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I would like to thank my Chinese supervisor Prof. Xiaowei Tu for his continuous support and encouragement. I benefit from communicating with him whenever I am confused and lost. He always gives me great encouragement and confidence. I would especially like to thank my girlfriend Ms. Mo Zhang. She is the best gift in my life. She has always cared for, supported, and encouraged me during my three-year doctoral career abroad. During this period, we went through too many difficulties. Yet we iii 1 INTRODUCTION 1.1/ CONTEXT Traffic safety and efficiency, closely related to people's lives, are topics of concern to countless scientists. Autonomous driving technology is considered as a promising solution to improve traffic conditions. Some technologies, such as Intelligent Transportation Systems, Connected Autonomous Vehicles (CAV), etc., are studied to facilitate the stable and safe driving of Autonomous Vehicles (AVs) in various traffic scenarios. Among many, the scenario where AVs and other vulnerable road users, such as pedestrians, motorcycle riders, and cyclists, share the same road is a significant hurdle to popularizing AVs due to the safety concerns involved with vulnerable road users. Especially when an AV faces a pedestrian who wants to cross the road, the AV's decision-making and control are related to traffic safety, efficiency, and the pedestrian's psychological activities. These three points should be considered when designing AVs' control algorithm.

For pedestrian safety, the technology started with the early Autonomous Emergency Braking system. It provides emergency braking when danger arises. Then it became the modern advanced Pedestrian Crash Avoidance Mitigation (PCAM) [135]. Vehicles equipped with PCAM judge the potential danger and act in advance to ensure safety. Ultimately, it will evolve into a future intelligent system. Considering pedestrians as autonomous agents rather than ordinary obstacles, AVs show friendly behaviors and cooperate with them in shared spaces. This way, vehicles provide pedestrians with a safe, efficient, and pedestrian-friendly crossing environment.

Many researchers study pedestrian models, behaviors, CAVs, pedestrian-vehicle interaction, negotiation, etc. Fruitful results are achieved, and many of them demonstrate the importance of pedestrian-AV interaction. Research on this topic already has a solid theoretical basis. The interaction through AV's intent display is currently receiving a large number of research works.

In addition to the AV's intent display, recent research considers the AV's speed profile as a powerful way to interact with other road users [118]. However, regarding pedestrians, the latest research only stops with AVs negotiating a right-of-way with pedestrians to avoid collisions. It has not fully answered how to realize pedestrian-vehicle interaction and cooperation, and how to use their cooperation to provide pedestrians a safe, efficient, and friendly crossing environment. The speed profile is not neutral [117]. It should provide a communicative behavior for confirming the intention of the AV. The speed profile is the implicit communication that should not contradict the signalization, i.e., explicit communication. For instance, a CAV that displays the green but accelerates to resort at the last seconds to the emergency brake is inappropriate behavior. Moreover, the speed profile determines the efficiency of global traffic. Hence, the speed profile should not be neglected in the pedestrian-vehicle interaction studies. However, in the literature, there is no alternative to the complete stop near the intersection zone. Considering the maturity of various technologies and the challenging traffic in urban environments, this work limits the application to industrial areas. In such areas, only pedestrians/workers and CAVs exist. It is relatively easier in controlled industrial areas to realize the connectivity between vehicles. Furthermore, the workers can be trained to understand the implications of vehicles' behaviors and act cooperatively. Finally, the transportation efficiency in such areas is needed and can be estimated.

1.2/ OBJECTIVE AND CONCERN OF THIS WORK

The major objective of this work can be summarized as:

Provide pedestrians and CAVs safe, efficient, and friendly intersection environment through their communicative and cooperative behaviors.

For brevity, this work calls it "intersection optimization." In order to clearly illustrate the research question, this work presents an intersection scenario shown in Figure 1.2. In this scenario, pedestrians want to cross the road where there are streams of CAVs. The red area forms an intersection without traffic lights and other traffic control facilities. The major objective can be decomposed into two subcomponents.

The first component is optimizing the intersection in the single conflict scenario where one pedestrian and one CAV exist. As a special kind of "agent," the behavior of pedestrians is influenced by many factors. This character results in an inability to optimize the pedestrians-AVs intersection and handle crossovers between CAVs. Many studies consider the interaction between pedestrians and CAVs as a way to optimize the intersection, and the CAV intent display and speed profiles are effective ways to interact with pedestrians. However, relevant research on CAVs' optimal speed profile is lacking. More studies are needed to achieve the major objective mentioned above.

The second component is to extend the optimization to the multiple lane scenario where several streams of CAVs exist. Because of the complexity of pedestrian-AV interaction, most research on this topic only focuses on the single conflict scenario. However, roads in real scenes usually contain multiple lanes. Hence, this extension is essential when the optimization is applied to real traffic scenarios.

1.2.1/ CONCERN AND ANALYSIS

To reach the major objective, there are four significant concerns in this work:

• Concern 1: Optimal speed profiles. In the single conflict scenario, the CAV does not need to resort to a complete stop near the pedestrian. It can promptly prepare a safe margin, not only to avoid collision but also to invite the pedestrian to cross earlier. This way accelerates the crossing efficiency. Hence, there is theoretically an optimal speed profile for the CAV and the pedestrian, which realize the interaction between the two road users and make the intersection safe and efficient. The studies about the model of the intersection and optimal speed profiles are limited.

• Concern 2: Practical consideration. The pedestrian may not behave like the scheduled optimal speed profile. Pedestrian behavior, such as the decision to cross the road, reaction time, and crossing speed, is influenced by many factors. Some essential factors, such as CAV distance, speed, and acceleration, should be considered when applying the theoretical solution to practice. This consideration is for traffic efficiency but more for pedestrian safety and pedestrian-friendly behavior.

• Concern 3: Generalization. To the best of our knowledge, research on this topic only stops at the single conflict scenario. Generalization is an essential step to deploying the envisioned method to real roads. However, intersection optimization is more complex if we consider the generalization in multiple lane roads. As shown in Figure 1.2, the crossing order of CAVs and pedestrians is an extra variable affecting traffic safety and efficiency. For example, the strategy of always letting pedestrians cross first and then CAVs is not optimal. This way will slow down all affected CAVs and lose traffic efficiency. This strategy also brings safety concerns when the first CAV facing pedestrians is close to the red area. Conversely, the strategy of always giving pedestrians the last pass is not optimal. On the one hand, this driving behavior is unfriendly to pedestrians. On the other hand, according to related research, it has been found that the probability of violating the rules increases with the waiting time, thereby increasing the possibility of traffic accidents. Therefore, how CAVs plan an optimal crossing order and interact with pedestrians is another key issue to achieving the major objective of this work.

• Concern 4: Simulation tool. The experiment directly on a closed road is difficult, dangerous, and expensive because of the participation of humans and CAVs. It is necessary to use a simulation method to test the proposed solution. However, pedestrian behavior is hard to simulate. An appropriate simulator is required to overcome the difficulty of experiments and obtain reliable simulation results.

1.2.2/ METHODOLOGY

AVs should first equip several essential functions to realize their connectivity and interaction with pedestrians. This work supposes:

• Each CAV can accurately detect the pedestrian's position and crossing speed through equipped sensors.

• Stable, real-time, and reliable communication between vehicles is achieved through wireless modules.

• Each CAV is equipped with a signal light in front. Vehicles interact with pedestrians through signal lights. Pedestrians understand the meaning of the signal light.

The signal is added to overcome the absence of the driver's gaze and make the pedestrian feel safe.

• Each CAV is equipped with an emergency braking system. This system can be triggered if pedestrians break the scheduled crossing sequence introduced later.

The four assumptions above are achievable with today's autonomous driving technology. More details will be shown in Section 2.3 in the next chapter.

To study optimal speed profiles (Concern 1), this work starts with a single conflict scenario and theoretically analyzes the possibility of intersection optimization. Specifically, this work treats the CAV and the pedestrian as agents and models this multi-agent system based on a Petri-net. Then, this work uses Hamiltonian analysis to derive optimal speed profiles for the CAV and pedestrian agents.

Then, this work gives practical considerations (Concern 2) of the optimal speed profiles.

Considering speed control can only be accurately applied to the CAV, a condition is added to limit CAV's speed to ensure pedestrian safety during the intersection. On this basis, the optimal CAV state is proposed to minimize the loss of driving distance due to avoiding pedestrians. This work uses Quadratic Programming (QP) and Deep Reinforcement Learning (DRL) methods to control the CAV. The purpose is to let the CAV reach the optimal state. The experimental results based on these two methods are compared.

Based on the method in the single conflict scenario, this work finally extends the method to the multiple lane scenario (Concern 3). We propose a cooperation model between CAVs and pedestrians to optimize the intersection. In the model, CAVs share all information and negotiate the optimal crossing order together by an algorithm. CAVs and pedestrians interact through CAVs' signal light and speed control.

For Concern 4, this work builds a Mixed Reality based simulator for the research topic.

The simulator allows real pedestrians to be involved in a 1:1 environment scale by a virtual helmet. Testers can enter the virtual scene and interact with CAVs to test the method. This way overcomes the difficulty of the experiment and ensures the reliability of results.

1.2.3/ MAIN CONTRIBUTION

Following the analysis presented in Section 1.2.1 and 1.2.2, the contribution of this work can be summarized as follows:

• Modeling based on Petri-net and optimizing by Hamiltonian analysis to derive the optimal speed profiles for CAVs and pedestrians.

• A DRL controller to control CAVs to reach the optimal state and to improve crossing efficiency. The control method is compared with Model Predictive Control.

• An algorithm to calculate the optimal crossing order between CAVs and pedestrians in the multiple lane scenario.

• Modeling and optimizing the coordination of intersection between pedestrians and multi-streams of CAVs.

• A Mixed Reality based simulator to develop and test the algorithm.

The speed profile is a vector of communication between CAVs and pedestrians. In addition to the widely currently studied signaling systems in the literature, the speed profile of CAV needs to be considered, mainly because it is an essential parameter for pedestrian decision-making, as reported by many previous studies. This work aims to go beyond the observation, optimizing the speed profile and adapting it to the pedestrian's behavior during the crossing.

The collective crossing order is taken by CAVs together to schedule the crossing time of pedestrians. The crossing order is a combinatorial optimization problem that designates which CAVs pass before the pedestrian and which ones pass after the pedestrian.

1.3/ PLAN OF THIS WORK

To achieve the major objective presented in Section 1.2, main contents of this work are organized from theory (Chapter 3) to practice (Chapter 4), and finally to generalization (Chapter 5), as illustrated on the right side of Figure 1.3. The objectives and four concerns presented in Section 1.2 are tackled accordingly.

Chapter 2 introduces background information on pedestrian-vehicle intersection studies.

The chapter divides the domain into two sets of work: the pedestrian crossing attributes and pedestrian-AV interaction. Both works aim at enhancing pedestrian safety.

Chapter 3 starts from the simplest scenario, where only one pedestrian and one vehicle exist. This chapter treat the vehicle and the pedestrian as controllable agents and build 1.3. PLAN OF THIS WORK a single conflict model by Petri-net for the optimization problem. Due to the nonlinear constraints, this chapter solve the problem using the Hamiltonian optimization method and finally get the optimal speed profiles of both agents (Concern 1). In addition, this chapter introduces a developed simulation tool for the studied subject (Concern 4). Chapter 4 analyzes the limitations of the results by Hamiltonian optimization, considering the problems in practice due to the uncontrollability of pedestrians. Then, this chapter calculates the optimal state to ensure pedestrian safety and traffic efficiency from another perspective (Concern 2). Specifically, the vehicle invites the pedestrian to pass through deceleration and signal lights, and then the vehicle always maintains a safe braking distance during the pedestrian passing process. At the same time, the vehicle controls its motion state according to the changing pedestrian state. The vehicle reaches the optimal state at the end of the pedestrian crossing to maximize traffic efficiency. To implement this process, this chapter builds a DRL model to control the vehicle speed, and finally, trains the model and get desirable results. In experiments, this chapter compare the vehicle driving state under the DRL method and the QP method.

Chapter 5 analyzes more complex scenarios where there are multiple lanes and multiple vehicles in each lane, multiple pedestrians, etc. Firstly, this chapter analyzes the factors that affect traffic safety and efficiency. The analysis show that the crossing order and ve-hicle behavior are the factors affecting safety and efficiency. Then, a model of cooperation between CAVs and between CAVs and pedestrians is proposed for this complex scene (Concern 3). It includes the control logic of the interactive signal lights, the control logic of each CAV itself, etc. Later, an algorithm to calculate the optimal crossing order is given for improving global crossing efficiency. Finally, in the experiments, the combination of the algorithm of optimal crossing order, the cooperative control of interactive signal lights, and the optimal state control algorithm based on DRL developed in Chapter 4 provide pedestrians with a friendly traffic environment. Compared with the natural traffic mode, our proposed solution highly improves traffic efficiency in this scenario.

Chapter 6 concludes this work and discusses some future work.

STATE OF THE ART

2.1/ INTRODUCTION

Pedestrian-vehicle conflicts have been the subject of several research studies. One of the main motivations is the significant number of victims of road accidents involving vulnerable road users. In 2018, in urban areas where 38% of Europe Union's road fatalities happened, 39% and 30% of fatalities involved pedestrians and two-wheelers (including 13% of bike riders), respectively. To overcome this issue, there are two active research communities. The first relates to pedestrian behavioral studies (factors and models). The second one focuses on assisting the vehicle driver in avoiding the collision.

In the first community, a growing body of research has focused on understanding the behavior of pedestrians to make the shared space safer and more user-friendly. Two sets of works are related to pedestrian crossing studies in the literature. The first set aims to model the pedestrians' interaction with the obstacles. These models have been widely used for crowd simulation in public spaces. They aim to compute the trajectories of pedestrians facing conflicts in a given space. These models have been extended thereafter to consider the lateral conflict between pedestrians and vehicles. The second set of noticeable works focuses on determining the significant factors of pedestrian behavior when they cross the road.

The other remarkable research works related to vehicle-pedestrian conflict, stake on the technology that equips the vehicles. Advanced Driver Assistance Systems for collision mitigation and avoidance are increasingly equipping vehicles to save pedestrians' lives.

These systems are based on pedestrian detection systems that automatically warn the drivers and trigger emergency braking in the case of imminent collision risk.

The perspective of CAV introduces a paradigm shift in both research communities. On the one hand, the CAV has this distinctive feature: There is no driver's gaze that many pedestrians rely on to launch the road crossing. On the other hand, CAV is considered an opportunity to improve the current safety situation [START_REF] Sio | The European Commission report on ethics of connected and automated vehicles and the future of ethics of transportation[END_REF]) and make interaction with CHAPTER 2. STATE OF THE ART others more efficient, comfortable, and user-friendly. To achieve this later ambitious purpose, pedestrians should not be considered as an obstacle to be avoided but an agent to interact with for sharing the road space.

The research works on conflicts between pedestrians and CAVs are relatively recent.

They involve both aforementioned communities of researchers. The research progress of both communities targets improving the conditions of interactions instead of just making pedestrians and vehicles avoid the collision. More and more studies focus on communicating and detecting the intent of both conflicting agents, i.e., the vehicle and the pedestrian, to make them interact better. This chapter recalls the significant contributions of these two communities.

The rest of this chapter is organized as follows. Section 2.2 introduces the work about pedestrian studies. Specifically, it consists of four kinds of pedestrian models in Section 2.2.1 and pedestrian behavioral factors in Section 2.2.2. Section 2.3 presents the research on the interaction between CAVs and pedestrians on a shared road. Section 2.3.1 presents the necessary equipment for the vehicle to perform the intersection task.

Then, Section 2.3.2 and Section 2. Figure 2.1 shows the process from the perception of the environment to the behavior of a pedestrian who wants to cross the road. First, the pedestrian observes the environment, then evaluates it to make a decision, and later interacts with the environment to achieve the goal. There are two important sets of research works related to the pedestrian cross-ing. The first one is pedestrian modeling, which has been widely studied as an integral part of traffic simulation [START_REF] An | An Improved Social Force Model Considering View Angle for Microscopic Pedestrian Simulation[END_REF][START_REF] Duives | The multi-dimensional challenges of controlling SARS-CoV-2 transmission in indoor spaces: Insights from the linkage of a microscopic pedestrian simulation and virus transmission models[END_REF]. Accurate pedestrian models played an important role in formulating the design of the public space layout, the traffic management, and the appropriate signaling systems [START_REF] Teknomo | Application of microscopic pedestrian simulation model[END_REF]. These models are more recently used for pedestrian behavior prediction [START_REF] Öhler | Early detection of the Pedestrian's intention to cross the street[END_REF][START_REF] Kooij | Analysis of pedestrian dynamics from a vehicle perspective[END_REF] for AVs (Autonomous Vehicles), i.e., AV's trajectory planning, and control. The other set of works focuses on factors affecting pedestrians' behavior when facing oncoming AVs. The significance of analyzing these factors is to achieve specific goals by changing certain factors, such as enhancing the feeling of traffic safety, improving traffic efficiency, and designing a user-friendly interaction between AVs and pedestrians.

2.2/ PEDESTRIAN CROSSING STUDIE

The remainder of this section presents the two sets of works separately. Firstly, this section presents the basis for the four main categories of the pedestrian models. Secondly, it presents behavioral factors studies from the perspective of pedestrian-AVs interaction.

2.2.1/ PEDESTRIAN MODEL

Several models of shared spaces have been developed to better simulate how pedestrians interact with other road users. The recent work in [104] presents the state-of-the-art in the field of pedestrian modeling and simulators of environments shared between pedestrians and cars. The following introduces four main models of pedestrian-vehicle interaction in shared space. They are Cellular Automata, Velocity Obstacle, Social Force Model, and Data Driven Model.

2.2.1.1/ CELLULAR AUTOMATA

Cellular Automata model have been widely used to model pedestrian movements [START_REF] Blue | Emergent Fundamental Pedestrian Flows from Cellular Automata Microsimulation[END_REF][START_REF] Burstedde | Simulation of pedestrian dynamics using a 2-dimensional cellular automaton[END_REF][START_REF] Dijkstra | A multiagent cellular automata model of pedestrian movement[END_REF][START_REF] Gipps | A micro-simulation model for pedestrian flows[END_REF]. In this model, the environment consists of a grid of cells, each having a discrete state, as shown in Figure 2.2. The global environment is divided by small cells. Vehicles and pedestrians occupy one or several cells. Each cell has a neighboring cell, which influences its state. Deterministic or stochastic transition rules allow cells to move from one state to another. A Cellular Automata based model for the movement of pedestrians at signalized or unsignalized intersections is developed by Crociani et al. [START_REF] Crociani | An Integrated Model for the Simulation of Pedestrian Crossings[END_REF]. The model incorporates cars and pedestrians cooperating to avoid accidents. Cars yield to pedestrians if they are perceived early enough, and pedestrians stop if they perceive vehicles that cannot stop before the pedestrian crossing. The authors of [START_REF] Chen | Interaction between vehicles and pedestrians at uncontrolled mid-block crosswalks[END_REF][START_REF] Feliciani | A simulation model for nonsignalized pedestrian crosswalks based on evidence from on field observation[END_REF][START_REF] Lu | A cellular automaton simulation model for pedestrian and vehicle interaction behaviors at unsignalized mid-block crosswalks[END_REF] and, more recently, those of [START_REF] Wu | Game theory modeling for vehicle-pedestrian interactions and simulation based on cellular automata[END_REF] have also proposed Cellular Automata based models for a pedestrian crossing at zebra without signaling. In these works, the decision model of the pedestrian during the crossing is based on empirical observations. These models are studied to design public policies, such as assessing the need of a new zebra. [START_REF] Ma | Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic[END_REF]: Red agent A searches for free space to move among the other agents, in blue. The free spaces detected are in yellow and green, and the yellow space is selected because of sufficient size (source [START_REF] Ma | Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic[END_REF]).

2.2.1.2/ GEOMETRIC MODELS BASED ON VELOCITY OBSTACLE

The Reciprocal Velocity Obstacle model in [START_REF] Berg | Reciprocal Velocity Obstacles for real-time multi-agent navigation[END_REF] assumes that two agents in a collision area make similar reasoning to avoid the collision. The model has been adapted in [START_REF] Ma | Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic[END_REF].

The adapted model, called AutoRVO, can simulate several road users such as pedestrians, cars, bicycles, and scooters in the same space. A more precise representation than the circle's usual shape is proposed to represent heterogeneous agents, as illustrated in Figure 2.3. The algorithm presents an optimization of the trajectory of each agent, taking into account their kinematic and dynamic constraints, and has been evaluated in comparison with real scenarios.

A pedestrian behavior prediction model for AVs is developed in a model called called PORCA [START_REF] Luo | PORCA: Modeling and Planning for Autonomous Driving Among Many Pedestrians[END_REF]. It takes into account pedestrian navigation intent, local pedestrian interactions, etc. The model combines the Optimal Reciprocal n-Body Collision Avoidance (ORCA) model [START_REF] Berg | Reciprocal n-Body Collision Avoidance[END_REF] with pedestrian planning based on a partially observable Markov decision-making process. The extensions of ORCA were also introduced in [START_REF] Charlton | Simulating crowds and autonomous vehicles[END_REF] to simulate AVs and pedestrians sharing urban space.

A significant limitation of these models is that they compute a set of ideal, collision-free trajectories for all agents. These models are not suitable for reproducing the trajectories of pedestrians, which are sometimes non-optimal and greatly depend on the social dimension of human behavior, such as the presence of social groups, the respect of certain social distances, or the respect of the signaling system.

2.2.1.3/ SOCIAL FORCE MODEL

In Social Force Model, the pedestrian i is driven by force ⃗ F i that comes from three sources: driving force toward the desired target ( ⃗ F d ), a repulsive force from the neighbor pedestrian ( ⃗ F i j ), and repulsive force from the static obstacles ( ⃗ F iw ), as expressed in Eq. 2.1.

⃗ F i = ⃗ F d + ⃗ F i j + ⃗ F iw (2.1)
where i, j, and w are the pedestrian's number, the neighbor pedestrian's number, and the obstacle's number, respectively. The forces ⃗ F i j and ⃗ F iw can be expressed by Eq. 2.2 and Eq. 2.3 respectively.

⃗ F i j = A i e [(r i j -d i j )]/B i ⃗ n i j + kg(r i j -d i j )⃗ n i j + κg(r i j -d i j )∆v t i j ⃗ t i j (2.2) ⃗ F iw = A i e [(r i -d iw )]/B i ⃗ n iw + kg(r i -d iw )⃗ n i j + κg(r i -d iw )(⃗ v i ⃗ t iw ) ⃗ t iw (2.
3)

The three parts in Eq. 2.2 correspond to the repulsive force above the interaction, body, and sliding friction forces, respectively. r i j = r i + andr j with r i and r j being pedestrians' radii. d i j is the distance between the centers of two people. A i and B i are constant parameters. ⃗ n i j is a normalized vector with the direction from pedestrians j to i. k and κ are constant parameters. ∆v t i j = (⃗ v i -⃗ v j ) ⃗ t i j is the tangential direction. Function g(x) is used to determine whether there is physical contact between two pedestrians, as expressed by Eq. 2.4.

g(x) =          0 if d i j > r i j x other (2.4)
The calculation of ⃗ F iw is similar to the analysis of ⃗ F i j because only the state of the possible collision objects is different. Finally, the pedestrian's acceleration, velocity, and position can be updated by force ⃗ F i in each time step. Usually, the time step is reasonably estimated as 0.5s.

Several works in [START_REF] Anvari | Modelling shared space users via rule-based social force model[END_REF][START_REF] Chao | Vehicle-pedestrian interaction for mixed traffic simulation[END_REF][START_REF] Pascucci | Modeling of Shared Space with Multi-modal Traffic using a Multilayer Social Force Approach[END_REF] have combined Social Force Model with decision models to simulate interactions between pedestrians and cars in shared spaces. Anvari et al. [START_REF] Anvari | Modelling shared space users via rule-based social force model[END_REF] were among the first to develop a model of pedestrian-car interaction in a shared zone. A microscopic mathematical model has been defined to simulate pedestrians and cars and to identify the conditions under which the implementation of shared space is possible.

The model combines an adaptation of the Social Force Model with a layer of collision detection and conflict resolution.

The model in [START_REF] Anvari | Modelling shared space users via rule-based social force model[END_REF] is calibrated using trajectories taken from a video of the New Road shared space in Brighton, United Kingdom. A comparison of actual data and the simulation data is made in [START_REF] Anvari | Calibration and Validation of a Shared Space Model: Case Study[END_REF] to minimize the deviation. Finally, a validation phase is performed by comparing the simulation with actual data from another shared space (Exhibition Road in London, United Kingdom). The approach followed for developing the model is very comprehensive, and the model has been widely cited as a reference in the field. However, for our application case, some shortcomings can be noted, such as the lack of diversity in pedestrian behavior, which all act similarly. In Social Force Model, pedestrians always decelerate and deviate when they are on a collision course with a car. This model does not take into account the diversity of behaviors observed: pedestrians sometimes have risky behavior because they are distracted [START_REF] Nasar | Mobile telephones, distracted attention, and pedestrian safety[END_REF]131], or do not have a perfect perception of the car [START_REF] Dommes | Crossing a two-way street: comparison of young and old pedestrians[END_REF], or even prefer to run for going first [151].

Other works, such as [START_REF] Pascucci | Modeling of Shared Space with Multi-modal Traffic using a Multilayer Social Force Approach[END_REF]114], have developed complete models of interactions between pedestrians and other road users in shared spaces, integrating groups of pedestrians, cars, and bicycles, as well as modeling the urban infrastructure. As Anvari's work in [START_REF] Anvari | Modelling shared space users via rule-based social force model[END_REF], to model pedestrian-car interactions, these models combined the Social Force Model for short-range conflicts with a decision model for long-range conflicts. However, these models are designed to assess the suitability of a shared space layout compared to a traditional intersection. They are not intended to simulate individual pedestrian trajectories accurately.

Similarly, the Social Force Model is adapted and combined with a decision model by Chao et al. [START_REF] Chao | Vehicle-pedestrian interaction for mixed traffic simulation[END_REF]. In the event of a potential collision with a vehicle, pedestrians stop or continue to pass, depending on whether they arrive at the crossing point first or second. The results

show that the model is promising. However, the model is rule based without considering pedestrian behavior factors. This approach does not make it possible to represent natural pedestrian behaviors. Finally, the model is only evaluated by observations of simulated behaviors and lacked validation against real data.

Models incorporating more varied interaction scenarios have been proposed in [START_REF] Johora | Modeling Interactions of Multimodal Road Users in Shared Spaces[END_REF][START_REF] Sch Önauer | A microscopic traffic flow model for shared space[END_REF] by combining Social Force Model and game theory. This approach is developed by Sch önauer et al. [START_REF] Sch Önauer | A microscopic traffic flow model for shared space[END_REF] to model user behavior in conflictual interactions in shared space.

The model incorporates detection of conflicts between pedestrians and cars and several adaptation strategies for pedestrians: continue, slow down, swerve left, swerve right or accelerate, as shown in Figure 2.4. In this figure, the pedestrian evaluates the next position according to the made decision, and optimizes the decision accordingly. However, the proposed interaction with vehicle isn't based on the Social Force Model. Johora and M üller [START_REF] Johora | Modeling Interactions of Multimodal Road Users in Shared Spaces[END_REF] extended the previous model by including more varied interactions involving several road users at the same time and the polite behavior of drivers.

The model is based on Stackelberg's games. In this sequential leader-follower game, pedestrians have three possible actions: continue, decelerate and swerve. The car has two possible actions: continue and decelerate. Groups of pedestrians interacting with vehicles were added to the model [4]. However, with approaches based on game theory, the computational needs become very important when there are numerous interacting agents. Given its cost and computational slowness, this approach is unsuitable for predicting pedestrian trajectories, requiring a model running faster than in real-time.

Moreover, these game-theoretic models might need a complete overhaul to be valid with AVs. Indeed, several works in [START_REF] Fox | When should the chicken cross the road?: Game theory for autonomous vehicle-human interactions[END_REF][START_REF]Pedestrians, Autonomous Vehicles, and Cities[END_REF] have applied game theory to analyze pedestrian-AV interactions at a pedestrian crossing. They point out that once pedestrians are accustomed to AVs, they could have excessive confidence and cross in any case in front of an AV, knowing that it will stop.

Finally, Yang et al. [START_REF] Yang | Social Force Based Microscopic Modeling of Vehicle-Crowd Interaction[END_REF][START_REF] Yang | A Social Force Based Pedestrian Motion Model Considering Multi-Pedestrian Interaction with a Vehicle[END_REF] recently proposed a unified Social Force Model to repre-sent the influence of a vehicle on pedestrians in shared spaces. The Social Force Model is adapted by adding a repulsive force exerted by the car on pedestrians, which differs according to the car's front, middle, and rear. However, the model uses a unique calibration for the magnitude and direction of the forces for all types of interaction (frontal, lateral, rear). The forces' values are therefore average, and the model cannot precisely reproduce all the cases of interaction [START_REF] Yang | A Social Force Based Pedestrian Motion Model Considering Multi-Pedestrian Interaction with a Vehicle[END_REF]. A comparison between the simulated and real data shows that the simulated pedestrians do not turn enough to avoid the vehicle during a frontal or rear interaction, and deviate too much from their trajectory during a lateral interaction. Ren et al. [START_REF] Ren | Heter-Sim: Heterogeneous Multi-Agent Systems Simulation by Interactive Data-Driven Optimization[END_REF] recently proposed a Data Driven Model applicable to scenarios of shared spaces between heterogeneous types of agents, such as pedestrians, bicycles, tricycles, and cars. This model uses data-driven optimization by choosing a speed from a set of real data that tends to minimize the energy function of the agents. Several scenarios are studied from the crowd, road traffic, and shared space videos, and the model is run in real-time for up to 5000 agents [START_REF] Ren | Heter-Sim: Heterogeneous Multi-Agent Systems Simulation by Interactive Data-Driven Optimization[END_REF]. This approach is promising, but the individual trajectories are not empirically validated. Moreover, the generated trajectories largely depend on the datasets used for the optimization. However, the data sets used for mixed pedestrian-car traffic scenarios contain very few pedestrians and are insufficient to study their interactions with vehicles in shared spaces.

Matthews et al. [START_REF] Matthews | Intent communication between autonomous vehicles and pedestrians[END_REF] proposed a pedestrian reaction model based on a decentralized Markov decision process by deriving the probability of each pedestrian action from empirical data. However, the model is not designed to simulate precise trajectories, but to study how confidence in AVs changes over time and how effectively the AV has communicated to pedestrians.

Ma et al. [START_REF] Ma | TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents[END_REF], as well as Cheng et al. [START_REF] Cheng | Modeling Mixed Traffic in Shared Space Using LSTM with Probability Density Mapping[END_REF], proposed models for shared-space mixed traffic prediction based on long-term memory recurrent neural network. Their approach takes actual data as input and directly learns the movements and interactions of agents [START_REF] Ma | TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents[END_REF], or the risks of collision [START_REF] Cheng | Modeling Mixed Traffic in Shared Space Using LSTM with Probability Density Mapping[END_REF] from actual trajectories. The models were evaluated using scenarios where vehicles, bicycles, and pedestrians share space. However, the model of Ma et al. [START_REF] Ma | TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents[END_REF] focuses on a scenario with many more cars than pedestrians, and the model of Cheng et al. [START_REF] Cheng | Modeling Mixed Traffic in Shared Space Using LSTM with Probability Density Mapping[END_REF] does not run in real-time.

2.2.2/ BEHAVIORAL FACTOR

The four pedestrian models introduced in the previous section are initially studied for traffic simulation purposes. They are more designed to avoid collision between agents and to generate trajectories instead of going deep in the vehicle-pedestrian interaction behavior. For instance, the only factor in Cellular Automata is the occupancy of the surrounding cells. In the Social Force Model, the factor is to keep the space gap between nearby moving pedestrians and static obstacles. Even if some adaptations have been made, many studies report that pedestrians crossing a road when facing oncoming AVs is complex because pedestrian behavior is determined by many factors. Hence, to optimize the intersection, building a single conflict model between the AV and the pedestrian is necessary. Therefore, pedestrian behavior and the factors need to be studied.

2.2.2.1/ PEDESTRIAN BEHAVIORAL PARAMETER

Firstly, pedestrian behavior during the road crossing process (single lateral conflict) is mainly characterized by several parameters. The most studied ones are the following:

(i) Reaction time: The parameter is the time it takes for a pedestrian to begin to perceive the vehicle's intention until the pedestrian takes action [START_REF] Fugger | Analysis of Pedestrian Gait and Perception-Reaction at Signal-Controlled Crosswalk Intersections[END_REF]. Here, the vehicle's intention means that the vehicle lets the pedestrian cross first or lets the pedestrian cross later. The pedestrian's understanding of vehicle intention and the time it takes depends on various factors, namely "behavioral factors," which are introduced subsequently. This process involves human-vehicle interaction. For example, in a vehicle with a driver, the pedestrian seeks eye contact/gaze with the driver and observes vehicle distance, speed, and acceleration, then takes action.

The gaze is considered a basic form of interaction [START_REF] Gu Éguen | A pedestrian's stare and drivers' stopping behavior: A field experiment at the pedestrian crossing[END_REF]. There is no gaze for driverless autonomous vehicles, so the human-vehicle interaction, in this case, is more complicated. Therefore, researchers propose methods to enhance this interaction for traffic safety and efficiency reasons. These studies are presented later.

(ii) Safety margin: The parameter is the difference between the time a pedestrian needs to cross the zone and the time the vehicle needs to arrive at the same conflict zone [START_REF] Avinash | Evaluation of pedestrian safety margin at mid-block crosswalks in India[END_REF]. Usually, the pedestrian estimates the time when the vehicle comes to conflict zone based on the distance and speed of the vehicle and compares it with the time when terminating the crossing. The pedestrian will cross if he/she feels safe. The vehicle's driving behavior, such as speed, distance, etc., highly affects the pedestrian's decision. Therefore, one way to optimize the intersection is to design an optimal speed profile and control for the vehicle that matches the pedestrian expectation.

(iii) Acceleration and speed: The pedestrian's acceleration and speed when crossing the road. According to the study in [START_REF] Fugger | Analysis of Pedestrian Gait and Perception-Reaction at Signal-Controlled Crosswalk Intersections[END_REF], the mean acceleration and steady-state velocity are 0.14 ± 0.09g and 1.36 ± 0.24m/s, respectively. These pedestrian data can help us design appropriate vehicle speed profiles to improve traffic safety and efficiency at the intersection.

These pedestrian behavior parameters are closely related to traffic safety and efficiency.

For example, shorter reaction times can help speed up traffic efficiency at intersections.

Appropriate safety distance can ensure traffic safety while taking into account the efficiency of traffic. Behavioral factors determine the values of these parameters. So, the crossing can be optimized by controlling/changing some behavioral factors to influence the behavior of pedestrians. Naturally, pedestrian behaviors need to be analyzed.

Pedestrians perceives information from the outside world through their senses, such as vision and hearing. The information mainly includes the environment, such as public space design, the infrastructure layout, the behavior of AVs, and the behavior of other surrounding pedestrians. Then the pedestrian makes decisions based on personal experience and shows behavior. The decision-making process and the behavior shown later are influenced by not only the environment but also the behavioral factors. Rasouli et al. 

2.2.2.2/ INTERNAL FACTORS

The internal factors include gender, age, experience, cultural background, etc. Pedestrian behavior depends on cognitive thinking formed over a long period of life. That is to say, each pedestrian facing the same traffic scenario may have different behavioral outputs when facing oncoming AVs. For example, some wait for the vehicle to come to a complete stop, while others quickly cross the road earlier.

The works in [START_REF] Moore | Pedestrian Choice and Judgment[END_REF][START_REF] Heimstra | AN EXPERI-MENTAL METHODOLOGY FOR ANALYSIS OF CHILD PEDESTRIAN BEHAV-IOR[END_REF][START_REF] Holland | The effect of age, gender and driver status on pedestrians' intentions to cross the road in risky situations[END_REF] argue that gender is one of the factors that influence pedestrian behavior the most. Men and women have different attention patterns before or during the crossing. Ariane et al. [START_REF] Tom | Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads[END_REF] found in a study that men more frequently observe vehicles, but women look at traffic lights and surrounding pedestrians. Besides, women are more cautious than men [START_REF] Heimstra | AN EXPERI-MENTAL METHODOLOGY FOR ANALYSIS OF CHILD PEDESTRIAN BEHAV-IOR[END_REF][START_REF] Yagil | Beliefs, motives and situational factors related to pedestrians' self-reported behavior at signal-controlled crossings[END_REF][START_REF] Holland | The effect of age, gender and driver status on pedestrians' intentions to cross the road in risky situations[END_REF] and cross with lower speed compared to men [START_REF] Ishaque | Behavioural Issues in Pedestrian Speed Choice and Street Crossing Behaviour: A Review[END_REF].

Age differences have apparent impacts on pedestrian behavior. Compared to young adults, elderly people are weaker and naturally walk slower [START_REF] Ishaque | Behavioural Issues in Pedestrian Speed Choice and Street Crossing Behaviour: A Review[END_REF] and have varying walking speeds. In terms of gap acceptance, elderly pedestrians show more cautious behaviors [START_REF] Harrell | Precautionary Street Crossing by Elderly Pedestrians[END_REF]125] before starting crossing, but they might accept a lower safety margin [START_REF] Oxley | Crossing roads safely: an experimental study of age differences in gap selection by pedestrians[END_REF].

The behavior of drivers and pedestrians both are different in different cultures. In 2008, Lindgren et al. [START_REF] Lindgren | Requirements for the design of advanced driver assistance systems-The differences between Swedish and Chinese drivers[END_REF] observed drivers' behaviors in Sweden, representing a more developed driving culture, and in China. Results show that driver behavior is highly culturally mediated. For example, they assign different levels of importance to traffic problems such as speeding or jaywalking, even though Swedish and Chinese traffic rules and regulations are similar. In 2009, Schmidt et al. [START_REF] Schmidt | Pedestrians at the kerb -Recognising the action intentions of humans[END_REF] discovered that the differences in safety margin acceptance of Indians are (2 -8s) and Germans (2 -7s), and all pedestrians rely on the distance of the car rather than the time to collision for their decision in a study of pedestrian psychology.

Since the safety distance affects the decision-making of pedestrians, the ability to judge the speed and distance of the oncoming vehicle naturally affects pedestrian behavior.

Sun et al. [START_REF] Sun | The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment[END_REF] discovered that pedestrians can correctly estimate vehicle speed when the vehicle is moving below the speed of 45km/h. But, they point out that pedestrians are better at evaluating vehicle distance than vehicle speed, which is consistent with the conclusion in [START_REF] Schmidt | Pedestrians at the kerb -Recognising the action intentions of humans[END_REF].

Unlike external factors, internal factors are difficult to control directly to achieve specific goals, such as absolute compliance with traffic rules to avoid traffic accidents. But pedestrian behavior can be changed through training, as this was achieved for scholars using simulation in [START_REF] Young | Training children in road crossing skills using a roadside simulation[END_REF][START_REF] Congiu | Crossing roads safely: The effects of training on improving children's road crossing decisions[END_REF]. Hence, trained workers in factories can also easily understand and trust the robots/AVs interacting with them to adopt cooperative behaviors. Besides, there are interconnections between internal and external factors, as described in Figure 2 Primarily, the intent display is used to show pedestrians the vehicle's intent. The research in [START_REF] Matthews | Intent communication between autonomous vehicles and pedestrians[END_REF] studies the importance of using an intent display in communication with pedestrians. The authors installed an LED display in the front of a vehicle to print information such as "Cross/Stop." The experiment with 76 participants shows 38% improvement in resolving deadlocks by providing messages to testers. Also, testers, informed of the meaning of the messages provided in advance, were more likely to trust the vehicle's behavior.

In studies [START_REF] Matthews | Intent communication between autonomous vehicles and pedestrians[END_REF][START_REF] Zimmermann | First Step into Visceral Interaction with Autonomous Vehicles[END_REF], the intent display of AVs appears to provide a pedestrian-friendly intersection. However, participants in research [START_REF] Yang | Driver behavior impact on pedestrians' crossing experience in the conditionally autonomous driving context[END_REF] responded in the post-test questionnaire that the intent display is not very important to their decision-making process. Their crossing decisions depend much more on AVs' observed speed and distance. The similar conclusion is drawn in research [29]. Pedestrians waiting to cross the intersection pay more attention to the speed and distance of AVs to decide their actions. Interestingly, it is concluded that on display, the AVs' speed information is more effective for pedestrians to decide to cross than the command information such as "Cross now." Pillai et al. In addition to the intent display by LED, the research in [START_REF] Chang | Eyes on a Car: An Interface Design for Communication between an Autonomous Car and a Pedestrian[END_REF] proposes the use of moving eyes attached (see Figure 2.7(a)) to the headlights of a vehicle, considering the habit of eye contact in communication. Results show that more than 66% of 15 participants cross the road earlier with the presence of eyes. If the eyes were looking at the participants, this number rose to more than 86% efficient. However, the number of participants in the experiment is limited. This kind of intent display requires more evaluation.

In the experiment of Mahadevan et al. [START_REF] Mahadevan | Communicating Awareness and Intent in Autonomous Vehicle-Pedestrian Interaction[END_REF], which studies the effect of different modalities of communication between AVs and pedestrians (see Figure 2 The study shows that pedestrians react more or less quickly according to the movement of the CAV. For instance, an initial sharp deceleration (-3m/s 2 ) reduces the reaction time of the pedestrian. The experimental result gives us essential data support for the design of cooperative behavior of CAVs and pedestrians to improve traffic safety and efficiency at the intersection. However, the reliability of these data in practice is still minimal because the experiment is based on video playback. Generally, pedestrians respond differently in the natural environment than when watching a video. With the experiments by virtual reality, Jayaraman et al. [START_REF] Jayaraman | Trust in AV: An Uncertainty Reduction Model of AV-Pedestrian Interactions[END_REF] argue that autonomous vehicles' driving behavior highly determines the pedestrian crossing decision. At the same time, traffic signals at the intersection have little impact. This study's conclusion supports our approach that the CAVs interact with pedestrians directly through friendly behaviors instead of using traffic light management. In our previous work in [148], the speed profile of CAVs is included as a part of the global process of pedestrian-CAV interaction. More precisely, the pedestrian and the CAV play a game to be as close as possible to their desired speed.

Finally, some external factors such as environment, vehicle's look, size, etc., are also studied but out of this work. For the completeness of this work, these factors are briefly introduced here. Considering environmental factors can provide road users with a friendly and comfortable environment, such as the example in [136] where richer auxiliary information is displayed on the road to enhance traffic safety. Regarding vehicle size and appearance, Dey et al. [START_REF] Dey | Pedestrian Interaction with Vehicles: Roles of Explicit and Implicit Communication[END_REF] compare pedestrian behaviors by using a BMW with an aggressive look and a Renault with a friendly look. The results show that AV's size and appearance influence pedestrian but have less weight than vehicle speed and gap.

2.2.3/ DISCUSSION

The decision-making and behaviors of pedestrians are determined by many factors, as presented in Section 2.2.2. It is challenging to build a pedestrian model that incorporates all behavioral factors. Researchers typically consider one or several major behavioral factors for specific purposes in their studies. The first three pedestrian models, Cellular Automata, Velocity Obstacle, Social Force Model, introduced in Section 2.2.1, are based on the principle of avoiding collisions between agents. Therefore, there is a gap between these models and behavioral factors that can modify the decision-making processes of pedestrians. The fourth pedestrian model, Data Driven Model, introduced in Section 2.2.1 is based on real pedestrian data. The model can best reflect the pedestrian behavior generated by the interaction factors between pedestrians and ordinary vehicles.

One of the factors that received particular attention in the literature is the display of the AV intent. However, let us recall that there is no consensus on the most efficient intent display [START_REF] Zang | Evaluating the Understandability of Light Patterns and Pictograms for Autonomous Vehicle-to-Pedestrian Communication Functions[END_REF]. The research in this field is too recent to derive a formal conclusion. To the best of our knowledge, there is no standard intent display, and the research on this topic is still open 1 . Unlike intent display, the influence of the vehicle speed profile on the pedestrian has been studied early in the literature. The speed profile was first addressed to measure the safety margin. Then other studies more specific to AVs have been conducted more recently. Nevertheless, even if the speed profile is widely accepted as a determining factor, there is no ideal speed profile in the literature. The literature gives only a few recommendations, such as noticeable deceleration (-3m/s 2 ) [2]. Despite the lack of consensual results, these studies have already invited the Intelligent Transportation Systems research community to design new systems for CAV-pedestrian interactions.

2.3/ PEDESTRIAN-CONNECTED AUTONOMOUS VEHICLE INTER-ACTION

This work address the big picture of pedestrians-CAVs interaction and cooperation by considering pedestrians crossing a multiple lane road. When the CAV detects a pedes-trian's intention to cross the road, the CAV communicates and cooperates with the surrounding CAVs to make a collective decision. Accordingly, CAVs form a safe crossing space the soonest and show CAVs' decision to pedestrians. To do that, firstly, the autonomous driving system needs to meet specific functions in the hardware architecture, such as the communication of various modules inside the vehicle, the communication between vehicles, control, emergency braking, etc. In addition, the interaction between the vehicle and the pedestrian includes two aspects: the vehicle understands the pedestrian's intention, and the pedestrian understands the vehicle's intention. The former has some algorithmic implementations. The latter can be achieved using vehicle signaling systems, speed control, etc. These approaches are based on changing pedestrian behavioral factors, as discussed in Section 2.2.2.3. The following of this section introduces each of them. We will first list the main components that realize interaction and communication between pedestrians and CAVs

2.3.1/ GENERAL ARCHITECTURE

Vehicle Electrical and/or Electronic (E/E) architecture has been evolving recently to enable more complex functions and greater capabilities [START_REF] Askaripoor | E/E Architecture Synthesis: Challenges and Technologies[END_REF]. To realize the main objective of this work, at least several important components should be equipped, as shown in Figure 2.8. They can initially enable the cooperative control between vehicles and the interaction with pedestrians. First, connected vehicle communication can be realized through a Telematic Control Unit (TCU). In the automobile industry, TCU refers to the embedded system in a vehicle that wirelessly connects the vehicle to cloud services or other vehicles via vehicle to everything communication standards over a cellular network. Second, basic autonomous driving systems rely on many sensors, such as cameras and LiDAR, that perceives environ-mental information, positioning sensors, such as Global Positioning System, Inertial Measurement Unit, Real-Time Kinematics, etc. Third, intent displays allow vehicles to interact better with pedestrians. There are various ways to display intent, such as through printed text [START_REF] Matthews | Intent communication between autonomous vehicles and pedestrians[END_REF], patterns [148], and even pedestrians' mobile phone [128]. Finally, to ensure the safety of pedestrians, vehicles should be equipped with systems related to pedestrian safety. This system ranges from the early Autonomous Emergency Braking [START_REF] Grover | Automated emergency brake systems: Technical requirements, costs and benefits[END_REF][START_REF] Rosen | Autonomous emergency braking for vulnerable road users[END_REF] system, which provides emergency braking when the danger exists, to the modern advanced PCAM (Pedestrian Crash Avoidance Mitigation) [135], which judges the potential danger and acts in advance to protect pedestrians. Ultimately, the system will evolve into the future intelligent system based on vehicle-pedestrian interaction, and negotiation [START_REF] Gupta | Negotiation Between Vehicles and Pedestrians for the Right of Way at Intersections[END_REF].

2.3.2/ PEDESTRIAN DETECTION AND INTENT PREDICTION

For cooperative intersection between CAVs and pedestrians, the first step -pedestrian detection and understanding of the pedestrians' intention -is important. (such as RCNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], Faster RCNN [START_REF] Girshick | Fast r-cnn[END_REF], YOLO [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF]110,111], SSD [START_REF] Liu | Ssd: Single shot multibox detector[END_REF], Retina Net [START_REF] Lin | Focal loss for dense object detection[END_REF],

etc.) received extensive attention. The advent of high-performance graphics cards and lower costs are accelerating the deployment of these methods in applications. In AVs-pedestrian interaction, the vehicle should be able to understand the pedestrian's intention to improve safety. In autonomous driving systems, intent estimation techniques have been widely used to predict pedestrian behavior [START_REF] Öhler | Early detection of the Pedestrian's intention to cross the street[END_REF][START_REF] Kooij | Analysis of pedestrian dynamics from a vehicle perspective[END_REF]. Eshed et al. [START_REF] Ohn-Bar | Looking at Humans in the Age of Self-Driving and Highly Automated Vehicles[END_REF] and Amir et al. [START_REF] Rasouli | Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice[END_REF] summarize related works in their papers. There are two main types of intent estimation results. The first is to know whether a pedestrian wants to cross the road, and the second is to predict the pedestrian's trajectory to avoid collisions. Some researchers attempt to estimate pedestrian behavior by dynamic information, current activity, and context. They argue that AVs can recognize pedestrian intention if all mentioned information is known to the system. Andreas T et al.

[121] propose a model to recognize pedestrian intention and predict the walking path using the position and velocity of pedestrians. V ölz et al. [START_REF] Ölz | A data-driven approach for pedestrian intention estimation[END_REF] take into account information such as the pedestrian's position, distance to the curb and the vehicle, and the pedestrian's walking speed to predict whether the pedestrian is going to cross the road. For precise estimation, Yoriyoshi et al. [START_REF] Hashimoto | Probability estimation for pedestrian crossing intention at signalized crosswalks[END_REF] take into account the pedestrian's speed and position, the contextual information of the scene, such as the pedestrian signal state, and whether the pedestrian is alone or in a group.

Amir et al.

[107] collected a large dataset of pedestrian samples at crosswalks under various conditions. The analysis shows that changes in head orientation in the form of looking or glancing at the traffic highly indicate the willingness of pedestrians to cross the road. Therefore, we can infer the pedestrian's intention based on this feature. This result also verifies the experiment's conclusion in [START_REF] Brouwer | Comparison and evaluation of pedestrian motion models for vehicle safety systems[END_REF], which compares different types of information, including dynamics of pedestrians, their 3D pose in the scene, head orientation towards the vehicle, and obstacles in collision estimation.

2.3.3/ VEHICLE INTENT DISPLAY

The research work on intent display has convinced the automotive industry of the need to communicate the intentions of the autonomous vehicle to pedestrians. Many researchers consider the concept of vehicle intent display to be an effective method that can decrease the reaction time of the follower and gain safety feeling, especially because there is no (reliable) driver gaze. Nowadays, the signaling system of AVs has received particular attention for improving the readability of the CAVs' intention [3]. A green/red light is displayed in front of the CAV to explain its status to pedestrians. Regarding the interaction between CAVs and pedestrians at a non-signalized intersection, [START_REF] Rasouli | Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice[END_REF] summarizes specifically the interaction methods based on visuals between automated vehicles and pedestrians, as shown in Figure 2.11. The AEVITA system in A similar research can be found in [START_REF] Tan | Human-Machine Interaction in Intelligent and Connected Vehicles: A Review of Status Quo, Issues and Opportunities[END_REF], where vehicles share the perceived environmental information with the surrounding networked vehicles. In Figure 2.11(f), a van representing a vehicle displays information to pedestrians, informing them when to cross a street to study the interaction in different conditions.

In Figure 2.11(g), the intelligent road system obtains environmental information through CHAPTER 2. STATE OF THE ART ground facilities and then displays instructions on the road to improve traffic safety and efficiency. These methods mainly aim to improve traffic safety by using more informational transmission between automated vehicles and pedestrians. These studies show the wide range of feasible external displays in the next generations of vehicles, but as discussed earlier, there is not yet a consensus on the effective way to display vehicle intent.

For instance, in [103], the authors claim that the ground display has a limited efficiency because of it suffers from visibility issues.

2.3.4/ VEHICLE CONTROL

To avoid potential collisions with pedestrians at intersections, modern vehicles are equipped at least with two kinds of speed control systems, Pedestrian Crash Avoidance Mitigation and Autonomous Emergency Braking. The systems can be activated according to the actual traffic state. The Autonomous Emergency Braking system aims to avert or lessen serious crashes by applying the brakes when sudden dangers arise. In our studied scenario, the Autonomous Emergency Braking is activated to brake urgently if the pedestrian intentionally breaks the planned traffic sequence. Pedestrian Crash Avoidance Mitigation is more complex. Nowadays, researchers are trying to use AI technology in this field. The following are recent studies of AI based Pedestrian Crash Avoidance

Mitigation.

The research of Chae et al. [START_REF] Chae | Autonomous braking system via deep reinforcement learning[END_REF] is the first publication in which a DRL (Deep Reinforcement Learning) based Pedestrian Crash Avoidance Mitigation system is developed.

Although successfully preventing collisions, the AV (Autonomous Vehicle) agent regards pedestrians as a moving obstacle and only takes braking actions, neglecting that factors such as vehicle speed and acceleration can also help prevent a potential collision. In a broader sense, Papini et al. [START_REF] Chae | Autonomous braking system via deep reinforcement learning[END_REF] extend the work of Chae et al. by proposing a DRL based system that restricts an AV agent by a learned speed limit. This limit can prevent a collision when a distracted pedestrian decides to cross.

In [START_REF] Deshpande | Behavioral decision-making for urban autonomous driving in the presence of pedestrians using Deep Recurrent Q-Network[END_REF], Deshpande et al. propose a grid based state representation model. The model allows the Pedestrian Crash Avoidance Mitigation system to account for multiple pedestrians simultaneously. While the trained AV agent is evaluated in simulator CARLA [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] and its advantages are discussed, the system's real-world applicability remains as the influence of uncertainty. The uncertainty of pedestrian behavior should be considered.

Trumpp et al.

[135] address this issue by modeling a Markov decision process for a simulated pedestrian-AV interaction at an unmarked crosswalk. The AV's Pedestrian Crash Avoidance Mitigation decision policy is learned through DRL and can properly handle conflict problems. However, the similarities of the learned pedestrian behavior to real human behavior need to be studied to validate the applicability in a natural traffic environ-ment because pedestrian behavior highly affects the training result. Hence, more related studies are required.

Figure 2.12: A vehicle-pedestrian negotiation framework (source [START_REF] Gupta | Negotiation Between Vehicles and Pedestrians for the Right of Way at Intersections[END_REF]).

On a deeper level, intelligent vehicles view pedestrians as independent agents with decision-making capabilities rather than as unconscious obstacles. Based on this consideration, the vehicle appears to cooperate with pedestrians to achieve the purpose of a safe crossing. Gupta et al. [START_REF] Gupta | Negotiation Between Vehicles and Pedestrians for the Right of Way at Intersections[END_REF] propose a model for self-driving vehicles to negotiate with pedestrians for the right of way. The framework is shown in Figure 2.12. The model presents the negotiation process of pedestrians and vehicles at the intersection. The model first evaluates the possibility of a collision and the pedestrian intention based on the speed and direction of the vehicle and pedestrian, vehicle interaction with the pedestrian (horn, indicator), pedestrian gesture, and eye gaze. The model then compares the vehicle's plan with the pedestrian's intent. If the two agents reach an agreement, such as the pedestrian crosses first and the vehicle planning to yield the way, the negotiation process succeeds and ends. Otherwise, the vehicle adjusts its speed according to social rules and physical constraints to affect the behavior of both agents. Finally, it repeats the process and seeks a consistent agreement. The core idea of this research is to achieve intention matching to avoid potential collisions between the vehicle and the pedestrian by adjusting the vehicle speed. The authors provide better coordination among both parties, which reduces conflicts of interest at unregulated intersections or pedestrian crossings.

The simulation results show that the travel time of negotiating vehicles is significantly reduced, thus improving the overall traffic flow, which has positive environmental and economic impacts. Their findings demonstrate that proper vehicle speed can enhance the interaction between pedestrians and vehicles to optimize traffic safety and efficiency.

However, the vehicle speed control in [START_REF] Gupta | Negotiation Between Vehicles and Pedestrians for the Right of Way at Intersections[END_REF] is only to negotiate a consistent traffic order with pedestrians. After that, it has no analysis of the optimal vehicle state or trajectory in terms of traffic safety and efficiency. In addition, the simulation scenarios are relatively simple, and there is no real pedestrian test. More explorations are needed to realize applications in complex traffic scenarios and the gap in real situations.

2.3.5/ DISCUSSION

Previous Intelligent Transportation Systems studies focus on the safety of vehiclepedestrian conflict by triggering emergency braking. The ultimate goal is to avoid collisions at intersecting movements. Fruitful results are achieved. Currently, the Autonomous Emergency Braking is becoming a standard2 equipment of vehicles for protecting vulnerable road users [START_REF] Funk Drechsler | Mixed reality environment for testing automated vehicle and pedestrian interaction[END_REF]. However, the specific optimal behavior of vehicles and pedestrians remains to be studied. The optimal behavior should improve traffic safety and efficiency and provide pedestrians with a friendly crossing environment. To this end, a single conflict improvement is under study. Pedestrian intent detection, vehicle intent display, and longitudinal control are considered effective ways to significantly enhance the interaction between AVs and pedestrians.

Research on longitudinal control for vehicle-pedestrian interaction is quite limited. Hence, there is still a gap between these studies and the main objective of this work. Generally, the vehicle should slow down after detecting the pedestrian to invite the pedestrian to cross as early as possible if the pedestrian crosses first. Then, the vehicle continuously adjusts its speed as soon as the pedestrian enters conflict zone. The control goal is first to make the vehicle's state satisfy the safety constraint before the pedestrian leaves the conflict zone. Second, when the pedestrian leaves conflict zone, the goal is to make the vehicle recover as much as possible the lost distance (reach the optimal state). This way, traffic safety can be satisfied, and traffic efficiency is the highest. In a world, the controller enables the vehicle to exhibit pedestrian-friendly behavior while optimizing traffic safety and efficiency.

This raises the multi-agent optimal trajectory optimization problem. Both vehicles and pedestrians need to optimize their speed, while they are avoiding collision. The problem needs to be carefully studied, using optimal control theories. This allows later to use other traditional control methods such as PID, Model Predictive Control [START_REF] Wang | Path Tracking Control for Autonomous Vehicles Based on an Improved MPC[END_REF][START_REF] Lee | State-space interpretation of model predictive control[END_REF], Linear-Quadratic Regulators [START_REF] Park | Experimental verification of a drift controller for autonomous vehicle tracking: A circular trajectory using LQR method[END_REF], etc. in order to follow the computed optimal trajectory. From a continuous-time perspective, the Pontryagin maximum principle is a powerful tool to compute the optimal trajectory (Chapter 3) [START_REF] Ozatay | Velocity profile optimization of on road vehicles: Pontryagin's Maximum Principle based approach[END_REF]. This provides a clear view on the optimal behavior of each agent to share the conflict zone in the most efficient way.

From a discrete-time perspective, vehicle control is a typical sequential decision-making problem. Specifically, CAV should select the appropriate acceleration according to the environmental states at each time step. Due to the particularity of pedestrian behaviors -uncertain randomness and logic, DRL originated from the approximate dynamic programming that can learn the optimal control strategy, maximizes a user-defined reward function for some purposes after many training times [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. The DRL method recently shows powerful ability in the field of autonomous driving and traffic management. For example, Zhu et al. [START_REF] Zhu | Human-like autonomous carfollowing model with deep reinforcement learning[END_REF] adopt the method to imitate human drivers. Zhu et al. to realize the driving behavior that meet complex requirements. In addition, the research on the use of interaction to enhance pedestrian safety at intersections is limited to the scenario of one pedestrian and one AV. Practice calls for extending this idea to more general scenarios where exist multiple streams of vehicles. A model for the cooperation between CAVs and pedestrians is needed to tackle the intersection problem (see Chapter 5).

2.4/ CONCLUSION

Traffic safety and efficiency of the shared space between AVs and pedestrians is a research hot spot. The rich studies of pedestrian modeling and behavioral factors are in progress to consider the paradigm shift introduced by the CAV. Many researchers attempt to enhance the interaction between vehicles and pedestrians to improve traffic safety and efficiency, considering the complex behavioral factors of pedestrians. The same effort is made for technologies that equip vehicles, where new detection systems are introduced to evaluate pedestrian willingness. As a result, a growing body of research works focuses on the intent display of AVs to enable communication with pedestrians. However, because this research is recent, there is no consensus yet on how the vehicle communicates its intent to pedestrians.

Moreover, the pedestrians' behavior depends also on the vehicle's speed, acceleration, and gap. From the pedestrian behavioral standpoint, there is no clearly established communicative speed profile of CAV that invite the pedestrian to cross safely. In this regard, more research is needed. Recent works give only some recommendations on accelerations and speed. The same can be said from the studies of vehicle control approaching the crosswalk. The proposed control in [START_REF] Gupta | Negotiation Between Vehicles and Pedestrians for the Right of Way at Intersections[END_REF] is a first attempt to introduce a new efficient control approach without an optimization function.

From this current state of the literature, it is difficult to start from a consensus model allowing to compute an optimal behavior of the vehicle in conflict with pedestrians. To overcome the difficulty, this work harnesses the multi-agent theory to derive a communicative trajectory. To this end, CAV and pedestrians are considered as agents that cooperate to share a critical resource. As the most related studies on the field of pedestrian-CAV interaction, we will focus on a single conflict in the next chapter. In response to Concern 1, this chapter tries to fill this gap by regarding vehicles and pedestrians as controllable agents to optimize their intersections. To design the speed profile, we consider the CAV cooperating with the pedestrian to optimize a given objective function. The choice of the objective function should fit pedestrian behaviors.

However, studying the suitable objective function faces many challenges. The most important one is overcoming the non-linearity constraint to get the desirable speed profiles.

The non-linearity is due to the access control to the shared space. Many works avoid the non-linearity by studying a distributed problem where the crossing sequence and consensus time are predefined [START_REF] Malikopoulos | A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections[END_REF]. As a result, each speed profile is optimized separately. One notable research is presented in [START_REF] Mirheli | A consensus-based distributed trajectory control in a signal-free intersection[END_REF]. The authors of this research propose a distributed coordinated algorithm. It can compute real-time CAV trajectories. But the algorithm can only be applied to find a consensus between CAVs. The speed profile is computed by relaxing the conflict constraint. The research [START_REF] Riegger | Centralized mpc for autonomous intersection crossing[END_REF] formulates the optimization in space coordinates rather than time to solve the non-linearity problem. This method considerably simplifies the conflict constraint formulation. However, because of using space coordi-34 CHAPTER 3. SINGLE CONFLICT MODELING AND OPTIMIZATION nates, the state variable z(p) = 1/v(p) (with p and v being the position and the speed, respectively) prevents studying cases when the speed equals zero. These studies are limited to intersection cooperation between robots. It is hard to extend the results directly to the pedestrian-CAV interaction.

In order to overcome this complexity, this chapter presents a single conflict model of the CAV and the pedestrian by using Petri-net. This model allows for obtaining a suitable formulation of the system. The conflict model is used to derive the optimization problem.

Using the Hamiltonian analysis, we obtain the optimal speed profiles for the CAV and pedestrian agents. The speed profiles are discussed through numerical examples.

Finally, to obtain the test results close to the real situation and to ensure experimental safety, this chapter proposes a Mixed Reality based simulator. Through this simulator, real testers can interact with virtual CAVs. Hence, the simulator allows for testing real pedestrian behaviors and collecting pedestrian data. This allows to evaluate the gap between the theoretical considerations with the real pedestrian behaviour.

The rest of this chapter is organized as follows. Section 3. 

3.2/ PROBLEM STATEMENT

As the research question raised in Section 1.2, the ultimate goal of this work is to optimize the traffic -safe, friendly, efficient pedestrian-CAV intersection. To do that, this section starts with the scenario where exists one pedestrian and one CAV. Let us consider a CAV that is coming at its desired speed v v (Some variables in this chapter are listed in Table 3.4 at the end of this chapter), and also a pedestrian who wants to cross the road. As the CAV, the pedestrian also has the desired speed v p . Therefore, according to their desired speed, the CZ must be shared by the pedestrian and the CAV, as shown in Figure 3.1.

The CZ is the colored rectangle.

Both agents must adjust their speed to avoid collision in such a scenario. The dynamic of both can be formulated as follows:

Ẋ(t) =                      0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0                      X(t) +                      0 0 1 0 0 0 0 1                      U(t) (3.1) Such that in Eq. 3.1, X T (t) = [d v (t), v v (t), d p (t), v p (t)] and U T (t) = [u v (t), u p (t)], with d k (t),
v k (t) and u k (t) being the traveled distance, the speed and the acceleration of the agent k ∈ {v, p}, respectively. When k = v, it denotes the vehicle whereas if k = p, it denotes the pedestrian. Speed and acceleration constraints are considered as follows:

u k (t) -u k ≤ 0 (3.2) u k -u k (t) ≤ 0 (3.3) v k (t) -v k ≤ 0 (3.4) 0 -v k (t) ≤ 0 (3.5)
The constraint Eq. 3.5 prevents the pedestrian and the CAV to move back but allows them to stop. Variables u k , u k , and v k are defined by considering the vehicle's physical constraints, safety and comfortableness of passengers, and goods on the CAV. To be able to extract a communicative behavior, it remains to define:

• Objective function: The function must match as well as possible the behavior and the understanding of the pedestrian when she/he crosses the road.

• Conflict constraint: Both the CAV and the pedestrian must have exclusive access to the conflict space.

The following content will focus on the constraint that lets agents safely share the conflict space. The constraint should allow an explicit analysis of the speed profile to test different objective functions and deduce the suitable one that formulates the logic behind pedestrian behavior. Without loss of generality, we consider the minimization of the following objective function:

J(u v , u p ) = t f 0 (v v (t) -v v ) 2 dt + w p t f 0 (v p (t) -v p ) 2 dt (3.6) w p ∈ [1,
+∞] is a pedestrian weighting factor, and it acts as a cursor to give more or less advantage to the pedestrian according to the zone's policy. Time t f is defined to allow both agents to regain their desired speed after they cross CZ (conflict zone).

t f = max(t v, f , t p, f )
with t k, f is the time needed for an agent k to recover v k . One can note from the objective function Eq. 3.6 that J(u v , u p ) penalizes the deviation from the desired speed of agents during t f . In the following, we solve the problem in the general case without giving values to neither t f nor to w p . t k, f can be computed from the optimal trajectory. p c is an immediate place. When CZ is free, each agent can immediately access it. We draw the reader's attention to the fact that the sojourn time associated with p k,in and p k,out needs to be optimized, as shown in the next section. Indeed, both vehicle and pedestrian adjust their speed to find a consensus time t c for safely and efficiently crossing CZ.

Because each place p k,out owns only one token, f k,i (t) equals either 0 or 1 for all (k, i).

From [START_REF] Corr Éïa | A dioid model for invariant resource sharing problems[END_REF], the access to CZ is safe if the following constraint holds:

f p,enter (t) -f p,exit (t) + f v,enter (t) -f v,exit (t) -1 ≤ 0 (3.7)
To associate the counter functions f k,i with the dynamic of both pedestrian and CAV, the minimum traveled distances to fire transitions x k,i from the origin (0) is defined as shown in Figure 3.2A. d k,exit includes the length of k, so the CZ is cleared. Hence, we have:

f k,i (t) =          0 if d k (t) < d k,i 1 if d k (t) ≥ d k,i (3.8) 
According to Eq. 3.8, f k,i is a discrete function that needs to be approximated by a continuous function. For this purpose, we consider the following approximation:

f k,i (t) ≃ f s k,i (t) = 1 1 + e λ(d k,i -d k (t))
(3.9) f s k,i have the following derivative function:

∂ f s k,i ∂d k = λ f s k,i (t) 1 -f s k,i (t) (3.10) 
In Eq. 3.9, as λ get bigger, the sigmoid function f s k,i get closer to the discrete behavior of f k,i . In order to keep CZ without overlapping movement when using f s k,i , a safety distance is included according to the value of λ. In the following, we assume that λ has a large value. It results from Eq. 3.10:

lim λ→∞ ∂ f s k,i ∂d k →          0 if d k (t) [d k,i -ds, d k,i + ds], with ds → 0 +∞ if d k (t) → d k,i (3.11) 
Indeed, if

d k = d k,i then ∂ f s k,i ∂d k = 1 4 λ.
In the following, f s k,i with a very large λ is used instead of f k,i . It remains to provide the sojourn time to each token representing the agent k in places p k,out and p k,in by optimizing the speed profile of each agent.

3.4/ OPTIMIZATION BASED ON HAMILTONIAN ANALYSIS

In order to obtain the optimal trajectory analytically for real-time applications, this section uses the Hamiltonian analysis for optimizing the intersection problem. In this analysis, we consider that when the CAV detects a pedestrian, the vehicle and the pedestrian cooperate to minimize J(u v , u p ). According to the system dynamic Eq. 3.1, the constraints of acceleration (Eq. 3.2, 3.3), and speed (Eq. 3.4, Eq. 3.5), the Hamiltonian function is formulated as follows:

H t, x(t), u(t) = v v (t) -v v 2 + w p v p (t) -v p 2 + k∈{v,p} λ d k v k (t) + λ v k u k (t) + µ 1,k u k (t) -u k + µ 2,k u k -u k (t) + µ 3,k v k (t) -v k + µ 4,k 0 -v k (t) + µ 5 k∈{v,p} f s k,enter (t) -f s k,exit (t) -1 (3.12)
Where λ d k and λ v k are the costates and µ 1,k , µ 2,k , µ 3,k , µ 4,k and µ 5 are the Lagrange multipliers with:

µ 1,k =          > 0 if u k (t) = u k 0 if u k (t) u k (3.13) µ 2,k =          > 0 if u k (t) = u k 0 if u k (t) u k (3.14) µ 3,k =          > 0 if v k (t) = v k 0 if v k (t) v k (3.15) µ 4,k =          > 0 if v k (t) = 0 0 if v k (t) 0 (3.16) µ 5 =          > 0 if an agent k is in CZ (conflict zone) 0 if CZ is empty (3.17)
The Euler-Lagrange equation ∂H ∂x = λ becomes:

λd k = ∂H ∂d k = µ 5 (t)λ f s k,enter (t) 1 -f s k,enter (t) -λ f s k,exit (t) 1 -f k,exit (t) (3.18) 
and:

λk v = ∂H ∂v k = 2 • w k v k (t) -2 • w k v k + λ k p (t) + µ 3,k (t) -µ 4,k (t) (3.19) 
with w v = 1.

From Eq. 3.18 and Eq. 3.11, λ d k is formulated as follows:

λ k d (t) =                  a b,k if agent k is before conflict zone, a i,k if agent k is in CZ a a,k if agent k is after CZ (3.20)
with a b,k , a i,k and a a,k being constants. In the following, we put λ k p (t) = a j,k , with j ∈ {b, i, a} and the value of j depends on if the agent k is before or after CZ.

The necessary condition of the optimization is ∂H ∂u k = 0, which gives the following result:

∂H ∂u k = λ k v (t) + µ 1,k (t) -µ 2,k (t) = 0 λ k v (t) = µ 2,k (t) -µ 1,k (t) (3.21) 
from Eq. 3.21, Eq. 3.13, and Eq. 3.14, λ k v (t) is formulated as follows:

λ k v (t) =                  -µ 1,k (t) if u k (t) = u k µ 2,k (t) if u k (t) = u k 0 otherwise (3.22)
From the above analysis, the obtained formulation of the speed profile of the agent k is as follows:

v k (t) = v k + -a j,k -µ 4 (t) + µ 5 (t) -μ1,k (t) + μ2,k (t) 2 • w k (3.23)
The analysis of Eq. 3.23 leads to the speed profiles depicted in Figure 3.3. Indeed, Eq.

gives us an expression of v k (t).

It varies according to the constraints such as speed, acceleration, and the position of agent k. Simply speaking, Eq. 3.23 expresses that the agent k must either keep its speed constant or accelerate and decelerate at either u k or u k . Because of a j,k , these speed variations depend on the agent's state (before, inside, or after CZ).

The optimal speed profiles presented in Figure 3.3 depend on whether the agent k crosses CZ first. More precisely, both agents find a consensus time t c that minimizes J(u v , u p ). The leader accelerates (u k ) during t a,l and keeps a constant high speed v l,c to clear CZ at the consensus time, whereas the follower decelerates (u k ) during t d, f and keeps a low, constant speed v f,c to reach CZ at the clearance time.

We notice that the curves make both agents act with a kind of "cooperation." The first accelerates to let the second cross sooner. Both behaviors are communicative. The leader agent accelerates and shows its intention to cross CZ first to the other. The same is true for the follower agent who decelerates, meaning that it yields the right of way to the other agent. We draw the reader's attention to the fact that pedestrian behavior is dynamic and adaptive. Hence, particular attention to the safety conditions requires to be addressed. Indeed, if the CAV is the follower, it must be able to stop if the pedestrian suddenly changes her/his direction in CZ. Moreover, even if the CAV is designed to respect the speed profile, experience has shown that the CAVs are not as controllable as expected ( [START_REF] Quinlan | Bringing simulation to life: A mixed reality autonomous intersection[END_REF], and [START_REF] Khayatian | Crossroads+ A Time-aware Approach for Intersection Management of Connected Autonomous Vehicles[END_REF]). To this end, the following buffer distance d s is considered to determine a safe speed profile for the follower:

d s = - v 2 f,c 2 • u v (3.24)
d s allows the agent to stop safely before CZ. According to d s , the speed profile is easily adapted. Indeed, from Figure 3

.3, v f,c = u v • t d, f + v v .
Hence, t d, f is obtained by solving the following equation:

1 2 u f • t 2 d, f + v f • t d, f + u v • t d, f + v f t c -t d, f = d f,enter + u f • t d, f + v f 2 2 • u f (3.25)
In Eq. 3.25, the left side of the equation gives the traveled distance by the CAV until t c , whereas the right side constrains the distance to allow the agent to stop before CZ.

More precisely, the right side equals the remained distance to enter CZ minus the buffer distance given in Eq. 3.24. In this quadratic equation, there is a solution only if the d v,enter is long enough to allow the CAV to stop: 

t d, f = v f -u f t c - √ sc -2 • u f (3.26) with 2 • u f 1 2 u f t 2 c + v f t c -2 • d f,enter -v 2
w k 1 1 20 
Numerical data are given in Table 3.1. In this example, CAV1, CAV2 and the pedestrian arrive at their desired (v k (0) = v k ) speed. In Figure 3.4, the initial distance of each agent from the red rectangle is d k,enter . d k,exit includes the length of the occupied space by the agent. Finally, the emergency deceleration of CAV equals -9m/s 2 . The two following pedestrian behaviors are considered:

• Scenario 1: The pedestrian behaves as expected by the speed profile.

• Scenario 2: The pedestrian behaves as expected until she/he is near the end of CZ. She/he stops 0.1m before d p,exit . 3.2: Comparison between the optimal trajectories and spontaneous way: t k,exit is the time when the agent k leaves CZ, and These characteristics are owed to the objective function that:

J k = t k, f 0 (v v (t) -v k )
• distributes the burden of the conflict over all agents: Leaders (CAV1 and the pedestrian) speed up to let the follower (the pedestrian and CAV2) access CZ sooner.

• makes each follower agent maintain the appropriate speed without necessarily being resorted to a complete stop.

The proposed approach seeks to provide more communicative behavior, in addition to the vehicle signaling system. The numerical example shows that CAV1 and CAV2 interact with the crossing intention of the pedestrian by creating a comfortable space for crossing. The objective function allows firstly to provide a suitable behavior for both CAVs.

Secondly, if the pedestrian react as expected, the crossing process allows them to free sooner CZ (gaining 31.15%) and to quickly recover the initial speed. In other words, the proposed approach improves the traffic efficiency by avoiding a complete stop. The first concern "Concern 1" mentioned in Section 1.2.1 is tackled by this way.

Numerical example results show the ideal cooperative behaviors of CAVs and pedestrian. However, real pedestrians maybe not behave as presented due to many reasons.

More simulations are needed to analyze real pedestrian behaviors and design pedestrianfriendly CAV behaviors. To do that, an appropriate simulation tool is required. The following contents of this chapter the constructed simulator and pilot tests on it.

3.6/ ARCHITECTURE OF OUR SIMULATOR

3.6.1/ REQUIREMENTS OF THE SIMULATOR

This section aims to tackle the last concern "Concern 4" mentioned in Section 1.2.1.

In the studied scenario, the objects involved include vehicles and pedestrians. Therefore, in the algorithm testing process, a suitable simulator is essential and needed before performing real experiments. Considering that each CAV and pedestrian shows their behavior according to the environmental information, the simulator should be agent-based and satisfy the following requirements:

• It can simulate multiple vehicles, and the information between vehicles can be interconnected, that is, connectivity.

• It should have a 3D virtual scene because part of the interaction between pedestrians and vehicles is through vision, and vehicles perceive pedestrians through sensors such as LiDAR and camera.

• It should have a pedestrian simulation model.

The recent literature [START_REF] Nguyen | An overview of agentbased traffic simulators[END_REF] summarizes the agent-based traffic simulators. Among these traffic simulators, we found four representatives, as shown in Table 3.3, that might be suitable for our studied scenario. Some of their properties are listed in the table.

Simulation of Urban Mobility (SUMO) [START_REF] Krajzewicz | SUMO (Simulation of Urban MObility)-an open-source traffic simulation[END_REF] approach is not agent-based but has been integrated with Java Agent Development Framework (JADE) [START_REF] Bellifemine | JADE-a java agent development framework[END_REF] in order to make simulations compatible with recent agent technologies [123,[START_REF] Azevedo | JADE, TraSMAPI and SUMO: A tool-chain for simulating traffic light control[END_REF]. The solution of SUMO + JADE seems desirable, especially in the "connectivity" between vehicles. However, there is no 3D simulation inside SUMO, which is important in our study, nor does a suitable pedestrian model exist. The research [START_REF] Erdmann | Modelling pedestrian dynamics in SUMO[END_REF] builds a pedestrian model in SUMO, but its purpose is to validate different models, so it is not suitable for our studied scenario. Intelligent Transportation Systems for Urban Mobility (ITSUMO) [START_REF] Bazzan | Chapter 1 -ITSUMO: An Agent-Based Simulator for Intelligent Transportation Systems[END_REF] has also been applied to simulate route choice scenarios. However, the primary focus of the application is on traffic control. For example, ITSUMO has been used for testing traffic light control algorithms in [START_REF] Bazzan | ITSUMO: an agent-based simulator for ITS applications[END_REF][START_REF] Rossetti | Ronghui: Advances in artificial transportation systems and simulation[END_REF]. The famous CARLA simulator [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] has been developed from the ground up to support the development, training, and validation of autonomous driving systems. It provides realistic 3D simulation scenes, vehicle dynamics, pedestrian models, and various sensor models related to autonomous driving. However, it mainly focuses on the autonomous driving simulation of a single intelligent vehicle rather than CAVs.

To sum up, none of these popular simulators can fully meet our requirements. It is necessary to build a new simulation platform to study the cooperation between vehicles, the interaction between vehicles and pedestrians, and the behavior of pedestrians to optimize the intersection between pedestrians and CAVs. 

3.6.2/ ARCHITECTURE OF MIXED REALITY SIMULATOR

Mixed Reality [START_REF] Milgram | A taxonomy of mixed reality visual displays[END_REF][START_REF] Hughes | Mixed reality in education, entertainment, and training[END_REF] blends the physical and digital worlds, which enables natural and intuitive 3D interactions between people, computers, and the environment. The technology can help us connect real testers to virtual environments to ensure safe testing. So, the method is practical due to avoid dangerous experiments. Hence, this work adopts the method in the simulation to ensure experimental safety and the reliability of the results.

To facilitate the simulation and test the control algorithm of CAVs, the simulator uses a distributed architecture, as shown in Figure 3.7. The whole architecture consists of five components: CAVs and pedestrians simulator, simulated CAVs, real robots/CAVs, simulated pedestrians, and real pedestrians. The communication between them is based on robot operating system (ROS) [105] to separate the simulator from the algorithms (CAVs control, pedestrian crossing). The advantage of ROS is beneficial both for algorithm development and simulator development. In addition, any ROS-based system, such as selfdriving cars and robots, can be easily connected to the simulator for hardware-in-the-loop simulation. The following introduces these five components:

• CAVs and pedestrians simulator: This component provides the all virtual 3D objects, such as the CAV, road, environment, and pedestrian model. The virtual simulation is developed based on the Unity 3D engine. The simulator simulates vehicle dynamics, pedestrian dynamics, and autonomous driving sensors such as cameras, LiDAR, and inertial measurement units (IMU). In this ROS architecture, the emulator is a node connected to the ROS master. Once the connection is successful, the simulator node publishes CAV information, such as CAVs' number, sensor data, and pedestrian information, such as pedestrians' position, speed, and direction. At the same time, each CAV subscribes to control information (acceleration and interactive signal light). In addition, the component also provides a user interface (UI) that allows us to easily set important simulation parameters, such as the number of lanes, the number and position of CAVs, and the position of pedestrians.

• Simulated CAVs: This component allows any developer to connect to the system and subscribe to all topics about CAVs' sensor data. Developers can use these data as input to the CAVs' control algorithms that calculate control outputs for one or more CAVs. Through ROS topics, the calculated vehicle control can be applied to the vehicles in the virtual scene. This distributed architecture is conducive to the development of vehicle control algorithms.

• Real robots/CAVs: This component is designed to connect the real robots/CAVs with virtual vehicles. The component can input real robots/CAVs information, such as position and rotation, from the real world to the simulator through ROS topics in real-time and generate one or more virtual objects corresponding to real objects in the virtual environment. At the same time, the virtual scene outputs sensor information to the real vehicle/robot. This way, the virtual scene is connected with the real vehicle/robot through data communication to test the algorithm on the real hardware. This approach simultaneously provides complex, challenging test scenarios and a safe experimental environment. For example, the experiment of the cooperative crossing of several CAVs and pedestrians in a real environment is dangerous. But this simulation platform can place CAVs and pedestrians in the same virtual environment for algorithm testing when separated from the real environment.

• Simulated pedestrians: By this component, any ROS users connected to the system can subscribe to all ROS topics about CAV information and pedestrian data.

Then, these data are input into the pedestrians' control algorithms to calculate pedestrians' decisions and reactions of one or more pedestrians. This component is mainly to simulate pedestrian behaviors.

• Real pedestrians: Similar to the "real robot/CAVs" component, the "real pedestrians" component lets one or more real testers enter the virtual scene through a Virtual Reality (VR) headset. The simulator provides the tester with visual 3D scenes, and the real tester's movement is reflected on the pedestrians in the virtual scene.

In this way, the simulator puts virtual vehicles, real vehicles, virtual pedestrians, and real pedestrians in the same scene to provide a safe, realistic experimental tool.

3.6.3/ PILOT TEST

As the four pedestrian models discussed in Section 2.2.1, Data Driven Model is most applicable to our studied case. The DRL model introduced in the next chapter needs a model to simulate pedestrians. Collecting some pedestrian data and analyzing essential parameters, such as speed, reaction time, and distance acceptance, is necessary.

Although some literature has analyzed these data, most of them in the literature are derived from the driver's driving situation, or unreliable way, such as by watching videos [1].

A safe and realistic experimental environment is required to obtain data close to the real situation. Fortunately, the Mixed Reality based simulator can easily accomplish this task thanks to the "real pedestrians" component.

The pilot test has two significant implications. First, it can be used to study pedestrian behavior when facing an oncoming CAV. Second, the pedestrian data in the test can help us build a pedestrian model. Although in this test, pedestrian data is rarely sufficient to construct a Data Driven Model, we can extract some essential features from these data, such as pedestrian reaction time, passing speed, speed distribution, etc., to construct a pedestrian model with some random parameters. More details on the pedestrian model are presented in Chapter 4.5.1. 

3.6.3.1/ TEST AND ANALYSIS

Testers enter the virtual scene through a VR headset, as shown in Figure 3.8A. When starting the simulation, the pedestrian faces the lane and the initial position is 1.2m away from the lane. When the distance between the pedestrian and the lane is greater than 1m, AVs do not interact with the pedestrian. When the pedestrian-lane distance is less than 1m, and the pedestrian-AVs distance is less than 50m, we consider that the vehicle detects the pedestrian and understands the pedestrian's intention to cross the road. Tester's position is mapped in real-time to the coordinate of the virtual scene. In this way, the avatar corresponding to the tester in the virtual scene uses the mapped coordinates to maintain the same movement as the tester. We only told testers to aim to cross the road when they felt safe. We do this in all the following experiments in this work.

There are two lanes in the virtual scene, one of which generates vehicles, and the other is used to measure the data when pedestrians walk freely. Vehicles are continuously generated at random time intervals at a distance of 150m from CZ, which generates different distances between vehicles. The initial speed of the vehicle is v v = 10m/s. When the pedestrian is close to the CZ (< 1m), the vehicle within 50m can detect the pedestrian and adjust its speed. Vehicles show its intention to the testers through through displaying a red/green image. The participants of the experiment were the visitors of the UTBM's open day on February 2 nd , 2020. The recruitment was opportunistic. 13 female and 15 male testers have achieved 28 virtual road crossings from 7 to 62 years old. Three testers were younger than 18 years old, and one tester was older than 50 years old.

We did two experiments. All testers participated in each experiment. In the first experiment, CAVs do not emit any signal, and their trajectories are not optimized. This is the spontaneous way. CAVs maintain the desired speed and drives at the maximum safe speed allowed when braking is required until it stops near the CZ. In this experiment, 42 virtual road crossings were achieved by 28 participants. They had two different reactions.

The first was to make vehicles dangerously slow down (35.71%) with many hesitating movements. When the vehicles come to a complete stop, the pedestrian crosses. In the second behavior (64.28%), the testers quickened the pace and even ran to avoid the vehicle's strong deceleration. Thus, we had two different deceleration ranges: less than -3m/s -2 and close to -9m/s -2 . In both cases, the testers suffered from a lack of communicative behavior.

In the second experiment, vehicles show a flashing signal light to notify pedestrians to wait or cross, as shown in Figure 3.8A. We tell the meaning of the signal light to the testers in advance. The participants cross when they feel safe. Vehicles adjust their speed according to the optimal speed profile during the pedestrian crossing. We observed that all testers, except two, played the cooperative game by speeding up their pace when crossing CZ. Averagely, the crossing speed is 24.73% higher than the free walking speed for the 14 testers. Another key performance indicator is the speed of the CAV when the tester enters CZ. With a usual car speed profile, it is reported in [START_REF] Sucha | Pedestrian-driver communication and decision strategies at marked crossings[END_REF] that 46% of pedestrians wait until the cars stop. In the conducted tests, only three of the 28 testers waited for a complete stop of the CAV before entering CZ.

The average speed of the CAV when the tester crosses equals 6.70m/s. In conclusion, the application of the optimal speed profile can avoid the complete stop of the vehicle in a certain and improve traffic efficiency. A vieo of test can be seen here. 1

3.7/ CONCLUSION

This chapter proposes a pedestrian-CAV cooperative system for road sharing. Regarding the pedestrian and the CAV as controllable agents, we proposed a single conflict model by Petri-net modeling and dealt with the multi-agent optimization problem through the Hamiltonian method. The optimized speed profiles of two agents show cooperative behavior; one agent accelerates, and another decelerates to find the consensus time t c to avoid the collision. Moreover, both of them avoid stopping to improve the crossing efficiency. The numerical example results show that the optimal speed profile optimizes the traffic efficiency in the studied single conflict scenario. The first concern "Concern 1" mentioned in Section 1.2.1 is tackled in this chapter.

Based on research introduced in Section 2.3.4, this work goes a step further in the pedestrian-CAV intersection problem. The optimal speed profile for pedestrians and vehicles reveals how they should communicate and cooperate to achieve safe and efficient crossing. This result is the theoretical basis of the follow-up research and contributions in this field.

In addition, a Mixed Reality based simulation platform is built to allow real testers to participate in the experiment. The last concern "Concern 4" mentioned in Section 1.2.1 is tackled in this chapter. The pilot test results show the pedestrian behavior when sharing the road space with the CAVs. In the SB (spontaneous) scenario, testers wait for the vehicle to come to a complete stop (35.71%) or accelerate (64.28%) across the road to avoid collision with the CAVs. In the scenario where CAVs show the signal light and optimized speed, most testers play the cooperative game when they cross CZ. Hence, we observed through the tests that the deceleration behavior of CAVs and signal light enhance communication with the pedestrian and naturally speeds up the crossing efficiency for both agents. At the same time, analyzing these pedestrian behaviors and data will help build the pedestrian model for use in the DRL environment presented in the next chapter.

The cooperative approach based on the optimal speed profile has certain limitations in practice because pedestrians are uncontrollable. However, the results bring hope to optimize the intersection and open up the topic, even though pedestrians are not controllable agents. More discussion will be presented in the next chapter. A conflict model based on Petri-net is given to analyze the multi-agent system. Hamiltonian optimization is used to optimize a cost function under certain constraints. The Hamiltonian analysis helps to find the consensus time to cross CZ (conflict zone) and optimal speed profiles of agents. This way, the cost function, which represents traffic efficiency, is minimized. The results show the possibility of avoiding collision and optimizing traffic efficiency at the theoretical level through pedestrian-CAV interaction and cooperation.

However, pedestrian behaviors can not be ideally controlled like that of CAVs. This attribute may lead to a significant difference between the actual crossing time and the planned consensus time, as proved in the pilot test results in Section 3.6.3. Hence, using this method in a real traffic environment is still challenging due to pedestrian behaviors. This is the second concern (Concern 2) mentioned in Section 1.2.1.

In response to Concern 2, this chapter first gives practical considerations and then proposes another solution -CAV optimal state -based on the concept of optimal speed profiles. Specifically, the CAV interacts with the pedestrian by decelerating and intention display to invite the pedestrian to cross as early as possible. Then, the CAV continuously adjusts its state according to the pedestrian state. Safety constraints can be held until the pedestrian leaves CZ. When the pedestrian leaves CZ, the CAV reaches the optimal state. The new solution makes traffic efficiency the highest under the safety constraint.

In terms of CAV control, this chapter uses two control methods, QP (Quadratic Programming) and DRL (Deep Reinforcement Learning).

The rest of this chapter is organized as follows. Section 4.2 discusses the gap between the optimal speed profiles in an ideal environment where agents are controlled and in a real traffic environment where pedestrians can not be controlled as the CAV agent.

Because of the gap, the concept of the CAV optimal state is proposed. Section 4.3

analyzes the optimal state of CAV during the crossing process. Section 4.4 designs a QP controller to make the CAV reach the optimal state. 

4.2/ PRACTICAL CONSIDERATION

To adapt the theoretical optimization to reality, three key design requirements should be carefully considered:

• Pedestrian safety: When the CAV prompts the pedestrian to enter CZ by displaying the green, it must be able to come to a complete stop before CZ, as long as the pedestrian has not fully exited.

• Pedestrian convenience: Although both agents are assumed to be seeking a compromise, the pedestrian must be able to move freely, e.g., slower. In other words, the problem turns to a design of a single-agent control, adapted to the characteristics of the pedestrian: reaction time, speed, etc.

• Traffic efficiency: Despite both previous folds, CAV must carry the burden of the crossing efficiency. Based on the solution given in Figure 3.3, in addition to the displayed color, the CAV's speed profile should be expressive enough to invite the pedestrian to cross as early as possible. It should be able to recover the lost time as much as possible when the pedestrian exit.

To respect both first requirements, the CAV speed should be limited according to its distance to CZ before pedestrians exit. We call the combination of speed and position of the vehicle in the process of the pedestrian crossing as state S , and S = (x v (t), v v (t)) (Some variables in this chapter are listed in Table 4.3 at the end of this chapter). Because the CAV maintains a safe distance to the pedestrian until the pedestrian exits CZ, there must exist an optimal state S * that let the CAV be the furthest from CZ after recovering its desired speed v v at the moment the pedestrian leaves the CZ (see Figure 4.2 for more explanation).

Combining the initial behavior (see Figure 3.3) with the practical considerations, the single-agent control problem turns to cooperate with the pedestrian as follows:

VEHICLE OPTIMAL STATE

• If the CAV crosses first, it displays red, communicates the presence of the pedestrian to the follower CAV, and frees the CZ the soonest for the pedestrian.

• If the CAV yields the way, then it invites the pedestrian to get to CZ the soonest by providing a sufficient safety margin.

it must be at the optimal safe state when the pedestrian leaves CZ.

To meet these control design requirements, this work uses two control approaches. The first is based on DRL. Indeed, DRL shows its powerful abilities in the field of autonomous driving, as discussed in [START_REF] Aradi | Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles[END_REF] and [START_REF] Kiran | Deep Reinforcement Learning for Autonomous Driving: A Survey[END_REF]. It has also brought new and promising solutions to traffic control issues [START_REF] Gromniak | Deep Reinforcement Learning for Mobile Robot Navigation[END_REF][START_REF] Cui | Adaptive Neural Network Control of AUVs With Control Input Nonlinearities Using Reinforcement Learning[END_REF]. More details about the DRL controller design are given in Section 4.5. The second control approach is based on QP. QP is only used to assess the effectiveness of DRL. The QP controller is based on a rolling horizon QP algorithm [START_REF] Li | A real-time optimization energy management of range extended electric vehicles for battery lifetime and energy consumption[END_REF]. At each time step, the exit time of the pedestrian is computed according to the pedestrian's position and average speed. The control algorithm computes the speed profile of the CAV [START_REF] Hult | Experimental validation of a semi-distributed sequential quadratic programming method for optimal coordination of automated vehicles at intersections[END_REF] that allows it to reach the optimal control point with the minimum sum of a quadratic gap to the desired speed (Eq. 3.6). When the optimal safe state is infeasible, the control brings the CAV to a complete stop near the obstacle, using u v when the CAV is close to CZ.

4.3/ VEHICLE OPTIMAL STATE

To reveal the influence of vehicle state S on the driving distance decrease during the intersection, this section analyzes the relationship between the CAV state at the moment when the pedestrian exits the road and the CAV position after recovering its desired speed. The goal is to find a state of the CAV such that the CAV loses the shortest driving distance or travels the farthest in the process after the CAV returns to its desired speed.

We call this state the CAV optimal state S * . To do that, we use the coordinate system shown in Due to the uncertainty of pedestrian behaviors and to ensure their safety, the state of the CAV is constrained by Eq. 4.1 before the pedestrian exits CZ:

-x v (t) - l c 2 ≥ v 2 v (t) -2 • u v + τv v (t) (t ≤ t p,exit ) (4.1)
This means that the actual distance to CZ is no less than the shortest braking distance The relationship between S and the position after time v v u v when CAVs, with all possible S , can reach the desired speed v v . The CAV with the optimal state S * will run the farthest.

At t f inal = t p,exit + v v u v , the CAV can reach its desired speed by accelerating, for all possible S (t p,exit ) with v v (t p,exit ) ≤ v v . Hence, we can compare the final position (see the right side in Figure 4.2) of the CAV under different S (t p,exit ) at t f inal . We give the expression of x v (t f inal ) as follows:

x v (t f inal ) = x v (t p,exit ) + v 2 v -v 2 v (t p,exit ) 2u v + v v u v - v v -v v (t p,exit ) u v • v v (4.2)
The problem to solve is the following:

Find S * = arg max S (t p,exit ) x v (t f inal ) s.t. -x v (t p,exit ) -l c 2 ≥ v 2 v (t p,exit ) -2•u v + τv v (t p,exit ) 0 ≤ v v (t p,exit ) ≤ v v (4.3)
Analyzing the stationary point for the Euler-Lagrange function, the solution of Eq. 4.3 is obtained:

S * = (x * , v * ) =        (u 2 v -2u v u v + 2u v v v -v 2 v )u v 2(u v -u v ) 2 + l c 2 , (τu v -v v )u v u v -u v        (4.4)
So far, the optimal state of the vehicle when the pedestrian exits CZ has been obtained, as represented by Eq. 4.4. The remaining work is to design the vehicle speed controller.

The vehicle equipped the controller can reach the optimal state under safety constraint.

In this work, we provide two methods -QP and DRL to build the controller. QP is used to obtain the theoretical optimal trajectory whereas the DRL is used as a real-time controller of the CAV.

4.4/ MODEL PREDICTIVE CONTROL: QUADRATIC PROGRAMMING

In each sample time ∆t, the CAV needs to compute u v according its current state and the expected exit time of the pedestrian t p,exit . The CAV should reach the optimal state S * from t = 0 to t = t p,exit under safety and physical constraints. One approach to compute the optimal trajectory of the CAV is the use of Model Predictive Control. The function to optimize is quadratic (v vv) 2 . The system dynamic is linear and the control is based on discrete time. Hence, this work uses QP to optimize CAV's trajectory.

The general QP formulation can be expressed as follows:

Find X * = arg min n X T • P • X + q T • X s.t. A • X = b lb ≤ X ≤ ub (4.5)
with T is the matrix transpose operator and X is the system state. A finite time horizon from t = 0 to t = t p,exit with a sample time ∆t is considered in this work. There are n = ⌊ t p,exit ∆t ⌋ control values to compute. State X is defined as follows:

X T =       x v (0) v v (0) S (0) u v (0) x v (∆t) v v (∆t) S (∆t) u v (∆t) • • • x v (n∆t) v v (n∆t) S (n∆t) u v (n∆t)       , (4.6) 
As a result, state X is a vector of 3n + 3 entries. In Eq. 4.6, only x v (0), v v (0), x v (n∆t) and v v (n∆t) are known. x v (0) and v v (0) are the initial vehicle's position and speed, respectively.

(x v (n∆t), v v (n∆t)) equals to S * given in Eq. 4.4. With this in mind, the vehicle dynamic gives the following equality system for 1 ≤ i ≤ n:

         x v (i∆T ) -x v ((i -1)∆T ) -∆tv v ((i -1)∆T ) -1 2 ∆T 2 u v ((i -1)∆T ) = 0 v v (i∆T ) -v v ((i -1)∆T ) -∆tu v ((i -1)∆T ) = 0 (4.7) 60CHAPTER 4.
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From Eq. 4.7, matrix A and vector b given in Eq. 4.5 are defined as follows:

                                          1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 -∆t -1 2 ∆t 2 1 0 0 . . . 0 0 0 0 0 0 0 -1 -∆t 0 1 0 0 0 0 0 0 0 . . . . . . . . . 0 0 0 0 0 0 . . . -1 -∆t -1 2 ∆t 2 1 0 0 0 0 0 0 0 0 0 -1 -∆t 0 1 0                                           (2n+2)×(3n+3) X (3n+3)×1 =                                           x v (0) v v (0) 0 0 . . . x * v (t p,exit ) v * v (t p,exit )                                           (2n+2)×1 (4.8)
The other important system constraints are the maximum speed and acceleration lower and upper bounds.These constraints can be easily introduced in lb and ub vectors in Eq.

as follows:

                                          x v (0) 0 u v . . . x v (0) 0 u v                                           ≤ X ≤                                           x * v (t p,exit ) v v u v . . . x * v (t p,exit ) v v u v                                           (4.9)
With equality and inequality systems given in Eq. 4.8 and Eq. 4.9, respectively, the constraints of the system are modeled. Because from Eq. 3.6, the objective is to minimize the sum of the quadratic deviation from the vehicle desired speed, we have:

P =                                           0 0 0 0 0 0 0 1 0 . . . 0 0 0 0 0 0 0 0 0 . . . . . . . . . 0 0 0 0 0 0 0 0 0 . . . 0 1 0 0 0 0 0 0 0                                           and q =                                           0 -2 v v 0 . . . 0 -2 v v 0                                           (4.10)
The QP solution gives the CAV's acceleration value at each time step i∆t from i = 0

to n, as well as the resulting CAV's position and speed. There are several well-known approaches to solve the QP problem. In this work, we use Matlab solver which is based on the method in [START_REF] Coleman | A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables[END_REF].

The feasibility of the QP problem depends on the initial state of the CAV. There are two conditions to be fulfilled:

• Cond1: n∆t allows enough time to vehicle to reach simultaneously both optimal distance x * and speed v * given in Eq. 4.4.

• Cond2: x v (0)x * allows enough space to reach the S * (n∆t). Hence, the feasibility of the control point can be written as follows:

D Cond2 ≤ x * v -x v (0) ≤ D Cond1 (4.11)
where D Condi (i ∈ {1, 2}) are functions of t p,exit , v v (0), v * , and constraints u v , u v , v v . These conditions can be either checked formally through the optimal trajectory control, or directly as a feasibility output of the used quadratic programming algorithm. In the case of unfeasible QP problem, the CAV launches a spontaneous controller that comes to a complete stop near the CZ, if the CZ is occupied by a pedestrian. In this work, we used the following spontaneous controller [START_REF] Outay | Simulation of connected driving in hazardous weather conditions: General and extensible multiagent architecture and models[END_REF]:

u v (t) = min u v , u CZ v (t), u v v v (t) (4.12) u o v (t) = u v • ∆t -v v (t) -u v • Y o v (t) 2 • ∆t Y o v (t) =            u v •∆t 2 +2•v v (t)•∆t+l c +2•x v (t)+2 u v o = CZ u v •∆t 2 +2•∆t(v v (t)-2•v v )+ vv 2 uv u v o = v v (4.13)
The use of the controller given in Eq. 4.12 and Eq. 4.13 aims to consider the deceleration constraints and the time step, as described in [START_REF] Perronnet | R égulation coop érative des intersections: protocoles et politiques[END_REF][START_REF] Du | Traffic congestion reduction based on vehicle platoons and intelligent crossroads interactions, Bourgogne Franche-Comt é[END_REF].

4.5/ DEEP REINFORCEMENT LEARNING METHOD

Another approach to control the CAV is DRL. A DRL model includes a DRL environment and an agent. The two parts interact through observations, actions, and rewards, as

shown in an autonomous driving scenario in Figure 4.4. At the beginning of a control cycle, the vehicle perceives the environment through sensors such as camera, LiDAR, GPS, etc. This information, called state or observation, is used as the input of the agent.

Then, the agent outputs the action, such as brake torque or power output, to the vehicle.

After a control cycle, the system runs repeatedly. In the training process [START_REF] Arulkumaran | Deep Reinforcement Learning: A Brief Survey[END_REF], the agent evaluates the output according to the reward and state to update its network parameters.

The objective is to let the agent find the optimal strategy which maximizes the reward from a long-term perspective. This way, the vehicle shows high autonomous driving performance. In this work, the DDPG (Deep Deterministic Policy Gradient) algorithm is selected to tackle the problem with the demand for continuous observations and action space as discussed in 2.3.4. DDPG is an off-policy method and entirely model-free. Detailed information about the DDPG and its variables can be found in [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF]. The specific structure of the network is shown in Figure 4.6. In each fully connected layer (except the sixth layer in the critic network), the number of neurons is 48.

4.5.1/ PEDESTRIAN MODEL

The model of a pedestrian agent is at the core of the training process. The model is designed as a fuzz testing approach [START_REF] Xie | Deephunter: A coverageguided fuzz testing framework for deep neural networks[END_REF] based on the collected data in the pilot test in Section 3.6.3. We emphasize that the model of the pedestrian agent does not aim to match the pedestrian behavior precisely. Instead, it aims to train the agent and make it generalizable. That is to say that the trained agent can deal with not only the recorded scenarios but also other scenarios. The pedestrian model consists of two parts: decisionmaking and speed parameter. They are introduced separately below.

One of the training objectives is respecting the stated cooperative game. In each scenario, the theoretical model (in Figure 3.3) evaluates whether the CAV must yield the way.

If the CAV agent respects the results, the pedestrian agent plays the cooperative game and respects the displayed signal. In this case, the pedestrian agent speeds the pace (green signal) or waits for the CAV (red signal). Otherwise, when the CAV does not play the cooperative game, the pedestrian agent takes a risk and does not respect the signal.

In this case, the pedestrian runs or crosses slowly according to the initial safety margin at the red signal. At the green signal, the pedestrian waits for the CAV to pass first. More details about the behavior of the pedestrian agent are given in Figure 4.5.

The behavior parameters of the simulated pedestrian are randomly selected at each episode from the distributions of young and young old given in [START_REF] Oxley | Crossing roads safely: an experimental study of age differences in gap selection by pedestrians[END_REF]. More precisely, the reaction time value sets to a wide range (0.15s ∼ 3.59s), and the considered safety margin varies from -2s to 4s. The crossing speed sets to 0.5 ∼ 2m/s. The used speed values

for training DRL has a wider range than the one observed in the literature. These values cover the ranges of pedestrian speed and decision-making time in [2] and the results from the pilot test, as shown in Figure 3.8 in Section 3.6.3. Each simulated pedestrian has then a desired walking speed, a safety margin, and a time delay [START_REF] Bohannon | Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants[END_REF][START_REF] Oxley | Crossing roads safely: an experimental study of age differences in gap selection by pedestrians[END_REF]2]. When the CAV provides a sufficient gap, the pedestrian begins the crossing after the time delay. The simulated pedestrian may come to a complete stop in CZ at each episode, with a probability of 10%. This probability aims to consider unforeseeable stops of the pedestrian for many reasons (e.g., falling). According to the data from 28 real testers (see Figure 3.8C), the model selects sin function of time A • sin(w(tt p,wait ) + B, for which a bounded white noise is added to avoid negative speed, to calculate the pedestrian speed curve. Parameters A, w, and B are computed according to the maximum and average pedestrian speed. The reward r(t) consists of three parts r 1 , r 2 , r 3 based on several considerations.

v (t), v v (t), v v (t) -v v , (v v (t) -v v ) 2 dt
r(t) = r 1 (t) + r 2 (t) + r 3 (t) (t ≤ t p,exit ) r 1 = 10 (∆L ≥ 0) + K 1 • ∆L (∆L < 0) r 2 = 2 (|v v (t) -v| < 0.5) -K 2 • (v v (t) -v) 2 r 3 =                          K 3 f p (t) = 0 0 f p (t) = 1, f v (t) = 1 K 3 • (v p (t) -v p ) 2 f p (t) = 1, f v (t) = 0, v p (t) > 0 0 f p (t) = 1, f v (t) = 0, v p (t) = 0 ∆L = -x v (t) - l c 2 - v 2 v (t) -2u + τ • v v (t) f k (t) =          0 before agent k enters CZ 1 after agent k enters CZ (4.14) 
The reward r 1 represents the safety constraint as formulated by Eq. 4.1. When the system is secure (∆L ≥ 0), it contributes a positive reward of 10. Otherwise, a negative reward will be given according to the degree of danger. K 1 (> 0) is the weight coefficient. Because of the importance of safety, a relatively big value should be given to K 1 . Besides, r 1 is used in the case that the pedestrian passes CZ first. r 1 = 0 if the pedestrian chooses to wait for the CAV to pass first.

The reward r 2 is used to optimize the objective function Eq. 3.6 from the perspective of CAV. It gives a positive reward of 2 when CAV speed is close to the desired speed. To guide the agent to explore the action space efficiently, we set a changing negative reward for the CAV speed deviation from desired speed. K 2 (> 0) is the weight coefficient.

The reward r 3 is used to optimize the objective function Eq. 3.6 from the perspective of pedestrian. According to the analysis in Section 4.5.1, CAV's behavior will affect the choice of pedestrian behavior. Therefore, pedestrian behavior should be evaluated by a reward function to optimize the whole system. The definition of r 3 is based on the pedestrian behavior model built in Section 4.5.1. For a better explanation, we use a counter function f k (t), with k ∈ {v, p} which represents a CAV and a pedestrian alternatively. In r 3 , K 3 (< 0) is the weight coefficient. In the beginning, due to the reaction time (t r ), the pedestrian doesn't know whether to enter CZ first or wait. However, regardless of the passing order, it gives a negative reward to reduce the waiting time of pedestrian before entering CZ. Therefore, real-time reward r 3 = constant when f p (t) is 0. When the pedestrian enters CZ ( f p (t) = 1), it is obvious that the order of passage is known. If the CAV has entered ( f v (t) = 1), it can be thought that the process of crossing has been over.

Because in the case of the CAV passing first, only the waiting time of pedestrians needs to be concerned. If the CAV has not yet entered, a negative reward value is given when the pedestrian normally passes (v p (t) > 0) to punish the deviation between the real speed and the desired speed. This way ensures consistency with Eq. 3.6 to a certain extent.

Finally, if the pedestrian doesn't pass normally but stops in CZ for any reason, we give a reward of 0 because the punishment is meaningless in this case.

These defined rewards r 1 , r 2 , and r 3 serve as training signals to select appropriate behaviors in the context of the desired task. The selection of such reward function includes careful considerations of the CAV and pedestrian behaviors. From the training results of many attempts, we have found it difficult to converge the reward by independently considering only the CAV's actions. Generally, there are collisions, or the CAV always slows down until it stops totally to allow the pedestrian to go first. However, with this reward function, the test results in Section 4.6 show that the CAV cooperates with the pedestrian to ensure safety and improve the crossing efficiency. More interestingly, the CAV can choose the appropriate crossing order according to the actual situation rather than always slow down and wait for the pedestrian. The CAV with such intelligent behavior makes decisions like humans do when driving. Therefore, the proposed reward function is effective for the training.

4.6/ EXPERIMENT AND ANALYSIS

There are several key points to evaluate the performance of the proposed method through experiments. They are listed in the following:

• CAV's ability to show appropriate driving behaviors. This includes cooperating with pedestrian to choose the crossing order, pedestrian-friendly driving behavior, and dealing with dangerous pedestrian behaviors.

• CAV's ability to reach the "optimal state" when pedestrian exits the lane, as analyzed in Section 4.2. This reveals the combination of crossing efficiency and safety.

• The generality of our method when the virtual pedestrian simulation is replaced by real testers.

in conflict. The selection of these should be considered under the condition of balance safety and efficiency. The above selected values are desirable from the testing results.

The sample time ∆ t sets to 0.5s. The learning rate of both networks and the size of the experience pool are set to 0.0001 and 10000, respectively. The algorithm used for training the actor and critic function approximator is Adaptive movement estimation (Adam). The cost function adopted for learning is mean squared error (MSE). Moreover, the discount factor applied to future rewards during training and the noise of exploration are set to 0.99 and 0.6, respectively. After many tests, a suitable batch size is chosen as 64.

When launching a training episode, the program initializes the position of the CAV in the defined area. The CAV runs at the desired speed. Pedestrian crossing parameters are also randomly generated in the scope as described in Section 4.5.1. The training terminates when a collision occurs, or the pedestrian crosses successfully. Finally, the full learning process can be found in Algorithm 1 in [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF]. To compare the experimental results with the theoretical optimal solution, this work uses the method QP to calculate optimal control for CAVs. The optimal state S * sets as the goal to reach at the moment when the pedestrian exits CZ. The same constraints (Eq.

3.2, Eq. 3.4, and Eq. 4.1) are applied to the QP solver, as presented in Section 4.4 .

The control cycle sets to 0.5s. By this way, the solver provides a solution which consists of the optimal control values at each step. The first value is used to control the CAV.

When a new cycle comes, the program recalculates the optimal control value. This cycle continues until the pedestrian leaves the CZ.

4.6.2/ TEST OF VEHICLE DEALING WITH NORMAL SIMULATED PEDESTRIAN BE-

HAVIORS

The purpose is to test CAV's ability to show appropriate driving behaviors and to reach the optimal state S * . The results are shown in Figure 4.8 and Figure 4.9.

In Figure 4.8, the initial state of the CAV is (-20m, 10m/s). The theoretical cooperative game is in favor of the CAV, so the pedestrian has to wait and the CAV should go first.

Figure 4.8b shows that the pedestrian waits for the CAV, and the CAV shows the red to the pedestrian and passes first. Figure 4.8a depicts that the CAV decelerated in the first 0.7s. This behavior is perfectly reasonable because the pedestrian may enter CZ even with the red. If the pedestrian chooses "enter," such deceleration of the CAV makes the subsequent braking distance enough to ensure safety. If not, like in this case, the CAV accelerates with the maximum acceleration until it exits CZ to shorten the pedestrian's waiting time (3.5s in this case). The CAV does not exceed its maximum speed v v during the whole process, and it cooperates with the pedestrian to complete the crossing task.

This kind of cooperative behavior between both ensures traffic safety and improves passing efficiency. In this case, the method of QP is not compared because it cannot select the passing order automatically according to the state of the pedestrian. In Figure 4.9, the initial state of the CAV is (-50m, 10m/s). From the perspective of the CAV, the distance to CZ is enough to let the pedestrian cross first. In Figure 4.9a, the CAV slows down until the pedestrian enters the CZ at 2s. The sharp deceleration in this process can help the pedestrians understand the CAV's intention more quickly, according to the conclusion in [2]. Besides, it delays the time of entering CZ to allow enough time for the pedestrian to pass through. During the pedestrian crossing (2s to 5.3s), the CAV continually adjusts its speed to reach the optimal state when the pedestrian releases CZ.

Figure 4.9b shows the state when the pedestrian exits. CAV by DRL is (-14.3m, 6.8m/s) and CAV by QP is (-19m, 5.3m/s). From the perspective of the pedestrian, after observing the large distance (35m) and the low speed (4.5m/s) of the CAV, the pedestrian decides to enter CZ first at 2s. Finally, the pedestrian exits CZ at 5.4s. The CAV trajectory is less efficient under QP controller. One possible reason is that the theoretical pedestrian speed is lower than the simulated pedestrian speed. Besides, Figure 4.9b shows that the speed curves for both methods are located at the safe area before the pedestrian exits.

Hence, both methods give solutions that ensure pedestrian safety. However, DRL shows higher traffic efficiency compared with QP because DRL is about 8m ahead of QP when they all reach the v v at 8s (see Figure 4.9ac). Therefore, CAV controlled by DRL shows more efficient driving behavior. In Figure 4.10, the initial state of the CAV is (-50m, 10m/s). Figure 4.10a shows that the pedestrian stops moving as soon as he enters CZ and waits until the speed of CAV is 0. When the CAV stops, the pedestrian moves again at 11s. The pedestrian exits CZ at 15s and the CAV enters after the pedestrian exit (see Figure 4.10c). Hence, there is no collision between the two agents for the two methods. Figure 4.10b shows that the two methods ensure the pedestrian safety. However, the difference is that DRL chooses to stop at -10m while QP chooses to stop at -27.5m. Additionally, DRL has a higher traffic efficiency because it is about 5m ahead of QP when they reach v v at 19s (see Figure 4.10ac). The CAV dynamically interacts with pedestrian movement. When the pedestrian stops at the beginning, the CAV of DRL slows down and stops at -10m instead of 0 to leave a buffer. When the pedestrian moves again, the CAV "cleverly" uses the buffer to accelerate and get a relatively higher speed (3m/s) instead of 0 when the pedestrian releases CZ. This behavior takes into account both the CAV position and speed to achieve higher traffic efficiency. In Figure 4.11, the initial state of the CAV is (-50m, 10m/s). The pedestrian normally crosses at the beginning but stops before exit, as shown in Figure 4.11ac. In this case, the strategy chosen by both methods is to stop around 0 to wait for the pedestrian (see 

4.6.4/ TEST OF VEHICLE DEALING WITH REAL PEDESTRIAN BEHAVIORS

This experiment aims to test whether the developed algorithm is applicable to the case with real pedestrians. Tests on the constructed simulator have been performed.

Figure 4.12 draws a crossing result of real testers. The initial state of the CAV is (-50m, 10m/s). In Figure 4.12a, the CAV shows a green light and slows down to 3.7m/s at 2.5s to "tell" the pedestrian to cross first, and the tester enters at 3s and exits at 7.1s.

The speed curve of the CAV in Figure 4.12a is similar to Figure 4.9a in Experiment 2 which simulates a similar case. Figure 4.12b shows that the CAV of DRL reaches the state (-11.7m, 5.8m/s) and QP (-12.2m, 5.5m/s) when the tester exits. Both of them are close to the optimal state and meet the safety constraint before the exit of the pedestrian.

However, the small difference makes the DRL about 4m ahead of QP when they all reach the desired speed at 10s (see Figure 4.9ac). Hence, in this experiment, DRL has more advantages than QP in terms of crossing efficiency.

Table 4.1 shows the statistics of the 28 experiments based on the testers' speed profiles. In these experiments, the 28 testers crossed the road naturally without deliberately stopping in the CZ. The average final position indicates that the DRL is about 2 meters ahead of QP on average after reaching the desired speed. Furthermore, lower STD values indicate that DRL is more stable in the pursuit of high crossing efficiency. One of the reasons is that QP fails thirteen times (46%) to provide solutions. So, in that case, the CAV longitudinal control resorts to a spontaneous way. Besides, to highlight the advantages of the proposed approach in terms of efficiency, a comparison is performed with the spontaneous way. In this comparison, we assume that the 28 testers keep their safety margin for crossing CZ as well as their crossing speed in both scenarios, i.e, DRL and spontaneous way. As presented in Table 4.2, averagely the pedestrian crossing delays the CAV by 6.21s ± 3.03s in the spontaneous scenario, whereas in the DRL scenario, the delay equals 3.85s ± 2.20s. The DRL controller allows the CAV gaining on average, 2.36s (38.01%). The crossing of CAV delays pedestrian by 5.25s ± 1.03s in the spontaneous scenario, whereas in the DRL scenario, the delay equals 3.53s ± 1.60s. The DRL controller allows the pedestrian gaining, on average, 1.72s (32.76%). The big value of the standard deviation is because there are 6 crossings among the 28 with a low gain. More precisely, there are 4 crossings where the CAV was initially far from CZ and 2 crossings where the pedestrian decision-making was only based on the displayed green without waiting for the CAV to begin the slowdown process.

There are two advantages of DRL. First, the CAV agent invites the pedestrian to cross CZ earlier, which allows also the pedestrian to reduce the waiting time. Second, it prepares well the exit conditions to make the CAV close to the optimal state when the pedestrian exits. This process is drawn in Figure 4.13 where three control methods are compared.

Spontaneously, the CAV keeps its desired speed until it approaches CZ, and then it slows down. This behavior delays the time for pedestrians to enter the CZ. On the contrary, in our proposed method, the CAV prepares earlier at a low driving speed and a safety margin that invites the pedestrian to cross the soonest. Besides, the CAV is closer to the optimal state when the pedestrians leave. This attribute helps CAV decrease driving distance loss.

To sum up, first, the results of the above experiments show that the CAV with DRL controller can select the appropriate behavior in the face of different situations. Second, the CAV with DRL controller can reach the optimal state, especially when the pedestrian crosses normally. Thirdly, experiments with actual participants show that the model trained in this chapter has generality. Finally, according to the results of the above experiments, the DRL controller has advantage compared with QP in terms of crossing efficiency.

4.7/ CONCLUSION

This chapter aims to tackle the second concern "Concern 2" mentioned in Section 1.2.1.

To do that, it studies traffic safety and the efficiency of road sharing between CAV and crossing pedestrians. Due to the uncertainty of pedestrian behaviors, the optimal speed profiles obtained by the Hamiltonian optimization have significant practical limitations. In order to ensure the safety of pedestrians, a constraint is added to the CAV state, which At the same time, in order to optimize traffic efficiency, the optimal state is given to minimize the loss of the driving distance of the CAV after the pedestrian leaves the CZ.

DRL method is proposed as the controller of the CAV. Experimental results show that the CAV equipped with the trained agent invites the pedestrian to cross the soonest to save time, keep a safe distance to prevent the collision, and plan to reach the optimal state when the pedestrian leaves CZ. The proposed approach provides a noticeable gain of time. Hence, the second concern "Concern 2" mentioned in Section 1.2.1 is tackled in this chapter.

Besides, we compared DRL and QP methods in the same scenarios. Based on human tester speed profiles, the DRL shows its ability to be slightly more efficient. Indeed, at each iteration, QP must recompute the CAV acceleration according to the new state of the pedestrian. More precisely, QP allows us to obtain the optimal solution only when feasible. Hence, feasibility issues are raised when the pedestrian does not precisely respect the exit time or when the initial state of the CAV does not allow reaching the optimal state. Moreover, the QP method adds a computation overhead that questions the suitability of the response time for the studied real-time system, while DRL method does not suffer from these issues.

The advantage of the DRL is that it can be trained with several randomly drawn pedestrian profiles coupled with unexpected behaviors. The DDPG algorithm, despite the relatively In response to Concern 3, this chapter extends the studied problem to a more general traffic scenario where the pedestrian crosses multiple streams of CAVs. In this complex scenario, the crossing order between CAVs and pedestrian has an impact on traffic safety, efficiency, and pedestrian-friendly behavior. For example, always giving pedestrians priority of crossing or letting them cross at last may not be the appropriate solution.

Pedestrians are more likely to break traffic rules and cause traffic accidents when they wait a long time to cross. From the perspective of traffic efficiency, the crossing order determines the CAV speed profiles, which in turn affects the overall traffic efficiency.

To optimize pedestrian-CAVs intersection in multiple lane scenarios, this chapter proposes a model of information sharing and cooperation between CAVs and pedestrians.

Precisely, CAVs within a specific range form a local area network and share information, including their position and speed, pedestrian position and speed, and the planned crossing order of CAVs and pedestrians. Any CAV in the network calculates the optimal traffic order based on the shared information and shares it with other CAVs in the network. CAVs select controllers and show unified signal lights to pedestrians according to the crossing order. The scenario with multiple pedestrians is also analyzed.

The simulation results show that the crossing order highly impacts the overall traffic efficiency. To verify the improvement of our proposed model, we build a traffic road in the simulation platform with two lanes, with two CAVs in each lane. Real testers enter the virtual scene through a VR headset to test CAVs behaviors. The results show that the combination of the optimal traffic order and the optimal state of CAVs accelerates the traffic efficiency of the intersection. The interaction and cooperation between CAVs and pedestrians ensure traffic safety and provide a pedestrian-friendly traffic scene.

The rest of this chapter is organized as follows. Section 5.2 presents a model of information sharing and cooperation mechanism between CAVs and pedestrians. Section 5.3 analyzes the influence of the crossing order on the overall traffic efficiency. Then, it gives an algorithm to calculate the optimal crossing order between CAVs and pedestrians. Section 5.4 gives a solution for scenarios with multiple pedestrians. Section 5.5

presents experimental results and analysis in several different scenarios. Traffic safety and efficiency are analyzed. Section 5.6 concludes this chapter.

5.2/ PEDESTRIANS-CONNECTED AUTONOMOUS VEHICLES CO-OPERATION MODEL

In a shared non-signal road, pedestrians get a way that can be crossed by CAVs forming a potential CZ (conflict zone). For a safe and human-friendly crossing, CAVs show their decision by signal light, no color (default), red (preventing pedestrian passing), green (invite pedestrian crossing). CAVs give the way. Because of the randomness of the pedestrian's speed, only the waiting time before the crossing is considered, for the pedestrians.
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To minimize J(k, u) in Eq. 5.1, a more detailed mathematical expression for Eq. 5.1 is needed. Supposing that there is a road with M lanes where N i CAVs are moving in each lane i at speed v v , Figure 5.4A shows all the possible crossing orders determined by k i for the pedestrian crossing in lane i. The crossing order on the road with M lanes can be expressed as follows: The number of all crossing orders is M i=0

k = [k 1 , k 2 , ..., k M ] ( 5 
(N i + 1) because of the independence in each lane.

All following calculations are based on the solution in Eq. 5.2. In Eq. 5.1, ∆T (k, u) is related to the waiting time of pedestrians t p,wait (k, u). Without loss of generality, we define ∆T (k, u) = t p,wait (k, u) 2 to avoid long waiting times for the pedestrians. t p,wait (k, u) can be expressed as follows:

t p,wait (k, u) = max(t k i ,exit (k)) + t r (u) (5.3) 
In Eq. 5.3, t r (u) is the reaction time of pedestrians entering CZ after CAVs give them the way. This time is related to the gap and the acceleration u of CAVs faced by pedestrians [START_REF] Oxley | Crossing roads safely: an experimental study of age differences in gap selection by pedestrians[END_REF]2]. To reduce clutter in notations, in the following, t k i ,exit designates t k i ,exit (k). t k i ,exit can be calculated based on the position x i, j and the speed of the CAVs as follows:

t k i ,exit =          0, k i = 0 a i •x i,k i +l c /2+l v v v , k i > 0 (5.4)
where a i , l c , and l v are lane direction, CZ length, and CAV length.

Let us now study the driving distance decrease given in Eq. 5.1. This thesis considers the sum of all driving distance decrease of CAVs that yield the way. The expression of ∆D(k, u) is as follows:

∆D(k, u) = M i=1 ∆d i (k, u) (5.5) 
where, for k i ≤ N i -1:

∆d i (k, u) = ∆d i,(k i +1) (k, u) + N i j=k i +2 ∆d i, j (k, u) (5.6) 
and when k i = N i , d i (k, u) is trivially equal to zero. In the reminder, for writing convenience, we designate ∆d i (k, u) by only ∆d i .

After yielding the way, the time and the position of the leader, when it reaches speed v v , can be expressed in Eq. 5.7 and Eq. 5.8.

t ′ = t i p,exit + v v -v i, j (t i p,exit ) u (k i ≤ N i -1) (5.7) 
x i, j (t

′ ) = x i, j (t i p,exit ) + v 2 v -v 2 i, j (t i p,exit ) 2u (k i ≤ N i -1) (5.8) 
If this leader passes before pedestrians, it can travel further after time t ′ . Hence, the decrease in driving distance of the leader can be expressed as follows:

∆d i,(k i +1) = | v v • t ′ -x i, j (t ′ )| (k i ≤ N i -1) (5.9) 
Let us now analyze the performance of the remainder CAVs. These form a new platoon when they reach their desired speed, as shown in Figure 5.4, with a safe distance d sa f e = c sa f e • v v + d base . Hence, the driving distance decrease of all followers in this lane can be expressed in Eq. 5.10, where d j is the initial distance between successive CAVs (CAV j and CAV j -1).

N i j=k i +2 ∆d i, j = (N i -k i -1) • ∆d i,(k i +1) + (N i -k i -1) • d sa f e - N i j=k i +2 d j (k i < N i -1)
(5.10) Eq. 5.10 shows that, at a given initial distance between CAVs, ∆d i,(k i +1) is the only part that contributes to the driving distance decrease of the following CAVs. Because t i p,exit depends on the pedestrian behavior during the crossing and v v and u are constant input parameters. From Eq. 5.7, Eq. 5.8, and Eq. 5.9, the optimization of ∆D(k, u) depends only on x i, j (t i p,exit ) and v i, j (t i p,exit ). Let S i, j be the state of the leader CAV j in lane i, at t i p,exit , defined as follows:

S i, j (t i p,exit ) = x i, j (t i p,exit ), v i, j (t i p,exit ) ( j = k i + 1, k i < N i -1) (5.11)
For the given crossing order k, the driving distance decreasing for all CAVs in lane i depends on the state S i, j . Hence, S i, j needs to be studied to minimize Eq. 5.9. The optimal state has been calculated in Section 4.3, as expressed by Eq. 4.4. Therefore, considering the lane direction, here the optimal state S * i, j can be expressed by Eq. 5.12.

S * i, j =        a i (u v 2 -2u v u v + 2u v v v -v 2 v )u v 2(u v -u v ) 2 + a i l c 2 , (τu v -v v )u v u v -u v        (5.12)
We draw the reader's attention to the fact that S * i, j minimizes ∆d i,(k+1) given in Eq. 5.9. Indeed, in Eq. 4.3, from t ′ to t f inal , the CAV k i + 1 is considered moving at its desired speed.

5.3.2/ OPTIMAL CROSSING ORDER BETWEEN PEDESTRIANS AND CONNECTED AUTONOMOUS VEHICLES

According to the above analysis, the optimal value of k depends on the state S i, j of the leader CAV. Since the sequence k needs to be optimized first, then J(k, u) is optimized by considering that the longitudinal control u allows leader CAVs to reach S * i, j . With a known S * i, j , t r (u) and the pedestrian crossing speed need to be estimated. In this thesis, we consider that t r (u) depends on the speed profile of CAVs. t r (u) is the sum of the time when all leader CAVs offer an acceptable gap to the pedestrian and the time delay of the pedestrian. By using the average pedestrian's speed, gap and time delay, Algorithm 2 gives the calculation of the optimal crossing order k * .

It should be noted that the calculation of the optimal crossing order k * in Algorithm 2 is based on some empirical parameters and assumptions, such as the estimated pedestrian reaction time, walking speed, etc. The premise of the optimal crossing order is that the pedestrian understands the meaning of the vehicle signal lights and behaves cooperatively with CAVs. This is one of the reasons why this work focuses the application on the industrial area. Also, because specific groups of people have different behaviors, the parameters used in this algorithm should be tuned to get the optimal result. The computational complexity of Algorithm 2 is related to the number and distribution of CAVs participating in this cooperative crossing process. If there are 3 lanes in each direction and 8 vehicles per lane, there are (8 + 1) 6 = 531441 results to be compared.

Finally, with the given k * , it remains to optimize J(k * , u) through the local pedestrian-CAV interaction. To this end, DRL is used to control the CAV after being trained with a variety of simulated pedestrian behaviors.

Algorithm 2: Crossing order planner : Generate the optimal crossing order between CAV chains and pedestrians 1 At time t = 0, get all CAVs coordinates x i (0) (i=1, 2, . . . , M) and pedestrians coordinate x p (0); Calculate ∆d i, j of leader CAV by Eq. 5.9;

2 for k 1 = 0,
Calculate ∆d i, j of the following CAVs N i j=k i +2 ∆d i, j by Eq. 5.10;

Calculate ∆d i of all CAVs on i by Eq. 5.6;

Calculate the decrease in driving distance of all CAVs by Eq. 5.5 and J(k) by Eq. 5.1.
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... (N i + 1) results and get the optimal crossing order k * with J(k * ) = min(J(k)).

5.4/ CONSIDERATION OF MULTIPLE PEDESTRIANS

In the case of multiple pedestrians, two things should be considered to properly tackle the problem. First, it should increase w p for calculating the optimal crossing sequence. The suitable w p as well as the crossing time need to be evaluated according to real data in the industrial site. Second, the inputs of the DRL controller should always be the information of the last pedestrian during the whole pedestrian crossing process, as shown in Figure 

5.5/ EXPERIMENT AND ANALYSIS

According to the proposed model in Figure 5.3, CAVs first negotiate an optimal crossing order for CAVs and pedestrians. Then, CAVs invite pedestrians to CZ through speed control and unified signal light. Finally, CAVs reach the optimal state to decrease the distance lost during the intersection. Naturally, some tests are needed to study and verify:

• The influence of the traffic order predicted by the crossing order planner (Algorithm 2) on the cost J in Eq. 5.1.

• The ability of CAVs controlled by DRL controller to reach S * when pedestrians exit their respective lanes.

• The improvement of traffic efficiency of the proposed model (Figure 5.3) when compared with a spontaneous way.

The optimal crossing order algorithm and simulation software can be downloaded by this link. 1 A video of test can be seen by this link. of w p . We can observe from the curves that: 1) J, defined in Eq. 5.1, is highly affected by the crossing order even though there are only 2 lanes and 5 CAVs in the test; 2) The crossing order planner arranges for the pedestrians to pass earlier when the pedestrian weighting factor (w p ) becomes bigger. The result shows that the crossing order does have an important impact on traffic efficiency in this system.

We also noticed from tests that if we define the cost ∆T (k, u) = t p,wait (without power for t p,wait ), the optimal crossing order is pedestrian crossing either first or last, in most cases. An example is shown in Table 5.1 with the initial CAV positions being x 1 (0) = Comparatively, the optimal solution with ∆T (k, u) = t 2 p,wait is k * = [3, 3] when w p = 3. Obviously, it is not an appropriate solution to let pedestrians always wait for a long time or pass first when a CAV is approaching with high speed. Therefore, the definition of cost ∆T (k, u) above effectively avoids this weakness and creates a more friendly crossing for pedestrians.

1 https://github.com/zm565273751/Simulation-of-CAVs-and-Pedestrains.git 2 https://youtu.be/wDQA h0x32Y Figure 5.5: The predicted cost J of all crossing orders under ideal CAV control u * with different w p : when w p = 0.5, the optimal solution is 12 (k * = [2, 3]); when w p = 3, the optimal solution is 5 (k * = [1, 1]); when w p = 6.5, the optimal solution is 1 (k * = [0, 0]). The tests of 200 crossings (100 tests with a constant pedestrian speed, and 100 with a random speed that simulates real pedestrian behaviors) have been done. Figure 5.6 records the states of leader CAVs and their standard deviation (S T D) when pedestrians exit the lanes. We can observe from the results that the safety condition Eq. 4.1 is always fulfilled, and at the same time, most of the states are very close to the optimal state S * . Some of them are far due to the physical limitation such as speed and acceleration.

Moreover, no emergency braking has been triggered. The results reveal that the CAV with DRL controller can reach the optimal state while adhering to the safety criteria. Therefore, CAVs with DRL controller improves the traffic efficiency in this system. 

5.5.3/ TEST OF CONNECTED AUTONOMOUS VEHICLES HANDLING DANGEROUS PEDESTRIAN BEHAVIORS

For safety reasons, we test the DRL controller in extreme cases, where the pedestrian stops suddenly before he/she exits lane 1. After all leader CAVs stop, the pedestrian continues to cross the road. Figure 5.9 depicts the speed profiles of all CAVs. We can find that all leader CAVs stop out of CZ. The safe condition is always held in this case, even without triggering the emergency mechanism. Interestingly, the leader CAV in lane 2 stops a bit far from CZ (-17.3m) in the beginning. When the pedestrian moves again, the CAV tries to achieve a better state (closer to S * ) by using the reserved space when the pedestrian exits lane 2. Hence, CAVs with the DRL controller can handle dangerous pedestrian behaviors and improve traffic efficiency at the same time. adjust their speed according to the last pedestrian. When the last pedestrian leaves lane 1, the CAV 1 in lane 1 is close to the optimal state S * . Likewise, CAV 1 in lane 2 tries to approach the optimal state S * when the last pedestrian leaves the road, even though it has to stop for a while.

5.5.4/ ANALYSIS OF TRAFFIC EFFICIENCY IMPROVEMENT

In this experiment, we compare the proposed approach to the spontaneous control approach. In the latter, the CAV maintains its desired speed as far as possible. Therefore, when the CAV yields the way, it comes to a complete stop near the CZ, with u = u. When it passes first, it just continues its movement at its desired speed. Table 5.2 shows the results of the comparison of 100 simulation runs of both the CAV's control approaches. As presented in Table 5.2, the DRL controller allows the CAV gaining averagely 4.12s (42%) and allows the pedestrian gaining 6.2s (59%) in crossing efficiency. In all simulation runs, the pedestrian begins crossing randomly according to the safety margin distribution given in [START_REF] Oxley | Crossing roads safely: an experimental study of age differences in gap selection by pedestrians[END_REF]. One can note that both pedestrians and CAVs gain precious time with the proposed approach. On the one hand, the CAV prepares earlier a safety margin that invites the pedestrian to cross the soonest. On the other hand, CAVs are closer to the optimal state when the pedestrians leave. This advantage is detailed in Figure 5.11, where similar initial data are compared through both scenarios.

In the spontaneous scenario, the pedestrian begins to cross later since the leader on the second lane doesn't offer enough gap to the pedestrian. Similarly, CAVs lose distances in the second scenario because they resort to a complete stop near CZ. In terms of crossing efficiency, our proposed method allows the CAV to gain averagely 4.12s (42%) and allows the pedestrian to gain 6.2s (59%) compared with spontaneous scenarios (Table 5.2).

According to the experimental results, the method proposed in this chapter can indeed improve effectively the intersection performance between CAVs and pedestrians. However, similar to other research on this topic, the proposed method is more applicable in ideal scenarios. Therefore, we limit the application to industrial areas where trained workers can understand the intent of CAVs and take cooperative actions.

The results of the experiments deserve to be checked for more complex scenario. We draw the reader's attention to the two following folds. First, the test solution based on virtual reality can provide excellent virtual scenes, but pedestrians have different feelings when facing virtual and real scenes. Tests of the proposed approach in real environment need to be conducted in order to adjust the approach for pedestrians that face real vehicles. Second, the pedestrian model of training and simulation does not consider the group effect. Indeed, it is very hard to have reliable data of the group behaviour.

5.6/ CONCLUSION

This chapter aims to tackle the third concern "Concern 3" mentioned in Section 1.2.1.

Compared with most single conflict scenarios, the proposed model (see Figure 5.3) extends the previous single conflict model optimize the pedestrians-CAVs intersection in multiple lane scenarios. In the proposed model, communication and negotiation among multiple CAVs form an intelligent system and find a global optimal crossing solution. The intersection optimization in this scenario includes two problems: the optimization of the crossing order between CAVs and pedestrians and the optimization of the vehicle speed profile. Both problems are linked to the optimal state that the CAVs should reach when pedestrians leave. Among these two issues, the second problem -vehicle optimal speed profile and control, has been solved using the DRL method in Section 4. For the first problem, this chapter presents a cooperation model between CAVs. After a CAV detects the intention of pedestrians to cross the road, it shares information with surrounding CAVs, such as the location of CAVs, and the location of pedestrians. They negotiate the optimal traffic order based on the pedestrian model's empirical parameters, such as average speed and reaction time. Then, each CAV selects its suitable controller (DRL, ACC, or even AEB (Autonomous Emergency Braking)) according to the negotiated crossing order. By optimizing both the crossing order and CAV trajectory, the system realizes the cooperation of CAVs, and pedestrians-CAVs to optimize traffic safety and efficiency at the intersection.

The proposed method allows CAVs to minimize the cost of the driving distance decrease and pedestrian waiting time. From the pedestrian standpoint, the CAVs arrange to allow her/him to cross the soonest by preparing the soonest safety margin. Experimental results show that the method provides a significant gain of time for all the involved agents (CAVs and pedestrians) compared to the spontaneous control approach. we should enhance interaction to improve pedestrian safety at intersections. The vehicle signaling system and speed profile are striking ways to realize their interaction. However, research on how to use these two interactive methods to optimize the intersections is quite limited. To optimize the intersections, main concerns need to be tackled:

• Concern 1. What is the theoretical optimal speed profile? This speed profile lets the pedestrian and the CAV interact and provide a safe and efficient intersection.

When there is an intersection between the pedestrian and the CAV, the CAV can promptly slow down to invite the pedestrian to cross earlier and avoid a complete stop near the pedestrian. This way, the pedestrian feels friendly, and the intersection is efficient. Hence, there are theoretical optimal speed profiles to optimize the intersections.

• Concern 2. How to apply the theoretical optimal speed profiles of Concern 1 in practice? Pedestrian behavior is influenced by many behavioral factors. It is difficult to make the pedestrian behave according to the theoretical optimal speed profile.

Pedestrian safety is the essential concern in this step.

• Concern 3. How to generalize the optimization method of Concern 2 to common multiple lane roads? The intersection optimization is more complex than the single conflict scenario if we consider several streams of CAVs. The crossing order of CAVs and pedestrians needs to be studied because it is an extra variable affecting traffic safety and efficiency.

For Concern 1, Chapter 3 starts from the single conflict scenario. The CAV and the pedestrian are considered as multi-agents that can take information from the outside world and cooperate to perform a safe and efficient intersection. Based on these assumptions, a single conflict model is established through Petri-net modeling. The proposed objective function and constraints reflect traffic efficiency and safety problems. Due to nonlinear constraints, this work uses Hamiltonian analysis to optimize the objective function. The optimal speed profiles for both agents are obtained (see Figure 3.3). Two agents find a consensus time to use the shared space safely and efficiently. The optimal profiles make both agents act with "interaction" and "cooperation." The numerical example with two CAVs and one pedestrian shows that the crossing efficiency is improved by around 31% by their optimal speed profiles.

Section 3.6 designs a Mixed Reality based simulator. This simulator has two objectives.

The first one is to provide a safe test environment for the research direction of the intersection of pedestrians and CAVs, which is also one of the contributions of our work.

The other objective is that the pilot test results (see Figure 3.8) help to model pedestrian behaviors for the following research. The pilot tests of 28 real testers are performed by the simulator. The observed pedestrian behaviors show the problem of the theoretical optimal speed profiles in practice. Some testers did not behave as expected.

The theoretical model assumes both CAV and pedestrian as controllable agents. With this strong assumption, the optimal speed profiles optimizes the crossing efficiency while avoiding the collision. In practice, pedestrians can not be regarded as controllable agents.

Nevertheless, the optimal speed profiles based on Hamiltonian optimization give a global perspective of the potential of an optimized interaction. This gives the theoretical basis and the direction for achieving the main objective -safe and efficient pedestrian-CAV intersection.

For five CAVs shows that the crossing order significantly impacts traffic efficiency (see Figure 5.5). In the additional test of the crossing order, we can conclude that the pedestrian waiting time should be powered to calculate the appropriate crossing order, as shown in Table 5.1. Moreover, CAVs in two lanes can arrive close to the optimal state, and the safety constraint is always fulfilled (see Figure 5.6). With the combination of optimal crossing order and DRL controller, CAVs schedule the crossing order and interact with pedestrians by speed profiles (see Figure 5. 5.2) compared with conservative way.

In conclusion, this work explores a safe, efficient, and friendly intersection between

CAVs and pedestrians through their interaction and cooperation. The proposed approach shows the potential of CAVs to improve pedestrian crossing conditions. It highlights benefits and explores new potentials in the field, i.e., CAV connectivity, signalization, and pedestrian-friendly speed profile of CAVs. The rest of this chapter analyzes limitations of this work in application. Then, it discusses the derived research directions.

6.2/ FUTURE WORK

This work started with the pedestrian-CAV interaction problem raised by the absence of gaze contact with the driver. We were interested in the CAV speed profile to interact with the pedestrian. The speed profile was studied to optimize the intersection performance.

The speed profile information was combined with the signaling to enhance pedestrian-CAV interaction. The test results showed an exciting gain in crossing time. It is achieved by harnessing both connectivity and driving automation capabilities of CAVs. Hence, the perspectives of this work are inspired not only by the encountered current limitations of the test capability and existing pedestrian models but also by the encouraging obtained results. Specifically, they need to inform us about reaction times, acceptable safety margins, gaze directions, and trajectories. Thus, the work in this thesis was based primarily on behavioral data from a single pedestrian. The proposed mixed reality simulator can be extended to address the study of groups of pedestrians in a safe manner. For example, it is possible to connect distant immersive headsets and use 3D avatars. Nevertheless, several studies must be conducted to validate the approach and measure the differences between the real and the virtual.

Regarding the obtained result, the design of comfortable pedestrian-CAV interaction spaces can find solutions from the proposed approach. The results of the thesis show that slow and low-density CAV flows are in favor of improving the crossing condition.

Pedestrian-friendly areas can be designed with controlled CAVs that form slow platoons with big space between CAVs (see Figure 6.1). This generalizes the concept proposed in this thesis, allowing more opportunity for pedestrians to cross by creating an acceptable safety margin between successive CAVs. It also minimizes the impact of the slowing down, thanks to a bigger space between CAVs. Similarly, as done in the thesis, speeds and headway spaces need to be studied to both facilitate crossing and optimize traffic.

Such a study needs more simulation capabilities, first by providing a bigger action space for testers and second by connecting several testers together.

In addition to the above considerations, the future short-terms research work includes the following two aspects:

• More pedestrian behavioral factors should be incorporated into the pedestrian decision-making model, such as vehicle size, appearance, carrying a heavy object, and other factors that impact pedestrians' decision-making process. The purpose is to adjust CAV's driving behavior appropriately to provide pedestrians with a more friendly intersection environment. Moreover, the parameters used in this work are based on the literature results and the previously conducted tests through a VR headset. These parameters deserve to be refined according to the objectives of the industrial site and the local observations of the labor's behaviors by conducting more tests.

• This work is based on the assumption that the CAV can detect the crossing intent of the pedestrian. Some intent detection systems are based on the pedestrian's sight direction [START_REF] Brouwer | Comparison and evaluation of pedestrian motion models for vehicle safety systems[END_REF]107]. Hence, the results of this thesis can be combined with such systems to study the most opportunistic time to launch the proposed process of yielding the way. The combination of detection and action also provides a safer interaction by considering the lack of pedestrian attention.

4.2

The relationship between S and the position after time v v u v when CAVs, with all possible S , can reach the desired speed v v . The CAV with the optimal state S * will run the farthest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Unfeasible optimal point: A-Cond1 is not satisfied. The CAV is too far from S * at t p,exit . B-Cond2 is not satisfied. The CAV is too far from S * before t p,exit . 

Figure 1 . 1 :

 11 Figure 1.1: Scope of this work (in orange) with respect to other research topics in the Intelligent Transportation Systems (ITS) domain.

Figure 1 . 1 shows

 11 the direction of this work. It aims to provide pedestrians with a safe, efficient, and friendly crossing environment.

Figure 1 . 2 :

 12 Figure 1.2: Pedestrians and CAVs in an intersection without traffic light control.

Figure 1 . 3 :

 13 Figure 1.3: The architecture of this work.

  3.3 introduce popular means of communication between CAVs and pedestrians. Finally, Section 2.3.4 shows the work of vehicle control to tackle the pedestrian-vehicle intersection problem. Section 2.4 concludes the state of the art of this work.
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 21 Figure 2.1: Process of pedestrians interacting with traffic environment.

Figure 2 . 2 :

 22 Figure 2.2: Structure of the global environment composed of the vehicular and pedestrian sub-environments (source [33]).

Figure 2 . 3 :

 23 Figure 2.3: AutoRVO model in[START_REF] Ma | Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic[END_REF]: Red agent A searches for free space to move among the other agents, in blue. The free spaces detected are in yellow and green, and the yellow space is selected because of sufficient size (source[START_REF] Ma | Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic[END_REF]).

Figure 2 . 4 :

 24 Figure 2.4: Illustration of a model combining Social Force Model and game theory. Pedestrian i will collide with vehicle j. It can continue (s i1 ), slow down (s i2 ), deviate to the left (s i3 ), deviate to the right (s i4 ) or accelerate (s i5 ) (source [120]).
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 214 DATA DRIVEN MODEL Another approach to simulate the pedestrian behavior involves building a kind of Data Driven Model. These models learn how pedestrians move in the traffic environment from real-world examples. A set of instance trajectories is generated from videos or motion capture data. Several uses of the data are possible to build the model. During the simulation, agents can search for examples in a database of trajectories that correspond to the situation they are confronted with [73], as presented in Figure 2.5.

Figure 2 . 5 :

 25 Figure 2.5: The process of constructing a database with a set of trajectories from videos and modeling pedestrian movement. (source [73]).

[ 108 ]

 108 summarize and classify behavioral factors into two categories, internal and external factors when a pedestrian wants to share the road space with oncoming AVs. The classification is shown in Figure 2.6. Many factors have been studied, for safety purposes. Our research interests mainly focus on intent display and dynamic factors, such as the gap, vehicle speed, and acceleration. The appropriate values of these parameters can help us design pedestrian-friendly behavior of CVAs to enhance traffic safety and crossing efficiency at the intersection. The following briefly introduces some essential internal factors and then details the research findings related to the external factors that interest us.

Figure 2 . 6 :

 26 Figure 2.6: Factors involved in pedestrian decision-making process when facing AVs. The diagram is based on the meta-analysis of the past literature. The large circles refer to the major factors, and small circles connected with solid lines are sub-factors. The dashed lines show the interconnection between different factors, and arrows show the direction of influence. The gray, faded diagram at the background shows the factors from classical studies (source [108]).

  [102] get a similar conclusion in their survey. But the intent display mechanisms, such as audio signals, can be very effective in poor visibility weather conditions.
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 27 Figure 2.7: Interaction between an AV and a pedestrian at intersection: (a) The concept of eye contact (source [24]; (b) Different modalities of communication) [83].

Figure 2 . 8 :

 28 Figure 2.8: Main components that realize interaction and communication between pedestrians and CAVs.

  Fortunately, there are many related technical studies for this issue. The survey in [132] summarizes the research literature on pedestrian detection technology based on the deep learning method. We can observe from Figure 2.9 that this hot topic is receiving more and more attention. Pedestrian detection is undoubtedly one of the most important technologies in autonomous driving.Figure 2.10 shows us some traditional and modern, well-known pedestrian detection methods. In recent years, with the great progress of deep neural networks in image recognition/classification problems, some deep learning based models

Figure 2 . 9 :

 29 Figure 2.9: Number of publications related to pedestrian detection in recent years (source [132]).

Figure 2 . 10 :

 210 Figure 2.10: The development process of pedestrian detection (source [132]).

Figure 2 . 11 :

 211 Figure 2.11: Interaction between vehicles and pedestrians. (a) AEVITA moving eye concept [99] (source [44]), (b) AutonoMI pedestrian detection and tracking indicator, (c) Mercedes-Benz rear-end LEDs showing that a pedestrian is crossing in front of the car, (d) an array of LEDs indicating yield [71], (e) Mitsubishi forward indicator [42], (f) an advisory display for crossing [29], (g) Examples of UMBRELLIUM smart crossing [136], and (h) Cooperative road crossing by CAV signaling system [148]

Figure 2 .

 2 Figure 2.11(a) tries to fill the information exchange by giving the autonomous vehicle the means to sense other objects in its driving environment first and show the information to others. In Figure 2.11(b, d, h), autonomous vehicles show their intention to pedestrians by presenting a signal light to realize the communication between vehicles and pedestrians.In Figure2.11(c), the vehicle prints its information to tell the following vehicle that a pedestrian is crossing. In Figure2.11(e), Mitsubishi Electric Corporation provides an innovative directional-indicator system. It illuminates road surfaces at night to inform pedestrians and other drivers of a vehicle's intended path forward/backward or when turning, opening doors, or making emergency stops. A similar research can be found in[START_REF] Tan | Human-Machine Interaction in Intelligent and Connected Vehicles: A Review of Status Quo, Issues and Opportunities[END_REF], where

  [150] train a DRL controller with defined reward functions for achieving safe and comfortable driving.The work in[START_REF] Guo | An integrated MPC and deep reinforcement learning approach to trams-priority active signal control[END_REF] shows a controller integrated with DRL and Model Predictive Control to speed up the traffic flow at intersections. Simulation results show its advantages in traffic efficiency. Therefore, given the powerful capabilities of DRL and the complex requirements, this work uses a DRL controller when the vehicle needs to interact friendly with pedestrians (Chapter 4).

Figure 2 . 13 :

 213 Figure 2.13: Mapping of DRL algorithms (left column) and extension use to transportation application domains (source [97]).

Figure 2 .

 2 Figure 2.13 shows popular DRL algorithms in the field of transportation research. More details about the listed algorithms are seen in [97]. It can conclude from the figure that in the field of autonomous driving, the applications of DQN (Deep Q Learning) and DDPG (Deep Deterministic Policy Gradient) are the most popular. Because vehicle acceleration and speed are continuous variables, this thesis uses the DDPG algorithm to control the vehicle. Considering that longitudinal speed control affects the interaction with pedestrians, traffic safety and efficiency, this work uses a DDPG algorithm as the vehicle controller

3 SINGLE

 3 As discussed in Section 2.3.4 and 2.4, there is no consensus yet on how a CAV and a pedestrian interact and cooperate to optimize their intersections, even though fruitful research such as pedestrian model (Section 2.2.1), intent detection and display (Section 2.3.2), etc have been achieved. There is still a gap between these studies and the main objective -safe, friendly, efficient pedestrian-CAVs (Connected Autonomous Vehicles) intersection. To fill in the gap, it is necessary to explore the optimal speed profiles of agents and the control to optimize the intersection. It is the first concern (Concern 1) mentioned in Section 1.2.1.

  2 introduces the studied conflict problem. Section 3.3 gives the conflict model based on Petri-net. Section 3.4 applies the Hamiltonian analysis to the problem. The optimal speed profiles are calculated for the pedestrian and the CAV. In Section 3.5, numerical examples of using the speed profiles are presented and the results are discussed. Section 3.6 introduces the constructed Mixed Reality based simulator. Pilot tests on the simulator are performed and corresponding results are analyzed. Section 3.7 concludes this chapter.

Figure 3 . 1 :

 31 Figure 3.1: Intersection between a pedestrian and a CAV. CZ: conflict zone.

Figure 3 . 2 :

 32 Figure 3.2: Elementary pedestrian crossing system: A-System description, B-TPN model of the system.

Figure 3 .

 3 Figure 3.2A shows the studied system. Since we only consider the conflict between one pedestrian and one CAV, Figure 3.2 gives the corresponding p-timed Petri-net model (TPN) of the conflict space. Each transition of the TPN model x k,i with i ∈ {enter, exit} is associated to a counter firing function f k,i (t) that gives the number of times the transition has been fired until date t. The marking of places p k,out represents the state when there is a pedestrian (k = p) or a CAV (k = v) before CZ. p k,out is calculated according to the speed of agent k and the remained distance to reach CZ. A token in p k,in means that k is occupying CZ. The associated time to p k,in is the time

Figure 3 . 3 :

 33 Figure 3.3: Optimal speed profiles of the leader agent and the follower agent.

  This numerical example bolsters the CAV's behavior by extending the previous conflict scenario to 3 agents. We consider a platoon of 2 CAVs with a pedestrian who wants to cross the road as presented in Figure3.4. The connectivity of the CAV allows them to communicate together to provide a coherent behavior to the pedestrian. Hence, as shown in Figure3.4, if CAV1 refuses the request of the pedestrian for safety reasons, it sends a message to CAV2. If possible, the latter will prepare itself to allow the pedestrian to cross the road. CAV1 communicates to CAV2 the computed t c that is the time it will clear CZ for letting the pedestrian cross.

Figure 3 . 4 :

 34 Figure 3.4: Example of a platoon of 2 CAV that cooperate with the pedestrian to let her/him cross.

Figure 3 . 5 : 1 :

 351 Figure 3.5: Scenario 1: Optimal trajectories of the three agents : positions and speeds

Figure 3 . 6 : 2 :

 362 Figure 3.6: Scenario 2: Trajectory variation according to unforeseeable behavior of the pedestrian : positions, speeds and accelerations

Figure 3 . 7 :

 37 Figure 3.7: Architecture of Mixed Reality based simulation for CAVs and pedestrians. The CAV emits a signal that can be easily interpreted by pedestrians, such as a pictogram displayed on the CAV's grill and/or projected on the road near the pedestrian.

Figure 3 . 8 :

 38 Figure 3.8: Pilot test and results via a VR headset: The testers cross a stream of CAVs when they feel safe. A-the tester waits when he observes a red light shown by CAVs; B-Average crossing speed of pedestrians; C, D-Speed and position of pedestrians.

Figure 3 .

 3 8B compares the free walking speeds with the crossing speeds. Among the 28 virtual crossings, only for some reason. Pedestrians' speed and position during the crossing are represented in Figure 3.8CD. The free walking speeds are presented by markers on the left of Figure 3.8B, whereas the crossing speeds are displayed on the right. The rectangles near each set of markers are colored according to the speed distribution. Each line linking two markers shows the difference between the free walking speed and the crossing speed of the same tester.

  Section 4.5 designs a suitable DRL controller to handle the pedestrian-CAV intersection problem. The essential parts consist of the model of pedestrian crossing behaviors, the network structure of the DRL controller, and the reward function. Section 4.6 presents the experimental results under QP controller and DRL controller respectively. Traffic safety and efficiency are analyzed and compared. Section 4.7 concludes this chapter.
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 41 Figure 4.1: Coordinate system of one lane scenario.

  plus a margin v v (t) multiplying a positive gain τ due to disturbance and CAV's time delay, as shown by the curve of threshold for safety in Figure 4.2.

Figure 4 . 2 :

 42 Figure 4.2: The relationship between S and the position after time v v u v when CAVs, with all possible S , can reach the desired speed v v . The CAV with the optimal state S * will run the farthest.
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 443 Figure 4.3 illustrates the situations when each of these conditions is not satisfied. In simple words, Cond1 is not satisfied if the CAV is too far from the optimal state S * (see Figure4.3-A), whereas Cond2 is not fulfilled if the CAV is too close to S * (see Figure4.3-B). Hence, the feasibility of the control point can be written as follows:

Figure 4 . 3 :

 43 Figure 4.3: Unfeasible optimal point: A-Cond1 is not satisfied. The CAV is too far from S * at t p,exit . B-Cond2 is not satisfied. The CAV is too far from S * before t p,exit .

Figure 4 . 4 :

 44 Figure 4.4: Reinforcement Learning control loop.
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 4 INTERSECTION OPTIMIZATION BASED ON VEHICLE OPTIMAL STATE

Figure 4 . 5 :

 45 Figure 4.5: Model of the pedestrian crossing behaviors when he/she shares the road with CAVs.
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 52 DDPG ACTOR/CRITIC NETWORK AND OBSERVATIONFor the structure of networks, we refer to and adjust the structure presented in Figure3in [145], which has been proved to be effective in car following control. The specific structure of the network is shown in Figure 4.6. The actor-network has 5 layers, those are 1 input layer with 8 units, 3 hidden layers with 48 units, 1 output layer. All hidden layers are ReLU activated, for the advantage of accelerating the convergence. The output layer consists of Tanh activated and Scaling neurons to constraint the output acceleration in [u, u], which is used to control CAVs. In the critic network, the action is not made visible until the third hidden layer with the other 48 hidden units. All hidden layers are ReLU activated.

Figure 4 . 6 :

 46 Figure 4.6: The architecture of neural networks for the DDPG algorithm.

Figure 4 .

 4 [START_REF] Anvari | Modelling shared space users via rule-based social force model[END_REF] shows the training curve. We can observe from the curve that the training converges after 5000 episodes.
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 47 Figure 4.7: The training curves of the episode reward and average reward.
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 48 Figure 4.8: The pedestrian waits for the CAV to pass first because of the short initial distance.

Figure 4 . 9 :

 49 Figure 4.9: The pedestrian usually passes first at a constant speed (v p = 1.2m/s).
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 4 INTERSECTION OPTIMIZATION BASED ON VEHICLE OPTIMAL STATE 4.6.3/ TEST OF VEHICLE DEALING WITH DANGEROUS SIMULATED PEDESTRIAN BEHAVIORS The purpose of this experiment is to test whether there will be a collision if the pedestrian stops in CZ at any time during the crossing. For doing that, the pedestrian stops moving as soon as entering CZ, and stops just before exit, respectively. The results are shown as in Figure 4.10 and Figure 4.11.

Figure 4 . 10 :

 410 Figure 4.10: The pedestrian enters CZ directly but stops moving immediately.

Figure 4 . 11 :

 411 Figure 4.11: The pedestrian enters CZ directly but stops moving before exit.

Figure 4 .

 4 Figure 4.11b). As shown in Figure 4.11b, DRL strongly keeps the safety constraint when the pedestrian is in CZ. The solution of QP has a similar result. Unlike the previous case, the pedestrian may exit CZ at any time. Therefore, the CAV of DRL decides to stop at 0 for being ready to enter CZ once the pedestrian exits. This action can reduce the time gap between the pedestrian exit and the CAV entering.
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 4 INTERSECTION OPTIMIZATION BASED ON VEHICLE OPTIMAL STATE

Figure 4 .

 4 Figure 4.12: A real person participates in the game by using an immersive hamlet technology.

Figure 4 .

 4 Figure 4.13: A comparison between three scenarios: DRL method, QP method, and spontaneous way. The arrows represent CAV speed.

78CHAPTER 4 .

 4 INTERSECTION OPTIMIZATION BASED ON VEHICLE OPTIMAL STATEensures that the CAV has sufficient braking distance during the passage of pedestrians.

  long training time due to the different assumed pedestrian profiles, allows stable and predictable behavior. If the DRL model is well-tuned and trained, our tests show that DRL controller can respond to the pedestrian agent's various states, such as stopping or disobeying traffic signals. For instance, even when the pedestrian comes to a complete stop in the middle of the road (falls, loss of a valuable object, etc.), the behavior of DRL remains safe and efficient.The results of the proposed DRL solution are desirable and encourage us to expand it to the general traffic scenario where exists multiple streams of CAVs. In this case, factors such as crossing order and CAV cooperation should be considered to optimize the pedestrian-CAVs intersection. These are the contents presented in the next chapter.

Figure 5 .

 5 1 shows an example of a road with two lanes. In this scenario, CZ is represented by the red rectangle that covers all lanes of the road.For safety reason, CZ in each lane can be occupied at most by one kind of agent (either CAV or pedestrian). Each CAV has to choose between two decisions: yielding the way to pedestrians or passing through CZ first. For instance, in Figure5.1, the first CAV in lane 1 can go before pedestrians or wait for them to free lane 1 totally.

Figure 5 . 1 :

 51 Figure 5.1: A typical scenario of road sharing between CAVs and pedestrians.

Figure 5 .

 5 Figure 5.2 shows us the cooperative crossing process. CAVs show the default state if no pedestrian is detected or after exiting CZ. If the CAVs invite the pedestrians to enter CZ, there will be no CAV entering CZ until the pedestrians exit their respective lanes of CAVs. For a clear interpretation, in Figure 5.2, we suppose the optimal crossing order is CAV1 is in lane 2, the pedestrian, and other CAVs. In this case, before CAV1 in lane 2 exits CZ, all CAVs in front of the pedestrian show a red light to inform the pedestrian to wait. As soon as CAV1 in lane 2 exits CZ, the signals change to invite the pedestrian. This logic avoids collisions regardless of the pedestrian crossing speed. If pedestrians break the rule by entering CZ early, the emergency mechanism will be triggered. After the pedestrians exit a lane, CAVs in this line cruise with Adaptive Cruise Control (ACC) again.

Figure 5 . 2 :

 52 Figure 5.2: A-CAVs in all lanes show coordinated red signal lights to notify pedestrians to wait. B-CAVs show coordinated green signal lights to invite pedestrians to cross. C-CAVs take information about the last pedestrian to control their speeds.

Figure 5 . 3 :

 53 Figure 5.3: Modeling the cooperative intersection between pedestrians and CAVs.

. 2 )Figure 5 . 4 :

 254 Figure 5.4: A-All possible crossing orders in lane i with N i CAVs: k i = 0 means the pedestrians use CZ first. k i = N i means the pedestrians use CZ last. B-After the pedestrians exit, the leader and followers cruise normally and reach the desired speed. Finally, a new platoon arises with the desired speed v v and the safe distance d sa f e between each other.

14

  Compare the above M i=0

5. 2 .

 2 C after pedestrians enter CZ. So far, this work presents a relatively complete solution to the pedestrians-CAVs intersection problem. Building on the most studied single conflict scenario, this work extends the studied issue to a more general traffic scenario -multiple pedestrians and multiple streams of CAVs. Through CAV cooperation (Figure 5.3), the pedestrian-vehicle interaction (Figure 5.2), and the optimal control point S * (Figure 4.2) of CAV, the proposed model provides pedestrian-friendly crossing environment and accelerates the overall traffic efficiency. It contributes to the Intelligent Transportation Systems domain.

2

 2 
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 51 TEST OF CROSSING ORDER PLANNER For testing Algorithm 2, the initial settings (t = 0) are: N 1 = 2, x 1 (0) = [30, 75], N 2 = 3, x 2 (0) = [-25, -55, -85]. Figure 5.5 depicts the results of Algorithm 2 with different values

[ 30 ,

 30 55, 80, 105], x 2 (0) = [-20, -50, -80, -110].

Figure 5 . 7 andFigure 5 .

 575 Figure 5.8 show the CAV speed profiles with constant and random pedestrian speed, respectively. The tests with random pedestrian speed show similar results with constant pedestrian speed used by the DRL training. The trained controller can be generalized in multiple lane scenario.

Figure 5 . 6 :

 56 Figure 5.6: Experimental results: Blue points are states with an ideal pedestrian speed (around 1m/s). The average position and speed are 16.6 (S T D : 4.02) / 5.41 (S T D : 1.05) in lane 1, and -18.0 (S T D : 4.01) / 5.76 (S T D : 1.05) in lane 2; Red points are states with random pedestrian crossing speed. The average position and speed are 11.6 (S T D : 2.63) / 3.72 (S T D : 1.18) in lane 1, and -16.7 (S T D : 2.63) / 5.76 (S T D : 1.18) in lane 2.

Figure 5 . 7 :

 57 Figure 5.7: CAVs speed profiles with 2 lanes and 4 CAVs: The optimal sequence is k * = (1, 1). The first CAVs in all lanes accelerate to v v and the following CAVs controlled by DRL slow down at the same time. After the first CAVs pass through CZ, pedestrians (constant speed) start crossing. When the pedestrians exit the lane, the state of the CAV in this lane is close to S * . In the results, the average pedestrian waiting time is 3.6s (S T D : 0.45). The average CAV positions are 27.1 (S T D : 1.59) and -27.9 (S T D : 1.90) after 5s of pedestrians exiting their lane.

Figure 5 . 8 :

 58 Figure 5.8: CAV speed profiles: the optimal cross sequence is k * = (0, 0). The leader CAVs slow down to let the pedestrians (random speed) pass first. The following CAVs cruise normally to keep a safe distance from the leaders. When the pedestrians exit the lane, the state of the CAV in this lane is close to S * . In the results, the average pedestrian waiting time is 4.3s (S T D : 1.2). The average CAV positions are 27.7 (S T D : 0.74) and -28.2 (S T D : 1.52) after 5s of the pedestrian exiting the lane.
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 59 Figure5.9: Traffic safety test: the optimal cross sequence is k * = (0, 0). The pedestrian crosses normally in the beginning, but stops moving before he/she exits lane 1. The first CAV in lane 1 stops near CZ finally. The first CAV in lane 2 stops at (-17.3m) and starts to accelerate when the pedestrian moves again.
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 510 Figure 5.10: Multiple pedestrians crossing test: the optimal cross sequence is k * = (0, 0). The data used for DRL controller are always data of the last pedestrian during the pedestrian crossing.

Figure 5 .

 5 Figure 5.11: A comparison between optimized and spontaneous crossing scenarios: The length of the arrow represents CAV speed.

Concern 2 , 2 andFor Concern 3 ,

 223 Section 4.2 analyzes requirements in application. An extra constraint of CAV's gap and speed is added to the CAV to protect the pedestrian if he/she crosses first. In this case, pedestrian waiting time is a factor affecting traffic efficiency. The waiting time can be decreased by vehicle deceleration. The CAV's state (gap, speed) when the pedestrian leaves the road is another factor that affects the traffic efficiency due to the extra constraint as presented in Figure4.2. Section 4.3 analyzes the vehicle driving state. Specifically, the vehicle first decelerates appropriately to invite pedestrians to cross earlier, resulting from Hamiltonian optimization. It then adjusts its state (speed, distance) according to the pedestrian's state (speed, position). When the pedestrian leaves the conflict zone, the vehicle arrives at the optimal state under the safety constraints to minimize the loss of travel distance during the entire crossing process. To realize this process, Section 4.5 designs a DRL model to train the CAV. In the simulation, the DRL controller is compared with the QP (Quadratic Programming) controller. In several different scenarios, pedestrian crossing normally, waiting for a long time, stopping moving in shared space, the trained DRL controller can effectively control the vehicle to handle various normal or dangerous situations (see Section 4.6.Section 4.6.3). The results show the advantages of the DRL controller in dangerous pedestrian behaviors. Moreover, compared with the spontaneous way, the DRL controller allows the CAV to gain, on average, 2.36s (38.01%) and allows the pedestrian to gain, on average, 1.72s (32.76%), as shown in Table4.2. Chapter 5 extends the single conflict scenario to the general multiple lane scenario. The model of communication and cooperation between CAVs and pedestrians are given, as shown in Figure 5.3. In the model, CAVs schedule the optimal crossing order (see Algorithm 2) by shared information. The simulation result of two lanes and

  7 and Figure 5.8). In this way, CAVs cooperate with pedestrians to optimize their intersection. Moreover, CAVs can deal with dangerous pedestrian behaviors (see Figure5.9 and Figure5.10). In terms of efficiency improvement, the proposed model allows CAVs to gain averagely 4.12s (42%) and allows pedestrians to gain 6.2s (59%) in crossing efficiency (see Table
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 61 Figure 6.1: Example of Pedestrian-CAV area
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		: Numerical data	
	Agent	CAV1 CAV2 Pedestrian
	u k (m/s 2 )	2	2	1
	u k (m/s 2 )	-3	-3	-1
	v k (m/s)	10	10	1

360.75 1.57(0.28) 0.78Table 3 .

 3 2 dt 2 compares scenario 1 (Sc1) with a spontaneous way (SB) of each agent. In SB, each agent maintains its comfortable state ( v k ) whenever it is possible and the pedestrian has the priority if CAV i can stop under control constraint u v . One can note from this table in line t k,exit that the optimal trajectory allows all agents to cross CZ sooner than in SB.

	Agent	CAV1	CAV2	Pedestrian
	Scenarios Sc1	SB	Sc1	SB	Sc1	SB
	t k,exit (s)	2.01 2.10 6.63	9.36	5.08	7.03
	t k, f (s)	2.17	0	6.52	12.07	5.81(2.4) 3.11
	J k (m 2 /s) 0.43	0	40.81		

Table 3 .

 3 3: A summary of simulators possibly can be used to pedestrians-CAVs intersection study.

	Application	Connectivity 3D environment Pedestrian Programming
	SUMO + JADE	√	×	×	C++, Java
	CARLA	×	√	√	Python

The MATISSE (DIVAs4)

[START_REF] Torabi | Matisse 3.0: A large-scale multi-agent simulation system for intelligent transportation systems[END_REF] 

simulator, focused on traffic safety, is a desirable option for us. It provides a 3D virtual environment, pedestrian model, and vehicle model. Moreover, one can program the interconnection between vehicles. But there are also some flaws, such as unrealistic 3D scenes and a lack of sensor models. It is a challenging work to develop a simulator that fully meets our needs based on the MATISSE (DIVAs4) simulator.

Table 3

 3 

		.4: Notations in Chapter 3	
	Notation Description	Unit
	v k	desired speed of agent k, k ∈ {p, v}, p: pedestrian, v: vehicle	m/s
	d k (t)	moving distance of of agent k, k ∈ {p, v}	m
	v k (t)	speed of agent k, k ∈ {p, v}	m/s
	u k (t)	acceleration of agent k, k ∈ {p, v}	m/s 2
	u k , u k	maximum acceleration, deceleration of agent k, k ∈ {p, v}	m/s 2
	v k	maximum speed of agent k, k ∈ {p, v}	m/s
	w p	weighting factor for the pedestrian, w p ∈ [1, +∞]	-
	t k, f	needed time for agent k to recover v k , , k ∈ {p, v}	s
	t f t p c place p c gives state of CZ, empty: full CZ, one token: empty CZ	-
	t c	consensus time for crossing CZ	s
	d k,i	distance to enter/exit CZ, k ∈ {p, v}, i ∈ {in, out}	m
	λ	costate variable	-
	λ d k	costate variable, k ∈ {p, v}	-
	λ v k	costate variable, k ∈ {p, v}	-
	µ 1,k ∼ µ 5	parameter	-
	a j,k		

X(t) state variable, X T (t) = [d v (t), v v (t), d p (t), v p (t)] -U(t) control variable, U T (t) = [u v (t), u p (t)] f = max(t v, f , t p, f ) s J(u v , u p ) cost function during crossing CZ (conflict zone) x k,i transition, k ∈ {p, v}, i ∈ {in,

out}, in: enter CZ, out: exit CZ f k,i (t) counter of transition of x k,i , k ∈ {p, v}, i ∈ {in, out} p k,i places representing the state of agent k. One token in p k,i means that agent k is at the state i, i ∈ {in, out} parameter, j ∈ {b, i, a}, b: before CZ, i: in CZ, a: after CZ, k ∈ {p, v}t a,l needed acceleration time for the leader agent, see Figure 3.3 s

The previous Chapter 3 considers the pedestrian and the vehicle as controllable agents.

  , x p (t), v p (t), and f p (t) (see Eq. 4.14) 4.5.3/ REWARD FUNCTION DESIGN To optimize the objective function (Eq. 3.6) under constraints and let the CAV reach the optimal state S * , this work defines Eq. (4.14) as the reward function to train the agent.

Table 4 .
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	1: Average CAV speed and position (when testers exit CZ), their standard devi-
	ation (STD), CAV final position (5s after testers exit CZ), and safety condition fulfillment
	rate of 28 experimental data.		
	Method		DRL	QP
	Safety fulfillment rate		100%	100%
	Average speed (m/s) / STD	6.04/0.97	5.09/1.95
	Average position (m) / STD	-12.18/2.82 -11.33/5.53
	Average final position (m) / STD 33.68/1.25 31.51/4.16
	Table 4.2: Comparison of lost time of CAV and pedestrian according to the control ap-
	proach.		
	Method		DRL	spontaneous
	CAV delay (s)	3.85 ± 2.20	6.21 ± 3.03
	Pedestrian delay (s) 3.53 ± 1.60	5.25 ± 1.30

Table 4 .

 4 

		3: Notations in Chapter 4	
	Notation Description	Unit
	S	S = (x v (t), v v (t)), state of the CAV	-
	S *	S * = (x * , v * ) optimal state of the CAV	-
	τ	gain that adjusts the safety margin	s
	x v (t)	CAV position	m
	v v (t)	CAV speed	m/s
	t p,exit	the time when the pedestrian leaves CZ	s
	v v	desired speed of the CAV	m/s
	u v	maximum control acceleration of the CAV	m/s 2
	u v	maximum control deceleration of the CAV	m/s 2
	t f inal	time when the CAV with v v = 0 accelerates to v v s
	l c	length of CZ	m
	l r	length of the lane	m
	r 1 , r 2 , r 3	reward	-

  1, 2, . . . , N 1 do Calculate the time t k i ,exit (i = 1, 2, ..., M) and the time t p,wait by Eq. 5.3 and

	3	for k 2 = 0, 1, 2, . . . , N 2 do
	4	...
	5	for k M = 0, 1, 2, . . . , N M do
		Eq. 5.4;

for each lane i = 0, 1, 2, . . . , M do Estimate t i p,exit according to x p (0) and lane width;

Table 5 . 1 :

 51 Extra tests of the Crossing order planner with ∆T (k, u) = t p,wait (without power for t p,wait ) the test, the random initial position of CAVs are x 11 (0) ∈ (5, 55), x 12 (0) ∈ (55, 85), x 21 (0) ∈ (-5, -55), x 22 (0) ∈ (-55, -105) and they run with the desired speed v v . The pedestrians obey the crossing order and don't stop in CZ intentionally.

	[w v , w p ]	k *	evaluated J t p,wait
	[1, 3]	[4, 4]	39.6	13.2
	[1, 30]	[4, 4]	396	13.2
	[1, 40] [0, 0]/[4, 4]	527/528	0/13.2
	[1, 45]	[0, 0]	533	0
	5.5.2/ TEST OF CONNECTED AUTONOMOUS VEHICLES REACHING THE OPTI-

MAL STATE

In

Table 5 .

 5 2: Comparison of time lost of CAVs and pedestrians in two scenarios.

	Control approach Pedestrian	CAV
	spontaneous way	10.5 ± 1.3s 9.82 ± 1.85s
	DRL method	4.3 ± 1.2s	5.7 ± 1.49s

Table 5 .

 5 3: Notations in Chapter 5 ,exit time that the last CAV needs to cross CZ under order k i s a i driving direction, a i = -1, 1, "-1": the same with x v in Figure5.1 -work tries to provide safe, efficient, pedestrian-friendly road sharing between pedestrians and CAVs (Connected Autonomous Vehicles). As much literature has mentioned,

	Notation Description

i the lane i, where i = 1, 2, ..., M -N i number of CAVs in lane i k i crossing order in lane i (see Figure 5.4A), k i = 0, 1, ..., N i -This

One can try an online interface https://onlinetest.embedded-lighting.com/, available on

22/09/2022 to evaluate several intent displays

https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vruprotection/aeb-pedestrian/, available on 22/09/2022

https://youtu.be/EmSSj4StzSc

This PhD thesis has received funding from the research program of the China Scholarship Council (CSC), China. FR: Cette th èse de Doctorat a ét é financ ée par le programme de recherche du China Scholarship Council (CSC), Chine.

• The difference between the DRL controller and QP controller when dealing with the intersection problem in the studied scenario.

Algorithm 1: DDPG: Deep Deterministic Policy Gradient for cooperative control Randomly initialize critic Q(s, a|θ Q ) and actor µ(s|θ µ ) networks with weights θ Q and θ µ ; Initialize target network Q ′ (s, a|θ Q ′ ) and µ ′ (s|θ µ ′ ) with weights θ Q ′ ← θ Q and θ µ ′ ← θ µ ; Set up empty replay buffer D; for episode = 1, 2, . . . , M do Begin with a random process N for action exploration;

Observe initial environment state: (∆L, -x v (t), v v (t), v v (t)v v , (v v (t)v v ) 2 dt, x p (t), v p (t), f p (t)); for t = 1, 2, . . . , T do Calculate reward r t ;

Choose acceleration a t = µ(s t , θ µ ) + N t based on current actor network and exploration noise N t ; Use a t and transfer to new state s t+1 based on environment model; Save transition (s t , a t , r t , s t+1 ) into replay buffer D; Sample random mini-batch of N transitions (s i , a i , r i , s i+1 ) from D;

Update critic through minimizing loss:

Update actor policy using sampled policy gradient:

Update target networks:

4.6.1/ TRAINING ENVIRONMENT SETTING

The DDPG algorithm is realized through MATLAB, and the DRL environment is built through SIMULINK. The structure of the two networks is shown in Figure 4.6. The coordinate system is established as in Figure 4.1. In all the experiments, we set some invariant parameters:

The initial position of the CAV is x p (0) ∈ [-60, -10]m. According to Eq. 4.4 and the studied scenario parameters, the optimal state S * is (-13.64m, 4.8m/s).

Weight coefficients K 1 , K 2 , and K 3 set to 1000, 1, -20, respectively. The combination of these values is selected after many times of tuning. Safety and efficiency are extremely Concerning the pedestrians-CAVs intersection problem, this work proposes a cooperative intersection model, as shown in Figure 5.3. The CAV that firstly detects the pedestrians calculates the optimal crossing order by its Crossing order planner and shares the result through Shared information (Figure 5.3). The crossing order is linked to a group of behaviors, such as going first or waiting for pedestrians. More precisely, it behaves as follows.

The first CAV in each lane, which will pass after the pedestrians, selects DRL (Deep Reinforcement Learning) controller to reach the optimal state (see Section 4.3) and its followers use the ACC to keep a safe distance. CAVs that pass before the pedestrians continue to cruise. CAVs and pedestrians constitute a multi-agent system. But instead of seeking the method to control both of them, we study CAVs behavior and their interaction with pedestrians to improve traffic safety and efficiency. CAVs must react optimally and safely to various pedestrian behaviors.

5.3/ PEDESTRIANS-CAVS INTERSECTION OPTIMIZATION

5.3.1/ SPECIFIC EXPRESSION OF CROSSING COST

The crossing order and CAVs speed profiles need to be optimized to improve the traffic efficiency of the whole system, as well as the friendliness of CAVs to pedestrians. Two sources of crossing costs are considered:

• The decrease in driving distance of CAVs when they yield the way to pedestrians.

• The waiting time of pedestrians before crossing.

Rather than considering the pedestrians as a moving obstacle that systematically brings CAVs to a complete stop, CAVs in this chapter optimizes the dynamic system of interaction with pedestrians, according to the industrial policy. Let ∆D and ∆T (Some variables in this chapter are listed in Table 5.3 at the end of this chapter) be two monotonic increasing functions of the driving distance decrease and pedestrian waiting time, respectively. The crossing cost is then formally written as follows:

with w p and w v are the proportional weight of each source of cost. To minimize the cost in Eq. 5.1, CAVs resort to control both crossing sequence (k) and speed profile (longitudinal control u), bearing the randomness of the pedestrian behavior. The reason for considering ∆D for CAVs is that this thesis intends to introduce the novelty of allowing CAVs to recover, as much as possible, the driving distance lost when they are yielding the way. Similarly, the other novelty is that ∆T aims to invite the pedestrian to cross the soonest when the Connected Autonomous Vehicle (CAV) interaction with pedestrians is a challenging topic. Traffic management in the conflict zone with pedestrians need new interaction methods. Among many interactive methods, vehicle signaling displays and speed profiles have attracted much attention. To design appropriate vehicle behaviors, researchers study the impact of vehicle behavior (signaling display, gap, speed, and deceleration) on pedestrian behavior (reaction time, walking speed, and gap acceptance). Fruitful results have been achieved. However, an optimal speed profile for CAVs is missing to get a step further on this topic. Furthermore, most works are limited to a single conflict scenario (one CAV-one pedestrian).

The thesis starts from a single conflict scenario and treats pedestrians and vehicles as agents. A mathematical model of a single conflict is built using Petri-net. The thesis uses the Pontryagin's minimum principle to improve the performance of both agents during the conflict. The numerical simulations show a significant gain in intersection time by using the optimal speed profiles.

Considering the practical difficulties, the thesis proposes a safe CAV's optimal state to respond to dangerous pedestrian behavior.

Specifically, the CAV invites pedestrians to pass through the deceleration and intent display in the early stage. Then, the CAV reaches the optimal state under the safety constraint to make traffic efficiency the highest. To reach the optimal state, the thesis proposes deep reinforcement learning (DRL) method to control the CAV according to the pedestrian state. Immersive virtual environment tests show that the trained DRL agent can control the CAV close to the optimal state. Moreover, the trained DRL agent performs better in many scenarios than model predictive control.

Finally, the thesis extends the application from the single conflict scenarios to the multiple lane scenario. It gives an algorithm to calculate the optimal crossing order between CAVs and pedestrians and establishes a cooperative and communicative model. The experimental results show that the optimal crossing order improves traffic efficiency, whereas the DRL controller reduces the time lost by CAV. Simulations show that the proposed approach allows both CAVs and pedestrians to gain an average of 42% and 59% of the crossing time, respectively. These encouraging results introduce the perspective of research on the pedestrian-friendly speed profile of CAVs. Les conflits entre les v éhicules autonomes et connect és (VAC) et les pi étons n écessitent de nouvelles approches d'interaction. Parmi ces approches, l'affichage de l'intention du v éhicule est actuellement un sujet de nombreux travaux de recherches. L'impact du comportement des v éhicules sur le comportement des pi étons a ét é largement étudi é. Des r ésultats fructueux ont ét é obtenus. Cependant, à notre connaissance, aucun profil de vitesse ad équat n'a ét é propos é. Aussi, la plupart des travaux sont limit és au sc énario du conflit unique (un v éhicule-un pi éton). Cette th èse part du sc énario de conflit unique et traite le pi éton et le v éhicule comme des agents. Un mod èle math ématique du conflit est construit en utilisant les r éseaux de Petri. Le principe du minimum de Pontryagin a ét é utilis é pour d éduire les trajectoires optimales des deux agents, à savoir celle du v éhicule et celle du pi éton. Les simulations num ériques montrent un gain significatif du temps d'intersection en utilisant des profils optimaux de vitesse. Pour des raisons évidentes de s écurit é, la th èse propose un état optimal du VAC. Cet état permet au v éhicule de pouvoir s'arr êter en cas de comportement impr évu du pi éton. Il permet aussi de r écup érer partiellement la distance perdue, lors du c éder le passage. Le VAC se comporte en deux phases. En premier, il invite le pi éton à passer en d éc él érant et en affichant son intention. Ensuite, il atteint l' état optimal à la sortie du pi éton. Pour atteindre l' état optimal, la th èse propose une m éthode d'apprentissage par renforcement profond (ARP) pour contr ôler le VAC. Des tests en environnement virtuel immersif montrent que l'agent ARP peut contr ôler le VAC pour être au plus pr ès de l' état optimal. Aussi, des comparaisons avec la commande pr édictive ont ét é r éalis ées. La commande à base de l'ARP est plus performante dans de nombreux sc énarios. Enfin, la th èse étend le sc énario aux travers ées pi étonnes de plusieurs voies. Elle propose un algorithme pour calculer l'ordre optimal de passage entre les VACs et les pi étons et établit un mod èle coop ératif. Les r ésultats exp érimentaux montrent que l'ordre de passage optimal am éliore l'efficacit é du trafic, tandis que le contr ôleur ARP r éduit le temps perdu par les VAC. La simulation montre que l'approche propos ée permet aux VAC et aux pi étons de gagner, respectivement, en moyenne 42% et 59% du temps de travers ée. Ces r ésultats encourageants ouvrent de nouvelles perspectives de recherches sur les profils de vitesse des VACs pour la gestion des travers ées pi étonnes dans les zones industrielles.