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Abstract

Deep learning in Artificial Neural Networks (ANNs), a branch of Artificial Intelli-
gence (AI), is considered a revolution in computing and is impacting every sectors of
the economy. However, ANNs are very compute- and memory-intensive, which limits
their integration into edge devices for embedded applications. Bio-inspired Spiking
Neural Networks (SNNs) are promising energy-efficient alternatives to ANNs, and
hence are good candidates for edge AI implementations using neuromorphic hard-
ware. Indeed, SNNs encode the information using sparse temporal events (called
spikes) instead of dense and high precision activations. However, the gap between the
algorithmic development of SNNs on the one hand, and their hardware implementa-
tion on the other hand, makes it difficult to achieve truly efficient solutions. In this
context, this thesis follows a hardware-aware approach to drive algorithmic develop-
ments of SNNs. In particular, models and algorithms are proposed for improving the
accuracy and energy efficiency of SNNs, considering both digital and analog hardware
implementations.

In the interests of comparing SNNs and ANNs implementations on dedicated neu-
ral network accelerators, a high-fidelity model of their energy efficiency is provided.
In particular, it is found that spike sparsity plays a key role in the efficiency of SNNs.
Consequently, a novel SNN model, SpikGRU, combining the accuracy of gated recur-
rent ANNs with a high spike sparsity, is proposed. In addition, the implementation of
synaptic weights with analog non-volatile memories is considered to further increase
the energy efficiency. With an adapted training methodology, SNNs are demonstrated
to be very robust to these highly-quantized and noisy weights. A case study using
resistive memories further validates the approach.

By promoting algorithm-hardware co-development, this work aims at paving the
way for efficient neural network implementations at the edge.

Keywords: deep learning, artificial neural networks, spiking neural networks, neu-
romorphic hardware, neural network accelerators, non-volatile memories
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Résumé

L’apprentissage profond dans les réseaux de neurones artificiels (ANNs), une branche
de l’intelligence artificielle (IA), est considéré comme une révolution dans l’informatique
et a un impact sur tous les secteurs de l’économie. Cependant, les ANNs sont très
gourmands en ressources de calcul et en mémoire, ce qui limite leur intégration à la pé-
riphérie du réseau pour des applications embarquées. Les réseaux de neurones impul-
sionnels (SNNs) sont des alternatives prometteuses aux ANNs en termes d’efficacité
énergétique et sont donc de bons candidats pour les implémentations IA embarquées
utilisant du matériel neuromorphique. En effet, les SNNs encodent les informations
en utilisant des événements temporels épars (appelés “spikes”) au lieu d’activations
denses et précises. Cependant, l’écart entre le développement algorithmique des SNNs
d’une part, et leur implémentation matérielle d’autre part, rend difficile l’obtention de
solutions réellement efficaces. Dans ce contexte, cette thèse suit une approche tenant
compte du matériel pour conduire les développements algorithmiques des SNNs. En
particulier, des modèles et des algorithmes sont proposés pour améliorer la précision
et l’efficacité énergétique des SNNs, en considérant des implémentations matérielles
numériques et analogiques.

Afin de comparer les implémentations des SNNs et des ANNs sur des accélérateurs
de réseaux de neurones dédiés, un modèle de leur efficacité énergétique est fourni.
En particulier, on constate que la parcimonie des activations joue un rôle clé dans
l’efficacité des SNNs. Par conséquent, un nouveau modèle de SNN, SpikGRU, com-
binant la précision des ANNs récurrents à porte avec une parcimonie des activations,
est proposé. En outre, l’implémentation des poids synaptiques utilisant des mémoires
analogiques non volatiles est envisagée pour augmenter encore l’efficacité énergétique.
Avec une méthodologie d’apprentissage adaptée, les SNNs se révèlent très robustes à
ces poids hautement quantifiés et avec un haut niveau de bruit. Une étude de cas
utilisant des mémoires résistives valide l’approche.

En encourageant le co-développement algorithme-matériel, ce travail vise à ouvrir
la voie à des implémentations efficaces de réseaux de neurones embarqués.

Mots-clés: apprentissage profond, réseaux de neurones artificiels, réseaux de neu-
rones impulsionnels, matériel neuromorphique, accélérateurs de réseaux de neurones,
mémoires non-volatiles
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Chapter 1

Introduction

Deep learning in Artificial Neural Networks (ANNs), a branch of artificial intelligence
(AI), is considered a revolution in computing and is impacting every sectors of the
economy. Indeed, ANNs can now solve difficult tasks at the human level and beyond,
and are a game changer in many fields, such as transportation, health, or industry. For
instance, ANNs are used in many applications such as image recognition (Krizhevsky
et al., 2009), object detection (Girshick et al., 2014), speech recognition (Hinton et al.,
2012), medical diagnosis (Esteva et al., 2017), game playing (Silver et al., 2016), etc.
Nevertheless, ANNs are very compute- and memory-intensive and are responsible, in
part, for the growth of the CO2 emissions of the Cloud (Li et al., 2016). Therefore,
directly integrating AI algorithms into edge devices can allow to decrease data trans-
fer between the devices and the Cloud, hence reducing energy consumption, but also
latency, dependency on connectivity, as well as improving security and privacy. To
this end, research is increasingly moving towards efficient hardware implementations
of ANNs on dedicated accelerators, which could be deployed at the edge. While an
increased speed and energy efficiency have been achieved, further gains could result
from the combination of specialized hardware and more efficient algorithms.

By more closely mimicking the brain, Spiking Neural Networks (SNNs) appear to
be energy-efficient alternatives to ANNs. In the brain, neurons use electrical pulses
to transmit information through the synapses in a sparse and asynchronous manner.
Similarly, SNNs encode the information using sparse temporal events (called spikes)
instead of dense and high precision activations. These input spikes are integrated
through time in the membrane potential of neurons, the latter firing when reaching
its threshold, following the Integrate-and-Fire (IF) dynamics (Lapicque, 1907). In addi-
tion, their ability to exploit spatio-temporal information makes them attractive for var-
ious applications, and in particular for processing event data produced by low-power
dynamic sensors (Lichtsteiner et al., 2008).

SNNs present many advantages for efficient implementation on so-called neuro-
morphic hardware (Mead, 1990). Indeed, while ANNs process the high precision in-
formation in a one-shot fashion using matrix multiplications, information in SNN is
coded in a binary signal distributed over time. The use of spikes allows replacing
costly multiply-accumulate (MAC) operations in ANNs by simpler accumulate (AC)
operations, which consume less energy and occupy less area (Horowitz, 2014). More-
over, the high spike sparsity can be leveraged efficiently in event-based implementa-
tions (Merolla et al., 2014; Davies et al., 2018; Moradi et al., 2018). Therefore, SNNs are
considered good candidates for edge AI implementations.

However, the gap between the algorithmic development of SNNs on the one hand,
and their hardware implementation on the other hand, makes it difficult to achieve
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truly efficient solutions. Indeed, there is currently no general model allowing to es-
timate the energy consumption of SNNs on neuromorphic hardware, making it dif-
ficult to ensure that they are actually more efficient than ANNs. Moreover, analog
hardware implementations of SNNs, in particular using emerging non-volatile mem-
ories (NVMs) to encode synaptic weights, can achieve significant gains compared to
fully-digital implementations (Hung et al., 2022). However, analog systems are prone
to variability, inducing the occurrence of errors, which can significantly degrade the
accuracy of the system (Higuchi et al., 2022; Yan et al., 2023). Therefore, a hardware-
algorithm co-development strategy is needed in order to obtain accurate and energy-
efficient solutions for edge AI applications.

In this thesis, we first propose a high-fidelity model of the dynamic energy con-
sumption of SNNs and ANNs, in the interests of comparing their implementation on
dedicated neural network accelerators. We provide lower and upper bounds on the
relative efficiency of ANNs and SNNs, as well as a case study using state-of-the-art
neural network accelerators. In particular, we find that spike sparsity plays a key role
in the efficiency of SNNs. Unfortunately, we show that SNN algorithms based on con-
volutional topologies for processing static data do not reach a sufficient spike sparsity
to compete with efficient ANN implementations.

Consequently, we propose a novel SNN model, SpikGRU, combining the accuracy
of gated recurrent ANNs with a high spike sparsity, for processing spatio-temporal
data. SpikGRU is compared with various recurrent SNN and ANN models on several
spiking and non-spiking data, using speech recognition tasks. Furthermore, with the
example of SpikGRU, we show that sparsity in SNNs can be further leveraged by op-
timizing the activity of neurons through gradient descent, or by using sparse spiking
input data. In addition, we demonstrate that SpikGRU can allow higher energy effi-
ciency than ANN equivalents on a dedicated neuromorphic hardware implementation,
while being as accurate.

Furthermore, we consider the implementation of synaptic weights with analog
NVMs as a solution to improve the efficiency of both ANN and SNN implementations.
We present a fault model applicable to all kind of single- and multi-level NVMs and
an adapted training methodology. ANNs and SNNs with convolutional and recurrent
topologies are demonstrated to be robust to errors in these highly-quantized and noisy
weights. A case study using resistive memories further validates the approach.

This thesis is organized as follows:

• In Chapter 2, the background on SNN algorithms and hardware implementa-
tions is presented, focusing on strategies to improve their accuracy and energy
efficiency.

• In Chapter 3, a model of the dynamic energy consumption of SNNs and ANNs
on dedicated neural network accelerators is proposed, providing guidelines for
improving SNN algorithms and hardware.

• In Chapter 4, a novel gated recurrent SNN model (SpikGRU) is introduced and
its high accuracy and energy efficiency are demonstrated on several spoken word
recognition tasks.
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• In Chapter 5, SNNs and ANNs robustness to errors in highly-quantized and
noisy weights is studied, in the objective of implementing the synaptic weights
with NVMs. A case study with resistive memories is considered.

• In Chapter 6, a summary of the contributions of the thesis and the perspectives
are presented.
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Chapter 2

Background and State of the Art

Spiking Neural Networks (SNNs) are studied from the perspective of neurosciences,
machine learning and neuromorphic hardware, with different objectives, and hence
are characterized by an important heterogeneity. Various approaches, with varying
degrees of biological plausibility, have been proposed to model and train SNNs. More-
over, different types of neuromorphic hardware, from digital to analog, have been con-
sidered to efficiently implement SNNs. This chapter provides a general overview of the
state-of-the-art on SNNs, with a focus on the background that was used for this work.

This chapter is organized as follows:

• In Section 2.1, models and implementations of SNNs are presented, including
models of neurons and synapses, information encoding with spikes, software
and hardware implementations of SNNs, and applications for SNNs.

• In Section 2.2, training strategies for SNNs are reviewed, from biologically-inspired
learning rules to high performance backpropagation-based training.

• In Section 2.3, strategies to enhance accuracy and efficiency (such as latency and
spike sparsity) of SNNs are presented. Special attention is given to the trade-off
between accuracy and latency, as well as the estimation of the energy efficiency.

Part of the state of the art presented in this chapter has been published in Dampfhof-
fer et al., 2023c.

2.1 Models and Implementations of Spiking Neural Net-
works

2.1.1 Models and Coding Strategies

SNN Models

The basic ANNs and SNNs units in a neural networks are shown in Fig.2.1. In ANNs,
the output of a neuron is a function defined as:

yi = φ(∑
j

xjwij + bi) (2.1)

where yi is the output activation of neuron i, bi is the bias of neuron i, xj is the input
activation from presynaptic neuron j, and wij is the synaptic weight between neurons
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i and j. φ is an activation function, such as the Rectified linear unit (ReLU). While
in ANNs the information propagates synchronously on a layer-by-layer basis, the in-
formation processing in SNNs is asynchronous and in a depth-first manner. Indeed,
neurons in a layer fire spikes without waiting for other neurons in the same layer to
fire. Moreover, due to the temporal dynamics of the neurons, SNNs necessarily oper-
ate in the spatio-temporal domain, while standard ANNs operate only in the spatial
domain.

The most popular neuron model for SNNs is the Leaky Integrate-and-Fire model
(LIF) Lapicque, 1907; Gerstner et al., 2014. More biogically-plausible neuron models
exist, such as Hodgkin et al., 1952; Izhikevich, 2003, but have not yet demonstrated
superior performance than the simple LIF model for deep learning applications and
are computationally much more expensive.

In the LIF model, similar to biological neurons, the neuron integrates the weighted
input spikes into its membrane potential. When the latter reaches its threshold, the
neuron fires an output spike and the membrane potential is reset. The membrane po-
tential Vi(t) of the neuron i in the LIF model is described as :

λ
dVi

dt
= −Vi + ∑

j
wij ∑

k
ϵ(t − tjk) (2.2)

Vi(t) = Vreset, if Vi(t) ≥ vth (2.3)

where λ is the membrane time constant, wij is the synaptic weight from neuron j to
i, ϵ(.) is the synaptic kernel, tjk is the kth spike of the input neuron j, Vreset is the reset
membrane potential and vth is the membrane potential threshold. This model describes
many types of LIF variants. For instance, in the non-leaky version of the LIF neuron
(IF), the membrane potential does not decay over time, and hence remains constant in
between spikes. This is obtained by removing the −Vi and setting λ to 1 in equation 2.2.
Moreover, the synapse model is defined by the kernel function ϵ(.), corresponding to
the response of the membrane potential to the presynaptic spike. The synapse can
be instantaneous (Dirac kernel function) or continuous (e.g. linear, exponential, or
alpha kernel functions), allowing to model various synaptic behaviors. In particular,
the combination of LIF neurons with exponential continuous synapses is also called
Current-based LIF (Cuba-LIF). Note that other variants exist that are not described
by this model, such as the Adaptive LIF (Adapt-LIF) (e.g. in Bellec et al., 2018b; Yin
et al., 2021), that uses an adaptive threshold described with temporal dynamics (the
threshold is increased after each spike fired and decays exponentially with time).

The inference phase of SNNs is usually discretized in timesteps in order to simulate
their spatio-temporal dynamics. Each timestep corresponding to a forward pass in the
network, the number of timestep can allow to estimate the future latency of the SNN
inference in hardware. In this context, an iterative version of the LIF model (as in Wu
et al., 2018) is used, similar to the description of Recurrent Neural Networks (RNNs).
A common iterative description of the LIF with an instantaneous synapse in a deep
SNN is:

V l
i (t) = βV l

i (t − 1) + ∑
j

wijsl−1
j (t) + bi − vthsl

i(t − 1) (2.4)

sl
i(t) = H[V l

i (t)− vth] (2.5)
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sl
i(t) denotes the output spikes of neuron i from layer l at time t. Spike firing happens

when the membrane potential is superior to the threshold vth, which corresponds to the
Heaviside step function H. In this description, the threshold vth is substracted from the
membrane potential after each spike. This corresponds to a “soft” version of the reset
(Han et al., 2020b) instead the “hard” version of the reset described in equation 2.2.
The parameters of the models are W and b, respectively weights and biases, and the
time constant β.

Information Encoding With Spikes

While ANNs use static high precision activations per neuron per inference, SNNs use
one or several binary spikes to code the activation. There are several coding strategies
based on the spike rate, timing, rank, phase, etc. (for a review see Auge et al., 2021),
but the majority of works in deep SNNs use either the spike rate or the spike timing.
The rate coding strategy uses several spikes to represent one unit of information while
in temporal coding, the information is carried by individual spike times. Note that,
in order to be efficient in neuromorphic hardware, the coding strategy should use a
minimum number of spikes, as the energy consumption is strongly correlated to the
spiking activity. Moreover, the choice of the coding strategy is associated with the
learning strategy (see Section 2.2).

The coding strategy must consider both the encoding of the input to the network
and the decoding of the output. Indeed, to process real-valued data, such as pixels
for images, these values can be converted into spikes in order to be processed by the
SNN. Data can also be already in the form of spikes that can be fed directly to the SNN
without pre-processing. This is the case for neuromorphic sensors, such as event cam-
eras (Lichtsteiner et al., 2008) or artificial cochleas (Chan et al., 2007). Fig.2.1 represents
a typical pixel-to-spike conversion in rate and time. The rate-based strategy matches
each pixel intensity with a firing rate, using a probabilistic sampling (generally Pois-
son) to generate the spike trains: the higher the pixel value, the higher the firing rate
of the corresponding input. A simple time-based strategy, also called latency coding,
consists in associating the pixel intensity with the latency of a single spike. In that case,
the latency is inversely proportional to the pixel intensity: earlier spikes encode higher
values and later spikes encode lower values. More recently, Stanojevic et al., 2022 have
used a linear latency coding (where the spike time is defined as the difference between
a maximum predefined time and the ANN equivalent activation), also preserving this
relationship (earlier spikes correspond to higher activations).

Decoding the output in a classification task consists in determining the most acti-
vated neuron in the output layer, each neuron being associated with a class. With rate
coding, this can be done by using the highest spike rate, or the highest membrane po-
tential value in non-spiking output neurons. With temporal coding, a solution called
Time-To-First-Spike (TTFS) consist in using the first spike fired by one of the output
neurons.

Temporal codes are supposed to be sparse and can have a lower latency (e.g. when
the TTFS decoding is used). However, temporal coding may require high temporal
resolution because each spike carries important information, which may be difficult to
implement efficiently in neuromorphic hardware.
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2.1.2 Software and Hardware Implementations

Off-Chip vs. On-Chip Training

Training of ANNs and SNNs is said “on-chip” or “off-chip”, whether the training is
performed on the chip that will also be used for the inference, or if the training is
performed on a different computer architecture. The advantage of the latter is the
possibility to train the networks with high-performance algorithms and computing
architecture. However, in this case, the training cannot be performed once the net-
work has been deployed on the chip. On the opposite, on-chip training could not only
allow more efficient training of neural networks, but also could allow the system to
continue to learn through its life-time using incremental learning techniques (such as
Solinas. et al., 2021). Nevertheless, current high performance training algorithms, such
as backpropagation, are very costly to implement on chip (Bengio et al., 2016). There-
fore, if the system is not meant to be trained on-chip, using off-chip training techniques
has allowed to reach the best performance so far. Hence, in the interest of maximiz-
ing accuracy and efficiency of SNNs only during the inference phase, off-chip training
techniques have been used in this work.

Software Simulations of SNNs

Following the off-chip training strategy, SNNs can be simulated and trained on a gen-
eral computer. On the one hand, software frameworks (such as Brian2, from Stimberg
et al., 2019) can allow to simulate small-scale SNNs with high biological fidelity, de-
scribed with differential equations. However, when training larger architectures for
deep learning applications, these simulations are too costly. On the other hand, large-
scale SNNs are usually trained using similar frameworks as ANNs, such as Pytorch
(Paszke et al., 2019). These frameworks allow to benefit from automatic differentiation
as well as a high parallelization of the computations accelerated with GPUs. In addi-
tion, specific frameworks based on Pytorch (such as SpykeTorch from Mozafari et al.,
2019a or SpikingJelly from Fang et al., 2020b) have been developed to ease the training
of SNNs, implementing various neuron models and learning rules.

Large-scale SNNs are often simulated with timesteps in a similar way as RNNs (see
Section 2.2), and hence the simulation time scales with the number of timesteps. This
incurs higher training time (and resources utilization) compared to the training of an
ANN with the same topology. To mitigate this problem, some frameworks (such as
SpikingJelly from Fang et al., 2020b) have targeted the acceleration of SNN training.

This thesis focuses on large-scale SNNs for deep learning applications. The Py-
torch framework (Paszke et al., 2019) was used for all the simulations, rather than
frameworks dedicated to SNNs, to facilitate the development of customed algorithms.

Implementations of SNNs on Neuromorphic Hardware

Neural network inference on general-purpose processors (CPUs or GPUs) is inefficient
(see Fig. 2.2). Indeed, the separation of the processor and the external memory causes
high data transfer between both units, leading to high energy consumption and la-
tency, also called the von Neumann bottleneck or “memory wall” (Horowitz, 2014).
This trend is exacerbated in neural networks as they rely on many memory accesses
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FIGURE 2.2: Hardware implementations of Spiking Neural Networks. Traditional
computer architectures, such as Central or Graphics Processing Units (CPUs, GPUs),
are based on the von Neumann paradigm, where compute and memory are physi-
cally separated, causing a memory bottleneck. In beyond von Neumann architectures,
compute and memory are co-localized inside a core. A chip is composed of several
cores communicating using a network-on-chip (NOC). Among the architectures that
are used in efficient neural networks accelerators, near- and in-memory computing
(NMC, IMC) can be distinguished. In NMC, although compute and memory units are
close, they are still separated. In IMC, part of the computation (multiply and accumu-
late operations) is performed inside the memory, using the physical properties of the

devices.
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associated with computations, in particular due to matrix multiplications of neuronal
activations and weights. Therefore, researchers are focusing on designing energy-
efficient “beyond von Neumann” hardware for accelerating the inference (or training)
of neural networks. Unlike traditional von Neumann processor architectures, these
spatial architectures (as opposed to temporal architectures such as CPUs of GPUs),
also called “near-memory computing”, bring memory and compute spatially close to-
gether (see Fig. 2.2). In addition, neuromorphic computing was introduced very early
by Mead, 1990 with the objective of mimicking some aspects of biological neural sys-
tems to obtain more efficient computer architectures, in particular using analog hard-
ware. Indeed, in biological neural systems, neurons and synapses (thus compute and
memory) are not physically separated. Moreover, biological systems are naturally ana-
log rather than digital.

The combination of dedicated hardware and algorithm could be the key to effi-
cient neural network implementations. In particular, SNN implementations on neuro-
morphic hardware promise interesting gains. Indeed, due to the use of spikes, SNNs
require only accumulate (AC) operations instead of multiply-and-accumulate (MAC)
operations between neuronal activations and weights. Moreover, the spike sparsity
can be inherently exploited in event-based neuromorphic hardware.

In this context, Application Specific Integrated Circuits (ASICs), such as Truenorth
from IBM (Merolla et al., 2014), Loihi from Intel (Davies et al., 2018), DYNAPs from
ETH Zurich (Moradi et al., 2018), and Field Programmable Gate Arrays (FPGAs) im-
plementations, such as Mostafa et al., 2017; Corradi et al., 2021, have been proposed.
Among large scale digital architectures, TrueNorth (Merolla et al., 2014) is composed of
1 million neurons and 256 million synapses on 4096 cores, while the Loihi chip (Davies
et al., 2018) has reached 8 million neurons and 8 billion synapses. Most of SNN im-
plementations, such as TrueNorth, Loihi and DYNAPs, communicate spikes using the
Address Event Representation (AER) protocol (Boahen, 2000). In AER, a spike (i.e.
an event) is encoded in a packet, containing the address of the source neuron, that is
sent to the destination neuron in real time. The AER encoding allow to easily lever-
age the spike sparsity in SNNs, as null activations are not stored, and operations are
triggered by the arrival of an event in an asynchronous manner. In addition, as con-
nectivity is limited (in particular in two-dimensional design), large-scale chips require
network-on-chip (NOCs) to manage spike communication between the different cores
of a chip. Note that, although most accelerators focus on inference rather than learning,
some chips, such as Loihi (Davies et al., 2018), include on-chip training capabilities. In
particular, the version 2 of Loihi (Orchard et al., 2021) offers increased learning capa-
bilities and programmability of the neuron model. Moreover, Loihi 2 is proposed with
an open-source neuromorphic computing framework (Lava) that allows users to map
SNN algorithms to neuromophic platforms.

Although traditional neural networks accelerators are based on fully-digital archi-
tectures (such as TrueNorth or Loihi), analog implementations have gained interest.
Indeed, some of the essential operations of neural networks, such as the leak of neu-
rons in SNNs or the multiplications and accumulations, can be realized very efficiently
using the natural dynamics of physical systems, as shown by Mead, 1990. For in-
stance, a capacitance can be used for implementing the leaky integration behavior of
the membrane potential of analog neurons (Joubert et al., 2012). Moreover, synap-
tic weights can be implemented using analog emerging Non-Volatile Memory (NVMs)
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devices, instead of static and dynamic random-access memories (SRAMs and DRAMs)
which are typically used in digital neural network accelerators. NVMs retain the infor-
mation even if the power supply is turned off, allowing to remove the dependency to
an external memory and thus reducing the energy consumption of the system. These
devices allow to encode one bit of information depending on the programmed state.
For instance, in a resistive NVM, the resistance of the device represents the value to be
stored, and can be at state “high” (representing 1) or “low” (representing 0). Moreover,
multi-level programming strategies in NVMs allow more than one bit of information
to be stored in a single NVM device, by encoding multiple non-volatile states in the
memory. Multi-level implementations allow to increase the memory density, which is
important for implementing large neural networks.

Various technologies of emerging NVMs are good candidates for such implementa-
tions (Ielmini et al., 2019), such as resistive RAMs (RRAMs), magnetic RAMs (MRAMs),
phase-change RAMs (PCRAMs) or ferroelectric RAMs (FeRAMs) (see Fig. 2.3). For in-
stance, Valentian et al., 2019 have demonstrated high energy efficiency with a SNN im-
plementation combining analog neurons and RRAM-based synapses. Besides, Moradi
et al., 2018 have realized an efficient combination of fully asynchronous digital commu-
nication and hybrid analog/digital circuits for synapses and neurons. Besides, NVMs
can enable efficient in-memory computing (IMC), also called processing-in-memory
(PIM), which is a promising alternative to reduce data movement according to Yang
et al., 2019a (see Fig. 2.2). In such systems, the matrix-vector multiplication is directly
performed using the physical properties of the analog devices in a highly-parallel fash-
ion, as demonstrated in Joshi et al., 2020; Amrouch et al., 2021; Jung et al., 2022; Wan
et al., 2022. However, device variability and non-ideality of analog circuits impose
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constraints on the network architecture and can reduce the accuracy. Therefore, ad-
dressing these non-idealities is one of the main challenges for analog neural network
implementations.

Note that, in this thesis, the term “real-valued” or “high precision” activations is
used for describing ANN activations, as opposed to spiking activations. However, the
precision of ANN activations can vary depending on the choice of hardware imple-
mentation.

2.1.3 Applications and Datasets

In principle, SNNs can be used with any topologies (such as convolutional, recurrent,
etc.) for any deep learning applications, as ANNs. Many works (for instance Srini-
vasan et al., 2019; Han et al., 2020b; Zheng et al., 2021; Zhou et al., 2021; Fang et al.,
2021a; Deng et al., 2022) have applied SNNs to image classification tasks, due to the
popularity of datasets such as MNIST (Lecun et al., 1998), CIFAR (Krizhevsky et al.,
2009) or ImageNet (Deng et al., 2009) for benchmarking purposes. However, SNNs
have also been applied to other tasks, such as speech recognition (Bellec et al., 2018a;
Wu et al., 2020), autonomous driving (Zhou et al., 2020; Viale et al., 2021), brain com-
puter interfaces (Kasabov, 2014; Kumarasinghe et al., 2021), etc.

An interesting field of applications for SNNs is neuromorphic sensors, such as Dy-
namic Vision Sensors (DVS), also called event cameras (Lichtsteiner et al., 2008), and
Dynamic Audio Sensors (DAS), also called silicon cochlea (Chan et al., 2007). These
bio-inspired sensors output data directly in the form of spikes (sometimes with a po-
larity). For instance, in event cameras, pixels are sensitive to local changes in intensity,
and asynchronously fire a spike, if a change in brightness occurs, or remain silent other-
wise. This is completely different from traditional cameras producing frames at a given
frame rate. Therefore, dynamic sensors can have a higher dynamic range and tem-
poral resolution than conventional frame-based sensors (Lichtsteiner et al., 2008). In
addition, these event-based sensors are particularly adapted to be processed by event-
based SNNs, thus benefiting from their sparsity and asynchronous behavior. Different
datasets produced by dynamic sensors have been used with SNNs. On the one hand,
some are directly captured with the dynamic sensor, such as DVSGesture from Amir
et al., 2017 for visual gesture recognition. On the other hand, other datasets were cap-
tured with a standard sensor and then converted to the neuromorphic domain. For
instance, N-MNIST from Orchard et al., 2015 and CIFAR-10-DVS from Li et al., 2017
were created by showing the images of the respective MNIST (Lecun et al., 1998) and
CIFAR-10 (Krizhevsky et al., 2009) datasets to the DVS. DASDIGITS from Anumula et
al., 2018a was created by recording with the DAS the spoken digits from the TIDIGIT
dataset (Leonard et al., 1993). Besides, other neuromorphic datasets have been gener-
ated using algorithms simulating the characteristics of dynamic sensors, such as the
Spiking Heidelberg Dataset (SHD) from Cramer et al., 2020 for spoken digit or word
recognition. Many works, such as Wu et al., 2019b; Kim et al., 2020; Zheng et al., 2021;
Fang et al., 2021b; Deng et al., 2022, have benchmarked their SNN training strategy
using DVSGesture or CIFAR-10-DVS, while Yin et al., 2020; Cramer et al., 2020; Perez-
Nieves et al., 2021; Yin et al., 2021 have used the SHD dataset. In addition, Amir et al.,
2017 shows an efficient hardware implementation of a spiking convolutional network
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on TrueNorth yielding 96.5% accuracy on DVSGesture with a latency of 105ms and
consuming less than 200mW.

2.2 Training Spiking Neural Networks

Learning is the process by which the parameters of the neural networks (e.g. weights,
biases, time constants of neurons, etc.) are determined such that the network performs
a specific task. The learning can be performed in a supervised way, if the data are
labelled (meaning that the expected outputs are known), or in an unsupervised way.
In the case of the supervised learning with gradient descent, a cost metric is defined as
a function of the error between the desired and actual outputs. The learning process
consists of tuning the parameters such that the cost function is minimized. In ANNs,
the backpropagation algorithm is used to calculate the gradients of the cost function
with respect to each synaptic weight in order to perform synaptic weights updates.
The calculation starts from the last layer of the network and proceeds backwards layer
by layer.

Various methods have been proposed to train SNNs in supervised or unsuper-
vised manners. As proposed by Zhang et al., 2022, the techniques to train SNNs can
be broadly classified into two main categories (see Fig. 2.4): (1) biologically-inspired
learning rules and backpropagation-free techniques, and (2) backpropagation-based
training strategies. While the first category tends to higher biological plausibility, the
second category targets higher performance for deep learning applications.

2.2.1 Biologically-Inspired and Backpropagation-Free Learning
Rules

Spike-Timing-Dependent Plasticity

The Spike-Timing-Dependent Plasticity (STDP) rule is an unsupervised local learning
rule demonstrated by neurobiologists and is inspired by chemical mechanisms with
computation capability existing in nervous systems Dan et al., 2006. The synapse’s
weight is strengthened (Long Term Potentiation) or weakened (Long Term Depression)
depending on the relative timing of the spikes of the pre and postsynaptic neurons.
The STDP is local in time and in space, and therefore is attractive for on-chip learning
in neuromorphic hardware. However, due to its locality, STDP does not provide a
global optimization scheme and the neural networks must be trained layer by layer.
Therefore, the accuracy attainable with this rule is limited.

Kheradpisheh et al., 2018; Lee et al., 2018; Mozafari et al., 2018; Mozafari et al.,
2019b; Srinivasan et al., 2019 have built multi-layer SNNs trained with STDP in a layer-
wise manner and added some form of supervision to the training to improve its accu-
racy. Kheradpisheh et al., 2018 pre-process the input data by applying Difference-of-
Gaussian filters to facilitate the feature extraction, followed by a spiking Convolutional
Neural Network (CNN) trained with STDP. Next, the output was processed with Sup-
port Vector Machine (SVM) classifier to further perform the MNIST classification task
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with 98.4% accuracy. Lee et al., 2018 use STDP as a pre-training, followed by a fine-
tuning with backpropagation and showed that the STDP pre-training gives a better ac-
curacy (99.28% on MNIST) than a random initialization. Mozafari et al., 2019b add re-
inforcement learning to create a reward-modulated STDP, achieving 97.2% on MNIST
without requiring an external classifier. Srinivasan et al., 2019 introduced a Stochastic-
STDP learning rule for a SNN with binary weights. With a residual CNN composed
of four layers, they achieved 66.23% on the CIFAR-10 dataset. However, the last fully
connected layer of their network is trained with the standard backpropagation algo-
rithm. Moreover, the convolutional layers of the network are connected to each other
(using a direct path and residual connections) and to the fully connected layer, making
the fully connected layer critical for the classification tasks. This shows that the STDP
cannot make full use of the depth of the network. Indeed, the accuracy of their model
increases with the number of convolutional layers up to three, after what the accuracy
starts to deteriorate. Without adding supervision to the training process, Thiele et al.,
2018 propose STDP with two Integrate and Fire units per neuron to decouple the learn-
ing and inference with SDTP, enabling the training of all layers simultaneously in an
event-driven fashion. Therefore, this system is very suitable for online learning, where
the learning is performed at the same time as inference, and achieves 96.58% accuracy
on MNIST. Later, Fu et al., 2021 remarkably demonstrate 93% accuracy on CIFAR-10
with an Ensemble SNN trained with STDP. The Ensemble SNN are composed of iden-
tical CNNs (with three convolutional layers) and a voting layer is used at the end to
determine the classification output. Finally, STDP can also be used in recurrent topolo-
gies. Chakraborty et al., 2023 demonstrate that training with STDP in recurrent SNNs
can be significantly improved by adding heterogeneity in the neurons (varying firing
and relaxation dynamics) and in the STDP itself (varying learning dynamics for each
synapse). They achieve 96.54% accuracy on DVSGesture with a recurrent SNN with
2000 hidden neurons, while the SNN trained with backpropagation reaches 98.12%.

The STDP rule makes it possible to train SNNs in an unsupervised and biologically-
plausible manner and is suitable for on-chip learning due to its locality. However,
although Tavanaei et al., 2019; Eshraghian et al., 2022 have shown that STDP can ap-
proximate backpropagation update rules, it is not the most appropriate rule to train
deep networks with high accuracy in the context of deep learning applications.

Approximations of Backpropagation

Training approaches based on approximations of backpropagation use supervised train-
ing with gradient descent, but do not apply the standard layer-by-layer backpropa-
gation, either to increase the biological plausibility or to reduce the training cost. In-
deed, the layer-by-layer backpropagation algorithm is difficult to implement efficiently
in neuromorphic hardware, and is also considered highly implausible in the brain,
mainly for the non-locality (in both space and time) of the computations. Moreover, it
requires precise calculation of real-valued gradients, a separation and synchronization
of the forward and backward pass while storing all the activations, and symmetry of
weights in both directions (Bengio et al., 2016).

In ANNs, “random backpropagation” approaches, first introduced in Lillicrap et
al., 2016, are proposed to relax some constraints of the backpropagation phase, at the
cost of a degradation in accuracy. Some works have applied these methods to SNNs.



2.2. Training Spiking Neural Networks 17

For instance, Zenke et al., 2018 use Feedback Alignement (Lillicrap et al., 2016), which
removes the constraint of symmetric weights, to SNNs. Kaiser et al., 2020b apply Sign-
concordant Symmetry (Liao et al., 2016), which uses random magnitudes for feedback
weights but preserve the signs. Neftci et al., 2017; Lee et al., 2020c; Bellec et al., 2020;
Kaiser et al., 2020a use Direct Feedback Alignment (Nøkland, 2016) to SNNs. In this
variant, the output error is directly fed to each hidden layer through fixed random con-
nectivity matrices, removing the layer-wise locking constraint (in addition to the sym-
metric weights) during the backward pass. Neftci et al., 2017 propose an event-driven
Direct Feedback Alignment with dual compartments neurons (one for the forward and
one for the backward pass). Due to dual neurons, the model needs only two additions
and one comparison to perform the synaptic weight update, provided auxiliary neu-
rons to store the accumulated error. Bellec et al., 2020 trained a recurrent SNN with
adaptive neurons with a form of Direct Feedback Alignment. The training algorithm,
called e-prop, is an approximation of the Backpropagation Through Time (BPTT, which
is used to train RNNs), using eligibility traces recording the pre- and post-synaptic ac-
tivity and an error signal propagated through direct feedback connections. A recurrent
SNN with adaptive neurons trained with e-prop achieves 26.4% error rate for speech
recognition on the TIMIT dataset (Garofolo et al., 1993), compared to 24.7% error when
trained with BPTT. In addition, Bohnstingl et al., 2022 implement e-prop on neuro-
morphic hardware leveraging analog synapses and IMC, thus enabling efficient online
and real-time learning. Moreover, Mostafa et al., 2018 propose a training method based
on local errors that removes the layer-wise locking constraint also during the forward
pass, making the learning of each layer independent. The errors are generated locally
in each layer using fixed random (sign-concordant) auxiliary classifiers and each layer
try to minimize its local error. Kaiser et al., 2020b apply this method to SNNs show-
ing 95.54% accuracy on DVSGesture. Moreover, the gradients can be computed locally
at each timestep, enabling online learning. Indeed, Guo et al., 2022 implemented local
learning on a neuromorphic chip demonstrating 4x and 10x higher efficiency compared
to a STDP method and a Direct Feedback Alignement method, respectively, in terms
of trade-off between energy, speed, resources and accuracy. Note that some of these
spiking algorithms (such as Neftci et al., 2017; Zenke et al., 2018; Bellec et al., 2020;
Kaiser et al., 2020b) are sometimes called “three-factor” learning rules to enhance their
proximity with biological learning rules. “Three-factor’ stands for two factors corre-
sponding to the pre and postsynaptic activity (reminiscent of the STDP learning rule)
and a third factor corresponding to an error signal (similarly to reinforcement leaning).

In conclusion, training SNNs based on approximations of the backpropagation al-
gorithm can be relevant to target efficient on-chip training or to explore biologically-
plausible learning. However, for now, these approximations decrease the accuracy
compared to standard backpropagation.

2.2.2 Backpropagation-Based Training

Backpropagation-based training methods are able to accurately train deep networks.
However, applying backpropagation to SNNs is challenging due to the nature of the
spiking activation function, which has derivative equals to zero everywhere except
in zero where it is infinite (see Fig. 2.5). Different strategies have been proposed to
mitigate this problem, such as approximating the derivative with a surrogate gradient
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(Neftci et al., 2019), or directly differentiating the spike times (Mostafa, 2018). An al-
ternative solution is to convert a trained ANN to a SNN formalism, also called indirect
training or ANN-to-SNN conversion, which bypasses the training difficulty of SNNs.

ANN-to-SNN Conversion

The ANN-to-SNN conversion is an indirect training strategy consisting in training an
ANN and then mapping the trained weights to a SNN, assuming equivalence of the
SNN computing units to the ANN ones. The ANN is trained under constraints to
better fit the SNN model. Then, either the thresholds of the spiking neurons or the
weights are normalized equivalently, so that the transfer function (input-output map-
ping) of the SNN unit matches the transfer function of the ANN unit (Diehl et al., 2015;
Sengupta et al., 2019).

Conversion with rate coding. Rate coding is a straightforward approach to conver-
sion, in the case of using IF SNN neurons and Rectified Linear Unit (ReLU) activation
functions for ANNs (Cao et al., 2015; Rueckauer et al., 2017). Indeed, the firing rate of
an IF neuron approximates the analog output of a ReLU function (linear on the positive
x-axis and zero otherwise). However, the conversion process results in errors in some
cases, for instance when the ANN activation is too high and cannot be accurately rep-
resented by the spike rate given a fixed simulation duration. An effective data-based
weight normalization, consisting in rescaling the weights in each layer according to
the maximum ANN activation in the corresponding layer within the training set, is
presented in Diehl et al., 2015 to mitigate this problem. Another solution is proposed
in Sengupta et al., 2019, which balances the thresholds in each layer according to the
maximum SNN activation, instead of ANN activation. They report high accuracy for
a converted SNN with VGG-16 network architecture, such as 91.55% on CIFAR-10 and
69.96% on ImageNet using 2500 inference timesteps. The accuracy can be further im-
proved using a soft reset mechanism instead of a hard reset, as proposed in Han et al.,
2020b. The soft reset consists in subtracting the threshold value from the membrane
potential after the neuron fires a spike, instead of setting it to the reset potential value.
The residual membrane potential above the threshold is thus kept for the next spike,
which reduces the loss in the spiking quantization process. Their method yields a near
loss-less conversion, showing 93.63% accuracy on CIFAR-10 and 73.09% on ImageNet
with a VGG-16 architecture using 2048 and 4096 timesteps, respectively. Similar re-
sults are shown with ResNet-20 and ResNet-34 on CIFAR-10 and ImageNet achieving
91.36% and 69.89% accuracy, respectively. However, these methods require hundreds
to thousands of inference timesteps, leading to a very high latency and a degraded
energy efficiency, according to Roy et al., 2019. The long inference time required to
achieve high accuracy is inherent to the equivalence chosen for the conversion. Indeed,
the ReLU activation function approximates the firing rate of the IF model only if the
SNN inference is discretized with a sufficient number of timesteps. More recently, Li et
al., 2021; Li et al., 2022; Bu et al., 2022a leverage quantization theory to further reduce
the conversion loss between ANN and SNN under low latency constraints. Indeed,
a spiking neuron can be seen as quantization function, with the number of timesteps
defining the quantization precision. For instance, Bu et al., 2022b propose to replace the
standard ReLU in the ANN model by the quantization clip-floor-shift activation func-
tion, which better approximates the firing rate of the IF model. Indeed, by clipping the
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ReLU, they suppress conversion errors due to large ANN activations. Moreover, by
quantizing the ANN activation (flooring), they remove conversion errors due the dis-
cretization of the SNN activation, if the quantization step is properly chosen according
to the time discretization of the SNN inference. Indeed, by clipping (resp. flooring),
they suppress the conversion errors due to large activations in the ANN (resp. due
to the discretization of the SNN activation), if the quantization step is properly cho-
sen according to the time discretization of the SNN inference. Therefore, they obtain
SNNs with high accuracy using a much smaller number of timesteps. In addition, they
propose an optimal initialization of the membrane potentials to decrease the SNN la-
tency. Indeed, they show that initializing membrane potentials to zero makes the SNN
start to fire late, especially in the deepest layers, while initializing it to half of the spik-
ing threshold considerably decreases the time to first spike of the neurons, resulting
in higher accuracy at lower latency. For instance, on ImageNet with ResNet-34, they
achieve 69.37% (resp. 72.35%) accuracy with 32 (resp. 64) timesteps. However, there is
still a gap between the accuracy of the ANN and the converted SNN due to uneven-
ness errors, resulting from the fact that a different order of input spikes produces a
different output (Bu et al., 2022b), which is inherent to the conversion process. Li et al.,
2022 propose to mitigate the unevenness errors (which they call “occasional noise”) by
allowing the emission of negative spikes to correct a potential surplus of fired spikes.
Notably, they achieve 72.91% (resp. 74.36%) accuracy with ResNet-50 on ImageNet us-
ing only 5 (resp. 10) timesteps. However, this requires relaxing the constraint of binary
spikes, by allowing both positive and negative spikes.

Conversion with temporal coding. Another approach to conversion is based on
temporal coding. This approach is attractive because the number of spikes emitted can
potentially be decreased drastically, thus further reducing the energy consumption.
This is first proposed in Rueckauer et al., 2018 using the equivalence between the acti-
vation value of the ANN unit and the inverse of the spike time of the SNN unit. In Han
et al., 2020a an accuracy as high as that obtained with rate coding in Han et al., 2020b
is demonstrated on CIFAR-10 and Imagenet using VGG-16 and ResNet architectures,
with at most two spikes per neuron. They propose a novel temporal coding with one
positive and one negative spikes per neuron. In addition, they introduce a threshold
balancing method to improve the accuracy while using fewer timesteps compared to
the rate-based conversion of Han et al., 2020b. Furthermore, Stöckl et al., 2021 propose
a temporal code associated with a new spiking neuron model using logN different val-
ues of spike times to transmit integers between 1 and N in order to reduce the required
temporal resolution. They achieve 83.57% accuracy on ImageNet with the EfficientNet-
B7 architecture (75.10% with ResNet-50), with on average less than 2 spikes per neuron
per inference. However, the proposed neuron model is complex, requiring additional
parameters and additional state functions computed at each timestep, and might be
costly to implement on neuromorphic hardware. More recently, Stanojevic et al., 2022
show an exact mapping between ReLU neurons and SNN neurons with a linear latency
coding, allowing to reach a loss-less ANN-to-SNN conversion. However, the required
temporal resolution to simulate this loss-less conversion is not indicated.

To conclude, the ANN-to-SNN conversion results in high accuracy. However, there
is still a gap between the accuracy of the ANN and the converted SNN due the diffi-
culty of having a loss-less conversion when aiming at low inference latency. In addi-
tion, the conversion process does not allow the optimization of the temporal dynamics
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of the SNN, contrary to direct training approaches (Rathi et al., 2021a).

Direct Training With Backpropagation

Direct training with backpropagation is another training strategy for accurate SNNs.
In order to directly apply backpropagation to SNNs, different strategies are used to
circumvent the problem of the non-differentiability of the spiking activation function,
such as approximating the derivative with a surrogate gradient (Neftci et al., 2019),
or directly differentiating the spike times as proposed in Mostafa, 2018. The surro-
gate gradient technique consists in approximating the neuron’s activation function (a
step function) by a differentiable function during the backward pass, to enable infor-
mative gradients to backpropagate through the layers (see Fig. 2.5). The approach
was first introduced by Hinton, 2012; Bengio et al., 2013 with the straight-through
estimator used to train quantized neural networks. Furthermore, the SNN inference
being discretized in timesteps, there are several strategies to apply backpropagation to
SNNs (see Fig. 2.6). We classify these methods into three categories. (1) The spatial
approach uses accumulated quantities which are retrieved at the end of the inference
phase (such as the spike count or membrane potential value) to serve as an activa-
tion value for each neuron. Then, backpropagation can be applied on these quantities.
This strategy does not take into account the SNN temporal dynamics (i.e. the precise
timing and order of the spikes and temporal components of the SNN model). (2) The
single-spike approach uses only one spike per neuron (using a latency temporal cod-
ing), and computes directly the spike time of each neuron during the inference phase.
Then, the backpropagation algorithm can be applied using the spike time of each neu-
ron as its activation. (3) The spatio-temporal approach considers the SNN as a RNN
and performs the backpropagation on each timestep using BPTT. Hence, this method
considers both temporal and spatial dynamics of SNN.

Spatial approaches, such as Lee et al., 2016; Thiele et al., 2019; Wu et al., 2019a, use a
rate-coding strategy with IF neurons and instantaneous synapses and do not consider
temporal dependencies in the gradient computation. They consist in approximating
the SNN forward pass during the training in order to obtain a lighter backpropaga-
tion, only in the spatial domain, as in ANN training. For instance, Lee et al., 2016
consider the membrane potential without the spiking discontinuities, using low-pass
filtered spike signals. Therefore the signal is continuous (considering the spiking activ-
ity as noise) and backpropagation can be applied on it. They achieve 99.31% accuracy
on MNIST with a 4-layer CNN architecture. A different method is proposed in Wu
et al., 2019a. They define the equivalent of the neuron activation as the sum of its
spikes produced during the simulation time, which can be used for backpropagation.
They achieve 99.26% accuracy on MNIST with a 3-layer CNN architecture. However,
they argue that considering only the spike count generates a quantization error, as the
surplus membrane potential of spiking neurons is not taken into account, which could
become a problem for deeper neural networks. Furthermore, Thiele et al., 2019 demon-
strate that the backpropagation phase can also be realized with spikes by considering
the error in a discrete form. Therefore, the same hardware infrastructure can be used
for both inference and learning, which makes it attractive for on-chip learning. More-
over, they show that the spike discretization error can be reduced to zero by adding
some constraints on the ANN. Therefore, they can perform the offline training directly
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FIGURE 2.5: Supervised learning with backpropagation in SNNs. In the forward
pass, the inputs are propagated through the layers resulting in output Y. During the
backward pass, Y is compared to a target T using a loss function L, defining the cost E
to be minimized with gradient descent. Then each weight w is updated according to
the derivative of the cost E with respect to w. This derivative is computed using the
chain rule, which requires to compute the derivative of all previous operations. This
allows to backpropagate the errors through all the layers of the network. However, in
SNNs, the activation function f of neurons has the derivative equals to zero everywhere
except in θ where it is infinite. Therefore, the derivative of a surrogate function is used

to compute the gradients during the backward pass.
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FIGURE 2.6: (a) Backpropagation-based learning algorithms. Spatial and spatio-
temporal approaches use a rate coding while the single-spike approach use a temporal
(latency) coding. On the one hand, the spatio-temporal approach considers the acti-
vation of each neuron at each timestep at

i , corresponding to the emission or not of a
spike st

i . BPTT is used to backpropagate the error in both space and time dimensions.
On the other hand, the spatial and single-spike approaches consider for each neuron
a single activation ai for the forward pass, which can correspond to the spike count ci
for the former or the timing of the unique spike emitted by the neuron ti for the latter.
Therefore, the backpropagation is used to backpropagate the error only in the space
dimension. (b) Backpropagation and BPTT training. Notations: n number of layers, T
number of timesteps used in the SNN inference, A(l) activation of neurons in layer l,
W(l) weight vector from layer l to l + 1, τ membrane potential and postsynaptic poten-

tial update (for LIF neurons and continuous synapses).
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with the equivalent ANN. They achieve 89.99% accuracy on CIFAR-10 with a 8-layers
VGG architecture. However, because they perform training and inference with the
equivalent ANN, they do not indicate the number of inference timesteps that would
be used for the inference with the SNN. Note that the spatial approach resembles the
ANN-to-SNN conversion with rate coding, however the training targets are different.
In conversion methods, the ANN is trained under constraints and then, there is a con-
version procedure to transfer the ANN trained weights to the SNN. On the other hand,
in the spatial approach, the SNN is directly trained, but viewed as an ANN, and thus
can be trained in a similar way using accumulated quantities during the SNN forward
pass. Hence, contrary to the ANN-to-SNN conversion, there is only one network and
no conversion procedure. However, the most recent ANN-to-SNN conversion tech-
niques resemble the spatial SNN training. Indeed, they convert a SNN from an ANN
that matches more closely the SNN such that the differences between the two models
decrease and the conversion becomes more straightforward (Bu et al., 2022b).

Single-spike approaches, such as Mostafa, 2018; Comşa et al., 2022; Göltz et al.,
2020; Zhang et al., 2020; Sakemi et al., 2023; Kheradpisheh et al., 2020; Zhou et al.,
2021, apply backpropagation in SNNs by directly differentiating the spike times. These
methods have been applied to image processing, the spatial information contained in
the images being directly converted to the spike timing using a temporal (latency)
coding. These approaches have the advantage of using at most one spike per neuron
and thus appear promising for energy-efficient hardware implementations. The single-
spike approach was introduced very early with the SpikeProp learning rule from Bohte
et al., 2002. SpikeProp defines the firing time of neurons as a function of their mem-
brane potential and thus approximates their derivative using the changes of the mem-
brane potential around the firing time. Later, Mostafa, 2018 demonstrated that by us-
ing single-spike IF neurons with exponential synapses, the differential equation of the
neuron membrane potential has a simple solution. Due to this analytic input-output re-
lation, the spike times can be computed directly without simulating the inference with
timesteps. Therefore, there is no need to use BPTT, but a direct backpropagation only
on the spike times is possible. They achieve 97.2% accuracy on MNIST with a Fully-
Connected (FC) network with 800 hidden neurons. Comşa et al., 2022 and Göltz et al.,
2020 take their inspiration from Mostafa, 2018 but use IF neurons and synapses with
alpha synaptic kernel, and LIF neurons and synapses with dual exponential kernel, re-
spectively. Their models are more biologically plausible, but the differential equations
have complex solutions. Performance in hardware is demonstrated in Göltz et al., 2020
by implementing the algorithm in BrainScaleS-2 (Pehle et al., 2022). They yield 95.9%
accuracy with 25µJ per classification on MNIST (16x16 images) with a FC network with
128 hidden neurons. Zhang et al., 2020 uses IF neurons with linear synapses, taking in-
spiration from the ReLU units used in ANNs, demonstrating 99.2% accuracy on MNIST
with a 5-layer CNN architecture. Besides, Kheradpisheh et al., 2020 use instantaneous
instead of continuous synapses with IF neurons. However, they must approximate the
derivative of the spike time with regards to the membrane potential, and hence the
gradients are not exact. They obtain 97.4% accuracy on MNIST with a FC network
with 400 neurons in the hidden layer. Zhou et al., 2021 extend the work of Mostafa,
2018 by proposing an efficient way of computing the spike times taking advantage of
parallel tensor computations in deep learning frameworks running on GPUs to speed-
up the offline training. They achieve 92.68% and 68.8% accuracy on CIFAR-10 and
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ImageNet using VGG-16 and GoogleNet architectures, respectively. However, as they
directly compute the spike times without simulating the SNN dynamics, the num-
ber of timesteps that would be used for the SNN inference with the desired temporal
resolution in hardware is unknown. In addition, single-spike approaches are hardly
compatible with dynamically changing input data (such as spatio-temporal data), as
neurons can fire only once, according to Eshraghian et al., 2022.

Spatio-temporal approaches, such as Wu et al., 2018; Shrestha et al., 2018; Zenke
et al., 2018; Jin et al., 2018; Wu et al., 2019b; Lee et al., 2020a; Zhang et al., 2020; Led-
inauskas et al., 2020; Kim et al., 2020; Fang et al., 2020a; Zheng et al., 2021; Fang et al.,
2021b; Fang et al., 2021a; Deng et al., 2022; Duan et al., 2022, use a rate-coding strategy,
but propagate the gradient both in spatial and temporal dimensions using BPTT. The
majority of works use LIF neurons with instantaneous synapses and rate-coded loss
functions (based on the output firing rate, or output membrane potential in the case
of non-spiking neurons). Wu et al., 2018 introduce a spatio-temporal backpropagation
for SNN based on an iterative LIF model and approximate the non-differentiable spik-
ing activity with a surrogate gradient. They demonstrate 99.42% accuracy on MNIST
with a 4-layer CNN architecture. Lee et al., 2020a follow the approach of Lee et al.,
2016 by considering the membrane potential without the spiking discontinuities, but
with a leak in the neuron model. They achieve 90.95% accuracy on CIFAR-10 with a
ResNet-11 using 100 timesteps for inference. However, using a surrogate gradient has
the effect of smoothing the spiking activity and leads to a degraded accuracy of the
computed gradients according to Jin et al., 2018; Zhang et al., 2020. Therefore, Jin et al.,
2018; Zhang et al., 2020 propose an alternative backpropagation method at the spike
train level. For instance, Zhang et al., 2020 decompose the derivative of the spiking
activation with regards to the membrane potential in two factors, one accounting for
the inter-neuron dependencies and one accounting for the intra-neuron dependencies.
However, in their neuron model, post-synaptic potentials are transmitted between lay-
ers instead of spikes, and hence they loose the advantage of a spiking implementation
(with sparse and binary activations). Note that the computational and memory cost of
training with BPTT is important, as this method requires storing the activations and
computing the gradient at all timesteps. For instance, training VGG-16 on CIFAR-10
for one epoch of BPTT using 100 timesteps takes 78 min and 9.36 GB of GPU mem-
ory (using Nvidia GeForce RTX 2080 Ti TU102 GPU with 11GB memory) according to
Rathi et al., 2020. For comparison, the VGG-16 ANN training of one epoch requires
only 0.57 min and 1.47 GB, which is x137 less time and x6 less memory. Moreover,
Ledinauskas et al., 2020 argued that, for SNNs trained with BPTT, reducing the num-
ber of timesteps is crucial, not only to reduce the latency and energy consumption, but
also to improve the training convergence. Indeed, similar to RNNs, the vanishing and
exploding gradients problem can appear. Note that, although most of the cited papers
consider applications with static data (such as images), training with BPTT is particu-
larly useful in the case of spatio-temporal data. In this case, BPTT allows to optimize
the SNN dynamics taking into account the temporal dynamic of the input data (while
there is no temporal dynamics in rate-coded static data).
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TABLE 2.1: Comparison of backpropagation-based direct training strategies on static
vision datasets

BP training Paper Topo. Strategies Timesteps Acc. (%)

CIFAR-10
Spatial Thiele et al., 2019 VGG-8 / / 89.99

Spatio-temporal

Wu et al., 2019b VGG-8 NN, DO, ENC, VOT 12 90.53

Lee et al., 2020a ResNet-11 DO 100 90.95

Zhang et al., 2020 VGG-8 ENC 5 91.41

Ledinauskas et al., 2020 ResNet-11 BN, DO, SG tuning 20 90.20

Kim et al., 2020 VGG-9 BN 25 90.50

Zheng et al., 2021 ResNet-19 BN, ENC, VOT 6 93.16

Fang et al., 2021b VGG-8 BN, DO, ENC, VOT 8 93.50

Deng et al., 2022 ResNet-19 BN, ENC 6 94.50

Duan et al., 2022 ResNet-19 BN, ENC, VOT 6 94.71

Castagnetti et al., 2023 ResNet-18 ENC, vth tuning 4 94.65
Single-spike Zhou et al., 2021 VGG-16 / / 92.68

ImageNet

Spatio-temporal

Zheng et al., 2021 ResNet-34 BN, ENC, VOT 6 67.05

Fang et al., 2021a ResNet-152 BN, ENC 4 69.26

Deng et al., 2022 ResNet-34 BN, ENC 4 68.00

Duan et al., 2022 ResNet-34 BN, ENC, VOT 4 68.28
Single-spike Zhou et al., 2021 GoogLeNet / / 68.8

NN: neuron normalization, BN: batch normalization, DO: dropout, ENC: encoding layer, VOT: voting layer,

SG: surrogate gradient, vth: neuronal threshold.

2.3 Improving Accuracy and Efficiency of Spiking Neu-
ral Networks

2.3.1 Improving Backpropagation-Based Training

Backpropagation-based training allows to achieve better accuracy than biologically-
inspired learning rules. However, the accuracy of SNNs is still significantly lower
than that of ANNs and the latency is important. Therefore, additional strategies are
required to improve the supervised training of SNNs with backpropagation in terms
of accuracy, latency and spike sparsity. The state-of-the-art on direct training with
backpropagation-based methods (spatial, spatio-temporal and single-spike) on static
and neuromorphic vision datasets is summarized in Tables 2.1 and 2.2, while showing
the effect of using the improvements described in the following subsections.

Adapting ANN Techniques to SNNs

SNNs can benefit from techniques developed to improve ANN training, such as regu-
larization, normalization, optimized topologies and quantization theory. For instance,
dropout (Srivastava et al., 2014) is an effective regularization technique consisting in
randomly disconnecting some units of a layer during the training to avoid the net-
work relying too much on certain connections. This technique is transferable to SNNs
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TABLE 2.2: Comparison of backpropagation-based algorithms on neuromorphic vision
datasets

BP training Paper Topo. Strategies Timesteps Acc. (%)

DVSGesture

Spatio-temporal
Fang et al., 2020a 5-layer CNN synaptic kernel optimization / 96.09

Fang et al., 2021b VGG-7 BN, DO, ENC, VOT 20 97.57

Zheng et al., 2021 ResNet-17 BN, ENC, VOT 40 96.87

CIFAR-10-DVS

Spatio-temporal

Wu et al., 2019b VGG-5 NN, DO, ENC, VOT 20 60.5

Kim et al., 2020 VGG-7 BN 20 63.2

Zheng et al., 2021 ResNet-19 BN, ENC, VOT 10 67.8

Fang et al., 2021b VGG-6 BN, DO, ENC, VOT 20 74.8

Deng et al., 2022 VGG-9 BN, ENC 10 83.17

Duan et al., 2022 VGG-9 BN, ENC, VOT 10 84.90

NN: neuron normalization, BN: batch normalization, DO: dropout, ENC: encoding layer, VOT: voting layer.

and was used in many works such as Wu et al., 2019b; Rathi et al., 2020; Lee et al.,
2020a; Ledinauskas et al., 2020; Rathi et al., 2021b; Fang et al., 2021b. Batch Normal-
ization (BN) (Ioffe et al., 2015) is a powerful normalization technique widely used to
train deep ANNs. It consists in rescaling the activations of a layer, and learning this
scaling per batch, in order to maintain the variance of the activations throughout the
network, which leads to better convergence. Several works propose to transfer the BN
technique to SNN training, such as Ledinauskas et al., 2020; Kim et al., 2020; Zheng
et al., 2021; Duan et al., 2022. Kim et al., 2020 show that standard BN should not be
applied directly to SNNs, because it considers the timesteps all at once. Instead, they
propose a BN "through time" (BNTT) to decouple the parameters of the BN across
the timesteps. They report a decreased number of spikes per inference by one order of
magnitude compared to the BPTT without BN. They show x9 efficiency gain compared
to the ANN version in terms of AC and MAC operations using the energy values of
Horowitz, 2014. Zheng et al., 2021 propose a threshold-dependent spatio-temporal BN
(tdBN) that normalizes the variance of the inputs to the threshold (of the spiking ac-
tivation function). They demonstrate scalability to deep residual networks with high
accuracy while using fewer timesteps. In addition, they report sparse spiking activity
(less than 2 spikes per neuron per inference on average). Duan et al., 2022 improve over
tdBN and BNTT by proposing a temporal efficient BN (TEBN). Compared to BNTT and
similarly to tdBN, a unique set of BN parameters (weight and shift) and a unique set of
statistics are used for all timesteps. However, contrary to tdBN, the presynaptic inputs
are rescaled with a different weight for each timestep. This allows to keep the tem-
poral coherence of information between timesteps while reducing the computational
complexity compared to BNTT. Alternatively, a neuron normalization method espe-
cially designed for SNN is proposed in Wu et al., 2019b, based on auxiliary neurons at
each layer to help balance the input currents (preactivations).

Scalability of SNNs can also be improved using optimized network architectures.
For instance, the ResNet architecture can alleviate the gradient vanishing problem by
adding residual shortcut connections, which enables the effective training of deeper
networks He et al., 2016. Lee et al., 2020a; Ledinauskas et al., 2020; Zheng et al., 2021;
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Fang et al., 2021a achieve high accuracy using ResNet architectures and regulariza-
tion techniques. For instance, Ledinauskas et al., 2020 and Zheng et al., 2021 show
scalibility up to a 50-layer ResNet on CIFAR-100 and ImageNet, respectively. How-
ever, the accuracy gap with respect to ANN for the same architecture is still high. On
ImageNet, the SNN ResNet-50 in Zheng et al., 2021 yields 64.88% accuracy while the
ANN ResNet-50 achieves 76.13% (Pytorch torchvision models 2021), both being trained
with BN. Notably, Fang et al., 2021a propose a novel implementation of the identity
mapping in spiking ResNet, which can mitigate the problem of SNNs scaling with
depth. Indeed, they are able to scale to very deep residual networks while increasing
the accuracy with depth. For instance, they reach 69.26% accuracy on ImageNet with
ResNet-152 using only 4 timesteps.

Leveraging quantization theory developed for quantized ANN training can further
allow to improve the SNN accuracy. This idea, which has been explored to reduce the
conversion loss in ANN-to-SNN conversion methods with low-latency constraints (Li
et al., 2022; Bu et al., 2022a), has been later used in direct training (Castagnetti et al.,
2023). Castagnetti et al., 2023 view the spiking activation function as a quantization
function, where the timesteps are seen as quantization intervals. They propose to di-
rectly target the minimization of the error of this quantization function by training
layer-wise SNN thresholds. In particular, using time-varying thresholds (i.e. with a
different value at each timesteps) allows to further decrease the quantization loss, in
analogy with non-uniform quantization. Notably, they achieve 71.42% accuracy on
CIFAR-100 with ResNet-18 using only 4 timesteps.

Improving Encoding and Decoding

Input encoding and output decoding of the network seriously impact the SNN accu-
racy and latency according to Rueckauer et al., 2017; Wu et al., 2019b; Garg et al., 2020;
Deng et al., 2020.

Encoding. The higher the number of timesteps used in the inference phase, the
higher the precision of the encoding and in turn, the higher the network accuracy.
However, this induces an increased inference latency. Therefore, reducing the number
of timesteps while preserving the accuracy is challenging. In the case of real-valued
signals (non-spiking data), an efficient solution is to use an encoding layer, also called
direct input encoding, as in Rueckauer et al., 2017; Wu et al., 2019b; Deng et al., 2020;
Rathi et al., 2021b; Wu et al., 2021; Fang et al., 2021b; Zheng et al., 2021. It consists in
directly feeding the real values to the first layer at each timestep, without discretization
of the input, the discretization process with the spikes being done in the first layer.
Such encoding layer is thus a hybrid ANN-SNN layer, as the synapses perform real-
valued input-weight multiplications but the neurons are spiking units (see Fig. 2.7).
Deng et al., 2020 report that by using the encoding layer, a VGG-5 trained with BPTT on
CIFAR-10 could achieve 74.23% accuracy instead of 63.19% with a rate-based encoding.
Using an encoding layer can also reduce the latency for the same accuracy. For instance
with the encoding layer, the same accuracy is achieved as rate-based encoding with
only 3 timesteps instead of 15. Similar conclusions are derived in Kim et al., 2022b.
Note that this hybrid layer (introduction multiply operations) must be supported in
the neuromorphic hardware used for inference, or computed at the interface between
the data and neuromorphic hardware.
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Decoding. A simple way to increase the precision of the output layer is to apply
the loss function on the high precision membrane potential of the output neurons in-
stead of their spike rate, as shown in Lee et al., 2020a; Rathi et al., 2020; Rathi et al.,
2021b. Alternatively, population decoding can be used to improve the robustness of
the classification when using the output spike rates as in Wu et al., 2019b; Fang et al.,
2021b; Zheng et al., 2021; Duan et al., 2022. In this decoding scheme, each group of
output neurons represents a class, and the choice is made based on a voting strategy.
Besides, Deng et al., 2022 show that by slightly modifying the loss function, they could
achieve better convergence of the SNN trained with a spatio-temporal approach. In-
deed, instead of computing the cross-entropy loss function on the average of the SNN
outputs, they compute the average of the loss at each timestep. They achieve espe-
cially good results with spatio-temporal data such as neuromorphic datasets (83.17%
on DVS-CIFAR10).

Wide Network Architectures

Using wider network architectures, by increasing the number of neurons per layer, im-
proves the accuracy, especially when the number of timesteps is low. For instance, Lee
et al., 2020a; Rathi et al., 2020; Zheng et al., 2021; Rathi et al., 2021b; Ledinauskas et al.,
2020 achieving low latency with high accuracy on CIFAR-10 use very large ResNet ar-
chitectures (11 to 18M parameters) compared to those usually used for the CIFAR-10
task (such as ResNet-20 with only 0.27M parameters, but yet the ANN version achieves
91.25% accuracy). On ImageNet, Zheng et al., 2021 report that by doubling the num-
ber of filters per convolutional layers in the ResNet-34 architecture, they increase the
accuracy from 63.72% to 67.05%. Interestingly, when they compare the SNN with the
ResNet-50 and ResNet-34 original architectures, the ResNet-50 yields better accuracy
(64.88%), but not compared to the large ResNet-34. This shows that, in SNNs, from
a certain depth, increasing the width of the network is more beneficial compared to
further increasing the depth. Indeed, the number of neurons is increased, which can
have a similar effect to increasing the precision of a smaller number of neurons. This
is on par with Mishra et al., 2017 demonstrating that wider architectures can improve
the accuracy of reduced-precision ANNs (with quantized weights and activations).
Indeed, SNNs with few timesteps behave similarly to ANNs with highly-quantized
activations.

Training Hybridization

Hybrid training approaches have also been proposed to further reduce the cost of the
off-chip training or the hardware inference, while increasing the accuracy.

ANN-SNN network hybridization. Mixing ANN and SNN layers (see Fig. 2.7) is
one strategy to improve the accuracy. For instance, Panda et al., 2020 use a network
with ANN layers at the inputs to improve the encoding accuracy, and SNN layers at
the output, the whole network being trained with backpropagation (spatio-temporal
for SNN layers). This approach demonstrates benefits for the CIFAR-10 classification
task, for which the hybrid version yields 84.98% accuracy (+2% compared to the full
ANN) using 25 timesteps with a VGG-9, while showing x4 higher efficiency than the
full ANN in terms of MAC/AC operations (using the energy values in 32-bit 45nm
technology from Horowitz, 2014). However, the benefits are smaller on Imagenet (x1.3
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FIGURE 2.7: (a) Example of ANN-SNN hybridization. Here, the first convolutions
are done in ANN mode (using high precision activations and MACs operations) and
the last convolutions are performed in SNN mode (ACs operations with spikes). A
conversion from analog values to spikes is performed between ANN and SNN layers.
(b) Encoding layer. The first layer is hybrid ANN-SNN, as synapses perform MAC
operations between weights and real-valued inputs, but neurons are spiking. This

layer allows the conversion from analog values to spikes.

efficiency), as they could not use more than two spiking layers in the VGG-13 architec-
ture to achieve satisfactory accuracy (-3% compared to the full ANN).

Tandem learning. Another strategy, proposed in Wu et al., 2021, is to couple each
SNN layer with an ANN layer with weight sharing. In the training phase, the inference
is performed by the SNN and the obtained spike counts are used as activation values
by the ANN to perform the backpropagation. Therefore, the offline training phase
is accelerated and requires less memory because the backpropagation is done on the
ANN (thus removing the need for BPTT). The obtained SNN yields 90.98% accuracy
on CIFAR-10 with 8 timesteps (7-layer VGG topology), and 50.22% on ImageNet with
10 timesteps (AlexNet topology). In comparison, the ANN versions achieve 91.77%
and 57.55%, respectively. In addition, they report a sparse spiking activity (less than
0.4 spike per neuron per inference on the CIFAR-10 task), and hence up to x20 higher
energy efficiency than an equivalent ANN, in terms of MAC/AC operations.

Conversion and direct training hybridization. A hybrid approach between ANN-
to-SNN conversion and supervised direct training is proposed in Rathi et al., 2020. In-
deed, the ANN-to-SNN conversion yields very good accuracy but at the cost of a high
number of inference timesteps, while SNN supervised training can lead to a lower
number of timesteps but the spatio-temporal training with BPTT is expensive. Taking
the best of both worlds, they used ANN-to-SNN conversion as a pretraining and fur-
ther fine-tune the SNN with BPTT. For instance with a VGG-16 architecture on CIFAR-
10, after the ANN pretraining (250 training epochs), the SNN converged with 20 train-
ing epochs, showing the effectiveness of the pretraining. Therefore, the total training
duration is reduced to 28 hours (using Nvidia GeForce RTX 2080 Ti TU102 GPU with
11GB memory) compared to 325 hours with SNN training from scratch. However, the
memory requirements for training are not reduced, as the SNN still requires training
with BPTT. Li et al., 2021 also use this training hybridization technique to calibrate
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the parameters but also the initial membrane potentials, in addition to time-varying
thresholds. These improvements allow to increase the accuracy with a limited number
of timesteps.

Leveraging the Specificity of SNNs

The methods to improve the supervised training proposed previously are mostly in-
spired by ANNs training. However, the SNN model has some specificities that do not
exist in the ANN version.This section shows that, by making efficient use of the rich
dynamics of the SNN model, further benefits can be expected in terms of accuracy and
efficiency (latency and sparsity).

Leak and threshold of spiking neurons. Typical parameters of spiking neurons
such as leak (for LIF neurons) and threshold are usually defined as hyperparameters
and not considered in the training phase. However, neuron’s leak and threshold are
important parameters determining the SNN behavior. For a given set of weights, the
threshold determines how much the input neurons must spike in order for the neuron
to spike. The leak parameter controls how close to each other input spikes must be for a
temporal coincidence to be detected. Thus, including leak and threshold as parameters
in the training process can allow a better optimization of the SNN model. For instance,
Fang et al., 2021b propose to learn the leak parameters and report higher accuracy
than previous spiking approaches on neuromorphic datasets. In Rathi et al., 2021b,
both leak and threshold parameters are learned. Note that those added parameters are
shared between neurons in a layer, thus the impact on the total number of parameters
in the model is negligible. They show an accuracy improvement, compared to learning
only the synaptic weights, of about 1% on CIFAR-10 and up to 5% on CIFAR-100 and
ImageNet, as well as a lower number of spikes per inference. Moreover, with iso-
accuracy tuning the thresholds leads to a reduction in timesteps from 25 to 15 and in
spike rate from 1.94 to 1.47 spike per neuron per inference on CIFAR-10. Tuning the
leaks further reduces the number of timesteps from 15 to 5 and the spike rate from 1.47
to 0.39.

Synapse dynamics. The choice of the synaptic kernel function, when continuous
synapses (rather than instantaneous) are used, is another parameter to explore in order
to optimize the SNN model. For instance, Fang et al., 2020a propose a SNN with LIF
neurons where the synapses are described as second order infinite impulse response
filters, allowing to model various types of kernel (e.g. instantaneous, exponential, al-
pha, dual-exponential). The coefficients of the synapse filter are jointly learned with
the synaptic weights using BPTT. They demonstrate 96.09% accuracy on DVSGesture.

Surrogate gradient. Most backpropagation-based direct training approaches use a
surrogate gradient to approximate the derivative of the spiking activity. The derivative
of sigmoid functions is often used, as the sigmoid function can be seen as a smooth ap-
proximation of the step function (see Fig. 2.5), but other surrogate derivatives, such as
exponential or piece-wise linear functions, can also be used (Neftci et al., 2019). While
the training performance is robust to the shape of the surrogate function, it is strongly
affected by its scale, according to Zenke et al., 2021. For instance, Ledinauskas et al.,
2020 show that, by tuning the scale of the surrogate gradient function, the variance of
the gradients can be preserved through the layers, avoiding exploding and vanishing
gradients.
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2.3.2 Accuracy-Latency Trade-off

As SNNs distribute the information through binary events over time, there is an in-
herent trade-off between accuracy and latency (and hence the energy consumption).
Indeed, the latency directly impacts the accuracy, as the precision of the coding de-
pends on the number of timesteps used for inference, as shown in Diehl et al., 2015;
Sengupta et al., 2019; Han et al., 2020b. In order for SNNs to replace ANNs for effi-
cient inference on neuromorphic hardware, the accuracy-latency trade-off should be
carefully considered. In particular, parameters such as the coding, training strategies,
and network architecture width, impact this trade-off. State-of-the-art approaches in
conversion, direct training with BPTT, and hybrid training, are compared in terms of
accuracy-latency trade-off with regards to these parameters in Table 2.3.

First, the training strategy appears to have an effect on the accuracy-latency trade-
off. For instance, the conversion with temporal switch coding proposed in Han et al.,
2020a yields better results than the conversion with rate coding of Han et al., 2020b
when a reduced number of timesteps is used (256). This is explained by the use of
a better threshold balancing. Moreover, fine-tuning with BPTT after the rate-coded
conversion in Rathi et al., 2020 improves the accuracy by 1% on CIFAR-10 and by 3%
(resp. 5%) on ImageNet when using a VGG (resp. ResNet) architectures with the same
number of timesteps (250).

Considering the network architecture, as mentioned in Section 2.3.1, increasing the
width can improve the accuracy-latency trade-off. For instance, we observe that the
gap between the SNN and ANN accuracy decreases as much as the architecture width
increases. This explains the bigger differences between SNN and ANN accuracy on
ImageNet with ResNet-34 architecture (21M parameters) than with VGG-16 (138M pa-
rameters). The best accuracy among SNNs for a 34-layer ResNet is 67.05% with the
spatio-temporal approach (trained with BN) of Zheng et al., 2021 by using a wide
ResNet (≈85M parameters). The problem seems partly mitigated by Fang et al., 2021a
with a modified implementation of the spiking ResNet achieving 67.04% accuracy with
4 timesteps using the original ResNet-34 architecture. However, both SNNs are still far
from the ANN ResNet-34 accuracy (73.31%). Similarly in conversion approaches from
Han et al., 2020b; Han et al., 2020a, using the ResNet-34 architecture on ImageNet with
a reduced number of timesteps (256 vs 4096), the degradation in accuracy is larger than
the one observed for VGG-16. This highlights the accuracy-size trade-off in SNNs: the
loss in accuracy due to the quantization of information (which is further increased by
reducing the number of inference timesteps) is compensated by increasing the number
of neurons in each layer of the network. Notably, tackling the inherent quantization er-
ror of SNNs can mitigate the accuracy-size trade-off, as shown in Li et al., 2021; Li et al.,
2022, where the accuracy on ImageNet of ResNet and VGG networks is comparable.

In addition, the encoding layer significantly impacts the accuracy-latency trade-off
for both hybrid conversion and direct training approaches. Indeed, when compared
to the same architecture (ResNet-20 large or VGG-16) with the same training method-
ology (i.e. conversion with fine-tuning), the encoding layer can allow to reduce the
number of timesteps from 250 to 5 with only 1 to 2% accuracy loss, and by optimizing
the leak and threshold parameters they further increase the accuracy Rathi et al., 2021b.
In addition, direct training approaches yielding high accuracy with very few timesteps
(5 to 12), such as Zheng et al., 2021; Fang et al., 2021b; Wu et al., 2019b; Zhang et al.,
2020, use the encoding layer. Rathi et al., 2021b study the effect of the input encoding
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TABLE 2.3: Impact of input encoding, training and network architecture width on the
accuracy-latency trade-off

Paper Topo. Encoding layer Training Timesteps Acc. (%)

CIFAR-10

Han et al., 2020b ResNet-20 ✕ CONV-R 2048 91.36

Han et al., 2020b ResNet-20 ✕ CONV-R 256 89.37

Han et al., 2020a ResNet-20 ✕ CONV-T 2048 91.42

Han et al., 2020a ResNet-20 ✕ CONV-T 256 90.10

Bu et al., 2022b ResNet-20 ✓ CONV-R 16 91.62

Rathi et al., 2020 ResNet-20 (L) ✕ CONV-R 250 91.12

Rathi et al., 2020 ResNet-20 (L) ✕ CONV-R + BP 250 92.22

Rathi et al., 2021b ResNet-20 (L) ✓ CONV-R + BP 5 90.29

Lee et al., 2020a ResNet-11 (L) ✕ BP 100 90.95

Zheng et al., 2021 ResNet-19 (L) ✓ BP 6 93.16

Ledinauskas et al., 2020 ResNet-11 (L) ✕ BP 20 90.20

He et al., 2016 ResNet-20 / ANN BP / 91.25

Rathi et al., 2021b ResNet-20 (L) / ANN BP / 92.79

ImageNet

Han et al., 2020b ResNet-34 ✕ CONV-R 4096 69.89

Han et al., 2020b ResNet-34 ✕ CONV-R 256 ≈20

Han et al., 2020a ResNet-34 ✕ CONV-T 4096 69.93

Han et al., 2020a ResNet-34 ✕ CONV-T 256 55.65

Bu et al., 2022b ResNet-34 ✓ CONV-R 64 72.35

Rathi et al., 2020 ResNet-34 ✕ CONV-R 250 56.87

Rathi et al., 2020 ResNet-34 ✕ CONV-R + BP 250 61.48

Li et al., 2021 ResNet-34 ✓ CONV-R + BP 64 71.12

Li et al., 2021 ResNet-34 ✓ CONV-R + BP 256 74.61

Zheng et al., 2021 ResNet-34 ✓ BP 6 63.72

Zheng et al., 2021 ResNet-34 (L) ✓ BP 6 67.05

Fang et al., 2021a ResNet-34 ✓ BP 4 67.04

Pytorch torchvision models 2021 ResNet-34 / ANN BP / 73.31

Han et al., 2020b VGG-16 ✕ CONV-R 4096 73.09

Han et al., 2020b VGG-16 ✕ CONV-R 256 48.32

Han et al., 2020a VGG-16 ✕ CONV-T 2560 73.46

Han et al., 2020a VGG-16 ✕ CONV-T 256 69.71

Bu et al., 2022b VGG-16 ✓ CONV-R 64 72.85

Rathi et al., 2020 VGG-16 ✕ CONV-R 250 62.73

Rathi et al., 2020 VGG-16 ✕ CONV-R + BP 250 65.19

Li et al., 2021 VGG-16 ✓ CONV-R + BP 64 70.69

Li et al., 2021 VGG-16 ✓ CONV-R + BP 256 74.23

Rathi et al., 2021b VGG-16 ✓ CONV-R + BP 5 69.00

Pytorch torchvision models 2021 VGG-16 / ANN BP / 73.36

CONV-R/T: conversion with rate/temporal coding, BP: backpropagation. Number of parameters: ResNet-20: 0.27M.

ResNet-20 (L): 11M. ResNet-19 (L): 13M. ResNet-11 (L): 18M. ResNet-34: 21M. ResNet-34 (L): 85M. VGG-16: 138M.
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FIGURE 2.8: Impact of encoding layer and network topology on the accuracy-latency
trade-off, using SNN algorithms from Table 2.3 on the ImageNet dataset.

on both the spike rate and latency for the hybrid conversion with fine-tuning approach
(with VGG-16 on CIFAR-10). Using an encoding layer instead of probabilistic sam-
pling induces a significant improvement in the latency (from 150 to 25 timesteps) and
in the average spike rate (from 26 to 1.94). The impact of using an encoding layer and
a wide network topology on the accuracy-latency trade-off is illustrated in Fig. 2.8.

Hence, it seems that the training strategy, the network architecture width and the
use of an encoding layer impact the accuracy-latency trade-off. In particular, the use
of wide architectures and encoding layer seems to be the key to compensate for the
quantization process inherent to the spike coding with a limited number of timesteps
and thus to reach the best accuracy-latency trade-off. However, they bring additional
costs. Indeed, the encoding layer requires to use MACs operations (as activations are
in high precision, as opposed to spiking), and wide architectures increase memory
requirements and area. While the impact of the encoding layer on the SNN energy
footprint may be relatively small (as it affects only the input layer), the impact of wide
network topology may be more significant.

2.3.3 Estimating Energy Efficiency

Estimating the energy efficiency of SNNs is important in order to ensure that they
are more efficient than ANN equivalents, in the context of energy-constrained ap-
plications. Many works on SNN algorithms (such as Han et al., 2020b; Rathi et al.,
2021b; Fang et al., 2021a; Bu et al., 2022b) focus on decreasing the number of infer-
ence timesteps, as a way to decrease latency and hence energy consumption, as seen
in Section 2.3.2. However, the latency and energy consumption in event-based imple-
mentations are not directly linked to the number of simulation timesteps, but rather
to the number of spikes, as will be seen in Chapter 3. Therefore, reducing the number
of timesteps is a first step towards SNN efficiency, as it likely decreases the number
of spikes per inference (as neurons are limited to fire at most one spike per timestep).
However, it does not guaranty a more energy-efficient SNN hardware implementation.
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Alternatively, many works (such Panda et al., 2020; Lee et al., 2020a; Rathi et al.,
2021b; Wu et al., 2021; Yin et al., 2021) compare the energy efficiency of SNNs rela-
tively to ANNs considering the dynamic energy consumption associated with synap-
tic operations (ACs for SNNs vs. MACs for ANNs). Indeed, the number of operations
is an algorithmic metric that can be easily computed and is agnostic of the hardware
implementation. Using this metric, SNNs are often considered more energy-efficient
than their ANN equivalents, as ACs consume much less energy than MACs (the ex-
act factor depending on the data precision and the technological node according to
Horowitz, 2014). Nevertheless, most of the energy consumption of neural networks
in specialized architectures does not come from the arithmetic operations, but from
the associated memory accesses (Horowitz, 2014). Therefore, realistic comparisons of
ANNs and SNNs should account for the energy of memory accesses and not only of
the compute operations. However, the number of memory accesses and their associ-
ated energy consumption depend on the underlying hardware implementation. In-
deed, the energy footprint of memory accesses does not only depend on the number
of operations, but also on the optimization of the dataflow and the ability to exploit
data sparsity (Sze et al., 2020). Hence, a realistic comparison of ANNs and SNNs, ac-
counting for memory accesses, requires to make some assumptions on the choices of
implementation.

Few studies, such as Khacef et al., 2018; Davidson et al., 2021; Lee et al., 2021a;
Lemaire et al., 2022, have compared ANNs and SNNs considering realistic implemen-
tations in specialized accelerators. Nevertheless, Khacef et al., 2018; Lee et al., 2021a
take the MNIST task as reference to compare ANN and SNN implementations, which
is not representative of more difficult tasks (e.g. in terms of sparsity, accuracy, network
topologies and possibilities of design optimization). Moreover, Lee et al., 2021a base
their comparison on a specific ANN accelerator, and hence the conclusions may not be
valid for other accelerators. Davidson et al., 2021 propose an analytical model of the the
dynamic energy consumption in ANNs and SNNs (with IF model) considering com-
putations and memory accesses. This models allows to determine the sparsity level
required in a SNN (IF) to be more energy-efficient than an equivalent ANN. Lemaire
et al., 2022 also propose an analytical model of the the dynamic energy consumption
of ANNs and SNNs (with LIF model) considering computations, memory accesses, as
well as memory addressing. As Davidson et al., 2021, they conclude that the sparsity
level of SNNs is the most important factor determining their efficiency. Notably, they
propose a benchmark of ANNs and SNNs on three different datasets (static, dynamic,
and event-based), and show that the sparsity achieved by the SNNs make them 6-8x
more energy efficient than their ANN equivalent, according to the model. However,
Khacef et al., 2018; Davidson et al., 2021; Lemaire et al., 2022 do not consider opti-
mized ANN implementations, which can highly benefit from the optimization of the
dataflow and the exploitation of data sparsity, as shown in Sze et al., 2020. Moreover,
Khacef et al., 2018; Davidson et al., 2021; Lee et al., 2021a; Lemaire et al., 2022 do not
consider the different variants of the IF model frequently used in state-of-the-art SNN
algorithms, although the different SNN models require different number of operations
and memory accesses, and hence may have a different energy efficiency.
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2.4 Conclusion

Between neurosciences, machine learning and neuromorphic hardware, SNNs are de-
fined in many ways, aiming at biological plausibility or high performance. In the con-
text of machine learning, variants of the Integrate-and-Fire model are used with a rate-
based or a latency-based spike encoding. SNNs can be used for any application with
the objective of high-efficiency inference. In addition, they are particularly suitable for
processing event data produced by neuromorphic sensors. Indeed, event-based imple-
mentations of SNNs on neuromorphic hardware have been demonstrated to achieve
high energy-efficiency. Using analog hardware to efficiently implement some (or all)
of the SNN components could lead to further gains.

Furthermore, training strategies specific to SNNs have been reviewed. Among
them, biologically-inspired and backpropagation-free learning rules are promising for
on-chip training. However, targeting the highest accuracy and efficiency during infer-
ence, indirect training (ANN-to-SNN conversion) and direct training with backprop-
agaton currently lead to the highest performance. In particular, direct training based
on backpropagation seems to better leverage the spatio-temporal dynamics of SNNs,
allowing to achieve high efficiency (in terms of latency and sparsity). Among direct
training methods, single-spike approaches appear promising due to their potentially
high sparsity associated with the latency coding. However, in practice, the sparsity
reached with this training strategy is not higher than rate-coded approaches and they
are hardly compatible with spatio-temporal data. Spatial approaches are the most effi-
cient in terms of computation and memory during training. However they have limi-
tations similar to conversion approaches, as they do not allow to optimize the temporal
dynamics of SNNs. Although spatio-temporal training is costly due to the use of BPTT,
these approaches have demonstrated so far the highest accuracy with low latency and
high sparsity during inference. Moreover, they are naturally compatible with spatio-
temporal data, such as data produced by neuromorphic sensors. Therefore, in this
thesis, a spatio-temporal approach was chosen to train SNNs in order to achieve high
accuracy and efficiency, in particular for processing spatio-temporal data.

In addition, strategies for improving the accuracy and efficiency (in terms of energy
consumption and latency) of SNNs have been analyzed. For instance, taking inspira-
tion from ANNs training, as well as optimizing parameters specific to SNNs, can lead
to higher accuracy and efficiency. Moreover, the accuracy-latency trade-off in SNNs
should be carefully considered. For instance, the use of an encoding layer (i.e. bypass-
ing the spike conversion process for non-spiking data) and wide network architectures
can significantly improve both accuracy and latency. In particular, the encoding layer
has a relatively small impact on the energy footprint of SNNs, while its impact on ac-
curacy is significant. However, wider network architectures increase both the energy
consumption and memory requirements.

Finally, comparing the energy efficiency of ANNs and SNNs considering their im-
plementation on specialized neural network accelerators is not straightforward. There-
fore, this comparison must be further investigated, in the objective of using SNNs as
alternatives to ANNs for energy-constrained applications.
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Chapter 3

Energy Efficiency of Spiking vs.
Artificial Neural Networks

3.1 Introduction

ANN inference being highly resource-hungry, designing efficient implementations of
ANNs is essential, as seen in Section 2.1.2. In particular, the design of efficient neu-
ral networks accelerators is currently an important research topic. From the algo-
rithmic perspective, another approach is to look for more efficient algorithms to re-
place ANNs, such as SNNs. In digital implementations, ANNs, use multiply-and-
accumulate (MAC) operations between input activations (iacts) and weights on a layer-
by-layer basis. Conversely, SNNs are based on accumulate (AC) operations due to the
binary nature of their activations, and present a high sparsity of activations (spikes).
However, while SNN event-based implementations naturally benefit from spike spar-
sity, ANN implementations present other advantages. Indeed, ANNs can also leverage
the sparsity of iacts via data compression and logic to skip unnecessary MAC opera-
tions, according to Chen et al., 2019. Moreover, an efficient dataflow (i.e. scheduling of
ANN computations and mapping across Processing Elements (PEs), according to Sze
et al., 2020), can optimize the data reuse. Indeed, instead of reading each data required
for each computation in an external memory, which is very costly (Horowitz, 2014),
data reuse consists in storing locally some data which will be reused in several compu-
tations. Optimizing the dataflow to maximize data reuse allows to minimize memory
accesses to a distant memory and hence reduces the global energy consumption and
latency. Unfortunately, event-based implementations of SNNs cannot leverage data
reuse due to the non-flexible and non-predictable order of computations driven by
spikes. Hence, the hypothetical advantage of SNNs over ANNs in terms of energy
efficiency is not obvious.

Nevertheless, as shown in Section 2.3.3, a realistic comparison of ANN and SNN
hardware implementations on dedicated neural network accelerators is currently miss-
ing. Indeed, most of the works on SNN algorithms focus on metrics that only partially
reflect the energy efficiency, such as the number of timesteps, or the energy consump-
tion of compute operations. Moreover, studies relying on a model of ANN and SNN
hardware implementations often lack fidelity or generality considering the ANN im-
plementation.

Therefore, in this chapter, a high-fidelity model is proposed for comparing the en-
ergy efficiency of ANN and SNN hardware implementations on neural network accel-
erators, considering how data reuse and sparsity play a role. Guidelines for improving
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the energy efficiency of ANN and SNN implementations are also provided.
Note that the energy efficiency will be measured considering the dynamic energy

consumption. Hence throughout this chapter, “energy” will refer to dynamic energy
consumption.

This chapter is organized as follows:

• In Section 3.2, the scope of the study, in particular the architecture of neural net-
work accelerators that is considered, is presented.

• In Section 3.3, a model of ANN and SNN dynamic energy consumption is pro-
posed, considering different variants of the IF model for SNNs, which is used to
evaluate the energy efficiency of state-of-the-art SNN algorithms.

• In Section 3.4, different ANN models considering data reuse and exploitation of
the sparsity are proposed. An upper bound on ANN energy efficiency relative
to SNN is provided, which is independent of the hardware implementation, by
computing the maximum benefit of data reuse and exploitation of sparsity. A
lower bound, representative of a naive ANN implementation, is used as a base-
line. Then, these theoretical bound are compared with the state-of-the art ANN
accelerators Eyeriss v1 and v2 from Chen et al., 2017; Chen et al., 2019.

• In Section 3.5, the effectiveness of hybrid ANN-SNN implementations is dis-
cussed, as an alternative to either fully-ANN or fully-SNN implementations.

The results of this chapter have been published in Dampfhoffer et al., 2023b.

3.2 Scope of the Study

3.2.1 Architecture of Neural Network Accelerators

We consider efficient digital implementations of neural network accelerators based on
near-memory computing (as described in Section 2.1.2). Note that the methodology
can be adapted to introduce analog elements, considering mixed-signal implementa-
tions. For instance, NVMs could replace on-chip SRAMs, modifying the energy associ-
ated with memory accesses, and hence the numerical applications should be adapted.

The neural network hardware architecture can either be spatially expanded (each
neuron is physically represented) or spatially folded (time-multiplexed), according to
Khacef et al., 2018, as depicted in Fig. 3.1. In a spatially expanded architecture, all the
memory is on-chip in buffers (such as SRAMs) close to the PEs. In a spatially-folded
architecture, which is typically used for ANNs (for example in Eyeriss from Chen et al.,
2017), the chip is smaller, with only one buffer on-chip, and there is an off-chip memory
(such as DRAM). This type of architecture increases the dynamic energy consumption
due to the off-chip memory accesses, but saves area. Indeed, in spatially expanded
architectures, the supported network topologies are limited by the size of the chip.

In the case of SNNs, the choice of hardware architectures depends on the process-
ing mode, whether it is an event-based execution, where all layers are computed in
parallel, or an ANN-like execution, where layers are computed one at a time. In event-
based execution (such as Merolla et al., 2014; Davies et al., 2018; Moradi et al., 2018),
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FIGURE 3.1: (a) Spatially folded architecture (such as the Eyeriss v1 chip from Chen
et al., 2017). (b) Spatially expanded architecture. Data types specific to ANN and SNN
are highlighted and in italic, respectively. Memory buffers on-chip are used to store
weights and states (such as membrane potentials or input currents) for SNNs. For
ANNs, input activations (iact) and partial sums (psum) (used to store partial results of

MAC operations) must be stored in addition to weights.

spikes are encoded in a packet containing the address of the source neuron (whose
size depends on the network topology) that is sent to the destination neuron in real
time using the AER protocol (Boahen, 2000), as described in Section 2.1.2. Event-based
processing allows leveraging the spike sparsity of SNNs, as spikes are not stored and
processed immediately, but requires a spatially expanded architecture.

In ANN-like execution, spikes must be stored, but it offers more opportunities
for data reuse and allows spatially folded architectures as in ANNs. For instance,
Narayanan et al., 2020 propose an output stationary dataflow where spiking neurons
are mapped to PEs to minimize the energy consumption of reading and writing the
neurons state. This comes at the cost of storing the spikes in a FIFO during the com-
putation of a layer, which must be further sorted to respect the computation order
constraints. In Lee et al., 2020b; Lee et al., 2021b, input spikes are stored as ANN
activations with only 0 and 1 values, but with an additional temporal dimension (rep-
resenting SNN temporal dynamics). Therefore, they can process all spikes of a layer
in parallel and use a weight stationary or output stationary dataflow. However, they
must also store spikes in tensors whose size depends on the temporal resolution. These



40 Chapter 3. Energy Efficiency of Spiking vs. Artificial Neural Networks

approaches provide scalability, but it is unclear whether they provide an energy bene-
fit. Indeed, they lose the advantages of SNNs, i.e. not storing activations and naturally
leveraging their sparsity, and still cannot exploit as much data reuse as in an ANN due
to the computation order constraints.

Therefore, in this study, we focus on the event-based approach. Instead of taking
an existing neuromorphic accelerator, we will consider a more general event-based
architecture, and therefore spatially expanded, which is not specific to a SNN model.
Moreover, we want to fairly compare ANNs and SNNs only based on the processing
mode, independently of the hardware implementation. Therefore, we consider that
both use a spatially expanded architecture in order to use the same energy values for
memory accesses.

3.2.2 Methods for Evaluating Hardware Efficiency

This study focuses on the applicative case of image recognition applications, as they
are frequently used for benchmarking neural networks. On-chip inference (and not
learning) is considered. In the models, we take into account only convolutional and
fully-connected layers, which represents the main energy consumption of ANNs and
SNNs. Activation functions, typically ReLU for ANNs and comparison with a constant
threshold for SNNs, pooling and normalization layers consume relatively little energy.

We study the dynamic energy consumption associated with the synaptic operations
of ANNs and SNNs. The static energy consumption and energy consumption associ-
ated with communication are other factors impacting the overall energy consumption
of a system. However, dynamic energy consumption associated with synaptic oper-
ations being one of the main motivation for the use of SNNs (due to the assumed
benefits of spike sparsity and replacement of MACs by ACs), we decided to focus our
study on this point. Thus, static energy consumption and energy consumption asso-
ciated with communication are out of the scope. For the same reason, we focus on
energy consumption rather than area, latency and throughput, although they are also
important factors to consider when designing an accelerator.

Therefore, the dynamic energy consumption is used as the energy efficiency metric.
It is computed using the number of memory accesses (read and write of variables in the
memory) and operations (MAC and AC), which are evaluated considering the sparsity
and data reuse opportunities.

3.3 Dynamic Energy Consumption of ANNs and SNNs

In this section, the models proposed to compute the dynamic energy consumption of
ANNs and SNNs are detailed. These models are based on number of memory accesses
and operations (MAC and AC). For ANN, a “naive” model is first presented, which
does not consider opportunities for exploiting iact sparsity and data reuse, and is used
as a baseline. “Ideal” and “realistic” ANN models are presented in the next Section
(3.4). Moreover, SNN models are presented considering different SNN variants. Then
the naive ANN implementation is compared with the SNN models and numerical ap-
plications (based on data from SNN algorithms) are provided.
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3.3.1 Naive ANN Model

In ANNs, the output of a neuron is defined as:

yi = φ(∑
j

xjwij + bi) (3.1)

yi is the output activation (oact) of neuron i, bi its bias, xj is the iact from presynap-
tic neuron j, and wij is the synaptic weight between neurons i and j. φ is an activation
function, such as ReLU. Therefore, the ANN atomic operation is the synaptic operation,
which corresponds to a MAC operation. Note that the number of synapses (Nsyn) is
different from the number of weights (especially in convolutional architectures where
weights are reused in multiple synapses). We start by considering a naive ANN im-
plementation : for each MAC, we must read the iact, weight and current partial sum
(psum), and write back the updated psum (according to Sze et al., 2020). Therefore, ERx
(respectively EWx) being the energy of the read (respectively write) operation on the x
data, the total energy for the ANN is:

EANN = Nsyn × (ERiact + ERweight + ERpsum + EWpsum + EMAC) (3.2)

3.3.2 SNN Models

For SNNs, we evaluate frequently used variants of the Integrate and Fire model (Ger-
stner et al., 2014). As seen in Section 2.1.1, neurons can be simple Integrate and Fire
(IF), or with an additional leak (LIF), meaning that the membrane potential decays over
time. Synapses can be instantaneous or continuous, whether the spike is integrated im-
mediately to the membrane potential or is accumulated first in another state variable
(input current), which also has a dynamic behavior. Note that, in the case of digital
hardware, only the implementation of IF neuron with instantaneous synapse model
do not require a temporal discretization (e.g. to apply the leak on the membrane po-
tential at each timestep) and can be fully asynchronous. The different combinations of
neurons and synapses are described in the following subsections.

IF neuron and instantaneous synapse (IF+inst)

The dynamics of this model is described by the following equation (setting aside the
reset and spiking mechanisms):

dVi

dt
(t) = ∑

j
∑

r
wijδ(t − tr

j) (3.3)

Vi(t) is the membrane potential of neuron i at time t, wij is the synaptic weight between
neuron i and neuron j, tr

j is the time of the rth spike from neuron j and δ is the Dirac
delta function. For each incoming spike from neuron j, we must read the associated
weight wij and the membrane potential (state) of the neuron. In an event-based im-
plementation, we do not need to read the input value, as it is a spike (and hence it
communicates directly the addresses of the corresponding weight and neuron state).
Then, the weight is simply added to the state with an AC operation. We assume that,



42 Chapter 3. Energy Efficiency of Spiking vs. Artificial Neural Networks

in the case the spikes must be buffered, this energy is included in the communica-
tion, which is ignored here. In SNNs, a synapse can receive several spikes. Hence,
the energy associated to a SNN synaptic operation must be multiplied by the average
number of spikes received per synapse (Nspikes/syn). We obtain the total energy:

EIF+inst = Nsyn × Nspikes/syn × (ERweight + ERstate + EWstate + EAC) (3.4)

LIF neuron and instantaneous synapse (LIF+inst)

The dynamics (without spiking and reset) of the LIF+inst model is described as:

τm
dVi

dt
(t) = −Vi(t) + τm ∑

j
∑

r
wijδ(t − tr

j) (3.5)

This corresponds to an exponentially decaying membrane potential with time constant
τm. The evolution of the membrane potential with time can be also described in an
iterative formulation:

Vt
i = Vt−1

i × exp(−∆t
τm

) + ∑
j

wijϵ
t
j (3.6)

with ϵt
j equals to 1 if neuron j from the previous layer has fired a spike at timestep

t, or 0 otherwise. In this model, the states of neurons are updated at each timestep.
Therefore, compared to equation (3.4) we must add the energy for updating the state
for all neurons (Nneur) and all timesteps (T is the number of timesteps in one inference),
corresponding to: reading the state, multiplying it with a constant, and writing back
the result. We obtain the total energy by combining the operations performed at each
incoming spike, from (3.4), and at each timestep:

ELIF+inst = Nsyn × Nspikes/syn × (ERweight + ERstate + EWstate + EAC)

+Nneur × T × (ERstate + EWstate + EMAC)
(3.7)

Another strategy is to update the states only when necessary, i.e. when there is an in-
coming spike to the neuron (using an additional variable to record the last spike time),
as proposed in Roy et al., 2017. However we found that in recent SNN algorithms,
the update at each timestep is more efficient, as Nsyn × Nspikes/syn is large compared to
Nneur × T, as will be seen in Section 3.3.4. Moreover, the energy of updating the states
when there is an incoming spike is higher than updating at a timestep (as in addition
we must compute the total decay from the last to the current input spike).

IF neuron and continuous synapse (IF+cont)

SNNs with temporal coding, for instance Time-to-First-Spike (TTFS) coding, require
continuous synapses to track the spike timings (Mostafa et al., 2017). The equations of
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the IF+cont model (without spiking and reset) are:

dVi

dt
(t) = Ii(t)

τs
dIi

dt
(t) = −Ii(t) + ∑

j
∑

r
wijδ(t − tr

j)
(3.8)

Ii(t) is the input current state variable of neuron i at time t. This corresponds to an
exponentially decaying synapse current with time constant τs. The neuron is IF be-
cause the membrane potential only integrates the input current and does not decay
over time. We use the discretized formulation in Mostafa et al., 2017:

Vt
i = Vt−1

i + It
i × λ

It
i = It−1

i + ∑
j

wijϵ
t
j − It−1

i × λ (3.9)

Note that the equation of the input current I is similar to that of the membrane po-
tential V for the LIF+inst model, using the constant λ ≈ 1

τs
to represent the temporal

resolution. To update I at each timestep, we must read I, multiply it by a constant, and
write back I. To update V at each timestep, we must read V, multiply the previously
obtained value of I by a constant and add it to V, and write back V. The update at each
spike (instead of each timestep) is not an option for this model due to the continuous
synapse. Indeed, an input spike can generate an output spike even after the input
spike time, as the membrane potential keeps integrating the continuous postsynaptic
potential. Therefore, keeping track of the spike times is highly complex. We obtain the
total energy:

EIF+cont = Nsyn × Nspikes/syn × (ERweight + ERI + EWI + EAC)

+Nneur × T × (ERI + EWI + ERstate + EWstate + 2 × EMAC)
(3.10)

Moreover, we can compute the energy of the LIF+cont model (LIF neurons with
continuous synapses combination) from that of the IF+cont by adding a MAC operation
at each timestep (corresponding to the multiplication of the membrane potential with
the decay factor).

3.3.3 Comparison of the Models

We now compare the energy efficiency of the ANN and different SNN models de-
scribed in the previous section. We choose 8 bit Fixed Point data format as it is com-
monly used for inference in neural network accelerators (Chen et al., 2019). As ex-
plained in Section 3.2, we consider a spatially expanded architecture for both ANNs
and SNNs, using SRAMs as on-chip memory, with energy ratios for compute and
memory in CMOS 45nm from Horowitz, 2014 (see Table 3.1).

The relative energy consumption of the memory accesses and computations associ-
ated with synapse operations (at each spike) and neuron operations (at each timestep)
of the ANN and the different SNN models is presented in Fig. 3.2. Note that for the
LIF+inst and IF+cont SNN models, there is an energy associated with the update of
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TABLE 3.1: Normalized energy cost relative to a MAC operation.

CMOS Techno. (data precision) EAC EMAC ER/W ER/W reg

45nm (8 bit) (used in Section 3.3) 0.13x 1x 5.4x /
65nm (16 bit) (used in Section 3.4) 0.06x 1x 6x 1x

neurons, in addition to synaptic operations, contrary to the IF+inst. Thus, the energy
breakdown depends on the relative values of Nspikes/syn, T, Nsyn and Nneur. Here, we
use hypothetical values for these variables in order to give a first overview of the en-
ergy breakdown of the models. In particular, we assume that Nspikes/syn = 1 and we
use the VGG16 topology to compute Nsyn and Nneur. We consider two cases for T, one
with a low latency (T = 10) and one with a high latency (T = 500).
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FIGURE 3.2: Relative energy consumption of the memory and compute associated with
synapse operations (at each spike) and neuron operations (at each timestep) of the

ANN and the different SNN models described in Section 3.3.

We observe that, in all models, the energy cost of compute is very small compared
to that of memory. In SNN IF+inst compared to ANN, the energy associated with com-
putation is smaller due to the replacement of the MAC by the AC operation. For the
LIF+inst and IF+cont models, the overhead associated with the updates of neurons at
each timestep is negligible if the number of timesteps is small (T = 10) but becomes
important if the number of timesteps grows (T = 500). In the latter, the energy of up-
dating neurons reaches 15.17% (respectively 26.34%) of the total energy consumption
of the LIF+inst (respectively IF+cont) model.

The relative energy efficiency of SNN models with updates at each timestep com-
pared to ANNs also depends on the ratio Nsyn/Nneur. This ratio depends on the net-
work topology. For instance, in the more compact MobileNet topology, this ratio is
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FIGURE 3.3: SNN energy efficiency relative to ANN (=EANN/ESNN) as a function of the
number of timesteps (T), depending on the SNN model and Nspikes/syn (in parenthesis).
The AlexNet, VGG16 and MobileNet topologies have Nsyn/Nneur = 2.9x103, 1.7x103,

9.4x102, respectively.

3x lower than in the AlexNet topology. The energy efficiency of the different SNN
models compared to ANNs (= EANN/ESNN) depending on the number of timesteps is
shown in Fig. 3.3, for a given Nspikes/syn. The results are shown for the AlexNet, VGG16
and MobileNet topologies, having Nsyn/Nneur = 2.9x103, 1.7x103, 9.4x102, respectively.
We see that, in topologies with a low Nsyn/Nneur (such as MobileNet), the energy ef-
ficiency of the LIF+inst and IF+cont models decreases more rapidly with the number
of timesteps compared to topolgies with a higher ratio (such as VGG16 or AlexNet).
Conversely, the energy of the IF+inst does not depend on the update of neurons. There-
fore, its relative efficiency compared to ANN is constant with the number of timesteps
and does not depend on the size of the topology (but only depends on Nspikes/syn). In
particular, in case of the IF+inst, we can compute that Nspikes/syn must be lower than
1.38 for ESNN to be lower than EANN regardless of the network topology. Note that
in Fig. 3.3, the SNN sparsity is supposed constant with the number of timesteps (for
the purpose of the figure). However, it is likely that, in practice, the number of spikes
increases with the number of timesteps. In that case, the relative energy efficiency of



46 Chapter 3. Energy Efficiency of Spiking vs. Artificial Neural Networks

TABLE 3.2: Energy efficiency of state-of-the-art SNNs relative to ANN (= EANN/ESNN)
using models from Section 3.3 and energy ratio in Table 3.1. ANN IS CONSIDERED

WITH A NAIVE (NON-OPTIMIZED) IMPLEMENTATION.

Topology SNN Acc. (%) T Nspikes/syn Energy efficiency

CIFAR-10
VGG8* [1] IF+inst 90.98 - 0.30 4.6x
VGG16 [2] IF+inst 90.35 - 1.30 1.1x
VGG16 [3] IF+inst 92.79 - 0.51 2.7x
ResNet11 [4] LIF+inst 90.95 100 3.60 0.4x
VGG9 [5] LIF+inst 90.50 25 0.80 1.7x
VGG16* [6] LIF+inst 92.70 5 0.39 3.6x
VGG16 [7] IF+cont 92.68 680** 0.62 1.3x

ImageNet
VGG16 [2] IF+inst 68.93 - 5.00 0.3x
VGG16 [3] IF+inst 72.59 - 1.00 1.4x
VGG16* [6] LIF+inst 69.00 5 0.41 3.4x
*with encoding layer. **assumed number of timesteps.
[1] Wu et al., 2021, [2] Han et al., 2020b, [3] Han et al., 2020a, [4] Lee et al., 2020a,
[5] Kim et al., 2020, [6] Rathi et al., 2021b, [7] Zhou et al., 2021.

the SNN compared to the ANN will decrease further with the number of timesteps.

3.3.4 Application to SNN Algorithms

We apply the models previously described to investigate the energy efficiency of state-
of-the-art SNN algorithms compared to an ANN (see Table 3.1 for the energy ratios
used). In this case, the values of Nspikes/syn, T, Nsyn and Nneur are based on information
provided in the corresponding papers. Nspikes/syn in a given layer is the average num-
ber of spikes fired by a neuron in the previous layer. To obtain an average on the entire
network, we need to weight it by the number of synapses in each layer, which is the
number of neurons in this layer multiplied by its fan-in (number of input connections).
In practice, if the average number of spikes per neuron of each layer is not available,
we assume that over the entire network Nspikes/syn ≈ Nspikes/neur. Note that some SNN
papers, such as Rathi et al., 2021b; Wu et al., 2021, use an encoding layer (the first layer
receives real pixel values instead of spikes and therefore does MAC operations as in
an ANN) to decrease the number of spikes per inference. In that case, only the energy
of spiking layers is considered. Moreover, Zhou et al., 2021 use a temporal coding but
no temporal resolution is given. Hence, it is assumed based on Park et al., 2020 using
a similar SNN model with temporal coding, achieving comparable accuracy with the
same network topology and dataset.

The energy efficiency of SNN relative to ANN (= EANN/ESNN) for state-of-the art
SNN papers is shown in Table 3.2 (using the naive ANN implementation described
in this section for comparison and the energy ratios from Table 3.1). We observe that
all SNN algorithms have a higher energy efficiency than the corresponding ANN (up
to 4.6x more energy-efficient), except in Lee et al., 2020a; Han et al., 2020b (where
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Nspikes/syn is higher). As in most cases Nsyn × Nspikes/syn is large compared to Nneur × T,
the energy of updates at each timestep becomes negligible compared to the energy of
synaptic operations. In that case, all SNN models have a similar energy consumption
(similar to that of IF+inst) and only Nspikes/syn determines the energy efficiency com-
pared to the ANN. This will not be the case if the number of timesteps increases, or
with a different network topology where the ratio between synapses and neurons is
smaller, as shown previously (see Fig. 3.2 and 3.3). Note that even if in these examples,
all SNN models have a similar energy consumption, SNN models with an update at
each timestep require a time discretization of the inference and the computations are
not fully event-based. Moreover, the continuous synapse introduces another state vari-
able for each neuron to store the input current, increasing the memory requirements. In
addition, we did not observe a higher accuracy or a higher spike sparsity in the models
with leaky neurons or continuous synapses, which could justify their use. For all these
reasons, the IF+inst model seems a better choice for a digital SNN implementation, in
the context of image classification.

In an event-based SNN implementation, no data reuse is possible (due to the non-
flexible and non-predictable computations) and spike sparsity is leveraged naturally
(due to the event-driven computations). In comparison, we considered a naive ANN
implementation (worst case ANN) which does not leverage sparsity and data reuse.
Therefore, in the next section, we will consider more favorable ANN models. In Sec-
tion 3.4, only the IF+inst model is considered, as it is the more general, and the target
SNN sparsity can be computed independently of the network topology.

3.4 ANN Models Considering Data Reuse and Exploita-
tion of Sparsity

In the previous section, we ignored the opportunities to exploit data reuse and sparsity
in ANNs, although they improve the energy efficiency. Data reuse (for all kind of data
types: weight, iact and psum) is the number of times a data that has been read once from
a distant memory can be reused locally for a MAC operation. The ideal (theoretical
limit) data reuse is that each data is only read once from a distant memory and then
reused locally in the PEs. In practice, due to hardware constraints, the reuse is never
ideal but is optimized with the dataflow. On the other hand, sparsity can be exploited
in iact and weights, by gating or skipping unnecessary MAC operations (i.e. with a
zero operand), and compressing data. In SNNs, iacts are already compressed (only
non-zero iacts, i.e. spikes, are transmitted) and thus the reading of weights and AC
are only performed when there is a spike. In ANNs, it requires more logic to process
compressed iact. Exploitation of sparsity in the weights is not taken into account in
this study, as we assume that ANNs and SNNs can process sparse weights and obtain
the same benefits. Note that it may be even easier for SNNs to process sparse weights
than for ANNs to process both sparse weights and iacts. Indeed, the logic would only
consist in checking if one operand is zero (skipping of zero spikes is natural), while in
an ANN, it has to find the match between two non-zero operands (according to Sze et
al., 2020). In this section, we use the energy ratios for memory and compute for CMOS
65nm and the 16 bit Fixed Point data format used in Eyeriss from Chen et al., 2016 (see
Table 3.1), in order to compare the energy consumption of SNN with the Eyeriss chip.
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3.4.1 Best Case ANN: Ideal Exploitation of Data Reuse and Sparsity

We first investigate the best case for the ANN, corresponding to an optimal data reuse
and exploitation of sparsity in the iacts. This model gives an upper bound on the ANN
energy efficiency relative to the SNN IF+inst model, which is independent of the hard-
ware architecture.

Theoretical data reuse, or Reuse Factor (RF), is computed for each layer of a topol-
ogy given its shape and size. In a fully connected layer, the RF on iacts is the number
of output neurons, the RF on psums is the number of input neurons and there is no
reuse of weights (RF=1). In a convolutional layer, the RFs depends on the number of
input and output channels, kernel size, image size and stride (details of the formula
are given in Putra et al., 2021). The RF of each data types for each layer of AlexNet,
VGG16 and MobileNet are shown in Fig 3.4. We observe that theoretical RFs are very
high, on the order of 102 to 103 on average. In recent architectures, such as MobileNet
(using depth-wise convolution), there is fewer reuse for every data type.
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FIGURE 3.4: Ideal data reuse (Reuse Factor) of the three data types (left: psum, right:
iact, bottom: weight) for AlexNet, VGG16 and MobileNet topologies (inspired by Chen

et al., 2019). Each point represents a layer of the neural network.

Compared to the previously used ANN energy equation (3.2), we weight the access
to a distant memory by the corresponding RF. To reuse data locally, data must be stored
in a local storage (such as register files) in the PEs, whose access energy is reduced
compared to the distant memory. Then, a data can be accessed from a PE (in the PE
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or in a neighbor PE from the PEs array) each time it is reused for a MAC. We add this
local storage access (ERreg, EWreg) in the ANN energy:

EANN(reuse) = Nsyn × (
ERiact

RFiact
+

ERweight

RFweight
+

ERpsum + EWpsum

RFpsum
+ ERreg

iact

+ERreg
psum + ERreg

weight + EWreg
psum + EMAC)

(3.11)

This equation gives the energy efficiency of the ANN exploiting the maximum data
reuse but not sparsity, if we must store and access each data in a local storage in the PEs
(which is the case in most ANN accelerators that are based on systolic architectures,
such as Eyeriss from Chen et al., 2017). In that case, the target SNN spike activity
(opposite of sparsity) to obtain the same energy efficiency as the corresponding ANN
is Nspikes/syn = 0.28. This is much lower than the target activity obtained with the naive
ANN implementation previously described (1.38).

We now consider the ideal exploitation of sparsity in the iacts. When there is a zero
iact, the MAC, the weight read and psum read and write in the local memory are saved:

EANN(reuse+sparsity) = Nsyn × (
ERiact

RFiact
+

ERweight

RFweight
+

ERpsum + EWpsum

RFpsum

+ERreg
iact + (1 − γ)× (EMAC + ERreg

psum + ERreg
weight + EWreg

psum))

(3.12)

γ is the average rate of zero in iacts, which is 58% in convolutional layers of AlexNet
and VGG16 on the ImageNet dataset (Chen et al., 2017). We did not consider data
compression, which can further reduce the energy consumption by reducing the en-
ergy of distant memory accesses, as the distant memory accesses are already negligi-
ble due to the ideal RFs. Using this equation, the target SNN spike activity becomes
Nspikes/syn = 0.15. This target activity is very low and not achieved in current SNN
algorithms as shown in Table 3.2. The target spike activity for the SNN IF+inst model
to be at least as efficient as the ANN, as a function of the average RF (of all data types)
in the ANN (assuming 58% zero iacts) is shown in Fig. 3.5. We observe that the target
activity decreases rapidly with the ANN RF and becomes small (lower than 0.3) from
RF = 10.

In practice, such RFs are not achieved due to hardware constraints and exploitation
of sparsity requires additional logic consuming energy. Therefore, in the following
subsection (3.4.2), we will consider the case of the Eyeriss v1 and v2 accelerators from
Chen et al., 2017; Chen et al., 2019.

3.4.2 Real Case Study: the Eyeriss Accelerator

Eyeriss is representative of state-of-the-art deep neural network accelerators with high
energy efficiency leveraging both data reuse and sparsity. This allows us to compare
the SNN energy efficiency with a realistic ANN hardware implementation.

Eyeriss v1

Eyeriss (Chen et al., 2017) uses a Row Stationary dataflow to increase the data reuse.
We use the number of memory accesses given in Chen et al., 2017 to compute the actual
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FIGURE 3.5: Target Nspikes/syn for the SNN IF+inst model to be at least as efficient as an
ANN with ideal data reuse and iact exploitation of sparsity, as a function of the average

data Reuse Factor in the ANN.

RFs. Iacts, oacts and weights are transferred between the DRAM and PEs through the
Global Buffer (GLB), while psums are only stored in the GLB. The weights are stored
in SRAM in the PEs, which means that they are probably read once in the DRAM and
then once in the GLB, to be stored in the PEs. Therefore, we can consider only the
number of GLB accesses (as there is no off-chip memory in the spatially expanded ar-
chitecture). We remove the weights accesses to compute the RFs of iacts and psums. For
this purpose, we compare the number of GLB accesses with the number of accesses re-
quired without reuse, as in the naive implementation described in the previous section
(each MAC operations requires 4 memory accesses).

We compute the RFs for the AlexNet and VGG16 topologies implemented in Chen
et al., 2017 for the ImageNet dataset. For the convolutional layers of VGG16 with batch
size of 3, 46.04G MACs are performed in total. This would require 276GB psums and
iacts accesses without reuse (data are encoded in 2B). Instead they perform 11006MB
GLB accesses. Therefore the effective average RF for iacts and psums is 25. Similarly
for Alexnet convolutional layers, we obtain an average RF for iacts and psums of 80.
They consider only convolutional layers, which consumes more energy compared to
fully connected layers in deep neural networks. They use a batch size superior to 1
to increase the weight reuse, and we consider a batch size of 1, but our computation
remains the same (as this does not impact the psums and iacts reuse). In addition to
iacts and psums accesses in a distant memory, we must consider local data accesses,
due to data reuse, from local register files which can be either in the PE (x1 energy cost
compared to a MAC) or in neighbor PEs in the PE array (x2) (according to Sze et al.,
2017). To simplify, we assume they are accessed in the PE.

Eyeriss leverages iact sparsity with data gating logic in the PEs (MAC and weight
read are gated when iact is zero), which can save 45% of the PEs power consumption.
We interpret this as the following: when there is a zero iact, the power consumption of
PEs is only 55% of the power consumption when the iact is non-zero, where the power
consumption of the PE corresponds to the associated MAC operation and memory
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accesses. The operation is gated but hardware cycles are still spent semi idle. Thus,
the obtained energy for a gated operation is only affected by the power as time is
constant. This saving includes static energy consumption, which was not considered
in our model. As we do not know the relative consumption of static and dynamic
factors in Eyeriss PEs, we assume the 45% energy savings corresponds to the savings
in the dynamic energy considered here. We obtain the energy of the ANN Eyeriss
model:

EANN(Eyeriss) = Nsyn × ((1 − γ) + 0.55 × γ)× (ERweight

+
ERiact + ERpsum + EWpsum

RFavg
+ EMAC + ERreg

iact + ERreg
psum + EWreg

psum)
(3.13)

γ = 0.58 is the average rate of zero iact in AlexNet and VGG16. RFavg is the average
RF computed for iacts and psums, which is 25 (resp. 80) for VGG16 (resp. Alexnet).
Note that the cost to read weights once from the buffer before storing them in the
PEs does not appear in the equation. Indeed, we assume that the associated energy is
negligible as it corresponds to the maximum reuse of weights. However, weights are
stored in SRAM in the PEs, and hence the energy cost to read them is the same as the
cost to read a data in the buffer. Comparing the total energy of the ANN Eyeriss and
SNN IF+inst models, we get that Nspikes/syn in the SNN must be lower than 0.44 (resp.
0.42) for VGG16 (resp. AlexNet) topology, for the SNN to be more energy-efficient than
the ANN. This target spike activity is much lower than the one corresponding to the
naive ANN implementation (1.38), but higher than the one corresponding to the ideal
best case ANN (0.15).

Eyeriss v2

Eyeriss v2 (Chen et al., 2019) is more energy-efficient than the v1 due to a flexible hier-
archichal mesh network-on-chip (NoC) and better exploitation of sparsity in PEs. Both
iacts and weights are compressed and processed by the PEs directly in the compressed
form. Therefore, MACs with zero weight or iact are skipped (and not gated as in v1).
Pruned networks are used to increase the sparsity in weights, improving the energy
benefits. Compared to v1, the Eyeriss v2 achieves x3.0 (resp. x1.9) higher energy ef-
ficiency with AlexNet (resp. MobileNet v1). The benefits are higher when using a
pruned version of the networks (x11.3 and x2.5, respectively).

However, the paper lacks some important metrics for us to compute the corre-
sponding energy equation, for instance GLB accesses are not specified. Therefore, we
use the comparison between the two versions, given in the Eyeriss v2 paper, to trans-
late it into the comparison between our models of Eyeriss v1 and v2. We assume that
SNNs can exploit the sparsity in weights of pruned network topologies with the same
energy benefits, as explained in Section 3.4. Thus, it is fair to compare the previous
results on SNNs with the Eyeriss v2 without using pruned networks. Moreover, we
did not consider the NoC efficiency in this study. Therefore, if we consider only the
benefits due to sparse PEs with non-pruned networks, the energy efficiency is only
improved by x1.15 (x1.06) for the AlexNet (MobileNet) topology from the v1 to the
v2. Indeed, the iacts sparsity alone compensate slightly the overhead of the sparse PEs
logic and the compression of non-sparse data. Therefore, we consider that the target
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sparsity in the SNN must be x1.15 (for the AlexNet topology) lower compared to the
one obtained considering Eyeriss v1, and thus becomes Nspikes/syn = 0.37.

3.4.3 Summary and Discussion of the Results

Summary of the results. The relative energy consumption of MAC, local memory (ac-
cesses in register files) and distant memory (accesses in the buffer) in the different ANN
models (baseline, ideal reuse + iact sparsity and Eyeriss v1) is depicted in Fig. 3.6. We
observe that, in the baseline model (worst case), all the memory consumption comes
from a distant memory (96% of the total energy consumption), while in the ideal reuse
+ iact sparsity model (best case), it comes from a local memory (84.06% of the total
energy consumption, against 0.32% from memory accesses in a distant memory). Ey-
eriss v1 is closer to the best case than the worst case, with only 2.2% of the energy
consumption due to a distant memory access and 88.02% to a local memory, showing
the effectiveness of the dataflow to optimize data reuse.

Ideal reuse + iact sparsity
(Best case)

Eyeriss v1Baseline
(Worst case)

Local memory MAC Distant memory

2.2%
9.78%

88.02%

0.32%
15.62%

84.06%

0%

96%

4%

FIGURE 3.6: Relative energy consumption of the local memory, MAC and distant mem-
ory in the three ANN models (described in equations (3.2), (3.12) and (3.13), from left

to right). AlexNet topology is used in Eyeriss v1 case.

The main results of this study for evaluating the energy efficiency of SNN IF+inst
model compared to the previously described ANN models are summarized in Fig. 3.7
and Table 3.3. Fig. 3.7 shows the SNN IF+inst energy efficiency relative to the ANN
(=EANN/ESNN) as a function of Nspikes/syn for each ANN model (using AlexNet topol-
ogy for Eyeriss v1 and v2). Table 3.3 gives the target spike activity for the SNN IF+inst
model to have the same energy efficiency as the ANN. This corresponds in Fig. 3.7 to
the value Nspikes/syn in the x-axis of the intersection between the y-axis at SNN energy
efficiency = 1 and the curves. We see that above 0.5 spikes per synapse per inference,
SNNs cannot compete with ANNs in the realistic (Eyeriss) and ideal cases. However,
the SNN energy efficiency grows rapidly as Nspikes/syn decreases. For instance, with a
spike activity of 0.1, the SNN is 3.6x (resp. 1.5x) more energy-efficient than the ANN
implementation of the Eyeriss v2 model (resp. the ideal model), and 7.3x (resp. 3.0x) if
the spike activity is 0.05.

Discussion on the choice of energy values. In this study, a different data preci-
sion was used as reference for Section 3.3 (8 bit) and Section 3.4 (16 bit). In this case,
changing the data precision changes significantly the ratio of the energy consumption
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FIGURE 3.7: SNN IF+inst energy efficiency relative to ANN (=EANN/ESNN) as a func-
tion of Nspikes/syn for the different ANN models considered, using AlexNet topology in

Eyeriss v1 and v2 models.

TABLE 3.3: Target spike activity for the SNN IF+inst model to be at least as efficient as
the ANN depending on the ANN accelerator model

ANN accelerator model (Section) Nspikes/syn

MAC vs. AC comparison (state-of-the-art) ≈ 8-31
Worst case ANN: Baseline (3.3) 1.38
Ideal reuse (3.4.1) 0.28
Best case ANN: Ideal reuse + iact sparsity (3.4.1) 0.15
Eyeriss v1: reuse + iact sparsity (3.4.2) 0.42
Eyeriss v2: reuse + iact sparsity + data compression (3.4.2) 0.37

AlexNet topology (non-pruned) is used in Eyeriss v1 and v2 cases.

between AC and MAC operations, but only slightly changes the ratio between the en-
ergy consumption of a MAC compared to a memory access (see Table 3.1). As memory
accesses dominate the energy consumption in both ANN and SNN, the impact of this
choice is limited, and does not change the conclusions of this work. Indeed, with 8 bit
data precision, the results from our experiments (see Table 3.3) only change slightly:
the target SNN spike activity becomes 1.38, 0.30, 0.16, 0.43, 0.38 (instead of 1.38, 0.28,
0.15, 0.42, 0.37) for the baseline, ideal reuse, ideal reuse + iact sparsity, Eyeriss v1, Ey-
eriss v2, respectively. Conversely, changing the cost of a SRAM access relatively to
the cost of a register file access would significantly change the results of the target
Nspikes/synapses when comparing with an ANN implementation benefiting from data
reuse (and hence using register files). In that case, the higher (resp. the lower) the
cost of a SRAM access compared to a register file, the lower (resp. the higher) the en-
ergy efficiency of the SNN compared to the ANN, as SNN do not benefit from data
reuse. The energy consumption of a memory access is related to the memory capacity
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(the larger the memory capacity, the higher the energy cost of the memory access). The
memory values considered in this Section correspond to the one in the Eyeriss architec-
ture (Chen et al., 2016). This choice could be re-evaluated depending on the hardware
implementation and the neural network topology.

Comparison with related works. For comparison, the very naive case of only com-
paring the MAC and AC operations (associated with synaptic operations) weighted
by their energy value, as it is done in many works on SNN algorithms (such as Panda
et al., 2020; Lee et al., 2020a; Rathi et al., 2021b; Wu et al., 2021; Yin et al., 2021), is added
in Table 3.3. For instance, an AC operation consumes ≈ 8x (resp 31x) less energy than
a MAC operation in the case of 8-bit (resp. 32-bit) data in 45 nm technology (Horowitz,
2014). Therefore, with Nspikes/syn ≈ 8 (resp. 31), the SNN is considered as efficient
as the equivalent ANN. We can see that this estimation is far from reality, when com-
paring with our hardware-aware models. The two closest studies to ours (Davidson
et al., 2021; Lemaire et al., 2022), which also propose an analytical model of the dy-
namic energy consumption of ANNs and SNNs, come to the same conclusions, that
is: SNN spike sparsity is the most important factor determining their energy efficiency
compared to ANNs. However, the results obtained are closer to our naive ANN base-
line, as they do not consider ANN optimizations such as exploitation of data reuse and
data sparsity. Davidson et al., 2021 use an IF model and hence can derive a conclusion
independently of the network topology and number of SNN timesteps. They conclude
that the SNN should have at most 1.72 spikes/neuron to be as energy-efficient as the
equivalent ANN. The difference with our baseline model is mainly that they use dif-
ferent values for computation and memory accesses (in particular, they consider that a
multiply operation has the same energy consumption as a SRAM access, which could
be discussed). Lemaire et al., 2022 additionally considers the energy consumption as-
sociated with memory addressing (i.e. computing the memory address of an element),
which was not considered here. Indeed, in ANNs (in a naive implementation with no
data compression), the addresses can be computed by only incrementing the index,
while for SNN as operations are performed asynchronously, the index must be calcu-
lated from scratch at each spike. However it only consists of compute operations, and
hence it is shown to have a very small impact on the global energy consumption. In
addition, they consider that spikes are stored in a FIFO (which was neglected here),
and hence they must be read and written. However, the number of these memory
accesses corresponds to the number of spikes produced, which is proportional to the
number of neurons, and therefore relatively small compared to the memory accesses
related to membrane potentials and weights (proportional to the number of synapses).
In addition, they consider different SRAM access energy consumption depending on
the memory size, while we have considered a unique SRAM access energy. They use
the LIF model and hence derive conclusion based on the network topologies and num-
ber of timesteps considered in the study. They conclude that their SNN having 0.08
spikes/synapses is 8x more energy-efficient than its ANN counterpart. According to
our results (neglecting the overheads associated with the leaky neuron behavior), this
sparsity would rather result in a 2-5x energy benefit (considering ideal and Eyeriss
v1 cases). Notably, our naive baseline implementation is more optimistic than theirs,
maybe due to the different hyperparameters used (e.g. number of timesteps, network
topology, energy values) and the overheads induced by the LIF model.
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3.5 Hybrid ANN-SNN Implementations

The results show that SNNs energy efficiency compared to ANNs mainly depends on
the SNN spike sparsity. However, we have considered the average SNN spike sparsity
at the network level, although it can be very different from one layer to another. There-
fore, hybrid ANN-SNN implementations, i.e. a network with ANN and SNN layers,
become of interest to leverage the best of both implementations. Indeed, based on the
layer-wise SNN spike activity, one could determined for each layer if it would be more
optimal to implement it in ANN or in SNN. Note that in between ANN and SNN lay-
ers, a conversion from analog values to spike (and vice versa) is required. Hence, the
cost of this conversion must also be considered.

The SNN layer-wise spike activity depends on various factors such as the training
methodology, network topology and dataset, as shown in Fig. 3.8. In some cases, a
pattern observed is that spike activity decreases with the depth of the layer. Therefore,
using ANN layers at the beginning of the network, where the spike activity is typically
higher, and SNN layers at the end, could lead to more energy efficient implementations
in this case. Having only two groups of consecutive layers (ANN or SNN) also avoids
multiple conversions. In this case, one must find the optimal separation between the
ANN and the SNN using the SNN spike activity at each layer.

FIGURE 3.8: Normalized layer-wise spike activity of different SNNs with different
training methods and datasets. (a) VGG16 from conversion pre-training with spiking
backpropagation fine-tuning on ImageNet (Rathi et al., 2021b). (b) ResNet-34 from con-
version on ImageNet (Sengupta et al., 2019). (c) VGG16 from conversion pre-training
with spiking backpropagation fine-tuning on CIFAR10 (Rathi et al., 2021b). (d) VGG9

with spiking backpropagation training on CIFAR10 (Lee et al., 2020a).
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Taking as example the SNN ResNet-34 from Sengupta et al., 2019, using its layer-
wise spike activity shown in Fig. 3.8 (but non-normalized), we can compute the po-
tential efficiency of such hybrid ANN-SNN architecture. Note that the spike activity
numbers are approximate and therefore the following results are only indicative. With
Nspikes/syn = 2.4 over the entire ResNet-34 network, the ANN implementation is more
energy-efficient than the SNN implementation (6.3x for the Eyeriss v2 model). How-
ever, in the last 10 layers of the SNN, the sparsity is much higher (Nspikes/syn = 0.18).
These layers implemented in SNN are 2.1x more energy-efficient than the correspond-
ing layers in an ANN Eyeriss v2 implementation. Therefore, implementing the first
22 layers in an ANN and the last 12 in a SNN would result in a hybrid ANN-SNN
implementation 1.2x more energy-efficient than the ANN Eyeriss v2 implementation.
Note that we used the ANN reuse factors and iact sparsity in Eyeriss for VGG16, as the
ResNet-34 topology was not implemented. The efficiency of hybrid ANN-SNN archi-
tectures increases with SNN algorithms having a lower spike activity. For instance, the
SNN implementation of the VGG16 proposed in Rathi et al., 2021b (shown in Fig. 3.8a),
using an encoding layer, is 1.1x more energy-efficient than the ANN Eyeriss v2 imple-
mentation. However, when implementing the first 6 layers in an ANN, the hybrid
ANN-SNN implementation would be 1.3x more energy-efficient than the ANN Eye-
riss v2 implementation. Indeed, the last 10 layers in SNN implementation are 2.2x
more energy-efficient compared to their ANN implementation due to their high spike
sparsity (Nspikes/syn = 0.21).

However, sparsity and data reuse in ANNs also vary between layers. Therefore,
we must take into account these layer-wise factors to evaluate the efficiency of a hybrid
ANN-SNN architecture. In addition, the energy associated with the conversion process
must also be considered. Hence, the potential of hybrid ANN-SNN implementations
should be further investigated.

3.6 Conclusion

Brain-inspired SNN implementations hold the promise of significant energy savings.
However, our analysis shows this is contingent on a high level of spike sparsity. This
study demonstrates that, contrary to previous thinking, the main advantage of SNNs
accelerators compared to ANNs comes primarily from exploiting the sparsity of spikes
and not from the replacement of MAC by AC operations. Indeed, memory accesses
largely dominate computing operations in terms of energy consumption. Moreover,
although SNN models with time discretization (such as LIF neurons or continuous
synapses) add some neuronal operations (compared to the ANN and IF neuron and
instantaneous synapse model), their impact is relatively small compared to the synap-
tic operations. Hence, reducing the memory accesses and operations associated with
synaptic operations remains essential for an energy efficient SNN accelerator. In addi-
tion, the IF neuron and instantaneous synapse model seems to be a good choice among
SNN models for image recognition tasks. Indeed, it does not depend on a time dis-
cretization, hence allowing a fully asynchronous event-based processing, while show-
ing similar performance in terms of accuracy and spike sparsity for these tasks.

For the first time, a lower and upper bound for the relative energy efficiency of
SNN models compared to ANN models is provided. These bounds are based on a
naive worst case ANN implementation and a theoretical best case assuming perfect
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data reuse and exploitation of sparsity. The SNN energy efficiency compared to ANN
implementations in Eyeriss v1 and v2 accelerators was also investigated. However, the
results showed that current SNN algorithms do not reach a sufficient spike sparsity at
the network level to compete with efficient ANN accelerators such as Eyeriss. Indeed,
leveraging spike sparsity in an ultra-light fashion comes at the cost of loosing oppor-
tunities of data reuse. Therefore, the spike sparsity must be high enough so that the
event-based SNN implementation becomes more efficient than the ANN implemen-
tation. Hence, increasing the spike sparsity of SNNs should be further investigated.
Moreover, SNN implementations of neural networks offering fewer opportunities of
data reuse, such as compact CNNs (e.g. MobileNet) or fully connected topologies,
may be particularly competitive compared to ANN implementations. Alternatively,
hybrid ANN-SNN architectures appear to be a promising solution to leverage the best
of both worlds.

Although we have considered dynamic energy consumption as a metric of effi-
ciency, we believe that the results can be extended to static energy consumption and
latency of SNN implementations. Indeed, latency in event-based implementations is
also directly related to the sparsity (less spikes to process in event-based manner means
faster processing). Moreover, static energy consumption is directly related to latency.

In addition, although described in the case of a fully-digital implementation, the
model can be adapted to mixed-signal implementations with a near-memory comput-
ing architecture, for instance, using NVMs to store memory on-chip instead of SRAMs.
In this case, the conclusion on the energy efficiency of SNNs should be unchanged. In-
deed, as memory accesses are dominant compared to compute, the synaptic operations
will remain the main source of energy consumption, and hence spike sparsity will still
determine the SNN efficiency. However, the exact relative efficiency of ANN and SNN
could be modified, depending on the specific choices of design and technology, and
hence the numerical applications should be adapted.
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Chapter 4

Improving Accuracy and Efficiency of
Spiking Neural Networks

4.1 Introduction

As shown in the study of the energy consumption of SNNs (Chapter 3), a high spike
sparsity is required to obtain energy-efficient SNN implementations. However, most
current SNN algorithms do not reach a sufficient spike sparsity to compete with effi-
cient ANN implementations. We believe that this may be due to the fact that SNNs are
mostly benchmarked on static vision tasks, such as image classification, which may not
suit them. Indeed, static data must be decomposed using artificial timesteps in order
to match the SNN temporal dynamics. Moreover, there is a trade-off between the SNN
accuracy and the number of timesteps used (Han et al., 2020b). Therefore, SNNs may
rely on a high number of spikes in order to reach competitive accuracy.

Conversely, SNNs have been less considered for spatio-temporal applications (such
as audio data), although their temporal dynamics may better fit spatio-temporal rather
than static data. Indeed, the data are already sequential, which means that it is not nec-
essary to create artificial timesteps to match the SNN dynamics. Indeed, a SNN can be
seen as a form of RNN with only a self-recurrence (from one neuron to itself), instead
of a full recurrence (from all neurons to all neurons in the same layer). Moreover, a
full recurrence can be added to a SNN, making it a Spiking RNN (SRNN), in order to
improve the accuracy on sequential data. In addition, ANN implementations of recur-
rent topologies enable less opportunities of data reuse than convolutional topologies,
as weights are not shared and cannot be reused. Therefore, SNN implementations
could provide further benefits. Besides, spiking recurrent topologies demonstrated
higher energy and time savings than convolutional topologies on the Loihi neuromor-
phic chip according to Davies et al., 2021.

This chapter is organized as follows:

• In Section 4.2, a novel SNN model applicable to recurrent topologies inspired by
Gated Recurrent Units (GRU), namely SpikGRU, is presented. It is compared to
other SNN and ANN models on audio spiking datasets.

• In Section 4.3, we study how the sparsity can be leveraged in recurrent SNNs to
further improve their efficiency. For this purpose, the model SpikGRU is com-
pared to GRU on a keyword spotting task in terms of trade-off between accuracy
and number of operations per inference.



60 Chapter 4. Improving Accuracy and Efficiency of Spiking Neural Networks

• In Section 4.4, a more realistic evaluation of the energy efficiency of SNN and
ANN hardware implementations with gated recurrent topologies is presented,
by adapting the energy model from Chapter 3.

Some of the results have been published in Dampfhoffer et al., 2022; Dampfhoffer
et al., 2023a.

4.2 A Novel Recurrent SNN Model: SpikGRU

We believe that SRNNs can show a higher sparsity on spatio-temporal data, such as
audio, than SNNs on static data. In addition, we used spiking datasets, in order to im-
prove the energy efficiency of the SRNNs. Indeed, spiking data can directly be fed in
SNNs without pre-processing, allowing to leverage their sparsity. Furthermore, gated
recurrent networks, such as the Long Short-Term Memory (LSTM, from Hochreiter et
al., 1997) and the Gated Recurrent Unit (GRU, from Cho et al., 2014) models, have been
proposed to improve the performance of simple RNNs. This motivated us to propose
a novel model of SRNN inspired by the GRU: the Spiking Gated Recurrent Unit (Spik-
GRU). The objective is to propose a model leveraging the accuracy of the GRU and the
spike sparsity of SNNs. The novelty of our model, compared to previous propositions
of gated recurrent SNNs, is to keep the operations at the neuron level (i.e. cell level in
gated recurrent units) in high precision, while leveraging the spike sparsity for the out-
put activations, in accordance with the conclusions of Chapter 3. Indeed, the energy
footprint of neuronal operations is proportional to the number of neurons, while the
footprint of synaptic operations is proportional to the number of synapses, hence to
the square of the number of neurons in recurrent topologies. Therefore, neuronal op-
erations have a low impact on the dynamic energy consumption, and hence, keeping
them in high precision does not severely impact efficiency, but bring benefits in terms
of accuracy.

In this study, we investigate the performance of LIF, Current-based LIF (Cuba-LIF),
our proposed SpikGRU, and ANN models (RNN and GRU) with recurrent topologies.
We compare them in terms of accuracy and number of operations on three spiking
audio datasets. The datasets are from a DAS (DASDIGITS, from Anumula et al., 2018a)
or from a neurophysiology-inspired pre-processing (SHD and SSC, from Cramer et al.,
2020), for digits and single words classification.

4.2.1 Models of Recurrent SNNs

Leaky Integrate-and-Fire and Current-based Models

In this chapter, the SNN models are seen as RNNs and simulated with timesteps, and
hence they are described using iterative formulations.

The LIF model is commonly used in SNNs for deep learning applications. The LIF
model with a recurrent network topology can be described as:

vl
t = β ⊙ vl

t−1 + Wvsl−1
t + Uvsl

t−1 + bv − vthsl
t−1 (4.1)

sl
t = H[vl

t − vth] (4.2)
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vl
t and sl

t are vectors corresponding respectively to the membrane potential and output
spikes of neurons from layer l at time t. ⊙ denotes element-wise multiplication. Spike
firing happens when the membrane potential is superior to the threshold vth, which
corresponds to the Heaviside step function H. After each spike, vth is substracted from
the membrane potential of spiking neurons. The parameters of the models are Wv and
Uv, the weight matrices of feed-forward and recurrent connections (resp.), and bv, the
bias vector. The time constant β corresponds to an exponential decay of v over time.

SNN models with a more sophisticated temporal dynamics than the LIF can achieve
superior accuracy for processing temporal data. For instance, Yin et al., 2020; Bellec et
al., 2018b; Yin et al., 2021 show that the Adapt-LIF is more accurate than the LIF for
speech recognition. In addition to the leaky neuron, the Adapt-LIF uses an adaptive
threshold with temporal dynamics (the threshold is increased after each spike fired
and decays exponentially with time). In addition, heterogeneous time constant param-
eters learned per neuron (as opposed to fixed for a layer) can improve the learning on
temporal data, allowing the neurons to specialize at different time scales, according
to Perez-Nieves et al., 2021. In this work, we focus on the Cuba-LIF model, which is
a LIF neuron with continuous exponential synapse. In its iterative formulation, the
Cuba-LIF introduces an input current i, which integrates the incoming spikes before
transmitting them to v with a time constant α and parameters Wi, Ui and bi. vl

t takes
as input a linear combination of its previous state vl

t−1 and its input il
t. Note that, in

this work, α and β time constants of LIF and Cuba-LIF models are defined as vectors
(different constants per neuron) of trainable parameters, as in Perez-Nieves et al., 2021.
We use the following description of the Cuba-LIF model:

il
t = α ⊙ il

t−1 + Wisl−1
t + Uisl

t−1 + bi (4.3)

vl
t = β ⊙ vl

t−1 + (1 − β)⊙ il
t − vthsl

t−1 (4.4)

sl
t = H[vl

t − vth] (4.5)

Gated Recurrent Networks

RNNs learn temporal dependencies by keeping some of the information from previous
timesteps using the recurrent connections. However, their training can be unstable
due to vanishing and exploding gradient problems, which can prevent the learning of
long-term dependencies (Bengio et al., 1994). Gated RNNs, such as LSTM and GRU,
can mitigate these problems. Indeed, the gating mechanism allows to better control
the flow of information over the timesteps and can create temporal shortcuts which
prevent gradient vanishing. For instance, the GRU was proposed in Cho et al., 2014 as
a simplification of the LSTM (Hochreiter et al., 1997), with two gates instead of three:

rt = σ(Wrxt + Urht−1 + br) (4.6)

zt = σ(Wzxt + Uzht−1 + bz) (4.7)

ct = tanh(Wcxt + Uc(rt ⊙ ht−1) + bc) (4.8)

ht = zt ⊙ ht−1 + (1 − zt)⊙ ct (4.9)
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rt and zt are the reset and update gates respectively, which are computed with a
sigmoid activation function. ct is the candidate state, computed using a hyperbolic
tangent (tanh) activation function. The reset gate allows to reset the candidate state
based on current input only and the update gate controls how much of the previous
hidden state will be kept in the current hidden state.

Some gated SNNs inspired by the LSTM model have been proposed (Shrestha et al.,
2017; Lotfi Rezaabad et al., 2020; Ponghiran et al., 2021). In Shrestha et al., 2017, a LSTM
is converted to a spiking version by using piece-wise linear functions for the activation
functions of the gates. An implementation is proposed on the TrueNorth chip (Merolla
et al., 2014). A spiking LSTM model that can be directly trained with backpropagation
through time is proposed in Lotfi Rezaabad et al., 2020, using spiking activation func-
tions for the gates. In both cases, it must be noted that not only the output of the cell
unit is spiking, but also the gates are spiking. A hybrid analog and spiking LSTM is
demonstrated in Ponghiran et al., 2021, using spiking blocks as approximation of the
gates. This hybrid network benefits from event-based spike accumulation, but at the
expense of decomposing each LSTM timestep into 128 SNN timesteps. Moreover, the
hidden states are in full precision, and inputs to the spiking blocks must be converted
to spikes at each LSTM timestep. In addition, the LSTM model is computationally ex-
pensive due to the use of three gates per unit, which highly increases the number of
synaptic operations per layer compared to a simple RNN. The GRU and its variants
demonstrate that it is possible to achieve similar accuracy with fewer gates per unit
(Cho et al., 2014; Ravanelli et al., 2018).

4.2.2 SpikGRU: a Spiking Gated Recurrent Unit

We investigate the benefits of gated units in recurrent SNNs by proposing a new model:
SpikGRU (Spiking Gated Recurrent Unit). It is inspired by the current-based approach
of the Cuba-LIF and the gated approach of the Light-GRU from Ravanelli et al., 2018, a
light version of the GRU model with a single gate. Indeed, SpikGRU can be seen as an
extension of the Cuba-LIF model with an additional gate, z, instead of the parameter
β. z is computed using the incoming spikes and another set of parameters, Wz, Uz
and bz, and uses a sigmoid activation function. The purpose of z is to determine the
best combination of the previous state vl

t−1 and the input current (or candidate state) il
t

used in the computation of vl
t, similar to the update gate in the Light-GRU. We define

SpikGRU as:
il
t = α ⊙ il

t−1 + Wisl−1
t + Uisl

t−1 + bi (4.10)

zl
t = σ(Wzsl−1

t + Uzsl
t−1 + bz) (4.11)

vl
t = zl

t ⊙ vl
t−1 + (1 − zl

t)⊙ il
t − vthsl

t−1 (4.12)

sl
t = H[vl

t − vth] (4.13)

Fig. 4.1 illustrates the comparison between the LIF, Cuba-LIF and SpikGRU models.
The novelty of our approach is that, unlike other spiking versions of gated networks
(Shrestha et al., 2017; Lotfi Rezaabad et al., 2020; Ponghiran et al., 2021), we do not
discretize the output of the neuronal variables (i, z, v), but rather only the output ac-
tivations of the recurrent unit are spiking. Thus, as shown in Fig. 4.1, the synaptic
connections (N to N) are spiking, while the neuronal operations (N times 1 to 1) are
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FIGURE 4.1: Recurrent SNN models considered (a. LIF, b. Cuba-LIF, c. SpikGRU),
assuming a layer with input and output size N and omitting biases for clarity.

kept in full precision. This is similar to the idea of the Cuba-LIF; where v and i are
kept in full precision, and v is directly computed from i, introducing more element-
wise multiplications (instead of additions). We believe that this increases the accuracy
(as removing the discretization of the information on these variables) at the expense of
only a small increase in energy consumption. Indeed, these operations occur only at
the neuron level (as opposed to synapse level), and hence have a small impact on the
energy efficiency (as shown in Chapter 3). In addition, contrary to LSTM networks,
we use a unique gate in our model (instead of three), to increase its energy efficiency.
Therefore, the number of parameters of SpikGRU is similar to Light-GRU (with one
gate). It is approximately 2x higher than the number of parameters of the LIF, Cuba-
LIF and Adapt-LIF (which have a similar number of parameters than a RNN), while
GRU has 3x times the number of parameters of a RNN (as shown in Table 4.1). Note
that a LSTM, with three gates, has 4x more parameters than a simple RNN. Besides,
our SNNs learn time constants per neuron, which are additional parameters compared
to ANNs. However, these additional parameters are negligible, in particular in the case
of fully connected topology (such as RNNs), where the number of neurons is negligible
compared to the number of weights.

4.2.3 Experiments on Audio Spiking Datasets

Methods

Datasets and pre-processing. In these experiments, three spiking datasets are used
with a classification task to benchmark the SNN models with different degrees of task
complexity. DASDIGITS (Anumula et al., 2018a) corresponds to the recording from
a DAS (64 channels) of the TIDIGITS audio dataset (Leonard et al., 1993). DASDIG-
ITS consists of 11 classes corresponding to the English digits "one" to "nine" plus "oh"
and "zero", spoken by 111 (resp. 109) individuals for training (resp. testing) samples.
The single digit version of the dataset contains 2,464 training and 2,486 testing sam-
ples. The dataset from the CochleaAMS1b sensor is used with a constant time bin
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FIGURE 4.2: Sample from the SHD dataset and response from a SNN with one recur-
rent layer.

pre-processing at 200 Hz. Samples are cut after 1.25 s (almost no spikes are emitted
from the sensor after that time) to obtain samples of length 250 timesteps. Therefore, at
each timestep, the spike count (number of spikes produced during the time bin) from
each channel is fed to both SNN and ANN models in order to compare them with
the same data pre-processing. SHD and SSC datasets (Cramer et al., 2020) are created
with an audio-to-spiking conversion procedure inspired by neurophysiology using 700
channels. SHD is a spiking version of the Heidelberg Digits audio dataset consisting
in 20 classes of spoken digits in English and German from 12 speakers. It contains
8,156 training and 2,264 testing samples. The test set contains samples from 2 indi-
viduals that are not used in the training set plus 5% of samples from other speakers.
SSC is a more difficult task based on the Google Speech Command dataset (Warden,
2018). It contains 35 classes corresponding to 35 English words (digits, single word
commands and auxiliary words). Samples from 1864 individuals are randomly split
between training (75,466), validation (9,981) and test (20,382) sets. SHD and SSC sam-
ples have 1s duration and spikes are binned at 250 Hz. The obtained spike count is
also fed directly to the models at each of the 250 timesteps.

Training procedure. Neural network topologies with one or two recurrent layers of
128 units and a readout layer (fully-connected to the last recurrent layer), as shown in
Fig. 4.2. The readout layer consists of neurons integrating inputs with a self-recurrence,
similar to LIF neurons, without the spiking and resetting mechanisms. This readout
layer is used for all models (except the ANN GRU) as we empirically observed that it
increases the accuracy compared to a standard FC layer. For the training with DAS-
DIGITS and SHD, 20% and 10% (resp.) of the training set is used as validation set.
To avoid overfitting on the SHD and SSC datasets, noise is introduced in the input
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samples during training using spike jitter across channels, as in Cramer et al., 2020;
Perez-Nieves et al., 2021. A max-over-time loss (as described in Cramer et al., 2020) is
used on the outputs, corresponding to a cross-entropy loss applied on the maximum
value of the neurons of the readout layer over all timesteps. All models (SNNs and
ANNs) are trained with BPTT, using the approach of the surrogate gradient (Neftci
et al., 2019) for the SNNs. In particular, the triangular function (with height 1 and base
2) is used as surrogate for the derivative of the spiking activation function, as in Rathi
et al., 2021b. We had also considered using the derivative of the fast sigmoid as a sur-
rogate (as in Zenke et al., 2018). However, we found no effect on the accuracy, as long
as the surrogate is not too wide or too narrow (as discussed in Section 2.3). There-
fore, the triangular function was used as surrogate gradient for all the experiments
presented in this thesis. All weights and biases are initialized from a uniform distri-
bution U(−k−1/2, k−1/2), with k being the input size of the layer. The time constants α
and β are learnable parameters per neuron and initialized at 0.9. During training, they
are clipped between 0 and 1 to avoid unstable behaviors. The spiking threshold vth
is set to 1. The input currents i and membrane potentials v are clipped during train-
ing as we empirically observed that it improves the model accuracy. Adam optimizer
(Kingma et al., 2014) is used with a learning rate 0.001 for 200 epochs and a batch size
128 (512 for SSC). Note that the standard RNN model (ANN) leads to unstable training
and low accuracy on these tasks. We mitigated theses problems by initializing the re-
current weight matrices with the identity matrix scaled by a factor (0.5) and using the
ReLU activation function, similar to Le et al., 2015.

Accuracy on DASDIGITS, SHD and SSC

Table 4.1 shows the average accuracy of the SNN and ANN models on the three datasets
with the 1x128 and 2x128 recurrent topologies. We compare our results with previous
works on recurrent SNNs on these datasets (except for DASDIGITS, for which we are
not aware of other works using similar settings).

For all three tasks, the GRU achieves the best accuracy, except with the 2-layer
topology for SSC and SHD where it is similar to the RNN and Cuba-LIF, respectively.
However, these tasks may be too easy for the GRU. Indeed, the accuracy is not signif-
icantly increased from the 1-layer to the 2-layer topology for DASDIGITS and SHD,
compared with spiking models. Moreover, for the SSC task, the GRU shows a high
level of overfitting, which is not entirely solved by the addition of spike jitter accross
input channels. We observe that the RNN has similar accuracy than the GRU on the
DASDIGITS and SSC tasks. However, this RNN does not reach a satisfactory average
accuracy on the SHD task, partly due to an unstable training, as shown by the large
confidence interval. It is interesting to note that spiking RNNs (LIF and Cuba-LIF) do
not present such training instability. This may be due to the self recurrence of spiking
neurons that is weighted by a time constant with value close to (but lower than) 1,
which may help preventing gradient vanishing.

Comparing SNN models, we observe that the accuracy of the LIF is lower than
that of Cuba-LIF on all tasks, up to a 8.4% difference on the SSC task with the 1-
layer topology. The 2-layer Cuba-LIF yields 85.5% accuracy on DASDIGITS, which is
<1% below the accuracy of the 1-layer and 2-layer GRU. Notably, on SHD, the 2-layer
Cuba-LIF achieves 87.8% accuracy, which is superior to the accuracy of the 1-layer and
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TABLE 4.1: Testing accuracy (%) of the spiking (LIF, Cuba-LIF, SpikGRU) and non-
spiking (RNN, GRU) models on the DASDIGITS, SHD and SSC datasets, shown with
the 95% confidence interval. The best accuracy for each topology for spiking and non-
spiking models is highlighted. Results from related works are also indicated. The

number of parameters (#Params) is given for SHD.

DASDIGITS SHD SSC #Params

1x128 network
GRU 85.9 ± 1.4 86.8 ± 1.2 75.5 ± 0.2 321k
RNN 85.8 ± 1.4 74.9 ± 3.1 75.3 ± 0.7 109k
LIF 78.3 ± 1.9 80.6 ± 2.0 63.1 ± 0.8 109k
Cuba-LIF 81.1 ± 1.1 83.7 ± 1.3 71.5 ± 0.4 109k
SpikGRU 81.8 ± 1.1 83.7 ± 1.5 74.7± 0.4 215k
Adapt-LIF∗ Yin et al., 2020 - 79.4 - 109k
Cuba-LIF† Cramer et al., 2020 - 71.4 50.9 109k
Cuba-LIF† Perez-Nieves et al., 2021 - 82.7 60.1 109k

2x128 network
GRU 86.2 ± 1.3 87.3 ± 0.9 77.9 ± 0.3 420k
RNN 84.9 ± 1.4 75.0 ± 7.3 78.1 ± 0.3 142k
LIF 82.7 ± 0.8 85.8 ± 1.7 70.3 ± 1.3 142k
Cuba-LIF 85.5 ± 0.9 87.8 ± 1.1 75.7 ± 0.2 142k
SpikGRU 83.3 ± 1.7 86.4 ± 1.8 77.0 ± 0.4 281k
Adapt-LIF∗ Yin et al., 2020 - 84.4 - 142k
Adapt-LIF Yin et al., 2021 - 87.8 74.2‡ 142k
∗ binary inputs. † 2000Hz pre-processing. ‡ 2x400 network.

2-layer GRU (86.8% and 87.3% resp.). For the more difficult SSC task, SpikGRU out-
performs other spiking models for both topologies. Indeed, SpikGRU achieves 74.7%
(resp. 77.0%) accuracy with 1-layer (resp. 2-layer) topology, which is only 0.8% (resp.
1.1%) below the best ANN accuracy.

In addition, all the SNNs in our experiments show higher accuracy on the SHD
task than the Adapt-LIF from Yin et al., 2020, for the same topology and number of
timesteps. However, they use strictly binary inputs, meaning that, if there is more than
one spike in the time bin, it is considered as if there were only one (the other spikes are
discarded). On the other hand, we directly used the spike count. Indeed, the average
input sparsity measured on the testset is only increased from 4.6% to 4.7% (resp. 4.7%
to 4.8%) spikes per neuron per timestep on SHD (resp. SSC) for a pre-processing at
250 Hz. Therefore, the additional energy consumption is small while the model accu-
racy is increased as no spikes are lost. Note that, on SHD and SSC, for a pre-processing
with high frequency (such as 2000 Hz), spike count and binary inputs are equivalent
as there is never more than one spike per time bin. Our Cuba-LIF also achieves better
accuracy than the Cuba-LIF from Cramer et al., 2020; Perez-Nieves et al., 2021 on both
the SHD and SSC datasets for the same topology. However, in Cramer et al., 2020;
Perez-Nieves et al., 2021, the pre-processing is set at 2000 Hz which results in 2000
timesteps. The higher the number of timesteps, the higher the precision of the inputs,



4.2. A Novel Recurrent SNN Model: SpikGRU 67

but also the higher the difficulty of the task. Indeed, it increases the sequence length,
making it harder for recurrent units to retain relevant information. Furthermore, the
lower accuracy of the Cuba-LIF in Cramer et al., 2020 can be explained by the fact
that they use fixed time constants per layer (according to Perez-Nieves et al., 2021).
In addition, the best results among the previous works with SNNs on SHD and SSC
datasets are demonstrated in Yin et al., 2021, also using a 250 Hz pre-processing. For
the same topology their Adapt-LIF shows the same accuracy (87.8%) as our Cuba-LIF
on SHD. However, in the SSC task, even with a larger topology (2x400), the accuracy
of their Adapt-LIF (74.2%) is lower than the accuracy of our 2-layer Cuba-LIF (75.7%)
and SpikGRU (77.0%).

4.2.4 Number of operations in Spiking vs. Artificial RNNs

In the interests of comparing the different neuron models, we have first used the num-
ber of MAC and AC operations as a figure of merit for energy efficiency. This allows
to have a hardware-independent metric for energy-efficiency, before making assump-
tions on the hardware implementation. In order to stay as close as possible to the
reality, the MAC and AC operations were not translated into their respective energy
consumption, as most of the energy consumption of neural networks in specialized ar-
chitectures comes from memory accesses associated with arithmetic operations rather
than from the arithmetic operations themselves (Horowitz, 2014). Furthermore, a de-
tailed comparison of the energy efficiency of RNNs and SRNNs considering different
ANN implementations, as done in Chapter 3, is provided Section 4.4.

In these experiments, spiking models exhibit a high sparsity. On the given tasks,
SRNNs produce on average between 0.06 and 0.21 spikes per neuron per timestep
for processing one sample. The 2-layer Cuba-LIF yields 0.06 spikes per neuron per
timestep on DASDIGITS and SSC, which means that a neuron produces on average
only 15 spikes during the 250 timesteps. Similarly, the 2-layer SpikGRU achieves 0.09
spikes per neuron per timestep on SSC.

Due to the high spike sparsity, the number of operations per sample is highly re-
duced compared to an ANN where operations are performed at each timestep. Ta-
ble 4.2 indicates the number of MAC and AC operations per timestep of one layer of
the ANN and SNN models to process a sample. We observe that in ANN models (GRU
and RNN) there are mainly MAC operations (except for the bias of neurons), while in
SNN there are mainly AC operations (and some element-wise multiplications due to
neuronal operations). In SNN models, the number of AC is weighted by the activity
rate (spikes per neuron per timestep) of the SNN layers, which decreases (resp. in-
creases) the number of operations if it is inferior (resp. superior) to 1, compared to an
equivalent ANN. Note that the Cuba-LIF has similar number of operations than the
LIF. Indeed, the input current variable represents only additional MACs at the neuron
level, which is negligible compared to the operations in the feedforward and recurrent
synaptic connections. On the other hand, the SpikGRU model increases significantly
the number of operations compared to LIF and Cuba-LIF due to the additional feed-
forward and recurrent synaptic connections of the gate.

Fig. 4.3 shows the accuracy vs. total effective number of operations (MAC + AC) per
timestep of SNN and ANN models on the three datasets. The number of operations
in the 2-layer Cuba-LIF is decreased by 16x compared to the 1-layer GRU while the
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TABLE 4.2: Number of MAC and AC operations per timestep for one layer of the ANN
and SNN models. m and n are respectively input and output size of the layer. For SNN
models, ain and aout are respectively input and output activity rate (spikes per neuron

per timestep) of the layer.

Model Nb MAC Nb AC

GRU 3mn + 3n2 + 3n 3n
RNN mn + n2 n
LIF n mn ∗ ain + (n2 + n) ∗ aout + n
Cuba-LIF 3n mn ∗ ain + (n2 + n) ∗ aout + n
SpikGRU 3n 2mn ∗ ain + (2n2 + n) ∗ aout + 2n

models have similar accuracy on DASDIGITS. On SHD, the 2-layer Cuba-LIF even
slightly outperforms the 1-layer and 2-layer GRU while reducing by 37x and 49x (resp.)
the number of operations. On SSC, the number of operations in the 2-layer SpikGRU is
reduced by 8x (resp. 24x) compared to the 2-layer RNN (resp. GRU) while its accuracy
is only ≈1% below. Compared to the Cuba-LIF on SSC, the SpikGRU model shows
better accuracy but at the expense of 2x the number of operations. Our models are
compared with the Adapt-LIF from Yin et al., 2021 using the number of MAC and AC
operations provided in their paper. Our most accurate 2-layer spiking models are more
energy-efficient than the Adapt-LIF. Indeed, the number of operations per timestep is
8.6k (Cuba-LIF) vs. 11.5k (Adapt-LIF) for the SHD task, and 17.6k (SpikGRU) vs. 28.5k
(Adapt-LIF) for SSC.

4.2.5 Discussion

Our experiments on the DASDIGITS, SHD and SSC datasets demonstrate the ability
of recurrent SNNs to perform classification on sequential data with high sparsity, and
hence a very low number of operations. The number of operations in the Cuba-LIF and
proposed SpikGRU models is reduced by up to 49x and 24x (resp.) compared to the
GRU, for almost the same accuracy (<1.1% below). This suggests that having match-
ing timesteps between ANNs and SNNs can result in a higher reduction in the number
of operations (relative to the number of operations of the equivalent ANN), compared to de-
composing each ANN timestep in several SNN timesteps, as it is commonly done in FC
and CNN topologies for processing images (in that case ANNs have only 1 timesteps).
Indeed, the number of spikes fired is likely to increase with the number of timesteps.
This can explain why the sparsity per ANN operation obtained here with the SRNNs
(between 0.06 and 0.21 spikes per neuron per timestep) are higher than that of the
SCNNs studied in Chapter 3. This higher sparsity could also be influenced by the na-
ture of the data, which could lead to a higher network sparsity, and should be further
investigated.

Moreover, we demonstrate that the Cuba-LIF model outperforms the LIF model,
as it achieves better accuracy for approximately the same number of operations. In
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FIGURE 4.3: Accuracy vs. total number of operations (MAC + AC) per timestep for
processing one sample from the (a) DASDIGITS, (b) SHD and (c) SSC datasets.

addition, the Cuba-LIF may also outperform the Adapt-LIF model for these tasks. In-
deed, the Cuba-LIF achieved better accuracy than the Adapt-LIF from previous works,
for a similar model complexity. Furthermore, our proposed SpikGRU model shows
a high potential to outperform non-gated recurrent SNNs on more difficult tasks, at
the expense of an increased number of operations. However, this must be further in-
vestigated. Indeed, we studied tasks with different degrees of difficulty, due to the
input size and number of classes, but its ability to retain longer-term dependencies
than the Cuba-LIF using tasks with different temporal sequence length should be in-
vestigated. Besides, a model of a gated recurrent SNN with a single gate and using
real-valued neuronal variables was also proposed in Ponghiran et al., 2022, published
after these experiments had been carried out. The main difference is that, in Ponghiran
et al., 2022, the hidden state (keeping the long short-term information) is dissociated
with the spiking and reset mechanisms. The comparison of the performance of the two
models should be further investigated.

Finally, we have observed that SRNNs already yield a high spike sparsity without
using any strategy to enhance the spiking activity in these experiments. Therefore,
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methods to boost sparsity in SNNs should further increase their energy efficiency, and
will be studied in Section 4.3.

4.3 Leveraging Sparsity in Recurrent SNNs

The high sparsity and accuracy demonstrated by SRNNs on spatio-temporal tasks mo-
tivated us to further explore both sparsity and recurrent topologies as a way to improve
the energy efficiency of SNNs. Indeed, we believe that sparsity can be further increased
by training the SNN with no compromise on accuracy. Moreover, we evaluate the ben-
efit of leveraging data sparsity in spiking inputs, such as those produced by spiking
audio feature extractors or dynamic sensors, on the energy efficiency.

Keyword spotting (KWS) is a relevant applications for energy-efficient algorithms.
KWS, which consists in detecting specific keywords in an audio stream comprising
speech, has a wide range of applications such as activation of voice assistants, voice
control, speech data mining, routing phone calls, etc. (Lopez-Espejo et al., 2022).
ANNs have shown impressive performance on these tasks, but their energy consump-
tion limits their use in embedded systems. Indeed, always-on KWS systems for small
electronic devices, such as activation of voice assistants, have power and energy con-
straints. Spiking FCs or CNNs have been demonstrated for KWS using the Google
Speech Command Dataset (GSCD) from Warden, 2018 v1 (Blouw et al., 2020a; Blouw et
al., 2020b; Wang et al., 2022) and v2 (Pellegrini et al., 2021). However, SRNNs have not
yet been proposed for KWS, although RNNs are well suited for spatiotemporal data
such as speech. Moreover, GRU models have shown high performance on low-power
embedded hardware for KWS (Kim et al., 2022a). Therefore, SpikGRU, the spiking
adapted version of GRU introduced in Section 4.2, promises to achieve high accuracy
and efficiency on a KWS task.

In this section, we compare the accuracy-efficiency trade-off in SpikGRU and GRU
with different topology sizes, using the KWS task of GSCD v2. We show the benefits
of exploiting the sparsity in SpikGRU by regularizing the spiking activity during the
training. Then, we explore the advantage of leveraging sparsity in the input data by
converting the real-valued inputs into spikes.

4.3.1 Experiments on a Keyword Spotting Task

Dataset and Pre-processing

GSCD v2 contains 35 different words of at most 1 second sampled at 16 kHz. The
keyword spotting task consists in a 12-class classification problem with 10 keywords
(“yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, “go”), “silence” (back-
ground noise) and “unknown” (non-keyword words) classes. The dataset is provided
with 84,843 training, 9,981 validation and 4,890 test samples.The pipeline used in these
experiments is shown in Fig. 4.4. From the audio signals, 40 log-Mel features were
extracted, with frequencies between 80Hz and 8kHz, window size of 30 ms and hop
length of 10 ms. This results in 100 simulation timesteps with the values of the 40 chan-
nels being fed to SNNs and ANNs at each timestep. The input samples are re-scaled
such that each channel has a unit variance across the time dimension. We used data
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augmentation with background noise and time shift as in Zhang et al., 2017, and time
and frequency masking (Park et al., 2019).

In the first experiment (results in Section 4.3.2), the real-valued (32-bit float) log-
Mel are directly fed to neural networks. This increases the accuracy of the SNN, as it
allows to keep the precision of the input data in the first layer, which results to be very
important for the final accuracy of the network Deng et al., 2020. However, this “en-
coding layer” requires MAC operations. Therefore, in the second experiment (results
in Section 4.3.3), the log-Mel features are converted to spikes. For the spike conver-
sion, each 32-bit float value (from the log-Mel spectrogram) is multiplied by a factor K
and then rounded to the nearest integer. Four different values of K are chosen, lead-
ing to four different input activity rates (i.e. average channel activity per timestep).
We have chosen K such as the resulting input activity rates are below 1, such that the
number of operations is reduced compared to using an encoding layer. Therefore, by
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choosing K ∈ {0.5, 1.0, 1.5, 2.0}, the resulting average input activity rate (measured
over the test set) ∈ {0.23, 0.48, 0.74, 0.99} spikes per channel per timestep, respectively.
Note that channels are allowed to produce more than one spike per timestep (up to N
∈ {5, 11, 16, 21}, respectively).

Neural Networks and Training Procedure

The SpikGRU model (described in Section 4.2) is used as SNN baseline and GRU (Cho
et al., 2014) as ANN baseline. ANNs and SNNs are composed of two recurrent layers
with X ∈ {32, 64, 128, 256, 512} units each, and a readout layer (FC to the last recur-
rent layer) which is composed of leaky integrators in the case of SNNs. Indeed, we
empirically found that, for the same number of parameters and activity, two layers
yield better results than one but the improvement was less important for three lay-
ers. A max-over-time loss (cross-entropy loss applied on the maximum value of the
neurons of the readout layer over all timesteps) is used as in Section 4.2. All models
are trained with BPTT, using the surrogate gradient approach for SpikGRU (as in Sec-
tion 4.2). The models are trained for 100 epochs and a batch size of 128, using Adam
optimizer (Kingma et al., 2014) with a learning rate starting from 0.001 and decaying to
0, with a cosine annealing scheduler. For the SNNs, weights and biases are initialized
from a uniform distribution U(−k−1/2, k−1/2), k being the input size of the layer. The
time constant α is a learnable parameter per neuron and initialized at 0.8 and vth is set
to 1. In all the experiments, each configuration is run 5 times and the mean accuracy
with the 95% confidence interval is reported.

In these experiments (as in Section 4.2), we have used the total number of opera-
tions (MACs + ACs) as a hardware-independent figure of merit for energy efficiency.
The number of MACs and ACs per layer are computed using the input and output size
of the layer, and the input and output spike activity rate (number of spikes per timestep
per neuron) for SNNs, in the same way as described in the previous experiments (see
Section 4.2).

4.3.2 Increasing Sparsity with Gradient Descent

In this first experiment, we investigated the effect of regularizing the spiking activity
during the training of SNNs to decrease the number of spikes and thus the number of
operations. For this purpose, we added a term in the loss function to penalize spike
firing per layer as in Pellegrini et al., 2021:

lossl
reg =

1
2

1
N

1
T ∑

t
∑
n

Sn[t]2 (4.14)

with N the number of neurons in layer l and T the number of timesteps per inference.
Sn[t] is equals to 1 if neuron n fired a spike at time t, and 0 otherwise. Therefore, the gra-
dient descent algorithm used to train the SNN will minimize both the loss related to the
accuracy of the network on the task and the loss related to the spike activity. The regu-
larization loss on the spike activity is weighted by a coefficient λ (∈ {0.5, 1, 2, 4, 10, 50}
in this experiment) allowing us to adjust the impact of the penalization and thus the
spiking activity in the network.
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In Fig. 4.5, SpikGRU and GRU are compared on the GSCD v2 using the real-valued
log-Mel inputs with different network sizes. Regularizing the spiking activity in Spik-
GRU during training allows us to adjust the trade-off between accuracy and number
of operations, as shown in Fig. 4.5 (A). We found that a small λ (∈ {0.5, 1, 2}, de-
pending on the topology) reduces the number of operations with no compromise on
accuracy. For each topology, the level of activity regularization leading to the highest
accuracy is used for the results in Table 4.3 and Fig. 4.5 (C). In particular, the activity
reached using the regularization strategy is on average (for both layers) 0.126, 0.078,
0.049, 0.045 spikes per neuron per inference for X=64, 128, 256, 512 (respectively) com-
pared to 0.191, 0.140, 0.103, 0.071 (respectively) without regularization. This shows that
SpikGRU achieves high sparsity, confirming the results of the Section 4.2 with another
dataset, with non-spiking data. Besides, it can be noted that the sparsity increases with
the size of the topology.

Therefore, SpikGRU with a small activity regularization achieves high accuracy
(less than 0.5% below the ANN with similar accuracy) while demonstrating up to 82%
reduction in number of operations, as shown in Table 4.3 and Fig. 4.5. Note that this
is achieved by using larger topologies than the ANN, but the number of operations is
still lower due to the spike sparsity. Moreover, SpikGRU with activity regularization
achieves higher accuracy than the previous state-of-the-art SNN (94.5%, demonstrated
by a spiking 2D CNN in Pellegrini et al., 2021), while requiring fewer operations (from
-39% to -90%, depending on the topology). Interestingly, the SCNN from Pellegrini
et al., 2021, also trained with activity regularization, is also very sparse (0.045 spikes
per neuron per timestep on average). Indeed, it also uses matching SNN and ANN
timesteps, as the 2D convolutions are first performed on the data seen as an image, but
the resulting feature maps are re-decomposed in the temporal dimension and fed to
the spiking neurons timestep per timestep (using the spectrogram timesteps), as in a
RNN. This suggests that, as mentioned in Section 4.2, the higher sparsity is achieved
by matching ANN and SNN timesteps, which is allowed by a RNN-like processing in
the temporal dimension of the data. However, the CNN topology in Pellegrini et al.,
2021 has a higher number of neurons than the RNN topologies from our experiments,
resulting in a higher total number of operations, despite a similar sparsity per neuron.

Spikes allows MACs to be replaced by ACs in the synaptic operations of spiking
layers. However, due to the use of real-valued inputs instead of spiking ones, an im-
portant number of MACs remain in the feedforward connections of the first layer of
SpikGRU (encoding layer). These MACs limit the efficiency of SNNs as they are not
affected by the activity regularization. In particular, for small topologies with low
activity rate, these operations become dominant (Fig. 4.6). Therefore, in the next ex-
periment, we evaluate the impact of using spiking instead of real-valued inputs.
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FIGURE 4.5: A. Accuracy vs. number of operations per sample for SpikGRU (with size
X = 256) with the different levels of activity regularization (λ ∈ {0.5, 1, 2, 4, 10, 50}). B.
Output spikes from the first layer in SpikGRU with different activity rates. C. Accuracy
vs. total number of operations (MAC + AC) per sample for GRU and SpikGRU with

different layer sizes (X), with and without activity regularization for SpikGRU.

TABLE 4.3: Accuracy and number of operations per sample on GSCD v2 for SpikGRU
(with activity regularization) and GRU, and previous state-of-the-art SNNs.

Topo. (#Param.) Accuracy (%) #Ops

GRU
X=32 (14k) 93.4 ± 0.1 1.4M
X=64 (46k) 95.1 ± 0.1 4.6M
X=128 (165k) 96.1 ± 0.2 17M
X=256 (625k) 96.4 ± 0.2 63M

SpikGRU
X=64 (31k) 93.6 ± 0.2 0.9M
X=128 (111k) 94.9 ± 0.3 2.0M
X=256 (418k) 95.6 ± 0.2 4.4M
X=512 (1.6M) 95.9 ± 0.1 12M

SNN SoA* CNN (130k) 94.5 20M
*from Pellegrini et al., 2021



4.3. Leveraging Sparsity in Recurrent SNNs 75

4.3.3 Increasing Sparsity with Spiking Input Data

In this second experiment, the KWS pipeline is used with the real-valued inputs con-
verted to spikes. Note that activity regularization is also leveraged, using the λ lead-
ing to the maximal accuracy for each topology in the first experiment (described in
Section 4.3.2). In this case, the input sparsity also impacts the accuracy and efficiency
in SpikGRU. Note that the input activity rate must be less than 1 to reduce the num-
ber of operations compared to using real-valued inputs (for which 1 MAC operation is
performed at each timestep).

The results are shown in Fig. 4.6. The spiking inputs effectively allow to replace
the MACs due to the real-valued inputs by ACs (Fig. 4.6 A). However, the reduction
in number of operations is limited, as the input activity rate must be high enough
to allow the input to be encoded with sufficient precision (otherwise the accuracy is
largely degraded). Indeed, we observe that decreasing the input activity rate decreases
the accuracy (Fig. 4.6 B). Therefore, the reduction in operations due to spiking inputs
is not sufficient to compensate for the loss in accuracy. This leads to a degraded trade-
off between accuracy and number of operations compared to the case of real-valued
inputs (Fig. 4.6 C).

This experiment shows that the precision of the input is crucial for the network ac-
curacy. Therefore, adjusting the level of activity regularization and network size seems
more efficient to decrease the number of operations with a minimal loss in accuracy.
However, in hardware implementation, inputs are often quantized (and not in 32-bit
float precision, as in these experiments) to increase the energy efficiency. Hence, there
is also a trade-off between accuracy and energy consumption in the encoding layer.
Besides, the hardware implementation of spike conversion from real-valued feature
extractors induces an energy overhead. However, audio feature extractors consuming
about 100 nW (such as Wang et al., 2021) output data in the form of spikes, making it
possible to yield an ultra-low power end-to-end KWS solution. DAS (such as Anumula
et al., 2018b) also directly output spikes.

Therefore, SNNs offer two possibilities for the choice of the feature extractor: either
using log-Mel features (quantized or not), or using a spiking feature extractor. In the
first option, the first layer is trained to do the spike conversion, which allows minimal
accuracy loss. The second option may be more advantageous if the extractor is able
to produce relevant spiking features (leading the network to learn with a satisfactory
accuracy) with sufficiently high sparsity.

4.3.4 Discussion

The results have shown that recurrent SNNs, such as SpikGRU, are a promising solu-
tion for energy-efficient and accurate KWS. We have demonstrated the importance of
regularizing the spiking activity, which allows SpikGRU to achieve a better trade-off
between accuracy and number of operations than GRU. Indeed, for the same accuracy,
SpikGRU shows a lower number of operations. Moreover, the number of operations
can be reduced by up to 82% compared to GRU with a loss of accuracy of less than
0.5%. Furthermore, we demonstrate state-of-the-art results for SNNs on GSCD v2 (up
to 95.9% accuracy) with extremely low spiking activity, and hence low number of op-
erations. Replacing the real-valued inputs by spiking inputs can further reduce the
number of operations by exploiting input data sparsity, but the accuracy-efficiency
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FIGURE 4.6: A. Number of MAC and AC operations per timestep for GRU and Spik-
GRU (real-valued inputs) and SpikGRU with spiking inputs, with Input Activity Rate
(IAR) of 0.74. MACs due to real-valued inputs in SpikGRU are highlighted. B. Accu-
racy vs. input activity rate with spiking inputs. C. Accuracy vs. number of operations
per sample for SpikGRU with activity regularization (act. reg.) with real-valued or

spiking inputs (IAR 0.74 and 0.48) with different hidden layer sizes (X).

trade-off must be carefully considered. Therefore, SNNs offer the possibility of using
either standard log-Mel feature extractors leading to high accuracy, or spiking feature
extractors to increase the energy efficiency. The main limitation of SNNs is the need
for larger topologies compared to ANNs with the same accuracy, which increases the
memory requirements. This problem could be mitigated by pruning synaptic connec-
tions.

Note that the baseline ANN model used in this Section is the standard implemen-
tation of the GRU (Cho et al., 2014) using two gates. However, lighter versions of the
GRU with only one gate (as in SpikGRU) exists (such as Ravanelli et al., 2018). There-
fore, the number of operations of the GRU could likely be reduced by using single gate
versions without loosing in accuracy, which should be further investigated. Moreover,
a more realistic hardware model must be considered to fairly compare ANN and SNN
implementations, which will be the focus of Section 4.4.
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4.4 Energy Efficiency of Spiking vs. Artificial RNNs

In Sections 4.2 and 4.3, the energy efficiency of recurrent ANNs and SNNs are com-
pared based on the number of operations. In order to fairly compare them in a more
realistic hardware-aware perspective, the energy model from Chapter 3 can be used.
However, this model must be adapted to the specificity of RNN topologies (neuron
model, data reuse, number of synapses and neurons, etc.). Therefore, this section
presents the extension of the energy model desribed in Chapter 3 to the case of re-
current gated topologies. The model SpikGRU (proposed in Section 4.2) with sparsity
optimization (Section 4.3) is used as SNN baseline. The ANN equivalent of SpikGRU,
i.e. a single-gate GRU, is used as ANN baseline. As in Chapter 3, a baseline ANN
model of energy (naive implementation) and ideal cases (with data reuse and exploita-
tion of sparsity) are considered. Then, the KWS experiment (from Section 4.3) is used
for the numerical applications.

4.4.1 Extension of the Model of Energy Efficiency to RNN topologies

Following the procedure from Chapter 3, we derive the dynamic energy consump-
tion of each of the models considering the number of operations (MACs and ACs)
and memory accesses (as previously, activation functions are ignored). As LIF+inst or
IF+const SNN models in the case of CNN topologies, the SNN models for recurrent
topologies require some neuronal operations (e.g. membrane potential decay) that
must be realized synchronously at each timestep. In addition, due to the recurrent
connections, spikes cannot be processed immediately as they are produced, and must
be buffered in between timesteps in an event stack (e.g. a FIFO). Note that the spike
sparsity can still be advantageously leveraged compared to an ANN processing where
activations are stored in a matrix format. In addition, as the synaptic operations are the
dominant source of energy consumption in neural networks, the contribution of these
periodic neuronal operations is small, as will be seen.

For the following equations, a recurrent layer with Nneur_in (resp. Nneur_hid) in-
put (resp. hidden) neurons is considered with a number of input (resp. hidden)
synapses Nsyn_in (resp. Nsyn_hid) corresponding to feedforward (resp. recurrent) con-
nections. The input (resp. hidden) spiking activity per timestep is Nspikes_in/syn (resp.
Nspikes_hid/syn). The energy of read (resp. write) the variable X is ERX (resp. EWX). The
energy per inference (e.g. processing of one sample) is considered, using T timesteps
per inference.

SNN Model (SpikGRU)

The dynamic energy consumption per inference of a SpikGRU layer (see equations 4.10-
4.13) can be computed. First, the current I and gate variable Z are computed by accu-
mulating the input spikes from the input layer (for the feedforward connections) and
the hidden layer (for the recurrent connections). These synaptic operations are realized
asynchronously during the timestep. This incurs, at each incoming spike (either from
the feedforward or from the recurrent connections), for I and for Z, a memory read and
write, the read of the associated weights and an accumulate operation. These synaptic
operations are summarized as follows:
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Nsyn_in × Nspikes/syn_in × T × (ERI + ERZ + ERweight_in_I + ERweight_in_Z

+2AC + EWI + EWZ)

+Nsyn_hid × Nspikes/syn_hid × T × (ERI + ERZ + ERweight_hid_I + ERweight_hid_Z

+2AC + EWI + EWZ)

Then, at the end of the timestep, the synchronous neuronal operations are per-
formed. First, the computation of the final version of I (requiring a MAC for the decay,
an AC for the bias parameter, a memory read and write) and the final version of Z
(requiring an AC for the bias parameter and a memory read only, as Z is not stored
in between timesteps). Then the membrane potential V is updated, requiring 2 MACs
for the dot products, a memory read and write, and an AC weighted by the spiking
activity of the hidden neurons for applying the reset:

Nneur_hid × T × (ERI + EWI + ERZ + ERV + EWV + 3MAC + 2AC
+Nspikes/syn_hid × AC)

Finally, the spikes produced are buffered in between timesteps. This results in a
memory read for the incoming spikes (from feedforward or recurrent connections) and
a memory write for the output spikes produced:

(Nneur_in × Nspikes/syn_in + Nneur_hid × Nspikes/syn_hid)× T × ERspike

+Nneur_hid × Nspikes/syn_hid × T × EWspike

Therefore, the total dynamic energy consumption per inference of a SpikGRU layer
can be summarized as follows:

ESNN = Nsyn_in × Nspikes/syn_in × T × (ERI + ERZ + ERweight_in_I

+ERweight_in_Z + 2AC + EWI + EWZ)

+Nsyn_hid × Nspikes/syn_hid × T × (ERI + ERZ + ERweight_hid_I

+ERweight_hid_Z + 2AC + EWI + EWZ)

+Nneur_in × Nspikes/syn_in × T × ERspike

+Nneur_hid × T × (ERI + ERZ + ERV + EWI + EWV + 3MAC + 2AC
+Nspikes/syn_hid × (AC + ERspike + EWspike))

(4.15)

ANN Model: Baseline

In the KWS experiments, the standard ANN GRU implementation (with two gates)
was used. However, in order to fairly compare ANN and SNN only considering their
processing mode, the same topology must be used. Therefore, a light version of GRU
(with a single gate) is considered to be the ANN equivalent of SpikGRU, in terms of
model complexity. It is defined as follows (similar to Ravanelli et al., 2018):
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ct = ReLU(Wcxt + Ucht−1 + bc) (4.16)

zt = σ(Wzxt + Uzht−1 + bz) (4.17)

ht = zt ⊙ ht−1 + (1 − zt)⊙ ct (4.18)

The synaptic operations are first computed to update the neuronal variables C and
Z. In this case, the input activation (iact), C, Z and their associated weights must
be read, 2 MACs operations (one for each) are performed and C and Z are updated.
Note that, in SpikGRU equation 4.15, the contribution of feedforward and recurrent
synapses is separated to show that the associated spiking activity must be used for
each. In the equations for the ANN, the two contributions are combined for clarity.
Hence, Nsyn is the total number of synapses in the layer and iact represents any of the
inputs, either from the feedforward (xt) or recurrent (ht−1) connections. These synaptic
operations are summarized as follows:

Nsyn × T × (ERiact + ERC + ERZ + ERweightC + ERweightZ + 2MAC + EWC + EWZ)

Then, the final state of C and Z is obtained by adding the biases (2 ACs) and com-
puting the activation functions. The update of neuronal variables C and Z costs an
additional memory read only (as they are not stored in between timesteps) for each of
them, i.e. one per hidden neuron. Then, H is updated, requiring a memory read and
write for the update and 2 MACs for the dot products. These neuronal operations are
summarized as follows:

Nneur_hid × T × (ERC + ERZ + ERH + EWH + 2MAC + 2AC)

Therefore, the total dynamic energy consumption per inference of the ANN layer
(naive implementation) can be summarized as follows:

EANN(naive) = Nneur_hid × T × (ERC + ERZ + ERH + EWH + 2MAC + 2AC)

+Nsyn × T × (ERiact + ERC + ERZ + ERweightC + ERweightZ

+2MAC + EWC + EWZ)

(4.19)

ANN Model: Ideal Data Reuse

As in Chapter 3, the cases of ideal data reuse and exploitation of iacts sparsity are
considered. Compared to the naive implementation, the neuronal operations are un-
changed, these optimizations targeting the synaptic operations.

In the case of recurrent layers (as in fully connected layers), there is no possible
reuse on weights (as each weight is used in only one computation). However, an iact
can be reused for all hidden neurons, and a psum (here the neuronal variables Z and C)
can be reused for all of its input neurons. For instance, this could be realized in systolic
arrays by associating each psum to a PE and moving the input activations through the
PEs (output stationary dataflow, according to Sze et al., 2017). In this case, the iact
is read in the buffer once for each input neuron. Similarly, the psums (C and Z) are
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read and written in the buffer once for each hidden neuron. Thus, the distant memory
accesses for iacts, C and Z are reduced to:

Nneur_in × T × ERiact + Nneur_hid × T × (ERC + ERZ + EWC + EWZ)

Then, these variables are accessed locally in a register file (ERreg, EWreg) for each
synaptic operation, the corresponding weights are accessed from the distant memory
(no reuse on weights), and the MACs are performed:

Nsyn × T × (ERweightC + ERweightZ + 2MAC + ERreg
iact + ERreg

C + ERreg
Z

+EWreg
C + EWreg

Z )

Including the neuronal operations (which are the same as in the baseline case, see
equation 4.19), the total dynamic energy consumption considering ideal data reuse is :

EANN(reuse) = Nneur_hid × T × (ERC + ERZ + ERH + EWH + 2MAC + 2AC)

+Nneur_in × T × ERiact + Nneur_hid × T × (ERC + ERZ + EWC + EWZ)

+Nsyn × T × (ERweightC + ERweightZ + 2MAC + ERreg
iact + ERreg

C + ERreg
Z

+EWreg
C + EWreg

Z )

(4.20)

ANN Model: Ideal Data Reuse and Exploitation of Iacts Sparsity

Then, the ideal exploitation of sparsity in the iacts, in addition to an ideal data reuse,
is considered. As in the case of CNNs (described in Chapter 3), when an iact is zero,
MAC operations and memory accesses associated with weights, psums and iacts can
be saved. Therefore, the difference with the case of data reuse only (equation 4.20)
is that the synaptic operations (factor Nsyn) are weighted by the input activity. Note
that contributions of feedforward and recurrent connections should be distinguished
as they may have a different sparsity, as in the case of SNN. Here, for clarity, they are
not dissociated, and γ is supposed to be the average sparsity (rate of zero iacts) of both
types of connections. Thus, the total dynamic energy consumption in the case of ideal
data reuse and exploitation of iacts sparsity is:

EANN(reuse+sparsity) = Nneur_hid × T × (ERC + ERZ + ERH + EWH + 2MAC + 2AC)

+Nneur_in × T × ERiact + Nneur_hid × T × (ERC + ERZ + EWC + EWZ)

+Nsyn × T × (1 − γ)× (ERweightC + ERweightZ + 2MAC

+ERreg
iact + ERreg

C + ERreg
Z + EWreg

C + EWreg
Z )
(4.21)

4.4.2 Comparison of Gated Recurrent ANNs and SNNs

Using these equations, the relative energy efficiency of single-gate recurrent ANNs
and SNNs are compared. The topologies from the KWS experiments (Section 4.3) are
used for the application. In particular, the neural networks have two recurrent layers
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of same size (X). The input is an encoding layer (real-valued inputs) and the readout
layer does not produce spike. Thus, only the efficiency of hidden layers is compared.
As they have the same size, Nneur_in = Nneur_hid = X. In addition, for clarity, the feed-
forward and hidden spiking activities are combined in an average Nspikes/syn. For the
case of ideal data reuse and exploitation of iact sparsity in ANN, the only missing infor-
mation for the numerical applications is the iacts sparsity of the ANN algorithm. Note
that using tanh activation functions, which are typically used in GRU implementations
(Cho et al., 2014), activations are not naturally sparse. However, using ReLU activa-
tions instead (as proposed in Ravanelli et al., 2018) can result in higher sparsity. As the
average sparsity that could be reached in such ANN encoded in fixed point format for
a given topology size is unknown, it is supposed to be 50% (γ = 0.5) in the follow-
ing numerical applications. For the energy of memory accesses and computations, the
reference of 16 bit in 65nm technology as in Section 3.4 (see Table 3.1) is used.
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FIGURE 4.7: Ratio of energy associated with neuronal operations and synaptic oper-
ations in the SNN and ANN with ideal data reuse and exploitation of iact sparsity

(equations 4.15 and 4.21), for two topology sizes (X).

The ratio of energy associated with neuronal operations and synaptic operations in
the SNN (SpikGRU) and its ANN equivalent (in case of ideal reuse and exploitation
of iacts sparsity) is shown in Fig. 4.7. As expected, the synaptic operations are largely
dominant (as Nsyn = N2

neur). Therefore, in SpikGRU, the energy associated with spike
buffering and the update of neuronal variables is almost negligible compared to the
synaptic operations. In particular, the impact of having high precision (as opposed to
spiking) neuronal variables requiring MAC operations (as opposed to ACs) is negligi-
ble, as we had assumed for proposing the SpikGRU model. Conversely, reducing the
operations and memory accesses associated with synaptic operations is crucial for effi-
ciency, both in ANNs and SNNs, as it was the case for CNN topologies. This confirms
the important impact of spike sparsity in SNNs, as well as data reuse and exploitation
of iacts sparsity in ANNs.

The SNN energy efficiency relative to ANN with the same topology depending
on the ANN implementation is shown in Fig. 4.8. The case of CNN topologies (from
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Fig. 3.7) and RNN topologies (equations 4.15-4.21) is compared (topology size X=256
is used in the case of RNN). RNN topologies appear to be more favorable to SNNs
(relative to ANNs) than CNN topologies (i.e. Nspikes/syn can be higher for achieving the
same relative efficiency), except in the baseline case. This is explained by the fact that
there is no reuse on weights in fully connected layers (and so in recurrent), while every
data types can be reused in convolutional layers. For instance, for the SNN to achieve
superior energy efficiency than the ANN in the ideal reuse case, the average activity
per timestep must be at most 0.53, while the average activity per inference must be at
most 0.28 in the case of CNN. Note that, to compare with ANNs, the activity must be
considered per timestep in the case of RNNs while it must be considered per inference
(i.e. for processing one sample) in the case of CNNs. Indeed, recurrent ANNs have the
same number of timesteps as SNNs, while convolutional ANNs do not have timesteps
(only one forward pass per inference).

FIGURE 4.8: SNN energy efficiency compared to the ANN (with same topology, with
X=256 hidden neurons in recurrent layers) as a function of the SNN spiking activity
(Nspikes/syn being the average number of spikes per synapses), depending on the ANN
implementation. Baseline corresponds to the naive implementation, while Ideal reuse
and Ideal reuse + iact sparsity consider ideal ANN implementations, considering only
data reuse, or data reuse and the exploitation of iact sparsity, respectively. The case of
CNN and RNN topologies is compared. The data for CNN are extracted from Chap-

ter 3 while the equations for RNNs are described in this Section.

The impact of different topology sizes on the relative energy efficiency of SNNs vs.
ANNs is compared in Fig. 4.9. The experiments on the KWS task described in Sec-
tion 4.3 are used for numerical applications. For SpikGRU, the case with full-precision
inputs and activity regularization is used. In particular, Nspikes/syn per timestep was
on average 0.135, 0.084, 0.053, 0.048 for X=64, 128, 256, 512 hidden layer size respec-
tively, when using a total of 100 timesteps per inference. First, SNNs and ANNs are
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FIGURE 4.9: SNN energy efficiency compared to ANN depending on the ANN imple-
mentation for recurrent topologies, in the case of A. same topology for ANN and SNN
or B. similar accuracy for ANN and SNN. For the hardware implementation, SpikGRU
is used as SNN model and a light version of the GRU equivalent to SpikGRU (i.e. with
a single gate) is used for ANN. Data come from the KWS experiments described in Sec-
tion 4.3. Note that the accuracy results for the ANN were obtained with the standard

GRU implementation (two gates).

compared using the same topology. Second, SNNs and ANNs are compared for a
similar accuracy achieved, which approximately corresponds to twice the number of
hidden neurons (so four times the number of parameters) for the SNN with respect to
the ANN, according to the results on KWS. It is observed that, the bigger the topology,



84 Chapter 4. Improving Accuracy and Efficiency of Spiking Neural Networks

the higher the relative SNN energy efficiency compared to ANN. This is due to an in-
creasing spike sparsity with the size of the topology. In iso-topology case, the energy
efficiency of SNN is always higher than the ANN in baseline and ideal cases (from 2x
to 22x more energy-efficient). At iso-accuracy, the energy efficiency of SNN is relatively
smaller, as the large network size highly impacts the efficiency. However, the SNN is
still more energy-efficient than the ANN (1.3x to 5.6x), except for the ideal reuse + iact
sparsity case when using small topologies.

4.4.3 Discussion

The gain in energy efficiency of using SNNs instead of ANNs for recurrent topologies
is more moderate when considering hardware implementations with higher fidelity
than when simply using the number of operations. Indeed, the latter does not consider
the opportunities of data reuse and sparsity exploitation in ANNs. However, when
comparing the results from Chapter 3 with those obtained here, it is observed that the
gain is higher with RNNs than with CNNs. This can be explained by two factors: (1)
the higher sparsity in spiking RNNs (likely due to the fact of not having more timesteps
in the SNN than in the equivalent ANN), and (2) the lower data reuse opportunities
in RNNs (no reuse on weights). Notably, the gains are highly dependent on the SNN
sparsity, as well as the choice of topology. Indeed, the wider the hidden layers, the
higher the gain for the SNN relatively to the ANN (due to a higher SNN sparsity).

However, the results depend on many assumptions that must be carefully consid-
ered when using this model. In particular, assumptions were made on the ANN re-
current model, for instance its sparsity. Similar experiments, as done in the case of
SNNs, should be performed with the assumed ANN model (with ReLU activations) to
evaluate the sparsity for each topology case. Note that the sparsity is likely to increase
with the topology size, as in SNNs, while it was considered fixed in this section. There-
fore, the conclusions that SNNs compare favorably to ANNs with increasing topology
size must be verified for the case of ANN exploiting iact sparsity. In addition, as in
the case of CNNs, exploiting sparsity requires additional logic consuming energy and
makes it more difficult to reuse data (according to Chen et al., 2019). Therefore, a real-
istic ANN model would likely show lower performance than the ideal cases described
above. As done in Chapter 3, the performance of real ANN implementations should
be evaluated based on existing accelerators dedicated to RNNs (see Mittal et al., 2021
for a review). In addition, the results at iso-accuracy assume that the SNN needs twice
as many hidden neurons as the ANN to achieve similar accuracy, which was according
to the results obtained on KWS. However, these results must be verified considering
the new assumptions made on the ANN (in particular, a GRU with a single gate and
ReLU activations, instead of the standard GRU with double gate and tanh activations
that was used in the KWS experiments).

4.5 Conclusion

Spiking RNNs can achieve accuracy close to ANNs with higher energy efficiency, as
shown in the case of spoken word recognition, using various spiking and non-spiking
datasets. The proposed SpikGRU model leverages the sparsity of SNNs, due to sparse
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spiking activations, and the accuracy of GRU, by using a gated cell model with high
precision neuronal variables and operations. By carefully considering the topology size
and the activity regularization, the accuracy and energy efficiency of SpikGRU can be
adjusted to match the application constraints. It can also enable efficient end-to-end
spike processing by combining it with low-power spiking feature extractors.

The extension of our model of dynamic energy consumption (presented in Chap-
ter 3) to the case of recurrent topologies provides a new perspective on the energy effi-
ciency of SNNs and ANNs. First, it confirms that the neuronal operations are negligible
compared to synaptic operations, both in ANNs and SNNs, validating the motivations
for the SpikGRU model (i.e. with high precision neuronal variables and operations,
and spiking activations). Moreover, the impact of spike sparsity on the SNN efficiency,
as well as the impact of data reuse and exploitation of iacts sparsity on the ANN effi-
ciency, are again demonstrated. In this context, the conclusions on the relative energy
efficiency of ANNs and SNNs are different than that of Chapter 3. Indeed, on the one
hand, a higher sparsity (per ANN operation) is achieved in spiking RNNs than in spik-
ing CNNs and, on the other hand, there are less opportunities of data reuse in artificial
RNNs than in artificial CNNs. Therefore, SNNs seem to compare more favorably to
ANNs in the case of recurrent topologies, in particular for wider topologies, which
exhibit the highest spike sparsity (and also the highest accuracy). Note that this is con-
tingent to a high level of spike sparsity, and that SNNs may require wider topology
than ANNs for the same accuracy, inducing higher memory requirements.

These experiments seem to confirm our hypothesis that spatio-temporal tasks could
better match the temporal dynamics of SNNs, compared to static tasks such as image
recognition, and hence could lead to higher energy efficiency. This is of high interest for
edge AI applications requiring low power and low energy consumption, such as key-
word spotting. Furthermore, the benefits of recurrent SNNs, such as SpikGRU, could
extend to many applications using sequential data, where RNNs are typically used,
such as speech recognition, text summarization (Shini et al., 2021), sentiment analy-
sis (Baktha et al., 2017), but also time series forecasting using environmental (Chen et
al., 2018) or physiological (Mao et al., 2022) data. In addition, other spatio-temporal
tasks, such as gesture recognition, in particular with data produced by neuromorphic
sensors, should be further investigated.
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Chapter 5

Improving Accuracy and Efficiency
with Analog Synapses

5.1 Introduction

Neuromorphic computing, such as bio-inspired algorithms and hardware architec-
tures, is a promising research direction for improving the energy efficiency of hardware
implemented ANNs (Nawrocki et al., 2016; Bose et al., 2019). Among neuromorphic
architectures, analog implementations can achieve significant gains compared to fully-
digital implementations (such as Hung et al., 2022). In such systems, emerging Non-
Volatile Memory (NVMs) devices (Ielmini et al., 2019), such as resistive random-access
memories (RRAMs), magnetic RAMs (MRAMs), phase-change RAMs (PCRAMs) or
ferroelectric RAMs (FeRAMs), can be used to encode synaptic weights of ANNs (for
instance, to replace the SRAMs used in standard fully-digital hardware implementa-
tions). The non-volatily of these devices allows them to retain the information even
if the power supply is turned off, allowing to remove the dependency to an external
memory and hence reducing the energy consumption of the system. In addition, multi-
level cell programming strategies allow more than one bit of information to be stored
in a single NVM device. Therefore, multi-level NVMs can allow energy-efficient and
dense hardware implementations of ANNs (such as Joshi et al., 2020; Wan et al., 2022).

Nevertheless, emerging NVMs are prone to variability, inducing the occurence of
errors, which can significantly degrade the accuracy of ANNs. This trend is exacer-
bated with dense multi-level approaches due to the reduced programming window
for each level (Nirschl et al., 2007; Balatti et al., 2013). Therefore, enhancing the robust-
ness of neural networks to noisy multi-level weights is essential to achieve accurate
and efficient hardware implementations of ANNs. In addition, variability in NVMs
comes from different sources and results in different types of errors, which can have a
different impact on the accuracy of ANNs (Higuchi et al., 2022; Yan et al., 2023).

Among NVMs, RRAMs are one of the most promising technologies to implement
synaptic weights of neural networks (Yao et al., 2020). Synaptic weights with RRAMs
are usually implemented using 1 Transistor 1 Resistor (1T1R) architectures, where the
memory (1R) is associated with an access transistor (1T). However, by using 1 Selector 1
Resistor (1S1R) architectures, where the memory is co-integrated in series with a back-
end selector (1S), instead of 1T1R, the memory density can be improved by about one
order of magnitude (Minguet Lopez et al., 2021). High density memory is particularly
important to implement large network topologies.



88 Chapter 5. Improving Accuracy and Efficiency with Analog Synapses

In this chapter, we simulate ANNs and SNNs with the constraints of a hardware
implementation using analog NVMs for the synaptic weights. First, we consider a
technology-independent hardware model that is, in principle, applicable to all kind of
emerging analog NVMs. This model is used to study the robustness of ANNs and
SNNs to errors. This allows to compare the SRNN model proposed in Chapter 4,
SpikGRU, to its ANN equivalent, as well as with CNN topologies (spiking and non-
spiking), in terms of robustness to errors. Second, a case study is considered, using
RRAMs with a 1S1R architecture to implement the synaptic weights of a Binary SNN
(BSNN).

This chapter is organized as follows:

• In Section 5.2, the hardware fault model to simulate implementations with NVMs
is proposed. Then, a training methodology for neural networks adapted to highly-
quantized and noisy weights is presented. The robustness of different neural
networks topology (CNN, RNN) and coding (ANN, SNN) is compared.

• In Section 5.3, a practical case of resistive memories is considered to implement a
BSNN. Physical measurements performed on a memory array are used to extract
the hardware constraints.

The results of this chapter have been published in Minguet Lopez et al., 2021;
Minguet Lopez et al., 2022; Dampfhoffer et al., 2023d; Minguet Lopez et al., 2023.

5.2 Improving Robustness to Noisy Quantized Weights

In the interest of implementing synaptic weights of neural networks using emerging
NVMs, several challenges must be considered, in particular concerning the variability
of NVM devices. The robustness of ANNs to NVM non-idealities has been shown to
depend on the topology of ANNs. For instance, wide and shallow neural networks
are more robust than deep networks (Yang et al., 2019b). Besides, Spiking Neural Net-
works (SNNs) are thought to be particularly robust to noise in synaptic weights, due
to the computations using accumulation over time (Li et al., 2020). The robustness
of ANNs and SNNs to noisy synaptic weights have been compared in Li et al., 2020;
Bhattacharjee et al., 2022. However, Li et al., 2020 do not consider a realistic hardware
implementation, as weights are simulated with 32-bit floating point precision and only
one type of error is considered. A more realistic hardware model of a RRAM mem-
ory array is used to evaluate the robustness of SNNs and ANNs in Bhattacharjee et al.,
2022. Nevertheless, none of these works (Yang et al., 2019b; Li et al., 2020; Bhattacharjee
et al., 2022) consider the benefits of injecting noise during training, which has proven
very effective to enhance the fault tolerance of neural networks (Murray et al., 1994).
Strategies based on injecting noise during training have been demonstrated with NVM
implementations, such as Joshi et al., 2020; Doevenspeck et al., 2021; Minguet Lopez
et al., 2022; Wan et al., 2022. However, these works focus on a specific hardware im-
plementation and do not distinguish the effect of the different types of faults on the
neural network performance. In addition, to the best of our knowledge, there has been
no attempt to evaluate and compare the robustness of CNN and RNN topologies in
the context of an implementation with non-ideal NVMs.
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Therefore, we propose a methodology to evaluate and improve the robustness of
neural networks in the case of noisy multi-level NVM-based synapses. This general
methodology is applicable to various types of neural networks and NVM technologies.
Moreover, we show that considering the characteristics of NVMs during the training of
ANNs is essential to optimize the overall system performance. In particular, we define
an abstract hardware fault model distinguishing two types of errors, namely static and
dynamic, capturing the variability of NVMs. We compare neural network topologies
(CNNs and RNNs) and coding strategies (ANNs and SNNs) on a keyword spotting
task. The performance of the neural networks are compared with a standard (error-
agnostic) training and with an adapted (error-aware) training. In addition, we propose
an analysis of the impact of the error-aware training on the parameters learned by the
neural networks. These findings could be used to further improve the performance of
neural networks by considering the specificity of multi-level NVM implementations.

5.2.1 Fault Model and Training Strategy for NVM-based Synapses

Fault Model for NVM-based Synapses

Single-level (as opposed to multi-level) NVMs are only programmed in two states.
Therefore, when one device is used to encode one weight, they allow to implement
Binarized Neural Networks (BNNs), with one level encoding positive weights (+1)
and the other encoding negative weights (-1). In this case, the Bit Error Rate (BER,
i.e. proportion of bit reading failures among all bit read) of the NVMs corresponds to
the probability of reading one state instead of the other. Thus, errors can be simply
modelled, in the neural network inference, by switching the value of the weights with
a given probability.

In the case of multi-level NVMs, the model is more sophisticated. Indeed, the differ-
ent levels of the NVM do not have the same error rate and the probability for each level
to be read as another level must be considered. In addition, multi-level NVMs can be
used in different ways to implement ANNs in hardware. The most mature and widely
used approach consists in using the NVMs only to store the weights while performing
the computation of the matrix vector multiplication in digital. It is the approach used
in Near-memory computing (NMC). In-memory computing (IMC) is another strategy
that leverages the physical properties of the devices to directly perform the matrix
vector multiplication in the memory array (such as Joshi et al., 2020; Amrouch et al.,
2021; Jung et al., 2022; Wan et al., 2022). In this study, the NMC approach is modeled,
however, the method can be extended to IMC, as will be discussed.

Fig. 5.1 shows the proposed fault model for multi-level NVM-based synapses. In
the following experiments, NVMs with eight levels (as in Nirschl et al., 2007; Balatti et
al., 2013) are used as an example, but the model can be extended to any number of lev-
els. Moreover, one NVM encodes one weight, which means that the synaptic weights
in the neural networks can take only eight different values. Hence, each level is asso-
ciated with a corresponding digital value that will be used in the digital computation,
signed integers ranging from -4 to +3. A gaussian distribution is used to model the
variability in the NVM (Grossi et al., 2016). This represents the variability in the ana-
log value that is retrieved (for instance a current or voltage) compared to the expected
value. All levels are assumed to have the same variability and to be equally distanced.
Therefore, the noise level is determined by the variance of the gaussian distribution.
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Note that, for some technologies, the variability depends on the programmed resis-
tance, and thus is different between levels (Grossi et al., 2016). However, by program-
ming the levels such that the overlap in the gaussian distribution of neighboring levels
is similar (i.e. by adjusting the distance between levels based on their variability), it is
assumed that we could obtain an equivalent NVM model.

p1
p2

p0 p1
p2

p0 p1 p2 p3 p4 p5 p6 p7

1 0.78 0.11 9*10-5 2*10-10 ≈0 ≈0 ≈0 ≈0

2 0.50 0.23 0.02 4*10-4 2*10-6 1*10-10 1*10-13 ≈0

3 0.32 0.23 0.09 0.02 2*10-3 2*10-4 5*10-6 1*10-9
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FIGURE 5.1: Fault model for multi-level NVMs. A. Noise model in 8-level NVMs
(digital values associated to each level in these experiments are indicated). pi is the
probability to read the level at distance i (in particular p0 is the probability to correctly
read the level). B. Probabilities of errors (pi) depending on the distance between two

levels, for three noise levels (varying sigma in the gaussian distribution).

As shown in Fig. 5.1, three variances are used to obtain three noise levels. pi repre-
sents the area under the curve of a given level that is between the reading thresholds of
a level at distance i. Thus, pi corresponds to the probability for a given level to be read
as the level at distance i, and hence p0 corresponds to the probability that a given level
will be read correctly. Note that the nominal values of pi given in Fig. 5.1 correspond
to the case of a level having an infinite number of neighbors on each side. In practice,
the pi should be adapted for each level depending on the number of levels considered.
For instance, in the case of the 8-level NVM shown in Fig. 5.1, considering level “-3”,
its p1 on the left side (corresponding to reading “-4”) is higher than its p1 on the right
side (reading “-2”). Indeed, there are no other neighbors on the left side, and hence,
p1 on the left side is equal to the remaining area under the curve on the left side of the
reading threshold between “-4” and “-3”. Moreover, the levels on the extremity (“-4”
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and “3” in this case) have a larger p0 than the other levels, as they only have neighbors
on one side.

The abstract error model covering the variability of NVMs is defined with two cate-
gories of errors, namely static and dynamic (modeled with the same gaussian distribu-
tion). Static (respectively dynamic) errors are defined as fixed (respectively changing)
during the inference time. Hence, when testing with static errors, the errors are sam-
pled once for each input data and used for the whole inference. When testing with
dynamic errors, an identical and independent sampling of the error distribution is per-
formed each time the weight is read. In practice, these errors result from different
physical effects. Depending on the technology, static errors can correspond to pro-
gramming failures, or temporal fluctuations of the device with a timescale higher than
the inference time, such as conductance relaxation for RRAMs (Zhao et al., 2017), or
drift for PCRAMs (Karpov et al., 2007). Dynamic errors can correspond to the inherent
noisy behavior of analog devices (Minguet Lopez et al., 2022; Yan et al., 2023; Reganaz
et al., n.d.). In addition, read operations on FeRAMs are destructive (Ielmini et al.,
2019), thus errors are always dynamic as the device is re-programmed after each read.
Static and dynamic errors have to be distinguished as they do not have the same im-
pact on neural networks, for example in the case where weights are read several times
during the inference. In this experiment, it is assumed that weights are read at each
timestep for the RNN and at each incoming spike for the SNNs (assuming an event-
based hardware implementation). On the contrary, for CNNs, it is assumed that the ar-
chitecture only reads the weights once per inference due to data reuse techniques (Sze
et al., 2020). Note that static and dynamic errors can exist simultaneously. However, in
this study, they are considered separately to understand their respective impact.

Training Neural Networks with NVM-based Synapses

Training with quantized weights. Binary and multi-level NVMs impose high quan-
tization constraints on the weights, if the number of level is limited and only one de-
vice is used to encode one weight. Training a neural network with highly-quantized
weights poses several challenges and thus requires a specific training procedure. In-
deed, the gradient descent algorithm requires high-precision parameters to be able to
optimize them smoothly. To circumvent this problem, a full-precision version of the
weights is kept during the training (as in Courbariaux et al., 2016). Moreover, with
highly-quantized weights, the range of weights is highly constrained, and thus may
not match the dynamic required by each layer of the network (e.g. depending on its
size). Therefore, in order to allow the network to adjust the range of input values, we
use a scaling for each layer which multiplies the activations. The scaling is defined
for each layer as a learnable parameter. All operations occuring at the neuron level
for processing the input activations to produce the output activations are illustrated in
Fig. 5.2. In addition, the learning rate (i.e. factor used in the weight update determin-
ing the speed of learning of the parameters) must be carefully set. Indeed, if weights
are fixed with values from -4 to +3, these parameters have a higher magnitude than the
others. Thus, the learning rate must be scaled so that all parameters learn at the same
pace, as proposed in Courbariaux et al., 2016.
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… … … …

FIGURE 5.2: Neural Network with highly-quantized weights. Illustration of the op-
erations for computing the output activation of a neuron. Input activations are multi-
plied with the quantized weights (8 levels) and by a scaling (full precision, 1 per layer)
to adjust the range of the pre-activation. A bias (in full precision, 1 per neuron for
RNNs and 1 per channel for CNNs) is added before the activation function. Weights,

scaling and bias are trained.

Error-aware training. Single- and multi-level NVMs pose another challenge due to
the high noise level, causing errors when reading the weights during inference. How-
ever, these errors can be incorporated in the training process, which greatly improves
the accuracy of neural networks, as will be seen in the experiments. The proposed gen-
eral methodology for training with errors is applicable to all kind of neural networks.
The incorporation of errors during training will be called “error-aware” training, while
the classic way of training will be called “error-agnostic". In the error-aware training
condition, errors on the weights are applied during training, both in the forward pass
and the backward pass. However, the weight update is performed on the error-free
full-precision version of the weights, which are then quantized to obtain the updated
quantized weights. The noise level injected during training must be similar to the noise
level that is expected during test, in order to obtain the best performance. Note that, if
the neural network is trained with a high noise level, the training from scratch may be
slow to converge. As a solution, the models can be initialized with the weights of the
models trained in the error-agnostic condition in order to speed-up the training.

In the error model previously described, two types of errors, namely static and
dynamic, are defined. However, BPTT training with dynamic errors is costly, as it
would require to make different copies of the neural network for taking into account
the different errors on the weights at each timestep. Therefore, only static errors (which
are fixed during the inference) will be used in error-aware training. Moreover, training
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with static errors also improves the robustness to dynamic errors, as will be seen in
the results. It is important to note that static errors are sampled for each input data.
Therefore, the neural network does not learn which particular synapses are faulty, but
rather that all synapses are potentially faulty. Thus, this training procedure targets
a general robustness to errors rather than a robustness to a specific configuration of
errors (Joshi et al., 2020; Burel et al., 2022).

Note that the accuracy could be further increased by re-training the neural network
involving the hardware in the loop. For instance, Moon et al., 2019; Wan et al., 2022
propose to fine-tune the neural network using the measured outputs of the fabricated
circuit to account for its specific errors. However, this strategy is costly as it must be
done after the chip fabrication and repeated for each hardware unit. Conversely, the
only knowledge required in the proposed methodology is the expected overall noise
level of the devices.

5.2.2 Robustness of Neural Networks to Noisy Weights

… … … …

Read Errors:
(1) Static errors
(2) Dynamic errors

Keyword 
Spotting

Non Volatile 
Memories (NVMs)

8-level NVM

Variability

« Left »

« Left » 0,91
« Yes » 0,05

« Stop » 0,02
…

Neural Network

Training:
(1) Error-agnostic
(2) Error-aware

CNN: 3 x Conv2D + FC
SCNN: Spiking CNN
RNN: 2 x 128 R (single-gated) + FC
SRNN: Spiking RNN

FIGURE 5.3: Experiments on the keyword spotting task. Four types of neural net-
works using 8-level NVMs for weight implementation are simulated on a keyword
spotting task. The effects of two training strategies (error-agnostic and error-aware)

and two types of errors (static and dynamic) are considered.

Methods

The KWS task from GSCD v2 (Warden, 2018) is used for the experiments. The dataset
and data pre-processing are the same as described in Section 4.3. The only difference
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is that the log-Mel features are extracted using a hop length of 15 ms (instead of 10ms),
resulting in 67 frames (instead of 100), in order to speed up the training.

Four different models are used in the experiments: a Spiking CNN (SCNN), a
Spiking RNN (SRNN), and their corresponding ANN equivalent (CNN and RNN),
as shown in Fig. 5.3. The CNN and RNN topologies are chosen to have a similar num-
ber of parameters and operations per inference (for the ANN versions). For the SNNs,
the input data are not converted into spikes but kept in full precision, using an encod-
ing layer (as in Section 4.3 for the non-spiking experiments). This allows to have the
same inputs for the ANNs and SNNs, and also to reach high accuracy for the SNNs (as
observed in Section 4.3).

The SRNN in these experiments corresponds to the SpikGRU model proposed in
Chapter 4. The ANN equivalent of SpikGRU, called RNN in this section, corresponds
to the single-gated implementation described in equations 4.16-4.18. Note that the
ReLU activation function is replaced by a tanh, as we have observed that it leads to
better robustness to errors. For the RNN and the SRNN, the 40 frequency channels are
fed to the neural networks at each timestep, using the same timesteps for the ANN and
SNN versions (as in Chapter 4).

The CNNs use 2D convolutions, and hence the input data are processed as images
of size time x frequency, corresponding to (H,W) dimensions. The CNN topology has
three 2D convolutional layers and a final FC layer. The convolutional layers have 16,
32, 64 output channels respectively, with a kernel size of (6,4), a stride of (2,2) and a
padding of (2,2). The SCNN is composed of LIF neurons. As the data are processed
in a static way (as images), SNN timesteps are added to simulate the SNN temporal
dynamics. In these experiments, 10 timesteps were empirically found to be a good
compromise between accuracy and spike sparsity. Hence the input images are fed
to the SNN 10 times. Note that we used a standard implementation of 2D SCNN,
which considers the input as an image and decomposes the inference in “artificial”
SNN timesteps, as done in standard image processing. An alternative solution is pro-
posed in Pellegrini et al., 2021, which uses an implementation of a RNN-like SCNN (as
explained in Section 4.3.2). However, in these experiments, the objective is to compare
the robustness of the CNN-like processing compared to the RNN-like processing.

The neural networks are implemented and trained based on the NVM model and
training procedure previously described in Section 5.2.1. Thus, the weights are uni-
formly quantized with signed integers from -4 to +3. All neural networks are trained
with backpropagation for 100 epochs and a batch size of 128, with Adam optimizer
(Kingma et al., 2014) and a cosine annealing scheduler. The initial learning rate is set at
0.001, except for the weights, for which it is set at 0.01. Bias parameters (not quantized)
are initialized from a uniform distribution U(−1/

√
k, 1/

√
k), k being the input size of

the layer. The scaling parameter per layer is initialized to 1/
√

k. The full-precision ver-
sions of the weights are initialized from a uniform distribution U(−1, 1). For SNNs,
the time constants are defined as learnable parameters (per neuron in SRNN and per
channel in SCNN) and initialized at 0.8. The voltage threshold for the spiking acti-
vation function is set to 1 and a surrogate gradient is used for BPTT as in Chapter 4.
Neural networks are trained with two conditions: error-agnostic or error-aware, as de-
scribed in Section 5.2.1. In all the experiments, for each configuration, the models are
trained five times and the mean accuracy with a 95% confidence interval is reported.
Note that, as randomness is involved when testing with errors, models are tested ten
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FIGURE 5.4: Number of operations per inference (left) and number of parameters
(right) of the models.

times and the mean accuracy is used.

Results

The figures of merit of the different neural networks are provided in Fig. 5.4 and
Fig. 5.5. The number of operations per inference and the number of parameters are
given in Fig. 5.4. All models have a similar number of parameters. On the one hand,
the ANN versions (CNN and RNN) have a similar number of operations per inference.
On the other hand, the spiking versions have a lower number of operations due to the
spike sparsity. Indeed, the SCNN (respectively SRNN) shows 2x (respectively 4x) re-
duction in operations compared to the CNN (respectively RNN). Indeed, neurons in
SCNN have an average firing rate of 0.54, 0.43, 0.34 spikes per inference for the three
convolutional layers respectively. The SRNNs have an average spike activity of 0.18
and 0.12 per timestep for the first and second recurrent layers respectively.

The accuracy of neural networks on the different training conditions (error-agnostic
and error-aware) is shown in Fig. 5.5. The two types of errors (static and dynamic) and
the different noise levels (described in Section 5.2.1, noise level 0 corresponding to the
error-free case) are considered. In the error-agnostic training, the accuracy is largely
degraded by errors, with up to 48% accuracy loss in the case of the highest noise level.
Nevertheless, error-aware training is very efficient at increasing the robustness of neu-
ral networks to noise, even in the worst noise level scenario. However, the higher the
noise level, the higher the accuracy gap with the error-free case. Indeed, the accuracy
loss with respect to the error-free case is less than 1% for the lowest noise level, but up
to 3% for the highest noise level.

Notably, some differences between the neural networks can be observed. First,
RNN topologies (SNN and ANN) seem inherently (in error-agnostic training) less ro-
bust to static errors than CNN topologies (SNN and ANN). Indeed, the CNN and
the SCNN have only 30% and 28% accuracy loss (respectively) in the case of highest
noise level, compared to 43% and 48% for the RNN and the SRNN (respectively). This
could be explained by the high temporal depth of RNNs, which could lead to errors
accumulation and hence accuracy degradation (Yang et al., 2019a). Indeed, although
spatially shallow (they have a small number of layers), RNNs are very deep in time.
In fact, the output from a recurrent layer is used as input at the next timestep. This
means that, when the RNN is unrolled in time, it has an equivalent depth of 67 in the
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FIGURE 5.5: Test accuracy of the different neural networks (shown with a 95% confi-
dence interval) on the keyword spotting task. Static (top) and dynamic (bottom) errors
are considered with different noise levels (cf Fig. 5.1), noise level 0 corresponding to the
error-free case. Error-agnostic training (left) and error-aware training (right) are com-
pared. In error-aware training, models are trained at the same noise levels as those

used for testing.

temporal dimension (67 being the number of timesteps in these experiments). Never-
theless, the results demonstrate that RNN topologies can recover as much accuracy as
CNN topologies with the error-aware training. Note that the SCNN also has a tempo-
ral depth due to the use of 10 timesteps to simulate the temporal dynamics of SNN.
However the number of timesteps is small compared to the case of the RNN and the
SRNN. This is in line with the results in Bhattacharjee et al., 2022, showing that a lower
number of timesteps can mitigate the accumulation of errors over time in SNNs.

Second, SNNs and RNNs appear to have a better robustness to dynamic errors than
CNNs, in both error-agnostic and error-aware training conditions. This is consistent
with the results in Li et al., 2020, where SNNs are found to be more robust than ANNs
to dynamic errors in the case of CNN and FC topologies. Indeed, as explained by the
authors, synapses in CNNs or FCs are used only once per inference. On the contrary,
a synaptic weight in SNNs is used as many times as the number of spikes transmitted
across the synapse during inference. In the case of dynamic errors, each weight read for
a given synapse is sampled from the same gaussian distribution. Therefore, the more
spikes transmitted across the synapse, the more the gaussian noise is minimized. Note
that even if the average number of spikes per synapse is lower than 1, some neurons
are activated more frequently. Therefore, some synapses transmit a large number of
spikes. However, this property does not apply to the case of static errors, where the
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same faulty weights are used for the whole inference. In addition, the results show
that this property is also applicable to RNNs. Indeed, RNNs have the same behavior
as SNNs in the sense that a synapse is reused at each timestep of the inference, if the
input activation is not null. Note that CNNs are not sensitive to the difference between
static and dynamic error in an ANN implementation, (they are considered identical
in this simulation), as explained in Section 5.2.1. For comparison purpose, the CNN
was tested with the same implementation as SCNN (i.e. with the weights being read
at each pixel). However, even in this case, the results obtained with dynamic errors
are similar to the results obtained with static errors. This shows the importance of the
accumulation over time in the same synapse, for the dynamic errors to compensate.

Therefore, SNNs, and in particular SpikGRU, seem to be a good choice for an
energy-efficient analog implementation, as they benefit from an increased robustness
to dynamic errors, as well as a significant reduction in operations per inference.

5.2.3 Analysis of Error-Aware Training

In this section, we provide an analysis of the impact of error-aware training on the
parameters learned by the neural networks. As a reminder, in the neuron model with
highly-quantized weights, input activations are multiplied by the weights and a scal-
ing factor, which are learned by the neural networks, before the activation function
(see Fig. 5.2). In these experiments, it is found that the weights and scaling parameters
are highly impacted by the noise level during training, as shown in Fig. 5.6.

Indeed, for almost all layers, the scaling learned in the error-aware training is lower
than in the error-agnostic training. Moreover, the higher the noise level during train-
ing, the lower the scaling learned. In addition, in the error-agnostic condition, the
neural networks learn a gaussian-like weight distribution centered on 0. On the con-
trary, in the error-aware condition, the weights are distributed more equally among
levels, except for the levels on the sides (corresponding to the highest weight mag-
nitude), which are the most used. Moreover, the average magnitude of the weights
learned with error-aware training is higher than with error-agnostic training. In addi-
tion, as for the scaling, the higher the noise level during training, the more this trend is
exacerbated.

Two reasons can explain the change in weight distribution (and therefore the mag-
nitude increase). First, in the error-aware training condition, the weights are dis-
tributed more uniformly compared to the error-agnostic training condition, with less
weights at level “0”. Hence, the neural network may increase its robustness to errors
by making more weights specialized, as proposed in Wan et al., 2022. Second, the
NVM levels have a different Signal-to-Noise Ratio (SNR), as shown in Fig 5.7. On the
one hand, outer levels benefit from a higher weight magnitude (signal) and a lower
error magnitude (noise). On the other hand, middle levels have a lower magnitude
and a higher error magnitude. Indeed, as shown in Fig 5.1, the outer levels have a
higher probability of being correctly read (p0) compared to the other levels, as they
only have neighbors on one side. Moreover, the error magnitude between two levels
depends only on the distance between those levels (it is equal to the difference between
the two values encoded by these levels), and not on the magnitude of the digital value
encoded by this weight. For instance, mistaking a “-4” for a “-3” has likely less impact
on the neural network accuracy than mistaking a “0” for a “+1”, while these two errors
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FIGURE 5.6: Analysis of error training. Weight distribution (A) and scaling of each
layer (B) for the different models after training, when the models are trained with

different noise levels (cf Fig. 5.1), noise level 0 corresponding to the error-free case.
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have the same magnitude. Hence, the outer levels have a higher SNR than the levels
in the middle, meaning that the amplitude of the noise is relatively small compared
to the amplitude of the signal they carry. Therefore, by increasing the magnitude of
the weights, the SNR of synapses is increased, and hence the accuracy of the neural
network is improved. In addition, the scaling decrease may be a consequence of the
weight magnitude increase, allowing to keep the same magnitude of pre-activations.

These findings can allow further improvement of the performance of neural net-
works in the context of such hardware implementations. In these experiments, weights
and scalings are found to be important for the network to increase its robustness to er-
rors. However, these results depend on the quantization method, training procedure
and error model. For instance, the quantization method, such as the choice of the dig-
ital values associated with the levels, has an impact on both the SNR of the levels and
the learned weight distribution, and hence may be carefully considered. Moreover,
having a NVM level associated with the value “0” may not be the optimal strategy
under high noise level. Indeed, the value “0” is inherently very sensitive to noise due
to its null magnitude. In addition, weight decay is a regularization method consist-
ing in decaying the value of the weights at each training iteration that is frequently
used to improve the accuracy of neural networks. Therefore, it could interfere with
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TABLE 5.1: Strengths and weaknesses of different models (ANN vs SNN) and topolo-
gies (RNN vs CNN)

Model Accuracy #Ops #Params Robustness Robustness

(no errors) (consum.) (memory) static errors dyn. errors

CNN ++ – + + +

SCNN + + + + ++

RNN ++ - - + ++

SRNN + ++ - + ++

“+”/“-” means better/worse.
Note that although the RNN and CNN topologies are chosen to have
similar number of operations and parameters in these experiments,
usually RNN implementations have more parameters than CNNs but
lower number of operations.

the increase of weight magnitude associated with error-aware training. Finally, it also
emphasizes the interest of including all possible parameters, such as scalings, in the
optimization process, instead of setting them as hyperparameters, as some may have
an unexpected impact on the robustness of neural networks to errors.

In addition, some aspects of the error-aware training were not investigated and
could be of interest. For instance, the impact of pre-training the neural network in
the error-agnostic condition before fine-tuning with the error-aware condition could
be further studied. In addition, in the case of recurrent networks, the impact of the
number of timesteps used in the forward, but also in the backward pass (if truncated
BPTT is used) could have an impact on the robustness to errors.

5.2.4 Discussion

A general methodology to evaluate and improve the performance of neural networks
in the context of synaptic weights implemented with multi-level NVMs was presented.
Error-aware training is demonstrated to be very effective to enhance the robustness of
neural networks to high error rates, making them suitable for multi-level NVM imple-
mentations. Moreover, two types of errors capturing the variability of NVMs, namely
static and dynamic errors, have been distinguished and have shown a different im-
pact on the accuracy of neural networks. In particular, SNNs and RNNs appear to be
inherently more robust to dynamic than static errors, due to the nature of their compu-
tation using accumulation over time. In addition, they are found to be more robust to
dynamic errors than CNNs. Hence, the SRNN SpikGRU is shown to be a promising so-
lution for accurate and energy-efficient hardware implementations using noisy analog
components, such as NVMs, as it achieves high robustness to errors while maintaining
a high spike sparsity. Furthermore, for all neural networks, the weight distribution and
scaling parameters learned were strongly impacted by the noise level during training.

In these experiments, the role of topology (CNN, RNN) and coding (SNN, ANN)
was considered (see Table 5.1). Nevertheless, other factors may have an important
impact on the robustness to errors. For instance, deeper networks are inherently less
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robust to errors, as errors accumulate through layers, according to Yang et al., 2019a.
Here, the effect of depth in time was considered (with RNNs). However, the case of
deep networks in the spatial dimension (i.e. having more than a few layers) should
be further investigated. Note that noise injection training strategies have shown high
accuracy for CNNs with 20 layers (in Wan et al., 2022) or 34 layers (in Joshi et al., 2020),
which suggests that this strategy is also effective for deeper networks in space. In addi-
tion, the role of the activation function could be studied. For instance, a higher inherent
robustness to errors (without specific training) was observed for the RNN when using
a tanh activation function rather than ReLU or linear, which suggests that bounded ac-
tivation functions increase robustness to errors (in line with Malekzadeh et al., 2021).
Moreover, the role of the binary activation function of SNNs in the robustness to er-
rors was not investigated. Besides, robustness to errors may decrease with increasing
task difficulty. In addition, only the weights of the neural networks have been sim-
ulated with the NVM model (i.e. with quantization and noise). Indeed, the weights
often have the highest memory footprint compared to neuron-related data such as bi-
ases, membrane potentials, or time constants. Nevertheless, the implementation of the
other data types with NVMs should be further investigated. This could allow to com-
pare the impact of the noise on the different data types on the accuracy of the neural
networks.

In this study, the NVM and error model is very general to be the most independent
of the hardware implementation (such as choice of bit-cell implementation and NVM
technology). However, this model can be adapted for each specific case. For instance,
the impact of the combination of the two types of errors (static and dynamic) could be
studied. Moreover, only errors related to the memories have been considered, while,
depending on the implementation, other sources of errors can be added to the model
(Moon et al., 2019; Vatajelu et al., 2019; Higuchi et al., 2022).

Finally, although specifically focused on the case of analog memories only used for
weight storage, the methodology can be extended to the case of IMC. Note that the way
of applying errors to the weights would be slightly different. Indeed, in this study, the
errors are applied in a discretized way as levels are discretized (for instance, a weight
can be read at level “0” or “1”, but not at an intermediate value). On the contrary, in
the case of IMC, the noisy analog values are directly used in the computation. There-
fore, both the quantization method and error model should be modified. Indeed, the
weights should be modeled with the analog values (instead of the digital values used
here), for instance corresponding to the levels of conductance of the memory. More-
over, the noise should be modeled as a Gaussian noise directly applied on the analog
values. In addition, sources of noise coming from the analog computation should be
added to the model (Higuchi et al., 2022). Joshi et al., 2020 have shown that training
neural networks with noise injection in the synaptic weights, even without a model
for each specific source of errors, is still effective to achieve close to software accuracy
on an IMC hardware implementation. Therefore, we believe that our main results still
hold in this case, although this must be verified.

5.3 Case Study: Resistive Memories

Resistive memories (RRAMs) are promising to implement synaptic weights of neural
networks (Yao et al., 2020). However, as other emerging NVMs, RRAMs are prone to
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an important instrinsic operating variability, causing reading errors, impacting the ac-
curacy of neural networks. At the system level, it is known that wide neural network
topologies better tolerate variability due to their inherent redundancy. Therefore, over-
parametrized architectures are often used in this context (as in Hirtzlin et al., 2019).
However, large topologies increase memory requirements. Therefore, high memory
density becomes essential to limit the silicon footprint. In this context, replacing the
1 Transistor 1 Resistor (1T1R) memory architectures by denser 1 Selector 1 Resistor
(1S1R) architectures, appears promising for increasing the density of the memory ar-
ray. Indeed, NVM-based implementations of synaptic weights are often based on 1T1R
architectures (Valentian et al., 2019; Joshi et al., 2020), where memory devices are ac-
cessed by individual selecting complementary metal oxide semi-conductor (CMOS)
transistors. Conversely, in 1S1R architectures, the memory is co-integrated in series
with a back-end selector. Hence, only one driver transistor per bit-line and word-line
is needed, which allows to scale the bit-cell size from 40F2 to 4F2 (Minguet Lopez et
al., 2021). In addition, high memory array capacity increases the latency. Therefore,
high reading frequency is required to achieve fast neural network inference. However,
Minguet Lopez et al., 2022 have shown that increasing the reading frequency induces
a higher rate failure of Ovonic Threshold Switch (OTS) selectors (1S), hence degrading
the BER.

In this section, the hardware model and training methodology developed in Sec-
tion 5.2 is applied to a specific case of emerging NVM. RRAMs are considered with
a 1S1R architecture. The 1S1R stack considered has binary capabilities (as opposed
to multi-level approaches considered in Section 5.2). Hence, a BSNN using a simple
FC topology is implemented. The robustness to errors of the BSNN is studied, and in
particular the trade-off between the inference latency and accuracy is evaluated. Then
figures of merit of the efficiency of the BSNN are presented, considering area and elec-
trical consumption of the memory array.

5.3.1 Simulations of BSNNs with Resistive Memory Devices

Memory Devices

The 1S1R stack is composed of a H f O2-based OxRAM memory device (1R) and an OTS
selector (1S), and hence is called OxRAM+OTS. Hardware constraints (such as BER)
are extracted from physical measurements performed on a memory array. The BSNN
simulations were performed with varying BERs, corresponding to varying reading fre-
quencies of the 1S1R. These experiments allow to evaluate the trade-off between the
inference latency and accuracy. Then, two reading frequencies are particularly consid-
ered: 4MHz and 10MHz, associated with a BER of ≈ 5x10−2 and 1x10−1, respectively.
Note that the OxRAM+OTS device is prone to both static and dynamic errors (as de-
scribed in Section 5.2). Indeed, the variability of the RRAM is in part static (e.g. due to
programming failures or conductance relaxation), and the errors associated with high
frequency reading in the OTS are dynamic (they vary at each reading cycle).

Implementation of BSNNs

Considering a binary 1S1R (with two resistive stable states), the BSNN is implemented
with binary weights (+1 or -1) and trained using the procedure described in Section 5.2.
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A fully connected architecture with one hidden layer with varying size (X ∈ {512, 1024,
2048, 4096}) is considered to solve the digit classification task of the MNIST dataset
(see Fig. 5.8). The MNIST images are converted to spikes before being processed by
the BSNN.

Experiments are performed with a varying number of timesteps (from 1 to 10) to
simulate the BSNN dynamics. If only one timestep is used, the images are converted
to spikes using a threshold (equivalent to a binarization of the image). Only if the
pixel intensity is above the threshold, an input spike is produced. Thus, the thresh-
old allows to tune the sparsity of the input data. If multiple timesteps are used, the
images are converted to spikes following a rate coding strategy. However, in these
experiments, no important accuracy improvement was observed using more than one
timestep. The more the timesteps, the more the input spikes, leading to a degraded
sparsity of the BSNN. Therefore, in order to minimize the energy consumption of the
BSNN implementation, only one timestep is used in these experiments. In this case,
the BSNN is similar to a BNN (an ANN with binary activations). The difference is that
the activations of the BSNN are +1 or 0 (while BNN usually have +1 or -1 activations).
This allows to naturally benefit from the activation sparsity (null activations, meaning
an absence of spikes) in an event-based implementation. Notably, the use of a unique
SNN timestep means that there is no difference between static and dynamic errors.
Therefore, no distinction is made in the following results.

… … …

Read Errors

Classification 
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Non Volatile 
Memories (NVMs)

Binary
OxRAM+OTS

Variability

« 5 »
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FIGURE 5.8: Implementation of the BSNN using OxRAM+OTS (1S1R) for synaptic
weights storage. The BSNN is implemented with varying hidden layer size (X). For
these experiments, only one timestep is used to simulate the SNN dynamics, therefore

no distinction is made between static and dynamic errors in the fault model.
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5.3.2 Improving the Robustness to Errors of BSNNs

The BSNN is trained in error-agnostic and error-aware conditions as described in Sec-
tion 5.2. The accuracy of the BSNN with the two training conditions is shown in
Fig. 5.9. In the case of error-agnostic training, although the BSNNs tolerate a certain
BER (up to 1x10−2), the accuracy is significantly degraded with a BER of 10−1 (corre-
sponding to 10MHz reading frequency). Nevertheless, in the case of error-aware train-
ing, the accuracy at BER=10−1 is only slightly degraded (about 1 to 2%, depending on
the topology). Thus, the effectiveness of error-aware training is again demonstrated.
In addition, other factors impacting the robustness of the BSNN are evaluated: (1) the
size of the hidden layer and (2) the choice of the BER used in error-aware training.

Error-agnostic training Error-aware trainingA

B

FIGURE 5.9: Robustness to errors of the BSNN. A. Accuracy of the BSNN with dif-
ferent hidden layer size (X) with the Bit Error Rate (BER) of the binary weights im-
plemented using OxRAM+OTS in error-agnostic (left) and error-aware (right) training
conditions. In the error-aware condition, the BER used for training is the same as the
BER used for testing. The BER corresponding to the two considered reading frequen-
cies are highlighted. B. Accuracy of the BSNN with the BER (during test) depending
on the BER used for training in error-aware training condition (No error corresponds to

error-agnostic training), for topology X=1024.
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Impact of the Hidden Layer Size

The width of the neural network topology (hidden layer size in this case) is an impor-
tant factor impacting the robustness to errors, both in error-agnostic and error-aware
training conditions, as shown in Fig. 5.9. First, it is observed that, even in error-free
testing, the wider the BSNN, the higher its accuracy. In these experiments, the max-
imal accuracy (without errors) reached by the BSNNs is from 97% to 98%, from the
smallest to the biggest topology. Second, the wider the neural network, the higher
the robustness to errors, both in error-agnostic and error-aware training. For instance,
in error-agnostic training, while the accuracy of the largest BSNN (X = 4096) is only
degraded by 1% in the case of 10MHz reading frequency (BER=1x10−1), the accuracy
of the smallest BSNN (X = 512) is highly degraded (by 8%). In addition, the same
behavior is observed in error-aware training. Indeed, although the accuracy of the
smallest BSNN is less degraded than in the error-agnostic case (2% loss), it is still more
degraded than that of the largest BSNN.

Impact of the BER in Error-Aware Training

In Section 5.2, an hypothesis was made on the best noise level to use in error-aware
training to obtain the highest accuracy during test with errors. In particular, it is as-
sumed that the BER used in the error-aware training must be equal to the BER used
in the testing phase. In these experiments, the choice of the BER used during training
is considered (see Fig. 5.9). It is observed that the optimal choice of BER during train-
ing is the one approximately corresponding to the BER used for testing, confirming
the previous hypothesis in this context. Moreover, it is important to note that a BSNN
trained with a high BER achieves a lower accuracy in error-free and low-BER tests,
than a BSNN trained with no errors or a lower BER. For instance, the BSNN trained at
BER=0.2 achieves higher accuracy at BER=0.2 than the BSNN trained at BER=0.1, but
lower accuracy at BER=0.1. This shows that the optimization process favored robust-
ness over high accuracy. Therefore, it is important to correctly estimate the BER of the
devices, in order to adjust the training process to reach maximal performance.

5.3.3 Improving the Efficiency of BSNNs

Furthermore, the BSNN is optimized to improve the efficiency of the hardware im-
plementation. In particular, area and electrical consumption of the memory array are
considered (see Fig. 5.10). In this section, not only the specific noise of the devices
is considered, but also the noise induced by non-idealities at the array level. Indeed,
large memory arrays are prone to the IR voltage drop phenomenon (voltage drop due
to current flowing through a resistor), which also participate in degrading the BER (see
Minguet Lopez et al., 2022 for further details).

Trade-off between Area and Accuracy

The higher the number of parameters of the neural network, the larger the memory ar-
ray, considering that a single memory array is used to store all the weights. Therefore,
large neural networks not only require higher area, but are also more prone to the IR
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FIGURE 5.10: Optimization of the efficiency of the BSNN. A. Trade-off between the
area of the memory array and accuracy of BSNNs with different hidden layer size. The
area of the 1S1R array, the equivalent 1T1R array, and the peripherals of the 1S1R array
are shown (details of the computation can be found in Minguet Lopez et al., 2022). B.
BSNN activity (average number of spikes per neuron per inference) depending on the

BSNN accuracy (topology X=1024).

drop phenomenon. In these experiments, the size of the memory array is determined
by the hidden layer size (X) of the neural network.

The trade-off between area and accuracy (taking into account the IR drop phe-
nomenon) for the different topologies is shown in Fig. 5.10. Considering the IR drop
phenomenon, at a target reading frequency of 4MHz, the resulting BER is not any-
more 5x10−2 for the topology X=4096 (contrary to what is assumed in Section 5.3.2).
Therefore, the resulting accuracy of the BSNN with X=4096 becomes lower than that
of smaller BSNNs. In this context, the topology X=1024 offers a good compromise be-
tween accuracy and memory area. Moreover, the area of the 1S1R memory array is
compared to that of an implementation using a 1T1R architecture. Compared to the
1T1R, the 1S1R implementation shows an order of magnitude improvement in area.
The area of the peripherals of the 1S1R array (peripheral circuitry needed to read and
program the memory array) is also shown for comparison.

Trade-off between Energy Efficiency and Accuracy

The electrical consumption of the memory array depends on the number of weight
read per inference. Therefore, in the case of a BSNN implementation, the BSNN spar-
sity (measured with the spiking activity, i.e. average number of spikes per inference)
directly impacts the electrical consumption of the memory array. In these experiments,
the input-to-hidden layer is almost two orders of magnitude bigger than the hidden-to-
output layer. Therefore, the network sparsity is mostly determined by the input spikes
received by the input-to-hidden layer, i.e. the sparsity of the input data (MNIST im-
ages converted to spikes). The input sparsity can be tuned by adjusting the threshold
used in the pixel-to-spike conversion process (as explained in Section 5.3.1).

The accuracy of the BSNN depending on the sparsity is shown in Fig. 5.10, in the
case of the topology X=1024. In these experiments, the highest sparsity leading to the
maximal accuracy is 0.13 spikes per neuron per inference. Therefore, compared to a
BNN (where there is no activation sparsity) with equivalent accuracy on the task of
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interest (as in Minguet Lopez et al., 2021), the electrical consumption is decreased by
almost one order of magnitude.

5.3.4 Discussion

Resistive memories with 1S1R architectures, such as OxRAM+OTS, can allow dense
implementations of SNNs. Using the MNIST task, the BSNN demontrated a high
tolerance to errors, further validating the error-aware training strategy proposed in
Section 5.2. In particular, an appropriate choice of noise level during training and a
wide neural network topology are demonstrated to be important factors for achieving
a high robustness to noise. In addition, the efficiency of the BSNN implementation
is optimized. First, a moderate topology width is shown to achieve a good trade-off
between accuracy and area (and avoid noise induced by large memory array). Sec-
ond, the sparsity of the BSNN is chosen to minimize the energy consumption while
preserving a high accuracy, leveraging an event-based implementation.

Notably, these results show two benefits of wide neural network topologies. First,
wider topologies allow to reach a higher maximal accuracy in the case of highly-
quantized weights (such as binary weights). Indeed, the reduced precision of the
weights can be partly compensated by having more neurons, up to some extent (too
many neurons result in a high number of parameters which can make the neural net-
work overfit). This is in line with experiments on SNNs with full-precision weights,
where wide topologies are used to compensate for the reduced precision of activations,
as discussed in Section 2.3. Second, wider topologies also have a higher robustness to
errors in weights, in both error-agnostic and error-aware training conditions. Indeed,
wider topologies have more redundancy, which decreases the impact of errors (errors
can compensate each other more easily). Nevertheless, if a single array is used to im-
plement a layer, the width of the layer will be limited by the array capacity (considering
the IR drop phenomenon).

5.4 Conclusion

A hardware fault model for simulating implementations with single- and multi-level
NVMs was proposed. The model is meant to be technology-independent and, in prin-
ciple, applicable to all kind of emerging analog NVMs. Then, a training methodology
adapted to highly-quantized and faulty weights was presented. The robustness of dif-
ferent topologies (CNN and RNN) and coding strategies (ANN and SNN) was com-
pared in the case of multi-level NVMs. The error-aware training strategy is shown to
effectively allow neural networks to be robust to high error rates, with only a small de-
crease in accuracy compared to the error-free case. In particular, the SpikGRU model
is shown to be promising for such implementations, as it benefits from a particular ro-
bustness to dynamic errors, as well as a higher energy efficiency than the other models
due to the high spike sparsity, in line with the results from Chapter 4.

Then, a case study using resistive memories with 1S1R architectures with single-
level capabilities was investigated. Physical measurements performed on a memory
array allowed to model realistic hardware constraints. The general fault model and
training methodology developed were applied to train a FC Binary SNN. The results
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validate the proposed approach and emphasize the role of the choice of noise level dur-
ing training and network width for the robustness. Issues related to implementations
using analog memory arrays were highlighted, such as the trade-off between accuracy
and area due to the IR drop phenomenon, and, in the case of 1S1R architectures using
OTS selectors, the trade-off between accuracy and latency due to the erratic switching
behavior of the OTS.

Future work will consider more challenging tasks to validate the approach, using
experimental hardware characteristics in the case of multi-level NVMs and more so-
phisticated neural network architectures with CNN or RNN topologies (such as Spik-
GRU). In particular, the conclusions on robustness, sparsity and topology should be
further investigated in these more challenging contexts.

In addition, the benefits from using an analog implementation compared to a fully-
digital one should be further studied. However, it is beyond the scope of this work
to estimate the benefit in terms of energy consumption, as it depends on the circuit
implementation (which depends in particular on whether an IMC implementation is
considered or not), while only the memory aspect has been considered here. In ad-
dition, the overall energy footprint should be considered, including the static energy
consumption, and, more importantly, the accesses to the external non-volatile storage
memory (in the case of the fully-digital implementation, as the on-chip memory is
volatile). Conversely, in this thesis, we have limited the study to the dynamic energy
consumption and the on-chip elements. in the interests of comparing ANN and SNN
processing modes. Notably, a major advantage of the emerging NVMs considered in
this chapter (such as RRAMs) over volatile memories (such as DRAMs and SRAMs) is
to remove this dependency on external storage, an advantage that is not only measur-
able in terms of energy consumption.
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Chapter 6

Summary and Perspectives

With the widespread use of AI in every sectors of the economy, it is urgent to find ef-
ficient systems capable of performing AI inference and training at low cost and with a
low environmental footprint. To achieve this goal in spite of the increasing complexity
of designing such systems, the co-development of hardware and software is neces-
sary. SNN algorithms, based on the asynchronous accumulation of sparse spike-based
events, can be leveraged in event-based hardware implementations to minimize the en-
ergy consumption and latency per inference. Moreover, high accuracy can be achieved
by leveraging spatio-temporal accumulations in high precision neuronal states, despite
the highly-quantized activations. Therefore, SNNs implemented on event-based neu-
romorphic hardware could lead to accurate and efficient intelligent systems.

Nevertheless, the energy efficiency of SNNs has often been overestimated. This
is partly due to a lack of consideration for the underlying hardware implementation.
In particular, many works have considered the replacement of MAC operations with
multiple AC operations as an energy benefit, while neglecting the significant impact of
memory accesses. Moreover, fully-analog SNN implementations with infinite tempo-
ral precision have also been used as an argument towards SNN efficiency. However,
the low maturity of such implementations, as well as the lack of efficient temporal cod-
ing learning algorithms, makes such efficient implementations difficult to achieve so
far.

In this thesis, we have followed a hardware-aware approach to drive the develop-
ments of SNN algorithms. This has led to models and algorithms with the objective
of improving both accuracy and efficiency of SNNs for their implementation on dedi-
cated neuromorphic accelerators, possibly digital or analog.

We have first analyzed existing SNN algorithms, in particular considering train-
ing strategies aiming at improving their accuracy and the efficiency of their imple-
mentation. Notably, we have observed the important impact of network architecture
width and encoding layer on the accuracy-latency trade-off in SNNs. However, exist-
ing methods for comparing the energy efficiency of ANNs and SNNs are limited.

Consequently, we have proposed a high-fidelity model of the energy efficiency of
SNNs and ANNs on neural network accelerators. We have derived theoretical lower
and upper bounds for their relative energy efficiency, as well as realistic models based
on the Eyeriss accelerator. This study demonstrates the primary impact of spike spar-
sity on the efficiency of event-based SNN implementations. In addition, we show that
high precision neuronal variables and associated MAC operations have a relatively
low impact on the global SNN footprint compared to synaptic operations. Moreover,
the ability to leverage high data reuse is one of the main advantage of ANNs that can-
not be leveraged in event-based implementations. Therefore, SNNs could bring higher
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benefits for network topologies offering fewer opportunities of data reuse, such as fully
connected and recurrent topologies.

These results have led to the proposition of the SpikGRU model, leveraging the
accuracy of gated recurrent units using high precision neuronal variables, and the effi-
ciency of sparse spiking activations. The use of recurrent topologies, with no additional
timestep for the SNN, for processing spatio-temporal data has allowed to achieve a
high spike sparsity. In addition, sparsity was effectively enhanced through gradient
descent. The extension of the model of the dynamic energy consumption to the case
of gated recurrent topologies validates the proposed approach. Indeed, it shows that
SpikGRU can be more energy efficient than its ANN equivalent, even when consider-
ing optimal ANN implementations.

In addition, analog implementations could lead to further benefits. In particular,
the integration of emerging NVMs on chip could allow to remove the dependency on
external data storage, and hence reducing the global system energy footprint. Never-
theless, analog components are prone to variability, which imposes constraints on the
robustness of neural networks. Therefore, we have proposed a hardware fault model to
simulate the non-idealities of emerging NVMs considering single- and multi-level im-
plementations. Then, a training methodology adapted to highly-quantized and noisy
weights was presented. The performance of ANNs and SNNs with different topolo-
gies (CNN and RNN) under such constraints was demonstrated to be satisfactory. In
particular, the SpikGRU model was shown to be very robust to noise, despite its high
activation sparsity, and hence makes it promising to use in such context. In addition,
the approach was evaluated in the case of resistive memories with 1S1R architectures,
which promise higher memory density than traditional architectures, and therefore are
of particular interest for wide network topologies.

Based on these considerations, we make some suggestions in the perspective of fu-
ture hardware-algorithm co-developments. First, a better compromise could be found
between the accuracy provided by high precision data and operations, and the effi-
ciency of event-based implementations. For instance, hybrid ANN-SNN implementa-
tions (with some ANN layers and some SNN layers) could provide additional benefits,
building on existing work in mixed precision ANN training. Alternatively, the hy-
bridization between SNN and ANN neurons could allow to leverage event-based pro-
cessing while relaxing the high quantization imposed on spiking activations. In addi-
tion, throughout this thesis, we have seen the impact of using wide network topologies
on many of the parameters studied, such as spike sparsity, tolerance to weight quan-
tization and robustness to errors. However, this comes at the cost of higher memory
requirements, higher static consumption, and this technique may be not scalable for
already large network topologies. In this context, synaptic weight pruning in SNNs, in
particular in wide recurrent topologies, could potentially solve this problem.

Considering the future of analog implementations, multi-level NVMs promise to
achieve high memory density by using only one device per weight encoded. However,
multi-level programming often comes with a higher noise level and hence, the optimal
number of levels maximizing the accuracy should be investigated. Besides, exploiting
temporal coding in analog hardware could potentially bring the efficiency of SNNs to
another level. However, many challenges must first be overcome, both at the software
and hardware level.
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Finally, this thesis has tackled the challenge of efficient inference of neural net-
works on dedicated accelerators for edge applications. Nevertheless, the problem of
on-chip training is becoming increasingly important, not only to improve the train-
ing efficiency, but also to enable AI systems to continue learning once deployed at the
edge. In addition, we have seen the limitations of off-chip SNN training with BPTT
for achieving high accuracy and high convergence speed. Indeed, as the networks go
deeper and task difficulty increases, the high spike sparsity, on the one hand, and the
high number of timesteps, on the other hand, make the training with BPTT challeng-
ing. Therefore, lighter alternatives to BPTT could not only improve SNN training, but
also enable more efficient on-chip training. On-chip training will also bring benefits
for analog implementations. Indeed, the specific static and dynamic noise of analog
components could be naturally accounted for during the training phase.

Hence, as we have shown the effectiveness of hardware-algorithm co-development
in achieving efficient solutions for the problem of inference, we argue that this ap-
proach should be pursued to address the challenges of on-chip training. In doing so,
we hope to pave the way for efficient AI systems at the edge.
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Comşa, Iulia-Maria, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea
Gesmundo, and Jyrki Alakuijala (2022). “Temporal Coding in Spiking Neural Net-
works With Alpha Synaptic Function: Learning With Backpropagation”. In: IEEE

https://doi.org/10.1109/TDMR.2022.3159089
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.3389/fnins.2023.1154241
https://doi.org/10.3389/fnins.2023.994517
https://www.frontiersin.org/articles/10.3389/fnins.2023.994517
https://www.frontiersin.org/articles/10.3389/fnins.2023.994517
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.1162/neco_a_01134
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.3115/v1/D14-1179


116 Bibliography

Transactions on Neural Networks and Learning Systems 33.10, pp. 5939–5952. DOI: 10.
1109/TNNLS.2021.3071976.

Corradi, Federico, Guido Adriaans, and Sander Stuijk (Jan. 2021). “Gyro: A Digital
Spiking Neural Network Architecture for Multi-Sensory Data Analytics”. en. In:
Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools Proceedings. Budapest Hungary: ACM, pp. 9–15.
ISBN: 978-1-4503-8952-5. DOI: 10.1145/3444950.3444951. (Visited on 11/09/2021).

Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio
(2016). Binarized Neural Networks: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1. DOI: 10.48550/ARXIV.1602.02830.

Cramer, Benjamin, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke
(2020). “The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking
Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–14. ISSN: 2162-2388. DOI: 10.1109/TNNLS.2020.3044364.

Dampfhoffer, Manon, Thomas Mesquida, Emmanuel Hardy, Alexandre Valentian, and
Lorena Anghel (2023a). “Leveraging Sparsity with Spiking Recurrent Neural Net-
works for Energy-Efficient Keyword Spotting”. In: ICASSP 2023 - 2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. DOI:
10.1109/ICASSP49357.2023.10097174.

Dampfhoffer, Manon, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel
(2022). “Investigating Current-Based and Gating Approaches for Accurate and Energy-
Efficient Spiking Recurrent Neural Networks”. In: Artificial Neural Networks and Ma-
chine Learning – ICANN 2022. Ed. by Elias Pimenidis, Plamen Angelov, Chrisina
Jayne, Antonios Papaleonidas, and Mehmet Aydin. Springer Nature Switzerland,
pp. 359–370. ISBN: 978-3-031-15934-3.

— (2023b). “Are SNNs Really More Energy-Efficient Than ANNs? an In-Depth Hardware-
Aware Study”. In: IEEE Transactions on Emerging Topics in Computational Intelligence
7.3, pp. 731–741. DOI: 10.1109/TETCI.2022.3214509.

— (2023c). “Backpropagation-Based Learning Techniques for Deep Spiking Neural
Networks: A Survey”. In: IEEE Transactions on Neural Networks and Learning Sys-
tems, pp. 1–16. DOI: 10.1109/TNNLS.2023.3263008.

Dampfhoffer, Manon, Joel Minguet Lopez, Thomas Mesquida, Alexandre Valentian,
and Lorena Anghel (2023d). “Improving the Robustness of Neural Networks to
Noisy Multi-Level Non-Volatile Memory-based Synapses”. In: 2023 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. DOI: 10.1109/IJCNN54540.
2023.10191804.

Dan, Yang and Mu-Ming Poo (2006). “Spike Timing-Dependent Plasticity: From Synapse
to Perception”. In: Physiological Reviews 86.3, pp. 1033–1048. ISSN: 0031-9333, 1522-
1210. DOI: 10.1152/physrev.00030.2005. (Visited on 07/22/2021).

Davidson, Simon and Steve B. Furber (2021). “Comparison of Artificial and Spiking
Neural Networks on Digital Hardware”. English. In: Frontiers in Neuroscience 15.
ISSN: 1662-453X. DOI: 10.3389/fnins.2021.651141. (Visited on 04/28/2021).

Davies, Mike, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun
Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven Mc-
Coy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng,
Andreas Wild, Yoonseok Yang, and Hong Wang (2018). “Loihi: A Neuromorphic

https://doi.org/10.1109/TNNLS.2021.3071976
https://doi.org/10.1109/TNNLS.2021.3071976
https://doi.org/10.1145/3444950.3444951
https://doi.org/10.48550/ARXIV.1602.02830
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/ICASSP49357.2023.10097174
https://doi.org/10.1109/TETCI.2022.3214509
https://doi.org/10.1109/TNNLS.2023.3263008
https://doi.org/10.1109/IJCNN54540.2023.10191804
https://doi.org/10.1109/IJCNN54540.2023.10191804
https://doi.org/10.1152/physrev.00030.2005
https://doi.org/10.3389/fnins.2021.651141


Bibliography 117

Manycore Processor with On-Chip Learning”. In: IEEE Micro 38.1, pp. 82–99. DOI:
10.1109/MM.2018.112130359.

Davies, Mike, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A. Fon-
seca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud (2021). “Advanc-
ing Neuromorphic Computing With Loihi: A Survey of Results and Outlook”. In:
Proceedings of the IEEE 109.5, pp. 911–934. DOI: 10.1109/JPROC.2021.3067593.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “ImageNet:
A large-scale hierarchical image database”. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

Deng, Lei, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng
Li, and Yuan Xie (Jan. 2020). “Rethinking the performance comparison between
SNNs and ANNs”. In: Neural Networks 121, pp. 294–307. ISSN: 0893-6080. DOI: 10.
1016/j.neunet.2019.09.005. (Visited on 09/17/2020).

Deng, Shikuang, Yuhang Li, Shanghang Zhang, and Shi Gu (2022). “Temporal Efficient
Training of Spiking Neural Network via Gradient Re-weighting”. In: International
Conference on Learning Representations.

Diehl, Peter U., Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael
Pfeiffer (July 2015). “Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing”. In: 2015 International Joint Conference on Neural
Networks (IJCNN). 2015 International Joint Conference on Neural Networks (IJCNN).
Killarney, Ireland: IEEE, pp. 1–8. ISBN: 978-1-4799-1960-4. DOI: 10.1109/IJCNN.
2015.7280696. (Visited on 07/22/2021).

Doevenspeck, J., K. Garello, S. Rao, F. Yasin, S. Couet, G. Jayakumar, A. Mallik, S. Cose-
mans, P. Debacker, D. Verkest, R. Lauwereins, W. Dehaene, and G.S. Kar (2021).
“Multi-pillar SOT-MRAM for Accurate Analog in-Memory DNN Inference”. In:
2021 Symposium on VLSI Technology, pp. 1–2.

Duan, Chaoteng, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang (2022).
“Temporal Effective Batch Normalization in Spiking Neural Networks”. In: Ad-
vances in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mohamed, A.
Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Associates, Inc., pp. 34377–
34390. URL: https://proceedings.neurips.cc/paper_files/paper/2022/file/
de2ad3ed44ee4e675b3be42aa0b615d0-Paper-Conference.pdf.

Eshraghian, Jason K., Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu (Jan. 2022). “Training
Spiking Neural Networks Using Lessons From Deep Learning”. In: arXiv:2109.12894
[cs].

Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M.
Blau, and Sebastian Thrun (Feb. 1, 2017). “Dermatologist-level classification of skin
cancer with deep neural networks”. In: Nature 542.7639, pp. 115–118. ISSN: 1476-
4687. DOI: 10.1038/nature21056.

Fang, Haowen, Amar Shrestha, Ziyi Zhao, and Qinru Qiu (July 2020a). “Exploiting
Neuron and Synapse Filter Dynamics in Spatial Temporal Learning of Deep Spiking
Neural Network”. In: Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence. Twenty-Ninth International Joint Conference on Artificial In-
telligence and Seventeenth Pacific Rim International Conference on Artificial Intel-
ligence {IJCAI-PRICAI-20}. Yokohama, Japan, pp. 2799–2806. ISBN: 978-0-9992411-
6-5. DOI: 10.24963/ijcai.2020/388. (Visited on 09/14/2021).

https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/IJCNN.2015.7280696
https://proceedings.neurips.cc/paper_files/paper/2022/file/de2ad3ed44ee4e675b3be42aa0b615d0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/de2ad3ed44ee4e675b3be42aa0b615d0-Paper-Conference.pdf
https://doi.org/10.1038/nature21056
https://doi.org/10.24963/ijcai.2020/388


118 Bibliography

Fang, Wei, Yanqi Chen, Jianhao Ding, Ding Chen, Zhaofei Yu, Huihui Zhou, Timothée
Masquelier, Yonghong Tian, and other contributors (2020b). SpikingJelly. https://
github.com/fangwei123456/spikingjelly.

Fang, Wei, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong
Tian (2021a). “Deep Residual Learning in Spiking Neural Networks”. In: Advances
in Neural Information Processing Systems. Vol. 34, pp. 21056–21069.

Fang, Wei, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong
Tian (2021b). “Incorporating Learnable Membrane Time Constant to Enhance Learn-
ing of Spiking Neural Networks”. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 2641–2651. DOI: 10.1109/ICCV48922.2021.00266.

Fu, Qiang and Hongbin Dong (2021). “An ensemble unsupervised spiking neural net-
work for objective recognition”. In: Neurocomputing 419, pp. 47–58. ISSN: 0925-2312.
DOI: 10.1016/j.neucom.2020.07.109.

Garg, Isha, Sayeed Shafayet Chowdhury, and Kaushik Roy (Oct. 2020). “DCT-SNN:
Using DCT to Distribute Spatial Information over Time for Learning Low-Latency
Spiking Neural Networks”. In: arXiv:2010.01795 [cs, stat]. URL: http://arxiv.org/
abs/2010.01795 (visited on 04/30/2021).

Garofolo, J. S., L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren
(1993). DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus CDROM.

Gerstner, W., W. M. Kistler, R. Naud, and L. Paninski (2014). Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition. Cambridge University Press.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik (2014). “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation”. In: 2014
IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. DOI: 10.
1109/CVPR.2014.81.

Grossi, A., E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. El Haj-
jam, R. Crochemore, J.F. Nodin, P. Olivo, and L. Perniola (2016). “Fundamental vari-
ability limits of filament-based RRAM”. In: 2016 IEEE International Electron Devices
Meeting (IEDM), pp. 4.7.1–4.7.4. DOI: 10.1109/IEDM.2016.7838348.

Guo, Wenzhe, Mohammed E. Fouda, Ahmed M. Eltawil, and Khaled Nabil Salama
(2022). “Efficient Neuromorphic Hardware Through Spiking Temporal Online Lo-
cal Learning”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
30.11, pp. 1642–1653. DOI: 10.1109/TVLSI.2022.3208191.

Göltz, J., A. Baumbach, S. Billaudelle, A. F. Kungl, O. Breitwieser, K. Meier, J. Schem-
mel, L. Kriener, and M. A. Petrovici (Mar. 2020). “Fast and deep neuromorphic
learning with first-spike coding”. In: Proceedings of the Neuro-inspired Computational
Elements Workshop. NICE ’20. New York, NY, USA, pp. 1–3. ISBN: 978-1-4503-7718-8.
DOI: 10.1145/3381755.3381770. (Visited on 10/26/2020).

Han, Bing and Kaushik Roy (2020a). “Deep Spiking Neural Network: Energy Efficiency
Through Time Based Coding”. In: Computer Vision – ECCV 2020. Cham: Springer
International Publishing, pp. 388–404. ISBN: 978-3-030-58607-2.

Han, Bing, Gopalakrishnan Srinivasan, and Kaushik Roy (2020b). “RMP-SNN: Resid-
ual Membrane Potential Neuron for Enabling Deeper High-Accuracy and Low-
Latency Spiking Neural Network”. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13555–13564. DOI: 10.1109/CVPR42600.2020.
01357.

https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1016/j.neucom.2020.07.109
http://arxiv.org/abs/2010.01795
http://arxiv.org/abs/2010.01795
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/IEDM.2016.7838348
https://doi.org/10.1109/TVLSI.2022.3208191
https://doi.org/10.1145/3381755.3381770
https://doi.org/10.1109/CVPR42600.2020.01357
https://doi.org/10.1109/CVPR42600.2020.01357


Bibliography 119

He, Kaiming, X. Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep Residual Learning
for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778.

Higuchi, Kazuhide, Chihiro Matsui, and Ken Takeuchi (2022). “Investigation of Mem-
ory Non-Ideality Impacts on Non-Volatile Memory Based Computation-in-Memory
AI Inference by Comprehensive Simulation Platform”. In: 2022 IEEE Silicon Nano-
electronics Workshop (SNW), pp. 1–2. DOI: 10.1109/SNW56633.2022.9889067.

Hinton, Geoffrey (2012). “Neural networks for machine learning, coursera”. In: Cours-
era, video lectures.

Hinton, Geoffrey, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and
Brian Kingsbury (2012). “Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups”. In: IEEE Signal Processing
Magazine 29.6, pp. 82–97. DOI: 10.1109/MSP.2012.2205597.

Hirtzlin, T., M. Bocquet, J.-O. Klein, E. Nowak, E. Vianello, J.-M. Portal, and D. Querlioz
(2019). “Outstanding Bit Error Tolerance of Resistive RAM-Based Binarized Neural
Networks”. In: 2019 IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 288–292. DOI: 10.1109/AICAS.2019.8771544.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.
9.8.1735.

Hodgkin, A. L. and A. F. Huxley (1952). “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve”. In: The Journal of
Physiology 117.4, pp. 500–544. ISSN: 1469-7793. DOI: https://doi.org/10.1113/
jphysiol.1952.sp004764.

Horowitz, Mark (2014). “Computing’s energy problem (and what we can do about it)”.
In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 10–14. DOI: 10.1109/ISSCC.2014.6757323.

Hung, Je-Min, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Tai-Hao Wen,
Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh,
Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, and Meng-Fan Chang
(2022). “An 8-Mb DC-Current-Free Binary-to-8b Precision ReRAM Nonvolatile
Computing-in-Memory Macro using Time-Space-Readout with 1286.4-21.6TOPS/W
for Edge-AI Devices”. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC).
Vol. 65, pp. 1–3. DOI: 10.1109/ISSCC42614.2022.9731715.

Ielmini, Daniele and Stefano Ambrogio (Dec. 2019). “Emerging neuromorphic devices”.
In: Nanotechnology 31.9, p. 092001. DOI: 10.1088/1361-6528/ab554b.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Volume 37.
ICML’15, 448–456.

Izhikevich, E.M. (2003). “Simple model of spiking neurons”. In: IEEE Transactions on
Neural Networks 14.6, pp. 1569–1572. ISSN: 1941-0093. DOI: 10.1109/TNN.2003.
820440.

Jin, Yingyezhe, Wenrui Zhang, and Peng Li (Dec. 2018). “Hybrid macro/micro level
backpropagation for training deep spiking neural networks”. In: Proceedings of the

https://doi.org/10.1109/SNW56633.2022.9889067
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/AICAS.2019.8771544
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC42614.2022.9731715
https://doi.org/10.1088/1361-6528/ab554b
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440


120 Bibliography

32nd International Conference on Neural Information Processing Systems. NIPS’18. Red
Hook, NY, USA, pp. 7005–7015. (Visited on 09/14/2021).

Joshi, Vinay, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe
Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, and Evangelos Elefthe-
riou (Dec. 2020). “Accurate deep neural network inference using computational
phase-change memory”. English. In: Nat Commun 11.1. ISSN: 2041-1723. DOI: 10.
1038/s41467-020-16108-9.

Joubert, A., B. Belhadj, O. Temam, and R. Héliot (2012). “Hardware spiking neurons de-
sign: Analog or digital?” In: Proceedings IEEE International Joint Conference on Neural
Networks (IJCNN), pp. 1–5. DOI: 10.1109/IJCNN.2012.6252600.

Jung, Seungchul, Hyungwoo Lee, Sungmeen Myung, Hyunsoo Kim, Seung Yoon, Soon-
Wan Kwon, Yongmin Ju, Minje Kim, Wooseok Yi, Shinhee Han, Baeseong Kwon,
Boyoung Seo, Kilho Lee, Gwan-Hyeob Koh, Kangho Lee, Yoonjong Song, Changkyu
Choi, Donhee Ham, and Sang Kim (Jan. 2022). “A crossbar array of magnetoresis-
tive memory devices for in-memory computing”. In: Nature 601, pp. 211–216. DOI:
10.1038/s41586-021-04196-6.

Kaiser, J., A. Friedrich, J. C. V. Tieck, D. Reichard, A. Roennau, E. Neftci, and R. Dill-
mann (Nov. 2020a). “Embodied Neuromorphic Vision with Continuous Random
Backpropagation”. In: 2020 8th IEEE RAS/EMBS International Conference for Biomed-
ical Robotics and Biomechatronics (BioRob). 2020 8th IEEE RAS/EMBS International
Conference for Biomedical Robotics and Biomechatronics (BioRob). ISSN: 2155-
1782, pp. 1202–1209. DOI: 10.1109/BioRob49111.2020.9224330.

Kaiser, Jacques, Hesham Mostafa, and Emre Neftci (2020b). “Synaptic Plasticity Dy-
namics for Deep Continuous Local Learning (DECOLLE)”. In: Frontiers in Neuro-
science 14. ISSN: 1662-453X. DOI: 10.3389/fnins.2020.00424.

Karpov, I. V., M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov (2007).
“Fundamental drift of parameters in chalcogenide phase change memory”. In: Jour-
nal of Applied Physics 102.12, p. 124503. DOI: 10.1063/1.2825650.

Kasabov, Nikola K. (Apr. 2014). “NeuCube: a spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data”. eng. In: Neu-
ral Networks: The Official Journal of the International Neural Network Society 52, pp. 62–
76. ISSN: 1879-2782. DOI: 10.1016/j.neunet.2014.01.006.

Khacef, Lyes, Nassim Abderrahmane, and Benoît Miramond (2018). “Confronting
machine-learning with neuroscience for neuromorphic architectures design”. In:
2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. DOI: 10 .
1109/IJCNN.2018.8489241.

Kheradpisheh, Saeed Reza, Mohammad Ganjtabesh, Simon J. Thorpe, and Timothée
Masquelier (Mar. 2018). “STDP-based spiking deep convolutional neural networks
for object recognition”. In: Neural Networks 99, pp. 56–67. ISSN: 08936080. DOI: 10.
1016/j.neunet.2017.12.005. arXiv: 1611.01421. URL: http://arxiv.org/abs/
1611.01421 (visited on 09/11/2020).

Kheradpisheh, Saeed Reza and Timothée Masquelier (June 2020). “S4NN: temporal
backpropagation for spiking neural networks with one spike per neuron”. In: Int. J.
Neur. Syst. 30.6, p. 2050027. ISSN: 0129-0657, 1793-6462. DOI: 10.1142/S0129065720500276.
arXiv: 1910.09495. URL: http://arxiv.org/abs/1910.09495 (visited on 09/17/2020).

https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1109/IJCNN.2012.6252600
https://doi.org/10.1038/s41586-021-04196-6
https://doi.org/10.1109/BioRob49111.2020.9224330
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1063/1.2825650
https://doi.org/10.1016/j.neunet.2014.01.006
https://doi.org/10.1109/IJCNN.2018.8489241
https://doi.org/10.1109/IJCNN.2018.8489241
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/j.neunet.2017.12.005
https://arxiv.org/abs/1611.01421
http://arxiv.org/abs/1611.01421
http://arxiv.org/abs/1611.01421
https://doi.org/10.1142/S0129065720500276
https://arxiv.org/abs/1910.09495
http://arxiv.org/abs/1910.09495


Bibliography 121

Kim, Kwantae, Chang Gao, Rui Graça, Ilya Kiselev, Hoi-Jun Yoo, Tobi Delbruck, and
Shih-Chii Liu (2022a). “A 23µW Solar-Powered Keyword-Spotting ASIC with Ring-
Oscillator-Based Time-Domain Feature Extraction”. In: 2022 IEEE International Solid-
State Circuits Conference (ISSCC). Vol. 65, pp. 1–3. DOI: 10.1109/ISSCC42614.2022.
9731708.

Kim, Youngeun and Priyadarshini Panda (Nov. 2020). “Revisiting Batch Normaliza-
tion for Training Low-latency Deep Spiking Neural Networks from Scratch”. en.
In: arXiv:2010.01729. (Visited on 07/22/2021).

Kim, Youngeun, Hyoungseob Park, Abhishek Moitra, Abhiroop Bhattacharjee, Yesh-
wanth Venkatesha, and Priyadarshini Panda (2022b). “Rate Coding Or Direct Cod-
ing: Which One Is Better For Accurate, Robust, And Energy-Efficient Spiking Neu-
ral Networks?” In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 71–75. DOI: 10.1109/ICASSP43922.2022.
9747906.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic Optimiza-
tion”. In: DOI: 10.48550/arxiv.1412.6980.

Krizhevsky, Alex and Geoffrey Hinton (2009). “Learning multiple layers of features
from tiny images”. In: 0.

Kumarasinghe, Kaushalya, Nikola Kasabov, and Denise Taylor (Dec. 2021). “Brain-
inspired spiking neural networks for decoding and understanding muscle activity
and kinematics from electroencephalography signals during hand movements”. en.
In: Scientific Reports 11.1, p. 2486. ISSN: 2045-2322. DOI: 10 . 1038 / s41598 - 021 -
81805-4. (Visited on 06/03/2021).

Lapicque, L. (1907). “Recherches quantitatives sur l’excitation electrique des nerfs traitee
comme une polarization”. In: Journal of Physiol Pathol Générale 9, pp. 620–635.

Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton (2015). “A Simple Way to Initialize
Recurrent Networks of Rectified Linear Units”. In: DOI: 10.48550/ARXIV.1504.
00941.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning applied
to document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324. DOI: 10.
1109/5.726791.

Ledinauskas, Eimantas, Julius Ruseckas, Alfonsas Juršėnas, and Giedrius Buračas (June
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Mao, Shitong and Ervin Sejdić (2022). “A Review of Recurrent Neural Network-Based
Methods in Computational Physiology”. In: IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–21. DOI: 10.1109/TNNLS.2022.3145365.

Mead, C. (1990). “Neuromorphic electronic systems”. In: Proceedings of the IEEE 78.10,
pp. 1629–1636. DOI: 10.1109/5.58356.

Merolla, Paul A., John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada,
Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard
Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon
Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dharmendra S. Modha
(2014). “A million spiking-neuron integrated circuit with a scalable communica-
tion network and interface”. In: Science 345.6197, pp. 668–673. ISSN: 0036-8075. DOI:
10.1126/science.1254642.

Minguet Lopez, J., T. Hirtzlin, M. Dampfhoffer, L. Grenouillet, L. Reganaz, G. Navarro,
C. Carabasse, E. Vianello, T. Magis, D. Deleruyelle, M. Bocquet, J. M. Portal, F.
Andrieu, and G. Molas (Dec. 2021). “OxRAM + OTS optimization for binarized
neural network hardware implementation”. In: Semiconductor Science and Technol-
ogy 37.1. Publisher: IOP Publishing, p. 014001. DOI: 10.1088/1361-6641/ac31e2.
URL: https://dx.doi.org/10.1088/1361-6641/ac31e2.

Minguet Lopez, Joel, Manon Dampfhoffer, Tifenn Hirtzlin, Lucas Reganaz, Laurent
Grenouillet, Gabriele Navarro, Mathieu Bernard, Thomas Magis, Catherine Carabasse,
Niccolo Castellani, Valentina Meli, Elisa Vianello, Damien Deleruyelle, Jean-Michel
Portal, Gabriel Molas, and François Andrieu (2023). “1S1R Sub-Threshold Opera-
tion in Crossbar Arrays for Neural Networks Hardware Implementation”. In: 2023

https://ieeexplore.ieee.org/document/4444573/?reason=concurrency
https://ieeexplore.ieee.org/document/4444573/?reason=concurrency
https://doi.org/10.1038/ncomms13276
http://www.nature.com/articles/ncomms13276
https://doi.org/10.1109/ACCESS.2021.3139508
https://doi.org/10.1145/3407197.3407211
https://doi.org/10.1145/3407197.3407211
https://doi.org/10.1109/DFT52944.2021.9568340
https://doi.org/10.1109/TNNLS.2022.3145365
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1088/1361-6641/ac31e2
https://dx.doi.org/10.1088/1361-6641/ac31e2


124 Bibliography

30th International Conference on Mixed Design of Integrated Circuits and System (MIXDES),
pp. 1–6. DOI: 10.23919/MIXDES58562.2023.10203226.

Minguet Lopez, Joel, Quentin Rafhay, Manon Dampfhoffer, Lucas Reganaz, Niccolo
Castellani, Valentina Meli, Simon Martin, Laurent Grenouillet, Gabriele Navarro,
Thomas Magis, Catherine Carabasse, Tifenn Hirtzlin, Elisa Vianello, Damien
Deleruyelle, Jean-Michel Portal, Gabriel Molas, and François Andrieu (2022). “1S1R
Optimization for High-Frequency Inference on Binarized Spiking Neural Networks”.
In: Advanced Electronic Materials, p. 2200323. DOI: 10.1002/aelm.202200323.

Mishra, Asit, Eriko Nurvitadhi, Jeffrey J. Cook, and Debbie Marr (Sept. 2017). “WRPN:
Wide Reduced-Precision Networks”. In: arXiv: 1709.01134. URL: http://arxiv.
org/abs/1709.01134 (visited on 08/27/2021).

Mittal, Sparsh and Sumanth Umesh (2021). “A survey On hardware accelerators and
optimization techniques for RNNs”. In: Journal of Systems Architecture 112, p. 101839.
ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2020.101839.

Moon, Suhong, Kwanghyun Shin, and Dongsuk Jeon (2019). “Enhancing Reliability
of Analog Neural Network Processors”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 27.6, pp. 1455–1459. DOI: 10.1109/TVLSI.2019.2893256.

Moradi, Saber, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri (Feb. 2018). “A Scal-
able Multicore Architecture With Heterogeneous Memory Structures for Dynamic
Neuromorphic Asynchronous Processors (DYNAPs)”. en. In: IEEE Transactions on
Biomedical Circuits and Systems 12.1, pp. 106–122. ISSN: 1932-4545, 1940-9990. DOI:
10.1109/TBCAS.2017.2759700. (Visited on 08/03/2021).

Mostafa, H., B. U. Pedroni, S. Sheik, and G. Cauwenberghs (May 2017). “Fast classifica-
tion using sparsely active spiking networks”. In: 2017 IEEE International Symposium
on Circuits and Systems (ISCAS). ISSN: 2379-447X, pp. 1–4. DOI: 10.1109/ISCAS.
2017.8050527.

Mostafa, Hesham (2018). “Supervised Learning Based on Temporal Coding in Spiking
Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems
29.7, pp. 3227–3235. DOI: 10.1109/TNNLS.2017.2726060.

Mostafa, Hesham, Vishwajith Ramesh, and Gert Cauwenberghs (2018). “Deep Super-
vised Learning Using Local Errors”. English. In: Frontiers in Neuroscience 12. Pub-
lisher: Frontiers. ISSN: 1662-453X. DOI: 10.3389/fnins.2018.00608.

Mozafari, Milad, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, and Timothée Masque-
lier (2019a). “SpykeTorch: Efficient Simulation of Convolutional Spiking Neural
Networks With at Most One Spike per Neuron”. In: Frontiers in Neuroscience 13.
ISSN: 1662-453X. DOI: 10.3389/fnins.2019.00625. URL: https://www.frontiersin.
org/articles/10.3389/fnins.2019.00625.

Mozafari, Milad, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, Simon J. Thorpe,
and Timothée Masquelier (Oct. 1, 2019b). “Bio-inspired digit recognition using reward-
modulated spike-timing-dependent plasticity in deep convolutional networks”. In:
Pattern Recognition 94, pp. 87–95. ISSN: 0031-3203. DOI: 10.1016/j.patcog.2019.05.
015. URL: http://www.sciencedirect.com/science/article/pii/S0031320319301906
(visited on 10/14/2020).

Mozafari, Milad, Saeed Reza Kheradpisheh, Timothée Masquelier, Abbas Nowzari-
Dalini, and Mohammad Ganjtabesh (Dec. 2018). “First-Spike-Based Visual Catego-
rization Using Reward-Modulated STDP”. In: IEEE Transactions on Neural Networks

https://doi.org/10.23919/MIXDES58562.2023.10203226
https://doi.org/10.1002/aelm.202200323
https://arxiv.org/abs/1709.01134
http://arxiv.org/abs/1709.01134
http://arxiv.org/abs/1709.01134
https://doi.org/10.1016/j.sysarc.2020.101839
https://doi.org/10.1109/TVLSI.2019.2893256
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/ISCAS.2017.8050527
https://doi.org/10.1109/ISCAS.2017.8050527
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.3389/fnins.2019.00625
https://www.frontiersin.org/articles/10.3389/fnins.2019.00625
https://www.frontiersin.org/articles/10.3389/fnins.2019.00625
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.1016/j.patcog.2019.05.015
http://www.sciencedirect.com/science/article/pii/S0031320319301906


Bibliography 125

and Learning Systems 29.12. IEEE Transactions on Neural Networks and Learning
Systems, pp. 6178–6190. ISSN: 2162-2388. DOI: 10.1109/TNNLS.2018.2826721.

Murray, A.F. and P.J. Edwards (1994). “Enhanced MLP performance and fault toler-
ance resulting from synaptic weight noise during training”. In: IEEE Transactions on
Neural Networks 5.5, pp. 792–802. DOI: 10.1109/72.317730.

Narayanan, Surya, Karl Taht, Rajeev Balasubramonian, Edouard Giacomin, and Pierre-
Emmanuel Gaillardon (May 2020). “SpinalFlow: An Architecture and Dataflow Tai-
lored for Spiking Neural Networks”. en. In: 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA). Valencia, Spain: IEEE, pp. 349–
362. ISBN: 978-1-72814-661-4. DOI: 10.1109/ISCA45697.2020.00038. (Visited on
11/09/2021).

Nawrocki, Robert A., Richard M. Voyles, and Sean E. Shaheen (2016). “A Mini Re-
view of Neuromorphic Architectures and Implementations”. In: IEEE Transactions
on Electron Devices 63.10, pp. 3819–3829. DOI: 10.1109/TED.2016.2598413.

Neftci, Emre, Hesham Mostafa, and Friedemann Zenke (Nov. 2019). “Surrogate Gradi-
ent Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based
Optimization to Spiking Neural Networks”. In: IEEE Signal Processing Magazine 36,
pp. 51–63. DOI: 10.1109/MSP.2019.2931595.

Neftci, Emre O., Charles Augustine, Somnath Paul, and Georgios Detorakis (2017).
“Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning
Machines”. In: Front. Neurosci. 11. Publisher: Frontiers. ISSN: 1662-453X. DOI: 10.
3389/fnins.2017.00324. URL: https://www.frontiersin.org/articles/10.
3389/fnins.2017.00324/full (visited on 09/30/2020).

Nirschl, T., J.B. Philipp, T.D. Happ, G.W. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M.
Yang, M. Breitwisch, C.-F. Chen, E. Joseph, M. Lamorey, R. Cheek, S.-H. Chen, S.
Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R. Bergmann, H.-L. Lung, and C. Lam (2007).
“Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory”. In: 2007 IEEE
International Electron Devices Meeting, pp. 461–464. DOI: 10.1109/IEDM.2007.4418973.

Nøkland, Arild (2016). “Direct Feedback Alignment Provides Learning in Deep Neural
Networks”. In: p. 9.

Orchard, Garrick, E. Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit
Bam Shrestha, Friedrich T. Sommer, and Mike Davies (2021). “Efficient Neuromor-
phic Signal Processing with Loihi 2”. In: 2021 IEEE Workshop on Signal Processing
Systems (SiPS), pp. 254–259. DOI: 10.1109/SiPS52927.2021.00053.

Orchard, Garrick, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor (2015).
“Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Sac-
cades”. In: Front. Neurosci. 9. Publisher: Frontiers. ISSN: 1662-453X. DOI: 10.3389/
fnins.2015.00437. URL: https://www.frontiersin.org/articles/10.3389/
fnins.2015.00437/full (visited on 06/03/2021).

Panda, Priyadarshini, Sai Aparna Aketi, and Kaushik Roy (2020). “Toward Scalable,
Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual
Connections, Stochastic Softmax, and Hybridization”. In: Frontiers in Neuroscience
14. ISSN: 1662-453X. DOI: 10.3389/fnins.2020.00653. (Visited on 04/13/2021).

Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D.
Cubuk, and Quoc V. Le (2019). “SpecAugment: A Simple Data Augmentation Method
for Automatic Speech Recognition”. In: Proceedings of Interspeech.

https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1109/72.317730
https://doi.org/10.1109/ISCA45697.2020.00038
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2017.00324
https://www.frontiersin.org/articles/10.3389/fnins.2017.00324/full
https://www.frontiersin.org/articles/10.3389/fnins.2017.00324/full
https://doi.org/10.1109/IEDM.2007.4418973
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2015.00437
https://www.frontiersin.org/articles/10.3389/fnins.2015.00437/full
https://www.frontiersin.org/articles/10.3389/fnins.2015.00437/full
https://doi.org/10.3389/fnins.2020.00653


126 Bibliography

Park, S., S. Kim, B. Na, and S. Yoon (July 2020). “T2FSNN: Deep Spiking Neural Net-
works with Time-to-first-spike Coding”. In: 2020 57th ACM/IEEE Design Automation
Conference (DAC). ISSN: 0738-100X, pp. 1–6. DOI: 10.1109/DAC18072.2020.9218689.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala
(2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Proceedings of the 33rd International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc.

Pehle, Christian, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber,
Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, and Johannes Schem-
mel (2022). “The BrainScaleS-2 Accelerated Neuromorphic System With Hybrid
Plasticity”. In: Frontiers in Neuroscience 16. ISSN: 1662-453X. DOI: 10.3389/fnins.
2022.795876. URL: https://www.frontiersin.org/articles/10.3389/fnins.
2022.795876.

Pellegrini, Thomas, Romain Zimmer, and Timothée Masquelier (Jan. 2021). “Low-activity
supervised convolutional spiking neural networks applied to speech commands
recognition”. In: IEEE Spoken Language Technology Workshop 2021. Proc. 2021 IEEE
Spoken Language Technology Workshop (SLT). IEEE Xplore, pp. 97–103. DOI: 10.
1109/SLT48900.2021.9383587.

Perez-Nieves, Nicolas, Vincent C. H. Leung, Pier Luigi Dragotti, and Dan F. M. Good-
man (2021). “Neural heterogeneity promotes robust learning”. In: Nature Communi-
cations 12.1, p. 5791. ISSN: 2041-1723. DOI: 10.1038/s41467-021-26022-3.

Ponghiran, Wachirawit and Kaushik Roy (2021). “Hybrid Analog-Spiking Long Short-
Term Memory for Energy Efficient Computing on Edge Devices”. In: 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 581–586. DOI: 10.
23919/DATE51398.2021.9473953.

— (2022). “Spiking Neural Networks with Improved Inherent Recurrence Dynamics
for Sequential Learning”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 36, pp. 8001–8008.

Putra, Rachmad Vidya Wicaksana, Muhammad Abdullah Hanif, and Muhammad Shafique
(Apr. 2021). “ROMANet: Fine-Grained Reuse-Driven Off-Chip Memory Access Man-
agement and Data Organization for Deep Neural Network Accelerators”. en. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29.4, pp. 702–715.
ISSN: 1063-8210, 1557-9999. DOI: 10.1109/TVLSI.2021.3060509.

Pytorch torchvision models (2021). URL: https://pytorch.org/vision/stable/models.
html.

Rathi, Nitin, Amogh Agrawal, Chankyu Lee, Adarsh Kumar Kosta, and Kaushik Roy
(2021a). “Exploring Spike-Based Learning for Neuromorphic Computing: Prospects
and Perspectives”. In: 2021 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 902–907. DOI: 10.23919/DATE51398.2021.9473964.

Rathi, Nitin and Kaushik Roy (2021b). “DIET-SNN: A Low-Latency Spiking Neural
Network With Direct Input Encoding and Leakage and Threshold Optimization”.
In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–9. DOI: 10 .
1109/TNNLS.2021.3111897.

https://doi.org/10.1109/DAC18072.2020.9218689
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2022.795876
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://doi.org/10.1109/SLT48900.2021.9383587
https://doi.org/10.1109/SLT48900.2021.9383587
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.23919/DATE51398.2021.9473953
https://doi.org/10.23919/DATE51398.2021.9473953
https://doi.org/10.1109/TVLSI.2021.3060509
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://doi.org/10.23919/DATE51398.2021.9473964
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1109/TNNLS.2021.3111897


Bibliography 127

Rathi, Nitin, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy (2020).
“Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Tim-
ing Dependent Backpropagation”. In: arXiv:2005.01807 [cs, stat]. URL: http://arxiv.
org/abs/2005.01807.

Ravanelli, M., P. Brakel, M. Omologo, and Y. Bengio (2018). “Light Gated Recurrent
Units for Speech Recognition”. In: IEEE Transactions on Emerging Topics in Compu-
tational Intelligence 2.2, pp. 92–102. ISSN: 2471-285X. DOI: 10.1109/TETCI.2017.
2762739.

Reganaz, L., D. Deleruyelle, Q. Rafhay, J. Minguet Lopez, N. Castellani, J. F. Nodin, A.
Bricalli, G. Piccolboni, G. Molas, and F. Andrieu (n.d.). “Investigation of resistance
fluctuations in ReRAM: physical origin, temporal dependence and impact on mem-
ory reliability”. In: accepted to 2023 IEEE International Reliability Physics Symposium
(IRPS).

Roy, Arnab, Swagath Venkataramani, Neel Gala, Sanchari Sen, Kamakoti Veezhinathan,
and Anand Raghunathan (2017). “A Programmable Event-driven Architecture for
Evaluating Spiking Neural Networks”. In: 2017 IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), pp. 1–6. DOI: 10.1109/ISLPED.2017.
8009176.

Roy, Kaushik, Akhilesh Jaiswal, and Priyadarshini Panda (Nov. 2019). “Towards spike-
based machine intelligence with neuromorphic computing”. In: Nature 575.7784,
pp. 607–617. ISSN: 1476-4687. DOI: 10.1038/s41586-019-1677-2.

Rueckauer, B. and S. Liu (May 2018). “Conversion of analog to spiking neural networks
using sparse temporal coding”. In: 2018 IEEE International Symposium on Circuits
and Systems (ISCAS). 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5. DOI: 10.1109/ISCAS.2018.8351295.

Rueckauer, Bodo, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii
Liu (2017). “Conversion of Continuous-Valued Deep Networks to Efficient Event-
Driven Networks for Image Classification”. In: Frontiers in Neuroscience 11, p. 682.
ISSN: 1662-4548. DOI: 10.3389/fnins.2017.00682.

Sakemi, Yusuke, Kai Morino, Takashi Morie, and Kazuyuki Aihara (2023). “A Super-
vised Learning Algorithm for Multilayer Spiking Neural Networks Based on Tem-
poral Coding Toward Energy-Efficient VLSI Processor Design”. In: IEEE Transac-
tions on Neural Networks and Learning Systems 34.1, pp. 394–408. DOI: 10 . 1109 /
TNNLS.2021.3095068.

Sengupta, Abhronil, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy (2019). “Go-
ing Deeper in Spiking Neural Networks: VGG and Residual Architectures”. In:
Frontiers in Neuroscience 13, p. 95. ISSN: 1662-453X. DOI: 10.3389/fnins.2019.00095.

Shini, R. Subha and V.D. Ambeth Kumar (2021). “Recurrent Neural Network based
Text Summarization Techniques by Word Sequence Generation”. In: 2021 6th Inter-
national Conference on Inventive Computation Technologies (ICICT), pp. 1224–1229. DOI:
10.1109/ICICT50816.2021.9358764.

Shrestha, Amar, Khadeer Ahmed, Yanzhi Wang, David P. Widemann, Adam T. Moody,
Brian C. Van Essen, and Qinru Qiu (2017). “A spike-based long short-term mem-
ory on a neurosynaptic processor”. In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 631–637. DOI: 10.1109/ICCAD.2017.8203836.

Shrestha, Sumit Bam and Garrick Orchard (2018). “SLAYER: Spike Layer Error Reas-
signment in Time”. In: Advances in Neural Information Processing Systems. Vol. 31.

http://arxiv.org/abs/2005.01807
http://arxiv.org/abs/2005.01807
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1109/ISLPED.2017.8009176
https://doi.org/10.1109/ISLPED.2017.8009176
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/TNNLS.2021.3095068
https://doi.org/10.1109/TNNLS.2021.3095068
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/ICICT50816.2021.9358764
https://doi.org/10.1109/ICCAD.2017.8203836


128 Bibliography

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van
den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis (Jan. 28, 2016). “Mastering the game of Go with deep
neural networks and tree search”. In: Nature 529.7587, pp. 484–489. ISSN: 0028-0836,
1476-4687.

Solinas., M., S. Rousset., R. Cohendet., Y. Bourrier., M. Mainsant., A. Molnos., M. Rey-
boz., and M. Mermillod. (2021). “Beneficial Effect of Combined Replay for Con-
tinual Learning”. In: Proceedings of the 13th International Conference on Agents and
Artificial Intelligence - Volume 2: ICAART. INSTICC. SciTePress, pp. 205–217. ISBN:
978-989-758-484-8. DOI: 10.5220/0010251202050217.

Srinivasan, Gopalakrishnan and Kaushik Roy (Feb. 11, 2019). “ReStoCNet: Residual
Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neu-
romorphic Computing”. In: arXiv:1902.04161 [cs]. arXiv: 1902.04161. URL: http:
//arxiv.org/abs/1902.04161 (visited on 10/14/2020).

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov (Jan. 2014). “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”. In: J. Mach. Learn. Res. 15.1, 1929–1958. ISSN: 1532-4435.
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