can be seen as discrete measures on R2, we make this
problem fit in a more general setting of measure classification. More precisely, we consider
a binary supervised learning classification problem where we observe measures on a compact
space X instead of having data in a finite-dimensional Euclidean space. Formally, we observe
data DN = (µ1, Y1), . . . , (µN , YN ), where µi is a measure on X and Yi is a label in {0, 1}. Given
a set F of base-classifiers on X , we build corresponding classifiers in the space of measures. We
provide upper and lower bounds on the Rademacher complexity of this new class of classifiers
that can be expressed simply in terms of corresponding quantities for the class F . If the
measures µi are uniform over a finite set, this classification task is a multi-instance learning
problem. However, our approach allows more flexibility and diversity in the input data we
can deal with. Besides persistence diagrams, we will describe several cases of applications
such as time series and flow cytometry. We will present several classifiers on measures and
show how they can heuristically and theoretically enable a good classification performance
in various settings in the case of persistence diagrams. The work from this section has been
submitted in [HBL23] and is joint with Gilles Blanchard and Clément Levrard.
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IV.1 Introduction

We consider the problem of classifying measures over some metric space. This problem appears
as a generalization of standard supervised classification where the data are no longer vectors
from a Euclidean space but point clouds or even continuous measures. There are several lines
of work looking at this problem from various perspectives. If the measure is a finite sum of
Dirac masses, this problem boils down to multi-instance learning (MIL), where the data are
bags of points. This terminology originates in the works from [DLLP97] in the context of
drug design. A typical strategy in MIL is to consider a standard classifier over the points
from the bag and aggregate the individual labels to classify the entire bag. We refer to
the survey from [Amo13] for a comprehensive review of the methods used in multi-instance
classification. Closer to our work is the paper by [ST12], which studies the properties of MIL
from a statistical learning perspective. More general are the works on distribution regression
initiated by [HB05] for learning on general metric spaces. For instance, [MFDS12] tackles the
case of classification of distribution and [PSRW13] that of regression. The theory for simple
kernel estimators has been developed in [SSPG16]. Another recent perspective regarding
distribution learning follows the works by [MC20] and [KKCM23], where the authors consider
that each class consists of perturbations of a ”mother distribution” and tackle this problem
using tools from optimal transport. To conclude our overview of measure-learning methods,
we can cite the work from [CLR21], where the authors vectorize the measures to cluster them
or perform a supervised learning task. The setting we consider is very general in the type of
measures we handle, and vectorization-free. We consider simple classifiers based on integrals
over the sample measure, and we look at the theoretical performance of such classifiers by
relating complexity measures such as Rademacher complexity and covering numbers to their
counterparts in the base space. This follows a similar approach as [ST12], while we allow for
more general inputs. We can therefore derive generalization error bounds, see [MRT18] for
an introduction to these concepts. We introduce specific classification algorithms which fit
into this framework and that discriminate according to the fraction of the mass each measure
puts in a well-chosen area.

The theory developed here has many cases of applications, namely, whenever input data
are point clouds. We can, for instance, cite lidar reconstruction [DDQHD13], flow cytometry
[AFH+13], time series (possibly with an embedding mapping them in some Euclidean space),
and text classification using a word embedding method such as word2vec, see [MCCD13].
Extending the results from MIL, the measures can be weighted depending on the applica-
tion. We also encompass the case of continuous measures, for example, functional or image
classification.

The main application that motivates the present work is the classification of persistence
diagrams. We refer to [EH22] for an overview of the construction of this object and of its
principal properties. Persistence diagrams are stable topological descriptors of the filtration
of a simplicial complex. Mathematically, they are discrete measures on R2 where both coor-
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dinates of each point indicate times at which topology changes occur in the filtration. We
can use persistence diagrams to perform various data analysis tasks, and we focus here on
supervised classification to discriminate data based on some topological information. Some
methods such as landscapes [B+15], persistence images [AEK+17], or Atol [CLR21] imme-
diately get rid of the measure representation and transform the data into a vector. It then
becomes possible to plug these vector representations into a standard classifier, we refer to
[OHK18] for classification using linear classifiers. Some papers use kernel methods, such as
[CCO17] or [LY18], while some other works make use of neural networks, such as [CCI+20],
and more recently [RCB21]. We refer to the survey [HMR21] for an overview of topological
machine learning methods.

In addition to offering a good trade-off between decent predictive performance (compara-
ble to standard persistence diagrams vectorizations and kernel methods) and simplicity, the
algorithm developed in the present work offers explainability guarantees. Indeed, showing
that two classes differ on some zones of the persistence diagrams can directly be translated
in terms of the range of scales at which relevant topological features exist. The experimental
results back up the ideas developed by [BHPW20] by swiping away a typical paradigm in
topological data analysis (TDA), which states that features with a long lifetime are the only
ones relevant to describing a shape. Indeed, we demonstrate that the ”shape” of the topolog-
ical noise contains information related to the sampling. This idea is enforced by theoretical
guarantees on limiting persistence diagrams as the number of sample points tends to infinity,
where we generalize recent results from [Owa22].

The rest of Section IV decomposes as follows: in Section IV.2 we formalize the problem
of learning on a set of measures, give general theoretical guarantees for this problem and
propose two simple supervised algorithms. In Section IV.3, we present persistence diagrams
that constitute the primary motivation of the present work. We give guarantees on the
reconstruction of the proposed algorithm in this specific case, showing that features at every
scale can and should be used for classification. Section IV.4 contains all the experimental
results and the comparison with standard methods, both in TDA and for other applications,
showing the versatility of our approach, which we believe is its principal strength, along
with its simplicity and explainability. We have made the code publicly available4. Finally,
Section IV.5 is devoted to the proofs of all the theoretical results.

IV.2 Statistical learning on measures

IV.2.1 Model

Let X be a compact metric space and denote by M(X ) the set of measures of finite mass over
X . The model is the following: we observe a sample DN = (µi, Yi)

N
i=1, where µi ∈ M(X ) and

Yi is a label in Y ⊂ R. Although the algorithmic and experimental study is mainly motivated
by the case of classification Y = {0, 1}, some of the theory developed also encompasses the
case of regression where Y = [0, 1]. We aim at building a decision rule g : M(X ) → R

that predicts the label Y ′ of a new measure µ′. These decision rules are typically built on
classes of functions defined on X itself. There are many practical examples that fall under
this framework of learning on a space of measures: functional regression [FV06] and image
classification are standard examples that have given birth to a very wide variety of problems.
Classifying bags of points has been studied under the MIL terminology, we refer to [Amo13]
for a complete survey, and cover many useful applications, from which we can cite image

4https://github.com/OlympioH/BBA_measures_classification
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classification based on a finite number of descriptors as done in [WYHY15], flow cytometry
(see Section IV.4), or text classification where each word is represented by a point in a high-
dimensional space. Closer to us is the work by [CLR21] where they represent the measures in a
Euclidean space and use these vectorizations to cluster the data. Even though the applications
are very similar, we believe that our work is quite different in essence since our algorithms
are formulated in a supervised setting, and we do not represent the measures in a Euclidean
space, preferring to develop a theory directly for an input space of measures, as we will see
in the following section.

IV.2.2 Theoretical complexity bounds

In this section, we adapt standard results in statistical learning theory by relating quantities
such as Rademacher complexity and covering numbers for functional classes over X to their
counterparts in the space M(X ). In what follows, RN (·) (resp. GN (·)) denotes the empir-
ical Rademacher (resp. Gaussian) complexity of a function class conditionally on a sample
(Z1, . . . , ZN ) which we recall is defined by

RN (F) =
1

N
Eσ

[
sup
f∈F

∣∣∣∣∣

N∑

i=1

σif(Zi)

∣∣∣∣∣

]
,

where (σ1, . . . , σN ) are independent Rademacher random variables. The Gaussian complex-
ity obeys the same definition where the σi are independent standard normal variables. The
Rademacher complexity is a usual quantity in statistical learning that measures the richness
of a set of functions. Loosely speaking, it quantifies how much the class F correlates with
a vector of noise (σ1, . . . , σN ). This quantity naturally appears when controlling the perfor-
mance of a family of classifiers; a large Rademacher complexity being detrimental to a good
generalization. We refer to Chapter 26 of [SSBD14] for more details. It is common to upper
bound this quantity by computing the covering number of the function class. We denote by
N (F , d, ε) (resp. M(F , d, ε)) the ε-covering (resp. packing) number of the set F endowed
with metric d. Finally, we denote by VC(F) the Vapnik-Chervonenkis dimension of a set of
functions (or its pseudo-dimension in the case of real hypotheses classes) and by VC(F , γ)
its γ-fat shattering dimension. We refer to Chapter 6 of [SSBD14] for the definition of these
concepts that measure the capacity of a function class, and are also used to upper bound the
validation error of a classification model. We break down our analysis in two cases: the first
one assumes that we have discrete finite measures and that we apply the 0-1 loss while the
second assumes generic measures inputs and requires the loss function to be Lipschitz.

Discrete measures, 0-1 loss. We denote by Mm(X ) the set of measures that write as
a finite sum of at most m Dirac masses on X , i.e. µi =

∑ni
j=1 δxij

with ni ≤ m for all i.

We consider a family F of classifiers from X to {0, 1}. For a given f ∈ F , we have a set of
predictions for each individual point:

f(µi) = [f(xi1), f(xi2), . . . , f(xini
)] ∈ {0, 1}ni .

Denoting by {0, 1}⋆ the set of finite sequences of 0’s and 1’s, we finally apply some function
ψ : {0, 1}⋆ → {0, 1} called a bag-function or an aggregation function in order to output a
prediction label for each measure. Described as such, this scenario is formulated exactly
as a Multi-Instance Learning (MIL) problem, and theoretical guarantees in this case have
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been established by [ST12]. In Proposition IV.1, we extend their results, in particular their
Theorem 6 to the case where ψ is no longer a fixed function but is itself learned from a
VC-class G. Assume the bag-function ψ to be permutation invariant, i.e. ψ(y1, . . . , yn) =
ψ(yσ(1), . . . , yσ(n)) for every yi ∈ {0, 1}, n ∈ N, and σ ∈ Sn. Then there exist two functions g

and ψ such that ψ decomposes as follows:

{0, 1}⋆ {0, 1}

R2

ψ=ψ◦g

g
ψ

The function g is defined as g(y1, . . . , yn) = (
∑n

i=1 yi/n, n), i.e. it maps a sequence of
zeros and ones to the proportion of ones and the total number of elements in the sequence.
We denote by H the set of binary classifiers from Mm(X ) defined as h : µ =

∑n
i=1 δxi 7→

ψ(f(x1), . . . , f(xn)), where ψ ∈ G and f ∈ F .

Proposition IV.1. Assume all the input measures belong to Mm(X ). Assume ψ is taken
from a class G of permutation invariant functions and that the corresponding ψ is taken from
a class G of VC-dimension d′. We further assume that the class F has a finite VC-dimension
d. Then, H is a VC-class of dimension d2 verifying:

d2 ≤ max(16, (d+ d′) log2(2em)).

We defer the proof to Section IV.5.1. This bound on the VC dimension of the composition
of a hypothesis class F with a class of bag-functions can be used to upper-bound the classi-
fication accuracy of predictors over the set of measures Mm(X ). We now propose to extend
these results to the case of general measures with finite mass and therefore extend the MIL
framework.

Generic measures, Lipschitz loss. In this section, using Y = {−1, 1} we build classifiers
of the form sgn(g(µ)) for g in some function class G over M(X ). Consider a κ-Lipschitz loss
function L. By the contraction principle for Rademacher complexities, it holds RN (L ◦ G) ≤
κRN (G). We therefore focus on the control of the Rademacher complexity of the class of real-
valued predictors. We first extend Lemma 12 from [ST12] to our setting. In what follows,
we consider a class of functions F from X to [0, 1], and the associated class of functions F̃
defined on M(X ) by

f̃ [µ] = EX∼µ[f(X)] =

∫

X
f(x)dµ(x) for f ∈ F .

The following lemma gives a relationship between the covering numbers of F and F̃ . We
denote by LNp the in-sample p-norm, defined for two functions f1 and f2 in F , and a sample
of N measures (µ1, . . . , µN ) as:

∥f̃1 − f̃2∥LN
p

=

(
1

N

N∑

i=1

(f̃1[µi] − f̃2[µi])
p

)1/p

.

Given a sample (µ1, . . . , µN ) ∈ M(X )N , we denote by Mp =
(

1
N

∑N
i=1M

p
i

)1/p
where

Mi = µi(X ) is the total mass of the measure µi.
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Lemma IV.2. Let (µ1, . . . , µN ) ∈ M(X )N and let p ∈ [1,+∞[. There exists a probability
measure µ such that

N (F̃ , LNp , ε) ≤ N
(
F , Lp(µ),

ε

Mp

)
.

We defer the proof to Section IV.5. This can be used to upper-bound the Rademacher
complexity of the function class F̃ as shown in the following theorem.

Theorem IV.3. There exists an absolute constant K such that

RN (F̃) ≤ KM2

√
VC(F)√
N

.

For M > 0, we define the set CNM = {(µ1, . . . , µN ) ∈ (M(X ))N | 1N
∑N

i=1 µ
2
i (X ) = M2}.

In addition to the previous theorem, we provide a lower bound of the same order for the
Rademacher complexity.

Theorem IV.4. There exists an absolute constant K ′ such that

K ′M2√
N ln(N)

√
VC(F) ≤ sup

(µ1,...,µN )∈CN
M2

RN

(
F̃
∣∣∣µ1, . . . , µN

)
.

The bounds from Theorems IV.3 and IV.4 match and are both of order 1/
√
N , up to

logarithmic factors. They also both depend on the VC-dimension of the base-class F and no
longer of F̃ , making it much easier to compute, as we can see in the example below.

Example IV.5. Assume X is a bounded subspace of Rd endowed with a Euclidean metric
and let F = {1B(x,r)|x ∈ X , r > 0}. It is a standard fact (see [MRT18] for instance) that the
VC-dimension of Euclidean balls is d+1. We therefore have by Theorem IV.3 that there exist
constants K and K ′ such that:

K ′M2

√
d+ 1√

N ln(N)
≤ sup

(µ1,...,µN )∈CN
M2

RN

(
F̃
∣∣∣µ1, . . . , µN

)
≤ KM2

√
d+ 1√
N

.

In practice, the class F̃ is used to construct a binary classifier through composition with an
aggregation function ψ, whose sign gives a prediction in {−1, 1}. If the function ψ is fixed as
it is the case in [ST12] and is further assumed to be L-Lipschitz, the Rademacher complexity
of the final set of classifiers is simply multiplied by L. We want to generalize this to the case
where the function ψ is also learned. Assume ψ : R → R is taken from a class of functions
G. Denote by H the class of functions h : µ 7→ ψ

( ∫
X f(x)dµ(x)

)
where f ∈ F , ψ ∈ G. The

following proposition gives a bound on the Gaussian complexity of the function class H.

Proposition IV.6. Assume that the class G consists of L-Lipschitz functions. Assume the
null function x 7→ 0 belongs to F . Then there exist constants C1 and C2 such that for any
sample of measures µ = (µ1, . . . , µN ),

GN (H) ≤ C1M2L
√

VC(F)
√

log(N)√
N

+
C2LM2R(G)√

N
+

L√
N

sup
ψ∈G

|ψ(0)|,
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where

R(G) = sup
x,x′∈R,x ̸=x

′

Eγ sup
ψ∈H

(ψ(x) − ψ(x′))γ

|x− x′| ,

and where γ ∼ N (0, 1).

We refer to Section IV.5.5 for the proof. This proposition shows that up to logarithmic
factors, the Gaussian complexity of the family of classifiers decreases at an overall rate of
1/

√
N . The quantity R(G) appears as a supremum of Gaussian averages. We refer to Theorem

5 of [Mau16] for a few properties of this quantity. Most notably, if the class G is finite, and
consists of L-Lipschitz functions, R(G) ≤ L

√
2 ln |G|. In addition, in some simple cases, it is

possible to provide a better estimate of R(G), even when G is infinite, as we can see in the
following example:

Example IV.7. In practice, we often choose ψ of the form ψ : x 7→ x−s where s ∈ [−S, S] is
learned, as we will see in Section IV.2.3. In this case, we directly have that R(G) = E[|γ|] = 1.
Therefore, keeping the same notation as above, in this scenario there exist universal constants
C1 and C2 such that

Gn(H) ≤ 1√
N

[
C1M2

√
VC(F)

√
log(N) + S + C2M2

]
.

IV.2.3 Algorithms, application to rectangle-based classification

Let us consider a class A of Borel sets of X . For instance, A can be thought of as the set
of balls or axis-aligned hyperrectangles for a given metric. We then consider the class of
corresponding indicator functions F = {1A, A ∈ A}. The data are therefore classified given
some threshold s ∈ R and a sign ε ∈ {−1,+1}, by the decision rule µ 7→ 1

{
εµ(A) − s ≥ 0

}
.

If A is a set of balls, the optimization problem boils down to finding the best center in X
and the best radius in R+. We present two algorithms and associate each of them with the
theory developed in the previous subsection.

Algorithm 1: exhaustive search The first method consists in performing an exhaustive
search in a discretized grid of parameters for a threshold s ≥ 0 and for the set A, and select
those that minimize the empirical classification error:

(A+, t+) = Arg Min
A,t

L+(A, t),

where

L+(A, t) =

N∑

i=1

1

{∫

A
dµi − t > 0

}
1{Yi = 0} + 1

{∫

A
dµi − t ≤ 0

}
1{Yi = 1}.

We similarly minimize the empirical classification error for reversed labels: (A−, t−) = Arg MinA,t L−(A, t),
for

L−(A, t) =
N∑

i=1

1

{∫

A
dµi − t ≤ 0

}
1{Yi = 0} + 1

{∫

A
dµi − t > 0

}
1{Yi = 1}.

If L+(A+, t+) ≤ L−(A−, s−) we set ε = 1 and pick (A+, t+), otherwise we set ε = −1, along
with the corresponding set of parameters.
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If all the measures µi write as a finite sum of Dirac measures, this step is very similar to
MIL, since each of the Ni points in the bag µi will be assigned a label according to whether it
belongs to the set A or not. The additional component is that we consider multiple aggregation
functions of the form

ψs : {0, 1}Ni → {0, 1}

x 7→ 1





Ni∑

j=1

xj ≥ s



 .

Here, we allow the threshold s to be learned, which extends the theory developed in
Chapter 3 of [ST12] about binary MIL where the aggregation function must be fixed. We
therefore fit exactly within the framework of Proposition IV.1 provided that the set of raw
classifiers F = {1A|A ∈ A} is a VC-class, which is for instance the case if A is a set of
Euclidean balls or axis-aligned hyperrectangles. Note that this algorithm allows for any
sample of measures with finite mass as input.

Algorithm 2: smoothed version Performing an exhaustive search has a computational
cost that grows exponentially with the dimension of the space in which the data lie. We
propose to optimize a smoothed version of the empirical error. In the case of balls, for a
center C ∈ X , a radius r > 0, a threshold s and a scale σ, we consider the predictor given by
the sign of fC,r,s,σ, defined as

fC,r,s,σ(µ) =

∫

X
exp

(
−d(B(C, r), x)

σ

)
dµ(x) − s.

We minimize the cross-entropy loss between a smooth version of this predictor and the target
vector, for a sample DN = (µi, Yi)

N
i=1:

LDN
(C, r, s, σ) = −

N∑

k=1

Yk log(P (fC,r,s,σ(µk)) + (1 − Yk) log(1 − P (fC,r,s,σ(µk)),

where P is the sigmoid function: x 7→ 1
1+e−x . This optimization must be performed for

switched labels as well.
In practice, we perform a stochastic gradient descent of this loss function. Since this objec-

tive typically has many critical points, we perform multiple runs with different initialization
parameters.

The predictor P ◦ fC,r,s,σ is a smooth predictor that has output in Y = [0, 1]. This
algorithm can also be interpreted using the MIL lens if the µi’s are discrete sums of Dirac
measures. Indeed, the class of functions we consider is

F =

{
x 7→ exp

(
−d(B(C, r), x)

σ

) ∣∣∣C ∈ X , (r, σ) ∈ (R+)2
}
,

so that each point in the bag µi is mapped to a real number which corresponds to the
framework of Section 6.2 of [ST12]. The class F is a smoothed version of ball indicators
and has the same VC dimension: VC(F) = d + 1. Using Proposition IV.6 with the class
G = {x 7→ P (x − s)}, we can therefore write the corresponding generalization bound, using
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that the cross-entropy loss is 1-Lipschitz. According to Theorem 26.5 of [SSBD14], we have
that with probability at least 1 − δ, for all θ = (C, r, σ, s) ∈ X × R2

+ × [−S, S],

EDN
[LDN

(θ)] − LDN
(θ) ≤

√
π

2N

[
C1

√
(d+ 1) log(N)M2 + S + C2M2 + C3

√
log(4/δ)

]
,

with universal constants C1, C2 and C3.

Aggregation by boosting The two methods presented above select a single Borel set to
discriminate between the two classes. This approach suffices when the two classes always
differ in the same zone of X but has obviously limited expressivity capabilities. We therefore
propose in practice to combine several base “weak learners” with a boosting approach. We
have implemented the adaboost method [FS+96], which classically calls the base method
iteratively, giving more weight to misclassified data. In addition to greatly improving the
predictive performance as opposed to selecting a single convex set, performing boosting is of
qualitative interest since it shows which zones of the measures are relevant for classification.
This feature is of particular interest in applications where these areas convey a qualitative
information, such as persistence diagrams or flow cytometry.

IV.3 A leading case study: classifying persistence diagrams

The primary example of measures that motivates the present work are persistence diagrams
and their smoothed and weighted variants.

IV.3.1 An introduction to persistence diagrams

Persistence diagrams are measures on R2 that summarize the topological properties of input
data and constitute one of the main objects in Topological Data Analysis (TDA). We refer to
Section I.1 for a presentation of the key concepts. For the sake of consistency, we recall the
definition of the Čech complex and Čech filtrations built over point clouds as they are on of
the main construction to build persistence diagrams.

Definition IV.8. Let X ⊆ Rd be finite. The Čech complex at scale r ≥ 0 is the simplicial
complex Č(X, r) defined as follows: for (x0, . . . , xk) ∈ Xk+1, the simplex {x0, . . . , xk} is in
Č(X, r) if the intersection of closed balls ∩kl=0B(xl, t) is non-empty.

The key to persistence theory is to consider simplicial complexes with a multi-scale ap-
proach and consider a sequence of nested complexes rather than a single complex. To that
extent, we can define a filtration of a simplicial complex as follows:

Definition IV.9. Consider a finite simplicial complex K and a non-decreasing function f :
K → R, in the sense that f(σ) ≤ f(τ) whenever σ is a face of τ . We have that for every a ∈ R,
the sublevel set K(a) = f−1(−∞, a] is a simplicial subcomplex of K. Considering all possible
values of f leaves us with a nested family of subcomplexes

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,

called a filtration, where a0 = −∞ < a1 < a2 < . . . < an are the values taken by f on the
simplices of K.
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For instance, considering all possible scales of the Čech complex of a point set X naturally
defines a filtration over the complete simplicial complex K = 2X. The Čech filtration of X,
denoted by Č(X) is equivalent to centering balls around each point of X and have the balls’
radii grow from 0 to ∞. For general filtrations, as the scale parameter grows we are interested
in tracking the evolution of the Betti numbers of the simplicial complexes. If a k-dimensional
hole starts to exist at some time b and disappears at time d in the filtration, we add the
point (b, d) in the k-dimensional persistence diagram Dk of the filtration. A persistence
diagram therefore appears as a multi-set of points supported in the half-plane H defined
by H = {(x, y) ∈ R2| x ≤ y ≤ +∞}. We can equivalently look at persistence diagrams as
discrete measures on H: ξk =

∑
(b,d)∈Dk

δ(b,d) to conform to the theory and algorithms developed

in Section IV.2.2.

We illustrate the construction of 0, 1 and 2-persistence diagrams of a Čech filtration in
Figure 31 where we sample n points uniformly on a torus, according to an algorithm provided
by [DHS+13]. When the number of points is very low (n = 100), the true homology of the
manifold (one feature of dimension 2 and two features of dimension 1) does not show in the
diagrams and we only observe topological components due to the sampling. For n = 500, we
can read the homology of the torus in the persistence diagram along with many points close to
the diagonal. As n grows, this ”topological noise” concentrates around the origin and the true
homological features become well separated from the noise. If we sample a point cloud from a
manifold, large-persistence features correspond to proper homological features of the manifold,
see Theorem IV.12. Following this approach, works such as [AEK+17] on persistence images
suggest weighting the persistence diagram using an increasing function of the persistence. In
addition, they propose to convolve the discrete measure with a Gaussian function. This falls
under the framework of the previous section, and it becomes relevant to consider diagrams
as generic measures. However, this signal-noise dichotomy is very restrictive, and there is
some evidence that points lying close to the diagonal also carry relevant information such
as curvature as demonstrated in [BHPW20], or dimension. We give further evidence of that
claim in the following section, where we show that asymptotically, we can extract information
on the sampling density around the origin of the limiting persistence diagram. We also provide
numerical illustrations and quantitative evidence that low-persistence features are relevant for
classification purposes.

Finally, note that the success of persistence diagrams in topological data analysis has been
motivated by the possibility to compare diagrams (with possibly different number of points)
using distances inspired by optimal transport, the most popular being the bottleneck distance,
which benefits from some stability properties, [CSEH07]:

Definition IV.10. Let ∆ = {(x, x)|x ∈ R} be the diagonal of R2.

The bottleneck distance dB between two persistence diagrams D and D′ is defined by:

dB(D,D′) = inf
η:D∪∆→D′∪∆

sup
x∈D∪∆

∥x− η(x)∥∞,

where the infimum is taken over all bijections η from D ∪ ∆ to D′ ∪ ∆.

IV.3.2 Structural properties of persistence diagrams

Throughout this section and the following, we consider classifiers constructed by finding the
best axis-aligned rectangle. The easiest information to capture on the persistence diagram of
a Čech complex is the global one corresponding to the homology of the manifold supporting
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(a) n = 100 (b) n = 200

(c) n = 500 (d) n = 1000

Figure 31: 0, 1 and 2-persistence diagrams for n points uniformly sampled on a torus.

the data. If we consider samplings on metric spaces having different persistence diagrams
for a given filtration, the following theorem yields the existence of a rectangle classifier that
discriminates between the two supporting spaces with high probability. Before stating the
theorem, we recall the definition of an (a, b)-standard measure:

Definition IV.11. Let X be a compact metric space and let a, b > 0. We say that a proba-
bility measure µ on X satisfies the (a, b)-standard assumption if

∀x ∈ X, ∀r > 0, µ(B(x, r)) ≥ min(1, arb).

In the following theorem, dgm denotes the concatenation over all dimensions of the per-
sistence diagrams of a filtration.

Theorem IV.12. Let M1 and M2 be two compact metric spaces. Assume that we observe an
i.i.d. sample X̂n = (Xi)

n
i=1 drawn from an (a1, b1)-standard measure on M1 or an (a2, b2)-

standard measure on M2. Denote by Ki = min
(p,q)∈dgm(Č(Mi))

|q − p| for i = 1, 2. Assume that

there exists K3 > 0 such that

dB(dgm(Č(M1)), dgm(Č(M2))) ≥ K3.
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Denote by K = min(K1,K2,K3), a = min(a1, a2) and b = min(b1, b2). For all δ > 0, if the
number n of sample points verifies

n ≥ 2b

aKb
log

(
4b

aKbδ

)
,

there exists a collection of rectangles for which the classification error is smaller than δ.

We defer the proof to Section IV.5.6. We refer to [CDSO14] for the construction of the
Čech filtration of possibly infinite metric spaces (and not simplicial complexes as previously),
which ensures that dgm(Č(M1)) and dgm(Č(M2)) are well defined.

In practice, a lot of information is contained in the points lying close to the diagonal and
classifying persistence diagrams enables to deal with a far broader class of problems than
simply classifying between manifolds with different homology groups, as we will see in the
following sections. Studying geometric quantities of the Čech complex of a random point
cloud Xn = (Xi)

n
i=1 on Rd is a deeply studied problem and we refer to [BA14] for some

preliminary results regarding the critical points of the distance function to a point cloud.
Some results have been adapted in [BM15] to point clouds sampled on manifolds. Finally,
we refer to [BK18] for a detailed survey on random geometric complexes. Assume that we
consider the Čech complex at a scale rn that decreases with n and such that rn → 0. The
speed at which rn tends to 0 as n → ∞ is paramount and dictates the type of results we
can expect. In what follows, we focus on the sparse regime, i.e. nrdn → 0 as n → ∞. In
this regime, asymptotic properties of the persistence diagram of the Čech filtration have been
studied in [Owa22]. When considering persistent quantities, we consider the Čech complex
at all possible ranges and we renormalize the sample points themselves by the sequence rn.
We generalize the results of the above-mentioned citation in the following theorem where our
contribution is two-fold: the data are now allowed to be sampled from a manifold, and we
provide a rate of convergence of the persistence diagram towards its limiting measure. Before
stating the theorem, we define the function hr by

hr (x1, . . . , xk+2) = 1
{
βk
(
Č ({x1, . . . , xk+2} , r)

)
= 1
}
,

and for 0 ≤ s ≤ t ≤ u ≤ v ≤ ∞,

Hs,t,u,v(x) = ht(x)hu(x) − ht(x)hv(x) − hs(x)hu(x) + hs(x)hv(x).

Theorem IV.13. Let M be a closed orientable C2 Riemannian manifold of dimension d with
reach τM ≥ τmin. Let Xn = (Xi)

n
i=1 be an i.i.d. sample drawn from a L-Lipschitz density f

on the manifold where H is the Hausdorff measure on the manifold.

For k ∈ J0, d − 1K, denote by µk the measure on ∆+ = {(x, y) : 0 ≤ x < y ≤ ∞} defined
on the rectangles Rs,t,u,v = [s, t) × [u, v) by

µk(Rs,t,u,v) =

∫
M fk+2dH
(k + 2)!

∫

(Rd)k+1

Hs,t,u,v(0, y1, . . . , yk+1)dy1 . . . dyk+1,

for 0 < s ≤ t ≤ u ≤ v. For a sequence rn, denote by ξk,n the re-scaled measure defined by

ξk,n(Rs,t,u,v) =
Card(rnRs,t,u,v ∩ dgmk(Č(Xn/rn))

nk+2r
d(k+1)
n

,
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which counts the number of points of the k-th persistence diagram of the rescaled data falling in
the rectangle rnRs,t,u,v. Assume that we are in the sparse divergence regime, i.e. the sequence
rn verifies:

nrdn → 0 and nk+2rd(k+1)
n → ∞.

For k ≤ d− 4, choose rn = n
− k+2

2+d(k+1) . Then for n large enough,

sup
0<s≤t≤u≤v≤t+

E
[
(ξk,n − µk)(Rs,t,u,v)

2
]
≤ Cn

−
2(k+2)

2+d(k+1) .

For d− 4 ≤ k ≤ d, choose rn = n
− k+4

d(k+3) . Then for n large enough,

sup
0<s≤t≤u≤v≤t+

E
[
(ξk,n − µk)(Rs,t,u,v)

2
]
≤ Cn−

2
k+3 ,

where C is a constant that depends only on k, d, t+, ∥f∥∞, τmin and L.

We defer the proof to Section IV.5.7.
This theorem asserts that asymptotically, the rescaled persistence diagram of the Čech

filtration built on an adequately rescaled point cloud on Rd converges to a measure µk which
depends on f only through

∫
M fk+2dH. Moreover, given two distributions f1 and f2 such

that there exists k ∈ J0, d − 1K such that
∫
M fk+2

1 dH ̸=
∫
M fk+2

2 dH, any rectangle Rs,t,u,v
enables us to distinguish between the two densities f1 and f2 when n is large enough as we
make it more explicit in the following corollary. Since this theorem is stated for the rescaled
persistence diagram with a sequence rn that tends to 0, this is another evidence that points
close to the diagonal (even close to the origin) contain information relative to the sampling
and should be considered for classification purposes.

Corollary IV.14. Keeping the same notation as above, consider two densities f1 and f2 with
Lipschitz constants L1 and L2 such that there exists k ∈ J0, d − 1K such that

∫
M fk+2

1 dH ≠∫
M fk+2

2 dH. Let 0 < s ≤ t ≤ u ≤ v. For n large enough, the number of points in the
persistence diagram falling in the rectangle Rs,t,u,v identifies the correct sampling density with

probability larger or equal than 1−C n
−

2(k+2)
d(k+1)

|∫M (fk+2
1 −fk+2

2 )|2 , where C is a constant that depends only

on (s, t, u, v), k, d, ∥f1∥∞, ∥f2∥∞, τmin, L1 and L2.

The proof of Corollary IV.14 is a straightforward consequence of the Chebyshev’s inequal-
ity and we defer it to Section IV.5.8. Deriving a finer concentration inequality is still an
open question: indeed, we have only used a bound on the variance of the random variable
ξk,n to use Chebyshev’s inequality. While our proof could be adapted to control higher order
moments, it would be worth investigating if we could adapt some techniques from the proof
of the Theorem 4.5 of [YSA17] to our framework in the sparse regime.

The results derived in Proposition IV.12 and Corollary IV.14 both state that the number of
sample points n must be large enough to discriminate between the two sampling models with
large probability, whether we want to distinguish between manifolds with different homology
or different samplings on the same manifold. On the contrary, the results from the previous
sections, especially the dependency over m in Proposition IV.1 and M2 in Theorem IV.3
and Proposition IV.6 assert that the number of points in the diagram (directly related to
the number of sample points) must not be too large in order to obtain a good control of
the Rademacher complexity. The number of sample points n acts as a trade-off between the
separation of the two classes and a control of the predictive risk.
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(a) σ = 0 (b) σ = 1 (c) σ = 4

Figure 32: Data to classify. Yellow: torus, purple: sphere.

(a) σ = 0 (b) σ = 1 (c) σ = 4

Figure 33: Best rectangle to classify points from a sphere or a torus.

IV.3.3 Examples

In this section, we allow ourselves to rotate the diagrams by applying the transformation
(x, y) 7→ (x, y − x), so that all the points lie in the upper-right quadrant, and the diagonal
is mapped to the x-axis. In order to illustrate our method, we start by considering n = 500
points lying on a torus (class +1) or a sphere (class 0) and classify it based on the 1-persistence
diagram of its Čech complex. The persistence diagram of the torus is expected to have
two high-persistence features. Some examples of data are shown in Figure 32 and rectangle
classifiers on Figure 33. The sphere has radius 6, and the inner circle of the torus has size 2
while the outer one has size 4.

In the noise-free setting, it is very easy to distinguish between the two classes, both on the
raw input and on the persistence diagrams. This corresponds to the framework of Theorem
IV.12. If we add a Gaussian noise, it is no longer possible to distinguish which shape is a torus
and which is a sphere based on their homology, but it is still possible to distinguish between
them because they have different volume measures, by investigating early-born features.

On another experimental set-up, we still aim at distinguishing between point clouds sam-
pled from a torus or a sphere, except that the size of the supporting manifold as well as the
number of points are drawn at random. In addition we add a small isotropic noise to the
input sample. The illustration of Figure 34 shows the first four rectangles of the boosting
procedure.

The first rectangle aims at discriminating based on the presence of a high-persistence
point in the diagram, that would have it classified as a torus (here, there is only one point
because of the added noise that makes one of the two features collapse). In this figure, this
rectangle alone would suffice to tell the two data apart. However, on other realizations, some
of the topological noise from the sphere also belongs to this rectangle. The second rectangle
therefore aims at classifying based on the topological noise. Indeed, for points sampled on
a torus, cycles will typically be born earlier than on the sphere, and this rectangle aims at
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Figure 34: Boosting for manifold classification.

detecting late-born cycles, under which circumstances the data will be classified as ”sphere”.
The third rectangle aims at detecting whether there is a significant number of points of high
persistence in the topological noise. The fourth one explores if there are features born early,
which is a signature of tori. The boosting algorithm aggregates these classifiers and improves
the classification performance by up to 10 % as opposed to considering a single rectangle.

A second experiment conducted is based on the experimental set-up from [OHK18]. We
sample Poisson (PPP) and Ginibre (GPP) point processes on the disk, with 30 points on
average and compute their one-dimensional persistence diagrams. The model has been trained
on 400 processes and tested on 200. We have reached similar classification accuracy (around
94% in both cases). [OHK18] apply a logistic regression to a persistence image transform
of the persistence diagrams. When using a L1 penalty, this induces sparsity and highlights
a zone of the persistence image useful for discrimination. Our method can be seen as a
variation of this where we are free from vectorization and fixed-pixelization when selecting
the discriminating support. It is no surprise we obtain similar results on this simple data set.
We will actually see in Section IV.4 that our method has a better accuracy on real data sets
for a comparable running time. We display the results of boosting when 100 points for each
process are sampled in Figure 35a. A Ginibre point process causes repulsive interactions and
points are more evenly spread out, which prevents cycles from dying too early and promotes
features with medium-persistence, as we can see on Figure 35b. In this set-up, there is no
”homological signal” to recover, and we only classify based on the topological noise. We only
display three rectangles because of overlaps. The first rectangle investigates very late-born
cycles of small persistence, which seems to be a characteristic of PPP. Another rectangle looks
at features of high-persistence born late, which is once again something promoted by PPP.
On this example, this rectangle alone would bring a misclassification. The last rectangle seeks
for features of medium persistence born early, and classify as a GPP if there are more than
four such features (which is the case here).
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(a) Samples of point processes

(b) Boosting rectangles

Figure 35: Point processes classification problem.

IV.4 Quantitative experiments

We compare our method to benchmark datasets in both topological data analysis and point
clouds classification. For all the experiments, we typically perform 10 to 20 boosting iter-
ations where the weak-classifiers are Euclidean balls along with a threshold and where all
the parameters are learned by exhaustive search (Algorithm 1 of Section IV.2.3). At each
boosting step, we search for centers of balls among a sub-sample of the k-means clusters’
centers. When the number of data is somewhat large, we allow ourselves to optimize only
over some subset of the available data, taking new data at each boosting step. The 1/

√
N

bounds obtained in Section IV.2.2 warrant for the validity of this sub-sampling procedure. In
the tables below, our method will be denoted by BBA for ”best balls aggregator”. We have
made the code publicly available here.5

IV.4.1 Persistence diagrams

ORBIT5K dataset The dataset ORBIT5K is often used as a standard benchmark for classifi-
cation methods in TDA. This dataset consists of subsets of size 1000 of the unit cube [0, 1]2

generated by a dynamical system that depends on a parameter ρ > 0. To generate a point
cloud, a random initial point (x0, y0) is chosen uniformly in [0, 1]2 and a sequence of points
(xn, yn) for n = 0, 1, . . . , 999 is generated recursively by:

xn+1 = xn + ρyn (1 − yn) mod 1
yn+1 = yn + ρxn+1 (1 − xn+1) mod 1.

Given an orbit, we want to predict the value of ρ, that can take values in
{2.5, 3.5, 4.0, 4.1, 4.3}. We display an example for each class in Figure 36; ρ ∈ {4.0, 4.1, 4.3}
accounts for difference in topology, while ρ ∈ {2.5, 3.5} generates samplings with different
densities but no particular homological information.

We generate 700 training and 300 testing data for each class. We perform a one-versus-one
classification. We compare our score with standard classification methods in Table 8, where
the results are averaged over 10 runs. We compare our scores to four kernel methods on
persistence diagrams taken respectively from [RHBK15], [KHF16], [CCO17], [LY18], and two

5https://github.com/OlympioH/BBA_measures_classification
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(a) ρ = 2.5 (b) ρ = 3.5 (c) ρ = 4.0 (d) ρ = 4.1 (e) ρ = 4.3

Figure 36: Examples of point clouds from the ORBIT5K dataset.

PSS-K PWG-K SW-K PF-K Perslay Persformer BBA

72.38 ± 2.4 76.63 ± 0.7 83.6 ± 0.9 85.9 ± 0.8 87.7 ± 1.0 91.2 ± 0.8 83.3 ± 0.5

Table 8: Classification scores for the ORBIT5K dataset.

methods that use a neural network architecture to vectorize persistence diagrams: [CCI+20]
and [RCB21]. Our accuracy is comparable with kernel methods on persistence diagrams but
is somehow lower than that of neural networks.

Graph classification. Another benchmark of experiments in TDA is the classification of
graph data. In order to transform graphs into persistence diagrams, we consider the Heat
Kernel Signature (HKS) as done by [CCI+20], for which we recall the construction: for a
graph G = (V,E), the HKS function with diffusion parameter t is defined for each v ∈ V by

hkst(v) =

|V |∑

k=1

exp(−tλk)ψk(v)2,

where λk is the k-th eigenvalue of the normalized graph Laplacian and ψk the corresponding
eigenfunction. We build two persistence diagrams of dimensions 0 and 1 tracking the evo-
lution of the topology of the sublevel sets of this function, and kept whichever one gave the
best results. For the experiments, we fixed the value of t to 10, a preliminary study suggested
that the diagrams were somehow robust to the choice of this diffusion parameter. The results
on standard datasets are provided in Table 9. The first five columns are kernel methods or
neural networks designed specifically for graph data, P denotes the best method between Per-
sistence image and Persistence landscapes, and MP the best method between multiparameter
persistence image, landscape, and kernel (scores reported from [CB20]). All these persistence-
based vectorizations are coupled with a XGBoost classifier to perform the learning task. We
can see that our method clearly outperforms standard vectorizations of persistence diagrams
and also multi-persistence descriptors. The accuracy reached is similar to Perslay, [CCI+20]
which is a neural network that learns a vector representation of a persistence diagrams and
Atol, [RCL+21] which is another measure learning method. Note that on the biggest dataset
collab, our method is clearly outperformed by the other methods, especially Atol.

IV.4.2 Other datasets

Flow cytometry. Flow cytometry is a lab test used to analyze cells’ characteristics. It
is used to perform a medical diagnosis by measuring various biological markers for each cell
in the sample. Mathematically, the data are point clouds consisting of tens of thousands of
cells living in RD, where D is the number of biological markers considered. We have trained
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Dataset SV RetGK FGSD GCNN GIN Perslay P MP Atol BBA

Mutag 88.3 90.3 92.1 86.7 89 89.8 79.2 86.1 88.3 90.4

DHFR 78.4 81.5 - - - 80.3 70.9 81.7 82.7 80.5

Proteins 72.6 75.8 73.4 76.3 74.8 75.9 65.4 67.5 71.4 74.7

Cox2 78.4 80.1 - - - 80.9 76.0 79.9 79.4 81.2

IMDB-B 72.9 71.9 73.6 73.1 74.3 71.2 54.0 68.7 74.8 69.4

IMDB-M 50.3 47.7 52.4 50.3 52.1 48.8 36.3 46.9 47.8 46.7

COLLAB - 81.0 80.0 79.6 80.1 76.4 - - 88.3 69.6

Table 9: Classification scores for graph data.

Dataset dimension classes CMFM LCEM XGBM RFM MLSTM-FCN ED DTW BBA

Heartbeat 61 2 76.8 76.1 69.3 80 71.4 62 71.7 73.7

SCP1 6 2 82 83.9 82.9 82.6 86.7 77.1 77.5 77.5

SCP2 7 2 48.3 55.0 48.3 47.8 52.2 48.3 53.9 56.0

Finger Movements 28 2 50.1 59.0 53.0 56.0 61.0 55.0 53.0 58.0

Epilepsy 3 4 99.9 98.6 97.8 98.6 96.4 66.7 97.8 92.8

StandWalkJump 4 3 36.3 40 33.3 46.7 46.7 20 33.3 46.7

Racket Sports 6 4 80.9 94.1 92.8 92.1 88.2 86.8 84.2 73.7

Table 10: Classification scores for multi-dimensional time series dataset.

our model on the Acute Myeloid Leukemia (AML) dataset available here6. AML is a type of
blood cancer that can be detected by performing flow cytometry on the bone marrow cells.
The dataset consists of 359 patients, half of them are used for training and the rest of them for
validating the model. For each patient, 7 biological markers are measured across 30000 cells.
We report a F1-score of 98.9 %, while most flow cytometry specific data analysis methods
have a score comprised between 95% and 100% according to Table 3 from [AFH+13]. In
addition, our method can lead to qualitative interpretations, since it generates discriminatory
zones, and therefore thresholds of activation for biological markers that make a patient sick
or healthy.

Time series. Another field of applications is the classification of time series. We consider
each data as a collection of points by dropping the temporal aspect of the data. We have
tried our method on a small sample of data from the University of East Anglia (UEA) archive
presented in [BDL+18]. We compare our method against standard classification methods, and
report the results from [BB21] in Table 10

Our method competes with the most simple methods for classifying time series, but fails
to be state of the art, especially when a high classification score is expected. When there is
only little information to be captured (for instance for the datasets StandWalkJump, Finger
Movements or SCP2), our method manages to retrieve it. It is to be noted that the comparison
cannot be completely fair with respect to methods targeted to specifically deal with time series
while we have removed the temporal aspect of the data and only focus on the distribution of
the d-dimensional data in certain areas of Rd.

6https://flowrepository.org/id/FR-FCM-ZZYA
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IV.4.3 Discussion

Computational time. In order to compare the running time of our method with standard
vectorization methods, we consider the problem defined in Section IV.3.3: we observe points
on a torus or a sphere and classify the manifold supporting the point clouds based on their
one-dimensional persistence diagrams. We assume the diagrams have been computed in a
preliminary step and compare the running time of several methods in Table 11 when classifying
over a training set of size 500 or 3000. The average number of points in the one-dimensional
persistence diagram is experimentally of the same order as the number of sampled points. For
our method, we report the training time for one weak-classifier. In this experiment only one
weak-classifier is enough to classify. For the exhaustive search, we have looked for a candidate
classifier among a family of balls with 20 different centers, 10 different radii and 5 different
thresholds for a total of 2000 possible classifiers, counting reversed labels. We compare the
running times with a Persistence Image of resolution 40 × 40 with fixed parameters and we
train a logistic classifier with a L2 penalty, where the regularization parameter is learned by
cross-validation. When the number of sampled points is large enough, most of the computation
time is devoted to the vectorization part and only a small fraction of it is dedicated to actually
classifying the images. When the number of points is too small, the classification part of the
pipeline can take a rather long time.

The implementation of vectorization methods for persistence diagrams and standard clas-
sification algorithms are taken respectively from the Gudhi ([MBGY14]) and Scikit-learn

([PVG+11]) libraries. It is likely that our implementation can be improved, leading to a po-
tential computational gain. Nevertheless, an exhaustive search of the best ball-classifier has a
comparable running time to that of Lasso-PI + logit L2 which is enough for simple examples.
When doing an aggregation procedure of several weak-classifiers, the running time becomes
significantly longer but provides a greater accuracy, as noted in Table 15. It is also to be noted
from Table 11 that our implementation of the optimization of the smoothed objective does
not vary much when dealing with large point clouds nor with large datasets, which makes it
a preferable candidate for large-scale applications.

This is backed-up by the timing of some of the graph experiments in Table 12 where we
also compare our running times with the Atol method from [CLR21] for the smallest and
biggest graph datasets. For the Atol method, the authors only report the vectorization time
without taking into account the training time of a random forest. Note that the average
number of nodes and edges in the Mutag dataset are 17.9 and 19.8 while they are of 74.5
and 2457.2 for the Collab dataset, and our method seems to be pretty robust in this increase
in scale. We can see that the running time of all methods is comparable. However, in our case,
the accuracy of a single weak classifier is quite poor and the BBA method requires about 10
boosting steps to be fully competitive. For small datasets, both in terms of number of points
and data, an exhaustive search is highly recommended, also due to the unstable nature of the
smooth version which often requires several initializations before finding a relevant classifier.

Take-home message The method developed in this section, while being simple and ex-
plainable, allows to tackle a wide variety of problems. When used on persistence diagrams,
we obtain similar results as kernel methods and manage to come close to some state-of-the-
art methods using neural networks on graph data. Our method has a decent performance in
terms of accuracy when used on small datasets. When the number of data is larger, the 1/

√
N

bounds from Section IV.2.2 justify for training our model on a sub-sample of the dataset and
therefore propose a decent accuracy at a mild computational cost.
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Table 11: Computational time (in seconds), torus versus sphere.

Size of the dataset Size of the point cloud BBA (smooth) BBA (exhaustive search) Lasso-PI + logit-L2

500 100 143.0 18.7 7.4

3000 100 139.5 97.6 151.4

500 500 136.8 31.8 12.0

3000 500 139.2 180.1 125.7

500 2000 147.4 66.6 43.1

3000 2000 149.7 343.9 260.1

Table 12: Computational time (in seconds), graph data

Name of the dataset Number of data BBA (smooth) BBA (exhaustive search) Lasso-PI + logit-L2 Atol (vectorization only)

Mutag 170 40.8 3.0 0.27 < 0.1

Collab 4500 195.1 172.5 164.9 110

Collab 1000 175 38.6 36.2 -

In addition, since we locate the areas of the persistence diagram which are the most relevant
for classification, this can give information for truncating the simplicial complexes for future
applications on the same type of data, and therefore greatly improve the computational time,
especially if one is to compute the Rips complex which is known to have a prohibitive number
of simplices if untruncated. Due to its simplicity, the natural competitors of our method
appear to be standard vectorizations of persistence diagrams coupled with a usual learning
algorithm such as logit or random forest. For this type of classifier, we have seen in Table 15
that our method has a greater accuracy, while having a comparable running time. Beyond
persistence diagrams, we have demonstrated that our method offers decent results in a variety
of settings and is well suited to dealing with simple data and could be adapted to dealing
with large-scale applications.

IV.5 Proofs

This section is devoted to the proofs of all the theoretical results contained throughout Sec-
tion IV.

IV.5.1 Proof of Proposition IV.1

We denote by F̃ the class of functions on measures defined by f̃(µ) = [f(x1), . . . , f(xn)] for
µ =

∑n
i=1 δxi ∈ Mm(X ) and f ∈ F . We denote by k 7→ γF (k) the growth function of

a hypothesis class F defined by γF (k) = sup
x1,...,xk

♯{(f(x1), . . . , f(xk)|f ∈ F}. We have that

γF̃ (N) ≤ γF (mN) since all the measures have at most m points. Using the Sauer-Shelah

lemma, we therefore have that γF̃ (N) ≤
(
emN
d

)d
where d is the VC-dimension of F .

Now, consider a set of d2 measures that is shattered by the class H. Using Section 20 of
[SSBD14], we have that for every integer k, γH(k) ≤ γF̃ (k)γG(k) using the observation above
Proposition IV.1 that H is a composition class. We therefore have, using Sauer-Shelah lemma
again, that:
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2d2 ≤ γH(d2) ≤
(
emd2
d

)d(ed2
d′

)d′
.

Taking the logarithm on both sides and using the same computation as in the proof of Theorem
6 of [ST12] yields the wanted result.

IV.5.2 Proof of Lemma IV.2

Let h and g be two functions of F .

∥g̃ − h̃∥LN
p

=

(
1

N

N∑

i=1

(g[µi] − h[µi])
p

)1/p

∣∣∣∣
∫

(h− g)dµi

∣∣∣∣
p

= Mp
i

∣∣∣∣
∫

(h− g)d(µi/Mi)

∣∣∣∣
p

≤Mp
i

∫
(h− g)pd(µi/Mi) by Jensen inequality.

Therefore,

∥h̃− g̃∥p
LN
p
≤ 1

N

N∑

i=1

Mp
i

∫
(h− g)pd(µi/Mi).

Denoting for each i wi =
Mp

i∑N
j=1M

p
j

, the above inequality writes as :

∥h̃− g̃∥p
LN
p
≤Mp

N∑

i=1

wi

∫
(h− g)pd(µi/Mi)

≤Mp∥h− g∥p
Lp(

∑N
i=1 wiµi/Mi)

.

Denoting by µ =
∑N

i=1wiµi/Mi we have the desired result.

IV.5.3 Proof of Theorem IV.3

By Dudley’s chaining theorem, we have that

RN (F̃) ≤ 12√
N

∫ ∞

0

√
lnN (F̃ , Ln2 , ε)dε.

Remark that

diam(F̃ , Ln2 ) ≤ 1√
N

sup
f∈F

(
N∑

i=1

∫
(fdµi)

2

)1/2

≤ 1√
N

(
N∑

i=1

M2
i

)1/2

≤M2.

Therefore, we only need to integrate up to M2, yielding:
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RN (F̃) ≤ 12√
N

∫ M2

0

√
lnN (F , L2(µ), ε/M2)dε by the above lemma,

≤ 12√
N

∫ M2

0

√
K0VC(F , cε/M2) ln(2M2/ε)dε by Theorem 1 of [MV03],

≤ 12M2√
N

∫ 1

0

√
K0VC(F , cε) ln(2/ε)dεby a change of variables,

≤ K1M2

√
VC(F)√
N

∫ 1

0

√
ln(2/ε)dε.

Here, K0 and K1 are universal constants. Including the integral in the multiplicative constant
term gives the wanted result.

IV.5.4 Proof of Theorem IV.4

By Sudakov minoration principle, there exists a constant C such that for all ε > 0,

Cε√
N

√
lnN (F̃ , ε, LN2 ) ≤ GN (F̃),

where GN stands for the Gaussian complexity.
Classical equivalence between covering and packing numbers yields

Cε√
N

√
lnM(F̃ , 2ε, LN2 ) ≤ GN (F̃).

If all the µi are of the form Miδxi for (xi)i=1,...,N ∈ XN , we have for two functions g and h in
F that

∥g̃− h̃∥L2(µN1 ) =
1

N

√√√√
N∑

i=1

(g[µi] − h[µi])2 =
1

N

√√√√
N∑

i=1

M2
i (g(xi) − h(xi))2 = M2∥g−h∥L2(xN1 ,w)

,

for the L2-norm with weights wi =
M2

i∑N
j=1M

2
i

.

When looking on the supremum over all measures, we can therefore lower bound the
packing number:

sup
(µ1,...,µN )∈CN

M2

GN (F̃) ≥ Cε√
N

ln
√

sup
(µ1,...,µN )∈CN

M2

M(F̃ , 2ε, L2(µN1 ))

≥ Cε√
N

ln
√

sup
x1,...,xN

M(F , 2ε/M2, L2(xN1 , w)).

In particular, by taking x1, . . . xN that are 2ε/M2-shattered by F if N ≤ VC(F , 2ε/M2)
along with uniform weights, Proposition 1.4 from [Tal03] states that the logarithm of the
packing number dominates the fat-shattering function. If N > VC(F , 2ε/M2), the same
result simply follows by considering the uniform measure on VC(F , 2ε/M2) of the N points
and setting weight 0 to the others.
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This together with the equivalence between Gaussian and Rademacher complexities yields
that for all ε > 0,

K ′ ε√
N ln(N)

√
VC(F , 4ε/M2) ≤ sup

(µ1,...,µN )∈CN
M2

RN

(
F̃ |µ1, . . . , µN

)
.

In particular, taking ε = M2/8 gives the wanted result, by noticing that for the classification
problem, i.e. labels in {0, 1}, we have that VC(F , 1/2) = VC(F).

IV.5.5 Proof of Proposition IV.6

Let µ = (µ1, . . . , µN ) be a sample of N measures. In Theorem 2 of [Mau16], the authors
establish a chain-rule to control the Gaussian complexity for the composition of function
classes. This result implies that there exist two constants C1 and C2 such that for any
f0 ∈ F ,

GN (H) ≤ C1LGN (F̃) +
1

N
C2Diam(F̃(µ))R(G) +GN (G(f0)).

where R(G) = sup
x,x′∈R,x ̸=x

′

Eγ sup
ψ∈H

(ψ(x) − ψ(x′))γ

|x− x′| ,

and where γ ∼ N (0, 1).

We wish to successively bound each of the three terms on the right hand side. The
classical equivalence between Gaussian and Rademacher complexities together with Theorem
IV.3 permits to control the first term:

GN (H) ≤ C1LM2

√
VC(F)

√
log(N)√

N
+

1

N
C2Diam(F̃(µ))R(G) +GN (G(f0)).

Analogously to the proof of Theorem IV.3, we can simply bound the diameter by Diam(F̃(µ)) ≤√
NM2, since all the functions from F are bounded by 1.

As for the third term, taking f0 = 0, we have that

GN (G(f̃0) = Eγ

[
sup
ψ∈H

⟨γ, (ψ(0), . . . , ψ(0)⟩
]

≤ Eγ

[∣∣∣∣∣

N∑

i=1

γi

∣∣∣∣∣× sup
ψ∈H

|ψ(0)|
]

≤
√
N sup
ψ∈H

|ψ(0)|,

where the last inequality follows from the fact that the γi are standard independent normal
variables.

IV.5.6 Proof of Theorem IV.12

Assume that we observe a n-sample from M1. Corollary 3 of [CGLM14] states that for every
ε > 0,
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P[dB(dgm(Č(M1)), dgm(Č(X̂n))) ≥ ε] ≤ 2b

aεb
exp(−naεb).

Let δ > 0, and take ε = K/2. The above formula yields that for n ≥ 2b

aKb log
(

4b

aKbδ

)
, we have

with probability larger than 1 − δ that

dB(dgm(Č(M1)), dgm(Č(X̂n))) ≤ K/2. (IV.1)

By triangle inequality for the distance dB and using the hypothesis that the persistence
diagrams of the two metric spaces are away from at least K for the bottleneck distance, we
necessarily have that

dB(dgm(Č(M2)), dgm(Č(X̂n))) > K/2. (IV.2)

By assumption, for i = 1, 2, dgm(Č(Mi)) has no point at a distance less than K from the
diagonal. We can now distinguish two cases :

• dgm(Č(M1)) and dgm(Č(M2)) have the same number of points m (all these points are
at least away from K to the diagonal). Under these circumstances, dgm(Č(X̂n)) also
has m points above K/2. If it had more, it would mean that one of this point should be
matched with the diagonal, and therefore yields a contradiction with (IV.1). Consider
squares of size K/2 centered on the points of dgm(Č(M1)) and dgm(Č(M2)). If they
all contain the same number of points from dgm(Č(X̂n)), we have a contradiction with
(IV.2). It therefore means that there is a rectangle that can select the right model.

• If they do not have the same number of points, necessarily by (IV.1), dgm(Č(X̂n)) must
have the same number of points as dgm(Č(M1)) above K/2 and do not have the same
number of points as dgm(Č(M2)). Counting the number of points in the (infinite but
truncatable) rectangle {(p, q)||q− p| > K/2} is therefore enough to classify between the
two metric spaces.

IV.5.7 Proof of Theorem IV.13

We define the persistent Betti number βk,n(a, b) as the number of k-holes of Č(r−1
n Xn, r) that

persist between r = a and r = b. It corresponds to the number of points in the persistence
diagram that falls in the upper-left quadrant having an angle at the point (a, b).

First note that Card(rnRs,t,u,v) = βk,n(t, u) − βk,n(t, v) − βk,n(s, u) + βk,n(s, v). As in
[Owa22], we denote by

hr(x1, . . . xk+2) = 1⋂k
j0=1{

⋂
j ̸=j0

B(xj ,r/2) ̸=∅} − 1⋂k+2
j=1 B(xj ,r/2) ̸=∅

,

and by

Gk,n(s, t) =
∑

Y⊂Xn,|Y|=k+2

hrns(Y)hrnt(Y),

so that, according to [Owa22, Lemma 4.1]

Gk,n(s, t) −
(
k + 3

k + 2

)
Lrnt ≤ βk,n(s, t) ≤ Gk,n(s, t) +

(
k + 3

k + 1

)
Lrnt, (IV.3)
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where

Lrnt =
∑

Y⊂Xn,|Y|=k+3

1
Č(Y,rnt) is connected

.

In what follows we prove bounds for βk,n(s, t). The bound on Card(rnRs,t,u,v) easily follows.

Upper-bound of the bias

E(Gk,n(s, t)) =

(
n

k + 2

)∫

M
f(x1)dH(x1)

∫

Mk+1

gs,t

(
x1
rn
, . . . ,

xk+2

rn

) k+1∏

j=2

f(xj)dH(xj)

=

(
n

k + 2

)∫

M
f(x1)dH(x1)Ix1 ,

where gs,t = hsht. Now, for a fixed x1 ∈M , we note that gs,t is non-zero implies (x2, . . . xk+1) ∈
B(x1, rn(k + 2)t+)k (recall that t ≤ t+). Denoting by M̃n = hn(M), with hn : u 7→ u−x1

rn
, and

using [Fed59, Theorem 3.1] leads to the change of variable

Ix1 :=

∫

Mk+1

gs,t

(
x1
rn
, . . . ,

xk+2

rn

) k+1∏

j=2

f(xj)dH(xj)

= rd(k+1)
n

∫

(M̃n)k+1

gs,t (0, y1, . . . , yk+1)1B(0,(k+2)t+)k+1(y1, . . . , yk+1)
k+1∏

j=1

f(x1 + rnyj)dH(yj).

Note that 0 ∈ M̃n, and that M̃n has a reach τ̃ = τ/rn → +∞. With a slight abuse of
notation, we identify T0M̃n with Rd, and denote by Jv the Jacobian of the exponential map
exp0 : BRd(0, (k+ 2)t+) → M̃n at point v (note that exp0 is well defined for n large enough so
that τ̃ ≥ 4(k + 2)t+, see, for instance [AL19, Lemma 1]). Using [Fed59, Theorem 3.1] again
yields for the change of variable yj = exp0(vj) that

Ix1 = rd(k+1)
n

∫

(Rd)k+1

gs,t (0, y1, . . . , yk+1)1y1,...,yk+1∈BM̃n
(0,(k+2)t+)k+1

k+1∏

j=1

Jvjf(x1 + rnyj)dv1 . . . dvk+1.

According to [AL19, Lemma 1], whenever yj ∈ BM̃n
(0, (k + 2)t+), we have ∥yj − vj∥ ≤

C((k + 2)t+)2rn/τmin, and ∥ dvi exp0−Id∥op ≤ 5
4τ̃n

= 5rn
4τ ≤ 5rn

4τmin
, so that

|Jvj − 1| ≤ Cd
rn
τmin

,

and therefore,
∣∣Jvj − 1

∣∣ ≤ 1 for n large enough. We deduce that
∣∣∣∣∣∣

k+1∏

j=1

Jvjf(x1 + rnyj) − f(x1)
k+1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

k+1∏

j=1

Jvjf(x1 + rnyj) −
k+1∏

j=1

Jvjf(x1)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

k+1∏

j=1

Jvjf(x1) − f(x1)
k+1

∣∣∣∣∣∣

≤ Ck+1
d (k + 1)L∥f∥k∞rn + (k + 1)∥f∥k+1

∞ Ck+1
d

rn
τmin

≤ Ck+1
d (k + 1)∥f∥k∞

(
L ∨ ∥f∥∞

τmin

)
rn.
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Denoting by

I ′x1 = rd(k+1)
n f(x1)

k+1

∫

(Rd)k+1

gs,t (0, y1, . . . , yk+1)1y1,...,yk+1∈BM̃n
(0,(k+2)t+)k+1

k+1∏

j=1

dv1 . . . dvk+1,

we deduce that

|I ′x1 − Ix1 | ≤ (2(k + 2)t+)d(k+1)Ck+1
d (k + 1)∥f∥k+1

∞

(
L ∨ 1

τmin

)
rd(k+1)+1
n

≤ Cd,k(t
+)d(k+1)∥f∥k∞

(
L ∨ ∥f∥∞

τmin

)
rd(k+1)+1
n .

Next, note that

gs,t (0, y1, . . . , yk+1) ̸= gs,t (0, v1, . . . , vk+1) ⇒ (v1, . . . , vk+1) ∈ V1,

where

V1 =
{

(v1, . . . , vk+1) ∈ B(0, 2(k + 2)t+)k+1 | ∃i ̸= j; |∥vi − vj∥ − s| ≤ C((k + 2)t+)2rn/τmin

or |∥vi − vj∥ − t| ≤ C((k + 2)t+)2rn/τmin

}
.

We deduce that∣∣∣∣∣I
′
x1(A) − rd(k+1)

n f(x1)
k+1

∫

(Rd)k+1

gs,t (0, v1, . . . , vk+1)1v1,...vk+1∈BM̃n
(0,2(k+2)t+)k+1dv1 . . . dvk+1

∣∣∣∣∣

≤ rd(k+1)
n ∥f∥k+1

∞

∫

(Rd)k+1

1V1(v1, . . . , vk+1)dv1, . . . , dvk+1

≤ rd(k+1)
n ∥f∥k+1

∞ 2

(
k + 1

2

)
Cd((2(k + 2)t+)kd((2(k + 2)t+)d+1 rn

τmin

≤ rd(k+1)
n Cd,k∥f∥k∞(t+)(k+1)d ∥f∥∞t+rn

τmin
.

The triangle inequality gives
∣∣∣∣∣
E(Gk,n(s, t))
(
n
k+2

)
r
d(k+1)
n

−Ak(s, t)

∣∣∣∣∣ ≤ Cd,k,t+,∥f∥∞

(
L ∨ ∥f∥∞

τmin

)
rn,

where Ak(s, t) =
(∫
M fk+1(u)dH(u)

) ∫
(Rd)k+1 gs,t (0, v1, . . . , vk+1) dv1 . . . dvk+1.

Next, we have to bound the higher order term E(Lrn,t) dealing with the subsets of size
k + 3. To do so, write

E(Lrnt) =

(
n

k + 3

)∫

Mk+3

1
Č(x1,...,xk+3,rnt) is connected

k+3∏

i=1

f(xi)dH(xi)

=

(
n

k + 3

)∫

M
f(x1)dH(x1)

∫

Mk+2

1
Č(x1,...,xk+3,rnt) is connected

× 1x2,...xk+3∈B(x1,(k+3)rnt)k+2

k+3∏

i=2

f(xi)dH(xi)

≤ Cd∥f∥k+2
∞

(
n

k + 3

)∫

M
f(x1)((k + 3)rnt

+)d(k+2)dH(x1)

≤ Cd,k,t+,∥f∥∞

(
n

k + 3

)
rd(k+2)
n ,
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according to [AL19, Lemma B.7], since (k + 3)rnt
+ ≤ τmin/4 for n large enough. Thus,

(
n

k + 2

)−1

r−d(k+1)
n E(Lrn,t) ≤ Cd,k,t+,∥f∥∞nr

d
n.

Upper-bound of the variance Let us denote by

Un =
1(
n
m

)
∑

I⊂Xn,|I|=m

gs,t(I),

where m = k + 2, and, for j = 1, . . . ,m− 1,

gj(x1, . . . xj) = E (gs,t(x1, . . . , xj , Xj+1, . . . , Xm) .

We remark that gm = gs,t. Noting that Un is a U-statistics of order m, Hoeffding’s decompo-
sition (see, e.g., [Lee90, Theorem 3]) yields that

Var(Un) =

(
n

m

)−1 m∑

j=1

(
m

j

)(
n−m

m− j

)
Var(gj). (IV.4)

Proceeding as for the bound on E(Lrnt), we may write

|gj(x1, . . . xj)| ≤ Cd,m,t+,∥f∥∞r
d(m−j)
n 1

Č(x1,...xj)is connected
,

so that

Var(gj(X1, . . . , Xj)) ≤ E(g2j (X1, . . . , Xj) ≤ Cd,m,t+,∥f∥∞r
2d(m−j)+(j−1)d
n ,

for j = 1, . . . ,m− 1. As well,

Var(gm(X1, . . . , Xm)) ≤ E(g2m(X1, . . . , Xm)) ≤ Cd,m,t+,∥f∥∞r
(m−1)d
n .

Plugging these inequalities into (IV.4) leads to

Var(Un) ≤
(
n

m

)−1

Cd,m,t+,∥f∥∞

m∑

j=1

(
m

j

)(
n−m

m− j

)
r2d(m−j)+(j−1)d
n

≤ Cd,m,t+,∥f∥∞r
d(2m−1)
n

m∑

j=1

(
n−m
m−j

)
(
n
m

) r−djn

≤ Cd,m,t+,∥f∥∞r
d(2m−1)
n

m∑

j=1

1

(nrdn)j

≤ Cd,m,t+,∥f∥∞n
−mrd(m−1)

n ,

for n large enough so that
(
n−m
m−j

)
/
(
n
m

)
≤ 2jn−j and nrdn ≤ 1. We deduce that

Var

(
Gn(s, t)

r
d(m−1)
n

(
n
m

)

)
=

1

r
2d(m−1)
n

Var(Un) ≤ Cd,m,t+,∥f∥∞(nmrd(m−1)
n )−1

≤ Cd,k,t+,∥f∥∞(nk+2rd(k+1)
n )−1.
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Bounding the variance of Lrnt proceeds from the same calculation, noting that Lrnt is a
U -statistic of order m = k + 3. Namely, proceeding as above leads to

Var

(
Lrnt(
n
m

)
)

≤ Cd,m,t+,∥f∥∞n
−mrd(m−1)

n ,

with m = k + 3, so that

Var

(
Lrnt

(rdn)k+1
(
n
k+2

)
)

≤ Cd,k,t+,∥f∥∞

(
n
k+3

)2
(
n
k+2

)2
r
d(2k+2)
n

n−(k+3)rd(k+2)
n

≤ Cd,k,t+,∥f∥∞
nrdn

nk+2r
d(k+1)
n

≤ Cd,k,t+,∥f∥∞(nk+2rd(k+1)
n )−1,

for n large enough.

End of the proof Let k ≤ d− 4 and choose rn = n
− k+2

2+d(k+1) . It holds

r2n = n−(k+2)r−d(k+1)
n = n

−
2(k+2)

2+d(k+1) ,

nrdn = n
2+d(k+1)−d(k+2)

2+d(k+1) = n
2−d

2+d(k+1) ≤ rn.

The above calculation then leads to, for any 0 < s ≤ t ≤ u ≤ v ≤ t+, and n large enough,

E
[
(ξk,n − µk)(Rs,t,u,v)

2
]
≤ E [(ξk,n − µk)(Rs,t,u,v)]

2 + Var [(ξk,n − µk)(Rs,t,u,v)]

≤ Cd,k,t+,∥f∥∞n
−(k+2)r−d(k+1)

n + Cd,k,t+,∥f∥∞(L ∨ ∥f∥∞
τmin

)2r2n

≤ Ck,d,t+,∥f∥∞,τmin,Ln
−

2(k+2)
2+d(k+1) .

Now, for k ≥ d− 4 and rn = n
− k+4

d(k+3) , we get

n2r2dn = n−(k+2)r−d(k+1)
n = n−

2
k+3 ,

rn = n
− k+4

d(k+3) ≤ n−
1

k+3 = nrdn.

This yields, for n large enough,

E
[
(ξk,n − µk)(Rs,t,u,v)

2
]
≤ Ck,d,t+,∥f∥∞,τmin,Ln

− 2
k+3 .

IV.5.8 Proof of Corollary IV.14

Assume without loss of generality that the points are sampled according to f1. Let 0 ≤ s ≤
t ≤ u ≤ v ≤ ∞. For i = 1, 2, denote by

li =

∫
M fk+2

i dH
(k + 2)!

∫

(Rd)k+1

Hs,t,u,v(0, y1, . . . , yk+1)dy1 . . . dyk+1.

By Chebyshev’s inequality,

P

(
|ξk,n(Rs,t,u,v) − l1| ≥

|l1 − l2|
2

)
≤ 4E

[
(ξk,n(Rs,t,u,v) − l1)

2
]

|l1 − l2|2
.
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Inverting the above formula and using the variance bound in the proof of Theorem IV.13
yields that there exists a constant C such that with probability greater or equal than 1 −
C n

−
2(k+2)
d(k+1)

(
∫
M |fk+2

1 −fk+2
2 |)2

,

|ξk,n − l1| ≥
|l1 − l2|

2
.

This means that with at least the same probability, the data are correctly labeled as being
sampled according to f1.
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V Euler characteristic tools for topological data analysis

In the previous section, we have seen that we can transform raw data into persistence di-
agrams to classify them using underlying topological information. This approach has been
particularly fruitful in the case of point cloud and graph data. We have developed algorithms
and corresponding theoretical guarantees that work directly on the diagrams seen as discrete
measures. We have demonstrated that this approach has a performance comparable to sim-
ple vectorizations of persistence diagrams (e.g. persistence images) coupled with a standard
off-the-shelf classification algorithm (e.g. regularized logit). In addition, the computation
time of our method is comparable to that of this standard method; see Table 11. When
considering the complete pipeline that maps the raw data to a binary prediction, the compu-
tation of persistence diagrams occupies a fair share of the total computation time. We wonder
whether some descriptors bypass the diagram computation step while carrying relevant and
interpretable topological information. This section aims at providing an affirmative answer
to this question. Indeed, we construct descriptors by analogy with the Euler characteristic of
a simplicial complex, which carries information about the Betti numbers simply by counting
vertices and without any homology computation. More generally, we study Euler characteris-
tic techniques in topological data analysis. Pointwise computing the Euler characteristic of a
family of simplicial complexes built from data gives rise to the Euler characteristic profile. We
show that this simple descriptor achieves state-of-the-art performance in supervised tasks at a
modest computational cost. Inspired by signal analysis, we compute hybrid transforms of Eu-
ler characteristic profiles. These integral transforms mix Euler characteristic techniques with
Lebesgue integration to provide highly efficient compressors of topological signals. As a con-
sequence, they show remarkable performances in unsupervised settings. Most notably, Euler
characteristic profiles and hybrid transforms bypass the computation of persistence diagrams
resulting in a substantial improvement in computational complexity while maintaining com-
petitive performance. In addition, these descriptors naturally generalize to multi-persistence.
Finally, we prove stability results for these descriptors and asymptotic guarantees in random
settings.

Contents

V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

V.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

V.2.1 Simplicial complexes, filtrations . . . . . . . . . . . . . . . . . . . . . . . 119

V.2.2 Euler characteristic tools . . . . . . . . . . . . . . . . . . . . . . . . . . 120

V.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

V.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

V.3.2 Heuristics for the Euler curves and their transforms . . . . . . . . . . . 125

V.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

V.4.1 Curvature regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

V.4.2 ORBIT5K data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

V.4.3 Sidney object recognition data set . . . . . . . . . . . . . . . . . . . . . 132

V.4.4 Graph data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

V.4.5 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

V.4.6 Take-home message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

V.4.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

116



V.5 Stability properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

V.6 Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

V.6.1 Limit theorems for one-parameter hybrid transforms . . . . . . . . . . . 138

V.6.2 Limit theorem for multi-parameter hybrid transforms . . . . . . . . . . 140

V.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

V.7.1 Proof of Proposition V.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 141

V.7.2 Proof of Corollary V.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

V.7.3 Proof of Lemma V.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

V.7.4 Proof of Theorem V.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

V.7.5 Proof of Theorem V.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

V.7.6 Proof of Theorem V.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

V.1 Introduction

We have seen in the previous sections that persistence diagrams are a summary of the topo-
logical information contained in a multi-scale filtration of the data. The space of persistence
diagrams is a metric space for the so-called bottleneck distance, [CSEH07], but it cannot
be isometrically embedded into a Hilbert space [CB18, BW20]. Although it is possible to
perform some machine learning tasks directly on the space of persistence diagrams seen as
measure, as done in Section IV, most methods consist in transforming persistence diagrams
into vectors. Most commonly used techniques include persistence images [AEK+17], land-
scapes [B+15], and more recently measure-oriented vectorizations in [RCL+21] and neural
network methods from [CCI+20, RCB21]. An overview of topological methods in machine
learning has been presented in the survey of [HMR21]. These methods have demonstrated
their efficiency in a wide variety of applications and types of data, such as health applications
[RYB+20, FM22, ACC+21], biology [IOH20, RB19] or material sciences [LBD+17, HNH+16].

In many practical scenarios, it is natural to look at data with more than one parameter,
i.e., to consider multi-parameter families of topological spaces instead of one-parameter ones.
It allows one to cope with outliers by filtering the space with respect to an estimated local
density, or to deal with intrinsically multi-parameter data, such as blood cells with several
biomarkers. However, there does not exist a complete combinatorial descriptor similar to the
persistence diagram that could make them usable in artificial intelligence [CZ09]. One of the
main objectives of this field is to build informative descriptors of such families. Although
not intrinsically multi-parameter, persistence landscapes have successfully been generalized
to the multi-parameter setting in [Vip20] and persistence images to the two-parameter setting
in [CB20]. Besides their high level of sophistication, the main limitation of these tools is their
computational cost; see [CB20, Table 2] and Section V.4.5.

In contrast, some topological methods do not compute homological information—thus
bypassing the computation of persistence diagrams—but rather compute the Euler charac-
teristic of the topological spaces at hand. The Euler characteristic of a simplicial complex
is a celebrated topological invariant that is simply the alternated sum of the number of sim-
plices of each dimension. Considering the pointwise Euler characteristic of a one-parameter
family of simplicial complexes gives rise to a functional multi-scale descriptor called the Euler
characteristic curve.

Though Euler characteristic based descriptors may appear coarse, we highlight four main
reasons to favour them. First, they have a good predictive power [SZ21, JKN20, AQO+22].
Second, the simplicity of these descriptors translates into a reduced computational cost. They
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can be computed in linear time in the number of simplices instead of typically matrix mul-
tiplication time for persistence diagrams [MMS11]. Moreover, the locality of the Euler char-
acteristic can be exploited to design highly efficient algorithms computing Euler curves, as
in [HW17]. Third, there are several known theoretical results on the Euler characteristic
of a random complex. Mean formulae for the Euler characteristic of superlevel sets of ran-
dom fields are proven in [AT09], and the limiting behaviour of the Euler characteristic of a
complex built on a Poisson process are established in Corollary 4.2 of [BA14]. Furthermore,
Euler curves associated with random point clouds are proven to be asymptotically normal
for a well-chosen sampling regime in [KRP21], where the authors also apply this construction
to bootstrap. Fourth, they naturally generalise to the multi-parameter setting, becoming
so-called Euler characteristic surfaces [BSA+22] and profiles [DG22].

We demonstrate that these tools reach state-of-the-art performance at a minimal com-
putational cost when coupled with a powerful classifier such as an XGB or a random forest.
However, due to their simplicity, these descriptors do not manage to linearly separate the
different classes or be competitive on unsupervised tasks. Inspired by signal analysis, we
cope with these limitations by studying integral transforms of Euler characteristic curves and
profiles. More precisely, we consider a general notion of integral transforms mixing Lebesgue
integration and Euler characteristic techniques recently introduced in [Leb22] under the name
of hybrid transforms. In the one-parameter case, hybrid transforms are classical integral trans-
forms of Euler curves. Similarly, hybrid transforms depend on a choice of kernel which offers a
wide variety of possible signal decompositions. Yet, hybrid transforms differ from classical in-
tegral transforms in general. In so doing, they enjoy many specific appealing properties, such
as compatibility with topological operations from Euler calculus [Leb22, Section 5]. Most
importantly, in the context of multi-parameter sublevel-sets persistence, hybrid transforms
can be expressed as one-parameter hybrid transforms of Euler curves associated with a linear
combination of the filtration functions. As a consequence, mean formulae for hybrid trans-
forms associated with Gaussian random fields are derived in [Leb22, Section 8], and we prove
here a law of large numbers in a multi-filtration set-up. Studying the asymptotic behaviour of
topological descriptors of random complexes is a deeply-studied question in the one-parameter
setting; see [BK18] for a survey. Together with the works of [BH22], our results form the first
occurrence of limiting theorems in a multi-persistence framework in the literature.

Contributions and outline. After introducing the necessary notions in Section V.2, we
provide heuristics on how to choose the kernel of hybrid transforms and give many examples
of the type of topological and geometric behaviour Euler curves and their integral transform
can capture from data in Section V.3. Most importantly, our main contributions are the
following:

• We demonstrate that Euler profiles achieve state-of-the-art accuracy in supervised clas-
sification and regression tasks when coupled with a random forest or an XGB (Sec-
tions V.4.1, V.4.2 and V.4.4) at a very low computational cost (Section V.4.5). Note
that the multi-parameter nature of our tools and their computational simplicity allows
us to use up to 5-parameter filtrations to classify graph data.

• We demonstrate that hybrid transforms act as highly efficient information compressors.
As a consequence, they outperform Euler profiles in unsupervised classification tasks
and in supervised tasks when plugging a linear classifier (Figure 45 and Sections V.4.1
to V.4.3). In Section V.4.3, we illustrate their ability to capture fine-grained information
on a real-world data set.
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• We provide several theoretical guarantees for these descriptors. First, we prove stability
properties that clarify the robustness of our tools with respect to perturbations (Sec-
tion V.5). Expressed in terms of L1 norms, these are also hints of the sensitivity of our
tools to the underlying geometry of the data at hand. Then, we establish the pointwise
convergence of hybrid transforms associated with random samples and their asymptotic
normality for a specific filtration function. We also establish a law of large numbers in
a multi-filtration set-up (Section V.6).

Finally, Section V.7 is devoted to the proofs of the results stated in Sections V.5 and V.6.

V.2 Definitions

In this section, we present all the notions used throughout this section. Let us first introduce
some conventions.

(i) The dual of a vector space V is denoted by V∗, and Rm will always be identified with
its dual under the canonical isomorphism. For ξ ∈ Rm

∗ and t ∈ Rm, we often denote
ξ · t = ξ(t).

(ii) We denote by Rm+
∗ the cone of linear forms on Rm that are non-decreasing with respect

to the coordinatewise order on Rm, or equivalently that have non-negative canonical
coordinates.

(iii) Let I be an interval of R and denote by L1(I) the space of absolutely integrable complex-
valued functions on I.

(iv) Let p ∈ [1,∞] and let f : Rm → R be locally p-integrable. We denote by ∥f∥p,M the
p-norm of f · 1[−M,M ]m . If f is p-integrable, we denote its p-norm by ∥f∥p.

(v) We always consider the coordinatewise order on Rm.

V.2.1 Simplicial complexes, filtrations

For the sake of completeness, we hereby recall some notions about simplicial complexes and
filtrations. A (finite) abstract simplicial complex K, or simply simplicial complex, is a finite
collection of finite sets that is closed under taking subsets. An element σ ∈ K is called a
simplex, and subsets of σ are called faces of σ. The inclusion between simplices induces a
partial order on K that we denote simply by ≤. The dimension of a simplex with k elements
is equal to k − 1. The Euler characteristic of a simplicial complex K is the integer:

χ(K) =
∑

σ∈K

(−1)dimσ.

Until the end of this section, we let K be a finite simplicial complex. An m-parameter filtration
of K is a family F = (Ft)t∈Rm of subcomplexes Ft ⊆ K that is increasing with respect to
inclusions, i.e., such that Ft ⊆ Ft′ for any t, t′ ∈ Rm with t ≤ t′. From now on, we do not
refer explicitly to K when it is clear from the context. Many filtrations can be introduced by
considering sublevel sets of functions:

Example V.1. Let f : K → Rm be a non-decreasing map, i.e., such that f(σ) ≤ f(τ) for any
σ ≤ τ ∈ K. The map f induces an m-parameter filtration of K called sublevel-sets filtration,
denoted by Ff , and formed by the subcomplexes (Ff )t = {f ≤ t} := {σ ∈ K : f(σ) ≤ t} for
any t ∈ Rm. We sometimes refer to the function f as the filter of Ff .

A lot of information on the geometry of a point cloud, that is, a finite subset of Rd, is
captured by its Čech complex:
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Example V.2. Let X ⊆ Rd be finite. The Čech complex at scale t ≥ 0 is the simplicial
complex Č(X, t) defined as follows. For (x0, . . . , xk) ∈ Xk+1, the simplex {x0, . . . , xk} is in
Č(X, t) if the intersection of closed balls ∩kl=0B(xl, t) is non-empty. The filtered Čech complex,
or Čech filtration, is defined at each t ∈ R as the Čech complex at scale t for t ≥ 0, and as
the empty set for t < 0. For computational reasons, we rather use a homotopy equivalent
complex in numerical experiments, called the filtered alpha complex, or alpha filtration, which
is a subcomplex of the Delaunay triangulation; see [BE17].

The properties of the Čech complex of a random point cloud have been deeply studied
theoretically. We refer to [BK18] and [Owa22] for the most recent results. When doing multi-
parameter persistence, a common technique is to couple the Čech complex with some function
on the data. Typically, we cope with outliers by coupling a Čech filtration with a density
estimator built from the data at hand. This falls under the framework of function-Čech
filtrations:

Example V.3. Let X ⊆ Rd be finite and f = (f1, . . . , fm) : X → Rm be a bounded function.
The function-Čech filtration is the (m+1)-parameter filtration Č(X, f) of 2X defined for r ∈ R

and t = (t1, . . . , tm) ∈ Rm by:

Č(X, f)(r,t) =
{
σ ∈ Č(X, r) : σ ⊆ f−1

i (−∞, ti], 1 ≤ i ≤ m
}
.

Again, we rather use function-alpha filtration in numerical experiments, which are defined
similarly using alpha complexes.

Let F be an m-parameter filtration and σ ∈ K. The support of σ is the set supp(σ) := {t ∈
Rm : σ ∈ Ft}. A filtration is called finitely generated if the support of any simplex appearing
in the filtration is either empty or has a finite number of minimal elements; see Figure 37a
for an illustration. Moreover, if the support of any simplex has at most one minimal element,
then the filtration is called one-critical. In that case, we denote by t(σ) the minimal element
of supp(σ). For instance, function-Cech and function-alpha filtrations are one-critical. On
the contrary, the degree-Rips bifiltration is not [LW16]. Note that sublevel-sets filtrations are
one-critical. Conversely, any one-critical filtration is a sublevel set filtration for the function
f : σ ∈ K 7→ t(σ).

V.2.2 Euler characteristic tools

In this section, we recall the definitions of the descriptors of filtered simplicial complexes we use
to perform topological data analysis. These invariants are defined using Euler characteristic
profiles [BSA+22, DG22] and topological and hybrid transforms of constructible functions
[Sch95, GR11, Leb22]. While these tools can be defined in the more general setting of o-
minimal geometry, we focus on filtered simplicial complexes.

Given an m-parameter filtration, computing the Euler characteristic for every value of the
parameter t ∈ Rm gives an integer-valued function on Rm that is a multi-scale descriptor of
the evolution of the filtration with respect to t.

Definition V.4. The Euler characteristic profile of an m-parameter filtration F is the map:

χF : t ∈ R
m 7→ χ(Ft).

The map χF is usually refered to as the Euler characteristic curve (ECC) of F when m = 1
and as the Euler characteristic surface (ECS) of F when m = 2; see [BSA+22, DG22].

120



We show in Figure 37 an Euler characteristic surface computed on an elementary example.
Widely used in data analysis [SZ21, DG22, BSA+22, JKN20], this simple descriptor has proven
to be efficient to capture meaningful information on the data at hand. However, as illustrated
in the following sections, we are interested in more robust descriptors built from integral
transformations.

(a) F (b) χF

Figure 37: A finitely generated 2-parameter filtration (a) and its associated Euler character-
istic surface (b). All vertices have one birth time, while all other simplices have two.

Before introducing the other descriptors considered, we define the pushforward operation
from Euler calculus; see [Sch89, Vir88]:

Definition V.5. Let F be a one-critical m-parameter filtration and ξ ∈ Rm+
∗. The pushfor-

ward of F along ξ is the one-parameter family defined for any s ∈ R by:
(
ξ∗F

)
s

=
⋃

ξ·t≤s

Ft.

The pushforward of χF along ξ is the Euler characteristic curve of ξ∗F . We denote this
curve by ξ∗χF . In other words, we have ξ∗χF = χξ∗F . Writing the one-critical filtration as a
sublevel set filtration, the pushforward operation has a simple expression:

Example V.6. Let f : K → Rm be a non-decreasing map and ξ ∈ Rm+
∗. The Euler char-

acteristic profile of Ff is denoted by χf . It is an easy exercise to check that ξ∗Ff = Fξ◦f
and ξ∗χf = χξ◦f .

Introduced by [Sch95], the Radon transform plays a central role in topological data anal-
ysis. For instance, it allows one to prove that the so-called Euler characteristic transform and
persistent homology transform are injective [GLM18, CMT22]. However, it has never been
studied in data analysis as a topological descriptor of filtered simplicial complexes. To do so,
we give its expression in this context.

Definition V.7. Let F be a one-critical m-parameter filtration. The Radon transform of χF

is the map:
RF : (ξ, s) ∈ R

m
+

∗ × R 7−→ ξ∗χF (s).

Hybrid transforms mixing Euler calculus and classical Lebesgue integration have been
introduced in [Leb22]. In contrast to the Radon transform, these transforms are not purely
topological. As a consequence, they are regular (continuous and piecewise smooth) and enjoy
several beneficial properties, such as index theoretic formulae in the context of sublevel set
persistence; see Propositions 4.1 and 4.2 and Theorem 8.3 in loc. cit.. In the present context,
they can be defined as follows:
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Definition V.8. Let F be a one-critical m-parameter filtration and κ ∈ L1(R). The hybrid
transform with kernel κ of χF is the map:

ψκF : ξ ∈ R
m
+

∗ 7→
∫

R

κ(s)ξ∗χF (s) ds.

The following lemma is an obvious consequence of Example V.6. It states that any m-
parameter hybrid transform restricted to an open half-line can be expressed as a one-parameter
hybrid transform. It will be key to the proof of a law of large numbers for m-parameter hybrid
transforms (Theorem V.18).

Lemma V.9. Let F be a one-critical m-parameter filtration, let κ ∈ L1(R) and ξ ∈ Rm+
∗. For

any λ > 0, one has:
ψκF (λξ) = ψκξ∗F (λ).

Euler characteristic profiles, Radon transforms, and hybrid transforms constitute the three
descriptors of data we will use to perform topological data analysis. We give explicit expres-
sions of these descriptors in two specific cases below. These formulae will allow us to design
algorithms to compute them in Section V.3.1 and to build intuition on the type of behaviour
they capture.

Connection with persistence diagrams. Suppose that F is a one-parameter filtration.
Denote the corresponding k-th persistent diagram by Dk =

{(
aki , b

k
i

)}
i=1,...,nk

for real numbers

−∞ < aki < bki ≤ ∞ and an integer nk ≥ 0. It is then straightforward to check that:

χF =
∑

k≥0

nk∑

i=1

(−1)k1[aki ,bki )
. (V.1)

Therefore, the Radon transform of χF is:

RF : (ξ, s) ∈ R
∗
+ × R 7→

∑

k≥0

nk∑

i=1

(−1)k1[ξ·aki ,ξ·bki )
(s). (V.2)

Let κ ∈ L1(R) and consider a primitive κ of κ. The hybrid transform with kernel κ of χF is:

ψκF : ξ ∈ R
∗
+ 7→

∑

k≥0

nk∑

i=1

(−1)k
(
κ[ξ · bki ] − κ[ξ · aki ]

)
, (V.3)

with the convention that κ(ξ · bki ) is the limit of κ at +∞ when bki = +∞.

One-critical filtrations. Up to reducing K, one can assume that for any σ ∈ K, there is
t ∈ Rm with σ ∈ Ft. Then, one has:

χF =
∑

σ∈K

(−1)dimσ1Qt(σ)
, (V.4)

where Qu := {t ∈ Rm : t ≥ u} for any u ∈ Rm. As a consequence, one has:

RF : (ξ, s) ∈ R
m
+

∗ × R 7→
∑

σ∈K

(−1)dimσ1[ξ·t(σ),+∞)(s). (V.5)
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Lκ ∈ L1(R). Denote by κ the primitive of κ whose limit at +∞ is 0. The hybrid transform
with kernel κ of χF is:

ψκF : ξ ∈ R
m
+

∗ 7−→ −
∑

σ∈K

(−1)dimσκ[ξ · t(σ)]. (V.6)

Remark V.10. We often define hybrid transforms by specifying the primitive κ of the kernel
κ whose limit at +∞ is 0. We call κ the primitive kernel of the hybrid transform.

Finally, in the case of a one-parameter filtration, hybrid transforms naturally appear
as classical integral transforms of the Euler curve, making them a natural tool to extract
information from the Euler curve and compress it into a small number of relevant coefficients.

Connection with classical transforms. Let F be a one-critical m-parameter filtration.
First, assume that m = 1. For any ξ ∈ R∗

+ and any s ∈ R, one has (ξ∗F)s = Fs/ξ and
hence ξ∗χF (s) = χF (s/ξ). A change of variables then ensures that the hybrid transform with
kernel κ ∈ L1(R) is nothing but the rescaled classical transform:

ψκF : ξ ∈ R
∗
+ 7→ ξ ·

∫

R

κ(ξ · s)χF (s) ds. (V.7)

Assume now that m ≥ 2. The hybrid transform with kernel κ differs from the classical integral
transform:

ξ ∈ R
m
+

∗ 7→
∫

Rm

κ(ξ · x)χF (x) dx.

See [Leb22, Example 3.18] for a counter-example. In some special cases, however, such as
when κ(t) = exp(−t), hybrid transforms and classical transforms coincide up to a rescaling
[Leb22, Examples 5.12 and 5.17]. The interest of hybrid transforms over classical transforms
can be motivated by the following example:

Example V.11. The one-parameter hybrid transform with kernel κ(t) = exp(−t) is also
known as the persistent magnitude [GH21]. As proven in loc. cit. following the work of
[Ott22], this object is related to another invariant of finite metric spaces called magnitude
and introduced in [Lei13]. The formulation of persistent magnitude as a hybrid transform
naturally generalizes it to the multi-parameter setting while preserving its most appealing
properties [Leb22].

V.3 Method

In this section, we begin by describing the algorithms used to compute our descriptors as well
as their implementation. We also give some intuition on how to choose the kernel of hybrid
transforms. Finally, we give heuristics on the topological and geometric information captured
by Euler curves and their transforms through their study on synthetic data sets.

V.3.1 Algorithm

In all our experiments, and hence in our implementation, we restrict ourselves to one-critical
filtrations. In that case, formulae (V.4) and (V.6) can readily be turned into algorithms
computing Euler characteristic profiles and their hybrid transforms. Each algorithm takes as
input a grid of size d1×. . .×dm on which the Euler characteristic profile or the hybrid transform
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is evaluated. For the Radon transform, we use the fact that RF (ξ, s) = RF (ξ/s, 1). Our
algorithm then takes as input a grid of size d1×. . .×dm on which the map η ∈ Rm+

∗ 7→ RF (η, 1)
is evaluated. In any case, the output array of size d1 × . . . × dm is an exact sampling of
the descriptor. Therefore, our topological descriptors vectorize m-parameter filtrations into
d1 × . . .× dm arrays that can be used as input to any classical machine learning algorithm.

Complexity. The algorithm computing Euler characteristic profiles with resolution d1 ×
. . .×dm has time complexity O(|K|+d1 · . . . ·dm) in the worst case. The algorithm computing
Radon and hybrid transforms with the same resolution has a worst-case time complexity of
O(|K| · d1 · . . . · dm). In comparison, computing a persistence diagram has time complexity
O(|K|ω) in the worst case where 2 ≤ ω < 2.373 is the exponent for matrix multiplication; see
[MMS11].

Implementation. A Python implementation of our algorithms is freely available online on
our GitHub repository: https://github.com/vadimlebovici/eulearning. In practice, our
implementation allows for several ways of choosing a grid of sampling. The first method is
to provide bounds [(a1, b1), . . . , (am, bm)] and a resolution d1 × . . .× dm. We then compute a
sampling of our descriptors on a uniform discretization of the subset [a1, b1]× . . .× [am, bm] ⊆
Rm. This method has the disadvantage of requiring prior knowledge about the data.

For Euler characteristic profiles, the second way is to provide a list [(p1, q1), . . . , (pm, qm)]
of real numbers 0 ≤ pi < qi ≤ 1. The algorithm then computes the pi-th and the qi-th
percentiles of the i-th filtration for each i = 1, . . . ,m. Finally, the Euler profiles are uniformly
sampled on a d1× . . .×dm grid ranging from the lowest to the highest percentile on each axis.
For the Radon and hybrid transforms, the second way consists in providing a list [p1, . . . , pm]
of real numbers 0 ≤ pi ≤ 1 and a positive real number α. The algorithm then computes the
pi-th percentiles vi of the i-th filtration for each i = 1, . . . ,m. The integral transforms are
uniformly sampled on a d1 × . . . × dm grid ranging from 0 to α/vi on each axis. Note that
filtrations have to be positive, which is always satisfied up to translation. This method does
not require any prior knowledge of the data but depends on a choice of parameters. More
importantly, doing as such is justified for primitive kernels of type κ : s 7→ exp(−xp) and
κ : s 7→ xp exp(−xp) in the paragraph below.

Kernel choice. To interpret integral transforms of Euler curves, we set m = 1 and com-
pute them on the rectangular function χF = 1[a,b) associated with a persistence diagram
with a single point (a, b) with a < b ∈ (0,+∞). Recall that the hybrid transform has the
simple expression (V.3). Figure 38 shows the hybrid transforms for several kernels. For every
p > 0, the hybrid transform with primitive kernel κ : s 7→ − exp(−sp) has a minimum in
p

√
p(log(b)−log(a))

bp−ap , which tends to 1/b as p → ∞. As a consequence, transforms of this type

yield smoothed versions of the curve t 7→ χF (1/t), that is, of an Euler curve with inverted
scales. Similarly, the hybrid transform with primitive kernel κ : s 7→ −sp exp(−sp) has a
minimum that tends to 1/a and a maximum that tends to 1/b as p → ∞, with a spikier
aspect as p → ∞. Transforms of this type record the variations of the Euler characteristic
curve with inverted scales. We refer to the following section for more involved experiments
on synthetic data.
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(a) κ(s) = exp(−s4) (b) κ(s) = s4 · exp(−s4) (c) κ(s) = s8 · exp(−s8)

Figure 38: Hybrid transforms of χF = 1[a,b) for several choices of kernel κ

V.3.2 Heuristics for the Euler curves and their transforms

In this section, we assume that m = 1 and study the Euler characteristic curves associated
with the filtered Čech complex of a point cloud and the hybrid transforms of these curves.
We overview how these descriptors can extract information about the topology, geometry,
and sampling density of the input data. As already mentioned in Example V.2, we rather use
alpha filtration in numerical experiments for computational reasons.

Topology, sampling : ORBIT5K data set. While apparently coarse descriptors, Euler char-
acteristic curves allow us to extract relevant scales at which topological differences between
two different processes are revealed. We illustrate this fact on the ORBIT5K data set from the
previous section. We hereby recall its definition.

This data set consists of subsets of a thousand points in the unit cube [0, 1]2 generated by
a dynamical system that depends on a parameter ρ > 0. To generate a point cloud, an initial
point (x0, y0) is drawn uniformly at random in [0, 1]2 and then the sequence of points (xn, yn)
for n = 0, . . . , 999 is recursively generated via the dynamic:

xn+1 = xn + ρyn (1 − yn) mod 1,

yn+1 = yn + ρxn+1 (1 − xn+1) mod 1.

In Figure 39, we illustrate typical orbits for ρ ∈ {2.5, 3.5, 4.0, 4.1, 4.3}.

(a) ρ = 2.5 (b) ρ = 3.5 (c) ρ = 4.0 (d) ρ = 4.1 (e) ρ = 4.3

Figure 39: Examples of point clouds from the ORBIT5K data set.

In Figure 40a, we display the Euler characteristic curves for several realizations with
parameters ρ = 4.1 and ρ = 4.3. We also plot the feature importance function of a random
forest classifier trained on Euler characteristic curves of a small sample of 50 point clouds.
In Figures 40b and 40c, we display the alpha complexes for two typical processes truncated
at the filtration value corresponding to the largest feature importance. For a large range of
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high filtration values—approximately between 60 and 90—, the Euler characteristic curve of
each class of process typically differs by one unit since the class with parameter ρ = 4.3 has
an extra hole. This phenomenon is easily captured by the random forest classifier.

We apply the same methodology to discriminate between ρ = 2.5 and ρ = 3.5 in Figure 41.
The difference between these two classes is more related to the distribution of points than
to a persistent topological feature of the point clouds. At the scale selected by the feature
importance of the random forest, the alpha complex for ρ = 2.5 in Figure 41b tends to have
many tiny connected components, while the one for ρ = 3.5 is almost connected. We were
then able to select a relevant scale at which the difference in the distribution of points is
revealed by the topology of the alpha filtration.

(a) ECC and feature impor-
tance

(b) ρ = 4.1 (c) ρ = 4.3

Figure 40: ORBIT5K classification problem: ρ = 4.1 VS ρ = 4.3.

(a) ECC and feature impor-
tance

(b) ρ = 2.5 (c) ρ = 3.5

Figure 41: ORBIT5K classification problem: ρ = 2.5 VS ρ = 3.5.

Sampling : Poisson and Ginibre point processes. We perform a similar analysis to
discriminate between two types of point processes: a Poisson point process (PPP) and a
Ginibre point process (GPP). This setup has been introduced in [OHK18]. The specificity
of Ginibre processes lies in repulsive interactions between points. While a standard PPP
could have some very small and very large cycles, we expect the GPP to have more medium-
sized cycles since points tend to be well dispersed. Ginibre point processes are generated
using [DM21]. We classify this toy data set with a random forest classifier and select the two
scales corresponding to the most important features of the classifier. In Figure 42, we plot
two examples of point clouds together with their alpha complexes at these scales.

We plot Euler curves in Figure 43a. The Euler curves suggest that these classes differ at
different scales, as it was visible in Figure 42:
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(a) PPP (b) GPP (c) PPP (d) GPP

Figure 42: Examples of alpha complexes on PPP and GPP point clouds at two scales t1
(Figures (a) and (b)) and t2 (Figures (c) and (d)) with t1 < t2.

• The Euler curves of the PPP class decrease in a steeper way. Indeed, a GPP has repulsive
interactions between the points. Therefore, the pairwise distance between points tends
to be larger and connected components do not die too early.

• The global minimum for the GPP class is lower.
• Compared to curves of the GPP class, the curves of the PPP class tend to stay negative

for a longer time. Indeed, PPP allow for very large cycles to exist since there will
typically be some large zones without any point, which is proscribed by GPP.

We plot the transforms of these curves for several kernels in Figures 43b and 43c. Choosing
the primitive kernel κ : s 7→ exp(−s) emphasises the small scales of the Euler curves in the
larger scales of the transform. Such a descriptor separates well the two classes due to the earlier
death of connected components for the PPP class. The primitive kernel κ : s 7→ exp(−s4)
also extracts this information. In addition, it has a higher global maximum for the GPP class
that also enables distinction between the two classes. This maximum is created by the global
minimum of the Euler curves. This experiment is a piece of evidence that this kernel carries
more information than the exponential kernel and will therefore be preferred for applications.

(a) ECC (b) HT, κ(s) = exp(−s) (c) HT, κ(s) = exp(−s4)

Figure 43: Euler characteristic curves and their transforms for PPP VS GPP data set

Geometric features, sampling : different samplings on a manifold. We now show
an experiment where we can illustrate how our various descriptors can discriminate between
samplings and characterize the shape of a manifold. We consider two set-ups. The first set-up
consists of clouds of 500 points sampled in two different ways on a torus embedded in R3. The
first sampling is a uniform sampling [DHS+13]. The second is a non-uniform sampling where
we draw (θ, φ) uniformly in [0, 2π]2 and obtain a point on the torus through the embedding
ΨT2 : (θ, φ) 7→ (x1, x2, x3) where:
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x1 = (2 + cos(θ)) cos(φ),
x2 = (2 + cos(θ)) sin(φ),
x3 = sin(θ).

The second set-up consists of clouds of 500 points drawn in two ways on the unit sphere of
R3. The first sampling is uniform. The second sampling is a non-uniform sampling where we
draw θ uniformly in [0, π] and φ according to a normal distribution centred on π. We obtain
a point on the sphere via the classical spherical coordinates parametrization ΨS2 : (θ, φ) 7→
(x1, x2, x3) where:





x1 = sin(θ) cos(φ),
x2 = sin(θ) sin(φ),
x3 = cos(θ).

In Figures 44a and 44b, we show the Euler curves and their hybrid transforms with
primitive kernel κ : s 7→ cos(s) for these two classes of samplings on the torus. Up to a
rescaling, this corresponds to a Fourier sine transform. In Figure 44c, we show the hybrid
transforms for our two classes of samplings on the sphere.

In both cases, Euler curves associated with data drawn on the same manifold all have the
same profile, with a minimum value that tends to be lower for the uniform sampling. Similarly,
the oscillations of the transforms are in phase and have the same amplitude. However, from
one manifold to another, the phase and amplitude of the oscillations of the transforms differ
significantly. This suggests that they are related to global quantities and are signatures of the
support manifold. In contrast, the samplings show up in the vertical shifts of the oscillations of
the transforms. This interpretation allows us to go beyond the classical signal/noise dichotomy
developed in Section III in the persistence diagrams. Although it makes no doubt that this
sampling information can be retrieved from low-persistence features, it is still unclear how to
read it from a persistence diagram. We claim this is another step towards a more thorough
analysis of the geometric quantities involved in the low-persistence features.

(a) ECC, torus data (b) HT, torus data (c) HT, sphere data

Figure 44: ECC and HT, two different samplings on a torus and a sphere

Geometric features, sampling : two different patterns in noise. In this final illustra-
tive experiment, we try to distinguish patterns in a heavy clutter noise. One class has one line
hidden in the noise, while the other has two. Each line will induce a very dense zone creating
early dying connected components. In Figure 45, we plot two examples of point clouds, the
Euler curves of each class, and their hybrid transform with primitive kernel κ : s 7→ exp(−s4).
We also provide PCA plots of these two descriptors. The difference between the two classes is
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visible at the beginning of the Euler characteristic curves. However, looking at the full curve
does not allow us to correctly see this difference, as shown by the PCA plot. On the contrary,
the transform puts a strong emphasis on the beginning of the Euler curves, leading to a direct
linear separation of the two classes. As a final sanity check, we ran a k-means algorithm to
cluster between the two classes and reached an accuracy of 99% for the hybrid transforms
and only 52.5% for the Euler curves.

(a) raw data, one hidden line (b) ECC (c) PCA on ECC

(d) raw data, two hidden lines (e) HT, κ(s) = exp(−s4) (f) PCA on HT

Figure 45: Pattern hidden in clutter noise

V.4 Experiments

In this section, we present all quantitative experiments conducted on synthetic and real-world
point cloud data and on real graph data sets. Material to reproduce our experiments is avail-
able online on our GitHub repository: https://github.com/vadimlebovici/eulearning.

V.4.1 Curvature regression

We consider a set-up from [BHPW20] where we draw 1000 points uniformly at random on
the unit disk of a surface of constant curvature K and try to predict K in a supervised
fashion. Recall that if K > 0 (resp. K = 0, K > 0), the corresponding surface is a sphere
(resp. the Euclidean plane, the hyperbolic plane). We observe 101 samples from space with
curvature [−2,−1.96, . . . , 1.96, 2] and validate our model on a testing set of 100 point clouds
sampled from space with random curvature drawn uniformly in [−2, 2]. We compare the R2

score in Table 13 with that of the original paper, which uses persistent landscapes (PL) along
with a support vector regressor (SVR) and with Persformer [RCB21]. Note that since we are
trying to tackle a regression problem, we use an SVR or a random forest regressor to predict
the curvature from our vectorization.

First, we remark that the ECC descriptor combined with a random forest has an accuracy
comparable to the state-of-the-art. We also remark that taking a transform does not improve
the regression accuracy when considering a robust classifier such as RF but does improve
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Method PL+SVR Persformer ECC+SVR ECC+RF HT+SVR HT+RF

R2 score 0.78 0.94 0.70 0.93 0.79 0.89

Table 13: R2 score for curvature regression data

the accuracy when using a linear regressor (SVR). Note that hybrid transforms combined
with a linear regressor have an accuracy similar to that of persistent landscapes. However,
persistent landscapes require the computation of the entire persistence diagrams, while hybrid
transforms bypass this costly operation.

V.4.2 ORBIT5K data set

Supervised setting. Here, we perform a supervised analysis of the ORBIT5K data set intro-
duced in Section V.3.2. Given an orbit, we try to predict the value of the parameter ρ, which
takes value in {2.5, 3.5, 4.0, 4.1, 4.3}. We generate 700 training and 300 testing orbits for each
class. We compare our score with standard classification methods in Table 14. The results are
averaged over ten runs. PWG-K, SW-K and PF-K are kernel methods on persistence diagrams
taken respectively from [KHF16, CCO17, LY18]. Perslay and Persformer are two methods
that use a neural network architecture to vectorize persistence diagrams [CCI+20, RCB21].
The Euler characteristic curves and one-parameter hybrid transforms (HT1) are computed on
the alpha filtration of the point cloud. The Euler characteristic surfaces, the two-parameter
Radon transform (RT) and hybrid transforms (HT2) are computed using a function-alpha
filtration associated with a kernel density estimator post-composed with a decreasing func-
tion. The decreasing function is x 7→ −x for the ECSs and x 7→ exp(−x2) for the HTs.
All descriptors have a resolution of 900 (hence of 30 × 30 for two-parameter ones) and were
trained with an XGBoost classifier [CG16]. We select the hyperparameters of our descriptors
by cross-validation:

• For the ECC, the quantiles (see Implementation in Section V.3.1) are selected in {(0.1, 0.9),
(0.2, 0.8), (0.3, 0.7)}.

• For the ECS, the quantiles are selected in the same set as for the ECC for both param-
eters.

• For the HT1, the range is selected in {[0, 50], [0, 100], [0, 500], [0, 1000]} and the primitive
kernel κ in {s 7→ exp(−s4), s 7→ s4 exp(−s4), s 7→ s8 exp(−s8)}.

• For the HT2, the primitive kernel and the range for the first parameter are the same
as for the HT1, and the range for the second parameter is selected in {[0, 50], [0, 80],
[0, 100], [0, 500]}.

• For the RT, the ranges are selected in the same set as the HT2 for both parameters.

We show in Figure 46 some examples of each descriptor renormalized by the number
of points for the classes ρ = 2.5 and ρ = 4.3, where the HT2 is computed with κ : s 7→
s4 exp(−s4).

One-parameter descriptors have accuracy similar to kernel methods on persistence dia-
grams at a reduced computational cost, while two-parameter descriptors compete with neural
network-based vectorization methods. We make our claims on computational times more
precise in Section V.4.5.
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(a) ECS

(b) RT

(c) HT2

Figure 46: Examples of 2D descriptors

Method PWG-K SW-K PF-K Perslay Persformer

Accuracy 76.6 ± 0.7 83.6 ± 0.9 85.9 ± 0.8 87.7 ± 1.0 91.2 ± 0.8

Method ECC + XGB HT1 + XGB ECS + XGB RT + XGB HT2 + XGB

Accuracy 83.8 ± 0.5 82.8 ± 1.4 91.8 ± 0.4 90.5 ± 0.4 89.9 ± 0.5

Table 14: Classification scores for the ORBIT5K data set

Ablation study. We also study the role of the dimension of the feature vector in the
supervised classification task. The results are shown in Figure 47. When plugging a random
forest classifier, all descriptors are robust to a decrease in the size of the feature vector.
However, hybrid transforms seem to maintain a competitive accuracy for low-dimensional
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features, especially the two-parameter ones. When using an SVM classifier for the one-
parameter descriptors, the gain from considering a hybrid transform is clear, and the accuracy
of the SVM benefits from this strong dimension reduction. Evaluating hybrid transforms at
only three values of ξ ∈ R∗

+ yields feature vectors achieving approximately 80% accuracy,
demonstrating the compression properties of this tool.

(a) one-parameter, RF classi-
fier

(b) two-parameter, RF classi-
fier

(c) one-parameter, SVM clas-
sifier

Figure 47: Accuracy with respect to feature dimension.

Unsupervised setting. We consider several unsupervised classification tasks on the same
data set. We consider 50 point clouds for each choice of ρ ∈ {2.5, 3.5, 4.3}. We map all
descriptors in R2 using a tSNE dimension reduction [VdMH08] and report the results in Fig-
ure 48. Here, hybrid transforms differ from the other two methods and succeed in adequately
separating the three classes.

(a) ECS (b) RT (c) HT2

Figure 48: tSNE of our descriptors computed on several classes of the ORBIT5K data set.

V.4.3 Sidney object recognition data set

The Sidney urban objects recognition data set consists of 3D point clouds of everyday urban
road objects scanned with a LIDAR [DDQHD13] traditionally used for multi-class classifica-
tion. Likewise to Section V.4.2, all descriptors are computed using a function-alpha filtration
associated with a kernel density estimator post-composed with a decreasing function.

Unsupervised setting. In Figure 49, we show a PCA of the ECSs and HTs on the classes
4-wheeler vehicles (labelled 0), buses (2), cars (3), and pedestrians (4). In this case, the ECSs
separate the class of pedestrians from all the vehicle classes. The same separation is achieved

132



by the HTs with primitive kernel κ : s 7→ s4 exp(−s4). In contrast, HTs with primitive
kernel κ : s 7→ exp(−s4) separate buses from other classes. These experiments illustrate the
flexibility provided by a broad choice of kernels for the hybrid transforms.

Supervised setting. Even more striking are the experiments from Figure 50. We perform
a Linear Discriminant Analysis for classes cars (3), pedestrians (4), and vans (13) to embed
the HTs and ECSs in R2. All the classes are separated for the RTs and the HTs with primitive
kernel κ : s 7→ s4 exp(−s4). In comparison, the ECSs only manage to separate the pedestrian
class from the two motor-vehicle classes.

(a) ECS (b) HTs, κ(s) = exp(−s4) (c) HTs, κ(s) = s4 exp(−s4)

Figure 49: PCA plots of ECSs and HTs for the Sidney object recognition data set.

(a) ECS (b) HTs, κ(s) = s4 exp(−s4) (c) RTs

Figure 50: LDA plots of ECSs, HTs, and RTs for the Sidney object recognition data set.

V.4.4 Graph data

We have applied our method to the supervised classification of graph data. To build sublevel-
sets filtrations of graphs, we consider the heat-kernel signature from the previous section. We
set the parameters to t = 1 and t = 10. In addition, we consider the 1/2−Ricci and Forman
curvatures [SSG+18], centrality, and edge betweenness on connected graphs. In addition, some
data sets (proteins, cox2, dhfr) come with functions defined on the graph nodes. We can
use several combinations of these functions to define sublevel-sets filtrations of graphs and
compute Euler characteristic profiles (ECP), Radon transforms (RT) and hybrid transforms
(HTn).

For this set of experiments, we cross-validate over several combinations of the filtration
functions proposed above, several truncations of the vectorization (which had little impact in
practice), and a primitive kernel chosen among {s 7→ cos(s), s 7→ cos(s2), s 7→ exp(−s4), s 7→
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Method mutag cox2 dhfr proteins collab imdb-b imdb-m nci1

SV 88.2(0.1) 78.4(0.4) 78.8(0.7) 72.6(0.4) 79.6(0.3) 74.2(0.9) 49.9(0.3) 71.3(0.4)

RetGK 90.3(1.1) 81.4(0.6) 81.5(0.9) 78.0(0.3) 81.0(0.3) 71.9(1.0) 47.7(0.3) 84.5(0.2)

FGSD 92.1 - - 73.4 80.0 73.6 52.4 79.8

GIN 90(8.8) - - 76.2(2.6) 80.6(1.9) 75.1(5.1) 52.3(2.8) 82.7(1.6)

Perslay 89.8(0.9) 80.9(1.0) 80.3(0.8) 74.8(0.3) 76.4(0.4) 71.2(0.7) 48.8(0.6) 73.5(0.3)

Atol 88.3(0.8) 79.4(0.7) 82.7(0.7) 71.4(0.6) 88.3(0.2) 74.8(0.3) 47.8(0.7) 78.5(0.3)

ECC 1D 87.2(0.7) 78.1(0.2) 79.4(0.5) 74.7(0.4) 77.3(0.2) 72.4(0.4) 48.5(0.3) 74.4(0.2)

HT 1D 87.4(0.8) 78.1(0.2) 77.9(0.4) 73.3(0.4) 78.2(0.2) 73.9(0.4) 49.7(0.4) 73.9(0.2)

ECV 90.0(0.8) 80.3(0.4) 82.0(0.4) 75.0(0.3) 78.3(0.1) 73.3(0.4) 48.7(0.4) 76.3(0.1)

RT 87.3(0.6) 79.7(0.4) 81.3(0.4) 75.4(0.4) 77.5(0.2) 74.0(0.5) 50.2(0.4) 75.6(0.2)

HT nD 89.4(0.7) 80.6(0.4) 83.1(0.5) 75.4(0.4) 77.6(0.2) 74.7(0.5) 49.9(0.4) 76.4 (0.2)

Table 15: Mean accuracy and standard deviation for graph data.

s4 exp(−s4)} for HTn. We report our scores in Table 15. The first four methods are state-of-
the-art classification methods on graphs that use kernels or neural networks. We report the
scores from the original papers, [TVH19, ZWX+18, VZ17, XHLJ19]. Perslay [CCI+20], and
Atol [RCL+21] are topological methods that transform the graphs into persistence diagrams
using HKS functions. It is known that Atol performs especially well on large data sets (both
in terms of number of data and graphs size), i.e., collab and NCI1. Still, we reach a similar
to better accuracy for all the other data sets.

Besides highly competitive classification scores, our method has two advantages over the
other topological methods. First, we bypass the computation of persistence diagrams and
thus classify with lower computational cost; see Sections V.3.1 and V.4.5. Second, as opposed
to other invariants such as multi-parameter persistent images [CB20], our method naturally
generalizes to m-parameter persistence with m ≥ 3 at a very low computational cost. To
our knowledge, this is the first time a topology-based method uses more than 3 filtration
parameters. This results in an increase in accuracy since each filtration function leverages
information on the graph-data structures.

Note that the methods SV, FGSD, and GIN do not average ten times and rather consider
a single 10-fold sample which can slightly boost their accuracies.

V.4.5 Timing

We choose to compare the computational cost of our methods to that of persistence images
as they appear to be a faster vectorization method than persistence kernels and persistence
landscapes, especially in a multi-persistence setting; see [CB20, Table 2].

Constant resolution. We report in Table 16 the time to compute our descriptors and
persistent images on the full ORBIT5K data set with a fixed resolution of 900. Likewise to
the Gudhi library, our method uses the simplex tree data structure to represent simplicial
complexes, see [BM14]. We report computation times for precomputed simplex trees 7 using
the Gudhi library, [Rou15]. All descriptors are computed using the parameters achieving
the highest accuracy for the classification task; see Section V.4.2. Persistence images are
computed with the Gudhi library for one-parameter filtrations and with the MMA package for

7Note that computing simplex trees takes around 66s in the one-parameter setting and around 420s in the

two-parameter setting; the difference lies in the cost of computing a codensity estimator on point clouds.
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two-parameter filtrations [LCS22] with default parameters and the same resolution as our two-
parameter descriptors, i.e., 30×30. To compute persistence images, one first needs to compute
the persistence diagrams in the one-parameter case or persistence modules approximations
in the two-parameter case [LCB22, Section 3]. We include these additional costs in the
computational times of persistent images. However, the time to compute the PI1 descriptor
on the full ORBIT5K data set breaks down to 5 seconds to compute the persistence diagrams
and 134 seconds for the persistence images themselves.

ECC HT1 PI1 ECS Radon HT2 PI2

16 719 139 144 119 805 2034

Table 16: Computation times (s) for ORBIT5K with constant resolution.

As expected from the time complexities of the algorithms (Section V.3.1), Euler charac-
teristic profiles and Radon transforms are at least ten times faster than persistence images,
and hybrid transforms are four times faster in the two-parameter case. One-parameter hybrid
transforms may appear costly to compute, but this will be mitigated in the next paragraph.
Finally, we point out that we implemented our tools in Python and not in C++, which is very
likely to result in longer computation times. On the contrary, persistence images in one and
two parameters both benefit from a C++ implementation.

Constant accuracy. We report in Table 17 the time to compute our descriptors on the
full ORBIT5K data set with the lowest resolution before accuracy drop-out as reported in
Figure 47. More precisely, we chose the lowest possible resolutions to ensure a classification
accuracy of 82% for one-parameter descriptors and of 89% for two-parameter descriptors, that
is, a resolution of 30 for ECC, of 9 for HT1, of 20 × 20 for ECS and Radon, and of 6 × 6
for HT2. Other parameters remain unchanged. The interest in using hybrid transforms over
Euler characteristic profiles is now clear: the concentration of information provided by hybrid
transforms makes it possible to classify the data set with feature vectors of reduced dimension,
which considerably speeds up the computations.

ECC HT1 ECS Radon HT2

16 5 135 45 69

Table 17: Computation times (s) for ORBIT5K with smallest resolution before accuracy drop-
out.

V.4.6 Take-home message

The experiments from this section suggest that Euler characteristic profiles are very powerful
descriptors since they allow for state-of-the-art accuracy when coupled with a robust classifier
(XGB or RF) at a very competitive computational cost. On the one hand, Radon transforms
show accuracy and computational complexity very similar to Euler characteristic profiles.
On the other hand, hybrid transforms have similar accuracy but are more costly to compute,
especially in the one-parameter setting; see Table 16. The motivation to use hybrid transforms
is two-fold:
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• In an unsupervised setting or when plugging a linear classifier, the lack of diversity in
Euler characteristic profiles and Radon transforms can be detrimental to the separation
of classes. In contrast, hybrid transforms are competitive descriptors in such tasks due
to the wide diversity in the choice of kernels and their sensitivity to slight variations in
Euler characteristic profiles.

• Hybrid transforms provide a very powerful compression of the signal from the Euler
profile (Figure 47) at a very low computational cost (Table 17). This makes hybrid
transforms a very robust descriptor combining dimension reduction and feature extrac-
tion.

On the theoretical side, multi-parameter hybrid transforms benefit from their expression
as one-parameter ones (Lemma V.9). This allows us to prove almost sure convergence results
under some mild assumptions in Section V.6.

V.4.7 Extensions

We have validated our method on simplicial complexes built on point clouds and graph data.
Nonetheless, the methodology described in this section can be extended into two directions.

First, when dealing with images or 3D volumes, it is common to build cubical complexes
from data. In this context, Euler characteristic curves have been used as a vectorization of the
data in [SZ21, JKN20]. As there are a vast number of filtration functions one can consider on
images, it is worth investigating the predictive power of the Euler characteristic profiles in this
setting. While several applications are considered in [BSA+22, DG22], a thorough benchmark
study against other persistence methods and state-of-the-art image processing methods is still
missing. Moreover, Radon transforms and hybrid transforms have still not been studied in
this context.

Second, the methodology developed here applies to filtrations F = (Ft)t∈Rm that are not
necessarily non-decreasing with respect to inclusions. This extends the potential range of
applications of our tools, notably to the study of time-varying simplicial complexes, as done
in [XATZ22].

V.5 Stability properties

The success of topological data analysis inherits from the stability theorem for persistence
diagrams from [CSEH07], in particular Theorem I.15. Loosely speaking, it means that un-
der mild assumptions, small changes in the filtration function imply small changes in the
persistence diagram. Such results are key to designing consistent estimators in statistical
analysis; see, for instance, [BMT17]. More recently, [ST20] have derived a stability result
for the p-Wasserstein distance between persistence diagrams, and several stability results for
Euler characteristic tools have been derived in [CMT22, DG22].

In this section, we state stability results for our topological descriptors. Our results
compare the L1 norm between Euler characteristic profiles to the signed 1-Wasserstein distance
between their signed barcodes. As a corollary, we bound the Lq norms of Radon transforms
and hybrid transforms by the same quantity. The notions of signed barcodes and of signed
1-Wasserstein distance are introduced in [OS21] and recalled below. We follow the same
conventions as in [OS21, Section 2] for the definitions of multisets and bijections between
them. All the results of this section are proven in Section V.7.
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Signed 1-Wasserstein distance. The distance we use to state our stability results is
defined on the class of finitely presented functions over Rm, that is, which can be written as
a finite Z-linear combination of indicator functions 1Qu for some u ∈ Rm. These functions
include Euler characteristic profiles of one-critical filtrations. A decomposition of a finitely
presented function φ is a couple (η+, η−) of finite multisets of points in Rm such that:

φ =
∑

u∈η+

1Qu −
∑

v∈η−

1Qv .

Such a decomposition always exists, and there is a unique B = (η+, η−) such that η+∩η− = ∅,
called the signed barcode of φ; see [OS21, Proposition 13].

Let C and C′ be two finite multisets of points in Rm with the same cardinality and h : C → C′

be a bijection between them. The cost of h is the real number cost(h) =
∑

u∈C ∥u − h(u)∥1.
For any two finitely presented functions φ and φ′ with respective signed barcodes (η+, η−)
and (η′+, η′−), the signed 1-Wasserstein distance between them is:

d̂1
(
φ,φ′

)
= inf

{
ε > 0 : ∃ bijection h : η+ ∪ η′− → η− ∪ η′+ with cost(h) ≤ ε

}
.

Hence, one has d̂1
(
φ,φ′

)
∈ [0,+∞]. Note that bijections do not allow for unmatched bars, as

it is common in the persistence literature. In loc. cit., the signed 1-Wasserstein distance is
defined on signed barcodes. Our definition is essentially equivalent since signed barcodes are
in one-to-one correspondence with finitely presented functions up to forgetting the order in
the multisets.

Stability results. We can state our first stability result. The case m = 1 is well known for
1-Wasserstein distance on persistence diagrams; see [CMT22, Lemma 4.10], [DG22, Proposi-
tion 3.2].

Proposition V.12. Let F and F ′ be two finitely generated m-parameter filtrations of sim-
plicial complexes K and K′ respectively. For any M > 0, we have that

∥χF − χF ′∥1,M ≤ (2M)m−1 d̂1(χF , χF ′) .

In particular, if m = 1:

∥χF − χF ′∥1 ≤ d̂1(χF , χF ′) .

Combined with the results of the previous paragraph, the above proposition links the
L1 distance between Euler characteristic profiles to a classical distance of persistence theory.
Moreover, these stability results carry over to our other descriptors, as stated in the Corol-
lary V.13 below. Let K be a compact subset of Rm+

∗. For q ∈ [1,∞], we consider the norms
on functions R : Rm+

∗ × R → R defined by:

∥R∥
Lq,1
K

=





(∫

K

(∫

R

|R(ξ, s)| ds
)q

dξ

)1/q

for q ∈ [1,∞),

sup
ξ∈K

∫

R

|R(ξ, s)| ds for q = ∞.

(V.8)
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Corollary V.13. Let K be a compact subset of Rm+
∗ and q ∈ [1,∞]. Let F and F ′ be

one-critical m-parameter filtrations of simplicial complexes K and K′ respectively. Let κ ∈
L1(R) ∩ L∞(R). There exists a constant CK,q depending only on K and q such that:

∥RF −RF ′∥
Lq,1
K

≤ CK,q d̂1(χF , χF ′) ,

∥ψκF − ψκF ′∥Lq
K
≤ CK,q ∥κ∥∞ d̂1(χF , χF ′) .

In the case of filtrations of the same simplicial complex, we can turn the above results
into stability results with respect to L1 norms on filtration functions, as stated by the lemma
below. It has already been formulated in a slightly different form in [DG22, Proposition 3.4].
Let K be a finite simplicial complex, and f : K → Rm a non-decreasing map. We define the
1-norm of f as ∥f∥1 =

∑
σ∈K ∥f(σ)∥1.

Lemma V.14. Let K be a finite simplicial complex and f, g : K → Rm be non-decreasing
maps. We have that

d̂1(χf , χg) ≤ ∥f − g∥1.

The above lemma clarifies the robustness of our descriptors with respect to perturbations
of filtrations defined on a fixed simplicial complex. This includes, for instance, density esti-
mators on point clouds or Ricci curvature and HKS functions on graphs. The fact that these
descriptors are controlled by the L1 distance and not the L∞ distance between the functions
is an indicator of their sensitivity to the underlying geometry. Persistent images [AEK+17]
share this property, while persistence landscapes [B+15, Vip20] do not, as they are controlled
by the L∞ distance between functions.

V.6 Statistical properties

In this section, we provide statistical guarantees for our descriptors computed on a random
sample, as the sample size tends to infinity.

V.6.1 Limit theorems for one-parameter hybrid transforms

This section is devoted to limit theorems for the hybrid transforms of the Čech complex of an
i.i.d. sample in Rd. Theorem V.15 is a pointwise law of large numbers, while Theorem V.17
states a functional central limit theorem for the hybrid transforms of compactly supported
kernels. The purpose of this section is two-fold: we state that under some mild assumptions,
hybrid transforms are universal in the sense that they converge to an object that depends
only on the kernel, the filtration, and the sampling scheme. In addition, we illustrate how
information on the sampling can be extracted from the limiting object in Theorems V.15 and
V.17. This shows that if the number of sample points is large enough, hybrid transforms
are relevant tools to perform classification tasks on point clouds. These results back up the
experiments of the previous sections. They are proven in Section V.7.

Theorem V.15. Let X1, . . . , Xn be an i.i.d. sample drawn according to an a.e. continuous
bounded Lipschitz density g on Rd. Consider a sequence (rn)n∈N such that nrdn → 0 and

nk+2r
d(k+1)
n → ∞ as n → ∞ for all k in J0, d − 1K. We denote by Fn the Čech filtration

associated with the rescaled sample 1
rn

(Xi)
n
i=1. Let T, a > 0 and κ ∈ L1(R). Further assume
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that κ is supported on [0, T ]. Then there exist functions A0, . . . , Ad−1 on R∗
+ that depend only

on κ such that for every ξ > a,

1

nk+2r
d(k+1)
n

· ψκFn
(ξ) −→

n→∞

d−1∑

k=0

(−1)k

(k + 2)!
·Ak(ξ) ·

∫

Rd

gk+2(x) dx a.s..

This theorem is a direct consequence of the limit theorems derived in [Owa22]. It is a key
assumption that we are in the so-called sparse regime, that is, nrdn → 0. In order to make
this law of large numbers more comprehensible, we make a further assumption that we are in

the so-called divergence regime, that is nk+2r
d(k+1)
n → ∞ for all k ∈ J0, d− 1K. The sequence

defined by rn = n−α for 1
d < α < 1

d + 1
d2

verifies these two assumptions. Similar results can be

derived for other subcases of the sparse regime, i.e., the Poisson regime nk+2r
d(k+1)
n → c > 0

and the vanishing regime nk+2r
d(k+1)
n → 0.

This theorem shows that the pointwise limit of the hybrid transform depends on the
sampling only through the quantities

∫
Rd g

k+2 for k = 0, 1, . . . , d − 1 and they can therefore
discriminate between different samplings as soon as n is large enough. In addition to this law
of large numbers, a finer limit result for the Euler characteristic curve is proven in [KRP21],
which we recall hereafter for the sake of completeness. First, recall that a function h on Rd

is blocked if it can be written h =
∑dl

i=1 bi1Ai where b1, . . . , bdl are non-negative real numbers
and the Ai are axis-aligned rectangles in Rd. Moreover, recall that the Skorohod J1-topology
on the space of càdlàg functions D([0, T ]) is the topology induced by the metric:

dJ1(f, g) := inf
λ

{
∥f ◦ λ− g∥∞ + ∥λ− Id[0,T ] ∥∞

}
,

where the infimum is taken over all increasing continuous bijections of [0, T ].

Theorem V.16 (Theorem 3.4 from [KRP21]). Let T > 0 and X1, . . . , Xn be sampled
according to a bounded density g on [0, 1]d. Denote by Fn the Čech complex associated with the
point cloud n1/d(Xi)

n
i=1. Assume that blocked functions can uniformly approximate g. There

is a Gaussian process G : [0, T ] → R such that for t ∈ [0, T ],

√
n
(
χFn(t) − E[χFn(t)]

)
−→
n→∞

G(t),

in distribution in the Skorohod J1-topology. Furthermore, there exist two real-valued functions
γ and α such that the covariance of the limiting process is defined by:

E[G(s)G(t)] = E

[
γ
(
g(Z)1/d(s, t)

)]
− E

[
α
(
g(Z)1/ds

)]
E

[
α
(
g(Z)1/dt

)]
,

where Z is a random variable with density g.

We refer to [KRP21] for the expression of the two functions γ and α. Here again, the
distribution of the points appears in the limiting object and, more precisely, in its covariance
function. We can adapt this theorem to show that hybrid transforms of compactly supported
kernels are also asymptotically normal.

Theorem V.17. Consider the setting of Theorem V.16. Let a,M > 0 and κ ∈ L1(R). Further
assume that κ is supported on [0, T ]. Then, there is a Gaussian process G̃ : [a,M ] → R such
that: √

n
(
ψκFn

− E
[
ψκFn

])
−→
n→∞

G̃ a.s.,
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in
(
C0[a,M ], ∥ · ∥∞

)
. Furthermore, the covariance of the limiting process is defined by:

E

[
G̃(ξ1)G̃(ξ2)

]
= ξ1ξ2

∫ T/ξ1

0

∫ T/ξ2

0
κ(ξ1t)κ(ξ2s) cov

(
G(s),G(t)

)
ds dt,

where G is the Gaussian process defined in Theorem V.16.

V.6.2 Limit theorem for multi-parameter hybrid transforms

Theorem V.18. Assume that Φ is a stationary ergodic point process having finite moments.
Let T, a > 0 and κ ∈ L1(R). Assume that κ is supported on [0, T ]. We denote by FL the
filtration induced by the sublevel sets of f on ΦL. Assume that there exists an increasing
function ρ such that there exists i ∈ J1,mK such that for all (x, y) ∈ (Rd)2,

∥x− y∥ ≤ ρ (fi({x, y})) . (V.9)

Under these assumptions, there exists a function H : Rm+
∗ × R+ → R that depends only on κ

and f such that, for all ξ = (ξ1, . . . , ξm) ∈ Rm+
∗ and λ > a,

1

Ld
ψκFL

(λξ) −→
L→∞

H(ξ, λ) a.s..

This limit theorem is a direct consequence of the results from [HST18] for persistence
diagrams of a large class of filtration functions. We refer to Section 3 of loc. cit. for the
definition of a stationary ergodic point process. Note that this encompasses most cases of usual
point processes such as Poisson, Ginibre, or Gibbs. This result makes use of the smoothness
properties of the hybrid transforms and follows directly from Lemma V.9 that expresses
restrictions of multi-parameter hybrid transforms to lines as one-parameter hybrid transforms.
Similar results cannot be derived that easily for Euler characteristic profiles, as one would
need to consider the joint law of several one-parameter filtrations. In addition, deriving a
multi-dimensional central limit theorem from [PY01] would require the filter ξ · f to verify
some translation invariance property. In practice, this very strong assumption is verified only
by Čech and Vietoris-Rips filtrations as well as marked processes; see [BH22]. Alpha and
function-Čech filtrations that we used in our experiments do not verify this assumption.

As pointed out in Example 1.3 of [HST18], Čech and Vietoris-Rips filtrations satisfy (V.9)
for ρ : t 7→ 2t. We provide below two examples of families a broad family of multi-parameter
filtrations satisfying (V.9).

Example V.19. It is easy to check that the function-alpha filtration considered in the ap-
plications of Sections V.4.2 and V.4.3 satifies (V.9).

We give another class of filtrations satisfying (V.9) that contains in particular the distance-
to-measure (DTM) filtrations; see [ACG+20].

Example V.20. Let h be a positive and bounded function from Rd to R. The weighted Čech
complex introduced in [ACG+20] is defined as follows. For every x ∈ Rd and real number
t ≥ 0, we define:

rx(t) =

{
−∞ if t < h(x),

t− h(x) otherwise.

We denote by Bh(x, t) = B (x, rx(t)) the closed Euclidean ball of center x and radius rx(t). A
simplex {x0, . . . , xk} in some finite set X belongs to the weighted Čech complex at scale t ≥ 0
if the intersection of closed balls ∩kl=0Bh(xl, t) is non-empty. Considering the weighted Čech
complex for all scales t defines a filtration of 2X called weighted Čech filtration. The weighted
Čech filtration satisfies (V.9) for ρ : t 7→ max(maxh, 2t).
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V.7 Proofs

In this section, we prove the results stated in Sections V.5 and V.6. In the following proofs,
we make constant use of the fact that the distance d̂1 may be computed on any decomposition
of the functions and not only on minimal ones, that is, on signed barcodes. More precisely,
for any decompositions (C+, C−) and (C′+, C′−) of two finitely presented functions φ and φ′

respectively, one has:

d̂1
(
φ,φ′

)
= inf

{
ε > 0 : ∃ bijection h : C+ ∪ C′− → C− ∪ C′+ with cost(h) ≤ ε

}
. (V.10)

V.7.1 Proof of Proposition V.12

Recall that m ≥ 1. Consider decompositions (η+, η−) and (η′+, η′−) of χF and χF ′ respec-
tively. Assume there is a bijection h : η+ ∪ η′− → η− ∪ η′+. If no such bijection exists,
then d̂1(χF , χF ′) is infinite, and the inequality trivially holds. One has:

χF − χF ′ =
∑

u∈η+∪η′−

1Qu −
∑

v∈η−∪η′+

1Qv =
∑

u∈η+∪η′−

1Qu − 1Qh(u)
.

Therefore,

∥χF − χF ′∥1,M ≤
∑

u∈η+∪η′−

∥1Qu − 1Qh(u)
∥1. (V.11)

By an elementary induction on m ≥ 1, we can prove that for all u, v ∈ Rm,

∥1Qu − 1Qv∥1,M ≤ (2M)m−1∥u− v∥1.

This conludes the proof.
Assume now that m = 1. The existence of h ensures that ∥χF − χF ′∥1 is finite and the

result follows from (V.11) and the fact that ∥1[u,v)∥1 = |u− v|.

V.7.2 Proof of Corollary V.13

Let us prove the first inequality. Proposition V.12 with m = 1 ensures that for any ξ ∈ K,
∫

R

|RF (ξ, s) −RF ′(ξ, s)| ds = ∥ξ∗χF − ξ∗χF ′∥1 ≤ d̂1(ξ∗χF , ξ∗χF ′) .

To prove the desired inequality, we will prove that d̂1(ξ∗χF , ξ∗χF ′) ≤ ∥ξ∥∞ d̂1(χF , χF ′) for
any ξ ∈ Rm+

∗. The result then follows from computing the q-norm on both sides. Consider
decompositions (η+, η−) and (η′+, η′−) of χF and χF ′ respectively. They induce decompo-
sitions (ξ∗η

+, ξ∗η
−) and (ξ∗η

′+, ξ∗η
′−) of ξ∗χF = χξ∗F and ξ∗χF ′ = χξ∗F ′ respectively by

the formula ξ∗η
± = {ξ · u : u ∈ η±} and a similar one for F ′. Consider a bijection of multi-

sets h : η+∪η′− → η−∪η′+. It induces a bijection of multisets ξ∗h : ξ∗η
+∪ξ∗η′− → ξ∗η

−∪ξ∗η′+
defined by ξ · u 7→ ξ · h(u) with cost:

cost(ξ∗h) =
∑

t∈ξ∗η+∪ξ∗η′−

∥t− ξ∗h(t)∥1 =
∑

u∈η+∪η′−

∥ξ · u− ξ · h(u)∥1 ≤ ∥ξ∥∞ · cost(h).

Taking the infimum over all bijections h yields d̂1(ξ∗χF , ξ∗χF ′) ≤ ∥ξ∥∞ d̂1(χF , χF ′) by (V.10).
Let us now prove the second inequality. It follows from the definition of hybrid transforms

that ∥ψκF − ψκF ′∥Lq
K

≤ ∥κ∥∞ ∥RF − RF ′∥
Lq,1
K

when κ is bounded. The first inequality yields

the result.
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V.7.3 Proof of Lemma V.14

The couple Cf =
(
{f(σ)}dimσ even, {f(σ)}dimσ odd

)
is a decomposition of χf . There is a similar

decomposition Cg of χg. Moreover, the mapping f(σ) 7→ g(σ) induces a bijection of multisets
h : Cf → Cg with cost(h) =

∑
σ∈K ∥f(σ)− g(σ)∥1 = ∥g− f∥1. The result follows from (V.10).

V.7.4 Proof of Theorem V.15

Let X1, . . . , Xn be an i.i.d. sample drawn according to an a.e. continuous bounded Lipschitz
density g on Rd. Consider a sequence (rn)n∈N such that nrdn → 0 and for all k ∈ J0, d −
1K, nk+2r

d(k+1)
n → ∞ as n→ ∞.

Let us define ∆ := {(x, y) : 0 ≤ x ≤ y <∞}∪{(x,∞) : 0 ≤ x <∞} and for every (s, t, u, v)
such that 0 ≤ s ≤ t ≤ u ≤ v ≤ ∞, denote by Rs,t,u,v the rectangle (s, t] × (u, v] of ∆. Recall
that, as done extensively in Section IV, a finite persistence diagram D = {(ai, bi)}i=1,...,l can

be turned into a discrete measure µ =
∑l

i=1 δai,bi on ∆. Denote by µk,n the k-th persistence
diagram of the Čech filtration of 1/rn(Xi)

n
i=1, seen as a discrete measure on ∆.

Theorem 3.2 of [Owa22] ensures that for every k ∈ J0, d− 1K there exists a unique Radon
measure µk on ∆ such that we have the following vague convergence:

1

nk+2r
d(k+1)
n

µk,n
v−→

n→∞

1

(k + 2)!

(∫

Rd

gk+2(x) dx

)
µk a.s., (V.12)

where for every 0 ≤ s ≤ t ≤ u ≤ v ≤ ∞, there is an indicator geometric function Hs,t,u,v on
Rd(k+2) defined in [Owa22, Sec. 3.1], which does not depend on g and such that the measure
µk is defined by:

µk(Rs,t,u,v) =

∫

Rd(k+1)

Hs,t,u,v(0, y1, . . . , yk+1) dy1 . . . dyk+1.

Recall that the primitive kernel κ is such that κ(x) → 0 when x → +∞. Therefore, the fact
that κ is supported on [0, T ] implies that the primitive κ is also supported on [0, T ]. For
ξ > a, denote by hξ : (x, y) ∈ ∆ 7→ κ(ξy) − κ(ξx). According to (V.3), one has:

ψκFn
(ξ) =

d−1∑

k=0

(−1)k⟨µk,n, hξ⟩.

Since hξ is continuous and supported on [0, T/a]2, we have by the vague convergence in (V.12)
that:

1

nk+2r
d(k+1)
n

ψκFn
(ξ) −→

n→∞

d−1∑

k=0

(−1)k

(k + 2)!

(∫

Rd

gk+2(x)dx

)
Ak(ξ) a.s.,

where Ak(ξ) =
∫
∆ hξdµk.

V.7.5 Proof of Theorem V.17

Let T > 0 such that κ is supported in [0, T ]. Let a,M > 0 and let ξ ∈ [a,M ]. According
to (V.7), we have that:

ψκF (ξ) = ξ

∫ T/ξ

0
κ(ξ · t)χF (t)dt,
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and similarly for χFn . Since κ is in L1, the mappings ψκF and ψκFn
are continuous on [a,M ].

According to Theorem V.16, there is a Gaussian process G : [0, T/a] → R+ such that for all
t ∈ [0, T/a], we have that:

√
n
(
χFn(t) − E[χFn(t)]

)
−→
n→∞

G(t), (V.13)

in distribution in the Skorohod J1-topology. Therefore, by linearity of the mapping χ 7→
ξ
∫ T/ξ
0 κ(ξ · t)χ(t)dt, we have that:

√
n
(
ψκFn

− E
[
ψκFn

])
= ξ

∫ T/ξ

0
κ(ξ · t)

[√
n
(
χFn(t) − E[χFn(t)]

)]
dt

Denote by φ the mapping from the space of càdlàg functions D([0, T ]) with Skorohod J1-
topology to (C0([a,M ]), ∥ · ∥∞) defined by:

φ : χ 7→
(
ξ 7→ ξ

∫ T/ξ

0
κ(ξ · t)χ(t)dt

)
.

We, therefore, have that:

√
n
(
ψκFn

− E
[
ψκFn

])
= φ

(√
n (χFn − E[χFn ])

)
.

It is easy to check that:

∥φ(χ1) − φ(χ2)∥∞ ≤ M

a
∥χ1 − χ2∥∞

∫ T

0
|κ(u)|du,

so that the mapping φ is Lipschitz and, therefore, continuous. Thus, the continuous mapping
theorem along with (V.13) yields that almost surely, one has the following convergence in
(C0([a,M ]), ∥ · ∥∞),

√
n
(
ψκFn

− E
[
ψκFn

])
−→
n→∞

G̃(ξ) := ξ

∫ T/ξ

0
κ(ξ · t)G(t) dt.

The covariance of the limiting process G̃ follows immediately from that of G.

V.7.6 Proof of Theorem V.18

Let ξ = (ξ1, . . . , ξm) ∈ Rm+
∗. Denote by µξ∗Fk,L the measure associated with the k-th persistence

diagram of ΦL for the filtration function ξ · f =
∑m

i=1 ξifi. By hypothesis, there exists
i ∈ J1,mK such that for all (x, y) ∈ (Rd)2, ∥x − y∥ ≤ ρ (fi({x, y})). Let ρ′ : x 7→ ρ(x/ξi).
Therefore, as the filtration functions are non-negative and ρ and ρ′ are increasing, we have
that:

ρ′




m∑

j=1

ξjfj({x, y})


 ≥ ρ′(ξifi({x, y}) ≥ ρ(fi({x, y})) ≥ ∥x− y∥. (V.14)

The filtration function ξ ·f therefore verifies all the hypotheses of the Theorem 1.5 of [HST18],
which states that there exists a Radon measure νk such that almost surely, we have the vague
convergence 1

Ldµ
ξ∗F
k,L

v→ νξ·fk as L→ ∞. Note that in loc. cit., the authors make the additional
hypothesis that the filtration function is translation invariant. However, this assumption is
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only needed to derive a central limit theorem on persistent Betti numbers but not required
for the above law of large numbers, for which we only need (V.14) to hold. As in the proof
of Theorem V.15, we introduce a continuous function hλ : (x, y) ∈ ∆ 7→ κ(λy) − κ(λx). This
function is supported on [0, T/a]2. According to (V.3) together with Lemma V.9, we have
that:

ψκFL
(λξ) =

d−1∑

k=0

(−1)k⟨µξ∗Fk,L , hλ⟩.

Hence the result, by the vague convergence 1
Ldµ

ξ∗F
k,L

v→ νξ·fk for every k ∈ J0, d− 1K.
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VI Conclusion, future directions

In this thesis, we studied persistence diagrams, their uses in machine learning, and their
limitations. In Section III, we demonstrated that the total persistence for the sublevel sets
filtration is a strong regularizer and can help reconstruct a smooth function from noisy obser-
vations. We have demonstrated some theoretical guarantees, especially Theorem III.6. This
theorem gives an oracle inequality assuming that the function we try to estimate lies in the
span of a finite number of Laplace eigenfunctions. Two possible extension directions of this
result would be to compute the bias term where the regression function is assumed to be
square-integrable and obtain a similar guarantee when we estimate the regression function
using the eigenvectors of the graph Laplacian. On the numerical side, this procedure is costly
because it requires computing many persistence diagrams, and speeding up the optimization
remains an open research question. Furthermore, this technical limitation constrained us is
considering only total persistence. However, other statistics computing the distance of points
to the diagonal, including weights over all homological dimensions, should be investigated.

We have then demonstrated in Section IV that persistence diagrams contain relevant
information to classify data and extract qualitative information about their topology. In
addition, persistence diagrams of random complexes are an active research topic. We have
proposed the Theorem IV.13 and Corollary IV.14 where we study the asymptotic of persistence
diagrams of the Čech complex of a random sample in a particular sampling regime called the
sparse regime. Extensions to different regimes and deriving finer concentration inequalities
remain open questions.

Finally, we showed in Section V that persistence diagrams are less efficient than simpler
descriptors based on Euler characteristic computations. Indeed, we have introduced two new
descriptors, the Radon and hybrid transforms, and thoroughly studied an already existing
one: the Euler characteristic profile. We have proven that these descriptors are much faster
to compute than persistence diagrams, typically having better accuracy and similar explain-
ability properties. Furthermore, these descriptors naturally generalize to multi-parameter
persistence, which is not permitted by persistence diagrams. A take-home message is that
when tackling a classification problem where the data is believed to contain some relevant
topological information, Euler-based descriptors must be preferred to persistence diagrams
due to their simplicity and overall high accuracy. The study in this manuscript is limited to
simplicial complexes, and this work should be extended to cubical complexes. In this case,
many possible filtration functions can be considered, and a thorough comparison with state-
of-the-art methods in image processing would be a consequent line of research. In addition,
these tools allow for non-increasing functions on simplicial complexes, which could extend to
the analysis of time-varying complexes.
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[AAPL22] Alberto Alcalá-Alvarez and Pablo Padilla-Longoria. A framework for topolog-
ical music analysis (tma). arXiv preprint arXiv:2204.09744, 2022.

[ACC+21] Andrew Aukerman, Mathieu Carrière, Chao Chen, Kevin Gardner, Raúl
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