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Titre: Couplage Neutronique – Thermohydraulique à l’échelle du crayon en géométrie tridimen-sionnelle exacte sans recours à l’homogénéisation : application aux Réacteurs à Eau sous Pres-sion (REP).Mots clés: Transport neutronique, Géométries non structurées, Simulation des barres de con-trôle sans recours à l’homogénéisation, Expansion asymptotique, Caractéristiques courtes d’ordreparabolique incomplet, Multiphysique.
Résumé: Ce travail concerne le solveur IDT(Integro-Differential Transport) d’APOLLO3®et son application aux calculs multiphysiquescouplés neutronique/thermohydraulique. IDTest un solveur de transport aux ordonnéesdiscrètes basé sur des probabilités de colli-sion (Pij ) dépendantes de l’angle, avec dif-fusion PN . Le domaine spatial est discrétiséen un motif cartésien modulaire, avec desnœuds hébergeant des cellules de type REPen géométrie réelle. Chaque cellule peut logerau plus un crayon, composée de cylindreshétérogènes centrés.Plusieurs facteurs affectent l’utilisation d’IDTpour la simulation des réacteurs. Le mod-èle présenté restreint l’application d’IDT àun réseau de cellules conformes. De plus,l’absence de raffinement spatial le long del’azimut limite la précision, en particulier pourdes milieux très absorbants ou hautement dif-fusifs.Les méthodes basées sur les Pij permettentune grande flexibilité géométrique, avec lapossibilité de modéliser des géométries nonstructurées. Ainsi, la première partie de cetravail est dédié à la mise en œuvre de nou-veaux outils géométriques dans IDT. L’idée debase est de superposer des plans aux cylindres.Un nouveau traçage combinatoire est capablede combiner des bandes X/Y/Z avec des an-neaux concentriques. La possibilité d’associerdes identifiants cartésiens et radiaux aux ré-gions de calcul, au moyen d’un outil convivial,permet de personnaliser le maillage local et deconstruire des cellules non structurées/non ex-trudées. La nouvelle version d’IDT est égale-ment capable de modéliser des géométriesnon conformes, des cylindres excentrés et/ouhorizontaux, qui peuvent être utiles pour con-cevoir des réacteurs VVER et CANDU. Le codemontre également une précision accrue, grâceau raffinement spatial, à la fois dans le casde développements polynomiaux constants etlinéaires par morceaux. La possibilité de mod-éliser des géométries hétérogènes non con-formes permet de simuler le mouvement desbarres de contrôle, sans homogénéisation.

Un autre problème majeur est lié aux be-soins en mémoire des matrices Pij , qui em-pêche l’application d’IDT aux grands sys-tèmes, avec des milliers de milieux différents.Afin d’atténuer la taille de la mémoire, IDTs’appuie sur une nouvelle technique, base surl’expansion de von Neumann, qui permet deréduire le nombre de coefficients de probabil-ité. Pour résumer, des nœuds qui partagentla même géométrie et ont des chemins op-tiques similaires peuvent être regroupés dansune seule cellule. L’occupation mémoire desmatrices est réduite, ainsi que leur temps decalcul, au prix d’un temps accru pour les itéra-tions internes. L’empreinte mémoire des co-efficients peut être également atténuée en ex-ploitant les propriétés de symétrie de chaquecellule. Un ensemble de transformations, bassur la permutation matricielle et le produit deHadamard, est maintenant disponible, pour ré-duire le nombre de directions stockées jusqu’àun facteur 16.Un développement complémentaire, basé surune expansion d’ordre parabolique incom-plète, fournit un outil additionnel pour aug-menter la précision numérique. Contraire-ment à d’ordre constant et linéaire, l’ordreparabolique nécessite peu de discrétisationspatiale et donc permet une réduction significa-tive du nombre de régions, avec une précisionde solution comparable, comme le prouventles comparaisons avec TRIPOLI-4®.Une fois les limites majeures d’IDT abordées,l’application aux problèmes multiphysiques estexplorée. IDT est couplé avec THEDI (THErmo-hydraulique DIphasique) et XSTOOL (Cross Sec-tion TOOL), pour lamise à jour et l’interpolationdes sections efficaces. Une nouvelle voie desimulation est proposée. Différent du calcul endeux étapes, qui est l’approche courante dansles calculs industriels, le schéma numériqueprésenté est basé sur l’interpolation des sec-tions paramétriques, sans homogénéisation,et ne nécessite pas de modèles de fuite cri-tique, qui introduirait des approximations surla distribution du flux.
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Title: Neutronic - Thermohydraulic coupling at the pin cell scale in exact three-dimensional ge-ometry without homogenization: application to pressurized water reactors (PWR).Keywords: Neutron Transport, Unstructured Geometries, Control-rod simulation without ho-mogenization, Asymptotic expansion, Incomplete Parabolic Short Characteristics, Multiphysics.
Abstract: This work concerns theIntegro-Differential Transport solver (IDT) ofAPOLLO3® and its application to coupledneutronics/thermal-hydraulics multiphysicscalculations. IDT is a discrete ordinates trans-port solver based on angular-dependent colli-sion probabilities (CP), with PN -scattering. Thespatial domain is discretized into a modularCartesian pattern, with nodes hosting PWR pin-cells in real geometry. Each cell may lodge atmost one pin, composed of centred heteroge-neous cylinders.Several factors prevent the use of IDT for in-dustrial reactor core simulations. First, the pre-sented model restricts the application of IDT toa lattice of conformal pin-cells. Moreover, thelack of spatial refinement along the azimuthalangle limits the numerical accuracy of the code,particularly within strong absorbers or highlydiffusive media.On the bright side, methods based on CP dis-cretization allow for great geometrical flexibil-ity, with the possibility to model unstructuredgeometries. Hence, the first part of this workis devoted to the implementation of enhancedgeometrical capabilities in IDT. More specifi-cally, the basic idea is to superimpose Cartesianplanes to cylinders. A novel combinatorial raytracing is able to combine orthogonal X/Y/Zbands with concentric rings. The possibilityto associate Cartesian and radial identifiers tocomputational regions, by means of a dedi-cated user-friendly tool, permits to customizethe local mesh and construct unstructured aswell as non-extruded cells. The new versionof IDT is also able to model non-conformal ge-ometries, off-centred cylinders and horizontalpins, which may come in hand to design VVERand CANDU reactors. The code also shows in-creased numerical accuracy, thanks to the spa-tial refinement, both in the case of constant andlinear polynomial piece-wise developments.The possibility tomodel non-conformal hetero-geneous geometries allows simulating control-rods insertion/withdrawal, with no homoge-nization and cusping effect.

Another major issue is related to CP matricesmemory requirements, which prevents the ap-plication of IDT to large systems, with thou-sands of different media. In order to softenthe memory pressure, IDT relies on a noveltechnique, based on von Neumann series ex-pansion, which permits to reduce the numberof angular-probability coefficients. In short,nodes that share the same geometry and havesimilar optical paths may be gathered into asingle reference cell. The memory occupationdue to CP matrices is lowered, as well as thesimulation runtime invested for their computa-tion, at the cost of an increased time for sourceiterations. The memory imprint of the angu-lar probability matrices may be also mitigatedby exploiting the symmetry properties of eachcell. A set of transformations, based on matrixpermutation and Hadamard matrix product, isnow available in IDT, to reduce the number ofstored directions, up to a factor 16.A complementary development, based on in-complete parabolic series expansion (PSC), pro-vides an additional tool to increase the nu-merical precision. Unlike constant and linearorder, PSC requires little spatial discretizationand, as a result, allows for a significant reduc-tion of the number of computational regions,with unmodified solution accuracy, as provenby quantitative comparisons with TRIPOLI4®Monte Carlo. Once addressed the major limitsof IDT, the application to multiphysics prob-lems is explored. The solver is coupled withTHEDI (THErmohydraulique DIphasique) andXSTOOL (Cross Section TOOL), for cross sectionupdate and interpolation. A new simulationpathway is proposed. Differently from stan-dard two-step calculations, which are currentlythe most common approach in industrial com-putations, the implemented numerical schemeis based on parametric cross section interpo-lation, without homogenization, and does notrequire approximate critical leakage models,which would introduce further assumptions onthe flux distribution.
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1 - INTRODUCTION
Of all the major challenges ahead of us, climate crisis is probably the most urgent and calls

for immediate solutions. A growing number of countries have already committed to achiev-
ing net-zero greenhouse gas emissions by 2050. In this framework, institutions, such as the
International Energy Agency (IEA), have suggested sustainable pathways for a technically and
economically feasible energy transition, [1], indicating nuclear and hydroelectric as essential for
low-carbon energy production. On February 10th, 2023, the President of the French Republic
announced the construction of 6 next-generation European Pressurized Reactors (EPRs), with
additional 8 reactors under study, to reach 25 GWe of new installed nuclear capacity, by mid-
century. It appears clear that the development of this technology will play a key role in the
coming years.

A fission reactor is a system capable of hosting a controlled self-sustained fission reaction
chain. A fission reaction is a complex process, initiated by a neutral particle. More specifically,
a neutron is fired at a fissile nucleus, which splits in two lighter fragments, with the release of
additional neutrons and prompt γ-rays. A mass defect∆m of about 10% of themass of the tar-
get nucleus is observed. A large fraction of∆m is converted into kinetic energy of the daughter
nuclei (∼ 170MeV ), whereas smaller amounts appear as kinetic energy of the secondary neu-
trons (fewMeV each) and of the γ-photons (severalMeV ). Overall, the energy released by a
fission event is several hundreds of thousands of times larger than the one generally released
in a chemical reaction. The daughter nuclei are charged particles and lose energy by successive
collisions with the surrounding atoms, determining a temperature increase in the nuclear fuel.
The vast majority of nuclear reactors are based on fissions induced by thermal neutrons, i.e.,
neutrons in thermal equilibrium with the medium. Neutron slowing-down from high energy
(∼ MeV ) to fractions of eV may be achieved by means of a material with low atomic number,
i.e., a moderator. Most nuclear reactor designs employ water for such a purpose, which also
serves as coolant, to mitigate the nuclear fuel temperature. The production of steam, which
drives a turbine, allows to generate an alternating current, which is fed into the electric network.

Safe operation and performance are key points to be met in the design of a fission reactor.
Several factors are involved, one of the most decisive being the prediction of the neutron dis-
tribution. The fundamental equation describing the neutron density, as a function of position,
angle, energy and time, namely n(r,Ω, E, t), is the neutron transport equation. Thismay be de-
rived from themore popular Boltzmann equation, by neglecting neutron-to-neutron collisions,
as rarely occurring in real multiplying systems. Neutrons may undergo reactions of different
kind, including fission, sterile capture, scattering, (n, 2n)-reactions, to name a few, depending
on the target nucleus and the incident neutron energy. Neutron interactions are intrinsically
stochastic and may only be described in terms of microscopic cross sections, σ, which may be
pictured as the cross-sectional area exhibited by the target nucleus when a neutron is about
to collide. Within a certain energy range, which is comprised between few eV to hundreds of
keV for heavy nuclides, microscopic cross sections show sharp variations as a function of the
neutron speed, known as resonances. This behaviour strongly affects the trend of the neutron
flux, defined as the product between neutron density and speed, namely φ = n · v, which,
in turn, will exhibit abrupt variations. The probability of neutron interaction per unit path de-
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Figure 1.1: Microscopic total cross section of plutonium 239.From https://www-nds.iaea.org/exfor/endf.htm, Evaluated Nuclear Data File (ENDF).

pends linearly on the microscopic cross section and on the nuclear density, N . The product of
the two defines the macroscopic cross section, Σ = N · σ.
As mentioned, nuclear reactions release a considerable amount of energy, thus affecting the
temperature distribution of all components, and, in particular, of the nuclear fuel and themod-
erator. In return, the temperature raise has two consequences. The first is related to thermal
agitation and goes under the name of Doppler effect. In practice, due to the relative motion
between the projectile and the target, the cross-section resonances broaden, increasing the
probability of a neutron to disappear due to an absorption event. The second effect mostly
concerns the mass density of the moderator. Due to the increase in temperature, and assum-
ing that the reactor is under-moderated, the number of light targets per unit volume reduces
and, as a result, moderation drops. As most fission reactions are caused by thermal neutrons,
the neutron population lowers. This simple analysis permits to comprehend that a nuclear
reactor is a complex multiphysics system, where several processes, in particular, neutronics,
thermal-hydraulics and fuel performance, show strong interdependencies. Generally speak-
ing, a multi-physics problemmay be approached in two different manners, i.e., by a monolithic
process or, alternatively, a segregated strategy, [2]. The former solves the whole set of balance
equations concurrently at each step, whereas the latter analyses each physical process by it-
self, assuming the solution of all the other physical problems as fixed. The second approach
requires multiple iterations between the two ’mono-physics’, where each process provides a
set of data to feed into the others, to simulate the corresponding feedback. Reactor core cal-
culations generally implement the segregated strategy, solving, on the one hand, the neutron
transport equation, and, on the other, thermal-hydraulics and fuel thermal-mechanics, by ded-
icatedmodules or coupled codes, running successive iterations between the ’mono-physics’, to
converge the multiphysics solution.

The neutron transport equationmay be solved by either deterministic orMonte Carlometh-
ods, [3]. The latter are better suited for problems with high geometric complexity, to evaluate
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integral quantities, such as the absorbed dose, in radiation protection calculations, or the reac-
tor period, in criticality safety assessments. Conversely, the evaluation of differential quantities,
such as the neutron flux, is generally better addressed by deterministic methods, asmore com-
putational efficient and less time consuming. Although being more accurate in terms of energy
representation, Monte Carlo simulations are, at best, impractical, when considering the whole
reactor cycle.

In recent years, the outstanding growth in computational power has rendered the applica-
tion of 3D direct transport techniques more attractive for reactor core calculations. An example
is provided by the discrete-ordinate OpenMOC transport solver [4], applying the method of
characteristics in real 3D geometries and implementing scalable domain decomposition for
massive parallelization. In general, 3D full core neutron transport shows great convergence
stability and high numerical accuracy. This approach is particularly suited for applications to
reactor cores with strong axial heterogeneities, and, in general, exhibits better agreement with
reference continuous-energy Monte Carlo solutions.
Despite progress in computer hardware, high-fidelity full core transport solutions are still un-
feasible for industrial reactor cycle simulations. Hence, the vast majority of commercial analy-
ses rely on the so-called two-step strategy, based on dimensionality reduction, by spatial ho-
mogenization and energy condensation, in order to limit the computational effort as well as
the required resources, to run the simulation.
In the first step, the neutron transport equation is solved with refined energy and spatial dis-
cretization, for a set of repetitive patterns, e.g., the fuel assemblies, with simplified boundary
conditions. As for a large set of industrial reactors most of the heterogeneity is concentrated
within the radial plane, fuel assemblies are assumed to be two-dimensional. At first, mutual
neutron current exchanges between assemblies are neglected, imposing reflection boundary
conditions. The spatial solution of the neutron transport equation is typically derived by using
either 2D long characteristics or (current-coupled) collision probabilities. Neutron leakage at
a lattice boundary is included artificially. Assuming that the reactor is critical, i.e., it is able to
support a self-sustaining fission reaction chain, an approximate model is employed, where the
effectivemultiplication factor (namely the ratio between neutron production and disappearance,
keff ) is enforced to 1. In practice, the neutron flux is represented as the product of a "macro-
scopic" distribution, depending on the sole position, and the fine spectrum, depending on the
whole set of independent variables, obtained by solving the transport equation with reflection
boundary conditions. The "macroscopic" flux is assumed to solve a Laplace equation, where
a critical parameter (buckling, B2) is searched by successive iterations. As the buckling repre-
sents, up to the sign, the second derivative of the ’macroscopic’ distribution, this procedure
may be pictured as an iterative adjustment of the flux curvature, in order to converge keff to
1, [5]. The lattice simulation allows to compute a few-group cross section library, with homog-
enized media. This calculation is repeated for a variety of operating conditions or parameters,
which may include a set of temperatures (e.g., the local value T , the temperature of the fuel
and the temperature of the moderator), the moderator density, the type of assembly, the fuel
burn-up, the boron concentration, etc.
In the second step, the neutron flux and reaction rates are computed over the whole reac-
tor core, using the constructed database, containing the full set of nuclear data generated by
the lattice calculation. The reactor core is modelled as a tridimensional array of homogenized
assemblies or pin-cells and is solved by simplified transport, with condensed energy groups.
Neutron leakage is accounted for by imposing exact boundary conditions at the reactor bor-
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Figure 1.2: Two-step calculation scheme.

der. The solution may be searched for reactor transients or under stationary conditions. A
simple neutron balance, equating neutron disappearance and production, is solved over each
coarse node and condensed energy group, where leakage over the node boundary may be
represented by the Fick law, relating the neutron current to the negative of the gradient of the
flux, [6].
Despite their popularity and undisputed role in nuclear industry, two-step calculations are

affected by a number of limitations. At the lattice level, the net exchanges between fuel assem-
blies are first neglected, providing a multiplication factor that can differ significantly from the
one of the whole system. This is particularly true for fast reactors, where neutron mean free
paths tend to be longer, resulting in stronger coupling between neighbouring assemblies, [7].
Assuming the system is critical, aB2-critical leakagemodel is needed, in order to converge keffto 1. As mentioned above, one of the main approximation of this method consists in assuming
that the neutron flux can be represented as the product of a position-dependent macroscopic
function and of the detailed 2D-infinite transport solution.
A crucial point of the two-step calculation lies in the production of the few-group parametric
library, with homogenized pin-cells, for a large set of state points. Each state point is defined by
a collection of operating parameters, assuming discrete values over a multidimensional grid.
The generated library is used by a simplified neutron transport solver, to infer the solution
over the whole reactor. More specifically, in the second step, the interdependencies of neu-
tronics, thermal-hydraulics and isotope evolution are considered. Each depletion simulation is
treated as a steady-state calculation, which takes into account thermal-hydraulics feedback on
neutron transport, along with finding the boron concentration and the position of the control
rods that make the system critical. In order to deduce the cross sections for the current reactor
state, i.e., the set of operating conditions that define the system at present, based on the data
available in the homogenized few-group cross-section library, a multi-parameter interpolation
is necessary. On the other hand, homogenized parametric sections exhibit very strong varia-
tions, requiring high order interpolating polynomials for their representation. An example is
provided in Fig. 1.3, showing the homogenized cross section of gadolinium 157, as a function
of burn-up, which underwent energy condensation over H = 2 groups. A strong variation
is observed over the whole fuel cycle, which can be justified by noting that the homogenized
cross section does not depend only on the aforementioned set of parameters, p, but, due to
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Figure 1.3: Two-group homogenized absorption cross section of gadolinium 157 vs burn-up.Figures from: I. Zmijarevic, " Some aspects of creating and using multi-parameter cross sectionlibrary", DES/ISAS/DM2S/SERMA/LLPR/NT/2022-70741/A, Courtesy of Igor Zmijarevic.

flux-weighting, on the entire reactor operation. In other terms,
σc,hhom =

〈
σ(p), φ

〉
c,h〈

1, φ
〉
c,h

(1.1)
is the homogenized few-group cross section, obtainedby integration over a coarse spatial/energy
mesh, with ⟨·, ·⟩c,h =
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dpm. (1.3)
Several interpolation nodes are required, in order to reconstruct the dependence of the homog-
enized cross sections on the full set of operating parameters. The estimated cross sections are
affected by numerous sources of error, of difficult estimation, including the thermal-hydraulics
feedback and the assembly environment.

Thepresent thesiswork proposes a novel simulation pathway for coupledneutronics/thermal-
hydraulics calculations, in exact three-dimensional geometry, without cross section homoge-
nization. In particular, focus is given to the solution of the neutron transport equation bymeans
of the Integro-Differential Transport code (IDT) of APOLLO3®. IDT solves the multigroup linear
Boltzmann equation by discrete ordinates combinedwith angular-dependent probabilitymatri-
ces, with PN scattering expansion. More precisely, IDT applies short characteristics to either 2D
or 3D Cartesian nodes, lodging heterogeneous cylinders, in a modular XYZ frame. Neighbour-
ing Heterogeneous Cartesian Cells (HCCs) are coupled by piece-wise linear currents, which are
transmitted from one cell to another, by spatial sweeping. Similarly to the method of current-
coupled collision probabilities (CCCP), short characteristics remain finite, when the optical ap-
proaches zero, thus allowing for accurate representation of empty media. Unlike other codes
based on short characteristics, IDT does not approximate the angular flux on the inner surfaces
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of the HCC, but just on the interface grid.
The current version of APOLLO3® IDT suffers from several limitations, which may prevent

or restrain its application to reactor core calculations. In particular,
• Prior studies on the code have shown poor numerical accuracy for multiplying systems
with large gradients, induced by strong absorbers or high-diffusive media;

• APOLLO3® IDT is not able tomodel unstructured /non-conformal/non-extrudedmeshes
and its practical use is limited to pressurized water reactor (PWR) geometries;

• The spatial domain is discretized by a conformal Cartesian mesh. The control rods in-
sertion/withdrawal would require fine axial planes, in order to represent the interface
between the control rod tip and the water below. Such a choice is impractical and may
lead to large simulation time. The alternative is to perform cross section homogenization,
by volume or (preferably) flux-weighting techniques, which is a common choice in tradi-
tional nodal solvers. If such a model is put in practice, large discontinuities are observed
in the first derivative of the control-rod reactivity worth, causing large discrepancies be-
tween the computed multiplication factor and its actual value;

• Thememory pressure and computational cost increase rapidly, as the number of regions
becomes larger, limiting the application of CCCP-based methods to large systems, with
several thousands of media. This is justified by observing that the memory occupied by
the collision probability matrices scales linearly with the number of HCCs, energy groups
and SN directions and quadratically with the number of regions per cell and with the
number of components of the spatial basis.

The aim of the thesis is to implement a new version of IDT, capable of solving or drastically
reducing the listed problems, in order to enable its practical use for coupledneutronics/thermal-
hydraulics calculations on a variety of industrial systems. These may comprise reactors of dif-
ferent types and geometry.

The present manuscript includes four parts and is organized as follows.
In Part I, state-of-the-art numerical methods for the solution of the neutron transport equa-

tion are recalled.
In Chap. 3, a rapid overview on neutron cross sections is provided, together with the main

hypotheses leading to the time-dependent integro-differential neutron transport problem. Two
solution pathways, i.e., Monte Carlo and deterministic methods, are compared, underlining
their advantages and drawbacks.

In Chap. 4, a closer focus on deterministicmethods is proposed. Each phase-space variable,
i.e., r,Ω, E, is discretized. The multigroup formalism is introduced for the energy variable. The
nested cycle, including power, thermal and inner iterations, is illustrated. The angle may be
discretized by discrete ordinates or PN expansion. Simplified PN is also mentioned, as an ap-
proximate low-memory alternative to classic PN . The spatial solution may be provided by a
variety of numerical techniques. A subset of methods based on the integral form of the Boltz-
mann equation are discussed, in particular, the method of collision probabilities, the method
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of (long) characteristics and the method of short characteristics. The final section of Chap. 4
provides an introduction to acceleration techniques. In this frame, a dedicated section presents
the coarse mesh finite difference method.

Chapter 5 describes the major challenges of reactor core calculations. Three approaches
are compared, namely the two-step strategy, 3D direct transport and 2D/1D fusion. Control-
rods insertion/withdrawal simulations are discussed, focusing on the control-rod cusping ef-
fect. Four numerical workarounds are mentioned to reduce reactivity-worth wiggles, including
flux-weighting techniques, the equivalence approach and two subplane-based methods.

In Chap. 6, an introduction to IDT is proposed. Provided that the code is equipped with
several spatial discretization schemes, emphasis is placed on the application of short charac-
teristics to heterogeneous Cartesian cells. A modular ray-tracing allows for the integration of
the angular probability matrices. Finally, IDT relies on the method of domain decomposition,
to lower the CPU time, by massive parallelism. A dedicated section provides few keynotes on
its particular implementation in IDT.

Parts II-IV retrace the fundamental steps of this thesis work.
In Part II, details are provided on the new geometrical module of IDT.
Chap. 7 presents the new geometric capabilities of IDT, including the possibility to superim-

pose non-conformal Cartesianmeshes onto the set of concentric cylinders, model off-centered
rings, design non-Cartesian components (e.g., hexagonal patterns) and simulate horizontal
cylinders. The new version of IDT can describe unstructured/non-conformal/non-extruded ge-
ometries, based on the Tuple-to-Region Map (TRM) and a combinatorial ray-tracing module.
The former allows to customize the spatial discretization, by establishing an association be-
tween a tuple of 4 integers (i, j, k, corresponding to discrete steps along the x/y/z axis, and
r, to identify each cylinder) and a computational region, which is represented by a single in-
teger number. On the other side, the new ray-tracing module is able to combine the trajec-
tory intersection with a defined set of geometric patterns, comprising Cartesian bands and
concentric rings. The numerical accuracy is tested by 2D/3D case studies, comparing IDT with
TRIPOLI4® continuous energy Monte Carlo and APOLLO3® TDT MOC.

In Chap. 8, the application of IDT to control-rodmovement is discussed. By taking advantage
of the new geometric capabilities, which introduce the possibility to refine the local HCC dis-
cretization and generate non-conforming XYZ meshes, control-rod movements are simulated
without resorting to cross-section homogenization. The HCCs hosting a control rod are finely
discretized, to allow for the insertion of absorbingmaterial by discrete steps, while coarser axial
discretizations are used for the surrounding cells. This way the heterogeneous nature of each
node is preserved, with limited increase in the CPU time.

Part III is dedicated to the advancements on the method of short characteristics (MOSC).
In Chap. 9, a novel asymptotic method permits to lower the memory imprint of the CP ma-

trices, by reducing the number of computed cells. All HCCs sharing the same geometry and
having ’similar’ cross sections, for each energy group and computational region, are seen as
a ’perturbation’ of a ’reference’ HCC. This entails that the CP coefficients are calculated only
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for a subset of ’unperturbed’ physical cell configurations, with a consequent reduction of the
CPU time and of the memory occupation of the CP matrices. The solution of the transport
equation can be reconstructed by a Neumann series development, if the perturbation is ’small
enough’ with respect to the reference configuration. The series can be computed by consecu-
tive spatial sweeps, using the ’unperturbed’ CP matrices, applied to successive updates of the
neutron source. The overall CPU time is generally larger than standard MOSC, due to the extra
cost of Neumann iterations, within the inner loop. According to our preliminary studies, this
technique is particularly suited to self-shielded lattices or evolution calculations, to relieve the
memory pressure of CP-based solvers.

In Chap. 10, an analysis is proposed for CP coefficients properties. First, the CPU time is
reduced by piece-wise Taylor series expansion of exponential-like functions, depending on the
optical path and appearing in the definition of the CP matrices. The coefficients of the polyno-
mials are precomputed parameters, which are stored in memory at the beginning of each sim-
ulation. If the optical path exceeds a certain (predefined) quantity, the exponentials approach
zero and the CP coefficients reduce to simpler expressions. Second, a set of conservation rela-
tions, relating all incoming and outgoing degrees of freedom, allows to check the CP matrices
up to double precision. Finally, the application of symmetry and reciprocity relations is dis-
cussed, in order to lower the memory imprint and runtime of the CP coefficients, by reducing
the number of stored directions, for linear short characteristics.

In Chap. 11, the neutron source and the interface angular flux are approximated by piece-
wise parabolic polynomials. Previous studies have proven that the bilinear terms do not allow
to significantly coarsen the spatial discretization, thus they have been neglected. The presented
analysis shows that incomplete parabolic short characteristics (PSC) permit a major reduction
of the number of regions, while preserving good numerical accuracy. Nevertheless, the mem-
ory occupation is still larger than linear short characteristics, as the second-order terms do
not verify the aforementioned symmetry relations. Hence, a hybrid numerical approach, using
piece-wise linear developments on the radial plane and a piece-wise parabolic expansion along
the z-axis has been tested in the frame of PSC, in order to recover the prior radial symmetry
transformations and, in the meantime, reduce the number of axial steps.

Once addressed the major limits of the past version of the code, IDT is coupled to THEDI
(THErmohydraulique DIphasique), App. A, and XSTOOL (Cross-Section TOOL), for multiphysics
calculations, in Part IV.

In Chap. 12, a novel numerical pathway is proposed for coupledneutronics/thermal-hydraulics
(N/TH) simulations, in exact tridimensional geometry, without cross-section homogenization.
The thermal feedback is included within the power iteration loop. A user-defined parameter
allows to weaken the N/TH coupling, by executing THEDI everyN outer iterations. For the time
being, thermal-hydraulics is solved under simplified hypotheses, i.e., stationary monophasic
flow, with independent sub-channels. A python script allows to transfer data from IDT to THEDI
and, based on the new temperaturemap, updates the input file for XSTOOL. If the temperature
distribution has undergone significant change with respect to the prior multiphysics iteration,
i.e., δT (e)(r) > ϵ, with δT (e)(r) = T (e)(r) − T (e−N )(r), e being the outer iteration index and ϵ a
given tolerance, XSTOOL is executed for cross-section interpolation. Depending on the varia-
tion of the macroscopic cross sections, CP matrices update may not be necessary. If this is the
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case, the ’perturbation’ is simply updated andNeumann iterations permit to reconstruct the an-
gular flux. Note that, in this framework, critical-leakage iterations are not required. Moreover,
effective microscopic cross sections show milder dependence on the operational parameters
than homogenized nuclear data (Eq. 1.1-1.3), and, as such, open the way to a reduction of the
number interpolation nodes (Fig. 1.4).

Figure 1.4: σg,inU−238 and σg,outU−238 vs burn-up, for g ∈ [42, 89], where in/out indicate the inner/outerring of the fuel cell.
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2 - RÉSUMÉ EN FRANÇAIS
De tous les grands défis qui nous attendent, la crise climatique est probablement la plus ur-

gent et nécessite des solutions immédiates. Un nombre croissant de pays se sont déjà engagés
à réduire à zéro leurs émissions de gaz à effet de serre d’ici à 2050. Dans ce cadre, des institu-
tions telles que l’Agence internationale de l’énergie (AIE) ont proposé des voies durables pour
une transition énergétique techniquement et économiquement réalisable, [1], indiquant que
le nucléaire et l’hydroélectricité sont essentiels pour la production d’énergie à faible teneur en
carbone. Le 10 février 2023, le président de la République française a annoncé la construction
de 6 réacteurs pressurisés européens (EPR) de nouvelle génération, ainsi que de 8 réacteurs
supplémentaires à l’étude, afin d’atteindre 25GWe de nouvelle capacité nucléaire installée, d’icile milieu du siècle. Il semble évident que le développement de cette technologie jouera un rôle
clé dans les années à venir.

Un réacteur à fission est un système capable d’accueillir une chaîne de réaction de fission
contrôlée et auto-entretenue. Une réaction de fission est un processus complexe, initié par une
particule neutre. Plus précisément, un neutron est envoyé sur un noyau fissile, qui se divise
en deux fragments plus légers, avec la libération de neutrons supplémentaires et de rayons γ
prompts. Un défaut de masse∆m d’environ 10% de la masse du noyau cible est observé. Une
grande partie du ∆m est convertie en énergie cinétique des noyaux fils (∼ 170 MeV ), tandis
que de plus petites quantités apparaissent sous forme d’énergie cinétique des neutrons sec-
ondaires (quelques MeV chacun) et des photons γ (plusieurs MeV ). Globalement, l’énergie
libérée par un événement de fission est de plusieurs centaines de milliers de fois supérieure
à celle généralement libérée lors d’une réaction chimique. Les noyaux fils sont des particules
chargées et perdent de l’énergie par collisions successives avec les atomes environnants, en-
traînant une augmentation de la température du combustible nucléaire. La grande majorité
des réacteurs nucléaires est basée sur des fissions induites par des neutrons thermiques, c’est-
à-dire des neutrons en équilibre thermique avec le milieu. Le ralentissement des neutrons
d’une énergie élevée (∼MeV ) à des fractions de eV peut être réalisé au moyen d’un matériau
à faible numéro atomique, c’est-à-dire un modérateur. La plupart des réacteurs nucléaires
utilisent de l’eau à cette fin, qui sert également de liquide de refroidissement pour réduire la
température du combustible nucléaire. L’échange de chaleur se fait au niveau des générateurs
de vapeur. La production de vapeur, qui entraîne une turbine, permet de générer un courant
alternatif qui est injecté dans le réseau électrique.

La sûreté de fonctionnement et les performances sont des points clés à respecter dans la
conception d’un réacteur à fission. Plusieurs facteurs entrent en jeu, l’un des plus décisifs étant
la prédiction de la distribution des neutrons. L’équation fondamentale décrivant la densité neu-
tronique en fonction de la position, de l’angle, de l’énergie et du temps, c’est-à-dire n(r,Ω, E, t),
est l’équation de transport des neutrons. Elle peut être dérivée de l’équation de Boltzmann, en
négligeant les collisions entre neutrons, qui se produisent rarement dans les systèmesmultipli-
catifs réels. Les neutrons peuvent subir des réactions de différents types, notamment la fission,
la capture stérile, la diffusion, les réactions (n, 2n), pour n’en citer que quelques-unes, en fonc-
tion du noyau cible et de l’énergie incidente du neutron. Les interactions neutroniques sont
intrinsèquement stochastiques et ne peuvent être décrites qu’en termes de sections transver-

31



Figure 2.1: Section efficace microscopique totale du plutonium 239.From https://www-nds.iaea.org/exfor/endf.htm, Evaluated Nuclear Data File (ENDF).

sales microscopiques, σ, qui peuvent être représentées comme la section transversale présen-
tée par le noyau cible lorsqu’un neutron est sur le point d’entrer en collision. Dans un interval
d’énergie, compris entre quelques eV et des centaines de keV pour les nucléides lourds, les
sections efficaces microscopiques présentent de fortes variations en fonction de la vitesse du
neutron, connues sous le nom de résonances. Ce comportement affecte fortement l’évolution
du flux neutronique, défini comme le produit entre la densité et la vitesse des neutrons, c’est-
à-dire φ = n ·v, qui, à son tour, présentera des variations abruptes. La probabilité d’interaction
des neutrons par unité de longueur dépend linéairement de la section efficace microscopique
et de la densité nucléaire,N . Le produit des deux définit la section transversalemacroscopique,
Σ = N · σ.
Comme indiqué, les réactions nucléaires libèrent une quantité considérable d’énergie, qui

affecte la distribution de la température de tous les composants et, en particulier, du com-
bustible nucléaire et du modérateur. En retour, l’augmentation de la température a deux con-
séquences. La première est liée à l’agitation thermique et porte le nom d’effet Doppler. En
pratique, en raison du mouvement relatif entre le projectile et la cible, les résonances de la
section transversale s’élargissent, en augmentant la probabilité qu’un neutron disparaisse à
la suite d’un événement d’absorption. Le second effet concerne principalement la densité du
modérateur. En raison de l’augmentation de la température, le nombre de cibles légères par
unité de volume diminue et, par conséquent, la modération baisse. Comme la plupart des
réactions de fission sont provoquées par des neutrons thermiques, la population de neutrons
diminue. Cette simple analyse permet de comprendre qu’un réacteur nucléaire est un système
multiphysique complexe, où plusieurs processus, en particulier la neutronique, la thermohy-
draulique et les performances du combustible, présentent de fortes interdépendances. D’une
manière générale, un problèmemultiphysique peut être abordé de deuxmanières différentes,
c’est-à-dire par un processus monolithique ou, au contraire, par une stratégie séparée, [2]. La
première résout l’ensemble des équations d’équilibre simultanément à chaque étape, tandis
que la seconde analyse chaqueprocessus physique en soi, en supposant que la solution de tous
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les autres problèmes physiques est fixée. La seconde approche nécessite plusieurs itérations
entre les deux "monophysiques", où chaque processus fournit un ensemble de données pour
alimenter les autres, afinde simuler la rétroaction correspondante. Les calculs de cœur du réac-
teur mettent généralement en œuvre la stratégie séparée, en résolvant, d’une part, l’équation
de transport des neutrons et, d’autre part, la thermohydraulique et la thermomécanique du
combustible, par des modules dédiés ou des codes couplés, en effectuant des itérations suc-
cessives entre les "monophysiques", afin de faire converger la solution multiphysique.

L’équation de transport des neutrons peut être résolue soit par des méthodes détermin-
istes, soit par des méthodes Monte Carlo, [3]. Ces dernières sont mieux adaptées aux prob-
lèmes de grande complexité géométrique, pour évaluer des quantités intégrales, telles que la
dose absorbée, dans les calculs de radioprotection, ou la période du réacteur, dans les éval-
uations de sûreté-criticité. Inversement, l’évaluation des quantités différentielles, telles que
le flux neutronique, est généralement mieux traitée par les méthodes déterministes, car elles
sont plus efficaces en termes de calcul et prennent moins de temps. Bien qu’elles soient plus
précises en termes de représentation de l’énergie, les simulations Monte Carlo sont peu pra-
tiques si l’on considère l’ensemble du cycle du réacteur.

Ces dernières années, la croissance exceptionnelle de la puissance de calcul a rendu l’applica-
tion des techniques de transport direct 3D plus attrayante pour les calculs de cœur du réacteur.
Un exemple est fourni par le solveur de transport OpenMOC à coordonnées discrètes [4], qui
applique la méthode des caractéristiques dans des géométries 3D réelles et met en œuvre
une décomposition de domaine échelonnable pour une parallélisation massive. En général, le
transport de neutrons en 3D dans le cœur entier montre une grande stabilité de convergence
et une grande précision numérique. Cette approche est particulièrement adaptée aux applica-
tions aux cœurs de réacteurs avec de fortes hétérogénéités axiales, et, en général, présente un
meilleur accord avec les solutions de référence Monte Carlo à énergie continue.
Malgré les progrès réalisés en termes d’hardware, les solutions de haute fidélité pour le trans-
port "full core" sont encore irréalisables pour les simulations industrielles du cycle du réacteur.
La grande majorité des analyses commerciales s’appuie sur la stratégie dite en deux étapes,
basée sur la réduction de la dimensionnalité, par homogénéisation spatiale et condensation
en énergie, afin de limiter l’effort de calcul ainsi que les ressources nécessaires pour exécuter
la simulation.
Dans un premier temps, l’équation de transport des neutrons est résolue avec une énergie
et une discrétisation spatiale affinées, pour un ensemble de motifs répétitifs, par exemple les
assemblages de combustible, avec des conditions limites simplifiées. Étant donné que pour
un grand nombre de réacteurs industriels, la majeure partie de l’hétérogénéité est concentrée
dans le plan radial, les assemblages de combustible sont supposés être bidimensionnels. Dans
un premier temps, les échanges mutuels de courant neutronique entre les assemblages sont
négligés, en imposant des conditions limites de réflexion. La solution spatiale de l’équation de
transport des neutrons est généralement dérivée en utilisant soit les caractéristiques longues
2D, soit les probabilités de collision (avec des courants d’interface). La fuite neutronique au
bord du reseau est incluse artificiellement. En supposant que le réacteur est critique, c’est-
à-dire qu’il est capable de supporter une chaîne de réaction de fission auto-entretenue, un
modèle approximatif est utilisé, où le facteur de multiplication effectif (c’est-à-dire le rapport
entre la production et la disparition des neutrons, keff ) est forcé à 1. En pratique, le flux neu-
tronique est représenté comme le produit d’une distribution "macroscopique", dépendant de
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Figure 2.2: Schéma de calcul en deux étapes.

la seule position, et du spectre fin, dépendant de l’ensemble des variables indépendantes,
obtenu en résolvant l’équation de transport avec des conditions aux limites de réflexion. Le
flux "macroscopique" est supposé résoudre une équation de Laplace, où un paramètre critique
(le "buckling", B2) est recherché par itérations successives. Comme le buckling représente,
jusqu’au signe, la dérivée seconde de la distribution "macroscopique", cette procédure peut
être représentée comme un ajustement itératif de la courbure du flux, afin de faire converger
keff vers 1, [5]. La simulation sur réseau permet de produire une bibliothèque de sections effi-
caces à quelques groupes, avec des milieux homogénéisés. Ce calcul est répété pour diverses
conditions de fonctionnement ou paramètres, qui peuvent inclure un ensemble de tempéra-
tures (par exemple, la valeur locale T , la température du combustible et la température du
modérateur), la densité du modérateur, le type d’assemblage, le "burn-up" du combustible, la
concentration en bore, etc.
Dans la deuxième étape, le flux de neutrons et les taux de réaction sont calculés sur l’ensemble
du cœur du réacteur, en utilisant la base de données construite, qui contient les sections effi-
caces générées par le calcul de réseau. Le cœur du réacteur est modélisé comme un réseau
tridimensionnel d’assemblages ou de cellules homogénéisés et est résolu par un transport sim-
plifié, avec des groupes d’énergie condensés. Les fuites neutronique sont prises en compte en
imposant des conditions aux limites exactes à la frontière du réacteur. La solution peut être
recherchée pour les transitoires du réacteur ou dans des conditions stationnaires. Un simple
bilan neutronique, mettant en équation la disparition et la production de neutrons, est résolu
pour chaque nœud grossier et groupe d’énergie condensée, où la fuite sur la frontière du nœud
peut être représentée par la loi de Fick, reliant le courant neutronique à la valeur négative du
gradient du flux, [6].
Malgré leur popularité et leur rôle incontesté dans l’industrie nucléaire, les calculs en deux
étapes sont affectés par un certain nombre de limitations. Au niveau du réseau, les échanges
nets entre les assemblages de combustible sont d’abord négligés, ce qui donne un facteur de
multiplication qui peut être très différent de celui de l’ensemble du système. Cela est parti-
culièrement vrai pour les réacteurs rapides, où les libres parcours moyens des neutrons ont
tendance à être plus longs, en entraînant un couplage plus fort entre les assemblages voisins,
[7]. En supposant que le système est critique, un modèle de fuite critique au B2 est nécessaire
pour faire converger keff vers 1. Comme mentionné ci-dessus, l’une des principales approxi-

34



Figure 2.3: Section efficace d’absorption du gadolinium 157 homogénéisée à 2 groupes en fonc-tion du burnup. Figures de: I. Zmijarevic, " Some aspects of creating and usingmulti-parametercross section library", DES/ISAS/DM2S/SERMA/LLPR/NT/2022-70741/A, Courtesy of Igor Zmijare-vic.

mations de cette méthode consiste à supposer que le flux neutronique peut être représenté
comme le produit d’une fonction macroscopique dépendant de la position et de la solution de
transport détaillée 2D-infinie.
Un point crucial du calcul à deux niveaux réside dans la production de la bibliothèque paramé-
trique à quelques groupes, avec des cellules homogénéisées, pour un grand ensemble de points
d’état. Chaque point d’état est défini par une collection de paramètres de fonctionnement,
prenant des valeurs discrètes sur une grille multidimensionnelle. La bibliothèque générée est
utilisée par un solveur de transport simplifié pour déduire la solution sur l’ensemble du réac-
teur. Plus précisément, dans la deuxième étape, les interdépendances de la neutronique, de
la thermohydraulique et de l’évolution des isotopes sont prises en compte. Chaque simulation
d’évolution est traitée comme un calcul en régime stationnaire, qui tient compte de la rétroac-
tion de la thermohydraulique sur le transport des neutrons, ainsi que de la concentration en
bore et de la position des barres de contrôle qui rendent le système critique. Afin de déduire
les sections transversales pour l’état actuel du réacteur, c’est-à-dire l’ensemble des conditions
d’exploitation qui définissent le système à l’heure actuelle, sur la base des données disponibles
dans la bibliothèque de sections transversales homogénéisées à quelques groupes, une in-
terpolation multiparamétrique est nécessaire. D’autre part, les sections paramétriques ho-
mogénéisées présentent de très fortes variations, nécessitant des polynômes d’interpolation
d’ordre élevé pour leur représentation. Un exemple est fourni dans la Fig. 2.3, montrant la
section efficace homogénéisée du gadolinium 157, qui a subi une condensation d’énergie sur
H = 2 groupes, en fonction du burnup. Une forte variation est observée sur l’ensemble du cycle
du combustible, ce qui peut être justifié en notant que la section transversale homogénéisée
ne dépend pas seulement de l’ensemble des paramètres susmentionnés, p, mais, en raison de
la pondération par le flux, de l’ensemble du fonctionnement du réacteur. En d’autres termes,

σc,hhom =

〈
σ(p), φ

〉
c,h〈

1, φ
〉
c,h

(2.1)

est la section efficace homogénéisée à quelques groupes, obtenue par intégration sur un mail-
lage spatial/énergétique grossier, avec ⟨·, ·⟩c,h =

∫
Dc d

3r
∫
∆Eh

dE. Sa variation élémentaire au-
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tour d’un point (p0, ϕ0) est définie par :
δσhom =

(
∇pσhom

)∣∣
(p0,ϕ0)

· dp+

(
∂σhom
∂φ

)∣∣∣∣
(p0,ϕ0)

dφ, (2.2)
où le premier terme s’écrit comme suit,(

∇pσhom
)∣∣

(p0,ϕ0)
· dp =

∑
m

(
∂σhom
∂pm

)∣∣∣∣
(p0,ϕ0)

dpm. (2.3)
Plusieurs nœuds d’interpolation sont nécessaires pour reconstruire la dépendance des sec-
tions transversales homogénéisées par rapport à l’ensemble des paramètres de fonctionnement.
Les sections transversales estimées sont affectées par de nombreuses sources d’erreur, d’esti-
mationdifficile, y compris la rétroaction thermique-hydraulique et l’environnement d’assemblage.

Le présent travail de thèse propose une nouvelle méthode de simulation pour les calculs
couplés de neutronique/thermique-hydraulique, dans une géométrie tridimensionnelle exacte,
sans homogénéisation des sections efficaces. En particulier, l’accent est mis sur la solution
de l’équation de transport des neutrons au moyen du code de transport intégro-différentiel
(IDT) d’APOLLO3®. IDT résout l’équation de Boltzmann linéairemultigroupe par des ordonnées
discrètes combinées à des matrices de probabilité dépendant de l’angle, avec une expansion
PN de la sections de diffusion. Plus précisément, IDT applique des caractéristiques courtes à
des nœuds cartésiens 2D ou 3D, hébergeant des cylindres hétérogènes, dans une géometrie
modulaire. Les cellules cartésiennes hétérogènes (HCC) voisines sont couplées par des courants
linéaires par morceaux, qui sont transmis d’une cellule à l’autre par un balayage spatial. De
manière similaire à la méthode des probabilités de collision couplées aux courants d’interface
(CCCP), les caractéristiques courtes restent finies lorsque le chemin optique s’approche de zéro,
ce qui permet une représentation précise des milieux vides. Contrairement à d’autres codes
basés sur les caractéristiques courtes, IDT n’approxime pas le flux angulaire sur les surfaces
internes du HCC, mais seulement sur la grille d’interface.

La version actuelle d’APOLLO3® IDT a plusieurs limitations, qui peuvent empêcher ou re-
streindre son application aux calculs du cœur du réacteur. En particulier,

• Des études antérieures sur le code ont montré une faible précision numérique pour les
systèmes multiplicatifs avec de grands gradients, induits par des milieux fortement ab-
sorbants ou fortement diffusives ;

• APOLLO3® IDT n’est pas capable de modéliser des maillages non structurés / non con-
formes / non extrudés et son utilisation pratique est limitée aux géométries des réacteurs
à eau pressurisée (PWR) ;

• Le domaine spatial est discrétisé par un maillage cartésien conforme. L’insertion/ le
retrait des barres de contrôle nécessiterait des plans axiaux fins, afin de représenter
l’interface entre l’extrémité de la barre de contrôle et l’eau en dessous. Un tel choix n’est
pas pratique et peut entraîner des temps de simulation importants. L’alternative consiste
à effectuer une homogénéisation de la section transversale, par pondération par les vol-
umes ou (de préférence) par le flux, ce qui est un choix courant dans les solveurs nodaux
traditionnels. Si un tel modèle est mis en pratique, des discontinuités importantes sont
observées dans la dérivée première de la courbe de réactivité, conduisant à des écarts
significatifs entre le facteur de multiplication calculé et sa valeur réelle ;
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• Le coût en mémoire et le temps de calcul augmentent rapidement à mesure que le nom-
bre de régions augmente, limitant l’application des méthodes basées sur le CCCP aux
grands systèmes, avec plusieurs milliers de milieux. Cela se justifie par le fait que la mé-
moire occupée par les matrices de probabilité de collision augmente linéairement avec le
nombre de HCC, de groupes d’énergie et de directions SN et quadratiquement avec le
nombre de régions par cellule et avec le nombre de composantes de la base spatiale.

L’objectif de la thèse est de mettre en œuvre une nouvelle version du solveur IDT, capable
de résoudre ou de réduire considérablement les problèmes énumérés, afin de permettre son
utilisation pratique pour les calculs couplés neutroniques/ thermohydrauliques sur une variété
de systèmes industriels. Ceux-ci peuvent comprendre des réacteurs de différents types et de
différentes géométries.

Le présent manuscrit comprend quatre parties et est organisé comme suit.
Dans la partie I, les méthodes numériques de pointe pour la résolution de l’équation de

transport des neutrons sont rappelées.
Au chapitre 3, un aperçu rapide des sections efficaces des neutrons est fourni, ainsi que les

principales hypothèses conduisant au problème de transport des neutrons intégro-différentiel
dépendant du temps. Deux voies de solution, c’est-à-dire les méthodes Monte Carlo et les
méthodes déterministes, sont comparées, en soulignant leurs avantages et leurs inconvénients.

Dans le chapitre 4, il est proposé de se concentrer davantage sur les méthodes détermin-
istes. Chaque variable de l’espace des phases, c’est-à-dire r,Ω, E, est discrétisée. Le formal-
isme multigroupe est introduit pour la variable énergie. La boucle imbriquée, comprenant les
itérations de puissance, thermiques et internes, est illustré. L’angle peut être discrétisé par des
ordonnées discrètes ou par l’expansion PN . Le PN Simplifié (SPN ) est également mentionné
en tant qu’approximation du PN à plus faible occupation de mémoire. La solution spatiale
peut être fournie par une diversité de techniques numériques. Un sous-ensemble de méth-
odes basées sur la forme intégrale de l’équation de Boltzmann est discuté, en particulier la
méthode des probabilités de collision, la méthode des caractéristiques (longues) et la méthode
des caractéristiques courtes. La dernière section du chapitre 4 présente une introduction aux
techniques d’accélération. Dans ce cadre, une section spécifique présente la méthode CMFD
(Coarse-Mesh Finite Difference).

Le chapitre 5 décrit les principaux défis posés par les calculs du cœur du réacteur. Trois
approches sont comparées, c’est-à-dire la stratégie en deux étapes, le transport direct 3D et
la fusion 2D/1D. Les simulations d’insertion/retrait des barres de contrôle sont examinées, en
se concentrant sur l’effet de "rod cusping". Quatre techniques numériques sont mentionnées
pour réduire les déviations de la valeur de la réactivité, notamment les techniques de pondéra-
tion par le flux, l’approche d’équivalence et deux méthodes basées sur les sous-plans.

Dans le chapitre 6, une introduction à IDT est proposée. Le code étant équipé de plusieurs
schémas de discrétisation spatiale, l’accent est mis sur l’application de caractéristiques courtes
à des cellules cartésiennes hétérogènes. Un traçage modulaire permet l’intégration des matri-
ces angulaire de probabilité. Enfin, IDT s’appuie sur la méthode de décomposition de domaine,
pour réduire le temps CPU, grâce à un parallélismemassif. Une section dédiée fournit quelques
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clés sur son implémentation particulière dans IDT.
Les parties II-IV retracent les étapes fondamentales de ce travail de thèse.
Dans la partie II, des détails sont fournis sur le nouveau module géométrique d’IDT.
Dans le chapitre 8, l’application d’IDT au mouvement des barres de contrôle est discutée.

En utilisant les nouvelles capacités géométriques, qui permettent d’affiner la discrétisation lo-
cale des HCC et de générer des maillages XYZ non conformes, les mouvements des barres de
contrôle sont simulés sans recours à l’homogénéisation. Les HCC hébergeant une barre de
contrôle sont finement discrétisées, afin de permettre l’insertion de matériau absorbant par
steps discrets, tandis que des discrétisations axiales plus grossières sont utilisées pour les cel-
lules environnantes. De cette manière, la nature hétérogène de chaque nœud est préservée,
avec une augmentation limitée du temps de calculs.

La partie III est consacrée aux progrès sur la méthode des caractéristiques courtes (MOSC).
Dans le chapitre 9, une nouvelle méthode asymptotique permet de réduire l’empreinte

mémoire des matrices de probabilité, en réduisant le nombre de cellules calculées. Toute les
HCC partageant la même géométrie et ayant des sections efficaces "similaires", pour chaque
groupe d’énergie et région de calcul, sont considérée comme une "perturbation" d’une HCC
"de référence". Cela signifie que les coefficients ne sont calculés que pour un sous-ensemble
de configurations de cellules physiques "non perturbées", avec une réduction conséquente
du temps CPU et de l’occupation de la mémoire des matrices de probabilité. La solution de
l’équation de transport peut être reconstruite par un développement en série de Neumann, si
la perturbation est "suffisamment petite" par rapport à la configuration de référence. La série
peut être calculée par des balayages spatiaux consécutifs, en utilisant les matrices de proba-
bilité "non perturbées", appliquées à des mises à jour successives de la source de neutrons. Le
temps total de calculs est généralement supérieur à celui duMOSC standard, en raison du coût
supplémentaire des itérations de Neumann, dans la boucle interne. D’après nos études prélim-
inaires, cette technique est particulièrement adaptée aux reseaux autoprotégés ou aux calculs
d’évolution, afin de soulager l’occupation de la mémoire des solveurs basés sur les probabilités
de collision.

Au Chap. 10, une analyse est proposée pour les propriétés des coefficients de probabil-
ité. Premièrement, le temps CPU est réduit par un développement par morceaux en série de
Taylor de fonctions de type exponentiel, en fonction du chemin optique, apparaissant dans
la définition des matrices angulaires de probabilité. Les coefficients des polynômes sont des
paramètres précalculés, qui sont stockés en mémoire au début de chaque simulation. Si le
chemin optique dépasse une certaine quantité (prédéfinie), les exponentielles se rapprochent
de zéro et les coefficients se réduisent à des expressions plus simples. Deuxièmement, un
ensemble de relations de conservation, reliant tous les degrés de liberté entrants et sortants,
permet de vérifier les matrices angulaires de probabilité jusqu’à la double précision. Enfin,
l’application des relations de symétrie et de réciprocité est discutée, afin de réduire l’empreinte
mémoire et le temps de calcul des coefficients, en réduisant le nombre de directions stockées,
pour des caractéristiques linéaires courtes.
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Dans le Chap. 11, la source neutronique et le flux angulaire à l’interface sont approchés par
des polynômes paraboliques parmorceaux. Des études antérieures ont prouvé que les termes
bilinéaires ne permettent pas de réduire significativement la discrétisation spatiale, ils ont donc
été négligés. L’analyse présentée montre que les caractéristiques courtes paraboliques incom-
plètes (PSC) permettent une réduction importante du nombre de régions, tout en préservant
une bonne précision numérique. Néanmoins, l’occupation mémoire est encore plus grande
que les caractéristiques courtes d’ordre linéaire, car les termes du second ordre ne vérifient pas
les relations de symétrie susmentionnées. Ainsi, une approche numérique hybride, utilisant
des développements linéaires par morceaux sur le plan radial et une expansion parabolique
par morceaux le long de l’axe z a été testée dans le cadre de PSC, afin de récupérer les trans-
formations de symétrie radiale antérieures et, en même temps, de réduire le nombre de pas
axiaux.

Une fois abordées les limites majeures de la version précédente du code, IDT est couplé
à THEDI (THErmohydraulique DIphasique), App. A, et XSTOOL (Cross-Section TOOL), pour les
calculs multiphysiques, dans la Partie IV.

Au Chap. 12, une nouvelle voie numérique est proposée pour les simulations couplées neu-
tronique/thermohydraulique (N/TH), en géométrie tridimensionnelle exacte, sans homogénéi-
sation de section efficace. La rétroaction thermique est inclus dans la boucle des itérations
de puissance. Un paramètre défini par l’utilisateur permet d’affaiblir le couplage N/TH, en
exécutant THEDI toutes les N itérations externes. Pour l’instant, la thermohydraulique est
résolue sous des hypothèses simplifiées, c’est-à-dire un écoulement monophasique station-
naire, avec des sous-canaux indépendants. Un script python permet de transférer les données
d’IDT vers THEDI et, sur la base de la nouvelle nappe de température, met à jour le fichier
d’entrée pour XSTOOL. Si la distribution de température a subi un changement significatif
par rapport à l’itération multiphysique précédente, c’est-à-dire δT (e)(r) > ϵ, avec δT (e)(r) =

T (e)(r) − T (e−N )(r), e étant l’index d’itération externe et ϵ une tolérance donnée, XSTOOL est
exécuté pour l’interpolation de section. En fonction de la variation des sections efficacesmacro-
scopiques, la mise à jour des matrices angulaires de probabilité peut ne pas être nécessaire. Si
tel est le cas, la "perturbation" est simplement mise à jour et les itérations de Neumann perme-
ttent de reconstruire le flux angulaire. A noter que, dans ce cadre, les itérations de fuite critique
ne sont pas requises. De plus, les sections efficacesmicroscopiquesmontrent une dépendance
plus légère aux paramètres opérationnels que les données nucléaires homogénéisées (Eq. 2.1-
2.3), et ouvrent ainsi la voie à une réduction des nœuds d’interpolation (Fig. 2.4).
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Figure 2.4: σg,inU−238 et σg,outU−238 en fonction du burnup, pour g ∈ [42, 89], où in/out indique lacouronne interne/externe de la cellule combustible.
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Part I
SOLUTION OF THE BOLTZMANNEQUATION - STATE OF THE ART
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3 - THE BOLTZMANN EQUATION
3.1 . CONTEXT
The history of nuclear power for civil applications dates back to 1947, with the NRX reactor

in Chalk-River (Canada), and to 1955, with the Borax III reactor in Idaho (USA). Since then, sev-
eral nuclear power plants have been designed and connected to the electrical grid, in order to
serve the energy needs of tens of countries in the world. Currently, more than 400 fission reac-
tors operate in 32 countries, including the USA, leading the ranking with 92 operating reactors,
France (56), China (55), Russia (37), South Korea (25), and many others, for a total net capacity
of about 378 GWe, [8]. Despite the accident at Fukushima in 2011, more than 50 reactors (∼
60 GW) are currently under construction, mostly in Asia, where China leads the ranking with 19
new units, [8].
The most common fission reactor type is the so-called Pressurized Water Reactor (PWR),
which counts more than 300 operating units for energy production, as well as several hun-
dreds more for naval propulsion, [9]. In a few words, the energy released by neutron-induced
fission reactions on uranium 235 heats the water of a primary circuit, which in turns heats the
water circulating in a secondary circuit, driving to steam production. The steam is responsible
for the rotation of a set of turbines, whose mechanical energy is converted into electricity by
an alternator, [9].
The fundamental particle which is responsible for reactor’s functioning is the neutron, whose
discovery, by James Chadwick, dates back to 1932. The study of the migration, collisions and
evolution of the neutron population in the reactor core, which is addressed by neutronics, is
the central problem of nuclear power plants design and safe operation.

The present chapter offers a brief overview of key aspects of neutron transport theory, fo-
cusing on the fundamental equation governing the time evolution and spatial distribution of
the neutron population, namely theBoltzmannor transport equation. The discussion is orga-
nized as follows: in Sect. 3.2.1 and 3.2.2, the concept of cross section is introduced, together with
themain neutron-matter reaction types; in Sect. 3.2.3, the neutron distribution is characterized
in terms of particle density and angular flux; in Sect. 3.2.4, the neutron transport equation is
derived; in Sect. 3.2.5, the boundary and initial conditions are recalled; finally, in Sect. 3.2.6,
a comparison between Monte Carlo and deterministic methods is proposed, pointing out the
advantages and drawbacks of both.
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3.2 . NEUTRONICS
3.2.1 . Nuclear Reactions Induced by Neutrons

Let us illuminate a target of N nuclides per unit volume with a monodirectional beam of
monoenergetic neutrons, with intensity I [ 1

cm2s
]. The target is orthogonal to the neutron direc-

tion and its width is equal to ∆t. The expected number of nuclear reactions per unit surface
and time, R [ 1

cm2s
], reads as:

R = P · I, (3.1)
where P = σ · N · ∆t is the reaction probability, σ [cm2] being a proportionality coefficient,
known as microscopic cross section. The microscopic cross section generally differs signif-
icantly from the geometric area of a nucleus, which may range from 10−30 to 10−26cm2, de-
pending on the target nuclide. For instance, for a (n, γ) reaction on 157

64Gd, where n is a neutronin the thermal range and 157
64Gd is the isotope of gadolinium with mass number A = 157, the

microscopic cross section reaches 4.9 · 10−20cm2. For historical reasons, a more natural unit
for the microscopic cross section is the barn (b), where 1b = 10−24cm2.

The product Σ = σ ·N [ 1
cm ] has a simple interpretation, as it represents the reaction prob-

ability per unit length, and is calledmacroscopic cross section. The reciprocal of the macro-
scopic cross section is the neutronmean free path, λ [cm], which represents the average dis-
tance traveled by a neutron before collision.

Neutrons may interact with matter in different ways. For this reason, a partial cross sec-tion σj may be defined for each interaction type. Tab. 3.1 offers an overview of the main re-
action types which take place in a fission reactor, [10] . A partial microscopic cross section is
associated to each collision type. Some reactions may or may not have a threshold (abbr "Thr."
in Tab. 3.1): for instance, neutrons of any energymay cause a fission reaction on a fissile nuclide;
clearly, the same does not apply to fissionable nuclides. For the sake of clarity, the following
notation has been adopted:
• Atomic Number, Z
• Mass Number, A
• Number of fission neutrons, ν
• Fission Products, P1, P2

• Reaction with threshold,✓
• Reaction without threshold, −
Partial cross sections are additive, thus the sum over all interaction types simply returns

the total cross section, i.e.,
σt =

∑
j

σj . (3.2)
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Reaction type Reaction σj Thr NotationElastic scattering n+ A
ZX → n+ A

ZX σe − (n, n)

Inelastic scattering n+ A
ZX → n′ + A

ZX
∗ σi ✓ (n, n′)

(n, xn)-reactions n+ A
ZX → n1 + ...+ nx +

A−1
ZX σn,xn ✓ (n, xn)

Radiative capture n+ A
ZX → γ + A+1

ZX σc − (n, γ)

(n, α) reactions n+ A
ZX → α + A−4

Z−2X σα (n, α)

Fission n+ A
ZX → P1 + P2 + ν n+ γ σf (n, f)

Table 3.1: Main reaction types occurring in a fission reactor.

The same applies to macroscopic cross sections. In reactor physics, it is common practice to
group the cross sections as follows [5]:

σs = σe + σi +
∑
x≥2

σn,xn, (3.3)
σa = σf + σc + σα, (3.4)

σs and σa being the scattering cross section, which accounts for elastic and inelastic scatteringevents as well as (n, xn)-reactions, and the absorption cross section, which addresses to all re-
actions involving the absorption of the incident neutron, respectively.

Cross sections strongly depend on the energy of the incident neutron. As shown in Figs. 3.1-
3.2, cross sections display abrupt variations as a function of the energy, which take the form
of sharp peaks, known as resonances, and correspond to distinct energy levels of the com-
pound nucleus. One may also notice the peculiar 1/v behaviour, v being the projectile speed
at relatively low energies. Heavy nuclides, 23892U typically exhibit very packed resonances in the
epithermal range, i.e., from ∼ 1 eV to 100 keV , whereas, for lighter nuclides, like hydrogen
or oxygen isotopes, the nuclear energy structure is more loose, and the first resonance is ob-
served at much higher energy (around 400 keV , for 16

8O, Fig. ). Finally, heavier nuclides shownarrower resonances, which represent one of the major matters of concern for deterministic
calculations.

3.2.2 . Differential Scattering Cross Section and Fission Neutrons Distributions
In order to account for the dependence of the secondary neutron distribution on the inci-

dent neutron energy and direction in scattering events, let us introduce a probability density
distribution, ps(Ω′, E′ → Ω, E), such that

ps(Ω
′, E′ → Ω, E) d2Ω dE (3.5)

is the probability that a neutron with direction Ω and energy E is emitted in the differential
element d2Ω dE, provided an incident neutron with direction Ω′ and energy E′. For isotropic
media, the scattering probability density does not depend separately on the incoming and out-
going angular directions, but only on the cosine of the deviation angle, namely µ = Ω′ · Ω. A
double differential cross section may be introduced, as follows, [5]:

σs(E
′ → E,µ) = σs(E) ps(E

′ → E,µ). (3.6)
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Figure 3.1: Total cross section of 238
92U . From https://www-nds.iaea.org/exfor/endf.htm, Evalu-ated Nuclear Data File (ENDF).

Figure 3.2: Total cross section of 16
8O. From https://www-nds.iaea.org/exfor/endf.htm, Evalu-ated Nuclear Data File (ENDF).
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Eq. (3.6) can be easily extended to the macroscopic scattering cross section.
On the other hand, fission neutrons dependmildly on the direction of the incident neutron,

thus fissions are generally assumed to be isotropic in the laboratory frame. The neutron mul-
tiplicity νf (E′), i.e., the average number of neutrons emitted per fission event, and the fission
neutron spectrum χ(E′), i.e., the neutron energy distribution after a fission event, are assumed
to depend only on the incoming and outgoing energy, respectively, [15]. Several functions have
been proposed to fit the fission spectrum; a common choice is the Watt spectrum, which reads
as

χi = C(ai, bi) e
−aiEsinh

√
biE, (3.7)

where ai and bi depend on the isotope i and C is a function of both ai and bi, [17].
3.2.3 . Phase-space Variables and Angular Flux

Despite the obvious difficulty to provide a general definition, fission reactor physicists usu-
ally concur that neutronics is the study of neutron travelling and collisions in matter, aimed de-
termining the conditions for a self-sustaining chain reaction and the associated reaction rates
distributions, [10]. Neutronics covers a broad range of applications, including criticality safety
and kinetics, [11], perturbation theory and sensitivity analysis, [12] , fuel cycle and multi-physics,
[13], just to name a few.

Neutrons may be modelled as a statistical population of density n(r,Ω, E, t) [ 1
cm3·eV ·strad ],where r,Ω, E, t represent, respectively, the neutron position, angular direction, kinetic en-

ergy and time, [14]. The product n(r,Ω, E, t) d3r d2Ω dE represents the number of neutrons
around the point r,Ω, E, within the phase-space element d3r d2Ω dE, at time t. Provided that
v(E) =

√
2E
m is the neutron speed, the product φ = nv [ 1

cm2·s·eV ·strad ] defines the angular flux,which in turn depends on the whole set of phase-space variables. The angular flux is a mathe-
matical definition, with no intuitive physical interpretation. Nevertheless, it is tightly related to
the rate of collision events, and thus the reactor power distribution, as the number of interac-
tions per unit time depends on both the particle density and speed, [5].

Let us consider a surface element dS, of normal unit-vector ns. The neutrons crossing dSbetween t and t + dt are contained in a cylinder of base dS and generating lines parallel to Ω

and length equal to v(E) · dt. Their number is defined by
n(r,Ω, E, t) v(E)dtΩ · ns dS. (3.8)

The product J = nv, where v = v(E)Ω is the neutron velocity, represents the angular currentdensity.
By integrating over all directions, one retrieves the scalar flux Φ and current density J,

Φ(r, E, t) =

∫
4π
φ(r,Ω, E, t)d2Ω (3.9)

J(r, E, t) =

∫
4π
J(r,Ω, E, t)d2Ω (3.10)
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Intuitively, the scalar flux Φ(r, E, t) is the number of neutrons crossing a unitary sphere
centered at r, per unit energy and time.

It is commonpractice to split the scalar current in two contributions, i.e., a ’positive’ term, Eq.
(3.11), traversing the surface in the outward direction, and a ’negative’ term, Eq. 3.12, traversing
the surface in the inward direction:

J+ =

∫
Ω·ns>0

J(r,Ω, E, t) · ns d2Ω , (3.11)

J− = −
∫
Ω·ns<0

J(r,Ω, E, t) · ns d2Ω , (3.12)
where ns is the outward normal. Hence, the net current is provided by J = J+ − J−, [14].

3.2.4 . Neutron Transport Equation
In order to derive the neutron transport equation, a few hypotheses are introduced, [10]:
• The de Broglie wavelength reads as λB = h

p , where h = 4.1356 · 10−15 eV · s is the Planck
constant and p = mv is the module of the linear momentum. Both for thermal and
fast neutrons, λB is much smaller than the inter-atomic distances, hence neutrons’ wave
nature can be neglected;

• The rest mass of a neutron (∼ 1 GeV ) is much larger than the maximum energy of the
Watt spectrum (∼ 20MeV ). As a consequence, fission reactor neutrons can be treated
as non-relativistic particles;

• Neutrons undergo β-decay with a half life T ∼ 10 min. Nevertheless, as the neutron
lifetime in a reactor is far lesser (∼ ms). Therefore, neutrons can be modelled as stable
particles;

• Neutron-neutron collisions are negligible, as the average neutron density is of the order
of 109 cm−3, while the atomic density of a medium is of the order of 1023 cm−3, leading
to a linear formulation of the transport equation.

In conclusion, neutrons can be treated as rarefied gas of classical particles, which undergo
stochastic collisions, with linear probability equal to the macroscopic cross section.

This said, let us choose a Lagrangian frame of reference, i.e., the control volumemoves with
respect to the laboratory frame, following the neutrons, [15], [16]. Dividing by the phase-space
volume element d3r d2Ω dE and taking the limit as∆t→ 0, the balance equation reads as

dn(r,Ω, E, t)

dt
+Σt(r, E) v(E) n(r,Ω, E, t) =∫

4π

∫ ∞

0
d2Ω ′dE′ νsΣs(r,Ω

′, E′ → Ω, E) v(E′) n(r,Ω′, E′, t) +∑
i

χi(r, E)

4π

∫
4π

∫ ∞

0
d2Ω ′dE′ νifΣ

i
f (r, E

′) v(E′) n(r,Ω′, E′, t),

(3.13)

where
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• Ω′, E′ are the incoming neutron direction and energy, respectively;
• the second term on the left hand side of the equation represents the total collision rate;
• the first term on the right hand side of the equation represents the rate of secondary
neutrons produced by scattering interactions, where νs is the mean number of neutrons
per diffusion collision and depends on both the position and the incident neutron energy;

• the second term on the right hand side of the equation represents the rate of secondary
neutrons produced by fission, where i = 1, ..., Nf , Nf being the number of fissile iso-
topes, χi is the Watt spectrum, and νif is the mean number of neutrons per fission and
depends on both the position and the incident neutron energy.

The relation between the Lagrangian (or material) and Eulerian time derivatives is given by
d

dt
=

∂

∂t
+ vΩ · ∇. (3.14)

Hence, by injecting φ = nv and Eq. (3.14) into (3.13), one obtains the integro-differential
transport equation,

1

v

∂φ

∂t
+Ω · ∇φ+Σt(r, E) φ(r,Ω, E, t) =∫

4π

∫ ∞

0
d2Ω ′dE′ νsΣs(r,Ω

′, E′ → Ω, E) φ(r,Ω′, E′, t) +∑
i

χi(r, E)

4π

∫
4π

∫ ∞

0
d2Ω ′dE′ νifΣ

i
f (r, E

′) φ(r,Ω′, E′, t).

(3.15)

Eq. (3.14) is responsible for the appearance of Ω · ∇φ, i.e., the streaming term, and may
be related to the number of neutrons escaping from a phase-space volume element, per unit
time.

3.2.5 . Initial and Boundary Conditions
The solution space may be restricted to particular solutions by imposing initial and bound-

ary conditions. The solution existence and uniqueness have been investigated by several au-
thors and a rigorous treatment may be found in [18]. Eq. (3.15), together with albedo boundary
conditions 1

φ(x−, t) = βφ(x−, t), x− ∈ ∂D−, (3.16)
and initial condition

φ(x, t = 0) = f(x), x ∈ D, (3.17)
forms a Cauchy problem, where
• D = V × [0, 4π]× [0,∞), with V ⊆ R3, is a phase space region,
1The term Albedo, derived from the Latin word albus (’white’), has been introduced into optics byLambert, in order to define the fraction of incident light reflected isotropically by a surface, [19]. Thechoice of albedo boundary conditions is common in reactor physics. In fact, they relate incoming andoutgoing surface angular fluxes, acting as a neutron reflector surrounding the reactor core. From aphysical standpoint, albedo boundary conditions allow simulating both the exiting neutrons leaving themultiplying system and the neutrons that are reflected into the reactor core.
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• ∂D− = {(r,Ω) ∈ ∂V × [0, 4π] : Ω · n∂V (r) < 0}, n∂V (r) being the outward unit normal
vector at r ∈ ∂V ,

• ∂D+ = {(r,Ω) ∈ ∂V × [0, 4π] : Ω · n∂V (r) > 0},
• β is the albedo operator and reads as

βφ(x+, t) =

∫ ∞

0
dE′

∫
∂D+

d2Ω ′ d3r′ β(r′,Ω′, E′ → r,Ω, E) φ(r′,Ω′, E′, t), (3.18)
• f is a known function of x = {r,Ω, E} inD.
Vacuum and reflection boundary conditions may be derived from Eq. (3.16), setting the

albedo operator β as indicated in 3.2.5 and 3.2.5.
Vacuum boundary conditions
Vacuum (or non-reentering) boundary conditions are obtained by setting β equal to zero. As a
result, vacuum boundary conditions may be expressed as

φ(x−, t) = 0, x− ∈ ∂D−. (3.19)
Reflective boundary conditions
Let us consider a surface Γ and suppose that Ω · nΓ(r) < 0. Let us suppose that neutrons are
reflected into the reactor core, as follows:

φ(r,Ω, E, t) = φ(r,Ω′, E, t), (3.20)
with

Ω′ = Ω− 2nΓ(r)
(
nΓ(r) ·Ω

) (3.21)
Eq. (3.20) is known as reflective boundary condition, and may be derived from Eq. (3.16), by

setting
β(r′,Ω′, E′ → r,Ω, E) = δ

(
r′ − r

)
δ
(
Ω′ − (Ω− 2nΓ(nΓ ·Ω))

)
δ
(
E′ − E

)
. (3.22)

Eq. (3.20) assumes that the boundary is a perfect mirror, as neutrons may be only reflected
with a given angle and no escapes are admitted. This is also equivalent to an infinite periodic
medium, where the elementary unit is the multiplying system whose boundary has been pro-
vided with reflective boundary conditions. Both vacuum and reflective boundary conditions
are commonly used in lattice calculations, as shown in Chapter 5.

3.2.6 . Monte Carlo vs Deterministic Methods
The solution of the Boltzmann equation can be attained by means of diverse numerical

approaches, based either on Monte Carlo or deterministic methods:
• Monte Carlo methods, [20]. As the solution of the transport equation corresponds to
the expected value E[x] of the neutron distribution P (x), a Monte Carlo game may be
formulated by generating a sample {xi}i=1,...,N obeying P (x). An approximation of E[x]

can be then retrieved by computing the arithmetic mean, µN = 1
N

∑n
i=1 xi, such that
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limN→∞ µN = E[x]. The primary source of error is due to the finiteness of the sample:
one can prove that the statistical error goes as 1/√N .
In practice, Monte Carlo methods simulate the particle histories, one by one. In this
sense, Monte Carlo’s point of view is microscopic, since it closely follows the trajectory
of the particle as it migrates and undergoes collisions in matter. The ultimate objective
is to compute the response of a ’detector’ region D, by computing an ensemble aver-
age. In principle, no approximations are introduced, the only limiting factor being the
computational time to achieve convergence. It can be proven that Monte Carlo become
competitive with deterministic methods as the number of dimensions of the problem
increases.

• Deterministic methods. Unlike Monte Carlo, deterministic methods adopt a macro-
scopic point of view, which consists in discretizing each variable of the phase space and
applying numerical techniques to the multigroup formulation of the neutron transport
equation. As a result, the limit of deterministic methods resides in the inherent error
introduced by the particular discretization. More specifically, the approximation which
mostly affects the numerical precision of deterministic solvers is the multigroup dis-
cretization, weighting the macroscopic cross sections by the angular flux. As the latter
is an unknown, an approximated self-shielding model is adopted, to compute the multi-
group cross sections. Despite the loss of precision with respect to continuous-energy
Monte Carlo, deterministic methods praise much shorter computational times and, as
a consequence, are generally preferred over Monte Carlo for industrial calculations. In
the following, an overview of the main deterministic approaches will be provided, before
introducing the Integro-Differential Transport solver, IDT.
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4 - SOLUTIONOF THE BOLTZMANN EQUATIONBYDETER-
MINISTIC METHODS
4.1 . TIME-DEPENDENT NEUTRON TRANSPORT EQUATION

4.1.1 . Prompt and Delayed Neutrons
When a neutron is absorbed by a fissile nucleus, a fission reaction may occur. For a split

second, a compound nucleus is formed, whose shape rapidly evolves, as described in Fig. 4.1.
Due to Colombian repulsion, the peanut lobes (stage 3, Fig. 4.1) are pushed apart, until fis-

sion in two excited fragments occurs (binary fission). The fission fragments rapidly de-excite,
emitting νp prompt neutrons and γ-rays, with a delay of 10−17s. As mentioned in 3.2.2, prompt
fission neutrons are emitted with energy distribution χp, where χp is the Watt spectrum, with
average energy of about 2 MeV . Nevertheless, a fraction of neutrons νd (∼ 1%) are emitted
with much longer delay, due to the decay of some fission products, named precursors, with a
half-life of tens of seconds. These neutrons are called delayed neutrons and are emitted with
energy spectrum χd, of average∼ 100 keV . Thanks to delayed neutrons, the control of nuclear
power plants is possible, allowing for civil applications of nuclear energy.

As a consequence, in order to assess the time-dependent solution of the Boltzmann equa-
tion, one has to split the neutron source in two terms, i.e., a prompt fission source qp, Eq. (4.1),and a delayed source qd, such that, Eq. (4.2)

qp(r, E, t) =
∑
i

χip(r, E)

4π

∫
4π

∫ ∞

0
d2Ω ′dE′ νipΣ

i
f (r, E

′) φ(r,Ω′, E′, t), (4.1)

qd(r, E, t) =
M∑
j=1

χjd(r, E)

4π
λjcj(r, t). (4.2)

Precursors are generally subdivided intoM families, as indicated in Eq. (4.2), with different
decay constants λj and concentrations cj , j = 1, ...,M , evolving as follows:

∂cj(r, t)

∂t
= −λjcj(r, t) +

∫ ∞

0
dE νjdΣ

j
f (r, E) Φ(r, E, t), j = 1, ...,M. (4.3)

For the sake of completeness, let us introduce the operatorial form of the transport equa-
tion, which reads as

1

v

∂φ

∂t
+ Lφ = Hφ+ Fpφ+ qd + qe, (4.4)

where L is the transport operator,
Lφ = Ω · ∇φ+Σtφ, (4.5)

H is the scattering operator,
Hφ =

∫
4π

∫ ∞

0
d2Ω ′dE′ νsΣs(r,Ω

′, E′ → Ω, E) φ(r,Ω′, E′, t), (4.6)
Fp is the prompt fission operator,
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Figure 4.1: Fission reaction.

Fpφ =
∑
i

χip(r, E)

4π

∫
4π

∫ ∞

0
d2Ω ′dE′ νipΣ

i
f (r, E

′) φ(r,Ω′, E′, t), (4.7)
qd is the delayed neutron source (Eq. (4.2)) and qe is an external source.

4.1.2 . Flux Factorization and Point-Kinetics
Let us suppose that a steady-state reactor is perturbed at time t = 0. As a consequence,

the reactor undergoes a quick adjustment, followed by a slower evolution of the whole power
map. With this in mind, let us factorize the angular flux as

φ(r,Ω, E, t) = a(t) ψ(r,Ω, E, t), (4.8)
where a(t) is a time-dependent amplitude, such that

a(t) =
〈
ω,

1

v
φ
〉
, (4.9)

whereas ψ(r,Ω, E, t) is a shape function, slowly varying in time, satisfying
〈
ω,

1

v
ψ
〉
= 1, (4.10)

where 〈·, ·〉 indicates a scalar product over the whole phase spaceD and ω(r,Ω, E) is an arbi-
trary non-null weighting function. Let us integrate Eq. (4.4) over D, after multiplication by ω.
Analogously, Eq. (4.3) is multiplied by χjd · ω and integrated over D. For the sake of simplicity,
let us neglect the external neutron source. The final result is a set ofM + 1 equations, of the
kind

da

dt
=
ρ− β
Λ

a+
∑
j

λjc
j (4.11)

dκj

dt
= −λjκj +

βj

Λ
a, (4.12)
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where
ρ =
⟨ω, (F− (L−H))ψ⟩

⟨ω,Fψ⟩
(4.13)

is the reactivity,
βj =

⟨ω,Fj
dψ⟩

⟨ω,Fψ⟩
(4.14)

is the effective delayed neutron fraction for family j,
Λ =

1

⟨ω,Fψ⟩
(4.15)

is mean neutron generation time,
κ = ⟨ω, χjdcj⟩ (4.16)

is the weigthed precursor concentration for family j. In Eq. (4.14), Fj
d is the delayed fission

operator for family j and reads as
Fjdφ =

χjd(r, E)

4π

∫
4π

∫ ∞

0
d2Ω ′dE′ νjdΣf (r, E

′) φ(r,Ω′, E′.t), (4.17)
Finally, we also introduced the steady-state fission operator F = Fp +

∑M
j=1F

j
d.

Although the weighting function ω(r,Ω, E) is, in principle, arbitrary, it may be proven that
the adjoint to the critical flux, [21], is an optimal choice, [22].

4.1.3 . Improved Quasi-Static Method
In 4.1.2, the point-kinetics equations have been derived, in order to predict the time evo-

lution of the amplitude function a(t) and of the weighted precursor concentrations κj(t), with
j = 1, ...,M . Let us replace Eq. (4.8) in Eq. (4.4) and (4.3). We obtain

1

v

∂ψ

∂t
+

1

v

ψ

a

da

dt
+ Lψ = Hψ + Fpψ +

1

a
(qd + qe) (4.18)

∂cj
∂t

= −λjcj +
4πa

χjd
Fjdψ. (4.19)

As ∂ψ

∂t
≪ da

dt
, in order to solve Eq. (4.11) - (4.12) and (4.18) - (4.19) two time-discretization scales

are used, a fine mesh T = {ti}i=1,...,n, on which the amplitude function is evaluated and a
coarse mesh τ ⊆ T , on which the shape function is evaluated. Eq. (4.11) - (4.12) and (4.18) - (4.19)
are solved alternatively, where Eq. (4.11) - (4.12) return a, given ψ, and Eq. (4.18) - (4.19) return
ψ, given a and da

dt
. Note that ψ is needed in Eq. (4.11) - (4.12), as the equation coefficients are

given by Eq. (4.13), (4.14) and (4.15). A scheme is proposed in Fig. 4.2 to visualize the algorithm,
for one coarse step, [23]

4.2 . STEADY-STATE NEUTRON TRANSPORT
In neutronics, a multiplying system is said to be critical, if the production and disappear-

ance rates counterbalance each other. If the reactor is close to criticality, one may get rid of
the time dependence in (4.4) artificially, by dividing the fission source by a positive parameter
k, namely the effective multiplication factor,

Lψk = Hψk +
1

k
Fψk, (4.20)
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Figure 4.2: Improved Quasi-Static method.
where ψk = ψk(r,Ω, E). Eq. 4.20 is an eigenvalue problem. We seek non-trivial solutions of
the kind {k, ψk}, where ψk represents the eigenfunction corresponding to the eigenvalue k. Asthe only solution with a physical significance is the one corresponding to the fundamental (ordominant) eigenvalue, i.e., the maximum value of k satisfying Eq. (4.20), the present work will
focus on searching the fundamental eigenpair.
If ψk is a solution of Eq. (4.20), then any function of the type c · ψk, where c is a constant, isalso solution of the k-eigenvalue problem. This constant may be set, so that the integral of the
power distribution matches the power of the reactor, [5].
Finally, according to the value of k, the reactor may be critical (k = 1), sub-critical (k < 1) or
super-critical (k > 1).

4.3 . ANGULAR DEPENDENCE OF THE SCATTERING CROSS SECTION
As mentioned in 3.2.2, for isotropic materials, the double-differential scattering cross sec-

tion Σs(r,Ω
′, E′ → Ω, E) does not depend on Ω′,Ω separately, but only on the cosine of the

deviation angle, µ = Ω′ ·Ω. Thus,
Σs(r,Ω

′, E′ → Ω, E) =
1

2π
Σs(r, E

′ → E,µ), (4.21)
where Σs(r, E, µ)may be projected onto the Legendre polynomials, [24], as follows:

Σs(r, E
′ → E,µ) =

1

2

∞∑
l=0

(2l + 1) Σs,l(r, E
′ → E) Pl(µ), (4.22)

with
Σs,l(r, E

′ → E) =

∫ 1

−1
dµ Σs(r, E

′ → E,µ) Pl(µ). (4.23)
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Thanks to the addition theorem,

Pl(µ) =
+l∑

m=−l
Al,m(Ω)Al,m(Ω

′), (4.24)

the scattering source becomes

Hφ =
∞∑
l=0

(2l + 1)

4π

+l∑
m=−l

Al,m(Ω)

∫ ∞

0
dE′ Σs,l(r, E

′ → E)Φl,m(r, E
′), (4.25)

where
Φl,m(r, E) =

∫
4π
d2Ω Al,m(Ω)ψ(r,Ω, E) (4.26)

are the flux angular moments and Al,m are the real spherical harmonics, [25]. If the expansion
is truncated at l = K , the total number of spherical harmonics (and corresponding angular
moments) will be (K + 2)(K + 1)/2 in 2D and (K + 1)2 in 3D.

4.4 . MULTIGROUP APPROXIMATION
4.4.1 . Multigroup Neutron Transport Equation

The time-independent neutron transport equationmay be integrated over energy intervals
of finite length. More specifically, the energy range from EG = 0 to E1 = 20MeV is subdivided
intoG energy groups, namely [Eg, Eg−1], where g = G, ..., 1, insidewhich neutrons are assumed
to be mono-energetic. The following group-dependent quantities may be defined:

ψg(r,Ω) =

∫ Eg−1

Eg

ψ(r,Ω, E) dE, (4.27)
Σg(r,Ω) =

1

ψg(r,Ω)

∫ Eg−1

Eg

Σ(r, E) ψ(r,Ω, E) dE. (4.28)

Equation 4.28 cannot be evaluated, as the angular flux is unknown. AlthoughΣg is, in principle,
a function of the angle, this dependence is usually neglected. The analysis of the ensemble of
approximations allowing for the calculation ofmultigroup cross sections is beyond the scope of
the present manuscript. Nevertheless, some introductory elements are provided in Sect. 12.3.1.
For more details, the interested reader is referred to [5], [26], [27].

The multigroup k-eigenvalue formulation of the transport equation with PN -scattering isgiven by
Ω · ∇ψg(r,Ω) + Σg(r) ψg(r,Ω) =

1

4π

G∑
g′=1

K∑
l=0

(2l + 1)Σg
′→g
s,l (r)

+l∑
m=−l

Al,m(Ω)Φg
′

l,m(r) +

1

4πk

∑
i

χi,gf (r)
G∑

g′=1

νi,g
′

f Σi,g
′

f (r) Ψg′(r),

(4.29)
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where
Σg

′→g
s,l (r) =

1

Φgl,m(r)

∫ Eg−1

Eg

Σs,l(r, E
′ → E)Φl,m(r, E

′) dE′, (4.30)
χi,gf (r) =

∫ Eg−1

Eg

χif (r, E) dE, (4.31)
νi,gf Σi,gf (r) =

1

Ψg(r)

∫ Eg−1

Eg

νifΣ
i
f (r, E) Ψ(r, E) dE. (4.32)

4.4.2 . Iterations
For the sake of conciseness, let us introduce the operatorial form of Eq. (4.29),

Lgψg =
∑
g′

Hg′→gψg
′
+

1

k
qgf , g = 1, ..., G, (4.33)

where
qgf = [Fψ]g (4.34)

is the multigroup fission source. Let us rewrite the scattering source as the sum of three con-
tributions, namely the down-scattering, self-scattering and up-scattering, respectively,∑

g′

Hg′→gψg
′
=
∑
g′<g

Hg′→gψg
′
+Hg→gψg

′
+
∑
g′>g

Hg′→gψg
′
. (4.35)

Eq. (4.33) can be formulated in matrix form:

L1 −H11 −H12 ... −H1g ... −H1G

−H21 L2 −H22 ... −H2g ... −H2G

... ... ... ... ... ...
−Hg1 −Hg2 ... −Lg −Hgg ... −HgG

... ... ... ... ... ...
−HG1 −HG2 ... −HGg ... LG −HGG





ψ1

ψ2

...
ψg

...
ψG

 =
1

k



q1f
q2f
...
qgf
...
qGf


(4.36)

whereHgg′ = Hg′→g.
Matrix Bg = (Lg −

∑
g′ H

g′→g) = (Lg −
∑

g′ H
gg′), where B = L−H will be referred to asBoltzmann operator, has a simple interpretation:

• The lower triangular part contains the multigroup down-scattering operator;
• The diagonal contains the within-group transport operator;
• The upper triangular part contains the multigroup up-scattering operator. Several terms
are equal to zero, as the probability to be promoted to a higher energy group is non-
negligible only for neutrons in the thermal range, i.e., neutrons from group g > gth,where gth ∼ 1eV .

Hence, equation Bgψg = 1
k q

g
f , g = 1, ..., G,may resemble a lower triangular system.
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In order to solve Eq. (4.36), a loop of three nested iterations is generally applied. Starting
from a trial fission integral Ig0 and eigenvalue k0, where g = 1, ..., G, Eq. (4.36) is solved by
Gauss-Siedel iterations, starting from group g = 1, for which

(L1 −H11)ψ1 =
1

k0
q10, (4.37)

as neutrons from group g = 1 do not undergo up-scattering andmay only be refilled by fission.
In the following, the ensemble of nested iterations is discussed in some detail.
Outer Iterations
Let us consider the k-eigenvalue problem,

Bψ(r,Ω, E) =
1

k
Fψ(r,Ω, E). (4.38)

The fission source may be factorized as
Fψ =

∑
i

χi(r, E)Ii(r), (4.39)
where Ii is the fission integral and reads as

Ii(r) =

∫
dE νifΣ

i
f (r, E)Ψ(r, E). (4.40)

At iteration e = 0, the eigenvalue and fission integral are initialized, k(0) = k0, I
(0)(r) = I0(r).At iteration e, the Boltzmann operator is implicitly inverted, as

Bψ(e+1) =
1

k(e)
Fψ(e). (4.41)

In order to invert the Boltzmann operator, two nested cycles are needed, namely the ther-
mal and inner iterations. Once computed, ψ(e+1) allows for updating the eigenvalue and fission
integral. In particular,

k(e+1) = k(e)
⟨ω,Fψ(e+1)⟩
⟨ω,Fψ(e)⟩

, (4.42)
ω being an arbitrary weight function.
Thermal iterations
As thermal neutrons may be up-scattered up to g = gth− 1, where gth is the so-called thermalcut-off and amounts to ∼ 1 eV , in order to assess the up-scattering source feeding groups
g > gth, thermal iterations, based on the Gauss-Siedel method, are implemented. If t is the
thermal iteration index, the slowing-down equations read as

(Lg −Hgg)ψg,(t+1) =
∑
g′<g

Hgg′ψg
′,(t+1) +

∑
g′>g

Hgg′ψg
′,(t) +

1

k(e)
Fψg,(e), (4.43)

where∑g′<gH
gg′ψg

′,(t+1),∑g′>gH
gg′ψg

′,(t) and 1
k(e)

Fψg,(e) are thedown-scattering, up-scattering
and fission source, respectively. The self-scattering sourceHggψg,(t+1) is kept on the left-hand
side of Eq. (4.43) and solved by inner iterations.
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At iteration t = 0, the angular flux moments Φg,(t=0)
l,m (r) are provided by the current outer

iteration, Φg,(e)l,m (r) =
∫
4π d

2Ω Al,m(Ω)ψg,(e)(r,Ω).
As fast neutrons do not undergo up-scattering collisions, the corresponding term from Eq.
(4.43) vanishes, thus allowing for skipping the thermal loop and computing ψg by inner iter-
ations,

(Lg −Hgg)ψg =
∑
g′<g

Hgg′ψg
′
+

1

k(e)
Fψg,(e), g = 1, ..., gth. (4.44)

Taking advantage of Eq. (4.44), the down-scattering source from groups g′ < gth (fast groups)to gth < g < G (thermal groups) can be evaluated as ∑g′<gth
Hgg′ψg

′ and injected into the
thermal loop, which solves

(Lg −Hgg)ψg,(t+1) =
∑

gth<g′<g

Hgg′ψg
′,(t+1) +

∑
g<g′

Hgg′ψg
′,(t)

+

( ∑
g′<gth

Hgg′ψg
′,(e) +

1

k(e)
Fψg,(e)

)
, g = gth, ..., G,

(4.45)

where∑gth<g′<g
Hgg′ψg

′,(t+1) and∑g<g′ H
gg′ψg

′,(t) represent the down-scattering from ther-
mal group g′ to thermal group g > g′ and up-scattering from thermal group g′ to thermal group
g < g′, respectively.
Finally, convergence is verified, by comparing the error with a given tolerance.
Inner iterations
Inner iterations solve the boundary-value problem

Lgψg,(i+1)(x) = Hggψg,(i)(x) + qg(x), x ∈ D (4.46)
ψg,(i+1)(x) = βψg,(i)(x), x ∈ ∂D−, (4.47)

where i is the inner loop index, x is a phase-space variable, β is the discretized albedo operator
and qg coincides with the right-hand side of Eq. (4.44) and (4.45), for fast and thermal neutrons,
respectively.

At iteration i = 0, the angular flux moments Φg,(i=0)
l,m (r) are provided by

• the current outer iteration, i.e., Φg,(e)l,m (r), for fast neutrons;
• the current thermal iteration, i.e., Φg,(t)l,m (r), for thermal neutrons.

The total angular source is computed as
Qg,(i) = Hggψg,(i) + qg (4.48)

and a fixed-source problem of the kind
Lgψg,(i+1)(x) = Qg,(i)(x), x ∈ D (4.49)
ψg,(i+1)(x) = βψg,(i)(x), x ∈ ∂D− (4.50)

is solved iteratively until convergence.
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4.5 . ANGULAR DISCRETIZATION
Two approaches are commonly used to discretize the angular variable, namely the SN (ordiscrete ordinates) method and the PN (or spherical harmonics) method. The former con-

sists in selecting a set of discrete directions and computing the angular integrals by means of a
quadrature formula; the latter is based on projecting the angular flux on spherical harmonics.
Sect. 4.5.1 and 4.5.2 provide some detail on the subject.

4.5.1 . Discrete Ordinates Method
The discrete ordinates method, also known as SN method, calculates angular integrals by

means of a numerical quadrature. In practice, given a function g(Ω),
1

4π

∫
4π
g(Ω) d2Ω ≈

Nd∑
d=1

g(Ωd) ωd, (4.51)
where {Ωd, ωd}, with d = 1, ..., N , represents a set of discrete directions and associatedweights,
N being the number of selected directions. Note that the weights are normalized to 1, i.e.,

N∑
d=1

ωd = 1. (4.52)
Each direction Ωd may be pictured as a point on the unit sphere Γ, with associated sur-

face ωd = ∆Γd. The flux moments Φgl,m are reconstructed along inner iterations by angular
quadrature, by cumulating the contributions from the selected directions,

Φ
g,(i+1)
l,m (r) =

∫
4π
d2Ω Al,m(Ω) ψ

g,(i+1)(r,Ω) ≈
Nd∑
d=1

ωd Al,m(Ω)d ψ
g,(i+1)(r,Ωd). (4.53)

Level Symmetric, Gauss-Legendre and Gauss-Chebyshev formulas are some of the most
popular choices, [5]. Further details are beyond the scope of the present work.

4.5.2 . PN Method
The PN method consists in projecting the angular flux onto spherical harmonics. If the

series development is truncated at order N , we obtain

ψg(r,Ω) ≈ 1

4π

N∑
l=0

(2l + 1)
+l∑

m=−l
Al,m(Ω) Φgl,m(r). (4.54)

As N goes to infinity, the series expansion converges to the solution, i.e., the angular flux.
Expansion (4.54) is injected into the transport equation. Taking advantage of the proper-

ties of the spherical harmonics, the initial problem can be rearranged, obtaining a system of
(N + 1)2 coupled equations, where the angular moments Φgl,m(r) are the unknowns.

Differently from SN , the PN method does not suffer from ray-effect, [28]. On the downside,
it produces a large system of coupled equations, with the number of degrees of freedom grow-
ing as (N + 1)2. Also, the PN approximation is less efficient when representing discontinuous
solutions, which is often the case for reactor calculations, [29].
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In order to reduce the memory requirements, the PN method may be replaced by a simpli-
fied approach, namely the SPN method, which only retains 2(N + 1) harmonics, as sketched
in Tab. 4.1, for N = 3. In practice, if l is even, only moment Φl,0 is preserved, the others aredisregarded; on the contrary, if l is odd, three moments are preserved, namely Φl,−1, Φl,0 and
Φl,1. Unlike SN and PN , SPN does not converge to the solution, as N goes to infinity. Despite
this inconvenience, it provides significant improvements over diffusion theory, thus finding ap-
plication in core calculations, [30].

m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3
l = 0 - - - Φ0,0 - - -
l = 1 - - Φ1,−1 Φ1,0 Φ1,1 - -
l = 2 - Φ2,−2 Φ2,−1 Φ2,0 Φ2,1 Φ2,2 -
l = 3 Φ3,−3 Φ3,−2 Φ3,−1 Φ3,0 Φ3,1 Φ3,2 Φ3,3

Table 4.1: SPN vs PN method: moments in grey are neglected in SPN .

4.6 . SPATIAL DISCRETIZATION
Several spatial discretization techniques are available in literature. For the sake of concise-

ness, the following analysis will focus on methods which are more closely related to the spatial
discretization approach that is adopted in IDT, i.e., the method of short characteristics, which
consists in projecting the Boltzmann equation on modular (Cartesian or tetrahedral) patterns
and inverts the transport operator by means of angular probability matrices. Sect. 4.6.2 and
4.6.3 offer some detail on the method of collision probabilities and the MOC strategy, whereas
a discussion on the method of short characteristics is available in Sect. 4.6.4. As all of them
are based on the integral form on the neutron transport equation, Sect. 4.6.1 proposes a brief
derivation of it2.

4.6.1 . Integral Form of the Multigroup Transport Equation
Let us consider two points r and r + xΩ on trajectory t ∥ Ω, x being the coordinate along

the trajectory and Ω an arbitrary angular direction. The angular flux at r+ xΩ along direction
Ω reads as

ψg(r+ xΩ,Ω) = ψg(r,Ω) e−
∫ x
0 dy Σ(r+yΩ)+∫ x

0
qg(r+ yΩ,Ω) e−

∫ x
y dz Σ(r+zΩ) dy,

(4.55)

The first contribution accounts for neutrons departing from r that arrive at r + xΩ without
undergoing any collision, and thus changing neither direction of flight nor energy. The second
term is related to the emission rate of neutrons with energy in g and angular directionΩ along

2Methods based on the integral form of the Boltzmann equation introduce an approximation onthe spatial and angular distribution of the neutron source. Integral methods generally assume flat andisotropic sources in the laboratory frame. On the contrary, methods based on the integro-differentialform of the transport equation introduce an approximation on the angular flux, which is a much lessregular function, particularly in the event of collisions (which is the case of nuclear reactors).
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trajectory t between r and r+ xΩ. Also Eq. 4.55 allows defining the optical path length as
τ(x, y) =

∫ x

y
dz Σ(r+ zΩ), (4.56)

Σ being the total cross section.
4.6.2 . Collision Probabilities

The integral form of the transport equation for an infinite system reads as
ψ(r,Ω) =

∫ ∞

0
q(r− sΩ,Ω) e−τ(s)ds, (4.57)

with optical path
τ(s) =

∫ s

0
τ(r− s′Ω)ds′, (4.58)

where energy group subscripts are omitted, for the sake of conciseness. Eq. 4.57 is integrated
over the whole solid angle,

Ψ(r) =
1

4π

∫
4π

∫ ∞

0
q(r− sΩ,Ω) e−τ(s)ds. (4.59)

Let us suppose that the neutron source is isotropic. Eq. 4.59 simplifies to
Ψ(r) =

1

4π

∫
4π

∫ ∞

0
q(r− sΩ) e−τ(s)ds. (4.60)

Let us assume that the spatial domain is subdivided into Cartesian nodes (or cells) c, each
finely discretized into multiple regions, of volume Vi,c. The neutron source is supposed to be
constant over each Vi,c. A variable change is introduced, namely r′ = r − sΩ. For the sake
of simplicity, let us omit the cell index. Eq. 4.60 is multiplied by the total cross section Σ and
integrated over each region Vi, thus obtaining,

〈
Σ,Ψ

〉
Vi

=
1

4π

〈
Σ,
∑
j

qj

∫
Vj

1

s2
e−τd3r′

〉
Vi

. (4.61)
Eq. 4.61 may be rearranged, by defining the average neutron flux over region Vi,

Ψi =

∫
Vi
Ψ(r)d3r

Vi
, (4.62)

and the collision probabilities,
Pi,j =

1

4πVj

∫
R3

d3r′
∫
Vi

Σ(r)
e−τ(s)

s2
d3r. (4.63)

Eq. 4.63 can be interpreted as the probability for a neutron born uniformly and isotropically
in region Vj to undergo its first collision in region Vi, as explained in Sect. 3.8 of Ref. [5]. Eq.
4.61 may be rewritten as

ViΣiΨi =
∑
j

VjPi,jqj , (4.64)
where Σi is the flux-averaged cross section over region i, thus preserving the reaction rate,

ΣiΨiVi =
〈
Σ,Ψ

〉
Vi

=

∫
Vi

Σ(r)Ψ(r)d3r. (4.65)
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Assuming that cross sections are uniform over each region Vj , one may divide Eq. 4.63 by
Σj , obtaining

pi,j =
1

4πVj

∫
R3

d3r′
∫
Vi

e−τ(s)

s2
d3r. (4.66)

Eq. 4.66 define the reduced collision probabilities. Note that Eq. 4.66 remains finite as Σigoes to zero. In other terms, the method of collision probabilities is able to model vacuum
regions. By injecting Eq. 4.66 into Eq. 4.64, one gets

ViΨi =
∑
j

Vjpi,jqj . (4.67)

Collision probabilities satisfy reciprocity,
pi,jVj = pj,iVi, (4.68)

and conservation relations, ∑
i

pi,jΣi =
∑
i

Pi,j = 1, ∀j. (4.69)
Eq. 4.66 is computed numerically illuminating the geometry by parallel trajectories. This algo-
rithm goes under the name of ray-tracing and will be described accurately in Sect. 6.3.4.

Themethod of collision probabilities finds application in legacy self-shielding, [32], and neu-
tron flux calculations. The major limitations are the assumption of isotropic scattering and the
size of the collision probability matrix, which scales quadratically with the total number of re-
gions. One way to mitigate this limit consists in coupling the cells by neutron currents, thus
introducing current-coupled collision probabilities (CCCP), also known as Multicell method
in the APOLLO documentation, [33], [34]. Cell boundary ∂D = ∂D− ∪ ∂D+ is partitioned
into sub-surfaces s′ ∈ ∂D− and s ∈ ∂D+, ∂D− and ∂D+ being the incoming and outgoing
cell boundaries, respectively. Within each cell, for a given energy group, the following relation
holds,

Ψi =
∑
j

Ci,jqj +
∑
s′

Ii,s′j
−
s′ , (4.70)

where
• C is the collisionmatrix. Ci,j represents the probability for a neutron born uniformly and
isotropically in region j to undergo its first collision in region i;

• I is the incoming matrix. Ii,s′ represents the probability for a neutron entering cell c
through surface s′ ∈ ∂D− to contribute to region i;

• js′ is the average neutron current entering cell c through surface s′.
Cells are coupled by means of

j+s =
∑
j

Es,jqj +
∑
s′

Ts,s′j
−
s′ , (4.71)

where
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• E is the escape matrix. Es,j represents the probability for a neutron born uniformly and
isotropically in region j to exit cell c through surface s ∈ ∂D+;

• T is the transmission matrix. Ts,s′ can be interpreted as the probability for a neutron
entering cell c through surface s′ ∈ ∂D− to exit cell c through surface s ∈ ∂D+;

• j+s is the average neutron current exiting cell c through surface s. Note that j+s matches
the average incoming neutron current entering the neighbouring cell.

The calculation of the response matrices is not discussed in the present work, the inter-
ested readers are referred to [33].

Similarly to standard collision probabilities (CP), CCCP is able to handle unstructured ge-
ometries with high flexibility and numerical accuracy, [33]. Like CP, neutron scattering is sup-
posed to be isotropic and anisotropy effects may be modelled, to some extent, by transport-
corrected cross sections. The memory pressure is alleviated with respect to CP, but may still
be a limiting factor, particularly for applications to large geometries comprising regions with
different cross sections.

4.6.3 . Method of Characteristics
The method of characteristics (MOC) dates back to the seventies and is considered one

of the most accurate tools for high-fidelity deterministic solutions. It consists in solving the
transport equation along a set of parallel trajectories (or characteristic curves), along which the
transport equation reduces to ordinary differential equations, for each direction of the quadra-
ture formula. InMOC, the characteristic curves are continuous side-to-side straight lines, which
are followed over the whole domain geometry3.

In order to introduce MOC, let us consider the integral form of the one-speed transport
equation along a neutron trajectory t ∥ Ωd, where Ωd belongs to the set of selected directionsof the angular quadrature formula,

ψ(r−t + xΩd,Ωd) = ψ(r−t ,Ωd) e
−τ(x,0) +

∫ x

0
q(r−t + yΩd,Ωd) e

−τ(x,y) dy, (4.72)
in which
• x is the coordinate along trajectory t;
• r−t is the incoming point of trajectory t into region α ⊆ G, G being the assigned geometry,
as shown in Fig. 4.3;

• τ(z1, z2) =
∫ z2
z1

Σ(r−t + zΩd)dz is the optical path between between x = z1 and x = z2.
In the following, the source and themacroscopic cross sections are assumed to be spatially

constant within each region α ⊆ G,

q(r,Ω) = qα(Ω), ∀r ∈ α (4.73)
Σ(r) = Σα, ∀r ∈ α. (4.74)

3Neutral particles are not sensitive to external long-range forces.
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Figure 4.3: MOC tracking.

This approximation is often referred to as Step Characteristics, [35]. Eq. (4.72) between in-
tersection points r+t and r−t of trajectory t with region boundary ∂α reduces to

ψ(r+t ,Ωd) = ψ(r−t ,Ωd) e
−τα(l,0) + qα(Ωd)

1− e−τα(l,0)

Σα
, (4.75)

which, with a mild change of notation, may be simplified to
ψ+
t = ψ−

t e
−Σαl + qd,α

1− e−Σαl

Σα
, (4.76)

l = ||r+t − r−t || being the chord-length, Σα the total macroscopic cross section of region α and
ψ+
t /ψ

−
t the outgoing/incoming angular flux, respectively. Eq. (4.76) goes under the name oftransmission equation.

In order to compute the flux in region α, a balance equationmay be derived, by volume-
averaging the integro-differential form of the transport equation over region α,

1

Vα

〈
1,
(
Ωd · ∇+Σ

)
ψ

〉
Vα

=
1

Vα

〈
1, q

〉
Vα

(4.77)
1

Vα

∫
Vα

(
Ωd · ∇+Σ

)
ψ d3r =

1

Vα

∫
Vα

q d3r. (4.78)
Eq. (4.73) and (4.74) are then introduced into Eq. (4.78). Finally, by resorting to

Ω · ∇ψ = ∇ ·Ωψ, (4.79)
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and the divergence theorem, one obtains the final form of the balance equation
Σαψd,α = qd,α −∆jd,α, (4.80)

where
ψd,α =

1

Vα

∫
Vα

d3r ψ(r,Ωd) (4.81)
is the volume-average of the flux over region α and

∆jd,α =
1

Vα

∫
Vα

d3r ∇ ·Ωdψ(r,Ωd) =

1

Vα

∮
∂V +

α

d3r j(r,Ωd) · ns +
1

Vα

∮
∂V −

α

d3r j(r,Ωd) · ns

(4.82)

is the net current over the boundary domain ∂Vα, along directionΩd. Eq. (4.82) is evaluated bynumerical quadrature,
∆jd,α ≈

1

Vα

∑
t∥Ωd

w⊥
t (ψ

+
t − ψ

−
t ), (4.83)

in which
Vα ≈

∑
t∥Ωd

w⊥
t lt (4.84)

w⊥
t and lt being respectively the numerical weight and chord-length within domain α of trajec-

tory t.
MOC is often considered a numerical reference for other spatial approximations. The er-

ror introduced by the numerical quadrature, i.e., Eq. (4.83) and (4.84), converges to zero, as the
trajectory spacingw⊥

t becomes smaller and smaller. It allows treating unstructured geometries
[36] in an exact way and is also advantageous in terms of memory requirements, as, differently
from CP and CCCP, it does not involve the calculation and storage of large response matrices.
The use of cyclic trajectories [37] allows for an exact treatment of the angular flux at the domain
boundary, for specular reflection, rotation, translation and other boundary conditions.

On the downside, the computational cost of MOC is strongly dependent on the system
dimensions and number of geometrical regions. In fact, differently from Short Characteris-
tics, which are discussed in section 4.6.4, MOC trajectories are continuous lines which cover
the whole system. As a consequence, the trajectory spacing w⊥

t is limited by the dimensions
of the smallest computational regions in the geometry. In order to minimize the number of
trajectories, a different approach may be implemented, which is, instead of using a constant
quadrature weight, one may project the geometrical discontinuities on a plane perpendicular
to the assigned direction. The space between two successive projections is then covered by n
Gauss points, in order for the trajectories to be dense enough, [38]. Other powerful tracking
strategies are discussed in [37].

4.6.4 . Method of Short Characteristics
The Method of Short Characteristics (MOSC) is based on current-coupled collision proba-

bilities. Differently from CCCP, MOSC is able to handle anisotropic scattering sources, based
on PN representation. Examples of MOSC are common to both astrophysics and neutronics,
with [39], [40], settingmilestones forMOSC application to fission reactor physics. Short Charac-
teristics generally assume piecewise constant (CSC) or linear (LSC) distributions of the neutron
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Figure 4.4: Heterogeneous Cartesian Cell (HCC).
source and surface angular flux, with some notable exceptions like [41], which assumes an ex-
ponential shape of the neutron source over the whole cell (ESC). Similarly to CCCP, the spatial
domain is discretized by amacro-mesh, hosting homogeneous or heterogeneous nodes, which
may be variously shaped, tetrahedral and Cartesian cells being a common choice, [40], [42]. In
turn, each node may be equipped with an inner grid, comprising rings, [43], sectors or other
geometries. In order to improve the representation of the interface angular flux, the cell sides
may be partitioned into sub-surfaces. For the sake of brevity, the present analysis focuses on
Heterogeneous Cartesian Cells (HCCs), of which Fig. 4.4 provides an example. The following
discussion is restricted to polynomial bases. A more general formulation may be found in [43],
pp. 259-260.

In the present section, the one-speed one-direction neutron transport operator Lgd is in-verted within each Cartesian node by using linear short characteristics, LSC. Taking x as the
coordinate along the trajectory, the integral form of the Boltzmann equation along trajectory t
takes the form

ψd(r
−
t + xΩd) = ψd(r

−
t )e

−τt(x,0) +

∫ x

0
qd(r

−
t + yΩd)e

−τt(x,y)dy, (4.85)
τt(x, y) being the optical path length along t from point z = y to z = x,

τt(x, y) =

∫ x

y
dz Σ(r−t + zΩd). (4.86)

Let us restrict Eq. (4.85) to one HCC and, analogously to MOC, suppose that
• The neutron source distribution is approximated by piece-wise linear functions in each
region α within the HCC, i.e.,

qd,α(r) =
∑
c

Pα,c(r) qd,α,c = Pα(r) · qd,α, (4.87)
where Pα is the linear basis and c identifies three/four spatial components in 2D/3D ge-
ometries, respectively. Note that Pα is given by

Pα(r) =

[
1

r− rα

]
, (4.88)
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rα being the centre of mass of region α.
• Regions are homogeneous, i.e., cross-sections are represented by piece-wise constant
functions, Eq. (4.74).

Due to Eq. (4.88), the constant and linear moments are orthogonal by construction and, as
a consequence, the volume mass matrix of region α takes the form

Mα = ⟨Pα,Pα⟩ =
[
1 0T

0 ⟨r− rα, r− rα⟩

]
. (4.89)

The spatial moments of the neutron source are defined as
qd,α =

[Mα]
−1

Vα

∫
Vα

dr Pα(r)qd(r) =[Mα]
−1⟨Pα,q⟩, (4.90)

where Vα represents both the integration domain and its measure. The characteristic approx-
imation of MOSC consists in assuming that the interface angular flux may be reconstructed as
piece-wise polynomial functions, one for each surface s of the boundary mesh,

ψ±
d,s =

∑
b

Ps,b(r
±
t )ψ

±
d,s,b = Ps(r

±
t ) · ψ

±
d,s, (4.91)

in which Ps(r
±
t ) is the linear basis associated to surface s, while b indexes two/three spatial

components in 2D/3D geometries, respectively. Note that Ps is provided by
Ps(r

±
t ) =

[
1

r±t −rs

]
, (4.92)

where rs is the centre of mass of surface s. Due to Eq. (4.92), the constant and linear surface
moments are orthogonal, thus elementsmi,1 andm1,j , with i, j > 1, of the surfacemassmatrix
are equal to zero. Furthermore, as the boundary grid consists of Cartesian meshes and each
local frame of reference is centered at rs, all surface mass matrices are diagonal.

The surface moments of the interface angular flux read as
Msψ

±
d,s=(Ps, ψd)

± =
|Ωd·ns|
As

∫
As

dr±Ps(r
±)ψd(r

±), (4.93)
where As represents both the sub-surface integration domain and its measure and (·, ·) indi-
cates a surface scalar product. Approximating the integral in Eq. (4.93) by numerical quadrature
over the ensemble of trajectories Ts(Ωd) that intersect surface s and inverting the correspond-ing mass matrix, Eq. (4.93) becomes

ψ+
d,s =

[Ms]
−1

As,d

∑
t∈ Ts(Ωd)

w⊥
t Ps(r

+
t )ψd(r

+
t ), (4.94)

in which the trajectory weight w⊥
t is provided by

w⊥
t = |Ωd·ns|∆As,t = |Ωd·ns′ |∆As′,t, (4.95)

where s and s′ represent the outgoing and the incoming surfaces, respectively, while∆As,t de-notes the area of the projection of surface s onto the transverse plane. Note that ns coincideswith one of the unit normal vectors of the Cartesian basis, i.e., ex, ey or ez , depending on the
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orientation of the given HCC side.
Introducing Eq. (4.87) and (4.91) into Eq. (4.85) specialized for one HCC, one obtains thebalance and transmission equations of MOSC, namely

ψd,α =
∑

s∈Γ−(Ωd)

Id,α,sψ
−
d,s +

∑
β ̸=α

Cd,α,βqd,β +Cd,α,αqd,α, (4.96)

ψ+
d,s =

∑
s′∈Γ−(Ωd)

Td,s,s′ψ
−
d,s′ +

∑
α

Ed,s,αqd,α, (4.97)
with incoming, collision, transmission and escape angular probability matrices given by

Id,α,s =
[Mα]

−1

Vα,d

∑
t∈Tα(Ωd)

w⊥
t

∑
i∈It,α(Ωd)

[Gd,t,α,i ×Ps(r
−
t )]e

−τ<t,i , (4.98)

Cd,α,β =
[Mα]

−1

Vα,d

∑
t∈Tα(Ωd)

w⊥
t

∑
i∈It,α(Ωd)

∑
j<i

j∈It,β(Ωd)

[Gd,t,α,i × Fd,t,β,j ]e
−τi,j (4.99)

Cd,α,α =
[Mα]

−1

Vα,d

∑
t∈ Tα(Ωd)

w⊥
t

∑
i∈It,α(Ωd)

(
Hd,t,α,i (4.100)

+
∑
j<i

j∈It,α (Ωd)

[Gd,t,α,i × Fd,t,α,j ]e
−τi,j

)
,

Td,s,s′ =
[Ms]

−1

As,d

∑
t∈ Tα(Ωd)

w⊥
t [Ps(r

+
t )×Ps′(r

−
t )]e

−τt , (4.101)

Ed,s,α =
[Ms]

−1

As,d

∑
t∈Ts(Ωd)

w⊥
t [Ps(r

+
t )×

∑
i∈It,α(Ωd)

e−τ
>
t,iFd,t,α,i], (4.102)

where
• Tα(Ωd) denotes the ensemble of trajectories alongΩd intersecting region α;
• It,α(Ωd) is the set of chords of trajectory t within region α;
• Γ−(Ωd) is the HCC incoming boundary along directionΩd;
• τ>t,i =

∑
j>i τt,j is the down-stream optical path for chord i;

• τ<t,i =
∑

j<i τt,j is the up-stream optical path.
Eq. (4.98), (4.99), (4.101), (4.101) and (4.102) contain two four-component integral vectors,

namely

Gd,t,α,i =

∫ xi

xi−1

Pα(r
−
t + xΩd)e

−Σα(x−xi−1)dx, (4.103)
Fd,t,α,i =

∫ xi

xi−1

Pα(r
−
t + yΩd)e

−Σα(xi−y)dy, (4.104)
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and one four-component integral matrix,
Hd,t,α,i =

∫ xi

xi−1

Pα(r
−
t + xΩd)× Fd,t,α,i(x) dx, (4.105)

[xi−1, xi] being the chord interval along t.
The method of short characteristics ensures accurate representation of the neutron flux,

[43]. Its modular geometry, consisting of current-coupled (heterogeneous) cells, allows for a
major saving in terms of tracking, as, differently from MOC, trajectories are limited by the cell
size. Cartesian regions are integrated in an exact way. The possibility to project discontinuities
onto the transverse plane and introduce Gauss points between projections allows for a refined
numerical quadrature in cells hostingmore complex geometries, while, thanks to the locality of
MOSC tracking, relaxing the trajectory spacing elsewhere. Themacro-mesh hosting HCCs is also
advantageous for domain decomposition implementations, which, in turns, allows for massive
parallelization and, eventually, 3D direct-transport, [44].

On the downside, the method of short characteristics suffers from large memory occupa-
tion, due to the size of the angular probability matrices. In addition to this, MOSC introduces
an approximation at the cell boundary, represented by Eq. (4.91), whose error may be reduced
by increasing the number of sub-surfaces per cell side or the interface expansion order.

4.7 . ACCELERATIONS
Transport iterations (Sect. 4.4.2) generally suffer from slow convergence, which significantly

affects the computational time. In order to boost the performance of transport solvers, several
acceleration methods are available in literature. Sect. 4.7.1 provides a brief overview on linear
and non-linear accelerations. Sect. 4.7.2 describes the Coarse Mesh Finite Difference (CMFD)
method for outer iterations, as necessary for illustrating a subsequent part of the present work
(Sect. 12.7).

4.7.1 . Linear vs Non-Linear Acceleration Schemes
Linear Accelerations. Once performed a transport iteration, namely

Lψ(l+1/2) = Hψ(l) + q, (4.106)
where l denotes the iteration index, the residual of the scattering source is evaluated as

ρ(l+1/2) = H(ψ(l+1/2) − ψ(l)) (4.107)
and injected into

(L̃−H)∆Φ(l+1) = ρ(l+1/2). (4.108)
In Eq. (4.108), (L̃−H) is a synthetic operator, defined as

(L̃−H)−1 ∼ (L−H)−1. (4.109)
Once solved Eq. (4.108), the angular flux is corrected as follows:

ψ(l+1) = ψ(l+1/2) +∆Φ(l+1) (4.110)
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An example of linear acceleration scheme is provided in [45], for the Boundary Projection Ac-
celeration (BPA).

Non-Linear Accelerations. Once determined ψ(l+1/2) from Eq. (4.106), the cross sections
are homogenized in space and condensed in energy, namely

Σκ =

∫
κ dκ Σ ψ(l+1/2)∫
κ dκ ψ

(l+1/2)
, (4.111)

where κ is a coarse spatial/energy node. A non-linear diffusion equation of the kind(
∇ ·
(
− 1

3Σκ
∇+ vκ

)
+Σκ −Hκ

)
Φ(l+1)
κ = qκ, (4.112)

is solved, vκ being the non-linear drift velocity,
vκ =

∫
κ dκΩψ(l+1/2) −∇

∫
κ dκ ψ

(l+1/2)∫
κ dκ ψ

(l+1/2)
. (4.113)

Finally, the angular flux is renormalized as
ψ(l+1) = ψ(l+1/2) ϕ

(l+1)
c∫

c ψ
(l+1/2)

. (4.114)
An example of non-linear acceleration scheme is provided in Sect. 4.7.2.

4.7.2 . Coarse Mesh Finite Differences
The Coarse Mesh Finite Differencemethod is a non-linear technique preserving the particle

balance, [46]. It consists in applying finite differences to the diffusion equation, [47], on a coarse
spatial/energy grid, in order to speed-up the convergence of the transport iterations. For the
sake of simplicity, let us suppose that CMFD is applied to MOSC. Themacro-mesh introduced in
Sect. 4.6.4 is homogenized in space, i.e., the CMFD spatial grid may contain one or more MOSC
cell per node. The energy grid, initially consisting of G fine groups, is condensed intoH coarse
groups, in order to decrease the computational cost.

The multigroup P1 approximation of the Boltzmann equation reads as
∇ · Jg(r) + Σg(r)Φg(r)−

∑
g′ ̸=g

Σgg
′
(r)Φg

′
(r) =

1

k

∑
g′ ̸=g

(χνΣ)gg
′

f (r)Φg
′
(r). (4.115)

Let us integrate both sides of Eq. (4.115) over Vζ , ζ being a CMFD node, comprising one or more
HCCs, and divide by the volume Vζ of node ζ. The energy variable is condensed into H coarse
groups. By applying the divergence theorem on the escape term, namely∫

Vζ

d3r ∇ · Jh =

∮
∂Vζ

d3r J · n, h = 1, ...,H, (4.116)
one obtains ∑

s∈∂Vζ

Aζ,s
Vζ

Jhζ,s +ΣhζΦ
h
ζ −

∑
h′ ̸=h

Σhh
′

ζ Φh
′
ζ =

1

k

∑
h′ ̸=h

(χνΣ)hh
′

f,ζ Φ
h′
ζ , (4.117)

whereAζ,s is the area of side s of node ζ , Jhζ,s is the average neutron current of group h throughsurface s, Φhζ is the average scalar flux of group h in cell ζ and Σhζ,r is the flux-weighted homog-
enized cross section of group h in cell ζ for reaction r. More specifically, provided that Φ(e+1/2)
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denotes the transport scalar flux, i.e., the zero-th order spatial moment of Φl=0,m=0, the ho-mogenized cross sections read as

Σhζ =

∑
g∈h
∑

n∈ζ
∑

α∈n Vn,α(Σ
g
n,α − Σggn,α,0)ϕ

g,(e+1/2)
n,α∑

g∈h
∑

n∈ζ
∑

α∈n Vn,αϕ
g,(e+1/2)
n,α

, (4.118)

Σhh
′

ζ =

∑
g∈h
∑

g′∈h′
∑

n∈ζ
∑

α∈n Vn,αΣ
gg′

n,α,0ϕ
g′,(e+1/2)
n,α∑

g′∈h′
∑

n∈ζ
∑

α∈n Vn,αϕ
g′,(e+1/2)
n,α

, (4.119)

(χυΣ)hh
′

f,ζ =

∑
g∈h
∑

g′∈h′
∑

n∈ζ
∑

α∈n Vn,α
∑

i∈α χ
g
i (υΣ)

g′

i,αϕ
g′,(e+1/2)
n,α∑

g′∈h′
∑

n∈ζ
∑

α∈n Vn,αϕ
g′,(e+1/2)
n,α

, (4.120)
in which n ∈ ζ is an index for the HCCs composing node ζ and α ∈ n is a region of n, while
i indicates a fissionable isotope. Note that Σgg′n,α,0 represents the homogenized isotropic (P0)
scattering cross section from group g′ to group g, in region α ∈ n. (χυΣ)hh′f,ζ is the homogenized
fission matrix. The neutron current Jhζ,s is obtained by an artificial finite-difference Fick’s law,

Jhζ,s = −Dh
ζ,s(ϕ

h
ζ,s − ϕhζ ) +D

h
ζ,s(ϕ

h
ζ,s + ϕhζ ), (4.121)

where ϕhζ,s is the average interface scalar flux on surface s ∈ ∂Vζ , while Dh
ζ,s is the finite-

difference diffusion coefficient,
Dh
ζ,s =

2

3 Lζ,s Σ
h
ζ,tr

, (4.122)
whereLζ,s is the node thickness along normal unit-vector of surface s. The transport-corrected
cross section of node ζ reads as Σhζ,tr = Σhζ −Σhhζ,s,l=1. By imposing current continuity between
neighbouring cells, in few steps, one can get rid of the interface scalar flux in Eq. (4.121), thus
obtaining

Jhζ,s =
(Dh

ζ′,s −D
h
ζ′,k)(D

h
ζ,s +D

h
ζ,s)

(Dh
ζ,s −D

h
ζ,s) + (Dh

ζ′,s −D
h
ζ′,s)

ϕhζ −
(Dh

ζ,s −D
h
ζ,s)(D

h
ζ′,s +D

h
ζ′,s)

(Dh
ζ,s −D

h
ζ,s) + (Dh

ζ′,s −D
h
ζ′,s)

ϕhζ′ . (4.123)

Asmentioned in the opening, CMFD aims at preserving the particle balance. To do this, the drift
coefficient Dh

ζ,s is computed on-the-fly to adjust Eq. (4.121) by successive iterations, by means
of

D
h
ζ,s =

Jh,(i+1/2)
ζ,s +Dζ,s(ϕ

h,(i+1/2)
ζ,s − ϕh,(i+1/2)

ζ )

(ϕ
h,(i+1/2)
ζ,s + ϕ

h,(i+1/2)
ζ )

 . (4.124)
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5 - REACTOR CORE CALCULATION SCHEMES
5.1 . INTRODUCTION
A reactor core is a complex system, involving complicated three-dimensional geometrical

patterns, often with high level of material heterogeneity. As mentioned in chapter 3, neutron
interaction probabilities strongly depend on the relative kinetic energy of the collision, which
is affected by materials’ temperature. Also, due to nuclear reactions, material isotopic concen-
trations evolve in time, thus adding a further level of complexity to reactor calculations.

For the sake of simplicity, let us restrict the focus on neutronics. Let us provide an estimate
of the total number of volumetric degrees of freedom (DOF) for a linear MOSC calculation, with
P1 scattering. The most widespread technology, i.e., the Pressurized Water Reactor (PWR), is
about 400−450 cm high. Depending on the specific benchmark, the number of fuel assemblies
may range between 250 and 260 units. Each assembly contains around 260 fuel rods, 25 guide
tubes, in which the control rod tip may be located at different axial positions, and 1 guide tube
hosting a fission chamber. Let us assume that
• the upper and lower axial reflectors measure about 10− 20 cm each;
• the fuel plenum is approximately 15 cm high;
• the top and bottom nozzles measure 10− 15 cm;
• the active core length is about 370 and 380 cm.

In the vicinity of the active region, the axial reflector has to be finely discretized, with a step
size of the order of the neutron mean free path (µ ≲ 1 cm), i.e., the inverse of the total cross
section. The active length generally requires a finer subdivision in the proximity of the axial
reflector and in the spacer grids, where large flux gradients are observed, the total number of
axial planes being approximately 200− 250.
Each fuel pin-cell contains at least 7 radial regions, i.e., 4 UOX (or MOX) self-shielding rings, 1
region for the air-gap, 1 ring for the fuel clad and 1 region for the surrounding moderator. The
control rods may require a finer radial mesh: they contain at least 9 radial regions, namely
4 self-shielding AIC/B4C/Pyrex rings, the air-gap, the control-rod clad, the water gap between
the control rod and the guide tube, the guide tube and the surrounding moderator. An in-
ner Cartesian or azimuthal grid may be necessary to improve the numerical accuracy. Overall,
one may estimate a total of 5 − 6 · 105 computational regions per assembly, and thus around
1.5 · 108 regions for the whole core. This can be reduced by an order of magnitude, if 1/8-th
core symmetry is applied. In addition, each region comprises 4 spatial moments per harmon-
ics. Assuming P1 scattering, the total number of moments raises to 16. One may suppose that
the solid angle is discretized by ∼ 100 directions (for instance, the S8 level-symmetric angular
quadrature formula includes 10 directions per octant). Finally, considered an energy mesh of
100− 300 energy groups, the overall number of DOF will be of the order of 1012 − 1013.

In order to deal with a problem of this size, two different strategies are used in industrial
codes, i.e., the two-step strategy and the 3D direct full-core transport. The former com-
prises two stages, the first one being a lattice simulation, which computes few-groups libraries
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for a variety of operating conditions (or physical states) of a slice of the whole reactor core.
Each state corresponds to a set of physical parameters, typically, the fuel and moderator tem-
perature, the moderator mass density, the boron concentration and the burn-up. Each lattice
calculation consists in solving the k-eigenvalue formulation of the transport equation over the
infinite spatial repetitions of an elementary unit, i.e., the considered core slice, along the radial
plane, with few hundreds of energy groups and angular directions (for discrete-ordinates trans-
port solvers, like APOLLO3® IDT-MOSC and TDT-MOC) or spherical harmonics (for PN -basedtransport solvers, like APOLLO3® NYMO, [48]). A core step follows, consisting in the interpola-
tion of the multi-parametric library data, in order to meet the actual state of the reactor core.
A 3D full-core diffusion simulation (or, more generally, an approximate transport calculation,
driven by a synthetic or low-order operator) is run on a coarse spatial mesh and energy grid, to
determine the neutron flux and reaction rates of the whole reactor core, imposing the actual
boundary conditions.
Conversely, the other modelling strategy, namely the 3D direct transport approach, consists
in solving the Boltzmann equation for the full reactor core, with detailed geometry, the ma-
jor source of error being the multi-group cross section library, due to the approximate self-
shielding model. An example of 3D direct transport code is provided in [49]. In order to cope
with a problem of this size, including a large number of DOF, onemay resort to domain decom-
position methods (DDM) [50], which allow for distributing the unknowns on several nodes in
massive parallel calculations. DDM consists in breaking the original boundary-value problem
on the whole domain into a set of coupled problems on smaller spatial domains. The global so-
lution over the ensemble of smaller-sized problems converges to the one of the unpartitioned
problem, by iterative steps, exchanging interface neutron currents between neighbouring sub-
domains.
An alternative to 3D direct transport is the 2D/1D fusion method, [51], which combines radial
2D MOC and a lower order transport operator along the z-axis. The two solutions are coupled
by axial and radial transverse currents and 3D coarse mesh finite differences, providing both
acceleration and stability to the iterative solution, [52].

In this chapter, a brief overview of themain reactor core calculation schemes is provided. In
Sect. 5.2, the two-step approach is discussed. Sects. 5.3-5.4 respectively list some remarkable
limitations of the this strategy and propose 3D direct transport and 2D/1D fusion, as an alterna-
tive to two-step calculations. Finally, in Sect. 5.5, the rod-cusping effect is illustrated, together
with some notable remedies, including the equivalence method and the subplane approach.

5.2 . TWO-STEP APPROACH
As mentioned in Sect. 5.1, a reactor core is a relatively large system, comprising several het-

erogeneous elements of high geometrical complexity. The direct transport solution, attained by
high-fidelity deterministic or stochastic methods, is extremely expensive in terms of CPU time
and memory requirements. The most established strategy for generating the power distribu-
tion is based on dimensionality reduction and goes under the name of two-step approach.
This technique takes advantage of the high regularity of the reactor core, which, despite the
inherent geometrical complexity, is composed of repetitions of elementary units, namely thefuel-assemblies. The first step, known as lattice calculation solves the detailed neutron
transport equation on each fuel-assembly, with simplified boundary conditions, for the en-
semble of all possible physical states. Each physical state is a combination of local and global
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parameters, including the fuel and moderator temperature [K], the moderator mass density
[g/cm3], the boron concentration [g/cm3], the burn-up [MWd/t], the control rod positions. The
k-eigenvalue is adjusted afterwards, in order to match reactor’s steady-state conditions (i.e.,
k = 1), by resorting to the B2-eigenvalue formalism. The output of the first step consists of
homogenized and energy-condensed multi-parametric cross-section libraries to feed into the
subsequent simulation step. Indeed, an intermediate calculation, based on equivalence theory,
with superhomogénéisation (SPH) or flux-discontinuity factors, has to be performed, in order
to preserve the reaction rates. Sect. 5.2.1 provides some more detail on lattice simulations. In
Sect. 5.2.2, the second step, i.e., the core calculation is discussed. Taking advantage of the
homogenized few-group cross sections provided by the lattice calculation, the reactor core is
modelled as a collection of fuel-assemblies containing lumped pin-cells. The determination of
the neutron flux and reaction rates distributions over the whole core is attained by discretizing
a low-order transport operator, e.g., diffusion or SPN , on a coarse spatial and energy mesh,
and imposing high-fidelity boundary conditions on the reactor border.

5.2.1 . Descriptive Elements of Lattice Calculations
In the following paragraphs, a brief summary of themain stages composing state-of-the-art

lattice calculations is proposed. The interested reader is referred to [5] for more details.

Cross-libraries and self-shielding. Differently from Monte Carlo, deterministic solvers
are not able to treat continuous-energy cross sections. Hence, for each type of fission reac-
tor, e.g., PWR, BWR, VVER, RBMK, etc., the experimental nuclear data are pre-processed, once
for all, to provide reference multigroup cross section libraries, depending on a set of physical
parameters, namely, the nuclide, the nuclear reaction, the energy group and the temperature.
Due to cross section resonances (Fig. 3.1), the neutron flux exhibits abrupt variations, thus re-
quiring the application of a preliminary self-shielding model for each type of fuel-assembly,
for the main resonant isotopes. The objective of a self-shielding calculation is to provide multi-
group cross sections, verifying reaction rate conservation, for the considered fuel-assembly. In
practice, a 2D transport simulation is performed for every assembly type, assuming reflection
boundary conditions. A mathematical model, like the Fine-Structure, [111], Tone or Subgroup
methods, [5], is applied to order to comply such task. More details on the self-shielding models
are beyond the scope of the present work, the interested reader is referred to [27].

Infinite latticemodel. Once determined the self-shielded cross sections, the k-eigenvalue
formulation of the multigroup transport equation is solved for each assembly-type, in real ge-
ometry, assuming reflection boundary conditions on the radial plane and thus neglecting the
net exchange between assemblies. A 3D detailed model may be applied, imposing vacuum
boundary conditions along the z-axis and introducing two layers of axial reflector, one per ax-
ial side, to "back-scatter" a fraction of neutrons towards the active region. Nevertheless, the
axial variation of the neutron flux is generally disregarded, as less significant than the radial
one, and a 2D infinite lattice model is applied, where the elementary unit is the considered
fuel-assembly. The 2D multigroup Boltzmann equation may be solved by deterministic meth-
ods, a common choice being applying discrete ordinates for the angle and MOC for the spatial
variable. In order to reduce the number of unknowns, one may take advantage of the geo-
metrical properties of the fuel-assembly, thus applying 1/8-th symmetry for PWRs or 1/6-th
symmetry for VVERs.
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Buckling leakagemodel. At this stage, the effectivemultiplication factor kmight be signif-
icantly different from 1. Nonetheless, a fission reactor is run in (quasi) steady state conditions.
As neutron leakage has not been taken into account by explicit boundary conditions, the fine
transport spectrum has to be adjusted artificially. A critical leakagemodelmay be introduced
in order to enforce steady-state regime, [5]. To do this, let us suppose that the actual flux dis-
tribution ψ may be factorized as follows:

ψ(r,Ω, E) = Φ(r) · ζ(r,Ω, E), (5.1)
where ζ is the periodic fundamental mode, derived by MOC application to the infinite-lattice
neutron transport problem. Φ(r) is a macroscopic spatial shape, satisfying a Laplace equation,

∇2Φ(r) +B2Φ(r) = 0, (5.2)
in which the distribution curvature B2 is the so-called buckling, that is adjusted iteratively up
to k = 1. This curvature represents an average spatial profile of the neutron flux over the
considered assembly in the full reactor core. Due to Eq. (5.1), Eq. (5.2) reads as

ψ(r,Ω, E) = ζ(r,Ω, E) eiB·r. (5.3)
At this point, a homogeneous fundamental mode approximationmay be introduced, namely
ζ ≃ ζ(Ω, E), which reduces the heterogeneous assembly to a homogeneous paste, for comput-
ing the neutron leakage rates. The prior factorization is replaced into the Boltzmann equation
for a finite and homogeneous system, with P1 scattering. By few rearrangements, a set of B1equations is obtained, namely

(
Σ(E) +D(B,E)B2

)
ζ(E) =

∫ ∞

0
Σs,0(E

′ → E)ζ(E′) dE′ +

χ(E)

k

∫ ∞

0
(νfΣf )(E

′)ζ(E′) dE′, (5.4)
D(B,E) =

1

γ(B,Σ)Σ(E)

(
1

3
+

1

ζ(E)

∫ ∞

0
Σs,1(E

′ → E)D(B,E′) ζ(E′) dE′
)
, (5.5)

where γ(B,Σ) is a function of both the buckling and the total macroscopic cross section and
may be approximated by a Taylor series expansion, as reported in [5]. Eq. (5.4) and (5.5) are ap-
proached by applying the multigroup formalism. As they contain three unknowns, namely ψg ,
Dg andB2, an additional condition is needed, which is provided by normalizing the fission reac-
tion rate to 1. The buckling is thus determined by successive iterations, under the steady-state
constraint k = 1. Once the fission reaction rate has converged to 1, within a given numerical
tolerance, one has to verify that the steady-state condition is satisfied. If this is not the case,
the total cross section is redefined as

Σ̃gt (r) = Σgt (r) +DgB2, (5.6)
and a heterogeneous calculation of the kind(

Ω · ∇+ Σ̃gt

)
ψg = qg (5.7)

is performed, with reflection boundary conditions. The described procedure is repeated until
convergence, [38].
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Homogenization and energy condensation. The heterogeneous critical flux ψg , with
g = 1, ..., G, is used to define homogenized few-group cross section libraries, for every combi-
nation of a set of physical parameters, namely the fuel and moderator temperature, the mod-
erator mass density, the boron concentration, the control rod positions and the burn-up. Note
that the same set of problems is solved for each assembly type. Once simulated the last de-
pletion step, a multi-parametric cross section library is returned. The reader should keep in
mind that, despite for all media the homogenized cross sections contain the contributions of
all nuclides, the distinction between microscopic cross sections and isotopic concentrations is
preserved only for a few representative isotopes (i.e., the most significant fission products),
whereas a fictitious nuclide summarizes the presence of all the others, [53].

5.2.2 . Descriptive Elements of Core Calculations
The objective of the second step is to determine the neutron flux and reaction rates distri-

butions over thewhole reactor core. A calculation over assemblies of homogenized pin-cells (or
over homogenized assemblies) is performed, with the low-order transport operator being dis-
cretized by the finite-differencemethod, the analytical nodal (ANM) or nodal expansionmethod
with transverse leakage approximation (NEM), [54], or the finite-element method (FEM), [55].
Differently from lattice simulations, no critical leakage model is required, as the boundary con-
ditions may be represented with high accuracy.

Let us introduce the steady-state neutron balance over group h,
∇ · Jh(r) + Σh(r)Φh(r) =

∑
h′ ̸=h

Σhh
′
(r)Φh

′
(r) +

1

k

∑
h′ ̸=h

(χνΣ)hh
′

f (r)Φh
′
(r), h = 1, ...,H, (5.8)

H being the number of condensed-energy groups (generally, H = 2, but may assume values
up to a few tens). In order to solve Eq. (5.8), a relation between the multigroup neutron flux
and current density is needed. Often, this condition is provided by the Fick law, leading to the
diffusion approximation,

Jh(r) = −Dh(r)∇Φh(r), (5.9)
whereDh(r) is a tensor containing the directional diffusion coefficients.

The neutronics solver, based on 3D nodal diffusion with few energy groups, is coupled with
a thermal-hydraulics code, whose solution may consist of 1D sub-channels exchanging heat
and mass (Fig. 5.1).4 Each sub-channel may contain a certain number of fuel pins, discretized
into multiple rings and surrounded by an average coolant, [56]. Despite the increasing inter-
est for detailed thermal-hydraulics solutions, most reactor core calculations resort to coarse
radial discretizations, where the fuel assembly is treated as a whole, without sub-channel re-
finement and transverse exchange. Moreover, heat conduction is often reduced to a single
representative pin per assembly, with several rings to account for the sharp gradients of the
radial temperature profile. The thermal-hydraulics feedback is responsible for a change in the
cross sections of the neutron diffusion calculation. In return, the energy released by fission
reactions impacts the temperature and mass density distributions, leading to a mutual inter-
action between neutronics and thermal-hydraulics, and thus to a multiphysics problem. Each
steady-state solution requires, as a consequence, a coupled approach, where the boron con-
centration and control rod positions thatmake the core critical are searched. In PWRs, the boric

4An alternative strategy consists in implementing an inner thermal-hydraulic module.
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Figure 5.1: Thermal-hydraulics sub-channel mesh, represented by dashed lines.

acid is dissolved in the coolant. Assuming a uniform boron concentration CB [ppm] over the
whole moderator, the following formula holds, [57],

CB =
ρH3BO3(z) wB

ρH3BO3(z) + ρH2O(z)
· 106, (5.10)

where ρH3BO3 and ρH2O [g/cc] are respectively the boric acid density and the water density of
the borated water, in the local coolant cell z, with z = 1, ..., Nz , while wB is the weight fraction
of boron in the boric acid. The critical boron concentration can be determined by an iterative
formula, involving the multiplication factor, i.e.,

C
(n)
B =

C
(n−1)
B − C(n−2)

B

k(n−1) − k(n−2)
(1− k(n−2)) + C

(n−2)
B , (5.11)

n being the iteration index.

5.3 . LIMITATIONS OF THE TWO-STEP STRATEGY AND 3D DIRECT TRANSPORT
As mentioned in Sect. 5.2, the two-step approach introduces a number of approximations,

as, to name a few,
• The detailed transport solution is generally searched only for a 2D lattice, with simplified
radial boundary conditions;

• In the lattice step, radial leakage is introduced artificially, by an approximate homoge-
neous critical model;

• The flux distribution is reconstructed as the product of a macroscopic profile and a peri-
odic transport solution. This factorization is exact only for a core of identical fuel assem-
blies;

• The reaction rates over the whole core result from a diffusion approximation, which may
fail for small reactors;

• The homogenized reflector cross sections, which require a dedicated approximate treat-
ment, as no nuclear fission occur in this region and vacuum boundary conditions are
imposed on at least one side.
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The limitations of the two-step approach, togetherwith the increasing availability of high perfor-
mance computers, justify the growing interest of fission reactor physicists in full 3D transport-
based simulations. The development of high-fidelity tools allows following local sharp gradi-
ents with great level of detail, at the expense of a large computational effort, the multigroup
approximation and the self-shielding model being the sole factors which may impact the nu-
merical precision. Due to the size of the problem, with thousands of billions of unknowns, the
numerical solution, often based on the method of characteristics, relies on DDM for massive
parallel calculations on high performance computers.

An example of 3D direct transport is provided by the OpenMOC solver, developed at the
Massachusetts Institute of Technology (MIT). In [58], the numerical accuracy was tested by com-
parisons with a Monte Carlo reference solution. A total of 92480 CPU cores were needed for a
runtime of 7.76 h, to simulate the full core 3D BEAVRS benchmark, [59].

Despite the growing interest in 3D direct transport, industrial codes still rely on the two-
step approach or the 2D/1D fusion method, as less expensive in terms of computational (and
economical) cost.

5.4 . 2D/1D FUSION METHOD
The 2D/1D Fusionmethod offers an alternative strategy to the two-step and 3D direct trans-

port approach, for high-fidelity numerical solutions of the neutral-particle Boltzmann equation
over the whole reactor core. Its first application dates back to the CRX code, [51], with several
successive implementations, of which DeCART [60], nTRACER [61] and MPACT [52] are notable
examples. The basic idea behind 2D/1D Fusion is to preserve a detailed solution on the x-y
plane, while using a low-order transport model along the z-axis. This assumption is motivated
by observing that the axial geometry is generally less heterogeneous than the radial one. The
2D/1D equations are derived from the multigroup Boltzmann equation, by approximating the
streaming operator as follows

Ω · ∇ψg(r,Ω) ≃
(
Ωx

∂ψg(r,Ω)

∂x
+Ωy

∂ψg(r,Ω)

∂y

)
+

1

4π

∂Jgz (r)

∂z
(5.12)

for the radial equation and
Ω · ∇ψg(r,Ω) ≃ 1

4π

(
∂Jgx(r)

∂x
+
∂Jgy (r)

∂y

)
+Ωz

∂ψg(r,Ω)

∂z
(5.13)

for the axial one. Replacing the streaming operator by Eq. (5.12) and integrating over a finite
step∆z along the z-axis, one obtains the 2D equation,(

Ωx
∂ψg∆z(x, y,Ω)

∂x
+Ωy

∂ψg∆z(x, y,Ω)

∂y

)
+Σg∆z(x, y) ψ

g
∆z(x, y,Ω) = qg∆z(x, y,Ω)− Lg∆z(x, y),

(5.14)
where ψg∆z(x, y,Ω) and qg∆z(x, y,Ω) denote respectively the axial average of the angular flux
and neutron source, over a slice∆z along the z-axis. Note thatLg∆z(x, y) in Eq. (5.14) representsthe axial transverse leakage. Conversely, substituting Eq. (5.13) in the original multigroup trans-
port equation, integrating over ∆xy on the radial plane and over [0, 2π] along the azimuthal
angle, one obtains the 1D equation,

µ

2

∂ψg∆xy(z, µ)

∂z
+Σg∆xy(z) ψ

g
∆xy(z, µ) = qg∆xy(z, µ)− L

g
∆xy(z), (5.15)
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µ being the cosine of the polar angle, ψg∆xy(z, µ) and qg∆xy(z, µ) the radial average of the angularflux and neutron source, respectively, and Lg∆xy(z) is radial transverse leakage term. Note that
Eq. (5.14) and (5.15) are coupled through the radial and axial leakage. The solution is obtained
iteratively, by solving Eq. (5.14) and computing the radial leakage, which is then provided to
Eq. (5.15), whose solution allows to evaluate the axial leakage, which is, in turn, required in Eq.
(5.14).
Eq. (5.14) has to be solved on a highly heterogeneous domain, i.e., the radial plane. For this pur-
pose, the 2D Method of Characteristics is applied on discrete directions (SN method), in order
to attain high numerical accuracy on arbitrary geometries. Conversely, as the axial geometry is
more homogeneous, Eq. (5.15) is generally solved by applying the diffusion approximation or
by SPN , with the latter being able to represent the angular dependence of the flux by Legendrepolynomial expansion of order N .

In order to discuss multiphysics applications based on the 2D/1D Fusion method, let us
restrict the focus on the VERA Core Simulator. This comprises three solvers, i.e., MPACT for
neutron transport, COBRA-TF for thermal-hydraulics and ORIGEN for nuclide transmutations,
[62]. Regarding the neutronics/thermal-hydraulics coupling, MPACT receives the temperature
and density scalar fields produced by COBRA-TF, and, in return, it provides COBRA-TF with the
power-density distribution. The spatial discretizations of MPACT and COBRA-TF are different:
the former is based on combining Cartesian and azimuthal grids, while the latter relies on the
sub-channel discretization depicted in Fig. 5.1. Hence, the physical quantities are mapped from
one solver to another in such a way that the scalar fields (i.e., temperatures, concentrations,
etc.) are conserved, as illustrated in [62]. To do this, a pin-cell coupling model is introduced, us-
ing an intermediate conformal pin-cell geometry to exchangedata betweenMPACTandCOBRA-
TF.

One themost innovative calculationmethodologies proposed in the VERA Core Simulator is
sketched in Fig. 5.2. The precomputed multigroup (MG) cross-section library, containing micro-
scopic cross sections and resonance integrals, as a function of temperature and neutron kinetic
energy, includes 295 isotopes and 51 energy groups, of which 22 are in the resonant region. The
self-shielding calculation is performed for the resonant groups, for 49 resonant isotopes. The
macroscopic cross section library is updated as depicted in Fig. 5.2 at each outer iteration, after
updating the temperature and density fields. In other words, MPACT and COBRA-TF exchange
information at each outer iteration, without converging separately.

The 2D/1D Fusion method is an attractive alternative to dimensionality reduction methods
based on the two-step approach, as it does not require the use of homogenization and energy
condensation techniques, which could degrade the numerical accuracy of the simulation. Nev-
ertheless, the application of 2D/1D to highly heterogeneous axial geometries may suffer from
some limitations, due to 1D diffusion. This is the case of
• BWR cores experiencing severe void fraction heterogeneities;
• Partially rodded assemblies, with heterogeneous AIC/B4C control rods, with Fig. 7.27
providing a practical example;

• Axially heterogeneous fast breeder reactor cores.
In particular, in order to obtain accurate results, each MOC plane should be axially homoge-
neous. In principle, this task may be achieved by meshing the axial geometry, in such a way
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Figure 5.2: VERA Core Simulator: cross section update and outer iteration scheme.

that the vertical heterogeneities line upwith the node boundaries. Nonetheless, thismay cause
some issues when simulating control rods successive positions, as control rods move with a
step-size of 1 ÷ 2 cm. It is clear that MOC plane refinement is not a viable option, as the CPU
time would increase dramatically. The same issue is experienced in other nodal solvers and
calls for dedicated remedies, which are illustrated in Sect. 5.5.

5.5 . CONTROL ROD MOVEMENT AND CUSPING EFFECT
A control rod is a device that allows to regulate the evolution of the fission reaction chain.

Its composition comprises nuclides like boron, cadmium, indium, silver, hafnium isotopes ,
which are strong neutron absorbers, with the lighter nuclides (e.g., 10B, 11B) undergoing (n, α)-
reactions and the heavier nuclides (e.g, 113Cd, 115In, 107Ag, 108Ag) interacting by radiative cap-
ture.
As piece-wise cross sections are not allowed in traditional solver, when the control rod tip posi-
tion does not alignwith the node boundary, the absorber has to be homogenizedwith themod-
erator underneath. If the node cross sections are homogenized by simple volume-weighting,
an artificial depression is observed in the neutron flux axial profile, with a consequent under-
prediction of the reactivity curve, as shown in Fig. 5.3. More details on the subject are provided
in Chapter 8.
In order to reduce the cusping effect, several workarounds have been introduced in the last
decades. In the following, a brief overview of some notable methods is proposed, [63], [64],
[65] .
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Figure 5.3: Rod cusping effect: reactivity vs control rod tip position.

Figure 5.4: Rodded node.

5.5.1 . The Approximate Flux-Weighting Method
Given a partially rodded node k, the average flux in the unrodded part of the node is esti-

mated as
ΦgU =

(zk−1 − zk−2)Φ
g
k−1 + (1− α)(zk − zk−1)Φ

g
k

(zk−1 − zk−2) + (1− α)(zk − zk−1)
, (5.16)

while the average flux in the rodded part of the node is approximated as
ΦgR =

(zk+1 − zk)Φgk+1 + α(zk − zk−1)Φ
g
k

(zk+1 − zk) + α(zk − zk−1)
, (5.17)

where α ∈ [0, 1] is the fraction of the node occupied by the control rod, zk is upper axial coor-dinate of node k and Φgk is the multigroup neutron flux in node k. This said, the average cross
section of node k is computed by flux-weighting,

Σgx =
(1− α)Σgx,UΦ

g
U + α(Σgx,U +∆Σgx)Φ

g
R

(1− α)ΦgU + αΦgR
, (5.18)

x being an absorption, (n, 2n) or removal reaction.
5.5.2 . The Equivalence Method

Let us consider two spatial meshes, namely c and f , with the former denoting a coarse axial
discretization, where the node containing the control rod tip is treated as awhole, and the latter
indicating a finer grid, where the rodded and unrodded parts are split in two separate nodes
(Fig.5.4). The present method consists in determining a set of parameters to enforce an equiv-
alence between c and f such that the average, linear and parabolic moments are preserved.
For the sake of simplicity, we consider a two-group diffusion model and assume that
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• The up-scattering source is negligible;
• Both fast and slow neutrons may induce a fission reaction;
• All fission neutrons are fast.

The multigroup diffusion equations read as
∇ · J1 + (Σ1

a +Σ2,1)Φ1 =
1

k

2∑
g=1

(νΣ)gfΦ
g, (5.19)

∇ · J2 +Σ2
aΦ

2 = Σ2,1Φ1, (5.20)
Jg = −Dg∇Φg. (5.21)

Let us solve the 1D problem along the axial direction and apply the Nodal Expansion Method,
[66], 5. Hence, Eq. (5.19)-(5.21) are integrated over∆x and∆y,

dJ1

dz
+

(
Σ1
a(z) + Σ2,1

)
Φ1(z) =

1

k

2∑
g=1

(νΣ)gf (z)Φ
g(z)− L1(z), (5.22)

dJ2

dy
+Σ2

a(z)Φ
2(z) = Σ2,1(z)Φ1(z)− L2(z), (5.23)

Jg(z) = −Dg(z)
dΦg

dz
, (5.24)

where
Lg(z) =

1

∆x

∫ ∆x

0
Jgydx+

1

∆y

∫ ∆y

0
Jgxdy. (5.25)

represents the radial leakage. Let us project Eq. (5.22)-(5.23) onto a polynomial basis of the kind

P =

 1
u

u2 − 1
12

 , u =
z

∆z
− 1

2
, (5.26)

u being a reduced coordinate, assuming values in [−1/2, 1/2]. This formulation applies to both
discretizations, namely c and f . However, for f , i.e., the finer mesh, the control rod tip position
matches the node interface, thus the cross sections of the two (homogeneous) nodes may be
defined as follows

Σgx(u) =

{
Σgx,U , α ∈ [−1/2, ξ]

Σgx,U + δΣgx, α ∈ [ξ,+1/2]
(5.27)

ξ being the reduced coordinate of the interface between the rodded and unrodded node and
δΣgx = Σgx,R − Σgx,U being the difference between the rodded and unrodded cross sections for
reaction type x. An analogous formula applies to the diffusion coefficients. Conversely, for c,
i.e., the coarse mesh, the control rod tip is contained in the node. The cross section of the
equivalent node may be defined as

Σgx(u) = Σgx,U + wgδΣgx, (5.28)
wherewg is a group-dependent parameter. Eq. (5.22) and (5.23) are integratedover [−1/2,+1/2]

after substitution of Eq. (5.27), which allows to obtain the zero-order two-node diffusion equa-
tions. On the contrary, the zero-order equivalent-node equations are obtained by replacing Eq.

5The Nodal Expansion Method is not available in APOLLO3®.
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(5.28) in Eq. (5.22)-(5.23) and integration over [−1/2,+1/2]. By enforcing an equality between
the two two-node and equivalent-node formulations, one can derive wg. Note that the leakage
terms Lg(z) are implicitly supposed to be the same for the two cases.

The equivalence between the high-order moments is enforced in a similar way, namely∫ 1/2

−1/2
du Pn(u)[Eq.(g)](5.27) =

∫ 1/2

−1/2
du Pn(u)[Eq.(g)](5.28) − cgn, n = 1, 2, (5.29)

whereEq.(g) is alternatively the fast or thermal-group diffusion equation, in which, depending
on themodel, i.e., the two-node or the equivalent-node formulation, Eq. (5.27) or (5.28) are sub-
stituted. Note that a group and order-dependent correction cgn, with n = 1, 2, is added, in each
case. In [64], it is shown that both the flux-approximate and equivalent method significantly
reduce the control-rod cusping effect, where the latter outbests the results of the former. Nev-
ertheless, none of them is able to eliminate completely the numerical wiggles in the reactivity
curve.

5.5.3 . The Sub-plane Method
In [65], two novel subplane-based control rod decuspingmethods are illustrated forMPACT

[52], using 2D/1D Fusion. As stated in Sect. 5.4, the 3D geometry is decomposed into a stack of
radial planes, solved by MOC. The 2D planes are coupled along the z-direction, by the trans-
verse leakage term. The solution of the 1D axial equation is attained by a low-order transport
model.

In order to speed up the convergence of the transport iterations, MPACT relies on 3D CMFD:
each pin-cell is homogenized into a single region, preserving total reaction rates, and the diffu-
sion approximation is applied to obtain the scalar flux and renormalize the fine-mesh transport
spectrum. As CMFD is based on pure 3D diffusion, which is not able to capture sharp axial gra-
dients, a 1D NEM-P3 solver is necessary to solve the spatial and angular dependence of the
neutron flux. This allows to compute the axial currents coupling the MOC planes with good
precision.

Each MOC plane is axially homogeneous. This clearly questions the applicability of 2D/1D
to simulations where the control rods move along the vertical direction, to insert positive or
negative reactivity, depending on the direction of motion. One may finely mesh the entire ge-
ometry, so that each radial plane is axially homogeneous. Nevertheless, this would significantly
increase the computational cost of the whole simulation.

The subplane-based methodsmeet both requirements, i.e., preserving the numerical ac-
curacy without dramatic repercussions on the runtime. Each radial plane is finely subdivided
for CMFD and 1D NEM-P3, but not for 2DMOC, which represents themost expensive part of the
solution. In order to fix control rod cusping effects, two approaches are proposed in [65]. The
first one uses rodded/unrodded nuclear data in the upper/lower sub-planes, for CMFD cross
section homogenization. As a result, the low-order transport solution is able to capture the
abrupt variation of the neutron flux around the control rod tip. Then, the radial equation is
solved by 2D MOC with flux-weighted cross sections Σr, r being the radial mesh index, using
the CMFD sub-plane flux,

Σr =

∑
k∈planeΦrad,rΦ

k
axi,rΣ

k
r∆

k∑
k∈planeΦrad,rΦ

k
axi,r∆

k
, (5.30)
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where k is the sub-plane mesh index,∆k the sub-plane thickness, Φkaxi,r the cell-averaged sub-plane solution and Φrad,r the average radial flux. Note that Φrad,r is the same for all sub-planes
within the MOC plane. This method allows to reduce the amplitude of the wiggles in the differ-
ential reactivity worth curve, but does not eliminate completely the control rod cusping effect.

The second sub-plane method presented in [65] is based on collision probabilities. In prac-
tice, the geometry of the partially rodded pin-cell is altered, by transforming the moderator
region into a ring, but preserving the volume. The presence of the surrounding pin-cells is
taken into account artificially, by introducing an additional ring around the moderator region,
whose cross sections are obtained by flux-weighting homogenization. Monodimensional CP-
based calculations are performed both with the rodded and the unrodded cross sections, thus
providing a radial fluxΦkrad,r for each sub-plane k that can be used in Eq. (5.30) for cross sectionhomogenization, in lieu of MOC. This approach prevents the occurrence of control rod cusping
effects, but still shows some limitations. In fact,
• Themethod of collision probabilities is not able to handle anisotropic scattering sources;
• The application of the subplane-based methods is limited to stationary calculations;
• Numerical instabilities may be triggered by very thin cells.
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6 - INTRODUCTIONTOTHE INTEGRO-DIFFERENTIALTRANS-
PORT SOLVER (IDT)
6.1 . INTRODUCTION
The present chapter is completely devoted to the APOLLO3® Integro-Differential Transport

solver (A3-IDT). The numerical capabilities of IDT are briefly recalled, with particular focus on
heterogeneous geometries in two or three dimensions. This will serve as a preliminary basis to
the new developments, which are illustrated in the upcoming chapters.

IDT is a neutral-particle transport code, designed to solve the multigroup Boltzmann equa-
tion, with discrete ordinates and PN scattering, in planar, 2D and 3D geometries. It is able to
treat an extensive range of boundary conditions, including non-reentering/vacuum, specular
and isotropic reflection, π and π

2 -rotation, diagonal and multigroup albedo, axial symmetry,
translation, etc. It is equipped with response-matrix spatial discretizations, including finite dif-
ferences, nodal expansion and short characteristics methods. For 2D/3D heterogeneous ge-
ometries, A3-IDT relies on constant and linear short characteristics, described in Sect. 4.6.4.
The spatial domain is subdivided into conformal Cartesian nodes, hosting an arbitrary number
of extruded concentric cylinders. The transport operator is inverted by computing angular-
dependent probability coefficients in each node and discrete direction of the angular quadra-
ture formula, and propagating the numerical solution to neighbouring cells by piece-wise poly-
nomial currents. A numerical spatial quadrature, based on a local (i.e., cell-by-cell) ray-tracing
algorithm, ensures the computation of the collision probabilities for each direction. Finally, a
spatial sweeping is conducted for each discrete direction, propagating the angular interface
flux moments by front.

In A3-IDT, the fission, up-scattering and self-scattering source are converged by outer, ther-
mal and inner iterations, respectively (Sect. 4.4.2). The use of synthetic operators (e.g., the
CMFD method) permits a speed-up of the iterative scheme. In recent years, a non-overlapping
domain decomposition method has been implemented, [70], allowing for massive parallel cal-
culations.

The described solver is affected by some weaknesses, mainly attributable to the geomet-
rical model and the memory requirements of the CP matrices (Sect. 4.6.4). First of all, no ad-
ditional inner mesh refinement is available to boost the numerical accuracy, in case of peaked
gradients, generated by strongly absorbing or diffusive media. Moreover, the geometrical rep-
resentation is limited to conformal structured meshes, with extruded vertical cylinders. This
does not allow including hexagonal patterns or horizontal fuel bundles, preventing the use
of the solver to compute VVERs or CANDU reactors. In addition, the use of current-coupled
collision probabilities (Sect. 4.6.2) poses some limitations to the application of A3-IDT to large
multiplying systems or burn-up calculations, which generally include hundreds to thousands
of different regions per assembly.

The present chapter is organized as follows. First, some generalities are provided on the
main fields of applications of A3-IDT (Sect. 6.2). Then, the implemented numerical methods
are briefly summarized (Sect. 6.3), with particular focus on the response-matrix formalism
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and spatial discretization of heterogeneous geometries (Sect. 6.3.1-6.3.4). Sect. 6.4 offers a
brief overview on the domain decomposition approach. Finally, a balance of pros and cons
is drawn, opening to the necessary developments that are illustrated in the upcoming part of
the manuscript (Sect. 6.5).

6.2 . HISTORICAL NOTE AND MAIN APPLICATIONS
Born in 1998 as a standalone solver, thanks to the work of [67], IDT has received several

contributions over the last 25 years, with [68], [69], [70], [38] setting milestones in the devel-
opment of the code. IDT is also part of APOLLO2 and APOLLO3®, [71]. At present, it is able
to address the direct and adjoint formulation of the neutral-particle Boltzmann equation, for
steady-state neutron and photon transport, with k-eigenvalue or fixed-source formalism.

IDTmay target a variety of industrial applications, ranging from lattice calculations, homog-
enized pin-by-pin core simulations, 2D photon transport calculations, 1D-planar simulations
withmulti-group albedo computation and 2D/3Ddirect transport simulations, taking advantage
of domain decomposition and OpenMP/MPI hybrid parallelism. It is also the subject of intense
research activity, with recent applications to self-shielding problemswith localized sources, [72],
and to the generation of the importance function distribution, that is provided as an input to
the TRIPOLI-4® Monte Carlo code, [73].

6.3 . SPATIAL DISCRETIZATION
IDT supports a relativelywide variety of spatial discretization schemes, including one-dimen-

sional slabs as well as Cartesian geometries, in two or three dimensions, with the possibility to
input an arbitrary number of concentric heterogeneous cylinders within each cell (Fig. 6.1-6.2).
The spatial domain is partitioned into a conformal mesh ofNx ·Ny ·Nz Cartesian nodes, where
Nx, Ny and Nz represent the number of subdivisions for the x, y and z-axis, respectively. The
spatial solution of the Boltzmann equation within each cell can be attained by several methods,
in particular:
• Diamond difference and nodal expansion method in homogeneous Cartesian cells;
• Constant, linear, parabolic and cubic characteristics in 1D planar geometries;
• Constant, linear and bilinear short characteristics in homogeneous Cartesian cells;
• Constant and linear short characteristics in heterogeneous Cartesian cells.

IDT is also equipped with a number of acceleration techniques, based on the Chebyshev, BPA
(Boundary Projection Acceleration), CMFD and Thermal-Rebalancing synthetic operators, [45],
[46], [74].

6.3.1 . Response Matrix Approach
In IDT, all methods providing the spatial solution of the Boltzmann equation over a cell are

based on a response matrix formalism, which consists of two equations of the kind
ψ(Ω) = C(Ω)q(Ω) +

∑
s′∈∂V −

Is′(Ω)ψ−
s′(Ω), (6.1)

ψ+
s (Ω) = Es(Ω)q(Ω)+

∑
s′∈∂V −

Ts′(Ω)ψ−
s′(Ω), s ∈ ∂V +, (6.2)
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Figure 6.1: 2D heterogeneous cells. Figure 6.2: Examples of deformed 3D pin-cells.

where
• C, I, E and T represent the collision, incoming, escape and transmission angular prob-
ability matrices, respectively;

• ψ, ψ±
s and q denote the spatial moments of the flux, of the outgoing/incoming flux and

of the neutron source, respectively;
• s and s′ indicate the surface discretization on the outgoing and incoming boundaries ∂V +

and ∂V −, respectively, which depend on the angular direction illuminating the cell,Ω.
In other words, the response matrix formalism provides the solution to the neutral-particle
transport equation over a mesh of spatial nodes coupled by particle currents, where Eq. (6.1)
may be interpreted as a balance preserving the number of neutrons or photons, while Eq.
(6.2) is based on the continuity of the cell-boundary currents. Both equations are obtained by
projecting the source and interface fluxes onto polynomial bases, as discussed in Sect. 4.6.4.

6.3.2 . Heterogeneous Cartesian Cells
Let us narrow the focus on heterogeneous geometries. The spatial domain is decomposed

into amodular Cartesian pattern, where each nodemay contain an arbitrary number of hetero-
geneous cylinders. This chunk of the original geometry goes under the name of Heterogeneous
Cartesian Cell (HCC). A conforming surface mesh may be superimposed on the cell sides, in or-
der to improve the representation of the interface angular flux. Note that all cylinders share
the same axis, which is parallel to the vertical direction and contains the centre of mass of the
Cartesian cell, as shown in Fig. 6.3. Due to the presence of the cylinders, the angular proba-
bility matrices of Eq. (6.1) and (6.2) cannot be integrated analytically. A ray-tracing algorithm
permits computing the surface and volume integrals defining C, I, E and T, by means of a
quadrature formula. The weights are obtained by projection onto a transverse plane, which is
perpendicular to the set of rays t0, t1, ..., tn, with ti ∥ Ω (Fig. 6.5).

6.3.3 . Spatial Sweeping
Let us fix the angular direction,Ω. The spatial solution over the ensemble of cells composing

the system geometry is obtained by applying Eq. (6.1) and (6.2) in each node. The discretized
domain is swept along direction Ω by ordering the spatial cells, which are solved one after
the other, following the interface currents. For heterogeneous cells, the sweeping proceeds by
front, as indicated in Fig. 6.4. Once solved a HCC, its outgoing flux moments are transmitted to
the down-stream HCC, by taking advantage of the continuity condition,

ψ+
s |up = ψ−

s′ |down, (6.3)
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Figure 6.3: Heterogeneous Cartesian Cell (HCC).

Figure 6.4: Sweeping by front.
where ψ+

s |up and ψ−
s′ |down represent the outgoing and incoming angular flux moments, for the

up-stream and down-stream cells, respectively. Note that the surface flux moments are trans-
mitted with no approximation, thanks to the conforming surface mesh discretization. Finally,
one should notice that at the system boundary the surface flux is provided by the boundary
conditions.

6.3.4 . Ray-tracing
The angular probabilitymatrices are computed bymeans of amodular tracking, where each

ray-tracing module corresponds to a cell-geometry type. Generally, for industrial applications,
the whole system may be reconstructed by repeating few geometry types, thus limiting the
memory imprint of the tracking.

Assuming α, β,... as the indexes of the regions within the HCC and Tα(Ωd) as the set of tra-jectories intersecting region α along direction Ωd, the ray-tracing module performs numerical
transverse integration as∫

Dα

d3r f(r) ≃
∑

t∈Tα(Ωd)

w⊥
t

∫ ξ+α

ξ−α

dξ′ f(r−t + ξ′Ωd) (6.4)
with
• ξ being the coordinate along the trajectory and f an arbitrary spatial function;
• w⊥

t = |Ωd·ns|∆As,t = |Ωd·ns′ |∆As′,t defining the weight of trajectory t, ns and ∆As,tbeing the unit-normal vector and the projection of surface s on the transverse plane,
respectively;
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Figure 6.5: Ray-tracing.
• ξ±α denoting the coordinates of the trajectory intersections with the region boundary.
The local coordinate system, which is centered in the south-west corner of the HCC, is ro-

tated along direction Ωd. Three-dimensional ray-tracing is performed by taking advantage of
the extruded nature of the geometry. Moreover, differently from MOC, as the rays are local to
the HCCs, the geometrical discontinuities can be projected onto the transverse plane.

For 3D cells, the local tracking is performed by factorization in two planar ray-tracing mod-
ules (Fig. 6.5):
• First, a 2D-XY tracking is performed, where the discontinuities on the XY plane are pro-
jected onto the transverse plane. Then, the XY geometry is illuminated by a set of equally-
spaced trajectories, with spacing∆XY defined by the user, parallel to the projectionΩXY

dof Ωd on the XY -plane. Finally, on each 2D slice between two consecutive trajectories,
NXY Gauss points are introduced, where, once again, NXY is fixed in the input file;

• The prior algorithm is repeated for each tZ-slice, where t is a 2D-trajectory. Again, two
user-defined parameters are required, i.e., a uniform spacing∆tZ and a number of Gauss
points NtZ .

The 3D weight w3D of a 3D trajectory can be factorized as w3D = wXY · wtZ .
For each direction of the angular quadrature formula, the ensemble of trajectory data are

stored in memory. These comprise:
• The 2D-angle order-number;
• The incoming surface s′;
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• The outgoing surface s;
• The chord-to-region map;
• The trajectory weight w3D;
• The opposite of the cosine of the angle between the selected direction and the outward
unit-vector of the incoming surface, −Ω · ns′ ; 6

• The cosine of the angle between the selected direction and the outward unit-vector of
the outgoing surface,Ω · ns; 6

• The local coordinates of the trajectory hang-point r−t on the incoming cell-side; 6
• The local coordinates of the trajectory hang-point r+t on the outgoing cell-side; 6
• The chord-lengths.

6.4 . DOMAIN DECOMPOSITION IN IDT
6.4.1 . Problem Position

IDT relies on domain decomposition and massive parallelism to reduce the CPU time, [70],
[76], [75]. Non-overlapping DDM has been implemented, in order to minimize data exchange.
Provided D is the spatial domain of the whole system, DDM consists in decomposing D into
a number of subdomains equal to U , i.e., D =

⋃
u=1,...,U Du. Let us introduce the following

notation for the phase-space:
Xu ≡ (r ∈ Du, Ω ∈ S2, E ∈ R+

G), (6.5)
∂X±

u ≡ (r ∈ Γ±
u (Ω), Ω ∈ S2, E ∈ R+

G), (6.6)
Γ±
u (Ω) ≡ (r ∈ ∂Du, nu+(r) ·Ω ≷ 0). (6.7)

The solution of the whole problem may be reconstructed as
ψ(x) =

∑
u

χu(x)ψu(x), x ∈ X, (6.8)
where X denotes the phase-space domain of the whole system, while χu is the characteristicfunction of sub-domain u and reads as

χu(x) =

{
1, if x ∈ Xu,

0, otherwise.
(6.9)

Eq. (6.8) is verified, provided the interface currents between neighboring sub-domains satisfy
the continuity condition,

ψ−
u (x) = ψ+

v (x), x ∈ ∂X−
u ∩ ∂X+

v , ∀u, v : u ∩ v ̸= ∅. (6.10)
The transport problem is reformulated asU multi-group source problemsof smaller size, namely

(L−H)uψu(x) = qu(x), x ∈ Xu,

ψ−
u (x) = ψ+

v (x), x ∈ ∂X−
u ∩ ∂X+

v , ∀u ∩ v ̸= ∅,
ψ−
u (x) = 0, x ∈ ∂X−

u ∩X−,

(6.11)

6Data stored for linear (or higher) order development.
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where the fission source distribution qu for sub-domain u reads as
qu(x) =

Fuψu(x)

k
. (6.12)

6.4.2 . Power Iterations
Power iterations are performed to converge the fission source. First, the eigenvalue, the

interface flux and the fission source are initialized for each sub-domain. Each power iteration
solves U boundary-source problems of the kind

(L−H)uψ
(e+1)
u (x) = q

(e)
u (x), x ∈ Xu,

ψ
−,(e+1)
u (x) = ψ

+,(e)
v (x), x ∈ ∂X−

u ∩ ∂X+
v , ∀u ∩ v ̸= ∅,

ψ
−,(e+1)
u (x) = 0, x ∈ ∂X−

u ∩X−.

(6.13)

The local net disappearance operator (L − H)u is inverted by thermal iterations, which are
performed in each sub-domain, to converge the scattering source. Note that the sub-domains
transmit the interface solution only at the end of the local thermal/inner iterations (Eq. (4.43)-
(4.47)) , in order to minimize the exchange of information. Once solved the local sub-domain
problems, the k-eigenvalue and local fission sources are updated as follows:

k(e+1) = k(e)
∑

u=1,...,U (w,Fuψ
(e+1)
u )u∑

u=1,...,U (w,Fuψ
(e)
u )u

,

q(e+1)
u (x) =

Fuψ
(e+1)
u (x)

k(e+1)
.

(6.14)

Successive iterations are run, until the convergence criteria on the eigenvalue, fission integral
and incoming flux are simultaneously verified. More specifically, the errors are defined as fol-
lows: 7

εrelk =

∣∣∣∣∣1− k(e+1)

k(e)

∣∣∣∣∣ , (6.15)

εL
∞

F =

∣∣∣∣∣1−
∑

g(Fuψ
(e+1)
u )g∑

g(Fuψ
(e)
u )g

∣∣∣∣∣ , u = 1, U r ∈ Du,R, (6.16)

εL
∞

ψ (x) =

∣∣∣∣∣1−
∫
2π− d

2Ω |n ·Ω|ψ−,(e+1)
u (x)∫

2π− d2Ω |n ·Ω|ψ−,(e)
u (x)

∣∣∣∣∣ , u = 1, U x ∈ ∂X−
u . (6.17)

For each outer iteration, a multi-group low-order-transport problem is solved. In particular,
IDT relies on Coarse Mesh Finite Differences (CMFD) (Sect. 4.7.2), to speed up the convergence
of the transport iterations, where the coarse spatial/energy mesh is automatically generated,
by simple inputs. Note that the CMFD spatial mesh is obtained by coarsening the HCC grid in
each sub-domain. The mesh generator is able to preserve the global conformity of the coarse
mesh.

7Error-norms used in IDT: L∞-norm on the flux and on the angular and spatial moments; L∞-normon the border, with angular-integrated partial currents; L2-norm on the thermal source; L∞-norm onthe fission integral.
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Once determined the new transport iterate ψ(e+1/2)
u (Eq. (4.106)), ∀u ∈ p, with p being an

MPI process, the CMFD eigenvalue and coarse-mesh scalar flux are initialized to
kCMFD,(0) = k(e) , ΦCMFD,(0) =

∫
dx ψ(e+1/2)

u . (6.18)
The synthetic problem is approached by successive iterations, of index j, where, at each step,
one solves the ensemble of subdomains u ∈ p, (Eq. (4.117)). A new iterate is computed, with
eigenvalue

kCMFD,(j+1) = kCMFD,(j)

∑
u=1,...,U (w,FuΦ

CMFD,(j+1)
u )u∑

u=1,...,U (w,FuΦ
CMFD,(j)
u )u

. (6.19)
Once converged the low-order-transport problem, the fine transport spectrum is renormalized
by means of the obtained coarse-mesh solution (Eq. (4.114)) and the effective multiplication
factor k(e+1) is set equal to the converged CMFD eigenvalue.

6.4.3 . Pivot-Grid, CMFD-Mesh and Subdomain-to-Process-Map Automatic Gener-ation
The fundamental algorithm responsible for the automatic construction of
• the pivot grid,
• the CMFD mesh,
• the Subdomain-to-Process mapping,

may be summarized as follows. SupposeNk andMk are respectively the number of fine steps
and required coarse steps along axis k, with k = x, y, z andMk ≤ Nk. Providedmk is a coarsestep along axis k, the number of fine steps contained inmk is given by

nmk
= max

(
1,

⌊
Nk

Mk

⌋)
+ 1, (6.20)

formk = 1, ..., Nk( mod Mk), and
nmk

= max

(
1,

⌊
Nk

Mk

⌋)
, (6.21)

formk = Nk( mod Mk) + 1, ...,Mk. In other words, the first Nk( mod Mk) coarse axial steps
contain max

(
1,
⌊
Nk
Mk

⌋)
+ 1 consecutive fine axial steps, along axis k, whereas the remaining

ones contain onlymax

(
1,
⌊
Nk
Mk

⌋) consecutive fine axial steps.
This simple algorithm is used to define
(a) the number of HCCs per subdomain. For subdomain (mx,my,mz), the number of fine

axial steps is defined by nmx ·nmy ·nmz , where nmx , nmy , nmz are computed by Eq. (6.20)
or (6.21);

(b) the number of HCCs per CMFD node, in a given subdomain (as in Item (a)).
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Figure 6.6: Serpentine path, for a 3x3x3 pivot grid.

Figure 6.7: Sub-domain distribution on 4 MPI processes, for a 3x3x3 pivot grid.

Analogously, provided P is the required number of MPI processes, the number of sub-domains
for process p is defined as

Up = max

(
1,

⌊
U

P

⌋)
+ 1, (6.22)

for p = 1, ..., U( mod P ), and
Up = max

(
1,

⌊
U

P

⌋)
, (6.23)

for p = U( mod P )+1, ..., P . The spatial distribution of the sub-domains is depicted in Fig. 6.6
and Fig. 6.7, for a 3x3x3 pivot grid, distributed on 4 MPI processes. In practice, the pivot grid
is swept following a serpentine path, which allows having sub-domains that share at least one
side interface in each process.

Once decomposed the geometry, IDT is able to identify and gather the sub-domains sharing
the same spatial mesh and material distribution into Generating Calculation Units (GCUs). In
addition, each GCU has a unique set of solver options, such as the
• angular quadrature formula,
• inner/outer acceleration options,
• spatial homogenization and energy condensation inputs,

allowing for an optimal data distribution. The interested reader is referred to [70] for more
details.
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6.5 . DISTINCTIVE FEATURES, APPLICATION AND LIMITS OF APOLLO3® IDT
In this chapter, a general overview has been provided on the Integro-Differential Transport

Solver of APOLLO3®. Before moving forward, it is worth mentioning that
• Unlike other solvers based on MOSC, the angular flux is not approximated on the inner
surfaces of the cell, but only on the cell-boundary grid, enhancing the numerical accuracy
of the solution;

• The sub-surface mesh is conformal, in order to transmit the interface flux moments with
no approximation;

• For each angular direction and energy group, a set of volume and interface fluxmoments
has to be computed, whose number depends on MOSC expansion order and geometry
dimensionality as well as on the number of cell regions (cylinders + moderator) and sub-
surfaces on each cell side. Unlike MOC (Sect. 4.6.3), the unknowns are computed by
angular and energy-dependent angular coefficients, which, at constant order, may be
interpreted as probabilities. Due to the presence of cylinders, their calculation requires
a numerical quadrature, which is provided by ray-tracing. Differently from MOC, MOSC
can benefit from local tracking, which can be calibrated cell by cell. This, together with
discontinuity projection onto the transverse plane, allows to optimize the distribution
and number of trajectories within the cell, as well as to compute volumes with higher
numerical accuracy;

• APOLLO3® IDT applies domain decomposition, to run massive parallel simulations. In
this frame, the solver can be and has already been employed for 3D direct transport
calculations. It is worth mentioning the application to a 3D full PWR core, [44], with a 26-
group P3-cross section library, using a S8 Level-Symmetric angular quadrature formula
and Linear Short Characteristics. With 336 threads (12 threads x 28 nodes), IDT managed
to compute the whole reactor core, with a total of ∼ 1.67 · 1010 degrees of freedom, in
7.8 h.

Despite the mentioned pros, APOLLO3® IDT also suffers from some major issues, limiting its
range of applications or numerical accuracy. Let us provide a detailed list of the most relevant
problems and related consequences.

Geometrical modeling. A3-IDT is only able to model a conformal lattice of centered pin-
cells hosting vertical heterogeneous cylinders. As a result, A3-IDT cannot:
• Introduce unstructured and/or non-conforming meshes;
• Model non-centered cylinders;
• Represent non-extruded cells;
• Account for hexagonal arrays or horizontal fuel-pin cells, preventing its application to
VVERs or CANDU reactors;

• Refine the spatial mesh by sectors or Cartesian grids;
• Host non-cylindrical fuel pellets within the pin-cell (e.g., pebbles).
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Control-rod insertion/extraction. As mentioned, A3-IDT as well as most A3 solvers can-
not model non-extruded or non-conforming geometries. Generally, the axial size of each HCC
ranges between 5 and 10 cm. On the other hand, control rods are inserted or withdrawn with
a step length of the order of 1 − 2 cm. As 3D pin-cells are extruded components, one may
either introduce very fine HCCs, with ∆h ∼ 1 cm, to exactly represent the control rod move-
ment, or homogenize the control-rod tip with the moderator below. The first solution pathway
is very expensive and is generally discarded in practical applications. On the other hand, if the
control-rod tip is homogenized with the underlying moderator, a non-physical behavior is trig-
gered, resulting in a discontinuity of the first derivative of the curve representing the reactivity
worth (Sect. 5.5).

Numerical accuracy. Each HCCmay comprise an arbitrary number of concentric cylinders,
but cannot be equipped with azimuthal sectors or Cartesian grids. As the source and interface
flux expansion is limited to linear order, this may entail a significant loss in the numerical accu-
racy of the code. This is generally observed for small multiplying systems hosting water holes
or strong absorbers (e.g., Gadolinium, AIC, B4C rods) where large gradients may require a finer
discretization or higher development order.

Memory burden. MOSC and, more generally, methods based on current-coupled collision
probabilities suffer from largememory pressure. In fact, the size of the angular probability ma-
trices increases linearly with the number of HCCs and quadratically with the number of regions
per cell. This may raise significant problems for relatively large systems (e.g., a reactor core) or
even smaller geometries comprising a high number of regions. The latter may be the case of
lattice simulations that typically require fuel-depletion analysis. In fact, due nuclear transmuta-
tions, a fuel-assembly will contain thousands of regions with different total cross sections, thus
severely increasing the memory requirements of CCCPs.

The mentioned problems may, in a way or another, limit or, in some cases, even prevent
the use of A3-IDT. The work presented in the upcoming chapters aims at extending the range of
applications of IDT, enhancing its numerical accuracy and easing thememory pressure, by dedi-
cated algorithms, in order to prepare a robust solver for lattice and core simulations. In particu-
lar, the last chapter is centered on recent developments enabling coupled neutronics/thermal-
hydraulics calculations, employing, on the one side, IDT for computing the reactor power dis-
tribution and, on the other, THEDI, [77], for determining the thermal feedback. For the sake of
completeness, a brief presentation of THEDI is provided in App. A.
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Part II
NEW MODELING CAPABILITIES IN IDT
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7 - GEOMETRICAL NOVELTIES
7.1 . INTRODUCTION
IDT is a discrete-ordinates transport solver, based on angular-dependent collision proba-

bilities and PN expansion of the scattering source. The code decomposes the spatial domain
in modular XYZ patterns, containing a chunk of the original system, [43], [69]. In recent years,
IDT has been developed to model fuel pin-cells in real geometry, by introducing the possibility
to input a set of concentric heterogeneous rings within each Cartesian node, [44], [80]. This
geometrical unit represents the so-called Heterogeneous Cartesian Cell (HCC).

As mentioned in Chapter 6, the spatial solution of the transport equation is computed by
Linear Short Characteristics (LSC). Unlike other solvers based on the same method, [39], [81],
[82], the integral transport equation is projected over each HCC. This leads to a system of alge-
braic equations, where the unknowns are the spatial moments of the angular flux within each
heterogeneous region and on each surface of the interface-boundary mesh. Note that the an-
gular flux is not approximated on the inner surfaces of the cell. The solution is propagated
transmitting the interface angular fluxes to the down-stream neighbouring cells, by HCC-front
spatial sweeping, as in standard XY(Z)-SN .

The present model only allows the application of IDT to conformal XYZ pin-cell positions,
as the PWR lattice. Moreover, the lack of spatial refinement along the azimuthal angle limits
the numerical accuracy of the code, especially for lattice configurations containing strong ab-
sorbers or water holes.

This chapter illustrates the geometrical novelties introduced in IDT. In particular, Sect. 7.2
provides a brief overview of the main geometric capabilities. Sect. 7.3 presents the fundamen-
tal algorithm allowing for the generation of unstructured, non-conformal and non-extruded
geometries. Afterwards, a combinatorial ray-tracing technique is described (Sect. 7.4), together
with a set of geometric patterns, aimedat verifying numerical quadrature (Sect. 7.4.1). In Sect. 7.5,
focus is given to the mathematical model permitting HCC alignment to the x and y-axis. Fi-
nally, the new geometrical model is applied to solve a set of problems, in two and three dimen-
sions, and the numerical precision is established by comparison with a Monte Carlo reference
(Sect. 7.6-7.7).

7.2 . NEW HCC MODULAR GEOMETRY - A GENERAL OVERVIEW
Provided the new solver preserves the conformal nature of the macro-grid lodging the

HCCs, one can now refine the local mesh of each Cartesian node. The new geometrical capabili-
ties of IDT are able to combine cylinders and X/Y/Z planes within each HCC (Fig. 7.1). Neighbour-
ing HCCs may thus be discretized in a different way. More in general, the latest developments
allow to:
• Superimpose local non-conformal Cartesian grids onto the set of concentric cylinders
(Fig. 7.2);

• Represent off-centered rings (Fig. 7.3);
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Figure 7.1: New Heterogeneous Cartesian Cell.

Figure 7.2: Non-conforming inner grids. Figure 7.3: Quarter and half pin.

• Simulate non-Cartesian components, e.g., structural elements (reactor vessel, barrel,
spacer grids, etc.) or hexagonal patterns (VVER reactors) (Fig. 7.4-7.5);

• Model unstructured and non-extruded geometries (Fig. 7.9). In this respect, note that
any unstructured geometry composed by a set of cylinders and X/Y/Z planes can be de-
composed in HCC patterns.

As shown in Fig. 7.2 and Fig. 7.3, the sub-surface mesh conformity is maintained, in order to
propagate the piece-wise polynomial currents with no further approximation (black dots in
Fig. 7.2-7.4). The interface border is generally discretized into equal-sized axial steps, namely
∆ξsub1 = ∆ξsub2 = ... = ∆ξsubN , where ξ = x, y, z and sub denotes the surface mesh. Never-
theless, a dedicated tool permits introducing surface steps of different length along the same
axis. Note that the inner-volume axial steps may or may not coincide with the ones defining
the interface mesh (e.g., Fig. 7.2).
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Figure 7.4: Chunk of structural component. Figure 7.5: Hexagonal lattice.

Figure 7.6: Automatic mesh generator nb. 1. Each ray-tracing region is mapped onto a differentcomputational region.

Figure 7.7: Automatic mesh generator nb. 2. The ray-tracing regions within the same circleare merged into a single computational region. The spatial refinement is maintained in thesurrounding moderator (r = 0).
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Figure 7.8: Non-automatic mesh generator. The number of computational regions has beenreduced to Nα = 7, by assigning the same α to different ray-tracing regions.

7.3 . TUPLE-TO-REGION MAP
As depicted in Fig. 7.6-7.8, the inner-volumemesh can be coarsened or customized, tomeet

specific user’s requirements. In particular, one may reduce the mesh refinement, by collapsing
some two or more ray-tracing regions into a single computational region. The mathematical
tool which is responsible for the association between ray-tracing and computational regions is
the Tuple-to-RegionMap (TRM). To understand, let us consider a two-dimensional centered cell,
containing 2 concentric rings (Nr = 2) and 2× 3 Cartesian planes (Ni = 2, Nj = 3) (Fig. 7.6-7.8).
In the following,
• i ∈ Ni ≡ {1, ..., Ni} is the index identifying the steps along the x-axis, j ∈ Nj ≡ {1, ..., Nj}is the index identifying the steps along the y-axis and r ∈ Nr ≡ {0, ..., Nr} is the indexidentifying different rings, with the convention that the outermost area (normally occu-
pied by the moderator) is indicated with r = 0. In 3D geometries, an additional index,
namely k ∈ Nk ≡ {1, ..., Nk}, allows representing the steps along the z axis;

• α ∈ Nα ≡ {1, ..., Nα} is a tag for a computational region contained in the HCC.
(i, j, r, k) is a tuple of integer numbers representing a ray-tracing region. The Tuple-to-Region
Map (TRM) is a function of the kind

f : Ni × Nj × Nr × Nk → Nα, (7.1)
which handles the association between ray-tracing regions, defined as (i, j, r, k), and computa-
tional regions, indicated by a single integer number (α), specified by the user or by an external
mesh generator. In general, for geometries composed by planes and cylinders, only a subset
of indexes within Ni × Nj × Nr × Nk is employed for region numbering. A simple example is
provided by Fig. 7.6, where, for instance, no computational region is associated to the tuple
(1, 1, 1). Hence, we set

f(i, j, r, k) =


α ∈ Nα ,

0, for any undefined region. (7.2)

By this tool, one can map each tuple defining a ray-tracing region onto a single integer, but
the function is not necessarily one-to-one. The user may either choose two automatic maps
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Figure 7.9: Non-extruded cell: on the left-hand-side, the plane-by-plane ray-tracing geometry;at the centre, the plane-by-plane computational geometry; on the right-hand-side, the trans-verse section.

(Fig. 7.6-7.7) or customize their own map (Fig. 7.8), by specific inputs. In Fig. 7.6-7.8, the com-
putational regions are labeled with a red tag. The outcome of the mesh generator is provided
by the picture on the right-hand side, showing the particular discretization chosen by the user.
The first automatic TRM allows superimposing the Cartesian mesh onto the radial one, thus
obtaining a computational grid of the type illustrated in Fig. 7.6. A second automatic option al-
lows removing the XY grid meshing the pin, but leaves the surrounding moderator discretized,
as depicted in Fig. 7.7. Finally, a third possibility allows an external mesh generator to input a
customized map to coarsen the discretization (Fig. 7.8). Note that the second automatic TRM
as well as the non-automatic option permit reducing the spatial refinement, and, as a conse-
quence, the computational effort and memory imprint of the angular probability matrices.

Besides reducing the computational and memory requirements, the Tuple-to-Region Map
enables the user to design non-extrudedpin-cell geometries. An example is providedby Fig. 7.9,
where the spatial discretization is customized plane by plane. The cell consists of three axial
layers, comprising the same number of ray-tracing regions, but a variable number of computa-
tional regions. The Tuple-to-Region Map is not indicated, due to the lack of space. One should
also notice that the possibility to model non-extruded geometries allows for a high-fidelity rep-
resentation of the control rods, for which an application is illustrated in Chap. 8.

7.4 . COMBINATORIAL RAY-TRACING
The new version of IDT is equipped with a combinatorial ray-tracing module. Analogously

to Sect. 6.3.4, numerical transverse integration is performed by Eq. (6.4). The local coordinate
system, which is centered in the south/west corner of the HCC box (Fig. 7.10), is rotated along
directionΩd ∈ SN . Three-dimensional ray-tracing is performed taking advantage of the locally-
extruded nature of the cell. The chord-lengths are computed in two steps:
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Figure 7.10: Original frame of reference (before rotation).

Figure 7.11: XY and tZ-tracking.

• a 2D-tracking along the horizontal component of directionΩd (left-hand-side of Fig. 7.11);
• a subsequent ray-tracing over the tZ-slice (right-hand-side of Fig. 7.11).

Thus, the (x, y)-coordinates describe points that are, respectively, parallel and perpendicu-
lar to Ωd,2D. First, the geometrical discontinuities (e.g., the grid-circle intersection points, the
interface-boundary mesh points and the points delimiting the projections of the cell and its
rings) are rotated. This ensemble of transverse y-points is enriched by a set of uniformly-
distributed points, whose spacing is adjusted according to a user-defined tracking parameter.
The ordering of these points defines a set of transverse intervals (Fig. 7.12) within which N
trajectories are distributed, N being a fixed number of Gauss points. Hence, in general, the
resulting transverse weight is not constant, i.e., it may change from one trajectory to another.
As depicted in Fig. 7.13, trajectory chord-lengths and region assignments are thereupon com-
puted by combining the intersections of each trajectory with 3 geometrical patterns. These are,
respectively,
• the vertical band pattern, defining segments of index i,
• the horizontal band pattern, defining segments of index j,
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Figure 7.12: Step 1: Discontinuity projection + uniform ray spacing (omitted) + Gauss points(omitted).

Figure 7.13: Step 2: Geometrical patterns.

Figure 7.14: Step 3: Chord-lengths and TRM, with xmin and xmax being the coordinate of theincoming and outgoing point of the trajectory. Colour legend: red ≡ i = 1, green ≡ i = 2,yellow ≡ j = 1, purple ≡ j = 2, black ≡ r = 1.
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• the set of rings, defining segments of index r. 8
The ordering of the intersection points, together with the above-mentioned indexes, provides
the 2D chord-lengths and the 2D tuple, of indexes (i, j, r), associated to each ray-tracing region
(Fig. 7.14).

The same 2D-tracking algorithm is applied to the horizontal and vertical bands composing
the tZ-slice. The chord-lengths are finally computed by performing again Step-1-2-3, in Fig. 7.12-
7.14, on the Cartesian slice and by combining the 2D TRM, associated to the vertical bands of
the tZ-slice, with the index k, associated to the horizontal bands along Z. The region number,
namely α, is then obtained by means of the TRM, as described in Sect. 7.3.

As mentioned in Sect. 7.3, despite the invariance of the ray-tracing mesh with respect to a
translation alongZ (Fig. 7.9), the TRMpermits the construction of non-conforming/non-extruded
3D meshes, by adding up adjacent chords. Since two or more tuples can be assigned to the
same computational region, the TRM may map the same computational-mesh index α onto
several chord-lengths. Therefore, when performing the tZ-tracking, if two (or more) adjacent
chord-lengths (l, l′, l′′, ...) share the same computational region (α), but are associated to dif-
ferent ray-tracing regions, i.e., f(i, j, r, k) = f(i′, j′, r′, k′) = (i′′, j′′, r′′, k′′) = ... = α, with
(i, j, r, k) ̸= (i′, j′, r′, k′) ̸= (i′′, j′′, r′′, k′′) ̸= ..., then the aforementioned chord-lengths are
summed up and assigned to α.

7.4.1 . GEOMETRY TYPES
The accuracy of the new ray-tracing module has been verified by monitoring the maximum

relative error with respect to the exact volume of 11 geometrical motifs, shown in Fig. 7.15. The
test-cases include structured and unstructured geometries, based on heterogeneous Cartesian
patterns, with a cell-pitch of 1.26 cm. The 11 geometries have been refined by superimposing a
6x6 Cartesian grid, with uniform step-length. Fig. 7.15 displays the relative error (pcm) obtained
by refining the ray-spacing in two ways:
• no Gauss points and variable∆XY (uppermost figure);
• ∆XY = 0.05 cm and increasing number of Gauss points.

Note that the HCCs containing no circles, e.g., pattern nb. 5 in Fig. 7.15, are analytically inte-
grated, i.e., the numerical error is systematically equal to zero.

8The structure of the implemented tracking module may allow for the introduction of other geo-metrical patterns, such as azimuthal sectors, spheres, oblique bands, to name a few. Hence, futuredevelopments could further enrich the ray-tracing capabilities of the code.
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Figure 7.15: Volume computation for a set of heterogeneous Cartesian patterns. On the left-hand-side, the relative error obtained by varying the ray-spacing parameters (i.e., ∆XY andnumber of Gauss points); on the right-hand-side, the geometrical motifs (labelled by an integernumber, ranging from 1 to 11).
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7.5 . HORIZONTAL HCCs
As anticipated in Sect. 7.1, the new version of IDT is able to simulate horizontal pin-cells.

The user is allowed to dispose the cylinders parallel to either the x or y-axis, in addition to the
more common orientation along z. Let us provide some more details about the mathematical
model supporting this utility. In the following, two reference frames are introduced, namely

• a global frame T ≡ {x, y, z}, where z is parallel to the vertical direction,
• a local frame, with coordinate system Tloc defined by the triplet {xloc, yloc, zloc}, where
zloc is parallel to the cylinder axis.

User’s inputs provide the cell size and geometrical features with respect to T {x, y, z}. In order
to perform ray-tracing as in Sect. 7.4, IDT applies a set of affine transformations allowing co-
ordinate change from T to Tloc. For the sake of brevity, let us consider a cell with cylinder axisaligned to x (Fig. 7.16). The angular direction is rotated by 90◦ around the y-axis, namely

Ωloc = RΩ, (7.3)
where

Ωloc =

Ωxloc
Ωyloc
Ωzloc

 , Ω =

Ωx
Ωy
Ωz

 , R =

0 0 −1
0 1 0
1 0 0

 (7.4)

are the components ofΩ in the local/global frame of reference and the rotationmatrix, respec-
tively. The cylinder axis undergoes a rototranslation. Let r be a point of coordinates (rx, ry, rz)in T {x, y, z}. In the local reference frame,

rloc = Ar (7.5)
with

rloc =


rxloc
ryloc
rzloc
1

 , r =


rx
ry
rz
1

 , A =


0 0 −1

∑n
k=1∆zk

0 1 0 0
1 0 0 0
0 0 0 1

 , (7.6)

Figure 7.16: HCC orientation along x.
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∆z = (∆z1,∆z2, ...,∆zn)
T being the axial steps of the inner Cartesian mesh. Thus, provided

C ≡
{
y = Yc ,
z = Zc ,

(7.7)
is the equation of the cylinder axis in the global frame of reference, one has

Cloc ≡
{
xloc =

∑n
k=1∆zk − Zc ,

yloc = Yc .
(7.8)

in Tloc. The Cartesian steps transform as follows:
∆xloc = T∆z ,
∆yloc = ∆y ,
∆zloc = ∆x ,

(7.9)

in which T = (en; en−1; ...; ek; ...; e1) inverts the order of the discretization steps. Note that
ek is the k-th unit vector of the canonical basis in Rn, with n being the number of Cartesian
steps along the cylinder axis. Eq. (7.9) applies to both the cell-volume and interface-boundary
discretization. Finally, the cell sides are mapped according to the law

Wloc → T ,
Sloc → S ,
Eloc → B ,
Nloc → N ,
Bloc →W ,
Tloc → E ,

(7.10)

whereW,S,E,N,B andT denote thewest, south, east, north, bottomand top sides of theHCC.
An analogous set of isometric transformations allows to simulate horizontal HCCs, with the

cell axis parallel to the y-direction.
Let us conclude this sectionwith a practical example. Fig. 7.17 contains a set of non-extruded/

non-conforming 3D geometries, whichmay be constructed by using the new version of IDT. Let-
ter "I", "D" and "T" show respectively the possibility to
• represent non-extruded HCCs,
• model non-conforming Cartesian meshes inside the HCC and rotate the cylinder axis,
• combine horizontal and vertical cells in the same geometry.

7.6 . NUMERICAL RESULTS - 2D BENCHMARKING
The new version of IDT has been extensively tested, for several angular quadrature formu-

las and spatial discretizations, using constant and linear short characteristics. In the following,
two benchmark types are illustrated, i.e., the 2D C5G7 benchmark and a set of 2D 3x3UOX/MOX
patterns. A dedicated chapter will illustrate the numerical precision and memory occupation
of the angular probability coefficients.
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Figure 7.17: Non-conforming geometries and pin-cell orientation along different axes.

7.6.1 . Two-dimensional C5G7 Benchmark
The 2D C5G7 benchmark [83] is a small reactor core, comprising sixteen 17x17 UOX/MOX

assemblies and a radial reflector. Each assembly consists of 264 fuel rods and 25 guide tubes,
of which the one located in the assembly centre contains a fission chamber. A 7-group P0library is proposed to all participants, in order not to add any numerical error related to self-
shielding. Note that the fuel rod and the surrounding clad as well as the guide tube and inner
moderator/detector are homogenized. More details about the benchmark dimensions and
MOX-enrichment distribution can be found in [83]. An intuitive sketch is provided in Fig. 7.18,
in which each assembly is represented as a square, either containing UOX or MOX fuel rods.
Reflection boundary conditions are imposed on the western and northern sides of Fig. 7.18, to
profit of 1/4th reactor symmetry.

Figure 7.18: 2D C5G7 benchmark. Radial reflector in blue.
In Tab. 7.2, the solution provided by IDT is compared to the MCNP Monte Carlo reference,

[83]. Both constant and linear short characteristics are applied. Tab. 7.1 provides details about
the discretization used for CSC and LSC. Note that, for the latter, the non-automatic map gen-
erator is applied to coarsen the spatial mesh in the fuel rings, while keeping the surrounding
moderator finely discretized.
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Model Nb. of Regions Nb. of Surfaces per Side Angular QuadratureCSC 82331 6 S16,8 Chebyshev-LegendreLSC 14756 4 S8 Level Symmetric
Table 7.1: Spatial and angular discretization.

Model ∆keff Max Abs. Rel. Pin Error (%) RMS (%) CPU Time [min]CSC 21 1.21 0.28 ∼ 4LSC 41 0.59 0.17 ∼ 1.3

Table 7.2: Numerical results and CPU time on a single thread.

7.6.2 . Two-dimensional 3x3 UOX/MOX Patterns
IDT has been verifiedby comparisonwith APOLLO3®TDTMOCandTRIPOLI-4® continuous-

energy Monte Carlo. The considered benchmark is a set of two-dimensional 3x3 motives, with
specular reflection boundary conditions. The central cell alternatively hosts
• an AIC or B4C control rod,
• a guide tube,
• a hafnium rod,
• a fuel rod containing Gadolinium.

Both IDT and TDT use 281-group P3 cross-section library, obtained by Livolant-Jeanpierre self-shielding approximation. Generally, when comparing deterministic solutions to Monte Carlo,
one should consider reaction rates. Nevertheless, in the present analysis, focus is given to the
scalar flux per energy group and material. This may lead to significant numerical errors, as
there are no compensations, due to the large number of energy groups.

Tab. 7.3 shows the number of regions for each simulation. Fig. 7.19 depicts the spatial
mesh applied to UOX-AIC, when approximating the source and interface flux distributions by
piece-wise polynomial functions (LSC). Analogously to Fig. 7.9, distinct computational regions
are indicated in different colours. Note that TRM association allows to coarsen the underlying
ray-tracing discretization, also represented in Fig. 7.19, thus reducing thememory footprint and
the computational time. The solid angle is discretized into 256 discrete directions, using S16,8Chebyshev-Legendre angular quadrature.

Approx AIC Hf GT Gd B4CCSC 387 401 472 358 383LSC 128 (UOX) - 161 (MOX) 128 164 109 128

Table 7.3: Number of regions for each UOX/MOX pattern. Note that this number is thesame for both fuel types, except for the AIC benchmark.
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Figure 7.19: Spatial mesh for UOX/AIC LSC simulation. UOX cells comprise 11 computationalregions (of which 4UOX rings, 1 air-gap ring, 1 Zr-clad ring and 5moderator subdivisions), whilethe central cell is finely discretized into 40 regions, where all rings (8, in total) are subdividedinto 4 sectors and the surrounding moderator is finely discretized into 8 slices.

The Monte Carlo standard deviation of the scalar flux per energy group and material does
not generally exceed 1%, except for a few energy groups in the innermost regions of the control
rod, where the Monte Carlo score is too feeble. As displayed in Fig. 7.20, the errors observed
for IDT and APOLLO3® TDT are of the same order. Their large magnitude is ascribable, on the
one hand, to the fine energy grid and, on the other hand, to the self-shielding model, which
may fail for sharp narrow resonances.

Fig. 7.21 displays the average root mean square relative error (RMS) per material. Six spa-
tial approximations (namely, "NEW CONST IDT", "NEW LIN IDT", "OLD CONST IDT", "OLD LIN
IDT" and "CONST A3 MOC") are compared to the Monte Carlo reference. In particular, "OLD
CONST/LIN IDT" is a synthetic label denoting all results obtained by means of the new version
of IDT without introducing any Cartesian mesh. "NEW CONST/LIN IDT" refers to all calcula-
tions superimposing a XY grid onto the radial mesh and/or the surroundingmoderator. Finally,
"CONST A3 MOC" is a label for APOLLO3® TDT MOC, with zero-order neutron source expan-
sion.

Fig. 7.22 displays the relative error on the fundamental eigenvalue, for the whole set of
calculations. Generally, the curves which show the largest difference with respect to the Monte
Carlo reference are the ones not employing any Cartesian/azimuthal spatial refinement, i.e.,
"OLD CONST/LIN IDT", in grey and yellow, respectively. Fig. 7.22 also shows the CPU time on a
single node for constant and linear short characteristics with XY-grid refinement. This typically
ranges from 3.5 to 5min for all UOX/MOX patterns.
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Figure 7.20: MOX-B4C benchmark: relative error on the scalar flux per energy group and mate-rial region (reference provided by TRIPOLI-4® continuous-energy Monte Carlo). More specif-ically, the figure refers to the innermost fuel ring, within a cell in a corner position. The curvelabeled "idt" (in red) is obtained with LSC spatial approximation. The error curves follow thesame trend and show localized peaks within the same energy groups.

Figure 7.21: Average RMS relative error per material. The largest errors are observed in AIC andHf rods. In the fuel rods, all calculations do not exceed 1.85% average RMS relative error.

Figure 7.22: Relative error on the fundamental eigenvalue and CPU time.
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7.6.3 . Hexagonal Patterns
The new version of IDT can model hexagonal assemblies, with little approximation. Such a

geometry may be constructed by arranging quarter cells, as in Fig. 7.23, with the rings centered
at a cell vertex. The fuel bundle is obtained as the result of consecutive "diagonal" cells, each
one employing a circle of "infinite" radius, ρ → ∞. In practice, one can require ρ ≫ l, l being
the cell pitch. The centre of this circle (c) is located elsewhere and may be identified according
to the following approach. First, let us define the chord

r = p2 − p1, (7.11)
where p1 and p2 are indicated in Fig. 7.24 The inward normal reads as

r⊥ = Rr, (7.12)
R being the rotation matrix, namely

R =

(
0 −1
1 0

)
. (7.13)

Let us introduce the distance between the centre of the circle (i.e., the fuel bundle) and the
chord midpoint,m,

d = dist(c;m), m =
p1 + p2

2
(7.14)

and request d≫ l. Hence, one has
c = m+ nd, (7.15)

with
n =

r⊥
||r⊥||

. (7.16)
The bundle radius is given by

ρ = dist(c;p2)⇒ ρ2 = d2 +

(
||r||
2

)2 (7.17)
This algorithm allows, in a few steps, to build the fuel bundle of a hexagonal pattern, given

Figure 7.23: Hexagonal pattern, with fuel bundle.
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Figure 7.24: Fuel bundle construction for hexagonal patterns.

the position of the intersection points p1 and p2, for the "diagonal" cells hosting the bundle.The sole approximation is the representation of the straight lines generating the fuel bundle
by means of circular sections, albeit with a large radius.

Let us now present a simple test, involving a 2D hexagonal pattern, with UOX fuel and light
water as moderator (Fig. 7.5). For the sake of simplicity, no fuel bundle is included. Specular
reflection boundary conditions are imposed on the border. We use a 281-group P3 cross sec-tion library. The solid angle is discretized by a S16,8 Chebyshev-Legendre angular quadratureformula. The spatial discretization includes 21× 14 quarter cells, arranged as in Fig. 7.5, a total
of 3688 computational regions and 6× 6 surfaces per cell. Linear Short Characteristics are ap-
plied to derive the spatial solution of the multigroup neutron transport equation.

Figures 7.25-7.26 display the fission integral and absorption reaction rate distributions, cal-
culated by IDT. Note that both quantities are normalized to 1.
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Figure 7.25: Fission integral distribution for a 21× 14 two-dimensional hexagonal pattern, withUOX fuel and light water as moderator. Specular reflection boundary conditions are imposedon the border.

Figure 7.26: Absorption reaction rate distribution for a 21 × 14 two-dimensional hexagonalpattern, with UOX fuel and light water as moderator. Specular reflection boundary conditionsare imposed on the border.
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7.7 . NUMERICAL RESULTS - 3D 3x3 BEAVRS-LIKE BENCHMARK
The new version of IDT has also been verified on international and "home-made" 3D bench-

marks. Several case studies are proposed in the present work, including the three-dimensional
C5G7 benchmark (Sects. 8.3-11.5.1), the Watts Bar UOX/Pyrex assembly (Sect. 11.4.2) and a 3x3
BEAVRS-like lattice (Sect. 7.7.1-7.7.2). In this section, the latter is analyzed, in order to empha-
size the possibility to represent all structural details in real 3D geometry (e.g., the spacer grids)
and also to model non-conformal/non-extruded cells, which allow including geometrical dis-
continuities within the HCC. This generally improves the numerical accuracy, as the geometri-
cal/material interface is not located on the cell border, where MOSC approximates the surface
angular flux with piecewise polynomial functions.

In Sect. 7.7.1, the benchmark is illustrated, providing details on the lattice geometry and the
self-shielding model. In Sect. 7.7.2, the numerical results are analyzed for each study case.

7.7.1 . Introduction
The numerical accuracy of IDT is tested by comparison with TRIPOLI-4® continuous-energy

Monte Carlo, on a set of three-dimensional 3x3 lattices (Fig. 7.27). The central position is occu-
pied by a control rod, which consists of two parts: a silver-indium-cadmium alloy in the bottom
region and a B4C rod in the upper region. The heterogeneous geometry is constructed taking
inspiration from the BEAVRS benchmark [59], both in IDT and TRIPOLI-4®, including the spacer
grids and the upper plenum springs (in green), the lower and upper nozzles (in pink), the fuel
clad (in grey), the guide-tube dashpot, to name a few.

A premise on the self-shielding model is crucial. Indeed, the cross-section library (with 281
energy groups and P3 transfer matrix) is entirely recycled from the set of 2D 3x3 UOX patterns,
discussed in Sect. 7.6.2. This, of course, introduces an inherent modelling error, as a bunch
of 2D planes (e.g., the one corresponding to the guide-tube dashpot and the ones hosting the
spacer grids) contain inappropriate nuclear data.

Figure 7.27: CR completely inserted. Image by TRIPOLI-4®.
In the following, three control-rod (CR) positions are simulated, i.e., CR completely inserted,
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Configuration Nb. of Cells Ave Nb of Reg./Cell Tot Nb of Dir. Surf/CellCR all in 78 40 256 144CR at half height 46 179 256 66CR out 46 171 256 66

Table 7.4: IDT: spatial and angular discretization.
CR tip at half height and CR completely withdrawn (Fig. 7.28).

Figure 7.28: CR completely inserted (on the left-hand-side), at half height (in the centre) andcompletely extracted (on the right-hand-side). Image by TRIPOLI-4®.

7.7.2 . Numerical Results
Tab. 7.4 shows the average number of regions per cell, the total number of directions and

the total number of surfaces per cell used in IDT for each CR position. Fig. 7.29 provides a
qualitative comparison between IDT and TRIPOLI-4®, in terms of fission reaction rate, for the
above-mentioned CR positions. Note that the fission rate has been normalized to 1 for each
rod. For the sake of brevity, only one type of fuel rod will be considered, i.e., the one in the
bottom-left corner. Analogous results are observed elsewhere.

When the CR is completely inserted, most fissions occur in the bottom region of the reactor,
due to the presence of B4C in the upper region. The curves labeled "idt - cr inserted" and "t4
- cr inserted" tend to overlap, as depicted in Fig. 7.29. The fission reaction rates provided by
IDT and TRIPOLI-4® are compared by displaying the absolute error along the z-axis, in Fig. 7.30
("idt vs t4 - cr inserted"). The largest error is observed in the region occupied by the guide-tube
dashpot, due to inappropriate cross sections on the dashpot plane. A dedicated self-shielding
calculation would be required to generate accurate nuclear data for IDT usage. The same con-
sideration applies to the fuel nozzles, the spacer grids and the upper plenum springs. Thus,
some amount of error is not ascribable to IDT, but to the cross section model itself. This said,
IDT shows good agreement with TRIPOLI-4®, as the absolute error barely exceeds 5%. The
standard deviation of the fission rate provided by the Monte Carlo simulation tends to grow
along the z-axis, but remains lower than 1%.
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In the second simulation, the CR tip is located at half height of the reactor. A qualitative
comparison between IDT and TRIPOLI-4® is shown in Fig. 7.29 ("idt - cr at half height" vs "t4 - cr
cr at half height"). The absolute error on the fission reaction rate is at most 6% (Fig. 7.30, "idt
vs t4 - cr at half height"). Again, the standard deviation of the Monte Carlo simulation tends to
grow along the vertical axis, but remains smaller than 1%, if the fission rate is not too close to
zero, which is the case for the uppermost planes.

Figure 7.29: Qualitative comparison between IDT and TRIPOLI-4® continuous-energy MonteCarlo, for each CR position.
Finally, the CR is extracted, so that the rod tip lines up with the fuel plenum. The irregular

shape of the fission-reaction-rate profile is due to the spacer grids (Fig. 7.29, "idt - cr extracted"
vs "t4 - cr extracted"). The maximum absolute error on the fission rate is between 5% and 6%

(Fig. 7.30, "idt vs t4 - cr extracted"). The standard deviation of the fission reaction rate predicted
by TRIPOLI-4® is always below 0.1%.

To conclude, let us provide some more details about the prior calculations. For each posi-
tion of the CR, Tab. 7.5 compares the k-eigenvalue provided by IDT and TRIPOLI-4®, in terms
of relative error. The largest difference is observed for the first configuration and amounts to
360 pcm. Tab. 7.6 displays the error on the control rod worth, which is, in absolute value, below
0.81%. The CPU time for each configuration ranges from 4 to 6 hours (Tab. 7.7), depending on
the spatial discretization (Tab. 7.4) and the computational resources (Tab. 7.7). In this regard,
a clarification is required for Tab. 7.7. As shown in the Tab. 7.4, the number of regions for the
case with the control rod fully inserted is on average equal to 40 regions per cell. On the con-
trary, the cases with the control rod completely extracted or with the tip at half height aremuch
more finely discretized, having more than 170 regions per cell. This has a considerable impact
both on the simulation runtime necessary for each calculation and on the memory occupation,
which will be about 18− 20 times greater for the angular probability coefficients alone. There-
fore, in order to store the angular probability matrices and have a relatively limited calculation
time for the cases where the control rod is partially or completely withdrawn, decidedly greater
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Figure 7.30: Absolute error with respect to TRIPOLI-4® continuous-energy Monte Carlo, foreach CR position.

Configuration IDT T4 σ (pcm) Relative error (pcm)CR all in 0.76958 0.77236 0.8 359CR at half height 1.30044 1.30116 1.2 55CR out 1.31234 1.31314 1.2 60

Table 7.5: IDT vs TRIPOLI-4®: k-eigenvalue.

computational resources are required compared to the first calculation, i.e., the one with the
control rod completely inserted in the lattice. In this sense, the reader should also notice that
the resources indicated in Tab. 7.7 correspond to the maximum amount of nodes and cores
allocated for the simulation, but not necessarily used by the code.

Finally, it is important to note that, although the spatial dimensions are evidently very small,
particularly in the transversal plane, which measures just 3.78 cm×3.78 cm, the spatial and an-
gular discretization are particularly refined, with a total number of regions that varies between
2.8 · 104 (control rod fully inserted) and 7.4 · 104 (control-rod tip at half height), and 32 angular
directions per octant. The purpose of this test is in fact to test the newmodelling capabilities of
the code, rather than the agreement with the continuous-energy Monte Carlo reference, which
is, to some extent, compromised by the approximations on the cross-section data.

CRW error (%)all in/half height −0.809half height/out 0.627

Table 7.6: IDT vs TRIPOLI-4®: CR worth error (%).
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Configuration CPU Time Nodes and Cores/NodeCR all in 5h 51min 1 n− 128 c/nCR at half height 5h 46min 46 n− 128 c/nCR out 4h 14min 46 n− 128 c/n

Table 7.7: IDT: CPU time and allocated resources.
7.8 . CONCLUSIONS
The present chapter has illustrated the new geometrical capabilities of IDT. The solver has

been updated, in order to improve the numerical accuracy of 2D/3D calculations, by introduc-
ing non-conformal and non-extruded Cartesian grids, which can be superimposed on the ra-
dial mesh. In Sect. 7.6-7.7, a few numerical study cases have been discussed, in order to test
the ensemble of capabilities introduced in the solver, as well as its numerical precision. In
the upcoming chapters, the new geometrical model will be applied for a variety of purposes,
as the possibility to simulate control-rod withdrawal without homogenization and cusping ef-
fect (Chap. 8) or test the accuracy of higher-order short characteristics by comparison with
finely-discretized LSC calculations (Chap. 11). In particular, the possibility to refine the inner dis-
cretization, while preserving the HCC grid, allows to ensure numerical stability for multiphysics
applications involving control-rod movements, with high-fidelity representation of control-rod
insertion/extraction by steps of finite length, in real heterogeneous geometry, with no homog-
enization and cusping effect.
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8 - NON-CONFORMING3DMODELFORPWRCONTROLROD
MOVEMENTS WITHOUT HOMOGENIZATION
8.1 . INTRODUCTION
In Chapter 7, the implementation of enhanced geometrical capabilities for high-fidelity rep-

resentation of fission reactors was discussed. The present chapter is dedicated to 3D control-
rodmodelling in PWRs. In particular, we propose a transport-basedmodel to avoid the control-
rod cusping effect generated by cross-section homogenization.

Due to the geometry of PWR cores, the height of a node generally ranges from 10 to 20 cm.
On the other hand, the control rods move along the vertical direction with a step of few cen-
timeters. As a result, a control rod cluster may be partially inserted into a set of Cartesian
nodes, thus requiring a heterogeneous representation of the cross sections along z.

In traditional 3D transport codes, the cross-sections cannot be modelled by piece-wise dis-
tributed functions within a node. Consequently, despite its heterogeneous nature, the node
has to be homogenized. Due to the sharp axial heterogeneity, the cross sections can neither
be represented by polynomial expansions at the interface between the control rod tip and the
water. Currently, the solvers of APOLLO3® do not allow for non-conformal geometries along
the z-axis, i.e., all 2D regions have the same number of axial planes.

Generally, high-fidelity transport-based core solvers deal with this issue by flux-weighting
homogenization techniques. Nevertheless, the simple homogenization triggers a discontinuity
in the first derivative of the curve representing the variation of the fundamental eigenvalue
as the controls rods are inserted in the reactor. This non-physical phenomenon is known as
the control-rod cusping effect (Sect. 5.5). Several numerical remedies have been proposed
over the last few decades. For instance, for diffusion, PN or SPN -based solvers, Fanning and
Palmiotti have proposed a heterogeneous Variational Nodal Method (VNM), [84]. Another het-
erogeneous VNMwas developed by Smith et al., in 2003, [85]. This approach consists in splitting
the spatial node into sub-elements with uniform cross sections. The flux is then developed by
finite spatial trial functions. The functional of all sub-elements composing the node allows to
reconstruct the nodal functional.

In the present work, discrete-ordinate Linear Short Characteristics are applied to 3D Het-
erogeneous Cartesian Cells. To ensure accurate representation of the control-rod movements,
each heterogeneous node, represented by a HCC, is the combination of an inner local tridi-
mensional grid and a set of cylinders representing the fuel rod in its exact shape (Sect. 7.2). The
new geometrical model generates local non-conforming geometries. Spatial integrals over the
HCC are performed using a modular tridimensional ray-tracing. The ray-tracing technique is
based on the combinatorial geometry composed of cylinders and local XYZ planes (Sect. 7.4).
In this manner, a single HCC can be equipped with several local steps to follow exactly the axial
displacement of the control rod. Neither homogenization nor mesh adjustment is required.
Numerical results show that IDT HCC-based transport can eliminate the numerical wiggles in
the differential control-rod reactivity-worth curve.
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In Sect. 8.2, a brief overview on the control-rod cusping effect is proposed and some no-
table numerical remedies are recalled. In Sect. 8.3, conformal and non-conformal meshes are
applied on the 3D C5G7 benchmark, showing similar numerical accuracy, with respect to the
Monte Carlo reference (MCNP). Then, Sect. 8.5 resorts to a non-conformal mesh to compute
successive reactor states, corresponding to different control-rod positions, and proves that IDT
can effectively remove the control-rod cusping effect. In order to perform such calculation, a
new tool is available in IDT, which allows changing the material composition, within a fixed ge-
ometry, in an automatic way. This capability is described in Sect. 8.4 and permits to determine
several reactor states, one for each control-rod position, by using a single input and launching
IDT just once.

8.2 . CONTROL-ROD CUSPING EFFECT
Control-rod modelling in nodal methods represents a major challenge. In fact, the position

of the control-rod tip rarely matches the node boundaries. The cross sections of the upper part
of the node are modified due to the presence of the control rod, whereas the lower part re-
mains unchanged. Cross-section homogenization by volume-weighting triggers a non-physical
behaviour, as the steep gradient of the neutron flux at the interface between the rod tip and
the moderator is smeared out. Reaction rates are clearly not preserved and cusps appear in
the reactivity-worth curve (Fig. 8.1).

Figure 8.1: Control-rod cusping effect.
Several numerical techniques have been proposed to fix this behaviour. In particular, flux-

weighting techniques can reduce the rod cusping effect, [86].
In [64], a model based on a physical equivalence is presented, where the reaction rates

of the classical nodal expansion are required to match those obtained by modelling the node
as it was divided in two parts, the upper one occupied by the strong absorber and the lower
one unrodded, Sect. 5.5.2. Despite generally outperforming flux-weightingmethods in terms of
numerical precision, the equivalence model still exhibits mild wiggles in the differential worth
curve.

In MPACT, control-rods simulation is supported by a set of subplane-based methods, [65].
This approach splits each plane into multiple sub-planes for CMFD and 1D NEM-P3 calcula-
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tions, while still using only a single plane for radial MOC (Sect. 5.30). In so doing, the numerical
accuracy of CMFD and 1D NEM-P3 is enhanced, without increasing the computational cost of
the radial calculations. However, sub-planes based on collision probabilities, as in [65], cannot
handle anisotropic scattering sources. Moreover, numerical instabilities may occur, due to very
thin cells.

The new version of IDT is able to describe control-rod movements in an exact way, without
resorting to any homogenisation and so avoiding rod-cusping effects. In the following, the
results obtained for the 3D C5G7 benchmark are presented, [83]. Starting from the Unrodded
configuration, the control-rod insertion is simulated by 24 successive steps (Fig. 8.2), passing
through the Rodded A configuration (step 12 out of 24) and finally approaching the Rodded-
B configuration (Sect. 8.5). Before that, let us compare conforming vs non-conforming mesh

Figure 8.2: Test based on the 3D C5G7 benchmark: the control rods are gradually inserted, by24 steps of 1.19 cm each.
application, in terms of numerical accuracy and computational time (Sect. 8.3).

8.3 . 3D C5G7 BENCHMARK: CONFORMAL VS NON-CONFORMAL MESH
The 3D C5G7 benchmark consists of a small reactor core, with UOX/MOX fuel assemblies

and respective control-rod clusters, arranged in 3 different configurations, [83], namely the
Unrodded, Rodded A and Rodded B problems (Fig. 8.2). The control rod clusters are inserted
• in the axial reflector,
• in the axial reflector + 1/3rd of the way into the inner UOX assembly (Fig. 7.18),
• in the axial reflector + 2/3rd of the way into the inner UOX assembly + 1/3rd of the way
into both MOX assemblies,

for the Unrodded, Rodded A and Rodded B configurations, respectively.
In this section, the results provided by a conformal mesh are compared to those obtained

using a non-conformal mesh. In the former case, the fuel rods, the control rods and the mod-
erator contain 3 horizontal planes per cell (Fig. 8.3a); in the latter, the computational mesh is
coarsened, with only the control rods discretized by 3 axial steps per cell (Fig. 8.3b). Each HCC
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measures 1.26 cm× 1.26 cm× 3.14 cm.

(a) Conformal axial mesh. (b) Non-conformal axial mesh.
Figure 8.3: Conformal vs non-conformal HCCs along z.

If the second discretization is applied (Fig. 8.3b), a significant saving in the computational
time is observed, with a reduction of nearly 50%, as shown in Fig. 8.4a, for the three configu-
rations of the C5G7 benchmark. As depicted in Fig. 8.4b, there is no significant change in the
fundamental eigenvalue predicted by IDT. Regarding the power distribution, the largest differ-
ence is observed in the top layer, due to the proximity to the axial reflector. Nonetheless, the
RMS error is at most 1% for the Unrodded configuration (Fig. 8.4c).
In Sect. 8.5, a fine inner grid is used only in the nodes hosting the control rod, whereas a

coarser volume grid is applied elsewhere (e.g., fuel rods and fission chambers). In this man-
ner, the heterogeneous geometry can be represented with no approximation, while retaining
a coarser mesh where possible, in order to limit the computational burden.
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(a) Computational time. (b) Relative error on the k-eigenvalue.

(c) Root mean square error on the power distri-bution.
Figure 8.4: C5G7 benchmark: conformal vs non-conformal mesh.

8.4 . AUTOMATIC MEDIUM RELOAD
In order to compute multiple reactor configurations, involving different control-rod posi-

tions, IDT relies on a novel tool, which allows to redefine the material composition of a subset
of HCCs, automatically compute the new set of angular-dependent probability coefficients and
run a new steady-state calculation, for each assigned configuration. Note that the underlying
geometry is defined once for all and cannot be modified.

Once computed the first reactor state, namely s = 1, corresponding to the initial position
of the control rods, IDT can automatically initiate a new simulation, each time a specific input
command is detected. The user can indeed reload the material composition of one or more
cells, to define a new reactor configuration. First, IDT reads the number of cells that the user
intends tomodify, and a loop of the kind illustrated in Algo. 1 is performed. In order to calculate
the new steady-state point, namely s+1, let us impose k(0)s+1 = ks, k(0)s+1 and ks being respectivelythe initial guess for the current reactor state, namely s+ 1, and the converged solution for the
prior state, namely s, with s = 1, ..., S − 1. This simple strategy allows to speed up the conver-
gence. In fact, two successive reactor states are typically close, for two subsequent positions
of the control rods, as they normally move with a small step size along the vertical direction.

The described tool is applied in Sect. 8.5, in order to compute the reactivity curve resulting
from control-rod insertion in the 3D C5G7 benchmark.
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Algorithm 1 : HCC-reload algorithm, in order to compute state s+ 1, given s.
1: for i = 0→ n, n being the number of HCCs to refill, do
2: Detect pin-cell name
3: if pin-cell /∈ pin-cell list then
4: Error message, code comes to a halt
5: else
6: Determine pin-cell identifier, up7: Determine ug = G(up), g being the pin-cell geometry and G : up → ug8: Read material list, {ml}l=1,...,L9: if ug by automatic TRM then
10: Initialize l = 0
11: for k = 1→ nk {Loop over planes} do12: for ρ = 1→ nρ{Loop over inner rings} do13: l← l + 1
14: Refill regions ∈ ρ, k, with materialml15: end for
16: l← l + 1
17: Refill regions ∈ ρ = 0, k, with materialml {Outer ring}18: end for
19: else if ug by non-automatic TRM {Custom option} then
20: for r = 1→ nr, nr being the number of comp. regions do
21: Determine region index, α
22: Refill α withmr23: end for
24: end if
25: end if
26: end for
27: Recompute coefficients
28: Determine new reactor state, s+ 1, given k(0)s+1 = ks

132



8.5 . CONTROL-ROD MOVEMENT IN C5G7
In Fig. 8.5, three simulations, performed by IDT, are presented:
• A reference calculation, consisting of 51 × 51 × 1 Cartesian nodes, where the heteroge-
neous geometry is represented in an exact way. Each node covers the whole core height,
which amounts to 64.26 cm. In Fig. 8.5, this simulation is referred as "Ref-IDT";

• A second calculation, labeled "Het-IDT-18", where the spatial domain is discretized into
51× 51× 18 cells. Once again, the heterogeneous geometry is modelled with no approx-
imation. The height is 3.57 cm for all HCCs;

• A third calculation, referred as "Homo-IDT-18", which shares the same discretization as
"Het-IDT-18". Differently from "Ref-IDT" and "Het-IDT-18", the control-rod and guide-tube
cross sections are homogenized in the nodes where the control-rod tip does not match
the node boundary.

Fig. 8.5 provides the value of keff as the control rods are gradually inserted, with a step size of
1.19 cm. The curves resulting from "Ref-IDT" and "Het-IDT-18" exhibit no cusping effect. Con-
versely, the curve labeled "Homo-IDT-18" is affected by numerical wiggles, caused by cross-
section homogenization. The figure also compares "Het-IDT-18" and "Homo-IDT-18" to "Ref-
IDT", by displaying the relative difference on the fundamental eigenvalue (dashed lines in Fig. 8.5).

Figure 8.5: Control-rod simulation in the C5G7 benchmark, using nodes with ∆h = 3.57 cm:
keff vs control-rod position (solid lines) and relative error with respect to "Ref-IDT" (dashedlines). N.B. The control rods are gradually inserted with a step size of 1.19 cm.

However, generally the axial size of a node is about 10 − 20 cm. On the other hand, the
control rods move along the axial direction with a step size of about 1 − 2 cm. If the control
rods are homogenized with the underlying moderator in a node of these dimensions, larger
wiggles will appear in the numerical solution.

In Fig. 8.6, three simulations, performed by IDT, are compared:
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• The aforementioned "Ref-IDT";
• A second calculation, labeled "Het-IDT-4", performing no homogenization, which splits
the spatial domain into 51× 51× 4 nodes. The axial dimension of one node amounts to
14.28 cm (21.48 cm for the upper reflector);

• A third calculation, referred as "Homo-IDT-4", which shares the same geometry as "Het-
IDT-4". Differently from "Ref-IDT" and "Het-IDT-4", the control-rod and the guide-tube
cross sections are homogenized in the nodes where the control-rod tip does not match
the node boundary. The axial dimension of such nodes is 14.28 cm.

Due to the large axial step, "Homo-IDT-4" shows prominent wiggles and very large differences
with respect to "Ref-IDT". On the other hand, no homogenization is actually needed in IDT,
thanks to the possibility to represent the heterogeneous geometry in every detail. The numer-
ical results provided by "Ref-IDT" and "Het-IDT-4" in Fig. 8.6 prove that the transport model of
IDT can eliminate the rod-cusping effect.

Figure 8.6: Control-rod simulation in the C5G7 benchmark, using nodes with ∆h = 14.28 cm:
keff vs control-rod position (solid lines) and relative error with respect to "Ref-IDT" (dashedlines). N.B. The control rods are gradually inserted with a step size of 1.19 cm.

8.6 . CONCLUSION
The new geometric capabilities of IDT enable high-fidelity representation of a fission reac-

tor, at reasonable computational cost. In fact, thanks to the possibility to locally coarsen or
refine the volume mesh, one can retain a fine grid only where strictly necessary, thus saving
simulation time and memory. The new HCC model can then be effectively applied to control-
rod movement simulations, in order to avoid cusping effects. As discussed in Sect. 8.5, the
curve representing the control-rod reactivity worth shows no discontinuity in the first deriva-
tive, allowing for an accurate calculation of the effective multiplication factor for each position
of the control rods.
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Part III
NOVELTIES ON THE METHOD OFSHORT CHARACTERISTICS
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9 - ASYMPTOTIC EXPANSION OF THE ANGULAR FLUX AP-
PLIED TO DISCRETE-ORDINATE SOURCE ITERATIONS
9.1 . INTRODUCTION
Lattice simulations of nuclear reactors involve a large number ofmedia and thus of effective

total macroscopic cross sections, due to flux variations. The parameters affecting the cross
sections are numerous and include
• the temperature feedback, for the spatial variation of fuel and moderator cross-sections
by Doppler effect and mass density variations;

• the self-shielding, for the spatial variations of the multigroup cross sections, due to the
resonances of fuel isotope microscopic cross sections;

• the fuel depletion, for the spatial distribution of the isotopic concentrations of the fuel
rods.

In this context, numerical methods based on the integral form of the transport equation,
such as Collision Probabilities (CP) or Current-Coupling Collision Probabilities (CCCP) (Sect. 4.6.2),
suffer from severe memory burden as the number of media and regions increases [87, 88, 89,
44, 71]. The reason lies in the computation and storage of a high number of collision probability
matrices, [90]. Thesematrices have to be stored for any energy group and, in the framework of
IDT, for any direction of the discrete-ordinate angular quadrature (Sect. 4.6.4 and Sect. 6.3.1). In
this context, when the number of depleted regions grows up to thousands, the computational
cost of the coefficients becomes not negligible and the solver suffers from great memory pres-
sure during runtime [91, 92].

In order to ease such undesirable effect, let us propose an asymptotic technique that can
lead to an effective reduction of the memory imprint associated to the discretized CP matrices,
at the cost of an increased number of applications of the transport sweeps. The sweeps allow
to compute the spatial distribution of the angular flux for a given directional source and incom-
ing boundary flux. The present method is applied to Heterogeneous Cartesian Cells (HCCs) to
solve the neutral-particle transport equation by discrete ordinates. In particular, the approach
relies on aNeumann series using an "unperturbed" transport operator. The latter is constructed
on-the-fly and defined by grouping HCCs (i.e., pin cells) having similar optical path. For these
cells, the solver computes and stores a single set of CP matrices, thus mitigating the memory
requirements.

In this chapter, Sect. 9.2 and 9.3 provide the mathematical basis necessary for the new
method and details on its practical application and implementation in IDT. In Sect. 9.4, two
realistic lattice simulations are presented to evaluate the numerical accuracy and performance
of the asymptotic expansion. Preliminary results show reductions of the memory burden by
one order of magnitude, without any significant loss in the numerical precision, at the expense
of an increased computational cost of the source iterations. A slight optimization allows to limit
the latter to +10− 20% with respect to to the standard calculation.
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9.2 . THEORY
Let us consider the one-group discrete-ordinate transport problem{

Lψ = q , for r ∈ D ,
ψ− = ψin, for r− ∈ ∂D−.

(9.1)
In Eq. (9.1), the energy group index is omitted for the sake of simplicity and
• ψ = ψ(r,Ωd) is the angular flux for a fixed angular directionΩd,
• L ≡ Ωd · ∇+Σ(r) is the one-group leakage-plus-removal operator,
• q = q(r,Ωd) is a fixed source, which is given at each transport iteration by an update ofthe self-scattering and of the external source contributions (multigroup scattering plus
fission source),

• ψin = ψin(r−,Ωd) is a fixed incoming flux on the incoming boundary of the domain,
∂D− = {r ∈ ∂D such that n(r) ·Ωd < 0}.

Equation (9.1) represents a first-collision source problem, which is typically solved through
spatial sweeps. The numerical solution of Eq. (9.1) gives the distribution of the angular flux in
space for a given volume source, q, and boundary condition, ψin. Note that the total cross sec-tion, Σ(r), is the only parameter ruling the operator L in Eq. (9.1).

Supported by asymptotic theory, [94], the total cross section of Eq. (9.1) can be written as
Σ(r) = Σ0(r)− δΣ(r), (9.2)

where Σ0(r) is a smooth function representing an artificial "unperturbed" total cross section,
while δΣ(r) is a "perturbation" function. Consequently, the operator L reads as

L = L0 − δΣ, (9.3)
with L0 ≡ Ωd · ∇+Σ0(r) as the "unperturbed" operator. Then, Eq. (9.1) becomes{

(L0 − δΣ)ψ = q, for r ∈ D ,
ψ− = ψin, for r_ ∈ ∂D− ,

(9.4)
where δΣ(r) = Σ0(r) − Σ(r). Note that q and ψin are unchanged with respect to the original
transport problem (Eq. (9.1)). Assuming that L−1

0 exists, Eq. (9.4) can be rearranged as
(I− L−1

0 δΣ)ψ = ψ0, (9.5)
ψ0 = L−1

0 q being "unperturbed" flux solving the "unperturbed" problem
L0ψ0 = q. (9.6)

Since the choice of Σ0(r) is arbitrary, let us set the following criteria
Σ0(r) ⩾ 0 for any r ∈ D, (9.7)
δΣ(r) ⩾ 0 for any r ∈ D. (9.8)
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The first is a physical condition, while the second implies that the "unperturbed" cross section is
a bounding function for the original cross section, i.e.,Σ0(r) ⩾ Σ(r) overD. IfΣ0(r) is such that
δΣ is sufficiently small with respect to Σ0(r), the spectral radius of the linear operator L−1

0 δΣ,
here indicated as ρ, is bounded by

ρ =
∥∥L−1

0 δΣ
∥∥ < 1. (9.9)

In this case, the Neumann series of L−1
0 δΣ converges in the operator norm to the inverse of

(I− L−1
0 δL). The following identity holds

(I− L−1
0 δΣ)−1 =

∑
n⩾0

(
L−1
0 δΣ

)n
.

The solution of Eq. (9.5) is thus given by Neumann series
ψ = ψ0 +

∑
n⩾1

(ψn − ψn−1) =
∑
n⩾0

(
L−1
0 δΣ

)n
ψ0, (9.10)

where ψn, with n > 0, are high-order successive approximations of ψ.

9.3 . APPLICATION TO IDT
Asmentioned in Chap. 7, the new version of IDT uses Heterogeneous Cartesian Cells (HCCs),

containing unstructured combinations of concentric cylinders and inner Cartesian grids, whose
intersections define the HCC spatial mesh. Also the boundary surfaces of the HCC box are dis-
cretized and a piece-wise polynomial expansion is used to represent the interface angular flux.
The numerical solution of Eq. (9.1) within the HCC requires the computation for each energy
group of a set of angular-dependent CP matrices (Sect. 4.6.4). Assuming

Figure 9.1: Unstructured non-conformal 3D Heterogeneous Cartesian Cell mesh.
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• d as the index of directionΩd, with weight wd ,
• s ∈ S+d and s′ ∈ S−d as the outgoing and incoming surface indexes with respect to d,
which belong to the set of outgoing/incoming interface surfaces S+/−d on the border of
the HCC,

• α, β, γ, ... ∈ G as the inner volume indexes within the HCC,
• (i) as the source iteration index (Sect. 4.47),
• ψ±

d,s as the array containing the outgoing/incoming surface spatial moments of the angu-
lar interface flux,

• ϕα,l,m as the array of the spatial moments pertaining the angular momentΦl,m, in region
α,

• qd,α as the array of the spatialmoments of the angular source, in regionα, along direction
Ωd ,

• sextα,l,m as the array of the spatial moments of the external source,
• Σs,α,l as the angular moment of order l of the self-scattering cross section,
• Al,m(Ωd) as a real-valued spherical harmonic,

the transport sweep of the HCC, along source iterations, is performed applying the CPmatrices,
namely Td,s,s′ , Ed,s,α, Id,α,s′ ,Cd,α,β , as follows

ψ
+,(i+1)
d,s =

∑
s′∈S−

d

Td,s,s′ψ
−,(i+1)
s′,d +

∑
α∈G

Ed,s,αq
(i)
d,α , for s ∈ S+d (9.11)

ϕ
(i+1)
α,l,m =

∑
d∈SN

wdAl,m(Ωd)

 ∑
s′∈S−

d

Id,α,s′ψ
−,(i+1)
s′,d +

∑
β∈G

Cd,α,βq
(i)
d,β

 , for α ∈ G (9.12)

q
(i+1)
d,α =

K∑
k=0

k∑
l=−k

Al,m(Ωd)
[
Σs,α,kϕ

(i+1)
α,l,m + sextα,l,m

]
, for α ∈ G. (9.13)

Equation (9.11) transmits particle contributions through the HCC surfaces, using the transmis-
sionmatrix,Td,s,s′ , and the escapematrix ,Ed,s,α. Equation (9.12) expresses the particle conser-vation in α ∈ G, where the incoming matrix, Id,α,s′ , and the collision matrix, Cd,α,β , are relatedto the probability for a neutron entering surface s′ ∈ S−⌈ and for a neutron born in region β ∈ G
to contribute to the region of balance. Finally, Eq. 9.13 allows to update the neutron source.

The geometrical module of IDT stores HCC’s data for each box c = {ix, iy, iz}, with ix/y/z asthe index of the Cartesian mesh hosting the HCCs. This process associates automatically the
local geometry of the box, Gc, to the set of total cross sections, for each region, namely the
array

Σc = {Σα}α∈Gc .

Provided a perturbation
∥δΣ∥ ≪

∥∥L−1
0

∥∥ ,
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let us suppose that the many-media problem, characterized by L, is a perturbed state of a
few-media problem L0, with "unperturbed" media, which requires much less of coefficients to
compute. The problem is how to construct the operator L0 from the original operator, L.

In the HCC framework, L0 can satisfy Eqs. (9.7) and (9.8) by selecting those HCCs that sharethe same geometrical pattern and by choosing a single set of cross sections for those cells that
have similar optical properties. Let us define Gc0 as the cell geometry, which is assumed to be
shared by several HCCs, and Σc0 as the unperturbed set of total cross sections associated to
each region of Gc0 , which has to be determined. The couple (Gc0 ,Σc0) defines data for a single
unperturbedHCC, with identifier c0. IDT automatically orders physical HCCs that share the same
generating geometry in a proper subset of cell indexes. Let us denote this subset by H(Gc0),whose HCCs share geometry Gc0 .

Once the HCCs are ordered by their modular geometrical pattern,Σc0 is defined by select-ing inH(Gc0) those cells that satisfy the following error-control requirement∣∣∣Σgc,α − Σgc′,α

∣∣∣ < ϵΣ min(Σgc,α,Σ
g
c′,α) + EPSILON(Σ), (9.14)

α ∈ Gc0 and c ̸= c′ with c, c′ ∈ H(Gc0),and for any energy group g,
that bounds the norm of δΣ(r) in L∞. EPSILON(Σ) is the machine epsilon to evaluate round-off
error. To this end, a tolerance parameter on the cross sections, ϵΣ, is introduced in Eq. (9.14).
The latter is fixed by the user and helps to select cells inH(Gc0) that have similar optical thick-
ness within a tolerance of ϵΣ.

Let us define the set of selected indexes satisfying Eq. (9.14)) as H(Gc0 ,Σc0). Of course,this set belongs to H(Gc0). The unperturbed set of cross sections associated to H(Gc0 ,Σc0) iscomputed as
Σgc0,α = max

c∈H(Gc0
,Σc0 )
{Σgc,α}, (9.15)

for any α ∈ Gc0 and for any energy group g.
The perturbation δΣgc,α is then automatically defined by

δΣgc,α = Σgc0,α − Σgc,α, for any c ∈ H(Gc0 ,Σc0), (9.16)
α ∈ Gc0 , and for any energy group g.

Thanks to Eq. (9.15), Σgc0,α satisfies Eqs. (9.7) and (9.8), while Eq. (9.14) bounds the norm of the
operator L−1

0 δΣ. Considering in first approximation the leakage contribution of second order,
the spectral radius is bounded by

ρ ∼ max
c∈H(Gc0

,Σc0 )

{
δΣgc0,α
Σgc0,α

}
<
ϵΣ min(Σgc,α)

Σgc0,α
< ϵΣ. (9.17)

More details are provided in App. C. Finally, the couple (Gc0 ,Σc0), i.e., the shared geome-
try and the unperturbed cross sections (Eq. (9.15)), define the single unperturbed HCC. The
latter is the artificial cell representing the unperturbed state of all HCCs associated to index
c ∈ H(Gc0 ,Σc0).
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As known, CP matrices in Eqs. (9.11) and (9.12) are the discrete form of the operator L−1

restricted to a single HCC. Moreover, as for L, the parameters of the CPs matrices are the
piece-wise total cross sections inside the HCC. Thus, L−1

0 is locally defined by associating to the
cells inH(Gc0 ,Σc0) a single set of unperturbed matrices,

L−1
0 (Gc0 ,Σc0) ≡

{
Td,s,s′ , Ed,s,α, Id,α,s′ , Cd,α,β

}
(Gc0 ,Σc0), (9.18)

for any s′ ∈ S−d , s ∈ S
+
d , α, β ∈ Nc and d ∈ SN ,

and c ∈ H(Gc0 ,Σc0).

In this manner, the original set of HCCs, that would require the computation of CP matrices for
all the elements inH(Gc0), is decomposed in setsH(Gc0 ,Σc0), whose elements refer to a single
unperturbed operator L−1

0 (Gc0 ,Σc0).
Asmentioned, the construction of setsH(Gc0) andH(Gc0 ,Σc0) is done automatically in IDT.

In lattice applications, geometry Gc0 often coincides with the one of a pin-cell. Also, the fuel rodsand the control rods are often of few kinds. For these reasons, one can expect that elements
composing H(Gc0 ,Σc0) roughly coincide with pin-cells of the same type. The parameter ϵΣpermits to calibrate the size of H(Gc0 ,Σc0). The allowed range of values is [0, 1[. In this way,
one can distinguish two possible behaviors of the solver during runtime, more precisely

ϵΣ = 0→ to foster memory,
ϵΣ < 1→ to foster computation.

The first selects HCCs having exactly the same geometry and cross sections. This is the way
standard IDT works: there is no asymptotic approximation, but just an optimization for coef-
ficient burden. Thus, identical cells that share exactly the same optical properties generate a
single set of coefficients. Because ϵΣ = 0 in Eq. (9.14), the solver performs the transport sweep
inverting L, i.e., the original operator, instead of L0, i.e., the unperturbed operator.

The second setting allows for a variation of the total cross sections up to 100%, i.e., with
ϵΣ = 1. In this case, HCCs that belong toH(Gc0 ,Σc0) grow in number as the tolerance increases.
Therefore, the memory burden as well as the computational cost of CP coefficients is reduced
proportionally. Provided ϵΣ < 1, asymptotic IDT performs transport sweep to invert L0, byusing the set of coefficients in Eq. (9.18). The operator L−1

0 is then applied iteratively (Eq. (9.10))
to build successive approximations of ψ, until convergence. Thus, asymptotic IDT lessens the
memory pressure while fosters computation. The latter rises because of the increase of the
computational cost of source iterations due to Neumann iterations.

9.3.1 . Implementation in IDT
In IDT, Eq. (9.10) is implemented for each energy group and consists in performing an inner

loop where successive iterates are progressively higher order approximations of ψ. As men-
tioned, the transport sweep is performed by using the operator L0. Thus, L−1

0 symbolically
represents the inner transport sweep with unperturbed CP matrices. The numerical scheme
is summarized in Algo. 2. Note that NR and Nc are respectively the total number of regions
(line 2, Algo. 2) and the number of spatial moments (line 10, Algo. 2), while ϵψ is a user-defined
tolerance (line 10, Algo. 2). In Algo. 2, Neumann iterations are not performed if the L2 − normof the perturbation is less then 1 pcm (line 2).
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Algorithm 2 : Von Neumann iterations.
1: Initialize ψ0 = L−1

0 q, for r ∈ D, and ψ0,− = ψin, for r− ∈ ∂D−2: if ∥δΣ∥L2
< 10−5 +NR ∗ EPSILON(Σ) then3: RETURN

4: end if
5: Update q0 ← q0 + δΣ · ψ06: for n = 1→ N {Neumann iterations} do
7: Determine ψn = L−1

0 qn−1, for r ∈ D8: Determine ψn,− = ψin, for r− ∈ ∂D−9: Compute δψ = ψn − ψn−1 {Residual}10: if ∥δψ∥L2
< ϵψ +NR ∗NC ∗ EPSILON(ψ) then11: EXIT{Neumann series expansion truncated at order n}

12: end if
13: Update qn ← qn−1 + δΣ · δψ
14: end for

Sn quadrature S16,8 CL (256 dir.)Source expansion LinearInterface surface flux LinearNb. of groups 281Anisotropy order P3Nb. of surfaces/HCC-side 3Inner iteration tol. (L∞-norm) 10−5

Reactivity tol. on k-eff. 10−5

Fission source tol. (L∞-norm) 10−4

ϵΣ 0.1 (= 10%)
ϵψ (L2-norm) 10−5

Table 9.1: Lattice problem settings.

Asymptotic IDT can be adjusted to users’ scope, by two input parameters. The first is the
aforementioned tolerance on total cross sections, i.e., ϵΣ, while the second is the tolerance
at line 10, namely ϵψ , on the iterative residual norm. While the first one affects CP-matrices
memory requirements and the perturbation norm, the second influences the accuracy of ψ
and thus the number of Neumann iterations. Therefore, the number of applications of lines
7-13 (Algo. 2) increases with ϵΣ, while reduces by increasing ϵψ.

9.4 . NUMERICAL TESTS
In the following tests, the asymptotic model is applied to realistic lattice calculations on 2D

PWR assemblies. The problem discretization is shown in Tab. 9.1. Note that all simulations are
performed with multigroup CMFD in outer iterations and without inner accelerations, using 4
threads. The workstation is an Intel Xeon Silver 4214@ 2.20 GHz 16.5M Cache.

9.4.1 . Application to Self-Shielded Lattice
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The present simulation is aimed at testing the asymptotic method in realistic lattice calcula-
tions with self-shielded cross-sections. Identical fuel rods may have different nuclear data, due
to the spatial variation of the multigroup microscopic cross sections, induced by the presence
of resonant isotopes.

The benchmark is a 2D assembly, with UOX fuel and B4C control rods (Fig. 9.2). We impose
reflective boundary conditions. Self-shielding (SSH) is performed using the Fine-Structure (FS)
model, between groups 53 and 98, for 12 resonant isotopes. SSH calculation consists of 8 dis-
tinct cells (of which 6 UOX pin-cells, 1 cell for the control rod and 1 cell for the instrument tube,
respectively) solved by Current-Coupled Collision Probabilities, with 1/8th symmetry.

IDT is compared to TRIPOLI-4® continuous-energy Monte Carlo. The problem is discretized
by 1349 spatial regions. The other discretization parameters are listed in Tab. 9.1, which also
provides detailed information on the problem settings. Standard IDT produces a reactivity er-
ror of 53 pcm. The relative error on the absorption and fission distributions is less then 1%, as
depicted in Fig. 9.3.

Now let us assume standard IDT as a reference and provide detailed comparison with the
asymptotic solution (Tab. 9.2). Due to self-shielding, 8 sets of HCC coefficients are necessary
for standard IDT to run. On the other hand, if one applies the asymptotic expansion, with a
cross section tolerance of ϵΣ = 10%, the number of HCCs is reduced from 8 to 3, as all UOX
pin-cells are represented by a single unperturbed HCC. Asymptotic IDT allows to reduce the

Figure 9.2: 2D UOX/B4C benchmark.
memory imprint by a factor 8. Also, the percent of time spent in CP computation is reduced
from 31% to less then 1%. Nevertheless the time to solution increases by a factor 1.75, because
of the repeated application of the unperturbed transport operator. The transport operator is
applied almost twice the number of times of the reference solution. This means that a first-
order moment, namely

ψ1 =

1∑
n=0

(L−1
0 δΣ)nL−1

0 q, (9.19)
is necessary, on average, in each energy group.

To test the accuracy of the asymptoticmethod, let us verify the pin-by-pin relative difference
between standard and asymptotic IDT. Fig. 9.4 shows the maximum difference along each row
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IDT Memory Time Time for CP Time to solution keff -errorStandard 610MB 105 s 33 s (31%) 72 s (69%) -Asymptotic 72MB 127 s 1 s (<1%) 126 s (99%) 0.5 pcm

Table 9.2: Standard (reference) vs Asymptotic IDT, performed by LSC and S48,8-Chebyshev-Legendre product quadrature.
of the assembly. The method provides accurate results since errors on fission and absorption
distributions remain bounded to less then 0.013% in simple precision. Tab. 9.2 contains the
total and partial times of the simulation, as well as the reactivity difference.

Figure 9.3: TRIPOLI4® vs Asymptotic IDT: relative error on the pin-by-pin absorption and fissiondistributions.

9.4.2 . Application to depleted lattice
The second benchmark is a 2D assembly, with 3.1%-enriched UOX fuel and fixed Pyrex rods.

Fuel depletion is simulated from 0 to 70GWd/tonU , using 50 burn-up steps. The discretization
consists of 1473 spatial regions, with S16,8 Chebyshev-Legendre angular quadrature formula
and 281-group P3 cross-section library. The UOX and Pyrex rods are depleted preserving a
symmetry of 1/8th in material distribution. A total of 51 HCCs are necessary to perform the
standard calculation. These include 45 depleted fuel cells, 5 Pyrex cells and 1 cell containing
the instrumentation. Self-shielding is based on FS model, with 12 self-shielded cells.

In order to set the asymptotic solver, let us investigate the variation of the total cross sec-
tions of all cells along depletion. Fig. 9.5 displays the maximum variation per energy group. As
this does not exceed 8%, let us set ϵΣ = 10%. In this way, only two unperturbed cells are used
for depleted UOX and Pyrex cells, respectively, allowing for an overall reduction of the number
of HCCs from 51 to 6. In Fig. 9.6, the number of HCCs and thememory occupation for the angu-
lar probability coefficients is depicted along burn-up. A reduction by a factor 10 is observed for
the memory burden with respect to standard IDT. This reduction is further visible by looking at
the computational time for coefficients, displayed in Fig. 9.7.
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Figure 9.4: Standard vs Asymptotic IDT: maximum relative error per row on the pin-by-pin fis-sion and absorption distributions.
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Figure 9.5: Maximum total-cross-section variation (%) vs burn-up.
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Figure 9.8 shows the value of keff and the reactivity error along depletion. The numerical ac-
curacy is acceptable, as the latter remains bounded to fewpcm for thewhole cycle. As expected,
the asymptotic method pays an extra cost in terms of iterative solution, due to the overhead of
the inner Neumann loop that is added at each source iteration. This is visible in Fig. 9.9, where
the total computational time of outer iterations and inner transport sweeps is displayed along
burn-up. At BOC, the time of the inner transport sweeps of the asymptotic method doubles
the time of the standard calculation and, as soon as fuel depletes and concentrations change,
it triples the time of standard IDT. This behavior is not surprising, sincematerials differ because
of self-shielding at BOC and because of both self-shielding and concentrations along the cycle.
As in Sect. 9.4.1, the first-order moment is sufficient to represent self-shielded cells at BOC.
When fuel and Pyrex compositions change due to depletion, the second-order moment is also
necessary to reconstruct the flux. To reduce the computational cost, a simple optimization is
introduced, where Neumann iterations are activated only once keff has reached convergence.In IDT, three stopping criteria have to be satisfied to exit iterations, involving
• the L∞-error on the angular moments of the flux;
• the L∞-error on the fission production rate (per fissile isotope);
• The reactivity error on keff .
As the latter is the first to stabilize, the flux is approximated to the "unperturbed" moment,

until convergence of the eigenvalue. Once reached this condition, Neumann iterations are acti-
vated to converge the fluxmoments and the fission sources. Fig. 9.10 shows the computational
time of the asymptotic method with the new optimization. The overhead due to Neumann it-
erations is reduced to 10 − 20% along the whole cycle. More investigation has to be done to
tune the CMFD acceleration consistently with the new iterative strategy.

9.5 . CONCLUSION
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Figure 9.9: Time for inner and outer iterations vs burn-up.
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In this chapter, an asymptotic flux expansion has been presented, to effectively reduce
the memory burden of CP matrices, in IDT. This novel technique transfers the computational
cost of the simulation from coefficients to inner transport iterations that are performed more
then once for each angle. These iterations compute the ’perturbed’ moments of the flux that
allow to reconstruct the solution up to adaptive order of expansion. Despite an increasing cost
for inner iterations of about the 10 − 20% in fuel-assembly simulations, the memory imprint
reduces by an order of magnitude. Moreover, the increased computational cost has to be
evaluated for each specific problem. The application of the asymptotic expansion to full-core
simulations, involving billions of computational regions with thousand of depleted media, is
expected to be of extraordinary importance to control the memory needs, already huge in this
type of calculations. The use of an effective acceleration (e.g., CMFD or BPA) will reduce the
time to solution, thus increasing the global computational efficiency of the method.
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10 - CP COEFFICIENTS - PROPERTIES ANALYSIS AND AP-
PLICATIONS

10.1 . INTRODUCTION
Asmentioned in Sect. 4.6.2 and 4.6.4, CPmatrices are arrays of considerable size, which are

responsible for massive memory pressure and non-negligible computational time. Generally,
the array with the largest memory imprint and time requirements is the collision matrix. The
overall number of collision coefficients depends linearly on the number of energy groups and
angular directions and grows quadratically with the mean number of regions per cell and the
number of spatial components. The analysis of CP properties has already been addressed by
several works, as [101] [102]. Further references may be found in [5], [31], [103].

The present study is intended to emphasize the properties of CP matrices. We propose
three simple developments:
• An approach approximating exponential-like functions by piece-wise Taylor polynomials,
for optical paths up to few tens, and by their asymptotic behaviour, for larger values of
τ (Sect. 10.2). The combined use of Eqs. (10.31)-(10.32) allows reducing the computational
time for CP coefficients determination;

• A set of balance equations to be satisfied by CP matrices, for all incoming and outgoing
degrees of freedom, enabling coefficients verification, up to double precision (Sect. 10.3);

• The use of symmetry and reciprocity properties, to reduce the number of stored direc-
tions and the computational cost of CP coefficients (Sect. 10.4).

10.2 . COEFFICIENTS TABLES AND ASYMPTOTIC APPROXIMATION
10.2.1 . Background

As illustrated in Sect. 4.6.4 (Chap. 4), the Method of Short Characteristics requires the cal-
culation of angular-dependent probability matrices, whose expression is provided in Eq. (4.98)-
(4.102) and depends on functions (4.103)-(4.105). The latter may be rewritten as [42]

F(x+, x−, r−,Ω,Σ) =

∫ x+

x−
P(r− + xΩ)e−Σ(x+−x)dx, (10.1)

G(x+, x−, r−,Ω,Σ) =

∫ x+

x−
P(r− + xΩ)e−Σ(x−x−)dx, (10.2)

H(x+, x−, r−,Ω,Σ) =

∫ x+

x−
P(r− + xΩ)× F(x, x−, r−,Ω) dx, (10.3)

and decomposed into
F(x+, x−, r−,Ω,Σ) = B(r−,Ω)∆(l) · F̂(τ+, τ−), (10.4)
G(x+, x−, r−,Ω,Σ) = B(r−,Ω)∆(l) · Ĝ(τ+, τ−), (10.5)
H(x+, x−, r−,Ω,Σ) = B(r−,Ω)∆(l)Ĥ(τ+, τ−)∆(l)BT (r−,Ω), (10.6)
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where, for LSC,
F̂(τ+, τ−) =

[
F̂0(τ

+, τ−)

F̂1(τ
+, τ−)

]
, (10.7)

Ĝ(τ+, τ−) =

[
Ĝ0(τ

+, τ−)

Ĝ1(τ
+, τ−)

]
, (10.8)

Ĥ(τ+, τ−) =

[
Ĥ0,0(τ

+, τ−) Ĥ0,1(τ
+, τ−)

Ĥ0,1(τ
+, τ−) Ĥ1,1(τ

+, τ−)

]
, (10.9)

B(r−,Ω) =

[
1 0

r− − r0 Ω

]
, (10.10)

∆(l) =

[
l 0
0 l2

]
. (10.11)

Provided τ = lΣ = τ+ − τ−, Eq. (10.7)-(10.9) read as
F̂n(τ

+, τ−) =
1

τn+1

∫ τ+

τ−
dx xne−(τ+−x), (10.12)

Ĝn(τ
+, τ−) =

1

τn+1

∫ τ+

τ−
dx xne−(x−τ−), (10.13)

Ĥn,m(τ
+, τ−) =

1

τn+m+2

∫ τ+

τ−
dx xn

∫ x

τ−
dy yme−(x−y), (10.14)

If the following transformation is introduced, [42],
x = τu+ τ−, u ∈ [0, 1], (10.15)

Eq. (10.7)-(10.9) may be re-written as binomial expansions,
F̂n(τ

+, τ−) =
n∑
i=0

(
n

i

)
(τ−)n−iτ iFi(τ), (10.16)

Ĝn(τ
+, τ−) =

n∑
i=0

(
n

i

)
(τ−)n−iτ iGi(τ), (10.17)

Ĥn,m(τ
+, τ−) =

n∑
i=0

m∑
j=0

(
n

i

)(
n

j

)
(τ−)m+n−(i+j)τ i+jHi,j(τ), (10.18)

with
Gn(τ) =

∫ 1

0
du une−τu, (10.19)

Fn(τ) =

∫ 1

0
du une−τ(1−u) =

n∑
i

(
n

i

)
(−1)iGi(τ), (10.20)

Hn,m(τ) =

∫ 1

0
du un

∫ u

0
dv vme−τ(u−v), (10.21)

depending on the optical path and the expansion order. Note that one has to compute only
Eq. (10.19) and (10.21), due to Eq. (10.20).
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10.2.2 . Analytic Remarks
Let us consider {Gn(τ)}n∈N (Eq. (10.19)). One can easily prove that an explicit expression

for Gn is provided by
Gn(τ) =

n!

τn+1

(
1− Sn(τ) e−τ

)
, (10.22)

Sn(τ) being the sequence of functions defined by
Sn(τ) =

n∑
i=0

1

(n− i)!
τn−i. (10.23)

By deriving Gn(τ), one can prove that
dGn
dτ

(τ) +Gn+1(τ) = 0, (10.24)
which recalls the hyperbolic nature of the transport equation. Similarly, an explicit expression
may be obtained for {Fn(τ)}n∈N (Eq. (10.20)), namely

Fn(τ) =
n!

τn+1

(
Qn(τ) + (−1)n+1 e−τ

)
, (10.25)

Qn(τ) being the sequence of functions defined by
Qn(τ) =

n∑
i=0

(−1)i

(n− i)!
τn−i. (10.26)

By deriving Fn(τ), one can prove that
dFn
dτ

(τ) = Fn+1(τ)− Fn(τ). (10.27)
Finally, let us consider {Hn,m(τ)}n,m∈N. This can be written as

Hn,m(τ) =

∫ 1

0
du un Fm(τ, u), (10.28)

where
Fm(τ, u) =

∫ u

0
dv vm e−τ(u−v). (10.29)

In other terms, the functionsHn,m(τ) , withn,m = 0, 1, 2, ..., represent themoments ofFm(τ, u),with respect to themonomial basis defined byB(u) = {un}n∈N = [1, u, u2, ...]T . As Fn dependson Gn, in the following we focus only on Gn and Hn,m, of which a representation is given in
Figs. 10.1-10.2.

10.2.3 . Taylor Development and Asymptotic Behaviour
For the sake of simplicity, let us consider Eq. (10.19). In void regions, {Gn(τ)}n∈N is defined

as
lim
τ→0

Gn(τ) =
1

n+ 1
, n ∈ N. (10.30)

Equation (10.30) ensures the correct behaviour of short characteristics in void regions. Due to
Eq. (10.24), the functions Gn satisfy the following:

Gn(τ) =
∞∑
i=0

(−1)i · (τ − τ)
i

i!
Gi+n(τ), (10.31)
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Figure 10.1: Gn vs τ , for n = 0, 1 (linear short characteristics) and τ ∈ [0, 30].

Figure 10.2: Hnm vs τ , for n = 0, 1,m = 0, 1 (linear short characteristics) and τ ∈ [0, 30].
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where τ is the centre of a Taylor series. Moreover, because of e−τ in Eq. (10.22), the asymptotic
behaviour of Gn(τ) is ruled by

Gn(τ) ∼ G∞
n (τ) =

n!

τn+1
,∀τ ≫ 1, (10.32)

as shown in Figs. 10.3-10.4. Functions (10.19)-(10.21) are computationally expensive, as they in-

Figure 10.3: G0 vs G∞
0 , as a function of the optical path, for τ ≳ 1.

Figure 10.4: Relative difference betweenG0 andG∞
0 , as a function of the optical path, for τ > 30.

volve the calculation of exponential functions, [104]. To lower the computational time of the
angular probability matrices, IDT takes advantage of Eqs. (10.31)-(10.32). In practice, two values,
τinf and τsup, have been selected. The latter is such that Eq. (10.32) is verified up to double pre-cision, ∀τ ≥ τsup. On the other hand, τinf is a relatively small negative value, of the order of few
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units, that is able to account for negative optical lengths, which may appear in Bn-eigenvalueproblems, in nearly vacuum regions as the pellet-clad gap. For all optical paths between τinfand τsup, the functions Gn are computed by piece-wise Taylor developments. In practice, the
interval [τinf , τsup] is divided into J sub-intervals of equal size, ∆τj = ∆τ , j = 1, ..., J . For each
sub-interval j, the following polynomial is defined

PI(j)(τ) =

I(j)∑
i=0

(−1)i · (τ − τj)
i

i!
Gi+n(τj), τ ∈

[
τj −

∆τ

2
, τj +

∆τ

2

]
, (10.33)

where τj is the sub-interval mid-point and I(j) is such that PI(j) is equal toGn(τ) up to doubleprecision. The coefficients of the polynomials are precomputed parameters, which are stored
in memory at the beginning of each simulation and define the coefficients tables. In order to
recover their values for a given sub-interval, IDT also stores the address of the zero-order co-
efficients. This is done by means of an array u, which in the case of G0, reads as

u =

{
ad(G

(1)
0 ), ..., ad(G

(J)
0 )

}
. (10.34)

ad being the address in memory for the specific coefficient. Another array, namely v, contains
the Taylor coefficients. In the case of G0, this reads as

v =

{
G

(1)
0 , ..., G

(1)
I(1), G

(2)
0 , ..., G

(2)
I(2), ..., G

(J)
0 , ..., G

(J)
I(J)

}
=

{
G

(j)
0 , ..., G

(j)
I(j)

}
j=1,...,J

. (10.35)

where G(j)
i = Gi(τj), ∀i = 0, ..., I(j),∀j = 1, ..., J .

Algo. 3 provides details about the practical evaluation ofG0 at a generic point τ ∈ [τinf ,+∞[.
Algorithm 3 : Evaluation of G0(τ).
1: Given τ ∈ [τinf ,+∞[
2: G0(τ) =

1
τ
{Asymptotic behaviour, Eq. (10.32)}

3: if τ < τsup then4: j = ⌈| τ−τinf

∆τ
|⌉ {Sub-interval order number}

5: τj = τinf +∆τ ∗ j − ∆τ
2
{Sub-interval mid-point}

6: f = u(j) {address of the first coefficient}
7: l = u(j + 1)− 1 {address of the last coefficient}
8: Compute G0(τ) by Eq. (10.33), using v(f), ..., v(l) and τj9: end if

10.2.4 . Numerical Test
In order to prove the effectiveness of the presented approach, let us propose a simple 3x3

2D-benchmark, with UOX fuel and AIC control rod (Sect. 7.6.2), using a 281-group cross section
library. The solid angle has been discretized by a rectangular S48,24 Chebyshev-Legendre an-gular quadrature formula, while the spatial refinement comprises a total of 240 regions and 8

surfaces per cell side, in order to boost the computational time of the angular probability ma-
trices. The analysis is limited to LSC. Two approaches have been compared, i.e., the standard
strategy, which evaluates functions (10.19) and (10.21) by means of their own analytical expres-
sions (except for τ = 0, where a Taylor series development is necessary), and the strategy based
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on the coefficients tables, for τ ∈ [τinf , τsup], and the asymptotic approximation, for τ > τsup.For estimating the CPU time, the simulations have been run repeatedly. On average, the pro-
posed method allows reducing the computational time of the angular probability matrices by
∼ 15%, with negligible relative difference on the fundamental eigenvalue and on the scalar flux
distribution per energy group and material, after 1 outer iteration.

10.3 . BALANCE EQUATIONS
In IDT, the numerical accuracy of the angular probability matrices may be tested up to dou-

ble precision, using a debug option. This is made possible by a set of balance equations, of
which the present analysis provides a mathematical proof. For the sake of brevity, let us con-
sider linear short characteristics; the application to higher expansion order is straightforward.

Let us consider the boundary value problem defined by(
Ω · ∇+Σ(r)

)
ψ(r) = q(r), r ∈ V (10.36)

ψ(r) = ψin(r), r ∈ ∂V −. (10.37)
Eq. (10.36) is projected onto a monomial basis of the kind B(r) = [1, r], with r = [x, y, z]T . By
applying the identity∇ · (Ωψ) = Ω · ∇ψ and the divergence theorem, one obtains

⟨B, ψ⟩+ − ⟨B, ψ⟩− + (L†B, ψ) = (B, q), (10.38)
where ⟨·, ·⟩± and (·, ·) denote a surface and volume scalar product, on ∂V ± and V , respec-
tively, whileL† indicates the adjoint to the leakage-plus-removal operator. The flux, the neutron
source and the interface angular flux are expanded onto Pα and Ps, defined as

Pα(r) = [1, r− cα]
T , Ps(r) = [1, r− cs]

T , (10.39)
with cα and cs being the region and surface centroid of α and s, respectively. Hence, we obtain∑

s

⟨B,Ps⟩+ψ+
s −

∑
s′

⟨B,Ps′⟩−ψ−
s′ +

∑
α

(L†B,Pα)ψα =
∑
α

(B,Pα)qα. (10.40)
The scalar products in (10.40) may be interpreted as the surface mass matrices of s and s′, i.e.
Ms/s′ = ⟨B,Ps/s′⟩±, the volume mass matrix of region α, Mα = (B,Pα), and the removal +
leakage matrix of region α, Sα = (L†B,Pα). The solution provided by MOSC reads as

ψd,α =
∑

s′⊂∂V −

Id,α,s′ψ
−
d,s′ +

∑
β

Cd,α,βqd,β +Cd,α,αqd,α, (10.41)

ψ+
d,s =

∑
s′⊂∂V −

Td,s,s′ψ
−
d,s′ +

∑
α

Ed,s,αqd,α , (10.42)
where s′ belongs to the incoming boundary ∂V − illuminated by directionΩd and ψ+

d,s and ψd,αrepresent respectively the spatial moments of the outgoing flux on surface s and of the angular
flux in region α (Sect. 4.6.4). By introducing Eq. (10.41) and (10.42) into Eq. (10.40), the neutron
balance becomes∑

s′

[∑
s(s′)

MsTs,s′ +
∑
α(s′)

SαIα,s′ −Ms′

]
ψ−
s′ +

∑
β

[∑
s(β)

MsEs,β +
∑
α(β)

SαCα,β −Mβ

]
qβ = 0.

(10.43)
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Equation (10.43) has to be satisfied for all moments ψs′ and qβ , leading to∑
s(s′)

MsTs,s′ +
∑
α(s′)

SαIα,s′ = Ms′ , ∀s′ ∈ ∂V −, (10.44)
∑
s(β)

MsEs,β +
∑
α(β)

SαCα,β = Mβ, ∀β ∈ V. (10.45)
Equation (10.44) provides a set of conservation relations, relating all incoming and outgoing
degrees of freedom. In IDT, Eq. (10.44) and (10.45) are used to verify the angular probabil-
ity matrices. Nevertheless, they may also be suited to other numerical approaches, e.g., the
method of collision probabilities, as a set normalization relations.

10.4 . MEMORY FOOTPRINT REDUCTION, BY SYMMETRY AND RECIPROCITY RE-LATIONS
IDT relies on the symmetry properties of the unit cell to ease the memory pressure and

computational time of the angular probability matrices, by reducing the number of stored di-
rections. For 2D cells with 1/8th symmetry, only directions Ωref with XY-projection between 0

and 45◦ are directly computed and stored, the others are retrieved by applying simple trans-
formations, i.e., a permutation to obtain the angular matrices alongΩsym and a change of sign
to attain the coefficients along directionΩd ⊥ Ωsym (Fig. 10.5), as indicated in Eq. (10.46)-(10.51).
In particular, given the permutation matrix P23 = [e1, e3, e2]

T , where ei is the i-th unit vector
of the canonical basis in R3, the following relations hold, for 2D LSC:

Figure 10.5: Symmetry relations in IDT: 2D cell with 1/8th symmetry. N.B. Ωsym is obtained byreflection ofΩref (reference direction) about the direction at 45◦. Ωd is perpendicular toΩsym.
C(α,β)sym(Ωsym) = P23 C(α,β)(Ωref ) P23 , I(α,s′)sym(Ωsym) = P23 I(α,s′)(Ωref ), (10.46)
E(s,β)sym(Ωsym) = E(s,β)(Ωref ) P23 , T(s,s′)sym(Ωsym) = T(s,s′)(Ωref ), (10.47)

C(α,β)⊥
(Ω⊥) = sgn(Bα⊥B

T
β⊥

) ∗C(α,β)sym(Ωsym), (10.48)
E(s,β)⊥

(Ω⊥) = sgn(Bs⊥B
T
β⊥

) ∗E(s,β)sym(Ωsym), (10.49)
I(α,s′)⊥(Ω⊥) = sgn(Bα⊥B

T
s′⊥
) ∗ I(α,s′)sym(Ωsym), (10.50)

T(s,s′)⊥
(Ω⊥) = sgn(Bs⊥B

T
s′⊥
) ∗T(s,s′)sym(Ωsym), (10.51)
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where B denotes the monomial basis, sgn is the sign function and ∗ indicates the Hadamard
product of two matrices.

Similar arguments apply to 3D cells, with 1/16th symmetry. Equation (10.46) still holds for
the collision matrix, provided that P23 = [e1, e3, e2, e4]

T . Nevertheless, a distinction has to be
made for the incoming, escape and transmission matrices, as the symmetry relations depend
on the orientation of the incoming and outgoing surfaces. In particular,

I(α,s′)sym(Ωsym) = P23 I(α,s′)(Ωref ), if ns′ ∥ e1/2 , (10.52)
I(α,s′)sym(Ωsym) = P23 I(α,s′)(Ωref )P23, if ns′ ∥ e3 , (10.53)

for the incoming matrix,
E(s,β)sym(Ωsym) = E(s,β)(Ωref ) P23, if ns ∥ e1 or ns ∥ e2 , (10.54)
E(s,β)sym(Ωsym) = P23E(s,β)(Ωref ) P23, if ns ∥ e3 , (10.55)

for the escape matrix, and
T(s,s′)sym(Ωsym) = P23T(s,s′)(Ωref ), if ns ∥ e3 and ns′ ∥ e1/2 , (10.56)
T(s,s′)sym(Ωsym) = T(s,s′)(Ωref )P23, if ns′ ∥ e3 and ns ∥ e1/2 , (10.57)
T(s,s′)sym(Ωsym) = P23T(s,s′)(Ωref )P23, if ns′ ∥ e3 and ns ∥ e3 , (10.58)
T(s,s′)sym(Ωsym) = T(s,s′)(Ωref ), otherwise, (10.59)

for the transmission matrix. Equations (10.48)-(10.51) still hold.

Figure 10.6: Symmetry relations in IDT: asymmetric HCC.
A cell may also be completly asymmetric, as in Fig. 10.6. In this event, only directions on the

half sphere are directly computed and stored, the others may be derived by simple reciprocity
relations:

MαCα,β(−Ωd) = [MβCβ,α(Ωd)]
T , (10.60)

MsEs,α(−Ωd) = [MαIα,s(Ωd)]
T , (10.61)

MαIα,s(−Ωd) = [MsEs,α(Ωd)]
T , (10.62)

MsTs,s′(−Ωd) = [Ms′Ts′,s(Ωd)]
T , (10.63)
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Figure 10.7: Reciprocity relations.

Let us provide a proof of Eq. (10.60). Fig. 10.7 depicts a trajectory t ∥ −Ωd, entering the domain
at r′ and exiting at r. x′ is the coordinate along t, with origin at r′ and direction−Ωd. The pointsdelimiting the regions α and β along t have coordinates a′1, a′2, b′1 and b′2, respectively. Due toEq. (4.99), the integrand of the term on the left-hand side of Eq. (10.60) reads as∫ a′2

a′1

e−Σα(x′−a1)Pα(r
′ − x′Ωd)dx

′ ×
∫ b′2

b′1

e−Σβ(b
′
2−x′)Pβ(r

′ − x′Ωd)dx
′. (10.64)

The readerwill notice that the exponential of the sumof the optical path lengths between b′2 and
a′1 (Eq. (4.99)) has been neglected, as this does not change if the trajectory is swept along −Ωdor alongΩd. Let us now consider the integrand of the term on the right hand-side and refer to
the coordinate system with origin at r and direction Ωd, namely x, in Fig. 10.7. If l = ∥r′ − r∥ is
the trajectory length, the integrand ofMβCβ,α(Ωd) reads as∫ l−b′1

l−b′2
e−Σβ(x−(l−b′2))Pβ(r+ xΩd)dx×

∫ l−a′1

l−a′2
e−Σα((l−a′1)−x)Pα(r+ xΩd)dx. (10.65)

By replacing x with x′, where x′ = l − x, one obtains∫ b′2

b′1

e−Σβ(b
′
2−x′)Pβ(r

′ − x′Ωd)dx
′ ×
∫ a′2

a′1

e−Σα(x′−a′1)Pα(r
′ − x′Ωd)dx

′, (10.66)
which is the transposed of Eq. (10.64). Equations (10.61)-(10.63) are derived in a similar way and
are not analysed, for brevity’s sake.

Finally, for 3D transport, a cell may be 1/8th symmetric about the XY plane, but have no
symmetry along Z. An example is provided in Fig. 10.8, where the discretization steps above
and below z = 0 are not specular. In this case, only the coefficients pertaining to the directions
on the grey section of Fig. (10.8) are stored in memory. All the others may be derived, applying
XY symmetry relations.

Symmetry and reciprocity relations allow for a significant saving of CPU time and memory
occupation, which can be reduced by a factor 16, 8 or 2, depending on the geometry dimension-
ality and symmetry properties. Note that, while the use of the prior reciprocity relationsmay be
generalised to any order of expansion, Eqs. (10.46)-(10.59) are specific to LSC and their extension
to parabolic short characteristics is not possible, as illustrated in the upcoming chapter.
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Figure 10.8: Symmetry relations in IDT: asymmetric 3D cell along the z-axis. Symmetry on theXY plane is still verified.

10.5 . CONCLUSION
In this chapter, some mathematical properties of CP coefficients have been illustrated and

applied to optimize the implementation of constant and linear short characteristics in IDT. In
particular, the application of symmetry and reciprocity relations (Sect. 10.4) allows for a major
reduction of memory and CPU time for CP matrices storage and calculation, by a factor 16, 8 or
2, depending on the symmetry properties of the cell. The computational time can be furtherly
mitigated by the combined use of Taylor series development and asymptotic approximation of
exponential-like functions, allowing for the determination of the angular probability matrices,
with unmodified numerical accuracy (Sect. 10.2). Finally, a new set of balance equations has
been derived and applied to CP coefficients V&V (Sect. 10.3), up to double precision. This tool
has also been extended to verify short characteristics up to incomplete parabolic expansion,
as illustrated in Chap. 11.
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11 - INCOMPLETE PARABOLIC SHORT CHARACTERISTICS
11.1 . INTRODUCTION
Methods based on collision probabilities (Sect. 4.6.2), e.g., the method of short characteris-

tics (Sect. 4.6.4), are able to model unstructured geometries and remain finite, when the total
cross section approaches zero. As a result, on the one hand, they are capable of describing sys-
tems with high geometrical complexity and control-rod movements, with no homogenization,
and, on the other hand, to model empty media, in an exact way. On the downside, CP-matrices
are responsible for high memory pressure, particularly the collision matrix, whose size is pro-
portional to the square of the number of regions per cell.

The present chapter focuses on the method of short characteristics and, more specifically,
on its extension up to parabolic order, without including the bilinear terms. The main objective
is to show that such a choice allows for a major reduction of the number of regions, without
degrading the numerical accuracy. For non-symmetric cells, the increase in the memory foot-
print, due to the growth of spatial components, is generally outmatched by the reduction of
computational regions.

Nevertheless, standard incomplete parabolic short characteristics do not verify the sym-
metry relations discussed in Chap. 10, Sect. 10.4. As parabolic-order radial coefficients are not
permutable, a mixed-order approach, employing piece-wise linear distributions for the x and
y-coordinate and incomplete parabolic development along the z-axis, may be preferred. In
this way, one can employ the aforementioned transformations, i.e., Eqs. 10.54-10.59 (Chap. 10),
used for linear short characteristics, to decrease the number of stored directions, and, at the
same time benefit from piece-wise parabolic expansion in z, to coarsen the spatial discretiza-
tion along the vertical axis.

The chapter is structured as follows. First, Sects. 11.2-11.3 provide a theoretical introduction
to incomplete parabolic short characteristic. Then, two numerical tests are proposed, i.e., the
set of 2D 3x3 UOX/MOX patterns illustrated in Sect. 7.6.2 and the 3D Watts Bar benchmark, to
verify the numerical accuracy of PSC, by comparisons with TRIPOLI-4®. After this, a heuristic
proof shows that the symmetry relations described in Sect. 10.4 do not hold for incomplete
parabolic short characteristics (Sect. 11.4.3). Hence, in Sect. 11.5, a hybrid numerical pathway,
using linear piece-wise polynomials on the radial plane and parabolic development in z is pro-
posed for short characteristics, in order to recover the symmetry relations on the radial plane
and, at the same time, reduce the number of regions.

11.2 . THEORY
MOSC is a method based on angular current-coupled collision probabilities (Sect. 4.6.2),

which is able to model anisotropic scattering sources (Sects. 4.3). Short Characteristics gener-
ally assume piece-wise polynomial distributions of the neutron source and interface angular
flux (Sect. 4.6.4). In the present discussion, the polynomial series development is generalized
to parabolic order, without including the bilinear terms. In fact, based on previous studies in
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IDT [69], bilinear short characteristics (BSC) provide little numerical benefit with respect to LSC,
while the memory occupation increases dramatically, i.e., by a factor 4 for 3D BSC.

In order to introduce the method of incomplete parabolic short characteristics (PSC), let us
consider the one-speed integral form of the Boltzmann equation, along a trajectory t ∥ Ωd, ata point r = r−t + ξΩd, namely

ψd(r
−
t + ξΩd) = ψd(r

−
t )e

−τt(ξ,0) +

∫ ξ

0
qd(r

− + ξ′Ωd)e
−τt(ξ,ξ′)dξ′. (11.1)

In Eq. (11.1), τt(ξ, ξ′) = ∫ sξ′ dξ′′ Σ(r−t + ξ′′Ωd) is the optical path length, ξ is the coordinate along
the trajectory and r−t is the hang-point of the trajectory on the incoming surface of the domain.
Given a region α ∈ V and a surface s ∈ ∂V , V being a cell and ∂V its boundary, the neutron
source and interface angular flux are developed as follows,

qd,α(r) =

C∑
c=1

Pα,c(r)qd,α,c = Pα(r) · qd,α, (11.2)

ψd,s(r) =
B∑
b=1

Ps,b(r)ψd,s,b = Ps(r) · ψd,s, (11.3)
in which C = 4 and B = 3 for LSC, whereas C = 7 and B = 5 for PSC. More precisely, provided
that r = [x, y, z]T and r2 = [x2, y2, z2]T denote the first and second order monomials, the
volume and boundary grid basis functions read as

Pα(r) =

 1
r− cα
r2 − d2

α

 , Ps(r) =

 1
r− cs
r2 − d2

s

 , (11.4)

where the volume and surface centroids, cα and cs, and the second order vectors, d2
α and

d2
s , are such that the zero order moments are orthogonal to the first and to the second order

moments, respectively, i.e.,∫
Dα/Γs

d3r (r− cα/s) = 0 ,

∫
Dα/Γs

d3r (r2 − d2
α/s) = 0. (11.5)

As a result, the volume and surface mass matrices (Eq. (4.89)) take the form

Mα = (Pα,Pα) =

1 0T 0T

0 ⟨r− cα, r− cα⟩ ⟨r− cα, r
2 − d2

α⟩
0 ⟨r2 − d2

α, r− cα⟩ ⟨r2 − d2
α, r

2 − d2
α⟩

 , (11.6)

Ms = ⟨Ps,Ps⟩ =

1 0T 0T

0 ⟨r− cs, r− cs⟩ ⟨r− cs, r
2 − d2

s⟩
0 ⟨r2 − d2

s, r− cs⟩ ⟨r2 − d2
s, r

2 − d2
s⟩

 , (11.7)
with

(v,wα) =

∫
Dα

v wT
αd

3r, (11.8)
⟨v,ws⟩ =

∮
Γs

v wT
s d

3r, (11.9)
0 = [0, 0, 0]T . (11.10)
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This implies that the zero order moment coincides with the average value. The polynomial
basis is decomposed as

Pα(r) = Bα(r
−,Ω)L(l), (11.11)

where
Bα(r

−,Ω) =

 1 0 0
r− − cα Ω 0

(r−)2 − d2
α 2r− ∗Ω Ω2

 , L(l) =
1l
l2

 . (11.12)

with ∗ being the Hadamard product andΩ2 = [Ω2
1,Ω

2
2,Ω

2
3]
T . In order to determine the angular

probability matrices, we resort to Eqs. (10.4)-(10.6), where

F̂(τ+, τ−) =

F̂0(τ
+, τ−)

F̂1(τ
+, τ−)

F̂2(τ
+, τ−)

 , (11.13)

Ĝ(τ+, τ−) =

Ĝ0(τ
+, τ−)

Ĝ1(τ
+, τ−)

Ĝ2(τ
+, τ−)

 , (11.14)

Ĥ(τ+, τ−) =

Ĥ0,0(τ
+, τ−) Ĥ0,1(τ

+, τ−) Ĥ0,2(τ
+, τ−)

Ĥ1,0(τ
+, τ−) Ĥ1,1(τ

+, τ−) Ĥ1,2(τ
+, τ−)

Ĥ2,0(τ
+, τ−) Ĥ2,1(τ

+, τ−) Ĥ2,2(τ
+, τ−)

 . (11.15)

As for CSC and LSC, the CP matrices can be verified up to double precision, for all degrees
of freedom, by extending Eqs. (10.44)-(10.45) to PSC. With respect to Sect. 10.3, it is enough
to redefine the monomial basis as B = [1, r, r2]T , and the polynomial bases as indicated in
Eq. (11.4). The generalisation to PSC is straightforward.

11.3 . REMARKS
The motivations for PSC are multiple, and comprise the possibility to lower the number

of computational regions, while retaining high numerical accuracy, and also to facilitate users’
work, as the HCC inner discretization can be greatly coarsened and simplified.

As mentioned in Chaps. 9-10, short characteristics are affected by large memory pressure,
due to the size of the angular probability matrices. More specifically, the dimensions of the CP
matrices, for one HCC, energy group and angular direction, depend on the spatial discretization
and the expansion order, as indicated in Tab. 11.1, where Nr and Ns represent the number
of regions within a cell, V , and the number of surfaces on its boundary, ∂V , respectively. In
real problems, the array that is responsible for the largest memory occupation is the collision
matrix. As the number of volume moments raises from 4 to 7, from LSC to PSC, the idea is
to lower the number of computational regions by half. This choice is also supported by the
mathematical shape of the neutron flux in the fuel pins and along the z-axis and is extensively
tested in Sect. 11.4.

11.4 . NUMERICAL TESTS
In the following, the numerical accuracy of PSC is tested, by comparisons with TRIPOLI-4®,

[105]. The presented analysis also proposes a comparison between PSC and LSC, showing that
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Matrix Discretization ComponentsCollision ∝ N2
r ∝ C2

Incoming ∝ Nr ·Ns ∝ C ·BEscape ∝ Ns ·Nr ∝ B · CTransmission ∝ N2
s ∝ B2

Table 11.1: Size of the CPmatrices, given 1 HCC, 1 energy group and 1 discrete direction:
Nr and Ns denote the number of regions and the number of surfaces for the consid-ered cell, while C and B indicate the number of volume and surface components ofthe polynomial series expansion.
the former attains a precision of the same order as the latter, despite the significant reduction
in the number of regions.

11.4.1 . Numerical Accuracy of PSC - 2D 3x3 UOX/MOX patterns
The first benchmark is the set of 2D 3x3 UOX/MOX patterns illustrated in Sect. 7.6.2. In

order for PSC to be of any practical interest, the spatial mesh has to be reduced to the strict
minimum. Hence, the number of regions in a cell is set equal to the number of cylinders + 1.
The solid angle is discretized into 32directions per octant, byS16,8 Chebyshev-Legendre productquadrature. The cell boundary is subdivided into Nsub,x = Nsub,y = Nsub equal-sized surfacesper HCC side. The cross section library contains 281 energy groups and P3 scattering matrices.
PSC is compared to TRIPOLI-4® continuous-energy Monte Carlo, for Nsub = 1, 2, 3, 4, in terms
of multigroup scalar flux per SSH material. This choice entails relatively large errors, as there
are no compensations due to the fine energy grid (Sect. 7.6.2). Fig. 11.1 displays the RMS relative
error (%) per SSH material and the relative error (pcm) on keff . For the sake of conciseness,the former pertains the sole UOX-AIC case, but similar results are observed for the whole set
of UOX/MOX patterns. One can observe that the lines corresponding toNsub = 3 andNsub = 4

tend to overlap.

Figure 11.1: PSC IDT, withNsub = 1, 2, 3, 4, vs TRIPOLI-4® continuous-energyMonte Carlo: on theleft-hand side, the RMS relative error, computed over 281 energy groups, per SSH material, forthe UOX-AIC benchmark; on the right-hand side, the relative error on the fundamental eigen-value, for the ensemble of test cases. The curves pertaining to Nsub = 3 and Nsub = 4 tend tosuperimpose.
Thus, in the following, the number of surfaces per side is set to Nsub = 3, for PSC. Tab. 11.2

compares the total number of regions applied to PSC and LSC, where LSC is discretized as in
Sect. 7.6.2, for the whole set of UOX/MOX patterns. Let us compare PSC and LSC to TRIPOLI-
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4®, in terms of average RMS relative error (%) per material type (Figs. 11.2-11.3). For the sake of
completeness, CSC and step-MOC (APOLLO3®-TDT) are also displayed. All simulations show

Model AIC Hf GT Gd B4CLSC 128/161 128 164 109 128PSC 65 65 59 70 65

Table 11.2: LSC vs PSC: total number of regions for each UOX/MOX pattern. For LSC,UOX-AIC andMOX-AIC do not share the samemesh. In this case, the number of regionsis indicated separately as UOX/MOX.

Figure 11.2: Comparisonwith TRIPOLI-4® continuous-energyMonte Carlo: average RMS relativeerror on the scalar flux, for each material type, computed over 281 energy groups.
similar numerical accuracy. As in Sect. 7.6.2, large errors are observed in the energy spectrum
(Fig. 11.4), due to the Self-Shielding model.
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Figure 11.3: Comparisonwith TRIPOLI-4® continuous-energyMonte Carlo: average RMS relativeerror on the scalar flux, for each material type, computed over 281 energy groups.

Figure 11.4: UOX-Hf benchmark - PSC vs TRIPOLI-4® continuous-energy Monte Carlo: relativeerror on the multigroup scalar flux, for the Hf-rod innermost ring.

Such a result, which may appear disappointing at first glance, requires a more careful
reading. First of all, it is worth noting again that comparisons with continuous-energy Monte
Carlo are usually conducted on few-group reaction rates, rather than on the multigroup scalar
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flux. 9 Then, as mentioned, in all cases, IDT shows numerical accuracy of the same order as
APOLLO3®-TDT Step MOC. It is worth reiterating that both IDT and APOLLO3®-TDT Step MOC
use the same self-shielding model, number of groups (G = 281) and PN development of the
scattering cross section (N = 3). Therefore, in order to conduct a more fair analysis, a direct
comparison with TDT Step MOC, which represents the golden standard for French industry lat-
tice calculations, is proposed. For the sake of brevity, let us focus our attention on a single case
study, that is the one with UOX fuel and AIC control rod. Figure 11.5 compares the prior CSC, LSC
and PSC calculations to APOLLO3®-TDT, in terms of RMS relative error (%), on the multigroup
scalar flux, per self-shielding region. According to Fig. 11.5, CSC, LSC and PSC show excellent

Figure 11.5: RMS relative error on the multigroup scalar flux per self-shielding region, with re-spect to APOLLO3®-TDT Step MOC.
agreement with TDT, with RMS < 1%, everywhere, except for the three innermost rings of the
AIC control rod. Nevertheless, one should notice that CSC, LSC and especially PSC outperform
TDT Step MOC, in these specific regions, as depicted in Fig. 11.6, comparing IDT CSC, LSC and
PSC and TDT Step MOC to TRIPOLI-4®continuous-energy Monte Carlo.

However, regardless of the particular calculation, it is worth observing that the total multi-
group cross section of the first AIC ring can reach values up to approximately 460 cm−1 (g = 190)
and 175 cm−1 (g = 222), which would require a mesh of the order of 0.01 mm (Fig. 11.7). It is
clear that such a level of detail is beyond the modeling capabilities of any code. For the sake
of completeness, let us also show the relative error with respect to TRIPOLI-4® of both IDT
PSC and APOLLO3®-TDT Step MOC, for the innermost AIC ring, as a function of energy. The
largest errors are observed at the cross-section resonances, as it can be seen by cross-checking
Figs. 11.7-11.8.

Figures 11.9-11.10 provide the relative error (pcm) on the fundamental eigenvalue, for the
entire set of deterministic simulations. Finally, LSC and PSC are compared, in terms of total
memory imprint of the angular probability matrices and total CPU time on one thread. It is im-

9The choice to draw comparisons in terms of mulitgroup scalar flux, which may rightly appear un-orthodox, is due to the availability of data at the time the study was performed.
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Figure 11.6: RMS relative error on the multigroup scalar flux within the three innermost ringsof the control rod, for the UOX-AIC case, with respect to TRIPOLI-4® continuous-energy MonteCarlo.

Figure 11.7: Self-shielded total macroscopic cross section of AIC (Ag-In-Cd), within the innermostring of the control rod, for the 2D 3x3 UOX-AIC benchmark.

portant tomention that the displayed values refer to calculations applying only reciprocity rela-
tions to soften the memory occupation and computational time of the CP matrices (Sect.10.4).
Hence, the only parameters affecting their size are the spatial mesh and the expansion order
(Sect. 11.3). If HCC symmetry properties are not taken into account for probability coefficients
evaluation, PSC tends to outperform LSC, due to the coarser spatial grid. In Sect. 11.4.3, we
prove that IDT symmetry transformations cannot be applied to PSC, as radial x2/y2-coefficients
cannot be swapped.
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Figure 11.8: UOX-AIC benchmark - PSC and Step MOC vs TRIPOLI-4® continuous-energy MonteCarlo: relative error on the multigroup scalar flux, for the AIC-rod innermost ring.

Figure 11.9: Relative error on the fundamental eigenvalue, with respect to TRIPOLI-4® continuous-energy Monte Carlo.

Figure 11.10: PSC vs LSC: total memory footprint of the angular probability matrices and sim-ulation runtime on one thread, provided that only the reciprocity relations are applied. Thememory imprint is reduced by 20− 30%, from LSC to PSC.
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11.4.2 . Numerical Accuracy of PSC - 3D Watts Bar Benchmark
The present study is based on a 17x17 3D lattice +water blades, which takes inspiration from

one of the problems in the suite of the VERA benchmark, with Pyrex control rods and UOX fuel,
[106]. Some structural components, including the bottom and top nozzles, the lower and up-
per core plates, and the fuel plenum are neglected. The total height is adjusted to 399.662 cm,
which comprise lower and upper axial reflectors, measuring 16.951 cm each, and homogenized
spacer grids in inconel (NNiFeCr = 1, from 16.951 to 20.817 cm) and zyrcaloy (NZr = 6, of equal
size, the first one from 78.295 to 82.105 cm, spaced one from the other by 48.39 cm). The radial
geometry is illustrated in Fig 11.11b. Fig. 11.11a depicts an axial slice of the active part of the core.
The figure is obtained by Wolfram Mathematica, by means of a script automatically generated
by IDT.

(a) 17x17 UOX/Pyrex lattice:Axial slice between 100 and 105 cm.Figure generated by IDT.
(b) UOX/Pyrex radial geometry: 1/8th symmetry.Legend: c/p = fuel, tg = guide tube, py = pyrex, lv/lc= water blade.

Figure 11.11: 3D Watts Bar benchmark.
IDT uses fine-structure self-shielded cross sections, with 281 energy groups and P1 scatter-ing. Two simulations, based on PSC and LSC, respectively, are compared to the Monte Carlo

reference, in terms of fission integral, on a 17× 17× 40 output grid (σMC < 1%). Both PSC and
LSC use 19×19×80 = 28880HCCs, with 3×3×2 surfaces per cell. The solid angle is discretized
by S8 Level-Symmetric angular quadrature.

Figure 11.12 compares LSC (on the left-hand side) and PSC (on the right-hand side) with the
Monte Carlo reference, displaying the axial shape of the fission integral distribution and its
relative error (%), for a single fuel rod (more precisely, the one located at position x = 10, y = 9).
In order to compare IDT and TRIPOLI-4®, the fission integral of each fuel rod is normalized
to 1. Table 11.3 compares LSC and PSC, in terms of number of regions, relative error on the
fundamental eigenvalue, maximum local integral fission error (%) and average RMS relative
error (%).

In order to reduce the computational time, IDT resorts toDDM, [75], with hybridMPI/OpenMP
parallelism, over 2× 2× 80 subdomains. With 5MPI processes of 64 threads each, for LSC, the
CPU amounts to 6 h, whereas, for PSC, this is 4 times longer, since symmetry relations available
in IDT do not hold for the parabolic order, as detailed in Sect. 11.4.3.
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Figure 11.12: LSC (on the left hand side) vs PSC (on the right hand side): fission integral dis-tribution along the z-axis (IDT in red, TRIPOLI-4® in blue) and relative error with respect toTRIPOLI-4®, for the fuel rod located in position x = 10, y = 9.
Spatial Nb. of Mean nb. of Relative error Max AverageApproximation Regions Regions per cell on keff (pcm) Error (%) RMS (%)LSC 571073 19.78 83 3.51 0.73PSC 298699 10.35 94 3.36 1.

Table 11.3: LSC vs PSC: number of computational regions and numerical accuracy. Thereference is provided by TRIPOLI-4® continuous-energy Monte Carlo.
11.4.3 . Use of Symmetry Relations

IDT relies on HCC symmetry properties to ease the memory pressure and computational
time of the angular probability matrices, by reducing the number of stored directions, as dis-
cussed in Sect. 10.4. Let us show that the symmetry relations described by Eqs. (10.46)-(10.59)

Figure 11.13: Symmetry relations in IDT: on the left hand side, a heterogeneous cell with 1/8thsymmetry, while, in the middle and on the right hand side, a homogeneous square cell, withunitary side length, illuminated by directionΩref oriented along the diagonal and by direction
Ω⊥, respectively.
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do not hold for PSC, by means of a heuristic proof. For the sake of simplicity, let us consider
a homogeneous square cell, with unit cross section and side length, illuminated by direction
Ωref ∈ S2 in the first octant, S2 being the angular quadrature formula, and with 1 surface per
cell side (Fig. 10.5.b). The transmission matrix from surface S to E, namely TE,S(Ωref ), where
S and E indicate the southern and eastern side of the square, reads as

TE,S(Ωref ) = M−1

∫ 1

0
dx e−y

√
3

 1

y − 1
2

y2 − 1
3

[1 x− 1
2 x2 − 1

3

]
, (11.16)

whereM is the surface mass matrix of side E. As x = 1− y (Fig. 11.13.b), Eq. (11.16) becomes

TE,S(Ωref ) = M−1

∫ 1

0
dy e−y

√
3


1 1

2 − y y2 − 2y + 2
3

y − 1
2 −(y − 1

2)
2 (y − 1

2)(y
2 − 2y + 2

3)

y2 − 1
3 (y2 − 1

3)(
1
2 − y) (y2 − 1

3)(y
2 − 2y + 2

3)

 . (11.17)

Let us now consider the direction Ω⊥ ⊥ Ωref and the transmission matrix from surface S to
W , namely TW,S(Ω⊥), whereW indicates the western side (Fig. 11.13.c). One can easily prove
that the surface mass matrix has not changed. Hence, the transmission matrix is given by

TW,S(Ω⊥) = M−1

∫ 1

0
dx e−y

√
3

 1

y − 1
2

y2 − 1
3

[1 x− 1
2 x2 − 1

3

]
. (11.18)

As x = y (Fig. 10.5.c), one obtains

TW,S(Ω⊥) = M−1

∫ 1

0
dy e−y

√
3


1 y − 1

2 y2 − 1
3

y − 1
2 (y − 1

2)
2 (y − 1

2)(y
2 − 1

3)

y2 − 1
3 (y2 − 1

3)(y −
1
2) (y2 − 1

3)(y
2 − 1

3)

 . (11.19)

One can notice that Eqs. (11.17)-(11.19) satisfy Eqs. (10.47)-(10.51) only up to linear order. In fact,
the terms introduced by PSC are sensitive to the change of variable, making the generalization
of the prior symmetry relations not possible for parabolic short characteristics. Similar consid-
erations apply to the other angular probability matrices. This problem has not been resolved
yet and will be addressed in the near future.

11.5 . MIXED-ORDER SHORT CHARACTERISTICS
Although PSC allows for a major reduction of the number of regions (Sects. 11.4.1-11.4.2), IDT

is not equipped, at the time being, with a set of symmetry relations that permit decreasing
the memory requirements of the second-order probability coefficients. Nevertheless, starting
from PSC, a hybrid approach may be tested, based on linear-order expansions on the radial
plane and parabolic development along the z-axis (HSC). More precisely, the polynomial bases
may be set equal to

Pα(r) = [1, r− cα, z
2 − d2α,z]T , (11.20)

Ps(r) = [1, r− cs]
T ,ns · ez = 0, (11.21)

Ps(r) = [1, r− cs, z
2 − d2s,z]T ,ns · ez = ±1. (11.22)
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The reason is twofold: on the one hand, the possibility to recover transformations (10.46)-(10.59)
on the radial plane, as linear components may be swapped, and, on the other, the possibility
to coarsen the axial mesh, and thus the memory imprint of the angular coefficients, thanks
to the additional parabolic term along the z-axis. This approach has been investigated within
the frame of PSC, by setting the second-order x/y coefficients equal to zero. Note that the
memory imprint is lowered by a factor 8, as only directions with φ ∈ [0, π4 ] and θ ∈ [− π

2 ,
π
2

] are
stored, φ and θ being the azimuthal and polar angle, respectively (Fig. 10.8). In the following, a
comparison between HSC and LSC is proposed, in terms of number of regions and numerical
accuracy, for the C5G7 benchmark, [29].

11.5.1 . Numerical Accuracy of HSC - 3D C5G7 Benchmark
The present analysis compares HSC and LSC for the Rodded A, Rodded B and Unrodded

configurations of the C5G7 benchmark (Sect. 7.6.1 and Sect. 8.3). The outer grid comprises
51×51×9HCCs, of 7.14 cm each along the z-axis. Each HCC is equipped with a number of inner
z-planes, depending on the expansion order and the physical discontinuities of the benchmark.
The total number of regions is about 6.3 · 104, for LSC, and 3.9 · 104, for HSC. Each cell boundary
is subdivided into 3× 3× 4 surfaces. The angle is discretized by a S8 Level-Symmetric angular
quadrature formula.

Tab. 11.4 provides the minimum, maximum and RMS relative errors on the power distribu-
tion of LSC and HSC, with respect to the MCNP code, [83], for each configuration of the C5G7
benchmark. The maximum reactivity errors amount to 31 pcm (Unrodded case) for HSC and
25 pcm (Rodded B case) for LSC. By using DDM, over 10×10×9 subdomains, with 15 processes
of 64 threads each, the CPU time is reduced to about 7minutes for LSC. For HSC, a reliable esti-
mate of the simulation time is not available yet, due to the calculation of unnecessarymoments,
as mentioned in Sect. 11.5.

Error HSC (LSC) / A - Layer 1 HSC (LSC) / A - Layer 2 HSC (LSC) / A - Layer 3
Min (%) −1, 283 (−1, 227) −1, 217 (−1, 203) −1, 137 (−1, 326)
Max (%) 0, 615 (0, 662) 0, 629 (0, 669) 1, 316 (1, 213)

RMS (%) 0, 313 (0, 296) 0, 322 (0, 322) 0, 474 (0, 449)

Error HSC (LSC) / B - Layer 1 HSC (LSC) / B - Layer 2 HSC (LSC) / B - Layer 3
Min (%) −1, 408 (−1, 365) −1, 295 (−1, 305) −1, 642 (−1, 883)
Max (%) 0, 643 (0, 688) 1, 211 (1, 158) 1, 641 (1, 571)

RMS (%) 0, 404 (0, 387) 0, 446 (0, 433) 0, 596 (0, 608)

Error HSC (LSC) / U - Layer 1 HSC (LSC) / U - Layer 2 HSC (LSC) / U - Layer 3
Min (%) −1, 011 (−0, 983) −1, 244 (−1, 217) −1, 538 (−1, 725)
Max (%) 0, 61 (0, 644) 0, 75 (0, 759) 1, 033 (0, 904)

RMS (%) 0, 292 (0, 287) 0, 3 (0, 298) 0, 35 (0, 397)

Table 11.4: Rodded A (= A), Rodded B (= B) and Unrodded (= U) configurations.
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11.6 . CONCLUSIONS
This chapter has introduced themethodof incomplete parabolic short characteristics, show-

ing encouraging preliminary results. Despite the significant decrease in the number of compu-
tational regions, the total memory imprint of the angular probability matrices is still larger than
linear characteristics. New symmetry relations have to be constructed, in order for PSC to be
competitive with LSC. In the meantime, a hybrid linear/parabolic approach has been tested,
showing a numerical accuracy of the same order as LSC and lowering the memory imprint by a
factor 4, with respect to PSC. In the near future, this mixed-order method will be implemented
in IDT, in order to optimize the CPU time, numerical accuracy and memory occupation.
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Part IV
MULTIPHYSICS ITERATIONS IN IDT
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12 - NEUTRONICS/THERMAL-HYDRAULICS COUPLING
12.1 . LIAISON AND OBJECTIVES
In Chaps. 7-11, the major limits of the past version of IDT have been addressed, providing

a new short-characteristics solver, which is able to treat a larger set of geometries, with in-
creased numerical accuracy and lower memory requirements. Applications of IDT both to two-
dimensional and three-dimensional patterns or assemblies have been discussed in Sects. 7.6.1,
7.6.2, 7.7.2, 8.5, 9.4.1, 9.4.2, 11.4.1, 11.4.2, where comparisonswith TRIPOLI-4®andAPOLLO3® ha-
ve been drawn for code validation. In this chapter, the use of IDT for detailed neutron trans-
port, on ’quasi-industrial’ real-sized 3D calculations, is proposed, including, for the time being,
the sole thermal feedback. More specifically, the final scope is to outline a novel numerical
pathway, using IDT, together with THEDI (App. A), for coupled neutronics/thermal-hydraulics
simulations, in exact 3D geometry, with no cross-section homogenization.

12.2 . INTRODUCTION
A fission reactor is a multiphysics system, involving several coupled problems, including

neutron transport, thermal-hydraulics, fuel-to-coolant heat transfer, thermal-mechanics and
corrosion, to name a few. The detailed modelling of every physical process, by a dedicated
high-fidelity solver, may require large computational resources. Often, only a subset of phys-
ical problems is taken into account, to analyse their interdependencies, thus neglecting the
effect of the other processes. In this respect, fission reactor physicists usually focus on neu-
tronics, thermal-hydraulics and fuel-to-coolant heat transfer, due to their strong mutual ex-
changes, in terms of generated nuclear power and subsequent temperature feedback on the
neutron cross-sections. From this standpoint, priority may be given to neutronics (later abbre-
viated as N), which is solved by fine multigroup neutron transport, whereas thermal-hydraulics
and heat transfer (hereinafter referred to as thermal-hydraulics or TH, for brevity’s sake) are
approached by a simplifiedmodel, based on a set of assumptions, to reduce the overall compu-
tational cost.10 Such an objective may be pursued by two opposite strategies, namely the serial
integration and the parallel processing coupling [107]. The former consists in implementing
(ex novo) a TH module into the neutron transport code, and, as such, may be less convenient.
Conversely, the other approach typically requires minor programming efforts, as merely per-
forming data exchange from one code to another.

State-of-the-art reactor core calculation schemes generally implement N/TH parallel pro-
cessing coupling. Despite the increased availability of computational resources, two-step tech-
niques are still preferred to 3D direct transport (Sect. 5.2-5.3), as less computationally expen-
sive. As mentioned in Chap. 5, the standard two-step approach uses deterministic transport
to generate lattice-homogenized few-group cross-section libraries, to be employed in 3D nodal
diffusionor simplified transport. At the timebeing, the two-step strategy is themostwidespread
technique for reactor calculations.

10The opposite may also apply, depending on the application domain. For instance, THEDI [77] andCATHARE [108] are equipped with a simplified neutron transport model, based on point kinetics.
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Notwithstanding the unquestionedmerits of conventional two-step schemes and their role
in current industrial simulations, some limitations may be pointed out:
• The lattice calculation is generally conducted under the assumption of axially infinite as-
semblies, which may be a poor approximation, as in the case of sodium-cooled fast re-
actors, since they exhibit strong heterogeneities along the z-axis [109];

• Along the lattice calculation, assemblies are assumed to be periodically infinite arrays,
thus requiring artificial critical-leakage models to force the eigenvalue to converge to 1

(Sect. 5.2.1);
• The two-step approach is based on dimensionality reduction. The idea is to generate,
by means of lattice calculations, homogenized cross sections, to feed into the core sim-
ulation. This, in turn, provides the neutron flux and reaction rate distributions over the
whole reactor. Generally, flux-weighted cross sections from the first step are not able to
reproduce accurate reaction rate distributions, showing poor agreement with the refer-
ence solution. For this reason, an intermediate step, based on equivalence theory, with
superhomogénéisation (SPH) or flux discontinuity ratios, may be necessary to improve
the results [110];

• Homogenized cross sections depend not only on the whole set of parameters (Sect. 5.2),
but also on the neutron flux, and, as a consequence, on the whole behaviour of the re-
actor (Sect. 1).

In this chapter, a new simulation pathway is proposed, for coupled N/TH calculations, imple-
menting no dimensionality reduction, in exact 3D heterogeneous core geometry. As discussed
in Sect. 12.3-12.4, cross-sections do not undergo flux-weighting homogenization. As a result,
they show milder dependence on the physical parameters (Sect. 12.4.2-12.4.3) and may be eas-
ily interpolated, for each reactor state. In order to perform multiphysics simulations, the ther-
mal feedback is included within the outer iteration loop, where the TH field is provided by an
external code (THEDI, App. A). Priority is given to the neutronic calculation, which is solved by
multigroup discrete-ordinates neutron transport, where MOSC is applied onto heterogeneous
Cartesian nodes (IDT). This generates a pin-by-pin power-map (Sect. 12.5) that is provided to the
TH solver, which, in turn, calculates the temperature and density distribution, under simplified
modelling assumptions. These include independent stationary TH sub-channels, exchanging
neither heat nor mass, under monophasic flow conditions (App. A). A dedicated python script
allows for the exchange of data (12.7.14), between IDT and THEDI, and updates the input file,
for microscopic cross-section interpolation. The latter is performed by a capability of XSTOOL,
which generates ASCII files, containing the nuclear data for IDT usage. Multigroup iterations
allow to update the transport spectrum, where Neumann iterations are used to treat cross-
section variations (Sect. 9.2), due to Doppler broadening and volume dilation. The transport
solution is used to construct a synthetic operator, based on 3D CMFD diffusion, with fewer en-
ergy groups and homogenized pin-cells (Sect. 4.7.2). The resulting eigenpair permits to update
the eigenvalue and renormalize the angular flux distribution. In this framework, differently
from standard two-step calculations, no critical-leakage model is needed to account for fuel-
assemblies finite size.

The chapter is structured as follows. First, a brief introduction is proposed on effective
macroscopic cross section generation (Sect. 12.3). In this context, an approach purely based on
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microscopic cross-section interpolation, with noprior homogenization, is discussed (Sect. 12.3.4).
The presented strategy is supported by a comprehensive study, showing the dependence of the
parametric cross-section library on burn-up and fuel temperature (Sect. 12.4). In Sect. 12.7, the
practical algorithm allowing for coupled N/TH simulations is analysed in detail. Finally, results
are presented in Sect. 12.8.

12.3 . EFFECTIVE MACROSCOPIC CROSS-SECTION GENERATION
12.3.1 . Multigroup approximation and self-shielding

Asmentioned in Sect. 4.4, all deterministic methods integrate the Boltzmann equation over
energy intervals of finite length (i.e., the energy groups). The transport problem transforms as
in Eq. (4.29), where

Σg(r,Ω) =

∫
g Σ(r, E)ψ(r,Ω, E)dE∫

g ψ(r,Ω, E)dE
, g = 1, ..., G (12.1)

defines the multigroup cross section, depending on all phase-space variables, including the
neutron direction, which is later neglected. Note that this artificial quantity depends on the
angular flux, i.e., the solution of the Boltzmann equation, which is unknown. Equation (12.1) is
approached by subdividing the multigroup microscopic cross sections in two categories:
• The non-resonant (or infinite-dilution) cross sections, namely

σg,∞j =

∫
g σj(u)w(u)du∫

g w(u)du
, (12.2)

where j indicates a nuclear isotope and w is an optimal weight, generally defined as a
representative spectrum of the whole reactor. u = ln(E0

E ) denotes the neutron lethargy,
with E and E0 being the neutron energy and the maximum energy of the neutron spec-
trum, respectively. This formula applies to all light isotopes, as their resonances appear
at energies E > E0. Note that Eq. (12.2) is independent of the position.

• The resonant cross section, namely
σg,ej =

∫
g

∫
De
σj(r, u)ψ̂(r, u)d

3r du∫
g

∫
De
ψ̂(r, u)d3r du

, (12.3)
where ψ̂(r, u) is an approximate solution of Eq. (4.29). The spatial variable is somehow
retained, as σg,ej is region-dependent. The evaluation of ψ̂(r, u) is addressed by approxi-
mate transport models, defining the so-called Self-Shielding (SSH) calculation, where the
geometry is generally collapsed into one or two dimensions and neutron physics is sim-
plified. Cross sections defined by Eq. (12.3) are therefore also referred to as effective
or self-shielded cross sections, whose determination requires quadrature formulas, as
detailed in [111]. In the following, the effective microscopic cross sections are expressed
as

σg,ej = µe,gj σg,∞j , (12.4)
where µe,gj , g = 1, ..., G, represent the self-shielding factors.

The ensemble of approximations introduced by the Self-Shielding models represents an
inherent limitation common to all deterministic simulations, affecting the accuracy of the final
numerical output.
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12.3.2 . Thermal feedback
Macroscopic cross sections are temperature-dependent quantities through
• Mass density variation, induced by a change of temperature, which, in turn, affects the
average number of nuclides per unit volume;

• Thermal agitation, which causes an apparent change in the resonant cross section of a
neutron, due to the relative motion between the projectile (i.e., the neutron itself) and
the target nucleus. This phenomenon goes under the name of Doppler effect and is
responsible for a change in the shape of a resonance, which tends to broaden if the
temperature increases, while lowering its maximum value.

As mentioned in Sect. 12.3.1, light isotopes, such as the hydrogen and oxygen, show resonances
only at energies of the order of few MeV. Hence, from a practical standpoint, the modera-
tor/coolant of LWRs, i.e., water, is not impacted by the Doppler effect. On the contrary, the
change in density caused by a temperature variation generally has a significant effect on mod-
erator macroscopic cross sections and, as a consequence, on the reactivity of the multiplying
system.

Conversely, nuclear fuel is generally less sensitive to density variations, the change in the
macroscopic cross sections being mostly due to Doppler broadening. This introduces a nega-
tive feedback, in case of temperature increase, which lowers the reactivity of the reactor.

12.3.3 . Standard two-step reactor calculations
As illustrated in Sect. 5.2, industrial reactor core calculations are generally conducted in two

steps. First, detailed neutron transport is computed on a set of fuel-assembly types, under re-
flective boundary conditions. As steady-state reactors, with negligible neutron sources, are crit-
ical, every fuel-assembly is furtherly processed, by applying a critical leakagemodel (Sect. 5.2.1),
until convergence (i.e., keff = 1). Note that the flux calculation requires Eq. (12.2) and Eq. (12.3),
which are respectively provided by an infinite-dilution nuclear database and SSH cross-section
libraries. The calculation is repeated for a variety of state-points, pn, n = 1, ..., Nstates, eachcorresponding to a set of physical parameters, namely

p = {Tf , Tw, ρw, F/Aconf , CB, BU, t}, (12.5)
where
• Tf is the fuel temperature;
• Tw is the moderator temperature;
• ρw is the moderator mass density;
• F/Aconf indicates the fuel-assembly configuration (e.g., rodded/unrodded);
• CB denotes the boron concentration;
• BU represents the burn-up;
• t is the time.
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The lattice calculation generates a library of homogenized and condensed cross sections, de-
pending on the aforementioned parameters, which synthesize the behaviour of the reactor
under several operating conditions. In the second step (Sect. 5.2.2), the reactor core is cal-
culated by few-group 3D diffusion or simplified transport, using the parametric cross-section
library, which is interpolated, in order to meet the actual state of the core.

Standard two-step simulations are affected by a number limitations. In particular,
• Neutron currents between fuel-assemblies are neglected. In order to account for the crit-
icality condition, while preserving specular reflection on the boundary, an approximate
model is introduced, with simplified neutron flux distribution (Eq. 5.1);

• The output of the lattice calculation is a homogenized parametric library, where the cross-
sections encompass the whole reactor behaviour, under a wide variety of operating con-
ditions. Cross sections feeding the core calculation are thus affected by an intrinsic error,
of difficult estimation.
12.3.4 . Advanced two-step reactor calculations

Analternative to the standard two-step approach consists in interpolating the infinite-dilution
and the self-shielded cross sections, without resorting to spatial homogenization beforehand.
By neglecting the energy group index, one has

σ∞j (T ) =
∑
k

f(T ;Tk)σ
∞
j (Tk), (12.6)

σej (T,p) =
∑
l,n

g(T,p;Tl,pn)σ
e
j (Tl,pn), (12.7)

where
• Tk is a temperature point in the external reference library;
• Tl and pn are respectively a temperature and a state point in the parametric library of
self-shielding factors, µej(Tl,pn);

• f(T ;Tk) is a linear-tent interpolating function for the temperature point Tk, defined as

f(T ;Tk) =



T−Tk−1

Tk−Tk−1
, T ∈ [Tk−1, Tk],

Tk+1−T
Tk+1−Tk , T ∈ [Tk, Tk+1],

0, otherwise;

(12.8)

• g(T,p;Tl,pn) is the interpolating function for the temperature Tl and the state point pn,generally defined as

g(T,p;Tl,pn) =


1, T = Tl and p = pn,

0, T = Tl′ ̸=l or p = pn′ ̸=n;

(12.9)

whose expression is indicated in Sect. 12.3.5.
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• σej (Tl,pn) = µej(Tl,pn)σ
∞
j (Tl), where σ∞j (Tl) is interpolated as in Eq. (12.6).

Note that the self-shielding factors are not directly interpolated. Themacroscopic cross-section
library for the mediumm is obtained as follows:

Σm = Σ∞
m +Σem =

∑
j∈m∞

cjσ
∞
j (T ) +

∑
j∈me

cjσ
e
j (T,p), (12.10)

where the first and second term account for the infinite-dilution and the resonant isotopes,
respectively.

In the present work, the interpolation of the cross section and the generation of the para-
metric library are performedby XSTOOL, ofwhich a brief introduction is proposed in Sect. 12.3.5.

12.3.5 . A brief introduction to XSTOOL
XSTOOL (Cross-Section Tool) is a mixed C++/FORTRAN software performing cross-section in-

terpolation (and condensation, if required) and providing multigroup effective cross-section li-
braries, which can be used in production codes, as IDT. It resorts to a capability of APOLLO3® to
generate, at each burn-up step of a lattice calculation, a snapshot of the shelf-shielded cross
sections, material flux distributions and concentrations, for all resonant isotopes of the simu-
lation. These data are written and stored in a compressed form over a hierarchical HDF file, at
the reference energy mesh, composed by 281 or 363 energy groups.

This file, namely the External Parametric Library of Self-Shielding Factors (EPL-SSF), is
provided by APOLLO3®, using a command, namely WriteExternalLibrary, developed in this
work. The hierarchical structure of the EPL-SSF file is represented schematically in Fig. 12.1.
This organization in a single data-base is designed in a way that allows easy access to the self-
shielding factors µ, stored at each state-point calculation.

The foreseen applications of the EPL-SSF file are as follows:
• Multi-physics simulations, with the neutron/photon transport equation receiving the
thermal-hydraulic feedback on cross sections, for critical-boron or time-dependent cal-
culations, performed by a deterministic solver;

• Radiation shielding simulations,
– as built-in neutron multigroup cross-section library for IDT, in the framework of the
TRIPOLI-4® CADIS variance-reduction technique;

– as built-in neutron multigroup cross-section library for forward and adjoint stand-
alone deterministic simulations;

• Storage of concentrations, flux and self-shielding factors, for reference reaction rates
reconstruction, at any state-point within APOLLO3®;

• Restart of an APOLLO3® simulation, with already-stored self-shielded cross sections,
isotopic concentrations and flux per medium;

• Re-homogenization of perturbed configurations, with already-stored nominal flux.
The objectives of the EPL-SSF file are as follows:
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Figure 12.1: Hierarchical structure of the External Parametric Library of Self-Shielding Factors(EPL-SSF) (in the figure, UDM is an acronym for the User Data Model of APOLLO3®).
• The construction of a parameterized data-base of physical self-shielding factors, for
a variety of resonant isotopes, for different physical configurations per state point;

• The storage of the isotopic concentrations per medium and state point;
• The storage of the average multigroup scalar flux per medium of the reference calcu-
lation, for each state point;

• The storage of the self-shielding data, in particular, the effective temperature of the
isotope, the energy range of the self-shielding model and the relative back-groundmulti-
group cross section.

The library architecture is organized according to the following guidelines:
• The structure of the EPF-SSF file is based on Hierarchical Data Format (HDF);
• The library stores the reference self-shielding factors, for any resonant isotope, for five
reactions of interest. These reactions are: absorption, capture, P0 diffusion, fissionand fission production;

• The library contains a complete set of data to allow for the reconstruction of reference
isotopic reaction rates, at any state point present in the library;

• The library has a physical-like organization: the isotopes are stored within material direc-
tories, for each state point and self-shielding label;
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• All the key-words used as data-base directory names are constructed by retrieving the
names for materials, isotopes and geometrical-zone labels, assigned by the user, in the
APOLLO3® input file;

• The library has no knowledge of the geometry;
• Several lattice dataset can share the same file, by using different titles.
In order to savememory and access time, the EPL-SSF file complies with the following spec-

ifications:
• The library contains only resonant isotopes of the materials, i.e., the isotopes that are
not self-shielded are not stored;

• The self-shielding factors are stored only in the energy range of the self-shielding model.
XSTOOL can handle Cartesian grids as well as sparse grids of state-points. In case of Carte-

sian grids, the interpolating functions, g(T,p;Tl,pn), are multilinear tent-functions. Otherwise,
in case of unstructured grids, g(T,p;Tl,pn) are radial basis kernel functions, namely

g(x;xk) = exp

(
− ∥x− xk∥2

2σ2

)
, (12.11)

with x = (T,p) and xk = (Tl,pn), while σ is defined as the standard deviation of the dataset.
Alternatively, for sparse grids, the user can use a quadratic-polynomial kernel function of the
kind

g(x;xk) = λk(x · xk + d)2, (12.12)
with d as a regularization parameter, set as the average cosine across all points of the dataset,
and λk as the normalization factor, i.e., λk = 1

(xk·xk+d)2
.

XSTOOL requires three inputs, namely the external reference library (GALILEE, [112]), the
parametric SSH library (EPL-SSF) generated by APOLLO3® and an input file of the kind illus-
trated in Algo. 4. In particular,
Algorithm 4 : XSTOOL input.
1: Read macroscopic XS library output path
2: Read anisotropy order, N
3: Read number of energy groups, H
4: formedium = 1→∞ do
5: if End command then
6: Return
7: end if
8: Read [mat+ e+ c; T ; Tf ; Tw; CB; BU ; %CR; ρw; t]9: end for

• mat is a label identifying the material;
• e is the SSH label;
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• c represents the HCC order number;
• T is the local temperature;
• Tf , Tw, ρw, CB, BU and t are indicated in Sect. 12.3.3;
• %CR quantifies the control-rod insertion fraction (%) in c.

The output is the interpolated macroscopic cross-section library, which contains H energy
groups and PN -scattering matrices, for everymat+ e+ c string detected in Algo. 4.

12.4 . PARAMETRIC EFFECTIVE MICROSCOPIC CROSS-SECTION ANALYSIS
In the following, a preliminary study on the dependence of parametric effectivemicroscopic

cross-sections on burn-up and fuel temperature is proposed. In Sect. 12.4.1, the benchmark is
introduced. Section 12.4.2 shows that microscopic cross sections exhibit mild variations with
respect to burn-up, thus suggesting the possibility to reduce the number of burn-up steps and,
as consequence, the memory occupation. In Sect. 12.4.3, a factorization is considered for the
dependence on burn-up and fuel temperature and the numerical error is evaluated, by com-
parison with the reference microscopic cross sections.

12.4.1 . Test Case Specifications
Let us consider a 17x17 2D UOX/Gd assembly, with 3.2% enrichment and 32 Gadolinium

poisoned pin cells. The external reference library is provided by GALILEE and contains 281

energy groups. The parametric library of SSH-factors is generated by APOLLO3®, by Multi-Cell
Fine-Structure Self-Shielding. For the sake of brevity, only the results obtained for the UOX-cell
inner ring and the UOX/Gd-cell outer ring are presented.

12.4.2 . Dependence on burn-up
Let us define the average microscopic cross section of isotope j and group g, namely

σgj =
1

NeNBU

∑
n

∑
e

σg,ej (BUn), (12.13)
and the associated RMS,

RMSgj =
1

NeNBU

√∑
n

∑
e

(σg,ej (BUn)− σgj )2, (12.14)

where NBU is the number of burn-up steps and Ne is the number of rings containing the iso-
tope. Note that all the other parameters are fixed and are not explicitly indicated, for the sake
of conciseness. Figures 12.2a-12.2b compare the first and second-order moments (Eqs. (12.13)-
(12.14), respectively), of 238U and 239Pu, for all self-shielded energy groups, i.e., all groups within
g2 = 42 and g1 = 89, for 238U , and all groups within g2 = 57 and g1 = 94, for 239Pu. Generally,
σgj ≫ RMSgj , hence σg,ej (BU) varies slightly around its mean value.

Figures 12.3-12.4 display the effectivemicroscopic absorption cross section of 238U and 239Pu,
for the innermost and outermost rings of UOX and UOX/Gd, as a function of burn-up, for all
energy groups within g2 and g1 (defined as above). In both cases, the change in the effective
microscopic cross section is a weak function ofBU , thus these trends can be easily interpolated
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(a) Average microscopic absorption cross section of 238U vs RMS, forgroups between g2 = 42 and g1 = 89.

(b) Average microscopic absorption cross section of 239Pu vs RMS, forgroups between g2 = 57 and g1 = 92.
Figure 12.2: Average microscopic absorption cross section vs RMS for two fuel isotopes.
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Figure 12.3: σg,inU−238 and σg,outU−238 vs burn-up, for g ∈ [42, 89].

Figure 12.4: σg,inPu−239 and σg,outPu−239 vs burn-up, for g ∈ [54, 92].

with respect to burn-up. One can also notice that, for 238U , the absorption cross section in the
inner ring of UOX is about 5 times smaller than in the outer ring of UOX/Gd, due to the skin
effect.

The same conclusion may be drawn, by analysing the cross section variation, defined as
∆g,e
j (BU) =

(
1−

σg,ej (BU)

σg,ej (0)

)
· 100%, (12.15)

as a function of burn-up, for all self-shielded energy groups (Fig. 12.5). In the innermost ring
of UOX, the maximum variation amounts to 0.15GWd

ton , for 238U . Variations of the same type
are observed in the outermost ring of UOX/Gd, with exception of one group (g = 79), whose
behaviour is less regular. This trend may be caused by numerical errors inherent to the self-
shielding calculation, within the resonance at g = 79.

These preliminary results suggest the possibility to reduce the number of burn-up steps,
and thus the memory occupation. Microscopic cross sections may be reconstructed by low-
order piece-wise polynomial functions, by interpolation on a coarser burn-up mesh.
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Figure 12.5: ∆g,in
U−238(BU) and ∆g,out

U−238(BU) vs burn-up, for g ∈ [54, 92]. The black curve on theright-hand side corresponds to g = 79.
This said, it is interesting to compare the presented strategy, based on direct cross-section

interpolation (Sect. 12.3.4), with the one employed in standard two-step simulations (Sect. 12.3.3),
based on spatial homogenization and energy condensation. Let us consider the case of 157Gd.
Figure 12.6 displays the variation of the effective microscopic cross section (Eq. 12.15), as a func-
tion of burn-up, if neither homogenization nor energy condensation are applied. Conversely,

Figure 12.6: ∆g,out
Gd−157(BU) vs burn-up, for g ∈ [79, 92].

Fig. 12.7 provides the effective microscopic cross sections, used in standard core calculation,
which underwent homogenization and energy condensation to H = 2 groups. The latter vary
up to ∆0,out

Gd−157(BU = 7 · 104) ≈ −20% and ∆1,out
Gd−157(BU = 7 · 104) ≈ −2900%, for g = 0 (fast

group) and g = 1 (thermal group), respectively, hence they aremuchmore sensitive to burn-up
variations.

As the effective microscopic cross sections are, based on the prior observations, relatively
regular functions of BU , one may propose to approximate their behaviour by a polynomial
series development, pg,ej (BU), and approximate σg,ej (BU∗) by pg,ej (BU∗), where BU∗ is an ar-
bitrary value of burn-up. The advantage is clear: the coefficients of pg,ej would be computed
once for all, at the beginning of the simulation, after cross-section interpolation, and stored in
memory. If the order of pg,ej (i.e., the number of stored moments) is lower than NBU , then the
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Figure 12.7: σ0,outGd−157(BU) and σ1,outGd−157(BU) vs burn-up, where 0 = fast group and 1 = thermalgroup. Figures from: I. Zmijarevic, ’ Some aspects of creating and using multi-parameter crosssection library’, DES/ISAS/DM2S/SERMA/LLPR/NT/2022-70741/A, Courtesy of Igor Zmijarevic.

memory occupation is reduced.
Let us define

x =
2 ·BU
BUmax

− 1, (12.16)
where x ∈ [−1, 1] and BUmax denotes the value of burn-up at step n = NBU , and project the
interpolated σg,ej onto Legendre polynomials,

σg,el,j =
1

2

∫ 1

−1
σg,ej (x)Pl(x)dx. (12.17)

Fig. 12.8 depicts the moments of the absorption cross section of 238U , up to l = 6, within the
innermost ring of UOX, as a function of energy, for g ∈ [42, 89]. If the parametric cross section is

Figure 12.8: Legendre moments of σg,inU−238,abs, up to l = 6.
approximated by Legendre series development, up to order l = 6, the maximum relative error
with respect to the true value of σg,ej is less than 3%, in absolute value, for g = 89 (Fig. 12.9). In
order to reduce the error, one may resort to one of the following strategies:
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• Increase the order of pg,ej (BU) and thus the number of moments stored in memory;
• Discretize the interval [0, BUmax] intoM sub-intervals and approximateσg,ej (BU)bypiece-
wise polynomial expansions.

This method appears to be promising and may be furtherly investigated in the future.

Figure 12.9: σ89,inU−238,abs vs its approximation by Legendre series expansion of order 6 (in red andgreen, respectively), for group 89, as a function of burn-up. In blue, the relative error (%).

An alternative strategy to Eq. (12.17) may be the following. Based on Figs. 12.3-12.6, the para-
metric cross sections are a weak function of BU . One may propose to coarsen the burn-up
mesh, as shown in Fig. 12.10, where only the steps marked with a black dot are retained. Hence,
given three successive burn-up steps, namely n, n+ 1 and n+ 2, σg,ej (BU) is approximated by
a linear spline, passing through the points (BUn, σg,ej (BUn)

) and (BUn+2, σ
g,e
j (BUn+2)

). This
model is referred as linear-tent approximation. A numerical comparison is provided in Fig. 12.11,
where the effective microscopic absorption cross section of 238U is compared to its its linear-
tent approximation, both in the inner and in the outer ring, for g = 89. The maximum relative
error does not exceed 0.2%, in absolute value. Note that only one burn-up step out of two is
plotted, as, for the other, the error is equal to zero, by definition. These results suggest that
theBU grid of σg,ej can be greatly coarsened, with respect to the homogenized few-group cross
sections, used in standard two-step reactor core calculations.

Figure 12.10: Linear-tent approximation. The parametric microscopic cross section is approxi-mated by a linear spline, connecting the points (BUn, σg,ej (BUn)
) and (BUn+2, σ

g,e
j (BUn+2)

),allowing for a major reduction of the number of burn-up steps.
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Figure 12.11: Linear-tent approximation. σ89,in/outU−238,abs (in red) vs its linear-tent approximation (ingreen), as a function of BU . In blue, the relative error (%).
12.4.3 . Dependence on burn-up and fuel temperature

Analogously to Sect. 12.4.2, let us define the average microscopic cross section of isotope j
and group g, as

σgj =
1

NTfNeNBU

∑
b

∑
n

∑
e

σg,ej (BUn, Tf,b), (12.18)
and the associated RMS,

RMSgj =
1

NTfNeNBU

√∑
b

∑
n

∑
e

(σg,ej
(
BUn, Tf,b)− σgj

)2
, (12.19)

whereNTf is the number of fuel-temperature points,NBU is the number of burn-up steps and
Ne is the number of rings containing the isotope. Once again, all the other parameters are fixed
and are not explicitly indicated, for the sake of conciseness. Figures 12.12a-12.12b compare the
first and second-order moments (Eqs. (12.18)-(12.19), respectively), of 238U and 239Pu, for all self-
shielded energy groups. For 239Pu, the ratio RMS/σ ≪ 1,∀g ∈ [g2, g1] (Fig. 12.12b), hence theeffective cross section shows little variability with respect to to its mean value. This observation
applies to 238U as well, for a large number of self-shielded energy groups, with one exception,
i.e., g = 89, where σgj ∼ 5 ·RMS.

Figure 12.13 displays the effectivemicroscopic absorption cross section of 238U , in the inner-
most ring of UOX (on the left) and outermost ring UOX/Gd (on the right), as a function of BU ,
for 4 values of Tf . For the sake of brevity, only one group is shown, i.e., g = 84. The maximum
variation of σ84,in/outU−238,abs with respect to the fuel temperature amounts to ∼ 30 pcm ·K−1.

Let us recall the definition of SSH factor, for one energy group, namely
µej(BU, T ) =

σej (BU, T )

σ∞j (T )
, (12.20)

where all parameters are fixed, except for the burn-up and the local temperature. One may
observe thatmost of the dependence on T is contained in σ∞j (T ), due to Doppler effect. Hence,
let us propose the following approximation:

µej(BU, T ) ≈ λej(BU) · ηej (T ). (12.21)
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(a) Average microscopic absorption cross section of 238U vs RMS, forgroups between g2 = 42 and g1 = 89.

(b) Average microscopic absorption cross section of 239Pu vs RMS, forgroups between g2 = 57 and g1 = 92

Figure 12.12: Average microscopic absorption cross section vs RMS for two fuel isotopes.
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Figure 12.13: Dependence on burn-up and fuel temperature: σ84,in/outU−238,abs vs BU and Tf .

Given T = T ∗, one has
σej (BU, T

∗)

σej (BU = 0, T ∗)
≈

λej(BU) · ηej (T ∗) · σ∞j (T ∗)

λej(BU = 0) · ηej (T ∗) · σ∞j (T ∗)
=

λej(BU)

λej(BU = 0)
. (12.22)

By setting λej(BU = 0) = 1, Eq. (12.22) becomes
σej (BU, T

∗)

σej (BU = 0, T ∗)
≈ λej(BU). (12.23)

This approximation, henceforth referred as BU − T factorization, is supported by Figs. 12.14-
12.15, displaying

ϵ%(BU, T ) =

(
1−

λej(BU) · ηej (T )
µej(BU, T )

)
· 100%, (12.24)

as a function of BU , for four values of temperature. The considered isotope is 238U , within the
outer ring of UOX/Gd, for four energy groups (indicated on the vertical axis), within the resonant
interval. Figures 12.14 show that the relative error does not exceed few pcm, for g = 83, 84.
Larger errorsmay be observed for g = 79 and g = 89, for some values of the burn-up (Fig. 12.15).

12.5 . Preliminary V&V and memory occupation of the parametric library ofShelf-Shielding Factors (EPL-SSF)
Table 12.1 reports a comparison between APOLLO3® and XSTOOL+IDT, for a 2D lattice cal-

culation. The considered system is a 17 × 17 unrodded assembly of a PWR core, with 3.2%-
enriched UOX fuel and 32 fuel-rods containing gadolinium. The assembly is depleted up to 72

GWd/ton, by 95 burn-up points, under nominal conditions. The remaining phase space is ex-
plored by 64 state-points, consisting of 4 fuel temperatures, 4 moderator temperatures and 4

boron concentrations, at beginning of cycle (i.e.,BU = 0). The state point parameters are fixed
as follows
• Fuel temperature, Tf = {474.4, 554, 754, 1074}K;
• Moderator temperature, Tw = {424, 524, 574, 614}K;
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(a) BU − T factorization, g = 83. (b) BU − T factorization, g = 84.
Figure 12.14: BU − T factorization. Relative difference, i.e., ϵ% (Eq. (12.24)), observed for
σg,outU−238,abs (g = 83 on the left-hand side, g = 84 on the right-hand side), as a function ofBU , forfour different values of temperature.

(a) BU − T factorization, g = 79. (b) BU − T factorization, g = 89.
Figure 12.15: BU − T factorization. Relative difference, i.e., ϵ% (Eq. (12.24)), observed for
σg,outU−238,abs (g = 79 on the left-hand side, g = 89 on the right-hand side), as a function ofBU , forfour different values of temperature.
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• Moderator density, ρw = {0.994, 0.804305, 0.734244, 0.68641} g/cm3;
• Boron concentration, CB = {0, 600, 1000, 1600} ppm.

For each point, APOLLO3®
• performs a self-shielding calculation by Multi-Cell current-coupled collision probabilities
and Fine Structure model, with 281-group P0 transport-corrected cross sections;

• runs a TDT-MOC lattice calculation, with 281-group P1 cross sections;
• appends to the EPL-SSF output file the resonant isotope self-shielded cross sections and
the neutron spectra, together with the concentrations per medium;

• depletes the fuel and updates the isotopic concentrations.
The dataset contained in the EPL-SSF file is constructed by taking advantage of the BU − T

factorization. More precisely, the EPL-SSF file contains 95 state-points, under nominal condi-
tions, plus 6 × 64 points for the parameters Tf , Tc, and CB , with 6 selected burn-up levels,
namely BU = {0, 75, 1750, 10000, 20000, 40000}MWd/ton, subsequently denoted by a sub-
script I , assuming values from 0 to 5. These points are computed by the classical ’reprise’
calculation.

Figure 12.16: State-points grid in the parametric phase space (Bu, Tf , Tm, CB = 0).
Figure 12.16 sketches the stored state-points, atCB = 0. Six macro-intervals define a coarse

burn-up grid, namely

∆BUI =


[
0, BU1

2

[
, for I = 0,[BUI+BUI−1

2 ,
BUI+BUI+1

2

[
, for I = 1, ..., 4,[BUI+BUI−1

2 ,∞
[
, for I = 5,
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BU
[
MWd
ton

] A3® XSTOOL+IDT reac. rel. diff. (pcm) max abs. pin-power diff. (%)
100 0.85430 0.85365 76 0.9

500 0.83595 0.83529 78 1.2

3500 0.86070 0.86127 −66 0.6

8500 0.88948 0.89021 −82 0.5

13500 0.91918 0.91980 −67 0.3

18500 0.95639 0.95750 −116 0.8

47000 0.98895 0.98830 65 0.4

57000 0.85999 0.86015 −18 0.8

72000 0.75946 0.76018 −94 0.7

Table 12.1: APOLLO3® vs XSTOOL+IDT, for a 2D 3.2% UOX-Gd32 assembly simulation.
in which the effective microscopic cross section is reconstructed by a piece-wise BU − T fac-
torization. Let us simplify the notation, by setting T = (Tf , Tm, CB). The effective self-shieldedcross section of isotope j at a point (BU, T ) is computed as

σej (BU, T ) = λej(BU)σej (BUI , T ), for BU ∈ ∆BUI , (12.25)
where λej(BU) is the burn-up shape function computed under nominal conditions, namely

T ∗ = (Tf = 754◦K, Tm = 574◦K, CB = 0 ppm),

as
λej(BU) =

σej (BU, T
∗)

σej (0, T
∗)

. (12.26)
In Eq. (12.26), the effective microscopic cross section σej (BU, T ∗) is reconstructed at point BU ,
by linear interpolation, over the 95 burn-up points stored in the library. On the other hand, the
cross section σej (BUI , T ), defined in Eq. 12.25, is computed by multilinear tent-functions over
the T -hyperplane (perpendicular to BU ), by interpolating the points stored at BU = BUI .

XSTOOL interpolation has been verified by performing a transport simulation by IDT in 9

burn-up check points, shown in the first column of Tab. 12.1, with
T = (Tf = 820K, Tm = 614K, CB = 0 ppm).

The results provided by IDT have been compared to those of APOLLO3, which are performed
by self-shielding the resonant isotopes and running a MOC calculation at the same state point.
As shown, the reactivity difference between APOLLO3® and XSTOOL+IDT remains bounded
within approximately ±100 pcm. The pin-power error is at most 1.2%.

Table 12.2 reports thememory occupation of the EPL-SSF file, for several PWR fuel assembly
types. Each dataset contains the results of the lattice calculations performedby the APOLLO3®-
SIGAR tool chain (REF), corresponding to a series of 3.2%-enriched UOX assemblies. The phase
space is explored by the 64 state-points sketched previously.
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3.2%-enriched UOX assembly Memory (MB) Memory/state-point (MB)
rod-out 19 0.47

AIC 30 0.33

B4C 22 0.29

Gd16-AIC 68 1.62

Gd16-B4C 60 0.93

Gd32-rod-out 56 0.85

Gd32-AIC 68 1.06

Gd32-B4C 60 0.93

Table 12.2: Memory occupation of the parametric HDF file (EPL-SSF) for several latticetypes.
N. of points Memory (MB)

95 41

95 + 6× 64 = 479 377

Table 12.3: Memory occupation of the EPL-SSF file for a depleted UOX-Gd32 assembly.

Table 12.3 contains the memory occupation for a depleted UOX-Gd32 assembly, with burn-
up up to 72GWd/ton, discretized by 95 points. The table also shows the total amount of mem-
ory of the library used to perform the ’XSTOOL+IDT’ calculations of Tab. 12.1.

Considering 3 control-rod configurations per assembly, i.e., rod-out, B4C and AIC , we can
estimate to need approximately 300 to 500 MB to cover the parametric phase space of each
assembly and few GB of data for a full core simulation.

12.6 . Xenon initial number density
XSTOOL can estimate the equilibriumxenonnumber density,CXe,m, for each fissilemedium

m, at zero burn-up, by means of a dedicated option. The initial xenon concentration is approx-
imated by

CXe,m =
YXe,mIf,m

τa,Xe,m + 10−24 · λXe
,

with

• YXe,m as the fission yield,
• If,m =

∑
i∈m

∑Ng

g=1Σf,m,i,gϕm,g as the fission integral, evaluated by means of the macro-
scopic cross sections Σf,m,i,g of all fissile isotopes i ∈ m, and of the spectrum ϕm,g , com-
puted by APOLLO3® and retrieved from the EPL-SSF file,
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• τa,Xe,m as the xenon absorption rate,

τa,Xe,m =

Ng∑
g=1

σa,Xe,gϕm,g, (12.27)

• λXe as the xenon decay constant.

The spectrum ϕm,g can be optionally normalized at a user-defined average power density,
PN (inW/g fuel), by means of the constant

αm =
ρmPN
kfissI

∗
f,m

, (12.28)

where ρm is the heavy material density, kfiss is the average energy released per fission (set to
0.324× 10−10Ws/fission), while I∗f,m is the fission integral without normalization.

12.7 . XSTOOL/IDT/THEDI COUPLING
Let us illustrate a novel algorithmallowing for coupled neutronics/thermal-hydraulics calcu-

lations, where the thermal feedback and the updatedmacroscopic cross section library are pro-
vided by THEDI and XSTOOL, respectively, while neutron transport is simulated by IDT. The pro-
posed scheme is strongly related to Sect. 12.3.4, as interpolated microscopic cross sections are
generated purely on the basis of the external reference library (GALILEE) and of the parametric
self-shielding factors library (EPL-SSF), without preliminary homogenization and energy con-
densation. The obtained macroscopic cross sections may be condensed in energy, by means
of a dedicated option of XSTOOL, and are provided to IDT in the form of ASCII files of the kind
subdo_kij.xsl, subdo_kij being a GCU (Sect. 6.4). Note that k, i, j define the z, x and y subdomain-
lodging in the pivot grid of the domain decomposed (Sect. 6.4), while subdo_kij.xsl contains the
(condensed) macroscopic cross-section library and KERMA (Kinetic Energy Released in MAtter)
necessary for its calculation.

The tight N-TH coupling implemented in IDT consists in introducing the boron concentra-
tion update and the thermal-hydraulic solution inside the CMFD-accelerated power iterations.
Using the integer e as the fixed-point iteration index, the N-TH coupled equations are solved
iteratively within a single external loop as follows,
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

Multigroup-transport (XSTOOL+IDT):
B(c(e), T (e))ψ(e+1/2) = 1

λ(e)
F(c(e), T (e))ψ(e);

CMFD solver (IDT):
A(ψ(e+1/2))ϕCMFD = 1

λ(e+1)F(ψ
(e+1/2))ϕCMFD;

Flux update (IDT):
ψ(e+1) = ϕ∫

ψ(e+1/2)ψ
(e+1/2);

Boron update (IDT):
C

(e+1)
B = C

(e)
B +

(
C

(e)
B − C

(e−1)
B

k(e+1) − k(e)

)
(kref − k(e+1));

TH solver (THEDI):
T (e+1) = H(ψ(e+1)).

(12.29)

Algorithm 5 provides details on the calculation scheme described in Eq. (12.29), with each
point being discussed in a dedicated section (Sects. 12.7.1-12.7.10).

12.7.1 . IDT input file
IDT input consists of a file containing all geometrical andmaterial composition information,

as well as intuitive inputs for automatic domain decomposition and MOSC/Sn solver options.The file consists of subsequent sections, which can be briefly summarized as follows:
1. HCC XYZ Grid. A mesh of Cartesian nodes is defined (Sect. 6.3.2), by means of simple in-
structions, allowing for X/Y/Z displacements and the construction of repetitive Cartesian
patterns, with fixed side lengths;

2. HCC Discretization. Nodes of different types may be designed in this section. The user
can input the TRM, by standard or customized options (Sect. 7.2), define the symmetry
properties of the cell (Sect. 10.4), orient the cylinders (Sect. 7.5), indicate the number and
spacing of the inner Cartesian planes (Sect. 7.2) and give instructions on the ray-tracing
quadrature (Sect. 7.4);

3. HCC-geometry-types/HCC-grid-lodging Association. The Cartesian nodes defined in
the previous point are lodged into the Cartesian mesh, by simple association between
the HCC name and the label associated to a (repetitive) Cartesian pattern composing the
macro-grid;

4. Boundary Conditions. The boundary conditions (BCs) are indicated for each side. The
user can choose among a set of BC options, as mentioned in Sect. 6.1;

5. Angular Quadrature Formula. IDT offers a large set of angular quadrature formulas,
includingGauss-Legendre andChebyshev-Legendre product quadratures aswell as Level
Symmetric quadrature formulas;
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Algorithm 5 : Proposed iterative scheme for coupled N/TH multiphysics.
1: Read IDT input file
2: Generation of the domain decomposed (IDT-DDM input file), of XSTOOL input files
(one for each GCU) and of the THEDI input file (TH channels’ data)

3: Read IDT-DDM input file, . Boron concentration and temperature field initialization,
C

(0)
B , ∆CB

∆k

∣∣∣∣(0) T (0) = {T (0)
f , T

(0)
w , ρ

(0)
w }

4: TH sub-channels definition and generation of IDT2THEDI input file
5: for u = 1→ U {Loop over subdomains} do
6: Generation of (condensed) macroscopic cross-section library, by XSTOOL
7: CP Matrices evaluation
8: end for
9: Eigenpair and Fission Integral initialization, k(0), ψ(0), I

(0)
f

10: for e = 0→ Ne {Outer Loop} do
11: for u = 1→ U do
12: Local Multigroup Transport Iterations: determination of {k(e+ 1

2
), ψ(e+ 1

2
)
}

13: end for
14: CMFD Initialization, {k0CMFD = k(e+

1
2
),Φ

(0)
CMFD =

∫
ψ(e+ 1

2
)(ξ) dξ

}
15: Solve Global CMFD Diffusion with few-group cross-sections and homogenized

pin-cells
16: Flux and Eigenvalue update,

{
ke+1 = kCMFD, ψ

(e+1) = ψ(e+1/2)ΦCMFD

Φ
(0)
CMFD

}
17: Fission Integral update, I(e+1)

f

18: Check error condition on transport solution and return, if verified
19: if C(e)

B > 0 {otherwise boron search is skipped} then
20: Critical Boron concentration search, C(e+1) = f

(
C(e), kref , k

(e−1), k(e),
∆C

∆k

∣∣∣∣(e))
21: Set lgB =True, unless convergence within eigenvalue precision
22: end if
23: Generation of Power map input for TH solver
24: Update TH field by THEDI, T (e+1) = H(P, p, Tin, ṁ)

25: for u = 1→ U {Loop over subdomains} do
26: if ∃r ∈ Du such that δTf (r), δρw(r) > ϵf , ϵw, then lgu =True, else lgu =False
27: Update XSTOOL input file
28: if lgu or lgB then
29: Update Macroscopic Cross Sections, by XSTOOL
30: Recompute Neumann ’perturbation’, δΣ(r)
31: if δΣ(r) < 0 then
32: Recompute CP Matrices
33: end if
34: end if
35: end for
36: end for 202



6. Solver Options. In this section, details are provided on the solver options, e.g., MOSC
order (Sects. 4.6.4-11.2), PN -scattering order (Sect. 4.3), tolerances on the inner/thermal/
outer iterations (Sect. 4.4), etc.

7. Parametric Libraries Identification and Settings. Boron concentration. The user has
to define the path of the infinite-dilution cross section library, as well as the one of the
external library containing the SSH-factors. The path to XSTOOL executable should also
be provided, together with the parameter types involved in the calculation (Tf , Tw, ρw,
%CR, CB , BU , t) and respective ranges (e.g., for Tf , [Tminf , Tmaxf ]). Moreover, one has
to input the initial boron concentration, C(0)

B , the interpolation option (polar, distance-
weighted or multilinear) and the number of condensation groups (G = 2, 4, 26, 30, 281).
If C(0)

B ≥ 0, IDT will search for the critical boron concentration, i.e., CB(k) such that k = 1

(Sect. 5.2.2);
8. Thermal-Hydraulics Settings and Path. The input also contains information on the dis-

cretization into thermal-hydraulic (TH) sub-channels, as well as on the path to the TH
module, which runs THEDI. The TH mesh requires two parameters, namely Sx and Sy ,representing the number of sub-channels along x and y, respectively. The algorithm al-
lowing for TH discretization is illustrated in Sect. 12.7.4;

9. Materials List. The materials are indicated one by one, as mat + e + b, i.e., the com-
bination of three labels, indicating the material type (e.g., steel, B4C, AIC, UOX), the SSHregion (e.g., ring a, b, c, d) and the temperature (e.g., Tf , Tw), respectively. In this section,the user should also initialize the state point of each material (e.g., the local temperature
(T ), the fuel temperature (Tf ), the moderator temperature and density (Tw and ρw), thepercentage of CR insertion (%CR), the burn-up (BU ) and the time (t) togheter with the
reference state-point in the parametric library to load the initial concentrations of the
isotopes ;

10. Radial geometries. In order to design a reactor core, one should list all radial geome-
tries, Gr, r = 1, 2, ..., R. Each Gr is defined by a set of data , i.e., the number of circles (n),
the pin-cell name and pitch, the presence of the spacer grid and its thickness and the full
set of radii, ρ1, ρ2, ..., ρn, composing Gr;

11. Radial composition. Each radial geometry may be associated to one or more 2D phys-
ical pin-cell types, namely Pl, l = 1, 2, ..., L. Each Pl is defined by a set of information,
including its name, its radial geometry, Gr(Pl), and a list of materials, µ = 1, 2, ..., µn+1,provided n is the number of circles composing Gr(Pl);

12. Axial geometries and compositions. Each fuel/control rod and guide tube may be rep-
resented in real 3D geometry as follows. Suppose F is a fuel rod, of length ℓ. In IDT, F is
represented by piling-up several axial layers, A1, ...,AK , of different type and geometry,
with length ℓ1, ...., ℓK , such that∑K

k=1 ℓk = ℓ. Each axial layer Ak is obtained by extru-
sion of one Pl, with geometry Gr(Pl), over an interval [∑k−1

k=1 ℓk,
∑k

k=1 ℓk
]. Note that all

3D elements should share the same length, i.e., ℓ, and that axial reflectors can be here
included;

13. Fuel assembly definition. Each fuel assembly (F.A.) is a lattice of fuel rods, control rods
and guide tubes, defined as in the previous point. In order to define their position in the
F.A., one has to indicate the radial coordinates of each element, provided that the origin
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of the frame of reference is located in the south/west corner. In this section, the user can
also input a fuel bundle as well as a water gap;

14. Core Definition. The reactor core is given as an ensemble of F.A.s of defined radial po-
sitions;

15. DDM Options. DDM is automatically applied to the whole reactor, by defining (a) the
number of axial subdivisions,Mx,My,Mz , as well as the number of fine steps (i.e., HCCs)
for each axial subdivision (Sect. 6.4.3), (b) the number of processes, P , and (c) a comple-
mentary set of solver options (including the required precision, the maximum number
of iterations, etc.).

IDT intersects the axial geometry defined by the fuel rods, the control rods and the guide tubes
with the one provided by the HCC grid (1. HCC XYZ Grid). As a result, the HCC node in position
(X,Y, Z) will contain a number of planes which depends on the number of axial layers Akwithin (X,Y, Z) (12. Axial geometries and compositions), plus the number of steps due to
the inner Cartesian discretization (2. HCC Discretization).

12.7.2 . Automatic generation of the domain decomposed and of XSTOOL inputs
IDT is able to construct the domain decomposed, based on the instructions provided in

the user input file (UIF), described in Sect. 12.7.1. Assuming the UIF, namely ’test.d’, requests
Mx ×My ×Mz axial subdivisions for DDM, a new input file, of the kind ’test_MxMyMz .d’, con-taining GCUs’ description and solver options, is automatically generated by IDT. Each GCU is
equipped with a macroscopic cross section library path, the HCC XYZ grid, HCCs’ geometrical
and material description, specular reflection boundary conditions, the angular quadrature for-
mula, a set of solver options, includingMOSC and PN -scattering order. Once defined the wholeset of GCUs, the pivot grid is specified, together with the number of maximum iterations, the
required precision, the number of coarse energy groups for CMFD, etc. The user can also input
a XYZ mesh different from the one indicated in Sect. 12.7.1 (1. HCC XYZ grid), in order to store
the reaction rates on a customized XYZ grid, for inter-code comparisons.

Based on Sect. 12.7.1 (7. Parametric Libraries Identification and Settings, 9. MaterialsList), a file with extension ’.xst’ is automatically generated for each GCU of the domain decom-
posed. The content of this file is detailed in Sect. 12.3.5 and is provided as an input to XSTOOL,
to produce a macroscopic cross-section library, for each GCU of the pivot grid.

12.7.3 . Boron concentration and temperature field initialization
The boron concentration is initialized to the value defined by the user (Sect. 12.7.1, 8. Para-metric Libraries Identification and Settings. Boron concentration) in IDT input. Note that,

if C(0)
B < 0, no boron concentration search is performed. The TH field is initialized, according

to user’s inputs (Sect. 12.7.1, 9. Materials List). Note that T (0) should be within the intervals
defined in Sect. 12.7.1, 8. Parametric Libraries Identification and Settings.

12.7.4 . TH sub-channels definition
The discretization into TH sub-channels is performed by a simple algorithm, which resem-

bles the one introduced in Sect. 6.4.3. Suppose Nk is the number of HCCs along axis k, where
k = x, y, while Sk is the number of required sub-channels along the same axis. Let us define

ζk =

⌊
Nk( mod Sk)

2

⌋
. (12.30)
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If ζk = Nk( mod Sk)
2 , then the HCCs are distributed symmetrically along axis k as follows:

• The first ζk sub-channels (i.e., the ones appearing on the left-hand side) contain
⌊Nk( mod Sk)⌋ +1 HCCs each;

• The sub-channels with order number between ζk+1 and Sk−ζk (i.e., the ones appearingin the middle) contain ⌊Nk( mod Sk)⌋ HCCs each;
• The last ζk sub-channels (appearing on the right-hand side) contain ⌊Nk( mod Sk)⌋ + 1

HCCs each.
Conversely, if ζk ̸= Nk( mod Sk)

2 , the HCCs are, once again, distributed symmetrically along axis
k, but with a different strategy:
• The first ζk sub-channels (appearing on the far left-hand side) contain ⌊Nk( mod Sk)⌋

+1 HCCs each;
• The sub-channels between ζk + 1, Sk

2 (appearing on the left-hand side) contain
⌊Nk( mod Sk)⌋ HCCs each;

• The sub-channel with order number equal to Sk
2 + Sk( mod 2) (i.e., the one appearing

right in the middle) contains ⌊Nk( mod Sk)⌋+ 1 HCCs;
• The sub-channels between Sk

2 + Sk( mod 2) + 1, Sk − ζk (appearing on the right-hand
side) contain ⌊Nk( mod Sk)⌋ HCCs each;

• The last ζk sub-channels (appearing on the far right-hand side) contain ⌊Nk( mod Sk)⌋ +
1 HCCs each.

Provided Sx ·Sy is the total number of sub-channels, IDT computes amap of the kind illustrated
in Algo. 6. This tool allows retrieving all HCC geometrical data, which can be accessed inmemory
by means of an integer number defined by

hccnb = (zpin − 1) ·Ny ·Nx + (ypin − 1) ·Nx + xpin, (12.31)
where xpin, ypin, zpin are provided by the prior map. The data listed in Tab. 12.4 are written on
a file including all TH sub-channels, for IDT2THEDI usage. In particular:
• xpin, ypin and zpin are three integers, defining the position of a cell, within the global HCCgrid (previously indicated as (X,Y, Z));
• chnb denotes the channel order number, i.e., an integer identifying a TH sub-channel, to
which the considered cell belongs;

• w ∈ R represents the contribution of the considered cell to the aforementioned sub-
channel. This quantity is related to the inverse of the number of sub-channels to which
the pin belongs. Thus, we store 1

w ∈ N, as integers are less expensive in terms ofmemory
occupation, with respect to floating-point numbers;

• Apin is the transverse area occupied by the pin, while AHCC is the total transverse area
occupied by the considered cell;

• pwet and pheat denote respectively the wetted perimeter and heating fraction;
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xpin ypin zpin chnb
1
w

Apin AHCC pwet pheat lgf ρf ρinc ρoutc ∆z lgsg

Table 12.4: Sub-channel geometry out/input file, generated by IDT, for N/TH coupling.
• lgf is an integer number, assuming values 0/1, depending on the presence of nuclear
fuel;

• ρf , ρinc , ρoutc represent the external radius of the fuel and the inner/outer radius of the
clad, respectively;

• ∆z is the HCC height;
• lgsg is an integer number, assuming values 0/1, depending on the presence of a spacer
grid.

Algorithm 6 : TH sub-channel map.
1: Allocate memory for TH sub-channel map, chmap2: Initialize TH sub-channel map, chmap = 0
3: Initialize sub-channel order nb, chnb = 0
4: for j = 1→My {Sub-channel coarse mesh along y} do
5: Retrieve address 1st pin ∈ j, adjf6: Retrieve address last pin ∈ j, adjl7: for i = 1→Mx {Sub-channel coarse mesh along x} do
8: Retrieve address 1st pin ∈ i, adif9: Retrieve address last pin ∈ i, adil10: Update sub-channel order nb, chnb ← chnb + 1
11: Initialize pin order nb per channel, pinnb = 0
12: for ypin = adjf → adjl do13: for xpin = adif → adil do14: Update pin order nb per channel, pinnb ← pinnb + 1
15: for zpin = 1→ Nz do16: Store xpin, ypin, zpin, 1

w
into TH sub-channel map, namely chmap17: {w represents the weight of a pin in a given sub-channel and is given bythe inverse of the number of sub-channels to which the pin belongs}

18: end for
19: end for
20: end for
21: end for
22: end for

12.7.5 . Macroscopic Cross-Section initialization by XSTOOL
Given
• the external library of infinite-dilution microscopic cross sections, σ∞j (Tk), (GALILEE), de-fined in Sect. 12.3.4,
• the library of SSH-factors, µej(Tl,pn), (EPL-SSF), defined in Sect. 12.3.4,
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• a set of files, of the kind ’subdo_kij.xst’, one for each GCU, generated by IDT and described
in Sect. 12.3.5,

XSTOOL performs
• linear interpolation of the infinite-dilutionmicroscopic cross sections, with respect to√T ,
• multi-linear (for Cartesian grids), distance-based or polar (for non-Cartesian grids) inter-
polation of the effective microscopic cross sections, for resonant isotopes, with respect
to T or√T ,

obtaining a set of interpolated nuclear data to the parameters indicated in Sect. 12.7.1, 9. Ma-terials List, and CB = C
(0)
B , indicated by the user (Sect. 12.7.1, 8. Parametric Libraries Identi-fication and Settings. Boron concentration).

It is important to note that, contrarly to homogenized few-groups cross sections, themoderator
(water) density is
• an interpolation parameter for microscopic cross sections of resonant isotopes,
• a physical parameter that allows for the renormalization of isotopic concentrations (e.g.,

1H, 2H, 16O, 10B, 11B) without any approximation.
Similarly the boron concentration is
• an interpolation parameter for resonant isotopes effective microscopic cross sections,
• a physical parameter that allows to precisely set the exact boron concentration to the
prescribed ppm, for moderator cross sections.

This particular aspect of cross section setting is a peculiarity of the proposed scheme which
allows the exact treatment of moderator cross sections. The macroscopic cross section li-
brary is derived, with possible energy condensation toH = 2, 4, 26, 30 groups, weighting by the
APOLLO3 flux Φg(r) from lattice-calculation. The later is stored in the library per each medium
and per state points. Also the spectrum has to be interpolated to the current set of parame-
ters. A set of outputs of the kind ’subdo_kij.xsl’, containing the interpolated (and condensed)
multigroup macroscopic cross sections, is generated, for each GCU, for IDT usage (Sect. 12.7).

12.7.6 . CP Matrices evaluation
The transport operator reads as L = L0−δL, L0 = Ω ·∇+Σ0 and δL = δΣ being the refer-

ence (or unperturbed) operator and a ’perturbation’, respectively (see Sect. 9.2). L0 is inverted,at line 7 (Algo. 5), by MOSC, in the form of angular and energy-dependent CP matrices, namely
C, I,E,T (Sect. 4.6.4), computed using the macroscopic cross section library defined in 12.7.5.
If ||L−1

0 δL|| < 1, the Neumann iterations (n = 0, 1, 2, ...), performed within the inner loop by
successive applications of L−1

0 δL onto L−1
0 q, converge to the transport solution, namely

ψ =
∑
n⩾0

(
L−1
0 δL

)n
L−1
0 q, (12.32)

as detailed in Sect. 9.2.
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12.7.7 . Eigenpair and Fission Integral initialization
Power iterations are initialized at line 9 (Algo. 5), by setting

k = k(0), (12.33)
ψ = ψ(0), (12.34)

I
(0)
f (r) =

∫
dE

∫
dΩ(νfΣf )(r, E)ψ(0)(r,Ω, E), (12.35)

∆CB
∆k

=
∆CB
∆k

∣∣∣∣(0), (12.36)

where ∆CB
∆k

∣∣∣∣(0) = −10000 is the initialization value of the derivative of CB = CB(k).
12.7.8 . Outer Iterations

The thermal feedback is included within the outer loop. The idea is to generate a fine
multigroup-transport spectrum, feeding a coarse operator, based on CMFD diffusion. The so-
lution of the latter allows for the construction of the new power map, which is injected into
THEDI, in order to update the TH field of each subdomain. Note that, in case of ’small’ temper-
ature variations with respect to the prior iteration, the subdomain cross-section library is not
updated. In the following, outer iterations are illustrated, with particular reference to the cal-
culation of the critical boron concentration and of the thermal-feedback (by THEDI), which may
induce a subsequent change in the cross-section library (recomputed by XSTOOL) and possibly
of the CP matrices. As customary, e is the outer iteration index.

12.7.9 . Multigroup Transport Iterations and CMFD
Let us consider the fixed-source boundary value problem of subdomain u,

Bu

(
C

(e)
B , T (e)

)
ψ
(e+1/2)
u (ξ) =

1

k(e)
Fu
(
C

(e)
B , T (e)

)
ψ
(e)
u (ξ), ξ ∈ Xu,

ψ
−,(e+1/2)
u (ξ) = ψ

+,(e)
v (ξ), ξ ∈ ∂X−

u ∩ ∂X+
v , ∀u ∩ v ̸= ∅,

ψ
−,(e+1/2)
u (ξ) = 0, ξ ∈ ∂X−

u ∩ ∂X−.

(12.37)

with
ξ = (r,Ω, E) ∈ X, ∂X± (12.38)

Xu ≡ {r ∈ Du, Ω ∈ S2, E ∈ R+}, (12.39)
∂X±

u ≡ {r ∈ Γ±
u (Ω), Ω ∈ S2, E ∈ R+}, (12.40)

u = 1, ..., U, (12.41)
where Bu = (L − H)u is the local net disappearance operator of subdomain u, with spatial
domainDu and incoming/outgoing border Γ±

u . IDT inverts the operatorBu by local multigroup
transport iterations (Sect. 4.4). Currents are transmitted between neighbouring subdomains,
in order to satisfy the continuity equation (Eq. 6.10). Once solved Eq. (12.37), the k-eigenvalue
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and the local fission source are updated as follows

k(e+
1
2
) = k(e)

∑
u=1,...,U (w,Fuψ

(e+ 1
2
)

u )u∑
u=1,...,U (w,Fuψ

(e)
u )u

,

q
(e+ 1

2
)

u (ξ) =
Fuψ

(e+ 1
2
)

u (ξ)

k(e+
1
2
)

.

(12.42)

To accelerate neutron transport, multigroup CMFD is solved by successive global iterations,
until full convergence. Let us consider the synthetic problem defined by

A
(
ψ(e+ 1

2
)
)
Φ(r, E) =

1

k
FCMFD

(
ψ(e+ 1

2
)
)
Φ(r, E), r ∈ D,E ∈ R+, (12.43)

withA being the diffusion operator. Nuclear data are homogenized over coarse spatial meshes
and condensed energy groups (Sect. 4.7.2). Eq. 12.43 is solved by power/thermal/inner itera-
tions, the latter being approached by the BICGStab-Krylov method. The last transport iterate,
namely {k(e+ 1

2
), ψ

(e+ 1
2
)

u (ξ)
}, allows to initialize the CMFD solver, by setting

kCMFD,(0) = k(e+
1
2
) , ΦCMFD,(0)

u =

∫
dξ ψ

(e+ 1
2
)

u , (12.44)
where the transport solution is integrated over the CMFDmesh and over the whole solid angle.
Once solved Eq. 12.43, the k-eigenvalue is updated, namely

k(e) = kCMFD, (12.45)
and the transport solution is renormalized, i.e.,

ψ
(e+1)
u = ψ

(e+ 1
2
)

u
ΦCMFD
u

Φ
CMFD,(0)
u

, (12.46)
ψ
±,(e+1)
u = ψ

±,(e+ 1
2
)

u
ΦCMFD
u

Φ
CMFD,(0)
u

, (12.47)
where kCMFD and ΦCMFD

u represent the converged CMFD solution.
12.7.10 . Error Check

As mentioned in Sect. 6.4, outer iterations come to an end if the following set of conditions
is satisfied:

εrelk =

∣∣∣∣∣1− k(e+1)

k(e)

∣∣∣∣∣ < ϵk, (12.48)

εrelCB
=

∣∣∣∣∣1− C
(e)
B

C
(e−1)
B

∣∣∣∣∣ < 0.1 ppm, (12.49)

εL
∞

F =

∣∣∣∣∣1−
∑

g(Fuψ
(e+1)
u )g∑

g(Fuψ
(e)
u )g

∣∣∣∣∣ < ϵF , u = 1, ..., U, r ∈ Du,R, (12.50)

εL
∞

ψ (ξ) =

∣∣∣∣∣1−
∫
2π− dΩ |n ·Ω|ψ−,(e+1)

u (ξ)∫
2π− d2Ω |n ·Ω|ψ−,(e)

u (ξ)

∣∣∣∣∣ < ϵψ, u = 1, ..., U, ξ ∈ ∂X−
u , (12.51)

where ϵk, ϵF , ϵψ are user-defined parameters, while the tolerance in 12.49 is fixed to 0.1ppm of
error on boron concentration.
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12.7.11 . Critical Boron Concentration
In IDT, the critical boron concentration is computedbymeans of a linear formula (Sect. 5.2.2),

i.e. the Newton method. More in general, let CrefB be the boron concentration such that
k = kref . 11 CB is a function of k, namely CB = CB(k). Assuming that CB ∈ C2[0, νf ], where
νf is the average number of neutrons per fission (νf ∼ 2− 3), as well as the maximum allowed
value for k, CrefB is determined by successive outer iterations, namely

C
(e+1)
B = C

(e)
B +

C
(e)
B − C

(e−1)
B

k(e+1) − k(e)
(kref − k(e+1)), (12.52)

provided C(0)
B > 0 (Sect. 12.7.3). In IDT, no boron concentration search is performed until the

relative difference on the fission source has reached 1%, i.e. with the relative difference defined
12.48 εrelk < 0.01. This allows to prevent the appearance of error oscillations. If the boron
concentration is such that ∣∣∣C(e+1)

B − C(e)
B

∣∣∣ < C
(e+1)
B · ϵk, (12.53)

a logical variable, namely lgB , is set equal to false, in order to inhibit the update of boron con-centration, which is considered as converged.
12.7.12 . Neutronics/Thermal-Hydraulics coupling

The calculation scheme outlined in Algo. 5 and in 12.29 proposes a strong coupling between
neutronics and thermal-hydraulics. Normally, at each outer iteration, the temperature field is
updated. A dedicated python script, namely IDT2THEDI, allows data exchange between IDT and
THEDI.

In particular, IDT produces an updated power field at each iteration, which feeds into the
thermal-hydraulic problem (Sect. 12.7.13). The latter in turn, based on the new neutronic power
distribution and the boundary conditions imposed in a specific input file (Sect. 12.7.14), gener-
ates new temperature fields for the fuel and the moderator as well as an updated moderator
density map. At this point, the python script compares the temperature and density distribu-
tions between two successivemultiphysics iterations, for each subdomain (Algo. 5, line 26). The
difference between the respective TH fields can lie below or above a given threshold. Based
on this, IDT2THEDI communicates, via file, the information to IDT, for each subdomain. If the
subdomain under consideration has not undergone appreciable changes in terms of TH dis-
tributions, IDT sets a logical variable to false. If the boron concentration has not changed as
well, IDT does not execute XSTOOL, i.e., the macroscopic cross sections are not updated, and
the CP coefficients are not recomputed, for the given subdomain. Conversely, if the boron con-
centration has changed or if IDT2THEDI enforces a new calculation of cross sections for the
current subdomain, IDT executes, by bash commands, XSTOOL which produces a new ASCII
file of multigroup nuclear data (Algo. 5, line 29).

IDT compares the new physical HCCs, which contain the new cross sections, with the refer-
ence cells from the previous iteration(Algo. 5, line 30, Chap. 9). If the temperature change has
generated a ’perturbation’ δΣ(r) < 0, the coefficients must be forcibly recalculated, in order to
prevent the appearance of negative sources (Sect. 9.2). On the contrary, if this does not hap-
pen, there is no need to recalculate the coefficients: one may just update the ’perturbation’.

11In practical problems, one may be interested in computing the critical boron concentration. In thiscase, kref = 1.
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The change induced by thermal-hydraulics will thus be taken into account, along inner iter-
ations, via Neumann series developments (Eq. (9.10)). The following paragraphs offer a more
detailed picture of the key points of theN/TH coupling. Finally, it should be noted that IDT offers
the user a further degree of freedom, i.e., the possibility to ’weaken’ the coupling, performing
the thermal-hydraulic calculation every N outer iterations. This allows to converge the fission
source and k-eigenvalue forN outer iterations, without recomputing the cross sections and CP
coefficients, and to perform the calculation of the new temperature field less frequently. This
approach is also tested in Sect. 12.8.

12.7.13 . Generation of Power Map input for TH simulation
The power map is updated, by setting

P
(e+1)
f (r) =

∫
dE

∫
dΩ(KtΣt)(r ∈ f,E)ψ(e+1)(r ∈ f,Ω, E), (12.54)

P
(e+1)
nf (r) =

∫
dE

∫
dΩ(KtΣt)(r /∈ f,E)ψ(e+1)(r /∈ f,Ω, E), (12.55)

where
• Kt is the KERMA (Kinetic Energy Released in MAtter), due to a nuclear reaction, and is
provided by XSTOOL;

• Pf is the local power generated in the fuel;
• Pnf is local power released in all media that do not contain fissionable isotopes.
IDT generates a file, namely ’channel_power.txt’, containing the power map over the whole

reactor, which is organized as indicated in Tab. 12.5. The file contains a number of rows equal to
the number of HCCs composing the whole geometry. The position of each HCC is indicated by
three integer numbers, namely (x, y, z), followed by the power generated in the fuel (if present),
namely Pf , and the power generated elsewhere, i.e., Pnf , within the node (x, y, z).

12.7.14 . IDT2THEDI. Thermal-Hydraulic feedback by THEDI
THEDI (App. A) is a multi-1D thermal-hydraulic solver of APOLLO3®. It may be linked as a

Python/C++ library by external codes. In order to perform coupled N/TH multiphysics simula-
tions, IDTmay execute, by bash commands, a simple Python script, namely IDT2THEDI, import-
ing THEDI and the water p− T diagram. IDT2THEDI scans three files, i.e.,
• the sub-channels geometry input file, generated by IDT, for N/TH coupling, to retrieve all
HCC geometrical features, for each TH sub-channel (Sect. 12.7.4);

• ’channel_power.txt’, containing the power map (Sect. 12.7.13);
• ’channel_input.txt’, providing a complementary set of user-defined entries, comprising

a) the water inlet temperature (Tin [◦C]),
b) the pressure (p [Pa]),

x y z Pf Pnf

Table 12.5: Power-map out/input file, generated by IDT, for N/TH coupling.
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c) the flow rate (ṁ [kg/s]),
d) the total power Ptot [W ],
e) the laminar/turbulent intervals, expressed in terms ofRe (Reynolds’ number, [113]),
f) the local pressure drop due to a spacer grid,
g) the radial-mesh ratios for ρf , ρinc and ρoutc [cm] (Sect. 12.7.4),
h) the path to the water p− T diagram.

Once acquired the aforementioned sets of raw data, IDT2XSTOOL computes
• The number of HCCs within each sub-channel;
• The axial mesh of each sub-channel. Note that, in principle, IDT2XSTOOL may support
non-conformal sub-channel discretizations along the z-axis, but this capacity is not ex-
ploited yet, as HCCs boundaries have to be conformal in IDT;

• The cross-sectional area of the flow and the wetted perimeter, for each sub-channel and
z-step, which allow for the calculation of the hydraulic diameter;

• A logical variable, defining the presence of a spacer grid, within a given z-step, for the
considered sub-channel;

• A set of variables, depending on the HCC order number and sub-channel identifier, ex-
pressing respectively the presence of nuclear fuel (logical), the cell weight (or, more pre-
cisely, its inverse, which is an integer number), the radial discretization (floats) and the
Cartesian coordinates (x, y, z) defining the location of the cell;

• The cross-sectional mass flow of each sub-channel,
ṁch = ṁ · Ach

Acore
, (12.56)

where Ach and Acore are the sub-channel and the core cross-sectional areas of the flow,respectively, which are easily derived from the above-mentioned quantities.
As anticipated in Sect. 12.7.13, ’channel_power.txt’ provides, for each HCC, two different types of
power, i.e., the one generated in the fuel,Pf , and the one produced in non-fissilematerials,Pnf .In particular, for fuel cells, the latter is redistributed between the moderator and the fuel-clad,
in proportions dependent on their cross-sectional area,

q′f (x, y, z) =
1

∆(z)
Pf,t(x, y, z) · wch(x, y, z) (12.57)

q′c(x, y, z) =
1

∆(z)
Pnf,t(x, y, z) · wch(x, y, z) ·

Ac(x, y, z)

Aw(x, y, z) +Ac(x, y, z)
(12.58)

q′w(x, y, z) =
1

∆(z)
Pnf,t(x, y, z) · wch(x, y, z) ·

Aw(x, y, z)

Aw(x, y, z) +Ac(x, y, z)
(12.59)

which represent the linear power produced in the fuel, in the clad and in the moderator, re-
spectively, and

q′nf (x, y, z) =
1

∆(z)
Pnf,t(x, y, z) · wch(x, y, z) (12.60)

denoting the linear power generated in a cell that does not contain fuel (e.g., a control-rod, a
guide-tube, a water-gap cell, etc.). More specifically,
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• ∆(z) denotes the z-step length, for all HCCs with axial coordinate equal to z;
• Pf,t and Pnf,t are normalized to the total power (defined by the user, Ptot);
• wch(x, y, z) is the cell weight for a given sub-channel;
• Ac(x, y, z) andAw(x, y, z) are respectively the cross-sectional areas of the clad and of themoderator, for a fuel cell in position (x, y, z).

The prior quantities are injected into THEDI, which, provided theboundary conditions (Tin, p, ṁch)and few other parameters (mostly related to the material properties, such as the thermal con-
ductivity and capacity), returns the temperature and density map for every given sub-channel,
in steady-state conditions. In particular, one has Tf = Tf (x, y, z, r), r being the radius, Tw =

Tw(z) and ρw = ρw(z). The fuel output is rearranged, so that one has a single value of fuel tem-
perature, for a given cell position, namely Tf (x, y, z), by computing the Rowlands average over
the whole set of fuel radii, [78], [114]. The obtained TH map, containing all effective fuel tem-
peratures and moderator temperatures and mass densities, is used to update the whole set of
XSTOOL input files, namely ’subdo_ijk.xst’, whose structure is detailed in Sect. 12.3.5. IDT2THEDI
may also produce a collection of files, with ’boolean’ extension, of the kind ’subdo_ijk.True’. The
condition for this to occur, for a given GCU, is defined by

∃{x, y, z} such that δTf (x, y, z) > ϵf or δρw(k) > ϵw, (12.61)
where

δTf (x, y, z) = T
(e+N )
f (x, y, z)− T (e)

f (x, y, z) (12.62)
δρw(k) = ρ(e+N )

w (k)− ρ(e)w (k) (12.63)
and ϵf , ϵw are a fixed tolerance, whose definition is addressed in the upcoming section. As
mentioned in Sect. 12.7.12, N defines the number of outer iterations between two consecutive
TH field updates.

12.7.15 . Macroscopic Cross Section Update by XSTOOL
The updated XSTOOL input file, for a given subdomain, namely ’subdo_ijk.xst’, may or may

not be used formacroscopic cross-section update, by XSTOOL, depending on the occurrence of
the condition defined by Eq. (12.61). Here, two parameters are introduced, ϵf and ϵw, definingthe admitted fuel temperature and moderator density errors, respectively. The results pro-
vided in Sect. 12.8 are obtained by setting ϵf = 5◦C and ϵw = 1 pcm.

If Eq. 12.61 is verified, the macroscopic cross libraries are re-initialized, as in Sect. 12.7.5.
In this case, δΣ(r) is recomputed for Neumann iterations (Sect. 9.2). Conversely, should the
temperature difference be negligible, XSTOOL is not run, for the given GCU, thus lowering the
simulation runtime.

12.7.16 . CP coefficients recalculation
Asmentioned in Sect. 12.7.12, once recomputed themacroscopic cross sections library of the

current subdomain, IDT updates the ’perturbations’ δΣ(r) between the current physical cells,
containing a new set of cross sections, and the past physical reference cells (Sect. 9.2). This
difference is required not to be negative, in order to prevent the possible onset of negative
neutron sources. If this is not the case, even for a single region or energy group, the entire set
of probability matrices is recalculated for the given subdomain.
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12.8 . NUMERICAL RESULTS
In the following, a few numerical tests are presented. First, let us ensure that energy con-

densation does not deteriorate the numerical accuracy of the solution. If observed on real-sized
systems, such as a 3D fuel assembly, this result may validate the assumption that there is no
need to solve an equivalence problem to correct the reaction rates. For the moment, due to
lack of time, only a simple test, involving a small hexagonal pattern, is proposed. Once verified
the numerical accuracy of the solution obtained by a 26-group cross section library (Sect. 12.8.1),
a few multiphysics calculations including the thermal feedback within each power iteration (or
within a subset of power iterations) are presented (Sects. 12.8.2-12.8.3). Differently from other
works [115], the idea is not to converge the neutron flux between one multiphysics iteration
and another, but rather to resort to tightly-coupled N/TH iterations. The preliminary results
presented in Sects. 12.8.2-12.8.3 highlight that the proposed scheme requires only few outer
iterations (roughly around 30), while calculations implementing weak N/TH coupling typically
require few hundreds of outer iterations, to converge the multiphysics solution to the required
precision.

12.8.1 . Energy condensation - Verification test basedona small hexagonal pattern
This test is aimed at verifying whether the energy condensation of the macroscopic cross

sections, performed by XSTOOL, may lead to an equivalence problem, [5][38]. Similarly to
Eq. (12.1), as the macroscopic cross sections are weighted by the angular flux, an angular de-
pendence is artificially introduced in the multigroup data library. Moreover, the upstream
and downstream codes, namely the one generating the parametric cross-section library, i.e.,
APOLLO3® TDT-MOC, and the one solving neutron transport over the whole core, i.e., IDT, do
not use the same discretization. In particular, the discretization of the leakage term may in-
duce a significant error, when condensing the macroscopic cross sections. In order to lower
the aforementioned problems, SPH equivalence is generally used to correct the reaction rates,
[116]. The present section provides a comparison between the results obtained by condensing
the cross sections to 26 and 30 groups, respectively, and the ones derived with no energy con-
densation, i.e., in this specific case, 281 energy groups.

Let us consider a case study involving a 3D hexagonal pattern, with specular reflection
boundary conditions at all edges, composedof 19 fuel pins of unit height, arranged as in Fig. 12.17.
Let us search for the critical boron concentration, without including the thermal feedback. The
external reference library is providedbyGALILEE and contains 281 energy groups. Theparamet-
ric EPL-SSF library is produced by APOLLO3®, by CP Fine-Structure Self-Shielding. In order to
simulate a hexagonal pattern, we use quarter cells, coaxial to one of the HCC edges, with sides
equal to 0.6375 cm and 0.55209 cm, in order to generate longitudinal and transverse pitches of
1.275 cm and 1.10418 cm.

In the following, three simulations are considered, using 281, 30 and 26-group macroscopic
cross-section libraries, respectively, with P1 scattering, generated by XSTOOL through polar
interpolation of the microscopic cross sections (and subsequent condensation), and injected
into IDT for neutron transport. The boron concentration is initialized to C(0)

B = 0.01 ppm, in all
cases. The spatial discretization includes 10×12HCCs, containing a quarter of cylinder, with no
inner Cartesianmesh. Linear short characteristics are applied to determine the spatial solution
of the Boltzmann equation. The solid angle is discretized into 10 directions per octant, using
a S8 Level-Symmetric angular quadrature formula. For all calculations, we use the following

214



Figure 12.17: Hexagonal pattern geometry
Nb. of groups Eigenvalue Critical boron concentration (ppm) Relative error (%)

26 1.000006 336.06 5

30 1.000027 321.15 0.4

281 0.9999965 319.86 −

Table 12.6: Computed eigenvalues and critical boron concentrations, using 26/30/281-group macroscopic cross section libraries. In the last column, the relative error on thecritical boron concentration, assuming the calculation with no energy condensation(i.e., 281 groups) as the reference.
convergence criteria:
• Relative error on the k-eigenvalue: ϵk = 1 pcm;
• L∞-error on the fission source: ϵL∞

F = 10 pcm;
• Point-wise relative error on the angular flux moments: ϵin = 1 pcm;
• L∞-error on the interface flux: ϵL∞

ψ = 1 pcm;
• Relative error on the boron concentration: 1 ppm.
Provided the calculation using non-condensedmacroscopic cross sections may be taken as

reference, let us evaluate the accuracy of the numerical solutions with 26 and 30 energy groups.
Table 12.6 shows the computed eigenvalue and associated critical boron concentration, for

26, 30 and 281 energy groups, as well as the relative error on the computed critical boron con-
centration. Figs. 12.18-12.19 display the relative error on the fuel power distributions obtained
by 26 and 30 energy groups. The fuel power relative error is at most 0.221% and 0.127%, for
H = 26 and H = 30, respectively, H being the number of condensed groups. Finally, for the
sake of completeness, Tab. 12.7 provides the CPU time for each calculation.
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Figure 12.18: 26 vs 281 energy groups: fuel power relative error (%).

Figure 12.19: 30 vs 281 energy groups: fuel power relative error (%).

Nb. of groups CPU time [min]
26 16

30 23

281 191

Table 12.7: Simulation runtime. The spatial domain is divided into 3 × 4 subdomainsand run on 12 OpenMP threads.
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It should be noted that the proposed tests only provide very preliminary results. More
in-depth analyses, based on real-sized assemblies, will be necessary to demonstrate that no
equivalence procedure is actually needed for the presented calculation scheme.

12.8.2 . Neutronics/Thermal-Hydraulics coupling - 3D 17x17 UOX/B4C lattice
Let us consider a 17x17 3D assembly, with a 0.02 cm water blade and 0.0194 cm zirconium-

alloy E110 spacer grids, powered by UOX fuel, regulated via B4C control rods and moderated
and cooled by light water. Specular reflection boundary conditions are imposed on the radial
edges, while vacuum boundary conditions are set on the bottom and top borders. Table 12.8
describes the axial geometry andmaterial composition of the considered benchmark, whereas
Fig. 12.20 provides a sketch of the radial geometry. The guide tube is located in the centre. All
control rods are inserted up to ztip = 330 cm.
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Fuel rod
400 cm

Axial Reflector
380 cm

Fuel pin-cell + Grid
370 cm

Fuel pin-cell
330 cm

Fuel pin-cell + Grid
320 cm

Fuel pin-cell
280 cm

Fuel pin-cell + Grid
270 cm

Fuel pin-cell
230 cm

Fuel pin-cell + Grid
220 cm

Fuel pin-cell
180 cm

Fuel pin-cell + Grid
170 cm

Fuel pin-cell
130 cm

Fuel pin-cell + Grid
120 cm

Fuel pin-cell
80 cm

Fuel pin-cell + Grid
70 cm

Fuel pin-cell
30 cm

Fuel pin-cell + Grid
20 cm

Axial Reflector

Control rod
400 cm

B4C

380 cm

B4C + Guide Tube + Grid
370 cm

B4C + Guide Tube
330 cm

Guide Tube + Grid
320 cm

Guide Tube
280 cm

Guide Tube + Grid
270 cm

Guide Tube
230 cm

Guide Tube + Grid
220 cm

Guide Tube
180 cm

Guide Tube + Grid
170 cm

Guide Tube
130 cm

Guide Tube + Grid
120 cm

Guide Tube
80 cm

Guide Tube + Grid
70 cm

Guide Tube
30 cm

Guide Tube + Grid
20 cm

Axial Reflector

Guide tube
400 cm

Axial Reflector
380 cm

Guide Tube + Grid
370 cm

Guide Tube
330 cm

Guide Tube + Grid
320 cm

Guide Tube
280 cm

Guide Tube + Grid
270 cm

Guide Tube
230 cm

Guide Tube + Grid
220 cm

Guide Tube
180 cm

Guide Tube + Grid
170 cm

Guide Tube
130 cm

Guide Tube + Grid
120 cm

Guide Tube
80 cm

Guide Tube + Grid
70 cm

Guide Tube
30 cm

Guide Tube + Grid
20 cm

Axial Reflector
Table 12.8: 17x17 tridimensional UOX/B4C lattice: axial geometry and composition.
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The external reference library is provided by GALILEE and contains 281 energy groups. The
parametric EPL-SSF library is recycled from the hexagonal lattice described in Sect. 12.8.1. Cross
sections are interpolated and condensed to 26 energy groups, by XSTOOL, using
APOLLO3® TDT-MOC neutron flux, from the lattice calculation, and include P1 scattering ma-
trices. No critical boron concentration search is performed.

Regarding neutron transport, the solid angle is discretized by a S8 Level-Symmetric angular
quadrature formula. The spatial domain is subdivided into 19×19×40HCCs, with no Cartesian
refinement. The total number of cells is equal to 14440. The total number of media is 72868.
The solution is obtained by Linear Short Characteristics. DDM is also applied, with 3 × 3 × 10

symmetrically-distributed subdomains. Concerning the error criteria, the k-eigenvalue and the
fission integral are required to converge (at least) up to 1 pcm and 100 pcm, respectively, while
the tolerance on the inner loop is set equal to 10 pcm.

Thermal-Hydraulics is solved using a single TH-channel, for stationary single-phase regime,
using the following boundary conditions:
• Water inlet temperature, Tin = 550K;
• Pressure, p = 155MPa;
• Flow rate, ṁ = 96 kg

s .
The total power Ptot is normalized to 20MW . The TH channel is discretized by 40 axial planes
of equal size (10 cm). The fuel pin-cells comprise
• 4 rings for the fuel, distributed according to the following ratios: 0.4, 0.3, 0.2, 0.1 (i.e., 40%,

30%, 20% and 10% of the total fuel radius, ρf );
• 4 rings for the helium gap, with ratios 0.4, 0.3, 0.2, 0.1;
• 3 rings for the Zr-clad, with ratios 0.5, 0.3, 0.2.

In the following, two simulations are proposed, sharing the same set of N/TH input param-
eters, except for the aforementioned number N (Sect. 12.7.12), determining the frequency at
which the temperature map is updated, along the outer loop. In particular, for the simulation
labelled as ’Strong’,N is set equal to 1 (i.e., the temperature distribution is updated every outer
iteration), whereas, for the simulation marked as ’Weak’, N is equal to 5. In reality, both tests
should be referred as ’strong’, as the multigroup transport iterations are not converged to the
required precision, before solving thermal-hydraulics. This abuse of notation only serves to
underline that the proposed N/TH coupling scheme can be ’weakened’, depending on user’s
requirements, by adjusting a simple input parameter.

The two calculations (’Strong’ and ’Weak’) are compared to each other, in order to test the
convergence of the algorithm to the required precision, as the frequency of the multiphysics
iterations varies along the outer loop. The numerical results are expected to be the same, with
an error of the order of the required precision. Note that no comparison with a Monte Carlo
or deterministic reference has been conducted yet, due to time constraints.

Let us commence by comparing the convergence rate of the two simulations. Figure 12.21
shows the error on the k-eigenvalue, for N = 1 and N = 5, respectively, as a function of the



Figure 12.20: 17x17 tridimensional UOX/B4C lattice: one eighth of the radial geometry.

number of outer iterations, in semi-logarithmic scale. ’Strong’ and ’Weak’ converge in just 27
and 45 outer iterations, respectively. One can notice that, ’Weak’ may show large cuspids at
iterations with index number equal to k · N + 1, with k ∈ N∗, due to a possible change of cross
sections (and CP coefficients), induced by the thermal feedback.

Figure 12.22 compares the two calculations, in terms of error on the fission source (defined
as in Eq. (12.50)), as a function of the number of outer iterations. The curve corresponding to
N = 1 shows a trend close to an exponential decay, starting from e = 4, with e being the outer
iteration index. The fission source error goes below 100 pcm (the required accuracy) in only 2
iterations, for both calculations.

Finally, Fig. 12.23 compares ’Strong’ and ’Weak’ in terms of inner loop error, defined as the
point-wise relative error on the angular flux moments,

εin = maxfor k<K and |l|⩽k and r∈D

∣∣∣∣∣∣1− ϕ
(i+1)
k,l (r)

ϕ
(i)
k,l(r)

∣∣∣∣∣∣ , (12.64)

where i is the inner iteration index.
Based on our experience, in order to converge the multiphysics iterations to the required

precision and have results within the error criteria, the tolerance on the fuel temperature, εTf ,and the one on themoderator density, ερm , have to be set equal to 5 ◦C and 1 pcm, respectively.
The number of multiphysics iterations (i.e., outer iterations including the thermal feedback)
necessary to converge thermal-hydraulics, within the required error, amounts to 27 iterations,
for N = 1, and 9 iterations (distributed one every 5 outer iterations), for N = 5. Table 12.9
shows the computed eigenvalues forN = 1 (’Strong’) andN = 5 (’Weak’) as well as the relative
difference between the two, assuming ’Strong’ as the reference.
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Figure 12.21: k-eigenvalue error vs iteration number, for N = 1 (’Strong’) and N = 5 (’Weak’).

Figure 12.22: Fission source error vs iteration number, for N = 1 (’Strong’) and N = 5 (’Weak’).

Eigenvalue of ’Strong’ Eigenvalue of ’Weak’ Relative difference (pcm)
0.9652548 0.9652081 4.8

Table 12.9: Computed eigenvalues for N = 1 and N = 5 and relative difference be-tween the two, calculated by taking the simulation corresponding to N = 1 as thereference.
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Figure 12.23: Inner loop error vs iteration number, for N = 1 (’Strong’) and N = 5 (’Weak’).

Let us now compare ’Strong’ and ’Weak’, in terms of fuel temperature, moderator temper-
ature and fuel power distributions. For the sake of conciseness, only few results are displayed
for the fuel temperature and power maps. First, let us observe that the hot spot is located at
x = 6, y = 5, z = 11, where x, y and z denote the (integer) coordinates defining the position
of a HCC. For symmetry reasons, the same temperature and power are observed in other 7
cells of the same plane. Let us consider the axial fuel power trend of the rod located at x = 6,
y = 5, and compare the curves corresponding toN = 1 andN = 5 (Figs. 12.24-12.25). Fig. 12.24
displays the fuel power as a function of z. One can notice that, due to the B4C control rods,
the fuel power is skewed downwards. Fig. 12.25 shows the relative difference between ’Weak’
and ’Strong’, in absolute value, assuming ’Strong’ as the reference. The maximum error barely
exceeds 0.6%.

Let us compare the detailed fuel-pin power distribution, for N = 1 and N = 5, in the
planes z = 11 and z = 3. The former is the plane releasing the largest amount of power (about
1.34MW ), while the latter is the plane showing the largest pin-wise relative difference between
’Strong’ and ’Weak’. Figs. 12.26-12.27 show the pin-wise relative difference, assuming ’Strong’ as
the reference. The largest difference is observed in the plane z = 3 and is significantly less than
1%.

Regarding the fuel temperature distribution, let us compare the results for ’Strong’ and
’Weak’, in the planes z = 11, containing the hot spot, and z = 5, where the largest difference
between the two calculations is observed (Fig. 12.28-12.29). The latter amounts to approximately
1.6K (Fig. 12.29).

Finally, let us display the moderator temperature distribution for ’Strong’ and ’Weak’ and
analyse the difference between the two. As shown in Fig. 12.30, the temperature of themodera-
tor raises up to 587K. Themaximum difference between the two calculations is approximately
0.028K (Fig. 12.31).

Concerning the simulation runtime, the results reported here are derived byOpenMPparal-
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Figure 12.24: ’Strong’ vs ’Weak’: fuel power distribution for the rod in position x = 6, y = 5.

Figure 12.25: ’Strong’ vs ’Weak’: fuel power relative difference (%) for the rod in position x = 6,
y = 5, assuming ’Strong’ as the reference.
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Figure 12.26: Fuel power relative difference,between N = 1 and N = 5, assuming
N = 1 as the reference, in the plane z = 11.

Figure 12.27: Fuel power relative difference,between N = 1 and N = 5, assuming
N = 1 as the reference, in the plane z = 3.

Figure 12.28: Fuel temperature difference [K],between N = 1 and N = 5, in the plane
z = 11.

Figure 12.29: Fuel temperature difference [K],between N = 1 and N = 5, in the plane
z = 5.

Figure 12.30: Moderator temperature [K]:comparison between ’Strong’ and ’Weak’. Figure 12.31: Moderator temperature difference
[K]between ’Strong’ and ’Weak’, as a function of
z.
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Calculation ’Strong’ ’Weak’
Total CPU time [min] 103 87

% for coefficients 24 8

% for cross sections 3.6 1.3

Table 12.10: Total CPU time [min] and percentage of time spent to recompute the prob-ability matrices and the macroscopic cross section libraries.
lelism, with amaximumof 48 threads. Tab. 12.10 shows the total CPU time forN = 1 andN = 5,
as well as the percentage of time spent to recompute the CP coefficients (by IDT) and themacro-
scopic cross sections (by XSTOOL), for each case. Finally, the time spent in thermal-hydraulic
section (i.e., time spent by IDT2THEDI + temperature map calculation by THEDI) amounts to
very few seconds, for each multiphysics iteration.

12.8.3 . Multiphysics iterations, with critical boron concentration search - 17x17UOX/B4C 3D lattice
Let us consider the same case study as the one in Sect. 12.8.2. The control-rod tips are now

located at ztip = 370 cm (Tab. 12.8), so that the system, without boron, is super-critical. In the fol-
lowing, we search for the boron concentration that makes k equal to 1. The thermal-hydraulic
feedback is still present, and is included at each outer iteration, by setting N equal to 1.

All discretization parameters are unchanged with respect to the case study analyzed in
Sect. 12.8.2. The total number of media is 72580, while the total number of cells is 14440. The
subdomainsmacroscopic cross section libraries are regenerated, whenever required by the TH
solver (Eq. (12.61)), at each outer iteration, by microscopic cross-section polar interpolation and
subsequent condensation to 26 energy groups, with P1 scattering matrices. The boron con-
centration is initialized to C(0)

B = 0.01 ppm. The eigenvalue, fission source and inner iterations
are converged up to 1 pcm, 100 pcm and 10 pcm, respectively, with the errors defined as in
Eqq. (12.48), (12.50) and (12.64). The boron concentration is converged up to 1 ppm (Eq. (12.48)),
while the tolerances on the fuel temperature and on the moderator density are set equal to
5◦C and 1 pcm (Eq. (12.63)), respectively.

The fission source and the point-wise relative error on the angular flux moments rapidly
converge to the required precision (Figs. 12.32-12.33). The k-eigenvalue converges in 33 outer
iterations, showing large initial peaks, due to thermal-hydraulics and boron concentration up-
date (Fig. 12.34). Table 12.11 reports the computed eigenvalue and associated critical boron con-
centration.

It is interesting to compare the axial distributions of the calculation marked as ’Strong’
in Sect. 12.8.2 with the current ones. Due to the higher position of the control rods, we ex-

Eigenvalue Critical boron concentration
0.9999962 514 ppm

Table 12.11: Computed eigenvalue and critical boron concentration.
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Figure 12.32: Fission source error vs number of outer iterations, for a 17x17 UOX-B4C 3D lattice,with control rod tips at 370 cm, in tightly coupled N-TH iterations, with critical boron concentra-tion search.

Figure 12.33: Inner loop error vs number of outer iterations, for a 17x17 UOX-B4C 3D lattice, withcontrol rod tips at 370 cm, in tightly coupled N-TH iterations, with critical boron concentrationsearch.
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Figure 12.34: Eigenvalue error vs number of outer iterations, for a 17x17 UOX-B4C 3D lattice,with control rod tips at 370 cm, in tightly coupled N-TH iterations, with critical boron concentra-tion search.

Figure 12.35: Total axial fuel power [MW ]:comparison between ’Strong’ and ’Weak’. Figure 12.36: Moderator temperature [K]:comparison between ’Strong’ and ’Weak’.

pect the axial power distribution to be less markedly skewed downwards. This condition is
clearly verified, as shown in Fig. 12.35, displaying the total axial fuel power, namely Pf (z) =∫
dx
∫
dy Pf (x, y, z). Regarding the axial trend of the moderator temperature, we expect the

inlet-outlet temperature difference to be the same. In fact, the power injected into the system
is, in both cases, Ptot = ṁcp∆T = 20 MW and the imposed flow rate does not change from
one calculation to another, ṁ = 96

kg

s
. This physical consideration on the moderator temper-

ature distribution appears to be satisfied, as shown in Fig. 12.36.
Concerning the simulation runtime, once again, the results are obtained by OpenMP par-

allel computing, with a maximum of 48 threads. The total CPU time amounts to 140 min. The
fractions of time spent to recompute the CP coefficients and the macroscopic cross section
libraries amount respectively to 14% and 4.2% of the total CPU time.
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Figure 12.37: Resonant isotope microscopic cross-section interpolation, as a function of thepercentage of the control rod inserted in the plane. In bold, an axial plane, housing a non-conforming mesh, which allows to reduce the spatial discretization of the fuel rods, but leavesthe nodes that may host a control rod finely discretized.
12.8.4 . Coupledneutronics/thermal-hydraulics simulations,with control-rodmove-ment

Let us consider the same lattice as the one in Sects. 12.8.2-12.8.3, i.e., a three-dimensional
PWR assembly, with water blades, UOX fuel and B4C control rods. The latter are gradually
displaced along the z-axis, with a step-size of 5 cm. Control-rod tips occupy 10 successive axial
positions, from 285 to 240 cm. Thermal feedback is included. In particular, N is set equal to 1.

As shown in Chap. 8, control-rod movements may be simulated using a non-conforming
mesh. Hence, let us consider an axial plane, of the kind illustrated in Fig. 12.37: nodes that
host or may host a control rod (in red) are finely discretized, allowing for an exact represen-
tation of the rod-tip/moderator interface for each position of the control rod. Conversely, the
neighbouring cells are less finely discretized, to reduce the number of computational regions
(Sect. 8.3). In order to determine the set of cross sections for the latter, one may resort to a
simple approach, which consists in obtaining resonant isotope microscopic cross sections by
interpolation with respect to an operating parameter, namely CR%, indicating the percentageof control rod inserted in the considered axial plane (Sects. 12.3.1-12.3.4).

The purpose of the presented case study is, at least, fourfold, i.e.,
• To test the proposed multi-physic scheme;
• To test microscopic cross-section interpolation, as a function of the physical parameters
(Tf , Tw, ρw);

• To show that the control-rod reactivity worth curve is smooth;
• To test cross-section interpolation, as a function of the percentage of control-rod inserted
in the plane, CR%.

In the following, control-rod movements are simulated in two ways.
• First approach (Reference): the spatial domain is subdivided into 80 conformal planes, of
5 cm each. The control-rod parameter is equal either to 0 (unrodded plane) or 1 (rodded
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plane). This approach serves as a "reference". Its solution is computed only for a subset
of configurations;

• Second approach (Target): the spatial domain is subdivided into 40 non-conformal planes
of 10 cm each. Nodes that host (or may host) a control rod contain two planes, of 5 cm
each, so that the rod-tip/moderator interface is represented in an exact way. The control-
rod parameter is equal to 0 in all planes below the control-rod tip, 1 in all planes above
the control-rod tip, a fraction of 1 in partially-rodded planes.

The external reference library (GALILEE) contains 281 energy groups. The parametric library of
self-shielding factors is obtained using APOLLO3®. Resonant microscopic cross sections are
interpolated over an unstructured grid of state points, using radial basis kernel functions, and
afterwards condensed to 26 groups, by XSTOOL. The generated library includes P1 scatteringmatrices. No critical boron concentration search is performed.

Thermal-hydraulics is solved using a single channel and the following boundary conditions:
• Water inlet temperature Tin = 550K;
• Pressure, p = 155 bar;
• Flow rate, ṁ = 96 kg

s .
The total power is normalized to 20 MW . Thermal-hydraulics is converged according to the
following criteria:

• Local error on the effective fuel temperature: ϵTf = 5◦C;
• Local error on the moderator mass density: ϵρm = 1 pcm.

Neutron transport is solved along 80discrete directions, byS8 Level-Symmetric angular quadra-
ture. The spatial solution is obtained by Linear Short Characteristics. The required tolerances
on the eigenvalue, fission integral and angular flux moments are set equal to 1 pcm, 100 pcm
and 10 pcm. All calculations converge in less than 30 power iterations.

For the sake of conciseness, let us compare the two calculations (Reference and Target)
for a single point of the reactivity worth curve, more specifically the one where the control-rod
tips are located at 245 cm. First, let us compare the axial fuel power distributions (Fig. 12.38).
The largest error is observed at plane 37 (i.e., z ∈ [360, 370] cm) and amounts to less than
1.2% (Fig. 12.39). Thus, let us compare the detailed pin-by-pin fuel power distributions over this
axial layer (Fig. 12.40). The maximum error is about 1.35%. The hot spot is located at position
(6, 5, 10) in the macro-grid lodging the heterogeneous Cartesian nodes. The corresponding
(pin-wise) relative error is about 0.08%. The relative error on the k-eigenvalue amounts to about
40 pcm for all compared configurations. The reactivity worth curve (of the calculation referred
as ‘Target’) shows no cusping effect (Fig. 12.42). Good agreement is also observed in terms of
fuel temperature, the maximum error being approximately 1K (Fig. 12.41).

Finally, let us compare ’Target’ and ’Reference’ for the same configuration, i.e., the one
where the control-rod tips are located at 245 cm, in terms of CPU time and memory occupa-
tion. Note that similar results are obtained for all configurations. The solution is obtained by
DDM, with 90 and 180 subdomains, for ’Target’ and ’Reference’, respectively. In both cases,
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Figure 12.38: Reference vs Target: axialfuel-power distributions. Figure 12.39: Relative difference on axial fuel-power distributions.

Figure 12.40: Relative difference onpin-by-pin fuel-power distributionsover plane 37 out of 40.
Figure 12.41: Absolute difference on pin-by-pinfuel temperature distributions, over plane 4 outof 40.
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Figure 12.42: Reactivity-worth curve obtained by ’Target’.

subdomains may contain 144, 168 or 196 cells (blue lines in Fig. 12.43). Thanks to the asymptotic
method, the number of unperturbed/computed cells amounts only to few units per subdo-
main, for all iterations, with a consequent memory (and computational) saving up to a factor
20− 50, in both scenarios, i.e., ’Reference’ and ’Target’ (Fig. 12.43). Note that the tolerance εΣ is
set equal to 10% (Eq. (9.14)). The total number of media is 146960 for ’Reference and 73516 for
’Target’. The total memory occupation amounts to 12 and 9 GB, respectively.

The total number of regions used in ’Reference’ is two times larger than the one used in
’Target’. The same applies to the number of cells. As the average number of region per cell is
about the same (∼ 5), the number of collision coefficients computed (and stored) in ’Reference’
is two times larger than the one in ’Target’, due to the relation shown in Tab. 11.1.

Power iterations are initialized in about 19 (’Reference’) and 10 min (’Target’). The multi-
physic solution is converged in 12 (’Reference’) and 27 (’Target’) power iterations. The overall
computational time amounts to 1 h 30 min and 1 h 47 min, in OpenMP parallelism (the work-
station is an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz). The ultimate reason of the different
time to solution is due to the CMFDmethod, as the performance of CMFD tends to deteriorate
for nodes of the order of 10 cm. As thermal-hydraulics is converged in 11 and 26 iterations,
the time spent for the coefficients and for cross-section interpolation (along the outer loop) is
rather different, as reported in Tab. 12.12.
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Figure 12.43: ’Reference’ vs ’Target’: observed memory saving for a single configuration, morespecifically the one where the control rod tips are located at 245 cm. Note that the figure dis-plays the number of input and computed cells (blue lines and orange line, respectively), foreach subdomain, over all power iterations.

Estimated CPU time Reference Target
For microscopic cross section interpolation 2min (2%) 3min (2%)

For coefficients 22min (21%) 59min (53%)

Table 12.12: ’Reference’ vs ’Target’: time for microscopic cross section interpolation andcoefficients and percentage with respect to the total CPU time.
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13 - Conclusions and perspectives
13.1 . Objectives and requirements
This thesis work lays the foundations for a new simulation pathway for coupled neutron-

ics/ thermal-hydraulics simulations, without resorting to cross-section homogenization, in real
three-dimensional geometry. The proposed scheme involves three codes:
• A discrete-ordinate multigroup transport solver, IDT, projecting the Boltzmann equa-
tion onto heterogeneous modular cells, by means of the method of short characteristics
(MOSC);

• A software performingmicroscopic cross-section interpolation and energy condensation
(if required), namely XSTOOL, generating amacroscopic cross-section library, for neutron
transport;

• A multi-1D, two-phase, thermal-hydraulic code of APOLLO3®, THEDI, here used to solve
mass, momentum and energy conservation, in stationary monophasic flow, over inde-
pendent sub-channels, as well as a radial diffusion equation for fuel heat conduction.

The present manuscript describes an advanced two-step scheme, based on direct microscopic
cross-section interpolation and possible subsequent macroscopic cross-section condensation,
by XSTOOL. Multiphysics is solved by tight-coupled multigroup-transport/thermal-hydraulics
iterations. Priority is given to the neutronic solution, with the following requirements:
• Performhigh-fidelity transport, capable of capturing large neutronflux gradients, in strong
absorbers and markedly diffusive media;

• Design non-extruded/non-conformal/unstructured geometries to address increasingly
diverse reactor geometries;

• Provide an accurate 3D transportmodel, in real heterogeneous geometry, without control-
rod homogenization, in order to eliminate the control-rod cusping effect;

• Mitigate the memory needs of collision probability-based methods, such as MOSC, to
deal with systems hosting thousands of different regions, in burn-up and/ormultiphysics
calculations.

To pursue these objectives, a new version of IDT has been developed, starting from its homony-
mous progenitor, hereinafter referred to as APOLLO3® IDT. Let us recall some key features and
novelties of this new version of the code.

13.2 . Towards a new version of IDT
13.2.1 . New geometrical capabilities

These include
• The construction of upgraded modular Heterogeneous Cartesian Cells (HCCs), equipped
with both coaxial cylinders andXY Z planes;

233



• The implementation of a novel combinatorial ray-tracing algorithm, intersecting each tra-
jectory twith a set of geometrical patterns. For the time being, these comprise Cartesian
bands and concentric rings, with the chord-lengths being computed in two steps, i.e.,
2D-tracking over theXY -plane and 2D-tracking over the transverse tZ-slice;

• Theoption to pivot the cylinders along theX andY -axis, aswell as to designnon-Cartesian
geometries, such as hexagonal patterns, taking advantage of the possibility to move the
rings centre;

• The introduction of the Tuple-to-Region Map (TRM), which allows to condense regions
with different band or ring number, and thus to coarsen or even customize the spatial
discretization of each HCC. This intuitive technique allows to manufacture unstructured,
non-conformal and non-extruded geometries, provided that the HCC borders and sur-
face discretizations are still conformal, for angular currents exchange.

This ensemble of tools permits, on the one hand, to enhance the numerical accuracy of IDT.
In this respect, a preliminary validation campaign has been carried out, by means of quantita-
tive comparisonswith reference codes, mainly TRIPOLI-4® continuous-energyMonte Carlo and
APOLLO3® TDT-MOC, but also MCNP, within the framework of the C5G7 benchmark. On the
other hand, the implemented geometry permits to avoid the appearance of cusps in the reactiv-
ity worth curve, in control-rod insertion/withdrawal steady-state calculations. Differently from
traditional nodal solvers, IDT heterogeneous non-extruded non-conforming geometry allows
the control rod tip and the underlying moderator to be represented separately in the node,
without significant increase in computational resources. In fact, only few cells, i.e., those that
permit control-rod displacements, are finely discretized along Z , with one plane for each axial
position of the rod tip.

13.2.2 . Novelties on the method of short characteristics
The main innovation on MOSC concerns the introduction of an asymptotic development

to reduce the memory pressure of the probability matrices. This method consists in grouping
HCCs with equal geometry and similar optical properties into a handful of reference cells. The
probability coefficients are solely determined for the latter, with the other HCCs being inter-
preted as a ’pertubation’ of a reference cell. Under relatively loose conditions, involving the
deviation of the total cross sections of the ’perturbed’ cells with respect to the corresponding
reference HCC, the transport solution can be reconstructed by means of a Neumann series de-
velopment. The memory burden is thus partially transferred onto the inner iterations, which
perform more transport sweeps to reconstruct the angular flux. Based on early numerical
evidence, this technique greatly reduces the memory requirements of the probability matri-
ces, making collision probability (CP) and MOSC solvers, such as IDT, more attractive for three-
dimensional lattice and core calculations.

A dedicated study has highlighted the possibility of further reducing the memory imprint
and CPU time of the angular-dependent CP matrices, by applying simple reciprocity and sym-
metry relations. While the former are always verified, the latter are valid only for symmetric
cells, with piece-wise linear source and interface flux distributions. The application of these
transformations allows to lower the memory burden by up to a factor of 16.

Finally, incomplete parabolic short characteristics (PSC) have been introduced in IDT, in or-
der to retain high numerical accuracy while reducing the number of computational regions.
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Preliminary results on 3× 3 two-dimensional patterns and on the Watts Bar benchmark show
good agreement with the Monte Carlo simulation. Unfortunately, the aforementioned symme-
try relations, based on permutation and sign matrix application, are not satisfied by second-
order coefficients. Hence, amixed approach, using radial piece-wise linear source and interface
flux distributions and parabolic piece-wise developments along the Z-axis, has been tested, to
lower the memory footprint by up to a factor of 8.

13.3 . Multiphysics
A new advanced two-level calculation scheme has been presented. Unlike the classical

two-step paradigm, non-homogenized cross sections are provided to the core calculation. In
fact, it has been shown that the effective parametric microscopic cross sections exhibit much
smoother variations as a function of the operational/physical parameters and, as such, can be
easily interpolated, also offering the possibility of reducing the number of interpolation nodes.
The use of the neutron flux, stored in the EPL-SSF libraries, from the lattice calculation step,
also allows for multigroup cross-section condensation. Based on preliminary numerical tests,
this does not deteriorate the accuracy of the reaction rates. It is expected that an intermediate
step, based on equivalence theory, will not be necessary for reactor core calculations.

The scheme outlined in this work implements a tight neutronic/thermal-hydraulic coupling,
the thermal feedback being taken into account directly in the power iterations. Nevertheless,
a simple input parameter, which can be adjusted by the user, can ’weaken’ the N/TH coupling.
Initial results suggest that tight coupling, with thermal-hydraulics feedbacking on neutronics
at each outer iteration, can significantly reduce the number of outer iterations. The CPU time
necessary can be largely improved, using mixed MPI/OpenMP parallelism, on several MPI pro-
cesses.

13.4 . Future work
Numerous improvements, research topics and numerical tests are still possible for IDT. In

the following, a few are suggested.
13.4.1 . Geometric model

The geometric model can be greatly enriched, with the introduction of further patterns,
such as spheres and azimuthal sectors. These could be easily integrated into the modular
geometry of IDT, with little implementation effort. There still remains a long series of numerical
tests to be carried out, including the validation of hexagonal geometries against Monte Carlo
and the use of cells with mixed vertical/horizontal cylinders, with a projection toward nuclear
systems such as VVER and CANDU reactors.

13.4.2 . PSC and hybrid-order short characteristics
In order to become competitive with the linear order approximation, a new set of symme-

try relations shall be constructed for incomplete parabolic short characteristics. Meanwhile,
multiple hybrid-order short-characteristics schemes may be tested, e.g., one implementing lin-
ear piece-wise sources and constant piece-wise interface angular fluxes, with the possibility to
retain the most successful in the release version of IDT, for future calculations.
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Figure 13.1: Neutron-transport/fuel-performance coupling: a possible line of research for futureapplications of IDT.

13.4.3 . Multiphysics and industrial-scale calculations
Finally, enormous work must be conducted for applications of IDT to multiphysics, both to

confirm the first numerical evidence shown in Chap. 12, with further tests on different lattices,
and to extensively verify and validate the calculation scheme. Numerical comparisonwith other
codes will be crucial in this regard, to establish the reliability and accuracy of the models and
algorithms described in the final part of this thesis manuscript.

13.4.4 . Control-rod withdrawal and insertion
With little effort, steady-state neutron transport calculations, including thermal-hydraulic

feedback, can be performed to determine the control-rods position and boron concentration
that make the reactor critical.

13.4.5 . IDT coupled to more detailed thermal-hydraulic codes
IDT may be coupled to more complex thermal-hydraulic solvers, such as
• CATHARE, [108], which uses a biphasic-flow six-equation model, for the average mass,
momentum and energy of each phase,

• FLICA4 or FLICA5, [117], which use a biphasic-flow four-equation model, including vapor
mass conservation and three conservation equations for the mass, the internal energy
and the momentum of the liquid-vapor mixture.
13.4.6 . IDT coupled to thermal-mechanical codes

IDT may be coupled to a thermal-mechanical solver, such as ALCYONE, [118], which is a
multi-dimensional fuel performance code for PWRs, to simulate fuel-pellets and cladding defor-
mation, due to neutron irradiation. Also in this case, tight neutron-transport/fuel-performance
coupling may be preferred. Figure 13.1 provides an application example.
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A - THEDI - A BRIEF OVERVIEW
A.1 . INTRODUCTION
Neutronics and thermal-hydraulics are coupled problems, as
• the macroscopic cross sections depend on temperature and density,
• the power released by nuclear reactions affects medium’s temperature.

THEDI (THErmohydraulique DIphasique) is a multi-1D two-phase thermal-hydraulic code of
APOLLO3®, [77], [78]. It is equipped with 4main solver options:
(a) A 1D thermal-hydraulic model, consisting of 4 balance equations, for each core channel;
(b) A 1D thermal-hydraulic model, consisting of 3 balance equation, each "ex-core" compo-

nent;
(c) A 1D thermal model, consisting of 1 balance equation, for nuclear-fuel heat conduction;
(d) A point kinetics model, for monoenergetic-neutron and precursor concentrations.

In the following, some details are provided on model (a) and (c). In Sect. A.2, model (a) is in-
troduced, pointing out the mass, momentum and energy conservation equations, for the va-
por and liquid-vapor mixture. It is worth mentioning that THEDI is able to model two types of
coolant, i.e., water and sodium. Channels are independent one from another, as they are not
coupled by transverse terms. The balance equations are discretized into axial nodes and finite
differences are applied on a semi-implicit model, to avoid instabilities caused by coarse time-
steps.

In Sect. A.3, a brief overview of model (c) is proposed. By taking advantage of fuel-pellet
symmetrical shape, the diffusion equation is discretized into radial layers. Finite-differences
are applied on an implicit scheme, to determine the fuel temperature distribution.

A.2 . 1D AXIAL THERMAL-HYDRAULICS
A.2.1 . Notation

• Time, t
• Axial coordinate, z
• Void fraction, α
• Vapor subscript, v
• Liquid subscript, l
• Mass density, ρ
• Speed, w
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• Mass rate exchange between liquid and vapor, Γ
• Shear coefficient, C
• Gravitational acceleration, g
• Internal energy, u
• Density of the liquid-vapor mixture, ρm = αρv + (1− α)ρl

• Speed of the liquid-vapor mixture, wm = 1
ρm

(
αρvwv + (1− α)ρlwl

)
• Relative speed between phases, wr
• Internal energy of the liquid-vapor mixture, um = 1

ρm

(
αρvuv + (1− α)ρlul

)
• Wall temperature, Tp
• Liquid temperature, Tl
• Pressure, p
• Heat transfer coefficient, h
• Heat flux density, q

A.2.2 . Balance equations
THEDI solves the following set of 1D balance equations, for each sub-channel, [77]:
• Mass continuity equations for the liquid-vapor mixture and for the vapor, respectively,

∂ρm
∂t

+
∂ρmwm
∂z

= 0, (A.1)
∂αρv
∂t

+
∂αρvwv
∂z

= Γ, (A.2)
• Momentum conservation for the liquid-vapor mixture,

∂ρmwm
∂t

+
∂
(
αρvw

2
v + (1− α)ρlw2

l

)
∂z

+
∂p

∂z
+ ρmg − Cwm|wm| = 0, (A.3)

• Energy conservation for the liquid-vapor mixture,
∂ρmum
∂t

+
∂
(
αρvuvwv + (1− α)ρlulwl

)
∂z

+ p
∂
(
αwv + (1− α)wl

)
∂z

= q + h(Tp − Tl). (A.4)
Note that
• The gravitational and kinetic energy are negligible with respect to the internal energy,
thus they are disregarded in Eq. A.4;

• As mentioned in Sect. A.1, THEDI sub-channels do not exchange heat or mass.
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A.2.3 . Numerical solution
The numerical solution is obtained by applying a semi-implicit Stability Enhancing Two-

Steps approach (SETS), [79]. Eq. A.1-A.4 are discretized by finite differences. This scheme tends
to foster numerical stability (particularly in the case of monophasic flow), while the numerical
precision is only linear with respect both to t and z. As Eq. A.1-A.4 form a system of 4 equations,
one can choose 4 unknowns, which, in the case of THEDI, are the temperature, T (t, z), pres-
sure, p(t, z), void fraction, α(t, z), and speed of the liquid-vapor mixture, wm(t, z). Concerningthe other quantities appearing in the 1D balance model,
• wr,Γ, C and h are provided by correlations,
• g is a constant,
• q and Tw are given,
• ρl, ρv, ul and uv depend on p and T .

The boundary conditions are
• pin and pout (or, alternatively, pin and ṁout or, alternatively, ṁin and pout),
• Tin and αin,

where in/out denote the inlet/outlet sides, while ṁ represents the mass flow rate. Eq. A.1-A.4
are linearized and solved iteratively, until convergence.

A specific solution pathway is available for the particular case of stationary monophasic
flow. This approach is particularly suitable for neutronics applications and requires little com-
putational runtime.

A.3 . 1D RADIAL DIFFUSION
Heat conduction in nuclear fuel is described by the diffusion equation:

ρcp
∂T

∂t
= ∇(λT ) + q′′′, (A.5)

where cp and λ denote the specific heat capacity and the thermal conductivity, while q′′′ is the
volumetric heat power generation. Note that Eq. (A.5) is not linear, as ρcp and λ generally
depend on temperature, T . Assuming the fuel rod has infinite length, the Laplacian reduces to

∇f =
1

r

∂

∂r

(
r
∂f

∂r

)
, (A.6)

where f is twice-differentiable. Eq. (A.5) becomes:
ρcp

∂T

∂t
=

1

r

∂

∂r

(
r
∂T

∂r

)
+ q′′′, (A.7)

Eq. (A.7) is solved applying an implicit finite difference scheme. The discretized equation is
linearized and solved iteratively.
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B - ANALYTICAL COMPUTATION OF THE FLUX MOMENTS
BY TAYLOR EXPANSION
The asymptotic expansion presented in Chap. 9 may be addressed by analytical treatment

of moments ψn (Eq. (9.10)). This analysis is based on the study of the derivatives of the angularflux with respect to the total cross section. In the case of a homogeneous cell, the integral form
of the transport equation reads as

ψ(x; Σ) = ψ(0)e−Σx +

∫ x

0
q(y)e−Σ(x−y)dy, (B.0.1)

where the coordinate transformation r = r− + x Ω is introduced along the characteristic line,
and cross sections are treated as parameters of the flux distribution, i.e., ψ = ψ(x; Σ). The
partial derivative with respect to Σ can be drawn from Eq. (B.0.1),

∂ψ

∂Σ
(x; Σ) = −xψ(0)e−Σx +

∫ x

0
−(x− y)q(y)e−Σ(x−y)dy (B.0.2)

= −xψ(x) +
∫ x

0
yq(y)e−Σ(x−y)dy.

As shown in Eq. (B.0.2), the first derivative generates a linear spatial moment along the trajec-
tory. Thus, the first-order moment of the Neumann series (Eq. (9.10)) is equal to the first-order
Taylor expansion around the unperturbed cross section, namely

ψ ≃ ψ1 +O(δΣ2) = ψ(x; Σ0) +
∂ψ

∂Σ
(x; Σ0) δΣ+O(δΣ2), (B.0.3)

with δΣ = (Σ− Σ0). By replacing Eq. (B.0.2) in Eq. (B.0.3), one obtains
ψ1(x) = (1− x δΣ)ψ0(x) + δΣ

∫ x

0
yq(y)e−Σ0(x−y)dy. (B.0.4)

The Taylor series can be extended up to order n ≥ 0, with n-th derivative
∂nψ

∂Σn
(x; Σ) = (−x)nψ(0; Σ)e−Σx +

n∑
i=0

(
n

i

)
(−xi)

∫ x

0
yn−iq(y)e−Σ(x−y)dy

= (−x)nψ(x; Σ) +
n−1∑
i=0

(
n

i

)
(−xi)

∫ x

0
yn−iq(y)e−Σ(x−y)dy. (B.0.5)

Thus, the n-th moment can be computed analytically as
ψn(x; Σ) =

n∑
i=0

∂iψ

∂Σi
(x; Σ0)

δΣi

i!
(B.0.6)

=

[
n∑
i=0

(−x δΣ)i

i!

]
ψ(x; Σ0) + (B.0.7)

n∑
i=1

 i−1∑
j=0

(
i

j

)
(−xj)

∫ x

0
yi−jq(y)e−Σ0(x−y)dy

 δΣi
i!
. (B.0.8)
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Since
lim
n→∞

[
n∑
i=0

(−δΣ x)i

i!

]
= e−δΣ x (B.0.9)

as n→∞, we obtain
lim
n→∞

ψn(x; Σ) = ψ(0)e−(Σ0−δΣ)x +

∫ x

0
q(y)e−(Σ0−δΣ)(x−y)dy, (B.0.10)

= ψ(x; Σ). (B.0.11)
Eq. (B.0.4) can be solved numerically and used to compute Taylor expansion of numerical

coefficients around the unperturbed state, Σ0.

As an example of application to HCC framework, let us consider the linear Taylor expansion
of the collision matrix,Cd,α,β(Σc). Since every coefficient is a multivariable function ofΣc, thelinear Taylor expansion aroundΣc0 reads as

Cd,α,β(Σc) = Cd,α,β(Σc0) +
∑
γ∈Gc

∂Cd,α,β

∂Σc,γ

∣∣∣∣
Σc=Σc0

(Σc,γ−Σc0,γ). (B.0.12)

Eq. (B.0.12) requires the computation and storage of the unperturbedmatrix, namelyCd,α,β(Σc0),but also of a number of matrices containing the partial derivatives, i.e., ∂Cd,α,β

∂Σc,γ
, whose number

is equal to the number of regions of the HCC. The coefficients of matrix ∂Cd,α,β

∂Σc,γ
are combination

of linear moments of the flux, as it can be inferred by looking at Eq. (B.0.2). For example, it can
be proven that the derivatives of the constant moment (first row of ∂Cd,α,β

∂Σc,γ
) can be obtained by

combining linear moments of the flux, which are already contained in the matrix. In the past
years, attempts have been made to manage efficient computations of the CP matrices. How-
ever, as cells are heterogeneous and HCC regions are correlated, there is a huge amplification
of the computational effort and the memory burden of the derivatives. Hence, this approach
has been dismissed, as the memory burden is not effectively reduced when applied to HCCs.
Nevertheless, its application to homogeneous cells could be of some interest.
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C - ASYMPTOTIC METHOD - SPECTRAL RADIUS ANALYSIS
The spectral radius of the operator L−1

0 δL can be measured as
ρ(Ω) =

∥∥L−1
0 δL

∥∥ ∼ max
n

( ∫
D δΣ ψn∫

D Ω · ∇ψn+
∫
D Σ0ψn

)
.

At convergence,
ρ(Ω) ∼ δτ(Ω)

|(J+ − Jin)(Ω) + τ(Ω)|

=

∣∣∣∣∣
∫
D d

3r δΣ(r)ψ(r,Ω)∫
∂D+

d3r+ |Ω · n|ψ(r+,Ω)−
∫
∂D−

d3r− |Ω · n|ψin(r−,Ω) +
∫
D d

3r Σ(r)ψ(r,Ω)

∣∣∣∣∣ .
We can distinguish three cases:

• Case with zero net leakage, (J+ − Jin)(Ω) = 0:

ρ(Ω) =

∣∣∣∣δτ(Ω)

τ(Ω)

∣∣∣∣ .
Thus, it is sufficient to satisfy the condition

|δτ(Ω)| < τ(Ω),

for the method to converge.
• Case with zero incoming flux, ψin(r−,Ω) = 0:

ρ(Ω) =

∣∣∣∣ δτ(Ω)

J+(Ω) + τ(Ω)

∣∣∣∣ < |δτ(Ω)|
τ(Ω)

since J+(Ω) ≥ 0 by definition. Thus, it is sufficient to satisfy the condition
|δτ(Ω)| < τ(Ω).

• Case with thick medium, i.e. with J+(Ω)≪ J−(Ω). Provided J+(Ω) is negligible,
ρ(Ω) =

|δτ(Ω)|
|−Jin(Ω) + τ(Ω)|

.

Hence, the condition to satisfy is given by
|δτ(Ω)| < τ(Ω)− Jin(Ω), if Jin(Ω) < τ(Ω),

|δτ(Ω)| < Jin(Ω)− τ(Ω), if Jin(Ω) > τ(Ω),

and is undetermined, if τ(Ω) = Jin(Ω).
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