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2 Chapter 1. Introduction

1.1 From equilibrium to non-equilibrium physics

When dealing with a many-body system, using classical and quantum mechanics
to follow individual particle trajectories is most often untractable. The goal of
statistical physics is then to develop models and methods that can effectively
capture the statistical regularities of these systems and make predictions about
their future states, at the cost of giving up the ambition to access the individual
properties of particles. This requires developing mathematical techniques that
can account for the many interactions between the objects within the system.

One of the first major successes of statistical physics is the development of the
kinetic theory of gases in the 19th century by J.C Maxwell [Maxwell 1860]. This
theory provides a statistical description of the behavior of a large number of gas
molecules. It gives a microscopic basis to the ideal gas law and provides a foun-
dation for thermodynamics. Another major success is the explanation of phase
transitions in materials, such as the liquid-gas, or the paramagnetic-ferromagnetic
phase transitions. In the early 20th century, Paul Ehrenfest developed a classifica-
tion of such transitions on the basis of singularities in derivatives of the free energy
function [Ehrenfest 1933]. They are now commonly used and known as first- and
second-order transitions. In addition, statistical physics has played a key role in
the development of other areas of physics, including the study of complex systems,
from Bose-Einstein condensates to polymers and glasses.

1.1.1 Microscopic and macroscopic equilibrium

One way to statistically describe the dynamics of a system is through a set of
configurations {φ} and transition rates W between them. These configurations
may for instance encode the positions of particles in a gas or spins of ferromagnetic
systems. When the configurations {φ} describe the microscopic scale, the system
is in equilibrium if the probability flux from a state φ to a state φ′ is equal to its
reverse in steady-state:

P (φ)W (φ→ φ′) = P (φ′)W (φ′ → φ) (1.1)

where P (φ) is the stationary probability to find the system in the configuration
φ. This equation encodes the principle of detailed balance, which characterizes
statistical equilibrium. A pragmatic illustration of detailed balance takes the



1.1. From equilibrium to non-equilibrium physics 3

form of Kolmogorov’s criterion [Kolmogorov 1936]: the products of the transition
rates for visiting a loop of three configurations in one order, φ1 → φ2 → φ3 → φ1,
must be equal to that of the reverse order φ1 → φ3 → φ2 → φ1. This insures, for
instance, that there is no net flux in phase space.

For systems in equilibrium at the macroscopic level i.e. at thermodynamic
equilibrium, the dynamics can simply be ignored and the computation of macro-
scopic quantities such as pressure or entropy reduces to that of averages within
the appropriate statistical ensemble. For instance, in the canonical ensemble at
inverse temperature β, averages are taken with respect to the probability distri-
bution P (φ) = exp(−βH(φ))/Z where H is the Hamiltonian and Z the partition
function.

The formalism of equilibrium statistical physics enables us to study a variety of
systems using the same mathematical tools. Moreover, linear response theory pre-
dicts that if a system is only slightly perturbed from its equilibrium state, the equi-
librium fluctuations dictate its nonequilibrium response, through the fluctuation-
dissipation theorem [Einstein 1905, Callen & Welton 1951, Kubo 1966], extending
the use of equilibrium statistical mechanics to systems that are ‘close’ to equilib-
rium. However, in many interesting situations, it is not the case. One is then
required to study the dynamics of these out-of-equilibrium systems using novel
analytical and numerical tools.

1.1.2 Out-of-equilibrium physics

A system can be out-of-equilibrium for numerous reasons. An isolated Hamil-
tonian system is out-of-equilibrium if its equilibration time towards stationary
state diverges, which is known as critical slowing down. This is the case of glasses
that remain trapped in a complex energy landscape without being able to relax
to an equilibrium state [Berthier & Biroli 2011]. Externally driven systems with
open boundary conditions, such as living organisms that are constantly exchang-
ing energy and matter with their environment, or systems subject to an external
field like shear or shaking, are also out-of-equilibrium. Bacterial colonies or flame
fronts are growing systems and, as such, are not in thermodynamic equilibrium.
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The study of such systems unveiled out-of-equilibrium universality
classes, among which the now-famous KPZ class for growing interfaces
[Kardar et al. 1986]. A dynamic field of research which displays a wide range of
out-of-equilibrium behaviors and breaks detailed balance at the microscopic level
is active matter.

1.2 Active matter

Active matter encompasses all systems whose components dissipate energy in
order to exert forces on their environment. Depending on the nature of the force,
the dynamics of individual components can take many forms, the most common
being self-propulsion.

1.2.1 Origins of the field

Active matter emerged as a topic of physics research in the 1990s. Its origins
can be traced back to 1995 and the influential publications of [Vicsek et al. 1995]
and [Toner & Tu 1995]. They showed that self-propelled particles with local fer-
romagnetic alignment can order even in two dimensions, whereas such ordered
state would be destroyed by fluctuations in the passive case, in agreement with
the Mermin-Wagner theorem [Mermin & Wagner 1966]. This set the stage for
three decades of animated investigations revolving around the theoretical novel-
ties raised by this system such as the nature of the transition to the ordered state
or the computation of critical exponents. An overview of these investigations will
be the topic of Sec. 1.3.

Around the same time, the concept of Active Brownian Particles (ABPs) ap-
peared in 1995 to refer to Brownian particles with the ability to generate a field,
which in turn can influence their motion [Schimansky-Geier et al. 1995]. Later,
[Ebeling et al. 1999] used the same terminology for the now-widely adopted model
of self-propelled particles based on a Langevin equation. The concept of Run-
and-Tumble particle (RTP) was introduced by [Schnitzer 1993] with an exam-
ple of application being the modelling of the movement of swimming bacteria
[Galajda et al. 2007] such as E. coli [Berg 2004]. Later, [Tailleur & Cates 2008]
showed that collections of highly persistent RTPs display aggregating dynamics,
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of collective behaviours in active matter in the bi-
ological realm (top) and in engineered systems (bottom). (a): Micro-
tubule vortices [Sumino et al. 2012]. (b): Fruiting bodies of Myxococcus xan-
thus [Liu et al. 2019]. (c): School of Trevally fish. (d): Rotating clus-
ters of Quincke walkers [Karani et al. 2019]. (e): Spiral flock of Quincke
rollers [Liu et al. 2021]. (f): Trajectories over 25 sec for 5 self-propelled Janus
particles [Howse et al. 2007].

now refered to as Motility-Induced Phase Separation (MIPS). This behaviour was
then extended to ABPs, and will be the topic of Sec. 1.4.

1.2.2 Ubiquity of active matter systems

In addition to the theoretical interests raised by active matter, its study is
also relevant to various fields, in particular in biology (See Fig. 1.1, top row,
for some illustrations) at the scale of molecular motors, where vortices are per-
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sistently reported [Schaller et al. 2011, Sumino et al. 2012] or in bacterial swarms
[Ben-Jacob 2003, Sokolov & Aranson 2012], displaying active bioturbulence [Wensink et al. 2012],
influencing viscosity [López et al. 2015], or exhibiting spatial patterns [Liu et al. 2019,
Curatolo et al. 2020]. At larger scales, collective behaviors of animal groups are
subject to constant investigations. In particular, starlings have been extensively
studied [Cavagna et al. 2010, Parisi 2023], along with fish shoal [Gautrais et al. 2012,
Poel et al. 2022] or swarms of midges [Attanasi et al. 2014a].

In addition to biological systems, some typical condensed matter systems were
made motile [Aranson 2013, Zhang et al. 2017]. Some examples are shown in
Fig. 1.1, bottom row. For instance, [Howse et al. 2007] used particles half-coated
with platinum (an example of Janus particles) in a solution of water and hy-
drogen peroxide. The platinum catalyzes the reduction of hydrogen peroxide
to oxygen and water, producing a chemical gradient which propels the parti-
cle. Other mechanisms can be used to propel inert units. One of them is the
Quincke effect [Tsebers 1980]. Quincke rollers make use of the spontaneous ro-
tation of a dielectric sphere submerged in a conductive fluid and exposed to
a static electric field, propelling the sphere. Assemblies of such active colloids
have been shown to display intriguing features, organizing in whirling structures
[Karani et al. 2019, Liu et al. 2021] or presenting out-of-equilibrium collective be-
haviours [Bricard et al. 2013, Geyer et al. 2019]. Self-propelled Janus particles
enabled to run experimental tests of theories [Ginot et al. 2018] while collection
of vibrated macroscopic objects have been shown to generically display flocking
[Deseigne et al. 2010, Kumar et al. 2014, Soni et al. 2020].

While some real-life experiments are possible, most of the investigations are
carried out using two complementary approaches: agent-based models and con-
tinuum models.

1.2.3 Models of self-propelled particles

Active particles for which interactions with the solution cannot be neglected
are commonly refered to as microswimmers and belong to the class of wet active
matter. According to the kind of far-field fluid flow that they induce, they are
classified into two microswimming types: pushers, like most bacteria, which self-
propel from the rear, and pullers, like algae Chlamydomonas reinhardtii, that
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(a) (b)

Figure 1.2: Simulated paths of (a) run-and-tumble and (b) active Brownian
particles. Reproduced from [Cates & Tailleur 2015].

pulls in the fluid in front with a pair of flagella. The long-ranged interactions
make analytical study of wet active matter challenging.

For simplicity, in the following, we will instead consider dry active matter,
in which hydrodynamic interactions between the constituting particles are ne-
glected. The fluid is assumed to only provide friction, rendering the dynamics
overdamped 1. Energy is injected at the microscopic level by allowing the par-
ticles to self-propel in a direction that has its own dynamics. A simple way to
account for self-propulsion is to model it as a force with constant magnitude Fp
acting on particles. We write the dynamics of a self-propelled particle of mass m
as

mr̈ = −γṙ + Freθ (1.2)

where γ is the viscous friction coefficient and eθ is a unitary vector oriented in
the direction of motion. Eq. (1.2) can be supplemented by a term of thermal
noise which is often considered negligible. In the overdamped limit that we will
consider in this thesis, particles thus self-propel at constant speed v = Fr/γ in
free space. We now present two archetypal models of active particles: Active
Brownian Particles (ABPs) and Run-and-Tumble Particles (RTPs), pictured in
Fig. 1.2. ABPs are continuously reorienting their direction of motion by rotational

1It is a limit relevant for most active matter systems.
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diffusion. In two dimensions, their dynamics read:
{

ṙ = veθ

θ̇ =
√

2Dr η
(1.3)

where Dr is the rotational diffusion coefficient and η is a unit-variance Gaussian
white noise. In contrast, RTPs self-propel in straight lines (“runs”) but stochas-
tically choose a new direction at random, during a “tumble” event. For bacteria,
which show run-and-tumble dynamics, these tumble events are usually signifi-
cantly shorter than the runs, so that we neglect their duration and assume they
are instantaneous.

We consider active particles interacting locally with their neighbours through
two mechanisms: alignment or speed regulation. Alignment causes particles to
align their direction of motion with their neighbours. In Nature, this can be
the result of steric interactions, hydrodynamic interactions, or even voluntary
reorientation. Speed regulation can also result from different phenomena, the
simplest being short-range pairwise repulsive interactions such as excluded volume
interactions. Indeed, when two active particles – such as ABPs or RTPs – collide
head to head, they momentarily stop their motion until one of the particles rotates
in a different direction. This induces an effective decrease in velocity upon contact.
Speed can also be intentionally regulated by the particle, as is the case for bacteria
reacting to fluctuations of concentration of a chemical in their environment, in a
process called quorum-sensing.

In most realistic cases, we expect a combination of alignment and speed regula-
tion to enter the dynamics. In the rest of this work, we will instead focus on the
extreme cases where alignment is the only interaction or where speed regulation
dominates and show that even in these simple settings, many issues remain to be
addressed.

1.2.4 Continuum theories

In addition to particle-level models and simulations, active matter can be ex-
amined using continuum models. They exhibit the structure of generalized hy-
drodynamic equations for continuous fields, commonly density and velocity. The
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evolution of these fields describes the large-scale, long-time behaviour of the sys-
tem and includes non-equilibrium terms arising from the activity. In the few cases
where continuum theories can be constructed from microscopic models by coarse-
graining the dynamics, the procedure allows to establish a connexion between the
parameters in the macroscopic equations and the specific physical mechanisms
(noise, self-propulsion speed, etc).

A different, more empirical method, involves writing hydrodynamic equations
for the macroscopic fields that encompass all possible terms allowed by symme-
try. This methodology involves the appearance of numerous terms whose physi-
cal meaning are not necessarily apparent at first. Moreover, this procedure pre-
vents establishing a straightforward connexion between microscopic dynamics and
macroscopic properties. When restricted to contain a minimal amount of terms,
it however proved useful to describe some behaviours. For instance, Model B
[Hohenberg & Halperin 1977], the standard field theory for phase separation at
equilibrium, was constructed in this spirit. This approach was also employed in
active matter by [Toner & Tu 1995] to describe flocks (the resulting equations
will be presented in Sec. 1.3.2), and later extended to include self-propelled parti-
cles suspended in a fluid in [Aditi Simha & Ramaswamy 2002] and active filament
solutions in [Hatwalne et al. 2004].

Among the various phenomena observed in active matter, two phase transitions
are specific to active systems: the transition to collective motion (flocking) and
the Motility-Induced Phase Separation (MIPS). These two transitions to collective
behaviours can be captured by simple models and exhibit ordered phases that we
will study in this thesis.

1.3 Flocking

1.3.1 Real flocks

The most widespread and spectacular manifestation of collective behaviour in
active matter is arguably collective motion, also known as flocking. It features
self-propelled particles aligning their direction of motion, which self-organize to
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(a) (b)

(c) (d) (e)

Figure 1.3: Collective motion in active matter. (a): Aerial photograph of a large
wildebeest herd [Gueron & Levin 1993]. (b): Murmuration of starlings. (c):
Homogeneous polar phase in a system of rolling colloids [Bricard et al. 2013]. Blue
arrows correspond to roller displacement between two subsequent movie frames.
(d): Vibrated grains [Deseigne et al. 2010]. (e): Local order inside of collective
chiral rollers motion [Zhang et al. 2020].

move collectively on large scales in a coordinated manner without any central
control. Flocking is commonly observed at all scales in many biological systems:
cells migrate collectively, thus keeping the tissue or structure intact and con-
tinuous while remodeling it [Rørth 2009, Giavazzi et al. 2017]. More commonly,
insects [Attanasi et al. 2014b], school of fish [Shaw 1978, Weihs 1973] or herds of
wildebeest [Banerjee 1992, Gueron & Levin 1993] are known to exhibit collective
motion (See Fig. 1.3a) during periods of migration. Perhaps the most in-depth
study of animal flocking was conducted on flock of starlings [Cavagna et al. 2008],
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which display remarkably coordinated behaviours, as show in Fig. 1.3b. Cav-
agna et. al. achieved the 3D reconstruction of flocks of thousands of birds
under field conditions, paving the way for further enlightening investigations
[Ballerini et al. 2008] as well as providing data to test theories of collective an-
imal behaviour [Cavagna & Giardina 2014].

Flocking is also observed in engineered active particles. [Bricard et al. 2013]
studied large populations of Quincke colloidal rollers that self-propel and align
through hydrodynamic interactions. They confined the roller population in race-
tracks and witnessed, increasing density, the transition from a disordered gas to
a state of collective motion, as shown in Fig. 1.3c. [Deseigne et al. 2010] investi-
gated vibrated disks that possess an inherent polar asymmetry, allowing them to
move with quasi-ballistic behaviour over a significant persistence length. Align-
ment occurs during collisions due to the interplay of the self-propulsion and the
repulsive forces between the disks’ hard cores. They witnessed the emergence of
large-scale collective motion by varying the amplitude of the vibration (Fig. 1.3d).
Flocking seems to be a rather robust feature: [Zhang et al. 2020] employed shape-
anisotropic Quincke rollers to make active chiral rollers. They nonetheless found
rotating flocks exhibiting local polar ordering, as shown in Fig. 1.3e. These sys-
tems are different in terms of their sizes and have greatly differing dynamics at
the microscopic level but they exhibit similar macroscopic collective properties
resulting from the coupling of self-propulsion and alignment.

1.3.2 The Vicsek Model

The first minimal model containing these two key ingredients was introduced
by [Vicsek et al. 1995]. It features N self-propelled particles moving at constant
speed v in the 2d plane of surface S, along a direction given by an angle θ. These
particles undergo a local alignment in the following way: at discrete time steps,
each particle averages the direction of propulsion of its neighbours in a unit disk.
It then performs a noisy alignment of its direction of motion with this prefered
direction:

θk(t+ 1) = 〈θi〉i∈Nk + ηξk (1.4)

whereNk is the unit disk centered on the particle k and ξk is drawn from a uniform
disribution in [−π, π]. The particles then update their positions using this new
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orientation:
rk(t+ 1) = rk(t) + veθk(t+1) (1.5)

Here, eθk(t+1) is simply the unit vector oriented along the angle θk(t+1). When the
noise amplitude on the alignment η is low, particles tend to align and move on aver-
age in the same direction. This simple model therefore showed that self-propulsion
and local alignment are sufficient ingredients to observe collective motion.

Shortly after the introduction of the Vicsek Model (VM), [Toner & Tu 1995]
proposed a hydrodynamic description based on the symmetries of the system. It
describes a conserved field ρ advected by a velocity field v:

∂tρ+∇ · (ρv) = 0

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2) =
(
α− β|v|2

)
v −∇P +DL∇(∇ · v)

+D1∇2v +D2(v · ∇)2v + f

where f is a Gaussian white noise. This set of equations is similar to Navier-Stokes
equations supplemented by a standard Ginzburg-Landau term (α− β|v|2) v im-
posing a non-vanishing velocity |v| =

√
α/β. The constants λ1, λ2 and λ3 cor-

respond to advective terms while DL, D1 and D2 are diffusion constants. The
pressure P is expressed as a series expansion in term of the density field ρ. These
equations served as a basis to describe a new non-equilibrium universality class
and, in particular, to predict scaling exponents in the homogeneous phase of
the VM, which are still a topic of discussion [Toner & Tu 1998, Tu et al. 1998,
Toner et al. 2005, Toner 2012b, Mahault et al. 2019].

1.3.3 Transition to collective motion

After the seminal publications of the VM and its theoretical study, it was
commonly believed that an appropriate framework for the understanding of the
transition to collective motion was that of a continuous order-disorder transi-
tion. However, the nature of the transition was subsequently extensively stud-
ied [Grégoire & Chaté 2004, Chaté et al. 2008, Baglietto & Albano 2009]. On the
contrary, Chaté et. al. showed that the apparent continuous transition is a
finite-size effect. At fixed density ρ0 = N/S, starting in the disordered phase
(Fig. 1.4a) and decreasing the noise η, they observed a discontinuous transition



1.3. Flocking 13

(a) (b) (c)

Figure 1.4: Phase diagram of the Vicsek Model and corresponding snapshots from
simulations. Keeping the density constant, at high noise the system is a disordered
gas (a). Decreasing the noise, the system transitions to a state of collective motion
where ordered liquid bands coexist with a dilute gas (b). Finally, at low noise
value, the system is found in a state of homogeneous polar order (c). Red arrows
indicate the prefered direction of motion. Reproduced from [Solon et al. 2015c].

to the formation of dense ordered bands (Fig. 1.4b) propagating in a dilute dis-
ordered gas. At low noise values, they recovered the homogeneous ordered phase
(Fig. 1.4c). Moreover, these bands emerge through the nucleation of many liq-
uid domains which coarsen into bands, and hysteresis is observed in the tran-
sition from disorder to band phase, as for first-order transition at equilibrium.
Therefore, the transition is now recognized as a discontinuous first-order phase
transition [Martin et al. 2021a].
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Figure 1.5: Sketch of the two ingredients of the Active Ising Model: on-site align-
ment and self-propulsion.

1.3.4 A liquid-gas phase separation

Large finite-size effects makes the numerical study of the VM challenging.
Progress in the understanding of the flocking transition has been made follow-
ing the introduction of the Active Ising Model (AIM) [Solon & Tailleur 2013,
Solon & Tailleur 2015], a simple stochastic lattice gas that contains the same in-
gredients as the VM. In the AIM, particles self-propel by diffusing in a direction
biased by the Ising spin they carry: particles carrying a ⊕-spin move to the right
whereas particles carrying a 	-spin move to the left. The continuous rotational
symmetry of the VM is simply replaced by a discrete symmetry in the AIM. Local
alignment of the self-propulsion direction takes the form of an on-site ferromag-
netic alignment between the spins of the particles. The dynamics of the AIM are
pictured in Fig. 1.5.

Like the VM, the AIM displays a phase transition to collective motion: decreas-
ing the temperature, which controls the strength of the alignment dynamics, it
transitions from a disordered gas to an ordered band propagating in a residual
gas (the coexistence phase), to finally reach a homogeneous ordered phase. This
transition is very similar to an equilibrium liquid-gas transition. For instance,
in the coexistence phase, the density of the gas and of the liquid band are only
fixed by the speed of self-propulsion and the temperature. Increasing the density
of particles only results in an increase of the liquid fraction in the system, thus
verifying the lever rule, as in equilibrium [Solon & Tailleur 2015].
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The transition to collective motion in the VM can also be interpreted as a
liquid-gas phase transition, the only qualitative difference with the AIM being
the shape of the bands in the coexistence phase. While in the AIM, the system
phase separates into two distinct dense and dilute domains, in the VM the system
displays a microphase separation: an extensive number of finite-size evenly-spaced
ordered bands travel in a dilute gas [Solon et al. 2015b]. This qualitative difference
was rationalized at the hydrodynamic level by taking into account the fluctuations
in the continuum descriptions of both the AIM and the VM, which were shown to
play a central role in the selection of the shape of the bands [Solon et al. 2015c].
More generally, [Martin et al. 2021a] showed that fluctuations turn continuous
transitions to collective motion predicted by deterministic hydrodynamics into
phase separation. All in all, the previous paradigm of an order-disorder magnetic
transition is now replaced by a phase separation between a disordered gas and an
ordered liquid.

In Chapter 2 we will study the 1d AIM, and show that this liquid-gas phase
separation paradigm partially survives in one space dimension, in the form of
an ordered phase where particles aggregate and move collectively. Symmetry
is not broken though because the aggregate reverses stochastically its direction
of motion due to the prominent effect of fluctuations. We will rationalize this
behavior by explaining the dynamics of the aggregates and their reversals. At
lower temperature, we observe static structures which are amenable to an analytic
treatment.

Chapter 3 will be devoted to the study of the stability of the flocking phase of
the AIM. We will show that both the band in the coexistence phase and the ho-
mogeneous ordered phase are metastable to the nucleation of counter-propagating
droplets in the 2d AIM. Using a continuous description, we will show that such
droplets propagate if they are large enough and characterize analytically their
self-similar growth. Our results imply that, in the thermodynamic limit, discrete-
symmetry flocks are metastable in all dimensions.
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1.4 Motility-Induced Phase Separation

1.4.1 Realizations of MIPS

In contrast to flocking, where the collective motion results from the coupling of
self-propulsion and alignment, the Motility-Induced Phase Separation (MIPS) is
a collective behavior emerging as a consequence of the dynamic interplay between
self-propulsion and velocity-regulation. It is perhaps the most elementary phase
transition observed in active matter. As already mentioned in Sec. 1.2.3, particles
progressing in a dense area can experience a decrease in their velocity, whether
because of collisions or quorum-sensing mediated interactions. As a result, they
accumulate in high density regions. The mutual influence of these two ingredients
generates a feedback mechanism leading to the progressive appearance of clusters
of high density surrounded by a dilute phase. These clusters undergo coarsening
until only one macroscopic cluster remains, coexisting with a remaining gas, and
thus achieving a full phase separation.

This scenario was first predicted in [Tailleur & Cates 2008] for Run-
and-Tumble Particles (RTPs) interacting via quorum-sensing and sub-
sequently triggered a multitude of numerical realizations of MIPS. Ac-
tive Brownian Particles (ABPs) interacting solely through excluded vol-
ume effects, without any aligning interactions, have been studied exten-
sively [Fily & Marchetti 2012, Cates & Tailleur 2013, Redner et al. 2013,
Stenhammar et al. 2013, Bialké et al. 2013, Wysocki et al. 2014,
Solon et al. 2015e, Takatori & Brady 2015]. At high density, they have
been shown to phase separate in the form of the coexistence of dense clus-
ters with a dilute gas (Fig. 1.6a) which then coarsen into one macroscopic
cluster. In models of RTPs reducing their swimming speed in high density
regions, [Tailleur & Cates 2008, Thompson et al. 2011, Solon et al. 2015a] also
reported the formation of high-density clusters, as shown in Fig. 1.6b. Recently,
[Fodor et al. 2016, Martin et al. 2021b] studied active Orstein-Uhlenbeck parti-
cles, which have the property of having Gaussian fluctuations of their velocity,
interacting by pairwise repulsive forces and also found the system to display
MIPS (Fig. 1.6c).

Experimentally, in addition to self-propulsion and repulsive interactions, the
systems usually feature various other more or less controlled effects, such as at-
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(a) (b) (c)

(d) (e) (f)

Figure 1.6: Motility-Induced Phase Separation in numerical simulations (top
row) and in experimental setups (bottom row). (a): Coarsening stage for
ABPs [Redner et al. 2013] and (b) for RTPs swimming at speed v(ρ̃) where ρ̃
is the average density around a particle [Solon et al. 2015a]. (c): Occurence of
MIPS for active Ornstein-Uhlenbeck particles [Martin et al. 2021b]. (d): Ex-
perimentally measured density of self-propelled colloids whose motility is tuned
by a computer-assisted loop reducing their swimming speed in high density re-
gions [Bäuerle et al. 2018]. Warmer colors indicate higher local density. Self-
propelled Janus particles undergoing clustering in [Buttinoni et al. 2013] (e) and
in [van der Linden et al. 2019] (f).

tractive forces or hydrodynamic interactions. Untangling these effects from the
bare MIPS ingredients is a difficult challenge which has partially motivated the nu-
merous numerical studies, in which the precise ingredients are known. Still, some
experimental setups clearly display MIPS. Among them, [Bäuerle et al. 2018] used
silica spheres which are half-coated by a carbon film and suspended in a wa-



18 Chapter 1. Introduction

ter–lutidine mixture. The activity of each particle is tuned in real time by using
a laser focusing on the particles and heating the carbon caps to adjust their ve-
locities on the local density. Decreasing the particle velocity in region of high
density triggers MIPS, as seen on Fig. 1.6d. [Buttinoni et al. 2013] used the same
particles, albeit with a constant velocity and repulsive interactions, and reported
another instance of MIPS (See Fig. 1.6e). Finally, in [van der Linden et al. 2019],
titanium-coated Janus colloids self-propelled by an external electric field undergo
phase separation until a critical size, at which point clusters break apart due to
alignment forces between particles.

Phase separation and clustering patterns have also been reported in some exper-
imental setups in which additional ingredients become relevant. [Liu et al. 2011]
genetically modified cells to couple their motility to the surrounding density
and observed the appearance of periodic stripes of high and low cell densities,
as predicted in [Cates et al. 2010] from the study of MIPS applied to grow-
ing cell colonies. The fruiting bodies of Myxococcus xanthus mentioned in
Sec. 1.2.2 and shown in Fig. 1.1b were argued to result from an interplay be-
tween MIPS and other mechanisms, such as cell communication and alignment
[Liu et al. 2019]. Very recently, collections of fire ants were shown to undergo
clustering [Anderson & Fernandez-Nieves 2022] which can be understood in the
framework of MIPS.

1.4.2 Generalized thermodynamics

MIPS phenomenology is now best understood through the generalized ther-
modynamic formalism presented in [Solon et al. 2018b, Stenhammar 2021], the
construction of which we give a brief overview here. The goal is to formulate a
hydrodynamic theory for the only relevant hydrodynamic field: the density ρ(r, t)
of active particles. To do so, they assume that active particles adapt their velocity
to their surrounding density, so that their velocity is written as a functional of
the density field: v(r, [ρ]). Expanding v(r, [ρ]) at order O(∇2) and introducing a
variable R(ρ) playing the role of density, they are able to write the evolution of
the conserved field ρ:

∂tρ(r, t) = ∇ · [M∇µ] (1.6)
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(a) (b)

Figure 1.7: (a): The binodals are computed through a common tangent construc-
tion on the generalized free energy defined in Eq. (1.8). (b): Comparison between
the binodals measured in simulations of RTPs in 2d and the binodals predicted by
the generalized thermodynamics (red line). Adaptated from [Solon et al. 2018b].

with µ the derivative of a generalized free-energy G with respect to a variable
R(ρ):

µ =
δG

δR(ρ)
(1.7)

The “effective density” R(ρ) is in one-to-one mapping2 with ρ but depends on
additional out-of-equilibrium terms appearing in the expression of G which is given
by:

G =

∫
dr
[
φ(r) + κ(∇R)2

]
with

dφ(R)

dR
= ln(ρv(ρ)) (1.8)

where κ can be explicitely written as a function v(ρ). The existence of the free-
energy G enables to recast the problem of finding the phase equilibria of an active
phase separation into an standard equilibrium one. For instance, the coexisting
effective densities Rg and R` of the gas and the dense phase respectively can be
obtained from a common tangent construction on φ(R) (Fig. 1.7a). The resulting
binodal densities ρg and ρ` (red lines in Fig. 1.7b) are found to be in very good
agreement with numerical measurements.

2See details of the derivation in [Solon et al. 2018b].
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This theory provides a unified framework to understand the phase equilibrium
in MIPS. However, it fails to account for the finite-size effects observed in collec-
tions of particles interacting via repulsive forces. Indeed, in these systems, the
Laplace pressure difference between a finite droplet and the surrounding gas was
measured to be negative [Bialké et al. 2015, Solon et al. 2018a, Patch et al. 2018].
Analytical and numerical particle-level investigations then provided evidences that
such a negative surface tension triggers the nucleation and growth of gas bubbles
in the dense phase in stationary state [Tjhung et al. 2018, Caporusso et al. 2020,
Shi et al. 2020].

In Chapter 4, we will investigate several minimal models to explain the bubble
dynamics observed in MIPS. We will show that these models generically display
scale-free distributions that we will characterize both numerically and using a
mean-field approach. We will conclude by providing numerical evidences in favor
of a homogeneous nucleation process generating the MIPS bubbly phase separa-
tion.
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2.1 Introduction

In the one-dimensional Ising model, that is a chain of spins interacting ferromag-
netically with their nearest neighbors, the ordered phase is destroyed by thermal
fluctuations. Specifically, Ising showed in his 1924 PhD thesis, and one year later
in a short article [Ising 1925], that for any non-vanishing temperature, the free en-
ergy is analytic in the thermodynamics parameters. Therefore, no phase transition
is observed and the system remains in a disordered state. This is a rather generic
fact that can be understood from the Landau argument [Landau & Lifshitz 1980]:
the energy of a domain wall separating two regions of opposite magnetization be-
ing finite, the system minimizes its free energy by breaking up into a macroscopic
number of domains at any positive temperature. This is however expected to fail
if the energy of a domain wall can be extensive. As we will see in this chapter,
this happens in a peculiar way in 1d flocking.

2.1.1 Alternating ordered state

Different 1d models of collective motion have been proposed that contain two
basic ingredients: self-propulsion and alignment, without any excluded volume in-
teractions. They differ in the details of their implementation. [Czirók et al. 1999]
studied a system consisting of N off-lattice particles that self-propel and inter-
act locally with their neighbors by a noisy alignment of their direction of self-
propulsion (left or right). The same year, [O’Loan & Evans 1999] introduced a
lattice model with ± particles moving to the right and left and no limit on the
number of particles on a site. The alignment is implemented by a noisy major-
ity rule: A particle i is chosen at random and flips its velocity vi = ±1 with rate
Wi = [1− (1− 2η)viUi] where Ui = ±1 if there are a majority of ± particles on the
site of i and its two nearest neighbors (Ui = 0 in absence of a majority) and η con-
trols the noise strength. In average, particles therefore acquire the velocity of the
majority of their neighbors with probability 1−η. Later, [Solon & Tailleur 2013]
proposed a lattice model of self-propelled particles carrying an Ising spin and
interacting through an on-site ferromagnetic alignment.

They all observe ordered aggregates that move ballistically and reverse their
direction of motion, as shown in Fig. 2.1. On the left, starting from an ini-
tial homogeneous disordered state, the model of [Czirók et al. 1999] displays the
formation of many individual clusters that merge upon contact, until only one
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(a)
(b)

Figure 2.1: Space-time diagrams in the flocking phase. Darker gray levels
represent higher particle density. (a): Coarsening from an initial homoge-
neous disordered state leading to a single remaining aggregate in the model of
[Czirók et al. 1999]. The red square indicates a reversal. (b): Aggregate per-
forming reversals in steady state in the model of [O’Loan & Evans 1999].

macroscopic aggregate remains. The coarsening exhibits clear signs of reversals
(See for instance the red square in Fig. 2.1). Similarly, on the right, the model of
[O’Loan & Evans 1999] features a moving cluster performing reversals in steady
state. This phenomenology is well captured by the set of stochastic partial differ-
ential equations derived by [Laighléis et al. 2018] from microscopic dynamics very
similar to [O’Loan & Evans 1999]. Indeed, these equations successfully repro-
duce the alternating order and the generic nature of such a continuum description
highlights the prevalence of reversals in one-dimensional collective motion.

With the numerical evidences available at that time, Czirók et al. were led
to believe that the discrete orientational symmetry was spontaneously broken,
as they did not witness reversals of the macroscopic aggregate. Running longer
simulations, O’Loan & Evans observed the alternating order and reported an av-
erage time separating two reversals scaling as logL, with L the system size. Such
a diverging time could give the impression that the symmetry is spontaneously
broken, but [O’Loan & Evans 1999, Solon & Tailleur 2013] showed that it is not
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the case, through a scaling argument that we will make more precise later in
this chapter. Apart from their mean reversal time, the properties of the aggre-
gates remain poorly understood. We will study them in details in this chapter.
Note that although the transition to collective motion was reported to be con-
tinuous in early papers [Czirók et al. 1999, O’Loan & Evans 1999], it was found
to be discontinuous in [Solon & Tailleur 2013], a fact that is somewhat hidden by
reversals.

By incorporating centering interactions that promote movement towards dense
regions in the model of [O’Loan & Evans 1999], [Raymond & Evans 2006] ob-
served a new phase composed of “dipoles”. These dense, localized structures
emerge through the centering interaction and undergo a slow coarsening process
towards a single large dipole. In this chapter, we report the existence of such
dense and static structures appearing because of the sole interplay of alignment
and self-propulsion.

2.1.2 Experimental relevance

The group of [Buhl et al. 2006] studied locusts marching in a quasi-1d ring (see
Fig. 2.2a). Locusts tend to align their direction of motion with the locusts in front
of them, as they try to eat one another. The experiment showed that, at high
enough locust density, the assembly moves coherently, stochastically reversing
its direction of motion (see Fig. 2.2b). [Yates et al. 2009] confirmed these sponta-
neous directional switching and provided arguments rationalizing the mean revers-
ing time for groups of a few dozen of locusts. Reversals of collective motion there-
fore constitute a generic feature of 1d ordering active systems, extending beyond
numerical models. More recently, self-propelled droplets in a one-dimensional
microfluidic channel [Illien et al. 2020] have been studied in details, exhibiting
collective motion through a local alignement resulting from their collisions. The
group properties of cells confined to 1d racetracks [Bertrand et al. 2021] have
also been investigated. The asymmetric aligning interaction due to cell-cell colli-
sions destroys large scale clustering and ordering, leading instead to a liquid-like
microphase of cell clusters of finite size and short lived polarity.
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(a) (b)

Figure 2.2: (a): Locusts evolving in a circular arena, making it a quasi-1d setup.
(b): Reversals of the collective motion, captured by alternating values of the order
parameter. Adaptated from [Buhl et al. 2006].

2.1.3 A liquid-gas phase separation

In this chapter, we analyze the 1d version of the active Ising model (AIM),
first introduced in [Solon & Tailleur 2013]. This lattice model only involves ferro-
magnetic alignment and self-propulsion, with no excluded volume or other inter-
action. Consistently with previous studies considering different implementations
of the same ingredients [Czirók et al. 1999, O’Loan & Evans 1999, Dossetti 2011,
Laighléis et al. 2018, Sakaguchi & Ishibashi 2019], we observe a transition from a
disordered state to a flocking state featuring a single moving aggregate, which
stochastically reverses its direction of motion.

In this chapter, we will show that the transition is similar to the liquid-gas
coexistence observed in [Solon & Tailleur 2013, Solon & Tailleur 2015], although
the flocks are prevented to relax to the phase-separated state by reversals. We
show this by analyzing the shape of the aggregates and its evolution in time.
Computing the full statistics of reversal times, we are able to explain the log-
arithmic scaling with system size of the average reversal time first observed in
[O’Loan & Evans 1999]. We also measure and explain how the reversal time varies
with all parameters of the model. In addition, at low temperature and/or hopping
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rate, when alignment dominates over self-propulsion, we encounter a new type of
structure that we term “asters”. These asters are static objects composed of two
highly localized peaks of opposite magnetization that exchange particles back and
forth. We first account for the remarkable stability of these structures by solv-
ing exactly the dynamics of a single aster at zero temperature. We then discuss
the finite-temperature coarsening of asters and show the existence of two possible
scenarios leading either to macroscopic condensation or to an extensive number
of asters possessing a characteristic size. Finally, we derive the steady-state pro-
file of the asters in the mean-field approximation, which compares favorably with
numerical measurements.

This chapter is organized as follows: In Sec. 2.2 we first define the AIM and
present the three phases observed in our simulations (disordered, flocking and
aster phases) with phase diagrams for the main parameters of the model. We
then investigate the two non-trivial phases. In Sec. 2.3, we successively look at the
shapes of flocks and how they evolve in time (Sec. 2.3.1), the statistics of reversals
(Sec. 2.3.2) and the two distinct regimes observed at small and large velocity
(Sec. 2.3.4). We then investigate the aster phase in Sec. 2.4. We first derive an
exact solution for the dynamics of an aster at zero temperature in Sec. 2.4.1, before
looking at the coarsening dynamics at small-but-finite temperature in Sec. 2.4.2
and investigating the aster shape in Sec. 2.4.3. Finally, we examine in Sec. 2.5 the
robustness of our results by comparing to those of O’Loan and Evans in Sec. 2.5.1,
and by considering an off-lattice version of the model in Sec. 2.5.2.

2.2 The 1d Active Ising Model

In the AIM [Solon & Tailleur 2013], each particle carries an Ising spin s = ±1

and undergoes biased diffusion: A particle with spin s hops to the next site on its
right (resp. left) at rate D(1 + sε) (resp. D(1 − sε)). The parameter ε ∈ [0, 1]

controls the asymmetry between the passive limit ε = 0 and fully asymmetric
hoppings ε = 1, while D controls the overall hopping frequency. On average, a
particle thus moves at a speed v = 2Dεa in the direction set by the sign of its spin,
a being the lattice spacing. Finally, on a site i occupied by n+

i and n−i particles
with spins +1 and −1, respectively, a particle of spin s flips at a rate

W (s→ −s) = ω0 e
−βsmi

ρi , (2.1)
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Figure 2.3: Sketch of the two possible actions in the AIM and their rates of
occurrence: The particles align ferromagnetically with the particles on the same
site (left) and undergo a diffusion biased by the sign of their spin (right).

where ρi = n+
i + n−i and mi = n+

i − n−i are the local density and magnetization.
Those rates are chosen such that, in absence of hopping, each site constitutes
a fully-connected Ising model with Hamiltonian −m2

i /(2ρi) undergoing Glauber
dynamics at inverse temperature β = 1/T . The two actions (hopping and flipping
spin) and the associated rates are depicted in Fig. 2.3. Note that the model is out
of equilibrium even at ε = 0 since the symmetric hopping dynamics is insensitive to
the changes of the total Hamiltonian H = −∑im

2
i /(2ρi) [Solon & Tailleur 2015].

In the rest of the chapter, we choose without loss of generality ω0 = a = 1

thus fixing the time and space units. We study the system as a function of the
parameters β (or T ), D, ε and the average density ρ0 = N/L.

2.2.1 Numerical implementations

Our simulations relied either on discrete time steps with random sequential
updates or on an exact continuous-time Monte Carlo algorithm. The discrete-
time simulations are implemented using random sequential updates: Particles are
chosen at random and updated sequentially. For each update, the time is increased
by dt/N . Denoting by i the site of the chosen particle and by s its spin, the particle
either hops, flips its spin, or does nothing with probabilities:





Proba(hop to site i+ 1): D(1 + sε)dt

Proba(hop to site i− 1): D(1− sε)dt
Proba(spin flips): ω0e

−βsmi
ρi dt

Proba(no update): 1− 2Ddt− ω0e
−βsmi

ρi dt

(2.2)
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Our continuous time simulations were implemented as follows. For each par-
ticle i, with spin si, we define an escape rate ri = 2D+ωi, where ωi is the rate at
which si flips into −si. At time 0, we sample a time τi for each particle according
to P (τi) = rie

−riτi . The algorithm then goes iteratively over the following loop:

1. Set the simulation time to t = τj where τj = inf
i
τi.

2. Update particle j using tower sampling: pull a random number η ∈ [0, rj].
If η < D(1− sjε), the particle hops to the left. If D(1− sjε) < η < 2D, the
particle hops to the right. Otherwise, the spin flips: sj → −sj.

3. Update any rk that has changed because of step 2 and sample new τk’s
according to P (τk) = rke

−rk(τk−t)Θ(τk−t). A new τj is also sampled, whether
or not rj has changed.

To make step 1 as efficient as possible, we use a heap structure, which is a binary
sorting tree consisting in a root and two sub heaps. The heap is such that the
time stored at a root is always smaller that the times stored at the roots of the
two sub heaps. Finding the smallest time then has a cost of O(1) whereas the
reorganization of the heap due to step 3 has a cost O(log2N).

The advantages of the continuous-time algorithm are that it is exact, being
a generalization of the Gillespie algorithm [Gillespie 1976], and that there is no
rejection. At every move, however, several new times τk have to be sampled,
the heap has to be reorganized, and the data structure is much heavier than for
the discrete-time algorithm. As a result, the discrete-time algorithm is always
more efficient when the rejection rate is low. For our simulations, the discrete-
time simulations were faster at high temperatures, whereas the continuous-time
simulations were faster at lower temperature (see Fig. 2.4) and we used them
accordingly.

2.2.2 The three phases

Looking at the phase diagrams in the D− T (Fig. 2.5a) and ρ0 − T (Fig. 2.5b)
planes, we see that, as expected, the system is disordered at high temperature.
Density and magnetization are homogeneous and fluctuate, respectively, around
ρ0 and 0. Decreasing temperature, the system reaches a flocking phase which
consists, at long times, of a single dense ordered aggregate moving ballistically in
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Figure 2.4: Comparison between discrete- and continuous-time algorithms. (a):
Ratio between the cpu time used for a discrete-time simulation, τdt, and a
continuous-time simulations, τct, as β is varied. The discrete-time simulation
is faster at large temperature but its efficiency decreases exponentially with β.
(b): The rejection rate of the discrete-time algorithm, r(β), converges exponen-
tially to r(β) = 1 as β increases. (c): The average escape rate per particle, e(β),
shows little variation as β is varied and remains close to r ' 2D+ω0. The dip for
intermediate β corresponds to the flocking phase where most particles are aligned.
Parameters: D = 0.5, ε = 1, ω0 = 1, L = 500, ρ0 = 10. In panel (a), the system
is simulated up to a final time t = 110 000.

a disordered gas, as illustrated on the snapshot shown in Fig. 2.6a. It moves to the
right or left if the particles are polarized positively of negatively. As illustrated
in Fig. 2.8 and detailed later, these flocks have a rather complex dynamics: They
diffusively widen as they travel, and undergo stochastic reversals during which
they “regroup” into a very thin condensate and their magnetization changes sign.
These dynamics, together with the coarsening leading to a single aggregate, are
displayed in the space-time diagram of Fig. 2.6c, and form the topic of Sec. 2.3.
Note that transient, finite-size aggregates can be observed to move ballistically in
the gas region surrounding the main aggregate (see Fig. 2.6c).
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Figure 2.5: Phase diagrams in the (hopping-rate, temperature) plane at ρ0 = 10

and ε = 0.7 (a) and (density, temperature) plane at D = 0.5 and ε = 0.7 (b).
The stars indicate the parameters used in Fig. 2.6 to illustrate the phases. The
line separating the disordered and flocking phases in the (ρ0, T ) plane is set by the
density ρg(T ) of the gas in the flocking states at temperature T (see Sec. 2.2.3).
The other lines are determined using the threshold 〈|m̃|〉 = 0.05 on the time-
averaged magnetization per particle, which is non-zero only in the flocking phase.
Data obtained in a system of size L = 500; increasing system size displaces the
lines only within the size of the symbols.

Finally, at lower temperatures, the system exhibits what we have called asters,
that are illustrated in the snapshot shown in Fig. 2.6b: Sharp peaks of positive
and negative magnetizations, spread over a few sites, face each other. These
structures are long-lived, despite the absence of repulsive interactions. As shown
on the space-time plot Fig. 2.6d, asters can dissolve on long time scales, leading to
a coarsening process. Our study of this phase, which was not observed in previous
studies of the AIM [Solon & Tailleur 2013, Solon & Tailleur 2015], is in Sec. 2.4.

To distinguish between the three phases, we introduce an order parameter, the
magnetization per particle m̃ =

∑N
i=1 si/N , which is non-zero at long times only

in the flocking phase where it alternates between a positive and a negative value
because of reversals.
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Figure 2.6: (a-b): Instantaneous density and magnetization fields at the final time
t = 104 of the space-time diagrams shown in (c-d). (c-d): Space-time diagrams
in the flocking (c) and aster (d) phases. The parameters, indicated by stars in the
phase diagrams of Fig. 2.5, are ρ0 = 10, ε = 0.7, D = 0.5 and β = 2, 5 for the
F and A phases, respectively. The system sizes L = 4000 (Flocking phase) and
L = 100 (Asters phase) were chosen for legibility. Simulations are started from a
homogeneous disordered initial condition.

2.2.3 Fate of the liquid-gas transition scenario

In [Solon & Tailleur 2013], the transition to collective motion in polar flocking
models has been shown to be akin to a liquid-gas transition between a disordered
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Figure 2.7: (a) : Instantaneous profile showing a fluctuation propagating through
the homogeneous ordered phase. (b) : Average life time t∗ of the metastable
homogeneous ordered phase. Parameters: L = 1000 (left), β = 2, ε = 1, D = 0.5

and ρ0 = 10.

gas and a polar ordered liquid [Solon & Tailleur 2013, Solon & Tailleur 2015]. The
form of the phase coexistence depends on the symmetry of the spins: for the Vicsek
model with continuous spins one observes microphase separation with an extensive
number of dense ordered traveling bands having a characteristic size, while in the
AIM, which has a discrete spin symmetry, one obtains phase separation between
two macroscopic domains [Solon et al. 2015d].

In the same way, in 1d one observes the coexistence of an ordered flock with
a disordered gas. Although, because of fluctuations it can easily be mistaken for
a continuous transition [Czirók et al. 1999, O’Loan & Evans 1999], the transition
between the disordered phase and the flocking state also shows a phase-separation
scenario. In particular, the transition exhibits metastability and the associated
negative peaks in the Binder fourth-order cumulant for large (but finite) sys-
tems which arise from discontinuous nucleation events [Binder & Landau 1984,
Solon & Tailleur 2013]. In addition, the density in the gas is independent of the
average density ρ0 in the system, consistently with a liquid-gas separation.

Looking at the phase diagram in the (ρ0, T ) plane (Fig. 2.5b), a second transi-
tion line to a homogeneous ordered liquid is conspicuously absent. This is because,
contrary to what happens in [Solon & Tailleur 2013], fluctuations destroy the ho-
mogeneous ordered phase in 1d. Indeed, as in [Raymond & Evans 2006], we see
that, if we prepare the system in this state, it is metastable but eventually gets
destabilized by a fluctuation. As shown in the left panel of Fig. 2.7, a local fluc-
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tuation of the opposite magnetization propagates through the entire system, until
only a localized flock remains.

The dependance on system size of the time t∗ for such a fluctuation to happen
can be easily understood: a fluctuation happens at a finite rate ν per unit time and
space so that the total nucleation rate per unit time is νL. The nucleation time t∗

is thus proportional to L−1 consistently with the numerical measurements reported
in Fig. 2.7b. For a large enough system size, the ordered phase is destabilized very
quickly.

The form of the phase coexistence is also altered by fluctuations in 1d. Only
the gas density ρg is easily defined and separates the disordered and flocking state
in the phase diagram Fig. 2.5b. Below, we study how flocks tend to relax to a
phase-separated state as in [Solon & Tailleur 2013] but are prevented to do so by
reversals.

2.3 Flocks and Reversals

In the steady state of the flocking phase, the system presents a single ordered
aggregate: the flock. As illustrated in Fig. 2.8, it moves ballistically but its shape
evolves continuously: initially narrow and sharp, it progressively spreads. After
some time, a protrusion with a constant density develops at the leading edge,
growing out of the main peak. The most striking feature of flocks is that they
reverse: Once the flock is sufficiently spread, a fluctuation that flips the first
few sites at the front can become large enough that it flips systematically all
the remaining flock particles. This leads to a full reversal of the flock, whose
dynamics then resets, starting with the same initial sharply peaked shape but
with the opposite magnetization (compare Fig. 2.8a and f).

2.3.1 Shape of a flock

To separate the trend from fluctuations in the evolution of the flock shapes, we
average them over many realizations and construct the average flock shape at time
t after their last reversal. To do so, we define an origin of time for each reversal
and spatially align flocks of similar age t.
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Figure 2.8: Instantaneous density (green) and magnetization (orange) profiles
during the spreading and the reversal of a flock. An initially peaked aggregate
(a) spreads while propagating (b). After some time, it develops a protrusion at
the leading edge (c). A spontaneous fluctuation at the front (d) can propagate
inside the flock and progressively flip all the particle orientations (e). Finally, just
after the reversal (f), one is left with a flock with the same shape as in (a) (which
was taken just after the previous reversal), albeit with a reversed magnetization.
Time is counted from the previous reversal. Parameters: L = 4000, β = 2, ε = 1,
D = 0.5, ρ0 = 10.
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The magnetization per spin m̃ flips from a well defined value m̃0 to −m̃0 during
a reversal. We define the time origin of each reversal as the time when m̃(t) =

−0.7m̃0. (The 0.7 factor allows for a robust detection, but other values are of
course possible.) Flocks of the same age are localized at different positions on the
lattice. A simple idea to align them so as to be able to average their shape would
be to align their densest sites (the green dot in Fig. 2.9a) to try and match their
peaks. However, this leads to large fluctuations that artificially smear out the flock
shapes. Instead, we use the rear edges of the flocks, which are always very sharp.
The precise alignement point ialign (purple dot in Fig. 2.9a) is determined in the
following way. We first localize the site imax where the density is maximal (green
dot). Going backward from there, iback is the first site where the magnetization
changes sign. We then calculate m̄ the average magnetization per site over the
region of size 2` + 1 centered on imax, where ` ≡ |imax − iback|: the limits of this
region are indicated by the two vertical dashed lines. Starting from iback, we then
find the first site ialign such that mialign > m̄/4. All right-going flocks are then
aligned such that their site ialign coincide. Left-going flocks are transformed by
mi → −mi and i→ L− i and then run through the same algorithm.

This averaging procedure leads to satisfying results: As shown in Fig. 2.9b,
flocks superimpose with little spread along most of their profiles, allowing to
extract meaningful average shapes. Note however that the precise position of
the leading edge fluctuates, leading to an average profile whose leading edge is
smoother than that of the instantaneous ones.

The mean shape allows us to quantify the dynamics of the flocks: they contain
a main peak which spreads continuously and, after some time, a protrusion with
constant density and magnetization which develops at their leading edge (see
Fig. 2.9c). We now discuss both of these features.

As shown in Fig.2.9d, the main peak of the flock at a given age is proportional
to the system size and contains a macroscopic fraction of the particles. The
top of the peak is well approximated by a Gaussian with a variance σ2 that is
independent of system size and grows linearly in time (Fig. 2.10a). In addition,
the peak propagates at a constant speed vp, defined as the speed of the maximum
of the density profile, which is smaller than the speed v of individual particles
(Fig. 2.10b).
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Figure 2.9: (a): Sketch of the procedure to align flocks of the same age as described
in the text. (b): Seven representative instantaneous density profiles (colors)
superimposed to the average profile (thick black line). (c): Evolution of the
averaged density profile as a function of time. The red dashed line is a fit to the
density ρ` of the protrusion. (d): Average density profiles at t = 1200 showing
that the main peak is extensive in system size. The red dashed line is a Gaussian
fit used to compute the variance σ2 in 2.10a. Parameters: ρ0 = 10, β = 2, ε = 1,
D = 0.5, t = 1000 (b,d), L = 1000 (b,c)

Since the peak contains a high density of particles, we expect it to be well
described by a mean-field theory that we now construct starting from the micro-
scopic dynamics, following [Solon & Tailleur 2015]. To do so, we first write exact
equations for the average density and magnetization 〈ρi〉 and 〈mi〉 on site i, the
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Figure 2.10: (a): Variance of the main peak. The dashed line is the mean-
field prediction σ2 = 2Dt. (b): Speeds vp of the main peak (computed as the
speed of the maximum) and vl of the protrusion (computed as the speed of the
point at ρ = ρ`/2 in the average profiles) divided by the self-propulsion speed
v = 2Dε. The dashed line is the mean-field prediction. (c): Average polarization
profile m(x)/ρ(x). The dashed line is the mean-field prediction, solution of m/ρ =

tanh(βm/ρ). Parameters: ρ0 = 10, β = 2, ε = 1, D = 0.5, t = 1000 (b,c),
L = 5000 (b).

average being over realizations of the stochastic microscopic dynamics. This gives

∂t〈ρi〉=D〈ρi+1 + ρi−1 − 2ρi〉 − v
2
〈mi+1 −mi−1〉 (2.3)

∂t〈mi〉=D〈mi+1 +mi−1 − 2mi〉 − v
2
〈ρi+1 − ρi−1〉

+ 2
〈
ρi sinh

[
βmi
ρi

]
−mi cosh

[
βmi
ρi

] 〉
(2.4)

with v = 2Dε. These equations are not closed since Eq. (2.4) involves the average
of a nonlinear term. However, in the mean-field approximation where fluctuations
and correlations are neglected, 〈f(x)〉 = f(〈x〉) for any function f . Taking in
addition the continuous limit, Eqs. (2.3)-(2.4) may be rewritten as

∂tρ=D∂2
xρ− v∂xm (2.5)

∂tm=D∂2
xm−v∂xρ−2m cosh

[
βm
ρ

]
+2ρ sinh

[
βm
ρ

]
. (2.6)

with ρ(x = ia) = 〈ρi〉 and similarly for m.

Contrary to the density field which is a conserved quantity,m(x, t) is a fast mode
which relaxes in a finite time to a value that makes the right-hand-side of Eq. (2.6)
vanish. To leading order in a gradient expansion, this amounts to requiring that
the interaction term in Eq. (2.6) vanishes, i.e. that m/ρ = tanh(βm/ρ). This
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thus predicts α = m/ρ to be the solution of α = tanh(βα), which is the value
observed numerically in Fig. 2.10c except close to the edges of the flock. Using
m(x) = αρ(x) in Eq. (2.5), we obtain a diffusion-drift approximation for the
density field:

∂tρ=D∂2
xρ− v tanh(βα)∂xρ. (2.7)

The diffusion and drift coefficients read from Eq. (2.7) both match numerical
measurements as seen in Fig. 2.10a-b.

Let us now turn to the protrusion appearing at the front of the flock. Since
reversals start at the leading edge, this protrusion is expected to play an important
role in the dynamics. Contrary to the main peak, it has a fixed height (in density
and magnetization) independent of time (See Fig. 2.9b) and system size (See
Fig. 2.11a). Its velocity results both from the persistent hop of the particles and
from the recruitment of new sites at the leading edge due to the aligning dynamics.
This explains why the leading edge of the protrusion moves with a speed larger
than the individual particle speed v (Fig. 2.9b), much like the polar bands of
the coexistence region in [Solon & Tailleur 2015]. The front speed is thus also
larger than the drift velocity of the peak (vp = v tanh βα), which explains the
increase of the protrusion length as time passes. All this suggests that the flock
is trying to relax to the fixed density ρ` of the homogeneous ordered liquid but
is prevented to do so by the reversals. This is confirmed by choosing parameters
such that the full phase separation can be observed before a reversal happens.
This can be achieved by increasing D; one then observes the relaxation from a
peaked aggregate (Fig. 2.11b) to a relatively long-lived phase-separated profile
(Fig. 2.11c).

2.3.2 Reversals

The average time between two reversals, 〈τ〉, shows a logarithmic increase
with system size 〈τ〉 ∝ log(L) (Fig. 2.12a). This is in line with previous re-
sults obtained by O’Loan and Evans for a different model [O’Loan & Evans 1999,
Raymond & Evans 2006], which considers self-propelled particles on a 1d lattice
aligning via a Voter-type majority rule.

To understand the physical origin of this logarithmic scaling observed in our
model, we consider P (τ), the distribution of inter-reversal times. As shown in
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Figure 2.11: (a): Density profiles at time t = 3000, showing a protrusion of
density independent of system size. Instantaneous density profile at times t = 350

(b) and t = 3000 (c) after the last reversal. The profile relaxes to a long-lived
phase-separated state, whose shape is stationary (until the next reversal occurs).
Parameters: ρ0 = 10 (a) , ρ0 = 5 (b,c), L = 1000 (b,c), β = 2, ε = 1, D = 1 (a),
D = 2 (b,c).

Fig. 2.12b, it has a peak and an approximately exponential tail with a decay rate
that is roughly independent of L. Increasing L, the distribution shifts slightly to
the right. As shown in Fig. 2.12c, a horizontal shift by α logL, with α a constant,
collapses reasonably well the distributions obtained for several values of L.

To better characterize the various processes at play, we compute the reversal
rate λ(t), defined via the probability λ(t)dt that a flock of age t reverses within
[t, t + dt]. This rate is related to the distribution P (τ) via the number of flocks
Nf (t) that have survived until time t from an initial population of Nf (0): Ṅf (t) =

−λ(t)Nf (t) so that λ = −Ṅf/Nf . In addition Nf itself is related to P through
Nf (t)/Nf (0) =

∫∞
t
P (τ)dτ , which yields

λ(t) =
P (t)∫∞

t
P (τ)dτ

. (2.8)

In physical terms, Eq. (2.8) simply states that the probability that an event hap-
pens at time t is the rate of occurence of this event at time t multiplied by the
probability that it did not happen before: P (t) = λ(t)[1−

∫ t
0
P (τ)dτ ]. Note that

for an exponential distribution, λ equals the decay rate of the exponential. In
Fig. 2.13a, we show λ(t) computed using Eq. (2.8) for several system sizes. We
see an initial rapid increase in λ, with a characteristic time that increases with
system size, followed by an approximately flat plateau corresponding to the expo-
nential tail of P (τ). As shown in Fig. 2.13b, shifting the time by α logL provides
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Figure 2.12: (a): Mean time between reversals with a fit to a logarithmic function
f(L) = a logL+b, leading to a = 139 and b = 964 (dashed line). (b): Probability
density function of the reversal time τ . The red arrow emphasizes the shift of the
distributions at small τ responsible for the logarithmic scaling of the mean. (c):
Same as in (b) with an horizontal shift τ̃ = τ −α logL with α = 110. Parameters:
ρ0 = 10, β = 2, ε = 1, D = 0.5.
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Average profiles at fixed t̃, at t̃ = −300 when the protrusion just begins to appear
(c), and at t̃ = 1000 when it has developed (d). The corresponding times are
indicated by vertical lines in panel (b). The profiles are aligned on the point where
ρ = 5. Parameters: ρ0 = 10, β = 2, ε = 1, D = 0.5.

a good collapse of the curves λ(t − α logL) measured for different system sizes,
consistent with what was reported for P (τ − α logL) in Fig. 2.12.

The evolution of λ(t) can be related to that of the shape of the flock. Reversals
are initiated at the leading edge of flocks. At short times, the leading edge is very
stiff so that there is little chance that a spontaneous fluctuation in the gas ahead,
whose typical density is very low, triggers a reversal (Fig. 2.8a). Correspondingly,
λ(τ)→ 0 as τ → 0. At longer times two processes take place that make reversals
more likely. First, flocks spread diffusively, due to the stochastic hopping of the
particles. As the leading edge smoothens, it becomes more and more susceptible
to fluctuations. Then, once the leading edge has sufficiently spread, its shape
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becomes compatible with the development of a liquid phase [Solon et al. 2015b].
As this liquid protrusion develops, the shape of its leading front becomes constant
in time (Fig. 2.9b). The probability that a fluctuation flips the protrusion becomes
time-independent, leading to a plateau value of λ(t) at late times, independent of
L.

Let us now try to rationalize the scaling form P (τ −α logL) and λ(t−α logL)

reported in Figs. 2.12 and 2.13. We see in Figs. 2.13c-d that the leading edges
of the density profiles also collapse under the same shift. To account for this, we
compute the time t∗ it takes for the profile to reach a given slope −k∗ at a given
density ρ`:

ρ(x, t∗) = ρ`; ∂xρ(x, t∗) = −k∗. (2.9)

We first focus on the early-time dynamics, where we expect a Gaussian spreading
in the co-moving frame. There, the density profile can be approximated as

ρ(x, t) =
N0√
2πDt

e−
x2

4Dt , (2.10)

whereD is an effective diffusion coefficient andN0 = Lρ0 is the number of particles
in the aggregate. Denoting by x∗ the position at which the density profile equals
ρ`, we find that the slope satisfies k∗ = x∗ρ`/(2Dt) while x∗ is given by

x∗ = 2
√
Dt

√
log

N0

ρ`
− 1

2
log(2πDt) . (2.11)

The slope as a function of time then satisfies

k(t) = ρ`

√√√√ log N0

ρ`

Dt

(
1− 1

2

log 2πDt

log N0

ρ`

)
. (2.12)

At early times and large system sizes, log(2πDt) � log N0

ρ`
∝ logL, so that k

is a function of t/ logL. Note that since the reversals happen at the leading edge,
it is natural to assume that the rate of reversal is controlled by the steepness of
the forefront, a steeper front being more resistant to fluctuations. Quantifying
the steepness by k, this would lead to scaling forms P (τ/ logL) and λ(t/ logL)

during the early Gaussian spreading of the flock.
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After a time tprot that can be estimated as the inflexion point in Fig. 2.13a, the
protrusion grows out of the main peak. Afterwards, the diffusive spreading of the
main peak does not affect the leading edge anymore. At this stage, λ(t) keeps
increasing for some time, since the flipping of larger protrusions is more likely
to generate a peak with a mass sufficient to revert the whole flock. In addition,
λ(t) also increases after tprot because of the slight dispersal in flock shapes shown
in Fig. 2.9: as the time since the last reversal increases, so does the fraction of
flocks with a liquid protrusion. For t > tprot, the τ/ logL scaling stops since the
leading edge converges to a well-defined steady profile. The time tprot can then
be estimated as the time it takes for the front to reach the slope corresponding to
the liquid protrusion, so that tprot ∝ logL.

We thus expect two different scaling regimes: an initial Gaussian spreading
leading to λ(t/ logL) and a late-time scaling form λ(t−α logL), once the protru-
sion has grown out of the main peak. As shown in Fig. 2.13c-d, the protrusion
grows out quite early so that the first regime is never observed in our simulations:
most reversals take place after the protrusion has grown out. This explains why
the λ(t− α logL) and P (τ − α logL) scalings work satisfactorily.

2.3.3 Absence of symmetry breaking

Even though the average time between two reversals diverges with system size,
so does the time needed for a flock to reverse. In other words, no true symmetry-
breaking arises: the system spends finite fractions of time going to the right, to the
left, and in the reversals [Solon & Tailleur 2013]. Indeed, starting from a localized
flock, the ordered region spreads at constant speed, that of the protrusion. The
mean flock size before a reversal Lf is thus proportional to the mean time between
reversals. Since a reversal corresponds to the ballistic progression of a fluctuation
from the front to the rear of a flock, progressively flipping all its sites, the average
duration of a reversal is proportional to Lf and hence to the mean time between
reversals. Therefore, when L → +∞, there is a nonzero probability to find the
system in a reversal, P (|m̃|) does not vanish between ±m̃0 and m̃ = 0 (Fig. 2.14):
there is no spontaneous symmetry breaking.
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Figure 2.14: P (|m̃|) showing that P (|m̃| = 0) converges to a non-vanishing value
as L increases. Parameters: ρ0 = 4, β = 1.8, D = 1, ε = 1.

2.3.4 Role of the parameters D, ε and β

Most results presented so far were obtained at fixed, rather typical, parameter
values. We now report on the effect of changing the three parameters D, ε and β.
Figure 2.15 shows how 〈τ〉 and λ, the reversal rate extracted from the exponential
tail of P (τ), vary with each of these parameters, keeping the other two constant.

Comparing 〈τ〉 with λ−1 (which is the mean of a normalized exponential distri-
bution with rate λ), we see that λ−1 ‘underestimates’ 〈τ〉 but that both quantities
essentially vary in the same manner. (Their difference is due to the transient
regime before λ(t) reaches its asymptotic value, as shown in Fig. 2.13a-b.) To
account for the variations of 〈τ〉, we can thus focus on the reversals at late times,
which take place after the protrusion has developed at the front of the flocks.

We find that the divergences of 〈τ〉 visible on Fig. 2.15 can be explained by
two different mechanisms. First, decreasing D or ε or increasing β while keeping
the other parameters fixed brings the system from the flocking phase to the aster
phase (see the phase diagrams in Fig. 2.5). Close to the transition, transient
asters appear at the beginning of an attempted reversal, as shown in Fig. 2.16e.
Once the aster is formed, the propagation of the fluctuation stops until the aster
dissolves. (See section Sec. 2.4 for a detailed discussion on aster dynamics.) In
the mean time, a large amount of particles arrive from the flock, which tends to
destroy the aster and resume the forward motion of the flock. This process thus
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Figure 2.15: Mean reversal time 〈τ〉 as a function of D for β = 1.8 and ε = 0.8

(a), of β with D = 0.5 and ε = 0.8 (b), and of ε with β = 2 and D = 0.5 (c).
The data are compared with the characteristic time λ−1 that corresponds to a
purely exponential distribution Pexp(τ) = λe−λτ , with λ measured from the tail of
the true distribution P (τ). Parameters: ρ0 = 3, L = 1000.

tends to suppress reversals: transient asters protect the flock against fluctuations,
hence increasing their lifetime.

The other divergences of 〈τ〉, in the largeD and small β limits, can be accounted
for by comparing the roles of diffusion and alignment during a reversal. Aligning
interactions tend to flip particles from the flock, hence strengthening the fluctua-
tion. On the contrary, diffusion damps the fluctuation as it propagates. Diffusion
dominates when D/eβ —the ratio of hopping to alignment rates— increases, i.e.
when D increases or β decreases. Figure 2.15 shows a steeper divergence when
varying β compared to varying D, as expected from this reasoning.

To support these two scenarios, we now evaluate how likely a fluctuation is to
reverse a flock in an idealized situation. We consider the deterministic mean-field
evolution of an initial fluctuation of tunable size that encounters an ordered phase
mimicking the protrusion of a flock at density ρ` and magnetization m` such that
m`/ρ` = tanh(βm`/ρ`) (its mean-field value).

The initial condition is depicted in Fig. 2.16a and the evolution is that of
Eqs. (2.3)-(2.4) after one takes a mean-field approximation for the nonlinear terms.
We choose ρ` = 1 without loss of generality, thus fixing the unit of density, and
take the initial fluctuation to be fully ordered with magnetization −δm and den-
sity δm, propagating to the left. We observe that there is a value δm∗ such that
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Figure 2.16: (a): Sketch of the initial condition in the reduced mean-field model.
(b): Minimal fluctuation δm∗ necessary to reverse the flock in the reduced model.
(c,d): Evolution of the density profile in the reduced model at low D = 0.3 (c)
and high D = 2.0 (d) for fluctuations δm = 8 (c) and δm = 6 (d), slightly bigger
than δm∗. Other parameters: ε = 1 and β = 2. (e,f) Instantaneous profiles in
the microscopic model at the beginning of a reversal at low D = 0.3 (e) and high
D = 2 (f). The transient aster (red boxes) observed at low D in the reduced
model also appears in the full AIM. ρ0 = 5, L = 1000, ε = 1 and β = 2.
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Figure 2.17: Number of flocks Nf as a function of time, starting from a homo-
geneous disordered initial conditions. The short vertical black lines indicate the
crossover time tc as given in Eq. (2.15). ρ0 = 10, β = 2, D = 0.5, ε = 1.

small fluctuations δm < δm∗ do not propagate and the system remains ordered,
whereas large fluctuations δm > δm∗ propagate and flip the entire initial flock 1.
This critical fluctuation size varies with the parameters, as shown in Fig. 2.16b
where we vary D for several values of β. At small D we see the transient asters
observed in the microscopic model whereas they are not observed for larger D
(see Fig. 2.16c-d). The variations of δm∗ are consistent with the variations of 〈τ〉
in the microscopic model as we see a sharp increase at small D corresponding to
the appearance of transient asters and a slower increase at high D with no asters.
This minimal model of reversals, despite its simplicity, thus reproduces the basic
features of the mean reversal time and supports the two scenarios outlined above
for the divergences of 〈τ〉.

2.3.5 Coarsening

So far we only considered the steady-state regime where the system contains a
single flock. We now study the coarsening dynamics that bring the system from
a disordered initial condition to such a steady state. As shown on the space-time
diagram of Fig. 2.6e, many small flocks form at early times and merge when they

1In practice we choose as a criterion that the fluctuation has propagated if the magnetization
at a distance L = 30 sites from the initial fluctuation has changed sign.
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encounter until only one remains. The evolution of the number of flocks Nf can
be written as

Ṅf (t) = −Nf (t)

tcoll(t)
(2.13)

with a function tcoll(t) that may depend on Nf and which we can interpret as the
mean time before a flock collides with a neighboring one.

We can anticipate two regimes for this collision time. At early times, when
flocks are close to one another, they typically encounter a neighbouring flock
before reversing their direction. The collision time will then be the ballistic time
tBcoll = `/v with ` = L/Nf the mean distance between flocks. At later times,
flocks are further apart and thus reverse their direction of motion before colliding.
The collision time then has a diffusive scaling tDcoll = `2/(2Deff) with the effective
diffusion coefficient Deff = v2〈τ〉. The crossover between these two regimes is
expected at a time tc such that tBcoll(tc) = 〈τ〉. Solving Eq. (2.13) in the ballistic
regime gives

Nf (t) =
L

L
Nf (0)

+ vt
(2.14)

from which we deduce that the crossover time is

tc = 〈τ〉 − L

vNf (0)
. (2.15)

Neglecting the dependence of 〈τ〉 on logL, which would give subdominant correc-
tions, the number of flocks in the diffusive regime then follows Ṅf ∝ −N3

f and
thus Nf (t) ∼ 1/

√
t.

Comparing with simulations in Fig. 2.17, we see that the late-time coarsening
is indeed clearly diffusive. At short time, we first see an increase in the number
of flocks corresponding to the time that they form and grow large enough to be
detected by our algorithm (we use a system of two thresholds at ρ = 2 and ρ = 8

with spatial smoothing on the length δx = 50 to detect the flocks robustly). The
crossover time tc is then computed from Eq. (2.15), taking the initial time to be
the time with the maximum number of flocks, and we indicate tc by black lines in
Fig. 2.17. Consistently with the analysis above, we do see a faster-than-diffusive
coarsening in the short window before tc.
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Figure 2.18: A typical sequence of configurations that make asters stable at low
temperature.

2.4 Asters

At low temperature or small velocity, a phase develops in which static struc-
tures coexist with a dilute gas. (See the phase diagrams in Fig. 2.5 and the
snapshot in Fig. 2.6b.) Each of these ‘asters’ consists in two peaks of right and
left-moving particles which apparently ‘block’ each other. Remember, however,
that there is no exclusion in our model so that the underlying mechanism is
necessarily more complex and calls for an explanation. We termed these struc-
tures asters, by analogy to the star-shaped defects observed in 2d active sys-
tems [Kruse et al. 2004, Farrell et al. 2012].

A closer look at the microscopic dynamics of an aster reveals that its stabil-
ity arises from periodic orbits in configuration space, as illustrated in Fig. 2.18.
Starting from two peaks of opposite magnetization, one particle—say with pos-
itive spin—hops forward and lands onto the second site where it belongs to the
minority phase. It then flips and aligns with its new environment. The most likely
move is then that one of the minus particles hops forward onto the site populated
by plus particles. Once again, this particle belongs to the minority phase and
flips, leading the system back into its original state. At low temperatures, such
trajectories are much more likely than trajectories leading to the evaporation of
the aster. To quantify the stability of asters, we first consider in Sec. 2.4.1 a
zero-temperature fully-asymmetric model in which the lifetime of an aster can be
computed exactly. We then discuss the stability of asters at finite temperature
and the corresponding coarsening dynamics in Sec. 2.4.2. Finally, we show in
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Sec. 2.4.3 that, for 0 < ε < 1, asters typically have a richer shape than suggested
by Fig. 2.18: they are not perfectly localized and admit an exponential tail with
a characteristic size. Using a mean-field approximation, we compute the corre-
sponding decay length and determine a necessary condition for the existence of
asters that captures qualitatively, albeit not quantitatively, the phase boundary
between flocks and asters shown in Fig 2.5.

2.4.1 Lifetime of an aster at zero temperature

To make progress analytically, we first consider a T = 0, fully asymmetric
version of the AIM. Particles hop at rate v = 2D and the aligning interaction
is resolved instantaneously, due to the β → ∞ limit of the flipping rate (2.1).
In practice, when a particle hops onto a new site with two particles or more, it
immediately acquires the magnetization of the target site. The limit is ill defined
when one has both mi = 0 and β =∞. For simplicity, we here assume that when
a particle of spin s arrives on a site occupied by a particle of spin −s, it flips and
acquires a −s spin, so that the situation mi = 0 does not occur. As a result, the
sole microscopic time-scale of the system is v−1. The case in which both particles
keep their current spins and flip at rate ω0 is qualitatively similar, albeit more
involved due to the presence of the second time scale ω−1

0 .

Consider an initial condition in which N particles are randomly placed on the
lattice and each site is given a magnetization at random. The dynamics is such
that all sites remain fully ordered at all times, withmi = ±ρi, and the total escape
rate is alwaysNv. A typical trajectory is shown in Fig. 2.19. It rapidly leads to the
emergence of an extensive number of asters, whose rare and sudden evaporations
lead to a coarsening dynamics. To characterize the latter, we compute the lifetime
of an aster comprising M particles (spread out over the two sites).

Let us consider the situation depicted in Fig. 2.20 in which an aster is formed
with n particles with +1 spins at site i and M − n particles with −1 spins at site
i + 1. We denote this configuration as n ≡ (n,M − n). The system evolves at
rate qn = vn towards the configuration n− 1 and pn = v(M − n) towards n + 1.
We denote by rn = pn + qn the escape rate from configuration n, which is here
given by rn = vM . Given the expressions of qn and pn, there is a linear drift that
takes the system towards the most likely configuration n = M/2. Note that the
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Figure 2.19: Starting from a random configuration at t = 0 in the zero-
temperature model, the system rapidly evolves into a large number of small asters.
These coarsen on much longer time scales, as smaller condensates evaporate and
are redistributed into larger ones. Parameters: L = 200, N = 100, v = 1, ε = 1.

configurations M and 0 are limiting cases that correspond to the evaporation of
the aster. To get an intuitive understanding of the aster dynamics, we consider
the master equation of this process:

∂tP (n) = qn+1P (n+ 1) + pn−1P (n− 1)− (qn + pn)P (n) . (2.16)

Small Gaussian fluctuations close to the most likely configuration n = M/2 are
well described by introducing P (x = n/M) = MP (n) and expanding (2.16) to
first order in dx = M−1. Doing so yields the Fokker-Planck equation

∂tP (x) =
∂

∂x

[
V ′(x)P (x) +

v

2M

∂

∂x
P (x)

]
, (2.17)

which corresponds to the dynamics of a Brownian particle in a harmonic potential
V (x) = v(x− 1

2
)2 at temperature v

2M
, as illustrated on Fig. 2.20. The mean-first

passage time τ until the evaporation of an aster with M particles can then be
estimated using the Arrhenius scaling log τ ∝ M/2. This scaling is not expected
to hold quantitatively, since the diffusive approximation (2.16) is expected to fail
in the large-deviation regime where x � 1√

M
, but it captures the physics that

makes the aster long-lived at zero temperature.
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aster from (n,M−n) to (n+1,M−n−1). Right: This dynamics is equivalent to
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corresponding to the evaporation of the aster.

We now wish to compute exactly the mean-first passage time to reach either M

or 0, which will trigger the redistribution of the aster particles into a neighboring
aster, hence driving the coarsening process. Let us note Tn the average evaporation
time, starting from configuration n. In an average time r−1

n , the system jumps to
n− 1 or n + 1 with probabilities qn/rn and pn/rn, respectively. One thus has the
recursive relation:

Tn =
1

rn
+
pn
rn
Tn+1 +

qn
rn
Tn−1 (2.18)

that has to be solved with the boundary conditions

T0 = TM = 0 . (2.19)

To do so, we follow standard methods [Van Kampen 1992,
Antal & Scheuring 2006] and introduce Un = Tn−1 − Tn. Equation (2.18)
can then be rewritten as

pnUn+1 = qnUn + 1 . (2.20)
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Introducing π0 = 1 and, for i ≥ 0,

πi ≡
i∏

k=1

qk
pk

and, further, σi =
i∑

k=1

1

pkπk
, (2.21)

Eq. (2.20) is readily solved as

Un+1 = πnU1 + πnσn . (2.22)

Using T0 = 0, we first get T1 = −U1. The definition of Un then recursively leads
to

Tn≥2 = −U1

n−1∑

i=0

πi −
n−1∑

i=1

[πiσi] . (2.23)

Finally, U1 is determined by imposing the boundary condition TM = 0, which
gives:

U1 = −
∑M−1

i=1 [πiσi]∑M−1
i=0 πi

. (2.24)

All in all, the mean time to evaporation starting from the configuration n is given
by

Tn =

∑n−1
i=0 πi∑M−1
i=0 πi

M−1∑

i=1

[πiσi]−
n−1∑

i=1

[πiσi] (2.25)

where the second sum vanishes for n = 1. The above results are valid for generic
random walks with non-vanishing rates pn and qn. In the case at hand, using
pn = v(M − n) and qn = vn, we find

πi =

(
M − 1

i

)−1

, (2.26)

which allows the computation of Tn.

The mean first passage times to evaporation starting from all possible configu-
rations are plotted in Fig. 2.21a, forM up to 14. Interestingly, Tn becomes rapidly
independent of n. This can be understood as follows: due to the asymmetry be-
tween pn and qn, the most likely path to evaporation is to fall from n to M/2 and
then to get absorbed. Furthermore, Fig. 2.21a suggests an exponential increase
of Tn with M . To compute the leading order of Tn, consider the various terms
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Figure 2.21: (a): Mean-first-passage times from site i to sites 0 orM , asM varies
from 4 to 14. The circles correspond to numerical simulations whereas the crosses
correspond to Eq. (2.25). (b): Mean-first passage times to evaporation for an
aster withM particles. Green disks are results of numerical simulations, averaged
over 104 realizations. Orange crosses correspond to the exact formula (2.25), and
purple squares to approximation (2.31).

of Eq. (2.25) and their scaling as M → ∞. We first note, using Eq. (2.26), that
π0 = πM−1 = 1, π1 = πM−2 = (M−1)−1, and π1<i<M−2 = O(M−1). Consequently,
π1 + π2 + · · ·+ πn−1 → 0 for n<M and only π0 and πM−1 contribute to the sums.
Noting also that (πkpk)

−1 simplifies into

1

πkpk
=

(M − 1)!

vk!(M − k)!
=

1

vM

(
M

k

)
, (2.27)

we see that Eq. (2.25) can be approximated as

Tn ∼
1

2vM

M−1∑

i=1

[
πi

i∑

k=1

(
M

k

)]
− 1

vM

n−1∑

i=1

[
πi

i∑

k=1

(
M

k

)]
. (2.28)

Finally, we note that, for n < M − 1,
n∑

i=1

[
πi

i∑

k=1

(
M

k

)]
<

[
n∑

i=1

πi

][
M−2∑

k=1

(
M

k

)]
(2.29)

= o

(
M−1∑

k=1

(
M

k

))
, (2.30)
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Figure 2.22: (a) Spatiotemporal plot of the relaxation dynamics from a single
aster to the fluctuating aster phase of the AIM with rates (2.1). (b-c): Relaxation
dynamics in the aster phase for the AIM with rates (2.1). Number of asters as
a function of time, averaged over 1000 simulations (magenta) (b) and average
density contained in one aster (c). Fifty representative trajectories appear in
gray. Parameters: T = 0.2, ε = 1, L = 100, ρ0 = 10, D = 0.5.

so that

Tn ∼
1

2vM
πM−1

M−1∑

k=1

(
M

k

)
∼ 2M

2vM
(2.31)

Figure 2.21 (right) shows the comparison between numerical measurements of
TM/2, its exact expression (2.25) and the asymptotic estimate (2.31), which is
remarkably close to the exact values. The stability of asters and their coarsening at
zero temperature thus stems from an evaporation rate that vanishes exponentially
with their density.

2.4.2 Coarsening at small temperature

At zero temperature, aster coarsening occurs via an extremal dynamics: small-
est asters evaporate first and are redistributed among their neighbors. Since the
lifetime of an aster diverges exponentially with its height, this leads to an ex-
tremely slow dynamics, as apparent from Fig. 2.19.
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Figure 2.23: Spatiotemporal plot for the AIM with rates (2.34), starting from
20 asters whose initial density increases linearly from 6 to 25 as x increases;
coarsening leaves a single macroscopic aster. Parameters: D = 1, L = 1000,
ω0 = 1, β = 0.375, ρ0 = 0.29.

At finite temperature, a new phenomenon sets in: when a particle hops forward,
as in the second configuration of Fig. 2.18, it now has a finite probability Phop of
hopping further forward and leaving the aster before flipping its spin, with

Phop =
p

p+W (s→ −s) . (2.32)

In an aster comprising two sites with ρ particles, this leads to a flux of particle
jleak(ρ) leaving the aster, where

jleak(ρ) ∝ pρPhop =
p2

p+W (s→ −s)ρ . (2.33)

The variations of jleak(ρ) with ρ then determine the late-stage dynamics. For
the flipping rates (2.1), jleak(ρ) ∝ ρ at large densities since the hopping rate
is bounded, W (s → −s) < exp(β): large asters leak particles faster than
smaller ones, which arrests the coarsening and leads to a steady-state with an
extended number of finite-size asters, as illustrated in Fig. 2.22a and Fig. 2.22b-
c. (It would be interesting to generalize approaches developed in the past
to predict the size of competing finite condensates [Thompson et al. 2010] but
this is beyond the scope of this study.) For the unbounded rates studied
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in [Kourbane-Houssene et al. 2018]:

W (s→ −s) = ω0e
−βsmi , (2.34)

larger asters leak slower, leading to a single macroscopic aster, as illustrated
in Fig. (2.23). Finally, in a related 1d flocking model, a coarsening into
a single structure reminiscent of an aster was observed in the presence of
“centering” interactions, which bias the motion of particles towards dense re-
gions [Raymond & Evans 2006]. The generality of the mechanisms leading to
aster-like structures and their stability is thus an interesting question beyond the
sole case of the AIM.

2.4.3 Shape of asters

Let us now consider the case ε < 1, where hopping is not fully asymmet-
ric. Thanks to diffusion, particles can hop backward and asters are then spread
over several sites. Since they typically comprise many particles, we expect to be
able to describe their shape using the mean-field equations (2.5,2.6) introduced
in Sec. 2.3.1. It is straightforward to check that these equations admit stationary
solutions of the form

ρ(x) = ke−µcx; m(x) = kφe−µcx (2.35)

with k a normalization constant and φ and µc (the subscript “c” stands for “con-
tinuous” for a reason that will become apparent shortly) solutions of

v2

2D
φ(φ2 − 1) = φ cosh(βφ)− sinh(βφ) (2.36)

µc = −vφ/D. (2.37)

Furthermore, these are the only stationary solutions of Eqs. (2.5,2.6) such that
ρ(x) and m(x) are proportional to each other. Note that Eq. (2.35) does not
describe the full aster but only half of it, for x > 0 or x < 0. We are not aware of
any analytic solution describing the full aster, including its singularity at x = 0.
Finally, the competition between the asymmetric hops leading particles towards
the aster and the diffusive dynamics allowing them to explore neighboring sites is
reminiscent of the diffusive motion of colloids under gravity. The solutions (2.35)
can thus be seen as two exponential atmospheres pointing towards the core of the
aster.
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Figure 2.24: (a): Profile of an aster in the microscopic model. The dashed lines are
the exponential decays predicted by Eqs. (2.39)-(2.40). L = 1000, ρ0 = 100, β = 4,
ε = 0.5, D = 0.5. (b): Measured values of µ in the microscopic model at different
β compared with the predictions from the continuous mean-field equations (blue
dotted line) and from the discrete ones (black dashed line). L = 1000, ρ0 = 100,
D = 0.5. (c): Phase boundary εc(β) such that asters are observed for ε < εc
in microscopic simulations (symbols), compared to the limit of existence of aster
solutions in the mean-field equations (dashed line). L = 500, ρ0 = 10, D = 0.5.

We now compare these solutions with the aster profiles measured in the mi-
croscopic model in Fig. 2.24a. The profiles of density and magnetization indeed
exhibit an exponential decay on both sides of the aster. In Fig. 2.24b, we see that
the measured decay exponent µ agrees well with the solution µc of Eq. (2.37) at
small ε but deviates for larger ε. Note that we plot only the curve µc(β = ∞)

in Fig. 2.24b since the curves for different values of β would be indistinguishable
on the scale of the figure. Setting β = ∞ also simplifies the calculation since it
amounts to fixing φ = ±1 in Eq. (2.36) so that µc(β =∞) = ±v/D = ±2ε.

Increasing ε, we see that the discrepancy between µc and the measured µ in-
creases. This deviation can be attributed to the continuous limit used to derive
Eqs. (2.5,2.6). If instead we retain the full discrete equations Eqs. (2.3,2.4) in the
mean-field approximation, and look in the same way for exponential solutions

ρi = kκi; mi = kφκi, (2.38)



2.5. Robustness of the results 59

we find the conditions

4D(κ− 1)2φ− v(κ2 − 1)

4κ
= φ cosh[βφ]− sinh[βφ] (2.39)

(κ+
1

κ
− 2) =

vφ

2D
(κ− 1

κ
); µd = − log κ (2.40)

The decay exponent µd (where “d” stands for “discrete”) predicted by
Eqs. (2.39,2.40) is now in near-perfect agreement with microscopic simulations
as shown in Fig. 2.24b.

Interestingly, we find that there is a maximum value of ε that we denote εc above
which no physical exponential solution is found (we require that φ ∈ [−1, 1] and
that µd be of opposite sign to φ for a physical solution). In Fig. 2.24c, we compare
this limit value with the transition line between the flock and aster phases in the
microscopic model. Both lines show the same trend as a function of β but are
quantitatively different. This indicates that, unsurprisingly, exponential solutions
can exist at the mean-field level while asters are not observed because either the
full aster solutions do not exist at the mean-field level or because they are unstable
to fluctuations.

2.5 Robustness of the results

2.5.1 Comparison with the model of O’Loan and Evans

We now compare our results on reversals to those obtain by O’Loan and Evans
in [O’Loan & Evans 1999]. Contrary to our observations in Fig. 2.9, these au-
thors did not report the growth of a protrusion. Consequently, they explain that
〈τ〉 ∝ logL (See Fig. 2.25a) through a somewhat different argument compared
to Sec. 2.3.2: Observing that the flock has the shape of a Poisson distribution
ρ(x, t) ∝ e−ttx/x! in the zero-noise limit, they estimate the reversal time as the
time where the leading edge is sufficiently spread that reversing one particle at
the front is sufficient to flip the whole aggregate. This indeed predicts a logarith-
mic dependence but the presence of the exponential tail in P (τ) (that they also
observe) does not fit easily in this picture.

To check if there are indeed qualitative differences between the flock shapes in
the two models, we simulated the model of [O’Loan & Evans 1999]. Fig. 2.25b
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Figure 2.25: (a) : Mean time between reversals in the model of O’Loan and
Evans. Evolution of the averaged density profile as a function of time (b) and
instantaneous density profiles at a late time t = 3600 (c) in the model of O’Loan
and Evans. Parameters: ρ0 = 10, L = 1000 (b-c) and η = 0.1.

shows the average profiles obtained by the same procedure as for the AIM in
Fig. 2.9. Contrary to the AIM, the density decays continuously to zero on the
fore front and there is no obvious protrusion at a fixed density. However, looking
at individual flocks that have survived the longest in Fig. 2.25c, one can observe
such protrusions albeit with a rather large dispersion in the leading edge position
so that the averaging procedure completely smears it out (See Fig. 2.25b). Never-
theless, the phenomenology seems to be the same as in the AIM, with protrusions
appearing later in time so that, for the system sizes we simulated, most reversals
take place before the protrusions develop.

This has consequences for the scaling of the reversal time distribution. In
Fig. 2.26a-b we show the rate of reversal for several system sizes. In the AIM,
changing the system size shifts λ(t) so that a collapse is obtained by plotting λ(t̃)

with t̃ = t − α logL (see Fig. 2.13), and we interpreted this shift essentially as
the time for the protrusion to develop. For the model of O’Loan and Evans, we
see in Fig. 2.26a-b that the collapse is obtained upon a rescaling t̃ = t/(logL)γ

with γ = 2.2. This corresponds to the first regime described in Sec. 2.3.2 when
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(a) (b) (c)

Figure 2.26: Rate of reversal λ as a function of time t since the last reversal (a)
and of the rescales time t̃ = t/(logL)γ, with γ = 2.2 (b). Parameters: ρ0 = 10

and η = 0.1. (c): slope k(t) at the front of a Poisson flock as a function of rescaled
time t/(logL)γ, with γ = 1.8 for several values of L.

the steepness of the leading edge is still evolving in time. The steepness can be
estimated numerically for a Poissonian ρ(x, t) ∝ e−ttx/x! by looking at the slope
k(t) = −∂ρ(x, t)/∂x of this distribution at the front of the flock (at ρ = 1). We
see in Fig. 2.26c that it scales with system size approximately as k ∝ (logL)γ with
γ = 1.8, not too far from the value that rescales the distributions in Fig. 2.26b.
The effect of the protrusion is seen only at late times and small enough system
size where a plateau in λ(t) is reached.

2.5.2 Off-lattice version

To close this chapter, let us address the fate of flocks and asters in the off-lattice
counterpart of the 1d AIM. We thus consider N particles moving in continuous
space. Each particle carries an Ising spin ±1, which flips at rate:

W (s→ −s) = exp

(
−sβmi

ρi

)
(2.41)

where the local density ρi and magnetization mi are computed on a segment of
size r = 1 around each particle. The position evolves according to the Langevin
equation:

ẋ = sv +
√

2Dη (2.42)

with v the speed, a continuous analogous of 2Dε, and η a Gaussian white noise
of unit variance. Simulations are carried using a forward Euler algorithm with
parallel updates.



62 Chapter 2. Flocking in one dimension

(a) (b)

Figure 2.27: (a) : Evolution of the density profile averaged over 150 flocks. As
in lattice models, we can observe a spreading peak and a protrusion. Parameters:
ρ = 5, v = 0.5, β = 1.7, L = 1000, D = 1. (b) : Space-time diagram in the
flocking phase. Lighter grey levels represents higher particle density. Parameters:
ρ0 = 2, v = 1, β = 2, L = 300.

The phenomenology of this model is very similar to that of the on-lattice version
of the AIM. We do observe flocks presenting a protrusion and reversals (Figure
2.27), which are qualitatively in accordance with the on-lattice model.

However, lowering the temperature, we do not see asters. Preparing the system
in a initial aster configuration (Fig. 2.28a) – two peaks with exponential profiles
facing each other, as described in Sec. 2.4.3 – we witness one side of the aster taking
over the other by reversing its spins (Fig. 2.28b), until a flock remains (Fig. 2.28c).
One way to account for this instability is as follows: Starting from an idealized
completely symmetric situation, slightly disturbing the magnetization – say by
increasing its value on the positive side – will create a zone of positive magnetiza-
tion on the initially negative side of the aster. On-lattice, due to the discreteness
of space, this zone would be contained on a single site and the aligning dynamics
would restore the symmetry. Here, the zone of positive magnetization progresses
through the negative side of the aster, flipping the particles as it advances, much
like what happens during a reversal. The typical sequence of configurations that
made asters stable on-lattice does not exist in continuous space and asters are
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(a) (b) (c)

Figure 2.28: Destabilization of an aster in the off-lattice version of the AIM.
Parameters : ρ = 10, L = 300, v = 1, D = 1, β = 4.

thus unstable. Note that this instability is also observed if the model is simulated
using random sequential updates.

We also examined the stability of asters in the hydrodynamic equations
Eqs. (2.5, 2.6). We simulated the equations using a finite difference algorithm,
starting from the typical exponential shape of an aster. Consistently with the
off-lattice model, we observed a rapid destabilization, hinting that such solutions
are not stable at the hydrodynamic level. All these observations point to the fact
that asters do not exist off-lattice.

2.6 Conclusion

We have provided a detailed study of the active Ising model in one spatial
dimension. Despite its simplicity, the AIM shows two non-trivial phases charac-
terized by flocks and asters. We found the flocking phase to exhibit the same
phenomenology as other one-dimensional flocking models [Czirók et al. 1999,
O’Loan & Evans 1999, Raymond & Evans 2006, Dossetti 2011,
Solon & Tailleur 2013, Laighléis et al. 2018, Sakaguchi & Ishibashi 2019]: Large
ordered aggregates spread while propagating, merge when they collide, and
regroup when stochastically reversing their direction of motion. As reported
before [O’Loan & Evans 1999, Raymond & Evans 2006, Solon & Tailleur 2013],
the time between two reversals of a flock increases logarithmically with system
size. We went further and explained this dependence as well as the variations
with the velocity of particles and the temperature. In addition, we have also
analyzed in detail the flock shapes and how they evolve in time. The global
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picture that emerges is that of a liquid-gas phase separation which cannot relax
to steady state because of reversal events. Since this is expected to be generic for
1d flocking models, we also expect our results to be relevant to other systems. We
therefore discussed our analysis of the reversal times based on the flock shapes
by examining the model of [O’Loan & Evans 1999] and observed qualitative
agreement.

We reported a new phase of the AIM populated by “asters” which are composed
of two peaks of opposite magnetization facing each other. These asters appear
only because of the interplay of alignment and self-propulsion and thus through
a mechanism qualitatively different from traffic jams due to steric interactions or
from the “dipoles” observed in [Raymond & Evans 2006] which rely on centering
interactions that favor motion towards high-density regions. We have provided
an exact solution of the zero-temperature dynamics of an aster and showed that
they dissolve in a time that is exponential in their size. At infinite time, this leads
to a single aster in the zero-temperature limit but to a finite density of asters
at small but finite temperature. Finally, we have shown that asters generically
exhibit exponential tails with decay exponents that are well predicted by a mean-
field theory. Although we find that asters are unstable in continuous space, it
would be interesting to see if the simple mechanism which leads to their existence
on-lattice could be realized in different contexts, numerically and experimentally.

Common statistical mechanics wisdom states that fluctuations become more im-
portant as the dimension of space becomes lower. In equilibrium, this goes as far
as preventing the existence of an ordered state in a model with only short-ranged
interactions. In our active system, the flocking phase shows that ordering is pos-
sible but fluctuations still prevent true symmetry breaking by inducing reversals
of the flock direction. Fluctuations play a somewhat different but also essential
role in the dynamics of asters: we found that the dissolution of asters and thus
their coarsening is due to rare fluctuations, giving rise to extremal dynamics. In
contrast, we found that some features of flocks and asters are accounted for to a
good accuracy by a mean-field approach that neglects fluctuations.
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3.1 Introduction

The stability of the ordered phase of the equilibrium Ising model against
nucleation is guaranteed by Peierls’ argument in d > 1 [Domb & Green 1972,
Peierls 1991], which essentially states that surface tension makes any finite
droplet of the minority phase shrink. On the other hand, spin waves are
well known to prevent the emergence of true long-range order in the two-
dimensional (2d) equilibrium XY model, as dictated by the Mermin-Wagner the-
orem [Mermin & Wagner 1966, Kardar 2007]. It was therefore a surprise when
the Vicsek model [Vicsek et al. 1995], which can be seen as an active version of
the XY model, was shown to possess a flocking phase with true long-range polar
order, ‘escaping’ the theorem. This phase was first described by Toner & Tu in
[Toner & Tu 1995]. Since long-range order survives spin waves, it seemed reason-
able that the ordered phase should also survive stronger excitations. This may
be part of the reason why its robustness to large fluctuations has long remained
unexplored.

3.1.1 Fragility of the order

Recently, however, numerical results in 2d have questioned the stability of the
flocking phase. First, it has been shown in [Codina et al. 2022] that, for large
enough noise, a small obstacle or a group of particles oriented against the flow can
break order in the Vicsek model by triggering a counter-propagating front that
grows and eventually reverses the global polarity (See Fig.3.1a). This happens in
a finite fraction of the phase diagram close to the disordered phase, hence shifting
the flocking phase to lower noise values. Second, [Besse et al. 2022] studied the
stability of the Malthusian flocks introduced in [Toner 2012a] in which particles die
and reproduce on a fast scale, smearing out the density field fluctuations around its
average value. In the limit case of constant-density, they showed that the flocking
phase is metastable to the spontaneous nucleation of aster-shaped defects (See
Fig. 3.1b). Nucleation events eventually lead to a constantly evolving active foam
made of asters surrounded by a network of shock lines, destroying the ordered
phase. These numerical results question the stability of the 2d orientationally-
ordered phases of active systems. So far this question has not been approached
theoretically. Furthermore, higher dimensions remain uncharted territory.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: In (a), (b) and (e), the color indicates the local orientation of the
velocity. (a): Snapshot of the propagating wave triggered by the presence of
an obstacle in the ordered phase of the Vicsek model [Codina et al. 2022]. (b):
Snapshot showing the nucleation of aster-shaped defects in constant-density flocks
[Besse et al. 2022]. (c): Magnitude of the current for a flock of motile colloids
cruising through obstacles in the experiment of [Morin et al. 2016]. (d): Snapshot
of the band phase being stable in the presence of multiple localized obstacles (green
dots) [Chepizhko et al. 2013]. (e): Snapshot of polar vortices in the Vicsek model
with chiral disorder [Ventejou et al. 2021]. (f): Snapshot of a band reversal in the
model of [Sakaguchi & Ishibashi 2019].

The homogeneous ordered phase is also unstable in the presence of extensive
disorder. [Ventejou et al. 2021] introduced disorder in the form of chirality, by
endowing the particles with an intrinsic will to rotate. They showed that any
amount of chirality destroys the order and gives rise to, among other types of
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structures, polar vortices. They traced this back to the generic instability of
the ordered homogeneous solution of the hydrodynamic theory that they de-
rived from the particle-level model. Scattered obstacles also qualitatively modify
the nature of the ordered phase, which was first believed to have quasi long-
ranged order [Chepizhko et al. 2013, Toner et al. 2018] but recent numerical evi-
dence shows that strong non-self-averaging effects prevent elucidating the nature
of the asymptotic state [Duan et al. 2021]. This problem has also been approached
experimentally in [Morin et al. 2016] by examining how motile colloids cruise be-
tween randomly positioned microfabricated obstacles (See Fig. 3.1c). The study
reported that the system undergoes a first-order phase transition from collec-
tive to isotropic motion when increasing the amount of disorder. In contrast,
the characteristic Vicsek bands were found to be robust structures in the pres-
ence of spatial quenched disorder [Duan et al. 2021, Chepizhko et al. 2013] (See
Fig. 3.1d). [Ventejou et al. 2021] reported the Vicsek bands to coexist with po-
lar vortices (See Fig. 3.1e) and even resist a finite amount of chirality in the
infinite size limit, confirming the stability of such bands. Contrary results were
obtained in [Sakaguchi & Ishibashi 2019]. They studied a simple model consist-
ing of stacked 1d AIM-like models interacting only through alignment between
adjacent rows, without vertical diffusion of the particles, and observed the for-
mation of a band traveling the system. They witnessed the reversal of a single
row propagating to the nearby rows, triggering a destabilization of the band (See
Fig. 3.1f). As will be explained in this chapter, such reversals are also observed
in the original bidimensional AIM and constitute natural 2d extensions of the 1d

reversals detailed in Chapter 2.

In another recent development, the Toner-Tu phase was shown to be fragile to
rotational anisotropy [Solon et al. 2022]. A field with q-fold symmetry influencing
particle orientations destroys the scale-free nature of the ordered phase at large
scales, leading to Gaussian fluctuations and short-range correlations. The large
scale behaviour of Vicsek-type models, in presence of anisotropy, is then the same
as that of the AIM in the homogeneous ordered and coexistence phases.

3.1.2 Metastability of the flocking phase

In this chapter, we analyze the stability of the ordered phases in the AIM
and establish their metastability in any d ≥ 2. We first explore the stability of
the order in the coexistence phase of the bidimensional AIM, where we observe
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destabilizations to spontaneously occur at the front of the bands and propagate
through it. Increasing density, we also report nucleation of destabilizations in the
homogeneous ordered phase, leading to a counter-propagating droplet. In both
the coexistence and the homogeneous ordered phase, we find destabilizations to
be the result of local, fluctuation-induced events. To test if destabilizations occur
for all parameters, we induce them “by hand” and find that finite-size perturba-
tions can destabilize the ordered phase everywhere on the phase diagram. In the
thermodynamic limit, even if its rate of occurence is very small, such a pertur-
bation can happen spontaneously so that the entire homogeneous ordered phase
is metastable. We also introduce an obstacle against which particles collide and
observe that it can trigger the nucleation of a droplet, depending on the collision
scenario that we use.

To support our statement about the metastability of the flocking phase, we use
a d-dimensional continuum description of the AIM and we show that droplets
of particles moving in the direction opposite to that of the ordered phase can
propagate while expanding. Finally, considering the same continuum theory in
2d, albeit with a vectorial order parameter, we numerically show that any amount
of vertical advection hinders the propagation of induced perturbations, pointing
towards a fundamental difference between scalar and vectorial order parameter.

This chapter is organized as follows: after defining the d-dimensional AIM and
exploring its 2d phase diagram in Sec. 3.2, we consider numerical simulations and
report in Sec. 3.3 spontaneous nucleation of counter-propagating growing droplets
both in the coexistence phase (Sec. 3.3.1) and in the ordered phase (Sec. 3.3.2).
We then probe the nonlinear response of the ordered phase to strong localized
perturbations in Sec. 3.4 and demonstrate in Sec. 3.4.1 that a droplet polarized
oppositely to the surrounding ordered background can grow in all directions. We
also observe the formation of such droplet to be triggered by the presence of an
obstacle in Sec. 3.4.2. We then show numerically and analytically that the same
scenario takes place in the relevant hydrodynamic theory in Sec. 3.5. We find
that droplet growth is induced by the ballistic propagation of its domain walls
in Sec. 3.5.2 and characterize its shape in any dimension d ≥ 2 in Sec. 3.5.3.
We conclude by observing the fate of such a droplet in a vectorial version of the
hydrodynamic theory in Sec. 3.6.
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Figure 3.2: ρ0 −D phase diagram for the three simulation techniques. The sepa-
ration between Gas and Gas+Liquid is the density of the liquid band, while the
separation between Gas and Gas+Liquid corresponds to the density of the gas.
We observe qualitative agreement. The colored squares correspond to the parame-
ters used in the figures indicated in the legend. Parameters : Lx = 400, Ly = 100,
ρ0 = 3, v = 1.

3.2 Active Ising model

We consider the same model as in Chapter 2 but on a d-dimensional hypercu-
bic lattice. The alignment dynamics is the same on-site ferromagnetic alignment.
We consider a slightly different parametrization of the hopping rates compared
with Chapter 2 with self-propulsion taking place along the lattice vector ex in
a direction given by the particles spins s: particles at site i hop at rate v to
the site i + sex and we add a symmetric diffusion at rate D in the remaining
(d − 1) dimension. We first compute the phase diagram in the D − ρ0 plane us-
ing three different simulation techniques (Fig. 3.2). Consistently with previous
work [Solon & Tailleur 2013, Solon & Tailleur 2015], we report a phase diagram
with three phases: a disordered gas phase (G) and an ordered, flocking, liquid
phase (L) separated by a coexistence region where a macroscopic dense liquid
domain moves in the remaining gas (G + L). Remarkably, the coexistence re-
gion widens as D is approaching zero, so that the homogeneous ordered phase is
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Figure 3.3: Spontaneous reversals off-lattice. Parameters : ρ0 = 3, Lx = 400,
ly = 100, v0 = 1, D = 0.08, β = 2.

observable only at very high densities.

The results presented in this chapter were mainly obtained through a random
sequential update simulation of the AIM dynamics, already detailed in Chapter 2.
The observed phenomenology remains the same for other simulation techniques.
To support this claim, we compare the effect of parallel updates on-lattice (green
dots in Fig. 3.2), random sequential updates on-lattice (purple triangles) and
parallel updates off-lattice (brown crosses). In the parallel update scenario, all
positions and spins are updated in parallel during a timestep. The off-lattice
simulation was described in Chapter 2. We find that the different algorithms give
the same qualitative phase diagram, with only quantitative differences of the order
of 30%.

3.3 Spontaneous destabilizations

3.3.1 In the coexistence phase

In the coexistence phase of the AIM, a single ordered band travels in a disor-
dered background [Solon & Tailleur 2015]. At small D, we observe spontaneous
destabilizations in the band. The scenario in 2d is somewhat similar to a reversal
in the 1d case detailed in Chapter 2: A fluctuation at the front of the band, in
the region connecting the liquid and the gas, can reverse the first few sites. It
then propagates through the liquid band, reversing the particles as it progresses
(See Fig. 3.3 for a snapshot off-lattice).
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Figure 3.4: Destabilization time. (a): Average time for a spontaneous destabi-
lization to occur in the coexistence phase (blue dots) and in the homogeneous
phase (orange dots), indicated by the squares of same colors in the phase diagram
Fig. 3.2. Errorbars at 3 standard deviations over 50 runs are shown in lighter
colors. (b): Probability density function of the destabilization time τd. (c): Av-
erage destabilization time multiplied by the vertical size Ly as a function of Ly.
Parameters : ρ0 = 3 (b,c); Lx = 200; Ly = 100 (a,b); D = 0.06 (b), D = 0.1 (c);
β = 2; v = 1.

We compute the time τd needed for such a destabilization to occur as a function
of D. To do so, we organize particles in a vertical strip which quickly relaxes to the
phase separated state: a dense band of positive magnetization in a dilute gas. We
detect a destabilization whenever one of the rows reaches a negative total magne-
tization. Looking at the blue dots in Fig. 3.4a, we observe an exponential increase,
compatible with the intuition that diffusion damps fluctuations, hindering their
propagation in the liquid band. At fixed diffusion coefficient D, looking at the
probability density of τd on Fig. 3.4b, we observe an exponential tail indicating
a constant rate of destabilization, in line with fluctuation-induced events, except
at small times where the initial condition is important. Since destabilizations are
initiated at the front of the band, we expect their rate of occurence to increase
with the interface length between liquid and gas. This is indeed what we observe
in Fig. 3.4c: computing the destabilization time as a function of vertical size, Lyτd

quickly reaches a plateau1 indicating that τd ∝ Ly
−1: destabilizations result from

local events. Together with a constant rate of occurrence, we deduce that in the
thermodynamic limit (Ly →∞), the band is metastable.

1Note the intermediate region where the destabilization time increases from the 1d case
(Ly = 1) to the 2d case (Ly & 5).
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Figure 3.5: Vertical spreading δ of the destabilizations in the band phase as a
function of D. The blue dashed line is the theoretical prediction of the transition
from one-row reversal to multiple-row reversal Eq. (3.2). Parameters : ρ0 = 3,
Lx = 200, Ly = 100, β = 2, v = 1.

At small D, the rows constituting the system are weakly interacting and we
observe the 1d behaviour: destabilizations take the form of a 1d reversal on a
single row (Fig. 3.6a), leaving the rest of the band unaffected. At larger D, the
destabilization propagates to adjacent rows, and we observe a vertical spreading
(Fig. 3.6b). A simple argument can explain the transition between these two
behaviours. Let us reintroduce the lattice spacing explicitly to understand its
effect. Particles thus hop at rate Da2 plus a rate va in the direction of their spin.
For a droplet to spread vertically it must be able to “invade” the adjacent sites.
Concretely, when a particle jumps on a site of opposite magnetization, it aligns
with the new environment on a time scale τa = ω0e

β. If a sufficient number of
particles have jumped during this time scale they can overwhelm the particles of
opposite magnetization and flip the site. In practice, the vertical flux is

J = −D mo −md

a
(3.1)

During a time τa, Jτa/a particles hop on (say) the site on top, so that they flip
the arriving site if

D >
a2

τa

1

1 +
∣∣∣md

mo

∣∣∣
(3.2)

md/mo is of order 1 as we see in Fig. 3.6. Together with the lattice spacing a = 1,
ω0 = 1 and β = 2, this gives us an estimate critical value Dc ≈ 0.07 for the
fluctuation to grow vertically.
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Figure 3.6: Spontaneous reversals on-lattice in the coexistence region varying the
lattice spacing a. (a-b): a = 1. (c-d): a = 1/3. Parameters: ρ0 = 3, Lx = 200,
Ly = 100, β = 2, v = 1, D = 0.02 (left column), D = 0.16 (right column).

We first test this prediction by measuring the maximal vertical extension δ of
spontaneous destabilizations as a function of D which corresponds to the number
of vertically contiguous sites of negative magnetization when it leaves the band.
The results are shown in Fig. 3.5a, where we observe a transition from single-
row to multiple-rows reversals, occurring for Dc ≈ 0.08, consistent with the value
predicted by our theory. Next, we test the effect of lattice spacing. In order to
change a keeping the interaction surface constant, we need to allow for alignment
with neighbouring sites. We consider here alignment on 3 × 3 sites around the
particle. Rescaling D → 9D, v → 3v, ρ0 → ρ0/9 then amounts to choosing
a = 1/3. Eq. (3.2) then predicts a much lower threshold Dc = 0.007 that is
consistent with the vertically spreading droplets that we observe in simulations in
this case, see Fig. 3.6c.

3.3.2 In the ordered phase

We also observe spontaneous destabilizations in the ordered phase at small D
(See Fig. 3.7, top row, for a serie of snapshots during a destabilization). As
in the coexistence phase, the average destabilization time τd diverges exponen-
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Figure 3.7: Top: Snapshots of a spontaneous destabilization showing the growing
droplet. Size of the window 400×40. (a): Average nucleation time τd in a system
of size L × L. (b): Probability density function of the nucleation time τd on a
system of size 200×200. (c): Average time required for a spontaneous nucleation
to occur in the ordered phase of a system of size 200 × Ly multiplied by Ly as
a function of Ly. Parameters (See orange square in the phase diagram Fig. 3.2):
ρ0 = 8, v = 1, β = 2, D = 0.1 (top row, b, c).

tially with D (See orange dots on Fig. 3.4a). This explains why no one ever
reported any destabilization for the parameter values usually considered in the
literature (around D = 1 and thus with very long destabilization times at prac-
tically unattainable system sizes). We find that τd ∼ 1/L2 (Fig. 3.7a) which is
characteristic of nucleation events resulting from local fluctuations, at uniform
rate per unit area. The exponential distribution of the destabilization times in
Fig. 3.7b moreover indicates that the rate is constant in time, as expected in a
stationary regime. To conclude, in both the coexistence and the ordered phase,
the destabilizations result from local fluctuation-induced nucleations occurring at
constant rate, so that the entire flocking phase is metastable in the thermodynamic
limit.
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Since the ordered phase was established to be unstable in the 1d AIM (See
Chap. 2), in the limit of small vertical size, we expect to recover the 1d behaviour
of a metastable ordered phase. Considering systems of size 200 × Ly (Fig. 3.7c),
we indeed observe destabilizations, τd increasing rapidly with Ly from its low 1d

value (at Ly = 1). We observe that τdLy quickly reaches a plateau so that beyond
a certain width, flipping the ordered phase does not require a larger fluctuation.
This size can thus be interpreted as a critical nucleus rc needed for a droplet to
invade the system and happens for strips as narrow as Ly = 3 ∼ 5. Note that
the asymptotic saturation value of τdLy increases exponentially fast with D, as
already mentioned above.

3.4 Induced destabilizations

Extrapolating the data shown in the previous section, we concluded that the or-
dered phase should be metastable for all parameters. However, since τd increases
exponentially with D, destabilizations are not observed in practice in simulations
for D of order 1. To test our scenario, we instead induce “by hand” the desta-
bilization by introducing a counter-propagating droplet in the ordered phase in
Sec. 3.4.1. We find a critical radius beyond which a perturbation propagates and
destroys the ordered phase. We then probe the stability of the order to the pres-
ence of a localized obstacle in Sec. 3.4.2, and report the formation of a droplet at
the front of the obstacle which then plays the role of a nucleation point.

3.4.1 Droplet propagation

Introducing a large enough counter-propagating droplet of density ρ0
d in the

ordered phase of density ρo, we observe that it grows (purple region) (Fig. 3.8a-b)
at the expense of the ordered phase, leaving in its wake a dilute, disordered comet-
like structure (white region). These different regions are separated by domain
walls that we characterize later. The local density and polarization, defined as
pi ≡ mi/ρi, in these three regions are illustrated in Fig. 3.8c, which shows their
profile along the central axis. The maximal density in the droplet ρd > ρo and
magnetization md are constant in time. We note that the polarization inside the
droplet is also constant and approximately opposite to that of the ordered phase:
pd ' −po.
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Figure 3.8: Simulations of the 2d AIM. (a-b) Snapshots of the magnetization field
following the introduction in the ordered phase of a counter-propagating droplet at
x = y = t = 0 (r = 10, ρ0

d = 5ρo), averaged over 100 runs. (c) Polarization (red)
and density (black) profiles at y = 0 for the snapshot shown in (b). Parameters:
v = 1, D = 1, ρo = 10, β = 2, (Lx, Ly) = (8000, 800).

For an initial droplet of small radius r, the perturbation typically disappears
and the ordered phase is restored. Varying r allows us to estimate the radius rc

beyond which the initial droplet grows2. Repeating the experiment many times
(100 times in Fig. 3.9), we find that the probability that the droplet reverses the
ordered phase, that we denote by Pr(r), increases sharply from near-0 to near-1
values when r is increased and we define rc by Pr(rc) = 1

2
. In practice we consider

that we have a reversal when the droplet has propagated over a large enough
distance (∆x = 50), so that we are sure it will continue to propagate. The precise
procedure used to detect a reversal is detailed in appendix A.

We find that Pr(r) becomes rapidly independent of the system size as the latter
is increased (Fig. 3.9a) and measure finite values of rc at all parameter values
probed in the ordered phase. Remarkably, rc decreases weakly as T is decreased
deeper into the ‘ordered’ phase (Fig. 3.10a). This is markedly different from

2Keeping r fixed and increasing ρ0d leads to similar results, see Fig. 3.9b.
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Figure 3.9: (a): Reversal probability Pr(r) for ρ0
d = 1.2ρo. The dotted line is a fit

to a hyperbolic tangent used to extract rc. (b): Same as (a), for a droplet of initial
radius r = 6 as a function of the droplet initial density ρ0

d for (Lx, Ly) = (200, 100).
Parameters: v = 1, D = 1, ρo = 5, β = 2.

what was reported for the Vicsek model [Codina et al. 2022] where a perturbation
reverses the ordered phase only in a finite fraction of the phase diagram next to
the coexistence region, with rc diverging sharply as T is decreased. Note that rc

increases roughly linearly with D, consistently with the intuition that diffusion
suppresses perturbations (Fig. 3.10b). We measure rc for values of D larger than
D = 0.5 because, as seen in the phase diagram Fig. 3.2, decreasing D at smaller
values would bring the systems into the coexistence phase if keeping the same
density ρo = 5. We found rc to approximately diverge as 1/v in the limit v → 0

(see Fig. 3.10a), therefore recovering at v = 0 an equilibrium-like behavior where
finite-size droplets shrink. Finally, increasing the density of the ordered phase,
the critical radius remains almost constant (Fig. 3.10d).

A simple scaling argument based on the characteristic lengthscale in the con-
tinuum equation of the AIM accounts for this dependence in v, D and ρ0. We
start with the mean-field hydrodynamic equations presented in Chapter 2:

∂tρ = −v∂xm+D∇2ρ (3.3)
∂tm = −v∂xρ+D∇2m+ ω0F (ρ,m) , (3.4)

where ρ and m are the density and magnetization fields, respectively, and F =

2ρ sinh(βm/ρ)−2m cosh(βm/ρ). We identify a characteristic lengthscale ξ = D/v

and timescale τ = D/v2. Using rescaled coordinates t̃ ← τt and x̃ ← ξx, the
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Figure 3.10: Variations of rc with system parameters. Parameters: v = 1 (a,b,d),
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dimensionless equations read

∂t̃ρ = −∂x̃m+ ∇̃2ρ (3.5)

∂t̃m = −∂x̃ρ+ ∇̃2m+ ω̃0F (ρ,m) , (3.6)

where ω̃0 = ω0D/v
2 controls the relaxation time of m. When ω̃0 � 1, the field m

relaxes very rapidly since all other terms in Eq. (3.6) are of order 1, so that its
dynamics, on times of order 1, is expected to become independent of the precise
value of ω̃0. The critical dimensionless radius r̃c is then related to the dimensional
critical radius rc by the relation rc = ξr̃c. Thus, restoring the units yields:

rc ∝
D

v
(3.7)

This scaling is only valid in the limit of large ω̃0 and is indeed consistent with
numerical simulations, where we observe rc ∝ D (Fig. 3.10b) and rc ∝ v−1 for
small value of v (Fig. 3.10c). Note also that Eqs. (3.5, 3.6) are invariant under a
rescaling of ρ and m, so that rc is independent of ρo as observed in Fig. 3.10d.

The behavior of rc shown in Fig. 3.10 indicates that a finite-size fluctuation
can destabilize the ordered phase everywhere on the phase diagram. Since the
nucleation process is local (Fig. 3.7b and Fig. 3.9a), in the infinite-size limit even
rare fluctuations happen quickly. This leads us to conclude that the ordered phase
is metastable in the thermodynamic limit for all parameters.

3.4.2 Obstacle

We now introduce a small circular obstacle in the ordered phase of the AIM.
Concretely, a particle that attempts to hop in the obstacle does not move. Its
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spin is either reversed (scenario 1) or not (scenario 2).
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Figure 3.11: Effect of the introduction of an obstacle of radius 10 in the ordered
phase of the AIM. Top row: Nucleation of a droplet in scenario 1. Bottom row:
The ordered dense region at the front of the obstacle in scenario 2. Parameters :
ρ0 = 8, Lx = 700, Ly = 100, β = 2, v = 1, D = 0.4.

We could imagine the obstacle to serve as a nucleation point for destabilizations
in both cases. In fact, we report a more complex picture. In scenario 1, at fixed
density, we progressively increase the diffusion coefficient D, starting near the
boundary between coexistence phase and order, as indicated by the blue rectangle
in Fig. 3.2. At low values of D, the presence of an obstacle triggers the formation
of a cluster of counter-propagating particles at the front (Fig. 3.11b). It even-
tually separates from the obstacle (Fig. 3.11c) and grows following the droplet
dynamics (Fig. 3.11d) described in Sec. 3.4. This obstacle-induced droplet nucle-
ation remains observable while increasing D, albeit on much larger timescales, as
can be seen on Fig. 3.12. On the contrary, in scenario 2, in which the particles’
spin remain unchanged upon collision, they aggregate at the front of the obstacle,
eventually sliding along its edges by diffusion (Fig. 3.11e-h). This creates an or-
dered dense region in the flow which does not trigger the nucleation of a droplet,
in opposition to scenario 1. To summarize, in scenario 1, the obstacle serves as a
nucleation point and thus decreases τd. This is not the case in scenario 2 so we
conjecture that τd is the same as in the absence of obstacle.
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Figure 3.12: Destabilization time of the ordered phase as a function of D in the
presence of an obstacle for scenario 1 compared with the spontaneous destabiliza-
tion time of the homogeneous ordered phase. Parameters (See red square in the
phase diagram Fig. 3.2): ρ0 = 8, Lx = 700, Ly = 100, β = 2, v = 1.

Comparing with the results of [Codina et al. 2022], we observe that the mech-
anisms leading to a reversal are different. In the Vicsek case, when particles keep
their direction upon collision, the nucleation takes place at the rear of the obsta-
cle. It then recruits more and more particles as it moves along and detaches from
the obstacle, forming a dense, curved band. We did not observe this to happen in
the AIM case, where fluctuations at the rear of the obstacle are confined within
its wake. Conversely, when particles reverse their direction upon collision, no re-
versals are reported in the Vicsek case, while they are easily observed in a region
extending far into the AIM ordered phase.

3.5 Hydrodynamic description of the propagating
droplet

To characterize the mechanisms underpinning droplet growth and to test their
robustness to microscopic details, we now study a continuum description of the
AIM. Through the simulation and analysis of continuous equations, we first iden-
tify a ballistic scaling in the droplet growth in Sec. 3.5.1. We then show the
existence of propagating domain walls and predict their velocity, that we find in
agreement with numerical measurements in Sec. 3.5.2. We then turn to the char-
acterization of the droplet and rationalize analytically its front shape in Sec. 3.5.3.
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Figure 3.13: (a) Snapshot of the m/ρo field obtained by integrating Eqs. (3.8,3.9)
starting from a counter-propagating droplet introduced in the ordered phase so-
lution at t = 0 (r = 10, ρ0

d = 12ρo). Straight and parabolic green lines are
guides to the eye. (b) Isodensity curves at ρ = (ρd +ρo)/2 in ballistically-rescaled
coordinates for microscopic (solid lines) and hydrodynamic (dashed lines) simula-
tions. (c) Cross-sectional plots of the magnetization in PDE simulations along the
maximal-width line shown in white in (a). (d) Positions of the front (xf) and rear
(x+) droplet interfaces, and of the end of the comet (x−) at y = 0, together with
the droplet width h. Symbols and lines correspond to microscopic and PDE simu-
lations, respectively. Parameters: As in Fig. 3.8(a-b) except (Lx, Ly) = (8000, 600)

in panel (a).

3.5.1 Ballistic scaling

Following established procedures used to study coarsening and nucleation
[Bray 2002, Krapivsky et al. 2010], we focus on the low-T large-density regime
where the ordered phase is expected to be most stable. We consider the mean-
field hydrodynamics of the AIM [Solon & Tailleur 2015] in d dimensions:

∂tρ = −v∂xm+∇ · D̄∇ρ (3.8)
∂tm = −v∂xρ+∇ · D̄∇m+ F (ρ,m) , (3.9)

where D̄ is a diagonal matrix whose elements are Dx = D + v/2 and, for any
other coordinate, D⊥ = D. Numerical integration of Eqs. (3.8,3.9) in 2d, shown
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in Fig. 3.13a for the same parameters as in Fig. 3.8a-c, recapitulate the phe-
nomenology observed in microscopic simulations: an initial droplet grows, leaving
in its wake a low-density comet. We observe that the system grows ballistically.
To show this, we plot iso-density lines in the ballistic rescaling (x̂, ŷ) = (x/t, y/t)

in Fig. 3.13b which shows a good collapse. The cross-section along the y direction
also obeys the same scaling as shown in Fig. 3.13c. Finally, we define the posi-
tion of the three interfaces between the ordered background, the droplet, and the
comet, which we parametrize as x̂f(ŷ), x̂+(ŷ), and x̂−(ŷ), respectively (Fig. 3.13a)
and show in Fig. 3.13d that, consistently, they increase ballistically. We now turn
to the analytical study of Eqs. (3.8,3.9) in d ≥ 2.

3.5.2 Propagating domain walls

Assuming that the axisymmetry observed in 2d is maintained in higher di-
mensions, we distinguish coordinates parallel and normal to the self-propulsion:
r = xex + r⊥. We first characterize the domain walls connecting the droplet,
the comet, and the ordered background along the symmetry axis of the droplet
(r⊥ = 0) before discussing the full droplet shape. Due to the ballistic scaling, we
expect that the unscaled interfaces become locally flat at r⊥ = 0 at late times in
any direction normal to ex. The domain walls connecting the different regions at
r⊥ = 0 can then be analyzed by setting ∇r⊥ = 0 in Eqs. (3.8,3.9), which makes
the problem effectively one-dimensional. To proceed, we employ a Newton map-
ping, as was used before to find propagating solutions in the phase coexistence
region [Caussin et al. 2014, Solon et al. 2015b], to cast the characterization of the
interfaces into a classical mechanics problem.

We first discuss the front interface between the droplet and the ordered back-
ground, whose (unknown) speed we denote by cf . Shifting to the comoving frame
by considering z = x−cft, we look for stationary solutions of Eqs. (3.8,3.9), which
reduce to

Dxρ
′′ = vm′ − cfρ

′ (3.10)
Dxm

′′ = vρ′ − cfm
′ − F (ρ,m) (3.11)

where primes denote derivatives with respect to z. At leading order in a gradient
expansion, Eq. (3.10) is solved by ρ(z) ' ρo + v[m(z) −mo]/cf , where mo is the
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magnetization in the ordered phase. Using this in Eq. (3.11) then leads to

Dxm
′′ = −γ(cf)m

′ − ∂mV (m, cf) , (3.12)

where γ(cf) = v(cf/v − v/cf) and ∂mV (m; cf) = F [ρ(m, cf),m]. Interpreting z as
time and m as a position, Eq. (3.12) describes the dynamics of a fictitious particle
of mass Dx in a potential V with a friction coefficient γ that can be positive or
negative depending on whether cf is larger or smaller than v, respectively.

Propagating fronts correspond to heteroclines m(z) connecting extrema of
V (m), which is always bimodal in the ordered phase (Fig. 3.14a). When v = 0,
V (m) is symmetric and heteroclines exist only for γ = cf = 0, which corresponds
to static domain walls and a droplet magnetization md = −mo, as in equilib-
rium. When v 6= 0, cf = 0 corresponds to a diverging friction and no static
heterocline exist: fronts are thus always propagating, V (m) is asymmetric so that
|md| 6= |mo|, and cf = v(md−mo)/(ρd−ρo). To show that such heteroclines exist,
we look for a trajectory m(z) that corresponds —without loss of generality— to
a right-going droplet. The fictitious particle then starts with a vanishing speed
m′ = 0 at m = md, the positive maximum of V , and ends—also with a vanishing
speed—at m = mo < 0. Equation (3.10) implies that md = cf−vpo

cf+vpo
mo, where

po = mo/ρo ∈ [−1, 0], so that ρd = cf−vpo
cf+vpo

ρo. Using the explicit expression of F ,
one finds that ∆V ≡ V (md)−V (m0) > 0 so that we need a positive friction —and
thus cf ≥ v— that dissipates exactly the energy ∆V . By continuity, a solution
with v < cf < ∞ always exists as shown by considering the limiting cases: For
cf = v, γ(c) = 0, the energy is conserved and the particle overshoots to m = −∞;
for cf →∞, the friction diverges and the particle ends up trapped at the minimum
m = 0. The value of cf can then be found, e.g., by dichotomy.

In Fig. 3.14b, we compare the mean-field predictions of our domain-wall the-
ory for the front speeds to microscopic simulations in the large ρo limit, where
mean-field is expected to work well. Despite the crude approximate solution of
Eq. (3.10), the agreement is very good without any fitting parameters. Impor-
tantly, our theory predicts that cf > v > c+ so that the droplet grows in time.
Similarly, the comet spreads at a speed c+ − c− = 2v|po|. We note that a more
complex structure emerges as β decreases away from the low-temperature limit
studied here. In particular, the density of the comet increases, eventually leading
to its polarization, as can be seen in Fig. 3.15.
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(a) (b) (c)

Figure 3.14: (a) Potential V (m) entering the Newton mapping with an illustra-
tion of the heterocline corresponding to the interface between the droplet and
the ordered phase. (b) Speeds of the 3 interfaces as a function of β. Solid lines
correspond to values predicted by the Newton mapping. Symbols are measure-
ments from microscopic simulations with (Lx, Ly) = (3000, 300) and ρo = 30.
Parameters: D = v = 1. (c) Comet front profiles aligned at r̂ = 0 from 2d AIM
simulations at t = 4800 and as predicted by Eq. (3.18).

3.5.3 Droplet shape

We now use the mean-field Eqs. (3.8,3.9) to characterize the transverse droplet
shape, which is constant at large time under the ballistic scaling. The diffusion
terms in Eqs. (3.8,3.9) then decay as 1/t and can be neglected. Using the radial
symmetry of the droplet, Eq. (3.8) reduces to

(x̂∂x̂ + r̂∂r̂)ρ̂ = v∂x̂m̂ , (3.13)

where ρ̂ and m̂ are the density and magnetization fields expressed in the reduced
coordinates x̂ and r̂=|r⊥|/t.

Our domain-wall theory predicts a fixed interface width which therefore vanishes
under the ballistic scaling. Therefore, the droplet shape is entirely characterized
by the curves x̂±(r̂) and x̂f(r̂) in the large-time limit. (See Fig. 3.13a for an
illustration in 2d, where r̂ = |ŷ|.) The three interfaces can be characterized
using a similar method. First, we center the profiles around an interface x̂i(r̂) by
changing variables to (x̄, r̄) = (x̂− x̂i(r̂), r̂). Using the chain rule and integrating
x̄ from −ε to ε then leads to:

[x̂i(r̂)− r̂∂r̂x̂i(r̂)]∆ρ̂ = v∆m̂+O(ε) , (3.14)
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Figure 3.15: Cross-sectional plots of the magnetization in PDE simulations at
high T along the horizontal symmetry axis of the droplet. Parameters: L = 1000,
ρo = 1, v = 1, D = 1.

where ∆ρ̂ and ∆m̂ are the density and magnetization differences across the inter-
face. In the comet, the magnetization vanishes and the density is much smaller
than ρo, so that x̂−(r̂) satisfies x̂− − r̂∂r̂x̂− = vpo. Inside the droplet, the ballis-
tic scaling enforces F = 0 at long times so that m̂(x̂, r̂) = −poρ̂(x̂, r̂). For the
comet-droplet interface, Eq. (3.14) then leads to x̂+(r̂)− r̂∂r̂x̂+(r̂) = −vpo. These
equations are readily solved by linear relations:

x̂±(r̂) = ∓vpo + a±r̂ , (3.15)

where a± are finite constants. (a± = ∞ corresponds to bands spanning the
system.) The case a± = 0 corresponds to a degenerate droplet that does not
spread in the transverse directions, which is forbidden for D⊥ 6= 0. Note that
finite a± correspond to the straight interfaces shown in Figs. 3.8 and 3.13.

Finally, we consider the interface between the droplet and the ordered phase.
Since ρd diverges as ρo →∞, the density and magnetization jumps require a closer
inspection. Inside the droplet, using m̂ = −poρ̂, Eq. (3.13) can be rewritten as

[(x̂− c+)∂x̂ + r̂∂r̂)] ρ̂ = 0 , (3.16)

where we have used c+ ' −vpo. This implies that ρ̂ is a function of r̂/(x̂ − c+)

so that, in the large-time limit, isodensity surfaces are cones originating at (x̂ =

c+, r̂ = 0). In particular, density and magnetization are constant along r̂ = 0,
equal to ρd andmd = −poρd, respectively. For small r̂, we thus expand the density
profile as

ρ̂( r̂
x̂−c+ ) = ρd[1− k

2
( r̂
x̂−c+ )2] . (3.17)
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To solve the interface Eq. (3.14), we first use that m̂ = poρo in the ordered phase
and m̂ = −poρ̂ in the droplet, to express v∆m̂

∆ρ̂
in terms of ρ̂. Using Eq. (3.17) and

the expression of cf , one then gets perturbatively in r̂

x̂f = cf −
kρd

4v|po|ρo

r̂2 +O(r̂4). (3.18)

The transverse density modulation inside the droplet thus leads to the curved
shape of the front interface. To compare with simulations, we first estimate the
coefficient k by fitting Eq. (3.17) to the density field inside the droplet, and then
use it to compare the prediction of Eq. (3.18) with the measured shape, which
shows a good agreement (Fig. 3.14c).

All in all, our analytical study puts on even firmer ground the fact that ordered
phases are metastable by showing that there always exists ballistically growing
solutions with a shape that we can compute and that compares very well to
numerical measurements.

3.6 Droplet propagation in vectorial PDEs

As described in Sec. 3.4, simulations of the continuous theory of the AIM show
that the order can be reversed through the introduction of a small circular per-
turbation oriented against the ordered phase. In comparison, [Codina et al. 2022]
report that the standard Toner-Tu hydrodynamic theory is unable to account for
the reversals that they observe in the Vicsek model. There thus seems to be a
fundamental difference between scalar and vectorial field theories regarding the
stability of the ordered phase to perturbations. To probe this difference, we start
from the continuous theory of the AIM Eqs. (3.8,3.9) and consider its vectorial
counterpart:




∂tρ = −v∇ ·m +D∆ρ

∂tm = −v∇ρ+D∆m + F(ρ,m)

(3.19)

where we choose F =

(
1− γm2

ρ2

)
m a standard Ginzburg-Landau term impos-

ing a non-vanishing magnetization |m| = ρ
√

1/γ. We find that indeed, no matter
how large the initial droplet is, it always splits into two wings that dissolve by
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Figure 3.16: Introduction of a counter-propagating circular droplet in the ordered
phase of the interpolating continuum theory Eqs. 3.20. The circular colormap on
the left panels indicates the direction of the order parameter m. Parameters :
ρ0 = 1, Lx = 400 (a,c), Lx = 500 (b), Ly = 200, v = 1, γ = 2, D = 1. Initial
circular perturbation of radius 10 and of density 10.

spreading away (See Fig. 3.16c), so that the droplet is not able to destabilize the
ordered phase.

Going further, we interpolate between the vectorial and scalar cases by intro-
ducing a parameter α ∈ [0, 1] controlling the vertical advection. Eqs. (3.19) are
then slightly modified to take into account the interpolation parameter:





∂tρ = −v(∂xmx + α∂ymy) +D∆ρ

∂tmx = −v∂xρ+ [D∆m + F(ρ,m)]x

∂tmy = −αv∂yρ+ [D∆m + F(ρ,m)]y

(3.20)

The case α = 1 corresponds to the vectorial version, while we recover the scalar
continuum theory for α = 0, albeit with a different F . As discussed earlier,
droplets can grow in the later, provided that the initial perturbation is large
enough, as shown in Fig. 3.16a. Looking at an intermediate case α = 0.1 in
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Fig. 3.16b, the perturbation initially propagates ballistically, the two wings staying
connected at the center. At t = 280, they eventually separate and diffuse in the
flow. This observation, combined with the analysis of films at larger system sizes
and lower values of α, shows that the case α = 0 is singular. At any α > 0, the
perturbation eventually disappears even if it propagates during a transient regime
that becomes longer as α→ 0.

3.7 Discussion

We have shown that the ordered phases of the active Ising model are metastable
to the nucleation of minority-phase droplets. We have first provided numerical
evidence of spontaneous destabilizations occuring in the band phase and in the
homogeneous ordered phase. We have then probed the response of the ordered
phase to induced perturbations and to the presence of a small circular obstacle and
have found it to be unstable to such perturbations. Using mean-field theory, we
have revealed how the ballistic spreading of the droplet results from the selection
of its domain walls and we predicted its asymptotic shape in any dimension. Our
results imply that the stability of ordered phases with a discrete symmetry is very
different in flocking and equilibrium models.

As suggested by our hydrodynamic analysis, we expect our results to be ro-
bust to microscopic details and to apply more broadly to flocking models with
discrete-symmetry order parameters. We have verified that off-lattice versions
of the AIM also have a metastable ordered phase. We also expect that our
results will apply to flocking models with continuous symmetries in the pres-
ence of rotational anisotropysince they are well-described by the AIM on large
scales [Solon et al. 2022]. Moreover, one expects mean-field results to hold better
in higher dimensions, so we anticipate our growing droplet solutions to remain
valid beyond the 2d case studied here. Finally, we evaluated the influence of
the symmetry of the order parameter on the stability of the homogeneous ordered
phase in continuous descriptions. At least for the parameter values that we tested,
we showed numerically that even minor vertical advection inhibits the propagation
of induced perturbations.

From a broader perspective, our results suggest two scenarios for the flocking
phase of active models, given the numerical results obtained on the Vicsek model
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in [Codina et al. 2022], that suggest that metastability only occurs in a fraction
of the Toner-Tu phase. Either these results are confirmed analytically through
further research on the Vicsek model and its corresponding continuous theory,
thus making systems with discrete symmetries less stable than their continuous-
symmetry counterparts – in opposition to the equilibrium case –, or the Toner-Tu
phase is also generically metastable.
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4.1 Introduction

4.1.1 Motility-Induced Phase Separation

Motility-Induced Phase Separation (MIPS) occurs when interactions between
active particles slow them down. As a result, they aggregate in dense regions,
triggering a positive feedback loop that leads to the emergence of growing compact
aggregates of particles. These aggregates undergo a coarsening process until full
phase separation is achieved. Two types of active particles have been shown
to display MIPS: Quorum-Sensing Active Particles (QSAPs) and Pairwise-Forces
Active Particles (PFAPs). QSAPs mimic bacteria that adapt their speed according
to the local density of bacteria that they sense through a chemical released in the
surrounding medium. It is more generally common in the biological world in which
the motion of individuals is influenced by the local density around them. On the
other hand, PFAPs interact via short-range pairwise repulsive interactions, such
as hard-core interactions. This interaction slows them down because when two
PFAPs collide, they block each other until one of them rotates and resumes its
motion. This type of particle includes active Brownian particles and Run-and-
Tumble particles.

Both QSAPs and PFAPs undergo MIPS and present similar phase diagrams,
but QSAPs are best amenable to analytic treatment because their self-propulsion
speed can be written as a functional of the local density. Coarse-graining their
large-scale dynamics was shown in [Solon et al. 2018a] to lead to an out-of-
equilibrium generalization of the Cahn-Hilliard equation for the conserved density
field ρ:

∂tρ = ∇ · (M∇g[ρ]) (4.1)
g[ρ] = g0(ρ) + λ(ρ)(∇ρ)2 − κ(ρ)∆ρ (4.2)

where M , g0(ρ), λ(ρ) and κ(ρ) can be written in term of the microscopic coeffi-
cients of the QSAPs dynamics. Note that this description differs from an equilib-
rium description because for generic functions λ(ρ) and κ(ρ) which do not satisfy
2λ(ρ) + κ′(ρ) = 0, the gradient terms in g[ρ] cannot be written as a functional
derivative with respect to the density ρ. However, this description can be mapped
onto an equilibrium description upon introduction of a generalized free energy
G and a new non-trivial variable R playing the role the density. The resulting
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generalized thermodynamics then provide a direct method to predict the phase
diagram of QSAPs using standard equilibrium tools [O’Byrne et al. 2022]. More-
over, it offers a definition for the generalized pressure as the diagonal coefficients
of a generalized stress tensor Σ, which is written in term of G and R.

4.1.2 Negative surface tension and reversed Ostwald ripen-
ing

At an interface (say normal to the x-axis) between two regions, the surface
tension σ can be related to the pressure P through the Young-Laplace law:

∫ x`

xg

(Σxx −Σyy)dx = ∆P =
σ

R
(4.3)

where ∆P is the difference of pressure between the two regions and R is the
radius of curvature. In equilibrium systems, phase separation is driven by the
Ostwald ripening process: because the surface tension of a cluster of particles
is positive, small clusters shrink at the advantage of large clusters, causing the
system to evolve towards a complete phase separation. It therefore came as a
surprise when in various particle-level simulations of PFAPs showing MIPS, the
surface tension between the dense phase and the gas was measured to be nega-
tive [Bialké et al. 2015, Solon et al. 2018a, Patch et al. 2018].

This unexpected discovery subsequently lead to an argument on the very def-
inition of pressure and surface tension for active systems. [Hermann et al. 2019]
proposed an alternative definition of pressure which only considers forces deriving
from potentials and hence recovered a positive surface tension. [Omar et al. 2020]
investigated the effect of a stress tensor that balances the force density created by
the polarization of the active particles and also found a positive surface tension.
[Fausti et al. 2021] showed that capillary wave interfacial tension differs from the
surface tension σ defined in Eq. (4.3), in constrast to the equilibrium case. More
generally, these studies point towards the fact that the equilibrium surface tension
controls several properties (e.g. capillary waves and the Laplace pressure) that,
out-of-equilibrium, are in general controlled by different quantities.

The existence of a negative Laplace pressure was then rationalized at the field-
theoretical level in [Tjhung et al. 2018], based on the introduction of an additional
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term in the Generalized Cahn-Hilliard (GCH) equation (4.1). The resulting new
model, termed Active Model B+, was first introduced on the basis of symme-
try considerations in [Nardini et al. 2017] and describes how the local density φ
evolves in time. In addition to the GCH equation, AMB+ includes a term of the
form (∇2φ)∇φ in the expression of the current, which then contains all terms that
break time-reversal symmetry (TRS) at order O(∇4):

∂tφ = −∇ · (J +
√

2DMΛ), (4.4)

J/M = −∇
[
δF
δφ

+ λ|∇φ|2
]

+ ζ(∇2φ)∇φ, (4.5)

F [φ] =

∫ {
a

2
φ2 +

b

4
φ4 +

K

2
|∇φ|2

}
dr (4.6)

Eq. (4.4) describes the evolution of the conserved field φ in terms of the gradient
of a current J supplemented by a Gaussian white noise with zero mean and unit
variance Λ. M is the mobility which may depend on the field but is usually
considered constant, D is the temperature and F [φ] is a standard equilibrium
free-energy functional. As in the GCH equation, J does not derive from a free
energy. It also contains the terms λ and ζ which are breaking TRS and cannot be
written as the functional derivative of a free-energy. Their microscopic origin was
later shown to emerge from explicit coarse-graining of the microscopic dynamics
of PFAPs in [Tjhung et al. 2018].

Using AMB+, [Tjhung et al. 2018] considered a spherical droplet of radius R
and showed, with the definition of the generalized pressure that it obeys Eq. (4.3)
with a coefficient σ that can become negative for some values of the parameters
(λ, ζ), as shown in Fig. 4.1a in zones B and C. Crucially, the presence of a negative
tension does not cause the interface to become unstable. It however results in large
droplets shrinking at the advantage of small ones in a process termed reverse
Ostwald ripening. Going further, they obtained the time evolution of a droplet of
radius R(t) interacting with another droplet of size Rs:

Ṙ =
β

R

[
1

R
− 1

Rs

]
(4.7)

where β is a parameter which can be related in a non-trivial way to σ. Importantly,
β > 0 when σ < 0, so that Eq. (4.7) correctly predicts that the droplet of radius
R will grow if Rs > R, in line with the reverse Ostwald ripening.
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(a)

(b)

(c)

Figure 4.1: Phases in AMB+. Lighter colors indicate larger densities. (a): Mean-
field (corresponding to D = 0 in Eq. (4.4)) phase diagram in the ζ−λ plane, show-
ing that the surface tension σ is negative and triggers the reverse Ostwald ripening
in zones B and C. In zone A, standard forward Ostwald ripening is recovered.
Finite-size simulations of AMB+ in zone C showing bubbles in the phase coexis-
tence (b) and microphase separation (c). Adaptated from [Tjhung et al. 2018].

4.1.3 Bubbly phase separation

In contrast with the common phase separation observed in equilibrium systems,
numerical simulations of AMB+ showed that the interplay between reverse Ost-
wald ripening and bubble coalescence leads to the coexistence of a dense phase
populated by bubbles with an outer gas (Fig. 4.1b) or to a homogeneous bubbly
microphase separation (Fig. 4.1c). In both cases, gas bubbles do exist in the liquid
phase, even in stationary state.

Large-scale analysis of PFAPs exhibiting MIPS had previously shown the ap-
pearance of bubbles in the dense phase. In a model of ABP with short-range
repulsive potential, [Stenhammar et al. 2014, Bialké et al. 2015] found “voids”
forming within the bulk of the dense phase, as a result of large density fluctu-
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Bubbles in MIPS. (a): Simulations of 2d active Brow-
nian particles showing bubbles (dark region) in the dense region (yel-
low) [Stenhammar et al. 2014]. (b): Dense region developping “holes”
(white) [Bialké et al. 2015]. (c): Bubbles (white) forming within the mosaic of
hexatic domains [Caporusso et al. 2020]. (d): Persistent bubbles (blue) with a
range of sizes, surrounded by a liquid (red) [Shi et al. 2020] and (e): typical snap-
shot of the reduced Bubble model in phase coexistence, the black bands represent
the gas reservoir. (f): Bubbly phase separation in the model of [Fausti 2021].

ations (Fig. 4.2a-b). More recently, [Digregorio et al. 2018] found gas defects
within the mosaic of hexatic microdomains composing the MIPS phase at coex-
istence that [Caporusso et al. 2020], in light of the results stemming from the
analysis of AMB+, interpreted as bubbles (Fig. 4.2c). They measured their ra-
dius of gyration and reported a scale-free distribution. Likewise, in two models
of active particles interacting by pair-wise repulsion – an ABP-based model with
repulsive interactions and a lattice gas –, [Shi et al. 2020] showed that the result-
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ing dense phase contains gas bubbles (See Fig. 4.2d) distributed algebraically up
to a typically large cutoff scale that grows with system size.

The scale-free distribution of bubble sizes seems to be a generic feature ac-
cross models displaying the bubbly phase separation in MIPS. Quantitatively,
the bubble areas a are approximately distributed as P (a) ∝ a−α with α ≈ 1.6

in [Caporusso et al. 2020, Digregorio et al. 2022], α ≈ 1.75 in both models of
[Shi et al. 2020], and α ≈ 1.4 in a model of Repulsive Quorum-Sensing Active
Particles by Shi et al. (unpublished). In simulations of AMB+, [Fausti 2021] es-
timated α = 1.5 ∼ 2, the precise value depending heavily on the noise amplitude.

In finite-size systems at low density, the bubbles coexist with a large gas reser-
voir, formed by the remaining dilute gas surrounding the dense phase. Increasing
the density at fixed system size, more and more of the gas is contained in the
bubbles. Above a critical density, the gas reservoir disappears and only the alge-
braic distribution remains, terminated by a density-dependent exponential cutoff,
consistently with the homogeneous bubble phase reported in [Tjhung et al. 2018]
(Fig. 4.1c).

[Shi et al. 2020] showed that the presence of a large reservoir is actually a finite-
size effect. Increasing system size at fixed density, the cutoff bubble size ac in-
creases as ac ∝ Sγ with a power γ > 1 of system size S. The total gas contained
in the bubbles

abubbles =

∫ ac

0

aP (a)da ∝ S1+γ(2−α) (4.8)

diverges with S since α < 2. Therefore, since the total area of gas (bubbles +
reservoir) is fixed, at large S the reservoir disappears and the cutoff ac becomes
independent of system size. All the gas is contained in the bubbles and we observe
microphase separation. In the thermodynamic limit, the system thus displays
three phases. At low density, only a dilute gas is observed. Increasing density,
in the coexistence phase between gas and liquid, the system undergoes MIPS but
the resulting dense phase contains bubbles in the form of a microphase separation.
Finally, at high density, the system is in a liquid state.
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4.1.4 Bubble models

Several minimal models implementing the basic idea of reverse Ostwald ripening
were introduced to account for the phenomenology observed in the bubbly phase
separation. [Shi et al. 2020] reduced the system to a collection of bubbles and
presented a model where the bubbles are the degrees of freedom of the system. To
take into account the reverse Ostwald scenario put forward in [Tjhung et al. 2018],
they made the approximation that it can be modeled by nucleating small gas
bubbles in the liquid at the expense of the larger ones, so that in practice large
bubbles shrink at the advantage of small bubbles. All bubbles diffuse with a
constant coefficient and, if the move brings bubbles into contact, they merge into a
bubble located at their center of mass, conserving total area. Despite its simplicity,
this model successfully reproduces both the bubbly phase separation (Fig. 4.2e)
and the homogeneous bubble phase, along with exhibiting power-law distributions
of bubble size with exponent α ≈ 1.77, terminated by a size-dependent cutoff
with exponent γ ≈ 1.44. A model of the same class is presented in [Fausti 2021],
in which the reverse Ostwald ripening is introduced through the equilibration
equation on the radius of each bubble in interaction with its nearest neighbour
Eq. (4.7). A bubbly phase separation with algebraically distributed bubble sizes
is observed (see Fig. 4.2f), albeit they do not report on the value of the decay
exponent. All in all, the role of the various ingredients in these bubble models
remains unclear. Furthermore, the question of the universality of the exponents
has not been adressed.

In this Chapter, we investigate several models of aggregation and nucleation to
account for the observed bubble dynamics. We find that they generically feature
scale-free distributions in stationary state. In Sec. 4.2, we introduce two classes
of bubble models in 1d, 2d and 3d. In the Aggregation-Nucleation Model (ANM)
presented in Sec. 4.2.1, bubbles are point-like and evolve on a lattice. The sys-
tem displays algebraic distributions of bubble sizes with an exponent α = 5/2, a
system-size dependent exponential cutoff that we compute analytically and a gas
reservoir. In Sec. 4.2.2, we present a mean-field description of the ANM that we
solve using a mapping to a chipping model introduced in [Krapivsky et al. 2010].
This allows to compute the phase diagram and an explicit solution. Consistently,
we also find an algebraic asymptotic behaviour with exponent α = 5/2. In the
Reduced Bubble Model (RBM) introduced in Sec. 4.2.3, we add a new ingredient
by taking into account the spatial extension of bubbles. We report an algebraic de-
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Figure 4.3: Definition of the Aggregation-Nucleation Model (ANM). (a): Sketch
of the two possible actions in the ANM and their rates of occurrence. (b): Mean
distance to the closest non-empty site in the 1d ANM as a function of the density
of gas ρ0. Parameters: L = 1000.

cay with exponent compatible with the value α = 5/2. Importantly, the measured
value of this exponent is greater than 2 so that, as detailed earlier in Sec. 4.1.3,
the asymptotic phase diagrams of these models differ qualitatively from those
of MIPS. Supplementing the models with a bubble size-dependent diffusion in
Sec. 4.3, we find on the contrary that the scaling exponent α can be smaller than
2, thus changing the nature of finite size effects (Sec. 4.3.1). We compare the
mean-field prediction with the ANM in Sec. 4.3.2 and the RBM in Sec. 4.3.3,
through an analysis of the reservoir dynamics. Finally, coming back to MIPS
phenomenology in Sec. 4.4, we argue in favor of a homogeneous reversed Ostwald
ripening by analyzing the influence of neglecting spatial effects in the nucleation
process of the models.

4.2 Bubble dynamics

4.2.1 Aggregation-Nucleation Model

The Aggregation-Nucleation Model (ANM) is a minimal model in which bubbles
constitute the degree of freedom of the system and are assumed to have no spatial
extension. They move on a d-dimensional hypercubic lattice of linear size L with
periodic boundary conditions. Each bubble carries its discrete gas volume k as
a dynamic variable. The total density of gas ρ0 is fixed by initially distributing
bubbles on the lattice so that their total volume is equal to ρ0. Bubbles jump
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at unit rate on a neighbouring lattice site. If the target site is occupied, the
bubbles coalesce conserving the total gas volume. Moreover, any vacant site can
nucleate a unit bubble (i.e. of volume 1) with rate ν by extracting it from the
nearest non-empty site (See Fig. 4.3a for a sketch of these actions). This is a
simple way to model the reverse Ostwald scenario, as it creates small bubbles by
shrinking larger ones. Note that the nucleation process is local in the sense that
the extracted gas volume is as close as possible to the nucleating site. In practice,
the closest non-empty site is found to be at a mean distance z0 that depends on ν
and ρ0 as shown in Fig. 4.3b but not on system size. We z0 to be smaller than 20
for typical values of parameters, confirming that the nucleation process remains
local. In the rest of the chapter, we study the system as a function of ρ0 and ν.

Looking at the phase diagram in 1d and 2d on Fig. 4.4a, we report two phases.
At low gas density and high nucleation rate, the bubble sizes are algebraically
distributed with an exponent α = 5/2 and an exponential cutoff at a maximal
bubble size kc independent of system size (See Fig. 4.4b, in purple and red). In
Fig. 4.4c, we present a typical snapshot in this phase, each line corresponding to
the volume k of the bubble located on the site. Increasing density or decreasing
nucleation rate, the exponential cutoff moves towards larger values of bubble sizes
k, until it reaches a critical value above which a macroscopic aggregate develops,
as shown by the peak in Fig. 4.4d, coexisting with a background low-density phase,
distributed as a power-law with the same exponent α (See Fig. 4.4b, orange and
blue). This macroscopic aggregate is analogous to the gas reservoir in microscopic
simulations displaying MIPS. To distinguish between the two phases, we estimated
the value of ρ0 above which a peak develops (yellow and green dots on Fig. 4.4a)
using the scaling of its size with density. The transition lines in 1d and 2d are in
qualitative, though not quantitative, agreement.

A model of the same type was investigated in [Rajesh & Majumdar 2001]. They
studied a chipping model in which masses diffuse and unit masses are chipped off at
a constant rate from piles of particles and placed on an adjacent site. Apart from
the interpretation of bubbles as piles of particles, the two models differ only be-
cause nucleation in our model happens on empty sites, possibly at a distance from
the nearest occupied site. Consistently with the phenomenology of our model,
they found a phase transition from a phase without aggregate to a phase with
aggregate. The aggregate coexists with a dilute background consisting of masses
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Figure 4.4: Phases of the ANM. (a): Comparison of the phase diagram in the ρ0−ν
plane for the ANM in 1d and 2d with the mean-field prediction Eq. (4.23). (b):
Distributions obtain in 1d and 2d, displaying an algebraic k−5/2 decay, terminated
by a cutoff with an additional peak (blue square) in the coexistence phase (ν =

0.1), analogous of the gas reservoir in microscopic simulations. (c): Typical profile
of bubble sizes in simulations in the exponential phase. (d): Typical profile of
bubble sizes in simulations in the aggregate phase. Parameters: L = 1024 (1d),
S = 32× 32 (2d); ρ0 = 1 (1d), ρ0 = 0.9 (2d).

which sizes are power-law distributed with the same exponent α = 5/2 that we
observe. By analyzing two-point equal time correlation functions, they obtained
the expression of the transition line without resorting to the mean-field approxi-
mation and showed it to be independent of the dimension of space. In our case, the
phases have the same phenomenology but the phase diagram, shown in Fig. 4.4a,
depends on the dimension of space which must reflect the fact that the exact rela-
tions between correlation functions uncovered by [Rajesh & Majumdar 2001] are
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Figure 4.5: Pile size distributions at various system sizes in the Aggregation-
Nucleation Model. (a): 1d simulations, showing the curves collapsing on a master
curve for the predicted mean-field exponents α = 5/2 and γ = 2/3. Inset: without
rescaling. The black arrow emphasizes the shift kc ∼ V γ. (b): Same as (a) in the
2d case. Parameters: ρ0 = 1 (a), ρ0 = 0.9 (b); ν = 10−2 (a), ν = 0.5 (b).

not obeyed with our update rules.

We look in more details at finite-size effects in the ANM. In a finite system,
at high density or small ν, the aggregate coexists with bubbles algebraically dis-
tributed upto an exponential cutoff kc which shifts with system size, as indicated
by the black arrow in the insets of Fig. 4.5.

Introducing the scaling exponent γ such that the cutoff scales as kc ∼ V γ, we
show how it can be computed. We denote kp the size of the aggregate. Although
it is contained on a single site (Fig. 4.4d), it is extensive: kp ∝ V . The size
distribution can thus, as in [Rajesh et al. 2002], be written

nk = k−αf

(
k

kc

)
+

1

V
δ(k − kp) (4.9)

where nk is the mean fraction of lattice sites occupied by bubbles of size k and
f(·) is a scaling function exponentially decaying at large argument. Since we
work at large system sizes, we treat k as a continuous variable. Enforcing the
normalization constraint

∫ +∞

0

nkdk = 1 (4.10)
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leads to
∫ +∞

0

[
k−αf

(
k

V γ

)
+

1

V
δ(k − kp)

]
dk = 1. (4.11)

Taking the derivative with respect to V followed by a proper change of variable,
we obtain

γ(1− α)V γ(1−α)−1

∫ +∞

0

u−αf ′(u)du = V −2 (4.12)

Since the integral does not depend on V , requiring consistency of the exponents
in the limit V →∞ yields:

γ(α− 1) = 1 (4.13)

Using the exponent α = 5/2 measured in simulations of the ANM (See Fig. 4.4b)
gives γ = 2/3. We test this prediction by dividing the bubble sizes k by V γ, with
γ = 2/3, as shown in Fig. 4.5. This collapses reasonably well the distributions
obtained for several values of V 1.

When V →∞, both kc and kp diverge but kc ∼ V γ with γ < 1 diverges slower
than kp ∼ V . In the thermodynamic limit, the coexistence thus persists. This is
consistent with the fact that the fraction of the gas volume contained in bubbles
(excluding the aggregate)

ρb =
kc∑

k=0

k nk, (4.14)

converges to a finite value as kc →∞. Decreasing the density, the transition to the
microphase separated state happens when ρ0 = ρb at which point the aggregate
disappears. This is in stark contrast with microscopic systems that have α < 2 so
that ρb diverges with system size and we always observe the microphase separation
in the system.

4.2.2 Mean-field description

We now present a mean-field description of the ANM. Bubbles of discrete gas
volume aggregate at unit rate with another bubble, combining their gas into a sin-
gle bubble. The density of bubbles of volume k is denoted nk(t) and we introduce

1Note that to keep the distributions normalized with respect to the new argument kV −γ , we
also multiply nk by V αγ−1.
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ϕ(t) =
∑+∞

k=1 nk(t) the total bubble density, 1−ϕ thus representing the fraction of
empty space. Since in the ANM bubbles of unit volume are nucleated on empty
sites, the nucleation process occurs at a rate proportional to the fraction of empty
sites 1− ϕ: With rate ν(1− ϕ), a unit gas volume can detach from its bubble to
generate a bubble of unit size. The system contains a mean density ρ0.

In order to write the master equation for the dynamics of nk, we first assume
the system to be well-mixed, so that we can make the mean-field approximation
〈ninj〉 = 〈ni〉〈nj〉 and remove the averages to write ni = 〈ni〉. We now write the
governing equations for nk:

∂tnk =
1

2

k−1∑

i=1

nk−ini − nk
+∞∑

i=1

ni + ν(1− ϕ)δ1,k +
ν(1− ϕ)

ϕ
(nk+1 − nk) (4.15)

The first term corresponds to the aggregation of two bubbles of sizes k − i and
i to form a resulting bubble of size k. The prefactor 1/2 avoids double-counting.
The second term is the aggregation of a bubble of size k with any other bubble.
The third and last terms account for nucleation: bubbles of unit size form at the
expense of the other bubbles.

The total density ϕ(t) of bubbles is then subject to the following evolution:

∂tϕ = −1

2

(
+∞∑

i=1

ni

)2

+ ν(1− ϕ)− ν(1− ϕ)

ϕ
n1 (4.16)

This model can be mapped in stationary state onto a chipping model introduced
and solved in [Krapivsky et al. 2010] by a change of variable 2. We now follow
their method and introduce the generating function

C(z, t) =
+∞∑

k=1

nkz
k (4.17)

to recast the infinite system Eqs. (4.15, 4.16) into

∂t(C − ϕ) =
1

2
(C − ϕ)2 − ν(1− ϕ)

ϕ
(C − ϕ)(1− 1

z
) +

ν(1− ϕ)

ϕ
ϕ

(1− z)2

z
. (4.18)

2ν(1− ϕ)/ϕ = λ, using their notation.
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Figure 4.6: Plots of the analytical solution Eq. (4.24) below ρc0 and at ρc0 = 0.5

for ν = 1.

Eq. (4.18) implies that, in stationary state, the function Z = C − ϕ is solution of
a quadratic equation and admits the following expression:

Z =
ν(1− ϕ)

ϕ
(1− z−1)

(
1−

√
1− 2ϕ2z

ν(1− ϕ)

)
. (4.19)

The value of ϕ is readily obtained by differentiating Eq. (4.19) with respect to z
and setting z = 1. Indeed, the density ρ0 must be equal to the total gas volume
contained in the bubbles:

ρ0 =
+∞∑

k=1

knk =
dZ
dz

∣∣∣∣
z=1

=
ν(1− ϕ)

ϕ

(
1−

√
1− 2ϕ2

ν(1− ϕ)

)
(4.20)

At high enough ν, when 2ϕ2 ≤ ν(1− ϕ), the solution reads

ϕ =
1

2

(
1 + ρ0 +

ρ2
0

2ν

)(
1 +

√
1− 4ρ0

(1 + ρ0 + ρ2
0/(2ν))2

)
(4.21)

In the case 2ϕ2 > ν(1−ϕ), Eq. (4.20) has no real solution. This happens when ϕ
reaches the critical value ϕc such that 2ϕ2

c = ν(1 − ϕc) and it indicates that the
total gas of the system cannot be contained in the nk. Increasing the density ρ0,
ϕ saturates at ϕ = ϕc and the excess density is accommodated in an aggregate
that contains a fraction mp of the gas of the system such that

ρ0 = ϕc +mp (4.22)
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Similarly to earlier works on condensation [Evans & Hanney 2005], the phase
boundary separating the regime with an infinite aggregate and without it is ob-
tained when the volume of the aggregate vanishes. Setting mp = 0 in Eq. (4.22),
we obtain

ρc0 = ϕc = −ν
4

+
1

4

√
ν + 8ν2 (4.23)

This allows to draw the phase diagram presented in Fig. 4.4a.

The complete distribution can be obtained by expanding Eq. (4.19) in powers
of z to identify the nk using the definition of C(z) (Eq. (4.17)). This procedure
leads to:

nk =
ν(1− ϕ)

ϕ
(−1)k+1

(
2ϕ2

ν(1− ϕ)

)k [(
1/2

k

)
+

2ϕ2

ν(1− ϕ)

(
1/2

k + 1

)]
(4.24)

We now focus on the asymptotic behaviour of the distribution nk at large k. We
find two distinct regimes in the two phases:

nk ∼





e−Λk
[
φ1k

−3/2 + φ2k
−5/2

]
, ρ0 < ρc0

3ν(1− ϕ)

4
√
πϕ

k−5/2 + aggregate , ρ0 ≥ ρc0

(4.25)

where Λ = ln

[
(1− ϕ)ν

2ϕ2

]
is an exponential cutoff,

φ1 =
ν(1− ϕ)− 2ϕ2

2
√
πϕ

, (4.26)

and φ2 =
3 (ν(1− ϕ) + 6ϕ2)

16
√
πϕ

(4.27)

At low density ρ0 < ρc0, Eq. (4.25) seems to indicate that the leading behaviour is
an algebraic k−3/2 decay cut-off by the exponential prefactor for k > Λ−1, as was
reported in [Krapivsky et al. 2010]. However, plotting the solution in this regime
(see Fig. 4.6b) we only observe a k−5/2 decay. To explain this, we compute the
crossover value k∗ between the k−3/2 and k−5/2 regimes in Eq. (4.25), defined as

φ1k
∗−3/2 = φ2k

∗−5/2 (4.28)
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Figure 4.7: Sketch of the two possible actions in the RBM.

Using the expressions of φ1 and φ2 of Eq. (4.26) and Eq. (4.27), this yields

k∗ =
3

8

6ϕ2 + ν(1− ϕ)

ν(1− ϕ)− 2ϕ2
=

3

8

eΛ + 3

eΛ − 1
(4.29)

A straightforward analysis of the function x 7→ 3

8

ex + 3

ex − 1
− 1

x
allows to conclude

that k∗ > Λ−1 so that the exponential cutoff always occurs before the k−3/2

regime, leaving the dominant k−5/2 decay as the only algebraic decay observable.
Increasing ρ0, ϕ→ ϕc and the cutoff Λ−1 is sent to +∞, so that in the aggregate
phase (ρ0 ≥ ρc0), the distribution is algebraic with a decay exponent α = 5/2.

Our mean-field model is thus able to predict the correct value of the exponent α
observed in the ANM. As we will see in the next section, the value of this exponent
seems to be a common features of our models. We now turn to a more realistic
model of bubbles.

4.2.3 Reduced Bubble Model

In the Reduced Bubble Model (RBM), we add a new ingredient by considering
the spatial occupation of bubbles. To do this, we introduce a model in which bub-
bles are spherical of radius r and evolve in continuous periodic space of dimension
d ∈ {1, 2, 3} and of linear size L. Their behaviour is summarized in Fig. 4.7. As
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Figure 4.8: Phases of the RBM. (a): Phase diagram in the ρ0 − ν plane in 2d

for system size 50× 50. (b): Bubble sizes distributions obtain in 1d (L = 8000),
2d (S = 800× 800) and 3d (V = 100× 100× 100), displaying an algebraic k−5/2

decay, terminated by a cutoff (reservoir not shown). (c): Typical snapshot of the
RBM in 2d in the reservoir phase and in the exponential phase (d). Parameters:
xg = 0.3 (1d, 2d), xg = 0.2 (3d); ν = 10−4 (1d, 2d), ν = 10−3 (3d).

before, bubbles diffuse at constant unit rate. When two bubbles touch each other,
they merge into a bubble of volume equal to that of the two initial bubbles that
is placed at the center of mass, thus conserving the total bubble volume. Small
bubbles of radius r0 = 1 are nucleated in the empty space at rate ν per unit vol-
ume. The reverse Ostwald scenario is taken into account in the following way: the
newly formed bubbles are nucleated by extracting their volume from the closest
bubble of radius rn with a probability 1− r0/rn, so that large bubbles shrink with
probability 1 at the advantage of small bubbles. All the rules conserve the volume,
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Figure 4.9: Bubble size distributions at various system sizes in the Reduced Bubble
Model. (a): 2d simulations, showing the curves collapsing on a master curve for
the exponents α = 5/2 and γ = 1/2. Insets: without rescaling. (b): Same as (a)
in the 3d case. Parameters: ρ0 = 1 (a), ρ0 = 0.9 (b); ν = 10−3 (a), ν = 10−2 (b).

so that the fraction xg of gas is fixed. Initially, we seed the system with bubbles
of unit radius randomly distributed in space.

Consistently with the previously presented models, the phase diagram, com-
puted in 2d, displays two regions (See Fig. 4.8a). At high gas fraction, the gas
is contained in a macroscopic bubble surrounded by a sea of small bubbles (See
Fig. 4.8c). Decreasing the gas fraction, the reservoir disappears and the gas is only
contained in bubbles (See Fig. 4.8d). Computing the probability distributions of
the bubbles’ volume v for d ∈ {1, 2, 3}, we again find scale-free distributions ter-
minated by a system-size dependent cutoff (Fig. 4.8b), with an algebraic exponent
α compatible with the value α = 5/2 predicted by the mean-field theory, in both
phases.

As before in the ANM, computing the bubble size distributions at various system
sizes, we observe a shift of the exponential cutoff. Bubbles have a physical size
so we expect the previous hyperscaling relation Eq. (4.13) to fail predicting the
correct value of the exponent γ in this case. Instead, rescaling bubble sizes by a
power of the system size V γ in dimensions 2 and 3, we find the distributions to
collapse for γ ≈ 1/2 both in 2d and in 3d (Fig. 4.9, main figures).
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4.2.4 Fluctuations of the reservoir

As reported above, both the ANM and the RBM have a phase in which a
reservoir of extensive size Vres coexists with bubbles of sizes distributed like a
power-law of exponent α terminated by an exponential cutoff diverging with sys-
tem size. We now consider the finite-size scaling of the reservoir’s fluctuations in
d dimensions. The nucleation process decreases at constant rate the size of the
reservoir by an amount of order 1 so that in a time of order Vres, with Vres ∝ V ,
all the gas of the reservoir is renewed. In contrast, in the same duration ∼ V ,
the reservoir undergoes Mc collisions at constant rate, so that Mc ∼ V . Each
collision with a bubble increases the size of the reservoir by a quantity which typi-
cally scales with system size. We thus disregard the contribution of nucleations in
our analysis of the reservoir’s fluctuations. After a large number Mc of collisions
with the surrounding bubbles, the size vres fluctuates as the sum of Mc random
variables drawn from a power-law distribution of exponent α with a cutoff, given
in [Bouchaud & Georges 1990] by

〈Vres
2〉 − 〈Vres〉2 ∼M

2
α−1
c (4.30)

Since Mc ∼ V , we obtain a prediction for the scaling of the reservoir fluctuations
with system size:

√
〈Vres

2〉 − 〈Vres〉2 ∼ V
1

α−1 (4.31)

To test Eq. (4.31), we measure the reservoir size fluctuations in stationary state
in the ANM (See Fig. 4.10a) and in the RBM (See Fig. 4.10b) as a function of
system size. We observe good agreement with the predicted scaling. Note that in
the ANM, the fluctuation amplitude of the reservoir is of the same order as the
largest bubble size since 1/(α− 1) = γ, while in the RBM it is larger.

To conclude, we investigated two models of bubbles containing aggregation and
nucleation in varying spatial dimension. We found the distributions of bubble sizes
to be algebraic with a cutoff in all considered dimensions, with a decay exponent α
compatible with the value predicted by mean-field theory. We explored the finite-
size scaling of the reservoir and showed that it persists in the thermodynamic
limit, as expected because α > 2.
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Figure 4.10: Fluctuations of the reservoir as a function of system size for the ANM
(a) and the RBM (b), compared with the predicted scaling Eq. (4.31) (black
dashed lines), with α = 5/2. (a): Parameters: ρ0 = 1 (1d), ρ0 = 0.9 (2d);
ν = 10−2 (1d), ν = 0.5 (2d). (b): Parameters: xg = 0.7, ν = 10−3.

4.3 Volume-dependent diffusion

Up to now, we have used the approximation that bubbles diffuse at constant unit
rate. By contrast, in the well-studied case of equilibrium diffusion, the diffusion
constant of a spherical drop of one fluid in another of similar viscosity is propor-
tional to the inverse radius of the drop [Siggia 1979] i.e. to its volume to the power
−1/3. Other diffusion processes can lead to a different scaling of the diffusion co-
efficient with the cluster size. For instance, in the mechanism of island diffusion,
atoms diffuse freely in d-dimensions and aggregate to form islands which in turn
diffuse. As computed in [Krapivsky et al. 1999], the diffusion of such an island
is proportional to its volume to the power −(d + 1)/d. More recently, measures
of the displacement of active clusters of particles in MIPS [Caporusso et al. 2022]
were shown to undergo enhanced diffusion proportional to their volume to the
power −1/2. Finally, following bubbles in the lattice model of [Shi et al. 2020]
and measuring their diffusion rate as a function of their size, it was observed that
the diffusion is not a constant with respect to bubble size. They found that it
scales as their volume to an exponent between −0.8 and −1 [unpublished results
of Shi et al.].

To take this into account in the bubble models, we make the generic assumption
that bubbles diffuse proportionnaly to a power −σ of their volume, where σ > 0



112 Chapter 4. Bubbly phase separation

is called diffusion exponent. Qualitatively, this means that small bubbles diffuse
more rapidly than large ones. Instead of diffusing at a constant unit rate, bubbles
of size k diffuse with a coefficient D(k) = D0k

−σ in the Aggregation-Nucleation
Model. Similarly, for the Reduced Bubble Model, a bubble of area a diffuses with
a coefficient D(a) = D0a

−σ. We choose D0 = 1 without loss of generality in the
following.

4.3.1 Mean-field model

We first examine the consequences of a volume-dependent diffusion in the con-
text of the mean-field model presented in Sec. 4.2.2. In practice, endowing the
bubbles with a volume-dependent diffusion translates into a modification of their
aggregation rate, because the interaction between two bubbles now depends on
their respective sizes. The expression of the diffusion suggests that the aggrega-
tion kernel can take a similar form, involving powers of the bubble sizes. We thus
choose a reaction rate of two bubbles of size i and j to be of the form:

Kij = i−ω + j−ω (4.32)

where ω > 0 is the aggregation exponent. With this new kernel, the set of master
equations of the nk reads:

∂tnk =
1

2

k−1∑

i=1

((k − i)−ω + i−ω)nk−ini − nk
+∞∑

i=1

(k−ω + i−ω)ni

+
ν(1− ϕ)

ϕ
(nk+1 − nk) + ν(1− ϕ)δ1,k (4.33)

∂tϕ = −1

2

+∞∑

i=1

+∞∑

j=1

(i−ω + j−ω)ninj + ν(1− ϕ)− ν(1− ϕ)

ϕ
n1 (4.34)

Eq. (4.33) is the same as Eq. (4.15), albeit with a different aggregation kernel. Be-
cause the system displays an algebraic decay of the nk when ω = 0 (cf. Sec. 4.2.2),
it is reasonable to assume that this decay holds when ω 6= 0. That is, we want to
find the algebraic decay exponent α as a function of ω.

Contrary to Eq. (4.15), Eq. (4.33) now features terms of the form i−ωni in
addition to the former ni. This makes the use of the previous generating function
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Eq. (4.17) inconvenient. Instead, we follow [Rajesh et al. 2002] and introduce
two generating functions3

C(p) =
+∞∑

k=1

nke
−pk and A(p) =

+∞∑

k=1

nkk
−ωe−pk (4.35)

In stationary state, we recast Eq. (4.33) into:

0 = AC −Aϕ−MC + C ν(1− ϕ)

ϕ
(ep − 1)− ν(1− ϕ) + ϕA+ e−pν(1− ϕ) (4.36)

Where ϕ = C(0) and A = A(0), and we have used Eq. (4.34) to express n1 as a
function of ϕ. Eq. (4.36) is the analogous of Eq. (4.18) in the presence of volume-
dependent diffusion in stationary-state. It reduces to the later taking the limit
ω → 0 and performing the changes of variable z = e−p and ν ← 2ν. Contrary to
Eq. (4.18), we cannot solve Eq. (4.36) explicitly. To extract asymptotic behaviours
we look at the moments 〈kx〉 of the distribution of the nk, where

〈kx〉 =
+∞∑

k=1

kxnk (4.37)

To do this, we first expand the exponential in the expression of A and C
(Eq. (4.35)) and write them as series involving the moments 〈kx〉:

C(p) =
+∞∑

n=0

〈kn〉(−p)
n

n!
and A(p) =

+∞∑

n=0

〈kn−ω〉(−p)
n

n!
(4.38)

Plugging these expressions in Eq. (4.36) and taking the limit p → 0, we identify
the various powers of p. At order p1, we find:

〈k〉〈k1−ω〉 = ν(1− ϕ)

(〈k〉
ϕ
− 1

)
(4.39)

Note that taking the limit ω → 0 and identifying 〈k〉 with ρ0, the previous equation
reduces to Eq. (4.20). It can thus be interpreted as an equation stating the
conservation of density. At order p2, using the previous expression of 〈k1−ω〉, we
obtain:

〈k〉2〈k2−ω〉 = 〈k2〉ν(1− ϕ)− 〈k〉2ν(1− ϕ)

ϕ
(4.40)

3Note that C(p) is the same definition as Eq. (4.17) upto the change of variable z = e−p.



114 Chapter 4. Bubbly phase separation

100 101 102 103 104

k
10−3

10−2

10−1

100

k2−ω/2nk

ω = 0.0
ω = 0.1
ω = 0.2
ω = 0.3
ω = 0.4
ω = 0.5

Figure 4.11: Distribution of sizes obtained by Monte-Carlo simulations of
Eq. (4.33), multiplied by k2−ω/2 to highlight their algebraic exponent smaller than
2 for ω > 0. Parameters : L = 20000, ρ0 = 1, ν = 10−3.

We now wish to explicit the scaling of the moments 〈kx〉 with density ρ0. This
requires writing a scaling form for the nk in the large ρ0 limit. In the ω = 0

case, α = 5/2 > 2 implies that the total volume contained in the bubbles, namely
M =

∑+∞
k=1 k nk, converges. On the contrary, looking at the distributions obtained

by simulation4 of Eq. (4.33), we observe an exponent α < 2 (See Fig. 4.11). As
already mentioned, in this case, the total volume contained in the bubbles diverges
in the thermodynamic limit, so that all the gas is contained in the distribution.
Therefore, the macroscopic aggregate volume vanishes in the thermodynamic limit
and we cannot reuse the scaling form Eq. (4.9): the system displays an algebraic
decay terminated by an exponential cutoff kc which depends on density : kc ∼ ρφ0 .
In line with this observation, we write the following scaling form, treating k as a
continuous variable in the thermodynamic limit:

nk = k−αgω

(
k

kc

)
(4.41)

where gω is a scaling function with an exponential decay for large arguments. This
allows to obtain an expression for the scaling of the moments with density:

〈kx〉 =

∫ +∞

0

kxnkdk =

∫ +∞

0

kx−αgω

(
k

ρφ0

)
dk ∼

ρ0→∞
ρ
φ(x+1−α)
0 (4.42)

4These Monte-Carlo simulations, in which space is neglected, bubbles of size i and j aggregate
at rate Kij = i−ω + j−ω and unit gas bubbles can detach from their bubble at rate ν(1−ϕ)/ϕ,
allow to sample the distribution of nk whose dynamics is given by Eq. (4.33).
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Note that the conservation of the volume of gas, 〈k〉 = ρ0, combined with
Eq. (4.42), enforces a first relation between α and φ:

φ(2− α) = 1 (4.43)

Plugging the scaling behaviours Eq. (4.42) into Eq. (4.40), we obtain a second
relation when ρ0 →∞:

2 + φ(3− ω − α) = φ(3− α) (4.44)

Together with Eq. (4.43), it gives the expressions of both the algebraic exponent
and the density-dependent cutoff exponent:

α = 2− ω/2 (4.45)

φ =
2

ω
(4.46)

Interestingly, the ω = 0 case seems to be singular. Indeed, taking ω → 0 reduces
to the model presented in Sec. 4.2.2, for which we know the algebraic exponent to
be α = 5/2, in contrast with the value α = 2 predicted by Eq. (4.45). Looking at
Fig. 4.11, we observe that the value k∗(ω) above which the distribution reaches the
algebraic decay nk ∼ k2−ω/2 is increasing as ω → 0. Extrapolating, we hypothesize
that k∗(ω)→∞ when ω → 0, so that we never observe the α = 2 regime.

4.3.2 Aggregation-Nucleation Model

We now proceed to investigate the implications of a volume-dependent diffusion
in the 1d ANM. To do so, let us first connect the diffusion exponent σ to the
aggregation exponent ω of the mean-field model presented above (Sec. 4.3.1). For
two point-like bubbles of size i and j diffusing respectively at rate i−σ and j−σ, the
Smoluchowski reaction rate theory [Smoluchowski 1917] predicts an aggregation
rate i−σ + j−σ, based on a first-passage time computation. This justifies the
identification of σ with ω in the following.

In Fig. 4.12a, we plot the stationary distributions of bubbles obtained varying
the diffusion exponent σ. Multiplying the distibutions nk by k2−σ/2, we observe
that they reach a plateau, indicating that the prediction of Eq. (4.45) for the
algebraic exponent α = 2−σ/2 compares favorably with numerical measurements.
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Figure 4.12: 1d local ANM. (a): Rescaled distributions, showing α = 2 − σ/2

(aggregate not shown). (b): Scaling of the exponential cutoff with density for
σ = 0.5. The dashed line corresponds to the prediction Eq. (4.50). (c): Mass
contained in the aggregate compared with the predicted scaling Eq. (4.53) (dashed
lines). Parameters: L = 2000 (a,b), ρ0 = 1 (a,c), ν = 10−4.

We now investigate the scaling of the exponential cutoff with both density
and system size. For σ > 0, the bubbles diffuse more slowly than for σ = 0.
Numerically, this translates into large averaging times needed to obtain clean
cutoff in the distributions so that a simple rescaling is inconclusive based on the
data we could gather. To test the prediction of Eq. (4.46) in a different way, we
first rewrite Eq. (4.41) in the scaling region [k0, kc] as

nk = C1k
−α for k0 ≤ k ≤ kc (4.47)

where C1 is a constant which we measure numerically for same k ∈ [k0, kc] using
C1 = nkk

α. The cutoff kc scales as ρφ0 , as in with Eq. (4.41). We write the
conservation of density

ρ0 = cst+

∫ kc(ρ0)

k=k0

k nk dk (4.48)

in which cst accounts for the volume of gas contained in the bubbles with k < k0.
Using the expression Eq. (4.47) of nk:

ρ0 = cst+ C1

∫ kc(ρ0)

k=k0

k1−α dk (4.49)

In the limit ρ0 →∞, this gives k2−α
c ∝ (2− α)

ρ0

C1

. Replacing α by its prediction

Eq. (4.46), we find
kσ/2c ∝ σ

2

ρ0

C1

(4.50)



4.3. Volume-dependent diffusion 117

Looking at Fig. 4.12b, this is indeed what we observe, thus confirming the mean-
field prediction φ = 2/σ.

We now estimate the total volume of gas contained in the distribution M(L),
defined as

M(L) =

∫ kc(L)

k=1

k nk dk (4.51)

Using Eq. (4.47) in which we discard the small-k corrections, we obtain in the
limit L→∞:

M(L) ∼ Lγ(2−α) (4.52)

which, using both Eq. (4.13) and Eq. (4.45) to replace γ and α, yields:

M(L) ∼ L
σ

2−σ (4.53)

We compare this prediction (dashed lines in Fig. 4.12c) with the finite-size scaling
of the total volume of gas contained in the distribution for various values of σ (open
circles). We find a good agreement, validating that the mean-field exponents of
Sec. 4.3.1 describe correctly the ANM with volume-dependent diffusion.

4.3.3 Reduced Bubble Model

Supplementing the RBM with a volume-dependent diffusion D = D0A
−σ, we

find the phenomenology to remain the same: at high enough gas fraction, a macro-
scopic gas reservoir coexists with a dilute gas of bubbles distributed algebraically.
Since the gas reservoir is extensive with system size, we expect its diffusion coeffi-
cient to vanish in the thermodynamic limit. In contrast, looking at movies of the
bubble dynamics, we always observe the reservoir to diffuse. We traced this back
to the merging process with small bubbles, which displaces its center of mass at
each collision. In line with this observation, its effective diffusion coefficient Deff

is the sum of the inner diffusion of the reservoir and the diffusion related to the
collisions with small bubbles Dc:

Deff = D0A
−σ +Dc (4.54)

We now proceed to evaluate Dc. The number of collisions of the reservoir with
small bubbles per unit time is proportional to its perimeter, and thus to its radius,
that we note R. Each collision displaces the reservoir of a small distance δx. In
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the large size limit, we assume the small bubbles to be of radius r � R, so that
the center of mass of the reservoir moves, at each collision, by an amount

δx =
(R + r)πr2

πR2 + πr2
∼ R−1 (4.55)

The expression ofDc is now readily obtained by multiplying the number of collision
per unit time by the squared displacement of each collision:

Dc = Rδx2 ∼ R−1 = A−1/2 (4.56)

All in all, Deff = D0A
−σ + Dc

0A
−1/2 where Dc

0 is a prefactor accounting for the
properties of the small bubbles merging with the reservoir. In the limit of large
systems, we predict a crossover between a diffusion dominated by the inner dif-
fusivity of the reservoir (σ < 1/2) to a diffusion driven by the collision with the
surrounding gas (σ > 1/2). We test this prediction by measuring the mean-
squared displacement 〈∆r2(t)〉 in dimension d = 2 of the reservoir to extract the
effective diffusion coefficient:

Deff =
d

dt

(〈∆r2(t)〉
2d

)
(4.57)

Looking at Fig. 4.13a, we indeed observe such crossover taking place for σ ≈ 1.
This difference with the predicted value σ = 1/2 is not surprising: we made the
approximation that the reservoir collides with bubbles much smaller than its size
and thus discarded the properties of the bubble size distribution, which we can
expect to play a quantitative role in the precise position of the crossover.

We now investigate the scaling properties of the distribution of bubble areas.
Since the mean-field prediction of the algebraic exponent α = 5/2 was consistent
with the measured value when σ = 0 (Sec. 4.2.3), one could expect the prediction
to hold when σ > 0. In order to test this, we follow Smoluchowski’s reaction rate
theory [Smoluchowski 1917] and assume that two bubbles of sizes Ai and Aj react
at rate

KAi,Aj = Deff(Ai) +Deff(Aj) (4.58)

in spatial dimension d = 2. In Eq. (4.58), we neglected a slowly varying logarith-
mic factor ln(

√
Ai+

√
Aj). As discussed above, the reservoir diffuses asDeff ∼ A−σ

when σ < 1 so we extrapolate and make the approximation that this remains true
for all bubbles, so that

KAi,Aj = A−σi + A−σj (4.59)
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Figure 4.13: Reservoir dynamics in the RBM. (a): Effective diffusion coefficient of
the macroscopic reservoir. (b): Fluctuations of the macroscopic reservoir area as
a function of system size, compared with the prediction of Eq. (4.60). Parameters:
xg = 0.7, ν = 10−3.

We thus identify the aggregation exponent ω of the mean-field model with σ and
predict the exponent α = 2−σ/2. In contrast, looking at Fig. 4.14, we numerically
estimate the exponent α to be larger than 2. This discrepancy might be explained
by our approximation Eq. (4.58) in which we neglected the logarithmic prefactor.
So far, we have no quantitative explanation for the value of these exponents.
Going further, as the measured value of α is greater than 2, the reservoir survives
in the thermodynamic limit, which markedly contrasts with the ANM and more
generically with the MIPS phenomenology.

As before, the exponential cutoff is observed to shift with system size, as shown
in the insets of Fig. 4.14. We find the cutoff to collapse when rescaling the bubble
sizes by S−γ with γ depending on the value of the diffusion exponent σ. Interest-
ingly, our numerical analysis seems to point towards the existence of a hyperscal-
ing relation α + γ = 3. So far we have no analytical explanation to support this
observation.

The reasoning on the fluctuations of the macroscopic reservoir (Eq. (4.31))
described in Sec. 4.2.4 also applies in the case of the RBM with volume-dependent
diffusion. It leads to the following scaling for the fluctuations of the reservoir area
ar: √

〈a2
r〉 − 〈ar〉2 ∼ S

1
α−1 (4.60)



120 Chapter 4. Bubbly phase separation

(a)

10−3 10−2

aS−γ

106

108

1010

1012

Sαγ−1n(a)

101 102

a
10−6

10−2

n(a)
a−α

100× 100

200× 200

400× 400

(b)

10−4 10−3 10−2

aS−γ

107

109

1011

1013

1015 Sαγ−1n(a)

101 102 103

a
10−6

10−2

n(a)
a−α

100× 100

200× 200

400× 400

Figure 4.14: Rescaled distributions of bubble sizes in the 2d RBM for σ = 0.2

(a) and σ = 0.4 (b). Insets are the same distributions without rescaling. (a):
α = 2.25, γ = 0.75. (b): α = 2.1, γ = 0.9. Parameters: ν = 10−4, xg = 0.3.

To test this prediction, we extract the value of α varying σ from numerical simu-
lations of the local RBM in 2d (See Fig. 4.14). We verified that the value of this
exponent does not depend on space dimension, but only on σ. This gives us an
estimate of S

2
α−1 that we plot in dashed lines in Fig. 4.13a. We then measure the

fluctuations of the reservoir area for the same values of σ, plotted as open circles
on the same figure. We find that the predicted scaling Eq. (4.60) is in agreement
with the observed values.

4.4 Homogeneous nucleation

In the RBM, we have shown in Sec. 4.2.3 that the measured exponent α lies
between 2 and 2.5 depending on the scaling of D. Although it is the model that
we have studied that could be expected to be the closest to microscopic models
showing MIPS, the measured α exponent are quite different. In particular, the
distributions we obtain in the RBM are too narrow to contain all the volume of gas
of the system in the thermodynamic limit because the total volume of gas they can
accommodate converges to a finite value. The macroscopic reservoir persists in
the thermodynamic limit, in contrast with the observations of [Tjhung et al. 2018,
Shi et al. 2020, Fausti 2021], who witness instead a homogeneous dense liquid
containing bubbles but no macroscopic gas reservoir. Such a scenario occurs when
the algebraic decay α < 2, making the distribution broad enough to contain all
the gas in the thermodynamic limit so that the gas reservoir vanishes. As a result,
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Figure 4.15: PDF for ANM (a) and RBM (b) with non-local nucleation. Param-
eters: (a): ρ0 = 1, ν = 10−1. (b): xg = 0.7, ν = 10−4.

the phase diagram we obtain with the RBM is different from the one observed in
MIPS. We now present another nucleation mechanism which leads to exponents
α < 2 in our models, so that the MIPS phase diagram is qualitatively recovered
in the thermodynamic limit.

Based on the study of microscopic simulation movies and on the analysis of
AMB+ carried in [Tjhung et al. 2018], the nucleation process can be explained
through the following picture: since the nucleation rate is small, the system has
enough time to mix between two nucleation events. As a result, all the bubbles
in the system effectively contribute to the nucleation of one bubble. We proceed
to give evidences that a homogeneous nucleation process involving all the bubbles
is a sufficient ingredient to qualitatively recover the MIPS phase diagram in the
thermodynamic limit. To do so in the ANM, instead of nucleating a unit bubble on
a vacant site by taking it from the nearest bubble, we extract it from a randomly
chosen bubble in the system. In the RBM, following [Shi et al. 2020], we nucleate
a bubble at the cost of all other bubbles: they shrink by a quantity κr(1 −
r0/r) (where r is their current radius), with κ chosen such that the total area
of gas is conserved. This simple difference in the nucleation process gives rise to
algebraic distributions compatible with microscopic models presenting MIPS, in
the sense that the measured exponent α < 2, as shown in Fig. 4.15). This provides
indications that in-depth investigations of the role of a homogeneous nucleation
process could help understand the bubble dynamics observed in MIPS.
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4.5 Conclusion

We have provided a detailed study of several models of aggregation and nucle-
ation to explain the bubble dynamics in MIPS and showed that they typically
display scale-free distributions. We first introduced a model in which we ne-
glect the spatial extension of bubbles, the Aggregation-Nucleation Model (ANM).
Consistently with both particle-level simulations and continuum descriptions
of MIPS [Tjhung et al. 2018, Caporusso et al. 2020, Shi et al. 2020, Fausti 2021],
our model features algebraic distributions and a gas reservoir at high bubble den-
sity. To account for these observations, we constructed a mean-field description of
its dynamics and derived an analytical solution through a mapping with a model
of chipping presented in [Krapivsky et al. 2010]. We then considered bubbles with
a spatial extension (Reduced Bubble Model, RBM) and reported the same phe-
nomenology as in the ANM. Our models present algebraic distributions but the
macroscopic aggregate that they exhibit survives in the thermodynamic limit,
so that their phase diagrams differ qualitatively from microscopic simulations of
MIPS.

Next, we studied the consequences of endowing bubbles with a volume-
dependent diffusion coefficient and found that the scaling of the diffusion
influences the scaling of bubble sizes. Following pre-established procedures
[Rajesh & Majumdar 2001, Rajesh et al. 2002], we obtained the bubble distribu-
tions dependence on the scaling of the diffusion and compared them to numerical
simulations. Finally, we analyzed the effect of a homogeneous nucleation process
in our models and found it to be a sufficient condition to obtain algebraic distri-
butions with exponents in qualitative agreement with those measured in MIPS.

Several questions brought up in this chapter are yet to be addressed. First,
because at coexistence the dense phase of MIPS consistently displays bubbles in
contact with a gas reservoir, we investigated in appendix B a ‘grand-canonical’
version of the mean-field model. We determined a new set of exponents quan-
titatively different from the ‘canonical’ ones. This seems to point toward a fun-
damental difference between a canonical and a grand-canonical description of the
bubbles statistics in MIPS, in clear contrast with the equilibrium case, where one
expects both descriptions to agree in the thermodynamic limit.
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Second, analytical expressions for the exponents in the RBM with volume-
dependent diffusion remain to be found and should help understand why the
observed algebraic exponent is larger than 2 in this model. In contrast, we observe
a homogeneous nucleation process to lead to exponents smaller than 2, but a clear
explanation for this is yet to be determined. To further test the robustness of our
results, it would be interesting to compare the exponents of our bubble models
with a thorough analysis of those obtained from a continuum description. Finally,
while the question of the coarsening process has not been tackled in this work, we
expect our analysis to lay the groundwork for future investigations.





Conclusion

In this thesis, we studied the ordered phases of two paradigmatic phase transi-
tions occurring in active matter: flocking and motility-induced phase separation.
Through the analysis of the active Ising model (AIM) in Chapter 2, we showed
that order in 1d flocking takes the peculiar form of a moving ordered aggregate
of particles. Contrary to the passive Ising model, the system thus orders, but
symmetry is not broken because the ‘flock’ stochastically reverses its direction of
motion due to the effect of fluctuations.

At low temperature, we found static asters that relies on an original mechanism
by which two clusters can block each other just because of alignment interactions.
Their slow coarsening relies on rare fluctuations, giving rise to extremal dynamics,
and eventually saturates leading to an extensive number of asters. For now, the
observation of asters is limited to the 1d AIM on lattice. It will be interesting to
study what happens in higher dimension and in continuous space when an effective
lattice structure exists, such as a crystal. Since these objects could appear in
numerical or experimental situations with effective discrete space, it would be
interesting to study their dynamics in details.

In Chapter 3, we found that counter-propagating droplets nucleate both in the
coexistence and in the ordered phase of the AIM and destroy the ordered state in
arbitrary spatial dimension. We predicted these droplets to exist in all flocking
models with discrete-symmetry order parameter. This could be systematically
checked by introducing a counter-propagating droplet in the ordered phase in other
models such as the clock model presented in [Solon et al. 2022], or by looking for
growing droplet solutions in the associated continuum theory. Such a study would
also contribute to a better understanding of the limitations of the hydrodynamic
equations used to describe flocking models at the continuous level. Indeed, as
demonstrated in the case of the Vicsek model, these equations do not always
account for counter-propagating objects leading to reversals of the flow. Overall,
the recent results on the fragility of the ordered state in flocking models suggest
to probe the stability of the polar order in the Vicsek model to spontaneous
nucleations, both in the coexistence phase and in the homogeneous ordered state.
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In Chapter 4, we investigated the bubbly phase separation in MIPS. We intro-
duced several bubble models to account for the bubble dynamics and found the
bubble sizes to be generically scale-free distributed. We examined how the decay
exponent α and the finite-size effects depend on the basic ingredients that we used.
Even though we are able to predict accurately the value of α in some cases where
we neglect the bubble spatial extension, we still lack analytical explanations for
the role of the bubble spatial occupation. We found the value of the exponents to
be sensitive to the specific ingredients of our models, which questions their univer-
sal nature. Finally, in a recent study, [Digregorio et al. 2021] suggest that MIPS
bubbles appear concomitantly with a network of ‘defects’ in the dense region, so
that bubble nucleation results from defect-induced dislocations of dense domains.
This provides interesting microscopic fundations to study the nucleation process
of bubbles as sudden, rare events.

More generally, we considered the exotic properties of ordered phases in flock-
ing models and in MIPS separately, but in both cases nucleation events play
an essential role. A promising framework to understand the occurrence of these
rare events is transition path sampling. How to apply these techniques in the
context of non-equilibrium physics is however still a topic under development
[Berryman & Schilling 2010, Zakine & Vanden-Eijnden 2022].



Chapter 5

Synthèse en français

La matière active englobe tous les systèmes dont les composants dissipent de
l’énergie afin d’exercer des forces sur leur environnement. Les systèmes actifs
peuvent être trouvés à toutes les échelles, des moteurs moléculaires aux groupes
d’animaux, en passant par les colonies de bactéries. Étant intrinsèquement hors
d’équilibre, ces systèmes présentent de manière générique des comportements col-
lectifs sans contrepartie à l’équilibre.

Nous nous sommes concentrés sur deux comportements collectifs paradigma-
tiques en matière active : le flocking, dans lequel des particules auto-propulsées
et soumisent à des interactions d’alignement s’organisent à grand échelle pour se
déplacer collectivement, et la séparation de phase induite par la motilité, dans
laquelle des particules auto-propulsées et soumises à des forces répulsives forment
un agrégat. Ces comportements collectifs présentent des propriétés exotiques que
nous avons étudié dans cette thèse.

En une dimension, le mouvement collectif se traduit par la présence d’un agré-
gat de particules au mouvement ballistique qui subit des retournements stochas-
tiques de sa direction [Czirók et al. 1999, O’Loan & Evans 1999, Dossetti 2011,
Laighléis et al. 2018, Sakaguchi & Ishibashi 2019]. Nous nous sommes intéressés
dans le Chapitre 2 au modèle d’Ising actif, un modèle de flocking avec une symétrie
discrète. Dans ce modèle, l’agrégat possède une forme particulière représentée sur
la Fig. 5.1 (gauche). Il est constituée d’un pic de largeur σ qui s’étale diffusivement
et d’une protrusion et se propage à une vitesse vp comme indiqué sur la Fig. 5.2a.
Les valeurs de σ et de vp peuvent être prédites via une analyse de champ moyen. La
caractéristique la plus frappante des flocks est qu’ils subissent des retournements
stochastiques de leur direction de propagation. Cela arrive lorsqu’une fluctuation
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Figure 5.1: Diagramme des phases du modèle d’Ising actif en une dimension dans
le plan densité-température (milieu) et profils de densité ρ et d’aimantation m

associés aux phases Flocks (gauche) et Asters (droite).

à l’avant de l’agrégat, si elle est d’amplitude suffisante et d’aimantation opposée
à celle de l’agrégat, se propage dans celui-ci en retournant le spin de toutes les
particules qu’elle rencontre. Nous avons mesuré le temps séparant deux retourne-
ments et avons trouvé qu’il diverge comme le logarithme de la taille du système
(voir Fig. 5.2b). En calculant la distribution des temps entre retournements, nous
avons pu expliquer cette dépendance. Contrairement au modèle d’Ising passif,
le système présente donc une phase ordonnée, bien que la symétrie ne soit pas
brisée puisque l’agrégat retourne stochastiquement sa direction de déplacement
sous l’effet des fluctuations.

À basse température, nous observons l’existence d’une nouvelle phase peuplée
d’objets statiques que nous appelons “asters” (voir Fig. 5.1 (droite)), qui apparais-
sent uniquement en raison de l’interaction entre l’auto-propulsion et l’alignement.
Ces structures prennent la forme de deux pics d’aimantation opposés qui se font
face et empêchent ainsi la progression de l’autre. Nous avons calculé leur forme
à l’aide d’une description de champ moyen, comme représenté en pointillés sur la
Fig. 5.3a. À température nulle, les asters ont une durée de vie T avant dissolution
qui dépend du nombre M de particules qui les composent. En utilisant un calcul
de temps de premier passage, nous avons obtenu une solution exacte pour carac-
tériser cette durée de vie (voir Fig. 5.3b). Pour l’instant, l’observation des asters
est limitée au modèle d’Ising actif 1d sur réseau. Comme ces objets pourraient
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(a) (b)

Figure 5.2: (a) : Évolution de la forme d’un flock se propageant à vitesse constante
vp au cours du temps et dont le pic possède une largeur σ. (b) : Temps moyen
〈τ〉 séparant deux retournements en fonction de la taille du système L.

(a)

(b)

Figure 5.3: (a) : Profils de densité ρ et d’aimantation m dans un aster, comparés
à la prédiction théorique (pointillés). (b) : Temps de dissolution T d’un aster
contenant M particules.

néanmoins apparaître dans des situations numériques ou expérimentales avec un
espace discret effectif, comme dans un crystal, il serait intéressant d’étudier leur
dynamique en détail.
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Dans le Chapitre 3, nous avons étudié les états ordonnés du modèle d’Ising actif
en dimension d > 1. Jusqu’à présent, de tels états étaient considérés comme sta-
bles, mais nous avons montré qu’ils sont en réalité métastables dû à la nucléation
spontanée de gouttelettes se propageant dans le sens contraire à l’ordre établi.
Nous nous sommes tout d’abord intéressés à la phase de coexistence du modèle
d’Ising actif en dimension d = 2, dans laquelle une bande ordonnée de haute den-
sité se déplace dans un gas résiduel désordonné. Nous avons montré que des gout-
tellettes d’aimantation opposée apparaissent à l’avant de la bande et détruisent sa
structure en se propageant à l’intérieur, comme illustré sur la Fig. 5.4a. Ce scé-
nario persiste dans la phase homogène ordonnée (voir Fig. 5.4b), dans laquelle une
assez grande fluctuation d’aimantation entraîne la nucléation d’une gouttelette se
déplaçant en sens inverse. En étudiant numériquement la taille minimale d’une
telle fluctuation ainsi que son taux de nucléation, nous avons montré qu’elle se
produit spontanément dans la limite thermodynamique, de telle sorte que la phase
homogène ordonnée est métastable. Afin de renforcer ce résultat, nous avons en-
suite montré que les équations continues décrivant notre système admettent des
solutions prenant la forme de gouttelettes en toute dimension d > 1.

Nos résultats concernant la métastabilité des états ordonnés du modèle d’Ising
actif s’inscrivent dans la lignée d’une série de récentes publications faisant état
de la fragilité des phases de mouvement collectifs dans les modèles de flocking,
en particulier dans le modèle de Vicsek [Ventejou et al. 2021, Codina et al. 2022,
Besse et al. 2022]. Nous avons montré qu’en se restreignant à un paramètre
d’ordre à symétrie discrète, les modèles de flocking ont des états ordonnés mé-
tastables dans l’ensemble du diagramme des phases. Dans le cas d’un paramètre
d’ordre à symétrie continue, comme pour le modèle de Vicsek, les résultats présen-
tés dans [Codina et al. 2022] montrent que cette métastabilité n’existe que dans
une fraction du diagramme des phases, ce qui indique une différence fondamentale
entre les modèles à paramètre d’ordre scalaire et à paramètre d’ordre vectoriel.
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(a)

(b)

Figure 5.4: Nucléation de gouttelettes se propageant dans le sens opposé à l’ordre
établi dans la phase de coexistence (a) et dans la phase homogène ordonnée (b)
du modèle d’Ising actif en dimension d = 2.

Dans la séparation de phase induite par la motilité, le couplage entre le mou-
vement persistant des particules actives et leurs interactions répulsives conduit à
la formation d’un agrégat dense entouré d’un gaz dilué. Parce que la pression de
Laplace est négative [Bialké et al. 2015, Solon et al. 2018a, Patch et al. 2018], des
bulles de gaz se forment et se développent dans cet agrégat, de sorte que le cadre
général est celui d’une séparation de phase à bulles, dans laquelle les tailles de
bulles sont distribuées algébriquement. Dans les systèmes de taille finie à faible
densité, les bulles coexistent avec un grand réservoir de gaz. En augmentant la
densité de particules à taille de système fixée, de plus en plus de gaz est contenu
dans les bulles. Au-delà d’une densité critique, le réservoir de gaz disparaît et
seule la distribution algébrique subsiste, terminée par une coupure exponentielle
dépendant de la densité.

Nous avons présenté dans le Chapitre 4 des modèles minimaux pour rendre
compte de la dynamique de ces bulles. Dans ces modèles, les degrés de liberté sont
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(a) (b)

Figure 5.5: Clichés instantanés d’un modèle de bulle montrant la présence d’un
réservoir de gaz à basse densité (a) et sa disparition en augmentant la densité
(b).

des bulles qui diffusent et fusionnent en cas de contact. La formation des bulles
est modélisée par un processus de nucléation à taux constant par unité d’espace ν.
Malgré leur simplicité, ces modèles reproduisent la présence d’un réservoir de gaz
à basse densité (voir Fig. 5.5a) et sa disparition à mesure que la densité augmente
(voir Fig. 5.5b), tout en présentant des distributions de taille de bulles en loi
de puissance. Nous avons développé des arguments analytiques permettant de
calculer l’exposant de ces lois de puissance dans certains cas ainsi que de prédire
la disparition du réservoir. Enfin, nous avons présenté des éléments numériques
indiquant que pour capturer correctement la phénoménologie microscopique de
MIPS, le processus de nucléation doit être non-local.

Nous avons constaté que la valeur des exposants était sensible aux ingrédients
spécifiques de nos modèles, ce qui remet en question leur nature universelle. Par
ailleurs, dans une récente étude, [Digregorio et al. 2021] suggère que la région
dense est composée d’un réseau de "défauts", de sorte que la nucléation des bulles
résulte de dislocations de domaines denses induites par des défauts. Cela fournit
des bases microscopiques intéressantes pour étudier le processus de nucléation des
bulles en tant qu’événements soudains et rares.



133

Dans cette thèse, nous avons étudié les phases ordonnées dans deux transitions
de phases paradigmatiques en matière active : le flocking et la séparation de phase
induite par la motilité. Nous avons examiné leurs propriétés exotiques séparément,
mais dans les deux cas, les événements de nucléation jouent un rôle essentiel. Un
cadre prometteur pour comprendre l’occurrence de ces événements rares est le
"transition path sampling". Comment appliquer ces techniques dans le contexte
de la physique hors d’équilibre reste cependant un sujet en cours de développement
[Berryman & Schilling 2010, Zakine & Vanden-Eijnden 2022].
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Appendix A

Measure of the probability of
reversal

In this appendix, we give precisions about the numerical procedure followed
in simulations of Chapter 3 in which a droplet of oppositely moving particles is
inserted in an ordered phase. At time t = 0, we initialize the system by randomly
distributing particles with spins s = −1 until a density ρo is reached. After
an equilibration time tr = 100, a circular droplet of radius r—modulo lattice
discretization effects—centered at i = (0, 0) is modified as follows. First, the spins
located at sites within a distance r from the center are set to s = +1. Second, an
additional ∆N = (ρ0

d−ρo)πr2 particles with spins s = +1 are randomly distributed
inside the droplet, leading to a droplet density ρ0

d > ρo and a magnetization ρ0
d.

We note that, when a droplet has grown significantly after having traveled a
large enough distance, it takes over the entire ordered phase. To estimate Pr, we
thus proceeded as follows:

• We place a droplet with a positive magnetization in a negative-magnetization
flock at i = (0, 0) as described before.

• We record the magnetization of a 5 × 5 square region centered at (∆x, 0)

during a time interval ∆t = 4(∆x/v), with ∆x = 50. This time is short
enough to allow for good statistics, yet sufficiently long to assess whether
the droplet has grown or receded after having traveled the distance ∆x from
its seeding.

• If the average magnetization in the region increases by more than ρo at
any time during the measurement, we conclude that the droplet will keep
growing and will eventually reverse the entire flock. ∆x is chosen to ensure
the robust prediction of the droplet’s fate.
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• If the magnetization does not rise above the threshold by the end of the
measurement at t = tr+4(∆x/v), we conclude that the perturbation induced
by the droplet will recede into the ordered phase.

• We repeat this protocol 100 times to estimate Pr.

The various parameters of this procedure have been chosen to ensure a robust
prediction of the droplet’s fate.
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Grand-canonical description

In this appendix, we analyze the consequences of a grand-canonical description
of the bubble models presented in Chapter 4. Since in the coexistence phase of
MIPS, the picture is that of a gas in contact with a macroscopic reservoir, one
could expect a grand-canonical description to be well-suited to the study of the
system. We now present such a grand-canonical description of our model, in terms
of a generalization of the mean-field equations Eq. (4.33).

B.1 Generalization of the mean-field model

It contains the same ingredients as the previous models, but the system is now
in contact with a gas reservoir. Nucleation of a unit gas mass can happen at the
expense of an existing bubble at rate λ or at the expense of the reservoir with
rate ν(1−ϕ). As before, bubbles aggregate following the generalized aggregation
kernel introduced in Sec. 4.3 so that the aggregation of bubbles of sizes i and j

occurs at rateKij = i−ω+j−ω. Finally, bubbles are absorbed by the reservoir upon
collision with it. In practice, a bubble of size i is removed at rate i−ω, because its
rate of collision with the reservoir depends on its ability to diffuse. Let us write
the dynamics of the fraction of bubbles of size k:

∂tnk =
1

2

k−1∑

i=1

((k − i)−ω + i−ω)nk−ini − nk
+∞∑

i=1

(k−ω + i−ω)ni

+ λ(nk+1 − nk) + λϕδ1,k

+ ν(1− ϕ)δ1,k

−Kk−ωnk (B.1)
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Using the generating functions Eqs. (4.35) we recast the previous equation into

∂tC(p)− ∂tϕ = A(p)C(p)−A(p)ϕ− C(p)A+ Aϕ

+ λC(p) (ep − 1)

− [ν(1− ϕ) + λϕ](1− e−p)
+K(A−A(p)) (B.2)

B.2 Naive grand-canonical model

As in section Sec. 4.3.1, we use the series expansions of the generating functions
Eq. (4.38) to identify the powers of p and obtain the time evolution of the first
moments of nk:

∂t〈k〉 = ν(1− ϕ)−K〈k1−ω〉 (B.3)
∂t〈k2〉 = 2〈k〉〈k1−ω〉 − 2λ〈k〉+ 2λϕ+ ν(1− ϕ)−K〈k2−ω〉 (B.4)

where we dropped the explicit time-dependence for legibility. This system is not
closed since the dynamics of each moment is coupled to higher-order moments. To
make progress, we want to relate the moments of nk to the density of particles 〈k〉.
To do so, we make the generic ansatz that at large k, the distribution nk behaves
as a power-law terminated by a cutoff which depends on the (time-dependent)
density:

nk = k−αf

(
k

〈k〉φ
)

(B.5)

The moment of order x, namely 〈kx〉, can be computed using this ansatz, since

〈kx〉 =

∫ +∞

0

kxnkdk (B.6)

We thus obtain the following relation:

〈kx〉 = F (x)〈k〉φ(x+1−α) (B.7)

with F (x) =

∫ +∞

0

ux−αf(u)du. In particular, plugging in x = 1 implies

φ(2− α) = 1 (B.8)
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In stationary state, Eq. (B.3) gives

K =
ν(1−N)

〈k1−ω〉 (B.9)

Using Eq. (B.7), we obtain 〈k1−ω〉 = F (1− ω)〈k〉2−α−ω and we deduce a relation
between the density 〈k〉 and K:

K =
ν(1− ϕ)

F (1− ω)
〈k〉φ(α+ω−2) (B.10)

We now insert Eq. (B.9) into the stationary state of Eq. (B.4) and obtain, at the
highest order in 〈k〉:

2〈k〉〈k1−ω〉 =
ν(1− ϕ)

F (1− ω)
〈k〉φ(α+ω−2) (B.11)

Using the scaling of 〈k1−ω〉, we finally obtain 1 = φ(3 − ω − α) which, together
with φ(2− α) = 1, gives: 




φ =
2

1 + ω

α =
3− ω

2

(B.12)

The expression of the exponent α obtained is different from the one obtained in
the canonical case (α = 2−ω/2). We verify this by simulating Eq. (B.1) for various
values of ω. As seen in Fig. B.1a, plotting k2−ω/2nk, the rescaled distributions do
not converge to a plateau, confirming that the exponent α indeed differs from
the canonical case. Looking at Fig. B.1b where we plot the measurement of α
compared with the predicted scaling (3−ω)/2, we observe a shift of less than 3%.

Let us come back to Eq. (B.9), where we implicitely assumed 〈k1−ω〉 to converge.
Using the expression of α, we can check the consistency of our computation. Since
f(·) is terminated by an exponential cutoff, by analogy with the Gamma function,
we find that 〈k1−ω〉 converges if 1 − ω − α > −1, imposing ω < 1. Under this
condition, we can assume a stationary state of Eq. (B.3) to exist, so that density
reaches a constant value at large times.
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Figure B.1: Rescaled distributions of cluster sizes in Monte-Carlo simulations of
the grand-canonical description Eq. (B.1). (a): Distributions rescaled with the
exponent α = 2 − ω/2 of the canonical model. (b): Rescaling with the grand-
canonical exponent. Parameters: L = 10000, ν = 10, λ = 0, K = 0.02.

The exponents (B.12) coincide with those found in [Krapivsky et al. 2010] for
a model of aggregation with constant input – akin to the nucleation term of our
grand-canonical model – in which density is not conserved. This suggests that
both models belong to the same class, so that nucleation from existing bubbles
(i.e. the λ term) and absorption are actually not contributing to the scaling
properties of the system.

B.3 Refined description

The naive grand-canonical description predicts exponent expressions which dif-
fers from those obtained in Sec. 4.3 and measured in numerical simulations of the
ANM. This is because we implicitely considered that the rates of interaction of
the bubbles with the reservoir – nucleation and absorption – take a finite non-
vanishing value even in the thermodynamic limit that we consider here. On the
other hand, in the 1d ANM of finite size L, the aggregate is contained on one site.
In a mean-field description, bubbles thus interact with the reservoir with a rate
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decreasing as L−1:

ν =
ν ′

L
(B.13)

K =
K ′

L
(B.14)

which vanish in the thermodynamic limit so that the dynamics of nk reads:

∂tnk =
1

2

k−1∑

i=1

((k − i)−ω + i−ω)nk−ini − nk
+∞∑

i=1

(k−ω + i−ω)ni

+ λ(nk+1 − nk) + λϕδ1,k (B.15)

These are precisely the mean-field equations of aggregation with chipping and
mass-dependent diffusion solved by [Rajesh et al. 2002] which admit the exponent
α = 2− ω/2, consistently with our results of Sec. 4.3.1.
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Propriétés exotiques des phases ordonnées en
matière active

Résumé :

La matière active englobe tous les systèmes dont les composants dissipent de
l’énergie afin d’exercer des forces sur leur environnement. Les systèmes actifs
peuvent être trouvés à toutes les échelles, des moteurs moléculaires aux groupes
d’animaux, en passant par les colonies de bactéries. Étant intrinsèquement hors
d’équilibre, ces systèmes présentent de manière générique des comportements col-
lectifs sans contrepartie à l’équilibre.

Nous nous concentrons sur deux comportements collectifs paradigmatiques en
matière active : le flocking, dans lequel des particules auto-propulsées et soumisent
à des interactions d’alignement s’organisent à grande échelle pour se déplacer col-
lectivement, et la séparation de phase induite par la motilité, dans laquelle des
particules auto-propulsées et soumises à des forces répulsives forment un agré-
gat. Ces comportements collectifs présentent des propriétés exotiques que nous
étudions dans cette thèse.

Nous étudions d’abord le modèle d’Ising actif, un modèle de flocking avec une
symétrie discrète. En une dimension, le mouvement collectif se traduit par la
présence d’un agrégat de particules qui subit des retournements stochastiques de
sa direction. Nous caractérisons en détail la forme de ces agrégats et la statistique
de leurs retournements. Le scénario général est celui d’une séparation de phase
liquide-gaz. À basse température, nous observons l’existence d’une nouvelle phase
peuplée d’objets statiques que nous appelons “asters”, qui apparaissent uniquement
en raison de l’interaction entre l’auto-propulsion et l’alignement. Nous obtenons
une solution exacte pour caractériser leur dynamique à température nulle et cal-
culons leur forme à l’aide d’une description de champ moyen.

En plus grandes dimensions, nous étudions les états ordonnés du modèle d’Ising
actif. Jusqu’à présent, de tels états étaient considérés comme stables, mais nous
montrons qu’ils sont en réalité métastables dû à la nucléation spontanée de gout-
telettes se propageant dans le sens contraire à l’ordre établi. En utilisant à la
fois des simulations microscopiques et une théorie continue, nous montrons que



des gouttelettes suffisamment grandes peuvent grossir et détruire l’ordre existant.
En considérant la même théorie continue en 2d mais avec un paramètre d’ordre
vectoriel, nous montrons numériquement que l’advection verticale entrave la prop-
agation des gouttelettes, pour les paramètres testés.

Dans la séparation de phase induite par la motilité, le couplage entre le mou-
vement persistant des particules actives et leurs interactions répulsives conduit
à la formation d’un agrégat dense entouré d’un gaz dilué. Parce que la pression
de Laplace est négative, des bulles de gaz se forment et se développent dans cet
agrégat, de sorte que le cadre général est celui d’une séparation de phase à bulles.
Nous présentons des modèles minimaux pour rendre compte de la dynamique de
ces bulles. Ils reproduisent les distributions sans échelles des tailles de bulles et
les effets de taille finie observés dans les modèles microscopiques. Nous concluons
en fournissant des preuves numériques que la nucléation des bulles est non-locale.



Exotic properties of ordered phases in active
matter

Abstract:

Active matter encompasses all systems whose components dissipate energy in
order to exert forces on their environment. Example of active matter systems
can be found at all scales, from molecular motors to bacterial swarms and animal
groups. Being intrinsically out of equilibrium, these systems generically display
collective behaviours with no equilibrium counterpart.

We focus on two paradigmatic collective behaviours in active matter: flocking,
the ability of collections of aligning self-propelled particles to move collectively on
large scales, and the motility-induced phase separation, in which repulsive self-
propelled particles aggregate in the absence of attractive forces. These collective
behaviours display exotic properties that we study in this thesis.

We first study the active Ising model, a flocking model with discrete symmetry.
In one space dimension, collective motion takes the specific form of an ordered
aggregate of particles undergoing stochastic reversals. We characterize in details
the shape of these aggregates and the statistics of their reversals. The scenario
is that of a liquid-gas phase separation which is prevented to relax to the phase-
separated profile due to reversals. At low temperature, we report a new phase
populated by static objects that we term “asters” which appear solely due to
the interplay of self-propulsion and alignment. We provide an exact solution of
their dynamics at zero temperature and compute their shape using a mean-field
description.

In higher spatial dimensions, we investigate the ordered states of the active
Ising model. So far, such states were believed to be stable but we show that
they are actually metastable to the spontaneous nucleation of counter-propagating
droplets. Using both particle-level simulations and a continuum theory, we show
that large enough droplets can grow and destroy the existing order. Considering
the same continuum theory in 2d, albeit with a vectorial order parameter, we
numerically show that any amount of vertical advection hinders the propagation
of droplets, at least for the parameter values that we tested.



In the motility-induced phase separation, the coupling between persistent mo-
tion of active particles and pair-wise repulsive interactions leads to the formation
of a dense cluster surrounded by a remaining dilute gas. In addition, because
the Laplace pressure is negative, gas bubbles nucleate and grow in this dense
aggregate, so that the global picture is that of a bubbly phase separation. We
present minimal models to account for the dynamics of bubbles. They reproduce
the scale-free bubble size distributions and the finite-size scalings observed in
microscopic models. We conclude by providing numerical evidences that bubble
nucleation is non-local.
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