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ABSTRACT

Hydrogen bonds are weak intermolecular interactions that deeply perturb the chemical environ-
ment of atomic nuclei and contribute to the anharmonicity of the potential energy surfaces. Fur-
thermore, they involve the hydrogen atom, which, even at ambient conditions, can manifest non
negligible quantum properties due to its small mass. Both the chemical structure and the dynamics
of hydrogen-bonded systems are influenced by the anharmonicity and the quantum nature of the
nuclei. In this thesis we investigate different molecular systems containing hydrogen bonds by de-
scribing the nuclei by approximated quantum methods that overcome the classical and harmonic
pictures.

The first system investigated is a phase transition in the solid state. Crystalline potassium hydroxide
is characterized by the presence of weak hydrogen bonds and undergoes an order-disorder phase
transition. The same transition happens in the deuterated crystal but the Curie temperature shifts
up about 24 K due to the different proton and deuteron delocalization. Furthermore, a geometric
H/D isotope effect characterizes the hydrogen bonds and it relates to the structural properties of
the system.

The second study is about the adsorption of an organic molecule on an oxide surface. Formic acid
is the simplest carboxylic acid and a promising hydrogen carrier material. Its adsorption on the
TiO2 anatase (101) surface presents competing adsorption configurations that are still debated. The
molecular monodentate type of adsorption is characterized by the presence of a strong hydrogen
bond, that stabilizes the molecule-surface interaction and make the proton shuttle between its stable
position on the formic acid molecule and the surface.

The third study is about a complex biomolecular system. A crucial example of the importance of
hydrogen bonds in biological systems is the pairing of nucleobases in DNA, where the hydrogen
bonds contribute to the stability of the DNA double helix. The Watson and Crick conformation of
guanine and cytosine dimer presents three hydrogen bonds. The proton delocalization is relevant
even at 300 K in the gas-phase dimer. Simulated vibrational spectra were obtained.
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RÉSUMÉ

Les liaisons hydrogène sont des interactions intermoléculaires faibles qui perturbent profondément
l’environnement chimique des noyaux atomiques et contribuent à l’anharmonicité des surfaces
d’énergie potentielle. De plus, ils impliquent l’atome d’hydrogène, qui, même dans des conditions
ambiantes, peut manifester des propriétés quantiques non négligeables en raison de sa faible masse.
La structure chimique et la dynamique des systèmes avec liaison hydrogène sont influencées par
l’anharmonicité et la nature quantique des noyaux. Dans cette thèse, nous étudions différents sys-
tèmes moléculaires contenant des liaisons hydrogène en décrivant les noyaux par des méthodes
quantiques approchées qui vont au-delà de l’image classique et harmonique.

Le premier système étudié est une transition de phase à l’état solide. L’hydroxyde de potassium
cristallin est caractérisé par la présence de liaisons hydrogène faibles et subit une transition de phase
ordre-désordre. La même transition se produit dans le cristal deutéré mais la température de Curie
augmente d’environ 24 K en raison de la délocalisation différente du proton et du deutéron. De
plus, un effet isotopique H/D géométrique caractérise les liaisons hydrogène et est lié aux propriétés
structurales du système.

La deuxième étude porte sur l’adsorption d’une molécule organique sur une surface d’oxyde.
L’acide formique est l’acide carboxylique le plus simple et un matériau porteur d’hydrogène
prometteur. Son adsorption sur la surface TiO2 anatase (101) présente des configurations d’adsorp-
tion concurrentes qui font encore débat. Le type d’adsorption moléculaire monodentate est car-
actérisé par la présence d’une forte liaison hydrogène, qui stabilise l’interaction molécule-surface
et font faire la navette au proton entre sa position stable sur la molécule d’acide formique et la
surface.

La troisième étude porte sur un système biomoléculaire complexe. Un exemple crucial de
l’importance des liaisons hydrogène dans les systèmes biologiques est l’appariement des nu-
cléobases dans l’ADN, où les liaisons hydrogène contribuent à la stabilité de la double hélice
de l’ADN. La conformation Watson et Crick du dimère de guanine et de cytosine présente trois
liaisons hydrogène. La délocalisation du proton est pertinente même à 300 K dans le dimère en
phase gazeuse. Des spectra vibrationnels simulés on été obtenus.
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INTRODUCTION

Hydrogen bond (A–H· · ·B) is a non-covalent interaction between a hydrogen atom, covalently
bonded with atom A, and the B atom, which has a lone pair of electrons. Atoms A and B, that
are called the donor and acceptor respectively, are electronegative atoms such as fluorine, nitrogen
or oxygen; their typical reciprocal distance is in the range 2.5-3.3 Å. Hydrogen bond generally
occurs between separate molecules (intermolecular), but it can also be found in the same molecule
(intramolecular). Within a binding energy ranging from 4 to 50 kJ/mol [1], it is weaker than the
ionic and covalent bond but stronger than the van der Waals dispersion forces, playing a main role
in the stability of diverse chemical systems, from condensed matter to biomolecules. For instance,
it is responsible for making the density of ice lower than that of water and indispensable in the DNA
building blocks of life. However, it is also present in inorganic matter, for example in the hydrous
minerals that compose the Earth’s mantle, as brucite.

Both structural and dynamical properties of hydrogen-bonded systems depend on the nature of the
hydrogen bond and the potential energy surface experienced by the atomic nuclei. The latter are
often treated in numerical simulations within the harmonic and classical approximations. However,
the harmonic and classical description of hydrogen bonds is often not adequate. First of all, it is
well known that hydrogen bonds make the potential energy surfaces of the protons rather anhar-
monic and result in an enforced coupling between the different vibrational modes, which is totally
neglected within the harmonic approximation. A first way to overcome the harmonic approxima-
tion is via classical molecular dynamics simulations, that include anharmonicity, temperature and
dynamical effects. However, in molecular dynamics one solves the Newton’s equations of motions
where the nuclei are treated classically. As we will show in the following, this approximation is
often not accurate enough.

It is common belief that quantum effects are important only at very low temperatures. However,
due to its light mass, the proton can manifest a high degree of quantum delocalization even at room
temperature. Indeed, at 300 K the thermal de Broglie wavelength of the proton is approximately 1
Å, the same length scale of the inter-atomic distances such as covalent and hydrogen bonds. The
physico-chemical properties and the dynamics of hydrogen and deuterium nuclei can be strongly
impacted by nuclear quantum effects (NQEs). They include zero-point energy fluctuations, tunnel-
ing, enhanced anharmonicity, large sensitivity to isotope substitution, that cannot be described in
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terms of classical mechanics. Due to its intrinsic quantum nature, the hydrogen atom explores more
the anharmonic part of the potential energy surface, resulting in a enhanced anharmonicity, which
can be measured in the frequencies and the shape of the signals. When hydrogen is substituted
with deuterium, the lower zero-point energy of the latter will drive the system to explore a smaller
part of the potential energy surface. This effect is entirely absent in classical mechanics. More
generally, the H/D isotope effect can affect also other properties, as kinetic rates and the geometry,
and isotopic substitution is a fundamental tool to have a direct comparison with the experiments
since they are frequently performed in the presence of deuterated species.

In the recent years, NQEs have stimulated a growing interest in a large variety of phenonema [2–6],
which often involve hydrogen-bonded systems. It is now clear that behind the hydrogen bond, a so
much important interaction in nature, there is a great complexity. Let us consider one of the most
important systems containing hydrogen bonds, water. Water has a phase diagram that is strongly
affected by NQEs [7–10] and it is a prime example. For instance, the phase transition in ice at
≃ 65 GPa from phase VII to phase X, which involves the symmetrization of O–H· · ·O hydrogen
bonds, is completely missed by classical mechanics, which predicts a transition pressure of about
100 GPa [10]. On the contrary the inclusion of NQEs is able to recover the correct description of
the phase transition. A less striking effect in the physical properties of water is the isotope effect
on its melting point: it shifts up to 3.81◦C in heavy water, D2O, and to 4.48◦C in tritiated water,
T2O [11].

NQEs are not easy to predict and they strongly depend on the balance between the quantum wave-
particle duality of the hydrogen atom and the localization induced by the potential, which is in
turn affected by the anharmonicity. This thesis is devoted to the investigation of quantum and an-
harmonic effects in complex chemical systems presenting hydrogen bonds. The interplay between
quantum delocalization of the proton and the atomic confinement is very different for each investi-
gated system, that we will charecterize in detail. For an adequate description of the nuclear motion,
we used advanced approximated quantum methods within the Born-Oppenheimer separation be-
tween the electronic and nuclear degrees of freedom using either ab initio or force fields approaches
for the electronic structure. For the calculation of time-independent properties we used mostly path
integral molecular dynamics [12] methods, which are based on the formulation of quantum me-
chanics by Feynman. As an alternative, quantum baths approaches via Langevin thermostat with
colored noise can be used to reproduce the statistical quantum properties [13, 14]. To have a direct
comparison with the experiments, we calculated vibrational spectra through semiclassical methods
based on the initial value representation theory [15], which address both anharmonic and quantum
effects in the vibrational spectra.

The thesis is organized as follows:

• In the first part we will focus on the theoretical background of the employed methods and
computational approaches.

In chapter 1, we will provide a description of the classical treatment of the nuclei as a standard
procedure in molecular simulations. We will firstly recall the Born-Oppenheimer approxi-
mation and the concept of the potential energy surface, then we will briefly describe the
density funtional theory and the molecular mechanics approaches and discuss the harmonic
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vs the anharmonic picture from a classical point of view.

In chapter 2, we will present some of the advanced methods that incorporate a quantum
description of the nuclei starting from the Feynman formulation of quantum mechanics and
proceed to semiclassical techniques applied to vibrational spectroscopy and quantum bath
approaches.

• In the second part we will investigate selected hydrogen-bonded systems.

In chapter 3, we will discuss a quantum-driven phase transition, the antiferroelectric to para-
electric phase transition in KOH and KOD crystals. The phase transition was experimentally
characterized by a H/D isotope effect on the Curie temperature, but in the absence of an
explanation of the phase transition mechanism. We will explain in details the mechanism
of the phase transition and show how thermal and H/D isotope effects affect the structural
stability of the crystal.

In chapter 4, we will present the case of formic acid adsorption on the TiO2 anatase (101)
surface, which has still not reached a general consensus from both experimental and theo-
retical studies due to the presence of competing adsorption configurations. By combining a
theoretical investigation with infrared experiments on anatase nanopowders, we will charac-
terize the different adsorption species and we will specifically focus on a type of adsorption
that manifests the presence of a strong hydrogen bond between the molecule and the surface.

Lastly, in chapter 5 we will present a study concerning the guanine and cytosine (GC) base
pair. Several studies have been focused on the proton transfer reactions along the hydrogen
bonds present in the GC base pair, that are hypothesized to be the source of genetic point
mutations. A lower number of studies has been published with the inclusion of the physiolog-
ical conditions as well quantum and anharmonic effects. Starting from the gas-phase dimer,
we will investigate the role of the solvent by analyzing both the equilibrium and vibrational
properties, as well providing a benchmark of the force field employed.
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CHAPTER 1

THE POTENTIAL ENERGY SURFACE AND CLASSICAL

TREATMENT OF NUCLEI

This chapter outlines a brief and pedagogical description of the computational approaches used in
the current thesis as a necessary introduction to the next chapter, where the methods for including
a quantum description of the nuclei are illustrated.

1.1 Full quantum electron-nuclear problem

The full quantum mechanical information of a molecular system formed byM nuclei with coordi-
nates R = {R1, · · · ,RM} and N electrons with coordinates r = {r1, · · · , rN} can be obtained
via the non-relativistic time-dependent Schrödinger equation (TDSE):

iℏ
∂

∂t
ψ(r,R, t) = Ĥψ(r,R, t) (1.1)

The electronic-nuclear Hamiltonian operator Ĥ is an Hermitian operator and defines the total en-
ergy of the system. It reads as:

Ĥ = T̂nuc(R) + T̂el(r) + V̂nuc,nuc(R) + V̂el,el(r) + V̂nuc,el(r,R) (1.2)

in which we have considered no spin-orbit interactions and the absence of external fields. The first
and second term correspond to the kinetic energies of the nuclei and the electrons respectively, the
third and the fourth terms are the nuclei-nuclei and the electrons-electrons energy potential, while
the fifth term is the electrons-nuclei potential energy (eq. (1.3)).
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T̂nuc = −ℏ2

2

M∑
a=1

1

ma
∇2

a T̂el = − ℏ2

2me

N∑
i=1

∇2
i

V̂nuc,nuc =
M∑
a=1

M∑
b=1

ZaZbe
2

|Ra −Rb|
V̂el,el =

N∑
i=1

N∑
j=1

e2

|ri − rj |

V̂nuc,el = −
M∑
a=1

N∑
i=1

Zae
2

|ri −Ra|

(1.3)

The Hamiltonian in eq. (1.2) does not depend on the time t, i.e. it describes a conservative quantum
system for which the potential is not a function of the time. Thus, it is possible to make the variable
separation:

ψ(r,R, t) = u(t)ψ(r,R) (1.4)

which leads to the following time-independent Schrödinger equation:

Ĥψ(r,R) = Eψ(r,R) (1.5)

However, eqs. (1.1) and (1.5) are second order differential equations in space domain, for which
an analytical solution is impossible for many-body systems. In order to perform molecular simula-
tions, an approximation of the Hamiltonian of eq. (1.2) and the many-body wavefunction ψ(r,R)

is, therefore, needed. One way to firstly simplify the problem is to separate the electrons and the
nuclear variables. However, the molecular Hamiltonian defined in eq. (1.2) is not separable due
to the electron-nuclei potential energy term, which depends on both the nuclei and the electronic
coordinates.

1.1.1 Born-Oppenheimer approximation

To tackle the problem of the non-separability of the Hamiltonian of eq. (1.2), the nuclear degrees of
freedom can be considered stationary with respect to the electronic ones due to their much heavier
masses (mnuc ≫ mel). This latter is central in the Born-Oppenheimer (BO) approximation [16],
a fundamental assumption that is used in most of electronic structure calculations and molecular
dynamics simulations. Therefore the nuclear and electronic motion can be adiabatically decoupled
through a separation of variables, by rewriting the wavefunction ψ(r,R) as:

ψ(r,R) = χnuc(R)ψel(r;R) (1.6)

where χnuc corresponds to the nuclear wavefunction and ψel(r;R) is the electronic wavefunction
at a fixed nuclear configuration R, i.e. the dependence on the nuclear coordinates is purely para-
metric. Since the nuclear are considered stationary, the electrons will just adapt adiabatically to
a shift of the nuclear coordinates. In this way the full quantum electron-nuclear problem is recast
into two problems. The first task is to solve the following electronic time-independent Schrödinger
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equation.

Ĥel ψel(r;R) = εel(R)ψel(r;R) (1.7)

where Ĥel is the electronic Hamiltonian operator defined as:

Ĥel = T̂el(r) + V̂el,el(r) + V̂nuc,el(r;R) + V̂nuc,nuc(R) (1.8)

and εel(R) is the eigenvalue associated to the electronic Hamiltonian and is called adiabatic poten-
tial energy surface. εel(R) describes the relation between the total energy and a particular nuclear
arrangement of the system. The calculation of this surface is a crucial step for determining the
properties of the chemical systems. The last part of the BO approximation regards the nuclear
problem. By substitution of eq. (1.6) into eq. (1.1), then multiplication from the left by ψ∗

el(r;R)

and integration over the electronic coordinates [17], the quantum motion of the nuclei is given by:

[
T̂nuc(R) + εel(R)

]
χnuc(R, t) = iℏ

∂

∂t
χnuc(R, t) (1.9)

Therefore, the nuclei move in an effective potential Veff = εel(R), which is the solution of the
electronic problem, i.e. the potential energy surface at a fixed electronic state. Standard molecular
dynamics, which is a powerful tool to explore the properties of a molecular system, is based on the
assumption that eq. (1.9) can be approximated by classical Newton equations with the drawback of
including no quantum effects for the atomic nuclei. The classical treatment of the nuclei in molec-
ular simulations will be discussed in details in section 1.4. A more realistic picture is obtained by
describing the nuclei within quantum approximations, as done in this thesis. Chapter 2 is dedicated
to the illustration of these methods.

1.1.2 Potential energy surface

The quantum pontential energy surface (PES), which originates from the Born-Oppenheimer ap-
proximation and is specific to each electronic state1, is an essential tool for obtaining chemical
information about the system of interest, including molecular geometry, energy barriers and vi-
brational properties. By choosing a suitable number of nuclear configurations, it is possible to
locally reconstruct the PES. This is generally a complex function that depends on one or more
coordinates and presents critical points such as global/local minima and saddle points (fig. 1.1).
The calculation of the PES can be done either "on-the-fly" via the computation of the electronic
energies or analytically via advanced fitting scheme. An accurate description of the potential en-
ergy surface is of crucial importance in molecular simulations. However, the construction of global
high-dimensional potential energy surfaces from ab initio calculations represent still nowadays an
actual challenge.

In particular, the resolution of the many-body electrons problem of eq. (1.7) is not a trivial task due
to the already mentioned impossibility to obtain a closed-form solution of a complex second order

1Although the BO surface is specific to each electronic state, here we will consider the ground electronic state at
each atomic configuration, which is a good framework for the problems here tackled.
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Figure 1.1: A 2D contour map and corresponding potential energy surface for a hypothetical en-
dothermic reaction. Reproduction from ref. [18].

differential equation. Electronic structure packages deal with this task, providing approximated
methods to solve the many-body electronic problem. They are called ab initio tecniques since they
do not need, differently from other techniques such as semiempirical and molecular mechanics
methods, a priori assumptions – for example information about the chemical bonds. There are
two main approaches in the electronic structure calculations. One is wavefunction based starting
from the Hartree–Fock self-consistent field procedure, the "post-Hartree-Fock" methods for the
electrons correlation energy term such as Møller–Plesset perturbation, and the high level of theory
methods, Configuration Interaction and Coupled Cluster, which are considered the most accurate.
The other approach is density functional theory (DFT), which has been established as the most
popular method for quantum electronic structure calculations of molecules and solids. We will
discuss in details of DFT in the following section (see section 1.2). However, large-scale atomistic
computer simulations cannot be performed via ab initio methods due to the too demanding compu-
tational cost. An alternative is to use interatomic potentials functions to compute the total energy
and forces of the interested system. Traditional interatomic potentials are derived from a molecular
mechanics approach (see section 1.3.1). In the recent years there has been a rapidly growing inter-
est in constructing fast and accurate interatomic potentials instead via machine-learning techniques
starting from ab initio datasets [19, 20].

1.2 Density functional theory

The resolution of the many-body electrons problem for molecular and condensed matter systems
has been historically one of the major issues in quantum physics and chemistry. The wavefunction
based methods, using variational method schemes, allow an exact numerical solution of the elec-
tronic problem, but, although very accurate, they are limited to low-dimensional systems due to the
unfavourable scaling computational cost with the system size. The big turning point came in 1964,
when P. Hohenberg and W. Kohn proved through two theorems [21] that the many-body electrons
problem can be tackled in terms of electron density instead of wavefunctions. The electron density,
which is a much more simple object than the wavefunction, can describe all the properties of the

15



system at the electronic ground state.2 For a system of N electrons it is:

n(r) = N

∫
dr2...drN |ψ(r1, r2, ..., rN )|2 (1.10)

The two theorems by Hohenberg and Kohn can be resumed in the following two points. The ground
state energy of the system can be defined as a function of the electron density:3

E[n] = T [n] + U [n] + Vext[n] (1.11)

and it is a minimum that is attained when n = n0(r) among all the possible densities.

min(E[n]) = E[n0] (1.12)

In this way DFT reduces the 3N-dimensional problem of the electronic Schrödinger equation to an
equivalent 3-dimensional problem of the electron density. The ground-state energy is, in princi-
ple, obtained through a minimization scheme of the energy functional E[n] at constant number of
electrons N , i.e. by solution of the following constrained minimization problem:

δ

δn(r)

[
E[n]− µ

∫
dr n(r)

]
= 0 (1.13)

where µ is the Lagrange multiplier associated with the conservation of the number of electrons and
corresponds to the chemical potential of the electrons system.

1.2.1 Kohn-Sham equations

After a year of the publication of Hohenberg and Kohn theorems, Kohn and Sham (KS) proposed
a different approach to DFT [23]. Their idea was that the many-body ground-state interacting elec-
trons system can be replaced by the ground-state of an equivalent virtual system of non-interacting
electrons having the same energy density of the original system. The KS wavefunction of non-
interacting electrons system is a single Slater determinant as constructed from N orthonormal
single-particle orbitals ϕj(r), that are in general not the true electronic orbitals. The electron den-
sity is therefore rewritten as:

n(r) =
∑
j

fj |ϕj(r)|2 (1.14)

in whichψj(r) are the occupied orbitals and fj their corresponding occupation factor (0 ≤ fj ≤ 2).
The kinetic energy term can be approximated to the kinetic energy of the virtual non-interacting
electrons system T [n] ≈ Ts[n]. Solving the minimization problem of eq. (1.13) leads to the one-
electron set of equations:

2Further information about DFT and its implementation can be found in ref. [22].
3T [n] = ⟨ψ0|T̂el|ψ0⟩, U [n] = ⟨ψ0|V̂el,el|ψ0⟩ and Vext[n] = ⟨ψ0|V̂nuc,nuc + V̂nuc,el|ψ0⟩ (see the terms in eq. (1.3))

are the functionals representing the expectation values of the kinetic, electron-electron and nuclear-nuclear + electron-
nuclear operators, respectively.
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[
ℏ2∇2

2m
+ veff(r)

]
ϕj(r) = εjϕj(r) (1.15)

which are known as the Kohn-Sham equations and can be solved via self-consistent iterations.
veff(r) is the optimized effective Kohn-Sham potential which reads:

veff(r) = vext(r) + vH(r) + vxc(r) (1.16)

The term vext(r) is specific for the system and corresponds to the external potential defined by the
functional Vext[n] of eq. (1.11). The term vH(r) is the classical Coulomb electrostatic potential
(Hartree energy):

vH(r) =
δEH[n]

δn(r)
=
e2

2

∫
dr′

n(r′)

|r− r′|
(1.17)

The term vxc(r) corresponds to the exchange-correlation energy:

vxc(r) =
δExc[n]

δn(r)
(1.18)

1.2.2 Exchange-correlation functional

The exchange-correlation functional Exc[n] appearing in eq. (1.18) can be formally defined as:

Exc[n] = (T [n]− Ts[n]) + (U [n]− EH[n]) (1.19)

i.e. as the difference between the true unknown energy functional E[n] = T [n] + U [n] and the
known approximated functionalE(appr.)[n] = Ts[n]+EH[n]+Exc[n]. The form of the exchange-
correlation functional is at the core of DFT methods. Hundreds of approximations to Exc[n] are
available [24, 25]. Among them, we recall the main ones, which fall into a few classes. We will
limit our discussion to the approximations employed in this thesis.

Table 1.1: Classification of some DFT methods and their relative dependencies of the exchange-
correlation functional.

LDA n(r)

GGA ∇n(r)

meta-GGA ∇2n(r), τ

hybrid ϵx

generalized RPA ϕi

The local Density Approximation (LDA) is the simplest approach: the exchange-correlation energy,
vxc, is approximated to the exchange-correlation energy of an homogenous electron gas (HEG),
vHEG
xc , having the same density at the point r:
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ELDA
xc [n] =

∫
dr vHEG

xc (r)n(r) (1.20)

This approximation works well for several materials but it models hydrogen bonds badly. An im-
provement of LDA method can be obtained by describing the electron density in term of its gradient
∇n(r). These are known as generalized gradient approximation (GGA) methods and belong to the
family of semi-local functionals.

EGGA
xc [n] = ELDA

xc [n] +

∫
dr eGGA

xc (n(r))∇n(r) (1.21)

The function eGGA
xc can be expressed in many different forms. We recall the one presented by

Perdew, Burke and Ernzerhof (PBE) [26], which reproduces the strength of hydrogen bonds in
several systems within an accuracy of 1 kcal/mol. Thus, we employed PBE for DFT calculations in
this thesis (see chapter 3, chapter 4) since we are mostly interested in the description of hydrogen
bonds and not to long-range interactions or strong exchange and correlation effects. Next, meta-
GGA methods, which are an extension of GGA, incorporate the Laplacian of the density ∇2n(r)

or the kinetic energy density τ into the the exchange-correlation functional. Another category is
that of the hybrid functionals, which combine a part of the exact exchange from Hartree-Fock and
density based exchange–correlation terms via parameters obtained from either ab initio or empirical
sources. One popular version of hybrid functionals and very accurate for molecular systems is
Becke-3-parameter-Lee-Yang-Parr (B3LYP) [27].

1.3 Interatomic potentials

Although their accurate description for electronic degrees of freedom, ab initio methods are not
feasible for very large systems. Standard plane-wave based DFT methods, that we employed in this
thesis, scale up as ∼ N3 with N being the number of electrons of the system. It is therefore clear
that ab initio methods cannot be applied to large systems as biomolecular structures, which often
require the inclusion of the solvent. The use of interatomic potentials – mathematical functions
that yield the potential energy for a given nuclear configuration – allows the treatment of such large
and complex systems, otherwise forbidden by ab initio approaches.

1.3.1 Molecular mechanics

One traditional approach to treat biological systems is via molecular mechanics (MM), which refers
to a group of methods based on Newton mechanics. In a MM approach the atoms are modeled as
balls (nucleus+electrons systems) held together by springs. The balls-springs system is governed
by classical empirical functions constituting a so-called force field (FF):

U = Ubond + Uangle + Ubθ + Uoop + Utorsion︸ ︷︷ ︸
bonded

+ UvdW + Uele︸ ︷︷ ︸
non−bonded

(1.22)

The first five terms describe the short-range interactions: bond stretching, angle bending, bond-
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angle cross term, out-of-plane bending and torsional rotation. The last two terms correspond to the
non-bonded energy contribution given by the long-range van der Walls and electrostatic interac-
tions. The various existing force field present different ways to calculate the above energy terms.
Examples of popular force fields are AMBER [28, 29], OPLS [30] and CHARMM [31]. In all FF
approaches, the energy terms are calculated empirically, i.e. they are based on set of parameters
derived from either experiments or ab initio calculations.

UangleUbond Utorsion

non-bonded

Figure 1.2: Illustration of the fundamental force field energy terms.

One of the main challenge of MM approaches is to find a good compromise between accuracy
and transferability. The parametrization itself is often a time demanding procedure and sometimes
includes an elaborate fitting scheme. To make the parametrization easier, a common practice is
to chose the same parameters for the same functional groups, which become atom types in a FF
formulation. The applicability of a FF are limited to the group of molecules for which the set
of parameters are available. Furthermore, in standard force fields it is not possible to break and
form chemical bonds. For these reasons, despite their significantly lower computational cost, MM
approaches are less flexible and transferable than ab initio methods.

As concerned the level of accuracy, the most delicate term to calculate in eq. (1.22) are the non-
bonded interactions. In particular, traditional force field represent the electrostatic potential in
terms of fixed partial charges model, which, however, neglects the polarization. To tackle this
issue, one can rely to hybrid quantum mechanics and molecular mechanics (QM/MM) approaches,
which partition the total system into a classical MM region and a electronically important region
treated at ab initio level. Instead, for a pure MM treatment, a great progress has been made in
the recent years with the development of the so-called polarizable force fields. In this respect, the
polarizable force field AMOEBA4, which we employed in this thesis (see chapter 5), is largely
used in biomolecular simulations. The AMOEBA model – atomic multipole optimized energetics
for biomolecular applications – was introduced in 2002 [33] and has been recently developed for
proteins [34] and nucleic acids [35]. In the AMOEBA model the short-ranged valence interactions
of eq. (1.22) are given by:

4A detailed description of the energy terms of the AMOEBA force field can be found in reference [32].
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Ubond = Kb(b− b0)
2

[
1− 2.55(b− b0)− 3.793125(b− b0)

2

]

Uangle = Kθ(θ − θ0)
2

[
1− 0.014(θ − θ0) + 5.6× 10−5(θ − θ0)

2

−7.0× 10−7(θ − θ0)
3 + 2.2× 10−8(θ − θ0)

4

]

Ubθ = Kbθ[(b− b0) + (b′ − b′0)](θ − θ0) Uoop = Kχχ
2

Utorsion =

N∑
n

Knϕ

[
1 + cos(nϕ± phase)

]

(1.23)

The bond and angle energy terms differ from the traditional force fields version by including anhar-
monic contributions via polynomials of order > 2. The torsion energy term is modeled as Fourier
series up to N -fold, e.g. N = 3 for proteins and nucleic acids. The van der Walls term is de-
scribed by the Halgren’s buffered 14-7 function [36], instead of the traditional Lennard-Jones 12-6
function:

UvdW(ij) = εij

(
1 + δ

ρij + δ

)7

+

(
1 + γ

ρ7ij + γ
− 2

)
(1.24)

where the εij parameter is the well depth and ρij = (rij/r
0
ij) with rij and r0ij being the i-j sep-

aration and i-j minimum energy distance. The electrostatic energy term includes both permanent
and induced multipoles contributions:

Uele = Uperm
ele + U ind

ele (1.25)

Uperm
ele is generated from interaction between atomic multipoles. The charge distribution is mod-

eled by placing on each atomic center a point monopole (partial charge), a dipole vector and a
quadrupole tensor. U ind

ele is the potential energy term due to dipole-induced interactions. The in-
duced dipole of each atom is calculated as the product of its atomic polarizability and the external
electrostatic field generated by the permanent multipoles and the induced dipoles of all the other
atoms.

1.4 Classical treatment of nuclei

A simple approximation to the dynamics of the nuclei is via classical mechanics. This is the stan-
dard approach used in ab initio molecular dynamics (AIMD), where the electronic structure is
calculated via quantum mechanical approaches but the nuclei are treated as classical particles at
the ground-state electronic surface.
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1.4.1 Classical dynamics

From the Born-Oppenheimer approximation, it is possible to the derive classical molecular dy-
namics by considering the nuclei as point masses. We start from the Schrödinger equation for the
nuclear degrees of freedom eq. (1.9) and derive classical dynamics of the nuclei as per reference
[17]. The nuclear wavefunction can be rewritten in "polar" representation:

χnuc(R, t) = A(R, t)e
i
ℏS(R,t) (1.26)

in which A(R, t) and S(R, t) are respectively the amplitude factor and phase function and are
considered to be real with A(R, t) ≥ 0. In particular the function S(R, t) corresponds to the
action. By substitution of eq. (1.26) into eq. (1.9), we obtain:

[
− ℏ2

2

M∑
a=1

1

ma
∇2

a + εel(R)

]
A(R, t)e

i
ℏS(R,t) = iℏ

∂

∂t
A(R, t)e

i
ℏS(R,t) (1.27)

After separating the real and imaginary part of χnuc, we obtain the following equations of motion
for the nuclei:

∂S
∂t

+
M∑
a=1

1

2ma
(∇aS)2 + εel = ℏ2

M∑
a=1

1

2ma

∇2
aA
A

(1.28)

∂A
∂t

+
M∑
a=1

1

ma
(∇aA)(∇aS) +

M∑
a=1

1

2ma
A(∇2

aS) = 0 (1.29)

which are re-written exactly in terms of the real quantities S and A instead of Reχnuc and Imχnuc.
Eq. (1.29) can be rewritten by multiplying by 2A from the left:

∂A2

∂t
+

M∑
a=1

1

ma
∇a(A2∇aS) = 0 (1.30)

By defining the nuclear probability density ρ as ρ = |χnuc|2 = A2 and the associated current
density as Ja = A2∇aS, the following continuity equation is obtained:

∂ρ

∂t
+

M∑
a=1

∇aJa = 0 (1.31)

which is independent of ℏ and ensures at each point the conservation of the particle probability
density of the nuclei, |χnuc|2, in the presence of a flux. For the purposes of the discussion, we are
more interested to the relation for the phase S, eq. (1.28), whose term on the right side depends
explicitly on ℏ and vanished in the classical limit ℏ → 0:

∂S
∂t

+

M∑
a=1

1

2ma
(∇aS)2 + εel = 0 (1.32)
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The above expression actually corresponds to the Hamilton-Jacobi equation:

∂S
∂t

+H(Ra,∇aS) = 0 (1.33)

with H(Ra,∇aS) being the classical Hamilton function. By defining Pa the nuclear conjugate
momenta of nuclear positions Ra:

Pa ≡ ∇aS (1.34)

the classical Hamiltonian can we written as:

H(R,P) = T (P) + V (R) (1.35)

in which T (P) is the nuclear kinetic energy T (P) =
∑M

a=1
1

2ma
P2

a and V (R) is the effective
potentialV (R) = εel(R) acting on the nuclei. The classical total energy conservation (dEtot/dt =

0 ) reads as:

∂S
∂t

= −T (P)− εel(R) = −Etot = const (1.36)

The Newtonian equations of motion for a nucleus a, Ṗa = −∇aV (Ra), can be written as:

maR̈a = −∇aεel(Ra(t)) (1.37)

The classical motion of the nuclei is driven by the effective potential εel(R), which corresponds
to the Born-Oppenheimer potential energy surface defined in eq. (1.7). The above equation can be
implemented in a simulation, giving the so-called Born-Oppenheimer molecular dynamics scheme.

1.4.2 Static and dynamical properties

From a molecular dynamics simulation it is possible to derive many properties of the system, in-
cluding both static, i.e. time-independent, and dynamical, i.e. time-dependent, ones. To do so, a
statistical mechanics approach is needed. Let us consider, for simplicity, a classical system of M
fixed number of particles in one-dimensional case with positions x = {xi} and conjugate momenta
p = {pi}. The total energy is given by the classical Hamiltonian H(x, p).

H(x, p) =

M∑
i=1

p2i
2mi

+ V (x) (1.38)

with mi being the mass of the i-esim particle.

Static properties Suppose we want to describe the thermodynamic equilibrium of the classical
system defined by the Hamiltonian of eq. (1.38). At the thermal equilibrium the probability den-
sity is stationary. In the canonical ensemble (NVT), the thermal equilibrium will be given by the
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following Boltzmann distribution:

ρcl(x, p) =
e−βH(x,p)∑

i e
−βEi

=
e−βH(x,p)

Zcl
(1.39)

where β is the inverse of the thermal energy, β = 1/kBT , and Ei is the total energy of the mi-
crostate i. The denominator corresponds to the classical partition function of the system, which,
in the continuous case, is rewritten as the phase space integral:

Zcl =

∫
dx dp e−βH(x,p) (1.40)

Let A be the observable associated to the static property that we are interested in. An estimation
of property A can be evaluated through its thermal average via integration over a sufficiently large
number of points weighted according to the Boltzmann distribution:

⟨A⟩cl =
∫
dx dp ρcl(x, p)A(x, p) (1.41)

Time-dependent properties The description of dynamical phenomena requires a more difficult
procedure due to the time-dependency of the process involved. Time-correlation functions (TCF)
represent a tool to evaluate the dynamical properties of a system such as vibrational spectra and
transport coefficients. Given two arbitrary observables A and B within a classical dynamic, their
associated time correlation function CAB(t) is defined as:

CAB(t) = ⟨A(0)B(t)⟩ =
∫
dx dp ρclA(x, p)B(xt, pt) (1.42)

TCF are real and even functions in time, therefore they satisfy:

CAB(t) = ⟨A(0)B(t)⟩ = ⟨A(t)B(0)⟩ CAB(t) = CAB(−t) (1.43)

In the case A = B, the time correlation function CAA(t) is said an auto-correlation function. The
direct calculation of TFC from eq. (1.42) is not computationally efficient since it requires to run
several trajectories from different configurations sampled from the density function ρcl. Generally
MD simulations rely on the ergodicity hypothesis, so that a single trajectory can be employed for
both sampling the initial distribution and to compute the correlations. Along a single trajectory,
the time correlation function for A and B can be calculated with:

CAB(τ) = lim
T→∞

1

T

∫ T

0
dt A(xt)B(xt+τ ) (1.44)

with T being the total time length of the simulation.

Wiener–Khintchine theorem Let us consider the power spectrum or spectral density, Sxx(ω),
of a random time series x(t). Sxx(ω) is a measure of the power signal over frequency and it is
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defines as:

Sxx(ω) = lim
T→∞

1

T
|x̃(ω)|2 (1.45)

in which x̃(ω) is the Fourier transform of the process x(t):

x̃(ω) =

∫ +∞

−∞
dt e−iωtx(t) (1.46)

The Wiener–Khintchine theorem makes the connection between the spectral density Sxx(ω) and
the autocorrelation function of the associated process, Cxx(t):

Sxx(ω) =

∫ +∞

−∞
dt e−iωtCxx(t) (1.47)

i.e. the autocorrelation function of x(t) is the inverse Fourier transform of the spectral density.
This is an import result allowing to compute the power spectrum for a specific process starting
from its autocorrelation function.

1.4.3 Harmonic vs anharmonic picture

The traditional approach to study molecular vibrations and lattice dynamics is via the harmonic
approximation. Firstly, critical points of the PES are identified through geometry optimization
algorithms. Once identified the interested critical point, for example a local minimum, the Hessian
∂2E/∂xi∂xj |0 is computed5, which enters in a Taylor expansion of the potential at the second
order of the displacements. Therefore, in the harmonic approximation only the curvature of the
PES at the critical points is required. The harmonic eigenvectors and frequencies can be obtained
by diagonalization of the Hessian, which for an equilibrium geometry we label as Heq.

WHeqW
T = Λ (1.48)

W is the matrix of change of basis with dimension (N × N ) with N being the n.o. degrees of
freedom. Its columns wi with i = 1, ..., N constitute the frequency eigenvectors.

The matrix W can be used for the normal modes coordinate transformation:

x = Wq (1.49)

in which x and q are respectively the Cartesian and normal modes coordinates. The normal mode
eigenfunctions constitute a complete basis that can be used to described the different vibrational
motion of a molecular system. We will use this representation in semiclassical spectroscopic cal-
culations (see section 2.5.3). Λ is a diagonal matrix containing the eigenvalues λi, which are the
square of the harmonic vibrational frequency for the i-mode, λi = ω2

i .

However, real potentials are anharmonic and this approximation is often too crude, completely ne-
5We remind that while using DFT methods, we do not dispose of an analytical PES.
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(I) (II)

Harmonic

Anharmonic

Figure 1.3: (I) Schematic representation of harmonic vs anharmonic potential of a diatomic
molecule. Only the ground energy level is represented. (II) Infrared adsorption spectra show-
ing O–H stretching adsorption bands of (a) uncomplexed phenol in C2Cl4, (b) the weak hydrogen
bond of HOD in D2O, (c) neat H2O, (d) the medium strong hydrogen bond of PMME-H, (e) acetic
acid dimer (CD3-COOH)2 and (f) the O-D stretching band of acetic acid dimer (CD3-COOD)2.
Reproduction from ref [1].

glecting the coupling between the different modes and dynamical effects. Already for a diatomic
molecule, harmonic approximation can completely fails (fig. 1.3-I) and for more complex sys-
tems is often inadequate. For example all the phenomena, in which the frequencies manifest a
temperature-dependency such as diffusion, phase transitions and thermal expansion of crystals,
cannot be described in terms of harmonic approximation. In particular, in the presence of hydro-
gen bonds the vibrational spectra are significantly affected (fig. 1.3-II). The adsorption band of the
stretching of the donor group, for example a OH group, ν(OH) presents respect to the "free" case6

a red-shift and very often a spectral broadening and increased intensity.

To overcome the drawbacks of the harmonic approximation and get a more realistic picture, an-
harmonic contributions can be included via molecular dynamics simulations. Using the definition
of eq. (1.47), one can compute the power spectrum from a molecular dynamics simulation as the
Fourier transform of the velocity-velocity autocorrelation function Cvv(τ):

I(ω) =

∫ +∞

−∞
dτ e−iωτCvv(τ) (1.50)

From eq. (1.50) one can extract the relevant frequencies of the system at each temperature. The
6In the absence of the hydrogen bond.
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above equation can be used to calculate the vibrational spectra, but with only the inclusion of
anharmonicity and temperature. In the next chapter, we will discuss the methods that overcome the
classical picture.
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CHAPTER 2

FROM QUANTUM TO SEMICLASSICAL AND BATH

APPROACHES

The present chapter outlines the simulation techniques used in this thesis and the formalism and
approximations on which they are based. The presented methods rely on the Born-Oppenheimer
approximation, as illustrated in the previous chapter, with a treatment of the electronic degrees of
freedom either ab initio or by using fitted potential energy surfaces or force fields. These theories
aim at providing an adequate quantum description of the thermodynamics and dynamics of various
molecular systems, thus going beyond the classical approximation for the motion of the nuclei.
At the beginning of the chapter, a short introduction of the theoretical framework around which
these methods are developed is given. Next, the Feynman’s path integral interpretation of quantum
mechanics is presented along with the derivation of path integral molecular dynamics (PIMD)
method. The third part of the chapter discusses the semiclassical approximation of Feynman’s
quantum propagator till the most recent developments of semiclassical initial value representation
(SCIVR) theory applied to vibrational spectroscopy, followed by the quasi-classical approximation.
Lastly, the quantum thermal bath (QTB) method, based on the Langevin equation of motion, is
examined.

2.1 Quantum time evolution propagator

Let us recall the TDSE for the nuclei (eq. (1.9)). For simplicity sake, we rewrite this equation
by considering just a particle with atomic mass in one dimension. The generalization to higher
dimensions is straightforward. To facilitate the mathematical derivations discussed in this chapter,

This document is inspired by the following sources.
Mark Tuckerman Statistical mechanics: theory and molecular simulation (2010) [37].
Riccardo Conte and Michele Ceotto Semiclassical Molecular Dynamics for Spectroscopic Calculations (2020) [38].
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we use the Dirac notation instead of wavefunctions. We indicate with |ψ(t)⟩ the state vector that
describes the quantum state of the particle. The nuclear TDSE is rewritten as:

Ĥ |ψ(t)⟩ = iℏ
∂

∂t
|ψ(t)⟩ (2.1)

where the Hamiltonian is Ĥ = p̂2/2m + V (x̂) with m the mass of particle and p̂ and x̂ the
momentum and position operator having commutation rule relationship [p̂, x̂] = iℏ. The above
equation has formal solution:

|ψ(t)⟩ = e−
i
ℏ Ĥ t|ψ(0)⟩ (2.2)

The operator e−
i
ℏ Ĥ t is unitary and describes the time evolution of the particle starting from a initial

state |ψ(0)⟩ ending to a final state |ψ(t)⟩. It is known as the quantum propagator, Û(t):

Û(t) = e−
i
ℏ Ĥ t (2.3)

It is useful to represent the quantum propagation in the coordinates basis via:

ψ(x′, t) = ⟨x′|ψ(t)⟩ = ⟨x′|e−
i
ℏ Ĥ t|ψ(0)⟩ (2.4)

By inserting the identity
∫
dx |x⟩⟨x| = I in eq. (2.4), we obtain:

⟨x′|e−
i
ℏ Ĥ t|ψ(0)⟩ =

∫
dx ⟨x′|e−

i
ℏ Ĥ t|x⟩⟨x|ψ(0)⟩ (2.5)

The quantity:

⟨x′|e−
i
ℏ Ĥ t|x⟩ ≡ U(x′, x, t) (2.6)

is the probability amplitude for the particle to propagate from x to x′ in a time t, i.e. the coordinate-
space matrix elements of the quantum propagator, U(x′, x, t).

2.2 Density matrix

The conventional formulation of quantum mechanics in terms of wavefunctions is restricted to
"pure states", i.e. quantum systems defined by a single state vector |ψ⟩. To provide an ensemble
representation in statistical mechanics, we introduce the density matrix operator formalism, which
describes a statistical mixture of pure states, the so-called "mixed states". We introduce the density
operator ρ̂ for a pure state |ψ⟩ as:

ρ̂ = |ψ⟩⟨ψ| (2.7)

The expectation value of a physical observable described by the operator Â is given by:
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⟨Â⟩ = ⟨ψ|Â|ψ⟩ = Tr[ρ̂Â] (2.8)

with Tr[·] being the trace function. In a statistical ensemble a quantum state is expressed by an
ensemble of microstates |ψi⟩, which have probability pi. The density operator for a mixture of
pure states is:

ρ̂ =
∑
i

pi|ψi⟩⟨ψi| (2.9)

where
∑

i pi = 1. The expectation value of the Â operator is therefore:

⟨Â⟩ =
∑
i

pi⟨ψi|Â|ψi⟩ =
∑
i

piTr[ρ̂iÂ] (2.10)

The probability pi depends on the particular statistical mixture. Here, we refer to the canonical
ensemble (NVT) and use as notation ρ̂(β). The statistical probabilities pi are expressed in terms
of Boltzmann factor pi ∝ e−βEi .

ρ̂(β) =

∑
i e

−βEi |ψi⟩⟨ψi|∑
i e

−βEi
=

e−β Ĥ

Tr[e−β Ĥ]
(2.11)

where the trace of e−β Ĥ corresponds to the quantum partition function Z:

Z = Tr[e−β Ĥ] (2.12)

The thermal average of the observable A is the expectation value of the corresponding operator Â
in the density matrix:

⟨Â⟩ = Tr[ρ̂Â] =
1

Z
Tr[e−β ĤÂ] (2.13)

As we show for the time propagator operator in eq. (2.6), an equivalent representation for the
canonical density operator in the coordinate basis is:

ρ(x′, x, β) = ⟨x′|e−β Ĥ|x⟩ (2.14)

2.3 Molecular vibrational spectroscopy

Here, we focus on the transition between the energy levelsEn andEm characterized by a frequency
transition ωnm:

En − Em = ℏωnm (2.15)

The lowest possible energy level E0, i.e. the zero-point energy (ZPE) of the system, corresponds
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to the ground state. Let |χ⟩ =
∑

n cn|ψn⟩ a bound state wavepacket and En the eigenvalues of
the vibrational Hamiltonian defining the system. The vibrational power spectrum I(E), i.e. the
vibrational density of states (VDOS) at energy E, is given by:

I(E) =
∑
n

|cn|2δ(E − En) (2.16)

in which δ(E − En) is a Dirac function peaked at (E − En). However, the calculation of the
spectrum via eq. (2.16) is not straightforward since the energy eigenvalues are not easy to be deter-
mined. In the case of high-dimensional systems the vibrational density of states can be very large
at low energies. Furthermore, the VDOS of crystals can display singularities. One way to calculate
I(E) by including anharmonicity and quantum effects is from trajectory-based methods. Indeed,
it is possible to demonstrate that eq. (2.16) is equivalent to the Fourier transform of the survival
amplitude of the reference state |χ⟩:

I(E) =
1

2πℏ

∫ +∞

−∞
dt ⟨χ|χ(t)⟩e

i
ℏEt

=
1

2πℏ

∫ +∞

−∞
dt ⟨χ|e−

i
ℏ Ĥ t|χ⟩e

i
ℏEt

=
1

2πℏ

∫ +∞

−∞
dt

∑
m,n

c∗mcn⟨ψm|ψn⟩e
i
ℏ (E−En)t

=
∑
m,n

δmnδ(E − En)

=
∑
n

|cn|2δ(E − En)

(2.17)

By using the first relation of the above equation is possible to evaluate numerically the power spec-
trum along several trajectories, which will be characterized by peaks located at the eigenenergies
of the system. The power spectrum contains the information from all the vibrational eigenvalues.
The information that is obtained from the power spectrum cannot be straightforwardly compared
to experimental spectra. Indeed, each technique is characterized by a specific cross section, and
the corresponding matrix elements have distinct expression. For example, in the case of an IR
transition, the intensities Iabs(E) are given by:

Iabs(E) ∝ |⟨n|µ̂|m⟩|2 (2.18)

where µ̂ is the dipole moment operator for the IR transition from vibrational state n to m.

2.4 Feynman path integral formalism

Inspired by the work of P.A.M. Dirac [39], Richard Feynman introduced in 1948 a reformulation
of quantum mechanics based on path integrals [40], later formalized in the book written with his
former student Al. Hibbs in 1965 [41]. The underlying idea of path integrals (PI) is to incorpo-
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rate the principle of least action of classical mechanics into quantum mechanics by recasting the
quantum propagation as a sum over all possible paths that a particle can take between two points
weighted by their respective action. In this section, the different interpretations of Feynman for-
malism are discussed. The so-called real-time representation gives the path integral version of the
quantum propagator. In the continous-time limit, it is possible to derive a functional integral form,
in which the weight of each path over the action appears. Finally, the imaginary-time representation
introduces a link between statistical physics and the path integral, which can then be numerically
implemented via techniques such as path integral molecular dynamics.

2.4.1 Real-time path integral

Let us recall the matrix elements of the quantum propagator (see eq. (2.6)) for a quantum particle
in one-dimension evolving from the initial position x to the final position x′ in an elapsed time t.

U(x′, x, t) = ⟨x′|e−
i
ℏ Ĥ t|x⟩ (2.19)

The above matrix elements can be treated by dividing the total path of time length t into infinites-
imal intervals τ = t/n. The final expression for the path integral of the quantum propagator is the
following. The details of the mathematical derivation are reported in appendix, section A.1.

⟨x′|e−
i
ℏ Ĥ t|x⟩ = lim

n→∞

(
m

2πiℏτ

)n/2 ∫
dx1 · · · dxn−1 exp

{
i

ℏ
τ
n−1∑
j=0

[
m

2

(
xj+1 − xj

τ

)2

−U(xj)

]}
(2.20)

where the U(x, x′, t) matrix is evaluated as a sum over all the possible paths leading from the
starting point x = x0 to the final point x′ = xn.

Figure 2.1: Representation of real-time path integral. Reproduction from ref. [37].

2.4.2 Functional integral representation

An elegant way to represent eq. (2.20) is via a functional integral, which originates from the follow-
ing considerations. In the limit n→ ∞, which implies τ → 0, the time interval between the points
xj and xj+1 become infinitely small, while the number of points becomes infinite. The xj points
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represent therefore a complete set of points defining the continuous function x(s), that satisfies the
boundary conditions:

x(0) = x

x(t) = x′
(2.21)

Let us now focus on the exponential argument of eq. (2.20). In the limit τ → 0, we can assume:

lim
τ→0

xj+1 − xj
τ

=
dx

ds
= ẋ(s) (2.22)

The whole argument of the exponential can now be considered as a Riemann sum of the integral:

lim
τ→0

τ
n−1∑
j=0

[
m

2

(
xj+1 − xj

τ

)2

− U(xj)

]
=

∫ t

0

[
1

2
mẋ2(s)− U(x(s))

]
ds (2.23)

where the integrand term appears as a difference between the kinetic and potential energy and
corresponds, therefore, to the classical Lagrangian. The integral of the Lagrangian along the path
x(s) is, by definition, the action S[x],

S[x] =
∫ t

0

[
1

2
mẋ2(s)− U(x(s))

]
ds (2.24)

By introducing the functional D[x] as the following:

D[x] = lim
n→∞

(
m

2πiℏτ

)n/2

dx1 · · · dxn−1 (2.25)

we can rewrite eq. (2.20) in the more compact way:

⟨x′|e−
i
ℏ Ĥ t|x⟩ =

∫
D[x] e

i
ℏS[x] (2.26)

Figure 2.2: Representation of path integral in the continous-time limit. Reproduced from ref. [37].

which corresponds to the final functional form of the path integral. Here, all the possible paths are
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formally weighted by their action by a phase factor e
i
ℏS[x]. However, the numerical resolution of

the integral in eq. (2.26) is prohibitive, as the exponential scaling of the Schrödinger equation, due
to the so-called sign problem. This arises by the presence of a strongly oscillating complex-valued
action, that prevents to define a probability density so that the standard statistical methods cannot
be applied. To overcome this problem, it is convenient to convert the PI formalism from real-time
to imaginary-time, in which the phase factor is defined real positive, allowing a statistical treatment
and therefore a numerical implementation.

2.4.3 Imaginary-time path integral

As anticipated in the previous section, the imaginary-time approach is a handful way to represent
path integrals in statistical mechanics, allowing the incorporation of Feynman formalism in molec-
ular simulations via Monte Carlo techniques or molecular dynamics. The tool required for this
representation is the density matrix operator, which provides a link between quantum and statisti-
cal mechanics. Firstly, it must be noted that the canonical density matrix operator and the quantum
propagator are strictly related. It is convenient to use the unnormalized canonical density matrix
operator of eq. (2.11) by redefining ρ̂(β) = e−β Ĥ. Now, the relationship between ρ̂(β) and the
time propagator defined in eq. (2.3) can be derived through the Wick rotation:

ρ̂(β) = Û(−iβℏ) Û(t) = ρ̂

(
i

ℏ
t

)
(2.27)

which means that the thermalization of the system at an inverse temperature β = it/ℏ is equivalent
to the evolution of the system in the imaginary time t = −iβℏ. Using the above relationship for
eq. (2.20), the matrix elements of ρ(x′, x, β) are given by:

⟨x′|e−β Ĥ|x⟩ = lim
n→∞

(
m

2πβnℏ2

)n/2 ∫
dx1 · · · dxn−1 exp

{
−

n−1∑
j=0

[
mn

2βℏ2
(xj+1−xj)2+

β

n
U(xj)

]}
(2.28)

Figure 2.3: Imaginary-time vs real-time path-integral. Reproduction from ref. [37].
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From eq. (2.28), the canonical partition function Z as per definition of eq. (2.12) can be derived.
The evaluation of the trace in coordinate-space gives:

Z =

∫
dx ⟨x|e−β Ĥ|x⟩ = ρ(x, x, β) (2.29)

To solve eq. (2.29), the integration of eq. (2.28) has to be performed over the diagonal elements.
The resulting integration is over closed paths (

∮
) which begins and ends a the same point x′ = x.

The partition function is therefore given by:

Z = lim
n→∞

(
mn

2πβℏ2

)n/2 ∮
dx0 · · · dxn−1 exp

{
−

n−1∑
j=0

[
mn

2βℏ2
(xj+1−xj)2+

β

n
U(xj)

]}
(2.30)

The above equation is not straightforward to use. In the following the PIMD method, which is a
combination of molecular dynamics and path-integral formalism, is discussed.

Figure 2.4: Represention for a discrete path sum for the canonical partition function. Reproduced
from ref. [37].

Path Integral Molecular Dynamics In this tecnique, molecular dynamics is used as a tool to
sample the canonical quantum partition function. The first PIMD simulations conducted in the ’80s
[42–44] employed empirical potential, later on, in 1996, Marx and Parinello opened the path to ab
initio PIMD [12]. Different PIMD-based techniques have been developed during the years, allow-
ing also an approximate description of quantum dynamical properties. We will focus our attention
on the standard PIMD, which represents the reference method for describing NQEs. The idea be-
hind PIMD is to link the quantum partition function to a classical one, by rephrasing eq. (2.30).
Firstly, a finite description is adopted so that the limit n → ∞ is removed for the purposes of nu-
merical implementation. Then, it is convenient to insert n times Gaussian integrals over fictitious
momenta pj as conjugates of the positions xj . By adopting this strategy, the final expression for
the quantum partition function is:
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Zn =

∫
dp0 · · · dpn−1

∮
dx0 · · · dxn−1 exp

{
− β

[
n−1∑
j=0

p2j
2m̃

+ Ueff

]}
(2.31)

where we have introduced the following parameters. The frequency ωn corresponds to the "chain"
frequency of a cyclic polymer formed by n particles, called beads (replicas). It is defined as:

ωn =

√
n

βℏ
(2.32)

Ueff is the effective potential experimented by the polymer:

Ueff =
n−1∑
j=0

1

n
U(xj) +

1

2
mω2

n(xj+1 − xj)
2 (2.33)

The constant m̃ introduced by the Gaussian integrals is a fictitious mass given by m̃ = mn/(2πℏ)2

but it can be assigned as we like since it does not affect the equilibrium averages. Now, the quan-
tum partition function of eq. (2.31) looks like the classical partition function of a n-particle system
having a potential Ueff . The latter assumption is known as the classical isomorphism. The ficti-
tious classical system is a cyclic polymer of n replicas interacting via harmonic springs with force
constants mωn, and trapped in a potential U(x)/n (see fig. 2.5).

Figure 2.5: Schematic representation of cyclic ring polymer chain having n = 8 beads described by
the partition function of eq. (2.31). Each bead is represented by the blue spheres and it is connected
to its nearest neighbors via harmonic springs. Reproduction from reference [45].

By defining:

Ĥeff =
n−1∑
j=0

p2j
2m̃

+ Ueff (2.34)

in eq. (2.31) as a classical-like effective Hamiltonian Ĥeff , we can derive a molecular dynamics
scheme using the following Hamilton equations:
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ẋj =
∂Ĥeff

∂pj
=
pj
m̃

ṗj = −∂Ĥeff

∂xj
= −mω2

n(2xj − xj+1 − xj−1)−
1

n

∂U

∂xj

(2.35)

In the limit of infinite n, eq. (2.31) yields the exact quantum partition function, while when n = 1,
the classical regime is recovered. For a finite number of n replicas, PIMD converges to the ex-
act expectation values when n ∼ βℏωmax, with ωmax being the frequency of the fastest normal
mode, making PIMD a computationally expensive technique. Thus, some accelerating approaches
reducing the number of replicas have been developed [46, 47]. Once n is large enough, the static
averages at thermodynamic equilibrium are accurately computed. In contrast, the evaluation of
dynamical properties, such as time-correlation functions, cannot be carried out exactly. Several
path-integral based approximations, such as ring polymer molecular dynamics [48] and centroid
molecular dynamics [49], have been developed. These methods have been satisfactorily applied to
low-frequency scale related phenomena such as diffusion and transport properties [50]. However,
when one wants to describe a high-frequency motion as molecular vibrations, these methods suf-
fer from artificial resonances between the chain modes of the polymer and the vibrational modes
coming from the system, leading to spurious frequencies [51, 52], a problem that can be eventually
treated by the introduction of a Langevin thermostat attached to the internal modes of the polymer
[53]. Although some significant improvements, these methods present still some limitations for
vibrational spectroscopy.

2.5 Semiclassical vibrational spectroscopy

The exact quantum dynamics given by the TDSE and the Feynman’s quantum propagator of
eq. (2.26) is impossible to evaluate numerically, making the computation of time-dependent prop-
erties including NQEs rather challenging, especially in the case of molecular vibrations, for which
the above mentioned method based on path integrals in imaginary-time (section 2.4.3) is not accu-
rate. Quantum effects such as zero-point energy motion, resonances, overtones and combination
bands are fundamental in vibrational spectroscopy and require an adequate quantum description.
An answer to this challenge can be given by semiclassical methods, which are constructed from a
superposition of classical trajectories with special initial conditions. In such a way, semiclassical
(SC) methods provide an approximate description (albeit rather good in many cases) of the full
quantum dynamics. From the first formulation of SC propagator by van Vleck, which can be
directly derived by Feynman’s path integral expression for the quantum propagator, semiclassi-
cal techniques applied to vibrational spectroscopy have been widely developed. In this section,
the most recent improvements of SC spectroscopy are discussed, along with the quasi-classical
trajectory approximation.
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2.5.1 Semiclassical approximation to path integrals

One way to derive the semiclassical approximation is from Feyman’s path integral formulation of
the quantum propagator (eqs. (2.20) and (2.26)). In the classical limit ℏ → 0, the exponential factor
e

i
ℏS[x] oscillates rapidly, thus the path integral will be dominated by the stationary phase paths, i.e.

the critical points for which:

δS
δxcl(s)

= 0 (2.36)

where the critical points are labeled xcl since they satisfy the Hamilton principle of least action and
are, therefore, classical paths as depited in fig. 2.6. The semiclassical approximation arises from
accounting for these classical paths as the main contribution to the path integral.

Figure 2.6: Representative paths (classical vs generic) of Feynman’s path integral quantum propa-
gator. Reproduction from ref. [38]. In the graph q0 and q(t) are respectively the initial and final
space-points.

The mathematical tool used to derive the semiclassical propagator is the stationary phase approxi-
mation (SPA) [54], which for the one-dimensional case reads as:

∫
dx eiλf(x) =

∑
{x̄j |f ′(x̄j)=0}

√
2πi

λf ′′(x̄j)
eiλf(x̄j) (2.37)

with f(x) being an arbitrary oscillating function that is stationary for the critical points x̄j . The
generalization of SPA to the multi-dimensional case is obtained via substitution of f ′′(x) by the
determinant of the second derivatives matrix of f with respect to the positions, i.e. the Hessian.
Further details are given in appendix, section A.2.

The applications of the SPA to the path integral is presented in the following. As anticipated before,
in the limit ℏ → 0, the PI integral is dominated by the stationary phase points xcl, which correspond
to the classical paths. A generic quantum path x(s) can be expressed as:

x(s) = xcl(s) + ξ(s) (2.38)
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Figure 2.7: Example of a complex oscillating exponential f(x) = exp(iλx4)with λ = 10−1. Only
a small region around the critical point x = 0 contributes to the integral.

where xcl(s) is one of the classical paths and ξ(s) the fluctuations around it. The expansion of the
action around xcl at the second order in ξ is given by:

S[x] = S[xcl] +
1

2
ξTHS ξ (2.39)

where HS = [∂Scl/∂xi∂xj ] is the Hessian matrix of the classical action. In the above equation we
have used a functional representation of the classical action: the classical action is a functional of
the full classical path xcl. For the purpose of the following derivations, it is convenient to replace
the functional S[xcl] with Scl(xt, x0, t), where the classical action associated to the classical path
xcl is expressed as a function of the initial and final position of the classical path, x0 and xt points,
respectively.1 The semiclassical approximation for the PI quantum propagator is therefore given
by:

⟨xt|e−
i
ℏ Ĥ t|x0⟩ ∝

∑
cl

exp

[
i

ℏ

(
Scl(xt, x0, t) +

1

2
ξTHSξ

)]
(2.40)

i.e. by a sum over all the possible classical paths connecting x0 to xt points in a time t with the
inclusion of fluctuations around the classical action of each path up to the second order. The ana-
lytical resolution of eq. (2.40) leads to the van Vleck (VV) expression for the quantum propagator
(1928) [55], which for one degree of freedom is:

UVV(xt, x0, t) =
∑
cl

{
− 1

2πiℏ
× det

(
∂2Scl(xt, x0, t)

∂xt∂x0

)}1/2

exp

[
i

ℏ
Scl(xt, x0, t)

]
(2.41)

where the zero-th order term of the Taylor expansion of the action gives the oscillatory contribution
e

i
ℏScl(xt,x0,t), while the second order term, known as the van Vleck determinant, constitutes the pre-

1A different notation for the time evolution of a quantum particle is used with respect to section 2.4. The initial space
point is labeled x0 at a initial time t0 = 0, while the final space point is labeled xt at final time t.
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exponential factor describing the quantum fluctuations around the classical path. However, in the
VV semiclassical propagator the prefactor, being a square root of a quantity without a definite sign,
is, in general, complex and discontinuous. In order to preserve the continuity of the transformed
propagator for trajectories close to the classical path, Maslov and Fedoriuk introduced the extra
phase −1

2 iπνcl [56], in which ν is called Maslov index:

UVVG(xt, x0, t) =
∑
cl

{
− 1

2πiℏ
× det

(
∂2Scl(xt, x0, t)

∂xt∂x0

)}1/2

exp

[
i

ℏ
Scl(xt, x0, t)−

1

2
iπνcl

]
(2.42)

The above equation is known as the van Vleck-Gutzwiller (VVG) formulation of the semiclassical
propagator [57].

2.5.2 Initial value representation

It is possible to rewrite the van Vleck semiclassical propagator in terms of initial conditions by
using the relation ∂Scl(xt, x0, t)/∂x0 = −p0 in eq. (2.41):

UVV(xt, x0, t) =
∑
cl

{
1

2πiℏ
× det

(
∂xt
∂p0

)−1}1/2

exp

[
i

ℏ
Scl(xt, x0, t)

]
(2.43)

However, the above formulation has quite limited applications. This is due firstly by the fact that
when ∂x′/∂p0 → 0 the prefactor matrix becomes singular. Secondly, the search of all the possible
classical paths satisfying the double boundary problem x(0) = x0 ∧ x(t) = x′ is not trivial.
To tackle these problems a semiclassical initial value representation (IVR) approach to the SC
propagator was introduced by W.H. Miller in 1970 [15]. The idea behind the so-called SCIVR
theory is to change the variables in the propagator in such a way to specify, for a generic path around
the stationary one, the unique initial conditions (x0, p0) that define the actual classical path. This
can be done as it follows. We start with the time propagator operator expression Û(t) = e−

i
ℏ Ĥ t

and we insert two-times the identity
∫
dx |x⟩⟨x| = I, one for |x0⟩ and one for |xt⟩ vectors. Then,

the resulting propagator coordinate-matrix is substituted with the corresponding VV SC propagator
matrix of eq. (2.43):

e−
i
ℏ Ĥ t =

∫
dx0

∫
dxt |xt⟩⟨xt|e−

i
ℏ Ĥ t|x0⟩⟨x0|

≈
∫
dx0

∫
dxt |xt⟩ UVV(xt, x0, t) ⟨x0|

≈
∫
dx0

∑
cl

∫
dxt

{
1

2πiℏ
× det

(
∂xt
∂p0

)−1}1/2

e
i
ℏScl(xt,x0,t) |xt⟩⟨x0|

(2.44)
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Now, it is convenient to use the "IVR trick" [58, 59], which consists in a change of variable inte-
gration from xt to p0:

∑
cl

∫
dxt →

∫
dp0 det

(
∂xt
∂p0

)
(2.45)

The final expression for the VV propagator in the IVR representation is therefore:

e−
i
ℏ Ĥ t ≈

∫
dx0

∫
dp0

[
1

2πiℏ
× det

(
∂xt
∂p0

)]1/2
e

i
ℏSt |xt⟩⟨x0| (2.46)

In this way, the sum over all the possible classical paths is substituted with a phase space inte-
gral that can be numerically evaluated via a Monte Carlo integration. The SCIVR is therefore a
very powerful approach which has been implemented many times since its original formulation by
Miller. A quite popular version of SCIVR propagator is the one based on coherent states, a descrip-
tion firstly introduced in the work by Heller [60], from which Herman and Kluk drew inspiration
in the later years [61]. The coherent states |p′, x′⟩ having a Gaussian shape of width γ and centered
on (p′, x′) are chosen according to:

⟨x|p′, x′⟩ =
(
det(γ)

π

)1/4

exp

[
− 1

2
(x− x′)Tγ(x− x′) +

i

ℏ
p′T (x− x′)

]
(2.47)

The survival amplitude for a reference state |χ⟩ using the semiclassical propagator of eq. (2.46) on
the coherent states basis gives:

⟨χ|e−
i
ℏ Ĥ t|χ⟩ ≈

(
1

2πℏ

)∫∫
dx0dq0 Ct(p0, x0)e

− i
ℏSt(p0,x0)⟨χ|pt, xt⟩⟨p0, x0|χ⟩ (2.48)

where Ct(p0, x0) is the prefactor:

Ct(p0, x0) =

√∣∣∣∣12
(
∂xt
∂x0

+ γ−1
∂pt
∂p0

γ − iℏ
∂xt
∂p0

+
i

ℏ
γ−1

∂pt
∂x0

)∣∣∣∣ (2.49)

The partial derivatives ∂i/∂j represent the elements of the monodromy matrix Mij :

M =

∂pt/∂p0 ∂pt/∂x0

∂xt/∂p0 ∂xt/∂x0

 (2.50)

Mij , also called stability matrix, measures the sensitivity of the trajectory to the initial conditions.
Eqs. (2.48) to (2.50) represents the Herman and Kluk (HK) formulation of IVR propagator [61,
62], here reported for one degree of freedom for simplicity of sake. The survival amplitude can be
numerically evaluated via a phase space integration by Monte Carlo techniques upon sampling of
the initial conditions (x0, p0).
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2.5.3 Application to spectroscopy

For applications to vibrational spectroscopy it is necessary to extend the problem to N degrees of
freedom and work in normal modes coordinates, on which vibrational calculations at the harmonic
level are generally performed. As per notation compatible with the literature, the space coordi-
nates are labeled as qj , and the corresponding momenta pj . The phase space vectors q and p are
expressed:

q = (q1, q2, ..qN ) N = n.o.DOF (degrees of freedom)

p = (p1, p2, ..pN )
(2.51)

We recall that (see eq. (2.17)) the quantum power spectrum I(E) is given by the Fourier transform
of the survival amplitude of a generic reference state |χ⟩:

I(E) =
1

2πℏ

∫ +∞

−∞
dt ⟨χ|e−

i
ℏ Ĥ t|χ⟩e

i
ℏEt (2.52)

Herman-Kluk SCIVR By using the formulation of Herman and Kluk for the semiclassical prop-
agator (eq. (2.48)), the HK IVR formulation for the spectral density for N degrees of freedom is:

I(E) =

(
1

2πℏ

)∫ +∞

−∞
dte

i
ℏEt

(
1

2πℏ

)N ∫∫
dp0dq0 Ct(p0,q0)e

i
ℏSt(p0,q0)⟨χ|pt,qt⟩⟨p0,q0|χ⟩

(2.53)

Applications of the HK propagator have been limited to model systems as in references [62, 63].
The extension to molecular systems is limited due to the oscillating exponential in the integrand.
One method to overcome this issue is to insert a time-averaging (TA) filter.

Time-Averaging Filter A time-average of the type 1
T

∫ T
0 dt can be inserted in the phase-space

integrand of the HK semiclassical power spectrum eq. (2.53) as formulated by Kaledin and Miller
[64] (2003). The resulting spectral density is:

I(E) =

(
1

2πℏ

)N ∫∫
dp0dq0

1

2πℏT

∣∣∣∣ ∫ T

0
dt exp

{
i

ℏ

[
St(p0,q0) + Et+ ϕt

]}
⟨χ|pt,qt⟩

∣∣∣∣2
(2.54)

where ϕt = phase[Ct(p0,q0)]. In this way the convergence of the phase-space integrand is faster,
reducing the number of the required trajectories. However, the computational cost of TA-SCIVR
for molecular systems is still really high (a thousand of trajectories per degree of freedom), so that
the applications are restricted to small molecular systems, for which pre-existing computed PES
are available.

Multiple Coherent States SCIVR (MC-SCIVR) To overcome the issues with the TA-SCIVR,
Ceotto and coworkers introduced, in 2009, the multiple coherent states SCIVR tecnique [65], that
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replaces the Monte Carlo phase-space integration of eq. (2.54) with a sum over a few tailored tra-
jectories. This led to a significant reduction of the computational cost, opening the path towards ab
initio "on-the-fly" semiclassical spectroscopy in full dimensionality. A large variety of applications
have been studied with successful outcomes [66–77]. The MC-SCIVR expression for the power
spectrum reads:

I(E) =

(
1

2πℏ

)N 1

2πℏTntraj

ntraj∑
j=1

∣∣∣∣ ∫ T

0
dt exp

{
i

ℏ

[
St(p

(j)
0 ,q

(j)
0 )+Et+ϕ

(j)
t

]}
⟨χ(j)|p(j)

t ,q
(j)
t ⟩

∣∣∣∣2
(2.55)

where ntraj, the number of trajectories, is limited to carefully selected classical trajectories. This
approach derives from the pioneering work of De Leon and Heller [78] (1983), which proves that
accurate semiclassical results can be achieved even by means of a single trajectory if it is run at
the exact quantum energy [78]. The idea of MC-SCIVR is therefore to use trajectories that have
an energy nearby the correct quantum one, which, however, is unknown a priori. To this aim, the
initial conditions (q0,p0) are chosen according the following criteria [65, 79] .q0 = qeq

p0 = 2m
√

ℏω(n+ 1/2)
(2.56)

in which qeq is the equilibrium geometry and ω = (ω1, ω2, · · ·ωN ) are the harmonic eigenvalues
obtained via diagonalization of the Hessian matrix at qeq. In such a way, the trajectories are started
at the equilibrium position with a harmonic zero-point energy of n quantum excitation. When
adopting these initial conditions, it is possible to yield accurate results by means of a single trajec-
tory (ntraj = 1), as confirmed in the work of Gabas et al. [66], where single-trajectory MC-SCIVR
was employed to investigate the multiple conformers of neutral glycine. Another important feature
of eq. (2.55) is the nature of the reference state |χ⟩, which is chosen to enhance the signal of a se-
lected vibrational mode. For each trajectory the reference state used is a combination of coherent
states of the type :

|χ⟩ =
N∏
k=1

| p0,k, q0,k ⟩+ εk | − p0,k, q0,k ⟩ (2.57)

where index k refers to the k-th mode components of vector p0 and q0. The coefficient εk is
equal to ±1 depending on the desired spectroscopic signal. For example, if it is +1 for all the k-th
components, the spectroscopic signal enanched is the ZPE peak and even overtones. Instead, when
one of the k-th component is switched to −1, the signal enanched is the fundamental of the k-th
mode and the odd overtones [80].

Divide and Conquer SCIVR (DC-SCIVR) The development of a multiple coherent states ap-
proach has allowed ab initio semiclassical vibrational study of small size systems, like ammonia
[71], up to medium size systems, as glycine molecule [66]. However, the direct application of
this approach to systems with higher degrees of freedom is not fleasible due to the well-known
problem of the "curse of dimensionality". As the dimensionality of the degrees of freedom in-
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creases, it is more difficult to resolve the spectroscopic signal due to a decrease of the signal-to-
noise ratio. Furthermore, to a large number of degrees of freedom it corresponds also a increased
computational cost, which can be prohibitive via ab initio. These drawbacks have been tackled by
adopting a divide and conquer strategy, introduced by Ceotto and coworkers in 2017 [81], where
the high-dimensional system vibrational space is projected onto lower-dimensional subspaces. In
DC-SCIVR method the power spectrum I(E) is obtained as the composition of partial spectra
Ĩ(Ẽ) computed in a M -dimensional subspace of the full N -dimensional space. In the case of a
single-trajectory SC dynamics, the partial spectra Ĩ(Ẽ) are given by the following expression.

Ĩ(Ẽ) =

(
1

2πℏ

)M 1

2πℏT

∣∣∣∣ ∫ T

0
dt exp

{
i

ℏ

[
S̃t(p̃0, q̃0) + Ẽt+ ϕ̃t

]}
⟨χ|p̃t, q̃t⟩

∣∣∣∣2 (2.58)

where the projected quantities onto aM -dimensional subspace by a singular value decomposition,
are indicated with ∼ symbol. All the terms of Eq. (2.58) can be exactly projected from the full
dimensional space onto the subspace of interest with the exception of the the classical action S̃t

due to the fact that the potential is not generally separable. The potential energy, therefore, requires
the following ad hoc procedure.

VS(q̃
M
t ) = V

(
q̃M
t ;q

(N−M)
t

)
− V

(
q̃M
eq ;q

(N−M)
t

)
(2.59)

which is exact for separable-potentials and a good approximation for the non-separable ones.

Figure 2.8: Pictorial representation of the projection procedure. Reproduction from reference [81].

The computational cost of a DC-SCIVR calculation is significantly reduced with respect to MC-
SCIVR since the computation of the Hessian is made just with the information of the lower-
dimensional subspace M -dimensional, allowing to obtain semiclassical spectra for systems with
very large number of DOF.2 Remarkable applications include biomolecular systems [82–84] and
surface related phenomena [85, 86].

The most problematic part is the choice of the correctM -dimensional subspace. The subspaces are
chosen so that the most coupled modes belong to the same subspace. There are different criteria to
effectuate the partition of the vibrational space [87], among which we recall the "Hessian space-
decomposition method". In this method, firstly the time average of the Hessian matrix H̄ij along

2We can evaluate the computational cost with the number of degrees of freedom to the power of q. In the case of a
DC-SCIVR calculation, (K +M)q > Mq , where M is the dimension of the subset of the full dimensional space with
(K +M) dimension; q (q > 1) is the power at which the computational cost grows.
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the dynamics (of length nsteps) is computed in normal modes representation:

H̄ij =
1

nsteps

nsteps∑
k=1

|Hij |k (2.60)

in which i and j refer to the i-th and j-th mode. Secondly, the averaged coupling strength between
different modes is evaluated by the measure of the off-diagonals terms of H̄ij (i ̸= j) respect to a
fixed threshold parameter ϵ. The following considerations are adopted:

1. if H̄ij ≥ ϵ : i and j belong to the same subspace;

2. if H̄ij < ϵ : i and j do not belong to the same subspace;

3. if H̄ij < ϵ ∧ l ∃ | H̄il ≥ ϵ ∧ H̄jl ≥ ϵ : i, j and l belong to the same subspace.

The threshold ϵ is an arbitrary parameter and we cannot known a priori the best choice for it. There-
fore it is necessary to test different values of ϵ and the optimal choice is discriminated with respect
the quality of the spectroscopic signals and the subspace dimensionality suitable for numerical
convergence.

2.5.4 Quasi-classical approximation and the classical limit

In the quasi-classical trajectory (QCT) approach the initial conditions follow a quantization scheme
but the dynamics is treated classically. The idea is to give to each mode a precise vibrational energy
by running a classical trajectory at that energy, thus improving the results of the pure classical
picture. The initial conditions are quantized corresponding to eq. (2.56), i.e. with a harmonic
estimate of the specific quantum excitation. In this way the trajectory, which is highly energetic,
allows the exploration of a large portion of the PES so that anharmonic effects are accounted in
the spectra. However, only the classical vibrational frequencies can be calculated and no quantum
mechanical effects are included.

As in the classical case, the QCT spectra can be calculated via the Fourier transform of the velocity-
velocity autocorrelation function. For simplicity here a one-dimensional problem is considered
and as derived in reference [88]. By recalling the definition of time correlation functions calcu-
lated from a single classical trajectory (eq. (1.44)), the velocity-velocity autocorrelation function
is expressed as:

Cvv(τ) = ⟨v(t)v(t+ τ)⟩ = 1

T

∫ T

0
dt v(t)v(t+ τ) (2.61)

with T the total time of the simulation, which has to be sufficiently long. By substituting the above
definition into the relation for the power spectrum eq. (1.50), we obtain:

I(ω) =

∫ +∞

−∞
dτ e−iωτCvv(τ) =

1

T

∫ +∞

−∞
dτ

∫ T

0
dt e−iωτv(t)v(t+ τ) (2.62)

where the velocities v(t) and v(t+ τ) can be written as the inverse Fourier transform of ṽ(ω′) and
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ṽ(ω′′):3

v(t) =
1

2π

∫ +∞

−∞
dω′ eiω

′tṽ(ω′) v(t+ τ) =
1

2π

∫ +∞

−∞
dω′′ eiω

′′(t+τ)ṽ(ω′′) (2.63)

By inserting eq. (2.61) into eq. (2.62) and using the two above expressions, I(ω) yields:

I(ω) =
1

(2π)2T

∫ T

0
dt

∫ +∞

−∞
dω′ eiω

′tṽ(ω′)

∫ +∞

−∞
dω′′ eiω

′′tṽ(ω′′)

∫ +∞

−∞
dτ ei(ω

′′−ω)τ (2.64)

Therefore4,

I(ω) =
1

(2π)2T

∫ T

0
dt

∫ +∞

−∞
dω′ eiω

′t ṽ(ω′)

∫ +∞

−∞
dω′′ eiω

′′t ṽ(ω′′) 2πδ(ω′′ − ω)

=
1

2πT

∫ T

0
dt

∫ +∞

−∞
dω′ eiω

′t ṽ(ω′) eiωt ṽ(ω)

=
1

2πT

∫ +∞

−∞
dω′

∫ T

0
dt ei(ω

′+ω)t ṽ(ω′) ṽ(ω)

(2.66)

Now, taking the limit of T → +∞, the last term of eq. (2.66) can be rewritten as:

I(ω) = lim
T→+∞

1

2πT

∫ +∞

−∞
dω′

∫ +∞

0
dt ei(ω

′+ω)t ṽ(ω′) ṽ(ω) (2.67)

Taking advantage of the parity of the integrand in eq. (2.67), we rewrite:

I(ω) = lim
T→+∞

1

2πT

∫ +∞

−∞
dω′ 1

2

∫ +∞

−∞
dt ei(ω

′+ω)t ṽ(ω′)ṽ(ω)

= lim
T→+∞

1

2πT

∫ +∞

−∞
dω′ 1

2
ṽ(ω′) ṽ(ω) 2πδ(ω′ + ω)

= lim
T→+∞

1

2T

∫ +∞

−∞
dω′ 1

2
ṽ(ω′) ṽ(ω) δ(ω′ + ω)

(2.68)

The above integral is resolved in:

I(ω) =
1

2T
ṽ(ω)ṽ(−ω) (2.69)

3The convention used for the Fourier transform and its inverse is defined as the following.

f̃(ω) =

∫ +∞

−∞
dt f(t) e−iωt f(t) =

1

2π

∫ +∞

−∞
dω f̃(ω) eiωt

4The Dirac delta function is defined as the following.

δ(x′ − x) =
1

2π

∫ +∞

−∞
dt ei(x

′−x)t (2.65)
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Since v(t) is real, ṽ(−ω) = ṽ∗(ω). The final working formula for the quasi-classical vibrational
spectra is:

I(ω) =
1

2T
|ṽ(ω)|2 = 1

2T

∣∣∣∣ ∫ T

0
dt eiωtv(t)

∣∣∣∣2 (2.70)

2.6 Quantum baths

The purpose of this section is to briefly recall the QTB method, which can be employed to evaluate
both static and dynamical properties as an alternative to state-of-the-art PIMD methods. It com-
bines classical trajectory-based dynamics with an approximate quantum phase-space sampling.
The QTB uses a generalized Langevin equation, in which the quantum Bose-Einstein energy dis-
tribution is imposed instead of that given by the classical equipartition. This is realized by a con-
venient adjustment of the random and friction forces. The great advantage of this technique is
the low computational cost, which is comparable to standard Langevin molecular dynamics, thus,
much less than the cost of PIMD-based methods.

2.6.1 Classical Langevin thermostat

In 1908 Paul Langevin introduced a model for describing the Brownian motion [89], which is an
erratic motion of a "heavy" particle in a fluid composed of much "lighter" particles [90]. The
standard Langevin equation of motion for a one-dimensional particle of mass m reads:

mẍ = −dV
dx

−mγẋ+R(t) (2.71)

where −dV/dx are the inter-atomic forces due to the conservative potential V (x), γ is the friction
coefficient and R(t) is the Langevin stochastic force. R(t) represents the incessant collisions be-
tween the heavy particle and the small particles constituting the fluid. It is described by a stationary
stochastic process whose distribution is Gaussian with zero mean (⟨R(t)⟩ = 0) and satisfying the
white noise property:

⟨R(t)R(t+ τ)⟩ = 2γmkBTδ(t− t′) (2.72)

As a consequence, the power spectral density of the random force, CRR(ω) is given by:

CRR(ω) = 2mγkBT (2.73)

The effect of a thermal bath is modeled by the frictionmγẋ and the stochasticR(t) forces (fig. 2.9):
the energy is supplied from the bath into the system via the random force R(t) and it is extracted
from the system via the friction force mγẋ. The correct thermal equilibrium is obtained when the
random and frictions forces are equilibrated. This ensures that the classical fluctuation–dissipation
theorem (FDT, see in the appendix section A.3) is fulfilled.

The γ friction coefficient present in both the friction and stochastic force measures the strength of
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Figure 2.9: The Langevin equations eq. (2.71) as a thermal bath in classical molecular dynamics
simulations. Reproduction from reference [91].

the coupling between the bath and the system. In principle this coupling should not have unwanted
consequences on the results, provided it is not chosen too large.

2.6.2 Quantum thermal bath: the original formulation

To include quantum effects in MD simulations, Dammak and coworkers introduced in 2009 a mod-
ified version of the Langevin thermostat, the quantum thermal bath (QTB) method [13]. They used
a modified Langevin equation, in which the random force R(t) is characterized by the quantum
FDT. The eq. (2.73) is modified in the QTB method via a power spectrum density CRR(ω):

CRR(ω) = 2mγθ(ω, T ) (2.74)

resulting in a colored stochastic force. In the above equation θ(ω, T ) corresponds to the quantum
harmonic oscillator energy distribution:

θ(ω, T ) = ℏω

[
1

2
+

1

exp(ℏω/kBT )− 1

]
(2.75)

In this way, the quantum statistical distribution of the energy, which includes the zero-point energy
motion and quantum fluctuations, is enforced via a modified Langevin thermostat. In the limit
of γ → 0, the QTB gives the exact quantum distribution for a harmonic system by ensuring the
quantum FDT. However, for anharmonic systems eq. (2.74) is not sufficient to enforce the quantum
FDT. In this case, the coupling of the classical forces −dV /dx with the different modes drives the
system towards the classical equipartition of the energy. Therefore, the average thermal energy per
mode calculated via QTB is generally lower than θ(ω, T ) when ω is large, while it is larger than
θ(ω, T ) when ω is small. This is an unphysical phenomena, that consists in a energy redistribution
from high to low frequency modes, and it is known as the zero-point energy leakage (ZPEL) [92].
The ZPEL can have a dramatic impact on the properties of the systems. For example, QTB cannot
provide an adequate description of the solid-liquid phase transition of Neon clusters [14]. In this
case, the potential is highly anharmonic with the particles mainly interacting via weak van der
Waals forces. The energy leak due to the ZPEL causes an artifical excess of energy in the low
frequency modes and completely destabilizes the cluster structure at low temperature, dissociating
the weak interatomic bonds. Instead of a solid-like cluster at low temperature, the QTB predicts
an abnormal liquid-like phase.
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One way to treat the ZPEL is using high values for the friction coefficient γ [92]. However, high
values of γ correspond to a strong coupling between the system and the bath, which can lead to an
overdamped dynamic. The best approach is to chose γ as a compromise to limit the ZPEL and a
too strong coupling with the bath. Despite its drawbacks, QTB has been successfully applied for
studying realistic systems [10, 93, 94].

2.6.3 Adaptive quantum thermal bath

An alternative and more accurate way to avoid ZPEL in QTB simulation is via its adaptive version
(adQTB), recently introduced in 2019 [14]. This method has been successfully applied to the
case study of Neon clusters, which we previously discussed, recovering the correct structure at low
temperature [14]. The underlying idea of adQTB is to use the quantum FDT to quantify the amount
of energy leaking from high to low frequencies and to adjust "on-the-fly" during the dynamics the
parameters of the QTB thermostat. There are two ways to perform adQTB. One is by adjusting
the coefficient of the friction force in eq. (2.71), by making it frequency-dependent and adapting it
during the simulation. Within this adaptation method a Generalized Langevin Equation (GLE) is
introduced [91], further details about it are illustrated in reference [14]. The other is via adaptation
of the random force amplitude present in eq. (2.74). In this version of the adQTB (adQTB-r), which
is the one we employed in this thesis, the power spectrum ofR(t), CRR(ω) (eq. (2.74)) is replaced
with:

CRR(ω) = 2mγr(ω)θ(ω, T ) (2.76)

where γr(ω) are frequency-dependent coefficients which are adjusted "on-the-fly" during the simu-
lation to enforce the quantum FDT. The friction parameter γ is constant in the Langevin dynamics.
The quantum FDT is rewritten as:

Re[CvR(ω)] = mγr(ω)Cvv(ω) (2.77)

in which CvR is the velocity-random force correlation function and Cvv is the velocity-velocity
autocorrelation function. By defining ∆FDT(ω):

∆FDT(ω) = Re[CvR(ω)]−mγr(ω)Cvv(ω) (2.78)

The quantum FDT is enforced for∆FDT = 0 for allω. In this way, the ZPEL for each frequency can
be directly estimated and corrected by adaptation of the coefficients γr(ω). The general procedure
is the following. The dynamics is divided in segments of a few hundreds fs. The simulation begins
with γr(ω) = γ, then ∆FDT is estimated at each segment of the dynamics via eq. (2.78) and γr(ω)
is adjusted to have ∆FDT = 0 (if ∆FDT < 0 , γr(ω) is decreased, while for ∆FDT > 0, γr(ω) is
increased). Typically, γr should increase for the high-frequency modes (that loose energy through
ZPEL), and decrease at low frequencies.
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Figure 2.10: Flux diagram of the adQTB-r algorithm. The figure describes the modifications in-
troduced with respect to the standard BAOAB algorithm for the Langevin equation [95, 96]. The
adQTB trajectories are decomposed in a series of Nseg segments of Nstep time steps each; the
segments have a duration τ = Nstep∆t. One-dimensional notations are used for simplicity. Re-
production from reference [14].
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APPENDIX A

A.1 Derivation of Feynman path integral

The matrix elements of the quantum propagator for a one-dimensional quantum particle evolving
from the initial position x to the final position x′ in an elapsed time t is given by:

U(x′, x, t) = ⟨x′|e−
i
ℏ Ĥ t|x⟩ (A.1)

By recalling that the kinetic and potential operator do not commute:

[K(p̂), V (x̂)] ̸= 0 (A.2)

To overcome this issue, we can use the Trotter product formula, which states that for arbitrary
matrices A and B,

eA+B = lim
n→∞

(eA/neB/n)n (A.3)

The application of the Trotter formula to the quantum propagator operator gives:

e−
i
ℏ Ĥ t = lim

n→∞
[e−

i
ℏK(p̂)τe−

i
ℏU(x̂)τ ]n (A.4)

where τ = t/n. We define e−
i
ℏK(p̂)τe−

i
ℏU(x̂)τ = Ω̂. The propagator matrix elements become:

⟨x′|e−
i
ℏ Ĥ t|x⟩ = lim

n→∞
⟨x′|Ω̂n|x⟩ = lim

n→∞
⟨x′|Ω̂Ω̂Ω̂ · · · Ω̂|x⟩ (A.5)

The set of states
∫
dx |x⟩⟨x| = I can be inserted between each factor Ω̂, i.e. (n− 1) insertions.
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⟨x′|e−
i
ℏ Ĥ t|x⟩ = lim

n→∞

∫
dx1 · · · dxn−1 ⟨xn|Ω̂|xn−1⟩⟨xn−1| · · · |x1⟩⟨x1|Ω̂|x0⟩ (A.6)

where the intermediate integrations over x1, ..., xn−1 constitute the sum over all possible paths
linking the two endpoints x and x′.

Consider the matrix element Ω(xj+1, xj):

Ω(xj+1, xj) = ⟨xj+1|Ω̂|xj⟩ = ⟨xj+1|e−
i
ℏK(p̂)τe−

i
ℏU(x̂)τ |xj⟩ (A.7)

To simplify, the identity
∫
dp |p⟩⟨p| = I can be inserted.

⟨xj+1|Ω̂|xj⟩ =
∫
dp ⟨xj+1|e−

i
ℏK(p̂)τ |p⟩⟨p|e−

i
ℏU(x̂)τ |xj⟩

=

∫
dp e−

i
ℏ

p2

2m
τ ⟨xj+1|p⟩⟨p|xj⟩e−

i
ℏU(xj)τ

(A.8)

By recalling:

⟨x|p⟩ = 1√
2πℏ

e
i
ℏpx (A.9)

The relation eq. (A.9) is substituted into eq. (A.8), giving:

⟨xj+1|Ω̂|xj⟩ =
1

2πℏ

∫
dp e

i
ℏ

[
− τ

2m
p2+(xj+1−xj)p−τU(xj)

]
(A.10)

The above integral is a Gaussian integral that can be solved in the following way:

∫
dx e−ax2+bx =

√
π

a
eb

2/4a (A.11)

By defining:

a =
iτ

2mℏ
b =

i

ℏ
(xj+1 − xj) (A.12)

Eq. (A.10) becomes:

⟨xj+1|Ω̂|xj⟩ =
(

m

2πiℏτ

)1/2

e
i
ℏ τ
[

m
2τ2

(xj+1−xj)
2−U(xj)

]
(A.13)

Now, the matrix element Ω(xj+1, xj) of eq. (A.13) are substituted into eq. (A.6):

⟨x′|e−
i
ℏ Ĥ t|x⟩ = lim

n→∞

(
m

2πiℏτ

)n/2 ∫
dx1 · · · dxn−1

n−1∑
j=0

e
i
ℏ τ
[
m
2

(
xj+1−xj

τ

)2
−U(xj)

]
(A.14)
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A.2 Stationary phase approximation

Suppose one wants to calculate the integral of one-dimensional oscillator:

I ≡
∫
dx eiλf(x) (A.15)

where λ is a parameter. When λ is very large, the integral is highly oscillatory and it is dominated
by the stationary points x̄ which gives:

f ′(x̄) = 0 (A.16)

A good approximation is to expand the phase around the stationary point x̄ at the second order:

f(x) = f(x̄) +
1

2
f ′′(x̄)(x− x̄)2 (A.17)

in which the first order term f ′(x̄) = 0. This approximation is valid if f ′′(x̄) is not too small. By
setting y = (x− x̄), the integral of eq. (A.15) becomes a Gaussian integral:

∫
dx eiλf(x) ≈ eiλf(x̄)

∫
dy eiy

2λf ′′(x̄)/2 =

√
2πi

λf ′′(x̄)
eiλf(x̄) (A.18)

In the case there is more than one stationary point, eq. (A.18) becomes:

∫
dx eiλf(x) =

∑
{x̄j |f ′(x̄j)=0}

√
2πi

λf ′′(x̄j)
eiλf(x̄j) (A.19)

By applying the previous assumptions, the SPA can be generalized to n-dimensional integral over
coordinate x = (x1, x2, · · · , xn). The following integral is considered:

I ≡
∫
dnx eiλf(x) (A.20)

The function f(x) is expanded at the second order:

f(x) = f(x̄) +
1

2

∑
k,l

(xk − x̄)(xl − x̄)
∂2f(x̄)

∂xk∂xl
(A.21)

in which ∂2f(x̄)/∂xk∂xl constitutes the Hessian matrix of f at x̄. Therefore, the final expression
of SPA for a n-dimensional integral is:

∫
dnx eiλf(x) =

∑
{x̄j |f ′(x̄j)=0}

(
2πi

λ

)n/2

det

(
∂2f(x̄j)

∂xk∂xl

)−1/2

eiλf(x̄j) (A.22)

52



A.3 Fluctuation-dissipation theorem

Linear response theory provides a mathematical relationship - the fluctuation-dissipation theorem
- that connects the response of a system to an external perturbation and the fluctuations about the
equilibrium in absence of the perturbation. A general form of the fluctuation-dissipation theorem
reads as:

Cvv(ω) = 2kBT Re[χ(ω)] Φ(β, ω) (A.23)

where Cvv(ω) is the Fourier transform of the velocity-velocity autocorrelation function, χ(ω) is
the susceptibility characterizing the linear response of velocity ∆v(t) to a small perturbative force
∆F (t):

∆v(ω) = χ(ω)∆F (ω) (A.24)

The term Φ(β, ω) is a distribution function of the thermal energy. For the classical case, where
there is equipartition of the energy, Φ(β, ω) = 1, while for quantum systems:

Φ(β, ω) =
βℏω
2

coth

(
βℏω
2

)
(A.25)

Finally, we notice that 2Re[χ(ω)] corresponds to the vibrational density of states in the case of
a harmonic system having an energy distribution in which a vibrational mode at frequency ω is
thermalized with an average kinetic energy Φ(ω)kBT/2.
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Part II

Selected applications on crystals,
adsorbed molecules and nucleobases
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CHAPTER 3

THE ANTIFERROELECTRIC TO PARAELECTRIC PHASE

TRANSITION IN POTASSIUM HYDROXIDE

3.1 Introduction

In 1920, ferroelectricity was discovered for the first time by Valasek in the Rochelle salt crys-
tal [97]. Ferroelectricity is the spontaneous electric polarization of certain materials, that can be
switched under the application of an external electric field. Antiferroelectricity is intrinsically
related to ferroelectricity and can be explained in terms of the microscopic order of the dipoles.
While in ferroelectric materials the dipoles are parallel, leading to an overall spontaneous polariza-
tion, in antiferroelectric materials the dipoles are arranged antiparallel generating no macroscopic
polarization. Typical hysteresis loops for conventional ferroelectric, antiferroelectric and paraelec-
tric materials are represented in fig. 3.1. Over the years, research interest in the topic has grown
rapidly, motivated by the large number of applications involving these materials. These include,
for example, dynamical capacitors, non-linear optics, volatile memories and high energy storage
devices.

The family of perovskites ABO3 is one of the most studied type of ferroelectrics. A common
practise in this field is to model the temperature-dependent properties of the material via effec-
tive Hamiltonians, developed from first principle calculations [98]. These are functions of the
order parameter governing the phase transition and, generally, also of other quantities describing
the coupling with other degrees of freedom. In the Landau theory of phase transitions, the high-
symmetry phase, which corresponds to the paraelectric one, can be described by a single well
potential, while the lower-symmetry ordered phase by a double well potential. Among the other
types of ferroelectrics, a special attention has been given to materials presenting hydrogen bonds
– hydrogen-bonded ferroelectrics. Conventional hydrogen-bonded ferroelectrics are associated to
displacive phase transitions but a coexistence of both order-disorder and displacive effects is very
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common [99]. Potassium dihydrogen phosphate (KDP) and its deuterated analog, being character-
ized by the presence of strong hydrogen bonds (O-O < 2.5 Å), have been widely studied during
the years, along with related similar materials (KDP-crystals).
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Figure 3.1: Schematic representation of different dielectric response to external electric field: (a)
ferroelectric (FE), (b) antiferroelectric (AFE), (c) paraeletric (PE) materials.

More generally, nuclear quantum effects can have a significant impact on the properties of ferro-
electrics and antiferroelectric systems. One critical example is quantum paraelectricity, which is
the suppression of low temperature ordering phase transition by quantum fluctuations [100]. Con-
cerning hydrogen bonded materials, the influence of the hydrogen bonds can be highlighted by
replacing H with D isotope. A giant hydrogen/deuterium isotope effect has been found in KDP
due to the increase of about 100 K of the Curie temperature upon deuteration [101]. Besides KDP
crystals, there are other hydrogen-bonded ferroelectrics that manifest interesting properties. Alkali
hydroxides (AOH, A = Li, Na, K, Rb, Cs) and their deuterated analogs (AOD) are characterized by
proton ordering phase transitions at ambient pressure and in temperature-range 150-310 K – except
LiOH/LiOD and NaOH – with antiferroelectric order in NaOD, KOH/KOD and CsOH/CsOD and
ferroelectric order in RbOH/RbOD [102–115]. Differently from the KDP crystals, AOX crystals
present weak and long hydrogen bonds, which are oriented along b-axis direction of a monoclinic
or orthorombic structure (see for example the structure of proton ordered KOH in fig. 3.2).

Figure 3.2: Sketch of the monoclinic potassium hydroxide structure in an antiferroelectric configu-
ration. K, O and H atoms are respectively colored purple, red and white with ionic radii according
to reference [116]

Regarding the NaOH crystal, it is important to stress that the protonated material manifests no or-
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dering phase transition while the deuterated does. This anomaly can be explained in terms of the
different zero-point energy quantum fluctuations of NaOH and NaOD [117]. In the protonated com-
pound NaOH, the large zero-point fluctuations overcome the weak hydrogen bonds and destroy the
antiferroelectric order. The system in this phase can be described as a as quantum paraeletric. On
the contrary, when quantum fluctuations are reduced (NaOD), the system is driven into an antifer-
roelectric phase at low temperature. K, Rb and Cs hydroxides display a less striking isotope effect,
where the critical temperature of the deuterated crystal is larger than the protonated one. Beyond
the isotope effect, pressure has a crucial role since it can favor the same kind of phase transitions
also in the hydroxides, that do not display ordering at ambient pressure [118–122]. In NaOH, for
example, the external pressure has the same effect as deuteration, so that an antiferroelectric phase
transition can be recovered [117].

In the present chapter we address, among the different AOX crystals, the ambient pressure low-
temperature antiferroelectric to high-temperature paraelectric phase transition of potassium hy-
droxide and deuteroxide, phase-IVa (AFE)↔ phase-II (PE).1 This phase transition has been charac-
terized via different experimental techniques including neutron scattering and x-ray powder diffrac-
tion [113, 114, 123, 124], Raman and infrared spectroscopy [125–127], calorimetric [108, 113] and
NMR [115] measurements. The Curie temperature is at 233 K in KOH and shifts up to 257 K in
KOD [113]. To explain the isotopic shift, a model of tunneling of the H/D atoms between two
minima in a double-well potential was proposed [108, 113], but no microscopical description of
the phase transition has been provided up to now. The H/D isotope effect on Tc cannot be clearly
described in terms of classical dynamics. Therefore, in this study we highlight how the description
including both thermal and nuclear quantum effects is essential to unravel the nature and mechanism
of the phase transition [128]. Nuclear quantum effects were modeled via path integral molecular
dynamics scheme and electronic structure calculations were performed using DFT/PBE. Firstly, the
assignment of space groups of the low-temperature (low-T) and high-temperature (high-T) phases
will be discussed based on the experimental literature. Secondly, the potential energy surface for
monoclinic potassium hydroxide will be illustrated. A particular focus will be given on the struc-
tural instabilities of the crystal and the identification of the order parameter of the phase transition.
Then, we will discuss the thermal and quantum description beyond the T = 0 K picture for the struc-
tural properties, the proton/deuteron order and the hydrogen bonds features. Finally, the model of
the phase transition via adQTB is compared to path integral results. The present study can be used
as a general reference for mild isotope effects in alkali hydroxides proton-ordering phase transition.

3.2 Symmetry of phase IVa and phase II

The first x-ray powder diffraction analysis conducted on KOH at standard conditions was made by
Ibers and Kumamoto in 1960 [124], which assigned to the hydroxide a monoclinic structure with
symmetry P21. The determination of heavy atoms positions suggested a monoclinically distorted
NaCl arrangement with oxygen atoms forming a zig-zag chain parallel to b-axis. In the following
years, Jacobs and coworkers corrected through x-ray powder diffraction P21 to P21/m space group,
which presents the (a)-(c) mirror plane as an additional element of symmetry [123]. However, x-

1The notation of the phases is the one used by Krobok and Holzapfel [119].
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ray diffraction was unable to determine the hydrogens positions of KOH at room temperature. The
great contribution to the issue was the discovery of the low-temperature phase transition of KOH
by Bastow and coworkers in 1986 [113]. Both low-temperature (IVa) and room-temperature (II)
phases were structurally characterized through neutron powder diffraction by which, thanks to the
advantage of larger sensitivity to light atoms, hydrogen positions were determined. The existence
of zig-zag chains of oxygen atoms along b-axis was confirmed in both phases and, in addition,
hydrogen atoms were found to form weak asymmetric hydrogen bonds O–H· · ·O which hold the
chains together (see fig. 3.2). The new phase (IVa) was assigned to P21/a space group. Other
neutron powder diffraction and calorimetric studies on the deuterated hydroxide, KOD, between
16 K and its melting point 646 K confirmed the phase transition [114]. Furthermore, it was found
that at high temperatures (above 523 K in KOD), the hydrogen bonds break and the overall structure
is cubic NaCl type [114].

Figure 3.3: Sketch of the symmetry changing for KOH-IVa↔KOH-II phase transition using crys-
tallographic data from reference [113].

To summarize, the low temperature phase transition in KOH and KOD crystals involves two phases:
the ordered low-T antiferroelectric phase (phase IVa) and the disordered high-T paraelectric phase
(phase II). The two phases are monoclinic with phase IVa having P21/a space group and Z = 4 and
phase II having P21/m space group andZ = 2. The hydrogen atoms of phase II were identified with
half-occupancy at Wyckoff sites 4f , which are related to the mirror plane y = ±1/4. A dynamical
disorder for the hydrogen positions along this mirror plane was hypothesized. The transition from
phase II to phase IVa causes a breaking of the symmetry from mirror plane to glide plane along
a-axis (fig. 3.3).

3.3 Determination of the potential energy surface

In order to obtain a first picture of the relevant geometrical parameters for the phase transition,
we have performed geometry optimization calculations at T = 0 K, without including any thermal
and nuclear quantum effects. Three monoclinic arrangements can be identified: ferroelectric, an-
tiferroelectric and paraelectric (see fig. 3.4). The structure of monoclinic KOH is in agreement
with the experimental findings. A bilayered structure of K and O heavy atoms is formed along the
c-axis, which is a common feature for all three phases. The difference between each configuration
is determined by the orientation of the OH groups. The ordered FE and AFE phases are character-
ized by dipole chains of OH groups along the b-axis. Neighboring OH dipoles chains with respect
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to the a-axis can have the same (FE) or opposite (AFE) orientations. The overall bilayered struc-
ture of KOH is stabilized by the presence of weak hydrogen bonds (O-O = 3.0 Å in both FE and
AFE) along the dipoles chains. On the contrary, in the PE phase there is no formation of hydrogen
bonds and the OH groups are oriented normally to the b-axis direction over Wickoff positions 2e,
corresponding to fractional coordinates ±1/4.

Table 3.1: Lattice parameters and O-O distance of monoclinic potassium hydroxide from DFT
optimization at T = 0 K. c sinβ represents the projection of the c-axis along z-axis. Lengths are
reported in Å and angles in degrees.

a b c β c sinβ O-O
Exp. [113] 7.892 3.945 5.947 114.24 5.423 (not reported)
PBE FE 3.982 4.009 5.568 107.674 5.305 3.00

AFE 7.958 4.014 5.770 113.230 5.302 3.00
PE 3.963 4.028 5.782 101.634 5.663 3.47

PBE+D2 FE 3.885 4.024 5.414 111.023 5.054 2.82
AFE 7.767 4.026 5.415 111.046 5.054 2.82
PE 3.903 3.954 5.569 102.535 5.436 3.26

PBE+D3 FE 3.928 4.033 5.525 110.928 5.161 2.90
AFE 7.852 4.037 5.527 110.987 5.160 2.90
PE 3.945 4.013 5.679 101.882 5.557 3.39

The geometrical features of monoclinic KOH can be better understood by the analysis of the opti-
mized lattice constants at T = 0 K. Table 3.1 report the lattice constants and O-O distance between
the layers, i.e. the distance between the donor and acceptor hydrogen bonds sites, using different
levels of DFT: PBE vs PBE plus the inclusion of Van der Walls corrections via Grimme either
two-body (D2) [129, 130] or three-body (D3) [131] techniques. The relevant structural parameters
are mainly c and β. In particular, the projection of the c-vector along the z-axis, i.e. c sinβ, is
directly correlated to the O-O distance. c sinβ indeed measures the inter-layer distance and, there-
fore, the strength of the hydrogen bonds. The experimental c sinβ of the IVa phase, calculated
from reference [113], is equal to 5.423 Å. The AFE configuration shows a smaller inter-layer dis-
tance than the experimental value by 0.12 Å, within the PBE approximation, which worsens when
including corrections D2 and D3. The general trend is that D2 and D3 approaches strengthen the
hydrogen bonds (O-O distances are shorter) and, therefore, c sinβ is smaller. We did not proceed
to further advanced calculations using D2 and D3 corrections, since they worsen accordance with
the experiments. Lastly, we highlight that the FE configuration has the same c sinβ as the AFE in
all the three approaches, meaning that there is no substantial difference between AFE and FE in
the strength of hydrogen bonds. Regarding the PE phase, c sinβ is significantly larger compared
to the hydrogen-bonded phases. This is due to the fact that in the PE phase the inter-layer distance
is larger and no formation of hydrogen bonds is observed.
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Figure 3.4: Static FE, PE, and AFE structures of monoclinic KOH.

The identification of the three monoclinic structures was a first step for reconstructing the energy
landscape describing the phase transition. The analysis of the topology of the PES is a useful tool
to understand at the microscopic scale the transformations in the crystal at T = 0 K. To reconstruct
the PES we have used the following strategy. Several minimum energy paths by varying initial
and final conditions were optimized via climbing nudged elastic band (CI-NEB) method [132].
The starting and final points for the NEB calculations were the FE, AFE and PE configurations.2

The resulting energy landscape is illustrated in fig. 3.6-a, where the PES is plotted as a function
of two reaction coordinates, θx, and θx+1/2. These correspond to the OH polar angle in the (y, z)

plane – defined as arctan(θ) = OHy/|OHz| – at position x and position x + 1/2, respectively.
The orientation of the OH dipoles can be either clockwise, i.e. positive θ, or anticlockwise, i.e.
negative θ.

Figure 3.5: Sketch of consecutive θ angles in the x-axis direction. Their correlation characterizes
the order of the phase transition.

A positive (negative) θx,θx+1/2 correlation implies the FE (AFE) arrangement, respectively. The
case θx = θx+1/2 = 0◦ corresponds to the pure paraelectric case. It is clear from the PES that FE
and AFE structures correspond to local minima of the PES, while the PE phase is a local maximum.
The FE phase is less stable than AFE by 3 meV, due to the increase in repulsion between the OH
groups in parallel alignment.

The transition AFE↔FE can either involve a path through PE phase or directly through a transition
state (TS). This is 0.18 eV higher in energy than the most stable minimum (AFE) and corresponds
to a configuration in which one chain is very close to its slanted equilibrium position, while the

2See in the appendix, section B.1 for a detailed description of the procedure.
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(a) (b)

Figure 3.6: (a) Locally reconstructed potential energy surface with respect to θx and θx+1/2 vari-
ables computed at constant volume (see lattice parameters of AFE phase at T = 0 K). (b) Correlation
between the OH polar angle θ and the O-O distance along the PES. The color bar corresponds to
the potential energy.

other chain has the OH dipole very close to crystal position y = ±1/4 which corresponds to the
PE phase. The energy barrier for this direct path is actually close to half the total energy of the PE
phase (EPE = 0.34 eV). Therefore, the static barrier for flipping of a single dipole chain (≃0.09
eV) would correspond to a rather high temperature (∼ 1000 K).

Finally, by using an averaged value for θ, we can look at the correlation between θ and the O-O
distance (fig. 3.6-b). The two parameters are clearly strongly correlated. At values of θ correspond-
ing to the equilibrium FE and AFE values (30◦ ≤ |θ| ≤ 40◦), the energy decreases with the O-O
distance between 2.9 and 3.0 Å. For θ → 0◦, the O-O distance approaches 3.2 Å, being in the PE
or TS regime. The general trend is that long and weak inter-layer hydrogen bonds (large O-O) are
associated to small OH bending angles.

3.4 Instability of static paraelectric phase

To better understand the instability of the static PE phase and its role on the equilibrium of FE and
AFE configurations, we have firstly studied the lattice dynamics via the harmonic approximation
using density functional perturbation theory (DFPT) [133]. Figure 3.7 reports the IR harmonic
frequencies of FE, AFE and PE. As expected the PE phase, being a local maximum along the PES,
has an imaginary frequency at 242i cm−1. This frequency corresponds to a mode characterized as
an O-H libration parallel to the y-axis direction (see fig. 3.8-a). Therefore the coordinate θ is the
actual adequate parameter describing the phase transition, since it is associated with the bending
motion of OH groups in the (x, y) plane. By using a frozen phonon approach, the energy variation
due to the displacements of the atoms along this mode can be computed at point Γ. As represented
in fig. 3.8-a, the energy decreases towards a displacement along y-axis corresponding to ∼ ±0.12

Å, an ordered arrangement of the dipoles. For simplicity, this displacement is represented with the
PE phase having Z = 2 so that, by following the unstable OH mode, the system is driven to an
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ordered FE state.
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Figure 3.7: Harmonic IR spectrum for monoclinic KOH in the static FE, AFE and PE phases. The
imaginary mode is represented with negative values.

Table 3.2: The diagonal elements of the effective charge tensor Z⋆ for monoclinic potassium hy-
droxide from DFPT calculations.

FE: P21 AFE: P21/a PE: P21/m
Z⋆
xx Z⋆

yy Z⋆
zz Z⋆

xx Z⋆
yy Z⋆

zz Z⋆
xx Z⋆

yy Z⋆
zz

K 0.96 0.91 0.97 0.96 0.91 0.97 0.94 0.90 1.00
O −1.13 −1.42 −1.33 −1.13 −1.42 −1.34 −1.08 −1.31 −1.07
H 0.18 0.51 0.37 0.18 0.51 0.37 0.15 0.41 0.07

The corresponding dynamical charges for PE phase are Z⋆
yy(H) = 0.41 and Z⋆

yy(O) = −1.31; the
unstable O-H libration mode therefore yields a non-null polarization ∥ y and is IR active with a
rather high intensity. Also noteworthy is the fact that the dynamical charges of H and O substantially
differ between the PE, on the one side, and the FE/AFE configurations, on the other side; the latter
are greater, which implies that the hydrogen bond can be easily polarized and that the dielectric
constant is much enhanced in both FE and AFE configurations.

Another interesting way to describe the lattice dynamics of PE phase is by computing the phonon
dispersion curves in a sufficiently large portion of the Brillouin zone (fig. 3.8-b). The O-H unstable
bending mode is imaginary (negative) along the path Γ-Y-A-B, where ky = 0, while it is real along
B-D-E-C-Z path, where ky = π/b. This means that real-space instability is associated with in-
phase collective displacements of OH groups along the y-axis direction, leading to a FE or AFE
arrangement. The T = 0 K DFT calculations clearly exclude the static paraelectric configuration as
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Figure 3.8: Panel (a): the variation of the total energy relative to the atoms displacements along the
unstable O-H libration mode at pointΓ (ν = 242i cm−1) in the static PE phase phase of monoclinic
potassium hydroxide. Panel (b): representation of the phonon dispersion curves for the static PE
phase of monoclinic potassium hydroxide, whose unit cell contains two formula units (Z = 2).
The red branch corresponds to the unstable OH libration mode. Imaginary frequencies are plotted
as negative.

a possible candidate for the high-temperature experimental phase II, due to its intrinsic instability.

3.5 Inclusion of thermal and nuclear quantum effects

3.5.1 Structural properties

Table 3.3 reports the experimental data of lattice constants and O-O distance in KOH and KOD with
respect to temperature compared to our results from classical MD and PIMD at three temperatures:
77 K, corresponding to the IVa phase, 215 K a intermediate point close to the phase transition and
350 K, a temperature at which we can assert that KOH/KOD has made the transition from IVa phase
to II phase. Starting from the experimental data, the IVa → II phase transition is characterized by a
thermal expansion in both KOH and KOD crystals. This can be measured by c sinβ which increases
by ∼ 3% passing from phase IVa to phase II (see Table 3.3). By introducing thermal effects via
classical molecular dynamics, a better agreement with the experimental c sinβ at 77 K is obtained
for the IVa phase with respect to the T = 0 K picture (see table 3.1). The agreement improves when
introducing quantum effects via PIMD simulations. At high temperature, classical MD results are
in good agreement with the experimental outcomes for phase II and the differences between the
classical and KOH and KOD are less evident as compared to the low temperature case. Actually,
KOH and KOD can be described using the same lattice parameters at high temperature, meaning
that the isotope effect faints as the temperature grows. This is consistent with a classical regime at
high temperature.
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Table 3.3: Lattice parameters and O-O distance of monoclinic potassium hydroxide from ab initio
calculations from classical MD (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD), com-
pared with the available experimental data. The reported experimental lattice parameters for the
IVa phase are presented after a change of basis. Lengths are reported in Å and angles in degrees.3

Experimental data a b c β c sinβ O-O
Phase IVa: P21/a, Z=4
100 K KODa 7.922 3.942 5.903 113.95 5.395 3.24
77 K KOHb 7.892 3.945 5.947 114.24 5.423 (not reported)
Phase II: P21/m, Z=2
300 K KODa 3.965 3.999 5.728 104.23 5.552 3.45
293 K KOHb 3.951 3.999 5.750 103.58 5.589 3.33
Theory (this work) a b c β c sinβ ⟨ O-O ⟩
77 K cl-KOH/D 8.01 4.01 5.87 114.02 5.36 3.02

q-KOD 8.04 4.02 5.98 114.25 5.45 3.09
q-KOH 8.04 4.03 6.00 114.25 5.47 3.12

215 K cl-KOH/D 7.98 4.05 5.76 110.00 5.41 3.01
q-KOD 8.02 4.05 5.86 111.00 5.47 3.05
q-KOH 8.02 4.06 5.88 111.00 5.49 3.07

350 K cl-KOH/D 8.10 4.07 5.74 104.25 5.56 3.19
q-KOD 8.15 4.08 5.77 104.25 5.59 3.21
q-KOH 8.15 4.08 5.77 104.25 5.59 3.22

a From ref. [114]. For KOD-IVa at 100 K the transformation matrix is
(

1 0 1̄
0 1 0
1 0 0

)
.

b From ref. [113]. For KOH-IVa at 77 K the transformation matrix is
(

1 0 0
0 1 0
0 0 1̄

)
.

3.5.2 Proton/deuteron ordering

The identification of the potential energy surface (section 3.3) and the dynamical matrix calcula-
tions (section 3.4) allowed to identify the order parameter of the phase transition, the polar angle θ.
However, in the classical finite temperature picture, we cannot precisely evaluate the thermal and
isotope effects characterizing the phase stability of KOH and KOD systems.

The flipping of OH and OD groups at 77 K, 215 K and 350 K is described in terms of the probability
distribution of the order parameter θ in fig. 3.9. These show a double-peak profile with equilibrium
values (the maximum in probabilities) located at ∼ ±40◦, which corresponds to hydrogen bonds
chains that are ∥ ±y. The energy barrier corresponds to θ → 0◦, a minimum in the probability.
The population of states close to the barrier is very low at 77 K and the flipping events of OH
and OD groups leading to opposite orientations are rare, consistently with the rather large energy
barrier as found in the NEB calculations. By increasing the temperature, the θ → 0◦ is much more
probable. At all three temperatures, we notice that the PIMD KOD distributions are intermediate

3After a revision of our data, we found a discrepancy with respect the O-O distances. The table was corrected with
respect to reference [128].

64



between the PIMD KOH and the classical ones, consistently with the fact that KOD behaves more
classically than KOH.

Figure 3.9: Probability distribution for the microscopic order parameter θ from ab initio classi-
cal (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD). The distributions have been sym-
metrized.

In order to understand the flipping mechanism of the OH and OD groups, we have analyzed the
trajectories of the centroid during the dynamics. Figure 3.10 represents the OH motion in KOH
projected in the three different planes of the 3D space at 77 K, when there are no flipping events,
and 350 K, when the flipping events are frequent. As expected, the flipping causes a change of
direction in the (y, z) plane. However, the flipping motion is not restricted just to the (y, z) plane
but it involves also a component in the (x, y) plane. This is due to the monoclinic distortion of the
crystal that leads the hydroxide to rotate in the (x, y) plane.

To distinguish between the different proton and deuteron arrangements, it is convenient to reintro-
duce the reaction coordinates θx and θx+1/2 and look at their correlation ⟨θx, θx+1/2⟩. The joint
probability distribution of this couple of variables is shown in fig. 3.11. As anticipated before,
positive correlations correspond to FE, while negative to AFE.

At 77 K, due to the rare events of flipping motion of OH and OD groups, the system is frozen in the
starting point configuration, the AFE phase, with the classical picture giving much more localized
AFE configurations. We know that the T = 0 K potential energy barrier for flipping of a single
OH group is quite high (90 meV). At 350 K, where the number of flipping events is sufficiently
large, we estimated a free-energy barrier of 18 meV for KOH. Concerning the barrier at 77 K, we
predict that it should be placed between the potential energy barrier at T = 0 K (90 meV) and the
quantum one at T = 350 K (18 meV) preventing the flipping of the OH and OD groups within our
simulation time. At this temperature (kBT = 6.6 meV), the flippings of OH/OD groups are rare
events. Furthermore, by chosing a dynamic starting from FE configuration, we have computed the
difference of the mean energies of the AFE and FE states, resulting in AFE being more stable of FE
by about 5 meV, consistently with the T = 0 K PES, according to which the AFE minimum is more
stable than FE minimum by 3 meV. The above assumptions are in accordance with the experiments,
that predict the AFE phase at low temperature [113, 114].

At 350 K, the system is driven towards a dynamical disorder characterizing the II phase. The
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r1 = x, r2 = y, r3 = z 

r1 = x, r2 = z, r3 = y 

r1 = y, r2 = z, r3 = x 

Figure 3.10: The centroid trajectory of an OH group in KOH projected in the (x, y), (x, z) and
(y, z) planes from ab initio PIMD simulations (q-KOH).

static PE is never reached, since θ is non-zero for all the OH/OD groups. Instead, both AFE and
FE states are equally populated consistently with a model of half occupancy 4f of hydrogen and
deuterium atoms [113, 114]. Therefore, phase II can be defined as a dynamical paraelectric phase
associated with the disorder of OH and OD groups due to bending motion along the b-axis direction,
which makes the hydrogen bonds break and form several times within the ps time scale. Thus, the
hydrogen bonds play a crucial role in the phase transition.
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Figure 3.11: Joint probability distribution for θx and θx+1/2 from ab initio classical (cl-KOH/D)
and PIMD simulations (q-KOH and q-KOD). The distributions have been symmetrized.

3.5.3 Description of the hydrogen bonds

To have more insight on the role of the hydrogen bonds in the phase transition, we calculated the
probability distributions of O· · ·X length at 77 K and 350 K, which are shown in Figure 3.12. Fur-
thermore, we have computed the joint probability distribution for the hydrogen bond angle and the
O-O distance, as shown in Figure 3.13. The major differences between the classical and quantum
KOH and KOD are at low temperature. Nuclear quantum effects contribute to make the hydro-
gen bonds weaker, i.e. longer O· · ·X distances in the quantum case with respect to the classical
one. Furthermore, the probability distribution of O· · ·D at 77 K is shifted to lower values with
respect to O· · ·H. This geometric H/D isotope effect can be characterized as an inverse Ubbelohde
effect [134]. The conventional Ubbelhode effect is the shortening of the hydrogen bond lengths
in strong hydrogen-bonded systems. For strong hydrogen bonds, the deuterated system presents
longer hydrogen bonds of about ≃ 0.03 Å. An example of this is given by the phase transition of
ice VII to ice X under pressure [10, 135]. Nuclear quantum effects can act therefore differently
depending on the strength of hydrogen bonds due to competing factors [136]. On the one hand, the
zero-point motion along the O-H and O-D stretching modes strengthens the hydrogen bonds, on
the other the fluctuations normal to the bond – OH and OD bending modes – severely weaken the
hydrogen bonds. For strong hydrogen bonds, the stretching motion prevails over the bending one,
thus leading to O· · ·D lengths longer than O· · ·H ones, on the contrary, in weak hydrogen bonds,
the quantum fluctuations associated with the bending motion are more important and the O· · ·H
lenght becomes longer than the O· · ·D lenght. Thus, in alkali hydroxides we observe an inverse
Ubbelohde effect (O· · ·D lenght < O· · ·H lenght) [137].

As a consequence, KOH exhibits larger angular quantum fluctuations at 77 K with respect to
KOD, as shown in the joint probability distribution of ∠O-X· · ·O angle and the O-O distance,
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Figure 3.12: Probability distribution for the O· · ·X length from ab initio classical (cl-KOH/D) and
PIMD simulations (q-KOH and q-KOD).

P (∠O−X · · ·O,OO) (fig. 3.13). Instead at 350 K, the classical and the quantum KOH and KOD
probability distributions P (∠O−X · · ·O,OO) look more alike to each other and both show sig-
nificant contributions in the region ∠O-X· · ·O < 140◦, in which the hydrogen bonds are signifi-
cantly deviating from linearity.
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Figure 3.13: Joint probability distribution for the ∠O-X· · ·O angle and the O-O distance from ab
initio classical (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD).4

3.6 Results from the adaptive quantum thermal bath

PIMD simulations are computationally expensive. To obtain, for example, quantities such as the
transition temperature, one needs to study a larger system than the one currently investigated to
reduce finite size effect. However, this is not affordable in PIMD simulations. To check whether
the adQTB method is suitable for this kind of problem, we have compared its results with the PIMD
ones for the KOH crystal.

4After a revision of our data, we found a discrepancy with respect the O-O distances. The figure was corrected with
respect to reference [128].
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(a) 77K

(b) 350K

Figure 3.14: Adjusted γr for K, O and H atoms. Panel (a): low-T. Panel (b): high-T.

The γr coefficients of the adQTB (see eq. (2.76)) were adapted separately for K, O and H atoms
starting from input value of 10 THz. They are shown in fig. 3.14 at 77 K and 350 K. The largest
adjustment of γr are at low temperature for the O atoms at stretching frequency ∼ 3700 cm−1,
while at high temperature the large contribution is also given by H atoms in the region 6500-7500
cm−1. This corresponds to an overtone frequency. Concerning the low frequencies, we observe
that, at 77 K, the γr of H atoms is corrected to ∼ 7.5 THz, a significant difference compared to
the input value, 10 THz. This is a clear sign of the correction of the zero-point energy leakage at
low frequency. Without adaptation, the ZPE is leaking from the high-frequency stretching modes
towards the low-frequency ones, which would result in an increased effective temperature for the
low-frequency lattice modes and could induce structural distortions. At 350 K this effect is less
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evident, since the system is found closer to the classical regime and the leakage is less significant.

The adQTB gives successful results regarding the radial distribution function of O and H pairs
(fig. 3.15). The adQTB results are very close to the PIMD ones, with a slightly broadening in
adQTB simulations and a tiny shift of the OH covalent peak to smaller distance values.

(a) 77K

(b) 350K

//

//

//

//

Figure 3.15: Radial distribution function for OH pairs from PIMD and adQTB simulations. Panel
(a): low-T. Panel (b): high-T.

Concerning the order parameter of the phase transition θ, we notice a significant difference between
the adQTB and PIMD results at 77 K. The probability P (θ) for θ → 0◦ is larger in the adQTB
distribution. It is consistent with other observations that QTB tends to underestimate free energy
barriers at low temperature [138]. The reason for this intrinsic feature of QTB is still under investi-
gation, it might be related to an overestimation of quantum energy fluctuations by the method. As
a result, the 2D distribution P (θx, θx+1/2) presents at 77 K both formation of AFE and FE states
in the adQTB results, in contrast to what is predicted by PIMD (fig. 3.17).

70



(a) 77K (b) 350K

Figure 3.16: Probability distribution for θ from PIMD and adQTB simulations. Panel (a): low-T.
Panel (b): high-T.

(a) 77K (b) 350K

Figure 3.17: Joint probability distribution for θx and θx+1/2 from PIMD and adQTB simulations.
Panel (a): low-T. Panel (b): high-T.
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3.7 Conclusion

The present study proposes an atomic-scale model for the low-T IVa → high-T II phase transition
of KOH and KOD crystals and disentangles thermal from nuclear quantum effects, which are in-
cluded via the path integral formalism. The interplay of (classical) thermal and quantum effects
on the nuclei makes the understanding of the phase transition in potassium hydroxides delicate
and complex despite the simplicity of its crystal structure. In the low-T IVa phase the positions of
the hydrogen atoms are correlated in an AFE arrangement within a monoclinic crystal with space
group P21/a. In contrast, the high-T II phase is characterized by an uncorrelated motion of the hy-
drogen atoms and, as a consequence, by a dynamical disorder of FE/AFE states, i.e. a dynamical
paraelectric phase with half occupancy of H and D sites, which restores a mirror plane (symme-
try P21/m). Therefore, we corroborate the order-disorder phase transition experimentally found
by Bastow and coworkers [113], although we cannot discriminate the order of the phase transition
from our simulations. The mechanism of the phase transition is the same for both KOH and KOD
and it is ruled by the double-well energy profile as a function of the polar angle θ, that is associated
to the OH and OD libration modes. The flipping back and forth of the H and D atoms is driven by
the thermal and zero-point fluctuations (larger in KOH than in KOD) and generates two possible
orientations of the OH and OD dipoles along a zig-zag chain of weak hydrogen bonds parallel to
the b-axis direction, which hold the KOH stack. Both types of fluctuations contribute to the phase
transition, which a purely classical picture cannot capture correctly.

The presence of a network of weak hydrogen bonds is a specific feature that distinguishes KOH
and KOD crystals and most alkali hydroxides from other hydrogen-bonded ferroelectrics such as
KDP, where the hydrogen bonds are strong. The phase transition is governed by the weak hydrogen
bonds. They are highly impacted by quantum fluctuations, as evidenced by the inverse Ubbelohde
effect at low temperature: under deuteration the hydrogen bond is shorter and stronger. As a result,
the lattice parameters c and β for KOH and KOD present a significant difference: in KOD the bi-
layers are closer, as highlighted by the smaller c sinβ. The experimental 24 K shift of Tc upon
deuteration can be mainly explained in terms of the larger zero-point energy motion of the OH
libration mode with respect to OD.

The adQTB results compared to the PIMD give successfully an accurate description for the struc-
tural and geometrical properties, while they underestimate the free energy barrier of the proton
flipping. Despite this main factor, the adQTB offers a valid model to study this kind of phase tran-
sitions. Due to its low computational cost, adQTB is very promising to study larger systems and to
reduce the limit size effect, which is essential to study a phase transition in a quantitative way.
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APPENDIX B

B.1 Computational details

DFT calculations have been conducted using the Quantum Espresso (QE) package [139] work-
ing with the PBE exchange-correlation functional [140]. Phonon calculations were performed
within the harmonic approximation at T = 0 K via density functional perturbation theory (DFPT)
[133]. We have employed ultra-soft pseudopotentials for the oxygen and hydrogen atoms and norm-
conserving pseudopotentials for the potassium atom. The plane-wave expansion cutoff energies
were 50 Ry for the Kohn-Sham states and 8 times as large for the charge density and the potential,
ensuring the total energy convergence (see Figure B.1-(a)). The unit cell contained 2 or 4 molecu-
lar units depending on the required symmetry. The Brillouin zone was sampled using a 4× 4× 3

(Z = 2) and 2× 4× 3 (Z = 4) Monkhort–Pack k-point grid.

To locally reconstruct the potential energy surface at T = 0 K, we adopted the following procedure.
We ran several climbing image-nudged elastic band (CI-NEB) [132] calculations at fixed lattice
constants with different initial and final configurations. All the initial and final configurations given
in the input were obtained via displacements of the crystal y-component of the OH vector, which
is related to the coordinate of reaction of the phase transition, by using y′OH = yOH,eq × α. The
term yOH,eq is the equilibrium y-component of the OH vector and α corresponds to a coefficient
in the range [-1.4, 1.4].

Molecular dynamics simulations in the NVT canonical ensemble were carried out within a gen-
eralized Langevin equation in a unit cell containing 4 molecular units. Nuclear quantum effects
were taken into account using the path integral framework through the i-PI interface [141] com-
bined with QE. The PIMD simulations were performed at the three following temperatures: 77 K,
215 K and 350 K. We have used the PILE-L thermostatting scheme [142] with a centroid friction
coefficient of 10 THz. The number of beads in the PIMD simulations was set to 32 and checked
to provide the kinetic and potential energy convergence (see Figure B.1-b). Furthermore, we have
checked the convergence of the O-X and O· · ·X lengths in KOH and KOD at 77 K by looking the
results at 32 beads vs 100 beads (see Figure B.1-c). The difference between the KOH and KOD
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lengths is larger than the difference between the 32 beads and 100 beads lengths.

The optimized crystal structures have been obtained through systematic volume relaxation by grad-
ually varying the lattice constants a, b, c and the monoclinic angle β until the hydrostatic pressure
(σij ≃ 0) was reached, in trajectories of 5 ps each, within an error on the average stress tensor com-
ponents lower than 2 kbar. Finally, statistical averages were obtained from trajectories of duration
time ranging from 20 to 40 ps.

The adQTB simulations were conducted in the NVT canonical ensemble using a local modified
version of QE. The total length of the simulation was 60 ps, of which the first 30 ps were discarded
as the time for the adaptation of the γr coefficients for each atom species. The Langevin friction
coefficient was set to 10 THz and the adaptation velocity to coefficient Aγ = 10−1 ps−1. The
adQTB results were compared with PIMD simulations at 100 beads at 77 K and 32 beads at 350
K.
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Figure B.1: (a) Convergence of the total energy respect to the energy cutoff for the wavefunctions
for KOH. (b) Convergence of the potential and kinetic energies respect the number of beads for
KOH at 77 K. (c) Convergence of the O-X and the O· · ·X lengths respect the number of beads for
KOH and KOD at 77 K.
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CHAPTER 4

THE PUZZLING ADSORPTION OF FORMIC ACID ON THE

TITANIA ANATASE (101) SURFACE

4.1 Introduction

Titanium dioxide (TiO2) is nowadays a well-established prototype material due to its optoelectronic
and photocatalytic properties tunable for a wide variety of technological applications involving
various surfaces of titania [143]. In particular, the interaction with organic molecules can play an
important role in catalysis. Carboxylic acids represent a class of compounds of great importance
for organic–TiO2 systems. It has been shown that TiO2 has an high affinity for adsorption of
atmospheric carboxylic acids, even though these are present at very low concentrations [144]. R-
COOH compounds are often used in solar-cell sensing TiO2-based devices to link the dye molecule
via the carboxylic group [145–151]. Other applications involve, for example, the catalytic solvent-
free amidation of carboxylic groups with amines [152] and the catalytic oligomerization of amino-
acid in prebiotic conditions [153–155]. Formic acid (FA) is the simplest carboxylic acid (R=H) and
can be used to study the interactions of R-COOH groups and TiO2 by means of both experimental
and theoretical techniques. Furthermore FA represents a promising hydrogen carrier material, and
a large interest has been devoted to its catalytic decomposition on acid–base pairs at TiO2 surfaces
[156–161]. FA can be a source of hydrogen via the dehydrogenation reaction HCOOH → CO2+

H2 and eventually can follow the dehydration reaction HCOOH → CO+H2O.

Given the wide academic interest in FA-TiO2 systems, a deep understanding at the atomistic level
of the interaction between the acid molecule and the TiO2 surface is needed. More generally,
the adsorption of FA on oxides surfaces can be described as a molecular (more frequent at low
temperature) or dissociative process. In molecular adsorption the intact molecule adsorbs on the
surface, while in the dissociation a basic O2− anion abstracts the acid proton of HCOOH forming a
OlatticeH species and a formate species HCOO−, which is bound to acidic metal cation sites. The
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competition between these two mechanisms depends on the atomic-scale structure of the system.

Molecular no fragmentation

Dissociative Olattice +HCOOHads → OlatticeH+HCOOads

Among the surfaces of titania, anatase (101), the most thermodynamic stable face of anatase phase,
presents quite interesting properties. The TiO2 anatase (101) was observed to be more photocat-
alytic active than rutile (110) [162]. It is characterized by the presence of coordinative unsaturated
ions (Ti5c and O2c) and fully coordinated ions (Ti6c and O3c), resulting in a peculiar morphology
due to the presence of oriented step edges, that strongly influence the reactivity towards adsorbing
molecules (fig. 4.1).

Figure 4.1: Stick representation of clean TiO2 anatase (101) surface. Ti and O atoms are colored
turquoise and red respectively.

A general consensus has been reached that FA adsorbs dissociatively on rutile (110) [156, 163–
165] forming a bridging bidentate formate and a bridging OH group, while for the adsorption on
anatase (101) (FA@A01), previous first-principle calculations [166–174] and experimental studies
using FA [158, 173, 175, 176] and acetic acid (CH3COOH) [177] have yielded a complex picture
with the presence of competing adsorption configurations (see fig. 4.2). One is a monodentate
mode through C=O–Ti5c bond, which can be either molecular (MH) with the acid proton still
attached to the molecule, or dissociative (M(H)) with the formation of a monodentate formate.
Alternatively FA can adsorb, similarly on what is found for rutile (110), in a bridging bidentate
(BB(H)) configuration, where FA coordinates two titanium sites through Ti5c–O–C–O–Ti5c bonds,
resulting in a OCO plane parallel to the [010] direction.

The molecular representations for MH and BB(H) modes are illustrated in Figure 4.3. In particu-
lar, in the case of monodentate, there are two configurations namely MH-intra and MH-inter. They
refer to the different orientation of the FA molecule on the surface due the formation of hydrogen
bonds with a O2c site of the surface. This is located either on the same chain of the Ti5c adsorp-
tion site (MH-intra), either on the neighboring chain (MH-inter). In the precursor DFT work by
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Figure 4.2: Sketch of the most probable adsorption modes for FA@A101. (H) indicates dissocia-
tion of FA with the acid proton located on the TiO2 surface.

Figure 4.3: FA@A01: stick and ball-stick representation of FA adsorbed on the anatase TiO2 (101)
surface in molecular monodentate (intra, inter) and bridging bidentate modes. Ti, O, C and H atoms
are colored turquoise, red, brown and white respectively.

Vittadini et al. [166], MH-inter is the most stable configuration. Later on, a study by Wang et
al. [173] combined DFT calculations using the strongly constrained and appropriately normed
(SCAN) meta-GGA functional [178] with a series of experimental techniques as scanning tunnel-
ing microscope (STM) and infrared reflection absorption spectroscopy (IRAS) on single-crystalline
anatase (101). The authors proposed for the low temperature adsorption of FA on anatase (101)
surface a coexistence, depending on the level of coverage, of both monodentate (preferentially de-
protonated) and bridging bidentate configurations. The latter is the most stable on the basis of
SCAN DFT calculations and its population decreases at high coverage due to the lower availability
of Ti5c pair sites. STM images were not able to distinguish between a molecular or dissociative
monodentate, while some features of IRAS spectra were assigned to MH species.

Vibrational spectroscopy represents a fundamental tool for better understanding molecule-surface
interactions and, therefore, for assign the species on surfaces. Infrared experiments by themselves
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frequently are not sufficient for this attribution and they often require a complementary theoretical
study, which can be essential in the identification of the experimental peaks. In the most of the lit-
erature, the molecule-surface vibrations are calculated within the harmonic approximation at DFT
level of theory, which is for such heterogeneous systems of many DOF the only handy way to pro-
vide accurate quantitative information about the PES. However, harmonic approximation is often
not adequate and can lead into errors of dozens to hundreds of cm−1 [179]. Sometimes these er-
rors can be compensated by the limited accuracy of the exchange-correlation functional employed
in the DFT approach, sometimes the harmonic frequencies are simply multiplied by a scale fac-
tor to reproduce the experimental data. Therefore, the inclusion of anharmonic effects is essential
to properly describe these interactions. Among the different methods to include anharmonic con-
tributions [179], one can rely to "on-the-fly" AIMD, through which it is possible to compute IR
spectra through Fourier transform of the dipole moment autocorrelation function. Furthermore, in
an anharmonic picture the coupling between different vibrational modes is introduced, which, on
the contrary, is completely neglected in the harmonic approximation.

A recent study by Tabacchi et al. on the FA adsorption on the anatase TiO2 (101) surface [172]
is, to our knowledge, the only theoretical work, up to now, that takes into account the dynamical
effects on the FA adsorption via AIMD and not simply the (meta) stable configurations. In this
study, much stress is given to the presence of short and strong hydrogen bonds (SSSH) in the
monodentate species, which are considered to be responsible of a strong coupling with the surface.
Furthermore, the authors claimed that the proton is rapidly shuttling between the molecule and the
surface, and guess that quantum effects at low temperature might be significant, although in their
AIMD simulations the nuclei are treated classically.

The presence of H-bonding between the FA molecule and the anatase (101) surface suggests that
anharmonic and quantum effects can play a crucial role in the dynamics of such a complex system.
However, the inclusion of anharmonic of quantum effects in vibrational spectra of molecule-surface
systems is very challenging due to multiple factors [179]. First of all, such systems are limited to
electronic structure calculations at DFT level of theory, which can present more accuracy problems
with respect to the free molecules calculations, in particularly in the case of stretched and dissoci-
ated bonds. Furthermore, despite the existence of different approaches to build accurate PES, DFT
calculations cannot provide the estimation of a global potential energy surface function for such
systems due to the enormous computational cost of producing ab initio datasets and the complexity
in the fitting procedure of a quality PES function. Secondly, the degrees of freedom coming from
the surface significantly increase the configuration space dimensionality and generate frustrated
molecular translations and rotations.

In this chapter, we aim to gain a deeper insight into the FA adsorption on the TiO2 anatase (101)
surface through a theoretical investigation including both quantum and anharmonic effects. To
describe the vibrational properties beyond the harmonic approximation, we will included the zero-
point energy and anharmonic effects through QCT approach and quantum effects such as overtones
and combination bands through "on-the-fly" DC-SCIVR, which has been recently applied to study
the adsorption of water on the same surface [86]. A tentative assignment of the surface species
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will be conducted accompanied by new IR experiments performed by S. Stankic and S. Chenot.1

If not indicated differently, the experimental results presented in this chapter correspond to their
measurements. We will stress the importance of accounting anharmonic and quantum effects into
this adsorption phenomenon, in particularly we will focus our attention on the hydrogen-bonded
region between the surface and the molecule in monodentate species in combination with PIMD
simulations.

The chapter is organized as the following. Firstly, we will present a DFT analysis at T = 0 K of
the meta (stable) configurations and provide a local description of the PES in the above-mentioned
hydrogen-bonded region. Then, we will illustrate the IR experiments on anatase nanopowders using
FA and deuterated FA at room and low temperature and clarify with respect to the literature, what
it is still certain and not certain of the assignment. After that, we will present the calculated gas-
phase spectra of isolated FA molecule and discuss the accuracy of the chosen DFT approximation.
Next, we will proceed with the assignment of the different adsorption configurations by comparing
our calculated spectra with the IR experiments and a description of the molecule-surface couplings.
Finally, we will discuss the PIMD results for the equilibrium probability distributions of significant
geometrical parameters and additionally make a comparison with other well-known systems.

4.2 Static adsorption configurations at zero temperature

In this section we report the results from static (T = 0 K) DFT/PBE [26] calculations performed
with the Quantum Espresso (QE) package [180]. The calculations were conducted adsorbing a
single molecule of FA on a non-defective surface of TiO2 anatase (101) surface, modeled as a
periodic slab of 4 TiO2 layers with surface area 10.37 × 11.37 Å2.

4.2.1 Binding energies and geometrical parameters

First of all, we have performed geometry optimizations of molecular MH (intra and inter), dissoci-
ated M(H) monodentate and bridging bidentate BB(H). Tables 4.1 and 4.2 report the corresponding
binding energies and relevant geometrical parameters for the different adsorption modes. FA can
adsorb molecularly on the TiO2 surface in a monodentate mode, either intra or inter, at one Ti5c
adsorption sites with very similar Ti-O bond-lenght (2.2 Å). MH-intra and MH-inter are very close
in energy with MH-intra configuration being more stable of about 0.01 eV (Eintra

tot − Einter
tot ), the

same trend is observed in the work by Tabacchi et al. [172], where PBE approximation is employed.
As introduced previously, these configurations are quite interesting due to the formation of an H-
bond between the hydroxyl oxygen of the FA molecule and a O2c site of the surface. The H-bond
is relatively short having an inter-oxygen distance length of 2.52 Å and 2.57 Å for MH-intra and
MH-inter minima respectively. In the work of Tabacchi et al. [172], the inter-oxygen separation
for MH-intra minimum is shorter and corresponds to 2.479 Å. H-bonds are classified strong for
inter-oxygen distances in the range 2.4–2.55 Å. MH-intra configuration has the strongest hydrogen
bond, consistently with the slightly greater stability. The H-bond angle is close to 180◦, when the
molecule is rotated on the surface, i.e. the MH-inter configuration, while it deviates from linearity
for the MH-intra mode.

1Experimental collaborators: Slavica Stankic and Stéphane Chenot – INSP–CNRS.
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Table 4.1: Binding energy (BE) (eV) for MH, M(H) and BB(H) modes.

BE
MH-intra 0.82
MH-inter 0.81
M(H) 0.37
BB(H) 0.67

Table 4.2: Relevant distances and angles (Å, ◦) for gas-phase FA and adsorbed MH, M(H) and
BB(H) modes. The s subscript stands for surface sites.

Tis-O TisO-C C-OH C-H O-H H· · ·Os O· · ·Os ∠OHOs

Gas-phase 1.35 1.11 0.98
MH-intra 2.21 1.24 1.30 1.10 1.04 1.51 2.52 163
MH-inter 2.20 1.23 1.30 1.10 1.03 1.54 2.57 172

Tis-O TisO-C C-OH C-H Os-H O· · ·H O· · ·Os ∠OHOs

M(H) 1.99 1.29 1.24 1.10 1.01 1.65 2.62 160
Tis-O Tis-O TisO-C TisO-C C-H OsH

BB(H) 2.09 2.12 1.26 1.27 1.11 0.97

The dissociation of the FA can lead to a monodentate M(H) or bidentate BB(H) configuration. The
BB(H) mode is characterized by shorter Ti–O bonds with respect to both molecular monodentate
MH-intra and MH-inter, and the PBE approximation predicts this configuration to be less stable
than MH-intra by about 0.15 eV. Other studies have predicted MH to be more stable than BB(H):
0.92 vs 0.68 eV using GGA2 [166], 0.971 vs 0.929 eV using PBE [172], while another study using
meta-GGA SCAN method predicts BB(H) binding energy at 1.41 eV and MH at 1.21 eV [173]. The
geometry optimization of a M(H) formate, where the acid proton is located on the surface and not
forming any hydrogen bonds with the molecule, evolves in the optimized BB(H) local minimum.
The geometry optimization of M(H) mode without constraints is only possible for a "dissociated
inter" configuration, which we will refer simply to as M(H). The monodentate dissociated is highly
unfavoured and presents the lowest binding energy at 0.37 eV, which is in good accordance with
the binding energy predicted by Tabacchi and coworkers [172].

4.2.2 Potential energy surface of monodentate species

The minimum energy path of proton transfer between the FA molecule and the surface was modeled
via CI-NEB method [132] (see fig. 4.4). The parameter δ, defined as the difference between OsH
and OH distances, is chosen as the coordinate of reaction. Dissociation corresponds to δ < 0,
while for δ > 0 the acid proton is attached to the FA molecule. At δ = 0 the hydrogen bond is
symmetric. From the left panel in fig. 4.4, the potential is highly anharmonic and corresponds to
a skewed single-well potential rather than an asymmetric double well. Therefore, the dissociated
configuration is not even a metastable minimum according to DFT/PBE approximation.

2The subtype of functional was not specified in the work.
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Figure 4.4: Potential energy respect OsH and OH distances and δ proton transfer coordinate.

Electron charge density in OH· · ·Os region At the equilibrium position of the MH-intra con-
figuration, the maximum of the electron-density located on the oxygen and the O–H group (fig. 4.5)
can be considered as a single identity. By fixing the hydrogen atom midway between the oxygen
of the FA and the oxygen of the surface (OfH = OsH) a proton shared configuration is obtained.
The O–H cannot be considered a single entity as in the equilibrium position, and two bond critical
points in the Bader’s terminology [181] occur: one between H and Os, the other between H and Of .
This is analogous to the symmetrization of hydrogen bonds in ice-X [182]. However, at variance
with the proton-symmetric phase X of ice under pressure, the proton at mid-distance between Os

and Of is not a stable position. This result is also consistent with the lack of a mirror symmetry
through the Os-Of mid-point.

Figure 4.5: Charge electron density associated to the MH-intra mode (left) and the proton shared
configuration (right). The isodensity used to generate this figure is equal to 0.1 e/Å3.

4.3 IR experiments on anatase nanopowders

In this section we detail the IR experimental results. Fourier transform infrared spectroscopy
(FTIR) experiments were performed on TiO2 anatase nanopowders samples exposed to formic
acid. As nanopowders have a very high surface-to-volume ratio, a large quantity of molecules can
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be adsorbed and a more intense signal than single crystals can be obtained, at the expense of an
increased level of complexity, as nanopowders could show various surface defects [183, 184]. The
spectra were recorded as a function of the formic acid partial pressure, PFA, at room temperature
and at low temperature (13 K). To have a better understanding of the acid proton location, the same
experiments were repeated using FA deuterated in the OH acid position, e.g. HCOOD. A tentative
assignment of the IR peaks will be given on the basis of infrared data from single crystal [173, 175]
and nanopowders [158, 185–187] measurements. Some new additional features with respect to the
literature will be highlighted.

4.3.1 Room temperature

Figure 4.6 reports the FTIR spectra recorded for HCOOH at room temperature as a function of the
partial pressure of FA.

Figure 4.6: FTIR spectra at room temperature of anatase TiO2 nanopowders exposed to PFA =
10−7–10−3 mbar, compared to the spectra recorded after FA desorption at PFA = 10−7 mbar
(black curve).

High-frequency range Around ∼ 3700 cm−1 a negative pronounced signal appears, together
with other secondary negative peaks of lower intensity. Similar signals were found in the work of
Petrik et al. [158] and attributed to surface OH hydroxyl groups. The CH stretching region presents
two main peaks at ∼ 2870 and 2955 cm−1. Petrik and coworkers [158] assigned the first peak to
the CH stretch fundamental, ν(CH), and the second peak to a combination band. It is still need to
be clarified the origin of the CH stretch splitting. The doublet at ∼ 2350 cm−1 is the signal coming
from the CO2 of the chamber.

Intermediate-frequency range The OCO region around 1500-1750 cm−1 is crucial for the iden-
tification of monodentate and bidentate species. The peak at 1725 cm−1 and the one at 1675 cm−1

were previously assigned to the C=O stretching, ν(C=O), of molecular and dissociated monoden-
tate mode, respectively [158]. Similar bands were found in the work by Nanayakkara and coworkers
[187] and assigned to ν(C=O) of FA chemisorbed and physisorbed, respectively. The peak at 1555
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cm−1 can be attributed, within a general consensus of the previous works, to the O–C–O asymmet-
ric stretch, νa(OCO), of a BB formate, and it is the main peak present after desorption, meaning
that it is associated with the most stable configuration. The peak at 1385 cm−1 was assigned in all
the cited references to a CH bending mode, which might be compatible with both monodentate and
bidentate configuration. The peak at 1360 cm−1 was assigned to symmetric stretching of OCO,
νs(OCO), of BB(H) configuration. The peak at 1320 cm−1 might be attributed to the C-O stretch,
ν(C-O), of a monodentate formate as suggested by Xu and coworkers [175]. Finally, we notice the
presence of new additional peaks at 1280 and 1035 cm−1.

4.3.2 Low temperature

Figure 4.7 shows the FTIR spectra recorded for HCOOH at low temperature as a function of the
partial pressure of FA.
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Figure 4.7: FTIR spectra at low temperature (13 K) of anatase TiO2 nanopowders exposed to PFA

= 10−7–10−3 mbar, compared to the spectra recorded after FA desorption at PFA = 10−8 mbar
(black curve).

With respect to the room temperature results, most of the IR bands are found at similar frequency
but with a variation in the peak ratio, which stems from a different of level of population. Several
new spectral features are also present, which in some cases superimpose some of the peaks present
at room temperature. The combination of these factors leads to think that multiple adsorption
configurations are present, some of which are more stable at low temperature rather than at room
temperature. We point also out that the low temperature spectra could show also the adsorption of
other impurities present in the chamber. Therefore, we limit our discussion to some of the features
present in the spectrum, which is very complex. Notably, in the CH stretching region there are
three intense large bands in the region 2500-3000 cm−1, revealing a different behavior compared
to the room temperature results. In the OCO range the room temperature peak around 1665-1675
cm−1 is present at ∼ 1680 cm−1 for FA partial pressure lower than 10−4 mbar, for higher pressure
it is superimposed by the band at ∼ 1720-1740 cm−1. A new high intensity band is present at 1620
cm−1. A similar band has been attributed in literature to the OH bending of coadsorbed water
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[186, 187], which could be formed, for example, by the reaction of adsorbed formate and surface
hydroxyl groups. Finally, new peaks appear at ∼ 1250, 1230 and 1080 cm−1.

4.3.3 The effect of deuteration

Figure C.3 (see the appendix) and fig. 4.8 show a comparison between protonated and deuterated
FA adsorbed at room and low temperature, respectively. Firstly, we notice that the OH stretching
negative signal around 3700 cm−1 is also present in the room temperature spectrum of deuterated
FA (Figure C.3), confirming that is not associated with formic acid molecule because, if it was
coming from the acid proton, it would have shifted to lower frequency. At room temperature the
two spectra are very similar, probably meaning that at high temperature the most stable species
is deprotonated and, in particular, it corresponds to the bridging bidentate configuration. Instead,
the low temperature spectra for the adsorption of HCOOH and HCOOD significantly differ, par-
ticularly in the region 1900-3000 cm−1. As introduced before, some broad bands in the range
2500-3000 cm−1 are present in the HCOOH spectrum, while the HCOOD spectrum is character-
ized by two main high intensity bands in the range 1900-2300 cm−1. Therefore these bands are in
some way involved with the OH and OD groups. Finally, it is clear that passing from room to low
temperature for both HCOOH and HCOOD the characteristic bands for bridging bidentate adsorp-
tion νa(OCO) and νs(OCO) decreased significantly in intensity ratio, meaning that the bridging
bidentate mode is less populated and leaves space for the adsorption of other species, most likely
molecular monodentate FA.

Figure 4.8: FTIR spectra at low temperature (13 K) of protonated FA vs deuterated FA adsorbed on
anatase TiO2 nanopowders exposed to PFA = 10−7–10−3 mbar, compared to the spectra recorded
after FA desorption at PFA = 10−8 mbar (black curve).
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4.3.4 Summary

The spectroscopic signals in the OCO region are the key to distinguish bidentate and monoden-
tate configurations. At room temperature the most likely configuration for both protonated and
deuterated FA is bridging bidentate mode with νa(OCO) and νs(OCO) at 1550 and 1360 cm−1,
though some low intensity peaks characteristic for ν(C=O) at ∼ 1675 and 1725 cm−1 are clearly
visible in the spectra. At very low temperature, four peaks are present in the OCO region for FA
and deuterated FA for pressures below 10−4 mbar. One is the νa(OCO) signal, whose intensity
decreases significantly with the increase in FA concentration, i.e. BB(H) is less stable at high level
of coverage. This might due to the fact that bridging bidentate mode actually needs two titanium
sites to adsorb, which are less available at high coverage, thus the monodentate becomes thermody-
namically more likely [173]. The other three instead are at ∼ 1600-1620, ∼ 1680 and ∼ 1720-1740
cm−1. The first one was, as already mentioned, attributed to water adsorption in previous works,
while the other two probably correspond to the ν(C=O) peaks present at room temperature, but
it is still to clarify which one (or both) is associated to molecular adsorption. Finally, we stress
the importance of the H/D isotopic shift at low temperature of the bands in the region 2500-3000
cm−1. This could be due to the OH stretch of a very strong hydrogen-bonded species that, un-
der deuteration, shift to lower frequencies. To summarize the most relevant characteristics of IR
experimental spectra at room temperature vs low temperature, we report in the following a short
scheme.

Room temperature bridging bidentate mode most stable
low population of monodentate species

Low temperature (13 K) at high coverage bridging bidentate (monodentate) is less (more) stable
new spectroscopic features
H/D substitution effect

An exhaustive assignment of the different vibrational modes will be conducted in section 4.5, where
we will compare these results to the theoretical calculated spectra.

4.4 Gas-phase formic acid and influence of the exchange-correlation
approximation

Before, discussing the calculated spectra of FA adsorbed on the anatase (101) surface, we present
here the spectra of isolated formic acid in the gas phase together with an analysis of the accuracy
of the DFT computational set-up, that we employed in this study, DFT/PBE level of theory using
plane waves basis set as implemented in the QE code. Firstly, we calculated the harmonic frequen-
cies of formic acid molecule, then we employed QCT (eq. (2.70)) and "on-the-fly" DC-SCIVR3

(eq. (2.58)) approaches. To estimate the accuracy of the employed DFT set-up, we have compared
these results to the same calculations using DFT/PBE, DFT/PBE0 and DFT/B3LYP calculations
on isolated formic acid molecule via a Gaussian basis set. The latter calculations were performed
with the NWChem suite code [188] by M. Cazzaniga.4 The B3LYP functional has been employed

3From now on, we will refer to DC-SCIVR simply as semiclassical (SC) method.
4Theoretical collaborator: Marco Cazzaniga – Dipartimento di Chimica, Università degli Studi di Milano
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successfully in different semiclassical spectroscopy studies for gas-phase molecules and it serves
here as a robust reference. The results are reported in fig. 4.9 and table 4.3. The following nota-
tions is used: ν (stretching), γ (rocking), δ (bending/deformation), ω (wagging) and τ (torsion). A
visualization of normal modes displacements is reported in appendix, fig. C.4.

Harmonic vs QCT and SC In order to appreciate the degree of anharmonicity and quantum
effects, harmonic, QCT and SC spectra are shown in the same graphs. For simplicity, we limit to
discuss the PBE spectra using QE (panel a of fig. 4.9), but similar conclusions can be extended
to the other graphs. The QCT and SC spectrum for each normal mode are red-shifted respect the
harmonic estimate. To identify the fundamental of SC calculations we compare SC spectra to the
classical reference (QCT). We generally take as fundamental frequency the maximum of the QCT
peak and the corresponding signal in the SC calculation. By comparing QCT and SC spectra, we
see the increase in the level of complexity. On the one hand, QCT just includes the anharmonicity.
The SC spectra instead present additional features as both even and odd overtones and combination
bands. The black spectrum include the even overtones and the ZPE peak, which we have placed
at 0 cm−1. Instead the spectra for each vibrational mode include the corresponding fundamental
and the odd overtones. For example at ∼ 2180 cm−1 there is the overtone of ω(CH), while at 2220
cm−1 the one of ν(C-O), which are completely neglected in the QCT spectrum.

Periodic conditions vs isolated system We firstly point out that the PBE calculations using plane
waves basis set (QE) are consistent with the PBE calculations using a Gaussian basis set on a
isolated system (NWChem) at the three levels of approximation (harmonic, quasi-classical and
semiclassical). The largest difference between the two methods is over ν(C=O) and τ (COH). We
remind that also other factors might be the source of these differences such as the cutoff for the en-
ergy wavefunctions and density in the QE calculations and the basis set employed for the NWChem
calculations.

Exchange-correlation functional By using different exchange-correlation functionals, we found
that QCT and SC frequencies are more accurate using the hybrid functional PBE0 and reach the best
agreement using B3LYP functional, which presents a mean absolute error (MAE) of ∼ 30 cm−1.
However, the semiclassical PBE spectrum using QE reproduces quite well all the features of B3LYP
semiclassical spectra, overtones and combination bands. Thus, we consider our computational set-
up reliable to study the adsorption of HCOOH on the TiO2 anatase (101) surface, keeping in mind
that some of the QCT and SC frequencies will be largely shifted compared to the experiment.

4.5 Assignment of monodentate and bridging bidentate vibrational
features

As previously discussed in section 4.3, there is evidence that both mono- and bidentate config-
urations contribute to the spectra. However, the monodentate/bidentate relative population is
temperature-dependent. To disentangle purely anharmonic and temperature-dependent effects
from those coming from the sum of signals from mono- and bidentate configurations, we compare
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Figure 4.9: QCT and SC spectra for the gas-phase FA calculated at different theoretical approxima-
tions. The QCT and SC are reported in dashed and continuous lines respectively, harmonic values
are represented with dashed vertical lines. The intensity of the each peak has been normalized to
one and SC spectra have been shifted with ZPE peak to 0 energy value.
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Table 4.3: Harmonic, QCT and SC frequencies for the gas-phase FA calculated at different theo-
retical approximations. All values are given in cm−1.

Exp.a Harmonic QCT SC Harmonic QCT SC
QE PBE NWChem PBE

ν(OH) 3570 3600 3489 3493 3609 3507 3508
ν(CH) 2942 2957 2886 2893 2957 2881 2880
ν(C=O) 1776 1753 1720 1718 1779 1749 1750
γ(CH) 1379 1352 1342 1340 1360 1330 1330
δ(OH) 1306 1260 1187 1171 1268 1226 1226
ν(C-O) 1104 1076 1042 1039 1087 1063 1062
ω(CH) 1033 1004 990 989 1009 994 994
τ (COH) 641 680 641 635 703 687 686
δ(OCO) 636 605 597 596 608 600 600
MAE 30 55 57 27 49 49

NWChem PBE0 NWChem B3LYP
ν(OH) 3570 3793 3695 3694 3734 3637 3638
ν(CH) 2942 3066 2992 2992 3039 2966 2966
ν(C=O) 1776 1869 1840 1840 1832 1807 1808
γ(CH) 1379 1413 1405 1404 1411 1402 1402
δ(OH) 1306 1324 1242 1242 1310 1225 1226
ν(C-O) 1104 1159 1130 1130 1129 1100 1100
ω(CH) 1033 1068 1052 1052 1058 1039 1040
τ (COH) 641 709 677 676 700 669 668
δ(OCO) 636 639 634 634 633 626 626
MAE 73 45 45 52 30 31

a From reference [189].

the frequencies of mono- and bidentate modes as obtained by means of ab initio QCT and SC
calculations with the location of the measured peaks. To understand better the role of OH and
OD groups, we have also calculated the spectra for deuterated HCOOD. Relying on the extensive
tests on the gas-phase FA (see section 4.4), the assignment of the experimental spectra will be
conducted by comparing the calculated fundamentals with the measured IR peaks, and by taking
into account the intrinsic error due to the DFT/PBE approximation. We have divided the spectra
into multiple regions: the fingerprint (900-1500 cm−1), the carbonyl and the C-H stretching re-
gions, whose spectroscopic features are essential to distinguish between the mononodentate and
briding bidentate modes. Then, we will focus on the OH and OD stretching signals. Since the
deprotonated monodentate is highly unfavoured according to our calculations, we will not include
it in this analysis. We remind that the intensities of the computed QCT and SC power spectra
cannot be compared to experimental IR absorption intensities. Therefore we will limit our study
to the peak positions and shape of the signals.
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4.5.1 Fingerprint region

Figure 4.10 presents the experimental and calculated spectra in the fingerprint region (900-1500
cm−1).

COH torsion Starting from the lower extreme of fig. 4.10, we notice the presence of a peak at
∼ 970 cm−1 in the low-temperature spectrum of HCOOH (panel (a2)), which is not present in the
spectrum of HCOOD (panel (b2)). A tentative assignment of this peak is the vibrational mode
τ (COH) of an adsorbed molecular monodentate geometry, compatible with both MH-intra (panel
(a3)) and MH-inter ((panel (a4)). We have calculated the corresponding torsion for the deuterated
system, τ (COD), which for both harmonic, QCT and SC methods is below 800 cm−1 and, therefore,
it does not belong to the investigated frequency-region (900-1500 cm−1).

Table 4.4: Experimental and calculated COH torsion frequencies (cm−1) of FA gas-phase and
molecularly adsorbed.

τ (COH) HCOOH
gas-phase molecularly adsorbed

Exp. 641a 969b

MH-intra MH-inter
Harmonic 680 997 976
QCT 641 941 952
SC 635 935 947

a From reference [189].
b The data refer to the low temperature spectrum panel a2 of
fig. 4.10.

CH wagging Next, we assign the peaks of the experimental spectra of HCOOH at 1038 cm−1

(r.t.) and 1079 cm−1 (l.t.) to the ω(CH) mode of either MH-intra or MH-inter (or both) and to
the ω(CH) of BB(H) configuration (panel (a5)), respectively. Similar peaks occur in the IR spectra
of HCOOD, with the low-temperature spectrum presenting a broad signal at 1035 cm−1, which
we assign to the ω(CH) mode of BB(D) (panel (b5)), and a doublet at 1066 and 1076 cm−1. Our
calculated spectra of ω(CH) do not present any doublet neither for MD-intra (panel (b3)) nor for
MD-inter (panel (b4)). Therefore, we assign the peak at 1066 cm−1 to the ω(CH) mode of MD-
intra or MD-inter (or both), for which our harmonic, QCT and SC calculations predict lowered
wavenumbers with respect to the corresponding modes in HCOOH. Instead, the peak at 1076 cm−1

might be due to the presence of HCOOH impurities.

C-O stretching Proceeding in the l.t. IR spectra of HCOOH (panel (a2)), we notice a doublet
at 1228 and 1255 cm−1, which can be resolved, according to our calculations, as the ν(C-O) of
MH-inter and MH-intra species. In the experimental deuterated spectra these peaks are shifted at
1259 and 1273 cm−1 (panel (b2)).
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(a) HCOOH (b) HCOOD

(a4) MH-inter (b4) MD-inter

(b5) BB(D)(a5) BB(H)

(a3) MH-intra (b3) MD-intra
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Figure 4.10: The QCT and SC power spectra of the fingerprint region of adsorbed FA compared
with the room- (r.t.) and low-temperature (l.t.) FT-IR spectra at a selected partial pressure PFA

(mbar). Left: HCOOH adsorption; right: HCOOD.

OCO symmetric stretching A peak at ∼ 1360 cm−1 appears in both IR spectra of HCOOH and
HCOOD at room and low temperatures. We attribute this peak to νs(OCO) of BB(H) and BB(D)
formates. In our calculated SC spectra of BB(H) and BB(D), νs(OCO) is splitted into a doublet.

CH rocking Lastly, we attribute the signals at ∼ 1380-1390 cm−1 in the HCOOH spectra to the
γ(CH) vibrational mode of adsorbed HCOOH, which is also present in HCOOD spectra. We are
not able to determine if this signal, which is splitted in the experimental low-temperature of about
10 cm−1, is due to molecular adsorption or bridging bidentate formate.

4.5.2 Carbonyl region

This region (see fig. 4.11) is characterized by the presence of the antisymmetric stretching of OCO
of the formate HCOO, νa(OCO), and of the ν(C=O) of monodentate configuration.

We confirm the attribution, made previously in the existing literature, of νa(OCO) at ∼ 1560 cm−1,
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Table 4.5: Experimental and calculated CH wagging frequencies (cm−1) of FA gas-phase and
molecularly adsorbed.

ω(CH)
HCOOH HCOOD

gas-phase
Exp.a 1033
Harmonic 1004 1001
QCT 990 983
SC 989 982

molecularly adsorbed
Exp. l.t. b 1079 1066, 1076

MH-intra MH-inter MD-intra MD-inter
Harmonic 1062 1067 1020 1019
QCT 1038 1031 1005 1003
SC 1038 1015 1004 1003

a From reference [189].
b The data refer to formic acid partial pressure reported in the panels of fig. 4.10.

Table 4.6: Experimental and calculated C-O stretching frequencies (cm−1) of FA gas-phase and
molecularly adsorbed.

ν(C-O)
HCOOH HCOOD

gas-phase
Exp.a 1104 1176
Harmonic 1076 1147
QCT 1042 1132
SC 1039 1130

molecularly adsorbed
MH-intra MH-inter MD-intra MD-inter

Exp. l.t. b 1255 1228 1273 1259
Harmonic 1253 1250 1292 1282
QCT 1232 1215 1293 1256
SC 1231 1203 1289 1247

a From reference [189].
b The data refer to formic acid partial pressure reported in the panels of fig. 4.10.

as seen both at room and low temperature in HCOOH (panels (a1) and (a2)) and HCOOD (panels
(b1) and (b2)) adsorption. The harmonic estimates for νa(OCO) of BB(H) and BB(D) are lower
than the experimental frequencies by about 46 cm−1. Such underestimate stays in the QCT and
SC calculations, which are significantly red-shifted respect to the harmonic estimate leading to an
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Table 4.7: Experimental and calculated CH rocking frequencies (cm−1) of FA gas-phase and
molecularly adsorbed.

γ(CH)
HCOOH HCOOD

gas-phase
Exp.a 1379 1365
Harmonic 1352 1340
QCT 1342 1310
SC 1340 1310

molecularly adsorbed
Exp. r.t. (l.t.) b 1387 (1381, 1391) 1386 (1382, 1392)

MH-intra MH-inter MD-intra MD-inter
Harmonic 1358 1368 1362 1371
QCT 1321 1341 1332 1345
SC 1325 1333 1327 1344

a From reference [189].
b The data refer to formic acid partial pressure reported in the panels of fig. 4.10.

Table 4.8: Experimental and calculated fingerprint region vibrational frequencies (cm−1) of FA
adsorbed as bridging bidentate formate.

bridging bidentate
Exp. r.t. (l.t.)a Harmonic QCT SC

HCOOH BB(H)
ω(CH) 1038 (n.o.) 1010 1011 1009
νs(OCO) 1365 (1370) 1335 1305 1262, 1323
γ(CH) 1387 (1381, 1391) 1363 1322 1315

HCOOD BB(D)
ω(CH) 1034 (1039) 1010 995 992
νs(OCO) 1364 (1362) 1335 1275,1371 1283,1357
γ(CH) 1386 (1382, 1392) 1363 1323 1327

a The data refer to formic acid partial pressure reported in the panels of fig. 4.10.

error of almost 100 cm−1 with respect to the experiment (table 4.9).

The attribution of ν(C=O) is more controversial. At room temperature the IR spectra of both
HCOOH and HCOOD are characterized by ν(C=O) stretching signal at ∼ 1675 cm−1. Taking into
account the intrinsic error due to the PBE approximation, we attribute this peak to the ν(C=O) of
molecular monodentate MH- and MD-intra (or -inter) (table 4.10). In particular, the SC spectrum of
ν(C=O) in the intra and inter configurations of both HCOOH and HCOOD presents multiple peaks
in contrast to the νa(OCO) signal. This is mainly due to the strong coupling with the other molecule
modes and the phonons of the surfaces. Furthermore, a peak at ∼ 1715 cm−1 shows up at very
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(a) HCOOH (b) HCOOD

(a4) MH-inter (b4) MD-inter

(b5) BB(D)(a5) BB(H)

(a3) MH-intra (b3) MD-intra

(a2) Exp. l.t. (b2) Exp. l.t.

(a1) Exp. r.t. (b1) Exp. r.t.

Figure 4.11: The QCT and SC power spectra of C=O and asymmetric OCO stretching vibration of
adsorbed FA compared with the room- (r.t.) and low-temperature (l.t.) FTIR spectra at a selected
partial pressure PFA (mbar). Left: HCOOH adsorption; right: HCOOD.

low intensity in the room-temperature spectrum of HCOOH and HCOOD and it is significantly
enhanced at low temperature. On the basis of our calculations, which predicts the ν(C=O) of
molecular monodentate more compatible with the signal at 1675 cm−1, we guess that the peak
at 1720 cm−1 is due to the physisorption of HCOOH and HCOOD on the TiO2 nanoparticles, as
suggested by the work of Nanayakkara et al. [187], although we did not study the physisorption of
formic acid on anatase.

4.5.3 CH stretching

The room-temperature IR spectrum of adsorbed HCOOH shows, in the window 2600-3200 cm−1

(fig. 4.12-(a1)), three main bands at ∼ 2740, 2870, 2950 cm−1. An additional band is present in
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Table 4.9: Experimental and calculated OCO asymmetric stretching frequencies (cm−1) of FA
adsorbed as bridging bidentate formate.

bridging bidentate
Exp. r.t. (l.t.)a Harmonic QCT SC

HCOOH BB(H)
νa(OCO) 1556 (1557) 1511 1457 1462

HCOOD BB(D)
νa(OCO) 1556 (1559) 1511 1467 1461

a The data refer to formic acid partial pressure reported in the panels of
fig. 4.11.

Table 4.10: Experimental and calculated C=O stretching frequencies (cm−1) of FA gas-phase and
molecularly adsorbed.

ν(C=O)
HCOOH HCOOD

gas-phase
Exp.a 1776 1772
Harmonic 1753 1747
QCT 1720 1727
SC 1718 1725

molecularly adsorbed
Exp. r.t. (l.t.) b 1675 (1680) 1675 (1676)

MH-intra MH-inter MD-intra MD-inter
Harmonic 1645 1647 1602 1636
QCT 1625 1605 1607 1572
SC 1616 1594 1617 1585

a From reference [189].
b The data refer to formic acid partial pressure reported in the panels of fig. 4.11.

the low-temperature spectrum of adsorbed HCOOH at 2936 cm−1 (fig. 4.12-(a2)). The IR spectra
for deuterated FA present similar features (fig. 4.12-(b1), fig. 4.12-(b2)).

As discussed previously, the room-temperature adsorption is dominated by the presence of bridg-
ing bidentate species, while at low temperature the formation of molecular monodentate is more
favored. Thus, we attribute the band at 2936 cm−1 to the CH stretching, ν(CH), of molecular mon-
odentate, while the other bands are associated with bidentate species. The other three bands have
been also observed by Nanayakkara et al. [187] at 2735, 2872 and 2951 cm−1 and attributed, re-
spectively, to the νs(OCO) + δ(CH)5 combination band, the fundamental ν(CH) and the νa(OCO)
+ δ(CH) combination band of bridging bidentate formate species. Our SC calculations do not show
combination bands for BB(H) and BB(D) formates. We notice instead that in the SC spectrum of
BB(H) (fig. 4.12-(a5)) the ν(CH) stretching signal is splitted in three main peaks (see values in
table 4.12). We interpret this splitting as a Fermi resonance, which can also be detected at the QCT

5In our notation δ(CH) corresponds to γ(CH).
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ν(CH)

(a) HCOOH (b) HCOOD

(a4) MH-inter (b4) MD-inter

(b5) BB(D)(a5) BB(H)

(a3) MH-intra (b3) MD-intra

(a2) Exp. l.t. (b2) Exp. l.t.

(a1) Exp. r.t. (b1) Exp. r.t.

Figure 4.12: The QCT and SC power spectra of CH stretching vibration of adsorbed FA compared
with the low- (LT) and room-temperature (RT) FT-IR spectra at a selected partial pressure PFA

(mbar). Left: HCOOH adsorption; right: HCOOD.

level. As regarding HCOOD, ν(CH) is splitted in two main components (see values in table 4.12).

4.5.4 OH and OD stretching

At the simple harmonic level, the adsorption of protonated formic acid in molecular monodentate
species is characterized by a red-shift of the OH stretch on the order of 1000 cm−1 with respect
to the gas-phase (see table 4.13). This red-shift is caused by the formation of a molecule-surface
hydrogen bond that elongates the OH covalent bond when compared to the FA gas-phase (see
table 4.2). The resulting PES of the hydrogen and deuterium (see fig. 4.4) is highly anharmonic.
Because of anharmonicity and dynamical effects, the hydrogen-bonded OH stretching signal is
very complex with multiple peaks (see fig. 4.13). Indeed, the OH stretch couples with both high-
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Table 4.11: Experimental and calculated CH stretching frequencies (cm−1) of FA gas-phase and
molecularly adsorbed.

ν(CH)
HCOOH HCOOD

gas-phase
Exp.a 2942 2954, 2938
Harmonic 2957 2958
QCT 2886 2848
SC 2893 2847

molecularly adsorbed
Exp. l.t.b 2936 2938

MH-intra MH-inter MD-intra MD-inter
Harmonic 3002 2987 3002 2896
QCT 2902 2885 2904 2902
SC 2889 2865 2877 2905

a From reference [189].
b The data refer to formic acid partial pressure reported in the panels of fig. 4.12.

Table 4.12: Experimental and calculated CH stretching frequencies (cm−1) of FA adsorbed as
bridging bidentate formate.

bridging bidentate
Exp. r.t. (l.t.)a Harmonic QCT SC

HCOOH BB(H)
2738 (2739) 2773 2780

ν(CH) 2871 (2875) 2932 2865 2857
2952 (2954) 2943 2931

HCOOD BB(D)
2739 (2742) 2773 2778

ν(CH) 2872 (2878) 2932 2870 2857
2953 (2953)

a The data refer to formic acid partial pressure reported in the panels of
fig. 4.12.

and low-frequency modes and with both internal modes of the molecule and the phonon modes of
the surface. This strong anharmonic modes mixing makes very difficult a pure assignation of the
OH fundamental stretch.

In the procedure as employed in previous DC-SCIVR calculations on adsorbed molecules on the
TiO2 anatase (101) surface [85, 86], the semiclassical spectra were generated from a single classical
trajectory at an energy equal to the harmonic estimate of the ZPE. In order to be able to provide a
better resolution of the OH and OD stretching signals and increase the quality of the QCT and SC
spectra, we have varied the initial momenta of the classical trajectory by decreasing the amount of
the harmonic ZPE at which the system is initialized. As an example, we present in Figure 4.13 the
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QCT spectrum of OH stretch for a selected configuration of HCOOH, MH-intra, with respect to
the variable coefficient α (1/4 ≤ α ≤ 1), which sets the initial condition of the nuclei momenta:
Ekin,0 = α × EZPE,Harmonic. The time evolution of the OfH (f = formic) and OsH (s = surface)
distances from the corresponding classical NVE trajectories are reported in appendix, fig. C.5.
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Figure 4.13: QCT spectra of OH stretching mode of FA adsorbed in MH-intra configuration respect
to different initial conditions given by α (1/4 ≤ α ≤ 1): Ekin,0 = α× EZPE,Harmonic.

Atα = 1, the momenta are initialized to a temperature corresponding to the total harmonic estimate
of the ZPE, causing an excitation of both low- and high-frequency modes. The acid proton jumps
several times back and forth from the molecule to the surface. The OH stretch signal presents
multiple peaks in a wide window of frequencies and yields the hydrogen-bonded monodentate
species a complex floppy nature. We underline that the high-intensity peaks for frequencies below
2000 cm−1 are due to the strong coupling with the rest of vibrational modes of the molecule. By
decreasing α, the system energy is closer to the bottom of the potential-well represented in fig. 4.4.
As a consequence, the proton hopping between the molecule and the surface is generally reduced
and the QCT spectra become more alike to the harmonic ones.

The SC calculations for the OH and the OD stretch have actually been performed atα = 1,α = 3, 4,
α = 1/2. Figure C.7 and fig. C.7 report all the SC spectra of OH and OD stretch at different values
ofα. In the following, we present the QCT and SC spectra with the best defined signal and compare
them with the IR experiments. As the OH and CH stretching signals are close in frequency, we
remind the main conclusion of the previous section 4.5.3. The OH stretching for chemisorbed
molecular FA on TiO2 nanoparticles was attributed at frequency 2591 cm−1 by Nanayakkara and
coworkers [187]. By comparison of the room- (fig. 4.14-(a1)) and the low-temperature experiment
(fig. 4.14-(a2)), we identify the new peak in the low-temperature spectrum at ∼ 2560 cm−1 as a
possible candidate for the OH stretching vibration.

The harmonic estimate of the OH stretch in MH-intra is in good agreement with this attribution
(table 4.13). The QCT trajectory at α = 3/4 of MH-intra (fig. 4.14)-(a3)) gives a peak at the
harmonic estimate. When including quantum effects, the SC calculation shows the same peak at
slightly lower wavenumbers. In the case of MH-inter (fig. 4.14)-(a3)), the SC OH stretch signal is
blue-shifted with respect to the harmonic value and it is found at 2718 cm−1. The OH stretching
fundamental of MH-intra are in better agreement with the experiments than the one of the MH-
inter at all the three levels of calculations (harmonic, QCT, SC). We will therefore, for simplicity,
continue the discussion by referring to the MH-intra configuration.
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Table 4.13: Experimental and calculated OH and OD stretching frequencies (cm−1) of FA gas-
phase and molecularly adsorbed.

ν(OH) ν(OD)
HCOOH HCOOD

gas-phase
Exp.a 3570 2631
Harmonic 3600 2616
QCT 3489 2562
SC 3493 2563

molecularly adsorbed
Exp. l.t.b 2558 2062, 2170

MH-intra MH-inter MD-intra MD-inter
Harmonic 2532 2592 1872 1919
QCT 2532 2622 1951, 2043 1922, 2076
SC 2529 2718 1956, 2089 1850, 2185

a From reference [189].
b The data refer to formic acid partial pressure reported in the panels of fig. 4.14.

As introduced previously in section 4.3.3, the deuteration of FA causes a H/D isotope shift. It
is clear from both the experiments and our calculated spectra, that the OH stretch band shifts to
lower wavenumbers. The experimental low-temperature IR spectrum of HCOOD (fig. 4.14)-(b2))
is characterized by the presence of two large bands in the 1900-2200 cm−1 region. The MD-intra
SC spectrum (fig. 4.14)-(b3)) presents two peaks at 1956 and 2089 cm−1, while the harmonic
estimate is at 1872 cm−1. To summarize, the OH and OD stretching spectra of the monodentate
intra configuration are in well agreement with the experimental findings. On the one hand, the
OH stretching vibration in HCOOH is red-shifted respect to the "free" vibration in the gas-phase
by 1068 cm−1 at the harmonic level. This huge red-shift is caused by the formation of a strong
hydrogen bond with the surface and decreased of about 100 cm−1 when anharmonic and quantum
effects are included. On the contrary, the HCOOD shift respect to the gas-phase is smaller at the
harmonic level (744 cm−1) and it is even less when anharmonic and quantum effects are taken
into account: it is 607 and 474 cm−1 for the two OD stretching peaks, respectively. The previous
considerations suggest that the hydrogen bond in adsorbed HCOOD is weaker than in adsorbed
HCOOH, making the OD stretching to vibrate at frequencies closer to the "free" OD stretch in the
gas-phase HCOOD system.

Concerning the bridging bidentate species, the OH stretch signal coming from the free hydrogen
atom on the surface is a well defined single peak at 3664 cm−1 at the harmonic level, which shifts
down to 3563 cm−1 in semiclassical calculations. The experimental band at ∼ 3700 cm−1 in the
room and low temperature spectrum of adsorbed HCOOH, which is also present in the room tem-
perature spectrum of HCOOD (see fig. C.3), could be attributed to the OH stretching mode in the
bidentate formate. This signal was previously attributed to surface OH hydroxyl groups coming
from water dissociation, most likely on surface defects [158]. Indeed the negative absorption in-
tensity due to the subtraction with the background refers to the chemical species that were already
present in the chamber and, therefore, are not coming from the FA molecule and are most likely due
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ν(OD)ν(OH)

(a) HCOOH (b) HCOOD

(a4) MH-inter (b4) MD-inter

(b5) BB(D)(a5) BB(H)

(a3) MH-intra (b3) MD-intra

(a2) Exp. l.t. (b2) Exp. l.t.

(a1) Exp. r.t. (b1) Exp. r.t.

Figure 4.14: The QCT and SC power spectra of OH and OD stretching vibration of adsorbed FA
compared with the room- (r.t.) and low-temperature (r.t.) FTIR spectra at a selected partial pressure
PFA (mbar). We remind that the doublet at ∼ 2300 cm−1 is due to the CO2 present in the chamber.
Left: HCOOH adsorption; right: HCOOD. All the QCT and SC refer to a single classical trajectory
with α = 1, except MH-intra (α = 3/4) and BB(D) (α = 1/2).

to water vapor molecules. It is unclear whether the dissociation of FA via the bridging bidentate
adsorption should contribute in some way to this signal.

On the contrary, for the deuterated system it is possible to assign a ν(OD) stretching frequency
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coming from HCOOD dissociation. At the harmonic level the OD stretch of BB(D) is 2666 cm−1

and shifts at 2642 cm−1 in SC calculation using α = 1/2. These frequencies are compatible with
the experimental signal at ∼ 2717 cm−1, which is clearly visible in the room temperature spectrum
of adsorbed HCOOD. A similar peak was found by Wang et al. [173] and attributed to a OD stretch.
It is interesting to note that if α = 1, it is very difficult to catch the fundamental of OD stretch in
QCT and SC spectra (see in appendix, fig. C.7). This is due to the fact that the free OD on the
surface is strongly coupled with low-frequency phonon modes of the surface, which are below 500
cm−1. This results in a very broad signal for the SC calculation with α = 1.

Table 4.14: Experimental and calculated OH and OD stretching frequencies (cm−1) of FA adsorbed
as bridging bidentate formate.

bridging bidentate
Exp. r.t. (l.t.)a Harmonic QCT SC

HCOOH BB(H)
ν(OH) n.o. 3664 3564 3563

HCOOD BB(D)
ν(OD) 2717 (2718) 2666 2644 2642

a The data refer to formic acid partial pressure reported in the panels of
fig. 4.14.

4.6 Coupling with the surface

One advantage of using the DC-SCIVR method is the division in subspaces of the different vi-
brational modes according to the averaged Hessian criterion (eq. (2.60)), which helps to identify
the relevant coupling between the different vibrational modes, which is completed neglected in the
harmonic approximation. The modes with the strongest interaction will be contained in the same
subspace. Tables C.18 and C.19 report for HCOOH and HCOOD, respectively, the dimension and
the threshold ϵ of the different subspaces employed to compute the presented semiclassical spec-
tra. For the molecular adsorption of HCOOH (intra/inter) the subspaces contain all the modes of
the molecule and the modes coming from the interaction with the surface, while for the bridging
bidentate adsorption the formate HCOO and the OH stretching were treated from two different
subspaces. To exhaustively study the complex coupling between the molecule and the surface, one
should consider and study all the molecule-surface modes contained in each subspace that we used
to compute the SC spectra. In the following, we will limit to analyze some relevant examples for
each adsorption configuration. To visualize these surface-molecule interactions, we use the dis-
placement arrows that describe the harmonic eigendisplacements, which are mass-scaled so that a
longer arrow corresponds to a larger atomic displacement (fig. 4.15). Furthermore, for simplicity
sake we will give the harmonic frequencies for each mode.

The molecule-surface modes can be generally divided into two main categories: resonances be-
tween the adsorbant and the surface phonons, on the one hand, and localized modes on the adsor-
bant molecule, on the other hand.

For example, the mode #144 of MH-intra is a strong resonance between the adsorbant and the sur-
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#144 #147
MH-intra #144

νHarmonic = 264 cm-1 #199 #209#142 MH-inter #209
νHarmonic = 683 cm-1

#143 #201 #202MD-intra #143
νHarmonic = 255 cm-1#143 #201 #202MD-intra #201

νHarmonic = 643 cm-1
#145BB(H) #145
νHarmonic =264 cm-1

Figure 4.15: The eigendisplacements of some relevant molecule-surface vibrational modes that
are coupled to the adsorbant modes in the three different adsorption configurations. The arrows
illustrate the movement of each atom. Larger is the mass-scaled atomic displacement, longer is the
arrow of the corresponding atom.

face phonons. In particular, this mode can be described as a bending of the OH· · ·O hydrogen
bond accompanied by displacements of the atoms of the surface, mainly oxygen atoms, as under-
lined by the long arrow displacements. Such mode has a very low harmonic frequency, 264 cm−1,
compared to the frequencies of the adsorbant which are in the range 900-3000 cm−1. Despite
this large difference, mode #144 of MH-intra is contained in the same subspace of the adsorbant
modes and therefore it is strongly coupled to them. When considering the corresponding deuter-
ated configuration, MD-intra, we focus on the modes #143 and #201. The mode #143 of MD-intra
has a similar motion of the adsorbant atoms of mode #144 of MH-intra, with the difference that
the oxygen atoms of the surface participate very little to the overall displacements. This can be
therefore characterized as a localized mode of the adsorbant. The mode #201 of MD-intra is a
strong resonance that interest particularly the hydrogen-bonded region. Here we observe a general
deformation of the OCO group of the adsorbant and a significant displacement of the O2c site that
is hydrogen-bonded to the deuterium, which is counterbalanced by the nearest neighbor O3c site
bond to the Ti5c site of adsorption. The harmonic frequency of this mode is 643 cm−1, which
is very close to the δ(OCO) of gas-phase FA (605 cm−1, table 4.3) and to phonon modes of the
clean surface in the range 630-648 cm−1. For the inter pair configuration the mode #209 is a weak
localization mode of a O-C-O bending, which is accompanied by a small displacements of surface
oxygen atoms; the one which contributes the most is the neighboring O2c site of the Ti5c adsorp-
tion site. Lastly, we report an example for the BB(H) configuration. As anticipated before, the OH
stretching due to HCOOH dissociation in a BB formate is not contained in the same subspace of the
HCOO formate vibrational space. However, this does not mean that the formate and the free OH
of the surface are not affected by the presence of one another. Indeed, the mode #145 of BB(H)
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is a strong resonance between a out-of-plane bending of the O-C-O group and a movement that
affects the hydroxyl group on the surface. The frequency of mode #145 is 264 cm−1, quite low if
compared to the characteristic formate vibrations, which are in the 1000-3000 cm−1 range. Note,
again, despite the large differences of frequencies, that mode #145 is dynamically coupled with the
formate vibrations.

4.7 Quantum equilibrium properties

In section 4.5, we have shown how much it is important to include both anharmonic and quantum
effects to properly describe the dynamics of the investigated adsorption phenomenon. As most in-
teresting properties, we have highlighted the importance of the hydrogen-bond in molecular mon-
odentate, which highly affects the vibrational properties of both adsorbed HCOOH and HCOOD.
In this last part of the chapter, we therefore focus on the molecular monodentate configuration and
the impact of NQEs on the equilibrium properties of the system through PIMD simulations. In par-
ticular, we have used a path integral generalized Langevin equation thermostat [46, 47] to reduce
the number of replicas in the PIMD simulations. In the following, we will illustrate the probability
distributions of bond lengths and the temperature-dependent observables. Firstly, a comparison
with the gas-phase molecule is presented. Then, we will discuss the thermal and isotope effects.
Finally, we investigate the proton localization and the proton transfer between the molecule and the
surface.

4.7.1 Formic acid before ad after adsorption

To measure the impact of quantum effects in mondentate configuration, we have firstly compared
the main bond lengths distances of FA before and after adsorption at low temperature (Figure 4.16)
through PIMD method. The presence of a H-bond with the surface makes the probability function
of the O–H distance highly asymmetric, which causes the elongation of the O–H covalent bond
length with respect the isolated gas-phase FA. Very tiny effects occur on the C–H bond length.
These results are completely in accordance to what we have found for the vibrational spectra, which,
with respect to the gas-phase, predict a red-shift for ν(C=O) and ν(OH), a blue-shift for ν(C-O)
and very similar frequency for ν(CH).
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Figure 4.16: Probability distributions at 100 K of bond lengths of FA molecule before and after
adsorption via monodentate mode, obtained from PIMD simulations.
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4.7.2 Thermal and isotope effects

Figure 4.17 reports the probability functions for the inter-atomic distances close to the adsorption
site at 100 K and 300 K. As a general trend, we point out that classical distributions are narrower
than the quantum ones especially for O–H covalent bond and O· · ·H lengths. The largest difference
between classical and quantum result is at low temperature, which is mainly due to the importance
of the ZPE effects. However, we notice, that even at 300 K the classical distribution for the O–H
covalent bond length is still quite different from the quantum case. The hydrogen bond distance
O· · ·H is peaked at ∼ 1.40 Å ( ̸= statistical average 1.38) for HCOOH, while O· · ·D is peaked
at ∼1.45 Å (̸= statistical average 1.43) in HCOOD. Therefore, the hydrogen bond is shorter in
HCOOH than HCOOD. We remind that this is completely the opposite effect of what we have found
in the crystal system KOH/KOD (section 3.5.3), where the hydrogen bonds are long and weak.
Here, the hydrogen bonds are short and strong and the quantum fluctuations due to the stretching
motion of OH and OD prevail on the bending ones and reinforce the hydrogen bond. Thus, the
O· · ·H length predicted by the classical Langevin dynamics is the longest (weakest interaction),
and the hydrogen bond is stronger in adsorbed HCOOH than adsorbed HCOOD, confirming what
we suggested in section 4.5.4. Also r3 (Ti5c–O2c) and r4 (Ti5c–OC) distances are affected by
NQEs as evidenced by the broadening of the distributions and the shift of the peaks with respect
the classical ones at low temperature, confirming that all the environment close to the hydrogen
bond is involved.

(a) 100K

(b) 300K
O

H

C
O
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Ti O
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r2r3
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r1 r2 r3 r4

Figure 4.17: Probability distributions at (a) 100 K and (b) 300 K of inter-atomic distances r1, r2,
r3 and r4 as sketched in the plot of protonated FA and deuterated FA adsorbed in the monodentate
intra mode, obtained from PIMD simulations. The probabilities are compared to the corresponding
classical results. The scales over the x-axis are the same for the two temperatures, but are different
for r1, r2, r3 and r4.
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4.7.3 Proton localization

In fig. 4.4 we have shown that the PES for monodentate mode is characterized by a well defined
minimum corresponding to molecular monodentate MH-intra, while the dissociated configuration
is highly unfavorable and does not represent a minimum. The potential is therefore characterized
by a single well presenting a high level of anharmonicity. By looking at the fig. 4.18, the time
evolution at 100 K of O–H covalent bond distance and O· · ·H hydrogen bond distance for the
centroid is characterized by several hopping events in a short time frame of about just 1 ps, which
are significantly less for HCOOD.

(a) HCOOH

(b) HCOOD

Figure 4.18: Time evolution at 100 K of O–X (X=H,D) covalent bond distance (OfX) and O· · ·X
hydrogen bond distance (OsX) in a time frame of 1 ps. Panel (a) HCOOH, panel (b) HCOOD. The
time evolution refers to the centroid trajectory starting from MX-intra mode.

To appreciate the quantum properties of HCOOH/TiO2 system, we have made a comparison of
the distribution of the proton transfer coordinate at 100 K between MH-intra mode and other well-
known systems, the formic acid dimer (FAD) and the zundel cation. The FAD was modeled using
a fitted potential implemented by Qu et al. [190], while the zundel cation probability distributions
were extracted from the work of Shran et al. [191]. The proton sharing coordinate δ is defined
as the following: δ = (r2 − r1) for I and II and δ = (r2 − r1) and δ = (r4 − r3) for III. The
zundel cation represents the extreme condition in which the inter-oxygen distance is just about 2.40
Å, the hydrogen bond is symmetrized and the proton is equally shared between the two oxygens.
The formic acid dimer instead represents the opposite case, the hydrogen bonds are much more
elongated corresponding to an equilibrium inter-oxygen distance of 2.68 Å. This results in low
proton hopping events and the proton is localized on the donor sites. The Of -Os distance of the FA
adsorbed in the monodentate configuration is between the previous values. However, in contrast
with both the zundel cation and the FA dimer, there is no mirror plane passing through the centered
position. In the proton distribution for the adsorbed molecule, there is a single maximum for δ > 0.
The proton dissociation (corresponding to δ < 0) is not an equilibrium position, even when NQEs
are included. However, the short hydrogen bond (averaged Of -Os distance = 2.47 Å) leads the
hydrogen bond donor and acceptor sites to share much more the proton compared to the formic
acid dimer. This results in highly anharmonic quantum properties which affect the OH stretching
signal. The symmetric case δ = 0 is not achieved due to the fact that, differently from the zundel
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cation, this system is heterogeneous and the potential is not symmetric.

Figure 4.19: Sketch of the chemical structure of (I) zundel cation, (II) formic acid adsorbed on
anatase (101) surface in monodentate mode (intra) and (III) formic acid dimer.
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I Zundel cation 2.40
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Figure 4.20: Probability distribution at T = 100 K of proton sharing coordinate δ in (I) zundel
cation from Shran et al. [191] (Figure 4, curve at 2.4 Å) , (II) formic acid adsorbed on anatase
(101) surface in monodentate mode (intra) and (III) formic acid dimer using PES from Qu et al.
[190].
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4.8 Conclusion

In this chapter, we have addressed the complex phenomenon of adsorption of formic acid molecule
on the TiO2 anatase (101) surface by incorporating quantum and anharmonic effects in the molec-
ular dynamics simulations. This study was conducted in close collaboration with some experimen-
talists, who performed new FTIR spectra on anatase nanopowders. Our results reveal the presence
of competing adsorption configurations, as suggested in previous works. On the one hand, the
formic acid molecule can adsorb in a molecular form; on the other hand, it can dissociate form-
ing a formate species and free hydroxyl groups on the surface. According to our calculations, the
most stable configuration is the molecular monodentate mode intra-pair, which presents an hydro-
gen bond with a O2c site of the surface. The dissociation via similar monodentate mode is highly
unfavoured and does not represent a meta stable configuration. Instead, the dissociation presents
a local minimum for a bridging bidentate configuration, where the OCO plane of the formate is
parallel to the [010] direction.

The adsorption picture appears to be very complex, with experimental spectra at room and low
temperature rich of different spectroscopic features. The room-temperature spectra is dominated
by the presence of bridging bidentate species due to the presence of the characteristic νa(OCO)
and νs(OCO) of the formate. However, at low temperature the adsorption of the FA molecule is
different. Indeed, the low-temperature experiments revealed the formation of a more stable species,
which, under specific deuteration of the acid proton position (HCOOD), presents an isotopic H/D
shift of some bands.

To assign the surface species, we have compared the FTIR spectra with the calculated power spectra
obtained through QCT and DC-SCIVR approaches. In this work, we have employed the PBE
functional, which is very accurate to describe the hydrogen bonds but underestimates the harmonic
frequencies, as we carefully benchmarked the gas-phase FA against higher levels of DFT. Despite
the systematic error due to the PBE functional for some frequencies, we were able to assign some
of the feature of the room temperature and low temperature spectra of both adsorbed HCOOH
and HCOOD. Our calculations are compatible with the assignment of a molecular monodentate
species at low temperature, although some bridging bidentate is also present. In particular, we
focused on the OH and OD stretching vibrations of the hydrogen-bonded molecular monodentate
species (intra-pair). The OH stretching frequencies for adsorbed molecular monodentate is close
the CH stretching region at ∼ 2550 cm−1. The harmonic estimate is in good accordance with
this result, however completely fails to describe the behavior of molecular monodentate deuterated
formic acid, which shows in the experiments two main bands at ∼ 2060 and 2170 cm−1. Indeed,
with the inclusion of anharmonic effects we revealed that the OH stretching is significantly more
red-shifted with to respect the gas-phase than the OD stretch, suggesting that the hydrogen bonds
are stronger in adsorbed HCOOH than adsorbed HCOOD, mainly due to the zero-point energy
effects.

The adsorption of HCOOH and HCOOD presents a mixing of the modes coming from the molecule
and the surface. Through investigation of the subspace used in the DC-SCIVR spectra, we have
shown that both resonances and localized modes of the adsorbant with the surface atoms, mainly
oxygen atoms, contribute to the complex picture of the adsorption, since they are dynamically
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coupled with the vibrational modes coming from the adsorbant.

PIMD distributions confirmed that NQEs are essential to properly describe the monodentate
hydrogen-bonded molecular adsorption, and predict a geometric isotope effect for the hydrogen-
bonds length, which is shorter in HCOOH in accordance to what we found for the vibrational
features. Furthermore, we have shown trough PIMD approach that the monodentate FA/TiO2

system behaves quite differently with respect to other well-known systems, the zundel cation and
the formic acid dimer. To summarize, in the FA/TiO2 system the molecular adsorption is favored
even when including nuclear quantum effects, although the proton is frequently shared between
the surface and the molecule.
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APPENDIX C

C.1 Computational details

ab initio level First principles DFT calculations were performed using the QE package [180]. We
employ the PBE functional [26] for the exchange and correlation potential and norm-conserving
short-range pseudopotentials from Pseudo Dojo distribution [192] (v0.4). The energy cutoff for
the wavefunction was expanded up to 72 Ry (see fig. C.1). The Brillouin zone was sampled with
the only Γ point in surface calculations. Bulk anatase properties with this computational set-up are
reported in table C.15.
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Figure C.1: Convergence respect to the energy cutoff for the wavefunctions.

Table C.15: Calculated lattice parameters (Å) and energy gap (eV) for bulk anatase TiO2 compared
with the available experimental data [143].

a c Gap
Calc. 3.791 9.649 2.2
Exp. 3.782 9.502 3.2
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Relax calculations All the structural optimization were carried out within a convergence thresh-
old on forces of∼ 0.001 eV/Å. The anatase (101) surface was modeled using a periodic slab formed
by 4 Ti6O12 layers (72 atoms total), which corresponds to a (1 × 3) surface unit cell and surface
area 10.37 × 11.37 Å2. A vacuum region ∼ 13 Å wide was included to reduce the inter-slab inter-
actions. The surface was build as the following. Bulk anatase containing 4 TiO2 units (12 atoms
total) and defined by the lattice vectors (a1, a2, a3) was optimized with a variable cell structural
optimization. The primitive unit cell was then transformed in (a′1, a′2, a′3) by choosing a′1 = a1−a3
and a′2 = 3 × a2 as the (101) plane vectors and a′3 = 3 × a1 as the stacking vector. A slab of 6
Ti6O12 layers (108 atoms) was generated and the fully relaxation of the atoms with the exception of
the 2 bottom layers was performed. The 6 layers slab was cut in order to obtain the final 4 Ti6O12

layers slab. A relax calculation with fixed bottom layers and free surface layers was performed.

Table C.16: Calculated inter-atomic distances (Å) for anatase TiO2 (101) surface compared with
the available experimental data [193].

Exp. Ti6O12 (4 Layers)
Ti(1)-O(1) 1.90 1.84
Ti(1)-O(2) 1.94 1.98
Ti(1)-O(3) 2.07 2.06
Ti(1)-O(4) 1.99 1.78
Ti(2)-O(1) 1.89 1.84
Ti(2)-O(2) 1.97 2.01
Ti(2)-O(3) 1.92 1.94
Ti(2)-O(4) 1.89 2.09
Ti(2)-O(5) 2.08 2.15

The adsorption of trans-FA molecule was modeled considering the adsorption of one molecule
of FA in both monodentate (molecular/dissociated) and bidentate (dissociated) adsorption (limit
weak coverage). The minimum distance between periodic copies is respectively ∼ 8 and ∼ 11 Å in
[1̄01] in [010] direction for monodentate and ∼ 10 and ∼ 9 Å for bidentate. The binding energies
were calculated as:

Eb = Esurf. + Emol. − Esys.

Furthermore, to assure the order of stability of the different adsorption configuration, we performed
test for i) the BZ sampling : Γ point vs [2 × 2 × 1] k-points grid mesh ; ii) the surface unit cell :
(1× 3) vs (1× 4).

Table C.17: Binding energy of monodentate and bidentate configuration minima of FA adsorbed
on anatase (101) surface.

(1×3) ; Γ (1×3) ; [2×2×1] (1×4) ; Γ
MH-intra 0.819 0.813 0.818
MH-inter 0.814 0.809 0.812
M(H) 0.374 0.374
BB(H) 0.666 0.691 0.561
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PIMD and classical Langevin simulations The NVT PIMD and classical Langevin simulations
were performed using i-Pi interface [194] to QE. In particular, the method Path Integral Generalized
Langevin Equation Thermostat (PIGLET) [46, 47] was used, allowing a faster convergence on the
number of beads in the PIMD simulation. The convergence tests on the number of beads have been
performed on FA molecule (Figure C.2). The number of beads was set n = 12 at 100 K and n = 8

at 300 K. The friction coefficient γ was set to 10 THz and the time-step dt to 0.5 fs. The total length
of PIMD simulations was 5 ps for the gas-phase and between 5-10 ps for the molecular adsorption.
Classical Langevin simulations were conducted instead over ∼ 23 ps. For the formic acid dimer,
we have perfomed a PIMD calculation at T = 100 K using 64 beads within a simulation time of 50
ps, using the fitted potential energy surface from ref. [190]. The trajectories were analyzed using
the python library MDTraj [195]. Probability distributions were computed using Gaussian kernel
density estimation from python SciPy package [196].
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Figure C.2: Probability distribution at 100 K of bond lengths of FA molecule respect to the number
of replicas N used in PIGLET calculations.

Procedure for calculating QCT and SC power spectra The QCT and DC-SCIVR power spec-
tra for each adsorption configuration were computed according the following steps:

1. Hessian matrix at Req using a finite difference scheme using the FD (PHonon QE) code;

2. Diagonalization of the hessian matrix to compute the harmonic normal modes;

3. NVE MD simulation (velocity-Verlet) with: i) initial positions Req; ii) momenta initialized
to the harmonic estimate of ZPE; iii) time-step dt ∼ 0.24 fs (10 Ry a.u.) and iv) total
simulation length of 0.6 ps (2500 iterations);

4. Fast-Fourier Transform of velocity-velocity correlation function (QCT spectra);

5. Averaged hessian over 20 hessians along the trajectory → ⟨Hij⟩;

6. Division of the DOF in subspaces of reduced dimensionality via analysis of ⟨Hij⟩i ̸=j ;

7. Potential energy along the trajectory projected in the subspace of interest;

8. Hessian along the trajectory in the subspace of interest;

9. Semiclassical spectra (DC-SCIVR spectra).

110



Subspaces subdivision for DC-SCIVR calculations In the following the dimension of the se-
lected subspaces are reported.

Table C.18: Selected subspaces for HCOOH ads. using a single trajectory initialized to a factor α
of the ZPE harmonic energy (Ekin,0 = α× EZPE,Harmonic).

α = 1 α = 3/4 α = 1/2
ϵ (10−6) dim. ϵ (10−6) dim. ϵ (10−6) dim.

MH-intra 2.0 17 1.5 18 1.5 13
MH-inter 1.2 15 1.6 13 1.5 13
BB(H) [formate] 5.0 6
BB(H) [OsH] 15 3

Table C.19: Selected subspaces for HCOOD ads. using a single trajectory initialized to a factor α
of the ZPE harmonic energy (Ekin,0 = α× EZPE,Harmonic).

α = 1 α = 3/4 α = 1/2
ϵ (10−6) dim. ϵ (10−6) dim. ϵ (10−6) dim.

MD-intra 1.6 16 1.4 16 1.02 16
MD-inter 2.4 10 1.6 13 1.6 13
BB(D) [formate] 5.0 2,3 4.0 2,3
BB(D) [OsD] 12.5 3 7.0 3

C.2 Supplementary material

Figure C.3: FTIR spectra at room temperature of protonated FA vs deuterated FA adsorbed on
anatase TiO2 nanopowders exposed to PFA = 10−7–10−3 mbar, compared to the spectra recorded
after FA desorption at PFA = 10−7 mbar (black curve).
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δ(OCO) τ(COH) ω(CH)

ν(C-O) δ(OH) γ(CH)

ν(C=O) ν(CH) ν(OH)

Figure C.4: The eigendisplacements of trans formic acid molecule.
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Figure C.5: Time evolution of r1 = OfH and r2 = OsH during the NVE dynamics of FA adsorbed
in MH-intra configuration at different initial conditions given by α = [1/4, 1] (Ekin,0 = α ×
EZPE,Harmonic).
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MH-intra α=1 MH-intra α=3/4

MH-inter α=3/4 

MH-intra α=1/2 

MH-inter α=1 MH-inter α=1/2

Figure C.6: SC and QCT spectra of OH stretching mode of FA adsorbed in MH-intra and MH-inter
configurations at selected α (1, 3/4, 1/12).

MD-intra α=1 MD-intra α=3/4 

MD-inter α=3/4 

MD-intra α=1/2 

MD-inter α=1 MD-inter α=1/2

BB(D) α=1 BB(D) α=1/2

Figure C.7: SC and QCT spectra of OD stretching mode of FA adsorbed in MD-intra, MD-inter
and BB(D) configurations at selected α (1, 3/4, 1/12).
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CHAPTER 5

A FIRST INVESTIGATION ON THE RELEVANCE OF

QUANTUM AND ANHARMONIC EFFECTS IN GAS-PHASE

AND SOLVATED GUANINE AND CYTOSINE BASE PAIR

5.1 Introduction

Hydrogen bonds play a crucial role in biomolecular systems. Here we consider the DNA molecule,
the most important hydrogen-bonded system of all. The double helix of the DNA is a long polymer
chain formed by three main components: the sugar ring deoxyribose, the phosphate groups and
the purine (guanine (G), adenine (A)) and pyrimidine (cytosine (C), thymine (T)) bases. Two
main factors contribute to the stability of the DNA: the base pairing between complementary bases
(GC and AT) and the stacking interaction between adjacent bases. The base pairing essentially
consists in the formation of three hydrogen bonds between guanine and cytosine and two between
adenine and thymine, in their Watson and Crick (WC) conformation [197]. Despite being a very
stable molecule, sometime the DNA can experience some damage, causing a modification of the
original genetic material. The replication of damaged DNA may lead to gene mutations responsible
for genetic disorders or illnesses. One of the possible sources of the DNA mutations is the base
mispair. Already at the beginning of the elucidation of the DNA structure, Watson and Crick
suggested that one of the sources of genetic mutations could be the tautomerisation of the base
pairs [198]. Tautomerization is a form of isomerization, in which the protons of a molecular system
are redistributed without changing the chemical formula (see, for example, fig. 5.1). Due to the
presence of keto and amino groups, tautomerization is of relevant importance in nucleobases, for
which an intense research field has been developed during the years [199].

In a study by Rejnek and Hobza, accurate calculations at MP2 level have shown that the WC-
AT is much more stable than the noncanonical tautomers, while in GC the WC-GC, which is the
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Figure 5.1: Sketch of keto-enol tautomerization in guanine nucleobase. Reproduction from refer-
ence [200].

most stable conformer, dominates but the population of some other noncanonical tautomers cannot
be neglected, even when including a water environment via polarizable continuum model (PCM)
[201]. Generally, the interconversion between tautomers can occur through a direct intramolecular
proton transfer as shown in fig. 5.1 and/or assisted by a protic solvent. Another way in which
tautomerism might occur in nucleobases is via a double proton trasfer (DPT) along the hydrogen
bonds within the bases. This model was originally proposed by Löwdin [202, 203] as a possible
source of the spontaneous mutation of DNA. The DPT transforms the canonical Watson and Crick
forms AT and GC into rare tautomers A*T* and G*C* (see, as an example, the DPT mechanism
in GC base pair fig. 5.2). Then, the A*T* and G*C* rare tautomers might eventually originate a
base pair mismatch such as A*C, GT*, G*T and AC*.
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Figure 5.2: Sketch of the double proton transfer in GC Watson and Crick base pair. G*C* is a rare
tautomer, where the Gua moiety is in enol form and the Cyt moiety is in imino form.

Furthermore, Löwdin hypothesized that the DPT might be associated with quantum tunneling due
to the intrinsic quantum nature of the hydrogen atom. However, the DPT mechanism has not been
evidenced yet under physiological conditions. Since the Löwdin hypothesis, several theoretical
studies have been conducted [204]. Recent studies by Slocombe and coworkers proposed that a sig-
nificant contribution to the DPT comes from the quantum tunnelling of the protons and calculated
the tunneling probability in the G-C base pair [205, 206]. Soler et al. suggested in a QM/MM study
with the inclusion of a realistic biomolecular environment that the G*C* tautomers are metastable
in the gas phase and completely unstable in physiological conditions and dispel the DPT as source
of spontaneous point mutations [207]. In support of that, a recent QM/MM study of aqueous DNA
dodecamer [208] showed that the DPT reactions in GC have negligible contribution. The under-
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standing of the equilibrium properties and dynamics of nucleobase pairs is, therefore, of crucial
importance, but a very challenging problem due to the multiple factors that come into play, in
particular the role of the solvent and the backbone and the tautomeric population.

In the present chapter we explore the equilibrium and vibrational properties of the GC base pair
in the gas and condensed phases. Due to their computational complexity, accurate ab initio cal-
culations are not flexible and fast enough to study the GC base pair in a realistic physiological
environment and they are limited to the inclusion of the solvent water molecules in an implicit way
as in the PCM approach. Thus, we employed a molecular mechanics approach to study the Wat-
son and Crick conformation of GC using the AMOEBABIO18 force field [35] (see section 1.3.1),
which has been recently applied to DC-SCIVR spectroscopy of isolated nucleosides [84] and sol-
vated thymidine [209]. The accuracy of AMOEBABIO18 will be discussed in comparison with the
available ab initio calculations performed by G. Botti.1 Considering the exploratory nature of the
present study, first we focus on the Watson and Crick conformer in the gas phase, where a careful
comparison with the calculations by G. Botti is possible, and then we study the effect of the water
solvent. We point out that this is a preliminary study, which is still work in progress.

5.2 Gas-phase Watson-Crick conformer

Our investigation started with the canonical Watson and Crick conformer of guanine and cytosine
base pair using the polarizable force field AMOEBABIO18 [35] as implemented in the Tinker
suite code [210]. The use of AMOEBABIO18 allowed us to investigate only the canonical Watson
and Crick conformation, which is included in the force field parametrization. The exploration of
other isomers such as relevant tautomers is only possible via a reparametrization of the force field
parameters. For the same reason, the sugar moiety had to been included into the calculations. We
have chosen the complex of deoxyguanosine and deoxycytosine (dG·dC) as illustrated in fig. 5.3.
Since we are mostly interested in the GC interbase region, the complex dG·dC is a good reference
of the isolated G·C base pair despite the steric effects caused by the sugar moiety. Our estimated
binding energy of the dG · dC complex is 110.32 kJ/mol, which is in good agreement with the
binding energy calculated at DFT/B3LYP level of theory in the gas phase, 109.66 kJ/mol, from
reference [211].

The GC base pair presents three hydrogen bonds, of which one is formed between the keto C=O
group of Gua and the amino NH2 group of Cyt (N4H· · ·O6), one between the N1H of Gua and the
N3 of Cyt (N1H· · ·N3) and one between the keto C=O group of Cyt and the amino NH2 group of
Gua (N2H· · ·O2) (see fig. 5.3). Table 5.1 reports the relevant hydrogen bond parameters on the
optimized structure of the canonical dG·dC in the gas phase. The hydrogen bonds of the canonical
structure in the gas phase are relatively long and weak, having a donor-acceptor distance > 2.8-3
Å. The order of the hydrogen bond strength is N1H· · ·N3< N2H· · ·O2< N4H· · ·O6. To test the
accuracy of the AMOEBABIO18 force field, we compare our results with DFT/B3LYP calculations
performed on the same system [212]. The main discrepancy regarding the hydrogen bond lengths
is associated with N4H· · ·O6 hydrogen bond, having a difference with the DFT reference over
the distances AB (covalent) and HB (hydrogen bond) of 0.098 Å and 0.129 Å, respectively. It

1Theoretical collaborator: Giacomo Botti – Dipartimento di Chimica, Università degli Studi di Milano.
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Figure 5.3: Representation of the canonical Watson-Crick deoxyguanosine and deoxycytosine nu-
cleoside pair (dG·dC) employed in the current AMOEBABIO18 calculations. The oxygen, nitro-
gen, carbon and hydrogen atoms are colored red, blue, grey and white respectively.

is important to notice that AMOEBABIO18 was designed for the condensed phase, therefore the
deviations from the DFT reference are reasonable. The hydrogen bond angles ∠AHB, which are
very close to linearity, are well reproduced within the AMOEBABIO18 force field.

Table 5.1: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles (◦) in
gas-phase canonical Watson-Crick dG·dC nucleoside pair using AMOEBABIO18 force field. The
shifts of AMOEBABIO18 values with respect the ones from DFT/B3LYP, ∆AMOEBA/DFT, are
reported in parenthesis.

H-bond
AH· · ·B dAB dHB dAH ∠AHB

AMOEBABIO18 N4H· · ·O6 2.890 (0.098) 1.883 (0.129) 1.011 176.6 (-2.5)
(dG·dC) N1H· · ·N3 3.029 (0.091) 2.018 (0.113) 1.011 178.5 (0.7)

N2H· · ·O2 2.938 (0.028) 1.927 (0.039) 1.008 179.1 (0.6)

DFT/B3LYPa N4H· · ·O6 2.792 1.754 179.1
(dG·dC) N1H· · ·N3 2.938 1.905 177.8

N2H· · ·O2 2.910 1.888 178.5
a From ref. [212] with 6-31G(d,p) basis set.

5.2.1 Thermal and quantum effects on structural properties

As a first investigation of the role of nuclear quantum effects on the structure of the GC base pair,
we have studied the equilibrium properties of the dG·dC complex at 300 K. We have used the
adQTB approach, PIMD simulations, as well as classical Langevin molecular dynamics simula-
tions. Figure 5.4 shows the radial distribution function of NH and OH pairs in the GC interbase
region calculated with the three different methods in the gas phase. The peak at 1 Å is related to the
covalent bonds and the one between 1.8-2.2 Å to the hydrogen bonds. The gNH(r) is the only one
presenting a peak in the covalent bond region since there are no OH covalent bond in the interbase
region. We recall that the use of conventional force fields does not allow any proton transfer, so the
conformer is well confined in the canonical structure along the whole dynamics. We firstly point
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out that the adQTB distribution is in good accordance with the PIMD one, meaning that the adQTB
can describe faithfully the equilibrium properties of the dG·dC nucleoside pair. In all cases, the
quantum distributions are wider than the classical ones due to the significant zero-point energy of
the N-H covalent bond. Concerning the hydrogen bonds, there are no strong effects, there is no
significant shift of the hydrogen bond distances.
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Figure 5.4: Radial distribution function g(r) of NH and OH interbase pairs of gas-phase dG·dC at
300 K from adQTB, PIMD and classical Langevin simulations using AMOEBABIO18.

5.2.2 NH stretching vibrations

We performed a vibrational spectroscopy investigation to obtain more insight about the dynamical
properties of dG·dC. The calculation of the vibrational properties of the nucleobase pairs is relevant
to identify the role of the vibrational modes that might be involved in the proton transfer reactions
and the factors that come into play in the stability of the double helix of DNA. Furthermore, vibra-
tional spectroscopy is fundamental to identify the presence of tautomers in the experiments (see
in section D.2 the description of tautomerism in the ANI model). In particular, we have adopted
the QCT approach using a single trajectory initialized to the harmonic estimate of the ZPE in the
isolated gas-phase dG·dC and we have also calculated the vibrational spectra using the adQTB
method. The results are shown in table 5.2 and fig. 5.5.

To our knowledge, there is currently no experimental IR spectrum of the Watson-Crick confor-
mation of dG·dC neither in the gas phase or in solution. Instead, some experimental vibrational
studies have been conducted on G·C clusters [213–217]. However, in the available gas phase spec-
troscopic data the attribution to the canonical Watson-Crick GC was dubious due to the fact that
it is not clear if the isolated species is either in the canonical or in a tautomeric form. Therefore,
we restrict our discussion to the comparison between the different methods and accurate ab initio
calculations performed on the equivalent G·C conformation as a benchmark of the force field ac-
curacy. It has been shown by Bende et al. that anharmonic corrections on the GC base pair are
significant, in particular in the NH and CH stretching and intermolecular normal modes [218]. To
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Table 5.2: GC interbase NH stretching vibrational frequencies in gas-phase dG·dC using AMOE-
BABIO18 at the harmonic, QCT and adQTB levels. The shifts of AMOEBABIO18 values with
respect the ones from DFT-D/B3LYP, ∆AMOEBA/DFT, are reported in round brackets.

NHa
2 NHs

2 NH
Gua Cyt Gua Cyt Gua

AMOEBABIO18 (dG·dC)
Harmonic 3718 (2) 3727 (35) 3577 (188) 3621 3610
QCT 3553 (-42) 3495 (-90) 3448 (74) 3456 3451
adQTB 3539 3558 3447 3465 3465
DFT-D/B3LYPa (G·C)
Harmonic 3716 3692 3389
QCT 3595 3585 3374

a With basis set 6-31G**. The calculation was performed by G. Botti.

characterize the vibrational properties of the canonical Watson-Crick conformation of dG·dC, we
focused on the high-frequency region in the 3000-4000 cm−1 range, which is related to the NH
stretching vibrations of the GC interbase region.

Concerning the force field accuracy, we compare the harmonic and QCT results using AMOE-
BABIO18 with DFT-D/B3LYP data, by considering only the normal modes that are equivalent in
the two different computational approaches. Firstly, we point out that the largest difference between
the force field and the DFT reference is at the harmonic level over the NH2 symmetric stretching
(NHs

2) of Gua, (∆AMOEBA/DFT = 188 cm−1). This shift is reduced to 74 cm−1 when includ-
ing anharmonicity at the QCT level, but the agreement with the DFT-D/B3LYP data worsens for
the other two frequencies, the NH2 asymmetric stretching (NHa

2) of Gua and Cyt, which present a
∆AMOEBA/DFT of -42 and -90 cm−1, respectively.

The adQTB spectra were calculated for each atom type2 directly during the adQTB simulation
and were deconvoluted in order to eliminate the broadening associated with the Langevin friction
force and to obtain sharper peaks. The spectrum of atom type H2, corresponding to the two hydro-
gen atoms of the NH2 group of Gua, is resolved in two peaks, the symmetric and antisymmetric
stretching of NH2 of Gua. Similarly, the spectrum of atom type H4 presents two peaks, which
are the symmetric and antisymmetric stretching of NH2 of Cyt. Lastly, the atom type H1, which
corresponds to the hydrogen atom of the NH group in Gua, presents a single peak. The adQTB
frequencies are very similar to their QCT counterparts in the gas phase, notwithstanding a lower
resolution of the former ones. The only exception is NHs

2 of Cyt, which is at a significantly higher
frequency compared to the QCT result (3495 cm−1 in QCT vs 3558 cm−1 in adQTB). The similar-
ity between the adQTB and QCT spectra are due to the fact that both methods employ a classical
trajectory which includes the zero-point energy. Their relatively good agreement is expected.

2We recall the definition of atom types in a force field. Each atom of the system is associated to a specific atom type,
which is related to its chemical environment.
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(a) 

(b) 

Figure 5.5: Interbase NH stretching vibrational spectra of gas-phase dG·dC using AMOE-
BABIO18. (a) QCT spectra. The corresponding harmonic values are reported as vertical dashed
lines. (b) adQTB spectra. For the atomic sites, see numbering in fig. 5.3.

5.3 Biomolecular environment: preliminary results

5.3.1 Solvent effect: water-box

As previously stated, the advantage of employing a force field over ab initio calculations lies in the
possibility of including the solvent explicitly, without having to use implicit and dubious solvent
models. Thus, to study the solvent effect, we have placed the dG·dC nucleoside pair in a cubic
box of water molecules of length 30 Å as shown in fig. 5.6. We have used periodic boundary
conditions and the particle mesh Ewald (PME) scheme for the long-range interactions [219, 220].
The resulting total number of atoms is 2644 including both the dG·dC and the water molecules.

The geometry obtained after minimization of the solvated dG·dC complex is different with respect
to the gas phase (table 5.3). In the gas phase, the Gua and Cyt moieties are approximately contained
in the same plane. Instead, after the solvatation, the planarity is lost with one of the nucleoside being
staggered from the other one. This significantly affects the interbase hydrogen bonds, which largely
deviate from linearity (see ∠AHB in table 5.1). We notice that the solvent effect is to increase the
dAB and dHB distances in the most external interbase hydrogen bonds N4H· · ·O6 and N2H· · ·O2,
while it decreases the dAB and dHB distances in the internal interbase hydrogen bond, N1H· · ·N3.
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Figure 5.6: Representation of the Watson-Crick dG·dC nucleoside pair in a cubic box of water
molecules of length 30 Å.

Table 5.3: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles (◦)
in solvated-phase with respect gas-phase canonical Watson-Crick dG·dC nucleoside pair using
AMOEBABIO18 force field.

H-bond
AH· · ·B dAB dHB dAH ∠AHB

Gas-phase
N4H· · ·O6 2.890 1.883 1.011 176.6
N1H· · ·N3 3.029 2.018 1.011 178.5
N2H· · ·O2 2.938 1.927 1.008 179.1
Water-box
N4H· · ·O6 3.133 2.147 1.008 165.7
N1H· · ·N3 2.963 1.989 1.013 160.4
N2H· · ·O2 2.963 1.960 1.010 171.6

This can also be read as a decrease of the hydrogen bonds strength in the interbase area, which
is in contact with the surrounding water molecules, while instead the internal hydrogen bond is
strengthened.

Table 5.4: GC interbase NH stretching vibrational frequencies in solvated-phase with respect gas-
phase canonical Watson-Crick dG·dC nucleoside pair using AMOEBABIO18 at the three levels of
theory from harmonic and QCT simulations. ∆gas/condensed, are reported in square brackets.

NHa
2 NHs

2 NH
Gua Cyt Gua Cyt Gua

Gas-phase
Harmonic 3718 3727 3577 3621 3610
QCT 3553 3495 3448 3456 3451
Water-box
Harmonic 3719 [1] 3691 [-36] 3592 [-15] 3579 [-42] 3609 [-1]
QCT 3604 [51] 3605 [110] 3484 [36] 3466 [10] 3513 [62]

In order to point out the differences in the vibrational properties that are due to the solvent, we
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have calculated the harmonic and QCT vibrational spectra in the solvated dG·dC complex (ta-
ble 5.4,fig. 5.7). In our simulations, we observe that NH stretching vibrations of dG·dC are very
sensitive to the environment, both at the harmonic and QCT levels. The harmonic frequencies are
all red-shifted in the condensed phase, with the exception of NHa

2 and NH of Gua, which present
almost the same frequency with respect to the gas phase. In contrast, in the QCT approach all the
investigated modes are blue-shifted with respect to the gas phase (see table 5.4 and fig. 5.7). The
largest contribution is over NHs

2 of Cyt, which is blue-shifted of 110 cm−1. As a general rule,
one should expect that the effect of solvation in a polar medium is to red-shift the frequencies.
Instead, the QCT spectra of dG·dC in the water-box reveal an "improper" blue shift for all the
selected modes, a very peculiar property, whose origins we have not investigated yet but are prob-
ably associated with the effect of the surrounding water on the interbase hydrogen bonds. Usually,
weak hydrogen bonds yield higher stretching frequencies when including anharmonicity due to the
strengthening of the AH covalent bond.

Figure 5.7: QCT spectra of interbase NH stretching vibrations in gas phase and solvated dG·dC
using AMOEBABIO18. The corresponding harmonic values are reported as vertical dashed lines.

Concerning the solvated dG·dC nucleoside pair, we could not evaluate any vibrational and ther-
modynamic properties from adQTB and PIMD simulations at 300 K due to the instability of the
complex in solution. Indeed, in less than 1 ns of simulation, the Gua and Cyt moieties separate (see
fig. D.1 in appendix). This is due to the absence of the DNA backbone, which ensures the stability
of the nucleoside pairs in solution on longer time scales.

5.3.2 Inclusion of DNA backbone: solvated dodecamer

The presence of the DNA-like backbone clearly appears to be essential in the study of solvated
nucleobases. To model a solvated DNA-like system and study the effects on the hydrogen bonds
equilibrium and dynamics of dG·dC base pair, we have adapted a new model, a DNA double helix
dodecamer of sequence d(TTAGGGTTAGGG). The latter was neutralized with 22 Na+ counteri-
ons and solvated in a rectangular water-box of dimensions 70 Å × 45 Å × 45 Å. We used periodic
boundary conditions and the PME scheme. The relevant hydrogen bonds parameters for the op-
timized structure are reported in table 5.5. Also in this system, the G·C base pair presents with
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respect to the gas-phase a deviation from planarity, particularly evidenced by the ∠AHB for the
N4H· · ·O6 hydrogen bond, which is 155.8◦. We note that N1H· · ·N3 and N2H· · ·O2 hydrogen
bonds in the solvated dodecamer are longer and shorter than the ones in solvated dG·dC, respec-
tively. It is well to specify, the role of the counterions and the periodic box lengths has to be further
investigated and their influence on the geometry of the dodecamer.

Table 5.5: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles (◦) in the
solvated dodecamer with respect to the gas-phase canonical Watson-Crick dG·dC nucleoside pair
using AMOEBABIO18 force field.

H-bond
AH· · ·B dAB dHB dAH ∠AHB

Gas-phase
N4H· · ·O6 2.890 1.883 1.011 176.6
N1H· · ·N3 3.029 2.018 1.011 178.5
N2H· · ·O2 2.938 1.927 1.008 179.1
Solvated-dodecamer
N4H· · ·O6 3.118 2.172 1.010 155.8
N1H· · ·N3 3.033 2.025 1.013 172.9
N2H· · ·O2 2.812 1.809 1.009 172.0

To investigate both the structural and vibrational properties of the solvated dodecamer, we have
performed adQTB and classical Langevin simulations at 300 K. In contrast to the water-box sim-
ulations, where the Gua and Cyt moiety were splitting apart from each other, in the adQTB sim-
ulation at 300 K of the solvated dodecamer along a trajectory length of 12 ns, the double helix is
maintained intact. We calculated from this simulation the radial distribution function for AH pairs,
as defined in table 5.5 and compared with the results from the gas phase. The differences between
the gAH(r) obtained from classical and adQTB simulations are significant in both the gas-phase
and the solvated dodecamer, as evidenced by the broadening of the distributions with the inclusion
of NQEs (fig. 5.9). This is mainly due to the larger delocalization of the proton due to the zero-point
energy motion in adQTB simulations. The gAH(r) are very similar for the two phases, suggesting
that there is no significant difference in the AH covalent bonds. The spectroscopic features in the
solvated dodecamer are similar to the ones in the gas phase (fig. 5.8), consistently with the radial
distribution functions. This result is in strong disagreement with the results obtained for dG·dC
in the water-box simulated with the QCT approach. In order to understand if the origin of this
discrepancy is due to the backbone effect or to the lower accuracy and resolution of the adQTB
method, we plan to apply the QCT method to a DNA-like system with more than a couple of bases.
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Figure 5.8: adQTB spectra of hydrogen atom types H2, H4, H1 in gas phase dG·dC using AMOE-
BABIO18. For the atomic sites, see numbering in fig. 5.3.

Classical

adQTB

Dodecamer/Water
Classical

adQTB

Gas phase

Figure 5.9: Radial distribution function g(r) at 300 K of NH covalent bonds in the GC interbase
region of dG·dC in the gas-phase and solvated dodecamer from adQTB simulations using AMOE-
BABIO18.
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5.4 Conclusion

In this chapter, we have explored the equilibrium and vibrational properties of guanine and cytosine
base pair, using different complementary methods. As a DNA building blocks, extensive theoretical
studies on nucleobase pairs have been performed to understand multiple aspects of their behavior.
To explain single point mutations in DNA, one proposed mechanism is the double proton transfer
along the interbase hydrogen bonds, acting as a source of mispair of the bases through the formation
of rare tautomers. The dynamics of nucleobase pairs is strongly affected by the environment in
which they are simulated. To properly describe the physiological conditions, one fundamental step
is the solvatation. This remains a very challenging problem since accurate ab initio calculations
are impossible to obtain.

Via the AMOEBABIO18, we have investigated the canonical Watson and Crick conformation of
dG·dC. Our results via adQTB suggest that the proton delocalization due to the zero-point energy
motion is relevant even at 300 K both in the gas phase and in solvated DNA dodecamer, which
includes both the solvent and the backbone effect. Concerning the vibrational properties, we have
shown that the solvent effect is not straightforward to anticipate. The anharmonic spectra of sol-
vated dG·dC obtained through QCT present an improper blue-shift of all the high-frequency modes
related to the GC interbase region with respect to the gas-phase spectra. This contrasts with the
harmonic approximation which provides mostly a red-shift. Within adQTB, which is less accu-
rate for the study of vibrations, the high-frequency GC interbase spectroscopic features of solvated
DNA dodecamer are similar to the ones in the gas phase. The more accurate QCT method will be
applied to a DNA-like system in the near future.
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APPENDIX D

D.1 Computational details

Harmonic and QCT We employed AMOEBABIO18 [35] force field as implemented in Tinker
version 8.10.1 [221]. The optimized geometries where obtained using a RMS gradient of 0.01
kcal/mol/Å. The parameters in the Tinker input key file are indicated in the following.

For the gas phase dG·dC we used the following key file.

parameters amoebabio18

digits 8

verbose

remove-inertia 1

save-velocity

integrator beeman

save-force

For the condensed phase we build a cubic box of water molecules of length 30 Å and inserted the
dG·dC inside, using the following key file.

parameters amoebabio18

digits 8

verbose

a-axis 30.000

ewald

vdw-cutoff 12.0

ewald-cutoff 7.0

polar-eps 0.00001

polar-predict

save-velocity

integrator beeman
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save-force

neighbor-list

The QCT spectra were computed using the following procedure.

1. Geometry optimization.

2. Hessian diagonalization at the equilibrium geometry and harmonic frequencies.

3. Preparation of the initial velocities of the dynamics.

4. Short time NVE dynamics using Beeman integrator of total length 0.6 ps with dt = 0.2 fs.

5. Calculation of the QCT spectra with FT transform of classical Cvv.

adQTB and PIMD The adQTB and PIMD simulations were performed using the Tinker-HP
software [222] on GPUs. The adQTB simulations at 300 K were long 12 ns, of which we discarded
the first 6 ns as time of adaptation for the γr of each atom species. We used the multi-time step
integrator BAOAB-RESPA1 using a dt = 2 fs and a dtshort = 0.00025 ps. The adaptation velocity
was set to coefficient Aγ = 10−2 ps−1. For the adQTB simulation of the gas-phase, we used the
following input key file.

parameters amoebabio18

digits 8

verbose

a-axis 40.0

ewald

ewald-cutoff 13.0

vdw-cutoff 9.0

thermostat adqtb

integrator baoabrespa

dshort 0.00025

archive

ir_spectra

startsavespec 1000

friction 20

a_gamma 0.01

tseg 0.2

skipseg 5

omegacut 2000

spectra_cm1

REGISTER_SPECTRA

GAMMA_HISTORY

corr_pot

run-mode legacy

For the adQTB simulation at 300 K of the solvated dodecamer, we build a rectangular water box
of dimension 70 Å × 45 Å × 45 Å and used the following input key file.
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parameters amoebabio18

digits 8

verbose

a-axis 70

b-axis 45

c-axis 45

ewald

vdw-cutoff 12.0

ewald-cutoff 7.0

polar-eps 0.00001

polar-predict

thermostat adqtb

integrator baoabrespa

dshort 0.00025

archive

ir_spectra

startsavespec 1000

friction 20

a_gamma 0.01

tseg 0.2

skipseg 5

omegacut 2000

spectra_cm1

REGISTER_SPECTRA

GAMMA_HISTORY

corr_pot

run-mode legacy

The PIMD simulation at 300 K for the gas-phase dG·dC was long 4 ns using the following input
key file.

parameters amoebabio18

digits 8

verbose

a-axis 40.0

ewald

ewald-cutoff 13.0

vdw-cutoff 9.0

integrator baoabrespa

dshort 0.00025

nbeads 16

archive

ir_spectra

friction 20
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tseg 0.2

omegacut 2000

centroid_longrange

polar_centroid

run-mode legacy

D.2 Supplementary material
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Figure D.1: Time evolution of the hydrogen bonds donor-acceptor distances with atom-numbering
defined in fig. 5.6 for the adQTB and PIMD simulations at 300 K of dG·dC in a cubic box of water
molecules of length 30 Å.

Description of tautomerism in the ANI model

The tautomerism is of crucial importance in nucleobases and can affect both the equilibrium and
the dynamics of the base pairs. To simplify the discussion, we now introduce the notation used by
Nir et al. [215] to distinguish between the different tautomers of GC. In this notation ’K’ stands for
keto group, and ’E’ for enol group. The labels ’9’ and ’7’ indicate where the substituent is attached
to the Gua moiety, respectively the N9 and the N7 position. Lastly the ’-1’ indicates a WC type
conformation. The K9K-1, for example, corresponds to the canonical WC conformer, while the
K7E-1 to a WC form, in which the H substituent is attached to the N7 position of the Gua and the
Cyt is enolized (see fig. D.2).

Nir et al. made a tentative assignment of the observed spectrum on the basis of harmonic calcula-
tions at the Hartree-Fock (HF) level performed on several isomers GC [215, 216] in the gas phase.
They identified as the best candidates two isomers, in which the Cyt moiety is in enolic form,
namely K9E-1 and K7E-1. The K7E-1 was later proposed to be the most compatible conformer
[213, 214]. However, in all the calculations anharmonic effects were not included. Furthermore, it
is not clear why the canonical WC form, K9K-1, which is expected to be the most stable conforma-
tion [215] is not appearing in the experimental spectrum. To elucidate the role of tautomerism in
the gas phase GC base pair we have investigated the two isomer K9K-1 and K7E-1. The AMOE-
BABIO18 force field cannot provide a way to study different conformations besides the canonical
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WC and to remove the sugar moiety, which is essential in order to investigate the tautomer K7E-
1. Therefore, we have decided to use a different approach, the neural network ANI model. We
have used the ANI family potentials as implemented in the Torchani [223] python interface inte-
grated with the Atomic Simulation Environment [224] package. The classical NVE simulation was
propagated using a velocity Verlet integration.
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Figure D.2: Sketch of G·C isomers K9K-1 and K7E-1, as per notation by Nir et al. from reference
[215].

The ANI model In the recent years a promising machine learning (ML) interatomic potential
has been developed by the Roitberg group, namely ANI. ANI uses a modified version of the orig-
inal Behler-Parrinello model for symmetry functions [225, 226] to construct single-atom atomic
environment vectors. The first ANI potential, ANI-1x [227, 228], which was trained on about
20 million conformations derived from 57 thousand different molecular configurations computed
with DFT, was developed with the goal of obtain a transferable ML potential that could accurately
describe organic systems containing H, C, N, and O chemical elements. The ANI-1ccx potential
[228] was built on a intelligently selected 10% sub-sample of the ANI-1x data set, but recomputed
with an accurate coupled cluster (approximately CCSD(T)/CBS) level of theory [229]. A recent
version of ANI, ANI-2x [230] includes three new chemical elements (S, F, and Cl).

We performed firstly a geometry minimization of the canonical WC, K9K-1 structure, and the
tautomer K7E-1. The K9K-1 is predicted to be more stable than the K7E-1 by 0.45 eV in the
ANI-2x model. Table D.6 illustrates the hydrogen bond parameters for both the isomers using
the ANI-2x model and compared with DFT-D/B3LYP. As a general trend, we highlight that the
ANI-2x potential gives WC GC base pair isomers in a distorted geometry. This is evidenced by
the hydrogen bond angles ∠AHB, which present a deviation of 11-17◦ with respect the reference
values. The hydrogen bonds distances are in good accordance with DFT-D/B3LYP, except for the
N4H· · ·O6 hydrogen bond, which is overestimated by 0.212 Å and 0.235 Å in K9K-1 and K7E-1,
respectively.

Similarly as we presented in section 5.3, we investigate here the high-frequency stretching vibra-
tions related to the GC interbase region and the NH substituent groups in position N9 of Gua, N1
of Cyt (K9K-1) and N7 of Gua (KE-1). In particular, the presence of the enol group in K7E-1 with
respect to the K9K-1 adds the OH stretch of the Cyt moiety and removes the N1H of Cyt stretch-
ing. We have calculated the QCT spectra for both K9K-1 and K7E-1 isomers, as well the harmonic
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Table D.6: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles (◦) in the
K9K-1 and K7E-1 isomers of G·C computed with ANI-2x model. The shifts of ANI-2x values
with respect the ones from DFT-D/B3LYP, ∆ANI−2x/DFT, are reported in round brackets.

H-bond AH· · ·B dAB dHB dAH ∠AHB
Canonical structure: K9K-1
ANI-2x
N4H· · ·O6 2.967 (0.213) 1.981 (0.269) 1.015 (-0.026) 163.0 (-16.6)
N1H· · ·N3 2.895 (-0.008) 1.887 (0.020) 1.033 (-0.003) 164.0 (-13.7)
N2H· · ·O2 2.883 (-0.009) 1.895 (0.027) 1.015 (-0.009) 163.8 (-15.8)

DFT-D/B3LYPa

N4H· · ·O6 2.754 1.712 1.041 179.6
N1H· · ·N3 2.903 1.867 1.036 177.7
N2H· · ·O2 2.892 1.868 1.024 179.6
Enol Cyt structure: K7K-1
ANI-2x
N4H· · ·O6 3.028 (0.235) 2.033 (0.273) 1.013 (-0.02) 166.7 (-11.8)
N1H· · ·N3 3.090 (0.111) 2.108 (0.162) 1.023 (-0.011) 160.1 (-16.8)
N2H· · ·O2 3.056 (0.034) 2.074 (0.063) 1.014 (-0.006) 162.4 (-14.6)

DFT-D/B3LYPa

N4H· · ·O6 2.793 1.760 1.033 178.5
N1H· · ·N3 2.979 1.946 1.034 176.9
N2H· · ·O2 3.022 2.011 1.020 177.0

a With basis set aVDZ. The calculation was performed by G. Botti.

fundamental frequencies. Our results are compared with DFT-D/B3LYP data, by considering only
the normal modes that are equivalent in the two different computational approaches.

Accuracy of the ANI-2x model The ANI-2x model presents at the harmonic level large
∆ANI−2x/DFT for K9K-1, in particular for the NHs

2 of Gua and N1H of Cyt. The situation is
improved for NHs

2 when anharmonicity is included but becomes worse for all the other modes,
suggesting that the ANI-2x model is not accurate enough to describe the vibrational properties of
K9K-1. For K7E-1 the agreement with the DFT data is better, in particular for the OH stretch-
ing vibration of the Cytosine, which presents the lowest ∆ANI−2x/DFT compared to the other
vibrational modes.

QCT spectra Figure D.3 presents the QCT spectra of both the isomers calculated with ANI-2x
model and compared with the corresponding harmonic and experimental values. In K9K-1 and
K7E-1 all the QCT peaks are red-shifted with respect to the harmonic results, with the exception
of N1H Gua in K9K-1. For K7E-1, the average absolute error respect to the experiment is 107 cm
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Table D.7: NH and OH stretching frequencies characterizing the hydrogen bonds region of G·C
complex in the canonical and tautomer structures. The shifts of ANI-2x values with respect the
ones from DFT-D/B3LYP, ∆ANI−2x/DFT, are reported in round brackets. The MAE with respect
to the experiments is reported for the form K7E-1.

Canonical structure: K9K-1
ANI-2x DFT-D/B3LYPa

Harmonic QCT Harmonic QCT
NHa

2 Gua 3734 (18) 3637 (42) 3716 3595
NHa

2 Cyt 3743 (51) 3660 (75) 3692 3585
NHs

2 Gua 3567 (178) 3514 (140) 3389 3374
NHs

2 Cyt 3587 3491
N1H Gua 3315 3342
N1H Cyt 3741 (99) 3716 (170) 3642 3546
N9H Gua 3725 (56) 3642 (73) 3669 3569
Enol Cyt structure: K7E-1

ANI-2x DFT-D/B3LYPa Exp.b

NHa
2 Gua 3767 (58) 3665 (56) 3709 3609 3552

NHa
2 Cyt 3709 (9) 3628 (47) 3700 3581 3532

NHs
2 Gua 3605 (49) 3549 (93) 3556 3456 3426

NHs
2 Cyt + N1H Gua 3550 3459

N1H Gua + NHs
2 Cyt 3589 3529

OH Cyt 3793 (9) 3653 (-28) 3784 3681 3603
N7H Gua 3767 (76) 3665 (74) 3675 3558 3510
MAE 204 107 160 52

a With basis set 6-31G**. The calculation was performed by G. Botti.
b From ref. [215].

−1, which is more accurate about one hundred value than the harmonic values (MAE 204 cm −1).
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GC K9K-1 GC K7E-1

Figure D.3: QCT spectra of NH and OH stretching modes of K9K-1 and K7E-1 isomers of G·C
base pair calculated with ANI-2x potential. The experimental values are taken from ref. [215].
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CONCLUSION

Hydrogen bond is present in nature in the most disparate forms, being a fundamental interaction in
both inorganic and organic matter. Its features in different chemical environments make it a very
fascinating object to study. Hydrogen-bonded systems are intrinsically affected by an anharmonic
contribution, which can be more or less significant, to the shape of the potential energy surface,
which is usually rather shallow. Although some similarities can be generally drawn, it is very dif-
ficult to predict the behavior of the proton in a hydrogen-bonded system, where nuclear quantum
effects (NQEs) come into play. NQEs can have a strong impact on the sampling of the configu-
rational space as the quantum (Bose-Einstein) and classical (Boltzmann) distributions are pretty
different at low temperatures. As a general trend, NQEs enhance anharmonic effects, thus making
the interpretation of vibrational spectra rather involved. The dynamics of light atoms (such as H
and D) can be also impacted by tunneling phenomena, in sharp contrast to the classical dynamics.
The complex interplay between NQEs and the anharmonicity of the PES greatly complicates the
issue. Therefore, the phenomena that are related to hydrogen bonds cannot be easily predicted in
such a variegated scenario. In this thesis, we have focused on the study of the proton behavior in
selected hydrogen-bonded systems, beyond the classical and harmonic pictures.

NQEs can have an essential role in the phase transitions involving hydrogen atoms. The antiferro-
electric to paraelectric phase transition in potassium hydroxide is governed by the hydrogen bonds.
Here, weak hydrogen bonds (O-O> 3 Å) keep together the crystal structure of KOH via formation
of a zig-zag chain along the b-axis direction between the K-O bilayers. By means of ab initio PIMD,
we have shown that the phase transition can be rationalized in terms of a flipping back and forth of
the protons, which is associated to a OH bending motion. This results in a dynamically disordered
paraelectric phase at high temperature. Under deuteration, a geometric H/D isotope effect is found
in the low-temperature antiferroelectric phase. In KOD the hydrogen bonds are shorter than in
KOH (inverse Ubbelohde effect), causing a structural contraction of the K-O layers, as evidenced
by the lattice parameters.

When a molecule complex forms hydrogen bonds with a substrate, the delocalization of the quan-
tum proton can also play a crucial role in the adsorption. For instance, the adsorption of formic acid
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(HCOOH) on the TiO2 anatase (101) is characterized by a special type of molecular adsorption,
in which HCOOH in a monodentate configuration interacts with the surface via a strong hydro-
gen bond. This is the most stable type of adsorption at T = 0 K at the DFT/PBE level of theory,
while the dissociation along the same type of monodentate mode is unfavorable. The molecular
adsorption is the most favored one even when including quantum effects through PIMD but, in this
scenario, the proton frequently shuttles between the molecule and the surface. The potential en-
ergy surface experienced by the proton is highly anharmonic, making very difficult to catch the OH
stretching vibration. With the use of DC-SCIVR, we were able to identify the OH stretch, which
is found at abnormally low frequencies (< 2700 cm−1) in the nearby of the CH stretching region.
When the acid is deuterated (HCOOD), the molecule-surface hydrogen bond becomes weaker, thus
the red-shift of the OD stretch with respect to the gas-phase HCOOD is less significant than the
corresponding one in HCOOH.

The role of the solvent in the equilibrium and vibrational properties of guanine and cytosine base
pair is fundamental to understand the interactions in the DNA building blocks. A description of
the hydrogen bonds in the guanine and cytosine dimer (dG·dC) in physiological conditions can be
done by employing the polarizable force field AMOEBA. The guanine and cytosine dimer presents
three hydrogen bonds. In the gas-phase dimer the proton delocalization due to the zero-point en-
ergy motion is significant also at room temperature, as suggested by adQTB and PIMD simulations.
The effect of the solvent is not easy to anticipate. The vibrational spectra of solvated dG·dC sim-
ulated with quasi-classical trajectory method reveal an improper blue-shift of the NH stretching
frequencies related to the interbase region. However, solvated dG·dC results to be unstable in the
ns length scale due to the absence of the backbone, which ensures the stability of the dimer. In
the near future, we plan to analyze more in detail the role of the solvent on the equilibrium and
vibrational properties of the dG·dC dimer, by simulating a DNA like system.

The investigation on the selected hydrogen-bonded systems has shown how unpredictable can be
the proton and deuteron behavior in different atomic environments. On the one hand, the KOH
and KOD hydroxides are a manifestation of the importance of hydrogen bonds in inorganic solids.
Here, the hydrogen bonds, although being weak, are fundamental to keep together the KOH struc-
ture. Since the phase transition is mostly governed by low-frequency libration modes, NQEs con-
tribute to weaken even more the hydrogen bonds as evidenced by the differences with respect to
the classical and the deuterated crystal. On the contrary, the opposite effect is found in the ad-
sorbed formic acid on the TiO2 anatase (101) surface, where the strong hydrogen bond between
the molecule and the surface is reinforced when NQEs are included. This results in a largely en-
hanced anharmonicity affecting the vibrational spectra. Lastly, the guanine and cytosine base pair
presents three hydrogen bonds that are normal to rather weak. The latter are strongly influenced
by the presence of the solvent, which can strengthen/weaken the hydrogen bonds. At the present of
the study, we are still investigating the impact of anharmonicity and NQEs on the hydrogen bond
strength, which is essential to understand better the stability of DNA double helix.

All through this study, we have observed that quantum and anharmonic effects are fundamental
to understand both the thermodynamic equilibrium and vibrational properties of hydrogen-bonded
systems. At the same time, an accurate description of NQEs requires an accurate PES. At the
present day, this is still very challenging. In this thesis we have employed both DFT methods, based
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on the GGA-PBE approximation, and force field approaches. On the one hand, distinct approxima-
tions for the exchange-correlation energy in the DFT may considerably modify the hydrogen bond
energy, the barriers and the overall PES profile, resulting in appreciable shifts of the vibrational
frequencies, even at the simple harmonic level. On the other hand, force-field based methods need
to be used very carefully; a benchmark with ab initio data, as we did in this thesis, is preferable
when possible. One possible solution to treat high-dimensional systems, and, more generally, to
include NQEs in molecular simulations with an affordable cost is to explore the PES via machine
learning (ML) interatomic potentials. A lot of attention has been devoted in the recents years to
this subject and several different frameworks have been developed [19, 20]. A big challenge is the
transferability of the potential. In this respect, the ANI model [227, 230], which we benchmarked
for the gas-phase of guanine and cytosine base pair, can be a promising solution. Very recently,
they ANI-2x potential has been interfaced in a ML/MM framework with the AMOEBA force field
[231].
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GLOSSARY

adQTB Adaptive Quantum Thermal Bath.

AIMD ab initio Molecular Dynamics.

B3LYP Becke-3-parameter-Lee-Yang-Parr.

BO Born-Oppenheimer.

DC-SCIVR Divide and Conquer Semiclassical Initial Value Representation.

DFT Density Functional Theory.

FDT Fluctuation-Dissipation Theorem.

GGA Generalized Gradient Approximation.

MC-SCIVR Multiple Coherent States Semiclassical Initial Value Representation.

MD Molecular Dynamics.

NEB Nudged Elastic Band.

NQEs Nuclear Quantum Effects.

PBE Perdew-Burke-Ernzerhof.

PES Potential Energy Surface.

PIMD Path Integral Molecular Dynamics.

QCT Quasi-classical trajectory.

QE Quantum Espresso.

QTB Quantum Thermal Bath.
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SC Semiclassical.

SCIVR Semiclassical Initial Value Representation.

SPA Stationary Phase Approximation.

TA-SCIVR Time Averaging Semiclassical Initial Value Representation.

TDSE Time Dependent Schrödinger equation.

ZPE Zero Point Energy.
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RÉSUMÉ LONG

La liaison hydrogène est une interaction fondamentale dans la matière inorganique et organique.
Ses caractéristiques dans différents environnements chimiques en font un objet très fascinant à
étudier. Les systèmes avec des liaisons hydrogène sont intrinsèquement affectés par la forme de la
surface d’énergie potentielle (PES), qui induit une contribution anharmonique, qui peut être plus
ou moins importante. Il est en outre très difficile de prédire le comportement du proton dans un
système à liaisons hydrogène, où les effets quantiques des noyaux (NQEs) entrent en jeu. Les NQEs
peuvent avoir un fort impact sur l’échantillonnage de l’espace de configuration car les distributions
quantique (Bose-Einstein) et classique (Boltzmann) sont assez différentes à basse température. En
règle générale, les NQEs renforcent les effets anharmoniques, rendant ainsi l’interprétation des
spectres vibrationnels assez complexe. La dynamique des atomes légers (tels que hydrogène et
deutérium) peut également être impactée par des phénomènes d’effet tunnel, contrairement à la
dynamique classique. L’interaction complexe entre les NQEs et l’anharmonicité du PES complique
grandement le problème. Par conséquent, les phénomènes liés aux liaisons hydrogène ne peuvent
pas être facilement prédits dans un scénario aussi varié.

Dans cette thèse, nous nous sommes concentrés sur l’étude du comportement du proton dans
trois différentes systèmes à liaisons hydrogène, au-delà de la vision classique et harmonique.
L’interaction entre la délocalisation quantique du proton et le confinement atomique est très dif-
férente pour chaque système étudié. Pour une description adéquate du mouvement des noyaux,
nous avons adopté des méthodes quantiques approximatives, en utilisant l’approximation de Born-
Oppenheimer (séparation entre les degrés de liberté des électrons et des noyaux) et en traitant
la structure électronique soit par des approches ab initio ou des champs de force. Pour le calcul
des propriétés indépendantes du temps, nous avons principalement utilisé des méthodes de dy-
namique moléculaire par intégrales de chemins (PIMD) [12], qui sont basées sur la formulation
de la mécanique quantique de Feynman. Alternativement, des approches de bains quantiques avec
un thermostat Langevin comme la méthode du bain thermique quantique (QTB) peuvent être util-
isées pour reproduire les propriétés quantiques statistiques [13, 14]. Pour avoir une comparaison
directe avec les expériences, nous avons calculé les spectres vibrationnels à l’aide de méthodes
semi-classiques basées sur la théorie de la représentation de la valeur initiale (SCIVR) [15], qui
traitent à la fois des effets anharmoniques et quantiques dans les spectres vibrationnels.
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1) La transition de phase antiferroélectrique à paraélectrique dans
l’hydroxyde de potassium

Les NQEs peuvent avoir un rôle essentiel dans les transitions de phase impliquant des atomes
d’hydrogène. L’hydroxyde de potassium cristallin est caractérisé par la présence de liaisons hy-
drogène faibles et subit une transition de phase ordre-désordre (IVa → II). La même transition
se produit dans le cristal deutéré mais la température de Curie augmente d’environ 24 K [113].
L’identification des trois structures monocliniques (fig. I) a été une première étape pour la recon-
struction de l’énergie potentielle décrivant la transition de phase. Il y a deux phases ordonnées, qui
sont caractérisées par des chaînes dipolaires de groupes OH parallèles à l’axe b. Ces chaînes for-
ment des liaisons hydrogène faibles entre les deux couches K-O, en stabilisant la structure cristalline
de KOH. Les chaînes de dipôles OH voisines peuvent avoir la même orientation (ferroélectrique)
ou des orientations opposées (antiferroélectrique). La troisième structure est la phase paraélec-
trique, où il n’y a pas de formation de liaisons d’hydrogène. Cette structure n’est pas stable et
représente un maximum de la PES, tandis que les phases ferroélectrique et antiferroélectrique sont
des minimums de la PES.

Ferroelectric (FE): P21 An�ferroelectric (AFE): P21/a Paraelectric (PE): P21/m

z

x y

Figure I: Les structures statiques du KOH monoclinique: ferroélectrique (FE), antiferroélectrique
(AFE) et paraélectrique (PE).

Figure II: Des angles θ consécutifs dans la direction de l’axe x. Leur corrélation caractérise l’ordre
de la transition de phase.

Au moyen de ab initio PIMD, nous avons montré que la transition de phase peut être rational-
isée en termes de basculement des protons, qui est associée à un mouvement de libration des
hydroxyles défini par le paramètre d’ordre θ, c’est-à-dire l’angle polaire du groupe OH (fig. II).
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Dans la phase à basse température (IVa), les positions des atomes d’hydrogène sont corrélées dans
un arrangement antiferroélectrique au sein d’un cristal monoclinique de groupe d’espace P21/a
(fig. III, T = 77 K). En revanche, la phase à haute température (II) est caractérisée par un mou-
vement non corrélé des atomes d’hydrogène et, par conséquent, par un désordre dynamique des
états ferroélectrique/antiferroélectrique, c’est-à-dire une phase paraélectrique dynamique avec une
demi-occupation des sites d’hydrogene, qui restitue un plan miroir (symétrie P21/m) (fig. III, T =
350 K).

Figure III: Distribution de probabilité conjointe θx et θx+1/2 obtenue par des simulations ab initio
classiques (cl-KOH/D) et PIMD de l’hydroxide de potassium hydrogéné (q-KOH) et deutéré (q-
KOD).

Le mécanisme de la transition de phase est le même pour l’hydroxide de potassium hydrogéné
et deutéré et il est régi par le profil d’énergie du double puits en fonction de l’angle polaire θ.
Le va-et-vient des atomes d’hydrogène et deutérium est entraîné par les fluctuations thermiques
et du point zéro et génère deux orientations possibles des dipôles OH et OD. Les deux types de
fluctuations contribuent à la transition de phase, qu’une image purement classique ne peut pas
capturer correctement. Le déplacement isotopique de 24 K de la température de Curie lors de la
deutération peut être principalement expliqué en termes de mouvement d’énergie du point zéro
plus important du mode de libration OH par rapport à OD.

La présence d’un réseau de liaisons hydrogène faibles est une caractéristique spécifique, qui dis-
tingue les cristaux KOH et KOD et la plupart des hydroxydes alcalins des autres ferroélectriques à
liaison hydrogène tels que le phosphate de monopotassium (KDP), où les liaisons hydrogène sont
fortes. La transition de phase IVa↔II dans KOH et KOD est régie par les liaisons hydrogène faibles,
qui sont fortement impactés par les fluctuations quantiques comme mis en évidence, sous deutéra-
tion, par un effet isotopique géométrique H/D dans la phase antiferroélectrique à basse température.
Sous deutération la liaison hydrogène est plus courte et plus forte (fig. IV). En conséquence, les
paramètres de réseau c et β pour KOH et KOD présentent une différence significative: dans KOD,
les bi-couches sont plus proches, donc c sinβ est plus petit, provoquant une contraction structurelle
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des couches KO.
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Figure IV: Distribution de probabilité de la longueur O· · ·X obtenue par des simulations ab initio
classiques (cl-KOH/D) et PIMD de l’hydroxide de potassium hydrogéné (q-KOH) et deutéré (q-
KOD).

2) L’adsorption de l’acide formique sur la surface de l’anatase de titane
(101)

Lorsqu’un complexe moléculaire forme des liaisons hydrogène avec un substrat, la délocalisation
du proton quantique peut également jouer un rôle crucial dans l’adsorption. C’est le cas, par ex-
emple, de l’adsorption de l’acide formique (HCOOH) sur l’anatase TiO2 (101), qui présente des
configurations d’adsorption concurrentes qui font encore débat. D’une part, la molécule d’acide
formique peut s’adsorber sous une forme moléculaire; d’autre part, il peut se dissocier en formant
une espèce formiate et des groupes des hydroxyles libres en surface. D’après nos calculs à tem-
pérature zéro par la théorie de la densité fonctionnelle, DFT/PBE, la configuration la plus stable est
la monodentate moléculaire, qui présente une forte liaison hydrogène avec un site O2c de la surface
(fig. V, MH). La dissociation via un mode monodenté similaire est fortement défavorisée et ne
représente pas une configuration métastable. Au lieu de cela, la dissociation présente un minimum
local pour une configuration bidentée, où le plan OCO du formiate est parallèle à la direction [010]
(fig. V, BB(H)).

Cette étude a été menée en collaboration avec des expérimentateurs du laboratoire de l’INSP, qui
ont réalisé de nouveaux spectres de spectroscopie infrarouge à transformée de Fourier (FTIR) sur
des nanopoudres d’anatase. Les signaux spectroscopiques dans la région OCO sont la clé pour
distinguer les configurations bidentées et monodentées alors que la présence ou non de signal du
stretching OH peut révéler si la forme est moleculaire ou dissociée. En plus, la deutération sélective
dans la position du proton acide, HCOOD, permet de mieux préciser où se situe le proton.
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Figure V: Représentation des configurations d’absorption de l’acide formique sur la surface de
l’anatase de titane (101): moléculaire monodenté MH intra ou inter et bidenté BB(H).

L’image d’adsorption semble être très complexe, avec des spectres expérimentaux à température
ambiante et à basse température riches en différentes caractéristiques spectroscopiques. Les spec-
tres à température ambiante sont dominés par la présence d’espèces bidentées en raison de la
présence des caractéristiques νa(OCO) et νs(OCO) du formiate. Cependant, à basse température,
l’adsorption de la molécule FA est différente. En effet, les expériences à basse température ont
révélé la formation d’une espèce plus stable, qui, sous deutération spécifique de la position du
proton acide (HCOOD), présente un décalage isotopique H/D de certaines bandes (fig. VI).

Figure VI: Spectres FTIR at à basse température (13 K) de l’acide formique protoné et deutéré
adsorbé sur nanopoudres d’anatase exposé à PFA = 10−7–10−3 mbar, par rapport à les spectres
enregistrés après la désorption d’acide formique à PFA = 10−8 mbar (courbe noire).
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Nous avons alors comparé les spectres FTIR avec les spectres calculés par les approches quasi-
classique et semi-classique. Nos calculs sont compatibles avec l’attribution d’une espèce molécu-
laire monodentée à basse température, bien qu’un bidenté soit également présent. En particulier,
nous nous sommes concentrés sur les vibrations du stretching de OH et OD des espèces molécu-
laires monodentées à liaison hydrogène. Les fréquences du stretching de OH pour le monodentate
moléculaire adsorbé sont proches de la région du stretching de CH à ∼ 2550 cm−1. L’estimation
harmonique est en bon accord avec ce résultat, mais échoue complètement à décrire le comporte-
ment de l’acide formique deutéré monodenté moléculaire, qui montre dans les expériences deux
bandes principales à ∼ 2060 et 2170 cm−1. En effet, avec l’inclusion des effets anharmoniques,
nous avons révélé que le stretching OH est significativement plus décalé vers le rouge par rapport à
la phase gazeuse que le stretching OD, suggérant que les liaisons hydrogène sont plus fortes dans le
HCOOH adsorbé que dans le HCOOD adsorbé, principalement en raison de la effets énergétiques
du point zéro.

1.0 0.5 0.0 0.5 1.0
 / Å

P(
)

Zundel cation
FA ads. MH-intra
FAD

Figure VII: Distribution de probabilité à température 100 K de la coordonnée du "proton sharing"
δ dans le cation zundel (Shran et al. [191], Figure 4, courbe à 2.4 Å) , l’acide formique adsorbé sur
la surface d’anatase (101) et le dimère d’acide formique en utilisant la PES de Qu et al. [190].

L’adsorption moléculaire est la plus favorisée même en incluant les effets quantiques via PIMD. La
forte liaison hydrogène entre la forme moléculaire monodentate et la surface font faire la navette
au proton entre sa position stable sur la molécule d’acide formique et la surface. Les distribu-
tions PIMD prédisent un effet isotope géométrique pour la longueur des liaisons hydrogène, qui
est plus courte dans HCOOH conformément à ce que nous avons trouvé pour les caractéristiques
vibrationnelle. De plus, nous avons montré par l’approche PIMD que le système monodentate
acide formique/TiO2 se comporte assez différemment par rapport à d’autres systèmes bien con-
nus, le cation zundel et le dimère d’acide formique (fig. VII). En résumé, dans le système acide
formique/TiO2 l’adsorption moléculaire est favorisée même en incluant les effets quantiques des
noyaux, bien que le proton soit fréquemment partagé entre la surface et la molécule.
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3) Une première investigation sur la pertinence des effets quantiques
et anharmoniques dans le paire de bases guanine et cytosine en phase
phase gazeuse et solvatate

La dynamique des paires de nucléobases, qui sont les éléments constitutifs de l’ADN, est fortement
affectée par l’environnement dans lequel ils sont simulés. Pour bien décrire les conditions physi-
ologiques, une étape fondamentale est la solvatation. Cela reste un problème très difficile puisque
des calculs ab initio précis sont impossibles à obtenir. Une description des liaisons hydrogène dans
le dimère de guanine et de cytosine (dG·dC) dans des conditions physiologiques peut être effectuée
en utilisant le champ de force polarisable AMOEBA. Le dimère de guanine et de cytosine présente
trois liaisons hydrogène (fig. VIII).

N3N1

O6

N2
O2

N4

Gua Cyt

N9
N1

Figure VIII: Représentation de la paire canonique Watson-Crick désoxyguanosine et désoxycyto-
sine nucléoside (dG·dC) utilisée dans les calculs AMOEBABIO18.

Dans le dimère en phase gazeuse, la délocalisation du proton due au mouvement de l’énergie du
point zéro est significative également à température ambiante, comme le suggèrent les simulations
adQTB et PIMD (fig. IX).
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Figure IX: Fonction de distribution radiale g(r) des paires interbases NH et OH de dG·dC en
phase gazeuse à 300 K à partir de adQTB, PIMD et des simulations Langevin classiques utilisant
AMOEBABIO18.

L’effet du solvant n’est pas facile à anticiper. Les spectres vibrationnels de dG·dC solvatés simulés
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avec la méthode de trajectoire quasi-classique révèlent un décalage bleu des fréquences d’étirement
NH liées à la région interbase (fig. X). Cependant, le dG·dC solvaté est instable à l’échelle de la
nanoseconde en raison de l’absence de la chaîne principale de l’ADN, qui assure la stabilité du
dimère. Dans un futur proche, nous prévoyons d’analyser plus en détail le rôle du solvant sur
l’équilibre et les propriétés vibrationnelles du dimère dG·dC, en simulant un système de type ADN.

Figure X: Spectres QCT des vibrations du stretching de NH interbase en phase gazeuse et dG·dC
solvaté à l’aide d’AMOEBABIO18. Les valeurs harmoniques correspondantes sont indiquées sous
forme de lignes pointillées verticales.
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