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Restauration d’images avec des modèles génératifs profonds

Résumé : Les problèmes de restauration d’images, comme le défloutage ou la super-résolution sont des
problèmes inverses, où l’on cherche à retrouver une image propre à partir d’une observation dégradée. Pour
déterminer comment retrouver l’information manquante à partir de l’image dégradée, il est nécessaire de
définir un modèle a priori des propriétés attendues de la solution. Résoudre le problème inverse revient
alors à trouver l’image qui offre le meilleur compromis entre le modèle a priori et la fidélité à l’observation.
Les modèles génératifs profonds permettent de définir des modèles probabilistes sur des données complexes,
que l’on peut exploiter comme des modèles a priori pour résoudre des problèmes de restauration d’image
difficiles. Grace a leur paramétrisation par des réseaux de neurones profonds, les modèles génératifs profonds
sont particulièrement performants, mais aussi complexes à manipuler. Ainsi, l’utilisation de ces modèles pour
la restauration d’images pose de nombreux défis, que l’on aborde dans ce travail. En premier lieu, on propose
une méthode qui permet d’entrainer un réseau de neurones comme une fonction de régularisation lorsque l’on
ne dispose seulement d’un ensemble d’exemples de patchs dégradés et d’un ensemble d’exemples de patchs
propres. Pour cela, on présente une stratégie d’entrainement adversarielle, et on impose une architecture
convolutionnelle au réseau pour permettre de l’entrainer seulement sur des patchs. Par la suite, on étudie
l’utilisation d’auto-encodeurs variationnels (VAE) hiérarchiques pour la résolution de problèmes inverses. En
particulier, on présente PnP-HVAE un nouvel algorithme flexible basé sur l’utilisation d’un VAE hiérarchique
comme modèle a priori. PnP-HVAE prend la forme d’un algorithme d’optimisation alterné, et exploite
l’encodeur du VAE pour manipuler de manière efficace les variables latentes. De plus, PnP-HVAE permet de
contrôler le niveau de régularisation par le biais de la température de la distribution a priori sur l’espace
latent du VAE. Ensuite, on présente une méthode dédiée à la super-résolution qui permet de produire des
échantillons de la distribution a posteriori du problème de super-résolution grâce à un encodeur entrainé sur
des images de basse résolution. Expérimentalement, on montre que nos méthodes basées sur l’utilisation
de VAE hiérarchiques procurent un compromis avantageux entre l’efficacité calculatoire et la qualité de la
restauration.
Mots-clés : Restauration d’images, Problèmes inverses, Modèles génératifs, Auto-encodeur variationnel

Image restoration with deep generative models

Abstract: Image restoration tasks, such as deblurring, or super-resolution, are inverse problems, as we seek
to retrieve a clean image from a degraded observation. In order to determine how to recreate the missing
information in the degraded observation, it is necessary to define a prior model of the expected solution.
Then, solving the inverse problem amounts to finding an image that provides a good compromise between
the prior model and fidelity with the observation. Deep generative models can define accurate probabilistic
models of complex data distribution, that can be exploited as a prior model to solve challenging image inverse
problems. Deep generative models are parameterized by deep neural networks which make them difficult to
manipulate. Hence, using deep generative models for image restoration raises several challenges, that we aim
to address in this thesis. First we consider to problem of defining a neural-network regularization function
when training data are limited. Specifically, we introduce an adversarial strategy to train a regularization
network without labeled dataset, and with only examples of small patches from clean and degraded images.
Next, we investigate the use of hierarchical variational autoencoders (HVAEs) for solving image inverse
problems. In particular, we introduce PnP-HVAE, a flexible algorithm that exploit a pretrained HVAE
model as a prior to solve image inverse problems. PnP-HVAE is motivated by an alternate optimization
scheme, and it exploits the HVAE encoder to manipulate the HVAE latent variables efficiently. Additionally,
it enables us to control the strength of the regularization by tuning the temperature of the HVAE latent prior.
Then we present a method specialized in super-resolution. We show that, by combining an encoder trained
on low-resolution images with the HVAE generative model, we can sample from the posterior distribution
of the super-resolution problem with only one network evaluation. We demonstrate that by exploiting the
HVAE encoder we can develop image restoration methods that provide an advantageous trade of between
computational efficiency and restoration quality.
Keywords: Image restoration, Inverse problem, Deep generative model, Variational autoencoder

Unité de recherche
UMR 5251 Université, 33000 Bordeaux, France.



Contents

1 Résumé long en français 5
1.1 Problème inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Régularisation adversarielle locale . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Régularisation avec des VAE hiérarchiques . . . . . . . . . . . . . . . . . . 7
1.4 Super-résolution diverse avec des VAE hiérarchiques . . . . . . . . . . . . . 9

2 Introduction 11
2.1 Image inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Modeling a prior on images . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Deep generative models as an image prior . . . . . . . . . . . . . . . . . . 18
2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Adversarial local regularization for variational image restoration 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Local regularization for image inverse problem . . . . . . . . . . . . . . . . 30
3.3 Practical considerations for image restoration . . . . . . . . . . . . . . . . 32
3.4 Robustness to noise variations . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Variational autoencoders priors 41
4.1 Deep latent variable models . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Variational autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Modeling images with hierarchical VAE . . . . . . . . . . . . . . . . . . . . 47

5 Inverse problem regularization with hierarchical variational autoencoders 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Joint Posterior Maximization with Autoencoding Prior . . . . . . . . . . . 59
5.4 Regularization with HVAE Prior . . . . . . . . . . . . . . . . . . . . . . . 61

3



4 CONTENTS

5.5 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Image restoration results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Diverse super-resolution with pretrained hierarchical variational autoen-
coders 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Analysing the hierarchical latent representation of VDVAE . . . . . . . . . 90
6.5 Diverse super-resolution with VDVAE . . . . . . . . . . . . . . . . . . . . . 93
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusion and perspectives 107
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Discussion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Proofs of chapter 5 127
A.1 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Details on PatchVDVAE architecture . . . . . . . . . . . . . . . . . . . . . 133
A.3 Discussion on the conctractivity of HVAE . . . . . . . . . . . . . . . . . . 134
A.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B Proofs of chapter 6 141
B.1 Connection between the training criterion and the model conditional log-

likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.2 Expected consistency of the super-resolution model . . . . . . . . . . . . . 142



Chapter 1

Résumé long en français

1.1 Problème inverse

Problème inverse linéaire Les problèmes de restauration d’images, comme le défloutage
ou la super-résolution sont des problèmes inverses, pour lesquel on cherche à retrouver une
image propre à partir d’une observation dégradée. Mathématiquement, on note x ∈ Rn

l’image propre que l’on cherche à retrouver, et y ∈ Rm l’image observée degradée, et l’on
supposera que les variables x et y sont connectées par le modèle de dégradation linéaire :

y = Ax+ ε. (1.1)

A ∈ Rn×m est une matrice et ε ∼ N (ε; 0, σ2 Id) est un bruit blanc Gaussien. En ajustant
l’opérateur A, on peut décrire de nombreux problèmes de restauration d’images avec le
modèle (1.1). Par exemple, pour un problème de défloutage, l’opérateur A correspond à
une convolution avec un noyau de flou. Pour un problème d’inpainting (c’est à dire de
complétion de pixels manquants), A correspond à un masque qui cache certains pixels de
l’image.

Maximum a posteriori Les problèmes inverses (1.1) sont généralement mal-posés, car
l’opérateur A est mal-conditionné, ou n’est pas de rang plein. Ainsi, il est nécessaire de
régulariser le problème afin de trouver une solution satisfaisante. Dans un cadre Bayésien,
cela peut se faire en considérant un modèle statistique de la solution a-priori, que l’on
notera p(x). En combinant la loi a priori et la loi de vraisemblance p(y|x), on peut définir
la loi a posteriori en utilisant la formule de Bayes:

p(x|y) = p(y|x)p(x)
p(y) . (1.2)
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À partir de la distribution postérieure, on peut par exemple chercher à calculer l’estimateur
du maximum a posteriori (MAP) :

x̂map = arg max
x

p(x|y) (1.3)

= arg min
x
f(x) + g(x), (1.4)

où l’on dénote f(x) le terme d’attache aux données f(x) = 1
2σ2‖Ax−y‖2 = − log p(y|x) +

C, et g(x) le terme de régularisation g(x) = − log p(x).

Régularisation classique Pour calculer l’estimateur MAP (1.3), il est nécessaire de
définir une loi de probabilité a priori p(x), ou la fonction de régularisation associée
g(x) = − log p(x). Par exemple, une approche classique est de définir la fonction de
régularisation g(x) comme la variation totale [Rudin et al., 1992a] de l’image afin de
favoriser les solutions constantes par morceaux.

Régularisation apprise Récemment, de nombreux travaux ont développé des méthodes
de régularisation basées sur l’apprentissage profond (deep learning), en implémentant
des fonctions de régularisation ou des modèles a priori avec des réseaux de neurones
entrainées sur de grandes bases de données. Les méthodes de régularisation "deep-learning"
exploitent l’expressivité des réseaux de neurones pour résoudre des problèmes inverses
difficiles. Néanmoins, l’utilisation de ces méthodes pose de nombreuses questions, que l’on
va adresser dans cette thèse. En particulier, on s’intéressera aux problématiques liées à
l’apprentissage de fonctions de régularisation quand le nombre de données est limité. On
s’intéressera ensuite à la définition de méthodes pour la régularisation avec des modèles
génératifs profonds, qui soient efficaces et qui procurent des garanties de convergence.

1.2 Régularisation adversarielle locale
Dans le chapitre 3 de ce document, on introduit la régularisation adversarielle locale,
une méthode qui a pour but d’entrainer un réseau de neurones comme une fonction de
régularisation quand le nombre de données d’entrainement est limité. Notre méthode
permet d’entrainer une fonction de régularisation seulement avec des exemples de patchs
propres et dégradés. On introduit une fonction de régularisation locale, rθ, qui prend
comme entrée un patch d’image et retourne un score scalaire.

Entrainement adversariel Pour entrainer la fonction de régularisation locale, l’on
considère le critère d’entrainement inspiré par les Wasserstein GANs [Gulrajani et al.,
2017] et la régularisation adversarielle [Lunz et al., 2018]. Étant donné une distribution de
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patchs propres Pc et une distribution de patchs dégradés Pn, le critère d’entrainement à
maximiser est défini comme :

D(θ) = Ez∼Pn [rθ(z)]− Ez∼Pc [rθ(z)]− µEz∼Pi [(||∇zrθ(z)||2 − 1)2]. (1.5)

Intuitivement, ce critère permet de maximiser l’écart entre les valeurs que prend rθ(z) sur
les patchs dégradés et sur les patchs propres. De plus, un terme de régularisation (à droite),
évalué sur Pi, la distribution de toutes les lignes connectant des points échantillonnés dans
Pn et Pc, pénalise la norme du gradient de rθ(z) pour forcer rθ(z) être 1−Lipschitz. On
détaillera dans le chapitre 3 qu’il est possible de donner une interprétation géométrique à
la fonction de régularisation rθ, en établissant des connexions avec le transport optimal.

Régularisation globale On définit ensuite une fonction de régularisation "globale",
à partir de la fonction de régularisation locale, Pour une image x, en dénotant Ωx =
{x1, · · · , xn} l’ensemble des patchs de x, la fonction de régularisation globale est définie
comme la valeur moyenne de rθ sur l’ensemble des patchs de x :

g(x) = 1
|Ωx|

∑
xi∈Ωx

r(xi). (1.6)

En pratique, on implémente la fonction de régularisation locale comme un réseau convo-
lutionnel dont le champ réceptif correspond à la taille des patchs de la base de donnée
d’entrainement, de telle sorte à ce que l’on puisse évaluer (1.6), en appliquant le réseau
sur l’image entière et en moyennant la sortie du réseau.

1.3 Régularisation de problèmes inverses avec des
Auto-encodeurs variationnels hiérarchiques

Auto-encodeurs variationnels Un auto-encodeur variationnel (VAE) [Kingma and
Welling, 2013] permet d’apprendre les paramètres θ d’un modèle à variable latente :

pθ(z,x) = pθ(z)pθ(z|x), (1.7)

paramétrisé par un réseau de neurones. Dans l’équation (1.7), z ∈ Rd est une variable
latente, pθ(z) est la loi a priori sur l’espace latent, et pθ(x|z) est la distribution du
décodeur qui transforme une variable latente x en (une distribution) sur les images. Un
VAE inclut aussi un encodeur :

qφ(z|x) ≈ pθ(z|x), (1.8)

qui est implémenté par un réseau de neurones, et qui est entrainé pour approcher la loi
a posteriori pθ(z|x) qui est n’est pas calculable facilement. Un VAE hiérarchique est
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un VAE qui impose une structure hiérarchique sur la distribution a priori pθ(z) pour
augmenter l’expressivité du modèle génératif [Sønderby et al., 2016]. Ainsi la loi a priori
sur l’espace latent d’un VAE hiérarchique est défini comme :

pθ(z) = pθ(z0, z1, · · · , zL−1) (1.9)

= pθ(z0)
L−1∏
`=1

pθ(z`|z<`), (1.10)

et les lois conditionnelles pθ(z`|z<`) sont définies comme des Gaussiennes, dont les statis-
tiques sont données par des réseaux de neurones. L’encodeur d’un VAE hiérarchique est
paramétré par un modèle hiérarchique similaire à (1.10). Les VAEs et les VAE hiérar-
chiques sont présentés dans le chapitre 4. Les VAEs hiérarchiques permettent de définir
des modèles génératifs plus expressifs que les VAE classiques [Kingma and Welling, 2013].
Néanmoins, la structure hiérarchique du modèle introduit une complexité supplémentaire,
qui rend son utilisation pour la régularisation de problème inverse difficile.

Optimisation alternée Pour résoudre un problème inverse avec une loi a priori induite
par le modèle génératif d’un VAE hiérarchique, on définit le modèle augmenté induit par
la composition de la loi jointe apprise par le VAE (1.7) et la vraisemblance induite par le
modèle de dégradation (1.1):

p(z,x,y) ∝ pθ(z)
1
τ2 pθ(x|z)p(y|x). (1.11)

Dans (1.11), nous avons introduit un paramètre de température τ pour contrôler la force
de la régularisation. En suivant une approche similaire à l’algorithme JPMAP [González
et al., 2022], on propose de calculer l’estimateur du maximum de vraisemblance "joint" :

x?, z? = arg max
x,z

p(x, z|y), (1.12)

en utilisant un algorithme d’optimisation alternée :

z(n+1) = arg max
z

qφ
(
z|x(n)

)
pθ(z)(

1
τ2−1) (1.13)

x(n+1) = arg max
x

p(y|x)pθ
(
x|z(n+1)

)
(1.14)

Dans l’étape d’optimisation en z (1.13), on utilise l’encodeur du VAE hiérarchique
qφ
(
z|x(n)

)
pour remplacer la loi postérieure pθ

(
z|x(n)

)
inaccessible. Cette approxima-

tion permet d’éviter d’avoir à employer une optimisation itérative avec rétropropagation
couteuse pour calculer arg maxz pθ(z|x). L’étape (1.13) peut être interprétée comme une
forme d’interpolation entre l’encodeur qφ

(
z|x(n)

)
et la distribution a priori pθ(z). Avec

un VAE hiérarchique cette étape n’est pas évidente à résoudre de manière exacte. On
propose un algorithme séquentiel qui exploite la structure "top-down" de l’encodeur pour
calculer une solution approchée ne nécessitant qu’une application de l’encodeur. De plus,
on démontre que cet algorithme produit la solution exacte du problème sous des conditions
raisonnablement vérifiables.
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Connections avec les algorithmes Plug-and-Play Dans le cas particulier où
pθ(x|z) = N (x;µθ (z) , γ2I), on montre que notre algorithme peut se réécrire de la manière
suivante :

xk+1 = proxγ2f (HVAE (xk, τ )) , (1.15)
où l’on note HVAE(x, τ) la reconstruction par l’auto-encodeur hiérarchique avec la "régu-
larisation" latente induite par le paramètre τ , définie telle que HVAE(x, τ) := µθ

(
z(n+1)

)
,

z(n+1) est donnée par l’équation (1.13), et f(x) = 1
2σ2 ||Ax − y||2 est le terme d’atache

aux données. Ainsi l’algorithme peut être vu comme un algorithme Plug-and-Play, où la
reconstruction par le VAE hiérarchique joue le rôle du réseau débruiteur. On nomme donc
notre méthode PnP-HVAE. La formulation de PnP-HVAE (1.15) nous permet d’établir
une condition suffisante pour garantir la convergence vers un point fixe. Si l’opération de
reconstruction par le VAE hiérarchique HVAE(x, τ) est contractante, alors PnP-HVAE
converge vers un point fixe x?, qui vérifie :

∇f(x?) = 1
γ2 (HVAE (x?, τ )− x?) . (1.16)

Contrairement aux travaux précédents [González et al., 2022], ce résultat ne dépend pas de
l’hypothèse qφ(z|x) = pθ(z|x). En pratique, on observe que les itérations de PnP-HVAE
sont effectivement stables.

Résultats Expérimentalement, on évalue PnP-HVAE sur la restauration d’images de
visages, pour lesquelles on peut trouver de nombreux modèles génératifs pré-entrainés.
On montre que PnP-HVAE produit de meilleurs résultats que les méthodes concurrentes
basées sur des GANs [Goodfellow et al., 2014a] ou des modèles de diffusion [Sohl-Dickstein
et al., 2015], tout en étant plus rapide.

1.4 Super-résolution diverse avec des auto-encodeurs
variationnels hiérarchiques

Super-résolution diverse Dans cette section, correspondant au chapitre 6 de cette
thèse, on s’intéresse à un problème de super-résolution. En particulier on cherche à
produire des échantillons de la distribution postérieure du problème p(x|y). Pour ce faire,
on définit comme loi a priori sur les solutions haute-résolution (HR) un modèle définit
par un VAE hiérarchique,

pθ(x) =
∫
pθ(x|z)pθ(z)dz, (1.17)

Encodeur basse-résolution On propose d’entrainer un nouvel encodeur pour les images
basse-résolution qψ(z|y), on définit ensuite notre modèle de super-résolution comme la
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combinaison de l’encodeur basse-résolution et du décodeur du VAE hiérarchique :

pSR(x|y) =
∫
pθ(x|z)qψ(z|y)dz. (1.18)

En particulier, on entraine l’encodeur basse-résolution en utilisant l’encodeur du VAE
hiérarchique, pour minimiser :

L(ψ) = Epdata(x,y)[KL(qφ(z|x)||qψ(z|y))]. (1.19)

On montre que minimiser (1.19) correspond à maximiser une borne inférieure sur la log-
vraisemblance de pSR(x|y) sur l’ensemble d’apprentissage pdata(x,y). De plus, on montre
qu’il est possible d’exploiter la structure hiérarchique du VAE pour restreindre l’encodeur
qψ(z|y) sur la sous-partition de z qui contient effectivement l’information présente dans
l’image basse-résolution y.

Résultats Expérimentalement, on applique notre méthode en utilisant VDVAE [Child,
2020]. On montre que notre méthode permet de produire des échantillons de qualité
équivalente ou supérieure aux meilleures méthodes de l’état de l’art, basées sur des
modèles de diffusion. De plus, notre méthode est significativement plus rapide (×1000)
que les méthodes concurrentes, car elle ne nécessite qu’une seule application successive de
l’encodeur qψ(z|y) et du modèle génératif pθ(x|z) du VAE hiérarchique.



Chapter 2

Introduction

The work presented in this document is about the development of new methodologies
to restore images by using deep generative models. In this first chapter, we introduce
the main concepts that will be useful throughout this document. We start by presenting
the mathematical formulation of image restoration problems as inverse problems, and we
provide an overview of the existing methodologies on the subject, including optimization
and sampling based methods. In particular, we will discuss the strategies to define a prior
over the solution, with a specific focus on recent deep learning based methods, including
deep generative models. We then discuss the existing challenges of using deep generative
models for restoring images, and we close this chapter by presenting our contributions and
the outline of the rest of this thesis.

2.1 Image inverse problem

2.1.1 Presentation
Motivation With the increasing availability of sensors, images have become ubiquitous
in our daily life, be it for recreational usage or for industrial and scientific applications.
Technical limitations of the sensor, along with external factors such as motion or low-light
exposure, can cause a degradation of the measured images. As such, it is of crucial
importance to develop methods to restore the degraded images. Restoring an image can
be viewed as an inverse problem, where we seek to retrieve a clean signal from a degraded
measurement.

Linear inverse problem From a mathematical perspective, restoring an image amounts
to solving an inverse problem, where we seek to retrieve a clean image from a degraded
observation. Both the observed and the underlying clean images are modeled as finite
dimensional vectors. Throughout this work, we will denote y ∈ Rm the degraded ob-

11
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servation, and x ∈ Rn the underlying clean image. A generic degradation model, that
encompasses a large class of image restoration tasks, is the linear degradation model:

y = Ax+ ε, (2.1)

where A ∈ Rn×m is a linear operator, and ε ∼ N (ε; 0, σ2 Id) is a white Gaussian noise.

Examples By setting the linear operator A in (2.1) to be a convolution with a blur
kernel h:

Ax = h ? x, (2.2)
we recover an image deblurring problem. (2.1) can also model an inpainting problem,
by setting A to be a diagonal matrix, with Aii = 0 on the masked pixel, and Aii = 1
otherwise. For image super-resolution, a typical degradation operator is the concatenation
of a low-pass filter (convolution with a blurring kernel), and a downsampling operator:

Ax = (h ? x) ↓s . (2.3)

In this work, we will assume that the linear operator A is known, although in some settings,
A is also unknown, and needs to be determined jointly with x. We refer to those problems
as blind inverse problems.

Ill-posedness Image inverse problems are typically ill-posed. This can be due to the
fact that the linear system is under-determined (m < n, or rank(A) < n), or that the
linear operator A is ill-conditioned. For instance, for image inpainting, the system is
under-determined, as the information on the missing pixels is not recoverable. For image
deblurring, the linear operator associated to the blurring kernel is ill-conditioned, so that
the naive solution A−1y will contain severe high-frequency artifact, as can be seen in
Figure 2.1b. Those artifacts are due to the noise in the observation y being amplified by
the inverse A−1.

2.1.2 End-to-end image restoration
Convolutional neural networks for end-to-end image restoration Since 2012
and the milestone success of AlexNet on the ImageNet large scale visual recognition
challenge [Krizhevsky et al., 2017], convolutional neural networks (CNN) [Rosenblatt,
1958,LeCun et al., 1998] have revolutionized the field of computer vision, by providing
state-of-the art results on a large number of vision tasks [Li et al., 2021,Dosovitskiy et al.,
2015,Redmon et al., 2016,Minaee et al., 2021]. CNNs process their input by alternating
local linear operations and non-linear point-wise operation in a similar fashion than classical
optimization algorithms used for solving image inverse problems, motivating their usage
to perform image restoration [Dong et al., 2015,Gregor and LeCun, 2010,Diamond et al.,
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Figure 2.1 – forward model (a) and solution x̂ of the system h ∗ x̂ = y (b) for a motion
deblurring problem, with σ = 0.01. A simple inversion of the linear system leads to severe
artifacts. The range of the noise ε was augmented in the figure for visualization purpose.

2017,Wang et al., 2015]. A straight-forward way to use a CNN for image restoration is to
train it to map degraded images to their clean version in an end-to-end fashion. End-to-end
methods were shown to outperform their concurrent methods on large number of image
restoration tasks, including image denoising [Zhang et al., 2017a], colorization [Cheng
et al., 2015], or inpainting [Köhler et al., 2014].

Limitations of end-to-end methods However, end-to-end image restoration methods
still have important limitations that restrain their application in practical contexts. End-
to-end methods require large training datasets composed of pairs of clean and degraded
images. They also lack flexibility, as one separate network needs to be trained for every
different type of problem. Furthermore, because a CNN models a deterministic mapping,
it only produces one solution, without accounting for the uncertainty of the solution due to
the ill-posedness of the inverse problem. Plus, end-to-end methods generally do not account
for the forward model (2.1), which can induce inconsistency between the restored image
and the network input. A specific class of end-to-end image restoration methods based
on unrolling optimization can actually account for the degradation model within their
architecture, but they still inherit from the others caveats of end-to-end methods [Diamond
et al., 2017].

2.1.3 Bayesian perspective

To address the limitations of end-to-ends methods, one can adopt a decoupled approach,
by separating the modelling of the fidelity with the observation and the modelling of our
expectation on the properties of the solution. This can be done by adopting a Bayesian
perspective, as discussed in the following paragraphs.
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Posterior distribution In order to tackle the ill-posedness of image inverse problems,
it is necessary to incorporate some form of regularization. Under a Bayesian perspective,
this can be done by considering the posterior distribution p(x|y), which, by the Bayes’
law, can be written as:

p(x|y) = p(y|x)p(x)
p(y) . (2.4)

Equation (2.4) indicates that the posterior is proportional to the product of the likelihood
p(y|x) and the prior p(x). The likelihood p(y|x) measures how likely it is to observe y
knowing that the clean signal is x, and is dependent on the degradation model. For the
linear degradation model (2.1), it is defined as:

p(y|x) = N
(
y;Ax, σ2 Id

)
(2.5)

= 1√
(2πσ2)m

exp
(
− 1

2σ2 ||Ax− y||
2
)
. (2.6)

The prior distribution p(x) models our knowledge of the solution independently of the
observation y. Unlike the likelihood, there is no explicit, physical definition of the prior.
Rather, it has to be selected so that it best fits our prior assumption on the solution. We
will discuss in section 2.2 what strategies can be used to define a suitable prior.

Energy function In practice, it is more convenient to deal with the energy of the log
posterior, defined (up to additive constant) as:

E(x) = − log p(x|y). (2.7)

Notice that the likelihood verifies p(y|x) ∝ exp(−f(x)), with f(x) = 1
2σ2 ||Ax − y||2.

Assuming that the prior verifies p(x) =∝ exp (−g(x)), the posterior energy then writes
(up to additive constant):

E(x) = f(x) + g(x) (2.8)

The formulation (2.8) is widely used in many methods, including optimization and sampling
based methods.

Maximum a posteriori estimator A widely used approach to perform image restora-
tion is to compute the Maximum a posteriori (MAP) estimator:

x̂map = arg max
x

p(x|y) (2.9)

= arg min
x
E(x) (2.10)

= arg min
x
f(x) + g(x) (2.11)
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Hence, computing a MAP amounts to solving the optimization problem (2.11). The
problem (2.11) can be viewed as a variational problem under the perspective that the
unknown variable x is a function mapping pixel coordinates to their intensity values.
With the Gaussian linear degradation model (2.5), f(x) is convex, so if g(x) is convex,
E(x) will be convex in turn. Then, one can rely on the extensive literature on convex
optimization to derive efficient optimization algorithms, that provably converge to the
solution of (2.11) with explicit convergence rates. In particular, we can use specific
algorithms which take advantage of the composite structure of E(x), such as forward-
backward [Beck and Teboulle, 2009], alternate direction of multipliers (ADMM) [Boyd
et al., 2011], or half-quadratic splitting [Geman and Yang, 1995].

Posterior sampling The MAP estimator provides one solution to the restoration
problem, but, for some applications, this single point estimation is not sufficient. For
instance, for creative applications, one might want to select one solution among diverse
samples. In Bayesian inference, some applications such as uncertainty quantification or
model selection require computing integrals of the form:∫

ϕ(x)p(x|y)dx. (2.12)

In high dimensional setups, the integral (2.12) is typically intractable, but, when having
access to a set of independent samples from the posterior p(x|y), we can compute an
unbiased, low-variance estimation using the central limit theorem. Markov Chain Monte
Carlo (MCMC) algorithms provide a well established framework for producing samples
from the posterior distribution. MCMC methods work by constructing a Markov chain
whose stationary distribution is the posterior p(x|y). Classical MCMC algorithms include
Metropolis Hasting, Gibbs sampling and Langevin dynamic [Pereyra et al., 2015]. Like
the above-mentioned variational methods, popular MCMC methods used for image inverse
problems make use of the gradient or the proximal operator of f(x) and g(x) to efficiently
explore the different modes of the posterior [Durmus et al., 2018]. They can also rely on
variable splitting strategies similar to the one used in splitting algorithms used to compute
the MAP estimator [Vono et al., 2019,Pereyra et al., 2022].

2.2 Modeling a prior on images

Contrary to the data-fidelity term, there is no clear, straight-forward choice for the
regularization term g(x), and it has to be defined as a way to enforce the user prior
assumptions on the solution. In this subsection, we first provide a brief review of the
classical strategies available in the literature, and we elaborate on the recent data-driven
strategies that use powerful neural networks to define a prior.
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2.2.1 Classical methods
Convex priors A widely used choice of regularization term is the total variation [Rudin
et al., 1992b]:

g(x) = ||∇x||2, (2.13)

which promotes piecewise constant images. Other approaches promote sparsity in a
transformed domain by penalizing the `1 norm of transform-domain coefficients:

g(x) = ||Wx||1. (2.14)

Here, the transform W represents Wavelet frames [Donoho and Johnstone, 1994,Coifman
and Donoho, 1995] or local Fourier or DCT representations [Yu and Sapiro, 2011]. It is
also possible to define W as a set of learned filters with dictionary learning [Aharon et al.,
2006]. Priors of the form (2.13) and (2.14) are convex (albeit non-smooth), making the
optimization problem (3.2) convex in turn. We can then use efficient and well studied convex
optimization algorithms to solve the variational problem, with theoretical convergence
guarantees. Those terms are easily interpretable, as it is clear what information will
remains in the final solution, and what information will be dismissed. Nevertheless, those
handcrafted priors tend to produce over-smoothed or suboptimal results, since they only
represent a rough approximation of natural image statistics and geometry.

Non-convex priors In order to better capture the statistics of images, priors based on
Gaussian mixture models [Zoran and Weiss, 2011a], or fields of experts [Roth and Black,
2005] were introduced. Those priors are data-driven as their parameters are adjusted to
a set of training images. Due to the complexity of fitting a statistical model on high-
dimensional images, those approaches consider instead fitting a model on image patches of
smaller dimension. Data driven priors give improved performance on restoration tasks
compared to the aforementioned hand-crafted methods priors, while staying interpretable
due to their simple formulation.

2.2.2 Deep learning priors
Adversarial regularization We can use a CNN to model a complex prior that fits
the statistics of images. A direct way of doing so is to train a CNN gθ(x) so that
gθ(x) ≈ log p(x), in order to match the MAP interpretation (2.11). However, this is
not feasible because we do not have access to the true prior energy log p(x). An explicit
regularization network gθ(x) should penalize inappropriate solutions and encourage relevant
ones. Following this intuition, one can train gθ(x) as a classifier between clean and
degraded images. This approach is formalized in the adversarial regularization framework
of [Lunz et al., 2018]. By exploiting optimal transport theory and the recent literature
on Wasserstein GANs [Arjovsky et al., 2017], [Lunz et al., 2018] showed that the learned
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regularization can be related to the distance to the clean images manifold. Further works
have investigated modeling the regularization with an input convex neural network [Amos
et al., 2017] in order to facilitate the resolution of the inverse problem [Mukherjee et al.,
2023].

Plug-and-play regularization In the literature, the variational problem (2.11) is
typically solved using optimization algorithms like forward-backward [Beck and Teboulle,
2009] or ADMM [Boyd et al., 2011]. Those algorithms do not require evaluating g(x), but
only require access to its gradient ∇g(x), or its proximal operator, defined as:

proxαg(u) = arg min
x

1
2 ||x− u||2 + αg(x) (2.15)

Therefore, one can avoid the difficult problem of learning a potential function g(x) by
focusing instead on learning its gradient or its proximal operator. It is possible to do so by
exploiting denoising autoencoders [Vincent, 2011]. Indeed, the authors of [Venkatakrishnan
et al., 2013] noticed that the proximal operator in (2.15) can be viewed as solving a MAP
problem on a denoising problem (with p(y|x) ∝ exp (||x− y||2/(2α))), and proposed to
replace the proximal operator (2.15) within the optimization process by the application of
a denoiser trained on noise level σ2 = α. For instance, the plug-and-play forward-backward
iteration writes as:

xk+1 = D√α(xk − τ∇f(xk)). (2.16)
Plug-and-play regularization can exploit denoisers based on filtering methods, such as
Non Local Mean [Buades et al., 2005] or BM3D [Dabov et al., 2007], although denoising
autoencoders based on deep neural networks trained in a supervised fashion were shown
to provide the best results in terms of restoration quality [Zhang et al., 2017a,Meinhardt
et al., 2017,Zhang et al., 2021].

Denoising score matching A denoiser can also be related to the gradient of a smoother
version of the image prior through Tweedie’s formula [Robbins, 1992,Vincent, 2011]. Let
us consider the joint model of clean and noisy data pσ(x, x̃) = pdata(x)pσ(x̃|x) with
pσ(x̃|x) = N (x̃|x, σ2I) a Gaussian kernel. If we train a denoiser Dσ(x̃) so that it predicts
the minimal mean square error (MMSE) estimator of the denoising problem for noise level
σ:

Dσ(x̃) = arg min
u

Epσ(x|x̃)
[
||x− u||2

]
, (2.17)

then, according to Tweedie’s formula,

Dσ(x̃) = x̃− σ2∇ log pσ(x̃), (2.18)

Therefore, it is possible to deduce the gradient of a "noisy" version of the data distribution,
pσ(x̃) from an image denoiser by exploiting equation (2.18). The gradient ∇ log pσ(x̃) can
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then be used within an optimization or a sampling framework [Bigdeli et al., 2017,Laumont
et al., 2022]. Tweedie’s formula is also key in the formulation of denoising diffusion model,
that will be presented in section 2.3.1.

2.3 Deep generative models as an image prior

Deep generative models are a class of probabilistic models that are trained to transform noise
into samples matching those from a training data distribution. In order to model complex
distributions, deep generative models employ neural networks to model the transformation
between noise and data. In this section we introduce the different paradigms to train
a deep generative model, and we then present different existing approaches to use deep
generative models as a prior to solve image inverse problems.

2.3.1 Deep generative models
Variational autoencoder The variational autoencoder (VAE) [Kingma and Welling,
2013] defines a latent variable model pθ(z,x) = pθ(z)pθ(x|z). A common choice for VAEs
is to set the prior distribution over the latent variable as a Gaussian:

pθ(z) = N (z; 0, I) (2.19)

and the decoding distribution (or decoder) as another Gaussian:

pθ(x|z) = N (x;Gθ(z),Σθ(z)) , (2.20)

with the mean and the covariance matrices parameterized by two neural networks:

µθ(.) : Rd → Rn, and Σθ(.) : Rd → Rn×n, (2.21)

where θ corresponds to the parameters of the two neural networks. Additionally, the VAE is
composed of an inference model (also known as an encoder), trained to match the (usually
intractable) posterior of the model pθ(z|x). VAE can model complex distributions thanks
to the neural network parameterization of the decoder. However, it is not straight-forward
to exploit a VAE to define a prior over images, because the marginal of the model:

pθ(x) =
∫
pθ(z)pθ(x|z)dz (2.22)

is intractable. We will provide a more in-depth discussion of VAEs and their usage for
solving inverse problems in the following chapters.
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Generative adversarial networks Generative adversarial networks (GANs) are an-
other class of deep generative models that are trained with adversarial training [Goodfellow
et al., 2014a]. A GAN generates a sample x by transforming latent variables sampled from
a simple latent distribution z ∼ pZ(z) using a generative network x = Gθ(z). Here, θ
denotes the set of parameters of the generative network. In other words, the probabilistic
model learned by the GAN, Pθ, is defined as the push-forward of the latent distribution
pZ(z) through the generative network Gθ(z). As for the VAE, it is common to set the
latent distribution to have a Gaussian density:

pZ(z) = N (z; 0, I), (2.23)

so that the distribution learned by the GAN model writes:

Pθ(E) =
∫
G−1
θ

(E)
pZ(z)dz. (2.24)

It should be noted that, due to the low dimensionality of z, the support of Pθ lies on
a low-dimensional manifold of Rn. Hence, the model distribution Pθ does not admit a
density function defined in Rn, which can be a challenge for image restoration applications.

Normalizing flows Similar to GANs, a normalizing flow model is defined as the push-
forward of a latent distribution through a generative network Gθ. As an additional
constraint, Gθ is set to be a bijective mapping, so that the model Pθ admits a density
pθ(x) that can be computed using the change of variable formula [Rezende and Mohamed,
2015]:

pθ(x) = pZ(G−1
θ (x))

∣∣∣∣∣∂G
−1
θ (x)
∂x

(x)
∣∣∣∣∣ . (2.25)

In order to enforce the bijectivity, and to be able to compute the Jacobian determinant
in (2.25) efficiently, it is necessary to impose specific constraints on the architecture on
the generative network [Kobyzev et al., 2020]. Hence, normalizing flows provide the ability
to evaluate explicitly pθ(x) at the cost of a limited expressivity compared to GANs and
VAEs, due to architectural constraints.

Diffusion models Diffusion models, also known as score-based generative models, are
a class of models that produce samples by gradually transforming noise into data using
denoising autoencoders [Sohl-Dickstein et al., 2015, Song and Ermon, 2019, Ho et al.,
2020,Song et al., 2021b]. Denoising diffusion models can be viewed through the lens of
stochastic differential equation, by describing the sampling stage as the simulation of a
stochastic differential equation (SDE) corresponding to the backward process of a diffusion
process gradually transforming data into noise [Song et al., 2021b]. Formally, a forward
diffusion process {xt}t∈[0;T ] is constructed so that x0 ∼ pdata(x0) and xT ∼ N (xT , 0, I).
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For instance, the variance preserving forward diffusion process [Song et al., 2021b,Ho
et al., 2020] is specified by the SDE:

dxt = −β(t)
2 xtdt+

√
β(t)dw, (2.26)

where w is the standard Wiener process. The backward process associated with the
diffusion process (2.26) is a solution of the reverse time SDE:

dxt =
(
−β(t)

2 xt − β(t)∇ log p (xt)
)

dt+
√
β(t)dw, (2.27)

where w is a backward Wiener process, and dt is an infinitesimal negative timestep [An-
derson, 1982, Song et al., 2021b]. By construction, the marginals p(xt) of the forward
process (2.26) corresponds to the "smoothed" data distribution:

p(xt) =
∫
pdata(x)N (xt;

√
αix, (1− αi) I)dx, (2.28)

where αi depends on the diffusion schedule β(t). Hence, a score network sθ(xt, t) ≈
∇ log p (xt) can be trained with a denoising criterion [Vincent, 2011, Ho et al., 2020].
Using a SDE solver along with the learned score sθ(xt, t), we can simulate the backward
process (2.30) to produce samples matching the training data distribution.

2.3.2 Deep generative models for inverse problems
Generator inversion Deep generative models such as GANs or VAEs define a manifold
on the image space corresponding to the range of the generative network R(Gθ) := {x ∈
Rn;∃z ∈ Rd so that x = Gθ(z)}. Under the assumption that R(Gθ) corresponds to the
set of clean images, one can restore a degraded image y by finding the image in the range
of the generator that is the most consistent with the observation. This can be done by
"inverting" the generator, that is, by finding the generator input z that corresponds the
most to the (degraded) output y. With a change of variable, the inversion problem is
formulated as:

zmap = arg min 1
2σ2 ||AGθ(z)− y||2 + λ||z||2, (2.29)

where the term λ||z||2 can be interpreted as a regularization term on the latent code.
Enforcing the solution to lie in the range of the generator guarantees high-quality outputs,
provided that the generative model is well trained. However, this constraint can also be
a limitation, as there might not be any point on the generator range that correspond
to a realistic solution of the inverse problem. In particular, GANs are notorious for
their mode-seeking behavior, which can lead them to ignore some modes of the training
distribution [Thanh-Tung and Tran, 2020]. Additionally, the problem (2.29) is non-convex,
which implies that there is no guarantee to find a relevant solution even if it exists.
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Algorithms for generator inversion Generative inversion has been first introduced
in the context of compressed sensing in the seminal work of [Bora et al., 2017], where
the cost function (2.29) is minimized using Adam optimization algorithm [Kingma and
Ba, 2014]. The work of [Shah and Hegde, 2018] shows that projected gradient descent on
the range of the generator converges to the solution with high-probability under certain
conditions on the linear operators A. In order to relax the constraint of the solution
living in the range of the generator, several works propose to extend the range of the
generator by optimizing intermediate layers of the generator [Bau et al., 2019,Daras et al.,
2021]. Expanding the range of the generator brings a significant improvement in terms
of restoration quality [Daras et al., 2021], at the cost of increased complexity, due to the
need of tuning a large number of hyperparameters for each restoration task and generator
architecture.

Posterior sampling with denoising diffusion models The generative process of
diffusion models involves simulating the SDE (2.30). In order to produce samples from
the posterior of an inverse problem p(x|y), the reverse diffusion process (2.30) can be
conditioned on an observation y:

dxt =
(
−β(t)

2 xt − β(t)∇ log p (xt|y)
)

dt+
√
β(t)dw, (2.30)

To do so, one can approximate the conditional score ∇ log p (xt|y) using a conditional
denoising autoencoder, as proposed in [Saharia et al., 2021b,Saharia et al., 2021a], but
this approach lacks flexibility as the conditional denoising autoencoder is task dependent.
A more flexible strategy is to exploit the Bayes’ formula to decompose the conditional
score as:

∇xt log p (xt|y) = ∇xt log p (y|xt) +∇xt log p (xt) . (2.31)
Here, we can reuse the score-model of an unconditional denoising diffusion model to
approximate ∇xt log p (xt). However, evaluating ∇xt log p (y|xt) is not feasible, because
the likelihood

p (y|xt) =
∫
p(y|x0)p(x0|xt)dx0 (2.32)

is intractable. Several works propose to approximate the likelihood score by exploiting
diverse heuristics [Chung et al., 2023,Chung et al., 2022,Kawar et al., 2022a,Song et al.,
2023]. For instance, in Denoising diffusion posterior sampling (DPS) [Chung et al., 2023],
the following approximation is used:

p (y|xt) ≈ N (y;Ax̂0:t, σ
2I), (2.33)

where

x̂0:t = 1
αt

(
xt + σ2

t sθ(xt, t)
)

(2.34)

(2.35)
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is the approximation of the posterior mean Ep(x0|xt)[x0] derived using Tweedie formula (2.18).

2.4 Challenges
As mentioned in the previous section, several works have highlighted the potential of using
deep generative models as prior to solve image restoration problems. However, a lot of
challenges remain to be solved, as we discuss below.

2.4.1 Deep learning prior in low-data regime
End-to-end restoration networks require a large training dataset to perform well. For
instance the super-resolution end-to-end network in [Wang et al., 2020] is trained on a
dataset containing more than 10000 images. Likewise, deep generative models also need
a large training dataset of clean images. For instance, datasets commonly used in the
deep generative models literature, such as CelebA [Liu et al., 2018], FFHQ [Karras et al.,
2019] or Cifar10 [Krizhevsky et al., 2009], respectively contain 200K, 70K and 60K images.
In some imaging applications, a large dataset of paired (clean-degraded) images is not
available. We can distinguish different settings, including having access to a dataset of
clean images and a dataset of degraded images, without pairs, or having only access to
clean example data. Furthermore, we might have to deal with datasets of limited size,
making it difficult to train a deep generative model. Consequently, an important challenge
to address is, how can we learn effective deep learning based prior model under
restricted data availability? In chapter 3, we provide an effective solution to this
problem.

2.4.2 Convergence guarantee with generative regularization
Deep learning based regularization methods have been shown to outperform classical
convex regularizer [Meinhardt et al., 2017, Zhang et al., 2021]. However, the gain in
performance comes at the cost of increased complexity. Indeed, when using neural network
based regularization, the variational problem (3.2) is no longer convex, making it difficult
to derive optimization algorithm that provably converge to a local minima of the variational
problem (3.2). In practice, this implies that the iterations of an optimization process might
diverge, inducing the need for early-stopping heuristics. For plug-and-play regularization,
convergence to a fixed-point can be enforced by constraining the Lipschitz constant of the
denoising autoencoder [Ryu et al., 2019]. On the other hand, when using deep generative
models as regularizers, convergence guarantees remain to be found in a generic setting. In
practice, state-of-the art generative regularization methods for inverse problems rely on
a large-number of hyper-parameters that need to be tuned empirically to produce good
results [Menon et al., 2020,Daras et al., 2021]. Hence, a key question is: can we derive
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an algorithm that provably converge to a (local) minima of the variational
problem under practical assumptions? We will adress this question in chapter 5, see
section 2.5 below.

2.4.3 Efficient posterior sampling
Current sampling methods typically rely on iterative sampling algorithms such as Langevin
dynamic [Laumont et al., 2022,Coeurdoux et al., 2023], or reverse diffusion process [Chung
et al., 2023]. When combined with deep learning based priors, those methods become very
expensive in terms of computation costs, as we have to call one network function evaluation
at every iteration. For instance, the diffusion posterior sampling methods of [Chung et al.,
2023] requires 1000 network evaluations and gradient evaluations to produce one sample
from the posterior. As such, it is valuable to investigate how to design a fast posterior
sampling strategy while exploiting deep generative priors? In chapter 6, we will
address this question, for the specific problem of image super-resolution, with hierarchical
VAE priors.

2.5 Contributions and outline
Chapter 3 In chapter 3, we investigate the problem of training a neural network as a
regularizer when training data are limited. In particular, we focus on the setting where
unpaired datasets of clean and degraded images are available. In order to reduce the data
requirements, we propose to train regularizer on small images patches, and we implement
the regularizer as a fully convolutional neural network to make the computation of the
regularizer value and its gradient efficient. Inspired by the recent literature on generative
adversarial networks, we train our regularization network as an adversarial critic, which
enables us to exploit the two unpaired training distributions. Finally, we demonstrate the
effectiveness of our method on denoising and deblurring applications.

Chapter 4 Despite its effectiveness, the adversarial training framework is not related
to a probabilistic model of the prior. This can be a limitation, in particular for strongly
ill-posed problems, such as inpainting or super-resolution. Therefore, we investigate the
use of variational autoencoders, a class of image generative models that can provide a
strong prior model over images. Chapter 4 presents an in-depth introduction of the
variational autoencoder. It serves as a preliminary for the remaining chapters, in which
we present different ways of using VAE models to solve image inverse problems. We detail
the VAE training criterion, which enables to jointly train the generative model with an
associated inference model (a.k.a. encoder). We also present the different types of deep
latent variable models that can be implemented within the VAE framework, with a specific
focus on hierarchical VAE models. In particular, we study VDVAE, a hierarchical VAE
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model that provides state-of-the art results on image generation benchmarks, and we
discuss the properties of its latent representation trough visualization experiments.

Chapter 5 In chapter 5, we consider the problem of developing an algorithm for solving
generic image inverse problems with deep generative prior that provides convergence
guarantee under practical assumptions. To that purpose, we exploit a hierarchical VAE
model, and we adopt an alternate optimization scheme that jointly optimizes the image
and its associated latent variable. We show that we can derive an efficient strategy to
exploit the hierarchical encoder to avoid using backpropagation through the generative
model. Our work, inspired by the recently introduced JPMAP framework makes four novel
contributions. First, we introduce a strategy to control the strength of the regularization
by controlling the temperature of the Gaussian priors over the latent variables. Second,
we propose a "greedy" optimization scheme to optimize the hierarchical latent variable
efficiently by exploiting the top-down structure of the inference network. Third, we draw
a connection with plug-and-play algorithms based on deep image denoiser, by showing
that our algorithm can be formulated as a plug-and-play half-quadratic-splitting scheme
where the denoising operation is replaced by the reconstruction with the hierarchical VAE.
This connection enables us to prove convergence to a fixed-point under given conditions,
and to characterize the property of the fixed point. Fourth, we introduce a new fully-
convolutional hierarchical VAE model, patchVDVAE, that can be applied on images of any
resolution. We demonstrate the effectiveness of our method on inpainting, super-resolution
and deblurring problems on two datasets, namely face images from CelebA dataset and on
natural images.

Chapter 6 In chapter 6, we tackle the problem of producing samples from the posterior
distribution of the inverse problem p(x|y) for image super-resolution problems. We develop
a method to exploit a powerful hierarchical VAE as a prior model over the high-resolution
images. We show that we can repurpose the weights of the HVAE generative model
to implement a diverse super-resolution network, that can produce samples from the
posterior with only one network evaluation. To do so, we introduce an encoder on low-
resolution images, and we train it to match the HVAE encoder model on the associated
high-resolution images. At inference time, our super-resolution network is defined as the
combination the low-resolution encoder and the high-resolution generative model given by
the pretrained hierarchical VAE. Furthermore, we also demonstrate that the hierarchical
representation learned by HVAE models separates the high frequency information from the
image low-frequency information, which enable us to train the low-resolution encoder more
efficiently by training it to only predict the part of the hierarchical latent representation that
effectively encodes the low-resolution information. We validate the ability of our method
to generate diverse solutions to the super-resolution problem on face super-resolution with
upsampling factors ×4, ×8.
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Chapter 3

Adversarial local regularization for
variational image restoration

In this chapter, we present a framework to train a neural network as an explicit regulariza-
tion function for solving general image restoration problems. Specifically, we define our
regularizer as a fully convolutional neural network that sees the image through a recep-
tive field corresponding to small image patches. Following the adversarial regularization
framework, we train our network as a classifier discriminating clean and degraded patches.
This yields a regularization function that can be incorporated in any image restoration
problem. Our approach is data efficient due to the low-dimensionality of patches, and it
does not need paired training data thanks to adversarial training. We demonstrate the
efficiency of the framework on denoising and deblurring applications.

3.1 Introduction
Inverse problems and convex regularization. Many image restoration tasks require
to solve an inverse problem. This can be addressed with a variational formulation involving
a data-fidelity term and a regularization term encouraging the solution to satisfy given
properties or to belong to a space of possible solutions. Some of the most famous
regularization terms used for image restoration are convex non-smooth terms like the total
variation [Rudin et al., 1992b], or `1 minimization of transform-domain coefficients such as
Wavelet frames [Donoho and Johnstone, 1994,Coifman and Donoho, 1995] or local Fourier
or DCT representations [Yu and Sapiro, 2011]. However, these strategies tend to produce
over-smoothed or suboptimal results, since they represent only a rough approximation of
natural image statistics and geometry.

CNN-based non-convex regularization. Later-on more accurate natural image pri-
ors emerged in the form of non-convex regularization terms, such as patch-based Gaussian

27
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mixture models (to be discussed below) or convolutional neural networks (CNN). Most
common CNN-based regularizers are, however, trained in a way that the prior or regularizer
itself is only partially and implicitly known via its gradient [Bigdeli et al., 2017,Romano
et al., 2017b,Reehorst and Schniter, 2019] or proximal operator [Venkatakrishnan et al.,
2013,Meinhardt et al., 2017,Zhang et al., 2017b,Kamilov et al., 2017,Ryu et al., 2019]. Such
implicit CNN regularizers, and the associated optimization algorithms, lack convergence
guarantees or do so under overly restrictive conditions on the regularizer, the regularization
parameter or the kind of inverse problems they can solve [Reehorst and Schniter, 2019,Ryu
et al., 2019].

To overcome these limitations a new breed of explicit CNN-based regularizers have been
proposed, either in the form of the push-forward measure of a generative model [Bora et al.,
2017], a variational autoencoder [González et al., 2022], or more directly as a discriminator
network [Lunz et al., 2018]. All these approaches are nevertheless limited to a particular
class of image and do not generalize to images of arbitrary size.

Patch-based non-convex regularization. Learning prior information has also been
widely studied from the patch point-of-view. The main idea is to learn the prior knowledge
from patches, that are local sub-images of small size, instead of learning a prior from
whole images. This allows to avoid the high-dimensional issues faced when working with
full-size image distributions. These approaches rely on parametric models of the patch
distribution such as Gaussian mixture models [Zoran and Weiss, 2011b,Houdard et al.,
2018,Teodoro et al., 2018]. However, such simple models can not accurately represent the
complexity of the patch space.

In this work, we introduce an explicit non-convex regularization function encoded with
a fully convolutional neural network that acts as a local regularizer. This prior knowledge
on the patch distribution can be applied to a whole image without size limitation. We
propose (i) to learn the convolutional regularizer as a discriminator between patches using
the Wasserstein GAN framework [Arjovsky et al., 2017] as in the adversarial regularization
framework [Lunz et al., 2018], and (ii) to integrate this regularizer in patch-based models
such as the expected patch log-likelihood framework (EPLL) [Zoran and Weiss, 2011b].

3.1.1 Setup of the problem
Linear inverse problem The main goal of this chapter is to perform image restoration
by solving an inverse problem. That is, finding the underlying true image x? from its
perturbed observation y that we consider here to be of the form

y = Ax? + ε, (3.1)

where ε ∼ N (0, σ2) is a Gaussian white noise and A is a degradation operator that
can typically be the identity (pure denoising), a mask (inpainting) or a blurring kernel
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(deconvolution). These inverse problems can be addressed with a variational formulation
involving a regularization term. This amounts to finding an estimate x̂ of x? of the form:

x̂ ∈ arg min
x

1
2σ2‖Ax− y‖

2 + λg(x), (3.2)

where ‖Ax − y‖2 is the data-fidelity term ensuring that the recovered image x̂ is close
enough to the degraded observation y, g(x) is the regularization term and λ ≥ 0 monitors
the influence of both terms. In the case where g(x) = − log(PX(x)) + C is derived from a
prior probability distribution PX modeling the data x, then the estimated x̂ from (3.2)
corresponds to the maximum a posteriori estimator.

Patch based regularization The choice of the regularization function R has a strong
impact on the final result. We propose to learn R through a local regularization functional
r acting on patches. Denoting as Ωx = {x1, · · · , xn} the set of all patches of size p × p
from an image x, this function takes as input an image patch xi and outputs a score r(xi)
that indicates how likely the patch is to be a clean one. As in EPLL [Zoran and Weiss,
2011b], we define the global regularization functional as the average value of the local
scores on the set of all patches of image x:

g(x) = 1
|Ωx|

∑
xi∈Ωx

r(xi). (3.3)

Working with patches yields three main advantages. It first makes the learning phase
simpler, as a patch model contains far less parameters than a full image model. Next,
the number of images required for training is reduced, as a single image already provides
several thousands of patches. Finally, unlike regularization methods employing networks
with fixed input resolution, our regularization network can be applied on images of any
size.

Convolutional patch regularizer In practice, we consider r as a CNN with receptive
field size equal to the patch size p× p and taking values in R. This representation is more
general than Gaussian mixture models, and allows encoding complex distributions.

3.1.2 Contributions and outline
We propose an image restoration method that relies on a regularization function learned on
patches and applied to any image size. It gathers the advantages of previous CNN methods
while avoiding the constraints of implicit plug & play priors (convergence guarantee) and
of GAN or VAE priors (fixed image size).

In addition, the regularization function is learned in an unsupervised manner, in the
sense that it only relies on patch distributions of clean and degraded data, and it does
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not require paired data. We can therefore deal with an unknown degradation model if
a noisy dataset is available.

The organization of this chapter is as follows. In Section 3.2, we propose an unsupervised
framework for the learning of a compact convolutional neural network modeling the
local patch regularity prior. We namely obtain the local regularization functional r
as a critic trained to distinguish noisy patches from clean ones using the framework of
Wasserstein generative adversarial models [Arjovsky et al., 2017]. In section 3.3, we provide
implementation details to make the work fully reproducible. We show in section 3.4 that
the local functional r generalizes well to arbitrary levels of noise, i.e. noise level unseen
during training. In Section 3.5, we demonstrate that the proposed framework is efficient
for image denoising and deblurring.

3.2 Local regularization for image inverse problem
In this section we define our local image regularizer rθ as a convolutional neural network,
and we describe how to use and train it.

Patch-based methods have shown to be efficient tools for solving inverse problems in
imaging [Zoran and Weiss, 2011b]. Hence we aim at defining a regularization function rθ
depending on parameters θ ∈ Θ that encodes prior knowledge at a patch level. In the
patch-based literature, such regularizers rely on statistical modeling of the distribution of
clean patches and the model parameters are usually inferred with a maximum likelihood
estimation [Houdard et al., 2018]. This leads to two main limitations. First, it requires to
have access to the probability density function of the prior distribution and consequently
it does not properly represent the intrinsic low dimensional manifold of clean patches.
Second, maximizing the likelihood of a complex model leads to non-convex problems that
are difficult to solve in practice.

In order to tackle these issues, we propose to take advantage of having two datasets of
clean and degraded patches –not necessarily paired– and consider rθ as a critic that tells
us if a patch is more likely to be clean or degraded.

We first detail in section 3.2.1 how the local regularization function is integrated as a
global regularizer on images in order to solve the variational problem (3.2). In section 3.2.2,
we present the framework to learn the regularizer as a critic between two unpaired datasets
of clean and degraded images.

3.2.1 Convolutional regularizers for variational problems
Convolutional regularizer We define, for the variational problem (3.2), a regulariza-
tion term g that takes into account local prior knowledge of the images. To do so, we
propose to consider a class of functions rθ(x) defined with a fully convolutional neural net-
work with parameter θ ∈ Θ and differentiable with respect to x. We enforce the perceptual
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CNN Global Pooling g(x)

x Local regularization map

Figure 3.1 – The local regularizer function is implemented as a convolutional neural
network. When applying it to full images, it outputs a regularization map, where each
"pixel" value corresponds to the value of the regularizer for the corresponding patch. By
averaging the values of the output map, we get the value of the regularization on the full
image.

size of this network to be the patch size p× p. That is, the successive convolutions operate
on a window no larger than p× p pixels. Using this architecture permits to compute the
global regularizer R from (3.3) by directly applying rθ to the full image x and average the
outputs, as illustrated in Figure 3.1. Once learned the local regularizer r?θ , the variational
problem to solve becomes

min
x

1
2σ2‖Ax− y‖

2 + λ

|Ωx|
∑
i

r?θ(xi). (3.4)

Gradient descent optimization We propose to find a local minimizer of (3.4) by
performing an explicit gradient descent method. Let x` the image at iteration `, a gradient
step of step size η writes

x`+1 = x` − η

σ2A
∗(Ax` − y)− ηλ

|Ωx|
∑
i

∇r?θ(x`i), (3.5)

where A∗ is the adjoint operator of A. Contrary to plug & play methods that rely
on implicit schemes [Venkatakrishnan et al., 2013], this explicit scheme converges for
differentiable regularization functions and adequate time steps.

We now describe how the framework for learning the local regularization function.

3.2.2 Adversarial Local Regularizer (ALR)
Adversarial training In order to train rθ as a critic between patch distributions, we
consider the discriminator framework introduced for generative adversarial networks [Good-
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fellow et al., 2014b], without the generator network. Such approach nevertheless results
in a critic rθ approximating the hard clustering between clean and degraded patches. It
therefore induces steep gradients ∇rθ that may lead to numerical instabilities during the
minimization of problem (3.2).

Wasserstein adversarial loss As a consequence, we rather rely on the Wasserstein
GAN [Arjovsky et al., 2017] formulation that amounts to approximate the optimal transport
cost between the distribution of clean patches Pc, and a distribution of degraded patches
Pn. Relying on the dual formulation of the optimal transport [Santambrogio, 2015], an
optimal critic r?θ is seen as a Kantorovitch potential and shall satisfy

r?θ ∈ arg max
ϕ∈Lip1

Ez∼Pn [ϕ(z)]− Ez∼Pc [ϕ(z)] . (3.6)

Under the assumption that the support of the clean patches distributionM is compact
[Lunz et al., 2018], the solution of equation (3.6) corresponds to the distance function to
the clean data manifoldM. Each iteration of the gradient descent on equation (3.2) thus
brings our noisy data closer to the clean data.

Gradient penalty In practice, imposing a neural network to be 1-Lipschitz is a difficult
task and we therefore use the gradient penalty introduced in [Gulrajani et al., 2017] to
encourage the gradient norm to be close to 1. This amounts to maximize the following
quantity

D(θ) = Ez∼Pn [rθ(z)]− Ez∼Pc [rθ(z)]− µEz∼Pi [(||∇zrθ(z)||2 − 1)2] (3.7)

where Pi is the distribution of all lines connecting samples in Pn and Pc. In other words,
the last term of (3.7) penalizes regularizers having gradient of norm different from one on
the convex hull of the union of the support of Pc and Pn. By enforcing the gradient ∇rθ
to be of norm close to 1, vanishing gradient issues are also avoided when solving problem
(3.2) with gradient descent approaches. We illustrate the properties of the regularization
functional with a synthetic example in Figure 3.2 containing random perturbations of
clean data points located on a circle. The learned regularization function rθ(z) therefore
approximates the distance function to the circle. The gradient ∇rθ(z) thus indicates the
direction to follow in order to transport z towards a clean point within the circle.

3.3 Practical considerations for image restoration
In this section, we provide implementation details to reproduce the proposed framework.
After presenting the architecture of the regularization network rθ, we explain the training
strategy and describe how image restoration is performed.
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Figure 3.2 – Regularization functional r(z) learned on a synthetic 2d denoising problem
with clean data (blue dots) on the circle and noisy ones (red crosses). The gradient penalty
ensures that the gradient ∇r is not flat close to the data manifoldM.

3.3.1 Network architecture
The local regularization functional rθ is designed as a 6 layers convolutional network. Each
layer is made of 3 × 3 convolution operations followed by ReLU activations [Nair and
Hinton, 2010]. This network has therefore a 15× 15 receptive field. No padding is used.
Hence, when a patch of the size of the network receptive field is fed to the network rθ, the
output is a scalar.

3.3.2 Training the regularization functional
Training details The proposed regularization network is trained with patches matching
the size of the receptive field of the network. We create the dataset Dc of clean patches
by extracting all 15 × 15 patches from a 30000 image subset of the google landmarks
dataset [Weyand et al., 2020]. Similarly, we create the dataset Dn of noisy patches
by extracting all 15 × 15 patches from another 30000 images subset of the landmarks
dataset, to which we added an additive white Gaussian noise with standard deviation σtrain.
Following [Lunz et al., 2018], the local regularization network rθ is trained to minimize
the criterion (3.7) with Algorithm 1. We use the Adam optimizer [Kingma and Ba, 2015]
with hyperparameters β1 = 0.9 and β2 = 0.999, and an exponential learning rate decay,
so that the learning rate α begins at a value of 10−3 for the first iteration, and ends up
at 10−4 for the last iteration. We use a batch size of m = 32 and train the network for
K = 105 iterations. The gradient-penalty parameter is set to µ = 5.

Analysis of the local regularizer Training samples of clean and noisy patches z, with
their final regularizer value rθ(z) ∈ R, are shown in Figure 3.3. As can be observed from the
functional values, there exists a slight ambiguity between texture patches (rθ(z) = −0.23
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Algorithm 1 Learning the local regularization rθ
Input: Datasets Dc of clean patches and Dn of noisy patches; gradient penalty µ; batch size
m, number of iterations K
Output: regularization function rθ
for k = 1 to K do

Sample minibatches of m clean patches {zcj}mj=1 from Dc and m noisy patches {znj }mj=1 from
Dn and a random number α ∈ [0; 1]

Define interpolated patches zij = αzcj + (1− α)znj for j = 1, · · · ,m
for j = 1 to m do

Dj(θ) = rθ(znj )− rθ(zcj)− µ(||∇zrθ(zij)||2 − 1)2

end for
θ ← Adam(∇θ

∑m
j=1Dj(θ))

end for

for the last patch of top row) and noisy homogeneous patches (rθ(z) = −0.27 for the first
patches of bottom row). We nevertheless show in Figure 3.4 that the distributions of clean
and noisy patches are globally well separated, as the regularizer rθ(z) ∈ R assigns a lower
value on clean patches than on noisy patches, except for some textured patches, for which
the regularizer assign a value that is similar to the value assigned to some noisy patches
(see the patch in the middle in Figure 3.4).

Figure 3.3 – Value of the local regularization functional rθ trained with σtrain = 0.1 on
clean (top row) and noisy (bottom row) patches (σ = 0.1).

3.3.3 Solving the variational problem
Image restoration is realized by solving the variational problem (3.4). To do so, we search
for the minimizing image x by performing 50 iterations of Adam [Kingma and Ba, 2015],
with the momentum parameter set to the default values β1 = 0.9 and β2 = 0.999, and an
exponential learning rate decay, with an initial learning rate of 0.1 and a final learning rate
of 0.01 at the last iteration. We implement the method with the pytorch deep learning
framework, so that the gradient of the global regularization functional g(x) can be easily
computed using automatic differentiation [Paszke et al., 2017].

In preliminary experiments, we also tried to use gradient descent instead of Adam to
optimize (3.4). However, we found that the results obtained with gradient descent were
significantly worse than the one obtained while using Adam.
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Figure 3.4 – Distribution of the values of the regularizer function on clean and noisy patches
(top), and some clean and noisy patches along with their regularizer value (bottom).

3.4 Robustness to noise variations
In this section, we study the robustness of the proposed regularization function to noise
variations. The adversarial training of the regularization function, presented in the previous
section, requires to learn a different regularization function for every different noise level
σ. We show how this limitation can be overcome.

We first analyze the behaviour of regularization functions trained on a single noise
level σtrain and then used to denoise an image with a different noise level σimg. Second,
we propose to train the regularization functions with varying noise levels and demonstrate
experimentally the superiority of this approach.

3.4.1 Robustness to unseen noise level
To study the ability of the local regularization function to generalize to noise levels
unseen during training, we train 4 regularization functions on 4 different noise levels
σtrain ∈ {0.05, 0.1, 0.2, 0.4}. We then evaluate the quality of the regularization of those
networks on denoising tasks, for 5 different noise levels σimg ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. The
4 networks share the same architecture and the same training procedure as described in
section 3.3.

Distribution of the regularizer values While these regularizers have only been
trained to distinguish between clean patches and noisy patches for a particular noise level,
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Figure 3.5 – Distribution of values rθ(x) for a regularizer trained on noise level σtrain = 0.1.
It generalizes well to patches x with an intermediate (0.05) or extrapolated (0.15) noise
levels.

they generalize well to intermediate noise levels, in the sense that the regularizer value is
an increasing function of the noise level of its input patch. Figure 3.5 illustrates this point
for the noise level σtrain = 0.1. The overlap between the distribution for noise level σ = 0
(top) and σ = 0.1 (bottom) is small, showing the ability of the regularizer network to
distinguish clean and noisy patches. Furthermore, the distribution for noise level σ = 0.05
is located in between the distributions σ = 0 and σ = 0.1, showing the ability of the
network to generalize to intermediate noise levels. The network also extrapolates to larger
noise level, as it returns larger values on noise level σ = 0.15 than for the training noise
level σ = 0.1.

Denoising performance on noise different from training Next, we evaluate de-
noising quality by measuring the average PSNR on a validation set of 11 images. To
that end, we solve problem (3.2) for A = Id. We denoise images with 5 noise levels
σimg ∈ {0.05, 0.1, 0.2, 0.3, 0.4}, and we respectively set the regularization parameter λ to
{0.15, 0.35, 0.6, 0.8, 1}. The results displayed on Table 3.1 demonstrate that the trained
regularization functions generalize well to unseen noise level, as for all 5 levels of noise
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Table 3.1 – Average PSNR on AWGN denoising, in function of the image noise level σimg,
and the noise level the regularization network was trained on σtrain. For each image noise
level, best result is displayed in bold, and second best result is underlined. Regularization
networks trained on small noise level σtrain generalizes well to higher noise levels σimg.
The regularization network trained on varying level of noise σtrain ∈ [0.05; 0.3] performs
better on high noise levels σimg.

σtrain

σimg 0.05 0.1 0.2 0.3 0.4

0.05 33.24 28.94 24.21 21.25 18.91
0.1 33.20 28.82 24.17 21.25 19.13
0.2 32.42 28.23 23.80 21.03 18.96
0.4 33.01 28.23 23.84 21.03 18.96

[0.05; 0.3] 32.92 28.90 24.91 22.58 20.84

σimg, the 4 regularization functions yield average PSNR values that are contained in an
interval of size smaller than 1 dB. Furthermore, regularization networks trained on small
noise levels σtrain ∈ {0.05, 0.1} generalize well to higher noise levels σtrain as they perform
even better than networks trained on the specific noise level.

Analysis We suggest that this is due to the fact that, when trained on a small noise level,
the regularization function is forced to learn a tight boundary between the clean and the
noisy distribution which favors denoising performance. However, for the highest noise level
σimg = 0.4, the regularization function trained on a small noise level σtrain = 0.05 gives the
worst results. As patches with very high noise levels are not seen during the training of
the regularization function trained for σtrain = 0.05, we suggest that the gradient penalty
is not enforced to 1 in this region of the patch space. Thus there is no guarantee that the
gradient of the regularization function ∇rθ is indeed directed towards the space of possible
solutions. This prevents the optimization algorithm from finding a relevant local minimum
of (3.2).

3.4.2 Robustness to noise variation during training
Training on different noise levels We now propose to improve the robustness of the
regularizer to noise level variation during training. To do so, we train a regularization
function on a distribution containing patches with noise level σtrain uniformly sampled
in the interval [0.05, 0.30]. We use the same network architecture and the same training
procedure as in section 3.3. We evaluate the effectiveness of this regularization function
by measuring the average PSNR when this function is used for denoising. We compare
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the performance with the prior trained on a single noise level in the last row of Table
3.1. Results show that the regularization function trained with a varying noise level has
comparable performance with the regularization function trained on a single-noise level.
Furthermore, for high noise level, the regularization function trained on a varying noise
level significantly outperforms the regularization function trained on a single-noise level.
This illustrates the fact that training the regularization function on varying noise level is
actually beneficial.

Analysis We suggest that exposing the regularization function to various noise levels
during training combines two advantages. It first learns a tight boundary around the clean
patches distribution, as the networks trained on low noise levels. Second, the gradient-
penalty is enforced even on highly noisy patches, as the network is trained on high noise
levels.

3.5 Experiments

We evaluate the effectiveness of our learned regularization functional on two image restora-
tion tasks, image denoising and image deblurring.

3.5.1 Denoising

Experimental setting We evaluate our method on additive white Gaussian noise
denoising, which corresponds to solving (3.2) with A = I. We compare our method
against two common patch-based denoising algorithms, BM3D [Dabov et al., 2007] and
EPLL [Zoran and Weiss, 2011b], on 3 noise levels σimg ∈ {0.1, 0.2, 0.4}. We use our model
trained on varying noise level σtrain ∈ [0.05, 0.3], with the regularization parameter λ
respectively set to 0.15, 0.35 and 1. For BM3D, we use the implementation of [Lebrun,
2012] with default parameters, and for EPLL we use the implementation of [Hurault et al.,
2018] with default parameters and a prior GMM model learned on RGB patches.

Results The average PSNR and LPIPS [Zhang et al., 2018b] on the BSD68 dataset for
the 3 methods are presented in Table 3.2, and examples of denoised images are shown on
Figure 3.6. For the 3 noise levels, the adversarial local regularization denoising outperform
EPLL and BM3D in terms of PSNR, while having comparable perceptual quality. This
illustrates the ability of convolutional neural networks to be used as local regularizers
when trained the right way.
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Table 3.2 – Comparisons in terms of PSNR (left) and LPIPS (right) of the patch-based
denoising algorithms ALR, EPLL and BM3D, for white Gaussian noise. Results are
averaged on the 68 images of the BSD68 dataset.

PSNR LPIPS
σ ALR EPLL BM3D ALR EPLL BM3D
0.1 28.85 28.77 28.26 0.29 0.28 0.30
0.2 24.88 24.92 24.69 0.44 0.42 0.43
0.4 21.58 19.75 20.25 0.57 0.61 0.58

(a) noisy (b) BM3D (c) EPLL (d) ALR (e) clean
(20.35dB) (25.48dB) (25.48 dB) (26.96 dB)

Figure 3.6 – Visual comparison of patch-based denoising methods for σ = 0.1.

3.5.2 Deblurring
To illustrate the adaptability of our local regularization function, we consider image
deblurring. This corresponds to solving (3.2) with a linear degradation operator A taken
as a convolution operation with a blur kernel k, that is y = k ∗ x+ ε. Figure 3.7 shows an
example of image deblurring using our learned local regularization function. The image
is blurred with a 7× 7 Gaussian kernel with standard deviation σk = 3, and an additive
white Gaussian noise of standard deviation σ = 0.03.

(a) blurry (b) ALR (c) clean
(22.17dB) (25.36dB)

Figure 3.7 – Illustration of deblurring using a 7×7 Gaussian kernel with standard deviation
sigmak = 3.
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3.6 Conclusion and Perspectives
We propose a new strategy to solve inverse problem in imaging using a convolutional neural
network as a local regularization function. The local regularization network is trained
to discriminate between clean and noisy patches, and the global regularization function
is defined as the average value of the local function over the set of all image patches.
Working with a local regularization function offers several advantages : it works with any
image size, it requires less training data and has less parameters than a full size model.
Furthermore, the fully convolutional architecture of the network makes it computationally
efficient to evaluate the global regularization function and its gradient.

Experimental results on image denoising show that our method outperforms popular
patch-based denoising algorithm such as EPLL and BM3D, illustrating the potential of
convolutional networks to acts as regularization function for inverse imaging problems.

We believe that improving the training criterion of the regularization function could
improve the performance of the regularization. Indeed, the training criterion of our local
regularization network corresponds to the 1-Wasserstein distance. The regularizer thus
grows linearly with the distance to the clean data manifold, whereas the data-fidelity
term is quadratic. We suggest that these unbalanced terms make the variational problem
difficult to solve, especially for high noise levels. We postulate that learning a regularization
term based on the 2-Wasserstein distance could help to overcome this limitation, as the
learned regularization function would then grow with the square of the distance to the
clean manifold.



Chapter 4

Variational autoencoders priors

We have previously presented an adversarial strategy to train a neural network as reg-
ularization functional in a variational problem. However, the adversarial regularizer is
not related to a probabilistic model of the prior. This can be a limitation, in particular
for strongly ill-posed problems such as inpainting or super-resolution, which require to
recreate the missing information. In order to define a probabilistic model of the prior, we
can employ deep generative models. In the remaining of this thesis, we will focus on the
use of variational autoencoder for solving image inverse problems. This chapter provides
an in-depth introduction of the variational autoencoder. We present the VAE training
criterion, and the different class of probabilistic models that can be learned within the VAE
framework. In particular, we will focus on hierarchical VAE models, an expressive class of
generative models that were shown to perform well on image modelling benchmarks.

4.1 Deep latent variable models

4.1.1 Generative modeling
Generative modeling refers to the task of modeling an unknown data distribution pdata(x),
given a dataset of independent samples from this distribution, that we will denote as
D = {x(i)}1≤i≤N . A common approach is to define a class of parameterized model
{pθ(x); θ ∈ Θ}, and to optimize the model parameters to adjust them to the data
distribution. For instance, one can compute the maximum likelihood estimator, which
writes:

θ̂ml = arg max
θ

N∑
i=1

log pθ
(
x(i)

)
(4.1)

For instance, when pθ(x) is a multivariate Gaussian distribution with parameters θ = (µ,Σ),
and pθ(x) = N (x, µ,Σ), it can be verified that the learning problem (4.1) has a closed-form

41
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solution. However, for more complex models pθ(x), the maximum likelihood criterion is
intractable and one has to rely on alternate strategies.

4.1.2 Latent variable models
Latent variable assumption Latent variable models provide an efficient way to design
expressive generative models pθ(x), by making the assumption that the observed data
samples x depend on some underlying, latent factors, encoded within a latent variable
z. A latent variable model, is then described by the composition of a “prior” on the
latent variable pθ(z), and a likelihood model pθ(x|z) which describes the probability of
observing x knowing the latent variable z. Then, the generative process of the data can
be reproduced by sequentially sampling z, and x conditioned on z:

z ∼ pθ(z) (4.2)
x ∼ pθ(x|z). (4.3)

By definition, the observed variable model pθ(x) is the marginal1

pθ(x) =
∫
pθ(z)pθ(x|z)dz. (4.4)

In the literature, it is also common to refer to the latent variable as a latent code, and to
pθ(x|z) as a decoder, since it maps the latent variable to (a distribution over) the observed
variable. We denote both pθ(z) and pθ(x|z) to underline the fact they correspond to a
joint model pθ(z,x) = pθ(z)pθ(x|z), although it should be understood that the parameters
of pθ(z) and pθ(x|z) live on disjoint subsets of Θ, and, in some case, the prior pθ(z) does
not actually depend on learnable parameters.

Deep latent variable model To design expressive latent variable models, one can
implement the decoder pθ(x|z) with neural networks, as proposed in [Kingma and Welling,
2013], with the following deep latent variable model:pθ(z) = N (z; 0, I)

pθ(x|z) = N (x;µθ(z),Σθ(z)) .
(4.5)

In (4.5), z ∈ Rd is a continuous variable (usually d < n), and the mean and covariance
matrix are computed by two neural networks µθ(.) : Rd → Rn and Σθ(.) : Rd → Rn×n

parameterized by (a subset of) θ. In practice, it is common to make the two networks
µθ(.) and Σθ(.) to share parameters, as displayed in Figure 4.1. Notice that, in this case,
the prior pθ(z) does not have any learnable parameters.

1in this discussion, we assume that z is continuous, although it could also be discrete. Then integrals
would be replaced by summations.
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Encoder Decoder 

Figure 4.1 – Architecture of a classical variational autoencoder, with a Gaussian encoder
and a Gaussian decoder. The encoder network (in green) predict the mean and covariance
of the stochastic encoder qφ(z|x). The decoder network, in blue, takes as an input a
sample z ∼ qφ(z|x) and outputs the statistics of stochastic decoder pθ(z|x).
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Figure 4.2 – Example of samples produced by a VAE trained on the 2-dimensional spiral
dataset. The VAE can fit the manifold of the training data distribution.

Connections with ICA and PCA By imposing an isotropic Gaussian distribution for
the prior pθ(z), we make the assumption that there exists a set of independent generative
factors for the observed data. In this sense, this model can be viewed as a way to extend
the linear Principal Component Analysis (PCA) [Rolinek et al., 2019,Dai et al., 2017]
and Independant Component Analysis (ICA) [Khemakhem et al., 2020] to the case were
z and x are related by a non-linear transformation. Under a geometric perspective, the
latent variable z can also be interpreted as the coordinates of a point x on the manifold
defined as the image of the generative network µθ(.) [Dai and Wipf, 2018,Chadebec and
Allassonnière, 2022] as illustrated in Figure 4.2.



4.2. VARIATIONAL AUTOENCODER 45

4.2 Variational autoencoder
Latent variable models training Using the maximum likelihood criterion (4.1) for
training is impractical for latent variable models because of the intractability of the
marginal (4.4). When the posterior of the latent variable model pθ(z|x)2 can be computed
efficiently, as it is the case for Gaussian mixture models [Reynolds et al., 2009], one can use
the Expectation-Maximization algorithm [Dempster et al., 1977] to optimize the maximum
likelihood criterion. However, for deep latent variable models such as (4.5), the posterior
pθ(z|x) is intractable, and one has to rely on alternative strategies.

Autoencoding Variational Bayes framework The Autoencoding Variational Bayes
framework [Kingma and Welling, 2013,Kingma et al., 2019] provides an efficient way
to fit complex latent variable models such as (4.5). The key idea is to jointly train an
inference model qφ(z|x), and the parameters of the generative model pθ(z,x). The role
of the inference model is to approximate the intractable posterior pθ(z|x). It is typically
parameterized as:

qφ(z|x) = N (z;µφ(x),Σφ(x)) , (4.6)

where µφ(.) : Rn → Rd, Σφ(.) : Rn → Rd×d are neural networks parameterized by φ. In
order to derive a tractable training criterion we can exploit the following decomposition of
the log-likelihood:

log pθ(x) = Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

L(x;θ,φ)

+ KL(qφ(z|x)||pθ(z|x)), (4.7)

where
KL(qφ(z|x)||pθ(z|x)) := Eqφ(z|x)

[
log qφ(z|x)

pθ(z|x)

]
(4.8)

is the Kullback-Leibler divergence between qφ(z|x) and pθ(z|x) [Kullback and Leibler,
1951]. We can recognize the decomposition used in variational inference [Zhang et al.,
2018a], where we would maximize the evidence lower-bound (ELBO) L (x; θ, φ) with
respect to φ to approximate the posterior pθ(z|x). Since the primary goal of the VAE is
to learn the generative model pθ(x, z), [Kingma and Welling, 2013] propose instead to
jointly optimize the ELBO with respect to φ and θ. Due to the non-negativity of the KL
divergence, the ELBO is (as suggested by its name) a lower-bound on log pθ(x). We can
also rewrite the ELBO in a different formulation that will be useful for the optimization:

L (x; θ, φ) = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||pθ(z)). (4.9)
2to not be mistaken with the posterior of the inverse problem p(x|y) in chapter 3
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The formulation (4.9) decomposes the ELBO in two terms: the first term on the right-hand
side can be viewed as a reconstruction term, penalizing bad reconstruction of the latent
codes given by the encoder qφ(z|x), while the second term acts as a regularization term,
penalizing the encoder distributions qφ

(
z|x(i)

)
to far from the prior pθ(z).

Optimization The lower-bound is convenient for optimization, because it is possible
to estimate its gradient using the formulation (4.9). Indeed, for a Gaussian encoder
qφ(z|x) (4.6) and Gaussian prior pθ(z) (4.5), the KL term in (4.9) can be computed in
close form, as:

KL(qφ(z|x)||pθ(z)) = 1
2
(
tr(Σφ(x)) + ||µφ(x)||2 − log |Σφ(x)| − d

)
. (4.10)

In practice, it is common to impose Σφ(x) to be a diagonal matrix to make the computation
of (4.10) easier. On the other hand, we can estimate the gradient of the reconstruction
term efficiently using the "reparametrization trick" [Kingma and Welling, 2013,Rezende
and Mohamed, 2015]. In the case of a Gaussian decoder qφ(z|x) = N (z;µφ(x),Σφ(x))3,
and for any differentiable function F , we have that:

Eqφ(z|x)[F (z)] = Epε
[
F (µφ(x) + Σφ(x) 1

2 ε)
]
, (4.11)

and, consequently, the gradient with respect of the variational parameters φ writes:

∇φEqφ(z|x)[F (z)] = Epε(ε)
[
∇φF (µφ(x) + Σφ(x) 1

2 ε)
]
, (4.12)

and admits an unbiased, low-variance Monte-Carlo estimator:
N∑
i=1
∇φF (µφ(x) + Σφ(x) 1

2 ε(i))), (4.13)

where ε(i) ∼ pε(ε) are i.i.d samples.

Regularized Maximum likelihood training Optimizing the evidence-lower bound
can also be interpreted as an implicit form of regularized maximum likelihood training.
Indeed, from the decomposition of the log-likelihood (4.7), maximizing the ELBO on a
dataset with respect to θ and φ amounts to solving [Shu et al., 2018]:

max
θ


N∑
i=1

log pθ
(
x(i)

)
︸ ︷︷ ︸

”data”

−min
φ

N∑
i=1

KL
(
qφ
(
z|x(i)

)
||pθ

(
z|x(i)

))
︸ ︷︷ ︸

”regularization”

 . (4.14)

3For the sake of simplicity, we present the reparametrization trick for a Gaussian decoder, although it
could be applied to other type of decoder, as discussed in [Kingma and Welling, 2013]
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From (4.14), maximizing the ELBO corresponds to finding a model pθ(x, z) that provides
a compromise between assigning high-probability mass to the training data x(i), while
having a posterior pθ(z|x) that is close to the variational family {qφ(.|x);φ ∈ Φ}. When
using a Gaussian encoder (4.6), we are imposing the posterior pθ(x|z) to be close to a
Gaussian distribution whose parameters can be predicted by a neural network. Then, we
can expect a form of smoothness in the decoder mapping, as close points in the latent
space should imply close generated images. This property is of interest for downstream
applications that involve manipulating the latent codes.

Optimal encoder In certain scenarios, the encoder qφ(z|x) can match the model
posterior pθ(z|x). Indeed, as demonstrated in [Zhao et al., 2017], the ELBO loss verifies:

Epdata(x)[L (x; θ, φ)] = −H (pdata(x))−KL(pdata(x)qφ(z|x)||pθ(x)pθ(z|x)) (4.15)

where we denote H (pdata(x)) the entropy of the training data distribution pdata(x). The
entropy does not depend on parameters θ and φ. Hence, relation (4.15) implies that the
VAE is trained so that the ELBO reached its upper-bound:

Epdata(x)[L (x; θ, φ)] = −H (pdata(x)) , (4.16)

then,
KL(pdata(x)qφ(z|x)||pθ(x)pθ(z|x)) = 0 (4.17)

and, as a corollary:
qφ(z|x) = pθ(z|x) ∀x ∈ supp(pdata(x)), (4.18)

where we denote supp(pdata(x)) the support of the training data distribution. For rela-
tion (4.16) to hold, it is necessary that the VAE encoder and decoder have enough capacity,
and that the variational family Q = {qφ(.|x);φ ∈ Φ} is expressive enough so that there
exist φ? ∈ Φ so that pθ(z|x) = qφ?(z|x). Therefore, it is technically possible that the VAE
encoder matches the true model posterior, but in practice, it is not easy to verify, since we
do not know the value of the ELBO upper bound −H (pdata(x)).

4.3 Modeling images with hierarchical VAE
VAE for images The variational autoencoder is a powerful tool to learn complex latent
variable models involving deep neural networks. Thus, they appear to be well suited for
images, which are high-dimensional, and exhibit complex structures. So far, we only have
discussed the simple VAE model with a Gaussian prior over the latent space. This type of
model is appealing for its simple formulation, and its potential ability to "disentangle" the
independent generative factors of data [Burgess et al., 2018,Chen et al., 2018]. However,
images generated by the simple VAE remain somehow blurry in practice, pushing the need
for more expressive generative models, adapted to high-resolution, complex images.
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Levels of abstraction in images representations Images can be considered as a set
of spatially correlated features. We can consider features with different levels of abstraction,
ranging from high-level features (scenes, objects) to low level features (textures, pixels). A
key assumption in image processing is that features at a given level of abstraction can
be described as a composition of lower-level features. This paradigm is one of the core
motivation for the design of deep convolutional neural networks (CNN) [LeCun et al.,
1998]. For instance, in image classification, CNNs map low-level information (an array of
pixel intensities) to high level information (which object is in the image), by extracting
a hierarchical sequence of features with different levels of abstraction [Yosinski et al.,
2015,Olah et al., 2017]. For image generation, one would like to proceed in the reverse way,
that is, to map high-level information encoded within a low-dimensional latent variable to
an image represented as an array of pixels. However, contrary to the low-level → high
level mapping, the high-level → low-level should be a one-to-many mapping.

Hierarchical generative model Hierarchical generative models provide an efficient
way to account for the compositional structure of features in images. In order to model
the different factors of variations, the latent variable z is partioned into L subgroups
z = (z0, z1, · · · , zL−1), and each latent subgroup is typically a 3 dimensional tensor
z` ∈ Rc`×hl×wl composed of one channel dimension and 2 spatial dimensions. Each
subgroup will control a different stage of the generative process (more details below).
Intuitively, the first latent subgroup in the hierarchy should encode high-level information,
while the latter one should encode low-level variation. Additionally, the prior is set to
have a hierarchical structure4:

pθ(z) = pθ(z0, z1, · · · , zL−1) (4.19)

= pθ(z0)
L−1∏
`=1

pθ(z`|z<`), (4.20)

and the prior at each level l is set as a multivariate Gaussian:pθ(z0) = N (z0;µθ,0,Σθ,0)
pθ(z`|z<`) = N (z`;µθ,` (z<`) ,Σθ,l(z<`)) ,

(4.21)

where µθ,0 and Σθ,0 can either be trainable or non-trainable constants, and the remaining
mean vectors (µθ,l, and µφ,l, for l > 0) and covariance matrices (Σθ,` and Σφ,`, for l > 0)
are parameterized by neural networks.

4In some implementation, the prior can also have a Markov structure pθ(z0, z1, · · · , zL−1) =∏L−1
`=1 pθ(z`|zl−1)
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Top-down encoder The introduction of the Top-Down encoder [Sønderby et al., 2016],
was an important contribution for training hierarchical VAEs with a large number of latent
groups in a stable way. The top-down encoder is designed to infer the latent groups in the
same order as the generative model:

qφ(z|x) = qφ(z0|x)
L−1∏
`=1

qφ(z`|z<`,x), (4.22)

with Gaussian conditionals:qφ(z0|x) = N (z0;µφ,0(x),Σφ,0(x))
qφ(z`|z<`,x) = N (z`;µφ,` (z<`,x) ,Σφ,l(z<`,x)) ,

(4.23)

parametrized by neural networks µφ,` (z<`,x) and Σφ,l(z<`,x). This is in opposition with
the models with bottom-up inference (see Figure 4.3b), which were observed to be hard
to train when L was too large [Sønderby et al., 2016]. The ordering of the latent groups
in the inference model leads to a convenient KL term in the ELBO loss (4.9), as it then
writes as a summation over the KL divergences between the Gaussian conditional priors
pθ(z`|z<`) and inference model qφ(z`|z<`,x) at each level l:

KL(qφ(z|x)||pθ(z)) = KL(qφ(z0|x)||pθ(z0)) +
L−1∑
l=1

Eqφ(z<`|x)[KL(qφ(z`|z<`,x)||pθ(z`|z<`))].

(4.24)
In (4.24), each KL term has a closed form expression as the KL divergence between two
multivariate Gaussians (in practice, the covariance matrices Σθ,l and Σφ,l(z<`,x) are set
to be diagonal matrix in order to fasten the computation). An estimate of the gradient
of (4.24) can be computed efficiently, by using the reparametrization trick for each KL
term.

VDVAE As an example of hierarchical VAE, we present Very Deep VAE (VDVAE) [Child,
2020], that we will reuse in the rest of this work. When it was introduced in 2020, VDVAE
reached state-of-the art results on several challenging image datasets, as measured by the
model likelihood on the test set. VDVAE implements a hierarchical generative model (4.20),
with a top-down inference model (4.22) as described above. As illustrated in Figure 4.4b,
a bottom-up network (left) extracts a sequence of features at different scales, and feeds
them to the top-down network (right). The top-down network is composed of top-down
blocks and upsampling operations. Each top-down block (Figure 4.4a) corresponds to a
latent group z`, and is composed of a branch that will infer the parameters of the prior
(in blue in Figure 4.4a), and a branch for the inference network that infers the parameters
of qφ(z`|z<`,x) (in green in Figure 4.4a). The inference branch takes as an input features
of the image x coming from the bottom-up network.
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Figure 4.3 – Inference model (left) and generative model (right) for a simple (non-
hierarchical) VAE (a), a hierarchical VAE with bottom-up inference (b), and hierarchical
with top-down inference (c)

Properties of the hierarchical latent representation The generative model of
VDVAE provides a rich hierarchical latent representation of images. We can visualize the
effect of each latent group of the hierarchy on the generated image by sampling images
from pθ(x|z<`) while keeping z<` fixed, for different values of l. We can then deduce
that the attributes that are common to all samples from pθ(x|z<`), are most likely to be
encoded in the latent groups z<`. Our experiments in Figure 4.5 illustrate that VDVAE
encodes high-level semantic information within its first latent variables.

Interpolation with VDVAE Another interesting feature of VDVAE is its ability to
interpolate between images. We describe a simple strategy to interpolate between two
images in algorithm 2, and we present an example of interpolation in Figure 4.6. This
interpolation strategy is naive, as it ignores the hierarchical structure of the latent space,
and it does not account for its geometry [Chadebec and Allassonnière, 2022]. However,
it already provides a smooth transition between images. This suggests that, despite its
hierarchical nature, VDVAE latent space is smooth, in the sense that close latent vectors
lead to close generated images.

Low temperature model In order to improve the quality of the generated samples
after training, and to make the model distribution closer to the data distribution in
terms of FID metric, a trick used by practitioners is to reduce the variance of the latent
prior [Kingma and Dhariwal, 2018,Vahdat and Kautz, 2020,Child, 2020,Karras et al.,
2020]. For HVAE this is done by multiplying the covariance matrix of the Gaussian
distribution pθ(z`|z<`) by a factor τ 2

l < 1. As can be seen in Figure 4.7, sampling the
images at a slightly reduced temperature (τ` = 0.8) helps reducing the artefacts visible in
the samples at full temperature (τ = 1). On the other hand, images sampled at a lower
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Figure 4.4 – Structure of the VDVAE architecture. For clarity, we omit the non-linearity
after each convolution. The number of blocks differs for each dataset.

temperature provide over smoothed results with limited diversity. We denote the model
with reduced prior temperature:

pθ,τ (z0, · · · , zl−1,x) = pθ(z0)
1
τ2

0

Z0

L−1∏
`=1

pθ(z`|z<`)
1
τ2
`

Z`
pθ(x|z<L), (4.25)
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(a) l = 3

(b) l = 4

(c) l = 5

Figure 4.5 – Samples from VDVAE model pθ(x|z<`) for different values of l. The first
latents (l = 3) encode high-level semantic informations (age, genders), and the following
ones encodes attributes such as face expression, skin and eyes colors.

Figure 4.6 – Image interpolation with VDVAE.
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Algorithm 2 Interpolation in hierarchical VAE latent space
Input: 2 images x̃ and x, number of interpolated images n
Sample zk, · · · , z0 ∼ qφ (zk, · · · , z0|x)
Sample z̃k, · · · , z̃0 ∼ qφ (z̃k, · · · , z̃0|x̃)
for i = 1 to n do

t← i
n+1

z
(i)
j ← (1− t)zj + tz̃j, ∀j ∈ {0, · · · , k}
x(i) ∼ pθ

(
x|z(n)

k , · · · , z(i)
0

)
end for
Return {x(1), · · · ,x(n)}

τ = 0.3 τ = 0.5 τ = 0.8 τ = 1

Figure 4.7 – Effect of the temperature τ` = τ on the images generated by VDVAE.

where the variables Z` :=
∫
pθ(z`|z<`)

1
τ2
` dz` are normalizing constants5. In (5.14), τ :=

(τ0, · · · , τL−1) gives the temperature for each level of the hierarchy. In the following, we
use this temperature-scaled model to balance the regularization of our inverse problem.
The temperature-scaled model marginal is then defined as:

pθ,τ (x) =
∫
pθ,τ (z0, · · · , zl−1,x) dz0 · · · dzL−1 (4.26)

4.3.1 Conclusion
The variational autoencoder can help to learn powerful generative models on images.
They come with several attributes that will be helpful for downstream applications
such as image restoration. Namely, the ELBO training criterion enforces smoothness
of the generative network, and the VAE encoder allows to efficiently map images to
their latent representations, enabling fast and smooth latent code manipulation. In

5Precisely, we have Z` = τ
d`
2
` , where d` = c` × hl × wl is the dimension of the latent variable z`
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particular, hierarchical VAEs provide high-quality generative models, that can match the
performance of other classes of generative models such as GANs, while benefiting from
the aforementioned advantages of VAEs. In the following chapters, we will demonstrate
how to efficiently leverage the properties of deep hierarchical VAEs such as VDVAE for
different image restoration tasks.



Chapter 5

Inverse problem regularization with
hierarchical variational autoencoders

In this chapter, we propose to regularize ill-posed inverse problems using a deep hierarchical
variational autoencoder (HVAE) as an image prior. The proposed method synthesizes the
advantages of i) denoiser-based Plug & Play approaches and ii) generative model based
approaches for inverse problems. First, we exploit VAE properties to design an efficient
algorithm that benefits from convergence guarantees of Plug-and-Play (PnP) methods.
Second, our approach is not restricted to specialized datasets and the proposed PnP-HVAE
model is able to solve image restoration problems on natural images of any size. Our
experiments show that the proposed PnP-HVAE method is competitive with both SOTA
denoiser-based PnP approaches, and other SOTA restoration methods based on generative
models. The code for this project is available at https://github.com/jprost76/PnP-HVAE.

5.1 Introduction
Linear inverse problem In this chapter, we still focus on linear inverse problems

y = Ax+ ε (5.1)

in which y ∈ Rm is the degraded observation, x ∈ Rd the original signal we wish to
retrieve, A ∈ Rm×d is an observation matrix and ε ∼ N (0, σ2I) is an additive Gaussian
noise. Many image restoration tasks can be formulated as (5.1), including deblurring,
super-resolution or inpainting.

End to end restoration With the development of deep learning in computer vision,
image restoration have known significant progress. The most straight-forward way to
exploit deep learning for solving image inverse problems is to train a neural network to
map degraded images to their clean version in a supervised fashion. However, this type of
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approach requires a large amount of training data, and it lacks flexibility, as one network
is needed for each different inverse problem.

Generative network inversion An alternate approach is to use deep latent variable
generative models such as GANs or VAEs and to compute the Maximum-a-Posterior
(MAP) estimator in the latent space:

ẑ = arg max
z

log p (y|G(z)) + λ log p (z) , (5.2)

where z is the latent variable and G is the generative network [Bora et al., 2017,Menon
et al., 2020]. In (5.2) the likelihood p (y|G(z)) is related to the forward model (5.1),
and p (z) corresponds to the prior distribution over the latent space. After solving (5.2),
the solution of the inverse problem is defined as x̂ = G (ẑ). The latent optimization
methods (5.2) provide high-quality solutions that are guaranteed to be in the range of a
generative network. However, this implies highly non-convex problems (5.2) due to the
complexity of the generator and the obtained solutions may lack of consistency with the
degraded observation (as noticed in [Saharia et al., 2021c]). Although the convergence
of latent optimization algorithms has been studied in the literature, existing convergence
guarantees are either restricted to specific settings, or rely on assumptions that are difficult
to enforce in practice [Huang et al., 2021]

Hierarchical VAE prior In this chapter, we propose an algorithm that exploits the
strong prior of a deep generative model while providing realistic convergence guarantees. We
consider a specific type of deep generative model, the hierarchical variational autoencoder
(HVAE). As discussed in chapter 4, HVAE models give state-of-the-art results on image
generation benchmarks [Vahdat and Kautz, 2020,Child, 2020,Hazami et al., 2022,Luhman
and Luhman, 2022], and provide an encoder that will be key in the design of our proposed
method.

Low-temperature model As the HVAEmodels differ significantly from the architecture
of concurrent models, it is necessary to design algorithms adapted to their specific structure.
The latent space dimension of HVAE is significantly higher than the image dimension.
Hence, constraining the solution to lie in the image of the generator is not enough to
regularize inverse problems. Indeed, it has been observed that HVAEs can perfectly
reconstruct out-of-domain images [Havtorn et al., 2021b]. Consequently, we propose to
constrain the latent variable of the solution to lie in the high probability area of the HVAE
prior distribution. This can be done efficiently by controlling the variance of the prior over
the latent variables.

Avoiding backpropagation The common practice of optimizing the latent variables
of the generative model with backpropagation is impractical for hierarchical generative
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models, because of the high dimensionality of the hierarchical latent space. Instead, we
exploit the HVAE encoder to define an alternating algorithm [González et al., 2022] to
optimize the joint distribution over the image and its latent variable

Connection with Plug-and-Play To derive convergence guarantees for our algorithm,
we show that it can be reformulated as a Plug-and-Play (PnP) method [Venkatakrishnan
et al., 2013], which alternates between an application of the proximal operator of the
data-fidelity term, and a reconstruction by the HVAE. Under this perspective, we give
sufficient conditions to ensure the convergence of our method, and we provide an explicit
characterization of the fixed-point of the iterations. Motivated by the parallel with PnP
methods, we name our method PnP-HVAE.

Contributions and outline
In this work, we introduce PnP-HVAE, a method for regularizing image restoration prob-
lems with a hierarchical variational autoencoder. Our approach exploits the expressiveness
of a deep HVAE generative model and its capacity to provide a strong prior on specialized
datasets, as well as convergence guarantees of Plug-and-Play methods and their ability to
deal with natural images of any size.

We start by a brief review of related works on deep learning based regularization
for imaging inverse problems (section 5.2), We then present in section 5.3 the specific
background on VAE based inverse problem regularization, with a focus on JPMAP, an
algorithm that serves as an inspiration for our proposed method. Next we present our
contributions:

• In section 5.4, we introduce PnP-HVAE, an algorithm to solve inverse problems
with a HVAE prior. PnP-HVAE optimizes a joint posterior on image and latent
variables without backpropagation through the generative network. It can be viewed
as a generalization of JPMAP [González et al., 2022] to hierarchical VAEs, with
additional control of the regularization.

• In section 5.5, we demonstrate the convergence of PnP-HVAE under hypotheses on
the autoencoder reconstruction. Numerical experiments illustrate that the technical
hypotheses are empirically met on noisy images with our proposed architecture. We
also exhibit the better convergence properties of our alternate algorithm with respect
to the use of Adam for optimizing the joint posterior objective.

• In section 5.6, we demonstrate the effectiveness of PnP-HVAE through image
restoration experiments and comparisons on (i) faces images using the pre-trained
VDVAE model from [Child, 2020]; and (ii) natural images using the proposed
PatchVDVAE architecture trained on natural image patches.
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5.2 Related works
We present two prominent lines of work for deep learning based regularization of image
inverse problems, namely, plug-and-play methods exploiting deep image denoisers, and
methods based on deep generative models.

5.2.1 Plug-and-Play methods
Plug-and-Play (PnP) and RED methods [Venkatakrishnan et al., 2013,Romano et al.,
2017a] make use of a (deep) denoiser as a proxy to encode the local information over the
prior distribution. The denoiser is plugged in an optimization algorithm such as Half-
Quadratic Splitting or ADMM in order to solve the inverse problem. PnP algorithms come
with theoretical convergence guarantees by imposing certain conditions on the denoiser
network [Ryu et al., 2019,Pesquet et al., 2021,Hurault et al., 2022]. These approaches
provide state-of-the-art results on a wide variety of image modality thanks to the excellent
performance of the currently available deep denoiser architectures [Zhang et al., 2021].
However, PnP methods are only implicitly related to a probabilistic model, and they
provide limited performance for challenging structured problems such as the inpainting of
large occlusions.

5.2.2 Deep generative models for inverse problems
Generative models represent an explicit image prior that can be used to regularize ill-
posed inverse problems [Bora et al., 2017,Latorre et al., 2019,Menon et al., 2020,Daras
et al., 2021, Oberlin and Verm, 2021, Pan et al., 2021, Song et al., 2021a]. They are
latent variable models parameterized by neural networks, optimized to fit a training data
distribution [Kingma and Welling, 2013,Goodfellow et al., 2020,Dinh et al., 2016,Ho et al.,
2020].

Convergence issues Regularization with generative models (5.2) involves solving a
highly non-convex optimization problem over latent variables [Bora et al., 2017,Menon
et al., 2020,Oberlin and Verm, 2021], for which it is difficult to derive theoretical con-
vergence guarantees. Researchers have been working to derive assumptions under which
optimization provably converges [Shah and Hegde, 2018,Raj et al., 2019,González et al.,
2022]. For compressed sensing, it has been shown that gradient descent converges to a
local neighborhood of the solution with high-probability, under the assumption that the
generative network has random Gaussian weights [Hand et al., 2018]. Also for compressed
sensing, [Shah and Hegde, 2018] introduced a projected gradient algorithm that provably
converges to the global solution with high-probability, under the assumption of the exis-
tence of an oracle projection function on the image of the generative network manifold. For
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generic forward models, convergence to a local minimum, and the property of those local
minima are still to be investigated. With a VAE prior, the JPMAP algorithm converges to
a local minimum of a specific energy under the assumption that the VAE encoder qφ(z|x)
perfectly matches the intractable VAE posterior pθ(z|x) [González et al., 2022] (more
details will be given below).

5.3 Joint Posterior Maximization with Autoencoding
Prior

Using a hierarchical VAE model as a prior to regularize an inverse problem is challenging,
because the high-dimensionality of the latent space, and the hierarchical structure of the
latent prior pθ(z) (4.20) make approaches relying on backpropagation impractical. The
Joint Posterior Maximization with Autoencoding Prior (JPMAP) algorithm of [González
et al., 2022] introduces several ideas that will be key in the development of our method,
including the choice of computing "joint" MAP estimator to circumvent the intractability
of pθ(x), and the use of the VAE encoder within an alternate optimization scheme to avoid
backpropagation through the VAE generator. As a preliminary, we present in this section
the main idea behind the JPMAP algorithm.

Joint MAP estimator A direct approach to use a VAE model as a prior to solve image
inverse problems is to compute the classical MAP estimator with the prior induced by the
VAE pθ(x):

xMAP = arg min
x

log p(y|x) + log pθ(x). (5.3)

However, because evaluating the VAE model marginal pθ(x) requires computing an
intractable integral (4.4), it is not clear how to compute this MAP estimator. The main
idea of the JPMAP algorithm is to consider instead the augmented model including the
VAE latent variable z:

p(z,x,y) := pθ(z)pθ(x|z)p(y|x), (5.4)

and to compute the associated joint MAP estimator:

x?, z? = arg max
x,z

p(x, z|y). (5.5)

For a linear forward model p(y|x) and a Gaussian VAE (4.5), solving (5.5) amounts to
minimizing the energy1:

J1(x, z) = 1
2σ2 ||Ax− y||

2 + 1
2 ||x− µθ (z) ||2Σ−1

θ
(z) + 1

2 log det
(
Σ−1
θ (z)

)
+ 1

2 ||z||
2. (5.6)

1we use the notation ||x||2M = xtMx



60 CHAPTER 5. INVERSE PROBLEM REGULARIZATION WITH HVAES

Alternate optimization JPMAP employs an alternate optimization scheme to compute
the joint-MAP estimator by minimizing the negative logarithm of the joint posterior (5.5):

z(n+1) = arg min
z
− log p(x(n), z|y) (5.7)

x(n+1) = arg min
x
− log p(x, z(n+1)|y). (5.8)

It is clear from (5.6) that the subproblem (5.8) is convex and admits the closed form
solution:

x(n+1) =
(
AtA

σ2 + Σ−1
θ

(
z(n+1)

))−1 (
Aty

σ2 + Σ−1
θ

(
z(n+1)

)
µθ
(
z(n+1)

))
, (5.9)

On the other hand, the subproblem in z (5.7) is not convex and does not admit a closed-
form solution, due to the terms µθ (z) and Σ−1

θ (z) involving neural networks. To avoid
the use of an iterative optimization algorithm such as gradient descent to solve (5.7),
the authors of [González et al., 2022] propose to rely on the VAE encoder to efficiently
compute an approximate solution as:

z(n+1) = arg min
z
− log qφ

(
z|x(n)

)
(5.10)

≈ arg min
z
− log pθ

(
z|x(n)

)
︸ ︷︷ ︸

= arg minz − log pθ
(
z,x(n)|y

) (5.11)

(5.12)

Since qφ
(
z|x(n)

)
is Gaussian (4.6), the solution of (5.10) is simply the mean of the Gaussian

distribution µφ
(
x(n)

)
, which can be computed with the VAE encoder network. Hence,

the computation of z(n+1) in (5.10) simply requires one forward pass of the encoder on
the current value x(n), instead of an iterative optimization algorithm that would require
many forward and backward passes with the decoder network. The final JPMAP iteration
is then the sequence of one exact minimization of J1(x, z) with respect to x (5.9), and an
approximate minimization with respect to z (5.10):zn+1 = µφ(xn)

xn+1 =
(
AtA
σ2 + Σ−1

θ (zn+1)
)−1 (Aty

σ2 + Σ−1
θ (zn+1)µθ (zn+1)

)
,

(5.13)

Convergence of JPMAP In the ideal case where the VAE encoder qφ(z|x) perfectly
matches the true VAE posterior pθ(z|x), [González et al., 2022] shows that J1(x, z) is a
biconvex function. Then, the alternate scheme (5.13) corresponds to an alternate convex
search, and converges to a stationary point of J1 [González et al., 2022]. The assumption
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on the decoder can be met under several assumptions discussed in subsection 4.2. However,
there is no practical way to verify if this assumption is met, and several works suggest that
Gaussian encoders fail to match the model posterior in practical settings [Cremer et al.,
2018,Marino et al., 2018,Zhang et al., 2022]. To ensure convergence to a stationary point
without assuming a perfect encoder, the authors of [González et al., 2022] use gradient
descent to solve the subproblem (5.7) when the encoder approximation is not good enough
to ensure decreasing value of the energy J1(xn, zn) along the iterates.

Limitations Along with the convergence issues due to the imperfection of the encoder
qφ(z|x), JPMAP has limitations hindering its usage for real-world applications. First, its
formulation is only adapted to simple VAE models, that lack expressivity for modeling
high-resolution images, and tend to generate blurry images. Second, while classical
variational methods give control on the strength of the regularization by the choice of a
scalar hyperparameter, JPMAP does not provide any control of this sort. It would be
tempting to add a multiplicative factor in front of the "regularization" term ||z||2 in (5.6)
to enforce control, however, because the "coupling" term 1

2 ||x− µθ (z) ||2Σ−1
θ

(z) is not linear,
it is not straightforward to adapt JPMAP to this new problem.

5.4 Regularization with HVAE Prior
In this section we introduce PnP-HVAE, our Plug-and-Play method to solve generic image
inverse problems with a Hierarchical VAE prior. The formulation of our method shares the
main principles introduced in JPMAP, namely, it is motivated by an alternate optimization
scheme to compute a joint MAP estimator similar to (5.17), and we use the HVAE encoder
to efficiently solve the sub-problem over the latent variable. Nevertheless, we introduce
several novelties to overcome the main limitations of JPMAP discussed in section 5.3. In
particular:

• Our method is adapted to Hierarchical VAE models with top-down inference networks,
that are more expressive than the simple Gaussians VAEs used in JPMAP.

• In our method, the strength of the regularization can be controlled by tuning the
temperature of the Gaussian latent priors of the HVAE model.

We show in section 5.4.1 that the strength of the regularization can be monitored by
tuning the temperature of the prior in the latent space. In section 5.4.2, we propose an
approximation of the low-temperature joint posterior distribution using the hierarchical
VAE encoder. Using this approximation, we introduce in section 5.4.3 our final algorithm
based on an alternate optimization scheme, that includes a new sequential scheme to
optimize the latent variable of the HVAE.
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5.4.1 Tempered hierarchical joint posterior
Mode covering behavior of hierarchical VAE models The likelihood based crite-
rion used to train HVAE models is known to be mode-covering (see discussion in chapter
10.2 in [Bishop and Nasrabadi, 2006]). As such, it will drive the learned model to cover every
mode of the training data distribution, at the risk of also assigning non-zero probability to
out-of-distribution data-points. This can be a limitation for image restoration applications,
in particular if the learned model assigns high probability to degraded images. Indeed, we
observed in our preliminary experiments that using an HVAE model within a JPMAP
like algorithm without any mechanism to increase the strength of the regularization leads
to poor restoration results, as the regularization is too weak to avoid artifacts due to the
noise in the observation.

Low-temperature HVAEmodel In order to increase the strength of the regularization,
we propose to use an HVAE model with reduced temperature, as described in chapter 4,
section 4.3. As a reminder, we define the joint low-temperature HVAE model as:

pθ,τ (z0, · · · , zL−1,x) = pθ(z0)
1
τ2

0

Z0

L−1∏
`=1

pθ(z`|z<`)
1
τ2
`

Z`
pθ(x|z<L), (5.14)

where Z` are normalizing constants. Notice that when τ` = 1, we retrieve the original joint
HVAE model, and reducing the value of τ` at each level l increases the strength of the
regularization. Our motivations for using a low-temperature HVAE model are twofold.
First we expect that a lower temperature τ will help reducing the value of the model
pθ,τ (x) on out-of-distribution data points. Second, HVAE models typically produce their
best samples in terms of image quality with a temperature slightly below than one (e.g.
τ = 0.85) [Vahdat and Kautz, 2020,Child, 2020].

Joint MAP criterion Using the low-temperature HVAE model described in equation
(5.14), we define the associated tempered joint model as:

p (z,x,y) = p (z0, · · · , zL−1,x,y) (5.15)
:= pθ,τ (z0, · · · , zL−1,x) p (y|x) . (5.16)

Following JPMAP motivations, we aim at finding the couple (x, z) that maximizes the
joint posterior p(x, z|y):

arg min
x,z
− log p(x, z|y). (5.17)

Although we are only interested in finding the image x, the joint Maximum A Posteriori
(MAP) criterion (5.17) makes it possible to derive an optimization scheme that only relies
on forward calls of the HVAE, as we describe in the following.
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Effect of the temperature By ignoring the constant terms, the joint MAP estimate,
solution of (5.17) is the minimizer of the energy:

J1 (x, z) := − log p(y|x)− 1
τ 2

0
log pθ(z0)−

L−1∑
l=1

1
τ 2
`

log pθ(z`|z<`)− log pθ(x|z<L). (5.18)

Relation (5.18) illustrates the influence of the temperature factors τ` on the final objective
function. The ratios 1

τ2
`
control the influence of the latent prior terms pθ,τ (z`|z<`), like

the scalar coefficient λ in front of a regularization term g(x) in a typical variational
problem minx f(x) + λg(x). Reducing the temperatures τ` increases the strength of the
regularization on the latent variables z` in the joint model.

5.4.2 Encoder approximation of the joint posterior
We now derive an approximation of the joint model (5.15) based on the HVAE encoder
qφ(z|x). This approximate model will be useful for deriving an alternate optimization
scheme.

Approximate joint posterior We can rewrite the joint model (5.15) as:

p(z,x,y) = pθ,τ (z|x)pθ,τ (x)p(y|x). (5.19)

We would like to replace the low-temperature model posterior pθ,τ (z|x) in (5.19) by an
approximation given by the HVAE encoder qφ(z|x). However, the encoder is only trained
to approximate the posterior of the model pθ(z|x) (that is, for τ = 1), and not the posterior
of the low-temperature model pθ,τ (z|x).

Posterior of the low-temperature model In the following proposition, we show that
the low-temperature posterior pθ,τ (z|x) can be formulated as a combination of the model
posterior at τ = 1, pθ(z|x), and the model prior pθ(z).

Proposition 5.1. The low-temperature model posterior satisfies:

pθ,τ (z|x) = pθ(x)
pθ,τ (x)pθ,τ (z0|x)

L−1∏
`=1

pθ,τ (z`|z<`,x) (5.20)

with

pθ,τ (z0|x) = 1
Z0
pθ(z0|x)pθ(z0)λ0 (5.21)

pθ,τ (z`|z<`,x) = 1
Z`
pθ(z`|z<`,x)pθ(z`|z<`)λ` , (5.22)

and λ` := 1
τ2
`
− 1.
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We provide a detailed proof of this result in appendix A.1.1.
Relation (5.20) gives a relation between the low-temperature model posterior pθ,τ (z|x)

and the original posterior pθ(z|x). At each level l, the low-temperature model posterior
pθ,τ (z`|z<`,x) is the product of the posterior pθ(z`|z<`,x) and the prior pθ(z`|z<`) of the
original model. The influence of the prior terms at each level is inversely proportional to
the temperature τ`.

Encoder approximation of the low-temperature model Using relation (5.20), we
can approximate the low-temperature model (5.14) posterior pθ,τ (z|x) with the encoder
qφ(z|x). We approximate each level of the hierarchical posterior (5.22) by using the
approximation qφ(z`|z<`,x) ≈ pθ(z`|z<`,x):

qφ,τ (z`|z<`,x) := 1
Z`
qφ(z`|z<`,x)pθ(z`|z<`)λ` (5.23)

≈ pθ,τ (z`|z<`,x). (5.24)

Then, we define the low-temperature encoder by plugging the approximation (5.23)
in (5.20):

qφ,τ (z|x) = pθ(x)
pθ,τ (x)qφ,τ (z0|x)

L−1∏
`=1

qφ,τ (z`|z<`,x). (5.25)

By construction, if qφ(z|x) = pθ(z|x), we have that qφ,τ (z|x) = pθ,τ (z|x). We then define
the approximate joint model by injecting the formulation of the low-temperature posterior
pθ,τ (z|x) (5.20) in (5.19):

q(z,x,y) := qφ,τ (z|x)pθ,τ (x)p(y|x) (5.26)

:= pθ(x)qφ,τ (z0|x)
L−1∏
`=1

qφ,τ (z`|z<`,x)p(y|x). (5.27)

In the case where qφ(z|x) = pθ(z|x), we have q(z,x,y) = p(z,x,y). As discussed in
subsection 4.2, this assumption can be met if the variational family {qφ(.|x);φ ∈ Φ}
contains the true posterior p(z|x) and if the VAE is trained to reach the ELBO upper-
bound. If this assumption appears unrealistic for vanilla (non-hierarchical) VAE [González
et al., 2022], our experiments suggest that HVAE hierarchical encoders are sufficiently
expressive to match the posterior to a reasonably good accuracy. Computing the joint
MAP estimator for the approximate model:

arg max
x,z

q(z,x|y) (5.28)

is equivalent to minimizing the following energy:

J2(x, z) := −
L−1∑
`=0

log qφ,τ (z`|z<`,x)− log p(y|x)− log pθ(x). (5.29)
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We will develop in the following subsection on how to efficiently compute an approximate
minimizer of J2(x, z) with respect to z.

5.4.3 Alternate optimization with PnP-HVAE
Alternate optimization We now developp our algorithm to compute the joint MAP (5.17)
based on an alternate optimization scheme. The ideal optimization scheme writes:

z(n+1) = arg min
z
J1(x(n), z) (5.30)

x(n+1) = arg min
x
J1(x, z(n+1)). (5.31)

Exact minimization in z The subproblem in z (5.30) does not admit a closed form
solution, and is highly non-convex as the variables z` are arguments of a neural network.
We could use first order iterative optimization scheme to solve it, but it would be expensive
in terms of time and memory, because of the high-dimensionality of the latent variables
z`, and of the size of the generative model neural network. Furthermore, first order
optimization only provides a local minimum.

Fast approximate minimization in z To avoid the difficult optimization of J1(x(n), z)
w.r.t. z, we propose instead to search for a z that minimizes the encoder approximation
of the joint model (5.26). This approach is motivated by the fact that, if the encoder is
well trained, we have p(z,x,y) = q(z,x,y), and as a consequence,

z(n+1) = arg min
z
J2(x(n), z). (5.32)

is the solution of the subproblem (5.30). Solving (5.32) exactly is not straight-forward,
because of the nested dependencies on the z` terms in J2(x(n), z). We introduce Algorithm 3,
a sequential algorithm computing the exact solution of (5.32) under additional mild
assumptions. In algorithm 3, the latent variables z` are inferred sequentially, starting from
l = 0 until l = L− 1. At each level l, the value of ẑl is defined as the optimal value z` with
respect to the previous latent groups ẑ<` and the current image x(n), without considering
the influence of ẑl on subsequent terms qφ,τ

(
zl+k|ẑ<l+k,x(n)

)
on the total cost function

J2(x(n), z).

Practical implementation Algorithm 3 is convenient to implement, because the infer-
ence order follows the order of the top-down inference network (illustrated in Figure 4.3c).
To implement Algorithm 3, we apply the HVAE encoder as we would for simply encoding
an image, but, at each level l, instead of sampling z` ∼ qφ(z`|z<`,x), the value ẑ` is
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Algorithm 3 Hierarchical encoding with latent regularization to minimize (5.29) w.r.t. z
for a fixed x
Require: image x; HVAE (φ, θ); temperature τ`; λ` = 1

τ2
`
− 1

for 0 ≤ ` < L do
Sq ← Σ−1

φ,` (z<`,x); mq ← µφ,` (z<`,x) . Encoder
Sp ← Σ−1

θ,` (z<`); mp ← µθ,` (z<`) . Prior
%arg minz` − log qφ,τ (z`|x, z<`)
z` ← (Sq + λ`Sp)−1 (Sqmq + λ`Spmp)

end for
return Eτ (x) = (ẑ0, ẑ1, · · · , ẑL−1)

computed as the minimizer of qφ,τ (z`|z<`,x) with respect to z`. From the formulation of
qφ,τ (z`|z<`,x) (5.23) as a product of Gaussian densities, the minimizer is obtained as:

ẑ` =
(
Σ−1
φ,` (ẑ<`,x) + λ`Σ−1

θ,` (ẑ<`)
)−1

(5.33)(
Σ−1
φ,` (ẑ<`,x)µφ,` (ẑ<`,x) + λ`Σ−1

θ,` (ẑ<`)µθ,` (ẑ<`)
)
. (5.34)

Hence, at each step, the minimizer can be viewed as a weighted average of the means
of the Gaussian encoder term qφ(z`|x, z<`) and the Gaussian prior term pθ(z`|z<`), with
the interpolation weights depending on the covariance matrices and the temperatures
τ` (through λ` = 1

τ2
`
− 1). In the following, we denote as ẑ := Eτ (x) the output of the

hierarchical encoding of Algorithm 3.

5.4.4 Analysis of the minimization in z
Global minimum of J2(x, z) In the following proposition, we derive sufficient guarantee
for which algorithm 3 provides the exact solution to the problem (5.32). To that end, we
need the following assumption on the volume of the covariance matrices of the HVAE
model.

Assumption 5.1 (Volume-preserving covariances). The covariance matrices of the HVAE
have constant determinant (not depending on z<`, although this constant may depend on
the hierarchy level l)

|Σφ,`(z<`,x)| = c`(x) (5.35)
|Σθ,`(z<`)| = dl (5.36)

Proposition 5.2 (Algorithm 3 computes the global minimum of J2(x, z) with respect to
z). Under Assumption 5.1, J2(x, z) has a unique global minimum in z, which corresponds
to the output of algorithm 3:

Eτ (x) = arg min
z
J2(x, z) (5.37)
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Proof. To demonstrate this result, we first notice that the low temperature encoder
conditionals qφ,τ (z`|z<`,x) are unormalized Gaussian probability density functions (PDF):

qφ,τ (z`|z<`,x) = 1
E`(z<`,x) exp

(
−1

2 ||z` − µφ,τ,` (z<`,x) ||2Σ−1
φ,τ,`

(z<`,x)

)
, (5.38)

with

E`(z<`,x) =
(

(2π)nl |Σφ,` (z<`,x) |
) 1

2
(

(2π)nl |Σθ,` (z<`) |
)λ`

2
Z`, (5.39)

Σφ,τ,` (z<`,x) =
(
Σ−1
φ,` (z<`,x) + λ`Σ−1

θ,` (z<`,x)
)−1

, (5.40)

µφ,τ,` (z<`,x) = Σφ,τ,` (z<`,x)
(
Σ−1
φ,` (z<`,x)µφ (z<`,x) + λ`Σ−1

θ,` (z<`,x)µθ (z<`)
)
.

(5.41)

This comes from the definition of qφ,τ (z`|z<`,x) as the product of two Gaussian PDF (5.23),
and the product of Gaussian PDF rule (see for instance [Bromiley, 2003,Toussaint, 2011]).
By definition of J2(x, z), we have that2:

arg min
z
J2(x, z) = arg min

z
− log qφ,τ (z|x) (5.42)

= arg min
z

L−1∑
`=0
− log qφ,τ (z`|z<`,x). (5.43)

Exploiting the formulation of qφ,τ (z|x) in equation (5.38), it follows that:

− log qφ,τ (z|x) =
L−1∑
`=0
− log qφ,τ (z`|z<`,x)

=
L−1∑
`=0

logE`(z<`,x) + ||z` − µφ,τ,` (z<`,x) ||2Σ−1
φ,τ,`

(z<`,x)

=
L−1∑
`=0

logC` + log |Σφ,` (z<`,x) |+ λ` log |Σθ,` (z<`) |︸ ︷︷ ︸
B`(z<`,x)

+ ||z` − µφ,τ,` (z<`,x) ||2Σ−1
φ,τ,`

(z<`,x)︸ ︷︷ ︸
A`(z`,z<`,x)

. (5.44)

Under the assumption of volume preserving covariance 5.1, B`(z<`,x) = B̃`(x) is constant
in z<` for all l, and

arg min
z
− log qφ,τ (z|x) = arg min

z

L−1∑
`=0

A`(z`, z<`,x)︸ ︷︷ ︸
A(z,x)

. (5.45)

2For readability, we abuse notations in the following, by denoting qφ,τ (z0|z<0,x) = qφ,τ (z0|x)
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Since A`(z`, z<`,x) ≥ 0, we have that

A(z,x) =
L−1∑
`=0

A`(z`, z<`,x) ≥ 0.

Also,
A`(z`, z<`,x) = 0 iff z` = µφ,τ,` (z<`,x) .

Therefore, the output of algorithm 3 z? = Eτ (x), defined as:z?0 = arg minz0 − log qφ,τ (z0|x) = µφ,τ,0(x)
z?l = arg minz` − log qφ,τ (z`|z?<`,x) = µφ,τ,` (z?<`,x) for l ∈ {1, . . . , L− 1}

(5.46)

satisfies by construction, A`(z?` , z?<`,x) = 0 for all l ∈ {0; · · · : L− 1}. Hence,

A(z?,x) =
L−1∑
`=0

A`(z?` , z?<`,x) = 0.

It follows that z? is a minimum of J2(x, .). Additionally, for any z 6= z?, there exists
j ∈ {1, . . . , L− 1} such that zj 6= µφ,θ,j(z<j,x), and:

A(z,x) ≥ Aj(zj, z<j,x) > 0

Hence, z? = Eτ (x) is the unique global minimum of J2(x, .).

Discussion on assumption 5.1 (volume preserving covariance) We showed in
proposition 5.2 that, under assumption 5.1, Algorithm 3 computes the global minimum
of J2(x, z) with respect to z. When optimizing zl in Algorithm 3, we only consider the
impact of z` on the distance to the Gaussian mean in A(z,x), while ignoring its impact
on the covariance volumes in the subsequent levels in the terms Bl′(z<l′ ,x), for l′ > l. If
the covariance volumes are constant as stated in assumption 1, the value of z` has no
impact on the covariance volumes of the subsequent levels, and algorithm 3 gives the
global minimizer of J2(x, .) with respect to z. In practice, the HVAE model we use does
not enforce the covariance matrices of p(z`|z<`) and q(z`|z<`,x) to have constant volume.
However, the experiment in Figure 5.1 shows that the variation of Bl+1(z<l+1) is negligible
in front of Al(z`). Hence, we can expect algorithm 3 to yield a reasonable approximation
of the minimum of J2(x, z) with respect to z. For future works, we could explicitly enforce
assumption 1 in the HVAE design.

Minimization in x Like for the JPMAP energy (5.6), for a linear degradation model
and a Gaussian decoder (5.1), the criterion J1(x, z) in (5.18) is convex in x and its global
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Figure 5.1 – Evolution of Bl+1 = log |Σ−1
φ,l+1(z<l+1,x)|+λl+1 log |Σθ,l+1(z<l+1)| as a function

of the distance A` = ||z` − µφ,τ,l(z<`,x)||2.

minimum is:

x(n+1) = arg min
x
− log p(y|x)− log pθ(x|z<L) (5.47)

= arg min
x

1
2σ2‖Ax− y||

2 + (x− µθ (z<L))tΣ−1
θ (z<L) (x− µθ (z<L)) (5.48)

=
(
AtA+ σ2Σ−1

θ

(
z(n+1)

)
Id
)−1 (

Aty + σ2Σ−1
θ

(
z(n+1)

)
µθ
(
z(n+1)

))
. (5.49)

PnP-HVAE Our final algorithm, named PnP-HVAE, is presented in Algorithm 4. It
alternates between an approximate minimization of J2(x, z) w.r.t. z using algorithm 3,
and an exact minimization of J1(x, z) w.r.t. x.

Algorithm 4 PnP-HVAE - Restoration by solving (5.18)
k ← 0; res← +∞; initialize x(0)

while res > tol do
% minz J2(x(k), z) . Optimize (5.29) w.r.t. z using Alg. 3
z(k+1) = Eτ (x(k))
% minx J1(x, z(k+1)) . Optimize (5.18) w.r.t. x
x(k+1) =

(
AtA+ σ2

γ2 Id
)−1(

Aty + σ2

γ2µθ
(
z(k+1)

))
res← ||x(k+1) − x(k)||; k ← k + 1

end while
return x(k)

5.5 Convergence analysis
We now analyse the convergence of Algorithm 4. Following the work of [Attouch et al.,
2010], the alternate optimization scheme converges if qφ(z|x) = pθ(z|x) and the sequential
optimization scheme in Algorithm 3 actually solves minz J2(x, z). In practice, it is difficult
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to verify if these hypotheses hold. We propose to theoretically study algorithm 4, and
next verify empirically that the assumptions are met.

In section 5.5.1, we reformulate Algorithm 4 as a Plug-and-Play algorithm, where the
HVAE reconstruction takes the role of the denoiser. Then we study in section 5.5.2 the fixed-
point convergence of the algorithm. Finally, section 5.5.3 contains numerical experiments
with the patchVDVAE architecture later presented in section 5.6.2. We empirically show
that the patch architecture satisfies the aforementioned technical assumptions and then
illustrate the numerical convergence and the stability of our alternate algorithm.

5.5.1 Plug-and-Play HVAE
In this section we make the assumption that the HVAE decoder is Gaussian with a constant
variance on its diagonal, that is:

pθ(x|z) = N
(
x;µθ (z) , γ2I

)
. (5.50)

If the decoder distribution is not defined as in (5.50), we can replace the original encoder
by a decoder distribution with constant variance. We rely on the proximal operator of a
convex function f that is defined as proxf (x) = arg minu f(u) + 1

2 ||x− u||
2.

Proposition 5.3. Assume the decoder is defined as in (5.50). Denote HVAE(x, τ ) :=
µθ (Eτ (x)), and f(x) = 1

2σ2 ||Ax − y||2 ∝ − log p(y|x). Then the alternate scheme
described in Algorithm 4 writes

xk+1 = proxγ2f (HVAE (xk, τ )) . (5.51)

From relation (5.51), algorithm 4 is a Plug-and-Play Half-Quadratic Splitting method [Ryu
et al., 2019] where the role of the denoiser is played by the reconstruction HVAE (xk, τ ).
In practice, the proximal operator of the data-fidelity term of linear inverse problems
f(x) = 1

2σ2 ||Ax−y||2 can be computed efficiently for typical linear operator A such as the
one involved in super-resolution or deblurring problems [Zhang et al., 2021]. We now derive
from relation (5.51) sufficient conditions to establish the convergence of the iterations.

5.5.2 Fixed-point convergence
Let us denote T the operator corresponding to one iteration of (5.51):

T(x) = proxγ2 f (HVAE (x, τ )) . (5.52)

The Lipschitz constant of T can then be expressed as a function of f and the HVAE
reconstruction operator HVAE (xk, τ ).
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Proposition 5.4. Assume that the decoder has a constant variance Σ−1
θ (z) = 1

γ2 Id
for all z; and the autoencoder with latent regularization is Lτ -Lipschitz, i.e. ∀u, v ∈
Rn: ||HVAE (u, τ ) − HVAE (v, τ ) || ≤ Lτ ||u − v||. Then, denoting as λmin the smallest
eigenvalue of AtA, we have

||T(u)− T(v)|| ≤ σ2

γ2λmin + σ2Lτ ||u− v||. (5.53)

Proof. For a decoder with constant covariance Σ−1
θ (z) = 1

γ2 Id, we have:

T(x) =
(
AtA+ σ2

γ2 Id
)−1(

Aty + σ2

γ2µθ (Eτ (x))
)

(5.54)

and then :

||T (u)− T (v)|| ≤
∣∣∣∣∣∣
∣∣∣∣∣∣
(
AtA+ σ2

γ2 Id
)−1

∣∣∣∣∣∣
∣∣∣∣∣∣ σ

2Lτ
γ2 ||u− v||. (5.55)

To conclude the proof, we use that for an invertible matrix M, ||M−1|| = 1
σmin(M) , where

σmin(M) is the smallest eigenvalue of M . We also use the fact that α is an eigenvalue
of AtA + σ2

γ2 Id if and only if α = λ + σ2

γ2 for an eigenvalue λ ≥ 0 of the positive definite
matrix AtA.

Corollary 1. If the Lipschitz constant of HVAE (xk, τ ) verify Lτ < γ2λmin+σ2

σ2 , then
iterations (5.51) converge.

Proof. If Lτ < γ2λmin+σ2

σ2 , T is a contraction from proposition 5.4, that is:

||T (u)− T (v)|| < ||u− v||. (5.56)

Consequently, Banach theorem ensures the convergence of the iteration xk+1 = T (xk) to a
fixed point of T .

For problems such as inpainting or super-resolution, A is not full rank, and λmin = 0.
This implies that the HVAE need to be contractive (Lτ < 1) to ensure convergence to
a fixed-point. On the other hand, for problems such as deblurring, A is full rank and
λmin > 0.

Proposition 5.5 (Proof in appendix A.1.3). x? is a fixed point of T if and only if:

∇f(x?) = 1
γ2 (HVAE (x?, τ )− x?) . (5.57)
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Proposition 5.5 characterizes the solution of the PnP-HVAE algorithm, in the case
where the HVAE reconstruction is a contraction. Under mild assumptions, the fixed point
condition can be stated as a critical point condition

∇f(x∗) +∇g(x∗) = 0,

of the objective function f(x) + g(x) = − log p(y|x) − log pθ,τ (x), where the tempered
prior is the marginal pθ,τ (x) :=

∫
pθ,τ (x, z)dz of the joint tempered prior defined in (5.14).

As discussed in appendix A.1.4, this result follows from an interpretation of HVAE(x, τ )
as a MMSE denoiser. Tweedie’s formula then provides the link between the right-hand
side of equation (5.57) and ∇g.

5.5.3 Numerical convergence with PatchVDVAE
We illustrate the numerical convergence of Algorithm 4. We first analyse the Lipschitz
constant of the HVAE reconstruction with the PatchVDVAE architecture proposed in
section 5.6.2. Then we study the empirical convergence and stability of the algorithm.

Lipschitz constant of the HVAE reconstruction. Corollary 1 establishes the fixed
point convergence of our proposed optimization algorithm under the hypothesis that the
reconstruction with latent regularization is a contraction, i.e. Lτ < 1. We now show
thanks to an empirical estimation of the Lipschitz constant Lτ that our PatchVDVAE
network empirically satisfies such a property when applied to noisy images. We present
in Figure 5.2 the histograms of the ratios r = ||HVAE(u, τ )− HVAE(v, τ )||/||u− v||,
where u and v are natural images extracted from the BSD dataset and corrupted with
white Gaussian noise. These ratios give a lower bound for the true Lipschitz constant Lτ .
Although it is possible to set different temperature τ` at each level, we fixed a constant
temperature amongst all levels to limit the number of hyperparameters. We realized tests
for 3 temperatures τ ∈ {0.6, 0.8, 0.99}, and 3 noise levels σ ∈ {0, 25, 50}. On clean images
(σ = 0), the distribution of ratios in close to 1. This suggests that the HVAE is well
trained and accurately models clean images. In some rare case, a ratio r ≥ 1 is observed
for clean images. This indicates that the reconstruction is not a contraction everywhere,
in particular on the manifold of clean images. On noisy images σ > 0, the reconstruction
behaves as a contraction, as the ratio r < 1 is always observed. Moreover, reducing
the temperature of the latent regularization τ increases the strength of the contraction.
This suggests that with the trained PatchVDVAE architecture, the hypothesis Lτ < 1 in
Corollary 1 holds for noisy images.

Empirical convergence of Algorithm 4 We now illustrate the effectiveness of PnP-
HVAE through comparisons with the optimization of the objective J1(x, z) in (5.18) using
the Adam algorithm [Kingma and Ba, 2014] for two learning rates lr ∈ {0.01, 0.001}.
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Figure 5.2 – Numerical estimation of the Lipschitz constant of PatchVDVAE recon-
struction with different temperatures τ . We present the histogram of ratio values
||HVAE(u,τ)−HVAE(v,τ)||

||u−v|| , where u and v are natural images corrupted with white Gaus-
sian noise of different standard deviations σ. For noisy images (σ > 0), the observed
Lipschitz constant is always less than 1.
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Figure 5.3 – Comparison of the convergence of PnP-HVAE algorithm 4 with respect
to the baseline Adam optimizer, on a deblurring problem. Left (Convergence of the
function value): PnP-HVAE converges faster to a minimum of the joint posterior J1(xk, zk)
in (5.18). Right (Convergence of iterates xk): PnP-HVAE is more stable than Adam.

The left plot in Figure 5.3 shows that Adam is able to estimate a better minimum of J1,
whereas our alternate algorithm requires a smaller number of iterations to converge. On
the other hand, as illustrated by the right plot in Figure 5.3, the use of Adam involves
numerical instabilities. Oscillations of the ratio Lk := ||T(xk+1)−T(xk)||

||xk+1−xk||
are even increased

with larger learning rates, whereas our method provides a stable sequence of iterates.
More importantly, we finally exhibit the better quality of the restorations obtained with
our alternate algorithm on inpainting, deblurring and super-resolution of face images. In
these experiments, we used the hierarchical VDVAE model [Child, 2020] trained on the
FFHQ dataset [Karras et al., 2019]. Figure 5.4 (see 2nd and 4th columns) and Table 5.1
(PSNR, SSIM and LPIPS scores) illustrate that the quality of the images restored with
our alternate optimization algorithm is higher than the ones obtained with Adam. This
suggests that for image restoration purposes, our optimization method is able to find a
more relevant fixed point of J1 than the naive baseline based on Adam.

5.6 Image restoration results

We present in section 5.6.1 an application of PnP-HVAE on face images, using a pretrained
state-of-the-art hierarchical VAE. Next, we study the application of our framework to
natural images. To that end, we introduce in section 5.6.2 a patch hierachical VAE
architecture, that is able to model natural images of different resolutions. In section 5.6.3,
we provide deblurring, super-resolution and inpainting experiments to demonstrate the
relevance of the proposed method.
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input Adam ILO DPS PnP-HVAE ground truth
(VDVAE) (StyleGAN) (DDPM ) (VDVAE)

Figure 5.4 – Visual comparaison of image restoration methods based on deep generative
models. We studied 3 tasks on face images: inpainting (top), deblurring (middle), super-
resolution (bottom). Contrary to the optimization of the objective (5.18) with Adam, our
alternate algorithm generates realistic results, on par with ILO [Daras et al., 2021], while
remaining consistant with the observation.

5.6.1 Face Image restoration (FFHQ)
VDVAE model for face images We first demonstrate the effectiveness of PnP-HVAE
on highly structured data, by performing super-resolution and deblurring on images of
human faces. Latent variable generative models can accurately model structured images
such as face images [Karras et al., 2019,Vahdat and Kautz, 2020,Child, 2020,Kingma and
Dhariwal, 2018], and then be used to produce high quality restoration of such data. In
our experiments, we use the VDVAE model of [Child, 2020], pre-trained on the FFHQ
dataset [Karras et al., 2019], as our hierarchical VAE prior. VDVAE has L = 66 latent
variable groups in its hierarchy and generates images at resolution 256× 256.

Experimental setting For super-resolution, the degradation model corresponds to the
application of a Gaussian low-pass filter followed by a ×4 sub-sampling, and the addition
of a Gaussian white noise with σ = 3. For deblurring, we considered motion blur and
Gaussian kernels, both with a noise level σ = 8. Although VDVAE was trained on FFHQ,
we evaluate our method on a subset of CelebA dataset [Liu et al., 2018], because the models
used in the compared methods were not trained on the same train-test split of FFHQ.
Specifically, we evaluate the methods on a subset of 100 images from the CelebA dataset.
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PSNR↑ SSIM↑ LPIPS↓ time (s)

SR ×4 Adam 28.56 0.75 0.38 26

σ = 3 ILO 28.80 0.78 0.17 34
PnP-HVAE 29.32 0.82 0.28 15

DPS 27.53 0.76 0.21 153
Deblurring Adam 24.37 0.66 0.37 12
(motion) ILO 29.01 0.80 0.20 34
σ = 8 PnP-HVAE 30.40 0.84 0.16 10

DPS 28.70 0.80 0.23 142
Deblurring Adam 28.59 0.78 0.23 12
(Gaussian) ILO 29.12 0.79 0.17 34
σ = 8 PnP-HVAE 30.81 0.86 0.24 10

DPS 29.14 0.81 0.23 142

Table 5.1 – Quantitative evaluation on face restoration. Best results in bold, second best
underlined.

We evaluate the performance of the restoration by measuring the distance of the restored
image with the ground truth, using three distortion metrics. Namely, we use the peak
signal-to-noise-ratio (PSNR) to measure the pixel-wise distortion, the Structural Similarity
Index which measures the structural distortion, and the Learned Perceptual Image Patch
Similarity (LPIPS) [Zhang et al., 2018b] which quantifies high-level perceptual distortion.

Compared methods We compare PnP-HVAE with two restoration methods based on
different classes of generative models, namely the intermediate layer optimization algorithm
(ILO) [Daras et al., 2021] and the diffusion posterior sampling method (DPS) [Chung et al.,
2023]. ILO is a GAN inversion method which optimizes the image latent code along with
the intermediate layer representation of a StyleGAN2 generative network [Karras et al.,
2020] to generate an image consistent with a degraded observation. DPS uses denoising
diffusion probabilistic model [Song et al., 2020,Ho et al., 2020] as a prior, and produces
a sample from the posterior by conditioning each iteration of the sampling process on
y. We use the official implementation of ILO, along with a StyleGAN2 model that was
trained for 550k iterations on images of resolution 256 × 256 from FFHQ [Seonghyeon,
2020]. For DPS, we use the official implementation as well. We provide additional details
on the choice of hyperparameters for the concurrent methods in appendix A.2.2.

Results We provide a quantitative comparisons of the evaluated methods in Table 5.1,
along with a visual comparison of the results in Figure 5.4. PnP-HVAE has the best PSNR
and SSIM results for all the considered restoration tasks, and it also has the best perceptual
results on motion deblurring. By jointly optimizing the image and its latent variable,
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PnP-HVAE provides results that are both realistic and consistent with the degraded
observation. On the other hand, ILO only optimizes on an extended latent space. This
method generates sharp and realistic images with better LPIPS scores, but the results
lack of consistency with respect to the observation, which explains the overall lower PSNR
performance. DPS produces highly realistic samples (see Figure 5.4), but because DPS
produces samples from the posterior, it is disadvantaged in terms of distortion metrics.
DPS is also limited by its long inference time, as it requires one network function evaluation
and one backpropagation operation through the network at each of the 1000 sampling
steps required to generate one image.

5.6.2 PatchVDVAE: a HVAE for natural images
Genericity issues of deep generative models Available generative models in the
literature operate on images of fixed resolutions, and are fit on object-centric datasets, such
as images of human faces [Kingma and Dhariwal, 2018,Child, 2020,Vahdat and Kautz,
2020,Karras et al., 2019], or ImageNet classes [Brock et al., 2018,Dhariwal and Nichol,
2021,Song et al., 2020,Luhman and Luhman, 2022]. Fitting an unconditional model on
natural images appears to be a more difficult task, as their resolution can change, and
their content is highly diverse. The complexity of the problem can be reduced by learning
a prior model on patches of reduced dimension. For image restoration problems, the patch
model can be reused on images of higher dimensions [Zoran and Weiss, 2011a,Prost et al.,
2021,Altekrüger et al., 2022]. When the model is a full CNN, the prior on the set of the
patches can be computed efficiently by applying the network on the full image [Prost et al.,
2021].

Fully convolutional HVAE We introduce patchVDVAE, a fully convolutional hierar-
chical VAE. Contrary to existing HVAE models whose resolution is constrained by the
constant tensor at the input of the top-down block, patchVDVAE can generate images of
different resolutions by controlling the dimension of the input latent. This amounts to
defining a prior on patches whose dimension corresponds to the receptive field of the VAE.
A similar model is used for image denoising in [Prakash et al., 2021].

PatchVDVAE architecture We provide an illustration of the architecture of PatchVD-
VAE in Figure 5.5. We use the same bottom-up and top-down blocks as VDVAE [Child,
2020], and replace the constant trainable input in the first top-down block by a latent
variable, to make the model fully convolutional. More details on PatchVDVAE architecture
are provided in appendix A.2.1.

Training The training dataset is composed of 128 × 128 patches extracted from a
combination of DIV2K [Agustsson and Timofte, 2017] and Flickr2K [Lim et al., 2017]
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Figure 5.5 – Structure of the PatchVDVAE architecture. For clarity, we omit the non-
linearity after each convolution.

datasets. We perform data augmentation by extracting patches at 3 resolutions: HR-
images and ×2 and ×4 downscaled images. The model is trained for 7.105 iterations with
a batch size of 64. Following the recommendation of [Hazami et al., 2022], we use Adamax
optimizer with an exponential moving average and gradient smoothing of the variance.
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We set the decoder model to be a Gaussian with diagonal covariance, as in [Luhman and
Luhman, 2022]. PatchVDVAE is fully convolutional and can generate images of dimensions
that are multiple of 64 as illustrated by Figure 5.6.

Figure 5.6 – Left: 64 × 64 patches samples from our patchVDVAE model trained on
patches from natural images. Right: PatchVDVAE is fully convolutional and it can
generate images of higher resolution (here: 128× 128).

5.6.3 Natural images restoration

We evaluate PnP-HVAE on natural image restoration with patchVDVAE. For each task,
we report the average value of the PSNR, the SSIM, and the LPIPS metrics on 20 images
from the test set of the BSD dataset [Martin et al., 2001].

Image deblurring In the experiments, we consider 2 Gaussian kernels and 2 motion
blur kernels from [Levin et al., 2009], with 3 different noise levels σ ∈ {2.55, 7.65, 12.75}.
As a baseline we consider EPLL [Zoran and Weiss, 2011a], which learns a prior on image
patches with a Gaussian mixture model. We also compare PnP-HVAE with PnP-MMO
and GS-PnP, two competing convergent Plug-and-Play methods based on CNN denoisers.
PnP-MMO [Pesquet et al., 2021] restricts the denoiser to be a contraction in order to
guarantee the convergence of the PnP forward-backard algorithm. GS-PnP [Hurault et al.,
2022] considers a gradient step denoiser and reaches state-of-the-art performances.We set
the temperature τ in our method as 0.95, 0.8 and 0.6 for noise levels 2.55, 7.65 and 12.75
respectively, and we let it run for a maximum of 50 iterations. For the three compared
methods we use the official implementations and pre-trained models provided by the
respective authors. Details on the choice of hyperparameters for the concurrent methods
are provided in appendix A.2.2. Visually, PnP-HVAE provides good deblurring results
(Figure 5.7). For large noise levels, PnP-HVAE outperforms EPLL and PnP-MMO in
terms of distortion metrics (Table 5.2), while GS-PnP provides the best results.
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GT blurry EPLL PnP-MMO GS-PnP PnP-HVAE

(a) Gaussian blur, σ = 2.55

GT blurry EPLL PnP-MMO GS-PnP PnP-HVAE

(b) Motion blur, σ = 7.65

Figure 5.7 – Natural image deblurring
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σ Method PSNR↑ SSIM↑ LPIPS↓

2.
55

PnP-HVAE 27.75 0.79 0.31
GS-PNP [Hurault et al., 2022] 29.59 0.84 0.22
EPLL [Zoran and Weiss, 2011a] 26.49 0.71 0.36
PnP-MMO [Pesquet et al., 2021] 29.50 0.83 0.20

7.
65

PnP-HVAE 26.36 0.72 0.40
GS-PNP [Hurault et al., 2022] 27.33 0.77 0.31
EPLL [Zoran and Weiss, 2011a] 24.04 0.66 0.45
PnP-MMO [Pesquet et al., 2021] 25.34 0.69 0.34

12
.7

5

PnP-HVAE 25.12 0.73 0.47
GS-PNP [Hurault et al., 2022] 26.32 0.73 0.37
EPLL [Zoran and Weiss, 2011a] 23.28 0.61 0.51
PnP-MMO [Pesquet et al., 2021] 22.42 0.53 0.54

Blur and motion kernels

Table 5.2 – Comparison of PnP-HVAE and other restoration methods on deblurring.
Results are averaged on 4 kernels.

PSNR↑ SSIM↑ LPIPS↓
PnP-HVAE 29.54 0.93 0.06
GS-PNP 28.52 0.93 0.09
EPLL 29.16 0.93 0.06

Table 5.3 – Quantitative evaluation for inpainting on BSD.

Image inpainting Next we consider the task of noisy image inpainting. We compose a
test-set of 10 images from the validation set of BSD [Martin et al., 2001] and we create
masks by occluding diverse objects of small size in the images. A Gaussian white noise
with σ = 3 is added to the images. As a comparaison, we still consider GS-PnP and
EPLL. For PnP-HVAE, the temperature is set to τ = 0.6, and the algorithm is run for a
maximum of 200 iterations, unless the residual ||xk+1 − xk|| is on a plateau. We provide
on Table 5.3 the distortion metrics with the ground truth, as well as a visual comparison
on Figure 5.8. With its hierarchical structure, PnP-HVAE outperforms the compared
methods, in terms of PSNR, SSIM, and LPIPS metrics.
Effect of the temperature. PnP-HVAE gives control of the temperature of the prior
over the latent space. In Figure 5.9, we illustrate that reducing the temperature increases
the strength of the regularization prior. In this example the tuning τ = 0.7 produces the
best performance.
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GT Masked EPLL GS-PnP PnP-HVAE

Figure 5.8 – Natural image inpainting

blurry τ = 0.5 τ = 0.7 τ = 0.9 GT
23.61dB 27.32dB 26.95dB

Figure 5.9 – Effect of the temperature in PnP-VAE on a deblurring problem, with
σ = 7.65.

Effect of the number of latent groups We study the effect of the number of latent
groups L on the hierarchical model on the restoration performance. It has been observed
that HVAEs outperform non-hierarchical VAEs in terms of likelihood score [Sønderby
et al., 2016], and that increasing the number of latent groups in the hierarchy improves the
modelling performance of HVAE for a fixed number of parameters [Child, 2020]. Therefore
we can expect that the gain in modelling performance due to a higher L translates into
a gain in restoration performance using our method. We train different patchVDVAE
models, with different numbers of latent groups L. In order to keep the number of trainable
parameters constant, we replace stochastic top-down blocks with deterministic blocks in
our network with the higher L value (L = 36). We evaluate the different models on image
deblurring, using the same experimental settings as the one described in subsection 5.6.3.
The results in Table 5.4 show that increasing the number of stochastic groups (L) has a
positive effect on the evidence lower bound (B.12) evaluate on the test set, up to L = 18,
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Table 5.4 – Effect of the number L of latent groups on the restoration performance,
measured in PSNR (dB), for image deblurring. We observed similar trends for the LPIPS
and SSIM metrics.

L = 6 L = 12 L = 18 L = 36
σ = 2.55 27.25 27.87 27.82 27.71
σ = 7.65 26.10 26.41 26.74 26.51
σ = 12.75 24.78 25.16 25.57 25.27

ELBO↑(val) −1.24 −1.14 −1.10 −1.10

and that a better evidence lower bound correlates with a better restoration performance.

5.7 Conclusion
We proposed PnP-HVAE, a method using hierarchical variational autoencoders as a
prior to solve image inverse problems. Motivated by an alternate optimization scheme,
PnP-HVAE exploits the encoder of the HVAE to avoid backpropagating through the
generative network. We derived sufficient conditions on the HVAE model to guarantee
the convergence of the algorithm. We have verified empirically that PnP-HVAE satisfies
those conditions. By jointly optimizing over the image and the latent space, PnP-HVAE
produces realistic results that are more consistent with the observation than GAN inversion
on a specialized dataset. PnP-HVAE can also restore natural images of any size using our
PatchVDVAE model trained on natural images patches.

On natural images, the restoration quality of PnP-HVAE is still below the performance
of recent PnP methods based on deep denoisers. Existing denoisers used in the compared
PnP methods are the product of numerous research iterations, whereas HVAEs trained on
natural images are less than two years old [Prakash et al., 2021], and their use for PnP
methods is proposed for the first time in this work. Therefore, we postulate that there is
much room for future improvements on the quality of HVAE models for natural images,
that would translate to better restoration performance.
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Chapter 6

Diverse super-resolution with
pretrained hierarchical variational
autoencoders

In this chapter we investigate the problem of generating samples from the posterior
distribution of an image inverse problem, with a specific focus on image super-resolution.
Current methods in the literature either involve training a conditional generative model from
scratch, or reuse a pretrained unconditional generative model within an expensive iterative
sampling procedure. We propose to combine the best of both worlds, by developing a
method sharing the sample quality of powerful unconditional deep generative models, while
having the computational efficiency of fast conditional normalizing flow based methods.
Our approach relies on training a lightweight stochastic encoder to encode low-resolution
images in the latent space of a pretrained generative model. At inference, we combine the
low-resolution encoder and the pretrained generative model to super-resolve an image. The
stochastic nature of both the low-resolution encoder and the high-resolution generative
decoder enables us to produce diverse highly-realistic samples. Specifically, we propose to
reuse VDVAE, a hierarchical variational autoencoder, as we found that the hierarchical
latent representation learned by VDVAE is well suited for our task. Furthermore, we
show that the low-resolution encoder can be trained efficiently by exploiting VDVAE’s
expressive hierarchical encoder. We demonstrate the ability of our method to produce
high-quality diverse super-resolved samples in a fast manner, on the problem of human
face super-resolution.

6.1 Introduction

Single image super resolution Single image super resolution (SISR) is the task of
retrieving a high-resolution (HR) image from a low-resolution (LR) observation. SISR is a

85
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one-to-many problem as, for each LR image, there exist many HR images that are both
consistent with the low-resolution one and look realistic. A common way to solve this
ill-posed inverse problem (see [Wang et al., 2020] and references therein) is to estimate
a regression model on paired data [Dong et al., 2014, Dong et al., 2016, Haris et al.,
2018,Ledig et al., 2017,Wang et al., 2018]. However, it is not possible to explore all the
potential solutions of the SR problem with regression based methods, as they only provide
one single solution. This is a main issue if the provided single solution is not relevant
enough or satisfying for the user. This work overcomes this limitation by providing diverse
high-resolution solutions for each low resolution image.

Diverse image super resolution Recent works follow the diverse SISR paradigm,
where the objective is to model the distribution of the plausible HR images conditioned on
a LR image. We can distinguish two types of approaches for diverse super-resolution. First,
direct methods, that only need one network evaluation to produce one sample. Those
methods are based on conditional normalizing flows [Lugmayr et al., 2020,Liang et al., 2021],
conditional GANs [Bahat and Michaeli, 2020] or conditional VAEs [Liu et al., 2020,Hyun
and Heo, 2020,Chira et al., 2022,Gatopoulos et al., 2020]. Second, iterative methods
aim at defining more expressive models, by relying on sequential sampling algorithms.
Those methods are based on denoising diffusion models [Choi et al., 2021,Kawar et al.,
2022b,Saharia et al., 2021b] or MCMC algorithms [Laumont et al., 2022]. Iterative methods
can produce high-quality samples, but this comes at the cost of a high computational cost,
since each iteration requires one (deep) network evaluation.

Deep generative prior for diverse SR As discussed in the previous chapters, uncon-
ditional generative models [Goodfellow et al., 2014a,Kingma and Welling, 2013,Rezende
and Mohamed, 2015] provide a strong prior about the data distribution that can be incor-
porated as a prior to regularize ill-posed image inverse problems [Bora et al., 2017,Menon
et al., 2020,Harvey et al., 2022]. In this work, we follow this paradigm as we propose to use
a trained VDVAE network, a deep hierarchical VAE, to perform diverse super-resolution.
As discussed in chapter 4, hierarchical VAEs reach state-of-the-art results among VAEs for
image modelling [Child, 2020,Vahdat and Kautz, 2020]. Recent studies show that deep
hierarchical variational autoencoders [Child, 2020,Vahdat and Kautz, 2020] can reach an
impressive quality for image generation, while learning a latent variable representation
that tends to separate the low-frequency information from the high frequency details of
the generated image. Since image super-resolution is the task of recovering high-frequency
details from the low-frequency information contained within a LR image, we postulate
that the latent hierarchy learned by a deep hierarchical VAE can be repurposed to perform
diverse image super-resolution.

Objectives In this chapter we target the following questions:
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• Does the hierarchical latent representation learned by hierarchical VAEs effectively
separate the image low-frequency information contained within a LR image from the
high frequency details ? In particular, we study the latent representation learned by
VDVAE [Child, 2020].

• Given a hierarchical VAE that separates low-frequency information and high-
frequency details, how can we repurpose this VAE to perform diverse image super-
resolution?

Contributions We make the following contributions:

• We study the hierarchical latent representation learned by VDVAE, and we empiri-
cally demonstrate that the low-frequency information contained within LR images is
almost fully controlled by a subset of latent groups at the top of the latent hierarchy.

• We design a diverse super-resolution method that takes advantage of the specific
structure of VDVAE latent representation. Specifically, we propose to combine an
encoder trained on low-resolution images with VDVAE generative model to generate
diverse super-resolved samples.

• We demonstrate the effectiveness of our model on face super-resolution, with upscaling
factors x4, x8.

Overview of the chapter Section 6.2 provides context by reviewing related works,
and the necessary technical background is introduced in Section 6.3. Then we study in
Section 6.4 the properties of the latent representation learned by VDVAE [Child, 2020].
Building on those findings, we develop in Section 6.5 a diverse super-resolution method
exploiting the property of its hierarchical latent representation. On a theoretical side,
we derive a criterion to estimate the expected consistency error of the super-resolution
model as a function of the number of predicted latent groups. In Section 6.6, we detail the
practical implementation details, and provide results obtained with our proposed method
on FFHQ dataset [Karras et al., 2019], with upsampling factors x4, x8 and

6.2 Related works
Conditional latent variable generative models To alleviate for the lack of diversity
of end-to-end restoration methods, a new trend for designing diverse restoration methods
has appeared in recent years. Diverse restoration methods are implemented as conditional
latent variables generative models, such as conditional normalizing flows [Ardizzone et al.,
2019,Lugmayr et al., 2020,Liang et al., 2021], conditional GANs [Bahat and Michaeli,
2020,Ohayon et al., 2021], conditional VAEs [Deshpande et al., 2017,Harvey et al., 2022]
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and conditional diffusion models [Saharia et al., 2021b, Saharia et al., 2021a]. We also
design a conditional latent variable generative model, but unlike previous works, we will
build this model on top of a pretrained unconditional generative model.

Image restoration with pretrained generative models Another topic related to
our study is the use of pretrained generative models to perform image restoration. [Bora
et al., 2017, Menon et al., 2020], propose to restore an image by finding the latent
code of a GAN [Goodfellow et al., 2014a] that generates an image consistent with the
degraded observation. [Holden et al., 2022] propose a strategy based on MCMC to sample
from the distribution of a VAE latent codes consistent with a degraded observation.
Similarly, [González et al., 2022] jointly estimate the image and its latent code given in
a VAE latent space, using an alternate optimization algorithm. Another strategy is to
reuse denoising diffusion model by conditioning the reverse diffusion process on a degraded
observation [Kawar et al., 2022b,Choi et al., 2021]. These methods are unsupervised,
as they only require the knowledge of the forward degradation model. Their inference
is nevertheless time-consuming, as they necessitate sampling or iterative optimization
algorithms. Our work takes inspiration in the IPA framework of [Harvey et al., 2022],
where restoration is performed with an encoder trained to encode degraded images in
VDVAE latent space.

Image restoration with VAE Several works on image super-resolution using VAE
have been proposed. [Hyun and Heo, 2020] proposes to train a conditional VAE for image
super-resolution with a shared latent space between the HR and LR images. The quality
of the super-resolved image is nevertheless limited by the expressivity of the simple (non-
hierarchical) generative model. In [Gatopoulos et al., 2020], a 2-level hierarchical generative
model is trained so that the first latent group encodes the low-frequency information
and the second group the high-frequency details. In a concurrent work, [Chira et al.,
2022] proposes a deep conditional hierarchical VAE architecture based on VDVAE model.
Similar to us, they initialize the weight of the top-down path with the pretrained VDVAE
weights, but, unlike our work, the weights of the top-down path are not frozen during
training. On the topic of unsupervised denoising, [Prakash et al., 2021] exploits the ability
of the hierarchical VAEs to separate the low-frequency information from the high-frequency
details to denoise images.

6.3 Preliminaries

6.3.1 Diverse super-resolution
In this work we tackle the problem of diverse super-resolution: given a low-resolution (LR)
image y ∈ Rm, our goal is to synthetize high-resolution (HR) images x ∈ Rn that are
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both realistic and plausible with respect to the observed y. The degradation process we
consider writes:

y = Hsx, (6.1)
where Hs is a linear operator corresponding to the composition of a low-pass filter and
a subsampling operation with downsampling factor s. The goal of super-resolution is to
recover the high-frequency details of x erased by the degradation process (6.1). Image
super-resolution is an ill-posed inverse problem, as there can be many HR images consistent
with an LR image, i.e., that satisfy (6.1). The objective of diverse super-resolution is to
sample from the posterior distribution p(x|y) ∝ p(y|x)p(x). The data-fidelity term p(y|x),
dealing with the plausibility of the reconstruction, is given by the degradation model (6.1).
On the other hand, the prior distribution term modeling realistic high-resolution images,
p(x), is unknown, but it can be learned with deep generative models.

VDVAE
In this chapter, we investigate the parameterization of p(x) using a hierarchical VAE
model. In particular, we will use the VDVAE model [Child, 2020], that we already used
in chapter 5 for face image restoration. We refer the reader to chapter 4 for a detailed
introduction on hierarchical VAEs and VDVAE. For the sake of completeness, we briefly
introduce them again. VDVAE define a hierarchical generative model of the form:

pθ(z,x) = pθ(z0)
L−1∏
`=1

pθ(z`|z<`)pθ(x|z), (6.2)

where we denote z<` = (z0, · · · , zl−1) and z = (z0, z1, · · · , zL−1). Each latent group is a
3-dimensional tensor z` ∈ RCl×Hl×W l , where C l is the number of channels and (H l,W l) are
the spatial dimensions. The conditional priors are set as multivariate Gaussian distributions
with diagonal covariances:

pθ(z`|z<`) = N (z`;µθ (z<`) ,Σθ (z<`)) , (6.3)

where µθ (z<`) and Σθ (z<`) are parameterized by residual blocks. VDVAE inference
network is composed of a deterministic bottom-up path, followed by a top-down path [Søn-
derby et al., 2016], sharing parameters with the generative model pθ(z,x). The inference
network qφ(z|x) infers the latent groups in the same order as in the generative model:

qφ(z|x) = qφ(z0|x)
L−1∏
`=1

qφ(z`|z<`,x) (6.4)

each conditional of the inference model qφ(z`|z<`,x) is also set as a multivariate Gaussian
distribution with diagonal covariance. Once again, we refer the reader to chapter 4 for
more details about the network architecture.
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6.4 Analysing the hierarchical latent representation
of VDVAE

6.4.1 What information is encoded within each latent group?
Isolating the effect of the latent group The generative model of VDVAE provides
a rich hierarchical latent representation of images. The effect of each latent group of the
hierarchy on the generated image can be visualized by sampling images from pθ(x|z<k)
while keeping z<k fixed, for different values of k. Attributes that are common to all
samples from pθ(x|z<k+1), but not to all samples from pθ(x|z<k), are most likely to be
encoded in the latent group zk.

VDVAE hierararchical latent representation Experiments in previous works [Child,
2020] suggest that the low-frequency information of images generated by VDVAE is mostly
controlled by the latent variables at the top of the hierarchy, while the image high-frequency
details are dependent on the latent variables at the bottom of the hierarchy. Similar
properties were observed for other hierarchical VAE architectures [Vahdat and Kautz,
2020,Havtorn et al., 2021a]. Our experiments are in line with those observations. We study

samples x ∼ pθ(x|z<k)

pixelwise std of pθ(x|z<k)

k = 4 k = 21 k = 43 k = 57

Figure 6.1 – Samples (rows 1-3) and pixel-wise standard deviation (row 4) of VDVAE
hierarchical generative model pθ(x|z<k) (when fixing the k first latent groups of the
hierarchy), for different values of k. High level semantic information and image low-
frequency components is mostly controlled by the first groups of the hierarchy (k < 21),
while image high frequency details (hairs, edges) are determined by the last latent groups
(k ≥ 43).

the VDVAE model provided by the author [Child, 2020], trained on FFHQ256 [Karras
et al., 2019] with L = 66 groups in the latent hierarchy. Figure 6.1 shows sampled images
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from the conditional generative model pθ(x|z<k), where z<k are k fixed latent groups at
the top of the hierarchy. For a few fixed latent groups (k = 4), generated images share
high level semantic information such as gender, skin tone or face orientation, indicating
that those attributes are most likely to be encoded into the k = 4 first groups of the
latent hierarchy. When more latent groups are fixed, generated images share the same
low-frequency information, and the variation between samples is mostly due to variation of
high frequency details in textures (hairs, background) or edges (face shape, eyes, mouth).
Therefore, it appears that the hierarchical latent representation learned by VDVAE
implicitly separates the image low-frequency information from the high-frequency details.
Hence, latent groups at the top of the hierarchy monitor the low-frequency information,
whereas the latent groups at the bottom of the hierarchy control high-frequency details.

6.4.2 Is VDVAE implicitly a Super-resolution network?
Average low-resolution pairwise distance between samples Our previous experi-
ments suggest that VDVAE implicitly encodes the distribution of high frequency details
conditional on low-frequency information via the hierarchical structure imposed on the
prior model pθ(z). We recall that image super-resolution is the task of recovering high-
frequency details from the low-frequency information contained within a low-resolution
image. We formulate the hypothesis that VDVAE conditional generative models pθ(x|z<k)
are implicit super-resolution models, generating diverse super-resolved versions of one
particular low-resolution image y. To validate this hypothesis, we measure how close the
image generated by the conditional models pθ(x|z<k) are with each other, when they are
downsampled with different downscaling factors. Without loss of generality, we consider
the root mean square error (RMSE) as a measure of distance between samples. Thus, we
estimate:

U s
k := Epθ(z<k)Epθ(x|z<k)Epθ(x̃|z<k)

[
1√
m
‖Hsx−Hsx̃‖2

]
, (6.5)

the average low-resolution pairwise distance of the generative model pθ(x|z<k), when
samples are downsampled by a factor s. U s

k measures to what extent images sampled from
pθ(x|z<k) differ from each other when they are downsampled.

Practical details We compute an estimations of the average sample low-resolution
pairwise distance U s

k (6.5) with ancestral Monte-Carlo sampling. We sample 50 different
full latent codes z(i) from the prior:

z(i) ∼ pθ(z). (6.6)

For each latent code z(i) and each number of fixed groups k, we sample five images:

x(i,k,l) ∼ pθ
(
x|z(i)

<k

)
. (6.7)
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Figure 6.2 – Average low-resolution pairwise distance, U s
k (6.5) between samples from the

conditional generative model pθ(x|z<k) of VDVAE, for downscaling factors s = 1, 4, 8, 16.
Image with pixel values in [0, 255].

The average sample pairwise distance estimation is then computed as:

Û s
k =

50∑
i=1

∑
1≤l<m≤5

1√
m
‖Hsx

(i,k,l) −Hsx
(i,k,m)‖2, (6.8)

where Hs is the downsampling operator associated to the downscaling factor s.

Low-resolution consistency of VDVAE samples In Figure 6.2 we estimate the
value of U s

k for different downsampling factors. Results illustrate that, as the number
of fixed groups k increases, the generated images get more similar. Furthermore, for a
given number of fixed groups k, the low-resolution pairwise distance decreases as the
downsampling factor s increases, indicating that there is more variation in the HR samples
than in their LR counterparts. The gap between the average sample pairwise distance in
high resolution (s = 1), and low-resolution (s ∈ {4, 8, 16}) gets larger as the number of
fixed groups k increases, indicating that fixing a large number of groups k yields samples
that are close at low-resolution but different at high-resolution. The average low-resolution
pairwise distance U s

k gets closer to zero as k increases. While there is no value of k
such that U s

k = 0, we argue that for a large enough value of k, U s
k becomes negligible

compared to the pixel intensity range (0-255), for instance U4
60 < 0.5. Those results show

that the downsampling of any image synthesized from the conditional generative model
pθ(x|z<k) are consistent with one low-resolution image y with a certain precision inversely
proportional to k. Thus, we conclude that, for a large enough value of k, all images
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sampled from pθ(x|z<k) are diverse super-resolved versions of one LR image y, which is
in line with the hypothesis that pθ(x|z<k) is implicitly a diverse super-resolution model.

6.5 Diverse super-resolution with VDVAE
We propose to exploit the properties of the latent hierarchical representation learned by
VDVAE to design a diverse super-resolution method. As seen in the previous section,
VDVAE conditional models pθ(x|z<k) can be viewed as implicit diverse super-resolution
models, generating diverse super-resolved versions of one low-resolution image, with
consistency inversely proportional to k. Thus, we propose to super-resolve an image y
by estimating the latent variables z<k encoding the low-frequency information contained
within y, and by sampling x ∼ pθ(x|z<k), using the pretrained VDVAE generative model.
In order to predict the latent variables z<k that correspond to a low-resolution image y,
we introduce a low-resolution encoder qψ(z<k|y). Overall, our super-resolution model is
defined as:

pSR(x|y) = Eqψ(z<k|y)[pθ(x|z<k)], (6.9)
which implies that we can sample from pSR(x|y) by sequentially sampling z<k ∼ qψ(z<k|y)
and x ∼ pθ(x|z<k). Our approach rely on conditionning the generative process of VDVAE.
Hence, we name our method CVDVAE, for conditionned VDVAE.

In this section we first detail the training criterion of the low-resolution encoder, and
we derive a criterion to estimate the consistency error of the super-resolution model as a
function of the number of predicted latent groups k. Next we describe the architecture of
the low-resolution encoder.

6.5.1 Training criterion of the low-resolution encoder
Low-resolution encoder We introduce a low-resolution encoder qψ(z<k|y), which is a
neural network parameterized by ψ ∈ Ψ, where Ψ is the parameter space of the network.
Considering a joint training distribution of clean-degraded image pairs pdata(x,y), we can
show that the conditional log-likelihood of the super-resolution model has a lower-bound.

Proposition 6.1. The conditional log-likelihood of the super-resolution model on a joint
distribution pdata(x,y) is lower-bounded by

O(ψ) = Epdata(x,y)Eqφ(z<k|x)

[
log pθ(x|z<k)qψ(z<k|y)

qφ(z<k|x)

]
(6.10)

≤ Epdata(x,y)[log pSR(x|y)]. (6.11)

Proof. This result comes from applying the lower-bound introduced in [Harvey et al., 2022]
to the truncated VAE qφ(z<k|x), pθ(x|z<k) (a detailed proof is given in appendix B.1.2).
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Training criterion Furthermore, as detailed in appendix B.1.2, maximizing the lower-
bound O(ψ) in relation (6.10) is equivalent to minimizing the criterion:

L(ψ) = Epdata(x,y)[KL(qφ(z<k|x)||qψ(z<k|y))]. (6.12)

In other words, to maximize the lower-bound O(ψ), the low-resolution encoder has to
minimize the KL divergence between the LR and the HR encoder on LR-HR images pairs.
We set L(ψ) to be the training criterion of the low-resolution encoder.

6.5.2 Expected consistency of the super-resolution model
In this part, we derive a criterion to select the number of latent groups k to be predicted
by the low-resolution encoder, based on the expected consistency error of the super-
resolution model. Without loss of generality, we measure the consistency error between
a high-resolution and a low-resolution image as the root-mean-square error between the
downsampled HR image and the LR image 1√

m
‖Hsx − y‖2. We define the consistency

error of the super-resolution model as

CE(k) = Epdata(y)EpSR(x|y)

[
1√
m
‖Hsx− y‖2

]
. (6.13)

We show in the proposition 6.2 below that the consistency error of the super-resolution
model (6.13) can be predicted without using the low-resolution encoder, when the low-
resolution encoder is trained with the criterion (6.12). First, we introduce

r(z<k,x,y) := pdata(x,y)qφ(z<k|x), (6.14)

the joint distribution of high-resolution and low-resolution image pairs (x,y), and their
latent variable z given by the high-resolution encoder, and r(z<k|y) the corresponding
conditional distribution. We also consider the following assumptions:

Assumption 6.1. There exists ψ ∈ Ψ which satisfies r(z<k|y) = qψ(z<k|y) for all y in
the support of pdata(y).

Assumption 6.2. The low-resolution encoder parameters ψ are minimizers of the training
criterion (6.12):

ψ ∈ arg min
ψ̃
L(ψ̃). (6.15)

Assumption 6.3. The VAE encoder qφ(x|z) and generative model pθ(x, z) have enough
capacity and are trained well enough so that φ and θ reaches the upper bound of the ELBO
loss (B.12).
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Assumption 6.1 is met if the low-resolution encoder has enough capacity while assump-
tion 6.2 is met if the low-resolution encoder is well trained. In the next proposition, we
show that the expected consistency of the super-resolution model can be expressed only
as a function of the generative model pθ(x, z).

Proposition 6.2 (Proof in B.2). Under assumptions 6.1, 6.2 and 6.3, the expected
consistency error is equal to the average low-resolution pairwise distance U s

k (6.5):

CE(k) = Epθ(z<k)Epθ(x|z<k)Epθ(x̃|z<k)

[
1√
m
‖Hsx̃−Hsx‖2

]
(6.16)

= U s
k . (6.17)

Proposition 6.2 shows that, if a low-resolution encoder qψ(z<k|y) has enough capacity
and is trained perfectly, it is possible to estimate the expected consistency error of a super
resolution model relying on qψ(z<k|y) without actually using the low-resolution encoder.
It implies that CE(k) can be estimated before training the low-resolution encoder, using
relation (6.16). Therefore, the formulation (6.16) can be used as a criterion to select the
number of latent groups k to be predicted by the low-resolution encoder, as a function
of the desired consistency. Furthermore, the expected consistency as defined in (6.16) is
equal to the average low-resolution pairwise distance of the conditional generative model
U s
k (6.5), displayed in Figure 6.2.

6.5.3 Low-resolution encoder
Network architecture The low-resolution encoder architecture, displayed in Figure 6.3
is built similarly to the VDVAE encoder, but it contains a reduced number of blocks due
to the smaller number of latent variable groups to predict. Specifically, the low-resolution
encoder is composed of a deterministic bottom-up path that extracts different levels of
representation, and a top-down path that sequentially infers each latent group zl, using
the representations extracted by the bottom-up path. The bottom-up path is composed
of simple residual blocks, while the top-down path is composed of residual top-down
blocks [Kingma et al., 2016]. Both residual blocks and residual top-down blocks follow the
same design as in VDVAE.

Parameters sharing Following a common practice in hierarchical VAE design [Sønderby
et al., 2016,Kingma et al., 2016,Child, 2020,Vahdat and Kautz, 2020], the top-down path
of the low-resolution encoder shares its parameters with VDVAE generative model, as
described in Figure 6.3. Only the parameters of the low-resolution encoder (in red in
Figure 6.3) are trained, while the shared parameters (in blue in Figure 6.3) are set to the
value of the corresponding parameters in the pretrained VDVAE generative model, and
remain frozen during training.
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Figure 6.3 – Super-resolution model based on a pretrained VDVAE model. The low-
resolution encoder qψ(z<k|y) (in red) is trained to match VDVAE pretrained encoder
qφ(z<k|x) (in green). Both encoders share parameters with VDVAE generative model
pθ(z,x) (in blue) in the top-down path. To super-resolve an image y, we sequentially
sample z<k ∼ qψ(z<k|y) and x ∼ pθ(x|z<k).
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6.5.4 Enforcing consistency of the super-resolution
Consistency error of the super-resolution By definition of the downsampling model
(6.1), the super-resolved version of a LR image y should belong to the space of consistent
solutions {x|y = Hsx}. However, as many learning based super-resolution methods, our
super-resolution model does not explicitly enforce this condition. According to Proposi-
tion 6.2 and the estimated average LR pairwise distance in Figure 6.2, the consistency
error of our super-resolution model should be small, but remains positive. The lack of
consistency can also be due to the assumption of Proposition 6.2 not being met, that
is to say, the encoders and the decoder not having enough capacity and/or not being
trained well enough. In particular, if the encoder qφ(z|x) does not match the intractable
posterior pθ(z|x), the reconstruction error of the VAE will propagate to the low-resolution
encoder and hurt the consistency of the super-resolution. In practice, we also found that
the reconstruction by VDVAE was imprecise because of the 5 bits precision loss used to
train the original VDVAE model, and that this reconstruction error would propagate on
our low-resolution encoder.

Projection In order to generate super-resolved images consistent with respect to the low
resolution input, we apply a post-processing step by projecting the output of the generative
network to the space of consistent solutions {x|y = Hsx}, as previously proposed in [Bahat
and Michaeli, 2020]. Given a potentially inconsistent image x̂, the consistent solution x̂p
is obtained as

x̂p = (I −HT
s (HsH

T
s )−1Hs)x̂+HT

s (HsH
T
s )−1y. (6.18)

In practice, the filter (HsH
T
s ) can be efficiently inversed in the frequency domain using a

discrete Fourier transform [Bahat and Michaeli, 2020].

6.6 Experiments

6.6.1 Implementation details
Training Our work is built upon the official VDVAE codebase [Child, 2020], and we
reuse the weights of the VDVAE network trained on FFHQ256 provided by the authors.
All models are trained with Adam optimizer and the learning rate is divided by 10 when
the validation loss is on a plateau. We reuse the same data split as the one used to train
the original VDVAE, networks, with 63000 images in the training set. Each model was
trained on 4 A100 GPUs for less than 12 hours. Using 4 GPUs allowed us to get a large
enough batch size to reduce the training instability that can appear when training VAEs.
Note that this can be considered a lightweight training compared to the time required
to train the whole VDVAE model, namely 2 weeks on 32 GPUs. More details about the
training can be found in Table 6.1.
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Table 6.1 – Training details of the low-resolution encoder for each upsampling factors..

upsampling factor ×4 ×8 ×16
k 57 43 21

batch size 16 32 64
learning rate 5.10−4 5.10−5 5.10−6

iterations 20K 70K 20K

Number of predicted latent groups The number of predicted latent groups k for
each resolution is set so that each low-resolution encoder only predicts the latent groups
zl of spatial dimension lower than or equal to the dimension of the LR input. We found
that training the low-resolution encoder to predict more groups would make the training
of the low-resolution encoder harder, yielding super-resolved samples more consistent with
the input but also containing more artifacts.

6.6.2 Experimental settings
Dataset and upscaling factors We test our super-resolution method on the FFHQ
dataset [Karras et al., 2019], with images of resolution 256× 256. We experiment on 3
upscaling factors: ×4 (64×64→ 256×256), ×8 (32×32→ 256×256) The low resolution
images are initially downscaled by applying an antialiasing kernel followed by a bicubic
interpolation.

Compared methods We compare our method with a conditional normalizing flow
(HCFlow) [Liang et al., 2021], a conditional diffusion model (SR3) [Saharia et al., 2021b],
and a method that add guidance to a non-conditional diffusion model at inference
(DPS) [Chung et al., 2023]. We retrain HCFlow on FFHQ256 using the official im-
plementation. For DPS, we also reuse the official implementation with the available
pretrained model, which was trained on FFHQ. For SR3, since no official implementation
is available, we use an open-source (non-official) implementation [Jiang, 2022], and we
retrained the model for our task. When training SR3, we found that color shift [Deck and
Bischoff, 2023] was hurting the reconstruction error. To reduce the reconstruction error
due to the color shift effect, we project the super-resolved image on the space of consistent
solutions at inference as described in equation (6.18). For fair comparison, we retrained
both HCFlow and SR3 with the same computational budget than our conditional model.
For HCFlow and CVDVAE, we set the temperature of the latent variables at τ = 0.8
during sampling.

Evaluating a diverse SR method Due to the ill-posedness of the problem, evaluating
a diverse super-resolution model based solely on the distortion to the ground truth is
not satisfactory. Indeed, there exist many solutions that are both realistic and consistent
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with the LR input while being far from the ground truth. Thus, in order to evaluate the
super-resolution model, we provide a series of metrics that evaluate different expected
characteristics of a diverse super-resolution model, such as the consistency of the solution,
the diversity of the samples and the general visual quality. It should be noted that those
metrics are not necessarily correlated: a model could propose diverse solutions, that are
not consistent or realistic, or, on the opposite, it could propose solutions that are realistic
and consistent but with a low diversity. Thus, to evaluate a diverse super-resolution model,
it is necessary to consider these three different aspects together: diversity, consistency and
visual quality.

Evaluation metrics The general quality of the super-resolved images is evaluated
using the blind Image quality metric BRISQUE [Mittal et al., 2012] . Consistency with
the LR input is also measured via PSNR (denoted LR-PSNR in Tables 6.2 and 6.3).
Furthermore, to evaluate the diversity of the super-resolution, we evaluate the Average
Pairwise distance between different samples coming from the same LR input (denoted APD
in Tables 6.2 and 6.3), both at the pixel level, using the mean square error (MSE) between
samples (considering pixel intensity value between 0 and 1), and at a perceptual level
using LPIPS. For one LR input, the average pairwise distance is computed as the average
distance between all the possible pairs of images in a set of 5 super-resolved samples. The
reported APD in Tables 6.2 and 6.3 corresponds to the mean value of the single image
APD over 500 LR inputs in the test set. We measure the distortion of the super-resolved
samples with respect to the ground truth HR image in terms of peak Signal-to-Noise Ratio
(PSNR), structural similarity (SSIM) [Wang et al., 2004] and the perceptual similarity
(LPIPS) [Zhang et al., 2018b], as it is common in the super-resolution literature. All
numbers reported correspond to the metric mean value on a subset of 1000 images from
FFHQ256 test set.

6.6.3 Results
Quantitative evaluation Quantitative results on Table 6.2 indicate that our method
provides a good trade-off between the different evaluated metrics. Indeed, our method
provides the second best results in terms of distortion and visual quality, and the second
or third best results in terms of diversity. It is one of the fastest one along with HCFlow.
HCFlow provides the best results for distortion metrics as it explicitly penalizes bad
reconstruction in its training loss. Similar to our CVDVAE, it is also very fast as it
requires only one network evaluation to produce a super-resolved image. However, HCFlow
lacks high-level diversity (as measured by the LPIPS average pairwise distance), compared
with the concurrent methods. We postulate that this lack of diversity is due to the relative
lack of expressivity of normalizing flows compared to diffusion and HVAE models. Our
method, along with DPS, produces the best results in terms of visual quality as measured by
the BRISQUE metric, illustrating the benefit of using a pretrained unconditional generative
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Table 6.2 – Comparison of diverse SR methods face super-resolution. Best result is in
bold, second best is underlined.

Distortion Visual Quality Consistency Diversity (APD)
model PSNR↑ SSIM↑ LPIPS ↓ BRISQUE↓ LR-PSNR ↑ MSE (×104) ↑ LPIPS (×103) ↑ time (s)

×4

Bicubic 27.49 0.84 0.29 61.79 36.99 0 0
HCFlow 31.74 0.89 0.13 37.21 52.81 161.8 62.6 0.11
SR3 28.87 0.73 0.25 37.17 63.47 20.06 209.2 46
DPS 28.50 0.81 0.20 32.21 38.96 10.4 150.0 103

CVDVAE 30.24 0.85 0.16 32.30 75.20 88.8 123.0 0.14

×8

Bicubic 23.50 0.70 0.45 78.42 33.61 0 0
HCFlow 26.72 0.76 0.24 36.25 51.13 575.5 155.3 0.17
SR3 26.26 0.70 0.29 34.78 68.6 19.95 234.3 62
DPS 24.38 0.68 0.28 30.09 36.97 35.68 247.4 103

CVDVAE 25.47 0.71 0.27 32.26 70.15 248.2 236.4 0.13

model. However, DPS takes significantly more time to run (≈ ×1000) than CVDVAE and
HCFlow, as it requires 1000 steps of network evaluations and backpropagation through
the denoiser to produce one super-resolved sample. Finally, SR3 performances are inferior
to the compared method. We used the same computational budget (48h on 4 GPUs) for
training the SR3 models as our CVDVAE and HCFlow. This computational budget is
significantly lower than the one reported in the SR3 paper [Saharia et al., 2021b] (≈ 4
days on 64 TPUv3 chip1), and it is more than likely that training the SR3 models for
longer would improve their performance. Like DPS, SR3 is slower than our method as it
requires 2000 network evaluations to produce one super-resolved image.

Qualitative evaluation A visual comparison of the different evaluated methods is
provided in Figures 6.4, 6.6, 6.5 and 6.7. More visual results from our proposed methods
are displayed in Figures B.1, B.2 and B.3. Our method is able to produce diverse
textures as illustrated by the facial hair variation in Figure 6.4 or the hair variation in 6.6.
CVDVAE appears to produce super-resolved samples with higher semantic diversity, in
terms of textures (hairs, skin), in line with the higher perceptual diversity measured in
the quantitative evaluation.

Temperature control As for the unconditionnal HVAE models studied in the previous
chapters, CVDVAE offers the possibility to control the conditional generation via the
temperature of the latent variable distributions (see discussion in section 4.3). In order to
assess the behavior of the model on both low and high temperature regime, we evaluate
our method on 2 temperatures (τ ∈ {0.1, 0.8}). Quantitative results in Table 6.3 show
that reducing the temperature leads to a solution closer to the ground truth in terms of
low-levels distortion metrics (PSNR and the SSIM), while using a higher temperature helps

1one TPUv3 chip has 32GB capacity [doc, 2023], while the Nvidia A100 GPU we used each had 40GB
capacity
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Figure 6.4 – Samples from different diverse SR methods (×4)
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Figure 6.5 – Samples from different diverse SR methods (×4)
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Figure 6.6 – Samples from different diverse SR methods (×8)
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Figure 6.7 – Samples from different diverse SR methods (×8)
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Table 6.3 – Effect of the sampling temperature τ on CVDVAE super-resolution results.

Distortion Visual Quality Consistency Diversity (APD)
τ PSNR↑ SSIM↑ LPIPS ↓ BRISQUE↓ LR-PSNR ↑ MSE (×104) ↑ LPIPS (×103) ↑

×4 0.1 30.75 0.86 0.15 36.47 75.70 64.6 104.5
0.8 30.24 0.85 0.16 32.3 75.20 88.8 123.0

×8 0.1 26.27 0.75 0.30 50.34 71.63 140.4 179.0
0.8 25.47 0.708 0.28 32.26 70.15 248.2 236.4

LR τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

Figure 6.8 – Effect of the sampling temperature τ on the super-resolved result. Increasing
the temperature yields image with more high-frequency details.

to improve the perceptual similarity (LPIPS) with the ground-truth, as well as the general
perceptual quality of the generated HR images and the diversity of the samples. On Figure
6.8, we display CVDVAE’s samples at different temperatures τ . The sampling temperature
correlates with the perceptual smoothness of the super-resolved sample, a higher sampling
temperature inducing images containing sharper details. For out-of-distribution samples,
reducing the temperature can help to reduce artefacts in the generated images, as illustrated
in Figure 6.9.

LR τ = 0.1 τ = 0.8 τ = 1.0 GT

Figure 6.9 – Example of failure case of our method on ×16 upsampling. The presence
of uncommon attributes such as make-up can cause our method to fail. Sampling at a
low-temperature can help to reduce the artifacts.
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6.7 Conclusion
In this chapter, we showed that the hierarchical latent representation learned by a hi-
erarchical variational autoencoder such as VDVAE can be efficiently repurposed for
super-resolution. Consequently, we showed that we can efficiently perform diverse super-
resolution by learning to encode low-resolution images in the relevant part of a pretrained
VDVAE latent space. We provided an analysis to select the relevant part of the latent
space, as a function of the expected consistency of the super-resolution model. The original
VDVAE model needs not to be retrained, and training our low-resolution encoder takes
200 less computational resources than those required to train the full VDVAE model. Our
proposed method showed promising results on face super-resolution, on par with state-
of-the-art diverse SR methods, providing semantically diverse and high-quality samples.
Our results illustrate the ability of conditional hierarchical generative models to perform
complex image-to-image tasks.



Chapter 7

Conclusion and perspectives

7.1 Conclusion

Deep neural networks enable to define strong prior models on images that we can exploit
to solve challenging inverse problems. Using deep learning and deep generative models
for image restoration tasks raises new challenges. Among those challenges, we have
considered in this thesis the problem of image restoration in settings where no paired
data are available, the design of convergent optimization schemes for solving variational
problem with a deep generative prior, and the design of efficient methods to sample from
the posterior distribution of an inverse problem, given a prior induced by a deep generative
model. We have presented three main contributions addressing those challenges.

To address the problem of image restoration without paired datasets, we introduced in
chapter 3 the adversarial local regularization (ALR), a framework that enables training
a neural network as a regularization function. By exploiting adversarial training, our
method does not need paired datasets. We imposed a fully convolutional structure on
the regularization network, so that we could train it with only small image patches.
The adversarial regularization provides an explicit regularization function. We have
demonstrated the ability of our method to outperform popular unsupervised restoration
methods on image denoising.

Next we have studied the use of hierarchical VAEs as a prior. After a review on
VAE and Hierarchical VAE models in chapter 4, we have shown the benefits of using a
hierarchical VAE model in two different ways.

In chapter 5, we have demonstrated that HVAE models could be used to solve generic
linear inverse problems with PnP-HVAE. PnP-HVAE is an iterative optimization algorithm
that exploits the hierarchical encoder of HVAEs to optimize the solution without relying
on expensive backpropagation through the generative network. We introduced a tempera-
ture hyperparameter that enables controlling the strength of the regularization, and we
demonstrated that we could enhance the quality of the results by an appropriate tuning of

107
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the temperature hyperparameter. Furthermore, we derived sufficient conditions on the
HVAE model to guarantee the convergence of our method to a fixed point, by drawing
connection with the denoising Plug-and-play algorithms. Our experiments demonstrate
the ability of our method to solve challenging image inverse problems on a specialized face
dataset. Our method also showed promising results on natural images restoration using
our fully convolutional patchVDVAE model.

In chapter 6, we have demonstrated that hierarchical VAE models could also be
efficiently repurposed to sample from the posterior distribution on an image inverse
problem. We have developed a strategy to train an encoder on degraded (low-resolution)
images by exploiting the HVAE hierarchical encoder. By combining this new encoder with
the HVAE generative model, we showed that we could produce samples from the posterior
distribution of a super-resolution problem with only one network evaluation. Then, we
experimentally demonstrated on the problem of face images super-resolution that our
approach provides an advantageous trade-off between sample quality and computational
efficiency.

7.2 Discussion and Perspectives

7.2.1 Which deep learning regularizer should you use?
Adversarial regularization or denoising PnP? The adversarial regularization pre-
sented in chapter 3 provides an explicit regularization function parameterized by a neural
network, in opposition with denoising Plug-and-Play (PnP) methods, that only indirectly
model the regularization terms through its gradient or its proximal operator. After the
publication of this work, the gradient-step denoiser [Hurault et al., 2021] was introduced
to relate a denoiser to the potential of an explicit regularization function parameterized
by a neural network. The gradient step denoiser has the advantage that its learned
potential network is related to an explicit probabilistic model (through the denoising score
matching theory and Tweedie’s formula), while adversarial regularizers are not related to
any probabilistic model. Hence, gradient step denoiser appears superior to adversarial
regularization.

Denoising PnP or deep generative models? PnP methods use deep denoiser net-
works to model local information about the prior information. Intuitively, the denoiser
should move a data point slightly closer to the high-density area of the prior distribution.
However, because (by definition) denoisers where only trained to remove noise, it is not
clear if it works as expected on images that differs from noisy images. For instance, for
solving an inpainting problem, it is not clear if applying a denoiser to a masked image
would really bring it closer to the area of high-density of the prior distribution, and in
practice denoising PnP might fail when there is too much missing information. On the
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other hand, deep generative models excel at filling missing information. As such they
perform well for problems with a lot of missing information, such as inpainting with large
size masks, or super-resolution with large upscaling factors. On the other hand, using
generative regularization for moderately ill-posed problem might fail, because finding an
image consistent with the degraded observation might become too difficult. Our PnP-
HVAE method actually provides a good compromise as it jointly optimizes the image and
its latent variables.

7.2.2 Pros and cons of HVAE priors against other deep genera-
tive models

In this work we have focused on the use of hierarchical VAEs for image restoration. Our
results show that, when a pretrained HVAE model is available, using it as prior provides
significant advantages compared to other types of deep generative models such as GANs
or denoising diffusion models. In particular, our methods based on HVAE regularization
were faster to run than the concurrent methods, while providing a similar or superior
restoration quality.

However, current HVAE models available in the literature only operates on datasets
with restricted diversity (such as faces), or on low-resolution images (such as image-net
64x64). As such, this limits the application of our method to those datasets, while other
classes of generative models such as GANs or denoising diffusion models operate on much
more diverse dataset and at larger resolution. This restriction is the main limitation of
our method based on HVAE.

We postulate that there is a large room of improvement for HVAE, and that, by
extending promising idea from the literature on deep generative models, and by using
equivalent computing budget used for training concurrent methods, the performance of
HVAE model could significantly improve, and they could be applied on more challenging
dataset. The finding of our work illustrate the benefits of using an HVAE model for
downstream applications. As such, we hope that those findings could motivate the research
on HVAE models.

7.2.3 Toward flexible posterior sampling with HVAEs
The posterior sampling method we have presented in chapter 6 is specialized on the problem
of super-resolution, and it requires to train an encoder on paired data. A question that
remains to be answered is, how can we use HVAE models as prior into a flexible posterior
sampling methods, that do not require training a task-specific encoder beforehand. For
simple (non-hierarchical) VAEs, several works have proposed to use a Gibbs sampling
scheme to produce samples from the posterior (see for instance [Mattei and Frellsen, 2018],
or chapter 5 of Mario Gonzalez thesis [Olmedo, 2021]). A straightforward approach would
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be to expend the Gibbs sampling idea for hierarchical VAEs. In practice, this would
amount to a simple modification of the PnP-HVAE algorithm presented in chapter 5,
where we would replace each minimization step by a sampling step from the corresponding
probability distribution (plus an eventual Metropolis step to account for the approximation
error of the encoder). We could also envisage more sophisticated methods to account
for the hierarchical structure of the latent space. For instance, we could use a collapsed
Gibbs sampler [Van Dyk and Park, 2008], sequential importance sampling or sequential
Monte-Carlo [Doucet et al., 2001] methods. Another promising approach would be to
integrate conditional generative models such as our diverse super-resolution network
presented in chapter 6 within a "plug-and-play" Gibbs-sampling scheme in a similar fashion
than [Coeurdoux et al., 2023]. We postulate that integrating an HVAE model within a
flexible sampling scheme could provide similar benefits in terms of sample quality and
computational efficiency than the one observed for our optimization based method. As
such, we believe that this is a promising research direction for future works.
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Appendix A

Proofs of chapter 5

Code

The code for this project can be found on https://github.com/jprost76/PnP-HVAE

Summary

This supplementary material contains:

• proofs of the theoretical results of the main paper in section A.1

• additional implementation details in section A.2

• a discussion on the contractivity of the autoencoder and its fixed points in section A.3

• additional comparisons with the competing methods in section A.4

A.1 Proofs of the main results

In this section we provide proofs relative to Proposition 5.1, Proposition 5.4, Proposition 5.5
and the characterization of the fixed point given by Algorithm 4.
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A.1.1 Proof of Proposition 5.1(Posterior of the low-temperature
hierarchical model)

By definition of the joint model (5.14), the low-temperature likelihood verifies pθ,τ (x|z) =
pθ(x|z). Hence the model posterior writes:

pθ,τ (z|x) = pθ,τ (z)pθ(x|z)
pθ,τ (x) (A.1)

= pθ,τ (z)
pθ,τ (x)

pθ(z|x)pθ(x)
pθ(z) (A.2)

= pθ(x)
pθ,τ (x)

pθ(z|x)pθ,τ (z)
pθ(z) (A.3)

= pθ(x)
pθ,τ (x)

(
pθ(z0|x)∏L−1

`=1 pθ(z`|z<`,x)
)pθ(z0)

1
τ2

0

Z0

∏L−1
`=1

pθ(z`|z<`)
1
τ2

0

Z`


(
pθ(z0)∏L−1

`=1 pθ(z`|z<`)
) (A.4)

= pθ(x)
pθ,τ (x)

1
Z0
pθ(z0|x)pθ(z0)

1
τ2

0
−1 L−1∏

`=1

1
Z`
pθ(z`|z<`,x)pθ(z`|z<`)

1
τ2
`

−1
(A.5)

A.1.2 Low temperature encoder
Proposition A.1. The low temperature encoder conditionals qφ,τ (z`|z<`,x) are unormal-
ized Gaussian probability density function (PDF):

qφ,τ (z`|z<`,x) = 1
E`(z<`,x) exp

(
−1

2 (z` − µφ,τ,` (z<`,x))t Σ−1
φ,τ,` (z<`,x) (z` − µφ,τ,` (z<`,x))

)
(A.6)

with

E`(z<`,x) = ((2π)nl |Σφ,` (z<`,x) |)
1
2 ((2π)nl |Σθ,` (z<`) |)

λ`
2 Z` (A.7)

= C`|Σφ,` (z<`,x) | 12 |Σθ,` (z<`) |
λ`
2 (A.8)

Σφ,τ,` (z<`,x) =
(
Σ−1
φ,` (z<`,x) + λ`Σ−1

θ,` (z<`,x)
)−1

(A.9)

µφ,τ,` (z<`,x) = Σφ,τ,` (z<`,x)
(
Σ−1
φ,` (z<`,x)µφ (z<`,x) + λ`Σ−1

θ,` (z<`,x)µθ (z<`)
)
(A.10)

Proof. This comes from the fact that the product of two univariate Gaussian PDF is an
unormalized Gaussian PDF (see for instance [Bromiley, 2003,Toussaint, 2011]). This
result can be extended for multivariate Gaussian PDF with diagonal covariance matrices,
as it is the case for qφ(z`|z<`,x) and pθ(z`|z<`).
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A.1.3 Proof of Proposition 5.5 (fixed point of PnP-HVAE)
Proof. x∗ is a fixed point of T if and only if x∗ = T (x∗). Recalling the definition of
T(x) := proxγ2 f (HVAE (x, τ )), and the definition of proximal operator proxγ2f(x) =
arg minu γ2f(u) + 1

2 ||x− t||
2, the fixed point condition is equivalent to

x∗ = arg min
u

1
2‖u− HVAE (x∗, τ ) ‖2 + γ2f(u).

Since f is convex the above condition is equivalent to

x∗ − HVAE (x∗, τ ) + γ2∇f(x∗) = 0.

Rearranging the terms we obtain equation (5.57).

Under mild assumptions the above result can be restated as follows: x∗ is a fixed point
of T if and only if

∇f(x∗) +∇g(x∗) = 0,
i.e. whenever x∗ is a critical point of the objective function f(x) + g(x) = − log p(y|x)−
log pθ,τ (x), where the tempered prior is defined as the marginal

pθ,τ (x) =
∫
pθ,τ (x, z)dz

of the joint tempered prior defined in equation (5.14).
This is shown in the next section.

A.1.4 Fixed points are critical points
In this section we characterize fixed points of Algorithm 4 as critical points of a posterior
density (a necessary condition to be a MAP estimator), under mild conditions. Before we
formulate this caracterization we need to review in more detail a few facts about HVAE
training, temperature scaling and our optimization model.

HVAE training. In section 3.1 we introduced how VAEs in general (and HVAEs in
particular) are trained. As a consequence an HVAE embeds a joint prior

pθ(x, z) := pθ(x|z)pθ(z) (A.11)

from which we can define a marginal prior on x

pθ(x) :=
∫
pθ(x, z)dz. (A.12)

In addition, from the ELBO maximization condition in (4.17) and Bayes theorem we
can obtain an alternative expression for the joint prior, namely

pθ(x, z) = qφ(z|x)pdata(x). (A.13)
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Temperature scaling. After training we reduce the temperature by a factor τ , which
amounts to replacing pθ(z) by

pθ,τ (z) :=
L−1∏
l=0

pθ(z`|z<`)
1
τ2
`

Z`

as shown in equation (5.14), leading to the joint tempered prior

pθ,τ (x, z) := pθ(x|z)pθ,τ (z). (A.14)

The corresponding marginal tempered prior on x becomes

pθ,τ (x) :=
∫
pθ,τ (x, z)dz (A.15)

and the corresponding posterior is

pθ,τ (z|x) := pθ,τ (x, z)/pθ,τ (x). (A.16)

The joint tempered prior also has an alternative expression (based on the encoder).
Indeed substituting pθ(x|z) from equations (A.11) and (A.13) into (A.14) we obtain

pθ,τ (x, z) = pθ,τ (z)
pθ(z) qφ(z|x)pdata(x). (A.17)

Substituting this result into definition (A.16) we obtain an alternative expression for the
tempered posterior

pθ,τ (z|x) = qφ(z|x)pdata(x)/pθ(z). (A.18)

Optimization model. Since we are using a scaled prior pθ,τ (x) encoded in our HVAE to
regularize the inverse problem, the ideal optimization objective we would like to minimize
is

U(x) := − log p(y|x)︸ ︷︷ ︸
f(x)

− log pθ,τ (x)︸ ︷︷ ︸
g(x)

. (A.19)

Since pθ,τ (x) is intractable our algorithm seeks to minimize a relaxed objective (see
equation (5.18)). Nevertheless, under certain conditions (to be specified below) this is
equivalent to minimizing the ideal objective (A.19).

Fixed-point characterization. We start by characterizing ∇ log pθ,τ (x) in terms of
an HVAE-related denoiser (Proposition A.2). Then we relate this denoiser to the quantity
HVAE(x, τ) that is computed by our algorithm (Proposition A.3). As a consequence we
obtain that the fixed point condition in Proposition 5.5 can be written as ∇U(x) = 0 (see
Corollary 2).
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Proposition A.2 (Tweedie’s formula for HVAEs.). For an HVAE with Gaussian decoder
pθ(x|z) = N (x;µθ (z) , γ2I), the following denoiser based on the HVAE with tempered
prior

Dθ,τ (x) :=
∫
µθ (z) pθ,τ (z|x)dz (A.20)

satisfies Tweeedie’s formula

Dθ,τ (x)− x = γ2∇ log pθ,τ (x) = −γ2∇g(x). (A.21)

Proof. From the definition of pθ,τ (x) in equation (A.15) we have that

∇ log pθ,τ (x) = 1
pθ,τ (x)

∫
∇xpθ(x|z)pθ,τ (z)dz.

From the pdf of the Gaussian decoder pθ(x|z) its gradient writes

∇xpθ(x|z) = − 1
γ2 (x− µθ (z))pθ(x|z).

Replacing this in the previous equation we get

∇ log pθ,τ (x) = 1
γ2

∫
(µθ (z)− x)pθ(x|z)pθ,τ (z)

pθ,τ (x) dz

= 1
γ2

∫
(µθ (z)− x)pθ,τ (z|x)dz

= 1
γ2

(∫
µθ (z) pθ,τ (z|x)dz − x

)
.

In the second step we used the definitions of the joint tempered prior pθ,τ (x, z) (A.14)
and the tempered posterior pθ,τ (z|x) (A.16). The last step follows from the fact that∫
pθ,τ (z|x)dz = 1 according to definitions (A.16) and (A.15). Finally applying the

definition of the denoiser Dθ,τ (x) in the last expression we obtain Tweedie’s formula (A.21).

Under suitable assumptions the denoiser defined above coincides with HVAE(x, τ )
computed by our algorithm.

Assumption A.1 (Deterministic encoder). The covariance matrices of the encoder defined
in equation (4.23) are 0, i.e. Σφ,`(z<`,x) = 0 for l = 0, . . . , L − 1. Put another way
qφ(z|x) = δEτ (x)(z) is a Dirac centered at Eτ (x).

Proposition A.3. Under Assumption A.1 the function HVAE(x, τ ) computed by Algo-
rithm 4 coincides with the denoiser Dθ,τ (x) defined in equation (A.20).
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Proof. HVAE(x, τ ) is defined in Proposition 5.5 as

HVAE(x, τ ) = µθ (Eτ (x)) .

First observe that for a deterministic encoder we also have pθ,τ (z|x) = δEτ (x)(z).
Indeed for any test function h:∫

h(z)pθ,τ (z|x)dz =
∫
h(z)qφ(z|x)pdata(x)/pθ(z)dz

= h(Eτ (x)) pdata(x)/pθ(Eτ (x))︸ ︷︷ ︸
Z(x)

.

And the normalization constant Z(x) should be equal to 1 because
∫
pθ,τ (z|x)dz = Z(x) =

1. Hence pθ,τ (z|x) = qφ(z|x) = δEτ (x)(z).
Finally applying the definition of Dθ,τ (x) we obtain

Dθ,τ (x) =
∫
µθ (z) pθ,τ (z|x)dz = µθ (Eτ (x))

= HVAE(x, τ).

Combining Propositions A.3, 5.5 and A.2 we obtain a new characterization of fixed
points as critical points.

Corollary 2. Under Assumption A.1 x∗ is a fixed point of T if and only if

∇f(x∗) +∇g(x∗) = 0 (A.22)

where g(x) = − log pθ,τ (x).

Proof. From Proposition A.2 we have that

−∇g(x) = 1
γ2 (Dθ,τ (x)− x) .

From Proposition A.3 we have that (under Assumption A.1) Dθ,τ (x) = HVAE(x, τ). In
combination with the previous result:

−∇g(x) = 1
γ2 (HVAE(x, τ)− x) .

Finally, Proposition 5.5 allows to conclude that

−∇g(x) = ∇f(x).



A.2. DETAILS ON PATCHVDVAE ARCHITECTURE 133

A.2 Details on PatchVDVAE architecture
In this section, we provide additional details about the architecture of PatchVDVAE. Then,
we present the choice of the hyperparameters used for the concurrent methods (presented
in section 5.6 of the main paper) .

A.2.1 PatchVDVAE
Figure 5.5 provides a detailed overview of the structure of a PatchVDVAE network. The
architecture follows VDVAE model [Child, 2020], except for the first top-down block,
in which we replace the constant input by a latent variable sampled from a Gaussian
distribution. The architecture presented in Figure 5.5 illustrates the structure of HVAE
networks, but the number of blocks is different to the PatchVDVAE network used in our
experiments. Our PatchVDVAE top-down path is composed of L = 30 top-down blocks
of increasing resolution. The image features are upsampled using an unpooling layer
every 5 blocks. The first unpooling layer performs a ×4 upsampling, and the following
unpooling layers perform ×2 upsampling. The dimension of the filters is 256 in all blocks.
In order to save computations in the residual blocks, the 3× 3 convolutions are applied
on features of reduced channel dimension (divided by 4). 1× 1 convolutions are applied
before and after the 3× 3 convolutions to respectively reduce and increase the number of
channels. The latent variables z` are tensors of shape 12×Hl ×Wl, where the resolution
Hl, Wl corresponds to the resolution of the corresponding top-down-block. The bottom-up
network structure is symmetric to the top-down network, with 5 residual blocks for each
scale, and pooling layers between each scale.

A.2.2 Hyperparameters of compared methods
Face image restoration. For ILO, we found that optimizing the first 5 layers of the
generative network offered the best trade-off between image quality and consistency with
the observation. Hence, we optimize the 5 first layers for 100 iterations each. This choice
is different from the official implementation, where they only optimize the 4 first layers for
a lower number of iterations, trading restoration performance for speed. For DPS, we set
the scale hyper-parameter ζ ′ (described in subsection C.2 in [Chung et al., 2023]) to ζ ′ = 1
for the deblurring and super-resolution experiments reported in this paper.

Natural images restoration - Deblurring. For the three tested methods, we use the
official implementation provided by the authors, along with the pretrained models. For
EPLL, we use the default parameters in the official implementation.

For GS-PnP, using the notation of the paper, we use the suggested hyperparameter
λν = 0.1 for the motion blur kernels and λν = 0.75 for the Gaussian kernels.
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For PnP-MMO, we use the denoiser trained on σden = 0.007. On deblurring with
σ = 2.55 we use the default parameters in the implementation. for higher noise levels
(σ = 7.65; σ = 12.75), and we set the strength of the gradient step as γ = σden/(2σ||h||),
where h corresponds to the blur kernel.

Natural images restoration- Inpainting. For EPLL, we use the default parameters
provided in the authors matlab code. For GS-PnP, after a grid-search, we chose to set
λν = 1 and σdenoiser = 10.

A.3 Discussion on the conctractivity of HVAE
We showed in section 5.5 that PnP-HVAE converges to a fixed point under the assumption
that x→ HVAE(x, τ) is contractive. If this condition is met, the sequence of uk defined by
uk+1 = HV AE(uk, τ) should converge to a fixed point. Figure A.1 presents the evolution
of a fixed point iteration uk+1 = HV AE(uk, τ). The image is smoothened over the
iterations, and finally converges to a piececewise constant image. We used patchVDVAE
for this experiment.

k = 0 k = 100 k = 600 k = 1600 MSE(uk+1, uk)

Figure A.1 – Fixed-point iterations of patchVDVAE for τ = 0.99.

A.4 Comparisons
In this section, we provide additional visual results on face images and natural images.

A.4.1 Additional results on face image restoration
We provide additional comparisons with the GAN-based ILO method on inpainting
(Figure A.2), ×4 super-resolution (Figure A.3) and deblurring (Figure A.4). PnP-HVAE
provides equally or more plausible glasses in the first column) inpaiting than ILO. For
superresolution, ILO produces sharper but not realistics faces. This is an agreement with
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Figure A.2 – Inpainting

the scores presented in Table 5.1). For deblurring, ILO creates textures on faces that
looks realistic (low LPIPS) but are less consistent with the observation (significantly lower
PSNR and SSIM).

A.4.2 Additional results on natural images restoration
We finally present additional results on natural images restoration. All the PnP-HVAE
images presented below were produced using our PatchVDVAE model. We also provide
visual comparisons with concurrent PnP methods and EPLL. For deblurring (Figures A.6
and A.7, PnP methods perform better than EPLL. Following quantitative results of Fig-
ure 5.2, for larger noise level, PnP-HVAE outperforms PnP-MMO and provides restoration
close to GS-PnP.

For inpainting (Figure A.8), the hierarchical structure of PatchVDVAE leads to more
plausible reconstructions, and PnP-HVAE outperforms the compared methods.
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Figure A.3 – ×4 super-resolution, with kernel (a) from Figure A.5 and σ = 3
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Figure A.4 – Deblurring, with kernel (d) from Figure A.5 and σ = 8

(a) (b) (c) (d)

Figure A.5 – Kernels used for deblurring experiments, from [Levin et al., 2009]



138 APPENDIX A. PROOFS OF CHAPTER 5

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(a) kernel (a), σ = 2.55

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(b) kernel (c), σ = 2.55

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(c) kernel (a), σ = 7.65

Figure A.6 – Deblurring results on BSD
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blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(a) kernel (d), σ = 7.65

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(b) kernel (b), σ = 12.75

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(c) kernel (d), σ = 12.75

Figure A.7 – Deblurring results on BSD



140 APPENDIX A. PROOFS OF CHAPTER 5

GT Masked EPLL GS-PnP PnP-HVAE

Figure A.8 – Natural images inpainting



Appendix B

Proofs of chapter 6

B.1 Connection between the training criterion and
the model conditional log-likelihood

B.1.1 Lower bound on the conditional log-likelihood
In this part we detail the result about the lower-bound on the model conditional log-
likelihood given in proposition 6.1, and we link the introduced lower-bound to the training
criterion. The conditional log-likelihood of the super-resolution model is defined as:

Epdata(x,y)[log pSR(x|y)]. (B.1)

Proposition B.1 (6.1). The conditional log-likelihood of the super-resolution model on a
joint distribution pdata(x,y) is lower-bounded by

O(ψ) = Epdata(x,y)Eqφ(z<k|x)

[
log pθ(x|z<k)qψ(z<k|y)

qφ(z<k|x)

]
(B.2)

≤ Epdata(x,y)[log pSR(x|y)]. (B.3)

Proof. It is shown in [Harvey et al., 2022] that, for a conditional model written as:

pcond(x|y) := Eqφ(z|y)[pθ(x|z)], (B.4)

the conditional log-likelihood on a paired data distribution pdata(x,y) is lower-bounded
as1:

O(ψ) = Epdata(x,y)Eqφ(z|x)

[
log pθ(x|z)qψ(z|y)

qφ(z|x)

]
(B.5)

≤ Epdata(x,y)[log pSR(x|y)]. (B.6)
1In [Harvey et al., 2022], the lower bound is also defined as a function of the VAE encoder and decoder

O(θ, φ, ψ). We omit the dependance on θ and φ since we keep those parameters constant.

141
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Applying relation (B.5) to the truncated VAE pθ(x|z<k), qψ(z<k|y) and the truncated
latent restoration model pSR(x|y) (6.9), we then have:

O(ψ) = Epdata(x,y)Eqφ(z<k|x)

[
log pθ(x|z<k)qψ(z<k|y)

qφ(z<k|x)

]
(B.7)

≤ Epdata(x,y)[log pSR(x|y)]. (B.8)

B.1.2 Relation between the lower-bound and the training crite-
rion

The lower bound (B.2) can be rewritten as:

O(ψ) = Epdata(x,y)Eqφ(z<k|x)[log pθ(x|z<k)] (B.9)

+ Epdata(x,y)Eqφ(z<k|x)

[
log qψ(z<k|y)

qφ(z<k|x)

]
(B.10)

= C − L(ψ). (B.11)

Therefore, for fixed θ and φ, minimizing L(ψ) amounts to maximizing the lower bound
O(ψ) in ψ.

B.2 Expected consistency of the super-resolution model

In this section we demonstrate Proposition 6.2 on the expected consistency of the super-
resolution model. To that end, we first give an intermediate result concerning optimal
VAEs.

Proposition B.2 (proof in appendix B.1 of [Harvey et al., 2022]). The ELBO loss of a
VAE (4.9) can be written as:

Lelbo(θ, φ) = −H(pdata(x))−KL(pdata(x)qφ(z|x)||pθ(z)pθ(x|z)), (B.12)

where H(pdata(x)) is the entropy of the data distribution.

The formulation (B.12) indicates that maximizing the ELBO loss amounts to reducing
the KL divergence from pdata(x)qφ(z|x) to pθ(z,x).
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B.2.1 Optimal low-resolution encoder
We remind the reader that we denote

r(z<k,x,y) := pdata(x,y)qφ(z<k|x) (6.14)

the joint distribution of high-resolution and low-resolution image pairs (x,y), and their
latent variable z given by the high-resolution encoder, and r(z<k|y) the corresponding
conditional distribution. We now recall the technical assumptions made in section 6.5.2.

Assumption 6.1. There exists ψ ∈ Ψ which satisfies r(z<k|y) = qψ(z<k|y) for all y in
the support of pdata(y).

Assumption 6.2. The low-resolution encoder parameters ψ are minimizers of the training
criterion (6.12):

ψ ∈ arg min
ψ̃
L(ψ̃). (6.15)

Assumption 6.3. The VAE encoder qφ(x|z) and generative model pθ(x, z) have enough
capacity and are trained well enough so that φ and θ reaches the upper bound of the ELBO
loss (B.12).

In the next proposition, we give the value of the optimal low-resolution encoder.

Proposition B.3. Under assumptions 6.1 and 6.2, we have:

qψ(z<k|y) = r(z<k|y) (B.13)

for all y in the support of pdata(y).

Proof. The training criterion (6.12) can be written as:

L(ψ) =Epdata(x,y)

[
Eqφ(z<k|x)

[
log qφ(z<k|x)

qψ(z<k|y)

]]
(B.14)

=Epdata(x,y)

[
Eqφ(z<k|x)

[
log qφ(z<k|x)

r(z<k|y)

]]

+ Epdata(x,y)

[
Eqφ(z<k|x)

[
log r(z<k|y)

qψ(z<k|y)

]]
(B.15)

=Epdata(x,y)

[
Eqφ(z<k|x)

[
log qφ(z<k|x)

r(z<k|y)

]]
+ Epdata(y)[KL(r(z<k|y)||qψ(z<k|y))]. (B.16)

Thus L(ψ) is lower-bounded by the first term of the right-hand side of (B.16). If the
encoder has enough capacity (6.1) and by non-negativity of the KL-divergence, the lower
bound is reached (6.2) if and only if the second term of the right handside of (B.16) is
zero, or equivalently r(z<k|y) = qψ(z<k|y) for all y in the support of pdata(y).
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Proposition B.3 states that, if the low-resolution encoder qψ(z<k|y) has enough capacity
and is trained so that it minimizes the training criterion (6.12), it matches the intractable
distribution r(z<k|y) for all images of the training distribution.

With a slight abuse of notation, let us now denote:

pθ(z,x,y) = pθ(z)pθ(x|z)p(y|x) (B.17)

the VAE model distribution of the latent variables z and the generated high-resolution
images x, combined with their low-resolution counterpart y given by the degradation
model (6.1). In the next proposition we show that, under additional hypothesis on the
pretrained VAE, the low-resolution encoder qψ(z<k|y) matches the conditional pθ(z<k|y)
of the model distribution (B.17).

Proposition B.4. Under assumptions 6.1, 6.2 and 6.3, we have

qψ(z<k|y) = pθ(z<k|y) (B.18)

for all y in the support of pdata(y).

Proof. Refering to the definition of r(x, z<k,y) (6.14) and pθ(z<k,x,y) (B.17), we have,
from assumption 6.3:

KL(r(z,x)||pθ(z,x)) = 0 (B.19)
=⇒ r(z,x) = pθ(z,x) (B.20)
=⇒ r(z,x)pdata(y|x) = pθ(z,x)pdata(y|x) (B.21)
=⇒ r(z,x,y) = pθ(z,x,y) (B.22)
=⇒ r(z|y) = pθ(z|y). (B.23)

Furthermore, using proposition B.3, assumptions 6.1 and 6.2 imply that r(z<k|y) =
qψ(z<k|y) for all y in the support of pdata(y). Thus, we have:

r(z<k|y) = qψ(z<k|y) (B.24)
= pθ(z|y), (B.25)

for all y in the support of pdata(y).

Proposition B.4 shows that, if the VAE encoder and decoder and the low-resolution
encoder have enough capacity and are trained well enough to optimize their respective
training criterion, the low-resolution encoder matches the intractable conditional pθ(z<k|y)
of the VAE model distribution (B.17).
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B.2.2 Expected consistency of the super-resolution model

In the next proposition, we establish a general formula to estimate of the expected
consistency error.

Proposition B.5. Under assumptions 6.1 and 6.2, we have:

CE(k) = Epdata(x)Eqφ(z<k|x)Epθ(x̃|z<k)

[
1√
m
‖Hsx̃−Hsx‖2

]
. (B.26)

Proof. Assumptions 6.1 and 6.2 imply that r(z<k|y) = qψ(z<k|y) for all y in the support
of pdata(y). Notice that, by definition of r(z<k,x,y) (6.14), the marginals satisfy r(y) =
pdata(y) and r(x) = pdata(x). Consequently:

CE(k) = Epdata(y)Er(z<k|y)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.27)

= Er(z<k,y)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.28)

= Er(x̃)Er(z<k,y|x̃)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.29)

= Epdata(x̃)Epdata(y|x̃)Eqψ(z<k|x̃)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
. (B.30)

According to Proposition B.3, the assumption qψ(z<k|y) = r(z<k|y) is satisfied when
the low-resolution encoder has enough capacity and is trained to optimality. The quantity
(B.26) can be estimated with Monte-Carlo sampling, without using the low-resolution
encoder. Thus, Proposition B.5 gives us a way to estimate the potential consistency error
of a super-resolution model before training the low-resolution encoder.

We can now show Proposition 6.2, which states that under the additional hypothesis
6.3 on the VAE inference and generative model, the expected consistency error of the
super-resolution model can be estimated only as a function of the VAE generative model
pθ(z|x).

Proposition B.6 (6.2). Under assumptions 6.1, 6.2 and 6.3, the expected consistency
error is:

CE(k) = Epθ(z<k)Epθ(x|z<k)Epθ(x̃|z<k)

[
1√
m
‖Hsx̃−Hsx‖2

]
. (6.16)
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Proof. First, assumption 6.3 implies that the marginals of the model distribution (B.17)
match the respective data distributions:

pθ(x) = pdata(x) (B.31)
pθ(y) = pdata(y) (B.32)

pθ(x|y) = pdata(x|y). (B.33)

Second, from assumptions 6.1 and 6.2, proposition B.4 can be applied, and we have:

qψ(z<k|y) = pθ(z<k|y) (B.34)
= Epθ(x̃|y)[pθ(z<k|x̃,y)] (B.35)
= Epdata(x̃|y)[pθ(z<k|x̃)]. (B.36)

Thus we get:

CE(k) (B.37)

= Epdata(y)Epθ(z<k|y)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.38)

= Epdata(y)Epdata(x̃|y)Epθ(z<k|x̃)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.39)

= Epdata(x̃)Epdata(y|x̃)Epθ(z<k|x̃)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.40)

= Epθ(x̃)Epθ(z<k|x̃)Epdata(y|x̃)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
(B.41)

= Epθ(z<k)Epθ(x̃|z<k)Epdata(y|x̃)Epθ(x|z<k)

[
1√
m
‖Hsx− y‖2

]
, (B.42)

where (B.39) comes from relation (B.36), and (B.41) comes from relation (B.32).
Therefore, using the fact that pdata(y|x̃) = δ{y=Hsx̃}, we obtain:

CE(k) = Epθ(z<k)Epθ(x̃|z<k)Epθ(x|z<k)

[
1√
m
‖Hsx̃−Hsx‖2

]
, (B.43)

Proposition 6.2 show that, under adequate assumptions, the expected consistency of
the super-resolution model (6.16) only depends on the generative model pθ(x, z). It follows
that it can be estimated before the training of the low-resolution encoder. Notice that the
quantity (6.16) is equal to the low-resolution consistency U s

k (6.5).
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Figure B.1 – Super-resolved samples at τ = 0.8 for upsampling factor ×4.

Additional samples
For visualization purposes, we provide additional super-resolved samples produced with
our method in Figures B.1, B.2 and B.3.
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Figure B.2 – Super-resolved samples at τ = 0.8 for upsampling factor ×8.

Figure B.3 – Super-resolved samples at τ = 0.8 for upsampling factor ×16.
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