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Praboda Rajapksha
Researcher, IP Paris, Telecom SudParis - France Co-directeur de thèse
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Abstract : Security in public spaces is a primary
concern across different domains and the deployment
of real-time monitoring systems addresses this chal-
lenge. Video surveillance systems employing deep
learning techniques allows for the effective recogni-
tion of anomaly events. However, even with the cur-
rent advances in anomaly detection methods, distin-
guishing abnormal events from normal events in real-
world scenarios remains a challenge because they of-
ten involve rare, visually diverse, and unrecognizable
abnormal events. This is particularly true when relying
on supervised methods, where the lack of sufficient
labeled anomaly data poses a significant challenge
for distinguishing between normal and abnormal vi-
deos. As a result, state-of-the-art anomaly detection
approaches utilize existing datasets to design or learn
a model that captures normal patterns, which is then
helpful in identifying unknown abnormal patterns. Du-
ring the model design stage, it is crucial to label vi-
deos with attributes such as abnormal appearance,
behavior, or target categories that deviate significantly
from normal data, marking them as anomalies. In ad-
dition to the lack of labeled data, we identified three
challenges from the literature : 1) insufficient repre-
sentation of temporal feature, 2) lack of precise posi-
tioning of abnormal events and 3) lack the consistency
research of temporal feature and appearance feature.
The objective of my thesis is to propose and investi-
gate advanced video anomaly detection methods by
addressing the aforementioned challenges using no-
vel concepts and utilizing weak supervision and un-
supervised models rather than relying on supervised
models.
We actively explored the applications of new video
processing technologies, including action recognition,
target detection, optical flow feature extraction, re-

presentation learning, and contrastive learning in or-
der to utilize them in video anomaly detection mo-
dels. Our proposed models comparatively analysed
with baseline models. This comparative analysis are
conducted using prevalent public datasets, including
UCSD(Ped2), Avenue, UCF-Crime, and Shanghai-
tech.
The first contribution addresses the first challenge
outlined above by introducing an enhanced Tempo-
ral Convolutional Network (TCN). This novel TCN mo-
del learns dynamic video features and optimizes fea-
tures to mitigate errors due to contrastive learned ini-
tial weights. This method enhances the overall capa-
bility of weakly supervised models by reducing the
loss caused by initial parameters in contrastive lear-
ning. Nevertheless, weakly supervised learning only
reduces the reliance on labeled data but does not
eliminate the dependence on such data. Hence, our
subsequent two contributions rely on unsupervised
learning to addressing the other two challenges men-
tioned above. The second contribution combines the
self-attention mechanism to prioritize the weights of
areas with obvious dynamic fluctuations in frames.
And, during the testing, abnormal areas are located
through comparison of object detection and loss func-
tions. The combination of self-attention mechanism
and object detection significantly improves the de-
tection accuracy and expands the functionality. The
third contribution explores the integration of collabora-
tive teaching network models, which bridges consis-
tency between optical flow information and appea-
rance information. This integration aims to enhance
the spatio-temporal capture capabilities of unsupervi-
sed models. The overall performance and capabilities
of the unsupervised model are significantly enhanced
compared to the other baseline models.
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Résumé : La sécurité est une préoccupation ma-
jeure dans différents domaines, et le déploiement de
systèmes de surveillance en temps réel permet de re-
lever ce défi. En utilisant des techniques d’apprentis-
sage profond, il permet de reconnaı̂tre efficacement
les événements anormaux. Cependant, même avec
les avancées actuelles des méthodes de détection
des anomalies, distinguer les événements anormaux
des événements normaux dans les scénarios du
monde réel reste un défi en raison d’événements
anormaux rares, visuellement diversifiés et non re-
connaissables de façon prévisible. Cela est par-
ticulièrement vrai lorsque l’on s’appuie sur des
méthodes supervisées, où le manque de données
d’anomalies labelisées pose un problème important
pour distinguer les vidéos normales des vidéos anor-
males. Par conséquent, les approches de détection
d’anomalies les plus récentes utilisent des ensembles
de données existants pour concevoir ou apprendre un
modèle qui capture les modèles normaux, ce qui per-
met ensuite d’identifier les modèles anormaux incon-
nus. Au cours de la phase de conception du modèle, il
est essentiel de labelliser les vidéos avec des attributs
tels qu’une apparence anormale, un comportement
ou des catégories cibles qui s’écartent de manière
significative des données normales, en les marquant
comme des anomalies. Outre le manque de données
labellisées, trois autres défis principaux ont été iden-
tifiés dans la littérature : 1) la représentation insuffi-
sante des caractéristiques temporelles, 2) le manque
de précision dans le positionnement des événements
anormaux et 3) l’absence d’informations sur le com-
portement.
Nous avons exploré les applications des nouvelles
technologies de traitement vidéo, notamment la re-
connaissance des actions, la détection des cibles,
l’extraction des caractéristiques du flux optique, l’ap-
prentissage de la représentation et l’apprentissage

contrastif, afin de les utiliser dans les modèles de
détection des anomalies vidéo. Les modèles que
nous proposons sont analysés de manière compa-
rative avec les modèles de référence. Cette analyse
comparative est réalisée à l’aide de jeux de données
publics courants, notamment UCSD(Ped2), Avenue,
UCF-Crime et Shanghaitech.
La première contribution relève le premier point décrit
ci-dessus en introduisant un réseau convolution-
nel temporel (TCN) amélioré. Ce nouveau modèle
de réseau convolutionnel temporel apprend les ca-
ractéristiques dynamiques de la vidéo et les opti-
mise afin d’atténuer les erreurs dues aux poids ini-
tiaux appris de manière contrastive. Cette méthode
améliore la capacité globale des modèles faiblement
supervisés en réduisant la perte causée par les
paramètres initiaux dans l’apprentissage contrastif.
Néanmoins, l’apprentissage faiblement supervisé ne
fait que réduire la dépendance à l’égard des données
labellisées, mais ne l’élimine pas complètement.
C’est pourquoi nos deux contributions suivantes s’ap-
puient sur l’apprentissage non supervisé pour rele-
ver les deux autres défis mentionnés ci-dessus. La
deuxième contribution combine le mécanisme d’auto-
attention pour donner la priorité aux poids des zones
présentant des fluctuations dynamiques évidentes
dans les images. Lors des tests, les zones anor-
males sont localisées en comparant les fonctions de
détection et de perte d’objets. La troisième contribu-
tion explore l’intégration de modèles de réseaux d’ap-
prentissage collaboratifs, qui assurent la cohérence
entre les informations sur le flux optique et les in-
formations sur l’apparence. Cette intégration vise à
améliorer les capacités de capture spatio-temporelle
des modèles non supervisés. Les performances et
les capacités globales du modèle non supervisé sont
considérablement améliorées par rapport aux autres
modèles de base.

Institut Polytechnique de Paris
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Shiping Wang Rapporteur Professeur, Fuzhou University - China

Ioan-Marius Bilasco Rapporteur Professeur, CRIStAL - Université de Lille - France
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Abstract
Security is a primary concern across different domains, mainly because of the escalating
crime rates in both public spaces and isolated areas [1]. The significant increase in anomaly
detection and real-time monitoring systems addresses this challenge to provide safety mea-
surements, security, and protection of personal property. The deployment of video surveil-
lance systems employing deep learning techniques allows for the effective recognition and
interpretation of scenes and anomaly events. However, even with the current advance-
ments in anomaly detection methods, distinguishing abnormal events from normal events
in real-world scenarios remains a challenge because they often involve rare, visually di-
verse, and unpredictably unrecognizable abnormal events. This is particularly true when
relying on supervised methods, where the lack of sufficient labeled anomaly data poses a
significant challenge for distinguishing between normal and abnormal videos. As a result,
state-of-the-art anomaly detection approaches utilize existing datasets to design or learn a
model that captures normal patterns, which is then helpful in identifying unknown abnor-
mal patterns. During the model design stage, it is crucial to label videos with attributes
such as abnormal appearance, behavior, or target categories that deviate significantly from
normal data, marking them as anomalies [2–4]. In addition to the lack of labeled data, two
other main considerations and challenges we identified from the literature: 1) insufficient
representation of temporal feature, 2) lack of precise positioning of abnormal events and 3)
lack the consistency research of temporal feature and appearance feature. The objective of
my thesis is to propose and investigate advanced video anomaly detection methods by ad-
dressing the aforementioned challenges using novel concepts and utilizing weak supervision
and unsupervised models rather than relying on supervised models.

We conducted comprehensive experiments on different methods for detecting abnormal
events in videos. We approached the task from three different perspectives, each contribut-
ing uniquely to improve existing techniques. In addition, we actively explored the applica-
tions of new video processing technologies, including action recognition, target detection,
optical flow feature extraction, representation learning, and contrastive learning in order to
utilize them in video anomaly detection models. Our proposed models comparatively anal-
ysed with baseline models through different evaluation metrics such as accuracy, precision,
loss and AUC. This comparative analysis are conducted using prevalent public datasets
employed in video anomaly detection, including Ped2 [5], Avenue [6], UCF-Crime [7], and
Shanghaitech [8], to validate our assumptions.

Our first contribution addresses the first challenge outlined above by introducing an en-
hanced Temporal Convolutional Network (TCN). This novel TCN model aims to learn dy-
namic video features, utilizing the TCN output to optimize input features for multi-instance
learning and mitigate errors due to contrastive learned initial weights. The purpose of this
ensemble is to calculate the weights of temporal features in weakly supervised schemes.
This method enhances the overall capability of weakly supervised models by reducing the
loss caused by initial parameters in contrastive learning. Nevertheless, weakly supervised
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learning only reduces the reliance on labeled data but does not completely eliminate the
dependence on such data. Hence, our subsequent two contributions rely on unsupervised
learning models to mitigate the challenge associated with labeled data, addressing the other
two challenges. The second contribution combines the self-attention mechanism with an un-
supervised video anomaly detection algorithm to prioritize the weights of areas with obvious
dynamic fluctuations in video frames. At the same time, during the testing phase, abnormal
areas are located through comparison of target detection and loss functions. The combina-
tion of self-attention mechanism and target detection technology significantly improves the
detection accuracy of the anomaly detection model and expands the functionality of the
model. The third contribution explores the integration of collaborative teaching network
models, which helps establish consistency between optical flow information and appearance
information. This integration aims to enhance the spatio-temporal capture capabilities of
unsupervised models. By leveraging the collaborative teaching network model, the overall
performance and capabilities of the unsupervised model are significantly enhanced com-
pared to the other baseline models. These important contributions have been published
and submitted to reputable journals and conferences in the field.

The video anomaly detection models proposed in this thesis not only promotes the
development of academic research in this field, but also provides technical support for
public safety system applications.

Keywords

Video Surveillance, Space Security, Video Analysis,Video classification, Anomaly Detec-
tion, Deep Learning, Object Detection, Action Recognition, Target Tracking, Spatio-
Temporal Features, Optical Flow, Frame Feature, Temporal Convolutional Network, U-Net,
Convolutional-3D(C3D), Inflated-3D(I3D)



Résumé
La sécurité est une préoccupation majeure dans différents domaines, principalement en rai-
son de l’augmentation des taux de criminalité dans les espaces publics et les zones isolées [1].
L’augmentation significative des systémes de détection d’anomalies et de surveillance en
temps réel répond á ce défi en fournissant des mesures de sécurité, et la protection des biens
personnels. Le déploiement de systémes de vidéosurveillance employant des techniques d’ap-
prentissage profond permet la reconnaissance et l’interprétation efficaces des scénes et des
événements anormaux. Cependant, même avec les progrés actuels dans les méthodes de
détection d’anomalies, la distinction entre les événements anormaux et les événements nor-
maux en réalité Les scénarios multi-mondes restent un défi car ils impliquent souvent des
événements anormaux rares, visuellement divers et imprévisibles, méconnaissables. Cela
est particuliérement vrai lorsque l’on s’appuie sur des méthodes supervisées, oú le manque
de données d’anomalies étiquetées suffisantes pose un défi important pour faire la distinc-
tion entre les vidéos normales et anormales. En conséquence, les approches de détection
d’anomalies de pointe utilisent des ensembles de données existants pour concevoir ou ap-
prendre un modéle qui capture des modéles normaux, ce qui est ensuite utile pour iden-
tifier des modéles anormaux inconnus. Au cours de la phase de conception du modéle, il
est crucial d’étiqueter des vidéos avec des attributs tels qu’une apparence anormale, un
comportement ou des catégories cibles qui s’écartent considérablement des données nor-
males, les marquant comme anomalies [2–4]. En plus du manque de données étiquetées,
deux autres considérations et défis principaux que nous identifiés dans la littérature : 1)
représentation insuffisante des caractéristiques temporelles, 2) manque de positionnement
précis des événements anormaux et 3) manque de recherche de cohérence entre les ca-
ractéristiques temporelles et les caractéristiques d’apparence. L’objectif de ma thése est de
proposer et d’étudier la détection avancée d’anomalies vidéo. méthodes en relevant les défis
susmentionnés en utilisant de nouveaux concepts et en utilisant une supervision faible et
des modéles non supervisés plutôt que de s’appuyer sur des modéles supervisés.

Nous avons mené des expériences approfondies sur différentes méthodes de détection
d’événements anormaux dans des vidéos. Nous avons abordé la tâche sous trois perspec-
tives différentes, chacune contribuant á améliorer les techniques existantes. De plus, nous
avons activement exploré les applications des nouvelles technologies de traitement vidéo,
notamment la reconnaissance d’action, la détection de cibles. détection, extraction de ca-
ractéristiques de flux optique, apprentissage de représentation et apprentissage contrastif
afin de les utiliser dans des modéles de détection d’anomalies vidéo. Nos modéles proposés
ont été analysés de maniére comparative avec les modéles de base á travers différentes
mesures d’évaluation telles que l’exactitude, la précision, la perte et l’AUC. Cette ana-
lyse comparative est Utilisation des ensembles de données publiques les plus répandues
réalisées dans le cadre de la détection d’anomalies vidéo, notamment Ped2 [5], Avenue [6],
UCF-Crime [7] et Shanghaitech [8], pour valider nos hypothéses.

Notre premiére contribution répond au premier défi décrit ci-dessus en introduisant un
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réseau convolutif temporel (TCN) amélioré. Ce nouveau modéle TCN vise á apprendre
les fonctionnalités vidéo dynamiques, en utilisant la sortie TCN pour optimiser les fonc-
tionnalités d’entrée pour l’apprentissage multi-instance et atténuer les erreurs dues aux
contrastes. poids initiaux appris. Le but de cet ensemble est de calculer les poids des ca-
ractéristiques temporelles dans des schémas faiblement supervisés. Cette méthode améliore
la capacité globale des modéles faiblement supervisés en réduisant la perte causée par les
paramétres initiaux dans l’apprentissage contrastif. Néanmoins, l’apprentissage faiblement
supervisé uniquement réduit la dépendance á l’égard des données étiquetées mais n’élimine
pas complétement la dépendance á l’égard de ces données. Par conséquent, nos deux contri-
butions suivantes s’appuient sur des modéles d’apprentissage non supervisés pour atténuer
le défi associé aux données étiquetées, en relevant les deux autres défis. La deuxiéme contri-
bution combine l’auto- Mécanisme d’attention avec un algorithme de détection d’anomalies
vidéo non supervisé pour donner la priorité aux poids des zones présentant des fluctuations
dynamiques évidentes dans les images vidéo. En même temps, pendant la phase de test,
les zones anormales sont localisées grâce á la comparaison des fonctions de détection et de
perte de cible. -Le mécanisme d’attention et la technologie de détection de cible améliorent
considérablement la précision de détection du modéle de détection d’anomalies et étendent
les fonctionnalités du modéle. La troisiéme contribution explore l’intégration de modéles
de réseau d’enseignement collaboratif, qui permet d’établir une cohérence entre les infor-
mations de flux optique et les informations d’apparence. Cette intégration vise á améliorer
les capacités de capture spatio-temporelle des modéles non supervisés. En tirant parti du
modéle de réseau d’enseignement collaboratif, la performance globale et les capacités du
modéle non supervisé sont considérablement améliorées par rapport aux autres modéles de
base. Ces contributions importantes ont été publiées et soumises á des revues et conférences
réputées dans le domaine.

Les modéles de détection vidéo d’anomalies proposés dans cette thése favorisent non
seulement le développement de la recherche académique dans ce domaine, mais fournissent
également un support technique pour les applications des systémes de sécurité publique.

Mots-clés

Vidéosurveillance, Sécurité de l’espace, Analyse vidéo, Classification vidéo, Détection d’ano-
malies, Apprentissage en profondeur, Détection d’objets, Reconnaissance d’action, Suivi de
cible, Caractéristiques spatio-temporelles, Flux optique, Fonction de trame, Réseau convo-
lutif temporel, U-Net, Convolutional-3D ( C3D), Gonflé-3D (I3D)
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18 1.1. MOTIVATION

1.1 Motivation

Security concerns have become important across various domains due to the rising crime

rates, necessitating sophisticated measures for anomaly detection and real-time monitoring.

The continuous development of communication technology has led to the widespread de-

ployment of monitoring equipment in various public areas, including traffic routes, schools,

hospitals, shopping malls, supermarkets, and residential buildings. These surveillance de-

vices not only provide covert security assurance to individuals but also produce a significant

volume of surveillance videos [9]. Therefore, video surveillance systems, powered by deep

learning, have emerged as crucial tools for scene interpretation and event detection targeting

anomaly detection. The applications of video surveillance anomaly detection are extensive,

covering areas such as intelligent transportation [10], smart home systems, patient monitor-

ing, criminal investigation, campus security, and Internet of Things (IoT) applications [11].

In recent years, there has been active research on intelligent video anomaly detection tech-

nology utilizing surveillance video [12]. This has emerged as a research focus in many fields

such as image processing, computer vision, deep learning, and various related domains.

However, majority of real-time video anomaly detection systems involve human-in-the-

loop, either partially or entirely, for inspection and monitoring purposes. Unfortunately,

this approach not only incurs high costs for prevention and control but also leads to human

and property losses due to limited attention span, scalability issues and personal subjectiv-

ity [13–15]. One solution that can address this issue is by introducing efficient Intelligent

video surveillance, which can automatically detect events that violate some operations in

public scenes, ensuring personal safety and preventing emergencies in real-time. In gen-

eral, anomalies refer to activities that deviate from normal patterns and are also known

as novelties, outliers, and other similar terms. Video anomalies could include things like

cars speeding, exceeding highway limits, flashing ambulances waiting at traffic lights, or

passengers passing through ticket gates in an unusual manner. These anomalies may be

unusual appearances or irregular movements of targets in specific locations. Therefore,

video anomalies are scene-dependent and whether an event is anomalies or not depends en-

tirely on the agreed meaning of exception within a particular context. Hence, the primary

challenge lies in constructing a context-dependent deep model, which requires the collec-

tion of sufficient data to effectively train the model for a specific context. This challenge

significantly impacts anomaly detection models that require labelled data.

The rise of deep learning has accelerated the swift advancement of anomaly detection

research. In the literature, there exists many research works on video anomaly detection

using supervised learning based models [16, 17]. However, video anomaly detection based

on supervised learning requires sufficient labeled data, and most scenarios cannot generate
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sufficient labeled data for training. Therefore, supervised learning model cannot be applied

in most scenarios. On the other hand, unsupervised learning and weakly supervised learn-

ing rely far less labeled data than supervised learning and therefore both methods have

begun to attract the attention of more researchers [18] [19]. In general, weakly supervised

anomaly detection methods bases comparative learning between normal and abnormal data,

utilizing a ranking loss function to define anomalies. It relies only on part of the anomaly

dataset with video-level labels. There is no need to set supervision signals on the type of

anomaly and the specific location where it occurs. Unsupervised method, without any label

data, training a specialized model exclusively with normal data, subsequently calculating

the error between the model’s output data and the actual data to ascertain anomalies. Es-

sentially, any patterns in the data that deviate from the norms are identified as exceptional

occurrences.

Unsupervised video anomaly detection and weakly supervised video anomaly detection

models have their own advantages and application scenarios. The unsupervised method

provides adaptability to identify new anomalies that the model has not encountered before.

In addition, these models can detect a wider range of anomaly types and exhibits strong

versatility and generalization. On the other hand, the advantages of the weakly supervised

method mainly include robustness and the ability to train models for specific application

scenarios. Both unsupervised and weakly supervised models achieved excellent perfor-

mance in many different public datasets, including Ped2 [5], Avenue [6], UCF-Crime [7],

and Shanghaitech [8]. These datasets are used in our analysis to evaluate our newly pro-

posed models comparatively. However, the existing models still have some shortcomings [15]

such as i) challenge of mining temporal feature information from the video, ii) The second

challenge is inaccurate abnormal positioning, unable to display specific abnormal areas,

and iii) explore consistency of time features and appearance features in videos. In addition

to these limitation, as we stated above, the other obvious challenge is to collect and label

training datasets. My motivation is to address aforementioned challenges and existing lim-

itations by introducing several innovative approaches for video anomaly detection. Hence,

we proposed weakly supervised models and unsupervised models to address these issues

rather than relying on supervised models. In my thesis, we introduce three innovative

approaches for video anomaly detection as three novel contributions as explain below.

Weakly supervised models can be adapted to detect specific anomalies, but they rely on

a multi-instance learning framework. Due to the influence of random initial weights, it is

prone to optimizing towards the wrong target. Moreover, there is an excessive reliance on

existing short-term motion capture methods(such as C3D and I3D) [20] [21] during the fea-

ture extraction process, preventing the extraction of comprehensive temporal features from

video frames. This implies that the current weak supervision scheme fails to fully exploit
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temporal features. And there is an important obstacle to the weakly supervised methods:

it only reduces the dependence on data labels, but its learning model is still driven by

labeled data. To solve this challenge, it presents a framework which integrates a weakly

supervised model with multi-instance learning built with temporal convolutional networks.

However, the weakly supervised scheme still needs enough abnormal data to achieve the

robustness of anomaly detection. Therefore, in recent years researchers have turned more

attention to unsupervised methods [22]. Unsupervised anomaly detection methods mainly

centred around representation learning to reconstruct and predict target frames, still de-

pend on appearance features to model normal patterns. However, the major concern is that

anomalies are often appearing in small areas of video frames. Compared with weakly su-

pervised models, unsupervised models have poorer ability to locate abnormal areas. While

current unsupervised algorithms try to supplement the frame prediction/reconstruction

framwork using optical flow features, they still do not prioritize dynamic features as the

core identification mode of the model. This deficiency leads to inadequate robustness and

accuracy of the existing unsupervised model. Therefore, to address this challenge, my the-

sis introduces novel concept centered around the self-attention mechanism and it exhibits

higher performance than our weakly supervised model. Lastly, we propose an unsupervised

dual-channel consistency constraint prediction framework employing co-teaching networks

and the experiment results indicates that this framework improves anomaly detection per-

formances compared to baseline models. We evaluated the three models proposed in this

thesis in public data sets (ped2 [5], Avenue [6], UCF-Crime [7], and Shanghaitech [8] )

through accuracy, ablation experiments, and AUC. We comparatively evaluate our model

performances identifying several baseline models and conducted ablation to verify the role

and effect of each module proposed and each loss function in model. The experimental

results prove that the three models proposed in this thesis have achieved state-of-the-art

performance.

In conclusion, the development of intelligent video anomaly detection technology is a

key step towards optimizing security and safety measures in various domains. It empowers

surveillance systems to proactively respond to abnormal events, minimize potential risks

and losses, and facilitate more efficient and effective monitoring in diverse scenarios.

1.2 Objectives of the Thesis

In this section, we present the main objectives of this thesis. We address each objective with

one contribution. This thesis aims to implementing an efficient and stable video anomaly

detection system. The main objectives to achieve this aim are as follows:

• Designs a novel weakly supervised video anomaly detection approach, which uses a
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temporal convolutional network to generate pseudo labels for video clips to reduce

the initial error of multi-instance learning,

• Improves current unsupervised algorithms based on video frame reconstruction/pre-

diction [23], adds the self-attention mechanism and object detection technique to

optimize the weight distribution of the model and locate anomalies

• Designs a novel unsupervised video anomaly detection scheme, synergizing the re-

lationship between optical flow features and appearance features and improving the

accuracy of feature extraction.

1.3 Contributions of the Thesis

Our approach to achieve the above research objectives is organized into three parts as three

contributions, each corresponding to each research objective. We discuss them as follows:

C.1 The first contribution proposes to use TCN network to calculate the correlation be-

tween positive and negative instances, so as to enhance the temporal characteristics

of the input. This contribution introduced an effective combination of temporal con-

volution networks and graph neural networks inspired by the literature [24]. More

specifically, the first contribution provides two sub-contributions as follows (Chapter

3).

C.1.1 Firstly, we successfully introduce a novel temporal convolutional network in a

weakly supervised learning for video anomaly detection and propose a novel

video anomaly detection model NTCN-ML which has optimized the temporal

feature extraction.

C.1.2 Secondly, we show that the NTCN-ML model proposed in this thesis can ef-

fectively enhance discriminative features between abnormal events and normal

events. The experimental results on two widely-used benchmark datasets; 1)

UCF-Crime dataset - 95.3% accuracy and 2) ShanghaiTech dataset - 85.1% ac-

curacy, show that the performance of NTCN-ML reached state-of-the-art.

C.2 The second contribution proposed a COVAD [25](Content-Oriented Video Anomaly

Detection) method which is based on an auto-encoded convolutional neural network

and coordinated attention mechanism in order to effectively capture meaningful ob-

jects in the video and dependencies between different objects. Relying on the existing

memory-guided video frame prediction network, our algorithm can more effectively
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predict the future motion and appearance of objects in the video. Our proposed al-

gorithm obtained better experimental results on multiple data sets and outperformed

the baseline models considered in our analysis (Chapter 4).

C.3 The third contribution introduces a novel anomaly detection framework that balances

dynamic and static information and builds the relationship between appearance fea-

tures and corresponding optical flow features, where we set strong consistency con-

straints, which reduce the loss between dynamic information and corresponding static

information. We utilize a collaborative teaching network to ensure consistent repre-

sentation of static and dynamic information for prediction. The proposed framework

consists of two sets of encoder-decoder pairs, supplemented by memory storage mod-

ules. Running in parallel with the dual encoder network is the collaborative teaching

network, with shared memory modules serving as the cornerstone of collaborative

training. Consistency constraints ensure strong consistency between dynamic and

static information in the learned representation. During our experimental phase, we

present convincing results demonstrating the superior performance of our algorithm

on three publicly available datasets (Chapter 5).

C.3.1 Firstly, we propose an advanced approach for video anomaly detection by com-

bining the power of the FlowNet2 for optical flow extraction with a co-teaching

network structure. Our model seamlessly fuses optical flow information and the

memory module of representation features to predict accurate representation

features. Additionally, the integration of representation features and the mem-

ory module responsible for optical flow enables the prediction of light stream

information.

C.3.2 Secondly, skipping connections are employed to convey background information

to the decoder, aiding in the accurate prediction of background and color infor-

mation.
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1.5 Relationship of Publications with Contributions

In this section, we provide the relationships of publications with contributions.

• The publication ‘Video anomaly detection with NTCN-ML: A novel TCN for multi-

instance learning ’ corresponds to Contribution C.1 in Section 3 [26].
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• The publication ‘COVAD: Content-oriented video anomaly detection using a self-

attention based deep learning model ’ corresponds to Contribution C.2 in Section 4 [25].

• The publication ‘Unsupervised Anomaly Detection in Video Based on Consistency of

Appearance and Optical Flow ’ corresponds to Contribution C.3 in Chapter 5.

1.6 Outline of the Thesis

The thesis is structured into six chapters.

• Chapter 2 presents the background and related technologies relevant to the main

topics of this thesis, i.e., deep learning, computer vision, video process, anomaly def-

inition, and the existing unsupervised learning models and weakly supervised models

and core technology classification.

• Chapter 3 proposes the first innovation of this thesis, using temporal convolutional

networks to extract temporal features, enhance the confidence of initial anomaly

settings for multi-instance learning, and improve the algorithm performance of weakly

supervised learning

• Chapter 4 proposes the second innovation of this thesis, using self-attention to

improve the traditional memory module-based unsupervised video anomaly detection

• Chapter 5 describes the third innovation of this thesis, a weakly supervised video

anomaly detection algorithm based on optical flow and representation.

• Chapter 6 summarizes the thesis and discusses challenges, limitations and possible

future directions for the advancements of this thesis.
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2.1 Overview

In this chapter, we introduce different categories of anomalies and the main definition of

anomalies in video data, existing mainstream public data sets and evaluation indicators

related to video anomaly detection. Finally, this chapter introduces related deep learning

technology in detail, as well as the application and latest development of deep learning

model in video anomaly detection.

2.1.1 Definition and types of abnormal

In general, the anomalies categories are point anomalies, contextual anomalies, and collec-

tive anomalies [3].

– Point anomalies: Point anomalies occur when only an entity’s data behaves somewhat

irregularly compared to the rest of the data. Most anomaly recognition research focuses

on this form of anomaly because it is the most fundamental. Cars staying in the middle of

the road can be called outliers.

– Contextual anomalies: This occurs when a data value behaves erratically compared to

the rest of the data in a specific context. Context includes the observer’s subjectivity and

overall perception of the situation. Parking a coach in a bus parking lot can be considered

a contextual anomaly.

– Collective anomalies: This occurs when a collection of data samples is considered anoma-

lous compared to real data. A group of people gathering at the exit of a door can be called

a collective anomaly.

These anomalies are also specifically demonstrated in video data, such as [27]. How-

ever, in the field of video data analysis, the distinction between point anomalies, collective

anomalies and contextual anomalies is not clear. Video data has time attributes, and all

events do not exist in isolation. It is impossible to train in isolation of events in a video.

Compared with clear classification boundaries, video anomalies rely more on contextual

information. Even a car staying in the middle of the road or a group of people gathering

at the door can be identified based on contextual information. Therefore, combined with

the continuous and uninterrupted nature of video data, there are other types of anomalies

exist with video data [22]. Some of these video anomalies are explained below.

– Appearance only anomalies: These anomalies can be considered unusual appearances of

objects in the video. For example, a cyclist on the sidewalk or a large rock on the road.

Detecting these anomalies only requires examining local areas of a single frame of video.

– Short-term motion-only anomalies: These anomalies can be viewed as unusual object

motion in the video. For example, a person is running in the library, or a car skids on

the road. Detecting these anomalies often requires examining only localized areas of the
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video over a short period of time. Appearance-only abnormalities and short-term motion

abnormalities only can be further referred to as local abnormalities because they have this

additional property.

– Long-term trajectory anomalies: These anomalies can be thought of as unusual object

trajectories in the video. For example, people walk in zigzags on sidewalks, cars weave in

and out of traffic, or linger around foreign embassy buildings. Detecting trajectory anoma-

lies requires examining longer video clips.

– Group anomalies: Group anomalies can be thought of as unusual object interactions in

video. An example would be a group of people walking in formation (such as a marching

band, parade and group conflict). Detecting group anomalies requires analyzing the rela-

tionship between two or more video regions.

– Time of day anomalies: This type of anomaly is orthogonal to all other types. What

is unusual about these activities is the timing of their occurrence. These anomalies are

very similar in nature to the position-dependent anomalies discussed previously, with the

”relevant contextual reference frame” being time rather than space. An example would be

people entering a movie theater at dawn.

There are many different video anomaly detection models proposed in the literature,

that are often applied to various intelligent monitoring systems, with early exploration

dating back to the 1960s [28]. With the rise of deep learning, specifically deep anomaly

detection, this field has shown remarkable progress due to the ability of deep learning

to learn expressive representations of complex data, such as high-dimensional, temporal,

spatial, and image data [15].

Video anomaly detection tasks are different from traditional machine learning tasks.

The core problem is that there is no clear boundary between abnormal events and normal

events. And it’s hard to obtain sufficient amount of labeled abnormal data. Therefore,

when designing anomaly detection algorithms, it is usually impossible to achieve a perfect

anomaly detection algorithm by relying solely on data-driven methods.

• Unknownness: Anomalies often relate to unknown instances with sudden, unforeseen

behavior, data structure, and distribution. They might not be known until they

actually occur, like new types of terrorist attacks, fraud, or network intrusion.

• Rarity: Anomalies are usually rare instances, while normal instances significantly

outnumber them. This scarcity makes it difficult to collect a large number of labeled

anomalous instances for training.

• Diversity: Anomalous events in videos can be diverse , making it hard to cover all

possible cases in the training data.
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• Dependence on Scene Definition: The definition of abnormal events in videos of-

ten depends on specific scenes, making it challenging to generalize across different

contexts.

• Data Privacy: There are limited public datasets available for video anomaly detection,

which hinders the development of robust models.

To tackle these challenges, recent research has focused on deep learning using generative

models, such as variational autoencoders, generative adversarial networks, and long short-

term memory networks. These approaches have shown promise in addressing the unique

complexities of video anomaly detection.

2.2 Classification

Existing video anomaly detection models based on learning can be mainly divided into

three categories: supervised learning, unsupervised learning, weakly supervised learning as

shown in Figure 2.1

Supervised learning algorithm offer several advantages, including the ability to accu-

rately identify and classify anomalies using labeled data and the ability to identify specific

types of anomalies [16, 17, 29]. However, large amounts of labeled data are required, and

these techniques may be sensitive to environmental changes, affecting their accuracy. and

supervised learning algorithm is low scalability [30]. Thus, unsupervised models and weakly

supervised models have attracted more attention from researchers.

The unsupervised algorithm and the weakly supervised algorithm differ in how they

define anomalies, leading to distinct data utilization during the training process. In the

unsupervised algorithm, the characteristics of the data itself are used, requiring only normal

data for training codes. However, when testing, since the model has not been exposed to

abnormal data during training, the reconstruction or prediction errors can be substantial.

On the other hand, the weakly supervised algorithm, specifically contrastive learning, relies

on differentiating between normal and abnormal data. During training, both normal data

and anomalous data with video-level labels are necessary. However, during testing, only

individual data packets need to be input separately. The algorithm judges whether the

maximum abnormal score of the instance in the packet exceeds the threshold, enabling the

definition of the abnormal segment.

By understanding these distinctions in the training and testing processes, we can effec-

tively utilize unsupervised and weakly supervised algorithms for anomaly detection. These

methods cater to various scenarios where data labeling is limited or uncertain, making
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Figure 2.1: Classification of Algorithms in Video Anomaly Detection [22]

them valuable tools in anomaly detection tasks for video data, medical imaging, and other

real-world applications.

2.2.1 Unsupervised Learning Video Anomaly Detection

Existing unsupervised algorithm framework can be divided into the following four cate-

gories: the first is the basic video frame reconstruction task model [23]; the second is the

video frame prediction task model [31]; the third is a dual-channel model [32]; the fourth

is a multi-task model [33].

Reconstruction-based methods operate on the assumption that normal data can be

integrated into the low-dimensional domain, and that normal samples and anomalies are

represented in different patterns in the low-dimensional space [34]. Autoencoder (AE)

is mainly used, a feedforward neural network that includes an encoder and a decoder

structure [35]. The goal is to capture important parts of the input data and learn low-

dimensional representations of high-dimensional data; where the encoder network maps

the input data to a low-dimensional latent space, and the decoder network maps the latent

space back to the original data space. In the subsequent research process, variational auto-

encoding, convolutional auto-encoding, graph convolution coding and adversarial auto-

encoding were used to improve the quality of data compression and enhance the restoration

ability of the model [23,36–44]. In reconstruction-based methods, in 2020, Hyunjong Park

et al. [23] optimized on the basis of anomaly detection tasks by combining with the U-

Net network to further limit the expressive ability of the neural network, and proposed a
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video anomaly detection algorithm based on future frame prediction and reconstruction.The

turning point is that the method first proposed to limit the representation ability of the

neural network. The main concern is that the powerful representation ability of the neural

network will distort the description of the data in the feature space. As a result, some

researchers began to work on interpretable detection models and video semantic analysis.

Prediction-based methods identify anomalies by evaluating the difference between ex-

pected and actual spatio-temporal properties of features [34]. These models assume that

all normal activity is predictable after training, and any deviation from the prediction

indicates an anomaly. During the training process, they used recurrent neural networks

(RNN), long short-term memory networks (LSTM), convolutional neural networks (CNN),

and convolutional long short-term memory networks (Conv LSTM) to take the previous

consecutive frames as input and predict the results of the next frame as output. These tech-

niques are commonly used to process sequence data. In the subsequent research process,

local features, global features, and dynamic features are used as supplements to improve the

accuracy of model prediction. Common prediction-based algorithms include [31,34,45–48],

Vision Transformer (ViT) [49–51] and U-Net and C3D [23] can also be used as a prediction

network. In prediction and reconstruction tasks, researchers often use dynamic information,

such as optical flow information, to supplement input features and improve the prediction

accuracy of the model. Therefore, a dual-channel model was proposed in the subsequent

research process.

Dual-channel-based models setting on the assumption that the static feature and dy-

namic feature of video are related. They use multi-branch encoding and decoding struc-

ture to achieve multiple inputs to multiple outputs. In this process, auxiliary technologies

are usually used, such as memory modules [38], graph neural networks [52], or joint loss

functions [53] to build the connection between dynamic features and static features. These

models regard the consistency of dynamic features and static features (appearance features-

optical flow features, temporal features-spatial space) as an important discussion. Initially,

optical flow features were used as a supplementary part of appearance features to enhance

model accuracy [54], but now, researchers are more inclined to put optical flow features

and appearance features in an equally important position [32,44,55,56].

Multi tasking-based models assume that there is an essence to the data. Even if the

video frames undergo various modifications, including rearrangement, scaling, rotation, or

occlusion. During the learning process, the model can always discover internal patterns

and recover video sequences. And multi-task models use multiple agent tasks to improve

self-supervised learning capabilities. There are many kinds of proxy tasks for video frame

sequences, such as reading video sequences out of order to predict intermediate frames, and

reading sequences with occlusion in some video frames to restore the occlusion content.
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Read the rotated video frames to identify or predict the rotation angle, read the scaled

video frames to restore the normal size, and determine whether the video frame sequence is

in forward or reverse order. The technologies used in this process include target detection,

optical flow estimation, 3D convolution, U-net network, etc. General steps: The first step

is to use object detection or feature extraction algorithms to extract the features of video

frames. The second step is that modify these features and set up multiple agent tasks.

The third step is that input the modified features individually or jointly to U-Net network

or convolutional network, restore the original normal video frame sequence features. The

current multi-task learning models mainly include [33,57–59]

In this thesis, we list four representative methods of classification in Table 2.1, including

the data sets used and core technologies, and we briefly described related algorithms in

Table 2.2.



32 2.3. TECHNICAL OVERVIEW

2.2.2 Weakly Supervised Learning Video Anomaly Detection models

Weakly supervised learning models, also known as semi-supervised models, use labeled and

unlabeled data to create classifiers. This approach is particularly useful when the amount

of available labeled data is limited. This approach mainly stems from the introduction of

the UCF-Crime dataset [7]. This dataset has video-level labels in both training and test

sets.

The core of this model is to enlarge the error between the segment with the highest

abnormal confidence in the abnormal video and the segment with the highest abnormal

confidence in the normal video. The weakly supervised model is based on the assump-

tion that the abnormal confidence of all normal video clips is smaller than the maximum

abnormal confidence clip in the abnormal video. During training, the predictor segments

unlabeled samples and assigns confidence to each segmented sample segment.

Therefore, in weakly supervised models, the commonly framework Composed of con-

trastive learning model and multi-instance learning. Multi-instance learning provides con-

venience for assigning prediction confidence to each video instance and setting the con-

trastive loss function.

But usually when video features are input into the multi-instance learning network,

some auxiliary work will be done, such as action feature network C3D, I3D, long short-

term memory network (LSTM), VGG, Transformer, recurrent neural network (RNN) or

automatic encoding and other technologies (AE) enhance the coherence of input features,

or provide pseudo-labels to reduce errors in the initial random allocation process of multi-

instance learning networks. In learning-based algorithms, Waqas Sultani et al. [7] in 2018,

which first proposed to use C3D network to extract the video features after clips and input

the features into a MIL to calculate anomaly scores for each instance. Now there are weakly

supervised models [7, 19,61–71] showing Table 2.3.

In addition, video anomaly detection technologies based on video understanding or

natural language processing (NLP) triples have gradually emerged. These technologies are

separated from the reconstruction or prediction of video representation information, but

try to understand what happened in the video and based on these The semantics of content

hiding are used to determine anomalies based on the context. At present, this classification

is still immature, and the core obstacle is the lack of sufficient data sets with semantic

labels to assist testing [76–78].

2.3 Technical Overview

In this study, several techniques are employed to aid video processing and analysis. These

techniques are primarily categorized into three groups: video feature extraction techniques,
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Table 2.1: Unsupervised Video anomaly detection classification

Type Method Techniques Datasets

Reconstruction

LTR [36] Autoencoder,temporal cuboid
Avenue, UCSD,
subway

ST-AE [37] CNN,autoencoder
Traffic, UCSD,
Avenue

AMDN [38] One-class SVM, Optical flow Train, UCSD

GMFC-VAE [39]
Convolutional autoencoder,
Gaussian mixture model

Avenue, UCSD

ConvAE-LSTM [40]
convolutional autoencoder,
LSTM, optical flow

Avenue, UCSD

Temporal cues [41] GAN, LSTM, Optical flow
Avenue,
ShanghaiTech

MNAD [23]
Convolutional autoencoder,
Memory module

UCSD, Avenue,
Shanghaitec

Ada-Net [42] GAN, autoencoder
UCSD, Avenue,
ShanghaiTech

Adver-3D CAE [43] Convolutional autoencoder
Subway, Avenue,
UCSD, ShanghaiTech

AE-U-Net [44] Convolutional autoencoder
UCSD, Avenue,
Subway,Traffic

Prediction

HF2-VAD [31] Variational Autoencoder
UCSD, Avenue,
Shanghaitec

FFP [34]
Adversarial training,
U-Net

UCSD, Avenue,
Shanghaitec

Residual LSTM [48] Residual attention LSTM
Avenue, UMN,
UCF-Crime,

CT-D2GAN [47] GANs, Transformer, CNN
Ped2, Avenue,
ShanghaiTech

Dual channel
ITAE [60]

Convolutional autoencoder,
Two path generative

Ped2, Avenue,
ShanghaiTech

AMSRC-Net [54]
Gated Fusion Module,
Two path generative

Ped2, Avenue,
ShanghaiTech

Two-P [32] Two convolution autoencoder
Ped2, Avenue,
ShanghaiTech

Multi-tasking
Multi-T [57]

3D convolutional,
YOLOv3,multi-task

Ped2, Avenue,
ShanghaiTech

Bi-d predict [59] Bi-directional,Autoencoder
Ped2, Avenue,
ShanghaiTech
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Table 2.2: Unsupervised learning-based video anomaly detection models

Method Description

LTR [36]
Use feedforward neural networks and encoder networks to construct local action features based on
hand-crafted features to achieve end-to-end learning under restricted supervision

ST-AE [37]
The spatiotemporal AE comprises one encoder and two decoders, employs parallel
training of decoders with monochrome frames, which is noteworthy compared to the distillation process

AMDN [38]
The appearance and motion DeepNet model employs AEs and a modified two-stream network with an
additional third stream to improve detection performance.

GMFC-VAE [39]
The Gaussian mixture fully convolutional-variational AE uses the conventional two-stream network
technique and uses a variational AE to enhance its feature extraction capability.

ConvAE-LSTM [40]
This method uses the convolutional AE and long short-term memory to detect anomalies. The framework
produces the error function and reconstructed dense optical flow maps.

Temporal cues [41]
A conditional GAN is trained to learn two renderers that map pixel data to motion and vice versa.
Normal frames will have little reconstruction loss, while anomalous frames is significant loss.

MNAD [23]
This algorithm proposes to store the behavioral patterns of normal videos through the memory module
and limits the expressive ability of the convolutional neural network.

Ada-Net [42] An attention-based autoencoder using contentious learning is proposed to detect video anomalies.

Adver-3D CAE [43]
A 3D CAE-based competitor anomalous event detection method is proposed to obtain the maximum
accuracy by simultaneously learning motion and appearance features. It was developed to explore
spatiotemporal features that help detect anomalous events in video frames.

AE-U-Net [44]
A two-stream model is created that learns the connection between common item appearances andcrelated
motions. A single encoder is paired with a U-net decoder to predict motion and a deconvolution
decoder that reconstructs the input frame under the control of the reconstruction error

FFP [34]
Spatial and motion constraints are used to estimate the future frame for normal events in addition
to density and gradient losses

HF2-VAD [31]
Extract spatial CNN features from a series of video frames and feed them to the proposed residual
attention-based LSTM network, which can precisely recognize anomalous activity

Residual LSTM [48]
Using a light-weight CNN and an attention-based LSTM for anomaly detection reduces the time
complexity with competitive accuracy.

CT-D2GAN [47]
A Conv-transformer is used to perform future frame prediction. Dual-discriminator adversarial
training maintains local consistency and global coherence for future frame prediction.

ITAE [60]
Proposed a structure with two encoders and a single decoder, in which the two encoders capture static
and dynamic features, the decoder learns to combine and reconstruct them together as original inputs.

AMSC-Net [54]
Use optical flow features as a complement to appearance features to enhance the accuracy of
prediction or reconstruction

Two-P [32]
Design two proxy tasks to train the two-stream structure to extract appearance and motion features in
isolation,the prototypical features are recorded in the corresponding spatial and temporal memory pools

Multi-T [57]
Design multiple proxy tasks: three self-supervised and one based on knowledge distillation. The
self-supervised tasks are: (i) arrow of time, (ii) motion irregularity and (iii) reconstruction.
The knowledge distillation task takes into account both classification and detection information,

Bi-d predict [59]
Propose a novel bi-directional architecture with three consistency constraints to comprehensively
regularize the prediction task from pixel-wise, cross-modal, and temporal-sequence levels
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Table 2.3: Weakly supervised algorithm classification

Methods Techniques Datasets Codes

F-MIL [7] MIL, C3D, TCNN CCTV
https://github.com/WaqasSultani/
AnomalyDetectionCVPR2018

GCN [64] GCN,C3D,TSN
UCF-Crime,
ShanghaiTech,
UCSD ped2

https://github.com/jx-zhong-for-
academic-purpose/GCN-Anomaly-Detection

MLEP [72]
ConvLSTM,
Encoder-decoder

Avenue,
Shanghaitech

https://github.com/svip-lab/MLEP

Motion-Aware [67]
Temporal augmented,
VGG,C3D,I3D

UCF Crime

Siamese [66] Siamese network, CNN UCSD, Avenue

AR-Net [65]
Regression net,
Dynamic loss

Shanghaitech
https://github.com/wanboyang/
Anomaly AR Net ICME 2020

XD-Violence [73]
Multimodal information,
C3D,I3D

XD-Violence https://roc-ng.github.io/XD-Violence/

CLAWS [68]
Clustering assisted,
random selector,C3D

UCF-Crime,
Shanghaitech

MIST [62]
Self-guided attention,
Sparse sampling

UCF-Crime,
Shanghaitech

https://kiwi-fung.win/2021/04/28/MIST/

RTFM [61] Top-k MIL, C3D,I3D
UCF-Crime,
Shanghaitech,
XD-Violence

https://github.com/tianyu0207/RTFM

STAD [69]
Spatio-temporal tube,
Relationship reason

UCF-Crime,
Shanghaitech

WSAL [63] High-order Context AE TAD, UCF-Crime https://github.com/ktr-hubrt/WSAL

CRFD [70]
Causal temporal
Relation

UCSD, UCF-Crime,
Shanghaitech

MSL [71] MSL, transformer
Shanghaitech,
UCF-Crime,
XD-Violence

UR-DMU [74] I3D, self attention
UCF-Crime,
XD-Violence

CMRL [75]
Context-Motion
Interrelation

Avenue,
XD-Violence,
Shanghaitech,
UCF-Crime
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representation learning, and supplementary techniques. This section will provide an intro-

duction to each of these techniques.

2.3.1 Video Feature Extraction Techniques

This category encompasses a diverse set of methods aimed at extracting meaningful and

informative features from raw video data. Including motion capture technology, optical

flow extraction technology, and sequence feature extraction technology

• Motion capture technology: I3D (Inflated 3D) [21] and C3D (Convolutional 3D) [20]

are commonly used motion capture technologies in the field of video anomaly de-

tection. During the application process, the feature map of the last layer is usually

intercepted as the feature of the current video frame. I3D takes a 2D image classifica-

tion network and inflates all filters and pooling kernels-giving them an extra temporal

dimension, converting it into a 3D convolutional network. Since the I3D network takes

into account the temporal characteristics of image data, it is often applied to video

sequence feature extraction tasks. The model undergoes pre-training on an exten-

sive video dataset, equipping it with the capability to grasp intricate spatio-temporal

patterns and representations from videos. This capacity enables I3D to efficiently

capture both appearance and motion cues present in consecutive frames, making it

especially well-suited for various video analysis tasks, including action recognition,

video classification, and temporal localization. C3D is achieved by convolving a 3D

kernel into a cube formed by stacking multiple consecutive frames together. With this

structure, feature maps in convolutional layers are connected to multiple consecutive

frames in the network. The ”3D” in C3D refers to the convolutional layers being

extended to operate in three dimensions (width, height, and time), which allows the

model to consider the temporal dynamics of video data. The model was originally ap-

plied to action recognition. We utilize the powerful C3D feature extraction technique

to enhance video analysis and comprehension.

• Optical flow extraction technology [79]: which evaluates the motion characteristics

of the object by identifying the differences between consecutive video frames, that

provides essential information about the dynamic aspects and movements within the

video data. It is often used in the field of computer vision, such as object tracking, ob-

ject recognition, and dynamic feature capture. Accurate estimation of optical flow is

crucial for various computer vision tasks. Commonly used methods include IRR [80],

GMA [81], Flownet [82]. Flownet2 utilizes a deep CNN architecture, enabling it to

capture complex spatial and temporal features in video data. The network takes

pairs of consecutive frames as input and processes them through multiple layers of
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convolutions and non-linear activations. These layers empower the model to learn

hierarchical representations efficiently encoding the patterns and motion information

present in the video frames. Compared with [82], there are two important improve-

ments in the Flownet2 network [83]. The first is the order of training data, from

simple to complex, which improves the matching ability of the model; The second

one is to fuse the output optical flow of the previous frame with the current frame

and output the optical flow of the next frame. Therefore, Flownet2 has stronger

performance. We used the Flownet2 in my thesis.

• Sequence feature extraction technology: used in natural language processing (NLP)

contextual semantic analysis tasks. Sequence feature extraction technology refers to

methods and technologies for extracting relevant features or information from data

sequences. Sequences can come in many forms, including text, time series data, DNA

sequences, audio signals, and more. Video is a type of time series data. The goal

of sequence feature extraction is to convert raw, usually high-dimensional, unstruc-

tured sequences into a structured format. For video data, sequence feature extraction

technology helps the model learn dynamic features to understand video content. This

technology can be used for a variety of machine learning and data analysis tasks. Com-

mon techniques used for video sequence feature extraction include Transformer [49],

recurrent neural network (RNN) [84], long short-term memory networks (LSTM) [85],

convolutional neural network(CNN) [47], Temporal Convolution Network(TCN) [86],

pyramid network [87]. autoencoders [72]. In this thesis, we used the TCN network.

Temporal series learning networks usually need to follow two principles [88, 89]: (1)

The input and output structures of the network are the same; (2) The features of the

current time node are not disturbed by the features of the next time node. Therefore

The proposed TCN network consists of Dilated Causal Convolutions (DCC) [90] and

residual networks [91]. The Dilated Causal Convolutions is used to pass the infor-

mation of the previous nodes, and the residual network is used to supplement the

information. In this thesis, TCN is used to extract temporal features to supplement

the features extracted by C3D, and to optimize the multi-instance learning network

2.3.2 Representation learning and multi-instance learning frameworks

Unsupervised video anomaly detection and weakly supervised video anomaly detection

differ in anomaly definition and data dependence. Therefore, there are two learning frame-

works to handle these two tasks: representation learning and multi-instance learning. Self-

supervised learning is a method of unsupervised learning. Its main purpose is to learn useful

information by supervising itself from non-manually labeled data. The means to achieve
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self-supervised learning is mainly to use auxiliary tasks to mine its own supervisory infor-

mation from large-scale unsupervised data. The network is trained with constructed super-

vision information so that valuable representations for downstream tasks can be learned.

We call these auxiliary tasks representation learning [52]. In application scenarios with

limited data, self-supervised learning and representation learning have stronger applica-

tion value. Encoding-Decoding is the most commonly used unsupervised video anomaly

detection framework.

For weakly supervised video anomaly detection solutions, since video-level labels exist in

some data, A combines the structures of contrastive learning and traditional multi-instance

learning to design a multi-instance learning framework for video anomaly detection.

• Encoding-Decoding: The U-Net network is the most commonly used encoding-decoding

structure, originally developed for biomedical image segmentation tasks. It was pro-

posed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in 2015 [92]. The

name ”U-Net” is derived from the architecture’s U-shaped design, resembling an in-

verted ”U.” In the U-Net architecture, the encoder conducts a series of convolution

and pooling operations, effectively reducing the spatial dimension while increasing

the number of channels. On the other hand, the decoder employs upsampling and

transposed convolutions to restore the original spatial resolution. One distinctive

feature of the U-Net is the incorporation of skip connections, enabling the network to

utilize feature maps from the encoder during the restoration phase. This allows the

decoder to combine both high-level contextual information and low-level spatial de-

tails, contributing to improved segmentation accuracy. Due to its unique design and

skip connections, U-Net has found widespread application in representation learn-

ing [93,94].

• MIL (Multiple Instance Learning) [95] is a machine learning paradigm that addresses

scenarios where the training data lacks explicit instance-level labeling and is instead

organized into groups or ”bags” of instances. Each bag can contain multiple instances,

and the bag’s label is determined by the presence or absence of certain patterns or

properties within the instances. MIL finds particular significance in situations where

video anomaly localization is unclear and labels are insufficient. In such cases, where

only video-level labels are available without clear indications of the abnormality’s

specific location, multi-instance learning is employed. In 2018, Sultani et al [7] com-

bined multi-instance learning and contrastive learning to build a weakly supervised

video anomaly detection framework based on multi-instance models, where both nor-

mal and abnormal data are divided into the same number of instances and input

into the multi-instance learning network simultaneously. The network calculates the
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abnormal score for each instance within the two data packets. Notably, the maximum

anomaly score in the abnormal data packet is always greater than any instance in

the normal data packet. Based on this observation, a video anomaly definition is

constructed using comparative learning [96]. MIL can effectively tackle challenges in

anomaly detection where precise instance-level labeling is not feasible, and the focus

lies on identifying abnormal patterns at the video level. This approach enables us to

handle various real-world applications where anomaly localization may be ambiguous,

such as video surveillance, medical imaging, and industrial monitoring, enhancing the

accuracy and robustness of the anomaly detection process.

2.3.3 Supplementary research

In video anomaly detection, existing model [33] [62] [49] utilizes several supplementary

technologies, including object detection [97], object tracking [98], and the self-attention

mechanism [99]. Object detection enables the model to locate the area in the video frame

where the anomaly occurs, providing a clearer representation of the abnormality. On the

other hand, object tracking tracks video features and supplements the lack of temporal

information. Lastly, the self-attention mechanism assists the model in better identifying

the dynamic characteristics of targets when anomalies occur. Together, these additional

techniques enhance the accuracy and effectiveness of video anomaly detection, enabling the

model to detect and highlight anomalies more efficiently.

• Object Detection: Object detection is a fundamental computer vision task aimed at

identifying and localizing multiple objects of interest in an image or video. The goal

of object detection is to provide a class label and bounding box coordinates for each

detected object present in the input data. Object detection can be roughly divided

into two categories: Single Shot Detectors and Region-based Detectors. Single Shot

Detectors, such as SSD (Single Shot Detectors) [100] and the YOLO series (you only

look once) [101], predict object classes and bounding box coordinates directly from

predefined anchor boxes placed at different positions and ratios within the image.

These methods offer fast and efficient advantages. On the other hand, Region-based

Detectors employ technologies like selective search or region proposal network (RPN)

to generate region proposals (candidate object bounding boxes). The regions are

then classified and refined to obtain the final object detection result. This approach

provides high accuracy and scalability. Representative technologies in this category

include Faster R-CNN [97], R-CNN [102], and Mask R-CNN [103]. Both types of

object detection methods have their strengths and are widely used in various computer

vision applications, such as autonomous driving, surveillance, robotics, and more.
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• Object tracking [104]: Object tracking is a fundamental computer vision task that

involves locating and tracking a specific target or object of interest over a series of

consecutive frames in a video. The goal of object tracking is to maintain a consis-

tent association between the target object in an initial frame and its corresponding

instance in subsequent frames, even when the object undergoes changes in appear-

ance, motion, or occlusion. Key components and techniques used in object tracking

include [98]: 1.Object representation: Effectively representing each frame involves

considering features such as color, texture, speed, and direction of the target object;

2.Object detection and initialization: Object tracking typically starts by detecting

the target object in the first frame of the video or manually annotating its position;

3. Motion prediction: Object tracking algorithms often employ motion models to

predict the position and movement of the target object in subsequent frames; 4.Data

association: Data association methods are used to link the target object in the cur-

rent frame with its corresponding instance in the previous frame, ensuring a smooth

tracking transition; 5.Occlusion handling: Object tracking algorithms must handle

situations where the target object may be partially or completely occluded by other

objects or obstacles in the scene.

Common object tracking technologies include SiamRPN [105], DaSiamRPN [106] and

DCF-Net [107]represented by deep learning approaches, which composed of Siamese

sub-network for feature extraction and region proposal sub-network including clas-

sification branch and regression branch. These techniques have shown significant

advancements in achieving robust and accurate object tracking in real-world scenar-

ios. As technology continues to evolve, ongoing research and development efforts are

likely to further enhance object tracking algorithms, leading to even more advanced

and efficient tracking solutions in the future.

2.4 Datasets

There are four commonly used public data sets for video anomaly detection. According to

different usage methods, there are different division methods in the specific implementation

process. Since weak supervision requires partially labeled data, different segmentation

schemes exist in the Shanghaitech dataset.

• UCSD: The UCSD dataset [5] consists of pedestrian data captured at two different

pedestrian areas on the UCSD campus, with subsets named Ped1 and Ped2. The

training set contains 34 clips from Ped1 and 16 clips from Ped2, all containing only

normal frames. In contrast, the test set comprises 36 clips from Ped1 and 12 clips

from Ped2, containing both normal and abnormal frames. Frame-level annotations are
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available for all test clips, with pixel-level ground truth annotations provided for ten

clips. In the UCSD dataset, pedestrian walking is considered a normal pattern, while

non-pedestrian entities like bicycles and skaters are defined as anomalous instances.

• UCF Crime: The UCF Crime dataset [7] includes 1900 unedited videos capturing

various real-world anomalous events, such as abuse, arrest, arson, assault, traffic

accident, theft, explosion, fight, robbery, shooting, stealing, burglary, and vandalism.

Out of these videos, 950 are normal, while the rest contain at least one anomalous

event. The training set contains 800 normal videos and 810 abnormal videos. The

remaining 150 normal and 140 abnormal videos are test set. Both the training and

test sets encompass all 13 anomalous events. Some videos may contain multiple

anomaly categories, such as robbery vs. fight or theft vs. vandalism. The videos in

UCF Crime represent realistic surveillance applications and cover different lighting

conditions, image resolutions, and camera poses, making it a challenging dataset for

anomaly detection tasks.

• Avenue: The Avenue dataset [6] contains 15 videos, each lasting 2 minutes, resulting

in a total of 35,240 frames. For training purposes, 8,478 frames from four videos are

used. Typical unusual events captured in this dataset include running and throwing

objects.

• ShanghaiTech: The dataset [8] consists of 13 scenes collected at ShanghaiTech Uni-

versity, featuring complex lighting conditions and camera viewpoints. It comprises

437 videos, with an average of 726 frames per video. The training set includes 330

normal videos, while the test set contains 107 abnormal videos and 130 abnormal

videos. Unusual events in this dataset encompass uncommon patterns on campus,

such as motorcycles or cars.

These datasets play a crucial role in advancing the research and development of anomaly

detection algorithms, providing valuable benchmarks and metrics for evaluating the effec-

tiveness and robustness of various anomaly detection methods.

2.5 Evaluation Metrics

The area under the ROC Curve (AUC) [108, 109]rovides an aggregate measure of perfor-

mance across all possible classification thresholds. The Area Under the PR curve (AUC-PR)

is useful when true negatives are more common than true positives. The PR curve only

focuses on the predictions of the positive (rare) class and therefore, this is a good metric

for anomaly detection. The difficulty lies in predicting those rare truly positive events.
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Accuracy is directly affected by the category or class imbalance effect and as a result, FP

outcome of the model is also affected. Hence, the ROC curve does not capture this effect.

For highly imbalanced datasets, the PR curves are more capable of highlighting differences

between model outcomes. Therefore, for a highly unbalanced class setting, the AUC-PR

score can be considered as the best metric to compare different models.

Video anomaly detection is a classification problem, and the ROC curve (Receiver Op-

erating Characteristic curve) is one of the commonly used classification evaluation metrics

[110]. The ROC curve plots two parameters: true positive rate (TPR) and false-positive

rate (FPR). True positive rate is also called as Recall, which indicates the probability of an

actual abnormal event will predict as a abnormal event. False positive rate indicates the

probability of a true normal event will predicts as an abnormal event [111]. TPR and FPR

can be expressed as mentioned in Equation 2.1 and Equation 2.2, which is the calculation

methods of the ROC curve and the components of the ROC curve.

TPR(Recall) =
TP

TP + FN
(2.1)

FPR =
FP

FP + TN
(2.2)

where TP is the outcome when the model correctly predicts true abnormal event; FN

is the outcome when the model incorrectly predicts true normal event and detected as an

abnormal event; FP is an outcome when the model incorrectly predicts true normal and

detected as an abnormal event, and TN is the model outcome when the model predicts

true normal.

The area under the ROC Curve (AUC) [112] [113] provides an aggregate measure of

performance across all possible classification thresholds. The Area Under the PR curve

(AUC-PR) is useful when true negatives are more common than true positives. The PR

curve only focuses on the predictions of the positive (rare) class and therefore, this is a

good metric for anomaly detection. The difficulty lies in predicting those rare truly positive

events.

Accuracy is directly affected by the category or class imbalance effect and as a result,

FP outcome of the model is also affected. Hence, the ROC curve does not capture this

effect. For highly imbalanced datasets, the PR curves are more capable of highlighting

differences between model outcomes. Therefore, for a highly unbalanced class setting, the

AUC-PR score can be considered as the best metric to compare different models.



Chapter 3
Video Anomaly Detection with
NTCN-ML: a Novel TCN for
Multi-Instance Learning

Contents

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Temporal Convolutional Networks . . . . . . . . . . . . . . . . . . 47

3.3.2 Extraction of Temporal Features of Video Sequences . . . . . . . . 49

3.3.3 The NTCN-ML Based on Temporal Convolutional Network Guid-
ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 The Anomaly Detection Phase . . . . . . . . . . . . . . . . . . . . 54

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 60

43



44 3.1. OVERVIEW

3.1 Overview

This chapter proposes a new weakly supervised video anomaly detection model supple-

mented by temporal convolutional networks to address the insufficient temporal features in

the weak supervision process and the error in initial weights in contrastive learning. This

model takes into account the multi-instance learning process. The correlation between ab-

normal events and normal events in the system is trained on global temporal features and

generated instance pseudo-labels to slow down the comparison error of multiple instances

and improve the performance of the multi-instance learning framework. The experimental

results suggest that the proposed temporal convolutional network shows a strong learning

ability in enhancing temporal feature representation and reducing bias in training, with the

detection performance of the proposed weakly supervised learning model outperforming the

current mainstream models on two benchmark datasets (UCF-Crime and ShanghaiTech).

3.2 Introduction

Video anomaly detection is a significant problem yet an active research area in which

models observe patterns that deviate from normal behavior, which serves a crucial role

in industrial production and transportation. There are still some challenges and problem

complexities that require advanced approaches to model the patterns in complex video

data to identify outliers. One main challenge is the recognition of positive instances or rare

abnormal patterns as they manifest only small variations compared with normal events. In

addition, rare positive instances are largely biased by the dominant negative instances.

In the literature, supervised learning strategies are mostly used for learning abnormal

patterns and normal events, which require manually-annotated labels as learning signals

[114]. However, it is challenging to acquire annotated data for all types of anomalous events,

and therefore, supervised learning suffers from several disadvantages [22] such as, i) The

boundary between normal and abnormal patterns is blurred in many video scenes, the same

event can produce different consequences in different scenes resulting. ii) Anomalous video

events are featured with global temporal properties, but deep learning usually ignores the

global nature of temporal features and only extracts sequence temporal features through

short-term motion capture. iii) Anomalous patterns cover a wide range of situations and

it is unrealistic to define all patterns of anomalous events in a single scenario.

To this end, researchers have turned to explore unsupervised learning and weakly su-

pervised learning models for video anomaly detection. Unsupervised methods solely rely

on normal events for model training and anomalous events are identified by learning repre-

sentation features and intrinsic patterns of normal events [34]. Compared to unsupervised

algorithms, weakly supervised learning algorithms rely on training samples with both nor-
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Figure 3.1: A representation of the spatiotemporal dimension of anomalous events.

PAb=0.24 PAb=0.35Normal Frames Abnormal Frames

SF =0.3127

A
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SF =0.3207
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Figure 3.2: Feature similarity analysis of positive and negative instances: A means abnor-
mal data, N means normal data. A1 represents normal instances in abnormal data, A2
represents abnormal instances, and N1 represents instances in normal data, SF represents
similarity of features between two instances and PAb is the probability of an anomalous
instance.

mal and anomalous events. The core of weakly supervised algorithms is the Multi-Instance

Learning (MIL) [115]. One assumption in MIL is that the optimization in each training pro-

cess always targets the negative instance in the abnormal data. However, this assumption

is unrealistic as it does not always learn the right patterns, because there is no guarantee

that the ranking loss from different scenarios (pairs of normal data and abnormal data)

always occurs on the negative instances of abnormal data.

As shown in Figure 3.2, the error between normal instances and normal instances in

abnormal videos is larger than that with abnormal instances, which will cause the model
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to learn in the wrong direction after training.

To mitigate the above issues, this chapter proposes to use TCN network to calculate

the correlation between positive and negative instances, so as to enhance the temporal

characteristics of the model. Inspired by the literature [86] [19], which introduced an

effective combination of temporal convolution networks and graph neural networks. In

this chapter, we consider the temporal and spatial features as equally important factors

in video anomaly detection and propose a new weakly supervised video anomaly detection

model, NTCN-ML (a New Temporal Convolution Network for Multi-Instance Learning).

The NTCN-ML model examines the correlation between positive and negative samples in

the MIL process to enhance temporal patterns. Positive and negative correlation helps to

balance the feature association between positive and negative instances, and then construct

a novel temporal feature to optimize the MIL process.

Two main contributions of this part are: i) We successfully introduce a novel temporal

convolutional network in a weakly supervised learning for video anomaly detection and pro-

pose a novel video anomaly detection model NTCN-ML which has optimized the temporal

feature extraction and ii) We show that the NTCN-ML model proposed in this chapter

can effectively learn the potential patterns between anomalous events and normal events.

The experimental results on two widely-used benchmark datasets; 1) UCF-Crime dataset -

95.3% accuracy and 2) ShanghaiTech dataset - 85.1% accuracy, show that the performance

of NTCN-ML reached state-of-the-art.

3.3 Methodology

This section explains a weakly supervised learning video anomaly detection model called

NTCN-ML (a New Temporal Convolution Network for Multi-Instance Learning). In gen-

eral, in the training process of paired data, when the model learns the features of sequential

data, the positive (normal video frames) and negative instance (abnormal video frames)

of the same video usually contain a large amount of similar content. There are a lot of

similarities between positive examples and negative examples in the same video. In neg-

ative instances, the spatiotemporal region where the anomalous event occurs accounts for

only a small portion of the entire video, as shown in video 23 in the vandalism subcategory

in the UCF-Crime dataset [7]. As shown in Figure 3.1, measured in the time dimension

(x-axis), the data unit Vandalism 23 for example, the video lasts about 210 seconds, but

the time of the anomalous event occurs lasts only 18 seconds. It is about 8.6% of the whole

video. Second, compared to the spatial dimension, the region where the anomaly occurs

occupies only a very small number of pixels of the video frame. Figure 3.2 illustrates that

the distinguishing features of abnormal instances in negative samples are not distinctly
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prominent. Consequently, achieving accurate optimization of abnormal instances during

training becomes challenging. As a result, the optimization of MIL may be steered in the

wrong direction. Therefore, it is crucial to enhance the discriminative characteristics of

positive and negative instances in the feature space by calculating the correlation between

normal instances and abnormal instances in negative samples.

3.3.1 Temporal Convolutional Networks

1. Design principles Temporal Convolutional Networks are a type of neural network

architecture designed for sequence modeling tasks, particularly those involving time-series

data, which is derived from Time Series Networks [116]. Time series learning networks

usually need to follow two principles [88]: (1) The input and output structures of the net-

work should be the same; (2) The features of the current time node are not disturbed by

the features of the next time node. The former is used to ensure that in the process of

information mining, the sequence feature information will not be reduced and guarantee to

extract high-quality representation features. The latter is to comply with objective facts. In

the training process when using sequence data, since the complete sequence data has been

obtained, the learning model can access the features after the current time node without

obstacles. During the application process, the sequence data located after the current node

cannot be accessed. Therefore, when designing the learning network structure, we should

proceed from practical problems. That is, during the training phase, only the current node

is provided with the features of its previous time nodes.

2. Feasibility of retrofitting traditional temporal convolutional networks In

the traditional TCN(Temporal Convolutional Networks) structure [86], the convolutional

network serves as the basic structural unit for extracting temporal features, and there is

no aggregation mechanism or large memory module. The traditional TCN model has one-

dimensional full convolutional structure [117], and the full convolutional structure ensures

that the newly introduced network structure follows the first principle of temporal convolu-

tion, i.e., each hidden layer has the same length as the input layer and only the same input

and output lengths are satisfied. However, this structure cannot store valid antecedent

information and the posterior information may negatively affect the current features in the

full convolutional network structure. Therefore, a novel TCN conforming to the second

principle is proposed by Cheng et al [118], which consists of a fully convolutional network

and a cascaded network. (TCN = 1DFCN + CausalConvolutions). The structure of

this network implemented using cascading convolution, which uses the features of the same

position of the previous layer and the features of its previous position to calculate the fea-

tures of the current position. This temporal convolutional network conforms to the second
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principle that the features of the current time node are not disturbed by the features of

the next time node, which means that the features of this node are only affected by the

features that precede this node in the video sequence. And the model provides stronger

theoretical support when dealing with sequential data, such as text data, and video data.

However, this structure also has a major disadvantage, there is a possibility of parameter

explosion, when we calculate the characteristics of all nodes in the previous layer before a

certain node occurs, which also will require a large filter to process. And the information

that is too old can also negatively affect the information of the current world nodes and

reduce the quality of the extracted features. The existing video detection models usually use

graph convolution or LSTM to store the sequence features (temporal features) of video data

to complete the detection [85]. It mainly obtains indirect temporal features by LSTM and

graph convolution. There is no strict definition and learning of temporal feature information

of sequences. Since the convolutional network has a greater ability to scale [119], the

performance of convolutional networks is improving in the learning task of sequence models.

Based on this, this work introduces the dilated cascade technique into modern convolutional

networks and implements a novel temporal convolutional network.

3 The Proposed Novel Temporal Convolutional Network The proposed TCN

consists of Dilated Causal Convolutions (DCC) [90]a nd residual networks [91], and the

cascaded dilated convolution layer is shown in Figure 3.4.a. Its core function can be defined

as XT+1 = XT + F (XT ), where XT denotes the current feature value and F denotes the

cascaded convolution function.

Previous studies [120] have shown that TCN models outperform general-purpose recur-

rent architectures such as LSTM and GRU, and shown that the ”infinite memory” advan-

tage of RNN is basically non-existent in practice. Compared to recurrent architectures,

TCN exhibits longer memory and wider convolutional horizons. In recurrent convolutional

networks, many advanced schemes for regularizing and optimizing LSTMs have been pro-

posed [121]. These schemes significantly improve the accuracy achieved by LSTM-based

architectures on certain datasets. However, in the past two years, before the introduction

of architectural elements such as dilated convolution and residual connections, the per-

formance of convolutional architectures did not meet the needs of applications. Simple

convolutional architectures are more effective than recurrent architectures such as LSTMs

in various sequence modeling tasks. Due to the considerable clarity and simplicity of TCNs,

convolutional networks should be seen as a natural starting point and a powerful toolkit

for sequence modeling. Video data has sequence properties. In theory, any sequence data

can be used to extract temporal features using the TCN model. The proposed TCN net-

work [122] provides an important technique for mining the feature information of video

sequences.
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Figure 3.3: The structure of TCN and Application, (a) The proposed Temporal Convolu-
tional Network structure, under d = 2, k = 3, the input is X = x1, x2, x3, ...xT , k = 3 isthe
number of kernels that three upper-layer neurons map a neuron of the current layer, d = 2
is stride representing the distance between two kernel units; (b) The novel TCN application
in video processing. The red line represents the feature of the current node to be extracted,
the blue line represents the feature of the previous node, and the red curve represents a
1x1 convolution unit that retains the most original features of the current node, and the
output of the TCN is z, which is the probability value that the input node is an abnormal
instance.

3.3.2 Extraction of Temporal Features of Video Sequences

The proposed TCN network is used to extract the features of the video se-

quence. This process is mainly divided into three steps: 1) Train vanilla discriminator

C3D or I3D to extract the action features of the video data (the C3D is pre-training in

Sports1M); 2) Input the features extracted by the vanilla discriminator into the new TCN

network to extract high-quality temporal features, the steps of this process refer to Figure

3.3.b. The TCN network introduced in this chapter ensures the extraction of high-quality

features through multi-layer concatenation and single-layer convolution; 3) According to

the final temporal characteristics of the video, set the activation function to identify the

video, and calculate the confidence of normal events and abnormal events.

The formalization process and the Qualitative Analysis of the NTCN-ML

network:

Consider a video δ is divided into multiple segments δCi , where (i ∈ 0, 1, 2, 3...I).

The features extracted from the C3D network is represented by: Xi = ϕvanilla(δ
C
i ).

Consider all video clip features belonging to the same data unit as a sequence of data

X1, X2, X3, X4, ..., XI , where I represents the number of clips used, the first layer of
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the hidden layer of the TCN is represented as X1, and the sequence is represented as

X1 = X1
i |i = 1, 2, 3, ..., I, the calculation process:

X1
i = F (

∏t=k−1
t=0 (Xi−td)) (3.1)

As shown in Figure 3.3.b, when k = 3, d = 1; then δ1i = F (δi · δi−1 · δi−2), where F

represents the convolution function, k represents the kernel during mapping The number,

d represents the stride, that is, the distance between two kernel units and so on for the rest

of the nodes. The final output of the network structure of the output unit:

Output = Activate[(δ1, δ2, ..., δI) + F (δ1, δ2, ..., δI)] (3.2)

Since the video is only divided into normal events and abnormal events, we set the

output unit to two node, namely Output = Z(z1, z2). z1 represents the probability that

the video segments belongs to normal video, and z2 represents the probability that the

video segments belongs to abnormal video. If the normal video contains elements in some

abnormal events, the value of z1 is more. On the contrary, if the abnormal events contain a

large number of normal elements, the value of z2 is low. Use the formula X̂ = max(z1, z2) ·
Xi to construct a new video sequence feature. For normal segments δn, it belongs to

the probability of a positive sample is max(zn1 , z
n
2 ), and for abnormal segments δa its

probability belonging to a negative is max(za1 , z
a
2), then the new feature of normal video

X̂n = max(zn1 , z
n
2 )·Xn the new feature of abnormal video is expressed as X̂n = max(za1 , z

a
2)·

Xa. This work enhances the ability to determine abnormality by improving the separation

characteristics between positive and negative samples. Therefore, this work proposes to

use disentanglement to improve the performance of instance learning. The process of MIL

is a paired training process in which a normal video sample and an abnormal video sample

are included, and the probabilities of the normal video and abnormal video belonging to

positive and negative samples are different.

3.3.3 The NTCN-ML Based on Temporal Convolutional Network Guid-
ance

3.3.3.1 The proposed NTCN-ML model

A weakly supervised video anomaly detection model based on temporal convolutional net-

work guidance is proposed in this chapter. The model uses a novel temporal convolutional

network to extract the temporal features of video data and calculates the confidence of the

samples. The overall framework is shown in Figure 3.4. The model also uses the classic

vanilla discriminator (C3D - Convolutional 3D, I3D - Inflated 3D ConvNet) to extract the

features of the video and combines the obtained confidence with C3D or I3D features to
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Figure 3.4: The NTCN-ML framework: The model training process is divided into two
phases. The first phase is composed of a vanilla discriminator and novel TCN. The training
purpose of this phase is to extract temporal features; the second phase is composed of a
vanilla discriminator and TCN. The training model is composed of the MIL module, and
the novel TCN module, this stage is to improve the classification ability of the MIL network.

form new input features. Then through the MIL network, the final abnormal probability

of each instance is calculated; according to the abnormal probability, a loss function is

constructed to train the parameters of the MIL. At the same time, the confidence of the

video is also involved in the calculation of the abnormal score during the testing process.

The NTCN-ML model proposed extracts temporal features through a novel TCN model

and enhances the ability of MIL to learn instance labels. Compared with the mainstream

algorithms, the NTCN-ML model has a more scientific and effective consideration of tem-

poral features and has stronger robustness. Figure 3.4 shows the data processing flow of

the proposed NTCN-ML model. We discuss model training, loss function, model testing,

and algorithm complexity analysis during operation in the following sections.

3.3.3.2 The Training Phase

The training process is divided into two parts. One is to train the temporal convolutional

network. The second is to train a MIL network. The function of the testing phase is to

calculate the anomaly score of each instance in the video and locate the time area where

the anomaly occurs.

Training the temporal convolutional network is divided into three steps, 1. Input

the video clips into the vanilla discriminator to extract features; 2. Input the extracted

features into the designed temporal convolutional network ; 3. Output A 2D array pre-
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dicting video instance classification. This two-dimensional array represents the probability

that the video instance belongs to normal events and abnormal events.

The formalization process is as follows: X represents a video, which is divided into

multiple segments Xi, (i ∈ 0, 1, 2, 3...I). Each video segment is called an instance, because

sets 16 frames is a segment, so I = Fn/16, Fn is the total number of frames in the video. χ

is extracts the features of the video segment XC
i by vanilla discriminator ϕvanilla vanilla is

belongs I3C,C3D. The TCN function is denoted by fTCN . The final output is represented

as:

z = fTCN

I∑
i=0

χ = fTCN

I∑
i=0

ϕvanilla(Xi) (3.3)

lossTCN = z − ℏ,

{
normal ℏ = (0, 1)

abnormal ℏ = (1, 0)
(3.4)

z represents a two-dimensional vector, where z1 represents the probability that the

video belongs to a normal video, z2 represents the probability that the video belongs to an

abnormal video, the label of the video is ℏ, the label of normal video is 0, and the label of

abnormal video is 1, If the video is a normal video, its label is (0, 1), otherwise it is (1, 0)

at the phase of TCN training.

The training of the multi-instance anomaly detection algorithms is divided

into four steps.

• Use the vanilla discriminator to extract video features;

• The extracted features are input into the pre-trained temporal convolutional network

and output a two-dimensional vector for each instances;

• The inner product of the large value and the video feature matrix constructs new

video features;

• The new video features are input into the MIL network, and the abnormal probability

of each instance is calculated.

The formalization process is as follows: select the extracted C3D feature χ = ϕvanilla(Xi)

of a fixed length T (fixed number of instances) and the largest value dot product in the

output z of the TCN trained in the first phase. Get new video features:

χ̂ = z · χ = fTCN (

I∑
i=0

ϕvanilla(Xi)) · χ (3.5)
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During the learning process of the multi-instance algorithm, normal videos instance and

abnormal videos instance are input to the neural network in pairs. We use χn n to denote

the features of normal videos, χa to denote the features of abnormal videos and the MIL

is denoted as fMIL.

Y = FMIL(χ̂n, χ̂a) (3.6)

Where Y = (Ya, Yn), Ya = (ya1 , y
a
2 , y

a
3 , ...y

a
T ) represents the abnormal probability of all

instances in the abnormal video package, Yn = (yn1 , y
n
2 , y

n
3 , ...y

n
T ) represents the abnormal

probability of all instances in the normal video package.

3.3.3.3 Loss function

The loss function of MIL consists of four parts: ranking loss Lranking, smooth loss Lsmooth,

sparse distribution loss Lsparsity, aggregation loss Lcluster. The ranking loss represents the

difference between the highest abnormal probability in the normal video package and the

highest abnormal probability in the abnormal video package at the training process. So

the Ranking loss function is expressed as:

LRanking = ||max(Ya)−max(Yn)|| (3.7)

The video is composed of multiple video clips and is sequence data. Therefore, the

distribution of abnormal probability should be smooth, and the smooth loss indicates that

the occurrence of abnormality in the video sequence is promoted by a process. The smooth

loss function is expressed as:

LSmooth = λ1

T−1∑
i=0

||yai+1 − yai ||2 (3.8)

Loss of sparse distribution. In abnormal video, the time of abnormality only accounts

for a very small part of the entire video data, so the average abnormal probability of the

entire abnormal video is slightly higher than the average abnormal probability of normal

video. The sparse loss function is expressed as:

Lsparsity = λ2

T∑
i=0

||yai − yni ||2 (3.9)

Aggregation loss: The difference between the maximum and minimum values of each

instance in the video packets of normal events is not much different. On the contrary,

the difference between the maximum value and the minimum value of each instance in the
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video package of the abnormal event is relatively large. So the aggregation loss is expressed

as:

Lcluster = λ3(1 +max(Yn)−min(Yn) +min(Ya)−max(Ya)) (3.10)

The total loss function is expressed as:

L = Lranking + Lsmooth + Lsparsity + Lcluster (3.11)

3.3.4 The Anomaly Detection Phase

The anomaly detection phase is to describe the detection process of video data that cannot

obtain any labels during the test process. The whole process is carried out unsupervisedly.

In the detection stage, the algorithm complexity of video anomaly detection is also an

important indicator for evaluating models.

3.3.4.1 Steps of detection

The detection steps in the anomaly detection phase are divided into four steps. The first

step: preprocess the video data, divide the video into multiple video segments, and use the

vanilla discriminator to obtain the feature (C3D, I3D) of these segments; The second step:

input the feature into the trained TCN model, obtain the temporal feature and calculate

pseudo labels for instance. The three step: combination to construct new instance features;

The fourth step: the video features are input into the MIL, and the anomaly probability

of each instance is calculated. The calculation of the anomaly score, the anomaly score is

composed of the last instance anomaly probability, loss, and confidence.

Score = z · y + γ1(δy) (3.12)

The pseudocode of the anomaly detection phase is presented by Algorithmic 1:

Algorithm 1 Anomaly Detection

1: Initialization:fTCN , fMIL, ϕvanilla, Pre-trained TCN network, MIL network and C3D
vanilla discriminator;

2: χ = ϕvanilla(X), Extract features from video clip X;
3: Z = fTCN (χ), Calculate the confidence of the video X Equation (3.3);
4: Y = fMIL(Z · χ), Calculate the anomaly probability of labels for each segment of the

video Equation (3.6);
5: Yvar = variance(Y ), Calculate the volatility of video anomaly probability; Equa-

tion (3.12)
Output: Anomaly score={λ1Yvar + Z · Y },

Calculate anomaly scores.
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3.3.4.2 Algorithm complexity analysis in the detection process

The training phase only happens before the model is deployed, so only the algorithmic

complexity of the inference process needs to be considered:

The complexity of the temporal convolutional network model: for a video sequence,

extract T segments, input the TCN model to classify the video segments, the algorithm

complexity depends on the number of input segments T , the dimension of the feature F

of each segment, the number of hidden layer nodes, the number of hidden layers L, the

number of kernels k in the TCN model, the stride d, and finally the category C. First, map

the extracted features F to the first hidden layer, and each k feature is mapped to a unit.

OTCN = (O(ϕvanilla) · k · T )L · C (3.13)

where C is a 2-category, normal or abnormal, and T is the number of segments. Ac-

cording to past experience, 32 are chosen, so the algorithm complexity mainly depends on

the level of the network and the number of nodes.

The complexity of the MIL model: In the MIL process, the input unit usually consists

of a feature sequence δn from normal videos and a feature sequence δa from abnormal

videos. Each feature sequence contains T feature segments, and the MIL consists of three

fully convolutional layers (l1, l2, l3)

OMIL = O(Fd(δ
n) + Fd(δ

a)) · (l1 + l2 + l3) = O(2Fd · T )
3∑

i=0

li (3.14)

Therefore, in actual operation, the total algorithm complexity is:

O = (O(ϕvanilla) · k · T )L · C +O(2Fd · T )
3∑

i=0

li (3.15)

The above formula shows that the algorithm complexity mainly depends on the number

of hidden layers of the neural network and the number of nodes in each layer.

3.4 Experiments

3.4.1 Datasets

There are two commonly used datasets for weakly supervised video anomaly detection algo-

rithms, namely UCF-Crime [7] and ShanghaiTech datasets [34], which also is the benchmark

datasets. So we validated the proposed model with these two datasets. Table 3.1 displays

the data distribution of the two datasets, revealing that despite the UCF dataset containing

an equal amount of normal and abnormal data, the distribution of training and testing sets
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Table 3.1: Dataset Overview: Nor and Abnor are normal and abnormal videos; Atype
is the number of abnormal types; N/A denotes the number of normal videos / abnormal
videos

Numbers Total Nor Abnor ATypes Train(N/A) Test(N/A)

UCF Crime 1700 950 950 13 810/800 140/150

ShanghaiTech 437 330 107 13 175/63 155/44

(a) (b)

Figure 3.5: The distribution of the ShanghaiTech dataset, (a) denotes the abnormal distri-
bution of abnormal data entries(63 videos) in training, x-axis represents the video number
and y-axis represents the total number of frames. Yellow colour is the location for abnormal
frames; (b) denotes the abnormal distribution of abnormal data entries in testing for 44
videos.

is imbalanced. Furthermore, during the data reading process, disrupting the arrangement

of normal data and abnormal data. This is for when the number of normal data sets and

abnormal data is not equal, taking one data from each at the same time will ensure that

each normal data can be matched with different abnormal data during the multi-instance

comparative learning process, thereby enhancing the robustness of the model. Zhong et

al. [64] split the data into two subsets: a training set consisting of 175 normal videos and

63 abnormal videos. As shown in Figure 3.5:

3.4.2 Experiment Details

The core elements in our implementation process include the following steps: 1. Cut the

video into 32 equidistant instances, each containing 16 video frames; 2. The extracted

C3D and I3D features are stored in numpy format to speed up the training; 3. During

the implementation of the TCN network, and the number of input channels is 32 for the

number of instances of a video. In order to prevent overfitting, The hidden layer of the

TCN network used in our work is (32*8), a total of 8 layers, and each layer has 32 nodes; 4.

The MIL consists of (512, 32, 1) three-layer fully connected convolutional networks. The

evaluation index refers to the literature of this series, with AUC as the main evaluation
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Table 3.2: The TCN classification performance analysis under the UCF-Crime

UCF-Crime(C3D) 32 64 96

32*8 85.1 85.3 84.9

64*8 86.0 85.1 85.2

128*8 84.8 84.3 84.4

index [108,109].

3.4.3 Experimental results

The experiments are set in three groups. The first group examines the classification perfor-

mance of the TCN network and obtains the TCN network structure with the best perfor-

mance. The second group is the AUC evaluation experiment for video anomaly detection.

The purpose of this experiment is to measure the performance of the model proposed. The

last group is the visualization experiment, the main purpose of which is to promote the

important evaluation method for the model to transfer from the experimental scene to the

application scene.

The experimental results indicate that with the increase in the number of divided seg-

ments, the classification accuracy of TCN does not show a linear increase. Through the

analysis of the dataset, it is inferred that this is due to the ”invalid filling” caused by the

different time lengths of each video in the data. The reason for data padding is that the

duration of some videos is too short to meet the number of divisions, and it is necessary

to repeatedly borrow some video clips and video frames to construct a specified number

of clips. As an example, 32 video clips each one is made up of 16 frames, and the total

number of video frames of each video cannot be less than 512. Through the analysis of

the data set, only a few videos have a total number of frames less than 512. If we divide

each video into 64 segments, there are nearly 12% of the data does not have enough frames

to split, and therefore overfitting occurs and the detection accuracy decreases. Hence, we

decided to use 32 fragments as a reasonable number in our experiments.

3.4.3.1 Experiment 2: AUC comparison with state-of-the-art models

The purpose of this experiment 2 is to compare the AUC accuracy of the algorithm proposed

with the current mainstream algorithms.

In this process, we first train a novel temporal convolutional network. The output

value is the probability that the segments of normal video and abnormal video belongs to

abnormal. After completing the TCN model training, input the feature to MIL model.

First, divide a video into multiple segments and extract features; second, extract features

of a fixed number of segments as input, and the number of segments is the number of
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Table 3.3: Accuracy test of current mainstream algorithms on the UCF-Crime dataset

Method Source Technique Performance (AUC)

Sultani et al [7] CVPR18 C3D 75.4

TAEDM [123] SCN20 ResNet 78.5

TCN-IBL [124] ICIP19 TCN & IBL 78.7

Zaheer et al [125] SPL21 Self-Reasoning 79.5

GCN-AD. [64] CVPR19 GCN & Action Classifier 82.1

XD-Violence [126] ECCV20 Holistic-Localized Networks 82.4

CLAWS [68] ECCV20 Clustering 83.0

SACRF [127] ICCV21 Relation-Aware 85.0

RTFM [61] ICCV21 Feature Magnitude 84.0

STGCNs [19] IPM22 Spatio-temporal GCN 84.2

BN-SVP [128] CVPR22 Bayesian 83.4

Ours Novel TCN 85.1

Table 3.4: Accuracy test of current mainstream algorithms on the ShanghaiTech dataset

Method Source Technique Performance (AUC)

TCN-IBL [124] ICIP19 TCN & IBL 83.5

Zaheer et al. [125] SPL21 Self-Reasoning 84.2

GCN-AD [64] CVPR19 GCN & Action Classifier 84.4

CLAWS [68] ECCV20 Clustering-Based 89.7

AR-Net [65] ICME20 AR Network 91.2

TAEDM [123] SCN20 ResNet 94.2

MIST [62] CVPR21 Self-Guided Attention 94.8

BN-SVP [128] CVPR22 Bayesian 96.0

Ours Novel TCN 95.3

input channels; third, input features to the TCN model, calculate the probability; The

fourth step is to take the larger value in the two-dimensional array and perform the point

multiplication operation with the extracted features, and then input it into the MIL model

to calculate the abnormal probability of each segment.

Table 3.3 results shows that the algorithm proposed in this chapter has achieved an

accuracy of 85.1% on the I3D features of the UCF-Crime dataset, which has reached the

most advanced accuracy. In addition, in order to test the classification performance of

the TCN network, C3D features were extracted from the original video to analyze the

performance of TCN. For details, see Experiment 1.

Table 3.4 shows that the AUC accuracy of the model proposed has reached 95.3%. Com-

pared with the current most mainstream algorithms, the algorithm proposed has surpassed

the performance of most published mainstream algorithms. Through the experimental re-

sults of the two data sets, it is concluded that the correlation between normal data and

abnormal data is also an important consideration in the process of abnormal detection.

The model proposed overcomes the above two shortcomings.
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Table 3.5: Ablation study: Divided two datasets into four groups: I3D+MIL, C3D+MIL,
I3D+TCN+MIL, C3D+TCN+MIL, to evaluate the TCN module.

I3D C3D TCN AUC

ShanghaiTech

✓ ✓ 95.3
✓ ✓ 88.3

✓ 86.1
✓ 85.3

UCF Crime

✓ ✓ 85.1
✓ ✓ 78.2

✓ 82.3
✓ 76.1

Table 3.6: The Study of Loss Function: Set different loss function combination modes to
explore the impact of different loss functions

I3D+TCN+MIL Lranking Lsparsity Lsmooth Lcluster AUC

UCF-Crime

✓ 83.6
✓ ✓ 83.7
✓ ✓ ✓ 84.7
✓ ✓ ✓ ✓ 85.1

ShanghaiTech

✓ 91.1
✓ ✓ 91.3
✓ ✓ ✓ 92.7
✓ ✓ ✓ ✓ 95.3

3.4.3.2 Experiment 3: Ablation Study

To test the model’s capability, we conducted two sets of ablation experiments: An ablation

study and a Loss Function study. The former involved training and testing different com-

ponents of the TCN model independently to confirm their effectiveness. The latter involved

combining various loss functions during training to examine their impact on performance.

Our aim was to verify the impact of different loss functions on the model’s performance.

The Ablation study conducted in this chapter involves the verification of the model with

two datasets (UCF-Crime and ShanghaiTech) using C3D and I3D to independently extract

video features and input them into MIL training. Additionally, The model training is di-

vided into four groups, namely I3D+MIL, C3D+MIL, I3D+TCN+MIL, and C3D+TCN+MIL,

and the performance was calculated for each group as shown in Table 3.5.

Table 3.5 shows the results of the ablation experiments.The results show that the TCN

module used in this article can effectively improve the accuracy of the model on the bench-

mark. On the ShanghaiTech dataset, the model proposed in this chapter improves by 9%

compared with the baseline I3D+MIL. Compared with the baseline C3D+MIL, the model

improves by 3%; for the UCF-Crime dataset, our model improves by 3% compared with

the baseline I3D+MIL, and compared with the baseline C3D+MIL, the accuracy improves
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by 2%. It shows that the TCN module proposed in this article is effective..

In the study of loss function, this chapter uses the ranking loss function as the bench-

mark, and cooperates with several other novel loss functions to test the performance of the

model in two data.

Table 3.6 shows that when there are more types of loss functions combined, the per-

formance tends to increase slowly. Among them, the Lsparsity loss has a general effect on

improving the model performance, and the loss Lsmooth and Lcluster have a greater impact

on performance. The experimental results show that the Lcluster loss function is helpful for

performance improvement.

3.4.3.3 Experiment 4: Visual display during anomaly detection.

In the testing phase, outliers for anomaly detection are constructed from the output of the

pretrained TCN network, the output of the MIL model, and the loss function.

The results of experiment 4 show that when an abnormal event occurs in a video, the

abnormal score will fluctuate violently (the abnormal score is generated after normaliza-

tion), so the fluctuation of the abnormal value can be used as the identifier of an abnormal

occurrence. Second, the results in Figure 3.6 (b) show that for long-lasting abnormal events,

the fluctuations of outliers will be abnormal, resulting in inaccurate detection results. The

reasons for this problem mainly come from two aspects: 1. C3D and I3D motion capturers

tend to capture short-term actions, as show in Figure3.6 (a); the action extractor is training

in Sports1M, and the action duration of this data set is relatively short. Therefore, the

action capture used to preprocess the data set is more favorable for the short duration.

2. Video instance division and the generation of instance outliers do not meet the actual

situation of long-term actions. During the experiment, 16 frames are usually delineated as

an instance, and there are also cases where the duration is shorter. We hope that follow-up

research in this chapter can optimize this problem. Figure 3.7 is a supplement to the visual

experiment. In order to show the experimental effect more clearly, the video data is divided

into 32 instances for calculation.

3.5 Conclusion and Future Work

This work proposes a novel weakly supervised anomaly detection model (NTCN-ML), a

new Temporal Convolutional Network (TCN). The NTCN-ML model shows an excellent

performance in temporal information mining and provides high-level temporal feature in-

formation for weakly supervised learning. The advantage of the NTCN-ML model is that it

can enhance temporal features for the entire video sequence, which is different from other

related works as they calculate temporal features in segments, and redefine the integrity



CHAPTER 3. VIDEO ANOMALY DETECTION WITH NTCN-ML: A NOVEL TCN
FOR MULTI-INSTANCE LEARNING 61

(a)

(b)

Figure 3.6: Visual effects of the anomaly detection phase, (a) the detection results of
anomalous events with a short duration, (b) the detection results of anomalous events with
a longer duration d, the yellow line indicates the correctly detected samples, and the red
line indicates the detection results is wrong.

and coherence of temporal features of video data. Our experimental results show that the

NTCN-ML model learns the potential patterns from both anomalous and normal events,

and outperformed the baseline anomaly detection models considered in this work. The al-

gorithm presented in this research chapter introduces a novel approach for video anomaly

detection algorithms, delving into the distribution of data within the feature space in weakly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Visual effects of the anomaly detection phase. Red is the area where real
anomalies occur, and the curve is the anomaly score.

supervised algorithms, and optimizing the process of weakly supervised learning. Further-

more, the proposed model can be seamlessly integrated into other systems, enhancing the

algorithm’s robustness in real-world applications. However, this chapter is subject to cer-

tain interpretability limitations. It is expected that future research in the domain of video

anomaly detection will primarily focus on improving interpretability.

In the future, we will asses whether the temporal features extracted from the video

sequences align with real-world scenarios, and how the integrity and coherence of temporal

features affect video data analysis. We will also evaluate whether the integrity of temporal

signatures has positive implications with both unsupervised and supervised models. Based

on the current work, we will further try to define a new anomaly definition in which

anomalous events are deeply associated with global temporal signatures. This will certainly

help to integrate temporal video analysis patterns in real traffic scenarios.
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4.1 Overview

This chapter proposes a novel video anomaly detection method named COVAD, which

mainly focuses on the region of interest in the video instead of the entire video. Our

proposed COVAD method is based on an auto-encoded convolutional neural network and

coordinated attention mechanism, which can effectively capture dynamic objects in the

video. Relying on the existing memory-guided video frame prediction network and object

detection method, our algorithm can more effectively predict the future motion and appear-

ance of objects in the video, and mark abnormal areas or objects. Our proposed algorithm

obtained better experimental results on multiple data sets and outperformed the baseline

models considered in our analysis. As visual result shows: the proposed model can provide

pixel-level anomaly explanations.

4.2 Introduction

Many videos anomaly detection algorithm uses convolutional neural network (CNN) to

learn video features, including temporal dimension features and spatial dimension features.

Then, use decoding to reconstruct the video or combine with optical flow technology to

predict the next frame. According to the definition of training loss, existing unsupervised

and semi-supervised video anomaly detection algorithms are divided into two categories,

one is reconstruction-based anomaly detection [36, 129, 130], and the other is prediction-

based [45, 46] anomaly detection algorithms. The reconstruction-based anomaly detection

algorithm defines the reconstruction loss as the training loss. Reconstruction-based method

assumes that the detection model is trained by a large amount of normal data, the model

can accurately describe normal events, extract video features, and restore video features to

video frames with small reconstruction errors. If no data objects participate in the training

especially for abnormal events, then the model will get a large loss when reconstructing

abnormal videos. In the detection phase, error thresholds are set to detect abnormal events.

For future frame prediction, the training loss is the prediction error, and the basic structure

is to extract the video features of the previous frames and predict the features of the future

frames. During the training phase, the loss between the predicted future frame and the

real future frame is calculated, and the network parameters are updated.

This chapter proposes a video anomaly detection algorithm for future frame prediction

and thus, it follows the assumptions that the models trained on normal data sets have

small errors in predicting future frames of normal events, and abnormal events have higher

prediction errors due to their uncertainty [131].

After the emergence of deep learning techniques, the use of CNN to extract video

features instead of the original hand-made features greatly saves time and cost, and achieved
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higher accuracy after training the models on specific scenario. The basic structure of

current video anomaly detection algorithms is almost the same. It is mainly divided into

the following steps: input the video frame into the encoder to extract the features using

the training method of the adversarial CNN, and use the decoder to restore the features.

Then, calculate the error between restored features and the original features, and adjust the

network parameters to make the extracted features closer to the video frame. The neural

network has strong representation ability, but in order to prevent unbounded expression,

it is necessary to limit the representation ability of the neural network by adjusting the

pooling part of the network structure. In addition, it is difficult to obtain an accurate

model to discriminate anomalies with a single network structure parameter training and

thus, it is necessary to record the extracted video frame features (all training sets are from

normal events). One of the most typical solutions for this is to adapt memory-guided video

anomaly detection algorithm as proposed in [23] in 2020. This method adopts the latest

U-Net symmetric network, which has strong representation ability. In U-Net network, the

back-sampling technology in the decoder can make up for the loss of spatial information in

the pooling process and the memory module between the encoding and decoding further

retains the features and feeds it back to the decoder for preserving spatial information.

In this chapter, a content-based video anomaly detection algorithm - COVAD, is pro-

posed and its network structure is modified based on the original memory-based video

anomaly detection algorithm. The main goal of optimization in the training network is

to focus on the objects in the video frame. We use contentbased attention mechanism to

optimize the structure of the encoding network and removed the last batch of normalization

layer of the U-Net network. The former is used to focus on the target or content in the video

and the latter is used to limit the powerful bias of the neural network as it is important to

blur the boundary between normal data and abnormal data in powerful representations.

Compared with the object detection algorithm, the attention mechanism is lightweight,

does not take up a lot of time, and can effectively process video. The memory module

stores more important content information, rather than the entire video frame pixels. Our

experiments are deployed on the USCD [5] and Avenue datasets [6],and the experimental

results show that the algorithm proposed in this contribution has better results compared

to the bench mark models.

The main contributions of this chapter are 1) to propose a novel video anomaly detec-

tion method, called COVAD, for future frame prediction by combining the content-based

attention mechanism, which can resist the interference of noise and focus on extracting the

features of objects in the video, 2) to redefine memory module, which is used to classify and

memorize various normal behavioral patterns available in video streams, and 3) to further

improve the performances of video anomaly detection models focused on both normal and
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exceptional events. The experimental results show that the performance of the proposed

COVAD algorithm in this chapter is significantly higher than that of the baseline models

considered in this work.

4.3 Methodology

This chapter focuses on combining memory module guidance and the content-based self-

attention mechanism to propose a new video anomaly detection algorithm, which is mainly

based on future frame prediction. The COVAD method proposed in this chapter, first,

learns the temporal and spatial features of the video and then, uses cosine similarity func-

tion to maps its features to the memory module and updates the records of the memory

module. Finally, the decoder network is used to restore the video features, calculate the

difference between the predicted video frame and the real video frame, and evaluate the

error. However, unlike previous methods, this chapter modifies the encoder and decoder

networks and proposes a content-oriented self-attention mechanism by integrating the en-

coder/decoder network, which helps us focus features on video frames The dynamic area

helps the model better locate abnormal areas. This chapter further improves the data up-

date method of the memory module in COVAD mode to support the memory module for

various normal events. Figure4.1 describes the COVAD system architecture, more details

about the system are provided in the following sections

The area where abnormal events occur in a video only occupies a small part of the entire

video frame, and therefore, most of the scenes in video frames are useless for detecting

abnormal events, which we call in this research as the background. In video anomaly

detection, it is generally accepted that stereoscopic, interdependent content, or objects in

the video are more worthy of attention. However, most algorithms today are not designed

with this argument in mind. Therefore, motivated by this, this chapter proposes a novel

video anomaly detection algorithm that incorporates a state-of-the-art content-oriented

self-attention mechanism to training on the important content of video frames, rather than

the providing much attention to the background.

The algorithm proposed in this chapter is mainly divided into three parts: the encoder,

the memory module, and the decoder.

• The encoder is used to extract the temporal and spatial features of the video,

• The memory module records the behavior patterns of normal events, and

• The decoder restores the extracted features as video frames.

Encoder and decoder : The most popular encoder and decoder used for video processing

at present is the U-Net symmetric network [132]. The structure of the network is sym-
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metrically distributed, which can effectively represent the process of feature extraction and

feature restoration of video frames, as shown in Figure4.1. Apart from that, due to the

special aggregation mode of the U-Net network (meaningful data is appended when restor-

ing features) and the up-sampling process, the motion and appearance information of the

video can be preserved to the greatest extent.

Memory module: This module is a sparse binary matrix, which is updated during the

training process, and constantly fits the behavioral patterns of normal events to realize the

function of memorizing normal behavioral patterns. The basic principle is to use a sparse

binary matrix to record the video features in each iteration. As the number of iterations

increases, the sparse matrix of the memory module fits the normal behavior pattern during

training.

In our proposed approach, model input which is the continuous video frame sequence

Seq = {I1, I2, I3, ..., In}, IN ∈ RW,H of length N is divided into two parts, In−1 ∈ RW,H and

Inth ∈ RW,H . The first In−1 frames are used as the input in the training process to extract

features set fIn−1 ∈ RW,H,C , where C is the final number of channels, and then read the

memory Mem ∈ RM,C to get the similarity index matrix V ∈ RM,W×H . Then, update the

memory module by V , and aggregate feature fn−1 and Mem to obtain Aggf ∈ R2C,H×W .

Following that, model restores the features Aggf to get the predicted Înth frame. Finally,

calculate the loss between the predicted Înth frame and the real Inth frame after retrieving

the predicted value from the model. There are also some other additional loss functions

applied during the training phase.

In the following sections, we explain each module presented in Figure 4.1 that are used

in our COVAD framework.

4.3.1 Encoders and Decoders

U-Net was originally designed as a CNN for image segmentation and has achieved excel-

lent results in many international competitions [132] [133]. Its unique structure and design

philosophy inspired researchers in the field of computer vision, such as symmetrical ideas,

up-sampling, and skip connections. The necessary functions of the CNN for video anomaly

detection are to extract video feature frames and restore the feature to video frames through

encoding/decoding process. The U-Net has a natural advantage that other network struc-

tures do not have, which is the symmetric structure of the network as shown in Figure 4.2.

It consists of repeated applications of convolutions each followed by pooling at the extract

feature phase and upsampling at the restore phase. For the upsampleing, we all know that

the max pooling is non-invertible, so we can add switch variables recording the information

of max pooling, such as the position of the maximum value. In the decode, the upsampling

uses these switches to reconstruct current layer above into appropriate locations of next
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Figure 4.1: Algorithm Framework: 1. Extract video features through an encoder, 2. Then
input collaborative attention mechanism to redistribute weights, 3. Read memory module
and update, 4. Restore the aggregated query features and memory module features to
video frames, 5. Calculate the loss, backpropagate, and update parameters



CHAPTER 4. COVAD: CONTENT-ORIENTED VIDEO ANOMALY DETECTION
USING A SELF-ATTENTION BASED DEEP LEARNING MODEL 69

ConvInput 

Pool

Conv

Pool

Conv

Pool Conv
Up 

sample

Conv

Up 

sample

Conv

Up 

sample

Conv

Cat

Cat

Cat Output

Attention

Encoder Decode

Figure 4.2: The basic U-Net: The U-Net network is composed of convolution, pooling,
upsampling, and skip connections, where convolution and pooling are used to extract input
features, upsampling is to restore the pooled and scaled features, and skip connections are
feature splicing, trying to use a wider range of information to help restore video frames
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layer, preserving the structure of the stimulus [134].

At present, U-Net is widely used in video frame reconstruction and future frame pre-

diction tasks. In addition, due to the skip connection of the U-Net network, fine-grained

details can be recovered during prediction by extracting more video information during

the decoding process. However, in the U-Net network structure, skip connections are not

always useful specially for reconstruction tasks. This is mainly due to having noisy data

in the previous feature set and not conducive to restore the most realistic features. Thus,

skip connections are unrealistic to apply in this scenario. For the prediction-based video

anomaly detection task in this chap focuses on the previous features that contains part of

the information lost during the training process, and connecting the previous features to

the current features can improve the accuracy of prediction [135]. The Attention in Figure

4.2 provides the interaction between video features and memory module.

Another issue with the strong representation ability of CNN is that the inability of

defining the exact boundary between the normal event and abnormal event [23]. The final

feature extracted from the encoding of the training phase, which obtained from normal

data might deviate from the normal pattern, or out of its boundaries. In the testing phase,

the features extracted from abnormal data may be regarded as normal features, resulting

misclassification. Therefore, identifying and limiting the representation ability of neural

network model is one of the most important aspects of network structure optimization.

We removed the last batch of normalization [136] and ReLU layers [137] in the encoder,

limiting different feature representations. We instead add an L2 normalization layer to

make the features have a common scale.

4.3.2 Memory module

This module is composed of a randomly generated sparse matrix M × C. The length and

width of the matrix isM , depending on the actual application scenario, usually representing

the number of normal behaviors in the training set, or the number of videos in the training

set, or the number of different camera positions. The length of the feature extracted by the

CNN is C, which is the same as the width of memory. Here, the operation of reading and

updating the memory module in this chapter basically follows the processing in [23] [138]:

Read : The read operation is to calculate the similarity between the query point and all

the entries in the memory module, and find the closest entry and the second entry from the

query point. The former is used to fit the query-worthy behavior pattern, and the latter

is used to expand the class spacing, where there are two components of the loss function.

Second, in the update operation, the weighted average of the query points is accumulated

to the nearest entry by the L2 norm.

In the process of reading the memory module, first calculate the similarity between the
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Figure 4.3: This is the algorithm flow of the memory module, including the flow chart of
reading and updating memory
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query feature value and all the entries in the memory module, that is, the cosine similarity,

which is calculate by equation 4.3.2:

wk,m =
exp(pTmq

k)∑
m(exp(pTmq

k))
(4.1)

where pm represents the entry in memory and qk represents the query point, the encoded

feature of the input video. So, we compute the similarity(wk,m) of the query point(qk)

to the memory module(pm) as the weight of the memory module and read the memory

module according to this weight(wk,m).

pk =

M∑
wk,m

′
pm′ (4.2)

This chapter reads all memory entries instead of the closest entry, to consider the

integrity of the normal pattern, which is beneficial to get a more accurate model. because

anomaly detection is essentially a binary classification problem. In the real scene, different

normal patterns may coexist at the same time, and there is an interdependence between

the normal.

Update We use the probabilities in equation 1 to select all the nearest query points

corresponding to each memory. Um is defined as the index set of the m−th memory entry

corresponding to the nearest query point, then the update mechanism is completed by the

following equation.

pm = φ(pm +
∑

k∈Um

ν̂k,mqt) (4.3)

The weighted average is used here instead of sum, so that the query points closer to

m−th have a greater impact on the update of m−th. The way of calculating νk,m is

the same as equation 1, but the normalization in the horizontal direction is used here.so

νk,m has the following equation to calculate. However, since the value pit obtained by the

weighted average can be too large or too small, it cannot have a sufficient impact on the

data update, so after obtaining νk,m , it should be normalized again following equation 4.4.

νk,m =
exp((pm)T qk)∑K

k′=1
exp((pm)T qk

′
)

(4.4)
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ν̂k,m =
νk,m

max
k∈Um

νk,m
(4.5)

There is a problem here, since the initial memory modules are randomly generated, there

is no guarantee of sufficient distance between memory entries. Therefore, this chapter adds

a limit to the initial value of the randomly generated memory module R (Equation 4.6) to

ensure that each entry is sufficiently independent.

R = ||CCT − I||2F (4.6)

where I is an identity matrix, and ||.|| is the Frobenius norm of the matrix. This function

is used to limit the initially generated memory modules to ensure that there is enough

distance between different memory entries to distinguish them and prevent confusion.

This chapter proposes another explanation scheme for the above memory module mech-

anism. In the process of multiple iterations, similar query points are continuously weighted

and averaged to the nearest memory entry. This chapter proposes another way of thinking,

that is, the memory entry corresponds to the clustering center of each normal event, the

iterative process is a continuous clustering process, and its processing method is equivalent

to k-means clustering. In the process of exploration, this chapter tried to add clustering

loss to the iterative process of CNN, but did not achieve good results. We are still exploring

this.

4.3.3 Coordination Attention

The attention mechanism emerged as an improvement over the encoder decoder-based

neural machine translation system. Since video processing applications have no limita-

tion on the length of the input and output sequences and need to allocate more computing

resources, encoder decoder-based attention mechanisms are widely used [139] [140]. Tradi-

tional channel attention allows neural networks to learn what should be focused on during

the learning by allowing the network to iteratively focus on the attention of its filters.

These channel attentions generally transforms the feature tensor into a single feature vec-

tor through 2D global pooling. General self-attention based algorithms often use attention

pooling to encode global spatial information, but compressing the spatial information into

one channel interpreter loses many features and it is difficult to preserve the spatial infor-

mation. As it is important to preserve video features during the long-term interactions, it

is required to improve the accuracy of visual tasks. In addition, the attention module needs
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to acquire more precise spatial information, and these precise spatial information can help

to capture the target of long-term interactions.

As channel attention mechanisms neglect positional information that helps to generate

spatial information, we can embed coordinated attention mechanism to aggregate features

along the spatial directions [141]. The coordinated attention mechanism consists of two

steps:

• coordinate information embedding

• coordinate attention generation.

Figure 4.4 depicts the coordinate attention block that will be used to integrate with two

steps encode channel correlations and long-term dependencies using precise location infor-

mation.

Coordinate information embedding : Channel attention is established as two 1D feature

encoding that aggregate these features along with two spatial directions. Therefore, long-

term dependent features can be captured along one spatial direction, and precise location

information is preserved along with the other.

Given an input X, use two pooling kernels (H, 1) and (1,W ) to encode all channels

along with the horizontal and vertical directions. The c-th channel information in the

horizontal and vertical directions can be expressed as shown in Equation 4.7 and Equation

4.8.

zhc (h) =
1

W

∑
0<i<W

xc(h, i) (4.7)

zwc (w) =
1

H

∑
0<i<H

xc(j, w) (4.8)

Coordinated attention generation: Coordinated attention generation follows three im-

portant steps for computer vision tasks:

• When designing the network structure, it should be designed as simple as possible

and need to make sure that it does not utilize additional memory;

• The network should be able to understand the relationship between different channels,

which is the key to the attention mechanism;

• According to the analysis and findings in this chapter, the network should have the

ability to capture the region of interest (the most important region) in the video with

precise location information.
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Once the coordinated attention has generated features of the embedded video, the

connection information is sent to a shared convolutional transformation function F1 in

Equation 4.9.

f = γ(F1([z
h, zw])) (4.9)

[.] represents a connection operation along the third spatial dimension. The operation

of splicing the weights in the w direction and the weights in the h direction into a weight

matrix. The third spatial dimension generally refers to the dimension occupied by the

channel.γ is a activate function. f ∈ RC/r×(H+w),r is used to control the block size re-

duction ratio. Then, we divide f into fh ∈ RC/r×H , fw ∈ RC/r×w. There are additional

convolutional transforms Fh and Fw that transform fh and fw respectively into tensors

with the same number of channels as the input X, yielding.

gh = σ(Fh(f
h)) (4.10)

gw = σ(Fw(f
w)) (4.11)

gh and gw are expanded as weights after feature value update,The final eigenvector Y

is represented as:

yc(i, j) = xc(i, j)× ghc (i)× gwc (j) (4.12)

This encoding process allows our coordinated attention to more accurately locate the

location of the object of interest, thus contributing to the overall model for better recogni-

tion. The specific flow chart of the coordinated attention is shown in Figure 4.4 indicating

how to integrate pooling, convolutions,and other required methods together.

4.3.4 Loss Function

We introduce the loss function of the model proposed in this chapter, and the evaluation

algorithm for detection accuracy. At the same time, we propose a visual explanation scheme

to advance the detection accuracy from the frame level to the pixel level. The interpretation

scheme is more intuitive and appreciative.
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X pool Y pool
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Figure 4.4: Coordinate Attention C is the number of channels; H,W represent the length
and width of the current feature, respectively
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4.3.4.1 Loss function

Following three main loss functions are used in this work:

• the prediction error(ςpred),

• the L2 norm loss between the query point and its nearest memory entry(ςfit), and

• the segmentation loss between the query point and the next closest memory entry(ςsp)

We can also use the similarity loss for randomly generated memory entries as shown Equa-

tion 4.6, but this is not the training loss as the training loss consists of ςpred, ςfit and ςsp

and evaluated based on the Equation 4.13. However, we are not using the similarity loss

to evaluate our model performances in this work.

ςTrain = ςpred + λf ςfit + λsςsp (4.13)

In prediction loss(ςpred), we minimize the L2 distance between the future frames Î

generated by the decoder and the true future frames I as shown in Equation 4.14.

ςpred =
W∑
w=1

H∑
h=1

||Îw×h − Iw×h||2 (4.14)

The feature fit loss(ςfit) encourages queries to be closer to the nearest item in the

memory, which is computed by the L2 norm between them. Following Equation 4.15 shows

the feature fit loss(ςfit), where pqkt
is the memory entry closest to the query point qkt . This

loss can also be considered as the clustering error.

ςfit =
K∑
k=1

T∑
t=1

||qkt − pqkt
||2 (4.15)

To ensure that different memory entries still maintain a certain distance during the

updating and training process, we introduce the term ςsp to prevent different memory

entries from being confused during training by penalizing the distance between the query

feature and the next closest memory entry.

ςsp = −
K∑
k=1

T∑
t=1

||qkt − pse||2 (4.16)
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where pse is the second closest entry to the query point.

The three loss functions mentioned in Equation 4.14, 4.15 and 4.16 are considered to-

gether during the training phase and we use these metrics to evaluate the performance of

the model. In comparison to the other two loss functions, the prediction loss is the most

important loss function as the other two loss functions play a relatively small role and can

be considered as secondary training loss functions. The λf and λs values used in Equation

4.13 usually ranges in between 0.1 and 0.01. The best fit values to our proposed models

will be explored using different experiments and explain in the Section 4.4.

4.3.4.2 A Visual Evaluation

Since the detection of this model is only set at the frame level, it cannot label abnormal

modules in video frames. This chapter proposes a visual anomaly interpretation module.

The anomaly interpretation module consists of two parts, one is the feature error map, and

the other is the object detector. The feature error map is matched to the output of the

object detector, the largest one has the largest error and is specially labeled. When greater

than the specified threshold, set as an exception.

4.4 Experimental Results

4.4.1 The proposed COVAD approach

The following step-by-step process provides detailed information on how our proposed

anomaly detection approach, called COVAD, is implemented and evaluated.

1. As the first step, our algorithm randomly generates memory modules, and build

M ∈ Rm×c matrix according to the number of videos and behavioral patterns, where

R represents the Equation 4.6, m is the number of normal behavior patterns and c

represents the number of features per channel. Initially, the value of m is set to 10.

2. Next, read the dataset and divide it into multiple consecutive T frames. The first

t − 1 frame assigns as the input to the encoder network, and use convolution and

pooling to scale down the extracted features to make a 32 ∗ 32 ∗ 512 feature space.

3. Following that, input the extracted features into the collaborative attention mecha-

nism and re-allocate weights to obtain new video features.

4. Randomly generated memory module calculates its similarity, and updates the mem-

ory module according to the method explained in Section 3.2. It also aggregates the
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λs

λf

Value 0.02 0.04 0.06 0.08 0.1
0.02 89.3 95.1 94.6 92.6 94.2
0.04 92.5 95.3 94.9 90.4 88.2
0.06 90.9 95.4 91.2 94.5 89
0.08 93.1 83.2 84.6 91.2 89.3
0.1 96.8 93.7 92.8 95.4 96.2

Table 4.1: The accuracy of anomaly detection under different value of hyperparametersλf ,
λs; the dataset used is UCSD(Ped2).

memory features and query features as the hyperparameters of the loss function. We

conducted a set of experiments to identify the most suitable hyperparameter values

as explained in Section 4.4.3.

5. Input the obtained aggregated features into the decoder network to restore the frames.

6. Next, calculate the error between the restored video frame t̂ and the real t frame.

7. Uses backpropagation to update the network parameters until it minimizes the error.

8. Finally, classify the given input once the model converged to the minimum error

point.

4.4.2 Dataset Description

The analyses in this work are mainly based on two different datasets: UCSD [5] and

Avenue [6].

The UCSD dataset is a campus pedestrian dataset released by the University of Cal-

ifornia, San Diego in 2013, which contains two subsets called Ped1 and UCSD(Ped2).

The number of training videos sets used in Ped1 and UCSD(Ped2) are 34 videos and 16

videos, respectively and this training set contains only normal frames. The test set con-

tained both normal frames and exception frames and has 36 videos in Ped1 and 12 videos

in UCSD(Ped2). Frame-level annotations are provided for all test video clips and 10 of

which have pixel-level ground truth. In this research, our analyses are mainly based on

UCSD(Ped2)

The Avenue is a dataset released by the Chinese University of Hong Kong in 2013,

which contains 15 videos of 2 minutes each. The total number of frames is 35240 and 8478

frames from 4 videos can be used as the training set. These videos contain typical unusual

events including running and throwing objects.
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4.4.3 Hyperparameter selection process

We conducted several experiments to select the best values for the hyperparameter λf and

λs that is used in Equation 4.13 for calculating the total loss. To verify the effectiveness of

these hyperparameters with different values in our analysis, we used UCSD (UCSD(Ped2))

dataset to verify the anomaly detection accuracy when λs and λc parameters assign 0.02,

0.04, 0.06, 0.08, and 0.1 values separately for different iterations. The accuracy of the

COVAD model for different experiments are shown in Table 4.1. The accuracy does not

show obvious regularity, but λc has a great influence on the detection results. When the

value of λc is 0.1, the experimental effect is relatively stable, and the detection accuracy is

basically the highest value. Therefore, in this chapter, we set λc=0.1.

Table 4.1 shows the detection results under different hyperparameter values for λf

and λs. The detection accuracy does not show a clear Gaussian distribution after fixing

the value of one hyperparameter. The main reason behind this result may be that the

relationship between the three different loss functions in equation 4.13 is nonlinear or the

amount of training data is insufficient. In future, we will explore the exact reason behind

this and will propose new methods to overcome this issue. Based on the results shown in

Table 4.1, the two highest accuracy(average) are 96.8 and 96.2 that are obtained for different

hyperparameter values. The highest accuracy is obtained when λf=0.1 and λs=0.1 or 0.02.

According to the empirical values in the previous chapters [23], both these hyperparameter

values are set to 0.1 and therefore, in or experiments we set them to 0.1.

4.4.4 Effectiveness of the attention mechanism in video anomaly detec-
tion

In this section, we analyze the outcome of the COVAD model to explore whether the

attention mechanism improves the accuracy of video anomaly detection tasks. To verify

this, we randomly selected an image (Figure 4.5(a)) from the Avenue dataset and extracted

its features before and after adding coordinated attention using our COVAD model and

MNAD [23] model.

The comparison process has been done using the following steps. 1. MNAD and CO-

VAD networks are trained separately. The MNAD network is implemented without using

the attention mechanism, and the COVAD is implemented using coordinated attention.

2. First, randomly select a video frame and then, input it into the above-mentioned two

trained networks. 3. Generate the feature map at the end of the encoder and observe the

difference between the outputs of the two networks.

Figure 4.5 depicts how the weight redistribution of the coordinated self-attention mecha-

nism helps the neural network to focus on meaningful targets having the effect of anti-noise,

and how it helps to improve the detection efficiency.
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a

b c

Figure 4.5: The a is a frame in the video, b is the feature map generated without a
coordinated attention mechanism, and c is the feature map generated by the coordinated
attention mechanism.
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Figure 4.5(b) clearly indicates that without the coordinated attention mechanism the

upper part of the video frame is relatively dark. As a result, after reading this video

frame, the RGB value of this area gets relatively large and hence, this will affect on the

neural network training and model performances. Since this dark area, which we called as

background is not important in the classification, training the neural network model using

this types of frames are the best practice and it consume lots of resources as the model gets

larger.

Once we apply the trained coordinated attention, we can clearly observe that the object

distribution in Figure 4.5(a) is more visible on the feature map shown Figure 4.5(c) based

on its the contrast and dark colors, compared with the feature map shown in Figure 4.5(b).

This indicates that the model has successfully captured relatively important regions in the

video based on previously trained data. Therefore, network parameters used in our chapter

are more reasonable and help to obtain more effective features and more realistic video

frames.

4.4.5 A Visual Test

First, since the results of unsupervised anomaly detection are still at the frame level, we

propose object-oriented anomaly testing. First, the error between the predicted video frame

and the real video frame is calculated to obtain the feature error map, and then the real

abnormal video frame is detected through the target detector to obtain each target in the

video frame. Calculate the average error within each object box. Determine a reasonable

threshold through multiple tests. Object boxes whose average error is greater than the

threshold are marked in red.

Figure 4.6 shows the result. In the specific implementation process, the feature error

map is calculated by the feature subtraction of the restored video frame and the directly

read real video frame. The object detector is implemented by retinanet single-stage object

detector [101], and the network used is resnet50, and the performance is sufficient. The

white bright spots in Figure 4.6.a represent areas with large errors, black represent areas

with small errors, and Figure 4.6.b is the result of the object detector. The object detector

is only responsible for object detection and abnormal target judgment. By calculating the

object frame, the mean error within the realization.

4.4.6 Video anomaly detection using COVAD

The following section explains the different analyses we conducted on video anomaly de-

tection using the above-mentioned datasets and the most suitable hyperparameter values.

The testing environment used in this experiments is Tesla V100 Volta P100 GPU Ac-

celerator with a 32GB Graphics Card and few models are executed at the Google Colab.
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Feather Loss Map

Object Detection

Abnormal Detection
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c

Figure 4.6: The a is a feather loss map, b is the result of object detection, and c is the
generated result by feather loss map and objected box map .
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Method
UCSD

(UCSD(Ped2))
Avenue Techniques

AMDN [38] 90.8% DFF+SVM

Unmasking [142] 82.2% 80.6% Unmask

StackRNN [84] 92.2% 81.7% TSC+sRNN

MemAE [138] 91.7% 81.0% Memory module

MNAD [23] 94.2% 80.6% U-net

COVAD 96.5% 83.4% CA

Table 4.2: Quantitative comparison of the frame-level AUC-PR results of our COVAD
method with the state-of-the-art models. (DFF is Double Fusion Framework; Unmask is
a technique previously used for authorship verification in text documents ; TSC+sRNN is
Temporally-coherent Sparse Coding stacked Recurrent Neural Network; CA is the Coordi-
nated attention).

Since we tested a large number of hyperparameters, the part of the validation experiments

were run in Colab. Compared with previous networks, the network in this chapter has

good time efficiency when running tests. During the testing, the COVAD model process

28 frames per second.

Table 4.2 shows the quantitative comparison results of our COVAD method and the

state-of-the-art methods on frame-level AUC-PR results. Based on the obtained results,

the COVAD method can effectively improve the accuracy of anomaly detection compared

to other models. We can find that the COVAD method obtained the highest AUC value for

both UCSD and Avenue datasets. Another most important finding in this work is on the

reduction model convergence time, which is mainly due to the integration of the attention

mechanisms in our COVAD approach. Since the self-attention mechanism is lightweight

and mobile-level, it does not take a lot of time during training and testing. Therefore,

compared with previous methods, our method is worth generalizing.

4.5 Conclusion and Future work

With the improvement of computer hardware and network bandwidth, video will definitely

become the main medium for transmitting information in the future and this is one main

reason to attract many researchers attract towards computer vision today. The two most

popular research domains in Artificial Intelligence are computer vision and natural language

processing. In the foreseeable future, computer smell and touch may become new research

hot-spots. In this chapter our main focus is to detect anomalies in surveillance videos that

are deployed in different locations, such as highways, schools, prisons, etc. The manual

inspection of video anomaly detection in real time is not very efficient due to the discon-
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tinuity of human eye monitoring over the time. The algorithm proposed in this chapter

incorporates a coordinated self-attention mechanism to help the neural network to focus

on meaningful objects during training by ignoring the background in the video. Based

on the experimental results, our proposed algorithm can avoid the detection efficiency of

unimportant background noise, that is, the algorithm in this chapter has a strong anti-noise

ability. Many unsupervised video anomaly detection approaches proposed in the literature

have used frame-level objective function as the training loss function, and then detect the

abnormal area through the splicing Object detection algorithm. This approach seems to

achieve pixel-level video anomaly detection, but this is difficult to achieve in the the actual

deployment process. Compared with video anomaly detection, the network structure of

video Object detection is more complex, and it is difficult to establish a joint algorithm

framework to connect the two neural networks. Therefore, the best solution is to establish

an anomaly detection mechanism centered on Object and Behaviors.

The direct detection of abnormal regions in the real-time video is one of our ultimate

goals related to this reach. In the future, we aim to implement an unsupervised video

anomaly detection network that can be jointly trained with the pixel-level object detection

network. The purpose of detecting video anomalies is to solve the issues that occur in real-

time, that is, to eliminate disasters that have not yet occurred. Therefore, the response

mechanism in the actual deployment stage is also worthy of our consideration in future.
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5.1 Overview

This chapter introduces a novel anomaly detection framework that balance dynamic in-

formation with static information and construct a relationship between appearance fea-

tures and corresponding optical flow features, where we set strong consistency constraints,

which reduces the loss between dynamic information and corresponding static information,

and leverages collaborative teaching network to ensure a consistent representation of both

static and dynamic information for predict. The proposed framework consists of two sets of

encoder-decoder pairs complemented by a memory storage module. Operating in parallel

with the dual encoder network is a Co-teaching network, with the shared memory module

serving as the cornerstone for collaborative training. The Consistency constrained condi-

tion guarantees the strong consistency of dynamic and static information in the learned

representations. In our experimental phase, we present compelling results that showcase

the superior performance of our algorithm across three publicly available datasets.

5.2 Introduction

Before the emergence of deep learning, traditional video analysis technologies primarily

consisted of methods such as the frame difference method [143], color histogram [144],

and HOG feature [145]. These video analysis techniques transform original video data

into interpretable feature signals, aiding researchers in more effectively analyzing video

data. With the advent of deep learning, video anomaly detection technology based on

neural network learning can be categorized into two main groups: unsupervised learning of

anomaly detection and weakly-supervised learning of anomaly detection [146] [12,147].

The academic community has been diligently working to amalgamate the potent ad-

vantages of weakly supervised video anomaly detection with the generalization benefits of

unsupervised algorithms. For instance, Wang [55] introduced a novel and robust unsuper-

vised video anomaly detection method that incorporates a frame prediction scheme tailored

for surveillance videos. Their approach employs a multipath ConvGRU-based frame pre-

diction network, which adeptly handles semantically rich objects and regions at various

scales while capturing spatiotemporal dependencies in normal videos. This algorithm en-

hances the representation of spatiotemporal features in unsupervised algorithms, thereby

enhancing their robustness.

Similarly, Huang et al, [54],introduced the appearance-motion semantic consistency

framework, which exploits the difference in appearance and motion semantic representation

between normal data and abnormal data. They first designed a two-stream structure to

encode the appearance and motion information representation of normal samples, and then

proposed a novel consistency loss algorithm to enhance the consistency of feature semantics,
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Figure 5.1: Comparison of methods: A uses optical flow features as a supplement to video
frame appearance features to improve prediction accuracy; B uses parallel prediction of
appearance features and optical flow features to build a joint prediction loss error; C is the
proposed strong consistency collaborative training framework.

enabling the identification of low-consistency anomalies. This algorithm further enhances

the consistent representation of dynamic and static features in unsupervised algorithms.

The most advanced semantically consistent model of appearance-motion features is the

dual-channel framework proposed in 2022 [32], which proposes a spatiotemporal memory-

enhanced dual-stream autoencoder framework and designs two identical and independent

proxy tasks to train the dual-stream autoencoder. The structure extracts appearance and

motion features separately and decodes them separately. Finally, the optical flow loss and

appearance feature loss are calculated to explore the correlation between appearance and

motion semantics. In this model, the only consistency constraint is the loss function, but

two separate encoding-decoding processes cannot really constrain the consistency of motion

features and appearance features [44,56].

Considering the above-mentioned works, this contribution proposes a novel unsuper-

vised learning video anomaly framework CCC-T (Consistency-constrained Framework Based

on Co-teaching) as shown in Figure 5.1.C, which emphasizes the consistent representation

of dynamic information and static information by utilizing carefully designed Strong con-

sistency constraints. In this framework, dynamic information (optical flow features) and

static information (appearance features) are regarded as equally important input data.

The framework designed in this chapter mainly contains three parts: two sets of encoding
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and decoding network structures and memory storage modules. There are two encoding

and decoding structures. One is responsible for encoding the appearance features of the

video frame as input, and then updating the input features in the memory module, while

its decoder outputs the optical flow features corresponding to the video frame. The other

encoder is responsible for encoding the optical flow of the video frame, which is used as

the input feature; that input feature is updated, and finally the decoder outputs the ap-

pearance feature corresponding to the video frame. The memory storage module stores the

normal pattern and updates the passing characteristics. To ensure the accuracy of optical

flow features in predicting appearance features, the missing background and color infor-

mation is compensated. The framework utilizes skip connections to connect the encoding

layer (appearance features predict optical flow features) and the decoding layer (optical

flow features predict appearance features) and reads map features from each layer as a

complement. The three modules in the framework are connected through a collaborative

teaching network to promote collaborative learning.

To summarize, this section makes the following three contributions

• Proposes a novel unsupervised video anomaly detection framework built using co-

teaching networks;

• Achieves the first one-time collaborative training of optical flow and representational

features in unsupervised video anomaly detection; and

• After testing on three datasets, the proposed model further improves the accuracy of

unsupervised video anomaly detection algorithms.

5.3 Duel Channel model

Video anomaly detection algorithms within an unsupervised learning framework always

focus on a single goal: improving prediction or reconstruction accuracy by extracting

more precise video features. Many unsupervised methods are all dedicated to utilizing

sub-tasks [57–59, 148], including identifying the order or reverse order of the sequence to

extract features, thereby enhancing the extraction of dynamic features and static features.

However, for video data, multi-tasking only guarantees the accuracy of extracting dynamic

features and static features, it cannot constrain the consistency of dynamic features and

static features.

The dual-channel unsupervised model [32, 54, 55] is a new attempt to address these

issues. Differing from the framework described above, the dual-channel model attempts to

directly extract dynamic features as a supplement to static features, and builds a dynamic

feature- static feature constraint framework to enhance the integrity of the input features
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to improve the accuracy of prediction/reconstruction. However, the existing dual-channel

model, as shown in Figure 5.1.A,5.1.B, only uses dynamic features as a supplement to static

features, which enhances the accuracy of input features, but does not set consistency con-

straints. Framework C, on the other hand, designs a completely parallel encoding-decoding

structure and relies on interactive loss functions to constrain consistency. This constraint

cannot affect the features extracted by the encoder, and the channels are relatively inde-

pendent, that is, the processing of dynamic features and the processing of static features

are independent and cannot act as a real consistency constraint on the extracted features.

In addition, while mainstream methods use dynamic features as supplementary elements to

enhance the representation capabilities of static features, they cannot achieve simultaneous

learning of spatio-temporal features.

To solve this problem, this chapter introduces a new dual- channel video anomaly

framework to enhance the detection capabilities of unsupervised learning algorithms. This

framework treats dynamic information and static information as inputs of equal impor-

tance and carefully designs strong consistency constraints between dynamic information

and static information to ensure consistent representation of optical flow features and ap-

pearance features, and it builds a collaborative learning and memory storage module based

on co-teaching. The core of this study is collaborative learning, memory storage mod-

ules, and skip connections and other technical means, which strictly follow the consistency

constraints of dynamic features and static features.

5.4 Methodology

This section provides a detailed explanation of our proposed unsupervised learning frame-

work and the models utilized in our experiments. This includes explaining how the co-

teaching architecture works in the training process of two encoder-decoder networks.

In this part, the Flownet2 network [83] is responsible for extracting optical flow features

from video frames. Subsequently, these features from video appearances and optical flow are

used as the input into two encoder networks. These features are then compressed, followed

by their entry into the memory storage module to update the corresponding elements of

video appearances features and optical flow features.

The mechanism entails retrieving the features of the nearest counterpart and aggregate

them into novel features. Finally, the amalgamated new features feed into the two decoder

networks to predict the features of the opposing entity. For example, the optical flow

features serve as the input to the encoder-decoder, resulting in the output of video frame

features. Conversely, when the input is the video appearances feature, the output manifests

as the optical flow feature. To address the potential information gap in video appearances
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Figure 5.2: A detailed framework of CCC-T. The first step uses Flownet2 to obtain the
optical flow information of the video sequence. The second step inputs the segmented
video frames and optical flow information into their respective encoding networks. The
third step is to cross-read and collaborate the output of the encoding network with the
memory module. Update, the fourth step, the updated input features are input to the
decoder network for cross prediction.

feature prediction by optical flow features, this study integrates skip connections [135,149]

that bridge the encoding map of video frames to the optical flow decoder (predictive video

frames).

The loss function is comprised of the prediction loss inherent in the video appearances

features and the optical flow features prediction, as well as the similarity loss in memory

modules. The proposed model greatly ensures the consistent description of optical flow

features and appearance features through shared memory entries.

5.4.1 Preliminary

The fundamental algorithms highlighted in this chapter contain Flownet2, the encoder-

decoder structure, the memory module, and the co-teaching framework. Notably, The

encoder-decoder structure and memory module already well described in previous paper

[23, 138]. Consequently, the ensuing content will provide a succinct overview of Flownet2,

outlining its objectives and structural attributes, followed by an outline of the co-teaching

architecture.
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Figure 5.3: A Classify Co-teaching Structure

Co-Teaching [150]: A collaborative teaching network is a framework in which multiple

neural network models collaborate to solve specific problems or achieve a common goal, as

shown in Figure 5.3. For example, multiple actors merge their predictions through tech-

niques such as voting, averaging, or weighted averaging. Classic co-teaching networks are

one of the following four types: 1. Knowledge distillation [151]: A broader or more com-

plex model (teacher model) is trained together with a smaller or simpler model (student

model). The student model learns to imitate the behavior of the teacher model, reduce

parameters, and/or to build multi-task models; 2. Collaborative training [152]: Multiple

models are trained simultaneously and exchange training data or gradients during the opti-

mization process; 3. An Adversarial Network [153]: Multiple models with complementary

effects, such as a generator network and a discriminator network in a generative adversarial

network (GAN) work together to achieve a specific result; and 4. Federated learning [154]:

Many models are trained on different data subsets and then merged or averaged to generate

a global model. This approach can improve privacy and data distribution issues. In this

chapter, we adopt two encoder-decoder structures to share the memory module, cross-read

the video frame feature pool and the optical flow feature pool, and to promote the collab-

orative training of the model. These two encoding structures are similar to two teacher

networks, learning from each other.

5.4.2 Consistency-constrained Framework Based on Co-teaching

This section introduces the operation and interaction of each module of the framework

(CCC-T: Consistency-constrained Framework Based on Co-teaching) proposed by this
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chapter in detail. This CCC-T employs two interconnected encoder-decoder structures

by the co-teaching network. These structures are designed to encode optical flow and video

frame features separately while predicting the corresponding features of the opposite type

(i.e., optical flow to video frame and vice versa). The predicted loss resulting from these

predictions is then utilized to update the model. The following section outlines the detailed

steps involved in the comprehensive formalization.

Formalization: There is an existing video denoted as V , which is divided into a sequence

of continuous video frames: V = v1, v2, v3, ..., vN , where N represents the total number of

frames in the video. The optical flow features of these video frames are extracted using

Flownet2, denoted as Fflows = Flownet2(V ), with individual flow features represented as

fflow ∈ fflows1 , fflows2 , fflows3 , ..., fflowsN . The read library of OpenCV2 is employed to

directly extract frame features from the video frames, yielding Fframes = Ir(V ), with frame

features represented as fframes ∈ fframes1 , fframes2 , fframes3 , ..., fframesN .

As stated earlier, this chapter presents a model encompasses two encoder-decoder struc-

tures, as illustrated in Figure 5.2. where ψ represent the Encoder function and ϕ the

Decoder, The upper structure is the video appearances feature encoderψframes, while the

lower one is the optical flow feature encoder, referred to as ψflows. The decoder positions

are the opposite: the upper one is ϕflows, and the lower one is ϕframes.

During the training phase, the extracted video frame features Fframes are input into

the ψframes to focus and refine the quality of the appearance feature representation. Sub-

sequently, these features are passed through a memory module. The error is calculated

with the nearest video frame feature entry, leading to an update of the video frame feature

storage module. Simultaneously, the module queries the optical flow entry that is closest

to the input feature and then reads and updates the input feature. The updated input

feature is then fed into the ϕframes to predict the optical flow feature. This process can be

expressed in an equation as:

FE
frames = ψframes(fframes)

= ψframes(Ir(V )),

V = v1, v2, v3, ..., vN

(5.1)

F̂flows = ϕframes(θ(F
E
frames,M)) (5.2)

where,M signifies the memory storage module, and θ embodies the interaction between

input data and the memory storage module, encompassing functions such as reading, up-

dating, and the integration of novel features. Comprehensive insights into the memory

storage module are expounded upon in Section 5.3.2. FE
frames denotes the features ema-
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nating from the encoder, while F̂flows encapsulates the optical flow features prognosticated

by the decoder.

Conversely, the optical flow features Fflows, obtained from Flownet2, are input into the

ψflows. This step help to refine the high-quality optical flow feature representation. These

features are then processed through a memory module. Similar to the video frame features,

the error is computed with the nearest optical flow feature entry, resulting in an update of

the optical flow feature storage module. Furthermore, the module queries the appearance

feature entry closest to the input feature, reading and updating the input feature. The

updated input feature is directed into the ϕflows to predict the appearance feature.

F flows
encoder = ψflows(fflows)

= ψflows(Fownets2(V )),

V = v1, v2, v3, ..., vN

(5.3)

F̂frames = ϕflows(θ(F
E
frames,M)) (5.4)

The loss function contains three components: optical flow prediction loss, appearance

feature prediction loss, and memory storage module loss LM . Optical flow prediction

loss, constructed from the difference between the decoder output of appearance features

f̂flows and the true optical flow features fflows. Appearance prediction loss, constructed

from the difference between the decoder output with optical flow features f̂frames and the

real appearance features fframes. Similarly, during the test phase, the anomaly score is

composed of three parts.

loss =


∥∥∥f̂flows − fflows

∥∥∥∥∥∥f̂frames − fframes

∥∥∥
LM

(5.5)

The role of this module is to align input data with their corresponding entries in the

memory module, thereby capturing and recording trained normal patterns. The memory

module loss LM is described in detail next.

5.4.3 Co-teaching within Memory Module

The co-teaching structure in training is designed in the memory storage module.

Following the blueprint of the conventional memory storage module [155], this unit

serves two primary functions. The first involves reading, wherein the module identifies

and retrieves the entry most closely aligned with the input feature, subsequently updating



96 5.4. METHODOLOGY

Figure 5.4: Co-teaching within a memory module: Green indicates the transfer of static
features in the memory module, and orange represents the transfer of dynamic features;
correspondingly, the memory module is composed of multiple static feature category entries
and multiple dynamic feature category entries

the input feature. The second function entails updating, which transpires as an ongoing

process throughout the training. The memory matrix continuously evolves based on the

proximity between feature maps, effectively consolidating data from the training set that

corresponds to the set entries.

In our framework, the memory storage module is bifurcated into two distinct compo-

nents. The green segment denotes the video appearance feature memory mode, while the

orange segment signifies the optical flow feature memory mode. The act of reading and

updating each input datum transpires in disparate sections of the memory module, so that

the update operation takes place within the respective memory mode, and the reading

operation unfolds in the complementary memory mode. These modes are illustrated in

Figure 5.4.

5.4.3.1 Reading and Updating Mechanisms of the Memory Module

Reading Mechanism: Reading Mechanism for the Memory Module as shown in Figure

5.4: The input to the memory module is the optical flow feature. This involves calculating

the cosine similarity between the query feature and the entries within the video frame

appearance feature memory module. The aim here is to identify the entry or multiple entries
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with the closest proximity to the query feature, thus determining their respective distances.

The softmax function is applied to establish an average probability match. Subsequently,

the probability value is utilized to compute the inner product with the appearance feature

entry from the memory module. This process leads to the feature update. Finally, the

updated features are merged with the original query features to predict the corresponding

video appearance features.

First, the cross-cosine similarity between each entry qkflows, q
k
frames, q

k
flows ∈ fEflows,

qkframes ∈ fEframes and memory items pframes
m , pflows

m is calculated, where qkflows and q
k
frames

are from the corresponding two query encoding features fEframes, f
E
flows; p

frames
m ,pflows

m is set

during initialization, and two two-dimensional correlation maps of size MxK are obtained.

The softmax function along the vertical direction and obtain the matching probabilities

wk,m
frames,w

k,m
flows as follows:

wframes
k,m =

exp((pflows
m )T )qframes

k∑M
m′exp((pflows

m′ ))qframes
k

(5.6)

wflows
k,m =

exp((pframes
m )T )qflows

k∑M
m′exp((pframes

m′ ))qflows
k

(5.7)

For the query items of optical flow features qkflows and appearance features qkframes,

the opposite memory module is read through the calculated weight (qkflows → pframes

m′ ,

qkframes → pflows

m′ ), which obtains the desired cross prediction information. The reading

process is as follows:

p̂frames
k =

M∑
m′

wframes

k,m′ pflows

m′ (5.8)

p̂flows
k =

M∑
m′

wflows

k,m′ p
frames

m′ (5.9)

After reading the memory module, the closest cross feature map p̂flows
k ,p̂frames

k is ob-

tained, We concatenate p̂flows
k ,p̂frames

k with the query map qkflows , q
k
frames along the channel

dimension, and send f⃗frames, f⃗flows into the corresponding decoder.

{
f⃗frames =

∑
(p̂flows

k , qkframes)

f⃗flows =
∑

(p̂frames
k , qkflows)

(5.10)
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Updating mechanism: Update mechanism of memory modules: In this case, the cosine

similarity of appearance encoding features fEframes and optical flow encoding features fEflows

with the corresponding memory modules is calculated. Next the probability value is cacu-

lated through the softmax function. Then read the compared memory entry by calculating

the probability value, The next steps involve using the query features to increase the inner

product of the obtained probability values. This sum is added to the corresponding mem-

ory entry of the original appearance feature. As a result of these operations, the memory

module is effectively updated. The function of this step is to find the memory feature that

is most similar to the query feature, and through its similarity loss, continuously improve

the adhesion of the memory entry to the real normal pattern.

The first step is to calculate the cosine similarity between the optical flow query encoding

features fEframes and the optical flow memory entries fEflows , and the appearance query

encoding features and the appearance memory entries. This process is the opposite of the

reading mechanism.

uframes
k,m =

exp((pframes
m )T qkframes)∑K

k′exp((p
frames
m )T qk

′

frames)
(5.11)

uflows
k,m =

exp((pflows
m )T qkflows)∑K

k′exp((p
flows
m )T qk

′

flows)
(5.12)

After obtaining the cosine similarity between the memory entry and the query point

uframes
k,m , uflows

k,m , use the probability value cosine similarity to read the query entry, accu-

mulate it with the original memory entry in the same channel, and update the memory

entry. The updated storage module < p̌mflows, p̌
m
frames > is shown in the Figure 5.4:

p̌mflows =
∑

(pmflows +
K∑
k=1

uflows
k,m qkflows) (5.13)

p̌mframes =
∑

(pmframes +
K∑
k=1

uframes
k,m qkframes) (5.14)

Different from cross-reading, the memory update corresponds from optical flow to op-

tical flow and appearance to appearance. By calculating the similarity matrix, it is accu-

mulated to the memory module.
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5.4.3.2 Strong consistency constraints

The strong consistency constraints in this chapter are mainly implemented through the

reading and updating of the memory module. The reading and updating rules have been

described in detail above. This chapter proposes that the memory module of the model

is divided into two parts, one is optical flow feature storage, and the other is appearance

feature storage; and the reading and updating of each branch are implemented for different

parts of the memory module. That is, the prediction in this chapter is cross prediction,

inputting optical flow features, then constructing a similarity matrix, and reading the most

similar appearance feature storage entries to construct joint features to predict appearance

features. When updating, only the optical flow memory entries corresponding to the optical

flow features are updated. Optical flow features and appearance features are cross-read

and updated. Through the loss function, appearance features and optical flow features

are strengthened, and the consistent representation of dynamic information and static

information is enhanced. And according to the consistent description of optical flow features

and appearance features, the similarity between appearance and optical flow of videos of the

same category is the highest. Based on this, this chapter sets up the consistent description

probability for dynamic information and static information as Cst(S,D):

Cst(S,D) =
k∑

i=1

k∑
j=1

< f iframes, f
j
flows > (5.15)

where f iframes and f
j
flows are the encoded appearance features and optical flow features,

and k is the number of storage entries designed by the memory module. Only when i = j,

the consistency probability can reach the maximum value.

Therefore, the strong consistency constraints set as follows:

STC =

k∑
i=j

|f iframes, f
j
flows|

=
k∑

Max(Cst)

(
∣∣∣f iframes,M

j
flows

∣∣∣⊕ ∣∣∣f iflows,M
j
frames

∣∣∣) (5.16)

During the memory module reading process, this chapter sets up to read the cross fea-

ture entries that are closest to the query entries and predict the corresponding cross features

Max(Cst). We calculate the similarity by covariance and retrieve the intersection entries

with the highest similarity. Final predicted cross correspond features(From appearances to

optical flow, from optical flow to appearances).



100 5.4. METHODOLOGY

5.4.3.3 Loss function Memorize Module

The loss function of the training process mainly consists of three parts, namely Lflows, Lframes, LM ,

Among them, Lflows represents the error between the predicted optical flow and the real

optical flow, and Lframes represents the error between the appearance characteristics of the

predicted video frame and the real video frame. These designations are employed for par-

titioning the distances between distinct entries within the memory module. Here LM loss

is divided into two parts, namely Strong consistency constraint loss LM(Sim) and segmen-

tation loss LM(SEG). LM(Sim) is achieved by enhancing the similarity between the optical

flow features in the query entry and the most approximate flows features in the memory

entry, and at the same time enhancing the appearance features in the query. The similarity

between the feature and the closest optical flow feature in memory is used to ensure the

consistency of optical flow features and appearance features, while the segmentation loss is

used to enlarge the distance between the query point and the next closest memory entry,

reducing the risk of memory entry similarity interference caused by higher

The loss function of the memory module LM is expressed as

LM = LM(Sim) + LM(Seg) + LM(STC) =

<
∥∥∥fEframes −Mframes(Pnearest, f

E
frames)

∥∥∥∥∥∥fEflows −Mflows(Pnearest, f
E
flows)

∥∥∥ > +

< −
∥∥∥fEframes −Mframes(Psec−nearest, f

E
frames)

∥∥∥
−
∥∥∥fEflows −Mflows(Psec−nearest, f

E
flows)

∥∥∥ > +

<
∥∥∥fEframes −Mflows(Pnearest, f

E
frames)

∥∥∥∥∥∥fEflows −Mframes(Pnearest, f
E
flows)

∥∥∥ >

(5.17)

In the equation, M represents the memory block. Mframes signifies the appearance

pattern within the memory module, while Mflows represents the optical flow pattern

within the same module. The variable p denotes an entry in the memory module, where

Mframes(Pnearest, f
E
frames) designates the memory entry that is nearest to the query fea-

ture, and Mframes(Psec−nearest, f
E
frames) denotes the second closest memory entry to the

query feature.

5.4.4 Anomaly detection stage

The primary procedure of the anomaly detection stage maintains consistency with the

training process.
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The initial step involves preprocessing the dataset, which entails segmenting the test

video into video frames and extracting optical flow features. Subsequently, the second step

utilizes two distinct encoder structures to compress both the appearance and optical flow

features of the video independently. In the third step, the compressed final features are di-

rected into the memory module, where they are combined to generate novel query features.

Moving on to the fourth step, these newly generated features are input into the decoder

network to anticipate the corresponding optical flow and appearance representations.

The computation of the anomaly score predominantly encompasses two components:

the prediction loss and the similarity loss originating from the memory module. The specific

pseudo code is as follows:

Algorithm 2 Anomaly Detection Phase

1: Initialization:
Flownet2, Random M ∈ RK×2M , V = v1, v2, v3, ..., vN ;

2:

{
Fframes = Ir(V )

Fflows = Flownet2(V )
;

3:

{
FE
frames = ψa(Fframes)

FE
flows = ψf (Fflows)

;

4: f⃗frames, f⃗flows = CoTeaching(M,FE
frames, F

E
frames);

5:

{
FD
flows = ϕa(F⃗frames)

FD
frames = ϕf (F⃗flows)

;

Output: Calculate anomaly scores.

Score=
{
α∥FD

flows − Fflows∥, β∥FD
frames − Fframes∥

}
where the core part of the anomaly score is the prediction error, which includes optical

flow feature prediction error and appearance feature prediction error. In the testing phase,

after a large number of verification experiments, this chapter sets two prediction losses

combined with hyperparameters α = 0.3 and β = 0.7.

The experimental settings outlined in this chapter are primarily categorized into three

groups. According to the experimental settings, evaluates the performance of the framework

proposed in this chapter from three aspects: advancement comparison, ablation experiment,

and effect display.

5.4.5 Experiment 1

The first group experiments pertains to a comparison of prediction accuracy with main-

stream video anomaly detection algorithms. In this set of experiments, this chapter com-

pares the detection accuracy of the model proposed in this chapter and the mainstream

unsupervised model. We conducted independent comparative analyzes on three public data
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Table 5.1: The result for Avenue dataset

Name Technology Journal AUC
Unmasking [142] VGG-f ICCV2017 80.6
StackRNN [84] Temporally-coherent ICCV2017 81.7
MemAE [138] Memory module ICCV2019 81.0
MNAD [23] Learning Memory module CVPR2020 80.6
Covad [25] Self-attention CGI2022 83.4
TAC-Net [156] Temporal-aware contrastive IEEE TII 87.3
ITAE [60] Two-path Generative PR 2022 88.0
Two-P [32] Two-path AE ICME 2022 89.8
CCC-T Consistency Co-teaching 89.2

Table 5.2: The result for UCSD(ped2) dataset

Name Technology Journal AUC
AMDN [38] Stacked denoising AE CVIU 90.8
Unmasking [142] VGG-f ICCV2017 82.2
StackRNN [84] Temporally-coherent ICCV2017 92.2
MemAE [138] Memory module ICCV2019 91.7
STFF [157] Fast sparse coding PR 92.8
MNAD [23] Learning Memory module CVPR2020 97.0
DPU [158] Dynamic Prototype CVPR2021 96.9
TAC-Net [156] Temporal-aware contrastive IEEE TII 98.1
ITAE [60] Two-path Generative PR 2022 98.7
Two-P [32] Two-path AE ICME 2022 98.1
CCC-T Consistency Co-teaching 99.1

sets: UCSD(ped2) [5] Avenue [6], ShanghaiTech [?]. The results are shown in the Table

5.1,5.2 and Table 5.3:

Table 5.1,5.2 and Table 5.3 shows accuracy comparisons between the framework CCC-

T proposed in this chapter and mainstream algorithms across three datasets (Avenue,

UCSD(ped2), ShanghaiTech). Because the ShanghaiTech dataset is too large, some of the

baseline models only tested with the Avenu and UCSD(ped2), and some models use the

Ped1 dataset [34]. Therefore, in this chapter we used three different tables (Table 5.1,5.2

and 5.3) to illustrates the results for each dataset with different baseline models. The result

show that the prediction accuracy AUC achieved by the CCC-T algorithm has shown better

performances for each dataset, thereby substantiating the effectiveness of the proposed

algorithm. Specifically, while considering consistency, the way in which optical flow and

appearance features are combined (either complementary or equal) becomes the primary

aspect of differentiation between video data features and image data. When analyzing

video data, special attention should be paid to the processing of dynamic features. From

Table 5.1,5.2 and Table 5.3, it can be concluded that the CCC-T model proposed in this

chapter has more advanced performance.

The second core store is the consistency constraint of optical flow features and appear-



CHAPTER 5. CONSISTENCY-CONSTRAINED UNSUPERVISED VIDEO
ANOMALY DETECTION FRAMEWORK BASED ON CO-TEACHING 103

Table 5.3: The result for ShanghaiTech dataset

Name Technology Journal AUC
StackRNN [84] Temporally-coherent ICCV2017 68.0
MemAE [138] Memory module ICCV2019 69.7
BMAN [159] Appearance-motion joint TIP 2019 76.2
Few-Shot [160] Few-shot scene-adaptive ECCV2020 77.9
MNAD [23] Learning Memory module CVPR2020 70.5
DPU [158] Dynamic Prototype CVPR2021 73.8
TAC-Net [156] Temporal-aware contrastive IEEE TII 77.2
DissociateAE [161] Dissociate spatio-temporal PR 2022 73.7
ITAE [60] Two-path Generative PR 2022 76.3
Two-P [32] Two-path AE ICME 2022 73.8
CCC-T Consistency Co-teaching 77.1

ance features. Simply making optical flow and appearance completely independent and

predicting them separately does not conform to the essential characteristics of video data.

Forcing the consistency of optical flow and appearance through loss functions is the key

to video representation learning. The collaborative learning approach, which fuses optical

flow information with appearance information, facilitates a more precise representation of

video content. And because the ShanghaiTech data exceeds the limit, only the first two

data sets are tested in the ablation experiment part

5.4.6 Experiment 2

The experiments are focused on ablation studies. This experiment involves the separa-

tion of various modules such as skip-connecting and Consistency Co-Teaching within the

framework for distinct training tests, followed by an assessment of accuracy in the current

dual-channel training approach. This chapter set up three groups of ablation experiments

to study the comparison between single channel and dual channel, the performance com-

parison of different components of the model, and the intrinsic relationship between the

dual channel loss hyperparameters. In the diagram in the Table 5.4,5.5 blue represents the

propagation path of appearance features, and yellow represents the propagation path of

optical flow features.

5.4.6.1 The Performance comparison of single-channel and various dual-channel
models

In this experiment, we set up four groups of models to compare the performance of single-

channel and dual-channel and their different variants: 1) prediction from frame appearance

to frame appearance; 2) prediction from appearance features and optical flow features

to appearance features; 3) prediction from appearance to appearance and optical flow to

optical flow; and 4) As well as the CCC-T framework proposed in this chapter, appearance
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Table 5.4: The Ablation Study : The Performance comparison of single-channel and various
dual-channel models, blue arrow represents the propagation path of appearance features,
and yellow arrow represents optical flow features

Number Input Output Model AUC

UCSD(Ped2)

a frames frames 97.0
b frames,flows frames 98.9
c frames,flows frames,flows 98.7
d frames,flows flows,frames 75.3

Avenue

a frames frames 70.5
b frames,flows frames 88.0
c frames,flows frames,flows 89.8
d frames,flows flows,frames 73.6

Figure 5.5: Test results on the dataset UCSD(ped2). The pink background is the area
where the real anomaly occurs; The blue curve represents the change of the anomaly score
with the time series. These Figure show that the model proposed in this contribution has
high and stable detection capabilities

predicts optical flow, and optical flow predicts appearance. The experimental results are

shown in Table 5.4.

Table 5.4 is the performance comparison between the classic single-channel model and

the multi-channel dual-channel model, 1) the initial frame appearance to the prediction/re-

construction of frame appearance; 2) the optical flow as a supplementary feature, and then

3) the separate prediction of optical flow and appearance features and reconstruction; 4) the

basic model proposed but without constraint. The final prediction accuracy of the model

shows an upward trend. Without the assistance of the Co-Teaching module and skip con-

nections, the performance of the model Init (Un-Constraint) proposed in this chapter is far

inferior to the classic model. After analysis, it was found that this is because optical flow

features lack more appearance information (such as background, color, etc.), and appear-

ance features cannot be predicted directly from optical flow. This ablation study results

are presented in Table 5.5.
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Figure 5.6: Test results on the dataset Avenue and ShanghaiTech; A represents the result
of Avenue and B is the result of ShanghaiTech. The pink background is the area where
the real anomaly occurs; The blue curve represents the prediction anomaly score with the
time series

Table 5.5: The Ablation Study: The impact of skip connections and co-teaching on the
performance of dual-channel models

Method Model UCSD(ped2) Avenue

Init (Un-constraint) 75.3 73.6

Skip(Flows-Frames) 95.4 87.2

Skip(Frames-Flows) 76.2 76.7

Fully-Skip 95.6 86.9

CCC-T 99.1 89.1

5.4.6.2 The impact of skip connections and co-teaching on the performance of
dual-channel models

In this set of ablation experiments, this chapter set up five sets of models: 1) the baseline

model of cross prediction; 2) the skip connection model that only includes appearance to

optical flow; 3) the skip connection model that only includes optical flow features to appear-

ance features. ;4) double-skip connection model; 5) the final framework CCC-T including

consistency co-teaching and double-skip connection; and compare their performances with

UCSD(ped2) and Avenue datasets. The experimental results are shown in Table 5.5.

The results in Table 5.5 show the performances of different modules in the proposed

CCC-T framework. From the Table 5.5, it can be concluded that the main reason for the
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low cross-prediction performance is that the optical flow feature has less appearance feature

information and cannot be completely restored. Therefore, in the channel where optical

flow features predict appearance features, whether there are skip connections that provide

appearance feature input has a greater impact on the performance of the Skip(Flows-

Frames) model. Table 5.5 shows that the performance of the Skip(Flows-Frames) model

containing only this core skip connection basically reaches the performance of the double-

hop connection. Secondly, whether to set up a strong co-teaching network structure also

has a great impact on performance. Therefore, each component of the CCC-T model

performance proposed in this chapter is essential.

5.4.7 Experiment 3

Experiment 3 is a visual evaluation experiment and the fluctuation of abnormal scores

between normal frames and abnormal frames.

The experimental findings from the test phase have been visually presented in Figure

5.5,Figure 5.6. From Figure 5.5, we can get that a recognizable shift in the abnormal score

is observed when confronted with irregular video frames, exhibiting a significant increase. It

shows that this phenomenon helps us effectively pinpoint anomalies in video data streams.

Exceptions in the graphical representation include various situations, particularly the use

of bicycles, skateboards, and other unconventional vehicles on sidewalks. From Figure 5.6

which shows that the current unsupervised algorithm has insufficient performance indi-

cators in the ShanghaiTech dataset and is difficult to distinguish not obvious abnormal

events. Combining the results displayed by the two effects, we can infer that the video

anomaly is not for the detection of a certain frame, but for the analysis of a segment. Since

the abnormality score in the picture fluctuates violently, it is difficult to locate abnormal

from several other frames, but considering overall situation of video or the entire segment,

abnormal events can be clearly located. This once again proves that abnormalities are

continuous and indivisible.

5.5 Conclusion and Future Work

We introduces an innovative approach to unsupervised video anomaly detection framework

CCC-T which is leveraging the inherent consistency between optical flow features and

appearance features. The framework capitalizes on the correlation properties of these

two types of features, marking the first instance of their fusion within an unsupervised

algorithm.

In this framework, we set strong consistency constraints to achieve consistent alignment

of appearance features and motion features, and introduce a novel prediction mechanism.



CHAPTER 5. CONSISTENCY-CONSTRAINED UNSUPERVISED VIDEO
ANOMALY DETECTION FRAMEWORK BASED ON CO-TEACHING 107

This mechanism is bidirectional predicting both optical flow from appearance and appear-

ance from optical flow. This ingenious strategy effectively mitigates the robustness chal-

lenges that typically afflict unsupervised learning, thereby generates enhancements in algo-

rithmic performance. Furthermore, the framework employs a co-teaching network, which

fosters coordination between the two channels. This approach skillfully averts distortions

that can arise from the neural network potent representation capacity. The empirical find-

ings the superior and more resilient performance of the algorithm proposed in this chapter,

as compared to conventional methods for predicting video frames.

In future, our team is committed to delving deeper into the placement of optical flow

features within unsupervised anomaly detection algorithms. We aim to explore the poten-

tial synergies between a broader range of unsupervised and weakly supervised algorithms,

with the goal of pushing the boundaries of anomaly detection even further. We will also

further explore the connection between abnormal events and context, hoping to combine

text sentiment analysis and video understanding to explore more accurate definitions of

abnormalities in videos.
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6.1 Implications of Findings

Video anomaly detection is a key issue in computer vision in the security field. In recent

years, due to the rise of deep learning, especially the rapid development of deep neural

networks, unsupervised video anomaly detection algorithms have made a series of new

progress. However, there are still many problems due to the current unsupervised video

anomaly detection techniques. For example, the number of normal behavior pattern types

in the normal data set is uncertain, the data quantity distribution of the normal pattern is

unbalanced; the detection and recognition of specific target behavior and appearance are

not high; the abnormal detection of traffic accidents is still in the problem of postmortem

detection. Therefore, anomaly detection for video data is still the mainstream research di-

rection in the field of computer vision. Improving the real-time performance and accuracy

of anomaly detection and designing an anomaly detection algorithm with good performance

are still important issues. The existing mainstream algorithms are divided into unsuper-

vised algorithms and weakly supervised algorithms, which have their own advantages in

robustness and versatility. How to improve the performance of video anomaly detection

algorithms is the key research content of this project. Weakly supervised algorithms are

more robust than unsupervised algorithms, but less versatile, while unsupervised algorithms

are the opposite; therefore, this thesis further optimizes and improves the existing video

anomaly detection model.

Contribution I, due to the randomness of the start of multi-instance learning, that

is, to randomly optimize the fragments with large initial outliers, and to give priority to

short-term features in temporal feature extraction, this chapter proposes weak supervision

based on temporal convolutional network optimization. detection scheme. The framework

considers the information of video sequences holistically and incorporates them into the

components of input features, providing a more reliable reference for the initiation of multi-

instance learning optimization. The TCN network structure adopted makes up for the

deficiency that C3D and i3d can only capture short video action features and effectively

improve the performance of the weakly supervised algorithm.

Contribution II, the bottleneck of the unsupervised algorithm is that it spends a lot of

weight and attention on the meaningless background information, which greatly interferes

with the extraction of normal patterns, and ignores the importance of dynamic targets. The

algorithm proposed in this chapter uses a coordinated self-attention mechanism to help the

neural network focus on meaningful objects by ignoring the background in the video during

training. Compared with the traditional unsupervised algorithm, the algorithm proposed in

this chapter is more reasonable by using a small number of important features in the video

frame as the main basis for the abnormal score. According to the experimental results, the
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algorithm we propose can avoid the detection efficiency of unimportant background noise,

that is, the algorithm in this chapter has strong anti-noise ability.

Contribution III proposes an innovative approach for unsupervised video anomaly

detection by exploiting the intrinsic consistency between optical flow features and appear-

ance features. This method further relieves unsupervised algorithms from focusing on large

areas of meaningless background information. The introduction of optical flow features and

appearance feature consistency signifies that the proposed framework pays great attention

to dynamic objects. The most important thing is that the framework utilizes the related

attributes of these two types of features to build a co-teaching learning framework, which

helps the model to establish a dual-channel prediction mechanism, in which optical flow

features and appearance features are considered equally important information, the model

can either predict the optical flow based on the appearance, or predict the appearance

based on the optical flow. This ingenious strategy effectively alleviates the robustness chal-

lenges that usually plague unsupervised learning, thereby significantly improving algorithm

performance. In both contributions, we used the three datasets(two is same as contribution

II ) for analysis and contribution III improved the detection performance by 5% compared

to contribution II.

In conclusion, the three innovative models proposed in this thesis bring performance

improvements in the field of data-driven video anomaly detection. Chapter 3 optimizes the

error at the initial startup of the neural network in contrastive learning and strengthens

the temporal features. chapter 4 optimizes the unsupervised model and uses a novel self-

attention mechanism to optimize the weight distribution rules in the model. Chapter

5 proposes a new two-channel unsupervised video anomaly detection framework, which

treats dynamic features and static features equally, and co-trains the two channels through

the co-teaching network to ensure dynamic features and static features The consistency

further improves the performance. With the deepening of research, our team has gradually

discovered the limitations of data-driven models, which will profoundly affect our future

research.

6.2 Challenges and Limitations

Video anomaly detection has always been a challenging research field. The core limitation

and challenges that existed before was the problem of abnormal data collection in appli-

cation scenarios. In fact, this problem has not been solved, but the problem has been

circumvented under the preliminary definition of abnormality (unsupervised learn-

ing framework and weakly supervised learning framework). The two detection frameworks

decrease reliance on anomalous data within the training dataset by formulating rules for ab-
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normalities. Therefore, when the weakly supervised framework based on multiple instances

and the unsupervised framework based on representation learning appear, the main chal-

lenge is shifted from abnormal data collection to accurate extraction of video data features.

Existing unsupervised models and weakly supervised models are guided by the two

frameworks to reduce the dependence on datasets. However, the emphasis of the two is

different. Weakly supervised contrastive learning emphasizes the error between normal

events and abnormal events, so its core is to segment video sequences and compare scores,

while unsupervised representation learning emphasizes the difference between abnormal

patterns and normal patterns. The core of the deviation is the comparison between the

features learned from normal data and its own real features. This leads to new limitations

of the two algorithms. For the weakly supervised algorithm, since the video packets are

packaged into instances by slices, the training features are discontinuous, which also leads

to inaccurate feature extraction, and due to the optimization goal of contrastive learning is

generally consistent. If the abnormal instance is not targeted by the neural network in the

first round, the subsequent optimization will be invalid optimization. In response to this

problem, my thesis proposes a weakly supervised framework based on the TCN network.

This framework calculates the score of the entire video sequence as a whole, and generates a

pseudo-label for each instance based on the score, reducing the occurrence of misjudgment

and improving the precision of model feature extraction. Based on my further research

we explored that the weakly supervised algorithm still needs some labelled data (which is

limited in video anomaly detection datasets); therefore, we shifted the research focus to

the unsupervised field.

The main problem I face when using unsupervised algorithms is how to accurately

represent the features of video data. The previous model has realized the prediction/recon-

struction of appearance features from only using appearance features, and mixing appear-

ance features and dynamic features to predict/reconstruct appearance features. Due to

the lack of consistency between appearance features and dynamic features, these methods

cannot accurately extract the features of video sequences. In order to solve this problem,

in my thesis I propose a new unsupervised framework based on the consistency of dynamic

features and static features in contribution III, which further improves the accuracy of

unsupervised model video feature extraction.

With the advancement of computing power and video processing technology, real-time

online processing of video data has emerged as a popular application in several domains.

Researchers will no longer be limited by computing power and precise feature extraction.

Nevertheless, there is a need to further strengthen data dependencies, redefine anomaly

criteria, and refine evaluation methods. Because the traditional unsupervised framework

and weakly supervised framework still have a strong dependence on data, they belong to the
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field of data-driven deep learning. Therefore, one of the future challenges is about the deep

definition of abnormality which can be identified as transforming the framework from

data dependence to knowledge dependence. Hence, researchers must reemphasize solid

AI and knowledge-driven approaches, treating knowledge as an essential part of solving

statistical problems.

In the field of video anomaly detection, another important consideration for anomaly

detection is knowledge discovery. The video anomaly detection problem relies on the knowl-

edge of how anomaly patterns should be defined in the current environment. This is also

the core challenge in video anomaly detection. In different scenarios, the definition of ex-

ception may be different. For example, when a car is driving on a road, it is considered

a normal event, but if the same car is driving on a sidewalk, it is considered an abnormal

event. Even though we use a lot of video processing techniques in this scene to extract

features, build an anomaly detection model to calculate anomaly scores, and finally get

correct results, this process consumes a lot of computing resources. More importantly,

most of the computing resources are not effectively used in the core definition of the event.

With the deepening of video anomaly detection research, more and more researchers

have found that in order to achieve the preparation definition of anomaly patterns, the most

important prerequisite is to complete the extraction of contextual information, including

background information, video targets, target motion, etc. Therefore, it becomes increas-

ingly difficult to completely rely on computer vision technology to complete the definition

and detection of anomalies. The fusion of interdisciplinary cross-fusion technologies such

as computer vision and natural language processing is the key to solving more practical

video anomaly detection in the future.

6.3 Future Research Directions

As we focus on technological advancements, it becomes increasingly clear that the deep

learning landscape is about to change. This transformation hinges on a shift from the

prevailing data-driven paradigm to a knowledge-driven approach. In addition, the fusion of

different disciplines is bound to be an effective and reliable solution to future multifaceted

challenges. An illustration of this trajectory can be found in the field of video anomaly

detection, where the synergy of computer vision, natural language processing, and other

fields promises to unlock unprecedented capabilities.

Currently, video anomaly detection stands as a point of research, capturing the imagi-

nation of experts across numerous domains. Video classification is a classic problem within

the field of computer vision, and many representative results have been obtained. But

recent breakthroughs in video classification technology, anchored in video understanding,
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have graced the pages of prestigious journals and conferences, including the revered CVPR

and TIP. It is within the domain of video understanding that a novel technical route ap-

peared - a pathway that ’What happened within this video?’ replaces ’What’s wrong in

this video?’

Video anomaly detection based on video scene understanding is completely different

from the definition of traditional video anomaly detection. Traditional video anomaly

detection focuses on the extraction, combination and definition of abnormal patterns of

video optical flow and appearance features, while anomaly detection based on video scene

understanding pays more attention to the context information. This exceptional paradigm

shift not only redefines the direction in which problems are solved but also change the

technology our address these question. Compared with the vision-based scheme, the scene

understanding-based scheme is more complex, but greatly reduces the dependence on data

labels and avoids noise interference. This boost ultimately translates computer vision

problems into natural language processing problems and regenerates a novel technological

trajectory.

The promise of video anomaly detection is doomed to increase complexity over time.

Cross-domain joint modeling will become the mainstream of problem-solving, and the inter-

section of NLP and CV technology will become the key to solving video anomaly detection.

The supplementary support of NLP to CV comes from two directions. The first is that the

definition of abnormality gets rid of the absolute dependence on appearance features, and

the second is that the definition of abnormality and the interpretability of the model are

enhanced. The combination of cross-fields has accelerated the application progress of video

anomaly detection technology. This fusion brings a paradigm shift, not only enabling the

migration from vision to semantics but also understanding the contextual basis of video

scenes, pushing anomaly detection to a more flexible and free level. This process forms the

cornerstone of accurate and general anomaly detection techniques by understanding the

subtle interplay between what the eye perceives and what speech conveys.

However, the process of achieving this convergence has not been without challenges.

It includes three aspects. First, the integration of NLP and CV needs to create a collab-

orative architecture that can realize the transformation of visual data into text semantic

features. The second is to design a coding framework that can effectively encapsulate the

data characteristics of these two fields and realize reverse restoration. Third and most

importantly, defining anomalies using contextual semantic information also requires the

formulation of specific anomaly semantic rules and semantic libraries. This effort requires

novel semantic architecture paradigms. In addition, the data environment for integrated

models in complex environments needs to be carefully set up. Annotated datasets encapsu-

late exceptional complexity across visual and contextual dimensions and are the lifeblood
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of knowledge-driven models. Creating semantic repositories of interdisciplinary benchmark

datasets suitable for this complex environment becomes critical.

In conclusion, the future of deep learning is poised for a major transformation, one

that forsakes the rigid confines of data-driven approaches in favour of knowledge-driven

methodologies. This shift is intricately linked with the integration of multiple disciplines,

a phenomenon that holds unparalleled potential in tackling complex problems. Video

anomaly detection stands as a beacon of this interdisciplinary synergy, showcasing how the

integration of NLP and CV can redefine traditional CV problems, ushering them into the

realm of textual understanding. This shift, however, requires the forging of new paths, the

development of pioneering architectures, and the cultivation of curated datasets. As these

pieces fall into place, the union of knowledge-driven deep learning and interdisciplinary

integration will undoubtedly chart the course for groundbreaking advancements in the

landscape of video anomaly detection and beyond.

6.4 Conclusion

Video anomaly detection is an application-oriented research direction, and it is a research

framework for the fusion and intersection of various visual tasks. In the process of studying

this problem, researchers should not specialize in one or several specific technologies but

should pay attention to the integration of multiple technologies. Just like the future research

direction mentioned in the previous section, explainable (reliable) artificial intelligence will

definitely become the trend of future research. Therefore, with a new energy injection,

video anomaly detection is still a vibrant research field, as evidenced by the continuous

publication of relevant research in top journals and conferences every year. Currently, video

classification mainly relies on traditional data mining techniques supplemented by existing

deep learning advances; however, it is difficult to go beyond the limitations of being fully

data-driven. Looking ahead, a promising avenue is the development of knowledge content-

driven neural network models, which marks an emerging avenue for future technological

exploration.



116 References



References

[1] Y. Myagmar-Ochir and W. Kim, “A survey of video surveillance systems in smart city,” Electronics, vol. 12,
no. 17, p. 3567, 2023.

[2] W. Ullah, A. Ullah, T. Hussain, K. Muhammad, A. A. Heidari, J. Del Ser, S. W. Baik, and V. H. C. De Albu-
querque, “Artificial intelligence of things-assisted two-stream neural network for anomaly detection in surveil-
lance big video data,” Future Generation Computer Systems, vol. 129, pp. 286–297, 2022.
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