Hydrogen bonds are weak intermolecular interactions that deeply perturb the chemical environment of atomic nuclei and contribute to the anharmonicity of the potential energy surfaces. Furthermore, they involve the hydrogen atom, which, even at ambient conditions, can manifest non negligible quantum properties due to its small mass. Both the chemical structure and the dynamics of hydrogen-bonded systems are influenced by the anharmonicity and the quantum nature of the nuclei. In this thesis we investigate different molecular systems containing hydrogen bonds by describing the nuclei by approximated quantum methods that overcome the classical and harmonic pictures.

The first system investigated is a phase transition in the solid state. Crystalline potassium hydroxide is characterized by the presence of weak hydrogen bonds and undergoes an order-disorder phase transition. The same transition happens in the deuterated crystal but the Curie temperature shifts up about 24 K due to the different proton and deuteron delocalization. Furthermore, a geometric H/D isotope effect characterizes the hydrogen bonds and it relates to the structural properties of the system.

The second study is about the adsorption of an organic molecule on an oxide surface. Formic acid is the simplest carboxylic acid and a promising hydrogen carrier material. Its adsorption on the TiO 2 anatase (101) surface presents competing adsorption configurations that are still debated. The molecular monodentate type of adsorption is characterized by the presence of a strong hydrogen bond, that stabilizes the molecule-surface interaction and make the proton shuttle between its stable position on the formic acid molecule and the surface.

The third study is about a complex biomolecular system. A crucial example of the importance of hydrogen bonds in biological systems is the pairing of nucleobases in DNA, where the hydrogen bonds contribute to the stability of the DNA double helix. The Watson and Crick conformation of guanine and cytosine dimer presents three hydrogen bonds. The proton delocalization is relevant even at 300 K in the gas-phase dimer. Simulated vibrational spectra were obtained.
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RÉSUMÉ

Les liaisons hydrogène sont des interactions intermoléculaires faibles qui perturbent profondément l'environnement chimique des noyaux atomiques et contribuent à l'anharmonicité des surfaces d'énergie potentielle. De plus, ils impliquent l'atome d'hydrogène, qui, même dans des conditions ambiantes, peut manifester des propriétés quantiques non négligeables en raison de sa faible masse.

La structure chimique et la dynamique des systèmes avec liaison hydrogène sont influencées par l'anharmonicité et la nature quantique des noyaux. Dans cette thèse, nous étudions différents systèmes moléculaires contenant des liaisons hydrogène en décrivant les noyaux par des méthodes quantiques approchées qui vont au-delà de l'image classique et harmonique.

Le premier système étudié est une transition de phase à l'état solide. L'hydroxyde de potassium cristallin est caractérisé par la présence de liaisons hydrogène faibles et subit une transition de phase ordre-désordre. La même transition se produit dans le cristal deutéré mais la température de Curie La troisième étude porte sur un système biomoléculaire complexe. Un exemple crucial de l'importance des liaisons hydrogène dans les systèmes biologiques est l'appariement des nucléobases dans l'ADN, où les liaisons hydrogène contribuent à la stabilité de la double hélice de l'ADN. La conformation Watson et Crick du dimère de guanine et de cytosine présente trois liaisons hydrogène. La délocalisation du proton est pertinente même à 300 K dans le dimère en phase gazeuse. Des spectra vibrationnels simulés on été obtenus.
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CONTENTS INTRODUCTION

Hydrogen bond (A-H• • • B) is a non-covalent interaction between a hydrogen atom, covalently bonded with atom A, and the B atom, which has a lone pair of electrons. Atoms A and B, that are called the donor and acceptor respectively, are electronegative atoms such as fluorine, nitrogen or oxygen; their typical reciprocal distance is in the range 2.5-3.3 Å. Hydrogen bond generally occurs between separate molecules (intermolecular), but it can also be found in the same molecule (intramolecular). Within a binding energy ranging from 4 to 50 kJ/mol [START_REF] Nibbering | Analysis and control of ultrafast photoinduced reactions[END_REF], it is weaker than the ionic and covalent bond but stronger than the van der Waals dispersion forces, playing a main role in the stability of diverse chemical systems, from condensed matter to biomolecules. For instance, it is responsible for making the density of ice lower than that of water and indispensable in the DNA building blocks of life. However, it is also present in inorganic matter, for example in the hydrous minerals that compose the Earth's mantle, as brucite.

Both structural and dynamical properties of hydrogen-bonded systems depend on the nature of the hydrogen bond and the potential energy surface experienced by the atomic nuclei. The latter are often treated in numerical simulations within the harmonic and classical approximations. However, the harmonic and classical description of hydrogen bonds is often not adequate. First of all, it is well known that hydrogen bonds make the potential energy surfaces of the protons rather anharmonic and result in an enforced coupling between the different vibrational modes, which is totally neglected within the harmonic approximation. A first way to overcome the harmonic approximation is via classical molecular dynamics simulations, that include anharmonicity, temperature and dynamical effects. However, in molecular dynamics one solves the Newton's equations of motions where the nuclei are treated classically. As we will show in the following, this approximation is often not accurate enough.

It is common belief that quantum effects are important only at very low temperatures. However, due to its light mass, the proton can manifest a high degree of quantum delocalization even at room temperature. Indeed, at 300 K the thermal de Broglie wavelength of the proton is approximately 1 Å, the same length scale of the inter-atomic distances such as covalent and hydrogen bonds. The physico-chemical properties and the dynamics of hydrogen and deuterium nuclei can be strongly impacted by nuclear quantum effects (NQEs). They include zero-point energy fluctuations, tunneling, enhanced anharmonicity, large sensitivity to isotope substitution, that cannot be described in terms of classical mechanics. Due to its intrinsic quantum nature, the hydrogen atom explores more the anharmonic part of the potential energy surface, resulting in a enhanced anharmonicity, which can be measured in the frequencies and the shape of the signals. When hydrogen is substituted with deuterium, the lower zero-point energy of the latter will drive the system to explore a smaller part of the potential energy surface. This effect is entirely absent in classical mechanics. More generally, the H/D isotope effect can affect also other properties, as kinetic rates and the geometry, and isotopic substitution is a fundamental tool to have a direct comparison with the experiments since they are frequently performed in the presence of deuterated species.

In the recent years, NQEs have stimulated a growing interest in a large variety of phenonema [2][START_REF] Pereyaslavets | On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations[END_REF][START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF][START_REF] Vardi-Kilshtain | Nuclear quantum effects and kinetic isotope effects in enzyme reactions[END_REF][START_REF] Castro | Heavy-Atom Tunneling in Organic Reactions[END_REF],

which often involve hydrogen-bonded systems. It is now clear that behind the hydrogen bond, a so much important interaction in nature, there is a great complexity. Let us consider one of the most important systems containing hydrogen bonds, water. Water has a phase diagram that is strongly affected by NQEs [START_REF] Morrone | Nuclear quantum effects in water[END_REF][START_REF] Meier | Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice[END_REF][START_REF] Mcbride | The phase diagram of water from quantum simulations[END_REF][START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient Langevin approach[END_REF] and it is a prime example. For instance, the phase transition in ice at ≃ 65 GPa from phase VII to phase X, which involves the symmetrization of O-H• • • O hydrogen bonds, is completely missed by classical mechanics, which predicts a transition pressure of about 100 GPa [START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient Langevin approach[END_REF]. On the contrary the inclusion of NQEs is able to recover the correct description of the phase transition. A less striking effect in the physical properties of water is the isotope effect on its melting point: it shifts up to 3.81 • C in heavy water, D 2 O, and to 4.48 • C in tritiated water, T 2 O [START_REF] Earnshaw | Chemistry of the Elements[END_REF].

NQEs are not easy to predict and they strongly depend on the balance between the quantum waveparticle duality of the hydrogen atom and the localization induced by the potential, which is in turn affected by the anharmonicity. This thesis is devoted to the investigation of quantum and anharmonic effects in complex chemical systems presenting hydrogen bonds. The interplay between quantum delocalization of the proton and the atomic confinement is very different for each investigated system, that we will charecterize in detail. For an adequate description of the nuclear motion, we used advanced approximated quantum methods within the Born-Oppenheimer separation between the electronic and nuclear degrees of freedom using either ab initio or force fields approaches for the electronic structure. For the calculation of time-independent properties we used mostly path integral molecular dynamics [START_REF] Marx | Ab initio path integral molecular dynamics: Basic ideas[END_REF] methods, which are based on the formulation of quantum mechanics by Feynman. As an alternative, quantum baths approaches via Langevin thermostat with colored noise can be used to reproduce the statistical quantum properties [START_REF] Dammak | Quantum thermal bath for molecular dynamics simulation[END_REF][START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF]. To have a direct comparison with the experiments, we calculated vibrational spectra through semiclassical methods based on the initial value representation theory [START_REF] Miller | Classical S matrix: Numerical application to inelastic collisions[END_REF], which address both anharmonic and quantum effects in the vibrational spectra.

The thesis is organized as follows:

• In the first part we will focus on the theoretical background of the employed methods and computational approaches.

In chapter 1, we will provide a description of the classical treatment of the nuclei as a standard procedure in molecular simulations. We will firstly recall the Born-Oppenheimer approximation and the concept of the potential energy surface, then we will briefly describe the density funtional theory and the molecular mechanics approaches and discuss the harmonic vs the anharmonic picture from a classical point of view.

In chapter 2, we will present some of the advanced methods that incorporate a quantum description of the nuclei starting from the Feynman formulation of quantum mechanics and proceed to semiclassical techniques applied to vibrational spectroscopy and quantum bath approaches.

• In the second part we will investigate selected hydrogen-bonded systems.

In chapter 3, we will discuss a quantum-driven phase transition, the antiferroelectric to paraelectric phase transition in KOH and KOD crystals. The phase transition was experimentally characterized by a H/D isotope effect on the Curie temperature, but in the absence of an explanation of the phase transition mechanism. We will explain in details the mechanism of the phase transition and show how thermal and H/D isotope effects affect the structural stability of the crystal.

In chapter 4, we will present the case of formic acid adsorption on the TiO 2 anatase (101) surface, which has still not reached a general consensus from both experimental and theoretical studies due to the presence of competing adsorption configurations. By combining a theoretical investigation with infrared experiments on anatase nanopowders, we will characterize the different adsorption species and we will specifically focus on a type of adsorption that manifests the presence of a strong hydrogen bond between the molecule and the surface.

Lastly, in chapter 5 we will present a study concerning the guanine and cytosine (GC) base pair. Several studies have been focused on the proton transfer reactions along the hydrogen bonds present in the GC base pair, that are hypothesized to be the source of genetic point mutations. A lower number of studies has been published with the inclusion of the physiological conditions as well quantum and anharmonic effects. Starting from the gas-phase dimer, we will investigate the role of the solvent by analyzing both the equilibrium and vibrational properties, as well providing a benchmark of the force field employed.

Part I

Theoretical background CHAPTER 

THE POTENTIAL ENERGY SURFACE AND CLASSICAL TREATMENT OF NUCLEI

This chapter outlines a brief and pedagogical description of the computational approaches used in the current thesis as a necessary introduction to the next chapter, where the methods for including a quantum description of the nuclei are illustrated.

Full quantum electron-nuclear problem

The full quantum mechanical information of a molecular system formed by M nuclei with coordinates R = {R 1 , • • • , R M } and N electrons with coordinates r = {r 1 , • • • , r N } can be obtained via the non-relativistic time-dependent Schrödinger equation (TDSE):

iℏ ∂ ∂t ψ(r, R, t) = Ĥ ψ(r, R, t) (1.1) 
The electronic-nuclear Hamiltonian operator Ĥ is an Hermitian operator and defines the total energy of the system. It reads as: Ĥ = Tnuc (R) + Tel (r) + Vnuc,nuc (R) + Vel,el (r) + Vnuc,el (r, R) (1.2) in which we have considered no spin-orbit interactions and the absence of external fields. The first and second term correspond to the kinetic energies of the nuclei and the electrons respectively, the third and the fourth terms are the nuclei-nuclei and the electrons-electrons energy potential, while the fifth term is the electrons-nuclei potential energy (eq. (1.3)). The Hamiltonian in eq. (1.2) does not depend on the time t, i.e. it describes a conservative quantum system for which the potential is not a function of the time. Thus, it is possible to make the variable separation: ψ(r, R, t) = u(t)ψ(r, R) (1.4) which leads to the following time-independent Schrödinger equation:

Ĥ ψ(r, R) = Eψ(r, R) (1.5) 
However, eqs. (1.1) and (1.5) are second order differential equations in space domain, for which an analytical solution is impossible for many-body systems. In order to perform molecular simulations, an approximation of the Hamiltonian of eq. ( 1.2) and the many-body wavefunction ψ(r, R) is, therefore, needed. One way to firstly simplify the problem is to separate the electrons and the nuclear variables. However, the molecular Hamiltonian defined in eq. (1.2) is not separable due to the electron-nuclei potential energy term, which depends on both the nuclei and the electronic coordinates.

Born-Oppenheimer approximation

To tackle the problem of the non-separability of the Hamiltonian of eq. (1.2), the nuclear degrees of freedom can be considered stationary with respect to the electronic ones due to their much heavier masses (m nuc ≫ m el ). This latter is central in the Born-Oppenheimer (BO) approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF],

a fundamental assumption that is used in most of electronic structure calculations and molecular dynamics simulations. Therefore the nuclear and electronic motion can be adiabatically decoupled through a separation of variables, by rewriting the wavefunction ψ(r, R) as: ψ(r, R) = χ nuc (R)ψ el (r; R) (1.6) where χ nuc corresponds to the nuclear wavefunction and ψ el (r; R) is the electronic wavefunction at a fixed nuclear configuration R, i.e. the dependence on the nuclear coordinates is purely parametric. Since the nuclear are considered stationary, the electrons will just adapt adiabatically to a shift of the nuclear coordinates. In this way the full quantum electron-nuclear problem is recast into two problems. The first task is to solve the following electronic time-independent Schrödinger equation.

Ĥel ψ el (r; R) = ε el (R)ψ el (r; R) (1.7) where Ĥel is the electronic Hamiltonian operator defined as:

Ĥel = Tel (r) + Vel,el (r) + Vnuc,el (r; R) + Vnuc,nuc (R) (1.8) and ε el (R) is the eigenvalue associated to the electronic Hamiltonian and is called adiabatic potential energy surface. ε el (R) describes the relation between the total energy and a particular nuclear arrangement of the system. The calculation of this surface is a crucial step for determining the properties of the chemical systems. The last part of the BO approximation regards the nuclear problem. By substitution of eq. ( 1.6) into eq. (1.1), then multiplication from the left by ψ * el (r; R) and integration over the electronic coordinates [START_REF] Marx | Ab initio molecular dynamics: basic theory and advanced methods[END_REF], the quantum motion of the nuclei is given by:

Tnuc (R) + ε el (R) χ nuc (R, t) = iℏ ∂ ∂t χ nuc (R, t) (1.9)
Therefore, the nuclei move in an effective potential V eff = ε el (R), which is the solution of the electronic problem, i.e. the potential energy surface at a fixed electronic state. Standard molecular dynamics, which is a powerful tool to explore the properties of a molecular system, is based on the assumption that eq. ( 1.9) can be approximated by classical Newton equations with the drawback of including no quantum effects for the atomic nuclei. The classical treatment of the nuclei in molecular simulations will be discussed in details in section 1.4. A more realistic picture is obtained by describing the nuclei within quantum approximations, as done in this thesis. Chapter 2 is dedicated to the illustration of these methods.

Potential energy surface

The quantum pontential energy surface (PES), which originates from the Born-Oppenheimer approximation and is specific to each electronic state 1 , is an essential tool for obtaining chemical information about the system of interest, including molecular geometry, energy barriers and vibrational properties. By choosing a suitable number of nuclear configurations, it is possible to locally reconstruct the PES. This is generally a complex function that depends on one or more coordinates and presents critical points such as global/local minima and saddle points (fig. 1.1).

The calculation of the PES can be done either "on-the-fly" via the computation of the electronic energies or analytically via advanced fitting scheme. An accurate description of the potential energy surface is of crucial importance in molecular simulations. However, the construction of global high-dimensional potential energy surfaces from ab initio calculations represent still nowadays an actual challenge.

In particular, the resolution of the many-body electrons problem of eq. (1.7) is not a trivial task due to the already mentioned impossibility to obtain a closed-form solution of a complex second order Figure 1.1: A 2D contour map and corresponding potential energy surface for a hypothetical endothermic reaction. Reproduction from ref. [START_REF] Lower | The Potential-Energy Surface Can Be Calculated Using Quantum Mechanics[END_REF]. differential equation. Electronic structure packages deal with this task, providing approximated methods to solve the many-body electronic problem. They are called ab initio tecniques since they do not need, differently from other techniques such as semiempirical and molecular mechanics methods, a priori assumptions -for example information about the chemical bonds. There are two main approaches in the electronic structure calculations. One is wavefunction based starting from the Hartree-Fock self-consistent field procedure, the "post-Hartree-Fock" methods for the electrons correlation energy term such as Møller-Plesset perturbation, and the high level of theory methods, Configuration Interaction and Coupled Cluster, which are considered the most accurate.

The other approach is density functional theory (DFT), which has been established as the most popular method for quantum electronic structure calculations of molecules and solids. We will discuss in details of DFT in the following section (see section 1.2). However, large-scale atomistic computer simulations cannot be performed via ab initio methods due to the too demanding computational cost. An alternative is to use interatomic potentials functions to compute the total energy and forces of the interested system. Traditional interatomic potentials are derived from a molecular mechanics approach (see section 1.3.1). In the recent years there has been a rapidly growing interest in constructing fast and accurate interatomic potentials instead via machine-learning techniques starting from ab initio datasets [START_REF] Behler | Four generations of high-dimensional neural network potentials[END_REF][START_REF] Deringer | Machine learning interatomic potentials as emerging tools for materials science[END_REF].

Density functional theory

The resolution of the many-body electrons problem for molecular and condensed matter systems has been historically one of the major issues in quantum physics and chemistry. The wavefunction based methods, using variational method schemes, allow an exact numerical solution of the electronic problem, but, although very accurate, they are limited to low-dimensional systems due to the unfavourable scaling computational cost with the system size. The big turning point came in 1964, when P. Hohenberg and W. Kohn proved through two theorems [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] that the many-body electrons problem can be tackled in terms of electron density instead of wavefunctions. The electron density, which is a much more simple object than the wavefunction, can describe all the properties of the system at the electronic ground state. 2 For a system of N electrons it is:

n(r) = N dr 2 ...dr N |ψ(r 1 , r 2 , ..., r N )| 2 (1.10)
The two theorems by Hohenberg and Kohn can be resumed in the following two points. The ground state energy of the system can be defined as a function of the electron density:3 [START_REF] Earnshaw | Chemistry of the Elements[END_REF] and it is a minimum that is attained when n = n 0 (r) among all the possible densities.

E[n] = T [n] + U [n] + V ext [n] (1.
min(E[n]) = E[n 0 ] (1.12)
In this way DFT reduces the 3N-dimensional problem of the electronic Schrödinger equation to an equivalent 3-dimensional problem of the electron density. The ground-state energy is, in principle, obtained through a minimization scheme of the energy functional E[n] at constant number of electrons N , i.e. by solution of the following constrained minimization problem:

δ δn(r) E[n] -µ dr n(r) = 0 (1.13)
where µ is the Lagrange multiplier associated with the conservation of the number of electrons and corresponds to the chemical potential of the electrons system.

Kohn-Sham equations

After a year of the publication of Hohenberg and Kohn theorems, Kohn and Sham (KS) proposed a different approach to DFT [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. Their idea was that the many-body ground-state interacting electrons system can be replaced by the ground-state of an equivalent virtual system of non-interacting electrons having the same energy density of the original system. The KS wavefunction of noninteracting electrons system is a single Slater determinant as constructed from N orthonormal single-particle orbitals ϕ j (r), that are in general not the true electronic orbitals. The electron density is therefore rewritten as: [START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF] in which ψ j (r) are the occupied orbitals and f j their corresponding occupation factor (0 ≤ f j ≤ 2).

n(r) = j f j |ϕ j (r)| 2 (1.
The kinetic energy term can be approximated to the kinetic energy of the virtual non-interacting

electrons system T [n] ≈ T s [n].
Solving the minimization problem of eq. (1.13) leads to the oneelectron set of equations: [START_REF] Miller | Classical S matrix: Numerical application to inelastic collisions[END_REF] which are known as the Kohn-Sham equations and can be solved via self-consistent iterations.

ℏ 2 ∇ 2 2m + v eff (r) ϕ j (r) = ε j ϕ j (r) (1.
v eff (r) is the optimized effective Kohn-Sham potential which reads:

v eff (r) = v ext (r) + v H (r) + v xc (r) (1.16)
The term v ext (r) is specific for the system and corresponds to the external potential defined by the functional V ext [n] of eq. (1.11). The term v H (r) is the classical Coulomb electrostatic potential (Hartree energy):

v H (r) = δE H [n] δn(r) = e 2 2 dr ′ n(r ′ ) |r -r ′ | (1.17)
The term v xc (r) corresponds to the exchange-correlation energy:

v xc (r) = δE xc [n] δn(r) (1.18)

Exchange-correlation functional

The exchange-correlation functional E xc [n] appearing in eq. ( 1.18) can be formally defined as: .19) i.e. as the difference between the true unknown energy functional

E xc [n] = (T [n] -T s [n]) + (U [n] -E H [n]) (1 
E[n] = T [n] + U [n]
and the known approximated functional E (appr.) [n] = T s

[n] + E H [n] + E xc [n].
The form of the exchangecorrelation functional is at the core of DFT methods. Hundreds of approximations to E xc [n] are available [START_REF] Perdew | s ladder of density functional approximations for the exchange-correlation energy[END_REF][START_REF] Toulouse | Review of approximations for the exchange-correlation energy in densityfunctional theory[END_REF]. Among them, we recall the main ones, which fall into a few classes. We will limit our discussion to the approximations employed in this thesis.

Table 1.1: Classification of some DFT methods and their relative dependencies of the exchangecorrelation functional.

LDA n(r)

GGA ∇n(r) meta-GGA ∇ 2 n(r), τ hybrid ϵ x generalized RPA ϕ i
The local Density Approximation (LDA) is the simplest approach: the exchange-correlation energy, v xc , is approximated to the exchange-correlation energy of an homogenous electron gas (HEG), v HEG xc , having the same density at the point r:

E LDA xc [n] = dr v HEG xc (r)n(r) (1.20)
This approximation works well for several materials but it models hydrogen bonds badly. An improvement of LDA method can be obtained by describing the electron density in term of its gradient ∇n(r). These are known as generalized gradient approximation (GGA) methods and belong to the family of semi-local functionals.

E GGA xc [n] = E LDA xc [n] + dr e GGA xc (n(r))∇n(r) (1.21)
The function e GGA xc can be expressed in many different forms. We recall the one presented by Perdew, Burke and Ernzerhof (PBE) [START_REF] Perdew | Generalized gradient approximation made simple[END_REF], which reproduces the strength of hydrogen bonds in several systems within an accuracy of 1 kcal/mol. Thus, we employed PBE for DFT calculations in this thesis (see chapter 3, chapter 4) since we are mostly interested in the description of hydrogen bonds and not to long-range interactions or strong exchange and correlation effects. Next, meta-GGA methods, which are an extension of GGA, incorporate the Laplacian of the density ∇ 2 n(r)

or the kinetic energy density τ into the the exchange-correlation functional. Another category is that of the hybrid functionals, which combine a part of the exact exchange from Hartree-Fock and density based exchange-correlation terms via parameters obtained from either ab initio or empirical sources. One popular version of hybrid functionals and very accurate for molecular systems is Becke-3-parameter-Lee-Yang-Parr (B3LYP) [START_REF] Hertwig | On the parameterization of the local correlation functional. What is Becke-3-LYP?[END_REF].

Interatomic potentials

Although their accurate description for electronic degrees of freedom, ab initio methods are not feasible for very large systems. Standard plane-wave based DFT methods, that we employed in this thesis, scale up as ∼ N 3 with N being the number of electrons of the system. It is therefore clear that ab initio methods cannot be applied to large systems as biomolecular structures, which often require the inclusion of the solvent. The use of interatomic potentials -mathematical functions that yield the potential energy for a given nuclear configuration -allows the treatment of such large and complex systems, otherwise forbidden by ab initio approaches.

Molecular mechanics

One traditional approach to treat biological systems is via molecular mechanics (MM), which refers to a group of methods based on Newton mechanics. In a MM approach the atoms are modeled as balls (nucleus+electrons systems) held together by springs. The balls-springs system is governed by classical empirical functions constituting a so-called force field (FF):

U = U bond + U angle + U bθ + U oop + U torsion bonded + U vdW + U ele non-bonded (1.22)
The first five terms describe the short-range interactions: bond stretching, angle bending, bond-angle cross term, out-of-plane bending and torsional rotation. The last two terms correspond to the non-bonded energy contribution given by the long-range van der Walls and electrostatic interactions. The various existing force field present different ways to calculate the above energy terms.

Examples of popular force fields are AMBER [START_REF] Wang | Development and testing of a general amber force field[END_REF][START_REF] Maier | ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB[END_REF], OPLS [START_REF] Robertson | Improved peptide and protein torsional energetics with the OPLS-AA force field[END_REF] and CHARMM [START_REF] Huang | CHARMM36m: an improved force field for folded and intrinsically disordered proteins[END_REF]. In all FF approaches, the energy terms are calculated empirically, i.e. they are based on set of parameters derived from either experiments or ab initio calculations.

U angle U bond

U torsion non-bonded Figure 1.2: Illustration of the fundamental force field energy terms.

One of the main challenge of MM approaches is to find a good compromise between accuracy and transferability. The parametrization itself is often a time demanding procedure and sometimes includes an elaborate fitting scheme. To make the parametrization easier, a common practice is to chose the same parameters for the same functional groups, which become atom types in a FF formulation. The applicability of a FF are limited to the group of molecules for which the set of parameters are available. Furthermore, in standard force fields it is not possible to break and form chemical bonds. For these reasons, despite their significantly lower computational cost, MM approaches are less flexible and transferable than ab initio methods.

As concerned the level of accuracy, the most delicate term to calculate in eq. (1.22) are the nonbonded interactions. In particular, traditional force field represent the electrostatic potential in terms of fixed partial charges model, which, however, neglects the polarization. To tackle this issue, one can rely to hybrid quantum mechanics and molecular mechanics (QM/MM) approaches, which partition the total system into a classical MM region and a electronically important region treated at ab initio level. Instead, for a pure MM treatment, a great progress has been made in the recent years with the development of the so-called polarizable force fields. In this respect, the polarizable force field AMOEBA 4 , which we employed in this thesis (see chapter 5), is largely used in biomolecular simulations. The AMOEBA model -atomic multipole optimized energetics for biomolecular applications -was introduced in 2002 [START_REF] Ren | Polarizable atomic multipole water model for molecular mechanics simulation[END_REF] and has been recently developed for proteins [START_REF] Shi | Polarizable atomic multipole-based AMOEBA force field for proteins[END_REF] and nucleic acids [START_REF] Zhang | AMOEBA polarizable atomic multipole force field for nucleic acids[END_REF]. In the AMOEBA model the short-ranged valence interactions of eq. (1.22) are given by:

U bond = K b (b -b 0 ) 2 1 -2.55(b -b 0 ) -3.793125(b -b 0 ) 2 U angle = K θ (θ -θ 0 ) 2 1 -0.014(θ -θ 0 ) + 5.6 × 10 -5 (θ -θ 0 ) 2 -7.0 × 10 -7 (θ -θ 0 ) 3 + 2.2 × 10 -8 (θ -θ 0 ) 4 U bθ = K bθ [(b -b 0 ) + (b ′ -b ′ 0 )](θ -θ 0 ) U oop = K χ χ 2 U torsion = N n K nϕ 1 + cos(nϕ ± phase) (1.23)
The bond and angle energy terms differ from the traditional force fields version by including anharmonic contributions via polynomials of order > 2. The torsion energy term is modeled as Fourier series up to N -fold, e.g. N = 3 for proteins and nucleic acids. The van der Walls term is described by the Halgren's buffered 14-7 function [START_REF] Halgren | The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters[END_REF], instead of the traditional Lennard-Jones 12-6 function:

U vdW (ij) = ε ij 1 + δ ρ ij + δ 7 + 1 + γ ρ 7 ij + γ -2 (1.24)
where the ε ij parameter is the well depth and ρ ij = (r ij /r 0 ij ) with r ij and r 0 ij being the i-j separation and i-j minimum energy distance. The electrostatic energy term includes both permanent and induced multipoles contributions:

U ele = U perm ele + U ind ele (1.25)
U perm ele is generated from interaction between atomic multipoles. The charge distribution is modeled by placing on each atomic center a point monopole (partial charge), a dipole vector and a quadrupole tensor. U ind ele is the potential energy term due to dipole-induced interactions. The induced dipole of each atom is calculated as the product of its atomic polarizability and the external electrostatic field generated by the permanent multipoles and the induced dipoles of all the other atoms.

Classical treatment of nuclei

A simple approximation to the dynamics of the nuclei is via classical mechanics. This is the standard approach used in ab initio molecular dynamics (AIMD), where the electronic structure is calculated via quantum mechanical approaches but the nuclei are treated as classical particles at the ground-state electronic surface.

Classical dynamics

From the Born-Oppenheimer approximation, it is possible to the derive classical molecular dynamics by considering the nuclei as point masses. We start from the Schrödinger equation for the nuclear degrees of freedom eq. (1.9) and derive classical dynamics of the nuclei as per reference [START_REF] Marx | Ab initio molecular dynamics: basic theory and advanced methods[END_REF]. The nuclear wavefunction can be rewritten in "polar" representation: (1.26) in which A(R, t) and S(R, t) are respectively the amplitude factor and phase function and are considered to be real with A(R, t) ≥ 0. In particular the function S(R, t) corresponds to the action. By substitution of eq. ( 1.26) into eq. ( 1.9), we obtain:

χ nuc (R, t) = A(R, t)e i ℏ S(R,t)
- ℏ 2 2 M a=1 1 m a ∇ 2 a + ε el (R) A(R, t)e i ℏ S(R,t) = iℏ ∂ ∂t A(R, t)e i ℏ S(R,t) (1.27)
After separating the real and imaginary part of χ nuc , we obtain the following equations of motion for the nuclei:

∂S ∂t + M a=1 1 2m a (∇ a S) 2 + ε el = ℏ 2 M a=1 1 2m a ∇ 2 a A A (1.28) ∂A ∂t + M a=1 1 m a (∇ a A)(∇ a S) + M a=1 1 2m a A(∇ 2 a S) = 0 (1.29)
which are re-written exactly in terms of the real quantities S and A instead of Reχ nuc and Imχ nuc .

Eq. (1.29) can be rewritten by multiplying by 2A from the left:

∂A 2 ∂t + M a=1 1 m a ∇ a (A 2 ∇ a S) = 0 (1.30)
By defining the nuclear probability density ρ as ρ = |χ nuc | 2 = A 2 and the associated current density as J a = A 2 ∇ a S, the following continuity equation is obtained:

∂ρ ∂t + M a=1 ∇ a J a = 0 (1.31)
which is independent of ℏ and ensures at each point the conservation of the particle probability density of the nuclei, |χ nuc | 2 , in the presence of a flux. For the purposes of the discussion, we are more interested to the relation for the phase S, eq. (1.28), whose term on the right side depends explicitly on ℏ and vanished in the classical limit ℏ → 0:

∂S ∂t + M a=1 1 2m a (∇ a S) 2 + ε el = 0 (1.32)
The above expression actually corresponds to the Hamilton-Jacobi equation: [START_REF] Ren | Polarizable atomic multipole water model for molecular mechanics simulation[END_REF] with H(R a , ∇ a S) being the classical Hamilton function. By defining P a the nuclear conjugate momenta of nuclear positions R a : 1.34) the classical Hamiltonian can we written as:

∂S ∂t + H(R a , ∇ a S) = 0 (1.
P a ≡ ∇ a S ( 
H(R, P) = T (P) + V (R) (1.35)
in which T (P) is the nuclear kinetic energy

T (P) = M a=1 1 2ma P 2 a and V (R) is the effective potential V (R) = ε el (R)
acting on the nuclei. The classical total energy conservation (dE tot /dt = 0 ) reads as:

∂S ∂t = -T (P) -ε el (R) = -E tot = const (1.36)
The Newtonian equations of motion for a nucleus a, Ṗa = -∇ a V (R a ), can be written as:

m a Ra = -∇ a ε el (R a (t)) (1.37)
The classical motion of the nuclei is driven by the effective potential ε el (R), which corresponds

to the Born-Oppenheimer potential energy surface defined in eq. (1.7). The above equation can be implemented in a simulation, giving the so-called Born-Oppenheimer molecular dynamics scheme.

Static and dynamical properties

From a molecular dynamics simulation it is possible to derive many properties of the system, including both static, i.e. time-independent, and dynamical, i.e. time-dependent, ones. To do so, a statistical mechanics approach is needed. Let us consider, for simplicity, a classical system of M fixed number of particles in one-dimensional case with positions x = {x i } and conjugate momenta p = {p i }. The total energy is given by the classical Hamiltonian H(x, p). .38) with m i being the mass of the i-esim particle.

H(x, p) = M i=1 p 2 i 2m i + V (x) (1 
Static properties Suppose we want to describe the thermodynamic equilibrium of the classical system defined by the Hamiltonian of eq. (1.38). At the thermal equilibrium the probability density is stationary. In the canonical ensemble (NVT), the thermal equilibrium will be given by the following Boltzmann distribution: βH(x,p) i e -βE i = e -βH(x,p) Z cl (1.39) where β is the inverse of the thermal energy, β = 1/k B T , and E i is the total energy of the microstate i. The denominator corresponds to the classical partition function of the system, which, in the continuous case, is rewritten as the phase space integral:

ρ cl (x, p) = e -
Z cl = dx dp e -βH(x,p) (1.40)
Let A be the observable associated to the static property that we are interested in. An estimation of property A can be evaluated through its thermal average via integration over a sufficiently large number of points weighted according to the Boltzmann distribution:

⟨A⟩ cl = dx dp ρ cl (x, p)A(x, p) (1.41)

Time-dependent properties

The description of dynamical phenomena requires a more difficult procedure due to the time-dependency of the process involved. Time-correlation functions (TCF) represent a tool to evaluate the dynamical properties of a system such as vibrational spectra and transport coefficients. Given two arbitrary observables A and B within a classical dynamic, their associated time correlation function C AB (t) is defined as:

C AB (t) = ⟨A(0)B(t)⟩ = dx dp ρ cl A(x, p)B(x t , p t ) (1.42)
TCF are real and even functions in time, therefore they satisfy:

C AB (t) = ⟨A(0)B(t)⟩ = ⟨A(t)B(0)⟩ C AB (t) = C AB (-t) (1.43)
In the case A = B, the time correlation function C AA (t) is said an auto-correlation function. The direct calculation of TFC from eq. (1.42) is not computationally efficient since it requires to run several trajectories from different configurations sampled from the density function ρ cl . Generally MD simulations rely on the ergodicity hypothesis, so that a single trajectory can be employed for both sampling the initial distribution and to compute the correlations. Along a single trajectory, the time correlation function for A and B can be calculated with:

C AB (τ ) = lim T →∞ 1 T T 0 dt A(x t )B(x t+τ ) (1.44)
with T being the total time length of the simulation.

Wiener-Khintchine theorem Let us consider the power spectrum or spectral density, S xx (ω), of a random time series x(t). S xx (ω) is a measure of the power signal over frequency and it is defines as: [START_REF] Plé | Nuclear Quantum Dynamics: exploration and comparison of trajectory-based methods[END_REF] in which x(ω) is the Fourier transform of the process x(t):

S xx (ω) = lim T →∞ 1 T |x(ω)| 2 (1.
x(ω) = +∞ -∞ dt e -iωt x(t) (1.46)
The Wiener-Khintchine theorem makes the connection between the spectral density S xx (ω) and the autocorrelation function of the associated process, C xx (t): .47) i.e. the autocorrelation function of x(t) is the inverse Fourier transform of the spectral density.

S xx (ω) = +∞ -∞ dt e -iωt C xx (t) (1 
This is an import result allowing to compute the power spectrum for a specific process starting from its autocorrelation function.

Harmonic vs anharmonic picture

The traditional approach to study molecular vibrations and lattice dynamics is via the harmonic approximation. Firstly, critical points of the PES are identified through geometry optimization algorithms. Once identified the interested critical point, for example a local minimum, the Hessian 5 , which enters in a Taylor expansion of the potential at the second order of the displacements. Therefore, in the harmonic approximation only the curvature of the PES at the critical points is required. The harmonic eigenvectors and frequencies can be obtained by diagonalization of the Hessian, which for an equilibrium geometry we label as H eq .

∂ 2 E/∂x i ∂x j | 0 is computed
WH eq W T = Λ (1.48)

W is the matrix of change of basis with dimension (N × N ) with N being the n.o. degrees of freedom. Its columns w i with i = 1, ..., N constitute the frequency eigenvectors.

The matrix W can be used for the normal modes coordinate transformation: [START_REF] Cao | The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics[END_REF] in which x and q are respectively the Cartesian and normal modes coordinates. The normal mode eigenfunctions constitute a complete basis that can be used to described the different vibrational motion of a molecular system. We will use this representation in semiclassical spectroscopic calculations (see section 2.5.3). Λ is a diagonal matrix containing the eigenvalues λ i , which are the square of the harmonic vibrational frequency for the i-mode, λ i = ω 2 i . However, real potentials are anharmonic and this approximation is often too crude, completely ne- Reproduction from ref [START_REF] Nibbering | Analysis and control of ultrafast photoinduced reactions[END_REF].

x = Wq (1.
glecting the coupling between the different modes and dynamical effects. Already for a diatomic molecule, harmonic approximation can completely fails (fig. 1.3-I) and for more complex systems is often inadequate. For example all the phenomena, in which the frequencies manifest a temperature-dependency such as diffusion, phase transitions and thermal expansion of crystals, cannot be described in terms of harmonic approximation. In particular, in the presence of hydrogen bonds the vibrational spectra are significantly affected (fig. . The adsorption band of the stretching of the donor group, for example a OH group, ν(OH) presents respect to the "free" case6 a red-shift and very often a spectral broadening and increased intensity.

To overcome the drawbacks of the harmonic approximation and get a more realistic picture, anharmonic contributions can be included via molecular dynamics simulations. Using the definition of eq. (1.47), one can compute the power spectrum from a molecular dynamics simulation as the Fourier transform of the velocity-velocity autocorrelation function C vv (τ ):

I(ω) = +∞ -∞ dτ e -iωτ C vv (τ ) (1.50)
From eq. (1.50) one can extract the relevant frequencies of the system at each temperature. The above equation can be used to calculate the vibrational spectra, but with only the inclusion of anharmonicity and temperature. In the next chapter, we will discuss the methods that overcome the classical picture.

CHAPTER 2

FROM QUANTUM TO SEMICLASSICAL AND BATH

APPROACHES

The present chapter outlines the simulation techniques used in this thesis and the formalism and approximations on which they are based. The presented methods rely on the Born-Oppenheimer approximation, as illustrated in the previous chapter, with a treatment of the electronic degrees of freedom either ab initio or by using fitted potential energy surfaces or force fields. These theories aim at providing an adequate quantum description of the thermodynamics and dynamics of various molecular systems, thus going beyond the classical approximation for the motion of the nuclei.

At the beginning of the chapter, a short introduction of the theoretical framework around which these methods are developed is given. Next, the Feynman's path integral interpretation of quantum mechanics is presented along with the derivation of path integral molecular dynamics (PIMD) method. The third part of the chapter discusses the semiclassical approximation of Feynman's quantum propagator till the most recent developments of semiclassical initial value representation (SCIVR) theory applied to vibrational spectroscopy, followed by the quasi-classical approximation.

Lastly, the quantum thermal bath (QTB) method, based on the Langevin equation of motion, is examined.

Quantum time evolution propagator

Let us recall the TDSE for the nuclei (eq. (1.9)). For simplicity sake, we rewrite this equation by considering just a particle with atomic mass in one dimension. The generalization to higher dimensions is straightforward. To facilitate the mathematical derivations discussed in this chapter, This document is inspired by the following sources. Mark Tuckerman Statistical mechanics: theory and molecular simulation (2010) [START_REF] Tuckerman | Statistical mechanics: theory and molecular simulation[END_REF]. Riccardo Conte and Michele Ceotto Semiclassical Molecular Dynamics for Spectroscopic Calculations (2020) [START_REF] Conte | Semiclassical molecular dynamics for spectroscopic calculations[END_REF].

we use the Dirac notation instead of wavefunctions. We indicate with |ψ(t)⟩ the state vector that describes the quantum state of the particle. The nuclear TDSE is rewritten as:

Ĥ |ψ(t)⟩ = iℏ ∂ ∂t |ψ(t)⟩ (2.1)
where the Hamiltonian is Ĥ = p2 /2m + V (x) with m the mass of particle and p and x the momentum and position operator having commutation rule relationship [p, x] = iℏ. The above equation has formal solution:

|ψ(t)⟩ = e -i ℏ Ĥ t |ψ(0)⟩ (2.
2)

The operator e -i ℏ Ĥ t is unitary and describes the time evolution of the particle starting from a initial state |ψ(0)⟩ ending to a final state |ψ(t)⟩. It is known as the quantum propagator, Û (t):

Û (t) = e -i ℏ Ĥ t (2.3)
It is useful to represent the quantum propagation in the coordinates basis via:

ψ(x ′ , t) = ⟨x ′ |ψ(t)⟩ = ⟨x ′ |e -i ℏ Ĥ t |ψ(0)⟩ (2.4)
By inserting the identity dx |x⟩⟨x| = I in eq. ( 2.4), we obtain:

⟨x ′ |e -i ℏ Ĥ t |ψ(0)⟩ = dx ⟨x ′ |e -i ℏ Ĥ t |x⟩⟨x|ψ(0)⟩ (2.5)
The quantity:

⟨x ′ |e -i ℏ Ĥ t |x⟩ ≡ U (x ′ , x, t) (2.6)
is the probability amplitude for the particle to propagate from x to x ′ in a time t, i.e. the coordinatespace matrix elements of the quantum propagator, U (x ′ , x, t).

Density matrix

The conventional formulation of quantum mechanics in terms of wavefunctions is restricted to "pure states", i.e. quantum systems defined by a single state vector |ψ⟩. To provide an ensemble representation in statistical mechanics, we introduce the density matrix operator formalism, which describes a statistical mixture of pure states, the so-called "mixed states". We introduce the density operator ρ for a pure state |ψ⟩ as:

ρ = |ψ⟩⟨ψ| (2.7)
The expectation value of a physical observable described by the operator  is given by:

⟨ Â⟩ = ⟨ψ| Â|ψ⟩ = Tr[ρ Â] (2.8)
with Tr[•] being the trace function. In a statistical ensemble a quantum state is expressed by an ensemble of microstates |ψ i ⟩, which have probability p i . The density operator for a mixture of pure states is:

ρ = i p i |ψ i ⟩⟨ψ i | (2.9)
where i p i = 1. The expectation value of the  operator is therefore:

⟨ Â⟩ = i p i ⟨ψ i | Â|ψ i ⟩ = i p i Tr[ρ i Â] (2.10)
The probability p i depends on the particular statistical mixture. Here, we refer to the canonical ensemble (NVT) and use as notation ρ(β). The statistical probabilities p i are expressed in terms of Boltzmann factor p i ∝ e -βE i . .11) where the trace of e -β Ĥ corresponds to the quantum partition function Z:

ρ(β) = i e -βE i |ψ i ⟩⟨ψ i | i e -βE i = e -β Ĥ Tr[e -β Ĥ] ( 2 
Z = Tr[e -β Ĥ]
(2.12)

The thermal average of the observable A is the expectation value of the corresponding operator  in the density matrix:

⟨ Â⟩ = Tr[ρ Â] = 1 Z Tr[e -β Ĥ Â] (2.13)
As we show for the time propagator operator in eq. (2.6), an equivalent representation for the canonical density operator in the coordinate basis is:

ρ(x ′ , x, β) = ⟨x ′ |e -β Ĥ|x⟩ (2.14)

Molecular vibrational spectroscopy

Here, we focus on the transition between the energy levels E n and E m characterized by a frequency transition ω nm :

E n -E m = ℏω nm (2.15)
The lowest possible energy level E 0 , i.e. the zero-point energy (ZPE) of the system, corresponds to the ground state. Let |χ⟩ = n c n |ψ n ⟩ a bound state wavepacket and E n the eigenvalues of the vibrational Hamiltonian defining the system. The vibrational power spectrum I(E), i.e. the vibrational density of states (VDOS) at energy E, is given by:

I(E) = n |c n | 2 δ(E -E n ) (2.16) in which δ(E -E n ) is a Dirac function peaked at (E -E n ).
However, the calculation of the spectrum via eq. (2.16) is not straightforward since the energy eigenvalues are not easy to be determined. In the case of high-dimensional systems the vibrational density of states can be very large at low energies. Furthermore, the VDOS of crystals can display singularities. One way to calculate I(E) by including anharmonicity and quantum effects is from trajectory-based methods. Indeed, it is possible to demonstrate that eq. (2.16) is equivalent to the Fourier transform of the survival amplitude of the reference state |χ⟩:

I(E) = 1 2πℏ +∞ -∞ dt ⟨χ|χ(t)⟩e i ℏ Et = 1 2πℏ +∞ -∞ dt ⟨χ|e -i ℏ Ĥ t |χ⟩e i ℏ Et = 1 2πℏ +∞ -∞ dt m,n c * m c n ⟨ψ m |ψ n ⟩e i ℏ (E-En)t = m,n δ mn δ(E -E n ) = n |c n | 2 δ(E -E n ) (2.17)
By using the first relation of the above equation is possible to evaluate numerically the power spectrum along several trajectories, which will be characterized by peaks located at the eigenenergies of the system. The power spectrum contains the information from all the vibrational eigenvalues.

The information that is obtained from the power spectrum cannot be straightforwardly compared to experimental spectra. Indeed, each technique is characterized by a specific cross section, and the corresponding matrix elements have distinct expression. For example, in the case of an IR transition, the intensities I abs (E) are given by:

I abs (E) ∝ |⟨n|μ|m⟩| 2 (2.18)
where μ is the dipole moment operator for the IR transition from vibrational state n to m.

Feynman path integral formalism

Inspired by the work of P.A.M. Dirac [START_REF] Dirac | Feynman's Thesis-A New Approach To Quantum Theory[END_REF], Richard Feynman introduced in 1948 a reformulation of quantum mechanics based on path integrals [START_REF] Feynman | Space-time approach to non-relativistic quantum mechanics[END_REF], later formalized in the book written with his former student Al. Hibbs in 1965 [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF]. The underlying idea of path integrals (PI) is to incorpo-rate the principle of least action of classical mechanics into quantum mechanics by recasting the quantum propagation as a sum over all possible paths that a particle can take between two points weighted by their respective action. In this section, the different interpretations of Feynman formalism are discussed. The so-called real-time representation gives the path integral version of the quantum propagator. In the continous-time limit, it is possible to derive a functional integral form, in which the weight of each path over the action appears. Finally, the imaginary-time representation introduces a link between statistical physics and the path integral, which can then be numerically implemented via techniques such as path integral molecular dynamics.

Real-time path integral

Let us recall the matrix elements of the quantum propagator (see eq. (2.6)) for a quantum particle in one-dimension evolving from the initial position x to the final position x ′ in an elapsed time t.

U (x ′ , x, t) = ⟨x ′ |e -i ℏ Ĥ t |x⟩ (2.19)
The above matrix elements can be treated by dividing the total path of time length t into infinitesimal intervals τ = t/n. The final expression for the path integral of the quantum propagator is the following. The details of the mathematical derivation are reported in appendix, section A.1.

⟨x ′ |e -i ℏ Ĥ t |x⟩ = lim n→∞ m 2πiℏτ n/2 dx 1 • • • dx n-1 exp i ℏ τ n-1 j=0 m 2 x j+1 -x j τ 2 -U (x j ) (2.20)
where the U (x, x ′ , t) matrix is evaluated as a sum over all the possible paths leading from the starting point x = x 0 to the final point x ′ = x n .

Figure 2.1: Representation of real-time path integral. Reproduction from ref. [START_REF] Tuckerman | Statistical mechanics: theory and molecular simulation[END_REF].

Functional integral representation

An elegant way to represent eq. (2.20) is via a functional integral, which originates from the following considerations. In the limit n → ∞, which implies τ → 0, the time interval between the points

x j and x j+1 become infinitely small, while the number of points becomes infinite. The x j points represent therefore a complete set of points defining the continuous function x(s), that satisfies the boundary conditions:

   x(0) = x x(t) = x ′ (2.21)
Let us now focus on the exponential argument of eq. (2.20). In the limit τ → 0, we can assume:

lim τ →0 x j+1 -x j τ = dx ds = ẋ(s) (2.22)
The whole argument of the exponential can now be considered as a Riemann sum of the integral:

lim τ →0 τ n-1 j=0 m 2 x j+1 -x j τ 2 -U (x j ) = t 0 1 2 m ẋ2 (s) -U (x(s)) ds (2.23)
where the integrand term appears as a difference between the kinetic and potential energy and corresponds, therefore, to the classical Lagrangian. The integral of the Lagrangian along the path

x(s) is, by definition, the action S[x], S[x] = t 0 1 2 m ẋ2 (s) -U (x(s)) ds (2.24)
By introducing the functional D[x] as the following:

D[x] = lim n→∞ m 2πiℏτ n/2 dx 1 • • • dx n-1
(2.25)

we can rewrite eq. (2.20) in the more compact way:

⟨x ′ |e -i ℏ Ĥ t |x⟩ = D[x] e i ℏ S[x]
(2.26)

Figure 2.2: Representation of path integral in the continous-time limit. Reproduced from ref. [START_REF] Tuckerman | Statistical mechanics: theory and molecular simulation[END_REF].

which corresponds to the final functional form of the path integral. Here, all the possible paths are formally weighted by their action by a phase factor e i ℏ S[x] . However, the numerical resolution of the integral in eq. (2.26) is prohibitive, as the exponential scaling of the Schrödinger equation, due to the so-called sign problem. This arises by the presence of a strongly oscillating complex-valued action, that prevents to define a probability density so that the standard statistical methods cannot be applied. To overcome this problem, it is convenient to convert the PI formalism from real-time to imaginary-time, in which the phase factor is defined real positive, allowing a statistical treatment and therefore a numerical implementation.

Imaginary-time path integral

As anticipated in the previous section, the imaginary-time approach is a handful way to represent path integrals in statistical mechanics, allowing the incorporation of Feynman formalism in molecular simulations via Monte Carlo techniques or molecular dynamics. The tool required for this representation is the density matrix operator, which provides a link between quantum and statistical mechanics. Firstly, it must be noted that the canonical density matrix operator and the quantum propagator are strictly related. It is convenient to use the unnormalized canonical density matrix operator of eq. (2.11) by redefining ρ(β) = e -β Ĥ. Now, the relationship between ρ(β) and the time propagator defined in eq. ( 2.3) can be derived through the Wick rotation:

ρ(β) = Û (-iβℏ) Û (t) = ρ i ℏ t (2.27)
which means that the thermalization of the system at an inverse temperature β = it/ℏ is equivalent to the evolution of the system in the imaginary time t = -iβℏ. Using the above relationship for eq. (2.20), the matrix elements of ρ(x ′ , x, β) are given by:

⟨x ′ |e -β Ĥ|x⟩ = lim n→∞ m 2πβ n ℏ 2 n/2 dx 1 • • • dx n-1 exp - n-1 j=0 mn 2βℏ 2 (x j+1 -x j ) 2 + β n U (x j )
(2.28)

Figure 2.3: Imaginary-time vs real-time path-integral. Reproduction from ref. [START_REF] Tuckerman | Statistical mechanics: theory and molecular simulation[END_REF].

From eq. (2.28), the canonical partition function Z as per definition of eq. ( 2.12) can be derived.

The evaluation of the trace in coordinate-space gives:

Z = dx ⟨x|e -β Ĥ|x⟩ = ρ(x, x, β) (2.29)
To solve eq. (2.29), the integration of eq. ( 2.28) has to be performed over the diagonal elements.

The resulting integration is over closed paths ( ) which begins and ends a the same point x ′ = x.

The partition function is therefore given by:

Z = lim n→∞ mn 2πβℏ 2 n/2 dx 0 • • • dx n-1 exp - n-1 j=0 mn 2βℏ 2 (x j+1 -x j ) 2 + β n U (x j ) (2.30)
The above equation is not straightforward to use. In the following the PIMD method, which is a combination of molecular dynamics and path-integral formalism, is discussed.

Figure 2.4: Represention for a discrete path sum for the canonical partition function. Reproduced from ref. [START_REF] Tuckerman | Statistical mechanics: theory and molecular simulation[END_REF].

Path Integral Molecular Dynamics In this tecnique, molecular dynamics is used as a tool to sample the canonical quantum partition function. The first PIMD simulations conducted in the '80s [START_REF] Chandler | Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids[END_REF][START_REF] Parrinello | Study of an F center in molten KCl[END_REF][START_REF] Berne | On the simulation of quantum systems: path integral methods[END_REF] employed empirical potential, later on, in 1996, Marx and Parinello opened the path to ab initio PIMD [START_REF] Marx | Ab initio path integral molecular dynamics: Basic ideas[END_REF]. Different PIMD-based techniques have been developed during the years, allowing also an approximate description of quantum dynamical properties. We will focus our attention on the standard PIMD, which represents the reference method for describing NQEs. The idea behind PIMD is to link the quantum partition function to a classical one, by rephrasing eq. (2.30).

Firstly, a finite description is adopted so that the limit n → ∞ is removed for the purposes of numerical implementation. Then, it is convenient to insert n times Gaussian integrals over fictitious momenta p j as conjugates of the positions x j . By adopting this strategy, the final expression for the quantum partition function is:

Z n = dp 0 • • • dp n-1 dx 0 • • • dx n-1 exp -β n-1 j=0 p 2 j 2 m + U eff (2.31)
where we have introduced the following parameters. The frequency ω n corresponds to the "chain" frequency of a cyclic polymer formed by n particles, called beads (replicas). It is defined as:

ω n = √ n βℏ (2.32)
U eff is the effective potential experimented by the polymer:

U eff = n-1 j=0 1 n U (x j ) + 1 2 mω 2 n (x j+1 -x j ) 2 (2.33)
The constant m introduced by the Gaussian integrals is a fictitious mass given by m = mn/(2πℏ) 2

but it can be assigned as we like since it does not affect the equilibrium averages. Now, the quantum partition function of eq. ( 2.31) looks like the classical partition function of a n-particle system having a potential U eff . The latter assumption is known as the classical isomorphism. The fictitious classical system is a cyclic polymer of n replicas interacting via harmonic springs with force constants mω n , and trapped in a potential U (x)/n (see fig. (2.31). Each bead is represented by the blue spheres and it is connected to its nearest neighbors via harmonic springs. Reproduction from reference [START_REF] Plé | Nuclear Quantum Dynamics: exploration and comparison of trajectory-based methods[END_REF].

By defining: 2.34) in eq. (2.31) as a classical-like effective Hamiltonian Ĥeff , we can derive a molecular dynamics scheme using the following Hamilton equations:

Ĥeff = n-1 j=0 p 2 j 2 m + U eff ( 
ẋj = ∂ Ĥeff ∂p j = p j m ṗj = - ∂ Ĥeff ∂x j = -mω 2 n (2x j -x j+1 -x j-1 ) - 1 n ∂U ∂x j (2.35)
In the limit of infinite n, eq. ( 2.31) yields the exact quantum partition function, while when n = 1, the classical regime is recovered. For a finite number of n replicas, PIMD converges to the exact expectation values when n ∼ βℏω max , with ω max being the frequency of the fastest normal mode, making PIMD a computationally expensive technique. Thus, some accelerating approaches reducing the number of replicas have been developed [START_REF] Ceriotti | Accelerating the convergence of path integral dynamics with a generalized Langevin equation[END_REF][START_REF] Ceriotti | Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei[END_REF]. Once n is large enough, the static averages at thermodynamic equilibrium are accurately computed. In contrast, the evaluation of dynamical properties, such as time-correlation functions, cannot be carried out exactly. Several path-integral based approximations, such as ring polymer molecular dynamics [START_REF] Craig | Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics[END_REF] and centroid molecular dynamics [START_REF] Cao | The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics[END_REF], have been developed. These methods have been satisfactorily applied to low-frequency scale related phenomena such as diffusion and transport properties [START_REF] Lawrence | Path integral methods for reaction rates in complex systems[END_REF]. However, when one wants to describe a high-frequency motion as molecular vibrations, these methods suffer from artificial resonances between the chain modes of the polymer and the vibrational modes coming from the system, leading to spurious frequencies [START_REF] Habershon | Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water[END_REF][START_REF] Witt | On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy[END_REF], a problem that can be eventually treated by the introduction of a Langevin thermostat attached to the internal modes of the polymer [START_REF] Rossi | How to remove the spurious resonances from ring polymer molecular dynamics[END_REF]. Although some significant improvements, these methods present still some limitations for vibrational spectroscopy.

Semiclassical vibrational spectroscopy

The exact quantum dynamics given by the TDSE and the Feynman's quantum propagator of eq. (2.26) is impossible to evaluate numerically, making the computation of time-dependent properties including NQEs rather challenging, especially in the case of molecular vibrations, for which the above mentioned method based on path integrals in imaginary-time (section 2.4.3) is not accurate. Quantum effects such as zero-point energy motion, resonances, overtones and combination bands are fundamental in vibrational spectroscopy and require an adequate quantum description.

An answer to this challenge can be given by semiclassical methods, which are constructed from a superposition of classical trajectories with special initial conditions. In such a way, semiclassical (SC) methods provide an approximate description (albeit rather good in many cases) of the full quantum dynamics. From the first formulation of SC propagator by van Vleck, which can be directly derived by Feynman's path integral expression for the quantum propagator, semiclassical techniques applied to vibrational spectroscopy have been widely developed. In this section, the most recent improvements of SC spectroscopy are discussed, along with the quasi-classical trajectory approximation.

Semiclassical approximation to path integrals

One way to derive the semiclassical approximation is from Feyman's path integral formulation of the quantum propagator (eqs. (2.20) and (2.26)). In the classical limit ℏ → 0, the exponential factor e i ℏ S[x] oscillates rapidly, thus the path integral will be dominated by the stationary phase paths, i.e. the critical points for which:

δS δx cl (s) = 0 (2.36)
where the critical points are labeled x cl since they satisfy the Hamilton principle of least action and are, therefore, classical paths as depited in fig. 2.6. The semiclassical approximation arises from accounting for these classical paths as the main contribution to the path integral.

Figure 2.6: Representative paths (classical vs generic) of Feynman's path integral quantum propagator. Reproduction from ref. [START_REF] Conte | Semiclassical molecular dynamics for spectroscopic calculations[END_REF]. In the graph q 0 and q(t) are respectively the initial and final space-points.

The mathematical tool used to derive the semiclassical propagator is the stationary phase approximation (SPA) [START_REF] Berry | Semiclassical approximations in wave mechanics[END_REF], which for the one-dimensional case reads as:

dx e iλf (x) = {x j |f ′ (x j )=0} 2πi λf ′′ (x j ) e iλf (x j ) (2.37)
with f (x) being an arbitrary oscillating function that is stationary for the critical points xj . The generalization of SPA to the multi-dimensional case is obtained via substitution of f ′′ (x) by the determinant of the second derivatives matrix of f with respect to the positions, i.e. the Hessian.

Further details are given in appendix, section A.2.

The applications of the SPA to the path integral is presented in the following. As anticipated before, in the limit ℏ → 0, the PI integral is dominated by the stationary phase points x cl , which correspond to the classical paths. A generic quantum path x(s) can be expressed as: where x cl (s) is one of the classical paths and ξ(s) the fluctuations around it. The expansion of the action around x cl at the second order in ξ is given by:

x(s) = x cl (s) + ξ(s) (2.38)
S[x] = S[x cl ] + 1 2 ξ T H S ξ (2.39) 
where H S = [∂S cl /∂x i ∂x j ] is the Hessian matrix of the classical action. In the above equation we have used a functional representation of the classical action: the classical action is a functional of the full classical path x cl . For the purpose of the following derivations, it is convenient to replace the functional S[x cl ] with S cl (x t , x 0 , t), where the classical action associated to the classical path

x cl is expressed as a function of the initial and final position of the classical path, x 0 and x t points, respectively. 1 The semiclassical approximation for the PI quantum propagator is therefore given by: 2.40) i.e. by a sum over all the possible classical paths connecting x 0 to x t points in a time t with the inclusion of fluctuations around the classical action of each path up to the second order. The analytical resolution of eq. ( 2.40) leads to the van Vleck (VV) expression for the quantum propagator (1928) [START_REF] Van Vleck | The correspondence principle in the statistical interpretation of quantum mechanics[END_REF], which for one degree of freedom is:

⟨x t |e -i ℏ Ĥ t |x 0 ⟩ ∝ cl exp i ℏ S cl (x t , x 0 , t) + 1 2 ξ T H S ξ ( 
U VV (x t , x 0 , t) = cl - 1 2πiℏ × det ∂ 2 S cl (x t , x 0 , t) ∂x t ∂x 0 1/2 exp i ℏ S cl (x t , x 0 , t) (2.41)
where the zero-th order term of the Taylor expansion of the action gives the oscillatory contribution e i ℏ S cl (xt,x 0 ,t) , while the second order term, known as the van Vleck determinant, constitutes the pre-1 A different notation for the time evolution of a quantum particle is used with respect to section 2.4. The initial space point is labeled x0 at a initial time t0 = 0, while the final space point is labeled xt at final time t. exponential factor describing the quantum fluctuations around the classical path. However, in the VV semiclassical propagator the prefactor, being a square root of a quantity without a definite sign, is, in general, complex and discontinuous. In order to preserve the continuity of the transformed propagator for trajectories close to the classical path, Maslov and Fedoriuk introduced the extra phase -1 2 iπν cl [START_REF] Maslov | Semiclassical approximation in quantum mechanics[END_REF], in which ν is called Maslov index:

U VVG (x t , x 0 , t) = cl - 1 2πiℏ × det ∂ 2 S cl (x t , x 0 , t) ∂x t ∂x 0 1/2 exp i ℏ S cl (x t , x 0 , t) - 1 2 iπν cl (2.42)
The above equation is known as the van Vleck-Gutzwiller (VVG) formulation of the semiclassical propagator [START_REF] Gutzwiller | Phase-Integral Approximation in Momentum Space and the Bound States of an Atom[END_REF].

Initial value representation

It is possible to rewrite the van Vleck semiclassical propagator in terms of initial conditions by using the relation ∂S cl (x t , x 0 , t)/∂x 0 = -p 0 in eq. ( 2.41):

U VV (x t , x 0 , t) = cl 1 2πiℏ × det ∂x t ∂p 0 -1 1/2 exp i ℏ S cl (x t , x 0 , t) (2.43) 
However, the above formulation has quite limited applications. This is due firstly by the fact that when ∂x ′ /∂p 0 → 0 the prefactor matrix becomes singular. Secondly, the search of all the possible classical paths satisfying the double boundary problem x(0) = x 0 ∧ x(t) = x ′ is not trivial.

To tackle these problems a semiclassical initial value representation (IVR) approach to the SC propagator was introduced by W.H. Miller in 1970 [15]. The idea behind the so-called SCIVR theory is to change the variables in the propagator in such a way to specify, for a generic path around the stationary one, the unique initial conditions (x 0 , p 0 ) that define the actual classical path. This can be done as it follows. We start with the time propagator operator expression Û (t) = e -i ℏ Ĥ t and we insert two-times the identity dx |x⟩⟨x| = I, one for |x 0 ⟩ and one for |x t ⟩ vectors. Then, the resulting propagator coordinate-matrix is substituted with the corresponding VV SC propagator matrix of eq. ( 2.43):

e -i ℏ Ĥ t = dx 0 dx t |x t ⟩⟨x t |e -i ℏ Ĥ t |x 0 ⟩⟨x 0 | ≈ dx 0 dx t |x t ⟩ U VV (x t , x 0 , t) ⟨x 0 | ≈ dx 0 cl dx t 1 2πiℏ × det ∂x t ∂p 0 -1 1/2 e i ℏ S cl (xt,x 0 ,t) |x t ⟩⟨x 0 | (2.44)
Now, it is convenient to use the "IVR trick" [START_REF] Miller | The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations[END_REF][START_REF] Miller | Comment on: Semiclassical time evolution without root searches[END_REF], which consists in a change of variable integration from x t to p 0 :

cl dx t → dp 0 det ∂x t ∂p 0 (2.45)
The final expression for the VV propagator in the IVR representation is therefore:

e -i ℏ Ĥ t ≈ dx 0 dp 0 1 2πiℏ × det ∂x t ∂p 0 1/2 e i ℏ St |x t ⟩⟨x 0 | (2.46)
In this way, the sum over all the possible classical paths is substituted with a phase space integral that can be numerically evaluated via a Monte Carlo integration. The SCIVR is therefore a very powerful approach which has been implemented many times since its original formulation by

Miller. A quite popular version of SCIVR propagator is the one based on coherent states, a description firstly introduced in the work by Heller [START_REF] Heller | Frozen Gaussians: A very simple semiclassical approximation[END_REF], from which Herman and Kluk drew inspiration in the later years [START_REF] Herman | A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations[END_REF]. The coherent states |p ′ , x ′ ⟩ having a Gaussian shape of width γ and centered on (p ′ , x ′ ) are chosen according to:

⟨x|p ′ , x ′ ⟩ = det(γ) π 1/4 exp - 1 2 (x -x ′ ) T γ(x -x ′ ) + i ℏ p ′T (x -x ′ ) (2.47)
The survival amplitude for a reference state |χ⟩ using the semiclassical propagator of eq. ( 2.46) on the coherent states basis gives:

⟨χ|e -i ℏ Ĥ t |χ⟩ ≈ 1 2πℏ dx 0 dq 0 C t (p 0 , x 0 )e -i ℏ St(p 0 ,x 0 ) ⟨χ|p t , x t ⟩⟨p 0 , x 0 |χ⟩ (2.48)
where C t (p 0 , x 0 ) is the prefactor:

C t (p 0 , x 0 ) = 1 2 ∂x t ∂x 0 + γ -1 ∂p t ∂p 0 γ -iℏ ∂x t ∂p 0 + i ℏ γ -1 ∂p t ∂x 0 (2.49)
The partial derivatives ∂i/∂j represent the elements of the monodromy matrix M ij :

M =   ∂p t /∂p 0 ∂p t /∂x 0 ∂x t /∂p 0 ∂x t /∂x 0   (2.50)
M ij , also called stability matrix, measures the sensitivity of the trajectory to the initial conditions. Eqs. (2.48) to (2.50) represents the Herman and Kluk (HK) formulation of IVR propagator [START_REF] Herman | A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations[END_REF][START_REF] Kay | Integral expressions for the semiclassical time-dependent propagator[END_REF], here reported for one degree of freedom for simplicity of sake. The survival amplitude can be numerically evaluated via a phase space integration by Monte Carlo techniques upon sampling of the initial conditions (x 0 , p 0 ).

Application to spectroscopy

For applications to vibrational spectroscopy it is necessary to extend the problem to N degrees of freedom and work in normal modes coordinates, on which vibrational calculations at the harmonic level are generally performed. As per notation compatible with the literature, the space coordinates are labeled as q j , and the corresponding momenta p j . The phase space vectors q and p are expressed:

   q = (q 1 , q 2 , ..q N ) N = n.o. DOF (degrees of freedom) p = (p 1 , p 2 , ..p N ) (2.51)
We recall that (see eq. ( 2.17)) the quantum power spectrum I(E) is given by the Fourier transform of the survival amplitude of a generic reference state |χ⟩:

I(E) = 1 2πℏ +∞ -∞ dt ⟨χ|e -i ℏ Ĥ t |χ⟩e i ℏ Et (2.52)
Herman-Kluk SCIVR By using the formulation of Herman and Kluk for the semiclassical propagator (eq. ( 2.48)), the HK IVR formulation for the spectral density for N degrees of freedom is:

I(E) = 1 2πℏ +∞ -∞ dte i ℏ Et 1 2πℏ N dp 0 dq 0 C t (p 0 , q 0 )e i ℏ St(p 0 ,q 0 ) ⟨χ|p t , q t ⟩⟨p 0 , q 0 |χ⟩ (2.53)
Applications of the HK propagator have been limited to model systems as in references [START_REF] Kay | Integral expressions for the semiclassical time-dependent propagator[END_REF][START_REF] Kay | Numerical study of semiclassical initial value methods for dynamics[END_REF].

The extension to molecular systems is limited due to the oscillating exponential in the integrand.

One method to overcome this issue is to insert a time-averaging (TA) filter.

Time-Averaging Filter

A time-average of the type 1 T T 0 dt can be inserted in the phase-space integrand of the HK semiclassical power spectrum eq. ( 2.53) as formulated by Kaledin and Miller [64] (2003). The resulting spectral density is:

I(E) = 1 2πℏ N dp 0 dq 0 1 2πℏT T 0 dt exp i ℏ S t (p 0 , q 0 ) + Et + ϕ t ⟨χ|p t , q t ⟩ 2 (2.54)
where ϕ t = phase[C t (p 0 , q 0 )]. In this way the convergence of the phase-space integrand is faster, reducing the number of the required trajectories. However, the computational cost of TA-SCIVR for molecular systems is still really high (a thousand of trajectories per degree of freedom), so that the applications are restricted to small molecular systems, for which pre-existing computed PES are available.

Multiple Coherent States SCIVR (MC-SCIVR)

To overcome the issues with the TA-SCIVR, Ceotto and coworkers introduced, in 2009, the multiple coherent states SCIVR tecnique [START_REF] Ceotto | Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics[END_REF], that replaces the Monte Carlo phase-space integration of eq. ( 2.54) with a sum over a few tailored trajectories. This led to a significant reduction of the computational cost, opening the path towards ab initio "on-the-fly" semiclassical spectroscopy in full dimensionality. A large variety of applications have been studied with successful outcomes [START_REF] Gabas | On-the-fly ab initio semiclassical calculation of glycine vibrational spectrum[END_REF][START_REF] Zhuang | Evaluating the accuracy of Hessian approximations for direct dynamics simulations[END_REF][START_REF] Ceotto | Accelerated direct semiclassical molecular dynamics using a compact finite difference Hessian scheme[END_REF][START_REF] Aieta | Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine[END_REF][START_REF] Ceotto | Multiple coherent states semiclassical initial value representation spectra calculations of lateral interactions for CO on Cu (100)[END_REF][START_REF] Conte | Reproducing deep tunneling splittings, resonances, and quantum frequencies in vibrational spectra from a handful of direct ab initio semiclassical trajectories[END_REF][START_REF] Micciarelli | An effective semiclassical approach to IR spectroscopy[END_REF][START_REF] Micciarelli | Anharmonic vibrational eigenfunctions and infrared spectra from semiclassical molecular dynamics[END_REF][START_REF] Tamascelli | Graphics processing units accelerated semiclassical initial value representation molecular dynamics[END_REF][START_REF] Buchholz | Mixed semiclassical initial value representation time-averaging propagator for spectroscopic calculations[END_REF][START_REF] Buchholz | Application of the mixed time-averaging semiclassical initial value representation method to complex molecular spectra[END_REF][START_REF] Buchholz | Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra[END_REF]. The MC-SCIVR expression for the power spectrum reads:

I(E) = 1 2πℏ N 1 2πℏT n traj n traj j=1 T 0 dt exp i ℏ S t (p (j) 0 , q (j) 0 )+Et+ϕ (j) t ⟨χ (j) |p (j) t , q (j) t ⟩ 2 (2.55)
where n traj , the number of trajectories, is limited to carefully selected classical trajectories. This approach derives from the pioneering work of De Leon and Heller [78] (1983), which proves that accurate semiclassical results can be achieved even by means of a single trajectory if it is run at the exact quantum energy [START_REF] De Leon | Semiclassical quantization and extraction of eigenfunctions using arbitrary trajectories[END_REF]. The idea of MC-SCIVR is therefore to use trajectories that have an energy nearby the correct quantum one, which, however, is unknown a priori. To this aim, the initial conditions (q 0 , p 0 ) are chosen according the following criteria [START_REF] Ceotto | Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics[END_REF][START_REF] Ceotto | First-principles semiclassical initial value representation molecular dynamics[END_REF] .

   q 0 = q eq p 0 = 2m ℏω(n + 1/2) (2.56)
in which q eq is the equilibrium geometry and ω = (ω 1 , ω 2 , • • • ω N ) are the harmonic eigenvalues obtained via diagonalization of the Hessian matrix at q eq . In such a way, the trajectories are started at the equilibrium position with a harmonic zero-point energy of n quantum excitation. When adopting these initial conditions, it is possible to yield accurate results by means of a single trajectory (n traj = 1), as confirmed in the work of Gabas et al. [START_REF] Gabas | On-the-fly ab initio semiclassical calculation of glycine vibrational spectrum[END_REF], where single-trajectory MC-SCIVR was employed to investigate the multiple conformers of neutral glycine. Another important feature of eq. ( 2.55) is the nature of the reference state |χ⟩, which is chosen to enhance the signal of a selected vibrational mode. For each trajectory the reference state used is a combination of coherent states of the type :

|χ⟩ = N k=1 | p 0,k , q 0,k ⟩ + ε k | -p 0,k , q 0,k ⟩ (2.57)
where index k refers to the k-th mode components of vector p 0 and q 0 . The coefficient ε k is equal to ±1 depending on the desired spectroscopic signal. For example, if it is +1 for all the k-th components, the spectroscopic signal enanched is the ZPE peak and even overtones. Instead, when one of the k-th component is switched to -1, the signal enanched is the fundamental of the k-th mode and the odd overtones [START_REF] Ceotto | Fighting the curse of dimensionality in first-principles semiclassical calculations: Non-local reference states for large number of dimensions[END_REF].

Divide and Conquer SCIVR (DC-SCIVR)

The development of a multiple coherent states approach has allowed ab initio semiclassical vibrational study of small size systems, like ammonia [START_REF] Conte | Reproducing deep tunneling splittings, resonances, and quantum frequencies in vibrational spectra from a handful of direct ab initio semiclassical trajectories[END_REF], up to medium size systems, as glycine molecule [START_REF] Gabas | On-the-fly ab initio semiclassical calculation of glycine vibrational spectrum[END_REF]. However, the direct application of this approach to systems with higher degrees of freedom is not fleasible due to the well-known problem of the "curse of dimensionality". As the dimensionality of the degrees of freedom in-creases, it is more difficult to resolve the spectroscopic signal due to a decrease of the signal-tonoise ratio. Furthermore, to a large number of degrees of freedom it corresponds also a increased computational cost, which can be prohibitive via ab initio. These drawbacks have been tackled by adopting a divide and conquer strategy, introduced by Ceotto and coworkers in 2017 [START_REF] Ceotto | Divide-and-Conquer" method for spectroscopic calculations of high dimensional molecular systems[END_REF], where the high-dimensional system vibrational space is projected onto lower-dimensional subspaces. In DC-SCIVR method the power spectrum I(E) is obtained as the composition of partial spectra Ĩ( Ẽ) computed in a M -dimensional subspace of the full N -dimensional space. In the case of a single-trajectory SC dynamics, the partial spectra Ĩ( Ẽ) are given by the following expression.

Ĩ( Ẽ) = 1 2πℏ M 1 2πℏT T 0 dt exp i ℏ St (p 0 , q0 ) + Ẽt + φt ⟨χ|p t , qt ⟩ 2 (2.58)
where the projected quantities onto a M -dimensional subspace by a singular value decomposition, are indicated with ∼ symbol. All the terms of Eq. ( 2.58) can be exactly projected from the full dimensional space onto the subspace of interest with the exception of the the classical action St due to the fact that the potential is not generally separable. The potential energy, therefore, requires the following ad hoc procedure.

V S (q M t ) = V qM t ; q (N -M ) t -V qM eq ; q (N -M ) t (2.59)
which is exact for separable-potentials and a good approximation for the non-separable ones. The computational cost of a DC-SCIVR calculation is significantly reduced with respect to MC-SCIVR since the computation of the Hessian is made just with the information of the lowerdimensional subspace M -dimensional, allowing to obtain semiclassical spectra for systems with very large number of DOF. 2 Remarkable applications include biomolecular systems [START_REF] Gabas | Protonated glycine supramolecular systems: the need for quantum dynamics[END_REF][START_REF] Gabas | Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics[END_REF][START_REF] Gabas | Semiclassical vibrational spectroscopy of biological molecules using force fields[END_REF] and surface related phenomena [START_REF] Cazzaniga | Anharmonic calculations of vibrational spectra for molecular adsorbates: A divide-and-conquer semiclassical molecular dynamics approach[END_REF][START_REF] Cazzaniga | Quantum Anharmonic Calculations of Vibrational Spectra for Water Adsorbed on Titania Anatase (101) Surface: Dissociative versus Molecular Adsorption[END_REF].

The most problematic part is the choice of the correct M -dimensional subspace. The subspaces are chosen so that the most coupled modes belong to the same subspace. There are different criteria to effectuate the partition of the vibrational space [START_REF] Di Liberto | Divide and conquer" semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems[END_REF], among which we recall the "Hessian spacedecomposition method". In this method, firstly the time average of the Hessian matrix Hij along the dynamics (of length n steps ) is computed in normal modes representation:

Hij = 1 n steps nsteps k=1 |H ij | k (2.60)
in which i and j refer to the i-th and j-th mode. Secondly, the averaged coupling strength between different modes is evaluated by the measure of the off-diagonals terms of Hij (i ̸ = j) respect to a fixed threshold parameter ϵ. The following considerations are adopted:

1. if Hij ≥ ϵ : i and j belong to the same subspace;

2. if Hij < ϵ : i and j do not belong to the same subspace;

3. if Hij < ϵ ∧ l ∃ | Hil ≥ ϵ ∧ Hjl ≥ ϵ : i, j
and l belong to the same subspace.

The threshold ϵ is an arbitrary parameter and we cannot known a priori the best choice for it. Therefore it is necessary to test different values of ϵ and the optimal choice is discriminated with respect the quality of the spectroscopic signals and the subspace dimensionality suitable for numerical convergence.

Quasi-classical approximation and the classical limit

In the quasi-classical trajectory (QCT) approach the initial conditions follow a quantization scheme but the dynamics is treated classically. The idea is to give to each mode a precise vibrational energy by running a classical trajectory at that energy, thus improving the results of the pure classical picture. The initial conditions are quantized corresponding to eq. ( 2.56), i.e. with a harmonic estimate of the specific quantum excitation. In this way the trajectory, which is highly energetic, allows the exploration of a large portion of the PES so that anharmonic effects are accounted in the spectra. However, only the classical vibrational frequencies can be calculated and no quantum mechanical effects are included.

As in the classical case, the QCT spectra can be calculated via the Fourier transform of the velocityvelocity autocorrelation function. For simplicity here a one-dimensional problem is considered and as derived in reference [START_REF] Rognoni | Caldeira-Leggett model vs ab initio potential: A vibrational spectroscopy test of water solvation[END_REF]. By recalling the definition of time correlation functions calculated from a single classical trajectory (eq. (1.44)), the velocity-velocity autocorrelation function is expressed as:

C vv (τ ) = ⟨v(t)v(t + τ )⟩ = 1 T T 0 dt v(t)v(t + τ ) (2.61)
with T the total time of the simulation, which has to be sufficiently long. By substituting the above definition into the relation for the power spectrum eq. ( 1.50), we obtain:

I(ω) = +∞ -∞ dτ e -iωτ C vv (τ ) = 1 T +∞ -∞ dτ T 0 dt e -iωτ v(t)v(t + τ ) (2.62)
where the velocities v(t) and v(t + τ ) can be written as the inverse Fourier transform of ṽ(ω ′ ) and ṽ(ω ′′ ):

3 v(t) = 1 2π +∞ -∞ dω ′ e iω ′ t ṽ(ω ′ ) v(t + τ ) = 1 2π +∞ -∞
dω ′′ e iω ′′ (t+τ ) ṽ(ω ′′ ) (2.63)

By inserting eq. ( 2.61) into eq. ( 2.62) and using the two above expressions, I(ω) yields:

I(ω) = 1 (2π) 2 T T 0 dt +∞ -∞ dω ′ e iω ′ t ṽ(ω ′ ) +∞ -∞ dω ′′ e iω ′′ t ṽ(ω ′′ ) +∞ -∞ dτ e i(ω ′′ -ω)τ (2.64)
Therefore 4 ,

I(ω) = 1 (2π) 2 T T 0 dt +∞ -∞ dω ′ e iω ′ t ṽ(ω ′ ) +∞ -∞ dω ′′ e iω ′′ t ṽ(ω ′′ ) 2πδ(ω ′′ -ω) = 1 2πT T 0 dt +∞ -∞ dω ′ e iω ′ t ṽ(ω ′ ) e iωt ṽ(ω) = 1 2πT +∞ -∞ dω ′ T 0 dt e i(ω ′ +ω)t ṽ(ω ′ ) ṽ(ω) (2.66)
Now, taking the limit of T → +∞, the last term of eq. ( 2.66) can be rewritten as:

I(ω) = lim T →+∞ 1 2πT +∞ -∞ dω ′ +∞ 0 dt e i(ω ′ +ω)t ṽ(ω ′ ) ṽ(ω) (2.67)
Taking advantage of the parity of the integrand in eq. ( 2.67), we rewrite:

I(ω) = lim T →+∞ 1 2πT +∞ -∞ dω ′ 1 2 +∞ -∞ dt e i(ω ′ +ω)t ṽ(ω ′ )ṽ(ω) = lim T →+∞ 1 2πT +∞ -∞ dω ′ 1 2 ṽ(ω ′ ) ṽ(ω) 2πδ(ω ′ + ω) = lim T →+∞ 1 2T +∞ -∞ dω ′ 1 2 ṽ(ω ′ ) ṽ(ω) δ(ω ′ + ω) (2.68)
The above integral is resolved in:

I(ω) = 1 2T ṽ(ω)ṽ(-ω) (2.69)
3 The convention used for the Fourier transform and its inverse is defined as the following.

f (ω) = +∞ -∞ dt f (t) e -iωt f (t) = 1 2π +∞ -∞ dω f (ω) e iωt 4
The Dirac delta function is defined as the following.

δ(x ′ -x) = 1 2π +∞ -∞ dt e i(x ′ -x)t (2.65)
Since v(t) is real, ṽ(-ω) = ṽ * (ω). The final working formula for the quasi-classical vibrational spectra is:

I(ω) = 1 2T |ṽ(ω)| 2 = 1 2T T 0 dt e iωt v(t) 2 (2.70)

Quantum baths

The purpose of this section is to briefly recall the QTB method, which can be employed to evaluate both static and dynamical properties as an alternative to state-of-the-art PIMD methods. It combines classical trajectory-based dynamics with an approximate quantum phase-space sampling.

The QTB uses a generalized Langevin equation, in which the quantum Bose-Einstein energy distribution is imposed instead of that given by the classical equipartition. This is realized by a convenient adjustment of the random and friction forces. The great advantage of this technique is the low computational cost, which is comparable to standard Langevin molecular dynamics, thus, much less than the cost of PIMD-based methods.

Classical Langevin thermostat

In 1908 Paul Langevin introduced a model for describing the Brownian motion [START_REF] Langevin | On the theory of Brownian motion[END_REF], which is an erratic motion of a "heavy" particle in a fluid composed of much "lighter" particles [START_REF] Brown | The Miscellaneous Botanical Works of Robert Brown[END_REF]. The standard Langevin equation of motion for a one-dimensional particle of mass m reads:

mẍ = - dV dx -mγ ẋ + R(t) (2.71)
where -dV /dx are the inter-atomic forces due to the conservative potential V (x), γ is the friction coefficient and R(t) is the Langevin stochastic force. R(t) represents the incessant collisions between the heavy particle and the small particles constituting the fluid. It is described by a stationary stochastic process whose distribution is Gaussian with zero mean (⟨R(t)⟩ = 0) and satisfying the white noise property:

⟨R(t)R(t + τ )⟩ = 2γmk B T δ(t -t ′ ) (2.72)
As a consequence, the power spectral density of the random force, C RR (ω) is given by:

C RR (ω) = 2mγk B T (2.73)
The effect of a thermal bath is modeled by the friction mγ ẋ and the stochastic R(t) forces (fig. 2.9):

the energy is supplied from the bath into the system via the random force R(t) and it is extracted from the system via the friction force mγ ẋ. The correct thermal equilibrium is obtained when the random and frictions forces are equilibrated. This ensures that the classical fluctuation-dissipation theorem (FDT, see in the appendix section A.3) is fulfilled.

The γ friction coefficient present in both the friction and stochastic force measures the strength of Figure 2.9: The Langevin equations eq. ( 2.71) as a thermal bath in classical molecular dynamics simulations. Reproduction from reference [START_REF] Huppert | Simulation of Nuclear Quantum Effects in Condensed Matter Systems via Quantum Baths[END_REF].

the coupling between the bath and the system. In principle this coupling should not have unwanted consequences on the results, provided it is not chosen too large.

Quantum thermal bath: the original formulation

To include quantum effects in MD simulations, Dammak and coworkers introduced in 2009 a modified version of the Langevin thermostat, the quantum thermal bath (QTB) method [START_REF] Dammak | Quantum thermal bath for molecular dynamics simulation[END_REF]. They used a modified Langevin equation, in which the random force R(t) is characterized by the quantum FDT. The eq. ( 2.73) is modified in the QTB method via a power spectrum density C RR (ω):

C RR (ω) = 2mγθ(ω, T ) (2.74)
resulting in a colored stochastic force. In the above equation θ(ω, T ) corresponds to the quantum harmonic oscillator energy distribution:

θ(ω, T ) = ℏω 1 2 + 1 exp(ℏω/k B T ) -1 (2.75)
In this way, the quantum statistical distribution of the energy, which includes the zero-point energy motion and quantum fluctuations, is enforced via a modified Langevin thermostat. In the limit of γ → 0, the QTB gives the exact quantum distribution for a harmonic system by ensuring the quantum FDT. However, for anharmonic systems eq. (2.74) is not sufficient to enforce the quantum FDT. In this case, the coupling of the classical forces -dV /dx with the different modes drives the system towards the classical equipartition of the energy. Therefore, the average thermal energy per mode calculated via QTB is generally lower than θ(ω, T ) when ω is large, while it is larger than θ(ω, T ) when ω is small. This is an unphysical phenomena, that consists in a energy redistribution from high to low frequency modes, and it is known as the zero-point energy leakage (ZPEL) [START_REF] Brieuc | Zero-point energy leakage in quantum thermal bath molecular dynamics simulations[END_REF].

The ZPEL can have a dramatic impact on the properties of the systems. For example, QTB cannot provide an adequate description of the solid-liquid phase transition of Neon clusters [START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF]. In this case, the potential is highly anharmonic with the particles mainly interacting via weak van der Waals forces. The energy leak due to the ZPEL causes an artifical excess of energy in the low frequency modes and completely destabilizes the cluster structure at low temperature, dissociating the weak interatomic bonds. Instead of a solid-like cluster at low temperature, the QTB predicts an abnormal liquid-like phase.

One way to treat the ZPEL is using high values for the friction coefficient γ [START_REF] Brieuc | Zero-point energy leakage in quantum thermal bath molecular dynamics simulations[END_REF]. However, high values of γ correspond to a strong coupling between the system and the bath, which can lead to an overdamped dynamic. The best approach is to chose γ as a compromise to limit the ZPEL and a too strong coupling with the bath. Despite its drawbacks, QTB has been successfully applied for studying realistic systems [START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient Langevin approach[END_REF][START_REF] Dammak | Isotope effects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations[END_REF][START_REF] Bronstein | Quantum versus classical protons in pure and salty ice under pressure[END_REF].

Adaptive quantum thermal bath

An alternative and more accurate way to avoid ZPEL in QTB simulation is via its adaptive version (adQTB), recently introduced in 2019 [START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF]. This method has been successfully applied to the case study of Neon clusters, which we previously discussed, recovering the correct structure at low temperature [START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF]. The underlying idea of adQTB is to use the quantum FDT to quantify the amount of energy leaking from high to low frequencies and to adjust "on-the-fly" during the dynamics the parameters of the QTB thermostat. There are two ways to perform adQTB. One is by adjusting the coefficient of the friction force in eq. ( 2.71), by making it frequency-dependent and adapting it during the simulation. Within this adaptation method a Generalized Langevin Equation (GLE) is introduced [START_REF] Huppert | Simulation of Nuclear Quantum Effects in Condensed Matter Systems via Quantum Baths[END_REF], further details about it are illustrated in reference [START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF]. The other is via adaptation of the random force amplitude present in eq. (2.74). In this version of the adQTB (adQTB-r), which

is the one we employed in this thesis, the power spectrum of R(t), C RR (ω) (eq. ( 2.74)) is replaced with:

C RR (ω) = 2mγ r (ω)θ(ω, T ) (2.76) 
where γ r (ω) are frequency-dependent coefficients which are adjusted "on-the-fly" during the simulation to enforce the quantum FDT. The friction parameter γ is constant in the Langevin dynamics.

The quantum FDT is rewritten as:

Re[C vR (ω)] = mγ r (ω)C vv (ω) (2.77)
in which C vR is the velocity-random force correlation function and C vv is the velocity-velocity autocorrelation function. By defining ∆ FDT (ω):

∆ FDT (ω) = Re[C vR (ω)] -mγ r (ω)C vv (ω) (2.78)
The quantum FDT is enforced for ∆ FDT = 0 for all ω. In this way, the ZPEL for each frequency can be directly estimated and corrected by adaptation of the coefficients γ r (ω). The general procedure is the following. The dynamics is divided in segments of a few hundreds fs. The simulation begins with γ r (ω) = γ, then ∆ FDT is estimated at each segment of the dynamics via eq. ( 2.78) and γ r (ω)

is adjusted to have ∆ FDT = 0 (if ∆ FDT < 0 , γ r (ω) is decreased, while for ∆ FDT > 0, γ r (ω) is increased)
. Typically, γ r should increase for the high-frequency modes (that loose energy through ZPEL), and decrease at low frequencies. One-dimensional notations are used for simplicity. Reproduction from reference [START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF].

⟨x ′ |e -i ℏ Ĥ t |x⟩ = lim n→∞ dx 1 • • • dx n-1 ⟨x n | Ω|x n-1 ⟩⟨x n-1 | • • • |x 1 ⟩⟨x 1 | Ω|x 0 ⟩ (A.6)
where the intermediate integrations over x 1 , ..., x n-1 constitute the sum over all possible paths linking the two endpoints x and x ′ .

Consider the matrix element Ω(x j+1 , x j ):

Ω(x j+1 , x j ) = ⟨x j+1 | Ω|x j ⟩ = ⟨x j+1 |e -i ℏ K(p)τ e -i ℏ U (x)τ |x j ⟩ (A.7)
To simplify, the identity dp |p⟩⟨p| = I can be inserted.

⟨x j+1 | Ω|x j ⟩ = dp ⟨x j+1 |e -i ℏ K(p)τ |p⟩⟨p|e -i ℏ U (x)τ |x j ⟩ = dp e -i ℏ p 2 2m τ ⟨x j+1 |p⟩⟨p|x j ⟩e -i ℏ U (x j )τ (A.8)
By recalling:

⟨x|p⟩ = 1 √ 2πℏ e i ℏ px
(A.9)

The relation eq. (A.9) is substituted into eq. (A.8), giving:

⟨x j+1 | Ω|x j ⟩ = 1 2πℏ dp e i ℏ -τ 2m p 2 +(x j+1 -x j )p-τ U (x j ) (A.10)
The above integral is a Gaussian integral that can be solved in the following way:

dx e -ax 2 +bx = π a e b 2 /4a (A.11)
By defining:

a = iτ 2mℏ b = i ℏ (x j+1 -x j ) (A.12)
Eq. (A.10) becomes:

⟨x j+1 | Ω|x j ⟩ = m 2πiℏτ 1/2 e i ℏ τ m 2τ 2 (x j+1 -x j ) 2 -U (x j ) (A.13)
Now, the matrix element Ω(x j+1 , x j ) of eq. (A.13) are substituted into eq. (A.6):

⟨x ′ |e -i ℏ Ĥ t |x⟩ = lim n→∞ m 2πiℏτ n/2 dx 1 • • • dx n-1 n-1 j=0 e i ℏ τ m 2 x j+1 -x j τ 2 -U (x j ) (A.14)

A.2 Stationary phase approximation

Suppose one wants to calculate the integral of one-dimensional oscillator:

I ≡ dx e iλf (x) (A.15)
where λ is a parameter. When λ is very large, the integral is highly oscillatory and it is dominated by the stationary points x which gives:

f ′ (x) = 0 (A.16)
A good approximation is to expand the phase around the stationary point x at the second order: .17) in which the first order term f ′ (x) = 0. This approximation is valid if f ′′ (x) is not too small. By setting y = (x -x), the integral of eq. (A.15) becomes a Gaussian integral:

f (x) = f (x) + 1 2 f ′′ (x)(x -x) 2 (A
dx e iλf (x) ≈ e iλf (x) dy e iy 2 λf ′′ (x)/2 = 2πi λf ′′ (x) e iλf (x) (A.18)
In the case there is more than one stationary point, eq. (A.18) becomes:

dx e iλf (x) = {x j |f ′ (x j )=0} 2πi λf ′′ (x j ) e iλf (x j ) (A.19)
By applying the previous assumptions, the SPA can be generalized to n-dimensional integral over

coordinate x = (x 1 , x 2 , • • • , x n ).
The following integral is considered:

I ≡ d n x e iλf (x) (A.20)
The function f (x) is expanded at the second order:

f (x) = f (x) + 1 2 k,l (x k -x)(x l -x) ∂ 2 f (x) ∂x k ∂x l (A.21)
in which ∂ 2 f (x)/∂x k ∂x l constitutes the Hessian matrix of f at x. Therefore, the final expression of SPA for a n-dimensional integral is:

d n x e iλf (x) = {x j |f ′ (x j )=0} 2πi λ n/2 det ∂ 2 f (x j ) ∂x k ∂x l -1/2 e iλf (x j ) (A.22)

A.3 Fluctuation-dissipation theorem

Linear response theory provides a mathematical relationship -the fluctuation-dissipation theorem -that connects the response of a system to an external perturbation and the fluctuations about the equilibrium in absence of the perturbation. A general form of the fluctuation-dissipation theorem reads as:

C vv (ω) = 2k B T Re[χ(ω)] Φ(β, ω) (A.23)
where C vv (ω) is the Fourier transform of the velocity-velocity autocorrelation function, χ(ω) is the susceptibility characterizing the linear response of velocity ∆v(t) to a small perturbative force

∆F (t): ∆v(ω) = χ(ω)∆F (ω) (A.24)
The term Φ(β, ω) is a distribution function of the thermal energy. For the classical case, where there is equipartition of the energy, Φ(β, ω) = 1, while for quantum systems:

Φ(β, ω) = βℏω 2 coth βℏω 2 (A.25)
Finally, we notice that 2Re[χ(ω)] corresponds to the vibrational density of states in the case of a harmonic system having an energy distribution in which a vibrational mode at frequency ω is thermalized with an average kinetic energy Φ(ω)k B T /2.

CHAPTER 3

THE ANTIFERROELECTRIC TO PARAELECTRIC PHASE TRANSITION IN POTASSIUM HYDROXIDE

Introduction

In 1920, ferroelectricity was discovered for the first time by Valasek in the Rochelle salt crystal [START_REF] Valasek | Piezo-electric and allied phenomena in Rochelle salt[END_REF]. Ferroelectricity is the spontaneous electric polarization of certain materials, that can be switched under the application of an external electric field. Antiferroelectricity is intrinsically related to ferroelectricity and can be explained in terms of the microscopic order of the dipoles.

While in ferroelectric materials the dipoles are parallel, leading to an overall spontaneous polarization, in antiferroelectric materials the dipoles are arranged antiparallel generating no macroscopic polarization. Typical hysteresis loops for conventional ferroelectric, antiferroelectric and paraelectric materials are represented in fig. 3.1. Over the years, research interest in the topic has grown rapidly, motivated by the large number of applications involving these materials. These include, for example, dynamical capacitors, non-linear optics, volatile memories and high energy storage devices.

The family of perovskites ABO 3 is one of the most studied type of ferroelectrics. A common practise in this field is to model the temperature-dependent properties of the material via effective Hamiltonians, developed from first principle calculations [START_REF] Zhong | Phase transitions in BaTi O 3 from first principles[END_REF]. These are functions of the order parameter governing the phase transition and, generally, also of other quantities describing the coupling with other degrees of freedom. In the Landau theory of phase transitions, the highsymmetry phase, which corresponds to the paraelectric one, can be described by a single well potential, while the lower-symmetry ordered phase by a double well potential. Among the other types of ferroelectrics, a special attention has been given to materials presenting hydrogen bonds -hydrogen-bonded ferroelectrics. Conventional hydrogen-bonded ferroelectrics are associated to displacive phase transitions but a coexistence of both order-disorder and displacive effects is very common [START_REF] Bussmann-Holder | Ferroelectric, quantum paraelectric, or paraelectric? Calculating the evolution from BaTiO 3 to SrTiO 3 to KTaO 3 using a single-particle quantum mechanical description of the ions[END_REF]. Potassium dihydrogen phosphate (KDP) and its deuterated analog, being characterized by the presence of strong hydrogen bonds (O-O < 2.5 Å), have been widely studied during the years, along with related similar materials (KDP-crystals). Regarding the NaOH crystal, it is important to stress that the protonated material manifests no or-dering phase transition while the deuterated does. This anomaly can be explained in terms of the different zero-point energy quantum fluctuations of NaOH and NaOD [117]. In the protonated compound NaOH, the large zero-point fluctuations overcome the weak hydrogen bonds and destroy the antiferroelectric order. The system in this phase can be described as a as quantum paraeletric. On the contrary, when quantum fluctuations are reduced (NaOD), the system is driven into an antiferroelectric phase at low temperature. K, Rb and Cs hydroxides display a less striking isotope effect, where the critical temperature of the deuterated crystal is larger than the protonated one. Beyond the isotope effect, pressure has a crucial role since it can favor the same kind of phase transitions also in the hydroxides, that do not display ordering at ambient pressure [118][119][120][121][122]. In NaOH, for example, the external pressure has the same effect as deuteration, so that an antiferroelectric phase transition can be recovered [117].

Polarization

In the present chapter we address, among the different AOX crystals, the ambient pressure lowtemperature antiferroelectric to high-temperature paraelectric phase transition of potassium hydroxide and deuteroxide, phase-IVa (AFE) ↔ phase-II (PE). . Nuclear quantum effects were modeled via path integral molecular dynamics scheme and electronic structure calculations were performed using DFT/PBE. Firstly, the assignment of space groups of the low-temperature (low-T) and high-temperature (high-T) phases will be discussed based on the experimental literature. Secondly, the potential energy surface for monoclinic potassium hydroxide will be illustrated. A particular focus will be given on the structural instabilities of the crystal and the identification of the order parameter of the phase transition.

Then, we will discuss the thermal and quantum description beyond the T = 0 K picture for the structural properties, the proton/deuteron order and the hydrogen bonds features. Finally, the model of the phase transition via adQTB is compared to path integral results. The present study can be used as a general reference for mild isotope effects in alkali hydroxides proton-ordering phase transition.

Symmetry of phase IVa and phase II

The first x-ray powder diffraction analysis conducted on KOH at standard conditions was made by Ibers and Kumamoto in 1960 [124], which assigned to the hydroxide a monoclinic structure with symmetry P2 1 . The determination of heavy atoms positions suggested a monoclinically distorted NaCl arrangement with oxygen atoms forming a zig-zag chain parallel to b-axis. In the following years, Jacobs and coworkers corrected through x-ray powder diffraction P2 1 to P2 1 /m space group, which presents the (a)-(c) mirror plane as an additional element of symmetry [123]. However, x- 1 The notation of the phases is the one used by Krobok and Holzapfel [119].

ray diffraction was unable to determine the hydrogens positions of KOH at room temperature. The great contribution to the issue was the discovery of the low-temperature phase transition of KOH by Bastow and coworkers in 1986 [113]. Both low-temperature (IVa) and room-temperature (II) phases were structurally characterized through neutron powder diffraction by which, thanks to the advantage of larger sensitivity to light atoms, hydrogen positions were determined. The existence of zig-zag chains of oxygen atoms along b-axis was confirmed in both phases and, in addition, 

Determination of the potential energy surface

In order to obtain a first picture of the relevant geometrical parameters for the phase transition, we have performed geometry optimization calculations at T = 0 K, without including any thermal and nuclear quantum effects. Three monoclinic arrangements can be identified: ferroelectric, antiferroelectric and paraelectric (see fig. The geometrical features of monoclinic KOH can be better understood by the analysis of the optimized lattice constants at T = 0 K. Table 3 tance than the experimental value by 0.12 Å, within the PBE approximation, which worsens when including corrections D2 and D3. The general trend is that D2 and D3 approaches strengthen the hydrogen bonds (O-O distances are shorter) and, therefore, c sin β is smaller. We did not proceed to further advanced calculations using D2 and D3 corrections, since they worsen accordance with the experiments. Lastly, we highlight that the FE configuration has the same c sin β as the AFE in all the three approaches, meaning that there is no substantial difference between AFE and FE in the strength of hydrogen bonds. Regarding the PE phase, c sin β is significantly larger compared to the hydrogen-bonded phases. This is due to the fact that in the PE phase the inter-layer distance is larger and no formation of hydrogen bonds is observed. The starting and final points for the NEB calculations were the FE, AFE and PE configurations. 2The resulting energy landscape is illustrated in fig. The FE phase is less stable than AFE by 3 meV, due to the increase in repulsion between the OH groups in parallel alignment.

The transition AFE↔FE can either involve a path through PE phase or directly through a transition state (TS). This is 0.18 eV higher in energy than the most stable minimum (AFE) and corresponds to a configuration in which one chain is very close to its slanted equilibrium position, while the 

Instability of static paraelectric phase

To better understand the instability of the static PE phase and its role on the equilibrium of FE and AFE configurations, we have firstly studied the lattice dynamics via the harmonic approximation using density functional perturbation theory (DFPT) [133]. 3.8-a). Therefore the coordinate θ is the actual adequate parameter describing the phase transition, since it is associated with the bending motion of OH groups in the (x, y) plane. By using a frozen phonon approach, the energy variation due to the displacements of the atoms along this mode can be computed at point Γ. As represented in fig. 3.8-a, the energy decreases towards a displacement along y-axis corresponding to ∼ ±0.12 Å, an ordered arrangement of the dipoles. For simplicity, this displacement is represented with the PE phase having Z = 2 so that, by following the unstable OH mode, the system is driven to an ordered FE state. The corresponding dynamical charges for PE phase are Z ⋆ yy (H) = 0.41 and Z ⋆ yy (O) = -1.31; the unstable O-H libration mode therefore yields a non-null polarization ∥ y and is IR active with a rather high intensity. Also noteworthy is the fact that the dynamical charges of H and O substantially differ between the PE, on the one side, and the FE/AFE configurations, on the other side; the latter are greater, which implies that the hydrogen bond can be easily polarized and that the dielectric constant is much enhanced in both FE and AFE configurations. a possible candidate for the high-temperature experimental phase II, due to its intrinsic instability.

Inclusion of thermal and nuclear quantum effects

Structural properties

Table 3.3 reports the experimental data of lattice constants and O-O distance in KOH and KOD with respect to temperature compared to our results from classical MD and PIMD at three temperatures: 77 K, corresponding to the IVa phase, 215 K a intermediate point close to the phase transition and 350 K, a temperature at which we can assert that KOH/KOD has made the transition from IVa phase to II phase. Starting from the experimental data, the IVa → II phase transition is characterized by a thermal expansion in both KOH and KOD crystals. This can be measured by c sin β which increases by ∼ 3% passing from phase IVa to phase II (see Table 3.3). By introducing thermal effects via classical molecular dynamics, a better agreement with the experimental c sin β at 77 K is obtained for the IVa phase with respect to the T = 0 K picture (see table 3.1). The agreement improves when introducing quantum effects via PIMD simulations. At high temperature, classical MD results are in good agreement with the experimental outcomes for phase II and the differences between the classical and KOH and KOD are less evident as compared to the low temperature case. Actually, KOH and KOD can be described using the same lattice parameters at high temperature, meaning that the isotope effect faints as the temperature grows. This is consistent with a classical regime at high temperature. 

Proton/deuteron ordering

The identification of the potential energy surface (section 3.3) and the dynamical matrix calculations (section 3.4) allowed to identify the order parameter of the phase transition, the polar angle θ.

However, in the classical finite temperature picture, we cannot precisely evaluate the thermal and isotope effects characterizing the phase stability of KOH and KOD systems.

The flipping of OH and OD groups at 77 K, 215 K and 350 K is described in terms of the probability distribution of the order parameter θ in fig. 3.9. These show a double-peak profile with equilibrium values (the maximum in probabilities) located at ∼ ±40 • , which corresponds to hydrogen bonds chains that are ∥ ±y. The energy barrier corresponds to θ → 0 • , a minimum in the probability.

The population of states close to the barrier is very low at 77 K and the flipping events of OH and OD groups leading to opposite orientations are rare, consistently with the rather large energy barrier as found in the NEB calculations. By increasing the temperature, the θ → 0 • is much more probable. At all three temperatures, we notice that the PIMD KOD distributions are intermediate between the PIMD KOH and the classical ones, consistently with the fact that KOD behaves more classically than KOH. Figure 3.9: Probability distribution for the microscopic order parameter θ from ab initio classical (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD). The distributions have been symmetrized.

In order to understand the flipping mechanism of the OH and OD groups, we have analyzed the trajectories of the centroid during the dynamics. Figure 3.10 represents the OH motion in KOH projected in the three different planes of the 3D space at 77 K, when there are no flipping events, and 350 K, when the flipping events are frequent. As expected, the flipping causes a change of direction in the (y, z) plane. However, the flipping motion is not restricted just to the (y, z) plane but it involves also a component in the (x, y) plane. This is due to the monoclinic distortion of the crystal that leads the hydroxide to rotate in the (x, y) plane.

To distinguish between the different proton and deuteron arrangements, it is convenient to reintroduce the reaction coordinates θ x and θ x+1/2 and look at their correlation ⟨θ x , θ x+1/2 ⟩. The joint probability distribution of this couple of variables is shown in fig. 3.11. As anticipated before, positive correlations correspond to FE, while negative to AFE.

At 77 K, due to the rare events of flipping motion of OH and OD groups, the system is frozen in the starting point configuration, the AFE phase, with the classical picture giving much more localized AFE configurations. We know that the T = 0 K potential energy barrier for flipping of a single OH group is quite high (90 meV). At 350 K, where the number of flipping events is sufficiently large, we estimated a free-energy barrier of 18 meV for KOH. Concerning the barrier at 77 K, we predict that it should be placed between the potential energy barrier at T = 0 K (90 meV) and the quantum one at T = 350 K (18 meV) preventing the flipping of the OH and OD groups within our simulation time. At this temperature (k B T = 6.6 meV), the flippings of OH/OD groups are rare events. Furthermore, by chosing a dynamic starting from FE configuration, we have computed the difference of the mean energies of the AFE and FE states, resulting in AFE being more stable of FE by about 5 meV, consistently with the T = 0 K PES, according to which the AFE minimum is more stable than FE minimum by 3 meV. The above assumptions are in accordance with the experiments, that predict the AFE phase at low temperature [113,114].

At 350 K, the system is driven towards a dynamical disorder characterizing the II phase. The static PE is never reached, since θ is non-zero for all the OH/OD groups. Instead, both AFE and FE states are equally populated consistently with a model of half occupancy 4f of hydrogen and deuterium atoms [113,114]. Therefore, phase II can be defined as a dynamical paraelectric phase associated with the disorder of OH and OD groups due to bending motion along the b-axis direction, which makes the hydrogen bonds break and form several times within the ps time scale. Thus, the hydrogen bonds play a crucial role in the phase transition. and PIMD simulations (q-KOH and q-KOD). The distributions have been symmetrized. ) and PIMD simulations (q-KOH and q-KOD).4 

Description of the hydrogen bonds

Results from the adaptive quantum thermal bath

PIMD simulations are computationally expensive. To obtain, for example, quantities such as the transition temperature, one needs to study a larger system than the one currently investigated to reduce finite size effect. However, this is not affordable in PIMD simulations. To check whether the adQTB method is suitable for this kind of problem, we have compared its results with the PIMD ones for the KOH crystal. while at high temperature the large contribution is also given by H atoms in the region 6500-7500 cm -1 . This corresponds to an overtone frequency. Concerning the low frequencies, we observe that, at 77 K, the γ r of H atoms is corrected to ∼ 7.5 THz, a significant difference compared to the input value, 10 THz. This is a clear sign of the correction of the zero-point energy leakage at low frequency. Without adaptation, the ZPE is leaking from the high-frequency stretching modes towards the low-frequency ones, which would result in an increased effective temperature for the low-frequency lattice modes and could induce structural distortions. At 350 K this effect is less evident, since the system is found closer to the classical regime and the leakage is less significant.

The adQTB gives successful results regarding the radial distribution function of O and H pairs (fig. 3.15). The adQTB results are very close to the PIMD ones, with a slightly broadening in adQTB simulations and a tiny shift of the OH covalent peak to smaller distance values. 

Conclusion

The present study proposes an atomic-scale model for the low-T IVa → high-T II phase transition of KOH and KOD crystals and disentangles thermal from nuclear quantum effects, which are included via the path integral formalism. The interplay of (classical) thermal and quantum effects on the nuclei makes the understanding of the phase transition in potassium hydroxides delicate and complex despite the simplicity of its crystal structure. In the low-T IVa phase the positions of the hydrogen atoms are correlated in an AFE arrangement within a monoclinic crystal with space group P2 1 /a. In contrast, the high-T II phase is characterized by an uncorrelated motion of the hy- To locally reconstruct the potential energy surface at T = 0 K, we adopted the following procedure.

drogen
We ran several climbing image-nudged elastic band (CI-NEB) [132] calculations at fixed lattice constants with different initial and final configurations. All the initial and final configurations given in the input were obtained via displacements of the crystal y-component of the OH vector, which is related to the coordinate of reaction of the phase transition, by using y ′ OH = y OH,eq × α. The term y OH,eq is the equilibrium y-component of the OH vector and α corresponds to a coefficient in the range [-1.4, 1.4].

Molecular dynamics simulations in the NVT canonical ensemble were carried out within a generalized Langevin equation in a unit cell containing 4 molecular units. Nuclear quantum effects were taken into account using the path integral framework through the i-PI interface [141] combined with QE. The PIMD simulations were performed at the three following temperatures: 77 K, 215 K and 350 K. We have used the PILE-L thermostatting scheme [142] with a centroid friction coefficient of 10 THz. The number of beads in the PIMD simulations was set to 32 and checked to provide the kinetic and potential energy convergence (see . Furthermore, we have checked the convergence of the O-X and O• • • X lengths in KOH and KOD at 77 K by looking the results at 32 beads vs 100 beads (see . The difference between the KOH and KOD lengths is larger than the difference between the 32 beads and 100 beads lengths.

The optimized crystal structures have been obtained through systematic volume relaxation by gradually varying the lattice constants a, b, c and the monoclinic angle β until the hydrostatic pressure (σ ij ≃ 0) was reached, in trajectories of 5 ps each, within an error on the average stress tensor components lower than 2 kbar. Finally, statistical averages were obtained from trajectories of duration time ranging from 20 to 40 ps.

The adQTB simulations were conducted in the NVT canonical ensemble using a local modified version of QE. The total length of the simulation was 60 ps, of which the first 30 ps were discarded as the time for the adaptation of the γ r coefficients for each atom species. The Langevin friction coefficient was set to 10 THz and the adaptation velocity to coefficient A γ = 10 -1 ps -1 . The adQTB results were compared with PIMD simulations at 100 beads at 77 K and 32 beads at 350 K. surface a coexistence, depending on the level of coverage, of both monodentate (preferentially deprotonated) and bridging bidentate configurations. The latter is the most stable on the basis of SCAN DFT calculations and its population decreases at high coverage due to the lower availability of Ti 5c pair sites. STM images were not able to distinguish between a molecular or dissociative monodentate, while some features of IRAS spectra were assigned to MH species.

Vibrational spectroscopy represents a fundamental tool for better understanding molecule-surface interactions and, therefore, for assign the species on surfaces. Infrared experiments by themselves frequently are not sufficient for this attribution and they often require a complementary theoretical study, which can be essential in the identification of the experimental peaks. In the most of the literature, the molecule-surface vibrations are calculated within the harmonic approximation at DFT level of theory, which is for such heterogeneous systems of many DOF the only handy way to provide accurate quantitative information about the PES. However, harmonic approximation is often not adequate and can lead into errors of dozens to hundreds of cm -1 [179]. Sometimes these errors can be compensated by the limited accuracy of the exchange-correlation functional employed in the DFT approach, sometimes the harmonic frequencies are simply multiplied by a scale factor to reproduce the experimental data. Therefore, the inclusion of anharmonic effects is essential to properly describe these interactions. Among the different methods to include anharmonic contributions [179], one can rely to "on-the-fly" AIMD, through which it is possible to compute IR spectra through Fourier transform of the dipole moment autocorrelation function. Furthermore, in an anharmonic picture the coupling between different vibrational modes is introduced, which, on the contrary, is completely neglected in the harmonic approximation.

A recent study by Tabacchi et al. on the FA adsorption on the anatase TiO 2 (101) surface [172] is, to our knowledge, the only theoretical work, up to now, that takes into account the dynamical effects on the FA adsorption via AIMD and not simply the (meta) stable configurations. In this study, much stress is given to the presence of short and strong hydrogen bonds (SSSH) in the monodentate species, which are considered to be responsible of a strong coupling with the surface.

Furthermore, the authors claimed that the proton is rapidly shuttling between the molecule and the surface, and guess that quantum effects at low temperature might be significant, although in their AIMD simulations the nuclei are treated classically.

The presence of H-bonding between the FA molecule and the anatase (101) surface suggests that anharmonic and quantum effects can play a crucial role in the dynamics of such a complex system.

However, the inclusion of anharmonic of quantum effects in vibrational spectra of molecule-surface systems is very challenging due to multiple factors [179]. First of all, such systems are limited to electronic structure calculations at DFT level of theory, which can present more accuracy problems with respect to the free molecules calculations, in particularly in the case of stretched and dissociated bonds. Furthermore, despite the existence of different approaches to build accurate PES, DFT calculations cannot provide the estimation of a global potential energy surface function for such systems due to the enormous computational cost of producing ab initio datasets and the complexity in the fitting procedure of a quality PES function. Secondly, the degrees of freedom coming from the surface significantly increase the configuration space dimensionality and generate frustrated molecular translations and rotations.

In this chapter, we aim to gain a deeper insight into the FA adsorption on the TiO 2 anatase (101) surface through a theoretical investigation including both quantum and anharmonic effects. To describe the vibrational properties beyond the harmonic approximation, we will included the zeropoint energy and anharmonic effects through QCT approach and quantum effects such as overtones and combination bands through "on-the-fly" DC-SCIVR, which has been recently applied to study the adsorption of water on the same surface [START_REF] Cazzaniga | Quantum Anharmonic Calculations of Vibrational Spectra for Water Adsorbed on Titania Anatase (101) Surface: Dissociative versus Molecular Adsorption[END_REF]. A tentative assignment of the surface species will be conducted accompanied by new IR experiments performed by S. Stankic and S. Chenot. 1If not indicated differently, the experimental results presented in this chapter correspond to their measurements. We will stress the importance of accounting anharmonic and quantum effects into this adsorption phenomenon, in particularly we will focus our attention on the hydrogen-bonded region between the surface and the molecule in monodentate species in combination with PIMD simulations.

The chapter is organized as the following. Firstly, we will present a DFT analysis at T = 0 K of the meta (stable) configurations and provide a local description of the PES in the above-mentioned hydrogen-bonded region. Then, we will illustrate the IR experiments on anatase nanopowders using FA and deuterated FA at room and low temperature and clarify with respect to the literature, what it is still certain and not certain of the assignment. After that, we will present the calculated gasphase spectra of isolated FA molecule and discuss the accuracy of the chosen DFT approximation.

Next, we will proceed with the assignment of the different adsorption configurations by comparing our calculated spectra with the IR experiments and a description of the molecule-surface couplings.

Finally, we will discuss the PIMD results for the equilibrium probability distributions of significant geometrical parameters and additionally make a comparison with other well-known systems.

Static adsorption configurations at zero temperature

In this section we report the results from static (T = 0 K) DFT/PBE [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] 

Binding energies and geometrical parameters

First of all, we have performed geometry optimizations of molecular MH (intra and inter), dissociated M(H) monodentate and bridging bidentate BB(H). Tables 4.1 and4 Tabacchi et al. [172], where PBE approximation is employed.

As introduced previously, these configurations are quite interesting due to the formation of an Hbond between the hydroxyl oxygen of the FA molecule and a O 2c site of the surface. The H-bond is relatively short having an inter-oxygen distance length of 2.52 Å and 2.57 Å for MH-intra and MH-inter minima respectively. In the work of Tabacchi et al. [172], the inter-oxygen separation for MH-intra minimum is shorter and corresponds to 2.479 Å. H-bonds are classified strong for inter-oxygen distances in the range 2.4-2.55 Å. MH-intra configuration has the strongest hydrogen bond, consistently with the slightly greater stability. The H-bond angle is close to 180 • , when the molecule is rotated on the surface, i.e. the MH-inter configuration, while it deviates from linearity for the MH-intra mode. The geometry optimization of M(H) mode without constraints is only possible for a "dissociated inter" configuration, which we will refer simply to as M(H). The monodentate dissociated is highly unfavoured and presents the lowest binding energy at 0.37 eV, which is in good accordance with the binding energy predicted by Tabacchi and coworkers [172].

Potential energy surface of monodentate species

The minimum energy path of proton transfer between the FA molecule and the surface was modeled via CI-NEB method [132] (see fig. 4.4). The parameter δ, defined as the difference between O s H and OH distances, is chosen as the coordinate of reaction. Dissociation corresponds to δ < 0, while for δ > 0 the acid proton is attached to the FA molecule. At δ = 0 the hydrogen bond is symmetric. From the left panel in fig. 4.4, the potential is highly anharmonic and corresponds to a skewed single-well potential rather than an asymmetric double well. Therefore, the dissociated configuration is not even a metastable minimum according to DFT/PBE approximation. 

IR experiments on anatase nanopowders

In this section we detail the IR experimental results. Fourier transform infrared spectroscopy (FTIR) experiments were performed on TiO 2 anatase nanopowders samples exposed to formic acid. As nanopowders have a very high surface-to-volume ratio, a large quantity of molecules can be adsorbed and a more intense signal than single crystals can be obtained, at the expense of an increased level of complexity, as nanopowders could show various surface defects [183,184]. The spectra were recorded as a function of the formic acid partial pressure, P FA , at room temperature and at low temperature (13 K). To have a better understanding of the acid proton location, the same experiments were repeated using FA deuterated in the OH acid position, e.g. HCOOD. A tentative assignment of the IR peaks will be given on the basis of infrared data from single crystal [173,175] and nanopowders [158,[185][186][187] measurements. Some new additional features with respect to the literature will be highlighted. 

Room temperature

Intermediate-frequency range

The OCO region around 1500-1750 cm -1 is crucial for the identification of monodentate and bidentate species. The peak at 1725 cm -1 and the one at 1675 cm -1

were previously assigned to the C=O stretching, ν(C=O), of molecular and dissociated monodentate mode, respectively [158]. Similar bands were found in the work by Nanayakkara and coworkers

[187] and assigned to ν(C=O) of FA chemisorbed and physisorbed, respectively. The peak at 1555 cm -1 can be attributed, within a general consensus of the previous works, to the O-C-O asymmetric stretch, ν a (OCO), of a BB formate, and it is the main peak present after desorption, meaning that it is associated with the most stable configuration. The peak at 1385 cm -1 was assigned in all the cited references to a CH bending mode, which might be compatible with both monodentate and bidentate configuration. The peak at 1360 cm -1 was assigned to symmetric stretching of OCO, ν s (OCO), of BB(H) configuration. The peak at 1320 cm -1 might be attributed to the C-O stretch, ν(C-O), of a monodentate formate as suggested by Xu and coworkers [175]. Finally, we notice the presence of new additional peaks at 1280 and 1035 cm -1 . With respect to the room temperature results, most of the IR bands are found at similar frequency but with a variation in the peak ratio, which stems from a different of level of population. Several new spectral features are also present, which in some cases superimpose some of the peaks present at room temperature. The combination of these factors leads to think that multiple adsorption configurations are present, some of which are more stable at low temperature rather than at room temperature. We point also out that the low temperature spectra could show also the adsorption of other impurities present in the chamber. Therefore, we limit our discussion to some of the features present in the spectrum, which is very complex. Notably, in the CH stretching region there are three intense large bands in the region 2500-3000 cm -1 , revealing a different behavior compared to the room temperature results. In the OCO range the room temperature peak around 1665-1675 cm -1 is present at ∼ 1680 cm -1 for FA partial pressure lower than 10 -4 mbar, for higher pressure it is superimposed by the band at ∼ 1720-1740 cm -1 . A new high intensity band is present at 1620 cm -1 . A similar band has been attributed in literature to the OH bending of coadsorbed water [186,187], which could be formed, for example, by the reaction of adsorbed formate and surface hydroxyl groups. Finally, new peaks appear at ∼ 1250, 1230 and 1080 cm -1 . FA adsorbed at room and low temperature, respectively. Firstly, we notice that the OH stretching negative signal around 3700 cm -1 is also present in the room temperature spectrum of deuterated FA (Figure C.3), confirming that is not associated with formic acid molecule because, if it was coming from the acid proton, it would have shifted to lower frequency. At room temperature the two spectra are very similar, probably meaning that at high temperature the most stable species is deprotonated and, in particular, it corresponds to the bridging bidentate configuration. Instead, the low temperature spectra for the adsorption of HCOOH and HCOOD significantly differ, particularly in the region 1900-3000 cm -1 . As introduced before, some broad bands in the range 2500-3000 cm -1 are present in the HCOOH spectrum, while the HCOOD spectrum is characterized by two main high intensity bands in the range 1900-2300 cm -1 . Therefore these bands are in some way involved with the OH and OD groups. Finally, it is clear that passing from room to low temperature for both HCOOH and HCOOD the characteristic bands for bridging bidentate adsorption ν a (OCO) and ν s (OCO) decreased significantly in intensity ratio, meaning that the bridging bidentate mode is less populated and leaves space for the adsorption of other species, most likely molecular monodentate FA. 

Low temperature

The effect of deuteration

Summary

The spectroscopic signals in the OCO region are the key to distinguish bidentate and monodentate configurations. At room temperature the most likely configuration for both protonated and deuterated FA is bridging bidentate mode with ν a (OCO) and ν s (OCO) at 1550 and 1360 cm -1 , though some low intensity peaks characteristic for ν(C=O) at ∼ 1675 and 1725 cm -1 are clearly visible in the spectra. At very low temperature, four peaks are present in the OCO region for FA and deuterated FA for pressures below 10 -4 mbar. One is the ν a (OCO) signal, whose intensity decreases significantly with the increase in FA concentration, i.e. BB(H) is less stable at high level of coverage. This might due to the fact that bridging bidentate mode actually needs two titanium sites to adsorb, which are less available at high coverage, thus the monodentate becomes thermodynamically more likely [173]. The other three instead are at ∼ 1600-1620, ∼ 1680 and ∼ 1720-1740 cm -1 . The first one was, as already mentioned, attributed to water adsorption in previous works, while the other two probably correspond to the ν(C=O) peaks present at room temperature, but it is still to clarify which one (or both) is associated to molecular adsorption. Finally, we stress the importance of the H/D isotopic shift at low temperature of the bands in the region 2500-3000 cm -1 . This could be due to the OH stretch of a very strong hydrogen-bonded species that, under deuteration, shift to lower frequencies. To summarize the most relevant characteristics of IR experimental spectra at room temperature vs low temperature, we report in the following a short scheme.

Room temperature bridging bidentate mode most stable low population of monodentate species Low temperature (13 K) at high coverage bridging bidentate (monodentate) is less (more) stable new spectroscopic features H/D substitution effect An exhaustive assignment of the different vibrational modes will be conducted in section 4.5, where we will compare these results to the theoretical calculated spectra.

Gas-phase formic acid and influence of the exchange-correlation approximation

Before, discussing the calculated spectra of FA adsorbed on the anatase ( 101) surface, we present here the spectra of isolated formic acid in the gas phase together with an analysis of the accuracy of the DFT computational set-up, that we employed in this study, DFT/PBE level of theory using plane waves basis set as implemented in the QE code. Firstly, we calculated the harmonic frequencies of formic acid molecule, then we employed QCT (eq. (2.70)) and "on-the-fly" DC-SCIVR Harmonic vs QCT and SC In order to appreciate the degree of anharmonicity and quantum effects, harmonic, QCT and SC spectra are shown in the same graphs. For simplicity, we limit to discuss the PBE spectra using QE (panel a of fig. 4.9), but similar conclusions can be extended to the other graphs. The QCT and SC spectrum for each normal mode are red-shifted respect the harmonic estimate. To identify the fundamental of SC calculations we compare SC spectra to the classical reference (QCT). We generally take as fundamental frequency the maximum of the QCT peak and the corresponding signal in the SC calculation. By comparing QCT and SC spectra, we see the increase in the level of complexity. On the one hand, QCT just includes the anharmonicity.

The SC spectra instead present additional features as both even and odd overtones and combination bands. The black spectrum include the even overtones and the ZPE peak, which we have placed at 0 cm -1 . Instead the spectra for each vibrational mode include the corresponding fundamental and the odd overtones. For example at ∼ 2180 cm -1 there is the overtone of ω(CH), while at 2220 cm -1 the one of ν(C-O), which are completely neglected in the QCT spectrum.

Periodic conditions vs isolated system

We firstly point out that the PBE calculations using plane waves basis set (QE) are consistent with the PBE calculations using a Gaussian basis set on a isolated system (NWChem) at the three levels of approximation (harmonic, quasi-classical and semiclassical). The largest difference between the two methods is over ν(C=O) and τ (COH). We remind that also other factors might be the source of these differences such as the cutoff for the energy wavefunctions and density in the QE calculations and the basis set employed for the NWChem calculations.

Exchange-correlation functional By using different exchange-correlation functionals, we found that QCT and SC frequencies are more accurate using the hybrid functional PBE0 and reach the best agreement using B3LYP functional, which presents a mean absolute error (MAE) of ∼ 30 cm -1 .

However, the semiclassical PBE spectrum using QE reproduces quite well all the features of B3LYP semiclassical spectra, overtones and combination bands. Thus, we consider our computational setup reliable to study the adsorption of HCOOH on the TiO 2 anatase (101) surface, keeping in mind that some of the QCT and SC frequencies will be largely shifted compared to the experiment.

Assignment of monodentate and bridging bidentate vibrational features

As previously discussed in section 4.3, there is evidence that both mono-and bidentate configurations contribute to the spectra. However, the monodentate/bidentate relative population is temperature-dependent. To disentangle purely anharmonic and temperature-dependent effects from those coming from the sum of signals from mono-and bidentate configurations, we compare the frequencies of mono-and bidentate modes as obtained by means of ab initio QCT and SC calculations with the location of the measured peaks. To understand better the role of OH and OD groups, we have also calculated the spectra for deuterated HCOOD. Relying on the extensive tests on the gas-phase FA (see section 4.4), the assignment of the experimental spectra will be conducted by comparing the calculated fundamentals with the measured IR peaks, and by taking into account the intrinsic error due to the DFT/PBE approximation. We have divided the spectra into multiple regions: the fingerprint (900-1500 cm -1 ), the carbonyl and the C-H stretching regions, whose spectroscopic features are essential to distinguish between the mononodentate and briding bidentate modes. Then, we will focus on the OH and OD stretching signals. Since the deprotonated monodentate is highly unfavoured according to our calculations, we will not include it in this analysis. We remind that the intensities of the computed QCT and SC power spectra cannot be compared to experimental IR absorption intensities. Therefore we will limit our study to the peak positions and shape of the signals. Figure 4.10 presents the experimental and calculated spectra in the fingerprint region (900-1500 cm -1 ).

Fingerprint region

COH torsion

Starting from the lower extreme of fig. 4.10, we notice the presence of a peak at ∼ 970 cm -1 in the low-temperature spectrum of HCOOH (panel (a2)), which is not present in the spectrum of HCOOD (panel (b2)). A tentative assignment of this peak is the vibrational mode τ (COH) of an adsorbed molecular monodentate geometry, compatible with both MH-intra (panel (a3)) and ). We have calculated the corresponding torsion for the deuterated system, τ (COD), which for both harmonic, QCT and SC methods is below 800 cm -1 and, therefore, it does not belong to the investigated frequency-region (900-1500 cm -1 ). CH wagging Next, we assign the peaks of the experimental spectra of HCOOH at 1038 cm -1 (r.t.) and 1079 cm -1 (l.t.) to the ω(CH) mode of either MH-intra or MH-inter (or both) and to the ω(CH) of BB(H) configuration (panel (a5)), respectively. Similar peaks occur in the IR spectra of HCOOD, with the low-temperature spectrum presenting a broad signal at 1035 cm -1 , which we assign to the ω(CH) mode of BB(D) (panel (b5)), and a doublet at 1066 and 1076 cm -1 . Our calculated spectra of ω(CH) do not present any doublet neither for MD-intra (panel (b3)) nor for MD-inter (panel (b4)). Therefore, we assign the peak at 1066 cm -1 to the ω(CH) mode of MDintra or MD-inter (or both), for which our harmonic, QCT and SC calculations predict lowered wavenumbers with respect to the corresponding modes in HCOOH. Instead, the peak at 1076 cm -1 might be due to the presence of HCOOH impurities.

C-O stretching

Proceeding in the l.t. IR spectra of HCOOH (panel (a2)), we notice a doublet at 1228 and 1255 cm -1 , which can be resolved, according to our calculations, as the ν(C-O) of MH-inter and MH-intra species. In the experimental deuterated spectra these peaks are shifted at 1259 and 1273 cm -1 (panel (b2)). OCO symmetric stretching A peak at ∼ 1360 cm -1 appears in both IR spectra of HCOOH and HCOOD at room and low temperatures. We attribute this peak to ν s (OCO) of BB(H) and BB(D)

formates. In our calculated SC spectra of BB(H) and BB(D), ν s (OCO) is splitted into a doublet.

CH rocking Lastly, we attribute the signals at ∼ 1380-1390 cm -1 in the HCOOH spectra to the γ(CH) vibrational mode of adsorbed HCOOH, which is also present in HCOOD spectra. We are not able to determine if this signal, which is splitted in the experimental low-temperature of about 10 cm -1 , is due to molecular adsorption or bridging bidentate formate.

Carbonyl region

This region (see fig. 4.11) is characterized by the presence of the antisymmetric stretching of OCO of the formate HCOO, ν a (OCO), and of the ν(C=O) of monodentate configuration.

We confirm the attribution, made previously in the existing literature, of ν a (OCO) at ∼ 1560 cm -1 , error of almost 100 cm -1 with respect to the experiment (table 4.9).

The attribution of ν(C=O) is more controversial. At room temperature the IR spectra of both HCOOH and HCOOD are characterized by ν(C=O) stretching signal at ∼ 1675 cm -1 . Taking into account the intrinsic error due to the PBE approximation, we attribute this peak to the ν(C=O) of molecular monodentate MH-and MD-intra (or -inter) (table 4.10). In particular, the SC spectrum of ν(C=O) in the intra and inter configurations of both HCOOH and HCOOD presents multiple peaks in contrast to the ν a (OCO) signal. This is mainly due to the strong coupling with the other molecule modes and the phonons of the surfaces. Furthermore, a peak at ∼ 1715 cm -1 shows up at very low intensity in the room-temperature spectrum of HCOOH and HCOOD and it is significantly enhanced at low temperature. On the basis of our calculations, which predicts the ν(C=O) of molecular monodentate more compatible with the signal at 1675 cm -1 , we guess that the peak at 1720 cm -1 is due to the physisorption of HCOOH and HCOOD on the TiO 2 nanoparticles, as suggested by the work of Nanayakkara et al. [187], although we did not study the physisorption of formic acid on anatase.

CH stretching

The room-temperature IR spectrum of adsorbed HCOOH shows, in the window 2600-3200 cm -1

(fig. 4.12-(a1)), three main bands at ∼ 2740, 2870, 2950 cm -1 . An additional band is present in As discussed previously, the room-temperature adsorption is dominated by the presence of bridging bidentate species, while at low temperature the formation of molecular monodentate is more favored. Thus, we attribute the band at 2936 cm -1 to the CH stretching, ν(CH), of molecular monodentate, while the other bands are associated with bidentate species. The other three bands have been also observed by Nanayakkara et al. [187] at 2735, 2872 and 2951 cm -1 and attributed, respectively, to the ν s (OCO) + δ(CH)5 combination band, the fundamental ν(CH) and the ν a (OCO) + δ(CH) combination band of bridging bidentate formate species. Our SC calculations do not show combination bands for BB(H) and BB(D) formates. We notice instead that in the SC spectrum of BB(H) (fig. 4.12-(a5)) the ν(CH) stretching signal is splitted in three main peaks (see values in table 4.12). We interpret this splitting as a Fermi resonance, which can also be detected at the QCT level. As regarding HCOOD, ν(CH) is splitted in two main components (see values in table 4.12).

OH and OD stretching

At the simple harmonic level, the adsorption of protonated formic acid in molecular monodentate species is characterized by a red-shift of the OH stretch on the order of 1000 cm -1 with respect to the gas-phase (see table 4.13). This red-shift is caused by the formation of a molecule-surface hydrogen bond that elongates the OH covalent bond when compared to the FA gas-phase (see table 4.2). The resulting PES of the hydrogen and deuterium (see fig. 4.4) is highly anharmonic.

Because of anharmonicity and dynamical effects, the hydrogen-bonded OH stretching signal is very complex with multiple peaks (see fig. 4.13). Indeed, the OH stretch couples with both high- a The data refer to formic acid partial pressure reported in the panels of fig. 4.12. and low-frequency modes and with both internal modes of the molecule and the phonon modes of the surface. This strong anharmonic modes mixing makes very difficult a pure assignation of the OH fundamental stretch.

In the procedure as employed in previous DC-SCIVR calculations on adsorbed molecules on the TiO 2 anatase (101) surface [START_REF] Cazzaniga | Anharmonic calculations of vibrational spectra for molecular adsorbates: A divide-and-conquer semiclassical molecular dynamics approach[END_REF][START_REF] Cazzaniga | Quantum Anharmonic Calculations of Vibrational Spectra for Water Adsorbed on Titania Anatase (101) Surface: Dissociative versus Molecular Adsorption[END_REF], the semiclassical spectra were generated from a single classical trajectory at an energy equal to the harmonic estimate of the ZPE. In order to be able to provide a better resolution of the OH and OD stretching signals and increase the quality of the QCT and SC spectra, we have varied the initial momenta of the classical trajectory by decreasing the amount of the harmonic ZPE at which the system is initialized. As an example, we present in Figure 4.13 the QCT spectrum of OH stretch for a selected configuration of HCOOH, MH-intra, with respect to the variable coefficient α (1/4 ≤ α ≤ 1), which sets the initial condition of the nuclei momenta: At α = 1, the momenta are initialized to a temperature corresponding to the total harmonic estimate of the ZPE, causing an excitation of both low-and high-frequency modes. The acid proton jumps several times back and forth from the molecule to the surface. The OH stretch signal presents multiple peaks in a wide window of frequencies and yields the hydrogen-bonded monodentate species a complex floppy nature. We underline that the high-intensity peaks for frequencies below 2000 cm -1 are due to the strong coupling with the rest of vibrational modes of the molecule. By decreasing α, the system energy is closer to the bottom of the potential-well represented in fig. 4.4.

E kin,0 = α × E ZPE,Harmonic
I(E) =1/4 =3/8 =1/2 =5/8 =3/4 =7/8 =1 Harmonic
As a consequence, the proton hopping between the molecule and the surface is generally reduced and the QCT spectra become more alike to the harmonic ones.

The SC calculations for the OH and the OD stretch have actually been performed at α = 1, α = 3, 4, a3)), the SC OH stretch signal is blue-shifted with respect to the harmonic value and it is found at 2718 cm -1 . The OH stretching fundamental of MH-intra are in better agreement with the experiments than the one of the MHinter at all the three levels of calculations (harmonic, QCT, SC). We will therefore, for simplicity, continue the discussion by referring to the MH-intra configuration. As introduced previously in section 4. b3)) presents two peaks at 1956 and 2089 cm -1 , while the harmonic estimate is at 1872 cm -1 . To summarize, the OH and OD stretching spectra of the monodentate intra configuration are in well agreement with the experimental findings. On the one hand, the OH stretching vibration in HCOOH is red-shifted respect to the "free" vibration in the gas-phase by 1068 cm -1 at the harmonic level. This huge red-shift is caused by the formation of a strong hydrogen bond with the surface and decreased of about 100 cm -1 when anharmonic and quantum effects are included. On the contrary, the HCOOD shift respect to the gas-phase is smaller at the harmonic level (744 cm -1 ) and it is even less when anharmonic and quantum effects are taken into account: it is 607 and 474 cm -1 for the two OD stretching peaks, respectively. The previous considerations suggest that the hydrogen bond in adsorbed HCOOD is weaker than in adsorbed HCOOH, making the OD stretching to vibrate at frequencies closer to the "free" OD stretch in the gas-phase HCOOD system.

α = 1/2.
Concerning the bridging bidentate species, the OH stretch signal coming from the free hydrogen atom on the surface is a well defined single peak at 3664 cm -1 at the harmonic level, which shifts down to 3563 cm -1 in semiclassical calculations. The experimental band at ∼ 3700 cm -1 in the room and low temperature spectrum of adsorbed HCOOH, which is also present in the room tem- ) FTIR spectra at a selected partial pressure P FA (mbar). We remind that the doublet at ∼ 2300 cm -1 is due to the CO 2 present in the chamber. Left: HCOOH adsorption; right: HCOOD. All the QCT and SC refer to a single classical trajectory with α = 1, except MH-intra (α = 3/4) and BB(D) (α = 1/2).

to water vapor molecules. It is unclear whether the dissociation of FA via the bridging bidentate adsorption should contribute in some way to this signal.

On the contrary, for the deuterated system it is possible to assign a ν(OD) stretching frequency coming from HCOOD dissociation. At the harmonic level the OD stretch of BB(D) is 2666 cm -1

and shifts at 2642 cm -1 in SC calculation using α = 1/2. These frequencies are compatible with the experimental signal at ∼ 2717 cm -1 , which is clearly visible in the room temperature spectrum of adsorbed HCOOD. A similar peak was found by Wang et al. [173] and attributed to a OD stretch.

It is interesting to note that if α = 1, it is very difficult to catch the fundamental of OD stretch in QCT and SC spectra (see in appendix,fig. C.7). This is due to the fact that the free OD on the surface is strongly coupled with low-frequency phonon modes of the surface, which are below 500 cm -1 . This results in a very broad signal for the SC calculation with α = 1. 

Coupling with the surface

One advantage of using the DC-SCIVR method is the division in subspaces of the different vibrational modes according to the averaged Hessian criterion (eq. (2.60)), which helps to identify the relevant coupling between the different vibrational modes, which is completed neglected in the harmonic approximation. The modes with the strongest interaction will be contained in the same subspace. Tables C. [START_REF] Lower | The Potential-Energy Surface Can Be Calculated Using Quantum Mechanics[END_REF] and C.19 report for HCOOH and HCOOD, respectively, the dimension and the threshold ϵ of the different subspaces employed to compute the presented semiclassical spectra. For the molecular adsorption of HCOOH (intra/inter) the subspaces contain all the modes of the molecule and the modes coming from the interaction with the surface, while for the bridging bidentate adsorption the formate HCOO and the OH stretching were treated from two different subspaces. To exhaustively study the complex coupling between the molecule and the surface, one should consider and study all the molecule-surface modes contained in each subspace that we used to compute the SC spectra. In the following, we will limit to analyze some relevant examples for each adsorption configuration. To visualize these surface-molecule interactions, we use the displacement arrows that describe the harmonic eigendisplacements, which are mass-scaled so that a longer arrow corresponds to a larger atomic displacement (fig. 4.15). Furthermore, for simplicity sake we will give the harmonic frequencies for each mode.

The molecule-surface modes can be generally divided into two main categories: resonances between the adsorbant and the surface phonons, on the one hand, and localized modes on the adsorbant molecule, on the other hand.

For example, the mode #144 of MH-intra is a strong resonance between the adsorbant and the sur- compared to the frequencies of the adsorbant which are in the range 900-3000 cm -1 . Despite this large difference, mode #144 of MH-intra is contained in the same subspace of the adsorbant modes and therefore it is strongly coupled to them. When considering the corresponding deuterated configuration, MD-intra, we focus on the modes #143 and #201. The mode #143 of MD-intra has a similar motion of the adsorbant atoms of mode #144 of MH-intra, with the difference that the oxygen atoms of the surface participate very little to the overall displacements. This can be therefore characterized as a localized mode of the adsorbant. The mode #201 of MD-intra is a strong resonance that interest particularly the hydrogen-bonded region. Here we observe a general deformation of the OCO group of the adsorbant and a significant displacement of the O 2c site that is hydrogen-bonded to the deuterium, which is counterbalanced by the nearest neighbor O 3c site bond to the Ti 5c site of adsorption. The harmonic frequency of this mode is 643 cm -1 , which is very close to the δ(OCO) of gas-phase FA (605 cm -1 , table 4.3) and to phonon modes of the clean surface in the range 630-648 cm -1 . For the inter pair configuration the mode #209 is a weak localization mode of a O-C-O bending, which is accompanied by a small displacements of surface oxygen atoms; the one which contributes the most is the neighboring O 2c site of the Ti 5c adsorption site. Lastly, we report an example for the BB(H) configuration. As anticipated before, the OH stretching due to HCOOH dissociation in a BB formate is not contained in the same subspace of the HCOO formate vibrational space. However, this does not mean that the formate and the free OH of the surface are not affected by the presence of one another. Indeed, the mode #145 of BB(H) is a strong resonance between a out-of-plane bending of the O-C-O group and a movement that affects the hydroxyl group on the surface. The frequency of mode #145 is 264 cm -1 , quite low if compared to the characteristic formate vibrations, which are in the 1000-3000 cm -1 range. Note, again, despite the large differences of frequencies, that mode #145 is dynamically coupled with the formate vibrations.

Quantum equilibrium properties

In section 4.5, we have shown how much it is important to include both anharmonic and quantum effects to properly describe the dynamics of the investigated adsorption phenomenon. As most interesting properties, we have highlighted the importance of the hydrogen-bond in molecular monodentate, which highly affects the vibrational properties of both adsorbed HCOOH and HCOOD.

In this last part of the chapter, we therefore focus on the molecular monodentate configuration and the impact of NQEs on the equilibrium properties of the system through PIMD simulations. In particular, we have used a path integral generalized Langevin equation thermostat [START_REF] Ceriotti | Accelerating the convergence of path integral dynamics with a generalized Langevin equation[END_REF][START_REF] Ceriotti | Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei[END_REF] to reduce the number of replicas in the PIMD simulations. In the following, we will illustrate the probability distributions of bond lengths and the temperature-dependent observables. Firstly, a comparison with the gas-phase molecule is presented. Then, we will discuss the thermal and isotope effects.

Finally, we investigate the proton localization and the proton transfer between the molecule and the surface.

Formic acid before ad after adsorption

To measure the impact of quantum effects in mondentate configuration, we have firstly compared the main bond lengths distances of FA before and after adsorption at low temperature (Figure 4.16) through PIMD method. The presence of a H-bond with the surface makes the probability function of the O-H distance highly asymmetric, which causes the elongation of the O-H covalent bond length with respect the isolated gas-phase FA. Very tiny effects occur on the C-H bond length.

These results are completely in accordance to what we have found for the vibrational spectra, which, with respect to the gas-phase, predict a red-shift for ν(C=O) and ν(OH), a blue-shift for ν(C-O)

and very similar frequency for ν(CH). Figure 4.17 reports the probability functions for the inter-atomic distances close to the adsorption site at 100 K and 300 K. As a general trend, we point out that classical distributions are narrower than the quantum ones especially for O-H covalent bond and O• • • H lengths. The largest difference between classical and quantum result is at low temperature, which is mainly due to the importance of the ZPE effects. However, we notice, that even at 300 K the classical distribution for the O-H covalent bond length is still quite different from the quantum case. The hydrogen bond distance [START_REF] Parrinello | Study of an F center in molten KCl[END_REF] in HCOOD. Therefore, the hydrogen bond is shorter in HCOOH than HCOOD. We remind that this is completely the opposite effect of what we have found in the crystal system KOH/KOD (section 3.5.3), where the hydrogen bonds are long and weak.

Thermal and isotope effects

O• • • H is peaked at ∼ 1.40 Å (̸ = statistical average 1.38) for HCOOH, while O• • • D is peaked at ∼1.45 Å (̸ = statistical average 1.
Here, the hydrogen bonds are short and strong and the quantum fluctuations due to the stretching motion of OH and OD prevail on the bending ones and reinforce the hydrogen bond. Thus, the O• • • H length predicted by the classical Langevin dynamics is the longest (weakest interaction), and the hydrogen bond is stronger in adsorbed HCOOH than adsorbed HCOOD, confirming what we suggested in section 4.5.4. Also r 3 (Ti 5c -O 2c ) and r 4 (Ti 5c -OC) distances are affected by NQEs as evidenced by the broadening of the distributions and the shift of the peaks with respect the classical ones at low temperature, confirming that all the environment close to the hydrogen bond is involved. 

Proton localization

In fig. 4.4 we have shown that the PES for monodentate mode is characterized by a well defined minimum corresponding to molecular monodentate MH-intra, while the dissociated configuration is highly unfavorable and does not represent a minimum. The potential is therefore characterized by a single well presenting a high level of anharmonicity. By looking at the fig. To appreciate the quantum properties of HCOOH/TiO 2 system, we have made a comparison of the distribution of the proton transfer coordinate at 100 K between MH-intra mode and other wellknown systems, the formic acid dimer (FAD) and the zundel cation. The FAD was modeled using a fitted potential implemented by Qu et al. [190], while the zundel cation probability distributions were extracted from the work of Shran et al. [191]. The proton sharing coordinate δ is defined as the following: δ = (r 2 -r 1 ) for I and II and δ = (r 2 -r 1 ) and δ = (r 4 -r 3 ) for III. The zundel cation represents the extreme condition in which the inter-oxygen distance is just about 2.40 Å, the hydrogen bond is symmetrized and the proton is equally shared between the two oxygens.

The formic acid dimer instead represents the opposite case, the hydrogen bonds are much more elongated corresponding to an equilibrium inter-oxygen distance of 2.68 Å. This results in low proton hopping events and the proton is localized on the donor sites. The O f -O s distance of the FA adsorbed in the monodentate configuration is between the previous values. However, in contrast with both the zundel cation and the FA dimer, there is no mirror plane passing through the centered position. In the proton distribution for the adsorbed molecule, there is a single maximum for δ > 0.

The proton dissociation (corresponding to δ < 0) is not an equilibrium position, even when NQEs are included. However, the short hydrogen bond (averaged O f -O s distance = 2.47 Å) leads the hydrogen bond donor and acceptor sites to share much more the proton compared to the formic acid dimer. This results in highly anharmonic quantum properties which affect the OH stretching signal. The symmetric case δ = 0 is not achieved due to the fact that, differently from the zundel cation, this system is heterogeneous and the potential is not symmetric. 

Conclusion

In this chapter, we have addressed the complex phenomenon of adsorption of formic acid molecule on the TiO 2 anatase (101) surface by incorporating quantum and anharmonic effects in the molecular dynamics simulations. This study was conducted in close collaboration with some experimentalists, who performed new FTIR spectra on anatase nanopowders. Our results reveal the presence of competing adsorption configurations, as suggested in previous works. On the one hand, the formic acid molecule can adsorb in a molecular form; on the other hand, it can dissociate forming a formate species and free hydroxyl groups on the surface. According to our calculations, the most stable configuration is the molecular monodentate mode intra-pair, which presents an hydrogen bond with a O 2c site of the surface. The dissociation via similar monodentate mode is highly unfavoured and does not represent a meta stable configuration. Instead, the dissociation presents a local minimum for a bridging bidentate configuration, where the OCO plane of the formate is parallel to the [010] direction.

The adsorption picture appears to be very complex, with experimental spectra at room and low temperature rich of different spectroscopic features. The room-temperature spectra is dominated by the presence of bridging bidentate species due to the presence of the characteristic ν a (OCO) and ν s (OCO) of the formate. However, at low temperature the adsorption of the FA molecule is different. Indeed, the low-temperature experiments revealed the formation of a more stable species, which, under specific deuteration of the acid proton position (HCOOD), presents an isotopic H/D shift of some bands.

To assign the surface species, we have compared the FTIR spectra with the calculated power spectra obtained through QCT and DC-SCIVR approaches. In this work, we have employed the PBE functional, which is very accurate to describe the hydrogen bonds but underestimates the harmonic frequencies, as we carefully benchmarked the gas-phase FA against higher levels of DFT. Despite the systematic error due to the PBE functional for some frequencies, we were able to assign some of the feature of the room temperature and low temperature spectra of both adsorbed HCOOH and HCOOD. Our calculations are compatible with the assignment of a molecular monodentate species at low temperature, although some bridging bidentate is also present. In particular, we focused on the OH and OD stretching vibrations of the hydrogen-bonded molecular monodentate species (intra-pair). The OH stretching frequencies for adsorbed molecular monodentate is close the CH stretching region at ∼ 2550 cm -1 . The harmonic estimate is in good accordance with this result, however completely fails to describe the behavior of molecular monodentate deuterated formic acid, which shows in the experiments two main bands at ∼ 2060 and 2170 cm -1 . Indeed, with the inclusion of anharmonic effects we revealed that the OH stretching is significantly more red-shifted with to respect the gas-phase than the OD stretch, suggesting that the hydrogen bonds are stronger in adsorbed HCOOH than adsorbed HCOOD, mainly due to the zero-point energy effects.

The adsorption of HCOOH and HCOOD presents a mixing of the modes coming from the molecule and the surface. Through investigation of the subspace used in the DC-SCIVR spectra, we have

shown that both resonances and localized modes of the adsorbant with the surface atoms, mainly oxygen atoms, contribute to the complex picture of the adsorption, since they are dynamically coupled with the vibrational modes coming from the adsorbant.

PIMD distributions confirmed that NQEs are essential to properly describe the monodentate hydrogen-bonded molecular adsorption, and predict a geometric isotope effect for the hydrogenbonds length, which is shorter in HCOOH in accordance to what we found for the vibrational features. Furthermore, we have shown trough PIMD approach that the monodentate FA/TiO 2 system behaves quite differently with respect to other well-known systems, the zundel cation and the formic acid dimer. To summarize, in the FA/TiO 2 system the molecular adsorption is favored even when including nuclear quantum effects, although the proton is frequently shared between the surface and the molecule.

Relax calculations All the structural optimization were carried out within a convergence threshold on forces of ∼ 0.001 eV/Å. The anatase (101) surface was modeled using a periodic slab formed by 4 Ti 6 O 12 layers (72 atoms total), which corresponds to a (1 × 3) surface unit cell and surface area 10.37 × 11.37 Å 2 . A vacuum region ∼ 13 Å wide was included to reduce the inter-slab interactions. The surface was build as the following. Bulk anatase containing 4 TiO 2 units (12 atoms total) and defined by the lattice vectors (a 1 , a 2 , a 3 ) was optimized with a variable cell structural optimization. The primitive unit cell was then transformed in (a ′ 1 , a ′ 2 , a ′ 3 ) by choosing a ′ 1 = a 1 -a 3 and a ′ 2 = 3 × a 2 as the (101) plane vectors and a ′ 3 = 3 × a 1 as the stacking vector. A slab of 6 Ti 6 O 12 layers (108 atoms) was generated and the fully relaxation of the atoms with the exception of the 2 bottom layers was performed. The 6 layers slab was cut in order to obtain the final 4 Ti 6 O 12 layers slab. A relax calculation with fixed bottom layers and free surface layers was performed. The adsorption of trans-FA molecule was modeled considering the adsorption of one molecule of FA in both monodentate (molecular/dissociated) and bidentate (dissociated) adsorption (limit weak coverage). The minimum distance between periodic copies is respectively ∼ 8 and ∼ 11 Å in

[ 101] in [010] direction for monodentate and ∼ 10 and ∼ 9 Å for bidentate. The binding energies were calculated as:

E b = E surf. + E mol. -E sys.
Furthermore, to assure the order of stability of the different adsorption configuration, we performed test for i) the BZ sampling : Γ point vs [2 × 2 × 1] k-points grid mesh ; ii) the surface unit cell : 

(1 × 3) vs (1 × 4).

PIMD and classical Langevin simulations

The NVT PIMD and classical Langevin simulations were performed using i-Pi interface [194] to QE. In particular, the method Path Integral Generalized Langevin Equation Thermostat (PIGLET) [START_REF] Ceriotti | Accelerating the convergence of path integral dynamics with a generalized Langevin equation[END_REF][START_REF] Ceriotti | Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei[END_REF] was used, allowing a faster convergence on the number of beads in the PIMD simulation. The convergence tests on the number of beads have been performed on FA molecule (Figure C.2). The number of beads was set n = 12 at 100 K and n = 8 at 300 K. The friction coefficient γ was set to 10 THz and the time-step dt to 0.5 fs. The total length of PIMD simulations was 5 ps for the gas-phase and between 5-10 ps for the molecular adsorption.

Classical Langevin simulations were conducted instead over ∼ 23 ps. For the formic acid dimer, we have perfomed a PIMD calculation at T = 100 K using 64 beads within a simulation time of 50

ps, using the fitted potential energy surface from ref. [190]. The trajectories were analyzed using the python library MDTraj [195]. Probability distributions were computed using Gaussian kernel density estimation from python SciPy package [196]. Procedure for calculating QCT and SC power spectra The QCT and DC-SCIVR power spectra for each adsorption configuration were computed according the following steps:

1. Hessian matrix at R eq using a finite difference scheme using the FD (PHonon QE) code;

2. Diagonalization of the hessian matrix to compute the harmonic normal modes;

3. NVE MD simulation (velocity-Verlet) with: i) initial positions R eq ; ii) momenta initialized to the harmonic estimate of ZPE; iii) time-step dt ∼ 0.24 fs (10 Ry a.u.) and iv) total simulation length of 0.6 ps (2500 iterations); 

Subspaces subdivision for DC-SCIVR calculations

In the following the dimension of the selected subspaces are reported.

Table C.18: Selected subspaces for HCOOH ads. using a single trajectory initialized to a factor α of the ZPE harmonic energy (E kin,0 = α × E ZPE,Harmonic ). In a study by Rejnek and Hobza, accurate calculations at MP2 level have shown that the WC-AT is much more stable than the noncanonical tautomers, while in GC the WC-GC, which is the dodecamer [208] showed that the DPT reactions in GC have negligible contribution. The under-standing of the equilibrium properties and dynamics of nucleobase pairs is, therefore, of crucial importance, but a very challenging problem due to the multiple factors that come into play, in particular the role of the solvent and the backbone and the tautomeric population.

α = 1 α = 3/4 α =
In the present chapter we explore the equilibrium and vibrational properties of the GC base pair in the gas and condensed phases. Due to their computational complexity, accurate ab initio calculations are not flexible and fast enough to study the GC base pair in a realistic physiological environment and they are limited to the inclusion of the solvent water molecules in an implicit way as in the PCM approach. Thus, we employed a molecular mechanics approach to study the Watson and Crick conformation of GC using the AMOEBABIO18 force field [START_REF] Zhang | AMOEBA polarizable atomic multipole force field for nucleic acids[END_REF] (see section 1.3.1), which has been recently applied to DC-SCIVR spectroscopy of isolated nucleosides [START_REF] Gabas | Semiclassical vibrational spectroscopy of biological molecules using force fields[END_REF] and solvated thymidine [209]. The accuracy of AMOEBABIO18 will be discussed in comparison with the available ab initio calculations performed by G. Botti. 1 Considering the exploratory nature of the present study, first we focus on the Watson and Crick conformer in the gas phase, where a careful comparison with the calculations by G. Botti is possible, and then we study the effect of the water solvent. We point out that this is a preliminary study, which is still work in progress.

Gas-phase Watson-Crick conformer

Our investigation started with the canonical Watson and Crick conformer of guanine and cytosine base pair using the polarizable force field AMOEBABIO18 [START_REF] Zhang | AMOEBA polarizable atomic multipole force field for nucleic acids[END_REF] as implemented in the Tinker is important to notice that AMOEBABIO18 was designed for the condensed phase, therefore the deviations from the DFT reference are reasonable. The hydrogen bond angles ∠AHB, which are very close to linearity, are well reproduced within the AMOEBABIO18 force field. 

Thermal and quantum effects on structural properties

As a first investigation of the role of nuclear quantum effects on the structure of the GC base pair, we have studied the equilibrium properties of the dG•dC complex at 300 K. We have used the adQTB approach, PIMD simulations, as well as classical Langevin molecular dynamics simulations. Figure 5.4 shows the radial distribution function of NH and OH pairs in the GC interbase region calculated with the three different methods in the gas phase. The peak at 1 Å is related to the covalent bonds and the one between 1.8-2.2 Å to the hydrogen bonds. The g NH (r) is the only one presenting a peak in the covalent bond region since there are no OH covalent bond in the interbase region. We recall that the use of conventional force fields does not allow any proton transfer, so the conformer is well confined in the canonical structure along the whole dynamics. We firstly point out that the adQTB distribution is in good accordance with the PIMD one, meaning that the adQTB can describe faithfully the equilibrium properties of the dG•dC nucleoside pair. In all cases, the quantum distributions are wider than the classical ones due to the significant zero-point energy of the N-H covalent bond. Concerning the hydrogen bonds, there are no strong effects, there is no significant shift of the hydrogen bond distances. 

NH stretching vibrations

We performed a vibrational spectroscopy investigation to obtain more insight about the dynamical properties of dG•dC. The calculation of the vibrational properties of the nucleobase pairs is relevant to identify the role of the vibrational modes that might be involved in the proton transfer reactions and the factors that come into play in the stability of the double helix of DNA. Furthermore, vibrational spectroscopy is fundamental to identify the presence of tautomers in the experiments (see in section D.2 the description of tautomerism in the ANI model). In particular, we have adopted the QCT approach using a single trajectory initialized to the harmonic estimate of the ZPE in the isolated gas-phase dG•dC and we have also calculated the vibrational spectra using the adQTB method. The results are shown in table 5.2 and fig. 5.5.

To our knowledge, there is currently no experimental IR spectrum of the Watson-Crick conformation of dG•dC neither in the gas phase or in solution. Instead, some experimental vibrational studies have been conducted on G•C clusters [213][214][215][216][217]. However, in the available gas phase spectroscopic data the attribution to the canonical Watson-Crick GC was dubious due to the fact that it is not clear if the isolated species is either in the canonical or in a tautomeric form. Therefore, we restrict our discussion to the comparison between the different methods and accurate ab initio focused on the high-frequency region in the 3000-4000 cm -1 range, which is related to the NH stretching vibrations of the GC interbase region.

Concerning the force field accuracy, we compare the harmonic and QCT results using AMOE-BABIO18 with DFT-D/B3LYP data, by considering only the normal modes that are equivalent in the two different computational approaches. Firstly, we point out that the largest difference between the force field and the DFT reference is at the harmonic level over the NH 2 symmetric stretching (NH s 2 ) of Gua, (∆ AMOEBA/DFT = 188 cm -1 ). This shift is reduced to 74 cm -1 when including anharmonicity at the QCT level, but the agreement with the DFT-D/B3LYP data worsens for the other two frequencies, the NH 2 asymmetric stretching (NH a 2 ) of Gua and Cyt, which present a ∆ AMOEBA/DFT of -42 and -90 cm -1 , respectively.

The adQTB spectra were calculated for each atom type2 directly during the adQTB simulation and were deconvoluted in order to eliminate the broadening associated with the Langevin friction force and to obtain sharper peaks. The spectrum of atom type H2, corresponding to the two hydrogen atoms of the NH 2 group of Gua, is resolved in two peaks, the symmetric and antisymmetric stretching of NH 2 of Gua. Similarly, the spectrum of atom type H4 presents two peaks, which are the symmetric and antisymmetric stretching of NH 2 of Cyt. Lastly, the atom type H1, which corresponds to the hydrogen atom of the NH group in Gua, presents a single peak. The adQTB frequencies are very similar to their QCT counterparts in the gas phase, notwithstanding a lower resolution of the former ones. The only exception is NH s 2 of Cyt, which is at a significantly higher frequency compared to the QCT result (3495 cm -1 in QCT vs 3558 cm -1 in adQTB). The similarity between the adQTB and QCT spectra are due to the fact that both methods employ a classical trajectory which includes the zero-point energy. Their relatively good agreement is expected. 

Biomolecular environment: preliminary results

Solvent effect: water-box

As previously stated, the advantage of employing a force field over ab initio calculations lies in the possibility of including the solvent explicitly, without having to use implicit and dubious solvent models. Thus, to study the solvent effect, we have placed the dG•dC nucleoside pair in a cubic box of water molecules of length 30 Å as shown in fig. 5.6. We have used periodic boundary conditions and the particle mesh Ewald (PME) scheme for the long-range interactions [219,220].

The resulting total number of atoms is 2644 including both the dG•dC and the water molecules.

The geometry obtained after minimization of the solvated dG•dC complex is different with respect to the gas phase (table 5.3). In the gas phase, the Gua and Cyt moieties are approximately contained in the same plane. Instead, after the solvatation, the planarity is lost with one of the nucleoside being staggered from the other one. This significantly affects the interbase hydrogen bonds, which largely deviate from linearity (see ∠AHB in table 5.1). We notice that the solvent effect is to increase the This can also be read as a decrease of the hydrogen bonds strength in the interbase area, which is in contact with the surrounding water molecules, while instead the internal hydrogen bond is strengthened. [START_REF] Habershon | Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water[END_REF] 3605 [110] 3484 [START_REF] Halgren | The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters[END_REF] 3466 [START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient Langevin approach[END_REF] 3513 [START_REF] Kay | Integral expressions for the semiclassical time-dependent propagator[END_REF] In order to point out the differences in the vibrational properties that are due to the solvent, we have calculated the harmonic and QCT vibrational spectra in the solvated dG•dC complex (table 5.4,fig. 5.7). In our simulations, we observe that NH stretching vibrations of dG•dC are very sensitive to the environment, both at the harmonic and QCT levels. The harmonic frequencies are all red-shifted in the condensed phase, with the exception of NH a 2 and NH of Gua, which present almost the same frequency with respect to the gas phase. In contrast, in the QCT approach all the investigated modes are blue-shifted with respect to the gas phase (see table 5.4 and fig. 5.7). The largest contribution is over NH s 2 of Cyt, which is blue-shifted of 110 cm -1 . As a general rule, one should expect that the effect of solvation in a polar medium is to red-shift the frequencies.

Instead, the QCT spectra of dG•dC in the water-box reveal an "improper" blue shift for all the selected modes, a very peculiar property, whose origins we have not investigated yet but are probably associated with the effect of the surrounding water on the interbase hydrogen bonds. Usually, weak hydrogen bonds yield higher stretching frequencies when including anharmonicity due to the strengthening of the AH covalent bond. Figure 5.7: QCT spectra of interbase NH stretching vibrations in gas phase and solvated dG•dC using AMOEBABIO18. The corresponding harmonic values are reported as vertical dashed lines.

Concerning the solvated dG•dC nucleoside pair, we could not evaluate any vibrational and thermodynamic properties from adQTB and PIMD simulations at 300 K due to the instability of the complex in solution. Indeed, in less than 1 ns of simulation, the Gua and Cyt moieties separate (see fig. D.1 in appendix). This is due to the absence of the DNA backbone, which ensures the stability of the nucleoside pairs in solution on longer time scales.

Inclusion of DNA backbone: solvated dodecamer

The presence of the DNA-like backbone clearly appears to be essential in the study of solvated nucleobases. To model a solvated DNA-like system and study the effects on the hydrogen bonds equilibrium and dynamics of dG•dC base pair, we have adapted a new model, a DNA double helix dodecamer of sequence d(TTAGGGTTAGGG). The latter was neutralized with 22 Na + counterions and solvated in a rectangular water-box of dimensions 70 Å × 45 Å × 45 Å. We used periodic boundary conditions and the PME scheme. The relevant hydrogen bonds parameters for the optimized structure are reported in table 5.5. Also in this system, the G•C base pair presents with respect to the gas-phase a deviation from planarity, particularly evidenced by the ∠AHB for the N4H• • • O6 hydrogen bond, which is 155.8 • . We note that N1H• • • N3 and N2H• • • O2 hydrogen bonds in the solvated dodecamer are longer and shorter than the ones in solvated dG•dC, respectively. It is well to specify, the role of the counterions and the periodic box lengths has to be further investigated and their influence on the geometry of the dodecamer. To investigate both the structural and vibrational properties of the solvated dodecamer, we have performed adQTB and classical Langevin simulations at 300 K. In contrast to the water-box simulations, where the Gua and Cyt moiety were splitting apart from each other, in the adQTB simulation at 300 K of the solvated dodecamer along a trajectory length of 12 ns, the double helix is maintained intact. We calculated from this simulation the radial distribution function for AH pairs, as defined in table 5.5 and compared with the results from the gas phase. The differences between the g AH (r) obtained from classical and adQTB simulations are significant in both the gas-phase and the solvated dodecamer, as evidenced by the broadening of the distributions with the inclusion of NQEs (fig. 5.9). This is mainly due to the larger delocalization of the proton due to the zero-point energy motion in adQTB simulations. The g AH (r) are very similar for the two phases, suggesting that there is no significant difference in the AH covalent bonds. The spectroscopic features in the solvated dodecamer are similar to the ones in the gas phase (fig. 5.8), consistently with the radial distribution functions. This result is in strong disagreement with the results obtained for dG•dC in the water-box simulated with the QCT approach. In order to understand if the origin of this discrepancy is due to the backbone effect or to the lower accuracy and resolution of the adQTB method, we plan to apply the QCT method to a DNA-like system with more than a couple of bases. 

Classical adQTB

Dodecamer/Water Classical adQTB Gas phase Figure 5.9: Radial distribution function g(r) at 300 K of NH covalent bonds in the GC interbase region of dG•dC in the gas-phase and solvated dodecamer from adQTB simulations using AMOE-BABIO18.

Conclusion

In this chapter, we have explored the equilibrium and vibrational properties of guanine and cytosine base pair, using different complementary methods. As a DNA building blocks, extensive theoretical studies on nucleobase pairs have been performed to understand multiple aspects of their behavior.

To explain single point mutations in DNA, one proposed mechanism is the double proton transfer along the interbase hydrogen bonds, acting as a source of mispair of the bases through the formation of rare tautomers. The dynamics of nucleobase pairs is strongly affected by the environment in which they are simulated. To properly describe the physiological conditions, one fundamental step is the solvatation. This remains a very challenging problem since accurate ab initio calculations are impossible to obtain.

Via the AMOEBABIO18, we have investigated the canonical Watson and Crick conformation of dG•dC. Our results via adQTB suggest that the proton delocalization due to the zero-point energy motion is relevant even at 300 K both in the gas phase and in solvated DNA dodecamer, which includes both the solvent and the backbone effect. Concerning the vibrational properties, we have shown that the solvent effect is not straightforward to anticipate. The anharmonic spectra of solvated dG•dC obtained through QCT present an improper blue-shift of all the high-frequency modes related to the GC interbase region with respect to the gas-phase spectra. This contrasts with the harmonic approximation which provides mostly a red-shift. Within adQTB, which is less accurate for the study of vibrations, the high-frequency GC interbase spectroscopic features of solvated DNA dodecamer are similar to the ones in the gas phase. The more accurate QCT method will be applied to a DNA-like system in the near future.

save-force neighbor-list

The QCT spectra were computed using the following procedure.

1. Geometry optimization.

2. Hessian diagonalization at the equilibrium geometry and harmonic frequencies. adQTB and PIMD The adQTB and PIMD simulations were performed using the Tinker-HP software [222] on GPUs. The adQTB simulations at 300 K were long 12 ns, of which we discarded the first 6 ns as time of adaptation for the γ r of each atom species. We used the multi-time step integrator BAOAB-RESPA1 using a dt = 2 fs and a dt short = 0.00025 ps. The adaptation velocity was set to coefficient A γ = 10 -2 ps -1 . For the adQTB simulation of the gas-phase, we used the following input key file. The PIMD simulation at 300 K for the gas-phase dG•dC was long 4 ns using the following input key file. 

Description of tautomerism in the ANI model

The tautomerism is of crucial importance in nucleobases and can affect both the equilibrium and the dynamics of the base pairs. To simplify the discussion, we now introduce the notation used by Nir et al. [215] to distinguish between the different tautomers of GC. In this notation 'K' stands for keto group, and 'E' for enol group. The labels '9' and '7' They identified as the best candidates two isomers, in which the Cyt moiety is in enolic form, namely K9E-1 and K7E-1. The K7E-1 was later proposed to be the most compatible conformer [213,214]. However, in all the calculations anharmonic effects were not included. Furthermore, it is not clear why the canonical WC form, K9K-1, which is expected to be the most stable conformation [215] is not appearing in the experimental spectrum. To elucidate the role of tautomerism in the gas phase GC base pair we have investigated the two isomer K9K-1 and K7E-1. The AMOE-BABIO18 force field cannot provide a way to study different conformations besides the canonical WC and to remove the sugar moiety, which is essential in order to investigate the tautomer K7E-1. Therefore, we have decided to use a different approach, the neural network ANI model. We We performed firstly a geometry minimization of the canonical WC, K9K-1 structure, and the tautomer K7E-1. The K9K-1 is predicted to be more stable than the K7E-1 by 0.45 eV in the ANI-2x model. Table D.6 illustrates the hydrogen bond parameters for both the isomers using Similarly as we presented in section 5.3, we investigate here the high-frequency stretching vibrations related to the GC interbase region and the NH substituent groups in position N9 of Gua, N1

of Cyt (K9K-1) and N7 of Gua (KE-1). In particular, the presence of the enol group in K7E-1 with respect to the K9K-1 adds the OH stretch of the Cyt moiety and removes the N1H of Cyt stretching. We have calculated the QCT spectra for both K9K-1 and K7E-1 isomers, as well the harmonic 

Accuracy of the ANI-2x model

The ANI-2x model presents at the harmonic level large ∆ ANI-2x/DFT for K9K-1, in particular for the NH s 2 of Gua and N1H of Cyt. The situation is improved for NH s 2 when anharmonicity is included but becomes worse for all the other modes, suggesting that the ANI-2x model is not accurate enough to describe the vibrational properties of K9K-1. For K7E-1 the agreement with the DFT data is better, in particular for the OH stretching vibration of the Cytosine, which presents the lowest ∆ ANI-2x/DFT compared to the other vibrational modes.

QCT spectra Figure D.3 presents the QCT spectra of both the isomers calculated with ANI-2x model and compared with the corresponding harmonic and experimental values. In K9K-1 and K7E-1 all the QCT peaks are red-shifted with respect to the harmonic results, with the exception of N1H Gua in K9K-1. For K7E-1, the average absolute error respect to the experiment is 107 cm -1 , which is more accurate about one hundred value than the harmonic values (MAE 204 cm -1 ).

on the GGA-PBE approximation, and force field approaches. On the one hand, distinct approximations for the exchange-correlation energy in the DFT may considerably modify the hydrogen bond energy, the barriers and the overall PES profile, resulting in appreciable shifts of the vibrational frequencies, even at the simple harmonic level. On the other hand, force-field based methods need to be used very carefully; a benchmark with ab initio data, as we did in this thesis, is preferable when possible. One possible solution to treat high-dimensional systems, and, more generally, to include NQEs in molecular simulations with an affordable cost is to explore the PES via machine learning (ML) interatomic potentials. A lot of attention has been devoted in the recents years to this subject and several different frameworks have been developed [START_REF] Behler | Four generations of high-dimensional neural network potentials[END_REF][START_REF] Deringer | Machine learning interatomic potentials as emerging tools for materials science[END_REF]. A big challenge is the transferability of the potential. In this respect, the ANI model [227,230], which we benchmarked for the gas-phase of guanine and cytosine base pair, can be a promising solution. Very recently, they ANI-2x potential has been interfaced in a ML/MM framework with the AMOEBA force field DFT Density Functional Theory.

FDT Fluctuation-Dissipation Theorem.

GGA Generalized Gradient Approximation. des propriétés indépendantes du temps, nous avons principalement utilisé des méthodes de dynamique moléculaire par intégrales de chemins (PIMD) [START_REF] Marx | Ab initio path integral molecular dynamics: Basic ideas[END_REF], qui sont basées sur la formulation de la mécanique quantique de Feynman. Alternativement, des approches de bains quantiques avec un thermostat Langevin comme la méthode du bain thermique quantique (QTB) peuvent être utilisées pour reproduire les propriétés quantiques statistiques [START_REF] Dammak | Quantum thermal bath for molecular dynamics simulation[END_REF][START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF]. Pour avoir une comparaison directe avec les expériences, nous avons calculé les spectres vibrationnels à l'aide de méthodes semi-classiques basées sur la théorie de la représentation de la valeur initiale (SCIVR) [START_REF] Miller | Classical S matrix: Numerical application to inelastic collisions[END_REF], qui traitent à la fois des effets anharmoniques et quantiques dans les spectres vibrationnels. 

MC-SCIVR

  augmente d'environ 24 K en raison de la délocalisation différente du proton et du deutéron. De plus, un effet isotopique H/D géométrique caractérise les liaisons hydrogène et est lié aux propriétés structurales du système. La deuxième étude porte sur l'adsorption d'une molécule organique sur une surface d'oxyde. L'acide formique est l'acide carboxylique le plus simple et un matériau porteur d'hydrogène prometteur. Son adsorption sur la surface TiO 2 anatase (101) présente des configurations d'adsorption concurrentes qui font encore débat. Le type d'adsorption moléculaire monodentate est caractérisé par la présence d'une forte liaison hydrogène, qui stabilise l'interaction molécule-surface et font faire la navette au proton entre sa position stable sur la molécule d'acide formique et la surface.

Figure 1

 1 Figure 1.3: (I) Schematic representation of harmonic vs anharmonic potential of a diatomic molecule. Only the ground energy level is represented. (II) Infrared adsorption spectra showing O-H stretching adsorption bands of (a) uncomplexed phenol in C 2 Cl 4 , (b) the weak hydrogen bond of HOD in D 2 O, (c) neat H 2 O, (d) the medium strong hydrogen bond of PMME-H, (e) acetic acid dimer (CD 3 -COOH) 2 and (f) the O-D stretching band of acetic acid dimer (CD 3 -COOD) 2 .Reproduction from ref[START_REF] Nibbering | Analysis and control of ultrafast photoinduced reactions[END_REF].

Figure 2 . 5 :

 25 Figure 2.5: Schematic representation of cyclic ring polymer chain having n = 8 beads described by the partition function of eq.(2.31). Each bead is represented by the blue spheres and it is connected to its nearest neighbors via harmonic springs. Reproduction from reference[START_REF] Plé | Nuclear Quantum Dynamics: exploration and comparison of trajectory-based methods[END_REF].

Figure 2 . 7 :

 27 Figure 2.7: Example of a complex oscillating exponential f (x) = exp(iλx 4 ) with λ = 10 -1 . Only a small region around the critical point x = 0 contributes to the integral.

Figure 2 . 8 :

 28 Figure 2.8: Pictorial representation of the projection procedure. Reproduction from reference [81].

Figure 2 . 10 :

 210 Figure 2.10: Flux diagram of the adQTB-r algorithm. The figure describes the modifications introduced with respect to the standard BAOAB algorithm for the Langevin equation[START_REF] Leimkuhler | Rational construction of stochastic numerical methods for molecular sampling[END_REF][START_REF] Leimkuhler | Robust and efficient configurational molecular sampling via Langevin dynamics[END_REF]. The adQTB trajectories are decomposed in a series of N seg segments of N step time steps each; the segments have a duration τ = N step ∆t. One-dimensional notations are used for simplicity. Reproduction from reference[START_REF] Mangaud | The fluctuationdissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF].

Figure 3 . 1 :

 31 Figure 3.1: Schematic representation of different dielectric response to external electric field: (a) ferroelectric (FE), (b) antiferroelectric (AFE), (c) paraeletric (PE) materials.

Figure 3 . 2 :

 32 Figure 3.2: Sketch of the monoclinic potassium hydroxide structure in an antiferroelectric configuration. K, O and H atoms are respectively colored purple, red and white with ionic radii according to reference[116] 

  hydrogen atoms were found to form weak asymmetric hydrogen bonds O-H• • • O which hold the chains together (see fig.3.2). The new phase (IVa) was assigned to P2 1 /a space group. Other neutron powder diffraction and calorimetric studies on the deuterated hydroxide, KOD, between 16 K and its melting point 646 K confirmed the phase transition [114]. Furthermore, it was found that at high temperatures (above 523 K in KOD), the hydrogen bonds break and the overall structure is cubic NaCl type [114].

Figure 3 . 3 :

 33 Figure 3.3: Sketch of the symmetry changing for KOH-IVa↔KOH-II phase transition using crystallographic data from reference [113].

  3.4). The structure of monoclinic KOH is in agreement with the experimental findings. A bilayered structure of K and O heavy atoms is formed along the c-axis, which is a common feature for all three phases. The difference between each configuration is determined by the orientation of the OH groups. The ordered FE and AFE phases are characterized by dipole chains of OH groups along the b-axis. Neighboring OH dipoles chains with respect to the a-axis can have the same (FE) or opposite (AFE) orientations. The overall bilayered structure of KOH is stabilized by the presence of weak hydrogen bonds (O-O = 3.0 Å in both FE and AFE) along the dipoles chains. On the contrary, in the PE phase there is no formation of hydrogen bonds and the OH groups are oriented normally to the b-axis direction over Wickoff positions 2e, corresponding to fractional coordinates ±1/4.

  .1 report the lattice constants and O-O distance between the layers, i.e. the distance between the donor and acceptor hydrogen bonds sites, using different levels of DFT: PBE vs PBE plus the inclusion of Van der Walls corrections via Grimme either two-body (D2) [129, 130] or three-body (D3) [131] techniques. The relevant structural parameters are mainly c and β. In particular, the projection of the c-vector along the z-axis, i.e. c sin β, is directly correlated to the O-O distance. c sin β indeed measures the inter-layer distance and, therefore, the strength of the hydrogen bonds. The experimental c sin β of the IVa phase, calculated from reference [113], is equal to 5.423 Å. The AFE configuration shows a smaller inter-layer dis-

FerroelectricFigure 3 . 4 :

 34 Figure 3.4: Static FE, PE, and AFE structures of monoclinic KOH.

  3.6-a, where the PES is plotted as a function of two reaction coordinates, θ x , and θ x+1/2 . These correspond to the OH polar angle in the (y, z) plane -defined as arctan(θ) = OH y /|OH z | -at position x and position x + 1/2, respectively. The orientation of the OH dipoles can be either clockwise, i.e. positive θ, or anticlockwise, i.e. negative θ.

Figure 3 . 5 :

 35 Figure 3.5: Sketch of consecutive θ angles in the x-axis direction. Their correlation characterizes the order of the phase transition.

Figure 3

 3 Figure 3.6: (a) Locally reconstructed potential energy surface with respect to θ x and θ x+1/2 variables computed at constant volume (see lattice parameters of AFE phase at T = 0 K). (b) Correlation between the OH polar angle θ and the O-O distance along the PES. The color bar corresponds to the potential energy.

Figure 3 .

 3 7 reports the IR harmonic frequencies of FE, AFE and PE. As expected the PE phase, being a local maximum along the PES, has an imaginary frequency at 242i cm -1 . This frequency corresponds to a mode characterized as an O-H libration parallel to the y-axis direction (see fig.

Figure 3 . 7 :

 37 Figure 3.7: Harmonic IR spectrum for monoclinic KOH in the static FE, AFE and PE phases. The imaginary mode is represented with negative values.

Figure 3 . 8 :

 38 Figure 3.8: Panel (a): the variation of the total energy relative to the atoms displacements along the unstable O-H libration mode at point Γ (ν = 242i cm -1 ) in the static PE phase phase of monoclinic potassium hydroxide. Panel (b): representation of the phonon dispersion curves for the static PE phase of monoclinic potassium hydroxide, whose unit cell contains two formula units (Z = 2). The red branch corresponds to the unstable OH libration mode. Imaginary frequencies are plotted as negative.

.b

  From ref. [113]. For KOH-IVa at 77 K the transformation matrix is

Figure 3 . 10 :

 310 Figure 3.10: The centroid trajectory of an OH group in KOH projected in the (x, y), (x, z) and (y, z) planes from ab initio PIMD simulations (q-KOH).

Figure 3 . 11 :

 311 Figure 3.11: Joint probability distribution for θ x and θ x+1/2 from ab initio classical (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD). The distributions have been symmetrized.

Figure 3 . 12 :

 312 Figure 3.12: Probability distribution for the O• • • X length from ab initio classical (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD).

Figure 3 . 13 :

 313 Figure 3.13: Joint probability distribution for the ∠O-X• • • O angle and the O-O distance from ab initio classical (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD).4 

Figure 3 . 14 :

 314 Figure 3.14: Adjusted γ r for K, O and H atoms. Panel (a): low-T. Panel (b): high-T.

Figure 3 . 15 :

 315 Figure 3.15: Radial distribution function for OH pairs from PIMD and adQTB simulations. Panel (a): low-T. Panel (b): high-T.

Figure 3 . 16 :Figure 3 . 17 :

 316317 Figure 3.16: Probability distribution for θ from PIMD and adQTB simulations. Panel (a): low-T. Panel (b): high-T.

B. 1 3 (Z = 2 )

 132 atoms and, as a consequence, by a dynamical disorder of FE/AFE states, i.e. a dynamical paraelectric phase with half occupancy of H and D sites, which restores a mirror plane (symmetry P2 1 /m). Therefore, we corroborate the order-disorder phase transition experimentally found byBastow and coworkers [113], although we cannot discriminate the order of the phase transition from our simulations. The mechanism of the phase transition is the same for both KOH and KOD and it is ruled by the double-well energy profile as a function of the polar angle θ, that is associated to the OH and OD libration modes. The flipping back and forth of the H and D atoms is driven by the thermal and zero-point fluctuations (larger in KOH than in KOD) and generates two possible orientations of the OH and OD dipoles along a zig-zag chain of weak hydrogen bonds parallel to the b-axis direction, which hold the KOH stack. Both types of fluctuations contribute to the phase transition, which a purely classical picture cannot capture correctly.The presence of a network of weak hydrogen bonds is a specific feature that distinguishes KOH and KOD crystals and most alkali hydroxides from other hydrogen-bonded ferroelectrics such as KDP, where the hydrogen bonds are strong. The phase transition is governed by the weak hydrogen bonds. They are highly impacted by quantum fluctuations, as evidenced by the inverse Ubbelohde effect at low temperature: under deuteration the hydrogen bond is shorter and stronger. As a result, the lattice parameters c and β for KOH and KOD present a significant difference: in KOD the bilayers are closer, as highlighted by the smaller c sin β. The experimental 24 K shift of T c upon deuteration can be mainly explained in terms of the larger zero-point energy motion of the OH libration mode with respect to OD.The adQTB results compared to the PIMD give successfully an accurate description for the structural and geometrical properties, while they underestimate the free energy barrier of the proton flipping. Despite this main factor, the adQTB offers a valid model to study this kind of phase transitions. Due to its low computational cost, adQTB is very promising to study larger systems and to reduce the limit size effect, which is essential to study a phase transition in a quantitative way.APPENDIX B Computational detailsDFT calculations have been conducted using the Quantum Espresso (QE) package [139] working with the PBE exchange-correlation functional[140]. Phonon calculations were performed within the harmonic approximation at T = 0 K via density functional perturbation theory (DFPT)[133]. We have employed ultra-soft pseudopotentials for the oxygen and hydrogen atoms and normconserving pseudopotentials for the potassium atom. The plane-wave expansion cutoff energies were 50 Ry for the Kohn-Sham states and 8 times as large for the charge density and the potential, ensuring the total energy convergence (see). The unit cell contained 2 or 4 molecular units depending on the required symmetry. The Brillouin zone was sampled using a 4 × 4 × and 2 × 4 × 3 (Z = 4) Monkhort-Pack k-point grid.

Figure B. 1 :

 1 Figure B.1: (a) Convergence of the total energy respect to the energy cutoff for the wavefunctions for KOH. (b) Convergence of the potential and kinetic energies respect the number of beads for KOH at 77 K. (c) Convergence of the O-X and the O• • • X lengths respect the number of beads for KOH and KOD at 77 K.

Figure 4 . 1 :

 41 Figure 4.1: Stick representation of clean TiO 2 anatase (101) surface. Ti and O atoms are colored turquoise and red respectively.

Figure 4 . 2 :

 42 Figure 4.2: Sketch of the most probable adsorption modes for FA@A101. (H) indicates dissociation of FA with the acid proton located on the TiO 2 surface.

Figure 4 . 3 :

 43 Figure 4.3: FA@A01: stick and ball-stick representation of FA adsorbed on the anatase TiO 2 (101) surface in molecular monodentate (intra, inter) and bridging bidentate modes. Ti, O, C and H atoms are colored turquoise, red, brown and white respectively.

Figure 4 . 4 :

 44 Figure 4.4: Potential energy respect O s H and OH distances and δ proton transfer coordinate.

Figure 4 . 5 :

 45 Figure 4.5: Charge electron density associated to the MH-intra mode (left) and the proton shared configuration (right). The isodensity used to generate this figure is equal to 0.1 e/Å 3 .

Figure 4 .

 4 Figure 4.6 reports the FTIR spectra recorded for HCOOH at room temperature as a function of the partial pressure of FA.

Figure 4 . 6 :

 46 Figure 4.6: FTIR spectra at room temperature of anatase TiO 2 nanopowders exposed to P FA = 10 -7 -10 -3 mbar, compared to the spectra recorded after FA desorption at P FA = 10 -7 mbar (black curve).

Figure 4 .

 4 Figure 4.7 shows the FTIR spectra recorded for HCOOH at low temperature as a function of the partial pressure of FA.

Figure 4 . 7 :

 47 Figure 4.7: FTIR spectra at low temperature (13 K) of anatase TiO 2 nanopowders exposed to P FA = 10 -7 -10 -3 mbar, compared to the spectra recorded after FA desorption at P FA = 10 -8 mbar (black curve).

Figure C. 3 (

 3 Figure C.3 (see the appendix) and fig. 4.8 show a comparison between protonated and deuterated

Figure 4 . 8 :

 48 Figure 4.8: FTIR spectra at low temperature (13 K) of protonated FA vs deuterated FA adsorbed on anatase TiO 2 nanopowders exposed to P FA = 10 -7 -10 -3 mbar, compared to the spectra recorded after FA desorption at P FA = 10 -8 mbar (black curve).

Figure 4 . 9 :

 49 Figure 4.9: QCT and SC spectra for the gas-phase FA calculated at different theoretical approximations. The QCT and SC are reported in dashed and continuous lines respectively, harmonic values are represented with dashed vertical lines. The intensity of the each peak has been normalized to one and SC spectra have been shifted with ZPE peak to 0 energy value.

Figure 4 . 10 :

 410 Figure 4.10: The QCT and SC power spectra of the fingerprint region of adsorbed FA compared with the room-(r.t.) and low-temperature (l.t.) FT-IR spectra at a selected partial pressure P FA (mbar). Left: HCOOH adsorption; right: HCOOD.

Figure 4 . 11 :

 411 Figure 4.11: The QCT and SC power spectra of C=O and asymmetric OCO stretching vibration of adsorbed FA compared with the room-(r.t.) and low-temperature (l.t.) FTIR spectra at a selected partial pressure P FA (mbar). Left: HCOOH adsorption; right: HCOOD.

Figure 4 . 12 :

 412 Figure 4.12: The QCT and SC power spectra of CH stretching vibration of adsorbed FA compared with the low-(LT) and room-temperature (RT) FT-IR spectra at a selected partial pressure P FA (mbar). Left: HCOOH adsorption; right: HCOOD.

  . The time evolution of the O f H (f = formic) and O s H (s = surface) distances from the corresponding classical NVE trajectories are reported in appendix, fig. C.5.

Figure 4 .

 4 Figure 4.13: QCT spectra of OH stretching mode of FA adsorbed in MH-intra configuration respect to different initial conditions given by α (1/4 ≤ α ≤ 1): E kin,0 = α × E ZPE,Harmonic .

  Figure C.7 and fig. C.7 report all the SC spectra of OH and OD stretch at different values of α. In the following, we present the QCT and SC spectra with the best defined signal and compare them with the IR experiments. As the OH and CH stretching signals are close in frequency, we remind the main conclusion of the previous section 4.5.3. The OH stretching for chemisorbed molecular FA on TiO 2 nanoparticles was attributed at frequency 2591 cm -1 by Nanayakkara and coworkers [187]. By comparison of the room-(fig. 4.14-(a1)) and the low-temperature experiment (fig. 4.14-(a2)), we identify the new peak in the low-temperature spectrum at ∼ 2560 cm -1 as a possible candidate for the OH stretching vibration. The harmonic estimate of the OH stretch in MH-intra is in good agreement with this attribution (table 4.13). The QCT trajectory at α = 3/4 of MH-intra (fig. 4.14)-(a3)) gives a peak at the harmonic estimate. When including quantum effects, the SC calculation shows the same peak at slightly lower wavenumbers. In the case of MH-inter (fig. 4.14)-(

3 . 3 ,

 33 the deuteration of FA causes a H/D isotope shift. It is clear from both the experiments and our calculated spectra, that the OH stretch band shifts to lower wavenumbers. The experimental low-temperature IR spectrum of HCOOD (fig. 4.14)-(b2)) is characterized by the presence of two large bands in the 1900-2200 cm -1 region. The MD-intra SC spectrum (fig. 4.14)-(

  perature spectrum of HCOOD (seefig. C.3), could be attributed to the OH stretching mode in the bidentate formate. This signal was previously attributed to surface OH hydroxyl groups coming from water dissociation, most likely on surface defects[158]. Indeed the negative absorption intensity due to the subtraction with the background refers to the chemical species that were already present in the chamber and, therefore, are not coming from the FA molecule and are most likely due

Figure 4 . 14 :

 414 Figure 4.14: The QCT and SC power spectra of OH and OD stretching vibration of adsorbed FA compared with the room-(r.t.) and low-temperature (r.t.) FTIR spectra at a selected partial pressure P FA (mbar). We remind that the doublet at ∼ 2300 cm -1 is due to the CO 2 present in the chamber. Left: HCOOH adsorption; right: HCOOD. All the QCT and SC refer to a single classical trajectory with α = 1, except MH-intra (α = 3/4) and BB(D) (α = 1/2).
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  Harmonic = 643 cm -1 #145 BB(H) #145 ν Harmonic =264 cm -1

Figure 4 . 15 :

 415 Figure 4.15: The eigendisplacements of some relevant molecule-surface vibrational modes that are coupled to the adsorbant modes in the three different adsorption configurations. The arrows illustrate the movement of each atom. Larger is the mass-scaled atomic displacement, longer is the arrow of the corresponding atom.

Figure 4 . 16 :

 416 Figure 4.16: Probability distributions at 100 K of bond lengths of FA molecule before and after adsorption via monodentate mode, obtained from PIMD simulations.

Figure 4 . 17 :

 417 Figure 4.17: Probability distributions at (a) 100 K and (b) 300 K of inter-atomic distances r 1 , r 2 , r 3 and r 4 as sketched in the plot of protonated FA and deuterated FA adsorbed in the monodentate intra mode, obtained from PIMD simulations. The probabilities are compared to the corresponding classical results. The scales over the x-axis are the same for the two temperatures, but are different for r 1 , r 2 , r 3 and r 4 .

  4.18, the time evolution at 100 K of O-H covalent bond distance and O• • • H hydrogen bond distance for the centroid is characterized by several hopping events in a short time frame of about just 1 ps, which are significantly less for HCOOD.

Figure 4 . 18 :

 418 Figure 4.18: Time evolution at 100 K of O-X (X=H,D) covalent bond distance (O f X) and O• • • X hydrogen bond distance (O s X) in a time frame of 1 ps. Panel (a) HCOOH, panel (b) HCOOD. The time evolution refers to the centroid trajectory starting from MX-intra mode.

Figure 4 . 19 :

 419 Figure 4.19: Sketch of the chemical structure of (I) zundel cation, (II) formic acid adsorbed on anatase (101) surface in monodentate mode (intra) and (III) formic acid dimer.

Figure 4 . 20 :

 420 Figure 4.20: Probability distribution at T = 100 K of proton sharing coordinate δ in (I) zundel cation from Shran et al. [191] (Figure 4, curve at 2.4 Å) , (II) formic acid adsorbed on anatase (101) surface in monodentate mode (intra) and (III) formic acid dimer using PES from Qu et al. [190].

Figure C. 2 :

 2 Figure C.2: Probability distribution at 100 K of bond lengths of FA molecule respect to the number of replicas N used in PIGLET calculations.

4 .

 4 Fast-Fourier Transform of velocity-velocity correlation function (QCT spectra); 5. Averaged hessian over 20 hessians along the trajectory → ⟨H ij ⟩; 6. Division of the DOF in subspaces of reduced dimensionality via analysis of ⟨H ij ⟩ i̸ =j ; 7. Potential energy along the trajectory projected in the subspace of interest; 8. Hessian along the trajectory in the subspace of interest; 9. Semiclassical spectra (DC-SCIVR spectra).

Figure C. 3 :

 3 Figure C.3: FTIR spectra at room temperature of protonated FA vs deuterated FA adsorbed on anatase TiO 2 nanopowders exposed to P FA = 10 -7 -10 -3 mbar, compared to the spectra recorded after FA desorption at P FA = 10 -7 mbar (black curve).
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 45 Figure C.4: The eigendisplacements of trans formic acid molecule.

Figure C. 7 : 5 A 1 Introduction

 751 Figure C.7: SC and QCT spectra of OD stretching mode of FA adsorbed in MD-intra, MD-inter and BB(D) configurations at selected α (1, 3/4, 1/12).

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: Sketch of keto-enol tautomerization in guanine nucleobase. Reproduction from reference [200].

Figure 5 . 3 :

 53 Figure 5.3: Representation of the canonical Watson-Crick deoxyguanosine and deoxycytosine nucleoside pair (dG•dC) employed in the current AMOEBABIO18 calculations. The oxygen, nitrogen, carbon and hydrogen atoms are colored red, blue, grey and white respectively.

Figure 5 . 4 :

 54 Figure 5.4: Radial distribution function g(r) of NH and OH interbase pairs of gas-phase dG•dC at 300 K from adQTB, PIMD and classical Langevin simulations using AMOEBABIO18.

  calculations performed on the equivalent G•C conformation as a benchmark of the force field accuracy. It has been shown by Bende et al. that anharmonic corrections on the GC base pair are significant, in particular in the NH and CH stretching and intermolecular normal modes [218]. To

Figure 5 . 5 :

 55 Figure 5.5: Interbase NH stretching vibrational spectra of gas-phase dG•dC using AMOE-BABIO18. (a) QCT spectra. The corresponding harmonic values are reported as vertical dashed lines. (b) adQTB spectra. For the atomic sites, see numbering in fig. 5.3.

d

  AB and d HB distances in the most external interbase hydrogen bonds N4H• • • O6 and N2H• • • O2, while it decreases the d AB and d HB distances in the internal interbase hydrogen bond, N1H• • • N3.

Figure 5 . 6 :

 56 Figure 5.6: Representation of the Watson-Crick dG•dC nucleoside pair in a cubic box of water molecules of length 30 Å.

Figure 5 . 8 :

 58 Figure 5.8: adQTB spectra of hydrogen atom types H2, H4, H1 in gas phase dG•dC using AMOE-BABIO18. For the atomic sites, see numbering in fig.5.3. 

3 .

 3 Preparation of the initial velocities of the dynamics. 4. Short time NVE dynamics using Beeman integrator of total length 0.6 ps with dt = 0.2 fs. 5. Calculation of the QCT spectra with FT transform of classical C vv .

  legacyFor the adQTB simulation at 300 K of the solvated dodecamer, we build a rectangular water box of dimension 70 Å × 45 Å × 45 Å and used the following input key file.

Figure D. 1 :

 1 Figure D.1: Time evolution of the hydrogen bonds donor-acceptor distances with atom-numbering defined in fig. 5.6 for the adQTB and PIMD simulations at 300 K of dG•dC in a cubic box of water molecules of length 30 Å.

  indicate where the substituent is attached to the Gua moiety, respectively the N9 and the N7 position. Lastly the '-1' indicates a WC type conformation. The K9K-1, for example, corresponds to the canonical WC conformer, while the K7E-1 to a WC form, in which the H substituent is attached to the N7 position of the Gua and the Cyt is enolized (see fig. D.2).Nir et al. made a tentative assignment of the observed spectrum on the basis of harmonic calculations at the Hartree-Fock (HF) level performed on several isomers GC[215, 216] in the gas phase.

Figure D. 2 :

 2 Figure D.2: Sketch of G•C isomers K9K-1 and K7E-1, as per notation by Nir et al. from reference [215].

  the ANI-2x model and compared with DFT-D/B3LYP. As a general trend, we highlight that the ANI-2x potential gives WC GC base pair isomers in a distorted geometry. This is evidenced by the hydrogen bond angles ∠AHB, which present a deviation of 11-17 • with respect the reference values. The hydrogen bonds distances are in good accordance with DFT-D/B3LYP, except for the N4H• • • O6 hydrogen bond, which is overestimated by 0.212 Å and 0.235 Å in K9K-1 and K7E-1, respectively.

adQTB

  Adaptive Quantum Thermal Bath. AIMD ab initio Molecular Dynamics. B3LYP Becke-3-parameter-Lee-Yang-Parr. BO Born-Oppenheimer. DC-SCIVR Divide and Conquer Semiclassical Initial Value Representation.

  RÉSUMÉ LONGLa liaison hydrogène est une interaction fondamentale dans la matière inorganique et organique. Ses caractéristiques dans différents environnements chimiques en font un objet très fascinant à étudier. Les systèmes avec des liaisons hydrogène sont intrinsèquement affectés par la forme de la surface d'énergie potentielle (PES), qui induit une contribution anharmonique, qui peut être plus ou moins importante. Il est en outre très difficile de prédire le comportement du proton dans un système à liaisons hydrogène, où les effets quantiques des noyaux (NQEs) entrent en jeu. Les NQEs peuvent avoir un fort impact sur l'échantillonnage de l'espace de configuration car les distributions quantique (Bose-Einstein) et classique (Boltzmann) sont assez différentes à basse température. En règle générale, les NQEs renforcent les effets anharmoniques, rendant ainsi l'interprétation des spectres vibrationnels assez complexe. La dynamique des atomes légers (tels que hydrogène et deutérium) peut également être impactée par des phénomènes d'effet tunnel, contrairement à la dynamique classique. L'interaction complexe entre les NQEs et l'anharmonicité du PES complique grandement le problème. Par conséquent, les phénomènes liés aux liaisons hydrogène ne peuvent pas être facilement prédits dans un scénario aussi varié. Dans cette thèse, nous nous sommes concentrés sur l'étude du comportement du proton dans trois différentes systèmes à liaisons hydrogène, au-delà de la vision classique et harmonique. L'interaction entre la délocalisation quantique du proton et le confinement atomique est très différente pour chaque système étudié. Pour une description adéquate du mouvement des noyaux, nous avons adopté des méthodes quantiques approximatives, en utilisant l'approximation de Born-Oppenheimer (séparation entre les degrés de liberté des électrons et des noyaux) et en traitant la structure électronique soit par des approches ab initio ou des champs de force. Pour le calcul

i 1 )

 1 Figure I: Les structures statiques du KOH monoclinique: ferroélectrique (FE), antiferroélectrique (AFE) et paraélectrique (PE).

Figure II :

 II Figure II: Des angles θ consécutifs dans la direction de l'axe x. Leur corrélation caractérise l'ordre de la transition de phase.

Figure III :

 III Figure III: Distribution de probabilité conjointe θ x et θ x+1/2 obtenue par des simulations ab initio classiques (cl-KOH/D) et PIMD de l'hydroxide de potassium hydrogéné (q-KOH) et deutéré (q-KOD).

Figure IV :

 IV Figure IV: Distribution de probabilité de la longueur O• • • X obtenue par des simulations ab initio classiques (cl-KOH/D) et PIMD de l'hydroxide de potassium hydrogéné (q-KOH) et deutéré (q-KOD).

Figure V :

 V Figure V: Représentation des configurations d'absorption de l'acide formique sur la surface de l'anatase de titane (101): moléculaire monodenté MH intra ou inter et bidenté BB(H).

Figure

  Figure VI: Spectres FTIR at à basse température (13 K) de l'acide formique protoné et deutéré adsorbé sur nanopoudres d'anatase exposé à P FA = 10 -7 -10 -3 mbar, par rapport à les spectres enregistrés après la désorption d'acide formique à P FA = 10 -8 mbar (courbe noire).

Figure VII : 3 )FigureFigure

 VII3 Figure VII: Distribution de probabilité à température 100 K de la coordonnée du "proton sharing" δ dans le cation zundel(Shran et al. [191], Figure4, courbe à 2.4 Å) , l'acide formique adsorbé sur la surface d'anatase (101) et le dimère d'acide formique en utilisant la PESde Qu et al. [190].

Figure X :

 X Figure X: Spectres QCT des vibrations du stretching de NH interbase en phase gazeuse et dG•dC solvaté à l'aide d'AMOEBABIO18. Les valeurs harmoniques correspondantes sont indiquées sous forme de lignes pointillées verticales.

  

  

  

Table 3 .

 3 1: Lattice parameters and O-O distance of monoclinic potassium hydroxide from DFT optimization at T = 0 K. c sin β represents the projection of the c-axis along z-axis. Lengths are reported in Å and angles in degrees.

			a	b	c	β	c sin β	O-O
	Exp. [113]		7.892	3.945	5.947	114.24	5.423	(not reported)
	PBE	FE	3.982	4.009	5.568	107.674	5.305	3.00
		AFE	7.958	4.014	5.770	113.230	5.302	3.00
		PE	3.963	4.028	5.782	101.634	5.663	3.47
	PBE+D2	FE	3.885	4.024	5.414	111.023	5.054	2.82
		AFE	7.767	4.026	5.415	111.046	5.054	2.82
		PE	3.903	3.954	5.569	102.535	5.436	3.26
	PBE+D3	FE	3.928	4.033	5.525	110.928	5.161	2.90
		AFE	7.852	4.037	5.527	110.987	5.160	2.90
		PE	3.945	4.013	5.679	101.882	5.557	3.39

Table 3 .

 3 2:The diagonal elements of the effective charge tensor Z ⋆ for monoclinic potassium hydroxide from DFPT calculations.

			FE: P2 1			AFE: P2 1 /a			PE: P2 1 /m	
		Z ⋆ xx	Z ⋆ yy	Z ⋆ zz	Z ⋆ xx	Z ⋆ yy	Z ⋆ zz	Z ⋆ xx	Z ⋆ yy	Z ⋆ zz
	K	0.96	0.91	0.97	0.96	0.91	0.97	0.94	0.90	1.00
	O	-1.13	-1.42	-1.33	-1.13	-1.42	-1.34	-1.08	-1.31	-1.07
	H	0.18	0.51	0.37	0.18	0.51	0.37	0.15	0.41	0.07

Table 3 .

 3 3: Lattice parameters and O-O distance of monoclinic potassium hydroxide from ab initio calculations from classical MD (cl-KOH/D) and PIMD simulations (q-KOH and q-KOD), compared with the available experimental data. The reported experimental lattice parameters for the IVa phase are presented after a change of basis. Lengths are reported in Å and angles in degrees.3 

	Experimental data	a	b	c	β	c sin β	O-O
	Phase IVa: P2 1 /a, Z=4						
	100 K	KOD a	7.922	3.942	5.903	113.95	5.395	3.24
	77 K	KOH b	7.892	3.945	5.947	114.24	5.423	(not reported)
	Phase II: P2 1 /m, Z=2						
	300 K	KOD a	3.965	3.999	5.728	104.23	5.552	3.45
	293 K	KOH b	3.951	3.999	5.750	103.58	5.589	3.33
	Theory (this work)	a	b	c	β	c sin β	⟨ O-O ⟩
	77 K	cl-KOH/D	8.01	4.01	5.87	114.02	5.36	3.02
		q-KOD	8.04	4.02	5.98	114.25	5.45	3.09
		q-KOH	8.04	4.03	6.00	114.25	5.47	3.12
	215 K	cl-KOH/D	7.98	4.05	5.76	110.00	5.41	3.01
		q-KOD	8.02	4.05	5.86	111.00	5.47	3.05
		q-KOH	8.02	4.06	5.88	111.00	5.49	3.07
	350 K	cl-KOH/D	8.10	4.07	5.74	104.25	5.56	3.19
		q-KOD	8.15	4.08	5.77	104.25	5.59	3.21
		q-KOH	8.15	4.08	5.77	104.25	5.59	3.22

a From ref.

[114]

. For KOD-IVa at 100 K the transformation matrix is

Table 4 .

 4 1: Binding energy (BE) (eV) for MH, M(H) and BB(H) modes.

						BE			
				MH-intra	0.82			
				MH-inter	0.81			
				M(H)		0.37			
				BB(H)		0.67			
	Table 4.2: Relevant distances and angles (Å, • ) for gas-phase FA and adsorbed MH, M(H) and
	BB(H) modes. The s subscript stands for surface sites.			
		Ti s -O Ti s O-C C-OH	C-H	O-H H• • • O s O• • • O s ∠OHO s
	Gas-phase			1.35	1.11	0.98			
	MH-intra	2.21	1.24	1.30	1.10	1.04	1.51	2.52	163
	MH-inter	2.20	1.23	1.30	1.10	1.03	1.54	2.57	172
		Ti s -O Ti s O-C C-OH	C-H	O s -H O• • • H O• • • O s ∠OHO s
	M(H)	1.99	1.29	1.24	1.10	1.01	1.65	2.62	160
		Ti s -O Ti s -O Ti s O-C Ti s O-C C-H	O s H		
	BB(H)	2.09	2.12	1.26	1.27	1.11	0.97		

The dissociation of the FA can lead to a monodentate M(H) or bidentate BB(H) configuration. The BB(H) mode is characterized by shorter Ti-O bonds with respect to both molecular monodentate MH-intra and MH-inter, and the PBE approximation predicts this configuration to be less stable than MH-intra by about 0.15 eV. Other studies have predicted MH to be more stable than BB(H): 0.92 vs 0.68 eV using GGA

2 

[166], 0.971 vs 0.929 eV using PBE

[172]

, while another study using meta-GGA SCAN method predicts BB(H) binding energy at 1.41 eV and MH at

1.21 eV [173]

. The geometry optimization of a M(H) formate, where the acid proton is located on the surface and not forming any hydrogen bonds with the molecule, evolves in the optimized BB(H) local minimum.

  The B3LYP functional has been employed successfully in different semiclassical spectroscopy studies for gas-phase molecules and it serves here as a robust reference. The results are reported in fig.4.9 and table 4.3. The following notations is used: ν (stretching), γ (rocking), δ (bending/deformation), ω (wagging) and τ (torsion). A visualization of normal modes displacements is reported in appendix, fig. C.4.

	3
	(eq. (2.58)) approaches. To estimate the accuracy of the employed DFT set-up, we have compared
	these results to the same calculations using DFT/PBE, DFT/PBE0 and DFT/B3LYP calculations

on isolated formic acid molecule via a Gaussian basis set. The latter calculations were performed with the NWChem suite code [188] by M.

Cazzaniga. 4 

Table 4 .

 4 3: Harmonic, QCT and SC frequencies for the gas-phase FA calculated at different theoretical approximations. All values are given in cm -1 .

		Exp. a	Harmonic	QCT	SC	Harmonic	QCT	SC
				QE PBE		NWChem PBE	
	ν(OH)	3570	3600	3489	3493	3609	3507	3508
	ν(CH)	2942	2957	2886	2893	2957	2881	2880
	ν(C=O)	1776	1753	1720	1718	1779	1749	1750
	γ(CH)	1379	1352	1342	1340	1360	1330	1330
	δ(OH)	1306	1260	1187	1171	1268	1226	1226
	ν(C-O)	1104	1076	1042	1039	1087	1063	1062
	ω(CH)	1033	1004	990	989	1009	994	994
	τ (COH)	641	680	641	635	703	687	686
	δ(OCO)	636	605	597	596	608	600	600
	MAE		30	55	57	27	49	49
			NWChem PBE0		NWChem B3LYP	
	ν(OH)	3570	3793	3695	3694	3734	3637	3638
	ν(CH)	2942	3066	2992	2992	3039	2966	2966
	ν(C=O)	1776	1869	1840	1840	1832	1807	1808
	γ(CH)	1379	1413	1405	1404	1411	1402	1402
	δ(OH)	1306	1324	1242	1242	1310	1225	1226
	ν(C-O)	1104	1159	1130	1130	1129	1100	1100
	ω(CH)	1033	1068	1052	1052	1058	1039	1040
	τ (COH)	641	709	677	676	700	669	668
	δ(OCO)	636	639	634	634	633	626	626
	MAE		73	45	45	52	30	31

a From reference

[189]

.

Table 4 .

 4 4: Experimental and calculated COH torsion frequencies (cm -1 ) of FA gas-phase and molecularly adsorbed.

			τ (COH) HCOOH	
		gas-phase	molecularly adsorbed
	Exp.	641 a	969 b	
			MH-intra	MH-inter
	Harmonic	680	997	976
	QCT	641	941	952
	SC	635	935	947

a From reference [189]. b The data refer to the low temperature spectrum panel a2 of fig. 4.10.

Table 4 .

 4 5: Experimental and calculated CH wagging frequencies (cm -1 ) of FA gas-phase and molecularly adsorbed. The data refer to formic acid partial pressure reported in the panels of fig.4.10. 

			ω(CH)		
		HCOOH	HCOOD
			gas-phase	
	Exp. a	1033			
	Harmonic	1004		1001	
	QCT	990		983	
	SC	989		982	
			molecularly adsorbed	
	Exp. l.t. b	1079		1066, 1076
		MH-intra	MH-inter	MD-intra	MD-inter
	Harmonic	1062	1067	1020	1019
	QCT	1038	1031	1005	1003
	SC	1038	1015	1004	1003
			ν(C-O)	
		HCOOH	HCOOD
			gas-phase	
	Exp. a	1104		1176	
	Harmonic	1076		1147	
	QCT	1042		1132	
	SC	1039		1130	
			molecularly adsorbed	
		MH-intra	MH-inter	MD-intra	MD-inter
	Exp. l.t. b	1255	1228	1273	1259
	Harmonic	1253	1250	1292	1282
	QCT	1232	1215	1293	1256
	SC	1231	1203	1289	1247
	as seen both at room and low temperature in HCOOH (panels (a1) and (a2)) and HCOOD (panels

a From reference [189]. b The data refer to formic acid partial pressure reported in the panels of fig. 4.10. Table 4.6: Experimental and calculated C-O stretching frequencies (cm -1 ) of FA gas-phase and molecularly adsorbed. a From reference [189]. b (b1) and (b2)) adsorption. The harmonic estimates for ν a (OCO) of BB(H) and BB(D) are lower than the experimental frequencies by about 46 cm -1 . Such underestimate stays in the QCT and SC calculations, which are significantly red-shifted respect to the harmonic estimate leading to an

Table 4 .

 4 7: Experimental and calculated CH rocking frequencies (cm -1 ) of FA gas-phase and molecularly adsorbed.

		γ(CH)	
		HCOOH	HCOOD
		gas-phase	
	Exp. a	1379	1365

Table 4 .

 4 

			bridging bidentate	
		Exp. r.t. (l.t.) a	Harmonic	QCT	SC
			HCOOH BB(H)	
	ω(CH)	1038 (n.o.)	1010	1011	1009
	ν s (OCO)	1365 (1370)	1335	1305	1262, 1323
	γ(CH)	1387 (1381, 1391)	1363	1322	1315
			HCOOD BB(D)	
	ω(CH)	1034 (1039)	1010	995	992
	ν s (OCO)	1364 (1362)	1335	1275,1371	1283,1357
	γ(CH)	1386 (1382, 1392)	1363	1323	1327

8: Experimental and calculated fingerprint region vibrational frequencies (cm -1 ) of FA adsorbed as bridging bidentate formate.

a The data refer to formic acid partial pressure reported in the panels of fig.

4.10. 

Table 4 .

 4 9: Experimental and calculated OCO asymmetric stretching frequencies (cm -1 ) of FA adsorbed as bridging bidentate formate.

			bridging bidentate		
		Exp. r.t. (l.t.) a	Harmonic	QCT	SC
			HCOOH BB(H)		
	ν a (OCO)	1556 (1557)	1511	1457	1462
			HCOOD BB(D)		
	ν a (OCO)	1556 (1559)	1511	1467	1461
	a The data refer to formic acid partial pressure reported in the panels of
	fig. 4.11.				

Table 4 .

 4 10: Experimental and calculated C=O stretching frequencies (cm -1 ) of FA gas-phase and molecularly adsorbed.

			ν(C=O)	
		HCOOH	HCOOD
			gas-phase	
	Exp. a	1776		1772	
	Harmonic	1753		1747	
	QCT	1720		1727	
	SC	1718		1725	
			molecularly adsorbed	
	Exp. r.t. (l.t.) b	1675 (1680)	1675 (1676)
		MH-intra	MH-inter	MD-intra	MD-inter
	Harmonic	1645	1647	1602	1636
	QCT	1625	1605	1607	1572
	SC	1616	1594	1617	1585

a From reference [189]. b The data refer to formic acid partial pressure reported in the panels of fig. 4.11. the low-temperature spectrum of adsorbed HCOOH at 2936 cm -1 (fig. 4.12-(a2)). The IR spectra for deuterated FA present similar features (fig. 4.12-(b1), fig. 4.12-(b2)).

Table 4 .

 4 11: Experimental and calculated CH stretching frequencies (cm -1 ) of FA gas-phase and molecularly adsorbed. The data refer to formic acid partial pressure reported in the panels of fig.4.12.

			ν(CH)		
		HCOOH	HCOOD
			gas-phase	
	Exp. a	2942		2954, 2938
	Harmonic	2957		2958	
	QCT	2886		2848	
	SC	2893		2847	
			molecularly adsorbed	
	Exp. l.t. b	2936		2938	
		MH-intra	MH-inter	MD-intra	MD-inter
	Harmonic	3002	2987	3002	2896
	QCT	2902	2885	2904	2902
	SC	2889	2865	2877	2905

a From reference [189]. b

Table 4 .

 4 12: Experimental and calculated CH stretching frequencies (cm -1 ) of FA adsorbed as bridging bidentate formate.

			bridging bidentate		
		Exp. r.t. (l.t.) a	Harmonic	QCT	SC
			HCOOH BB(H)		
		2738 (2739)		2773	2780
	ν(CH)	2871 (2875)	2932	2865	2857
		2952 (2954)		2943	2931
			HCOOD BB(D)		
		2739 (2742)		2773	2778
	ν(CH)	2872 (2878)	2932	2870	2857
		2953 (2953)			

Table 4 .

 4 13: Experimental and calculated OH and OD stretching frequencies (cm -1 ) of FA gasphase and molecularly adsorbed.

		ν(OH)		ν(OD)	
		HCOOH	HCOOD
				gas-phase	
	Exp. a	3570		2631	
	Harmonic	3600		2616	
	QCT	3489		2562	
	SC	3493		2563	
			molecularly adsorbed	
	Exp. l.t. b	2558		2062, 2170
		MH-intra	MH-inter	MD-intra	MD-inter
	Harmonic	2532	2592	1872	1919
	QCT	2532	2622	1951, 2043	1922, 2076
	SC	2529	2718	1956, 2089	1850, 2185

a From reference

[189]

. b The data refer to formic acid partial pressure reported in the panels of fig.

4.14. 

Table 4 .

 4 14: Experimental and calculated OH and OD stretching frequencies (cm -1 ) of FA adsorbed as bridging bidentate formate.

			bridging bidentate		
		Exp. r.t. (l.t.) a	Harmonic	QCT	SC
			HCOOH BB(H)		
	ν(OH)	n.o.	3664	3564	3563
			HCOOD BB(D)		
	ν(OD)	2717 (2718)	2666	2644	2642

a The data refer to formic acid partial pressure reported in the panels of fig.

4.14. 

Table C .

 C [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF]: Calculated inter-atomic distances (Å) for anatase TiO 2 (101) surface compared with the available experimental data[193].

	Exp. Ti 6 O 12 (4 Layers)
	Ti(1)-O(1) 1.90	1.84
	Ti(1)-O(2) 1.94	1.98
	Ti(1)-O(3) 2.07	2.06
	Ti(1)-O(4) 1.99	1.78
	Ti(2)-O(1) 1.89	1.84
	Ti(2)-O(2) 1.97	2.01
	Ti(2)-O(3) 1.92	1.94
	Ti(2)-O(4) 1.89	2.09
	Ti(2)-O(5) 2.08	2.15

Table C

 C 

	.17: Binding energy of monodentate and bidentate configuration minima of FA adsorbed
	on anatase (101) surface.			
		(1×3) ; Γ (1×3) ; [2×2×1] (1×4) ; Γ
	MH-intra	0.819	0.813	0.818
	MH-inter	0.814	0.809	0.812
	M(H)	0.374	0.374	
	BB(H)	0.666	0.691	0.561

Table C .

 C 19: Selected subspaces for HCOOD ads. using a single trajectory initialized to a factor α of the ZPE harmonic energy (E kin,0 = α × E ZPE,Harmonic ). (10-6 ) dim. ϵ (10 -6 ) dim. ϵ (10 -6 ) dim.

							1/2
	ϵ (10 -6 ) dim. ϵ (10 -6 ) dim. ϵ (10 -6 ) dim.
	MH-intra	2.0	17	1.5	18	1.5	13
	MH-inter	1.2	15	1.6	13	1.5	13
	BB(H) [formate]	5.0	6				
	BB(H) [O s H]	15	3				
		α = 1		α = 3/4	α = 1/2
	ϵ MD-intra	1.6	16	1.4	16	1.02	16
	MD-inter	2.4	10	1.6	13	1.6	13
	BB(D) [formate]						

Table 5 .

 5 1: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles ( • ) in gas-phase canonical Watson-Crick dG•dC nucleoside pair using AMOEBABIO18 force field. The shifts of AMOEBABIO18 values with respect the ones from DFT/B3LYP, ∆ AMOEBA/DFT , are reported in parenthesis.

		H-bond AH• • • B	d AB	d HB	d AH	∠AHB
	AMOEBABIO18 N4H• • • O6 2.890 (0.098) 1.883 (0.129) 1.011 176.6 (-2.5)
	(dG•dC)	N1H• • • N3 3.029 (0.091) 2.018 (0.113) 1.011	178.5 (0.7)
		N2H• • • O2 2.938 (0.028) 1.927 (0.039) 1.008	179.1 (0.6)
	DFT/B3LYP a	N4H• • • O6	2.792	1.754		179.1
	(dG•dC)	N1H• • • N3	2.938	1.905		177.8
		N2H• • • O2	2.910	1.888		178.5

a From ref.

[212] with 6-31G(d,p) basis set.

Table 5 .

 5 2: GC interbase NH stretching vibrational frequencies in gas-phase dG•dC using AMOE-BABIO18 at the harmonic, QCT and adQTB levels. The shifts of AMOEBABIO18 values with respect the ones from DFT-D/B3LYP, ∆ AMOEBA/DFT , are reported in round brackets.

		NH a 2		NH s 2		NH
		Gua	Cyt	Gua	Cyt	Gua
	AMOEBABIO18 (dG•dC)					
	Harmonic	3718 (2)	3727 (35)	3577 (188)	3621	3610
	QCT	3553 (-42)	3495 (-90)	3448 (74)	3456	3451
	adQTB	3539	3558	3447	3465	3465
	DFT-D/B3LYP a (G•C)					
	Harmonic	3716	3692	3389		
	QCT	3595	3585	3374		

a With basis set 6-31G**. The calculation was performed by G. Botti. characterize the vibrational properties of the canonical Watson-Crick conformation of dG•dC, we

Table 5 .

 5 3: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles ( • ) in solvated-phase with respect gas-phase canonical Watson-Crick dG•dC nucleoside pair using AMOEBABIO18 force field.

	H-bond AH• • • B	d AB	d HB	d AH	∠AHB
	Gas-phase				
	N4H• • • O6	2.890	1.883	1.011	176.6
	N1H• • • N3	3.029	2.018	1.011	178.5
	N2H• • • O2	2.938	1.927	1.008	179.1
	Water-box				
	N4H• • • O6	3.133	2.147	1.008	165.7
	N1H• • • N3	2.963	1.989	1.013	160.4
	N2H• • • O2	2.963	1.960	1.010	171.6

Table 5 .

 5 4: GC interbase NH stretching vibrational frequencies in solvated-phase with respect gasphase canonical Watson-Crick dG•dC nucleoside pair using AMOEBABIO18 at the three levels of theory from harmonic and QCT simulations. ∆ gas/condensed , are reported in square brackets.

		NH a 2		NH s 2		NH
		Gua	Cyt	Gua	Cyt	Gua
	Gas-phase					
	Harmonic	3718	3727	3577	3621	3610
	QCT	3553	3495	3448	3456	3451
	Water-box					
	Harmonic	3719 [1]	3691 [-36]	3592 [-15]	3579 [-42]	3609 [-1]
	QCT	3604				

Table 5 .

 5 5: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles ( • ) in the solvated dodecamer with respect to the gas-phase canonical Watson-Crick dG•dC nucleoside pair using AMOEBABIO18 force field.

	H-bond AH• • • B	d AB	d HB	d AH	∠AHB
	Gas-phase				
	N4H• • • O6	2.890	1.883	1.011	176.6
	N1H• • • N3	3.029	2.018	1.011	178.5
	N2H• • • O2	2.938	1.927	1.008	179.1
	Solvated-dodecamer				
	N4H• • • O6	3.118	2.172	1.010	155.8
	N1H• • • N3	3.033	2.025	1.013	172.9
	N2H• • • O2	2.812	1.809	1.009	172.0

Table D .

 D 6: GC interbasebase hydrogen bond and covalent bond distances (Å) and angles ( • ) in the K9K-1 and K7E-1 isomers of G•C computed with ANI-2x model. The shifts of ANI-2x values with respect the ones from DFT-D/B3LYP, ∆ ANI-2x/DFT , are reported in round brackets. With basis set aVDZ. The calculation was performed by G. Botti. fundamental frequencies. Our results are compared with DFT-D/B3LYP data, by considering only the normal modes that are equivalent in the two different computational approaches.

	H-bond AH• • • B	d AB	d HB	d AH	∠AHB
	Canonical structure: K9K-1				
	ANI-2x				
	N4H• • • O6	2.967 (0.213) 1.981 (0.269) 1.015 (-0.026) 163.0 (-16.6)
	N1H• • • N3	2.895 (-0.008) 1.887 (0.020) 1.033 (-0.003) 164.0 (-13.7)
	N2H• • • O2	2.883 (-0.009) 1.895 (0.027) 1.015 (-0.009) 163.8 (-15.8)
	DFT-D/B3LYP a				
	N4H• • • O6	2.754	1.712	1.041	179.6
	N1H• • • N3	2.903	1.867	1.036	177.7
	N2H• • • O2	2.892	1.868	1.024	179.6
	Enol Cyt structure: K7K-1				
	ANI-2x				
	N4H• • • O6	3.028 (0.235) 2.033 (0.273) 1.013 (-0.02) 166.7 (-11.8)
	N1H• • • N3	3.090 (0.111) 2.108 (0.162) 1.023 (-0.011) 160.1 (-16.8)
	N2H• • • O2	3.056 (0.034) 2.074 (0.063) 1.014 (-0.006) 162.4 (-14.6)
	DFT-D/B3LYP a				
	N4H• • • O6	2.793	1.760	1.033	178.5
	N1H• • • N3	2.979	1.946	1.034	176.9
	N2H• • • O2	3.022	2.011	1.020	177.0

a

Table D .

 D 7: NH and OH stretching frequencies characterizing the hydrogen bonds region of G•C complex in the canonical and tautomer structures. The shifts of ANI-2x values with respect the ones from DFT-D/B3LYP, ∆ ANI-2x/DFT , are reported in round brackets. The MAE with respect to the experiments is reported for the form K7E-1.

	Canonical structure: K9K-1				
		ANI-2x	DFT-D/B3LYP a	
		Harmonic	QCT	Harmonic	QCT	
	NH a 2 Gua	3734 (18)	3637 (42)	3716	3595	
	NH a 2 Cyt	3743 (51)	3660 (75)	3692	3585	
	NH s 2 Gua	3567 (178)	3514 (140)	3389	3374	
	NH s 2 Cyt	3587	3491			
	N1H Gua	3315	3342			
	N1H Cyt	3741 (99)	3716 (170)	3642	3546	
	N9H Gua	3725 (56)	3642 (73)	3669	3569	
	Enol Cyt structure: K7E-1				
		ANI-2x	DFT-D/B3LYP a	Exp. b
	NH a 2 Gua	3767 (58)	3665 (56)	3709	3609	3552
	NH a 2 Cyt	3709 (9)	3628 (47)	3700	3581	3532
	NH s 2 Gua	3605 (49)	3549 (93)	3556	3456	3426
	NH s 2 Cyt + N1H Gua	3550	3459			
	N1H Gua + NH s 2 Cyt	3589	3529			
	OH Cyt	3793 (9)	3653 (-28)	3784	3681	3603
	N7H Gua	3767 (76)	3665 (74)	3675	3558	3510
	MAE	204	107	160	52	

a With basis set 6-31G**. The calculation was performed by G. Botti. b From ref.
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.

  Multiple Coherent States Semiclassical Initial Value Representation.

	MD Molecular Dynamics.
	NEB Nudged Elastic Band.
	NQEs Nuclear Quantum Effects.
	PBE Perdew-Burke-Ernzerhof.
	PES Potential Energy Surface.
	PIMD Path Integral Molecular Dynamics.

QCT Quasi-classical trajectory.

QE Quantum Espresso.

QTB Quantum Thermal Bath.

Although the BO surface is specific to each electronic state, here we will consider the ground electronic state at each atomic configuration, which is a good framework for the problems here tackled.

Further information about DFT and its implementation can be found in ref.[START_REF] Finocchi | Density Functional Theory for Beginners: Basic Principles and Practical Approaches[END_REF].

T [n] = ⟨ψ0| Tel |ψ0⟩, U [n] = ⟨ψ0| Vel,el |ψ0⟩ and Vext[n] = ⟨ψ0| Vnuc,nuc + Vnuc,el |ψ0⟩ (see the terms in eq. (1.3)) are the functionals representing the expectation values of the kinetic, electron-electron and nuclear-nuclear + electronnuclear operators, respectively.

A detailed description of the energy terms of the AMOEBA force field can be found in reference[START_REF] Ponder | Current status of the AMOEBA polarizable force field[END_REF].

We remind that while using DFT methods, we do not dispose of an analytical PES.

In the absence of the hydrogen bond.

We can evaluate the computational cost with the number of degrees of freedom to the power of q. In the case of a DC-SCIVR calculation, (K + M ) q > M q , where M is the dimension of the subset of the full dimensional space with (K + M ) dimension; q (q > 1) is the power at which the computational cost grows.

See in the appendix, section B.1 for a detailed description of the procedure.

After a revision of our data, we found a discrepancy with respect the O-O distances. The table was corrected with respect to reference[128].

After a revision of our data, we found a discrepancy with respect the O-O distances. The figure was corrected with respect to reference[128].

Experimental collaborators: Slavica Stankic and Stéphane Chenot -INSP-CNRS.

The subtype of functional was not specified in the work.

From now on, we will refer to DC-SCIVR simply as semiclassical (SC) method.

Theoretical collaborator: Marco Cazzaniga -Dipartimento di Chimica, Università degli Studi di Milano

In our notation δ(CH) corresponds to γ(CH).

Theoretical collaborator: Giacomo Botti -Dipartimento di Chimica, Università degli Studi di Milano.

We recall the definition of atom types in a force field. Each atom of the system is associated to a specific atom type, which is related to its chemical environment.

APPENDIX A

A.1 Derivation of Feynman path integral

The matrix elements of the quantum propagator for a one-dimensional quantum particle evolving from the initial position x to the final position x ′ in an elapsed time t is given by:

By recalling that the kinetic and potential operator do not commute:

To overcome this issue, we can use the Trotter product formula, which states that for arbitrary matrices A and B, e A+B = lim n→∞ (e A/n e B/n ) n (A.

3)

The application of the Trotter formula to the quantum propagator operator gives: .4) where τ = t/n. We define e -i ℏ K(p)τ e -i ℏ U (x)τ = Ω. The propagator matrix elements become:

The set of states dx |x⟩⟨x| = I can be inserted between each factor Ω, i.e. (n -1) insertions.

Part II

Selected applications on crystals, adsorbed molecules and nucleobases

APPENDIX C

C.1 Computational details ab initio level First principles DFT calculations were performed using the QE package [180]. We employ the PBE functional [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] for the exchange and correlation potential and norm-conserving short-range pseudopotentials from Pseudo Dojo distribution [192] (v0.4) 

APPENDIX D

D.1 Computational details

Harmonic and QCT We employed AMOEBABIO18 [START_REF] Zhang | AMOEBA polarizable atomic multipole force field for nucleic acids[END_REF] force field as implemented in Tinker version 8.10.1 [221]. The optimized geometries where obtained using a RMS gradient of 0.01 kcal/mol/Å. The parameters in the Tinker input key file are indicated in the following.

For the gas phase dG•dC we used the following key file. 

CONCLUSION

Hydrogen bond is present in nature in the most disparate forms, being a fundamental interaction in both inorganic and organic matter. Its features in different chemical environments make it a very fascinating object to study. Hydrogen-bonded systems are intrinsically affected by an anharmonic contribution, which can be more or less significant, to the shape of the potential energy surface, which is usually rather shallow. Although some similarities can be generally drawn, it is very difficult to predict the behavior of the proton in a hydrogen-bonded system, where nuclear quantum effects (NQEs) come into play. NQEs can have a strong impact on the sampling of the configurational space as the quantum (Bose-Einstein) and classical (Boltzmann) distributions are pretty different at low temperatures. As a general trend, NQEs enhance anharmonic effects, thus making the interpretation of vibrational spectra rather involved. The dynamics of light atoms (such as H and D) can be also impacted by tunneling phenomena, in sharp contrast to the classical dynamics.

The complex interplay between NQEs and the anharmonicity of the PES greatly complicates the issue. Therefore, the phenomena that are related to hydrogen bonds cannot be easily predicted in such a variegated scenario. In this thesis, we have focused on the study of the proton behavior in selected hydrogen-bonded systems, beyond the classical and harmonic pictures.

NQEs can have an essential role in the phase transitions involving hydrogen atoms. The antiferroelectric to paraelectric phase transition in potassium hydroxide is governed by the hydrogen bonds.

Here When a molecule complex forms hydrogen bonds with a substrate, the delocalization of the quantum proton can also play a crucial role in the adsorption. For instance, the adsorption of formic acid (HCOOH) on the TiO 2 anatase ( 101) is characterized by a special type of molecular adsorption, in which HCOOH in a monodentate configuration interacts with the surface via a strong hydrogen bond. This is the most stable type of adsorption at T = 0 K at the DFT/PBE level of theory, while the dissociation along the same type of monodentate mode is unfavorable. The molecular adsorption is the most favored one even when including quantum effects through PIMD but, in this scenario, the proton frequently shuttles between the molecule and the surface. The potential energy surface experienced by the proton is highly anharmonic, making very difficult to catch the OH stretching vibration. With the use of DC-SCIVR, we were able to identify the OH stretch, which is found at abnormally low frequencies (< 2700 cm -1 ) in the nearby of the CH stretching region.

When the acid is deuterated (HCOOD), the molecule-surface hydrogen bond becomes weaker, thus the red-shift of the OD stretch with respect to the gas-phase HCOOD is less significant than the corresponding one in HCOOH.

The role of the solvent in the equilibrium and vibrational properties of guanine and cytosine base pair is fundamental to understand the interactions in the DNA building blocks. A description of the hydrogen bonds in the guanine and cytosine dimer (dG•dC) in physiological conditions can be done by employing the polarizable force field AMOEBA. The guanine and cytosine dimer presents three hydrogen bonds. In the gas-phase dimer the proton delocalization due to the zero-point energy motion is significant also at room temperature, as suggested by adQTB and PIMD simulations.

The effect of the solvent is not easy to anticipate. The vibrational spectra of solvated dG•dC simulated with quasi-classical trajectory method reveal an improper blue-shift of the NH stretching frequencies related to the interbase region. However, solvated dG•dC results to be unstable in the ns length scale due to the absence of the backbone, which ensures the stability of the dimer. In the near future, we plan to analyze more in detail the role of the solvent on the equilibrium and vibrational properties of the dG•dC dimer, by simulating a DNA like system.

The investigation on the selected hydrogen-bonded systems has shown how unpredictable can be the proton and deuteron behavior in different atomic environments. On the one hand, the KOH and KOD hydroxides are a manifestation of the importance of hydrogen bonds in inorganic solids.

Here, the hydrogen bonds, although being weak, are fundamental to keep together the KOH structure. Since the phase transition is mostly governed by low-frequency libration modes, NQEs contribute to weaken even more the hydrogen bonds as evidenced by the differences with respect to the classical and the deuterated crystal. On the contrary, the opposite effect is found in the adsorbed formic acid on the TiO 2 anatase (101) surface, where the strong hydrogen bond between the molecule and the surface is reinforced when NQEs are included. This results in a largely enhanced anharmonicity affecting the vibrational spectra. Lastly, the guanine and cytosine base pair presents three hydrogen bonds that are normal to rather weak. The latter are strongly influenced by the presence of the solvent, which can strengthen/weaken the hydrogen bonds. At the present of the study, we are still investigating the impact of anharmonicity and NQEs on the hydrogen bond strength, which is essential to understand better the stability of DNA double helix.

All through this study, we have observed that quantum and anharmonic effects are fundamental to understand both the thermodynamic equilibrium and vibrational properties of hydrogen-bonded