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Stratégies de préconditionnement pour équations stochastiques elliptiques aux dérivées
partielles

Résumé: Nous nous intéressons à l’échantillonnage de Monte Carlo (MC) d’équations aux dérivées partielles
(EDPs) elliptiques discrétisées à coefficients variables aléatoires. La charge de calcul dominante de ces appli-
cations consiste à résoudre un grand nombre de systèmes linéaires à matrice et second membre variables. Afin
d’alléger cet effort, nous examinons, développons, implémentons et analysons des méthodologies efficaces
et scalables pour les EDPs elliptiques stochastiques qui utilisent des combinaisons appropriées de solveurs
itératifs et de préconditionneurs. Trois stratégies de préconditionnement sont développées et étudiées. Tout
d’abord, des préconditionneurs parallèles usuels sont maintenus constants et utilisés pour résoudre tous les
systèmes linéaires échantillonnés des simulations MC. Cette stratégie sert de point de comparaison pour les
deux autres méthodes. Deuxièmement, des préconditionneurs basés sur la déflation de systèmes linéaires
corrélés sont définis tout en échantillonnant le champ du coefficient aléatoire par méthode de Monte Carlo par
châınes de Markov. Différentes projections et méthodes de redémarrage de l’espace de recherche propre sont
considérées pour l’approximation de l’information spectrale. Contrairement aux projections harmoniques de
Rayleigh-Ritz, les projections de Rayleigh-Ritz évitent les applications de préconditionneur lors du recyclage
des sous-espaces de Krylov, de sorte qu’elles doivent être privilégiées pour une meilleure performance. Le
redémarrage épais et plus encore le redémarrage épais localement optimal de l’espace de recherche propre
conduisent à des diminutions significatives du nombre d’itérations, en particulier pour les systèmes linéaires
plus grands. La stratégie de préconditionnement basée sur la déflation, adaptée à l’inférence bayésienne, fonc-
tionne particulièrement bien lors de l’utilisation de préconditionneurs dont l’action se traduit par des valeurs
propres bien séparées aux extrémités du spectre. C’est le cas des préconditionneurs de Jacobi par blocs
ainsi que des préconditionneurs basés sur la décomposition de domaine, mais pas du préconditionnement
avec des multigrilles algébriques pour des équations isotropes. Troisièmement, nous partitionnons l’espace
stochastique latent du champ du coefficient aléatoire en cellules de Voronöı, dont chacune est représentée
par un champ du coefficient centröıdal sur la base duquel un préconditionneur est défini qui est utilisé pour
résoudre les systèmes linéaires échantillonnés dont les champs du coefficient correspondants sont à l’intérieur
de la cellule. Nous adoptons donc une représentation compacte du champ du coefficient aléatoire appelée
quantifieur de Voronöı. Nous considérons différentes distributions de champs du coefficient centröıdaux
et nous étudions les propriétés des stratégies de préconditionnement sous-jacentes en termes de nombre
d’itérations moyen pour les simulations séquentielles et d’équilibrage de charge pour les simulations par-
allèles. Une distribution en particulier, qui minimise la distance moyenne entre le champ du coefficient et
sa représentation compacte, minimise le nombre moyen d’itérations. Cette distribution est particulièrement
adaptée aux simulations séquentielles. Une autre distribution est considérée qui conduit à des fréquences
d’attribution égales pour les cellules, si bien qu’un même nombre de systèmes linéaires est résolu avec chaque
préconditionneur du quantifieur. Cette stratégie réduit la répartition du nombre moyen d’itérations parmi
les préconditionneurs, de sorte qu’elle est plus adaptée aux simulations parallèles. Enfin, une distribu-
tion basée sur des grilles déterministes avec une dimension stochastique qui augmente avec le nombre de
préconditionneurs est proposée. Cette dernière distribution permet de s’affranchir des calculs préliminaires
nécessaires pour déterminer la dimension optimale de l’espace stochastique approximatif pour un nombre
donné de préconditionneurs.
Mots-clés : EDPs stochastiques, méthodes des sous-espaces de Krylov, déflation, quantifieurs de Voronoi
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Preconditioning strategies for stochastic elliptic partial differential equations

Abstract: We are interested in the Monte Carlo (MC) sampling of discretized elliptic partial differential
equations (PDEs) with random variable coefficients. The dominant computational load of such applications
consists of solving large numbers of linear systems with variable matrix and right-hand side. As a means
to alleviate this effort, we review, develop, implement and analyze efficient and scalable methodologies
for stochastic elliptic PDEs that make use of appropriate combinations of iterative solvers and precondi-
tioners. Three preconditioning strategies are developed and investigated. First, state-of-the-art parallel
preconditioners are kept constant and used to solve all the sampled linear systems of MC simulations. This
straightforward strategy serves as a point of comparison for the two other methods to improve upon. Second,
preconditioners based on the deflation of correlated linear systems are defined while sampling the random
coefficient field by Markov chain Monte Carlo. Different projections and restarting methods of the eigen-
search space are considered for the online approximation of spectral information. As opposed to harmonic
Rayleigh-Ritz projections, Rayleigh-Ritz projections are shown to avoid preconditioner applications when re-
cycling the Krylov subspaces so that they should be favored for a better performance. Both the thick-restart
and even more so the locally optimal thick-restart restarting of the eigen-search space lead to significant
decreases of the number of solver iterations, particularly for larger linear systems. The preconditioning
strategy based on deflation, which is adapted for Bayesian inference, works particularly well when using
preconditoners whose action results in well-separated eigenvalues at the extremities of the spectrum. This
is the case of block Jacobi preconditioners as well as preconditioners based on domain decomposition, but
not when preconditioning with algebraic multigrids in the case of isotropic equations. Third, we partition
the latent stochastic space of the random coefficient field into Voronoi cells, each of which is represented
by a centroidal coefficient field on the basis of which a distinct preconditioner is defined which is used to
solve the sampled linear systems whose corresponding coefficient fields lie within the cell. As such, we adopt
a compact representation of the random coefficient field referred to as a Voronoi quantizer. We consider
different distributions of centroidal coefficient fields, and we investigate the properties of the underlying
preconditioning strategies in terms of expected number of solver iterations for sequential simulations, and
of load balancing for parallel simulations. One distribution in particular, which minimizes the average dis-
tance between the coefficient field and its compact representation, minimizes the expected number of solver
iterations. This distribution yields the smallest number of expected number of solver iterations so that it
is particularly adapted for sequential simulations. Another distribution is considered which leads to equal
attribution frequencies for all the cells, i.e., approximately the same number of linear systems is solved with
each preconditioner of the quantizer. Our experiments show that this strategy yields a smaller spread of
the expected number of solver iterations among the preconditioners so that it is more adapted for parallel
simulations. Finally, a distribution based on deterministic grids with a stochastic dimension which increases
with the number of preconditioners is proposed. This last distribution allows to bypass preliminary com-
putations necessary to determine the optimal dimension of the approximating stochastic space for a given
number of preconditioners.
Keywords: Stochastic PDEs, Krylov subspace methods, deflation, Voronoi quantizers
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Ȧu̇′ = Π̇

T
L−1b, CG(Π̇

T
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Pauwels, Vincent Darrigrand, Yongseok Jang, Rabeb Selmi, Jean Baptiste Latre, Carola
Kruse, Anthony Weaver, Selime Gurol and Mbarek Fares as well as Iain Duff and Ulrich
Ruede. Finally, I would like to thank Pietro Congedo, Olivier Coulaud, Julien Langou,
Anthony Nouy and Nicole Spillane for agreeing to join my thesis committee, to read and
comment my thesis as well as to attend and participate to my defense.

XVII





Résumé étendu

Les méthodes de Monte Carlo (MC) sont omniprésentes dans la quantification des in-
certitudes des systèmes physiques aléatoires. Malgré leur robustesse, ces méthodes de-
viennent trop coûteuses lorsqu’elles cherchent à calculer des estimations très précises de
quantités d’intérêt dans de grands modèles informatiques. En particulier, lorsqu’il s’agit
d’équations différentielles partielles (EDPs) elliptiques discrétisées avec des coefficients
variables aléatoires, le calcul d’estimations précises d’une quantité d’intérêt repose sur
l’échantillonnage d’un grand nombre de champs de coefficients, résultant en autant de
systèmes linéaires creux dont les résolutions itératives dominent le temps de calcul global
de la quantification de l’incertitude. Afin d’alléger cette charge de calcul, les solveurs
itératifs classiques, qui sont bien compris dans le domaine spatial, doivent être adaptés
pour exploiter des structures particulières dans l’espace stochastique. Dans ce contexte,
l’objectif principal de cette thèse est d’examiner, développer, mettre en œuvre et anal-
yser des méthodologies efficaces et scalables pour les EDPs elliptiques stochastiques qui
utilisent des combinaisons appropriées de solveurs itératifs et de préconditionneurs.

Nous considérons trois stratégies de préconditionnement. Tout d’abord, des préconditionneurs
parallèles usuels sont maintenus constants et utilisés pour résoudre tous les systèmes
linéaires échantillonnés par simulations de MC. Deuxièmement, des préconditionneurs
basés sur la déflation de systèmes linéaires corrélés sont définis lors de l’échantillonnage
du champ du coefficient aléatoire par méthode de Monte Carlo par châınes de Markov
(MCMC). Troisièmement, nous partitionnons l’espace stochastique latent du champ du
coefficient aléatoire en cellules, chacune étant représentée par un préconditionneur con-
stant qui est utilisé pour résoudre les systèmes linéaires échantillonnés dont les champs
de coefficient correspondants se trouvent dans la cellule.

Préconditionnement basé sur un seul préconditionneur

constant

La stratégie de préconditionnement la plus simple pour les résolutions linéaires issues de
la discrétisation spatiale d’une EDP elliptique et de l’échantillonnage de son coefficient
variable aléatoire consiste à définir un seul préconditionneur constant construit de manière
à préconditionner au mieux la résolution itérative d’un champ de coefficient particulier,
c’est-à-dire , la référence. Un moyen d’obtenir les meilleures performances moyennes
consiste à laisser la référence être un représentant central du champ du coefficient aléatoire,
par exemple la moyenne ou la médiane.

Différents préconditionneurs qui ont la particularité d’être bien adaptés à une appli-
cation parallèle sont considérés. Ce sont
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• le Jacobi par blocs (bJ),
• la décomposition de domaine (DD) à un niveau,
• la DD à deux niveaux,
• la multigrille algébrique (AMG),

dont certains sont implémentés à l’aide du langage de programmation Julia. Parmi ces
préconditionneurs, certains sont connus pour être scalables lorsqu’ils sont conçus pour
le système linéaire sur lequel ils sont utilisés. C’est le cas des préconditionneurs DD à
deux niveaux ainsi que des AMG. Cependant, le comportement de ces préconditionneurs
lorsqu’ils sont utilisés pour d’autres systèmes linéaires à coefficients variables différents
de la référence restent inconnus, notamment dans le cadre de simulations stochastiques
dans lesquelles les réalisations de champs du coefficient peuvent être très différentes
les unes des autres. Ici, nous cherchons à caractériser et analyser la scalabilité de tels
préconditionneurs. Ces résultats sont également destinés à fournir une base de compara-
ison pour les autres stratégies de préconditionnement.

Préconditionnement basé sur la déflation de systèmes

linéaires avec des châınes de Markov de champs de

coefficient

La stratégie de préconditionnement basée sur la déflation est bien adaptée aux applications
dans lesquelles l’échantillonnage par MCMC est une nécessité. C’est par exemple le
cas dans le contexte de l’inférence bayésienne du champ de coefficient, c’est-à-dire la
modélisation inverse. L’échantillonnage des champs de coefficient par MCMC induit des
corrélations entre les matrices successives et les seconds membres, respectivement. Cette
corrélation se manifeste dans les valeurs propres et les vecteurs propres des matrices
successives échantillonnées. En particulier, les vecteurs propres les moins dominants,
qui correspondent aux valeurs propres gênantes des résolutions itératives, peuvent être
approximés avec un minimum d’effort lors du recyclage des informations du sous-espace
de Krylov d’une résolution itérative à une autre. À leur tour, ces informations sont
utilisées pour développer un préconditionneur (singulier) basé sur la déflation [140] du
système linéaire suivant.

La stratégie basée sur la déflation a un effet plus fort lorsqu’elle est utilisée avec
des préconditionneurs dont l’action laisse des valeurs propres suffisamment bien séparées
aux extrémités du spectre. Cet effet s’explique parce que les valeurs propres extrémales
sont alors faciles à approximer, mais aussi parce que la déflation des valeurs propres
extrémales conduit alors à une diminution plus importante du conditionnement. Les
préconditionneurs bJ et DD conduisent à des valeurs propres bien séparées dans la par-
tie la moins dominante du spectre pour les EDPs elliptiques discrétisées. En tant que
telle, cette stratégie peut être considérée comme un outil complémentaire à l’approche
de préconditionnement constant lors de la résolution d’EDPs elliptiques stochastiques
dont les systèmes linéaires sont échantillonnés avec des châınes de Markov de champs
de coefficient. En revanche, les préconditionneurs AMG condensent plus efficacement le
spectre des EDPs elliptiques discrétisées. En tant que tels, les préconditionneurs AMG
sont moins sujets à l’amélioration de la convergence par déflation, car les valeurs pro-
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pres moins bien séparées aux extrémités du spectre sont non seulement plus difficiles à
approximer, mais leur déflation entrâıne également des diminutions moins significatives
du conditionnement. Compte tenu du coût additionnel de l’application de la déflation,
cette stratégie n’est pas recommandée en combinaison avec un préconditionneur AMG
pour résoudre l’équation de Poisson stochastique avec un coefficient isotrope variable.
La déflation avec un préconditionneur AMG est cependant plus adaptée pour résoudre
l’équation de Poisson stochastique avec un coefficient aléatoirement anisotrope qui donne
des valeurs propres extrêmes plus séparées. Toujours avec des coefficients isotropes, une
autre application appropriée de la déflation avec les préconditionneurs AMG pourrait être
l’utilisation de schémas de discrétisation non standard tels que les approches de Galerkin
discontinues. En effet, il a été montré dans [100] que pour la méthode hybridizable discon-
tinuous Galerkin (HDG), les préconditionneurs AMG standards ne sont pas bien adaptés
dans la mesure où ils ne compactent pas efficacement le spectre.

La déflation des systèmes linéaires corrélés est effectuée avec des vecteurs propres
approximatifs obtenus en recyclant l’information spectrale tout au long de la résolution
itérative par méthode de Krylov. Différentes projections sont considérées pour l’approximation
des vecteurs propres les moins dominants, à savoir les méthodes de Rayleigh-Ritz (RR) et
de Rayleigh-Ritz harmonique (HR). Nous détaillons comment construire efficacement les
problèmes réduits de valeurs propres généralisées à la base de l’application des méthodes
de projection RR et HR. Les méthodes de projection RR ont l’avantage que, contrairement
aux projections HR, elles ne nécessitent aucune application de préconditionneur pour as-
sembler le problème réduit aux valeurs propres. Différentes stratégies sont présentées
et utilisées pour redémarrer l’espace de recherche propre tout au long de la résolution
linéaire, à savoir le redémarrage épais (TR) et le redémarrage épais localement optimal
(LO-TR). Le redémarrage de l’espace de recherche propre permet de tirer parti d’une
plus grande partie des informations spectrales générées lors de la résolution linéaire.
Les deux stratégies de redémarrage donnent de meilleures approximations de vecteurs
propres et ont finalement un impact sur la déflation pour produire moins d’itérations
de solveur. Lorsqu’elle est utilisée conjointement avec des projections RR, la stratégie
de redémarrage LO-TR donne les meilleurs résultats, en particulier pour les systèmes
linéaires plus grands, auquel cas nous avons observé jusqu’à une différence de 2X en ter-
mes de nombre d’itérations de solveur par rapport au cas sans stratégie de redémarrage.

L’échantillonnage des variables aléatoires latentes du champ de coefficient par MCMC
induit une certaine corrélation qui entrâıne des erreurs plus élevées des estimateurs statis-
tiques tels que la moyenne de l’échantillon. En d’autres termes, il existe un sur-coût
d’échantillonnage associée au MCMC pour l’estimation des quantités d’intérêt par rap-
port à l’échantillonnage direct par MC. Par conséquent, la stratégie de préconditionnement
basée sur la déflation qui s’appuie sur l’échantillonnage MCMC du champ du coeffi-
cient aléatoire n’est pas une alternative viable à l’échantillonnage MC direct avec un
préconditionneur constant.
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Préconditionnement basé sur les quantifieurs de Voronoi

des champs de coefficient

Dans le cas où l’EDP stochastique est traitée par échantillonnage MC direct du champ
du coefficient aléatoire, on considère avoir un ensemble fini de préconditionneurs con-
stants. Chaque préconditionneur est défini sur la base d’un champ de coefficient cen-
tröıdal associé. Précisément, nous nous appuyons sur une partition de l’espace stochas-
tique latent du champ du coefficient aléatoire en cellules de Voronoi. Chaque cellule est
associée à un champ de coefficient centröıdal. Lors de l’échantillonnage du champ du
coefficient aléatoire, chaque réalisation du système linéaire est préconditionnée avec le
préconditionneur associé au champ du coefficients centröıdal qui est le plus proche, selon
une certaine distance, de la réalisation du champ du coefficient. Ainsi, nous adoptons
une représentation compacte du champ du coefficient aléatoire appelée quantifieur. La
définition d’un quantifieur de Voronoi du champ du coefficient est spécifiée à travers un
ensemble fini de champs de coefficient centröıdaux. Nous considérons différentes manières
de définir ces champs de coefficient centröıdaux et nous étudions les propriétés de leurs
stratégies de préconditionnement sous-jacentes en termes de nombre moyen d’itérations du
solveur pour les simulations séquentielles et de répartition de charge pour les simulations
parallèles.

La première distribution de champs centröıdaux est définie de manière à minimiser la
distance moyenne entre le champ de coefficient échantillonné et sa représentation com-
pacte. Cette approche, qui définit un quantifieur stationnaire, produit le plus petit nombre
moyen d’itérations de solveur. En tant que tel, elle est particulièrement adaptée aux simu-
lations séquentielles dans lesquelles les variables aléatoires latentes du champ de coefficient
sont échantillonnées au préalable, attribuées à leurs cellules de Voronoi correspondantes
et enregistrées sur disque pour plus tard. La simulation séquentielle consiste alors à
charger un à un les préconditionneurs en mémoire, à lire toutes les réalisations associées
de variables aléatoires latentes, à assembler et à résoudre les systèmes linéaires associés
avant de charger le préconditionneur suivant. La deuxième distribution de champs cen-
tröıdaux est également définie comme un quantifieur stationnaire, mais une transformation
spécifique est considérée de manière à produire des fréquences d’attribution approxima-
tivement constantes. Autrement dit, chaque préconditionneur est utilisé pour résoudre
approximativement le même nombre de systèmes linéaires. Nos expériences montrent
que cette stratégie donne une plus petite répartition du nombre moyen d’itérations du
solveur parmi les préconditionneurs. Ainsi, une simulation parallèle qui chargerait si-
multanément tous les préconditionneurs sur des mémoires distribuées se terminerait plus
rapidement avec cette distribution qu’avec la distribution de la première approche. Ces
deux premières distributions de champs centröıdaux nécessitent de spécifier a priori la
dimension de l’espace stochastique, c’est-à-dire de spécifier la dimension de la variable
aléatoire vectorielle latente de l’approximation du champ de coefficient. Cependant, nos
expériences montrent que la dimension optimale de l’espace stochastique approximatif
dépend du nombre de préconditionneurs. Pour peu de préconditionneurs, une plus petite
dimension d’approximation de l’espace stochastique donne moins d’itérations du solveur,
tandis que de plus grandes dimensions de l’approximation de l’espace stochastique devien-
nent nécessaires pour réduire le nombre d’itérations du solveur lors de l’utilisation de plus
de préconditionneurs. En pratique, trouver la dimension optimale de l’espace stochas-
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tique approximatif pour un nombre donné de préconditionneurs peut nécessiter des cal-
culs préliminaires. Une alternative naturelle à ces deux premières distributions de champs
centröıdaux est de définir une grille déterministe sur un espace stochastique dont la dimen-
sion augmente avec le nombre de préconditionneurs—c’est notre troisième distribution de
champs centröıdaux. Nos expériences montrent que cette approche maintient toujours une
dimension quasi-optimale de l’espace stochastique d’approximation en ce sens qu’elle pro-
duit toujours un petit nombre satisfaisant d’itérations de solveur et ne semble jamais stag-
ner alors que nous continuons à augmenter le nombre de préconditionneurs. Ainsi, cette
troisième distribution de champs centröıdaux donne une stratégie de préconditionnement
pour laquelle il n’est pas nécessaire de faire une étude préalable pour connâıtre la dimen-
sion optimale de l’espace stochastique approché.

Enfin, nous tirons parti du fait que, même sur un système de mémoire distribuée,
chaque nœud est susceptible d’avoir suffisamment de mémoire pour stocker plusieurs
des préconditionneurs simultanément. Par conséquent, en utilisant algorithme k-means
ou d’apprentissage compétitif, des groupes de petits nombres de préconditionneurs sont
formés dont les champs de coefficient centröıdaux sont proches dans un certain sens.
Chacun de ces clusters de champs centröıdaux est utilisé pour former une interpolation
locale de préconditionneurs basée sur l’approche décrite dans [168]. C’est-à-dire que le
préconditionnement proposé correspond alors à une projection optimale dans l’étendue
linéaire de tous les préconditionneurs voisins d’un cluster donné. Cette méthode est ap-
pliquée avec des tailles de cluster relativement petites mais n’apporte aucune amélioration
en termes d’itérations de solveur par rapport aux stratégies de préconditionnement origi-
nales basées sur des quantifieurs de Voronoi.
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Extended summary

Monte Carlo (MC) methods are ubiquitous to the quantification of uncertainties in ran-
dom physical systems. Despite their robustness, these methods become overly expensive
when seeking to compute highly accurate estimates of quantities of interest (QoI) in large
computational models. In particular, when dealing with discretized elliptic partial differ-
ential equations (PDEs) with random variable coefficients, the computation of accurate
estimates of a QoI relies on sampling large numbers of coefficient fields, resulting in as
many sparse linear systems whose iterative solves dominate the overall computing time
of the uncertainty quantification (UQ). As a means to alleviate this computational load,
classical iterative solvers, which are well understood in the spatial domain, need to be
adapted to exploit particular structures in the stochastic space. In this context, the main
goal of this thesis is to review, develop, implement and analyze efficient and scalable
methodologies for stochastic elliptic PDEs that make use of appropriate combinations of
iterative solvers and preconditioners.

We consider three preconditioning strategies. First, state-of-the-art parallel precon-
ditioners are kept constant and used to solve all the sampled linear systems of MC sim-
ulations. Second, preconditioners based on the deflation of correlated linear systems
are defined while sampling the random coefficient field by Markov chain Monte Carlo
(MCMC). Third, we partition the latent stochastic space of the random coefficient field
into cells, each of which is represented by a constant preconditioner which is used to solve
the sampled linear systems whose corresponding coefficient fields lie within the cell.

Preconditioning based on a single constant precondi-

tioner

The most straightforward preconditioning strategy for the linear solves which arise from
the spatial discretization of an elliptic PDE and the sampling of its random variable coef-
ficient consists of defining a single constant preconditioner built so as to best precondition
the iterative solve of a particular coefficient field, i.e., the reference. A means towards
best average performances is to let the reference be a central representative of the random
coefficient field, e.g., the mean or the median.

Different preconditioners that have the particularity of being well-suited for parallel
application are considered. Those are

• block Jacobi (bJ),
• one-level domain decomposition (DD),
• two-level DD,
• algebraic multigrid (AMG),
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some of which are implemented using the Julia programming language. Among these
preconditioners, some are known to be scalable when designed for the very linear sys-
tem they are used on. This is the case of the two-level DD preconditioners as well as
AMG. However, the behavior of these preconditioners when used for other linear systems
with variable coefficients different from the reference remain unknown, particularly in the
context of stochastic simulations in which the coefficient field realizations can be very
different from one to another. Here, we aim to characterize and analyze the scalability of
such preconditioners. These results are also intended to provide a basis of comparison for
the other preconditioning strategies.

Preconditioning based on the deflation of linear sys-

tems with Markov chains of coefficient fields

The preconditioning strategy based on deflation is well-suited for applications in which
sampling by MCMC is a necessity. This is for instance the case in the context of Bayesian
inference of the coefficient field, i.e., inverse modeling. Sampling coefficient fields by
MCMC induces correlations between successive matrices and right-hand sides, respec-
tively. This correlation manifests itself in the eigenvalues and eigenvectors of successively
sampled matrices. In particular, the least dominant eigenvectors, which correspond to
hindering eigenvalues of the iterative solves, can be approximated with minimal effort
upon recycling Krylov subspace information from one iterative solve to the next. In turn,
this information is used to develop a (singular) preconditioner based on the deflation [140]
of the subsequent linear system.

The strategy based on deflation has a stronger effect when used with precondition-
ers whose action leaves sufficiently well-separated eigenvalues at the extremities of the
spectrum. This effect is explained because the extremal eigenvalues are then easy to ap-
proximate, but also because the deflation of extremal eigenvalues then leads to a more
significant decrease of the condition number. Both bJ and DD preconditioners lead to
well-seperated eigenvalues in the least-dominant part of the spectrum for discretized el-
liptic PDEs. As such, this strategy can be seen as a complementary tool to the constant
preconditioning approach when solving stochastic elliptic PDEs whose linear systems are
sampled with Markov chains of coefficient fields. On the other hand, AMG precondi-
tioners more efficiently condense the spectrum of discretized elliptic PDEs. As such,
AMG preconditioners are less prone to improvement of convergence by deflation, because
the less well-separated eigenvalues at the extremeties of the spectrum are not only more
difficult to approximate, but also their deflation yields less significant decreases of the con-
dition number. Then, considering the additional cost of applying deflation, this strategy
is not recommended in combination with an AMG preconditioner to solve the stochas-
tic Poisson equation with a variable isotropic coefficient. Deflation along with an AMG
preconditioner is however more suited to solve the stochastic Poisson equation with a
randomly anisotropic coefficient which yields more well-seperated extremal eignevalues.
Still with isotropic coefficients, another suitable application of deflation with AMG pre-
conditioners might be when using involved discretization schemes such as discontinuous
Galerkin approaches. Indeed, it was shown in [100] that for hybridizable discontinuous
Galerkin (HDG) methods, standard AMG preconditioners are not well-adapted as they
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do not efficiently compact the spectrum.

The deflation of the correlated linear systems is carried out with approximate eigenvec-
tors obtained by recycling spectral information troughout the iterative solve by a Krylov
method. Different projections are considered for the approximation of least dominant
eigenvectors, namely Rayleigh-Ritz (RR) and harmonic Rayleigh-Ritz (HR) methods.
We detail how to efficiently build reduced generalized eigenvalue problems at the root of
the application of the RR and HR projection methods. RR projection methods have the
advantage that, contrarily to HR projections, they do not require any preconditioner appli-
cation to assemble the reduced eigenvalue problem. Different strategies are presented and
used to restart the eigen-search space throughout the linear solve, namely thick-restart
(TR) and locally optimal thick-restart (LO-TR). Restarting the eigen-search space al-
lows to leverage more of the spectral information generated during the linear solve. Both
restarting strategies yield better eigenvector approximations and enventually impact the
deflation to yield fewer solver iterations. When used in conjunction with RR projections,
the LO-TR restarting strategy yields the best results, especially for larger linear systems,
in which case we observed up to a 2X difference in terms of numbers of solver iterations
compared to not using any restarting strategy.

Sampling the latent random variables (RVs) of the coefficient field by MCMC induces
some correlation which results in higher errors of statistical estimators such as the sample
mean. In other words, there is a sampling overhead associated with MCMC for the estima-
tion of QoIs in comparison to directly sampling by MC. Consequently, the preconditioning
strategy based on deflation which relies on MCMC sampling of the random coefficient field
is not a viable alternative to direct MC sampling with a constant preconditioner.

Preconditioning based on Voronoi quantizers of coef-

ficient fields

In the case where the stochastic PDE is treated by direct MC sampling of the random
coefficient field, we consider having a pool of constant preconditioners. Each precon-
ditioner is defined on the basis of an associated centroidal coefficient field. Precisely,
we rely on a partition of the latent stochastic space of the random coefficient field into
Voronoi cells. Each cell is associated to a centroidal coefficient field. Upon sampling the
random coefficient field, each realization of the linear system is preconditioned with the
preconditioner associated with the centroidal coefficient field which is the closest, accord-
ing to some distance, to the coefficient field realization. As such, we adopt a compact
representation of the random coefficient field referred to as a quantizer. The definition of
a Voronoi quantizer of the coefficient field is specified through a finite set of centroidal
coefficient fields. We consider different ways of defining these centroidal coefficient fields,
and we investigate the properties of their underlying preconditioning strategies in terms
of expected number of solver iterations for sequential simulations, and of load balancing
for parallel simulations.

The first distribution of centroidal fields is defined so as to minimize the average dis-
tance between the sampled coefficient field and its compact representation. This approach,
which defines a stationary quantizer, yields the smallest number of expected number of
solver iterations. As such, it is particularly adapted for sequential simulations in which the

XXVII



latent RVs of the coefficient field are sampled beforehand, attributed to their correspond-
ing Voronoi cells, and saved on disk for later. The sequential simulation then consists of
loading preconditioners one-by-one on memory, reading all the associated realizations of
latent RVs, assembling and solving the associated linear systems before loading the next
precondtioner. The second distribution of centroidal fields is also defined as a stationary
quantizer, but a specific transformation is considered so as to yield approximately con-
stant attribution frequencies. That is, each preconditioner is used to solve approximately
the same number of linear systems. Our experiments show that this strategy yields a
smaller spread of the expected number of solver iterations among the preconditioners.
As such, a parallel simulation which would simultaneously load all the preconditioners
on distributed memories would finish quicker with this distribution than with the distri-
bution of the first approach. These first two distributions of centroidal fields require to
specify the dimension of the stochastic space a priori, i.e., to specify the dimension of the
latent vectorial RV of the coefficient field approximation. However, our experiments show
that the optimal dimension of the approximating stochastic space depends on the num-
ber of preconditioners. For few preconditioners, a smaller dimension of approximating
stochastic space yields fewer solver iterations, whereas larger dimensions of approximat-
ing stochastic space become necessary to reduce the number of solver iterations when
using more preconditioners. In practice, finding the optimal dimension of the approxi-
mating stochastic space for a given number of preconditioners may require preliminary
computations. A natural alternative to these two first distributions of centroidal fields
is to define a deterministic grid on a stochastic space whose dimension increases with
the number of preconditioners—this is our third distribution of centroidal fields. Our
experiments show that this approach always maintain a near-optimal dimension of the
approximating stochastic space in that it always yields satisfactorily small numbers of
solver iterations and never seems to stagnate as we keep increasing the number of pre-
conditioners. As such, this third distribution of centroidal fields yields a preconditioning
strategy for which one does not need to do a preliminary study to find out the optimal
dimension of the approximating stochastic space.

Lastly, we leverage the fact that, even on a distributed memory system, each node
is likely to have enough memory to store several of the preconditioners simultaneously.
Therefore, using either a k-means or a competitive learning algortihm, clusters of small
numbers of preconditioners are formed whose centroidal coefficient fields are close in some
sense. Each such cluster of centroidal fields is used to form a local interpolation of pre-
conditioners based on the approach in [168]. That is, the preconditioning offered then
corresponds to an optimal projection in the linear span of all the neighboring precondi-
tioners of a given cluster. This method is applied with relatively small cluster sizes but
not does yield any improvement in terms of solver iterations compared to the original
preconditioning strategies based on Voronoi quantizers.
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1.1 Scientific context

1.1.1 Motivation

A large number of phenomena in physics, engineering, biology and finance can be modeled
using partial differential equations (PDEs), that is, using equations which compute func-
tions between various partial derivatives of multivariate functions. In particular, elliptic
PDEs exhibit a certain degree of regularity and smoothness. They are generally used to
model phenomena in which a system reaches a stable equilibrium. Examples of elliptic
PDEs are the Laplace equation, the Poisson equation and, depending on the formulation,
possibly even the Schrödinger equation. Standard Elliptic PDEs are deterministic, how-
ever, there exist situations in which either the forcing term, the boundary conditions or
even the coefficient field of a an elliptic PDE are random. We refer to such equations
as stochastic elliptic PDEs. Generally, we are interested in PDEs with a probabilistic
description of uncertainty in the input data such that the model problem has the form

L(κ)u = f in Ω (1.1)

where L is an elliptic operator in a domain Ω ⊂ Rd, which depends on some coefficient
κ(x, θ), with x ∈ Ω, θ ∈ Θ, and Θ indicates the set of possible outcomes. Similarly, the
forcing term f = f(x, θ) can be assumed random as well.

For the purpose of this work, we focus on the Poisson equation with a variable random
coefficient. That is, we specifically consider the problem of finding u : Ω × Θ → R such
that

∇ · [κ(x, θ)∇u(x, θ)] = − f(x) ∀ x ∈ Ω (1.2)

u(x, θ) = g(x) ∀ x ∈ ∂Ω (1.3)

is almost surely satisfied. A number of problems in physics and mechanics are modeled
by Eq. (1.2); u may represent for instance a temperature, an electro-magnetic potential or
the displacement of an elastic membrane fixed at the boundary under a transversal load
of intensity f . A solution to Eq. (1.2) almost surely exists and is unique if the random
coefficient field κ is almost surely bounded from below and above almost everywhere over
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Ω. A detailed analysis of the existence and uniqueness of solutions to Eq. (1.2) can be
found in [153].

1.1.2 State-of-the-art

The computation of statistics of the random solution to Eq. (1.2) has previously been
done following two types of approaches, namely the approach based on functional repre-
sentations of the random solution [12, 7], and the approach based on the Monte Carlo
sampling of the solution [22, 94]. Although the present work focuses on the latter, we
provide a bit of perspective by briefly introducing the two types of approaches.

1.1.2.1 Approaches based on functional representations

The approaches based on functional representations aim first at finding a finite represen-
tation of the random solution. In a second phase, the statistics of the solution can be
evaluated by post-processing the available functional representation. Even prior to achiev-
ing the first step of these approaches, one needs to obtain a representation of the random
coefficient field using a finite-dimensional probabilistic model. This representation is usu-
ally achieved through the use of a finite-dimensional latent random vector ξ(θ) in order to
parameterize some functional approximation of the random coefficient field. Perhaps the
most common approximation is the truncated Karhunen-Loève expansion [73, 96], which
we later present in Section 1.2. Then, the parametrization of the coefficient field enables
the use of a functional representation of the random solution in the form of a spectral
expansion

u(x, θ) ≈ uM(x, ξ(θ)) :=
M∑

α=0

uα(x)Ψα(ξ(θ)). (1.4)

Once equipped with such an expansion, one can sample this representation as a means to
compute statistics of the solution, or, alternatively, post-process the information inher-
ently contained in the expansion [15, 79, 152].

Polynomial chaos (PC) expansions [52, 85] are a class of methods based on functional
representations similar to Eq. (1.4) which have been used extensively to characterize the
uncertainty of stochastic elliptic PDEs [162, 30, 29, 5, 109]. The basis {Ψα}Mα=0 of ran-
dom functions is set a priori as a finite polynomial basis, see generalized PC [167], so
that in order to obtain a PC expansion, one is left to compute the deterministic coeffi-
cients {uα}Mα=0. These coefficients can be computed using either intrusive, i.e., Galerkin
methods [36, 6, 4], regression [16, 15, 152, 1] or collocation [5, 109, 10].

The number M + 1 of terms in the PC expansion depends on the dimension of the
random latent vector used to represent the coefficient field. For a given level of represen-
tation error of the coefficient field, the dimension of the latent random vector increases as
the correlation length of the coefficient field decreases. Meanwhile, the number of terms
in the PC expansion increases very rapidly with the number of random variables, i.e.,
the dimension of ξ. This effect is commonly known as the curse of dimensionality. Con-
sequently, the cost of building a functional representation of the random solution of the
form of Eq. (1.4) can be prohibitively expensive while the memory requirement can also
be very high, especially when the coefficient field is highly variable. An alternative is then
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to use low-rank representations which can be achieved by proper generalized decomposi-
tion [110, 112, 111]. Low-rank representations allow to achieve a linear dependence of M
on the dimension of the latent random vector of the coefficient field making the approach
more suitable for problems whose coefficient field require a parametrization based on large
numbers of random variables.

In this work, we will not be using approaches based on functional representations.
Besides being more involved than the approaches based on Monte Carlo sampling, another
drawback of the approaches based on functional representations is that the representation
error induced by the finite spectral expansion of the form given by Eq. (1.4) results into
errors of the computed statistics which may govern the error of the computed estimators.

1.1.2.2 Approaches based on Monte Carlo sampling

The approaches based on Monte Carlo (MC) sampling consist of computing statistics using
solutions to Eq. (1.2) for given realizations of the coefficient field. Each solution realization
u(·, θ) is the solution of a deterministic elliptic PDE associated with the corresponding
realization κ(·, θ) of the coefficient field. A common example of statistic computed by MC
sampling is the average estimator of expectation of some quantity of interest h(u(x, ·))
given by

ℓ̂(x) :=
1

N

∑

θ∈Θ̂

h(u(x, θ))

where Θ̂ ⊂ Θ is such that N = |Θ̂|. In order to get the solution u(·, θ), we need to solve
a deterministic elliptic PDE which, upon spatial discretization with n degrees of freedom
as later described in Section 1.4, yields an n-by-n SPD linear system of the form

A(θ)u(θ) = b(θ). (1.5)

We sometimes express A as a function of the coefficient field, i.e., A(κ). Hence, solving

for the solution u(·, θ) for all θ ∈ Θ̂, which is necessary so as to compute the statistic ℓ̂(·),
boils down to solving multiple linear systems of the form given by Eq. (1.5).

The approaches based on MC sampling are easier to deploy than the approaches based
on functional representations in that they do not require to build a spectral expansion prior
to computing statistics. However, although the approaches based on MC sampling are
reliable in that they do not induce any representation error, their main drawback is their
low rate of convergence. Indeed, the error |E[h(u(x, ·))]− ℓ̂(x)| is O(

√
V[h(u(x, ·))]/N), so

that improving the accuracy of the estimator ℓ̂ requires a significant increase of N . Other
sampling methods exist, namely the multi-level Monte Carlo (MLMC) method [53] and
quasi Monte Carlo (QMC) methods [38], which attempt to improve on the convergence
rate of traditional MC methods. In paritucular, approaches based on MLMC and QMC
sampling have been applied to stochastic elliptic PDEs [28, 9, 64, 57, 82, 128].

In order for statistics such as ℓ̂ to be accurate estimators, large numbers of realizations
need to be considered. Consequently, large numbers of linear systems of the form of
Eq. (1.5) need to be solved. However, many applications require fine spatial discretizations
so as to achieve accurate solutions for every single realization. As a result, in practice,
the size n of the linear systems solved can be very large, so that the linear solves become
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the dominant computational effort of the MC sampling approach. Hence, this is here that
lie our work and contribution, in trying to find ways to accelerate the linear solves in the
context of approaches based on MC sampling.

1.1.3 Two basic preconditioning strategies

The core of the work done in this thesis consists of solving large numbers of linear systems
of the form of Eq. (1.5). Since every such linear system is assembled through spatial
discretization of an elliptic PDE, the matrix A(θ) tends to be sparse. As the number
of degrees of freedom increases, we are left with solving large numbers of large sparse
linear systems. For a better performance, it is common to favor iterative methods over
direct methods to solve such problems. Hence, here, we focus on the iterative solve of
Eq. (1.5) for large numbers of realizations. In particular, we rely on PCG using an SPD
preconditioner which somehow approximates A. In this chapter, we consider the two
most straightforward preconditioning strategies.

First, there is the case in which the preconditioner M•(θ) denominated by • is re-
defined for every matrix realizationA(θ). We refer to this strategy as realization-dependent
ideal preconditioning. The preconditioners considered in this work are such that their
application is easily parallelizable, in particular, we use block-Jacobi (bJ) precondition-
ers, preconditioners based on non-overlapping domain decompostion as well as algebraic
multigrids.

Albeit being ideal in terms of effect of the conditioning number, realization-dependent
ideal preconditioning is not feasible for a Monte Carlo simulation as it would entail a poten-
tially significant set-up cost of the preconditioner for every realization. Thus, re-defining
the preconditioner for every matrix realization is only used as a point of comparison to
benchmark the performance of other more practical strategies. The most straightforward
strategy consists of considering a matrix A0 based on which the inverse of the precondi-
tioner M0,• denominated by •, or simply the data structures necessary for the application
of its inverse M−1

0,• is assembled. Then, this preconditioner is applied, in turn, to all the
realizations A(θ). That is, the properties of the investigated preconditioners should focus
on the spectrum of M−1

0,•A(θ) in which the preconditioner is constant but A(θ) can be
any matrix in the manifold of operators.

1.1.4 Outline

This chapter provides all the necessary background for further developments and ap-
plications in the next chapters. First, we present how random coefficient fields can be
represented by means of Karhunen-Loève expansions, we also show how to compute these
expansions, specifically in the context of large data problems using distributed comput-
ers. Second, we highlight the different sampling strategies of the underlying latent random
vectors of random coefficient fields. Third, we present the finite element method which
we use for the spatial discretization of PDEs after having sampled realizations of the coef-
ficient field. Fourth, we present Krylov subspace methods for symmetric positive definite
(SPD) matrices. Fifth, we introduce different state-of-the-art preconditioners which are
well-suited for parallel applications. Lastly, we provide numerical examples in which we
illustrate the computation of Karhunen-Loève expansions on distributed parallel comput-
ers and the linear solves which arise from sampling discretized stochastic elliptic PDEs.
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In particular, we illustrate two basic preconditioning strategies for the linear solves of
large numbers of linear systems which arise during the Monte Carlo sampling of stochas-
tic elliptic PDEs. Although the numerical methods presented in chapter are not new,
we provide new Julia implementations of some state-of-the-art preconditioners as well
as a distributed parallel implementation of the computation of Karhunen Loève repre-
sentations based on domain decomposition. The numerical results provided in the end
of the chapter serve as basis of comparison against different preconditioning strategies
presented throughout this work. The source code of all the methods implemented, the
corresponding numerical examples and the post-processing scripts can all be found at
https://github.com/venkovic/julia-phd-krylov-spdes.

1.2 Representation of random coefficient fields

In a direct Monte Carlo (MC) approach, we intend to draw instances of Eq. (1.5). To
do so, we need to be able to represent and sample the coefficient field κ(x, θ) so as
to draw realizations and then proceed by spatial discretization of Eq. (1.2) to obtain
an equation of the form of Eq. (1.5) for each realization. Different methods exist to
represent and simulate random fields like κ(x, θ). Here, we focus on the Karhunen-Loève
(KL) representation [73, 96] as it allows to simulate non-stationary anisotropic random
processes on unstructured grids. Another method which is not used in this work is the
circulant embedding [39, 164, 80, 143, 113], which embeds the covariance matrix of a
structured grid in a matrix of a particular structure to solve an eigenvalue problem using
fast Fourier transforms (FFT). In addition to focusing on discrete Karhunen-Loève (KL)
representations, we resort to domain decomposition. Domain decomposition was used
by Contreras et al. [31] to compute KL expansions over domains of large dimensions
in comparison to the characteristic length of the represented stochastic process. The
method, referred to as DD-KL, follows a divide-and-conquer paradigm and relies on an
atlas of local truncated KL expansions with non-overlapping supports, i.e., sub-domains.
The computation of these local expansions is decoupled and thus naturally parallelizable
on distributed machines so as to allow for the construction of accurate representations
while circumventing the limits of memory availability on a single computer. In the case of
Gaussian processes, the resulting DD-KL representation consists of local KL expansions
with iid Gaussian RVs. These locally independent RVs are however correlated from one
sub-domain to another.

1.2.1 Karhunen-Loève representation of random coefficient fields

Consider a probability space (Θ,ΣΘ, µΘ) where Θ is the set of events, ΣΘ is a sigma-
algebra over Θ and µΘ is a probability measure. We denote the expectation of a random
variable X by E[X], defined by

E[X] =

∫

Θ

X(θ)dµθ(θ). (1.6)

Let us denote the space of second order random variables by L2(Θ). That is for each
X ∈ L2(Θ) we have E[X2] <∞. We consider that the domain Ω is a bounded subset of
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Rd and define L2(Ω) as the space of square integrable functionals f : x ∈ Ω 7→ f(x) ∈ R.
We denote by ∥ · ∥Ω the norm of L2(Ω) induced by the scalar product ⟨·, ·, ⟩Ω. That is

∥f∥2Ω = ⟨f, f⟩Ω =

∫

Ω

|f(x)|2dx ∀f ∈ L2(Ω). (1.7)

Then, we denote by L2(Ω,Θ) the space of real valued second order processes κ : Ω×Θ→ R
such that κ(·, θ) ∈ L2(Ω), κ(x, ·) ∈ L2(Θ) and

E
[
∥κ(·, θ)∥2Ω

]
<∞ ⇐⇒ κ ∈ L2(Ω,Θ). (1.8)

Let κ ∈ L2(Ω,Θ) be a random process with zero mean, i.e., such that E[κ(x, ·)] =
0 ∀x ∈ Ω, with known covariance C : Ω× Ω→ R. That is

C(x, x′) = E[κ(x, ·)κ(x′, ·)]. (1.9)

The truncated Karhunen-Loève (KL) approximation κN of a second order stochastic pro-
cess κ consists of a N -term expansion in which each term is the product of a deterministic
function of L2(Ω) with a random variable of L2(Θ). The truncated KL expansion κN is
defined so as to minimize the representation error κ − κN in the L2(Ω,Θ) sense. Since
covariance functions are symmetric and non-negative, it can be shown that the truncated
KL expansion is given by

κN(x, θ) :=
N∑

α=1

√
λαξα(θ)Φα(x), (1.10)

where (λα,Φα) is the α-th dominant eigen-pair of the covariance function where Φα is a
normalized eigen-function. That is, (λα,Φα) is solution of the integral equation

∫

Ω

C(x, x′)Φ(x′)dx′ = λΦ(x), ⟨Φ,Φ⟩Ω = 1. (1.11)

The random variables ξα, also referred to as the stochastic coordinates of κN , are orthonor-
mal, i.e., E[ξαξβ] = δαβ. That is, ξα and ξβ are uncorelated random variables for α ̸= β.
Owing to the structure of the covariance function, the eigenvalues are non-negative so
that λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 while an energy criterion arises naturally for the truncation
of the expansion. Then, N can be picked so as to satisfy some error tolerance in the
L2(Ω,Θ) norm. Specifically, one sets N so as to satisfy the following inequality for some
prescribed error tolerance 0 < δ < 1

E[∥κ− κN∥2Ω] = E[∥κ∥2Ω]−
N∑

α=1

λα ≤ E[∥κ∥2Ω]δ2. (1.12)

In most practical cases, an exact solution (λα,Φα) ∈ R×L2(Ω) of the integral Eq. (1.11)
cannot be found, and we have to rely on numerical methods to build approximations of
the eigen-pairs [14]. Here, we proceed with a Galerkin projection method. That is, a finite
dimensional space V is introduced such that V = span{v1(x), . . . , vQ(x)} in which vk ∈
L2(Ω) is a basis function. Then, letting Φ be approximated by Φh(x) :=

∑Q
k=1 ckvk(x) ∈ V
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and substituting Φ by its approximation in Eq. (1.11) leads to the following residual:

r(x) := λΦh(x)−
∫

Ω

C(x, x′)Φh(x′)dx′ =

Q∑

k=1

ck

(
λvk −

∫

Ω

C(x, x′)vk(x
′)dx′

)
. (1.13)

The vector c = [c1, . . . , cQ]
T is chosen by forcing r(x) to be orthogonal to all functions in

V . That is

⟨r, u⟩Ω = 0 ∀u ∈ V . (1.14)

Substituting Eq. (1.13) into Eq. (1.14) leads to a discrete linear generalized eigenvalue
problem of the form

Kc = λMc (1.15)

where K and M are non-negative symmetric matrices of RQ×Q with components

Kij =

∫

Ω

∫

Ω

C(x, x′)vi(x
′)vj(x)dx

′dx and Mij = ⟨vi, vj⟩Ω. (1.16)

1.2.2 Parallel KL decomposition

Domain decomposition was used by Contreras et al. [31] to compute KL expansions over
domains of large dimensions in comparison to the characteristic length of the represented
stochastic process. This approach starts by partitioning the domain Ω into nd non-
overlapping subdomains

Ω = ∪nd
d=1Ωd , Ωi ∩ Ωj ̸=i = ∅. (1.17)

For each subdomain Ωd, some local eigenmodes ϕ̃
(d)
β : Ωd → R are then introduced and

defined as the solutions of
∫

Ωd

C(x, x′)ϕ̃
(d)
β (x′)dx′ = λ

(d)
β ϕ̃

(d)
β (x) , ∥ϕ̃(d)

β ∥Ωd
= 1 (1.18)

where the restriction of the norm in L2(Ω) to the subdomain Ωd is denoted by ∥ · ∥Ωd
.

Proceeding as before with a Galerkin projection method leads to a set of local discrete
eigenvalue problems of the form

K(d)c(d) = λ(d)M(d)c(d) , d = 1, . . . , nd. (1.19)

It is clear that ϕ̃
(d)
β is an eigenfunction of the covariance C(x, x′) restricted to the d-th

subdomain. These local eigenfunctions are extended to the global domain Ω by defining

ϕ
(d)
β (x) :=

{
ϕ̃
(d)
β (x), x ∈ Ωd

0, x /∈ Ωd

∀x ∈ Ω. (1.20)
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Because ϕ
(d)
β and ϕ

(d)
β′ are orthonormal in Ωd, in light of Eq. (1.20), we have

〈
ϕ
(d)
β , ϕ

(d′)
β′

〉
=

{
1, if d = d′ and β = β′

0, otherwise.
(1.21)

For each subdomain Ωd the md > 0 dominant eigenpairs are retained according to a
criterion discussed later. The nd sets of dominant eigenfunctions are collected to form an
orthonormal reduced basis B of L2(Ω):

B := ∪nd
d=1Bd , Bd :=

{
ϕ
(d)
β , β = 1, . . . ,md

}
. (1.22)

The linear span of B is denoted by VB. Then, an approximation Φ̂ ∈ Vβ of the global
modes of Eq. (1.11) is sought such that

Φ(x) ≈ Φ̂(x) =

nd∑

d=1

md∑

β=1

a
(d)
β ϕ

(d)
β (x). (1.23)

We set a(d) := [a
(d)
1 , . . . , a

(d)
md ], the vector of the local coordinates of Φ̂ for x ∈ Ωd. Applying

the Galerkin projection method, we have

〈∫

Ω

C(x, x′)Φ̂(x′)dx′, ϕ
(d)
β

〉

Ω

= Λ
〈
Φ̂, ϕ

(d)
β

〉
Ω
. (1.24)

The approximate eigenfunctions solve the following discrete eigenvalue problem




K̂11 K̂12 . . . K̂1nd

K̂21 K̂22 . . . K̂2nd

...
...

. . .
...

K̂nd1 K̂nd2 . . . K̂ndnd







a(1)

a(2)

...
a(nd)


 = Λ




a(1)

a(2)

...
a(nd)


 , (1.25)

where the block matrices K̂ij ∈ Rmi×mj have for respective components

(K̂ij)αβ =

∫

Ωi

∫

Ωj

C(x, x′)ϕ(i)
α (x)ϕ

(j)
β (x′)dxdx′ , 1 ≤ α ≤ mi , 1 ≤ β ≤ mj. (1.26)

Eq. (1.25) is referred to as the condensed eigenvalue problem. The dimension of this
problem is

nt =

nd∑

d=1

md = card(B). (1.27)

It is easily shown that the matrix K̂ ∈ Rnt×nt is symmetric and positive definite if the
covariance function is such that

∥u∥Ω > 0 =⇒
〈
u,

∫

Ω

C(·, x)u(x)dx
〉

Ω

> 0 (1.28)
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for all u ∈ L2(Ω). This assumption is satisfied for most covariance functions, in particular
for the whole class of Matérn covariance functions [31]. Consequently, the nt eigenvalues
Λα of K̂ can be ordered with decreasing magnitude such that

Λ1 ≥ Λ2 ≥ · · · ≥ Λnt ≥ 0. (1.29)

Then, we can select the smallest N̂ , 1 ≤ N̂ ≤ nt, such that for a prescribed relative error
tolerance 0 ≤ δ ≤ 1 we have

nt∑

α=N̂+1

Λα ≤
δ2

2

nt∑

α=1

Λα. (1.30)

The truncated approximation of κ is then given by

κ(x, θ) ≈ κ̂N(x, θ) :=
N̂∑

α=1

√
Λαξ̂α(θ)Φ̂α(x), (1.31)

where

Φ̂α(x) =

nd∑

d=1

md∑

β=1

a
(d)
α,βϕ

(d)
β (x) (1.32)

is the eigenfunction corresponding to Λα.

As shown in [31], nt is fixed by the requested accuracy and not by the size of the
discretization space. Eq. (1.31) is referred to as the DD-KL expansion. The algorithm
used to compute a DD-KL expansion is provided in Algo. 1.

Algorithm 1 Computation of the DD-KL representation

Input: domain partition Ω1, . . .Ωnd
, covariance function C : Ω× Ω→ R

Output: DD-KL expansion
1: for d = 1, . . . , nd do
2: Discretize the local integral Eq. (1.18) to get K(d) and M(d)

3: Solve the local generalized eigenvalue problem K(d)ϕ̃(d) = λ(d)M(d)ϕ̃(d)

4: end for
5: for d = 1, . . . , nd do
6: for d′ = 1, . . . , nd do
7: for α = 1, . . . ,md do
8: for β = 1, . . . ,md′ do

9: Compute (Kdd′)αβ =
∫
Ωd

∫
Ωd′ C(x, x

′)ϕ
(d)
α (x)ϕ

(d′)
β (x′)dxdx′

10: end for
11: end for
12: end for
13: end for
14: Assemble and solve the reduced eigenvalue problem ▷ See Eq. (1.25)
15: Get approximated global eigenfunctions ▷ See Eq. (1.23)
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The method of Contreras et al. [31] introduces two different sources of error in the
approximation of κ by κ̂N̂ . First, an error is introduced when representing the eigenfunc-
tion of κ in the finite dimensional space VB built on the local bases, see Eq. (1.23). Let
us denote by κB the projection of κ on VB:

κB(x, θ) =

nd∑

d=1

md∑

α=1

√
λ
(d)
α ξ(d)α ϕ(d)

α (x). (1.33)

Second, the projected process κB is further reduced, through the resolution of the reduced
problem, to yield the final representation κ̂N̂ .

Because κ − κB is orthogonal to κB − κ̂N̂ , the squared norm of the error κ − κ̂N̂ can
be decomposed into two independent parts as follows [31]:

E
[
∥κ− κ̂N̂∥2Ω

]
= E

[
∥κ− κB∥2Ω

]
+ E

[
∥κB − κ̂N̂∥2Ω

]
. (1.34)

The first term is obtained by adding up the local contributions over the subdomains,
which, by construction of the local modes, are given by

ϵ2d := E
[
∥κ− κB∥2Ωd

]
= E

[
∥κ∥2Ωd

]
−

md∑

α=1

λ(d)α , d = 1, . . . , nd. (1.35)

Then, gathering the local contributions leads up to

ϵ2B := E
[
∥κ− κB∥2Ω

]
=

nd∑

d=1

ϵ2d = E
[
∥κ∥2Ω

]
−

nd∑

d=1

md∑

α=1

λ(d)α . (1.36)

Similarly to the classical KL truncation error, the second error contribution is

ϵ2BN̂ := E
[
∥κB − κ̂N̂∥2Ω

]
= E

[
∥κB∥2Ω

]
−

N̂∑

α=1

Λα. (1.37)

Since E [∥κB∥2Ω] ≤ E [∥κ∥2Ω], the overall error can be estimated from

E
[
∥κ− κ̂N̂∥2Ω

]
= ϵ2B + ϵ2BN̂ ≤ 2E

[
∥κ∥2Ω

]
−

nd∑

d=1

md∑

α=1

λ(d)α −
N̂∑

α=1

Λα (1.38)

This expression shows that to reduce the error, one needs to jointly increase the size of
the local basis over all the subdomains and increase N̂ . This suggests the existence of an
optimal set of values for md and N̂ . In order to achieve an overall relative error 0 ≤ δ ≤ 1,
the following levels or error can be enforced. First, regarding the local errors, the md’s
can be selected so as to ensure the following for each d:

ϵ2d = E
[
∥κ∥2Ωd

]
−

md∑

α=1

λ(d)α ≤ E
[
∥κ∥2Ωd

] δ2
2
, (1.39)
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so that ϵ2B ≤ E [∥κ∥2Ω] δ2/2. Then, N̂ is selected so that Eq. (1.30) holds, which ensures
that

E
[
∥κ− κ̂N̂∥2Ω

]
≤ δ2E

[
∥κ∥2Ω

]
. (1.40)

1.2.3 Generalized eigen-solves

The computation of a KL or a DD-KL representation boils down to solving generalized
eigenvalue problem(s), see Eq. (1.15) for the KL expansion and Eq. (1.19) for the DD-KL
expansion. For high-dimensional approximation subspaces, only the dominant eigen-pairs
of the generalized eigenvalue problem(s) are needed to capture the wanted energy. Note
that both the left and right-had side of the generalized eigenvalue problem(s) are SPD,
irrespective of whether the covariance model is stationary or not, even if the stochastic
process is non-Gaussian—although, for the later, the distribution of the latent random
variables is generally not known. For the KL expansion, we can then invoke the Cholesky
factorization LLT of M and write

L−1KL−Tc = λc. (1.41)

Then, finding solutions to Eq. (1.41) can be done using a symmetric Lanzcos procedure, see
Algo. 1.5.1, in which case we only need to be able to compute matrix-vector products with
L−1KL−T , which can be done by first solving an upper triangular system, then applying
K and solving a lower triangular system. If on the other hand, the factorization of M
is not known, one can still devise a Lanczos procedure to solve the standard eigenvalue
problem

M−1Kc = λc (1.42)

such that one does not need to assemble M−1K at any point of the algorithm. The
resulting Lanczos procedure is presented in Section 9.2.6 of [139]. In either case, note
that the Lanczos procedure may not be used as is in order to find all the solution eigen-
pairs. Indeed, due to the effect of floating point arithmetic, the computed vectors of the
Lanczos procedure lose their assumed orthogonality, which results in spurious eigenvector
approximations [121]. To circumvent this difficulty, one can resort to partial or selective
orthogonalization [124]. Other possible alternatives are to implicitly [23] or explicitly
restart [165] the Lanczos procedure and thereby achieve a lower memory footprint for
the eigen-solve. Note that the explicitly restarted Lanczos procedure is presented in
Algo. 8. An alternative to Lanczos procedures is LOBPCG [76, 77]. Note however that
our numerical experiments show that using LOBPCG yields less efficient eigen-solves
than implicitly restarted Lanczos procedures (see Arpack [90] for a readily deployable
implementation of the implicitly restarted Lanczos procedure).

1.3 Sampling of random coefficient fields

In order to sample realizations of the random coefficient field in Eq. (1.2), we wish to
sample the stochastic coordinates of the truncated KL representation of the coefficient.
For Gaussian random fields, these coordinates are independent and identically distributed
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(iid) Gaussian random variables. Here, we simulate Gaussian random variables using
methods which are invariably based on uniform random number generators. Given a
uniformly distributed random variable U ∼ U(0, 1), one can obtain a Gaussian random
variable by inverse transformation, that is, by letting X = F−1(U) where F denotes the
cumulative distribution function of the normal distribution. Note however that there is
no closed form of F−1, so that performing such a transformation requires some level of
approximation. In the remaining of this Section, we provide a presentation of sampling
strategies, namely, Monte Carlo methods, Quasi Monte Carlo methods and Markov chains
Monte Carlo (MCMC). This presentation follows the lines of [81].

1.3.1 Monte Carlo (MC)

1.3.1.1 Random numbers

At the heart of any MC method is a random number generator: a procedure that produces
an infinite stream

U1, U2, U3, . . .
iid∼ Dist (1.43)

of random variables that are iid according to some probability distribution Dist. When
this distribution is the uniform distribution on the interval (0,1) (that is, Dist = U(0,1)),
the generator is said to be a uniform random number generator. Most computer languages
already contain a built-in uniform random number generator. The user is typically re-
quested only to input an initial number, called the seed, and upon invocation the random
number generator produces a sequence of independent uniform random variables on the
interval (0,1). In Julia, for example, this is provided by the rand function.

The concept of an infinite iid sequence of random variables is a mathematical abstrac-
tion that may be impossible to implement on a computer. The best one can hope to
achieve in practice is to produce a sequence of “random” numbers with statistical prop-
erties that are indistinguishable from those of a true sequence of iid random variables.
Although physical generation methods based on universal background radiation or quan-
tum mechanics seem to offer a stable source of such true randomness, the vast majority
of current random number generators are based on simple algorithms that can be easily
implemented on a computer. Following, L’Ecuyer [87], such algorithms can be represented
as a tuple (S, f, µ,U , g), where

• S is a finite set of states,

• f is a function from S to S,

• µ is a probability distribution on S,

• U is the output space; for a uniform random number generator U is the interval
(0,1), and we will assume so from now on, unless otherwise specified,

• g is a function from S to U .

A random number generator then has the structure given in Algo. 2. The algorihm
produces a sequence U1, U2, U3, . . . of pseudorandom numbers — we will refer to them
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Algorithm 2 Generic random number generator

1: Initialize: Draw the seed S0 from the distribution µ on S. Set t = 1.
2: Transition: Set St = f(St−1).
3: Output: Set Ut = g(St).
4: Repeat: Set t = t+ 1 and return to Step 2.

simply as random numbers. Starting from a certain seed, the sequence of states (and
hence of random numbers) must repeat itself, because the state space is finite. The
smallest number of steps taken before entering a previously visited state is called the
period length of the random number generator.

Properties of a Good Random Number Generator What constitutes a good ran-
dom number generator depends on many factors. It is always advisable to have a variety of
random number generators available, as different applications may require different prop-
erties of the random generator. Below are some desirable, or indeed essential, properties
of a good uniform random number generator; see also [154].

1. Pass statistical tests : The ultimate goal is that the generator should produce a
stream of uniform random numbers that is indistinguishable from a genuine uniform
iid sequence. Although from a theoretical point of view this criterion is too imprecise
and even unfeasible, from a practical point of view this means that the generator
should pass a battery of simple statistical tests designed to detect deviations from
uniformity and independence.

2. Theoretical support : A good generator should be based on sound mathematical
principles, allowing for a rigorous analysis of essential properties of the generator.

3. Reproducible: An important property is that the stream of random numbers is re-
producible without having to store the complete stream in memory. This is essential
for testing and variance reduction techniques. Physical generation methods cannot
be repeated unless the entire stream is recorded.

4. Fast and efficient : The generator should produce random numbers in a fast and
efficient manner, and require little storage in computer memory. Many Monte Carlo
techniques for optimization and estimation require billions or more random numbers.
Current physical genertion methods are no match for simple algorithmic generators
in terms of speed.

5. Large period : The period of a random number generator should be extremely large
— on the order of 1050 — in order to avoid problems with duplication and de-
pendence. Evidence exists [127] that in order to produce N random numbers, the
period length needs to be at least 10N2. Most early algorithmic random number
generators were fundamentally inadequate in this respect.

6. Multiple streams : In many applications it is necessary to run multiple independent
random streams in parallel. A good random number generator should have easy
provisions for multiple independent streams.
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7. Cheap and easy : A good random number generator should be cheap and not require
expensive external equipment. In addition, it should be easy to install, implement,
and run. In general such a random number generator is also more easily portable
over different computer platforms and architectures.

8. Not produce 0 or 1 : A desirable property of a random number generator is that
both 0 and 1 are exclude from the sequence of random numbers. This is to avoid
division by 0 or other numerical complications.

From a theoretical point of view, a finite-state random number generator can always
be distinguished from a true iid sequence, after observing the sequence longer than its
period. However, from a practical point of view this may not be feasible within a “reason-
able” amount of time. This idea can be formalized through the notion of computational
complexity, see, for example, [108].

Choosing a Good Random Number Generator As Pierre L’Ecuyer puts it [88],
choosing a good random generator is like choosing a new car: for some people or applica-
tions speed is preferred, while for others robustness and reliability are more important. For
Monte Carlo simulation the distributional properties of random generators are paramount,
whereas in coding and cryptography unpredictability is crucial.

Nevertheless, as with cars, there are many poorly designed and outdated models avail-
able that should be avoided. Indeed several of the standard generators that come with
popular programming languages and computing packages can be appallingly poor [89].

Two classes of generators that have overall good performance are:
1. Combined multiple recursive generators, some of which have excellent statistical

properties, are simple, have large period, support multiple streams, and are relatively
fast. A popular choice is L’Ecuyer’s MRG32k3a, which has been implemented as one of
the core generators in Matlab, VSL, SAS, and the simulation packages SSJ, Arena, and
Automod.

2. Twisted general feedback shift register generators, some of which have very good
equidistributional properties, are among the fastest generators available (due to their
essentially binary implementation), and can have extremely long periods. A popular
choice is Matsumoto and Nishimura’s Mersenne twister MT19937ar, which is currently
the default generator in Matlab.

In general, a good uniform number generator has overall good performance, in terms
of the criteria mentioned above, but is not usually the top performer over all these criteria.
In choosing an appropriate generator, it pays to remember the following.

• Faster generators are not necessarily better (indeed, often the contrary is true).

• A small period is in general bad, but a larger period is not necessarily better.

• Good equidistribution is a necessary requirement for a good generator but not a
sufficient requirement.

1.3.2 Quasi Monte Carlo (QMC)

Quasirandom numbers are akin to random numbers but exhibit much more regularity.
This makes them well-suited for numerical evaluation of multidimensional integrals. This
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section discusses the main types of quasirandom sequences, including Halton, Faure,
Sobol’, and Korobov sequences.

1.3.2.1 Multidimensional integration

Recall that the purpose of a uniform random number generator is to produce an unlimited
stream of numbers U1, U2, . . . that behave statistically as independent and uniformly dis-
tributed random variables on (0, 1). From such a stream it is easy to construct an infinite
sequence of independent and uniformly distributed random vectors (points) in (0, 1)d, by
defining U1 = (U1, . . . , Ud), U2 = (Ud+1, . . . , U2d), ... For any real-valued function h on
(0, 1)d these random vectors can then be used to approximate the d-dimensional integral

ℓ =

∫

(0,1)d
h(u)du (1.44)

via the sample average

ℓ̂ =
1

N

N∑

i=1

h(Ui). (1.45)

Precise error bounds on the approximation eeror can be found through simple statistical
procedures. In particular, the standard error [E(ℓ̂− ℓ)2]1/2 decreases at a rate O(N−1/2).
Hence, asymptotically, to decrease the error by a factor 2, one needs 4 time as many
samples. This convergence rate can often be improved by constructing quasirandom
points u1,u2, . . . ,uN that fill the unit cube in a much more regular way than is achieved
via iid random points. In general, the components of such points can be zero, so we
assume from now on that quasirandom points lie in the unit cube [0, 1)d rather than
(0, 1)d. Quasi Monte Carlo methods are Monte Carlo methods in which the ordinary
uniform random points are replaced by quasirandom points. Quasirandom points are no
longer independent, but do have a high degree of uniformity, which is often expressed
in terms of their discrepancy (first introduced by Roth [135]). Specifically, let C be a
collection of subsets of [0, 1)d and PN = {u1, . . . ,uN} a set of points in [0, 1)d. The
discrepancy of PN relative to C is defined as

DC(PN) = sup
C∈C

∣∣∣∣∣
1

N

N∑

i=1

1{ui∈C} −
∫

1{u∈C}du

∣∣∣∣∣ . (1.46)

Special cases are the ordinary discrepancy, where C is the collection of rectangles [a1, b1)×
· · ·× [ad, bd), and the star discrepancy, where C is the collection of rectangles [0, b1)×· · ·×
[0, bd).

The sum in Eq. (1.46) is simply the number of points in C, whereas the integral is
the d-dimensional volume of C. The integration error for all indicator functions 1{u∈C},
C ∈ C is thus bounded by the discrepancy of the point set. Similarly, the Koksma-Hlawka
inequality provides, for suitable class of functions h; see page 19 of [108]. Discrepancy
measures are therefore useful tools for studying convergence rates for multidimensional
integration. Note that the star discrepancy may be viewed as the d-dimensional general-
ization of the Kolmogorov-Smirnov test statistic.

16



There are two main classes of low-discrepancy sequences: those based on van der
Corput sequences, such as the Halton, Faure, and Sobol’ point sets; and those based on
lattice methods, such as the Koborov lattice rule.

1.3.2.2 Randomization and scrambling

One of the appealing features of ordinary Monte Carlo integration is that an assessment
of the error in the sample average approximation (1.45) of the integral (1.44) is readily
available in the form of standard errors and confidence intervals. For quasi Monte Carlo
integration this is no longer the case, as the points, ui’s say, are deterministic and not
∪[0, 1)d distributed.

However, the situation can be remedied by simply adding a fixed random vector Z ∼
∪[0, 1)d to each point and then taking the fractional part of the resulting point. It is easy

to see that each point Ũi = (ui + Z) mod 1 is ∪[0, 1)d distributed. This procedure is
called random shifting and was first proposed by Cranley and Patterson [33]. Using a
random shift renders the quasi Monte Carlo approximation

ℓ̃ =
1

N

N∑

i=1

h(Ũi) (1.47)

a random variable with expectation ℓ in Eq. (1.44). By repeating the quasi Monte Carlo
procedure independently with K different shift vectors one obtains K independent copies
of ℓ̃, to which one can apply the standard statistical techniques for evaluating confidence
intervals and standard error.

For digital sequences a random shift can also be applied directly to the digits. Specif-
ically, suppose ak = (ak1, ak2, . . . )

T is the infinite-dimensional vector that corresponds to
the b-ary expansion of the k-th coordinate of a point u; thus, the k-th coordinate of u is
given by

uk =
∞∑

i=1

akib
−i. (1.48)

Let W = (W1,W2, . . . )
T be an infinite-dimensional random vector in which the Wi’s are

independent and discrete uniformly distributed on {0, 1, . . . , b − 1}. In other words, W
is the vector representing the b-ary expansion of a ∪[0, 1)-distributed random number.
Next, let W1, . . . ,Wd be independent copies of W. By adding Wk to ak modulo b, for
k = 1, . . . , d, one obtains vectors ã1, . . . , ãd representing the b-ary expansion of (u + Z)
mod 1, where Z ∼ ∪[0, 1)d. By adding the same Wk’s to all the points in the quasi Monte
Carlo point set, this digital shift procedure yields a point set that has exactly the same
distribution as one obtained using the original random shift method.

Digital sequences such as the Halton, Faure, and Sobol’ sequences are sometimes
“shuffled” with the aim of improving their uniformity and convergence properties. A
general procedure, called nested permutation scrambling was introduced by Owen (see,
for example, [115] and [116]) who permute the digits in the bk-ary expansion for each
component k = 1, . . . , d. This can be done in a deterministic or random way. A convenient
subset of such procedures is obtained by premultiplying the digital vectors with a random
lower-triangular matrix Lk with elements in {0, 1, . . . , bk}, for each dimension k = 1, . . . , d.
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There exist several variants of this procedure (see [101] and page 207 of [91]), but the
most common approach is to choose the lower off-diagonal elements of Lk independently
and uniformly from {0, 1, . . . , bk} and the diagonal elements independently and uniformly
from {1, . . . , bk}.

1.3.3 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) is a generic method for approximate sampling from
an arbitrary distribution. The main idea is to generate a Markov chain whose limiting
distribution is equal to the desired distribution. In this Section, we describe some of the
most prominent MCMC algorithms:

• The Metropolis-Hastings algorithm and in particular the independence sampler and
random walk sampler;

• The Gibbs sampler, which is particularly uuseful in Bayesian analysis.

1.3.3.1 Metropolis-Hastings algorithm

The MCMC method originates from Metropolis et al. [102] and applies to the following
setting. Suppose that we wish to generate samples from an arbitrary multidimensional
probability density function (pdf)

f(x) =
p(x)

Z , x ∈ X (1.49)

where p(x) is a known positive function and Z is a known or unknown normalizing
constant. Let q(y|x) be a proposal or instrumental density: a Markov transition density
describing how to go from state x to y. Similar to the acceptance-rejection method,
the Metropolis-Hastings algorithm is based on the “trial-and-error” strategy presented in
Algo. 3.

Algorithm 3 Metropolis-Hastings algorithm

1: Initialize with some X0 for which f(X0) > 0.
2: for s = 0, . . . , S − 1 do
3: Given the current state Xs, generate Y ∼ q(y|Xs).
4: Generate U ∼ U(0, 1) and deliver

Xs+1 =

{
Y if U ≤ α(Xs,Y)

Xs otherwise
(1.50)

where

α(x,y) = min

{
f(y)q(x|y)
f(x)q(y|x) , 1

}
(1.51)

5: end for
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The probability α(x,y) is called the acceptance probability. Note that in Eq. (1.51)
we my replace f by p.

We thus obtain the so-called Metropolis-Hastings Markov chain, X0,X1, . . . ,XS with
XS approximately distributed according to f(x) for large S. A single Metropolis-Hastings
iteration is equivalent to generating a point from the transition density κ(xs+1|xs), where

κ(y|x) = α(x,y)q(y|x) + (1− α∗(x))δx(y), (1.52)

with α∗ =
∫
α(x,y)q(y|x)dy and δx(y) denoting the Dirac delta function. Since

f(x)α(x,y)q(y|x) = f(y)α(y,x)q(x|y) (1.53)

and

(1− α∗(x))δx(y)f(x) = (1− α∗(y))δy(x)f(y) (1.54)

the transition density satisfies the detailed balance equation:

f(x)κ(y|x) = f(y)κ(x|y), (1.55)

from which it follows that f is the stationary pdf of the chain. In addition, if the transition
density q satisfies the conditions

Prob[α(Xs,Y) < 1|Xs] > 0, (1.56)

that is, the event {Xs+1 = Xs} has positive probability, and

q(y|x) > 0 ∀ x,y ∈ X , (1.57)

then f is the limiting pdf of the chain. As a consequence, to estimate an expectation
E[H(X)] with X ∼ f , one can use the following ergodic estimator

1

S + 1

T∑

s=0

H(Xs). (1.58)

The original Metropolis algorithm [102] is suggested for symmetric proposal functions;
that is, for q(y|x) = q(x|y). Hastings [66] modified the original MCMC algorithm to
allow non-symmetric proposal functions, hence the name Metropolis-Hastings algorithm.

Independence Sampler If the proposal function q(y|x) does not depend on x, that
is, q(y|x) = g(y) for some pdf g(y), then the acceptance probability is

α(x,y) = min

{
f(y)g(x)

f(x)g(y)
, 1

}
(1.59)

and Algo. 3 is referred to as the independence sampler. The independence sampler is very
similar to the acceptance-rejection method. Just as in that method, it is important that
the proposal density g is close to the target f . Note, however, that in contrast to the
acceptance-rejection method the independence sampler produces dependent samples. In
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addition, if there is a constant C such that

f(x) =
p(x)∫
p(x)dx

≤ Cg(x) (1.60)

for all x, then the acceptance rate in Eq. (1.50) is at least 1/C whenever the chain is in
stationarity; namely,

Prob[U ≤ α(X,Y)] =

∫ ∫
min

{
f(y)g(x)

f(x)g(y)
, 1

}
f(x)g(y)dxdy

= 2

∫ ∫
1

{
f(y)g(x)

f(x)g(y)
≥ 1

}
f(x)g(y)dxdy

≥ 2

C

∫ ∫
1

{
f(y)g(x)

f(x)g(y)
≥ 1

}
f(x)g(y)dxdy

≥ 2

C
Prob

[
f(Y)

g(Y)
≥ f(X)

g(X)

]
=

1

C
.

Random Walk Sampler If the proposal is symmetric, that is, q(y|x) = q(x|y), then
the acceptance probability (1.51) is

α(x,y) = min

{
f(y)

f(x)
, 1

}
, (1.61)

and Algo. 3 is referred to as the random walk sampler. An example of a random walk
sampler is when Y = Xs + ϑZ in step 3 of Algo. 3 where Z is typically generated from
some spherically symmetrical distribution (in the continuous case), such as N (0, I). In
particular, letting ϑ = 2.38/

√
n where n denotes the size of the random vector was shown

to maximize efficiency properties, see [130].

Consider the Langevin diffusion defined by the SDE

dXs =
1

2
∇ ln f(Xs)ds+ dWs (1.62)

where ∇ ln f(Xs) denotes the gradient of ln f(x) evaluated at Xs. The Langevin diffusion
has stationary pdf f , and is nonexplosive and reversible. Suppose the proposal state Y in
step X of Algo. 3 corresponds to the Euler discretization of the Langevin SDE for some
step size h:

Y = Xs +
h

2
∇ ln f(Xs) +

√
hZ , Z ∼ N (0, I). (1.63)

This gives a more sophisticated random walk sampler with a “drift” term ∇ ln f(xs).
Such random walk samplers are collectively known as Langevin Metropolis-Hastings algo-
rithms [133]. Note that the gradient can be approximated numerically via finite differences
and does not require knowledge of the normalizing constant of f(x). In some cases the
Langevin Metropolis-Hastings algorithms are more efficient than the simple random walk
algorithms [131, 133]. For a discussion of the optimal tuning of Langevin Metropolis-
Hastings algorithms see [106].
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1.3.3.2 Gibbs sampler

The Gibbs sampler can be viewed as a particular instance of the Metropolis-Hastings
algorithm for generating n-dimensional random vectors [49]. Due to its importance it
is presented separately. The distinguishing feature of the Gibbs sampler is that the
underlying Markov chain is constructed from a sequence of conditional distributions, in
either a deterministic or random fashion.

Suppose that we wish to sample a random vector X = (X1. . . . , Xn) according to a
target pdf f(x). Let f(xi|x1, . . . , xi−1, xi+1, . . . , xn) represent the conditional pdf of the
i-th component, Xi, given the other components x1, . . . , xi−1, xi+1, . . . , xn. The Gibbs
sampler is then given by Algo. 4.

Algorithm 4 Gibbs sampler

1: Initialize with some X0 for which f(X0) > 0.
2: for t = 0, 1, . . . do
3: Given the current state Xt, generate Y = (Y1, . . . , Yn) as follows:
4: (a) Draw Y1 from the conditional pdf f(x1|Xs,2, . . . , Xs,n).
5: (b) Draw Yi from f(xi|Y1, . . . , Yi−1, Xs,i+1, . . . , Xs,n) for i = 2, . . . , n− 1.
6: (c) Draw Yn from f(xn|Y1, . . . , Yn−1).
7: Let Xs+1 = Y.
8: end for

The transition pdf is given by

κ1→n(y|x) =
n∏

i=1

f(yi|y1, . . . , yi−1, xi+1, . . . , xn), (1.64)

where the subscript 1→ n indicates that the components of vector x are updated in the
order 1 → 2 → 3 → · · · → n. Note that in the Gibbs sampler every “proposal” y, is
accepted. The transition density of the reverse move y → x, in which the vector y is
updated in the order n→ n− 1→ n− 2→ · · · → 1 is

κn→1(x|y) =
n∏

i=1

f(yi|y1, . . . , yi−1, xi+1, . . . , xn). (1.65)

Hammersley and Clifford [65] proved the following result.

Theorem 1. Let f(xi) be the i-th marginal density of the pdf f(x). Suppose that density
f(x) satisfies the positivity condition, that is, for every y ∈ {x|f(xi) > 0, i = 1, . . . , n},
we have f(y) > 0. Then

f(y)κn→1(x|y) = f(x)κ1→n(y|x). (1.66)
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Proof. Observe that

κ1→n(y|x)
κn→1(x|y)

=
n∏

i=1

f(yi|y1, . . . , yi−1, xi+1, . . . , xn)

f(xi|y1, . . . , yi−1, xi+1, . . . , xn)

=
n∏

i=1

f(y1, . . . , yi, xi+1, . . . , xn)

f(y1, . . . , yi−1, xi, . . . , xn)

=
f(y)

f(x)

∏n−1
i=1 f(y1, . . . , yi, xi+1, . . . , xn)∏n
j=2 f(y1, . . . , yj−1, xj, . . . , xn)

=
f(y)

f(x)

∏n−1
i=1 f(y1, . . . , yi, xi+1, . . . , xn)∏n−1
j=1 f(y1, . . . , yj, xj+1, . . . , xn)

=
f(y)

f(x)
.

The result follows by rearranging the last identity.

The Hammersley-Clifford condition is similar to the detailed balance condition for the
Metropolis-Hastings sampler, because integrating both sides with respect to x yields the
global balance equation:

∫
f(x)κ1→n(y|x)dy = f(y), (1.67)

from which we can conclude that f is the stationary pdf of the Markov chain with transi-
tion density κ1→n(y|x). In addition, it can be shown [129] that the positivity assumption
on f implies that the Gibbs Markov chain is irreducible and that f is its limiting pdf.
In practice the positivity condition is difficult to verify. However, there are a number
of weaker and more technical conditions (see [94, 129]) which ensure that the limiting
pdf of the process {Xt, t = 1, 2, . . . } generated via the Gibbs sampler is f , and that the
convergence to f is geometrically fast.

Algo. 4 presents a systematic (coordinatewise) Gibbs sampler. That is the components
of vector X are updated in the coordinatewise order 1 → 2 → · · · → n. The completion
of all the conditional sampling steps in the specified order is called a cycle. Alternative
updating of the components of vector X are possible. In the reversible Gibbs sampler a
single cycle consists of the coordinatewise updating

1→ 2→ · · · → n− 1→ n→ n− 1→ · · · → 2→ 1. (1.68)

In the random sweep/scan Gibbs sampler a single cycle can either consist of one or
several coordinates selected uniformly from the integers 1, . . . , n or a random permutation
π1 → π2 → · · · → πn of all coordinates. In all cases, except for the systematic Gibbs
sampler, the resulting Markov chain {Xt, t = 1, 2, . . . } is reversible. In the case where a
cycle consists of a single randomly selected coordinate, the random Gibbs sampler can be
formally viewed as a Metropolis-Hastings sampler with transition function

q(y|x) = 1

n
f(yi|x1, . . . , xi−1, xi+1, . . . , xn) =

1

n

f(y)∑
yi
f(y)

, (1.69)

where y = (x1, . . . , xi−1, yi, xi+1, . . . , xn). Since
∑

yi
f(y) can also be written

∑
yi
f(x),
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we have

f(y)q(x|y)
f(x)q(y|x) =

f(y)f(x)

f(x)f(y)
= 1, (1.70)

so that the acceptance probability α(x,y) is 1 in this case.

1.4 Finite element method (FEM)

Upon specification of a realization of the random field κ(x, θ) for a given θ in Eq. (1.2),
we are left to solve a deterministic problem of the form

∇ · [κ(x)∇u(x)] = − f(x) ∀ x ∈ Ω (1.71)

u(x) = g(x) ∀ x ∈ ∂Ω (1.72)

where the dependence on θ is disregarded and Ω is a bounded domain in the plane R2 =
{x = (x, y) | xi ∈ R} with boundary ∂Ω. In what follows, we provide an overview of the
finite element method as done in [68, 42].

1.4.1 Weak formulation

We shall now give a variational formulation of the problem given by Eqs. (1.71)–(1.72).
First, we show that if u satisfies Eqs. (1.71)–(1.72), then u is the solution of the following
variational problem: Find u ∈ V such that

a(u, v) = b(v) ∀ v ∈ V (1.73)

where

a(u, v) =

∫

Ω

κ(x)∇u(x) · ∇v(x)dx, (1.74)

b(v) =

∫

Ω

f(x)v(x)dx, (1.75)

V =

{
v

∣∣∣∣ v is continuous on Ω,
∂v

∂x
and

∂v

∂y
are piecewise continuous on Ω and v = 0 on ∂Ω

}
.

(1.76)

We see that u ∈ V satisfies Eq. (1.73) if and only if u is the solution of the following
minimization problem: Find u ∈ V such that F (u) ≤ F (v) ∀ v ∈ V where F (v) is the
total potential energy

F (v) =
1

2
a(v, v)− b(v). (1.77)

To see that Eq. (1.73) follows from Eqs. (1.71)–(1.72), we multiply Eq. (1.71) with an
arbitrary test function v ∈ V and integrate over Ω. Using integration by parts followed

23



by the divergence theorem in R2, we have:

∫

Ω

v(x)∇ · [κ(x)∇u(x)]dx = −
∫

Ω

f(x)v(x)dx
∫

Ω

∇ · [v(x)κ(x)∇u(x)]dx−
∫

Ω

κ(x)∇u(x) · ∇v(x)dx = −
∫

Ω

f(x)v(x)dx
∫

∂Ω

v(x)κ(x)[∇u(x)] · n(x)ds−
∫

Ω

κ(x)∇u(x) · ∇v(x)dx = −
∫

Ω

f(x)v(x)dx
∫

Ω

κ(x)∇u(x) · ∇v(x)dx =

∫

Ω

f(x)v(x)dx

where the boundary integral vanishes since v = 0 on ∂Ω. On the other hand, if u ∈ V
satisfies Eq. (1.73) and u is sufficiently regular, then we see that u also satisfies Eqs. (1.71)–
(1.72).

When giving variational formulations of boundary value problems for PDEs, it is from
the mathematical point of view natural and useful to work with function spaces V that are
slightly larger (i.e., that contain somewhat more functions) than the spaces of continuous
functions with piecewise continuous derivatives used in the preceding formulation. It is
also useful to endow the spaces V with various scalar products with the scalar product
related to the boundary value problem. More precisely, V will be a Hilbert space.

Before introducing these Hilbert spaces, we recall a few simple concepts from linear
algebra, namely, if V is a linear space, then we say that L is a linear form on V if
L : V → R, i.e., L(v) ∈ R for v ∈ V , and L is linear, i.e., for all v, w ∈ V and α, β ∈ R,
we have:

L(αv + βw) = αL(v) + βL(w). (1.78)

Furthermore, we say that a(·, ·) is a bilinear form on V × V if a : V × V → R, i.e.
a(v, w) ∈ R for v, w ∈ V , and a is linear in each argument, i.e., for all u, v, w ∈ V and
α, β ∈ R, we have

a(u, αv + βw) = αa(u, v) + βa(u,w), (1.79)

a(αu+ βv, βw) = αa(u,w) + βa(v, w). (1.80)

The bilinear form a(·, ·) on V × V is said to be symmetric if

a(v, w) = a(w, v) ∀ v, w ∈ V. (1.81)

A symmetric bilinear form a(·, ·) on V × V is said to be a scalar product on V if

a(v, v) > 0 ∀ v ∈ V, v ̸= 0. (1.82)

The norm ∥ · ∥a associated with a scalar product a(·, ·) is defined by

∥v∥a =
√
a(v, v) ∀ v ∈ V. (1.83)

Further, if ⟨·, ·⟩ is a scalar product with corresponding norm ∥ · ∥, then we have the
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Cauchy’s inequality

|⟨v, w⟩| ≤ ∥v∥∥w∥. (1.84)

We further recall that if V is a linear space with a scalar product with corresponding
norm ∥ · ∥, then V is said to be a Hilbert space if V is complete, i.e., if every Cauchy
sequence with respect to ∥ · ∥ is convergent. We recall that a sequence v1, v2, v3, . . . of
elements vi in the space V with norm ∥ · ∥ is said to be a Cauchy sequence if for all ε > 0
there is a natural number N such thqt ∥vi − vj∥ < ε if i, j > N . Moreover, the sequence
converges to v if ∥v − vi∥ → 0 as i→∞.

Let us then define the space of square-integrable functions for the bounded domain Ω:

L2(Ω) =

{
v : Ω→ R

∣∣∣∣
∫

Ω

v(x)2dx <∞
}

(1.85)

with the following scalar product and norm:

(v, w) =

∫

Ω

v(x)w(x)dx, ∥v∥L2(Ω) =

√∫

Ω

v(x)2dx. (1.86)

Then, the Sobolev space H1(Ω) given by

H1(Ω) =

{
v ∈ L2(Ω)

∣∣∣∣
∂v

∂x1
,
∂v

∂x2
∈ L2(Ω)

}
(1.87)

is the space where the weak solution of Eq. (1.73) naturally exists, and this space is also
the natural home for the test functions v. We also introduce the corresponding scalar
product and norm as follows:

(v, w)H1(Ω) =

∫

Ω

[v(x)w(x) +∇v(x) · ∇w(x)]dx, (1.88)

∥v∥H1(Ω) =

√∫

Ω

[v(x) + |∇v(x)|2]dx. (1.89)

Then we define the solution and test spaces by

H1
E(Ω) = {u ∈ H1(Ω) | u = g on ∂Ω}, (1.90)

H1
E0
(Ω) = {v ∈ H1(Ω) | v = 0 on ∂Ω} (1.91)

and we equip these spaces with the same scalar product and norm as H1(Ω).

The boundary value problem stated by Eqs. (1.71)–(1.72) can now be given the fol-
lowing variational formulation

(V ) Find u ∈ H1
E(Ω) such that a(u, v) = b(v) ∀ v ∈ H1

E0
(Ω) (1.92)

or equivalently

(M) Find u ∈ H1
E(Ω) such that F (u) ≤ F (v) ∀ v ∈ H1

E0
(Ω) (1.93)
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where F (v) = (1/2)a(v, v)− b(v). The formulation (V ) is said to be a weak formulation
of the boudary value problem and the solution of (V ) is said to be a weak solution of the
boundary value problem defined by Eqs. (1.71)–(1.72). If u is a weak solution the it is not
immediately clear that u is also a classical solution of the boundary value problem, since
this requires u to be sufficiently regular so that ∇ · [κ(x)∇u(x)] is defined in a classical
sense. The advantage mathematically of the weak formulation (V ) is that it is easy to
prove the existence of a solution to (V ), whereas it is relatively difficult to prove the
existence of a classical solution of the boundary value problem defined by Eqs. (1.71)–
(1.72). To prove the existence of a classical solution of the boundary value problem one
usually starts with the weak solution and shows, often with considerable effort, that in
fact this solution is sufficiently regular to be also a classical solution.

1.4.2 Galerkin FEM

We now develop the idea of approximating u by taking a finite-dimensional subspace of
the solution space H1

E(Ω). The starting point is the weak formulation (V ) of the boundary
value problem given by Eqs. (1.71)–(1.72). To construct an approximation method, we
assume that Sh

0 ⊂ H1
E0
(Ω) is a finite n-dimensional vector space of test functions of

which {ϕ1, ϕ2, . . . , ϕn} is a convenient basis. Then, in order to ensure that the Dirichlet
boundary condition in Eq. (1.90) is satisfied, we extend this basis set by defining additional
functions ϕn+1, . . . , ϕn+n∂

and select fixed coefficients uj, j = n + 1, . . . , n + n∂, so that
the function

∑n+n∂

j=n+1 ujϕj(x) interpolates the boundary data g on ∂Ω. The finite element

approximation uh ∈ Sh
E is then uniquely associated with the vector u = (u1, u2, . . . , un)

T

or real coefficients in the expansion

uh(x) =
n∑

j=1

ujϕj(x) +

n+n∂∑

j=n+1

ujϕj(x). (1.94)

The functions ϕi, i = 1, . . . , n in the first sum in Eq. (1.94) define a set of trial functions
also called shape functions in the context of finite elements.

The construction of the space Sh
E is achieved above by ensuring that the specific choice

of trial functions in Eq. (1.94) coincides with the choice of test functions that form the
basis for Sh

0 , and is generally referred to as the Galerkin approximation method. A more
general approach is to construct approximation spaces for Eqs. (1.90) and (1.91) using dif-
ferent trial and test functions. This alternative is called a Petrov-Galerkin approximation
method.

The result of the Galerkin approximation is a finite-dimensional version of the weak
formulation:

Find uh ∈ Sh
E such that a(uh, vh) = b(vh) ∀ vh ∈ Sh

0 . (1.95)

For computations, it is convenient to enforce Eq. (1.95) for each basis function; then it
follows from Eq. (1.94) that Eq. (1.95) is equivalent to finding uj, j = 1, . . . , n such that

n∑

j=1

uja(ϕj, ϕi) = b(ϕi)−
n+n∂∑

j=n+1

uja(ϕj, ϕi) (1.96)
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for i = 1, . . . , n. This can be written in matrix form as the linear system of equations

Au = b (1.97)

where A has components

Aij = a(ϕj, ϕi) (1.98)

and b has components

bi = b(ϕi)−
n+n∂∑

j=n+1

uja(ϕj, ϕi) (1.99)

The system of linear equations given by Eq. (1.97) is called the Galerkin system, and
the function uh computed by substituting the solution of Eq. (1.99) into Eq. (1.94) is the
Galerkin solution.

The Galerkin coefficient matrix is clearly symmetric. In contrast, using different test
and trial functions necessarily leads to a nonsymmetric system matrix. The matrix is also
positive-definite. To see this, consider a general coefficient vector v corresponding to a
specific function vh(x) =

∑n
j=1 vjϕj(x) ∈ Sh

0 , so that

vTAv =
n∑

j=1

n∑

i=1

vjAjivi

=
n∑

j=1

n∑

i=1

vj

(∫

Ω

∇ϕj(x) · ∇ϕi(x)dx

)
vi

=

∫

Ω

(
n∑

j=1

vj∇ϕj(x)

)
·
(

n∑

i=1

vi∇ϕi(x)

)
dx

=

∫

Ω

∇vh(x) · ∇vh(x)dx

≥ 0.

Thus we see that A is at least semi-definite. Definiteness follows from the fact that
vAv = 0 if and only if ∇vh = 0, that is, if and only if vh is constant in Ω. Since vh ∈ Sh

0 ,
it is continuous up to the boundary and is zero on ∂Ω, thus ∇vh = 0 implies vh = 0.
Finally, since the test functions are a basis for Sh

0 we have that vh = 0 implies v = 0.
It is clear that the choices of Sh

E and Sh
0 are central in that they determine whether

or not uh has any relation to the weak solution u. The inclusions Sh
E ⊂ H1

E(Ω) and S
h
0 ⊂

H1
E0
(Ω) lead to conforming approximations; more general nonconforming approximation

spaces containing specific discontinuous functions are also possible, but these are not
considered here. The general desire is to choose Sh

E and Sh
0 so that approximation to

any required accuracy can be achieved if the dimension n is large enough. That is, it
is required that the error ∥u − uh∥ reduces rapidly as n is increased, and moreover that
the computational effort associated with solving Eq. (1.97) is acceptable — the choice of
basis is critical in this respect.

The mathematical motivation for finite element approximation is the observation that
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a smooth function can often be approximated to arbitrary accuracy using piecewise poly-
nomials. Starting from the Galerkin system, the idea is to choose basis functions {ϕj}n+n∂

j=1

in Eq. (1.94) that are locally nonzero on a mesh of triangles or a grid of rectangles.

1.4.2.1 Triangular finite elements

For simplicity, we assume that Ω ⊂ R2 is polygonal, so that we are able to tile (or
tessellate) the domain with a set of triangles △k, k = 1, . . . , K, defining a triangulation
Th. This means that vertices of neighboring triangles coincide and that

• ∪k△k = Ω,

• △k ∩△ℓ = ∅ for k ̸= ℓ.

The points where triangle vertices meet are called nodes. Surrounding any node is a patch
of triangles that each have that node as a vertex. If we label the nodes j = 1, . . . , n, then
for each j, we define a basis function ϕj that is nonzero only on that patch. The simplest
choice here (leading to a conforming approximation) is the P1 or piecewise linear basis
function: ϕj is a linear function on triangle, which takes the value one at the node point
j and zero at all other node points on the mesh. Notice that ϕj is clearly continuous
on Ω. Moreover, although ϕj has discontinuities in slope across element boundaries, it
is smooth enough that ϕj ∈ H1(Ω), and so it leads to conforming approximation space
Sh
0 = span(ϕ1, ϕ2, . . . , ϕn) for use with Eq. (1.95).
In terms of approximation, the precise choice of basis for the space is not important; for

practical application however, the availability of a locally defined basis such as this one is
crucial. Having only three basis functions that are not identically zero on a given triangle
means that the construction of the Galerkin matrix A in Eq. (1.97) is easily automated.
Another point is that the Galerkin matrix has a well-defined sparse structure: Aij ̸= 0
only if the node points labeled i and j lie on the same edge of a triangular element.
This is important for the development of efficient methods for solving the linear systems
Eq. (1.97).

Summarizing, P1 approximation can be characterized by saying that the overall ap-
proximation is continuous, and that on any element with vertices i, j and k there are only
the three basis functions ϕi, ϕj and ϕk that are not identically zero. Within an element,
ϕi is a linear function that takes the value one at node i and zero at nodes j and k. This
local characterization is convenient for implementation of the finite element method and
it is also useful for the description of piecewise polynomial approximation spaces of higher
degree.

Some practical considerations and implementation aspects of the Galerkin FEMmethod
are presented in Appendix A.

1.5 Krylov subspace methods for SPD matrices

The main tasks of linear algebra in this work consist of solving standard and generalized
eigenvalue problems as well as linear systems. All the matrices involved in these tasks are
SPD and high-dimensional and we can efficiently compute matrix-vector products. The
most suited algorithms to solve these problems are iterative projection based methods.
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Consequently, for the eigenvalue problems, we consider the symmetric Lanczos procedure
and its explicitly restarted variant. For the linear solves, we consider the preconditioned
conjugate gradient algorithm.

1.5.1 Symmetric Lanczos procedures

The symmetric Lanczos algorithm is a particular case of Arnoldi’s method that was in-
troduced in 1951 [3] as a means to reduce dense matrices into Hessenberg form. In
the case of the symmetric Lanczos algorithm, a symmetric dense matrix is reduced into
tridiagonal form. The symmetric Lanczos algorithm consists of building an orthonormal
basis of so called Lanczos vectors v(1), . . . ,v(m) for the Krylov subspace K(m)(A,v(1)) =
Span{v(1),Av(1), . . . ,Am−1v(1)}. An essential algorithm for the understanding of the
derivation of the Lanczos algorithm is the Gram-Schmidt orthogonalization algorithm.
The Gram-Schmidt algorithm produces an orthonormal basis of vectors v(1), . . . ,v(m) for
a subspace spanned by m given linearly independent vectors x(1), . . . ,x(m). The algorithm

Algorithm 5 Modified Gram-Schmidt({x(1), . . . ,x(m)})
Input: Linearly independent vectors x(1), . . . ,x(m)

Output: Orthonormal basis v(1), . . . ,v(m) of Span{x(1), . . . ,x(m)}
1: r11 := ∥x(1)∥2. If r11 = 0 Stop, else v(1) := x(1)/r11
2: for j = 2, . . . ,m do
3: v̂ := x(j)

4: for i = 1, . . . , j − 1 do
5: rij := v̂Tv(i)

6: v̂ := v̂ − rijv(i)

7: end for
8: rjj := ∥v̂∥2
9: If rjj = 0 Stop, else v(j) := v̂/rjj

10: end for

works as follows. First, normalize the vector x(1), i.e., divide it by its 2-norm, to obtain
the scaled vector v(1) of unit norm. Then, x(2) is orthogonalized against the vector v(1)

by substracting from x(2) the projection of x(2) onto v(1), i.e. x(2) ← x(2) − x(2)Tv(1)v(1).
The resulting vector is again normalized to yield the second vector v(2). The i-th step of
the Gram-Schmidt process consists of orthogonalizing the vector x(i) against all previous
vectors v(j). It is possible to show that the Gram-Schmidt algorithm will break down
if and only if the given vectors are not linearly independent. Algo. 5 is the modified
Gram-Schmidt (MGS) algorithm which, when using exact arithmetic, is mathematically
equivalent to the classical Gram-Schmidt (CGS) algorithm which we just described in
words. While CGS is notorious for suffering from stability issues, MGS is known to offer
better stability.

Starting with a given initial vector v(1) with unit norm, the Lanczos procedure forms
the Lanczos vectors computed by Gram-Schmidt orthogonalization where a new vector
Av(j) is formed and orthogonalized against all the previously computed vectors v(1), . . . ,v(j).
That is, first, the Gram-Schmidt process is called to generate v(2) from {v(1),Av(1)},
then the Gram-Schmidt process is called again to generate v(3) from {v(1),v(2),Av(2)}
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and so forth. Note that, by construction, we have Av(j) ∈ Span{v(1), . . . ,v(j+1)} and, for
k ≥ j + 2, we have v(k) ⊥ Span{v(1), . . . ,v(j+1)}. As a result, we have v(k)TAv(j) = 0
as long as k ≥ j + 2. Consequently, most of the terms of the series in line 6 of the
Gram-Schmidt algorithm cancel. If we gather all the Lanczos vectors into a matrix
V(m) := [v(1), . . . ,v(m)], it hereby follows that T(m) := V(m)TAV(m) is tridiagonal. The
resulting algorithm, provided in Algo. 6, is defined by Lanczos(A, v(1), m) and returns
both the vectors {v(j)}mj=1, stored by columns in V(m), and the tridiagonal matrix T(m).

The algorithm may break down in case the norm of w(j+1) vanishes at a certain step j. In
this case, the vector v(j+1) cannot be computed and the algorithm stops. The computed
α(j)’s and β(j)’s in Algo. 6 are the components of the tridiagonal form of A:

T(m) =




α(1) β(1)

β(1) α(2) β(2)

β(2) α(3) . . .
. . . . . . β(m−2)

β(m−2) α(m−1) β(m−1)

β(m−1) α(m)



. (1.100)

After m iterations, the vectors v(1), . . . ,v(m) of a Lanczos procedure satisfy the Lanczos
recurrence relation

AV(m) = V(m)T(m) + β(m)v(m+1)eTm (1.101)

where β(m) = v(m)TAv(m+1). Since we intend to approximate the most dominant eigen-

Algorithm 6 Lanczos(A, v(1), m)

Input: SPD A, v(1) ∈ R(A), ∥v(1)∥2 = 1,m > 1
Output: Orthonormal basis V(m) := [v(1), . . . ,v(m)] of K(m)(A,v(1)), and tridiagonal

form T(m)

1: β(1) := 0,v(0) := 0,p := Av(1), α(1) := v(1)Tp,V(1) := [v(1)],T(1) := [α(1)]
2: for j = 1, 2, . . . ,m− 1 do
3: w(j+1) := p− α(j)v(j) − β(j−1)v(j−1)

4: β(j) := ∥w(j+1)∥2. If β(j) = 0 then Stop
5: v(j+1) := w(j+1)/β(j)

6: p := Av(j+1)

7: α(j+1) := v(j+1)Tp
8: V(j+1) := [V(j),v(j+1)]

9: T(j+1) :=

[
T(j) β(j)ej
β(j)eTj α(j+1)

]

10: end for

vectors of A, we then use a Rayleigh-Ritz projection onto the Krylov subspace spanned
by some Lanczos vectors.

Once, equipped withm Lanczos vectors v(1), . . . ,v(m) which spanK(m)(A,v(1)), we can
formulate approximations (λ,y) of the eigen-pairs of A using a Rayleigh-Ritz procedure
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of the form

y ∈ K(m)(A,v(1)) (1.102)

Ay − λy ⊥ K(m)(A,v(1)) (1.103)

where Range(V(m)) = K(m)(A,v(1)) with V(m) := [v(1), . . . ,v(m)] implies that an approx-
imate eigenvector of the form y := V(m)ŷ can be obtained upon solving the tridiagonal
eigenvalue problem

T(m)ŷ = λŷ (1.104)

with T(m) = V(m)TAV(m). Solving a tridiagonal eigenvalue problem like Eq. (1.104)
can be done using specialized algorithms with lower complexity than general-purpose
algorithms. Note that since we wish to approximate the nev most dominant eigen-pairs
of A, the retained pairs {(λ(i), ŷ(i))}nevi=1 are the most dominant eigen-pairs of T(j). The
resulting algorithm, given in Algo. 7, is defined by RR-Lan(A, v(1), m, nev). For all

Algorithm 7 RR-Lan(A, v(1), m, nev)

Input: SPD A,v(1) ∈ Range(A), ∥v(1)∥2 = 1,m > 1, 1 ≤ nev ≤ m
Output: Approximations of the nev most dominant eigen-pairs {λ(i),y(i)}nevi=1 of A
1: V(m),T(m) ←[Lanczos(A, v(1), m)
2: Solve for the nev most dominant eigen-pairs {(λ(i), ŷ(i))}nevi=1 of T(m)ŷ = λŷ
3: for i = 1, 2, . . . , nev do
4: y(i) := V(m)ŷ(i)

5: end for

the Rayleigh-Ritz pairs (λ,y) of A in K(m)(A,v(1)), the following expression lies for the
corresponding eigen-residual:

r̃(λ,y) := Ay − λy = AV(m)ŷ − λV(m)ŷ = β(m)(eTmŷ)v
(m+1) (1.105)

where y = V(m)ŷ and (λ, ŷ) is an eigen-pair of T(m). That is, it is conveniently possible
to evaluate the eigen-residual r̃(λ,y) := Ay − λy of an approximate eigen-pair (λ,y) of
A without having to compute the matrix-vector product Ay.

For large matrices, high-dimensional search spaces (i.e., large values of m) are often
needed in order for the Rayleigh-Ritz vectors to precisely approximate several eigenvec-
tors of A. When the search space is generated by a Lanczos procedure, this requires
storing a large basis so as to compute the Rayleigh-Ritz vectors using the expression
y = V(m)ŷ, after solving Eq. (1.104). Until then, the computed vectors can be stored on
disk. However, due to the effect of floating-point arithmetic, the computed vectors tend to
lose their orthogonality as the dimension of the spanned Krylov subspace increases. This
phenomenon, explained in [121, 120], requires some re-orthogonalization to prevent col-
lateral effects on the Rayleigh-Ritz vectors. Different strategies exist to re-orthogonalize:
full re-orthogonalization, which is the most computationally demanding; to which, par-
tial [146], and selective [125] schemes were proposed as alternatives. Irrespective of the
strategy selected, the cost of re-orthogonalization remains an issue for high-dimensional
problems, often requiring Lanczos vectors to be stored on core for a faster execution,
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hence limiting the range of suitable applications for un-restarted algorithms. Restarting
strategies allow for a better use of resources than un-restarted algorithms [139]. In what
follows, we present the explicitly restarted strategy.

1.5.1.1 Thick-Restart algorithm

Here, we consider a strategy in which the search space is explicitly restarted with several
eigenvector approximations. While this approach was deemed the term thick-restart (TR)
by Wu and Simon [165], it was not always the case when similar ideas were developed [104,
150]. We define TR methods as follows. First, the Lanczos vectors of a Krylov subspace
are progressively generated to form search spaces of increasing dimension, each of which
can be used to compute approximate eigenvectors. Once the dimension of the search
space reaches a certain size k+ℓ, k eigenvector approximations y(1), . . . ,y(k) are used as a
basis of a new, restarted subspace. From hereon, a new vector v̂(1) ⊥ Span{y(1), . . . ,y(k)}
is used to generate new Lanczos vectors v̂(2), . . . , v̂(j) by letting each v̂(j) be Av̂(j−1)

orthogonalized against y(1), . . . ,y(k), v̂(1), . . . , v̂(j−1). Once ℓ new Lanczos vectors have
been generated, k new eigenvector approximations are computed in the current search
space STR−Lan({y(i)}ki=1, v̂

(1), j) defined by

STR−Lan({y(i)}ki=1, v̂
(1), j) := Span{y(1), . . . ,y(k), v̂(1),Av̂(1) . . . ,Aj−1v̂(1)} (1.106)

for 1 ≤ j ≤ ℓ. The search space is restarted again with these approximations and some
v̂(1), yet to be defined. This process is repeated over and over again, and the overall
number of Lanczos vectors generated is denoted by m. For all m > k + ℓ, the current
search space can be put in the form of Eq. (1.106). Note that, as the orthogonalization
of v̂(2), . . . , v̂(j) is done by a Gram-Schmidt procedure, it can reduce to short recurrent
relations depending on how v̂(1) is defined for the given projection technique. Moreover,
the choice of v̂(1) also strongly influences some properties of the current search space
which are responsible for the convergence of the restarted procedure. Since we intend
to approximate the most dominant eigenvectors of A, its convenes to use a Rayleigh-
Ritz projection. Note that, alternatively, we could use a harmonic Ritz projection if we
intended to approximate the least dominant eigen-pairs of A, see [159] for a harmonic
Ritz TR algorithm.

The Rayleigh-Ritz TR Lanczos procedure, presented by Simon andWu [165], generates
Rayleigh-Ritz approximations (λ(1),y(1)), . . . , (λ(k),y(k)) of A in the current search space
STR−Lan({y(i)}ki=1, v̂

(1),m) of a TR Lanczos procedure. Just before the search space is
restarted for the first time, by property of Rayleigh-Ritz pairs of A in Krylov subspaces,
we have

Ay(i) = λ(i)y(i) + β(k+ℓ)(eTk+ℓŷ
(i))v(k+ℓ+1) (1.107)

where y(i) := [v(1), . . . ,v(k+ℓ)]ŷ(i) for 1 ≤ i ≤ k. Then, letting v̂(1) := v̂(k+ℓ+1) has
important consequences on the procedure. First, the computation of v̂(2), . . . , v̂(j) reduces
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to the evaluation of short recurrence relations, see [165]. We then have

Av̂(1) = α̂(1)v̂(1) + β̂(1)v̂(2) +
k∑

i=1

β(k+ℓ)(eTk+ℓŷ
(i))y(i) (1.108)

Av̂(j) = α̂(j)v̂(j) + β̂(j)v̂(j+1) + β̂(j−1)v̂(j−1) for j > 1, (1.109)

where α̂(j) := v̂(j)TAv̂(j) and β̂(j) := v̂(j+1)TAv̂(j), so that A[y(1), . . . ,y(k), v̂(1), . . . , v̂(j)]
can be put in the form of a rank-1 update. In particular, for j > 1, we can write
V := [y(1), . . . ,y(k), v̂(1), . . . , v̂(j)] and

AV −VT = R (1.110)

where

T =




λ(1) β(k+ℓ)eTk+ℓŷ
(1)

. . .
...

λ(k) β(k+ℓ)eTk+ℓŷ
(k)

β(k+ℓ)eTk+ℓŷ
(1) · · · β(k+ℓ)eTk+ℓŷ

(k) α̂(1) β̂(1)

β̂(1) . . . . . .
. . . . . . β̂(j−1)

β̂(j−1) α̂(j)




(1.111)

and

R = [β(k+ℓ)(eTk+ℓŷ
(1))v(k+ℓ+1), . . . , β(k+ℓ)(eTk+ℓŷ

(k))v(k+ℓ+1),0, . . . ,0] (1.112)

has rank-1 so that, in light of Theorem 2, the current search space STR−Lan is, and
remains a Krylov subspace as long as v̂(1) := v̂(ℓ+1) for all the next restarts. The resulting
algorithm is given in Algo. 8 and defined by RR-TR-Lan(A, v(1), m, k, ℓ, nev) where,
for the sake of simplicity, the created vectors are all denoted by v(j) for all j from 1 to m.

Theorem 2. K(m)(A,v(1)) = Span{v(1) . . . ,v(m)} is a Krylov subspace if and only if
there exists a m-by-m matrix N such that

R := AV(m) −V(m)N , V(m) = [v(1), . . . ,v(m)] (1.113)

has rank one and Span{v(1), . . . ,v(m),Range(R)} has dimension m+ 1.

Proof. See Section 11.7 in [2].

Then, once passed the first restart, all the eigenvector approximations are such that

Ay(i) = λ(i)y(i) + β̂(ℓ)(eTk+ℓŷ
(i))v̂(ℓ+1). (1.114)
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Algorithm 8 RR-TR-Lan(A, v1, m, k, ℓ, nev)

Input: SPD A, v1 ∈ Range(A), ∥v1∥2 = 1, m > k + ℓ, nev ≤ k
Output: Approximations of the nev most dominant eigen-pairs {λi,yi}nevi=1 of A
1: β0 := 0,v0 := 0,p := Av1, α1 := vT

1 p,V := [v1],T := [α1]
2: for j = 1, 2, . . . ,m− 1 do
3: i := j%(k + ℓ)
4: if i = 0 then
5: Solve for the k most dominant eigen-pairs {(λ, ŷ)}ki=1 such that Tŷ = λŷ
6: V := V[ŷ1, . . . , ŷk]
7: T := diag(λ1, . . . , λk)
8: s := [ŷ1, . . . , ŷk]

Tek+ℓ

9: wj+1 := p− αjvj − βj−1vj−1
10: βj := ∥wj+1∥2. If βj = 0 then Stop
11: vj+1 := wj+1/βj
12: p := Avj+1

13: αj+1 := vT
j+1p

14: else if i = 1 and j > k + ℓ then
15: V := [V,vj]

16: T :=

[
T βj−1s

βj−1s
T αj

]

17: wj+1 := p− αjvj −
∑k

i=1 βj−1(e
T
j−1ŷi)yi

18: βj := ∥wj+1∥2. If βj = 0 then Stop
19: vj+1 := wj+1/βj
20: p := Avj+1

21: αj+1 := vT
j+1p

22: V := [V,vj+1]

23: T :=

[
T βjei
βje

T
i αj+1

]

24: else
25: wj+1 := p− αjvj − βj−1vj−1
26: βj := ∥wj+1∥2. If βj = 0 then Stop
27: v̂j+1 := wj+1/βi
28: p := Avj+1

29: αj+1 := vT
j+1p

30: V := [V,vj+1]

31: T :=

[
T βjei
βje

T
i αj+1

]

32: end if
33: end for
34: Solve for the nev most dominant eigen-pairs {(λi, ŷi)}nevi=1 of Tŷ = λŷ
35: for i = 1, 2, . . . , nev do
36: yi := Vŷi

37: end for
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An important observation is that Eqs. (1.106), (1.107) and (1.114) imply

STR−Lan({y(r)}kr=1,
ˆv(1), j) = Span{y(1), . . . ,y(k),Ay(i), . . . ,Ajy(i)} for 1 ≤ i ≤ k.

(1.115)

This, in turn, implies that the current (k+ j)-dimensional search space STR−Lan contains
all the (j + 1)-dimensional Krylov subspaces of A generated by each of the eigenvector
approximations y(1), . . . ,y(k):

K(j+1)(A,y(i)) ⊂ STR−Lan({y(r)}kr=1, v̂
(1), j) for 1 ≤ i ≤ k. (1.116)

This property plays an important role in explaining the effectiveness, and lack thereof, of
restarted methods [105].

1.5.2 Conjugate gradient algorithms

The conjugate gradient (CG) is one of the best known iterative techniques for solving SPD
linear systems. The CG algorithm is mathematically equivalent to the full orthogonaliza-
tion method (FOM), see Section 6.4 of [138]. As such, this method seeks an approximate
solution u(m) from the affine subspace u(0) + K(m)(A, r(0)) with r(0) := b − Au(0), by
imposing the Galerkin condition

r(m) := b−Au(m) ⊥ K(m)(A, r(0)). (1.117)

However, because A is symmetric, some simplifications resulting from the three-term
Lanczos recurrence lead to a more elegant algorithm. The resulting algorithm, of which
the derivation can be found in Section 6.7.1 of [138], is presented in Algo. 9. Note that
if we set v(1) := r(0)/∥r(0)∥2 in the Lanczos procedure and we set β = ∥r(0)∥2, then
V(m)TAV(m) = T(m) and

V(m)T r(0) = V(m)(βv(1)) = βe1. (1.118)

As a result, the approximate solution using the above m-dimensional subspaces is given
by

u(m) = u(0) +V(m)y(m) (1.119)

y(m) = T(m)−1(βe1). (1.120)

Many of the results from the Lanczos procedure for linear systems are still valid. For
example, the residual vector of the approximate solution u(m) is such that

b−Au(m) = −β(m+1)eTmy
(m)v(m+1). (1.121)

Since the CG algorithm is used only with positive definite matrices, the coefficients
α(j) and β(j) are always defined, and it can be shown that the A-norm of the error
e(j) := u−u(j) is actually minimized over the affine space e(0)+span{p(0),p(1), . . . ,p(j)}.
Theorem 3. Assume that A is SPD with dimension n. The CG algorithm generates
the exact solution to the linear system Au = b in at most n steps. The error, residual,
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Algorithm 9 CG(A, b, u(0))

1: r(0) := b−Au(0)

2: p(0) := r(0)

3: for j = 0, 1, . . . ,m− 1 do
4: α(j) := r(j)T r(j)/p(j)TAp(j)

5: u(j+1) := u(j) + α(j)p(j)

6: r(j+1) := r(j) − α(j)Ap(j)

7: β(j) := r(j+1)T r(j+1)/r(j)T r(j)

8: p(j+1) := r(j+1) + β(j)p(j)

9: end for

and direction vectors generated before the exact solution is obtained are well defined and
satisfy

e(j+1)TAp(k) = p(j+1)TAp(k) = r(j+1)T r(k) = 0 ∀ k ≤ j. (1.122)

It follows that of all vectors in the affine space

e(0) + span{Ae(0),A2e(0), . . . ,Aj+1e(0)}, (1.123)

e(j+1) has the smallest A-norm.

Proof. Since A is SPD, it is clear that the coefficients in the CG algorithm are well
defined unless a residual vector is zero, in which case the exact solution has been found.

Assume that r(0), . . . , r(j) are non-zero. By the choice of α(0), it is clear that r(1)
T
r(0) =

e(1)
T
Ap(0) = 0, and from the choice of β(0) it follows that

p(1)TAp(0) = r(1)
T
Ap(0) +

r(1)
T
r(1)

r(0)
T
r(0)

p(0)TAp(0)

= r(1)
T (r(0) − r(1))

α(0)
+

r(1)
T
r(1)

α(0)
= 0,

where the last equality holds because r(1)
T
r(0) = 0 and 1/α(0) is real. Assume that

e(j)
T
Ap(k) = TAp(j) = T r(k) = 0 ∀ k ≤ j − 1.

Then we also have

p(j)TAp(j) = (r(j) + β(j−1)p(j−1))TAp(j) = r(j)
T
Ap(j),

r(j)
T
p(j) = r(j)

T
(r(j) + β(j−1)p(j−1)) = r(j)

T
r(j),

so, by the choice of α(j), it follows that

r(j+1)T r(j) = r(j)
T
r(j) − α(j)r(j)

T
Ap(j) = r(j)

T
r(j) − r(j)

T
r(j) = 0,

e(j+1)TAp(j) = r(j+1)Tp(j) = r(j)
T
p(j) − α(j)p(j)TAp(j) = r(j)

T
r(j) − r(j)

T
r(j) = 0.
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From the choice of β(j), we have

p(j+1)TAp(j) = r(j+1)Ap(j) +
r(j+1)T r(j+1)

r(j)
T
r(j)

p(j)TAp(j) = r(j+1)T (r
(j) − r(j+1))

α(j)
+

r(j+1)T r(j+1)

α(j)
= 0.

For k ≤ j − 1, we have

e(j+1)TAp(k) = (e(j) − α(j)p(j))TAp(k) = 0,

r(j+1)T r(k) = (r(j) − α(j)Ap(j))T r(k) = −α(j)p(j)TA(p(k) − β(k−1)p(k−1)) = 0,

p(j+1)TAp(k) = (r(j+1) + β(j)p(j))TAp(k) = r(j+1)T (r
(k) − r(k+1))

α(k)
= 0,

so, by induction, the desired equalities are established. It is easily checked by induction
that e(j+1) lies in the space (1.123) and that span{p(0), . . . ,p(j)} = span{Ae(0), . . . ,Aj+1e(0)}.
Since e(j+1) is A-orthogonal to span{p(0), . . . ,p(j)}, it follows that e(j+1) is the vector in
the space (1.123) with minimal A-norm, and it also follows that if the exact solution is
not obtained before step n, then e(n) = 0.

Let us now assume that an SPD preconditioner M is available. The effect of the
preconditioner on the algorithm is the following. Then one can precondition the system
in one of several ways. When M is available in the form of an incomplete Cholesky
factorization, i.e., when M = LLT , then a simple way to preserve symmetry is to use split
preconditioning, which yields the SPD matrix

L−1AL−Tx = L−1b , u = L−Tx. (1.124)

However it is not necessary to split the preconditioner in this manner in order to preserve
symmetry. Observe that M−1A is self-adjoint for the M-inner product uTMv, since

(M−1Au)TMv = (Au)Ty = uTAv = uTMM−1Av = (M−1Au)TMv. (1.125)

Therefore, an alternative is to replace the usual Euclidean inner product in the CG algo-
rithm with the M-inner product.

If the CG algorithm is rewritten for this new inner product, r(j) = b − Au(j) the
original residual and by z(j) = M−1r(j)the residual for the preconditioned system, the
following sequence of operations is obtained, ignoring the initial step

1. α(j) := z(j)TMz(j)/(M−1Ap(j))TMp(j), (1.126)

2.; u(j+1) := u(j) + α(j)p(j), (1.127)

3. r(j+1) := r(j) − α(j)Ap(j) and z(j+1) := M−1r(j+1), , (1.128)

4. β(j) := z(j+1)TMz(j+1)/z(j)TMz(j), (1.129)

5. p(j+1) := z(j+1) + β(j)p(j). (1.130)

Since z(j)TMz(j) = r(j)Tz(j) and (M−1Ap(j))TMp(j) = (Ap(j))Tp(j), the M-inner prod-
ucts do not have to be computed explicitly. With this observation, Algo. 10 is obtained.
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Algorithm 10 PCG(A, M, b, u(0))

1: r(0) := b−Au(0)

2: z(0) := M−1r(0)

3: p(0) := z(0)

4: for j = 0, 1, . . . ,m− 1 do
5: α(j) := r(j)T r(j)/p(j)TAp(j)

6: u(j+1) := u(j) + α(j)p(j)

7: r(j+1) := r(j) − α(j)Ap(j)

8: z(j+1) := M−1r(j+1)

9: β(j) := r(j+1)Tz(j+1)/r(j)Tz(j)

10: p(j+1) := z(j+1) + β(j)p(j)

11: end for

1.5.2.1 Induced approximations of eigenvectors

Sometimes, it is useful to be able to obtain the tridiagonal matrix T(m) related to the
underlying Lanczos iteration from the coefficients of the CG Algo. 9. This tridiagonal
matrix can provide valuable eigenvalue information on the matrix A. For example, the
largest and smallest eigenvalues of the tridiagonal matrix can approximate the smallest
and largest eigenvalues of A. This could be used to compute an estimate of the condition
number of A, which in turn can help provide estimates of the error norm from the residual
norm. We seek expressions for the coefficients (T(m))j+1,j+1 and (T(m))j,j+1 in terms of the
coefficients α(j) and β(j) obtained from the CG algorithm. The key information regarding
the correspondence between the two pairs of coefficients resides in the corrrespondences
between the vectors generated by the two algorithms. From Eq. (1.121) it is known that
r(j) ∝ v(j+1). As a result, the diagonal components of the tridiagonal matrix T(m) are
given as follows,

(T(m))j+1,j+1 =
v(j+1)TAv(j+1)

v(j+1)Tv(j+1)
=

r(j)TAr(j)

r(j)T r(j)
. (1.131)

The denominator r(j)T r(j) is readily available from the coefficients of the CG algorithm,
but the numerator r(j)TAr(j) is not. The line 8 of Algo. 9 can be used to obtain

r(j) = p(j) − β(j−1)p(j−1) (1.132)

which is then substituted in r(j)TAr(j) to get

r(j)TAr(j) = (p(j) − β(j−1)p(j−1))TA(p(j) − β(j−1)p(j−1)). (1.133)

Note that the term β(j−1)p(j−1) is defined to be zero when j = 0. Because the p-vectors
are A-orthogonal, we have

r(j)TAr(j) = p(j)TAp(j) + β(j−1)2p(j−1)TAp(j−1), (1.134)
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from which we obtain the following for j > 0,

(T(m))j+1,j+1 =
p(j)TAp(j)

r(j)T r(j)
+ β(j−1)2p

(j−1)TAp(j−1)

r(j)T r(j)
=

1

α(j)
+
β(j−1)

α(j−1) . (1.135)

The above expression is only valid for j > 0. For j = 0, the second term on the right-hand
side should be omitted. Therefore, the diagonal components of the tridiagonal matrix Tm

are given by

(T(m))j+1,j+1 =

{
1

α(j) for j = 0,
1

α(j) +
β(j−1)

α(j−1) for j > 0.
(1.136)

Now, an expression is needed for the codiagonal elements (Tm)j,j+1. From the defini-
tions in the Lanczos algorithm, we have

(T(m))j,j+1 = v(j)TAv(j+1) =
|r(j−1)TAr(j)|
∥r(j−1)∥2∥r(j)∥2

. (1.137)

From line 6 of Algo. 9, we have

Ap(j) = − 1

α(j)
(r(j+1) − r(j)). (1.138)

Using Eqs. (1.132) and (1.138) as well as orthogonality properties of the CG algorithm,
we obtain the following sequence of equalities:

r(j−1)TAr(j) = (p(j−1) − β(j−2)p(j−2))Ar(j) (1.139)

= p(j−1)TAr(j) − β(j−2)p(j−2)TAr(j) (1.140)

=
−1
α(j−1) (r

(j) − r(j−1))T r(j) +
β(j−2)

α(j−2) (r
(j−1) − r(j−2))T r(j) (1.141)

=
−1
α(j−1) r

(j)T r(j). (1.142)

Therefore,

(T(m))j,j+1 =
1

α(j−1)
r(j)T r(j)

∥r(j−1)∥2∥r(j)∥2
=

1

α(j−1)
∥r(j)∥2
∥r(j−1)∥2

=

√
β(j−1)

α(j−1) . (1.143)

This finally gives the general form of the m-dimensional Lanczos tridiagonal matrix in
terms of the CG coefficients:

T(m) =




1
α(0)

√
β(0)

α(0)√
β(0)

α(0)
1

α(1) +
β(0)

α(0)

√
β(1)

α(1)

. . . . . . . . .
. . . . . .

√
β(m−2)

α(m−2)√
β(m−2)

α(m−2)
1

α(m−1) +
β(m−2)

α(m−2)




. (1.144)
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1.5.2.2 Error bounds

It was shown that CG generates the optimal approximate solution from a Krylov subspace,
where “optimal” is taken to mean having an error with minimal A-norm. Here, we derive
bounds on the appropriate error norm for the optimal approximation from a Krylov
subspace, following the work of [59].

A goal is to derive a sharp upper bound on the reduction in the A-norm of the
error–that is, an upper bound that is independent of the initial vector but that is actually
attained for certain initial vectors. This describes the worst-case behavior of the algorithm
(for a given matrix A). It can sometimes be shown that the “typical” behavior of the
algorithm is not much different from the worst-case behavior. That is, if the initial vector
is random, then convergence may be only moderately faster than for the worst initial
vector. For certain special initial vectors, however, convergence may be much faster than
the worst-case analysis would suggest. Still, it is usually the same analysis that enables
one to identify these “special” initial vectors, and it is often clear how the bound must
be mofified to account for special properties of the initial vector.

It was shown that the A-norm of the error in the CG algorithm for SPD problems is
minimized over the space

e(0) + span{Ae(0),A2e(0), . . . ,Ake(0)}. (1.145)

It follows that the CG error vector at step j can be written in the form

e(j) = Pj(A)e(0) (1.146)

where Pj is the jth-degree polynomial with value 1 at the origin and, of all such polyno-
mials that could be substituted in Eq. (1.146), Pj gives the error of minimal A-norm in
the CG algorithm. In other words, the error e(j) in the CG approximation satisfies

∥e(j)∥A = min
pj
∥pj(A)e(0)∥A (1.147)

where the minimum is taken over all polynomials pj of degree j or less with pj(0) = 1.

Here, we derive bounds on the expression in the right-hand side of Eq. (1.147) that
are independent of the direction of the initial error e(0), although they do depend on the
size of this quantity. A sharp upper bound is derived involving all of the eigenvalues of
A, and then a simpler (but nonsharp) bound is given based on the knowledge of just a
few of the eigenvalues of A.

Let an eigen-decomposition of A be written as A = UΛUT , where U is a unitary
matrix and Λ = diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues. If A is SPD, define
A1/2 to be UΛ1/2UT . Then the A-norm of a vector v is just the 2-norm of the vector
A1/2v. Eq. (1.147) implies that

∥e(j)∥A = min
pj
∥A1/2pj(A)e(0)∥ = min

pj
∥Upj(Λ)UTA1/2e(0)∥ ≤ min

pj
∥pj(Λ)∥ · ∥e(0)∥A

(1.148)

with the inequalities following, because if p̂j is the polynomial that minimizes ∥pj(Λ)∥,
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then

min
pj
∥Upj(Λ)UTw∥ ≤ ∥Up̂j(Λ)UTw∥ ≤ ∥Up̂j(Λ)UT∥∥w∥ ≤ ∥p̂j(Λ)∥∥w∥ (1.149)

for any vector w. Of course, the polynomial that minimizes the expression in Eq. (1.148)
is not necessarily the same one that minimizes ∥pj(Λ)∥ in the inequalities. The CG
polynomial depends on the initial vector, while this polynomial does not. Hence it is
not immediately obvious that the bound in Eq. (1.148) is sharp, that is, that it can
actually be attained for certain initial vectors. It turns out that this is the case, however.
See, for example, [58, 60]. For each j there is an initial vector e(j) for which the CG
polynomial at step j is the polynomial that minimizes ∥pj(Λ)∥ and for which equality
holds in Eq. (1.148).

The sharp upper bound (1.148) can be written in the form

∥e(j)∥A
∥e(0)∥A

≤ min
pj

max
i=1,...,n

|pj(λi)|. (1.150)

The problem of describing the convergence of the CG algorithm therefore reduces to one
in approximation theory–how well can one approximate zero on the set of eigenvalues of
A using a jth-degree polynomial with value 1 at the origin. While there is no simple
expression for the maximum value of the minimax polynomial on a discrete set of points,
this minimax polynomial can be calculated if the eigenvalues of A are known; more
importantly, this sharp upper bound provides intuition as to what constitutes “good”
and “bad” eigenvalue distributions. Eigenvalues tightly clustered around a single point
(away from the origin) are good, for instance, because the polynomial (1− z/c)j is small
in absolute value at all points near c. Widely spread eigenvalues, especially if they lie on
both sides of the origin, are bad, because a low-degree polynomial with value 1 at the
origin cannot be small at a large number of such points.

Since one usually has only limited information about the eigenvalues of A, it is useful
to have error bounds that involve only a few properties of the eigenvalues. For example,
knowing only the largest and smallest eigenvalues of A, one can obtain an error bound by
considering the minimax polynomial on the interval from λmin to λmax, i.e., the Chebyshev
polynomial shifted to the interval and scaled to have value 1 at the origin.

Theorem 4. Let e(j) be the error at step j of the CG algorithm applied to the SPD linear
system Au = b. Then

∥e(j)∥A
∥e(0)∥A

≤ 2



(√

cond− 1√
cond + 1

)j

+

(√
cond + 1√
cond− 1

)j


−1

≤ 2

(√
cond− 1√
cond + 1

)j

(1.151)

where cond = λmax/λmin is the ratio of the largest to smallest eigenvalue of A.

Proof. Consider the jth scaled and shifted Chebyshev polynomial on the interval [λmin, λmax]

pj(z) =
Tj

(
2z−λmax−λmin

λmax−λmin

)

Tj

(
−λmax−λmin

λmax−λmin

) (1.152)
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where Tj(z) is the Chebyshev polynomial of the first kind on the interval [−1, 1] satisfying

T0(z) = 1, T1(z) = z, (1.153)

Tk+1(z) = 2zTk(z)− Tk−1(z) , k = 1, 2, . . . . (1.154)

In the interval [−1, 1], we have

Tj(z) = cosh(j cosh−1 z), (1.155)

so if z is of the form z = cosh(ln y) = 1
2
(y+y−1), then Tj(z) =

1
2
(yj +y−j). The argument

in the denominator of Eq. (1.152) can be expressed in the form 1
2
(y + y−1) if y satisfies

−λmax + λmin

λmax − λmin

= −cond + 1

cond− 1
=

1

2
(y + y−1), (1.156)

which is equivalent to the quadratic equation

1

2
y2 +

cond + 1

cond− 1
y +

1

2
= 0. (1.157)

Solving this equation, we find

y = −
√
cond + 1√
cond− 1

or y = −
√
cond− 1√
cond + 1

. (1.158)

In either case, the denominator in Eq. (1.152) has absolute value equal to

1

2



(√

cond− 1√
cond + 1

)j

+

(√
cond + 1√
cond− 1

)j

 (1.159)

and from this result Eq. (1.151) follows.

Knowing only the largest and smallest eigenvalues of a SPD matrix A, bound (1.151)
is the best possible. If the interior eigenvalues of A lie at the points where the Chebyshev
polynomial pj in Eq. (1.152) attains its maximum absolute value on [λmin, λmax], then for
a certain initial error e(0), the CG polynomial will be equal to the Chebyshev polynomial
and the bound in Eq. (1.151) will actually be attained at step j.

If additional information is available about the interior eigenvalues of A, one can often
improve on the estimate of Eq. (1.151) while maintaining a simpler expression than the
sharp bound of Eq. (1.150). Suppose, for example, that A has one eigenvalue much larger
than the others, say, λ1 ≤ · · · ≤ λn−1 ≪ λn, that is, λn/λn−1 ≫ 1. Consider a polynomial
pj that is the product of a linear factor that is zero at λn and the (j − 1)st-degree scaled
and shifted Chebyshev polynomial on the interval [λ1, λn−1]:

pj(z) =
Tj−1

(
2z−λn−1−λ1

λn−1−λ1

)

Tj−1

(
−λn−1−λ1

λn−1−λ1

) ·
(
λn − z
λn

)
. (1.160)

Since the second factor is zero at λn and less than one in absolute value at each of the
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other eigenvalues, the maximum absolute value of this polynomial on {λ1, . . . , λn} is less
than the maximum absolute value of the first factor on {λ1, . . . , λn−1}. Using arguments
like those in Theorem 4, it follows that

∥e(j)∥A
∥e(0)∥A

≤ 2

(√
condn−1 − 1√
condn−1 + 1

)j−1

, condn−1 =
λn−1
λ1

. (1.161)

Similarly, if the matrix A has just a few large outlying eigenvalues, say, λ1 ≤ · · · ≤
λn−ℓ ≪ λn−ℓ+1 ≤ · · · ≤ λn, i.e., λn−ℓ+1/λn−ℓ ≫ 1, one can consider a polynomial pj that
is the product of an ℓth-degree factor that is zero at each of the outliers (and less than
one in magnitude at each of the other eigenvalues) and a scaled and shifted Chebyshev
polynomial of degree k− ℓ on the interval [λ1, λn−ℓ]. Bounding the size of this polynomial
gives

∥e(j)∥A
∥e(0)∥A

≤ 2

(√
condn−ℓ − 1√
condn−ℓ + 1

)j−ℓ

, condn−ℓ =
λn−ℓ
λ1

. (1.162)

1.6 Parallel preconditioners

We present here a handful of preconditioners for the iterative solves of Eq. (1.5) which
are well-adapted for parallel applications. This presentation is by no means exhaustive.
Nevertheless, it provides a decent range of techniques to benchmark the preconditioning
strategies investigated throughout this thesis. First, we present block Jacobi (bJ) pre-
conditioners, then non-overlapping domain decomposition methods followed by algebraic
multigrids. Some of the preconditioners presented were implemented using the Julia pro-
gramming language. Other well-known parallel preconditioning techniques, not used in
this work, are mentioned in the end of the Section.

Roughly speaking, a preconditioner is any form of implicit or explicit modification
of an original linear system that makes it easier to solve by a given iterative method.
For example, scaling all rows of a linear system to make the diagonal elements equal
to one is an explicit form of preconditioning. The resulting system can be solved by a
Krylov subspace method and may require fewer steps to converge than the original system
(although this is not guaranteed). As another example, solving the linear system

M−1Au = M−1b (1.163)

where M−1 is some complicated mapping that may involve fast Fourier transforms (FFT),
integral calculations, and subsidiary linear system solutions, may be another form of
preconditioning. Here, it is unlikely that the matrices M and M−1A can be computed
explicitly. Instead, the iterative processes operate withA and withM−1 whenever needed.
In practice, the preconditioning operation M−1 should be inexpensive to apply to an
arbitrary vector. Meanwhile, a parallel preconditioning operation is one that is well
adapted for parallel application.
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1.6.1 Block Jacobi preconditioners

We first consider non-overlapping diagonal bJ preconditioners of the form

M−1
bJ :=

nb∑

j=1

R(j )T M−1
j R(j ) (1.164)

with canonical restrictions R(j ) from a global vector to each block j ∈ [1, nb]. For each j,

M−1
j is applied with a Cholesky factorization Mj = LjL

T
j = R(j )T AR(j ).

1.6.2 Non-overlapping domain decomposition methods

Domain decomposition refers to an ensemble of numerical methods which rely on a divide-
and-conquer paradigm to solve computational problems. Those are commonly referred to
as either algebraic or domain-specific, depending on whether their formulation explicitly
relies on the underlying problem they solve. While a substantial part of the scientific
literature on domain decomposition emphasizes applications to linear solves of discretized
PDEs, there exist communities, such as structural engineering, that resort to domain
decomposition to solve large systems of algebraic equations which are not induced by the
discretization of PDEs. In both cases, domain decomposition is a means to circumvent
the limits of computer memory to solve large systems of equations. These methods have
proven to be useful to solve PDEs on “non-standard” geometries decomposed into sub-
domains that are more amenable to efficient solves such as when using fast Poisson solvers
on structured rectangular sub-grids. Another use of domain decomposition is to allow a
partition of the domain into sub-domains within which distinct physics are considered
from one part of the domain to the others. But perhaps the most sought out feature
of these methods within the scientific computing community is the natural way they
offer to exploit parallel computing architectures. The zoology of these methods is vast
enough that providing an exhaustive review goes beyond the scope of this work. For more
general and complementary presentations of domain decomposition, we direct the reader
to [26, 147, 155, 126].

Just like any other method aimed at solving a linear system, domain decomposition
methods can be used to derive preconditioners. Here, we focus on preconditioners designed
for and induced by Schur complement operators which arise in non-overlapping domain
decomposition methods.

We briefly introduce non-overlapping domain decomposition as follows. For simplicity,
we assume that A is obtained by spatial discretization with nodal finite elements of a
scalar PDE subjected to Dirichlet boundary conditions on a domain Ω with boundary
∂Ω. Then, a non-overlapping domain decomposition consists of sub-domains Ω1, . . . ,Ωnd

of Ω such that

Ω =

nd⋃

d=1

Ωd and Ωd ∩ Ωd′ = ∅ if d ̸= d′, (1.165)

where Ωd denotes the closure of Ωd. Each sub-domain Ωd has a boundary ∂Ωd and a local
interface Γd := ∂Ωd\∂Ω. Since we rely on finite elements, it is natural to let Ωd be a union
of elements, so that no element is split by the global interface Γ = ∪nd

d=1Γd across different
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sub-domains. Such decompositions are referred to as element-based partitions [138] and

are characterized by sets of indices N (1)
I , . . . ,N (nd )

I ,NΓ where the indices in N (d)
I refer to

the finite element nodes which are in the interior of Ωd, and NΓ contains the indices of
all the nodes in Γ. A convenient means of generating such domain decompositions is to
operate on a graph representation of the finite element mesh. That is, each element of the
mesh is represented by a vertex of a graph, and each edge of this graph indicates that the
two elements it points to have at least one node in common. Then, a non-overlapping do-
main decomposition, i.e., a sub-structuring, can be obtained by vertex-based partitioning
of the graph using either multilevel k-way, multilevel recursive bisection, multi-constraint
partitioning or spectral clustering algorithms—all of which are readily deployable through
softwares such as METIS [74] or Scotch [27].

Once equipped with a partition of the nodes, a permutation π can be defined onto
N (1)

I ∪ · · · ∪ N
(nd )
I ∪NΓ with a matrix Pπ such that, if Eq. (1.5) is already assembled, it

can be re-ordered into a block arrow structure as follows:

PπAPT
π (Pπu) = Pπb



A
(1)
II A

(1)
IΓ

. . .
...

A
(nd )
II A

(nd )
IΓ

A
(1)
ΓI · · · A

(nd )
ΓI AΓΓ







u
(1)
I
...

u
(nd )
I

uΓ


 =




b
(1)
I
...

b
(nd )
I

bΓ




(1.166)

where u
(d)
I and uΓ contain the solution of the discretized equation at the nodes within Ωd

and in Γ, respectively.

Conversely, if Eq. (1.5) is not assembled prior to partitioning the domain, then Eq. (1.166)
can be obtained by reduction of extended local assemblies from all the sub-domains. That
is, for a given sub-domain, a local assembly is performed by considering the discrete ma-
trix and right-hand side contributions which arise from the elements in Ωd. Numbering
the interior nodes first, we obtain

A(d) =

[
A

(d)
II A

(d)
IΓ

A
(d)
ΓI A

(d)
ΓΓ

]
, b(d) =

[
b
(d)
I

b
(d)
Γ

]
, d = 1, . . . , nd. (1.167)

Note that A(d) corresponds to a discretization of the PDE on Ωd with Neumann boundary
conditions on Γd, whereasA

(d)
II corresponds to a discretization with homogeneous Dirichlet

boundary conditions on Γd. Therefore, if Ωd is an internal sub-domain, i.e., if ∂Ωd∩∂Ω =
∅, then A(d) is singular. Nevertheless, irrespectively of the well-posedness of the local
problems, the global blocksAΓΓ and bΓ of Eq.(1.166) are obtained by summing extensions
of the local contributions from all the sub-domains. That is

AΓΓ =

nd∑

d=1

R(d)
Γ

T
A

(d)
ΓΓR

(d)
Γ , bΓ =

nd∑

d=1

R(d)
Γ

T
b
(d)
Γ (1.168)

where R(d)
Γ is the canonical restriction matrix that maps global vectors of nodal values in

Γ to local vectors of nodal values in Γd.

From the point of view of linear algebra, the main feature of non-overlapping do-
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main decomposition arises from a proper manipulation of the block arrow structure of
Eq. (1.166) to yield a condensed linear system whose sole unknowns lie on the global in-

terface Γ. To do so, it suffices to eliminate u
(1)
I , . . . ,u

(nd )
I from Eq. (1.166) so as to obtain

a system of the form

SuΓ = bS , bS = bΓ−
nd∑

d=1

A
(d)
ΓI A

(d)
II

−1
b
(d)
I , (1.169)

where S denotes the global Schur complement matrix given by

S =

nd∑

d=1

R(d)
Γ

T
S(d) R(d)

Γ (1.170)

in terms of local Schur complements

S(d) = A
(d)
ΓΓ−A

(d)
ΓI A

(d)
II

−1
A

(d)
IΓ , d = 1, . . . , nd. (1.171)

This additive decomposition of S into local contributions sheds light on another important
feature of sub-structuring, i.e., its inherent propensity for parallel implementations. Let
us remember that our goal is not to solve Eq. (1.169) with perfect accuracy, but rather
to have a parallel preconditioner based on domain decomposition for the iterative solve
of Eq. (1.5), in which case an approximate solution of Eq. (1.169) is good enough. Once
a solution (resp. approximate solution) is obtained for the condensed linear system, the
corresponding solution (resp. approximate solution) at the interior nodes is obtained by
solving an independent linear system for each sub-domain. If the exact solution is known
for the nodes in Γ, these systems are

A
(d)
II u

(d)
I = b

(d)
I −A

(d)
IΓ R(d)

Γ uΓ , d = 1, . . . , nd. (1.172)

Clearly, these local solves can be carried on in a distributed fashion.

We note that, as long as A is SPD, so is the global Schur complement. Then, for a
given sub-domain Ωd, the local Schur complement S(d) is only guaranteed to be symmetric.
Moreover, if Ωd is an internal sub-domain, then S(d) is singular. These singularities need
to be taken into account when implementing a domain decomposition preconditioner, and
doing so can significantly impact the scalability of the preconditioner with respect to the
number of sub-domains.

1.6.2.1 Non-overlapping domain decomposition preconditioners

It is common to distinguish between two types of domain decomposition preconditioners.
That is, one-level and two-level preconditioners. One-level preconditioners generally admit
additive decompositions with each summand requiring to solve local linear systems, that
is, involving quantities that relate to single sub-domains. As a result, these methods
tend to only bound one side of the preconditioned spectra, offering poorer convergence
rates of the preconditioned iterative method as the number of sub-domains increases.
Two-level preconditioners attempt to compensate for this shortcoming and can generally
be recast into additive or multiplicative corrections of one-level methods. More detailed
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reviews on one-, two- and multi-level domain decomposition preconditioners can be found
in Giraud and Tuminaro [54], Tang et al. [151] as well as Poirel [126]. Here, we only
present a couple of one- and two-level variants: preconditioning the Schur complement
withAΓΓ and the Neumann-Neumann method [35] as one-level variants, and the LORASC
preconditioner [61] as a two-level variant. Other two-level variants not seen in this work
include the balancing Neumann-Neumann method [98] as well as the works of Li and
Saad [92], Al Daas et al. [34], and several others.

Preconditioning the Schur complement with AΓΓ. The simplest form of domain
decomposition preconditioner consists of approximating the Schur complement with AΓΓ.

This is equivalent to neglecting the termA
(d)
ΓI A

(d)
II

−1
A

(d)
IΓ in Eq. (1.171) for each local Schur

complement. It can be shown that, while the spectrum of AΓΓ
−1 S is bounded above by

one, the lowest eigenvalues of the spectrum get increasingly close to zero as the number
of sub-domains increases. The implication is that the corresponding rate of convergence
of the preconditioned iterative method degrades as the number of sub-domains increases.

The Neumann-Neumann (NN) preconditioner. A well-known preconditioner for
Eq. (1.169) was proposed by De Roeck and Le Tallec [35]. This method is referred to as
Neumann-Neumann (NN) preconditioning due to the nature of the boundary conditions
on the interface of the subdomains when considering the local problems solved by the
approximation. To define a NN preconditioner, one has to specify diagonal weight matrices
D1, . . . ,Dnd

so as to form a partition of unity given by

nd∑

d=1

R(d)
Γ

T
Dd R(d)

Γ = I. (1.173)

A simple choice consists of letting Dd be diagonal with each non-zero component set to
one divided by the number of subdomains to which the coerrsponding DoF is associ-
ated. Different choices of weight matrices are discussed in [86]. The application of the
preconditioner is then done as described in Algo. 11.

Algorithm 11 Application of the Neumann-Neumann preconditioner

Input: r ∈ range(S)
Output: z = M –1

NN r
1: for d = 1, . . . , nd do
2: r(d) := Dd R(d)

Γ r ▷ get local residual
3: Find z(d) s.t. S(d)z(d) = r(d) ▷ solve local problem
4: end for
5: z :=

∑nd

d=1 R
(d)
Γ Ddz

(d) ▷ average contributions of all sub-domains

When a local Schur complement S(d) is singular, a solution z(d) of S(d)z(d) = r(d) exists
if and only if r(d) ⊥ kerS(d). Moreover, if such a solution exists, it is unique only up to
some v ∈ ker(S(d)). Hence, to prevent a potential breakdown of the iterative method,

step 3 in Algo. 11 can be replaced by z(d) := S(d)†r(d) where S(d)† is a pseudo-inverse of
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S(d). Doing so for all subdomains yields the following matrix representation:

M –1
NN =

nd∑

d=1

R(d)
Γ

T
DdS

(d)†Dd R(d)
Γ . (1.174)

An alternative to using pseudo-inverses is to apply the inverse of a SPD shift of the
local Schur complement. Being one-leveled, the preconditioning offered by the Neumann-
Neumann method generally does not scale well with the number of sub-domains.

The low-rank robust algebraic Schur (LORASC) preconditioner. LORASC was
introduced by Grigori et al. [61] as a full-matrix preconditioner induced by a low-rank
robust approximation of the Schur complement operator. This preconditioner is deemed
robust in that the condition number cond(M−1PπAPT

π ) is bounded above by design,
independently of the number of sub-domains. Consequently, LORASC is expected to
exhibit a good scaling in terms of the number of sub-domains.

An essential observation for the design and understanding of the LORASC precon-
ditioner is that the block-arrow structure of the re-ordered matrix can be recast in a
form

PπAPT
π = (L+D)D−1(L+D)T . (1.175)

where L is a block lower-triangular matrix given by

L =




0
...

. . .

0 · · · 0

A
(1)
II · · · A

(nd )
II 0


 (1.176)

and D is the block-diagonal matrix

D = block-diag(AII,S) with AII = block-diag(A
(1)
II , · · · ,A

(nd )
II ). (1.177)

Substituting the exact Schur complement by an approximation S̃ in place of S within the
block-diagonal matrix yields a preconditioner

MLORASC = (L+ D̃)D̃−1(L+ D̃)T . (1.178)

where

D̃ := block-diag(AII, S̃). (1.179)

Doing so allows to define an approximation S̃ which is both less dense and easier to store
and apply than the exact Schur complement. Once given such an approximation S̃, the
LORASC preconditioner is applied as described in Algo. 12, in which

AΓI =
[
R(1)

Γ

T
A

(1)
ΓI . . . R(nd )

Γ

T
A

(nd)
ΓI

]
and AIΓ = AΓI

T . (1.180)
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Algorithm 12 Application of the LORASC preconditioner for a given approximation S̃
of S

Input: r =

[
rI
rΓ

]
∈ range(PπAPT

π )

Output: z = M –1
LORASC r

1: yI := AII
−1 rI

2: Find yΓ s.t. S̃yΓ = rΓ −AΓI rI

3: z :=

[
yI −AII

−1AIΓ yΓ

yΓ

]

The main feature of LORASC comes from the design of S̃. Indeed, one could build
a one-level preconditioner by letting S̃ := AΓΓ. However, this would simply yield a
preconditioner which is a full-matrix equivalent of preconditioning the Schur complement
with AΓΓ. Instead, Grigori et al. [61] propose a form

S̃−1 := AΓΓ
−1+EnrΣnrE

T
nr

(1.181)

in which EnrΣnrE
T
nr

is of a priori unknown (low) rank nr, and such that it shifts the lower

eigenvalues of the spectrum of S̃−1S to some prescribed value ε such that 0 < ε < 1. In
particular, this is achieved by letting

Enr :=
[
e1 . . . enr

]
and Σnr := diag

(
ε-λ1
λ1

, . . . ,
ε-λnr
λnr

)
(1.182)

where (λ1, e1), . . . , (λnr , enr) are the nr least dominant generalized eigen-pairs of

Se = λAΓΓ e (1.183)

such that λ1 ≤ · · · ≤ λnr ≤ ε ≤ 1 with AΓΓ-orthonormal eigenvectors. Then, it can
be shown that κ(M –1

LORASCPπAPT
π ) ≤ 1/ε, irrespective of the number of sub-domains.

In practice, for a given ε, it can be shown that nr does not increase significantly as the
number of sub-domains increases. Also, the authors provide a randomized procedure
to approximate the generalized eigen-pairs at lower computational cost based on the
methods found in [163]. The application of the LORASC preconditioner for the form just

described of the approximation S̃ is detailed in Algo. 13. Clearly, the steps 1 and 7, which
both require applications of AII

−1, can be executed in parallel due to the block-diagonal
structure of AII.

A distinction between this preconditioner and the two last domain decomposition
preconditioners presented lies in the fact thatM –1

LORASC is designed for the iterative solve of
the full-matrix equation, i.e., Eq. (1.5). Alternatively, one could equivalently precondition

Eq. (1.169) with S̃. However, there are advantages in resorting to full-matrix iterations
over Schur iterations. The main benefit of not operating on Eq. (1.169) is to not have
to compute exact applications of S at every solver iteration. Hence, resorting to a full
matrix iteration can become advantageous for cases in which the application of the domain
decomposition preconditioner is much simplified compared to the application of the exact
Schur complement. For instance, one can precondition the full-matrix equation with the
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Algorithm 13 Application of the LORASC preconditioner

Input: r =

[
rI
rΓ

]
∈ range(PπAPT

π )

Output: z = M –1
LORASC r

1: yI := AII
−1 rI

2: ηΓ := rΓ −AΓI rI
3: yΓ := AΓΓ

−1 ηΓ

4: for r = 1, . . . , nr do
5: yΓ := yΓ +

ε−λr

λr
(eTr ηΓ)er

6: end for

7: z :=

[
yI −AII

−1AIΓ yΓ

yΓ

]

approximation AΓΓ of S simply by removing the steps 4 to 6 from Algo. 13.

1.6.3 Algebraic multigrid methods

Algebraic multigrid (AMG) methods are a highly scalable set of procedures to solve and
precondition iterative solves of linear systems. The term algebraic refers to the fact that
the method is agnostic to the problem from which the linear system is derived. As such,
AMG is an evolution achieved by Brandt, McCormick and Ruge [18, 19] of multigrid
methods which were already used to efficiently solve linear systems which particularly
arise from the discretization of PDEs. See Section 6.9 in [37] for a detailed presentation
of multigrid solvers for the Poisson’s equation. The idea behind multigrid methods is
motivated as follows. Though most relaxation-type iterative methods, such as Richard-
son, weighted Jacobi and Gauss-Seidel, may converge slowly for typical problems, the
components of the residuals in the directions of the eigenvectors of the iteration matrix
corresponding to the large eigenvalues are dampped very rapidly. These eigenvectors are
known as high frequency modes. The other components, associated with low frequency
modes, are difficult to damp with standard relaxation. This causes a slowdown of all
basic iterative methods. However, many of these modes are mapped naturally into high
frequency modes on a coarser mesh, or grid. The idea is thus to transfer to a coarser
grid to eliminate the corresponding error components. This process can be repeated with
the help of recursion using a hierarchy of multiple grids referred to as multigrid. Each of
the so-called grids (sometimes referred to as levels) is used as a uniform coarsening of the
next finer one. The solution process, which involves relaxation sweeps on each grid, fine-
grid-to-coarse-grid transfers of residuals and coarse-to-fine interpolation of corrections,
constitutes a fast solver for the finest grid equations. Although this process first seems
to rely on the geometry and continuous nature of the problem, the principles involved in
solving the fine grid matrix system can be abstracted and applied to various classes of ma-
trix problems. This abstraction is done by AMG methods. Well-known implementations
of algebraic multigrids are Hypre [44] in C++ and PyAMG [11] in Python. Here, we focus
on the use of AMG for preconditioning iterative solves with PCG. For this purpose, it is
sufficient to introduce V-cycles and ignore the other variants of sequences of operations
otherwise used for linear solves. A more detailed review of these sequences of operations
can be found in Chapter 13 of [138].
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1.6.3.1 V-cycle

Let us consider a multigrid with L + 1 levels indexed by ℓ such that ℓ = 0 denotes the
coarsest level whereas the finest level is referred to by the index ℓ = L. We denote the
prolongation operator going from level ℓ to level ℓ + 1 by Pℓ. Let us remember that the
matrix A is SPD and the restriction operator going from level ℓ + 1 to level ℓ is simply
given by PT

ℓ . The Galerkin operator is denoted by Aℓ := PT
ℓ Aℓ+1Pℓ for ℓ = 0, . . . , L− 1

with AL := A while bℓ := PT
ℓ bℓ+1 for ℓ = 1, . . . , L − 1 with bL := b. The construction

of the prolongation operators P0, . . . ,PL−1 is done in a set-up phase. This phase can be
completed using coarse-fine splittings, sometimes referred to as classical AMG [19, 136],
as well as by smoothed aggregation [158]. Here, we use a Julia wrapper of PyAMG [11]
and proceed by smoothed aggregation. When resorting to smoothed aggregation, we use
a strength measure on the connectivity of nodes to define a strength of connection matrix
which is used to identify so-called aggregates. The goal of the strength measure is to
ensure that algebraically smooth error at each DoF in an aggregate strongly correlates
with algebraically smooth error at other DoFs in that aggregate.

A V-cycle corresponds to a coarse grid cycle and a relaxation sweep. The correspond-
ing recursive algorithm is given by Algo. 14 where the numbers of presmoothing and
postsmoothing steps are respectively given by ν1 and ν2. That is, the notation

u(ℓ)
ν = smoothν(Aℓ,u

(ℓ)
0 ,bℓ) (1.184)

means that u
(ℓ)
ν is the result of ν smoothing steps for solving the system starting with the

initial guess u
(ℓ)
0 . Smoothing iterations are of the form

u
(ℓ)
j+1 = Sℓu

(ℓ)
j + gℓ (1.185)

where Sℓ is the iteration matrix associated with one smoothing step, that is, one iteration
of a relaxation-type iterative method. By default, we consider that both presmoothing
and postsmoothing consist of a single weighted Jacobi iteration. That is ν1 = ν2 = 1 and
if we consider the decomposition

Aℓ = Lℓ +Uℓ +Dℓ (1.186)

where Lℓ is the strictly lower triangular part of Aℓ, Uℓ is the strictly upper triangular
part of Aℓ and Dℓ := diag(Aℓ), then we have

Sℓ := (1− ω)I− ωD−1ℓ (Lℓ +Uℓ) = I− ωD−1ℓ Aℓ and gℓ := ωD−1ℓ bℓ. (1.187)

The convergence of the weighted Jacobi iteration method is guaranteed for 0 < ω <
2/ρ(D−1ℓ Aℓ) where ρ(•) denotes the spectral radius. By default, we let ω := 4ρ(Aℓ)/3.
These parameters correspond to the default implementation of the AMG preconditioner
in PyAMG [11]. We say that the AMG preconditioner is applied when the multigrid
V-cycle is applied once at level L.
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Algorithm 14 Application of a multigrid V-cycle at level ℓ

Input: A0, . . . ,Aℓ,P0, . . . ,Pℓ−1,bℓ,u
(ℓ)
0

Output: u(ℓ) = V-cycle(Aℓ,u
(ℓ)
0 ,bℓ)

1: u(ℓ) := smoothν1(Aℓ,u
(ℓ)
0 ,bℓ) ▷ presmooth

2: rℓ := bℓ −Aℓu
(ℓ) ▷ compute residual

3: rℓ−1 := PT
ℓ−1rℓ ▷ restrict residual

4: if ℓ = 1 then
5: e0 := A−10 r0 ▷ solve the coarsest problem
6: else
7: eℓ−1 := V-cycle(Aℓ−1,0, rℓ−1) ▷ recurse
8: end if
9: u(ℓ) := u(ℓ) +Pℓ−1eℓ−1 ▷ prolongate coarse grid correction
10: u(ℓ) := smoothν2(Aℓ,u

(ℓ),bℓ) ▷ postsmooth

1.6.4 Other methods

1.6.4.1 Incomplete LU factorizations

Iterative methods converge very fast if the matrix A is close to the identity matrix in some
sense, and the main goal of preconditioning is to obtain a matrixM−1A which is close to I.
For Krylov subspace methods it is desirable that the condition number ofM−1A is (much)
smaller than that of A, or that the eigenvalues of M−1A are strongly clustered around
some point (usually 1). It is quite natural to start looking at a direct solution method
for Au = b and to see what variations we can make if the direct approach becomes too
expensive. The most common direct technique is to factorize A as A = LU, if necessary
with permutations for pivoting. One of the main problems with the LU factorization of
a sparse matrix is that often the number of entries in the factors is substantially greater
than in the original matrix so that, even if the original matrix can be stored, the factors
cannot.

In incomplete LU factorization, we keep the factors artificially sparse in order to save
computer time and storage for the decomposition. The incomplete factors are used for
preconditioning in the following way. First note that we never need the matrices A or
M explicitly, but we only need to be able to compute the result of Ay for any given
vector y. The same holds for the preconditioner M, and typically we see in codes that
these operations are performed by calls to appropriate subroutines. We need to be able
to compute efficiently the result of M−1y for any vector y. In the case of an incomplete
LU factorization, M is given in the form M = L̃Ũ, where L̃ and Ũ denote incomplete
factors whereas L and U are the actual LU factors. z = M−1y is computed by solving z
from L̃Ũz = y. This is done in two steps: first solve w from L̃w = y and then compute
z from Ũz = w. Note that these solution steps are simple back substitutions and, if the
right-hnd sides are not required further in the iterative process, the solution of either back
substitution may overwrite the corresponding right-hand side, in order to save memory.

There is much recent effort to develop incomplete LU preconditioners that can be
computed and used on parallel computers. Most of this work has been confined to highly
structured problems from discretizations of elliptic PDEs in two and three dimensions, see
for example [157]. Experiments with unstructured matricese have been reported in [67,
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70], with reasonable speedups being achieved in [70].

1.6.4.2 Sparse Approximate Inverse (SPAI)

Of course, the LU factorization is one way of representing the inverse of a sparse matrix
in a way that can be economically used to solve linear systems. The main reason why
explicit inverses are not used is that, for irreducible matrices, the inverse will always be
structurally dense. That is to say, sparse techniques will produce a dense matrix even if
some of its entries are zero [40]. However, this need not be a problem if we follow the
flavor of ILU factorizations and compute and use a sparse approximation to the inverse.
Perhaps the most obvious technique for this is to solve the problem

min
M−1
∥I−AM−1∥F (1.188)

where ∥ · ∥F denotes the Frobenius norm of a matrix. The matrix M−1 in Eq. (1.188) has
some fully or partially prescribed sparsity structure. One advantage of this is that this
problem can be split into n independent least-squares problems for each of the n columns
of M−1. Each of these least-squares problems only involves a few variables (corresponding
to the number of entries in the column of M−1) and, because they are independent, they
can be solved in parallel.

1.6.5 Preconditioning strategies

We recall that two basic preconditioning strategies are investigated in this chapter. First,
there is the case in which the preconditioner M•(θ) denominated by • is re-defined for
every matrix realization A(θ). This strategy was referred to as realization-dependent
ideal preconditioning. In other words, this strategy consists of considering the unique
approximation u(j)(θ) of u(θ) which satisfies

u(j)(θ)− u(0) ∈ K(j)(M−1
• (θ)A(θ),M−1

• (θ)r(0)(θ)) (1.189)

r(j)(θ) ⊥ K(j)(M−1
• (θ)A(θ),M−1

• (θ)r(0)(θ)) (1.190)

where K(j)(A(θ), r(0)(θ)) := Span{r(0)(θ),A(θ)r(0)(θ), . . . ,Aj−1(θ)r(0)(θ)} is the Krylov
subspace of A(θ) generated by the residual r(0)(θ) := A(θ)u(0) − b(θ) of an initial guess
u(0). This approximation is optimal in the sense that it minimizes ∥v−u(θ)∥A(θ) over the
Krylov subspace, see [138]. We denote by J(θ) the smallest number j of iterations such
that ∥A(θ)u(j)(θ)− b(θ)∥2 < ϵ∥b(θ)∥2 for some ϵ > 0 using M•(θ). In other words, J(θ)
is the number of necessary PCG iterations to reach a backward error of ϵ. Since A(θ) is
SPD, J(θ) ≤ n as long as u(j)(θ) is computed with exact arithmetic. Meanwhile, a good
preconditioner is such that J(θ)≪ n even when relying on finite arithmetic.

The second strategy consists of considering a single constant matrixA0 based on which
the inverse of the preconditioner M0,• denominated by •, or simply the data structures
necessary for the application of its inverse M−1

0,• is assembled. Then, this preconditioner
is applied, in turn, to all the realizations A(θ). That is, the properties of the investigated
preconditioners should focus on the spectrum of M−1

0,•A(θ) in which the preconditioner is
constant but A(θ) can be any matrix in the manifold of operators. Then, we consider the
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unique approximation u(j)(θ) of u(θ) which satisfies

u(j)(θ)− u(0) ∈ K(j)(M−1
0,•A(θ),M−1

0,•r
(0)(θ)) (1.191)

r(j)(θ) ⊥ K(j)(M−1
0,•A(θ),M−1

0,•r
(0)(θ)). (1.192)

We again denote by J(θ) the number of necessary PCG iterations to reach a backward
error of ϵ.

1.7 Numerical illustration

First, we present numerical results for computation of a DD-KL expansion of a Gaussian
process. Then, we show results about the iterative linear solves of the linear systems
resulting from the FEM discretization of a 2D isotropic Poisson’s equation. Finally, we
present similar results for linear systems resulting from the FEM discretization of a 2D
anisotropic Poisson’s equation.

1.7.1 Simulation of Gaussian processes

The parallel subroutines implemented for the DD-KL expansion are tested in the Julia
script https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Examp
le05_KarhunenLoevePllDomainDecomposition.jl. The code is run on a cluster of 4
Linux desktop computers which were specifically assembled for this thesis. Each node of
the cluster has an alias with the following specifications:

• "hector0": Intel i7-4790S CPU running at 3.20 GHz with 16 Go of RAM

• "hector1": Intel i7-6700 CPU running at 3.40 GHz with 16 Go of RAM

• "hector2": Intel i7-4770 CPU running at 3.40 GHz with 16 Go of RAM

• "hector4": Intel i7-6700 CPU running at 3.40 GHz with 16 Go of RAM

Following the naming convention of the Julia language, 8 workers are launched on each
node. The number of subdomains, referred to as ndom, is set to 200 for a triangular
mesh generated with approximately 100,000 mesh vertices. The resulting mesh contains
200,332 elements. Only the 20 most dominant eigen-pairs are computed for each local
generalized eigenvalue problem. The stochastic process represented is Gaussian with unit
variance and a squared exponential covariance defined over the domain Ω = [0, 1]2. That
is, the field κ(x) simulated is such that ρ(x, y) := V[κ(x)κ(y)] = exp(−∥x− y∥2/L2) with
a characteristic length L set to 0.1.

The 2D triangular mesh is obtained with a Julia wrapper of the library Triangle [145],
and the mesh partition obtained using METIS [74] is displayed with color codes in Fig. 1.1
for 5, 10, 20, 30, 80 and 200 subdomains. An example of realization of the underlying
Gaussian process is shown in Fig. 1.2 for the same different numbers of subdomains. The
DD-KL approach exploits the fact that the convergence behavior of the KL expansion, for
fixed covariance structure, is governed by the magnitude of L relative to the characteristic
length of the domain. Indeed, decreasing (resp. increasing) the characteristic extent of
the domain has a similar effect as increasing (resp. decreasing) the correlation length. In
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the DD-KL approach, increasing the number of subdomains allows to reduce the extent
of the subdomains, leading to an apparent larger L and a faster spectral decay for the
local expansions. This is illustrated in Fig. 1.3, where the spectra of local expansions are
shown for different values of the number of subdomains. Note that the Figure reports the
spectra for all the nd subdomains, so there are nd spectra plotted when Ω is partitioned
into nd subdomains. Here, we observe that for a given number nd of subdomains, the
local subdomains all have roughly the same extent so the local expansions have a similar
decay. Moreover, it is seen that, as expected, the local expansions have spectra which
decay faster as nd increases. The variability of the spectra among the nd subdomains is
principally due to the partitioning procedure that generates non-identical subdomains,
with slightly variable apparent L as a result.

Figure 1.1: Partition of a triangular 2D mesh with 200,332 elements into 5, 10, 20, 30, 80
and 200 subdomains.

1.7.2 Solving the isotropic Poisson’s equation

The coefficient field κ(x) of Eq. (1.2), which is such that log κ(x) is a Gaussian process with
zero mean, has a covariance ρ(x, y) := V[κ(x)κ(y)] = σ2 exp(−∥x− y∥2/L2). Eq. (1.2) is
discretized with triangular finite elements for each realization θ. We consider the domain
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Figure 1.2: Realization of a Gaussian process κ(x) with zero mean and covariance
ρ(x, y) := V[κ(x)κ(y)] = exp(−∥x − y∥2/0.12) obtained by KL-DD with 5,
10, 20, 30, 80 and 200 subdomains.
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Figure 1.3: Spectra of local decompositions for a Gaussian process κ(x) with zero mean
and covariance ρ(x, y) := V[κ(x)κ(y)] = exp(−∥x − y∥2/0.12) obtained with
5, 10, 20, 30, 80 and 200 subdomains.
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Ω = [0, 1]2 along with a unit forcing, i.e., f(x) := 1 and a zero displacement at the
boundary ∂Ω, i.e., g(x) := 0. An equation of the form of Eq. (1.5) is then obtained for
each θ. First, some of the subroutines implemented for the preconditioner based on non-
overlapping domain decomposition are used in the Julia script https://github.com/v
enkovic/julia-phd-krylov-spdes/blob/master/Example06_PcgStochasticEllipt

icPde.jl. The number of subdomains, referred to as ndom, is set to 200 for a triangular
mesh generated with approximately 100,000 mesh vertices. One can decide to assemble,
or not, the local Schur complement operators through the specification of the boolean
variable do_assembly_of_local_schurs. The preconditioner defined in this script is a
constant LORASC preconditioner with ε = 0.01, which is used to solve the linear systems
of several realizations. Note that AMG preconditioners are defined to solve for the local
interior problems.

In light of the representation obtained by DD-KL for the coefficient field, the realization-
dependent matrix A(θ) is re-parameterized in terms of the stochastic coordinates of the
DD-KL expansion. That is, we write A(θ) = A(ξ) where ξ := [ξ1(θ), . . . , ξnKL

(θ)]. As a
means to compare the two preconditioning strategies presented in Section 1.1, we com-
pute the spectra of M−1

• (ξ)A(ξ) and M−1
0,•A(ξ) for different preconditioners, as well as

M−1
• (ξ)S(ξ) and M−1

0,•S(ξ) where S denotes the Schur complement of A for a given do-
main decomposition. For the strategy with a constant preconditioner, we assume that
M0,• is constructed for the coefficient field κ(x,0). That is M0,• = M•(0). For each pre-
conditioner, we draw three spectra for three distinct realizations of κ(x, ξ) The resulting
spectra are presented in Figs. 1.4 through 1.9 for a characteristic length L = 0.1 and a
variance σ2 = 1. For the preconditioners ofA(ξ), we present results for bJ preconditioners
with 5, 10, 20, 30, 80 and 200 blocks, for the LORASC preconditioner with 5, 10, 20, 30,
80 and 200 subdomains, as well as for the AMG preconditioner. For the preconditioners
of S(ξ), we present results for the AΓΓ preconditioner with 5, 10, 20, 30, 80 and 200 sub-
domains as well as for the Neumann-Neumann preconditioner with the same numbers of
subdomains. Irrespectively of the type • of preconditioner used, the realization-dependent
ideal preconditioning approach, i.e., M•(ξ) leads to significantly denser concentrations of
eigenvalues around one compared to the spectra of the constant preconditioning approach,
i.e., M•(0). Irrespective of the number nb of blocks, the bJ preconditioner leads to spectra
with a trail of well-separated small eigenvalues whereas the remaining of the precondi-
tioned spectra are more densely packed. These trails of well-separated small eigenvalues
are also observed in the spectra of the LORASC preconditioners. The lower bounds of
the LORASC spectra decrease as the number of subdomains is increased. We can see
that using ε = 0.01 leads to slightly denser spectra than using ε = 0. Preconditioning the
Schur complement with AΓΓ also leads to trails of well-separated small eigenvalues. Note
that the constant preconditioning approach also leads to some separation of the largest
eigenvalues. When preconditioning the Schur complement with a Neumann-Neumann
preconditioner, we see some separation of the largest eigenvalues for both the constant
and the realization-dependent preconditioning strategies. On the other hand, the num-
ber of eigenvalues in the trail of well-separated smallest eigenvalues increases with the
number of subdomains. Overall, the bJ preconditioner leads to the widest spectra, this
is followed by the LORASC preconditioner while AMG leads to relatively dense spectra.
The investigation of the preconditioned spectra provides a hint of the expected behavior
of the PCG solves of the simulated linear systems. The expected number of PCG itera-
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tions are reported in Table 1.1 for preconditioners with different numbers of blocks and
subdomains. These results, obtained for linear systems with 4,000 DoFs, are also plotted
in Fig. 1.10. The expected numbers of PCG iterations are drawn with solid lines for
the constant preconditioning strategy and with dashed lines for the realization-dependent
ideal preconditioning strategy. As such, these lines provide bounds to the precondition-
ing strategies developed in the following chapters. The lower bound constitutes an ideal
limit only achievable by the unfeasible re-definition of the preconditioner at every real-
ization, and the upper bound constitutes a limit obtained when implementing the most
straightforward preconditioning strategy. The AMG preconditioner leads to the smallest
expected number of PCG iterations followed by LORASC preconditioners and the bJ pre-
conditioner. The number of expected PCG iterations obtained with the bJ preconditioner
increases with the number of blocks and, similarly, this number increases when increasing
the number of subdomains for the LORASC preconditioners. The rates of these scalings
do not seem to depend on the preconditioning strategy. Similar results are provided in
Table 1.2 for the PCG solves of the Schur complement linear systems. These results, also
obtained for linear systems with 4,000 DoFs, are plotted in Fig. 1.11. While the scaling of
the number of expected PCG iterations with respect to the number of subdomains follows
a constant rate when preconditioning with AΓΓ, it is not the case when preconditioning
with the Neumann-Neumann preconditioner. Hence, the number of expected PCG iter-
ations is smaller when using the Neumann-Neumann preconditioner with small numbers
of subdomains, and larger than using AΓΓ for larger numbers of subdomains. The rate
of this scaling does not depend on the preconditioning strategy. The expected number of
PCG iterations are also reported in Table 1.3 for linear systems with different numbers
of DoFs. These results, obtained for preconditioners with 200 blocks/subdomains, are
also plotted in Fig. 1.12. Once again, the expected numbers of PCG iterations are drawn
with solid lines for the constant preconditioning strategy and with dashed lines for the
realization-dependent ideal preconditioning strategy. We can see that the AMG precon-
ditioner scales the least with respect to the size of the linear system. For sufficiently large
systems, using a constant AMG preconditioner leads to smaller expected PCG iteration
numbers than using a realization-dependent ideal preconditioner based on domain decom-
position. The bJ preconditioner scales more with the number of DoFs than the LORASC
preconditioner. In Table 1.4, we report the expected number of PCG iterations for the
Schur complement with respect to different numbers of DoFs. These results, obtained
for preconditioners with 200 subdomains, are also plotted in Fig. 1.13. We can see that
AΓΓ scales more than the Neumann-Neumann preconditioner with respect to the number
of DoFs. For small linear systems, AΓΓ performs better whereas, for larger systems, the
Neumann-Neumann preconditioner will eventually lead to smaller numbers of expected
PCG iterations.
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Figure 1.4: Spectra preconditioned by bJ preconditioners, σ2 = 1 and L = 0.1.
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Figure 1.5: Spectra preconditioned with LORASC preconditioners for ε = 0, σ2 = 1 and
L = 0.1.
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Figure 1.6: Spectra preconditioned with LORASC preconditioners for ε = 0.1, σ2 = 1
and L = 0.1.
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Figure 1.7: Schur spectra preconditioned with AΓΓ, σ
2 = 1 and L = 0.1.
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Figure 1.8: Schur spectra preconditioned with Neumann-Neumann preconditioner, σ2 = 1
and L = 0.1.

Figure 1.9: Preconditioned spectra with AMG preconditioner, σ2 = 1 and L = 0.1.
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Preconditioner
n

5 10 20 30 80 200
MbJ(0), nb = n 337.44 404.22 436.03 451.01 484.06 516.66
MbJ(ξ), nb = n 120.96 145.37 155.67 161.46 172.11 182.07

MLORASC(0), nd = n, ε = 0 144.56 162.83 183.44 192.70 221.46 253.74
MLORASC(ξ), nd = n, ε = 0 32.91 40.76 48.54 51.99 62.30 73.11

MLORASC(0), nd = n, ε = 0.01 120.32 133.37 148.85 155.45 211.23 242.07
MLORASC(ξ), nd = n, ε = 0.01 29.54 37.24 45.67 49.41 59.21 66.52

MAMG(0) 106.47 106.47 106.47 106.47 106.47 106.47
MAMG(ξ) 11.89 11.89 11.89 11.89 11.89 11.89

Table 1.1: Expected numbers of solver iterations for different preconditioners with respect
to the number of blocks/subdomains.
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Figure 1.10: Scaling with respect to nb (or nd) of expected numbers of solver iterations
to solve A(θ)u(θ) = b(θ) with different preconditioners and preconditioning
strategies.

65



Preconditioner
n

5 10 20 30 80 200
AΓΓ(0), nb = n 82.13 104.13 129.16 143.22 178.50 222.58
AΓΓ(ξ), nb = n 35.12 42.75 50.63 53.93 63.99 74.42
MNN(0), nd = n 55.84 70.76 100.84 129.83 273.14 684.26
MNN(ξ), nd = n 17.30 21.29 42.00 63.75 154.66 352.99

Table 1.2: Expected numbers of solver iterations for different preconditioners with respect
to the number of blocks/subdomains.
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Figure 1.11: Scaling with respect to nb (or nd) of expected numbers of solver iterations to
solve S(θ)uΓ(θ) = bS(θ) with different preconditioners and preconditioning
strategies.
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Preconditioner
DoFs

4,000 8,000 16,000 32,000 64,000 128,000
MbJ(0), nb = 200 516.66 724.15 1,067.48 1,461.31 2,212.16 2,953.65
MbJ(ξ), nb = 200 182.07 239.87 332.58 441.46 641.68 844.41

MLORASC(0), nd = 200, ε = 0 253.74 331.75 422.36 517.85 633.49 741.09
MLORASC(ξ), nd = 200, ε = 0 73.11 89.80 110.32 132.91 159.75 188.41

MLORASC(0), nd = 200, ε = 0.01 242.07 288.32 357.71 419.64 509.63 596.70
MLORASC(ξ), nd = 200, ε = 0.01 66.52 75.34 89.50 108.51 132.13 158.38

MAMG(0) 106.47 118.25 127.80 134.85 143.40 146.46
MAMG(ξ) 11.89 12.67 14.09 15.50 17.11 17.69

Table 1.3: Expected numbers of solver iterations for different preconditioners with respect
to the number of DoFs.
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Figure 1.12: Scaling with respect to DoFs of expected numbers of solver iterations to
solve A(θ)u(θ) = b(θ) with different preconditioners and preconditioning
strategies.

67



Preconditioner
DoFs

4,000 8,000 16,000 32,000 64,000 128,000
AΓΓ(0), nb = n 222.58 286.44 372.80 459.79 584.11 696.36
AΓΓ(ξ), nb = n 74.42 92.94 113.82 137.44 166.70 198.86
MNN(0), nd = n 684.26 764.64 886.60 948.77 1,058.06 1,110.16
MNN(ξ), nd = n 352.99 379.36 415.75 432.53 504.23 528.39

Table 1.4: Expected numbers of solver iterations for different preconditioners with respect
to the number of DoFs.
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Figure 1.13: Scaling of expected numbers of solver iterations to solve S(θ)uΓ(θ) = bS(θ)
with different preconditioners and preconditioning strategies.
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Chapter 2

Deflation of linear systems

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2 Deflated Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . 69

2.2.1 Deflated conjugate gradient . . . . . . . . . . . . . . . . . . . . . . 79

2.2.1.1 Preconditioned case . . . . . . . . . . . . . . . . . . . . . 81

2.3 Perturbation of the deflation subspace . . . . . . . . . . . . . . . . . . . . 85

2.1 Introduction

We illustrate the application of deflation to potentially accelerate the iterative resolution
of SPD linear systems. This description is inspired by the works of [55], [63] and [32]. In
particular, the deflated conjugate gradient (CG) proposed by [107] and analyzed by [140]
is presented as we investigate its application to preconditioned systems.

2.2 Deflated Krylov subspace methods

In case of a spatial discretization using finite elements, A is sparse, and its fast application
is leveraged when searching for an approximation u(j) of u in the affine subspace u(0) +
K(j)(A, r(0)), where

K(j)(A, r(0)) := Span{r(0),Ar(0), · · · ,Aj−1r(0)} (2.1)

is the j-th Krylov subspace of A generated by r(0) := b−Au(0) for a given initial guess
u(0). Then, the orthogonal projection obtained by letting r(j) ⊥ K(j)(A, r(0)), leads to
an optimal iterate in the sense that ∥u(j) − u∥2A := (u(j) − u)TA(u(j) − u) is minimized
by the approximation over the search space. In this work, A is SPD, and the sequence
{u(j)}mj=1 of these optimal iterates is obtained by the CG algorithm, i.e., CG(A, b, u(0)).

While the rate of convergence of CG(A, b, u(0)) is governed by the distribution of
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the eigenvalues of A, it admits the following bound:

∥u(m) − u∥A ≤ 2∥u(0) − u∥A
(√

cond(A)− 1√
cond(A) + 1

)m

(2.2)

where cond(A) = λ(1)(A)/λ(n)(A) is the condition number ofA with eigenvalues λ(1)(A) ≥
· · · ≥ λ(n)(A) ≥ 0. While the tightness of this bound also depends on the distribution
of the eigenvalues, Eq. (2.2) provides a way to understand the relation between the con-
vergence behavior of CG and the eigenvalues at both ends of the spectrum Sp(A). In
particular, it is understood that an increase of λ(n)(A) (or a decrease of λ(1)(A)) results in
a decrease of the bound on the rate of convergence. Also, if the eigenvalue λ(n)(A) (resp.
λ(1)(A)) is moved towards the center of the spectrum past its closest neighbor, then the
upper bound of Eq. (2.2) is scaled by λ(n)(A)/λ(n−1)(A) (resp. λ(2)(A)/λ(1)(A)). Hence,
well separated eigenvalues located at either end of the spectrum of A can significantly
hinder convergence and, canceling, or at least, attenuating their effect may result in a
substantially faster convergence [59].

If k eigenvectors of A are known, they can be used to force the CG procedure to
work with subspaces which are convenient enough to enable a convergence to u at a
rate bounded as in Eq. (2.2), but with a potentially smaller condition number. Let
these k eigenvectors be stored by columns in Y ∈ Rn×k, and paired with the eigenvalues
in Λ ⊂ Sp(A). We want {u(j)}mj=1 to be such that r(j) ⊥ R(Y), where R(Y) is the

range of Y, and r(j) := b − Au(j) for all 0 ≤ j ≤ m. Since R(Y)⊥ is invariant under
the action of A, this is achieved by setting u(0) such that r(0) ⊥ R(Y) in CG(A, b,
u(0)), i.e., by letting u(0) := Y(YTAY)−1YTb. Then, the sequence {u(j)}mj=1 converges
to u at a rate bounded by Eq. (2.2), but where the condition number is now given by
cond = max{Sp(A)\Λ}/min{Sp(A)\Λ}. Essentially, the effect of the eigenvalues in Λ is
canceled at the expense of an initial A-orthogonal projection of the solution u onto R(Y),
which does not require much computation as long as k ≪ n. The resulting procedure,
referred to as Init-CG, was introduced in [43] motivated by [123, 137, 156], and can
lead to significantly improved convergence behaviors if a small number of well separated
eigenpairs are properly selected at the end(s) of the spectrum.

In practice, Y is not known. Instead, it is possible to construct W ∈ Rn×k, where
R(W) somehow approximates the subspace associated with the eigenvalues of interest. If
this approximation is good enough, usingW in place ofY in Init-CGmay yield improved
convergence behaviors similar to when using Y, depending on the target accuracy [55].
As the quality of this approximation deteriorates, the A-invariance of R(W) is no longer
guaranteed, causing the residuals r(j) generated by Init-CG to lose their orthogonality
with respect to R(W), and the original behavior of CG is recovered. Deflation can be
used as a means to circumvent the effects of this loss of invariance, by forcing the residuals
to remain orthogonal to the subspace.

Deflation consists of splitting the approximation space into two complementary sub-
spaces with a projector such that the projected linear system, referred to as the deflated
system, is more amenable to iterative solving than the original system. In what follows,
we illustrate the application of deflation to potentially accelerate the iterative resolution
of sequences of SPD linear systems with multiple operators. This description is inspired
by the works of [55], [63] and [32]. In particular, the deflated conjugate gradient (CG)
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proposed by [107] and analyzed by [140] is presented as we investigate its application to
preconditioned systems.

Let A be an SPD matrix in Rn×n. For some b ∈ Rn, we let u∗ := A−1b of which we
intend to accelerate the iterative resolution governed by the distribution of the eigenvalues
of A. One way to do so, deflation, consists of constructing a new, semi-definite operator
A′ whose strictly positive spectrum is deflated of some of the eigenvalues ofA which would
hinder the convergence of an iterative resolution of Au∗ = b. To do so, it is customary to
introduce a projection operator, a projector, whose application decomposes the solution
of the linear system into two contributions lying in different subspaces. In particular, we
consider Π ∈ Rn×n defined by

Π := In −W(WTAW)−1(AW)T (2.3)

for some W ∈ Rn×k whose columns form the basis of a subspace of dimension k < n.
Since W is full column rank and A is SPD, so is WTAW which is hence invertible. The
following holds:

Proposition 1.

1.1 Π is idempotent, i.e., Π2 = Π.
Proof: Π2 = In +W(WTAW)−1(AW)TW(WTAW)−1(AW)T

−2W(WTAW)−1(AW)T

Π2 = In +W(WTAW)−1WTAW(WTAW)−1(AW)T

−2W(WTAW)−1(AW)T

Π2 = In +W(WTAW)−1(AW)T − 2W(WTAW)−1(AW)T

Π2 = In −W(WTAW)−1(AW)T = Π.

1.2 AΠ is symmetric.
Proof: (AΠ)T = (A−AW(WTAW)−1(AW)T )T

= A−AW(WTAW)−1(AW)T = AΠ.

1.3 WTAΠ = 0.
Proof: WTAΠ = WTA−WTAW(WTAW)−1(AW)T

= WTA−WTA = 0.

1.4 ΠW = 0.
Proof: ΠW = W −W(WTAW)−1(AW)TW = W −W(WTAW)−1WTAW

= W −W = 0.

1.5 K(Π) is A-invariant, i.e., K(AΠ) ⊆ K(Π).
Proof: For all u ∈ K(AΠ), we have AΠu = 0 which, because A is SPD, implies
Πu = 0 and u ∈ K(Π).

The following is deduced from Prop. 1:

Corollary 1.

1.1 ΠTAΠ = ΠTA.
Proof: Props. 1.1 and 1.2 imply ΠTAΠ = AΠΠ = AΠ = ΠTA.
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1.2 K(ΠTA) = K(AΠ) ⊆ K(Π).
Proof: Follows directly from Props. 1.2 and 1.5.

Prop. 1.1 implies that Π is a projector. From basic properties of projections, see
Theorem 7.3 in [84], In−Π is also a projector. Finally, Prop. 1.1 implies (ΠT )2 = ΠT so
that ΠT is also a projector. More precisely, we have:

Proposition 2.

2.1 Π is an A-orthogonal projector onto R(AW)⊥ along R(W).
Proof:

• Prop. 1.3 implies (AWv)TΠu = vTWTAΠu = 0 for all (u,v) ∈ Rn × Rk so
that R(Π) ⊥ R(AW);
The fundamental theorem of subspaces implies R(AW)⊥ = K(WTA) so that
u ∈ R(AW)⊥ =⇒ WTAu = 0 =⇒ Πu = u =⇒ u ∈ R(Π)
=⇒ R(AW)⊥ ⊆ R(Π);
R(Π) ⊥ R(AW) and R(AW)⊥ ⊆ R(Π) imply R(Π) = R(AW)⊥.

• Prop. 1.4 implies ΠWu = 0 for all u ∈ Rk so that R(W) ⊆ K(Π);
u ∈ K(Π) =⇒ u−W(WTAW)−1WTAu = 0 =⇒ u = W(WTAW)−1WTAu
=⇒ u ∈ R(W);
R(W) ⊆ K(Π) and K(Π) ⊆ R(W) imply K(Π) = R(W).

2.2 In −Π is an A-orthogonal projector onto R(W) along R(AW)⊥,
Proof: see Theorem 7.3 in [84].

2.3 ΠT is a projector onto R(W)⊥,
Proof:
Prop. 1.4 implies (Wv)TΠTu = uTΠWv = 0 for all (u,v) ∈ Rn × Rk so that
R(ΠT ) ⊥ R(W);
By the fundamental theorem of subspaces, we have R(W)⊥ = K(WT ) so that
u ∈ R(W)⊥ =⇒ WTu = 0 =⇒ ΠTu = u =⇒ u ∈ R(ΠT )
=⇒ R(W)⊥ ⊆ R(ΠT );
R(ΠT ) ⊥ R(W) and R(W)⊥ ⊆ R(ΠT ) imply R(ΠT ) = R(W)⊥.

Moreover, every u ∈ Rn is uniquely decomposed into

u = (In −Π)u︸ ︷︷ ︸
u1∈R(W)

+ Πu︸︷︷︸
u2∈R(AW)⊥

, (2.4)

i.e., Rn = R(W)⊕R(AW)⊥.

Corollary 2. Every u ∈ Rn is such that u = Wµ̂ + Πu where µ̂ ∈ Rk is the unique
solution of the so-called reduced system WTAWµ̂ = WTAu.
Proof: Eq. (2.4) implies Wµ̂ = (In −Π)u = W(WTAW)−1WTAu. W being full col-
umn rank by definition, we have µ̂ = (WTAW)−1WTAu in which WTAW is invertible.

Proposition 3. ΠTA is symmetric positive semi-definite with null space K(ΠTA) =
R(W).
Proof: Since A is SPD, we have uTAu > 0 for all u ̸= 0. In particular, using

Coro. 1.1 and Prop. 2.1, we have vTΠTAv = vTΠTAΠsv = (Πv)TA(Πv) > 0 for
all v ∈ K(Π)⊥ = R(W)⊥, and vTΠTAv = 0 for all v ∈ K(Π) = R(W).
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Proposition 4. Each solution u2 ∈ Rn of ΠTAu2 = ΠTb is such that Πu2 = u∗2 = Πu∗,
where u∗2 is the only solution of the system lying in R(Π).
Proof:

• Coro. 1.1 implies ΠTb = ΠTAu∗ = ΠTAΠu∗ ∈ R(ΠTA) so that u∗2 := Πu∗ ∈
R(Π) is solution of ΠTAu∗2 = ΠTb;

• Let u3 ∈ R(Π) be such that ΠTAu3 = ΠTb and define e := u3 − u2 ∈ R(Π);
Then, ΠTAe = ΠTb−ΠTb = 0, so that Coro. 1.2 implies e ∈ K(ΠTA) ⊆ K(Π);
Since e ∈ R(Π) ∩ K(Π), we have e = Πe = 0 which implies u3 = u2;
Thus u∗2 := Πu∗ is the only solution of ΠTAu2 = ΠTbs lying in R(Π).

• Coro. 2 implies that each solution u2 ∈ Rn of ΠTAu2 = ΠTb admits a unique
decomposition of the form u2 = Πu2 +Wµ̂2;
Prop. 1.3 implies ΠTAu2 = ΠTAΠu2 + ΠTAWµ̂2 = ΠTAΠu2 so that Πu2 ∈
R(W) is also solution;
By unicity of solutions in R(Π), we have Πu2 = u∗2.

Corollary 3. u∗ = u∗1 + Πu2 in which (i) u∗1 = Wµ∗1 ∈ R(W) is such that µ∗1 is
the unique solution of the reduced system WTAWµ̂∗1 = WTb, and (ii) u2 ∈ Rn is any
solution of the deflated system ΠTAu2 = ΠTb.
Proof:

• Au∗ = b and Coro. 2 imply a decomposition of the form u∗ = Wµ̂∗1 +Πu∗ where
µ̂∗1 is the unique solution of WTAWµ̂∗1 = WTAu∗ = WTb;

• By Prop. 4, any solution u2 ∈ Rn of ΠTAu2 = ΠTb is such that Πu2 = Πu∗,
therefore u∗ = Wµ∗1 +Πu2.

Definition 1. Consider a symmetric A ∈ Rn×n along with b ∈ Rn and u(0) ∈ Rn. We
define the conjugate gradient (CG) as a method to generate a sequence of approximations
{u(j)}mj=0 of u∗ := A−1b such that

u(j) ∈ u(0) +K(j)(A, r(0))

r(j) := b−Au(j) ⊥ K(j)(A, r(0))

where K(j)(A, r(0)) := Span{r(0),Ar(0), . . . ,Aj−1r(0)} is the j-th Krylov subspace generated
by A and r(0). Although several interpretations of the underlying procedure exist which
sometimes lead to different implementations, we consider Algo. 6.18 of [138] in particular
and refer to it as CG(A,b,u(0)).

Definition 2. Consider a symmetric positive semi-definite matrix A′ ∈ Rn×n, which
admits a decomposition of the form A′ = U′Λ′U′T with U′ ∈ Rn×n′

such that U′TU′ = In′

and Λ′ ∈ Rn′×n′
is a diagonal matrix whose entries are the n′ strictly positive eigenvalues of

A′. Then, we refer to cond′(A′) := max{σ(Λ′)}/min{σ(Λ′)} as the effective conditioning
number of A′.

Threorem 1. Let A′ ∈ Rn×n be a symmetric positive semi-definite matrix with null space
K(A′), and consider b′ ⊥ K(A′). Then, for each u(0)′ ∈ Rn there is a unique u′ ∈ Rn

which satisfies both Au′ = b and u′−u(0)′ ⊥ K(A′). Moreover, assuming exact arithmetic,

the iterates generated by CG(A′,b′,u(0)′) are such that:
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1.1 If the residuals r(0)
′
, . . . , r(j−1)

′
are non-zero, then α(0)′, . . . , α(j−1)′ and p(0)′, . . . ,p(j−1)′

are defined and non-zero. Consequently, r(j)
′ ⊥ K(A′). Then, if r(j)

′
= 0, we have

u(j)′ = u′.
Proof:

• Since A′ is symmetric positive semi-definite, it admits a decomposition A′ =
U′Λ′U′T where the diagonal matrix Λ′ ∈ Rn′×n′

has the n′ strictly positive
eigenvalues λ(1), . . . , λ(n

′) of A′ as entries and U′TU′ = In′ . Moreover, In −
U′U′T is a projector onto K(A′), while U′U′T projects onto K(A′)⊥. Thus,
since b′ ⊥ K(A′), there exists vb ∈ Rn such that b′ = U′U′Tvb. Let u′ :=

U′Λ′
−1
U′Tb′+ ũ(0)′ with ũ(0)′ := (In−U′U′T )u(0)′ ∈ K(A′) so that A′u′ = b′

and u′ − u(0)′ = U′Λ′
−1
U′Tb′ − U′U′Tu(0)′ ⊥ K(A′). Now, if we let u′′ :=

u′ + ∆ũ′ where ∆ũ′ ∈ Rn, clearly, A′u′′ = b′ if and only if ∆ũ′ ∈ K(A′),
in which case u′′ − u(0)′ ⊥ K(A′) implies ∆ũ′ = 0 and u′′ = u′. Thus, u′ =

U′Λ′
−1
U′Tb′ + ũ(0)′ is the only solution of A′u′ = b′ satisfying u′ − u(0)′ ⊥

K(A′).

• If u(0)′ ∈ K(A′), we have r(0)
′
:= b′ − A′u(0)′ = b′ ⊥ K(A′). If, however,

u(0)′ ⊥ K(A′) then, for all v ∈ K(A′) we have vTA′u(0)′ = (A′v)Tu(0)′ = 0 so

that A′u(0)′ ⊥ K(A′) and b′ −A′u(0)′ ⊥ K(A′)—in either case, r(0)
′ ⊥ K(A′).

Then, if r(0)
′
= 0, we have u′ − u(0)′ ⊥ K(A′) and A′u(0)′ = b′, so that

u(0)′ = u′.

• CG(A′,b′,u(0)′) defines p(0)′ := r(0)
′
along with the recurrence formula

α(i−1)′ := r(i−1)
′T
r(i−1)

′
/p(i−1)′TA′p(i−1)′,

u(i)′ := u(i−1)′ + α(i−1)′p(i−1)′,

r(i)
′
:= r(i−1)

′ − α(i−1)′A′p(i−1)′,

β(i−1)′ := r(i)
′T
r(i)
′
/r(i−1)

′T
r(i−1)

′
,

p(i)′ := r(i)
′
+ β(i−1)′p(i−1)′,

for 1 ≤ i ≤ j. First, note that r(i−1)
′ ∈ K(A′)⊥ \{0} and p(i−1)′ ∈ K(A′)⊥ \{0}

imply that α(i−1)′ is defined and non-zero. Second, since p(i−1)′ ⊥ K(A′) implies

A′p(i−1)′ ⊥ K(A′), we have that r(i−1)′ ⊥ K(A′) and p(i−1)′ ⊥ K(A) altogether

imply r(i)
′ ⊥ K(A′). Then, we have p(i)′ ∈ K(A′)⊥, which is zero if and only

if r(i)
′
= 0. Therefore, proceeding by induction with r(0)

′
= p(0)′ ⊥ K(A′), we

have that {p(i)′}ji=0 ⊥ K(A′), {r(i)
′}ji=0 ⊥ K(A′) and {α(i)′}ji=0 are all defined

unless r(i)
′
= 0 for some 0 ≤ i < j.

• Now, if r(j)
′
= 0, we have p(j)′ = 0 which leads to an undefined α(j)′. However,

from the recurrence formula, we have u(j)′ = u(0)′ +
∑j−1

i=0 α
(i)′p(i)′ in which

every p(i)′ ⊥ K(A′). Therefore, u′−u(j)′ = U′Λ′
−1
U′Tb′+(In−U′U′T )u(0)′−

u(j)′ = U′Λ′
−1
U′Tb′ −U′U′Tu(0)′ −∑j−1

i=0 α
(i)′p(i)′ so that u′ − u(j)′ ⊥ K(A′).

Consequently, r(j)
′
= b′ −A′u(j)′ = A′(u′ − u(j)′) = 0 implies u(j)′ = u′.
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1.2 Assuming r(0)
′
, . . . , r(j−1)

′
are non-zero, u(j)′ is such that

u(j)′ ∈ u(0)′ +K(j)(A′, r(0)
′
), (2.5)

r(j)
′ ⊥ K(j)(A′, r(0)

′
). (2.6)

Moreover, u(j)′ is optimal in the sense that it minimizes the A′-norm of the error
e(j)

′
:= u′−u(j)′ over u(0)′+K(j)(A′, r(0)

′
), i.e. u(j)′ = min

u∈u(0)′+K(j)(A′,r(0)
′
)
∥u′−u∥A′.

Proof:

• Since u(j)′ = u(0)′ +
∑j−1

i=0 α
(i)′p(i)′ for j > 0 , we have

p(0)′ = r(0)
′

=⇒ p(0)′ ∈ Span{r(0)′},
p(1)′ = β(0)p(0)′ + r(0)

′ − α(0)A′p(0)′ =⇒ p(1)′ ∈ Span{r(0)′,A′r(0)′} = K(1)(A′, r(0)
′
),

p(2)′ = β(1)′p(1)′ + r(0)
′ − α(0)′A′p(0)′ − α(1)′A′p(1)′ =⇒ p(2)′ ∈ Span{r(0)′,A′r(0)′,A′2r(0)′} = K(2)(A′, r(0)

′
)

and so on so that p(j)′ ∈ K(j)(A′, r(0)
′
) and u(j)′ ∈ u(0)′ +K(j)(A′, r(0)

′
).

• The recurrence relations are such that, for j > 0, r(j)
′
= r(0)

′−∑j−1
i=0 α

(i)′A′p(i)′

so that r(j)
′ ∈ r(0)

′
+A′K(j)(A′, r(0)

′
). Therefore, r(j)

′T
r(j−1)

′
= 0 implies r(j)

′ ⊥
r(0)
′
+A′K(j−1)(A′, r(0)

′
), which is equivalently stated by r(j)

′ ⊥ K(j)(A′, r(0)
′
).

• The optimality of the iterate follows from the property of orthogonal projec-
tions, see Prop. 5.2 in [138].

1.3 If r(0)
′
, . . . , r(n

′−1)′ are non-zero, then r(n
′)′ = 0 and u(n′)′ = u′, where n′ is the

number of strictly positive eigenvalues of A′.
Proof:

• For each u ∈ u(0)′ +K(j)(A′, r(0)
′
), there exists {γ(i)}j−1i=0 such that u = u(0)′ +∑j−1

i=0 γ
(i)A′ir(0)

′
. Then, since r(0)

′
= b′−A′u(0)′ = A′u′−A′u(0)′, we can write

u′ − u = u′ − u(0)′ −
j−1∑

i=0

γ(i)A′
i
A′(u′ − u(0)′) =

(
In −

j−1∑

i=0

γ(i)A′
i+1

)
(u′ − u(0)′).

• Let’s recast u′ − u(0)′ = U′Λ′
−1
U′b′ −U′U′Tu(0)′ into u′ − u(0)′ = U′∆v with

∆v := Λ′
−1
U′b′ −U′Tu(0)′ ∈ Rn′

. We then have

∥u′ − u∥A′ =
∥∥∥A′1/2(u′ − u)

∥∥∥
2
=

∥∥∥∥∥U
′Λ′

1/2
U′

T

(
In −

j−1∑

i=0

γ(i)U′Λ′
i+1

U′
T

)
U′∆v

∥∥∥∥∥
2

∥u′ − u∥A′ =

∥∥∥∥∥

(
In′ −

j−1∑

i=0

γ(i)Λ′
i+1

)
Λ′

1/2
∆v

∥∥∥∥∥
2

so that

∥u′ − u∥A′ ≤
∥∥∥∥∥In′ −

j−1∑

i=0

γ(i)Λ′
i+1

∥∥∥∥∥
2

∥∥∥Λ′1/2∆v
∥∥∥
2
≤
∥∥∥∥∥In′ −

j−1∑

i=0

γ(i)Λ′
i+1

∥∥∥∥∥
2

∥u′ − u(0)′∥A′
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in which we have
∥∥∥∥∥In′ −

j−1∑

i=0

γ(i)Λ′
i+1

∥∥∥∥∥
2

= max
v∈Rn′ s.t. ∥v∥2=1

∥∥∥∥∥

(
In′ −

j∑

i=0

γ(i)Λ′
i+1

)
v

∥∥∥∥∥
2

≤ max
z∈σ(Λ′)

∣∣∣∣∣1−
j−1∑

i=0

γ(i)zi+1

∣∣∣∣∣ .

Thus, for every u ∈ u(0)′ + K(j)(A′, r(0)
′
), there is a polynomial p : R → R of

degree j such that p(0) = 1 and ∥u′ − u∥A′ ≤ max
z∈σ(Λ′)

|p(z)|∥u′ − u(0)′∥A′ .

• Owing to the optimal property of the iterate u(j)′, see Theo. 1.2, we have

∥u′ − u(j)′∥A′ ≤ min
p∈Pj s.t. p(0)=1

max
z∈σ(Λ′)

|p(z)|∥u′ − u(0)′∥A′

where Pj is the set of all the polynomials of degree j. In particular, we consider

p̃(z) =

j∏

i=1

λ(i) − z
λ(i)

which does satisfy p̃(0) = 1. As we let j := n′, we have p̃(z) = 0 for all
z ∈ σ(Λ′). Therefore,

∥u′ − u(n′)′∥A′ ≤ max
z∈σ(Λ′)

|p̃(z)|∥u′ − u(0)′∥A′ = 0.

From Theo. 1.1, we have that r(0)
′
, . . . , r(j−1)

′
being non-zero implies u′−u(j)′ ⊥

K(A′). Consequently, we have u′ − u(n′)′ ⊥ K(A′) so that ∥u′ − u(n′)′∥A′ = 0

implies u(n′)′ = u′.

1.4 The A′-norm of the error of each iterate u(j)′ is bounded by

∥e(j)′∥A′

∥e(0)′∥A′
≤ 2



(√

cond′(A′)− 1√
cond′(A′) + 1

)j

+

(√
cond′(A′) + 1√
cond′(A′)− 1

)j


−1

≤ 2

(√
cond′(A′)− 1√
cond′(A′) + 1

)j

(2.7)

where cond′(A′) is the effective conditioning number of A′ defined as in Def. 2.
Proof: Similar to proof of Theorem 4.

If A′ is SPD, Theos. 1.1–1.4 apply without conditions on b′.

Proposition 5. An approximation of u∗ := A−1bs can be obtained after the following
procedure:

1. Solve for µ̂∗1 ∈ Rk in WTAWµ̂∗1 = WTb.

2. Pick any u(0)′ ∈ Rn and solve for u′ in

ΠTAu′ = ΠTb

u′ − u(0)′ ⊥ R(W)
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which can be approximated with the sequence generated by CG(ΠTA,ΠTb,u(0)′) of
which the behavior conforms to Theos. 1.1–1.4 with A′ := ΠTA and b′ := ΠTb.

3. Then, u∗ = Wµ̂∗1 +Πu′.

Proof:

• Prop. 3 states that ΠTA is symmetric positive semi-definite with null space R(W);
Prop. 2.3 states that ΠT projects onto R(W)⊥ so that ΠTb ⊥ R(W);
Let A′ := ΠTA and b′ := ΠTb. Then, the necessary conditions for the applica-
tion of Theos. 1.1–1.4 are met and CG(ΠTA,ΠTb,u(0)′) generates a sequence of
approximations of u′.

• By Coro. 3, since ΠTAu′ = ΠTb, we have u∗ = Wµ̂∗1 +Πu′.

The procedure presented in Prop. 5 is referred to as Proj-CG in [55]. Note that,

although the solution u′ of ΠTAu′ = ΠTb such that u′ − u(0)′ ⊥ R(W) depends on the

choice of u(0)′, this is not the case of Πu′ which remains unchanged irrespective of u(0)′.
The potential of deflation becomes clear when looking at the right hand side of the bound
on the ΠTA-norm of the error of the approximations generated by CG(ΠTA,ΠTb,u(0)′),
see Theo. 1.4. Clearly, the convergence of those iterates is governed by the distribution
of the n′ = n − k strictly positive eigenvalues of ΠTA which, if W is properly chosen,
can consist of the central part of the spectrum of A, possibly resulting in cond′(ΠTA)≪
cond(A) and a faster convergence of CG(ΠTA,ΠTb,u(0)′) than CG(A,b,u(0)). The
resulting speed-up, however, should be compounded with the resolution of the reduced
system of dimension k inherent to the application of the operator ΠTA, hence motivating
a choice of k ≪ n.

Proposition 6. Given the sequence {u(i)′}ji=0 of estimates generated by CG(ΠTA,ΠTb,u(0)′)

for some u(0)′, let {u(i)}ji=0 := {Wµ̂∗1 +Πu(i)′}ji=0 and {r(i)}ji=0 := {b−Au(i)}ji=0. Then,
for 0 ≤ i ≤ j, we have

6.1 ΠT r(i) = r(i)
′
.

Proof: ΠT r(i) = ΠT (b − Au(i)) = ΠTb − ΠTA(Wµ̂∗1 + Πu(i)′) where Prop. 1.3

=⇒ ΠTAWµ̂∗1 = 0, and Coro. 1.1 =⇒ ΠTAΠu(i)′ = ΠTAu(i)′ so that

ΠT r(i) = ΠTb−ΠTAu(i)′ =: r(i)
′
.

6.2 If u(0)′ is such that r(0) ⊥ R(W), then r(i) = r(i)
′
.

Proof: r(0) ⊥ R(W) and Prop. 2.3 =⇒ r(0) = ΠT r(0);

r(0) = ΠT r(0) and ΠT r(i) = r(i)
′

=⇒ r(0) = r(0)
′
;

Note that r(i) − r(i−1) = A(u(i−1) − u(i)) = AΠ(u(i−1)′ − u(i)′);

Coro. 1.1 =⇒ AΠ(u(i−1)′−u(i)′) = ΠTA(u(i−1)′−u(i)′) = r(i)
′− r(i−1)

′
so

that r(i) − r(i−1) = r(i)
′ − r(i−1)

′
;

r(0) = r(0)
′
and r(i) − r(i−1) = r(i)

′ − r(i−1)
′
=⇒ r(i) = r(i)

′
.

An alternative to Proj-CG is to exploit the relation between u∗ and u′ for a given u(0)′,
and construct a sequence {u(i)}ji=0 of approximations of u∗ from the sequence {u(i)′}ji=0

generated by CG(ΠTA,ΠTb,u(0)′). This procedure, presented in Prop. 6, is equivalent
to the algorithm introduced by [107] and further analyzed by [140] in the sense that it
generates the same iterates.
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Proposition 7. Given the sequence {u(i)′}ji=0 of estimates generated by CG(ΠTA,ΠTb,u(0)′)

for some u(0)′ such that r(0) := b −Au(0) ⊥ R(W), there exists µ̂∗1 ∈ Rk such that the

sequence {u(i)}ji=0 := {Wµ̂∗1 +Πu(i)′}ji=0 consists of approximations of u∗ := A−1b such
that

u(i) ∈ u(0) +K(k,i)(A,W, r(0))

r(i) := b−Au(i) ⊥ K(k,i)(A,W, r(0))

for i ≤ j, where K(k,i)(A,W, r(0)) := K(i)(A, r(0)) ⊕ R(W) is the i-th Krylov subspace
K(i)(A, r(0)) augmented by the null space of ΠTA. Moreover, u(i) is optimal in the sense
that it minimizes the A-norm of the error e(i) := u∗ − u(i) over u(0) +K(k,i)(A,W, r(0)),
i.e. u(i) = min

u∈u(0)+K(k,i)(A,W,r(0))
∥u∗ − u∥A.

Proof:

• Coro. 2 implies Πu(i)′ = u(i)′−Wµ̂(i)′ where µ̂(i)′ is the solution of WTAWµ̂(i)′ =
WTAu(i)′ for 0 ≤ i ≤ j.
Then, u(i) := Wµ̂∗1 +Πu(i)′ = Wµ̂∗1 + u(i)′ −Wµ̂(i)′ so that, using u(0) := Wµ̂∗1 +

Πu(0)′, we get u(i) = u(0) −W(µ̂(i)∗ − µ̂(0)′) + (u(j)′ − u(0)′) where we know from

Theo. 1.2 that u(j)′ ∈ u(0)′ +K(i)(ΠTA, r(0)
′
). Therefore, we have

u(i) ∈ u(0) +R(W) +K(i)(ΠTA, r(0)
′
).

Note for all v ∈ R(ΠTA), there exists w such that v = ΠTAw. Then, since A
is invertible, we can define w′ = A−1ΠTAw so that v = Aw′ ∈ R(A). Conse-

quently, we have R(ΠTA) ⊆ R(A), which can be used to show K(i)(ΠTA, r(0)
′
) ⊆

K(i)(A, r(0)
′
).

Then, note that r(0)
′
= ΠTb − ΠTAu(0)′ ∈ R(ΠT ) = R(W)⊥ so that R(W) ∩

K(i)(A, r(0)
′
) = {0} and

u(i) ∈ u(0) +K(k,i)(A,W, r(0)
′
)

where K(k,i)(A, r(0)
′
) := K(i)(A, r(0)

′
)⊕R(W). For the case in which r(0) ⊥ R(W),

see Prop. 6.2, we have r(0) = r(0)
′
so that K(k,i)(A,W, r(0)

′
) = K(k,i)(A,W, r(0)).

• Assume r(0) ⊥ R(W) so that r(i) = r(i)
′
, see Prop. 6.2. Then, since r(i) = r(0) −

A(u(i)−u(0)), we have r(i) ∈ r(0)+AK(k,i)(A,W, r(0)). Hence, r(i)
T
r(i−1) = 0 implies

r(i) ⊥ r(0) +AK(k,i−1)(A,W, r(0)) so that

r(i) ⊥ K(k,i)(A,W, r(0)).

• Assuming r(0) ⊥ R(W), the two precedent points imply that every iterate u(i) is
the result of an orthogonal projection onto K(k,i)(A,W, r(0)) with initial iterate u(0).
From the property of orthogonal projections, see Prop. 5.2 in [138], we have that
u(i) is optimal in the sense that it minimizes the A-norm of the error e(i) := u∗−u(i)

over u(0)′ +K(k,i)(A,W, r(0)).

Although the relevance of Prop. 7 may seem questionable when simply presented
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as a post-processing stage of the sequence generated by CG(ΠTA,ΠTb,u(0)′), we will
see that a proper change of variables can be used to construct the sequence {u(i)}ji=0

of approximations of u∗, without having to explicitly form the iterates {u(i)′}ji=0. The
resulting algorithm, presented as deflated CG in [140], requires a single resolution of
reduced system per iterate, similarly as for the application of the projector in an iteration
of CG(ΠTA,ΠTb,u(0)′) as called by Proj-CG.

2.2.1 Deflated conjugate gradient

The sequence {u(i)}ji=0 of approximations of u∗ generated by the procedure described
in Prop. 7 is equivalently obtained by the deflated CG algorithm—herein referred to
as Def-CG(A,W,b,u(0)) in Algo. 17—which is presented and analyzed by [140]. Def-
CG(A,W,b,u(0)) is introduced by [140] as a deflated Lanczos procedure to build a se-
quence {v(i)}j+1

i=1 of vectors such that

v(i+1) ⊥ R(W) + Span{v(1),v(2), . . . ,v(i)}

and ∥v(i+1)∥2 = 1 with v(1) := r(0)/∥r(0)∥2 ⊥ R(W). Each approximation u(i) of u∗ is
then constructed as an orthogonal projection onto the affine subspace u(0) + R(W) +
Span{v(1),v(2), . . . ,v(i)}.

The equivalence between Def-CG(A,W,b,u(0)) and CG(ΠTA,ΠTb,u(0)′) was stated
in Theo. 4.6 of [140]. Assuming r(0) ⊥ R(W), Def-CG(A,W,b,u(0)) can be obtained

from CG(ΠTA,ΠTb,u(0)′) using the relations

u(j) := Wµ̂∗1 +Πu(j)′, (2.8)

r(j) := b−Au(j), (2.9)

p(j) := Πp(j)′. (2.10)

To illustrate this equivalence, we first present CG(ΠTA,ΠTb,u(0)′) in Algo. 15.

Algorithm 15 CG applied to ΠTAu′ = ΠTb, CG(ΠTA, ΠTb).

1: r(0)
′
:= ΠTb−ΠTAu(0)′ ▷ u(0)′ s.t. r(0) ⊥ R(W)

2: p(0)′ := r(0)
′

3: for j = 1, . . . ,m do

4: α(j−1) := r(j−1)
′T
r(j−1)

′
/p(j−1)′TΠTAp(j−1)′

5: u(j)′ := u(j−1)′ + α(j−1)p(j−1)′

6: r(j)
′
:= r(j−1)

′ − α(j−1)ΠTAp(j−1)′

7: β(j−1) := r(j)
′T
r(j)
′
/r(j−1)

′T
r(j−1)

′

8: p(j)′ := r(j)
′
+ β(j−1)p(j−1)′

9: end for

Proposition 8. Assuming r(0) ⊥ R(W), the following recurrence relations hold:

8.1 u(j) = u(j−1) + α(j−1)p(j−1).
Proof: Eq. (2.8), line 5 of Algo. 15 and Eq. (2.10) =⇒ u(j) − u(j−1) = Π(u(j)′ −
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u(j−1)′) = α(j−1)Πp(j−1)′ = α(j−1)p(j−1).

8.2 r(j) = r(j−1) − α(j−1)Ap(j−1).
Proof: Coro. 1.1 and Eq. (2.10) =⇒ ΠTAp(j−1)′ = AΠp(j−1)′ = Ap(j−1);

Line 6 of Algo. 15 and ΠTAp(j−1)′ = Ap(j−1) =⇒ r(j)
′
= r(j−1)

′ −
α(j−1)Ap(j−1);

Prop.6.2 and r(j
′
= r(j−1)

′−α(j−1)Ap(j−1) =⇒ r(j) = r(j−1)−α(j−1)Ap(j−1).

Algo. 16 is obtained after applying the substitutions given by Eqs. (2.9), (2.10),
Prop. 6.2 and Props. 8.1–8.2 to Algo. 15. Note also that the condition r(0) ⊥ R(W)

need not be enforced through u(0)′ as, instead, u
(0)
s can be picked accordingly.

Algorithm 16 CG applied to ΠTAu′ = ΠTb, CG(ΠTA, ΠTb, u(0)) with substitutions.

1: r(0 := b−Au(0) ▷ u(0) s.t. r(0) ⊥ R(W)
2: p(0) := Πr(0)

3: for j = 1, . . . ,m do

4: α(j−1) := r(j−1)
T
r(j−1)/p(j−1)TAp(j−1)

5: u(j) := u(j−1) + α(j−1)p(j−1)

6: r(j) := r(j−1) − α(j−1)Ap(j−1)

7: β(j−1) := r(j)
T
r(j)/r(j−1)

T
r(j−1)

8: p(j) := Πr(j) + β(j−1)p(j−1)

9: end for

Decomposing r(j) similarly as in Coro. 2 yields a unique µ̂(j) ∈ Rk such that r(j) =
Wµ̂(j) + Πr(j), which leads to Πr(j) = r(j) − Wµ̂(j) where µ̂(j) is the solution of
WTAWµ̂(j) = WTAr(j). Incorporating this application of the projector to r(j) into
Algo. 16 leads to Algo. 17, referred to as deflated CG in [140].

Algorithm 17 Deflated CG, Def-CG(A, W, b, u(0)).

1: r(0) := b−Au(0) ▷ u(0) s.t. r(0) ⊥ R(W)
2: Solve for µ̂(0) in WTAWµ̂(0) = WTAr(0)

3: p(0) := r(0) −Wµ̂(0)

4: for j = 1, . . . ,m do

5: α(j−1) := r(j−1)
T
r(j−1)/p(j−1)TAp(j−1)

6: u(j) := u(j−1) + α(j−1)p(j−1)

7: r(j) := r(j−1) − α(j−1)Ap(j−1)

8: β(j−1) := r(j)
T
r(j)/r(j−1)

T
r(j−1)

9: Solve for µ̂(j) in WTAWµ̂(j) = WTAr(j)

10: p(j) := β(j−1)p(j−1) + r(j) −Wµ̂(j)

11: end for

The resulting algorithm, Algo. 17, requires to resolve one reduced system per iterate
(see line 9), similarly as for the application of the deflated operator in an iteration of

CG(ΠTA,ΠTb,u(0)′) as called by Proj-CG, see ΠTAp(j−1)′ in line 4 of Algo. 15. The
main difference between the two methods is that every iterate u(j) of Def-CG(A,W,b,u(0))

is an optimal approximation of u∗, while each iterate u(j)′ of CG(ΠTA,ΠTb,u(0)′) is an
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approximation of u′ which, in itself, is insignificant as its relation with u∗ depends on the
arbitrary initial iterate u(0)′.

Given that Algo. 15 is obtained under the assumption that r(0) := b−Au(0) ⊥ R(W),
it is of practical interest to be able to construct an initial iterate u(0) such that r(0) ⊥
R(W) from some arbitrary u(−1) ∈ Rn. This can be achieved using the following relation
given by [140]:

u(0) = u(−1) +W(WTAW)−1WT r(−1) (2.11)

with r(−1) := b−Au(−1) and for which we have

WT r(0) = WT (b−Au(0)) = WTb−WTAu(−1) −WTAW(WTAW)−1WT r(−1)

= WTb−WTAu(−1) −WT r(−1) = 0

so that, indeed, r(0) ⊥ R(W).

Now, given the equivalence between Def-CG(A,W,b,u(0)) and CG(ΠTA,ΠTb,u(0)′),
the behavior of the deflated CG can be analyzed making use of Theo. 1 with A′ := ΠTA
and b′ := ΠTb.

2.2.1.1 Preconditioned case

Deflation can be presented in the context of split preconditioned systems with inverse pre-
conditioners admitting a Cholesky decomposition of the form M−1 = L−TL−1. Similarly
as for the non-preconditioned case, a matrix Π̇ ∈ Rn×n is introduced and defined by

Π̇ := In − Ẇ(ẆT ȦẆ)−1ẆT Ȧ (2.12)

where Ȧ := L−1AL−T and Ẇ has columns that form the basis of a subspace of dimension
k < n. Since Ẇ is full column rank and Ȧ is SPD, so is ẆT ȦẆ which is hence invertible.
Note that Props. 1–4 and Coros. 1–2 remain applicable when substituting A, W and Π
by Ȧ, Ẇ and Π̇, respectively.

Proposition 9. Given the sequence {u̇(i)′}ji=0 of estimates generated by CG(Π̇
T
Ȧ, Π̇

T
L−1b, u̇(0)′)

for some u̇(0)′, there exists µ̂∗1 ∈ Rk such that we can define the sequence {u̇(i)}ji=0 :=
{Ẇµ̂∗1 + Π̇u̇(i)′}ji=0 along with {ṙ(i)}ji=0 := {L−1b − Ȧu̇(i)}ji=0. Let also {u(i)}ji=0 :=
{L−T u̇(i)}ji=0 and {r(i)}ji=0 := {b−Au(i)}ji=0. Then, for 0 ≤ i ≤ j, we have:

9.1 Π̇
T
ṙ(i) = ṙ(i)′.

Proof: Same as for Prop. 6.1.

9.2 If u̇(0)′ is such that ṙ(0) ⊥ R(Ẇ), then ṙ(i) = ṙ(i)′.
Proof: Same as for Prop. 6.2.

9.3 Lṙ(i) = r(i).
Proof: Lṙ(i) = L(L−1b− Ȧu̇(i)) = b−AL−T u̇(i) = b−Au(i) =: r(i).

Proposition 10. Given the sequence {u̇(i′}ji=0 of estimates generated by CG(Π̇
T
Ȧ, Π̇

T
L−1b, u̇(0)′)

for some u̇(0)′ such that ṙ(0) ⊥ R(Ẇ) where ṙ(i) := L−1b − Ȧu̇(i) and u̇(i) := Ẇµ̂(1)∗ +
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Π̇u̇(i)′, the sequence {u(i)}ji=0 := {L−T u̇(i)}ji=0 consists of approximations of u∗ := A−1b
such that

u(i) ∈ u(0) +K(k,i)(M−1A,W,M−1r(0))

r(i) := b−Au(i) ⊥ K(k,i)(M−1A,W,M−1r(0))

for i ≤ j, where K(k,i)(M−1A,W,M−1r(0)) = K(i)(M−1A,M−1r(0)) ⊕ R(W) is the i-th
Krylov subspace generated by M−1A and M−1r(0), augmented by the null space of ΠTA
spanned by the columns of W := L−TẆ. Moreover, u(i) is optimal in the sense that it
minimizes the A-norm of the error e(i) := u∗−u(i) over u(0)+K(k,i)(M−1A,W,M−1r(0)).
Proof:

• Coro. 2 implies Π̇u̇(i)′ = u̇(i)′−Ẇµ̂(i)′ where µ̂(i)′ is the solution of ẆT ȦẆµ̂(i)′ =
ẆT Ȧu̇(i)′.
Then, u̇(i) := Ẇµ̂(1)∗ + Π̇u̇(i)′ = Ẇµ̂(1)∗ + u̇(i)′ − Ẇµ̂(i)′ so that, using u̇(0) :=
Ẇµ̂(1)∗+Π̇u̇(0)′, we get u̇(i) = u̇(0)−Ẇ(µ̂(i)′− µ̂(0)′)+(u̇(i)′− u̇(0)′) where we know

from Theo. 2.2 that u̇(0)′ ∈ u̇(0)′ +K(i)(Π̇
T
Ȧ, ṙ(0)′).

Therefore, we have u̇(i) ∈ u̇(0) +R(Ẇ) +K(i)(Π̇
T
Ȧ, ṙ(0)′).

Since Ȧ is SPD, we haveR(Π̇T
Ȧ) ⊆ R(Ȧ), which can be used to showK(i)(Π̇

T
Ȧ, ṙ(0)′) ⊆

K(i)(Ȧ, ṙ(0)′).
For the case in which ṙ(0) ⊥ R(Ẇ), see Prop. 9.2, we have ṙ(0) = ṙ(0)′ so that

L−T u̇(i) ∈ L−T u̇(0) + L−T R(Ẇ) + L−TK(i)(Ȧ, ṙ(0)).

Using the definitions of u(i) and W as well as Prop. 9.3, we obtain

u(i) ∈ u(0) +R(W) +K(i)(M−1A,M−1r(0)).

Then r(0) = Lṙ(0) = Lṙ(0)′ = LΠ̇
T
L−1b − LΠ̇

T
Ȧu̇(0)′ ∈ R(LΠ̇T

) so that r(0) ⊥
R(L−TẆ) = R(W).
Hence, sinceR(W)⊥ = R(ΠT ) is invariant under SPD operators,R(W)∩K(i)(M−1Ȧ,M−1r(0)) =
{0} implies u(i) ∈ u(0) +R(W)⊕K(i)(M−1A,M−1r(0)).

• Assume ṙ(0) ⊥ R(Ẇ) so that ṙ(i) = ṙ(i)′, see Prop. 9.2.
Using Prop. 9.3, we get r(i)−r(0) = L(ṙ(i)−ṙ(0)) = −LȦ(u̇(i)−u̇(0)) = −A(u(i)−u(0))
so that r(i) ∈ r(0) +AK(k,i)(M−1A,W,M−1r(0)).
Then, r(i)TM−1r(i−1) = ṙ(i)T ṙ(i−1) = ṙ(i)′T ṙ(i−1)′ = 0 implies r(i) ⊥ M−1r(0) +
M−1AK(k,i−1)(M−1A,W,M−1r(0)) so that

r(i) ⊥ K(k,i)(M−1A,W,M−1r(0)).

• Assuming ṙ(0) ⊥ R(Ẇ), the two precedent points imply that every iterate u(i) is
the result of an orthogonal projection onto K(k,i)(M−1A,W,M−1r(0)) with initial
iterate u(0). From the property of orthogonal projections, see Prop. 5.2 in [138],
we have that u(i) is optimal in the sense that it minimizes the A-norm of the error
e(i) := u∗ − u(i) over u(0) +K(k,i)(M−1A,W,M−1r(0)).

The sequence {u(i)}ji=0 of approximations of u∗ generated by the procedure described
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in Prop. 10 is equivalently obtained by the deflated preconditioned CG algorithm—herein
referred to as Def-PCG(A,M,W,b,u(0)) in Algo. 21—which is presented in Algo. 3.6 of

[140]. The equivalence between Def-PCG(A,M,W,b,u(0)) and CG(Π̇
T
Ȧ, Π̇

T
L−1b, u̇(0)′)

is highlighted here by deriving the later algorithm through the application of the re-
quired changes of variables in the former procedure. Assuming ṙ(0) ⊥ R(Ẇ), Def-

PCG(A,M,W,b,u(0)) can be obtained from CG(Π̇
T
Ȧ, Π̇

T
L−1b, u̇(0)′) using the rela-

tions

u̇(j) := Ẇµ̂(1)∗ + Π̇u̇(j)′, (2.13)

ṙ(j) := L−1b− Ȧu̇(j), (2.14)

ṗ(j) := Π̇ṗ(j)′ (2.15)

as well as

u(j) := L−T u̇(j), (2.16)

r(j) := b−Au(j), (2.17)

p(j) := L−T ṗ(j), (2.18)

W := L−TẆ. (2.19)

To illustrate this equivalence, we first present CG(Π̇
T
Ȧ, Π̇

T
L−1b, u̇(0)′) in Algo. 18.

Algorithm 18 CG applied to Π̇
T
Ȧu̇′ = Π̇

T
L−1b, CG(Π̇

T
Ȧ, Π̇

T
L−1b, u̇(0)′).

1: ṙ(0)′ := Π̇
T
L−1b− Π̇

T
Ȧu̇(0)′

2: ṗ(0)′ := ṙ(0)′

3: for j = 1, . . . ,m do

4: α(j−1) := ṙ(j−1)′T ṙ(j−1)′/ṗ(j−1)′T Π̇
T
Ȧṗ(j−1)′

5: u̇(j)′ := u̇(j−1)′ + α(j−1)ṗ(j−1)′

6: ṙ(j)′ := ṙ(j−1)′ − α(j−1)Π̇
T
Ȧṗ(j−1)′

7: β(j−1) := ṙ(j)′T ṙ(j)′/ṙ(j−1)′T ṙ(j−1)′

8: ṗ(j)′ := ṙ(j)′ + β(j−1)ṗ(j−1)′

9: end for

Proposition 11. Assuming ṙ(0) ⊥ R(Ẇ), the following recurrence relations hold:

11.1 u̇(j) = u̇(j−1) + α(j−1)ṗ(j−1).
Proof: Same as for Prop. 8.1.

11.2 ṙ(j) = ṙ(j−1) − α(j−1)Ȧṗ(j−1).
Proof: Same as for Prop. 8.2.

Decomposing ṙ(j) similarly as in Coro. 2 yields a unique µ̂(j) ∈ Rk such that ṙ(j) =
Ẇµ̂(j) + Π̇ṙ(j), which leads to Π̇ṙ(j) = ṙ(j) − Ẇµ̂(j) where µ̂(j) is the solution of
ẆT ȦẆµ̂(j) = ẆT Ȧṙ(j). Incorporating this application of the projector to ṙ(j) into
Algo. (18) along with the substitutions given by Eqs. (2.14)–(2.15) and Props. 9.2, 11.1–
11.2 yields Algo. (19).
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Algorithm 19 CG applied to Π̇
T
Ȧu̇′ = Π̇

T
L−1b, CG(Π̇

T
Ȧ, Π̇

T
L−1b, u̇(0)′) with sub-

stitutions.

1: ṙ(0) := L−1b− Ȧu̇(0) ▷ u̇(0) s.t. ṙ(0) ⊥ R(Ẇ)
2: Solve for µ̂(0) in ẆT ȦẆµ̂(0) = ẆT Ȧṙ(0)

3: ṗ(0 := ṙ(0) − Ẇµ̂(0)

4: for j = 1, . . . ,m do
5: α(j−1) := ṙ(j−1)T ṙ(j−1)/ṗ(j−1)T Ȧṗ(j−1)

6: u̇(j) := u̇(j−1) + α(j−1)ṗ(j−1)

7: ṙ(j) := ṙ(j−1) − α(j−1)Ȧṗ(j−1)

8: β(j−1) := ṙ(j)T ṙ(j)/ṙ(j−1)T ṙ(j−1)

9: Solve for µ̂(j) in ẆT ȦẆµ̂(j) = ẆT Ȧṙ(j)

10: ṗ(j := β(j−1)ṗ(j−1) + ṙ(j) − Ẇµ̂(j)

11: end for

In order to make the application of coming changes of variables more intelligible, the
occurrence of the right hand sides of Eqs. (2.16)–(2.19) within Algo. 19 are made more
explicit in Algo. 20. Finally, applying the substitutions given by Eqs. (2.16)–(2.19) and
Prop. 9.3 within Algo. 20 leads to Algo. 21, which we refer to as Def-PCG(A,M,W,b,u(0))
and is given by Algo. 3.6 in [140].

Algorithm 20 CG applied to Π̇
T
Ȧu̇′ = Π̇

T
L−1b, CG(Π̇

T
Ȧ, Π̇

T
L−1b, u̇(0)′) reformu-

lated.

1: Lṙ(0) := b−AL−T u̇(0) ▷ u̇(0) s.t. ṙ(0) ⊥ R(Ẇ)
2: Solve for µ̂(0) in (L−TẆ)TAL−TẆµ̂(0) = (L−TẆ)TAL−TL−1Lṙ(0)

3: L−T ṗ(0) := L−TL−1Lṙ(0) − L−TẆµ̂(0)

4: for j = 1, . . . ,m do
5: α(j−1) := (Lṙ(j−1))TL−TL−1Lṙ(j−1)/(L−T ṗ(j−1))TAL−T ṗ(j−1)

6: L−T u̇(j) := L−T u̇(j−1) + α(j−1)L−T ṗ(j−1)

7: Lṙ(j) := Lṙ(j−1) − α(j−1)AL−T ṗ(j−1)

8: β(j−1) := (Lṙ(j))TL−TL−1Lṙ(j)/(Lṙ(j−1))TL−TL−1Lṙ(j−1)

9: Solve for µ̂(j) in (L−TẆ)TAL−TẆµ̂(j) = (L−TẆ)TAL−TL−1Lṙ(j)

10: L−T ṗ(j) := β(j−1)L−T ṗ(j−1) + L−TL−1Lṙ(j) − L−TẆµ̂(j)

11: end for

Given that Algo. 21 is obtained under the assumption that ṙ(0) ⊥ R(Ẇ), it is of
practical interest to be able to construct an initial iterate u(0) satisfying this condition for
some arbitrary u(−1) ∈ Rn. Note that the initial iterate given by Eq. (2.11) satisfies this
condition. Indeed, assuming u(0) = u(−1) +W(WTAW)−1WT r(−1) and using Eq. (2.19)
along with Prop. 9.3 leads to

ẆT ṙ(0) = (LTW)T (L−1r(0))

ẆT ṙ(0) = WT r(0)

ẆT ṙ(0) = 0

which shows that r(0) ⊥ R(W) implies ṙ(0) ⊥ R(Ẇ).
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Algorithm 21 Deflated preconditioned CG, Def-PCG(A, M, W, b, u(0)).

1: r(0) := b−Au(0) ▷ u(0) s.t. r(0) := b−Au(0) ⊥ R(W)
2: z(0) := M−1r(0)

3: Solve for µ̂(0) in WTAWµ̂(0) = WTAz(0)

4: p(0) := z(0) −Wµ̂(0)

5: for j = 1, . . . ,m do
6: α(j−1) := r(j−1)Tz(j−1)/p(j−1)TAp(j−1)

7: u(j) := u(j−1) + α(j−1)p(j−1)

8: r(j) := r(j−1) − α(j−1)Ap(j−1)

9: z(j) := M−1r(j)

10: β(j−1) := r(j)Tz(j)/r(j−1)Tz(j−1)

11: Solve for µ̂(j) in WTAWµ̂(j) = WTAz(j)

12: p(j) := β(j−1)p(j−1) + z(j) −Wµ̂(j)

13: end for

From hereon, there remains to specify procedures for the computation of W. In doing

so, our intent is to decrease the effective condition number cond′(Π̇
T
Ȧ) as much as possible

in comparison to cond(A). However, since W = L−TẆ implies Π̇
T
Ȧ = L−1ΠTAL−T ,

two types of approaches arise. In the first approach, we let the columns of W be ap-

proximate eigenvectors of A, in which case it is convenient to think of cond′(Π̇
T
Ȧ) as

the effective condition number of an operator which is deflated prior to be split precon-
ditioned. The second approach consists of letting the columns of Ẇ be approximate

eigenvectors of Ȧ, while still only using W in Def-PCG. In this case, cond′(Π̇
T
Ȧ) is

thought of as the effective condition number of an operator which is split preconditioned
prior to be deflated. Note that both approaches are not equivalent. Indeed, if w is an
eigenvector of A, then ẇ := LTw is a right eigenvector of LTAL−T , but generally not
of Ȧ. Conversely, if ẇ is an eigenvector of Ȧ, then w := L−T ẇ is a right eigenvector of
M−1A, but generally not of A. Both approaches are investigated in this work.

2.3 Perturbation of the deflation subspace

All the matrices sampled in this work show greater ratios λ(•)(A)/λ(•+1)(A) in the lower
end of the spectrum than in the upper part. Therefore, a more significant decrease of the
active condition number cond′(ΠTA) can be expected when letting the columns of W
be least dominant (LD) eigenvectors of A rather than most dominant (MD) eigenvectors.
When using a preconditioner M = LLT , there are two options. First, similarly as without
a preconditioner, a good choice is to let the columns of W be LD eigenvectors of A. The
other option is to let the columns of Ẇ be LD eigenvectors of Ȧ and then setW = L−TẆ.
This second option is equivalent to letting the columns of W be right eigenvectors of
M−1A. In practice, the eigenvectors of A, Ȧ and M−1A are not known. That is, instead
of using W as previously defined, an approximation is used in the deflated linear solver.
In their paper [72], Kahl and Rittich present some results on how the effective condition
number of the deflated system depends on the extent of the perturbation of the deflation
subspace. In particular, for the case in which we intend to let the columns of Ẇ be LD
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eigenvectors of Ȧ, a bound is given for cond′(Π̇
T
Ȧ) in Prop. 12. For the preconditioned

case where we let the columns of W be approximate LD eigenvectors of A, there is
unfortunately no similar bound on the effective condition number of the deflated system.

Proposition 12. Let ẏ(1), . . . , ẏ(n) be an orthonormal basis of eigenvectors corresponding
to the eigenvalues λ̇(1) ≥ · · · ≥ λ̇(n) ≥ 0 of Ȧ. Then, the effective condition number of the
deflated system with respect to the deflation subspace R(Ẇ) fulfills

cond′(Π̇
T
Ȧ) ≤



√
λ̇(1)

λ̇(k)
+

√
λ̇(1)

λ̇(n)
sin(θ̇)




2

=
λ̇(1)

λ̇(k)
+O(θ̇), for θ̇ → 0, (2.20)

where θ̇ is the largest principal angle between R(Ẇ) and R([ẏ(k+1), . . . , ẏ(n)]).
Proof: See Kahl and Rittich [72].
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3.1 Introduction

Here, we are interested in the case where a sequence {κ(·, θs)}Ss=0 of coefficient fields is con-
structed upon sampling the underlying latent random variables {ξ(θs)}Ss=0 after a Markov
chain. Then, we consider the sequence of matrices {As}Ss=0 obtained upon discretization
of a PDE for the corresponding sequence of coefficient fields given by {κ(·, θs)}Ss=0. We
want to solve the linear systems Asus = bs with a constant preconditioner M = LLT

along with deflation. Let us then consider deflated PCG with a deflation subspace R(Ws)
and an initial iterate u(0). In Chapter 2, we derived the equivalence between the iterates

of Def-PCG(As,M,Ws,bs,u
(0)
s ) and those of CG(Π̇

T

s Ȧs, Π̇
T

s L
−1bs, u̇

(0)
s
′) where

Π̇s = In − Ẇs(Ẇ
T
s ȦsẆs)

−1ẆT
s Ȧs (3.1)

Ȧs = L−1AsL
−T (3.2)

Ẇs = LTWs (3.3)

and u̇
(0)
s
′ is some initial iterate. Because of this relation, the behavior of deflated PCG can

be analyzed making use of Theo. 2 with A′s := Ȧs and b′s := Π̇
T

s L
−1bs. Then, solving a

linear system with Def-PCG(As,M,Ws,bs,u
(0)
s ) is equivalent to solving a linear system

by CG with a realization-dependent positive semidefinite preconditioner Ms = LsL
T
s

where the inverse of the Cholesky factor of Ms is given by L−1s = L−1Πs, in which
Πs = In −Ws(W

T
s AsWs)

−1WT
s As.

In this Chapter, we look at different ways to construct the deflation basis Ws+1 by re-

cycling by-products of Def-PCG(As,M,Ws,bs,u
(0)
s ). We consider different constant par-

allel preconditioners as we investigate the effect of different online approximation methods
of eigenvectors on the number of solver iterations.

3.2 Sampling coefficient fields of stochastic PDEs us-

ing Monte Carlo Markov chains

Let (Θ,Σ, µ) be a probability triplet and Ω ⊂ Rd be a bounded open domain for d ∈
{1, 2, 3}. We want to find u : Ω×Θ→ R, such that

∇ · (κ(x, θ)∇u(x, θ)) = −f(x) ∀ x ∈ Ω, (3.4)

and deterministic boundary conditions for all x ∈ ∂Ω. For almost all θ ∈ Θ, realizations
κ(·, θ) of the random coefficient field are strictly positive and bounded above almost
everywhere in the domain Ω. Then, the solution u of Eq. (3.4) has finite second order
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moments so that

E[u(x)2] =
∫

Θ

u(x, θ)2dµ <∞ (3.5)

for all x ∈ Ω, i.e., u(x, θ) ∈ L2(Θ, µ).

3.2.1 Spatial discretization

Let the domain Ω be partitioned into a conforming triangulation of Ne non-overlapping
elements Ωe ⊆ Ω. Each element is paired with nodes of a mesh according to some
discretization scheme, and each node i has a position xi. All the nodes of the mesh such
that xi /∈ ∂Ω form a set N with n := |N |. A set of nodal functions {ϕi, i ∈ N} is
defined such that ϕi(xj) = δij for all i, j ∈ N . The span of those nodal basis functions
forms the deterministic finite element approximation subspace denoted by V h. Assuming
homogeneous Dirichlet boundary conditions, we consider approximate solutions of u given
by

uh(x, θ) =
∑

i∈N

ϕi(x)ui(θ) ∈ V h ⊗ L2(Θ, µ) (3.6)

where u1≤i≤n ∈ L2(Θ, µ). Hence, the approximate solution uh has finite second order
moments.

3.2.2 Stochastic discretization

In the present work, we restrict ourselves to the case of random coefficients with log-
normal distributions; denoting h(x, θ) = log κ(x, θ) the underlying Gaussian field, the
stochastic discretization of κ relies on the Karhunen-Loève [71] expansion of h,

h(x, θ) = E[h(x, θ)] +
∞∑

l=0

√
γlhl(x)ξl(θ), (3.7)

where (γl, hl) are the eigen-pairs of the covariance function of the Gaussian process. Or-
dering the normalized eigen-pairs, γ1 ≥ γ2 ≥ · · · ≥ 0, the KL expansion can be truncated
to retain the first ns > 1 dominant modes. In addition, the random variables ξl are in-
dependent and identically distributed standard Gaussian variables: ξ := (ξ1 · · · ξns)

T ∼
N (0, Ins). Therefore, the field κ can be sampled by sampling the so-called stochastic
coordinates ξ.

3.2.3 Sampling of the stochastic coordinates by MCMC

Upon subsequent spatial discretization, the approximation of u reduces to an n-by-n SPD
linear system A(ξ)u(ξ) = b(ξ). In this work, we present and use iterative methods to
solve linear systems Asus = bs in which As := A(ξs), and so on, where ξ1, ξ2, . . . are
samples of ξ ∼ N (0, Ins). Because the recycling strategy described in Section 3.3 is best
behaved whenAs+1 andAs are similar, we consider the case where ξ is sampled by MCMC
using a Gaussian proposal distribution. As a result, A1,A2, . . . are correlated matrices,
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and a reduction of the variance V[(δAs+1)ij] where δAs+1 := As+1−As is induced, which
does not occur when sampling by standard Monte Carlo. While δAs+1 is generally not
low rank, the (improved) similarity between As+1 and As still provides better working
conditions for the iterative methods we design to solve the linear systems Asus = bs. The
coefficient field being lognormal, we refer to Â := A(0) as the median operator.

Proposal In order to sample a Markov chain {ξs}Ss=0 we introduce a sequence of pro-
posed states {χs}S+1

s=1 such that χs+1 ∼ N (ξs, ϑ
2Ins). Using {χs}S+1

s=1 as proposals for a
Metropolis-Hastings algorithm, we obtain the following acceptance probability:

α(χs+1, ξs) = min

{
exp

[∥ξs∥22 − ∥χs+1∥22
2

]
, 1

}
. (3.8)

We can then proceed as detailed in Algo. 22. As a result of the sampling strategy,

Algorithm 22 Metropolis-Hastings algorithm for random walk proposals.

1: Draw ξ0 ∼ N (0, Ins)
2: for s = 0, 1, 2, . . . do
3: Draw χs+1 ∼ N (ξs, ϑ

2Ins)
4: Compute α(χs+1, ξs)
5: Draw z ∼ U [0, 1]
6: if z < α(χs+1, ξs) then
7: ξs+1 := χs+1

8: else
9: ξs+1 := ξs

10: end if
11: end for

A1,A2, . . . are correlated matrices.

3.2.4 Properties and comparison of MCMC with MC sampler

3.2.4.1 Comparison of MCMC with (non-deflated) Monte Carlo simulations

Another reason for sampling the coefficient field by MCMC is to provide an alternative to
(non-deflated) Monte Carlo simulations of the stochastic PDE. For instance, say we are
interested in the estimator of E[uh(x)] given by

uS(x) :=
1

S + 1

S∑

s=0

n∑

i=1

u(i)s ϕi(x) (3.9)

where us = [u
(1)
s , . . . , u

(n)
s ]T is the solution of Asus = bs. We sample sequences {ξs}Ss=0

using both Monte Carlo (MC) and MCMC strategies.

MC sampler Let the sequence {ξs}MMC
s=0 be sampled such that ξs ∼ N (0, Ins) are iid.

If so, since for all 1 ≤ i ≤ n, {u(i)s }MMC
s=0 are replicates of the random variable ui which is
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distributed as uh(xi), the following limit theorem holds for all x ∈ Ω:

√
S + 1(uS(x)− E[uh(x)]) d→ N (0,V[uh(x)]) as S →∞. (3.10)

Therefore, for sufficiently large S, we have V[uS(x)−E[uS(x)]] = V[uh(x)]/(S+1), which
can be used to suggest a MC sample size. Precisely, SMC is selected as the smallest S such
that V[uS(x) − E[uh(x)]] < r2V[uh(x)] for all x ∈ Ω, where 0 < r < 1 is a fixed relative
tolerance on the standard error. In other words, we take SMC = ⌈1/r2⌉. In general, the
sample set size is selected to ensue an error smaller than some r2V[uh(x)] with a prescribed
probability.

MCMC sampler Since the elements of the Markov chain are correlated, standard
limit theorems do not apply. However, {ξs}Ss=0 was proven to be geometrically ergodic,
see [134], and the following limit theorem applies, see Corollary 4 in [69]:

√
S + 1(uS(x)− E[uh(x)]) d→ N (0, σ2

f (x)) as S →∞ (3.11)

where

σ2
f (x) := V[u0(x)] + 2

∞∑

s=1

Cov[u0(x), us(x)] <∞, (3.12)

so that, for sufficiently large S, we have V[uS(x)−E[uh(x)]] = σ2
f (x)/(S+1), which can be

used to suggest a MCMC sampled size. We wish to apply the same relative tolerance on
the standard error as for MC, namely V[uS(x)− E[uh(x)]] < r2V[uh(x)] for some x ∈ Ω.
Therefore, neglecting the burn-in period, this leads to SMCMC = σ2

f (x)/(r
2V[uh(x)]). For

a good reference on the burn-in and convergence issues in MCMC algorithms, including
how to diagnose convergence and estimate the required burn-in period, see Chapter 4
in [48].

MCMC sampling overhead In order to compare the relative performance of the
sampling strategies, we need to quantify the number of distinct linear systems Asus = bs

solved to evaluate an instance of the estimator (3.9) with the same precision. In case of
MC sampling, we solve as many linear systems as there are realizations in a sequence,
i.e., SMC. However, when using the Markov chain {ξs}SMCMC

s=0 , the number of solves differs
from SMCMC for the following reason. Every time a proposed state χs is rejected, a new
realization is sampled at the expense of no computation since we then have us+1 = us.
Consequently, the number of distinct linear systems actually solved when sampling by
MCMC is paSMCMC where pa is usually called the acceptance ratio. We then define the
relative sampling overhead of MCMC over MC as follows:

γ(x) :=
paSMCMC

SMC

=
paσ

2
f (x)

V[uh(x)]
. (3.13)

Note that there is no statistical advantage of sampling several independent chains whose
total numbers of steps add up to the number of steps of a single chain.
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3.2.4.2 Properties of the Markov chain

The MCMC sampling by random walk of the stochastic coordinates of the KL represen-
tation of the coefficient field presents two degrees of freedoms that can be adjusted. First,
the variance ϑ2 of the proposal affects the correlation between subsequent matrices. This
variance can be increased, in which case the statistical cost of sampling with correlation
is lowered, i.e., but the increase of ϑ2 also leads to a decrease of the ratio pa, and the
similarity between the eigenvectors of the subsequent matrices is diminished. On the
other hand, lowering this variance introduce more similarity between the eigenvectors of
subsequent matrices at the cost of an increased statistical cost, i.e., through an increase of
σ2
f . Another parameter of interest is the number of random variables sampled by MCMC

among the stochastic coordinates of the KL expansion. That is to say, not all the coordi-
nates have to be sampled by MCMC, only the dominant ones, those remaining associated
with smaller eigenvalues may be sampled by Monte Carlo. This hybrid sampling strategy
presents the advantage of decreasing the statistical cost of sampling RVs by MCMC, but
it maintains some similarity between the dominant eigenvectors of subsequent matrices.
Here, although we did experiments towards tuning the variance of the proposal as well as
the number of coordinates sampled by MCMC, we only present results for sampling with a
variance ϑ2 = 2.382/ns where ns denotes the total number of coordinates of the truncated
KL expansion. This choice of variance comes from the fact that it yields an asymptotical
optimal acceptance rate in the case of Metropolis-Hastings algorithms, see [130] and [132],
for a multivariate Gaussian distribution with covariance Σ := Ins .

3.2.5 Posterior sampling

A situation that calls for sampling the coefficient field by MCMC is Bayesian inference.
That is, let us consider a deterministic version of the problem of interest,

∇ · (κ(x)∇u(x)) = −f(x) ∀ x ∈ Ω, (3.14)

with boundary conditions defined for all x ∈ ∂Ω. We are interested in the case where m
noisy measurements d1, . . . , dm of the solution u : Ω→ R are made at x∗1, . . . , x

∗
m ∈ Ω. We

assume ε > 0 is known such that di ∼ N (u(x∗i ), ε
2), and further assume prior knowledge

about the coefficient κ : Ω → R+ in the form of a mapping (x, ξ) 7→ κ(x|ξ) with ξ ∼
N (0, Ins) as in Eq. (3.7). As a means to quantify the uncertainty of the coefficient, κ can
be sampled through a posterior distribution given by the following Bayes’ formula:

p(ξ|d) = p(d|ξ)p(ξ)
p(d)

(3.15)

in which d := [d1, . . . , dm]
T is the noisy data. The evaluation of the marginal likelihood

p(d) in Eq. (3.15) becomes increasingly complex as the dimension of ξ grows. Hence, for
high-dimensional stochastic discretizations of the prior, the posterior distribution p(ξ|d)
is generally sampled by MCMC, making use of the following relation:

p(ξ|d) ∝ p(d|ξ)p(ξ) ∝ exp(−∥d− u∗(ξ)∥22/(2ε2)− ∥ξ∥22/2) (3.16)
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where u∗(ξ) := [u(x∗1|ξ), . . . , u(x∗m|ξ)]T is the solution of Eq. (3.14) evaluated at x∗1, . . . , x
∗
m

given κ(·|ξ). In this case, the acceptance probability is given by

α(χs+1, ξs) = exp

[∥d− u∗(χs+1)∥22 − ∥d− u∗(ξs)∥22
2ε2

+
∥χs+1∥22 − ∥ξs∥22

2

]
. (3.17)

and Algo. 22 is modified accordingly. Note that the evaluation of the acceptance proba-
bility α requires a linear solve for each χs.

3.3 Recycling strategy

As we intend to solve the sampled linear systems either by Def-CG, or by Init-CG, a
procedure needs to be defined in order to computeWs+1 prior to solvingAs+1us+1 = bs+1.

For this, a key observation is that a basis of K(j)(As,Ws, r
(0)
s ) can be recycled from the

linear solve of Asus = bs. Moreover, different quantities needed to construct projection-
based approximations of the eigenvectors of As+1 or M−1As+1 in these subspaces, such
as the tridiagonalization of As+1, are readily accessible byproducts of the linear solver.
Therefore, approximate eigenpairs of As or M−1As can be promptly generated while
solving Asus = bs. Now, because the operators sampled by MCMC are correlated, the
eigenvectors of As+1 (resp. M−1As+1) are correlated with those of As (resp. M−1As).
For this reason, we let the columns of Ws+1 be approximate eigenvectors of As or of
M−1As .

Another incentive for deflating with LD eigenvector approximates is given as follows.
The LD eigenvectors correspond to low frequency modes of the sampled operators, as
opposed to the MD eigenvectors, which capture more detailed features of the solution.
It was observed that the LD eigenvectors of subsequent matrices sampled by MCMC are
more correlated than the MD ones. For these reasons, we let the columns of Ws+1 be
projection-based approximations of LD eigenvectors of As or M−1As. Note that this
strategy is analogous to the approach used in [122].

3.4 Online approximation of eigenvectors

3.4.1 Projection techniques without preconditioner

We only intend to approximate a small number k ≪ n of the LD eigenvectors of every
sampled operator As. Iterative methods based on projection techniques are well suited
for this task [139]. In particular, given a full column rank matrix Vs ∈ Rn×m with
k ≤ m < n, we consider both Rayleigh-Ritw (RR) and harmonic Rayleigh-Ritz (HR)
projection techniques with respect to the eigen-search space R(Vs), an augmented Krylov
subspace of As spanned by residual (or search direction) vectors of the linear solver in
addition to approximate eigenvectors of As

RR procedures are perhaps the most commonly used projection-based techniques for
eigenvector computation which are well known to provide optimal eigenvalue approxima-
tions at the extremities of the spectrum [124]. They are defined as follows.
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RR projection A RR vector w of As with respect to R(Vs) is such that Asw−ϑw ⊥
R(Vs) for some ϑ. As the RR vector is recast as w := Vsŵ, the pair (ϑ, ŵ) becomes
solution of the reduced (generalized) eigenvalue problem

VT
s AsVsŵ = ϑVT

s Vsŵ. (3.18)

HR procedures were introduced as an alternative to RR projections in order to better
approximate the interior eigenvalues of Hermitian operators [103, 119]. They are now
commonly defined as follows.

HR projection A HR vector w of As with respect to R(Vs) is such that Asw−ϑw ⊥
R(AsVs) for some ϑ. As the HR vector is recast as w := Vsŵ, the pair (ϑ, ŵ) becomes
solution of the following reduced generalized eigenvalue problem:

(AsVs)
TAsVsŵ = ϑ(AsVs)

TVsŵ. (3.19)

In this work, we let the columns of Vs be previous eigenvector approximations, if any,
along with search directions or residuals generated by the linear solve. Approximations
of the k LD eigenvectors of As are formed by, first, solving for the k LD eigenpairs
{(ϑi, ŵi)}ki=1 of the reduced (RR or HR) eigenvalue problem, and then, letting Ws+1 :=
Vs[ŵ1, . . . , ŵk].

A procedure based on HR projections was favored in [140] to approximate the LD
eigenvectors of SPD matrices. Notwithstanding, whether or not HR vectors better ap-
proximate the LD eigenvectors of an SPD matrix than their RR counterparts remains,
to our knowledge, an open question. Irrespective of which projection technique is used,
high-dimensional eigen-search spaces are generally needed in order to obtain accurate
eigenvector approximations. However, since the computed approximate eigenvectors of
As are only used to deflate As+1, the need for highly accurate approximations is not
justified in the context of this study.

3.4.2 Restarting the eigen-search space without preconditioner

Although the computed vectors need not be exact eigenvectors of As, the better these
vectors approximate the eigenvectors of As+1, the better the convergence behaviors of
Def-CG [72] and Init-CG [55]. Up to some level, which depends on δAs+1, this may be
achieved by increasing the dimension of the eigen-search space, which might cause memory
problems because Vs, which is dense, needs to be stored in order to compute Ws+1.
Moreover, due to the effects of finite arithmetic, the linear independence of the recycled
residuals (or search directions) tends not to hold anymore as the dimension of the eigen-
search space increases. This, in turn, can cause a loss of rank in the matrices of the reduced
eigenvalue problem, eventually leading to spurious eigenvector approximations [121]. As
a means to circumvent these difficulties, the recycled vectors can be orthogonalized, at a
computational cost which increases quadratically with the dimension of the eigen-search
space. An alternative which allows for a better use of computational resources is to
periodically restart the eigen-search space with updated eigenvector approximations of
As, every time the dimension of the eigen-search space reaches a certain limit. We refer
to these approaches as restarted methods. To avoid any confusion, note that the linear
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solve is not restarted, as opposed to what is done when restarting FOM or GMRES [138].

3.4.2.1 Thick-restart (TR)

The term thick-restart was first coined in [165] to refer to an explicitly restarted Lanczos
procedure which we summarized in Section 1.5.1.1. However, the thick-restart Lanczos
method of [165] is a dedicated eigensolver, it does not solve a linear system. Here, we
merely intend to make use of all the residuals (or search directions) generated by the
linear solver without applying an augmented Krylov subspace strategy to the eigenvector
approximations, as this would entail an unwanted restart of the linear solver. Therefore,
the eigen-search space is simply restarted by appending the residuals (or search directions)
of the linear solver to the most recently computed eigenvector approximations. The
resulting strategy, referred to as thick-restart (TR) and summarized in Algo. 23, is run
concurrently with CG, Def-CG or Init-CG. As a result, the restarted eigen-search
space does not remain a Krylov subspace, and the convenient property of thick-restart
Lanczos is not satisfied. Nevertheless, this strategy does allow to compute eigenvector
approximations of As by making use of all the residuals (or search directions) generated
by the linear solver while avoiding the difficulties described in Section 3.4.2.

Algorithm 23 Thick-restart (TR) of the eigen-search space

1: if s = 1 then
2: Vs := [ ], d := 0
3: else if s > 1 then
4: Vs := Ws, d := k
5: end if
6: for j = 0, 1, . . . do
7: Vs := [Vs, r

(j)
s ], d := d+ 1 ▷ or Vs := [Vs,p

(j)
s ]

8: if d = spdim then
9: Compute the k LD RR (or HR) vectors {wi}ki=1 of As w.r.t. R(Vs)
10: Vs := [w1, . . . ,wk], d := k
11: end if
12: end for
13: Ws+1 := [w1, . . . ,wk]

3.4.2.2 Locally optimal thick-restart (LO-TR)

An alternative use of all the information generated by the linear solver is described in
Algo. 24, which we analogously refer to as a locally optimal thick-restart (LO-TR) of
the eigen-search space. LO-TR essentially works as follows. Every time the eigen-search
spaceR(Vs) reaches a dimension spdim, it is used to generate eigenvector approximations
y1, . . . ,yk, whereas additional eigenvector approximations y1, . . . ,yk are computed with
respect to R(Vs), where Vs := Vs[:, 1 : spdim − 1] consists of all but the last column
of Vs. All the eigenvector approximations of As with respect to R([y1,y1, . . . ,yk,yk])
are then used to restart the eigen-search space. When applied concurrently with Init-
CG using RR projections, this strategy is equivalent to eigCG [148]. Not only does this
method outperforms thick-restart Lanczos procedures for eigenvalue approximation, but
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it was also shown to perform as well as orthogonalized un-restarted Lanczos procedures
under favorable conditions [148].

Algorithm 24 Locally optimal thick-restart (LO-TR) of the eigen-search space

1: if s = 1 then
2: Vs := [ ], d := 0
3: else if s > 1 then
4: Vs := Ws, d := k
5: end if
6: for j = 0, 1, . . . do
7: Vs := [Vs, r

(j)
s ], d := d+ 1 ▷ or Vs := [Vs,p

(j)
s ]

8: if d = spdim then
9: Vs := Vs[:, 1 : spdim− 1] ▷ Vs contains all but the last column of Vs

10: Compute the k LD RR (or HR) vectors {yi}ki=1 of As w.r.t. R(Vs)
11: Compute the k LD RR (or HR) vectors {yi}ki=1 of As w.r.t. R(Vs)
12: Get an orthonormal basis Q := [q1, . . . ,qnvec] of R([y1,y1, . . . ,yk,yk])
13: Compute the RR (or HR) vectors {wi}nveci=1 of As w.r.t. R(Q)
14: Vs := [w1, . . . ,wnvec], d := nvec
15: end if
16: end for
17: Ws+1 := [w1, . . . ,wk]

To the best of our knowledge, among all the restarting strategies described in this
Section, RR-LO-TR-Init-CG (i.e. eigCG) is the only one documented in the literature.

3.4.3 Projection techniques with preconditioner

Let us extract sequences of preconditioned residuals z
(j)
s (or search directions p

(j)
s ) from the

linear solver and store them by columns in Vs, along with Ws which may be restarted
or not. From hereon, as explained before, there are two options. First, we can let
the deflation subspace be spanned by approximate eigenvectors of As, and second, by
eigenvectors of M−1As. Here, we present the projection methods with respect to Vs used
for both cases.

3.4.3.1 Approximate eigenvectors of As

In this case, we consider the eigen-search space R(Vs) spanned by preconditioned resid-
uals (or search directions) and which consists of a Krylov subspace of M−1As aug-
mented by R(Ws). As for the non-preconditioned case, we construct both RR and
HR projection-based eigenvector approximations of As with respect to R(Vs). Sim-
ilarly as before, these eigenvector approximations are recast as Vsŵ where ŵ is the
eigenvector of a reduced eigenvalue problem given by Eqs. (3.18) and (3.19) for RR and
HR projections, respectively. It is worth noting that the eigen-search space R(Vs) =
K(j)(M−1As,M

−1r(0))⊕R(Ws) is not an augmented Krylov subspace of the matrix As

of which we are approximating the eigenvectors, but rather of M−1As.
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3.4.3.2 Approximate eigenvectors of M−1As

Here, we set V̇s := LTVs which allows us to construct an eigen-search space R(V̇s)
consisting of a Krylov subspace of Ȧs augmented by R(Ẇs). We then intend to compute
approximations {wi}ki=1 of the k LD right eigenvectors of M−1As, which we store by
columns in Ws+1. This is done by first computing LD approximate eigenvectors ẇi of Ȧs

with respect to R(V̇s), before setting wi := L−T ẇi. As we proceed to do so using RR
and HR projections, we note that the Cholesky factor L is in fact not needed in either of
the resulting procedures.

RR projection Let ẇ be a RR eigenvector approximation of Ȧs with respect toR(V̇s).
We then search for ẇ ∈ R(V̇s) such that Ȧsẇ − ϑẇ ⊥ R(V̇s), for some ϑ. Recasting ẇ
as V̇sŵ, we obtain V̇T

s ȦsV̇sŵ = ϑV̇T
s V̇sŵ, which can be recast as

VT
s AsVsŵ = ϑVT

s MVsŵ. (3.20)

Then, we have w = L−T V̇sŵ = Vsŵ, so that this procedure is equivalent to searching for
w ∈ R(Vs) such that Asw − ϑMw ⊥ R(Vs). Note that, in practice, M does not need
to be applied to assemble the matrix on the right hand side of Eq. (3.20), as explained in
Section 3.5.3.

HR projection Alternatively, Saad et al. [140] consider ẇ to be an HR eigenvector
approximation of Ȧs with respect to R(V̇s). Then, ẇ ∈ R(V̇s) is such that Ȧsẇ −
ϑẇ ⊥ R(ȦsV̇s) for some ϑ. Recasting ẇ as V̇sŵ leads to a reduced eigenvalue problem
(ȦsV̇s)

T ȦsV̇sŵ = ϑ(ȦsV̇s)
T V̇sŵ, which can be recast as

(AsVs)
TM−1AsVsŵ = ϑ(AsVs)

TVsŵ. (3.21)

Then, once again, we have w = Vsŵ so that this procedure is equivalent to searching for
w ∈ R(Vs) such that M−1Asw − ϑw ⊥ R(AsVs).

In summary, Ws+1 is computed by first solving for the k LD eigenpairs {(ϑi, ŵi)}ki=1 of
the reduced (RR or HR) eigenvalue problem, and then, letting Ws+1 := Vs[ŵ1, . . . , ŵk].
Finally, the restarting strategies of Section 3.4.2 are applied similarly using the projection
methods described this Section.

3.5 Practical considerations

We assume that k ≪ n so that the extra computational cost of Def-CG compared to
CG is mainly due to the computation of Πsr

(j)
s , which can be done at a cost of O(kn) per

iteration when both Ws and AsWs are stored [140], sometimes along with AsZs when
using a preconditioner, where Zs stores preconditioned residuals by column. However,
Init-CG, which is CG with a particular initial guess, only requires one extra computation
to set u

(0)
s such that r

(0)
s ⊥ R(Ws). Hence, there is an incentive to investigate whether

the convergence behavior of Def-CG can be reproduced by Init-CG, when applied to
sequences of correlated operators.
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3.5.1 Assembly of the reduced eigenvalue problem without pre-
conditioner

The assembly of the reduced eigenvalue problem depends on the type of projection (RR
or HR) used, as well as on whether residuals or search directions are stored in Vs. Indeed,
although Algos. 23 and 24 both suggest to extract residuals from the solver run, these
vectors can be replaced by search directions as they both span the same subspace Krylov
subspace. Irrespective of which approach is taken, the matrices AsWs and WT

s AsWs

need to be computed prior to assembly.

RR projection For RR projections, the cost of assembly is minimized when we extract
sequences of ℓ := spdim− k normalized residuals r

(j)
s /∥r(j)s ∥2, which we store by columns

in Rs. Then, we have Vs = [Ws,Rs] so that Eq. (3.18) becomes:

[
WT

s AsWs WT
s AsRs

RT
s AsWs RT

s AsRs

]
ŵ = ϑ

[
Ik WT

s Rs

RT
s Ws Iℓ

]
ŵ (3.22)

where RT
s AsRs is tridiagonal with coefficients which can be recovered as a byproduct of

the solver. Assuming no restart, if the linear solver reaches spdim iterations, we have

RT
s AsRs =




1

α
(0)
s

√
β
(0)
s

α
(0)
s√

β
(0)
s

α
(0)
s

1

α
(1)
s

+ β
(0)
s

α
(0)
s

√
β
(1)
s

α
(1)
s

. . . . . . . . .
. . . . . .

√
β
(spdim−2)
s

α
(spdim−2)
s√

β
(spdim−2)
s

α
(spdim−2)
s

1

α
(spdim−1)
s

+ β
(spdim−2)
s

α
(spdim−2)
s




, (3.23)

see Section 1.5.2.1. For cases with restarts, analogous matrix components are straightfor-
wardly defined. Computing the product WT

s AsRs can be done column-by-column as the
residuals are being generated by the solver, for a total cost of O(kℓn). The off-diagonal
block WT

s Rs vanishes as a property of Def-CG. For Init-CG, this term vanishes if
R(Ws) is invariant under the action of As, which would be the case if the columns of Ws

were exact eigenvectors of As. Note that this term is ignored in [148].

HR projection When using HR projections, a simpler problem is obtained when ex-
tracting sequences of ℓ search directions p

(j)
s , which we store by columns in Ps. Then, we

have Vs = [Ws,Ps] so that Eq. (3.19) is recast as:

[
(AsWs)

TAsWs (AsWs)
TAsPs

(AsPs)
TAsWs (AsPs)

TAsPs

]
ŵ = ϑ

[
WT

s AsWs WT
s AsPs

PT
s AsWs PT

s AsPs

]
ŵ (3.24)

in which the computation of (AsWs)
TAsWs costs O(k2n). The matrices (AsPs)

TAsPs

and PT
s AsPs are tridiagonal and diagonal, respectively, and may be recovered as byprod-

ucts of the solver. Assuming no restart, if the linear solver reaches spdim iterations, we
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have (see [140])

(AsPs)
TAsPs =




d
(0)
s

α
(0)
s

(1 + β
(0)
s ) − d

(1)
s

α
(0)
s

− d
(1)
s

α
(0)
s

d
(1)
s

α
(1)
s

(1 + β
(1)
s ) − d

(2)
s

α
(1)
s

. . . . . . . . .
. . . . . . − d

(spdim−1)
s

α
(spdim−2)
s

− d
(spdim−1)
s

α
(spdim−2)
s

d
(spdim−1)
s

α
(spdim−1)
s

(1 + β
(spdim−1)
s )




,

(3.25)

where d
(j)
s := p

(j)
s

TAsp
(j)
s is computed during the linear solve, and

PT
s AsPs = diag(d(0)s , . . . , d(spdim−1)s ). (3.26)

For cases with restarts, analogous matrix components are straightforwardly defined. Then,
by property of Def-CG, WT

s AsPs vanishes, while (AsWs)
TAsPs may be computed at

negligible cost, in the way described by [140]. That is, we have

(AsWs)
TAsPs = WT

s AsWs∆sLs (3.27)

where ∆s = [µ̂(0), . . . , µ̂(ℓ−1)] and

Ls =




1

α
(0)
s

− 1

α
(0)
s

1

α
(1)
s

− 1

α
(1)
s

. . .

. . . . . . 1

α
(ℓ−1)
s

− 1

α
(ℓ−1)
s




. (3.28)

3.5.2 Restarting the eigen-search space without preconditioner

Every restart of the eigen-search space entails a new assembly at a cost comparable to what
is described in Section 3.5.1. Note that the orthogonalization step (line 12) of Algo. 24 can
conveniently be performed between the reduced eigenvectors, as described in [148]. That
is, the orthogonal basis stored in the columns of Q that spans R([y1,y1, . . . ,yk,yk]), can

be recast in Q = VsQ̂ where Q̂ is such that

R(Q̂) = Span

{
ŷ1,

[
ŷ1

0

]
, . . . , ŷk,

[
ŷk

0

]}
(3.29)

where yi = Vsŷi and yi = Vsŷi. As a result, Q is a computed at a cost of only O(k3)
instead of O(nk2) if we were to factorize [y1,y1, . . . ,yk,yk] directly .
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3.5.3 Assembly of the reduced eigenvalue problem with precon-
ditioner

Let us consider the implementation details of Def-CG(As, M, Ws, bs, u
(0)
s ). First, both

matrices AsWs and WT
s AsWs are computed prior to the first solver iteration and stored

at memory costs of kn and k2, respectively. Then, the computational cost of assembling
the reduced (generalized) eigenvalue problems is minimized as follows for RR and HR
projections.

3.5.3.1 Approximate eigenvectors of As

RR projection For RR projections, we extract sequences of normalized preconditioned
residuals z

(j)
s /∥z(j)s )∥ which we store by columns in Zs. Then, we have Vs = [Ws,Zs] so

that Eq. (3.18) becomes:

[
WT

s AsWs WT
s AsZs

ZT
s AsWs ZT

s AsZs

]
ŵ = ϑ

[
ZT

s Zs WT
s Zs

ZT
s Ws Iℓ

]
ŵ (3.30)

where ZT
s AsZs is dense andAsZs is a byproduct of the solver so that Z

T
s AsZs is computed

at a cost of O(ℓ2n). Computing the product WT
s AsZs can be done column-by-column as

the preconditioned residuals are being generated by the solver, for a total cost of O(kℓn).
WT

s AsWs is already known and stored. The terms ZT
s Zs and ZT

s Ws are computed at costs
of O(ℓ2n) and O(kℓn), respectively. Lastly, note that we assumed that the approximate
eigenvectors stored in the columns of Ws are orthonormal.

HR projection When using HR projections, a simpler problem is obtained when ex-
tracting sequences of ℓ search directions p

(j)
s , which we store by columns in Ps. Then, we

have Vs = [Ws,Ps] so that Eq. (3.19) is recast as:

[
(AsWs)

TAsWs (AsWs)
TAsPs

(AsPs)
TAsWs (AsPs)

TAsPs

]
ŵ = ϑ

[
WT

s AsWs WT
s AsPs

PT
s AsWs PT

s AsPs

]
ŵ (3.31)

in which the computation of (AsWs)
TAsWs costs O(k2n). Computing PT

s AsWs and
(AsPs)

TAsPs cost O(kℓn) and O(ℓ2n), respectively. Meanwhile, the tridiagonal PT
s AsPs

is given by Eq.(3.26). Finally, WT
s AsPs cancels and WT

s AsWs is already computed and
stored.

3.5.3.2 Approximate eigenvectors of M−1As

RR projection For RR projections, we extract sequences of normalized preconditioned

residuals z
(j)
s /(r

(j)
s

T
z
(j)
s )1/2 which we store by columns in Zs. Then, we haveVs = [Ws,Zs]

so that Eq. (3.20) is recast as:

[
WT

s AsWs WT
s AsZs

ZT
s AsWs ZT

s AsZs

]
ŵ = ϑ

[
WT

s MWs WT
s MZs

ZT
s MWs ZT

s MZs

]
ŵ. (3.32)
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Note that, by property of Def-PCG, we have WT
s Mz

(j)
s = WT

s r
(j)
s = 0, and z

(i)
s

T
Mz

(j)
s =

δijr
(i)
s

T
z
(j)
s . Moreover, we have W2 := V1Ŵ1 = Z1Ŵ1 so that WT

2 MW2 = ŴT
1 Ŵ1.

Therefore, as long as the reduced eigenvectors are orthonormal, the generalized eigenvalue
problem simplifies to [

WT
s AsWs WT

s AsZs

ZT
s AsWs ZT

s AsZs

]
ŵ = ϑŵ (3.33)

for all s, where ZT
s AsZs is dense. Considering that AsZs is a byproduct of the deflated

solver, the computation of ZT
s AsZs carries an additional cost of O(ℓ2n). The computation

of WT
s AsZs does not simplify and entails an additional cost, which considering that

AsZs is a byproduct of the deflated solver, amounts to O(kℓn) every time a reduced
eigenvalue problem is assembled. Note that the time complexity of assembling the reduced
RR eigenvalue problem is not affected by the use of a preconditioner. A more detailed
implementation can be found in [148].

HR projection For HR projections, the most efficient assembly of the reduced gener-
alized eigenvalue problem is obtained when extracting sequences of search directions p

(j)
s

stored by columns in Ps. Then, we have Vs = [Ws,Ps] so that Eq. (3.21) is recast as:

[
(AsWs)

TM−1AsWs (AsWs)
TM−1AsPs

(AsPs)
TM−1AsWs (AsPs)

TM−1AsPs

]
ŵ = ϑ

[
WT

s AsWs 0k,ℓ

0ℓ,k PT
s AsPs

]
ŵ, (3.34)

where PT
s AsPs and (AsPs)

TM−1AsPs are diagonal and tridiagonal matrices, respec-
tively, whose coefficients may be extracted as byproducts of the solver. In particular,
PT

s AsPs is given by Eq. (3.26), and

(AsPs)
TM−1AsPs =




d
(0)
s

α
(0)
s

(1 + β
(0)
s ) − d

(1)
s

α
(0)
s

− d
(1)
s

α
(0)
s

d
(1)
s

α
(1)
s

(1 + β
(1)
s ) − d

(2)
s

α
(1)
s

. . . . . . . . .
. . . . . . − d

(spdim−1)
s

α
(spdim−2)
s

− d
(spdim−1)
s

α
(spdim−2)
s

d
(spdim−1)
s

α
(spdim−1)
s

(1 + β
(spdim−1)
s )




.

(3.35)

The off-diagonal block (AsWs)
TM−1AsPs is assembled in the same fashion as the cor-

responding block in Eqs. (3.24) and (3.27), see [140]. That is, we have (AsWs)
TM−1AsPs =

WT
s AsWs∆sLs. However, (AsWs)

TM−1AsWs does not simplify. Therefore, the time
complexity of assembling the reduced HR generalized eigenvalue value problem is af-
fected by the necessity to perform k preconditioner applications for the computation of
(AsWs)

TM−1AsWs. Even though these preconditioner applications can be avoided when
using RR projections, this was not pointed out in [140].
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3.6 Numerical experiments

3.6.1 Monte Carlo Markov chains of coefficient fields

In the present work, we consider a log-normal coefficient field κ whose underlying Gaus-
sian process has zero mean, E[h(x; θ)] = 0. In particular, two cases are considered. Case 1
corresponds to a 1D stationary coefficient field with exponential covariance function for
h, given by E[h(x)h(y)] = σ2 exp(−|x − y|/L), in which σ2 = 0.5 and L = 0.05. Case 2
corresponds to a 2D stationary coefficient field with squared exponential covariance func-
tion for h given by E[h(x)h(y)] = σ2 exp(−∥x − y∥2/L2) in which σ2 = 1 and L = 0.1.
For Case 1 we used ns = 1,802 while for Case 2 ns = 176. Figures 3.1 and 3.2 report few
realizations of κ for Case 1 and 2 respectively.

0 0.5 1
x

10−1

100

101
κ(x, ξ0)

0 0.5 1
x

κ(x, ξ10)

0 0.5 1
x

κ(x, ξ100)

0 0.5 1
x

κ(x, ξ1000)

Figure 3.1: Realizations of κ(x) := exp(h(x)) for Case 1.

κ(x, ξ0) κ(x, ξ10) κ(x, ξ100) κ(x, ξ1000)

10−1

100

101

Figure 3.2: Realizations of κ(x) := exp(h(x)) for Case 2.

3.6.2 Deflation subspaces constructed without preconditioner

We consider a 1,000-long sequence of 500-by-500 linear systems obtained by setting u(0) :=
0 and ∂xu(1) := 0 in Eq. (3.4) with the 1D coefficient fields presented in Fig. 3.1 over a
domain Ω = [0, 1] and a forcing term f(x) = 1. These systems are solved by CG, and
the convergence histories of the norm of the iterated residual are presented in Fig. 3.3.
Because the sampled coefficients are highly heterogeneous, the corresponding operators are
ill-conditioned, and CG systematically converges after more than n iterations. Note that,
while the first linear systems of this particular sampled sequence require more iterations
to solve, this is not generally true of all sequences.

The same sequence of linear systems is solved by Def-CG and Init-CG using k = 10
RR eigenvector approximations with and without restarting the eigen-search space. The
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Figure 3.3: Norm of iterated residuals obtained by CG for a sequence of 1000 linear
systems with 500 degrees of freedom (DoFs). Coefficient field of Case 1.
System index s gradually color coded from first (s = 0, ) to last (s = 1000,
) in sequence.

resulting convergence histories are presented in Fig. 3.4. The results obtained by Def-CG
are on the first row of the graph, and those of Init-CG on the second row. Analogous
results obtained using as many HR eigenvector approximations are presented in Fig. 3.5.
All the eigen-search spaces are kept at a dimension spdim = 40.

We observe the following. First, despite a high correlation between realizations of the
coefficient field—see the similarity between κ(x, ξ0), κ(x, ξ10), κ(x, ξ100) and κ(x, ξ1000)
in Fig. 3.1—all the Init-CG procedures recover the behavior of regular CG once the
norm of the iterated residual reaches a value smaller than 10−1. RR-LO-TR-Init-CG,
known as eigCG [148], provides the best convergence behavior before the norm of the
iterated residual reaches this value. Second, all the Def-CG procedures show significant
improvements in their convergence behavior between the beginning and the end of the
sampled sequence. Despite the fact that the operators are different in consecutive linear
systems, it does seem that those remain sufficiently correlated so that the approximated
eigenvectors are accurate enough for the deflation to be effective. However, the conver-
gence behaviors observed toward the end of the sampled sequence, i.e., the black curves,
have a different shape depending on whether RR or HR projections are used—RR pro-
jections showing slightly faster convergence. Third, only one restarting strategy seems to
be effective, namely, RR-LO-TR-Def-CG.

3.6.3 Scaling of deflated preconditioned conjugate gradient al-
gorithms

We first consider a 200-long sequence of 2,000-by-2,000 linear systems obtained by setting
u(0) := 0 and ∂xu(1) := 0 in Eq. (3.4) with the 1D coefficient fields presented in Fig. 3.1
over a domain Ω = [0, 1] and a forcing term f(x) = 1. These systems are solved by PCG
while preconditioning with a single V-cycle of an AMG solver [114] based on the operator

Â constructed with the median realization, as well as with HR-Def-PCG using constant
block-Jacobi (bJ) preconditioners with 10, 20 and 30 non-overlapping diagonal blocks of

Â. For each instance of HR-Def-PCG, the number k of approximated eigenvectors is
set equal to the number of blocks, whereas the dimension of the eigen-search space is set
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Figure 3.4: Norm of iterated residuals obtained by Def-CG (top row) and Init-CG
(bottom row) procedures using RR projections for a sequence of 1000 linear
systems with 500 DoFs. Coefficient field of Case 1. System index s gradually
color coded from first (s = 0, ) to last (s = 1000, ) in sequence.

to spdim := 2k. The number of solver iterations to reach a backward error smaller than
10−7 is presented on the left side of Fig. 3.6, whereas the right side of Fig. 3.6 presents
the spectra of As, Ȧs and, for the instances of HR-Def-PCG, of Π̇sȦs, at the end of
the sequence, i.e., for s = 200.

Even though PCG (AMG) uses a constant preconditioner, the resulting spectrum
Sp(Ȧs) is efficiently condensed between 10−1 and 10 for all the realizations, leading to
a roughly constant iteration number for this sequence. On the other hand, the spectra
Sp(Ȧs) associated with the bJ preconditioners mostly consist of two parts: (i) a dense
set of eigenvalues ranging from 10−1 to 10, and (ii) a trail of as many eigenvalues as the
number of blocks used for the preconditioner, spread throughout the lower end of the
spectrum. The iteration numbers obtained by HR-Def-PCG (bJ) at s = 0 are the same
as what would be obtained using PCG (bJ). As expected, this number increases with the
number of blocks. However, as the k approximate LD eigenvectors generated throughout
the sequence are used for deflation, the iteration numbers of HR-Def-PCG (bJ) decrease

significantly, and most of the trailing eigenvalues of Sp(Ȧs) are “removed” in Sp(Π̇
T

s Ȧs).
Note that the few remaining trailing eigenvalues can be removed by increasing the number
k of approximated eigenvectors, in which case HR-Def-PCG (bJ) slightly outperforms
PCG (AMG).

We now consider a 1,000-long sequence of 4,000-by-4,000 linear systems obtained by
setting u(x) := 0 on the border of a 2D square domain Ω := (0, 1)2, with the coeffi-
cient fields presented in Fig. 3.2 and a constant f = 1. These systems are solved by
PCG (AMG) as well as by PCG (bJ), HR-Def-PCG (bJ) and RR-LO-TR-Def-
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Figure 3.5: Norm of iterated residuals obtained by Def-CG (top row) and Init-CG
(bottom row) procedures using HR projections for a sequence of 1000 linear
systems with 500 DoF. Coefficient field of Case 1. System index s gradually
color coded from first (s = 0, ) to last (s = 1000, ) in sequence.

Figure 3.6: Left side: number of solver iterations needed to reach a backward error smaller
than 10−7 using HR-Def-PCG (bJ10, bJ20, bJ30) and PCG (AMG). Right
side: original, preconditioned and deflated spectra of As at s = 200. Linear
systems with 2000 DoFs and coefficient field of Case 1.
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PCG (bJ) using constant preconditioners with 10, 20 and 30 non-overlapping blocks of

Â. Note that HR-Def-PCG and RR-LO-TR-Def-PCG are considered in particular
because thorough details of their implementation can be found in [140] and [148], respec-
tively. For each instance of deflated solver, the number k of approximated eigenvectors
is set equal to the number of blocks, and the dimension of the eigen-search space is set
to spdim := 2k + 10. The convergence histories of PCG (bJ10), HR-Def-PCG (bJ10)
and RR-LO-TR-Def-PCG (bJ10) are presented in Fig. 3.7. The number of necessary
solver iterations to reach a backward error smaller than 10−7 using PCG (AMG) and RR-
LO-TR-Def-PCG (bJ10, 20, 30) is presented on the left side of Fig. 3.8 for s ≤ 200,
whereas the right side of Fig. 3.8 presents the corresponding spectra of As, Ȧs and Π̇sȦs

at s = 100.

Figure 3.7: Norm of iterated residuals obtained by PCG (bJ10), HR-Def-PCG (bJ10)
and RR-LO-TR-PCG (bJ10) for a sequence of 1000 linear systems with
4000 DoFs. Coefficient field of Case 2. System index s gradually color coded
from first (s = 0, ) to last (s = 1000, ) in sequence.

Unlike the non-preconditioned results of Figs. 3.4–3.5, the results of Fig. 3.7 do not
show a significant difference between the convergence behavior of the linear systems solved
at the beginning and at the end of the sampled sequence. The preconditioned spectra
of Fig. 3.8 are also denser than those of Fig. 3.6, due to the fact that the coefficient
fields of this example are significantly smoother than those of Fig. 3.1. However, despite
a smaller correlation between coefficient fields, and less separated eigenvalues after the

application of the bJ preconditioners, the deflated spectra Sp(Π̇
T

s Ȧs) obtained by RR-
LO-Def-PCG (bJ) are nearly as condensed as the spectrum of Ȧs obtained with the
constant AMG preconditioner. Consequently, the iteration numbers (left side of Fig. 3.8)
are also similar to those obtained by PCG (AMG)—for linear systems with 4,000 DoFs.

The same sequence of coefficient fields is considered with different spatial discretiza-
tions, along with the same f and boundary conditions, leading to linear systems of size
4,000, 16,000 and 64,000. These linear systems are solved by PCG (AMG), PCG (bJ10),
HR-Def-PCG (bJ10) and RR-LO-TR-Def-PCG (bJ10) using k := 20 approximate
eigenvectors with spdim := 50. The resulting numbers of solver iterations are presented
in Fig. 3.9. We observe that increasing the number of DoFs results in a more significant
degradation of the convergence for PCG (bJ10) than for PCG (AMG). For small numbers
of DoFs, this difference is successfully compensated by the use of deflation, irrespective
of whether the eigen-search space is restarted or not. However, as the number of DoFs
increases, the deflated bJ preconditioner does not work as well, and the restarting of the
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Figure 3.8: Left side: number of solver iterations needed to reach a backward error
smaller than 10−7 using RR-LO-TR-Def-PCG (bJ10, bJ20, bJ30) and
PCG (AMG). Right side: original, preconditioned and deflated spectra of
As at s = 100. Linear systems with 4000 DoFs and coefficient field of Case 2.

eigen-search space positively impacts more and more the convergence behavior of the de-
flated solver, as shown by the iteration number of RR-LO-TR-Def-PCG compared to
those of HR-Def-PCG.

Figure 3.9: Number of solver iterations needed to reach a backward error smaller
than 10−7 using HR-Def-PCG (bJ10), RR-LO-TR-Def-PCG (bJ10) and
PCG (AMG, bJ10) for increasing numbers of DoFs. Coefficient field of Case 2.

The expected number of solver iterations are reported in Table 3.1 for RR projection-
based deflation strategies with and without restarts, in comparison to PCG. These results,
obtained for linear systems with 32,000 DoFs and a bJ preconditioner with different
number of blocks, are also plotted in Fig. 3.10. Clearly, the average number of PCG
iterations increases with the number of blocks. Interestingly, this is not strictly the case
once deflation is introduced. Irrespective of whether the eigen-search space is restarted or
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not, the numbers of solver iterations saved by deflation increase with the number of blocks
of the preconditioner. The effect of restarting the eigen-search space is quite apparent
as the average numbers of solver iterations is the smallest for RR-LO-TR-Def-PCG,
followed by RR-TR-Def-PCG and RR-Def-PCG. Similar results as those of Table 3.1
and Fig. 3.10 are presented in Table 3.2 and Fig. 3.11 for HR projection-based deflation
strategies, once again, with and without restarts, in comparison to PCG. The results
are similar to those obtained by RR projection, with the exception that the difference
between the performance of HR-LO-TR-Def-PCG and HR-TR-Def-PCG are less
apparent.

In Table 3.3 and Fig. 3.12, we present average numbers of solver iterations for RR
projection-based deflation strategies when using a LORASC preconditioner with different
numbers of subdomains. Similarly as for the bJ preconditioner as a function of the
number of blocks, the average number of PCG iterations increases with the number of
subdomains. This dependence does not hold any more once deflation is introduced (with
as many approximate eigenvectors as there are subdomains). Indeed, the average number
of solver iterations for the deflated RR strategies is almost constant as a function of the
number of subdomains. Consequently, the numbers of solver iterations saved by deflation
in comparison to PCG increases with the number of subdomains. The difference between
the two restarted strategies, i.e., HR-TR-Def-PCG and RR-LO-TR-Def-PCG, is not
significant. Analogous results to those of Table 3.3 and Fig. 3.12 are presented in Table 3.4
and Fig. 3.13 forHR projection-based deflation strategies. The same observations as those
of RR projections hold for the HR projections.

Method
nb

5 7 10 15 20 30
PCG 866.19 986.45 1,077.60 1,180.85 1,200.84 1,237.42

RR-Def-PCG 831.79 928.38 973.89 1,019.28 958.73 823.91
RR-TR-Def-PCG 673.54 701.10 676.17 638.72 591.30 550.61

RR-LO-TR-Def-PCG 552.74 573.49 566.22 556.10 520.99 486.94

Table 3.1: Expected numbers of Def-PCG iterations with a bJ preconditioner for dif-
ferent numbers of blocks and RR projection method. Linear systems with
32 000 DoFs. Coefficient field of Case 2.

In Table 3.5 and Fig. 3.14, we present average numbers of solver iterations for RR
projection-based deflation strategies applied to linear systems with different numbers of
DoFs. For each system solved, the preconditioner used is bJ with 10 blocks. It can be
said that the number of iterations saved by deflation decreases with the numbers of DoFs
when no restarting strategy is used, i.e., for RR-Def-PCG. The benefit of resorting to
a locally optimal restart, i.e., RR-LO-TR-Def-PCG over a simple thick restart, i.e.,
RR-TR-Def-PCG becomes more significant as the number of DoFs is increased. Anal-
ogous results are presented in Table 3.6 and Fig. 3.15 for HR projection-based deflation
strategies. The only difference with RR projections is that there is significant differences
between the two restarted startegies when using HR projections.
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5 7 10 15 20 30
nb

4× 102

103

6× 102

E[
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]

PCG

RR-Def-PCG

RR-TR-Def-PCG

RR-LO-TR-Def-PCG

Figure 3.10: Scaling with respect to nd of expected numbers of Def-PCG iterations to
solve A(θ)u(θ) = b(θ) with the bJ preconditioner and different RR projec-
tions. Linear systems with 32 000 DoFs. Coefficient field of Case 2.
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Method
nb

5 7 10 15 20 30
PCG 866.19 986.45 1,077.60 1,180.85 1,200.84 1,237.42

HR-Def-PCG 839.04 941.63 994.58 1,026.79 973.27 834.39
HR-TR-Def-PCG 616.67 649.47 642.74 613.86 577.27 521.38

HR-LO-TR-Def-PCG 605.46 636.83 627.76 610.51 569.92 502.95

Table 3.2: Expected numbers of Def-PCG iterations with a bJ preconditioner for dif-
ferent numbers of blocks and HR projection method. Linear systems with
32 000 DoFs. Coefficient field of Case 2.

5 7 10 15 20 30
nb

4× 102

103

6× 102

E[
J

]

PCG

HR-Def-PCG

HR-TR-Def-PCG

HR-LO-TR-Def-PCG

Figure 3.11: Scaling with respect to nd of expected numbers of Def-PCG iterations to
solve A(θ)u(θ) = b(θ) with the bJ preconditioner and different HR projec-
tions. Linear systems with 32 000 DoFs. Coefficient field of Case 2.

Similar results to those of Table 3.5 and Fig. 3.14 are presented in Table 3.7 and
Fig. 3.16 where a LORASC preconditioner is used. Similarly as when using the bJ pre-
conditioner, the benefit of restarting the eigen-search space because more apparent as the
number of DoFs is increased. This is the case when using RR projections, but also for
HR projections, see Table 3.8 and Fig. 3.17.
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Method
nd

5 7 10 15 20 30
PCG 254.37 274.80 293.47 311.31 341.08 358.36

RR-Def-PCG 226.16 224.46 217.65 214.90 228.04 214.27
RR-TR-Def-PCG 186.23 184.47 179.30 172.78 174.34 170.90

RR-LO-TR-Def-PCG 175.15 174.56 174.33 168.99 171.12 168.17

Table 3.3: Expected numbers of Def-PCG iterations with a LORASC preconditioner for
different numbers of subdomains and RR projection method. Linear systems
with 32 000 DoFs. Coefficient field of Case 2.

5 7 10 15 20 30
nd

102
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RR-TR-Def-PCG

RR-LO-TR-Def-PCG

Figure 3.12: Scaling with respect to nd of expected numbers of Def-PCG iterations to
solve A(θ)u(θ) = b(θ) with the LORASC preconditioner and different RR
projections. Linear systems with 32 000 DoFs. Coefficient field of Case 2.
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Method
nd

5 7 10 15 20 30
PCG 254.37 274.80 293.47 311.31 341.08 358.36

HR-Def-PCG 231.28 233.57 221.09 218.00 233.40 219.21
HR-TR-Def-PCG 184.00 182.08 184.46 182.93 187.98 177.65

HR-LO-TR-Def-PCG 186.04 187.41 189.41 183.94 186.17 178.07

Table 3.4: Expected numbers of Def-PCG iterations with a LORASC preconditioner for
different numbers of subdomains and HR projection method. Linear systems
with 32 000 DoFs. Coefficient field of Case 2.

5 7 10 15 20 30
nd
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HR-LO-TR-Def-PCG

Figure 3.13: Scaling with respect to nd of expected numbers of Def-PCG iterations to
solve A(θ)u(θ) = b(θ) with the LORASC preconditioner and different HR
projections. Linear systems with 32 000 DoFs. Coefficient field of Case 2.
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Method
DoFs

4,000 8,000 16,000 32,000 64,000 128,000
PCG 402.26 518.06 835.01 1,077.60 1,742.58 2,060.58

RR-Def-PCG 307.46 417.62 734.32 973.89 1,620.53 1,958.50
RR-TR-Def-PCG 231.32 314.61 511.32 676.17 1,155.16 1,418.75

RR-LO-TR-Def-PCG 216.57 286.70 444.52 566.22 883.11 1,045.75

Table 3.5: Expected numbers of Def-PCG iterations with a bJ preconditioner for different
numbers of DoFs and RR projection method. Preconditioner with 10 blocks.
Coefficient field of Case 2.

4,000 8,000 16,000 32,000 64,000 128,000
DoFs
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RR-TR-Def-PCG

RR-LO-TR-Def-PCG

Figure 3.14: Scaling with respect to the number of DoFs of expected numbers of Def-
PCG iterations to solve A(θ)u(θ) = b(θ) with the bJ preconditioner and
different RR projections. Preconditioner with 10 blocks. Coefficient field of
Case 2.
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Method
DoFs

4,000 8,000 16,000 32,000 64,000 128,000
PCG 402.26 518.06 835.01 1,077.60 1,742.58 2,060.58

HR-Def-PCG 323.58 441.80 755.86 994.58 1,645.68 1,978.25
HR-TR-Def-PCG 225.41 305.65 484.78 642.74 1,027.21 1,215.67

HR-LO-TR-Def-PCG 221.27 301.30 479.78 627.76 1,016.68 1,239.50

Table 3.6: Expected numbers of Def-PCG iterations with a bJ preconditioner for different
numbers of DoFs and HR projection method. Preconditioner with 10 blocks.
Coefficient field of Case 2.

4,000 8,000 16,000 32,000 64,000 128,000
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Figure 3.15: Scaling with respect to the number of DoFs of expected numbers of Def-
PCG iterations to solve A(θ)u(θ) = b(θ) with the bJ preconditioner and
different HR projections. Preconditioner with 10 blocks. Coefficient field of
Case 2.
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Method
DoFs

4,000 8,000 16,000 32,000 64,000 12,8000
PCG 160.53 202.41 253.95 293.47 387.13 375.33

RR-Def-PCG 115.35 148.22 186.52 217.65 296.93 274.67
RR-TR-Def-PCG 109.56 132.66 157.08 179.30 240.53 232.67

RR-LO-TR-Def-PCG 109.35 131.83 153.96 174.33 230.93 219.67

Table 3.7: Expected numbers of Def-PCG iterations with a LORASC preconditioner for
different numbers of DoFs and RR projection method. Preconditioner with 10
subdomains. Coefficient field of Case 2.

4,000 8,000 16,000 32,000 64,000 128,000
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Figure 3.16: Scaling with respect to the number of DoFs of expected numbers of Def-
PCG iterations to solve A(θ)u(θ) = b(θ) with the LORASC preconditioner
and different RR projections. Preconditioner with 10 subdomains. Coeffi-
cient field of Case 2.
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Method
DoFs

4,000 8,000 16,000 32,000 64,000 128,000
PCG 160.53 202.41 253.95 293.47 387.13 375.33

HR-Def-PCG 116.15 148.74 188.46 221.09 308.93 282.00
HR-TR-Def-PCG 110.20 133.51 159.11 184.46 249.60 246.33

HR-LO-TR-Def-PCG 111.55 136.86 163.61 189.41 255.47 262.67

Table 3.8: Expected numbers of Def-PCG iterations with a LORASC preconditioner for
different numbers of DoFs and HR projection method. Preconditioner with 10
subdomains. Coefficient field of Case 2.
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Figure 3.17: Scaling with respect to the number of DoFs of expected numbers of Def-
PCG iterations to solve A(θ)u(θ) = b(θ) with the LORASC preconditioner
and different HR projections. Preconditioner with 10 subdomains. Coeffi-
cient field of Case 2.

3.7 Conclusion

Recycling Krylov subspace strategies were investigated as a means to accelerate the itera-
tive solution of SPD linear systems in sequences of discretized elliptic PDEs with random
coefficient fields sampled by MCMC. Every sampled linear system was deflated with LD
eigenvector approximations of the previously sampled operator These approximate eigen-
vectors were obtained using RR and HR projections with respect to eigen-search spaces
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spanned by sequences of matrix-vector products of the previous linear solve along with
previous approximate eigenvectors. Different strategies were investigated to make use of
all the matrix-vector products generated by the solver while keeping the dimension of the
eigen-search space to a certain spdim in order to avoid problems of loss of orthogonality
and memory consumption. These strategies are referred to as restarting the eigen-search
space, even though the linear solver is not restarted.

For the non-preconditioned cases, both Def-CG and Init-CG were used, and our ex-
periments showed that, even if the coefficient fields are highly correlated, all the strategies
based on Init-CG eventually yield similar convergence behaviors to what is obtained with
regular CG. For small numbers of DoFs, it was observed that the asymptotic convergence
behavior of Def-CG does not depend on the restarting strategy of the eigen-search space.
However, using eigCG [148] while explicitly orthogonalizing the residual against R(Ws)
at each solver iteration (method referred to as RR-LO-TR-Def-CG), albeit incurring
an additional cost of O(kn) per iteration, allows for a significantly faster transition to
better convergence behaviors than all the other restarting strategies.

Three types of constant preconditioners were considered based on the operator Â
constructed with the median realization: (i) a single V-cycle of an AMG solver, (ii) bJ
preconditioners with non-overlapping blocks, and (iii) LORASC preconditioners based on
domain decomposition. While the constant AMG preconditioner efficiently condenses the
spectra of the sampled operators, numerical experiments (not reported here) showed that
the behavior of PCG (AMG) is not significantly improved by deflation. However, the
constant bJ and LORASC preconditioners tend to segregate the spectrum into two parts,
leaving a trail of as many eigenvalues as the number of blocks or domains spread through-
out the lower end of the spectrum. These eigenvalues being well separated, the bJ and
LORASC preconditioners are well suited for deflation. Both 1D and 2D examples show
that deflating with as many approximate eigenvectors as the number of bJ blocks signif-
icantly improves the convergence behavior of Def-PCG (bJ) compared to PCG (bJ).
For small numbers of DoFs, the convergence behaviors of Def-PCG (bJ) are comparable
to those of PCG (AMG). However this is only the case for moderate numbers of blocks,
say 30 or less. Indeed, by increasing the number of bJ blocks, one needs to increase the
number k of approximated eigenvectors, and thus spdim, which can lead to undefined
reduced (generalized) eigenvalue problems and larger memory requirements. As the num-
ber of DoFs increases, Def-PCG (bJ) does not work as well as PCG (AMG), and the
restarting strategy of the eigen-search space starts to matter. It is then recommended
to use eigCG [148] with explicit orthogonalization of the iterated residual (i.e., RR-LO-
TR-Def-CG) over the recycling strategy of [140] adapted for multiple operators (i.e.,
HR-Def-PCG). Similarly, the LORASC preconditioner is deflated with as many approx-
imate eigenvectors as the number of subdomains. The strategy works well and even more
so for larger numbers of subdomains. Restarting the eigen-search space has shown to be
useful for the deflation, irrespective of the restarting scheme. Meanwhile, LO-TR is the
most efficient restarting scheme for RR approximations with a bJ preconditioner; both
restarting scheme show no difference for HR approximations. It is also worth mentioning
that the positive effect of deflation on convergence increases with the number of blocks.

As long as constant preconditioners are used, deflation does not seem to allow for
significantly better convergence behaviors than simply using PCG (AMG), particularly
for large numbers of DoFs. However, it is clear that the convergence behavior of PCG
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preconditioned with a bJ or LORASC preconditioner can be significantly improved by
deflation, and increasingly so for larger numbers of blocks and subdomains. Also, it
should be noted that other classes of elliptic PDEs such as, e.g., the Helmholtz equation,
for which there is no obvious choice of a robust and scalable preconditioner comparable
to AMG for the diffusion equation considered here, may benefit more from deflation
techniques provided that they manage to compensate for a less efficient preconditioning
strategy. Furthermore, deflation may also prove useful in legacy software and/or when
problem-specific, highly tuned preconditioners are used. Besides deflation, a potentially
more promising option to improve the iterative solve of SPD linear systems arising from
the discretization of stochastic elliptic PDEs is to periodically re-define the preconditioner
for small groups (clusters) or subsequences of realizations.
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4.1 Introduction

Consider a measurable space (Θ,Σ) with σ-algebra Σ rich enough to support all the
random variables we encounter, and let Ω ⊂ Rd be an open bounded domain. Let κ
be a second-order L2(Ω)-valued random field, as defined by Eq. (1.85), with probability
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measure µ on (Θ,Σ). The problem at hand consists of finding u : Ω×Θ→ R such that

∇ · [κ(x, θ)∇u(x, θ)] = f(x) ∀ x ∈ Ω (4.1)

u(x, θ) = g(x) ∀ x ∈ ∂Ω (4.2)

is almost surely satisfied in a weak sense. That is, given a realization κ(·, θ) ∈ L2(Ω), we
are interested in the realization u(·, θ) ∈ V ⊂ H1

E(Ω) defined as in Eq. (1.90), such that

∫

Ω

κ(x, θ)∇u(x, θ) · ∇v(x)dx =

∫

Ω

f(x)v(x)dx ∀ v ∈ V (4.3)

in some approximation space V = Span{ϕi}ni=1 ∈ L2(Ω). We assume that κ is strictly
positive and bounded almost everywhere in Ω×Θ, as well as f ∈ L2(Ω) and g ∈ H1/2(∂Ω).
Then, there almost surely exists a unique realization u(·, θ) =∑n

i=1 ui(θ)ϕi(·) ∈ V satis-
fying Eq. (4.3), whose coefficients {ui(θ)}ni=1 are found by solving for the unique solution
of an n-by-n SPD linear system of the form

A(θ)u(θ) = b(θ) (4.4)

where u(θ) = [u1(θ), . . . , un(θ)]. We sometimes express the Galerkin operator as a function
of a deterministic coefficient field, i.e., A(κ), in which case it should be understood that
κ lies in

A =
{
κ ∈ L2(Ω), κ(x) > 0, ∀x ∈ Ω

}
. (4.5)

By definition, κ(·, θ) ∈ A for almost all θ ∈ Θ.
Here, we focus on the iterative solve of Eq. (4.4) for large numbers of realizations. In

particular, we rely on PCG using an SPD preconditioner M(θ) which somehow approxi-
mates A(θ). In other words, we consider the unique approximation u(j)(θ) of u(θ) which
satisfies

u(j)(θ)− u(0) ∈ K(j)(M−1(θ)A(θ),M−1(θ)r(0)(θ)) (4.6)

r(j)(θ) ⊥ K(j)(M−1(θ)A(θ),M−1(θ)r(0)(θ)) (4.7)

where K(j)(A(θ), r(0)(θ)) := Span{r(0)(θ),A(θ)r(0)(θ), . . . ,Aj−1(θ)r(0)(θ)} is the Krylov
subspace of A(θ) generated by the residual r(0)(θ) := A(θ)u(0) − b(θ) of an initial guess
u(0). This approximation is optimal in the sense that it minimizes ∥v − u(θ)∥A(θ) over
the Krylov subspace, see [138]. We denote by J(θ) the smallest number j of iterations
such that ∥A(θ)u(j)(θ) − b(θ)∥2 < ϵ∥b(θ)∥2 for some ϵ > 0. In other words, J(θ) is the
number of necessary PCG iterations to reach a normwise backward error ηb of ϵ. Since
A(θ) is SPD, J(θ) ≤ n as long as u(j)(θ) is computed with exact arithmetic. Meanwhile,
a good preconditioner is such that J(θ)≪ n even when relying on finite arithmetic.

4.2 Preconditioning strategies

Let us define preconditioning strategies as consisting of both

1. A P-quantizer q : κ ∈ A 7→ κ̂ ∈ Â with centroidal coefficient fields given by the
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elements of a codebook Â := {κ̂p ∈ A, p = 1, . . . , P}. The aim of q is to serve as a
compact representation of the random coefficient field—see [50, 56, 93] for references
on vector quantization, and [83, 45] for extensions to Hilbert and Banach function
spaces.

2. A preconditioner M : κ ∈ A 7→M(κ) ∈ Sym+
n×n(R) where Sym+

n×n(R) denotes the
space of SPD matrices. We are interested in the composition M ◦ q : κ ∈ A 7→ M̂ ∈
{M̂1, . . . , M̂P}. The preconditioners M̂1, . . . , M̂P may consist of factorizations of
the Galerkin operators of the centroidal fields, in which case we have M̂p := A(κ̂p)
for p = 1, . . . , P . Other possible choices are: solving cycles of algebraic multigrids
of A(κ̂p), in which case M̂p needs not even be known as long as one can evaluate

v ∈ Rn 7→ M̂−1
p v; block Jacobi (bJ), i.e., factorizations of diagonal blocks of A(κ̂p);

domain decomposition. See [138] for more suggestions.

Let us first consider an invertible transport map T : L2(Ω) → L2(Ω) such that T−1κ
has zero mean and is a second order random field which admits a Karhunen-Loève (KL)
expansion. In order to introduce the KL expansion of T−1κ, we must know the covariance
function C : Ω × Ω → R given by (x, x′) 7→ E[T−1κ(x)T−1κ(x′)]. Moreover, we assume
that the kernel C is such that the integral operator f ∈ L2(Ω) 7→

∫
Ω
C(x, ·)f(x)dx is

symmetric and positive semi-definite of rank nKL. Then, the nKL nontrivial eigen-pairs of
the operator are such that (λk,Φk) ∈ R× V for k = 1, . . . , nKL, and we have

∫

Ω

∫

Ω

C(x′, x)Φk(x
′)dx′v(x)dx = λk

∫

Ω

Φk(x)v(x)dx ∀ v ∈ V (4.8)

with ⟨Φk,Φℓ⟩Ω = δkℓ and λ1 ≥ · · · ≥ λnKL
> 0, where ⟨f, g⟩Ω is the L2(Ω) inner product

⟨f, g⟩Ω :=

∫

Ω

f(x)g(x)dx ∀ f, g ∈ L2(Ω) (4.9)

with induced norm

∥f∥2Ω = ⟨f, f⟩Ω =

∫

Ω

f(x)2dx. (4.10)

Note that for all u(·, θ), v(·, θ) ∈ V such that u(x, θ) =
∑n

i=1 ui(θ)ϕi(x) and v(x, θ) =∑n
i=1 vi(θ)ϕi(x), we have

⟨u(·, θ), v(·, θ)⟩Ω = u(θ)TϕMv(θ) (4.11)

where u(θ) = [u1(θ), . . . , un(θ)]
T , v(θ) = [v1(θ), . . . , vn(θ)]

T and ϕM denotes the mass
matrix with components ϕMij = ⟨ϕi, ϕj⟩Ω. The random field T−1κ can then be expressed
as

T−1κ(x, θ) =

nKL∑

k=1

λ
1/2
k Φk(x)ξk(θ) (4.12)

where ξ1, . . . , ξnKL
are uncorrelated random variables. In the special case where T−1κ

is a Gaussian process, the random variables ξ1, . . . , ξnKL
are independent and identi-
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cally distributed standard normal. By only using the m < nKL dominant eigen-pairs
(λ1,Φ1), . . . , (λm,Φm), we can approximate T−1κ with

T̂−1m κ(x, θ) :=
m∑

k=1

λ
1/2
k Φk(x)ξk(θ) (4.13)

where ξ1, . . . , ξm are the components of the m-dimensional random vector ξ with proba-
bility measure µξ. We denote the underlying representation error by

ϵ(T̂−1m κ) := E[∥T̂−1m κ− T−1κ∥2Ω]. (4.14)

Let us assume that T−1κ(x) has a stationary variance denoted by σ2 and that the pairs
(λk,Φk) ∈ R×V with k = 1, . . . ,m properly approximate the dominant eigen-pairs of C.
Then we have

ϵ(T̂−1m κ) = σ2 −
m∑

k=1

λk. (4.15)

As a means to more efficiently operate on realizations of the coefficient field, we make use
of the projection

P̂←m : f ∈ L2(Ω) 7→



λ
−1/2
1 ⟨Φ1, f⟩Ω

...

λ
−1/2
m ⟨Φm, f⟩Ω


 ∈ Rm (4.16)

as well as of

P̂→m : χ ∈ Rm 7→
m∑

k=1

λ
1/2
k χkΦk(·) ∈ V. (4.17)

Note that if f ∈ V admits a representation f(x) =
∑n

i=1 fiϕi(x) and Φk(x) =
∑n

i=1 Φk,iϕi(x)

for k = 1, . . . ,m, we have P̂←m (f) = Λ−1/2ΦTϕMf where Φ has components Φik = Φk,i,

Λ := diag(λ1, . . . , λm) and f := [f1, . . . , fn]. Then, T (P̂→m (P̂←m (T−1κ(·)))) serves as an
approximation of κ(·). Moreover, the use of P̂←m and P̂→m allows to substitute the quanti-
zation of κ, or more precisely of T̂−1m κ, by a finite-dimensional problem. That is, we will be
searching for a quantizer q2 : η ∈ Rm 7→ η̂ ∈ Ĥ ⊂ Rm with a codebook Ĥ := {η̂1, . . . , η̂P}
for the random vector T−12 (ξ), where the invertible map T2 : Rm → Rm is introduced to
allow some flexibility in the design of q2. For a given q2, we are interested in the quantizer

q : κ(·) ∈ A 7→ T̃→m (q2(T̃
←
m κ(·))) ∈ Â ⊂ A (4.18)

in which we made use of the composed mapping T̃→m := T ◦ P̂→m ◦ T2 such that T̃←m =
T−12 ◦ P̂←m ◦ T−1. Then, the application of a strategy consists of preconditioning the
iterative solve of A(θ)u(θ) = b(θ) with M(θ) := M(q(κ(·, θ))). To do so, there remains
to design q2 and to select a type of preconditioner.

122



4.2.1 Optimal preconditioning strategies

An optimal preconditioning strategy is one that somehow minimizes the iteration number
J . In theory, one can define a quantizer q̃ that maps every element of A to itself. Then, a
preconditioning strategy based on q̃ with M(θ) := A(κ(·, θ)) is such that J(θ) = 1 almost
everywhere in Θ. While being optimal, this solution has no practical use. The reasons
are the following. First, computing a precise factorization of A(θ) is at least as costly as
solving A(θ)u(θ) = b(θ). Second, computing or setting-up a preconditioner carries some
computational and memory costs. Thus, P will be limited by practical considerations,
namely, the total memory available for a simulation. P may be referred to as the rate of
quantization, and we are interested in fixed rate quantization. Another matter of concern
lies in the scheduling of computations. That is, when allocating resources for a simulation,
one may not only want to minimize E[J ], but also some higher order moments, or even to
impose some distribution on J . A first step in these directions lies in the formulation of
measurable information about J which statistically relates to the random coefficient field
and its quantizer.

Irrespective of the type of preconditioner used, the representation error of κ(·,Θ) by
q(κ(·,Θ)) is characterized by a distortion

w(q, d) := E[d(κ, q(κ))] =
∫

Θ

d(κ(·, θ), q(κ(·, θ)))dµ(θ) (4.19)

where the distortion functional (or divergence) d : A × A → [0,∞) measures proximity
between realizations of the coefficient field. A loose definition of proximity allows, in
principle, to recast a variety of functionals in the form of distortions. Given our objective
to minimize the number of solver iterations J , we should aim at using divergences d such
that minimizing w(q, d) over all P -quantizers q ∈ QP allows to minimize some relevant
information about J .

Let us denote by VP ⊂ QP the set of all Voronoi P -quantizers. That is, for all q ∈ VP ,
there exists Â := {κ̂1, . . . , κ̂P} ⊂ A such that

q : κ ∈ A 7→
P∑

p=1

κ̂p1[κ ∈ Ap] (4.20)

where
Ap ⊂ {κ ∈ A, d(κ, κ̂p) ≤ d(κ, κ̂q), q = 1, . . . , P} , (4.21)

and A1, . . . ,AP form a Borel partition of A. We say that q is the Â-nearest projection.
The advantage of Voronoi quantizers lies in that, for all pairs (q, q′) ∈ VP ×QP of quan-
tizers with the same codebook Â, we have w(q, d) ≤ w(q′, d). Therefore, in an attempt
to minimize distortion, we rely on Voronoi quantizers.

Consider a Voronoi partition A1, . . . ,AP induced by a quantizer q with an unknown
codebook Â := {κ̂1, . . . , κ̂P}. We can then express the distortion as a functional of the
codebook, i.e., w(Â, d). To do so, we define a conditional expectation operator Ep[·] :=
E[· |κ ∈ Ap] and an attribution frequency fp := µ(Ap) so that

∑P
p=1 fp = 1. We also

introduce the local distortion wp(q, d) := Ep[d(κ, q(κ))] which we also express in terms of
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the centroidal field, i.e., wp(κ̂p, d), so that

w(Â, d) =
P∑

p=1

fpwp(κ̂p, d). (4.22)

Then, the following can be shown [45]. If fp > 0 and Ep[κ] ∈ ri(A) for p = 1, . . . , P ,

where ri(A) denotes the relative interior of A, then, in order to minimize w(Â, d), the
codebook Â = {κ̂1, . . . , κ̂P} must be such that

κ̂p ∈ arg min
κ̂∈ri(A)

wp(κ̂, d) (4.23)

for p = 1 . . . , P . That is, given a Voronoi partition, the distortion is minimized by selecting
centroidal fields which are minimizers of local distortions.

Among all distortion functionals, we wish to consider those that allow for the mini-
mization of Eq. (4.19) with respect to q. In particular, Bregman divergences [20] admit
properties which allow to devise algorithms for the minimization of distortion in both
finite [8], and infinite-dimensional spaces [45]. They can be defined as follows.

Definition 1. Let φ : L2(Ω) → R be a strictly convex, twice-continuously Fréchet-
differentiable functional. Then, a Bregman divergence is given by

dφ(κ, κ
′) = φ(κ)− φ(κ′)− δφ(κ, κ′ − κ) ∀κ, κ′ ∈ A, (4.24)

where δφ(κ, κ′ − κ) denotes the Fréchet derivative of φ at κ in the direction of κ′ − κ,
see [47].

An important result of [8] was extended by [45] to the case of functional Bregman
divergences. That is, for any Bregman divergence dφ, if a (Borel) subset Ap of A is such
that fp > 0 and Ep[κ] ∈ ri(A), then, the local distortion wp(κ̂, dφ) reaches its infimum at
a unique element of ri(A), namely Ep[κ]. A consequence of this result is that k-means
algorithms can be designed to approximate optimal quantizers that converge to local
minima of distortion.

4.3 Computation of stationary quantizers

There exist several numerical methods for the computation of stationary vector quantiz-
ers. Coincidentally, we compute q2 which we transform following Eq. (4.18) to obtain a
quantizer of the coefficient field. In particular we consider L2 quantizers of T−12 (ξ). That
is, we consider the following distortion

w2(q2) := E[∥T−12 (ξ)− q2(T−12 (ξ))∥2] =
∫

Θ

∥T−12 (ξ)− q2(T−12 (ξ))∥2dµξ(θ). (4.25)

We let q2 be Voronoi, and denote by H1, . . . ,HP the partition of T−12 (Rm) induced by q2.
Then, we have

q2(T
−1
2 (ξ)) :=

P∑

p=1

η̂p1[T
−1
2 (ξ) ∈ Hp] (4.26)
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where η̂p = T−12 (ξ̂p), and the following decomposition of distortion into local contribu-
tions:

w2(q2) =
P∑

p=1

w2,p(q2)µξ(T
−1
2 (Hp)) (4.27)

where w2,p(q2) := E[∥T−12 (ξ) − q2(T
−1
2 (ξ))∥2 |T−12 (ξ) ∈ Hp]. A P -quantizer q2 is P -

stationary if it is a critical point of w2 : QP → R+, or equivalently the quantizer q2
is Voronoi and such that q2(T

−1
2 (ξ)) = E[T−12 (ξ) | q2(T−12 (ξ))]. Obviously, an optimal

P -quantizer is always P -stationary.
In practice, it is not tractable to measure with µξ, and empirical measures need be

introduced. That is, we are given an ns-sample κ1, . . . , κns of i.i.d. observations of the ran-
dom coefficient field, and we compute ξs := P̂←m (T−1κs) for s = 1, . . . , ns. The distortion
w2(q2) is then approximated by

w
(ns)
2 (q2) :=

1

ns

ns∑

s=1

∥T−12 (ξs)− q2(T−12 (ξs))∥2 (4.28)

which is also given by

w
(ns)
2 (q2) =

P∑

p=1

f
(ns)
2,p w

(ns)
2,p (q2) (4.29)

where

f
(ns)
2,p =

1

ns

ns∑

s=1

1[T−12 (ξs) ∈ Hp] (4.30)

is the empirical measure of Hp associated with ξ1, . . . , ξns
, and

w
(ns)
2,p (q2) =

1

f
(ns)
2,p ns

ns∑

s=1

∥T−12 (ξs)− q2(T−12 (ξs))∥21[T−12 (ξs) ∈ Hp]. (4.31)

Different algorithms exist to compute finite dimensional stationary quantizers. The k-
means algorithm, sometimes referred to as Lloyd’s method [75, 141], and the competitive
learning vector quantization (CLVQ) algorithm [117] are presented in details along with
a brief mention of their variants and other existing methods.

4.3.1 k-means

The term k-means was first used by MacQueen in 1967 [97], though the idea goes back
to Steinhaus in 1956 [149]. The standard algorithm was first proposed by Lloyd of Bell
Labs in 1957 as a technique for pulse-code modulation, although it was not published as
a journal article until 1982 [95]. The algorithm works as follows, see Algo. 25. Given an
initial codebook Ĥ(0) for a P -quantizer, alternate between the two following steps. First,
compute the Voronoi partition induced by the codebook for a given Bregman divergence.
Second, re-calculate the centroidal fields of the codebook as the conditional expectations
of the new Voronoi partition. The k-means algorithm converges, but slowly for large
values of the dimension m. It attempts to solve an NP-hard problem, even for low values
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of m, at a cost of O(nsP ) per iteration. Both online [17] and mini-batch [144] variants
of the k-means algorithms exist. A source of variety of k-means algorithms comes from
the different methods used to design the initial quantizer. For instance, some of the well-
known initialization methods are presented as follows. First, the method of Forgy [46],

where the initial centroids η̂
(0)
1 , . . . , η̂

(0)
P are chosen randomly from the data H. Second,

the minmax method consists of choosing the first centroid η̂
(0)
1 randomly. Then the p-th

centroid η̂(0)
p with p ∈ {2, . . . , P} is chosen to be the point that has the largest minimum

distance to the previously selected centroids, i.e., η̂
(0)
1 , η̂

(0)
2 , . . . , η̂

(0)
p−1. This method yields a

complexity of O(nsP ) where ns denotes the size of the data set H. Third, the k-means++

method consists of selecting the first centroid η̂
(0)
1 randomly. Then the p-th centroid η̂(0)

p

such that p ∈ {2, . . . , P} is chosen to be ηs ∈ H with a probability of D(ηs)/
∑ns

t=1D(ηt)
where D(ηs) denotes the minimum distance from a point ηs to the previously selected
centroids. A more extensive review of initialization methods is given by [25].

Algorithm 25 k-means(H, Ĥ(0))

Input: Data H := {η1, . . . ,ηns
},

Initial codebook Ĥ(0) := {η̂(0)
1 , . . . , η̂

(0)
P } ⊂ Rm.

Output: Voronoi P -quantizers q
(t)
2 : Rm → Ĥ(t) induced by {Ĥ(t)}t=0,1,... are s.t.

w
(ns)
2 (q

(t)
2 ) converges to a local minimum of w

(ns)
2 : QP → R+ as t→∞.

1: t := 0
2: while not converged do
3: ▷ Compute partition H(t)

1 , . . . ,H(t)
P of H

4: for p = 1, . . . , P do
5: Pick H(t)

p ⊆ {ηs ∈ H s.t. ∥ηs − η̂(t)
p ∥2 ≤ ∥ηs − η̂(t)

q ∥2 for q = 1, . . . , P}
s.t. H(t)

p ∩H(t)
q ̸=p = ∅ and ∪Pp=1H(t)

p = H
6: end for
7: ▷ Compute codebook Ĥ(t+1) = {η̂(t+1)

1 , . . . , η̂
(t+1)
P }

8: for p = 1, . . . , P do
9: η̂(t+1)

p := |H(t)
p |−1

∑
ηs∈H

(t)
p
ηs

10: end for
11: t := t+ 1
12: end while

4.3.2 Competitive learning

It is often argued (see [117]) that Lloyd’s method, i.e., k-means, is untractable in multiple
dimensions, i.e., when m becomes large. Approaches based on learning algorithms are
then favored when m is large so as to yield better results, see [78] for an example in
automatic classification. In particular, we consider the CLVQ algorithm (see [161] or
[13]) which is used by Pagès and Printemps [118] for the quantization of Gaussian RVs,
as well as by Pagès [117] for numerical integration. The algorithm works as follows, see
Algo. 26. First, the competitive phase of the method is the most consuming because it
uses a nearest neighbor search at each step to find the nearest centroid in the codebook
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to the randomly generated vector. The second phase, called the learning phase, updates
the nearest centroid of the quantizer by a homothety.

Algorithm 26 CLVQ(H, Ĥ(0), {γt}t=0,1,2,...)

Input: Data H := {η1, . . . ,ηns
},

Initial codebook Ĥ(0) := {η̂(0)
1 , . . . , η̂

(0)
P } ⊂ Rm,

Step sequence {γt}t=0,1,2,... s.t. γt > 0 ∀ t, ∑t≥1 γt =∞ and
∑

t≥1 γ
2
t <∞.

Output: Voronoi P -quantizers q
(t)
2 : Rm → Ĥ(t) induced by {Ĥ(t)}t=0,1,... s.t. w

(ns)
2 (q

(t)
2 )

converges to a local minimum of w
(ns)
2 : QP → R+ as t→ ns and ns →∞.

1: t := 0
2: while not converged and t < ns do
3: ▷ Competitive phase: find nearest neighbor
4: Pick p ∈ [1, P ] s.t. ∥ηt+1 − η̂(t)

p ∥2 ≤ ∥ηt+1 − η̂(t)
q ∥2 for q = 1, . . . , P

5: ▷ Learning phase: update codebook Ĥ(t+1) = {η̂(t+1)
1 , . . . , η̂

(t+1)
P }

6: for q = 1, . . . , P do
7: if q ̸= p then
8: η̂(t+1)

q := η̂(t)
q

9: else
10: η̂(t+1)

q := η̂(t)
q − γt+1(η̂

(t)
q − ηt+1)

11: end if
12: end for
13: t := t+ 1
14: end while

CLVQ is an online algorithm that can be seen as a particular case of the stochastic
gradient method with decreasing step. A good reference here is [41]. It is assumed that
the positive gain parameter sequence γ0, γ1, γ2, . . . satisfies

γt > 0 ∀ t ,
∑

t≥1

γt = +∞ ,
∑

t≥1

γ2t < +∞. (4.32)

Then, the algorithm is shown to converge. However, in general, we cannot ensure that the
algorithm converges to a global minimum. In higher dimensions, uniqueness of stationary
quantizers clearly always fails (see [56]), so that the CLVQ reaches, a priori, only locally
optimal quantizers. Note that, even when using k-means, there is no reason to suppose
that the obtained quantizers are the optimal ones. An important aspect of the CLVQ
algorithm is the choice of the gain sequence. Usually, some heuristic methods are devel-
oped based on the distribution of the quantized random vector, see [118]. For instance, a
gain sequence usually used [142] is given by

γt = γ0
α

tc + β
, t ≥ 1 (4.33)

for some constants γ0, α, β and c > 1/2. This is the gain sequence used in the numerical
experiments of this chapter.
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4.3.3 Other methods

Several other methods exist to reach estimators of stationary vector quantizers, see [25]
for a list of methods applied to color quantization (i.e., with m = 3). In particular, we
mention the following approaches. First, the octree method [51] is a two-phase method
that starts by building an octree (a tree data structure in which each internal node has
up to eight children) that represents the vector distribution of the input data H and then,
starting from the bottom of the tree, prunes the tree by merging its nodes until P vectors
are obtained. Second, the modified minmax method [166] chooses the first centroid η̂

(0)
1

arbitrarily from the data set H and the p-th centroid η̂(0)
p with p ∈ {2, . . . , P} is chosen to

be the point that has the largest minimum weighted L2 distance to the previously selected
centroids η̂

(0)
1 , . . . , η̂

(0)
p−1. Each of these initial centroids is then recalculated as the mean

of the vectors assigned to it. Third, the split & merge method [21] has two phases. First,
the data set H is partitioned uniformly into B > P clusters. This initial set of partitions
is represented as an adjacency graph. In the second phase, B − P merge operations are
performed to obtain the final P clusters. At each step of the second phase, the pair of
clusters with the minimum joint quantization error are merged.

4.4 Quantizations based on deterministic grids

Until now, we have attempted to design P -quantizers of the m modes of a truncated KL
representation with a representation error denoted by ϵ(T̂−1m κ). As it turns out, depending
on the number P of preconditioners wanted, it is not always the better option to consider
all the modes of the approximating KL representation to perform the partitioning. To
more efficiently impact the preconditioning strategy, it is better to limit the number of
modes considered for the quantization based on the number of preconditioners wanted.
That is, the number of modes considered should depend on with the number of precon-
ditioners. One way to establish a dependence of the number of modes to the desired
number of preconditioners is to resort to deterministic grids. The deterministic grid is
dimensioned through a positive grid parameter denoted by s. To indicate the number of
modes of the KL representation considered for the quantization, we resort to the notation
q
(m)
2 where m is the number of modes. In particular, for m = 1, we use

q
(1)
2 (ξ) = T−12 (0)1[−s/2 ≤ ξ < s/2] + T−12 (−s)1[ξ < s/2] + T−12 (s)1[s/2 ≤ ξ] (4.34)

so as to provide a symmetric solution. In order for q
(1)
2 to yield a partition with constant

attribution frequencies, we let s := 2F−1(2/3) ≈ 0.8614. In higher dimensions, i.e., for
m > 1, we have

q
(m)
2 (ξ) =

2m∑

p=0

T−12 (ξ̂p)1[T
−1
2 (ξ) ∈ Hp] (4.35)

where H0, . . . ,H2m form a Voronoi partition of T−12 (Rm) and are given such that

Hp ⊂
{
T−12 (ξ), ξ ∈ Rm, ∥ξ − ξ̂p∥ ≤ ∥ξ − ξ̂q∥, q = 0, . . . , 2m

}
(4.36)
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in which the components of ξ̂0, . . . , ξ̂2m are given by Algo. 27. These quantizations based

Algorithm 27 GetGridCoordinates(s, m)

Input: Grid parameter s,
Number of KL modes m

Output: Centroids T−12 (ξ̂0), . . . , T
−1
2 (ξ̂2m) of quantizer q

(m)
2 .

1: p := 0
2: ξ̂p := 0

3: for ξ̂p,1 ∈ (−s, s) do
4: for ξ̂p,2 ∈ (−s, s) do
5:

...
6: for ξ̂p,m ∈ (−s, s) do
7: p := p+ 1
8: ξ̂p := [ξ̂p,1, . . . , ξ̂p,m]

T

9: end for
10: end for
11: end for
12: return T−12 (ξ̂0), . . . , T

−1
2 (ξ̂2m)

on deterministic grids have shown good effects on the preconditioning strategy. They
show a dependence between the size of the P -quantizer and the number m of KL modes,
namely, we have P = 1 + 2m.

4.5 Choice of map T2

The choice of the map T2 bears important consequences on the design of the quantizer q2.
Here, we present two choices of maps later used for our numerical experiments, namely,
minimizing the L2(Ω)-distortion of T̂−1m κ, and clustering for constant frequencies. Beyond
the choice of T2, it is particularly important to understand the distribution of the pre-
conditioned iterative solves among the P preconditioners for balancing the computational
load in distributed implementations.

4.5.1 Minimizing the L2(Ω)-distortion of T̂−1m κ

The first choice of map, which aims at minimizing the L2(Ω)-distortion of T̂−1m κ, is

T−12 : χ 7→ ϕ
1/2
M ΦΛ1/2χ (4.37)

where we recall that ϕMij = ⟨ϕi, ϕj⟩Ω denotes the components of the mass matrix ϕM and
Λ = diag(λ1, . . . , λm). It is assumed that the eigenfunction Φk of Eq. (4.8) is written as
Φk(x) =

∑n
i=1Φk,iϕi(x) so that the component Φik of Φ ∈ Rn×m stores Φk,i. Then, using

Eq. (4.13) along with the fact that ∥u(·, θ)∥2Ω = ⟨u(·, θ), u(·, θ)⟩Ω = u(θ)TϕMu(θ) where
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u(θ) = [u1(θ), . . . , u2(θ)] and u(θ) =
∑n

i=1 ui(θ)ϕi(x), we have that

∥T−12 (ξ(θ))∥2 = ξ(θ)TΛ1/2ΦTϕMΦΛ1/2ξ(θ) = ⟨T̂−1m κ(·, θ), T̂−1m κ(·, θ)⟩Ω = ∥T̂−1m κ(·, θ)∥2Ω.
(4.38)

Already, Eq. (4.38) states that the functional L2(Ω)-distortion of T̂−1m κ(·, θ) induced by

P̂→m (T2(q2(T̃
←
m (κ(·, θ))))) is equivalently given by the finite-dimensional L2-distortion of

T−12 (ξ(θ)) induced by q2(T
−1
2 (ξ(θ))).

An even more useful observation is done by invoking the orthonormality of the eigen-
functions Φ1, . . . ,Φm along with Eq. (4.13) to show that

∥T̂−1m κ(·, θ)∥2Ω =
m∑

k=1

λkξk(θ)
2 = ξ(θ)TΛξ(θ) = ∥Λ1/2(ξ(θ))∥2. (4.39)

That is, the map

T−12 : χ 7→ Λ1/2χ (4.40)

is also such that ∥T−12 (ξ(θ))∥2 = ∥T̂−1m κ(·, θ)∥2Ω. Note however that we have n ≫ m, so
that computing ∥T−12 (ξ(θ))∥2 with the map given by Eq. (4.40) is far less expensive than
using Eq (4.37).

As a consequence, Eq. (4.40) will be favored, which involves a (dense) matrix-vector
product in O(nm2) operations. We will see, as revealed by our numerical experiments,
that the minimization of the L2(Ω)-distortion of T̂−1m κ yields stationary quantizers such
that fp depends on the magnitude of ∥ξ̂p∥2, that is, fp is larger (smaller) for centroids with

smaller (larger) ∥ξ̂p∥2. Processes with centroid ξ̂p such that ∥ξ̂p∥2 is small correspond to
linear systems that tend to be better conditioned and thus result in fewer solver iterations
J . These processes with smaller ∥ξ̂p∥2 will be solving more, but easy to solve linear

systems, while those with larger ∥ξ̂p∥2 will be solving fewer, but more difficult to solve
linear systems.

4.5.2 Clustering for constant frequencies

The second choice of map, which aims at clustering for constant frequencies, is

T−12 : χ 7→ Λ1/2Fξ ◦ χ where Fξ ◦ χ =



Fξ(χ1)

...
Fξ(χm)


 (4.41)

in which Fξ(χ) = Pr[ξ ≤ χ], assuming T−1κ is a Gaussian process. Our experiments will
show that this choice of T−12 yields stationary quantizers q2 with f1 ≈ · · · ≈ fP , i.e., with
constant frequencies. This means that both types of processes with centroid ξ̂p such that

∥ξ̂p∥2 is small, and such that ∥ξ̂p∥2 is large, will solve as many linear systems.
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4.5.3 Effect on load balancing

It is interesting to consider these two choices of map T2 from the perspective of load
balancing. Load balancing involves allocating tasks to processes so as to ensure the most
efficient use of resources. Assuming a preconditioning strategy of P preconditioners with
sampled linear solves distributed a priori on as many or fewer processes, the overall time
of the distributed solves is given by the process which takes the longest time to process all
its attributed linear solves. This elapsed time is well accounted for by solver iterations.
Hence, although the distribution of Ep[J ] as a function of p is an interesting measure of the
performance of the preconditioning strategy, the values taken by the following quantity
are more indicative of the idle time of the distributed implementation:

ΣJ(Θ̂p)
=
∑

θ∈Θ̂p

J(θ) (4.42)

where Θ̂p is the set of all the realizations of the linear systems preconditioned by M̂p.

The sets Θ̂1, . . . , Θ̂P form a partition of the finite subset Θ̂ ⊂ Θ of realizations for a
given simulation. Then, the distribution of ΣJ(Θ̂p)

as a function of p serves as a detailed
representation of process activity. In particular, we are interested in maxp∈[1,P ] ΣJ(Θ̂p)

, as
it directly relates to the total time of the simulation.

4.6 Local interpolation of preconditioner realizations

Monte Carlo simulations with a quantized preconditioner can be run in parallel on a
network of computational nodes, each of which stores only some of the centroidal precon-
ditioners. To sample without bias, we can draw realizations κ(θ) of the coefficient field
from a master node and attribute each realization to the node with the closest centroidal
field, i.e., best-suited preconditioner, in some sense. Assuming that this node stores more
than one centroidal preconditioner, we want to leverage all (or some of) these local pre-
conditioners so as to further improve the preconditioning of the system. This can be done
using an interpolation of the preconditioner realization M−1(θ) via an optimal projection
in the linear span of all (or some of) the local preconditioners. In what follows, we sum-
marize how the works of Zahm and Nouy [168] is used to accelerate the computation of
such realization-dependent projections in the context of Monte Carlo simulations with a
P -quantization of preconditioners.

Let us consider a network of M nodes with a P -quantized preconditioner such that
M ≤ P . We assume that every single centroidal preconditioner is stored entirely on one
or another node, and each node stores at least one preconditioner. The preconditioners

stored by the m-th node are M−1(ξ̂
(m)

1 ), . . . ,M−1(ξ̂
(m)

Pm
) where Pm denotes the number

of local preconditioners. Then, ξ is drawn randomly, close to a centroid of the m-th
node. Following the work of Zahm and Nouy [168], we approximate the action of the
realization-dependent preconditioner M−1(ξ) with an interpolation of the form

M̂−1
m (ξ) =

Pm∑

p=1

α(m)
p (ξ)M−1(ξ̂

(m)

p ). (4.43)
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Although it is possible to find α
(m)
1 (ξ), . . . , α

(m)
Pm

(ξ) ∈ R that minimize the condition

number of M̂−1
m (ξ)A(ξ), this problem [99] can not be solved efficiently for large numbers

of realizations. Therefore, a more reasonable alternative is to minimize the Frobenius

norm ∥I − M̂−1
m (ξ)A(ξ)∥F [62] over the subspace Ym =

{
M̂−1

m (ξ̂
(m)

1 ), . . . , M̂−1
m (ξ̂

(m)

Pm
)
}

of

Rn×n. The solution of this problem is unique and satisfies

B(ξ)



α
(m)
1 (ξ)
...

α
(m)
Pm

(ξ)


 =




tr
(
M−1(ξ̂

(m)

1 )A(ξ)
)

...

tr
(
M−1(ξ̂

(m)

Pm
)A(ξ)

)


 (4.44)

where B(ξ) has components

Bpq(ξ) = tr

((
M−1(ξ̂

(m)

p )A(ξ)
)T

M−1(ξ̂
(m)

q )A(ξ)

)
, (p, q) ∈ [1, Pm]

2. (4.45)

Note however that assembling this Pm-dimensional linear system with matrix-free pre-
conditioners requires to apply each local preconditioner to every column of A(ξ). This
cost is considerably reduced when using sketching techniques to compute solutions of
a random sub-optimal problem [168]. That is, a random sketching matrix Θ ∈ Rn×K

is introduced such that Pm ≤ K ≪ n and rank(A(ξ)Θ) ≥ Pm. Then, the semi-norm
∥(I− M̂−1

m (ξ)A(ξ))Θ∥F is minimized over Ym instead of the exact Frobenius norm. This
semi-norm admits a unique minimizer: the solution of the Pm-dimensional linear system
given by

C(ξ)



α
(m)
1 (ξ)
...

α
(m)
Pm

(ξ)


 =




tr
(
ΘTM−1(ξ̂

(m)

1 )A(ξ)Θ
)

...

tr
(
ΘTM−1(ξ̂

(m)

Pm
)A(ξ)Θ

)


 (4.46)

where C(ξ) has components

Cpq(ξ) = tr

((
M−1(ξ̂

(m)

p )A(ξ)Θ
)T

M−1(ξ̂
(m)

q )A(ξ)Θ

)
, (p, q) ∈ [1, Pm]

2. (4.47)

Unlike for Eq. (4.44), the assembly of Eq. (4.46) requires that each local preconditioner
is applied to every column of A(ξ)Θ ∈ Rn×K . The minimized semi-norm is a statis-
tical estimator of the optimal Frobenius norm whose error can be controlled with high
probability as shown in [168] for different sketching techniques, i.e., ways to generate Θ.
However, the resulting interpolating preconditioner is not guaranteed to be SPD, even if
all the local preconditioners are SPD. Therefore, Zahm and Nouy [168] also define linear

constraints on α
(m)
1 (ξ), . . . , α

(m)
Pm

(ξ) which guarantee that the constrained minimization
of the semi-norm yields an SPD interpolating preconditioner. We introduce two convex
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subsets of Ym defined by

Y+
m =

{
Pm∑

p=1

α(m)
p M−1(ξ̂

(m)

p ), α(m)
p ≥ 0

}
(4.48)

and

Ycond
m =





Pm∑

p=1

(α
(m)
p,+ − α(m)

p,− )M
−1(ξ̂

(m)

p ),

α
(m)
p,+ ≥ 0, α

(m)
p,− ≥ 0, p = 1, . . . , Pm

α
(m)
+

Tλ(m)
n −α

(m)
−

Tλ
(m)
1 ≥ 0

α
(m)
+

T (cond λ(m)
n − c)−α

(m)
−

T (cond λ
(m)
1 + c) ≥ 0





(4.49)

in which α
(m)
p,+ := max{0, α(m)

p } and α(m)
p,− := max{0,−α(m)

p } with α
(m)
+ = [α

(m)
1,+ , . . . , α

(m)
Pm,+]

and α
(m)
− = [α

(m)
1,− , . . . , α

(m)
Pm,−]. We also have λ

(m)
1 = [λ1(M

−1(ξ̂
(m)

1 )), . . . , λ1(M
−1(ξ̂

(m)

Pm
))]

and λ(m)
n = [λn(M

−1(ξ̂
(m)

1 )), . . . , λn(M
−1(ξ̂

(m)

Pm
))] in which λ1(M

−1(ξ̂
(m)

p )) and λn(M
−1(ξ̂

(m)

p ))

denote the largest and the smallest eigenvalues of M−1(ξ̂
(m)

p ), respectively. The vector

c = [c1, . . . , cPm ] has components cp = ∥M−1(ξ̂
(m)

p )∥, where ∥M−1(ξ̂
(m)

p )∥ denotes the

operator of M−1(ξ̂
(m)

p ). Under the condition cond ≥ maxp∈[1,Pm] cp/λn(M
−1(ξ̂

(m)

p )), we
have

Y+
m ⊂ Ycond

m ⊂ Ym. (4.50)

Then the minimization problems for the design of M̂−1
m (ξ) are given by

M̂−1
m (ξ) = argmin

M−1∈Y+
m∪Ycond

m

∥I−M−1A(ξ)∥F (4.51)

M̂−1
m (ξ) = argmin

M−1∈Y+
m∪Ycond

m

∥(I−M−1A(ξ))Θ∥F (4.52)

which are quadratic optimizations problems with linear inequality constraints. Further-

more, since M−1( ˆξ(m)
p ) ∈ Y+

m for all p, all the resulting projections M̂−1
m (ξ) interpolate

M−1(ξ) at the points ξ̂
(m)

1 , . . . , ξ̂
(m)

Pm
.

Adding preconditioners to a strategy based on a realization-dependent sub-optimal
interpolation should result in a decrease of solver iterations. However, the scaling of
such a strategy is hindered by the computational cost of setting-up the interpolation,
which depends quadratically on the number of preconditioners, and is done for each
realization. Another limiting factor is that, for each linear system, there is a number of
preconditioners beyond which the application cost of the interpolation outweighs the time
saved in spared solver iterations. On the other hand, a preconditioning strategy based on
quantization is a more trivial interpolation technique with no significant online set-up cost,
requiring no more than a single preconditioner application per interpolation application.
In principle, combining quantization with local interpolation allows to mobilize a limited
number of centroidal preconditioners for each realization, thus decreasing online set-up
and application costs of the strategy, while providing potentially better preconditioning
than a strategy based only on quantization.
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4.7 Numerical experiments

We investigate some of the methods presented in this chapter by means of numerical
experiments. In particular, we focus on the two-dimensional isotropic Poisson equation
with a random variable coefficient defined on a unit square subjected to homogeneous
Dirichlet boundary conditions. The random coefficient is a stationary log-normal process
whose underlying Gaussian process has a squared exponential covariance with unit vari-
ance and a correlation length of 0.1. That is, we have T := log and T−1κ(x, θ) = G(x, θ)
where G : Ω × Θ → R is a zero-mean Gaussian process with covariance C(x, x′) =
E[G(x, ·)G(x′, ·)] = exp(−(x − x′)T (x − x′)/(0.1)2). We divide the domain Ω = [0, 1]2

with an unstructured mesh of 200,332 triangular elements and 100,652 degrees of free-
dom. Then, the solution is discretized with P1 finite elements. Along with the applica-
tion of boundary conditions, the discretization process associates every single realization
κ(·, θ) ∈ L2(Ω) of the coefficient field to a corresponding linear system A(θ)u(θ) = b(θ)
where A(θ) is an n-by-n SPD matrix with n=99,681. The random coefficient field is rep-
resented by a KL expansion computed using the same finite element discretization, along
with the domain decomposition method described in Chapter 2. Given that T−1κ is a
Gaussian process, the random variables ξ1, . . . , ξnKL

are iid standard Gaussian random
variables. The following numerical experiments are conducted. First, ideal precondition-
ers are considered, i.e., a preconditioner is built on the basis of every single realization of
the coefficient. Different levels of truncation are considered in the approximation T̂−1m κ
of the Gaussian process to construct the preconditioner. We illustrate the effect of this
truncation on the convergence of PCG. Second, two-dimensional clustering experiments
are conducted with different ratios λ1/λ2 and maps T2. We investigate the effect of these
parameters on the distribution and shape of the Voronoi cells of the quantizer q2 as well as
on the distribution of attribution frequencies and local distortions. Third, both k-means
and CLVQ are compared to compute stationary quantizers of different dimensions. Then,
the two preconditioning strategies based on stationary quantizers (see Sections 4.5.1 and
and 4.5.2) are applied and their effect on the distribution of average solver iterations per
preconditoner, as well as on the number of systems solved per preconditioner and on the
cumulated numbers of solver iterations per preconditioner are investigated. Finally, we
look at the overall average number of solver iterations for the three different precondi-
tioning strategies presented in Sections 4.4, 4.5.1 and 4.5.2 using different number m of
KL modes to approximate T−1κ.

4.7.1 Effect of relative energy of the approximating coefficient
field on theoretically ideal preconditioners

A theoretically ideal preconditioner is based on the trivial quantizer q̃ : κ(·) 7→ T (T̂−1m κ(·)).
In other words, a preconditioner M(T (T̂−1m κ)) is assembled on the basis of every single
realization κ(·) of the coefficient field. For the case where m = nKL, no distortion is
induced by the quantization. Therefore, if M(T (T̂−1m κ)) is a factorization of A(κ), a
single PCG iteration is necessary for the iterative solve of A(κ)u(κ) = b(κ). In practice,
this approach makes no sense because it takes approximately as much effort to compute
a factorization of A(κ) as it takes to solve A(κ)u(κ) = b(κ) without preconditioner. If,
however, we pick m < nKL, the representation error ϵ(T̂−1m κ) induces a difference between
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A(T (T̂−1m κ)) and A(κ). Consequently, the number of PCG iterations should increase with
ϵ(T̂−1m κ). Using such a preconditoning strategy with m < nKL is, in practice, completely
useless since factorizing A(T (T̂−1m κ)) is a priori as difficult as factorizing A(κ). However,
for the case in which a non-trivial P -quantizer q of κ with a finite rate P is considered,
the dimension m of the underlying quantizer q2 is an important feature. Indeed, the
dimension m of the stochastic space spanned by ξ plays an important role on the level
of difficulty to compute compact representations q2(ξ) of ξ with low distortion, and this
relative difficulty depends on the rate P of the quantizer. This dependence is indirectly
shown by our investigation of the preconditioning strategies for different values of m and
P , see Section 4.7.4. Furthermore, irrespective of the type of preconditioner used, the
performance of a strategy based on q̃ can serve as a limit of comparison for strategies
with less trivial quantizers. Therefore, as a mean to better understand the role of m
on a preconditioning strategy, it is important to understand how the average number of
solver iterations depends on m as well as on the related error ϵ(T̂−1m κ) when using an ideal
quantizer q̃.

Here, we do not only let M(T (T̂−1m κ)) be a (Cholesky) factorization of A(T (T̂−1m κ)),
but also an AMG preconditioner based onA(T (T̂−1m κ)). AMG preconditioners have shown
to be particularly efficient when applied to stochastic elliptic PDEs such as the Poisson
equation, see [160]. In particular, the AMG preconditioner we use is based on a single
V-cycle with smoothed aggregation. In Fig. 4.1, we present an estimate of the expected
number of PCG iterations J as a function of the number m of KL modes of T̂−1m κ, and of
the corresponding relative energy given by

∑m
k=1 λk = 1− ϵ(T̂−1m κ) ≤ 1. The estimate of

the expected number of solver iterations is based on 100,000 realizations.
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Figure 4.1: Average number of solver iterations J as a function of the number m of KL
modes used for T̂−1m κ with a quantizer q̃ : κ(·) 7→ T (T̂−1m κ(·)).

In Fig. 4.1, for both the Cholesky factorizations and the AMG preconditioners, we
see that the expected number of solver iterations decreases monotonically as m and the
relative energy increase. This behavior is not surprising since the difference between
A(T (T̂−1m κ)) and A(κ) should increase with m. We can see that the maximum difference
of average number of solver iterations between the Cholesky factorizations and the AMG
preconditioners occurs at m = 0, where it is of the order of 20%. This difference is smaller
for all non-null values of m. As such, we can tell that AMG is a very good preconditioner
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in that it provides average numbers of solver iterations which are close to what is obtained
with Cholesky factorizations. We can see a clear dependence of the difference of average
numbers of solver iterations between Cholesky factorizations and AMG preconditioners
on the relative energy. As the relative energy approaches 1, i.e., as ϵ(T̂−1m κ) vanishes, the
difference of effect on convergence of the AMG preconditioners compared to the Cholesky
factorizations decreases significantly. For most of the range of relative energy, the average
number of solver iterations depends almost linearly on the relative energy. Therefore, as a
means to characterize the dependence of preconditioning strategies on m, we pick values
of m that correspond to evenly spread values of relative energy.

4.7.2 Two-dimensional clustering experiments

Here, we try to illustrate how the properties of the stationary vector quantizers q2 depend
on the choice of map T2 as well as on the distribution of the eigenvalues λ1, . . . , λm. Two
choices of map T2 were previously formulated. First, using T−12 (ξ) = Λ1/2ξ is such that
minimizing the L2-distortion of T−12 (ξ) induced by q2(T

−1
2 (ξ)) is equivalent to minimiz-

ing the L2(Ω)-distortion of T̂−1m κ induced by P̂→m (T2(q2(T̃
←
m κ))). Second, we considered

T−12 (ξ) = Λ1/2Fξ ◦ ξ in an attempt to obtain stationary quantizers q2 with approximately

constant attribution frequencies, i.e., such that f
(ns)
1 ≈ · · · ≈ f

(ns)
P . Both cases are consid-

ered in this experiment. The distribution of λ1, . . . , λm depends strongly on the covariance
function of G(x, θ), particularly on the correlation length and the roughness in case of
Matérn covariance functions. As said earlier, we limit ourselves to square exponential
covariances with a single correlation length, but understanding the relation between the
properties of the stationary quantizers q2 and the distribution of λ1, . . . , λm can provide
useful insights for other covariance functions. For purposes of illustration, we carry ex-
periments with m = 2 and different values of the ratio λ2/λ1 so as to emulate the effect
of the distribution of λ1, . . . , λm on the properties of the stationary quantizers q2.

In Fig. 4.2, we show the normalized quantization error ∥T−12 (ξ)− q2(T−12 (ξ))∥2/tr(Λ)2

along with an overlay of the boundaries of the Voronoi cells and centroids of the sta-
tionary quantizer q2 for the first choice of map, i.e., T−12 (ξ) = Λ1/2ξ. These results are
presented for the quantization rates P = 10, 100 and 1,000 with a ratio λ2/λ1 = 1, 0.1 and
0.01. For the same quantizers, Fig. 4.3 presents the normalized attribution frequencies
f
(ns)
1 , . . . , f

(ns)
P . Similarly, Figs. 4.4 and 4.5 present the normalized quantization error and

attribution frequencies, respectively, of the stationary quantizers q2 obtained with the
second choice of map, i.e., T−12 (ξ) = Λ1/2Fξ ◦ ξ. In Fig. 4.6, we present scatter plots of

the attribution frequencies f
(ns)
1 , . . . , f

(ns)
P with the corresponding norms ∥ξ̂1∥, . . . , ∥ξ̂P∥.

These scatter plots are drawn for the same quantization rates P and ratio λ2/λ1 as in the

previous figures. The deviation of the attribution frequencies f
(ns)
1 , . . . , f

(ns)
P with respect

to 1/P is drawn as a function of the quantization rate P in Fig. 4.7 for both choices of
maps T2. The evolution of the total distortion w2(q2) is also presented as a function of P
in Fig. 4.8 for the two choices of map T2. In all these experiments, the stationary vector
quantizers are computed by k-means with a sample size ns = 100, 000.

In Figs. 4.2 and 4.3, we can see that the spatial distribution of centroids of the sta-
tionary quantizer q2 strongly depends on the ratio λ2/λ1, particularly so for the smaller
values of P . For λ2/λ1 = 1 and P = 10, the centroids of q2 form a circular cloud with two
concentric rings of cells. The Voronoi cells located near the origin are small polygons with
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Figure 4.2: Distortion field ∥T−12 (ξ) − q2(T
−1
2 (ξ))∥2 of the quantizer q2 obtained by k-

means with the map T−12 (ξ) = Λ1/2ξ where ξ ∼ N (0, I2).
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Figure 4.3: Attribution frequencies f
(ns)
2,p of the quantizer q2 obtained by k-means with the

map T−12 (ξ) = Λ1/2ξ where ξ ∼ N (0, I2).

138



aspect ratios close to 1. The Voronoi cells located further from the origin are much larger
and elongated as they indefinitely extend away from the origin. For the larger values of
P , the circular shape of the cloud of centroids is preserved. Similarly as for P = 10, there
are concentric rings of Voronoi cells, each with somewhat constant cell sizes. The size of
these cells progressively increases as the distance of the centroid from the origin increases.
For λ2/λ1 = 0.1 and P = 10, the centroids of q2 form a nearly ellipsoidal cloud with
the major axis along ξ1. The two Voronoi cells whose centroids are at the extremities of
the major axis extend indefinitely along ξ1 away from the origin and in both the positive
and negative directions of ξ2. All the other Voronoi cells whose centroids are closer to
the origin are bounded on both sides along ξ2 as well as near the center of ξ1 while they
extend indefinitely along ξ1 away from the origin. For larger values of P , the centroids
form clouds which are less and less elongated as P increases. All the Voronoi cells are
elongated along ξ2, and increasingly so as the centroid is further from the origin. For
λ2/λ1 = 0.01 and P = 10, the centroids of q2 form a line along ξ1. The two Voronoi cells
whose centroids are at the edges of the line extend indefinitely along ξ1 away from the
origin and in both the positive and negative directions along ξ2. All the other Voronoi
cells whose centroids are closer to the origin are bounded on both sides along ξ2 while
they extend indefinitely along both the positive and negative directions of ξ1. Similarly as
before, for larger values of P , the centroids form clouds which are less and less elongated
as P increases. Again, all the Voronoi cells are increasingly elongated along ξ2 as the cen-
troids are further from the origin. Irrespective of the values of P and λ2/λ1, the Voronoi
cells whose centroid is near the origin have attribution frequencies which are significantly
greater than 1/P . These attribution frequencies keep decreasing as the distance of the
centroid from the origin increases. All the Voronoi cells whose centroids are the most
distant from the origin have attribution frequencies which are significantly smaller than
1/P .

In Figs. 4.4 and 4.5, the spatial distribution of centroids of the stationary quantizer
q2 also depends on the ratio λ2/λ1 for P = 10. For λ2/λ1 = 1 and P = 10, the centroids
of q2 form a square cloud made of three parallel horizontal lines. A Voronoi cell has its
centroid located almost exactly at the origin. This cell is small with an aspect ratio close
to 1. There are narrow Voronoi cells which start at each of the edges of the central cell
and extend indefenitely away from those edges. The tessellation is completed by four
large square cells at the corners of the square cloud of centroids. For larger values of P ,
the shape of the centered square cloud of centroids is preserved. Similarly as for P = 10,
there are four large square cells at the corners of the square cloud of centroids. In the
center of the cloud, there are multiple small Voronoi cells with aspect ratios close to 1. All
along the edges of the cloud of centroids and between the four large square cells, there are
multiple narrow cells which extend indefinitely away from the edges of the square cloud
of centroids. For λ2/λ1 = 0.1 and P = 10, the centroids of q2 form a rectangular cloud
made of two parallel horizontal lines. Once again, there are four large Voronoi cells at
the corners of the cloud of centroids. All the other cells are narrowly trapped between
the large square cells, they span indefinitely away from the ξ1 axis. For larger values of
P , the centroids still form a rectangular cloud. The center of the cloud of centroids is
also packed with very small cells with aspect ratios close to 1. All along the edges of the
rectangular cloud of cells, there are narrow cells which indefinitely away from the edges.
There are more of these cells on the top and bottom edges than there are on the left and
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Figure 4.4: Distortion field ∥T−12 (ξ) − q2(T
−1
2 (ξ))∥2 of the quantizer q2 obtained by k-

means with the map T−12 (ξ) = Λ1/2Fξ ◦ ξ where ξ ∼ N (0, I2).
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Figure 4.5: Attribution frequencies f
(ns)
2,p of the quantizer q2 obtained by k-means with the

map T−12 (ξ) = Λ1/2Fξ ◦ ξ where ξ ∼ N (0, I2).

141



right edges. For λ2/λ1 = 0.01 and P = 10, the centroids of q2 form a line along ξ1. The
two Voronoi cells whose centroids are at the edges of the line extend indefinitely along
ξ1 away from the origin and in both the positive and negative directions along ξ2. All
the other Voronoi cells whose centroids are closer to the origin are bounded on both sides
along ξ2 while they extend indefinitely along both the positive and negative directions of
ξ1. For larger values of P , the centroids form a rectangular cloud with the longer edges
along ξ1. The center of the cloud of centroids is packed with very small cells. Again, all
along the edges of the rectangular cloud of centroids, there are narrow cells which span
indefinitely away from the edges. There are significantly more of these cells on the top
and bottom edges than there are on the left and right edges. Irrespective of the values of
P and λ2/λ1, all the Voronoi cells have attribution frequencies close to 1/P . There is no
discernible spatial pattern of how the attribution frequencies deviate from 1/P .

In Fig. 4.6, we can clearly see how the relation between the attribution frequency f
(ns)
p

and the distance ∥ξ̂p∥ of the centroid from the origin depends on the choice of map T2.

For the first case, i.e., T−12 (ξ) = Λ1/2ξ, the attribution frequency f
(ns)
p seems to depend

on the distance ∥ξ̂p∥ after a half bell curve. This is more evident for P = 100. The spread

around this curve seems to increase with P . For the second case, i.e., T−12 (ξ) = Λ1/2Fξ ◦ξ,
we can see that the attribution frequency f

(ns)
p scatters around 1/P irrespective of the

distance ∥ξ̂p∥.
In Fig. 4.7, it is clear that the deviation of the attribution frequencies f

(ns)
1 , . . . , f

(ns)
P

is more significant for T−12 (ξ) = Λ1/2ξ than for T−12 (ξ) = Λ1/2Fξ ◦ ξ. This deviation
decreases as the quantization rate P is increased.

In Fig. 4.8, we can see that picking T−12 (ξ) = Λ1/2Fξ ◦ ξ yields a smaller distortion
w2(q2) than using T−12 (ξ) = Λ1/2ξ. As expected, the distortion decreases as we increase
the quantization rate P .

4.7.3 Computation of stationary vector quantizers with k-means
and CLVQ

Here, we wish to compare the use of k-means and CLVQ for the computation of stationary
quantizers q2 for both choices of the map T2. These quantizers are computed for different
numbers m of KL modes and quantization rate P . For each pair (m,P ), 100 clustering
experiments are run using both k-means and CLVQ. In Fig. 4.9, we report the average
distortion w

(ns)
2 (q2) and the ratio of computing time of CLVQ over k-means for T−12 (ξ) =

Λ1/2ξ. Equivalent results are presented in Fig. 4.10 for T−12 (ξ) = Λ1/2Fξ ◦ ξ. Each of
these experiments is performed with a sample size ns = 10, 000. We can say that the
results do not depend on the choice of T2. Almost the same level of average distortion
is achieved by each stationary quantizer irrespectively of whether it is computed with
k-means or CLVQ. The average distortion decreases as a function of P and increases as a
function of m. The relative runtime of CLVQ compared to k-means strongly depends on
P . For P = 10, CLVQ is faster than k-means for all values of m. For P = 100, CLVQ is
faster for small values of m, and slower for larger values of m. For P = 1, 000, k-means
is faster for all values of m with a speedup which increases from 4x to more than 11x for
increasing values of m.
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4.7.4 Performance of the preconditioning strategies

Perhaps the most important experiment of this chapter is the investigation of the effect
of the preconditioning strategies on the convergence of PCG. In Fig. 4.11, we consider the
preconditioning strategies based on stationary quantizers q2 for the two possible choices of
T2 and we present the effect on (i) the expected number of solver iterations per precondi-
tioner as well as on (ii) the number of linear systems solved per precondtioner, and (iii) the
cumulated number of solver iterations per precondtioner. These quantities are presented
in scatter plots as functions of the distance ∥ξ̂p∥ of the centroid ξ̂p to the origin. The
results presented are obtained with an approximating coefficient field composed of m = 8
KL modes for a quantization with P = 1, 000 preconditioners. The preconditioners used
are AMG, and the MC simulation consists of 100,000 realizations. First, we can say that,
irrespective of T2, there is some level of linear correlation between Ep[J ] and ∥ξ̂p∥. It is
actually surprising that these quantities are not more correlated. Indeed, our experiments
have shown that the conditioning of a Galerkin operator A(κ(ξ̂p)) tends to increase with

the norm ∥ξ̂p∥ of the latent variable ξ̂p of the underlying coefficient field κ(ξ̂p). Second,

we can see that, when using T−12 (ξ) = Λ1/2ξ, the number np of linear systems solved with

a preconditioner M̂p is rather strongly correlated with the size of the norm ∥ξ̂p∥. This

result is not surprising when we consider the dependence of the attribution frequency f
(ns)
2,p

on the distance ∥ξ̂p∥ presented in Section 4.7.2 for m = 2. In particular, the number np of

linear systems solved decreases with ∥ξ̂p∥. We can see that choosing T−12 (ξ) = Λ1/2ξ leads

to a larger spread of the possible values taken by np than when using T−12 (ξ) = Λ1/2Fξ ◦ξ.
In the case T−12 (ξ) = Λ1/2Fξ◦ξ, the number np of linear systems solved per preconditioner

does not strongly correlate with ∥ξ̂p∥. Third, the scatter plot of the cumulated number

of solver iterations as a function of the norm ∥ξ̂p∥ strongly resembles the scatter plot of

np. Hence, the number of cumulated solver iterations strongly correlates with ∥ξ̂p∥ when
using T−12 (ξ) = Λ1/2ξ. On the other hand, using T−12 (ξ) = Λ1/2Fξ ◦ ξ leads to less spread
of the number of cumulated solver iterations. In other words, the computational load
is more balanced in the latter case. Although the figure is not presented here, similar
results as those of Fig. 4.11 were obtained using Cholesky factorizations in place of AMG
preconditioners. The results are almost identically the same, which is why we do not
present them here, with the exception that all the average and cumulated numbers of
solver iterations are slightly smaller.

In Fig. 4.12, we present the overall average number of solver iterations for each of
the three preconditioning strategies presented in this chapter. That is, the two strategies
based on stationary quantizers q2 built with different choices of T2, but also the strategy
built with deterministic grids (see Section 4.4). In the case of the stationary quantizers,
the results are presented for different numbers m of KL modes for the approximating
coefficient field. As explained in Section 4.7.1, these values of m are selected so as to
correspond to relative energies which properly cover the whole range from 0 to 1. In
particular, we use m = 8 which corresponds to approximately 20% of relative energy as
well as m = 24 (50%), m = 48 (75%) and m = 170 (99%). Different numbers P of
preconditioners are considered, namely P =1, 10, 100, 1,000 and 10,000. When it comes
to the preconditioning strategy based on deterministic grids, all the possible numbers
of preconditioners from P = 1 to P = 8, 193 are considered, i.e., we used P = 1 + 2m
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Figure 4.11: Average numbers of solver iterations, numbers of linear systems solved and
total numbers of solver iterations per preconditioner. Number of KL modes
m = 8. Number of preconditioners P = 1, 000. Results obtained with AMG
precondtioners.

for m = 1, . . . , 13 and P = 1 for m = 0. For the preconditioning strategies based on
stationary quantizers, the relation between E[J ] and the number P of preconditioners is
fairly similar irrespective of T2, with the exception that for a given pair (m,P ), using
T−12 (ξ) = Λ1/2Fξ ◦ ξ yields slightly larger values of E[J ] than using T−12 (ξ) = Λ1/2ξ.
Besides this difference, the same phenomenon can be observed, irrespective of T2. That
is, for m = 8, E[J ] decreases as a function of P , at a decreasing rate as E[J ] starts to
stagnate for larger values of P . Using m = 8 seems optimal for the smallest number of
preconditioners considered, that is P = 10, i.e. a constant zero coefficient field is used for
P = 1. Similarly, for m = 24, E[J ] decreases as a function of P , also at a decreasing rate,
but stagnation starts occurring for larger values of P . Meanwhile, selecting m = 24 seems
optimal when using P = 100 preconditioners. The same type of behavior is observed for
m = 48, with the difference that E[J ] is larger than when using smaller values of m for
the smaller values P . Eventually, a stagnation also starts occuring, but for larger values
of P . Using m = 48 is optimal when using P = 100 preconditioners. Finally, for m = 170,
the stagnation is not captured for our investigated numbers P of preconditioners. Using
m = 170 however does not as strongly impact E[J ] as using smaller values of m in the case
of P = 10, 100 and 1,000. The choice m = 170 is optimal for P = 10, 000 preconditioners.
A major difference of the preconditioning strategy based on deterministic grids is that the
number m of approximating KL modes depends on P . A consequence of this scheme on
the evolution of the average number of solver iterations is that the decrease of E[J ] does
not stagnate as P is increased, unlike the case of the preconditioning strategies based on
stationary quantizers with a fixed value of m. Meanwhile, although the preconditioning
strategy based on deterministic grids does not necessarily yield values of E[J ] as low as
using a stationary quantizers with T−12 (ξ) = Λ1/2ξ with an optimally selected value of m,
it does reasonably well for the entire range of values for the number P of preconditioners
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considered in this study.
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Figure 4.12: Average numbers of PCG iterations for different quantizations of precondi-
tioners.

4.7.5 Effect of local interpolation

The last experiment conducted in this chapter consists of building local interpolations of
multiple preconditioners instead of applying a single preconditioner M̂p to solve a sampled
linear system. As a means to build such local interpolations, groups of centroids must
be formed. We do so using the k-means algorithm to compute clusters of close centroids
for every given quantization. For a given number P of preconditioners, we need to pick a
number M of clusters. We do so so as to have an average cluster size of 4. That is, for
P = 100, 1,000 and 10,000, we use M = 25, 250 and 2,500, respectively. We develop local
interpolators for the preconditioning strategies based on stationary quantizers for both
choices of T2. As described in Section 4.6, we compute the coefficients of the local interpo-
lation using the randomly sketched matrix AΘ. Similarly as in [168], we use matrix-free
sub-sampled randomized Hadamard transforms, with K = 1, 000. The experiment is con-
ducted with AMG preconditioners as well as with Cholesky factorizations. For the totality
of the linear systems solved, using a local interpolator shows absolutely no impact what-
soever on the number of solver iterations compared to using a single preconditioner M̂p.
In addition to the interpolation presented in Section 4.6, another interpolation method
described in the work of Zahm and Nouy [168] is used, namely the Shepard interpolation.
Similarly, absolutely no impact is observed on the convergence of PCG.

4.8 Conclusion

In this chapter, we developed preconditioning strategies based on the quantization of
coefficient fields for the iterative solve of linear systems which arise from the discretization
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of sampled stochastic elliptic PDEs with random variable coefficients.

The problem of functional quantization of coefficient fields was transformed to a prob-
lem of vector quantization in the stochastic space induced by the KL expansion of a
mapping T−1κ of the coefficient field. From thereon, an additional map T2 was intro-
duced so as to allow some flexibility in the design of the vector quantizer q2 which can
be related to a quantizer of the coefficient field through Eq. (4.18). In particular, we
considered Voronoi stationary quantizers which minimize the distortion induced by the
L2 norm of the random vector T−12 (ξ). Two methods were considered to compute these
stationary quantizers, namely k-means and CLVQ. In [117], it is argued that k-means is
untractable in multiple dimensions, i.e., when m becomes large. Hence, we compared the
use of CLVQ to the use of k-means to compute stationary vector quantizers of T−12 (ξ)
where ξ is an m-dimensional standard Gaussian random vector with covariance Im. Ex-
periments where conducted with both T−12 (ξ) = Λ1/2ξ and T−12 (ξ) = Λ1/2Fξ ◦ ξ where
Λ = diag(λ1, . . . , λm) in which λ1, . . . , λm are the dominant eigenvalues of the KL ex-
pansion of a stationary Gaussian process with unit variance and squared exponential
covariance. Contrarily to what is claimed in [117], we had no difficulty computing sta-
tionary quantizers with comparable levels of distortion using both methods with values
of m going up to 200 for numbers of clusters spanning from P = 10 to P = 10, 000 with
sample sizes of 100,000. When it comes to running times, CLVQ was faster for P = 10
while k-means was faster for P = 1, 000 and 10, 000. Note that the clustering of the
latent random vectors to compute stationary quantizers is only a pre-processing phase of
the MC simulation which, for sufficiently large numbers of realizations, only represents a
negligible fraction of the total computing effort. The great majority of the computational
load is the linear solve of the multiple linear systems corresponding to all the sampled
realizations of the coefficient field.

We investigated the effect of the choice of the map T2 on the properties of the sta-
tionary quantizer q2. It was shown that choosing T−12 (ξ) = Λ1/2ξ leads to ellipsoidal
clouds of centroids with aspect ratios depending on the distribution of λ1, . . . , λm. The
distribution of eigenvalues also impacts the shape of the Voronoi cells of the quantizer,
whose sizes increase with the distance from the centroid of the cell to the origin. The
attribution frequency f

(ns)
2,p also depends on the norm ∥ξ̂p∥ of the cell centroid in a way

somewhat similar to a half bell curve. Meanwhile, using T−12 (ξ) = Λ1/2Fξ ◦ ξ leads to
rectangular clouds of centroids with aspect ratios which depend on the distribution of
λ1, . . . , λm. The distribution of eigenvalues does not significantly impact the shape of
the Voronoi cells within the rectangular cloud, which all are very small. Systematically,
some square Voronoi cells occur at the corners of the cloud of centroids, between which
are packed elongated cells. The attribution frequency f

(ns)
2,p only slightly varies around

the value 1/P without following any specific pattern with respect to the location of the
centroid. The distribution of the attribution frequencies can be interpreted in terms of
its effect on the underlying preconditioning strategy. For, T−12 (ξ) = Λ1/2Fξ ◦ ξ, the some-

what uniform distribution of f
(ns)
2,1 , . . . , f

(ns)
2,P with low spread around 1/P means that the

underlying strategy is such that every preconditioner is used for approximately as many
linear systems. On the other hand, the dependence of the attribution frequency on the
norm ∥ξ̂p∥ which we observe when using T−12 (ξ) = Λ1/2ξ is such that the preconditioners

which correspond to smaller values of ∥ξ̂p∥ are used to solve more linear systems. Note
that, typically, the conditioning number of a Galerkin operator increases with the norm of
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the latent vector [ξ1, . . . , ξnKL
] which defines the realization of the underlying field T−1κ.

In this work, we considered linear systems of dimension n = 99, 681. Consequently, we
were not able to simultaneously store all the preconditioners in memory for some values
of P , i.e., 1,000 and 10,000. In practice, even larger linear systems may have to be solved,
in which case only one or a couple of preconditioners may be stored in memory at once.
Then, two possible ways to carry an MC simulation arise. First, a sequential simulation
relies on a preliminary step which consists of sampling all the latent random vectors of
the simulation and attributing them to the corresponding centroids. These realizations
are stored on disk. Then, we start by loading the first preconditioner in memory as well
as all the corresponding realizations. While the preconditioner is stored in memory, we
assemble the linear system of each realization and solve each linear system. Once all the
corresponding linear systems have been solved, it is time to load the second preconditioner
in memory along with its corresponding realization, and so on. The second approach is
parallel. Typically, one has access to a distributed memory system. Then, one can identify
a main node which is used to sample realizations of the coefficient field which are sent to
the node with the corresponding preconditioner. In order to account for the total running
time of a sequential simulation, one can simply look at the expected number of solver
iterations of a given preconditioning strategy. Meanwhile, the total time of a parallel
simulation is rather accounted by the maximum time taken by any of the nodes to solve
all its attributed linear systems. Therefore, in the case of parallel simulations, we are
more interested in the distribution of cumulated solver iterations among preconditioners
for a given simulation.

For the case of parallel simulations, the preconditioning strategies based on station-
ary quantizers were considered for both choices of the map T2. It was observed that
choosing T−12 (ξ) = Λ1/2ξ leads to a larger spread of the number of cumulated solver iter-
ations among the different preconditioners. Although the minimum number of cumulated
solver iterations for a preconditioner is smaller with this choice of T2 than when choosing
T−12 (ξ) = Λ1/2Fξ ◦ ξ, so is the maximum number of cumulated solver iterations. Hence,
we can say that T−12 (ξ) = Λ1/2Fξ ◦ξ leads to more balanced numbers of cumulated solver
iterations and should thus be preferred for parallel simulations.

For the case of sequential simulations, the performance of a given preconditioning
strategy can be evaluated in terms of the expected number of solver iterations. Once
again, preconditioning strategies were considered which are based on stationary quan-
tizers based on the two possible choices of the map T2. It was observed that choosing
T−12 (ξ) = Λ1/2ξ leads to smaller average numbers of solver iterations and should thus be
preferred for sequential simulations. However, the optimal choice of the number m of KL
modes of the approximating coefficient field was shown to depend on the number P of
preconditioners. That is, for smaller values of P , it is preferable to chose a dimension m
of the approximating stochastic space which is rather small. However, as we increase the
value of P , the same choice m is such that the stochastic space starts to saturate with
centroids and the effect on the convergence of PCG starts to be less significant, in which
case it is advantageous to increase the dimension m. Hence, in order to chose the optimal
number m for given number P of preconditioners, one may have to run a preliminary
study in which the relative performance of different values of m is investigated. A third
preconditioning strategy based on deterministic grids was shown to provide a reasonable
alternative to the strategies based on stationary quantizers. Indeed, the increase of the
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dimension m of the approximating stochastic space of the deterministic grid as a function
of the number P of preconditioners is such that the strategy based on deterministic grids
never seems to saturate as opposed to the strategies based on stationary quantizers with
a fixed value of m. Meanwhile, the average numbers of solver iterations achieved by the
strategy based on deterministic grids are also reasonably small.

Local interpolations of preconditioners were introduced as an attempt to leverage
the fact that, even when using distributed memory systems, each node is likely able to
store a small number of preconditioners greater than one. Therefore, local interpolations
based on the optimal linear span of preconditioners from small clusters of neighboring
centroids were introduced in a similar way to what was proposed in [168]. This strategy
was however shown to not bring any amelioration to our different strategies based on
quantizers of coefficient fields.
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Chapter 5

Conclusion and perspectives

5.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2 Summary of conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3 Ideas of future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

This thesis was aimed at developing preconditioning strategies for the iterative solve
of linear systems with multiple operators and right-hand sides which arise when discretiz-
ing stochastic ellitpic PDEs while sampling random variable coefficients by Monte Carlo
methods. Here, we summarize our contributions as well as our conclusions, and we list
some ideas of future works.

5.1 Summary of contributions

The following contributions were made:

• Parallel Julia implementation of the DD-KL method presented in Section 1.2.2 using
P1 finite elements with unstructured triangular meshes in 2D. This implementation
is parallelized with Distributed.jl. The source code can be found in the following
files:

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/F

em/KarhunenLoeveDomainDecomposition.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/F

em/KarhunenLoeveDomainDecompositionHelper.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/F

em/KarhunenLoevePllDomainDecomposition.jl

• Julia implementation of preconditioners based on non-overlapping domain decom-
position. The source code can be found in the following file:

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/F

em/EllipticPdeDomainDecomposition.jl

153

https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/KarhunenLoeveDomainDecomposition.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/KarhunenLoeveDomainDecomposition.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/KarhunenLoeveDomainDecompositionHelper.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/KarhunenLoeveDomainDecompositionHelper.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/KarhunenLoevePllDomainDecomposition.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/KarhunenLoevePllDomainDecomposition.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/EllipticPdeDomainDecomposition.jl
https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/Fem/EllipticPdeDomainDecomposition.jl


• Application of two limit preconditioning strategies. A first one which consists of us-
ing a constant preconditioner based on a central representative coefficient field, and
a second strategy which consists of redefining the preconditioner for every sampled
linear system on the basis of the Galerkin operator of the coefficient field realization.
The use of these two basic strategies allowed to draw the upper and lower limits
of the PCG convergence behavior within which the other preconditioning strategies
lie.

• Application and Julia implementation of deflation with approximate eigenvectors
for the linear solve of sequences of linear systems with varying operators and right-
hand sides which arise from the discretization of stochastic elliptic PDEs when the
random variable coefficients is sampled by MCMC. The source code of the deflated
(preconditioned) solvers can be found in the following file:

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/defcg.jl

• Application, Julia implementation and analysis of two different projection methods
used for online eigenvector approximation, namely Rayleigh-Ritz (RR) and har-
monic Rayleigh-Ritz (HR) projections, as well as of different restarting strategies of
the eigen-search space, namely thick-restart (TR) and locally optimal thick-restart
(LO-TR). The source code of the different projection methods and restarting strate-
gies implemented for online eigenvector approximation within deflated (precondi-
tioned) solvers can be found in the following files:

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/rrdefpcg.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/hrdefpcg.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/trrrdefpcg.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/trhrdefpcg.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/lotrrrdefpcg.jl

– https://github.com/venkovic/julia-phd-krylov-spdes/blob/master/R

ecyclingKrylovSolvers/lotrhrdefpcg.jl

• Development of preconditiong strategies based on the quantization of random coef-
ficient fields with stationary quantizers of two different maps of the latent random
vectors.

• Development of preconditioning strategies based on the quantization of random
coeffcient field with quantizers of the latent random vector with deterministic grids.
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5.2 Summary of conclusions

Several conclusions were drawn throughout the thesis. We list the most important con-
clusions as follows:

• The preconditioning strategy based on delfation with online eigenvector approxima-
tion works better when used with preconditioners whose application leaves a trail
of well separated eigenvalues at the lower extremity of the spectrum. Consequently,
this strategy is recommended when using bJ preconditioners and preconditioners
based on non-overlapping domain decomposition. It is however not recommended
to use with AMG preconditioners.

• Both RR and HR projections lead to similar convergence behaviors of the deflated
linear solve of sequences of correlated linear systems which arise when sampling
the coefficient field of stochastic PDEs by MCMC. However, unlike HR projections,
RR projections require no preconditioner application when building the reduced
eigenvalue problem of eigenvector approximation. Consequently, RR projections
lead to more efficient runtimes.

• Restarting the eigen-search space for the online eigenvector approximation used by
deflated solvers leads to significant performance improvements, especially for linear
systems of larger dimension. However, the LO-TR restarting strategy only proves
to be more useful than TR when it is used with RR projections, particularly with
bJ preconditioners.

• When using preconditioning strategies based on stationary quantizers for serial MC
simulation of stochastic PDEs, it is recommended to use the map T−12 (ξ) = Λ1/2ξ
of the latent random vector ξ as it leads to smaller expected numbers of solver
iterations.

• When using preconditioning strategies based on stationary quantizers for parallel
MC simulation of stochastic PDEs, it is recommended to use the map T−12 (ξ) =
Λ1/2Fξ ◦ ξ of the latent random vector ξ as it leads to a more balanced distribution
of cumulated solver iterations among the different preconditioners.

• When using preconditioning strategies based on stationary quantizers of coefficient
fields, the optimal number on KL modes in the approximating coefficient field de-
pends on the number of preconditioners. As a means to optimally tune the number
of KL modes to obtain a more performant preconditioning strategy, one may have
to run preliminary computations. An alternative to stationary quantizers is a quan-
tizer based on deterministic grids in the stochastic space for which the number of
KL modes increases as a function of the number of preconditioners. The approach
based on deterministic grids has shown to yield average numbers of solver iterations
which are comparable to the best results obtained by a stationary quantizer built
with T−12 (ξ) = Λ1/2ξ. The advantage of the approach based on deterministic grids
is that it shows no stagnation as a function of the number of preconditioners, as
opposed to using a stationary quantizer with a fixed number of KL modes, and it
circumvents the need for preliminary computations.
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5.3 Ideas of future works

The work presented in this thesis can serve as a motivation for further studies. In partic-
ular, we find the following to be interesting openings:

• The preconditioning strategy based on the deflation of correlated linear systems
which was presented in Chapter 3 can be applied in the context of Bayesian inference
of coefficient fields also referred to as inverse modeling. That is, one may have an
array of observations of the coefficient field of a deterministic PDE at different
locations within the domain Ω. The objective is then to infer the KL expansion of
the coefficient field defined over the entire domain Ω given the observations. This
approach relies on prior information related to the unknown KL expansion. Using
Bayes’ formula, one can formulate a posterior distribution of the random variables
of the inferred KL expansion. The posterior distribution is defined in terms of
a marginal likelihood which can be highly complex to evaluate. As a means to
sample the posterior distribution, it is possible to proceed by MCMC and thus
circumvent the need to evaluate the marginal likelihood. Then, we end up having to
solve sequences of correlated linear systems using MCMC to sample the underlying
coefficient field, exactly like in Chapter 3.

• As it was shown in Chapter 1, the preconditioning strategy which consists of assem-
bling an AMG preconditioner for each realization of linear system yields excellent
convergence properties. However, the cost of the naive assembly of a new AMG
preconditioner from scratch on the basis of the Galerkin operator of every single
realization of the coefficient field is prohibitive. In this thesis, we have used the
same finite element mesh for the discretization of the PDE with all the realizations
of the coefficient field. What our initial investigations have shown is that some
the features built during the AMG assembly of all these Galerkin operators remain
unchanged from one realization to another. As such, we believe it may be possible
to leverage the fact that a single constant mesh is used for each of the Galerkin
operators used for the AMG preconditioner definitions. We would like to recycle
some of the features of the AMG setup, and infer others by some interpolation tech-
niques so as to significantly decrease the AMG setup time for new realizations. The
convergence behavior of the realization-dependent AMG preconditioner is so good
in comparison to all the other preconditioning strategies investigated in this thesis,
that speeding-up the setup time of AMG is perhaps the most promising options to
build highly efficient preconditioning strategies for sotchastic elliptic PDEs.

• All the preconditioners presented in Chapter 1 are rather straightfoward to paral-
lelize. Hence, as a means to solve much larger linear systems, the strategy based
on deflation presented in Chapter 3 could be parallelized. When parallelizing these
methods on distributed memory systems, the runtime is not governed anymore by
computation, but rather by the communication which occurs at the different syn-
chronization points of the parallel solver implementations. As such, we are interested
in exploring communication-avoiding methods to improve the runtime of a parallel
implementation, while still carrying the restart of the eigen-search space for the on-
line eigenvector approximation. In particular, we are interested in s-step methods
which consists of fusing s loop iterations of the linear solver so as to asymptotically
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reduce sequential and parallel communication costs by a factor of O(s). A first ap-
plication of s-step methods to deflated conjugate gradients was proposed by Carson
et al. in [24].
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Appendix A

Practical considerations of the finite
element method

A.1 Triangular element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2 Assembly of the Galerkin system . . . . . . . . . . . . . . . . . . . . . . . 164

The computation of a finite element approximation consists of the following tasks:

1. Input of the data on Ω and ∂Ω defining the problem to be solved.

2. Generation of a grid or mesh of elements.

3. Construction of the Galerkin system.

4. Solution of the discrete system, using a linear solver that exploits the sparsity of
the finite element coefficient matrix.

5. A posteriori error estimation.

Here, we focus on the core aspect 3. of setting up the discrete Galerkin system, i.e.,
Eq. (1.97). The key idea in the implementation of finite element methodology is to
consider everything elementwise, that is, locally one element at a time. In effect the
discrete problem is broken up; for example, Eq. (1.96) is rewritten as

n∑

j=1

uja(ϕj, ϕi) =
n∑

j=1

uj

∫

Ω

∇ϕj(x) · ∇ϕi(x)dx =
n∑

j=1

uj

{ ∑

△k∈Th

∫

△k

∇ϕj(x) · ∇ϕi(x)dx

}

(A.1)

Notice that when forming the sum over the element in Eq. (A.1), we need only take account
of those elements where the basis functions ϕi and ϕj are both nonzero. This means that
entries Aij and bi in the Galerkin system can be computed by calculating contributions
from each of the elements, and then gathering (or assembling) them together.

If the k-th element has nk local degrees of freedom, then there are nk basis functions
that re not identically zero on the element. For example, in the case of a mesh made up
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entirely of P1 triangles, we have nk = 3 for all elements, so that in each △k there are
three element basis functions associated with the restriction of three different global basis
functions ϕj. In all cases the local functions form an (element) basis set

Ξk := {ψk,1, ψk,2, . . . , ψk,nk
}, (A.2)

so that the solution within the element takes the form

uh|k =
nk∑

i=1

u
(k)
i ψk,i. (A.3)

Using triangular elements, for example, and localizing Eqs. (1.98) and (1.99), we need to
compute a set of nk × nk element matrices A(k) and a set of nk-vectors b

(k) such that the
components of A(k) are given by

A
(k)
ij =

∫

△k

∇ϕk,i(x) · ∇ϕk,j(x)dx, (A.4)

and the components of b(k) are

b
(k)
i =

∫

△k

f(x)ϕk,i(x)dx. (A.5)

The matrixA(k) is referred to as the element stiffness matrix (local stiffness matrix) associ-
ated with element △k. Notice that for computational convenience the essential boundary
condition has not been enforced in Eq. (A.5). This is the standard implementation; essen-
tial conditions are usually imposed after the assembly of the element contributions into
the Galerkin matrix has been completed. We will return to this point in the discussion of
the assembly process.

A.1 Triangular element matrices

The first stage in the computation of the element stiffness matrix A(k) is to map from a
reference element △∗ onto the given element △k, as illustrated in Fig. A.1. For straight
sided triangles the local-global mapping is defined for all points (x, y) ∈ △k and is given
by

x(ξ, η) = x1χ1(ξ, η) + x2χ2(ξ, η) + x3χ3(ξ, η) (A.6)

y(ξ, η) = y1χ1(ξ, η) + y2χ2(ξ, η) + y3χ3(ξ, η) (A.7)

where

χ1(ξ, η) = 1− ξ − η (A.8)

χ2(ξ, η) = ξ (A.9)

χ3(ξ, η) = η (A.10)

are the P1 basis functions defined on the reference element.
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Figure A.1: Isoparametric mapping of P1 element.

Clearly, the map from the reference element onto △k is (and has to be) differentiable.
Thus, given a differentiable function φ(ξ, η), we can transform derivatives via

[
∂φ
∂ξ
∂φ
∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

][∂φ
∂x
∂φ
∂y

]
. (A.11)

The Jacobian matrix in Eq. (A.11) may be simply calculated by substituting Eqs. (A.8)–
(A.10) in Eqs. (A.6)–(A.7) and differentiating to give

Jk =
∂(x, y)

∂(ξ, η)
=

[
x2 − x1 y2 − y1
x3 − x1 y3 − y1

]
. (A.12)

Thus in this simple case, we see that Jk is a constant matrix over the reference element,
and that the determinant

|Jk| =
∣∣∣∣
x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣ =

∣∣∣∣∣∣

1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣
= 2|△k| (A.13)

is simply the ratio of the area of the mapped element △k to that of the reference element
△∗. The fact that |Jk(ξ, η)| ̸= 0 for all points (ξ, η) ∈ △∗ is very important; it ensures
that the inverse mapping from △k onto the reference element is uniquely defined and
is differentiable. This means that the derivative transformation of Eq. (A.11) can be
inverted to give

[
∂φ
∂ξ
∂φ
∂η

]
=

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

] [∂φ
∂ξ
∂φ
∂η

]
. (A.14)

Thus we see that derivatives of functions defined on △k satisfy

∂ξ

∂x
=

1

|Jk|
∂y

∂η
,
∂η

∂x
= − 1

|Jk|
∂y

∂ξ
, (A.15)

∂ξ

∂y
= − 1

|Jk|
∂x

∂η
,
∂η

∂y
=

1

|Jk|
∂x

∂ξ
. (A.16)

Given the basis functions on the master element ψ∗,i, i = 1, . . . , nk, the Pm element
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stiffness matrix A(k) in Eq. (A.4) is easily computed:

A
(k)
ij =

∫

△k

(
∂ψk,i

∂x

∂ψk,j

∂x
+
∂ψk,i

∂y

∂ψk,j

∂y

)
dxdy i, j = 1, . . . , nk (A.17)

=

∫

△∗

(
∂ψ∗,i
∂x

∂ψ∗,j
∂x

+
∂ψ∗,i
∂y

∂ψ∗,j
∂y

)
|Jk|dξdη. (A.18)

In the specific case of the linear mapping given by Eqs. (A.8)–(A.10), it is convenient
to define the following coefficients:

b1 = y2 − y3 , b2 = y3 − y1 , b3 = y1 − y2, (A.19)

c1 = x3 − x2 , c2 = x1 − x3 , c3 = x2 − x1 (A.20)

in which case Eqs. (A.12)–(A.16) imply that

[∂φ
∂x
∂φ
∂y

]
=

1

2|△k|

[
b2 b3
c2 c3

][∂φ
∂ξ
∂φ
∂η

]
. (A.21)

Combining Eq. (A.21) with Eq. (A.18) gives the general form of the stiffness matrix
expressed in terms of the local derivatives of the element basis functions:

A
(k)
ij =

∫

△∗

(
b2
∂ψ∗,i
∂ξ

+ b3
∂ψ∗,i
∂η

)(
b2
∂ψ∗,j
∂ξ

+ b3
∂ψ∗,j
∂η

)
1

|Jk|
dξdη (A.22)

+

∫

△∗

(
c2
∂ψ∗,i
∂ξ

+ c3
∂ψ∗,i
∂η

)(
c2
∂ψ∗,j
∂ξ

+ c3
∂ψ∗,j
∂η

)
1

|Jk|
dξdη. (A.23)

With the simplest linear approximation, that is, ψ∗,i = χi (see Eqs. (A.8)–(A.10)), the
local derivatives ∂ψ∗,i/∂ξ, ∂ψ∗,i/∂η are constant, so the local stiffness matrix is trivial to
compute.

From a practical perspective, the simplest way of effecting the local transformation
given by Eqs. (A.8)–(A.10) is to define local element functions using triangular or barycen-
tric coordinates.

A.2 Assembly of the Galerkin system

The assembly of the element contributions A(k) and b(k) into the Galerkin system is a
reversal of the localization process illustrated in Fig. A.2.

Figure A.2: Assembly of P1 global basis function from component element functions.
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The main computational issue is the need for careful bookkeeping to ensure that the
element contributions are added into the correct locations in the coefficient matrix A and
the vector b. The simplest way of implementing the process is to represent the mapping
between local and global entities using a connectivity matrix. For example, in the case
of the mesh of P1 triangles illustrated in Fig. A.3 we introduce the connectivity matrix
defined by

P T =



9 12 9 6 10 11 4 4 6 5 5 2 1 8
10 10 6 7 7 7 6 3 3 7 3 3 3 7
12 11 10 10 11 8 9 6 7 3 2 1 4 5


 (A.24)

so that the index j = P (k, i) specifies the global node number of local node i in element

k, and thus identifies the coefficient u
(k)
i in Eq. (A.3) with the global coefficient uj in

the expansion (1.94) of uh. Given P , the matrices A(k) and vectors b(k) for the mesh
in Fig. A.3 can be assembled into the Galerkin system matrix and vector using a set of
nested loops, see Algo. 28.

Algorithm 28 Global assembly of Galerkin system for the mesh of Fig. A.3

Input: A(k), b(k) for k = 1, . . . , 14
Output: A, b
1: A = 0, b = 0
2: for k = 1, . . . , 14 do
3: for j = 1, . . . , 3 do
4: for i = 1, . . . , 3 do
5: APkiPkj

= APkiPkj
+ A

(k)
ij

6: end for
7: fPkj

= fPkj
+ f

(k)
j

8: end for
9: end for

12

11

8

2

3

7

10
9

4

6

1
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1 2
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5
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8
9 10

11

1213

14

Figure A.3: Nodal and element numbering of a triangular mesh.

A few observations are appropriate here. First, in a practical implementation, the
Galerkin matrix A will be stored in an appropriate sparse format. Second, it should be
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apparent that as the elements are assembled in order above, then for any node s say,
a stage will be reached when subsequent assemblies do not affect node s (i.e., the s-th
row and column of the Galerkin matrix). When this stage is reached the variable is said
to be fully summed; for example, variable 6 is fully summed after assembly of element
9. This observation motivates the development of specialized direct solvers (know as
frontal solvers) whereby the assembly process is intertwined with Gaussian elimination.
In essence, as soon as a variablebecomes fully summed, row operations can be performed
to make entries below the diagonal zero and the modified row can then be saved for
subsequent back-substitution.

It should also be emphasized that the intuitive element-by-element assembly embodied
in the loop structure above is likely to be very inefficient; the inner loop involves indirect
addressing and is too short to allow effective vectorization. The best way of generating
efficient finite element code is to work with blocks of elements and to reorder the loops
so that the element loop k is the innermost. For real efficiency the number of elements in
a block should be set so that all required data can fit into cache memory.

We now turn our attention to the imposition of essential boundary conditions on the
assembled Galerkin system. We assume here that the basis functions are Lagrangian type,
that is, each basis function ϕj has a node xj ∈ Ω with it such that

ϕj(xj) = 1 , ϕj(xi) = 0 for all nodes xi ̸= xj. (A.25)

It follows from this assumption that for xj ∈ ∂Ω, uh(xj) = uj, where the required value
of uj is interpolated from the Dirichlet boundary data.

Now consider how to impose this condition at node 5 of the mesh in Fig. A.3. Suppose
that a preliminary version of the Galerkin matrix A is constructed via Eq. (A.4) for 1 ≤ i,
j ≤ n+n∂, and that in addition,all the contributions

∫
Ω
ϕi(x)f(x)dx have been assembled

into the right-hand side vector b. There are then two things needed to specify the system
(1.97) via Eqs. (1.96) and (1.99): the given value of u5 must be included in the definition
of the vector b of Eq. (1.99), and the fifth and column of the preliminary Galerkin matrix
must be deleted (since ϕ5 is being removed from the space of test functions). The first step
can be achieved by multiplying the fifth column of A by the specified boundary value u5
and then subtracting the result from b. An alternative technique is to retain the imposed
degree of freedom in the Galerkin system by modifying the row and column (5, here) of the
Galerkin matrix corresponding to the boundary node so that the diagonal value is unity
and the off-diagonal entries are set to zero, and then setting the corresponding value of b
to the boundary value u5. Notice that the modified Galerkin matrix thus has a multiple
eigenvalue of unity, with multiplicity equal to the number of nodes on the boundary.
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Computer Methods in Applied Mechanics and Engineering, 271:109–129, 2014.
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