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Résumé en français

L’insuffisance cardiaque est un état pathologique caractérisé par une capacité diminuée à pomper

le sang et à fournir suffisamment d’oxygène et de nutriments à tous les organes [1, 2]. Initialement,

le diagnostic est clinique et marqué par une congestion hydrique. Elle peut être liée soit à une

insuffisance ventriculaire droite, soit à une insuffisance ventriculaire gauche, ou le plus souvent

lié aux deux cavités ventriculaires. Elle est de plus en plus répandue et touche plus de 26 millions

de personnes dans le monde [3], entraînant plus d’un million d’hospitalisations en Europe et en

Amérique du Nord chaque année [4]. Le coût pour la société est significatif, estimé à 2% des

dépenses totales de santé. Malgré de nombreuses avancées thérapeutiques, à la fois pharma-

cologiques et technologiques, son pronostic demeure préoccupant avec un taux d’événements

majeurs à six mois (mortalité et hospitalisation pour insuffisance cardiaque) qui approche 50%

après la première hospitalisation pour insuffisance cardiaque aiguë en France [5].

L’évaluation de la fonction ventriculaire gauche reste un enjeu majeur en cardiologie, car une

multitude de traitements dépendent de cette évaluation. Malgré la pathophysiologie complexe et

la variété de méthodes d’analyse de la fonction ventriculaire gauche, l’évaluation de la fraction

d’éjection du ventricule gauche (FEVG) reste le paramètre de référence en routine clinique. Les

limites de ce paramètre sont bien connues et comprennent le manque de reproductibilité intra- et

inter-observateur, la sensibilité à la postcharge, au remodelage ventriculaire, et d’autres [6ś8].

Pour pallier ces limites, l’analyse des courbes de strain, issues des images échocardiographiques

semble être un outil prometteur pour l’évaluation de la fonction cardiaque [9ś15]. Cette méthode

acquiert demanière semi-automatique des courbes de déformation régionales qui représentent la

déformation des parois de différentes régions du myocarde. Bien que de précédentes recherches

aient suggéré que l’analyse du strain pourrait servir d’alternative pour quantifier la fonction

cardiaque, les recommandations internationales actuelles négligent encore la valeur de cette

approche [7]. La plupart des méthodes d’analyse du strain présentées dans la littérature sont

basées sur les temps et les valeurs des pics des courbes de strain, ignorant leurs morphologies

et dynamiques. Cette dernière partie est la plus difficile dû à la multidimensionnalité du problème.

En effet, de nombreux facteurs entrent en jeu dans le processus de contraction du ventricule

gauche : les interactions mécano-hydrauliques, l’activation électrique et sa propagation, etc.

Ces dernières années, la modélisation et l’apprentissage automatique ("machine learning") sont

devenus de plus en plus populaires en recherche biomédicale, en particulier pour la prédiction,

le diagnostic et la stratification des risques, ainsi que dans le développement de thérapies

personnalisées [16ś19]. Les deux approches, bien que différentes par essence, se sont avérées

5



précieuses pour aider à comprendre les interactions complexes et multifactorielles de cette

pathologie. La modélisation se distingue par l’intégration de connaissances physiologiques dans

la chaîne de traitement des données. Ces types de méthodes sont au cœur des approches de

type "jumeau numérique" qui ont un potentiel considérable pour améliorer les diagnostics, les

traitements et la gestion des maladies, en permettant une approche plus précise et personnalisée

au patient. L’apprentissage automatique, quant à lui, étant axée sur les données, permet des

analyses de larges bases de données multimodales sans présupposés introduits par l’homme.

Figure 1: Illustration de la méthodologie avec : i) les bases de données cliniques : Bloc de Branche
Gauche (BBG) / Cardiac Resynchronization Therapy (CRT), Sténose Aortique (SA) et CardioMy-
opathie Hyperthrophique (CMH), ii) le traitement du signal, l’extraction de caractéristiques et
modèle physiologique et iii) le Machine Learning (ML) non-supervisé et supervisé.

Dans ce contexte, les travaux de thèse concernent l’évaluation de la fonction cardiaque en

utilisant des méthodologies comprenant des modèles computationnels et des algorithmes

d’apprentissage automatique/Machine Learning (ML). La combinaison de ces deux approches a

été déclinée à différents phénotypes d’insuffisance cardiaque (Figure 1) :

1. La première application de cette thèse consiste en la description d’un modèle computa-

tionnel et du processus d’identification pour la création de jumeau numérique de patient

avec un bloc de branche gauche (BBG). Une forte correspondance a été observée entre

les signaux de strain estimés et observés de 20 patients BBG et 10 patients sains de la

base. Les résultats ont montré que les morphologies de strain sont liées à la fois au retard

de conduction électrique et à l’hétérogénéité de contractilité du myocarde. L’approche à

base de modèles permet d’apporter des informations complémentaires par région sur la
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fonction électrique et mécanique du ventricule gauche à partir de l’analyse des données

échocardiographiques.

2. La seconde application propose des approches combinantmodélisation etML pour analyser

les courbes de strain des patients éligibles à la thérapie de resynchronisation cardiaque

(CRT) et propose de nouvelles méthodes pour améliorer la prédiction de la réponse de

chaque patient à la CRT.

i) Dans un premier temps, des approches de regroupement (clustering) ont été proposées

pour caractériser les profils de patient éligible à la CRT. Un premier clustering sur des

données cliniques, électrocardiographiques, échocardiographiques et de nouveaux indices

extraits des courbes de strain de 250 patients éligibles a été enrichi de cinq jumeaux

numériques représentatifs des clusters. La réponse à la thérapie est définie par une diminu-

tion d’au moins 15% du volume systolique du ventricule gauche à six mois de suivi, et a

été évaluée pour chaque patient. Le clustering a permis de proposer cinq phénotypes de

patients insuffisants cardiaques avec des taux de réponse différents à la thérapie. Ces

phénotypes de patients atteints d’insuffisance cardiaque et éligibles à la CRT se basent

sur des indices classiques ainsi que de nouveaux indices tirés du strain, particulièrement

interprétables physiologiquement.

ii) Ensuite, une approche similaire a été appliquée sur les paramètres extraits des jumeaux

numériques créés pour 162 patients de la base. Nos résultats soulignent l’importance à la

fois de la contractilité myocardique et des temps d’activation électrique dans la réponse

à la CRT. Cette approche combinée apparaît comme un outil prometteur pour améliorer

la compréhension des mécanismes du ventricule gauche et l’évaluation de la fonction

cardiaque chez les patients éligible à la CRT.

iii) Enfin, une autre combinaison des techniques de ML et des jumeaux numériques a été

appliquée à cette même base de données prospective. Les paramètres extraits des jumeaux

numériques sont devenus les entrées d’un algorithme de ML supervisé et ont permis la

création d’un classifieur de réponse ou non à la CRT. En plus de proposer des caractéristiques

explicables aux courbes de strain personnalisées à chaque patient, les paramètres proposés

améliorent la prédiction de la réponse à la thérapie de resynchronisation cardiaque.

Les perspectives futures consisteront en la validation de ces méthodes sur des bases de

données prospectives multicentriques plus importantes.

3. La troisième application consiste à proposer une méthode non invasive d’estimation de

la pression du ventricule gauche afin d’obtenir des indices de travail myocardique dans

le cas de la sténose aortique (SA). Un modèle computationnel similaire est utilisé, suivi

d’un processus d’identification de parametres pour 67 patients atteints de SA. L’objectif

est d’améliorer l’approche à base de modèle pour évaluer non invasivement la pression du

ventricule gauche proposée dans notre équipe [20, 21]. Ensuite, de comparer et d’évaluer

l’estimation de la pression du ventricule gauche avec la méthode de Fortuni et al. [22]
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adaptée de Russel et al. [23, 24]. L’estimation de la pression ventriculaire gauche étant

essentielle dans le calcul du travail myocardique, le travail calculé avec chaque méthode

d’estimation de pression est comparé avec celui calculé avec la pression invasive chez

des patients atteints de SA sévère et modérée de la base de données. Les deux méthodes

présentent une bonne concordance avec les indices de travail myocardique calculés à partir

de pressions invasives. L’évaluation du travail myocardique pourrait avoir une importance

significative dans la prédiction du pronostic des patients atteints de sténose aortique

asymptomatique sévère sans dysfonctionnement du ventricule gauche. De plus, il pourrait

aider dans la décision du remplacement de valve ainsi que des critères d’intervention

chirurgicale qui continuent d’être débattus pour ces patients.

4. La dernière application consiste à proposer des caractéristiques extraites des courbes de

strain pour la classification des patients atteints de cardiomyopathie hypertrophique (CMH)

présentant un risque de mort subite. L’algorithme d’apprentissage automatique combine

des données hétérogènes : cliniques, d’imagerie et des paramètres extraits des courbes

de strain du ventricule gauche. La prédiction de mort subite et d’arythmie ventriculaire

se révèle être de meilleure qualité pour ces patients atteints de CMH avec ces nouveaux

paramètres extraits du strain. Cette nouvelle méthode d’extraction de paramètres issus des

courbes de strain est complètement automatisée.

L’approche adoptée dans ce travail de thèse, combinant à la fois de la modélisation et des

méthodes classiques de traitement du signal et d’apprentissage automatique, constitue une

proposition originale visant à rapprocher la modélisation cardiaque de la pratique clinique quo-

tidienne. La méthodologie proposée représente une avancée vers l’utilisation de techniques

intégrant des connaissances explicites pour évaluer la fonction cardiaque, dans le but d’améliorer

l’interprétabilité des indices extraits de l’échocardiographie. Ces applications sont de bons exem-

ples de la manière dont les approches classiques de machine learning basées sur le traitement

du signal et de données peuvent être combinées à des jumeaux numériques.
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Introduction

Heart Failure (HF) is a pathological state characterized by a decreased ability to pump blood and

provide enough oxygen and nutrients to the body’s organs [1, 2]. Initially, the diagnosis is clinical

and characterized by fluid congestion, and it can be either related to right ventricular failure or

left ventricular failure, or most commonly related to both ventricular cavities. It is becoming

increasingly prevalent worldwide and affects over 26 million people globally [3], resulting in over a

million hospitalizations in Europe and North America each year [4]. The resulting cost to society is

significant, estimated at 2% of overall healthcare expenditures. Despite the numerous therapeutic

advances, both pharmacological and technological, its prognosis remains poor with a major

event rate at 6 months (mortality and hospitalization for heart failure) that approaches 50% after

the first hospitalization for acute heart failure in France [5].

The evaluation of left ventricular function remains a major challenge in cardiology, as a multitude

of treatments depend on this evaluation [6]. Despite the complex pathophysiology and the variety

of methods to analyze left ventricular function, the assessment of Left Ventricle Ejection Fraction

(LVEF) is still the reference method used in clinical routine. The limitations of this feature are well

known and include a lack of intra- and inter-observer reproducibility, sensitivity of measurement

to afterload, ventricular remodeling, and others [6ś8].

Myocardial strain measurements emerge as an ultrasound clinical tool in the 2000s [9] and since

then remained mainly in the research domain [10]. This method semi-automatically acquires

regional strain traces that represent tissue deformation of different regions of the myocardium.

Recently, routine echocardiography starts to include strain measurements as complementary

function parameters [7] and they appear as a promising tool for the assessment of myocardial

function [11ś19]. However, although these prior researches have suggested that analyzing strain

traces could serve as an alternative to quantify cardiac function, current guidelines still neglect the

value of this approach [6]. In fact, the analysis of strain curves is a difficult issue because of the

multidimensionality of the problem and physiological mechanisms involved in the LV contraction

process: mechano-hydraulic interactions, electrical activation and propagation... [19, 20] and lack

of standardization [21].

This analysis of the patient strain curves could benefit from Artificial Intelligence (AI) tools. In fact,

Machine Learning (ML) approaches appear as particularly relevant because of the high-volume

multiparametric features extracted from cardiac ultrasound images and the high heterogeneity of

patient profiles. For instance, supervised [22, 23] and unsupervised [24] ML methods have been

used to predict the response to cardiac resynchronization therapy and identify phenogroups of

19



patients. Our team has been particularly active in this field [25ś33]. In [25], integral-derived longi-

tudinal strain (automatic quantification of strain curves) was proposed to quantify dyssynchrony.

In [33], a complete Machine Learning pipeline was proposed to improve the estimation of CRT

response and was further validated in [26]. A quantitative analysis of myocardial deformation was

presented in [28], for the selection of the most informative echocardiographic views and features

for the estimation of CRT response, based on the Random Forest. In [27], features, extracted

from regional longitudinal strains, were analyzed using a clustering approach (K-Means) and

five clusters were defined, associated with groups of below-average to excellent responders. In

[29], myocardial work and integral-derived longitudinal strain were compared in the prediction

of CRT-response. In [34], supervised and unsupervised ML methods were used to underscore

the value of RV-derived parameters for the prediction of CRT response/survival. Despite these

encouraging results, we strongly believe that classification performances should be improved by

including knowledge in the data processing.

In this context, model-based analysis or digital twins seems particularly appropriate since it allows

the integration of physiological knowledge and could permit to access underlying mechanisms

hard to experimentally measure. Most of the cardiac models proposed rely on the Finite Element

(FE) method, which uses a 3D mesh geometry to simulate cardiac mechanical activity [35ś46].

However, these models are computationally expensive and not easily personalized. They also

often fail to consider dynamic loading conditions and interventricular interactions, which require

increased model complexity to integrate. To address these challenges, alternative approaches

have been proposed that use lower dimension models to represent patient anatomy [17, 47ś50],

allowing for better clinical translation and inclusion of heart hemodynamics within the entire

circulation. In that way, our team had a work history in the modeling methodologies from the

formalization of the model integration problem to sensitivity analysis, parameter identification

and specification [51ś66]. Although these different models have shown promising results, there

is a need to adapt these studies to non-invasive, patient-specific data and bring these digital

twins to the clinical field and provide patient-specific strain curves interpretation.

The main objective of this thesis is to propose new methods to analyze LV strain curves of HF

patients based on computational model/digital twins and machine learning. These methods

aim at ensuring a more precise and personalized understanding of the left ventricular function of

heart failure patients. Explainable AI methods, integrating ML and physiological in-silico models

(patient digital twin), need to be proposed to combine physiological knowledgewith observed data,

using model-based reasoning, to improve the interpretability of the approach while minimizing

overfitting and limited robustness. The previous contributions of LTSI team (SEPIA) are the basis

of the work presented here. This methodological framework plays a crucial role in developing new

methods for analyzing experimental strain curves. Cardiovascular models, sensitivity analysis

and identification methods, proposed by SEPIA team, will be used to create accurate physiological

markers to the interpretation of cardiac strain based on digital twins and ML.
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This approach was applied in four contexts associated with different HF phenotypes (Figure 2):

Ð Model-based analysis of myocardial strains in left bundle branch block,

Ð Prediction of response to CRT and characterization of responder profiles,

Ð Assessment of myocardial work in aortic stenosis patients,

Ð Prediction of sudden death risk in patients with hypertrophic cardiomyopathy.

Figure 2: Methodological illustration with: i) the clinical database: Left Bundle of Branch Block
(LBBB) / Cardiac Resynchronization Therapy (CRT), Aortic Stenosis (AS) and Hypertrophic Car-
dioMyopathy (HCM), ii) the signal processing and feature extraction and the physiological model,
and iii) the unsupervised and supervised Machine Learning (ML).

This thesis is organized as follows:

Chapter 1 presents a description of the main physiological functions that are studied in this work.

Chapter 2 describes the methods and tools for modeling, simulation and analysis that are pro-

posed and applied in this thesis, including supervised and unsupervised ML approaches, a

description of the modeling and simulation framework (M2SL), the sensitivity analysis methods

(Morris screening method) and the parameter identification approach (Evolutionary algorithms).

Chapter 3 addresses a model-based analysis of myocardial strains in left bundle branch block.

Model-based approaches may provide a better understanding of myocardial deformations ob-

served in LBBB, since these approaches explicitly represent the fundamental physiological

mechanisms involved. Indeed, computational modeling appears as an efficient tool to integrate

knowledge, concerning cardiac electrical activation, mechanical properties, and hemodynamic

conditions, in the data processing. Chapter 3 aims at proposing a model-based approach for
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creating a digital twin able to replicate the patient’s myocardial strain curves and analyze the

patient-specific parameters of the digital twin model created.

Chapter 4 concerns the characterization of the responder profiles for Cardiac Resynchronization

Therapy (CRT) patient selection. Cardiac Resynchronization Therapy typically results in reverse

remodeling of the left ventricle and has been shown to have a significant positive effect on the

management of HF patients with specific conditions. However, despite the significant success

observed in randomized clinical trials, around 30% of patients who receive CRT do not respond to

treatment [67ś70]. Recent studies have shown a relation between strain curves morphologies

and CRT response. Nonetheless, evaluating desynchrony patterns in these patients presents a

significant challenge. In fact, strains morphologies reflect the dynamics associated with both

electrical conduction delays and mechanical cardiac activities. The challenge was to propose a

multiparametric approach to address the multifactorial and complexity of the problem as well as

the among of data and integrate physiological knowledge to allow a translation to the clinical

practice.

Chapter 5 issue focus on the non-invasive Myocardial Work (MW) estimation of aortic stenosis

patients based on a computational model. Aortic Stenosis (AS) is characterized by a narrowing

of the aortic valve opening and a resulting pressure overload on the left ventricle. AS severity is

primarily assessed through echocardiography, but treatment decisions also consider ventricular

function and symptomatology. The need for reliable methods to evaluate myocardial function

impairment in AS patients independently of loading conditions is essential. Myocardial work

indices are an interesting afterload-independent alternative to evaluate accurate cardiac function

using strain signals and LV pressure curve. Due to the transaortic pressure gradient, the LV

pressure estimation of Russel et al. [71, 72] could not be applied. The challenge here was to

improve the model-based approach to assess non-invasively LV pressure proposed in our team

[57, 58] and to compare the LV pressure estimation with the adapted method of Russel et al. by

Fortuni et al. [73]. Chapter 5 will propose an evaluation of the MW calculated with the two LV

pressure estimation methods and invasive values in severe and moderate AS patients.

Chapter 6 concerns the Sudden Cardiac Death (SCD) prediction in Hypertrophic CardioMyopathy

(HCM) patients. Hypertrophic CardioMyopathy (HCM) represents a major cause of Sudden

Cardiac Death (SCD), particularly in the young people, with a risk of about 1% per year [74, 75].

Identification of patients at risk of SCD is then a major clinical challenge. However, current

international guidelines rely on retrospective evaluations of old HCM cohorts and are based on

limited and pre-selected clinical and imaging predictor variables to select patients at risk of SCD

[76, 77]. The objective is to propose a machine learning classifier for at-risk patients based on

their LV strain curves. Chapter 6 will propose a complete data-processing and machine learning

chains for the evaluation of these patients.
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Context: The Cardiac Function

Chapter

1

The evaluation of the cardiac function is essential to evaluate the heart’s ability to maintain

the blood flow circulation and supply the metabolic requirements. In the case of heart failure,

a pathology that affects more than 26 million people around the word, the cardiac function is

deficient.

This chapter will present three phenotypes of this chronic and degenerative pathology:

Ð Heart failure with left bundle of branch block,

Ð Aortic stenosis,

Ð Hypertrophic cardiomyopathy.

A general description of the cardiovascular system with it physiology and the electrical and

mechanical function will be first presented. Then, the two main modalities: electrocardiogram

and the echocardiography used in this work to evaluate the cardiac function will be described.

These three heart failure phenotypes, by different way, significantly affect the cardiac function,

and particularly the left ventricle ability to eject blood. Due to its multifactorial nature, the cardiac

function evaluation is still a main concern in heart failure patient care.

1.1 Cardiovascular system

The CardioVascular System (CVS), or vascular system, includes the blood circulatory system

that contains the heart, blood vessels, and blood. This system, by transporting blood through the

entire body, protects it from disease. It maintains a stable temperature and pH, ensure the supply

of oxygen, nutriments, and hormones thought the different body part.

The CVS is divided in two circulatory loops (Figure 1.1), linked together in a closed-loop circulatory

system:

Ð The pulmonary circulation aims at transporting deoxygenated blood from the right part of

the heart to the lungs trough pulmonary arteries and providing oxygenated blood back into

the heart through pulmonary vein.

Ð The systemic circulation transports the oxygenated blood from the left part of the heart

to the entire body via the aorta. It returns it back to the heart thanks systemic veins for

another cycle.
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Arteries, which are vessels with muscular and elastic thick wall, subdivide into smaller structures

named arterioles. The arterioles are then connected to the capillaries, which are the smallest

blood vessels.

Figure 1.1: Circulatory system, with the systemic and pulmonary circulation around the heart. The
blue part represents the deoxygenated blood and the red one the oxygenated blood.

1.1.1 The heart physiology

The heart is a muscular organ. Its function is to pump blood through the blood vessels of the

circulatory system tomaintain the good supply of oxygen and nutriment, as well as the elimination

of CO2 and wastes. It is made up of three-layered structures. From the inside of the heart to the

outside, one can find the endocardium, the myocardium, and the pericardium. The endocardium

is localized inside the heart chambers and forms the valves surfaces. The myocardium is the

bulk of the muscle and delimits the walls of the heart. Finally, the pericardium covers the whole

heart in a double-walled sac structure.

The heart is divided into two parts: the left and the right sides, and composed of four chambers.

The two upper chambers are the atria, and the two lower are the ventricles (Figure 1.2).

The left and right part are separated by the inter-atrial and inter-ventricular septa, respectively, for
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Figure 1.2: Heart anatomy with the four chambers: left and right atria, left and right ventricles
and the four valves: pulmonary, tricuspid, mitral and aortic valves.

the atria and ventricles.

The right atrium and the right ventricle are involved in the systemic circulation by receiving the

deoxygenated blood from the superior and inferior vena cava and in the pulmonary circulation by

pushing the blood to the lungs, via the pulmonary valve. The tricuspid valve separates the right

ventricle from the atrium.

On the other hand, the mitral valve separates the left atrium from the left ventricle. The left

ventricle receives the oxygenated blood from the pulmonary vein and return it to the entire body

through the aorta after passing the aortic valve.

The valves are separated into two types: the atrioventricular valves, located between atria and

ventricles (mitral and tricuspid valves) and the semilunar valves, located between the ventricle

and the arteries (aortic and pulmonary valves). The valves maintain the unidirectional flow in the

heart chambers thanks to the opening and the closing of their flaps (cusps and leaflets). These

opening and closing, are driven by the blood pressure of the two chambers around the valves. The

opening allows the blood to flow in the right direction, and the closing stops potential backward

blood flow.
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1.1.2 Electrical system

To contract, the heart has its independent electrical conduction system. This conduction system

is a network of different cells that keep the heart beating.

Two types of cells control heartbeat: conducting cells (cardiac pacemaker cells) that carry the

electric signals and muscle cells (cardiomyocytes) that control heart contractions. The electrical

conduction network sends electrical signals to start a heartbeat, contract the myocardium and

cause the heart muscle fiber depolarization.

The heartbeat is established by the sinoatrial node that creates an excitation signal. Then, it

travels into the AtrioVentricular (AV) node, the bundle of His, then down to the right and left

bundle of branch that led into the Purkinje fibers [1]. Figure 1.3 illustrates the electrical conduction

pathway. In this path, the atria and the ventricles are contracted by their muscle tissue impulses.

Figure 1.3: Cardiac electrical conduction pathway with the sinoatrial node, the atrioventricular
node, the bundle of His, the right and left bundle of branch and the Purkinje fibers.

In a lower level, the electric changes (voltage) in the cell are named cardiac action potential and

could be divided in five phases. (Figure 1.4):

Ð Phase 4: The baseline phase is the resting state.
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Ð Phase 0: After the resting state, a fast depolarization period opens an influx of sodium

(Na+) ions. In pacemaker cell, this depolarization occurs spontaneously but in the muscle

cells. It is caused by the electrical excitation of nearby cells.

Ð Phase 1: A rapid inactivation of Na+ channels, followed by an opening of potassium (K+)

channels that cause a brief repolarization. This phase does not occur to pacemaker cells.

Ð Phase 2: Called plateau, this phase is due to the nearly balanced charge caused by the

influx of calcium (Ca2+) ions and the outgoing flow of K+. This phase caused an almost

constant potential for non-pacemaker cells.

Ð Phase 3: The repolarization phase occurs when the Ca2+ channels close and K+ ions

predominate. During this phase, Na+ channels will begin to recover and restore the resting

state.

Figure 1.4: Electrical phases of a cardiac pacemaker cell (left) and a muscle cell (right).

The resting potential is measured by the difference in voltage between the inside and outside the

cell. In muscle or cardiac cell at the resting potential is about -90mV.

An Absolute Refractory Period (ARP) is defined as the interval of time during which a second

action potential cannot be initiated, regardless of the power of the stimulus. It is longer in cardiac

muscle. The Relative Refractory Period (RRP) is the time during which a second action potential

can be initiated.

1.1.3 Mechanical behavior

Cardiac muscle

The myocardium (cardiac muscle) is composed of several layers of cardiac muscle cells named

cardiomyocytes. These cardiomyocytes are composed of one nucleus, a cytoplasm (sarcoplasm)

and a plasma membrane (sarcolemma). They are shaped cylindrically with numerous inter-

connected sarcomeres. Sarcomere is the fundamental contractile unit of cardiomyocytes. It is

composed of thick and thin protein filaments of myosin (thick) and actin (thin). Cardiomyocytes

are joined by intercalated discs thanks to two types of junctions: GAP junction and desmosomes.
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The cardiac contraction is control by action potential. The muscle structure, in intercalated discs,

is responsible for the transmission of force. It allows action potentials to spread easily between

cells and the transfer of ions. This ion concentration variation produces depolarization of the

heart muscle and a muscle contraction.

Cycle

The cardiac cycle has two main periods, diastole, and systole, which can be broken down into

four phases (Figure 1.5):

Ð Phase 1: IsoVolumetric Relaxation (IVR),

Ð Phase 2: Inflow,

Ð Phase 3: IsoVolumetric Contraction (IVC),

Ð Phase 4: Ejection.

Figure 1.5: Cardiac cycle: a) isovolumic relaxation, b) inflow, c) isovolumic contraction, c)ejection.

The cardiac cycle starts with both the atria and ventricles being relaxed. Blood flows from areas of

high pressure to low pressure, causing the atria to fill until the pressure rises and blood flows into

the ventricles. This also increases the pressure in the ventricles, leading to their contraction and

the pumping of blood from the right ventricle into the pulmonary artery and from the left ventricle

into the aorta. The electrical activity at the cellular level controls and initiates this mechanical

cardiac activity.
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Figure 1.6: Wigger diagram with the left ventricle (LV), aortic and atrial pressures, the LV volume,
and the ECG. The opening and closure of the mitral and aortic valve are added (MVC: mitral valve
closure, AVO: aortic valve opening, AVC: aortic valve closure, and MVO: mitral valve opening.

These variations of pressures and volumes in the different chambers could be represented in a

Wigger diagram (Figure 1.6).

1.2 Modalities

1.2.1 Electrocardiogram

Cardiac electrical function could be measured by electrocardiography. It is measured using

electrodes on the thorax skin and represented by a voltage versus time graph, known as elec-

trocardiogram (ECG or EKG). These electrodes detect the small electrical changes caused by

depolarization and repolarization of the cardiac muscle parts.

A standard 12-lead ECG is composed of 10 electrodes, divided into two groups: the peripheral

electrodes and the precordial electrodes. There are four peripheral electrodes placed on the

patient’s extremities (RA, LA, RL and LL). The other six electrodes are located in the precordial
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region (V1, V2, V3, V4, V5 and V6) [2]. They are named and placed as follows:

Ð RA: On the right arm.

Ð LA: On the left arm.

Ð RL: On the right leg.

Ð LL: On the left leg.

Ð V1: In the fourth intercostal space (between ribs 4 and 5) just to the right of the sternum.

Ð V2: In the fourth intercostal space (between ribs 4 and 5) just to the left of the sternum.

Ð V3: Between V2 and V4.

Ð V4: In the fifth intercostal space (between ribs 5 and 6) in the mid-clavicular line.

Ð V5: Horizontally even with V4, in the left anterior axillary line.

Ð V6: Horizontally even with V4 and V5 in the mid-axillary line.

The patient heart beat could be followed on its ECG with the progression of depolarization in this

order: sinoatrial node, AV node, bundle of His, LBB and RBB and Purkinje fibers to finish in the

ventricles. This normal pathway is characterized on ECG. In fact, the ECG tracing produce four

phase with typical pattern (Figure 1.7) [3] :

Ð P wave: It represents atrial depolarization.

Ð QRS complex: It represents ventricular depolarization. The amplitude of the QRS complex

is significantly larger than the P-wave due to the higher number of depolarizing cells in the

ventricles compared with the atria.

Ð T wave: The T wave represents ventricular repolarization

Ð U wave: This last phase is often missing because of its very low amplitude and thus ignore

by clinicians.

Figure 1.7: ECG trace of a normal patient with the P, T and U wave, the QRS complex (in blue), the
PR (in red), QT (in pink) and RR (in green) intervals.

Based on these phases, three intervals could be defined:

Ð RR interval: It defined the instantaneous heart rate (HR) and it separates two consecutive R

waves.
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Ð PR interval: This interval is measured between the start of the P wave and the beginning of

the QRS complex. It reflects the time the electrical impulse takes to travel from the sinoatrial

node through the AV node.

Ð QT interval: It represents the time between the start of the QRS complex and the end of the

T wave. It also represents the length of the ventricular depolarization and repolarization

phases.

ECG gather a large among of information about the cardiac structure and its electrical conduction

through the different parts of the heart. It could also warn about potential the conduction system

damage or the muscle cells and help to follow the drug’s effect or the proper functioning of

implanted devices.

1.2.2 Echocardiography

As electrocardiography, echocardiography is another modality routinely used in diagnosis, man-

agement, and follow-up of heart diseases [4, 5]. This modality is widely used because it is

non-invasive, harmless for the patient, fast, time real, relatively cheap, and widely available for

the clinicians.

This type of imaging is based on standard ultrasound or Doppler ultrasound and produce a real

time moving image of the heart. Ultrasound transmits sound waves with specific frequencies.

The ultrasound pulses echo off tissues and are returned to the probe, which records. These

differences of record due to the properties of the different crossed tissues provide a display as

an image and video.

Figure 1.8: Transthoracic echocardiography (apical 4-chamber view).

Echocardiographic modes

Several modes could be used in echocardiography:

Ð Color Doppler: allows seeing and measure the flow of blood in the heart and arteries.
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Ð M-mode or 1D mode: Less frequently used, it has specific uses and has the benefit of very

high temporal fidelity.

Ð B-mode or 2D mode: It is the most commonly used in echocardiography and offers an

image of the anatomy of the heart, allowing to see the different chambers (Figure 1.8) and

valves structures during the heart cycle.

Ð 3D mode: This new mode aims at providing 3 dimensions images, created from multiple

images in 2D.

Echocardiograms provide information about the shape, size, function, and strength of the different

heart chambers. Themovement of thewalls and the cardiac valve function could also be evaluated

[6, 7]. It also estimates the cardiac function, thanks indices such as a calculation of the cardiac

output, ejection fraction, systolic and diastolic function, valve area ...

Echocardiographic views

Cardiac ultrasound could refer to Trans-Thoracic Echocardiography (TTE) or TransEsophageal

Echocardiography (TEE). TTE is the most common, and it is performed on the chest of the patient.

TEE is more invasive and uses a special probe that is inserted into the esophagus.

During a transthoracic echocardiographic examination, several views could be observed [7].

Parasternal long and short axis; apical 2-, 3- and 4-chamber; subxiphoid, and inferior-vena-cava

views.

The apical views are mostly used for the hemodynamic assessment of the heart. They well

illustrated the global cardiac function with the systolic and diastolic functions as well as the valve

behaviors.

Strain

Strain imaging is an advanced echocardiographic technique that assessesmyocardial function by

evaluating deformation of themyocardium (Figure 1.9). Twomethods exist to track themovement

of specific points on the heart wall and computing strain curves:

Ð Tissue Doppler Imaging (TDI) is a Doppler-based technique that measures the velocity of

blood flow or tissue movement to calculate the strain of the heart muscle. It can be used to

measure both longitudinal and radial strain of the myocardium.

Ð Speckle-Tracking Echocardiography (STE) is a feature-tracking technique that uses the

natural speckle patterns present in ultrasound images to track the movement of specific

points on the heart wall. STE does not rely on blood flow to track the motion, and it can

provide a full-volume analysis of the heart. STE can also provide strain measurements in

multiple planes, including longitudinal, radial, and circumferential.
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Figure 1.9: Echocardiography of the 4-chamber view with the 6 segments and the strain curves.

TDI is considered more sensitive to detect abnormalities in systolic function, while STE can

provide a more detailed and accurate assessment of the heart’s mechanical function. TDI is also

more limited by the quality of the image and the presence of tissue interfaces or artifacts that

may affect the accuracy of the results. STE is less dependent on image quality and can provide

more robust results. Currently, STE technique is more used, and we will focus on this technique

in the rest of this thesis.

With STE, strain curves could be acquired for different regions (called segments: s) and represent

tissue deformation in 3 spatial directions: longitudinal, radial, and circumferential. The strain (ε)

is expressed as a percentage. It is defined as the variation in the myocardial segment length (ls)

relative to its original length (ls,ref ), usually taken at end-diastole [8].

εs =
(ls − ls,ref )

ls,ref
· 100 (1.1)

Thus, positive longitudinal strain represents fiber elongation or relaxation and negative longitudinal

strain indicates fiber shortening or contraction.

To gather the entire LV deformation, the 2-, 3-, and 4-chamber views could be used. In fact, the

orientation of the probe during the echocardiography allows accessing all the ventricular wall.

The six segments of the 2- and 4 chamber views and the six or four segments of the 3-chamber

views create a 16 or 18 segmental ventricle, as illustrated in Figure 1.10 in order to access to the

longitudinal deformation of the entire ventricle. Global Longitudinal Strain (GLS) value could be

computed as the average of the maximum deformation of the longitudinal strain curve.
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Figure 1.10: Six segmental segments for the three-echo view (2-, 3- and 4-chamber) with the
representation of the LV in a bull eye with the echocardiography device vendor colors: 1: basal
anterior, 2: basal anteroseptal, 3: basal inferoseptal, 4: basal inferior, 5: basal inferolateral, 6: basal
anterolateral, 7: mid anterior, 8: mid anteroseptal, 9: mid inferoseptal, 10: mid inferior, 11: mid
inferolateral, 12: mid anterolateral, 13: apical anterior, 14: apical septal, 15: apical inferior, 16: apical
lateral

Echocardiographic indices/features

On a TTE one can measure structural element such as LV diameter at the end of systole (LVESD)

or diastole (LVESD). The LV volumes are also computed: (LVESV and LVEDV). They are computed

by a method called "Simpson Bi-plane" [7] which simplified the ventricle in disk layers of same

size and sum all these disk volumes. To clinically simplify the computation of each disks’ length,

only two lengths could be used to estimate the entire LVESV and LVEDV by assuming that the LV

is bullet shaped [7]. From these measurements and as it was previously mentioned, one of the

major indicators of HF is Left Ventricle Ejection Fraction and it can be computed (in percentage):

LV EF =
LV EDV − LV ESV

LV EDV
· 100 (1.2)

In a normal case, the LVEF is between 55 and 70%.

The LV atria can also be measured by TTE. The same could be done for the right ventricle,

especially thanks to the 4-chamber view with the surface measurement at the end of systole and

diastole.

Other indices can be extracted from TTE to diagnose HF. These indices measured the blood flow

in the LV, and especially the blood flow velocity through the mitral valve. Figure 1.11 is a schematic
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representation of the velocity of the blood composed by two waves.

Figure 1.11: Scheme of the blood flow through the mitral valve. The E and A pic are represented,
and the dotted line represent the decrease of speed after the E pic (used to compute DT).

The E-wave reflect the passive blood flow from the left atrium to the left ventricle and marks

the start of diastole. This flow is pushed by the pressure gradient between the LA and the LV.

The A-wave represents blood flow generated by active atrial contraction. From these two wave

velocities, we could compute the E/A ratio [9]. In a healthy case, the E/A ratio must be higher than

1. If it is not the case, the patient presents a diastolic dysfunction. Moreover, if this ratio is above

2, it is a sign of a LV pressure too high.

Another feature could be extracted from this examination: The Deceleration Time. It is the time

interval between the peak of E-wave to the projected baseline (see Figure 1.11). DT indicates

the duration for equalizing the pressure difference between the left atrium and the left ventricle

(through the mitral valve) and it leads to the diagnosis of HF.

Moreover, from this velocity curve, an integral could be computed: themitral Velocity Time Integral,

also called stroke distance. This integral allows prediction of HF evolution [10]. A similar integral

could be computed at the LV exit, at the level of aorta, it is the aortic VTI.

The motion of the mitral annulus (that circle the valve) can be studied during systole and diastole.

During systole, it travels toward the apex of the heart and go back during diastole. The mitral

annular plane diastolic motion is then particularly interesting and as the blood is velocity could

be recorded. Two main negative waves can be observed, e’-wave and a’-wave, and reflect the

same event as the E-wave and A-wave, respectively. Experimentally, the e’-wave and a’-wave

are measured separately for the septal and lateral walls and the average of these two velocity

measurements are gathered under the name e’, respectively for a’. Classically, a ratio between

the blood flow velocity and the mitral annulus velocity in computed as E/e’ [9, 11]. The motion of

the mitral annulus also presents a main wave during systole. Similar to the e’-wave and a’-wave,
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this systolic wave is the average of the two pics measured on the septal and lateral walls. This

wave is named s’ and is well correlate to the LVEF [12].

TTE allows to visually detect Septal Flash (SF). SF is a typical pattern of contraction and elongation

of the septal wall of the LV [13]. It is a fast movement of the septal wall during systole and is an

indicator of response to CRT [13ś18]. Similarly, one could detect Apical Rocking on TTE. It is a

typical movement of the apical part of the myocardium [13]. As Septal Flash, Apical Rocking is an

indicator of CRT response [13, 14].

Other indices could also be extracted of the LV and predict a CRT response. For example, the

Tricuspid Annular Plane Systolic Excursion (TAPSE) which is the measurement of the tricuspid

annulus motion to the apex during systole or the Systolic Pulmonary Artery Pressure (SPAP)

which allows to estimation of pulmonary arterial pressure during systole thanks the pressure

gradient are one of them.

To sum up, various indices could be extracted from echo-measurements and can characterize

myocardial function:

Ð The structure: LVESD LVESD, LVESV, LVEDV and LVEF, left atrium volume, the RV surface at

end-systole and end-diastole.

Ð The flow: E-wave, A-wave, E/A, DT, mitral and aortic VTI, e’-wave, a’-wave, E/e’.

Ð The atypical movements: Septal Flash (SF) and Apical Rocking (AR).

Ð The deformations: with the strain curves and indices that can be extracted from them,

developed in the next chapter (Section 2.2).

1.3 Heart failure

Heart Failure (HF) is a pathological state characterized by a decreased ability to pump blood and

provide enough oxygen and nutrients to the body’s organs. It is often caused by conditions that

affect the heart’s strength or elasticity. It is a chronic condition that tends to worsen over time

[19ś22].

HF can involve the left and/or the right ventricle. Several conditions could cause heart failure by

changing the structure and/or the structure of the heart such as:

Ð Coronary artery disease,

Ð Heart attack,

Ð Hypertension,

Ð Valve disease,

Ð Cardiomyopathy,
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Ð Myocarditis (inflammation of the heart muscle),

Ð Arrhythmias (abnormal heart rhythms).

This section will, now, focuses on three phenotypes of HF patients: aortic stenosis patients,

patients with hypertrophic cardiomyopathy and HF patients with left bundle of branch.

1.3.1 Left bundle of branch block

Left Bundle of Branch Block (LBBB) is an anomaly of the cardiac conduction circuit. The electrical

signal is partially or completely blocked in the left branch of the His bundle before reaching the

left ventricle and lead it to contraction (Figure 1.12). Because of this blocking in the LBB, the

signal only spread to the Right Bundle of Branch (RBB) and lead the LV contraction slower and

with a delay compared to the RV. This results to a dyssynchrony in the heart contraction and a

less effective blood ejection.

Figure 1.12: Left bundle branch block (LBBB). The electrical impulses are blocked in the left
branch of the His bundle (illustrated by the black point)

There are several causes of LBBB [23ś25]:

Ð Myocardial infarction (or heart attack): occurs when blood flow decreases or stops to the

coronary artery of the heart.
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Ð Valve disease: is the inability of one or more of the valves to work properly (open and close).

Ð Hypertension: is defined by high blood pressure.

Ð Cardiomyopathy: is the thickened, stiffened or weakened heart muscle.

Ð Myocarditis: is the inflammation of the heart muscle.

25% of heart failure patients present LBBB and in this case or for patients who present acute

chest pain and/or syncope, LBBB could have great consequences. For other patients without

other pathology, LBBB has no major consequence and needs no treatment.

LBBB diagnosis is mainly done by a 12-leads ECG and these following criteria are usually used:

Ð The QRS duration is superior to 120 ms for at least one derivation.

Ð V1 has a QS complex (QRS complex is often entirely negative) or a small R wave followed

by a large S wave.

Ð V6 has a high and wide R wave, no Q wave and present T wave inversions.

For this critical patients, pharmacological treatments or the implantation of a Cardiac Resynchro-

nization Therapy (CRT) device could be used.

Cardiac Resynchronization Therapy is a treatment of choice in patients with systolic heart failure

and LBBB with wide QRS (>120 ms), who remain symptomatic despite optimized medical therapy.

Cardiac resynchronization therapy

Cardiac Resynchronization Therapy (CRT) is a device-based implantation (Figure 1.13). The

device provides small electrical signals through its leads. It aims at synchronizing the ventricle

contraction that implies a more effective heart pumping and stabilize the electromechanical

system [26].

There are two types of CRT devices:

Ð The Cardiac Resynchronization Therapy Pacemaker (CRT-P) or biventricular pacemaker:

it is a kind of pacemaker.

Ð The Cardiac Resynchronization Therapy Defibrillator (CRT-D): It is similar to the previous

one but includes also a built-in implantable cardioverter defibrillator.

This therapy is proposed to symptomatic patients who have systolic heart failure, with severely

reduced LV ejection fraction (<35%) and significant intraventricular conduction delay (QRS duration

>120 ms), most of them are LBBB patients [25]. However, around 30% of implanted patients,

according to the European and the United States guideline, does not respond to the CRT (defined

as a decrease ≥15% in LV end-systolic volume). In addition to the LV end-systolic volume (and

LVEF), theNew-York Heart Association (NYHA) functional class is also commonly used to evaluate

the response to CRT based on a reduction in symptoms and an improvement in functional status.
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Figure 1.13: Cardiac resynchronization therapy (CRT), localization of the 3 leads in the right atria
(RA), right ventricle (RV) and in the coronary sinus.

Improving the patient selection for cardiac resynchronization therapy (CRT) is essential to lead to

better outcomes and cost-effectiveness [26ś35]. By identifying patients who will benefit from

CRT, we can ensure that the therapy is being used for the most appropriate patients, reducing the

risk of complications and increasing the chances of success.

Alternative pacing location (conduction system pacing) are currently explore to improve the CRT

response. This pacing technique provides a more physiological simultaneous electrical activation

of the ventricles via the His Purkinje system [29]. Studies are ongoing to evaluate the benefits of

this technique, and it was not explored during this thesis [36ś39].

1.3.2 Aortic stenosis

Aortic Stenosis (AS) is themost common primary valvular heart disease, leading to an intervention

with growing prevalence due to the aging population. Valvular heart disease is the inability of one

or more of the valves to work properly, causing disruption in blood flow (see Figure 1.5). There

are two different type of valve disease: valvular regurgitation.

Ð Valvular regurgitation: It happens when the valve does not close completely and allow the

blood to flow back.
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Ð Valvular stenosis: It happens when the valve opening is smaller than normal and restricts

the blood flood to pass.

In both case, this causes serious implications because it restrains the good supply (oxygen and

nutriment) and elimination (CO2 and wastes) through the blood circulation in the entire body.

Figure 1.14: Aortic valve localization, a) Healthy vs b) Stenosis aortic valve.

AS is characterized by a reduction of the aortic valve orifice size (Figure 1.14). This surface

reduction restricts the blood to flows out the LV and provide oxygenated blood to the entire body

via aorta. It also develops a pressure gradient across the aortic valve and a chronic pressure

overload in the LV. An AS patient needs to provide extra work to pump enough blood and thus

leads to heart failure.

Current recommendations [40, 41] state that Aortic Valve Replacement (AVR) is a class I indication

in cases of symptoms or reduced left ventricular ejection fraction (LVEF <50%) [42]. Whatever,

LVEF is preserved in many patients with AS even when symptoms develop and/or the narrowing

of the valve is severe. Echocardiographic exam [43] is usually the way to diagnose AS. It allows

the quantification of aortic valve and transaortic gradient, as well as the assessment of LV

morphology and function. Unfortunately, valvular parameters such as Aortic Valve Area (AVA)

and transvalvular gradient did not permit an ideal risk stratification [41, 44ś48]. Depending on

the severity of the aortic reduction, the signs and symptoms, and the condition of the organs

(heart and lungs), different treatments could be proposed. Early treatment can help to reverse

or slow down the progress of this disease. Other possible treatments may include Aortic Valve

Replacement (AVR), using mechanical or biological prostheses. This is done by a heart-open
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surgery or a Transcatheter Aortic Valve Implantation (TAVI).

1.3.3 Hypertrophic cardiomyopathy

Hypertrophic CardioMyopathy (HCM) is a genetic disorder characterized by thickening of the

heart (Figure 1.15). The hypertrophied heart walls make the pumping function harder.

Figure 1.15: a) Normal heart, b) Hypertrophic heart

Hypertrophied myocardial areas are characterized by myocardial disarray, interstitial and focal

fibrosis. These areas constitute the substrate of ventricular arrhythmias which classically occurs

in addition to an excess of sympathetic tone, like exercise or stress, and/or ischemia [49, 50]. In

these hypertrophied areas, the myocardial disarrays involve a local electrical conduction delay

secondary to fibrotic replacement and emergence of anisotropic areas.

A minority of the HCM patients present symptoms such as shortness of breath or chest pain.

Because of this absence of symptoms, or few symptoms, HCM is often undiagnosed. Unless a

small number of HCM patients present symptoms, HCM represents a major cause of Sudden

Cardiac Death (SCD), particularly in the young population, with a risk of about 1% per year [51, 52].

Primary prevention of SCD is based on Implantable Cardiac Defibrillator (ICD) [53, 54] with good

effectiveness but at the cost of an invasive procedure and device complications including infection

and inappropriate shocks [55]. Identification of patients at risk of SCD is still a major clinical

challenge unless risk of SCD score was proposed by the European Society of Cardiology (ESC)

[56].
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1.4 Conclusion

The evaluation of LV function currently remains a major challenge in cardiology. Even if LVEF

remains a reference diagnostic tool, its dependence on the afterload and the geometry of the left

ventricle makes it an insufficient indicator on its own. Despite an abundant literature, the use of

strain, evaluated in echocardiography, struggles to be integrated into daily care. The evaluation of

myocardial deformations, specifically through the estimation of strain curves in echocardiogra-

phy, appears as particularly promising. However, the complexity and multidimensionality of the

problem, as well as the various processes involved in ventricular contraction, make analyzing

myocardial strains a difficult task. Therefore, new methods are necessary to jointly analyze

echocardiography data and, especially, strain morphology acquired from different regions of the

myocardium. Moreover, recent research demonstrates the growing importance of phenotyping,

partly thanks to imaging techniques. Medical doctors provide therapies and strategies that have

been proven relevant in randomized trials, allowing for the provision of care to patients with

potentially serious heart diseases. However, it is important to note that randomized studies

demonstrate the value of a strategy or treatment at the level of a target population, not at the

individual level. By using echocardiographic data, we can attempt to better characterize patients

and clearly evaluate them, thereby enabling the provision of more appropriate and personalized

treatment strategies.
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CIKES M., DAUBERT J.C., DROSSART I., ELLENBOGEN K., ELLIOTT P.M., FABRITZ L., FALK V., FAUCHIER L.,
FERNÁNDEZ-AVILÉS F., FOLDAGER D., GADLER F., DE VINUESA P.G.G., GORENEK B., GUERRA J.M., HERMANN
HAUGAA K., HENDRIKS J., KAHAN T., KATUS H.A., KONRADI A., KOSKINAS K.C., LAW H., LEWIS B.S., LINKER
N.J., LøCHEN M.L., LUMENS J., MASCHERBAUER J., MULLENS W., NAGY K.V., PRESCOTT E., RAATIKAINEN P.,
RAKISHEVA A., REICHLIN T., RICCI R.P., SHLYAKHTO E., SITGES M., SOUSA-UVA M., SUTTON R., SUWALSKI P.,
SVENDSEN J.H., TOUYZ R.M., VAN GELDER I.C., VERNOOY K., WALTENBERGER J., WHINNETT Z., WITTE K.K.,
KRONBORG M.B., MICHOWITZ Y., AURICCHIO A., BARBASH I.M., BARRABÉS J.A., BORIANI G., BRAUNSCHWEIG
F., BRIGNOLE M., BURRI H., COATS A.J., DEHARO J.C., DELGADO V., DILLER G.P., ISRAEL C.W., KEREN A.,
KNOPS R.E., KOTECHA D., LECLERCQ C., MERKELY B., STARCK C., THYLÉN I., AND TOLOSANA J.M. 2021 ESC
Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J., vol. 42, 3427ś3520
(2021).

[30] LEYVA F., NISAM S., AND AURICCHIO A. 20 years of cardiac resynchronization therapy (2014).

[31] BAX J.J., ABRAHAM T., BAROLD S.S., BREITHARDT O.A., FUNG J.W., GARRIGUE S., GORCSAN J., HAYES D.L.,
KASS D.A., KNUUTI J., LECLERCQ C., LINDE C., MARK D.B., MONAGHAN M.J., NIHOYANNOPOULOS P., SCHALIJ
M.J., STELLBRINK C., AND YU C.M. Cardiac resynchronization therapy: Part 2 - Issues during and after
device implantation and unresolved questions (2005).

[32] ZAREBA W., KLEIN H., CYGANKIEWICZ I., HALL W.J., MCNITT S., BROWN M., CANNOM D., DAUBERT J.P.,
ELDAR M., GOLD M.R., GOLDBERGER J.J., GOLDENBERG I., LICHSTEIN E., PITSCHNER H., RASHTIAN M.,
SOLOMON S., VISKIN S., WANG P., AND MOSS A.J. Effectiveness of cardiac resynchronization therapy by
QRSmorphology in the multicenter automatic defibrillator implantation trial-cardiac resynchronization
therapy (MADIT-CRT). Circulation, vol. 123, 1061ś1072 (2011).

[33] CLELAND J.G., ABRAHAM W.T., LINDE C., GOLD M.R., YOUNG J.B., CLAUDE DAUBERT J., SHERFESEE L.,
WELLS G.A., AND TANG A.S. An individual patient meta-analysis of five randomized trials assessing the
effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic
heart failure. Eur. Heart J., vol. 34 (2013).

[34] DUCHENNE J. Finding New Insights in Cardiac Resynchronization Therapy and the Pathophysiology
behind Left Ventricular Dyssynchrony. J. Clin. Med., 10ś12 (2022).

[35] DAUBERT C., BEHAR N., MARTINS R.P., MABO P., AND LECLERCQ C. Avoiding non-responders to cardiac
resynchronization therapy: A practical guide. Eur. Heart J., vol. 38, 1463ś1472 (2017).

[36] VIJAYARAMAN P., ZALAVADIA D., HASEEB A., DYE C., MADAN N., SKEETE J.R., VIPPARTHY S.C., YOUNG
W., RAVI V., RAJAKUMAR C., POKHAREL P., LARSEN T., HUANG H.D., STORM R.H., OREN J.W., BATUL S.A.,
TROHMAN R.G., SUBZPOSH F.A., AND SHARMA P.S. Clinical outcomes of conduction system pacing
compared to biventricular pacing in patients requiring cardiac resynchronization therapy. Hear. Rhythm,
vol. 19, 1263ś1271 (2022).

Bibliography 51



[37] KONG N.W. AND UPADHYAY G.A. Cardiac resynchronization considerations in left bundle branch block.
Front. Physiol., vol. 13, 1ś9 (2022).

[38] EZZEDDINE F.M., PISTIOLIS S.M., PUJOL-LOPEZ M., LAVELLE M., WAN E.Y., PATTON K.K., ROBINSON M.,
LADOR A., TAMIRISA K., KARIM S., LINDE C., PARKASH R., BIRGERSDOTTER-GREEN U., RUSSO A.M., CHUNG
M., AND CHA Y.M. Outcomes of conduction system pacing for cardiac resynchronization therapy in
patients with heart failure: A multicenter experience. Hear. Rhythm (2023).

[39] ZHANG S., ZHOU X., AND GOLD M.R. Left Bundle Branch Pacing: JACC Review Topic of the Week. J.
Am. Coll. Cardiol., vol. 74, 3039ś3049 (2019).

[40] OTTO C.M., NISHIMURA R.A., BONOW R.O., CARABELLO B.A., ERWIN J.P., GENTILE F., JNEID H., KRIEGER
E.V., MACK M., MCLEOD C., O’GARA P.T., RIGOLIN V.H., SUNDT T.M., THOMPSON A., TOLY C., O’GARA P.T.,
BECKMAN J.A., LEVINE G.N., AL-KHATIB S.M., ARMBRUSTER A., BIRTCHER K.K., CIGGAROA J., DESWAL A.,
DIXON D.L., FLEISHER L.A., DE LAS FUENTES L., GENTILE F., GOLDBERGER Z.D., GORENEK B., HAYNES N.,
HERNANDEZ A.F., HLATKY M.A., JOGLAR J.A., JONES W.S., MARINE J.E., MARK D., PALANIAPPAN L., PIANO
M.R., SPATZ E.S., TAMIS-HOLLAND J., WIJEYSUNDERA D.N., AND WOO Y.J. 2020 ACC/AHA guideline for
the management of patients with valvular heart disease. J. Thorac. Cardiovasc. Surg., vol. 162 (2021).

[41] BONOW RO, CARABELLO B, DE LEON AC JR, EDMUNDS LH JR, FEDDERLY BJ, FREED MD, GAASCH WH,
MCKAY CR, NISHIMURA RA, O’GARA PT, O’ROURKE RA R.S. 2014 AHA/ACC guideline for the manage-
ment of patients with valvular heart disease: Executive summary :A report of the american college of
cardiology/american heart association task force on practice guidelines, vol. 129. Am Heart Assoc
(2014).

[42] TANIGUCHI T., MORIMOTO T., SHIOMI H., ANDO K., KANAMORI N., MURATA K., KITAI T., KADOTA K., IZUMI
C., NAKATSUMA K., SASA T., WATANABE H., KUWABARA Y., MAKIYAMA T., ONO K., SHIZUTA S., KATO T.,
SAITO N., MINATOYA K., KIMURA T., KIMURA T., TANIGUCHI T., SHIOMI H., SAITO N., IMAI M., TAZAKI J.,
TOYOTA T., HIGAMI H., KAWAJI T., ANDO K., SHIRAI S., KOURAI K., ARITA T., MIURA S., YAMAJI K., AOYAMA T.,
KANAMORI N., ONODERA T., MURATA K., FURUKAWA Y., KITAI T., KIM K., KADOTA K., KAWASE Y., IWASAKI K.,
MIYAWAKI H., MISAO A., KUWAYAMA A., OHYA M., SHIMADA T., AMANO H., NAKAGAWA Y., IZUMI C., MIYAKE
M., AMANO M., TAKAHASHI Y., YOSHIKAWA Y., NISHIMURA S., KURODA M., SHIROTANI M., MITSUOKA H., MIKI
S., MIZOGUCHI T., KATO M., YOKOMATSU T., KUSHIYAMA A., YAKU H., WATANABE T., MIYAZAKI S., HIRANO Y.,
MATSUDA M., MATSUDA S., SUGIOKA S., INADA T., NAGAO K., TAKAHASHI N., FUKUCHI K., MURAKAMI T.,
MABUCHI H., TAKEDA T., SAKAGUCHI T., MAEDA K., YAMAJI M., MAENAKA M., TADANO Y., SAKAMOTO H.,
TAKEUCHI Y., MOTOOKA M., NISHIKAWA R., EIZAWA H., YAMANE K., KAWATO M., KINOSHITA M., AIDA K.,
TAMURA T., TOYOFUKU M., TAKAHASHI K., KO E., AKAO M., ISHII M., MASUNAGA N., OGAWA H., IGUCHI M.,
UNOKI T., TAKABAYASHI K., HAMATANI Y., YAMASHITA Y., INOKO M., MINAMINO-MUTA E., KATO T., HIMURA
Y., IKEDA T., ISHII K., KOMASA A., SATO Y., HOTTA K., TSUJI S., HIRAOKA Y., HIGASHITANI N., KOUCHI I., KATO
Y., IKEGUCHI S., INUZUKA Y., NISHIO S., SEKI J., SHINODA E., YAMADA M., KAWAMOTO A., MAEDA C., KONISHI
T., JINNAI T., SOGABE K., TACHIIRI M., MATSUMURA Y., OTA C., KITAGUCHI S., MORIKAMI Y., SAKATA R.,
MINAKATA K., MINATOYA K., HANYU M., YAMAZAKI F., KOYAMA T., KOMIYA T., YAMANAKA K., NISHIWAKI
N., NAKAJIMA H., OHNAKA M., OSADA H., MESHII K., SAGA T., ONOE M., NAKAYAMA S., SAKAGUCHI G.,
IWAKURA A., SHIRAGA K., UEYAMA K., FUJIWARA K., FUKUMOTO A., PARK M., NISHIZAWA J., AND KITANO M.
Prognostic Impact of Left Ventricular Ejection Fraction in Patients With Severe Aortic Stenosis. JACC
Cardiovasc. Interv., vol. 11, 145ś157 (2018).

[43] BAUMGARTNER H., HUNG J., BERMEJO J., CHAMBERS J.B., EVANGELISTA A., GRIFfiN B.P., IUNG B., OTTO
C.M., PELLIKKA P.A., AND QUIÑONES M. Echocardiographic assessment of valve stenosis: EAE/ASE
recommendations for clinical practice. Eur. J. Echocardiogr., vol. 10, 1ś25 (2009).

[44] TANIGUCHI T., MORIMOTO T., SHIOMI H., ANDO K., KANAMORI N., MURATA K., KITAI T., KAWASE Y., IZUMI C.,
MIYAKE M., MITSUOKA H., KATO M., HIRANO Y., MATSUDA S., NAGAO K., INADA T., MURAKAMI T., TAKEUCHI
Y., YAMANE K., TOYOFUKU M., ISHII M., MINAMINO-MUTA E., KATO T., INOKO M., IKEDA T., KOMASA A., ISHII
K., HOTTA K., HIGASHITANI N., KATO Y., INUZUKA Y., MAEDA C., JINNAI T., MORIKAMI Y., SAKATA R., AND
KIMURA T. Initial Surgical Versus Conservative Strategies in Patients with Asymptomatic Severe Aortic
Stenosis. J. Am. Coll. Cardiol., vol. 66, 2827ś2838 (2015).

[45] TASTET L., TRIBOUILLOY C., MARÉCHAUX S., VOLLEMA E.M., DELGADO V., SALAUN E., SHEN M., CAPOULADE
R., CLAVEL M.A., ARSENAULT M., BÉDARD É., BERNIER M., BEAUDOIN J., NARULA J., LANCELLOTTI P., BAX
J.J., GÉNÉREUX P., AND PIBAROT P. Staging Cardiac Damage in Patients With Asymptomatic Aortic
Valve Stenosis. J. Am. Coll. Cardiol., vol. 74, 550ś563 (2019).

52 Context: The Cardiac Function



[46] KANG D.H., PARK S.J., LEE S.A., LEE S., KIM D.H., KIM H.K., YUN S.C., HONG G.R., SONG J.M., CHUNG
C.H., SONG J.K., LEE J.W., AND PARK S.W. Early Surgery or Conservative Care for Asymptomatic Aortic
Stenosis. N. Engl. J. Med., vol. 382, 111ś119 (2020).

[47] YOKOYAMA Y., TAKAGI H., AND KUNO T. Early surgery versus conservativemanagement of asymptomatic
severe aortic stenosis: A meta-analysis. J. Thorac. Cardiovasc. Surg. (2020).

[48] PATRIZIO LANCELLOTTI, M.D., PH.D., AND MANI A. VANNAN, M.B. B. Timing of Intervention in Aortic
Stenosis Patrizio. N. Engl. J. Med., 1ś2 (2019).

[49] VARNAVAA.M., ELLIOTT P.M., SHARMAS.,MCKENNAW.J., ANDDAVIESM.J. Hypertrophic cardiomyopathy:
The interrelation of disarray, fibrosis and small vessel disease. Heart, vol. 84 (2000).

[50] MOORE B., SEMSARIAN C., CHAN K.H., AND SY R.W. Sudden Cardiac Death and Ventricular Arrhythmias
in Hypertrophic Cardiomyopathy (2019).

[51] MARON B.J., OLIVOTTO I., SPIRITO P., CASEY S.A., BELLONE P., GOHMAN T.E., GRAHAM K.J., BURTON D.A.,
AND CECCHI F. Epidemiology of Hypertrophic CardiomyopathyśRelated Death. Circulation, vol. 102,
858ś864 (2000).

[52] MARON B.J., SHIRANI J., POLIAC L.C., MATHENGE R., ROBERTS W.C., AND MUELLER F.O. Sudden death in
young competitive athletes: Clinical, demographic, and pathological profiles. JAMA, vol. 276 (1996).

[53] GERSH B.J., MARON B.J., BONOW R.O., DEARANI J.A., FIFER M.A., LINK M.S., NAIDU S.S., NISHIMURA R.A.,
OMMEN S.R., RAKOWSKI H., SEIDMAN C.E., TOWBIN J.A., UDELSON J.E., AND YANCY C.W. 2011 ACCF/AHA
guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive summary: A
report of the American College of cardiology foundation/American heart association task force on
practice guidelines. Circulation, vol. 124, 2761ś2796 (2011).

[54] TRAYANOVA N.A. Learning for Prevention of Sudden Cardiac Death. Circ. Res., vol. 128, 185ś187
(2021).

[55] LIN G., NISHIMURA R.A., GERSH B.J., PHIL D., OMMEN S.R., ACKERMAN M.J., AND BRADY P.A. Device com-
plications and inappropriate implantable cardioverter defibrillator shocks in patients with hypertrophic
cardiomyopathy. Heart, vol. 95 (2009).

[56] O’MAHONY C., JICHI F., PAVLOU M., MONSERRAT L., ANASTASAKIS A., RAPEZZI C., BIAGINI E., GIMENO J.R.,
LIMONGELLI G., MCKENNA W.J., OMAR R.Z., ELLIOTT P.M., ORTIZ-GENGA M., FERNANDEZ X., VLAGOULI V.,
STEFANADIS C., COCCOLO F., SANDOVAL M.J.O., PACILEO G., MASARONE D., PANTAZIS A., TOME-ESTEBAN
M., DICKIE S., LAMBIASE P.D., AND RAHMAN S. A novel clinical risk prediction model for sudden cardiac
death in hypertrophic cardiomyopathy (HCM Risk-SCD). Eur. Heart J., vol. 35, 2010ś2020 (2014).

Bibliography 53





Methods and Tools

Chapter

2

The methodological framework proposed in this thesis combines: i) physiological model-based

approach, ii) signal/data processing and feature extraction, iii) supervised and unsupervised

machine-learning.

Modeling and simulation methods and tools are presented in Section 2.1. A description of mod-

eling and simulation tools is proposed, including M2SL, which is a multi-formalism modeling

and simulation library developed by our team. This section also focuses on methods of sen-

sitivity parameter analysis and includes a description of parameter identification strategy that

was proposed in this thesis. Analyze the parameters of a model is a crucial step that enables a

better understanding of the characteristics and behaviors of the model itself, and the system

under study. Data processing and feature extraction, including longitudinal strain integrals and

myocardial work indices, are described in Section 2.2. This second section is essential to process

data both prior and after the model identification process, as well as for identifying possibles new

markers of the LV function. Finally, Section 2.3 presents the machine-learning algorithm applied

in this thesis.

2.1 Model-based approach

The implementation and investigation of integrated mathematical models require a set of appro-

priate simulations tools and parametric analysis methods. This chapter presents the modeling

tools and methods used throughout this thesis: i) multi-formalism modeling and simulation envi-

ronment (M2SL), which is a simulation toolkit developed by our group, ii) sensitivity parameter

analysis used to evaluate and rank the parameters of a model and iii) parameter identification

methods, that will be applied in this work in order to fit the model to experimental data.

2.1.1 Multi-formalism Modeling and Simulation Library (M2SL)

The different models used in this thesis were created and simulated in the M2SL. M2SL is a

library designed and progressively improve in the LTSI laboratory during years by PhD students

and researchers [1ś4]. It is an object-oriented methodology. The models in M2SL are represented

with different abstract classes, which define the structural elements of a model and/or sub-model

and its behaviors. This library is entirely developed in C++ language.
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Model representation

To go further in the explanation of the modeling process, the formalism must be explained with

some definitions.

Ð An input: It is a variable that enters in the model. This variable triggers and influences the

behavior of the model. The user must define a range which the variable can take as value.

Ð An output: Similarly, it is a variable that exits the model.

Ð A parameter: It is a special kind of input variable. Parameters are usually used to constrain

the simulation or as conditions. They are very important and influent in the simulation

behaviors and outputs depending on the value given. They are also defined in a range of

value.

Ð A state variable: It is a value that is intrinsic to the model. These variables are part of the

different internal mechanism of behaviors of the model. They are usually used to compute

the outputs variables with the input ones and the parameters. They also determine the

status of the system that led the current and future behaviors. They could be access or not

because it is not an output variable.

These definitions are gathered in Figure 2.1.

Figure 2.1: Input/ouput model formalisms.

A model M could be defined as a tuple denoted M(F, I, O, E, P ) where I , O and E denote the

input, output and state variable sets, P denotes the parameter set of the model (I , O, E and P

were defined just below), and F is the formalism in which the model is described [1]. M2SL library

make able the combination of different model. Models are divided in two types of model objects:

atomic models (Ma) and coupled models (M c):

Ð Ma: An atomicmodel is a model with a specific component of a system using one particular

formalism.

Ð M c: A coupled model is a model composed of a set of components (¶Mi♢) and is noted

M c(F, I, O, E, P, ¶Mi♢),

Mi are sub-models, they can be either atomic or coupled models.
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To define each model in M2SL a simulator is created for each model and a global simulator is

created and named Root-Coordinator. It is illustrated in Figure 2.2. The Root-Coordinator analyses

the model hierarchy and creates a simulator for each sub model. The library is coded such as the

appropriate simulator type is automatically chosen.

The simulator, created for coupled model, has special properties and are called Coordinator. They

handle the connection of the internal components of a complex model and computes model

outputs at the coupled level.

Figure 2.2: Model formalism with M2SL, translation between model hierarchy (left part) and
simulator hierarchy (right part), adapted from [1].

The structures of tuple representation M(F, I, O, E, P ) could be described as:

Ð Formalism (F ): It is chosen during the implementation. It could be algebraic equations,

Ordinary Differential Equations, or algebraic equations with discrete time. Each formalism

requires the implementation of specific behaviors.

Ð Variables (I, O, E, P ): They are organized in four types as described before: inputs, outputs,

states, and parameters.

Ð Components: They are the sub-models of the model.

Ð Behaviors: The behaviors are four followed procedures:

1. Initialization: the calculation or simple assignment of initial values to all variables of

the model.

2. Variable synchronization: the update or modification of the internal state of the model

due to a change in the input variables.

3. Output calculation: the computation of the output variables from the current internal

state and the input variables.

4. Termination: the final procedure executed when the simulation ends
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Simulation loop

After the implementation of the different components of themodel and sub-models, the simulation

of the model system could be performed. As before, the root-coordinator leads the simulation by

defining and updating the global time of the simulation and coordinating the local time of the

different sub-models. Then, three classical procedures are executed: initialization, simulation

loop and finalization.

1. Initialization: First, the Initialization step prepares all the model and sub-models for the

simulation. The simulators for each model are created according to its formalism, then the

links between the simulator according to the hierarchical structure are created. Then the

simulator is initialized by setting the initial values to all the variable and initiating the time.

2. Simulation loop: After the initialization, the simulation could start, and the simulation is

done following steps that are repeated in a loop (Figure 2.3):

Figure 2.3: Model simulation loop steps with M2SL, adapted from [1].

Ð First, the synchronization of themodels consists in updating all the variables calculated

from the initialization step or the last simulation loop. In this last case, the output

values become the new input values and some model internal values must be updated.

Ð The simulation ofmodels calculates the internal transitions of themodel to advance the

local simulation time of one- or several-time steps. The number of time step done is set

according to temporal synchronization betweenmodel (defining during the initialization

phase) : fixed step simulation, adaptive step with the smallest synchronization step or

adaptive step with fixed synchronization step.
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Ð Because the simulation advanced, the state variables have been modified, and the

output variables must be calculated according to this new state variable values and

the new time step.

Ð The global time is then advanced.

Ð At the end of each iteration, a stopping condition is evaluated to evaluate if the simu-

lation should stop. This stopping condition could be a target simulation time and/or

could be defined by the user.

3. Finalization: At the very end, when the loop meets the stopping condition, all the resources

acquired during the simulation are released.

2.1.2 Model analysis: sensitivity analysis

Sensitivity Analysis (SA) [5ś8] is an important tool in understanding the behavior of complex

models. When well conducted, it allows identifying the influence of the input parameters on the

output(s) of the model. Thus, we can focus on a group of parameters that have major influence on

specific output and thus help guide the parameter estimation or motivate further attention in the

observation of certain inputs. On the contrary, groups with little influence can be then simplified

or estimated, depending on the application [9].

There are a variety of SA methods and the choice of the appropriate method depends on various

factors such as the computational cost and available computational resources as well as the

linearity independence or interaction between parameters. A categorization can be done as follow

[6]: the local sensitivity methods, global sensitivity methods and the in-between methods: the

screening methods [10, 11].

Local versus global sensitivity analysis

Local methods represent the simplest way to perform a sensitivity analysis. The "local" term

emphasizes the fact that the sensitivity of the parameters is studied in a small region of the

parameter space.

One-At-Time analysis starts from a working point X(0) =
[

x
(0)
0 , x

(0)
1 , ...x

(0)
j , ...x

(0)
n−1

]

and a small

variation/perturbation (∆) of the parameter j is introduced in X(0), to become
[

x
(0)
0 , x

(0)
1 , ...x

(0)
j + ∆, ...x

(0)
n−1

]

. This variation is predefined in a range of values and repeated with

several values that could be ∆, 2 · ∆, ... , n · ∆. When all these points are evaluated in the model,

the results can be analyzed in several ways. First, the partial derivatives ∂Y
∂xj

can be estimated or

averaged, which can be normalized and compared to the partial derivatives of other parameters.

The results can also be plotted with respect to the different values of the varying parameter.

Figure 2.4 illustrates the effect of the parameter variation in three cases: no effect, linear effect

and, non-linear effect.
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Figure 2.4: Three examples of parameter variation effect on an output Y : a) no effect, b) linear
effect, c) non-linear effect, with the linear regression.

The effect of the parameter can be estimated visually or quantified using a linear regression.

Local SA are useful for their simplicity and reduced number of evaluations. However, as their

name imply, the parameter space is not fully explored, since it does not consider simultaneous

variations of parameters. Thus, local SA approaches cannot detect interactions between parame-

ters. Moreover, the linear regression analysis presented before (Figure 2.4) supposes a linearity

and failed in the case of non-linearity.

On the other hand, global sensitivity analysis does not constrain the parameters values to a

specific region around a working point. The more commune approach of global SA is the variance-

based approach. This approach tries to identify which part of the variability of an output (Y ) can

be attributed to the variability of each parameter xj by varying and evaluating the parameters

values and outputs across the whole input space [6, 12, 13]. These kinds of SA methods require

lots of model evaluation to calculate the sensitivity indices and became exponential with many

parameters. This is the major limitation of the application of global SA and reduces its application

to very simplified model with a reduce number of parameters. To compensate this limitation,

another type of approach was created in-between (see Figure 2.5): the screening methods.

Figure 2.5: Illustration of the three different SA on an output Y : a) Global method, b) Screening
method, c) Local method.
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Screening sensitivity analysis

Screening Sensitivity Analysis method permits to identify and examines important parameters

with relative low computational requirements [10, 11]. Thismethod does not quantify the sensitivity

of a parameter, but qualitatively identifies which parameters of a function are relatively influent on

output. Themost famous screeningmethod is theMorris elementary effectsmethod. Thismethod

provide insights into the relation between parameters and outputs and allows a characterization

of the relative significance of each parameter. Using the Morris elementary effects method [7],

the sensitivity of each parameter is estimated by repeated measurements of a simulation output

Y with a set of parameters X = [x0, x1, ...xj , ...xn−1], while changing one parameter value xj at a

time. For each parameter j, the range of possible values is selected in advance (usually based on

literature and previous work values ±30%). The resulting change in Y , compared to the simulation

output using the initial values of X, is calculated by the elementary effect:

EE∗

j =

∣

∣

∣

Y ([x0, . . . , xj , . . . ]) − Y ([x0, . . . , xj + ∆, . . . ])

∆

∣

∣

∣

(2.1)

where ∆ is the variation of the parameter. The Morris method consists, from a randomly chosen

initial point, of forming a trajectory of n + 1 points (number of parameters + initial point) and in

calculating for each of the points the corresponding elementary effect [7]. An illustration of a

2-dimension case is presented in Figure 2.6.

Figure 2.6: Example of the Morris screening method principle in a 2D space (X = [x0, x1]), with 3
initial points (in grey) and their trajectories (in blue).

Thus, a finite distribution Fj is obtained for each parameter j of r elementary effects, and it is

possible to calculate the basic statistics indices such as µi which is the average of the EEj or µ∗

[14] to face the problem of negative and positive effect as well as the standard deviation (σ).

µi =
1

r

r
∑

k=1

EEk (2.2)
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µ∗
i =

1

r

r
∑

k=1

♣EEk♣ (2.3)

σi =

√

∑r
k=1(EEk − µi)2

r
(2.4)

These indices are computed to derive sensitivity information of each parameter j:

Ð The standard deviation (σ): It estimates the non-linear effects and the interactions with

other parameters.

Ð The mean of the absolute values (µ∗
i ): It assesses the overall influence of the parameter on

the output.

Figure 2.7: Morris elementary effects results example presented in a µ∗ − σ plane. A parameter
could be analyzed and defined as having a negligible effect, a significant linear effect, a significant
but non-linear effect or interactions (adapted from [2]).

Moreover, as summarized in Figure 2.7, the µ∗ − σ plane representation provides the following

description of the parameters:

Ð Low µ∗
i and σ implies negligible effect on the output.

Ð Large µ∗
i but large σ reveals a significant and linear effects on the output.

Ð Large µ∗
i and σ implies significant and nonlinear effects on the output, or important interac-

tions with other parameters.

2.1.3 Parameter Identification

Parameter Identification can be considered as an optimization problem where the objective is to

find the best vector of parameter Xopt that minimizes an error function Jerror also called fitness

or objective function, defined as an error between simulated and observed data :
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Xopt = arg min
X∈X

Jerror(Osim(X), Oobs) (2.5)

These observed data (Oobs) could be one or several valuesmeasured or estimated but also signals

or a combination of both, directly measured on a specific patient or averaged value(s) found in

literature.

The field of mathematical optimization provides a wide variety of methods [15] to solve different

kinds of problems, including analytic approaches, iterative methods, gradient-based methods,

deterministic [16, 17] and stochastic approaches, among others. However, not all these methods

are appropriate for the problem of parameter identification due to several reasons, including the

high dimensionality of the problem, the non-linearity, and discontinuity of the underlying equations,

and the complexity of the model equations that complicate the calculation of their derivatives or

partial derivatives.

Classical optimization methods, such as Newton’s method or Lagrange multipliers, linear pro-

gramming approaches such as the simplex algorithm [18], and exhaustive exploration methods

such as branch-and-bound [19] methods are not suitable for the problem of parameter identifi-

cation due to the reasons mentioned above. The remaining methods include approaches that

approximate numerically the derivatives of the objective function, methods that use heuristics to

select interesting points in the parameter space, and methods based on a stochastic process.

Stochastic approaches are useful when the parameter space and objective function are not

well understood or when the parameter exploration requires random perturbations to avoid

local minima. Particle swarm optimization [20] is a popular stochastic approach that uses an

iterative procedure where a list of solutions is maintained, and each candidate solution wanders

the parameter space with a behavior that mixes exploration and attraction to good solutions.

However, the convergence of approaches that constantly evolve a list of candidate solutions is

not guaranteed, and it mostly depends on a good choice of algorithm parameters, such as the

size of the candidate solution list and the number of iterations.

Evolutionary algorithms

Within the stochastic approach, Evolutionary Algorithm (EA) are optimization algorithms inspired

by the biological theory of evolution [21, 22]. It follows the approach of maintaining a set of

candidate solutions (a population), and repeatedly evolving this populationwith processes inspired

by biological evolution: selection, reproduction, crossover, and mutation. The genetic information

is the set of parameters needed for a simulation, and the representation of a good or bad

adaptation to the environment is given by the error or fitness score computed by the error of

fitness function.

Among the wide range of algorithms classified as EA, themost popular group used in optimization
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is the Genetic Algorithms, initially conceived in [23] and formalized in [24]. These algorithms are

defined by fitness and propriety shuch as crossover and mutation [25]. Figure 2.8 illustrates the

classic steps of the algorithm.

Figure 2.8: Evolutionary algorithm with the four main steps.

The population evolves as a result of the following procedure :

1. First a population of N individuals is initialized. Each individual is randomly initialized by a

set of parameters respectively to the different defined value intervals.

2. Then each individual of the population is assigned with a score (error or fitness score), that

quantifies the "good" adaptation of the individual in the environment. The score directly

affects its chances to survive and reproduce. The computation of the score is done thanks

to the function Jerror.

3. According to their fitness and a stochastic process, a selection of individuals is performed.

This step designates pairs of individuals that will reproduce.

4. A step of reproduction is done between a pair of individuals that cross over the parameter

values of the "parents" and occurs with a predefined probability (pc). Mutation could also be

introduced in this new individual with a predefined probability (pm) which slightly modifies

one or more parameter value(s) of the set.

5. At this point, different strategies could be put in place, either the new generation completely

replace the old one or a mix of the old and the new generations could create the new one.

In any case, the new generation have the same N individuals.

6. Finally, if a stopping criterion is met, the algorithm stops or, in the contrary, the algorithm

restarts from step 2. Possible stopping criteria could be a maximum number of generations

(i.e. iterations) or when the individuals of the population have reached a certain error score.

As other stochastic approaches, EAs cannot assure convergence toward the unique optimal

solution, and their performances depend on the parameters and choice of EA. However, EAs seem

appropriate in our case because of its interesting compromise of space exploration, number of

evaluations and quality of the solutions found.

In this thesis, the library used to create EA and customizes it was: PaGMO/PyGMO [26, 27] in C++

or Python language. Many functions are already implemented in this library, but the EA definition

and the link with the model simulation wrote in C++ must be done.
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Parallelized evolutionary algorithms

Based on EA principle, the approach could be complexified [26, 28]. Instead of having a population

of N individuals evolving during T generation, one can initialize several populations evolving

separately. Each population is evolving on its one island, separated from each other. After a

predefined number Te of generation, individuals could migrate from their island to another. Then

the newmix of individuals from the original ones and the newcomers could again evolve separately

until the newwave of migration (after another Te generations). Figure 2.9 illustrates this algorithm

structure.

Figure 2.9: Evolutionary algorithm with islands: algorithm principle with a first step of Te gen-
erations of separated evolutions, followed by a step of migration and then a step of separated
evolution again.

The combination of islands is named archipelago and the link that connect the islands are

gathered in a topology structure. The rules that lead the possible (or not) migrations and the

number and choice of individual are named policies. Figure 2.10 represents examples of topology

such as ring where an island is only connected to two neighbors to form a ring. The topology

structure is completely customizable [26].

Figure 2.10: Example of topology with a) a ring b) Barabasis model [29] and c) Watts-Strogatz
model [30] .

To give example of migration policies, the library used in this thesis: (PaGMO/PyGMO) already

provided some. For example:

Ð A number Nb of the best individual could be selected to be migrants and move to another

population.

Model-based approach 65



Ð A number Nr of individuals randomly choose could be selected to be migrants.

Ð When the migrants arrive, they could be "accepted" directly and mix with the current individ-

uals of the population.

Ð When the migrants arrive, they could be "accepted" only if their fitness/error score is better

than all the current individuals of the population.

In this thesis, only few types of topology and policies combinations were explored and are mainly

based on a ring topology of 3 or 4 islands only connected in one way with a selection of the best

individuals as migrants and the acceptance of all the new comers.

This particular type of EA, by making evolve independently the population, permits to reduce

the chance of being stuck in a local minimum. Moreover, this independent evolution could be

parallelized on the computer and the increase of island number do not increase (a lot) the

computation time but only the computer resources by making compute each island on a separate

core for example.

2.1.4 Proposed approach

During this thesis, two previously proposed computational models were used [31, 32]. Sensitivity

analyzeswere crucial for comprehending the underlyingmechanisms of the two differentmodeled

systems. By conducting sensitivity analyses, we were able to identify themost important variables

that needed to be taken into account for achieving successful multi-formalism and multiscale

integration. Based on previous team work [32ś38], we opted for Morris’ screening method due to

its advantageous balance between parameter space exploration and computational demands.

Moreover, in order to establish a global rank of importance among parameters’ effects provided

by Morris’ method, we calculated the Euclidean distance Dj in the µ∗ − σ plane, from the origin

to each (µ∗
j , σj) point:

Dj =
√

(µ∗
j )2 + σ2

j (2.6)

This could be then represented with a bar plot as illustrated in Figure 2.11. Due to its relatively low

computational requirements, the Morris elementary method is a powerful approach to examine

and identify important model parameters. It also underlines linear relations, but cannot discern

nonlinear relations to parameter interactions. The implementation of sensitivity analyses was

done in Python language with adapted algorithm of the SALib library [39]. The algorithm was

modified in order to make the Morris screening method works when the model simulation does

not provide output (simulation failed).

After conducting a sensitivity analysis, a reduced group of parameters is selected for patient-

specific model identification. This helps to decrease the time and computational resources

required for the calculations. reducing computational cost and calculation time. Various method

could be chosen to solve this kind of problem: analytic approaches, iterative methods, gradient-
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Figure 2.11: Other representation of the Morris elementary effects results based on the previous
one computed by Euclidean distance.

based methods, deterministic and stochastic approaches. However, the method must be chosen

appropriately to the problem and in the clinical application presented in this thesis, the complexity

and dimensionality of the models make us reduce the choice of identification approaches. More-

over, the different nature of equations either non-linear, discontinuous, or not well understood,

as well as the definition of the error function make us renounce to various methods that need

computation of their derivatives or partial derivatives. Based on previous teamwork [32ś35, 40],

evolutionary algorithms were chosen to identify model parameters. Among the available evolu-

tionary algorithms in the literature, the Differential Evolution algorithm (DE) [41] was preferred due

to better performance in initial identifications [42]. The error function Jerror will be adapted for

each application, because its definition depends on the implementedmodel and the fitting data. In

the last step of Chapter 4, the algorithm was parallelized in a ring topology of four islands thanks

to parallel optimization library PaGMO/PyGMO. The EA algorithm tuning and error functions

presented in this thesis are inspired from SEPIA team work [32ś35, 40, 43, 44].

This model specification thanks to the parameter’s identification aims at creating a personalized

model for each patient based on its own data. This personalized model could also be named

digital twin.

2.2 Features extraction from strain

In Addition to traditional clinical indices, ECG indices and LVEF, features from strain curves can be

extracted to better understand myocardial function. To extract features from clinical examination

is crucial to characterize LV cardiac function or dysfunction of a patient. Image or signal extracted

features are a way to overcome the need of expertise in understanding the modality. Moreover,

these features are vital indicators and are more reproducible when automation is provided for the

extraction process.

As it was presented before in Section 1.2.2, myocardial deformation curves called strain curves
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could be extracted from different echocardiographic views (especially the 2-, 3-, 4- chamber views).

Several features could be extracted from strain curves for the mechanical characterization of the

left ventricle, based on previous work of our team : i) integrals of the regional cardiac strain, ii)

myocardial work and iii) distances between strain curves from dynamic time warping method.

2.2.1 Integrals

Briefly, the features propose by Bernard et al. [45] are based on estimation of the integral (area

over the curve) of each available segmental strain signal, on different time supports.

To minimize the estimation error of these features, each strain curve is first processed by being

upsampled to 500 Hz. As performed in previous works, strain values between -5% and 5% were

then ignored from all calculations [45].

The first integral feature Is
avc is calculated from the onset of the QRS to the instant of Aortic Valve

Closure (AVC) of each segmental strain curves (s). It represents a quantification of the cumulative

strain developed by a given segment s, which effectively contributes to LV ejection. A second

integral Is
peak is calculated from the onset of the QRS to the strain peak. It represents the global

cumulative strain developed by the contraction of the segment. The third integral is calculated as:

Es = Is
peak − Is

avc (2.7)

and corresponds thus to the integral between the strain peak and aortic valve closure. This

procedure (Figure 2.12) was applied to all segments of the echo view, for a total of 18 features by

view. The onset of the QRS is used as reference for the calculation of all features.

2.2.2 Myocardial work

Recently, estimation of Myocardial Work (MW) was introduced in order to evaluate the heart

chamber function and particularly the LV function [46ś51]. Myocardial work is a very promised

new tool to assess more precisely LV function, taking into account LV loading conditions. Thus, it

overpasses the left ventricle ejection fraction (LVEF) index in the estimation of the LV function

[52, 53]. Different preliminary studies claim that the evaluation of myocardial work could give

additional information to assess LV function of patients with different cardiac pathologies [46ś

48, 54ś63] and could be used as predictor [64, 65]. MW gives an estimation of the power over the

cardiac cycle when the force cannot be measured clinically. However, an experimental or a good

estimation of the LV pressure is required to compute MW. Although the LV pressure estimation

method proposed by Russell et al. [54] could be used in some case, it is nether validated on all

type of patients or usable in some pathological cases such as AS patients.
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Figure 2.12: Strain integrals computation for the segmental strain curve s: Is
avc, Is

peak and its
difference Es delimited by the two timing: tavc and tpeak.

Myocardial work indices

To overpass this limitation and provide a more functional approach where the MW could be

computed at every time step, Russell et al. [66] proposed MW indices. MW indices were also cal-

culated from strains and LV pressure: the instantaneous power was first computed by multiplying

the strain-rate, obtained by differentiating the strain curve, and the instantaneous LV pressure.

Then, segmental MW was calculated by integrating the power over time, during the cardiac cycle

from Mitral Valve Closure (MVC) until Mitral Valve Opening (MVO) (Figure 2.13).

From each segmental MW curve, MW indices could be calculated: Global Positive Work (GPW),

Global Negative Work (GNW), Global Constructive Work (GCW), Global Wasted Work (GWW),

Global Work Index (GWI), and Global Work Efficiency (GWE) (Figure 2.14).

Ð GPW: It represents the LV contraction and gathers all the shortening phases.

Ð GNW: It is the opposite and gathers all the stretching phases.

Ð GCW: It represents the productive work, it gathers the shortening during the systole, (i.e.

effective energy for blood ejection) and lengthening during IVR.

Ð GWW: It quantifies the energy loss; it corresponds to segmental stretching during the systole

(i.e. energy loss for blood ejection) and shortening during the IVR phase.

Ð GWI: It is defined as the amount of work performed by the left ventricle during systole:

GWI = GPW + GNW (2.8)
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Ð GWE: It is defined as follows:

GWE =
GCW

GCW + GWW
(2.9)

Figure 2.13: Work computation of Global Positive Work (GPW), Global Negative Work (GNW),
Global Work Index (GWI), Global Constructive Work (GCW), Global Wasted Work (GWW) and
Global Work Efficiency (GWE), with the LV pressure and the global strain curve.

Figure 2.14:Work indices’ computation with the GCW and the GWW defined thanks the shortening
and lengthening before or after AVC

With the same idea of LV MW estimation, LV pressureśstrain loop area reflects myocardial or

stroke work [54, 55, 57, 67ś69]. Especially [54], that have shown that regional differences in MW
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have a strong correlation with regional myocardial glucose metabolism, evaluated using PET

imaging. The regional work distribution pattern extracted in LV pressure-strain loop showed

similarity with glucose uptake distribution.

These two methods: PSL area and MW indices have the same unit (mmHg.%) and both reflect a

surrogate estimation of the power over the cardiac cycle.

2.2.3 Dynamic time warping

Dynamic Time Warping (DTW) is an algorithm for comparing two temporal sequences such as

strain curves, which may vary in speed. It provides both a distance measure that is insensitive

to local compression and stretches and the warping which optimally deforms one of the two

series onto the other [70]. The main idea of the algorithm is to create a N1 · N2 matrix (M ) (N1

and N2 are the size of series s1 and s2) where mi,j is the distance between the points s1(i) and

s2(j) (Figure 2.15).

Figure 2.15: DTW matrix example where with the location of the best path (grey).

Then the path through the matrix that minimizes the distance must be found. The sum of the mi,j

of this optimal path is a distance measure of the two series. It is also the best way to deform

on series onto the other. Figure 2.16 represents the DTW mapping of a strain curve (si) with the

average of the 6 strain curve of its view (V ), its distance value is noted DTW si,V . In this thesis,

we will use DTW matrix to compute an Euclidean distance between pairs of strain curves and

overcome potential physiological time lag between LV regions.
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Figure 2.16: DTWmapping example with few points of the strain curve (si in blue) with the average
of the 6 strain curves of its view (V in black).

2.2.4 Proposed approach

In each application, at least one these three types of feature was used. They are all computed

thanks to strain curves and offered diverse information. Feature extraction is the first step of any

ML approach presented in this thesis. It is an essential step to manage complex andmultifactorial

data as strain curves but also to propose new original features with interesting meanings.
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2.3 Machine learning

ML techniques are increasingly used in clinical context to resolve more or less complex issues

raised by clinicians. In this section, the basis of machine learning principles will be introduced by

also pointing out that ML is not that far from "old fashion" statistic approaches. This section will

be classically divided in supervised learning and unsupervised learning.

2.3.1 Supervised learning

Supervised learning is a part of machine learning. Supervised learning algorithm are used for

problem where the whole feature of a database is associated with an available label [71]. The

goal of these algorithms is to learn the function that maps each input data to its label (that will

be the algorithm output). This process of learning the relation between the features and their

label is known as training. Once this phase is complete, our algorithm is normally able to predict

the label of new data, which the algorithm has no explicit knowledge of the true label.

Supervised learning can be separated into two types of problems:

Ð Classification. It assigns to the test data set specific categories (ex: label of "cat" and

"dog").

Ð Regression. It is used to understand the relationship between dependent and independent

variables and make projection. For example, the weight of an average boy of 10 years.

Figure 2.17 illustrates these 2 phases in an example dataset.Wemight train a supervised algorithm

on a set of cats and dogs’ pictures with their corresponding label (e.g. "cat" and "dog"). The

algorithm will use various of interesting features in the pictures: colors, dimensions, patterns to

link them to their corresponding label. After this training phase (Figure 2.17 A), we can use the

trained algorithm to predict the label of new unseen pictures (Figure 2.17 B). This test phase is

usually followed by a measure of the algorithm performance by the evaluation of the performance

of the trained algorithm on this new dataset of unseen pictures. The database could be different

from pictures, generally vectors (pictures could be represented as vectors)

The most widely used learning algorithms/estimators are:

Ð Support-Vector Machines (SVM) [72],

Ð Linear regression,

Ð Logistic regression,

Ð Naive Bayes [73],

Ð Linear discriminant analysis,

Ð Decision trees [74],

Ð K-nearest neighbor algorithm [75],
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Ð Neural networks [76],

Ð Similarity learning.

Figure 2.17: Supervised learning illustration with cat and dog labels, a) the training phase and b)
the test phase on an unknown new dataset.

All these algorithms have pros and cons and must be chosen depending on the problem and the

database.

Ensemble methods

Ensemble methods in ML aim to improve the generalization and robustness of a single estimator

by combining several using the same learning algorithm. There are twomain families of ensemble

methods:

Ð Averaging methods involve building several estimators independently and then averaging

their predictions (examples: Bagging methods and Random Forest (RF) [77]).

Ð Boostingmethods involve building several estimators sequentially and attempting to reduce

the bias of the combined estimator. The goal is to combine weak models to produce a

powerful ensemble (examples: AdaBoost [78] and Gradient Tree Boosting [79, 80]).

Both averaging and boosting methods are effective at improving the performance of ML models,

and their choice depends on the specific problem and the properties of the data.
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Performance of an algorithm

They are several performancemetrics for classification problem. The simplest one is the accuracy.

It is a ratio between the number of correctly classified points to the total number of points. We

can also summarize the classification results in a confusion matrix (see Figure 2.18).

Figure 2.18: Confusion matrix of 2 classes (Positive/negative) with the TP: true positive, FN: false
positive, FN: false negative, TN: true negative.

This matrix allows visualization of the performance measure of a binary classification or a multi-

class classification. From this matrix we can easily access to the sensitivity also called True

Positive Rate (TPR) or recall, the specificity, the False Positive Rate (FPR), the precision, and the

F1 score:

Sensitivity = Recall = TPR =
TP

TP + FN
(2.10a)

Specificity =
TN

TN + FP
(2.10b)

FPR = 1 − Specificity (2.10c)

Precision =
TP

TP + FP
(2.10d)

F1score =
2 · Precision · Recall

Precision + Recall
(2.10e)

A Receiver Operating Characteristic (ROC) curve could be then provided by plotted the FPR on

the x-axis and the TPR on the y-axis. The Area Under Curve of this ROC curve is also a metric of a

classification. By proposing FPR - TPR representation, one can want an optimal point on the ROC

curve. We can obtain this optimal point by maximizing the G-mean metric:

G − mean =
√

Sensitivity · Specificity (2.11)

To perform a cross validation, it is necessary to separate the dataset in two group: the training set
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and the testing set. One can add another completely independent dataset for the validation. Most

of the time the training part represent 70% to 80% of the database and the testing 20% to 30%.

One method for testing the performance of a classification is the Cross-Validation. This method,

as illustrated in Figure 2.19, consists of repeating several training-testing processes on a different

training-testing subsets of the database.

Figure 2.19: Cross validation illustration.

2.3.2 Unsupervised learning

Unsupervised learning algorithms work with data that is not explicitly labelled. These kinds of

algorithm aim at finding some sort of underlying structure in the data [81, 82] (Figure 2.17). The

main task of unsupervised algorithm could be separated in three:

Ð Clustering,

Ð Association,

Ð Dimensionality reduction.

Figure 2.20: Unsupervised learning illustration (clustering).

Clustering

Clustering is a technique which groups unlabeled data based on their common characteristics

and differences. They can be categorized into a few types: exclusive, overlapping, hierarchical,

and probabilistic.

First, the most famous algorithm: K-means clustering [83]. This is an exclusive clustering method

where data points are assigned into K groups, where K represents the number of clusters. The

clusters are created based on the distance from each group’s centroid (e.g. barycenter). The
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"exclusive" term signifies that a data point can exist only in one cluster. On the other hand,

"overlapping" clustering allows data points to belong to multiple. Soft K-mean is an example of

overlapping clustering. The optimal number of clusters could be determined using the Silhouette

score [84] or the Inertia score:

Ð The silhouette score (S) is ameasure of how similar an object is to its own cluster (cohesion:

a) compared to other clusters (separation/ dissimilarity: b):

S =
1

K

K
∑

k=1

1

♣Ck♣

∑

i∈Ck

bi − ai

max(ai, bi)
(2.12)

where

ai =
1

♣Ck♣ − 1

∑

j∈Ck,j ̸=i

∥xi − xj∥ (2.13)

bi = min
k′ ̸=k

(
1

♣C ′
k♣

∑

j∈Ck′

∥xi − xj∥ (2.14)

with K the number of cluster, Ck the data of the cluster k and x the data.

Ð The inertia (I) is a measure of how internally coherent clusters are:

I =
n

∑

i=1

min
µ

∥xi − µ∥2 (2.15)

where n is the number of data, µ the group centers and x the data.

Then the hierarchical clustering algorithms, they could be agglomerative or divisive [85]. The

agglomerative one starts from the bottom and merge the data points iteratively based on their

similarity until a unique cluster is formed. The divided one is the opposite and starts from one

cluster and divides the unique original cluster based on the differences between data points, and

do it iteratively.

Finally, the probabilistic clustering: data points are clustered based on the likelihood that they

belong to a particular distribution. The Gaussian Mixture Model is an example of probabilistic

clustering algorithm [86].

Association

Association clustering aims at finding relationships between variables in a given dataset [87]. It

is mostly used for market basket analysis and was not explored during this thesis.

Dimensionality reduction

Dimensionality reduction is a technique that could be used as a preprocessing of ML when the

number of features, or the dimension is too high. It could also be used to better understand a
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complex dataset and the most interesting features. The two main algorithms are:

Ð Principal Component Analysis (PCA): This algorithm used to reduce redundancies and to

compress datasets through feature extraction [88]. Thanks to linear transformation, it is

created principal components ordered by the maximum variance, each principal component

gathers. We can then represent the dataset in this new space with fewer dimensions.

Ð Singular Value Decomposition (SVD): This algorithm factorizes the matrix of the dataset

(A) into three low-rank matrices (U , S, V ):

A = U · S · V T (2.16)

where U and V are orthogonal matrices and S is a diagonal matrix where the diagonal

values are the singular values of the matrix A.

2.3.3 Proposed approach

Figure 2.21: Diagram of the ML framework.

TheMLmethods used in this thesiswill follow the framework depicted in Figure 2.21. Various types

of data were collected and gathered, and strain curves features were extracted (see Section 2.2). A
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crucial step of feature selection will then be proceeded, which plays a significant role in delivering

the most effective inputs for classification, and also produces results on its own. In fact, the

feature evaluation and selection establish a prioritization of features compared to others. In the

case of unsupervised learning, it could provide information about similar feature or patients that

allows dimensionality reductions of the database or clustering of patients. Following the feature

selection step, which maximizes the classification results, various classification algorithms can

be employed. In this thesis, several algorithms were tested, but Random Forest (RF) and ridge

algorithms yielded the best result. For each classification, a cross validation was done. The two

last steps were mainly written thanks python library scikit-learn [89].

2.4 Conclusion

This section presented the modeling and simulation methods and tools used in different studies

of the thesis. It particularly introduced the application of the Multi-formalism Modeling and

Simulation Library. Then, a brief state-of-the-art of sensitivity analysis and parameter identification

was proposed, which is a major part of this work. In a second part, features extraction techniques

on strain curves were proposed. Finally, it presented an overview of the classical machine learning

concepts which will be used and developed in the next chapters.

This set of methods and tools constitute the basis of the methodology used during this thesis.
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Model-based Analysis of Myocardial

Strains in Left Bundle Branch Block

Chapter

3

Left Bundle of Branch Block (LBBB), introduced in Section 1.3.1 is a common electrocardiographic

abnormality that causes intra- and interventricular conduction delay and leads to uncoordinated

contraction of the ventricle, alterations in LV mechanical activity and LV dysfunction [1]. Observa-

tional studies of patients with LBBB have shown a relation between strain curve morphologies,

obtained by speckle-tracking echocardiography (STE), and responses to Cardiac Resynchroniza-

tion Therapy (CRT) [2ś4]. However, the regional distribution patterns of dyssynchrony in LBBB

is highly heterogeneous, as it involves differently septal and lateral walls [5, 6]. Moreover, strain

morphologies could also be affected by mechanical dysfunctions, such as those observed in

ischemia [7]. Therefore, the assessment of dyssynchrony patterns in LBBB appears as partic-

ularly complex because strain morphologies reflect dynamics associated with both electrical

conduction delays and mechanical cardiac activities. Previous studies have shown that only the

mechanical dysfunction attributable to an electrical conduction delay can be corrected by CRT [8].

The possibility of using strain-derived data to disclose the complex interplay between electrical

conduction delay and the specific mechanical substrate associated with LV dyssynchrony is

particularly interesting and might have a pivotal role in the selection of CRT-candidates.

In this context, model-based approaches may provide a better understanding of myocardial

deformations observed in LBBB, since these approaches explicitly represent the underlying phys-

iological mechanisms. Indeed, computational modeling appears as efficient tool to integrate

knowledge, concerning cardiac electrical activation, mechanical properties, and hemodynamic

conditions, in the data processing. A variety of cardiac electromechanical models has been

proposed in the literature, at many different levels of detail [9] and representing different phys-

iological functions, including the cardiac electrical activity [10ś12], the excitation-contraction

coupling [13, 14], the mechanical activity [15] and the mechano-hydraulic coupling [16]. Most

of the proposed cardiac models are based on the Finite Element (FE) method [17ś27] for the

simulation of cardiac mechanical activity, including a 3D mesh geometry. Some of them include

multimodality imaging [28] or used atlases [29] to reduce the computational cost. However,

these models require high computational resources, and they are still difficult to personalize.

Moreover, dynamic loading conditions and interventricular interactions are usually not considered

in these models and their integration is possible only at the expenses of an increasing amount of

model complexity. Alternative approaches have been proposed to overcome this computational

cost [30ś35], by reducing drastically the patient anatomy representation with lower dimension

models. These types of models allow for a better clinical translation [36] and incorporation of
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components such as heart hemodynamics within the entire circulation. Although, these particular

models’ examples have been successfully used to propose keys to understand the CRT response

with virtual or animal cohorts, efforts still have to be made in order to adapt these studies to

non-invasive, patient-specific data.

In [37], our team has proposed the first model-based approach for the analysis of Tissue Doppler

Imaging (TDI). Model parameters for the LV were estimated by minimizing an error computed

between strain signals synthesized by the computational model and strain signals obtained

through TDI from several myocardial segments in a patient-specific approach. Then this model

was complete by Owashi et al. in [38] with the representation of the right ventricle, the atrium and

the systemic and pulmonary circulations [39, 40].

This chapter will follow the work published in the journal Frontiers in Applied Mathematics and

Statistics [41] and a previous study published as co-first author with Kimi Owashi in the Journal

of Cardiovascular Development and Disease [42].

3.1 Experimental data

3.1.1 Study population

We prospectively included 10 healthy adults and 20 LBBB patients, including ischemic (n=10) and

non-ischemic (n=10) cardiomyopathies. Table 3.1 summarizes patients’ clinical characteristics.

The study was carried out in accordance with the principles outlined in the Declaration of Helsinki

on research in human subjects and received specific ethical approval from the local Medical

Ethical Committee. All patients signed a written informed consent before the participation to the

study protocol.

Age Male sex BSA NYHA class QRS width

years old N (%) (body surface area) I/II/III (ms)

LBBB ischemia (n=10) 72.1 ± 10.3 9 (90%) 1.84 ± 0.12 2/7/1 160 ± 25.4

LBBB non-ischemia (n=10) 68.2 ± 6.2 8 (80%) 1.83 ± 0.15 1/6/3 163 ± 13.0

Healthy (n=10) 48.8 ± 14.4 7 (70%) 1.88 ± 0.12 Ð 109 ± 9.9

Table 3.1: Population’ clinical characteristics.

3.1.2 Echocardiography

All patients underwent a standard Trans-Thoracic Echocardiography (TTE) using a Vivid S6, E7 or

E9 ultrasound system (General Electric Healthcare, Horten, Norway). Images were recorded on a

remote station for off-line analysis by dedicated software (EchoPAC PC, version BT 202, General

Electric Healthcare, Horten, Norway). The experimental dataset includes the measured regional
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myocardial strain curves obtained by STE at transthoracic echocardiography in apical 4-chamber,

2-chamber, and 3-chamber views. Excel files of these 3 longitudinal strain view analyses were

exported for a dedicated analysis performed in python language. Strain curves references were

fixed at the onset of the QRS.

3.1.3 Cardiac magnetic resonance image (cMRI)

For 10 LBBB patients, the location of the scar was performed by cardiac magnetic resonance

imaging (cMRI) and then confirmed by echocardiography. Prior to CRT implantation, cardiac

magnetic resonance was performed on a 3-T clinical magnetic resonance system (Ingenia,

Philips Medical Systems, Best, the Netherlands) with a 32-channel cardiovascular array coil.

LGE images were acquired 10ś15 minutes after intravenous administration of 0.2 mmol/kg

of gadolinium (Gadoterate meglumine, Dotarem, Guerbet, Aulnay-sous-bois, France), using 2D

breath-hold inversion-recovery and phase-sensitive inversion-recovery sequences in short-axis

plane (spoiled gradient-echo, slice thickness 8 mm, repetition time 6.1 ms, echo time 2.9 ms, flip

angle 25◦, inversion time adjusted to null normal myocardium, typical breath-hold 11 seconds).

The localization of myocardial scar was performed by a trained radiologist and the regional LGE

extent was semi quantitatively assessed on a per-segment basis [43].

3.2 Model

The model of the cardiovascular system integrates four main sub-models and is illustrated in

Figure 3.1:

1. The cardiac electrical system,

2. The right and left atria,

3. A multi-segment representation of the right and the left ventricles,

4. The systemic and pulmonary circulations.

The combined model is characterized by 44 state variables and 551 parameters. It was imple-

mented using the Multiformalism Modeling and Simulation Library (M2SL) [44, 45] presented in

Section 2.1.1. Supplementary information on parameters can be found in Appendix A (Table A.1,

Table A.2).

3.2.1 Cardiac electrical system

The proposed model of the cardiac electrical activity, is based on a set of coupled automata,
adapted from [37]. In order to perform comparisons between simulations and clinical data, the
left ventricle wall was divided into 16 segments according to the standardized segmentation
of the AHA [46] (see Figure 3.2). The base (Bas) and medium (Mid) layers are separated in six
components:
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Figure 3.1: Physiological model representation with i) the electrical automata (SAN: sinoatrial
node, AVN: atrioventricular node, UH: upper bundle of His, RBB: right bundle branch, LBB: left
bundle branch), ii) right and left atria (RA, LA), iii) multi-segment right and left ventricle (RV, LV),
and iv) systemic and pulmonary circulation (P: pressure, V: volume, R: resistance, pv: pulmonary
valve, pa: pulmonary artery, pul: pulmonary, pu: pulmonary vein, mt: mitral valve, av: aortic valve,
ao: aorta, sys: systemic, vc: vena cava, tc: tricuspid valve).

Ð anterior (Ant),

Ð anteroseptal (AntSep),

Ð inferoseptal (InfSep),

Ð inferior (Inf),

Ð inferolateral (InfLat)

Ð anterolateral (AntLat).

The apex (Ap) layer is divided in four components:

Ð anterior,

Ð septal,

Ð inferior,
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Figure 3.2: LV bull eye representation with electrical links between LV automata (1: basal ante-
rior, 2: basal anteroseptal, 3: basal inferoseptal, 4: basal inferior, 5: basal inferolateral, 6: basal
anterolateral, 7: mid anterior, 8: mid anteroseptal, 9: mid inferoseptal, 10: mid inferior, 11: mid
inferolateral, 12: mid anterolateral, 13: apical anterior, 14: apical septal, 15: apical inferior, 16: apical
lateral).

Ð lateral.

Right ventricle wall is divided into three layers (base, medium, and apex). The whole model
consists of 26 automata representing:

Ð the SinoAtrial Node (SAN),

Ð the Right Atrium and Left Atrium (RA and LA),

Ð the AtrioVentricular Node (AVN),

Ð the Upper bundle of His (UH),

Ð the bundle branches (RBB and LBB),

Ð the 3 segments of Right Ventricle (RV),

Ð the 16 segments of Left Ventricle (LV).

The distribution of the electrical activation between automata is represented in Figure 3.3 . Each

automaton represents the electrical activation state of a given myocardial tissue, covering the

main electrophysiological activation periods (Figure 3.4):

Ð a Slow Diastolic Depolarization (SDD) or waiting period (Idle),

Ð an Upstroke Depolarization Period (UDP),

Ð an Absolute Refractory Period (ARP),

Ð a Relative Refractory Period (RRP).

The transitions between states happen spontaneously at the end of the phase. After the UDP

period, each automaton transmits a stimulus to its neighboring segments. Each automaton is fully

connected (antegrade and retrograde connections) to its neighbors. The connections between
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Figure 3.3: The whole electrical representation of the model, with the 26 cellular automata
and their sequence of electrical activation. The nodal cells (in green): sinoatrial node (SAN),
atrioventricular node (AVN), upper bundle of His (UH), right bundle branch (RBB), left bundle
branch (LBB), and myocardial cells (in pink): right atria (RA), left atria (LA) and right and left
ventricle (Figure 3.2 numbering) are represented and led by their own signal (Figure 3.4). The blue
path is an illustration of the electrical activation time for the seventh LV segment (s7).

automaton are illustrated in Figure 3.3 where we can see that the excitation arrives from the LBB

automaton and is propagated to the apex, through septal automata and the medium anterolateral

automaton (segments numbered 2, 3, 8, 9, 12, 13, 14 and 16), then to the other segments in function

of each automaton’s parameter values (TUDP , TARP , TRRP , TSDD).

The electrical activation time (EAT ) associated with each ventricular segment could be defined

by the time elapsed between the electrical activation of the UH automaton and the segmental one.

An illustration of the EAT is proposed in Figure 3.3 for the seventh LV segment (s7). These delays

of activation, accessible for each segment, will provide us a representation of the dyssynchrony.

UH automaton activation also corresponds to the initialization of the simulated strain curves.

3.2.2 Right and left atria

To account for the mechanical function of the atria, the right and left atrial pressures (Pra and Pla)

are defined as linear functions of instantaneous volumes (Vra and Vla) [40, 47]. These pressures

are determined by their volumes intercept (Vra,d and Vla,d) and their elastances (Era and Ela),
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Figure 3.4: State diagram of the generalized automaton that represents nodal cells (green, left)
and myocardial cells (pink, right) and diagrams showing the correspondence of the transition
parameters with the myocardial action potential dynamics and their timing parameters: TUDP ,
TARP , TRRP , TSDD.

which represent the elastic properties of the atrial wall and are bounded by Ex,min and Ex,max :

Px(Vx, t) = Ex · (Vx(t) − Vx,d) (3.1a)

Ex(t) = ex(t) · (Ex,max − Ex,min) + Ex,min (3.1b)

where x ∈ ¶ra,la♢ and ex(t) is a Gaussian driving function that cycles between atrial diastole and

systole:

ex(t) = Ax · exp


−Bx · (ta(t) − Cx)2
)

(3.2)

where ta is the time elapsed since the atrial activation by the automata corresponding to the right

and left atrium. Parameters Ax, Bx and Cx could be used to control the rise and peak of the atrial

systole.

3.2.3 Right and left ventricles

Each LV and RV automaton triggers an Electro-Mechanical Driving Function (EMDF) [48, 49], which

represents in a simplified manner, the complex processes involved in the electromechanical

coupling at the tissue-level:
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fa,s(ts) =







ts

α1,s·T

)n1,s
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ts

α1,s·T

)n1,s



 ·





1

1 +


ts

α2,s·T

)n2,s



 · Amax (3.3)

The onset of the cardiac cycle, denoted ts, is determined by the activation instant of the corre-

sponding segment in the cardiac electrical model presented in the previous section. The first and

second terms in Equation 3.3 represent ventricle segment contraction and relaxation presented

after an electrical activation, respectively. T is the heart period, α1,s, α2,s are shape parameters,

and n1,s, n2,s control the steepness of the curve. These four parameters (α1,s, α2,s, n1,s, n2,s)

are assumed positive. Amax is the maximum EMDF value, and s ∈ {Slv , Srv} with Slv = {BasAnt,

BasAntSep, BasInfSep, BasInf, BasInfLat, BasAntLat, MidAnt, MidAntSep, MidInfSep, MidInf, MidInfLat,

MidAntLat, ApAnt, ApSep, ApInf, ApLat} (see Figure 3.2) and Srv = {BasRV, MidRV, ApRV}.

Concerning each segment s, cardiac mechanical activity can be separated into active (Ts,act) and

passive (Ts,pass) components:

Ts = Ts,pass + Ts,act (3.4)

Passive myocardial tension depends on myocardial strain Equation 3.5.

εs =
(ls − ls,ref )

ls,ref
(3.5)

And it is defined as follows according to [50]:

Ts,pass = Ks,pass · Tref,pass · (36 · max(0, εs − 0.1)2 + 0.1(εs − 0.1) + 0.0025e10εs) (3.6)

where Ks,pass is a parameter related to passive stiffness that is comprised between 0 and 1,
Tref,pass is the reference passive tension at εs = 1, ls and ls,ref are current and reference fiber
lengths. Active myocardial tension is represented by a non-linear law inspired from [51]:

Ts,act = Ks,act · Tref,act · (1 + β(εs − 1)) ·
fa,s

2

f2
a,s + F 2

a

(3.7)

where Ks,act is a parameter related tomyofiber contractility, Tref,act is the reference active tension
at εs = 1, and β, Fa are constants related with the muscle kinetic. The relation between pressure
Ps and tension Ts in each segment is approximated by the Laplace law (Equation 3.8)

Ps = e · Ts

(

cos(θs)

εs · Rm,s

+
sin(θs)

εs · Rp,s

)

(3.8)

In Equation 3.8, θs is themean angle of themuscular fibers. Rm,s and Rp,s are the radii of curvature

in the meridian and parallel directions, while e is the mean wall thickness. As the ventricle was

assumed to be an ellipsoid of revolution, Rp,s and Rm,s could be calculated analytically. Length
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variation is obtained by a power conservation:

Ps · Qs = Fs ·
dls
dt

(3.9)

Where the force is:

Fs = Ts · Ss (3.10)

Ss is the area of each segment. The hydraulic behavior of the blood volume in contact with the
wall segment are represented by its inertial (Is) and resistive (Rs) effects:

Py − Ps = Is

dQs

dt
(3.11a)

Qs =
Py − Ps

Rs

(3.11b)

with y ∈ {lv, rv} and Rs ∈ {Rmin,Rmax} according to the mitral valve opening. Ventricular flow is

calculated, taking into account the contribution of the flow of each one of the segments Qs,y and

of the intraventricular cavity Qc,y:

Qy(t) = Qc,y(t) +
∑

sy

Qs,y(t) (3.12)

where Py and Qy are respectively cavity center pressure and flow. Segments, associated with the

septum, are treated separately since their pressure depends on the pressure gradient across the

septal wall:

Psept = Plv − Prv (3.13)

3.2.4 Systemic and pulmonary circulations

The arteries, veins and capillaries of systemic and pulmonary circulations were included (Fig-

ure 3.1). The volume change, ∆V , of each compartment is computed from the integral of their

respective net flow:

∆Vz(t) =

∫

(Qin − Qout) dt (3.14)

with z ∈ {lv, rv, la, ra, pa, pu, ao, vc }, and in and out ∈ { la, ra, pa, pu, ao, vc, sys, pul, art, veins },

while the flow, Q, is defined by the pressure gradient, ∆P , across chambers and a resistance, R:

Q =
∆Pz

R
(3.15)
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R ∈ {Rpul, Rsys, Rart, Rveins, Rla, Rra, Rmt, Rav, Rtcv, Rpv }. Pressures on venous and arterial

vessels are defined as an elastance dependent relationship:

Pz = Ez · (Vz − Vd) (3.16)

Vd ∈ ¶Vd,lv, Vd,rv, Vd,la, Vd,ra, Vd,pa, Vd,pv, Vd,ao, Vd,art, Vd,vc, Vd,veins♢, where E is the elastance and

Vd refers to the dead volume. For example, these equations become:

∆Vao(t) =

∫

(Qao − Qsys) dt, (3.17a)

Qsys =
Pao − Pvc

Rsys
, (3.17b)

Pao = Eao · (Vao − Vd,ao) (3.17c)

in the systemic part of the model (Figure 3.1 bottom). The same equations are applied all around

the myocardial loop. The heart valves are modeled as perfect diodes.

3.3 Sensitivity analysis

The first step of patient-specific adaptation corresponds to the sensitivity analysis of the model

in order to provide insight into the relation between parameters and outputs and to allow a

characterization of the relative significance of each parameter. Using the Morris elementary

effects method [52] presented in Section 2.1.2.

The analysis was applied to a total of 288 parameters, with 18 parameters for each of the 16 seg-

ments: one from the electrical automaton and the 16 other one from electromechanical coupling

part of segmental sub-model equivalent. The circulatory parameters were previously studied in

[40]. In this study, the analysis is focused on the LV desynchrony and especially on the influence

of electromechanical parameters on strain morphologies. In order to preserve computational

costs, we have decided to include only parameters associated with electromechanical activity of

ventricles. For each parameter Xj , the range of possible values was selected from the nominal

literature and previous work values ±30% [39, 53, 54], except for the electrical depolarization

time parameter (UDP) whose range was defined between 2 and 150 ms.

Analysis were performed with: Y = ¶mean(εmodel
min,s),mean(t(εmodel

min,s)), std(εmodel
min,s), std(t(εmodel

min,s))♢,

where εmodel
min,s and t(εmodel

min,s) correspond respectively to the minimum value of strain and the cor-

responding time for each segment s (Figure 3.5). Mean and standard-deviation values were

calculated over the 16 strain signals.
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Figure 3.5: Outputs Y analyzed during the sensitivity analysis.

3.4 Model specification/parameters identification

The second step of the patient-specific adaptation is the identification of a set of parameters

selected from the sensitivity analysis. Figure 3.6 illustrates the parameters’ identification process.

Figure 3.6: Parameters identification pipeline with the evolutionary algorithm and its error function
(Jerror) adapted from [41]. The observables of this parameter identification are the 6 strain curves
of the 4- and 2- chamber views, the 4 strain curves of the 3-chamber view and the cycle duration.

3.4.1 Error function

For each healthy adult and LBBB patient, an error function Jerror between simulation outputs and

experimental strain curves was minimized in order to find patient-specific parameters:

Jerror =
16

∑

s=1

Js (3.18a)
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Js =
1

T

T −1
∑

te=0

♣ εexp
s (te) − εmodel

s (te) ♣ + ♣ εexp
s,min − εmodel

s,min ♣ (3.18b)

where εexp
s and εmodel

s are the myocardial strain signals obtained from available clinical data

and simulated outputs, respectively. te corresponds to the time elapsed since the onset of

the identification period and T is the duration of a cardiac cycle. To build this error function,

experimental and simulated strain curves were synchronized on the onset of QRS of synthesized

and clinical ECG.

3.4.2 Evolutionary algorithm

The error function Jerror was minimized using Evolutionary Algorithm (EA) (see Section 2.1.3).

These stochastic search methods are founded on theories of natural evolution, such as selection,

crossover, and mutation [55]. In this study, a Differential Evolution algorithm (DE) algorithm [56]

was applied to find the optimal set of parameters. In order to reduce the search space, values

for parameters were bounded to the physiologically plausible intervals: IKact = [0; 1], IKpass =

[0; 1], In1
= [0.5; 2], In2

= [5; 15], Iα1
= [0.2; 0.6], Iα2

= [0.2; 0.6], IUDP = [1; 200]. These intervals were

defined around parameter values used for the simulation of baseline conditions and are based on

physiological knowledge on the electromechanical activities of the heart [37, 40, 42, 48ś51, 53, 54].

DE was implemented with 200 individuals through 100 generations with crossover and mutation

probabilities equals to 0.9 and 0.02 using the C++ library PAGMO [57].

3.4.3 Interpretable patient-specific features

After parameter identification, some output features will be specifically discussed in this study:

Ð Ks,act : myocardial contractility that describes ability of the heart muscle to contract,

Ð Ks,pass : myocardial stiffness, which plays a key role in diastolic LV function,

Ð EATs : electrical activation time (Figure 3.7), which corresponds to the activation of a

segment automaton taking the upper bundle of His automaton as reference,

Ks,act and Ks,pass represent the tissue quality of each myocardial segment and were described in

Equation 3.4. They were directly identified by the EA. Two other features were extracted from

patient-specific simulations of the electromechanical activity.

3.4.4 Solution unicity

In order to evaluate the robustness of the method, we repeated 10 times the identification process

on 5 patients. Two patients of the healthy and LBBB ischemic population and one in the LBBB non-

ischemic population were randomly chosen for this evaluation. In fact, different set of parameters

could give similar simulated strain curves. The 10 obtained sets of parameters were analyzed
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Figure 3.7: Representation of the electrical activation time (EATs) with the UH (green) and the
segment s automaton activation (pink).

to justify the solution unicity of the identification process by comparing the distribution of each

parameter pi in its own value interval Ipi
. For each parameter, the ratio of the standard deviation

over its value interval length was calculated. Then, the average was calculated over the 16 LV

segments and expressed as percentage.

Rs
pi

=
std(p1

i , p2
i , ..., p9

i , p10
i )

max(Ipi
) − min(Ipi

)
(3.19a)

Rpi
=

100

16

∑

s

Rs
pi

(3.19b)

where pi ∈ ¶ Ks
act, Ks

pass, ns
1, ns

2, αs
1,α

s
2 ,UDP s ♢ and s ∈ {BasAnt, BasAntSep, BasInfSep, BasInf,

BasInfLat, BasAntLat, MidAnt, MidAntSep, MidInfSep, MidInf, MidInfLat, MidAntLat, ApAnt, ApSep, ApInf,

ApLat} .

3.4.5 Quantification of error between simulated and clinical data

In order to compare simulated and clinical strain curves, the Root-Mean-Square Error (RMSE)

was calculated for each segment s :

RMSEs =

√

√

√

√

1

T

T −1
∑

te=0

(εexp
s (te) − εmodel

s (te))2 (3.20)

A mean RMSE value, over the 16 segments, was calculated for each subject. Moreover, bull’s eye

plot was used to describe mean RMSE values calculated for each segment over each population:

healthy, ischemic LBBB and non-ischemic LBBB patients.
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3.5 Results

3.5.1 Baseline simulations

Figure 3.8 illustrates a simulation results’ example from the proposed computational model with

a set of parameters determined in previous work and literature (The set of parameter values

are included in supplementary materials). Ventricular, aortic, and atrial pressures as well as

ventricular volume are presented on the left of the figure. Myocardial strain signals corresponding

to the 16 LV segments are presented on the right of the figure. The results are presented for a

healthy case. Systolic LV pressure is equal to 120 mmHg and the aortic pressure varies between

45 and 120 mmHg. The LV volume varies between 85 and 120 mL. The strain signals present

similar morphologies between all the segments due to the mechanical synchronicity between

them. Generally, simulation results agree with the physiological values and behaviors of a healthy

subject.

Figure 3.8: Model simulation example results in healthy conditions adapted from [41]. Wigger
diagram: left ventricle (black), aortic (pink) and atrial pressure (green) and LV volume (blue). On
the right, the Strain curves: 16 LV segments strain signals for the 3 views (2CH, 4CH and APLAX).

3.5.2 Simulations of desynchronization strain patterns by parameter
variations

Figure 3.9 illustrates the simulated strain traces obtained in the septal and lateral walls for a digital

healthy subject, LBBB with only electrical modification, LBBB with electrical modification and

septal contractility reduction, LBBB with electrical modification and lateral contractility reduction.

First, to induce an electricalmodification, the electrical delay of all the LV segmentswere increased

98 Model-based Analysis of Myocardial Strains in Left Bundle Branch Block



as well as the electrical delay of the LBBB. Then, the septal and lateral hypocontractility were

respectively induced by a reduction of the active components of the LV septal and lateral segments:

Kact.

Figure 3.9:Simulated septal (in red) and lateral (in black) strain curves of a: healthy case, LBBBwith
only electrical modification, LBBB with electrical modification and septal contractility reduction,
LBBB with electrical modification and global contractility reduction. Grey background indicates
aortic valve opening to closure period. Figure adapted from [41]

In the case of LBBB with only electrical modification, simulations present a typical septo-to-lateral

activation pattern. In this case, the pre-ejection contraction of the septal wall is followed by

an immediate re-lengthening of the wall, which induces a septal rebound stretch. In the septal

hypocontractility case, the rebound stretch effect increases. The lateral hypocontractility case

is characterized by a modification of LV activation pattern and is associated with a significant

reduction in lateral wall strain and a diminution of the septal rebound stretch. The simulations

could be related with [6] experimental results where LBBB was induced in dogs with or without

LV scar.

3.5.3 Sensitivity analysis

Figure 3.10 shows aMorris schemewhere 100 of themost influential parameters are plotted in the

µ∗ − σ plane based on the Dj index. This representation highlights the parameters with negligible

(lower left-hand corner), the linear without interaction (bottom right) and nonlinear or interaction

(top right) impact on Y . Parameters α2 and n1 present a great recurrence impact on the sensitivity

of the evaluated outputs Y . In fact, as α1 and n2, they are involved in the electromechanical

coupling at the tissue-level (Equation 3.3) which causes modifications in mechanical contraction

and, consequently, in the deformation of the LV segments. These parameters appear especially

important for lateral and septal segments.

UDP, related with the electrical depolarization time, is also one of the most influential parameters.

UDP is the time of the upstroke depolarization, it drives the activation of the neighbor’s automata

and affects the ta and ts value of Equation 3.2 and Equation 3.3. ta is the time elapsed since
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Figure 3.10: Most influential parameters on A) the average of the minimum peaks over all seg-
ments, B) the standard deviation of the minimum peaks over all segments, C) the average time
associated to each minimum peak over all segments and D) the standard deviation of the time
associated to eachminimumpeak over all segments (bottom,right); according toMorris sensitivity
results. Only the first 100 parameters according to their distance Dj are plotted in the µ∗ − σ
plane. (Figure extracted from [41])

the beginning of the activation and ts is initialized by the activation of the neighbors, so directly

impact by the UDP times of the previous automata. If we look closer at the sensitivity analysis, we

can notice that the UDP related to the apical segments have the highest influence on the mean

and standard deviation of the minimum strain value as well as the corresponding time. This could

be explained by the electrical path. Indeed, the electrical and mechanical activities are closely

related, therefore the deformation of a segment is highly dependent on the occurrence of electrical

depolarization. Kact and Kpass, respectively related with the active and passive components of

the cardiac muscle, show also high sensitivity.

Results from the sensitivity analysis were used to select the 7 most significant model parameters

to be identified for each segment: parameters related with the EMDF (n1, n2, α1, α2), the active

(Kact) and passive (Kpass) components of the cardiac muscle and the electrical depolarization

time (UDP ). The electrical depolarization time of the left bundle branch (UDP LBB) was also
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added to the parameter identification list.

Complementary results of the sensitivity analysis as well as a sum up of the parameters and

value intervals used in the study are gathered in Appendix A (Table A.4, Table A.5, Table A.6,

Table A.7 and Table A.8).

3.5.4 Patient-specific simulations of segmental strain curves

Myocardial strain curves of the 16 LV segments acquired by experimental measurements and

patient-specific simulations are presented in one representative healthy subject (Figure 3.11),

an anterior ischemic and a non-ischemic (Figure 3.12) LBBB patient (All results are included in

Appendix A).

Figure 3.11: Patient-specific simulation results for a healthy subject. Experimental (black) and
simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye representations
of segmental electrical activation time and segmental myofiber contractility. Color scale at the
contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with low
contractility.
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Figure 3.12: Patient-specific simulation results for a LBBB patient with an anterior ischemia (left)
and no ischemia (right). Experimental (black) and simulated (colored) strain curves correspond-
ing to the 16 LV segments. Bull’s-eye representations of segmental electrical activation time
and segmental myofiber contractility obtained by patient-specific simulations.The ischemia is
localized on the cMRI (blue arrow).

For both healthy and LBBB cases, a good agreement was observed between clinical and simulated

strain signals. The RMSE errors are similar through the 16 strain curves for each patient in both

LBBB patient types. Concerning healthy cases, the strain curves present similar morphologies in

all the segments due to the synchronization in all LV regions when the myocardium contracts,

but we can notice some difficulties to well fit the basal anterior and lateral strain in some healthy

patients. Figure 3.13 presents this RMSE average by regions for the three groups (the same RMSE

bull’s eye representation is included in supplementary materials for each patient).

Mean RMSE between estimated and observed strain signals in the healthy adults was equal to

5.04 ± 1.02 (Table 3.2).
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Figure 3.13: Mean RMSE by region for the 3 groups of patients: healthy, LBBB ischemia, LBBB
no-ischemia

Healthy Mean RMSE LBBB (Isch) Mean RMSE LBBB (Non-isch) Mean RMSE

Patient 1 4.91 ± 2.16 Patient 1 2.71 ± 1.13 Patient 1 3.47 ± 1.03

Patient 2 3.89 ± 1.08 Patient 2 2.88 ± 1.0 Patient 2 3.63 ± 0.82

Patient 3 4.77 ± 1.53 Patient 3 2.50 ± 0.56 Patient 3 5.03 ± 1.49

Patient 4 4.19 ± 1.13 Patient 4 1.96 ± 0.69 Patient 4 4.38 ± 2.06

Patient 5 5.41 ± 1.66 Patient 5 3.51 ± 1.1 Patient 5 3.73 ± 1.3

Patient 6 6.23 ± 12.45 Patient 6 4.50± 2.42 Patient 6 2.99 ± 1.0

Patient 7 3.43 ± 0.88 Patient 7 8.23 ± 3.42 Patient 7 5.71 ± 2.29

Patient 8 5.45 ± 1.84 Patient 8 1.99 ± 0.72 Patient 8 3.15 ± 1.48

Patient 9 6.72 ± 2.38 Patient 9 4.60 ± 2.50 Patient 9 4.36 ± 1.76

Patient 10 5.40 ± 2.30 Patient 10 3.72 ± 1.33 Patient 10 4.86 ± 2.06

Table 3.2: Mean RMSE between the 16 experimental and simulated LV strain curves of the
study population with healthy, LBBB with ischemia (Isch) and LBBB without ischemia (Non-isch)
patients.

In LBBB cases, mean RMSE was equal to 3.90 ± 1.40 % (Table 3.2). In these cases, the strain

curves obtained in LBBBpatients present dissimilarmorphologies between the different segments.

Particularly, the septum and the lateral wall segments of the ventricle present opposite curves,

where the shortening of septal segments occurs at the same time as in the lengthening of lateral

segments.

3.5.5 Bull’s eye representations of the identified parameter

Frompatient-specific simulations, segmental electrical activation time (EATs) and the percentage

of myofiber contractility (Ks,act) were represented on bull’s-eye plots in Figure 3.11 and Figure 3.12,
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for 3 representative cases: 1) Healthy adult, 2) LBBB patient with LV anterior ischemia and 3)

Non-ischemic LBBB patient.

In LBBB cases, electrical activation bull’s-eye shows a significant electrical activation delay

between the lateral and the septal wall of the LV; while in the healthy case, all LV segments

are activated almost synchronously. Furthermore, the LBBB patient with LV anterior ischemia

presented reduced contractility in anterior segments of the Bull’s eye representation (Figure 3.12).

3.5.6 Comparison with MRI

Figure 3.14: Identified contractility parameters (%) and transmurality degree (%) in two ischemic
patients (top: lateral scar, bottom: antero septal scar) obtained by cMRI.

The model was able to reproduce regional modifications in LV contractility which are due to the

LBBB, but also to local scarring. In the case of isolated LBBB, we observed increased contractility

of the lateral wall compared to the septum. In the case of lateral scar, we observed a significant

impairment in lateral contractility. In the case of anteroseptal scar, a higher reduction in con-

tractility was observed in the septal and apical segments. As depicted in Figure 3.14, reduced

contractility in ischemic patients corresponded to the areas of transmural distribution of late

gadolinium enhancement observed with cMRI (Figure 3.14). A higher percentage of transmurality

translates into larger fibrotic areas, which are associated with low contractility. Therefore, regional

contractility levels allow distinction between ischemic and non-ischemic cases, where reduced

contractility could be associated with damaged tissues. Half of the patient MRI are provided in

Appendix A (Figure A.28: 10 with ischemia and 10 without).
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3.5.7 Unicity evaluation

The ratio of the mean standard deviation over the interval length of each type of parameter is

presented in Table 3.3.

Patients Kact Kpass n2 n1 α2 α1 UDP UDP LBB

2 LBBB ischemia
16.32 2.17 9.39 2.74 1.84 3.45 2.60 0.47

9.07 2.01 14.02 2.82 2.48 3.20 3.24 0.58

1 LBBB no-ischemia 12.96 2.00 10.44 3.18 1.82 3.21 2.85 0.49

2 Healthy
15.51 1.46 10.42 2.32 1.69 2.83 2.61 0.34

12.66 1.47 9.80 2.18 1.42 3.10 2.34 0.44

Table 3.3: Mean ratio of the standard deviation over interval length for 10 identification repetitions
over 5 patients (2 LBBB with ischemia, 1 LBBB without ischemia and 2 healthy)

The result of the repeated identification shows that the parameter values are gathered in the

same part of the possible values of the interval. In fact, for all the parameter, this mean standard

deviation is between 0.34 and 16.32% of their respective interval. Especially for the electrical

parameter UDP LBB , the ratio is less than 0.6%.

3.6 Discussion

This section presents a novel model-based approach that yields simulations of patient-specific

strain curves in several LV regions for healthy adults and patients diagnosed with LBBB. It used i)

an integrated model of the cardiovascular system coupled to multi-segment representations of

ventricles (Section 3.2), proposed ii) the sensitivity analysis of model parameters on myocardial

strains (Section 3.3), iii) the identification of model parameters to reproduce myocardial strain

curves specifically to each patient (Section 3.4) and iv) the analysis of patient-specific identified

parameters (Section 3.5).

The proposed CVS model is based on a functional integration of interacting physiological sys-

tems that takes into account the electromechanical coupling, the inter-ventricular interaction

and a simplified representation of systemic and pulmonary circulations. The model includes

the main cardiac properties required to tackle the problem under study, like the Frank-Starling

law and the influence of preload and afterload. Results illustrate the model ability to simulate

jointly the hemodynamic variables and myocardial deformations. Strain curves notably reflected

typical characteristics associated with each phase of the cardiac cycle. In order to personalize

models to patient-specific data, numerous simulations should be performed. In opposition to

FEM representations [35], the proposed model requires limited computational resources, as the

simulation of one cardiac cycle (1000 ms of simulation) takes about 0.5 seconds (Processor: 2,2

GHz Intel Core i7). The low computational cost is of primary importance to use cardiac modeling
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in clinical practice and to adapt models to each patient.

The first step of patient-specific adaptation is the sensitivity analysis of model parameters, which

highlights i) the close relationship between cardiac electrical and mechanical systems and ii)

the importance of active and passive properties of the myocardium during cardiac contraction.

The analysis results show that the electric stimulation timing between the different segment

have a great importance in the variability between the strain curves. The sensitivity analysis also

highlights the importance of parameters related to myocardial mechanical properties. In fact,

a close relationship exists between excitation and contraction since a synchronous ventricular

activation is a prerequisite for an adequate LV function, whereas the electrical activation time

between opposite LV walls might lead to dyssynchronous ventricular contraction and LV failure

[58]. Nevertheless, it has been shown that typical myocardial strain morphologies in LBBB could

be modified by the presence of scar and low regional LV contractility. Figure 3.9 illustrates

this point, by presenting different patterns though the modulation of parameters. Moreover, the

parameters of the septal and lateral parts of the LV present highest influence on the strain curves’

dyssynchrony. This is particularly interesting knowing the recent study on the importance of the

septal variability in the contribution of the LV reverse modeling [6]. In this context, the ability of

the model to disclose the relationship between electrical activation time and LV contractility has

pivotal importance because it might ease the identification of myocardial substrates that are

more prone to be associated with CRT-response.

In the second step of patient-specific adaptation, evolutionary algorithms were used to identify

the most influential parameters in each patient. The error function was minimized based on exper-

imental and simulated strain curves previously synchronized on the onset of QRS of synthesized

and experimental ECG. Patient-specific simulations have shown satisfactory results, since we

observed a good agreement between simulated and experimental myocardial strain curves given

the reproducibility of strain signals [59, 60]. For healthy cases, morphologies of the myocardial

strain curves were similar in all segments due to the synchronous contraction of the entire LV

[43]. Associated bull-eyes show normal electrical activation times and elevated contractile levels.

In most patients with non-ischemic LBBB, the early activation of the LV septum, followed by the

delayed activations of the LV wall [61, 62], causes a typical myocardial strain pattern. This pattern

is characterized by an early marked shortening of the septum in the pre-ejection phase, known as

łseptal flashž [63] followed by an immediate re-lengthening of the septum, the łseptal rebound

stretchž. Both the septal flash and septal rebound are known to be predictors of CRT response

[4, 64].

In ischemic patients, the typical activation pattern induced by LBBB can be disrupted by the

association of electrical delay and inhomogeneous LV contractility. In patients with LBBB and

lateral scar, hypocontractile regions are localized in the lateral wall. In this case, deformation

patterns are highlymodified because the local impairment of contractility in the lateral wall caused
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the loss of the rebound stretch in the septum [6]. On the contrary, the presence of anterior scar

was associated with a reduced contractility of the corresponding myocardial segments and had

less impact of septal deformation [6]. The strength of the model was therefore to reproduce the

łatypicalž strain patterns observed in patients with LBBB and ischemic cardiomyopathy thought

the correct localization of the hypocontractile segments, which correspond to areas of myocardial

scar identified by clinician based on cMRI.

There are several important consequences of the findings. First, results of the model-based

approach underscore that septal motion and global strain morphologies are not only explained

by electrical conduction delay, but also by the heterogeneity of contractile levels within the

myocardium and suggest that the evaluation of LV dyssynchrony should consider both electrical

delay and regional mechanical function. Second, the application of a model-based approach

could bring additional information on the regional electrical and mechanical function of the LV

from the simple analysis of echocardiographic data. This is particularly important because it

can help to disclose the intrinsic complexity of LV mechanics in CRT candidates, and represents

a step forwards the development of personalized LV modeling in the field of CRT. Third, one of

the main strengths of the approach was to perform a parameter identification process for the

patient-specific estimations of the segmental strain curves. In order to build the cost function,

experimental and simulated strain curves were synchronized on QRS peaks of synthesized and

experimental ECG. Model parameters were identified from the myocardial strain curves of the 16

LV segments acquired by STE. For both healthy and LBBB cases, a good agreement was observed

between measured and estimated strain signals.

These results bode well for the model capacity to reproduce clinical measurements and could be

promising in the LV function analyze for an individual patient and possibly in the prediction of

optimal treatments.

Although several studies have successfully used computational models of the CVS to understand

myocardial deformation patterns [19, 65, 66], or investigate the best CRTpacing location [19, 20, 67]

this approach provides interesting advantages and original aspects. The multi-segment model of

the LV allows not only the analysis of the deformation curves of the septal and lateral walls, but

also the strain signals of all the ventricular regions. Therefore, the proposed model resolution

was adapted to the standardized segmentation of the AHA, keeping a similar abstraction level

as clinicians for the analysis of strain signals. It also uses data from 2D STE, highly accessible

in clinical routine, with well-known strengths and limitation. Moreover, the proposed approach

applies a parameter identification process, providing customized models specifically for each

patient and allowing the recognition of hypocontractile areas that could be associated with the

presence of fibrosis.
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3.6.1 Limitations

The proposed model-based approach presents some limitations that should be mentioned.

Several hypotheses were made in order to propose tissue-level representations of ventricles: i)

the ventricular torsion was neglected, ii) the mechanical continuity between myocardial segments

was not always assured because ventricles are represented by a set of sub-pumps controlled by

a coordinated electrical activity and coupled in the hydraulic domain, iii) only mean myocardial

fiber orientation was considered, and iv) electromechanical coupling was approximated by an

analytic expression.

Despite these hypotheses, the model definition is in accordance with the problem under study

and appears to be a useful tool to assist the interpretation of strain data. Moreover, in order

to reduce computational costs, only a small sample of variables was selected for parameter

identification. These parameters may have absorbed changes in other fixed parameters. For

instance, septal segment parameters that may have been affected by RV variations. Thus, a

wider range of parameters could be included in the future. Finally, this study is based on a small

population of LBBB patients, an extension of the simulation on a larger clinical database and

simulation repetitions should give us a better estimation of the reproducibility and the robustness

of the method.

Moreover, as the results shown, the surface of the hypocontractile regions seems overestimated.

That suggests a diffusion of the tissue quality in the parameter identification process. In the

same way, a mismatch still exists between the experimental and simulated curves. Some efforts

must still be made to reduce it, but the simplifications chosen in the model definition, as well as,

the reduce number of parameters used in the patient specific identification explain it.

Nevertheless, this is the first work providing patient-specific simulations of strain curves in the

case of LBBB in association with ischemia and the proposed approach is a step forward towards

the integration of computational models in patient selection process before CRT procedures. The

work presented in the next chapter will be dedicated to evaluating the proposed model-based

indices, in a wider multi-parametric approach [68], for the prediction of CRT response.

3.7 Conclusion

In this chapter, we propose a novel model-based approach for the analysis of myocardial strains

in LBBB patients. The global method is based on i) a physiological model of the cardiovascular

system that integrates the electrical, mechanical, and hydraulic processes leading to ventricular

contraction and ii) a parameter identification procedure for patient-specific simulations. The

proposed model-based approach was evaluated with echocardiography data from 10 healthy indi-

viduals and 20 LBBB patients. Results show a close match between experimental and simulated

strain curves in all the cases. Furthermore, the approach is able to reproduce electrical activation
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delay and segmental myofiber contractility properly.

More extensive evaluations including a greater population of patients, as well as the analysis of

a wider multi-parametric approach should be performed in the future. Nevertheless, this paper

presents a first work towards the evaluation of myocardial strain signals and the assessment of

certain echo-based parameters by patient-specific simulations based on computational mod-

els. The proposed personalized approach represents a promising tool for the LV mechanical

dyssynchrony understanding and CRT responder identification.
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Characterization of Responder Profiles

for CRT Patient Selection

Chapter

4

As mentioned before (Section 1.3.1), under some conditions, HF patients may benefit from CRT

[1, 2]. However, the mechanisms of improvement of the left ventricle (LV) function with CRT are

not yet elucidated. Around 20-30% of the eligible patients do not respond to this therapy [3ś6].

Improvement of patient selection has been identified as an important factor associated with CRT

response rate [1, 3, 7ś9]. It is now recognized that a multiparametric approach, using Machine

Learning (ML) algorithms based on a combination of echocardiographic and ECG features, could

help to improve the identification of CRT responders [10ś14]. Although ML provide good results,

new tools are still required to assist feature selections, to optimize classification performances

and to improve the interpretability of the approach while minimizing overfitting and limited

robustness. In fact, LV strain curves reflect complex and multifactorial mechanisms that could

be associated with electrical conduction delay, mechanical cardiac activity, and inter-regional

interactions [15, 16]. Physiological models appear as efficient tools to integrate physiological

knowledge, concerning mechanical properties, cardiac electrical activation, and blood circulation

conditions.

The global methodology, presented in this chapter, is centered around an original explainable

hybrid approach, combining in-silico and machine-learning models. First, a characterization of the

CRT-eligible patient was proposed based on clinical and echocardiographic pre-implantation data.

The obtained phenotypes have been improved by digital twins associated with the centroids. This

study was presented at the Computing in Cardiology conference [17] with an oral presentation

that won the "Rosanna Degani Young Investigator" first prize. Then another characterization of the

CRT-eligible patient was proposed based on the physiological model-based parameters. On the

third part of this chapter, CRT-response prediction was proposed, also based on hybrid approach,

combining in-silico and machine-learning models.

This chapter is a good example of how we could combine a classical ML approaches based on

data and signal processing with digital twin. This methodology adds physiological knowledge in

one can consider as a black box approach.

4.1 Experimental data
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Study population

The prospective database includes 250 patients from different centers in Europe (Belgium,

Norway, France) who were eligible for CRT implantation based on current clinical guidelines.

Clinical, electrocardiographic, and echocardiographic data were collected and systematically

evaluated before CRT implantation and 6months after implantation. Table 4.1 gathers the principal

patient characteristics. Patients undergoing upgrades of pacemakers or implantable cardioverter-

defibrillators were also included.

Total Responder Non-responder p-value

(N=250) (N=185) (N=65)

Age 67.2 ± 10.9 67.2 ± 10.9 67.1 ± 10.8 0.96

Gender (male) 65.6% 60.0% 81.5% 0.002

Ischemic etiology 31.2% 23.2% 53.8% < 0.001

Moderate to severe MR 9.6% 9.7% 9.2% 0.91

Diabetes mellitus 18.4% 15.7% 26.2% 0.07

Hypertension 30.8% 30.3% 32.3% 0.76

NYHA functional class 2.3 ± 0.7 2.3 ± 0.6 2.4 ± 0.8 0.26

Creatinine (µ mol) 92.2 ± 36.1 92.5 ± 33.5 91.5 ± 42.7 0.85

QRS duration (msec) 161 ± 23.0 163.7 ± 20.7 155.7 ± 27.7 0.015

LBBB 87.2% 91.4% 75.4 % <0.001

Left atrial volume (mL/m2) 45.1 ± 16.1 43.8 ± 16.4 48.6 ± 14.9 0.04

LVEDV (mL) 216.2 ± 73.8 211.3± 75.6 230.1 ± 66.6 0.08

LVESV (mL) 156.8 ± 62.8 154.2 ± 63.7 164.2 ± 59.5 0.27

LVEF (%) 28.0 ± 6.6 27.9 ± 6.3 28.5 ± 7.3 0.51

SF 68.4% 82.7% 27.69% <0.001

AR 65.2% 74.59% 38.46% <0.001

E/e’ ratio 13.9± 7.9 12.8 ± 7.7 17.1±7.8 <0.001

TAPSE 19.0 ± 5.1 19.6 ± 4.8 17.2± 5.5 <0.001

Right ventricular strain (%) -15.5 ±10.1 -16.3±10.0 -13.1 ± 10.2 0.027

SPAP (mmHg) 21.6 ±20.6 21.7 ± 19.9 21.3 ± 22.6 0.90

GLS (%) -8.6 ± 3.3 -9.0 ± 3.3 -7.3±2.7 <0.001

Dispersion (msec) 93.6 ± 49.0 96.6 ±46.0 85.1 ± 55.7 0.10

Table 4.1: Patient characteristics of the population (non-responders and responders). P-values
from T-test and χ2-test.

Responders were defined as having a ≥15% decrease in LV end-systolic volume at the 6-month

follow-up, compared with baseline.

The study was carried out in accordance with the principles outlined in the Declaration of Helsinki

and was approved by the local ethical committee of each center. All patients signed a written
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informed consent before the participation to the study protocol.

Echocardiography

All patients underwent a standard Trans-Thoracic Echocardiography (TTE) using a Vivid S6, E7 or

E9 ultrasound system (General Electric Healthcare, Horten, Norway). Images were recorded on a

remote station for off-line analysis by dedicated software (EchoPAC PC, version BT 202, General

Electric Healthcare, Horten, Norway). The experimental dataset includes the measured regional

myocardial strain curves obtained by STE at transthoracic echocardiography in apical 4-chamber,

2-chamber, and 3-chamber views. Excel files of these 3 longitudinal strain view analyses were

exported for a dedicated analysis performed in python language. Strain curve references were

fixed at the onset of the QRS.

4.2 Feature extraction

Feature extraction was previously mentioned in Section 2.2.1 and was adapted from previous

works of the team [18ś20].

4.2.1 Clinical and echocardiographic features

Classical feature extraction was performed from clinical, electrocardiographic, and echocardio-
graphic data, leading to a set of 26 features per patient :

Ð gender, age,

Ð ischemic etiology, mitral regurgitation (moderate to severe), diabetes mellitus, hypertension, NYHA

functional class, Creatinine,

Ð QRS duration, Left Bundle of Branch Block (LBBB),

Ð left atrial volume, LV end-diastolic volume, LV end-systolic volume, Left Ventricle Ejection Fraction

(LVEF),

Ð septal flash, apical rocking,

Ð E/e’ ratio, tricuspid annular plan systolic excursion (TAPSE), systolic pulmonary artery pressure (SPAP),

Ð right ventricular strain, global longitudinal strain (GLS), strain peak dispersion,

Ð global work, constructive work, wasted work, work efficiency.

4.2.2 Feature extraction from strain curves

44 features were automatically extracted from longitudinal strain curves of the apical 4-chamber

view only, according to the method defined by our team in [19]. Briefly, these features are based

on estimation of the integral, or area under the curve, of each available segmental strain signal,

on different time supports. To minimize the estimation error of these features, each strain curve
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was up-sampled to 500 Hz. As performed in previous works, strain values between -5% and 5%

were ignored from all calculations [10, 18, 21].

The first integral feature Is
avc is calculated from the onset of the QRS to the instant of Aortic Valve

Closure (AVC) of each segmental (s) strain curves. It represents a quantification of the cumulative

strain developed by a given segment s, which effectively contributes to LV ejection. A second

integral Is
peak is calculated from the onset of the QRS to the strain peak. It represents the global

cumulative strain developed by the contraction of the segment. The third integral is calculated as:

Es = Is
peak − Is

avc (4.1)

and corresponds thus to the integral between the strain peak and aortic valve closure. Negative

values of this feature reflect a wasted cumulative strain, acting after AVC. This procedure (Fig-

ure 4.1) was applied to all segments of the 4-chamber view, for a total of 18 features. The onset

of the QRS is used as reference for the calculation of all features.

Figure 4.1: Strain integrals extraction on the 4-chamber view: Is
avc, Is

peak and its difference Es

delimited by the two timing: tavc and tpeak.

Then, the mean of these different integrals (Mean) was calculated for each time support: IMean
avc ,
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IMean
peak and EMean. The last set of features was based on the sums of integrals for the two walls,

septal (S) and lateral (L): IS
avc, I

S
peak , E

S , IL
avc, I

L
peak and EL. These features represent the cumulative

strain from all segments of a given wall. The differences (D) of the cumulative strain of the two

sides were then calculated:

ID
avc = IL

avc − IS
avc (4.2)

ID
peak = IL

peak − IS
peak (4.3)

ED = EL − ES (4.4)

Finally, the amplitude of the strain (Ss
peak), the time of the strain peak (ts

peak) and their average on

the 6 segmental strain curves were automatically extracted.

In a preprocessing phase, all the features were normalized with the standard score before the

application of the clustering algorithm.

4.3 Patient-specific models

4.3.1 Model

The model presented in Chapter 3 was used in this work. As a reminder, it integrates four main

sub-models:

1. The cardiac electrical system,

2. The right and left atria,

3. A multi-segment representation of the right and the left ventricles,

4. The systemic and pulmonary circulations.

This model has been validated on data from 20 LBBB and 10 healthy patients and fully described

in Chapter 3.

4.3.2 Model specification/parameters identification

This identification was implemented with an EA. The same 113 parameters were involved, based

on the previous model sensitivity analysis (Section 3.5.3). The EA chosen in this study was a Self-

Adaptive Differential Evolution (SADE) algorithm [22] implemented with 4 islands, 15 individuals

through 10 generations and 20 evolutions using the python library PyGMO (see Section 2.1.3). The

EA process with the 4 islands is illustrated in Figure 4.2. The choice of parameters of crossover

and mutation is directly integrated in the algorithm by an adaptive process [22].
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Figure 4.2: EA algorithm illustration with the 4 islands of 15 individuals and the 20 evolutions of
10 generations.

4.4 Characterization of responder profiles

In [18], our team proposed a multiparametric clustering method using clinical and echocardio-

graphic data to group 250 CRT candidates based on their therapy response and outcomes. This

approach identified specific CRT response subgroups and revealed how cardiac regional de-

formations, measured through strain integrals, may relate to response. However, interpreting

the physiological implications of observed strain modifications remains challenging. Physiolog-

ical model-based methods offer a promising solution to increase interpretability by providing

parameters with direct physiological meaning.

In this section, we propose a method to improve the interpretability of the unsupervised clustering

method previously proposed [18] through a digital twin approach, based on patient-specific model

identification. Digital twins were proposed for the patients associated with cluster centroids, and

the parameters reflecting physiological mechanisms were analyzed.

4.4.1 Method

i) Clustering analysis, based on clinical and echocardiographic pre-implantation

data

The set of all features was clustered by applying the K-Meansmethod [23]. This algorithm partition

in K groups, named clusters based on common characteristics, and aim at minimizing within-

cluster variances. The optimal number of clusters was determined using a Silhouette score and

Inertia (defined in Section 2.3.2: Equation 2.12 and Equation 2.15). The algorithm was applied on

the 250 patients with their 70 features. It was implemented in Python language using the Sklearn

library [24].
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Graphical representation: To visualize clustering results, a Principal Component Analysis (PCA)

was performed after the clustering step. The PCA transforms the 70 dimensions space of the

database in a 2 dimensions space to illustrate the different groups of patients.

Clusters analysis: A Wilcoxon test was applied to assess how the clusters differ from each other.

The top-ranked features highlight the connection to the CRT response of a given cluster. These

best ranked features were presented to underline the highest, medium, or lowest mean values

compared to the rest of the database.

ii) Digital twin of patients associated with centroids

Personalized physiological models were proposed by identifying parameters for patients asso-

ciated with centroids of each cluster. Parameters reflecting physiological mechanisms were

analyzed and added to the cluster’s profiles. Figure 4.3 illustrates this methodological approach.

Figure 4.3: Methodological illustration of the digital twin patients associated with clusters’
centroid.

Virtual patient representative: For each cluster, the proposed model was personalized to the

patient closest to the cluster’s centroid, which has the three-echo view available. Similarly to

the previous chapter, the model personalizing was done by identifying model parameters. This

identification was implemented with the same method presented in Section 4.3.2 with the same

EA algorithm, error function (Jerror), parameters identified and tuning.

Interpretable patient-specific features: The output features discussed in this study are the

following:
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Ð Ks,act and Ks,pass : myocardial contractility and stiffness that describes quality of the

myocardial tissue.

Ð EATs : electrical activation time.

Ð MAPTs : mechanical activity peak time that is defined as the time of EMDF (Equation 3.3)

curve maximum, considering the same bundle of His activation as reference.

The three first features were presented previously. The two first represented the tissue quality of

each myocardial segment and were described in equations (Equation 3.4). They were directly

identified by the EA. The two other features were extracted from patient-specific simulations of

the electromechanical activity.

4.4.2 Results

i) Clustering analysis based on clinical and echocardiographic pre-implantation

data

The clustering analysis was performed on the dataset of 70 features (26 classical clinical and

echocardiographic features and 44 strain-extracted features) and 250 patients. The optimal

number of clusters K=5 was obtained using the silhouette score and inertia (Figure 4.4). The

optimal number of cluster must be in the elbow of these curves [25].

Figure 4.4: Inertia and silhouette score to choose the number of cluster K.

Table 4.2 gathers the responder rate ranging from 50% to 93% of CRT response and the most

significant features of each cluster. Added to already known features for poor responder profile

such as no septal flash or no apical rocking which are typical movement of the ventricle visible in

echocardiography [1, 2, 26], the proposed integral features are noticeable in the main extracted

features of the different clusters. For example, in most of the good responder phenogroups, the

strain features associated with the lateral wall are discriminative: septal and mean minimum

strain time, lateral integrals and integral difference (t...sept
peak , tMean

peak , IL
avc, IL

peak , ID
avc). This refers

to the quality of the LV walls to provide enough work during systole despite the potential wall

desynchronization.
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Cluster 1 (50%) Cluster 2 (71%) Cluster 3 (72%) Cluster 4 (86%) Cluster 5 (93%)

Imidinfsept
avc GLS Imidinfsept

avc tMean
peak IL

avc

ID
avc SMean

peak IS
avc tmidinfsept

peak ID
avc

ID
peak IMean

peak IMean
avc tapiinfsept

peak Imidantlat
avc

septal flash rate IS
peak Imidinfsept

peak EMean Iapiantlat
avc

IL
avc IMean

avc IS
peak ES IL

peak

apical rocking rate constructive work Ibasinfsep
avc Emidsept Ibasantlat

avc

IL
peak IS

avc SMean
peak Ebasinfsept Imidantlat

peak

Imidantlat
avc Imidinfsept

peak Smidinfsept
peak male rate Smidantlat

peak

Table 4.2: Response rate (in %) for each of the five identified clusters and their most significant
features, colored by relative value based on clusters analysis: High (green), medium (orange) and
low (red).

Representation: Figure 4.5 represents the two first principal components of the PCA analysis of

the database. These two first principal components explain 33.6% of the variance, with 23.4% for

the first and 10.2% for the second. The five clusters of the study [18] are represented, as well as

the CRT response of each patient. (The 5 clusters can already be distinguishing of the 2D PCA

but even more in a 3D PCA with almost no overlapping, the 3D figure is provided in appendix file:

Figure B.1).

Figure 4.5: PCA visualization of the database of 250 patients colored by cluster and symbolized
by their CRT responses (cross: non-responder, circle: responder). Patients closest to the centroids
are circled in black.

Kaplan-Meier Analysis: Figure 4.6 displays Kaplan-Meier curves for event-free survival at 4

years. The overall adverse event rate was 22.8% and gathers events of death and hospitalization

for heart failure. We can easily notice a difference of event rate between cluster 1 and 5 with
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respectively 36.5% and 7.3% (p-value=0.003 between cluster 1 and 5 with a log-rank test) [18].

Figure 4.6: Kaplan-Meier survival curve at 4 years.

ii) Digital twin of patients associated with centroids

Parameters identifications and simulations

From the identification process, patient-specific model parameters were obtained for the 5

patients associated with each cluster centroid (circled in Figure 4.5). Patient-specific strain

curves of these patients were simulated. Figure 4.7 presents the identified parameters and the

comparison of experimental and simulated strain curves of the 16 LV segments. First, at the

top of each patient box, the 16 experimental (black) and simulated (colored) strain curves are

compared with a good fit. The mean mRMSE on the five patients is 3.97% (± 1.74) and written on

Figure 4.7 for the five patients with their mean identified contractility and electrical activation

time. Although, for some patients, the strain morphologies are not completely reproduced for all

the 16 curves, a close match was observed between the curve’s patterns.

At the bottom, the interpretable patient-specific features, described in Section 4.4.1, are repre-

sented through bull-eyes diagrams (see Figure 3.2 numbering). Concerning the contractility, the

2 patients representing clusters with below-average rates (cluster 1 and 2) are associated with

low values compared to other patients. Contractility values range are [13%; 45%], [11%; 47%] and

[18%; 47%] respectively for the centroid patients of cluster 3, 4 and 5 who are responders to CRT.

By comparison, the contractility of clusters 1 and 2 patients (non-responders) is clearly lower

with range of [12%; 25%], [6%; 25%]. Low contractility in LV septal part could inhibit contraction

mechanism and its propagation in the rest of the ventricle.

Larger stiffness was noticed in the cluster 1’s patients with a mean value over the 16 segments

equal to 64.0% compared to the cluster 2’s patients with 60.5%. The increase of stiffness could

generally be linked to degradation of the diastolic dysfunction. Cluster 3 and 4 present reduced
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Figure 4.7: Comparison of the 16 experimental (black) and simulated (colored) strain curves for
each of the 5 patients with the mRMSE on the 16 curves. The identified model parameters are
represented in bull’eye: contractility (yellow-pink), electrical activation time (blue-yellow), stiffness
(pink-cyan), and mechanical activation time (purple-yellow) with the mean value written below.

values (respectively 62.8% and 63.1%). Concerning specifically cluster 5, stiffness presents

globally higher values (66.1%).

Concerning electrical activation times, clusters 4 and 5 show an earlier activation of the septal

wall and an extended lateral activation compared to clusters 1, 2 and 3. LV electrical delays
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associated with clusters 4 and 5 are also slightly higher than the other clusters with a maximum

electrical activation time of 106 ms for these two clusters against 101, 95 and 90 ms for the

cluster 1, 2 and 3 respectively.

The mechanical activity peak is slightly delayed in the three responder patient simulations with

mean MAPTs equal to 395, 402 and 395 ms for the cluster 3, 4 and 5 respectively. In the two

other clusters, the mean mechanical activity peak times are 374 and 360 ms for patient of cluster

1 and 2. For these patients, the septal segments’ activation arrived later than the one located on

the lateral part of the LV (mean septal MAPTs respectively equal to 410 ms and 362 ms), while

an early septal mechanical activity peak was noticed for cluster 5: 332 ms.

4.4.3 Discussion

The main contribution of this work consists in combining unsupervised clustering and patient-

specific physiological modeling for the analysis of response profiles to CRT. This original method-

ology was declined in different applications. First, five clusters, defining groups of below-average

to excellent responders, were defined based on clinical and echocardiographic pre-implantation

data. Then, patients associated with centroids of each cluster were considered to propose five

patient-specific models. The identified parameters of these five digital twins provide a direct

physiological interpretation of strain curve morphologies.

These study aims at providing characterization of CRT eligible patient by proposing different

patient profiles with more or less risks of non-response.

i) Clustering analysis, based on clinical and echocardiographic pre-implantation

data

In [18], our team has shown that unsupervised machine learning could be used to integrate

echocardiographic, ECG and clinical data to phenotype HF patients and their responses to CRT.

Results allows for the identification of groups of different response rates, ranging from below-

average to above-average, in comparison with response rate described in the literature [6]. Cluster

1 and 2, which are the two groups with below-average rate, are associated with low strain integral

values and work as well as a reduced proportion of septal flash and apical rocking. The other

clusters with normal or elevated response rates present higher strain integral values, with strain

with larger amplitudes. To bemore specific, in the best cluster (cluster 5), strainmorphology shows

a typical LBBB activation pattern with early stretching of the lateral wall and early shortening of

the septal wall. This characteristic pattern has been shown to be associated with an improved

prognosis after CRT [27].

The advantage of using unsupervised ML is that, unless using hypothesis driven, as classi-

cally used, this approach is data driven and hypothesis free. In comparison to other clustering
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approaches [14], the proposed method allows for the quantitative analysis of left ventricular

mechanics, through the evaluation of strain integrals [18, 19]. Although these features could be

related to myocardial contraction, direct physiological interpretation remains difficult only based

on clustering results.

ii) Digital twin of patients associated with centroids

Added physiological based explanations with personalized models [28, 29] helps to provide

a fine-tuned understanding of the cardiovascular behaviors associated with each cluster, by

explicitly representing the underlying physiological mechanisms. In fact, identified parameters

provide additional information on the regional electrical and mechanical LV functions. Electrical

conduction delays, mechanical activity peak time, stiffness and contractile levels appears as

particularly relevant to strain curves morphology. Contractility parameter is especially interesting

because it could be associated to potential area of damaged tissues or scars.

Clusters 1 and 2, defined by below-average response rates to CRT, are associated with reduced

myocardial contractility parameters, as illustrated on bull-eyes obtained from the model (Fig-

ure 4.7). In fact, total myocardial scar or located in the posterolateral wall are associated with

non-response to CRT [30]. Aalen et al. in [31] also demonstrate that myocardial viability and

particularly the septal viability is an indicator of CRT response.

Myocardial stiffness is more elevated in cluster 1 in comparison with cluster 2. A stiff heart links

to degradation of the diastolic dysfunction [32] that was recently associated to worst-prognostic

CRT candidate [33]. Concerning mechanical activation delays, late septum activations, compared

to their lateral wall, were observed for these two clusters. In fact, several studies [34ś36] have

shown that septal and lateral activations, that differ from typical LBBB patterns, are mainly

associated with bad CRT responses.

Patient-specific models of the other clusters present more elevated contractilities and elevated

electrical activation delays, that better corresponds to pure electrical dyssynchrony. In responder

patients (3, 4 and 5), earlymechanical activation of the septal segments (added to a preserved con-

tractility) was identified and represent typical LBBB pattern and/or presence of septal flash, well

known to be a CRT response indicator [37]. Furthermore, this kind of impaired electromechanical

substrate has been shown to be beneficial to CRT response [36, 38].

Concerning specifically the best responder (cluster 5), stiffness values appear as more elevated

than other clusters. We hypothesize that myocardial stiffness is compensated by a well-preserved

contractility and large electrical activation time resolved by CRT stimulation. In fact, [39] proved

that E/e’ ratio, a parameter used to estimate diastolic dysfunction, has a less predictive value on

CRT response than others parameters such as SF and AR (usually associated with contractility)

[34].
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4.5 Characterization of responder profiles based on the digital

twin database

Contrary to the previous clustering, based on clinical and echocardiographic pre-implantation data,

this clustering was based on the model-based parameters. The physiological model parameters

used to create each digital twin constituted a new database and were used as inputs of the

clustering. Due to the lack of all the strain echo views, this characterization will be done on 162 of

the 250 patients of this database.

4.5.1 Method

Figure 4.8 illustrates the methodological approach. 162 patients were involved in this study and

a digital twin was created for each of them. The identified parameters of the digital twins were

then used as inputs of the clustering

Figure 4.8:Methodological illustration of the clustering analysis on the physiological model-based
parameters.

Parameter space

The database now contains 145 model-extracted features. The interpretable features: Ks,act,

Ks,pass, EATs and MAPTs, previously mentioned for each of the 16 segments (s) were used.

Some more specific identified parameters were also extracted from the digital twins:

Ð The parameters involve in the EMDF (Equation 3.3) of each segment: n1,s, n2,s, α1,s, α2,s.
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Ð The electrical depolarization time of each segment and the one of the LBB: UDP s and

UDP LBB .

In order to visualize the distribution of the different interpretable parameters on each cluster, the

average was calculated over all the patient of a same cluster, for each parameter type and for

each segment. This computation provides four mean bull eyes for each cluster, one for each

parameter type.

To visualized and extract variability of this data set of 145 model-extracted features, a Principal

Component Analysis (PCA) was applied.

Clustering

The set of all model-extracted features was clustered by applying the K-Means method [23].

The optimal number of clusters was determined using a Silhouette score and Inertia (defined in

Section 2.3.2: Equation 2.12 and Equation 2.15). As before, the clustering was performed before

PCA to offer more interpretability and provide a comprehensive report on the role of the different

features.

Clusters analysis: A Wilcoxon test was applied to assess how the clusters differ from each

others. The top-ranked features highlight the connection to the CRT response of a given cluster.

4.5.2 Results

Model parameter identification and simulations

For each of the 162 patients, 113 parameters were identified to obtain a digital twin. Patient

specific strain curves of these patients were simulated from these digital twins. Although, for

some patients, the strain morphologies are not completely reproduced for all the 16 curves,

a close match was observed between the curves patterns. The mean mRMSE between the 16

simulated and experimental strain curves on the 162 patients is 4.48% (± 1.08). The 162 digital twin

simulations, separated by cluster, are provided in Appendix B (Figure B.2, Figure B.3, Figure B.4,

Figure B.5 and Figure B.6)

A statistical study of all the identified parameters was proposed in Table 4.3. For 17 of the 145

features, there is a significant difference between the population of responder and non-responder

(p-value < 0.05).

Ð 7 are model parameters or extracted features involved in the EMDF (1 MAPTs, 1 α2,s, 3 n1,s,

2 n2,s ).

Ð 9 are tissue quality model parameters (6 Ks,act and 3 Ks,pass).

Ð 1 are electrical model parameters or extracted features (UDP BasalAntLat).

13 of these 17 features are segments of the 4-chamber view.
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Parameters Non-responder Responder p-value

KApiLat,pass 73.2% 56.8% <0.001

KApiLat,act 20.9% 28.1% <0.001

KMidAntLat,act 21.5% 27.3% <0.001

KMidAntSept,act 18.2% 23.2% 0.004

KBasalAntLat,pass 61.0% 49.2% 0.005

KApiSept,act 21.8% 27.0% 0.005

α2,BasalInfSept 0.44 0.40 0.01

UDP BasalAntSept 13.0 ms 16.2 ms 0.01

n1,ApiSept 1.32 1.15 0.02

n2,MidAntLat 8.91 9.96 0.02

n1,MidInfSept 1.31 1.16 0.02

MAPTBasalInfSept 365 ms 332 ms 0.03

KBasalInfLat,pass 68.2% 61.0% 0.04

KApiInf,act 26.3% 30.0% 0.04

n1,ApiAnt 1.33 1.19 0.04

KMidInf,act 25.4 28.6 0.04

n2,MidAntSept 9.49 10.3 0.04

Table 4.3: T-test on the 145 identified and extracted features of the model over the 162 patients.
Only the ones with a p-value <0.5 are presented here.

Clustering

Figure 4.9: Inertia and silhouette score to choose the number of cluster K on the identified
parameters’ base.

The clustering analysis was performed on the identified parameter dataset of the 162 patients. The

optimal number of clusters was also K=5, based on the silhouette score and inertia (Figure 4.9).

Figure 4.10 represents the three first principal components of the PCA analysis of the database.

The five clusters of the study are represented, as well as the CRT response of each patient. A 3D
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representation was preferred to better visualize the separation of the five clusters, less noticeable

in 2D. The three first principal components represent 21.5% of the variance (12.0% for the first,

5.4% for the second and 4.1% for the third).

Figure 4.10: PCA visualization of the parameters’ base of 162 patients colored by cluster and
symbolized by their CRT response (cross: non-responder, circle: responder).

The responder rate ranges from 52% to 84% of CRT response (52%, 54%, 77%, 78% and 84%).

Figure 4.11 presents the average interpretable patient-specific features in bull eyes representation

for the five clusters.

Concerning the first row (Kact: contractility), the two "best" clusters in terms of CRT response

present higher identified values. Their mean values over the 16 segments are 33.0% and 27.8%,

respectively, for cluster 4 and 5. By comparison, the three cluster with the lower CRT response

rate present smaller contractility values with 22.5%, 22.8% and 23.4% mean value for cluster 1, 2

and 3.

Larger electrical activation times were noticed in cluster 1 and 5 with means over the 16 segments

of the average bull eye of 82.0 ms and 88.4 ms respectively. This confirms the hypothesis that not

only the electrical behavior must be considered. A preserve myocardial tissue must be present

to ensure effective stimulation of the CRT device. The three other cluster’s bull eyes have mean

value of 69.1 ms, 55.8 ms and, 69.2 ms for the second, third, and fourth respectively.

Concerning the stiffness, the mean of the average bull eye is similar over the five clusters: 62.4%,

62.4%, 61.7%, 56.4%, 61.2%.

The peak of the mechanical activity is well delayed for the cluster 1 and 5 with 450ms and 387 ms.

It is consistent with the electrical activation time also delayed for these two clusters. The cluster

3 mean MAPTs are extremely well-preserved and could explain the not so bad CRT response

despite a damage contractility.
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Figure 4.11: Average bull eyes of the interpretable patient-specific features of the five clusters:
contractility (yellow-pink), electrical activation time (blue-yellow), stiffness (pink-cyan), and me-
chanical activation delay (purple-yellow) with their response rate.

4.5.3 Discussion

In this section, the process was brought further. CRT patient phenotyping, only based on the

digital twins, were created thanks patient strains with hypothesis-free on CRT response markers.

The two first clusters present a below average response rate and with the third one, they present

low values of identified contractility. The two other clusters (cluster 4 and 5) with normal or

elevated response rates present higher contractility values. Added to that, we can notice larger

electrical activation time in the best cluster (cluster 5). This confirms that not only the electrical

markers must be considered in the CRT selection. The quality of the tissue, well underlined by the

identified parameters of the digital twins, must be considered as it is essential to an efficient CRT

stimulation. In fact, if the CRT device leads are set on necrotic tissues/scar zones, the electrical

signal could be impaired [40ś42].

If we look at the statistics tests, we can notice that the features with the smallest p-value
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are the one that described the tissue quality and the one involved in the electromechanical

coupling. KApiLat,pass, KApiLat,act and KMidAntLat,act present p-value <0.001 and represent active

and passive ability of three lateral segments to contract (Table 4.3). The contractility parameters

of the myocardium are better preserved for responder patients, and passivity parameters are

also lower. In the same idea, the mechanical activity peak time MAPTs are also less delayed in

responder patient. These model parameters and extracted features confirm that the contractile

levels within the myocardium must be considered and are well link with the ischemic proportion

of non-responder patient (p-value = 0.0001). In fact, A stiff heart links to degradation of the

diastolic dysfunction [32] that was recently associated to a worst-prognostic CRT candidate [33].

Myocardial viability was demonstrated to be a CRT-response indicator in [31] and particularly the

septal viability of the myocardium.

This second section aims at going deeper in the characterization of CRT eligible by providing

understandable features to provide direct physiological interpretation of strain curve morpholo-

gies. The digital twin proposed could be a way to specifically understand the electromechanical

coupling of the different LV regions of a patient. Then, referring to the clustering and/or this

database, decide or not of the therapy given the CRT response of the closest neighbor(s) or

cluster. To our knowledge, this is the first time ML approaches were applied on a digital twin

database created thank to experimental strain curves. Recent studies proposed digital/virtual

patient cohort, but without any patient experimental data [43, 44]

4.6 Prediction of response to CRT

A best selection of patients before implantation is essential to improve the individual quality of

care and prevent the risk of non-justified complications. In the last years, significant research

activities have been addressed at disclosing the biological, electrical, and mechanical aspect of

CRT inefficiency, in order to improve patient selection and CRT response [1, 3, 7ś9]. However, the

selection of candidates for resynchronization therapy and the follow-up of implanted patients

still remains challenging because it depends on several factors including clinical characteristics,

typical ventricular conduction disturbances, and the evaluation of the specific electromechanical

substrate responsible for LV discoordination. The objective of this section is to propose, a

multiparametric evaluation, based on the combination of data-driven and model based features,

to improve the prediction of response to CRT. First, a CRT response classifier train on pre-operative

data was proposed. Then the same classifier was then trained on digital twin extracted features.

4.6.1 Method

The same part of the prospective database, including the 162 CRT eligible patients from two

centers in Europe, were used. The same clinical, electrocardiographic, and echocardiographic

data were collected as well as the strain extracted features. The creation of the digital twins was
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performed thanks to a model parameter identification process, as described in Section 4.3.2. The

same EA algorithm, error function (Jerror), parameters identified and tuning were used.

Supervised machine learning algorithm

Feature selection: Feature selection is a preliminary step that measures the strength of the

relationship of the variableswith the event. It aims at keeping a reduced set of themostmeaningful

feature to build the final model. In this study, the feature selection was done using a ’Out-Of-Bag’

(OOB) feature importance analysis on the random forest classifier with the "Gini" importance

criteria [45].

Among the selected features, a high correlation was found between some features (correlation

index > 0.7) and only the features presenting the highest relative importance were kept for further

analysis after ensuring that it would not affect the model’s performance by testing with and

without it.

After this step, the features are ordered by importance and "redundant" features are removed. We

can then iterate on the number of features to create the Random Forest (RF) model [46].

Ensemble classification algorithm: The classifier used in this study is a RF. It is an ensemble

method that averages the independent prediction of numerous decision trees created on a subset

of features. The number of trees is a hyperparameter of the algorithm that must be tuned [47].

Proposed approach

In this study, we wanted to propose a CRT response classifier. The same classification algorithm

was applied on two categories of features : 1) The first one is clinical and echocardiographic

pre-implantation data presented in the previous study with strain extracted features, 2) The

second one is composed of model-extracted features (identified model parameters or feature

extracted of the patient specific model simulation) of the 162 digital twins. Figure 4.12 presents

the different step of the classifier creation. The global performance was assessed by a repetitive

cross-validation method, which randomly selects at each round 80% of the population to be

trained (training dataset) and 20% to be tested (test dataset).

4.6.2 Results

Supervised ML on features extracted from data

Feature selection

The 70 features extracted from data were included in the following process. First, they were

order by importance (RF classifier feature importance or Gini importance). Then, the RF classifier
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Figure 4.12: Methodological illustration of the CRT response prediction approach.

was iteratively test with the first i features (ordered by importance). The AUC results of these

iterations are plotted in Figure 4.13. 9 features were selected to be used in the classifier.

Figure 4.13: Choice of the number of features in the list of the feature importance from data. The
AUC is computed on 200 repetitions of test datasets.
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Figure 4.14 shows the 9 most important features selected after this features selection step:

Ð 7 are strain extracted features: integrals (Is
peak/avc), strain maximum amplitude (Ss

peak) and

strain peak time (ts
peak),

Ð 2 are classic echocardiographic features.

Concerning the localization of the parameter segments, they are mostly features extracted from

lateral and septal segments.

Figure 4.14: List of the 9 first features from data order by importance, the correlated features were
removed. Color code: strain extracted features (gray) and classic echocardiographic features
(black): Tricuspid Annular Plane Systolic Excursion (TAPSE) and Left ventricle End-Diastolic
Volume (LVEDV).

Ensemble classification results

Figure 4.15 represent the process of RF hyperparameters choice. To choose the number of

estimators (trees) to use in the classifier, the AUC value was computed for 2 to 550 estimators.

Thus, 500 estimators were chosen for this study. The deepness of the tree was also tested, but

the default mode was the best. The default parameterization of the tree deepness is to extend

the nodes until all leaves are pure.

Figure 4.16 shows the Area Under Curve (AUC) for the prediction of response to the CRT. After

200 cross validation rounds, the predictive performance was good with a final AUC of 0.81±0.07.

The optimal threshold was taken to maximize the geometric mean of sensitivity and specificity

(known as G-mean: Equation 2.11) with a sensitivity = 0.75 and a specificity = 0.72.

Supervised ML on model-based extracted features

Feature selection

From the identification process, as mentioned in Section 4.4, 145 model-based extracted features

could be extracted from the 162 digital twins.
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Figure 4.15: Choice of the number of trees/estimators. The AUC is computed on 200 repetitions
of test datasets.

Figure 4.16: ROC curve of the RF classifier on features extracted from data with the 9 first features,
500 estimators and 200 cross-validation repeats. The AUC is computed on the 200 test datasets.

As already described, the number of features used in the classifier was determined by iteratively

test i features, (order by importance). The AUC results of these iterations are plotted in Figure 4.17.

Figure 4.18 shows the 22 most important features selected after this features selection step:

Ð 10 are model parameters or extracted features involved in the EMDF,

Ð 9 are tissue quality model parameters,

Ð 3 are electrical model parameters or extracted features.

Concerning the localization of the parameter segments, they aremostly parameters or features ex-

tracted from lateral and septal segments. Moreover, the basal layer of the LV aremore represented

in these 22 selected features.

Ensemble classification results

Figure 4.19 represent the process of RF hyperparameters choice. The same process was applied,

and 500 estimators were chosen for this study. The deepness of the tree was also tested, but the
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Figure 4.17: Choice of the number of features in the list of the feature importance from model.
The AUC is computed on 200 repetitions of test datasets.

Figure 4.18: List of the 22 first model extracted features ordered by importance, the correlated
features were removed. Color code: tissue quality parameters (pink), electrical parameters or
extracted features (green) and parameters or extracted features involved in the EMDF (blue).

default mode was the best.
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Figure 4.19: Choice of the number of trees/estimators. The AUC is computed on 200 repetitions
of test datasets.

Figure 4.20 shows the Area Under Curve (AUC) for the prediction of response to the CRT. After 200

cross validation rounds, the predictive performance was excellent with a final AUC of 0.86±0.07.

The optimal threshold was taken to maximize the geometric mean of sensitivity and specificity

(known as G-mean: Equation 2.11) with a sensitivity = 0.74 and a specificity = 0.82.

Figure 4.20: ROC curve of the RF classifier on model-extracted features with the 22 first features,
500 estimators and 200 cross-validation repeats. The AUC is computed on the 200 test datasets.

4.6.3 Discussion

The main contribution of this work is the analysis of the added-value of model-based features

to predict CRT response. For this purpose, a complete digital twin database was created based

on a clinical database of CRT candidates. A hybrid explainable pipeline, combining in-silico and

supervised ML models, was proposed.

This classifier turned out to bemore efficient than the one created based on the features extracted

from clinical and echocardiographic pre-implantation data. Moreover, the strain extracted features
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seems to have a positive effect on the prediction compare to the literature that are principally

based on a reduce number of clinical available features [13, 21, 48, 49]. However, these predictor

models are hard to compare due to the different data and features used as inputs and the criteria

of CRT response or endpoint [50].

As an extension of the previous part, the following step was to predict the response of CRT eligible

patients based on their digital twins. A classical machine learning classifier was put in place

and provided very interesting result but in addition to the classification, the feature selection is

an extra value. In fact, by providing the importance of the digital twin extracted features in the

classification, this demonstrates the informative quality of the features. Electrical parameters,

tissue quality parameters and parameters involved in the EMDF are all represented in the feature

importance analyses and the statistical test. In the RF-based feature importance estimation, half

of the twenty-two-first features are model parameters or simulation extracted features involved

in the electromechanical coupling. These twenty-two features are not particularly correlated to

each other (<0.6).

In this study, we can notice that lateral and septal segment are overrepresented in the most

important features. This confirms the fact that these two walls analyzed thanks to the 4-chambers

views in echocardiography must be prioritized during the selection of CRT eligible patients and

specially their asynchrony [10, 51ś53]. Cikes et al. [14] stated that individuals who do not respond

to CRT typically exhibit low strain in the apical septal region. This observation aligns with the fact

that the septal segments, tend to experience the highest rebound stretch. In simpler terms, the

lack of effectiveness in myocardial systolic strain is most pronounced in these segments [54].

A combination of the clinical, strain-extracted and model-based features were tested as inputs of

a RF classifier. No significant added value was observed compared to the model-based features

only, presented before (Figure 4.20). Further work is needed to explore methods that could take

advantage of these different type of features.

4.7 Conclusion

This chapter proposes combined approaches based on personalized cardiovascularmodeling and

ML algorithms. These original methods aim at improving the interpretability of the ML algorithms

by explicitly integrates meaningful physiological knowledge through the proposed computational

model. Moreover, they also bring the physiological model closer to the clinical practice by using

a complete patient database and adapting its level of abstraction to the one provided by the

experimental measurements.

Model-based approaches improve the understanding of LV mechanics and the assessment of

heart function in patients undergoing CRT, and ML phenotyping helps in the characterization and

classification of HF patient profiles and could prioritize particular patients to a CRT implantation.
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These novel approaches have great potential clinical implications, suggesting personalization of

patient care. They provide new strain-derived parameters to use in the selection of CRT candidate

and fill the lack of mechanical analyses needed to understand the non-response of 30% of the

implanted patients [55].
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Myocardial Work Estimation in Aortic

Stenosis Case

Chapter

5

Aortic stenosis (AS) is themost common primary valvular heart disease, leading to an intervention

with growing prevalence due to the aging population [1]. Current recommendations state that

Aortic Valve Replacement (AVR) is a class I indication in cases of symptoms or reduced left

ventricular ejection fraction (LVEF, <50%). Whatever, LVEF is preserved in many patients with AS

even when symptoms develop. Stratification of pre-operative and post-operative risk of each

patient is currently challenging. Unfortunately, valvular parameters such as Aortic Valve Area

(AVA) and transvalvular gradient did not permit an ideal risk stratification [2, 3]. Several studies

suggest the additional value of Global Longitudinal Strain (GLS) to better stratify this population.

Magne et al.[4] demonstrated in a meta-analysis that GLS <14, 7% with preserved LVEF increased

with an OR of 2.6 risk of death. Despite these results, GLS is not widely used in clinical routine.

A possible explanation is the after-load dependence of GLS [5]. Indeed, GLS decreases with

the increasing LV after-load, that is why an after-load independent feature to better describe LV

function would be necessary.

Myocardial Work (MW) is a very promised new tool to assess more precisely LV function [6, 7]

taking into account LV after-load. Its efficiency in patient’s stratification has already been sug-

gested in cardiac resynchronization therapy [8, 9], hypertrophic cardiomyopathies [10], and mitral

regurgitation [11]. However, in order to calculate the MW, an accurate estimation of the pressure

curve is needed. Russell et al. [6, 12] have proposed a non-invasive method for the estimation LV

pressure based on a black-box non-linear method that fits a reference waveform to the duration of

the isovolumic and ejection phases of a given patient, as measured by echocardiographic timing

of aortic and mitral valve events. Peak LV pressure was estimated from a non-invasive cuff-based

measurement of the brachial artery pressure [13]. Thanks to this pressure curve estimation, a

MW computation tool was developed for these patients with normal or subnormal afterload [6].

However, this pressure estimation method could not be applied in the case of AS, where high

pressure gradients could be observed between LV and the aorta. Fortuni et al [14]. have adapted

the pressure estimation method by calculating peak LV pressure as the sum of mean aortic

transvalvular gradient and aortic systolic pressure to calculate MW for this type of patient. On the

other side, our team recently proposed a novel model-based approach to assess non-invasively

LV pressure and MW in AS patients [15].

The objective of this chapter is to improve the model-based approach to assess non-invasively LV

pressure proposed in our team [15, 16], and then compare and evaluate the LV pressure estimation
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with the adapted method of Russel et al. [6, 12] by Fortuni et al. [17]. As the essential part of the

MW determination is the estimation of LV pressure, pressure curves calculated with each method

were compared with the invasively computed in severe and moderate AS patients.

This chapter follows the work published in the European Heart Journal [18] and preliminary studies

presented in two conferences, with an oral presentation and a conference paper for the first [19],

and a poster for the second [20].

5.1 Data

5.1.1 Population

Sixty-seven adults (>18 years old) with severe (AVA < 1 cm2, n=62) and moderate (n=5) AS, who

underwent a coronary angiography with Left Heart Catheterization (LHC), were prospectively

included. Ten patients were excluded from the final analysis because of atrial fibrillation, con-

comitant significant aortic regurgitation, or incomplete set of images for getting robust GLS

measurements. The study was carried out in accordance with the principles outlined in the Decla-

ration of Helsinki on research in human subjects and received specific ethical approval from the

local Medical Ethics Committee. All patients were informed, and a consent was obtained.

5.1.2 Echocardiography

All patients underwent a standard Trans-Thoracic Echocardiography (TTE) using a Vivid S70 or

E95 ultrasound system (General Electric Healthcare, Horten, Norway). Images were recorded on a

remote station for off-line analysis by dedicated software (EchoPAC PC, version BT 202, General

Electric Healthcare, Horten, Norway). Aortic and mitral valve events were manually evaluated in

apical long-axis view: mitral valve closure (MVC), aortic valve opening (AVO), aortic valve closure

(AVC), and mitral valve opening (MVO). Standard speckle tracking strain analysis was applied in

order to extract regional myocardial strain curves. The AVA (cm2) and mean pressure gradient

were also quantified according to current recommendations.

5.1.3 Invasive ventricular pressure

The LHC was performed via retrograde access from the radial artery with a 5 French Judkin R4

catheter (ICU Medical, San Clemente, CA, USA) placed at the mid LV cavity using fluoroscopic

screening. It has been performed with cautious to optimize the quality of the recording but using

the catheter people are used to. Before coronary angiography, transducers were calibrated, with

a 0-level set at the mid-axillary line. In a second time, a catheter was placed in the thoracic

ascendant aorta to measure aortic pressure. The experimental invasive data set includes the

measured ventricular pressure P exp
lv , the systolic and diastolic arterial pressures.

148 Myocardial Work Estimation in Aortic Stenosis Case



5.1.4 Patient characteristics

The baseline characteristics of the population are depicted in Table 5.1. The continuous variables

are presented as mean ± standard deviation in the case of normal distribution, as median (in-

terquartile range) in the non-normal distribution case, categorical variable as absolute frequencies

and percentage.

Variables Overall (N )

Age (years) 82 (79, 85)

Male (%) 38 (57%)

NYHA > I and II 28 (42%)

AF (%) 14 (31%)

HB (mmol/L) 12.2 ± 1.5

Previous MI (%) 33 (49%)

Creatinine (µmol/L) 101 (74.0, 102)

BMI (kg.m2) 26.8 ± 4.3

BSA (m2) 1.78 ± 0.18

DBP (mmHg) 59.5 ± 22.5

LV mass (g.m−2) 153 ± 61

V max (m.s−1) 3.68 ± 0.84

LV root diameter (m2) 21.9 ± 1.8

LVEDV(ml/m2) 46.6 ± 27.7

LVEF (%) 59 (52, 68)

LV GLS (%) -15.0 ± 4.0

LV SVi (mL/m2) 12.7 ± 3.2

Mean E/e’>14 (%) 35 (52%)

AV mean gradient (mmHg) 49.8 ± 14.8

AVA (cm2) 0.769 ± 0.236

SPAP (mmHg) 43.2 ± 16.0

Table 5.1: Clinical and echocardiographic characteristic for the overall population. NYHA: New-
York Heart Association, AF: atrial fibrilation, HB: hemoglobin, MI: myocardial infraction, BMI:
body mass index, BSA: body surface area, DBP; diastolic blood pressure, LV: left ventricle, V:
velocity, LVEDV: LV end-diastolic volume, LVEF: Left Ventricle Ejection Fraction, GLS: global
longitudinal strain, SVi: systolic volume index, AV: aortic valve, AVA: Aortic Valve Area, SPAP:
Systolic Pulmonary Artery Pressure.

The population had a mean age of 82 years. The majority of patients was males (57%), with 58%

of NYHA class Iś II and 42% of NYHA class IIIśIV. All the patients suffering from severe (93%) or

moderate AS with a mean AVA equal to 0.77 cm2.The LV pressure and work indices extracted

from invasive measurement are summarized in Table 5.2. The overall population presents a mean

GWW higher than normal [21] (459 mmHg.%) and a mean GWE reduce (83%).
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Variables Overall (N )

Invasive LV SBP (mmHg) 184 (164, 205)

Aortic DBP (mmHg) 72.7 (55.0, 81.5)

Aortic SBP (mmHg) 144 (119, 166)

GWI (mmHg.%) 1273 ± 1128

GCW (mmHg.%) 2357± 913

GWW (mmHg.%) 459 (207, 610)

GWE (-) 0.823 (0.744, 0.917)

Table 5.2: LV pressure and work indices computed with invasive LV pressure (SBP: systolic blood
pressure, DBP: diastolic blood pressure).

5.2 Method

Twomethod of LV pressure estimation will be compared to the invasive one. These two estimated

LV pressure curveswill be used and compared in the computation ofmyocardial indices previously

described (Section 2.2.2) to the one computed with the experimental pressure curve.

5.2.1 Model

The firstmethod used amodel to simulate the LV pressure curve of each patient. In this subsection

the model will be described as well as the process of specification for each AS patient.

Model description

Four main sub-models, based on previous works of our team [22, 23], were coupled:

1. Cardiac electrical system,

2. Elastance-based cardiac cavities,

3. Systemic and pulmonary circulations

4. Heart valves.

The proposed model (Figure 5.2) and the equations have been described in detail in the article of

Owashi et al. [15]. To sum up:

Cardiac electrical system: A set of interconnected cellular automata, adapted from [22, 23]

represents the cardiac electrical activity of the model. Each automaton represents different

cardiac regions that cycle between four electrical activation states:

Ð slow diastolic depolarization (SDD),

Ð upstroke depolarization period (UDP),

Ð absolute refractory period (ARP),
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Ð relative refractory period (RRP).

Figure 5.1 represents the nine automata:

Ð the sinoatrial node (SAN),

Ð the right and left atria (RA and LA),

Ð the atrioventricular node (AVN),

Ð the upper bundle of His (UH),

Ð the bundle branches (RBB and LBB),

Ð the two ventricles (RV and LV).

The electrical activation of the automata is used to synthesize an Electrocardiogram (ECG), from

which the QRS peak was extracted to synchronize the experimental and simulated signals.

Figure 5.1: Cardiac electrical system with the sinoatrial node (SAN), the right and left atria (RA
and LA), the atrioventricular node (AVN), the upper bundle of His (UH), the bundle branches (RBB
and LBB), and the two ventricles (RV and LV).

Elastance-based cardiac cavities: The ventricular (v) pressure is represented by a combination of

end-systolic (es) and end-diastolic (ed) pressure-volume relationships [24, 25]. These relations are

driven by time-varying elastances Ees and Eed that represent contraction and relaxation phases.

Pes(V ) = Ees(V − Vd) (5.1a)

Ped(V ) = P0(eλ(V −V0) − 1) (5.1b)

P (V ) = e(t)Pes(V ) + (1 − e(t))Ped(V ) (5.1c)

For the atrium (a):

Pa(Va, t) = Ea(t) · (Va(t) − Vd,a) (5.2a)
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Ea(t) = Ea,max · (ea(t) +
Ea,min

Ea,max
) (5.2b)

For the right and left ventricles (v), a łdouble Hillž driving function e was selected [26] with

parameters n1, n2, α1, α2 and k, while a Gaussian function was used for right and left atria (a)

with parameter C and B:

ev(ts) = k ·







ts

α1·T

)n1

1 +


ts

α1·T

)n1



 ·





1

1 +


ts

α2·T

)n2



 (5.3a)

ea(ts) = exp(−Bla · (t − Cla)2) (5.3b)

The onset of the cardiac cycle, denoted ts, is determined by the activation instant of the corre-

sponding segment in the cardiac electrical model presented in the previous section. The first and

second terms in Equation 5.3a represent ventricle segment contraction and relaxation presented

after an electrical activation, respectively. T is the heart period, α1, α2 are shape parameters, and

n1, n2 control the steepness of the curve. These four parameters (α1, α2, n1, n2) are assumed

positive.

Systemic and pulmonary circulations: The model integrates the pulmonary and systemic arteries,

capillaries, and veins [27]. Arteries and veins compartments pressure P is calculated using a

linear relationship between its volume P and its elastance E. The volume of each cardiac or

vessel chamber is computed from the net flow Qint − Qout:

∆V (t) =

∫

(Qint − Qout)dt (5.4)

The pressures are then used to calculate blood flow between two chambers as:

Q =
∆P

R
(5.5)

where ∆P is the pressure gradient between the chambers and R the corresponding resistance.

Cardiac valves: A detailed model of heart valves (mitral, aortic, tricuspid and pulmonary) was

integrated [28]. Briefly, the relation between the pressure gradient ∆P and the fluid flow Q across

an open valve is approximated by the Bernoulli equation:

∆P = Bq♣q♣ + L
dq

dt
, with L = ρ

leffao

Aeff
(5.6)

The cardiac valve model integrates the effective cross-sectional area of the valve Aeff with its

dynamic ξ:

Aeff (t) = (Aeff,max − Aeff,min)ξ(t) + Aeff,min (5.7)

152 Myocardial Work Estimation in Aortic Stenosis Case



Figure 5.2: Cardiovascular model for AS patients with the pressures (P ) and volumes (V ), resis-
tances (R) and elastances (E) for the pulmonary arteries (pa), pulmonary veins (pv), aorta (ao),
systemic arteries (sa), systemic veins (sv), vena cava (vc), left atrium (LA), left ventricle (LV );
right atrium (RA) and right ventricle (RV )

where

Aeff,max = Mstao.Aannao (5.8a)

Aeff,min = Mrgao.Aannao (5.8b)

They correspond respectively to the maximum and minimum valve areas and Aannao to the

estimation of the aortic valve area. And the rate of opening ξ describes the dynamic of the valve

position in response to ∆P .

dξ

dt
=

{

(1 − ξ) · Kvo · ∆P if∆P ≥ 0

ξ · Kvc · ∆P else.
(5.9)

Kvo and Kvc are the rate coefficients for valve opening and closure, respectively.

A sum up of the parameters and their baseline values is proposed in Appendix C (Table C.1).
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Sensitivity analysis

Sensitivity analysis through the Morris ’screening method [29] was performed to determine

the most influential parameters of two model outputs: LV pressure gradient (∆P ) and Stroke

Volume (SV). The method was introduced in Section 2.1.2 consists in generating several random

trajectories through the parameter space. Each trajectory is associated with an estimation of the

Elementary Effects EEi, defined for a parameter xj :

EE∗

j =

∣

∣

∣

Y ([x0, . . . , xj , . . . ]) − Y ([x0, . . . , Xj + ∆, . . . ])

∆

∣

∣

∣
(5.10)

where Y is an output of the model and ∆ is a predefined variation such as ∆ = p
2(p−1) . The

parameter p and the number of trajectories r were equal respectively to 6 and 30. EEj are

calculated r times, and the mean of absolute value µj∗ and standard deviation σj of these r

realizations are then computed for each parameter j. Di index gathered this two-sensitivity

measure. The different index computations were described in Section 2.1.2. In this study the

sensitivity analyses were applied on 80 parameters with ranges selected from previous work and

literature ±30%.

Model specification and LV pressure estimation

Based on the results of the sensitivity analyses, a set of parameters is selected for patient-specific

model identification. This identification was implemented with an Evolutionary Algorithm (EA).

This type of algorithm consists of making evolve a population of set of parameter values X in

order to minimize an error function Jerror by selecting, crossing and mutating the population

through generations. Amore detailed presentation of the EA and its implementation was proposed

in Section 2.1.3. The function Jerror was redefined after several tests, including the addition of

computed LV volume and flow curves (thank the echocardiographic speckle tracking images of

the LV and the measurement by Doppler imaging of the blood velocity through the aortic valve).

The final Jerror function aims at minimizing the error between LV systolic and diastolic pressures

Pao,sys and Pao,dias as well as the mean aortic valve pressure gradient ∆P from experimental

(exp) measurements and simulated by the model (model):

Jerror = ♣P exp
ao,sys − P model

ao,sys ♣ + ♣P exp
ao,dias − P model

ao,dias♣ + ♣∆P exp − ∆P model♣ (5.11)

Two model parameters are fixed for each patient:

Ð T is the duration of a cardiac cycle measured in ECG.

Ð The Aortic Valve Area (AVA) measured in TTE

Other error functions Jerror were explored during this thesis. Some used the entire invasive LV

pressure curve, other not ∆P and exploratory research tried to used LV volume. The computation
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of the LV volume was done using a technique developed in the team [30] using the 2- and 4-

chamber echo-views and reconstruct the volume using the speckle tracking of these 2D views.

5.2.2 Template-based method of LV pressure estimation

As suggested by Russel et al. [6], valvular timings (MVC, AVO, AVC and MVO) obtained from

TTE may be used to estimate a normalized, patient-specific LV pressure curve. A predefined LV

pressure curve template, calculated from the average of observed data in previous works of the

group, is temporally adjusted and scaled in amplitude so as to fit the observed valvular timings

and non-invasive systolic pressure value of a given patient. Mean aortic valve pressure gradient,

estimated with echocardiography, was added to the instantaneous systolic pressure value to

scale the normalized AS patient-specific LV pressure curve [14]. This method leads to a template-

based estimate of a patient-specific LV pressure curve P template
lv which was directly extracted from

the echocardiography workstation (EchoPAC version 202, General Electric Healthcare, Horten,

Norway). The method is summarized in the top right part of Figure 5.3.

5.2.3 MW computation

As previously introduced in Section 2.2.2MW indiceswere calculated from strains and LV pressure,

as proposed by Russell et al. [12]: The instantaneous power was first obtained by multiplying the

strain-rate, obtained by differentiating the strain curve, and the instantaneous LV pressure. Then,

segmental MW was calculated by integrating the power over time, during the cardiac cycle from

MVC until MVO (Figure 5.3). From each segmental MW curve, Global Positive (GPW), Negative

(GNW), Constructive (GCW), Wasted (GWW) MW, Global Work Index (GWI), and Global Work

Efficiency (GWE) parameters were calculated. Detailed description of MW indices could be found

in [13, 15]. GPW(respectively GNW) is defined as the shortening (respectively lengthening) between

MVC and MVO. GCW represents segmental shortening during the systole, i.e. effective energy for

blood ejection, and lengthening during IVR, whereas GWW corresponds to segmental stretching

during the systole, i.e. energy loss for blood ejection and shortening during the isovolumic

relaxation phase. GWE is defined as the global work efficiency as explain in Section 2.2.2:

GWE =
GCW

GCW + GWW
(5.12)

And Global Work Index (GWI) is defined as the amount of work performed by the left ventricle

during systole:

GWI = GPW + GNW (5.13)

The MW indices were calculated from experimental and simulated LV pressure, in order to obtain:

Ð Model-based indices: GCW model, GWW model, GWEmodel, GPW model, GNW model, and

GWImodel.

Method 155



Figure 5.3: Myocardial work evaluation from model-based, template-based approaches and
experimental invasive measure. On the left, the model-based method with the Aortic Valve Area
(AVA), the mean aortic valve pressure gradient (∆P exp), the LV systolic and diastolic pressures
(P exp

ao,sys and P exp
ao,dias) as inputs. On the right, the template-based method with the LV systolic

pressure (P exp
ao,sys), the mean aortic valve pressure gradient (∆P exp) and the valve timings: Mitral

Valve Closure (MVC), Aortic Valve Opening (AVO), Aortic Valve Closure (AVC), and Mitral Valve
Opening (MVO). At the end (bottom), we can compare the six MW indices (GCW, GWW, GWE,
GPW, GNW and GWI) of the model and the template with the experimental ones (exp)
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Ð Template-based indices:GCW template,GWW template,GWEtemplate,GPW template,GNW template,

and GWItemplate.

Ð experimental indices: GCW exp, GWW exp, GWEexp, GPW exp, GNW exp, and GWIexp.

5.3 Result

5.3.1 Model

Baseline simulations

Figure 5.4: Simulation examples provided in a Wigger diagram format of a) a healthy subject and
b) an aortic stenosis patient.

Figure 5.4 illustrates the hemodynamic simulation results of the proposed computational model

in a Wigger diagram format. Concerning the healthy subject, systolic LV pressure is equal to 145

mmHg, and the aortic pressure varies between 50 and 145 mmHg. AS was represented as a
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decrease in the Aeff,max parameter (from 2.5 to 0.75 cm2). We can observe an important gradient

pressure between LV and aorta, characteristic of an AS patient, in which the narrowing of the

aortic valve opening evokes an LV pressure overload.

Sensitivity analysis

Concerning sensitivity analysis results (Figure 5.5), the most influential parameters of ∆P were

mainly related to the aortic valve sizes and the LV elastance, which underline the direct impact of

the aortic narrowing of this pathology on the gradient pressure [28]. In fact, leffao
and Aannao

correspond to the aortic valve length and area,modulated byMstao and used in the valve dynamics

computations (Equation 5.6, Equation 5.7). In addition, parameter such as α2, n1 and λLV are

used in the computation of LV pressure through the driving function and end-diastolic pressure.

Modification of these parameters not only change the maximum value of the LV elastance but

also its timing and pattern.

Figure 5.5: Sensitivity analysis on ∆P . The ten most influential parameters are presented and
ordered based on their Dj value.

The parameters with the highest sensitivities were selected for parameter identification.

5.3.2 LV pressure estimation

Model-based

Figure 5.6 presents the comparison between model-based (P model
lv ) and invasive (P exp

lv ) pressures

obtained for the 67 AS patients. The mean correlation coefficient (r2) was equal to 0.81 (min:

0.23; max: 0.99). Mean slope and intercept of the regression line between the simulated and the

measured pressure data were 0.94 (min: 0.49, max: 1.27) and -8.30 mmHg (min:-42.4, max: 21.9),

respectively. The mean RMSE was equal to 33.9 mmHg (min: 9.15, max: 90.4).

158 Myocardial Work Estimation in Aortic Stenosis Case



Figure 5.6: Model-based LV pressure curves comparison of 67 patients: experimental (black),
and simulated (green) curves.

Template-based

Similarly, a comparison was performed between template-based estimation (P template
lv ) and

experimental pressure (P exp
lv ) and provides in Figure 5.7. Mean RMSE was equal to 40.4 mmHg

(min: 14.0, max: 89.2), mean r2 is 0.72 (min: 0.25, max: 0.99), mean slope and mean intercept

to 0.84 (min: 0.45, max: 1.21) and 23.8 (min: 5.87, max: 64.1), respectively. Despite results are

slightly better for the model-based LV pressure estimation, the difference is not significant to

conclude for a superior method.

5.3.3 MW comparison

Model-based

Model-based MW Scatter and Bland-Altman plots for GCW, GWW, GWE, GPW, GNW and GWI

indices are presented in Figure 5.8. Concerning constructive work, slope and intercept of the
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Figure 5.7: Template-based LV pressure curves comparison of 67 patients: experimental (black),
and estimated (pink) curves.

regression line between estimations and measures were 0.79 and 251 mmHg.%, and r2=0.81. In

Bland-Altman analysis, the mean bias of estimation is ś251 mmHg.%. For wasted work, slope and

intercept of the regression line between estimations and measures are 0.84 and ś39.3 mmHg.%

and r2=0.91. In Bland-Altman analysis, the mean bias of estimation is -32. 0mmHg.%. For work

efficiency, slope and intercept of the regression line between estimations and measures are 1.00

and ś0.003 and r2=0.92. In Bland-Altman analysis, the mean bias of estimation was -0.007. For

GCW, GWW, and GWI the slope and intercept were 0.74 and 327 mmHg.%, 0.83 and 59.6 mmHg.%,

0.77 and 148 mmHg.%, r2 were 0.76 , 0.80 , and 0.77 and the mean bias were ś214 mmHg.%,

ś70.0 mmHg.%, and ś144 mmHg.%, respectively. The negative mean bias observed on all the

Bland-Altman analyses could be explained by an under-estimation of MW indices due to a slight

advance observed in LV estimated pressure curves in most of the patients with this method.
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Figure 5.8: Results of global work indices’ comparison, on all patients for model-based method.
Scatter plots and Bland-Altman analysis of: a) Global Constructive Work (GCW), b) Global Wasted
Work (GWW), c) Global Work Efficiency (GWE), d) Global Positive Work (GPW), e) Global Negative
Work (GNW), f) Global Work Index (GWI).
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Template-based

Template-based MW Figure 5.9 presents the comparison between template-based and invasive

indices. Despite an overestimation of all the indices, the quality of the result is similar, with a

good correlation coefficient. For GCW, GWW, GWE, GPW, GNW and GWI, slope and intercept of

the regression line between estimations and measures were 0.86 and 413 mmHg.%, 0.90 and 103

mmHg.%, 0.89 and 0.08, 0.71 and 576mmHg.%, 0.88 and 251mmHg.%, 0.69 and 216mmHg.%with

r2=0.66, r2=0.93, r2=0.93, r2=0.60, r2=0.82, and r2=0.72, respectively. In Bland-Altman analyses

the mean bias were 76.8 mmHg.%, 57.4 mmHg.%, ś0.013, ś19.2 mmHg.%, 156mmHg.%, and ś175

mmHg.%, respectively, for the six indices. The bias, here, could be explained by larger pattern of

the LV pressure curve in some patients.

In order to propose another error computation and better understand the results, we also calculate

for each patient and each MW indices, the relative error:

Xexp − Xestimated

Xexp
, for X ∈ ¶GCW, GWW, GWE, GPW, GNW, GWI♢ (5.14)

These results are gathered with the regression line summary in Table 5.3 for the two methods.

We can notice that GCW, GWW and GWE, where the bias is lower, have reasonable relative error

(in %) with 14.77%, 16.51%, and 3.10% for the model-based method and 18.38%, 26.70%, and 2.97%

for the template-base method, respectively, for these three indices.

5.4 Discussion

A model-based and template-based method were evaluated against invasive hemodynamic as-

sessment of LV-pressure in a prospective cohort and results shown the validity of the estimations

made in patients with an AS, combining the mean pressure gradient to the software currently

commercially available. MW indices can thus be easily applied in routine clinical practice.

5.4.1 Estimation of LV pressure and MW indices

Concerning the evaluation of LV pressure, both methods show a good agreement between

estimated and measured pressure waveforms. To our knowledge, our study is the first to provide

a quantitative comparison between two estimated LV pressures and invasively measured curves

in the context of AS on such a database. Moreover, myocardial indices calculated with the two

estimation methods were compared with indices calculated with invasive pressures. Model-

based method allows for the in-silico assessment of MW indices, while integrating physiological

knowledge. This method has the advantage of requiring only AVA, pressure gradient evaluated

in echocardiography, systolic and diastolic pressure values. The computational model directly

integrates a representation of the pathophysiology of the aortic valves and takes into account
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Figure 5.9: Results of global work indices’ comparison, on all patients for template-based method.
Scatter plots and Bland-Altman analysis of: a) Global Constructive Work (GCW), b) Global Wasted
Work (GWW), c) Global Work Efficiency (GWE), d) Global Positive Work (GPW), e) Global Negative
Work (GNW), f) Global Work Index (GWI).
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Indices Model-based Template-based

GCW Slope 0.79 0.86

Intercept 250.71 413.05

r2 0.81 0.66

Relative error 14.77 18.38

GWW Slope 0.84 0.9

Intercept 39.30 103.26

r2 0.91 0.93

Relative error 16.51 26.70

GWE Slope 1.00 0.89

Intercept 0.00 0.08

r2 0.92 0.93

Relative error 3.10 2.97

GPW Slope 0.74 0.71

Intercept 326.95 575.93

r2 0.76 0.60

Relative error 19.82 21.13

GNW Slope 0.83 0.88

Intercept 59.57 250.92

r2 0.80 0.82

Relative error 29.04 46.24

GWI Slope 0.77 0.69

Intercept 147.56 216.36

r2 0.77 0.72

Relative error 85.21 65.89

Table 5.3: Results of the six myocardial work indices line regressions between computation with
invasive and estimate LV pressure curves for the model-based and template-based methods.

characteristics associated with the subject and pathology. Compared withmodel-based approach,

template-based estimations require additional information related to aortic and MVO and closure,

which should bemanually identified on apical 3-chamber view and pulsedwaveDoppler recordings.

Consequently, evaluations of valve timings could be cumbersome. Despite the manual evaluation

of valvular events, the template-basedmethod appears to bemore appropriate in a clinical context.

In fact, LV pressure and work indices could be directly extracted from the echocardiography

workstation, whereas the model-based method implies an off-line procedure associated with a

computational cost. Although template-based method could be privileged in clinical practice,

model-based approach could be interesting for the evaluation of retrospective databases that do

not integrate valve timings.
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5.4.2 Work estimation

Despite the imprecise evaluation of LV pressure in both cases, the estimation of LV work in-

dices strongly correlates with invasive measurements [13]. Model-based and template-based

approaches appear as accurate methods for the estimation of MW in AS. This good correla-

tion of all the works indices despite the imperfect estimation of LV pressure curves could be

explained by different points. First, the temporal integration during the work computation induces

a smoothing of the error between experimental and estimated work in both methods. Moreover,

the computation of the indices uses only the pressure curve between AVO and AVC. This issue of

using LV pressure estimation in order to analyze the MW could be avoided by using other indices

based only on strain curves [31].

5.4.3 Myocardial function for AS patients

Current guidelines recommend surgical AVR in patients with Severe AS who have symptoms, or

those who have reduced LVEF. The LVEF considered up to now was 50%, but recent papers clearly

showed that already for LVEF reaching 55ś60%, patient prognosis is already dismal [32, 33]. The

severity of AS is not assessed merely by gradient and valve area, but also resides in the interplay

between increased LV-after-load of a stenotic valve and its deleterious effects on the myocardium.

In a subpopulation of patients with long-standing AS that does not improve after intervention,

with increased morbidity and mortality, adverse and irreversible LV-remodeling has often been

implicated [34]. Prior meta-analysis revealed that asymptomatic severe AS patients who were

treated with a watchful-waiting strategy had a 3.5-fold higher rate of all-cause mortality at 4 years,

compared with those who underwent early AVR [4]. Also, Taniguchi et al.[35] demonstrated in

a propensity score-matched analysis that patients treated with the initial AVR strategy had a

lower risk of all-cause death and heart failure requiring hospitalization, than patients treated with

a conservative strategy. Several studies underscore the relevance of a precise assessment of

the myocardial consequences of the severe AS. Load is a key factor that impacts parameters

quantifying LV systolic function. MW provides a unique opportunity to assess, with much less

load dependent, LV systolic function in AS patients [36, 37]. The classic ’pressureśvolume’ loop,

from invasive hemodynamics, has formed the basis of our understanding of the contributions

of preload, after-load, and contractility to LV systolic function. The ’area’ within this loop is

referred to as LV stroke work and was the first way to conceptualize MW. It was followed by

’pressureśstrain’ loop and the MW indices that offer a complementary picture of LV systolic

function. Also, Jain et al. [38] underline that LV function do not fully recover in days and months

following Transcatheter Aortic Valve Replacement. (TAVR). By comparing this index pre- and post-

TAVR, they demonstrated that GLS improved as MW reduced in patients treated with TAVR for

severe AS. Strain indices and MW appear particularly promising, providing a sensitive evaluation

of LV function that could guide for potential earlier-TAVR for pauci-symptomatic patients. One

limitation of this paper is to treat almost only patient with severe AS. Still large randomized trials

Discussion 165



are needed for confirming the value of echo-parameter and to demonstrate that currently, we

might propose valve replacement at a late timing according to the heart consequences of the

chronic increase in afterload related to the AS.

5.5 Conclusion

The two non-invasive methods of LV pressure estimation and the work indices computation

correlate with invasive measurements and computations for as patients. Although the model-

based approach requires less information and is associated with slightly better performances,

the implementation of template-based method is easier and seems more appropriate in a clinical

practice.

In both cases, it permits to provide an effective tool to assess more precisely LV function and

help in the patient stratification of this particular population.
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Sudden Cardiac Death Prediction in

Hypertrophic Cardiomyopathy Patients

Chapter

6

As mentioned in Section 1.3.3, Hypertrophic CardioMyopathy (HCM) represents a major cause of

Sudden Cardiac Death (SCD), particularly in the young people, with a risk of about 1% per year

[1, 2]. Hypertrophied myocardial areas are characterized by myocardial disarray, interstitial and

focal fibrosis constituting the substrate of ventricular arrhythmias which classically occurs in

addition to an excess of sympathetic tone (e.g. exercise, stress) and/or ischemia (e.g. functional

ischemia, specific small vessel disease) [3, 4].

Primary prevention of SCD is based on Implantable Cardiac Defibrillator (ICD) with good effective-

ness but at the cost of an invasive procedure and device complications including infection and

inappropriate shocks [5]. Identification of patients at risk of SCD is still a major clinical challenge.

Current international guidelines rely on retrospective evaluations of old HCM cohorts and are

based on limited and pre-selected clinical and imaging predictor variables to select patients at

risk of SCD [6, 7]. As a consequence, the European Society of Cardiology (ESC) five years risk of

SCD score demonstrates relatively weak performance, with a C-index of 0.69 to identify SCD [6].

In comparison to classical statistical analysis, machine learning allows a hypothesis-free and

data-driven approach, processing a larger amount of various parameters to generate dynamic

self-learning models [8, 9]. In this context, left ventricle global longitudinal strain (LV-GLS) is a

promising tool that has already shown relevance in the detection of ventricular arrhythmias in

HCM patients [10].

Cardiac magnetic resonance imaging reveals the presence of myocardial fibrosis and disarray in

HCMpatients, which is linked to a higher likelihood of ventricular arrhythmias. These findings align

with a mechanical decrease and temporal delay in the segmental LV longitudinal strain of affected

regions [10ś14]. This suggests that the excessive mechanical and temporal heterogeneity in the

deformation of the left ventricular myocardial wall could indicate significant histological and

electrophysiological remodeling at high arrhythmogenic potential.

In this chapter, we sought to investigate whether a machine learning model using heterogeneous

data: clinical and imaging variables in addition to left ventricular longitudinal strain information

could be relevant for the prediction of SCD risk in HCM patients. It is also a perfect example of the

use of signal and data processing in a complete machine learning process and could be placed

on the right part of our methodological thesis illustration.
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This chapter follows the work submitted as co-first author with Adrien Al Wazzan and presented

at EACVI congress [15]

6.1 Data

6.1.1 Population

535 consecutive patients with HCM established according to current guidelines [16] were retro-

spectively enrolled between 2008 and 2019 from two tertiary centers: the University Hospital

of Rennes, France and the University Hospital of Oslo, Norway. The exclusion criteria were as

follows: lack of a complete echocardiographic assessment, insufficient image quality enabling the

analysis of echo data, age < 18 years, history of Acute Coronary Syndrome (ACS) and significant

Coronary Artery Disease (CAD). 434 patients were left. The study was conducted according to

the Declaration of Helsinki and approved by internal review boards of each center. All patients

provided informed consent for the conduction of the study.

6.1.2 Clinical and Imaging data

All patients underwent a standard and 2D-speckle-tracking transthoracic echocardiography at

baseline using a Vivid 7, E9, or E95 ultrasound system (GE Healthcare, Horten, Norway). The

2D, color Doppler, pulsed-wave, and continuous-wave Doppler data were stored on a dedicated

workstation (EchoPAC v204; GE Healthcare, Horten, Norway) and offline analysis was made

according to the recommendations [17]. An apical aneurysm was defined as a discrete thin-walled

dyskinetic or akinetic segment [17]. All the echographic measurements were performed blind

to clinical data and events. Clinical data were collected from electronic health records. Other

initial investigations included a 12-lead electrocardiogram (ECG), a 48 hours Holter monitoring, an

exercise stress test, a CMR with Late Gadolinium Enhancement (LGE) sequences, and a genetic

testing for sarcomeric mutations. 12-lead ECGs were analyzed according to recommendations

[18] with automatic measurements for interval, duration and axis and visual assessment for

repolarization abnormalities. Cardiac magnetic resonance imaging was performed within 2 years

after baseline inclusion. The presence or absence of LGE was assessed qualitatively. Exercise

testing was made on a bicycle ergometer with stepped increasing load and continuous ECG

recording. Maximal predicted heart rate was calculated with 220-age formula and predicted peak

work from the Cooper and Storer formula [19].

6.1.3 Outcome and follow-up

Endpoint for ventricular arrhythmias included:

Ð history of Aborted Cardiac Arrest (ACA),
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Ð history of Sustained Ventricular Tachycardia (SVT),

Ð history of appropriate ICD therapy,

Ð SVT during follow-up,

Ð appropriate ICD therapy during follow-up,

Ð aborted cardiac arrest during follow-up,

Ð suspected SCD.

All patients underwent follow-up in accordance with the recommendations, including repetitive

24-48 hours Holter monitoring and ICD interrogation looking for ventricular arrhythmias and/or

appropriate shocks if applicable [16]. Non-Sustained Ventricular Tachycardia (NSVT) was defined

as runs of ventricular beats with duration between ≥3 beats and 30s with heart rate >100 bpm

[20].

Data for events were collected from electronic patient records and from information provided

by the referring cardiologists if available. The risk of SCD was evaluated according to the 2020

AHA/ACC Guideline for the diagnosis and Treatment of HCM [7] and with the 5 years-risk of SCD

score (HCM risk-SCD) of the 2014 HCM guidelines by the European Society of Cardiology (ESC)

[16].

6.1.4 2D LV strain analysis

Left ventricle longitudinal strain by speckle tracking echocardiography was obtained from 2D

apical 2-, 3-, and 4- chamber views at a frame rate of at least 60 m/s, each view containing 6

segments. Endocardial borders were semi-automatically defined andmanually adjusted if needed.

Visual assessment for good quality of wall tracking was done and patients were excluded in case

of insufficient or aberrant tracking. Region of interest was automatically defined between the

endocardial and epicardial borders and adjusted to fit the myocardial thickness. The temporal

window of strain collection was between two R-waves on ECG, R-waves used as zero-reference.

Aortic Valve Closure (AVC) time was automatically defined from the 3ch view. Figure 6.1 presents

three patients strain curves with their three echo-views.

6.2 Method

6.2.1 Feature extraction

The calculated longitudinal strain curves were exported from the EchoPAC software in raw files

containing strain times series and AVC time for each of the 18 segments of the LV, allowing a

virtual reconstruction of LV strain curves for each patient. A standardization consisting of an

upsampling to 500 Hz of the strain curves and elimination of the strain values between 5% and

-5% was applied. From these files, automatic extraction of the strain features was performed as
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Figure 6.1: Strain curves of 3 HCM patients (P1, P2, P3) separated in 3 echo-views:
2-chamber: basal inferior (yellow), mid inferior (cyan), apical inferior (green), apical anterior (pink),
mid anterior (blue), basal anterior (red).
3-chamber : basal anteroseptal (yellow), mid anteroseptal (cyan), apical anteroseptal (green),
apical inferolateral (pink), mid inferolateral (blue), basal inferolateral (red).
4-chamber: basal inferoseptal (yellow), mid inferoseptal (cyan), apical inferoseptal (green), apical
anterolateral (pink), mid anterolateral (blue), basal anterolateral (red).

shown in Figure 6.2 and already fully described in Section 2.2.1. R-wave was used as a reference

for the calculation of all features.

The first comparative step was to compare these strain parameters using different levels of

comparison in order to highlight all potential levels of temporal and/or mechanical heterogeneity

in LV deformation. Thus, LV has been subdivided as follows: segmental (18 segments : s), regional

(each segment s with the four or three segments surrounding it), LV-walls (e.g. anteroseptal AS),

LV pole (basal and apical) and apical chamber views (2-, 3-, 4- chamber views) (Figure 6.2). Strain

minimum value (Smin) and timing (tmin) as well as strain value and timing at the Aortic Valve

Closure (AVC) were extracted (Savc, Tavc) from the curves. The difference between these values

were then computed (Speak − Savc, tpeak − tavc). Estimation of strain integrals during different

time support (Is
peak , I

s
avc and the difference Es) were automatically extracted from these 18 strain

curves as described in previouswork [21, 22]. Comparisonsweremade by calculating the standard

deviation for each parameter at each level.

The second step was to compare the shape of the strain curve considered over the entire cardiac
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Figure 6.2: LV longitudinal strain features extraction and strain shape comparison with DTW
(Dynamic Time Warping) method. For the strain features extraction step, 3 types of parameters
were extracted from each segmental strain curve to be subsequently used in the model:
- temporal parameters (ms): time to peak of strain (tpeak), time to AVC (tavc), difference between
these two (tpeak − tavc).
- mechanical parameters (% of strain): peak value of strain (Speak), strain value at AVC (Savc),
difference between these two (Speak − Savc).
- integration of the first two parameters (area under the curve): integral to peak (Ipeak), integral to
AVC (Iavc), difference between these two (E).
Dynamic time warping (DTW) method compare similarity between two temporal sequences
with different activation time but the same curve shape. At the bottom right, an example with a
segmental LV strain with the average LV strain of the corresponding view.

cycle. In order to highlight only shape differences regardless of time sequence activation, a

Dynamic Time Warping (DTW) method was used to overcome physiological time lag in the onset

of the contraction between LV regions (e.g. base vs apex) (Figure 6.2). Strain curves distance

comparison was performed between each segmental curve (si) and the average curve of the

corresponding apical view (DTW si) after applying DTW method.
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6.2.2 Feature selection

By combining clinical and imaging information with extracted strain features, a dataset of 287

parameters was created. Figure 6.3 illustrates the ML pipeline. Features selection is a preliminary

step that measures the strength of the relationship of variables with the event in order to keep a

reduced set of the most meaningful feature to build the final model. The most effective method

of feature selection was the estimation of coefficients for each variable by a łRidge Regressionž

method. Among the selected features, a high correlation was found between some of the strain

features (correlation index > 0.7) and only the features presenting the highest relative importance

were kept for further analysis after ensuring that it would not affect the model’s performance.

Figure 6.3:Machine learning pipeline. Clinical information and data extracted from LV longitudinal
strain curves were collected for 434 HCM patients. Among the 287 features extracted (220
strain-derived), a sub-selection of the most discriminating features was made according to ridge
coefficient order. Finally, the final performance of the model is obtained after a repeated cross
validation step.

6.2.3 Machine Learning algorithm

The final model was based on a łRidge Regressionž algorithm, which is particularly suitable when

the dataset is highly unbalanced (only 7.8% of the patients with an event in our cohort) and

/or when there are correlations between predictor variables. The ridge regression was trained
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using the reduced sample of the database. The global performance was assessed by a repetitive

cross-validation method, which randomly selects at each round 80% of the population to be

trained (training dataset) and 20% to be tested (test dataset). After N training rounds, based on

N different training and test data sets, the ROC curve and the corresponding AUC of the final

model were estimated (Figure 6.3).

Oversampling and undersampling of the database

Another test was applied on this study, the training set was oversampled and undersampled. The

testing set was unchanged, and this process was also repeated in cross validation 200 times.

The oversampling process is a technique that creates new synthetic points (patients) of the

minority class to better balance the training dataset. The oversampling technique use here was an

Adaptive synthetic sampling (ADASYN) [23]. ADASYN is a technique that generate new synthetic

"patients" depending on an estimate of the local distribution of the class to be oversampled: the

patient with event.

On the other hand, the undersampling process aims at balancing the class distribution for a

classification dataset that has a skewed class distribution. The undersampling used here was a

random undersampling algorithm. For these two resampling, a ratio (α) must be chosen. It is the

number of samples in the minority class over the number of samples in the majority class after

resampling:

α = Nrm/NM (6.1)

where Nrm is the number of samples in the minority class after resampling and NM is the number

of samples in the majority class.

6.2.4 HCM Risk computation

ESC risk score

ESC risk score is a probability of SCD at 5 years [6]. It is calculated using a derived Cox proportional

hazard model:

PSCD = 1 − 0.998eP rognosticIndex (6.2)

with PrognosticIndex = 0.15939858 · Maximal wall thickness (mm) - 0.00294271 · Maximal wall

thickness2 (mm2) + 0.0259082 · Left atrial diameter (mm) + 0.00446131 · Maximal left ventricular

outflow tract gradient (mmHg) + 0.4583082 · Family history SCD + 0.82639195 · NSVT + 0.71650361

· Unexplained syncope - 0.01799934 · Age at clinical evaluation (years).

The value 0.998 is the average survival probability at 5 years).
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AHA risk index

AHA risk index [7] is positive if at least one of the following features is true:

Ð family history of SCD,

Ð Massive LV hypertrophy,

Ð Unexplained syncope,

Ð Apical aneurysm,

Ð LVEF ≤ 50%.

6.2.5 Statistical and machine-learning analysis

A custom-mademethods and algorithms, developed in the Python language, were used to analyze

and extract strain features from the strain times series files. Ridge regression algorithm was

implemented using the Sklearn Python library [24]. The regularization parameter was automatically

chosen by the algorithm. DTW analysis wasmade using a fastDTW algorithm [25]. The clinical and

echocardiographic parameters were statistically analyzed. Quantitative variables were expressed

as mean ± standard deviation, and qualitative variables were given in numbers and percentages.

Univariate analysis was used to identify markers of ventricular arrhythmias by unpaired t-test or

Pearson χ2 where appropriate. Intrinsic performances (Sensitivity, Specificity), corresponding

AUC and extrinsic performances (positive and negative predictive value) have been calculated

for each of the three models (ESC risk score, AHA risk model, and machine-leaning model) using

a threshold of ≥ 4%/5 years (ESC risk score) and ≥ 1 risk factors (AHA risk model) as positive

test and occurrence of the composite endpoint as the event. The threshold for ML-based model

was chosen to maximize the geometric mean of the sensitivity and specificity.

6.3 Result

6.3.1 Study population and outcome

From an eligible population of 535 patients, a total of 434 patients with HCM were finally included

from both centers (201 patients from Rennes and 233 patients from Oslo). 71 patients were

excluded for insufficient image quality, 18 for a history of CAD or ACS, and 12 for technical issues.

Clinical and demographic characteristics of the population are displayed in Table 6.2. The mean

follow-up duration was 6 years. 34 patients (7.8%) experienced VA, mainly during follow-up (11

SVT, 9 suspected SCD, 2 appropriate ICD therapy, and 1 ACA during follow-up, and 5 previous

SVT and 5 previous ACA). The annual incidence of VA was 0.9%/years. Results of the baseline

work-up are shown in Table 6.1.

Figure 6.4 presents the predicted by the ESC risk score and the observed outcome of the popula-

tion.

178 Sudden Cardiac Death Prediction in Hypertrophic Cardiomyopathy Patients



Figure 6.4: ESC risk prediction.

6.3.2 Feature selection

Figure 6.5 shows the 18 most important features selected after the feature selection phase:

Ð 7 derived from LV longitudinal strain analysis,

Ð 2 clinical (unexplained syncope, female gender),

Ð 6 echocardiographic (LVEF < 50%),

Ð apical aneurysm,

Ð apical hypertrophy,

Ð E/A ratio,

Ð mean E/e’ ratio,

Ð left atrial volume),

Ð 1 electrocardiographic (NSVT),

Ð 2 from exercise test (work peak, maximal heart rate).

Among the strain features set, the two most important features were DTW MI and DTW MS ,

representing the difference in curve shape between LV mid-inferior segment and the 2-chamber

view average strain curve and between LV mid-inferoseptal and the 4-chamber view average

strain curve, respectively. Other strain features retained in the feature selection were:

Ð Speak − Savc for the apical anterolateral (apiantlat), the apical anterior (apiant) and the mid

inferior (midinf ) segments: Sapiantlat
peak − Sapiantlat

avc , Sapiant
peak − Sapiant

avc and Smidinf
peak − Smidinf

avc

(which represent the difference between strain value at peak and strain value at AVC for the

corresponding segments),

Ð E for the apical anterolateral segment: Eapiant (difference between integral to peak and

integral to AVC for the apical anterolateral segment)

Ð DTW for the mid anterolateral (midantlat) segment: DTW midantlat .
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Variables Overall Non-event group Event group p value

(N=434) (N=400) (N=34)

Age (years) 56 .29±14.88 56.23±14.94 56.91±14.06 0.799

Male (%) 65.44% 66% 58.82% 0.511

BMI (%) 26.80±4.30 26.79±4.02 26.93±5.29 0.86

HR (bpm) 69.14±58.47 69.57±60.67 64.04±16.96 0.597

SBP (mmHg) 136.63±73.4 137.52±76.24 126.17±19.17 0.388

DBP (mmHg) 78.74±11.51 78.84±11.57 77.47±10.67 0.506

Genetic mutations 44.24% 44.5% 41.18% 0.864

- MYBC3 26.50% 26.5% 26.47% 0.843

- MYH7 11.29% 11.25% 11.76% 0.848

- TNNI3 1.15% 1.25% 0% 0.856

- TNNT2 3.00% 3% 2.94% 0.614

HCM family history 41.24% 41.75% 35.29% 0.580

SCD family history 11.98% 12% 11.76% 0.815

ICD implantation 11.75% 8.75% 41.18% 4.94E-8

Myomectomie/SRT 14.29% 15% 5.88% 0.229

NYHA 0.081

- NYHA 1 25.8% 26.75% 14.71%

- NYHA 2 44.24% 42.25% 67.65%

- NYHA 3-4 16.82% 17.5% 8.82%

Palpitations 24.19% 24.25% 23.53% 0.909

Unexplained syncope 12.44% 11.75% 20.59% 0.219

Arterial hypertension 27.42% 28.75% 11.76% 0.054

Beta-blocker 70.51% 69.75% 79.41% 0.322

Calcium-blocker 13.82% 13.75% 14.71% 0.917

Table 6.1: Baseline work-up characteristics in the overall population and in patients with and
without ventricular arrhythmia.

All the ordered features are provided in Appendix D (Table D.1).

6.3.3 Ventricular arrhythmias prediction

Figure 6.6 shows the area under the Area Under Curve (AUC) for the prediction of ventricular

arrhythmia for each of the three risk models. After N=200 cross-validation rounds, the study’s

risk model has the highest predictive performance with a final AUC of 0.83 ± 0.08 (sensitivity

0.77 ± 0.17, specificity 0.8 ± 0.1). In comparison, ESC risk score (for ≥ 4%/5 years risk of SCD)

and AHA/ACC (for ≥ 1 risk factor of SCD) model exhibit AUC of 0.56 (sensitivity 0.38, specificity

0.83) and 0.61 (sensitivity 0.47, specificity 0.74) respectively (Figure 11). Our model showed a
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Variables Overall Non-event group Event group p value

(N=434) (N=400) (N=34)

Echocardiography

MWT (mm) 19.06±4.26 19.02±4.26 19.59±4.16 0.452

Peak LVOT (mmHg) 24.62±31.02 25.28±31.76 16.85±18.84 0.129

LVH localisation

- Septal 34.56% 35.25% 26.47% 0.353

- Septal + other 46.77% 46.25% 52.94% 0.568

- Apical 12.67% 11.75% 23.53% 0.097

Apical aneurysm 0.92% 0.25% 8.82% 4.36E-5

LVEDD (mm) 45.39±7.66 45.08±7.52 49.03±8.4 0.0038

LVEDD (mm) 30.76±7.44 30.50±7.07 33.79±10.40 0.013

MR

- mild 37.10% 36.5% 44.12% 0.485

- moderate 17.97% 18% 17.65% 0.856

- severe 2.53% 2.75% 0% 0.681

E/A ratio 1.33±1.29 1.27±0.92 2.00±3,36 0.0016

EDT (ms) 226.0±79.84 227.24±78.14 211.88±96.54 0.283

E/e’ mean 12.96±7.15 12.74±6.89 15.58±9.36 0.026

LA diameter (mm) 43.0±7 42.99±7.57 43.44±8.45 0.743

LAV (ml/m2) 43.46±18.43 42.82±17.57 51.06±23.35 0.012

LVEDV (mL) 98.45±37.39 97.54±36.50 109.21±45.24 0.081

LV-EF (%) 65.25±10.32 65.54±9.87 61.82±14.17 0.044

LV-EF (<50%) 5.99% 4.25% 23.53% 3.92E-5

LV-GLS (%) -15.3 (17.6;12.5) -15.3 (17.6;12.7) -14.4 (16.78;10) 0.171

Exercise testing

Peak work (% pred) 87.85±82.71 91.14±62.54 49.15±199.19 0.004

THR (%) 80.80±12.06 81.03±12.08 78.12±11.43 0.178

Holter-monitoring

NSVT history 16.82% 16.00% 26.47% 0.184

ECG

- Q-wave or PRWP 12.21% 12% 14.71% 0.849

- ST changes 11.75% 11.5% 14.71% 0.780

- T-wave inversion 57.14% 56.75% 61.76% 0.700

MRI

LV-LGE 73.50% 72.75% 82.35% 0.402

Table 6.2: Main clinical characteristics in the overall population and in patients with and without
ventricular arrhythmia.
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Figure 6.5: Subset of 18 selected features. Features are classed by decreasing Ridge coefficients
importance. 7 derived from LV longitudinal strain analysis (pink bars), 2 clinical (yellow bars), 6
echocardiographic (green bars), 1 electrocardiographic (gray bar), 2 from exercise test (blue bars).
The lower part of the figure shows the place of other known risk factors that were not included in
the model (MRI indices in black). Mechanical dispersion was defined as the standard deviation
of tmin in the 18 segments.

predictive positive value of 0.27 ± 0.13 and a negative predictive value of 0.98 ± 0.02. ESC risk

score and AHA/ACC model showed a predictive positive value of 0.16 and 0.14, respectively, and

the same negative predictive value of 0.94.

Only clinical features

An AUC of 0.83±0.8 was found for the same algorithm with the same selected features except

the strain extracted features which were deleted to illustrate their contribution.
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Figure 6.6: ROC curves for prediction of VA events in HCM patients. Pink curve shows the 2014
ESC risk score, green curve represents the 2020 AHA/ACC risk model and blue curve represent
the ML-based model.

Oversampling and undersampling

The oversampling and undersampling were applied only on the training set during 200 cross

validation evaluations. The ADASYN ratio was put at 0.5 and the random undersampling ratio was

put at 0.6. This addition provides a better training for the algorithm that results in a 0.89±0.07 AUC

(Figure 6.7). These two resampling reduce the unbalance characteristic of our original dataset by

"creating" new positive patients (oversampling) and better balance the training set by selecting

only a part of the non-training set (undersampling).

Figure 6.7: ROC curve with oversampling and undersampling of the database.

6.4 Discussion

In this study, we developed a performing prediction method of SCD risk in HCM patients using

Machine Learning (ML). The computational approach allowed an automatic extraction and

comparison of physiological parameters from LV longitudinal strain curves and their utilization
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along with clinical and imaging parameters in a ML-based algorithm. In this bi-centric cohort, the

predictive performance of our model was superior to the currently recommended risk score for

SCD prediction, with an AUC of 0.83.

6.4.1 Justification of the methods

The most effective ML approach was based on a Ridge regression for both feature selection

and model building. Other less successful methods were tested, including Random Forest. We

avoided Deep Learning (DL) approach, which needs massive datasets and would expose us to

a high risk of overfitting. Moreover, DL methods lack interpretability and would not allow the

identification of new predictive features. The use of a DTW algorithm is an original approach that,

to our knowledge, has never been used to compare the similarity of LV strain temporal sequences

of HCM patients. This strain curve shape comparison resulted in the extraction of the two most

important strain parameters in our model. Also, the other strain features were never tested in the

field of HCM patients.

6.4.2 Features selection

DTW midinf was, by far, the most useful LV strain parameter for the algorithm. The inferior wall is

not usually involved by hypertrophy, the inferior extension of adverse remodeling could indicate a

high burden of fibrosis and/or disarray with rhythmic over-risk. The other strain parameters were

mainly related to the LV apex, highlighting the mechanical and temporal disarray of the apical

segments. This is consistent with the fact that apical remodeling is an important poor prognostic

factor in HCM patients [26, 27] which was also found in our model since apical aneurysm was

the most powerful predictive factor. Despite having implemented dispersion parameters at

different levels of comparison, the individual segmental strain parameters were, with the strain

shape comparison, the only strain parameters used by the algorithm. This may result from the

interesting properties of the DTW distance that catch the similarities between two curves in their

entirety without penalize acceleration or deceleration in the signal. Diastolic parameters were

also well represented with E/A ratio, E/e’ ratio, and left atrium volume. Diastolic dysfunction and

LA dilatation are associated with a known increased risk of SCD in HCM patients [28, 29]. In

contrast to left atrium volume, the LA diameter, which is included in the ESC algorithm, was not

selected by our model [7, 16]. Both the peak work and the percentage of predicted maximal heart

rate were found as predictive factors in our model in an uncorrelated manner. Exercise capacity

limitation is a well-identified prognostic factor in HCM patients, and chronotropic incompetence

might be associated with an increased risk of SCD [30, 31]. Even though it has a relatively low

coefficient in our model, it has also been shown that the female gender is associated with poorer

survival in HCM patients [32]. Other selected features including apical aneurysm, LVEF < 50%,

NSVT, and unexplained syncope are well-known risk factors of SCD already included in the current

recommended risk models. The presence or absence of LGE was not relevant for the prediction
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model. This may be explained by the lack of fibrosis quantification, not enabling the identification

of high-risk patients with extensive fibrosis as defined by Chan et al. [13]. On the other hand, we

know that LGE sequences fail to detect interstitial fibrosis and that strain imaging might be better

for the detection of both interstitial and replacement fibrosis [33]. Together with strain imaging,

interstitial fibrosis detection by T1-mapping sequences could be a promising tool in the future

[34].

6.4.3 Resampling

The oversampling technique used in this study have to be discussed. Unless it helps to improve

the model performance on unbalance data as this database, there are some limits. By creating

synthetic patients, it could lead to overfitting or create unrealistic synthetic patients that do not

represent the true distribution of the minority class. In this study, the ADASYN ratio was put at

0.5 to not create too many synthetic patients with event and reduce the presented risks.

6.4.4 Implications

There is a growing interest in exploiting multimodal data by machine learning-based algorithms

to predict adverse outcomes in many cardiac diseases, including HCM patients with predictive

performance outperforming current recommendations risk models [35, 36]. However, this is the

first study to apply a machine learning algorithm to both conventional data and automatically

extracted LV longitudinal strain parameters to predict sustained ventricular arrhythmias and SCD

in HCM patients. By providing an automatic extraction method for strain, this study emphasizes

the potential of exploiting mechanical, temporal, and positional information from segmental

ventricular strain curves beyond the simple use of the GLS. However, there are still challenges. It

seems essential to develop automated and centralized collection systems for patient data to

allow their longitudinal implementation straight into dynamic machine learning-based predictive

algorithms [37].For LV strain measurement, even if automation is on the right track [38], we

already know that there are some discrepancies between acquisitions technique used by different

manufacturers, especially for segmental function assessment [39]. However, the use of strain

shape comparison more than the absolute value in our study could have limited manufacturer-

dependent results [39].

6.4.5 Limitations

The number of events was insufficient to build the model on one center cohort with an external

validation on the other. However, the use of a Ridge regression algorithm and the bi-centric

international population probably reduced the risk of overfitting inherent to machine learning

methods and improved the generalization of the model. Future external validation studies on

larger cohorts are needed. The included patients were referred to tertiaries care centers, which
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may introduce a selection bias with more severe patients included in our cohort. Patients were

mainly excluded because of insufficient image quality, which may introduce selection bias. We did

not exclude patients with septal reduction therapy, which could have introduced a confounding

bias by changing the septal strain pattern. However, almost all strain parameters selected by the

model did not include septal segments. Further investigations of this method including extended

comparison are planned for the future.

6.5 Conclusion

A machine-learning-based algorithm combining heterogeneous data: clinical, imaging, and LV

strain parameters was found to have a higher predictive value for sustained VA and SCD prediction

in HCM patients than conventional risk models. The computational method allows automated

extraction and comparison of new promising strain parameters.
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Conclusion

The assessment of the cardiac function of HF patients is essential to diagnose, choose the

appropriate treatment, predict risk, and ensure follow up. Strain curves-derived parameters, added

to the ECG, could provide essential information on the complex and multifactorial mechanisms

involves [1]. Recently, computational modeling and machine learning have become increasingly

popular in biomedical research, particularly in the fields of disease prediction, diagnosis, and risk

stratification, as well as in the development of personalized therapies. Both approaches, despite

different philosophies, have proved valuable in helping to unravel the complex interactions that

underlie multifactorial diseases. Modeling stands out to integrate physiological knowledge into

the data processing chain. Machine learning, on its side, by its data driven conception ensure

hypothesis free studies and permit large and multimodal database analyses. The thesis was

focused on the assessment of the cardiac function based on methodological frameworks that

include computational models and machine learning algorithms. These different frameworks

were adapted to different phenotypes of heart failure.

The first contribution was the development and validation of computational models on two

clinical cases: Left Bundle of Branch Block (LBBB) and Aortic Stenosis (AS) (Chapter 3 and

Chapter 5). In fact, a first model of the cardiovascular system was proposed by coupling a multi-

segment representation of LV and right ventricle, atria, systemic, and pulmonary circulations.

This model was used to interpret different patterns of LV contraction observed in different cases

of LBBB and was evaluated on data obtained from 10 healthy subjects and 20 patients with

LBBB with underlying ischemic (n=10) and non-ischemic (n=10) cardiomyopathies to create

patient digital twin. A close match was observed between estimated and observed strain signal

of the 20 LBBB and 10 healthy patients. The analysis of model parameters show that septal

motion and global strain morphologies are not only explained by electrical conduction delay

but also by the heterogeneity of contractile levels within the myocardium. A second model was

then used for a different objective: to obtain myocardial work indices in the case of AS with a

noninvasive estimation of the LV pressure. A model identification process was applied on 67 AS

patients. The objective was to improve the model-based approach to assess non-invasively LV

pressure proposed in our team [2, 3]. Then, compare and evaluate the LV pressure estimation

with the adapted method of Russel et al. [4, 5] by Fortuni et al. [6]. As the essential part of the MW

determination is the estimation of LV pressure, pressure curves calculated with each method

were compared with the invasively computed in severe and moderate AS patients. Both methods

present good concordance with the MW indices computed with invasive pressure. Assessing

regional myocardial work could hold significant importance in predicting the prognosis of patients
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with severe asymptomatic AS without LV dysfunction. This is especially crucial as the optimal

timing and criteria for surgical intervention of these patients continue to be a topic of debate.

The second contribution concern the proposition of machine learning pipelines applied to

two distinct databases of HF patients: CRT eligible patients and HCM patients (Chapter 4 and

Chapter 6). Supervised algorithms were applied on both of the database to provide a classification

of these patients. In the first case, the classification aimed to predict the response to CRT, while

in the second case, it aimed to identify at-risk patients. In both instances, the prediction results

surpassed those of the current methods and risk scores. Furthermore, the feature selection

process conducted to develop the classifier highlighted the most predictive features. Additionally,

for CRT eligible patients, a characterization was proposed using an unsupervised ML algorithm.

Five profiles were extracted with different response rate to the CRT. The findings emphasized the

importance of regional myocardial contractility and electrical activation times in predicting CRT

response. This characterization and classification of heart failure patient profiles were based on

a combination of traditional and novel interpretable features extracted from strain data.

The final contribution introduced a hybrid approach that combined in-silico models and machine

learning to analyze strain curves in patients eligible for CRT (Chapter 4). The different steps of

the approaches were developed, as well as their different combinations/declinations. First, five

digital representative patients were added to a 250 CRT-eligible patients’ clustering. These digital

twins provided supplementary understandable features to the five distinct phenogroup created

based on their clinical and strain data. This combined approach appears as a promising tool to

improve the understanding of LV mechanics and the assessment of heart function in patients

undergoing CRT. Then, the proposed in-silico model was integrated in a complete ML pipeline

to improve the interpretability of the approach. A database, composed of 164 CRT candidates,

was analyzed with the proposed hybrid pipeline. The unsupervised ML was applied, and clusters

were defined, associated with groups of below-average to excellent responders. Patient digital

twins bring additional information on the regional electrical and mechanical function of the LV

from the analysis of echocardiographic data. Finally, a supervised ML was applied to parameters

extracted from digital twins to create a CRT-response classifier. This classifier was compared to

a more classic classifier based on clinical and echocardiographic pre-implantation data. Results

show that digital twins approach helps to improve the prediction of the response to CRT, while

improving understanding of LV mechanics in patients undergoing CRT.

This thesis employs promising approaches that combine computational modeling and machine

learning. The aim was to improve the interpretation of echocardiography strain curves by inte-

grating physiological knowledge with models. The proposed methods enhanced physiological

indices by providing personalized interpretation and additional information compared to tradi-

tional measures. Overall, this approach represents a step towards integrating explicit knowledge

for evaluating cardiac function and improving the understanding of patient-specific indicators

extracted from echocardiography.
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The proposed approaches present some limitations that should be mentioned. First, medium-size

populations of patients were used in this study. The analysis of wider populations should be

performed in the future in order to strengthen and improve our results. Addressing this concern

is crucial for ensuring reliable ML algorithms. Moreover, the two proposed models include some

simplifications concerning the electrical and mechanical behaviors such as fiber, torsion or a

complete mechanical continuity. Another limitation is related to the identification process, which

was applied to reduce a global error. Enhancements could be made to overcome this limitation.

In future works, the proposed hybrid modeling approach, which combines in-silico andMLmodels,

should be evaluated clinically for the prediction of each patient response to a CRT intervention

and to support the medical decision process for implanting or not a patient. This hybrid classifier

should be embedded in a novel Decision Support System (DSS) and used in inference mode to

propose a new multivariate score, associated with an estimation of the probability of response.

This approach will require the development of a technical architecture integrating all the available

patient data and the calculation of a patient-specific probability of response in a timely manner.

Concerning the proposed estimation of work indices in the cases of AS, the methodology could

be translated to tricuspid regurgitation patient. The treatment decision for these patients using

clips is still questioning, and the impact on the right heart remodeling and outcomes are not yet

fully understood. The evaluation of the right ventricle is currently a topic of growing interest, but

there is limited research available on the analysis of its strain curves.

Similarly, the proposed characterization of the CRT eligible patients in Chapter 4 could be adapted

to the HCM database to provide different patients profilesmore or less at risk of SCD or ventricular

arrhythmia. This phenotyping added to the predictive features underlined by the classification

process could provide help in the identification of more at-risk patient and provide adapted

management and follow-up.

This study also opens interesting perspectives for the use of digital twins in cardiology. In the

future, the proposed cardiovascular models could be applied to the optimization of the design

stages of medical devices, as proposed in the previous work of our team [7]. The model-based ap-

proach, defined in my thesis, can be used to conduct virtual experiments and test new diagnostic

hypotheses (implantable device, ...), as a preliminary step to clinical or preclinical investigations.

The advantages of such "virtual prototyping" are multiple (cost reduction, minimization of de-

velopment time, etc.). This work therefore opens the way to new methods of processing and

analyzing clinical data in the context of cardiology,
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Sensitivity analysis and parameter

identification of the LBBB model

Appendix

A

Symbols Descriptions Values Units

Cardiac electrical system

T s
UDP Upstroke depolarization of the segments to identify ms

T s
ARP Absolute refractory of the segments 230 ms

T s
RRP Relative refractory of the segments 140 ms

T s
SDD Slow diastolic depolarization of the segments inf ms

T
LBB/RBB
UDP Upstroke depolarization of LBB and RBB 2500 ms

T
LBB/RBB
ARP Absolute refractory of LBB and RBB 10 ms

T
LBB/RBB
RRP Relative refractory of LBB and RBB 120 ms

T
LBB/RBB
SDD Slow diastolic depolarization of LBB and RBB 120 ms

T
UH/NAV
UDP Upstroke depolarization of UH and NAV 2000 ms

T
UH/NAV
ARP Absolute refractory of UH and NAV 20 ms

T
UH/NAV
RRP Relative refractory of UH and NAV 200 ms

T
UH/NAV
SDD Slow diastolic depolarization of UH and NAV 100 ms

T SAN
UDP Upstroke depolarization of SAN to define ∗ ms

T SAN
ARP Absolute refractory of SAN 10 ms

T SAN
RRP Relative refractory of SAN 120 ms

T SAN
SDD Slow diastolic depolarization of SAN 60 ms

T
LA/RA
UDP Upstroke depolarization of LA and RA inf ms

T
LA/RA
ARP Absolute refractory of LA and RA 30 ms

T
LA/RA
RRP Relative refractory of LA and RA 230 ms

T
LA/RA
SDD Slow diastolic depolarization of LA and RA 100 ms

Right and left atria

Era,max Maximum systolic elastance of the right atrium 0.5 mmHg/ml

Era,min Diastolic elastance of the right atrium 0.01 mmHg/ml

Ela,max Maximum systolic elastance of the left atrium 0.5 mmHg/ml

Ela,min Diastolic elastance of the right atrium 0.01 mmHg/ml

Vra,d Unstressed volume of the right atrium 3 ml

Vla,d Unstressed volume of the left atrium 3 ml

Ara Constant controlling the rise and peak of the right atrial

systole

1 −
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Bra Constant controlling the rise and peak of the right atrial

systole

120 1/s2

Cra Constant controlling the rise and peak of the right atrial

systole

0.2 s

Ala Constant controlling the rise and peak of the left atrial

systole

1 −

Bla Constant controlling the rise and peak of the left atrial

systole

120 1/s2

Cla Constant controlling the rise and peak of the left atrial

systole

0.2 s

Right and left ventricles

n1 Constant controlling the steepness of the electro-

mechanical coupling

to identify −

n2 Constant controlling the steepness of the electro-

mechanical coupling

to identify −

α1 Shape parameter of the electro-mechanical coupling to identify −

α2 Shape parameter of the electro-mechanical coupling to identify −

ls,ref Reference fiber lenghs 0.95 cm

Tref,pass Reference passive tension 52.504 mmHg

Tref,act Reference active tension 375.0319 mmHg

Kpass Parameter related to passive stiffness to identify -

Kact Parameter related to myofiber contractility to identify -

β Constant related with muscle kinetic 10 −

Fa Constant related with muscle kinetic 5.33 −

θ Mean angle of the muscular fibers π/12 rad

e Mean wall thickness 0.7 cm

Rm Radii of curvature in the meridian directions 2.1548 cm

Rp Radii of curvature in the parallel directions 4.5985 cm

Ss Segmental area 8.8909 cm2

Is Segmental inertia 0.0003 mmHgs/ml

Rs Segmental resistance 0.5 mmHgs/ml

P0,lv Left ventricule gradient pressure 1.2751 mmHgs

λlv Left ventricule curvature 0.015 1/ml

V0,lv Left ventricule volume intercept 5 ml

P0,rv Right ventricule gradient pressure 1.2001 mmHgs

λrv Right ventricule curvature 0.015 1/ml

V0,v Right ventricule volume intercept 5 ml

Systemic and pulmonary circulationss

Elv Elastance of the left ventricle 3.4053 mmHg/ml
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Erv Elastance of the right ventricle 0.6526 mmHg/ml

Epa Elastance of the pulmonary artery 0.3375 mmHg/ml

Epu Elastance of pulmonary vein 0.0062 mmHg/ml

Eao Elastance of the aorta 3.2906 mmHg/ml

Esa Elastance of the systemic arteries 0.7881 mmHg/ml

Evc Elastance of the vena cava 0.0154 mmHg/ml

Esv Elastance of the systemic veins 0.010 mmHg/ml

Vd,la Unstressed volume of the left atrium 3 ml

Vd,ra Unstressed volume of the right atrium 3 ml

Vd,pa Unstressed volume of the pulmonary artery 160 ml

Vd,pu Unstressed volume of the pulmonary vein 200 ml

Vd,ao Unstressed volume of the aorta 196.5625 ml

Vd,art Unstressed volume of the systemic arteries 520.6199 ml

Vd,vc Unstressed volume of the vena cava 1907.7 ml

Vd,veins Unstressed volume of the systemic veins 1648 ml

Rpul Pulmonary resistance 0.1425 mmHgs/ml

Rsys Systemic resistance 1.0501 mmHgs/ml

Rla Left atrium resistance 0.2 mmHgs/ml

Rra Right atrium resistance 0.8 mmHgs/ml

Rmt Mitral valve resistance 0.01 mmHgs/ml

Rav Aortic valve resistance 0.0105 mmHgs/ml

Rtcv Tricuspid valve resistance 0.01 mmHgs/ml

Rpv Pulmonary valve resistance 0.0105 mmHgs/ml

Rart Arteries resistance 0.2915 mmHgs/ml

Rveins Veins resistance 0.1935 mmHgs/ml

Table A.1: Parameters, descriptions and values of the LBBB model.

∗ to define with patient heart rate.

Parameters value

Kact 1.5

Kpass 1

n1 1.3

n2 10

α1 0.4

α2 0.4

Rlv 0.3

Ilv 0.001
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fa,s 5

e 0.6

Area 8.890875

β 10

Kcont 1.5

θ π/12

Rm 2.9

Rp 4.59

Rmin 0.05

Rmax 0.3

ls,ref 0.9

Tref,pass 52.5044632

Tref,act 375.03188

Ca 5.33

Table A.2: Baseline simulation parameters values for all the segments.

Parameters

Kact

Kpass

n1

n2

α1

α2

Rlv

Ilv

fa,s

Area

β

Kcont

θ

Rm

Rp

Rmin

Rmax

UDP

Table A.3: Lists of the 18 parameters for each of the 16 segments used in the sensitivity analysis.
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order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 2.800832 3.657845 2.588772

1 ApiInf : TUDP 1.822312 2.565196 1.406503

2 ApiAnt : TUDP 1.255750 1.774345 0.850037

3 MidAntSept : α2 1.214396 1.643248 1.071249

4 BasalAntSept : α2 1.208903 1.637048 1.064982

5 ApiSept : α2 1.150119 1.473622 1.081045

6 BasalInfLat : α2 1.112731 1.571514 0.744877

7 ApiLat : TUDP 1.112468 1.551048 0.643783

8 MidInfSept : α2 1.105292 1.468762 1.001812

9 BasalInfSept : α2 1.079997 1.480997 0.927203

10 BasalAntLat : α2 1.051284 1.484177 0.785716

11 BasalInf : α2 1.042726 1.458456 0.838153

12 MidInf : TUDP 1.041634 1.470951 0.695768

13 MidInfLat : α2 1.011751 1.430819 0.718470

14 BasalAnt : α2 0.982837 1.389928 0.691827

15 ApiInf : α2 0.976932 1.371102 0.600590

16 MidInf : α2 0.970307 1.361894 0.596926

17 MidAntLat : α2 0.956434 1.347078 0.612480

18 MidAntSept : n1 0.894065 1.257175 0.696066

19 MidAntLat : TUDP 0.891784 1.260525 0.650467

20 ApiAnt : α2 0.889551 1.253713 0.574878

21 ApiLat : α2 0.872696 1.229430 0.560637

22 BasalInfSept : Rm 0.834149 1.179625 0.594655

23 MidInfLat : Rm 0.779722 1.102495 0.561690

24 MidAnt : α2 0.758697 1.062697 0.457326

25 BasalInfSept : n1 0.756683 1.021062 0.670665

26 ApiInf : Kact 0.754266 1.050463 0.617918

27 ApiSept : n1 0.743200 1.012439 0.647339

28 BasalAntSept : Rm 0.739187 1.044784 0.539868

29 ApiSept : Rm 0.730942 1.031352 0.550554

30 BasalInfLat : Rm 0.711927 1.005275 0.530483

Table A.4: Sensitivity analysis results on Y = mean(εmodel
min,s): 30 first.

order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 94.169699 131.151512 77.142361
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1 MidInfLat : α2 90.151477 127.390870 61.138889

2 MidAntLat : TUDP 84.291760 118.452881 52.534722

3 BasalInfLat : α2 77.160297 108.173815 46.913194

4 ApiInf : α2 75.519879 106.689813 50.906250

5 BasalAnt : Rm 72.718862 100.724433 39.986111

6 ApiAnt : α2 71.563015 100.332492 43.534483

7 BasalAntLat : α2 68.984097 96.135461 39.767361

8 MidAnt : α2 67.154357 94.172821 40.944444

9 ApiLat : α2 66.718162 93.910003 42.385057

10 BasalAnt : α2 65.007358 90.565887 37.381466

11 BasalInf : α2 61.604235 86.961352 40.840278

12 MidInfLat : Kact 57.395764 78.171241 28.156250

13 BasalAnt : β 57.208297 78.941972 30.614583

14 ApiSept : α2 56.995363 78.229849 29.406250

15 ApiInf : TUDP 56.831360 80.291756 38.354167

16 MidInfLat : β 55.082331 75.012959 27.004310

17 ApiAnt : TUDP 54.953418 76.925254 32.934028

18 MidInfLat : Rm 54.743105 74.834528 27.500000

19 MidInf : α2 53.652708 75.514977 34.059028

20 BasalInfLat : Rm 53.110847 71.746412 24.760417

21 BasalInfSept : Kact 52.061443 69.636420 22.864583

22 BasalInfLat : Kact 50.599550 68.582387 24.079861

23 BasalInf : β 50.066813 63.787891 16.527778

24 MidInfSept : α2 48.519706 66.974024 26.023707

25 MidInf : TUDP 47.638787 65.507702 24.885417

26 BasalInfSept : n1 47.613641 64.070217 21.677443

27 MidAntLat : α2 47.270718 66.699396 31.100694

28 MidInfLat : Area 47.077126 62.382640 19.562500

29 BasalAnt : Kpass 46.876239 60.980704 17.489224

30 BasalAntLat : n2 46.800047 62.042148 19.496528

Table A.5: Sensitivity analysis results on Y = std(εmodel
min,s): 30 first.

order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 1.457107 2.060644 1.026232

1 BasalAntLat : Rm 0.978841 1.379305 0.630958

2 MidInfLat : α2 0.943565 1.329271 0.606176
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3 BasalInf : Kact 0.929282 1.312275 0.620560

4 BasalInfLat : Kact 0.920971 1.287218 0.544307

5 MidAntSept : n1 0.917034 1.290298 0.579893

6 BasalInfSept : n1 0.888404 1.255933 0.610981

7 ApiSept : n1 0.882080 1.247060 0.607957

8 ApiSept : α2 0.881197 1.245450 0.601085

9 BasalInfLat : Rm 0.866749 1.219197 0.546220

10 BasalInf : Rm 0.855847 1.201929 0.529699

11 BasalAnt : Kact 0.812760 1.144603 0.519762

12 BasalAntLat : α2 0.804895 1.129501 0.494145

13 MidInfLat : Kact 0.793131 1.115572 0.499451

14 ApiInf : Kact 0.787341 1.109771 0.509553

15 MidAntLat : β 0.787123 1.107416 0.497240

16 MidAntLat : Kact 0.778634 1.098491 0.510967

17 MidInfLat : Rm 0.777799 1.092469 0.482100

18 BasalAntLat : Kact 0.765447 1.077906 0.489109

19 BasalInfLat : α2 0.763800 1.068678 0.455745

20 BasalInfSept : Kact 0.762354 1.076831 0.511948

21 MidAntLat : α2 0.761666 1.068508 0.466137

22 BasalInf : α2 0.755750 1.064415 0.483896

23 ApiInf : TUDP 0.738672 1.033042 0.438904

24 MidAnt : Kact 0.720263 1.014882 0.463930

25 ApiLat : Kact 0.717180 1.010595 0.462309

26 BasalAnt : Rm 0.716019 1.009091 0.462406

27 MidInf : Kact 0.715333 1.007729 0.459461

28 ApiAnt : Kact 0.715088 1.008909 0.469797

29 BasalAnt : β 0.711077 1.003266 0.467285

30 MidInfSept : α2 0.708872 0.993231 0.428628

Table A.6: Sensitivity analysis results on
Y = mean(t(εmodel

min,s)): 30 first.

order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 63.314830 88.410263 37.113573

1 ApiInf : α2 54.207923 76.331412 34.612065

2 MidInfLat : α2 48.543849 67.897829 28.877045

3 MidInfLat : Kact 45.568638 62.324141 22.965989
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4 ApiLat : α2 45.133891 63.180365 27.052077

5 BasalAnt : Rm 44.490573 62.009295 25.673852

6 MidAntLat : TUDP 40.816545 55.829728 20.583047

7 ApiInf : TUDP 40.132132 55.799369 22.713007

8 BasalInfLat : α2 39.877837 55.666332 23.312569

9 MidInfLat : β 38.878583 52.468498 18.016204

10 ApiAnt : α2 38.101594 53.118466 22.034535

11 BasalAnt : Kact 37.738394 52.012763 20.026305

12 BasalInfLat : n1 36.078403 47.787494 14.954258

13 BasalAnt : α2 35.330446 48.796820 19.028327

14 BasalAnt : β 35.074114 48.244956 18.360291

15 BasalInfLat : Rm 34.632636 46.887555 16.365710

16 ApiAnt : β 33.257811 44.296484 14.242777

17 ApiLat : n1 32.825736 44.469228 15.572300

18 MidInfLat : Rm 31.918237 42.566901 13.773346

19 MidInf : α2 31.814783 44.678591 19.684848

20 BasalInfSept : α2 30.936813 42.310554 15.587742

21 ApiAnt : TUDP 30.919302 42.758283 16.803780

22 ApiSept : α2 30.914302 41.949573 14.818054

23 BasalAntSept : Kact 30.814696 40.789841 12.725504

24 MidInfLat : n1 30.741691 40.671138 12.655047

25 ApiInf : n1 30.550654 41.542536 14.836148

26 MidAntLat : Rm 30.430949 41.850560 15.909905

27 BasalAntLat : β 30.408687 40.663054 13.333447

28 BasalInfLat : Kact 29.540547 39.513039 12.974050

29 MidAnt : α2 29.509688 41.452105 18.309115

30 BasalInf : α2 29.208043 41.031786 18.138280

Table A.7: Sensitivity analysis results on Y = std(t(εmodel
min,s)): 30 first.
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Parameter Range

Segments

Kact [0.1; 1.5]
Kpass [0.1; 10]
n1 [0.5; 2]
n2 [5; 15]
α1 [0.2; 0.6]
α2 [0.2; 0.6]
UDP [1; 30]

LBB UDP [1; 200]

Table A.8: Parameters list and range used in the parameters identifications for LBBB patients

Figure A.1: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.2: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.3: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.4: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.5: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.6: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.7: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.8: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.9: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.10: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.11: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.12: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.13: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.14: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.15: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.16: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.17: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.18: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.19: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.20: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.21: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.22: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.23: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.24: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.25: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.26: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.27: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.28: MRI of 10 first LBBB patients with scar localization in the case of ischemia
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Identified model parameters, clustering

and digital twin simulations

Appendix

B

Figure B.1: PCA visualization of the database of 250 patients colored by cluster and symbolized
by their CRT responses (cross: non-responder, circle: responder) in 3D.
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Figure B.2: Digital twin simulation of the 31 patients of the cluster 1.
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Figure B.3: Digital twin simulation of the 46 patients of the cluster 2.

Figure B.4: Digital twin simulation of the 22 patients of the cluster 3.
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Figure B.5: Digital twin simulation of the 41 patients of the cluster 4.
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Figure B.6: Digital twin simulation of the 37 patients of the cluster 5.
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Parameters of the AS model

Appendix

C

Symbols Descriptions Values Units

Elastance-based cardiac cavities

Era,max Maximum systolic elastance of the right atrium 1.6 mmHg/ml

Era,min Diastolic elastance of the right atrium 0.1 mmHg/ml

Ela,max Maximum systolic elastance of the left atrium 1.6 mmHg/ml

Ela,min Diastolic elastance of the right atrium 0.1 mmHg/ml

V0,lv Left ventricle volume intercept 10 ml

V0,rv Right ventricle volume intercept 10 ml

λlv Curvature 0.014 1/ml

λrv Curvature 0.013 1/ml

P0,rv Gradient 1.2001 mmHg

Bla Constant, controlling the rise and peak of the left atrial systole 84.375 1/s2

Cla Constant, controlling the rise and peak of the left atrial systole 0.32 s

α1 Constant controlling the steepness of the LV elastance curve 0.4 −

α2 Constant controlling the steepness of the LV elastance curve 0.4 −

n1 Constant controlling the steepness of the LV elastance curve 1.3 −

n2 Constant controlling the steepness of the LV elastance curve 200 −

Circulations

Erv Elastance of the right ventricle 0.6526 mmHg/ml

Epa Elastance of the pulmonary artery 0.3375 mmHg/ml

Epv Elastance of the pulmonary vein 0.0062 mmHg/ml

Eao Elastance of the aorta 3.2906 mmHg/ml

Esa Elastance of the systemic arteries 0.8851 mmHg/ml

Esv Elastance of the systemic veins 0.010 mmHg/ml

Evc Elastance of the vena cava 0.0154 mmHg/ml

Vd,lv Unstressed volume of the left ventricle 10 ml

Vd,rv Unstressed volume of the right ventricle 10 ml

Vd,la Unstressed volume of the left atrium 3 ml

Vd,ra Unstressed volume of the right atrium 3 ml

Vd,pa Unstressed volume of the pulmonary artery 160 ml

Vd,pv Unstressed volume of the pulmonary vein 200 ml

Vd,ao Unstressed volume of the aorta 197 ml
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Vd,sa Unstressed volume of the systemic arteries 521 ml

Vd,sv Unstressed volume of the systemic veins 1908 ml

Vd,vc Unstressed volume of the vena cava 1648 ml

Rpul Pulmonary resistance 0.1425 mmHg/ml

Rsys Systemic resistance 0.62 mmHg/ml

Rvc Vena cava resistance 0.1935 mmHg/ml

Rao Aorta resistance 0.2915 mmHg/ml

Rla Left atrium resistance 0.01 mmHg/ml

Rra Right atrium resistance 0.01 mmHg/ml

Pth Intrathoracic pressure −4 mmHg

Cardiac valves

ρ Blood density 1.6 g/cm3

Kvc,ao Rate coefficient for aortic valve closure 0.15 1/P a·s

Kvo,ao Rate coefficient for aortic valve opening 0.12 1/P a·s

leff,ao Effective length for aortic valve 2.2 cm

Kvc,tc Rate coefficient for tricuspid valve closure 0.4 1/P a·s

Kvo,tc Rate coefficient for tricuspid valve opening 0.3 1/P a·s

leff,tc Effective length for tricuspid valve 2 cm

Kvc,mt Rate coefficient for mitral valve closure 0.4 1/P a·s

Kvo,mt Rate coefficient for mitral valve opening 0.3 1/P a·s

leff,mt Effective length for mitral valve 2 cm

Kvc,pu Rate coefficient for pulmonary valve closure 0.4 1/P a·s

Kvo,pu Rate coefficient for pulmonary valve opening 0.3 1/P a·s

leff,pu Effective length for pulmonary valve 2 cm

Aannao Cross-sectional area of aortic valve to define∗ cm

Aanntc Cross-sectional area of tricuspid valve 6 cm

Aannmt Cross-sectional area of mitral valve 5 cm

Aannpu Cross-sectional area of pulmonary valve 2.8 cm

Table C.1: Parameters, descriptions and values of the AS model.

∗ to define with patient cross-sectional area of aortic valve.
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Complete and ordered ridge features

selection

Appendix

D

name value

Apical aneurysm 0.603682

Unexplained syncope 0.479694

Peak work (predicted LVEF (< 50%) 0.367399

DTW MI 0.295140

E/A ratio 0.276473

Mean E/e’ ratio 0.244052

DTW MS 0.203555

SAL
peak − SAL

avcdiffSavcminAL 0.198312

LAV 0.189649

SAA
peak − SAA

avc 0.175610

HR (predicted %) 0.165722

EAA 0.159778

NSVT 0.156570

SMI
peak − SMI

avc 0.154209

DTW ML 0.150154

Female gender 0.139217

Apical LVH 0.138657

SBS
peak − SBS

avc 0.137950

std(MI) 0.137619

ED2 0.135929

LVH septal localization 0.132580

DTW BL 0.130960

Lateral localization on MRI 0.128673

Bêta-blocker treatment 0.128320

Sapex
peak − Sbase

peak 0.127792

DTW AI 0.127722

SBA
peak 0.121578

DTW MA 0.117785

tAAs
min 0.115933

SAA
peak 0.114654
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VTSVG (ml) 0.110123

DTW MAs 0.106426

HCM mutation gene 0.105879

DTW AP 0.103770

ID2
peak 0.102701

Mitral reduction (mild) 0.099613

SBS
avc 0.098541

DTDVG (mm) 0.097201

Myomectomy/PTSMA 0.096148

tAS
min 0.094672

DTW BA 0.094383

VTDVG (ml) 0.089700

tML
min 0.089415

Mitral reduction (severe) 0.087793

IBA
peak 0.086750

SAI
peak 0.086415

std(std) 0.084990

ED4 0.083752

normal 0.083225

DTW AL 0.082425

S4CH
peak − S4CH

avc 0.077401

MRI localization inferior 0.076842

Ea moyen 0.076837

Localisation HVG septal 0.076509

SBL
peak − SBL

avc 0.076248

SBA
avc 0.075697

EBI 0.074696

LVOT gradient 0.074422

DTW AA 0.073100

A 0.072012

E 0.071209

SMAs
peak − SMAs

avc 0.069638

ID4
peak 0.068872

Mass ind ASE (g/m2) 0.068067

tBAs
min 0.067182

EBP 0.065961

IEC/ ARA2 treatment 0.064976
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std(tmin) =mechanical dispersion 0.063988

std(ML) 0.063471

tAI
min 0.063109

IAL
peak 0.062382

EAL 0.061930

II
peak − IA

peak 0.061474

MRI localization septal 0.061121

SpeakAL 0.060257

EBA 0.059086

tBS
min 0.058990

SAS
peak − SAS

avc 0.058630

std(Speak) 0.057917

SBI
peak − SBI

avc 0.057134

SMI
peak 0.056457

Q wave or PRWP 0.056277

tBL
min 0.055997

EMS 0.055849

ST changes 0.055789

IAA
peak 0.055492

LGE 0.054570

HR (bpm) 0.053876

SMS
avc 0.052771

tBI
min 0.052441

SBI
peak 0.052098

SML
avc 0.051876

S2CH
peak − S2CH

avc 0.051635

IBI
peak 0.051552

Coronary artery disease 0.050942

IBS
peak 0.050798

tMI
min 0.049785

LV GLS 0.049510

SMA
avc 0.048407

SAA
avc 0.048259

IMI
peak 0.048243

tAL
min 0.048114

DTW MP 0.047469

DTW BP 0.047166
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DTSVG (mm) 0.046999

tBP
min 0.046851

Calcium-blocker treatment 0.046707

tMAs
min 0.046430

std(BP ) 0.046372

OAC 0.045833

SBP (mmHg) 0.045505

HCM family history 0.045355

EMA 0.043647

SMAs
peak 0.042232

EAAs 0.041196

max thickness ≥ 30 mm 0.039502

SAS
avc 0.039252

t3CH
min 0.038412

tAA
min 0.038167

EBAs 0.037539

AP OG (mm) 0.037263

EMI 0.036871

IAAs
peak 0.036610

SAL
avc 0.036592

std(MS) 0.036229

SAP
peak − SAP

avc 0.035408

II
peak 0.034907

SMI
avc 0.034649

std(BI) 0.034487

SBL
avc 0.034275

IAS
peak 0.034272

std(AI) 0.034193

std(AAs) 0.033822

std(BAs) 0.033656

SAP
avc 0.033648

BMI 0.033489

Gradient LV at rest 0.032578

EMP 0.031225

SBP
avc 0.031213

IBL
peak 0.030865

EAI 0.030828
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EP 0.030650

EI 0.030647

SAI
peak − SAI

avc 0.030281

std(BL) 0.029430

EBS 0.029291

IMAs
peak 0.028223

E3CH 0.028208

SMP
avc 0.028160

SBAs
peak − SBAs

avc 0.027512

EAP 0.027297

MS family history 0.027162

Localization HVG septal 0.026859

SA
avc 0.026454

t4CH
min 0.026359

IML
peak 0.025952

tAP
min 0.025710

tMA
min 0.025193

S2CH
avc 0.024907

moderate MR 0.024881

age 0.024653

std(MP ) 0.024635

EA 0.024600

IL
peak 0.024517

EAs 0.024462

tBA
min 0.023928

SL
avc 0.023275

SBP
peak − SBP

avc 0.023096

SI
avc 0.022846

BS (m2) 0.022846

SML
peak 0.022509

S4CH
avc 0.022461

ES 0.022459

EMAs 0.021971

std(AMs) 0.021604

Localisation HVG ant 0.021482

SS
avc 0.021126

SBS
peak 0.020905
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std(AA) 0.020345

DTW BAs 0.020118

SAI
avc 0.020066

I2CH
peak 0.020056

SMAs
avc 0.019905

NYHA 0.019640

E 0.019634

IBP
peak 0.018238

std(BA) 0.017931

IBAs
peak 0.017112

QRS enlargement 0.016947

SAAs
avc 0.016759

std(BS) 0.016265

TDE 0.016103

SMS
peak − SMS

avc 0.015803

SMP
peak − SMP

avc 0.015700

IAP
peak 0.015645

SMS
peak 0.015503

SBA
peak − SBA

avc 0.015305

EML 0.015296

SIVd (mm) 0.015078

EL 0.014947

SAS
peak 0.014471

I4CH
peak 0.014191

SBAs
avc 0.013916

SAAs
peak − SAAs

avc 0.012994

EBL 0.012342

LVEF (%) 0.012030

IP
peak 0.011986

SBAs
peak 0.011909

I3CH
peak 0.011909

MRI localization anterior 0.011804

SAAs
peak 0.011706

IAs
peak 0.011538

stdmean 0.011198

PWEDT (mm) 0.010502

SD3
avc 0.009888

242 Complete and ordered ridge features selection



tMP
min 0.009812

DTW BI 0.009745

std(AL) 0.009577

Iapex
peak − Ibase

peak 0.009040

SMP
peak 0.009037

size (cm) 0.008363

DTW AS 0.008185

DTW BS 0.008014

DTW AAs 0.007820

T wave inversion 0.007731

SBP
peak 0.007678

SP
avc 0.007465

HCM mutation 0.007264

ED3 0.007192

S3CH
peak 0.007021

SBI
avc 0.006750

std(AP ) 0.006545

SAP
peak 0.006303

Diastolic blood pressure (mmHg) 0.006236

IS
peak − IL

peak 0.005938

SML
peak − SML

avc 0.005057

S3CH
avc 0.004989

SMA
peak 0.004748

S3CH
peak − S3CH

avc 0.004733

std(MAs) 0.004267

tMS
min 0.004254

tAAs
peak − tAAs

avc 0.004079

IA
peak 0.004078

E4CH 0.003838

tAI
peak − tAI

avc 0.003750

E2CH 0.003671

SBL
peak 0.003475

IS
peak 0.003327

std(MA) 0.003240

tML
peak − tML

avc 0.003122

IMP
peak 0.003026

tBL
peak − tBL

avc 0.002910

Appendix 243



tBAs
peak − tBAs

avc 0.002909

SAs
avc 0.002773

tBS
peak − tBS

avc 0.002683

tAA
peak − tAA

avc 0.002592

ID3
peak 0.002474

SD4
avc 0.002288

avc timing 0.002275

t4CH
peak − t4CH

avc 0.002215

tBP
peak − tBP

avc 0.002214

S2CH
peak 0.002160

tMS
peak − tMS

avc 0.002149

tAL
peak − tAL

avc 0.002142

t3CH
peak − t3CH

avc 0.002039

SD2
avc 0.001974

weight (kg) 0.001937

S4CH
peak 0.001930

std(Ipeak) 0.001775

t2CH
peak − t2CH

avc 0.001757

tMA
peak − tMA

avc 0.001667

EAS 0.001559

tAP
peak − tAP

avc 0.001442

tBA
peak − tBA

avc 0.001403

t2CH
min 0.001212

IAI
peak 0.001212

tMI
peak − tMI

avc 0.001029

IAs
peak − IP

peak 0.000934

tMAs
peak − tMAs

avc 0.000834

tMP
peak − tMP

avc 0.000757

max thickness 0.000633

tAS
peak − tAS

avc 0.000284

IMA
peak 0.000278

tBI
peak − tBI

avc 0.000101

IMS
peak 0.000041

Table D.1: Complete table of features in HCM study. Features are classed by decreasing Ridge
coefficients importance.
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Titre :Approche hybride, combinant desmodèles computationnels et d’apprentissage automatique pour l’analyse
du strain myocardique et l’évaluation de la fonction cardiaque.

Mot clés : Modèle computationnel, apprentissage automatique, jumeau numérique, echocardiographie, sténose
aortique, bloc de branche gauche, cardiomyopathie hypertrophique

Résumé : L’évaluation de la fonction cardiaque est
un enjeu majeur en cardiologie, en particulier dans la
prise en charge des patients atteints d’insuffisance car-
diaque. Malgré les avancées technologiques, telles que
les courbes de strain extraites de l’échocardiographie,
cette évaluation reste difficile et incomplète en raison
de sa nature multifactorielle. L’objectif est de proposer
de nouvellesméthodes permettant une compréhension
plus précise et personnalisée de la fonction ventricu-
laire gauche chez les patients insuffisance cardiaque.
Des approches hybrides combinant la modélisation in
silico, traitement du signal et apprentissage automa-
tique ont été proposées.
Quatre problématiques associées à différents phéno-
types d’insuffisance cardiaque sont abordées dans
cette thèse : i) Les courbes de strain de 10 sujets sains
et 20 patients atteints de bloc de branche gauche ont
été analysées à l’aide d’un modèle computationnel.

ii) Une caractérisation des profils de réponse à la thé-
rapie de resynchronisation cardiaque a été proposée
sur 250 patients éligibles grâce à des approches hy-
brides. iii) Une estimation non invasive de la pression
ventriculaire gauche a été proposée et évaluée sur 67
patients atteints de sténose aortique afin d’obtenir des
indices de travail myocardique. iv) Une classification
du risque de mort subite chez les patients atteints de
cardiomyopathie hypertrophique a été développée à
partir de paramètres cliniques, d’imagerie et extrait du
strain de 434 patients.
Ces approches originales utilisent principalement des
mesures non invasives issues de l’échocardiographie
et introduisent de nouveaux outils d’intelligence artifi-
cielle dans la pratique clinique. Elles visent à être spé-
cifiques à chaque patient afin d’être intégrées dans un
processus de médecine personnalisée.

Title: Hybrid approach, combining computational and machine-learning models, for the analysis of myocardial
strain and cardiac function evaluation.

Keywords: Computational model, machine learning, digital twin, echocardiography, aortic stenosis, left bundle
branch block, hypertrophic cardiomyopathy

Abstract: The cardiac function evaluation is a major
health issue in cardiology, and particularly for the man-
agement of patients with heart failure. Despite tech-
nological progress and the arrival of myocardial defor-
mation curves extracted from echocardiography: strain
curve, the cardiac function evaluation remains difficult
and incomplete due to its multifactorial nature. The
objective of this thesis is to propose new methods al-
lowing a more precise and personalized understanding
of the left ventricular function of heart failure patients.
Hybrid approaches, combining in-silico modeling, clas-
sical signal processing and machine learning, were pro-
posed.
Four issues associated with different heart failure phe-
notypes are addressed in this thesis: i) Strain curves
of 10 healthy subjects and 20 patients with left bundle
branch block were analyzed by a computational model.

ii) A characterization of the responder profiles for car-
diac resynchronization therapy were proposed thanks
to the application of hybrid approaches on 250 eligible
patients. iii) Non-invasive left ventricle pressure estima-
tion was proposed and evaluated on 67 aortic stenosis
patients to obtain myocardial work indices, iv) A classi-
fication of sudden death risk in patients was developed
on clinical, imaging and strain extracted parameters of
434 patients with hypertrophic cardiomyopathy.
Original approaches combining both machine learning
algorithms and digital twin cohorts have been proposed
and applied. The proposed methods mainly use non-
invasive measurements from echocardiography and
bring new artificial intelligence tools to clinical prac-
tice. They aim at being patient-specific in order to be
integrated in a personalized medicine process.
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