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Résumé

Introduction

En raison de l’industrialisation mondiale et des activités anthropiques, des mil-
lions de tonnes de produits chimiques sont consommés chaque année par l’union
européenne (UE). Ces mêmes produits chimiques peuvent être à la fois rejetés dans
notre environnement et à l’origine de la contamination de nos ressources. C’est
pourquoi, l’exposition aux substances chimiques est un sujet critique de nos jours
et qui reste intimement lié aux questions scientifiques en relation avec la biodiver-
sité et la santé humaine. La croissance constante des activités humaines, augmente
la probabilité pour l’environnement et le corps humain d’être exposé à un cocktail
de composés chimiques et leurs produits de dégradation d’origine synthétique. Le
concept d’Exposome a été introduit par Christopher Paul Wild en 2005, il définit la
nature et les e↵ets toxiques de l’exposome chimique sur la santé humaine, que cela
puisse être par l’ingestion (air, nourriture et boisson) ou par le biais de processus bi-
ologiques naturels. Les méthodes d’analyses ciblées sont couramment utilisées pour
rechercher de manière quantitative des contaminants connus, issus d’une liste finie
et préalablement définie. La plupart d’entre eux font déjà l’objet d’une surveillance
systématique et sont intégrés dans les réglementations nationales, les directives eu-
ropéennes ou les conventions internationales. C’est le cas par exemple de la famille
des PCBs, ou de certains pesticides interdits (Atrazine, Simazine, etc,.). Bien que
ces approches permettent une très grande sélectivité en parallèle d’une limite de
détection basse, elles ne permettent pas de détecter des molécules hors liste et par
conséquent les composés émergents (CECs).

Des approches non-ciblées sont donc actuellement en phase de développement et de
normalisation de manière à pouvoir caractériser des contaminants, sans avoir con-
naissance au préalable de leur existence ou de leur simple présence dans l’échantillon.
Avec les avancées récentes et les innovations réalisées dans le domaine de l’instrument-
ation moderne, la recherche sur la contamination globale et les approches non ciblées
sont en pleine croissance et florissantes. La chromatographie en phase gazeuse ou
la chromatographie liquide couplée à la spectrométrie de masse à haute résolution
(GC/LC-HRMS) en association avec la mobilité ionique est une approche méthodo-
logique émergeante et plutôt appliquée à des études peptidomique, lipidomique ou
méta-bolomique, plutôt que pour des problématiques scientifiques en lien avec le do-
maine de la qualité alimentaire ou environnementale et des contaminants. De plus,
seul le développement récent de méthodes analytiques et des outils informatiques
associés (e.g., Machine Learning) ont permis d’accélérer la faisabilité de traitement
de données massives et l’e�cacité de l’analyse non-ciblée.
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Dans un premier temps, une recherche bibliographique s’est montrée indispensable
de manière à comprendre les principes et l’état de l’art des analyses non-ciblées.
Une fois les étapes critiques, les points clefs et les di�cultés identifiées dans le cadre
d’approches non-ciblées, de premiers travaux de recherche sont présentés ici et abor-
dent le développement en synergie de diverses méthodes ou stratégies analytiques.
Elles associent la chromatographie, la mobilité ionique et la spectrométrie de masse
haute résolution qui sont des pré-requis nécessaires à l’identification et l’évaluation
des contaminants émergents dans diverses matrices, tout en permettant de répondre
aux problématiques actuelles, de l’exposition aux contaminants émergeants dans
notre environnement.

Résumé des travaux

La première partie de ce travail de recherche (Le chapitre II) est consacrée à l’optimi-
sation d’une méthode en GC-APCI-IMS-HRMS pour caractériser des Polluants Or-
ganiques Persistants (POPs) notamment halogénés. La priorité a été donnée à la
détection et au suivi de POPs chlorés et bromés et dont une des caractéristiques
est de présenter une empreinte isotopique particulière. Parmi ces derniers, ce sont
donc, des congénères de la famille des PCBs et PBDEs qui ont été utilisés ici, afin de
développer une nouvelle méthode de criblage de ces familles de composés possédant à
la fois plusieurs degrés de substitution et de nombreux isomères de position. Les prin-
cipaux objectifs, au nombre de quatre, sont: 1) optimiser les conditions d’ionisation
par APCI et réduire l’existence de déhalogénation en source; 2) introduire une di-
mension de séparation et de sélectivité orthogonale à l’aide de la mobilité ionique et
identifier le gain relatif à la capacité de séparer des isomères de position, d’obtenir
un spectre HRMS ou HRMSMS pur tout en facilitant l’interprétation; 3) établir
une nouvelle base de données incluant à la fois des temps de rétention, des masse
exactes, des profils isotopiques vrais et des critères de mobilité ou de section e�cace
(1/K0 ou CCS); 4) mettre en œuvre cette approche sur des échantillons réels en
partenariat avec l’ IFREMER.

Avec une source d’ionisation chimique à pression atmosphérique (APCI), on ob-
serve que les ions générés sont principalement des ions moléculaires sous forme
radical+ à la fois pour les PCBs et les PBDEs, ce qui permet et facilite grande-
ment l’élucidation structurelle d’inconnus. On observe assez eu d’adduits ou de
fragments pour ces structures. Un bénéfice supplémentaire, l’IMS a permis aussi
d’améliorer la séparation des isomères de position et la qualité du spectre de masse
(HRMS, justesse spectrale et HRMSMS purs). La valeur de CCS expérimentale, pro-
pre à chaque conformère, y compris isobariques, donne un nouvel aspect et l’accès
à un nouveau critère de sélectivité orthogonal. Cela permet aussi d’associer plus
facilement et de manière univoque, l’ion parent à ses ions de fragmentation (y
compris en BroadBandCID). Cela facilite d’autant l’interprétation du spectre de
masse. L’hexachlorobiphényle tel que le PCB-149 a été fréquemment détecté dans
les échantillons, et de nombreux faux positifs ont ainsi pu être éliminés après une
revue critique des spectres obtenus et l’utilisation des valeurs de CCS comme critère
de sélectivité supplémentaire. À l’heure actuelle, et en raison de la taille des données
massives, les premiers résultats obtenus ont seulement pu être traités partiellement.
Nous nous sommes focalisés sur des screening ciblés de ces deux grandes familles
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de composés halogénés, mais une analyse non-ciblée reste néanmoins accessible via
cette méthode et les données brutes pourraient être retraitées in-silico (à postériori)
de manière non ciblée.

La seconde partie de ce travail de recherche (Le chapitre III) concerne la problémati-
que de la détection de contaminants organiques dans des eaux naturelles (de surface)
et des eaux usées. Les di↵érentes étapes du protocole analytique requis pour une
approche non-ciblée dans ce domaine particulier y ont été étudiées. La préparation
des échantillons est réduite à une simple filtration et la dilution afin de préserver
autant qu’il soit possible la représentativité de l’échantillon dans le cas d’analyses
non ciblées. La méthode de la séparation en chromatographie a quand à elle était
optimisée pour une large gamme de type de composés (allant des plus polaires ou
hydrophiles au plus hydrophobes). La détection par spectrométrie de masse haute
résolution est réalisée par la technologie QTOF avec en parallèle le mode full scan
et le mode data-independent acquisition (DIA). Les bases des données commerciales
de Bruker Daltonics ont été modifiées et enrichies par les données expérimentales ac-
quises lors de ces développements et à partir d’échantillons réels et de nombreux stan-
dards chimiques. De nouveaux composés ont ainsi pu être ajoutés à cette base des
données. La méthode analytique a quant à elle était optimisée et rendue générique;
les gammes de masse ont été fixées de 100 à 1250 Da en full scan et de 80 à 1000 Da en
DIA. Le traitement de données massives et son analyse critique reste la partie la plus
délicate et laborieuse de l’ensemble de la procédure. Le logiciel TASQ développé par
Bruker Daltonic a été utilisé pour la partie du screening ciblé. L’outil open-source
MS-DIAL a quand à lui, été choisi et utilisé en seconde passe afin d’identifier les
substances non-ciblées lors du premier criblage réalisé avec TASQ. Nous avons pour
se faire utiliser des bases des données complémentaires disponible en ligne, (e.g.,
MassBank Europe) afin de faciliter le traitement de données et l’identification de
composés non ciblés. Les conditions de traitement ont elles aussi étaient optimisées
avec une précision en masse exacte pour l’identification des candidats fixée à ≤5ppm.
MS-DIAL permets aussi de gérer et de filtrer les signaux, de manière à minimiser
le traitement ou éviter les redondances, avec par exemple, la soustraction du blanc,
la comparaison binaire, etc,. Cela facilite le processus d’identification des incon-
nus (unknown-unknown). Pour conclure, 65 substances supplémentaires ont pu être
identifiés par ce biais, avec à minima un indice de confiance de niveau 3 selon la règle
de Schymanski. Par contre, cela reste essentiellement qualitatif ou semi-quantitatif,
et il est encore di�cile de déterminer leurs structures complètes de manière univoque
sans confirmation préalable à l’aide de l’injection du standard chimique correspon-
dant. Dans un futur très proche, la spectrométrie de masse à haute résolution
associée à la mobilité ionique avec l’introduction d’un nouveau critère de sélectivité
orthogonal, devrait devenir approche de choix pour le screening environnemental
tout en facilitant l’identification et la confirmation des suspects. Une approche sim-
ilaire, en utilisant le mode d”ionisation négative pourrait également compléter cette
approche méthodologique globale en permettant d’élargir le champs des familles
chimiques couvertes.

La troisième partie (Le chapitre IV) se focalise sur le développement d’une méthode
quantitative par dilution isotopique pour le suivi des hormones stéröıdiennes chez
les alevins de poissons. Ce développement est en lien avec une problématique sci-
entifique propre au déterminisme sexuel chez les alevins et notamment du Bar, en
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lien avec le changement climatique et le stress induit. Le cortisol et la cortisone sont
connues comme marqueurs du stress. Le développement de cette nouvelle approche
analytique est basée sur une analyse directe par LC-ESI-IMS-HRMS. En raison de la
petite taille d’échantillon (1 individu), l’injection directe après extraction de chacun
des individus et dopage à l’aide de standards chimiques marqués (C13) est requise.
Mais la complexité de la matrice, doublée d’un besoin de sensibilité font parties
des challenges à résoudre. La mobilité ionique est introduite ici pour résoudre ce
problème, en minimisant la complexité de l’échantillon et l’e↵et de matrice. Les pre-
miers résultats le confirment dès l’usage de la solution de standard natifs et marqués
(C13) à faible concentration (0.2 ng/mL). Une amélioration significative du rapport
signal sur bruit a été observée dès usage des CCS comme critère de sélectivité or-
thogonale supplémentaire. On remarque aussi une compatibilité complète avec une
quantification absolue par dilution isotopique spécifique. Cette méthode est en cours
de validation, les derniers tests sur une matrice de substitution et une première co-
horte d’échantillons réels doivent être menés avant l’application sur la totalité de
l’étude.

Pour finir, le dernier chapitre (Le chapitre V), est quand à lui consacré à la genèse
d’un outil de prédiction de CCS qui utilise le Machine Learning (ML). C’est l’algo-
rithme Random Forest qui a été choisi pour apprendre la corrélation non-linéaire
entre les CCS et ce que l’on dénomme les molecular fingerprints. Ces derniers sont
en fait une manière élégante et simplifiée, pour encoder des structures moléculaire
2D en châınes de caractères binaires (1024 bits). L’ensemble des données a été
collecté à partir de di↵érentes études basées sur di↵érentes techniques IMS, visant
à couvrir di↵érentes classes de produits chimiques et d’instruments tout en limitant
les biais. Deux approches de prédiction ont été réalisées : un premier modèle de
prédiction basé sur les classes et un second modèle de prédiction directe. Les deux
approches ont donné une bonne précision de prédiction. L’écart de prédiction a pu
être estimé en MRE (Moyen relative error) entre 1,89% et 2,33%. Des écarts plus
importants ont été observés quand l’outil développé était confronté à des macro-
molécules où à l’opposé à de très petites molécules (hors champ de cette étude
et de nos composés d’intérêts). On peut l’expliquer par le manque de données
statistiquement su�sante pour couvrir ces 2 catégories et permettre un apprentissage
e�cace. Comme c’est souvent le cas pour l’approche d’apprentissage automatique
(ML), davantage de cas d’apprentissage peuvent être ajoutés pour améliorer les
performances de la prédiction et le domaine d’usage de cette approche prédictive
qui a su démontrer ses preuves et son intérêt dans nos applications ici.

Conclusion et perspectives

Divers projets ont été développés et discutés dans ce manuscrit, présentant à la fois
les progrès et les défis des approches d’analyses non-ciblées sous di↵érents points
de vue et avec ou sans apport de la mobilité ionique. Au cours de ce travail de
recherche, le principal objectif scientifique était d’évaluer l’avancée et les domaines
d’usage de l’instrument analytique, en particulier la faisabilité, les avantages de
l’utilisation de l’IMS sur le traitement des données et l’interprétation de spectre de
masse afin de répondre aux problématiques de l’analyse non-ciblée. Des méthodes
analytiques génériques ont été réalisées en GC-APCI(+)-IMS-HRMS et LC-ESI(+)-
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IMS-HRMS. Les processus d’identification automatique des suspects et une base
de données interne améliorée ont été créés dans TASQ (Bruker Daltonics). Cette
dernière, pour la partie réalisée avec un mode d’introduction par GC contenait
le temps de rétention (RT), la masse exacte, les profils isotopiques et les valeurs
expérimentales de CCS pour 118 POPs Chlorés, Bromés. La base de données anal-
yse par U(H)PLC contenait RT, masse exacte, spectre de masse HNRMS et HR MS
/ MS (mode DIA), et les profils isotopiques expérimentaux avec plus 559 produits
chimiques, sans oublier la base de données constructeur (Bruker Daltonics), renfer-
mant déjà plus 3000 entrées (sans CCS). Les valeur CCS ont pu être implémentées
dans les bases de données modifiées soit via l’ajout d’une valeur expérimentale ou
d’une valeur prédite de manière à améliorer l’indice de confiance pour l’identification
du composé et d’o↵rir un critère de sélectivité supplémentaire. En terme de per-
spectives, toutes les méthodes et stratégies présentées tout au long de ce manuscrit
et qui sont toutes décrites ici pour la première fois, peuvent et doivent être encore
améliorées ou enrichies. Il s’agissait dans un premier d’établir la faisabilité et la
démonstration des avantages inhérents à cette approche originale, notamment dans
le cas d’études non ciblées dans le domaine de l’environnement, de l’eau et de ma-
trices complexes ou pour toutes les travaux de recherche propres à l’émergence, au
devenir et à la transformation des contaminants. Les méthodologies développées
et présentées ici étaient essentiellement basées sur l’usage d’un mode d’ionisation
positif. Par contre pour des contaminants émergents très hydrophiles, tels que les
PFAS, les acides haloacétiques et produits secondaires, une approche similaire en
mode d’ionisation négatif est nécessaire. Des essais préliminaires encourageants ont
pu être menés. Pour des produits actifs ou pharmaceutiques tels que les agents de
contraste (IRM) sur base de Gadolinium, une pré-étude prometteuse, en synergie
avec UHPLC-ICPMSMS a pu être mise au point. Enfin, les bases de données IMS et
CCS qui n’ont pas encore été appliquées pour l’analyse des eaux (échantillons réels)
pourrait l’être facilement y compris de manière retrospective. La prédiction de CCS
pourrait également être intégrée au cours du processus d’identification d’inconnus.
Les valeurs de CCS expérimentales et prédites peuvent en e↵et, réduire de manière
drastique, le nombre de candidats potentiels, et augmenter l’indice de confiance
dans l’identification de ces derniers. D’autres exemples d’applications peuvent être
envisagées dans le cadre de stratégies optimisées et présentées dans ce travail de
recherche (PhD) en cas de screening GC/LC-IMS-HRMS sur des matrices de divers
origines ou lors de la nécessité de lier des approches métabolomiques et l’étude de
contaminants. Une approche théorie – expérience en association avec des calculs
théoriques semi-empiriques pourrait démontrer son intérêt à mener de front des
calculs prédictifs par ML des CCS en corollaire des mesures expérimentales.
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Outline

Due to global industrialization and anthropic activities, millions of tonnes of chemi-
cals were consumed per year in the European Union member states (EU). Chemicals
can release into the environment by various resources. Thus, this research project
aims to develop non-target analysis workflows for a large scale of CECs by using
gas/liquid chromatography coupling with HRMS and IMS. An in-house database
was built with accurate mass, isotopic pattern, fragment ions, and CCS values.
This manuscript presents and discusses the major advancements in diverse aspects
of NTA.

• Chapter 1: Bibliography research: The 1st chapter describes the workflow
of non-target analysis. Fundamental concepts and the state-of-the-art of the
HRMS and IMS are discussed.

• Chapter 2: Presents the development and application of the non-target analy-
sis method using GC-APCI-IMS-HRMS. The method was optimized by PCB
congeners and PBDE congeners. The benefits of combining APCI with IMS
for Cl/Br chemicals are highlighted.

• Chapter 3: Details the development of a non-target analysis method based
on UHPLC-HRMS in water analysis. Data processing strategies and workflow
are described.

• Chapter 4: Steroids hormones analysis and cortisol quantification. It high-
lights the benefit of IMS to enhance the S/N ratio in low concentration stan-
dards.

• Chapter 5: A CCS prediction tool was developed by machine learning. The
molecular fingerprint was first time used to describe chemical structure. Two
modeling strategies are compared to evaluate the impact of chemical classes
to prediction accuracy.

• Chapter 6: Finally, the milestones and limitations of presence research are
emphasized.
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CHAPTER 1. INTRODUCTION

Summary

Environmental contamination has always been an international issue that concerns
human health and environmental pollution. The growth of anthropic activities in-
creases the release of chemicals into the environment and human body. The concept
of the exposome was introduced by Christopher Paul Wild in 2005 (Wild, 2012).
This concept explains the toxic e↵ects of the chemical exposome on human health
through intake (e.g., air, food and drink) and biological or natural processes, as
illustrated in Figure 1.1.

With advances and innovations in modern instrumentation, research on water con-
tamination has flourished. Moreover, developments in analytical methods and bioin-
formatics/cheminformatics have dramatically accelerated the e�ciency of the anal-
ysis. Therefore, bibliography research is essential to understand the principles and
advances in non-target analysis in aquatic ecosystems. This section is a general
introduction of the important principles and milestones in non-target analysis, as
well as the current challenges and perspectives in this domain.

This chapter begins with an introduction of contaminants of emerging concern
(CECs) , their main resources, the related regulations and the current challenges of
CECs analysis (Section 1.1).

In Section 1.2, I will summarize the concept of three common approaches in water
and environmental analysis: target, suspect and non-target analysis. The advan-
tages and limitations will be discussed.

In the following section 1.3, I will introduce the most used technique in water analy-
sis. It consists of the separation technique, ionization technique, and high-resolution
mass spectrometry (HRMS) and its acquisition mode. I will detail the techniques
that are required and applied in this thesis. These techniques are gas and liquid
chromatography, soft ionization, high-resolution QTOF and data-independent ac-
quisition. Furthermore, in Section 1.4, the workflow and tools associated with data
treatment will be discussed. Since water analysis is one of the main topics in this
manuscript, the state-of-the-art method is summarized in suspect and non-target
screening using liquid chromatography coupled with HRMS and IMS-HRMS.

In the last section 1.5, I will introduce the principle and main technique used in
IMS-HRMS and, more specifically, trapped ion mobility spectrometry, its original
geometry and figures of merit, which were used in this research project. The benefit
of using IMS in non-target analysis will be discussed.
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CHAPTER 1. INTRODUCTION

1.1 Contaminants of emerging concern (CECs)

Environmental pollution continues to be a popular issue as society develops. In the
last 30 years, over 150,000 substances have been registered for use in Europe, the
USA and Canada (Muir et al., 2019), and these substances are used in anthropic
activities or are produced unintentionally during industrial processes to enhance
product quality or to make our lives better. However, once a chemical is intention-
ally or unintentionally released into the environment, it and/or its transformation
product can threaten the ecosystem and human health (Lambert and Wagner, 2018;
Vandermeersch et al., 2015).

Chemical contaminants can be classified into two parts, Legacy contaminants and
Contaminants of Emerging Concern (CECs). Legacy contaminants are chemicals
that were used in anthropogenic activities before their environmental e↵ects and tox-
icology were discovered. Although legacy contaminants have been mostly banned or
regulated for decades, some persistent chemicals are still under regular monitoring,
such as lindane and polycyclic aromatic hydrocarbons (PAHs) (Hutchinson et al.,
2013).

Dichlorodiphenyl trichloroethane (DDT) was once the most extensively used insec-
ticide. Rachel Carson disclosed in her book ”Silence Spring” in 1962 (Carson, 2015)
that DDT and its ethylene metabolite DDE eliminated insects, resulting in a decline
in the bird population. Until the 1970s, DDT was banned in the US (EPA, 2022)
and Europe (legislation, 2003), and it was banned worldwide under the Stockholm
Convention in 2001 (Convention, 2001). This case has since raised public concerns,
and academic studies have been conducted to assess the risk of synthesized chemicals
(Sauvé and Desrosiers, 2014). Hence, analytical chemistry plays a key role in the
development of regulations and assessment of the evaluation of legacy contaminants.

The Stockholm Convent is focused on persistent organic pollutants (POPs), which
can bioaccumulate in mammals that are part of a long food chain due to their high
hydrophobicity and lipophilicity. Acts and legislative regulations have eliminated or
severely restricted the use of hazardous chemicals, which e↵ectively protect human
health and the environment (Caballero-Casero et al., 2021). POPs are related to
cancers, birth defects and immune dysfunctions (Xu et al., 2013). Twelve POPs,
which are also known as the ”dirty dozen,” were initially listed in the Stockholm
Convention, and new compounds have been added since 2004 (Convention, 2001).
Most recently, CECs such as PFAs, OH-PCBs, and OH-PBDEs have been added to
the Stockholm Convention and other regulations (Richardson and Kimura, 2019).

CECs refer to unknown xenobiotics, which can be:

• a chemical that has been released or known before but has only been recently
found in the environment, food or mammals.

• a new chemical that can be a successor or replacement of withdrawn chemicals,
a byproduct, or a transformation product (TP) or metabolite of a known
chemical.

The detection of CECs has been increasingly reported in water and human bodies
mainly due to advances in analytical methods and instrumentation (Paszkiewicz
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et al., 2022; Sauvé and Desrosiers, 2014). These chemicals have diverse applications
and can be potentially harmful to the ecosystem or human health. The increasing
awareness of the risk to aquatic ecosystems has led to public discussion and scientific
research (Hernández et al., 2019).

Figure 1.1: Concept of exposome (Vermeulen et al., 2020)

1.1.1 Resources and regulations of CECs

Pharmaceuticals and personal care products (PPCPs) are one of the major sources
of CECs. PPCPs included diverse classifications, including antibiotics, hormones,
preservatives, fragrances, UV filters from sunscreen, etc. (Liu and Wong, 2013).
PPCPs can be released into the environment by domestic sewage and landfills (Yang
et al., 2017). It is di�cult to remove PPCPs and their metabolites through conven-
tional urban wastewater treatment plants (UWWTPs), they have been detected
at trace levels in sewage e✏uents, surface water or even drinking water (Yang
et al., 2017). Moreover, once PPCPs and their metabolites are released into the
environment, they can be degraded into so-called transformation products (TPs)
through hydrolysis, photosynthesis, metabolic processes and excretion by mammals,
etc.,. Moreover, the contamination of TPs becomes uncontrollable and untraceable
(Wilkinson et al., 2017).

Pesticides are another major source of CECs. Pesticides are intended to kill insects
or to protect crops and fruits in agriculture; therefore, pesticides are widespread
in agricultural activities and personal care products. They can directly penetrate
ground water. Some pesticides have been phased out or restricted due to their per-
sistence and bioaccumulation in the environment and in mammals (Liu and Wong,
2013; Campanale et al., 2021). Although several pesticides have been banned for
years, such as dieldrin and endrin, they are still widely detected in groundwater and
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surface water (A↵um et al., 2018). Moreover, its replacements (e.g., organophos-
phorus pesticides (OPPs)) share similar persistence and toxicity to the environment,
and novel pesticides have become increasingly hydrophilic (Wille et al., 2012), al-
lowing them to more easily escape from regular WWTPs and migrate to aquatic
systems (Taylor et al., 2020).

CECs can be unintentionally produced through water disinfection by oxidative re-
actions (Richardson, 2011; Postigo et al., 2021). As some DWTPs use chlorination
in a final disinfection step, chlorinated CECs have been reported in drinking water
and present a potential risk to human health (Postigo et al., 2021; Tröger et al.,
2021). Some disinfecting products and byproducts, such as trihalomethanes and
haloacetic acids, are listed in the regular monitoring list or in the wish list (Kimura
et al., 2019; Paszkiewicz et al., 2022; Tsaridou and Karabelas, 2021).

A number of studies have published the detection and toxicity of CECs, which are
not in the regular monitoring list or under the detection limit in regular guide-
lines (Sousa et al., 2018; Schulze et al., 2020a; Wille et al., 2012). Therefore, the
list of chemicals has been updated in the regulations and rules. The 3rd version
of The Watch List of Water Frame Directive adds the emerging contaminants of
pharmaceuticals and pesticides, for which routine monitoring in natural water is
needed (Richardson and Kimura, 2019). Bisphenol A (BPA) and microcystin-LR
were added to the Drinking Water Directive (EU) 2020/2184 (EU, 2021a). Addi-
tionally, in 2022, the first watch list emphasized the demand for monitoring two
endocrine disrupting substances (beta-estradiol and nonylphenol) in drinking wa-
ter, and a lower threshold that considers the protection of human health should be
equivalently set within the whole European Union (EU, 2021b). Several new rules
and regulations have also been established. For instance, the U.S. Environmental
Protection Agency (EPA) requires that every 5 years, a new list of less than 30 un-
regulated contaminants should be monitored by public water systems. The fourth
Unregulated Contaminant Monitoring Rule (UCMR-4) listed 30 contaminants to be
monitored from 2018 to 2020 (EPA, 2021a). The fifth Unregulated Contaminant
Monitoring Rule (UCMR 5) was published on December 27, 2021, and the stan-
dard rules about per- and polyfluoroalkyl substances (29 PFAS, so-called eternal
pollutants) in drinking water need to be improved (EPA, 2021b). Similarly, the
analysis method of PFAS in drinking water needs to be updated in the Directive
(EU) 2020/2184 (EU, 2021a).

1.1.2 Challenging CECs analysis

The analysis of CECs in the aquatic samples mainly includes the following steps:
sampling, extraction, analysis through modern instruments (typically LC-HRMS),
data processing, prioritization and identification. Moreover, target, suspect and non-
target screening are required as a combination analysis due to the numerous CECs
present in the aquatic matrix (Menger et al., 2020). Mass spectrometry coupled
with gas chromatography (GC-MS) or liquid chromatography (LC-MS) are still the
classic methodologies for small molecular analyses. Although reversed-phase liquid
chromatography (RPLC) is the most suitable separation technique for a wide scope
screening of CECs in aquatic matrices, highly polar chemicals, such as persistent
and mobile organic chemicals (PMOCs), are poorly retained in RPLC columns. In
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contrast, PMOCs are highly persistent and highly mobile in aquatic systems, re-
sulting in a significant issue with regards to the control of drinking water quality.
Meanwhile, sub-ppt level concentrations in the real sample demand methods can be
accurately and precisely measured at low levels (Hernández et al., 2011). On the
other hand, an e�cient and smart data minimizing process is required to generate
a large amount of data. However, the prioritization steps result in the loss of data.
False positives have been reported in several studies, and thus, a higher quality of
data is needed. Eysseric et al. (2022) identified 106 transformation products and
176 congeners of industrial compounds in the Yamaska River close to wastewater
treatment plants, including 28 substances that were not listed in the database. One
of the frequent problems in wide-scope CEC identification is the lack of available
standards for the last confirmation steps. Therefore, the predicted retention time
and predicted CCS values can reduce the number of candidates (Hollender et al.,
2017). HRMS can simultaneously scan thousands to tens of thousands of chem-
ical features in a single analytical run; however, the annotation rate remains low
(Vermeulen et al., 2020).
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1.2 Concept approaches for CEC analysis

Modern HRMS allows the simultaneous screening of a wide mass range of molecules,
dramatically improving the detection of environmental contaminants. Currently,
three accepted analysis approaches (target, suspect and nontarget screening) are
properly applied with regards to small molecule identification for various aquatic
samples (Menger et al., 2020; Schymanski et al., 2015; Ccanccapa-Cartagena et al.,
2019; Brunner et al., 2020). In Figure. 1.2, Bletsou et al. (2015) represented a flow
chart of the screening procedure of target screening, suspect screening and nontarget
screening. Schymanski et al. (2014) proposed five levels of identification confidence,
as shown in Figure 1.3. These three approaches are often combined to obtain a
global risk assessment in water (Menger et al., 2020).

Figure 1.2: A standard workflow of HRMS analysis (Bletsou et al., 2015)
Flow chart of screening procedure of transformation products (TPs). ‘Known’ TPs

have been confirmed or confidently identified before, other TPs are considered
‘Unknown’.

1.2.1 Target screening

Target screening is a conventional way to identify contaminants in samples. It
requires basic information regarding the samples prior to acquisition. The analysis
methods were optimized and validated by the targeted chemical standards. The
contaminants are confirmed by the retention time (RT), MS and MS/MS spectra.

The triple quadrupole (QqQ) (so-called tandem mass analyzer) has been the most
routine technique for target analysis of CECs in water due to its sensitivity and
robustness (Agüera et al., 2013). The selected reaction monitoring (SRM) mode
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enables a quantification analysis with two specific SRM transitions. However, a
relatively high mass intensity of the second transition is required to confirm and
quantify a chemical. To assess the detection limit of the method, a highly selective
sample preparation is required to remove matrix interference and to pre-concentrate
the target compounds. Furthermore, the isotopic dilution method is recommended
to ensure the certainty of the measurement. However, this approach is not applicable
for a wide scope of chemical detection.

More recently, target screening has also been optimized in high-resolution mass spec-
trometers, enabling the simultaneous detection of thousands of chemicals in a single
acquisition. A target screening and quantification method for hundreds of micro-
pollutants, including pharmaceuticals, pesticides and PFAS, was applied in drinking
water using UPLC-QTOF in MSE-mode (Tröger et al., 2018; Ren et al., 2020). Gago-
Ferrero et al. (2020) developed a quantitative method with over 2000 chemicals using
QTOF in wastewater analysis. As a full-scan MS and data-independent acquisition
(DIA) MS/MS, it o↵ers the possibility to perform suspect and non-target screening
at the same time(Diamanti et al., 2019) and a retrospective analysis afterward.

1.2.2 Suspect screening

Suspect screening aims to search the known-unknown that are expected to be present
in a sample. Suspect chemicals can be referred from various sources. Chemicals are
recorded in REACH, including authorized anthropic chemicals, such as pesticides,
PPCPs and industrial products. TPs and metabolites that were reported in the
literature are also valuable information for suspect screening (Menger et al., 2021;
Wilkinson et al., 2017).

Suspect screening is commonly applied as a complementary approach to target
screening using HRMS (Menger et al., 2020). It is helpful to discover unregulated
chemicals by evaluating their presence in aquatic systems, leading to the delivery of
regulations. Meanwhile, this approach is also implemented in wastewater analysis
to estimate the removal e�ciency and fate of the exposome in wastewater (Golovko
et al., 2021; Wiest et al., 2021).

Suspect screening is performed by screening the detected features against a list of
chemicals (Schymanski et al., 2014), and the matched structures are thereby as-
signed to each feature. The NORMAN Suspect List Exchange (NORMAN-SLE) is
a dynamic and open access database containing over 100,000 environmental chemi-
cals from more than 70 contributors around the world. The lists cover the chemicals
under the European REACH regulation (EC: 1272/2008). CECs have been detected
in real water samples (Schymanski et al., 2015). Therefore, NORMAN-SLE is an
ideal resource for environmental suspect screening. Other large open-source chem-
ical databases, such as PubChem, Massbank, and Metflag, include experimental
or/and in silico spectrum information and structural descriptors (Krier et al., 2022;
Menger et al., 2021).

Annotated chemicals need to be definitively confirmed by reference standards; how-
ever, analytical standards are not available in most cases. Quantitative structure-
toxicity relationship (QSTR) models (Aalizadeh et al., 2016) are developed for the
risk assessment of CECs and semi-quantified compounds in various water samples
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(Alygizakis et al., 2019a; Sjerps et al., 2016). Recently, Aalizadeh et al. (2022)
proposed a novel workflow using QSTR for the semi-quantification of CECs in GC-
APCI-HRMS analysis. Moreover, it is challenging to treat a large amount of data
in suspect screening. Prioritization tools facilitate the data treatment. The details
of the suspect screening workflow are introduced in Section 1.4.

1.2.3 Non-target screening

Non-target screening covers all the remaining chemicals present in the samples,
which are defined as ”unknown-unknown”. Non-target screening has a similar sam-
ple acquisition to suspect screening; however, no prior information is accessible in
the samples. The features of interest are first prioritized from component lists,
and then structural elucidations are carried out for masses of interest (Schymanski
et al., 2014). Prioritization strategies follow a similar concept for suspect screen-
ing. Structural elucidation remains a time-consuming and massive labor, and it
relies on manual and critical diagnoses by experts (Menger et al., 2020). Non-target
screening sometimes comprises suspect and non-target screening, representing all the
investigations of unknown structures (Menger et al., 2020). There is another term,
”non-target analysis”, which refers to generic HRMS acquisition methods (Menger
et al., 2020).

Overall, suspect and non-target screening are pioneering studies in environmental
monitoring. The origin and occurrence of organic contaminants in the environment
and wastewater treatment can be assessed through suspect and non-target screening.

1.2.4 Five levels of identification confidence

Identification confidence is an important factor that is used to evaluate the detected
substances. To ease communication, Schymanski et al. (2014) proposed a five-level
identification confidence system, which has been extensively applied in environmen-
tal analysis. A schematic of the identification confidence system is illustrated in
Figure 1.3.

Level 1 is the definitive identification level, where a substance can be confirmed
by the retention time, MS and MS/MS spectra measured in a reference standard.
Moreover, in IMS-HRMS analysis, the drift time or the CCS value are recommended
to increase the identification point (Celma et al., 2020).

Level 2 is a high identification level in structure elucidation. The experimental spec-
trum is unambiguously matched to a reference spectrum in the literature, spectra
library, or via structural diagnostics. The exact mass of the precursor ion, isotopic
patterns and fragment ion profiles are strong evidence that can be used to propose a
probable structure. Furthermore, the retention index o↵ers a supplementary point
in compound annotations. Other information, such as the experimental context
and physicochemical proprieties, provide a single structure fit, but no standard is
available.

Level 3 is a tentative identification level, where possible structures are assigned to
an unknown; however, diagnostic information is insu�cient to support a unique
structure.
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Level 4 contains only a simulated formula for an unknown. Generally, the MS
information, including exact mass, isotopic pattern, and adduct ion, provides a
possible formula. However, MS/MS matching is not clear enough or cannot predict
possible structures. Level 5 only records the exact mass, and no structure or formula
exists.

Figure 1.3: Five levels of the identification confidence
proposed by(Schymanski et al., 2014)

1.3 Analysis approaches of CECs

Mass spectrometry (MS) coupled with chromatographic separation is a widespread
technique in water analysis. Its high sensitivity, selectivity, accuracy and high
throughput make it the first choice in many applications, including drug and food
quality control, forensic science, drug discovery, and environmental analysis. Chro-
matographic separation consists of two major parts: gas chromatography for non-
polar compound analysis and liquid chromatography for polar compound analysis.
MS instruments contain three main parts: the ionization source, the mass analyzer,
and the detector (El-Aneed et al., 2009).
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Figure 1.4: Ionization and application range (Wei et al., 2021)

1.3.1 Separation technique

Liquid chromatography (LC)

Liquid chromatography (LC) is commonly referred to as a high-performance liquid
chromatography (HPLC) in modern analysis. Ultrahigh-performance liquid chro-
matography (UHPLC)has become an alternative to the most common HPLC. Com-
paring to HPLC, UHPLC operates at higher pressures that can reach up to 15,000psi,
which produces a higher sensitivity . Moreover, UHPLC enable lower particle sizes
(1.7 to 3 µ m) within columns and higher capacity of plate numbers. Consequently,
UHPLC increases chromatographic peak resolution, and it is a high-throughput ac-
quisition. LC is a separation technique based on the ”trinity” a�nity among the
analyte, the stationary phase and the mobile phase. As a result, only the analyte
that could be dissolved in LC solvents during use can be analyzed through UHPLC.
In general, the LC system is first stabilized by the mobile phase under a constant
flow, and the sample is transferred into the chromatographic column where the sepa-
ration occurs at a controlled and constant temperature. The analytes are separated
and then eluted out of the column and, at the end, detected by a nondestructive
(e.g., UV/Vis, Refractometer) or a destructive detector (e.g., ELSD, MS).

The stationary phase and mobile phase are the key factors in LC separation. The
choice of these two phases depends on the physicochemical proprieties of the an-
alytes of interest. In classic chromatography models, the stationary phase is a
polar phase (e.g., silica), and the mobile phase is a nonpolar phase (e.g., chloro-
form), which is called normal-phase liquid chromatography. However, NPLC was
soon replaced by reversed-phase liquid chromatography (RPLC) due to its poor
reproducibility and large consumption of organic solvents. RPLC has a nonpolar
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stationary phase, which is commonly a bond of hydrophobic ligands, e.g., C18 - alkyl
chains or aromatic functional groups to the surface of a rigid siliceous or polymeric
support (Berruex and Freitag, 2003). The mobile phase consist of water with a wa-
ter miscible solvent (such as methanol (MeOH) and acetonitrile (ACN)) and organic
acids. The high proportion of water in the mobile phase ensures the dissolution of
hydrophilic analytes, and the organic solvent maintains the polarity of the mobile
phase and interaction between the analyte and the stationary phase. The less polar
or hydrophobic analytes tend to absorb to the stationary phase due to the ”Van
der Waals” interaction, ”dipole-dipole” interactions and ”hydrogen” bonding. The
polar compound has less a�nity with the stationary phase and stays for a shorter
time in the column. Less polar compounds can be eluted with a decreasing polarity
of the mobile solvent by increasing the organic solvent. The order of the analyte
eluted out of the column is recorded in terms of the retention time (RT), which is a
vital parameter in compound alignment. Thus, RPLC is an ideal approach for polar
CECs in water analysis, such as PCPPs and drugs.

However, highly polar chemicals are hardly retained in the RPLC column and eluted
in the void, such as PMOCs. Other separation techniques include hydrophilic in-
teraction liquid chromatography (HILIC) and supercritical fluid chromatography
(SFC). HILIC has been used as a complementary analysis to RPLC for very polar
analytes in water (Vaudreuil et al., 2020; Neuwald et al., 2021; Qiu et al., 2022).
HILIC can be combined with RPLC (2DLC) to cover chemicals from very polar to
polar compounds (Bäurer et al., 2019; Bieber et al., 2017). SFC is a separation
based on a critical point of a substance, at which the substance is equal parts liquid
and gas. SPC uses CO2 as the mobile phase and MeOH as the liquid solvent. It
is a cheaper and greener method than LC. In addition, SPC can separate small
molecules from complex matrices and can e↵ectively separate very polar chemicals
(Schulze et al., 2020b; Bieber et al., 2017; Rice et al., 2020).

Gas chromatography (GC)

Gas chromatography (GC) is a separation technique based on the boiling point/vapor
pressure and polarity of the ion species. In general, a sample is introduced into an
injector through a liner, which is maintained at a high temperature to evaporate
the solvent (e.g., Toluene, Acetonitrile, Hexane). The sample can be injected with
di↵erent modes, including on column injection, direct injection, programmed tem-
perature vaporizer (PTV). While the main injection mode in used for this research
project were splitless and split only. In the split injection, a small fraction of the
vaporized sample is pushed by a carrier gas (He or H2) to the column. In the splitless
mode, over 80% of the sample is introduced and refocused into the first part of the
capillary column. After the splitless time, the carrier gas flushes the remaining sam-
ples from the liner mainly through the split. Then, the analytes are separated in the
capillary with a stationary phase inside. The separation is based on the a�nity be-
tween the analytes and the stationary phase. GC-MS is less dominant than LC-MS
in water analysis since GC is specific for nonpolar and (semi)volatile compounds.
Nonpolar CECs, including pesticides, phthalates, PAHs, PCBs, PBDEs, etc., are
mainly analyzed through GC-MS or GCXGC-MS (Mazur et al., 2021; Badea et al.,
2020; Peris and Eljarrat, 2021; El-Deen and Shimizu, 2021; Murrell and Dorman,
2021).
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A more detailed discussion of the recent advances in GC-APCI-HRMS is presented
in Section 2.1

1.3.2 Ionization technique

Mass spectrometry is an analytical technique that measures the mass-to-charge ra-
tio (m/z) of ions. For this purpose, di↵erent kinds of ionization methods have
been developed. Electron impact ionization (EI) is one of the first methods and
is still popular in GC-MS. In GC-EI-MS, ion species in the gas phase are directly
bombarded by high energetic electrons under a vacuum. The ionization energy is
commonly set at 70 eV, and radical ions and fragment ions are produced within
the ion source volume. Thus, EI is defined as or considered to be a hard ioniza-
tion mode. Characteristic mass spectra can be obtained for a broad range of organic
chemicals, and EI spectra are easy to search against an EI-MS spectral database. For
example, the NIST20 EI library contains 350,643 EI spectra of 306,867 compounds
(2020) (NIST, 2020). However, for many molecules, fragment ions are less unique
or abundant than molecular ions, reducing the sensitivity (Li et al., 2015). The
soft ionization mode of electrospray ionization (ESI), atmospheric pressure chemical
ionization (APCI) and other modern techniques have been developed. A summary
of the current ionization mode and its application domain is plotted in Figure 1.4.
ESI and APCI are the two ionization modes used for this research study.

ESI

ESI is a soft ionization mode under atmospheric pressure and transforms ions from
a solution into the gaseous phase by electrical energy. Currently, it is mostly used
in LC-MS for polar and thermally labile chemical analysis (Ho et al., 2003). The
ESI mechanism consists of 3 steps (Figure 1.5):

1. The first step is the dispersal of a fine spray of charge droplets under a high
charge capillary (± 3 to 5 kV) under atmospheric pressure. A Taylor cone
is formed and stabilized by the liquid surface tension, electrostatic force and
gravity

2. The second step is the evaporation of the solvent by a gas such as nitrogen.
Moreover, the charge intensity on the surface of the droplet increases. Due to
coulombic repulsion, droplets are split into smaller charged droplets until they
have single- or multiple-charge ions.

3. The gas phase individual ions formed are attracted, trapped and moved to the
mass analyzer relative to its charge and to the respective polarity of the mass
spectrometer inlet. Both single charge or multiple charge ions can be created
through the ESI.
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Figure 1.5: The mechanism of the ESI (Ho et al., 2003)

The ESI can be applied in both positive and negative modes. It is ideal for polar and
thermolabile chemicals. Thus, LC-ESI-MS is commonly used for CECs detection in
water samples.

APCI

The APCI has a similar interface as the ESI; instead of putting a voltage on the
spray, the voltage is placed on a needle to generate a corona discharge under atmo-
spheric pressures, making it more suitable for low- and medium-polarity compounds
(nonpolar molecules). In the APCI, the vaporization of the solvent yields by spraying
the sample solution into a heater (tunable until 400 °C) using a gas (e.g., Nitrogen).
Droplets are ionized by the corona discharge needle to generate metastable ions that
could, by charge transfer, softly ionize the analytes of interest. It is mainly protons
that are transferred between ions to enable ionization, which leads to charge or pro-
ton transfer reactions and electrophilic addition reactions. In contrast to the ESI,
the APCI involves a higher energy process and does not produce multiple charge
ions.

Figure 1.6: The mechanism of the APCI (Fang et al., 2020)

The APCI was initially applied in HPLC-MS. Most recently, GC-APCI-MS plat-
forms are available, and increasing applications of GC-APCI-HRMS in non-target
analysis have been published (Section 2.1 provides a reference).

1.3.3 Mass detector

Many MS systems have been used for CEC analyses in water samples. The wide
scope of CECs in water analysis requires high selectivity and high precision. Hybrid
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mass analyzers such as a quadrupole with a time-of-flight (Q-TOF) or an Orbitrap
(Q Exactive) equipped with an ESI are currently the most promising techniques in
water analysis (Menger et al., 2020). These mass spectrometers not only provide
a high precision in mass measurement but also enable structure elucidation. Table
1.1 lists a modern HRMS and its key features. Several principles of the HRMS are
the mass accuracy and the resolving power.

• The mass accuracy describes how the mass measured by a mass spectrometer
is similar to the true mass. It is qualified by a standard deviation in parts per
million ppm (Equation 1.1).

Accuracy =
(m/z)measured − (m/z)theoretical

(m/z)measured

× 106 (1.1)

• Resolving power and mass resolution.
The resolving power refers to the ability of a mass spectrometer to distinguish
two adjacent ions of equal intensity when the overlap between two peaks is
more than 10%. The resolving power is fixed for a mass range in the TOF
and correlated to the flight tube length. It is expressed as Equation 1.2. The
mass resolution was evaluated by the peak width and the mass for a single
peak, which can be calculated by the full width at half maximum (FWHM)
(Equation 1.3). However, it should be noted that the definitions of the re-
solving power and resolution are controversial. Thus, one should be aware of
the equation used to obtain the resolving power or resolution for comparison
(Hernandez et al., 2012).

m1

m1 −m2

(1.2)

R =
m

�m
(1.3)

where:

m = the nominal mass of a molecule
�m = mass di↵erence in FWHM

• The acquisition speed defines the number of scans per second that can be
performed per second. When the MS is coupled with the LC or GC, the
MS should maintain a high scan speed to have su�cient data points for a
chromatographic peak and maintain the peak resolution. However, the mass
resolution of the orbitrap is inversely related to the acquisition speed; thus, the
orbitrap could su↵er from some limitations when applied with an ultrashort
transient signal, such as with the GC and UHPLC (in contrast to the TOF).

Time of Flight

The development of the TOF-MS started in the 1940s. However, with its low res-
olution, the TOF-MS was soon replaced by the magnetic HRMS and quadrupole
MS instruments (Guilhaus, 1995; Mamyrin, 2001). Unlike MS, the principle of a
TOF analyzer is: a cluster of ions are accelerated and traveled in a field-free flight
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tube. Due to ions’ di↵erent m/z ratios, lighter ions travel faster than heavier ones,
lighter ions spend short traveling time to reach the detector. Therefore, m/z ratio
is propositional to the flight time (Equation 1.4). Nowadays, modern TOF-MS is
constructed with an orthogonal acceleration TOF analyzer where its drift tube is
equipped with a reflectron, shown in Figure 1.7. In an oaTOF mass spectrometer,
ions are first transmitted to the pusher region and accelerated orthogonally by a
pusher voltage. After separating based on ions’ m/z ratios, ions are focused in the
reflectron region and arrive at the detector. The reflectron acts as an ion mirror
which reverses the trajectory of an ion. The reflectron can minimize the spread of
kinetic energy of ions with the same m/z ratio, thereby greatly enhancing resolution.

t =
d

v

v =

r

2KE

m

t = d

r

m

2KE

(1.4)

where:

t = time of flight (s)
d = length of flight tube (m)
v = velocity of the ion (m/s)
m = mass of the ion (kg)
KE = kinetic energy of ion (J)

Hybrid quadrupole times-of-flight (QTOF) mass spectrometry has been extensively
applied in environmental analysis (Menger et al., 2020). Similar to a triple quadrupole
(QqQ), it consists of an MS1 and collision cell, but the last quadrupole is replaced
by a TOF analyzer for MS/MS screening. Herein, the mass resolution is significantly
improved. TOF analyzers provide high data acquisition rates (up to 10-20 kHz),
which makes it suitable to combine UHPLC and IMS.
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1.3.4 Acquisition mode

In suspect and non-target screening, there are two main acquisition modes in the
HRMS: data-dependent acquisition (DDA) and data-independent acquisition (DIA).

DDA

Data-dependent acquisition (DDA) is an ion scan mode for the selection of precur-
sor ions in a full scan that produce a unique fragmentation spectrum in MS/MS
(Samanipour et al., 2018). One of the main advantages of using DDA is that only
MS/MS fragmentation generated by ions meeting a given m/z range with a pre-
defined peak intensity threshold in the full scan will be detected. The number of
precursor ions being fragmented is limited, and thereby the sensitivity of MS/MS
can be increased, and the background can be eliminated (Guo et al., 2020). DDA
requires a solid understanding of the experimental conditions and the precursor se-
lection parameters. Therefore, it is a powerful tool for simultaneous target screening
with MS/MS spectra pre-acquired by reference standards. However, a su�cient ion
intensity and resolution of each precursor ion are enough to ensure the quality of the
MS/MS spectra, resulting in a long LC run time and a good compromise between
the number of precursor ions and acquisition rate (Guo et al., 2020). Although DDA
has a widespread application in nontarget screening, the main shortcomings are a
low amount of fragment ions and a limited number of precursor ions, resulting in
false-positive hits. The presence of intense ion peaks from irrelevant compounds or
sample matrices over product ions disrupts compound identification (Samanipour
et al., 2018; Guo et al., 2020). Ferrer et al. (2020) developed a specific non-target
screening method in the DDA mode using an LC/Q-TOF-MS instrument for water
samples. Critical parameters such as the acquisition rate (MS and MS/MS), cycle
time, collision energies, and ion transmission windows were optimized, and a strict
selection of the common and most intense precursor ions was performed to avoid
false-positive hits and reproducibility of their MS/MS spectra.

DIA

Data-independent acquisition (DIA) is another automated MS/MS acquisition mode
that has recently become more popular than DDA. In DIA, all the precursor ions
within a selected m/z range in the MS scan mode are fragmented in the MS/MS
mode without any predefined selection criteria. DIA is defined under di↵erent
names by the manufacturer: MSE (Waters Corporation), All-Ions MS/MS fragmen-
tation (AIF, Agilent Technologies), broadband CID (bbCID; Bruker), and multi-
plexed MS/MS data-independent acquisition (MSX-DIA; Thermo Fisher Scientific)
(Alvarez-Rivera et al., 2019). DIA operates at a low collision energy (e.g., 6 eV)
in a full scan for precursor ions and automatically switches to high collision energy
(e.g., 25 eV) to obtain an MS/MS spectrum from each precursor ion. As all the ions
are fragmented, the interpretation of the MS/MS spectrum is challenging, and ade-
quate deconvolution algorithms are required to process the DIA data (Samanipour
et al., 2018). The main advantage of DIA over DDA is that DIA scans all the ions
and their fragments; thus, it is a suitable acquisition mode for nontarget screening
to identify unknowns and perform retrospective analysis. In addition, generalized
MS/MS spectral databases are easy to access for tentative identification, and several
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data processing tools have already been developed for data processing automation.

1.4 Non-target analysis strategies

HRMS data generate a large amount of signal in the full-scan mode. Data processing
is a crucial and time-consuming step that selects the most relevant data from mega-
sized raw data. Data processing is directly related to the identification e�ciency.
Therefore, it is essential to understand di↵erent parameters in data treatment and
explore all possible data processing tools.

1.4.1 Data preprocessing

HRMS enables a very large size and complexity of the raw data, and data pre-
processing aims to eliminate irrelevant information. HRMS data are typically a
collection of mass spectra over time; therefore, one of the first to minimize data
size is feature detection, which includes RT alignment, pick picking and isotopes
and adducts. Features represent integrated peaks for a given mass that have been
aligned across samples (Hollender et al., 2017). Preprocessing parameters are essen-
tial for feature detection, which define the minimum peak intensity to be integrated.
If the intensity of the threshold is too low, considerable background noise will be
integrated. In contrast, if the threshold is too high, features will miss signals for fur-
ther identification. Another step for data mining is to define the signal-to-noise ratio
(S/N). Data preprocessing can be achieved through vendor software or open-source
tools. Regarding Bruker Daltonics raw data, data preprocessing can be performed
by Data Analysis and Metaboscape and Trace Finder and Compound Discoverer
from Thermo Scientific. More open-source data processing tools have been intro-
duced, such as mzMine (2 & 3) (Pluskal et al., 2010) and XCMS (Tautenhahn et al.,
2012). Compared to data analysis or other vendor software, mzMine allows more
flexible preprocessing parameter settings. However, Bruker TOF raw data must be
first converted to mzML (Martens et al., 2011) or mzXML (Pedrioli et al., 2004)
files without any losses before importing and manipulating the relative data into
mzMine or XCMS.

1.4.2 Prioritization

Prioritization is aimed at selecting the compounds of high interest and is the first
step in nontarget screening or suspect screening.

Binary sample comparison is a potent prioritization strategy. This strategy compares
the common and di↵erent features between two samples, e.g., before and after water
treatment (Schollée et al., 2018). Another strategy is trend analysis, which compares
a series of samples in a time frame (Hollender et al., 2017) to investigate occurrences
in the environment and identify transformation products. Detection frequency is also
an e�cient approach that detects highly present and intense compounds in a batch
of samples, improving the identification confidence.

Halogenated compound filters can dramatically minimize the data size due to the
characteristic isotopic pattern. The specific isotopic patterns of brominated and
chlorinated compounds reveal obvious evidence for feature detection. Furthermore,
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dehalogenation generally occurs during ionization and fragmentation, producing spe-
cific MS and MS/MS mass spectra.

Overall, it requires a holistic perception of the samples to prioritize the data.

1.4.3 Structure elucidation and identification

After prioritization, the study will focus on the formula assignment and structure
elucidation within features of interest. Formula prediction relies on the mass accu-
racy and isotopic profiles, while the structure information is mainly acquired through
the MS/MS mass spectra. The HRMS achieves a high mass accuracy (� mass < 5
ppm), mass resolving power > 500,000 (Perez de Souza et al., 2021) and, if possible,
good spectral accuracy, which is important to simulate molecular formulas. Struc-
ture elucidation is still a challenging task, and the tentative structure is typically
given by searching against a mass spectra library. Therefore, the match ratio de-
pends on the size of the library, the quality of the experimental and reference mass
spectra, and user-defined thresholds and edges. Additionally, prediction tools are
assessed to reduce the number of candidates, such as the predicted RT (Diamanti
et al., 2019) and predicted CCS (Menger et al., 2022). In silico fragmentation tools
can also facilitate structure elucidation, such as MetFrag (Ruttkies et al., 2016).

1.4.4 Nontarget analysis data processing software

Several data processing methods have been developed for nontarget analysis, includ-
ing vendor and open-source software. Vendor software o↵ers a fully automated data
processing workflow, requiring minor adjustments. In contrast, open-source software
allows users to optimize more parameters to fit di↵erent samples and analysis pur-
poses. However, some software requires basic knowledge and advanced knowledge
of programming to properly define the data processing parameters. Moreover, each
software is initially designed for di↵erent studies, mostly lipidomic and metabolomic,
and di↵erent algorithms are used for feature detection and peak picking, resulting in
di↵erent output results. The choice of software is a vital step for this PhD research.

Since all the HRMS data are acquired by timsTOF (IMS-HRMS) from Bruker Dal-
tonic, Data Analysis is the first and most accessible software to treat the raw data.
It allows automated feature and peak detection with minor parameter definitions.
It is easy to access other Bruker Daltonic platform software with data analysis, such
as the Bruker library editor and craw finder, which allows users to easily switch from
di↵erent software to perform the needed function. It is easy to build an in-house
library from acquisition data.

However, similar to other vendor software, data analysis is expensive and consid-
ered to be a ”black box”, where the user has limited access to define the processing
parameters. Moreover, data analysis is a generic raw data treatment software; there-
fore, it is e�cient to read and process single data. MetaboScape® (from Bruker
Daltonics) is ideal to run non-target analyses for a long batch of data and to perform
statistical studies. However, it is more desired and dedicated for metabolite anno-
tation than environmental contaminants, and custom-made libraries with defined
formats need to be loaded for analytical purposes.
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MZmine and MS-DIAL are two open-source software programs for non-target anal-
ysis data processing. They were initially developed for untargeted metabolite and
lipid identification using LC-MS data (Pluskal et al., 2010). MS-DAIL was origi-
nally designed for SWATH (DIA) data (Tsugawa et al., 2015). Currently, it has
become universal software for GC and LC coupled to HRMS and IMS, and both
software programs have been applied in environmental analysis (Krauss et al., 2019;
Beckers et al., 2020; Qian et al., 2021). The raw Bruker MS data need to be con-
verted to mzML or mzXML before importing to MZmine, while the Bruker IMS-MS
data are compatible in MZmine3. For MS-DIAL, both MS and IMS-MS data need
to be converted to ABF and IBF files. MZmine allows data preprocessing, and
in peak detection, MZmine can customize the scan numbers of the mass spectrum
and use the characteristic mass spectrum to optimize the noise, shoulder peak and
peak deconvolution. It is more flexible for di↵erent sample types. In MS-DIAL,
the peak detection is automatically performed, and the user only needs to define
the mass tolerance or RT tolerance. In peak detection, a reference database can
be imported or searched by an online database (e.g., PubChem, HMBD, KEGG).
However, MZmine searches with neutral masses, adducts and isotopic profiles. MS-
DIAL first matches the exact mass, and/or RT, and isotopic profiles. Then, similar
MS/MS mass spectra are calculated to estimate the probability. Peak alignment in
MS-DIAL is inspired by Joint Aligner implemented in MZmine

In data treatment, MZmine and MS-DIAL have implemented statistical analysis,
but MS-DIAL generates a matched compound table and summarizes the features in
di↵erent sample categories. It is straightforward to visualize the detection frequency
and binary sample comparison. Another main drawback of MS-DIAL over MZmine
is that MS-DIAL can operate only in the Window system, and MZmine is not limited
by the operating system. Overall, MZmine and MS-DIAL have well-designed user
interfaces, and they do not require advanced programming knowledge. Both can
e�ciently process HRMS data. MS-DIAL is more automated than MZmine. CCS
databases can be introduced in the peak identification workflow. However, MZmine
shows advantages in processing data with higher background noise.

Moreover, NORMAN Suspect List Exchange (NORMAN-SLE) has been collabo-
rated with over 70 contributors around the world, prioritizing non-target screening
of environmental samples by mass spectrometry (Alygizakis et al., 2018). The Nor-
man Digital Sample Freezing Platform (DSFP) was newly introduced for LC-MS
data treatment. It was developed for the retrospective suspect screening of environ-
mental pollutants (Alygizakis et al., 2019b).

1.5 Ion mobility spectrometry (IMS)

Ion mobility spectrometry (IMS) is an analytical technique that separates ions in
their gaseous phases under the influence of an electric field. Its concept was first
discovered by the physicist Paul Langevin in 1905 (Cumeras et al., 2015). During
the 1950s and 1960s, E.W. McDaniel first coupled IMS to a magnetic sector mass
spectrometer (McDaniel et al., 1962), which can be considered the beginning of
IM-MS. By the 1970s, because of the commercially available IM-quadrupole mass
spectrometer, IM-MS was able to analyze ions in the gas phase under ambient pres-
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sure (Karasek et al., 1971). Since then, IMS has been developing into an inexpensive,
powerful and portable analytical instrument to monitor gas phase samples (Cumeras
et al., 2015). With the improvement in the sensitivity and miniaturization of mod-
ern IMS, its applications have been expanded to various fields beyond laboratory
analysis, such as direct analysis in real time for chemical weapons monitoring, air-
port security, and air quality analysis (Cumeras et al., 2015). IMS-MS devices are
generally constructed and used in academic research. In 2006, Waters invented the
Synapt HDMS platform, and IMS-MS began to be widely applied in academic re-
search (Morris et al., 2020; Dodds and Baker, 2019). Since then, various IMS-MS
platforms have been commercialized by many instrument developers (Dodds and
Baker, 2019). The history of IMS and IMS-MS development (by 2015) is plotted
in Figure 1.9, and the domain of application has been flourishing and expanding as
shown in Figure 1.10

Figure 1.9: Development of IMS and numbers of publications
(May and McLean, 2015)
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Figure 1.10: Numbers of CCS values reported in the represented domain
(May et al., 2017)

IM-MS has been applied to proteomics (Zhong et al., 2012; Uetrecht et al., 2010),
lipidomics (Paglia et al., 2015), metabolomics (Zhang et al., 2018), drug discovery
(Lapthorn et al., 2013; Lanucara et al., 2014), etc. Most recently, IM-MS has gained
increasing attention in small molecule analysis applied to biological and environmen-
tal monitoring (Lapthorn et al., 2013; Kaufmann, 2020). IM-HRMS combined with
chromatographic separation has become a novel and promising approach in NTS
analysis (Celma et al., 2020). In summary, IMS-MS has three main advantages:
isomeric separation improvement, noise signal filtering, and feature annotation by
the CCS database in NTA (Dodds and Baker, 2019).

1.5.1 Principle of IMS

IMS consists of an electric field filled with gas, called bu↵er gas (Gabelica, 2021).
Ion species entering the IMS are accelerated by an electric force, while the colli-
sion between the ions and bu↵er gas causes a friction force, compensating for the
acceleration of the ion speed. Thereby, the average speed, which is called the drift
velocity, is constant (νd) (Gabelica, 2021), and it is proportional to the electric field.
The mobility of the ion (K ) is used to separate ion species and can be expressed as
Equation 1.5:

K =
νd

E
(1.5)

The collision cross section (CCS) is a physical parameter used to describe the area
(cross section) in which collision between the ion and the bu↵er gas occurs (Delvaux
et al., 2022). The CCS can be converted by the mobility K via the Mason-Schamp
equation (Mason and Schamp Jr, 1958) (Equation 1.6), commonly denoted in Å2

(square angstrom). Therefore, the CCS depends on the type of bu↵er gas and the
gas temperature in the IMS platform. Reported CCS databases are conducted by
four major IM techniques, which are summarized below.

CCS =
3ze

16N
(

2π

µkBT
)
1

2

1

K
(1.6)

where:
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z = ion charge
e = elementary charge
N = density number of the drift gas
µ = reduced mass of the ion-neutral drift gas pair
kB = Boltzmann constant
T = gas temperature

Figure 1.11: Four main types of commercial IMS

1.5.2 Most commonly used IMS separation technology

Drift Tube Ion Mobility Spectrometry (DTIMS)

DTIMS is the most traditional separation technique. The drift tube is a pressured
chamber with a uniform electrical field. It measures the traveling time, which is
called the drift time (td), that an ion needs to cross the drift tube (Ld). Since the
separation of DTIMS uses a uniform electric field, the measured td is directly related
to the mobility K ; then, the mobility K can be converted to the CCS (Delvaux et al.,
2022; Morris et al., 2020). Therefore, DTIMS is the only method that can directly
measure the CCS (Kanu et al., 2008). In 2014, a high-performance drift tube IM-MS
was released as a commercial product by Agilent Technologies (6560 ion mobility-
QTOF). It was coupled with UHPLC to enable high-throughput analysis.

Traveling Wave Ion Mobility Spectrometry (TWIMS)

TWIMS was the first commercially successful IMS-MS platform with the Synapt
HDMS introduced by Waters Corporation in 2006, and its next generations Synapt
G2 (2011) and Synapt G2-Si (2013) are widespread in IMS-MS analysis (Celma
et al., 2020; Hines et al., 2017). TWIMS has a separation principle similar to that
of DTIMS (Morris et al., 2020). Both IM devices consist of a stacked ring ion guide,
and ions are led by the electric field and dispersed by the di↵erent velocities between
the ions and the bu↵er gas (Giles et al., 2004). TWIMS applies an oscillating electric
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field to generate a set of traveling wave pulses that push ions out of the drift cell
(Giles et al., 2004). TWIMS reaches a resolving power that is comparable to that of
DTIMS (Dodds et al., 2017). However, unlike uniform field DTIMS, TWIMS does
not require high voltages; therefore, with a shorter drift tube, TWIMS can reach a
resolving power similar to that of DTIMS (Gabelica, 2021; Morris et al., 2020). In
contrast, the traveling time of ions through the drift cell is not related to the mobility
K, and a calibration protocol with ions of known mobility (e.g., polyalanine) must
be performed before analysis. The precision is biased by the chemical class (May
and McLean, 2015). The calibration procedures need to be improved.

Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS)

FAIMS, di↵erential mobility spectrometry (DMS) and di↵erential ion mobility spec-
trometry (DIMS) operate under the same mechanism but construct in di↵erent
geometries (Dodds and Baker, 2019). Briefly, a drift region consists of two planar
electrodes and an electrometer as a detector, and gas-phase ion species are separated
based on their di↵erent mobilities in high (20,000 V/cm) and low (1000 V/cm) elec-
tric fields (Kolakowski and Mester, 2007). Ions entering the drift cell follow di↵erent
trajectories due to the changing electric field; only analytes that match the applied
compensation voltage (CV) can traverse the drift cell and be scanned (Dodds and
Baker, 2019). Herein, FAIMS enables a high selectivity, but it cannot provide the
CCS values.

Trapped ion mobility spectrometry (TIMS)

In contrast to DTIMS and TWIMS, ion species of TIMS are trapped by an electric
field and pushed by a moving gas. The TIMS-HRMS platform was first released
by Bruker Daltonics in 2014. The TIMS analyzer consists of a set of electrodes,
including the entrance funnel, TIMS tunnel, and exit funnel (Ridgeway et al., 2018).
The TIMS analyzer is placed after a proceeding atmospheric pressure ionization
source, e.g., ESI, and before the mass detector, as shown in Table. 1.1. Ions are
led by gas through a capillary and exit funnel region after separation. In the TIMS
analyzer, an RF voltage is applied to the electrodes to produce a radially confining
pseudopotential. Additionally, an axial electric field gradient (EFG) is generated
by superimposing direct current (DC) potentials on each of the funnel and tunnel
electrodes. The separation procedure includes 3 steps (Figure 1.12):

1. Ions are led to the TIMS analyzer as a gas through a capillary after ionization
and accumulated/trapped within a fixed period of time. The deflection plate
is set to a repulsive potential that pushes ions into the entrance funnel. After
traversing the entrance funnel, ions enter the analyzer and pass through the
EFG profile until the drift velocity of the ions (vd) is equal and opposite to the
velocity of the bu↵er gas (vg). Thus, the ions reach an equilibrium position,
and the ions with the same vd, in other words, mobility K, accumulate in the
analyzer. The ions with higher mobilities are trapped in a lower electric field
E, which is near the entrance of the tunnel.

2. After ions are confined in the TIMS tunnel, the deflector switches to an at-
tractive potential to prevent more ions from entering the funnel. Ions in the
analyzer funnel are trapped under a user-defined time period.

27



CHAPTER 1. INTRODUCTION

3. The magnitude of the EFG profile decreases gradually to its initial value.
Thereby, ions progressively exist in the analyzer funnel from high to low K.

4. While the separation and analysis are occurred in the second section of an-
alyzer, new ions are collected and accumulated in the first section waiting
for the next separation sequence, as shown in figure 1.12(b). The parallel
accumulation/analysis promote the duty cycle up to 100%.

Figure 1.12: TIMS funnels
(Ridgeway et al., 2018)

1.5.3 Use of IMS in the NTS

The IMS and CCS values are recommended for use in nontarget analysis as an
additional separation dimension. IMS has been demonstrated to complement gas
or liquid chromatography and mass spectrometry and can be divided into 3 main
applications: isomer separation, mass spectrum filtering, and annotation of unknown
chemicals.

Isomer separation

Conventionally, isomers are discriminated through RT and fragmentation. Isomers
have similar structures, resulting in similar polarity and mass spectra, and it is
challenging to separate them by chromatographic techniques and mass analysis.
Hence, IMS provides an alternative separation approach based on ion structural
di↵erences in mobility.

Per- and polyfluoroalkyl substances (PFAS) consist of a large group of synthetic or-
ganic compounds that have been extensively used in industrial products (Wang et al.,
2017). de Vega et al. (2021) demonstrated that the drift time (CCS) enhances iso-
meric analysis for poor chromatographic separation species. The 5-trifluoromethyl
isomer and 6-trifluoromethyl had �RT at 0.1 min, while �CCS was larger than 2.3
Å2. In other halogenated POPs and their metabolites, such as PCBs and OH-PCBs,
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BDE and OH-BDEs yield similar mass spectra. Furthermore, some can be better
separated by IMS (such as 3-OH-BDE-47 and 2’-OH-BDE-68), but similar CCS
ranges were generally observed within isomers (Adams et al., 2016; Zheng et al.,
2018).

Mass spectral filtering

All ions within a selected m/z range are fragmented in the DIA mode. Therefore, not
only are the compounds of interest fragmented, but also other coeluting compounds
are fragmented, which complicates the mass spectrum interpretation. DIA analyses
combined with IMS is a wise approach to cover nontarget analysis and structure elu-
cidation. IMS is generally placed before the MS/MS collision cell, precursor ion and
its fragments have the same CCS (drift time), enabling the association of fragmen-
tation and precursor ions. Hence, it facilitates DIA mass spectrum interpretation
and structural elucidation (Yukioka et al., 2021). Moreover, the drift time align-
ment produces a highly selective mass spectrum acquired by DIA, improving the
identification confidence point (Celma et al., 2020).

Figure 1.13: Five levels of identification confidence with CCS
proposed by (Celma et al., 2020).

Annotation of the unknown

The RT can shift during sample analyses; thiabendazole was detected in the Mediter-
ranean basin, and the deviation of the RT was + 0.24 min, while the CCS value
only deviated by -0.12 % (Celma et al., 2020). This finding supports that combining
the RT and CCS alignment can enhance the identification certainty and ratio (Fig-
ure 1.13. The m/z-CCS trend lines have also been discussed for various chemical
families, including PFAs, PAHs, PCBs, metabolites and other xenobiotics (Foster
et al., 2022; Belova et al., 2021; Zheng et al., 2017). The association of the m/z
with the CCS o↵ers a novel aspect of structural information and compound fami-
lies, especially for the ”unknown-unknown” structure elucidation. Experimental and
predicted CCS databases are integrated into a nontarget analysis workflow to reduce
candidate numbers (Menger et al., 2022). Meanwhile, the predicted CCS results in
larger deviations with insu�cient training of the chemical structure; therefore, man-
ual verification is required in the annotation results (Menger et al., 2022).
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1.6 Conclusion

The present chapter illustrates the expanded use of synthetic chemicals and their
release into the environment. Chemicals such as POPs can be highly persistent and
have accumulated in the environment and biota for decades. Polar and emerging
contaminants, such as pharmaceutical products, easily enter aquatic systems via
wastewater. Pesticides are widely present in surface and ground water due to agri-
cultural runo↵. Studying the legacy and emerging contaminants in samples helps to
assess the contaminants occurrences and toxicity. In this context, the combination
of target and nontarget analyses enables a broader screening of contaminants. Mod-
ern HRMS enables high scan speed and wide-scope analysis, which is satisfactory
for environmental nontarget analysis. However, the lack of a priori knowledge of
emerging contaminants leads to challenges in data treatment. The development of
nontarget analysis requires an understanding of analytical methodology and instru-
mentation; in the meantime, it also requires knowledge of data treatment strategies
and statistics. On the other hand, handling massive HRMS data is a time-consuming
and labor-intensive task, and choosing suitable data treatment tools and discover-
ing the functionality can improve the producibility of the work. Furthermore, it is
worth understanding the algorithm and the user-defined parameters. Meanwhile,
IMS introduces a structural separation dimension, complementing chromatographic
separation and mass spectrometry. The advantages of combining IMS with HRMS
are still being studied. The CCS value brings a novel identification property, which
can improve isomer separation and prevent false positives. Therefore, the CCS
alignment is suggested in nontarget analyses. The deviation of experimental and
predicted CCS values, thereby, should be estimated to inspect matched candidates.
The minor deviations of the CCS values indicate the potential of expanding the CCS
database with regards to nontarget analyses.

In this context, this current PhD research addresses the following points.

• Halogenated POPs are developed using GC-APCI-HRMS and ion mobility
spectrometry. Based on the specialty of PCB and PBDE congeners in structure
and isotopic profiles, the benefits of combining APCI with IMS are evaluated.

• An environmental contaminant analysis workflow is developed for water sam-
ples. Target screening was optimized with an in-house database. Di↵erent
data processing approaches were tested to perform nontarget analysis.

• The target method was optimized for steroid hormone analysis. The benefit
of using IMS to filter noise peaks in a complex matrix was tested.

• The CCS prediction models were developed based on machine learning. This
is the first time that a molecular fingerprint was used to predict the CCS value.
Meanwhile, the merged dataset aimed to verify the compatibility of the cross-
platform CCS database and develop an instrument-independent prediction
model.
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H. Ren, R. Tröger, L. Ahrens, K. Wiberg, and D. Yin. Screening of organic micropol-
lutants in raw and drinking water in the yangtze river delta, china. Environmental
Sciences Europe, 32(1):1–12, 2020.

J. Rice, A. Lubben, and B. Kasprzyk-Hordern. A multi-residue method by supercrit-
ical fluid chromatography coupled with tandem mass spectrometry method for the
analysis of chiral and non-chiral chemicals of emerging concern in environmental
samples. Analytical and bioanalytical chemistry, 412(23):5563–5581, 2020.

S. D. Richardson. Disinfection by-products: formation and occurrence in drinking
water. 2011.

38



REFERENCES

S. D. Richardson and S. Y. Kimura. Water analysis: emerging contaminants and
current issues. Analytical Chemistry, 92(1):473–505, 2019.

M. E. Ridgeway, M. Lubeck, J. Jordens, M. Mann, and M. A. Park. Trapped ion mo-
bility spectrometry: A short review. International Journal of Mass Spectrometry,
425:22–35, 2018.

C. Ruttkies, E. L. Schymanski, S. Wolf, J. Hollender, and S. Neumann. Metfrag
relaunched: incorporating strategies beyond in silico fragmentation. Journal of
cheminformatics, 8(1):1–16, 2016.

S. Samanipour, M. J. Reid, K. Bæk, and K. V. Thomas. Combining a decon-
volution and a universal library search algorithm for the nontarget analysis of
data-independent acquisition mode liquid chromatography- high-resolution mass
spectrometry results. Environmental science & technology, 52(8):4694–4701, 2018.
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R. Tröger, P. Klöckner, L. Ahrens, and K. Wiberg. Micropollutants in drinking
water from source to tap-method development and application of a multiresidue
screening method. Science of the total environment, 627:1404–1432, 2018.
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CHAPTER 2. IMPROVING HALOGENATED POPS ANALYSIS IN REAL
SAMPLES USING GC-APCI-IMS-HRMS

Summary

Gas chromatography-high-resolution mass spectrometry (GC-HRMS) is a powerful
non-target analysis (NTA) technique that improves the identification of environ-
mental pollutants. Currently, most GC-HRMS instruments are equipped with elec-
tron ionization (EI). However, atmospheric pressure ionization (API) sources have
demonstrated advantages over EI in NTA , such as predominantly charge-transferred
ions and/or photon-transferred ions in mass spectra. These benefits promote struc-
ture elucidation, and compatibility with ion mobility mass spectrometry, with addi-
tional identification confidence by drift time/CCS value. However, as with all novel
analytical approaches, the lack of spectral libraries and the reproducibility of the
data are two of the main drawbacks in NTS using GC-API applications. In addition,
the benefit of tandem IMS can be evaluated. Herein, a GC-APCI-timsTOF method
was developed and applied to real samples, which is discussed in this chapter.

Chapter 2 contains a short review of the recent work using GC-API-IMS-HRMS.
The new GC-APCI-timsTOF method is discussed in this chapter. The benefits of
introducing IMS to GC-APCI-HRMS are argued with representative example in real
matrix. A draft of paper is currently under preparation, and it is included at the
end of this chapter.
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CHAPTER 2. IMPROVING HALOGENATED POPS ANALYSIS IN REAL
SAMPLES USING GC-APCI-IMS-HRMS

2.1 State of the art

Although atmospheric pressure chemical ionization sources were first introduced for
GC-MS in the 1970s (Li et al., 2015), commercial APCI sources were first avail-
able only at the beginning of the 20th century. Since then, GC-APCI-MS has
been widely applied to POPs in environmental and biological analyses (Fang et al.,
2020). Moreover, APCI can be coupled with di↵erent mass detectors, such as triple
quadrupole (QQQ), ion trap, QTOF/TOF and Fourier transform ion cyclotron res-
onance (FTICR) (Niu et al., 2020). GC-APCI-MS shows promising sensitivity and
selectivity. On the other hand, as a soft ionization source, fragmentation is mini-
mized, and it produces predominantly (quasi)molecular ions, which is a privilege in
the identification of unknown compounds. Therefore, GC-APCI-MS is becoming a
popular technique in environmental non-target analysis. Combined with GC-EI-MS
and LC-MS, a non-target analysis covers a large scope of chemical hazards in a
natural matrix, determining a complementary risk assessment. Recently, a review
discussed the key parameter of the APCI source, the instrumental advanced in GC-
APCI-MS, and the applications of GC-APCI-MS from target analysis to non-target
analysis (Niu et al., 2020). Conventionally, GC-APCI-MS is complementary to GC-
EI-MS (Cherta et al., 2015) and LC-MS (Hernández et al., 2015). Due to the lack
of mass spectrum libraries, Cherta et al. (2015) used GC-APCI to detect the com-
pound of interest and measure precursor ion mass; then, the researchers switched
to an EI source for mass spectra screening. Rostkowski et al. (2019) performed
non-target analysis of house dust using GC/LC coupled with di↵erent ion sources
and mass analyzers. GC-APCI-HRMS enabled semi-quantification of CECs with-
out available standards. Aalizadeh et al. (2022) applied the quantitative structure-
property relationship (QSPR)-based model to estimate the APCI ionization ratio of
unknowns and to estimate their quantities. Most recently, GC-APCI-HRMS that
was hybridized to IMS was also reported to improve compound identification and
isomer separation (Lipok et al., 2018; Izquierdo-Sandoval et al., 2022; MacNeil et al.,
2022). Furthermore, GC-APCI-HRMS demonstrated advantages in the non-target
analysis of halogenated compounds. Excellent isotopic matches were observed in
non-target analysis of brominated and chlorinated flame retardants using Fourier
transform ion cyclotron resonance mass spectrometry GC-APCI-FT-ICR-MS (Zacs
et al., 2019). Hence, the researchers applied an automated isotopic profile deconvo-
lution for high-resolution mass spectrometric data (APGC-QTOF) from biological
matrices. GC-APCI-QTOF was also applied for halogenated dibenzo-p-dioxins in
negative modes (Fernando et al., 2016).

2.2 Objectives

Persistent organic pollutants (POPs) refer to a group of chemicals that are highly
persistent and bioaccumulative. POPs can be related to extensive anthropological
activities and industrial activities (Xu et al., 2013). Halogenated POPs, such as
polychlorinated biphenyls (PCBs) and polybromodiphenyl ethers (PBDEs), are an
important part of POPs. PCBs (Figure 2.1a) and PBDEs (Figure 2.1b) consist of
209 congeners that can be industrial chemicals or byproducts of industrial produc-
tion (e.g., electronic devices, flame retardants) (Xu et al., 2013). In France, PCBs,
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Advancing towards universal screening for organic pollutants in waters. Journal
of Hazardous Materials, 282:86–95, 2015.

D. Izquierdo-Sandoval, D. Fabregat-Safont, L. Lacalle-Bergeron, J. V. Sancho,
F. Hernández, and T. Portoles. Benefits of ion mobility separation in gc-apci-hrms
screening: From the construction of a ccs library to the application to real-world
samples. Analytical Chemistry, 94(25):9040–9047, 2022.

D.-X. Li, L. Gan, A. Bronja, and O. J. Schmitz. Gas chromatography coupled to
atmospheric pressure ionization mass spectrometry (gc-api-ms). Analytica chimica
acta, 891:43–61, 2015.

Y. Liber, B. Mourier, P. Marchand, E. Bichon, Y. Perrodin, and J.-P. Bedell. Past
and recent state of sediment contamination by persistent organic pollutants (pops)
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Summary

The project presented in this chapter aims to develop a generic LC-HRMS method
for target and non-target analysis in divers water matrices.

An overview of the state-of-the-art method is first introduced in this chapter. The
concepts and procedures of method development, including sample preparation,
standard preparation, construction of in-house databases, and data treatment, are
explain in the following sections.

Sample preparation is minimized to prevent loss of compounds of interest and cross-
contamination through manipulation. An in-house database of small molecules and
emerging contaminants was first built in this project. Target compound identifica-
tion processing was critically defined in TASQ, a commercial software provided by
Bruker Daltonics. Non-target analysis was processed in the open-source software,
MS-DIAL, and commercial software, Data Analysis (Bruker Daltonics). To increase
data treatment e�ciency and identification certainty, the identification procedures
are carefully described in this chapter. Afterward, the whole workflows of target
and non-target analysis were evaluated by applying it to various and complex water
samples. The results and perspectives are discussed at the end of this chapter.
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3.1 State-of-the-art method

Suspect and non-target screening (NTS) using high-resolution mass spectrometry
have diverse applications for the identification of large-scope chemicals, such as food
analysis (Riedl et al., 2015), forensic analysis (Steuer et al., 2022), metabolomics
analysis (Dunn et al., 2013), and environmental analysis (González-Gaya et al.,
2021). In environmental analysis, water is the most common matrix for polar con-
taminants of emerging concern (CECs) (Gago-Ferrero et al., 2020). We could always
consider that there is no life without water, and the access and the quality of drink-
ing water and tap water are wisely recognized to have a close relationship to human
health. Although particular regulations prevent or minimize the pollution of drink-
ing and tap water as much as possible, a large number of chemicals remain unknown
or nonregulated (Paszkiewicz et al., 2022). Natural waters, especially surface water
and groundwater, play an important role in the risk assessment of ecological sys-
tems. Anthropic activities are the main source of aquatic environmental pollution.
A number of chemicals reach the environment through agricultural activities, de-
bris from commercial products, insu�cient disposal during wastewater treatment,
etc. With the development of analytical instruments and techniques, the reports
of newly detected contaminants raise the global concern of ecological e↵ects and
human health. Pesticides and pharmaceutical and personal care products (PPCPs)
are frequently detected in surface and drinking water (Yang et al., 2017). Persistent
and mobile organic chemicals (PMOCs) are highly polar and highly persistent sub-
stances (Reemtsma et al., 2016) that can easily escape from conventional wastewater
treatment and then be released into the environment. Recently, per- and polyflu-
oroalkyl substances (PFAS, which are known as eternal pollutants) and bisphenol
A are two classes of PMOCs that have been detected through non-targeted water
analysis and are added to the list for routine monitoring (Paszkiewicz et al., 2022).
In recent years, thousands of CECs have been identified and tentatively identified
in water samples (Menger et al., 2020; Schulze et al., 2020), highlighting the value
of HRMS and non-target analysis.

The generic workflow of target and non-target analyses in water includes 1) sampling
and sample treatment, 2) analysis by LC-HRMS, 3) data preprocessing, and 4) data
treatment.

Since this study mainly focuses on data preprocessing and data treatment, the dis-
cussion will reference the last two steps. Moreover, water sample extractions are
commonly based on solid phase extraction (SPE) with di↵erent sorbents, in which
the hydrophilic-lipophilic balance (HLB) is the most used for a wide scope of screen-
ing (Menger et al., 2020). Benefiting from the increasing sensitivity of HRMS, direct
injection has also been applied in water analysis (Menger et al., 2020; Hollender et al.,
2019).

SPE is still dominant with regards to the sample preparation for non-target analysis,
and direct injection with a large volume is an alternative(Albergamo et al., 2018;
Li et al., 2018; Backe, 2021). Li et al. (2018) compared SPE with direct injection,
which showed that SPE had a lower matrix e↵ect than direct injection; however,
direct injection was more suitable to evaluate the removal e�ciency of wastewater
treatment. Another study also used direct injection to evaluate the e�ciency of
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wastewater plant mitigation (Nürenberg et al., 2019). Köppe et al. (2020) injected
100 µL river water samples after a filtration step to identify unknown chemical
contaminants. Large volume injection (650 µL) was also e↵ectively used in di↵erent
types of water analyses (Backe, 2021).

Direct injection reduces the sample preparation steps, preventing potential contami-
nation and loss of substances through manipulation. In the case of (non-salty) water,
minimizing the matrices without the harsh consequences of the representative of the
samples and the global sample preparation and analysis time could be easily done
by a simple o✏ine or online dilution. However, it is sometimes challenging to detect
ultratrace-level substances without preconcentration or desalination.

3.2 Chemicals and standard preparation

3.2.1 Chemicals and solvents

The standard solution of pesticides and pharmaceutical product kit were purchased
from Agilent Technologies and Resteck. Twenty-five standard kits, with a total of
559 reference chemicals , were used to build an in-house target screening database
for LC suspect analyses.

Ammonium formate, formic acid, absolute methanol, isoptropanol, and acetonitrile
of the highest purity level (ULC/MS - CC/SFC) were purchased from Biosolve
Chemicals (Dieuze, France). Formic acid 99% was purchased from Fisher Scientific
(Geel, Belgium). Purified water was provided by a Milli-Q® purification system
(Millipore, Bedford, MA).

3.2.2 Solution preparation

Concentrated buffer solution

A 500x concentrate bu↵er solution was prepared and stocked at 4 °C for the mobile
phase. The procedure was as follows.

1. Weigh 1.58 g (25 mmol of ammonium formate) and dissolve in 7.5 mL Milli-Q
water.

2. Complete the bu↵er solution with 2 mL MeOH and 500 µ L.

3. Obtain 2.5 mol/L ammonium formate with 5% formic acid concentrated bu↵er
(500X concentrated). Store at 4 °C.

Mobile phases

Mobile Phase A consisted of a mix of purified water/MeOH (v/v: 99:1) with 5
mmol/L ammonium acetate and 0.1% formic acid, which was diluted from the stock
concentrated bu↵er solution. Mobile Phase B consisted of MeOH with 5 mmol/L
ammonium formate and 0.1% formic acid. MeOH was added to a fresh open bottle
(1 L), and 2 mL of the concentrated bu↵er solution was added.

74





CHAPTER 3. NON-TARGET ANALYSIS WITH UPLC-TIMSTOF FOR
WATER SAMPLES

Compound Formula m/z (Da) RT(min) LogP

Methamidophos C2H8NO2PS 142.0086 2.94 -0.9

Acephate C4H10NO3PS 184.0192 3.22 -0.85

Omethoate C5H12NO4PS 214.0297 3.39 -0.9

Spiromesifen C23H30O4 371.227 3.97 5.1

Monocrotophos C7H14NO5P 224.0682 3.98 -0.2

Dicrotophos C8H16NO5P 238.0839 4.09 0

Vamidothion C8H18NO4PS2 288.0488 4.39 0.3

Dimethoate C5H12NO3PS2 230.0069 4.53 0.78

Mevinphos C7H13O6P 225.0523 4.85 1.2

Carbaryl C12H11NO2 202.086255 5.82 2.36

Isocarbophos C11H16NO4PS 290.0611 6.36 2.4

Dimethomorph C21H22ClNO4 388.131 7.23 3.9

Spirotetramate C21H27NO5 374.1962 7.52 3.2

Fenpropimorph C20H33NO 304.2635 8.75 5.2

Spinosad C41H65NO10 732.4681 9.07 5.8

Spinetoram J&L C42H69NO10 748.4994 9.59 5.9

Temephos C16H20O6P2S3 466.997 9.69 6

Spirodiclofen C21H24Cl2O4 411.1124 10.62 5.9

Table 3.2: QA/QC mix

3.3.2 LC separation settings

The chromatographic separation was performed with a UPLC Acquity system (Wa-
ters, USA). The system was operated with MassLynx V4.1 (Waters). An Acclaim™
120 C18 column (100 x 2.1 mm i.d., 2.2 µm, 5-µm particle size) from Thermo Fisher
Scientific (Dreieich, Germany) preceded by an Acuity UPLC BEH C18 VanGuard
precolumn (1.7 µm, 2.1 mm x 5 mm, Waters, USA) was used for chromatographic
separation. Mobile Phase A consisted of 5 mmol/L ammonium formate in ultra-
pure water, with 1% methanol and 0.1% formic acid added to Mobile Phase A to
adjust the pH. Mobile Phase B was methanol with 5 mmol/L ammonium formate
with 0.1% formic acid. The LC acquisition time was 20 min, and the optimized
gradient is shown in Table 3.3. The column temperature was set at 40 °C, and the
autosampler was set to 5 °C.

The positive ionization mode (+ESI) method previously developed for target screen-
ing of water contaminants by Bruker Daltonics was used as a basis for the present
methodological work in non-target screening (Gago-Ferrero et al., 2020). The initial
stationary phase was a Bruker Solo column (100 mm × 2.1 mm i.d., 5-µm particle
size). An Acclaim™ 120 C18 column (100 mm × 2.1 mm i.d., 5-µm particle size,
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ion m/z [Da] Ion ratio ion m/z [Da] Ion ratio ion m/z [Da] Ion ratio
1 Omethoate C5H12NO4PS 214.0297 3.42 C4H8O4PS 182.9875 100 C2H6O2PS 124.9821 100
2 Monocrotophos C7H14NO5P 224.0682 4.02 C2H8O4P+ 127.0155 100 C6H10O5P+ 193.026 51.6 M+H 224.0682 11.3
3 Vamidothion C8H18NO4PS2 288.0488 4.43 C6H12NOS+ 146.0634 100 C4H8NOS+ 118.0321 100 M+H 288.0488 8.7
4 Phosphamidon C10H19ClNO5P 300.0762 5.14 M+H 300.0762 100 M+H+2 302.0737 31.4 C2H8O4P+ 127.0155 100
5 Metolcarb C9H11NO2 166.086255 5.38 C7H9O+ 109.0648 100
6 Ofurace C14H16ClNO3 282.0891 5.59 M+H 282.0891 100 M+H+2 284.0867 29.3 C13H17ClNO2+ 254.0927 91.4
7 Thidiazuron C9H8N4OS 221.0492 5.62 M+H 221.0492 61.3
8 Thiodicarb C10H18N4O4S3 355.0563 5.87 C3H6NS+ 88.0215 100 M+H 355.0563 43.7
9 Ethiofencarb C11H15NO2S 226.0896 6.05 C7H7O+ 107.0491 100 C9H10NO2+ 164.0706 56.3

10 Isoprocarb C11H15NO2 194.1176 6.32 C6H7O+ 95.0491 72 C9H13O+ 137.0961 59.9 M+H 194.1176 31.3
11 Methabenzthiazuron C10H11N3OS 222.0696 6.46 C8H9N2S+ 165.0481 100 M+H 222.0696 32.9
12 Diuron C9H10Cl2N2O 233.0243 6.57 M+H 233.0243 100 M+H+2 235.0214 62.6 C3H6NO 72.0444 86
13 Diethofencarb C14H21NO4 268.154335 6.93 C11H16NO4+ 226.1074 100 C8H10NO2+ 152.0706 21.9 C6H6NO2+ 124.0393 100
14 Fenobucarb C12H17NO2 208.1332 6.95 C8H10NO2+ 152.0706 24.2 C6H7O+ 95.0491 11.2
15 Linuron C9H10Cl2N2O2 249.0192 7.1 M+H 249.0192 100 M+H+2 251.0164 64.8 C11H4NO2+ 182.0241 59.3
16 Methiocarb C11H15NO2S 226.0896 7.14 C9H13OS+ 169.0682 100 C8H9O+ 121.0648 47.9
17 Malathion C10H19O6PS2 331.043344 7.33 C6H7O3+ 127.039 88.1 C8H14O5PS2+ 285.0015 100 M+H 331.043344 19.5
18 Triazophos C12H16N3O3PS 314.072276 7.51 M+H 314.072276 100 C8H8N3O+ 162.0662 56.7
19 Iprovalicarb C18H28N2O3 321.2173 7.62 C9H19N2O3+ 203.139 37 M+H 321.2173 11.2
20 Phenthoate C12H17O4PS2 321.037865 8.21 C9H12O2PS2 247.0011 100
21 Phoxim C12H15N2O3PS 299.061377 8.34 M+H 299.061377 100 C10H12N2O3PS+ 271.0301 42.3
22 Quinalphos C12H15N2O3PS 299.061377 8.34 M+H 299.061377 100
23 Triflumuron C15H10ClF3N2O3 359.040481 8.63 M+H 359.040481 65.2
24 Phosalone C12H15ClNO4PS2 367.994141 8.75 C8H5ClNO2+ 182.0003 100 M+H 367.994141 43.6
25 Pyrazophos C14H20N3O5PS 374.093405 8.83 M+H 374.093405 100
26 Pencycuron C19H21ClN2O 329.141517 8.84 M+H 329.141517 92.4 M+H+2 331.1375 29.5
27 Thiobencarb C12H16ClNOS 258.071389 8.94 C7H6Cl+ 125.0153 100 M+H 258.071389 39
28 Piperophos C14H28NO3PS2 354.1321 9.05 M+H 354.1321 100
29 Profenophos C11H15BrClO3PS 372.942419 9.51 M+H+2 374.940163 100 M+H 372.942419 32 302.8642 C6H6BrClO3PS+ 22.5
30 Quizalofop-ethyl C19H17ClN2O4 373.094961 9.57 M+H 373.094961 100
32 Flufenoxuron C21H11ClF6N2O3 489.043515 10.29 M+H 489.043515 100 M+H+2 491.039 34.1
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3.4.2 Non-target screening

Non-target screening was performed in MS-DIAL (Version 4.70) (Tsugawa et al.,
2015), which is an open-source software used for HRMS data processing (Section
1.4.4). Raw Bruker MS files (.d file) were first converted in a lossless manner to
the .abf format using the MS-DIAL-implemented MS convertor before data treat-
ment. The Bruker DIA-MS raw data are profile MS data, and bbCID parame-
ters were input into the MS method type. The minimum peak height was set
to 100 cps with a 0.1 mass slice width. The retention time information was ex-
cluded from mass spectral library screening. The precursor mass tolerance was
within ± 10 mDa and ± 25 mDa for fragment ions. The identification score was >
80%. Peak identification was generated by screening online mass spectral libraries:
(1) ESI(+)-MS/MS database (16,481 unique compounds), downloaded from MS-
DIAL (http://prime.psc.riken.jp/compms/msdial/main.html#MSP) (Accessed on
20. Oct. 2022); (2) MassBank Europe (MassBank-consortium and its contributors,
2022). The adduct ion includes [M + H]+, [M + NH4]

+, [M + Na], [M + K], etc.
After filtering the contamination characterized from the blanks, the MS/MS of the
positive matched ion was manually and individually inspected based on their peak
shapes and mass spectra. Candidates that could unambiguously match a reference
MS/MS were kept and assigned to an identification confidence level as Level 2a. The
candidates that were frequently present in the samples with less than 3 overlapping
fragment ions were defined as Level 2 or Level 3. After exporting the matched ion
list, the candidate ions were analyzed through data analysis. The isotopic profiles of
the proposed ions were compared to the theoretical values using the Smart Formula
(Bruker Daltonics). If the deviation of mSigma was larger than 50, the proposed
structure was flagged and discarded from the list.

3.5 Applications in wastewater

3.5.1 Sample preparation

Water samples were provided mainly by Laboratoires des Pyrénées et des Landes
(LPL), including wastewater e✏uent, rainwater and storage water basins. To min-
imize the loss of substances during the extraction step, a simple filtration step was
performed before direct injection. A standard filter vial (Thomson Instrument Com-
pany) with a PTFE membrane (0.2 µm) was selected to filter the water samples.
A bu↵er solution consisting of 2% MeOH in 10 mmol/L ammonium formate with
0.02% formic acid (2-fold concentrated than MPA) was prepared for sample dilution.
The samples were diluted 2-fold with a bu↵er solution before filtration. Moreover,
225 µL of the aqueous phase of the samples was added to 225 µL of the bu↵er so-
lution. In total, 450 µL of the diluted sample was deposited into a shell vial, and
then a plunger with an embedded filter was inserted into the outer shell and slowly
and completely depressed to filter. A schematic procedure is shown in Figure 3.5.

Finally, 15 µL of the filtrated samples was directly introduced into the LC system
in a partial loop (50 µL Loop).
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and fragments. Another possibility can be an isomer or isobar of the candidate.
For further confirmation, an EIC is extracted from the calculated exact mass of
the candidate, and MS/MS is analyzed and mandated for structural confirmation
purposes. If all the parameters were fit in a narrow range of tolerance, it needs
to verify whether the candidate is detected in the blank or other samples. If the
candidate is detected in the blank and its peak intensity is on a comparable scale as
in the samples, the candidate will be rejected.

As a result, a candidate list of 22 detected chemicals was verified in the Data
Analysis software. By processing EICs in the most representative samples, in
which most of the candidates were detected, 18 candidates were confirmed by their
peak shape and mass spectral. Figure 3.7 shows an example of the EICs of de-
tected substances. The table below summarizes the common substances in the
samples. Finally, the identified substances were searched in the in-house standard
list. Aminocarb (C11H16N2O2) and Quinmerac (C11H8ClNO2) were confirmed with
reference standards, reaching a confidence level at Level 1. The other 13 substances
were labeled Level 2, and 3 were in Level 3 due to the trace-level intensities.

Regarding PPCP substances, adenine and adenosine were first detected and quan-
tified in the groundwater of Lyon (Pinasseau et al., 2019). Dumas et al. (2020)
detected an increase in adenine and adenosine in male mussels exposed to e✏uent,
resulting in purine and pyrimidine metabolism disruption. Bupivacaine is a medicine
for local or regional anesthesia surgery (Burlacu and Buggy, 2008) and is commonly
present in hospital wastewater (Le Corre et al., 2012; Javid et al., 2021); therefore,
bupivacaine is a compound of interest to evaluate the e�ciency of wastewater treat-
ment under the Norman Suspect List Exchange (Network et al., 2020). Bupivacaine
was estimated to be found in wastewater with a 67% removal e�ciency using MnOx-
coated coir fiber (Meza et al., 2020). Selegiline is a medication used in Parkinson
treatment, and it was detected in e✏uent in the Netherlands (Ouyang et al., 2015).

Among 4 pesticides and herbicides, simazine has been prohibited in France since 2003
and was previously detected in two screening trials of 497 French groundwater sites
(Lopez et al., 2015), in the groundwater of Lyon (Pinasseau et al., 2019) and in the
e✏uent of wastewater treatment plants in Hérault, France (Dumas et al., 2020). The
long-term observation of simazine indicates its persistence and high mobility in water
systems. Dodemorph was found in influent and e✏uent in Spain and Italy with high
frequencies and intensities (Rousis et al., 2017) and in the western Mediterranean
(Novillo et al., 2017). Quinmerac was quantified in the England River (Taylor et al.,
2021) and drinking water (Taylor et al., 2022) using Chemcatcher®. Quinmerac
was detected in Germany after measuring a maximum concentration in lake water
during heavy rainfall in the fall, which resulted from run-o↵ (Warner et al., 2021).
Aminocarb is a polar and basic herbicide that was detected in groundwater in Brazil
(da Silva et al., 2021). Aminocarb was found in bivalve samples purchased from a
local marketing in France (Diallo et al., 2022).

Cotinine is a well-known metabolite of nicotine and is commonly present in wastew-
ater (Hernández et al., 2011; Andrés-Costa et al., 2017; Verovšek et al., 2022) and
other aquatic systems (Branchet et al., 2021). In France, cotinine was frequently
detected in groundwater (Lopez et al., 2015; Pinasseau et al., 2019). Pyridafol is
classified as a pesticide and transformation product of pyridate. Pyridafol was pre-
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mass spectrum interferences and mis/bad interpretation. In this context, IMS can
compensate for this drawback by additional and orthogonal selectivity and asso-
ciating the precursor ion with its fragment ions by delivering a true pure MSMS
spectrum. Meanwhile, it emphasizes the importance of data processing. MS-DIAL
is a powerful non-target analysis tool, especially for a series of data. It illustrates
straightforward results that provide binary comparison and detection frequency.
Manual inspection of the identification candidates is vital to prevent false positives
and to verify the identification confidence level. A careful identification process is
defined for target and non-target analysis. This highlights the compromises that
must be made in non-target analyses. The bottleneck remains the compound iden-
tification. The certainty of identified or tentatively identified compounds (Levels 2
and 3) needs further confirmation, such as replicated sample injection.

A preconcentration step can be processed to produce distinguishable MS/MS spectra
for identification purposes. IMS will be performed in the next step, and an in-
house CCS database will be created to increase the number of identification points.
An automated workflow will be modified in TASQ. The Norman exchange suspect
list will soon be imported into MS-DIAL. However, it was measured by DWTIM,
and the deviation between TIMS and DWTIMS needs to be estimated to optimize
the identification criteria. Other experimental and predicted CCS databases, such
as CCSbase, are worth testing. In contrast, prediction accuracy depends on the
chemical structure and class type; therefore, a careful review and awareness should
be carried out systematically. However, negative ionization mode can be beneficial
to the current analysis, with a time cost double.
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CHAPTER 4. METHOD DEVELOPMENT OF STEROIDS HORMONES
ANALYSIS IN JUVENILE FISH

Summary

In Chapter 4, a simultaneous analysis of steroids hormones is developed using UPLC-
timsTOF. The selected hormones are the key factor in sexual maturity of many
species, including fish, etc.. Two approaches of analytical techniques are comparable:
UPLC coupling with QTOF, and UPLC coupling with IMS-QTOF (timsTOF). The
benefits of introducing IMS for complex matrix analysis are discussed.

The first part of this chapter introduces the objective of steroids studies and the
advance of current steroids studies. Then the steroid hormones chosen for this study
and their presence in the environment are introduced.

In the experiment, the method development strategies are discussed, including the
choice of the LC column, the optimization of mobile phases, and parameter settings
in the MS detector. In addition, the key notions of the method validation are
introduced.

Finally, the benefits and disadvantages of using IMS compared to conventional qTOF
will be discussed. The validation of the simultaneous analysis and quantification
method will be evaluated.

99



CHAPTER 4. METHOD DEVELOPMENT OF STEROIDS HORMONES
ANALYSIS IN JUVENILE FISH

4.1 Introduction

Steroid hormones are natural hormones that respond to a wide range of physiological
processes, such as sexual maturity, stress responses, and reproduction (Ojoghoro
et al., 2021). Cortisol is a glucocorticoid hormone produced in many animals, mainly
by the zona fasciculata of the adrenal cortex in the adrenal gland. Cortisol is the
main product of the stress response in fish (Schreck and Tort, 2016). Therefore, it
is worth quantifying cortisol levels in fish after exposure to various stress resources,
including light and temperature. Cortisol production can also be used to assess the
e↵ect of sexual maturity. Considering the small size of juvenile fish, preventing the
loss of samples should be considered.

Gas chromatography (GC) and liquid chromatography (LC) coupled with mass spec-
trometry (MS) are widely used for the quantification of cortisol and other steroid
hormones in various biological matrices. Most of the applications are performed by
triple-quadrupole mass spectrometry, using two or three characteristic transitions,
such as Cortisol ion transitions: 363 → 121, 363 → 327 in positive mode (Jia et al.,
2016; Domenech-Coca et al., 2019) and 363 → 331 in negative mode (Gaudl et al.,
2019). With the recent development of high-resolution mass spectrometry (HRMS),
simultaneous analysis in a full scan mode that ensures both selectivity and retro-
spective analysis has gained interest. Thus, simultaneous quantification analysis can
be achieved in a single approach. The hybrid of HRMS with ion mobility (IMS) is
a novel analytical technique. By introducing IMS, the collision cross section (CCS)
adds more criteria other than the retention time (RT), accurate mass, and isotope
pattern. Moreover, IMS can ”eliminate” noise peaks from the matrix e↵ect, which
o↵ers a compromised approach to analyze juvenile fish after a minimum sample
preparation step.

The objective of our study was to develop a sensitive and specific LC-timsTOF-MS
method for absolute and accurate cortisol quantification and other steroid hormone
characterization in the water or in juvenile fish.

4.1.1 Target hormones

Corticosteroids are one of the most important families of steroid hormones, and
both natural and synthetic corticosteroids are commonly used in human and animal
therapeutic applications, for example, inflammatory and autoimmune diseases (Wu
et al., 2019). Corticosteroids can be found at trace levels (ng/L) or even sub-ng/L in
aquatic samples around the world (Wu et al., 2019; Ojoghoro et al., 2021). Cortisol
and cortisone are two main glucocorticoids and are mostly found in biological and
environmental samples (Zhong et al., 2021). LC-MS/MS is the most used technique
for steroid hormones analysis due to its high sensitivity and high selectivity (Song
and Feng, 2021). Weizel et al. (2018) developed a simultaneous analytical method
for wastewater and surface water analysis in Germany. The level of cortisol detected
in wastewater was between 0.9 to 2.8 ng/L and 0.2 to 1.3 ng/L in surface water.
Cortisone had a lower concentration level than cortisol in the same water sample,
which was below 1 ng/L. Cortisol was also reported in Chinese surface water at 1.2
to 11 ng/L and much higher concentrations of cortisone (62 to 628 ng/L) due to its
wide use in medicines (Shen et al., 2020).
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(Song and Feng, 2021). In this research, Acquity BEH C18 (50 mm × 2.1 mm,
1.7 µm, Waters), Hypersil gold PFP (50 mm × 2.1 mm, 1.9 µm, Thermo Fisher
Scientific), Fortis C18 (50 mm x 2.1 mm, 1.7 µm) and ACE C18-PFP (50 mm ×

2.1 mm, 1.7 µm) Four columns were tested with the ACN and MeOH during the
method optimization. The reported performance of the columns is based on the
chromatographic resolution, peak shape, S/N and peak area.

4.2.2 The choice of solvents and additives

As chromatographic separation is performed in an RPLC column, MeOH and ACN
are two major organic solvents used in RPLC. The choice of solvent is based on the 1)
separation and peak shape of each analyte; 2) ionization behaviors; and 3) pH of the
solvent. According to bibliographic research and experiments, MeOH significantly
improved analyte ionization compared with the ACN; thus, MeOH was chosen as
the mobile phase. Ammonium fluoride, ammonium acetate, and ammonium were
added to the mobile phase to adjust the pH and improve ionization. Ammonium flu-
oride can significantly promote steroid-like molecule ionization (Gaudl et al., 2016).
Therefore, 1 mmol/L ammonium fluoride was added to Mobile Phase A to enhance
the ionization of cortisol

4.2.3 MS detector

MS/MS has high selectivity and sensitivity; however, it is not possible for retro-
spective analysis. If other compounds are added to the wish-list or even nontarget
analysis, a reanalysis must be performed. Herein, we decided to develop a full scan
method. In contrast, the sensitivity and selectivity will be lost by using a full scan,
and IMS is introduced in the method to improve selectivity. However, the power
of IMS is still being researched, and a comparison of IMS was studied. The TIMS
analyzer was placed after proceeding with the ionization source and before the MS
detector. The separation in IMS will not impact the separation and ionization; thus,
the same separation program was applied for both approaches. The MS setting was
slightly adapted for the ”tims ON” method. As results, Acquity BEH C18 (50 mm
× 2.1 mm, 1.7 µm, Waters) produced a higher intensity of cortisol and cortisone
with MeOH, especially at lower concentrations (Figure 4.1).However, the Fortis C18
column produced a higher S/N, but at 2 ng/mL (2 ppb), the S/N ratios were com-
parable in BEH C18 and Fortis C18 (Figure 4.2). As a compromise, Acquity BEH
C18 (50 mm × 2.1 mm, 1.7 µm, Waters) was selected for this method.

4.3 Method validation

To describe and define the limits and performances of an analytical method, it is
essential to validate its standardization according to the application guidelines. The
validation of the method requires the determination of several characteristics that
we are going to define: the accuracy and precision and the limit of detection and
linearity.
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4.3.1 Internal standard

Quantification by using specific isotopic dilution (labeled surrogates) is the most
accurate and precise technique for quantification analysis. Isotopically labeled stan-
dards (e.g, with 15N, deuterium (D), 13C) are spiked into the samples and calibrators,
which are normally the same or isomer/close analog molecule as the target analyte.
It introduces a known compound with a defined concentration into samples as an
internal standard. The concentration and calibration curve were estimated by the
response ratio between the targeted analyte and the reference internal standard,
which compensated for the variation in the exact volume or quantity of samples
introduced in the LC–MS system.

4.3.2 Precision and accuracy

The precision is the spread of individual measurement values from each other, while
the accuracy evaluates the closeness of the measurement values to the true value.
The precision can be assessed by injecting a standard solution with defined solutions
multiple times. This can be calculated as the coe�cient of variation (CV). The ac-
curacy can also be defined as bias between the calculated concentration and exact
concentration. The concentration of analytical standard solutions needs to be accu-
rate to avoid quantification error. Therefore, a test solution or quality control (QC)
solution must be prepared. The test solution was made by using di↵erent working
solutions as standard solutions, whose concentrations should be in the calibration
range. Normally, three test solutions with low, median and high concentrations are
prepared and quantified through the calibration curve. The accuracy of the stan-
dard solution was then estimated by the bias between the calculated concentration
using the calibration curve and the defined concentration.

4.3.3 Linearity

A calibration curve is commonly a linear regression between the concentration and
response of the analyte quantity, common area or intensity of the peak. This linear
regression relationship is built to estimate the unknown concentrations of the analyte
in a sample. Thus, the accuracy of the predicted concentration is highly dependent
on the linearity of the calibration curve. The linearity includes the weighting, re-
gression model, and coe�cient.

4.3.4 Limit of Detection (LOD)

The limit of detection (LOD) estimates the lowest analyte concentration that can
be reliably distinguished from ”analytical noise” in a blank sample (Armbruster and
Pry, 2008). There are di↵erent approaches to calculate the LOD, and the signal-to-
noise ratio (S/N) is commonly accepted to determine the LOD in pharmaceutical
analysis by the European Pharmacopoeia (Desimoni and Brunetti, 2015). The S/N
defines the ratio of an analytical signal to the mean background noise. The idea
of using the S/N to define LOD is that the analyte responds with a su�ciently
large intensity to be discriminated from the blank signal (sample without analyte).
The LOD is estimated to be 3 times the S/N in the blank sample, indicating the
probable presence of the analyte in the sample. The S/N is often evaluated manually;
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Table 4.2: Standard list

Compound [M+H]+ (m/z) Calibration range (ng/mL) RT (min)
Cortisol 363.2166 2-100 2.24
Cortisone 361.201 0.2-10 2.13

Aldosterone 361.201 0.1-5 2.02
Corticosterone 347.2217 0.06-3 2.52

17α-OHP 331.2268 0.1-5 3.13
DOC 331.2268 0.03-1.5 2.89

Androstenedione 287.2006 0.064-3.2 2.77
Testosterone 289.2162 0.02-1 3.02

4.5 Method

4.5.1 LC

The chromatographic separation was performed with an UPLC Acquity system (Wa-
ters, USA). The system was operated with the MassLynx V4.1 software (Waters).
An ACQUITY UPLC BEH C18 Column 1.7 µm, 2.1 mm X 50 mm with an Acuity
UPLC BEH C18 VanGuard pre-column (1.7 µm, 2.1 mm X 5 mm, Waters, USA)
was used for the separation in a binary gradient. The mobile phases consist of 1
mmol/L NH4F in purified water (Milli-Q) and MeOH. The total LC acquisition time
was 7 min, the gradient was shown in Table 4.3. The column temperature was set
to 35 °C and the auto-sampler to 5 °C. 10 µL per sample was systematically injected
in the partial loop mode.

Table 4.3: Steroid analysis LC gradient

Time(min) Flow rate (mL/min) % MPB Slop
0 0.3 25

0.25 0.3 25 6
2 0.3 65 5
4.5 0.35 95 7
5.5 0.4 95 6
5.75 0.4 25 6
7 0.3 25 6

4.5.2 MS

A trapped ion mobility (drift) cell coupled with high-resolution time-of-flight mass
spectrometry (timsTOF, Bruker Daltonics, Bremen, Germany) was used in the pos-
itive ESI mode for most hormones, including cortisol, a few of them could be done
only in negative mode with the same principle and approach, for acquisition in the
MS mode and MSMS mode. The MS mode was set to the full scan mode between
100 and 1250 m/z with a scan speed of 2 Hz. The capillary was set to 4600 V,
the nebulizer was set to 2.8 bar, a dry gas flow was set at to 6 L/min, and the dry
temperature was set at to 230 °C. The collision energy of MS was applied to 13 eV,
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and the collision energy in the bbCID mode was set to 35 eV. The MS analyzer was
operated in the TIMS on and o↵ mode to compare the spectral quality enhancement
by IMS.

4.6 Data processing

Raw data were analyzed by Data Analysis Version 4.60 (Bruker Daltonics GmbH).
The samples were acquired in the full-scan mode. The exact mass of the protonated
ion [M+H]+ was used to generate an extracted ion chromatogram (EIC) with a mass
width of 5 mDa. For IM-MS data, the extracted ion mobilogram (EIM) was obtained
by the exact mass and retention time range of the corresponding chromatographic
peak. The retention time, exact mass, and transition ions were input into TASQ
for automated target screening and quantification. To ensure the confidence of
compound identification, the following criteria were defined:

• the tolerance of retention time was ≤ 0.1 min

• mass tolerance was ≤ 5 ppm

• the match score of isotopic profiles, in term of mSigma, was within ≤ 30

4.7 Method validation

4.8 Results

4.8.1 selectivity

As the standard kit was a mix powder have di↵erent concentration levels with each
hormone (Table 6.2), the responses were varied for each analyte. Hormones in the
mixture, such as Dihydrotestosterone (DHT) and 11-Deoxycortisol, their concentra-
tion were 100 times lower than cortisol. In other words, we used 100 ng/mL as the
most concentrated calibrator, in which 11-Deoxycortisol was at 1 ng/mL.

Eight compounds, including two pairs of isomers, were completely separated within
a 7 min acquisition run under the optimized chromatography conditions. The result
is shown in Table 4.2. A retention time precision of 0.01 0.025 min (CV < 0.1%)
was achieved throughout the whole measurements. In TOF mode and timsTOF
mode, two isomers 17α-OHP (RT = 3.13 min) and DOC (RT= 2.89 min) were
separated with the chromatography resolution of 6. Cortisone (RT = 2.13 min) and
Aldosterone (RT = 2.02) had the chromatography resolution of 2.75. The extracted
ion chromatogram mass corresponds to the protonated ion [M+H]+, with a mass
width was set at 5 mDa (Figure 4.4 and Table 4.4).

4.8.2 Enhancement of EICs and Mass spectra with IMS

Background noise always interferes with peak interpretation and the sensitivity of
the method. At a rather low ion concentration, noise chromatographic peaks appear
more frequently. IMS aims to eliminate the noise peaks. We used a standard mix of
2 ng/mL cortisol and 0.2 ng/mL cortisol to evaluate the sensitivity of this method.
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As plotted in Figure 4.5, the EIC generated with mass-only showed an intense noise
peak, especially in cortisone, due to the low concentration (0.2 ng/mL). However, by
adding the CCS range of cortisone, the background noise can be significantly reduced
between 4.5 and 5.5 min. Similarly, we further compared the mass spectra obtained
by EIC and EIM (extracted ion mobilogram) (Figure 4.6. Noise peaks between 300
and 360 m/z were eliminated in the mass spectrum obtained by the EIM. IMS/CCS
can remove the noise peaks in the matrix to facilitate mass spectra interpretation.
This is demonstrated in an example of cortisol (5 ng/mL, EIC ± 0.005 Da) shown in
Figure 4.7. On the left, it represents a mass spectrum in the timsTOF mode without
adding the CCS and its zoomed view with regards to the targeted m/z = 363.2175
along with simulated isotope patterns of cortisol. Moreover, a mass spectrum using
a CCS filter is shown on the right. As seen in the first row, a much cleaner MS was
obtained after extraction with CCS, which was more e�cient in discarding the ions
of large masses.
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summary

This chapter is interested in the development and validation of CCS prediction
models using machine learning. The objective of this study is to develop a CCS
predictor which can be used in non-target analysis for environmental contaminants
identification. It can be applied and complement to the research in Chapter II and
Chapter III.

First, a short overview of the advantages of introduce IMS and CCS values in non-
target screening will be discussed, following a general explanation of the experiment
strategy. The limits and perspectives of this research will be emphasized in conclu-
sion.

The experimental details and evaluations of this study are discussed in the pub-
lished article ”Collision Cross Section Prediction with Molecular Fingerprint Using
Machine Learning”, including at the end of this chapter Section 5.4.
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5.1 Introduction

Collision-cross section (CCS) represents an observational property that averages
molecular surfaces interact with a drift gas. The empirical CCS values give a unique
chemical property under a defined drift gas (e.g., N2, He), a temperature and an
electric field used during the measurement (May et al., 2017). Experimental CCS
values are typically obtained by ion mobility spectrometry (IMS) via four separation
technique, which are drift tube ion mobility spectrometry (DTIMS), traveling wave
ion mobility spectrometry (TWIMS), trapped ion mobility spectrometry (TIMS),
and di↵erential mobility analyzer (DMA). The major contribution of CCS databases
are made by Picache et al. (2019) records 3,800 experimental CCS values cross
80 classes, PubChem records over 8,965 experimental CCS (Access on April 2022)
(Schymanski et al., 2022). Most of IMS and CCS measurement focus on peptides
and metabolites researches, Dilger et al. (2013) measured 1,470 peptides, Meier et al.
(2021) reported two million CCS values for peptides. In metabolite research, CCS
databases and CCS predictors are flourished, AllCCS included chemical structures
with 5,000 experimental CCS (Zhou et al., 2020), MetCCS is a specif CCS predictor
for metabolites (Zhou et al., 2016), HMDB 5.0 have added 871,680 predicted CCS
values (Wishart et al., 2022).

Most recently, IMS and CCS are recently introduced in environmental non-target
analysis as an additional separation and identification dimension. IMS and CCS
values improve the separation of isomers and mass spectrum quality by removing
noise peak (Dodds and Baker, 2019). Additionally, CCS provides structure informa-
tion for unknown, which can reduce numbers of candidate and elucidate molecular
structure. Meanwhile, predicted CCS values have been used to validate candidates
(Celma et al., 2020; Hinnenkamp et al., 2022; Celma et al., 2021; Stephan et al.,
2016), proving IMS and predicted/experimental CCS values can improve identifi-
cation certainty. While most of existing CCS predictors used the single-laboratory
or single-instrument experimental values for modeling, the prediction accuracy can
be varied by IMS separation technique (Zhou et al., 2016). On the other hand,
most models use molecular descriptors, such as molecular mass, number of heavy
atoms, polarity, LogP, etc. Ross et al. (2020) introduced molecular quantum num-
bers (MQNs) to represent the variance between mass-CCS space. Molecular fin-
gerprints encoding molecular structure to a binary code have been used to predict
molecular properties (Heinonen et al., 2012; Zang et al., 2017), but molecular fin-
gerprints have never been used in CCS prediction before.

This research is aimed to develop a novel CCS perdition model using a collected
CCS dataset and molecular fingerprint to describe molecular structure.

5.2 Experiments

5.2.1 Dataset

The size, quality and the diversify of data resources are key factors in machine
learning. Therefore, the first step was to collect experimental CCS values from
literature and libraries. As dataset was merged from di↵erent studies, the deviation
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fined super class or class can help to verify this argument. One of the main drawback
of this CCS predictor is that it is develop and run in Python, therefore it requires
advanced knowledge of Python and raw data handling to ease perform prediction.
Other CCS predictors have a user friendly interface, it can import the keys and down-
load the results through websites, such as CCSbase (https://ccsbase.net/about),
AllCCS (http://allccs.zhulab.cn/).
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Abstract: High-resolution mass spectrometry is a promising technique in non-target screening (NTS)
to monitor contaminants of emerging concern in complex samples. Current chemical identification
strategies in NTS experiments typically depend on spectral libraries, chemical databases, and in silico
fragmentation tools. However, small molecule identification remains challenging due to the lack
of orthogonal sources of information (e.g., unique fragments). Collision cross section (CCS) values
measured by ion mobility spectrometry (IMS) offer an additional identification dimension to increase
the confidence level. Thanks to the advances in analytical instrumentation, an increasing application
of IMS hybrid with high-resolution mass spectrometry (HRMS) in NTS has been reported in the
recent decades. Several CCS prediction tools have been developed. However, limited CCS prediction
methods were based on a large scale of chemical classes and cross-platform CCS measurements. We
successfully developed two prediction models using a random forest machine learning algorithm.
One of the approaches was based on chemicals’ super classes; the other model was direct CCS
prediction using molecular fingerprint. Over 13,324 CCS values from six different laboratories and
PubChem using a variety of ion-mobility separation techniques were used for training and testing
the models. The test accuracy for all the prediction models was over 0.85, and the median of relative
residual was around 2.2%. The models can be applied to different IMS platforms to eliminate false
positives in small molecule identification.

Keywords: collision cross section; ion mobility spectrometry; non-target screening; machine learning

1. Introduction

A large number of chemicals have been released into the environment by human activ-
ities, such as agriculture, industrial productions, and their relative byproducts. Once these
chemicals enter the environment, transformation products (TPs) can be produced through
hydrolysis, photosynthesis, and biological metabolism [1–6]. Most of these chemicals and
their TPs are missing molecular and/or structure information. Thus, these chemicals’
human and environmental risk assessments remain an open question [6–12]. Although
most legacy pollutants have been banned for decades in many countries, they can still be
detected at trace-level in the environment [2,13–15]. The known pollution is only the tip of
the iceberg compared to the number of environmental hazards [1,13,14].

Non-target screening/analysis (NTS) is considered as an appropriate methodology to
identify a variety of chemicals, especially for the unknown unknowns, such as contaminants
of emerging concern (CECs) [16–18]. High-resolution mass spectrometry (HRMS) coupled
with gas or liquid chromatography (GC or LC) is the most commonly used analytical tech-
nique in human health and environmental assessments. Thanks to the advance of HRMS,
it has been increasingly applied in NTS studies in the last decades [17,19–21]. HRMS (i.e.,
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Time-of-flight (TOF) and Orbitrap) maintains a high mass accuracy within ±5 mDa m/z
error, and it can be acquired in full scan MS data or plus MS/MS data [10,21–24]. The ac-
curate mass of the parent ion and the fragments are used to identify unknowns [17,19,21].
The isotopic pattern is one of the additional criteria which can help determine the presence
of hetero-elements in non-target analysis [25]. However, mass spectral information is
not enough for highly confident structural elucidation [22,25,26]. Therefore, inclusion of
orthogonal sources of information such as measured or predicted retention time and/or
retention time indices is necessary [21,27,28]. Such measurements are complex to perform
and require particular experimental conditions [29–31].

Collision cross section (CCS) is a platform-independent measure of chemical structure
in the gas phase and the three-dimensional space [32–34]. Studies have demonstrated
that the inter-laboratory CCS biases are within 2% for the same IMS technique [35,36].
Moreover, cross-platform biases are below 3% for over 98% of the chemicals included
in their studies [37,38]. Drift tube ion mobility (DTIM) and traveling wave ion mobility
(TWIM) are two of the most used IMS techniques to measure the CCS value or drift
time [37,39]. CCS value and drift time have been employed in NTS as an additional source
of information, to increase confidence level in structural elucidation [40–42]. In addition to
experimentally defined CCS values, CCS values can be estimated/predicted via theoretical
calculations or Machine Learning (ML) [43,44]. ML CCS predictions take advantage of large
datasets of the experimentally defined CCS values to train, validate, and test the regression
models [44]. Zhou et al. [45] reported the first CCS prediction tool using the support vector
regression (SVR) ML algorithm for metabolites. Plante et al. [46] published a deep neural
networks CCS prediction strategy for cross-platform CCS measurement. The currently
available CCS prediction tools rely on molecular descriptors or the combination of the
chemical class and the m/z value of the parent compound [44–52]. Molecular fingerprints,
which are more accurate and representative of the structure of a molecule [53], have
not been used for the prediction of CCS values due to the difficulties associated with
variable selection.

This study proposes a novel approach for CCS prediction using molecular topology
fingerprints instead of molecular descriptors. First, we built a classification model to predict
the chemical super classes based on their fingerprints. This model was used to classify
chemical super classes. Then, CCS prediction models were developed for each super class.
Additionally, all 13,324 chemicals were combined and to build a direct CCS prediction
model. We also evaluated the impact of the chemical classes on the model accuracy.

2. Materials and Methods

2.1. Datasets

Experimental CCS databases and chemical information were collected from Zenodo,
PubChem, and published articles as referenced in Table 1. Firstly, we retrieved all the
missing SMILES notations from PubChem by PubChem CID using the Python PubChemPy
library [54]. All the datasets were concatenated, and molecular fingerprints were generated by
RDKit [55] (Open-source cheminformatics https://www.rdkit.org) (accessed on 10 April 2022)
modules in Python. Hence, a dataset containing PubChem CID, SMILES [56,57], and empirical
CCS value was saved as a csv file ready for model development and validation. The datasets
and the source codes are available at https://github.com/fyang22/CCS-Prediction-Publish
(accessed on 10 April 2022). Additional details about model optimization and construction
are available in the Supplementary Materials.

The merged dataset included 13,324 unique empirical CCS values from 108.4 to
450.6 Å2, measured by TWIM and DTIM. The merged dataset of 3313 chemicals was
categorized into 43 super classes, including POPs, lipids, sugars, metabolites, hormones,
drugs, etc. This dataset was then used for a classification model training and testing. Topo-
logical torsion (TT) fingerprints were chosen as features to encode chemical structure. TT
fingerprints were first introduced by Nilakantan et al. [58], which describe the atom type,
the topological distance between two atoms within four bonds, and torsion angles [59].
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samples required at each leaf node (min_samples_leaf). These two parameters appeared to
have the highest impact on the balance between the model robustness and accuracy. We
generated a grid with 25 candidates for the number of trees ranging from 100 to 200 and 2
to 15 for minimum sample leaf. For each model, we performed 5 folds of cross-validation
to assess the model accuracy. The model with the highest cross-validation accuracy was
chosen as the optimized classification model, and the GridSearchCV scores are plotted in
Supplementary Figure S2. The accuracy and F1 scores of each class are listed in Table 2.

Table 2. Results of super-class prediction modeling.

Super Class Training Test F1 Score Accuracy

Benzenoids 181 46 0.905 0.935
Lipids and lipid-like molecules 189 47 0.909 0.889
Organic acids and derivatives 184 46 0.848 0.813
Organic oxygen compounds 142 36 0.861 0.861

Organoheterocyclic compounds 140 35 0.822 0.857

2.3.2. Class-Based CCS Regression

For class-based regression modeling, we applied the optimized classification model
(mentioned above) to the entire dataset, and the results are shown in Supplementary Ta-
ble S2 and Figure S3. We independently performed the CCS prediction modeling for 5 data
splits based on this classification, using the random forest regression algorithm. A total of
80% of the datasets were trained and tested by the rest. Similarly, we generated a grid with
50 candidates and the number of tree fits of 100 to 500. To avoid overfitting, the minimum
sample leaf was set from 5 to 20. For each model and each class, 5 folds of cross-validation
were evaluated to assess the model accuracy (Supplementary Figure S4a–e).

2.3.3. Direct CCS Regression

For comparison, we developed and tested a direct CCS prediction model for the
entire dataset (13,324 compounds). A total of 80% of the data was used to train the
model, and 20% of the data to test with 5-fold cross-validation (Supplementary Figure S4f).
Similarly to the class-based CCS prediction model, n_estimators, and min_samples_leaf
were optimized. The hyper-parameter optimization followed the same steps as class-based
modeling (mentioned above). The model details and accuracy are listed in Table 3.

Table 3. Results of CCS prediction modeling.

Training Test

Dataset Data R2 Data R2 MRE (%)

All 10,659 0.972 2665 0.958 2.20
Benzenoids 1930 0.942 483 0.869 1.89

Lipids and lipid-like molecules 3675 0.940 919 0.932 2.33
Organic acids and derivatives 1392 0.950 348 0.901 2.21
Organic oxygen compounds 754 0.925 189 0.860 2.33

Organoheterocyclic compounds 2907 0.960 724 0.933 1.96

3. Results

3.1. Random Forest Classifier and Regression Prediction Model

Random forest is a suitable supervised machine learning algorithm for categorical and
nonlinear data. We used a random forest classifier model to divide chemicals into 5 super
classes by their molecular fingerprints. Then, we developed two CCS prediction strategies
using molecular fingerprints. One is based on molecular super classes and molecular
fingerprints, and another is a direct prediction by molecular fingerprints. As a CCS value is
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classifications by examining the feature importance, shown in Supplementary Figure S5.
Figure 1 shows a possible substructure of the most relevant bit-strings. For example, bit 792
(Figure 1b) would define whether a compound is classified as a Benzenoid or Organohete-
rocyclic compound. On the other hand, the bit-string 842 (Figure 1c) was used to decide
whether a chemical should go to Organic oxygen compounds. None of the bit-strings
displayed significant importance from others, indicating that the “incorrect” classification
mainly has to do with which functional groups were given the higher priority when the
original training set was being compiled.

(a) Sulfadimethoxine (b) 3-Methyloxindole
Figure 5. Random examples of “incorrect” predicted chemical.

3.3. Evaluation of Regression Models

In class-based modeling, the prediction R2 was from 0.860 to 0.933, and the median
relative error (MRE) of prediction was from 1.89% to 2.33% (Table 3). Direct CCS prediction,
on the other hand, reached an R2 of 0.95 and MRE of 2.2%, showing a good performance.
Although we dropped replicated chemicals having the same CCS values before generating
the modeling, considering that this dataset was merged by inter-laboratory studies, some
chemicals might have been seen during training. Thus it can affect the prediction accuracy.
Chemicals with less measurement deviation will increase the accuracy. On the contrary,
those who have a significant deviation will bias prediction performance. We confirmed
that for the direct prediction model, only 2% of the chemicals were common over 2665 test
samples. The dataset was split by category in the class-based prediction, and the replications
percentage was varied by chemical class. About 10% chemicals in the test set of Organic
oxygen compounds were used in training before prediction, and less than 5% for other
classes. Furthermore, except for a few outliers, the deviation of replications was under 6%.
Therefore, we considered that the impact of replicated chemicals was negligible.

Additionally, we compared the performance of class-based models. Organic oxygen
compound model obtained the lowest accuracy due to the lack of training data. Moreover,
in its test split, the relative error ≥10% only occurred to macromolecules (e.g., maltode-
caose (C60H102O51)), contributing 15% to the test split, which resulted in poor prediction
accuracy. Since we could not remeasure outliers’ CCS values, we hypothesize that the error
is associated with the compact and complex chemical structure. For instance, IMS measures
the rotational-average surface of the maltodecaose ion. While a 1024 bit fingerprint is not
enough to represent its complex chemical structure, resulting in a relative prediction error
of 41.9% (true CCS at 390.3 while predicted 226.6 Å2). Another possible reason can be
the training weight. The dataset size of Organic oxygen compounds were almost 5 times
less than Lipids and lipid-like molecules dataset, and glucose was the minority in the
Organic oxygen compounds dataset. The model cannot properly generate the chemical
rarely present during training. Therefore, higher accuracy was reached by Lipids and
lipid-like molecules model and the direct prediction model. Outliers of other models were
further investigated (shown in Supplementary Figure S6), and Figures 6 and 7a compare
the predicted results of class-based models and direct prediction model. Four error cases
have occurred to macromolecules (e.g., Diphenyl phosphate (C39H34O8P2)), which can be
explained by the same hypothesis as maltodecaose (mentioned above). Metronidazole
(C6H9N3O3) has 6 empirical CCS values measured with Waters TWIM, 5 were between 124
to 133 Å2, while 200 Å2 was measured by Picache et al. [60], leading a −61 Å2 residual error
(predicted CCS = 139.3 Å2). L-tenuazonic acid (C10H15NO3) was predicted to have a twice
higher CCS than the measured one by the class-based model (35% higher by the direct
prediction model). It might result from an inappropriate prediction by certain important
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Non-target analysis is a promising strategy that can be used for a broad scope of
chemicals, such as ”known-unknown” and ”unknown-unknown”. The development
of non-target screening methods is challenging at di↵erent points of the analytical
workflow. Additionally, the benefit of advancements in analytical instrumentation
and ”cheminformatics” tools, high-throughput data acquisition and ”real time” data
treatment strategies accelerate the detection of contaminants in the environment.
The present PhD project is aimed at addressing analytical challenges and establish-
ing a fundamental workflow for di↵erent purposes.

Bibliographic searches were essential to understand the concepts of exposomes, ex-
posure assessment, guidelines and regulations of environmental contaminants and,
more importantly, the call for emerging contaminants. High-resolution mass spec-
trometry has been developed and flourished in analytical chemistry. Understanding
the principal and main applications of di↵erent types of high-resolution mass spec-
trometers helps us to optimize the instrument used in the present PhD project. Fur-
thermore, the data processing workflow plays an important role in this PhD project.
The discovery of di↵erent data processing tools enables a more e�cient workflow of
data treatment. Furthermore, the enhancement of ion mobility spectrometry cou-
pled with HRMS in the area of small molecules and emerging contaminants was a
proof-of-concept regarding the bibliographic searches and application in this project.

The first method was developed with GC-APCI-IMS-HRMS. The commercial avail-
ability of GC-APCI-MS opens a door for the nontarget analysis of GC-amenable
compounds. Halogenated POPs, including PCBs and PBDEs, were investigated in
this method. The large numbers of PCB and PBDE congeners, along with the nat-
ural and special isotopic profiles of Cl and Br, are ideal chemicals to optimize our
analytical approach. Moreover, an in-house database was built with halogenated
POPs. APCI predominantly produces (quasi) molecular ions, enabling the struc-
tural elucidation of ”unknown-unknown” chemicals. Meanwhile, IMS improved iso-
meric separation and mass spectrum quality. The CCS value gives a new aspect to
associate the precursor ion to its fragmentation, facilitating mass spectrum interpre-
tation. Hexachlorobiphenyl, such as PCB-149, was frequently detected in samples,
and false positives were removed after manual inspection and the consideration of
CCS values.

The second method was focused on nontarget analysis in water samples. A generic
UHPLC-HRMS method was optimized, and an in-house database was created for
target analysis. Direct injection with a simple filtration and dilution was tested in
di↵erent types of water samples. Then, it can be significantly demonstrated that it
reduces the sample preparation procedure, which is suitable in wastewater analysis.
However, it showed a limitation in detecting trace-level chemicals in tap water and
surface water. Furthermore, the data treatment workflow and tools were explored in
this project. An automated target analysis workflow was defined in TASQ, and non-
target analysis was processed in MS-DIAL using MassBank Europe. Data analysis
was used to verify the results. Visual inspections are vital to prevent false positives.
In total, 65 chemicals were identified with the minimum L3. Banned pesticides, such
as simazine and metolachlor, and their successors or TPs deisopropylatrazine were
also detected in wastewater samples, indicating the high persistence and mobility
of these emerging contaminants. Contaminants related to diverse sources, such as
personal care products, pharmaceutical products, plasticizers, food additives and
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industrial products, were commonly found in di↵erent water samples. In the next
step, a separation method for ultra-polar chemicals can be investigated to expand
the detection range. IMS and CCS can be implemented in this method to increase
the identification confidence point.

The third method was developed for simultaneous steroid hormone analysis by iso-
topic dilution, especially cortisol quantification in juvenile fish. However, the method
development and validation are still in the early stage. It was proven in standard
solutions that CCS filtering can eliminate background noise in low concentrations
and real complex biological matrices. It can be a privilege (key advantages) in single
individual juvenile fish analysis.

In the last project, a CCS prediction tool was developed using machine learning
and molecular fingerprinting. The dataset was collected from di↵erent studies us-
ing di↵erent IMS techniques that aim to cover di↵erent classes of chemicals and
instruments. Two prediction approaches, class-based prediction models and direct
prediction models, were developed. Both approaches provide good prediction accu-
racies. The prediction deviation was estimated in the MRE to be between 1.89%
and 2.33%. Larger deviations were observed for macromolecules and for very small
molecules. As is often the case for machine learning approaches, more learning cases
can be added to enhance the prediction performance/accuracy.

Di↵erent projects were developed and discussed in this manuscript, presenting the
advancements and challenges in non-target analysis workflows under di↵erent points
of view. During this research work, the main topic/scientific question was to eval-
uate the advancements of analytical instruments, especially the benefit of IMS and
its synergy in data treatment strategies for non-target analysis. Generic analyti-
cal methods have been achieved in GC-APCI(+)-IMS-HRMS and LC-ESI(+)-IMS-
HRMS. The automatic target identification workflow and in-house database were
built in TASQ. The GC database contained the RT, accurate mass, isotopic pro-
files, and experimental CCS values with 118 halogenated POPs. The LC database
contained the RT, accurate mass, MS/MS (DIA mode), isotopic profile with 559
chemicals, together with the Bruker commercial water contaminants database, and
over 3000 common found environmental chemicals are in the list. The CCS value
will be complemented in the database with experimental and predicted values for
compound identification. On the other hand, the methods and strategies presented
in this manuscript, which are all first presented here, still need further improvements
despite the demonstration of the feasibility and their relative benefits in global en-
vironment and water monitoring. The methods developed in the present PhD re-
search only focuses on the positive ionization mode. Emerging contaminants, such
as PFAS, haloacetic acids, and bisphenol A (BPA), have not yet been fully studied.
Moreover, the IMS and CCS databases have not been applied in real clean water
analysis. Samples acquired through the GC analysis method were only processed
for target screening, and non-target analysis can be performed with the same raw
data afterward using MS-DIAL and similar workflows as discussed in water analysis.
Overall, two promising target and non-target analysis approaches and, in parallel, a
machine learning CCS predictor were accomplished during this PhD research. IMS
have demonstrated several advantages in non-target analysis. Structure elucida-
tion remains a time-consuming task in non-target analyses, while IMS can improve
the mass spectra interpretation. Experimental and predicted CCS values can reduce
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the number of candidates and increase the candidate identification confidence. More
sample applications can be assessed for the strategies optimized and presented for
this research work in the case of any GC/LC-IMS-HRMS screening/monitoring.
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Appendix 1: Identified candidates by target and non-target screening in wastewater.
It includes the identification approaches (TASQ and MS-DIAL), the identification
levels.
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Compound RT [min] Formula m/z [Da] Identification approach Identification level
1-Methylnictinamide 4.68 C7H9N2O 138 MS-DIAL L3

2,6-Dichlorobenzamide 7.38 C7H5Cl2NO 189.98 MS-DIAL L2
2,6-Xylidine 3.81 C8H11N 122.096 MS-DIAL L3

2-Aminophenol 1.85 C6H7NO 110.0587 MS-DIAL L3
2.4 Dimethylphenyl-N-methylformamidine 3.75 C10H14N2 163.1228 TASQ/MS-DAIL L3

2'-Deoxyadenosine 3.28 C10H13N5O3 252.1091 MS-DIAL L2
2-Naphthylamine 4.85 C10H9N 327.0081 MS-DIAL L2

2-Oxindole 4.54 C8H7NO 134.0713 MS-DIAL L2
4-Hexyloxyaniline 6.7 C12H19NO 194.15 MS-DIAL L3

4-Methylbenzotriazole 4.88 C7H7N3 134.07 MS-DIAL L2
4-Pyridoxate 3 C8H9NO4 184.0618 MS-DIAL L2

5-Methylcytosine 3 C5H7N3O 126.067 MS-DIAL L2
6-Methoxyquinoline 4.1 C10H9NO 160.076 MS-DIAL L2

Adenine 2.22 C5H5N5 136.0618 TASQ/MS-DAIL L2
Adenosine 3.16 C10H13N5O4 268.0032 TASQ/MS-DAIL L2
Allopurinol 2.33 C5H4N4O 137.045 MS-DIAL L2
Aminocarb 3.86 C11H16N2O2 209.1285 TASQ L1

Azoxystrobin 6.27 C22H17N3O5 404.1267 MS-DIAL L2
Benzotriazole 4.2 C6H5N3 120.05 MS-DIAL L3

Bis(2-ethylhexyl)phthalate 12.94 C24H38O4 391.2856 MS-DIAL L2
Bupivacaine 4.43 C18H28N2O 289.0546 TASQ L2

Caffeine 2.9 C8H10N4O2 195.088 MS-DIAL L2
Chloridazon-desphenyl-methyl 2.34 C5H6ClN3O 160.0273 TASQ L2

Chlorotoluron 7.06 C10H13ClN2O 213.0798 TASQ/MS-DIAL L2
Coniine 5.11 C8H17N 128.1438 MS-DIAL L3
Cotinine 3.97 C10H12N2O 177.0999 TASQ L2
Cytidine 2.039 C9H13N3O5 244.0943 MS-DIAL L3

Deethylatrazine 3.56 C6H10ClN5 188.0706 MS-DIAL L2
Deisopropylatrazine 6.36 C5H8ClN5 174.05 MS-DIAL L3

-3



Compound RT [min] Formula m/z [Da] Identification approach Identification level
Diethyl-phathalate 9.08 C12H14O4 223.0973 MS-DIAL L3

Diltiazem 5.58 C22H26N2O4S 415.167 MS-DIAL L3
Dimethenamid 7.12 C12H18ClNO2S 276.083 MS-DIAL L3

Dipropyleneglycol-dibenzoate 8.95 C20H22O5 343.1555 MS-DIAL L3
Dodemorph 11.97 C18H35NO 282.2796 TASQ L2

Emtricitabine 3.37 C8H10FN3O3S 248.0514 MS-DIAL L3
Fenpropimorph Carboxylic Acid 5.3 C20H31NO3 334.2384 TASQ L3

Flupyradifurone 4.44 C12H11ClF2N2O2 289.0566 TASQ L2
Fosthiazate 5.96 C9H108NO3PS2 284.0539 TASQ L2

Guanine 2.9 C5H5N5O 150.057 MS-DIAL L3
Guanosine 2.78 C10H13N5O5 284.1007 MS-DIAL L2

Indole-3-acetic acid 4.76 C10H9NO2 176.071 MS-DIAL L2
Indoline 3.23 C8H9N 120.0811 MS-DIAL L2

Isoleucine 2.53 C6H13NO2 132.10178 MS-DIAL L3
Isoquinolone 5.35 C9H7NO 146.0601 MS-DIAL L2

Kynurenic acid 3.61 C10H7NO3 190.0501 MS-DIAL L2
Lauryl diethanolamide 9.05 C16H33NO3 288.2548 MS-DIAL L2

L-Phenylalanine 3.23 C9H11NO2 166.0863 MS-DIAL L2
Metoclopramide 3.89 C14H22ClN3O2 300.1477 TASQ L2

Metolachlor 7.96 C15H22ClNO2 248.1416 MS-DIAL L3
Nicotinamide 2.96 C6H6N2O 123.0551 MS-DIAL L2
Nicotinic acid 2.21 C6H5NO2 124.0393 MS-DIAL L2
Nordiltiazem 6.5 C21H24N2O4S 401.153 TASQ L2

Paeonol 4.32 C9H10O3 167.0703 MS-DIAL L3
Phenylalanine 5.18 C9H11NO2 166.0867 MS-DIAL L2
Pipecolic acid 2.3 C6H11NO2 130.0862 MS-DIAL L3

Pyridafol 7 C10H7ClN2O 207.0311 TASQ L2
Quinmerac 4.39 C11H8ClNO2 222.0321 TASQ L1

Quinoline 1-oxide 4.6 C9H7NO 146.0601 MS-DIAL L2



Compound RT [min] Formula m/z [Da] Identification approach Identification level
Selegiline 4.46 C13H17N 188.1429 TASQ L2
Simazine 5.65 C7H12ClN5 202.086 TASQ L2

Tryptophan 3.56 C11H12N2O2 205.0971 MS-DIAL L2
Thymine 3..12 C5H6N2O2 127.0505 MS-DIAL L3

Tributyl phosphate 9.05 C12H27O4P 267.173 MS-DIAL L2
Uracil 1.96 C4H4N2O2 113.0347 TASQ/MS-DIAL L2

Uridine 2.47 C9H12N2O6 245.0785 MS-DIAL L2
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