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Analyse et caractérisation de la structure 

tissulaire de l’épiderme à partir 

d’imagerie confocale 

La segmentation précise des cellules de l’épiderme sur les images de microscopie à réflectance confocale 
est importante pour l'étude non invasive de la structure tissulaire de l’épiderme de la peau saine et 
malade. Ces travaux sont néanmoins limités par le nombre d'échantillons traités du fait du recours 
intensif à l'utilisateur qui doit notamment pointer manuellement chacune des cellules. L'objectif de ce 
travail doctoral est de développer et d’implémenter une chaîne de traitements automatique pour analyser 
la structure de la peau, dans différents contextes, à partir d'images confocales. 
Notre première contribution est un pipeline d'analyse d'images qui repose sur la détection des 
kératinocytes en fonction des caractéristiques morphologiques des membranes les entourant, appelé 
FIAP. Tout d'abord, nous identifions la région d'intérêt contenant les cellules, puis nous identifions ces 
cellules individuellement au sein de la région d’intérêt à l'aide d'applications successives de filtres de 
Sato et de Gabor. La dernière étape est le post-traitement des résultats précédemment obtenus pour 
l'amélioration de la détection des cellules et la suppression des régions détectées de taille aberrante. 
Nous avons évalué le pipeline proposé sur des données réelles annotées manuellement et sur des données 
de synthèses préalablement générées. Nous avons appliqué le pipeline à 5345 images de la joue et de 
l'avant-bras de participants âgés de 3 mois à 80 ans pour étudier l'évolution de l'architecture de 
l’épiderme au cours de la maturation et du vieillissement de la peau, ce qui en fait la première étude à 
grande échelle d'images de microscopie confocale. Nous avons démontré que la peau mûrit 
dynamiquement pendant l'enfance et vieillit à l'âge adulte, car la taille des kératinocytes augmente avec 
l'âge sur la joue et l'avant-bras, tandis que la topologie et le rapport d'aspect cellulaire restent inchangés 
à travers différentes couches épidermiques, parties du corps, et âge. 
La deuxième méthode développée, appelée DermoGAN, est une nouvelle architecture de réseau de 
neurones fondée sur l’exécution de deux tâches en parallèles, constituée chacune d’un cycle generative 
adversarial network (cycle-GAN). La première tâche apprend à traduire des images de microscopie à 
réflectance confocale en segmentations binaires, apprenant ainsi le modèle de bruit et de texture des 
images, tandis que la seconde tâche transforme les images de microscopie à réflectance confocale filtrées 
par un filtre de Gabor en segmentations binaires, apprenant ainsi la structure épidermique visible sur les 
images. Nous affinons la segmentation en appliquant l'algorithme StarDist pour détecter les formes 
convexes, refermant ainsi toutes les membranes incomplètes et séparant les cellules voisines. 
DermoGAN a également été validé sur des données réelles annotées manuellement et comparé au FIAP. 
Les deux méthodes proposées ont été comparées à des approches de machine learning fondées sur U-
net, Cell Cutter et cycle-GAN. 
Nous montrons que DermoGAN est polyvalent, adaptable et généralisable car il peut être utilisé sur des 
images générées par d'autres techniques d'imagerie de différents tissus et donne des résultats précis sans 
réentraînement du modèle. Nous concluons que la précision de DermoGAN dépend de l’apparence de 
l'architecture tissulaire dans l'ensemble de données d’entrainement (cellules confluentes par rapport aux 
cellules indépendantes) plutôt que du type d'images, de l'organe ou du tissu visibles sur les images. 
Nous avons exploré la possibilité d'utiliser DermoGAN pour la traduction des images de microscopie à 
réflectance confocale en histologie. 
Enfin, nous avons développé une interface utilisateur regroupant toutes les méthodes développées. 
 
Mots-clés : microscopie à réflectance confocale, kératinocytes, analyse d’images, multi-tâches, cycle-
GAN, traduction d'images non appariées. 
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Analysis and characterization of the tissue 

structure of the epidermis from confocal 

imaging 

Accurate segmentation of epidermal cells on reflectance confocal microscopy (RCM) images is 
important in the non-invasive study of epidermal architecture and topology of both healthy and diseased 
skin. However, analysis of these images is currently done manually, and therefore time-consuming, 
subject to human error and subjective interpretation, while at the same time being hindered by low image 
quality due to noise and signal heterogeneity.  In this thesis, we design and implement two methods for 
automatic cell segmentation of granular and spinous RCM images of the human epidermis.  
Our first contribution is a full image analysis pipeline (FIAP) which relies on the detection of 
keratinocytes based on their membrane morphological features. First, we identify the region-of-interest 
(ROI) containing cells and we then identify individual cells within the ROI using successive applications 
of Sato and Gabor filters. The final step is a post-processing improvement of cell detection and removal 
of size outliers. We evaluated the proposed pipeline on manually annotated real data and generated 
synthetic data, and applied it to 5345 images of the cheek and volar forearm of participants, ages 3 
months to 80 years, to study the evolution of epidermal architecture during skin maturation and ageing, 
making it the first large-scale study of RCM images and showing that skin dynamically matures during 
childhood and ages during adulthood, as keratinocyte size increases with age on both cheek and volar 
forearm, while topology and cell aspect ratio remain unchanged across different epidermal layers, body 
sites and age. 
The second developed method, called DermoGAN, is a novel neural network architecture based on an 
unsupervised dual-task cycle generative adversarial network (cycle-GAN). The first task learns to 
translate real RCM images into binary segmentations thus learning the noise and texture model of RCM 
images, while the second task maps Gabor-filtered RCM images into binary segmentations, learning the 
epidermal structure on RCM images. We refine the segmentation by applying the pre-trained StarDist 
algorithm to detect star-convex shapes, thus closing any incomplete membranes and separating 
neighboring cells. DermoGAN was also validated on manually annotated real data and compared to the 
FIAP. Both proposed methods were compared to machine learning approaches based on U-net, Cell 
Cutter and cycle-GANs.  
We show that DermoGAN is versatile, domain adaptable and generalizable as it can be used on images 
generated by other types of imaging techniques of different tissues and gives accurate results with no 
retraining of the model. We conclude that the accuracy of DermoGAN depends on the nature of the 
tissue architecture in the training dataset (confluent cells vs. independent cells) rather than the type of 
images or the precise organ or tissue.  
We explore the possibility of using DermoGAN for RCM to histology translation to visualize RCM 
insights in the form of histology slides for users who are not familiar with RCM. 
Finally, we develop a user interface where users can find all the developed methods.   
 
Keywords:  reflectance confocal microscopy, keratinocytes, image analysis, multi-task, cycle-GAN, 
unpaired image translation. 
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Reflectance confocal microscopy RCM 
Full image analysis pipeline FIAP 
Generative adversarial network GAN 
Cycle generative adversarial network cycle-GAN 
Optical coherence tomography OCT 
Dermal epidermal junction DEJ 
Stratum corneum SC 
Stratum granulosum SG 
Stratum spinosum SS 
Stratum basale SB 
Supra-papillary epidermis SPE 
Trans-epidermal water loss TEWL 
Principal components analysis PCA 
Convolutional neural network CNN 
Marked point process MPP 
Fully convolutional neural network fCNN 
Region of interest ROI 
Support vector machine SVM 
Grey level co-occurrence matrix GLCM 
Graphical user interface GUI 
Line-field confocal optical coherence tomography LC-OCT 
Singular value decomposition SVD 
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List of Figures 

Fig. 1 (A) RCM stacks are gray-scale images, orthogonal to the vertical sections typical of 
skin histology. The left panel shows an illustration of the undulating DEJ in blue. The depth 
limit of RCM is delineated in green, and RCM optical sections are represented with black 
dotted lines. The right panel shows a stack of images at sequential depths corresponding to 
these optical sections. (B) Diagram of an in vivo reflectance confocal microscope. (C) Image 
of a VivaScope 1500 (Lucid, Inc., Rochester, New York) reflectance confocal microscope. 
RCM, Reflectance confocal microscopy; DEJ, Dermal epidermal junction. 

Fig. 2 Representative RCM images of minimally pigmented skin acquired at depths 
corresponding to the (A) stratum corneum, (B) stratum granulosum, (C) stratum spinosum 
and (D) stratum basale. In red, examples of granular and spinous keratinocytes. Scale bar = 
50 µm.  RCM, Reflectance confocal microscopy. Contrast was adjusted for clearer images. 

Fig. 3 Representative RCM images of a heavily pigmented skin acquired at depths 
corresponding to the (A) stratum corneum, (B) stratum granulosum, (C) stratum spinosum 
and (D) stratum basale. In red, examples of granular and spinous keratinocytes. Scale bar = 
50 µm.  RCM, Reflectance confocal microscopy. 

Fig. 4 RCM images with bright spots due to (A) keratin in hair shafts and (B) clustered 
keratinocytes. Scale bar = 50 µm. RCM, Reflectance confocal microscopy. 

Fig. 5 Diagram of epidermal layer classification used by Somoza et al. 

Fig. 6 Results of applying different traditional methods for segmentation on a same image. 

Fig. 7 U-net architecture. A teal box represents a feature map. The number of channels is 
indicated on top of the feature map box. The image size in pixels is indicated on the lower left 
side of the box. Boxes with dark blue contours represent copied feature maps. The arrows 
indicate the different operations. 

Fig. 8 RCM image of the stratum spinosum of minimally pigmented skin, Fitzpatrick 
phototype II. In blue, the border between tissue and background formed by micro-relief lines. 
In pink, non-informative areas. In orange, bright spots. In red, epidermal cells. RCM, 
Reflectance confocal microscopy. Image contrast was adjusted for better visualization.  Scale 
bar = 50 µm. 

Fig. 9 Steps of the identification of the ROI. The borders between the tissue and the 
background are identified using a Snake algorithm. The ROI was then refined using a Support 
Vector Machine algorithm trained to detect the non-informative areas, and a succession of 
morphological operations to remove bright spots in the RCM image. In blue is the border of 
the region of interest. In pink is an area that should have been removed through the different 
ROI identification steps but was not. Image contrast was adjusted for easier visualization. 
Scale bar = 50 µm. ROI, region of interest; RCM, Reflectance confocal microscopy. 
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Fig. 10 Four Haralick features were used to train an SVM to distinguish between non-
informative and informative areas in RCM images. (A) Contrast vs. Homogeneity per patch. 
(B) Energy vs. Contrast per patch. (C) Homogeneity vs. Dissimilarity per patch. SVM, 
Support vector machine; RCM, reflectance confocal microscopy. 

Fig. 11 Image processing steps for the identification of individual cells. A median filter and a 
local normalization were applied to the image with the ROI mask, followed by a Sato filter. Its 
output was filtered with a median filter and locally normalized, and a Gabor filter was applied 
to it. A threshold was applied on the output after histogram equalization and small blobs were 
removed with a connected components analysis. The result was then skeletonized, and spurious 
branches were removed. Image contrast was adjusted for easier visualization. Scale bar = 50 
µm. ROI, region of interest. 
Fig. 12 Post-processing steps. (A) The skeleton obtained after the previous step was cleaned, 
and contours were detected. Small contours were removed, as well as long contours close to 
the border with the background. The remaining contours were divided into two groups: small 
and big contours. Big contours were filtered again to improve the detection locally. The new 
resulting contours were then combined to the small contours and their centers were detected. 
In pink, some contours where two cells were merged are highlighted. (B) Example of large 
contours improvement for a stratum granulosum image. (C) Example of large contours 
improvement for a stratum spinosum image. Image contrast was adjusted for easier 
visualization. Scale bar = 50 µm. 

Fig. 13 (A) Process of creation of synthetic RCM image of the stratum spinosum created using 
a hard-core process. First, points set apart with a minimum set distance from each other are 
created. Second, a tissue mask is created using Bezier curves and only the points within the 
mask are kept. Third, these points are used as seeds to initiate a Voronoi tessellation. Lastly, 
different noise levels are added to the image. (B) Side-by-side comparison of a real RCM image 
and a synthetic RCM image. RCM, Reflectance confocal microscopy. 
Fig. 14 Detection accuracy evaluation steps. A marker-controlled watershed was applied to 
the detected cell centers and the resulting labels were compared to the manually detected 
ground truth, in pink. The returned metrics were precision and accuracy. Image contrast was 
adjusted for easier visualization. Scale bar = 50 µm. 

Fig. 15 Diagram of the FIAP used for keratinocytes detection. The sections are color coded as 
follows: blue, ROI identification; pink, individual cells identification within the ROI; teal, 
post-processing steps. FIAP, Full image analysis pipeline; ROI: region of interest. 

Fig. 16 The median cell area ± standard error of mean per age group, epidermal layer and 
body site reflect the dynamic maturation and ageing of the epidermis. * Indicates that the 
median cell area is significantly different between the SG and the SS for a body site and age 
group. # Indicates that the median cell area is significantly different between the cheek and 
the volar forearm per age group and epidermal layer. SG, stratum granulosum; SS, stratum 
spinosum. 

Fig. 17 Median cell area per participant on (A) the volar forearm (SG R² = 0.465; SS R² = 
0.00693) and (B) the cheek (SG R² = 0.0324; SS R² = 0.0708) colored by age group. We fit a 
linear regression for each epidermal layer and body site but plot it only when significant. SG, 
stratum granulosum; SS, stratum spinosum. 
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Fig. 18 (A) Median SC thickness per participant (children R²= 0.187), (B) Median SPE 
thickness per participant (children R² = 0.279). A linear correlation with age was not 
significant in the adult group for either the SC or the SPE thickness. SC, stratum corneum; 
SPE, supra-papillary epidermis. 

Fig. 19 Median cell aspect ratio per participant. SG, stratum granulosum; SS, stratum 
spinosum. 

Fig. 20 Average probability distribution of the number of Delaunay nearest neighbors per cell 
for (A) SG on the volar forearm, (B) SS on the volar forearm, (C) SG on the cheek, and (D) 
SS on the cheek per age group. SG, stratum granulosum; SS, stratum spinosum. 

Fig. 21 Probability distribution of the number of Delaunay nearest neighbors per cell for the 
cooperators model (in green), and defectors model (in red). 

Fig. 22 Distribution of skewness per age group for (A) SG on the volar forearm, (B) SS on the 
volar forearm, (C) SG on the cheek, (D) SS on the cheek. In red, skewness of the probability 
distribution of the Delaunay nearest neighbors for the defectors model. In green, skewness of 
the probability distribution of the Delaunay nearest neighbors for the cooperators model.SG, 
stratum granulosum; SS, stratum spinosum. 

Fig. 23 (A) Synthetic RCM images and its segmentation ground truth. (B) Tested U-net 
architectures segmentations on a synthetic RCM image. (C) Real RCM images and its 
segmentation ground truth. (D) Tested U-net architectures segmentations on a real RCM 
image. RCM, Reflectance confocal microscopy. 
Fig. 24 DermoGAN architecture. The first task maps RCM images to the unpaired synthetic 
binary images. Whereas the second task learns the structure RCM images of the epidermis by 
translating Gabor filtered RCM images into binary images. RCM, Reflectance confocal 
microscopy. 

Fig. 25 Comparison of the two cycle-GAN based approaches and the proposed DermoGAN. 
Manually obtained ground truth in the form of cell centers in green. sDermoGAN outperforms 
both methods. 

Fig. 26 RCM image analyzed with the 5 presented algorithms. DermoGAN outperforms 4 out 
of 5 other methods on all images, and outperforms FIAP on 6/9 images. RCM, Reflectance 
confocal microscopy; FIAP, Full image analysis pipeline. 

Fig. 27 DermoGAN can be extended using retraining to images acquired through different 
imaging techniques and outperforms traditional thresholding algorithms. (A) Input 
florescence microscopy images. (B) Output of DermoGAN applied to image A. (C) 
Application of 17 thresholding approaches to the same image. 

Fig. 28 DermoGAN2 was trained entirely on synthetic images. (A) Synthetic non-confluent 
images created using the SIMCEP software. (B) Canny-filtered non-confluent images created 
using the SIMCEP software. (C) Binary non-confluent images. 

Fig. 29 DermoGAN2 applied to an image of confluent BV-2 cells (on the left), resulted in 
accurate detection of cells (on the right). Manually determined cell centers were plotted on 
DermoGAN2 output in yellow. 
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Fig. 30 DermoGAN2 applied to an image of SK-BR-3 cells (A) resulted in accurate detection 
(B) of cells compared to thresholding methods (C). 

Fig. 31 DermoGAN2 applied to a mass spectroscopy image (on the left) resulted in accurate 
cell detection (on the right) with merging of adjacent cells. 

Fig. 32 Histology image of healthy skin. Epidermis appears as a purple connected layer, while 
the dermis appears as a sparsely populated pink tissue.  

Fig. 33 Application of DermoGAN3 on a histology image of healthy skin. (A) Original 
histology image. (B) Color normalized image. (C) Output of DermoGAN3 using the color 
normalized image. (D) Binarized output of DermoGAN3.  

Fig. 34 Flowchart for the use of the developed graphical user interface including all 
developed methods. 

Fig. S1 Gabor filters applied to the RCM image during the FIAP. RCM, Reflectance confocal 
microscopy; FIAP, Full image analysis pipeline. 

Fig. S2 Synthetic images used in the training of the models. On the left, a synthetic binary 
image used in the DermoGAN training, and on the right synthetic RCM images of different 
noise levels and cell sizes used in U-net training. RCM, Reflectance confocal microscopy. 

Fig. S3 Structure of the generator and discriminator networks used in the cycle-GAN and 
DermoGAN approaches. 

Fig. S4 To obtain keratinocytes positions. We apply the 𝐺𝐺𝐴𝐴2𝐵𝐵: 𝐴𝐴 → 𝐵𝐵 network to locally 
normalized RCM image and obtain an incomplete cell identification, which is then cleaned by 
closing any holes in the detected membrane and the outside contour, and finally the cell 
identification is refined using StarDist algorithm. RCM, reflectance confocal microscopy 
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Table 4 Cell detection accuracy on 6 stratum granulosum and 3 stratum spinosum RCM images 
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Median data shown as median (± 1 standard deviation). RCM, Reflectance confocal 
microscopy. 
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microscopy. 
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Chapter 1 Introduction: Reflectance 

confocal microscopy and its uses in skin 

research, available computational 

methods, and motivation for the work 

1.1 Introduction to Reflectance confocal microscopy 

Biopsies followed by microscopic analysis of skin are the gold standard for the morphological 

investigation of skin1. Unfortunately, biopsies are invasive, leading to local inflammation which 

may alter the original morphology, are not reproducible on the same body site, and can be 

traumatizing for the patient when done repeatedly. They may also raise ethical questions, such 

as for cosmetic testing2 or the study of healthy infant skin. These limitations to biopsies in 

combination with advances in optics have allowed the development of non-invasive techniques 

for the imaging of skin, including optical coherence tomography (OCT)3–5, magnetic resonance, 

and reflectance confocal microscopy (RCM)6,7.  

RCM allows for real-time in vivo visualization of the epidermis and the upper parts of the 

dermis at cellular level6,8, providing information on the morphology and topology of the skin9. 

It enables the repeated sampling of the tissue without damage to the observed area, making it a 

technique of choice for the observation of the dynamic changes of the upper parts of the skin 

over-time and for the quantitative and qualitative study of the cellular structures involved in the 

makeup of the skin barrier10–12.  Unfortunately, RCM is limited by the maximum observable 

depth in the tissue before the signal-to-noise ratio becomes too low to acquire any significant 

information, but it provides information faster that microscopic analysis of a biopsy sample.  

The confocal microscope was invented by Marvin Minsky in 195713. Two reflectance confocal 

microscope versions are currently commercially available, a handheld in vivo skin imaging 
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microscope14 and a wide-probe RCM15. They offer a horizontal resolution of 0.5 – 1 µm and a 

vertical resolution (optical section thickness) of 3 – 5 µm, to a depth of 150 – 200 µm depending 

on the observed site15. 

RCM relies on the detection of signals arising from the reflection of light at the interface 

between microstructures with different indices of refraction. In skin, such microstructures are 

cell membranes, collagen and keratin fibers, melanosomes, and intracellular organelles16. The 

closer the size of the organelle is to the wavelength of the light source and/or the higher its 

refractive index is compared to its surroundings, the brighter it appears8 on an RCM image.  

RCM is a suitable technology for examining structures in vivo since the energy from the 

incident light is sufficient to generate a signal but not so strong as to trigger a photobiological 

process. Therefore, RCM enables visualization of living cells without causing a disruption or 

an alteration to their structure or function. 

RCM stacks are gray-scale images acquired at sequential depths starting from the skin surface. 

Their orientation is perpendicular to the vertical sections typical in histopathology.  

An in vivo reflectance confocal microscope is composed of a light source, apertures, lenses, a 

detector, and a beam-scanning mechanism17 (see Fig. 1). The light source is typically a near-

infrared laser. In the reflectance setup of a confocal microscope, the objective lens plays a dual 

role of focusing the illumination onto a specific spot of the sample and collecting the reflected 

signal. A detection pinhole exclusively allows light reflected from the illuminated point on the 

sample to reach the detector while effectively rejecting scattered light. By systematically 

scanning the illumination spot over the sample, a complete image is formed through the 

reconstruction of the acquired data.  
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Fig. 1 (A) RCM stacks are gray-scale images, orthogonal to the vertical sections typical of 

skin histology. The left panel shows an illustration of the undulating DEJ in blue. The depth 
limit of RCM is delineated in green, and RCM optical sections are represented with black 
dotted lines. The right panel shows a stack of images at sequential depths corresponding to 

these optical sections. (B) Diagram of an in vivo reflectance confocal microscope. (C) Image 
of a VivaScope 1500 (Lucid, Inc., Rochester, New York) reflectance confocal microscope. 

RCM, Reflectance confocal microscopy; DEJ, Dermal epidermal junction. 



Introduction: Reflectance confocal microscopy and its uses in skin research, available computational 
methods, and motivation for the work 
 
 

   20 
 
 

1.2 RCM for skin research  

RCM has become a valuable tool in dermatology to visualize skin structure in a wide range of 

applications, e.g., study of healthy skin maturation and ageing, diagnosis and monitoring of 

skin inflammatory diseases and cancer, delimitation of lesions, and evaluation of treatment 

efficacy.  

1.2.1 Epidermal structure 

The epidermis is an avascular keratinized stratified squamous epithelium generally made of 

four distinct layers. From superficial to deepest, these layers are called stratum corneum (SC), 

stratum granulosum (SG), stratum spinosum (SS), and stratum basale (SB). In the soles and 

palms, a thicker epidermis is observed, with an additional fifth layer between the cornified and 

the granular layers called the stratum lucidum. 

Most cells in all layers below the SC are referred to as keratinocytes, thus named due to their 

involvement in the manufacturing and storing of keratin intermediate filaments. In contrast to 

the viable keratinocytes, the SC is made of dead but enzymatically active cells called 

corneocytes18. Throughout the lifetime of a person, these cells are shed, and replaced by others 

from the lower layers. The process starts in the basal layer, where cells are continuously 

produced (by stem cells and transient amplifying cells), lose their attachment to the basal 

membrane, and migrate towards the upper layers, while undergoing differentiation towards 

final cell death in a process called cornification. 

RCM can be used to observe the epidermal layers, the dermal-epidermal junction (DEJ) and the 

upper layers of the dermis11, thus allowing the computation of several quantitative descriptors 

of skin structure, such as keratinocyte density, number of basal keratinocytes around each 

dermal papilla, length of DEJ, and circumference of dermal papillae which are small, finger-
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like projections of the dermis into the epidermis. They serve multiple functions, including 

increasing the contact surface between the dermis and the epidermis, supplying nutrients, 

facilitating sensation, supporting hair and nail growth, contributing to temperature regulation, 

and forming unique fingerprint patterns. Measuring these parameters on RCM images enables 

the quantitative study of skin structures and their evolution over time, for example as a response 

to different stimuli. Besides the geometrical parameters we can also extract information about 

the topological organization of the epithelium, for example the distribution of the number of 

nearest neighbors to each cell, an important factor in determining molecular exchange rates 

between neighboring cells9. 

The top slices of RCM stacks represent the SC, which appears as large bright areas forming 

islands surrounded by dark empty areas (Fig. 2A). These dark areas are due to grooves called 

skin micro-relief lines6, while the bright signal in the island structure is due to the high 

reflectance of keratin. The cells are anucleated dead corneocytes, made primarily of aggregated 

keratin filaments embedded in a lipid matrix18, polygonal in shape, and 10 – 30 µm in size8. 
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Fig. 2 Representative RCM images of minimally pigmented skin acquired at depths 

corresponding to the (A) stratum corneum, (B) stratum granulosum, (C) stratum spinosum 
and (D) stratum basale. In red, examples of granular and spinous keratinocytes. Scale bar = 
50 µm.  RCM, Reflectance confocal microscopy. Contrast was adjusted for clearer images. 

 
SC thickness is an important factor involved in skin barrier function12,18. The thicker the SC, 

the more difficult it is for a noxious substance to penetrate the viable parts of the epidermis (or 

equivalently for water to transverse the epidermis and evaporate, potentially leading to tissue 

desiccation). It is 12 to 208 µm thick depending on the body site19. Moreover, corneocytes 
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provide a mechanical strength to the skin surface and are involved in protecting the lower layers 

against ultraviolet (UV) radiation, while the lipid matrix is important in maintaining skin 

permeability20,21. SC thickness can be calculated by the depth difference of the uppermost and 

the lowest optical sections that contain SC structures.  

The stratum granulosum (Fig. 2B) and stratum spinosum (Fig. 2C) are respectively the second 

and third layer in the epidermis from the skin surface. They are composed of keratinocytes 

arranged in a honeycomb pattern in minimally pigmented skin and a cobblestone pattern in 

heavily pigmented skin11 (Fig. 3B, 3C). In minimally pigmented skin, the cells are characterized 

by a dark center, grainy cytoplasm due to organelles and microstructures10, and surrounded by 

bright membranes8,11. In heavily pigmented skin types, due to the high melanin-content in 

melanosomes, which gives a strong reflectance signal, we observe bright keratinocytes 

separated by a dark contour22. Viable keratinocytes are found at depths of 20 – 100 µm and are 

about 10 – 15 µm in size8. Cells are typically larger in the granular layer than in the spinous 

layer9 where they have a higher density. Indeed, as the keratinocytes further differentiate while 

climbing towards the surface, they get wider and flatter. 
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Fig. 3 Representative RCM images of a heavily pigmented skin acquired at depths 
corresponding to the (A) stratum corneum, (B) stratum granulosum, (C) stratum spinosum 
and (D) stratum basale. In red, examples of granular and spinous keratinocytes. Scale bar = 

50 µm. RCM, Reflectance confocal microscopy. 
 
 

Towards the basal layer of the epidermis, the cells appear similar in shape but smaller in size 

compared to the two previous layers (Fig. 2D). In contrast to the other layers, the basal 

keratinocytes make a monolayer. These cells are precursors of the keratinocytes in the upper 
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layers and appear brighter than them due to the presence of melanin, which has a high 

reflectance7,23. Melanin is made by melanocytes scattered through the basal layer and then 

transferred to the keratinocytes24. The cells of this layer are adherent to a collagenous membrane 

that separates the epidermis from the dermis called the basement membrane. 

The thickness of the viable epidermis can be calculated as the depth difference between the 

optical sections at which we observe discernable viable keratinocytes in the stratum granulosum 

and that at which the top of the DEJ appears in the stratum basale. 

The undulating DEJ (Fig. 1A) separates the epidermis from the dermis and is located at 50 – 

100 µm below the skin surface. 

Sometimes, bright areas can be observed on RCM images at various layers. They may arise 

from the keratin in hair shafts (Fig. 4A) or from clustered keratinocytes called mottled 

pigmentation2 (Fig. 4B). 

 
Fig. 4 RCM images with bright spots due to (A) keratin in hair shafts and (B) clustered 

keratinocytes. Scale bar = 50 µm. RCM, Reflectance confocal microscopy. 
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1.2.2 Skin maturation and aging  

Skin structure matures and ages, changing throughout our lifetime25,26. These changes are 

observable on RCM images.  

 Infant and adult skins are structurally different, from skin surface appearance to epidermal 

layers thicknesses, dermal extra-cellular matrix structures, and skin composition27. Indeed, 

infant skin has thinner more abundant micro-relief lines9,12 which plays a role in the absorption 

of topically applied products, as micro-relief lines may act as reservoirs for the products, 

therefore affecting their permeability kinetics. Additionally, the SC is about 30% thinner in 

children than in adults, and the supra-papillary epidermis is 20% thinner12,28.  

The structural differences between adult and children skin translate into functional differences, 

e.g., trans-epidermal water loss (TEWL) which reflects the quality of the skin barrier function, 

is significantly higher in children and decreases during childhood until reaching adult values12. 

Moreover, children epidermal cells turnover is faster28, leading to smaller keratinocytes and 

corneocytes9,27, and therefore denser epidermal layers. With age, cell perimeter and surface area 

increase, as well as overall epidermal thickness and individual layer thickness.  

Skin continuously changes and keeps maturing during adulthood. RCM can be used to 

document and quantify subclinical microscopic changes in skin11,22,29–31 and their correlation to 

early manifestations of skin ageing22 and the effects of cosmetic products on the reduction of 

these visual markers of age, e.g., wrinkles, thinning of the skin, hyper-pigmentation spots, and 

loss of elasticity. Indeed, with age, keratinocytes honeycomb pattern becomes more irregular, 

and mottled pigmentation becomes more frequent2,30. Collagen fibers also become more 

compact under the DEJ. A decrease in the number of dermal papillae in aged skin has also been 

observed on RCM images30,32.  
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These changes in skin structure and morphology are more frequent and obvious in sun-exposed 

areas where photoaging, caused by exposure to UV radiation, accelerates the natural 

biochemical and physiological ageing processes. Indeed, exposure to solar UV radiation is a 

well-documented risk factor of overall skin damage and skin cancer, and an accelerant of skin 

aging. RCM allows the longitudinal assessment of the effects of sun exposure on skin33 as it 

can be performed repeatedly and non-invasively on the same areas over time. RCM images 

have shown that total epidermal thickness and keratinocyte density are greater in sun-exposed 

areas and on the face10 and their honeycomb pattern disturbed33, two microscopic signs of early 

skin ageing.  

1.2.3 Skin diseases  

Descriptive features of skin inflammatory diseases can be observed in vivo using RCM, e.g., 

psoriasis34–36 and allergic contact dermatitis20,37,38, for both diagnosis and disease progression 

monitoring. As it is faster than performing a biopsy followed by microscopic analysis of a 

sample, RCM has potential to be integrated as an initial step in the clinical diagnosis. 

Psoriasis is characterized by a thickening of the SC and viable epidermis; both features 

quantifiable by RCM. RCM has been used in patients with psoriasis to document thinning of 

the granular layer8, increase in the number and size of dermal papillae, and increase in 

keratinocytes size and brightness.  

Diagnosis of allergic contact dermatitis can be guided by RCM. Some of its characteristics 

observable in RCM are disrupted SC, vasodilatation, increased epidermal thickness and 

detached corneocytes20,38.  

RCM is also useful in the diagnosis of cancer, as it can show, among other things, DEJ disarray 

and atypical cells, which have been identified as 2 of 18 RCM features useful in the diagnosis 

of malignant melanoma39. RCM has also been shown to be useful in the diagnosis of non-
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melanocytic lesions, using features such as parakeratosis, irregular honeycomb pattern in the 

SS and SG, and spindle shaped cells with dendritic branches infiltrating the epidermis40. In 

combination with dermoscopy, RCM has been shown to increase diagnosis specificity and 

reduce the number of unnecessary excisions of potential melanocytic lesions41–43 by 2-3 times44, 

which not only has a positive impact on patients, but also on the healthcare system and costs 

associated with the management of skin cancer.  

In addition to diagnosis, RCM can be used in the examination of tumor/disease spread. Indeed, 

its large field of view, much larger than that of a biopsy, can be used to determine lesion 

margins, which may be useful when monitoring the spreading of a disease and/or its shrinkage 

post non-surgical treatment as a measure of its efficacy, or to guide surgical excision of a 

cancerous lesion.  

1.2.4 Cosmetology 

RCM is useful in the quantification of the impact of cosmetic formulations on skin, e.g., retinoic 

acid, retinol, cleansers, and moisturizers45–50. This is particularly useful, as biopsies cannot be 

ethically performed for these tasks. RCM, therefore, offers a non-invasive alternative to link 

the effects of cosmetic products on epidermal structure and skin surface appearance.  

1.2.5 Limitations of RCM use for the study of skin  

RCM main limitation is its maximum penetration depth, which varies by body site and tissue 

type, before the signal-to-noise ratio is too low to extract any useful information. In skin, we 

can only observe the epidermis, DEJ, and upper layers of the dermis. Indeed, while refractive 

microstructures are abundant in the dermis, light intensity and coherence drop exponentially 

with depth.  
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RCM is also limited, compared to histology, by the lack of automated methods for features 

extraction. Indeed, analysis of RCM images is mainly performed manually, which is time-

consuming, tedious, and subject to inter-and intra- expert differences. Additionally, it requires 

4-6 months of training15. Developing standardized validated methods for the automated analysis 

of RCM images could help it become more wide-spread51, both in skin research and clinical 

practice.  

Using RCM may be inadequate when multiple invasive tests have to be performed. Indeed, one 

biopsy sample can be used to perform multiple analysis, e.g., DNA sequencing, cytogenetic 

testing, on top of its microscopic examination which is not possible when using RCM.  

1.3 Existing computational methods for RCM images 

analysis 

Some methods have been developed for the automated extraction of certain descriptors from 

RCM images, e.g., identification of the epidermal layers, of pigmented skin lesions, and of 

cells. However, to date none of these methods have been integrated in clinical care.  

1.3.1 Automatic identification of epidermal layers 

Multiple attempts at automating epidermal layer identification have been made using machine 

learning52–56. The maximum accuracy obtained by these algorithms is reported to be 88%.  

Somoza et al.55 achieved a classification accuracy of 54% for epidermal layer identification 

using an unsupervised texton-based method (see Fig. 5). Textons are minimal building blocks 

of vision with no strict definition in literature. The approach involved creating a texton library 

of micro-structures by convolving RCM images with 10 Leung-Malik filters that matched the 

size of a keratinocyte. A principal components analysis (PCA) was then applied to reduce the 

dimensionality of the texton-space to 3, followed by K-means clustering with 15 clusters. This 
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texton library was applied to RCM images, and the results were projected onto the 3 selected 

PCA axes. Based on the Euclidean distance, each pixel on the RCM images was classified as 1 

of the 15 textons and represented as a 15-dimensional texton histogram. The histogram 

dimension was then reduced to three using a second PCA. Finally, the classification of each 

pixel was obtained by applying a K-means clustering with five clusters, four of them 

representing the four layers of the epidermis and the fifth representing the dermis. 

The texton-based approach has the potential to be adapted to other classification tasks, such as 

evaluating the effectiveness of treatments for different skin diseases or studying skin aging and 

maturation, by expanding the texton library to include more features. However, this approach 

can also be improved by incorporating higher-level information and features. Currently, this 

method does not consider cellular characteristics or the presence of reflective or darker surfaces, 

which are factors that experts take into account when manually identifying epidermal layers in 

RCM images. Additionally, this was a pilot study, conducted on only three stacks and assumed 

that each image contained only one epidermal layer, which is often not the case. 

 

Fig. 5 Diagram of epidermal layer classification used by Somoza et al55. 

 

Hames et al.54 used a bag of features approach to classify RCM images into four categories: 

SC, viable epidermis, DEJ, and papillary dermis. Four features were identified based on prior 
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knowledge of RCM images: 1) a visible honeycomb pattern of viable keratinocytes indicating 

viable epidermis, 2) the presence of bands characteristic of basal cell/dermal papillae indicating 

the DEJ, 3) the absence of stratum basale features, and 4) visible papillae indicative of the 

papillary dermis. They created a feature dictionary from small image patches and used it to 

represent each test image as a histogram of counts of visible features. An L1 regularized logistic 

regression was used to classify each histogram into 1 of the 4 categories. The authors achieved 

a classification accuracy ranging from 62.9% to 95.6%, depending on the epidermal layer, body 

site, and phenotype. However, not all phenotypes or body sites were included in the study, and 

diseased skin was not covered. The method assumed a single epidermal layer per image, which 

is often not the case. 

Kaur et al.53 proposed a hybrid deep learning approach to classify RCM images into five 

categories: the four epidermal layers and the dermis. Initially, each RCM image underwent 

convolution using a 48-filter bank. Then, a pre-built texton library was employed to represent 

each pixel with a labeled patch centered around it. Each pixel was linked to its eight closest 

neighbors, resulting in eight texton maps per image. The maps were then pooled by weight, and 

the resulting histograms were used to train a convolutional neural network (CNN) with 

empirically optimized parameters. The method achieved an accuracy of 82%, but was only 

tested on three RCM image stacks, and the results are limited by the features in the texton 

library. While building the library using a multi-resolution, multi-orientation filter bank 

increases the number of features compared to manual determination, it complicates the 

interpretation of each feature. 

Bozkurt et al.51,52 proposed an automated method for classifying RCM images into epidermal 

layers based on a recurrent CNN, which allows the network to process related temporal or 

spatial data by feeding results back into the network. The authors introduced a Toeplitz structure 

to aid model interpretation by indicating which image the model decision was based on. The 
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model is an encoder-decoder that uses bi-directional recurrent units and Inception V3 

networks57. This approach achieved an accuracy of 88% in classifying RCM images into the 

epidermis, DEJ, and dermis. It was tested on a larger dataset than the previously mentioned 

methods for automatic identification of epidermal layers and incorporates higher-level 

information by considering three surrounding images when making a prediction. However, 

using a CNN leads to a loss of feature interpretability.  

Table 1 summarizes the methods described for automated epidermal layer classification. Neural 

network-based approaches were overall more successful in correctly classifying images to 

epidermal layers than algorithms based on texture analysis. Direct comparison between the 

methods is not possible as they were not trained nor tested on the same images nor on the same 

number of images or types of observed tissue (healthy vs. lesional), although all used images 

were captured using a VivaScope 1500 (Lucid, Inc., Rochester, New York) reflectance confocal 

microscope (see Fig. 1C). Additionally, the accuracy metrics were calculated against a 

manually obtained image-level ground truth by different experts for each method. Only one 

study indicated using data including Fitzpatrick skin phototypes I to IV. Fitzpatrick phototypes 

form a system used to describe a person’s skin based on its response to ultra-violet exposure on 

a scale from I to VI. 
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Table 1 Epidermal layer classification algorithms in literature. 
Reference  Year  Method  Images database Accuracy  Sensitivity  Specificity  

55 2014  
Unsupervised 
texton-based 
approach  

Testing: 3 stacks 
of adult males 
Type of sample: 
Normal  
Site: volar 
forearm 

54%  0.53  0.9  

54 2016  
Bag of features 
and logistic 
regression  

304 stacks (54 
volunteers, age 
20-30 and 50-70)  
Type of sample: 
Normal 
Phototypes: I - 
IV 
Site:  Dorsal and 
volar forearm 

86%  0.84  0.92  

53 2016  Hybrid deep 
learning  

15 stacks (1500 
images) 
Training: 
12stacks 
Testing: 3 stacks 
Type of sample: 
Normal 
Site: - 

82%  0.72  0.96  

52 2017  
Recurrent 
convolutional 
neural network  

Training: 245 
stacks 
Testing: 61 
stacks 
Validation: 198 
stacks 
Type of sample: 
normal, benign 
melanocytic, and 
diseased  
Site: arms, legs, 
torso 

88%  0.87  0.94  

 

1.3.2 Automatic identification of pigmented skin lesions 

Multiple types of lesions are identifiable on RCM images, and different attempts at 

automatically identifying them have been made. We can distinguish two types of applications 

of these algorithms: 1) finding melanoma patterns and 2) distinguishing non-melanocytic 

lesions from melanoma. 
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One of the proposed algorithms to find melanoma patterns and identify melanocytic lesions on 

RCM images is based on a wavelet transform58. It obtained moderate success with 55% of the 

melanomas and 47% of the benign nevi being correctly identified. 

Another approach59 aimed to determine the presence of melanoma by identifying patterns in 

the DEJ mosaics and classifying them into melanoma or non-melanoma with a sensitivity of 55 

– 81% and a specificity of 81 – 89%, thus mimicking a clinician’s understanding and reading 

of an RCM image. A more recent approach by Bozkurt et al.60 used a multiresolution CNN to 

identify similar patterns as Kose et al.. It achieved 95% average specificity and 77% average 

sensitivity. 

For the second application of distinguishing between melanocytic and non-melanocytic lesions, 

Halimi et al.61 proposed a Bayesian model to quantify RCM images reflectivity and classify 

images in two categories, healthy and lentigo patients, based on their reflectivity distribution. 

They obtained an accuracy of 98%.  

Zorgui et al.62 obtained similar results, with an accuracy of 98% with a CNN. The CNN was 

trained on normalized resized RCM images with a pretrained Inception V3 model. Transfer 

learning was then used to apply the model to skin RCM images.  

Finally, Bozkurt et al.60  proposed a CNN inspired from the U-net architecture to identify six 

classes: non-lesion, artifact, meshwork pattern, ring pattern, nested pattern, and 

aspecific/patternless. This model was built on a dataset containing RCM images of both lesional 

and non-lesional skin. This method slides through RCM images with a sliding window with 

75% overlap and applies three consecutive nested U-nets. This generates segmentations at 

different resolution levels. Each U-net model generates a probability map. The deepest U-net 

model only takes a sliding window as input, while the others use a concatenation of the up-

sampled probability map at the higher level and sliding window. This model achieved 73% 

classification accuracy. 
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Table 2 summarizes some of these algorithms and the lesion they seek to identify. We do not 

aim to compare the different methods as they were built to identify different lesions, but to 

show the variety of identifiable lesions through the use and automated analysis of RCM images.  

Table 2 Some skin lesions identification algorithms in literature.  

Reference  Year  Lesion  Method  Image 
database 

Ground 
truth type Result  

58 2011  Melanocytic 
lesions  

Wavelet 
transform 
with Support 
Vector 
Machine  

Training: 
6147 images 
Testing: - 
Validation: 
10122 images 
Type of 
sample: 
melanocytic 
skin lesion 
Site: -  

Image-level 
classification 

55% 
accuracy for 
melanomas 
detection 

47% 
accuracy for 
benign 
melanocytic 
nevi 
detection  

63 2010  

Superficial 
spreading 
melanoma 
versus nevi   

Pattern 
recognition 
algorithm  

200 sections 
total 
Type of 
sample: 5 
superficial 
spreading 
melanoma and 
5 nevi 
Site: regions 
containing 
visually 
recognizable 
cells   

Object-level 
detection 
(detection of 
pagetoid 
melanocytes) 100% 

accuracy is 
small pilot 
study 

59 2016  Mosaics of the 
DEJ  SVM  

Training: -  
Testing: -  
Validation: 
20 RCM 
mosaics 
Type of 
sample: - 
Site: -  

Object-level 
classification 
(meshwork, 
ring, clod, 
aspecific and 
background 
patterns) 

55 − 81% 
sensitivity, 

81 − 89% 
specificity  

60 2018  Melanomas  
Convolutional 
neural 
network 

Training: 46 
RCM mosaics 
Testing: 10 
RCM mosaics 
Validation: -  
Type of 
sample: 

Object-level 
classification 
(mesh, ring, 
nest, 
aspecific, 
artifact, 

77% 
average 
sensitivity,  
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Reference  Year  Lesion  Method  Image 
database 

Ground 
truth type Result  

Melanoma 
suspicious 
patients 
Site: - 

background 
patterns) 95% 

average 
specificity  

61 2017  Lentigo  Bayesian 
model  

Training: - 
Testing: - 
Validation: - 
Type of 
sample: 27 
women with 
lentigo and 18 
without 
Site: back of 
the hand 

Image-level 
classification 98%, 

accuracy, 
96% 
sensitivity, 
100% 
specificity  

62 2020  Lentigo  
Convolutional 
neural 
network   

Training: 312 
images 
Testing: 56 
images 
Validation: 
60 images 
Type of 
sample: 
healthy and 
lentigo 
Site: - 

Image-level 
classification 

98% 
accuracy, 
96% 
sensitivity, 
100% 
specificity   

60 2018 Morphological 
pattern Nested U-net 

Training: 46 
RCM mosaics 
Testing: 10 
RCM mosaics 
Validation: -  
Type of 
sample: 
Melanoma 
suspicious 
patients 
Site: - 

Object-level 
classification 
(mesh, ring, 
nest, 
aspecific, 
artifact, 
background 
patterns) 

73% 
accuracy 

 

1.3.3 Automatic identification of cells 

Individual cell location visible in RCM images provide important information in the assessment 

of skin health, but their manual identification is tedious, time-consuming, and subject to expert 

interpretation. To our knowledge, only one attempt has been made to automatically identify 

individual cells or nuclei in skin RCM images. 
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Gareau64 attempted to automatically identify keratinocytes on RCM images. An error function 

reflectance profile was trained on labeled RCM images and then tested on other images to 

identify keratinocytes coordinates, with one set of parameters for both SG and SS images. All 

images belonged to the same stack which limits the validity of this method. The obtained 

keratinocyte density matched prior knowledge based on manual counts and was statistically 

validated, basing its accuracy on obtained cell density. The model supposes that the 

keratinocytes center is darker than the rim. This assumption fails on basal cells due to bright 

light-scattering melanosome caps over the nuclei. The method may be improved by training 

two separate models for the granular and spinous layers as their cells differ in size. It is also 

unclear how it behaves when tested on RCM images of other people of different ages, as 

keratinocytes size change with age.  

In all models described above across all presented computational methods, results differed 

between minimally and heavily pigmented skin or were not tested in both cases.  

1.4 Research gaps and opportunities in skin RCM image 

analysis 

RCM offers the possibility to non-invasively quantitatively and qualitatively study healthy and 

diseased skin structure and topology. RCM can be, and has been, used in skin research and has 

the potential to be integrated in clinical practice.  Unfortunately, the use of RCM is hindered by 

image quality, high noise, low contrast, and drop in signal-to-noise ratio, and by the need to 

manually analyze the images, which is tedious, time-consuming, and subject to human error. 

While attempts at automating descriptor extraction have been made, only one method64 has 

been proposed for individual cell detection, an important first step in the quantitative analysis 

of any tissue, and a ready-to-use gold standard is not yet available. Therefore, research should 
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focus on methods allowing an easier translation of images into relevant quantifiable parameters, 

and on making the use of RCM easier, faster, and more accessible.  

To address these issues, in this thesis: (1) We propose an automated full image analysis pipeline 

(FIAP) for the identification of cells on RCM images of the stratum granulosum and stratum 

spinosum. (2) We use the proposed method on over 5000 images of clinical study participants, 

ages 0 to 80 years old, to calculate parameters related to tissue architecture and relevant to skin 

physiology to validate the dynamic changes of skin maturation during childhood and skin aging 

in adulthood, examining the effects of age on skin in different body sites and epidermal layers. 

To our knowledge this is the first large-scale analysis of RCM images.  (3) We contrast the 

FIAP, to a novel unsupervised deep learning architecture based on multitask cycle-generative 

adversarial networks (GANs), and show how this method, which does not require manual 

labeling for training, can be used, with or without retraining, and adapted on images acquired 

by different imaging techniques on multiple tissue types. (4) We finally explore methods for 

the translation of RCM images into histology images, and vice versa. We believe this could be 

of use to dermatologists and pathologists, more likely to be trained on the diagnosis of diseases 

using histology slides than RCM images, allowing them to unlock insights powered by confocal 

images through the lens of histology.  

All the proposed methods were then integrated as tools in a ready-to-use user interface to 

facilitate their application for RCM segmentation and interpretation. 
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Chapter 2 State of the art: cell detection in 

biomedical images 

Cell segmentation, i.e., partitioning of a biomedical image into individual disjoint instances of 

cells, plays a crucial role in the understanding of healthy tissue, and the diagnosing and treating 

of diseases by providing information relating to cell morphology and physiology65. However, 

it is a subjective and time-consuming task that could benefit from the use of computer-aided 

systems. This would allow for large-scale and systematic analysis of biomedical images, which 

would facilitate the quick evaluation of changes in cell features, e.g., cell count, type, shape, 

and texture66, over time and in response to different conditions.  

Many methods have been developed for automated cell segmentation on biomedical images, 

dating back to the 1960s. All existing methods can be roughly grouped into three categories: 

(1) traditional methods, (2) deep learning-based approaches, and (3) multi-task learning.  

2.1 Traditional methods 

Traditional methods for cell segmentation make use of image processing methods coupled with 

optimization algorithms based on mathematical operations. These methods are well established, 

explicable, and interpretable, and can be divided into seven subcategories: thresholding 

methods, edge detection methods, region-based methods, partial differential equations (PDEs)-

based methods, watershed-based methods, marked-point processes, and clustering-based 

methods.  

2.1.1 Thresholding  

Thresholding is the simplest most intuitive traditional segmentation method, particularly useful 

for images with high contrast between the background and objects of interest. The threshold 
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value which will be used to divide the image into two or more groups, can be set locally 

(adaptive thresholding67) or globally, manually or automatically.  

One of the most referenced thresholding method is Otsu’s thresholding68, where an automatic 

optimal threshold is set to minimize the intraclass variance among the region-of-interest, and 

the intraclass variance among the background. While this method has been used in cell 

segmentation, it is often not enough to obtain satisfactory results given the complexity of 

biomedical images69,70, and so it is often integrated in a more complex segmentation pipeline71–

75. Indeed, thresholding requires there is a difference in intensity between background and 

foreground (cells), a condition often unsatisfied in biomedical images, making the satisfactory 

thresholding of the image complicated.  

2.1.2 Edge detection-based methods  

Edge detection-based methods focus on finding objects boundaries in images by determining 

the edge pixels located between the cells and the background, generally corresponding to an 

abrupt change or discontinuity in colors. Most edge detection methods use derivatives to detect 

object boundaries. Classical methods, like the Sobel-Feldman edge detector76 and the Scharr 

filter77, employ the first derivative which may be subject to noise and therefore inaccuracies, 

but are simple and allow for edge orientation detection.  

Another one of these methods is the Canny edge detector78 based on a gaussian smoothing filter 

to counter the effect of noise, followed by gradient intensity calculation and a hysteresis 

thresholding. This method improves the signal-to-noise ratio. Another solution to reduce the 

impact of noise on the detected edges is to use a filter, such as the Laplacian of Gaussian 

algorithm79, also known as the Mexican Hat filter. It first smooths the image before calculating 

the Laplacian to detect object boundaries by looking for its zero crossings, this allows to test a 
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wider area around the boundary but causes artifacts at corners and curves. The use of the 

Laplacian also forbids the detection of edge orientation.  

All of these methods have been applied for cell segmentation with various levels of success and 

their accuracy depends on the application.  

2.1.3 Region-based cell segmentation methods  

Region-based cell segmentation methods look for similarities, e.g., intensity, rate of change in 

intensity, color, and texture80, between adjacent pixels in the image and grouping them under a 

single label. These methods can embed region growing81–83 and/or splitting, but they all exploit 

the spatial context of the image. The first type (bottom-up approach) recursively grows an area 

by including similar neighboring pixels, while the second (top-down approach) starts by 

considering the entire image as one segment that is recursively split based on a set of criteria. 

Region-based segmentation methods are often combined with thresholding approaches in order 

to split overlapping cells74,75,81,84–86. 

Region and edge detection based methods are often hindered by the lack of sharp boundaries in 

biomedical images87. 

2.1.4 Partial differential equations-based methods 

Image segmentation using PDEs is often based on the curve propagation technique88, i.e., 

defining an initial curve in the image which evolution is controlled by a cost or energy 

function89. This cost function has to be minimized and should be chosen to reflect the task at 

hand. 

Classical PDEs-based methods for segmentation include level sets, active contours, and 

morphological geodesic active contours.  

Level set approaches represent the studied evolving contour as a signed function, where its 

zero-level is the actual contour90. Level set approaches are particularly useful when studying 
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shapes with changing topologies. A popular level sets based approach is the Morphological 

Chan-Vese algorithm91 which is designed to segment objects with no clearly defined 

boundaries.  

Active contours, also called snakes, define the energy function as a sum of internal and external 

energies92.  The external energy function should be minimum at the object borders. This can be 

achieved by matching its lowest values to the positions with the highest gradient. While the 

internal energy function is dependent on the shape of the object, e.g., granting high energy to 

elongated contours. Segmenting an image with active contours relies on finding a trade-off 

between the two energy functions, i.e., between a shape regularity and its contours. 

Another popular PDEs-based method is morphological geodesic active contour, a method 

where the active contour is built and adjusted at each iteration based on the application of 

morphological operations (e.g., dilations and erosions) and geodesic distances. This method is 

particularly useful when the contours of the objects are noisy, cluttered, or unclear. 

2.1.5 Watershed-based methods 

Watershed-based methods are a subtype of region-based segmentation algorithms, introduced 

by Digabel et al., and are very often used for cell segmentation93–95. These methods view images 

as topographic landscapes with ridges and valleys96. The 2D images are represented in a 3D 

space where the third dimension, i.e., elevation, is defined by the gray scale intensity level. This 

visualization creates catchment basins in the image.  For each local minimum, a basin is made 

from all the points which path of steepest decent terminates at that minimum. The watershed-

based methods will then separate the basins in the image, identifying distinct regions. 

In biomedical images, where signal-to-noise ratio is low and images are complex, watershed-

based methods tend to over-segment the images97 creating more region/basins/cells than 

necessary. Solutions forcing the merging of adjacent basins have been proposed to counter the 
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over-segmentation problem98–100. Segmentation can also be improved by using seeds at the 

approximate locations of cell centers to initiate a marker-controlled partitioning process.  

2.1.6 Marked point processes 

A marked point process (MPP) is a representation of data in a k-dimensional Euclidean space101  

that allows the detection of predefined objects by defining their geometrical description and 

their spatial distribution. MPPs are particularly useful in the case of object detection in 

biomedical images. Indeed, biomedical images often contain multiple object types, e.g., cells 

of interest, proteins, vesicles, and noise, and so cannot be modelled simply as foreground and 

background, but additional information of the specific targeted objects is needed. By modeling 

only the objects of interest, MPPs bypass this issue102.   

MPPs can be used to detect both simple-shaped objects and ones with complex morphology, 

and thus are very useful in biomedical images, e.g., detecting pleomorphic nuclei of cancerous 

cells103. MPPs are also particularly useful when dealing with noisy non-uniform images 

containing irregular unknown structures104, or when the spatial dependence between structures 

is of interest105,106.  

2.1.7 Clustering-based methods 

Image segmentation by clustering is the process of grouping similar pixels together to form a 

single segment based on their level of similarity. Like region-based segmentation methods, 

clustering-based methods can be agglomerative or divisive107. In cell segmentation, 

agglomerative algorithms, in which cluster sizes increase iteratively to finally form the full 

cells, are more common.  

A popular agglomerative clustering algorithm is K-means108–113, an unsupervised algorithm that 

partitions the image into K-number of clusters based on K-centroids such that the distance 

between elements of the same group is minimized. K-means has been used for cell 
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segmentation, but requires additional steps, e.g., ellipse fitting, hole filling, or separation of 

merged cells, to ensure that cell shape is respected. It is also limited by varying intensity levels 

within a same cell leading to over-segmentation.  

All of these traditional methods can be combined into pipelines108,114,115 for cell segmentation, 

improving their results step-by-step. They can serve as pre-processing to more advanced 

techniques to improve image quality before segmentation, e.g., enhancing edges detectability, 

reducing the noise in the image while preserving small structures, defining the region-of-

interest, and reducing the intensity variation within it, or all the above. Or they can be used as 

post-processing steps to improve segmentation results.  

Fig. 6 shows the output of each traditional method discussed above applied to the same image 

representing coins. Overall, the Laplacian of a Gaussian method and active contours gave the 

least satisfactory results in identifying the coins. Indeed, Laplacian of Gaussian failed to detect 

all coin contours, whereas the active contours method was limited by the initial curve chosen 

to find the object and its result were muddled by neighboring shapes. The other tested methods 

successfully identified the coins with different levels of precision at the border with the 

background. However, the best approach here was the watershed-based method, which 

identified each individual coin on the image as a separate shape. 

In the following work, pre- and post- processing will refer to the steps applied to the image 

before or after the detection of cells.  
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Fig. 6 Results of applying different traditional methods for segmentation on a same 
image. 

2.2 Deep learning-based approaches 

Deep learning-based methods have been employed to analyze biomedical images, gaining 

increasing popularity fueled by their ability to use considerable amounts of data to uncover 

patterns, undiscernible to the human eye and brain, achieving great accuracy and power while 

maintaining flexibility and generalizability. Deep learning allows for the extraction of high-

level features from the data in an incremental hierarchical fashion.  
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Most deep-learning based methods are based on CNNs, but architectures based on fully 

convolutional neural networks, e.g., U-net, have gained in popularity due to their great results 

in segmenting images. In 2015, GANs were introduced and later described by Yann LeCun as 

“the most interesting idea in the last 10 years in machine learning”. GANs and cycle-GANs 

have great potential in biomedical imaging, opening the door to higher quality images by 

increasing their resolution, and to the generation of better-quality synthetic images for data 

augmentation. Indeed, common problems encountered in biomedical image acquisition and 

analysis, are the poor quality and the lack of data and labelled data required for the training of 

deep learning models.  

In the following paragraphs, we will briefly discuss CNNs, U-net, GANs and cycle-GANs. This 

is nowhere near an exhaustive review of deep learning methods used in the segmentation of 

biomedical images, nor a comprehensive review of the application of the four aforementioned 

deep learning architectures in this field but rather an introduction to important methods that will 

be employed in the following chapters of this thesis.  

2.2.1 CNNs 

The most used deep learning algorithms are based on CNNs, which were introduced by LeCun 

et al.  in 1989116. Contrarily to conventional machine learning methods, they do not require 

manual parametrization of hand-crafted features, can be parallelized using GPUs/CPUs, can 

process huge amounts of structured data picking up unknown patterns, outperforming other 

methods and becoming the state-of-the-art in many computer vision applications including cell 

segmentation.  

The architecture of a typical CNN is a multi-layered-feed-forward neural network composed of 

a stacking of sequential layers. First, an input layer, followed by hidden layers where knowledge 

is processed, and finally an output layer. This sequential structure allows the CNN to process 



State of the art: cell detection in biomedical images 
 
 

   47 
 
 

data and learn features. Hidden layers are followed by activation layers that add non-linearity 

into the CNN, and sometimes pooling (down/up scaling) layers where neighboring pixel values 

are aggregated together using a permutation invariant function117.  

CNNs are resilient and translationally invariant. They are based on a kernel which slides across 

the image detecting features on the image, independent of their location, as opposed to fully 

connected networks where all nodes are connected to each other. Thus, CNNs have fewer 

features and are less computationally voracious.  

CNNs have often been used for cell segmentation on biomedical images118,119 by sliding 

through the image using a window and classifying each pixel in the image individually. 

However, this method leads to overlapping between neighboring patches and therefore repeated 

computations. To avoid these unnecessary operations, CNNs were modified to return a 

likelihood map, rather than one output for a single pixel. The resulting architecture is called a 

fully convolutional neural network120 (fCNN). Unfortunately, fCNNs contain pooling layers 

which cause a loss of resolution. To solve this issue, Ronneberger et al. proposed the U-net 

architecture121.  

2.2.2 U-net 

U-net is a fCNN, made of two symmetrical paths forming a U-shape (see Fig. 7). The first path 

is a contracting one which captures the context information and is an encoder network. It is 

made of a succession of 3*3 convolutions followed by a rectified linear unit (an activation 

function defined as the positive part of its argument) and 2*2 max pooling for down sampling. 

Each down-sampling operation doubles the number of feature channels. The contraction 

reduces the spatial information while augmenting the feature information. The second path is 

an expanding one, i.e., a decoder network, and captures localization information. It consists of 

a series of up-sampling followed by a 2*2 up-convolution, which halves the number of feature 
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channels, concatenation with the cropped feature map from the symmetrical contracting path 

and two 3*3 convolutions, each followed by a rectified linear unit. The large number of features 

in the expanding path allows the network to propagate context information through the network 

to higher resolution layers. 

 

 

Fig. 7 U-net architecture. A teal box represents a feature map. The number of channels 
is indicated on top of the feature map box. The image size in pixels is indicated on the 

lower left side of the box. Boxes with dark blue contours represent copied feature 
maps. The arrows indicate the different operations. 

 
U-net is very useful in image and cell segmentation, as its use of skip connections allows for 

the incorporation of both high- and low- level image features in the segmentation result, 

therefore requiring less training data, often an issue in biomedical imaging. This has led to the 

widespread use of U-net with all types of imaging modalities122 often outperforming other 

methods.  

Other versions of U-net have been developed for different applications. Attention U-nets to 

provide the network with the ability to focus on specific objects123, Inception U-net to capture 

objects of different sizes and shapes through the use of filters of multiple sizes in the same layer 
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in the network124, Residual U-net which uses ResNet125 blocks in order to solve the vanishing 

gradient problem by adding skip connections between successive layers126, and Adversarial U-

nets a type of conditional GANs127 where each network is a U-net.  

2.2.3 GANs and cycle-GANs 

GANs and cycle-GANs are two generative deep learning algorithms used respectively for 

paired and unpaired image translation.  

Generative models are a subtype of deep learning methods used to uncover patterns in a given 

dataset A and learn its architecture, and then create similar but novel and original content similar 

to A using dataset B.  

The key to these two networks is their indirect implicit128 adversarial approach to generative 

modeling. Indeed, one part of the models is generative, while the second part is discriminative. 

The generative part aims to create realistic target candidates without explicitly learning the data 

likelihood function, while the discriminator evaluates them. The contest in place between the 

two parts of these models allows for the improvement of both parts.  

Cycle-GANs have the specificity of training two pairs of generator/discriminator models for 

unpaired image-to-image translation, introducing a cycle-consistency loss to train both pairs 

simultaneously. This significantly reduces the data requirement, i.e., no requirement for dual 

image acquisition of a single sample which often is not possible due to the destructive nature 

of certain methods. 

Cycle-GANs learn the special characteristics of one image collection A and determine how 

these characteristics could be translated into a second image collection B, all in the absence of 

any paired training examples. 
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A cycle-GAN learning the translation between these two image domains A and B, consists of 

two generator networks 𝐺𝐺𝐴𝐴 and 𝐺𝐺𝐵𝐵. The first is responsible for transforming images from 

domain A to domain B, while the second transforms images from domain B to domain A.  

Each generator is made of three sections: an encoder, a transformer, and a decoder129. The 

encoder is made of three convolution layers. The resulting activation is then passed to the 

transformer, a series of nine residual blocks. It is then expanded again by the decoder, which 

uses two convolutions to enlarge the representation size, and one output layer to produce the 

final image, as seen in Fig. S3. 

The generators are associated with discriminator networks, 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵. 𝐷𝐷𝐴𝐴 tries to distinguish 

between real images from domain A and fake images generated by 𝐺𝐺𝐴𝐴, and vice versa for 𝐷𝐷𝐵𝐵. 

The discriminators are PatchGAN networks, a type of fully CNNs that look at a patch of the 

input image and output the probability of said patch being real. By looking at patches and not 

the full image, the discriminator is more computationally efficient and more effective, allowing 

the discriminator to focus on more surface-level features of the image. 

Cycle-GANs are constrained by an adversarial loss, which encourages the generators to produce 

images that their matching discriminators cannot distinguish from real images. This loss 

function is often a least squares loss130, defined as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝑙𝑙𝐴𝐴𝐴𝐴(𝐺𝐺𝐴𝐴,𝐷𝐷𝐵𝐵 , 𝐼𝐼𝐴𝐴) =

 1
𝑚𝑚
∑ �1 − 𝐷𝐷𝐵𝐵(𝐺𝐺𝐴𝐴(𝐼𝐼𝐴𝐴𝑖𝑖))�

2𝑚𝑚
𝑖𝑖=1 , where m is the number of pixels in image 𝐼𝐼𝐴𝐴,  an image from 

domain A. 

Generators are constrained by a cycle-consistency loss ensuring that 𝐺𝐺𝐵𝐵�𝐺𝐺𝐴𝐴(𝐼𝐼𝐴𝐴)� ≈  𝐼𝐼𝐴𝐴. This 

loss helps the model learn meaningful translations and prevents it from producing arbitrary 

results, it is often an L1-norm or a summed absolute difference in pixel value between 

𝐺𝐺𝐵𝐵�𝐺𝐺𝐴𝐴(𝐼𝐼𝐴𝐴)� and 𝐼𝐼𝐴𝐴, and 𝐺𝐺𝐴𝐴�𝐺𝐺𝐵𝐵(𝐼𝐼𝐵𝐵)� and 𝐼𝐼𝐵𝐵, where 𝐼𝐼𝐴𝐴 and 𝐼𝐼𝐵𝐵 are images from domains A and B 

respectively. 
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To ensure that the generator does not change an image unnecessarily, an identity loss is also 

introduced. It enforces that 𝐺𝐺𝐴𝐴(𝐼𝐼𝐵𝐵) ≈  𝐼𝐼𝐵𝐵. 

GANs and cycle-GANs are gaining traction in cell and biomedical images segmentation, 

offering a solution to the limited and sometimes biased data sets and opening the door to the 

possibility of domain-translation.131–134.   

Overall deep learning methods increase segmentation accuracy, leveraging huge amounts of 

data and heavy computational power, but with a decrease in interpretability. Unfortunately, in 

the case of biomedical imaging, databases sizes are limited, particularly ones with annotations, 

hindering the performance of deep learning-based methods, and data augmentation with 

generative models may not be enough.  

2.3 Multi-task learning 

A promising more recent development in deep learning is multi-task learning. Multi-task 

learning performs multiple related but not identical tasks in parallel and leverages information 

from all of them to improve the overall performance. This idea is based on the hypothesis that 

related tasks jointly learn better than performing them individually135, especially when training 

data (labelled or unlabeled) availability is limited, which is often the case in biomedical 

imaging136. Multi-task learning is therefore a solution to alleviate the data sparsity issue by 

reusing available knowledge from one task to another and reducing the cost of manual 

labeling137. It is also a way of reducing the overall memory required to perform the tasks, as it 

avoids the repeated learning of shared features between tasks138. Additionally, it can 

hypothetically learn more generalized features by averaging the noise patterns in the performed 

tasks and prioritize the more important features which can be harder to distinguish when 

performing one task alone.   
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Multi-task learning can be performed on supervised or unsupervised tasks, regression or 

classification, requiring labelled or unlabeled data. It has been used in the case of biomedical 

images segmentation with great success139–145, often outperforming other state-of-the-art 

methods.  

Multi-task learning approaches can be split into two architectures: hard146 and soft147 parameter 

sharing. The first describes multi-task learning architectures where tasks, often neural networks, 

share hidden layers. This architecture works best when tasks are closely related to each other. 

The second architecture describes multi-task learning approaches where tasks have their own 

hidden layers, and share parameters or information though other ways, such as their loss 

functions or their constrained layers.  

Multi-task-based models tend to perform well on domain adaptation and generalization and are 

therefore less data dependent. On the other hand, such adaptability may cause lower pixel-level 

segmentation precision.  

All of the deep-learning methods presented here are task-specific, i.e., the data used for training 

and testing match the intended goal of the model. In recent years, we have seen a paradigm shift 

in deep learning-based approaches with the rise of foundation or generalization models148. 

These algorithms have been trained on millions of data points and can be adapted to a wide 

range of tasks with no or minimal retraining. This is often made possible with: (1) support self-

supervising tasks generating the labels required for training through transfer learning, i.e., 

taking the knowledge from one surrogate task and fine-tuning it to downstream another. (2) 

Scale, i.e., a combination of improvements in computer hardware and the Transformer model149 

architecture, which uses self-attention to determine which features are important in the input. 

And (3) the availability of larger amounts of data and possibility to store it150. In April 2023, 

Meta launched the Segment Anything Model trained on 11 million images and their matching 

1.1 billion masks, mostly generated through self-supervision. Though this incredible amount of 
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images, this foundation model has learned a notion of what objects are and is therefore capable 

of segmenting previously unknown and unseen objects. This is called zero-shot generalization.  

The methods proposed in this thesis will be task-specific and follow the rough division of cell 

segmentation methods. We will compare traditional methods, to deep learning-based 

approaches, and to a multi-task learning architecture for the automatic segmentation of 

keratinocytes on RCM images.
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Chapter 3 A traditional approach: 

Automatic granular and spinous 

epidermal cell identification and analysis 

on in vivo reflectance confocal 

microscopy images using filtering and 

cell morphological features 

RCM allows real-time in vivo visualization of the skin at cellular level. The study of RCM 

images can provide information on the structural properties of the epidermis and upper layers 

of the dermis. The first method we propose to streamline the extraction of these properties is 

based on the enhancement of the structural features (membranes) visible in RCM images of the 

SG and SS, where individual keratinocytes are clearly observable, using a filter adapted to fine 

and elongated structures. Due to the fact that SG cells are bigger than SS cells and that this 

approach is based on the detection of their morphological features, a different set of parameters 

will be used on RCM images of each layer.  

This method will be referred to as the Full Image Analysis Pipeline (FIAP). Both the method 

itself151,152 and the biological insights153 derived from its application to over 5000 clinical RCM 

images have been published.  

The obtained results were compared to a manually obtained ground truth of cell positions and 

achieved an accuracy (precision and recall) on par with expert graders.   

The proposed FIAP will be compared in this chapter to various machine learning-based 

approaches: the Cell Cutter154 algorithm and different configurations of the U-net121 
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architecture for image segmentation. In a later chapter, it will be compared to a novel multi-

task learning architecture.  

3.1 Full Image Analysis Pipeline (FIAP) 

The proposed method is a 3-step approach to obtain cell positions from RCM images of the SG 

and SS: (a) We first identified the region of interest containing the epidermal cells (in blue in 

Fig. 8), (b) we then segmented the individual cells (in red in Fig. 8) in the identified tissue area 

using tubeness filters to highlight membranes, (c) and we finally used prior biological 

knowledge on cell size to process the resulting detected cells, removing cells that are too small 

and reapplying the used tubeness filters locally on detected regions that are too big to be 

considered as a single cell.  

All steps were applied to a framed image, where an 11.6% frame was synthetically removed to 

counter for the vignetting problem in microscopy, i.e., uneven, and poorer illumination at the 

image periphery due the microscope light path. 

3.1.1 Identification of the region of interest 

The FIAP starts with the detection of the region of interest (ROI). This allowed us to focus on 

only the critical portion of the image which contains the objects of interest (keratinocytes), thus 

preventing false alarms and saving computational time and power by not processing non-critical 

areas (containing objects that are either not of interest or of low quality due to noise or 

heterogeneity) and background (void of cells).  

The dark background is distinguished from the tissue area (see Fig. 9) by first identifying the 

tissue islands borders. Indeed, skin micro-relief lines surround keratinocytes6 and appear in 

RCM images as dark regions enclosing islands of cells. In order to identify the area representing 

these furrows, we used a morphological geodesic active contour algorithm155, also known as 
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the Snake algorithm, which applies morphological operations (dilations and/or erosions) to the 

image in order to detect visible contours based on their intrinsic geometric measures, even if 

said contours are noisy, fuzzy, cluttered or partially hazy, by minimizing the energy function 

assigned to the surface S156 (Eq. 1), 

𝐸𝐸(𝑆𝑆) =  �𝑔𝑔(𝐼𝐼)�𝑆𝑆(𝐴𝐴)�𝐴𝐴𝐴𝐴 (1) 

where 𝐴𝐴𝐴𝐴 is the Euclidean element of area, 𝑆𝑆(𝐴𝐴) is the surface area, and where the region of 

interest on the image 𝐼𝐼 is defined by 𝑔𝑔(𝐼𝐼) ∶  ℝ𝑑𝑑 →  ℝ+, 𝑥𝑥 → 𝑔𝑔(𝐼𝐼)(𝑥𝑥) and typically is 𝑔𝑔(𝐼𝐼 ) =

 1
�1+𝛼𝛼|∇𝐺𝐺𝜎𝜎∗𝐼𝐼|

 with 𝐺𝐺𝜎𝜎 ∗ a gaussian filter with standard deviation 𝜎𝜎 and 𝛼𝛼 a user defined weight. 

 

Fig. 8 RCM image of the stratum spinosum of minimally pigmented skin, Fitzpatrick 
phototype II. In blue, the border between tissue and background formed by micro-

relief lines. In pink, non-informative areas. In orange, bright spots. In red, epidermal 
cells. RCM, Reflectance confocal microscopy. Image contrast was adjusted for better 

visualization.  Scale bar = 50 µm. 
 
The morphological snake algorithms are faster and more stable than their standard (geodesic) 

active contours counterparts. The latter use partial differential equations and are not easily 
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trapped by local minima but require pre-processing of the image to highlight the contour. To 

initiate the snake algorithm, we used the binarized distance transform of the opening of the Otsu 

binarized vignetted image, i.e., a derived representation of the binarized image, where the value 

of each pixel is the nearest distance to an approximate background (nearest zero pixel).   

 

Fig. 9 Steps of the identification of the ROI. The borders between the tissue and the 
background are identified using a Snake algorithm. The ROI was then refined using a Support 

Vector Machine algorithm trained to detect the non-informative areas, and a succession of 
morphological operations to remove bright spots in the RCM image. In blue is the border of 
the region of interest. In pink is an area that should have been removed through the different 

ROI identification steps but was not. Image contrast was adjusted for easier visualization. 
Scale bar = 50 µm. ROI, region of interest; RCM, Reflectance confocal microscopy. 

 
 

After identifying the background formed by micro-relief lines on RCM images, the next step 

was to identify non-informative areas. These areas are part of the tissue but are of low quality 

(see Fig. 8) and individual cells are not clearly and easily distinguishable, by neither the expert 

manual grader nor any algorithm. To discriminate these non-informative areas from critical 

regions clearly containing cells, a support vector machine (SVM) was trained to perform a 

texture classification using four features of the grey level co-occurrence matrix157 (GLCM). 

SVMs are supervised machine learning models for classification and regression which aim to 

find a hyperplane that distinctly classifies the data points such that the distance between data 

points of each class is maximized. The GLCM is a measure of the frequency of occurrence of 

two neighboring pixels combination in an image, this supposes that the texture information is 
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comprised in the spatial relationship between neighboring grey scale pixels. Since GLCMs are 

often sparse, they are summarized in 22 Haralick features (named after their inventor). We only 

focused on 4 of these features that successfully discriminate between informative and non-

informative areas (see Fig. ). The remaining 18 features did not distinguish between informative 

and non-informative areas. In the formulas below, 𝑃𝑃 is the GLCM histogram for which to 

compute each feature, for a gray level 𝑗𝑗 distant from a grey level 𝐴𝐴. These features are: 

 (a) Homogeneity158 (Eq. 2);  

ℎ𝑙𝑙𝑜𝑜𝑙𝑙𝑔𝑔𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜 =  �
𝑃𝑃𝑖𝑖,𝑗𝑗

1 + (𝐴𝐴 − 𝑗𝑗)2
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1

𝑖𝑖,𝑗𝑗=0
 (2) 

which measures the closeness of the GLCM distribution to its diagonal, reflecting correlation 

by measuring the uniformity of the non-zero entries in the GLCM159. The more pixels with 

similar grey level values, the closer the GLCM to its diagonal, reflecting a higher homogeneity 

value. 

(b) Contrast158 (Eq. 3);  

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜 =  � 𝑃𝑃𝑖𝑖,𝑗𝑗(𝐴𝐴 − 𝑗𝑗)2
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1

𝑖𝑖,𝑗𝑗=0
 (3) 

which measures the local variations in the GLCM. 

(c) Dissimilarity158 (Eq. 4);  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜 =  � 𝑃𝑃𝑖𝑖,𝑗𝑗|𝐴𝐴 − 𝑗𝑗|
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1

𝑖𝑖,𝑗𝑗=0
 (4) 

which measures the similarity between pixels by measuring the variation of grey level pairs in 

the image. It ranges from 0 to1 and is at its highest when the differences between the pair are 

at their maximum. Contrast and dissimilarity are close in meaning, with only a difference in 
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weight. Contrast grows quadratically while dissimilarity does not (see Eq. 3 and Eq. 4) (see Fig. 

10). 

And (d) energy158 of the GLCM(Eq. 5),  

𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑔𝑔𝑜𝑜 =  �� 𝑃𝑃𝑖𝑖,𝑗𝑗2
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1

𝑖𝑖,𝑗𝑗=0
(5) 

Also known as angular second moment or uniformity, which measures the signal (texture) 

uniformity within the area, i.e., local homogeneity. The higher the energy ([0,1]), the more 

homogeneous the image.  Indeed, as the GLCM is a measure of the frequency of occurrence of 

two neighboring pixels combination in an image, if 𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑔𝑔𝑜𝑜 = 1, then the image is constant. 

The GLCM was calculated on 50x50 patches, and prediction of informative vs. non-informative 

area was computed per patch. A sliding window with a 32 step was used to parse through each 

image. 

The SVM was trained on 6 images to distinguish between informative and non-informative 

areas as they are able to separate the two (see Fig. 10). A total of 50 informative patches and 

18 non-informative patches were selected for the training of the model, and all 4 Haralick 

features were computed for each patch. The SVM achieved a 66.7% precision (the fraction of 

correctly detected regions among all the detected regions) and a 100% recall (the fraction of 

accurately detected regions among all regions defined in the ground truth). 
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Fig. 10 Four Haralick features were used to train an SVM to distinguish between non-
informative and informative areas in RCM images. (A) Contrast vs. Homogeneity per patch. 

(B) Energy vs. Contrast per patch. (C) Homogeneity vs. Dissimilarity per patch. SVM, 
Support Vector Machine; RCM, reflectance confocal microscopy. 

 

The third step in ROI identification was to remove any bright spots in RCM images (see Fig. 

8). These may be caused by the keratin in hair shafts, the presence of corneocytes in images of 

the SG and SS, or from mottled pigmentation. To do so, we applied a succession of dilations 

and erosions on the image where the background and non-informative areas had already been 

removed, and which had been convolved by a Gaussian filter and binarized with a manually 

determined binary threshold. 

Hyper-parameters of each step are detailed in Table 6. 

3.1.2 Identification of individual cells 

The second step of the FIAP is to identify the cells within the ROI. We started by applying a 

median filter to the masked image to remove the noise, followed by a local normalization which 

uniformizes the mean and variance of the image locally to correct uneven illumination and 

shading artifacts (see Fig. 11). We then applied a Sato vesselness enhancement filter160 to this 

intermediate output to highlight white continuous ridges in the image, i.e., bright cell 

membranes. This filter performs an analysis of the second derivatives based on a tube model161. 

It is defined as: 
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 𝐹𝐹 =  

⎩
⎪
⎨

⎪
⎧𝜆𝜆𝑐𝑐𝐴𝐴

−𝜆𝜆12
2(𝛼𝛼1𝜆𝜆𝑐𝑐)2 

                 𝐴𝐴𝑖𝑖 𝜆𝜆1 ≤ 0, 𝜆𝜆𝑐𝑐 ≠ 0 

𝜆𝜆𝑐𝑐𝐴𝐴
−𝜆𝜆12

2(𝛼𝛼2𝜆𝜆𝑐𝑐)2                 𝐴𝐴𝑖𝑖 𝜆𝜆1 > 0,  𝜆𝜆𝑐𝑐  ≠ 0
0                  𝐴𝐴𝑖𝑖 𝜆𝜆𝑐𝑐 ≠ 0

; (6) 

Where 𝜆𝜆𝑖𝑖 are the Hessian matrix eigen values such that 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ 𝜆𝜆3. To obtain a high response 

in tubular structures, the Sato filter introduces an asymmetric formulation based on the sign of 

𝜆𝜆1 to reduce noise. The 𝛼𝛼𝑖𝑖 parameters control this asymmetrical strength with 𝛼𝛼1 < 𝛼𝛼2, and 

𝜆𝜆𝑐𝑐 = min {−𝜆𝜆2,−𝜆𝜆3}162. In this framework, when 𝜆𝜆2, 𝜆𝜆3 < 0, the eigen vector associated with 

𝜆𝜆1 corresponds to the direction of the putative vessel, and the eigen vectors associated with the 

other two eigen values form the basis for the cross-section of the vessel.  

The filter parameters were empirically chosen to approximate the width and length of a 

keratinocyte membrane in the SG and SS.   

To the output of Sato’s vesselness filter, we applied a median filter and local normalization with 

respect to the ROI mask (see Fig. 11). We then further enhanced the vessel-like structures by 

applying a Gabor filter which convolves the previously obtained image by a windowed 

sinusoidal signal of varying frequencies and orientations (see Fig. S1), modulated by a Gaussian 

enveloppe163, resulting in an image where the highest response is located at edges and points 

where a change in texture is observed. The sinusoidal signal used in the Gabor filter has both a 

real and an imaginary component forming the complex equation: 

𝑔𝑔(𝑥𝑥,𝑜𝑜; 𝜆𝜆,𝜃𝜃,𝜓𝜓,𝜎𝜎, 𝛾𝛾) = exp�−
𝑥𝑥′2 + 𝛾𝛾2𝑜𝑜′2

2𝜎𝜎2
� exp�𝐴𝐴 �2𝜋𝜋

𝑥𝑥′

𝜆𝜆
+ 𝜓𝜓�� (7) 

With 𝑥𝑥′ = 𝑥𝑥 𝑐𝑐𝑙𝑙𝐴𝐴𝜃𝜃 + 𝑜𝑜 𝐴𝐴𝐴𝐴𝑜𝑜𝜃𝜃 and 𝑜𝑜′ = −𝑥𝑥 𝐴𝐴𝐴𝐴𝑜𝑜𝜃𝜃 + 𝑜𝑜 𝑐𝑐𝑙𝑙𝐴𝐴𝜃𝜃. 

Here λ is the wavelength of the sinusoidal component and controls the width of the Gabor 

function strips, θ is the orientation of the normal to the parallel strips of the Gabor function, 𝜓𝜓 

is the phase offset of the sinusoidal function, σ is the standard deviation of the Gaussian 
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envelope and governs its size, and γ is the spatial aspect ratio which specifies the ellipticity of 

the support of the Gabor function which controls its height.  

The image obtained after application of the Gabor filter was equalized with a histogram 

equalization to adjust its contrast by spreading out the intensity range of the image, followed 

by a Gaussian adaptive thresholding which locally changes the binarization threshold over the 

entire image to account for local changes in contrast and brightness, this assumes that local 

areas in the image are more likely to be similar with respect to contrast and illumination. The 

local binarization threshold is defined as the gaussian-weighted sum of neighboring values. A 

connected-components analysis/labelling was then applied to the binarized image and its 

inverse, to detect and remove small blobs due to noise, and to close small holes in the 

membranes due to image graininess. This is done by building a graph from the image which is 

used to identify the positions belonging to the same component/label and their respective size. 

Finally, we skeletonized this last result into 1-pixel wide centerlines while keeping the essential 

structure, topology and Euler characteristics of the detected regions164, and then pruned 

unwanted parasitic spurious branches from the skeleton, following a method adapted from the 

MATLAB routine bwmorph.  

Hyper-parameters of each step are detailed in Table 6. 
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Fig. 11 Image processing steps for the identification of individual cells. A median 
filter and a local normalization were applied to the image with the ROI mask, followed 
by a Sato filter. Its output was filtered with a median filter and locally normalized, and 
a Gabor filter was applied to it. A threshold was applied on the output after histogram 

equalization and small blobs were removed with a connected components analysis. 
The result was then skeletonized, and spurious branches were removed. Image contrast 

was adjusted for easier visualization. Scale bar = 50 µm. ROI, region of interest. 
 

3.1.3 Post-processing 

The pruned skeleton was further cleaned with a morphological closing to fill small gaps. 

Individual contours, i.e., cells, were detected on the clean skeleton (see Fig. 12). We then set 

an empirical threshold, based on the knowledge of cells size in the different epidermal layers, 

on the minimum cell area and removed contours that were smaller than said threshold (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 <

100 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴 for contours detected on RCM images of the SG and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 < 50 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴 for 

contours detected on RCM images of the SS). Long contours, often detected at the frontier 

between background and ROI, were also removed based on an empirical threshold on contour 
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eccentricity i.e., 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜 > 0.85 (see Fig.12-A). The remaining detected contours were 

then separated into 2 groups: (1) large contours with an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >

1000 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴2 for SG and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 120 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴²  for SS, and (2) small acceptable contours with 

an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 1000 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴2  for SG and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 120 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴²  for SS. On each area of the original 

vignetted masked image delimited by what has been defined as a large contour, we reapplied a 

Sato filter locally with different, more refined, parameters for more precise membrane 

enhancement and detection. This local output is then binarized, with an Otsu thresholding for 

RCM images of the granular layer, and with a Gaussian adaptive thresholding for RCM images 

with a majority of SS cells. Double connected-components labelling was again performed to 

get rid of contours and holes formed by noise. The resulting image was skeletonized, and the 

contours were detected on the obtained skeleton. On images of the SG, obtained contours with 

an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 110 𝑝𝑝𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴2, were merged back with their neighbors. We considered that these new 

contours were too small to be actual granular keratinocytes, and therefore were an artifact of 

the second iteration of Sato filtering (see Fig. 12-B).  On the contrary, the second round of Sato 

filter with different, more refined, parameters may still have failed to detect cells on RCM 

images of the SS, as their signal may be too small to be picked up. To counter this issue, we 

chose to fit ellipses within the large SS contour if the second iteration still failed to divide the 

contours into smaller ones. The size of the ellipse was defined as the local median size, which 

was defined by the size of the minor and major axes of the ellipse, of the surrounding correct 

contours.  

All of the newly obtained cells were then combined with the previously found small acceptable 

contours and their centers were detected.  

Hyper-parameters of each step are detailed in Table 6. 
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Fig. 12 Post-processing steps. (A) The skeleton obtained after the previous step was cleaned, 
and contours were detected. Small contours were removed, as well as long contours close to 
the border with the background. The remaining contours were divided into two groups: small 
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and big contours. Big contours were filtered again to improve the detection locally. The new 
resulting contours were then combined to the small contours and their centers were detected. 
In pink, some contours where two cells were merged are highlighted. (B) Example of large 

contours improvement for a stratum granulosum image. (C) Example of large contours 
improvement for a stratum spinosum image. Image contrast was adjusted for easier 

visualization. Scale bar = 50 µm. 
 

3.2 Data 

In two separate clinical studies, RCM images were collected: (a) on the volar forearm of 80 

participants: 60 children, ages 3 months to 10 years, and 20 adults, ages 25 to 40 years, and (b) 

on the volar forearm and cheek for 80 women, ages 40 to 80 years. The studies were initiated 

following approval from an independent institutional review board (studies 19.0198 and 

20.0022) and in accordance with the Declaration of Helsinki. Study participants or their legal 

guardian (in the case of children) gave written informed consent prior to the study. Participants 

were divided into 11 age groups: 0-1, 1-2, 2-4, 4-6, 6-8, 8-10, 20-40, 40-50, 50-60, 60-70, and 

70-80 years of age (see Table 3). Age group 1-2 years old was removed from the subsequent 

analyses due to insufficient data (only 4 participants with usable data). 

All participants have minimally pigmented skin, with Fitzpatrick phototypes between I and III 

(see Table 3). To be eligible for the study, participants had to be in good health, with no history 

of skin disease, and refrain from applying any products on the observed area on the day of the 

study.  

RCM images were captured using a VivaScope 1500 reflectance confocal microscope. It has a 

z-resolution of 5 µm and an xy-resolution of 1 µm. The imaging process began at the skin 

surface and progressed towards the first layers of the dermis. Images were captured in stacks of 

82 images, each one of size 1000x1000 pixels corresponding to a 500 µm² area.  

The proposed method to automatically detect keratinocyte positions were only applied to RCM 

images of the SG and SS. Therefore, we needed a computerized method for layer classification. 
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To do so, we used the hybrid deep-learning method proposed by Kaur et al.165 and previously 

described in I.3.1.  

The development and validation of the algorithm relied on a subset of only 9 images of both 

the volar forearm and cheek, involving 7 participants aged 5 months to 35 years, and were 

acquired during 3 different clinical studies. Six (6) of these images have been graded by two 

experts for comparison purposes. The ground truth used for validation relied on cell centers 

which were pointed out manually by skin research experts.  

When comparing the FIAP to deep learning approaches later in this chapter, the ground truth 

used for training the models was generated by Voronoi tessellation around the cell centers 

determined by experts. Voronoi tessellation is a space partitioning method into 

polygons/cells/regions closest to a predetermined point, called seed. Each point of the 2D 

Euclidean space is assigned to a cell, such that the distance between the point and the cell seed 

is less or equal to that of any other seed.  

Table 3 Study participants repartition per age group, gender, and Fitzpatrick 
phototypes. 

Age group 

(yrs.) 
0-1 2-4 4-6 6-8 8-10 20-40 40-50 50-60 60-70 70-80 

Number of 

participants 
8 10 9 10 10 20 15 15 15 15 

Female/Male 

ratio 
5/5 4/6 7/3 6/4 7/3 20/0 15/0 15/0 15/0 15/0 

Fitzpatrick 

phototype I 

(%) 

0 0 0 0 0 5 13.3 6.7 0 6.7 
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Age group 

(yrs.) 
0-1 2-4 4-6 6-8 8-10 20-40 40-50 50-60 60-70 70-80 

Fitzpatrick 

phototype II 

(%) 

100 90 100 100 80 75 46.7 53.3 53.3 46.7 

Fitzpatrick 

phototype 

III (%) 

0 10 0 0 20 20 40 40 46.7 46.7 

 

3.3 Synthetic images  

The automation of cell identification in RCM images presents challenges due to poor image 

quality resulting from high noise levels and low contrast. Furthermore, assessing the accuracy 

of any method requires manual labeling to establish a ground truth, which is laborious, 

susceptible to human error, and subject to variability among different experts. To overcome 

these challenges and facilitate the parameterization of our automated pipeline, we devised a 

process to generate completely user controlled synthetic RCM images (see Fig. 13). By creating 

these synthetic RCM images, we were able to circumvent the limitations posed by poor image 

quality and the need for manual labeling and the uncertainty in manually set ground truth. These 

synthetic images provide precise ground truth annotations, in the form of known cell centers, 

and offer flexibility in terms of the number of images available for analysis. 

The process of generating the synthetic images starts by creating a random tissue mask within 

the intersection of Bezier curves. These are mathematical representations of continuous smooth 

curves. They are defined by their endpoints, also known as anchor points, and additional points 

to determine their curvature and direction. Within the created tissue mask, we initiated a 
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Voronoi tessellation from random seeds. These seeds, representing cell centers, were first 

generated on a grid at a minimum set distance, which value depended on the mimicked 

epidermal layer. The seeds are obtained by simulating a Poisson process including a minimum 

distance between them (“hard-core process”). Then, only the seeds within the tissue mask were 

kept and some were randomly shuffled within the mask to imitate the non-uniformity of the 

epidermal structure. To simulate RCM images, we also added salt and pepper noise and 

Gaussian noise to the binary skeleton. The resulting image was then convolved with a Gaussian 

filter and multiplied by a heterogeneous intensity mask to obtain synthetic images that resemble 

real RCM images. 

Voronoi tessellation has been previously used to simulate the geometry of skin cells9 and other 

types of cells166–168, but while these methods create synthetic cells matching the real cell 

geometry they do not replicate the epidermal tissue topology.   

 

Fig. 13 (A) Process of creation of synthetic RCM image of the stratum spinosum 
created using a hard-core process. First, points set apart with a minimum set distance 
from each other are created. Second, a tissue mask is created using Bezier curves and 

only the points within the mask are kept. Third, these points are used as seeds to 
initiate a Voronoi tessellation. Lastly, different noise levels are added to the image. 
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(B) Side-by-side comparison of a real RCM image and a synthetic RCM image. RCM, 
Reflectance confocal microscopy. 

 

3.4 Accuracy evaluation 

A marker-controlled watershed was initiated on the vignetted masked RCM image using the 

previously determined cell centers (see Fig. 14). The resulting regions were then compared to 

the ground truth for the 9 RCM images where it had previously been manually determined by 

expert graders, using the package d-accuracy169 which evaluates several detection accuracy 

metrics (see Fig. 14). We chose to focus on two of the most well spread accuracy metrics in 

biomedical image analysis and in computer vision in general: (a) the precision which 

corresponds to the fraction of correctly detected cells among all the detected cells,  

𝑃𝑃𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑜𝑜 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (8) 

and (b) the recall defined as the fraction of accurately detected keratinocytes among all cells 

defined in the ground truth, 

𝑅𝑅𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (9) 

Where TP, stands for true positives, FP, stands for false positives, and FN, stands for false 

negatives. 

Since the task here is to compare datapoints to regions, i.e., evaluate if a point in the ground 

truth (cell center) is within a detected region, the accuracy metrics are not at pixel-level but at 

object level. This is particularly of interest in the case of RCM images, which are noisy and 

grainy, and where using pixel-level metrics may lead to low accuracy and therefore to the 

false belief that the segmentation results are not satisfactory.  
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In this case, a TP corresponds to a region obtained from the marker-controlled watershed 

containing a point from the manually obtained ground truth in the form of cell centers. A FP 

corresponds to a detected keratinocyte with no matching cell center from the ground truth. A 

FN is when no keratinocyte was detected where a cell center from the ground truth is.  

 

Fig. 14 Detection accuracy evaluation steps. A marker-controlled watershed was 
applied to the detected cell centers and the resulting labels were compared to the 
manually detected ground truth, in pink. The returned metrics were precision and 
accuracy. Image contrast was adjusted for easier visualization. Scale bar = 50µm. 

 
 
The entire FIAP is shown on Fig. 15. 
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Fig. 35 Diagram of the FIAP used for keratinocytes detection. The sections are color 
coded as follows: blue, ROI identification; pink, individual cells identification within 

the ROI; teal, post-processing steps. ROI: region of interest. 
 

3.4.1 Accuracy on synthetic RCM images 

To determine a reference to interpret the obtained accuracy, we employed the previously 

mentioned "hard-core" process to generate multiple synthetic images where randomly 

generated points were placed within the same correct ROI mask.  The number of points chosen 

matched the number of cell centers in the ground truth, and the distance separating neighboring 

points was determined as to replicate the epidermal layer represented in the image. We then 

compared the accuracy of these random detections against the absolute ground truth and 

obtained a precision and recall of 60 ± 2%, which we established as the lowest accuracy 

threshold. This threshold serves as a reference to better assess the performance of the algorithm. 

Application of the FIAP on 4 synthetic images resulted in a median precision of 83.5% with a 

standard deviation of 6.74%, and a median recall of 92.5% with a standard deviation of 1.22%. 

These results demonstrate the high performance of our algorithm on synthetic RCM images. 
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3.4.2 Accuracy on real RCM images 

We evaluated the performance of the FIAP on 9 RCM images (images acquired on both check 

and volar forearm for participants ages 5 months to 35 years old during 3 clinical studies), 

where the ground truth has been evaluated by Expert 1 (see Table 4), resulting in a precision of 

63.9% (±11.3%). and a recall of 79.6% (±12.1%). Three (3) of these images represent the 

spinous layer (precision = 48.9% (± 2.9%), recall = 79.6% (± 6.9%)). And the remaining 6 

represent the granular layer (precision = 67.7% (± 7.9%), recall = 79.4% (± 14.2%)).  

While the overall results were satisfactory and greater than the minimum accuracy threshold 

previously defined, we observed lower precision than recall for RCM images of both SG and 

SS, and significantly lower precision for keratinocyte detection in the SS and slightly lower 

recall for keratinocyte detection in the SG. However, the F1-score = 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃∗𝑅𝑅𝑙𝑙𝑐𝑐𝑅𝑅𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃+ 𝑅𝑅𝑙𝑙𝑐𝑐𝑅𝑅𝑙𝑙𝑙𝑙

, which 

combines both accuracy metrics, was overall higher for the segmentation of RCM images of 

the SG. The lower the precision, the higher the number of false positives, i.e., the number of 

invented cells. The lower detection precision in SS may be explained by the smaller cell size in 

this layer and therefore an increased difficulty in the segmentation with a tendency for over-

segmentation. 

We noticed that all median measures have a relatively important standard deviation reflecting 

an important variation in image quality and noisiness. 

Regenerate 
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Table 4 Cell detection accuracy on 6 stratum granulosum and 3 stratum spinosum RCM 
images for Expert 1. Ground truth in the form of cell centers is represented in green on each 
image. Median data shown as median (± 1 standard deviation). RCM, Reflectance confocal 

microscopy. 

Image Layer Precision (%) Recall (%) F1-score 
(%) 

 

SS 46.2 89.4 61.0 

 

SS 52.0 76.1 61.8 

 

SS 48.9 79.6 60.6 



A traditional approach: Automatic granular and spinous epidermal cell identification and analysis on 
in vivo reflectance confocal microscopy images using filtering and cell morphological features 
 
 

   76 
 
 

Image Layer Precision (%) Recall (%) F1-score 
(%) 

 

SG 63.9 60.5 62.2 

 

SG 56.4 77.0 65.1 

 

SG 71.3 81.8 76.2 

 

SG 71.6 90.7 80.0 
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Image Layer Precision (%) Recall (%) F1-score 
(%) 

 

SG 78.9 56.3 65.7 

 

SG 64.1 87.4 74.0 

Median accuracy for images of the SG 67.7 (±7.9) 79.4 (±14.2) 69.9 (±7.2) 

Median accuracy for images of the SS 48.9 (±2.9) 79.6 (±6.9) 61.0 (±0.6) 

Overall median accuracy  63.9 (±11.3) 79.6 (±12.1) 65.1 (±7.4) 
 

The 6 RCM images of the SG were manually graded by a second expert (Expert 2) with less 

experience to assess the impact of training on manual segmentation quality and highlight the 

consequent inter-expert variability. 

When compared to the first expert, the cell detection approach resulted in a precision of 71.4% 

(±7.4%) and a recall of 83.3% (±12.7%). When compared to the second expert, the cell 

detection approach resulted in a precision of 71.4% (±6.7%) and a recall of 61.7% (±15.7%) 

(see Table 5). When the two expert gradings were compared to each other, we obtained a 

precision of 59.6% (±5.6%) and recall of 40.5% (±11.9%). This result demonstrated high inter- 

(and intra) expert variability especially with regard to the recall which decreases with the 
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increase of false negatives, i.e., undetected cells, showing that Expert 1 (more experienced) is 

more reliable.  

The variability in expert opinions can significantly affect the accuracy of the ground truth we 

rely on to evaluate the effectiveness of our approach. To mitigate this potential issue, it would 

have been advantageous to establish a consensus by averaging results from multiple experts as 

a more reliable ground truth. Unfortunately, due to the limited number of experts available, this 

approach was not feasible for our study. 

The comparison between the two experts confirms the importance of and need for an automated, 

unbiased, reproducible, keratinocytes segmentation method on RCM images. 

Table 5 Cell detection accuracy on 6 RCM images of the stratum granulosum for two 
different experts. Data shown as median (± 1 standard deviation). RCM, Reflectance confocal 

microscopy. 
 Precision (%) Recall (%) F1-score (%) 
Detections vs. Expert 1 71.4 (± 7.4) 83.3 (±12.7) 75.6 (± 4.9) 
Detections vs. Expert 2 71.4 (±6.7) 61.7 (±15.7) 67.3 (± 9.7) 
Expert 1 vs. Expert 2 59.6 (±5.6) 40.5 (±11.9) 48.0 (± 8.9) 

 
While our approach demonstrates reasonable performance when applied to RCM images of the 

granular and spinous layers, its accuracy can be compromised when cells from different 

epidermal layers are present within the same image. This complexity makes parameterization 

of the various steps in the FIAP challenging. Our approach follows a multi-step process, with 

each step involving multiple parameters that influence cell detection and its accuracy, but with 

one set of parameters per epidermal layer (see Table 6). Furthermore, the presence of noise and 

non-uniformity in the images significantly impacts the performance of the pipeline. Although 

steps such as median filtering, local normalization, and ROI determination help mitigate the 

impact of noise on the results, they do not completely eliminate it.  
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Table 6 Parameters for each step on the FIAP for RCM images of the SG and SS. 
FIAP, Full image analysis pipeline; RCM, Reflectance confocal microscopy; SG, 

stratum granulosum; SS, stratum spinosum.  

FIAP step 
 

Parameters value for RCM 
images of the SG 

Parameters value 
for RCM images of 

the SS 

Identification of 
the ROI 

Snake: Borders 
between tissue and 
background 
detection 

Image: Grayscale image 
Number of iterations: 500 
Initialization level set: distance transform (mask size 
= 5, L2 distance) 
Smoothing: 5 
Threshold: 50 
Balloon: -1 

SVM: non-
informative areas 
detection and 
exclusion 

Trained on the same GLCM features. 

Bright areas 
detection and 
exclusion 

Gaussian blur:  kernel = (11,11),  
Binary thresholding: 200 
Erosion: 2 iterations 
Dilation: 4 iterations 

Identification of 
individual cells 

Median denoising  Size = 3 
Mode: reflect 

Sato filter 
σ: [8,10], step 1 
Black ridges: False 
Mode: Constant 

Sigma: [5,6], step 1 
Black ridges: False 
Mode: Constant 

Median denoising  Size = 7 
Mode: reflect 

Gabor filter 

Kernel size: 41 
σ: 5 
λ: 50 
γ: 10 
θ: [0, π], step π/64 

Kernel size: 41 
σ: 5 
λ: 25 
γ: 10 
θ: [0, π], step π/64 

Contrast Limited 
Adaptive Histogram 
Equalization 

Clipping limit: 2 
Tile grid (kernel) size: 
10x10 

Clipping limit: 2 
Tile grid (kernel) 
size: 150x150 

Adaptive 
thresholding 

Maximum value: 1 
Adaptive method: Gaussian 
Threshold type: Binary 
Block size: 171 
Constant: 10 

Connected 
components analysis Limit small objects size: 500 

Connected 
components analysis 
on inverse of binary 
image 

Limit small objects size: 15 

Skeletonization & 
spurring Number of iterations: 7 

Post-processing Cleaning of skeleton Opening with a ellipsoid kernel of size 31x31 
Contour detection Contour-retrieval mode: RETR_TREE 
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FIAP step 
 

Parameters value for RCM 
images of the SG 

Parameters value 
for RCM images of 

the SS 
Contour-approximation method: 
CHAIN_APPROX_SIMPLE 

Long contours 
removal at the 
borders with 
background 

For contours at the border 
of the ROI,  
if eccentricity>0.85, 
remove the contour 

For contours at the 
border of the ROI,  
if 
eccentricity>0.95, 
remove the contour 

Big contours 
selection (to be 
reviewed) 

If contour area > median contour area + 2 
standard deviations, review the contour in the 
following steps. 
Else it’s a contour of the correct size.  

Median filtering  Size = 3 
Mode: reflect 

Size = 5 
Mode: reflect 

Gabor filter 

Kernel size: 41 
σ: 5 
λ: 50 
γ: 10 
θ: [0, π], step π/64 

Kernel size: 41 
σ: 5 
λ: 25 
γ: 10 
θ: [0, π], step π/64 

Local 
normalization σ: 5 

Sato filter on too 
big contours 

σ: [1,5], step 1 
Black ridges: False 
Mode: Constant 

Contrast Limited 
Adaptive Histogram 
Equalization  

Clipping limit: 2 
Tile grid (kernel) size: 171x171 

Thresholding Otsu 
Connected 
components to 
remove small 
objects 

Minimum objects size: 
100 

Minimum objects 
size: 50 

Skeletonization (No manual parameters) 

Contour detection 
Contour-retrieval mode: RETR_TREE 
Contour-approximation method: 
CHAIN_APPROX_SIMPLE 

Small contours 
merging 

On the newly detected 
contours, while contour 
area<110 pixels, merge it 
to its neighbors. 

On the newly 
detected contours, 
while contour 
area<20 pixels, 
merge it to its 
neighbors. 

Ellipse fitting when 
no new contours are 
detected 

(Not in the pipeline) 

Major axis length = 
Median Major axis 
length of the 10 
closest correct 
contours 
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FIAP step 
 

Parameters value for RCM 
images of the SG 

Parameters value 
for RCM images of 

the SS 
Major axis length = 
Median Major axis 
length of the 10 
closest correct 
contours 
Distance is 
calculated between 
contours centers. 

Cell centers 
detection  (No manual parameters) 

 

The FIAP processes a 1000x1000 pixels image in less than 10 minutes using 8 cores and 16 

GiB of RAM. This time may vary depending on the size of the ROI and the level of noise in 

the image. This processing time should be compared to the 20-40 minutes required for manual 

annotation by an expert. This decrease in computational time significantly reduces the effort 

required to identify keratinocytes manually on RCM images. We will therefore move to 

applying it at large scale to over 5000 RCM images of the granular and spinous layer to derive 

quantitative parameters related to geometry and topology and use them to study epidermal 

architecture at the cellular level and examine the effects of age (0 to 80 years), body site location 

(cheek and volar forearm), and epidermal layer (SG and SS) on said parameters. To date 

attempts at automating cell identification on RCM images have been reported only on a limited 

number of images64,170. 

3.5 Application of the FIAP for the study of age and body 

site-dependent changes in epidermal structure 

Studying the network organization of keratinocytes using the geometry and topology of the 

epidermis under a reflectance confocal microscope allows the researcher to quantitatively 
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analyze the structural patterns of the tissue and their evolution, their relationship to and impact 

on skin barrier function and therefore link to overall skin health9.  

An essential element in understanding tissue development is the knowledge of cell positions 

and their features. Indeed, tissue arrangement plays a critical role in tissue development through 

cell communication and signaling, and spatial interaction between neighboring cells. 

Additionally, identifying abnormalities in cell positions and tissue architecture disarray (e.g., 

uncontrolled growth and cell invasion) can provide insights into underlying disease 

mechanisms. Unfortunately, acquiring this information on RCM images is done manually, and 

therefore tedious, especially when done on a large number of images. Through the application 

of the FIAP to over 5000 RCM images, we were able to detect keratinocytes and extract the 

quantitative parameters of interest and thus study their dynamic evolution across different 

populations (age, body site, and epidermal layer) validating knowledge on skin maturation and 

ageing. To our knowledge, this is the first large-scale analysis of RCM images. 

3.5.1 Statistical analysis 

To represent each cell population depending on age group, epidermal layer, and body site, their 

median value will be used. Quantitative comparison was performed using an ANOVA on a 

fitted linear model. Additionally, we performed linear regression for each parameter per body 

site and epidermal layer to assess the relationship between age and the respective parameter, 

examining both the direction and strength of the relationship. Statistical significance was 

considered for p-value < 0.05. All statistical analysis were conducted using Python 3.6.7. 

The FIAP was applied to all images resulting in the detection of keratinocytes present in every 

image and derivation of cell contours and centers which were used to calculate parameters 

relating to cell geometry such as cell area, perimeter, density, and relating to tissue topology 

such as the number of Delaunay nearest neighbors.  
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3.5.2 Cell geometry evolution with age and epidermal layer  

Cell geometry (cell area, cell density, cell perimeter) gradually changed with age and with 

epidermal layer.  Cells were significantly larger in the volar forearm compared to the cheek for 

both studied epidermal layers (see Fig. 16). The differences in cell geometry between children 

and adults were only significant for SG keratinocytes on the volar forearm, not on the cheek for 

neither SG nor SS, nor for spinous keratinocytes on the volar forearm.  

We evaluate the gradual change in cell area with respect to age with a linear model for each 

epidermal layer (see Fig. 17). This change was only significant for granular keratinocytes on 

the volar forearm with 𝑅𝑅2 = 0.465. 

 

Fig. 16 The median cell area ± standard error of mean per age group, epidermal layer and 
body site reflect the dynamic maturation and ageing of the epidermis. * Indicates that 
the median cell area is significantly different between the SG and the SS for a body 
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site and age group.    # Indicates that the median cell area is significantly different 
between the cheek and the volar forearm per age group and epidermal layer. SG, 

stratum granulosum; SS, stratum spinosum. 

 

Fig. 17 Median cell area per participant on (A) the volar forearm (SG R² = 0.465; SS R² = 
0.00693) and (B) the cheek (SG R² = 0.0324; SS R² = 0.0708) colored by age group. 
We fit a linear regression for each epidermal layer and body site but plot it only when 

significant. SG, stratum granulosum; SS, stratum spinosum. 
 

With the application of the hybrid deep learning model for epidermal layer classification165 on 

each RCM stack, we were able to calculate the thickness of the SC and of the supra-papillary 

epidermis (SPE) as the difference in depth between the uppermost and lowermost optical 

sections containing the desired observable features. As multiple stacks were captured per 

participant and per body site, we summarized the SC and SPE thicknesses per stack into a 

median value per study participant and body site.  

Both SC and SPE thicknesses increase significantly during childhood with respect to age (R2 = 

0.187 for SC and R2 = 0.279 for SPE) but not in adults (see Fig. 18).  

These findings suggest that cell turnover is faster  on the face than on the arm and is faster in 

children than in adults171,172  as cells reach the surface faster to be shed due to thinner epidermal 
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layers, and is associated with a higher keratinocytes proliferation rate173, leading to a thickening 

of epidermal layers and an increase in cell size. The measured quantitative geometrical values 

confirm the current physiological knowledge about epidermal maturation. Indeed, even though 

epidermal structure and barrier function is competent at birth and during childhood, the 

epidermis is more susceptible to outside-in aggressors (penetration of noxious substances172,174–

176 due to lower glyph density) and inside-out issues (water evaporation leading to tissue 

desiccation177 due to higher TEWL, higher conductance, and lower natural moisturizing factors 

in infants176,178). These functional differences are correlated with the structural geometrical 

changes previously described. 

  

Fig. 18 (A) Median SC thickness per participant (children R²= 0.187), (B) Median SPE 
thickness per participant (children R² = 0.279). A linear correlation with age was not 

significant in the adult group for either the SC or the SPE thickness. SC, stratum 
corneum; SPE, supra-papillary epidermis. 

 

Measurement of these geometrical parameters and understanding of epidermal architecture 

provide valuable insights into skin barrier function and skin health, and aid in the understanding 

of various skin condition. Indeed, epidermal layers thickness are of particular interest as they 

play a role in the determination and normalization of topical drugs permeation profile in 
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dermato-pharmacokinetic studies179 for the study of their bio-availability and bio-equivalence 

between formulas. They are also an essential consideration when developing cosmetic products 

to determine optimal formulation to ensure products efficacy and safety. Additionally, the 

epidermis is often represented as a brick and mortar wall180, with the keratinocytes considered 

as the brick, they are therefore essential in maintaining a healthy skin barrier function, 

highlighting the importance of the study of their evolution and differentiation from one layer to 

another and how they may alter the skin barrier function, resulting in various skin alterations181. 

While the SG and SS do not directly contribute to the main barrier function of the skin, the cell 

size of keratinocytes in these layers can indirectly influence the formation of a robust and 

effective skin barrier through the processes of keratinization, lipid production, tight junction, 

and corneocyte formation. These factors collectively contribute to the overall function and 

integrity of the skin barrier. 
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Fig. 19 Median cell aspect ratio per participant. SG, stratum granulosum; SS, stratum 
spinosum. 

 

Surprisingly, cell aspect ratio (𝑀𝑀𝑅𝑅𝑗𝑗𝑃𝑃𝑃𝑃 𝑅𝑅𝑎𝑎𝑖𝑖𝑙𝑙 𝑙𝑙𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙ℎ
𝑀𝑀𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑎𝑎𝑖𝑖𝑙𝑙 𝑙𝑙𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙ℎ

) does not seem to be impacted by the previously 

described changes. Indeed, through the differentiation of keratinocytes, as they move towards 

the surface through the spinous and granular layer, and the changes this may entail, their overall 

aspect and relative dimensions do not vary (see Fig. 19).  

3.5.3 Cell topology evolution with age and epidermal layer  

We initiated a Delaunay triangulation from the identified cell centers on each image and used 

it to calculate the average distribution of Delaunay nearest neighbors per age group, epidermal 

layer, and body site (see Fig. 20). A Delaunay triangulation consists of a net of triangles that 

guarantees that the circumcircle of each triangle contains only the vertices of said triangle182. 

The Delaunay triangulation of a set of points is dual to the Voronoi diagram initiated with these 

points as seeds. Indeed, the circumcenters of the Delaunay triangles form the vertices of the 

Voronoi diagram. Both concepts have been used to study cellular sociology9,166,183 to explore 

the relationship between cells in both healthy and diseased tissue.  

While geometrical parameters change with age, body site, and epidermal layer, structural 

organization does not. It seems to be preserved through epidermal maturation and ageing in 

healthy skin, and through the differentiation process of keratinocytes. 

We also calculated the Fisher-Pearson coefficient of skewness184 of the probability distribution 

for each age group, epidermal layer, and body site, as a measure of distribution asymmetry (see 

Fig. 22 and Table 7). The obtained values are compared to those of two published models of 

healthy and cancerous tissue (see Fig. 21). These models are based on game theory185 to model 

interactions between cells using different strategies, each one associated with a genotypic 
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variant linked to a different fitness and cell division speed, specifically an evolutionary game 

known as the prisoner’s dilemma where a cooperator pays a cost for the distribution of benefits 

to its partners/neighbors, while a defector (cheater) does not pay any cost and does not yield 

any benefit to its partners. The balance between benefits and costs impacts the fitness of the 

studied population, allowing a spread of defectors in a population of cooperators as they have 

less costs and can replicate faster. Here, the cooperators model represents healthy epithelium, 

while the defectors model represents cancerous tissue, where cells have lost some of the 

controls from other cells and their environment leading to a different behavior.  

The obtained skewness values (see Table 7) are closer to that of the cooperators model with a 

skewness of 0.40, i.e., the data distribution is symmetrical, and much lower than that of the 

defectors model with a skewness of 0.98, i.e., greatly skewed data distribution. There are no 

statistically significant differences between skewness values of the SG and SS distributions on 

both studied body sites. 
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Fig. 20 Average probability distribution of the number of Delaunay nearest neighbors per cell 
for (A) SG on the volar forearm, (B) SS on the volar forearm, (C) SG on the cheek, and (D) 

SS on the cheek per age group. SG, stratum granulosum; SS, stratum spinosum. 
 

We have shown that the epidermis, specifically the SG and SS, constantly undergoes changes 

throughout its maturation, ageing, and differentiation. The obtained results validate previously 

published work on these topics9 and extend it by studying a larger age range across the 

population using thousands of images. This quantitative study of epidermal cells spatial 

organization was made possible by the use of the FIAP, developed in this thesis, for the 

automated detection of keratinocytes on RCM images of the granular and spinous layers.  
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Fig. 21 Probability distribution of the number of Delaunay nearest neighbors per cell for the 
cooperators model (in green), and defectors model (in red). 

 

By automating a previously manual and laborious step, we have significantly enhanced our 

capacity to analyze RCM images. This advancement has enabled us to examine a greater 

number of images than ever before, solidifying our understanding of the structural maturation 

of the epidermis. Moreover, it has facilitated the expansion of our study across a broader age 

range, encompassing individuals from birth to 80 years old, thus allowing a more 

comprehensive analysis of the geometrical and topological properties of the epidermis across 

ages and body sites, in contrast to previous studies that primarily focused solely on comparing 

infant skin to adult skin 171,172,174–176,178. 
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Fig. 22 Distribution of skewness per age group for (A) SG on the volar forearm, (B) SS on the 
volar forearm, (C) SG on the cheek, (D) SS on the cheek. In red, skewness of the probability 
distribution of the Delaunay nearest neighbors for the defectors model. In green, skewness of 
the probability distribution of the Delaunay nearest neighbors for the cooperators model.SG, 

stratum granulosum; SS, stratum spinosum. 

 
The findings of the application of the FIAP to thousands of RCM images align with previous 

research on the maturation of the epidermis. It validates that the increase in cell size observed 

in adults compared to children is likely attributed to the deceleration of cell turnover with age186. 

Moreover, the cells in the granular layer were found to be larger than those in the spinous layer, 

indicating a progressive increase in size during maturation. This can be attributed to the 

prolonged residence time of cells in the epidermis due to reduced cell turnover187, allowing for 
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more extensive maturation and growth before eventual desquamation at the skin surface. 

Additionally, the quantitative analysis revealed that the enface surface area of cells is bigger on 

the volar forearm compared to the cheek which reflects the higher cell turnover rate on the 

face187 which also decreases faster with age. 

Although the spatial organization of healthy skin cells undergoes dynamic changes clear in the 

evolution in cell sizes with age, their topology (spatial arrangement) remains consistent. We 

observed that the skewness of the probability distribution of Delaunay nearest neighbors is 

greater in the spinous layer compared to the granular layer. Interestingly, this skewness is closer 

to that observed in the defectors model, suggesting a resemblance between the spatial patterns 

of cells in the spinous layer and the behavior of defectors in the model. While the observed 

differences may not reach statistical significance, we could hypothesize that the proximity of 

the spinous layer to the basal layer, where keratinocytes replicate, could influence the 

probability distribution of Delaunay nearest neighbors. This could potentially reflect the 

proliferation process occurring in the basal layer, with the spinous layer displaying a 

distribution closer to the defectors model where cancerous cells adopt a cheating competitive 

strategy, leading to abnormal and excessive proliferation. Additional analysis of both the 

spinous and basal layers is however required to validate this hypothesis. 
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Table 7 Average Fisher-Pearson coefficient of skewness of the probability distribution 
of Delaunay nearest neighbors per age group. SG, stratum granulosum; SS, stratum spinosum. 

 SG volar 
forearm 

SS volar 
forearm 

SG 
cheek 

SS 
cheek Cooperators Defectors 

0 – 1 yr. 0.226 0.465 - - 

0.404 0.980 

2 – 4 yrs. 0.229 0.429 - - 

4 – 6 yrs. 0.135 0.444 - - 

6 – 8 yrs. 0.0949 0.457 - - 

8 – 10 yrs.  0.0354 0.448 - - 

20 – 40 
yrs. 0.244 0.434 - - 

40 – 50 
yrs. 0.282  

0.574 0.229 0.607 

50 – 60 
yrs. 0.332 0.592 0.131 0.493 

60 – 70 
yrs. 0.427  

0.593 0.228 0.566 

70 – 80 
yrs. 0.412 0.465 0.320 0.551 

Median  0.135 0.444 0.229 0.559   

 

Although the size of granular and spinous keratinocytes changes with age, epidermal layer, and 

body site, their shape is preserved through cell maturation, ageing, and differentiation.  

Conducting a similar analysis on proliferating basal cells would be valuable since the 

examination of cellular aspect ratio has primarily focused on proliferative or cancerous 

tissues188–190. In such studies, cellular aspect ratio has been identified as a fundamental 

parameter for normal cell division and function. Furthermore, it has been proposed as a 

potentially vital factor in maintaining cell geometry within proliferative tissues, as well as in 

shaping the spatial patterns of daughter cells during cell movement and differentiation. 
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Therefore, exploring the aspect ratio of proliferating basal cells can provide valuable insights 

into the mechanisms governing cell division, cell function, and the establishment of spatial 

patterns in tissues undergoing proliferation. By investigating this aspect, we can further enhance 

our understanding of cellular dynamics and their role in tissue development and maintenance. 

This study only included Caucasians with Fitzpatrick skin phototypes from I to III. 

Nevertheless, the FIAP was also tested on two RCM images of the granular layer of subjects 

with heavily pigmented skin with similar accuracy compared to a manual ground truth obtained 

by Expert 1 (see Table S1). It would be valuable to extend this work to include more participants 

with different phenotypic and genetic background including more pigmented skin. 

To summarize, our study successfully demonstrated the applicability of an automated approach 

for detecting keratinocytes in RCM images. This method enabled the extraction of geometrical 

and topological properties, facilitating comparisons across age groups, epidermal layers, and 

two body sites. By using the FIAP, we were able to overcome a common challenge in 

biomedical image analysis, namely the laborious nature of manual tasks and the potential for 

human interpretation biases. By extending the proposed method to RCM images of diseased 

skin, we could generate novel insights into various skin conditions and uncover valuable 

knowledge about the characteristics and behaviors of keratinocytes in different skin disorders. 

This, in turn, may contribute to advancing our understanding of skin diseases and potentially 

lead to improved diagnosis and therapeutic strategies. This last point was unfortunately not 

possible due to lack of access to RCM images of diseases skin. 

3.6 Comparison to machine learning based approaches 

The FIAP succeeded in detecting keratinocytes on RCM images of the granular and spinous 

layers and was successfully applied to thousands of RCM images, but the method can be 
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hindered by image noise, lack of contrast and non-uniformity, and the presence of cells from 

different epidermal layers on the same image making parametrization of the different steps 

complicated.  

To address these challenges, we tested machine learning-based methods. This shifted our 

perspective from descriptive analysis, i.e., using existing knowledge or prior information about 

the morphological characteristics of the studied membranes, to predictive analysis, i.e., training 

a model to unveil underlying patterns within the images by minimizing disparities between the 

ground truth and predictions. The aim was to minimize the need for manual adjustments and 

decrease computational time.  

 However, a significant challenge in adopting this kind of approach in the case of RCM images, 

and biomedical imaging in general, is the limited availability of labeled images for training. To 

overcome this limitation, we used the previously described synthetic images for data 

augmentation. This approach allowed us to generate additional data to hopefully enhance the 

model learning capabilities and improve its predictive performance. 

We tested two machine learning based approaches: the U-net algorithm191 and the Cell Cutter 

algorithm192. Images were split between training and testing with an 80-20 ratio and were the 

same for all U-net models. 

The previously described U-net algorithm, made of a contracting and expanding path to capture 

contextual information while conserving spatial information, was tested in 6 different 

configurations, and their accuracy evaluated (see Table 8, Fig. 23). Images used in U-net were 

of size 256x256, resulting from the splitting of 1000x1000 full framed RCM images, to reduce 

training time.  
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A common problem encountered when training machine learning models is the class imbalance 

issue between background and foreground. To counter this issue, we chose to use a ground truth 

in the form of membranes positions rather than cell centers position when training machine 

learning models. This ground truth was obtained by generating a Voronoi tessellation from 

manually obtained cell centers and will be used in the training of the model. However, accuracy 

will be calculated by comparing detected cells to cell centers positions as previously done in 

Chapter 3, in order to not introduce any bias to the calculated accuracy metrics.   

The first tested U-net model was trained on a small dataset of 39 real RCM images of 4 

participants, ages 20 to 35 years. The scarcity of manually labeled RCM images, where ground 

truth is known, is due to the time and expertise required to identify keratinocytes on said images. 

As a consequence, our initial attempt with this restricted dataset yielded a very low accuracy.  

To address this challenge, we tested a second U-net configuration and augmented the dataset 

by incorporating synthetic images. This augmentation proved beneficial, enhancing the 

accuracy metrics for both real and synthetic images (see Table 8). However, the results were 

still very much unsatisfactory for real RCM images (see Fig. 23), especially the trade-off 

between recall and precision, visible in the low F1-score value. The very low recall reflects the 

high number of undetected cells, while the high precision indicates that the detected cells match 

the ground truth.  

We then moved to testing a U-net model pretrained on the 2012 ImageNet Large Scale Visual 

Recognition Challenge dataset193 with an efficientnetb3 backbone194. This attempt assumes that 

a pretrained model will be closer to convergence and therefore more likely to yield accurate 

segmentation results with a smaller training set. We first used this pretrained U-net model 

without additional training (third tested U-net model), as an accuracy baseline and an evaluation 

of the impact of additional data on model performance, and then with supplementary real and 
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synthetic RCM images (fourth tested U-net model), and different loss functions to account for 

the class imbalance in RCM images, i.e., there is much more background than there are cell 

membranes on RCM images. We tested out the Dice loss function195 defined as follows: 

𝐷𝐷𝐴𝐴𝑐𝑐𝐴𝐴 𝐿𝐿𝑙𝑙𝐴𝐴𝐴𝐴 (𝑜𝑜, �̂�𝑝) =  1 − 2𝑦𝑦𝑝𝑝�+1
𝑦𝑦+𝑝𝑝�+1

(10) 

with (𝑜𝑜, �̂�𝑝) = (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝐴𝐴,𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑜𝑜𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝐴𝐴).  This loss function is derived from the 

Sørensen-Dice coefficient and measures the dissimilarity between the predicted segmentation 

mask and the ground truth mask by calculating the overlap between the two.  

and the Focal loss function196 defined as follows:  

𝐹𝐹𝑙𝑙𝑐𝑐𝐴𝐴𝐴𝐴 𝐿𝐿𝑙𝑙𝐴𝐴𝐴𝐴 (𝑝𝑝𝑙𝑙) =  −𝛼𝛼𝑙𝑙(1 − 𝑝𝑝𝑙𝑙)𝛾𝛾 log(𝑝𝑝𝑙𝑙) (11)  

with the estimated probability of class 𝑝𝑝𝑙𝑙 defined as: 

𝑝𝑝𝑙𝑙 =  � 𝑝𝑝,               𝐴𝐴𝑖𝑖 𝑜𝑜 = 1
1 − 𝑝𝑝, 𝑙𝑙𝑜𝑜ℎ𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴 (12) 

with (𝑜𝑜,𝑝𝑝) = (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑜𝑜𝐴𝐴𝑙𝑙𝑜𝑜), and 𝛼𝛼𝑙𝑙 and 𝛾𝛾 weight parameters. The first addresses the class 

imbalance and the second controls the degree of emphasis on hard examples. The Focal loss 

addresses the issue of class imbalance in object detection problems by mitigating the dominant 

effect of the abundance of easy to classify background. This is done by giving more weight to 

“hard” misclassified examples while down-weighting “easy” correctly classified ones. 

Our final tested U-net model assessed the performance of a combination of the two loss 

functions. We achieved similar accuracy values across all three configurations when evaluating 

synthetic images. For real RCM images, the best cell identification accuracy was obtained with 

a pre-trained U-net model augmented with both real and synthetic RCM images and using the 

combined Dice and Focal loss functions (see Table 8). However, it is important to note that 
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despite these advancements, the accuracy of all tested U-net approaches remained lower than 

that of the previously presented FIAP, particularly concerning real RCM images. 

 

Table 8 Accuracy metrics for the tested U-net models. 

Model Image 
dataset 

Synthetic RCM images Real RCM images 

Median 
testing 
precision 

Median 
testing 
recall 

Median 
testing 
F1-
score 

Median 
testing 
precision 

Median 
testing 
recall 

Median 
testing 
F1-
score 

U-net 
trained on 
real images 
only 

Training: 39 
images 
Testing: 10 
images 

0 0 0 _ _ _ 

U-net 
trained on 
real and 
synthetic 
images 

Training: 280 
images 
Testing: 70 
images (6 of 
which are 
real RCM 
images) 

0.923 

± 0.092 

0.958 

± 0.093 

0.930 

± 0.086 
1.000 

0.083 

± 0.108 

0.154 

± 0.156 

U-net pre-
trained with 
no 
additional 
training  

Pre-training 
on 2012 
ILSVRC 
ImageNet 
dataset, with 
efficientnetb3 
backbone 

0.027 

± 0.020 

0.091 

± 0.107 

0.041 

± 0,031 

0.017 

± 0.008 

0.125 

± 0.067 

0.031 

± 0.014 

U-net pre-
trained and 
augmented 
with real 
and 
synthetic 
images with 
Dice loss 
function 

Pre-training 
on 2012 
ILSVRC 
ImageNet 
dataset, with 
efficientnetb3 
backbone 
Training: 203 
synthetic 

0.909 

± 0.167 

0.913 

± 0,107 

0.911 

± 0,147 

0.520 

± 0,109 

0.482 

± 0.234 

0.516 

± 0.164 
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Model Image 
dataset 

Synthetic RCM images Real RCM images 

Median 
testing 
precision 

Median 
testing 
recall 

Median 
testing 
F1-
score 

Median 
testing 
precision 

Median 
testing 
recall 

Median 
testing 
F1-
score 

U-net pre-
trained and 
augmented 
with real 
and 
synthetic 
images with 
Focal loss 
function 

images, 43 
real images 
Validation: 
68 synthetic 
images, 13 
real images 
Testing: 30 
synthetic 
images, 5 
real images 

0.917 

± 0.154 

0.923 

± 0.107 

0.923 

± 0.136 

0.500 

± 0.044 

0.609 

± 0.238 

0.550 

± 0.120 

U-net pre-
trained and 
augmented 
with real 
and 
synthetic 
images with 
Focal and 
Dice loss 
functions 

0.909 

± 0.174 

0.917 

± 0.100 

0.909 

± 0.148 

0.545 

± 0.159 

0.571 

± 0.186 

0.603 

± 0.154 

FIAP _ 

0.835  

± 0.067 

 

0.925 

± 0.012 

0.878 

± 0.021 

0.720  

± 0.068 

0.850 

± 0.110  

 

0.779 

± 0.084 

 

The second machine learning approach tested was the Cell Cutter algorithm, which is an 

unsupervised marker-controlled segmentation method. This algorithm does not rely on 

manually annotated data for training. Instead, it employs marker locations generated from either 

real or synthetic nuclei images. Local U-net algorithms are then applied to each patch 

surrounding an identified marker to model cell features and improve the accuracy of membrane 

segmentation. By combining marker-based localization and U-net-based modeling, Cell Cutter 

theoretically offers an effective approach for automated cell segmentation without the need for 
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manual annotations in the training process. By employing this localized patch approach, we 

transform a complex multi-cell segmentation problem into a simpler multi-single-cell 

segmentation task. This means that each patch, when properly defined by its marker, contains 

only one cell.  

Consequently, instead of simultaneously segmenting multiple cells, we focus on accurately 

detecting a single cell within each patch. This approach is built on the assumption that nuclei 

exhibit simpler morphological characteristics (or unique staining in histology), making them 

easier to detect to generate the markers. By leveraging this assumption, we aim to alleviate the 

under-segmentation bias often encountered in images with densely populated neighboring cells 

where boundaries between cells can be difficult to delineate accurately197, as long as nuclei are 

correctly detected. Since we do not have images of the nuclei matching our RCM images (as 

with a DAPI image), we built synthetic marker images by applying the first two steps of our 

FIAP, i.e., ROI and individual cells identification, thus using Cell Cutter as a replacement to 

our post-processing step. This was an attempt at striking a balance between a descriptive and a 

predictive logic that resulted in a hybrid approach combining the two aforementioned methods. 

However, when applying the Cell Cutter algorithm to our real RCM images, the results were 

unsatisfactory. The best achieved results for precision and recall were 71% and 56% 

respectively, falling below the acceptable thresholds. This indicates that the algorithm 

encounters challenges in properly distinguishing and segmenting cells, leading to lower 

accuracy values compared to the previously described FIAP. 
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Fig. 23 (A) Synthetic RCM images and its segmentation ground truth. (B) Tested U-net 
architectures segmentations on a synthetic RCM image. (C) Real RCM images and its 

segmentation ground truth. (D) Tested U-net architectures segmentations on a real RCM 
image. RCM, Reflectance confocal microscopy. 

 

3.7 Discussion & Conclusion 

Our study successfully demonstrated the feasibility of automated keratinocyte detection on 

RCM images of the granular and spinous layers using a morphology-based approach. This is 

an important step towards streamlining the quantitative analysis of these images to further our 
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understanding of healthy and diseased epidermis in both clinical application and basic research 

settings. 

However, we should acknowledge that the accuracy and computational efficiency of our 

method can be influenced by various factors: required epidermal layer-dependent 

parametrization, and image noise and non-uniformity. To address these challenges, we explored 

machine learning-based methods as an alternative which unfortunately yielded lower accuracy 

values compared to the FIAP (see Tables 8 and 9, Fig. 23). This can be attributed to several 

factors, including the limited size of the training set comprising real images (ranging from 39 

to 43, depending on the tested model as shown in Table 8) and the inherent differences between 

these images and the synthetic images used for data augmentation. This discrepancy between 

real and synthetic images may have affected the generalizability of the models, leading to lower 

accuracies. Furthermore, the accuracy of these approaches could have been impacted by the 

method used to obtain the ground truth on real RCM images. Indeed, the ground truth was 

generated using Voronoi tessellation using manually detected cell centers as seeds which may 

lead to an imperfect alignment between the Voronoi diagram vertices and the actual positions 

of the cell membranes. The rationale behind using artificially created membrane ground truth 

from manually annotated cell centers was to mitigate the issue of class imbalance in our images 

by shifting the problem from cell center detection to membrane segmentation, as there are 

typically more background pixels than cell centers and cell membranes. Additionally, 

subjectivity in the manual segmentation serving as ground truth, could have influenced the 

accuracy values. This variation in segmentation results was evident in the differences between 

the two experts (see Table 5). These factors collectively contributed to the observed differences 

in segmentation accuracies between real and synthetic RCM images in our study (see Table 8). 
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A prospective solution to the limited labelled data and thus the low accuracy of machine 

learning based approaches could be using multi-task learning to perform multiple related tasks 

in parallel, with each task improving the others performance by constraining each other’s 

solution space and thus improving overall accuracy. 

Table 9 Comparison between the FIAP, Cell Cutter algorithm, and the U-net architecture. 
FIAP, Full image analysis pipeline. 

 Advantages Limitations 

Manual cell identification • Fully explainable. • Time consuming. 
• Subjective. 

Full Image Analysis Pipeline 

• Explainable: Based on 
knowledge of the 
morphological properties of 
the studied structures. 

• Good accuracy against 
manual segmentation by 
expert graders. 

• Satisfactory trade-off 
between recall and 
precision. 

 

• Presence of multiple layers. 
• Manual parametrization. 

 

U-net 

• Based on prediction and 
discovering patterns in the 
image. 

• Shorter computational time 
(excluding training time) 

• Poor trade-off between 
precision and recall.  

• Important training set size 
required for good results 
leading to poor accuracy on 
real RCM images. 

Cell Cutter 

• Based on prediction and 
discovering patterns in the 
image. 

• Shorter computational time 
(excluding training time) 

• Multi-single cell 
segmentation instead of 
multi-cell segmentation. 

 

• Important training set size 
required for good results 
leading to poor accuracy on 
real RCM images. 

• Prior knowledge required: 
marker locations. 

 

The proposed FIAP is now limited to RCM images of the SG and SS and was used in an 

extensive study of skin maturation and ageing across ages, epidermal layers, and body sites of 

lightly pigmented skin. It would be biologically interesting to extend its use to the analysis of 



A traditional approach: Automatic granular and spinous epidermal cell identification and analysis on 
in vivo reflectance confocal microscopy images using filtering and cell morphological features 
 
 

   104 
 
 

RCM images of the basal layer where cell replication occurs, and several skin diseases emerge. 

Unfortunately, this would be challenging using RCM, whether done manually or automatically. 

Indeed, it would be complicated for an expert to establish a ground truth on images of the SB 

because of poor image quality and severe drop in signal-to-noise ratio. 

To the best of our knowledge, there has been limited research published on the automated 

detection of keratinocytes on in vivo RCM images. One paper that explored this area utilized a 

rotationally symmetric error function reflectance profile to model the shape of keratinocytes63. 

However, this method employed fixed parameters for both the granular and spinous cells, and 

its accuracy was statistically validated based on cell density. In contrast, the proposed FIAP 

was validated against a manually obtained ground truth. This, we believe, makes our proposed 

method more accurate. 

Despite its limitations, the approach gave satisfactory results in the detection of keratinocytes 

on RCM images of the SG and SS, and the normalization steps helped achieve a robust 

parametrization of the approach for each epidermal layer. Classical machine learning 

approaches failed to give satisfactory results, but more advanced deep learning methods based 

on multi-task learning could give more accurate results in keratinocytes detection on RCM 

images of the SG and SS.
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Chapter 4  DermoGAN: An unsupervised 

multi-task deep-learning architecture 

for cell segmentation  

The examination of RCM images provides valuable insights into the geometrical and 

topological characteristics of the epidermis. Typically, RCM stack analysis is carried out 

manually, resulting in qualitative observations. However, manual analysis is a time-consuming, 

labor-intensive process prone to inter-expert variability. Consequently, there is a need for 

automated techniques that can quantitatively analyze RCM images and identify the positions of 

keratinocytes within them. 

To address this need, we introduced the FIAP, a method that relies on image filtering and the 

enhancement of membrane morphological features for keratinocyte detection in RCM images. 

We developed two distinct sets of parameters, one for the SG and another for the SS. These sets 

of parameters were determined using images from different clinical studies involving both 

children and adults and acquired on both the volar forearm and the cheek. Our results 

demonstrated that the FIAP successfully identifies keratinocytes on RCM images of both the 

granular and spinous layers. However, the manual parameterization it requires and the presence 

of multiple layers within one RCM image can impede its performance. 

To overcome these limitations, we explored the application of classical machine learning 

models, such as U-net and CellCutter. Unfortunately, these attempts were unsuccessful due to 

the substantial amount of data required to achieve satisfactory performance and issues related 

to class imbalance between the foreground and background. Steps taken to circumvent these 

limitations were not enough to achieve a better performance than the FIAP. More advanced 

deep learning method may help achieve a good accuracy in keratinocytes identification on RCM 

images. 
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Accurate automated cell identification on biomedical images with deep learning has been a 

growing research topic in computer vision but is hindered by the lack of labelled data on account 

of cost, time, and domain-specific skills. Unsupervised learning bypasses the labeled data 

scarcity problem by tapping into the potential of unlabeled data. One of the main developments 

in unsupervised learning research of the recent years are cycle-GANs198 for unpaired image-to-

image translation, and are classically used for synthetic images generation and data 

augmentation199–202.  

We propose a top-down, structure aware, multi-task cycle-GAN architecture, named 

DermoGAN, to automatically detect keratinocytes on RCM images. The multi-task model 

performs two parallel cycle-GANs to denoise RCM images while highlighting membranes 

positions, and provides an incomplete cell identification, which is then refined and completed 

by a post-processing based on star-convex shape segmentation, i.e., segmenting detected 

contours such that they are all star-convex polygons. Star-convex polygons are shapes that 

contain a point called center such that, for any point within the polygon there exists a line 

segment connecting the point to the center within the polygon. The proposed architecture is 

fully unsupervised and thus not limited by training annotations, often the first limitation to the 

use of deep learning methods in the analysis of biomedical images. To our knowledge, this is 

the first use of cycle-GANs in a multi-task framework. Additionally, while generally used for 

synthetic images generation and data-augmentation, here we employ the cycle-GAN algorithm 

as an image-denoiser and cell-identifier. Indeed, when using cycle-GANs for data 

augmentation, we often want to learn the noise model of the image. Here, we make use of the 

cycle-consistency property of cycle-GANs and use the denoising model learned in parallel to 

the noise model to segment our images.  

We compare the proposed method to five other approaches, a supervised method based on a 

U-net architecture, a pre-trained StarDist applied to Gabor-filtered images, two unsupervised 
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approaches based on a cycle-GAN with different inputs, and the FIAP.   

We demonstrate that the presented DermoGAN architecture performs on par with expert 

manual identification of cells and outperforms the five other tested automated methods in 

accuracy and execution computational time. We also show that DermoGAN can be extended, 

with no retraining, to images acquired using other image acquisition techniques, and can be 

trained on datasets made entirely of synthetic images and deliver good results. 

4.1 Methods 

4.1.1 Identifying keratinocytes on RCM images with DermoGAN 

The goal of the proposed DermoGAN model, shown in Fig. 24, is to estimate a mapping 𝐺𝐺𝐴𝐴2𝐵𝐵 

from an RCM image domain (A) towards a binary domain (B). The mapping is learned using 

two connected complementary tasks, the first one learns RCM images noise and texture model 

(the likelihood of the image) from two sets of unpaired images: a set of RCM images and a set 

of (synthetic) binary images (obtained by simulating a prior model). The second task maps 

Gabor-filtered RCM images (domain C), i.e., where membranes have been highlighted and the 

noise removed, into binary (synthetic) images, to learn the global geometrical structure of 

epidermal cell populations. The combination of the two tasks makes the overall model structure-

aware, allowing us to denoise RCM images while highlighting membrane positions.  

The proposed architecture is fully unsupervised, thus circumventing the obstacle of limited 

labelled data. Additionally, as it does not rely on training with a manually generated ground 

truth, as opposed to supervised approaches like U-net, its accuracy cannot be impacted by 

incorrectly labelled data, i.e., missing cells in the ground truth or wrong detections. 
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Each task is a cycle-GAN network, made of two generators, denoted  𝐺𝐺𝐴𝐴2𝐵𝐵 and 𝐺𝐺𝐵𝐵2𝐴𝐴 in the first 

task and 𝐺𝐺𝐶𝐶2𝐵𝐵 and 𝐺𝐺𝐵𝐵2𝐶𝐶 in the second task, and two discriminators, denoted 𝐷𝐷𝐵𝐵1 and 𝐷𝐷𝐴𝐴 in the 

first task and 𝐷𝐷𝐶𝐶  and 𝐷𝐷𝐵𝐵2 in the second task, making a total of 8 networks in the model.  

Generator and Discriminator architecture 

The generator and discriminator networks form pairs (𝐺𝐺𝐴𝐴2𝐵𝐵/𝐷𝐷𝐵𝐵1and 𝐺𝐺𝐵𝐵2𝐴𝐴/𝐷𝐷𝐴𝐴, 𝐺𝐺𝐶𝐶2𝐵𝐵/𝐷𝐷𝐵𝐵2 and 

𝐺𝐺𝐵𝐵2𝐶𝐶/𝐷𝐷𝐶𝐶). A generator takes a 256x256 image as input, down-samples it to extract high-level 

features and reduce spatial resolution, applies a succession of residual (ResNet) blocks to these 

features, and then up-samples them to increase the spatial resolution back up and generate the 

output, as described in Fig. S3. Each generator aims to create realistic target images taking a 

source image as input. The generators are constrained by an identity loss203 to ensure that the 

generator does not modify a target domain image, if used as an input, encouraging it to be an 

identity mapping, i.e., 𝐺𝐺𝐴𝐴2𝐵𝐵(𝐵𝐵)  ≈  𝐵𝐵. The two generators in the network should be cycle 

consistent to ensure that the data is preserved during the translation process and that the latter 

is reversible, i.e., 𝐺𝐺𝐴𝐴2𝐵𝐵�𝐺𝐺𝐵𝐵2𝐴𝐴(𝐵𝐵)�  ≈  𝐵𝐵204.  

The weights in all generators were initiated  using a Xavier (or Glorot) normal distribution205 

such that the variation of the activations are the same across all layers to reduce the risk of the 

gradient exploding or vanishing and is a random number with a normal probability distribution 

in the range ±� 6
𝑃𝑃𝑖𝑖+ 𝑃𝑃𝑜𝑜

, where  𝑜𝑜𝑖𝑖 = 862 is the number of input images (both real RCM images 

and Gabor-filtered ones), and 𝑜𝑜𝑃𝑃 = 400 is the number of output images (synthetic binary 

images). The weights of the generators were then updated by minimizing 3 loss functions (see 

Fig. S3).  
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In the case of 𝐺𝐺𝐴𝐴2𝐵𝐵, these loss functions are: (1) An adversarial loss calculated with a mean 

squared error (MSE) between the generator and its associated discriminator, here 𝐷𝐷𝐵𝐵1, such that 

for a pixel at coordinates [i, j] of the generated image 𝐺𝐺𝐴𝐴𝑜𝑜𝐵𝐵, it is defined as, 

𝑀𝑀𝑆𝑆𝐸𝐸�𝐷𝐷𝐵𝐵1(𝐺𝐺𝐴𝐴𝑜𝑜𝐵𝐵), 1� =  
1
𝑜𝑜𝑙𝑙
��𝐷𝐷𝐵𝐵1(𝐺𝐺𝐴𝐴𝑜𝑜𝐵𝐵)(𝐴𝐴, 𝑗𝑗) − 1�

2
𝑃𝑃𝑡𝑡

𝑖𝑖,𝑗𝑗

 (13) 

where 𝑜𝑜𝑙𝑙 is the size of the tensor outputted by the discriminator. 

(2) An identity loss with a mean absolute error (MAE) between the input image 𝐼𝐼𝐵𝐵 from domain 

B and the theoretical identity mapping 𝐼𝐼𝐴𝐴𝐼𝐼𝐵𝐵 =  𝐺𝐺𝐴𝐴2𝐵𝐵(𝐼𝐼𝐵𝐵) ≈ 𝐼𝐼𝐵𝐵, defined for image 𝐼𝐼𝐵𝐵 at pixel [i, 

j],  

𝑀𝑀𝐴𝐴𝐸𝐸�𝐼𝐼𝐴𝐴𝐼𝐼𝐵𝐵 , 𝐼𝐼𝐵𝐵� =  
1
𝑜𝑜𝑖𝑖
��𝐼𝐼𝐴𝐴𝐼𝐼𝐵𝐵(𝐴𝐴, 𝑗𝑗) −  𝐼𝐼𝐵𝐵(𝐴𝐴, 𝑗𝑗)�
𝑃𝑃𝑖𝑖

𝑖𝑖,𝑗𝑗

 (14) 

(3) A (Forwards or backwards) cycle consistency loss with a MAE between an input image 𝐼𝐼𝐵𝐵 

from domain B and the corresponding reconstructed image 𝑅𝑅𝐴𝐴𝑐𝑐𝐼𝐼𝐵𝐵 =  𝐺𝐺𝐴𝐴2𝐵𝐵�𝐺𝐺𝐵𝐵2𝐴𝐴(𝐼𝐼𝐵𝐵)�, defined 

at pixel of coordinates [i, j] as, 

𝑀𝑀𝐴𝐴𝐸𝐸�𝑅𝑅𝐴𝐴𝑐𝑐𝐼𝐼𝐵𝐵 , 𝐼𝐼𝐵𝐵� =  
1
𝑜𝑜𝑖𝑖
��𝑅𝑅𝐴𝐴𝑐𝑐𝐼𝐼𝐵𝐵(𝐴𝐴, 𝑗𝑗) −  𝐼𝐼𝐵𝐵(𝐴𝐴, 𝑗𝑗)�
𝑃𝑃𝑖𝑖

𝑖𝑖,𝑗𝑗

 (15) 

This loss function participates 10 times more to the update of the generator weights compared 

to the adversarial MSE loss. 

The generators were trained with the ADAM optimizer with an initial learning rate of 0.002, 

and a decay rate of the gradient exponential moving average of 1.  

The discriminators take an image as input and output the classification results (real vs. fake) in 

a tensor. Each discriminator aims to distinguish between real and generated target images, thus 

working against its matching adversary generator, which aims to create indiscriminable 
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generated target images. These two networks are connected through the adversarial loss in 

(13)204, and the discriminator loss function is, 

1
2
𝑀𝑀𝑆𝑆𝐸𝐸�𝐷𝐷𝐵𝐵1(𝐺𝐺𝐴𝐴𝑜𝑜𝐵𝐵), 1� + 

1
2
𝑀𝑀𝑆𝑆𝐸𝐸�𝐷𝐷𝐵𝐵1(𝐼𝐼𝐵𝐵), 0� (16)  

Training each generator/discriminator pair simultaneously allows the cycle-GAN to learn the 

bidirectional image-to-image translation between two unpaired domains.  

Multi-task approach 

RCM images are noisy and heterogeneous due to tissue-induced scattering206, and are non-

specific to organelles and macro-structures. This makes the identification of keratinocytes on 

RCM images a challenging task, whether done manually or automatically. In this case, cell 

identification requires two simultaneous tasks to capture the breath of information in confocal 

images: noise removal and membrane identification. Multi-task learning allows for concurrent 

execution of these two related tasks, improving overall performance by leveraging 

complementary information and sharing representations207.  This reasoning mimics the human 

expert’s approach to manual cell identification on RCM images, i.e., focusing on bright tube-

like membranes while ignoring the bright blob-like noise. 

Noise removal was performed using a first cycle-GAN network, learning the translation 

between RCM images and binary images obtained by simulating a prior model, whereas 

membrane identification was performed by learning the mapping between binary images and 

Gabor-filtered RCM images, i.e., where membranes were highlighted.  

The multi-task model is optimized through soft-sharing of parameters208, since the two tasks do 

not share any hidden layer but are connected through their loss function, as shown in Fig. 24. 

Indeed, at each update of the loss functions, those associated with the generators creating the 

binary images, i.e., 𝐺𝐺𝐴𝐴2𝐵𝐵 and 𝐺𝐺𝐶𝐶2𝐵𝐵, are updated through their regular optimization, and then the 
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maximum value of the two trios of losses is set as the loss function for both generators, in order 

to synchronize training across the two tasks of noise removal and membrane identification.  

4.1.2 Refining the results with star-convex polygons detection 

The proposed method is a top-down approach to cell detection. DermoGAN roughly localizes 

individual cell locations, but post-processing is required, as shown in Fig. 25 and Fig. S4. 

Indeed, applying the obtained mapping 𝐺𝐺𝐴𝐴2𝐵𝐵 to a locally normalized split RCM image 

(1000x1000 → 256x256) results in an incomplete binary image. To guarantee that the outside 

contour of tissue where the keratinocytes are detected is closed, we compute the alpha shape209 

of the incomplete binary mask at a set level of refinement, such that the tissue comprises only 

one volume per external contour and is not broken down into smaller shapes, and that the alpha-

shape contour matches the actual tissue area. Alpha-shapes are a generalization of convex hulls 

and are a mathematical approach formalizing the concept of a shape encompassing a set of 

points. Small holes in the membrane are then closed using a connected components analysis. 

We assume that all cells are star-convex shapes. However non-star-convex polygons can result 

from the false merging of two or more cells due to the lack of contrast on the membranes. To 

split these shapes, we use the pre-trained CNN StarDist210 to detect star-convex polygons within 

the contours detected by the DermoGAN model, consequently refining our results, countering 

any missed cells and reducing the number of false negatives, as shown in Fig. 24. 

4.2 Experiments and Results 

4.2.1 Dataset 

Images used in DermoGAN, U-net, and both approaches using a cycle-GAN, were of size 

256x256 pixels and obtained by splitting the full RCM image (described in Chapter 3) into 9 

non-overlapping square patches of 256x256 pixels. The FIAP network used full RCM images.  
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The results will be compared to the ground truth which was generated by Expert 1 by manually 

pointing out cell centers on 9 RCM images of 7 subjects, aged 5 months to 35 years. 

Generated simulations. Binary images of size 256x256 pixels were created by the previously 

described hard-core process. 

Synthetic RCM images were generated by adding different levels of noise and brightness 

heterogeneity to the binary images, as shown in Fig. S2. 

4.2.2 DermoGAN implementation details 

The model was trained for 5172 epochs on 46.9 CPU cores and 85.4 GiB of RAM. Training 

took approximately 4 days. All deep learning models were implemented using PyTorch. 

4.2.3 Comparison to other automated methods 

The proposed method is compared to 5 other approaches: (1) a deep learning approach based 

on the U-net architecture, (2) a StarDist algorithm applied to Gabor-filtered RCM images, (3) 

a cycle-GAN trained to translate RCM images into binary images,  (4) a second cycle-GAN 

trained to turn Gabor-filtered RCM images into binary images, and (5) the FIAP151,153,211. 

The proposed combination of cycle-GAN models into a multi-task approach improves results 

by mimicking manual expertise, disregarding noise to focus on membrane location and tissue 

structure. 

U-net. The U-net architecture which outperformed the other machine learning methods 

presented in Chapter 3 was selected to be compared to DermoGAN. It was pre-trained on the 

2012 ImageNet Large Scale Visual Recognition Challenge dataset212 with an efficientnetb3 

backbone194, and was further trained on 43 real RCM images (4 participants, aged 20 – 35 years) 

and 203 synthetic RCM images and tested on 13 real RCM images and 68 synthetic RCM 

images. The network used a combination of two loss functions: Dice loss195 and Focal loss196 

to account for class imbalance between cell membranes and background. The model is trained 
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with the ADAM optimizer with an initial learning rate of 0.0001, a batch size of 64, and a 

sigmoid activation function. The model was trained for 500 epochs on 46.9 CPU cores and 85.4 

GiB of RAM. Training took approximately three days. 

StarDist applied to Gabor-filtered images. A Gabor-filter was applied to ROI-masked RCM 

images to highlight membrane positions. The result was normalized with a histogram 

equalization and binarized with a Gaussian adaptive thresholding. A pre-trained StarDist was 

then applied to the binary masked-Gabor-filtered RCM image.  

Cycle-GAN based models. Two cycle-GAN models were trained on 647 RCM images and 276 

binary images, each one representing a task in the DermoGAN architecture, to evaluate each 

model independently, and later emphasize the importance of combining the two tasks into one 

architecture. The first one aimed to translate RCM images into binary images, whereas the 

second sought to convert Gabor-filtered RCM images into binary images. Both tested cycle-

GANs models were refined using star-convex shape detection as performed in the DermoGAN 

architecture. Training was performed for 12068 epochs on 46.9 CPU cores and 85.4 GiB of 

RAM and took two days.  

FIAP. The previously presented 3-step pipeline for keratinocytes detection151,153,211 based on 

membrane detection using image filters was applied to full RCM images of size 1000x1000 

pixels and compared to the other methods. 

4.2.4 Keratinocytes identification results 

The proposed DermoGAN architecture was evaluated using 9 full RCM images, each divided 

into 9 patches. Accuracy (precision and recall summarized into the F1-score) was calculated 

using d-accuracy169 against a manually obtained ground truth and compared to results obtained 

with the six described methods, as shown in Fig. 26 and Tables 10 and S2. 
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The poor performance of the pre-trained U-net model augmented with real and synthetic RCM 

images with Focal and Dice loss functions is in part due to the limited training set. Being a 

supervised approach, it may also suffer from missing cells in the ground truth used for training, 

and from membranes in the ground truth images created by Voronoi tessellation initiated from 

manually determined cell centers, not matching the actual membrane position in RCM images.  

The pre-trained StarDist applied to Gabor-filtered images also performs poorly. Indeed, 

although the Gabor filter highlights most membranes, it may also highlight noise, due for 

example to organelles, leading to false positives and low precision. Although the StarDist post-

processing greatly improves results by segmenting (correctly or not) the detected contours into 

star-convex shapes, it does not manage to correct for all missing cells, leading to false negatives 

and consequently low recall, and overall low F1-score.  
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Fig. 24 DermoGAN architecture. The first task maps RCM images to the unpaired synthetic 
binary images. Whereas the second task learns the structure RCM images of the epidermis by 

translating Gabor filtered RCM images into binary images. RCM, Reflectance confocal 
microscopy. 
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Both cycle-GAN-based approaches have low F1-scores as they fail to detect complete 

membranes, as shown in Fig. 25. Indeed, the cycle-GAN model trained on RCM images and 

binary images, struggles to distinguish between noise and microstructures making up the 

membranes. On the other hand, the cycle-GAN trained on Gabor-filtered images with binary 

images is corrupted by the spatial correlation of noise and fails to detect any structure present 

in the image, as seen in Fig. 25, which also hints at the reason behind the better performance of 

DermoGAN. Indeed, it seems that adding up the two independent cycle-GAN outputs, would 

close most holes in the detected membranes by focusing on membrane detection and omitting 

any noise visible in them.  

 
Fig. 45 Comparison of the two cycle-GAN based approaches and the proposed DermoGAN. 
Manually obtained ground truth in the form of cell centers in green. DermoGAN outperforms 

both methods. 

 
Both DermoGAN and the FIAP outperform the other models, as shown in Tables 10 and S2, 

and show a great trade-off between precision and recall. DermoGAN has a higher F1-score than 

FIAP for 6 out of 9 images. The first seems to favor recall and is less likely to miss existing 
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cells and produce false negatives, whereas the second seems to favor precision and is less likely 

to invent cells and create false positive detections. 

The DermoGAN architecture does not require manual parametrization nor a different set of 

parameters per epidermal layer, contrarily to the FIAP. This argues in favor of the DermoGAN 

architecture since multiple epidermal layers are often present in one RCM image. Once trained, 

its execution time is faster. It is based on the discovery of potentially unknown patterns in the 

image, making it less explainable than the FIAP. The latter is built on membrane detection using 

tubeness filters, with all its parameters being determined using general prior knowledge on the 

morphological features of the studied tissue. It is well documented that keratinocyte area 

increases with age and differs from one body site to another, and thus general parameters 

determined on a specific dataset may not be appropriate for all images. This point favors the 

DermoGAN architecture as more adaptable to different datasets and potentially to different 

image acquisition techniques and/or observed tissue. 

Table 10 Comparison of median F1-score (computed with d-accuracy169) for all six tested 
approaches. 

 

 

U-net 
based 
architectur
e 

StarDist on 
Gabor-
filtered 
images 

Cycle-GAN 
using RCM 
images 

Cycle-GAN 
using 
Gabor-
filtered 
images  

FIAP DermoGA
N 

Median F1-
score 47,9 38,9 41,6 30,4 65,1 69 

Standard 
deviation 12,2 12,1 6,4 8,3 7,4 4,2 
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Fig. 26 RCM image analyzed with the 5 presented algorithms. DermoGAN outperforms 4 out 

of 5 other methods on all images, and outperforms FIAP on 6 out of 9 images. RCM, 
Reflectance confocal microscopy; FIAP, Full image analysis pipeline. 

 
This study only included Caucasians with Fitzpatrick skin phototypes from I to III. 

Nevertheless, we tested DermoGAN on two RCM images of the granular layer of subjects with 

heavily pigmented skin and compare the results to a manual ground truth obtained by Expert 1 

(see Table S3). The results show low precision and high recall, i.e., DermoGAN tends to over-

segments cells on RCM images of heavily pigmented skin, probably due to the detection of 

melanin caps. The FIAP outperforms DermoGAN in the detection of keratinocytes on RCM 

images of heavily pigmented skin. 

4.2.5 Extension to other image acquisition techniques 

Although the presented method was trained using RCM images for the detection of 

keratinocytes, we hypothesized that it can be extended without retraining to images generated 

by other instruments. Indeed, multi-task learning methods tend to perform well on domain 

adaptation and generalization and are therefore less data dependent. On the other hand, such 
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adaptability can lower pixel-level segmentation, and therefore is more suited when the accuracy 

is calculated at object-level and not at pixel-level.  

To test this hypothesis, we applied the presented DermoGAN trained on RCM images on 

fluorescence microscopy images and compared the obtained results to 17 thresholding methods 

using ImageJ (detailed in the Appendix), as shown in Fig. 27. We observed that, although 

trained on different images of a different tissue, DermoGAN managed to identify membranes 

while omitting the noisy background, and outperformed traditional thresholding methods. It is 

important to note that the fluorescence microscopy image considered does show a similar tissue 

organization, i.e., cohesive tissue with cells sharing membranes, to RCM images of the 

epidermis. However, when tested on cell culture images where cells were not always confluent, 

we noticed a loss in accuracy when using DermoGAN for cell identification. We therefore 

trained a second model using a different prior for simulating binary images and a different filter 

to enhance contours, that will be referred to for simplicity as DermoGAN2, on images where 

cells were not confluent. 
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Fig. 27 DermoGAN can be extended using retraining to images acquired through different 

imaging techniques and outperforms traditional thresholding algorithms. (A) Input 
florescence microscopy images. (B) Output of DermoGAN applied to image A. (C) 

Application of 17 thresholding approaches to the same image. 

4.2.6 Retraining the model with only synthetic images 

DermoGAN2 was trained entirely on synthetic images. This served as a test of the 

generalization of the method when the available dataset is even more limited and serves to prove 

that the combination of the two tasks in the proposed model can capture general information 

and therefore can be extended to different images and tissues with similar organization, 

architecture, or texture, even when the images of interest were not included in the training set. 

The first task in DermoGAN2 maps synthetic non-confluent images created using the SIMCEP 

software for the simulation of fluorescence microscope images of cell populations213 (Fig. 28A) 

to binary non-confluent images (Fig. 28C). The binary images were obtained by simulating a 

MPP embedding a constraint on overlap between objects defined by disks102. Meanwhile, the 

second task aims to learn the translation of Canny-filtered synthetic non-confluent images (Fig. 

28B) towards the same binary non-confluent images.   
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Fig. 28 DermoGAN2 was trained entirely on synthetic images. (A) Synthetic non-confluent 

images created using the SIMCEP software. (B) Canny-filtered non-confluent images created 
using the SIMCEP software. (C) Binary non-confluent images. 

 
The resulting DermoGAN2 was then applied to images of cell cultures, and on mass 

spectroscopy images. 

DermoGAN2 on cell culture images 

We applied DermoGAN2 on an image of BV-2 microglial cells derived from C57/BL6 murine  

from the LIVECell dataset214 as seen in Fig. 29. We obtained an accurate segmentation of the 

cells on the image. To avoid border effects in the image, a 10-pixels frame was applied to the 

image.  

 
Fig. 29 DermoGAN2 applied to an image of confluent BV-2 cells (on the left), resulted in 
accurate detection of cells (on the right). Manually determined cell centers were plotted on 

DermoGAN2 output in yellow. 

 
We also applied DermoGAN2 to an image of the SK-BR-3 human breast cancer cell line, where 

cells display morphological heterogeneity (Fig. 30A). Good cell detection was observed (Fig. 
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30B) on most cells when contrast is high enough. This proves that DermoGAN2 can be 

extended to different cell shapes and is not limited to the detection of the circular cells it was 

trained on, and that it is not restricted by the aspect of the cells. Indeed, the synthetic images 

used for training the model correspond to fluorescence images (bright cells in dark background 

resulting in high contrast) which is not the case of the tested cell culture images.  

 

 
Fig. 30 DermoGAN2 applied to an image of SK-BR-3 cells (A) resulted in accurate detection 

(B) of cells compared to thresholding methods (C). 

 

DermoGAN2 on mass spectroscopy images 

Similar observations were made on mass spectroscopy images, where DermoGAN2 was able 

to detect hazy cell contours, with a tendency to merge neighboring cells into one detected 
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region, as shown in Fig. 31. This can be solved by post-processing using StarDist as done on 

RCM images. 

 
Fig. 31 DermoGAN2 applied to a mass spectroscopy image (on the left) resulted in accurate 

cell detection (on the right) with merging of adjacent cells. 

The success of DermoGAN in segmenting cohesive tissues and that of DermoGAN2 in 

detecting non-confluent cells, highlights the importance of the binary denoised images domain 

(domain B in DermoGAN). This domain serves as a prior domain incorporating anterior 

knowledge in the model by describing the structure of the studied tissue. In DermoGAN, the 

prior is represented as a tissue island containing adjacent cells of similar size, while in 

DermoGAN2, this prior is represented by circular non-confluent cells. This prior domain 

summarizes our knowledge of the studied tissue and steers the training of the model towards 

the right solution. Therefore, to obtain the best results, the appearance of the tissue should guide 

the choice of the appropriate DermoGAN model based on the corresponding prior domain.  

4.2.7 DermoGAN on histology images 

A third DermoGAN model (DermoGAN3) was trained on histology images for the 

segmentation of nuclei that are a main feature in medical diagnosis from histology images.  

The first task in DermoGAN3 maps the pre-processed histology images to synthetic images, 

representing nuclei, created using the SIMCEP software. While the second task, aims to learn 

the translation of Canny-filtered pre-processed histology images towards the same binary 

images.   
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Dataset 

Histology images of healthy skin were acquired from the Clinical Proteomic Tumor Analysis 

Consortium Cutaneous Melanoma Collection of the Cancer Imaging Archive215.  

Each image of a total of 32 images contains one or multiple tissue slides of both dermis and 

epidermis and was stained with hematoxylin and eosin (H&E). 

Creation of images of the epidermis. This work focuses on studying the architecture of the 

epidermis, we therefore identified the epidermis on each image. To do so, we applied a 

morphological geodesic active contour to the image and found the border between the epidermis 

and dermis. Indeed, the two layers are clearly distinguishable on histology slides, as the densely 

populated epidermis appears as a purple layer of connected tissue containing keratinocytes due 

to the binding of its structures to hematoxylin, while the more sparsely populated dermis 

appears as a pink irregular connective tissue due to the binding of eosin to the extracellular 

matrix and collagen, as visible in Fig. 32.  

 
Fig. 32 Histology image of healthy skin. The epidermis appears as a purple connected layer, 

while the dermis appears as a sparsely populated pink tissue.  

 
Color normalization. Color variation in histology images is common and is determined by the 

used scanner, equipment, and stain coloring manufacturers216, hence the need for a color 

normalization method to reduce variances between images.  

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948224
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948224
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We used the Macenko stain normalizer217 implemented in the torchstain package218. It is an 

unsupervised normalization technique. First, the algorithm estimates the hematoxylin and eosin 

(H&E) stain vectors within the target image using a singular value decomposition (SVD) 

approach, specifically applied to the non-background pixels in the input image. Then, the 

algorithm applies a correction to compensate for intensity variations stemming from factors 

such as the original stain strength and the staining procedure. Lastly, the image projected onto 

a reference image so that, following the stain normalization process, all the resulting images 

exhibit consistent color characteristics. Macenko’s stain normalization is based on the premise 

that the color of each pixel can be expressed as a linear combination of two H&E stain vectors, 

which are initially unknown and must be estimated during the normalization process. 

Results 

We applied DermoGAN3 to a histology image of healthy epidermis which had previously been 

color normalized and observed that it successfully detects nuclei position., as shown in Fig. 33. 

We noticed however a tendency to rounding the detected shapes, which may be due to the prior 

used in forming the synthetic images. 

Retraining the model was necessary here to introduce the information about the contrast 

between the nuclei and the cytoplasm, which was not present in the first two versions of the 

model. This approach was successful in detecting nuclei in histology images of healthy 

epidermis.  
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Fig. 33 Application of DermoGAN3 on a histology image of healthy skin. (A) Original 
histology image. (B) Color normalized image. (C) Output of DermoGAN3 using the color 

normalized image. (D) Binarized output of DermoGAN3.  

 

4.3 Discussion & Conclusion 

We have presented a novel multi-task cycle-GANs architecture for the identification of 

keratinocytes on RCM images which was compared to 4 other machine learning based methods 

and the FIAP. Supervised deep learning approaches obtained poor scores due to the lack of 

annotated data, even when using transfer learning. Unsupervised learning, such as cycle- GAN, 

failed to capture information at different scales simultaneously. Therefore, the FIAP approach 

outperformed these attempts. However, the proposed DermoGAN which combines two cycle-

GANs to embed both local and global structural information, outperformed the classical FIAP, 

in terms of accuracy and execution time.  

Cycle-GAN generators can encounter a vanishing gradient problem when the discriminator is 

too accurate in discriminating between input images and generated ones and therefore does not 

provide enough information for the optimization of the generator. This can be due to the images 

of the two domains being too different. To counter this issue, ResNet blocks could be replaced 

by Swin transformer blocks219, which would also work better when using high-resolution 

images or images containing objects of different scales. Swin (Shifted Windows) transformer 

blocks use a shifted window approach, dividing images into non-overlapping patches and 
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processing them sequentially, shifting both horizontally and vertically, thus capturing 

information from different parts of the image. They use local and global self-attention 

computation, and so can capture both local and global (intra- and inter- patch) context 

efficiently. They also are convolution free, an advantage which would solve the checkboard 

effect sometimes observable on cycle-GANs generated images.  

The current DermoGAN model is restricted to images of size 256x256, it would be useful to 

create a model applicable to images of all sizes, as is the case for StarDist.  

We showed that the proposed fully unsupervised architecture can be used with or without 

retraining on other types of imaging and tissue types, bypassing the problem of required 

annotated data and potential label noise/missing labels in the ground truth. Moreover, it is not 

limited by the training set but rather determined by the prior data domain, i.e., tissue 

organization and architecture in the training set. It would be of interest to generate new prior 

domains using MPPs to generate more specific priors, which would help extend the use of 

DermoGAN to images with multiple cell types or when the spatial dependence between 

different structures is important. 



 

  



Conclusion and Perspectives 
 
 

   130 
 
 

Chapter 5 Conclusion and Perspectives 

In this thesis, we focused on the development of new approaches for the detection of 

keratinocytes in RCM images of the SG and SS of the human epidermis. Our motivation is the 

streamlining of this analysis for faster, more reproducible, and more unbiased detection of cells 

on these images. This could help spread the use of RCM in clinical practice and research. This 

work made use of computer vision techniques based on traditional image analysis methods, 

deep learning, and multi-task learning, and was extended to images acquired through different 

imaging techniques. In the following, we summarize the contributions made in this thesis and 

discuss future perspectives.  

5.1 Summary of the contributions 

FIAP. We proposed a three-step FIAP for the automated detection of keratinocytes on RCM 

images of the SG and SS. We identified the region of interest containing the epidermal cells, 

and then detected the individual cells in the segmented tissue area using tubeness filters to 

highlight membranes. We used prior biological knowledge on cell size to process the resulting 

detected contours, removing cells that are too small and reapplying the used filters locally on 

detected regions that are too big to be considered as a single cell.  

The proposed FIAP was compared to machine learning-based approaches (Cell Cutter, and 

different U-net configurations and loss functions). These machine learning approaches showed 

less accuracy than the proposed method based on morphological features detection. This 

reflects the importance of a big (annotated) dataset when using machine learning algorithms, 

which is difficult to achieve in the case of RCM images, and biomedical images in general, 

reflecting the importance of, and need for either traditional computer vision methods, or 

unsupervised deep learning algorithms.  
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The proposed FIAP was useful in validating insights on infant skin maturation and adult skin 

ageing by automating a step that was previously done manually and required long tedious work. 

Indeed, it was applied to over 5000 RCM images of the SG and SS of clinical study participants, 

aged 0 to 80 years, and demonstrated the dynamic maturation and ageing of skin throughout 

one’s life. This was, to our knowledge, the first large scale study of RCM images, and was 

useful in validating previous biological knowledge of the evolution of epidermal geometry and 

topology with age, and extending it to a broader age range, two body sites and two epidermal 

layers.  

The FIAP is limited by its manual parametrization (one set of empirically determined 

parameters per epidermal layer) and consequently limited by the presence of multiple epidermal 

layers per image. To counter these limitations, we proposed a novel multitask cycle-GAN 

architecture, named DermoGAN.  

DermoGAN.  To counter the limitations of the FIAP, we proposed the dual-task cycle-GAN 

architecture DermoGAN. The first task optimized the mapping between real RCM images and 

binary images thus learning the noise and texture model of RCM images, whereas the second 

task optimized the translation between Gabor-filtered RCM images and binary images, learning 

the epidermal structure visible on RCM images. The combination of the two tasks allowed one 

task to constrict the solution space of the other thus improving overall results. We refined our 

cell identification by applying the pre-trained StarDist algorithm to detect star-convex shapes, 

thus closing any incomplete membranes and separating neighboring cells. We demonstrated 

that the proposed fully unsupervised method successfully identifies keratinocytes on RCM 

images of the epidermis, with an accuracy on par with human expert cell identification and 

generally outperforms the FIAP, and the tested machine learning methods.  
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We showed that DermoGAN is less data dependent than other methods as it can be generalized 

and adapted to images acquired using different imaging techniques (fluorescence microscopy, 

cell culture, mass spectroscopy and histology). This domain adaptability allowed us to train a 

second iteration of DermoGAN on solely synthetic images and a third on histology images, 

showing that the method can bypass issues of limited data set, and that domain adaptability and 

accuracy are dependent on the represented tissue organization and architecture in the data not 

on the nature of the data itself. Such adaptability can lead to a decrease in pixel-level 

segmentation accuracy, and therefore is more adapted when accuracy is calculated at object-

level. 

We tested DermoGAN and a cycle-GAN model for unpaired domain translation from RCM to 

histology and vice versa. Dermatologists are more often trained to read histology slides than 

RCM images and it would therefore be beneficial to have a method to leverage insights 

provided by RCM images in the form of biopsy slides. This explorative attempt had limited 

accuracy due to limited datasets (see Appendix) but is promising and warrants more 

exploration.  

The proposed methods have their own advantages and limitations (see Table 11), and the 

preferred solution depends on the desired output. All the proposed methods were integrated as 

tools in a ready-to-use graphical user interface (GUI) to facilitate their use for RCM 

segmentation and interpretation. 
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Table 11 Comparison between the two main proposed methods for keratinocytes detection 
and manual cell identification. 

 Advantages Limitations 

Manual cell identification • Fully explainable. • Time consuming. 
• Subjective. 

Full Image Analysis Pipeline 

• Explainable: Based on 
knowledge of the 
morphological properties of 
the studied structures. 

• Good accuracy against 
manual segmentation by 
expert graders. 

• Satisfactory trade-off 
between recall and 
precision. 

 

• Presence of multiple layers. 
• Manual parametrization. 

 

DermoGAN 

• Task-level explainability: 
comparative study of 
DermoGAN vs. each task 
independently shows the 
role played by each task. 

• Faster than FIAP 
(excluding training time). 

• Good accuracy against 
manual segmentation by 
expert graders. 

• Satisfactory trade-off 
between recall and 
precision. 

• Outperforms the FIAP in 
most cases. 

• Domain adaptability and 
generalization to other 
images. 

• Decision-level 
explainability: unclear how 
predictions are made within 
each task. 

• Required post-processing 
due to lower pixel-level 
accuracy. Potentially due to 
generalization capabilities 
of multi-task networks.  

 

5.2 Implementation in a ready-to-use GUI for cell 

segmentation 

A GUI was developed including all the proposed methods: (1) FIAP for SG images, (2) FIAP 

for SS images, (3) DermoGAN trained on RCM images, (4) DermoGAN2 trained on synthetic 

images, (5) DermoGAN for RCM → histology translation, (6) DermoGAN for histology → 

RCM translation, (7) cycle-GAN for RCM → histology translation, and (8) cycle-GAN for 

histology → RCM translation. Roadblocks were set within the GUI to ensure that images of the 
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right size and format were used with the chosen algorithm (see Fig. 33). Table 12 lists the 

outputs of each method. 

Table 12 Summary of the outputs of each method. 
Method Saved outputs 

FIAP 

• ROI mask 
• Image result of the application of Gabor and 

Sato filters and the corresponding skeleton 
overlayed to the original image 

• Cell contours and cell labels, on independent 
images and overlayed to original image 

• Table of cell areas 
• Table of cell centers coordinates 

DermoGAN 
• Image result generated by DermoGAN 
• Image result after StarDist application  
• Table of cell areas 
• Table of cell centers coordinates 
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Fig. 34 Flowchart for the use of the developed graphical user interface including all 
developed methods. 

 

5.3 Perspectives 

The developed methods have only been evaluated on RCM images of healthy skin and showed 

accuracy on par with manual cell identification by human experts. It would be of interest to test 
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our methods on RCM images of diseased skin to evaluate the epidermal changes in structure, 

architecture, and topology of different skin conditions. This assessment may be a way to 

determine markers of disease progression based on quantitative cell characteristics which may 

be used to predict the onset of the disease, grade it, and evaluate its progression and reaction to 

treatment. It would also be interesting to validate the methods on image of heavily pigmented 

skin, as their application to these images has been so far limited.  

A recent advancement in skin imaging is line-field confocal optical coherence tomography (LC-

OCT) which has been commercially available since 2021. It combines the advantages of RCM 

(higher resolution than OCT) and OCT (higher penetration depth than RCM)220, and can be 

used in the diagnosis of cancer and other skin diseases221,222. It would be of interest to test and 

maybe transpose the developed methods on images obtained by LC-OCT to evaluate the 

accuracy of keratinocyte detection on these images. Additionally, LC-OCT allows the 

visualization of cell nuclei (as dark areas in a brighter cell plasma background), which may be 

useful in the study of diseases with abnormal nuclei. Moreover, LC-OCT offers both horizontal 

and vertical views, making it a more adapted technique for RCM to histology unpaired 

translation, as the images from both domains could have the same orientation at more 

comparable depths (possible with OCT, but not with RCM), with cellular resolution (possible 

with RCM, but not with OCT).   It would therefore be interesting to test the approaches 

developed in this thesis on LC-OCT images of the epidermis. 

From a methodological point of view the proposed dual tasks cycle-GAN architecture open a 

new avenue to combining deep learning and Bayesian approaches. Indeed, by simulating a prior 

and a posterior we can create a database to train the model and thus avoid having to resort to a 

predefined database possibly with annotations, which is the main bottleneck of deep learning 

approaches today. Future investigations will be necessary to consider likelihoods associated 
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with different probes and priors proposed in the Bayesian literature for detecting objects such 

as the MPP framework.
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Gabor filter bank 

 
Fig. S1 Gabor filters applied to the RCM image during the FIAP. RCM, Reflectance confocal 

microscopy; FIAP, Full image analysis pipeline. 
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Application of the FIAP to RCM images of dark-

pigmented skin 

Table S1 Cell detection accuracy on 2 stratum granulosum RCM images of dark- pigmented 
skin for Expert 1 using FIAP. RCM, Reflectance confocal microscopy; FIAP, Full image 

analysis pipeline. 

Image Layer Precision (%) Recall (%) F1-score 
(%) 

 

SG 62.3 70.2 66.0 

 

SG 68.3 66.7 67.5 
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DermoGAN 

 

 
Fig. S2 Synthetic images used in the training of the models. On the left, a synthetic binary 
image used in the DermoGAN training, and on the right synthetic RCM images of different 
noise levels and cell sizes used in U-net training. RCM, Reflectance confocal microscopy.

 

 

Fig. S3 Structure of the generator and discriminator networks used in the cycle-GAN and 
DermoGAN approaches. RCM, Reflectance confocal microscopy. 
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Fig. S4 To obtain keratinocytes positions. We apply the 𝐺𝐺𝐴𝐴2𝐵𝐵: 𝐴𝐴 → 𝐵𝐵 network to locally 
normalized RCM image and obtain an incomplete cell identification, which is then cleaned by 
closing any holes in the detected membrane and the outside contour, and finally the cell 
identification is refined using StarDist algorithm. RCM, reflectance confocal microscopy. 

  



    

Accuracy metrics of the application of DermoGAN compared to those of 5 other approaches 

Table S2 Comparison of all accuracy metrics for all six tested approaches (in %). 
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1 SS 50,3 29,8 37,5 37,1 47,5 41,6 47,8 46,8 47,3 42,9 40,8 41,8 46,2 89,4 61 68,4 73,6 70,9 

2 SS 37,4 24,6 29,7 50,3 53,8 51,9 40,6 51,7 45,5 57,7 33,9 42,7 52 76,1 61,8 77,9 51 61,6 

3 SS 40,8 24,6 30,7 50,5 44,4 47,3 45,9 42,6 44,2 50,4 26,7 34,9 48,9 79,6 60,6 72,5 60,7 66,1 

4 SG 44,8 51,3 47,9 43,8 76,1 55,6 31,9 65,2 42,9 30,6 41,3 35,2 63,9 60,5 62,2 64,9 82 72,5 
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6 SG 45,3 64,3 53,2 14,4 72 24 29,9 68,4 41,6 22,2 28 24,8 71,3 81,8 76,2 53,2 84,8 65,4 
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9 SG 50,5 86,6 63,8 14,8 79,5 25 21 70,9 32,4 18,8 26,1 21,8 64,1 87,4 74 57,4 86,6 69 



    

 

Application of DermoGAN to RCM images of dark-

pigmented skin 

Table S3 Cell detection accuracy on 2 stratum granulosum RCM images of dark- 
pigmented skin for Expert 1 using DermoGAN.  

Image Layer Precision (%) Recall (%) F1-score 
(%) 

 

SG 0.365 ± 0.15 0.803 ± 0.14  0.502 ± 0.16  

 

SG 0.487 ± 0.17  0.769 ± 0.11 0.596 ± 0.14 
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Thresholding approaches in ImageJ used in the evaluation 

of the accuracy of DermoGAN applied to fluorescence 

microscopy images 

1. Default thresholding in ImageJ: This is the original method of auto thresholding 

available in ImageJ, which is a variation of the IsoData algorithm.  

2. Huang’s fuzzy thresholding method223. 

3. Huang2 thresholding: This is an alternative implementation of Huang’s method. 

4. Intermodes thresholding224. 

5. IsoData thresholding225. 

6. Li’s Minimum Cross Entropy thresholding226 method based on the iterative version of 

the algorithm. 

7. MaxEntropy thresholding: Implements Kapur-Sahoo-Wong227 (Maximum Entropy) 

thresholding method. 

8. Mean thresholding228. 

9. MinError(I): An iterative implementation of Kittler and Illingworth’s Minimum Error 

thresholding229. 

10. Minimum thresholding224. 

11. Moments: Implements Tsai’s method230 for thresholding. 

12. Otsu thresholding68. 

13. Percentile thresholding231:  

14. Renyi Entropy: Similar to the MaxEntropy method, but using Renyi’s entropy instead. 

15. Shanbhag thresholding232. 

16. Triangle thresholding233. 

17. Yen’s thresholding234. 
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Transforming RCM into histology and vice versa  

Throughout this manuscript, we have mentioned the advantages of RCM images in comparison 

to histology, from being used to study healthy (baby) skin, to reducing the number of 

unnecessary biopsies by 2-3 times and providing information for the diagnosis and monitoring 

of multiple diseases. Unfortunately, RCM use is limited by the complexity of extraction of 

information from the generated images and by the limited number of dermatologists trained to 

read RCM images vs. histopathology slides. Therefore, developing a method to leverage the 

insights provided by RCM through the lens of histology would be useful in clinical practice. 

We compare a cycle-GAN algorithm to the developed DermoGAN for the virtual staining of 

RCM images.  

Similar work has been done by Li et al.235 using ex vivo RCM images, of normal skin, skin with 

basal cell carcinoma, and skin presenting melanocytic nevi, for the training of the proposed 

deep learning model. Indeed, a GAN was trained using RCM images of excised skin with and 

without acetic acid nuclear contrast staining, which provides nuclear contrast in RCM images, 

to learn the paired translation between stained and unstained RCM images. The resulting stained 

images (virtually or not) of both in vivo and ex vivo RCM images were then virtually stained 

with hematoxylin and eosin to resemble histology images.  

Our approaches will be limited to RCM images of healthy skin and serves as an exploration of 

what can be done with the proposed models. 

The first tested approach for unpaired RCM to histology translation, and vice versa, was based 

on a cycle-GAN, where the first domain was RCM images of the epidermis, while the second 

was of histology slides of the skin.  
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The second tested approach was based on a DermoGAN, where the first task was made of the 

previously described cycle-GAN, while the second task was a mapping between Gabor-filtered 

RCM images and histology images.  

In both methods, images were processed to represent only the epidermis and be of size 256x256 

pixels. 

Results of these approaches are far from perfect, but the DermoGAN approach seems to lead to 

more cohesive nuclei compared to the cycle-GAN approach. Testing DermoGAN with the 

added intermediate step with acetic acid nuclear contrast staining would be of interest. 

Additionally, the approach is limited by the available data and presents a major issue of 

directionality. Indeed, the orientation of RCM images is perpendicular to the vertical sections 

typical in histopathology, and therefore the attempt at translating RCM images into histology 

is based on quite different data sets, calling for the question of the feasibility of this approach 

without acquiring horizontal histology slides, or reconstructing the RCM stack. Both solutions 

have their limitations, the first is hindered by the need for a new clinical study, while the second 

is limited by the technical difficulty of obtaining 3D-RCM stacks, made more difficult by the 

significant difference in resolution between the two methods, with RCM having a horizontal 

resolution of 0.5 – 1 µm and a vertical resolution (optical section thickness) of 3 – 5 µm, and 

histology having a resolution of 0.25 – 0.5 µm/pixel.  
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Table S4 RCM to histology translation results for a trained cycle-GAN and a trained 
DermoGAN.  

RCM image Histology image generated 
with cycle-GAN 

Histology image generated 
with DermoGAN 
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1. Lboukili et al., Automating reflectance confocal microscopy image analysis for 

dermatological research: a review. Journal of Biomedical Optics 2022 Jul;27(7). 

2. Lboukili et al., Automatic granular and spinous epidermal cell identification and 

analysis on in vivo reflectance confocal microscopy images using cell morphological 

features. Journal of Biomedical Optics 2023 Apr;28(4). 

3. Lboukili et al., Age-dependent changes in epidermal architecture explored using an 

automated image analysis algorithm on in vivo reflectance confocal microscopy image. 

Skin Research & Technology 2023 May;29(5). 
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Stamatas, Roux, Boireau-Adamezyk, Lboukili, Oddos, Skin maturation from birth to 
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dermatology 2023 June. 
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Gould, Lboukili, Differential expression of non-invasive biomarkers associated with 

risk susceptibility to atopic dermatitis in children with family history of allergic disease 
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Conference proceedings 
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Strasbourg, France, 2022.  
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