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Résumé : De nombreux pays ont instauré l’organisation de réunions de concertation pluridis-
ciplinaire (RCP) afin de promouvoir la décision collective des différents professionnels de santé
impliqués dans la prise en charge des patients atteints de cancer. Cependant, l’impact des RCP
sur la qualité des soins a été remis en cause car le bon fonctionnement des RCP est entravé par
le manque de temps, la quantité des informations à gérer, et la complexité des cas discutés. Par
ailleurs, les systèmes d’aide à la décision médicale (SADM), ont le potentiel d’améliorer la qual-
ité des décisions de prise en charge de cancer du sein, mais ils sont encore très peu utilisés en
routine, notamment parce qu’ils ne sont pas en adéquation avec les attentes des cliniciens qui les
utilisent. Oncolog-IA est un projet de recherche, qui vise à utiliser des méthodes d’intelligence ar-
tificielle numériques et symboliques pour l’apprentissage des cas complexes de cancer du sein à
partir d’un corpus de documents incluant les fiches issues des RCP extraites de l’EDS de l’AP-HP.
Les fiches RCP sont préalablement structurées par la mise en œuvre de techniques de traitement
du langage naturel. Une fois l’apprentissage de la complexité établi, l’objectif du projet est de pro-
poser deux SADM selon la complexité des cas cliniques de cancer du sein :

1. Un système basé sur les guides de bonnes pratiques pour les cas non complexes

2. Un système basé sur un raisonnement par analogie pour les cas complexes, à travers le rap-
pel des décisions prises pour des cas similaires.

Mots-clés : Intelligence artificielle, cancer du sein, traitement du langage naturel, systèmes
d’aide à la décision.

Title of the thesis in English
Oncolog-ia: symbolic and numeric artificial intelligence for learning the complexity of breast

cancer cases and providing decision support for their therapeutic management

Abstract: Many countries have introduced multidisciplinary tumor boards (MTBs) to promote
collective decision-making by the various health professionals involved in the management of can-
cer patients. However, the impact of MTBs on the quality of care has been questioned because the
proper functioning of MTBs is hampered by the lack of time, the amount of information to be man-
aged, and the complexity of cases discussed. On the other hand, clinical decision support systems
(CDSSs) have the potential to improve the quality of breast cancer management decisions, but
they are still not used in clinical routine, notably because they are not in line with the expectations
of the clinicians who use them. Oncolog-IA is a research project, which aims at using numeri-
cal and symbolic artificial intelligence methods for learning complex breast cancer cases from a
corpus of documents including breast cancer patient summaries (BCPSs) extracted from the data
warehouse of AP-HP hospitals. BCPS contents have been structured by implementing various nat-
ural language processing techniques, and algorithms were then trained to automatically detect the
complexity of breast cancer cases. Once the complexity has been learned, the second objective of
the project was to propose two decision support systems according to complexity:

1. A guideline-based decision support system for non-complex cases

2. A case-based decision support system for complex cases, through the recall of decisions
taken for similar cases.

Keywords: Artificial intelligence, breast cancer, natural language processing, clinical decision
support systems.
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CHAPTER 1

Introduction

This chapter serves as the introductory gateway to a comprehensive exploration of clin-
ical decision support systems in the context of breast cancer management. It begins by
presenting various interconnected challenges within this domain, including the increas-
ing incidence of breast cancer, the role of multidisciplinary tumor boards, the potential
of clinical decision support systems, and the intricacies of managing complex clinical
cases. As the chapter unfolds, the reader is guided through the transition from problem
delineation to the formulation of research questions, illustrating how these seemingly
distinct challenges are intrinsically linked.

1.1 Background

1.1.1 General context

Having replaced lung cancer as the most commonly diagnosed cancer globally, breast cancer is a
significant health concern for women. With an estimated 2.3 million new cases diagnosed world-
wide, it was by far the most commonly diagnosed cancer in women in 2020 (Sung et al., 2021).
In that same year, breast cancer took the lives of approximately 685,000 women, representing a
significant proportion of cancer deaths among women, with 1 in 6 affected. By 2040, the number
of newly diagnosed breast cancer cases is expected to increase by more than 40%, with approxi-
mately 3 million cases being diagnosed annually. Even more worrying is the fact that deaths from
breast cancer are predicted to rise by over 50%, from 685,000 in 2020 to 1 million in 2040 (Arnold
et al., 2022). These projections are primarily due to population growth and aging, and changes in
incidence rates may further impact these numbers.

In many countries, multidisciplinary tumor boards (MTBs) have been introduced to promote
the collective decision of health professionals involved in managing breast cancer patients (Mug-
gia, 1984). Medical professionals from various specialties gather to discuss the best possible treat-
ment plan for a patient with cancer. The board typically includes medical oncologists, surgeons,
radiation oncologists, pathologists, radiologists, and other healthcare providers as needed (like
psychologists and nutritionists). During a tumor board meeting, the medical team reviews the
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patient’s medical history, reports, imaging studies, and other relevant information to make an ac-
curate diagnosis and determine the best course of treatment. The team will discuss all available
treatment options, including surgery, radiation therapy, chemotherapy, hormone therapy, and im-
munotherapy, and will consider the potential benefits and risks of each.

One of the key benefits of a multidisciplinary tumor board is that it allows for collaboration and
communication among different medical specialties. By working together, the team can develop a
more comprehensive and effective treatment plan that considers each patient’s unique needs and
circumstances while integrating state-of-the-art and clinical practice guidelines (CPGs).

However, evidence around the effectiveness of MTBs on cancer care has been actively ana-
lyzed. While studies have shown that MTBs are effective in improving the compliance of therapeu-
tic decisions to CPG recommendations (Kesson et al., 2012; van Hoeve et al., 2014; Brar et al., 2014),
their benefits are being challenged (Keating et al., 2013). Indeed, clinical teams can be affected by
staff shortages, workload, the continuously increasing number of cases to discuss, and disciplinary
diversity. So the impact of MTBs on the quality of care has been questioned (Soukup et al., 2022;
Blayney, 2013; El Saghir et al., 2013).

Overall, MTBs are an important part of modern cancer care, and they play a critical role in
ensuring that patients receive the best possible treatment outcomes. However, the organization of
MTBs should be improved to guarantee all cancer patients receive the best treatment and create
the best possible environment for clinicians to collaborate and make informed decisions. By doing
so, we can help guarantee that every patient receives the highest standard of care and the best
chance for successful treatment. In France, one of the objectives of the first 2003 cancer plan was
to ensure that 100% of new cancer patients would benefit from a discussion meeting concerning
their case. The organization of the MTBs is defined in article D. 6124-131 of the French Public
Health Code.

1.1.2 Clinical decision support systems

Clinical Decision Support Systems (CDSSs) are important tools for modern healthcare, providing
computer-based assistance to clinicians in making decisions for their patients. As we will further
see in detail in section 2.1, CDSSs have been recognized for improving physicians in making per-
sonalized treatments for cancer patients (Hammond et al., 1994). By providing evidence-based in-
formation according to patient-specific data, CDSSs can help clinicians identify high-risk patients,
refine diagnoses, recommend appropriate treatment options, and monitor treatment progress.

In the paradigm of evidence-based medicine (Evidence-Based Medicine Working Group, 1992),
numerous CDSSs have been developed and evaluated to promote evidence-based clinical decision-
making in oncology (see section 2.1.1). Such systems often rely on the knowledge contained in
CPGs which summarize the state of the art. However implementing guideline-based CDSSs in clin-
ical practice faces technical challenges, including semantic interoperability with EHR systems, in-
consistent EHR storage, and the need for data validation. Maintenance of guideline-based CDSSs
and managing multiple guidelines present further complexities. Non-adherence to CDSS recom-
mendations can occur in uncommon clinical scenarios with limited scientific evidence (Voigt &
Trautwein, 2023).

A few years ago, a new paradigm emerged in the medical domain. Precision medicine, some-
times known as "personalized medicine", is an innovative approach to tailoring disease prevention
and treatment taking into account differences in people’s genes, environments, and lifestyles. The
goal of precision medicine is to target the right treatments to the right patients at the right time
(Gameiro et al., 2018). As it will be explained in section 2.1.2, recent developments in Artificial
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Intelligence (AI) have exhibited great promise in revolutionizing the field of clinical oncology by
effectively tackling multiple critical aspects throughout the entire journey of cancer care (Corti
et al., 2023).

Many CDSSs based on machine and deep learning have been developed. These systems do
not rely on explicit knowledge but on regular patterns discovered in past data. Huge amounts
of (available) clinical data are required for training and reuse in new and similar situations. But
even if AI holds tremendous potential in clinical oncology, there are key challenges that must be
addressed to successfully integrate AI into routine care.

Recent research (Norgeot et al., 2020; Thompson et al., 2018) highlighted the limited number of
prospective trials and randomized clinical trials for deep learning models, indicating the need for
further validation and evidence. Challenges such as data limitations, model interpretability, and
ensuring clinical validity, utility, and usability of AI models must also be overcome. Transparency
and the need for trained clinicians in AI-based CDSSs pose additional hurdles.

Overall, despite their potential benefits, the use of CDSSs whether knowledge-based or non-
knowledge-based in clinical routine remains limited (Beauchemin et al., 2019). There is still signif-
icant work to be done in this field to improve and expand their implementation. 1⃝

1.1.3 Complexity of clinical cases

DESIREE is a European project (Bouaud et al., 2020b), that focused on enhancing care for primary
breast cancer patients through a cutting-edge web-based platform. One of its notable features is
the guideline-based decision support system (GL-DSS), extensively presented in section 2.2.4.1. As
a part of the DESIREE initiative, we conducted an evaluation of the GL-DSS, the knowledge base of
which was based on French guidelines published in 2016.

Through this evaluation, we discovered instances where the system did not generate thera-
peutic proposals for certain patient cases or recommended treatments that were not followed by
MTB clinicians. We discovered that these cases were not covered by the CPGs or had peculiar char-
acteristics, and therefore required in-depth multidisciplinary discussions during the MTBs. After
discussing with oncology clinicians regarding these profiles, experts expressed that these types of
clinical cases pose challenges. We termed such clinical profiles complex cases. Consequently, they
favor an alternative form of decision support, for instance, clinicians said that for complex cases,
the recall of similar cases along with the MTB decisions made for them would be a good support
for determining the appropriate care plan. 2⃝

Patient clinical cases may be of various levels of complexity, and more time should be given to
MTBs to discuss complex cases and avoid fatigue impairing good decision-making (Soukup et al.,
2019); however, there is no a priori definition of breast cancer complexity and very few tools are
available that assess cancer complexity (Soukup et al., 2020).

1.1.4 Clinical notes

Hospital clinical documents, such as discharge summaries and clinical notes, are a valuable source
of information for a variety of purposes. It was estimated that 80% of hospital data are collected
in the form of text (Raghavan et al., 2014). However, the free text format of these documents can
make it difficult to extract and process the contained information in a structured way. This can
limit the usefulness of such information for clinical care, research, and other applications.

One way to address this challenge is to use information extraction (IE) techniques to automati-
cally structure the text of clinical documents. IE involves identifying and extracting specific pieces
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of information from text, such as patient demographics, diagnoses, or procedures. This structured
data can then be used for a variety of purposes, such as clinical decision support, research, or med-
ical coding.
The use of IE for clinical documents is a growing body of research in medical informatics. As IE
techniques continue to improve, they have the potential to have a significant impact on the way
that clinical data is used.

Regarding cancer care, during the MTBs, clinicians refer to a document, usually produced by
the physician in charge of the patient before the MTB. The physician gathers all the information
needed to make a decision for his patient, including clinical history, radiology results, pathology
results, response to treatment, etc., and summarizes all the information in a textual document.
This document is shared among MTB participants and will be completed by the MTB decision.
this document is called the Breast Cancer Patient Summary (BCPS).

BCPSs provide a portrait of patients with all the relevant information that MTB clinicians need
to know to make the best patient-specific therapeutic decision. It is a crucial document for the
MTB. However, this document is written in natural language, there are many abbreviations and
specialized terms depending on the health professional specialty of the BCPS’s author. This makes
the use of the content BCPSs far from being straightly processed by a CDSS. 3⃝

1.2 Research questions

Overall, MTBs play a crucial role in cancer care by facilitating collaborative decision-making among
healthcare professionals. However, despite their potential to improve MTBs, clinical decision sup-
port systems are not routinely used in the management of cancer patients 1⃝. This raises the main
research question: How can a clinical decision support system be developed to effectively assist
multidisciplinary tumor board clinicians in their decision-making process?

To address this question, we investigated the acceptance of CDSSs 2⃝, we noticed that clini-
cians often considered it useless to apply guideline-based decision support systems to complex
cases, as these cases are usually not covered by guidelines. Hence, the research question arises:
What can be done to make clinicians accept guideline-based decision support systems by tak-
ing into account the complexity of clinical cases and how can we effectively update guideline-
based CDSSs? Additionally, How can we assist clinicians in managing complex cases during the
decision-making process?

Finally, textual cancer summaries, such as BCPSs, serve as vital sources of information dur-
ing MTBs 3⃝. However, these documents are typically written in natural language format which
poses challenges in efficiently utilizing the information within BCPSs for decision support. Conse-
quently, another research question emerges: Can we effectively create a system that takes BCPSs
as input and provides personalized treatment recommendations for patients? The aim is to cap-
ture the most important information available in the BCPSs and use it to provide decision support,
ultimately saving time for MTB clinicians.

1.3 Objectives

The main hypothesis of this work can be summed up in one expression: "One size does not fit all!".
We know from previous experiences that guideline-based systems have the potential to improve
the compliance of MTBs decisions with the guidelines (Seroussi et al., 2012a), we also know that
these systems are limited when it comes to complex clinical cases (Redjdal et al., 2021b).
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Therefore, the goal of this thesis is to create a CDSS that supports MTB decision-making for the
management of breast cancer patients. According to our assumption, it will first identify complex
cases enabling MTB clinicians to optimizer MTB’s sequencing and focus on these cases, which re-
quire deeper conversations. Then, depending on the case complexity, the appropriate therapeutic
decision support tool will be triggered. Beyond recognizing complex cases, the complexity classi-
fier will serve as a triage system to provide adequate decision support.

• Support for complexity classification: Since there is no definition of complexity, we pro-
posed to learn complexity. An algorithm that classifies patient cases as complex or non-
complex has been developed through machine learning using different feature extraction
techniques (see Chapter 4). Beyond serving as a triage system to the main CDSS, it can
support clinicians in the organization of the MTB by prioritizing discussions for complex
patients.

• Support for non-complex cases: As these cases are simple, we assume they are correctly
handled by the clinical practice guidelines. Therefore, for these cases, we reuse the guideline-
based system developed within the DESIREE project, as documented in (Bouaud et al., 2020a),
but we have to adapt it to more recent breast cancer CPGs (see Chapter 5).

• Support for complex cases: As these cases are not adequately covered by CPGs, a case-based
decision support approach is proposed. Chapter 6 presents a methodology to detect the
most similar patients to a given patient. This system will recommend treatment options to
MTB clinicians based on the decisions made for similar patients, thereby reproducing the
medical reasoning used by clinicians during their decision-making process.

An important part of this work is the processing of textual BCPSs using natural language pro-
cessing (NLP) techniques. Indeed, a mandatory preliminary task is to transform BCPS contents
into a formal structured data format that enables the use of both guideline-based and case-based
CDSSs, as well as the complexity determination task. This processing will extract relevant informa-
tion from BCPSs, allowing the system to provide comprehensive decision support based on patient
clinical situations.

By accomplishing these objectives, we aim to make a contribution to the decision support field
by the development of a CDSS that enhances the decision-making process within multidisciplinary
tumor boards. Through the integration of guideline-based and case-based decision support, as
well as the utilization of NLP techniques, this project aims to provide a robust and effective CDSS
that addresses the diverse needs of MTB clinicians.

1.4 Outline

The manuscript is organized as follows. Chapter 2, exposes the state-of-the-art in each of the main
fields we have mobilized to carry out this research. The next four chapters describe the work we
have done. Each of these chapters is written as an article and follows the IMRaD structure. Figure
1.1 provides a graphical outline for these chapters, illustrating their inputs, and their outputs. It
can be summarized as follows :

Chapter 3 explains the transformation of textual BCPSs into a structured data format by combin-
ing rule-based and machine-learning NLP methods.
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Figure 1.1: Outline of the project. BCPS: Breast Cancer Patient Summary; IE: Information Extrac-
tion; RE: Relation Extraction; GL-DSS: Guideline-based decision support system of the DESIREE
project

Chapter 4 deals with breast cancer case complexity. We compare state-of-the-art methods to au-
tomatically classify patient cases as complex or non-complex from BCPs using supervised
machine learning.

Chapter 5 describes the mapping of the structured data extracted in Chapter 3 into the breast
cancer knowledge model to feed the GL-DSS of DESIREE, and the update to the knowledge
base of the system to provide recommendations according to the most recent guidelines.

Chapter 6 tackles the problem of patient similarity. We implement a methodology based on state-
of-the-art similarity metrics to retrieve similar patients for a given patient, providing a case-
based CDSS.

Finally the last chapter concludes the manuscript.
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1.5 Data exploitation

1.5.1 Hospital data warehouse

Assistance Publique-Hôpitaux de Paris (AP-HP), also known as Greater Paris University Hospitals,
stands as the largest public university hospital network in France, boasting 39 distinct sites. Apart
from its primary roles in patient care, education, and research, AP-HP plays a pivotal role in col-
lecting and preserving patient data, with due consent, within a specialized clinical data warehouse
named "Entrepôt de Données de Santé" (EDS). EDS is purposefully designed to facilitate health-
care research and innovation. It offers researchers access to a vast and diverse dataset, enabling
studies on various health-related topics and supporting the development of cutting-edge health-
care applications, including decision-support tools and personalized medicine. Key features of
EDS include:

• Storage of extensive clinical data, encompassing patient demographics, diagnoses, proce-
dures, medications, and laboratory results.

• Secure web portal access for researchers, supplemented with computational tools.

• Regular updates with fresh data from AP-HP.

1.5.2 Data extraction

In our work, the aim is to utilize advanced technologies such as machine learning and deep learn-
ing associated with symbolic AI methods to develop a clinical decision support system that assists
MTB clinicians in their decision-making process for the therapeutic management of breast cancer
patients. To ensure the validity and ethical approval of the project, it has been reviewed and vali-
dated by the institutional review board at AP-HP (CSE200094). For our research, we were granted
access to the breast cancer patient summaries of patients diagnosed with primary breast cancer
between 2018 and 2022 and treated at Tenon Hospital, which is part of AP-HP. These BCPSs are
accessible within EDS. As a result of the extraction, we had access to a database consisting of 3,500
patients diagnosed with breast cancer. Among them, we had access to 11,205 BCPSs, with each
patient discussed in at least one MTB. In the next subsection, we will describe in detail how we
used this database in the different chapters.

1.5.3 Datasets in the thesis work

The database extracted for the project CSE200094 was used to extract datasets that served as train-
ing and evaluation for each of the different tasks of the project, it can be summarized as follow :

• For the structured data extraction (SDE) task ( chapter 3 ), we performed a random selection
without duplication, yielding a dataset of 80 BCPSs. Among them, we used 50 BCPSs to
develop rules for SDE. This dataset is denoted as the SDE learning dataset. Then, we used
the rest of the BCPSs (30 BCPSs) to evaluate the rule-based SDE algorithm. This dataset was
pre-annotated using a preliminary version of the algorithm and manually corrected by an
advanced expert. It is referred to as the SDE evaluation dataset.

• In parallel, we selected 1,048 BCPSs representing patients discussed during MTBs of Tenon
Hospital between November for the complexity learning task (Chapter 4). A panel of experts,
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comprising one senior, two advanced experts, and three juniors, annotated these BCPSs as
either complex or non-complex. This corpus served as for machine learning algorithms de-
signed for complexity detection and was named the complexity learning dataset. Of this
dataset, 80% was allocated for training, while the remaining 20% was used for testing pur-
poses.

• Using the complexity annotations, we further derived 160 non-complex cases from the com-
plexity learning dataset. This subdataset was used in evaluating and updating the GL-DSS as
detailed in Chapter 5. it was named the non-complex subdataset.

• Finally, for the similarity calculation task ( Chapter 6 ), we also selected two subdatasets from
the complexity learning dataset. The first subdataset comprised 100 BCPSs representing pa-
tients in the same clinical situation (patients who underwent surgery without neoadjuvant
treatment, further referred to as patients in scenario D). Among these, 50 were previously
classified as complex and 50 as non-complex. An advanced expert grouped this dataset into
clusters of similar patients. It was named the similarity learning dataset and used to train
algorithms for similarity calculation. Additionally, a final dataset consisting of 10 complex
cases in scenario D was employed to evaluate the similarity calculation algorithm. An ad-
vanced expert calculated, for each of the 10 BCPSs, the top 5 most similar patients from the
similarity learning dataset. This dataset was designated as the similarity evaluation dataset.

For a visual representation of the dataset organization throughout the thesis, please refer to Figure
1.2.

1.6 Published works

In our research journey, we have published a preliminary paper (Redjdal et al., 2021c) that intro-
duced the concept of complex cases, laying the foundation for our exploration in this area. Addi-
tionally, we have contributed to the publication of two scoping reviews that will be discussed in
detail in Chapter 2 (Novikava et al., 2023; Azarpira et al., 2022).

During this research, we explored the use of semantic annotators for processing BCPSs. This
led to a publication (Redjdal et al., 2022a) highlighting the importance of going beyond relying
solely on semantic annotators for comprehensive structured data extraction from these textual
documents. This publication served as the inspiration for chapter 3 of our work, where we describe
the development of an NLP pipeline for structured data extraction from BCPSs.

Methods and results obtained in Chapter 4 have been published in two papers (Redjdal et al.,
2022b, 2021a). However, the findings and contributions from Chapter 5 and Chapter 6 have not
been published yet.
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CHAPTER 2

State-of-the-art

In this work, we aim at alleviating the burden of overloaded agendas of breast cancer
multidisciplinary team meetings by providing clinicians with a multifaceted comput-
erized decision support tool. The projected tool should first operate as a triage system
(Fernandes et al., 2020) to categorize patient cases as complex cases deserving particular
attention and discussion of the meeting participants, or non-complex cases for which
standardized management based on guidelines could be recommended. In both situa-
tions, dedicated decision support paradigms can be used. In this application context,
most, if not all, information about patient cases is provided as unstructured data, in
text form. So while we are working on decision support, a main aspect of this project
is the use of natural language processing methods to select and extract relevant infor-
mation from the texts and turn them into structured coded data for further processing,
here decision support. That is why this chapter is divided into two main parts. In the
first section, we review the existing systems and approaches to decision support for the
treatment of cancer, with a focus on breast cancer (sections 2.1,2.2 and 2.3). In the next
section (section 2.4), we focus on natural language processing techniques, presenting
state-of-the-art methods for named entity recognition, relation extraction, and text clas-
sification.
Regarding the clinical decision support systems, our review mainly concerns systems for
therapeutic management, as it is the main focus of this thesis, not diagnosis decision
support.
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2.1 Clinical decision support systems for therapeutic management in on-
cology

Medical decision-making is a critical process in which healthcare professionals continuously eval-
uate and make choices regarding patient care Bonatti et al. (2009). This complex and dynamic task
involves considering various factors, including patient history, symptoms, test results, and avail-
able treatment options.

To support and enhance medical decision-making, CDSSs have emerged as valuable tools in
the healthcare domain (Agharezaei et al., 2013). CDSSs leverage advanced technologies, such
as artificial intelligence and knowledge management, to assist healthcare professionals in their
decision-making processes (Parshutin & Kirshners, 2013). By utilizing CDSSs, healthcare profes-
sionals can benefit from improved efficiency and better patient outcomes. CDSSs assist in re-
ducing diagnostic errors, identifying potential drug interactions, suggesting appropriate treatment
options, and ensuring adherence to clinical practice guidelines. Figure 2.1 from Wang et al. (2023)
illustrates the role of CDSSs and their application in the clinical workflow :

Figure 2.1: Applications of CDSS in clinical work (Wang et al., 2023)

According to Greenes (2014), such systems can be categorized into two distinct groups belong-
ing to two different artificial intelligence approaches. The first group is composed of knowledge-
based CDSSs, which function as expert systems. These systems consist of a knowledge base, an
inference engine, and a communication mechanism to obtain patient data. The knowledge base
contains rules, in the form of "if-then" rules. The inference engine synthesizes these rules with
patient data to generate new data and recommendations.

The second group is made of data-based (i.e. non-knowledge-based) CDSSs, which employ
artificial intelligence techniques belonging to the machine learning field. These systems learn
from past experiences and detect patterns from data using approaches such as neural networks
or genetic algorithms. Non-knowledge-based CDSSs have the advantage of learning from com-
plex data relationships, while knowledge-based CDSSs provide explanations for their recommen-
dations based on explicit rules.
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2.1.1 Knowledge-based CDSSs

There is a long history of knowledge-based DSSs in oncology (Leaning et al., 1992) since the pio-
neering ONCOCIN system, a chemotherapy protocol advisor (Kent et al., 1985)(Shortliffe, 1986).
These systems were expert systems, so-called since the knowledge they relied on to deliver medi-
cal advice was often the local expertise of the system developers. One drawback of this approach
was the difficulty to export these tools to other clinical settings for both technical issues (non-
interoperability) and medical issues (content disagreement for non-shared knowledge). Accompa-
nying the development of the evidence-based medicine (EBM) paradigm, many CDSSs have then
been developed based on clinical practice guidelines (CPGs) the contents of which are expected
to be shared by the medical community (Haines & Jones, 1994)(Gordon, 1996). Moreover, CPGs
provide an immediate endpoint to assess the efficiency of care, available far before the ultimate
endpoint of survival (Lobach & Hammond, 1997).

In oncology, numerous CDSSs based on CPGs have been developed and evaluated, and have
been shown to support evidence-based clinical decision-making (Klarenbeek et al., 2020b).

In the realm of cancer pain management, Bertsche et al. (2009) introduced the AiDPainCare
system, which successfully reduced the number of patients with guideline deviations, ensuring
optimal pain control while adhering to established guidelines. Verberne et al. (2012) evaluated
the CEAwatch tool for colorectal cancer, which effectively decreased the workload for follow-up
carcino-embryonic antigen (CEA) testing, demonstrating high adherence to the follow-up scheme.
Magrath et al. (2018) showcased the impact of CDSSs on guideline adherence in colon cancer,
reporting significant increases in adherence. Adeboyeje et al. (2017) investigated the use of the
CSF DS tool in lung cancer management, reporting a substantial decrease in the use of Colony-
stimulating factors (CSFs) when the decision-making was assisted by the tool. Ciprut et al. (2020)
demonstrated the effectiveness of the CROC tool in reducing the risk of inappropriate imaging for
prostate cancer. Recently, Lanzola et al. (2023) developed a system that provides cancer patients
with coaching advice and supports their clinicians with suitable decisions based on clinical guide-
lines.

However, the successful implementation of guideline-based CDSSs in clinical practice faces
several challenges. Most importantly, maintenance of guideline-based CDSSs can be challeng-
ing, guidelines, pathways, and workflow models need to be updated to reflect the latest evidence.
The lack of interoperability and automatic update capabilities in the knowledge base of guideline-
based CDSSs complicates these tasks (Cánovas-Segura et al., 2019) (Fux et al., 2020). The man-
agement of multiple guidelines and potential conflicts or inconsistencies in recommendations is
another challenge in oncology CDSSs (Bilici et al., 2018). Moreover, uncommon clinical profiles
and situations with limited scientific evidence are reasons for nonadherence to guideline-based
CDSS recommendations (Waks et al., 2013; Bouaud et al., 2012; Seroussi et al., 2012b).

A recent paper by Voigt & Trautwein (2023) discusses "the beneficial effects of CDSS on guideline
adherence as well as technical and structural requirements for CDSS implementation in clinical
routine".

2.1.2 Non-Knowledge-based CDSSs

With the emergence of precision medicine, non-knowledge-based CDSSs offer an alternative ap-
proach to knowledge-based systems. They use machine learning techniques to enhance decision
support. In the following subsection, we explore the application of non-knowledge-based CDSSs
in oncology and their potential benefits. We focus on systems used for the treatment part of the
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patient’s pathway. To get an overview of the latest systems for screening, and diagnosis, the works
mentioned by Tran et al. (2021) and Kann et al. (2021) provide details about methods used in all
the patient’s pathways from prevention to follow-up.

AI has shown promising potential in transforming clinical oncology by addressing various touch-
points along the cancer care pathway. For instance, AI algorithms have been developed to predict
an individual’s risk of developing cancer by leveraging diverse data sources such as genomics (Ming
et al., 2020), imaging (Bibault et al., 2020), internet search history (White & Horvitz, 2017), and fam-
ily history (Ming et al., 2020). These algorithms enhance risk prediction beyond traditional models,
enabling targeted screening and early interventions.

Risk stratification and prognosis have seen advancements through AI applications. Machine
learning techniques integrating genomic (Scott et al., 2017), imaging (Kann et al., 2020), and clin-
ical data (She et al., 2020) have improved risk stratification models. AI algorithms have also been
investigated for determining optimal initial treatment strategies by analyzing genomic (Scott et al.,
2017) and radiomic data (Sun et al., 2018). Additionally, AI models that consider tumor mutational
burden, copy number alteration, and microsatellite instability have shown promise in predicting
response to immunotherapy (Xie et al., 2020).

The assessment of treatment response has benefited from AI applications as well. Automated
deep learning models have been developed to assess treatment response using criteria such as
RANO assessment (Kickingereder et al., 2019) and RECIST response for immunotherapy (Arbour
et al., 2021). RECIST and RANO are quantitave response assesment criteria.
Subsequent treatment strategies have been guided by AI algorithms considering factors such as
prior treatments and restaging imaging (Xu et al., 2019).

Follow-up care has also seen potential improvements through AI. Predicting recurrence risk and
late toxicity based on radiomic features has shown promise in tailoring follow-up plans (Chang
et al., 2019). Additionally, AI leveraging EHR data has demonstrated the ability to triage patients
for personalized, escalated follow-up strategies (Hong et al., 2020). Other works regarding patients
who experience relapse that cannot be effectively treated have been done. Machine learning has
demonstrated promise in this context too, by assisting in identifying patients with a high risk of
mortality and encouraging physicians to engage in meaningful discussions about their values,
preferences, and available options to enhance their quality of life (Ramchandran et al., 2013).

While AI shows great promise in clinical oncology, there are challenges to be addressed for suc-
cessful translation into routine care. In fact ; a recent review by Nagendran et al. (2020) found only
nine prospective trials for deep learning models in imaging and only two published randomized
clinical trials.
These challenges include data limitations (Norgeot et al., 2020; Thompson et al., 2018), model in-
terpretability (Doshi-Velez & Kim, 2017), and validation of clinical impact. Ensuring clinical va-
lidity, utility, and usability of AI models is crucial (Kang et al., 2020; Kim et al., 2019; Liu et al.,
2019a). Transparency and limited evidence can also contribute to unease regarding the usage of
non knowledge-based CDSSs (Sutton et al., 2020). Other aspects make the implementation of
CDSS difficult, like the need of training clinical personnel involved in CDSS usage (Klarenbeek
et al., 2020a).
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2.1.3 CDSS applied to breast cancer management

As we work on breast cancer, we published a scoping review on CDSSs, used for treatment of breast
cancer (Novikava et al., 2023). In this review we performed a literature search, using PubMed and
Web Of Science, to retrieve papers published between 2000 and 2023, describing CDSSs applied to
breast cancer management. We focused on articles about CDSSs that support treatment decisions.
The following exclusion criteria were thus applied: (i) CDSSs focused on breast cancer screening;
(ii) studies that use CDSSs to support all types of image analysis for diagnosis; (iii) studies that use
CDSSs to support genetic analysis or biomarker discovery decisions, excluding treatment deci-
sions; (iv) CDSSs applied to specific groups of patients (e.g. geriatric patients); (v) papers available
only in the form of abstracts because of insufficient details. At the end we selected a total of 17
article that describe 15 different CDSSs for breast cancer management.

An analysis of the selected papers was done to categorize CDSSs according to their objective
and check whether they were used or not in the clinical routine. The main categories we selected
to classify the systems are presented below :

• Risk calculators (RCs): RCs are systems that are not knowledge-based, and use predictive
modeling to provide a probability concerning the positive impact of a treatment on the sur-
vival rate or calculating the 5-year or lifetime risk of developing a new breast cancer. Among
RCs for breast cancer, we found 6 systems that we describe below:

– Treatment Benefit Estimation : Systems that estimate the benefit of a treatment on the
survival rate, for breast cancer, we found OncoAssist by Jacob et al. (2019), PREDICT
(Wishart et al., 2010; Candido Dos Reis et al., 2017) and Adjuvant!Online (Campbell
et al., 2009). These systems estimate the benefit of adjuvant treatment after breast can-
cer surgery. Adjuvant!Online focuses on adjuvant chemotherapy vs hormonotherapy
while PREDICT and OncoAssist explore other treatment options.

– Recurrence Risk Assessment : Systems that estimate the risk of recurrences of breast can-
cer. CTS5 Calculator (Dowsett et al., 2018) calculates the risk of late distant recurrence
(after 5 years of endocrine treatment). RCB Calculator (Sahoo et al., 2022) calculates
the residual cancer burden after neoadjuvant chemotherapy.

– Risk Estimation and Life Expectancy Reduction : an example of these systems in breast
cancer is CancerMath (Michaelson et al., 2011), it estimates the risk of the reduction in
life expectancy and survival rate.

• Therapeutic decision support: systems that provide a patient-specific care plan. We distin-
guish two main categories:

Guideline-based decision support systems : We found 5 systems that align with established
guidelines to assist in decision-making. Some of them follow an automatic approach
to decision support like Watson for Oncology from IBM (Somashekhar et al., 2018; Jie
et al., 2021) and OncoGuide (Hendriks et al., 2019, 2020). These systems take patient
data as input and the give the appropriate recommendations according to the patient
case. Other systems like Oncodoc & Oncodoc2 (Seroussi et al., 2007, 2001) propose a
documentary approach to decision support, where we navigate through the decision
tree of OncoDoc, by answering the questions of the system until we get the appropriate
recommendation. Finally OncoCure focuses on guidelines to provide treatment plans
after a breast cancer surgery (Eccher et al., 2014).

www.oncoassist.com
https://breast.predict.nhs.uk/
http://www.adjuvantonline.com/
www.cts5-calculator.com
http://www3.mdanderson.org/app/medcalc/?pageName=jsconvert3
https://www.ibm.com/common/ssi/cgi-bin/ssialias?appname=skmwww&htmlfid=897%2FENUS5725-W51&infotype=DD&subtype=SM&mhsrc=ibmsearch_a&mhq=IBM%20WATSON%20ONcology
www.oncoguide.nl
http://ics.limics.upmc.fr/m2ibm-sad/oncodoc2/interface-limited.html
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Mixed systems: Systems that combine different methods including systems that automat-
ically detect inclusion criteria to clinical trials. We consider here that the trial is the
treatment proposed to the patient.
Among these systems, CancerLinQ developed by Potter et al. (2020) and MATE (Patkar
et al., 2012) combine a guideline-based system with an eligibility criteria identification
module. Another system (CLARIFY) by Torrente et al. (2022) combines risk calculation
algorithms eligibility criteria identification, and finally DESIREE combines guideline-
based (Bouaud et al., 2020b), case-based, and experience-based decision support to
provide treatment recommendations (Seroussi et al., 2018; Pelayo et al., 2020).

We investigated whether these systems were employed or currently in use in regular clinical
practice. Most risk calculators (Cancer Math, Residual Cancer Burden Calculator, OncoAssist, Ad-
juvant!Online, and PREDICT) have either been utilized or are currently being used in routine prac-
tice (Adjuvant!Online has not been updated and now recommends the use of PREDICT). These
systems can be accessed online and function as standalone tools, requiring minimal data for op-
eration. This makes it convenient for clinicians to employ them for risk assessment. In addition
to that, recent french guidelines recommend to use PREDICT for specific types of patient profiles.
This suggest that the information provided by these tools is important, and clinicians need them
in their daily practice.
On the contrary, systems that provide treatment careplan have seen limited adoption in clinical
routine. DESIREE and CLARIFY are not yet in widespread use, primarily due to interoperability
challenges with electronic health records (EHRs). Similarly, systems like OncoDoc and its updated
version OncoDoc2 were utilized in clinical practice for several years, resulting in increased adher-
ence to guidelines (Seroussi et al., 2007), but they are no longer in use due to technical constraints.
Other systems that provide care plan recommendations, such as MATE, OncoCure, and OncoGu-
ide, have limited usage in a few hospitals. Watson for Oncology has faced challenges due to its sub-
optimal concordance with human oncologists’ recommendations, leading to subsequent distrust
(Somashekhar et al., 2018; Lee et al., 2018b). It must be noted that OncoDoc, MATE, OncoCure,
DESIREE, and WFO were designed o be used within cancer MTB meetings.
As a conclusion, one of the critical factors influencing the routine use of CDSSs is the acceptance
by healthcare professionals. Factors such as effectiveness, ease of use, and user-friendly interfaces
play a significant role in adoption. Another important factor is the seamless integration of CDSSs
with EHRs, eliminating the need to re-enter patient data.

Overall, the successful implementation of CDSSs wether knowledge-based or non knowledge-
based in clinical practice faces several technical challenges. Several studies (Patkar et al., 2012;
Séroussi et al., 2013; MacLaughlin et al., 2018) emphasized the integration of CDSSs with EHR sys-
tems, enabling efficient access to patient data, improving follow-up care, and enhancing guideline
adherence. One crucial requirement is the semantic interoperability between CDSSs and elec-
tronic health record (EHR) systems, which is currently not adequately ensured (Sujansky, 2001).
Differences in terminology and the handling of ambiguous or incomplete EHR data pose chal-
lenges to mapping patient data to CDSS functions (Gooch & Roudsari, 2011). Inconsistently stored
EHR data and potential output generated by CDSSs have been identified as major barriers to CDSS
implementation (Klarenbeek et al., 2020a). Furthermore, the quality and reliability of clinical data
in EHRs need to be interpreted and validated for reliable clinical decision-making, considering
different sources and contexts of data entries (Jensen et al., 2017; Ong et al., 2017).

In the next two sections (section 2.2 and 2.3), a review of the approaches in guideline-based and

https://www.cancerlinq.org/
www.clarify2020.eu
http://www.desiree-project.eu/
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case-based reasoning will be presented. The tools used in Chapter 5 and the similarity measures
employed in Chapter 6 will be described in detail.

2.2 Guideline-based reasoning

Clinical Practice Guidelines (CPGs) are textual documents developed by national agencies and
healthcare societies to provide evidence-based recommendations for managing specific patient
profiles (Bilici et al., 2018). These recommendations are derived from clinical research findings
and aim at representing the current state-of-the-art to support the practice of evidence-based
medicine. The implementation of CPGs in clinical practice has been shown to improve decision-
making quality by increasing adherence to recommended practices. In the case of breast cancer,
adherence to CPG-recommended treatments has been found to correlate with improved patient
survival rates (Voigt & Trautwein, 2023).
Despite these advantages, the actual adherence to CPGs in oncology remains suboptimal, as com-
pliance with CPGs is a challenging topic because it depends on a variety of factors (Quaglini, 2008).
Implementation barriers of CPG’s are multifaceted (Voigt & Trautwein, 2023), including factors
such as:

• Lack of knowledge and familiarity with CPG contents, as well as their limited applicability to
specific clinical scenarios that are not consistently aligned with real-world decision-making
practices.

• Textual presentation of CPG recommendations, which can be ambiguous and challenging to
interpret.

• Dispersed nature of decision-relevant information within the CPG documents, making it dif-
ficult to extract the necessary elements for clinical decision-making for individual patient
cases.

To address these challenges, guideline-based CDSS have been developed to assist healthcare
professionals in their decision-making process and guide the clinical management of cancer pa-
tients by providing evidence-based recommendations (Klarenbeek et al., 2020b). In the context
of breast cancer, where medical complexity, time constraints, and the importance of informed
decision-making in a shared decision-making environment are prevalent, automated CDSSs hold
significant potential (Jiang et al., 2019; Seroussi et al., 2012a; Mazo et al., 2020).

2.2.1 Formalization of guidelines

The formalization of CPGs can vary in depth depending on the editorial guidelines and the target
audience. Venot (2013) distinguished different levels of formalization the goes from narrative CPGs
to those more suitable for computer systems to process.

• Narrative textual CPGs: These CPGs are written in natural language and contain minimal or
no structured elements. They tend to be lengthy and require careful interpretation.

• Semi-structured CPGs: These CPGs incorporate illustrations, tables, and decision trees to
enhance clarity and reduce ambiguity. The text is written in a concise style using simple
language.
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• Structured CPGs: These CPGs are well-suited for computer systems. They go beyond generic
knowledge representation formalisms and may include specific formalisms developed for
CPGs like decision trees and knowledge graphs.

2.2.1.1 Computerized CPGs

Several models have been proposed to structure CPGs. The choice of representation language de-
pends on the desired level of formalization and ease of execution (Quaglini & Ciccarese, 2006). We
will briefly discuss historical formalisms used for CPGs. If you want to go further (De Clercq et al.,
2004) and (Peleg et al., 2003; Peleg, 2013) provided a comprehensive review of these approaches.

• PROforma (Fox et al., 1997), created at the Advanced Computation Laboratory of Cancer Re-
search in the UK, is a modeling system that merges logic programming and object-oriented
modeling, specifically grounded in the R2L Language. The project’s goal was to investigate
the capabilities of a minimalist set of modeling constructs. PROforma supports four key
tasks: actions, compound plans, decisions, and inquiries, all of which share common at-
tributes such as goals, control flow, preconditions, and postconditions.

• Arden Syntax: Developed by Jenders et al. (2003), Arden Syntax is a procedural language
that allows the definition of conditional rules leading to actions. While it is easy for non-
informatician physicians to create executable programs using Arden Syntax, it may lack flex-
ibility for complex rules related to chronic disease management. Arden syntax have been
adopted as the standard language by HL7 in 1999.

• GLIF: The Guideline Interchange Format, initiated by Ohno-Machado et al. (1998) in 1998,
aimed to create a sharable model for CPGs using flowcharts. However, this model remained
conceptual with no successful implementation.

• More recently Pournik et al. (2023) presented the CAREPATH methodology to develop com-
puter interpretable, integrated clinical guidelines for managing multimorbid patients with
mild cognitive impairment or mild dementia. The method involves three phases: conceptual
modeling, interpretable modeling, and localization, emphasizing collaboration between clin-
ical and technical teams.

As we can see, despite the early creation of common models, researchers have developed their own
formalisms based on specific needs and goals. However, the trend shifted towards using standard
technologies, particularly those derived from the semantic web, to improve the representation and
sharing of CPGs (Peleg, 2013).

2.2.2 CDSSs and ontologies

The arrival of the Semantic Web and its standards in the early 2000s prompted a gradual evolution
in decision support methods. Ontological reasoning, was seen as a valuable addition to traditional
CDSS knowledge bases. Traditional CDSSs often lack the ability to adapt to knowledge and data
due to cognitive rigidity. Ontological inference provides the capability to vary the level of abstrac-
tion.
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2.2.2.1 Ontologies

In the context of semantic web, an ontology is a formal, explicit specification of a shared concep-
tualization. This means that an ontology is a way of representing knowledge about a particular
domain.

The backbone of an ontology consists of a generalization/specialization hierarchy of concepts,
i.e. a taxonomy. For example, in an ontology about human resources, the concept of ‘Person‘ might
be a superconcept of the concepts ‘Manager‘ and ‘Researcher‘. This means that a ‘Manager‘ and
a ‘Researcher‘ are both types of ‘Persons‘. In addition to the taxonomy, an ontology may also in-
clude other types of information, such as definitions of concepts, descriptions of relations between
concepts, and constraints on the use of concepts (Guarino et al., 2009).

According to Bodenreider (2008), ontologies can be used to facilitate knowledge sharing, data
integration, and decision support in biomedical research. They have a number of benefits, includ-
ing:

Improved knowledge sharing: Ontologies can help to ensure that researchers are using the same
terms to refer to the same concepts, which can improve the communication and sharing of
knowledge.

Enhanced data integration: Ontologies can be used to integrate data from different sources, which
can help to identify relationships between data that would not be apparent otherwise.

Improved decision support: Ontologies can be used to represent clinical guidelines and decision
rules, which can help healthcare professionals to make more informed decisions.

The use of ontologies in biomedical research is still in its early stages, but the potential benefits are
significant.

2.2.2.2 Use of ontologies in CDSSs

Ontologies have been used for decision support in various domains, including patients with co-
morbidities, the COMET system, developed by Abidi (2011), integrates multiple clinical practice
guidelines on heart failure and atrial fibrillation using ontologies. It creates a knowledge base and
provides patient-centered recommendations. The system combines and fuses the guidelines to
generate personalized recommendations for individual patients. Galopin (2015) created a method-
ology that was used in GO-DSS (Galopin et al., 2015). It is a decision support system based on on-
tological reasoning for the flexible management of patients with multiple pathologies. It utilizes
formalized clinical guidelines and an ontology-based patient profile graph to adapt knowledge to
varying levels of patient description.

Regarding cancer, Abidi et al. (2007) introduced the Breast Cancer Follow-up Decision Sup-
port System (BCF-DSS). BCF-DSS combines decision rules from a clinical practice guideline with
three ontologies (patient, breast cancer, and clinical practice guidelines) and a logical reasoning
engine. The system uses backward chaining to offer personalized recommendations and justifica-
tions, however the system was not implemented or evaluated in practice.

Another project by Daniyal et al. (2009) uses ontologies to merge multiple clinical pathways
for prostate cancer. The aim is to create a unified pathway as a foundation for a decision support
system, but explicit ontological reasoning is not addressed in this case. An evaluation involving 10
physicians demonstrated the potential of such systems, emphasizing the importance of usability
and interoperability in their design and implementation.
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More recently, the DESIREE project aimed to create a guideline-based decision support system
for breast cancer (Bouaud et al., 2020b). This system is based on an ontology to build a model for
breast cancer knowledge. We use this system as the guideline-based DSS for this project, more
details about the ontology and the workflow of the systems will be presented in the next section
(2.2.4).

2.2.3 Update of computerized knowledge bases

Since medical knowledge evolves constantly, CDSSs based on guidelines need to be updated reg-
ularly according to the most recent evidence. As we are concerned about updating a knowledge
base in chapter 5. We did a scoping review to analyse the methods used for comparing narrative
CPGs (Azarpira et al., 2022).

A literature search was carried out using three distinct queries : (([computerized compari-
son] OR [manual comparison]) AND [clinical guidelines]), (computerized comparison of clinical
guidelines), and (computerized evaluation of clinical guidelines). Searching PubMed and Google
Scholar, we selected 11 relevant articles discussing automatic or semi-automatic methods for com-
paring CPGs. After analysing these articles, we considered three phases for comparing CPGs.

2.2.3.1 Concept Extraction :

The extraction of clinical concepts can be accomplished through different methods. One approach
involves using rule-based techniques to search for exact word matches (Eftimov et al., 2017). Al-
ternatively, when the text lacks standard medical terminologies, neural networks with attention
mechanisms can be employed (Tutubalina et al., 2018; Gao et al., 2021a). Extracted concepts are
subsequently "normalized" using appropriate terminological dictionaries specific to the domain
(Eftimov et al., 2017; Tutubalina et al., 2018). This process can be automated (Eftimov et al., 2017)
or rely on expert knowledge (Galopin et al., 2014a).

2.2.3.2 Rule and Semantics Extraction :

In this phase, the goal is to extract recommendation statements and "if-then" rules to create a
computer-interpretable version of narrative CPGs. Machine learning algorithms are commonly
used for extracting recommendation statements with high accuracy scores (Hussain & Lee, 2019).
While some studies have proposed using Natural Language Understanding (NLU) approaches to
extract semantics and rules from CPGs (Schlegel et al., 2019), the automatic extraction of "if-then"
phrases from narrative text is still not entirely satisfactory. Currently, this phase requires the in-
volvement of a human domain expert (Galopin et al., 2015, 2014b).

2.2.3.3 Comparison of Guidelines at Different Data Abstraction Levels :

Comparing CPGs can be conducted at various levels :

• At the concept level, different methods based on the similarity between medical concepts
have been evaluated against human expert assessments (Pedersen et al., 2007). Mathemati-
cal techniques generally fall into two categories: (i) "ontological step-based" methods, which
measure the minimal number of steps required to connect two concepts in an ontology, and
(ii) "embedding matrices" that calculate similarity using metrics like Cosine similarity (Ped-
ersen et al., 2007; Zhu et al., 2017) between the embeddings of the texts representing the
guidelines.
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• Other studies tried to do the comparison by evaluating the intersection of conceptual cover-
age in CPGs: Galopin et al. (2014a) have employed this method to compare three CPGs for
managing arterial hypertension. And Mouazer et al. (2021) compared five CPGs for Poten-
tially Inappropriate Medications (PIM) from different sources, utilizing visualization meth-
ods to illustrate the intersections of the conceptual coverage between CPGs.

• In another study, ontologies were utilized to map patient profiles and rules from two CPGs,
enabling a comparison of inferred therapeutic recommendations. Inferred actions in such
scenarios can sometimes be conflicting and may require resolution by a human expert (Ga-
lopin et al., 2015, 2014b).

Overall updating CPGs is crucial for reliable guideline-based CDSSs. The process involves ex-
tracting and organizing concepts to create computer-interpretable CPGs. Concepts can be ex-
tracted using machine learning algorithms, rule-based NLP methods, or modern neural networks.
Rule and recommendation extraction from CPGs still requires human domain expertise. CPG com-
parison can be done using ontologies, embedding matrices, or assessing conceptual coverage. Vi-
sualization methods also aid in intuitive comparisons and provide promising results. However,
there is no fully satisfactory automatic approach for comparing CPGs.
In this work, chapter 5, we propose a new methodology to semi-automatically update of the GL-
DSS of the DESIREE project according to the most recent evidence. The system is presented in the
sections below.

2.2.4 Breast cancer knowledge model ontology

The Breast Cancer Knowledge Model (BCKM) ontology is at the core of the Guideline-based Clin-
ical Decision Support System of the DESIREE project (Bouaud et al., 2020b). It combines generic
data model components with existing terminological resources to create an ontology to represent
the knowledge and specifications related to breast cancer and its therapeutic management.
The ontology has been designed in accordance with the Entity-Attribute-Value (EAV) model, which
is a generic model that is not specific to a particular domain. This model is flexible and allows for
representing clinical data. The structure of the BCKM ontology is as follows:

Entities : In the BCKM, there are three main classes to describe a breast cancer patient state. These
classes serve as descriptors for entities that play a role in describing a patient’s case and are
relevant in the decision-making process. While PatientEntity represent the patient herself,
SideEntity is used to capture information related to the side affected, and LesionEntity de-
scribes any lesions present (refer to Fig 2.2 for a visual representation).
Apart from these entities directly linked to the patient case, there are other entities associated
with the patient that help to contextualize their situation. These entities mainly encompass
information about the patient’s relatives, previous treatments they have undergone, and ex-
aminations carried out.

Attributes : The attribute classes list attributes of the different entities, e.g. the age of the patient,
the BI-RADS value for a side, or the size of a lesion. In the BCKM ontology, each class of an
attribute is declared to belong to an entity using the relation isAttributeOf. (e.g Age isAttribu-
teOf PatientEntity)



22 Chapter 2 – State-of-the-art

Figure 2.2: Excerpt from the UML class diagram representing the three main clinical entities (Pa-
tient, Side, and Lesion) used to describe a breast cancer clinical case, and their relationships
(Bouaud et al., 2020b)).

Values : These classes represent the different value types associated with attributes. These value
types can include common primitive types like integers, floats, Booleans, dates, and strings.
Additionally, there is a separate subclass called hierarchicalValue, which consists of discrete,
potentially hierarchically organized by subsumption, value sets to describe values of at-
tributes that are not primitive (e.g. the histologic type).
The specification of the value type for an attribute is achieved through the relation hasRange
that establishes a link between the attribute class and the class representing the value type.
For example, the Age attribute of a patient is linked via hasRange to the IntegerValue class,
and the HistologicType attribute of a lesion is associated with the BreastCarcinoma class also
via hasRange.

Figure 2.3 shows an overview of Ontology, a detailed presentation of all classes is provided in
Appendix B.

Figure 2.3: Overview of the BCKM ontology

Reasoning with the ontology : The BCKM ontology is used in the reasoning process of the GL-
DSS (the process is explained in detail in the next subsection). Experts formalize rules using the
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Natrual Rule Language (NRL) language and the Euler-Eye engine (Verborgh & De Roo, 2015) is
used for rule-based reasoning and subsumption according to ontology.

The Euler-Eye engine is a rule-based reasoning engine that is used to process the rules in the
BCKM ontology. The engine can reason about the ontology and infer new information from the
existing information. This allows the GL-DSS to provide more personalized and evidence-based
recommendations to breast cancer patients.

The NRL language is a language that is used to formalize the rules consistently with the EAV
model that structures the BCKM ontology. The language is designed to be easy for experts to use
and it allows the rules to be expressed in a natural way.

2.2.4.1 GL-DSS of the DESIREE project

The Guideline-Based Decision Support System is a system that provides personalized recommen-
dations to patients based on clinical guidelines. Clinical guidelines are documents that describe
the best practices for the management of a particular disease or condition. The GL-DSS supports
a variety of clinical guidelines for breast cancer, including those from the US National Compre-
hensive Cancer Network (NCCN), the Spanish Onkologikoa group, and the French AP-HP hospital
institution. Enabling the execution of the GL-DSS can be divided into three main steps:

Figure 2.4: Workflow in the GL-DSS

1- Knowledge base creation : In this phase, in collaboration with the experts, the guidelines are
formalized into an executable language by the computer (refer to the bottom part of figure 2.4 for
a visual representation) :

1. The rules are first encoded in a formal language that is human-readable.

2. The NRL is then used to write the formal rules in a computer-readable language, using the
concepts in the BCKM.

https://nrl.sourceforge.net/spec/
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3. The NRL rule sets are then transformed into an XML representation, which is dependent on
the BCKM ontology model.

4. Finally, a final transformation gives an triplet (N3) representation of the NRL rules, which is
the target format that is interpretable by the Euler-EYE inference engine.

2- Patient data formalization This part focuses on transforming the patient’s data represented ac-
cording to the BCKM into triplets dependent on the BCKM ontology, to allow the Euler EYE engine
to reason on the patient. The top left part of figure 2.4 provides a visual representation.

1. The initial patient data input is obtained via the DESIMS (Desiree Information Management
System), which is the user interface used in the project. For development purposes, tools
have been developed to also read patient data presented in a specific CSV format. The inputs
are also dependent on the BCKM ontology, and the users fill in the values for the attributes
of various entities (typically, the patient, side, and lesion entities).

2. Patient data is transferred into a standard FHIR bundle using FHIR messages (Patient, Ob-
servation, Condition, BodySite, and Specimen).

3. The FHIR bundle is transformed into a triplet representation (in N3 notation), which is con-
sistent with the data model described in the BCKM.

3- GL-DSS execution: recommendation generation Once patient data is in N3 format, the rules
(also transformed in N3 format) are matched to the patient’s representation using the Euler-EYE
engine. New facts are then created and finally, recommendations are provided. Recommendations
are available in an XML format. Then, the DESIMS interface displays them to the user (top right
part of figure 2.4). The figure below shows an example of the output of the GL-DSS, a file that shows
the representation of the patient in a form of a knowledge graph, the facts inferred for this patient,
and the recommendations derived from the APHP guideline.

In the Oncolog-IA project, we installed the GL-DSS in the AP-HP data warehouse environment
and used it as the guideline-based CDSS in this project. In chapter 5, we describe how we auto-
matically create patients in the BCKM format from the textual summaries used in MTBs and use
the GL-DSS engine to provide recommendations for them.

2.3 Case-based reasoning

The medical reasoning process involves considering physiological conditions, patient complaints,
symptoms, and other relevant factors when formulating treatment strategies (Lucas, 1993). Treat-
ment reasoning necessitates cognitive activities such as information gathering, pattern recogni-
tion, and problem-solving in order to make informed decisions. Developing effective treatment
plans can be a complex and error-prone task.

Case-Based Reasoning (CBR) (De Mantaras, 2001) is a machine learning research area based
on the memory-centered cognitive model. It is an analogical reasoning method that involves rea-
soning from past cases or experiences to solve problems or interpret anomalous situations. CBR
integrates problem-solving, understanding, and learning by utilizing memory processes (De Man-
taras, 2001). It is characterized by adapting previous solutions to address new demands, using old
cases to explain new solutions, and reasoning from past events to interpret novel situations. CBR
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is akin to similarity-based reasoning, as it assumes that similar problems have similar solutions
(Armengol et al., 2004).

According to Koton, "A physician’s problem-solving performance improves with experience.
The performance of most medical expert systems does not" (Koton, 1989). The implication is that,
instead of using rules to decide, clinicians rely on their acquired knowledge from books and experi-
ences, which is very similar to the functioning of Case-Based Reasoning (Schmidt et al., 2001). CBR
systems offer a significant advantage through the automatic formation of a facility-adapted knowl-
edge base (Schmidt et al., 1999). This adaptability is crucial in medical decision-making processes.
Additionally, the dynamic nature of medical knowledge, the existence of multiple solutions, and
the complexity of modeling make CBR applicable and relevant in the medical domain (Holt et al.,
2005). Consequently, CBR has been widely employed in the development of intelligent computer-
aided decision support systems within the medical field over the past few decades (Ahmed et al.,
2010).

Several models have been proposed to elucidate CBR functioning. These models include Hunt’s
model, Allen’s model, and others (Leake, 1996). Among these models, the R4 model by Aamodt &
Plaza (1994) is the most widely adopted and provides a high-level and comprehensive framework
(Finnie & Sun, 2003). The process depicted in this model can be represented by a schematic cycle
consisting of the four R’s: Retrieve the most similar cases, Reuse the information and knowledge
from retrieved cases to solve the problem, Revise the proposed solution, and Retain the part of this
solution likely to be useful in the future, as illustrated in Figure 2.5.

Figure 2.5: The R4 cycle (Aamodt & Plaza, 1994)

Among the four R’s, Retrieval is considered the most important part, as it sets the foundation of
CBR systems (De Mantaras et al., 2005). Retrieval includes the process of finding the most similar
cases to the current case. The most commonly used techniques include nearest neighbor retrieval,
inductive approaches, and knowledge-guided approaches (Pal & Shiu, 2004; Simoudis & Miller,
1990). In Chapter 6, we propose a method for similarity calculation for patients with breast cancer.
In the next subsections, we will review the state-of-the-art similarity calculation methods.

Choudhury & Ara (2016) proposed a survey on CBR in medicine that dive deeper into the other
parts of CBR systems and their application in healthcare for diagnosis and classification.
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2.3.1 Similarity measures

Similarity measures between patients can be used to identify subgroups of patients with similar
clinical profiles, predict individual patient outcomes, and inform personalized treatment deci-
sions (Parimbelli et al., 2018). By identifying subgroups of patients with similar clinical profiles,
clinicians can develop more targeted and effective treatment strategies. Evaluating patient simi-
larity has been explored as a means to facilitate precision medicine and has been recognized as a
crucial problem in many data mining algorithms and real-world information processing systems.

We did a literature review on similarity measures used for patient similarity and noticed there
are two main ways of evaluating the similarity between two patients. Some works use Deep Learn-
ing models, others classical Machine Learning methods such as linear regression, K-nearest neigh-
bors... Both methods rely on various similarity measures (also called metrics) to calculate the sim-
ilarity of pairs of patients. Table 2.1 reports on the metrics used in most studies. We will then
describe the different methods.

Table 2.1: Summary of papers by each similarity measure

Measure Definition Image Articles

Cosine simi-
larity

Cosine similarity is a measure of sim-
ilarity between two vectors that com-
putes the Cosine of the angle between
them. A Cosine similarity value close
to 1 indicates that the vectors are very
similar, while a value close to 0 indi-
cates that they are very different.

(Pai et al., 2019;
Lee et al., 2018a;
Wang et al., 2019;
Chen et al., 2022)

Euclidean
distance

Euclidean distance is a measure of
distance between two points in an Eu-
clidean space. It is defined as the
length of the straight line segment
connecting the two points.

(Pai et al., 2019;
Lee et al., 2018a;
Wang et al., 2019;
Pai & Bader, 2018)

Jaccard sim-
ilarity

Jaccard similarity is a measure of sim-
ilarity between two sets that com-
putes the ratio of the number of ele-
ments common to the two sets to the
total number of elements in the two
sets.

(Pai et al., 2019;
Pai & Bader, 2018;
Meystre et al.,
2019; Huang et al.,
2021)

Mahalanobis
distance

Mahalanobis distance is a measure of
distance between two points in an Eu-
clidean space that takes into account
the variance and standard deviation
of the data.

(Panahiazar et al.,
2015; Oei et al.,
2021)
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Hamming
distance

Hamming distance is a measure of
distance between two strings that
counts the number of locations where
the two strings differ.

(Lee et al., 2018a)

Lee et al. (2015) utilized a patient similarity method based on Cosine similarity for mortality
prediction. Panahiazar et al. (2015) developed two distinct methodologies for suggesting medica-
tions to patients with heart failure. These methodologies involved clustering techniques such as
hierarchical clustering and K-means clustering using the Mahalanobis distance, as well as classi-
fication techniques. Their study demonstrated that classification was more effective than cluster-
ing in improving medical diagnosis, personalized treatment planning, and prediction accuracy. Li
et al. (2015) introduced an unsupervised clustering methodology based on topological examina-
tion to detect subgroups of type 2 diabetes patients. This methodology aimed to identify distinct
subgroups within the diabetes population without prior supervision.

A new software NetDx Pai et al. (2019) has been developed for the construction of interpretable
patient classifiers by integrating multi-omics and structured EHR data using patient similarity net-
works (Pai & Bader, 2018). The authors have applied numerous similarity measures (including Jac-
card, Cosine, and Euclidean) to construct networks of similar patients and integrate them into a
common network.

Overall, various metrics or similarity measures are commonly employed in the retrieval phase.
Many studies focus on directly learning these metrics to calculate the similarity between patients
(Choudhury & Ara, 2016) and subsequently create clusters using methods such as k-nearest neigh-
bors (kNN) or weighted kNN (Lamy et al., 2019). More recently (Gérardin et al., 2022a) worked on
the development of a cohort for patient similarity from French clinical notes, based on automatic
concepts extraction, they test their approach on 6 phenotypes and showed promising results using
Earth mover’s distance (Kusner et al., 2015). Other recent works explored the use of the clinical
notes text directly to detect similarity between patients, using state-of-the-art language models
(van Aken et al., 2022).
Metric learning, in general, involves the task of learning a similarity measure that reflects the de-
sired notion of similarity or dissimilarity between data points. Traditional metric learning ap-
proaches typically rely on defining a parametric form of the metric and learning its parameters
based on labeled or pairwise similarity information. However, a recent advance in the field is the
emergence of deep metric learning methods.

2.3.2 Deep metric learning

Deep metric learning specifically leverages deep neural networks to learn effective representations
for metric learning (Suo et al., 2018). Unlike traditional methods that rely on handcrafted features
or metrics, deep metric learning automatically learns high-level representations from raw data.
This enables the capture of complex and non-linear relationships in the data, which may be chal-
lenging for traditional methods.

In the context of patient similarity assessment, deep metric learning has been applied to learn
patient representations from electronic health records (EHRs) (Suo et al., 2018). Authors used Con-
volutional neural networks (CNNs) to capture important information from EHRs, and the learned
representations are fed into loss functions such as triplet loss or softmax cross-entropy loss. Exper-

http://www.netdx.org/
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imental results have shown that deep metric learning improves the representation of longitudinal
EHR sequences and outperforms traditional distance metric learning methods.

In our work, chapter 6, we use a deep metric learning method to learn embeddings on our
patient’s data. As we perform the triplet loss function as an objective function, we explain triplet
loss in the next subsection.

2.3.2.1 Triplet loss

Triplet loss (Hoffer & Ailon, 2018) is a loss function used in deep metric learning to learn effective
embeddings or representations of data points. It operates on triplets of data points: an anchor
point, a positive point, and a negative point. The objective of triplet loss is to minimize the dis-
tance between the anchor and positive points in the embedding space while maximizing the dis-
tance between the anchor and negative points, by predefined margins. By optimizing the triplet
loss, the neural network learns to map similar data points closer together in the embedding space
and push dissimilar data points further apart. This enables the network to capture meaningful
similarities and dissimilarities between data points, facilitating tasks such as clustering, retrieval,
and classification.

Triplet loss has been widely applied in various domains, including face recognition, person re-
identification, and healthcare. In healthcare, triplet loss (Schroff et al., 2015) can be used to learn
patient embeddings based on their medical records and clinical features, enabling the identifica-
tion of similar patients for personalized treatment recommendations and decision-making.

Now that we described the various approaches used in clinical decision support for oncology
and had an overview of the tools and methods we will be using in this work. Let’s focus on how we
get the inputs for these CDSSs, as we mentioned in the introduction, we use textual unstructured
clinical notes as inputs and we have to process and structure them to use them in CDSSs. The next
section focuses on state-of-the-art natural language processing methods.

2.4 Natural language processing in healthcare

Natural language processing has become an important domain in the medical informatics field.
NLP enables the analysis and interpretation of textual data, which is heavily used in healthcare
for traceability and communication, thus facilitating information retrieval, knowledge extraction,
and decision support. In this section, we explore various aspects of NLP, including computer rep-
resentations of text, named entity recognition, and describe some NLP tools that we used in our
work.

2.4.1 Computer representations of text

Textual data in healthcare presents unique challenges that require appropriate computer repre-
sentations for effective exploitation. Several approaches have been developed to represent text
computationally, enabling downstream NLP tasks.
In NLP, texts are divided into smaller units called tokens. Tokenization can be performed at dif-
ferent levels, such as word, character, or subword, depending on the specific requirements of the
task. The choice of tokenization level impacts the system’s generalizability and performance.

After tokenizing a sentence into individual words, each word is associated with a set of fea-
tures. In early NLP methods, hand-engineered features such as word cases, punctuation patterns,
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part-of-speech (POS) labels, and various linguistic properties, were specifically designed to cap-
ture relevant information tailored to specific NLP tasks. To delve deeper into such features, one
can refer to the detailed review published by Nadeau & Sekine (2007).

Some systems also relied on terminologies like UMLS (Bodenreider, 2004), acting as dictio-
naries with diverse expression representations based on different characteristics. Textual entity
identification involved exact matching or distance calculations between text fragments and termi-
nological entries at word or character levels.

2.4.1.1 Word embeddings

Early NLP methods relied on word embeddings are sets of real-valued features associated with
words (Collobert & Weston, 2008). They can be learned from scratch or computed from morpho-
logical features (Klein et al., 2003; Bojanowski et al., 2017; Akbik et al., 2018). Word embeddings
capture the implicit semantics of words and have become the standard for analyzing text with ma-
chine learning (Collobert & Weston, 2008).

Pretrained Representations Pretrained representations have gained popularity in NLP. Static word
embeddings have been trained on tasks such as language modeling (Mikolov et al., 2013; Turian
et al., 2010; Collobert et al., 2011). Language modeling involves capturing the distributional prop-
erties of words, guided by the idea that "a word is characterized by the company it keeps" (Firth,
1957; Harris, 1954). Word2Vec (Mikolov et al., 2013) and GLOVE (Pennington et al., 2014a) are
examples of static word embeddings. FastText (Bojanowski et al., 2017) is another variant that rep-
resents words using character n-grams.

However, static word embeddings do not consider the context of a word when used in a new
sentence, which limits their usefulness for certain cases such as homonyms or referent words like
pronouns.

To overcome this limitation, contextualized word embeddings have been introduced. ELMO
(Peters et al., 2018) improved upon static embeddings by pretraining a deep recurrent language
model and using hidden representations as features for downstream tasks. BERT (Devlin et al.,
2019) is another popular model that uses masked language modeling. There have been various
modifications and variants proposed, both in terms of model architecture and pretraining corpus
domain (Clark et al., 2020; Kong et al., 2020; Liu et al., 2019b; Yang et al., 2019; Martin et al., 2020;
Beltagy et al., 2020a; Lee et al., 2020). HuggingFace (Wolf et al., 2020) has played a significant role
in popularizing these models by simplifying their implementation and facilitating sharing.

For a comprehensive review of the research field, Qiu et al. (2020) provides a detailed analysis
of contextualized word embeddings.

2.4.1.2 Large Language Models

NLP is now driven by large language models. These models, such as GPT and BART, are trained on
massive amounts of text data and can perform a wide range of NLP tasks, including language un-
derstanding, generation, and translation. Large language models serve as a common backbone for
various NLP applications, eliminating the need for task-specific architectures and achieving state-
of-the-art performance. (Lewis et al., 2020; Radford et al., 2018, 2020; Raffel et al., 2019; Brown
et al., 2020a). However, concerns related to their size, biases, and ethical implications have also
been raised (Bender et al., 2021).

https://huggingface.co/
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2.4.2 Named Entity Recognition

Named Entity Recognition (NER) is a natural language processing technique that involves identi-
fying and classifying named entities, such as names of diseases, measurements, dates, and other
specific entities, within a given text. NER plays a crucial role in information extraction and helps in
understanding the relationships and context between different entities in a text. It has undergone
several developments since its emergence in the early 1990s. Initially, NER focused on rule-based
systems that relied on handcrafted rules, lexical functions, and gazetteer lists (Rau, 1990; Brin,
1999; Collins & Singer, 1999; Riloff & Jones, 1999; Lin, 1998; Alfonseca & Manandhar, 2002; Etzioni
et al., 2005). These systems used annotated data and employed heuristics and rules for generaliza-
tion. Early works explored different techniques to enhance entity detection.

A significant revolution in NER came with the introduction of sequence labeling systems, which
treated NER as a word classification problem. Tags were assigned to individual words to indicate
their position within an entity, and various tag schemes were introduced to represent entity bound-
aries and types (Huang et al., 2015; Klein et al., 2003; Lample et al., 2016). Supervised methods like
Decision Trees, Support Vector Machines, and Conditional Random Fields (CRF) were commonly
used.

As NER progressed, researchers turned their attention to handling more complex scenarios
such as nested and overlapping entities. Nested NER, which deals with overlapping entities, gained
attention with the GENIA corpus (Kim et al., 2003). Different methods were proposed to address
various aspects of nested entities, including constituency parsing graph extraction (Finkel & Man-
ning, 2009), CRF hyper-graph modeling (Lu & Roth, 2015), mention edges and transitions (Muis
& Lu, 2017), and multi-label prediction (Katiyar & Cardie, 2018). Exhaustive NER methods, which
enumerate all possible spans in the input sequence, were also developed (Xu et al., 2017; Wang
et al., 2020; Zheng et al., 2019; Luan et al., 2019).

Advancements in NER include alternative formulations such as sequence-to-set approaches
and machine reading comprehension tasks. These approaches leverage pre-trained language mod-
els and transfer learning to predict overlapping entities without explicit type annotation. Other
techniques incorporate deep language models with markup tags or combine models to extract
flat, nested, and overlapping entities (Tan et al., 2021; Li et al., 2020; Mengge et al., 2020; De Cao
et al., 2020; Yan et al., 2021).

2.4.2.1 Recent works on clinical NER and relation extraction

A recent review titled Clinical named entity recognition and relation extraction using natural lan-
guage processing of medical free text: A systematic review by Fraile Navarro et al. (2023) examined
the current literature on clinical NLP systems that perform multi-entity NER and Relation Extrac-
tion (RE). The review aimed to provide an update on the state-of-the-art performance, explore
clinical task descriptions, assess real-world implementation, and highlight areas for improvement.

The authors found that recent developments in NER and RE heavily utilized pre-trained BERT-
derived models, specifically tailored to the biomedical domain, such as BLUEBERT (Peng et al.,
2019) and Pub-MedBERT (Gu et al., 2020) and those specifically developed with clinical text, like
ClinicalBERT (Alsentzer et al., 2019), and EHRBERT (Li et al., 2019). However, the availability of
these models for implementation was limited due to proprietary datasets and a lack of publicly
available resources. The review highlighted the need for more validation and deployment of NLP
systems in real-world clinical settings.
Although newer systems such as GPT-3 (Brown et al., 2020b) have been popular with chatGPT,
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they seem to fail when evaluated in medical use cases (Rousseau et al., 2020). Developers willing
to implement or develop NLP clinical systems can reflect on the availability of these tools to avoid
costly training and, thanks to novel transfer learning techniques and easy-to-use implementations
(Wolf et al., 2019).

The analysis of the included studies revealed that a significant number of them did not describe
specific clinical tasks or problems to be solved. Only a small portion addressed a single clinical or
information task, such as adverse event detection and pharmacovigilance, increasing clinician and
patient understanding, decision support, drug efficacy, coding and automating EHR tasks, quality
improvement, public health, and genotype and phenotype research. Additionally, the review iden-
tified that only a few studies provided evidence of deployment in real-world settings. The majority
of the included studies (72%) employ Machine Learning and deep learning methods for extracting
entities and relationships from text, showing promise in capturing complex patterns and improv-
ing performance. However, the review showed that rule-based methods are still used, offering
interpretable extraction rules and effectiveness in scenarios with consistent patterns and limited
labeled data. Overall, hybrid approaches (24% of the included studies) combining rule-based and
ML methods provide robust and accurate extraction systems.

2.4.3 NLP tools for healthcare

Many NLP tools have been developed for structured information extraction from, annotation, and
curation of biomedical or clinical texts. These tools facilitate various tasks such as literature review,
disease-centered relation extraction, and biomedical concept recognition. Among these tools we
can distinguish :

Annotation tools are tools that are generally graphical interfaces used to manually annotate doc-
uments, these tools facilitate the annotation process to annotate data for machine learning
algorithms and also to evaluate them.

Information extraction tools : These tools serve as systems to extract relevant entities from the
text automatically, these entities can be, clinical concepts like UMLS codes, drugs, or ontol-
ogy concepts ..etc.

2.4.3.1 Clinical text annotation

Annotator (Shah et al., 2009), Argo (Rak et al., 2012) and GATE Teamware (Cunningham et al.,
2002), provide annotation and extraction capabilities for biomedical text. Annotator and Gate of-
fer functionalities to retrieve annotations using ontologies, while Argo incorporates text-mining
techniques for biocuration workflows.
BioNotate (Cano et al., 2009) and BeCAS (Nunes et al., 2013) support relation extraction and con-
cept recognition in biomedical text. BioNotate facilitates the annotation of disease-centered rela-
tions.
BioQRator (Kwon et al., 2013) and Tagtog (Cejuela et al., 2014), offer platforms for biomedical liter-
ature curation. They provide interactive interfaces and efficient environments for annotating texts
Tagtol is designed to detecet gene mentions in PLOS.

In this work we use BRAT (Stenetorp et al., 2012a) : It is a widely used, annotation tool and
online environment for collaborative text annotation. It provides an efficient interface for anno-
tating and curating text, supporting distant collaborative annotation tasks and streamlining the

http://bioportal.bioontology.org/annotator
https://bioportal.bioontology.org/annotator
https://gate.ac.uk/teamware/
http://bionotate.sourceforge.net/
http://bioinformatics.ua.pt/becas/#!/
https://brat.nlplab.org/
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annotation process. We use it since it is the annotation tool installed withing the environment of
the AP-HP datawarehouse.

2.4.3.2 Clinical information extraction

SemRep (Rindflesch & Fiszman, 2003) extracts semantic predications from biomedical free text by
identifying subject-relation-object triples. It captures meaningful information for advanced anal-
yses.
Both Apache cTAKES (Savova et al., 2010) and MetaMap (Aronson & Lang, 2010) extract UMLS
concepts. cTAKES specializes in analyzing clinical text in healthcare settings for information ex-
traction and provide customizable information extraction pipelines. MetaMap maps biomedical
text to UMLS concepts, facilitating the identification and analysis of medical concepts.
EventMine (Miwa et al., 2012) focuses on extracting semantically enriched events from biomedical
literature, enabling researchers to identify and analyze specific events of interest.
CLAMP (Soysal et al., 2018) is a Clinical Language Annotation, Modeling, and Processing tool de-
signed for healthcare and clinical text. It offers a toolkit for efficiently building customized clinical
natural language processing pipelines.

In this work (4.2.2), we used MetaMap as an automatic annotator to extract UMLS concepts
from BCPSs translated from French to English.

2.4.3.3 NLP for cancer

Numerous studies have focused on extracting structured information from cancer reports. Vari-
ous methods have been developed to automatically extract features from clinical reports, such as
radiology reports (Bitterman et al., 2021; Miwa et al., 2014) and pathology reports (Burger et al.,
2016). Some research has concentrated on specific attributes within reports, treating the task as a
classification or term extraction problem for items like BIRADS scores, histological grade, or lesion
site (Alawad et al., 2018; He et al., 2017; Moore et al., 2017; Qiu et al., 2018). Specialized systems
have also been designed for features like locations (Datta et al., 2020), and a comprehensive survey
of these systems is presented by Datta et al. (2019).

Other studies have aimed to achieve more comprehensive and global extraction, simultane-
ously detecting multiple entity types. The earliest approach by Taira et al. (2001) introduced a
frame-based representation for annotating abnormal findings, anatomy, and medical procedures
in radiology reports. Lacson et al. (2015) employed a rule-based system and terminologies to ex-
tract abnormal findings and BIRADS scores.

The DeepPhe system (Savova et al., 2017) was developed as an integrated software using cTakes
(Savova et al., 2010). DeepPhe extracts cancer "summaries" from clinical reports, encompassing
pathology, radiology, and observations.

2.4.3.4 Tools for French language

Despite recent improvements in natural language models, machine understanding of language,
especially clinical documents in French, is still far from being solved. English has a wide range of
processing tools and terminology resources that surpass those available for other languages. Not
all English approaches can be directly applied to French due to language-specific differences. Ad-
ditionally, while there is considerable research on general domain texts in French, the biomedical
domain lags behind (Nêvêol et al., 2018). For example, despite being the 5th most represented

http://semrep.nlm.nih.gov/
http://ctakes.apache.org/
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html
http://www.nactem.ac.uk/EventMine/
https://clamp.uth.edu/
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language in the 2019 version of the UMLS terminology, French only has synonyms for 3.5% of its
concepts. Therefore, developing methods for clinical NLP in French is a crucial aspect of this work.

Although most of the described tools and methods primarily focus on English text, there have
been some advancements in the field of clinical NLP for the French language. Machine learning
methods have been employed to extract clinical information from texts, and there are also avail-
able semantic annotators.

Semantic Annotators Two main systems are used as semantic annotators for the French lan-
guage:

1. SIFR (Semantic Indexing of French Biomedical Data Resources ) (Tchechmedjiev et al., 2018)
is an openly available web service that facilitates the recognition and contextualization of
concepts from 30 medical terminologies and ontologies. The annotator service processes
textual descriptions, tags them with relevant biomedical ontology concepts, including UMLS,
expands the annotations using the knowledge embedded in ontologies, and contextualizes
the annotations before returning them to the users in various formats.

2. ECMT (Extracteur de Concepts Multi-Terminologique) is a web service inspired by the CIS-
Mef algorithm for information retrieval with the Doc’CISMeF search engine and F-MTI, which
is a multi-terminology automatic indexer (Pereira et al., 2008). ECMT is designed for the
French language and offers two query modules: a default module based on a bag-of-words
algorithm (Pereira et al., 2008), and an expanded module based on textual indexing using
Oracle Text Indexing. The ECMT annotator works with seven terminologies and supports
semantic expansion features (Sakji et al., 2010).

In this work, section 4.2.2, we used ECMT as an automatic annotator to extract clinical con-
cepts from the BCPSs.

Information extraction from clinical notes Several studies have addressed information extraction
from clinical notes in French. Grouin et al. (2011) developed a system to compute the CHA2DS2-
VASc score, assessing stroke risk in patients with non-valvular fibrillation. Digan et al. (2019) in-
vestigated the impact of text duplications on clinical narratives, emphasizing the importance of
identifying and annotating duplicated zones. Jouffroy et al. (2021) developed a hybrid deep learn-
ing system for medication-related information extraction. Lerner et al. (2020) proposed a termi-
nologies augmented recurrent neural network model for clinical named entity recognition.
Wajsbürt (2021) focused on the extraction and normalization of simple and structured entities in
medical documents, contributing to improving entity extraction in French clinical texts, and the
creation of an NLP library: NLstruct for nested NER (Wajsbürt et al., 2021; Gérardin et al., 2022b).
More recently Aouina et al. (2023) developed an ontology-based semantic annotation system for
French psychiatric clinical documents, enabling the identification of important medical events
and the construction of patient profiles.

A work has been also recently done on extracting relevant data for breast cancer from clinical
notes. Schiappa et al. (2022) developed an automatic tool, called RUBY, for structuring clinical
information from French medical records of patients with breast cancer. RUBY combines state-
of-the-art NER models with keyword extraction and postprocessing rules. The tool achieved high
precision rates ranging from 81.8% to 98.1% in extracting specific information from different types
of clinical reports. The information extracted in this work is close to the ones we want to extract in

http://bioportal.lirmm.fr/annotator
http://ecmt.chu-rouen.fr
https://github.com/percevalw/nlstruct/tree/master/nlstruct
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chapter 3, but since the system is not publically available, we used their paper as a comparison to
our results.

EDS NLP As we work on clinical notes stored in the AP-HP data warehouse, we used EDS-NLP
(Dura et al., 2022b). The EDS-NLP is a powerful tool developed by the AP-HP (Assistance Publique
- Hôpitaux de Paris) data science team specifically designed for extracting valuable information
from clinical notes written in French. It comprises several components including text normaliza-
tion and entity extraction, qualifiers such as negation detection and family context detection, as
well as miscellaneous components for date extraction and measurements. Additionally, it incor-
porates specific components for named entity recognition.

The NER pipeline presented in chapter 4 relies mainly on EDS-NLP. The system was used to
implement custom pipeline using regular expressions. More details about the components can be
found at https://aphp.github.io/edsnlp/latest/.

2.4.4 Clinical text classification

As we are facing a text classification problem in chapter 4 to classify breast cancer patient sum-
maries as complex or non-complex. In this section we describe different methods used to do clin-
ical document classification. We can resume the pipeline for classifying a clinical documents into
3 steps starting with a preprocessing step, the feature engineering step to extract relevant informa-
tion, and finally a classification step using machine learning-based or rule-based techniques.

We will describe the types of clinical reports used in various published studies, then we will
go into the details of preprocessing and sampling techniques. We will also explore the feature
engineering techniques employer and also the machine learning algorithms that are mentioned in
the literature.

2.4.4.1 Types of clinical reports

Clinical text classification techniques have been widely used in analyzing various types of free-
text clinical reports. These reports include pathology reports, radiology reports, autopsy reports,
death certificates, and biomedical documents in general. Among these, pathology reports were
most commonly utilized (Mujtaba et al., 2019), followed by radiology reports, and autopsy reports.
Pathology reports were primarily employed to detect breast cancer and other related cancers using
text classification techniques. For example, Rani et al. (2015) utilized pathology reports to identify
cancer stages through text classification. Similarly, Kasthurirathne et al. (2017) investigated the
detection of cancer from pathology reports using non-dictionary-based and dictionary-based text
classification approaches.

Radiology reports were also extensively utilized in clinical text classification.Zuccon et al. (2013)
employed radiology reports to identify limb fractures through text classification techniques. Shin
et al. (2017) used radiology reports related to brain computed tomography to identify pediatric
traumatic brain injury. Bates et al. (2015) employed radiology reports to detect HIV using auto-
mated text classification.

In addition, researchers have classified influenza-related clinical reports to detect influenza-
like illnesses using supervised machine learning (Pineda et al., 2015; Ye et al., 2014). Death certifi-
cates and autopsy reports have also been utilized to determine the cause of death (Butt et al., 2013;
Danso et al., 2013; Mujtaba et al., 2018)

https://aphp.github.io/edsnlp/latest/pipelines/core/endlines/#usage
https://aphp.github.io/edsnlp/latest/
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Recent studies have focused on combining various clinical reports related to the same dis-
ease to develop classification models. For example, Kavuluru et al. (2015) combined pathology
and radiology reports to automatically assign ICD-9 codes to electronic medical reports. Kocbek
et al. (2016) combined pathology reports, radiology reports, and patients’ admission-related meta-
data to predict admission rates for specific diseases. Combining data from different sources or
combining features of different reports has been found to improve the reliability and accuracy of
predictions in these studies.

2.4.4.2 Preprocessing

In the preprocessing stage of clinical text classification, various techniques were applied to the
narrative clinical reports. These techniques included spell correction, tokenization, stemming,
lemmatization, and normalization. For example, numerous studies (Danso et al., 2013; Lauren
et al., 2017; Sarker & Gonzalez, 2015; Buchan et al., 2017; Wang et al., 2017; Clark et al., 2017; Mar-
tinez et al., 2015; Masino et al., 2016) implemented these preprocessing tasks.

Stop word removal, removal of punctuation and white spaces, and case conversion were com-
monly used as basic preprocessing tasks. Word tokenization was also widely employed. Some
studies investigated the impact of stop words and found that their presence improved classifica-
tion accuracy. Stemming, when combined with basic preprocessing tasks and word tokenization,
was found to enhance classification performance in several studies (Adeva et al., 2014; Jo, 2013;
Koopman et al., 2015; Zuccon et al., 2015; Sarker & Gonzalez, 2015). Additionally, researchers such
as applied stemming and lemmatization techniques for clinical text normalization, reporting their
effectiveness in improving classification performance. Text normalization techniques using reg-
ular expressions were used to convert numbers or dates to common units, such as number and
date, thus addressing the issue of dimensionality. Studies (Buchan et al., 2017; Wang et al., 2017)
demonstrated the effectiveness of these text normalization techniques.

2.4.4.3 Feature engineering

Feature engineering in text classification involves feature extraction, feature value representation,
and feature selection. Various studies have investigated these steps in the context of clinical text
classification. In the feature extraction step, two general approaches have been explored: expert-
driven and fully automated feature extraction.
Fully automated feature extraction techniques involve extracting content-based features (such as
Bag of Words (BoW), n-gram, and Word2Vec (Goldberg & Levy, 2014)), concept-based features (us-
ing medical terminologies like SNOMED-CT (Donnelly, 2006; Stearns et al., 2001; Spackman et al.,
1997)), structural features (utilizing the structure of clinical documents), linguistic features (in-
cluding parts of speech), and graph-based features or graph of word (GoW) features.
Expert-driven feature extraction relies on domain experts to manually extract relevant features
from clinical reports (Sedghi et al., 2016). Experts rank the extracted features based on their dis-
criminative power and store them in lexicons for classification.

The choice of feature representation techniques also plays a role in text classification. Bi-
nary representation (BR), term frequency (TF), term frequency with inverse document frequency
(TFiDF), and normalized TFiDF are commonly used techniques (Debole & Sebastiani, 2004). Each
technique assigns a numeric value to each feature. BR represents features as binary values (0 or 1),
TF represents features based on their frequency in a document, TFiDF considers the frequency of a
feature in the document and its rarity across the dataset, and N-TFiDF combines term frequency,
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document frequency, and document length to ensure equal importance for features in long and
short documents.

Feature selection techniques are employed to identify the most relevant subset of features.
Information Gain (IG), Chi-square (chi), Pearson Correlation (PC), Local Semi-Supervised Fea-
ture Selection (LSFS), Expert-driven (ED) ranking, Mutual Information (MI), Gini-Index (GI), Dis-
tinguishing Feature Selector (DFS), Principal Component Analysis (PCA), Multiple Discriminant
Analysis (MDA), and Bi-Normal Separation Score (BNSS) are some of the techniques used in clin-
ical text classification (Yang & Pedersen, 1997; Benesty et al., 2009; King et al., 2010; Guyon & Elis-
seeff, 2003; Loh, 2011; Uysal & Gunal, 2012; Forman, 2003)

2.4.4.4 Machine learning and rule-based classification

In the field of clinical text classification, both machine learning and rule-based classification ap-
proaches have been applied. Machine learning algorithms utilize historical data to learn patterns
and make predictions, while rule-based classifiers rely on manually crafted rules to perform clas-
sification tasks. Machine learning algorithms, such as support vector machine (SVM), naive Bayes
(NB), decision trees (DT), random forest (RF), k-nearest neighbors (kNN), and artificial neural net-
works (ANN), have been extensively used in clinical text classification (Rani et al., 2015; Kasthuri-
rathne et al., 2016; Zuccon et al., 2013; Shin et al., 2017; Bates et al., 2015; Pineda et al., 2015; Mu-
jtaba et al., 2018). SVM has shown high performance in several studies, often outperforming other
algorithms (Butt et al., 2013; Kasthurirathne et al., 2016), but the other machine learning algo-
rithms, such as NB, RF, DT, and kNN, have also been successfully employed in various clinical text
classification tasks.

Rule-based classifiers have been used as an alternative approach in clinical text classification.
These classifiers rely on manually defined rules or expert knowledge to classify documents (Algho-
son, 2014; Deng et al., 2015; Koopman et al., 2015; Kalter et al., 2016). Rule-based classifiers are
flexible and easy to understand, and misclassification errors can be corrected more easily com-
pared to machine learning approaches. However, they heavily depend on the expertise of rule
designers and may lack scalability.

In our work, we employed a combination of machine learning and rule-based techniques for
feature extraction on the task of text classification.

2.5 Conclusion

In this thesis, we aim to address some of the main problems identified in and presented in the
literature review above.

• In Chapter 3, a pipeline is developed to extract relevant data in a structured form directly
from patients’ clinical notes. This automated data extraction process is proposed as a solu-
tion to avoid the need for manually setting the inputs of the CDSS. We implement several
NLP tools and methods described above to create a robust pipeline for structured data ex-
traction.

• Chapter 4 focuses on implementing a pipeline to distinguish between simple and complex
patients. Simple cases are those covered by existing guidelines, while complex cases require
a more individualized approach. For complex cases, a case-based decision support system
is proposed to provide tailored recommendations. Using this method, we can capture the
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patients covered by the CPGs, thus dealing with the problem of uncommon clinical profiles
that causes nonadherence to guideline-based CDSS.

• In Chapter 5 we automatically create patient profiles within the guideline-based CDSS for
simple cases identified by the methodology described in chapter 4. Leveraging the extracted
structured data from chapter 3, this system offers evidence-based recommendations and
treatment options based on established guidelines. In this chapter we propose an efficient
method to semi-automatically update the knowledge base of a guideline-based CDSS, deal-
ing with the problem of regularly updating knowledge bases.

• Chapter 6 addresses the complex cases using a case-based CDSS. This system calculates
similarities between patients and provides personalized decision support based on similar
cases.





CHAPTER 3

Data extraction from textual breast cancer patient summaries

Before learning case complexity and providing decision support according to the com-
plexity, we need to have structured data that can be used as input to learning the com-
plexity of each clinical case, but also structured data that can be mapped to the guideline-
based decision support system of DESIREE and can be also used to implement similarity
measures for the case-based reasoning. . The effective extraction of structured data from
clinical notes is a critical aspect of advancing healthcare research and clinical decision
support systems. In this chapter, we investigate the efficiency of a rule-based method for
data extraction from breast cancer patient summaries (BCPSs) and explore the associ-
ated challenges and limitations.

The rule-based pipeline demonstrated very good performance overall, achieving perfect
results on attributes for which precise rules were tailored, emphasizing the importance
of customization for improved precision, recall, and F1-scores. Intriguingly, this evalu-
ation also led to the identification of attributes that were not considered in the annota-
tion process, underscoring the dynamic nature of clinical data and the need for pipeline
adaptability. The pipeline showed also very good performance regarding relation ex-
traction and contextual information extraction.

Despite facing challenges like delayed data access and inconsistencies in BCPS data
within the data warehouse, we addressed these limitations through rigorous data clean-
ing and processing. As a result, the rule-based method proved to be effective in handling
BCPSs. The research in this chapter underscores the significance of data quality man-
agement in data-driven healthcare applications and demonstrates the positive impact
of customized rules.

In concluding this chapter, we highlight the potential of a hybrid approach that inte-
grates rule-based techniques with deep learning methods to address the dynamic nature
of clinical data and tackle complex concepts effectively. Embracing this hybrid method-
ology and investing in annotated data can lead the pipeline to evolve into a robust tool
capable of precise and comprehensive context extraction, significantly enhancing its ap-
plicability and value in clinical settings.
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3.1 Introduction

In the field of healthcare and medical research, electronic medical records (EMRs) play a crucial
role as a valuable source of patient information. EMRs contain essential data such as medical
history, diagnoses, laboratory results, imagery reports, discharge summaries, orders, treatments,
and more. These comprehensive records have the potential to significantly improve the quality of
care delivered to patients and support evidence-based decision-making processes. However, the
lack of standardization in EMRs poses challenges in terms of efficient reuse and effective querying
of their content. However, most of the information content of a patient record is provided as text
(Raghavan et al., 2014). Extracting accurate and relevant information from narrative notes often
requires labor-intensive medical record reviews, impeding the seamless integration of computer-
based processing tasks like decision support.

Over the past few decades, artificial intelligence (AI) techniques, specifically natural language
processing (NLP), have been employed in oncology research with varying degrees of success. Co-
den et al. (2009) demonstrated effective results in extracting various information (histology, loca-
tion, primary tumor, etc.). However, when parsing pathology reports, data extraction proved un-
satisfactory due to the inherent nature of clinical notes. These notes lack standardized language,
exhibit ambiguous abbreviations, diverge from common reporting guidelines between clinicians
and organizations, and may contain complex temporal relationships (Wieneke et al., 2015; Forsyth
et al., 2018).
In France, the promotion of medical record utilization has been a key objective over the past
decade, exemplified by initiatives such as the Health Data Hub program, which aim to acceler-
ate the digital transition of the healthcare system (Plantier et al., 2017). However, advanced tools
dedicated to oncology remain scarce.

With the objective of extracting structured data from clinical notes, we (Redjdal et al., 2022a)
tried to use automatic semantic annotators such as those described in chapter 4.2.2.1. Even though
these systems were useful to produce outputs used as features to machine learning algorithms for
complexity classification (see chapter 4), we noticed that using semantic annotators does not allow
to extraction of all specific data related to breast cancer. For instance, numerical values like the
hormonal receptors, the tumor size, or the number of positive lymph nodes are rarely detected by
annotators. Other important features like the TNM staging or the histological type of tumors are
also often missed by annotators.

In this chapter, we focus on the extraction of structured data from breast cancer patient sum-
maries. The objective is to develop a structured representation that supports complexity learning
(chapter 4), case-based decision support (chapter 5), and a mapping with the BCKM ontology for
guideline-based decision support (chapter 6).

To achieve this, based on the entity attribute model value (EAV) used in the BCKM ontology,
we created a pipeline, integrating rule-based techniques to annotate phrases of patient summaries
that refer to structured data elements. Rule-based methods serve as a pre-annotation tool, while
we plan that machine learning methods will be employed for concepts where rule-based methods
are inefficient.

The extraction process is guided by the task and will prioritize capturing all information uti-
lized by clinicians in making decisions for patients. In addition to providing structured data for
the decision support system, such algorithms can be used within the AP-HP data warehouse, as a
valuable tool for extracting structured data from breast cancer patient summaries. This automated
approach not only saves time but also ensures the consistency and reliability of the extracted data,
facilitating robust analysis and further insights into cancer patients’ care.

https://www.cancerresearchuk.org/about-cancer/breast-cancer/stages-grades/tnm-staging
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3.2 Material and methods

As we use the guideline-based decision support system of the DESIREE project (described in sec-
tion 2.2.4.1), we adopt the structured data model provided by the BCKM ontology (described in
section 2.2.4) as the main data model in the structured data extraction task.

In this section, we describe the pipeline we created, starting from unstructured clinical doc-
uments, using natural language processing techniques to obtain structured data presented in the
form of a patient data graph.

3.2.1 Breast cancer patient summaries and structured data model

3.2.1.1 Breast cancer patient summaries

As described in the introduction, this project has been approved by the institutional review board
at AP-HP (CSE 200094). We obtained access to the data of pseudonymized patients diagnosed with
breast cancer between 2018 and 2022. We had access to a sample of 3,500 patients, each patient
containing one or more breast cancer patient summaries (BCPSs), available as textual unstruc-
tured documents (the number of BCPSs varies from 1 to 4 or more, with an average of 3 BCPSs per
patient). BCPSs provide a portrait of patients with all the relevant information that MTB clinicians
need to know to make the best patient-specific therapeutic decision.
A typical BCPS (see figure 3.1) contains all the information needed to decide the best care plan
given a breast cancer patient. Information is organized following the order below:

• Personal information (available as unidentified in the data warehouse)

• Biometric data

• Reason for presentation

• Personal history (medical and surgical history, followed treatments and allergies.)

• Family history

• History of the disease

• Clinical examination

• Radiology results (Mammography, Echography, MRI ..)

• Biopsy results

• TNM classification

• Response to neoadjuvant treatment (if any)

• Pathology results (if prior surgery was done)

• Treatment proposal

However, all BCPSs do not contain all the information above, and many of them do not follow
the structure above. This unstructured format makes information extraction complicated. There is
a lack of standardized language, the use of many abbreviations, acronyms, and specialized terms.
A variety of terms may be used, that may not correspond to a general domain, depending on the
health professional specialty of the BCPS’s author.
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3.2.1.2 Structured data representation

As mentioned above, we use the EAV model. It is a data model that efficiently represents entities
by leveraging a sparse matrix-like structure. It is designed to handle situations where there are nu-
merous attributes that could potentially describe entities, but only a limited number of attributes
are applicable to each specific entity. The EAV model is also known as the Object-Attribute-Value
model, Vertical Database model, and Open Schema (Nadkarni et al., 1999).

In contrast to information models specifically designed for the biomedical domain, such as
OpenEHR, OMOP, and FHIR, which provide predefined objects tailored for hospital information
systems or electronic health records, the EAV model is a generic model that can be applied to vari-
ous domains and is considered to have the flexibility necessary to handle biomedical data, as noted
by Khan et al. (2014); Löper et al. (2013); Nadkarni et al. (1999).
From a logical perspective, data models, whether they are relational or object-oriented, can be
mapped or transformed into the EAV model.
Therefore, following the organization of the BCKM ontology made by Bouaud et al. (2020b), we or-
ganized the target database based on the components of the BCKM model. (Please refer to section
2.2.4 for a detailed description of the ontology and the model).

In line with the BCKM model, we collaborated closely with oncology experts who possess ex-
tensive knowledge and experience in the field. Through their expertise, we were able to discern
the most crucial attributes relevant to each of the main entities. We also determined the poten-
tial values that could be assigned to these attributes. In the subsequent description, we provide a
comprehensive account of each characteristic:

Patient characteristics

• Age

• Menopausal status (premenopausal vs. postmenopausal)

• BRCA (if clinically indicated) and other genetic mutations (Yes vs No)

• Comorbidities (especially important for geriatric patients and for identifying complex
patients)

• Body mass index

• Response assessment to neoadjuvant therapy (disease progression, stable disease, par-
tial response, complete response)

• Oncotype Dx (high risk, intermediate risk, low risk)

• Bilateral breast cancer (yes vs. no)

Side characteristics

• Multifocal breast cancer (Yes vs No)

• Birads score (0, 1, 2, 3, 4, 4a, 4b, 4c, 5, 6)

• Widespread microcalcifications (yes vs no)

• BraSize and cup

• TNM classification

Tumor characteristics

• Histology (ductal, lobular, others)

https://www.komen.org/breast-cancer/diagnosis/factors-that-affect-prognosis/oncotype-dx/
https://www.cancer.org/cancer/types/breast-cancer/screening-tests-and-early-detection/mammograms/understanding-your-mammogram-report.html
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• Tumor size

• Grade (Grade1,Grade2,Grade3)

• Ki67 prognosis factor (numerical value in %)

• Breast cancer subtype (Hormone receptor positive/ HER2-negative, Hormone receptor
positive/ HER2 positive, Hormone receptor negative/HER2 positive, Triple negative)

• SISH or FISH for HER2 in case of HER2 ++ (positive or negative)

Based on the attributes described above, we proposed an annotation scheme to model the
structured data extraction algorithm. In the next section, we detail the annotation scheme and
the resulting dataset. The relevant characteristics to extract were the result of discussions with the
MTB physicians. The annotation scheme itself was the result of many iterations between annota-
tions and scheme revision.

3.2.2 Annotation scheme

We first detail the annotation scheme. We focus on entities cited in the previous section. For the
annotation, we use BRAT annotation tool (Stenetorp et al., 2012b). Figure 3.2 shows the expert-
annotated version of figure 3.1.

3.2.2.1 Entity annotation

In BRAT we don’t have an explicit patient entity mention as the text itself refers to the patient.
We use the entity mentions to annotate the side and the lesion entities. Each entity is annotated
when there is a mention of the lesion for the lesion entity and when there is a mention of a breast
side laterality for the side entity (e.g Mammographie à droite<SideEntity>: lesion<LesionEntity> de
3cm).

In addition to the three main entities of the model (patient, side, lesion), we added the an-
notation of treatment and diagnosis procedures. This information can be useful when making a
decision, especially information about past treatment procedures. Treatment and diagnosis enti-
ties are expressed in BRAT as entity mentions, and some of them have attributes representing the
potential values of the entity (e.g. macro and micro biopsy for the biopsy entity). The annotation
scheme for these is presented in the table 3.1:

Table 3.1: Diagnosis and treatment procedures in the annotation
scheme

Entities Values
Treatment Procedures
Surgery Mastectomy, Breast reconstruction, Breast plastic

surgery, Conservative surgery, Axillary dissection,
Sentinel lymph node Biopsy, Breast re-excision,
Nodes re-excision, Annexectomy

Radiotherapy Chest Wall, Boost, Sus claviculaire, Tumor bed ir-
radiation.

Chemotherapy Neo-adjuvant or adjuvant.
Endocrine Therapy Neo-adjuvant or adjuvant.

https://breastcancernow.org/information-support/facing-breast-cancer/diagnosed-breast-cancer/cancer-grade
https://BRAT.nlplab.org/
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Anti-HER2 therapy Single or dual blocked.
Diagnotic procedures
Biopsy Mircobiopsy, Macrobiopsy.
Cytoponction Positive, Negative.
Ultrasound Text.
Mammography Text.
Pet scan Text.
Clinical examination Text.

3.2.2.2 Attribute and value annotation

In the BRAT tool, only 4 types of mentions can be used, the entity mention, the attribute mention,
the event mention, and the relation mention. Considering this model, we had to adapt the an-
notation scheme to fit into it. Therefore patient characteristics are annotated as entity mentions
and their values are expressed as attribute mentions. In addition to that, BRAT does not allow the
user to put a textual or integer value for an attribute, all possible values of an attribute must be put
into the annotation configuration file. This is why in the annotation scheme, for attributes that
have integer values like the tumor size or text values like comorbidities we expressed as a value the
text annotated. For attributes with hierarchical and boolean values, the value of each attribute is
expressed using an attribute mention.

Figure 3.3: Example of attribute and value annotation

For example in figure 3.3, the
attribute menopausal status corre-
sponds to an entity mention in BRAT,
and has the value Postmenopausal
that corresponds to an attribute
mention in BRAT. The attribute Bra-
SizeCup corresponds to an entity
mention in BRAT and has the value
105B which is the text annotated.
The table 3.2 shows all the attributes
and their values in the annotation
scheme.

Table 3.2: Attributes of the main entities and their values in the
annotation scheme

Attributes Values
Patient entity
Age Integer
Menopausal status Premonopausal, Postmenopausal, Perimenopausal
BRCA and other genetic muta-
tions

True, False

Comorbidities Text
Antecedent of another cancer Breast cancer, Other cancer, Any cancer
Body mass index Integer
Response assessment to
neoadjuvant therapy

Disease progression, Stable disease, Partial response,
Complete response
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Oncotype Dx Text (RS score)
Pregnancy Status Pregnant, Desired pregnancy
Bra size and cup Text
Treatments Text

Side entity
Side laterality Left, Right, Bilateral
BIRADS classification 0, 1, 2, 3, 4, 4a, 4b, 4c, 5, 6
Confirmed positive nodes True, False
Clinical positive nodes True, False
Widespread microcalcifica-
tions

True, False

TNM Text
N status Text
Clear surgical margins True, False
Cavity shave margin Upper, Upper outer, Upper inner, Lower, Lower inner,

Lower outer, Inner, Outer, Lateral
Cancer stage Text
Node size Integer
Max distance between tumors Integer

Lesion entity
Tumor Text
Histology Invasive Breast Carcinoma, Breast Sarcoma, Lobular

Breast Carcinoma, Invasive Ductal Breast Carcinoma,
Invasive Ductal and Lobular breast carcinoma, Inva-
sive Lobular Breast Carcinoma, InSitu Breast Carcinoma,
DCIS Breast Carcinoma, Lobular InSitu Breast Carci-
noma, Non-cancer, Other

Associated InSitu carcinoma True, False
Presence of emboly True, False
Tumor site upper inner quadrant, axillary region, areolar region, up-

per outer quadrant, lower outer quadrant, lower inner
quadrant, central, union inner quadrant, union outer
quadrant, union upper quadrant, union lower quadrant,
under the mammary fold, mastectomy scar

Tumor size Integer
Tumor grade inv Grade1, Grade2, Grade3
Tumor grade insitu Low Grade, Intermediate Grade, High Grade
Estrogen receptor Integer
Progesterone receptor Integer
HER2 status Text
Ki67 Text
FISH Text
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3.2.2.3 Contextual information annotation

Extracting contextual information in the clinical domain is of paramount importance as it provides
crucial insights that enhance the understanding and interpretation of medical data extracted from
clinical notes. In BRAT we express the contextual information as attribute mentions, that can be
applied to various entities to detect: the negated entities, the hypothetical entities, the family-
related entities, the patient preferences, and the antecedent entities.

Figure 3.4: Contextual information annotation

For example, in Figure 3.4:

• 1st line, the entity antecedent of an-
other cancer ( referred to as Pres-
enceOfOtherCancer in the figure ) is
negated and affected to the family
because the text reads Family his-
tory: 0 cases of cancer.

• Line 2, the entity antecedent of
another cancer is tagged as an-
tecedent because the text reads
Medical history: Lung cancer .

• Line 4, the entity tumor is hypothet-
ical because it is a clinical examina-
tion.

• Line 6, the entity mastectomy is
tagged as patient preference because the text says Patient wishing to have a mastectomy.

3.2.2.4 Relations annotation

Since BRAT was not originally designed to annotate long multi-line relations, we tried to use as less
relation mentions as possible. Following the entity, attribute, and value model. there are 3 types of
relations in this work:

• Has side : This relation expresses the relation between a lesion entity and a side entity. To
avoid a multi-line relation we express this relation using the attribute mention (left, right, or
bilateral) that can be applied to any lesion entity or histologic type

• Is attribute of : This relation is used to link the attributes of an entity with the entity itself.
In this work, we need to express the relation between the side attributes and the side entity.
And also the relation between the lesion attributes and the lesion entity.
As the side attributes can be related to the left or/and the right side, we keep the same
methodology that we used to express the has side relation, as we mention the relation be-
tween the attribute and the side using the attribute mentions left, right, or bilateral.

For the tumor attributes, we use a relation name isAttributeOf to express the link between a
tumor attribute and its tumor entity. Even if we still have some problems with the multi-line
relations, we notice that the tumor attributes are generally expressed just after the mention
of the tumor entity, so while all the relations are expressed, the documents can still be read-
able using this relation as we can see in figure 3.5.
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Figure 3.5: Relation annotation

3.2.3 Breast cancer named entity recognition

Given the time-consuming nature of manual annotation for machine learning, a rule-based pre-
annotation model can be immensely helpful. The proposed approach begins with pre-annotating
clinical notes using rule-based NLP techniques, utilizing domain-specific rules and regular expres-
sions to identify and tag the specific entities mentioned in the annotation scheme within the text.

The utilization of rule-based NLP brings forth numerous advantages. Firstly, it provides a rapid
and cost-effective means of developing annotation guidelines, as domain experts can actively con-
tribute to the creation of rules based on their expertise. This reduces the dependence on extensive
manual annotation, which tends to be a time-consuming and resource-intensive process. More-
over, rule-based methods promote transparency and interoperability, as the rules can be thor-
oughly reviewed, refined, and adjusted to enhance performance. This adaptability facilitates an
iterative refinement of the NER process, ensuring the generation of high-quality annotations. In
this section, we describe the pipeline we developed to implement the named entity recognition.

3.2.3.1 Text processing

We leveraged the capabilities of EDS-NLP (Dura et al., 2022b), a powerful tool developed by the AP-
HP data science team (see section 2.4.3.4.3), to extract the relevant information in French clinical
notes. Since none of the EDS-NLP tools was adapted to provide satisfactory results, we designed
a specialized pipeline within the EDS-NLP library for extracting breast cancer-related information
from BCPSs.

Normalization We used the EDS-NLP normalization pipeline. It follows a non-destructive nor-
malization approach, ensuring that the original input text remains unaltered. The normalizer op-
erates according to four dimensions, including converting the text to lowercase, removing accents
while maintaining character length, normalizing apostrophes and quotation marks, detecting and
marking spaces and new lines.
To optimize the normalization process, we developed an end-of-line detection algorithm. In this
algorithm, we used the end-lines model provided by EDS-NLP instance, which is an unsupervised
algorithm based on the work of Zweigenbaum et al. (2016). In addition to that we implemented a
rule-based approach to make more accurate endlines detections (e.g. if a line starts with an up-
percase and the line before ends with a point, THEN this is an end of the line).



50 Chapter 3 – Data extraction from textual breast cancer patient summaries

3.2.3.2 Rule-based named entity recognition

After the normalization process, we worked on extracting the attributes for each entity and their
mentions. This process was a mix of using pipelines already implemented within EDS-NLP, regular
expressions and using Clarity NLP (Georgia_Research_Institute, 2018)) for attributes where results
were better than regular expressions and EDS-NLP components (attributes are the TNM classifi-
cation and the Tumor size). Table 3.3 below shows the methods used to extract every mention in
the text. The attributes and entities extracted correspond to the ones described in table 3.2:

Table 3.3: Methods used to extract attributes and their values
from the text

Entities or attributes Methods
Patient entity
Age Available as structured data
Menopausal status Regular expression + postprocessing rules
BRCA and other genetic
mutations

Regular expression + postprocessing rules

Comorbidities Regular expression + Semantic annotators (ECMT)
+ ICD10 codes function from EDS-NLP

Antecedent of another
cancer

Regular expression + Semantic annotator (ECMT)
+ ICD10 codes extraction function from EDS-NLP

Body mass index Available as structured data
Response assessment to
neoadjuvant therapy

Regular expression

Oncotype Dx Regular expression
Bra size and cup Regular expression
Pregnancy Status Regular expression
Treatments Drugs extraction function from EDS-NLP

Side entity
Side laterality Regular expression
BIRADS classification Regular expression
Confirmed positive
nodes

Regular expression + postprocessing rules

Clinical positive nodes Regular expression + postprocessing rules
Widespread microcalci-
fications

Regular expression

TNM Clarity NLP’s TNM component
N status Regular expression
Clear surgical margins Regulars expression + postprocessing rules
Cavity shave margin Regulars expression
Cancer stage Regulars expression
Node size Clarity NLP’s size component + postprocessing

rules
Max distance between
tumors

Clarity NLP’s size component + postprocessing
rules

https://claritynlp.readthedocs.io/en/latest/
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Lesion entity
Tumor Regular expressions
Histology Regular expressions + semantic annotator ECMT
Associated InSitu Carci-
noma

Regular expression + postprocessing rules

Presence of Emboly Regular expression + postprocessing rules
Tumor site Regular expressions
Tumor size Clarity NLP’s size component + postprocessing

rules
Tumor grade inv Regular expression
Tumor grade insitu Regular expression
Estrogen receptor Regular expression
Progesterone receptor Regular expression
HER2 status Regular expression
Ki67 Regular expression
FISH Regular expression

3.2.3.3 Contextual information identification

As mentioned in section 3.2.2.3, the aim is to enhance the accuracy and reliability of information
extraction from clinical notes. To do this, we use EDS-NLP components, and enrich them with a
regular expression to identify the context:

Negation identification: The eds.negation pipeline employs a simple rule-based algorithm, in-
spired by the NegEx algorithm developed by Chapman et al. (2001), to detect negated spans
within breast cancer patient summaries.
The pipeline achieved a notable Negation F1-score of 71% for CAS/ESSAI (Grabar et al.,
2018) and 88% for NegParHyp (Dalloux et al., 2017), indicating its effectiveness in detecting
negated information.

Family history identification: Similar to eds.negation, the eds.family pipeline utilizes a rule-based
algorithm to identify spans or tokens within the text that refer to family members or family
history rather than to the patient herself.

Hypothesis identification: The eds.hypothesis pipeline employs a rule-based algorithm to iden-
tify speculative spans within the text. These speculative spans denote information that is not
certain but rather represents hypotheses or potential assumptions.
The pipeline achieved a Hypothesis F1-score of 49% for CAS/ESSAI (Grabar et al., 2018) and
52% for NegParHyp (Dalloux et al., 2017), indicating its ability to identify speculative infor-
mation within breast cancer patient summaries.

Patient preference identification: EDS-NLP does not include a pipeline to identify patient pref-
erences. However, this information is really important within the domain (e.g. if a patient
wants a mastectomy while the guidelines say lumpectomy, doctors have to take into consid-
eration the patient’s preference and consider doing the mastectomy). That is why we use reg-
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ular expressions to detect if a patient refuses another treatment then the one recommended
by the guidelines.

3.2.4 Structured data extraction

Once we had a named entity extraction (NER) algorithm to annotate entities within the text. We
developed a structured data extraction pipeline to capture important information about a patient.
The pipeline involves several steps to ensure accurate extraction and organization of data.

First, we identify relevant sections within the text that contain information about the patient.
These sections may include details about medical history, symptoms, treatments, and other perti-
nent factors.

Next, we utilize the NER algorithm described in 3.2.3 to annotate entities within the text. This
helps us identify specific pieces of information such as medical conditions, medications, and pro-
cedures.

Once the entities are annotated, we extract relations between the annotated entities. After
extracting the relations, we filter the data according to the patient’s pathway. By doing so, we create
a final structured version of the breast cancer patient summary that is consistent and easily usable
in a CDSS.

For a visual representation of the structured data extraction pipeline, please refer to figure 3.6

Figure 3.6: Structured data extraction pipeline

3.2.4.1 Section identification

In order to extract structured data from clinical notes for breast cancer patients, a first and cru-
cial step is the identification and extraction of relevant sections within the text. To accomplish
this, a rule-based approach is employed. The process begins with a step to pre-possess the text as
explained in 3.2.3.1.1. This ensures that the subsequent analysis can be performed accurately.

To do the section extraction, we created a set of predefined section markers or keywords that
are indicative of specific sections within the clinical notes. These section markers are carefully se-
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lected based on domain knowledge and an understanding of the typical structure of breast cancer
patient summaries as mentioned in 3.2.1.1. For instance, section markers such as "Personal Infor-
mation," "Biometric Data," "Radiology Results," and "Treatment Proposal" are used to identify the
corresponding sections within the BCPS.

Once the section markers are defined, the algorithm scans the preprocessed clinical notes for
occurrences of these markers. It employs rule-based matching using regular expressions to identify
the beginning of each section based on the proximity of the markers and the surrounding context.
For instance, if the section marker "MRI Results" is found, the algorithm looks for the nearest sec-
tion marker or a distinctive pattern that indicates the start of a new section (e.g. "Biopsy Results").
The new section indicates the end of the last section.

In cases where section markers alone are insufficient to accurately identify the boundaries of
sections, additional linguistic patterns and contextual information can be utilized. For example,
the algorithm may take into account the presence of specific keywords or phrases that commonly
appear at the start or end of certain sections (e.g. clinicians always use "MTB of [a date]" to intro-
duce the conclusion of previous MTBs.

Upon identifying the boundaries of sections, the algorithm extracts the corresponding text,
including any relevant subsections or subheadings. Then the NER algorithm presented in 3.2.3 to
extract the entities for each section with their contextual information. Finally, to build a patient
timeline, we extract for each section, date mentions using eds.dates, a component of EDS-NLP.
Using this method, sections are then organized into a structured format, facilitating the relation
extraction.

3.2.4.2 Relation extraction

The process of relation extraction aims to identify and capture meaningful connections between
entities within BCPSs. As mentioned in the annotation scheme 3.2.2, we have two main relations
to extract: the hasSide relation between a tumor entity and a side entity, and the isAttributeOf
relation between an attribute and its entity.

The relation extraction procedure consists of the following steps:

Entity identification: After extracting the sections. The NER algorithm introduced in 3.2.3 is em-
ployed to extract entities and attributes within each section. Once we have the entities and
attributes we can extract the relations between the lesions and their side, and then extract
the attributes for the side and the tumor.

hasSide relation extraction: The extraction of the "hasSide" relation focuses on establishing the
relationship between tumor entities and side entities. This relation signifies the presence of a
tumor on a specific side of the patient’s breast, such as left, right, or bilateral. The extraction
process involves a rule-based algorithm that identifies tumor entities within each sentence
and connects it to the appropriate side.

Side attributes extraction: Side attributes refer to specific characteristics or features associated
with the affected sides of the patient. These attributes may include laterality (left, right, or
bilateral), BIRADS classification, presence of clinically positive nodes, TNM stage, and other
related information. The extraction of side attributes involves a rule-based algorithm that
focuses on identifying side-specific entities and extracting their associated attributes. The
algorithm utilizes domain-specific knowledge and linguistic patterns to identify and asso-
ciate attributes with their corresponding side entities, taking into account the context and
relationships within the clinical notes.
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Lesion attributes extraction: Lesion attributes encompass details and characteristics related to
the detected breast lesions. These attributes may include tumor size, tumor grade, pres-
ence of associated in situ carcinoma, HER2 status, Ki67 expression level, and other relevant
information. The extraction of lesion attributes involves a rule-based algorithm that identi-
fies and associates attributes with their corresponding lesion entity. The algorithm leverages
domain-specific knowledge, linguistic patterns, and contextual information to extract the
relevant lesion attributes, considering the relationships and context within the BCPSs.

3.2.4.3 Automatic scenario-based data extraction

Cancer care plans are organized around a number of therapeutic modalities such as surgery (SUR),
chemotherapy (CHEM), targeted therapies, endocrine therapy (HO), and radiotherapy (RAD). When
dealing with non-metastatic breast cancer patients, four periods of interest or “scenarios” can be
identified concerning the clinical pathway of the patient:

Scenario A : when cancer has just been diagnosed and no treatment has been performed, the
initial therapeutic decision may then be surgery or neoadjuvant therapy;

Scenario B : when a neoadjuvant therapy has been administered;

Scenario C : when neoadjuvant therapy and surgery have been administered;

Scenario D : when only surgery has been first performed and adjuvant treatment modalities have
to be decided.

The diagram displayed in figure 3.7 illustrates all the possible trajectories. Depending on the sce-
nario, the information needed to describe the patient’s case and to make appropriate decisions
varies. For example, if we are in scenario A (initial decision), we would want to know the BIRADS
classification score, so that we know the risk of cancer in each breast. However, this information
(the BIRADS) would be useless in scenario D because we already did the surgery and we want to
know what kind of treatment is recommended after the surgery. So the BIRADS doesn’t add value
when we are in scenario D.

Figure 3.7: Diagram of all medically relevant care plans for non-metastatic breast cancer (Kouz
et al., 2020)
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3.2.5 Evaluation

To conduct the evaluation, we utilized a corpus of manually annotated breast cancer patient sum-
maries. Each BCPS was meticulously reviewed by a domain expert, who annotated the data using
the BRAT annotation tool.

Since we employed BRAT for annotations, we structured the evaluation into three distinct
modalities: Entity Mentions, Attribute Mentions, and Relation Mentions. Entity Mentions cor-
respond to mentions of attributes as described in Table 3.2, whereas Attribute Mentions pertain to
the values (also described in table 3.2) for the attributes mentioned in the same table. For instance,
in the text "Breast classified ACR 4," the extracted entity mention is ’ACR 4,’ and the corresponding
attribute mention for this entity would be "Birads4."

The final modality, Relation Mentions, encompasses two key relations: "isAttributeOf," rep-
resenting the relation between a tumor and its attributes, and "HasSide," representing relations
between a side and its attributes or lesions.
In concise terms, the evaluation methodology addresses different aspects of the information ex-
traction system:

1. Entity Mentions: We assess the performance of the NER pipeline in accurately extracting
mentions of entities and their main attributes. This evaluation showcases how well the sys-
tem identifies and classifies entities in the text.

2. Attribute Mentions: Here, we evaluate the postprocessing methods’ efficiency in extracting
attribute values associated with the identified entities. This assessment allows us to gauge
the system’s ability to capture and extract relevant attribute values from the text. We also use
attribute mentions to express context-related entities such as negation.

3. Relation Mentions: The evaluation of Relation Mentions focuses on examining the model’s
capacity to perform section-based reasoning. This enables the extraction of relations be-
tween different entities, allowing us to understand the interactions and associations between
them.

To evaluate Entity Mentions, we compiled a list of triplets containing the start position, end
position, and the type of mention for each annotated file. We then compared this list of mentions
in the gold standard (manually annotated) to the list of mentions predicted by the algorithm. The
evaluation was carried out using standard performance metrics: precision, recall, and F1-score.
True positives correspond to triplets that appear in both lists, false negatives are triplets present in
the gold standard but not in the predicted list, and false positives are triplets found in the predicted
list but not in the gold standard.

Similarly, to evaluate Attribute Mentions, we created triplets consisting of the type of attribute,
the value of the attribute, and the ID of the corresponding entity mentioned for each annotated file.
The performance of Attribute Mentions was evaluated using the same standard metrics: precision,
recall, and F1-score.

For Relation Mentions, we generated triplets containing the IDs of the first and second entities
involved in the relation, along with the type of the relation. This information allowed us to evaluate
the relations using precision, recall, and F1-score.

By conducting this thorough evaluation, we sought to precisely gauge the system’s accuracy in
identifying and classifying entity mentions, attribute mentions, and relation mentions. The evalu-
ation results provide valuable insights into the strengths and areas for improvement of the struc-
tured data extraction pipeline. It allows us to iteratively refine the system, enhance its precision,
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and ensure the reliable extraction of crucial information from breast cancer patient summaries.
Ultimately, this evaluation process plays a crucial role in building a robust and effective informa-
tion extraction system for breast cancer patient data.

3.3 Results and discussion

The rule-based algorithm for attributes and values extraction from BCPSs was developed using
small BCPS samples, which were iteratively discussed with domain experts to refine the annotation
scheme and add new rules for capturing novel entities. After six manual annotation sessions with
2 advanced experts, we identified all the relevant attributes and entities to extract. The algorithm
underwent evaluation on a manually annotated corpus of 30 BCPSs.

The evaluation results, presented in Table 3.4, demonstrate the algorithm’s efficiency in ex-
tracting entity mentions corresponding to various attributes described in Table 3.2. For attribute
values extraction requiring post-processing, we utilized BRAT’s attribute mention feature. In Table
3.4, the performance of values extraction for attributes is highlighted in bold.

Table 3.4: Pipeline’s performance for attributes and values

precision recall F1-score Number of mentions

Patient entity
BraSize Cup 0.81 0.76 0.78 26
Breast cancer relapse 0.80 0.73 0.76 7
Comorbidities 0.91 0.64 0.72 86
Comorbidities values 0.81 0.77 0.78 45
Drugs 0.79 0.82 0.78 68
Menopausal status 0.94 0.94 0.94 20
Menopausal status values 0.94 0.94 0.94 20
Response assessment to neoadjuvant
therapy

0.84 0.78 0.79 22

Response assessment to neoadju-
vant therapy values

0.84 0.78 0.79 22

Genetic mutation 1.00 1.00 1.00 6
Genetic mutation values 0.83 0.83 0.83 6
OncotypeDX 1.00 1.00 1.00 3

Side entity
Side 0.97 0.97 0.97 520
BIRADS classification 0.96 0.95 0.96 126
BIRADS value 0.96 0.95 0.96 126
Confirmed Positive Nodes 0.29 0.29 0.29 20
Confirmed Positive Nodes values 0.29 0.29 0.29 20
Cavity Shave Margin 0.91 0.85 0.87 26
Cavity Shave Margin values 0.98 0.93 0.94 33
Clear Surgical Margins 0.64 0.60 0.62 58
Clear Surgical Margins values 0.64 0.60 0.62 58
TNM 0.90 0.82 0.85 48
N status 1.00 1.00 1.00 17
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Clinical Positive Nodes 0.80 0.76 0.77 123
Clinical Positive Nodes values 0.81 0.75 0.76 125
Widespread Microcalcifications 0.82 0.82 0.82 21
Widespread Microcalcifications val-
ues

0.82 0.82 0.82 21

NodeSize 0.85 0.73 0.75 15
Lesion entity

Estrogen receptor 0.96 0.96 0.96 62
Progesterone receptor 0.96 0.96 0.96 61
HER2 status 0.96 0.95 0.96 64
Ki67 0.96 0.95 0.95 53
Tumor size 0.93 0.90 0.91 167
Tumor grade inv 0.94 0.94 0.93 57
Tumor grade inv values 0.94 0.95 0.94 57
Tumor grade insitu 1.00 1.00 1.00 23
Tumor grade insitu values 1.00 1.00 1.00 23
Tumor site 0.92 0.93 0.92 145
Tumor site values 0.85 0.93 0.88 145
Histology 0.92 0.87 0.88 119
Histology values 0.90 0.85 0.87 119
Tumour 0.93 0.92 0.92 317
Presence Emboly 1.00 1.00 1.00 19
Presence Emboly values 1.00 1.00 1.00 20
FISH 1.00 0.86 0.90 13
Associated InSitu Carcinoma 1.00 1.00 1.00 14
AssociatedInSituCarcinoma values 1.00 1.00 1.00 14

Diagnosis procedures
Biopsy 0.95 0.93 0.94 68
Biopsy values 0.96 0.95 0.95 46
Cytoponction 0.92 0.92 0.92 18
Cytoponction value 1.00 1.00 1.00 1
Ultra sound 1.00 1.00 1.00 55
MRI 0.95 0.95 0.95 48
Mammography 0.93 0.90 0.91 46
Pet scan 0.92 0.89 0.90 46
Clinical examination 0.96 0.96 0.96 49

Treatment procedures
Anti HER2 therapy 0.37 0.37 0.37 12
Anti HER2 therapy values 0.00 0.00 0.00 7
Surgery 0.92 0.83 0.87 220
Surgery values 0.99 0.91 0.94 211
Radiotherapy 0.95 0.87 0.90 37
Radiotherapy values 0.75 0.54 0.62 7
EndocrineTherapy 0.83 0.75 0.77 22
Chemotherapy 0.83 0.81 0.81 59
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The evaluation was carried out on attribute and value extraction for different entities, includ-
ing "Patient," "Side," "Lesion," "Diagnosis procedures," and "Treatment procedures." Within each
entity, attributes and values were grouped based on the number of mentions they received for a
more comprehensive analysis. In the next paragraphs, we will focus on the main entities (patient,
side, and lesion).

In the "Patient entity," results indicate relatively high performance for most attributes, with
precision ranging from 0.79 to 1.00, recall from 0.64 to 1.00, and F1-score from 0.72 to 1.00. Notably,
Genetic mutation and OncotypeDX achieved perfect precision, recall, and F1-score, likely due to
their limited occurrences (6 and 3 mentions, respectively). The Menopausal status achieved the
highest F1-score of 0.94 (as it is generally well expressed in BCPSs). The performance of Respon-
seAssessmentToNeoadjuvantTherapy was also notable with an F1-score of 0.79. Some entities,
such as BraSize Cup and BreastCancerRelapse, showed slightly lower performance with F1-scores
of 0.78 and 0.76. We noticed a poor recall for the comorbidity attribute (0.64) as there were some
comorbidities annotated by the experts that were not taken into account when building the rules.

Moving to the "Side entity," the NLP pipeline demonstrated excellent performance in recog-
nizing entities like "N Status", "BIRADS classification," and "Cavity Shave margins" with high F1-
scores of 1, 0.97, and 0.87 respectively. Entities such as "WidespreadMicrocalcifications" and "Clin-
icalPositiveNode" also showed commendable results, with an F1-score of 0.82 and 0.76. Addition-
ally, the entity "TNM" achieved a solid F1-score of 0.85. However, there were some challenges with
entities like "Confirmed Positive Nodes" which had the lowest F1-score of 0.29.

Finally, the "Lesion" entity": "Estrogen Receptor," "Progesterone Receptor," "HER2 Status",
and "Ki67" attributes exhibited high performance, all achieving precision, recall, and F1-score
greater than 0.96. "Tumor Size" and "Tumor Site" attributes also performed well with F1-scores
of 0.91 and 0.92, respectively. "FISH" attribute extraction showed a comparatively lower but still
very good F1-score of 0.90.

3.3.1 Contextual information extraction

The analysis of the NLP pipeline performance to extract contextual data is described in table 3.5.
We can see varying performance across the contextual attributes. Hypothetic showed the best
performance, achieving a high F1-score of 0.88, indicating that the model successfully recognized
this attribute with good precision and recall. Negation also exhibited notable performance, with
an F1-score of 0.74, suggesting accurate identification of this attribute in the text.

However, the attributes Family and Antecedant showed relatively modest results, with F1-scores
of 0.63 and 0.51, respectively, indicating room for improvement in their recognition. The family
had decent precision and recall, while the antecedent had slightly lower precision and recall val-
ues.

On the other hand, the attribute PatientPreference was mentioned 6 times in the expert’s an-
notations and displayed poor performance, with all metrics being 0., indicating that the algorithm
struggled to recognize this attribute effectively, in fact, this attribute was only found in 2 BCPSs
when building the rules, and these rules did not match any of the mentions of patient preference
in the evaluation dataset. This is why it was not included in the table.
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Table 3.5: Pipeline performance for contextual information ex-
traction

precision recall F1-score Number of mentions

Negated 0.88 0.66 0.74 100
Hypothetic 0.91 0.86 0.88 261
Family 0.65 0.62 0.63 26
Antecedant 0.60 0.46 0.51 78

3.3.2 Relation extraction

As explained in section 3.2.4.2, as BRAT makes it complicated to visualize long-distance relations,
we expressed the hasSide relation using three attribute mentions: BilateralSide, RightSide, and
LeftSide. Table 3.6 shows the performance of the NLP pipeline for the relations extraction, in ad-
dition to the hasSide relations, we explore the IsAttributeOf relation between the tumor entity and
its attributes.

The analysis reveals that the relationship type IsAttributeOf demonstrated excellent perfor-
mance, with high precision, recall, and F1-score, all at 0.9, indicating accurate extraction of in-
stances for the relationship between a tumor entity and its attributes. Additionally, the substantial
number of mentions (695) further supports the model’s strong performance.

Regarding the RightSide and LeftSide relationships, the model demonstrated respectable per-
formance. RightSide had an F1-score of 0.79, and LeftSide performed slightly better with an F1-
score of 0.83, suggesting good precision and recall for the extraction of relationships between side
entities and their attributes and lesions.

BilateralSide, being a special case in side relation extraction, should be evaluated differently.
It typically involves bilateral attributes, and given the complexity of such relationships, and the
heuristic chosen and described in section 3.2.4.2, the model achieved modest results with an F1-
score of 0.25.

Table 3.6: Pipeline performance for relation extraction

precision recall F1-score Number of mentions

IsAttributeOf 0.9 0.9 0.9 695
BilateralSide 0.27 0.24 0.25 23
RightSide 0.81 0.79 0.79 350
LeftSide 0.88 0.80 0.83 658

3.3.3 Discussion

In this study, our focus was on assessing the efficiency of a rule-based method for structured data
extraction from clinical notes. The overall performance of the pipeline is good, with an average
precision and recall of 0.81 and 0.84, respectively. Unsurprisingly, the results revealed that the
pipeline performed exceptionally well on attributes where we devoted considerable time and effort
in crafting precise rules, for instance, the NLP pipeline had an average F1-score of approximately
0.93 for the Lesion entity attributes which are those for which we put the most effort in the rules as
they are important for decision making. This finding underscores the significance of tailoring rules
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to specific attributes, leading to improved precision, recall, and F1-scores, thereby enhancing the
overall performance of the pipeline.

Interestingly, during the evaluation, we identified the emergence of previously unrecognized
attributes, such as "Pregnancy Status" and "AntiHER2 Treatment Value." This discovery highlights
the dynamic nature of clinical data, necessitating adaptability in the pipeline to accommodate new
and evolving attributes as they surface. Moreover, attributes where we achieved poor performance
like "Clear surgical margins " have given us insights on new patterns to represent these attributes,
which led to the update of the rules. Typically for the "Clear surgical margins" attribute, we found
that the expert set 3mm as the distance for which we consider the margins should be considered as
clear (meaning that enough healthy tissue surrounding the cancerous tissue was removed during
surgery) whereas it was considered 5mm in the rules created.

On the other hand, certain attributes exhibited suboptimal performance, which could be at-
tributed to their complex expressions that posed challenges for traditional rule-based extraction
methods, typically the "Confirmed positive nodes" attribute was very poorly extracted from BCPSs
with an F1-score of 0.29. This attribute is often expressed in various language expressions depend-
ing on the author of the BCPS. Such findings underscore the need for a more flexible and sophisti-
cated approach, potentially incorporating advanced techniques like deep learning-based models,
to handle complex concepts effectively.

Furthermore, the effectiveness of the rule-based method for data extraction is heavily depen-
dent on the quality of the utilized data. BCPSs, presented in a free-text format, exhibits consid-
erable variation in style and content due to the diverse preferences and practices of individual
healthcare professionals. This lack of standardized structure poses a significant challenge for rule-
based algorithms, leading to inconsistent interpretation and extraction of data. The presence of
medical jargon, abbreviations, and context-specific language in clinical notes further introduces
ambiguities that can confound the algorithm. Moreover, the absence of clear headers or standard-
ized sections complicates the process of identifying specific information within the notes. Conse-
quently, despite efforts to extract relevant sections and comprehend the text’s structure using rules,
the algorithm occasionally misinterprets crucial details or fails to capture essential data. Such in-
accuracies become particularly problematic if the algorithm is employed to integrate data in a
clinical decision support system, potentially leading to errors that could impact patient care and
safety. To address these challenges, more advanced NLP techniques, such as machine learning
and context-aware language models, should be considered to enhance data extraction accuracy
and improve the reliability of CDSS performance. Ongoing efforts by the ANS in France (Agence
du Numérique en Santé) and INCa (Institut National du Cancer) are in progress to establish such
standards for cancer patient summaries, but the widespread adoption of these content guidelines
within medical practices takes time and effort.

Additionally, another limitation arose from the relatively small annotated dataset, comprising
only 30 BCPS (mainly due to a lack of experts availability). While this dataset was sufficient for the
initial evaluation of rules, a larger annotated dataset would have provided more robust results and
further insights into the algorithm’s performance. However, it should be noted that structured data
created manually ( in chapter 5 were utilized for additional evaluation, offering an opportunity to
validate and complement the findings.

Upon comparing the results to similar works, specifically, the study conducted by Schiappa
et al. (2022) on breast cancer data extraction using deep learning and keyword methods called
RUBY, this pipeline demonstrates comparable and sometimes superior performance.
In terms of the extracted attributes, the NLP pipeline implemented in this work and RUBY show-
case close results. For instance, when identifying concepts like "Histologic type," the pipeline

https://esante.gouv.fr/volet-frcp-fiche-de-reunion-de-concertation-pluridisciplinaire
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implemented in this work achieves 92% precision compared to RUBY’s 81%. Similarly, for the
"Menopausal status," the pipeline implemented in this work achieves 94%, outperforming RUBY’s
80%. However, RUBY achieves slightly better results for laterality detection with 90%, while the
pipeline implemented in this work averages 84%.

Overall, these comparisons highlight that a robust rule-based approach, like the one employed
in this NLP pipeline, can achieve competitive results when compared to methods like RUBY which
rely on deep learning and keyword techniques. Nonetheless, as we look to the future, a promising
avenue for improvement lies in leveraging deep learning methods for context extraction. By anno-
tating more data, the pipeline can capitalize on the power of deep learning models, such as recur-
rent neural networks and transformers, to capture contextual dependencies and nuances present
in clinical notes. This approach is likely to result in enhanced precision and recall, particularly
when dealing with complex attribute extractions. However promising results of the rule-based
methods also prove that maybe there is no need to go for bigger, black box models.

3.4 Conclusion

In conclusion, this study has demonstrated the efficacy of a rule-based method for structured data
extraction from clinical notes. The pipeline achieved remarkable performance on attributes where
precise rules were tailored, emphasizing the importance of customization for improved precision,
recall, and F1-scores. The discovery of previously unrecognized attributes highlighted the dynamic
nature of clinical data, necessitating adaptability in the pipeline to accommodate new and evolv-
ing attributes. However, challenges were observed with certain complex attributes, prompting the
need for a more flexible and sophisticated approach, potentially involving machine learning-based
models.

The quality of the data used in the study also emerged as a critical factor influencing the effec-
tiveness of the rule-based method. The lack of standardized structure and the presence of med-
ical jargon and context-specific language in clinical notes posed challenges for consistent data
extraction. Suboptimal performance on some attributes indicated the limitations of traditional
rule-based methods and the necessity of advanced NLP techniques.

Looking ahead to adapt to the dynamic nature of clinical data and overcome challenges with
complex concepts, a hybrid approach that combines rule-based techniques with deep learning
methods holds promise. By embracing this approach and investing in annotated data, the pipeline
can evolve into a powerful tool for precise and comprehensive context extraction, further aug-
menting its utility in clinical settings.





CHAPTER 4

Breast cancer complexity learning

In this chapter, we work on learning the complexity of a breast cancer case from clini-
cal notes. Machine learning (ML) algorithms in natural language processing have been
successfully applied for tasks such as the classification of patient record notes, or other
documents showing satisfying results. This study aims to compare classical machine
learning models with current state-of-the-art language models and rule-based methods
on a corpus of annotated real-world breast cancer patient summaries, to identify com-
plex clinical cases in breast cancer patients. The results suggest that classical ML models,
specifically multi-layer perceptron, outperformed transformers, pre-trained language
models, and the rule-based method, possibly due to the feature extraction based on
semantic annotators. However, the study also highlights the limitations of ML and
transformer-based models in interpreting outcomes and the need for better structura-
tion of data to express complex clinical concepts. We suggest that further fine-tuning
and feature engineering may improve the performance of transformer models, but clas-
sical ML models remain a promising approach for this task.

4.1 Introduction

As mentioned in the introduction, patient clinical cases may be of various levels of complexity
(Soukup et al., 2019) and there is no a priori definition of breast cancer complexity and very few
tools are available that assess cancer complexity (Soukup et al., 2020). In order to delve deeper
into understanding and predicting the complexity of patient clinical cases, we explored various
approaches, including machine learning and deterministic knowledge-based approaches, using
texts or data.

Text classification in healthcare Classification of healthcare texts is considered a special case of
text classification. Supervised machine learning algorithms in NLP have been successfully applied.
E.g. Support Vector Machines and Latent Dirichlet Allocation have been used for tasks such as clas-
sification on patient record notes (Cohen et al., 2014), or other documents in diseases like diabetes
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showing satisfying results (Marafino et al., 2014; Wang et al., 2007). These methods required man-
ual feature selection which can be a challenging and time-consuming process, particularly when
working with large and complex datasets. manually selecting features such as n-grams or bags of
words can also result in a limited representation of the text, as important information and relation-
ships between words may be lost. Additionally, the effectiveness of the chosen features can vary
depending on the dataset and require further experimentation and adjustment.

In the past decade, NLP has shown significant advancements, leading to the creation of novel
language models like Word2vec (Mikolov et al., 2013), FastText (Bojanowski et al., 2017), and the
more recent Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019).
These models have significantly reduced the need for manual feature engineering by automatically
learning complex text representations. Pre-trained language models like BERT and RoBERTa (Liu
et al., 2019b) have been trained on vast amounts of texts, allowing to capture subtle relationships
between words and phrases. These models can then be fine-tuned on specific healthcare tasks
with a small amount of labeled data, reducing the need for manual feature engineering. They
have given good results when fine-tuned on different downstream clinical tasks, including text
classification (Li et al., 2022). Furthermore, transformers can adapt to different types of text data,
from clinical notes to scientific publications, with minimal modifications. This adaptability makes
them particularly useful in healthcare, where the language used can vary significantly depending
on the context and specialty.

In this chapter, we have used a corpus of annotated BCPSs to classify them according to their
complexity. We considered this problem as a binary classification task, and we compared two
different methods to extract features from the texts:

• Using semantic annotators (Sakji et al., 2010; Aronson & Lang, 2010) to extract features from
the text as data and use them to train classical machine learning algorithms on BCPS classi-
fication,

• Using pre-trained language models and training them on the text of BCPSs for the classifica-
tion task.

4.2 Material and methods

4.2.1 Data annotation by experts

Between November 2020 and January 2022 (15 months), we asked experts from Tenon Hospital’s
breast cancer MTBs to routinely annotate every patient discussed either as complex or as non-
complex. When deciding a clinical case was complex, experts had to provide the reason for the
complexity (e.g., the case is complex because the patient is pregnant). Reasons for complexity
were collected to implement a symbolic rule-based method for complexity prediction and to try to
approach a local formal definition of case complexity.

4.2.2 Learning complexity using automatic semantic annotators

As we focused on learning complexity before the full effective implementation of structured data
extraction in chapter 3, we initially decided to use automatic semantic annotators and indexers
to structure the relevant content of natural language BCPSs. This section describes the process of
using annotators to extract clinical concepts from the texts and then learning the complexity using
this representation.
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4.2.2.1 Clinical concepts extraction

We previously used semantic annotators to extract structured data from clinical notes (Redjdal
et al., 2022a). Among several semantic annotators, we chose to work with ECMT (Sakji et al., 2010)
as it is made for the French language and MetaMap(Aronson & Lang, 2010) because it’s widely used
for the English language.

ECMT (Extracteur de Concepts Multi-Terminologique) is a web service designed for informa-
tion retrieval in the French language. It takes inspiration from the CISMef algorithm and combines
it with the Doc’CISMeF search engine and F-MTI, a multi-terminology automatic indexer. ECMT
offers two query modules: a default module that uses a bag of words algorithm and an expanded
module that utilizes textual indexing with Oracle text indexing. It employs seven pre-defined ter-
minologies and supports semantic expansion features (Pereira et al., 2008).

MetaMap (Aronson & Lang, 2010) was developed by the National Library of Medicine to map
biomedical texts to concepts in the Unified Medical Language System (UMLS). The tool uses a
hybrid approach combining natural language processing, a knowledge-intensive approach, and
computational linguistic techniques (Aronson, 2001).

To take advantage of MetaMap, we had to automatically translate French BCPSs into English.
Since BCPSs are textual documents containing a lot of abbreviations, acronyms, and specialized
terms related to the oncology field (e.g., “Echo”, “IRM”, “TEP”), a first step was to disambiguate the
texts. To solve this issue, we created a local dictionary with medical acronyms and their expansion
based on online available dictionaries. Then, we replaced acronyms in BCPSs by their expansion
and finally used the pre-trained Opus-MT translation model (Tiedemann & Thottingal, 2020). As
a result, all BCPSs were available in both French and English. We executed the 2 annotators and
processed the output of each annotator to generate a semantic representation of a BCPS as two
vectors, a vector of UMLS concepts (CUI) extracted with MetaMap, and a second vector contain-
ing the labels of the concepts extracted by ECMT (ECMT does not extract UMLS CUIs). For each
concept, we associated information about negation as attached to the concept provided by the an-
notators (e.g., in “absence d’adénopathie”, the adenopathy concept was present but identified as
negated). Figure 4.1 depicts the whole sequence implemented for the extraction of clinical con-
cepts from BCPSs and the rule-based classification that is described below.

4.2.2.2 Rule-based complexity classification

As explained in section 4.2.1, we asked MTB experts to give the reason for the complexity after
discussing clinical cases. To use this information, and after having manually verified that seman-
tic annotators were able to extract medical concepts related to the complexity of a cancer case
(Redjdal et al., 2021a), we created a set of rules that match complexity-related concepts if any, and
classified BCPSs as complex or not. To get these concepts, we analyzed the justifications provided
by the experts to explain the reason for the complexity. The analysis led to the selection of a vec-
tor of concepts that represent the “complexity-related concepts”. When at least one concept was
present in a BCPS, the case was considered complex. Figure 4.1 illustrates the rule-based method
used following the concepts extraction.

Furthermore, we did a comprehensive analysis of complexity, drawing from the expert-provided
rationales for the cases they classified as complex. The primary objective of this analysis was to try
to derive a comprehensive definition of complexity rooted in two years’ of clinical data. These in-
sights would serve to deepen our understanding and contribute to the knowledge within the breast
cancer domain.

https://ecmt.chu-rouen.fr/
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html
https://opus.nlpl.eu


66 Chapter 4 – Breast cancer complexity learning

Figure 4.1: Clinical concepts extraction and rule-based classification.

4.2.2.3 Machine learning-based complexity prediction

Data preprocessing In order to get a BCPS representation consumable by all learning models
starting from the two vectors obtained from annotators, we converted each BCPS into a row of
features that represented the clinical concepts. We included all the labels of the concepts extracted
and the value for each feature was 1 if the concept was present, 0 if the concept was not present,
and -1 if it was present and negated. We preserved the order of concepts as expressed in a BCPS by
using an index column to specify the order in which they appeared in the text.

Model training pipeline We published a work where we tried several machine learning and deep
learning model for BCPS complexity classification (Redjdal et al., 2022b). Among these models
XGboost (Chen & Guestrin, 2016) and a multi-layer perceptron (MLP) (Popescu et al., 2009) were
the best-performing models. In this chapter, once the features were extracted and the data pro-
cessed, we trained an MLP and an XGboost model on the annotated data. We used a k-fold cross-
validation strategy, where the model hyper-parameters tuning process was executed using Grid
Search (Liashchynskyi & Liashchynskyi, 2019). The resulting classification models were evaluated
using precision, recall, and F1-score. Because the data of this analysis is unbalanced, with less
complex cases than non-complex cases, we used both the ROC curve and the Precision-Recall PR
curve to evaluate the performance of the binary classification model. While the ROC curve eval-
uates the trade-off between sensitivity and specificity at different classification thresholds, the PR
curve measures the trade-off between precision and recall. This is particularly useful since the
cost of false positives and false negatives is not equal in this case. We also calculated the area un-
der the PR curve, which measures the overall performance of the model at different classification
thresholds. Figure 4.2 describes the model training pipeline.
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Figure 4.2: Model training pipeline

4.2.3 Learning complexity using pre-trained language models

4.2.3.1 Transformer-based method

We used state-of-the-art language models, based on attention and transformer architecture in or-
der to do the classification. The main problem we faced was that transformer models accept only
512 tokens as input, whereas most of the BCPSs contain more than that with an average of 2200
tokens per document. This is a known problem especially in the clinical domain (Gao et al., 2021b)
and there are several ways to deal with it. We used two strategies:

The first strategy was to try the truncation method (Sun et al., 2019). It consists of dropping some
of the tokens in order to fit with the 512 tokens limit. We choose to keep the first 25 tokens
(the first tokens contain the reason the patient is discussed by the MTB), and the last 485
tokens because the last part of the text contains the most up-to-date information about the
patient.

The second strategy consisted of dividing each BCPS into multiple chunks of 512 tokens or less,
following the method described by Pappagari et al. (2019). Each chunk is then tokenized, and
the list of tokenized chunks given as input to the classifier. A classification is then performed
for each chunk and finally, the class of each document is calculated according to its chunk
class. For this strategy, we used the same BERT model as the one used in the first strategy.

In order to train the models, we used a BERT model that was trained on all the documents of AP-HP
data warehouse (Dura et al., 2022a), we will call it BERT-EDS.

4.2.3.2 Static word embeddings

In addition to exploring state-of-the-art pre-trained language models, we also investigated the ef-
fectiveness of earlier embedding methods (these methods are explained in section 2.4.1.1.1), we
used Word2Vec and GloVe for this classification task.

For Word2Vec (Goldberg & Levy, 2014), we first preprocessed the text data, tokenized it, and
removed stopwords and punctuation to create a clean representation of the clinical notes. Subse-
quently, we trained the Word2Vec model on the preprocessed texts to generate dense word embed-
dings that capture semantic relationships between medical terms. Each BCPS was then converted
into a feature vector by calculating the average word embeddings of the clinical concepts present
in the text. Utilizing this feature representation, we employed a multi-layer perceptron classifier
for complexity prediction, optimizing its hyperparameters using GridSearch following the method
explained in figure 4.2. We chose MLP as it was the best model to perform this task using the se-
mantic annotators (Redjdal et al., 2022b).
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For the GloVe embeddings (Pennington et al., 2014b), which offers pre-trained word embed-
dings that capture semantic relationships similarly to Word2Vec. We loaded the pre-trained GloVe
embeddings and used them to generate dense word representations for the preprocessed text data.
These embeddings were then utilized to create feature vectors for each BCPS, employing again an
MLP classifier.

4.3 Results and discussion

We conducted this study on a sample of 1,048 BCPSs (763 non-complex cases and 285 complex
cases), which correspond to all clinical cases discussed by MTB clinicians between November 2020
and January 2022 at Tenon Hospital in Paris (France). The data set was divided into 80% for train-
ing and 20% for validation. The models were trained on the training dataset using a 5-fold cross-
validation. The validation set was not explored and was used only to evaluate the results. Table 4.1
summarizes the results obtained by each model on the validation set.

Table 4.1: Evaluation of the models on the validation set

Model Precision Recall F1 score Accuracy
Using semantic annotators

XGboost 0.84 0.83 0.81 0.83
MLP 0.88 0.89 0.88 0.89
Rule-based method 0.66 0.64 0.65 0.64

Using pre-trained language models
Word2vec 0.76 0.77 0.73 0.77
GloVe 0.72 0.75 0.72 0.75
Truncation + BERT-EDS 0.53 0.72 0.61 0.72
Chunks + BERT-EDS 0.53 0.72 0.61 0.72

Among the semantic annotators, the XGboost and MLP models achieved solid accuracies of
83% for XGboost and 89% for MLP, while the rule-based method performed at 64% accuracy. In
the category of pre-trained language models, Word2vec and GloVe attained decent accuracies of
77% and 75%, respectively, whereas Truncation + BERT-EDS and Chunks + BERT-EDS exhibited
lower accuracies, both at 72%.

4.3.1 Using semantic annotators

4.3.1.1 Machine learning classification

Feature extraction using semantic annotators resulted in the extraction of 20,682 unique UMLS
concepts and ECMT labels. For XGboost and MLP, The area under the PR curve was 0.88 for MLP
and 0.79 for XGboost, and the ROC AUC was 0.92 for MLP and 0.88 for XGboost. Figure 4.3 shows
both curves for MLP and XGboost, and Figure 4.4 shows the confusion matrix for each model on
the validation set with its best parameters and the optimal threshold.
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Figure 4.3: PR AUC and ROC AUC for classical ML methods using semantic annotators

Figure 4.4: Confusion matrices for classical ML methods using semantic annotators

4.3.1.2 Rule-based classification

Figure 4.5: Confusion matrice for the rule-based
method

From the annotated BCPSs, 285 were
identified as complex patients. We se-
lected 24 sets of clinical concepts that we
deemed as complexity reason concepts.
Figure 4.5. presents the results of the
rule-based method applied to the valida-
tion data, we can see that this method
gets a significant number of false posi-
tives (44), and performs worse than ML-
based methods to extract complex cases
(26 true positives against 40 for MLP). The
rule-based method’s overall performance
was lower compared to machine learning
methods. It achieved a precision of 0.66, a
recall of 0.64, an F1 score of 0.65, and an
accuracy of 64%.

Complexity definition The analysis of complexity factors provided by domain experts has resulted
in the identification of key characteristics that shed light on complex cases. Following a thorough
discussion with the experts to validate this analysis, the findings are summarized below. This sum-
mary serves as the definitive definition of a complex case for this study and has been reviewed and
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approved by the domain experts.

Histology – Related Complexity

• Oligometastatic cancer

• Breast sarcoma

• Solid or encapsulated papillary carcinoma

• Low-grade adenosquamous carcinoma

• Low-grade metaplastic carcinoma

• Lymphomas

• Phyllodes tumors

• Bilateral breast cancer with different histologies

Complexity due to Comorbidities

• Heart failure or cardiac fragility (contraindication to anthracyclines and sometimes ra-
diotherapy)

• Porphyria (contraindication to certain chemotherapy regimens)

• Scleroderma, Xeroderma Pigmentosum (contraindication to radiotherapy)

• Associated hematological pathology (e.g. dysmyelopia) increasing the risk of hemato-
logical toxicity of chemotherapy

• Associated hematological pathology (e.g. dysmyelopia) increasing the risk of hemato-
logical toxicity of chemotherapy

• Hepatocellular insufficiency

• Active autoimmune disease and immunotherapy

• Renal insufficiency

Complexity for Other Reasons (Non-standard Treatment Procedure)

• Pregnancy (some treatments cannot be administered: anti-HER2, immunotherapy, anti-
hormonal treatments)

• Non-operable patients (for example, old patients)

• Presence of another cancer with the breast cancer

• Male breast cancer

• Presence of BRCA mutation

• Eligibility criteria in clinical trial/eligibility for OncoType (Syed, 2020)

• Not enough information available to classify the patient on a standard treatment

• Patient refusal of standard treatment
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4.3.2 Using pre-trained models

Regarding the pre-trained language models, both Word2vec and GloVe models demonstrated com-
petitive performance and were close in their effectiveness in detecting complex cases. Specifically,
the Word2vec model achieved an accuracy of 0.76, a precision of 0.77, a recall of 0.73, and an F1-
score of 0.77, while the GloVe model achieved an accuracy of 0.72, a precision of 0.75, a recall of
0.72, and an F1-score of 0.75.

When compared to Word2vec and GloVe, the BERT-EDS methods (Truncation + BERT-EDS and
Chunks + BERT-EDS) showed inferior performance, achieving an accuracy of 0.53, a precision of
0.72, a recall of 0.61, and an F1-score of 0.72. These lower scores across all evaluation metrics
indicate that BERT was less successful. When looking at the results, both BERT methods classified
all the validation data as non-complex. As we can see in figure 4.6 and figure 4.7 both GloVe and
Word2Vec also struggle to find complex cases as the number of true positives is 15/58 for Word2Vec
and 16 for GloVe), compared to the methods based on semantic annotators and ML algorithms (
up to 40 true positives ). We also notice that the PR-AUC is lower than machine learning methods
with 0.52 for Word2Vec against 0.88 for MLP.

Figure 4.6: PR AUC and ROC AUC for classical ML methods using GloVe and Word2vec

Figure 4.7: Confusion matrices for classical ML methods using GloVe and Word2Vec
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4.3.3 Discussion

The findings of our study indicate that classical machine learning (ML) models outperform trans-
former models in the task of breast cancer case complexity classification. Particularly, the Multi-
layer Perceptron model exhibited higher performance than XGBoost, especially in detecting com-
plex cases. From the validation set containing 57 complex cases, MLP successfully identified 40
cases, whereas XGBoost only detected 26 true positives. The ROC curve analysis further demon-
strated that MLP achieved a higher true positive rate with a lower false positive rate compared to
XGBoost, as evidenced by the AUC values of 0.92 and 0.88, respectively. Similarly, the PR curve
analysis revealed that MLP outperformed XGBoost, with AUC values of 0.88 and 0.79, respectively,
which explains why MLP correctly classified a greater number of complex cases compared to XG-
Boost.

Among the transformer-based models, both the Truncation + BERT-EDS and the Chunks +
BERT-EDS strategy strategy achieved an accuracy score of 0.72. However, relying solely on accuracy
may not offer a comprehensive understanding of the models’ performance. BERT, in particular,
encountered challenges in predicting the positive class (complex cases) and mistakenly classified
the entire validation set as non-complex.

This subpar performance could be attributed to data imbalance and the limited training data,
which resulted in poor generalization. These findings are in line with previous hypotheses (Gao
et al., 2021a) that suggest a pre-trained BERT model may not be the most optimal choice for clinical
text classification, given that clinical documents often exceed the standard BERT token limit of
512 tokens. To address this limitation, recent research has proposed new pretraining methods,
one of which encourages BERT to learn about entities rather than generic syntax and grammar
patterns (Xiong et al., 2020). Such approaches show promise in enhancing the performance of
clinical and biomedical classification tasks that require knowledge-based reasoning. Additionally,
other studies (Beltagy et al., 2020b) have adapted BERT to handle long texts without the need for
hierarchical splitting methods, potentially allowing the model to identify meaningful patterns over
longer distances and improve overall performance.

Comparing the performance of Word2vec and GloVe to transformer models, specifically BERT-
EDS methods. Classical word embedding models (Word2vec and GloVe) exhibited higher accu-
racy and outperformed BERT-EDS in correctly identifying complex cases. The effectiveness of
Word2vec and GloVe models in detecting complex cases can be attributed to their ability to capture
semantic relationships and contextual information within the clinical text data. Utilizing word-
level embeddings, Word2vec and GloVe capture word associations based on co-occurrence pat-
terns in large text corpora, allowing them to effectively represent medical terminologies and con-
cepts for accurate complexity classification.

Our findings also highlight that a rule-based method is less effective than classical ML meth-
ods for complexity classification. Nevertheless, it is essential to acknowledge that the rule-based
method’s limitations stem from the fact that the clinical concepts used do not encompass all com-
plexity reasons. Notably, reasons related to patient preferences or contextual data could not be
adequately expressed as UMLS or MeSH concepts, leading to incomplete coverage of complexity
factors. As a consequence, false positives were present in the rule-based method, as a single reason
might not be sufficient to accurately classify a clinical case as complex.
The comprehensive definition of complexity that we developed through collaboration with do-
main experts represents a valuable foundation for creating a robust rule-based method for com-
plexity prediction. However, to fully leverage the complexity definition’s potential, improved data
structuring and additional information beyond a simple vector of semantic annotations are re-
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quired. Consequently, the structured data extracted in Chapter 3 can play a crucial role in creating
rules based on the complexity definition, in close collaboration with experts. This integrated ap-
proach has the potential to enhance the rule-based method’s performance and improve the accu-
racy of complexity classification for breast cancer cases. By combining structured data and domain
expertise, we may enhance the rule-based approach to encompass a wider range of complexity
factors, such as patient preferences and contextual information. Furthermore, the structured data
extracted in chapter 3 can serve as input for a machine learning algorithm used in the classifica-
tion task. Although we began exploring this avenue, we were unable to complete the work due to
time constraints.

4.4 Conclusion

Overall, the results suggest that classical ML models currently outperform transformer models and
rule-based methods for breast cancer complexity classification. However, it is essential to consider
that transformer models with further fine-tuning and feature engineering, might be capable of
achieving better results, especially with a larger set of annotated data. Notably, the challenge of in-
terpreting model outcomes arises due to the large number of concepts annotated for each clinical
case, hindering the extraction of relevant features and the ability to explain the classification deci-
sions. Future research efforts may focus on addressing this limitation to improve interpretability
and provide valuable insights for clinical decision-making.





CHAPTER 5

Update of the guideline-based decision support

With the development of a structured data extraction pipeline and an algorithm that
predicts the complexity of clinical cases, we can now proceed with the implementa-
tion of decision support modules. This chapter focuses on the guideline-based CDSS for
non-complex cases. As explained in the introduction 1.3, we hypothesize that guideline-
based CDSSs are useful for dealing with non-complex cases. So for them, the idea is to
provide a guideline-based decision support system. To achieve this, we utilize the GL-
DSS of the DESIREE project, which is based on the CPGs of AP-HP for breast cancer pub-
lished in 2016. Since a new version of AP-HP guidelines named SENORIF "Cancers et
pathologies du sein attitudes diagnostiques et thérapeutiques, protocoles de traitement"
has been published in 2021, the aim of the work in this chapter is to develop a semi-
automated method for identifying practice evolutions to update the GL-DSSs knowl-
edge base with the latest evidence. To do this, we use real-world data from the corpus
of the BCPSs manually structured and used in section 3.2.5, and we run the GL-DSS on
the non-complex cases identified within this corpus. The objective is to compare the de-
cisions made during MTBs to the recommendations produced by the GL-DSS for each
clinical case. When MTB decisions does not align with the GL-DSS’s recommendation,
we refer to SENORIF to assess the MTB decision’s compliance with the most recent guide-
lines. This method permits us to accurately identify patients’ profiles for which medical
practice has evolved, thus identifying the updates to make to the GL-DSS’s knowledge
base. Using a sample of 160 patients extracted from the complexity learning dataset and
representing non-complex cases, this approach enabled the identification of 38 patients
for whom there have been practice evolutions. These 38 profiles involve the addition of
21 rules, modification of 18 rules, and removal of 9 rules from the knowledge base. The
addition of these rules was followed by an update of the system’s ontology as we added
new concepts that did not exist in the initial ontology. Among these modifications, 23
pertain to surgical modalities, 20 to chemotherapy, 4 to targeted therapies, and 1 to ra-
diotherapy.
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5.1 Introduction

As discussed in section 2.1.1 CDSSs can enhance the quality of care by promoting the application
of CPGs to individual patients and facilitating the utilization of up-to-date clinical evidence, which
is crucial for minimizing errors (Pelayo et al., 2020; Voigt & Trautwein, 2023; Mazo et al., 2020; Ricci-
Cabello et al., 2023). The formalization of CPGs and their integration into CDSSs also help mitigate
non-compliance with recommended practices during decision-making (Mazo et al., 2020).

The acceptance of CDSSs by healthcare professionals plays a crucial role in their routine uti-
lization. Factors such as effectiveness, ease of use, and user-friendly interfaces significantly influ-
ence adoption. Additionally, seamless interoperability with EHRs, eliminating the need for redun-
dant data entry, is equally important for CDSS acceptance (Voigt & Trautwein, 2023).

As medical knowledge continues to evolve, it is crucial to regularly review and update comput-
erized CPGs. For guideline-based CDSSs to maintain reliable performance, they require access to
the latest evidence-based recommendations. The process of incorporating new knowledge in the
form of rules into CDSSs has been implemented in some hospitals. However, this process is often
costly and time-consuming (Cánovas-Segura et al., 2019). Currently, there is no fully satisfactory
automatic approach to compare two or more CPGs. While the extraction of concepts from CPGs
can be efficiently performed using natural language processing methods and standard medical
terminologies, the extraction of rules and recommendations still heavily relies on human exper-
tise (Azarpira et al., 2022) (see section 2.2 for more details).

Other approaches have been introduced for the update of knowledge bases, (Bouaud et al.,
2007) proposed a method to automatically compare 2 structured CPGs, they consider " CPGs as
a set of recommendations R i i. Each recommendation R i is characterized by a pair (Si, Ti) with
Si -> Ti, denoting that a treatment plan Ti is recommended in the clinical situation Si". Figure 5.1
resumes the knowledge base modifications that result from CPGs updating.

Figure 5.1: Typology of knowledge base modifications resulting from CPGs updating (Bouaud
et al., 2007), Sd : Clinical situation at an initial date; Sd+1: clinical situation at new date; T d : treat-
ment proposed at the initial date

"Basically 4 main situations are observed by Bouaud et al. (2007):

• No change: An identical clinical situation leads to an identical treatment plan.
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• Refinement of an existing recommendation. The new recommendation shares some com-
mon parts with the former one. Refinement may concern the description of the treatment
plan but not the situation, only the description of the clinical situation, or both descriptions.

• New practice. A totally new therapy (noncomparable) appeared in an already identified clin-
ical situation.

• New recommendation: extending the CPG coverage, a new clinical situation is identified
with its corresponding therapy leading to a new recommendation."

As stated earlier, our project relies on the GL-DSS system developed for the DESIREE project as
a guideline-based Clinical Decision Support System (see section 2.2.4.1. The GL-DSS was initially
designed using the 2016 AP-HP guidelines for breast cancer treatment. However, for the system to
be effective, it is essential to update the knowledge base with the most recent evidence available.

SENORIF is a French CPGs for the management of breast cancer. It was developed by a mul-
tidisciplinary group of experts in breast cancer from AP-HP, Institut Curie, and Institut Gustave
Roussy. Guidelines were last updated in 2021. SENORIF guidelines cover a wide range of topics
related to breast cancer, including diagnosis and staging, and treatment options. The guidelines
also include several decision-making tools, such as algorithms and flowcharts, to help clinicians
make informed decisions about the best treatment for each patient.

In this chapter, we describe the methods used to update the knowledge base of the GL-DSS sys-
tem developed for the DESIREE project. We rely on real use cases that have been treated in the MTB
of the Tenon hospital during the year 2021, and compare the decisions made by the MTB, to the
recommendations of the GL-DSS (based on CPGs published in 2016) and the recommendations
of SENORIF (2021) for each patient profile. The objective is to capture the knowledge evolution
by focusing on a sample of real clinical profiles discussed by Tenon Hospital breast cancer MTB.
Knowledge evolution can be expressed in the four situations identified by Bouaud et al. (2007): no
change, refinement of an existing recommendation, new practice or new recommendation.

We hypothesize that, for non-complex cases, MTB decisions would be compliant with the latest
evidence (i.e. SENORF), so profiles, where the decision of the MTB was non-compliant with the
GL-DSS recommendations and compliant with SENORIF, were considered as profiles for which
there might be knowledge evolution. These profiles were used to update the knowledge base of the
GL-DSS by modifying rules, adding new rules and concepts, or removing rules.

5.2 Material and methods

5.2.1 BCKM ontology and GL-DSS inference engine

As mentioned in the introduction, we utilize the Guideline-Based Decision Support System (GL-
DSS) of DESIREE to provide guideline-based decision support for non-complex cases. The GL-
DSS and the Breast Cancer Knowledge Model ontology are comprehensively described in Sections
2.2.4.1 and 2.2.4.

To evaluate this work, we first installed the GL-DSS in the Jupyter environment of the AP-HP
data warehouse. Since we encountered difficulties in installing the graphical user interface (GUI)
of the system, we utilized the GL-DSS through the command line interface by invoking the in-
ference engine on the coded patient cases automatically created in the system via the pipeline
implemented in chapter 3.

https://www.aphp.fr/sites/default/files/referentiel_cancers_du_sein_-_juin_2016_1.pdf
https://www.gustaveroussy.fr/sites/default/files/referentiel-senorif-2021-2022.pdf
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5.2.1.1 Clinical Practice Guidelines

In this chapter, we introduce two guidelines as we aim to update the knowledge base of the GL-
DSS. The first is the AP-HP guidelines, which are the guidelines used in the DESIREE GL-DSS.
The second one is the SENORIF guidelines, which represent the most recent guidelines on the
management of breast cancer patients.

AP-HP CPGs developed by the breast working group of AP-HP, offer therapeutic recommenda-
tions for breast cancer discussed in multidisciplinary meetings. It draws upon the expertise of
the group, scientific knowledge, professional recommendations, and international guidelines pub-
lished until 2016. The guidelines consist of 36 pages of narrative text and have been formalized into
rules for implementation in the GL-DSS.

SENORIF CPGs presents evolving standards of care in senology based on national and interna-
tional recommendations, including the French National Cancer Institute and the French National
Authority for Health (HAS) as primary references. They encompass screening to advanced disease
treatment while excluding non-carcinomatous lesions. Certain options in the guidelines are based
on expert consensus when there is a lack of strong scientific evidence, and this is explicitly men-
tioned. The 2021 version incorporates the latest literature from 2015-2021 and features 188 pages.
It includes helpful diagrams and decision trees that summarize the textual content, providing vi-
sual aids for practitioners.

5.2.2 Proposed method

To use the GL-DSS of the DESIREE project, and to be able to assess the performance of the GL-DSS,
we compared the outputs of the system with the decision made by MTB clinicians on a sample of
non-complex BCPSs discussed in 2021. Since these decisions were made on clinical cases dis-
cussed in 2021, we had to update the GL-DSS knowledge base to implement 2021 SENORIF CPGs
instead of 2016 AP-HP CPGs.

The process was the following: We first transformed the BCPSs of a corpus of non-complex
clinical cases into the structured data model of the BCKM, and we then used the GL-DSS to ob-
tain recommendations for these patients according to the 2016 AP-HP guidelines. Then, when one
of the recommendations issued by the GL-DSS matched the MTB decision, we considered there
was no evolution of practice for that case. If not, we checked the recommendations of the latest
French guidelines SENORIF 2021 on the same case. When one of the recommendations manually
retrieved from the 2021 textual SENORIF CGPs matched the MTB decision, we considered there
was an evolution of practices for this case. When none of the recommendations manually retrieved
from the 2021 textual SENORIF CGPs was matching the MTB decision, the case was reviewed by
domain experts to check whether the case should be re-classified as complex. Two strong assump-
tions are made here. The first one is that MTB decisions are expected to be made according to the
latest guidelines, i.e. SENORIF. The second one, deduced from the first one, is that SENORIF in-
cludes the AP-HP guidelines (as all of the authors of SENORIF were also authors of the 2016 AP-HP
guidelines). Figure 5.2 shows the whole pipeline. We consider the following:

• DMTB refers to the MTB decision.

• RGL-DSS refers to the GL-DSS recommendations based on the computerized 2016 APHP CPGs.
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Figure 5.2: Pipeline used for updating GL-DSS’s knowledge base

• RSENORIF refers to the SENORIF recommendations manually retrieved from the textual 2021
SENORIF CPGs.

5.2.2.1 Step 1: From BRAT-structured data to patient in the GL-DSS system

Having obtained patient data in a structured format in chapter 3, we proceeded with the mapping
process using the BCKM ontology (the ontology is detailed in section 2.2.4). In the BCKM, the
number of concepts far exceeds those extracted by the method implemented for structured data
extraction. However, it is important to note that a significant portion of the ontology consists of
optional data, and only a subset of concepts is utilized for reasoning purposes.

During the mapping process, certain entities in the structured data scheme (described in ta-
ble 3.2) may have multiple corresponding entities in the BCKM ontology. For example, the data
include an attribute called "tumor_size," while the BCKM ontology may define concepts such as
"tumor size at MRI" or "tumor size at ultrasound..." To handle this ambiguity, we incorporated the
extracted sections from the structured data extraction methodology (see section 3.2.4.1). By an-
alyzing these sections, we guide the mapping algorithm to determine the appropriate concept in
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the BCKM ontology. For instance, if the tumor size attribute is found within an MRI section, it can
be mapped to the concept of "tumor size at MRI."
Additionally, some entities, such as the TNM classification, require postprocessing to align with
the relevant concepts in the BCKM ontology. For example, the annotation scheme has a general
attribute for TNM, while the BCKM ontology specifies separate concepts for cT (clinical T of TNM),
ycT (residual T assessed by examination or imaging after neo-adjuvant treatment), pT (T of TNM
established from the pathology analysis after surgery), and so on. To address this, we employ a
postprocessing step that applies predefined rules or heuristics to differentiate and match the com-
ponents of the TNM classification to their respective concepts in the BCKM ontology. This ensures
accurate mapping of the TNM classification from the structured data to the appropriate concepts
in the ontology. The same logic is used with other attributes like HER2 status. A table with the
mapping of all concepts is provided in the appendix section (Appendix C).
In summary, the mapping process involves connecting the structured data extracted from textual
BCPSs as described in chapter 3, with the BCKM ontology, allowing the creation of patient profiles
in the BCKM format.

For the rest of this chapter, we use BCPSs of patients treated during the year 2021 at Tenon
Hospital. These BCPSs were structured using the algorithm developed in chapter 3, They were
then manually created in the GL-DSS by a master’s intern who verified the output of the structured
data extraction algorithm before entering the patient’s information on the GL-DSS. We use this
manual verification to make sure that these patients are well entered into the system, avoiding the
errors still made by the automatic structured data extraction algorithm.

5.2.2.2 Step 2: Comparison between MTB decisions and AP-HP recommendations produced by
the GL-DSS

For each BCPS, we conducted a comparative analysis between the decisions made by MTB clini-
cians and the recommendations provided by the GL-DSS. The output of the comparison process
falls within the following set of categories:

DMTB ∈ RGL-DSS .

DMTB ̸= RGL-DSS regarding surgery.

DMTB ̸= RGL-DSS regarding chemotherapy.

DMTB ̸= RGL-DSS regarding hormone therapy.

DMTB ̸= RGL-DSS regarding targeted therapy.

DMTB ̸= RGL-DSS regarding radiotherapy.

As a result and according to our assumptions, if we have DMTB ∈ RGL-DSS, then we consider there
is no evolution of practices. However, when the recommendations of the system do not follow the
MTB’s decision, we go to the next step and try to identify whether it might be a knowledge evolution
or not. For example, if we have a patient who is in scenario B or C (i.e. she already had a neoad-
juvant therapy, see section 3.2.4.3). and has a positive HER2 status with a non-complete response
to the neoadjuvant treatment, the MTB may decide she will benefit from adjuvant chemotherapy,
replacing Trastuzumab with TDM1 drug., which is a new practice, while the GL-DSS recommenda-
tion is to continue with Trastuzumab. Figure 5.3 shows the difference between the MTB decision
and the recommendation.
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Figure 5.3: Comparing GL-DSS recommendations to MTB decision

5.2.2.3 Step 3: Comparison between MTB decision and SENORIF recommendations

Following the previous step, we selected the BCPSs for which MTB decisions did not comply with
the GL-DSS recommendations based on AP-HP CPGs. We then manually examined the SENORIF
guidelines to identify which recommendations would apply to these patient profiles and compared
them with the MTB decision. Two scenarios could arise:

DMTB ∈ RSENORIF: In these cases, MTB decisions align with the SENORIF recommendations but de-
viate from the GL-DSS recommendation. We consider these patient profiles as instances
where there is an evolution of medical practices.

DMTB ∉ RSENORIF: Here, MTB decisions do not align with either the SENORIF or GL-DSS recommen-
dations. These are cases that require further discussion with experts.

For example, continuing with the clinical case presented in the previous section, we refer to
the SENORIF guidelines (page 97) and find that the recommendation for these profiles is to replace
Trastuzumab with TDM1. We observe in figure 5.4 that this recommendation aligns with the MTB’s
decision, thus confirming a change in medical practices.

5.2.2.4 Step 4: Identification of updates and creation of new rules

Once we had identified all the profiles for which MTB decisions differed from the recommenda-
tions of the GL-DSS, we examined the different scenarios. We confirmed, on the one hand, the
evolution of medical practices (when MTB decision ∉ GL-DSS recommendations and MTB deci-
sion ∈ SENORIF’s recommendations), and on the other hand, we studied the cases where we had
MTB decision ∉ GL-DSS recommendations and MTB decision ∉ SENORIF’s recommendations).
These cases represent different profiles where the MTB decided not to follow these guidelines.
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Figure 5.4: Comparing SENORIF recommendation to MTB decision

One possible reason is that the clinical case is not covered by the guidelines and can be considered
complex. Additionally, for some cases where the GL-DSS produced incorrect recommendations
due to defaults (that were subsequently corrected in the knowledge base).

To update the knowledge base of the GL-DSS, we distinguished between the following two sce-
narios:

Evolution of practices: In these cases, we proposed to (i) modify existing rules, (ii) add new rules,
or (iii) remove outdated rules.

Correction and completion of bugs: Here, the task involved identifying rules in the GL-DSS that
were not functioning correctly and required correction. We also added missing rules inde-
pendent of knowledge evolution.

Beyond modifying the rules in the knowledge base of the GL-DSS using the concepts already present
in the BCKM, it was also necessary to update the BCKM by introducing new concepts. In the
SENORIF CPGs, there are indications for new treatments and recommendations based on novel
knowledge that were not represented in the BCKM. For example, considering the patient profile
presented in the two previous sections, the TDM1 drug was not initially included in the BCKM. As
a first step, we had to add this concept to the ontology as a child of ’Single Agent Targeted Ther-
apies’. After adding the concept, we edited the rule in the GL-DSS that recommended continuing
with Trastuzumab therapy and added the condition that the response to neoadjuvant treatment
must be complete. Finally, we added a new rule that recommends TDM1 treatment in the case of
a non-complete response to neoadjuvant treatment. Figure 5.5 illustrates this process.
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Figure 5.5: Adding concepts in the BCKM and rules in the GL-DSS knowledge base

5.2.3 Evaluation on complex cases

We also wanted to assess our hypothesis that the guidelines do not cover complex cases. So we
tested the GL-DSS on a small corpus of complex cases and compared its performance to the per-
formance obtained on non-complex clinical cases.

5.3 Results and discussion

The mapping process from the structured data obtained in chapter 3 and the BCKM ontology re-
sulted in identifying a total of 71 attribute classes and 96 value classes. An example of the mapping
for the BI-RADS classification is illustrated in figure 5.6. The complete mapping table can be found
in Appendix C.

Figure 5.6: Exemple of mapping for the BI-RADS category

We selected a corpus of 160 BCPSs representing non-complex cases discussed during MTBs
of Tenon Hospital in 2021 and covering all breast cancer scenarios (check section 3.2.4.3), 50 in



84 Chapter 5 – Update of the guideline-based decision support

Scenario A, 35 in Scenario B, 25 in Scenario C and 50 from scenario D.

5.3.1 Comparison of MTB decisions and guidelines recommendations

5.3.1.1 Comparison of MTB decision to the GL-DSS recommendations

Among the 160 BCPS, we observed (Table 5.3.1.1) that MTB decisions were included among the
GL-DSS recommendations for 121 cases (76%). For the other 39 cases (24%) there was at least one
treatment step proposed by the MTB, that was not included in the GL-DSS recommendations.

Table 5.1: Comparison of DMTB and RGL-DSS

Scenario A Scenario B Scenario C Scenario D Total
Total 50 35 25 50 160
DMTB = RGL-DSS 39 23 17 42 121
DMTB ̸= RGL-DSS 11 12 8 8 39
% of non-compliance 22% 34% 32% 16% 24%

We suggest that the cases where the GL-DSS recommendations followed MTB decisions (76%)
represent clinical profiles for which the evidence remains unchanged, thus obviating the necessity
of updating the knowledge base in this context.

Figure 5.7: Distribution of the cases for which MTB decisions were not among the GL-DSS recom-
mendations by modality of treatment.

Cases for which MTB decisions were not among the GL-DSS recommendations : Let us focus
on the cases for which MTB decisions were not among the GL-DSS recommendations. As previ-
ously mentioned, we propose that instances where DMTB ̸= RGL-DSS may potentially indicate situa-
tions where there has been a progression or modification in the guidelines. As depicted in Figure
5.7, the majority of modalities observed in the profiles for which MTB decisions were different from
GL-DSS recommendations were surgical interventions (51%) and chemotherapy (41%), there were
no instances of difference concerning hormone therapy, while only one case exhibited difference
regarding radiotherapy, and two cases exhibited difference with targeted therapies.

Table 5.2 describes the patient profiles for all these casesr and the differences between MTB
decisions and GL-DSS recommendations. By conducting this comparison, we have obtained a
comprehensive overview of potential shifts in practices when MTB decisions deviated from GL-
DSS recommendations. To confirm that these deviations truly represent practice evolutions, we
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can further examine MTB decisions for these cases and compare it to the recommendations pro-
vided by SENORIF.

5.3.1.2 Comparison of MTB decisions to the SENORIF recommendation

Of the 39 BCPSs where the recommendations of the GL-DSS did not comply with the MTB deci-
sion, SENORIF’s recommendations were in line with MTB decisions for 38 cases (as we can see
in table 5.2), and not in line for one case (one in which SENORIF did not recommend radiother-
apy as decided by the RCP physicians). After discussing the clinical case with the experts, it was
re-classified as a complex case.

Table 5.2: Results of the comparison by treatment modality

Patient Profile RGL-DSS RSENORIF

Surgery (20 BCPSs)
Recurrent invasive can-
cer

No indication for mastectomy Indication for mastectomy +
axillary lymph node dissection
(ALND), no sentinel lymph
node biopsy (SLNB)

Recurrent in situ cancer No indication for mastectomy Indication for mastectomy +
SLNB

Multifocal cancer Indication for mastectomy and
ALND

No indication of mastec-
tomy and no indication of
ALND, possibility to do SLNB +
Lumpectomy

Patients with BRCA mu-
tation

No indication for mastectomy Indication for mastectomy

Chemotherapy (16 BCPSs)
Triple-negative cancer
with Tumor size ≥2cm
and/or N of TNM >1

No indication for neoadjuvant
chemotherapy (ChemoNeoAdj)

Indication for ChemoNeoAdj

Triple-negative cancer
T1cN0

No indication for ChemoNeoAdj ChemoNeoAdj to be discussed
based on clinical parameters
(e.g., tumor-to-breast size
ratio)

Negative HER2 and hor-
mone receptor-positive

No specific indication based on
genomic testing

Indication for Oncotype DX,
a genomic test that evalu-
ates the benefits of adjuvant
chemotherapy (ChemoAdj)

Triple-negative cancer
after an incomplete re-
sponse to ChemoNeoAdj

and post-surgery

No indication or specification
for ChemoAdj

Indication for ChemoAdj with
Capecitabine
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Targeted therapy (2 BCPSs)
HER2-positive cancer
with Tumor size ≥2cm
and/or N of TNM >1

No indication for neoadjuvant
therapy (TherapyNeoAdj)

Indication for TherapyNeoAdj

HER2-positive cancer
after an incomplete re-
sponse to ChemoNeoAdj

and post-surgery

No indication or specifica-
tion for adjuvant therapy
(TherapyAdj)

Indication for TherapyAdj with
TDM1 (trastuzumab emtan-
sine)

Radiotherapy (1 BCPS)
Elderly patient, SBR
2, pT1cN0, no em-
boli,Negative HER2
and hormone receptor-
positive

Indication for radiotherapy No indication for radiotherapy

5.3.2 Identification of updates in GL-DSS’s knowledge base

By analyzing the 38 profiles where DMTB ∈ RSENORIF ∉ RGL-DSS, we were able to identify specific ele-
ments that suggest modifications of existing rules. A comprehensive overview of these findings
is presented in Table 5.3. For a more detailed account of all the identified rules, please refer to
Appendix B (the document is in French, rules and guidelines are also in French).

Table 5.3: Results of knowledge base update
Modality Number of

modifications
Number of
additions

Number of
deletions

Total

Surgery 6 11 6 23
Chemotherapy 10 7 3 20
Targeted Therapy 1 3 0 4
Radiotherapy 1 0 0 1
Total 18 21 9 48

A total of 18 rules were modified, 9 rules were deleted and 21 new rules were added. Here are
examples of each case:

1. Update of existing rules: For instance, in cases of multifocal tumors, the current GL-DSS’s
rule suggests ALND based on the 2016 AP-HP guidelines, as multifocality is considered a
contraindication for SLNB. In contrast, SENORIF guidelines do not consider multifocal or
multicentric cancers as a contraindication for the sentinel lymph node biopsy. Thus, the
rule is modified as follows: "R-2016APHP: If Invasive Breast Cancer AND Bifocal Lesion AND
distance > 20mm THEN SLNB Contraindicated" → "R-SENORIF: If Invasive Breast Cancer
AND Bifocal Lesion AND distance > 20mm THEN SLNB possible."

2. Addition of new rules: For example, a rule is added concerning mastectomy in cases of re-
currence: "If InSitu carcinoma AND relapse THEN Mastectomy + SLNB."

3. Removal of outdated rules: For instance, the rule "If non-invasive breast cancer AND bifo-
cal lesion AND distance > 20mm AND cN0 AND not cT4d THEN Recommended Mastectomy
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(p18)" is removed since, according to SENORIF, a multifocal cancer is not an indication for
mastectomy.

5.3.3 Evaluation on complex cases:

To asses our hypothesis that the guideline-based CDSSs are not efficient in complex cases (section
1.3), we tested the 2016-APHP-based GL-DSS on a corpus of 40 complex cases. Among these cases,
6 were not considered because the histologic type was not cancer (but they were still complex
cases). Among the remaining 34 cases, the GL-DSS’s recommendations were not compliant with
MTB decisions in 23 cases (68%), which is considerably higher than the 23% non-compliance rate
obtained with the same system on non-complex cases.

5.3.4 Discussion

As guidelines evolve, new versions often lack explicit indications of changes. We are far from the
concept of "living guidelines" which emphasizes continuous updates and transparency in modifi-
cations (Li et al., 2022). Consequently, the absence of a structured mechanism to identify and track
changes in the guidelines makes it challenging to efficiently update a CDSS’s knowledge base and
keep it aligned with the most current evidence and recommendations.
This lack of consistency can lead to significant variations in format, structure, and terminology
between different guideline versions, posing challenges for comparisons using natural language
processing methods. The diverse recommendations and approaches across guidelines may re-
sult in discrepancies, requiring thorough analysis and a deep understanding of specific contexts.
Moreover, the regular updates of guidelines add a temporal dimension to the task, demanding
continuous monitoring of new versions and their respective modifications.

The proposed method involves using real-world data to detect evolutions in medical practices.
By comparing the decisions of the multidisciplinary teams to the outputs of the CDSS, we were
able to identify profiles where there have potentially been changes in medical practices. This com-
parison process efficiently captured the parts of the SENORIF guidelines where these evolutions
of practices are described. Through this method, decision rules that needed to be added, modi-
fied, or removed from the GL-DSS knowledge base were concretely identified. Additionally, new
concepts related to emerging treatments or decision variables were incorporated into the BCKM
ontology. By leveraging real-world data and MTB decisions, this approach was effective in detect-
ing and adapting to changes in medical practices as reflected in the latest guidelines. However,
even if the comparison is easily automated, we still need to manually check the SENORIF guide-
lines to update the knowledge base.
In fact, during the manual analysis of SENORIF, we discovered practice evolutions that had not
been expressed in the set of clinical profiles we examined. This emphasizes the importance of
complementing this approach with additional mechanisms for monitoring and regularly updating
new versions of the guidelines. Thus, to ensure more comprehensive coverage of medical practice
evolutions, it is essential to combine the comparative method with careful scrutiny of new guide-
line versions and continuous monitoring of changes.

One of the primary challenges faced in this study was the quality of the data obtained from the
clinical notes. In addition to the issues outlined in Chapter 3 regarding the structure and writing
style of the BCPS, we encountered further difficulties when manually creating patient profiles in
the BCKM format.
One particular challenge arose from the fact that some attributes required by the decision rules in
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the GL-DSS were not consistently present in the textual BCPS. These missing attributes included
TNM classification, SBR grade, the distance between tumors in the case of multicentric tumors,
and tumor size before and after neoadjuvant treatment, among others. As a result, we had to in-
vest significant time in understanding patient profiles, and at times, we were compelled to com-
plete missing information based on the text to ensure the proper functioning of the system. For
example, a frequent occurrence was the TNM status, which was not always expressed as N0 or N1
but provided in a textual form, such as "no axillary invasion.".
Moreover, we also observed numerous errors in the BCPS, such as the reversal of right and left
sides, tumor size expressed in meters instead of centimeters, and other inconsistencies. Address-
ing these errors further added to the time-consuming nature of the manual data processing pro-
cess. These challenges highlight the fact that even if we have an NLP pipeline that works well in
extracting valuable information, work has to be done to ensure top-quality data during the BCPS
creation process

Finally, the utilization of the GL-DSS in DESIREE for non-complex breast cancer cases has
yielded highly promising results. In fact, despite being implemented on guidelines from 2016, in
only 24% of the cases (39 out of 160), the recommendations generated by the GL-DSS differed from
MTB decisions. However, it is important to note that there were 10 cases where the MTB decided a
mastectomy because there was a relapse. Considering that the GL-DSS was made for the manage-
ment of primary breast cancer care, there were no rules that deal with patients having a relapse,
even if in the AP-HP 2016 guidelines, mastectomy was recommended for patients with relapse.
So these specific cases do not represent an evolution of the guidelines, but, we considered these
rules regarding patients with relapse when updating the knowledge base. for the remaining 29
cases where there was a difference between MTB decisions and GL-DSS’s recommendations, the
divergence is primarily attributed to practice evolutions, which can be easily addressed through
the addition or modification of rules in the knowledge base. The only instance where the GBP
recommendations did not align with MTB decisions was for a patient classified as a non-complex
case but was actually a complex case (a transgender patient with a complex hormonal treatment
decision). Therefore, even though this requires confirmation by updating the GL-DSS knowledge
base and using it on a larger sample, the system’s performance is really promising for non-complex
cases.

It is important to mention that this approach does have limitations. If guidelines propose new
management approaches for cases previously considered compliant, MTB decisions may poten-
tially become non-compliant with the most recent guidelines. This issue could be more important
if guidelines evolve at a faster pace than the GL-DSS. As a potential solution, integrating feed-
back mechanisms into the GL-DSS could be beneficial in identifying cases where compliant deci-
sions become non-compliant, thus allowing for timely updates to maintain alignment with current
guidelines.

5.4 Conclusion

In conclusion, regularly updating a knowledge base requires an in-depth analysis of clinical prac-
tice guidelines. Despite the encountered challenges, the semi-automated approach employed in
this study allowed for the concrete observation of medical practice evolutions and the identifica-
tion of necessary modifications in the knowledge base. However, issues regarding data quality and
the need for further automation underscore the importance of establishing standards for present-
ing clinical information in BCPSs.
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Furthermore, the utilization of the GL-DSS on non-complex breast cancer cases has shown
highly promising results. Conversely, its performance on complex cases demonstrated poorer
outcomes. This finding supports our hypothesis that distinguishing between non-complex and
complex cases could ensure a more robust response from the guideline-based system, thereby en-
hancing the potential for routine clinical use. The ongoing development of such knowledge-based
systems holds significant potential in supporting healthcare professionals during the decision-
making process and ultimately improving patient care, provided the knowledge base remains up-
to-date.





CHAPTER 6

Case-based decision support

Clinical practice guidelines generally do not offer appropriate guidance for managing
complex patient cases. As a result, guideline-based decision support often falls short,
prompting clinicians to seek alternative approaches such as patient similarity-based
decision support. This research compares two methods for calculating the similarity
between breast cancer patients. The first method employs one specific type of measure
to calculate the similarity between two cases based on their attributes (termed "single-
measure" method), while the second method, termed the "hybrid method", utilizes dis-
tinct similarity measures tailored to different attribute categories. Expert knowledge is
incorporated through a weighted average of attribute measures, enhancing both the in-
terpretability and performance of case similarity determination. Optimization tech-
niques were employed for both methods, utilizing deep metric learning for the "single-
measure" approach and classical (non-machine learning) optimization methods for the
hybrid method. The dataset employed for this work was a cohort of 100 arbitrarily cho-
sen BCPSs for training purposes, and the method was evaluated on 10 randomly selected
complex BCPSs.

Although deep metric learning methods were explored to optimize the "single-measure"
approach, the results did not meet initial expectations, indicating the need for further
refinement. Our research underscores the importance of selecting appropriate similar-
ity measures according to the nature of the attributes and of effectively weighting them
based on the type of variables used. This approach substantially improves the accuracy
of patient similarity assessments and facilitates the comprehensive interpretation of the
results by integrating expert knowledge.
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6.1 Introduction

Case-based reasoning (CBR) is a problem-solving methodology that draws on past experiences
(cases) to solve new problems (De Mantaras, 2001). In the context of healthcare, CBR has emerged
as a valuable approach for clinical decision-making, providing a framework to guide current di-
agnostic and treatment decisions. CBR offers healthcare professionals a systematic method to
decision-making by leveraging the knowledge and experiences captured in the case base. It pro-
motes personalized medicine by taking into account patient-specific characteristics and facilitates
the development of targeted and effective treatment strategies. Furthermore, the evaluation of pa-
tient similarity and the advancement of similarity measures play a major role in enabling precision
medicine and supporting data-driven decision-making in real-world healthcare settings.

In the management of complex cases, as mentioned in section 1.1.3, clinicians desired retriev-
ing similar patient profiles as the decisions made for these similar profiles might be similar to the
decisions to be made for the complex case. Therefore, we suggested that the implementation of
CBR can offer significant advantages. Complex cases often present unique challenges, requiring a
more personalized and tailored approach to decision-making. By utilizing CBR, healthcare profes-
sionals can tap into a vast repository of past cases with similar clinical profiles or characteristics.
This allows for the retrieval of relevant cases that offer valuable insights and potential solutions
specific to the complexity of the current case.

As seen in section 2.3, CBR reasoning process involves several steps. Firstly, relevant cases are
retrieved from a case repository based on their similarity to the current patient case. Similarity
measures are employed to identify cases with similar clinical profiles. Once relevant cases are re-
trieved, the next step is the reuse of the retrieved information. Decisions made in similar cases
are adapted and applied to the current patient case. This step allows healthcare professionals to
capitalize on previous successful interventions or treatments, potentially saving time and improv-
ing the quality of care. The third step in CBR is the revision of decision. The retrieved decision is
examined and adjusted to fit the specific context of the current patient case. This step ensures that
the decision is tailored and optimized for the individual patient’s needs, considering factors such
as comorbidities, preferences, and available resources. Lastly, the revised decision, if validated as
a new decision for the patient, is retained in the case base for future reference. This step con-
tributes to accumulating experience over time, as the case base grows with additional cases and
their corresponding decisions.

In this chapter, our focus is on the development of a method for recalling patients similar to
a given patient to propose therapeutic options specifically tailored to her needs. With the aim to
enhance the decision-making process by leveraging CBR techniques, we compared two methods.
The first one, the "single-measure method", is based on using one specific measure (e.g., Cosine,
Euclidean distance) for all attributes to calculate the similarity between two patients. The second
one, called the "hybrid method", uses a weighted average of multiple measures to assess patient
similarity. Additionally, we used optimization techniques to enhance the precision and accuracy
of the similarity calculation algorithms, evaluated on an expert-curated patient case dataset.

Through this chapter, we aim to contribute to the field of decision support in healthcare by
presenting a comprehensive methodology that takes advantage of CBR techniques for recalling
similar breast cancer patients and proposing personalized therapeutic options to any new complex
breast cancer patient.
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6.2 Methods

The methodology is centered around the use of a corpus of textual BCPSs that have undergone
transformation into coded data using the structured data extraction algorithm described in Chap-
ter 3. The structured data model utilized here aligns with the one previously described in Section
3.2.1.2. Figure 6.1 shows an overview of the pipeline implemented in this chapter :

• We began by constructing two datasets, the similarity learning dataset, consisting of 100 ran-
domly selected BCPSs (stratified as 50 complex cases and 50 non-complex cases) that were
grouped into clusters by an expert and used for training the algorithms. Then another sub-
dataset made of 10 randomly selected complex BCPSs was used to evaluate the algorithm,
an expert calculated for each of the 10 selected patients, the top 5 similar patients from the
similarity learning dataset. The resulting dataset was used as a gold standard for evaluating
the similarity measure and named similarity evaluation dataset (Please refer to figure 1.2.
for a graphical visualization)

• Next, we proceeded to create a generic similarity measure to assess the similarity between
patients. We compared the performance of both the single-measure and the hybrid method
to calculate similarity.

• Then, we optimized the similarity calculation for both methods. We explored traditional
optimization techniques and the use of deep learning.

• Finally, both methods were evaluated on the constructed gold standard.

6.2.1 Dataset building

We collaborated with an advanced oncology expert to develop a dataset for a similar case detec-
tion task. To start, we incorporated the concept of scenarios (described in section 3.2.4.3) into
this methodology. Based on discussions with the expert, we concluded that patients can only be
compared and considered similar if they are in the same scenario. For example, a patient who has
already undergone surgery (scenario D) cannot be compared to a patient who is in the initial de-
cision stage (scenario A). Taking this into consideration, we made sure the dataset included only
patients in scenario D. Indeed, we found that Scenario D was the most common and encompassed
a wide range of attributes. So in this chapter, all the BCPSs described represent patients who have
already undergone surgery without a neoadjuvant treatment (scenario D).

A corpus of 100 BCPSs in scenario D was selected among the 1,048 BCPSs from the complexity
learning dataset (refer to figure 1.2), and stratified into two groups: 50 BCPSs of non-complex cases
and 50 BCPSs of complex cases. The advanced expert manually classified the 100 BCPS into clus-
ters of similar patient situations based on their clinical characteristics but not on the decisions that
were made for these patients (the clusters here are not complex or not complex but represent clus-
ters of patients with shared key clinical characteristics). This clustered dataset, named similarity
learning dataset, served as the training set for similarity learning.

The sample of 10 complex BCPSs was randomly selected from the same source (complexity
learning dataset) and chosen to be different from the 100 BCPSs of the similarity learning dataset.
Following this, for each of the chosen 10 complex BCPSs, the expert thoroughly analyzed the clini-
cal context, then identified the 5 cases that exhibited the highest resemblance to the selected BCPS
from the similarity learning dataset. This resulting subset was utilized as a gold standard for eval-
uation and is named similarity evaluation dataset.
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Figure 6.1: Pipeline used for CBR decision support

Refining Attribute Values and Establishing Ordinal Variables During this phase of dataset de-
velopment, we worked with the expert to refine some attribute values and transform them into
meaningful ordinal variables. The objective was to improve the quality of the dataset and facilitate
the similarity and dissimilarity calculation between 2 patients, by ensuring that attribute values
represented significant differences.

To illustrate this process, let’s consider the T attribute of the TNM classification, which de-
scribes the tumor.
We establish a classification scheme for the T attribute. The scheme assigns numerical values to
different T classifications, reflecting the severity or progression of the tumor size. For instance, we
categorized the values as follows:

1. (Tx): Tumor size cannot be assessed.

2. (T0): No evidence of a primary tumor.

3. (Tis, T1mic): Carcinoma in situ or microinvasion.

4. (T1abc): T1 tumors (<= 2 cm).

5. (T2, T3): T2 or T3 tumors (> 2cm).

6. (T4): Tumor of any size with direct extension to the chest wall or skin.

By organizing the attribute values in this manner, we effectively captured the increasing severity of
the tumor as the numerical values progressed.
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Furthermore, we applied a similar methodology to other attributes within Scenario D, including
the N (Node) attribute. By refining the attribute values and transforming them into ordinal vari-
ables, we ensured that the dataset represented the clinical reality and facilitated precise clustering
of breast cancer patients. In addition to that, we also grouped the patients according to the nature
of the tumor, indeed we distinguished between patients with invasive breast cancer and patients
with InSitu breast cancer.

In the end, we had a training dataset of 100 scenario-D BCPSs represented in a CSV table con-
taining the needed attributes for this scenario, and the cluster assigned to each BCPS by the expert.
In addition to that, we had a test set of 10 BCPSs representing complex cases from the same sce-
nario. For each of these 10 BCPSs, rather than having the cluster labeled for each patient, we had
the 5 most similar BCPSs (if any) within the training dataset.

6.2.2 Construction of generic similarity measures

Following a literature review and considering the type of variables in the data model, we have cho-
sen to use the similarity measures listed in Table 6.1.

Table 6.1: Selected similarity measures: A brief description of
the variables and formulas used. depth(s1) and depth(s2) rep-
resent the distance from the root to the nodes s1 and s2, respec-
tively. Depth (lsc(s1, s2)) represents the distance from the root to
the common branch of concepts s1 and s2.

Variable Measure Formula

Numeric (e.g Tu-
mor size)

Cosine Similarity
∑n

i=1 Ai×Bi√∑n
i=1 A2

i ×
√∑n

i=1 B 2
i

Categorical (e.g Bi-
rads score)

Jaccard Similarity A∩B
A∪B

Ordinal (e.g Tumor
grade) or numeric

Euclidean Similarity 1
1+p∑n

i=1(Ai−Bi )2

Hierarchical (e.g
Histologic type)

Wu and Palmer Similarity Si mW P (s1, s2) = 2×
(

depth(lcs(s1,s2))
depth(s1)+depth(s2)

)

To calculate the similarity between cases, we have used two methods (see Figure 6.1 for a visual
comprehension of the pipeline):

• Method 1: Utilizing a unique measure for the calculation: "single-measure" method.

• Method 2: Utilizing multiple measures by taking a weighted average: "hybrid" method.

6.2.2.1 Method 1: Utilizing a unique measure for the calculation

In this method, a single similarity measure is applied to all attributes without variable grouping,
with a normalization step:

• For Cosine and Euclidean measures, we normalized all ordinal variables on a scale of 0-1
to ensure they had the same scale as binary variables. The categorical variable, histological
type, was customized to have two binary variables: invasive carcinoma (yes/no) and carci-
noma in situ (yes/no).
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• For the Jaccard measure (a measure for categorical data), the numeric attribute age was
transformed into a binary variable: elderly (yes/no), setting the threshold at 75. We removed
the numeric variable for tumor size and only kept it with the categorical variable of T from
the TNM classification.

For this method, the input for each similarity measure was a vector representing the values for
each attribute according to the information extracted from the BCPS. It gives as output a similarity
matrix containing the values of similarity between each pair of patients.

6.2.2.2 Method 2: Utilizing multiple measures by taking a weighted average

A. Variable grouping In this method, instead of normalizing the attributes to fit with a single sim-
ilarity measure, we grouped the variables according to their type and we used the similarity mea-
sure that fits with that type, i.e. Jaccard for the categorical variables (including binary variables),
Euclidean for the ordinal variables, and Wu & Palmer for hierarchical variables. Table 6.2 below
describes which measure is utilized for the different attributes mentioned in 6.3.

Table 6.2: Selected similarity measures and corresponding at-
tributes

Variable Measure Variables
Categorical Jaccard Vulnerable, Hormone Receptors, HER2, Triple

Negative, Comorbidities, Bilateral Cancer, Recur-
rence, Menopausal Status, Carcinoma in Situ As-
sociated, Focality, Margins, Presence of Other Can-
cers, History of Radiotherapy, Genetic Mutation,
Type of Surgery, OncotypeDX Value

Ordinal and Inte-
gers

Euclidean
(Normalized)

Ki67, T, N, Grade of Invasive Tumor, Grade of In
Situ Tumor, Age, Size of tumor

Hierarchical Wu and Palmer Histological Type (represented in figure 6.2)

Figure 6.2: Representation of his-
tologic types in the BCKM ontol-
ogy

Implementation of Wu & Palmer similarity : In order to im-
plement the Wu and Palmer method using the ontology, we
used a programming module for ontology-oriented program-
ming in Python 3 called OwlReady2 (Lamy, 2017) . This mod-
ule allowed to import the BCKM ontology into Python, en-
abling to work with the hierarchical structure of the possible
values of the "histological type" variable. The Wu and Palmer
similarity measure provides a formula (see Table 6.1) for cal-
culating a similarity between two concepts in a hierarchy by
considering the depth of each class and the depth of their
common parent class.

B. Hybrid similarity calculation function After grouping the attributes according to the similar-
ity measure, we implemented a Python function that takes for each BCPS the vector of attribute
values described in table 6.3. The function takes weights for each attribute, allowing for the vari-
ation of weights based on the importance assigned to the attribute. Finally, a similarity measure
between 0 and 1 is calculated for each pair of patients by taking a weighted average of the measures

https://owlready2.readthedocs.io/en/latest/
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across all attributes. This function facilitates the computation of similarity scores and enables the
comparison of cases based on a comprehensive set of attributes.

C. Similarity matrix and hierarchical clustering Once the similarity function was implemented,
we applied it to the dataset to obtain a similarity matrix for each pair of patients. The similarity
matrix was then processed using the fcluster function, which performs hierarchical clustering and
assigns cluster labels to the data points based on the desired number of clusters. We set the desired
number of clusters to the number of clusters identified by the expert (18 clusters on the similar-
ity learning dataset). Clusters were computed from the matrix using the "ward" linkage method
(Großwendt et al., 2019). This method merges similar observations while minimizing the loss of
inertia, promoting the formation of clusters of similar sizes. Results are visualized using a dendro-
gram.

After obtaining the dendrogram, we varied the weights of the similarity function to calculate
the similarity matrix. The objective was to determine if it was possible to replicate the clusters
identified by the expert by manually adjusting the weights assigned to each variable in the similar-
ity function. Note that we chose to vary the weights only for the "hybrid method" because when
comparing the results of the "hybrid method" without weights (all weights equal 1) to the "single-
measure" method, we saw that the hybrid method gave better results.

To manually determine the variable weights that aligned with the gold standard results, we
employed an interactive visualization framework such as "Bokeh." This framework facilitates the
visualization of the results (see figure 6.3). The iterative process of adjusting the weights aimed
to identify the combination that yielded clusters similar to those annotated by the expert, thereby
refining the similarity calculation and improving the accuracy of patient clustering.

Figure 6.3: Dashboard for manual weights definition

6.2.3 Similarity learning

After obtaining the similarity matrix using different measures, we aimed to optimize the weights
and use learning methods to improve the clustering results. While manually searching for the

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
http://bokeh.org/
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weights that closely match the expert clustering can be helpful, it is essential to find an automatic
method for this learning process.

To address this optimization task, we used the similarity learning dataset (100 curated and
structured BCPSs) and we considered the generic similarity measures obtained using both Method
1 (section 6.2.2.1) and Method 2 (section 6.2.2.2):

For Method 1, where only one similarity measure is used, we employed deep learning methods to
learn suitable embeddings for the initial patient attributes. Specifically, we utilized Siamese
networks (Tran et al., 2020), which are neural network architectures commonly used for simi-
larity calculation tasks. Siamese networks learn to project the patient attributes into a shared
embedding space, where the similarity between patients can be measured based on the dis-
tance or similarity between their embeddings. By training the Siamese network using appro-
priate loss functions, we can optimize the weights to achieve better similarity assessment
and clustering results.

For Method 2, the similarity function described in Section 6.2.2.2.3 utilizes specific similarity
measures based on the variable type. Consequently, utilizing a neural network-based method
for optimization in this case becomes impractical. Neural networks modify the initial em-
beddings through their backpropagation logic, resulting in completely different embeddings
from the initial vectors for each patient. Therefore, using the custom similarity function be-
comes unfeasible. Thus, for Method 2, we employed optimization techniques that do not
rely on neural networks. We used the Optuna library (Akiba et al., 2019) to randomly sample
weight values for the similarity function and evaluate their performance on the clustering
task. The weight values that yielded the best clustering results were used to define the simi-
larity function.

6.2.3.1 Similarity learning for method 1 (the "single-measure" method)

For Method 1, we employed the following steps for embedding learning with Siamese networks
using triplet loss as a loss function. Figure 6.4 resumes the algorithm described below.

Siamese network architecture We designed a Siamese network architecture with Multi-Layer Per-
ceptrons (MLPs). Siamese networks are effective in learning similarity relationships by projecting
patient attributes into a shared embedding space. This shared embedding space enables mean-
ingful comparisons between cases based on the distance or similarity between their embeddings.

Training initialization To initiate the training process, we selected a small sample for the simi-
larity learning dataset of 18 cases, ensuring representation from each cluster (18 clusters). These
patients served as an initial sample to start the training.

Iterative training We performed iterative training by adding one patient at a time to the training
process. For each patient, the following steps were executed:

1. Extraction of Triplets: Each time we added a patient, we calculated all possible triplets in
the current batch. This was done using the batch-all strategy (Li et al., 2021), where we con-
sidered all combinations of anchor-positive-negative triplets. As explained in section 2.3.2.1
valid triplets are triplets where the anchor and the positive sample are in the same cluster,
while the anchor and negative sample are in different clusters.
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Figure 6.4: Pipeline for similarity learning using neural networks

2. Calculation of triplet loss: The triplet loss was computed for each triplet in the batch using
the Siamese network and the following loss function:

L = max(d(a, p)−d(a,n)+margin,0)

where d(a, p) represents the distance between the anchor and positive embeddings, d(a,n)
represents the distance between the anchor and negative embeddings, and margin is a pre-
defined margin value. The triplet loss encourages the embeddings of anchor-positive pairs
to be closer than the embeddings of anchor-negative pairs by at least the margin value.

3. Update of the Siamese Network: We updated the weights of the Siamese network using back-
propagation and the computed triplet loss to improve the embeddings. The objective was to
minimize the average triplet loss across all the triplets in the batch.

This iterative training process was repeated for each additional patient in the dataset. Our aim
was to learn embeddings that accurately represented patient attributes and captured the desired
similarity relationships. To measure similarity between two embeddings, we utilized Euclidean
similarity, a widely-used metric in Siamese network architectures and the most used one for CBR
systems in healthcare according to a recent review (Noll et al., 2022).

6.2.3.2 Weights optimization for method 2 (the hybrid method)

To automate the process of weight calculation in the similarity function of method 2. We employed
the Optuna algorithm (Akiba et al., 2019) , which is an optimization library that automatically finds
the best parameters to maximize or minimize a given objective function.

In this context, the objective function is used to evaluate the performance of the similarity
function based on the adjusted rand index (ARI) (Sundqvist et al., 2020), it is a measure that ranges
from -0.5 to 1.0, where a score of 1.0 indicates a perfect match or identical clusterings (up to a per-
mutation). A value close to 0.0 indicates random labeling, independent of the number of clusters

https://optuna.org/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
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and samples. In cases where the clusterings are particularly discordant or dissimilar, the ARI can
have a value below -0.5, indicating a significant disagreement between the two sets of clusters.
By iteratively optimizing the weights to maximize the ARI, we aim to enhance the clustering results
and achieve better agreement with the expert annotations. The optimization process follows the
steps outlined below:

1. Three weights are fixed based on the expert knowledge, with a high weight of 20 assigned to
the variables "triple negative," "recurrence," and "geriatric frailty."

2. Optuna proposes integer weights ranging from 0 to 20 for the remaining variables.

3. A new similarity matrix is calculated using the weights provided by Optuna and the similarity
function described in Method 2.

4. Clusters are calculated from the similarity matrix as explained in section 6.2.2.2.4

5. The resulting clusters were then evaluated using the ARI to measure the agreement between
the expert-assigned clusters and the algorithm-generated clusters.

6. The process is repeated with the objective of maximizing the ARI.

The algorithm 1 below describes the objective function :

Algorithm 1 Objective Function for Weight Optimization

Require: Dat a: Training Dataset of 100 patients annotated by expert
Require: encodedC ateg or i es: Labels (clusters) of patients

function objective(tr i al )
wei g ht s ← []

for i in variables do
if i = Tr i pl eNeg or i = Recur r ence or i =Ger i atr i cF r ai l t y then

wei g ht s.append(20)
else

wei g ht s.append(Sug g est Integ er (1,20))
end if

end for
New M atr i x ← calcul ateSi mi l ar i t y M atr i x(Dat a, wei g ht s)
newGr oups ← f cl uster (New M atr i x)
ar i ← Ad j ustedRandScor e(encodedC ateg or i es,newGr oups)
return ari
end function

6.2.4 Evaluation

Once we obtained the similarity matrix from each method, we got 7 similarity matrices:

• M1Euclidean , M1Cosine , M1Jaccard: represents the similarity matrices obtained using, respectively
the Euclidean, Cosine, and Jaccard similarity as a unique measure for calculation, following
the attribute values transformation step described in section 6.2.2.1.
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• M1Siamese network: The similarity matrix is obtained following the method described in section
6.2.3.1.

• M2NoWeights: The similarity matrix is obtained by calculating the weighted average of the three
measures following Method 2 (described in section 6.2.2.2), with a weight of 1.

• M2Weighted manually: The similarity matrix is obtained following Method 2, with weights obtained
manually.

• M2Weighted automatically: The similarity matrix is obtained following Method 2, with weights ob-
tained using the Optuna optimization.

We utilized the similarity evaluation dataset to evaluate the performance of the implemented
methods. During the evaluation, we compared the top 5 patients annotated as similar by the expert
(the gold standard) with the top 5 patients provided by the similarity methods. The evaluation
metrics used for this comparison were precision and recall.

In the context of considering only the top 5 patients, precision and recall have the same value.
The number of true positives represents the patients correctly identified as similar by the expert
and the similarity methods, while the number of false positives indicates the patients falsely iden-
tified as similar by the methods. Similarly, the number of false negatives represents the patients
who are actually similar but not included in the top 5 by the methods.

6.3 Results and discussion

6.3.1 Created datasets

As a result, we obtained 2 datasets of BCPSs representing patients in scenario D (after first surgery).
The BCPSs were curated to keep the most important attributes. The list of attributes we took into
consideration for scenario D and their associated values are specified in Table 6.3.

Table 6.3: List of attributes and their values for patients in sce-
narioD (surgery without neoadjuvant treatment)

Variables Values
Age Integer
Tumor size Integer
Vulnerable 0 (no) / 1 (yes)

0 (no) / 1 (yes)
Hormone Receptors (Progesterone receptors, Estrogen receptors)

0 (negative) / 1 (positive)
HER2 0 (negative) = score 0, 1, 2 and FISH negative

1 (unknown) = score 2 and unknown FISH
2 (positive) = score 2+, 3+, 2 and FISH positive

Triple Negative 0 (negative) / 1 (positive)
Ki67 0 (low) / 1 (high)
Comorbidities 0 (no) / 1 (yes)
Bilateral Cancer 0 (no) / 1 (yes)
Recurrence 0 (no) / 1 (yes)
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Menopausal Status 0 (premenopausal) / 1 (postmenopausal)
Associated In Situ Carcinoma 0 (no) / 1 (yes)
Focality 0 (multifocal) / 1 (unifocal)
Clear surgical margins 0 (no) / 1 (yes)
Positive in situ margins 0 (no) / 1 (yes)
Positive invasive margins 0 (no) / 1 (yes)
Presence of Other Cancers 0 (no) / 1 (yes)
Antecedant of Radiotherapy 0 (no) / 1 (yes)
Genetic Mutation 0 (no) / 1 (yes)
Surgery Type 0 (Conservative surgery) / 1 (mastectomy)
Tumor Stage 1 (Tx) / 2 (T0) / 3 (Tis, T1mic) / 4 (T1abc) / 5 (T2, T3) / 6 (T4)
Lymph Node Status 1 (Nx) / 2 (N0, N0i-) / 3 (N0i+, N1mi) / 4 (N1, N2) / 5 (N3)
Invasive Tumor Grade 0 (unknown) / G1 / G2 / G3
In Situ Tumor Grade 0 (unknown) / G1 / G2 / G3
OncotypeDX Value 0 (not done/not yet) / 1 (RS<11) / 2 (11-25) / 3 (>25)
Histological Type Hierarchical tree (see figure 6.2)

Insitu breast cancer As explained in 6.2.1. We distinguished between InSitu cancers and invasive
cancers. Within the training set, there were 11 patients with InSitu breast cancer, who were also
classified by the expert as InSitu.

6.3.2 Evaluation

Figure 6.5 shows the performance of all the methods implemented on the test set. The metric
expressed is precision.

Figure 6.5: Precision of the different methods for CBR retrieval results

Regarding the single-measure method, the precision/recall scores hovered around 20% for Eu-
clidean and Cosine to almost 30% for Jaccard, indicating the need for improvement (see figure
6.5).

In Method 2 - we wanted to assess if a hybrid approach with No Weights and Manual Weights
improves the results. The hybrid method displayed some progress, showing slightly better results
than the metrics in method 1, with a precision/recall score of 30% with no weights. And achieving
53% when calculating the weights manually.
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Seeking to maximize each method’s potential, we delved into optimization. While the Siamese
Network (Method 1 optimization) did not show improvement using the Euclidean distance, em-
ploying the Optuna optimization algorithm for Method 2 achieved better results. It elevated the
precision/recall score to approximately 64%, surpassing other methods.

6.3.2.1 Comparison of the different measures

Figure 6.6 shows the distribution of the extracted similar patients for each patient from the test
set (there are 9 patients in the figure as there was a patient for which there were no similar cases),
When looking at the results, we gained valuable insights into their effectiveness in identifying sim-
ilar patients. Let’s delve into the key observations:

Figure 6.6: Distribution of top 5 extracted patients on the test set

• Cosine and Euclidean Similarity: These two methods exhibited strikingly similar results,
with both yielding relatively low similarity scores for most patients. The scores mostly ranged
from 0/5 to 1/5, indicating that these methods struggled to accurately identify similar pa-
tients in the dataset. For example, 4 patients (IDs Pat 8, Pat 24, Pat 40 and Pat 32) received
scores of 0/5 using the Cosine metric, 3 of them also had 0/5 for Euclidean. Suggesting that
the methods did not retrieve any of the similar patients classified by the gold standard.

• Jaccard Similarity: The Jaccard method performed slightly better than Cosine and Euclidean.
It displayed improved scores for several patients, with 4 out of 9 patients receiving a similar-
ity score of at least 2/5. However, it still fell short in effectively identifying similar patients
across the dataset with 2 patients having a score of 0/5.

• Weighted Average without Optimization (no weights): Creating a hybrid metric that com-
bines the similarity measures using a weighted average showed slight improvement over in-
dividual measures. Five out of the 10 patients in the test set had at least a score of 2/5.

• Manually Weighted Method: The manually weighted approach, where we carefully assigned
weights to each similarity measure, showcased significant performance improvement. It
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achieved high scores for a considerable number of patients. Notably, patients Pat 24 and Pat
32 received perfect similarity ratings of 5/5, highlighting their strong resemblance to other
patients.

• Automatically Weighted Method: By leveraging the Optuna optimization algorithm to find
optimal weights, and giving him the best manual weights as input to start the optimization,
the automatically weighted method demonstrated further enhancement in similarity assess-
ment. Reaching the best performance among all other methods.

• Siamese Network: The Siamese network method presented a mixed picture. While it ex-
hibited improved scores for several patients, reaching up to 3/5, it struggled in accurately
identifying similarities for others where the unique measure method did an initial good iden-
tification. For example, patient Pat 41 received a score of 0/5, while it had a score of 1/5 in
the initial Euclidean similarity calculation. The network’s architecture and training process
might influence its performance, indicating the need for further fine-tuning.

6.3.3 Discussion

In recent years, the field of diagnostic decision support and therapeutic management support
has witnessed significant advances, particularly with the emergence of patient similarity network
paradigms (Pai et al., 2019). Researchers have increasingly focused on learning patient profile rep-
resentations through the development of supervised models and solving constrained optimization
problems. Notably, one important distinction from previous studies lies in the utilization of su-
pervised machine learning to determine patient similarity, with only a limited number of articles
exploring the use of unsupervised models in research (Brown, 2016; Panahiazar et al., 2015).
While a few studies have attempted to aggregate multiple similarity measures based on various
attributes (Pai & Bader, 2018), many of these investigations overlook the importance of specific
patient characteristics during the similarity calculation process. Particularly, these methods have
not been extensively applied in the context of cancer care, making our research novel in its ap-
proach.

In this research, we used two methods to address similarity calculation between two breast
cancer patients, the first of which used a unique similarity measure to calculate similarity between
patients. The other method involved using various similarity measures for distinct data categories.
Finally, we used an expert-made gold standard to find the weights of important variables.

The choice of a structured data model is a paramount step in implementing similarity mea-
sures. Having access to a domain ontology, we could have chosen a graph model using the ontol-
ogy and the entity-attribute-value model to calculate the similarity between patients with graph-
based models such as Graph Neural Networks (GNN). Gu et al. (2022) has proposed a deep learn-
ing framework called "Structure-aware Siamese Graph Neural Networks" (SSGNet) that organizes
computerized patient records as graphs and uses GNNs to learn patient similarity. But having ac-
cess to a limited number of annotated data, we chose to make a simple representation in the form
of a table, with for each patient the list of decision variables described before.

The results we obtained make us think that choosing a similarity measure according to the
type of variables and having a weighted average of different measures can improve results. Indeed,
in Method 1 (use of a single similarity measure), the absence of weighting and the equal impor-
tance given to all variables lead to results far from the gold standard. What’s more, applying a
different measure to each type of variable makes more sense than using the same measure for all
types of variables. For example, histological variables, which have a hierarchical tree structure, are
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fundamentally different from other types of variables. Using the same method for all variables also
makes it difficult to assign weights when considering each observation as a vector with all attribute
values.
In addition to improving results, this approach also helps to explain them. Indeed, the weights
chosen reflect the importance accorded to the variables. Using this reasoning, we can include ex-
pert knowledge when assigning weights (for example, in our case we gave significant weight to the
patient’s vulnerability variable because experts gave us this information).

Despite our efforts to optimize the single similarity method using deep metric learning, the re-
sults were not as promising as initially anticipated. While the Siamese network exhibited improved
scores for some patients, reaching up to 3/5 similarity, it encountered significant challenges in ac-
curately identifying similarities for most cases. For instance, patient Pat 41 received a score of 0/5,
despite initially achieving a score of 1/5 in the Euclidean similarity calculation. This discrepancy
highlights a limitation in the network’s ability to generalize and capture the intricated patterns that
define patient similarities, moreover, learning new embeddings makes us lose the clinical reality of
the data that was processed from BCPSs, which makes it impossible to explain the results obtained.
The architecture and training process of the Siamese network may have contributed to these sub-
optimal outcomes, underscoring the need for further refinement and fine-tuning, or the direct use
of the textual BCPSs instead of a structured format extracted from the text. Despite this setback,
the deep metric learning approach provides valuable insights (Gu et al., 2022) and may still have
the potential for improved performance with additional adjustments and optimizations. Future
investigations could explore alternative network architectures, data augmentation techniques, or
fine-tuning hyperparameters to enhance the deep learning efficacy in patient similarity determi-
nation.

Finally, even if we have obtained numbers for precision and recall, it’s crucial to confirm if
the method actually works. To do this, we need to show similar patient cases obtained by the
algorithms to experts and ask them if the algorithm’s suggestions are accurate.

Moreover, it’s essential to increase the number of BCPSs used for validation. In our study, the
annotation process involved selecting the top 5 most similar patients, which proved to be time-
consuming. This required an expert to compare each BCPS from the similarity evaluation dataset
with the 100 BCPSs in the similarity learning dataset. Consequently, we were limited in our ability
to annotate more BCPSs for validation. Additionally, involving multiple experts in the annotation
process could potentially enhance our results.

6.4 Conclusion

In conclusion, the research work conducted demonstrates the significance of selecting appropriate
similarity measures tailored to the type of variables used and effectively weighting these measures.
This approach yields favorable results for the accurate detection of similar patients. By incorpo-
rating the importance (weight) attached to each variable, we can comprehensively explain the ob-
tained results and integrate expert knowledge in the weighting process. The combination of these
strategies not only improves the precision and recall scores of patient similarity methods but also
enhances our ability to interpret and validate the outcomes in the context of clinical relevance.





CHAPTER 7

Conclusion

7.1 Summary

This research journey started with the goal of developing a multifaceted computerized decision
support tool to assist clinicians in the management of breast cancer patients during multidisci-
plinary tumor board meetings. With the initial hypothesis that one single system can’t fit all pa-
tient situations, we wanted to create a CDSS that uses the complexity of a clinical case to provide
decision support (guideline-based for non-complex cases and case-based for complex cases ).

Throughout the thesis, we addressed various aspects of clinical decision support, including
data extraction from unstructured clinical notes, case complexity classification, case-based deci-
sion support, and the update of guideline-based decision support.

First of all, despite the emergence of new AI tools to deal with textual input, there are still
many tasks that can be automatically performed with structured data. Since patient cases dis-
cussed within MTBs are presented as textual breast cancer patient summaries, we developed a
rule-based method for the efficient extraction of structured data from BCPSs (chapter 3). The de-
veloped pipeline demonstrated strong performance, it was evaluated on 30 textual BCPSs, show-
ing an average F1-score of 0.93 for tumor attributes, 0.8 for side attributes, and 0.85 for patient
attributes which show really good performances compared to similar works. These first results em-
phasized the significance of customization and adaptation to the specificities of BCPSs to achieve
higher scores.

Following our hypotheses, we elaborated the decision support modules according to the com-
plexity of clinical cases. We were facing a research problem to choose the best method for BCPS
classification with respect to complexity. Even if this is a complex task as there is no definition
of breast cancer complexity, our findings revealed that feature extraction using semantic annota-
tors achieved higher results compared to using pre-trained language models. We obtained (89%
accuracy when using MLP with semantic annotators compared to 72% accuracy using BERT mod-
els and 77% for Word2vec to do the feature extraction on a corpus of 1042 BCPSs annotated as
complex and non-complex (80% for training and 20% for test) Classic machine learning methods
outperformed transformer models such as BERT in identifying complex cases. This highlights the
relevance of considering traditional ML models for this specific task (Chapter 4).



108 Chapter 7 – Conclusion

Building upon the understanding of case complexity, we utilized the guideline-based decision
support systems of the DESIREE project for non-complex cases. When using the system we faced
the problem of updating the system’s knowledge base as it was implemented on guidelines of 2016.
We implemented a semi-automated method based on real breast cancer cases for identifying prac-
tice evolution according to the latest evidence, we used 160 real annotated BCPS that corresponded
to non-complex cases. Among them, there were 38 (23%) patient profiles where the recommenda-
tion of the system did not comply with the MTB decision and for which we noticed an evolution in
practice. This method allowed us to identify update needs in the GL-DSS’s knowledge base and add
new rules and concepts. Furthermore, the evaluation process supported the fact that guideline-
based reasoning is not suitable for complex cases, as the system was non-compliant in 23 out of
34 complex cases (68%), aligning with our initial hypothesis that guideline-based systems are not
relevant for managing complex cases (Chapter 5).

Ultimately, regarding decision support for complex cases, we conducted a study to establish
a case-based reasoning system for breast cancer patients. Two different approaches were exam-
ined for measuring the similarity between patients. The first approach utilized a unique similarity
measure that was optimized using deep metric learning, while the second approach was a hybrid
method that combined multiple measures and incorporated expert knowledge using weighted av-
erages. Both methods were trained on a corpus of 100 randomly selected BCPSs for which ex-
perts manually clustered similar cases. The evaluation was done using the comparison of the top 5
most similar patients for 10 complex BCPSs. The hybrid method yielded encouraging outcomes in
determining patient similarity, substantially enhancing the accuracy of assessing similar patients
and improving interpretability, achieving a precision rate of 64%. However, deep metric learning
methods performed poorly with a precision rate of only 21%, suggesting the need for further im-
provements to attain the desired results (Chapter 6).

In conclusion, this thesis has provided valuable insights into the development of a clinical de-
cision support system tailored for multidisciplinary tumor board clinicians. By implementing an
NLP pipeline that efficiently extracts data from BCPSs and integrates it into a guidelines-based
DSS, we have answered our research question on creating an effective system that utilizes clinical
notes to provide personalized treatment recommendations based on guidelines.

The complexity prediction algorithm, combined with the results from the guideline-based DSS,
addresses the research question on clinician acceptance of guideline-based DSSs in clinical prac-
tice. By filtering out non-complex cases and focusing on profiles covered by clinical guidelines, our
system offers evidence-based and accurate recommendations, promoting its acceptance among
clinicians.

Moreover, the case-based decision support systems, although yet to be formally evaluated,
present a promising answer to the question of providing decision support for complex cases. By
offering personalized recommendations according to the patient’s profile, similarity-based reason-
ing holds great potential in aiding clinicians faced with intricate clinical scenarios.

Throughout our work, we have adhered to the principle that "one size does not fit all," align-
ing with our initial objective. By tailoring decision support based on case complexity, we have
effectively addressed the main research question of developing a CDSS that assists MTB clinicians
in their decision-making process. This approach has demonstrated promising results to enhance
collaborative decision-making and ultimately improve patient care. As we continue to refine and
evaluate the system, we aspire to contribute significantly to the advancement of clinical decision
support in oncology, paving the way for more informed and personalized treatment strategies in
the future.
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7.2 Limitations

As with any scientific research, this study is not without limitations, which are essential to ac-
knowledge to provide a balanced perspective on the findings and implications. These limitations
encompass various aspects of the research, including design, technical, and practical considera-
tions.

7.2.0.1 Design limitations

The research design played a pivotal role in shaping the outcomes of this study. One of the primary
design limitations is the sample size and generalizability of the results. The decision support mod-
ules’ evaluation relied on a limited dataset of breast cancer patient summaries available within the
EDS data warehouse. Although the dataset was meticulously annotated, a larger and more diverse
dataset from multiple institutions would enhance the generalizability of the developed decision
support systems to a broader patient population.

Another design limitation pertains to the focus on breast cancer management. While this focus
aligns with the research’s specific objectives, it restricts the direct applicability of the developed
decision support systems to other cancers, or more generally to other pathologies. Expanding the
scope of the study to encompass other cancers would provide a more comprehensive evaluation
of the decision support systems’ versatility and potential.

7.2.0.2 Technical limitations

Several technical limitations were encountered during the course of this research. One of the main
technical challenges was the limited availability of annotated data. Although the datasets were an-
notated by experts, variations in complexity assessments between different annotators emerged
due to the lack of a standardized definition of complexity. Such discrepancies influenced the per-
formance of the complexity classification algorithm and may call into question its reliability.

Additionally, the decision to utilize data from the EDS data warehouse introduced practical
constraints and technical challenges. The structuring of breast cancer patient summaries within
the data warehouse, often characterized by copy-paste text, required rigorous data cleaning and
processing. While efforts were made to address these issues, it remains possible that some noise
and inconsistencies persisted in the data, impacting the performance of the decision support mod-
ules.

7.2.0.3 Practical limitations

Practical limitations also influenced the research outcomes. One significant practical challenge
was the limited time available to work with domain experts including a short number of annota-
tions. The collaboration with clinicians and experts was invaluable for refining the decision sup-
port modules and ensuring clinical relevance. However, due to time constraints, the level of ex-
pert involvement was constrained, potentially limiting the depth of insights and clinical validation
of the developed systems. For instance, we started working on using machine learning methods
within the NLP pipeline implemented in chapter 3, but we did not have annotated data to evaluate
the method (the machine learning method for NLP we implemented is explained in appendix A).

Moreover, the implementation of guideline-based decision support modules was limited by
the environment. The integration of the GL-DSS system into the EDS data warehouse environ-
ment, along with the installation of NLP tools, proved to be technically challenging. As a result,
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evaluating certain components on a larger scale or real-world data was not feasible within the
timeframe of this study.

7.3 Future perspectives

As we conclude this research journey, several promising future research perspectives emerge, offer-
ing opportunities to further enhance clinical decision support systems and contribute to improved
patient care. These perspectives can be grouped into key areas of focus.

7.3.0.1 Data quality and integration

Improving the quality and structure of clinical notes is essential to overcome challenges related to
unstructured data. Replacing the copy-paste format in BCPSs with standardized templates would
enhance data retrieval and quality. Additionally, exploring advanced methods for structured data
extraction, such as hybrid approaches combining rule-based techniques with machine learning,
holds promise for more accurate and efficient data processing.

Seamless integration of decision support systems with hospital information systems is crucial
for real-world implementation. This integration would enable direct assessment of the systems’
impact on multidisciplinary tumor board meeting workflows, optimizing their support during pa-
tient management discussions and decision-making.

7.3.0.2 Validation and user-friendly interface

Validating the decision support systems with expert input and feedback is essential to ensure their
clinical relevance and accuracy. Collaborating with healthcare institutions and clinicians outside
the research setting would provide valuable external validation and foster wider adoption. More-
over, developing an intuitive graphical user interface and visualization tool for case-based reason-
ing would enhance the usability and acceptance of the systems in multidisciplinary tumor board
meetings.

As the decision support systems move closer to real-world implementation, evaluating their
impact on clinical workflow and patient outcomes becomes crucial. Conducting rigorous assess-
ments of the systems’ effectiveness in streamlining decision-making processes and improving pa-
tient care will be vital to demonstrating their value and benefit to clinical practice.

7.3.0.3 Optimizing similarity and large language model-based methods

Patient similarity-based decision support implemented in chapter 6 offers a promising area for fu-
ture exploration. To optimize patient similarity assessments, further investigation of deep metric
learning techniques can lead to significant enhancements. Additionally, exploring more complex
patient representations, such as graph-based approaches, holds the potential for refining the as-
sessment of patient similarity. Similarly, this kind of complex representation of the patient could
enhance the algorithm for complexity classification implemented in chapter 4.

Moreover, the emerging trend of utilizing large language models opens up new possibilities
for decision support. Integrating these models into the decision-making process could for exam-
ple replace the manual comparison of guidelines (as we did in chapter 5), enabling a more auto-
mated and efficient update of guidelines based on the latest evidence and research findings. This
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advancement may streamline the decision-support process, facilitating faster and more accurate
clinical recommendations for non-complex cases.

7.3.0.4 Expanding the scope

One crucial avenue for future research lies in extending the scope of the decision support systems
beyond breast cancer management. While this thesis primarily focused on breast cancer, adapt-
ing and evaluating the systems for other cancer types would provide valuable insights into their
potential applicability across different MTBs. Exploring the unique challenges and complexities of
various cancers and tailoring the decision support modules accordingly will be paramount to their
success.
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1. Introduction

Ayant dépassé le cancer du poumon en tant que cancer le plus couramment diagnostiqué dans le
monde, le cancer du sein constitue une préoccupation majeure pour la santé des femmes. Avec
environ 2,3 millions de nouveaux cas diagnostiqués dans le monde, il s’agissait de loin du cancer
le plus fréquemment diagnostiqué chez les femmes en 2020 (Sung et al., 2021). Cette même année,
le cancer du sein a emporté la vie d’environ 685 000 femmes, représentant une proportion signi-
ficative des décès par cancer, avec 1 femme sur 6 touchée. D’ici 2040, le nombre de nouveaux cas
de cancer du sein diagnostiqués devrait augmenter de plus de 40 %, avec environ 3 millions de cas
diagnostiqués chaque année (Arnold et al., 2022).

Réunions de concertation pluridisciplinaire

Dans de nombreux pays, les réunions de concertation pluridisciplinaire (RCP) ont été introduites
afin de promouvoir un processus de décision collaboratif dans la prise en charge des patients at-
teints de cancer. Les experts de diverses spécialités se réunissent pour élaborer le meilleur plan
thérapeutique possible pour un patient atteint de cancer. Au cours d’une RCP, les cliniciens ex-
aminent l’historique médical du patient dans sa globalité, comprennant les résultats d’imageries
et d’autres informations pertinentes permettant d’établir un diagnostic précis et de déterminer
le traitement le plus adapté. Les plans théraptiques tiennent compte des besoins et des carac-
téristiques uniques de chaque patient, tout en tenant compte des recommandations des guides de
bonnes pratiques cliniques (GBP).

Bien que des études ont montré que les RCP sont efficaces pour améliorer la conformité des dé-
cisions thérapeutiques aux recommandations des GBP (Kesson et al., 2012; van Hoeve et al., 2014;
Brar et al., 2014), celles-ci sont remises en question. En effet, des équipes peuvent être touchées
par des pénuries de personnel, une augmentation de la charge de travail, un nombre croissant
de cas à discuter et une diversité disciplinaire (Soukup et al., 2022; Blayney, 2013; El Saghir et al.,
2013).

Néanmoins, les RCP se sont généralisée pour la prise en charge moderne des cancers et jouent
un rôle essentiel pour optimiser le pronostic des patients. Aussi, l’amélioration de l’organisation
des RCP est un impératif pour garantir un égal accès à tous les patients atteints de cancer et créer
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le meilleur environnement possible pour les cliniciens au profit d’une prise en charge globale,
singulière et éclairée.

Systèmes d’aide à la décision médicale

Les systèmes d’aide à la décision médicale (SADM) sont considérés comme des outils au poten-
tiel important pour les soins de santé modernes. Ils fournissent une assistance informatisée aux
cliniciens dans la prise de décision pour leurs patients. Les SADM sont reconnus pour améliorer
la prise en charge des patients atteints de cancer en aidant les médecins à prendre des décisions
personnalisées. En délivrant des informations fondées sur des preuves, les SADM peuvent aider
les cliniciens à identifier les patients à haut risque, à affiner les diagnostics, à recommander des
options de traitement appropriées et à surveiller l’évolution du traitement.

Dans le paradigme de la médecine fondée sur des preuves (Evidence-Based Medicine Working
Group, 1992), plusieurs SADM ont été développés et évalués pour promouvoir la prise de déci-
sions cliniques fondées sur des preuves en oncologie. De tels systèmes s’appuient souvent sur
les connaissances contenues dans les GBP, qui représentent l’état de l’art. Cependant, la mise en
œuvre de SADM basés sur des GBP en pratique clinique pose des défis techniques, notamment
l’interopérabilité sémantique avec les dossiers patients informatisés, et la nécessité de valider les
données. Aussi, la maintenance des SADM basés sur des GBP et la gestion de multiples GBP
présentent d’autres difficultés à résoudre. De plus, les SADM peuvent parfois produire des recom-
mendations non-appropriées, dans les scénarios cliniques ayant des preuves scientifiques limitées
(Voigt & Trautwein, 2023).

Il y a quelques années, un nouveau paradigme est apparu dans le domaine médical. La
médecine de précision, ou "médecine personnalisée", est une approche innovante visant à
adapter la prévention et le traitement des maladies en tenant compte des différences génétiques,
environnementales et du mode de vie des individus. L’objectif de la médecine de précision est
de cibler les bons traitements, aux bons patients, au bon moment (Gameiro et al., 2018). Les
développements récents en intelligence artificielle (IA) sont prometteurs pour révolutionner le
domaine de l’oncologie clinique en abordant efficacement de nombreux aspects critiques tout au
long du parcours de soins des patients.

De nombreux SADM basés sur l’apprentissage automatique et l’apprentissage profond ont été
développés. Ces systèmes ne reposent pas sur des connaissances explicites, mais sur la modéli-
sation de régularités découvertes dans les données disponibles. De grandes quantités de données
cliniques sont nécessaires pour la construction de ces modèles et leur réutilisation dans de nou-
velles situations similaires. Cependant, même si l’IA présente un énorme potentiel en oncologie
clinique, il existe des défis clés à relever pour l’intégrer avec succès dans les soins de routine.

Des recherches récentes (Norgeot et al., 2020; Thompson et al., 2018) ont souligné le nom-
bre limité d’essais prospectifs et d’essais cliniques randomisés pour les modèles d’apprentissage
profond, indiquant la nécessité de davantage de validation et de preuves. Des défis tels que les
limitations de la quantité de données, l’interprétabilité des modèles et la garantie de la validité
clinique, de l’utilité et de l’utilisabilité des modèles d’IA doivent également être surmontés.

Dans l’ensemble, malgré leurs avantages potentiels, l’utilisation en routine clinique de SADM,
qu’ils soient basés sur des connaissances ou non, reste limitée (Beauchemin et al., 2019). Il subsiste
encore de nombreux travaux de recherche à mener dans ce domaine pour améliorer, élargir et
évaluer leur mise en œuvre.
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Complexité des cas cliniques

DESIREE est un projet européen dont l’objectif était de créer une plateforme web pour l’aide à
la décision pour la prise en charge du cancer du sein primaire. L’un de ses modules d’aide à la
décision est le SADM basé sur des GBP (GL-DSS) (Bouaud et al., 2020b), présenté en détail dans
la section 2.2.4.1. Dans le cadre de DESIREE, nous avons mené une évaluation du GL-DSS, dont
la base de connaissances était basée sur les recommandations françaises de l’AP-HP publiées en
2016.

Grâce à cette évaluation, nous avons identifié des cas où le système n’a pas généré de propo-
sitions thérapeutiques pour certains patients ou a recommandé des traitements qui n’ont pas été
suivis par les cliniciens de la RCP. Nous avons découvert que ces cas n’étaient pas soit couverts
par les GBP, soit présentaient des caractéristiques particulières, nécessitant généralement des dis-
cussions pluridisciplinaires approfondies lors des RCP. Après avoir échangé avec des oncologues
au sujet de ces profils, les experts ont exprimé que ces types de cas cliniques posent des défis
pour leur prise en charge et nous avons qualifié ces profils cliniques de "cas complexes" (Redj-
dal et al., 2021c). Ces experts ont déclaré que pour ces cas complexes, le rappel de cas similaires
avec les décisions prises pour eux serait une aide pour déterminer le plan de soins approprié. Par
conséquent, la capitalisation et l’exploitation des cas complexes pourrait constituer le fondement
d’une forme alternative d’aide à la décision. Étant entendu que ces cas cliniques des patients puis-
sent présenter différents niveaux de complexité, la reconnaissance des cas complexes pourrait per-
mettre d’accorder plus de temps aux RCP pour discuter ces cas.

Documents cliniques

Les documents cliniques hospitaliers, tels que les comptes rendus d’imagerie ou de pathologies,
sont une source d’information précieuse. Il a été estimé que 80 % des données hospitalières sont
recueillies sous forme de texte (Raghavan et al., 2014). Cependant, le format de texte libre peut lim-
iter l’usage de ces informations pour les soins cliniques, la recherche et d’autres applications. Une
façon de relever ce défi est d’utiliser des techniques d’extraction d’informations (EI) pour struc-
turer automatiquement le contenu des documents cliniques. L’EI consiste à identifier et extraire
des éléments spécifiques du texte, tels que les données démographiques des patients, les diagnos-
tics ou les procédures. Ces données structurées peuvent ensuite être utilisées à diverses fins, tels
que l’aide à la décision clinique, la recherche ou le codage médicale.

En ce qui concerne la prise en charge du cancer, pendant les RCP, les cliniciens se réfèrent à un
document, généralement produit par le médecin en charge du patient avant la RCP. Le médecin
rassemble toutes les informations nécessaires pour prendre une décision pour son patient, y com-
pris les antécédents cliniques, les résultats radiologiques, les résultats histologiques, la réponse au
traitement, etc., et résume toutes ces informations dans un document textuel. Ce document est
partagé au sein de la RCP et complété par la décision de la RCP. Il est appelé "fiche RCP" (F-RCP).
C’est un document crucial pour la RCP. Cependant, la F-RCP reste rédigée en langage naturel, et
contient de nombreuses abréviations et acronymes, ce qui rend l’utilisation du contenu de la fiche
loin d’être directement traitable par un SADM.

Questions de recherche

Globalement, les RCP jouent un rôle crucial dans la prise en charge du cancer en facilitant la prise
de décision collaborative par les professionnels de santé. Cependant, leur bénéfice est remis en
cause, notamment à cause de l’incidence croissant des cas de cancer du sein et du manque de



116 Extended French summary – Résumé étendu en français

temps. Par ailleurs, malgré leur potentiel pour améliorer les RCP, les SADM ne sont pas couram-
ment utilisés dans la gestion des patients atteints de cancer. Cela soulève la question de recherche
principale : "Comment développer un SADM pour assister efficacement les cliniciens de la RCP
dans leur processus de prise de décision ?"

Suite à nos recherches et discussions au sein du projet DESIREE, les cliniciens estiment sou-
vent inutile d’appliquer des SADM basés sur des GBP pour gérer les cas complexes, car ces cas
ne sont généralement pas couverts par les GBP. Par conséquent, la question de recherche se pose
: "Que peut-on faire pour que les cliniciens acceptent un SADM basé sur des GBP en tenant
compte de la complexité des cas cliniques, et comment pouvons-nous mettre à jour efficace-
ment ces SADM ?" De plus, "Comment pouvons-nous aider les cliniciens à gérer les cas com-
plexes lors du processus de prise de décision ?"

Enfin, les comptes rendus cliniques, tels que les F-RCP, contiennent des informations cruciales
pour la prise de décision. Cependant, étant rédigés en langage naturel, les F-RCP présentent des
défis pour une utilisation efficace dans les SADM. Ainsi, une autre question de recherche émerge
: "Pouvons-nous créer efficacement un système qui prend les F-RCP en tant qu’entrée, four-
nissant des recommandations de traitement personnalisées pour les patients ?".

Objectifs

L’objectif principal de ce travail peut être résumé dans l’expression : "One size does not fit all !".
Nous savons d’après les expériences précédentes, que les SADM basé sur les GBP ont le poten-
tiel d’améliorer la conformité des décisions des RCP aux GBP (Seroussi et al., 2012a), mais nous
savons aussi que ces systèmes ont des limites en ce qui concerne les cas cliniques complexes (Red-
jdal et al., 2021b). Par conséquent, l’objectif de cette thèse est de créer un SADM qui soutienne la
prise de décision des RCP de cancer du sein. Suivant notre hypothèse, la démarche retenue est
de construire un système qui permette dans un premier lieu d’identifier automatiquement les cas
complexes, permettant aux cliniciens de mieux organiser la RCP et de se concentrer sur ces cas
complexes qui nécessitent des discussions plus approfondies. Ensuite, au-delà de la reconnais-
sance des cas complexes, le système de classification de complexité servira de système de triage
pour fournir une aide à la décision adéquate.

Les objectifs sont les suivants :

• Aide à la classification de la complexité : Comme il n’existe pas de définition de la complex-
ité, nous avons proposé d’utiliser le machine learning pour apprendre la complexité. Un al-
gorithme qui classe les cas de cancer comme complexes ou non complexes a été développé
par apprentissage automatique en utilisant différentes techniques d’extraction de carac-
téristiques à partir des F-RCP (voir le chapitre 4).

• Aide à la décision pour les cas non complexes : Comme ces cas sont "simples", nous sup-
posons qu’ils sont correctement couverts par les GBP. Par conséquent, pour ces cas, nous
réutilisons le système GL-DSS du projet DESIREE, tel que documenté dans (Bouaud et al.,
2020a), mais nous devons l’adapter aux GBP plus récents sur la prise en charge du cancer du
sein (voir le chapitre 5).

• Aide à la décision pour les cas complexes : Comme ces cas ne sont pas adéquatement cou-
verts par les GBP, une approche d’aide à la décision basée sur des cas similaires est proposée.
Le chapitre 6 présente une méthodologie pour détecter les patientes les plus similaires à une
patiente donnée. Ce système recommandera des options de traitement aux cliniciens en se
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basant sur les décisions prises pour des patientes similaires, reproduisant ainsi le raison-
nement médical précédemment utilisé.

Une partie importante de ce travail concerne le traitement des F-RCP en utilisant des tech-
niques de traitement automatique du langage naturel (TAL). En effet, une tâche préliminaire obli-
gatoire consiste à transformer le contenu des F-RCP en un format de données structurées formelles
qui permet l’utilisation des SADM.

En réalisant ces objectifs, nous ambitionnons de contribuer au champ de l’aide à la décision
en développant un SADM qui optimise le processus de prise de décision au sein des RCP. Par
l’intégration de l’aide à la décision basée sur les GBP pour les cas non complexes, et de l’aide à la
décision basée sur un raisonnement à partir de cas pour les cas complexes, ainsi que l’utilisation
de techniques de TAL pour structurer les données et des techniques d’apprentissage automatique
pour la détection de la complexité, ce projet s’efforce de fournir un SADM robuste et efficace,
répondant aux besoins des cliniciens participants aux RCP.

Exploitation des données

Dans ce travail, l’objectif était d’utiliser des technologies avancées telles que l’apprentissage au-
tomatique et l’apprentissage profond associés à des méthodes d’IA symbolique pour développer
un SADM pour les cliniciens de la RCP de sénologie de l’hopital Tenon (Paris, France). Pour garan-
tir la validité et l’approbation éthique du projet, il a été examiné et validé par le comité scientifique
et éthique de l’AP-HP (projet CSE200094). Pour nos recherches, nous avons obtenu l’accès aux
F-RCP de patients atteints de cancer du sein diagnostiqués entre 2018 et 2022 et traités à l’hôpital
Tenon. Ces F-RCP sont accessibles dans l’Entrepôt de Données de Santé (EDS) de l’AP-HP. Pour ce
travail, nous avons eu accès à une base de données composée de 11 205 F-RCP, associées à 3 500
patients.

Les jeux de données extraits pour le projet CSE200094 ont été utilisés pour extraire des ensem-
bles de données qui ont servi à l’entraînements et à l’évaluation de chacune des tâches différentes
du projet, et peuvent être résumées comme suit :

• Pour la tâche d’extraction de données structurées (SDE) (chapitre 3), nous avons effectué
une sélection aléatoire de F-RCP sans duplication, ce qui a donné un ensemble de données
de 80 F- RCP. Parmi elles, nous avons utilisé 50 F-RCP pour développer des règles pour la
structuration. Ensuite, nous avons utilisé le reste des F-RCP (30) pour évaluer l’algorithme.

• Parallèlement, nous avons sélectionné 1 048 F-RCP représentant des patientes discutées en-
tre novembre 2020 et février 2022 pour la tâche d’apprentissage de la complexité (chapitre
4). Un panel d’experts, composé d’un sénior, de deux experts avancés et de trois ju-
niors, a annoté ces F-RCP comme étant complexes ou non complexes. Ce corpus a servi
à l’apprentissage supervisé de l’algorithme de détection de la complexité. De cet ensemble
de données, 80 % ont été alloués à l’entraînement, et 20 % pour le test.

• En utilisant les annotations de complexité, nous avons également dérivé 160 F-RCP
représentant des cas non complexes à partir de l’ensemble d’apprentissage de la complexité.
Ce sous-ensemble de données a été utilisé pour évaluer et mettre à jour le SADM basé sur
les GBP du projet DESIREE, comme détaillé dans le chapitre 5.

• Enfin, pour la tâche de calcul de la similarité (chapitre 6), nous avons également sélectionné
deux sous-ensembles de données à partir de l’ensemble de données d’apprentissage de la
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complexité. Le premier sous-ensemble de données comprenait 100 F-RCP (50 complexes
et 50 non complexes) représentant des patientes dans la même situation clinique (patientes
ayant subi une chirurgie sans traitement néoadjuvant, désignées ci-après comme patientes
dans le scénario D). Un expert avancé a regroupé cet ensemble de données en clusters de
patientes similaires. Puis, le deuxième sous-ensemble de données composé de 10 cas com-
plexes dans le scénario D a été utilisé pour évaluer l’algorithme de calcul de la similarité. Un
expert avancé a calculé, pour chacune des 10 F-RCP, les 5 F-RCP les plus similaires à partir
de l’ensemble des 100 F-RCP groupées en clusters.

Pour une représentation visuelle de l’organisation des ensembles de données tout au long de
la thèse, veuillez-vous référer à la Figure 7.1.

2. Extraction de données structurées

Dans le domaine de la santé et de la recherche médicale, les dossiers patients informatisés (DPI)
jouent un rôle crucial en tant que sources d’informations médicales. Les DPI contiennent des
données essentielles pour la prise en charge des patients. Cependant, le manque de normalisation
des DPI pose des défis en matière de réutilisation efficace de leur contenu pour la recherche. La
plupart des informations contenues dans un DPI sont fournies sous forme de texte (80 %) (Ragha-
van et al., 2014). Dans cette partie de la thèse, nous nous sommes concentrés sur l’extraction de
données structurées à partir des F-RCP issues de l’EDS de l’AP-HP.

En s’inspirant du modèle d’information du projet DESIREE, basé sur le modèle entité-attribut-
valeur (EAV) et représenté dans une ontologie nommée BCKM (Breast Cancer Knowledge Model),
nous avons créé une pipeline intégrant des techniques basées sur des règles ou patrons syntax-
iques pour annoter les expressions faisant référence à des éléments de données structurées.

Fiches RCP

Comme indiqué dans l’introduction, ce projet a été approuvé par le comité d’éthique institution-
nel de l’AP-HP (CSE 200094). Nous avons eu accès à un échantillon de plus de 11 000 F-RCP. Une
F-RCP typique fournit un portrait de la patiente fournissant toutes les informations pertinentes
dont les cliniciens ont besoin pour prendre une décision. Les informations sont le plus souvent
organisées selon l’ordre suivant :

• Informations personnelles (disponibles de manière anonyme dans l’entrepôt de données)

• Données biométriques

• Raison de la présentation

• Antécédents personnels (antécédents médicaux et chirurgicaux, traitements suivis et aller-
gies.)

• Antécédents familiaux

• Histoire de la maladie

• Examen clinique

• Résultats de la radiologie (Mammographie, Échographie, IRM, etc.)
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• Résultats de la biopsie

• Classification TNM

• Réponse au traitement néoadjuvant (le cas échéant)

• Résultats de l’anatomopathologie (si une chirurgie préalable a été réalisée)

• Proposition de traitement

Schéma d’annotation

Nous avons organisé la base de données cible en fonction des composants du modèle BCKM (mod-
èle EAV) de DESIREE Bouaud et al. (2020b). Les caractéristiques pertinentes à extraire ont été le ré-
sultat de discussions avec les médecins de la RCP. Le schéma d’annotation lui-même a été le résul-
tat de plusieurs itérations avec les experts (6 séances d’annotation). Nous conservons les mêmes
entités principales que dans le BCKM : le patient, le coté mammaire et la tumeur. Les attributs
pour chaque entité ainsi que leurs valeurs potentielles sont décrits dans le tableau 3.2. En plus de
ces 3 entités principales, nous avons également extrait les concepts liés aux procédures diagnos-
tiques (IRM, échographie, etc.) et aux procédures thérapeutiques (chirurgie, chimiothérapie, etc.)
comme présenté dans le tableau 3.1.

Pour l’annotation, nous avons utilisé l’outil d’annotation BRAT (Stenetorp et al., 2012b). La
figure 7.2 montre la version annotée par les experts de la figure 3.1.

Dans l’outil BRAT, seuls 4 types de mentions peuvent être utilisées, à savoir : entité, attribut,
événement et relation. Compte tenu de ce modèle, nous avons dû adapter le schéma d’annotation
pour qu’il s’y intègre. Par conséquent, les caractéristiques des patientes sont annotées en tant
qu’entités, et leurs valeurs sont exprimées sous forme d’attributs.

De plus, BRAT ne permet pas à l’utilisateur d’ajouter une valeur textuelle ou un entier pour
un attribut. Toutes les valeurs possibles d’un attribut doivent être placées dans le fichier de con-
figuration de l’annotation. Par conséquent, dans le schéma d’annotation, les attributs ayant des
valeurs numériques (ex : la taille de la tumeur) ou des valeurs textuelles (ex : les comorbidités),
sont exprimés sous forme de texte annoté. Pour les attributs ayant des valeurs hiérarchiques et
booléennes, la valeur de chaque attribut est exprimée à l’aide d’une mention d’attribut.

En plus des entités déjà citées, nous avons également développé des algorithmes basés sur
les expressions régulières pour la détection des informations contextuelles dans le texte. Dans
BRAT, nous exprimons ces informations contextuelles sous forme de mentions d’attributs, qui
peuvent être appliquées à diverses entités pour détecter les entités négatives, hypothétiques, liées
à la famille, les préférences du patient et les antécédents.

Enfin, nous avons développé des algorithmes basés sur des règles pour la détection des re-
lations entre les entités. Étant donné que BRAT n’a pas été initialement conçu pour annoter de
longues relations multilignes, nous avons essayé d’utiliser le moins de mentions de relation possi-
bles :

• Has_side : Cette relation exprime la relation entre une entité de lésion et une entité de côté.
Pour éviter des relations multilignes, nous exprimons cette relation en utilisant la mention
d’attribut (gauche, droite ou bilatérale) qui peut être appliquée à n’importe quelle entité de
lésion ou de type histologique.

https://BRAT.nlplab.org/
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• Is_attribute_of : Cette relation est utilisée pour relier les attributs d’une entité à l’entité
elle-même. Dans ce travail, nous devons exprimer la relation entre les attributs de côté
mammaire et leur entité (quel côté mammaire) ainsi que la relation entre les attributs de
lésion et l’entité lésion (quelle lésion). Les attributs de côté pouvant être liés au côté gauche
et/ou droit, nous utilisons la même méthodologie que celle utilisée pour exprimer la relation
Has_side. Pour les attributs de tumeur, nous utilisons un nom de relation "Is_Attribute_of"
pour exprimer le lien entre un attribut de tumeur et sa tumeur. Même si nous rencontrons
encore des problèmes avec les relations multilignes, nous remarquons que les attributs de
tumeur sont généralement exprimés juste après la mention de l’entité de tumeur.

Pipeline d’extraction de données structurées

L’approche proposée a été d’utiliser des règles spécifiques au domaine et des expressions
régulières pour identifier et baliser les entités spécifiques mentionnées dans le schéma
d’annotation dans le texte. La figure 7.3 illustre tout le processus.

Figure 7.3: Pipeline d’extraction de données strcuturées

La chaîne de traitement commence par normaliser le texte en utilisant les composants de
l’outil EDS-NLP (Dura et al., 2022b), puis un module détectant les différentes sections est util-
isé afin de diviser le texte en sections qui seront traitées individuellement (ex : la section IRM, ou
la section histoire de la maladie, etc.). Ensuite, pour chaque section, un algorithme d’extraction
d’entités nommées (NER) basé sur des règles est utilisé. Dans cet algorithme, nous avons util-
isé les composantes d’EDS-NLP pour extraire les dates, les médicaments et les maladies. Nous
avons également utilisé Clarity NLP (Georgia_Research_Institute, 2018) pour extraire les entités
de taille, de distance et la classification TNM. En ce qui concerne le reste des attributs, nous avons
développé des règles et des expressions régulières personnalisées.

Une fois l’algorithme NER exécuté, les informations contextuelles telles que les entités néga-
tives, hypothétiques, liées à la famille, les préférences du patient et les entités antécédents sont
identifiées en utilisant des expressions régulières, en plus des composants de négation d’EDS-NLP.
Enfin, une fois que l’extraction d’entités nommées et de contexte est faite, nous utilisons un algo-
rithme à base de règles pour extraire les relations.

https://aphp.github.io/edsnlp/latest/pipelines/core/endlines/#usage
https://claritynlp.readthedocs.io/en/latest/
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Le processus d’extraction des relations dans les F-RCP comprend les étapes suivantes :

• Extraction de la relation "Has_side" : Des règles spécifiques ont été utilisées pour établir
cette relation. L’idée est de séparer chaque section en phrases et que chaque entité tumeur
soit liée au côté mammaire mentionné dans la même phrase (par exemple, tumeur du QSE
du sein gauche. La tumeur ici a pour côté mammaire le côté gauche).

• Relation "Is_attribute_of" : De même, ici on considère qu’un attribut de côté est relié au côté
si les deux entités sont dans la même phrase ou s’il n’est mentionné qu’un seul côté mam-
maire dans une section. Concernant les attributs de tumeur, tous les attributs qui suivent
une mention de tumeur sont reliés à la tumeur, jusqu’à l’annotation d’une nouvelle entité
tumeur ou d’une entité côté mammaire.

Pour évaluer le système, nous avons utilisé des F-RCP de patientes atteintes de cancer du sein
annotées manuellement par un expert avec l’outil BRAT. L’évaluation a porté sur trois aspects : les
mentions d’entités, les mentions d’attributs et les mentions de relations. Toutes les mentions ont
été évaluées en comparant les mentions extraites par le système aux mentions annotées manuelle-
ment, en utilisant les mesures de précision, de rappel et de score F1.

Résultats

L’algorithme d’annotation automatique dans sa globalité a été développé en utilisant de petits
échantillons de F-RCP, qui ont été discutés de manière itérative avec des experts du domaine pour
affiner le schéma d’annotation et ajouter de nouvelles règles pour capturer de nouvelles entités.
Après six sessions d’annotation manuelle avec 2 experts avancés (50 F-RCP), nous avons identifié
tous les attributs et entités pertinents à extraire. L’algorithme a été évalué sur un corpus annoté
manuellement de 30 résumés de patientes atteintes de cancer du sein.

Les résultats de l’évaluation présentés dans le tableau 3.4, montrent l’efficacité de l’algorithme
dans l’extraction des entités et de leurs attributs. L’évaluation a été réalisée sur l’extraction
d’attributs et de valeurs pour différentes entités, notamment "Patient", "Côté", "Lésion", "Procé-
dures de diagnostic" et "Procédures de traitement".

• Pour l’entité "Patient", les résultats indiquent des performances élevées, notamment pour
les attributs "Mutation génétique" et "Statut ménopausique" (score F1 de 0,94). Cer-
taines entités ont des performances légèrement inférieures, comme "BraSize Cup" et
"BreastCancer- Relapse" (scores F1 de 0,78 et 0,76). Nous avons constaté un faible rappel
pour "comorbidité" (0,64) en raison de l’annotation par l’expert de comorbidités non prises
en compte lors de la construction des règles.

• Concernant l’entité "Côté mammaire", nous avons remarqué une excellente reconnaissance
pour les attributs "N Status" et "Classification BIRADS" (scores F1 supérieurs à 0,97). En
revanche, l’attribut "Confirmed Positive Nodes," faisant référence au statut des ganglions
après une chirurgie, a obtenu une performance très faible (score F1 de 0,29). Cela est dû au
fait que cet attribut est souvent exprimé de manière hétérogène.

• Enfin, l’entité "Tumeur" est l’entité ayant obtenu les meilleurs résultats, avec un score F1
supérieur à 0,9 pour tous les attributs de cette entité.

En ce qui concerne l’extraction d’informations contextuelles, l’analyse de la performance du
processus NLP est décrite dans le tableau 3.5. Nous pouvons constater des performances variables
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pour les attributs contextuels. "Hypothétique" a affiché la meilleure performance, avec un score
F1 élevé de 0,88. La "Négation" a également montré des performances notables, avec un score
F1 de 0,74. Cependant, les attributs "Famille" et "Antécédent" ont montré des résultats relative-
ment modestes, avec des scores F1 de 0,63 et 0,51, ce qui indique des marges d’amélioration dans
leur reconnaissance. De plus, l’attribut "Préférences du patient" a été mentionné 6 fois dans les
annotations des experts sans être repéré par l’algorithme.

Par ailleurs, le tableau 3.6 présente la performance de l’algorithme d’extraction de relations.
L’analyse révèle que le type de relation "IsAttributeOf" a démontré d’excellentes performances,
avec un score F1 à 0,90. Pour les relations "Côté Droit" et "Côté Gauche", le modèle a montré
des performances respectables (0,79 et 0,83 de score F1). Cependant, la relation qui exprime une
tumeur "Bilatéral", a obtenu des résultats modestes avec un score F1 de 0,25 (cas assez rare avec
seulement 23 mentions).

Discussion et conclusion

Dans cette étude, l’objectif était d’évaluer l’efficacité d’une méthode basée sur des règles pour ex-
traire des données structurées à partir de documents cliniques. Les performances de la méthode
se sont avérées satisfaisantes, avec une précision et un rappel moyen d’environ 0,81 et 0,84 re-
spectivement. L’attention a été portée sur les attributs pour lesquels des règles précises ont été
élaborées, obtenant ainsi un score F1 moyen d’environ 0,93 pour l’entité "Lésion". Cela souligne
l’importance de developper des règles spécifiques pour certains attributs afin d’améliorer les per-
formances globales du processus.

L’évaluation a permis la découverte d’attributs jusque-là non reconnus, soulignant la nature
dynamique des données cliniques et la nécessité d’accepter de nouveaux attributs. Certaines per-
formances suboptimales ont été observées pour des attributs complexes comme le statut des gan-
glions, suggérant la possibilité d’utiliser des approches plus flexibles, comme l’apprentissage pro-
fond. L’efficacité de la méthode basée sur des règles a également été influencée par la qualité des
données. Les F-RCP présentaient une grande variation de style et de contenu selon les rédacteurs,
ce qui a posé des défis pour l’algorithme basé sur des règles. De plus, la présence d’abréviations a
ajouté des ambiguïtés.

Comparativement à d’autres travaux sur des documents en français (Schiappa et al., 2022),
cette méthode a démontré des performances compétitives, voire supérieures dans certains cas,
concernant les attributs extraits. L’avenir pourrait consister en une approche hybride combinant
des règles avec des techniques d’apprentissage profond pour capturer les subtilités contextuelles
présentes dans les notes cliniques.

En conclusion, cette étude a montré que l’extraction de données à partir de documents clin-
iques à l’aide de règles est efficace, mais elle soulève des défis liés à la qualité des données et à la
complexité des attributs. Une approche hybride, incluant de l’apprentissage statistique, pourrait
offrir de meilleures performances à l’avenir.

3. Apprentissage de la complexité

Comme mentionné dans l’introduction, les cas cliniques des patients peuvent varier en complex-
ité, et il n’existe pas de définition a priori de la complexité du cancer du sein (Soukup et al., 2019).
Afin de comprendre et de prédire la complexité des cas cliniques des patients, nous avons exploré
différentes approches d’apprentissage automatique ("machine learning").
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Classification des textes dans le domaine de la santé.

La classification de documents médicaux est un sous-domaine spécifique de la classification de
textes en général. Les algorithmes d’apprentissage automatique supervisés en TAL ont été utilisés
avec succès, par exemple les SVM (Support Vector Machine ou Machine à vecteurs de support) et
l’analyse discriminante linéaire (LDA) ont obtenu des résultats satisfaisants pour des tâches telles
que la classification des documents textuels. Cependant, ces méthodes requièrent une sélection
manuelle des caractéristiques (« features »), ce qui peut être difficile et chronophage, conduisant à
une représentation limitée des textes.

Les avancées récentes en TAL, telles que Word2Vec, FastText et BERT, ont réduit la nécessité de
l’ingénierie manuelle des caractéristiques. Les modèles de langage pré-entraînés tels que BERT et
RoBERTa ont été affinés (« fine tunning ») pour des tâches de santé, fournissant de bons résultats
(Li et al., 2022). Ces modèles peuvent s’adapter à différents types de données textuelles, les rendant
utiles en santé, où le langage peut varier considérablement.

Dans cette partie, nous avons utilisé un corpus de F-RCP annotées par leur complexité pour
les classer en fonction de celle-ci, en comparant deux méthodes d’extraction de caractéristiques à
partir des textes : (1) en utilisant des annotateurs sémantiques et (2) en utilisant des modèles de
langage pré-entraînés.

Annotation des données par des experts

Entre novembre 2020 et janvier 2022, des experts de la RCP de sénologique de l’Hôpital Tenon ont
régulièrement annoté les cas des patients comme étant complexes ou non complexes. Ce proces-
sus d’annotation a recueilli les raisons de la complexité (quand la F-RCP était annotée « complexe
») pour mettre en œuvre une méthode basée sur des règles pour prédire la complexité et établir
une définition formelle locale de la complexité des cas.

Apprentissage de la complexité à l’aide d’annotateurs sémantiques automatiques

Nous avons utilisé des annotateurs sémantiques pour extraire des données structurées à partir de
notes cliniques (voir figure 7.4).

ECMT et MetaMap ont été employés pour annoter du texte en français (ECMT) et l’anglais
(MetaMap). Ces annotateurs ont été utilisés pour extraire des concepts cliniques des textes, y com-
pris les concepts de l’UMLS.

Classification de la complexité basée sur des règles : Pour classer la complexité, nous avons créé
un ensemble de règles basées sur les concepts extraits par les annotateurs. Lorsqu’au moins
un concept lié à la complexité était présent dans une F-RCP, le cas était considéré comme
complexe. La méthode basée sur des règles a montré certaines limites en raison de la variété
des facteurs de complexité qui ne sont peut-être pas entièrement couverts par des concepts
prédéfinis.

Prédiction de la complexité basée sur l’Apprentissage Automatique : D’abord, nous avons con-
verti les F-RCP en vecteurs de caractéristiques représentant des concepts cliniques extrait
par les annotateurs. Ensuite, des modèles d’apprentissage automatique, dont XGBoost et
MLP, ont été entraînés sur les données annotées en utilisant une stratégie de validation
croisée. Les modèles ont été évalués en utilisant la précision, le rappel, le score F1, la courbe
ROC et la courbe PR (voir figure 4.2).

https://ecmt.chu-rouen.fr/
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html
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Figure 7.4: Extraction de concepts cliniques et classification basée sur des règles

Apprentissage de la complexité à l’aide de modèles de langage pré-entraînés.

Nous avons exploré l’utilisation de modèles de langage basés sur des architectures de transfor-
mateurs (transformers). Cependant, les modèles de transformateur ont posé un défi en raison de
leurs limitations en termes de « tokens » acceptés en entrée (512 « tokens »), ce qui a entraîné deux
stratégies : la troncature et le fractionnement. Nous avons utilisé un modèle BERT entraîné sur des
documents de l’EDS de l’AP-HP pour ces méthodes.

Apprentissage de la complexité à l’aide de modèles statiques

En plus des modèles de transformateurs, nous avons examiné l’efficacité de méthodes antérieures,
telles que Word2Vec et GloVe. Ces méthodes ont utilisé des plongements lexicaux de mots pré-
entraînées pour capturer les relations sémantiques au sein des textes cliniques.

Résultats et discussion

Nous avons mené l’étude sur un échantillon de 1 048 BCPS, comprenant 763 cas non complexes
et 285 cas complexes. Les résultats (tableau 4.1) montrent que la méthode basée sur l’usage des
annotateurs sémantiques pour l’extraction de caractéristiques surpasse les méthodes basées sur
les modèles de transformateurs et les modèles de langage statique. BERT, a eu du mal à prédire
les cas complexes. Word2Vec et GloVe ont fourni une précision compétitive et ont surpassé les
méthodes basées sur BERT.

Parmi plusieurs algorithmes d’apprentissage automatique testés sur des F-RCP (Redjdal et al.,
2022b), le modèle MLP a obtenu les meilleures performances, suivi de XGBoost. La méthode basée
sur des règles, a montré des limites dans la capture de toutes les raisons de la complexité. Des
recherches futures pourraient impliquer l’amélioration de la méthode basée sur des règles en util-
isant les données structurées issue de la première partie.
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Conclusion

En conclusion, sur notre corpus de F-RCP, les modèles d’apprentissage automatique classiques, en
particulier le MLP, ont démontré une efficacité supérieure à celle des modèles de transformateurs
et aux méthodes basées sur des règles pour la classification de la complexité du cancer du sein.
L’utilisation d’annotateurs sémantiques pour extraire les caractéristiques cliniques à partir des F-
RCP s’est révélée être une méthode prometteuse. Des perspectives d’amélioration des résultats
sont possibles en augmentant le corpus d’entraînement et en utilisant les algorithmes implémen-
tés en première partie.

4. Mise à jour de la base de connaissances du projet DESIREE

Maintenant que nous disposons d’algorithmes pour extraire les données structurées et classifier
les patients en complexes et non complexes, nous pouvons passer à l’aide à la décision.

Les SADM jouent un rôle essentiel dans l’amélioration de la qualité des soins de santé en pro-
mouvant la conformité des décisions aux guides de bonnes pratiques. Cela réduit les erreurs et
assure la conformité aux pratiques recommandées. Le maintien à jour des bases de connaissances
est crucial pour maintenir la fiabilité des SADM. Cependant, les mises à jour manuelles sont sou-
vent laborieuses et coûteuses, et les méthodes automatiques de comparaison des textes des GBP
ont leurs limites. Dans cette partie, notre objectif est d’identifier l’évolution des connaissances en
matière de traitement du cancer du sein de manière semi-automatique. Cela se fait en examinant
la corrélation entre les décisions prises par les cliniciens en RC) et les recommandations du SADM
pour un profil de patient.

Comme mentionné en introduction, dans cette étude, nous avons utilisé le système GL-DSS,
développé pour le projet DESIREE et basé sur les GBP de l’AP-HP de 2016 pour le cancer du sein.
Pour mettre à jour la base de connaissances du GL-DSS, nous avons comparé les décisions de la
RCP aux recommandations du GL-DSS. Les cas où les décisions de la RCP différaient des recom-
mandations du GL-DSS ont été analysés plus en détail en utilisant les dernières recommandations
du SENORIF, publiées en 2021.

Méthode proposée

Comme illustrée dans la Figure 7.5, la méthode proposée comprend quatre étapes. L’hypothèse
sous-jacente est que les cas pour lesquels les décisions de la RCP sont conformes aux recomman-
dations de 2016 du GL-DSS, sont des cas pour lesquels il n’y a pas d’évolution des pratiques :

1. Structuration des données : Un corpus de comptes rendus de RCP (F-RCP) représentant des
cas cliniques non complexes de l’année 2021 est converti en un format structuré en utilisant
l’algorithme développé lors de la première partie et est mappé sur l’ontologie BCKM. Cela
garantit que les données peuvent être traitées par le GL-DSS.

2. Comparaison avec les recommandations du GL-DSS : Les décisions des cliniciens en RCP
(prises en 2021) sont comparées aux recommandations générées par le GL-DSS (basé sur les
GBP de l’AP-HP de 2016). Les cas où les décisions de la RCP sont incluses dans les recom-
mandations du GL-DSS sont notés comme conformes aux pratiques existantes.

3. Comparaison avec les recommandations du SENORIF : Les cas où les décisions de la RCP
ne correspondent pas aux recommandations du GL-DSS déclenchent une révision manuelle
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Figure 7.5: Pipeline utilisé pour la mise à jour de la base de connaissances. DMTB = Décision de
la RCP ; RGL-DSS = Recommandations GL-DSS APHP-2016 ; RSENORIF = Recommandations SENORIF-
2021.

des recommandations pour le profil du patient dans le SENORIF. Nous catégorisons les cas
en deux groupes : ceux où les décisions de la RCP correspondent aux recommandations du
SENORIF, indiquant une évolution des pratiques, et ceux qui ne correspondent pas, nécessi-
tant une discussion supplémentaire avec les experts.

4. Identification des mises à jour de la base de connaissances : Des mises à jour sont ap-
portées à la base de connaissances du GL-DSS en tenant compte des cas où la décision de la
RCP diffère de la recommandation du GL-DSS APHP-2016 et est incluse dans les recomman-
dations du SENORIF 2021. Cela inclut la modification de règles existantes, l’ajout de nou-
velles règles, la suppression de règles obsolètes et la correction de problèmes. L’ontologie
BCKM est également mise à jour pour inclure de nouveaux concepts.
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Résultats et discussion

1. Structuration des données : : Étant donné que l’algorithme d’extraction de données struc-
turées a été conçu selon le modèle du BCKM, le mappage a été facile et direct. Une table
de mappage entre les variables extraites et les concepts dans l’ontologie est disponible en
annexe B.

2. Comparaison avec les recommandations du GL-DSS : Sur 160 F-RCP non complexes, les
décisions de la RCP en 2021 étaient en accord avec les recommandations du GL-DSS APHP-
2016 dans 76 % des cas, suggérant une absence de changement dans les pratiques. Dans
les 24 % restants où elles étaient différentes, ces divergences suggèraient une potentielle
évolution de pratiques, concernant principalement les interventions chirurgicales (51 %) et
la chimiothérapie (41 %).

3. Comparaison avec les recommandations SENORIF : Sur les 39 F-RCP (24 %) avec des di-
vergences entre les recommandations du GL-DSS APHP-2016 et les décisions de la RCP,
38 étaient en accord avec les recommandations SENORIF. Cette concordance souligne
l’évolution des connaissances, incitant à des mises à jour dans le GL-DSS. Le seul cas non
conforme a été revu par des experts et a finalement été reclassé comme cas complexe.

4. Identification des mises à jour de la base de connaissances : L’analyse a conduit à 18 mod-
ifications de règles, 9 suppressions de règles et l’ajout de 21 nouvelles règles dans la base de
connaissances du GL-DSS.

Conclusion

En conclusion, cette étude souligne la nécessité impérative de mises à jour continues de la base
de connaissances des SADM. La méthode proposée est nouvelle et vise à utiliser les données de
la vie réelle pour détecter les mises à jour d’une base de connaissances d’un SADM. Le GL-DSS
a démontré un grand potentiel pour les cas non complexes, mettant en lumière le potentiel des
systèmes basés sur la connaissance pour soutenir les professionnels de la santé et améliorer les
soins aux patients lorsqu’ils sont maintenus à jour.

5. Aide à la decision basé sur les cas pour les cas complexes (case-based)

Au cours des dernières années, le domaine d’aide à la décision diagnostique et thérapeutique
a connu des progrès significatifs, notamment avec l’émergence des paradigmes de réseaux de
similarité des patients (Pai et al., 2019). Les chercheurs se sont de plus en plus concentrés sur
l’apprentissage des représentations de profils de patients par le développement de modèles su-
pervisés. Notamment, une distinction importante par rapport aux études précédentes réside dans
l’utilisation d’apprentissage automatique supervisé pour déterminer la similarité des patients,
avec seulement un nombre limité d’articles explorant l’utilisation de modèles non supervisés dans
la recherche (Brown, 2016; Panahiazar et al., 2015).

Alors que quelques études ont tenté d’agréger plusieurs mesures de similarité en fonction de
diverses attributs(Pai & Bader, 2018), de nombreuses investigations ne tiennent pas compte de
l’importance de caractéristiques spécifiques des patients au cours du processus de calcul de simi-
larité. En particulier, ces méthodes n’ont pas été largement appliquées dans le contexte des soins
du cancer.
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Dans cette partie, notre objectif a été de créer une mesure de similarité, afin de calculer la
similarité des patients à un patient atteint de cancer du sein, et de créer un SADM basé sur les
cas pour l’aide à la décisions des cas complexes. Nous avons comparé 2 méthodes, l’usage d’une
mesure de similarité unique pour tous les attributs et l’usage d’une somme pondérée de plusieurs
mesures en fonction du type des attributs.

Matériel et méthodes

Dans cette recherche, nous avons utilisé deux méthodes pour calculer la similarité entre deux pa-
tientes atteintes du cancer du sein, dont la première utilisait une mesure de similarité unique
(Cosie, Euclidienne ou Jaccard) pour calculer la similarité entre les patientes. L’autre méthode
consistait à utiliser diverses mesures de similarité pour des catégories de données distinctes. En-
fin, nous avons utilisé un « gold standard » produit par les experts pour apprendre les mesures de
similarité et un autre pour évaluer le système.

Le travail a été divisé en plusieurs étapes :

1. Construction du "gold standard" : En collaboration avec des experts en oncologie, nous
avons créé un jeu de données pour évaluer et entrainer les algorithmes. D’abord, les experts
ont analysé 100 F-RCP sélectionnées aléatoirement. Puis, les F-RCP ont été groupées en «
clusters » en fonction des caractéristiques cliniques des patientes, formant ainsi un ensem-
ble d’entraînements appelé « Clustering Gold Standard ».

En outre, un échantillon de 10 F-RCP a été extrait des cas annotés complexes, en excluant
les 100 F-RCP précédemment sélectionnées. Les experts ont ensuite choisi, parmi les 100 F-
RCP d’entraînements, les 5 F-RCP les plus similaires à chacune des 10 F-RCP, formant ainsi
un ensemble d’évaluation baptisé "Top 5 Gold Standard". Ces ensembles de données sont
destinés à évaluer les performances des algorithmes.

2. Construction d’un jeu de données structurés : En concertation avec les experts, nous avons
identifié les attributs les plus pertinents pour chaque entité clé, déterminant également les
valeurs potentielles associées à ces attributs. Cette étape a abouti à une liste complète de
caractéristiques, à prendre en considération pour la détection de patientes similaires. Pour
garantir une comparaison pertinente, nous avons séparé les données en fonction des scé-
narios de prise en charge des patientes, qui variaient au cours de leur parcours de soins. En
outre, nous avons distingué les patientes atteintes d’un cancer du sein invasif de celles at-
teintes de cancer du sein « in situ », car ces deux catégories présentent des caractéristiques
différentes. Finalement, nous avons un jeu de données représentant les 100 patientes du
corpus d’entrainement sous la forme d’un tableau représentant des patients en scenario D
(prise en charge après chirurgie sans traitement néoadjuvant) et contenant la valeur pour
chacun des 27 attributs sélectionnés par les experts pour ce scenario.

3. Construction d’une mesure générique de similarité Après une revue de la littérature, nous
avons choisi différentes mesures pour évaluer la similarité des cas, que nous avons ap-
pliquées de 2 manières :

• Dans la 1ère méthode, une seule mesure a été utilisée pour tous les attributs, avec nor-
malisation des variables pour assurer une échelle commune.

• Dans la deuxième méthode, les variables ont été regroupées en fonction de leur perti-
nence clinique et nous avons utilisé des poids pour calculer une mesure de similarité
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pondérée entre les patientes. Nous avons également fait varier manuellement les poids
des variables pour affiner les résultats de la deuxième méthode à l’aide d’une interface
de visualisation interactive de type "Bokeh". Cela nous a permis d’améliorer la com-
préhension de la similarité entre les patientes.

En utilisant ces méthodes, nous avons construit une matrice de similarité entre les patientes
et utilisé du clustering hiérarchique pour les regrouper.

4. Apprentissage de similarité et optimisation Suite à la mesure générique, notre objectif était
d’améliorer les résultats des 2 méthodes en affinant les mesures de similarité. Nous avons
utilisé 2 méthodes différentes à cette fin :

• Méthode 1, mesure unique : Pour la mesure unique, nous avons exploité les réseaux
siamois, qui sont des architectures de réseaux neuronaux pour le calcul de similarité.
L’idée est d’apprendre les « embeddings » (intégrations) des attributs des patientes. Le
processus d’entraînement impliquait des mises à jour itératives, en ajoutant un patient
à la fois, et en calculant la fonction de perte (triplet). L’objectif était de créer des «
embeddings » qui représentaient efficacement les attributs des patients en utilisant la
distance Euclidienne.

• Méthode 2, mesure hybride : Dans cette méthode, des mesures de similarité spécifiques
ont été utilisées en fonction des types de variables, rendant l’optimisation par réseau
neuronal impraticable. Nous avons opté pour une méthode d’optimisation basée sur
Optuna (Akiba et al., 2019) pour automatiser le calcul des poids. L’objectif était de
maximiser l’accord avec les annotations d’experts, mesuré à l’aide de l’Indice de Rand
Ajusté (ARI).

5. Evaluation : Après avoir obtenu des matrices de similarité à l’aide de diverses méthodes,
nous disposions d’un total de 7 matrices de similarité, chacune remplissant une fonction
différente :

• M1Euclidean , M1Cosine , M1Jaccard: représentent les matrices de similarité obtenues en utilisant
respectivement la similarité euclidienne, la similarité Cosinusienne et la similarité de
Jaccard comme mesure unique de calcul.

• M1Siamese network : la matrice de similarité est obtenue selon la méthode à base de réseaux
siamois ;

• M2NoWeights: la matrice de similarité est obtenue en calculant la moyenne pondérée des
trois mesures selon la méthode 2 (mesure hybride), avec une pondération de 1.

• M2Weighted manually : la matrice de similarité est obtenue selon la méthode 2, avec des poids
obtenus manuellement.

• M2Weighted automatically: la matrice de similarité est obtenue en suivant la méthode 2, avec des
poids obtenus en utilisant l’optimisation Optuna .

Pour l’évaluation, nous avons utilisé le jeu de données « top 5 gold standard ». Nous avons
comparé les 5 patientes annotées comme similaires par l’expert (le « gold standard ») avec les
5 patientes les plus similaires fournies par les méthodes de similarité. La métrique utilisée
pour l’évaluation était la précision.
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Résultats

La Figure 6.5 présente les performances des diverses méthodes sur l’ensemble de test, en utilisant
la précision comme mesure d’intérêt. Dans la méthode de mesure unique, les scores de précision
variaient de 20 % pour les méthodes Euclidienne et Cosine à presque 30 % pour Jaccard, indiquant
ainsi la nécessité d’améliorations.

La Méthode 2 visait à évaluer une approche hybride avec et sans poids. Cette approche a mon-
tré des progrès, atteignant un score de précision de 30 % sans poids et 53 % avec des calculs de
poids manuels.

L’optimisation a été testée pour maximiser le potentiel de chaque méthode. Alors que l’usage
du Réseau Siamois n’a pas amélioré l’utilisation de la distance Euclidienne, l’algorithme d’Optuna
pour la Méthode 2 a considérablement amélioré le score de précision, surpassant les autres méth-
odes et atteignant 68 %.

Discussion

Dans ce travail, notre objectif était d’implémenter une méthode efficace pour la détection de pa-
tients similaires à un patient donné. Deux méthodes ont été utilisées : une mesure de similarité
unique et une moyenne pondérée de différentes mesures. Les résultats suggèrent que l’adaptation
des mesures de similarité aux types de variables et l’application de moyennes pondérées peuvent
améliorer les résultats et fournir des informations sur l’importance des variables.

Les résultats du Réseau Siamois étaient suboptimaux, soulignant la nécessité d’un affinage
ultérieur et l’augmentation du corpus d’entrainement. Cette approche conserve encore un poten-
tiel pour des performances améliorées.

Enfin, même si nous avons obtenu des chiffres pour la précision, il est essentiel de confirmer
que la méthode fonctionne réellement. Pour ce faire, nous devons montrer des cas de patientes
similaires obtenus par les algorithmes à des experts et leur demander si l’algorithme propose des
profils qui sont vraiment similaires ou pas. De plus, il est essentiel d’augmenter le nombre de F-
RCP utilisées pour l’évaluation. Dans cette étude, le processus d’annotation impliquait la sélection
des 5 patients les plus similaires, ce qui s’est avéré très chronophage. Il a fallu qu’un expert com-
pare chaque F-RCP de l’ensemble du corpus d’entrainement. Par conséquent, nous avons été lim-
ités dans notre capacité à annoter davantage de F-RCP pour la validation. En outre, l’implication
de plusieurs experts dans le processus d’annotation pourrait potentiellement améliorer nos résul-
tats.

Conclusion

En conclusion, cette recherche met en lumière l’importance du choix de mesures de similarité
appropriées et de méthodes de pondération adaptées aux types des variables. Cette approche
améliore la précision de l’identification des patientes similaires tout en fournissant des explica-
tions pour les résultats. L’intégration des connaissances d’experts dans le processus de pondéra-
tion améliore les scores de précision et facilite l’interprétation de la pertinence clinique.

6. Synthèse

L’objectif de cette recherche a été de créer un outil informatisé multifacette d’aide à la décision
pour les cliniciens des RCP pour la prise en charge des patients atteints de cancer du sein. Nous
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avons développé un SADM adaptatif à la compléxité des cas à traiter, utilisant distinctement des
approches basée sur les GBP pour les cas non complexes et basée les cas similaires pour traiter les
cas complexes.

Tout au long de la thèse, nous avons exploré des aspects clés de l’aide à la décision clinique,
tels que l’extraction de données à partir de documents cliniques non structurés, la classification
de la complexité des cas et les différentes méthodes d’aide à la décision.

• Nous avons mis au point une méthode basée sur des règles pour extraire des données
structurées des fiches RCP. Le processus de traitement a montré de bonnes performances,
mettant en lumière des attributs pour lesquels les méthodes basées sur les règles peuvent
être limitées, suggérant l’utilisation de méthodes d’apprentissage approfondies pour ces at-
tributs (voir annexe A) (Chapitre 3).

• Lors de la classification de la complexité des cas, les modèles d’apprentissage automatique
traditionnels ont surpassé les modèles de transformers dans ce cas d’usage, soutenant ainsi
l’approche basée sur l’utilisation d’annotateurs sémantiques pour l’extraction de caractéris-
tiques (Chapitre 4).

• Pour les cas non complexes, le SADM basé sur le GBP du projet DESIREE a été mis à jour
en utilisant de vrais cas de cancer du sein. Nous avons proposé une approche novatrice
permettant d’identifier efficacement les profils les plus courants, facilitant ainsi la mise à
jour nécessaire de la base de connaissances du GL-DSS (Chapitre 5).

• Pour les cas complexes, La méthode basée sur une mesure de similarité hybride a montré des
résultats prometteurs dans la détection de patients similaires. Cependant, des améliorations
sont nécessaires, notamment la vérification de la pertinence des résultats par des experts
(Chapitre 6).

Malgré ces avancées, notre étude présente des limites liées à la taille de l’échantillon, à
la généralisation, à la qualité des données et aux difficultés techniques. L’élargissement de
l’ensemble de données et de la portée de la recherche pourrait améliorer la généralisation de nos
résultats. Les contraintes pratiques et temporelles ont limité l’implication approfondie des experts.

Pour l’avenir, des perspectives de recherche prometteuses incluent l’amélioration de la qual-
ité des données, la validation des systèmes d’aide à la décision avec des retours externes,
l’optimisation des méthodes basées sur la similarité et l’extension à d’autres types de cancer.
L’intégration de modèles de langage de grande taille (LLMs) pourrait automatiser la mise à jour des
GBP et simplifier le processus d’aide à la décision.
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Appendix

To maintain a smooth reading experience, detailed and supplementary materials are
presented separately in the Appendices section. This ensures that the memoir’s flow re-
mains uninterrupted while providing interested readers easy access to valuable support-
ing information and data.

A Hybrid NER method

In chapter 3, we used rule-based techniques to perform named entity recognition. However, as
we mentioned in the perspectives, we started hybridizing this method using a deep learning algo-
rithm, the method is presented below, and an evaluation step is required to validate it.

A.1 Deep learning method for named entity recognition

Once we had the rule-based approach to do the annotation. We evaluated it on a corpus of breast
cancer patient summaries, manually annotated by experts who took the pre-annotated files by the
rule-based system, and corrected the errors done by the algorithm. After the evaluation, we deter-
mined the entities where the performance of the rule-based approach was poor and we trained a
deep learning NER model to improve the performance of the algorithms. The data used to evaluate
the rule-based system was the training corpus for the deep learning approach.

To implement this method we used EDS-NLP. Indeed, in addition to its rule-based pipeline
components, EDS-NLP offers new trainable pipelines to fit and run machine learning models for
classic biomedical information extraction tasks. The new eds.ner component allows to extract
almost any named entity.

A.1.1 Model architecture

This method, developed by Wajsbürt (2021), utilizes a deep learning approach for named entity
recognition. The model employs a token classification technique using the BIOUL tagging scheme,
which consists of tags such as B (Begin), I (Inside), O (Outside), U (Unary), and L (Last). Each label
in the model has its own tag sequence, allowing for the extraction of overlapping entities. (Ratinov
& Roth, 2009) studied the BIOUL tag scheme and found it performs very well. This scheme encodes
the end of entities and single words entities with specific tags E and S 1.
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Figure A.1: Nested NER architecture by (Wajsbürt, 2021)

To enforce the tagging scheme and ensure valid tag sequences (e.g., preventing I from following
O but only allowing B), the model utilizes a stack of CRF (Conditional Random Fields) layers. The
CRF layers are employed during both training and prediction stages to capture the dependencies
between the tags and ensure the output follows a valid sequence. The deep learning architecture
used in the eds.ner component is designed to handle various types of named entities. It can extract
flat entities similar to spaCy’s EntityRecognizer, overlapping entities including those with different
labels, and entities with ill-defined boundaries. This allows for more flexible and comprehensive
named entity recognition.

In summary, the deep learning method employed by the eds.ner component utilizes a stack of
CRF layers to enforce the BIOUL tagging scheme, enabling the extraction of various types of named
entities. While it offers improved capabilities compared to spaCy’s default NER pipeline, it still has
limitations regarding nested entities of the same label.
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B Update of the GL-DSS’s knowledge base

In this section, we dive deeper into the results obtained in chapter 5, first, we provide an
overview of the ontology, then we present all the rules identified to update the GL-DSS’s
knowledge base

B.1 Information on the BCKM ontology and the rule bases

Currently, the GL-DSS’s conceptual model consists of 22 entities and a total of 394 attributes, dis-
tributed based on their value type as follows: 49% Booleans, 9% integers, 4% floats, 5% strings,
4% dates, and 33% hierarchical values. The BCKM ontology encompasses 1445 classes, 2305 ax-
ioms, 25 object properties, and 15 data properties. Notably, 658 classes are derived from the NCI
thesaurus.

The breast cancer CPGs from AP-HP (France) that the GL-DSS was based on were published in
2016 as a 36-page document, providing diagnostic and therapeutic recommendations, distinguish-
ing between surgery, chemotherapy, and endocrine therapy procedures. The rule base consists of
305 with a subset of generic 12 rules. Figure B.1 presents an attribute (bilateral breast cancer), that
is an attribute of the patient entity and has a boolean value.

Figure B.1: Overview of the BCKM

B.2 Updates in the BCKM ontology and the rule bases

As presented in chapter 5, we identified updates in the GL-DSS’s knowledge base, this led us to the
modification, creation, and suppression of existing rules in the knowledge base, figure B.2 shows
an example of comparison between GL-DSS and SENORIF recommendations with the MTB’s de-
cision.

A table that describes all the mappings is available in this link https://drive.google.com/
file/d/1HvkVD2FVZY4896tPyK92zi0zT0VsYOjH/view?usp=sharing as the rules are written in
French and also the guidelines, the table is written in French.

C Mapping of structured data with the ontology

As explained in section 5.2.2.1, We did a mapping of the structured data from chapter 3 to the
BCKM ontology, the table that describes the mapping can be found using this link: https://
drive.google.com/file/d/1-WRRmU43T2iii2ZRsVsshkhn9PrLrGxZ/view?usp=sharing.

https://drive.google.com/file/d/1HvkVD2FVZY4896tPyK92zi0zT0VsYOjH/view?usp=sharing
https://drive.google.com/file/d/1HvkVD2FVZY4896tPyK92zi0zT0VsYOjH/view?usp=sharing
https://drive.google.com/file/d/1-WRRmU43T2iii2ZRsVsshkhn9PrLrGxZ/view?usp=sharing
https://drive.google.com/file/d/1-WRRmU43T2iii2ZRsVsshkhn9PrLrGxZ/view?usp=sharing
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Figure B.2: Example of differences between guideline recommendations and MTB decision
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