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This thesis is divided into two distinct subjects in the context of the theoretical study of heterostructure and their electro-optical properties. We will do a quantitative analysis of the characteristic electronic states of superlattices used in the middle wavelength infrared spectrum under electric field, and their optical properties. And subsequently we will study the thermionic cooling mechanisms for a structure composed of a simple quantum well with asymmetric barriers, in order to provide a phenomenological description.

The manuscript starts introducing the concepts of group theory in semiconductors, the aim consists in linking the strongly hybridized chemistry model, the linear combination for atomic orbitals (LCAO) and the symmetry model typically used in semiconductor for T d and O h groups. We will see in detail the band theory and their symmetry properties. After that we will explain the perturbative ⃗ k . ⃗ p theory and the concept of effective mass, and afterwards we will introduce the spin-orbit effects and the electric field influence on the model, leading to write the Kane 8-bands model as an exact solution.

For the superlattices chapter we will model electronic states and linear optical properties. In a first approach, we will present the theory of envelope wave functions which we will then apply to heterostructures using the Kane matrix. Through our numerical methods, we will study the different contributions of particles and their associated physical properties, as well as the effects of the electric field applied to the structure. This chapter will conclude with a study of the absorbance and its evolution according to the electric field and the impact of the number of periods.

The chapter on thermionic cooling in heterostructure will present a rate equation approach to the cooling of electrons stored in the quantum well of an asymmetric double barrier hetero-structure under applied bias. This model compares rather well to the predictions of Non-Equilibrium Green Functions (NEGF) approach and to experiments, however our method is less accurate than NEGF. Nevertheless, this modelling allows us to optimize different parameters with a reasonable numerical calculation time. Besides, we will discuss the influence of several parameters on the electronic temperature.
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Cette thèse est composée de deux sujets distincts dans le cadre de l'étude théorique des hétérostructures et de leurs propriétés électro-optiques. Nous ferons une analyse quantitative des états électroniques caractéristiques des super-réseaux utilisés dans le spectre du moyen infrarouge sous champ électrique, et de leurs propriétés optiques. Ensuite nous étudierons les mécanismes de refroidissement thermoionique pour une structure composée d'un simple puits quantique avec des barrières asymétriques, afin de fournir une description phénoménologique.

Le manuscrit commence par introduire les concepts de théorie des groupes dans les semiconducteurs, l'objectif étant de relier le modèle des liaisons chimiques fortement hybridées, les combinaisons linéaires d'orbitales atomiques (LCAO) et le modèle de symétrie typiquement utilisé dans les semiconducteurs pour les groupes T d et O h . Nous verrons en détail la théorie des bandes et leurs propriétés de symétries. Après cela, nous expliquerons la théorie perturbative ⃗ k . ⃗ p et le concept de masse effective, puis nous introduirons les effets spin-orbites et l'influence du champ électrique sur le modèle, conduisant à écrire le modèle 8 bandes de Kane comme une solution exacte.

Pour le chapitre sur les super-réseaux, nous modéliserons les états électroniques et les propriétés optiques linéaires. En première approche, nous présentons la théorie de la fonction d'onde enveloppe que nous appliquerons ensuite aux hétérostructures utilisant la matrice de Kane. Grâce à nos méthodes numériques, nous étudierons les différentes contributions des particules et leurs propriétés associées, ainsi que les effets du champ électrique appliqué à la structure. Ce chapitre se terminera par une étude de l'absorbance et de son évolution selon le champ électrique et l'impact du nombre de périodes.

Pour le chapitre du refroidissement thermoionique des hétérostructures, nous présenterons l'approche de "rate equations" afin de décrire le refroidissement des électrons stockés dans le puits quantique d'une hétérostructure asymétrique à double barrière sous champ électrique appliqué. Ce modèle se compare assez bien aux prédictions des Non-Equilibrium Green Functions (NEGF) et aux expériences, cependant notre méthode est moins précise que la NEGF. Néanmoins cette modélisation permet d'optimiser différents paramètres avec un temps de calcul numérique raisonnable. De plus, nous allons discuter de l'influence de plusieurs paramètres sur la température électronique. 
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Résumé en français

Cette thèse s'inscrit dans le cadre de l'étude théorique d'hétérostructure et de leurs propriétés électro-optiques et est composée de deux parties distinctes. D'une part, il y a une analyse quantitative des états électroniques caractéristiques des super-réseaux utilisés dans le spectre infrarouge de longueur d'onde moyenne sous champ électrique, et une analyse de leurs propriétés optiques linéaires. D'autre part, nous avons une étude complète des mécanismes de refroidissement thermionique pour une structure composée d'un puits quantique simple avec des barrières asymétriques, afin de fournir une description phénoménologique.

La thèse est composée de trois grandes parties. La première concerne la pose des bases de la théorie des groupes pour les semi-conducteurs, ainsi que les bases de la théorie dites ⃗ k.⃗ p. La seconde partie concerne l'étude de l'absorbance des super-réseaux et de son évolution en fonction du champ électrique appliqué et de l'impact du nombre de périodes. Et enfin le dernier chapitre est consacré à la recherche sur le processus de refroidissement thermionique d'une hétérostructure.

I. Base de la théorie des semi-conducteurs L'une des principales symétries des matériaux semi-conducteurs est le tétraèdre, qui est le seul utilisé dans ce manuscrit. Ces matériaux sont décrits par deux groupes de symétrie T d pour les matériaux hétéropolaire et O h pour ceux homopolaires. Ces deux groupes ont les mêmes propriétés de symétrie sauf que le groupe O h contient un centre d'inversion, en raison du fait que les atomes de la cellule primitive sont les mêmes, comme cela est montré dans les tables de caractères ci-dessous : Figure 2: Table de caractères du groupe O h (côté gauche) et du groupe T d (côté droit), les opérations de symétrie de groupe spatial utilisent la notation Schoenflies, en dessous les symboles Mulliken pour chaque représentation irréductible (ici : A 1 , A 2 , E, T 1 , T 2 ) et sur leur gauche les fonctions de base associées donnant des invariances de symétrie, sachant que les termes notés R x , R y , R z sont les composants d'un pseudovecteur (noté S x , S y , S z par Koster [START_REF] Koster | Properties of the thirty-two point groups[END_REF]). Image tirée de Dresselhaus [START_REF] Jorio | Group Theory, Application to the Physics of Condensed Matter[END_REF].

Nous savons que les orbitales de valence impliquant 8 électrons sont faites d'un état-s (A 1 ) et de trois états-p (T 2 ). Donc, pour former des orbitales moléculaires comme étant une Combinaison Linéaire d'Orbitales Atomiques LCAO, nous déduisons les dénommées LCAO des tables de caractères comme un ensemble de 4 fonctions mutuellement orthogonales pour l'hybridation sp 3 tel que :

Ψ 1 1 1 (A 1 ) = 1 2 (s + p x + p y + p z ) Ψ 1 1 1 (T 2 ) = 1 2 (s -p x -p y + p z ) (2) 
Ψ 1 1 1 (T 2 ) = 1 2 (s -p x + p y -p z ) Ψ 1 1 1 (T 2 ) = 1 2 (s + p x -p y -p z )
Pour chaque LCAO les indices cristallographiques se réfèrent aux directions des orbitales moléculaires hybrides, et le symbole de symétrie associée (Mulliken) est spécifié. Pour connaître la combinaison adéquate des orbitales atomiques, nous associons les fonctions de base du moment angulaire l par identifications avec les représentations irréductibles appropriées pour le groupe T d (Dresselhaus [START_REF] Jorio | Group Theory, Application to the Physics of Condensed Matter[END_REF] p167-169).

Les orbitales de valence (± p x , ± p y , ± p z ) ne peuvent être considérées qu'en approximation, car les orbitales électroniques dans les états moléculaires sont fortement hybridées, plutôt que de ressembler à celles des atomes, comme on le suppose en formant les LCAO (Dresselhaus [START_REF] Jorio | Group Theory, Application to the Physics of Condensed Matter[END_REF] p169).

On utilise le modèle de Leman et Friedel afin de trouver facilement la structure de bande en fonction du vecteur d'onde ⃗ k (Leman1962 [START_REF] Leman | On the Description of Covalent Bonds in Diamond Lattice Structures by a Simplified TightBinding Approximation[END_REF]) pour le groupe O h autour des points de symétrie à l'intérieur de la zone Brillouin. Tous les points de symétrie sont à l'intérieur de la zone de Brillouin, qui est une cellule primitive définie de façon unique dans l'espace réciproque pour chaque structure cristalline.

vii Leman et Friedel résolvent l'équation séculaire ci-dessous, où V (⃗ r ) représente le potentiel cristallin total qui est une somme de chaque potentiel atomique avec son voisinage le plus proche à l'intérieur du cristal, et Ψ notre précédent LCAO pour le groupe O h :

H sec = ⃗ p 2 2m 0 + V (⃗ r ) H sec Ψ = E Ψ
Le groupe T d quant à lui, est isomorphique par rapport au groupe O h et sans centre d'inversion. Cependant les fonctions propres ne sont pas les mêmes mais un mélange entre les différentes bandes dû à des raisons de symétrie. Suivant l'approche de Cardona (Cardona [4], Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p44), nous pouvons écrire le potentiel cristallin du groupe T d comme une somme de terme symétrique et antisymétrique :

V (⃗ r ) = V sym (⃗ r ) + V antisym (⃗ r )
Pour être conforme à la notation officielle utilisée dans la littérature des semi-conducteurs, nous renommons les états p-like P X , P Y , P Z comme étant respectivement notés X, Y, Z pour le reste du manuscrit, nous décidons de maintenir la notation S pour la première bande, celle dite de conduction. En prenant en compte notre étude précédente grâce aux tables de caractères, nous résumons les propriétés des bandes incluant leurs orbitales moléculaires et leurs invariances de symétrie dans le tableau suivant :

O h Crystal LCAO Symmetry invariance Γ - 15 (Γ - 4 ) X, Y , Z {x, y, z} Γ - 2 (Γ - 2 ) S xyz Γ + 25 (Γ + 5 ) X, Y, Z {yz, xz, xy} Γ + 1 (Γ + 1 ) S s
Table 1: La notation utilisée est BSW (Bouckaert-Smoluchowski-Wigner) et entre parenthèses Koster [START_REF] Koster | Properties of the thirty-two point groups[END_REF]. 
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I.2. Modèle de Kane avec l'interaction Spin-Orbite

En utilisant la théorie des perturbations non-dégénérées du second ordre pour les termes ⃗ k.⃗ p au voisinnage de ⃗ k= ⃗ k 0 , tel que ⃗ k 0 est le point de symétrie choisi dans la zone Brillouin, on décrit l'énergie du cristal :

E ⃗ k n = E ⃗ k 0 n + ℏ 2 ⃗ k 2 2m 0 + ℏ m 0 ⟨U ⃗ k 0 n | ⃗ k.⃗ p |U ⃗ k 0 n ⟩ + ℏ 2 m 2 0 n ′ ̸ = n ⟨U ⃗ k 0 n ′ | ⃗ k.⃗ p |U ⃗ k 0 n ⟩ 2 E ⃗ k 0 n -E ⃗ k 0 n ′
La masse effective m * de la bande n dans les directions α, β = {x, y, z} pour les petites valeurs de k α et k β autour du point Γ, est exprimée tel que :

1 m * n,αβ = 1 m 0 + 2 m 2 0 n ′ ̸ =n ⟨U 0n | pα |U 0n ′ ⟩ ⟨U 0n ′ | pβ |U 0n ⟩ E 0n -E 0n ′
viii L'interaction spin-orbite est essentielle pour décrire la structure électronique de la plupart des matériaux cristallins semi-conducteurs, car elle provient de la liaison en bande de valence de l'hybridation d'orbitale p dans les semi-conducteurs, de structure diamant et zinc-blende. On remarquera que dans certains matériaux l'orbital d doit être pris en compte. L'énergie de ce couplage s'écrit ∆ so et est définie au point Γ où ⃗ k=(0,0,0), ceci est plus ou moins important selon l'espèce d'atome. L'expression du potentiel de couplage spin-orbite est :

H so U ⃗ k n (⃗ r ) = ℏ 4m 2 0 c 2 ⃗ σ . -→ ∇V (⃗ r ) × ⃗ p U ⃗ k n (⃗ r )
L'écriture de la base de Kane incluant l'intéraction spin-orbite ainsi que les potentiels associés au point Γ pour ⃗ k=0 est donné à la table 2.3 du manuscrit.

Les états orbitaux du groupe simple sont composés pour l'hybridation sp 3 au point Γ, d'une bande non dégénérée appelée Γ 1C (Γ - 2 ) pour la bande de conduction, et une bande dégénérée triple appelée Γ 15V (Γ + 25 ) pour la bande de valence. L'inclusion de l'interaction spin-orbite transforme le groupe simple en un groupe double, se divisant en un quadruplet et un doublet :

Γ + 25 ⊗ Γ + 6 = Γ + 8 ⊕ Γ + 7 O h group Γ 15V ⊗ Γ 6 = Γ 8V ⊕ Γ 7V T d group
Ces résultats amènent à écrire l'Hamiltonien de Kane dans le cadre des bandes Γ 6 , Γ 8 , Γ 7 , la matrice 8 bandes de Kane est telle que (Kane1957 [START_REF] Kane | [END_REF] et Bastard [START_REF] Bastard | wave mechanics applied to semiconductor heterostructures[END_REF] p43) :

                    |c ↑⟩ |c ↓⟩ |h ↑⟩ |l ↑⟩ |l ↓⟩ |h ↓⟩ |s ↑⟩ |s ↓⟩ ⟨c ↑| V c, ⃗ k 0 ℏk + -2 3 ℏk z -1 √ 3 ℏk - 0 1 √ 3 ℏk z -2 3 ℏk - ⟨c ↓| 0 V c, ⃗ k 0 √ 3 ℏk + -2 3 ℏk z ℏk - 2 3 ℏk + 1 √ 3 ℏk z ⟨h ↑| ℏk - 0 V h, ⃗ k 0 0 0 0 0 ⟨l ↑| -2 3 ℏk z √ 3 ℏk - 0 V l, ⃗ k 0 0 0 0 ⟨l ↓| -1 3 ℏk + -2 3 ℏk z 0 0 V l, ⃗ k 0 0 0 ⟨h ↓| 0 ℏk + 0 0 0 V h, ⃗ k 0 0 ⟨s ↑| 1 √ 3 ℏk z 2 3 ℏk - 0 0 0 0 V s, ⃗ k 0 ⟨s ↓| -2 3 ℏk + 1 √ 3 ℏk z 0 0 0 0 0 V s, ⃗ k                     où : k ± = 1 √ 2 (k x ± i k y ) V n, ⃗ k = V n + ℏ 2 ⃗ k 2 2m 0 avec n ∈ {c, l, h, s}
Nous dénotons les bandes par c pour la conduction, l pour les trous légers, h pour les trous lourds et s pour spin-orbite.

II. Super-réseaux

II.1. Hétérostructures

En utilisant le formalisme de la fonction d'onde d'enveloppe nous séparons les ondes de Bloch décrivant l'hétérostructure entière, comme combinaison linéaire de la fonction d'onde enveloppe F ⃗ k n et la fonction périodique cristalline U ⃗ k n à un vecteur d'onde ⃗ k (Bastard [7] p67). Comme les fonctions de Bloch Ψ doivent être appariés doucement à l'interface, la fonction F peut ne pas être lisse à l'interface (Harrison 1961 [8]).

Le formalisme de la fonction d'onde enveloppe donne :

Ψ ⃗ k = n F ⃗ k n (⃗ r ) U ⃗ k n (⃗ r )
avec F ⃗ k n la fonction d'onde enveloppe en 3D pour un vecteur d'onde ⃗ k.

En raison de la forme de la structure, l'axe plan et l'axe de croissance des fonctions d'onde sont découplés, il se produit k // comme un vecteur d'onde bidimensionnelle le long de l'axe du plan identique pour chaque couche, afin de se conformer à l'invariance translationnelle dans le plan (Bastard [7] p69, NBCB [START_REF] Ndebeka-Bandou | Quantum States And Scattering In Semiconductor Nanostructures[END_REF] p103). Nous pouvons réécrire la fonction d'onde enveloppe F ⃗ k n comme étant une combinaison linéaire de la fonction d'onde de l'hétérostructure Φ le long de l'axe de croissance selon un coefficient plan C(k // ):

F ⃗ k n (⃗ r ) = 1 √ S e i ⃗ k.⃗ ϱ i C i E ⃗ k Φ n (z, E i )
Le coefficient C(E ⃗ k ) résulte de la diagonalisation du Hamiltonien plan, comme cela est détaillé dans le chapitre 5.

La fonction d'onde enveloppe F ⃗ k n correspond à une fonction de modulation enveloppe qui varie lentement et qui est limitée à des valeurs ⃗ k à l'intérieur de la zone Brillouin du cristal. Alors que les fonctions qui varient rapidement sont des fonctions périodiques cristallines U ⃗ k n décrivant le comportement proche des atomes du réseau.

L'hétérostructure est développée le long de l'axe ⃗ e z , la fonction d'onde quantifiée Φ n (z) le long de l'axe ⃗ e z implique une séparation de l'Hamiltonien de Kane en k z , donnant une matrice D kz diagonale à bloc et indépendante du spin, ainsi qu'un Hamiltonien plan dépendant seulement de k ± , nous obtenons pour D kz la matrice suivante :

        D kz |c⟩ |l⟩ |h⟩ |s⟩ ⟨c| V c + ℏ 2 k 2 z 2m 0 -2 3 ℏk z 0 1 √ 3 ℏk z ⟨l| -2 3 ℏk z V l + ℏ 2 k 2 z 2m 0 0 0 ⟨h| 0 0 V h + ℏ 2 k 2 z 2m 0 0 ⟨s| 1 √ 3 ℏk z 0 0 V s + ℏ 2 k 2 z 2m 0        
En général, les solutions de l'équation de Schrödinger quelque soit la courbure de bande ne sont pas connues analytiquement. La méthode de matrice de transfert approxime la courbure des bandes prise en compte tout en maintenant simultanément un potentiel constant par morceaux (NBCB [START_REF] Ndebeka-Bandou | Quantum States And Scattering In Semiconductor Nanostructures[END_REF]). Pour traiter le cas des potentiels électriques, nous supposons que chaque couche du matériau est composée de sous-couches de tailles égales δz d'indice ν, cela nous permet d'écrire le potentiel, ici linéaire, comme :

lim z→ν δz V n (z) = V n (ν δz) ∀ ν ∈ N = V n + e E ν δz
L'épaisseur des couches doit être choisie comme un compromis entre la précision et le temps de calcul, en effet un plus petit δz implique une description plus précise et donc une plus grande quantité de couches, et inversement, moins de couches implique un temps de calcul plus rapide mais moins de précision. Pour éviter un dilemme Cornélien et assurer un assez large éventail d'états, nous lançons notre modélisation numérique sur des noyaux multithreads en utilisant Cuda sur GPU 1 (calcul utilisant une carte graphique).

Pour la résolution générale, nous posons les matrices Φ ν (k ν , z) correspondant à la fonction d'onde des particules légères LP ou des trous lourds HH, avec respectivement comme vecteur d'onde k LP ou k HH d'une sous-couche ν. Pour décrire l'ensemble du système, sous-couche par sous-couche, nous définissons l'opérateur de matrice de transfert de l'extrême gauche à l'extrême droite du système tel que :

T = N ν=0 Φ -1 ν+1 (z ν ) Φ ν (z ν )
1 Graphics Processing Unit

x Les résultats sont exposés à la subsection 4.6. Ils ont été effectués pour des nombres différentes de périodes, sans et avec champ électrique.

II.2. Relations de dispersion dans le plan des hétérostructures

Pour étudier les propriétés de la structure sur l'axe plan, contrairement au confinement quantique le long de l'axe de croissance ⃗ e z , l'axe du plan super-réseau ⃗ e ϱ est totalement propagatif, ce qui implique d'avoir des bandes d'énergies continues le long du vecteur d'onde plan ⃗ k // = ⃗ k . Nous écrivons la fonction d'onde des hétérostructures Ψ pour la valeur propre du plan E i ⃗ k comme étant une combinaison linéaire de fonctions enveloppes f n correspondant à différentes contributions de bandes n, telles que :

⟨⃗ r |Ψ i ⃗ k ⟩ = Ψ i ⃗ k (⃗ r ) = 1 √ S e i ⃗ k.⃗ ϱ n f n z, E i ⃗ k U 0n (⃗ r ) où f n (z, E i ⃗ k
) correspond à la fonction d'onde enveloppe de la particule n, et U 0n (⃗ r ) à la fonction d'onde périodique cristalline.

La fonction d'onde d'enveloppe f n prend en compte la structure le long de l'axe de croissance ⃗ e z ainsi que les propriétés du vecteur d'onde plan ⃗ k. Nous développons donc f n pour chaque particule n comme une combinaison linéaire de ⃗ k selon un coefficient C(E ⃗ k ), où les valeurs propres du plan E ⃗ k résultent de la diagonalisation du Hamiltonien plan, en utilisant nos fonctions d'onde Φ n le long de l'axe ⃗ e z comme base, nous écrivons : 

f n z, E ⃗ k = N ∈{LP,HH} ν=1 C ν E ⃗ k Φ n (z, E ν ) avec LP
Γ i ⃗ kν →j ⃗ kµ = 2π ℏ ⟨j, ⃗ k µ | H e-γ |i, ⃗ k ν ⟩ 2 δ E j ⃗ kµ -(E i ⃗ kν ± ℏω ⃗ q )
Le développement des équations et la méthode sont explicités à la subsection 6.3. Pour étudier l'effet d'absorption en champ faible, nous utilisons la loi de Beer-Lambert, qui suppose que la fraction de photons absorbés dans le milieu est proportionnelle à la longueur de la structure :

A(ℏω) = α(ℏω) l
avec α(ℏω) l'absorbance des super-réseaux dont les résulats sont exposés à la subsection 6.7.

III. Refroidissement thermoionique

Dans notre projet, nous nous intéressons aux hétérostructures asymétriques à double barrière qui combine l'injection par effet tunnel et l'extraction thermionique, de sorte que les électrons froids sont injectés de l'émetteur dans le puits quantique (QW) par un effet de tunnel résonnant xi à travers une mince barrière de potentiel sur la partie gauche du système. Celui-ci permet de concentrer le refroidissement dans le puits quantique. En effet les électrons chauds gagnent de l'énergie dans le réseau grâce à l'absorption des phonons, ceux-ci sont enlevés du puits quantique par émission thermionique au-dessus de la barrière épaisse sur la partie droite du système. Ce processus, appelé "refroidissement par évaporation", est schématisé sur la figure 3. Ensuite les électrons sont relâchés dans le collecteur (à l'extrême droite du système) en émettant des phonons.

Figure 3: Transport d'électrons dans des hétérostructures semi-conductrices à double barrière pour le refroidissement thermoionique [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF] Les électrons entrent constamment et quittent le puits quantique, soit par échappement thermoionique dans le continuum, soit par effet tunnel en reflux vers l'émetteur. Notre modèle suppose que les électrons sont un gaz 2D dans un état stationnaire à la température T QW , tandis que le bain de phonon est à l'équilibre à la température T 0 . Pour une tension de polarisation appliquée, le courant électrique stationnaire est constant, ce qui signifie qu'il y a autant d'électrons entrant et sortant du QW. En effet, le nombre d'électrons n QW à l'intérieur du puits est constant et de même pour la densité d'énergie des électrons, ce qui induit que la puissance totale échangée P QW est également nulle. Ces deux conditions de conservation sont les suivantes : Les processus à considérer dans notre structure asymétrique à double barrière sont les suivants :

d( nQW S ) dt = i d( nQW S ) dt i = 0 conservation
• Injection de l'émetteur (inj) : les électrons sont injectés de façon élastique du bain d'électrons vers le puits quantique par l'effet de tunnel résonnant à travers la barrière V 0 (également appelée barrière émetteur).

• Le back flow (BF) du puits quantique à l'émetteur (émetteur BF) : les électrons reviennent du puits quantique au bain d'électrons avec le même processus que ci-dessus.

• Émission thermionique assistée par diffusion dans le continuum (échappement thermoionique) : les électrons s'échappent du puits quantique vers les états 3D au-dessus de la barrière, par absorption ou émission de phonons.

• Retour de flux assisté par diffusion du collecteur (collecteur BF) : les électrons reviennent dans le puits quantique avec le même processus que ci-dessus. 

Introduction

This thesis involves two distinct subjects in the context of the theoretical study of heterostructures and their electro-optical properties. On the one hand, there is a quantitative analysis of the characteristic electronic states of superlattices used in the middle wavelength infrared spectrum under electric field, and their linear optical properties. On the other hand, we have a complete study of the thermionic cooling mechanisms for a structure composed of a single quantum well with asymmetric barriers, in order to provide a phenomenological description.

This manuscript is organized into three parts :

Part I :

We start with a general introduction to the concepts of group theory in semiconductors. It proposes a link between the strongly hybridized chemistry model, the linear combination for atomic orbitals and the symmetry model typically used in semiconductors for T d and O h groups.

In particular, we detail the band theory and their symmetry properties.

In the second part we present the generalities of the perturbative ⃗ k . ⃗ p theory, and the concept of effective mass, we introduce subsequently the spin-orbit effects and the electric field influence on the model, leading to write the Kane 8-bands model as an exact solution.

Part II :

We present the theory of envelope wave functions which we will then apply to heterostructures using the Kane matrix seen in the first part. Through our numerical methods, we will study the superlattices, as well as the effects of the electric field applied to the structure. This part will be concluded with a study of superlattices absorbance and its evolution according to the applied electric field and the impact of the number of periods.

Part III :

This part consists in a new impetus in the research on thermionic cooling process. We will present a rate equation approach to the cooling of electrons stored in the quantum well of an asymmetric double barrier heterostructure under applied bias. The influence of several parameters on the electronic temperature is discussed. This simple model gives results that compare rather well to the predictions of Non-Equilibrium Green Functions (NEGF) approach and to experiments, and it allows us to optimize the different parameters with a reasonable numerical calculation time.

Part I

Semiconductor Theory

Chapter 1

Introduction to Group Theory for Semiconductors

1.1 Crystalline electronic structure

Atomic orbitals

The hydrogen atom is the simplest model to describe atomic orbitals, its resolution using Schrödinger equation gives a wave function composed by the product of a spherical harmonic function Y(θ, ϕ) and a radial function R(r) :

Ψ n,l,m l (r, θ, ϕ) = R n,l (r) Y m l l (θ, ϕ) (1.1)
The wave functions for the hydrogen atom depend on the three spherical coordinates {r, θ, ϕ} and the three quantum numbers {n, l, m l } giving the position of the electron relative to the proton in this referential, they are as follows :

• The principal quantum number n describes the electron shell, corresponding to energy levels of an electron, its ranges are from 1 to the shell containing the outermost electron.

• The azimuthal (or angular) quantum number l describes the subshell giving the magnitude of the orbital angular momentum, each value is called by a letter, here the first four are represented by l = {s, p, d, f } .

• The magnetic quantum number m describes the specific orbital within this subshell, and corresponds to the projection of the orbital angular momentum along the ⃗ e z axis.

To form molecular hybridizations thanks to symmetry properties, we are only interested in the Spherical harmonic function Y m l l satisfying the Laplace's differential equation ∆Ψ(r, θ, ϕ) = 0. We limit our molecular interpretation to l = {s, p} because in most semiconductors the most important states are the s and p orbitals, other orbitals such as outermost d-states contribute significantly to the complete picture of bonding (Rockett p207 [START_REF] Rockett | The materials science of semiconductors[END_REF]) but we will ignore them in our study, such complex Spherical harmonics and their Cartesian equivalences are such as :

Y 0 0 = 1 2 √ π Y 0 1 = 1 2 3 π cos(θ) = 1 2 3 π z r Y ±1 1 = ∓ 1 2 3 2π sin(θ) e ±iΦ = ∓ 1 2 3 2π
x ± iy r with :

r = x 2 + y 2 + z 2 cos(θ) = z r sin(θ) e ±iΦ = x ± iy r
Atomic orbitals, for their angular part, are formed of real spherical orbitals, with renormalization we have in Cartesian coordinates :

s = Y 0 0 = 1 √ 4π p z = Y 0 1 = 1 2 3 π z r p x = 1 √ 2 Y -1 1 -Y 1 1 = 1 2 3 π x r (1.2) p y = i √ 2 Y -1 1 + Y 1 1 = 1 2 3 π y r
The index of p-state atomic orbital corresponds to its m l projection in Cartesian choosing ⃗ e z as reference axis.

1.1.2 sp 3 hybridization and band structure

In our study we will work with materials of element groups III-V such as binaries GaAs or InAs, and also ternaries like Al x Ga 1-x As or InAs 1-x Sb x . These crystals are formed by sp 3 hybridization (ignoring the d-states), let us understand their molecular orbitals and band structure with the scheme below using the heteropolar GaAs material as reference : • a) In the sp 3 Molecular orbitals of GaAs, each side has the s-states and p-states atomic orbitals of elements to bond filled of electrons. In the center they hybridize by creating molecular orbitals denoted in this manuscript by capital letters for bonding and with a bar for antibonding. Ga (3 electrons) and As (5 electrons) bring together their 8 electrons to form sp 3 bonding, filling in first the lowest molecular orbital energy S composed of ss-σ bonds, next comes the filling of the P molecular orbital composed of pp-σ and pp-π bonds. After, in ascending order of energy and empty of electrons, we have S formed of ss-σ antibonding, and P composed of pp-σ and pp-π antibondings, the energy molecular inversion of S and P is typical of semiconductor.

• b) For the energy band structure formation, we start from the band hybridization of s-states and p-states atomic orbitals (here sp 3 ) forming molecular orbitals (for details see previous point). The sum of all the molecular orbitals and their interactions leads to form the band structure (right side of the scheme), the lowest band filled with electrons (at a temperature of 0K) forms the Valence Band (VB) which is separated by the Conduction Band (CB) via the material energy gap E g .

Symmetry properties of tetrahedral materials

One of the main symmetry of semiconductor materials is the tetrahedron, which is the only one used in this manuscript. These materials are described by two symmetry groups, T d for heteropolar and O h for homopolar materials, they have the same symmetry properties except that O h group contains an inversion center due to the fact that the primitive cell atoms are the same, let us see it in the character tables below : Figure 1.2: Character table of O h group (left side) and T d group (right side), space group symmetry operations use the Schoenflies notation. Below are the Mulliken symbols for each irreducible representation (here: A 1 , A 2 , E, T 1 , T 2 ) and on their left the associated basis functions giving the symmetry invariances, knowing that the terms denoted {R x , R y , R z } are the components of a pseudovector (noted {S x , S y , S z } by Koster [START_REF] Koster | Properties of the thirty-two point groups[END_REF]). Image from Dresselhaus [START_REF] Jorio | Group Theory, Application to the Physics of Condensed Matter[END_REF].

Signification of Mulliken Symbol used :

• A singly degenerate or one dimensional, symmetric with respect to rotation of the principle axis • E doubly degenerate or two dimensional

• T triply degenerate or three dimensional Each Mulliken symbol is associated with an energy band, as shown in the following table using Koster notation [START_REF] Koster | Properties of the thirty-two point groups[END_REF] :

Mulliken Associated band (Koster)

A 1 Γ 1 A 2 Γ 2 E Γ 3 T 1 Γ 4 T 2 Γ 5
Table 1.1 We know that the valence orbitals involving 8 electrons ( Figure 1.1) are made from one s-state (A 1 ) and three p-states (T 2 ). So to form molecular orbitals as being a linear combination of atomic orbitals (eq: 1.2), we deduce the so-called Linear Combination of Atomic Orbitals (LCAO) from the character tables as a set of 4 mutually orthogonal functions for sp 3 hybridization such as :

Ψ 1 1 1 (A 1 ) = 1 2 (s + p x + p y + p z ) Ψ 1 1 1 (T 2 ) = 1 2 (s -p x -p y + p z ) (1.3) Ψ 1 1 1 (T 2 ) = 1 2 (s -p x + p y -p z ) Ψ 1 1 1 (T 2 ) = 1 2 (s + p x -p y -p z )
For each LCAO the crystallographic indices in the subscripts refer to the hybrid molecular orbital directions, and the associated symmetry label (Mulliken symbol) is specified. To know the adequate combination of atomic orbitals we associate the basis functions of the angular momentum l states by identications with the appropriate irreducible representations for the T d group (Dresselhaus [START_REF] Jorio | Group Theory, Application to the Physics of Condensed Matter[END_REF] p167-169).

The directed valence orbitals (± p x , ± p y , ± p z ) can only be considered as approximate since the electronic orbitals in the molecular states are strongly hybridized, rather than being atomiclike, as assumed in forming LCAO (Dresselhaus [2] p169).

Let us show a schematic representation of these hybridizations in the sketch below :

Figure 1.3: Schematic interactions of selected atomic orbitals and the geometry of these orbitals with respect to the crystal lattice in a zincblende (T d group) or diamond structure (O h group), the molecular orbitals σ and π are denoted by their kind of orbitals bonding that is a s-states and p-states mixture. Image from Rockett [START_REF] Rockett | The materials science of semiconductors[END_REF].

In the picture above (Figure : 1.3), the selected bond interaction give matrix elements corresponding to LCAO approach of the interaction Hamiltonian H int between the atomic orbitals, it is usually referred to as the overlap parameter. For a molecule containing only s and p atomic orbitals, it gives four nonzero and linearly independent overlap parameters between the s and p electrons (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p84), for the σ-like overlaps :

⟨s| H int |s⟩ = E ssσ ⟨s| H int |p z ⟩ = E spσ ⟨p z | H int |p z ⟩ = E ppσ
and for the π-like overlaps :

⟨p x | H int |p x ⟩ = ⟨p y | H int |p y ⟩ = E ppπ 1.2 Band structure 1.2.

Strong bonds model of Leman and Friedel (O h group)

The description of Leman and Friedel [START_REF] Leman | On the Description of Covalent Bonds in Diamond Lattice Structures by a Simplified TightBinding Approximation[END_REF] allows to find easily the band structure versus the wave vector ⃗ k for O h group crystals around the symmetry points inside Brillouin zone. All symmetry points are inside the Brillouin zone, which is a uniquely defined primitive cell in the reciprocal space for each crystalline structure, let us show this one for zincblende (T d group) or diamonde-like (O h group) structures : Leman and Friedel resolve the secular equation below, where V (⃗ r ) represents the total crystalline potential which is a sum of each atomic potential with its closest vicinity inside the crystal, and Ψ our aforementioned LCAO (eq: 1.3) for O h group :

H sec = ⃗ p 2 2m 0 + V (⃗ r ) H sec Ψ = E Ψ
The details of such a totally analytic resolution are given by Fishman ([5] p31), the solutions give us the eigenfunctions Ψ as a linear combination of atomic orbitals for all symmetry points.

We will study materials whose main area of interest is around the center of Brillouin zone, giving at Γ point the composition of each eigenfunction for an hybridization of s-states and p-states (Fishman [5] p41) without normalization factor : Eigenvalues found by diagonalization of the secular matrix as a function of wave vector ⃗ k give the dispersion relation, which form the material band structure. These bands have specific names at high symmetry points, with their own symmetry properties, let us speak about it in the last section 1.2.4.

Conduction band (O h ) Valence band (O h ) P X = p x + p ′ x P X = p x -p ′ x P Y = p y + p ′ y P Y = p y -p ′ y P Z = p z + p ′ z P Z = p z -p ′ z S = s -s ′ S = s + s ′

Symmetry properties for O h

To understand the interactions between molecular orbitals with themselves or operators, it is fundamental to know their symmetries. Let us see this by looking at the overlap integral ξ between two orbitals ψ i and ψ j , with ψ as complex conjugate :

ξ ij = ⟨ψ i |ψ j ⟩ = ψ i (⃗ r ) ψ j (⃗ r ) d⃗ r 3
To know if bonding is possible this integral must be non-zero, however it is not necessary to perform the integration which could be really complicated, inasmuch as ψ orbitals have the form given eq: 1.1. In fact, it is sufficient to consider the parity of such an integral, parity integrals for given functions g(x) and u(x) are :

even g(-x) = g(x) so g(x) dx ̸ = 0 odd u(-x) = -u(x) so u(x) dx = 0
Due to our "strong bonds" model, the orbital overlap is taken null ξ=0 and our molecular orbitals have already been defined thanks to Leman model, however the same method is useful when applying to an operator to know whether the matrix element is null or not. This method is efficient in O h group due to its inversion center, let us see it in the next section 1.2.3. Nonetheless there are exceptions as demonstrated by Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p49 for matrix elements of T d group with the ⃗ p operator, so this method is generally useful but not a sufficient condition.

To know the integral parity the simplest way consists of working with symmetry invariances, so-called basis functions in character tables, using The T d group is isomorphic to O h group without inversion center, however the eigenfunctions are not the same but a mixture between the different bands thanks to symmetry reasons. Following the Cardona approach (Cardona [4], Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p44), let us write the crystalline potential of T d group such as a sum of a symmetric and an antisymmetric terms :

V (⃗ r ) = V sym (⃗ r ) + V antisym (⃗ r )
The antisymmetrical potential has to change V antisym (-⃗ r ) = -V antisym (⃗ r ), so we can write its symmetry invariance by the simplest way as being V antisym ≡ xyz, and we seek what are the eigenfunctions coupled under the action of this antisymmetrical potential, so for S-bands coupling we have :

⟨ S(O h ) | V antisym (⃗ r ) | S(O h ) ⟩ ≡ ⟨xyz|xyz|s⟩ = ⟨x 2 y 2 z 2 ⟩ ̸ = 0 ⟨ S(O h ) | V antisym (⃗ r ) | P X (O h ) ⟩ ≡ ⟨xyz|xyz|yz⟩ = ⟨x 2 y 3 z 3 ⟩ = 0
and few examples for P-bands :

⟨ P X (O h ) | V antisym (⃗ r ) | P X (O h ) ⟩ ≡ ⟨x|xyz|yz⟩ = ⟨x 2 y 2 z 2 ⟩ ̸ = 0 ⟨ P X (O h ) | V antisym (⃗ r ) | P Y (O h ) ⟩ ≡ ⟨x|xyz|xz⟩ = ⟨x 3 yz 2 ⟩ = 0
To link the O h group band to T d group ones thanks to our previous assumptions, we use the ε of Cardona [START_REF] Cardona | Band parameters of semiconductors with zincblende, wurtzite, and germanium structure[END_REF] as a weak band coupling parameter such as |ε| < 1 , giving the unique combination for S(T d ) and P X (T d ) into sp 3 hybridization :

S(T d ) = S(O h ) + ε S(O h ) P X (T d ) = P X (O h ) + ε P X (O h )
We can summarize the results in the following Table :   Conduction band (T d ) Valence band (T d )

P X = p x + p ′ x + ε (p x -p ′ x ) P X = p x -p ′ x + ε (p x + p ′ x ) P Y = p y + p ′ y + ε (p y -p ′ y ) P Y = p y -p ′ y + ε (p y + p ′ y ) P Z = p z + p ′ z + ε (p z -p ′ z ) P Z = p z -p ′ z + ε (p z + p ′ z ) S = s -s ′ + ε (s + s ′ ) S = s + s ′ + ε (s -s ′ )
Table 1.3: Eigenfunctions of T d group for CB and VB made by a linear combination of atomic orbitals of two atoms denoted with a and a ′ , the band coupling parameter ε is weak (|ε| < 1). We preserve our previously made notation concerning molecular orbitals (see scheme 1.1), meaning that we have capital letters for bonding (lowest energy) and with a bar for antibonding (highest energy).

Crystal energy dispersion

To understand the crystalline properties in all crystal directions, we use the energy dispersion relation as a function of wave vector ⃗ k, this band structure is specific to each material and so unique. For all the high symmetry points of the First Brillouin Zone (FBZ) (1.4) the energy bands have specific names together with their own symmetry properties, let us show it with two dispersion diagrams around the Γ point at the center of the FBZ for Germanium bulk (O h group) and Gallium Arsenide bulk (T d group) :

Figure 1.5: Band structure of O h group with GeGe bulk (left side) and T d group with GaAs bulk using simple group representation, details for the notation used are below in Table 1. [START_REF] Cardona | Band parameters of semiconductors with zincblende, wurtzite, and germanium structure[END_REF] for O h and Table 1.5 for T d .

To be conform with the official notation used in semiconductor works, we rename the p-like states P X , P Y , P Z as being respectively denoted X, Y, Z for the rest of the manuscript, we decide to maintain the notation S for the first Conduction band. Taking into account our previous study thanks to the character tables 1.2, we summarize the band properties including their molecular orbitals and symmetry invariances in the following tables :

O h Crystal LCAO Symmetry invariance Γ - 15 (Γ - 4 ) X, Y , Z {x, y, z} Γ - 2 (Γ - 2 ) S xyz Γ + 25 (Γ + 5 ) X, Y, Z {yz, xz, xy} Γ + 1 (Γ + 1 ) S s
Table 1.4: The band notation used is BSW(Bouckaert-Smoluchowski-Wigner) and in parentheses Koster [START_REF] Koster | Properties of the thirty-two point groups[END_REF].

T d Crystal LCAO Symmetry invariance Γ 15C (Γ 5C ) X + εX , Y + εY , Z + εZ {x + ε yz , y + ε xz , z + ε xy} Γ 1C (Γ 1C ) S + εS xyz + εs Γ 15V (Γ 5V ) X + εX , Y + εY , Z + εZ {yz + ε x , xz + ε y , xy + ε z} Γ 1V (Γ 1V ) S + εS s + ε xyz Table 1.5:
The band notation used is close to Fishman and in parentheses Cardona [START_REF] Cardona | Band parameters of semiconductors with zincblende, wurtzite, and germanium structure[END_REF].

Due to the uniqueness of the Γ point in the first Brillouin zone, the valence band maximum is unique, the energy dispersion E ⃗ k of this direct bandgap semiconductor form a spherical valley centered in Γ. Contrary to the diamond which is a multivalley semiconductor, indeed the conduction band has six identical minima close to the X point. The energy dispersion E ⃗ k of the conduction band in the vicinity of each minimum is not isotropic, these surfaces of constant energy form ellipsoids of revolution around each axis of equivalent symmetry. 

Bloch functions

The ⃗ k.⃗ p equation is obtained from the Hamiltonian of one particle, basically an electron, in a stationary crystalline potential V (⃗ r ) :

H kp = ⃗ p 2 2m 0 + V (⃗ r ) (2.1)
The one-particle Schrödinger equation for one considered band n and a wave vector ⃗ k ∈ R 3 in reciprocal space, is given by :

H kp Ψ ⃗ k n (⃗ r ) = E ⃗ k n Ψ ⃗ k n (⃗ r ) (2.2) 
Condidering the repetitiveness of primitive cells of length ⃗ R in the crystalline structure, we use the Bloch theorem :

Ψ ⃗ k n (⃗ r + ⃗ R ) = e i ⃗ k. ⃗ R Ψ ⃗ k n (⃗ r )
this allows to express the Bloch functions as a collection of crystalline periodic functions U ⃗ k n :

Ψ ⃗ k n (⃗ r ) = e i ⃗ k.⃗ r √ V U ⃗ k n (⃗ r ) with U ⃗ k n (⃗ r + ⃗ R ) = U ⃗ k n (⃗ r ) (2.3)
where V is the total crystal volume.

The Bloch and crystalline periodic functions are orthogonal and normalized functions such as :

⟨Ψ ⃗ k ′ n ′ |Ψ ⃗ k n ⟩ = ⃗ r∈V Ψ ⃗ k ′ n ′ Ψ ⃗ k n d⃗ r 3 = δ n ′ n δ ⃗ k ′ -⃗ k ⟨U ⃗ k ′ n ′ |U ⃗ k n ⟩ = 1 Ω ⃗ r ′ ∈Ω U ⃗ k ′ n ′ U ⃗ k n dΩ = δ n ′ n δ ⃗ k ′ -⃗ k
where Ω is the primitive cell volume.

⃗ k.⃗ p Hamiltonian

Let us apply our H kp Hamiltonian (eq: 2.1) to the Bloch wave function Ψ ⃗ k n (⃗ r ) , knowing the operator ⃗ p = -iℏ -→ ∇ , we have :

H kp Ψ ⃗ k n (⃗ r ) = ⃗ p 2 2m 0 + V (⃗ r ) e i ⃗ k.⃗ r √ V U ⃗ k n (⃗ r ) = e i ⃗ k.⃗ r √ V V (⃗ r ) + ⃗ p 2 2m 0 + ℏ m 0 ⃗ k . ⃗ p + ℏ 2 ⃗ k 2 2m 0 U ⃗ k n (⃗ r )
After simplification and using the Schrödinger equation (eq: 2.

2) it gives the ⃗ k.⃗ p Hamiltonian :

V (⃗ r ) + ⃗ p 2 2m 0 + ℏ m 0 ⃗ k . ⃗ p + ℏ 2 ⃗ k 2 2m 0 U ⃗ k n (⃗ r ) = E ⃗ k n U ⃗ k n (⃗ r ) (2.4)
at ⃗ k = (0, 0, 0) it yields :

V (⃗ r ) + ⃗ p 2 2m 0 U 0n (⃗ r ) = E 0n U 0n (⃗ r )
let us call U 0n as being the crystalline periodic function, and rewrite this secular Hamiltonian :

H 0 U 0n (⃗ r ) = E 0n U 0n (⃗ r ) (2.5)
Corresponding to the energy band structure for ⃗ k=0, this Hamiltonian may be resolved using theoretical methods such as for instance Tight Binding or Density Functional Theory (DFT), the eigenvalues E 0n found are the energy separations of different bands n considered. For the experimental side, for example techniques like ultraviolet photoelectron spectroscopy [START_REF] Ortega | Inverse-photoemission study of Ge(100), Si(100), and GaAs(100): bulk bands and surface states[END_REF], or magneto-optics [START_REF] Fasolino | Landau levels and magneto-optics of semiconductor superlattices[END_REF] are used. In this manuscript we will use the notation E 0n = V n for the energy bands separation (energy gap and offsets).

Perturbation theory

To solve the ⃗ k . ⃗ p Hamiltonian (eq: 2.4), let us assume that the band structure has an extremum at the energy E 0n and the band is non-degenerate at this energy (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p69). We solve using the second order non-degenerate perturbation theory for ⃗ k.⃗ p terms at neighboring of ⃗ k= ⃗ k 0 , which is the symmetry point chosen in the Brillouin zone (Figure 1.4) :

E ⃗ k n U ⃗ k n (⃗ r ) = H 0 + ℏ 2 ⃗ k 2 2m 0 + ℏ m 0 ⃗ k . ⃗ p U ⃗ k n (⃗ r ) E ⃗ k n = E ⃗ k 0 n + ℏ 2 ⃗ k 2 2m 0 + ℏ m 0 ⟨U ⃗ k 0 n | ⃗ k . ⃗ p |U ⃗ k 0 n ⟩ + ℏ 2 m 2 0 n ′ ̸ = n ⟨U ⃗ k 0 n ′ | ⃗ k . ⃗ p |U ⃗ k 0 n ⟩ 2 E ⃗ k 0 n -E ⃗ k 0 n ′ (2.6)
We decide to focus our attention on the gap zone of the first CB and VB, so for material structures of group O h and T d in sp 3 description of hybridization at Γ point where ⃗ k 0 =0, we have due to symmetry invariances (Tables: 1.4 and 1.5) only these matrix elements existing :

⟨X | px | S ⟩ = ⟨ Y | py | S ⟩ = ⟨ Z | pz | S ⟩ = -im 0 (Bastard [7] p44) ⟨yz| x |xyz⟩ = ⟨xz| y |xyz⟩ = ⟨xy| z |xyz⟩ = x 2 y 2 z 2 ̸ = 0 (2.7) ⟨εx| x | ε s ⟩ = ⟨εy| y | ε s ⟩ = ⟨ εz| z | ε s ⟩ ̸ = 0
using our previous assumptions chapter: 1.2.3, thanks to the Cardona's method [START_REF] Cardona | Band parameters of semiconductors with zincblende, wurtzite, and germanium structure[END_REF] we find that the terms in ε are null due to parity reason, and ε 2 terms are non-zero (see above). So we will use these crystal LCAO to compose the bases (Tables: 1.4 and 1.5) :

|U 0n ⟩ ∼ |S ⟩ , |X⟩ , |Y ⟩ , |Z⟩
In equation 2.6 the linear terms in ⟨U 0n | ⃗ k . ⃗ p |U 0n ⟩=0 because E 0n has been assumed to be an extremum inducing that the first derivative is null (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p69). So we obtain the expression of eigenvalues for our ⃗ k.⃗ p Hamiltonian, and let the effective mass m * appear, such as :

E ⃗ k n = E 0n + ℏ 2 ⃗ k 2 2m 0 + ℏ 2 m 2 0 n ′ ̸ = n ⟨U 0n ′ | ⃗ k . ⃗ p |U n0 ⟩ 2 E 0n -E 0n ′ = E 0n + ℏ 2 2 α β k α k β   1 m 0 + 2 m 2 0 n ′ ̸ = n ⟨U 0n | pα |U 0n ′ ⟩ ⟨U 0n ′ | pβ |U 0n ⟩ E 0n -E 0n ′   ∀ α, β = {x, y, z} = E 0n + α β ℏ 2 2 k α k β m * n,αβ
Giving us the effective mass m * of the band n in the directions α, β = {x, y, z} for small values of k α and k β around the Γ point, that we express :

1 m * n,αβ = 1 m 0 + 2 m 2 0 n ′ ̸ =n ⟨U 0n | pα |U 0n ′ ⟩ ⟨U 0n ′ | pβ |U 0n ⟩ E 0n -E 0n ′ (2.8)
The energy separation E 0n -E 0n ′ determines the relative importance of the contribution of energy bands E 0n ′ to the effective mass of n, indeed if E 0n ′ have energies less than E 0n it will contribute as a positive term to 1/m * . Inversely, E 0n ′ bands with energies higher than E 0n make the effective mass negative as in the case of the top valence bands in the diamond (O h group) and zinc-blende (T d group) semiconductors.

For instance in III-V semiconductors (T d group) considering an isotropic energy dispersion where k x =k y =k z , and taking the separation between the Γ 1C conduction band and the Γ 15V valence band as a direct band gap E g = E Γ 1C -E Γ 15V with E g > 0, so m * c can be approximated by :

1 m * c = 1 m 0 + 2 m 2 0 E g ⟨Γ 15V | pα |Γ 1C ⟩ 2 with Γ 1C ∼ S and Γ 15V ∼ X, Y, Z m 0 m * c = 1 + 2 m 0 2 E g ≫1 α = {x, y, z} γ c = m 0 m * c ≈ 2 m 0 2 E g (2.9)
We present an overview of the values of certain materials as provided by Yu and Cardona (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] values of the conduction band effective masses in diamond (Γ - 2 ) and zinc-blende (Γ 1C ) semicondutors compared with the values calculated from 2.9 using the values of E g obtained from experiment [START_REF]Series III[END_REF].

Spin-Orbit interaction and Double group

Spin-orbit interaction is essential to describe the electronic structure of most semiconductor crystalline materials, it comes from the Valence band bonding of p-like orbital hybridization in semiconductors such as diamond-like and zinc-blende-like, in certain materials d orbital has to be taken into account. Energy of this coupling is written ∆ so and is defined at the Γ point ⃗ k=(0,0,0), the value depends on the atom species, as shown in the table below (Table : The energy band separation of different kind of materials at a temperature of 0K for ∆ so , for the Band gap E Γ g , along with the energies between the top of the valence band in Γ and each high symmetry point X, L respectively E X g , E L g (Vurgaftman2001 [START_REF] Vurgaftman | Band parameters for III-V compound semiconductors and their alloys[END_REF]).

In the following sections we will include the spin-orbit interaction in the ⃗ k . ⃗ p method, leading to perform some modifications of the basis used.

Spin-orbit coupling

The spin-orbit coupling is caused by the electromagnetic interaction between the magnetic dipole of the electron and the static field of nucleus (positively charged), this is a relativistic interaction of a particle spin with its own motion inside a magnetic potential, leading shifts in electrons atomic energy levels. The Spin-orbit coupling potential is the energy produced by the magnetic moment of spin ⃗ m s (see annex A) in a uniform magnetic field ⃗ B ′ including the relativistic effect of Thomas precession (see annex B), yielding :

H so = -⃗ m s . ⃗ B ′ = - g s 2c 2 µ B ℏ ⃗ S . ⃗ v(⃗ r, t) × ⃗ E(⃗ r ) (2.10)
where :

• g s Landé factor for the electron

• c light celerity

• µ B = eℏ 2m 0
Bohr magneton, with the electron charge e = 1, 602176634.10 19 A.s

• ⃗ S = ℏ 2
⃗ σ Spin operator of the electron, with ⃗ σ Pauli matrices

• ⃗ v(⃗ r, t) speed of electrons • ⃗ E(⃗ r ) stationary electric field
The electric field ⃗ E = ⃗ E int is an intern field of the system induced by a stationary electric potential U(⃗ r ) of the crystal structure (in Volt), this expression leads to the stationary crystalline potential energy via V (⃗ r ) = -e U(⃗ r ) with the electron charge -e, that gives us :

⃗ E(⃗ r ) = - -→ ∇U(⃗ r ) = 1 e -→ ∇V (⃗ r )
For our model we have a semi-classical electrodynamics and non-relativistic quantum mechanics approach, to be completely rigorous we should use the relativistic quantum mechanics corrections from quantum electrodynamics, whence the Landé factor for an electron (ZP [START_REF] Zeiger | Magnetic interactions in solids[END_REF]) is approximated as being :

g s = 2 1 + e 2 4πε 0 ℏc ≈ 2.0023
subsequently we consider g s ≈ 2, and we rewrite the previous spin-orbit coupling (eq: 2.10), adding the mass of the electron m 0 and inverting the cross product, such as :

H so = ℏ 4m 2 0 c 2 ⃗ σ . -→ ∇V (⃗ r ) × m 0 ⃗ v(⃗ r, t)
For our study we will consider a system under electric field ⃗ E, so let us show the impact of ⃗ E on the spin-orbit interaction, and how H so may be rewritten in the both cases.

Without external electric field

This is the simplest case where ⃗ E ext = 0, we can easily lay the non relativistic Lagrangian of the electron :

L = 1 2 m 0 ṙi 2 ∀ ṙi = ∂ ∂t r i (t) i ∈ {x,y,z}
and we obtain the generalized momentum such as :

pi = ∂L ∂ ṙi = m 0 ṙi
It yields the spin-orbit coupling potential :

H so = ℏ 4m 2 0 c 2 ⃗ σ . -→ ∇V (⃗ r ) × ⃗ p (2.11)

With external electric field

In this case, we consider our magnetic dipole under an external electric field ⃗ E ext , the non relativistic Lagrangian of the electron is written accordingly, knowing the electron charge -e and the vector potential ⃗ A :

L = 1 2 m 0 ṙi 2 -e A i (⃗ r, t) ṙi + e U ext (⃗ r, t)
and we have the generalized momentum :

pi = ∂L ∂ ṙi = m 0 ṙi -e A i (⃗ r, t) giving m 0 ⃗ v(⃗ r, t) = ⃗ p + e ⃗ A(⃗ r, t)
The total electric field of the system is ⃗

E = ⃗ E int + ⃗ E ext
, where the intern electric field is, as aforementioned, due to the crystal potential. We consider the external electric field as being a radiation field in plane wave, so without scalar potential U ext = 0 Volt, it implies :

⃗ E ext = - ∂ ∂t ⃗ A(⃗ r, t) ⃗ E int = 1 e -→ ∇V (⃗ r )
It yields the spin-orbit coupling under electric field :

H SO-EM = ℏ 4m 2 0 c 2 ⃗ σ . ⃗ E ext + ⃗ E int × ⃗ p + e ⃗ A = ℏ 4m 2 0 c 2 ⃗ σ . - ∂ ∂t ⃗ A + 1 e -→ ∇V (⃗ r ) × ⃗ p + e ⃗ A = ℏ 4m 2 0 c 2 ⃗ σ . 1 e -→ ∇V (⃗ r ) × ⃗ p + ⃗ p × ∂ ∂t ⃗ A Hso + e ⃗ A × ∂ ∂t ⃗ A + -→ ∇V (⃗ r ) × ⃗ A HAME
Finally we obtain two distinct expressions, the Spin-Orbit (SO) coupling H so as the equation 2.11, including a new term coupling the external electric field ⃗ E ext , and another expression called the Angular Magneto-Electric (AME) coupling H AME . In the limit of uniform magnetic field, the AME coupling yields an interaction between the angular momentum of light and the magnetic moment of electrons (Paillard2016 [START_REF] Paillard | New relativistic Hamiltonian: the Angular MagnetoElectric coupling[END_REF]).

Let be interested in the term of SO linked with the vector potential ⃗ A, such as :

⃗ p × ∂ ∂t ⃗ A(⃗ r, t) = -iℏ -→ ∇ × ∂ ∂t ⃗ A(⃗ r, t) knowing ⃗ B(⃗ r, t) = -→ ∇ × ⃗ A(⃗ r, t) = -iℏ ∂ ∂t ⃗ B(⃗ r, t)
For our study with III-V materials which has no magneto-electric materials, the AME interaction is totally negligible, besides the magnetic field ⃗ B comes from the coupling of the electric field ⃗ E ext via Maxwell equations and light matter coupling. If we put an alternating voltage at the terminals of a semiconductor, ⃗ B created by the current associated with the charges motions is also negligible. It occurs, even under electric field, that H SO-EM = H so , therefore we will only work with the equation 2.11 .

Spin effect and Bloch functions

When the spin-orbit interaction is included, the wave functions consist of a spatial part L and a spin part S totally analogously to atomic physics inside Γ 1 -Γ 5 bands (Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p46), it means that the representations of states in a solid must depend on the total angular momentum J (for the quantum operators we omit the vector notation) :

J = L + S
The spatial wave function is invariant under a 2π rotation about any axis, and under 2π rotation the sign of the spin wave function changes, let us remember the following properties : Spin angular momentum on |l, s, m l , m s ⟩ basis :

• S 2 |s, m s ⟩ = ℏ 2 s(s + 1) |s, m s ⟩ • S z |s, m s ⟩ = ℏ m s |s, m s ⟩
(2.12)

• S ± |s, m s ⟩ = ℏ s (s + 1) -m s (m s ± 1) |s, m s ± 1⟩
Orbital angular momentum on |l, s, m l , m s ⟩ basis :

• L 2 |l, m l ⟩ = ℏ 2 l(l + 1) |l, m l ⟩ • L z |l, m l ⟩ = ℏ m l |l, m l ⟩ • L ± |l, m l ⟩ = ℏ l (l + 1) -m l (m l ± 1) |l, m l ± 1⟩
Total angular momentum on |j, m j ⟩ basis :

• J 2 |j, m j ⟩ = ℏ 2 j(j + 1) |j, m j ⟩ • J z |j, m j ⟩ = ℏ m j |j, m j ⟩ (2.13) • J ± |j, m j ⟩ = ℏ j(j + 1) -m j (m j ± 1) |j, m j ± 1⟩
Properties of L and S :

• J = L + S where L i , S j = 0 ∀ i, j = {x, y, z} • J 2 = S 2 + L 2 + 2 LS (2.14) • J 2 , L 2 = J 2 , S 2 = J z , L z = J z , S z = 0
Let us remark that the spin-orbit coupling Ĥso (eq: 2.11) is linked to the LS operator. In fact, if we consider an electrostatic potential having a spherical symmetry, so we obtain a potential V (⃗ r ) → V (r), and we are able to express Ĥsym so as being :

H sym so = ℏ 4m 2 0 c 2 ⃗ σ . -→ ∇V (r) × ⃗ p = 1 2m 2 0 c 2 ⃗ S . ∂V (r) ∂r ⃗ r r × ⃗ p = 1 2m 2 0 c 2 ∂V (r) ∂r 1 r ⃗ L. ⃗ S
Ĥsym so is expressed on the following basis :

H sym so |l, s, m l , m s ⟩ = λ sym so LS |l, s, m l , m s ⟩
Due to the non-commutability of LS in this basis we have to perform a change of basis and express it in terms of total angular momentum J, thereby we apply the formula equation 2.14 and using the |j, m j ⟩ basis we get :

H sym so |j, m j ⟩ = λ sym so 1 2 J 2 -L 2 -S 2 |j, m j ⟩ = λ sym so ℏ 2 2 j(j + 1) -l(l + 1) -s(s + 1) |j, m j ⟩ = E sym so j(j + 1) -l(l + 1) -s(s + 1) |j, m j ⟩ (2.15)
We save this result aside, for now we have to understand the spin-orbit effects in a crystal lattice.

To take into account the crystalline properties, we apply H so (eq: 2.11) on the Bloch functions (eq: 2.

3) such as :

H so Ψ ⃗ k n (⃗ r ) = ℏ 4m 2 0 c 2 ⃗ σ . -→ ∇V (⃗ r ) × ⃗ p Ψ ⃗ k n (⃗ r )
tweaking this form by cyclic permutations from triple product including a differential operator :

⃗ a . ⃗ b × ∂⃗ r = -⃗ b . ⃗ a × ∂⃗ r = ⃗ a × ⃗ b . ∂⃗ r
it occurs :

H so Ψ ⃗ k n (⃗ r ) = ℏ 4m 2 0 c 2 1 √ V ⃗ σ × -→ ∇V (⃗ r ) . ⃗ p e i ⃗ k.⃗ r U ⃗ k n (⃗ r ) = ℏ 4m 2 0 c 2 e i ⃗ k.⃗ r √ V ⃗ σ × -→ ∇V (⃗ r ) . ⃗ p + ℏ ⃗ k U ⃗ k n (⃗ r )
We obtain the spin-orbit coupling split into two terms, one is similar to our first expression H so , and the other is ⃗ k dependant and produces an odd quantity of ⃗ k (Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p148). These terms are null inside Γ 1 -Γ 5 bands for O h group, and non-zero but negligible for T d group (except for the spin degeneracy lifting), that we will ignore. This yields the final expression of the spin-orbit coupling potential :

H so U ⃗ k n (⃗ r ) = ℏ 4m 2 0 c 2 ⃗ σ . -→ ∇V (⃗ r ) × ⃗ p U ⃗ k n (⃗ r )

Molecular orbitals eigenvectors including spin

The periodic function U ⃗ k n (⃗ r ) is expressed thanks to the quantum superposition as a linear combination of crystalline periodic functions U 0 ν (⃗ r ) at ⃗ k = 0 depending on molecular orbitals considered ν given table (Table: 1.2 and 1.3) :

U ⃗ k n (⃗ r ) = ν C ν ⃗ k |U 0ν ⟩
for sp 3 hybridization at Γ point we have the basis (Tables: 1.4 and 1.5) :

|U 0ν ⟩ = |S ⟩ , |X⟩ , |Y ⟩ , |Z⟩ (2.16)
The crystalline periodic functions U 0 ν (⃗ r ) form an orthonormal basis (Fishman [5] p15) :

⟨U 0ν ′ |U 0ν ⟩ = δ ν ′ ν
We remember that molecular orbitals are formed by LCAO from spherical harmonics orbitals, so including the spin we can express the basis |l, s, m l , m s ⟩ using the reverse form of real spherical orbitals from equation 1.2, it gives us :

|l, s, m l , m s ⟩ = Y m l l ⊗ |↑↓⟩
We have the following properties for sp 3 at Γ point :

s = 1 2 l = {0; 1} m s = ↑↓ -l ⩽ m l ⩽ l -s ⩽ m s ⩽ s (2.17)
which yields :

0, 1 2 , 0, ↑↓ = Y 0 0 |↑↓⟩ ≡ |S ↑↓⟩ 1, 1 2 , 0, ↑↓ = Y 0 1 |↑↓⟩ ≡ |Z ↑↓⟩ (2.18) 1, 1 2 , -1, ↑↓ = Y -1 1 |↑↓⟩ ≡ 1 √ 2 |(X -iY ) ↑↓⟩ 1, 1 2 , 1, ↑↓ = Y 1 1 |↑↓⟩ ≡ - 1 √ 2 |(X + iY ) ↑↓⟩
The symbol (≡) is used because we are creating molecular orbitals with the symmetry model of spherical harmonics (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p72).

As aforementioned (eq: 2.15) for the spin-orbit coupling potential we have to express the formulae in term of |j, m j ⟩ basis due to the LS-like coupling, knowing :

j = l + s m j = m l + m s |l -s| ⩽ j ⩽ l + s (2.19)
We look for expressing the |l, s, m l , m s ⟩ as a linear combination of |j, m j ⟩ basis, first of all we set an equivalent expression between these bases, for l = 0 we have a trivial solution, however for l ̸ = 0 we define two subspaces depending on the values of s that are j = l + 1 2 and j = l -1 2 (equation 2. [START_REF] Paillard | New relativistic Hamiltonian: the Angular MagnetoElectric coupling[END_REF]).

For sp 3 we have as |j, m j ⟩ basis :

l = 0 1 2 , ± 1 2 l = 1 Subspace E : j = l - 1 2 1 2 , ± 1 2 l = 1 Subspace E : j = l + 1 2 3 2 , ± 3 2 and 3 2 , ± 1 2
To have an equivalent expression we take the highest state of these bases with m l = l respecting the conditions eq: 2.17 and eq: 2.19 and a spin m s = ↑ because of S + ↑ = S -↓ = 0 (eq: 2.12), this choice implies no mixing of eigenvectors (take the lowest state is an another possible choice) :

E : j = l + 1 2 , l ̸ = 0
occurring the following form :

j , m j l, s , m l , m s l + 1 2 , l + 1 2 = l, 1 2 , l, ↑
It allows to apply several times the operator J -(eq: 2.13) on this equality and obtain by recurrence relation (CTDL [START_REF] Cohen-Tannoudji | Mécanique Quantique[END_REF] p1021) the following general form (in the spherical potential model) :

E : j = l + 1 2 , l ̸ = 0 (2.20) |l + 1 2 , m j ⟩ = 1 √ 2l + 1 l + m l + 1 2 l, 1 2 , m l - 1 2 , ↑ + l -m l + 1 2 l, 1 2 , m l + 1 2 , ↓
Using this property we can rewrite our basis |j, m j ⟩ as a linear combination of |l, s, m l , m s ⟩ basis (eq: 2.18), each case depends on an arbitrary phase factor e iϕ and we decide to use the G.Bastard's [START_REF] Bastard | wave mechanics applied to semiconductor heterostructures[END_REF] phase (in blue ) in this manuscript :

3 2 , 3 2 = e iπ 1 , 1 2 , 1 , ↑ = -Y 1 1 ↑ = 1 √ 2 |(X + iY ) ↑⟩ 3 2 , 1 2 = e iπ 2 3 1 , 1 2 , 0 , ↑ + 1 √ 3 1 , 1 2 , 0 , ↓ = e iπ 2 3 Y 0 1 ↑ + 1 √ 3 Y 1 1 ↓ = 1 √ 6 |(X + iY ) ↓⟩ - 2 3 |Z ↑⟩ 3 2 , - 1 2 = e iπ 1 √ 3 1 , 1 2 , -1 , ↑ + 2 3 1 , 1 2 , 0 , ↓ = e iπ 1 √ 3 Y -1 1 ↑ + 2 3 Y 0 1 ↓ = - 1 √ 6 |(X -iY ) ↑⟩ - 2 3 |Z ↓⟩ 3 2 , - 3 2 = e i2π 1 , 1 2 , -1 , ↓ = +Y -1 1 ↓ = 1 √ 2 |(X -iY ) ↓⟩
For the second subspace j = l -1 2 we find another linear combination from the equation 2.20 respecting orthogonality (see CTDL [START_REF] Cohen-Tannoudji | Mécanique Quantique[END_REF] p1022), it gives us a relation such as :

E : j = l - 1 2 , l ̸ = 0 |l - 1 2 , m j ⟩ = 1 √ 2l + 1 l + m l + 1 2 l , 1 2 , m l + 1 2 , ↓ -l -m l + 1 2 l , 1 2 , m l - 1 2 , ↑
Like previously, we use this relation to express our basis |j, m j ⟩ as a linear combination of the |l, s, m l , m s ⟩ basis (eq: 2.18) such as :

1 2 , 1 2 = e iπ 2 3 1 , 1 2 , 1 , ↓ - 1 √ 3 1 , 1 2 , 0 , ↑ = e iπ 2 3 Y 1 1 ↓ - 1 √ 3 Y 0 1 ↑ = 1 √ 3 |(X + iY ) ↓⟩ + 1 √ 3 |Z ↑⟩ 1 2 , - 1 2 = e i2π 1 √ 3 1 , 1 2 , 0 , ↓ - 2 3 1 , 1 2 , -1 , ↑ = e i2π 1 √ 3 Y 0 1 ↓ - 2 3 Y -1 1 ↑ = - 1 √ 3 |(X -iY ) ↑⟩ + 1 √ 3 |Z ↓⟩
Finally we obtain an overview in the following table 2.3, the writing of bases |U 0 ν ⟩ is specific to this manuscript as well as the associated potentials V ν at Γ point for ⃗ k=0 :

|U 0 ν ⟩ |j, m j ⟩ |Ψ j,m j ⟩ V ν (Γ point, ⃗ k=0) |c ↑⟩ 1 2 , 1 2 |iS ↑⟩ V c |l ↑⟩ 3 2 , 1 2 1 √ 6 |(X + iY ) ↓⟩ -2 3 |Z ↑⟩ V l |h ↑⟩ 3 2 , 3 2 1 √ 2 |(X + iY ) ↑⟩ V h |s ↑⟩ 1 2 , 1 2 1 √ 3 |(X + iY ) ↓⟩ + 1 √ 3 |Z ↑⟩ V s |c ↓⟩ 1 2 , -1 2 |iS ↓⟩ V c |l ↓⟩ 3 2 , -1 2 -1 √ 6 |(X -iY ) ↑⟩ -2 3 |Z ↓⟩ V l |h ↓⟩ 3 2 , -3 2 1 √ 2 |(X -iY ) ↓⟩ V h |s ↓⟩ 1 2 , -1 2 -1 √ 3 |(X -iY ) ↑⟩ + 1 √ 3 |Z ↓⟩ V s Table 2.3: Kane basis [6] (Bastard [7] p44
). We denote the bands by c for conduction, l for light holes, h for heavy holes and s for spin-orbit.

Spin-orbit eigenvalues

Symmetrical potential :

Coming back from our symmetrical spin-orbit coupling potential H sym so with an atom-like potential, its eigenvalue is given by (eq: 2.15) :

H sym so |j, m j ⟩ = E sym so j(j + 1) -l(l + 1) -s(s + 1) |j, m j ⟩
For sp 3 we obtain the following results (using 2.17 and 2.19 ) :

l j H sym so spin degeneracy 0 1 2 0 2-fold 1 3 2 E sym so 4-fold 1 1 2 -2 E sym so 2-fold Table 2.4
So the spin-orbit interaction introduces a splitting between the angular momentum j of the p-states, we note that the degeneracy of an s-state is unaffected by the spin-orbit interaction : We project the spin-orbit coupling H so on the VB basis of crystalline periodic functions ( l=1) so for |U 0ν ⟩ = |X⟩ , |Y ⟩ , |Z⟩ such as :

⟨U 0ν ′ | H so |U 0ν ⟩ = ℏ 4m 2 0 c 2 ⟨U 0ν ′ | ⃗ σ . -→ ∇V (⃗ r ) × ⃗ p |U 0ν ⟩ = ℏ 4m 2 0 c 2 α β γ ⟨U 0ν ′ | ∂ α V pβ ε αβγ |U 0ν ⟩ . σ γ ∀ α, β, γ = {x, y, z}
By analogy with the symmetrical potential, we write the eigenvalues as being :

ℏ 4m 2 0 c 2 ⟨U 0ν ′ | ∂ α V pβ ε αβγ |U 0ν ⟩ = E so
Considering the energy splitting between the p-states due to the spin-orbit interaction as shown in the figure: 2.1 above, by analogy we set ∆ so = -i 3 E so . Inasmuch as the matrix elements are purely imaginary because of ⃗ p = iℏ -→ ∇ , we assign an imaginary equivalence resulting in a real expression of energy.

Due to the symmetry invariances of the VB for Γ

+ 25 (O h ) and Γ 15V (T d )=Γ + 25 (O h ) + ε Γ - 15 (O h ) the only possibilities are : ⟨X | ∂ x V py -∂ y V px | Y ⟩ = ⟨ Y | ∂ y V pz -∂ z V py | Z ⟩ = ⟨ Z | ∂ z V px -∂ x V pz | X⟩ = i 4m 2 0 c 2 3ℏ ∆ so ⟨yz| R z |xz⟩ = ⟨xz| R x |xy⟩ = ⟨xy| R y |yz⟩ ̸ = 0 ⟨εx| R z |εy ⟩ = ⟨εy| R x |εz ⟩ = ⟨εz | R y |εx⟩ ̸ = 0
The element ∂ α V pβ ε αβγ is a pseudovector having for symmetry invariance R γ (from Table : 1.2, Koster [START_REF] Koster | Properties of the thirty-two point groups[END_REF] p17 noted S γ ) corresponding to Γ 4 band in O h and T d groups (Table : 1.1), only the matrix elements above are non-zero (Koster's tables [START_REF] Koster | Properties of the thirty-two point groups[END_REF] p92).

According to |U 0ν ⟩ on the |l, s, m l , m s ⟩ basis, H so is not diagonal, however we can transform into |j m j ⟩ basis to be diagonal. Following the Voon and Willatzen [START_REF] Lok | The kp Method, Electronic Properties of Semiconductors[END_REF] method to transform the bases, we write the spin-orbit matrix form as being :

H so = ν ′ ν ⟨U 0ν ′ | H so |U 0ν ⟩ |U 0ν ′ ⟩ ⟨U 0ν |
giving :

H so = i ∆ so 3 .          |X ↑⟩ |Y ↑⟩ |Z ↑⟩ |X ↓⟩ |Y ↓⟩ |Z ↓⟩ ⟨X ↑| 0 ⟨↑ |σ z | ↑⟩ ⟨↑ | -σ y | ↑⟩ 0 ⟨↑ |σ z | ↓⟩ ⟨↑ | -σ y | ↓⟩ ⟨Y ↑| ⟨↑ | -σ z | ↑⟩ 0 ⟨↑ |σ x | ↑⟩ ⟨↑ | -σ z | ↓⟩ 0 ⟨↑ |σ x | ↓⟩ ⟨Z ↑| ⟨↑ |σ y | ↑⟩ ⟨↑ | -σ x | ↑⟩ 0 ⟨↑ |σ y | ↓⟩ ⟨↑ | -σ x | ↓⟩ 0 ⟨X ↓| 0 ⟨↓ |σ z | ↑⟩ ⟨↓ | -σ y | ↑⟩ 0 ⟨↓ |σ z | ↓⟩ ⟨↓ | -σ y | ↓⟩ ⟨Y ↓| ⟨↓ | -σ z | ↑⟩ 0 ⟨↓ |σ x | ↑⟩ ⟨↓ | -σ z | ↓⟩ 0 ⟨↓ |σ x | ↓⟩ ⟨Z ↓| ⟨↓ |σ y | ↑⟩ ⟨↓ | -σ x | ↑⟩ 0 ⟨↓ |σ y | ↓⟩ ⟨↓ | -σ x | ↓⟩ 0         
Remembering Pauli matrices for each component of ⃗ σ :

σ x = |↑⟩ |↓⟩ ⟨↑| 0 1 ⟨↓| 1 0 σ y = |↑⟩ |↓⟩ ⟨↑| 0 -i ⟨↓| i 0 σ z = |↑⟩ |↓⟩ ⟨↑| 1 0 ⟨↓| 0 -1
We obtain the spin-orbit interaction on the basis of |l, s, m l , m s ⟩ :

H so = ∆ so 3          |X ↑⟩ |Y ↑⟩ |Z ↑⟩ |X ↓⟩ |Y ↓⟩ |Z ↓⟩ ⟨X ↑| 0 i 0 0 0 1 ⟨Y ↑| -i 0 0 0 0 i ⟨Z ↑| 0 0 0 -1 -i 0 ⟨X ↓| 0 0 -1 0 -i 0 ⟨Y ↓| 0 0 i i 0 0 ⟨Z ↓| 1 -i 0 0 0 0         
We require to perform a change of basis from |l, s, m l , m s ⟩ into |j, m j ⟩, so let us write :

T = |l, s, m l , m s ⟩ ⟨j, m j | yielding : T =             ⟨h ↑| ⟨l ↑| ⟨l ↓| ⟨h ↓| ⟨s ↑| ⟨s ↓| |X ↑⟩ 1 √ 2 0 -1 √ 6 0 0 -1 √ 3 |Y ↑⟩ -i 1 √ 2 0 -i 1 √ 6 0 0 -i 1 √ 3 |Z ↑⟩ 0 -2 3 0 0 1 √ 3 0 |X ↓⟩ 0 1 √ 6 0 1 √ 2 1 √ 3 0 |Y ↓⟩ 0 -i 1 √ 6 0 i 1 √ 2 -i 1 √ 3 0 |Z ↓⟩ 0 0 -2 3 0 0 1 √ 3            
The new diagonal spin-orbit coupling is given by :

H so = T † H so T = |j, m j ⟩ ⟨l, s, m l , m s | H so |l, s, m l , m s ⟩ ⟨j, m j |
so we obtain on the new basis such as :

H so = ∆ so 3          |h ↑⟩ |l ↑⟩ |l ↓⟩ |h ↓⟩ |s ↑⟩ |s ↓⟩ ⟨h ↑| 1 0 0 0 0 0 ⟨l ↑| 0 1 0 0 0 0 ⟨l ↓| 0 0 1 0 0 0 ⟨h ↓| 0 0 0 1 0 0 ⟨s ↑| 0 0 0 0 -2 0 ⟨s ↓| 0 0 0 0 0 -2         
(2.21)

Double group

Orbital states of simple group are composed, for the sp 3 hybridization at Γ point, of a nondegenerate band called Γ 1C (Γ - 2 ) for the Conduction band, and a three-fold degenerate band called Γ 15V (Γ + 25 ) for the Valence band.

The spin-orbit interaction transforms the simple group into the double group, splitting into a quadruplet and a doublet similarly to the Table 2.4 (Dresselhaus [START_REF] Jorio | Group Theory, Application to the Physics of Condensed Matter[END_REF] p347) such as :

Γ + 25 ⊗ Γ + 6 = Γ + 8 ⊕ Γ + 7 O h group Γ 15V ⊗ Γ 6 = Γ 8V ⊕ Γ 7V T d group
The total Hamiltonian is given by :

H = H kp + H so (2.22)
using the results of the aforementioned diagonalization (eq: 2.21) and the basis given Table 2.3, it implies a band splitting (in T d ) such as :

H |c ↑↓⟩ = E Γ 1C |c ↑↓⟩ = E Γ 6 |c ↑↓⟩ H |h ↑↓⟩ = E Γ 15V + ∆ so 3 |h ↑↓⟩ = E Γ 8 |h ↑↓⟩ H |l ↑↓⟩ = E Γ 15V + ∆ so 3 |l ↑↓⟩ = E Γ 8 |l ↑↓⟩ H |s ↑↓⟩ = E Γ 15V - 2 3 ∆ so |s ↑↓⟩ = E Γ 7 |s ↑↓⟩
A schematic representation of bands splitting on the sketch below : ) states of the simple group, engender six states in the double group, which are split by the spin-orbit interaction into four states, the renamed band Γ 8 corresponds to the four states j=3/2, the renamed band Γ 7 corresponds to the two states j=1/2 . These energy bands are useful for bulk materials, nevertheless in the case of heterostructures, the material stress induces a splitting of the Γ 8 band at ⃗ k=0 in such a way that subsequently we denote the potentials according to this manuscript notation (Table : 2.3) : 

E Γ 6 |c ↑↓⟩ = V c |c ↑↓⟩ E Γ 8 |h ↑↓⟩ = V h |h ↑↓⟩ (2.23) E Γ 7 |s ↑↓⟩ = V s |s ↑↓⟩ E Γ 8 |l ↑↓⟩ = V l |l ↑↓⟩

Kane Hamiltonian : 8 bands model

The Kane Hamiltonian includes the ⃗ k.⃗ p Hamiltonian and the spin-orbit interactions inside the {Γ 6 , Γ 8 , Γ 7 } bands, giving :

H = H kp + H so = ⃗ p 2 2m 0 + V (⃗ r) + ℏ 2 ⃗ k 2 2m 0 + ℏ m 0 ⃗ k.⃗ p + ℏ 4m 2 0 c 2 ⃗ σ × -→ ∇V (⃗ r) . ⃗ p
The periodic function U ⃗ k n (⃗ r ) is decomposed as a linear combination of crystalline periodic functions U 0n (⃗ r ) (eq: 2.16) summed on the 8 bands of the Kane |j, m j ⟩ basis (Table 2.3) :

|U ⃗ kn ⟩ = 8 ν=1 C ν ⃗ k |U 0ν ⟩
The eigenvalues equation yields :

H |U ⃗ kn ⟩ = E |U ⃗ kn ⟩ 8 ν=1 H -E C ν ⃗ k |U 0ν ⟩ = 0 (2.24)
we project the eigenvalues equation 2.24 on ⟨U 0ν ′ | such as :

∀ ν ′ 8 ν=1 H ν ′ ν -E δ ν ′ ν C ν ⃗ k = 0
Knowing the solutions of the secular Hamiltonian H 0 for the energy band structure at ⃗ k = 0 (eq: 2.5) and the crystal potentials V (2.23), we have :

H 0 |U 0ν ′ ⟩ = V ν ′ |U 0ν ′ ⟩
and taking into account of our previous considerations leading to the spin-orbit coupling potential H so as being diagonal inside the |j, m j ⟩ basis (from eq: 2.22 and matrix 2.21), we write :

∀ ν ′ 8 ν=1    V ν ′ + ℏ 2 ⃗ k 2 2m 0 δ ν ′ ν + ℏ m 0 ⟨U 0ν ′ | ⃗ k . ⃗ p |U 0ν ⟩    C ν ⃗ k = 8 ν=1 E δ ν ′ ν C ν ⃗ k
For material structures of group O h and T d with sp 3 hybridization at Γ point, we remember that the only matrix elements existing (eq: 2.7) are :

⟨X| px |S ⟩ = ⟨Y | py |S ⟩ = ⟨Z| pz |S ⟩ = -im 0
Using the matrix formalism :

H = ν ′ ν ⟨U 0ν ′ | H |U 0ν ⟩ |U 0ν ′ ⟩ ⟨U 0ν |
we finally obtain the 8 bands Kane matrix [START_REF] Kane | [END_REF] (Bastard [START_REF] Bastard | wave mechanics applied to semiconductor heterostructures[END_REF] p43) :

                    |c ↑⟩ |c ↓⟩ |h ↑⟩ |l ↑⟩ |l ↓⟩ |h ↓⟩ |s ↑⟩ |s ↓⟩ ⟨c ↑| V c, ⃗ k 0 ℏk + -2 3 ℏk z -1 √ 3 ℏk - 0 1 √ 3 ℏk z -2 3 ℏk - ⟨c ↓| 0 V c, ⃗ k 0 √ 3 ℏk + -2 3 ℏk z ℏk - 2 3 ℏk + 1 √ 3 ℏk z ⟨h ↑| ℏk - 0 V h, ⃗ k 0 0 0 0 0 ⟨l ↑| -2 3 ℏk z √ 3 ℏk - 0 V l, ⃗ k 0 0 0 0 ⟨l ↓| -1 3 ℏk + -2 3 ℏk z 0 0 V l, ⃗ k 0 0 0 ⟨h ↓| 0 ℏk + 0 0 0 V h, ⃗ k 0 0 ⟨s ↑| 1 √ 3 ℏk z 2 3 ℏk - 0 0 0 0 V s, ⃗ k 0 ⟨s ↓| -2 3 ℏk + 1 √ 3 ℏk z 0 0 0 0 0 V s, ⃗ k                    
where :

k ± = 1 √ 2 (k x ± i k y ) V ν, ⃗ k = V ν + ℏ 2 ⃗ k 2 2m 0 with ν ∈ {c, l, h, s}
So at ⃗ k = 0 the Kane Hamiltonian matrix is diagonal, and at ⃗ k ̸ = 0 the off diagonal elements are due to ⃗ k . ⃗ p coupling among the basis states.

Part II

Superlattices

Chapter 3

Introduction

This manuscript part is dedicated to the development of a numerical method for the calculation of energy states of a small gap III-V heterostructure in presence of an applied external electric field. In order to establish the eigenvalue problem of one electron in the potential created by the biased heterostructure, we use the k.p method at the Kane approximation (discussed in part I) and the envelope function formalism (4.1 -4.3). We obtain a system of coupled differential equations, whose numerical solution is presented in paragraph 4.4-4.5 and 5.1-5.2.

The method that we present here is general and can be applied to any kind of finite heterostructure.

Particularly, it allows to calculate energy states in heterostructures where the band mixing cannot be neglected and where an external and constant electric field is superimposed to the band edge profile of the heterostructure.

This work was realized in the frame of the ANR HOTMWIR ( High Operating Temperature Gafree superlattice photodetectors and focal plane arrays for the full Mid Wave InfraRed spectral domain) dedicated to the realization of a new class of photodetectors based on InAs/InAs1-xSbx type 2 superlattices (T2SL), able to cover the full mid wave infrared (MWIR) domain and to operate at high temperatures (150 K). The state of the art of IR photodetectors is summarized below (3.1-3.2); the structural and electronic properties of InAs/InAsSb T2SL are illustrated in paragraph 3.4 as well as the advantages of this material system for IR detection.

We applied our k.p model to the determination of the energy states of the InAs/InAsSb SL along the growth axis (4.6) with and without an external bias and then to the calculation of the full in-plane energy dispersion (5.3). Specifically, we evaluated the spatially localized heavy holes wavefunctions in presence of an electric filed. This result provides a crucial information for the development of barrier T2SL photodetectors (see below) because the transport of photogenerated carriers is unipolar and carried by heavy holes. Then we used our model to evaluate the absorbance of the SL based photodetector (6.7).

In the next chapters we also pin-point some interesting electro-optic properties of the finite SL (aside the scope of the photodetector project) as the presence of a heavy hole Tamm state, the effect of the application of a strong external electric field on the SL energy states and we study the effect of two different orientations of the incident light on the absorbance.

Infrared photodetection

Nowadays, Infrared (IR) cameras are used in various applications such as night vision in harsh environments, search and rescue, cancer diagnostics, gas analysis and industrial process monitoring. Infrared sensors can be cooled or uncooled, however cryogenically cooled infrared cameras based on arrays of photodetectors are many times faster than uncooled microbolometers in terms of sensitivity and speed.

Superlattice (SL) system was created in 1970 by Esaki and Tsu [START_REF] Esaki | Superlattice and negative differential conductivity in semiconductors[END_REF], in 1987 Smith and Mailhiot [START_REF] Smith | Proposal for strained type II superlattice infrared detectors[END_REF] suggested that these characteristics might be used for IR detector applications. They were interested in III-V materials due to the fact that their lattice constants is close to 6.1Å permitting to have a relatively small lattice mismatch, the InAs/GaSb type-II superlattice T2SL structure and offering the necessary flexibility for combining various material systems, enabling device designs that are specifically suited for optimal performance in optoelectronic applications. The maximum operating temperature of a semiconductor infrared photodetector is usually determined by its dark current (the residual electrical current of a photodetector in the absence of light) that increases exponentially with temperature, the dark current is one of the main sources of noise in photo-sensors.

Therefore, to maintain a high signal-to-noise ratio of infrared photodetector superlattice Focal Plane Array (FPA), so a low dark current, it requires an operating temperature below cryogenic temperatures that is approximately 80-100K. Implying the implementation of cryocoolers and so inducing significant constraints in terms of weight, compactness and energy autonomy.

Consequently, improving the temperature operation without compromising detector performance is currently one of the main challenges faced by the cooled IR detector community. New detectors are required, called HOT (High Operating Temperature) detectors, they are designed to satisfy SWaP (size, weight and performance) standards (Reibel2015 [START_REF] Reibel | Infrared SWAP detectors: pushing the limits[END_REF]).

State of art

The first Mid-wavelength infrared (MWIR) technologies are made with indium antimonide (InSb) and mercury cadmium telluride (MCT) infrared photodetectors. InSb is one of the most popular infrared photodetector materials, it is a reliable III-V semiconductor with good FPA manufactureability, and its band gap is perfect for filling the 3µm to 5µm MWIR atmospheric transmission window. The InSb FPA offers high operability, high uniformity, large-format capability, and affordability. InSb, despite its popularity, has some significant weaknesses as compared to HgCdTe (MCT), the main rival MWIR FPA technology based on II-VI semiconductors.

InSb lacks the ability to form heterostructures, making it more difficult to achieve adequate surface passivation. This contrasts with MCT, which can be easily passivated utilizing the large band gap CdTe. The InSb FPA runs at substantially lower temperatures than the MWIR MCT FPA, about 80K for ion-implant planar InSb, and 95K-100K for MBE grown epi-InSb (Vuillermet2011 [START_REF] Vuillermet | HOT infrared detectors using MCT technology[END_REF], Klipstein2013 [START_REF] Klipstein | Recent progress in InSb based quantum detectors in Israel[END_REF]).

Another drawback of InSb is that it has a constant cutoff wavelength of about 5.3µm, as opposed to MCT, which allows a cutoff wavelength spanning from the Near Infrared (NIR) to very long wavelength infrared (VLWIR). Improved III-V MWIR detectors are now possible thanks to recent developments in infrared detector material and device architecture. Unipolar barrier device architectures like the nBn (Maimon2006 [START_REF] Maimon | nBn detector, an infrared detector with reduced dark current and higher operating temperature[END_REF]), XBn as shown in figure 3.3 (Klipstein2010 [START_REF] Klipstein | Depletion-less photodiode with suppressed dark current and method for producing the same[END_REF], Klipstein2008 [START_REF] Klipstein | XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors[END_REF]), pMp (Nguyen2011 [START_REF] Nguyen | Effect of contact doping in superlattice-based minority carrier unipolar detectors[END_REF]), and complementary barrier infrared detector (Ting 2009 [31], Ting2013 [START_REF] Ting | Exclusion, extraction, and junction placement effects in the complementary barrier infrared detector[END_REF]) can be employed to suppress surface leakage dark current (Maimon 2006 [27], Pedrazzani2008 [START_REF] Pedrazzani | Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors[END_REF], Savich2010 [START_REF] Savich | Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers[END_REF]) and lessen generation recombination of dark current.

The first nBn devices were created using InAs absorber grown on an InAs substrate or latticematched InAs 0.91 Sb 0.09 grown on a GaSb substrate, with cutoff wavelengths of respectively 3.2µm and 4µm (Ting2018 [START_REF] Ting | InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Focal Plane Array With Significantly Higher Operating Temperature Than InSb[END_REF]). Although they work well as detectors, they do not completely cover the MWIR transmission window. T2SL also has the benefit of being readily adaptable to the unipolar device architecture, and can be used to easily extend cutoff wavelength to greater than 5µm (Bürkle2002 [START_REF] Bürkle | Chapter 5 -InAs/(GaIn)Sb superlattices: a promising material system for infrared detection[END_REF], Razeghi [START_REF] Razeghi | GaSb/InAs superlattices for infrared FPA in Handbook of Infrared Detection Technologies[END_REF], Ting2011 [START_REF] David | Chapter 1 -Type-II Superlattice Infrared Detectors[END_REF]).

However, the InAs/GaSb T2SL has a much shorter minority carrier lifetime than InSb (Donetsky2009 [START_REF] Donetsky | Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures[END_REF]). Compared to the InAs/GaSb T2SL, the more recent InAs/InAsSb type-II strained layer superlattice (T2SLS) has shown longer minority carrier lifetimes (Steenbergen2011 [START_REF] Steenbergen | Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb[END_REF]). Particularly, Shockley-Read-Hall (SRH) lifetimes of about 10µs have been observed in MWIR InAs/InAsSb T2SLS (Olson2012 [START_REF] Olson | Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice[END_REF], Höglund2013 [START_REF] Höglund | Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices[END_REF]), which is significantly longer than the normal InSb SRH lifetime of 400ns (Kinch [START_REF] Kinch | State-of-the-Art Infrared Detector Technology[END_REF]).

The MWIR spectral window is split into two domains that are commonly referred to as the MWIR blue band and MWIR red band due to the existence of a strong CO 2 to 4.25µm absorption line, as we can see on the figure below (Figure 3.2). While InSb commercial FPA operate at temperatures between 80K and 90K with a cutoff wavelength of 5.4µm, MCT FPA can operate at up to 120K and 150K with cutoff wavelengths of 5µm and 4.2µm, respectively (Reibel2015 [START_REF] Reibel | Infrared SWAP detectors: pushing the limits[END_REF]). Additionally, an MCT detector substitute is required mainly due to its high cost and difficult scalability to bigger systems and better consistency.

New MWIR technologies have recently surfaced, particularly InAsSb XBn photodetector devices with unique barrier designs were proposed (Klipstein2011 [START_REF] Klipstein | XBn barrier photodetectors based on InAsSb with high operating temperatures[END_REF]). In this kind of heterostructure the barrier layer (made with a large band gap material) is positioned between the contact and absorption layers to block the majority of carriers responsible of the dark current, while enabling the minority carriers to move through the structure unhindered (Figure 3.3). In this kind of system, the generation-recombination current is suppressed in the absorbing layer because the electric field is confined in the barrier layer. Compared to a pin diode, the temperature operation should be improved for a given dark current value, especially because the dark-current of such a barrier structure is diffusion-limited regardless of temperature (Klipstein 2013 [26]).

Many radiometric benefits result from extending the detection spectral range up to 5µm to obtain MWIR broadband detection. Photon emittance deduced from Planck's law for various blackbody temperatures is shown in Figure 3 The power emitted per unit area at the surface of a blackbody in the MWIR blue range 3µm to 4.2µm corresponds to only 18% of the total power emission in the complete MWIR 3µm to 5µm range when a blackbody is considered at 300K without taking into account IR systems or transparency windows. The IR signal to noise ratio and, ultimately the IR imaging performances would be much enhanced by taking into account the whole MWIR transparency window (Reibel2015 [START_REF] Reibel | Infrared SWAP detectors: pushing the limits[END_REF]) .

The ability to customize the layer thicknesses and period composition while being lattice-matched to GaSb substrates is one of the benefits of SL structures. A type-II InAs/GaSb superlattice (T2SL) on a GaSb substrate can be taken into consideration to increase the cut-off wavelength up to 5µm (Taalat2014 [START_REF] Taalat | Influence of the period thickness and composition on the electro-optical properties of type-II InAs/GaSb midwave infrared superlattice photodetectors[END_REF]).

However such T2SL devices suffer from a short minority carrier lifetime such as about 100ns in the MWIR, due to the presence of Ga-related native defects (Svensson2011 [START_REF]Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization[END_REF]). Typically InAs/GaSb T2SL detectors exhibit temperature operation lower than 110K for a 5µm cut-off (Chen2015 [START_REF] Chen | Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application[END_REF]).

The Ga-free InAs/InAsSb T2SL device could be used as an alternative to this technology, actually a remarkable minority carrier lifetime value as high as 9µs at 80K in the MWIR domain has been measured (Olson2012 [START_REF] Olson | Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice[END_REF]), and research groups (Plis2015 [START_REF] Plis | Dark current reduction in InAs/InAsSb superlattice mid wave infrared detectors through resoration etch[END_REF], Haddadi2015 [START_REF] Haddadi | Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1xSbx type-II superlattices[END_REF], Rhiger2016 [START_REF] Rhiger | Analysis of III-V superlattice nBn device characteristics[END_REF]) have recently reported results on Ga-free SL MWIR detectors.

The InAs/InAsSb T2SLS is an alternative to the more well-known InAs/GaSb T2SL with easier growth (Ting2012 [START_REF] Ting | Barrier infrared detector[END_REF]), greater defect tolerance, longer mobility lifetimes (Steenbergen2011 [START_REF] Steenbergen | Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb[END_REF], Olson2012 [START_REF] Olson | Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice[END_REF], Höglund2013 [START_REF] Höglund | Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices[END_REF]), but a lower cutoff wavelength range. The InAs/InAsSb T2SLS exhibits weaker optical absorption and more difficult vertical hole transport at longer cutoff wavelengths (Klipstein2014 [START_REF] Klipstein | InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors[END_REF], Vurgaftman2016 [START_REF] Vurgaftman | Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials[END_REF]) .

InAs/InAsSb superlattice based photodetectors

The project led by IES Lab proved the viability of a Ga-free InAs/InAsSb SL structure generated by molecular beam epitaxy (MBE) on a GaSb substrate at the 2017 Photonic West conference (Soibel2016 [START_REF] Soibel | Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength[END_REF]). Therefore, the primary goal of this project, is to combine the XBn design with Ga-free InAs/InAsSb SL, which has been reported to have a long carrier lifetime.

By selecting the right layer thicknesses and Sb x compositions for which the compressive strain introduced in InAs 1-x Sb x compensates for the tensile strain in InAs, Ga-free InAs/InAs 1-x Sb x T2SLs can be strain-balanced on GaSb substrate.

In fact, the InAs/InAs 0.65 Sb 0.35 SL structure is strain compensated to the GaSb substrate and exhibits photoluminescence spectrum with a peak position at 5µm at 80K (Figure 3.5) suitable for MWIR broadband. The PL peak of the InAs(4.5 nm)/InAsSb(1.5 nm) SL structure with a period of 6 nm, is observed at a wavelength equal to 5µm at 80K while the T2SL sample with a period of 8nm exhibits a PL peak position at a wavelength higher than 6µm [START_REF] Durlin | InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain[END_REF].

Accurate band structure calculations must be made to determine the ideal SL period in terms of thickness, Sb composition, and new design (Olson2016 [START_REF] Olson | Optical and electrical properties of narrow-bandgap infrared W-structure superlattices incorporating AlAs/AlSb/AlAs barrier layers[END_REF], Nguyen2008 [START_REF] Nguyen | Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes[END_REF], Salihoglu2012 [START_REF] Salihoglu | N"structure for type-II superlattice photodetectors[END_REF]) for a 5µm cutoff wavelength at 150K in order to optimize the absorption in the Ga-free Type-II SL structure, where electrons and holes are spatially delocalized (Steenbergen2012 [START_REF] Steenbergen | Study of the valence band offsets between InAs and InAs1-xSbx alloys[END_REF], Lin2013 [60]).

Functioning

A superlattice is a periodic stacking of layers of two or more different kinds of materials with a thickness of several nanometers. In our project we work with superlattices structures having semiconductor materials of element groups III-V that are InAs/InAs 1-x Sb x on GaSb substrate with which it has a good lattice match. These kinds of materials provide a number of advantages over MCT, which is a II-VI material, such as a lower defect density, an increased resilience, and suppression of tunneling currents because of larger effective masses (Kwan2021 [START_REF] Kwan | Recent trends in 8-14 m type-II superlattice infrared detectors[END_REF]).

Type-II superlattice structure causes the creation of spatially separated electrons and holes in the InAs and InAsSb layers of the Quantum Well (QW). A periodic potential is created by the interactions of nearby QW, and this periodic potential leads to the creation of minibands that are similar to the band structure of bulk crystals. A local electric field and interlayer tunneling of carriers are produced by the charge transfer, which is brought on by the spatial separation of electrons and holes, without the requirement for external induction by applied bias or doping (Razeghi2010 [START_REF] Razeghi | Band gap tunability of Type II Antimonide-based superlattices[END_REF]).

The superlattice bandgap is determined by the well thickness and the interaction between adjacent QW, as we can see in the schematic representation of the structure and minibands below 3.6 : Heavy holes have a very thin miniband (around 2 meV) compared to that of electrons and light holes. It means that in this SL, electrons and light holes are delocalized along the growth direction while heavy holes are localised in the InAsSb layers (as it is clearly shown by the wave function calculation in the next paragraph). This property could be detrimental to hole transport. However, we will show that the width of the HH 1 miniband increases when the in-plane wave vector is different from zero due to the heavy holes -light holes mixing.

We have n periods of two sorts of materials, a layer of binary material InAs and another of ternary material InAs 1-x Sb x with a fixed concentration x of Antimony. Ternary materials have a complex energy bands dispersion, depending on the concentration of the third species relative to initial kinds, as we can see in the energy versus ⃗ k dispersion diagrams 3.7 below : Our main area of interest is around the Γ point, besides we do not work with the far band coupling, working exclusively in the 8 band model (see previous chapter 2). The antimony concentration x affects the band gap, and so the band offsets that correspond to the relative alignment of energy bands with other materials. Furthermore, the temperature also impacts the energy gaps and offsets, that is why we have to set these parameters for a given temperature with a certain degree of uncertainty.

In our study we work at the temperature T=150K and an antimony concentration x=0.35 (Krizman2020 [START_REF] Krizman | InAs/InAsSb type 2 superlattices band parameters determination via magnetoabsorption and k.p modeling[END_REF]), our usual parameters are shown in the figure 3.8 (in the next page) for a superlattice period. 

Chapter 4

Heterostructure states along the growth axis

Probability current conservation

We assume two adjacent materials A and B grown along the ⃗ e z axis, with layers thin enough to have quantization states, ignoring interface defects like lattice mismatch. The Harrison model [START_REF] Harrison | Tunneling from an Independent-Particle Point of View[END_REF] proposes that the Bloch wave function 2.3 for materials A and B are equal at the interface denoted z 0 for all bands n considered, implying :

Ψ A ⃗ k 0 n (z 0 ) = Ψ B ⃗ k 0 n (z 0 )
It means that the crystalline wave functions U ⃗ k 0 n are assumed to be the same in each kind of layer that constitutes the heterostructure (Bastard [START_REF] Bastard | wave mechanics applied to semiconductor heterostructures[END_REF] p67) :

U A ⃗ k 0 n (⃗ r ) = U B ⃗ k 0 n (⃗ r )
with ⃗ k 0 corresponding to the symmetry point in the FBZ (figure: 1.4). This is the fundamental approximation for semiconductor, however we have

Ψ A ⃗ k n (⃗ r ) ̸ = Ψ B ⃗ k n (⃗ r
), in any case the probability current ⃗ j is conserved across all heterostructure interfaces between differing band structures (Harrison1961 [START_REF] Harrison | Tunneling from an Independent-Particle Point of View[END_REF]), we write it :

⃗ j(⃗ r ) = - iℏ 2m 0 Ψ -→ ∇ Ψ -Ψ -→ ∇ Ψ
It will be convenient to represent Bloch waves by plane waves of the same wave number ⃗ k [START_REF] Harrison | Tunneling from an Independent-Particle Point of View[END_REF].

Using envelope wave functions formalism we separate the Bloch waves describing the whole heterostructure, as a linear combination of envelope wave function F ⃗ k n and crystalline periodic function U ⃗ k n at a wave vector ⃗ k (Bastard [START_REF] Bastard | wave mechanics applied to semiconductor heterostructures[END_REF] p67). Since it is the Bloch functions Ψ which are to be matched smoothly at the interface, the function F may not be smooth at these ones [START_REF] Harrison | Tunneling from an Independent-Particle Point of View[END_REF]. For all the considered bands n, the envelope wave function formalism yields :

Ψ ⃗ k = n F ⃗ k n (⃗ r ) U ⃗ k n (⃗ r )
with F ⃗ k n the envelope wave function in 3D for a wave vector ⃗ k.

Due to the structural shape, the in-plane ⃗ e ϱ axis and the growth ⃗ e z axis wave functions are decoupled, it occurs k // as a bi-dimensional wave vector in the plane axis which is identical for each layer in order to comply with the in-plane translational invariance (Bastard [START_REF] Bastard | wave mechanics applied to semiconductor heterostructures[END_REF] p69, NBCB [START_REF] Ndebeka-Bandou | Quantum States And Scattering In Semiconductor Nanostructures[END_REF] p103). We can rewrite the envelope wave function F ⃗ k n as a linear combination of heterostructure wave functions Φ along the growth ⃗ e z axis according to a plane coefficient C(k // ) :

F ⃗ k n (⃗ r ) = 1 √ S e i ⃗ k.⃗ ϱ ν C ν E ⃗ k Φ n (z, E ν )
The coefficient C(E ⃗ k ) results of the plane Hamiltonian diagonalization, we will see it in the chapter 5.

Envelope wave function F ⃗ k n corresponds to a slowly varying envelope modulating function which is restricted to ⃗ k values within a range inside the Brillouin zone of the crystal. Whilst the rapidly varying function corresponds to a crystalline periodic function U ⃗ k n describing the behavior close to atoms of the lattice.

As previously explained, using perturbation theory (section 2.2) we will work with direct band gap materials, so at the symmetry point Γ chosen in the Brillouin zone (Figure 1.4), leading to get along the quantization ⃗ e z axis with ⃗ k=0 :

Ψ 0 (⃗ r ) = n F 0n (⃗ r ) U 0n (⃗ r )
Let us show it in a schematic representation of the envelope wave function formalism inside a basic structure : Harrison [START_REF] Harrison | Tunneling from an Independent-Particle Point of View[END_REF] established generalized limit conditions such as the wave function continuity and the flux continuity (Fishman [5] p302), let us rewrite the probability current along growth ⃗ e z axis as being :

j z (z) = - iℏ 2 Φ(z) γ m 0 ∂ ∂z Φ(z) -Φ(z) γ m 0 ∂ ∂z Φ(z)
with γ a factor taking account of material specificities.

For A and B layers, on both sides of the interface z 0 we have :

j A z (z 0 ) = j B z (z 0 )
so we write generalized boundary conditions, leading to the flux continuity :

γ A m 0 ∂ ∂z Φ A n (z) z 0 = γ B m 0 ∂ ∂z Φ B n (z) z 0 (4.1)
and the wave function continuity :

Φ A n (z 0 ) = Φ B n (z 0 )
In heterostructures due to interfaces, the wave functions derivatives are discontinuous, and the flux conservation in equation 4.1 allows to have continuous wave functions on both side of each layer interfaces.

The BenDaniel and Duke model [START_REF] Bendaniel | Space-Charge Effects on Electron Tunneling . General Electric Research and Development center[END_REF] uses the Harrison one taking as material structure factor γ such as : γ = m 0 m * with m * the effective mass of the material (Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p302), the flux continuity (eq 4.1) becomes :

1 m * A ∂ ∂z Φ A n (z) z 0 = 1 m * B ∂ ∂z Φ B n (z) z 0 (4.2)
Let us construct the Schrödinger equation from the BenDaniel and Duke flux conservation (eq: 4.2), by appearing the operator p z = -iℏ ∂ ∂z , it yields :

1 m * A pz Φ A n (z 0 ) = 1 m * B pz Φ B n (z 0 ) 1 2 pz 1 m * A pz Φ A n (z 0 ) = 1 2 pz 1 m * B pz Φ B n (z 0 )
In a more general case we write the effective mass depending on z, this new form of the kinetic operator is hermitian in the wave function approximation and conserve the probability current (Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p303), so we obtain the BenDaniel Duke Hamiltonian :

H BDD Φ n (z) = pz 1 2m(z) pz Φ n (z) + V (z) Φ n (z) (4.3)

Superlattices

As already explained (in Part I), we provide our study around the {Γ 6 , Γ 8 , Γ 7 } bands, to get all optoelectronical properties we use the Kane matrix from section 2.4, and we rewrite it in the following bands order {c, l, h, s} such as :

                   |c ↑⟩ |l ↑⟩ |h ↑⟩ |s ↑⟩ |c ↓⟩ |l ↓⟩ |h ↓⟩ |s ↓⟩ ⟨c ↑| V c, ⃗ k -2 3 ℏk z ℏk + 1 √ 3 ℏk z 0 -1 √ 3 ℏk - 0 -2 3 ℏk - ⟨l ↑| -2 3 ℏk z V l, ⃗ k 0 0 1 √ 3 ℏk - 0 0 0 ⟨h ↑| ℏk - 0 V h, ⃗ k 0 0 0 0 0 ⟨s ↑| 1 √ 3 ℏk z 0 0 V s, ⃗ k 2 3 ℏk - 0 0 0 ⟨c ↓| 0 1 √ 3 ℏk + 0 2 3 ℏk + V c, ⃗ k -2 3 ℏk z ℏk - 1 √ 3 ℏk z ⟨l ↓| -1 √ 3 ℏk + 0 0 0 0 V l, ⃗ k 0 0 ⟨h ↓| 0 0 0 0 ℏk + 0 V h, ⃗ k 0 ⟨s ↓| -2 3 ℏk + 0 0 0 1 √ 3 ℏk z 0 0 V s, ⃗ k                   
(4.4) where :

k ± = 1 √ 2 (k x ± i k y ) V n, ⃗ k = V n + ℏ 2 ⃗ k 2 2m 0 with n ∈ {c, l, h, s}
The heterostructure is grown along the ⃗ e z axis, the quantified wave function Φ n (z) along the ⃗ e z axis implies a separation of the Kane Hamiltonian into k z , giving a matrix D kz block diagonal which is spin independent, and a plane Hamiltonian matrix depending only on k ± , we have for

D kz :         D kz |c⟩ |l⟩ |h⟩ |s⟩ ⟨c| V c + ℏ 2⃗ k ′2 z 2m b -2 3 ℏk z 0 1 √ 3 ℏk z ⟨l| -2 3 ℏk z V l + ℏ 2⃗ k ′2 z 2m b 0 0 ⟨h| 0 0 V h + ℏ 2⃗ k ′2 z 2m b 0 ⟨s| 1 √ 3 ℏk z 0 0 V s + ℏ 2⃗ k ′2 z 2m b         (4.5)

Wave function

To have the heterostructure wave functions Φ n along the ⃗ e z axis, we have to start from reciprocal space to real space, defining the Fourier Transform for a function g, such as :

T F g(z) = e -ikz g(z) dz = g(k)
we recall its differential properties :

T F ∂ n ∂z n g(z) = (ik) n g(k) T F z n g(z) = i ∂ ∂k n g(k) (4.6)
and the inverse Fourier Transform differential properties :

(

T F ∂ n ∂k n g(k) = (-iz) n g(z) ( T F k n g(k) = -i ∂ ∂z n g(z) (4.7)
Using these properties on D kz for k=k z , and replacing the secular Hamiltonian H 0 by the one of BenDaniel Duke (see eq: 4.

3), we obtain the differential Hamiltonian along the growth ⃗ e z axis :

|c⟩ |l⟩ |h⟩ |s⟩ V c (z) -E + pz 1 2m(z) pz -2 3 pz 0 1 √ 3 pz Φ c (z) -2 3 pz V l (z) -E + pz 1 2m(z) pz 0 0 Φ l (z) 0 0 V h (z) -E + pz 1 2m(z) pz 0 Φ h (z) 1 √ 3 pz 0 0 V s (z) -E + pz 1 2m(z) pz Φ s (z)                                                                                         = 0 (4.8) 
We will systematically develop the equations for all particles, nevertheless we will assume that the spin-orbit splitting is infinite and thus the contribution from Γ 7 band can be neglected.

When applying an electric field ⃗ E on the structure, the crystal potentials are :

V n (z) = V n + V E (z)
With V n the crystal potentials of a material for the band n at Γ point in our study (Table 2.3), it corresponds to a constant energy separations such gaps and offset. And V E (z) is the electrical potential applied by the electric field, in case it is linear, we have :

V E (z) = e Ez (4.9)
where e is the electron charge.

The crystal potentials V n being constant, it occurs that the effective mass of each materials is also constant along the ⃗ e z axis :

m(z) = m *
Bearing in mind that for two different materials we have m * 1 ̸ = m * 2 , the effective mass is not constant along the structure but only within a material layer.

We develop the differential equations from the matrix 4.8 for the wave functions of conduction Φ c (z), light holes Φ l (z) and heavy holes Φ h (z), knowing that Light Particles (LP) are decoupled from Heavy Holes (HH) along the growth ⃗ e z axis :

A : V c (z) -E Φ c (z) - ℏ 2 2m 0 ∂ 2 ∂z 2 Φ c (z) + i 1 √ 3 ℏ ∂ ∂z Φ l (z) = 0 B : i 1 √ 3 ℏ ∂ ∂z Φ c (z) + V l (z) -E Φ l (z) - ℏ 2 2m 0 ∂ 2 ∂z 2 Φ l (z) = 0 (4.10)
We choose to derive the line B, and extract ∂ ∂z Φ l (z) ignoring the third order derivative :

∂ z B : i 1 √ 3 ℏ ∂ 2 ∂z 2 Φ c (z) + V l (z) -E ∂ ∂z Φ l (z) - ℏ 2 2m 0 ∂ 3 ∂z 3 Φ l (z) = 0 ∂ ∂z Φ l (z) = -i 1 √ 3 ℏ V l (z) -E ∂ 2 ∂z 2 Φ c (z) (4.11)
inserting this result in the first equation A, it occurs :

V c (z) -E Φ c (z) - ℏ 2 2m 0 ∂ 2 ∂z 2 Φ c (z) + 1 √ 3 ℏ 2 V l (z) -E ∂ 2 ∂z 2 Φ c (z) = 0 ∂ 2 ∂z 2 Φ c (z) +    V c (z) -E V l (z) -E 1 √ 3 ℏ 2 -ℏ 2 2m 0 V l (z) -E    Φ c (z) = 0 (4.12) 
Let us discuss about the constant values, (V l -E) is around the gap area and for instance E g (InAs) ≈ 380 meV and E g (InAs 0.65 Sb 0.35 ) ≈ 140 meV, while 2 ℏ 2 ≈ 8, 6.10 5 meV 2 nm 2 and ℏ 2 2m 0 ≈ 38, 1 meV nm 2 . It leads to have 2 ℏ 2 ≫ ℏ 2 2m 0 (V l -E), yielding :

k LP = 1 1 √ 3 ℏ V c (z) -E V l (z) -E (4.13)
The heavy hole particles are not coupled with the light particles, we have from the matrix 4.8 :

V h (z) -E Φ h (z) - ℏ 2 2m 0 ∂ 2 ∂z 2 Φ h (z) = 0
To get the right curvature we introduce an effective mass using far band coupling (see eq: 2.8) of Γ 8C and Γ 7C (double group representation) thanks to Luttinger parameters γ 1 , γ 2 , γ 3 (Fishman [START_REF] Fishman | semi-conducteurs : les bases de la théorie ⃗ k[END_REF] p154, Pidgeon and Brown [START_REF] Pidgeon | Interband magneto-absorption and faraday rotation in insb[END_REF]) laying the new effective mass for HH :

1 m h = - γ 1 -2 γ 2 m 0 (4.14)
it turns out :

∂ 2 ∂z 2 Φ h (z) + 2m h ℏ 2 V h (z) -E Φ h (z) = 0 (4.15)
Exactly the same way as for light particles, we set :

k HH = 1 ℏ 2m h V h (z) -E
Let us discuss the case in which the electric field is linear (see eq: 4.9), giving :

∂ 2 ∂z 2 Φ h (z) + 2m h ℏ 2 V h -E + e E z Φ h (z) = 0
we arrange the terms :

∂ 2 ∂z 2 Φ h (z) + 2m h e E ℏ 2 z + V h + E e E Φ h (z) = 0
and looking for the following symmetric form :

1 ξ 2 ∂ 2 ∂z 2 Φ h (z) + ξ (z + a) Φ h (z) = 0 with a, ξ constants (4.16) ∂ 2 ∂z 2 Φ h (z) + ξ 3 (z + a) Φ h (z) = 0 let us set : ξ = 2m h e E ℏ 2 1 3
It appears that a change of variable is required, occurring :

z = ξ z + V h -E e E
so using the form equation 4.16 and knowing that ∂ z2 = ξ 2 ∂z 2 , we have :

∂ 2 ∂ z2 + z Φ k (z) = 0
In fine we obtain the Airy equation, that is analytically solvable using Fourier Transform (see eq: 4.6 and eq: 4.7).

At this point we have two remarks, first of all the LP coupling under a linear electrical potential involves a second order polynomial rendering the Airy function unusable, secondly we assumed the potential as being linear and we desire a more general case for any kind of potential. That is why we prefer to develop a numerical method in the next section.

Transfer matrix resolution

In general, the solutions of the Schrödinger equation in the presence of any band curvature are not known analytically. The transfer matrix method approximates the band bending taken into account while simultaneously maintaining a piecewise constant potential (NBCB [START_REF] Ndebeka-Bandou | Quantum States And Scattering In Semiconductor Nanostructures[END_REF]).

To deal with electrical potentials, we assume each material layers as being composed of sublayers of equal size δz, it allows us to write the potential, here linear (see eq: 4.9), such as :

lim z→ν δz V n (z) = V n (ν δz) ∀ ν ∈ N (4.17) = V n + e E ν δz
The thickness of the sublayers has to be chosen as a compromise between the accuracy and the computing time, indeed a smaller δz implies a more accurate description and so a greater amount of sublayers, inversely fewer sublayers implies a faster calculation time but less accuracy.

To avoid a Cornelian dilemma and ensure a fairly wide range of states we run our numerical modelling on multithreading cores using Cuda on Graphics Processing Unit (GPU) card.

The continuity between all layers along sublayers is ensured by the probability current conservation (see section 4.1), so each sublayer respects, at interfaces, as well as the wave functions continuity :

Φ kν (z ν ) = Φ k ν+1 (z ν )
and the flux conservation :

χ kν ∂ ∂z Φ kν (z ν ) = χ k ν+1 ∂ ∂z Φ k ν+1 (z ν ) (4.18)
with χ k a function assuring the flux conservation at the interface in the same way as the effective mass of the BenDaniel Duke model.

Let us now resolve the light particles differential equation 4.12 knowing that due to the new considerations (see eq: 4.17) the potential is constant within each sublayer, we use the following form :

∂ ∂z + ik ∂ ∂z -ik Φ(z) = 0 (4.19)
yielding, with {α, β} as constants, the solution for conduction wave functions is :

Φ c (z) = α e ikLP z + β e -ikLP z
where the wave vector for light particles (see eq: 4.13) is :

k LP = 1 1 √ 3 ℏ V c (δz) -E V l (δz) -E
We deduce from Φ c the light holes expression using equation 4.11 integrated :

Φ c (z) = -i 1 √ 3 ℏ V l (δz) -E ∂ ∂z Φ c (z) (4.20) 
initial conditions given by equations 4.10 imply no integration constant, where :

Φ l (z) = α χ kLP e ikLP z -β χ kLP e -ikLP z
whence :

χ kLP = 1 √ 3 ℏ k LP V l (δz) -E
linking with the flux continuity (see eq: 4.18) :

χ ∂ ∂z Φ l (z) = χ kLP
we can write the Transfer matrix for light particles as being :

Φ LP,ν α ν β ν = e ikLP,ν δz e -ikLP,ν δz χ kLP ,ν e ikLP,ν δz -χ kLP ,ν e -ikLP,ν δz α ν β ν
For HH, using the same assumptions as LP for potentials (see eq: 4.17), we resolve the HH differential equation 4.15 thanks to the given form equation 4.19, yielding :

Φ h (z) = α ′ e ikHH z + β ′ e -ikHH z
The flux continuity is ensured by the BenDaniel Duke conditions (see eq: 4.13) :

1 m h,ν ∂ ∂z Φ h (z) zν = 1 m h,ν+1 ∂ ∂z Φ h (z)
zν it yields the matrix transfer for heavy holes :

Φ HH,ν α ′ ν β ′ ν = e ikHH,ν δz e -ikHH,ν δz i kHH,ν m h,ν e ikHH,ν δz -i kHH,ν m h,ν e -ikHH,ν δz α ′ ν β ′ ν General resolution :
Each matrix Φ ν (k ν , z) corresponds to the wave function of LP or HH, with respectively as wave vector k LP or k HH of a sublayer ν. To describe the whole system, sublayer per sublayer, we set the transfer matrix operator from the far left to the far right side :

T = N ν=0 Φ -1 ν+1 (z ν ) Φ ν (z ν )
The transfer matrix operator for either LP or HH is independent, and this is not a commutative operator, so new terms stemming from the product development have to be added on the left side of those initially developed.

Boundary conditions

Working in a real system, we have to fix additional constraints to ensure the convergence that are boundary conditions. We chose on both extremities of our system two large and high barriers, as shown in the figure 4.2 below : Inside the high barriers this involves getting evanescent wave functions, and the simplest way to take these properties into account is to use the Dirichlet boundary conditions :

α ν β ν ν=0 = α 0 0 and α ν β ν ν=N = 0 β N
with sublayers beginning from ν=0 on the left side boundary to N on the right side system boundary.

To find the eigenvalues, we apply these boundary conditions to the Transfer matrix, yielding a transcendental equation :

T α 0 0 = 0 β N
We solve this problem using a dichotomy method, the solutions depending on the electric field will form a dispersion relation versus ⃗ E, independently for light particles and heavy holes. Once we have found the eigenvalues, we are able to obtain the constants {α, β} applying the operator T step by step on each sublayer.

4.6

Modelling results along the ⃗ e z axis 4.6.1 10 periods superlattice The 10 periods system is an arbitrary choice for our study, it is a good compromise between a high enough number of periods to have the SL effect, and but not too much to get a reasonable computational time, particularly for the dispersion versus the electric field and for the linear optical properties.

The SL is given in figure 4.2, we propose to analyse for each modelization the first 3 states on both sides of the gap area. We remind that conduction states Φ c and light holes Φ l are coupled yielding that we have a mix of electrons and light holes as well as in CB than in VB, let us show it with the first 3 states in CB : 

100 periods superlattice

To answer these interrogations, we propose the same previous study with the first 3 states for each wave functions in a long heterostructure : Not surprisingly, these states are extremely localized, besides the boundary conditions have no effect whatever the particle wave function.

We remark that the global shape of wave functions inside SL is similar to wave envelope function mechanism, where the global shape is given by the slowly varying wave function alongside the heterostructure, and the rapidly one corresponds to the wave function behaviour in each quantum well.

10 periods superlattice under weak electric field

We apply a E = 5 kV/cm electric field on our 10 periods SL to study the wave functions behaviour under a weak ⃗ E, we observe the probability amplitude of the first state around the gap for each particle in the figure below : This effect is known as Wannier-Stark effect and it is associated with a constant separation between energy states. Thus, in presence of an electric field, the HH 1 miniband splits in separated states. Even in presence of lower bias, because of the low HH 1 miniband width, the heavy holes become strongly localised in each single well.

10 periods superlattice under strong electric field

We apply a E = 50 kV/cm electric field on our 10 periods SL to study wave functions behaviour under a strong ⃗ E, we observe the probability amplitude of the first state in valence band and 2 first states in conduction band : Although LP have a weak localization in the structure, the high electric field pushes the wave functions on the structure edges, in valence band Φ c and Φ l remain confined thanks to high enough potential barriers V l . However it is not the case in conduction band, in fact the potential barriers V c are particularly low, so when ⃗ E is strong enough, the curvature of V c creates a triangular quantum well with the left high potential barrier of boundary conditions, leading in this configuration that conduction states are totally influenced by boundary conditions.

Let us show what happens in conduction band for heavy holes : 

Heavy hole Tamm state

The Tamm state is a localized surface state which appears when the barrier at the end is higher than the rest of the potential barriers in the superlattice, and because of the heavier mass, the heavy-hole Tamm state is even more localized (Ohno1990 [START_REF] Ohno | Observation of "Tamm states" in superlattices[END_REF]) . Let us observe it in our superlattice together with a version having a periods inversion : Without electric field, the Tamm state is the lowest energy state of the HH mini-band and it is located inside the mini-gap between the bottom of the structure and the HH mini-band. When we apply an electric field it remains exactly at the same place with the same wave function shape, its energy evolution will be shown in the next section.

Dispersion versus electric field

We are interested in the evolution of eigenvalues as a function of electric field applied on the structure, HH and LP being decoupled it yields two independent dispersion in ⃗ k // = 0 : In-plane dispersion relations of heterostructures

Wave functions and basis

The superlattice in-plane wave function of the structure is totally propagative along the ⃗ e ϱ axis, contrary to the quantum confinement along the growth ⃗ e z axis, that implies to have continuous energy bands versus the plane wave vector ⃗ k // = ⃗ k . We write the heterostructure wave function Ψ for the plane eigenvalue E i ⃗ k , as being a linear combination of envelope wave functions f n corresponding to different bands contributions n (section 4.1), such as :

∀ k ∈ R 2 ⟨⃗ r |Ψ i ⃗ k ⟩ = Ψ i ⃗ k (⃗ r ) = 1 √ S e i ⃗ k.⃗ ϱ n f n z, E i ⃗ k U 0n (⃗ r ) (5.1) 
with

• |n⟩ = |{c, l, h, s}⟩ ⊗ |↑↓⟩ 8 bands Kane basis (Table: 2.3) • e i ⃗ k.⃗ ϱ √ S
Plane propagative wave function in the continuous medium : ⃗ ϱ = x ⃗ e x + y ⃗ e y

• f n (z, E i ⃗ k ) Envelope wave function of the particle n, for a plane eigenvalue E i ⃗ k

• U 0n (⃗ r ) Crystalline Periodic wave function

The envelope wave function f n takes into account the structure properties along the growth axis ⃗ e z as well as the ⃗ k plane wave vector. So we develop f n for each particle n as a linear combination of ⃗ k according to a coefficient C(E ⃗ k ), where the plane eigenvalues E ⃗ k result of the plane Hamiltonian diagonalization, using our previously obtained wave functions Φ n (see matrix 4.8) along the ⃗ e z axis as basis, it gives us :

f n z, E ⃗ k = N ∈{LP,HH} ν=1 C ν E ⃗ k Φ n (z, E ν ) (5.2)
LP and HH represent the total quantity of eigenvalues in k z for respectively light particles (c, l, s) and heavy holes (h), found by dichotomy (see section 4.5). The plane Hamiltonian uses LP and HH eigenvalues in k z independently, and this basis depends on the spin. Rather than directly projecting this Hamiltonian on our |Φ n ⟩ basis, we decide to separate Φ in two distinct terms using a spinor such as :

→ Φ = Φ LP |e LP ⟩ + Φ HH |e HH ⟩ with ⟨e LP |e HH ⟩ = 0
Including the spin property via a tensor product :

→ Φ ↑↓ = Φ LP |e LP ⟩ + Φ HH |e HH ⟩ ⊗ |↑↓⟩
This transformation in spinor will facilitate the writing of the plane Hamiltonian matrix elements.

Let us write it using the matrix formalism :

→ Φ ↑↓ =           Φ c Φ l 0 Φ s      |e LP ⟩ +      0 0 Φ h 0      |e HH ⟩      ⊗ 1 0 |e ↑ ⟩ + 0 1 |e ↓ ⟩     
Yielding a new form for the envelope wave function :

→ f ↑↓ = N ∈{LP,HH} ν=1 C ν E ⃗ k → Φ ↑↓ (5.3)
knowing that we recover our initial functions f n (eq: 5.

2) and Φ n proceeding by a projection on the |n⟩ basis :

f n = e n → f ↑↓ Φ n = e n → Φ ↑↓

Plane Hamiltonian

In order to facilitate the writing we use the spinor form, it will allow to get matrix elements in the form of blocks depending on LP and HH eigenvalues. So using our new spinor basis on the Kane Hamiltonian (given by the matrix: 4.4), we write the eigenvalue equation such as :

H → f ↑↓ = E ⃗ k → f ↑↓
Let us develop it using the equation 5.3 based on the spinors

→ Φ : N ∈{LP,HH} ν=1 H -E ⃗ k C ν E ⃗ k → Φ ↑↓ ν = 0 (5.4)
As aforementioned section 4.2, the Kane Hamiltonian is separable in two terms, like a block diagonal D kz independent of ⃗ k // (matrix 4.5), and another term D ⃗ k depending on this one such as :

                  D ⃗ k |c ↑⟩ |l ↑⟩ |h ↑⟩ |s ↑⟩ |c ↓⟩ |l ↓⟩ |h ↓⟩ |s ↓⟩ ⟨c ↑| V c, ⃗ k 0 ℏk + 0 0 -1 √ 3 ℏk - 0 -2 3 ℏk - ⟨l ↑| 0 V l, ⃗ k 0 0 1 √ 3 ℏk - 0 0 0 ⟨h ↑| ℏk - 0 V h, ⃗ k 0 0 0 0 0 ⟨s ↑| 0 0 0 V s, ⃗ k 2 3 ℏk - 0 0 0 ⟨c ↓| 0 1 √ 3 ℏk + 0 2 3 ℏk + V c, ⃗ k 0 ℏk - 0 ⟨l ↓| -1 √ 3 ℏk + 0 0 0 0 V l, ⃗ k 0 0 ⟨h ↓| 0 0 0 0 ℏk + 0 V h, ⃗ k 0 ⟨s ↓| -2 3 ℏk + 0 0 0 0 0 0 V s, ⃗ k                   (5.5)
where :

k ± = 1 √ 2 (k x ± i k y ) V n, ⃗ k = V n + ℏ 2 ⃗ k 2 2m 0 with n ∈ {c, l, h, s}
Implying that we develop the equation 5.4 separating growth and plane axes :

∀ ν ′ N ∈{LP,HH} ν=1 → Φ ↑↓ ν ′ H → Φ ↑↓ ν -E ⃗ k δ ν ′ ν C ν E ⃗ k = 0 ∀ ν ′ N ∈{LP,HH} ν=1 → Φ ↑↓ ν ′ D ⃗ k → Φ ↑↓ ν + → Φ ↑↓ ν ′ D kz → Φ ↑↓ ν -E ⃗ k δ ν ′ ν C ν E ⃗ k = 0 ∀ ν ′ N ∈{LP,HH} ν=1 → Φ ↑↓ ν ′ D ⃗ k → Φ ↑↓ ν + ( E ν ′ -E ⃗ k ) δ ν ′ ν C ν E ⃗ k = 0
on the new basis of in-plane wave functions :

→ Φ ↑↓ = |Φ LP ↑⟩ , |Φ HH ↑⟩ , |Φ LP ↓⟩ , |Φ HH ↓⟩
we write it with matrix formalism :

N ∈{LP,HH} {ν ′ ,ν}=1 D ⃗ k,ν ′ ν + ( E ν ′ -E ⃗ k ) δ ν ′ ν C ν E ⃗ k → Φ ↑↓ ν ′ → Φ ↑↓ ν = 0
To finally obtain the plane Hamiltonian to diagonalize : (5.6) The total number of elements inside this matrix is given by 2 N with N = LP+HH, it corresponds to the size of the hermitian plane matrix . The only existing overlap matrix elements between the different kinds of wave functions Φ (from the ⃗ e z axis) for each eigenvalues ν and ν ′ (demonstration in annex C) are such as :

|Φ LP ↑⟩ |Φ HH ↑⟩ |Φ LP ↓⟩ |Φ HH ↓⟩ ⟨Φ LP ↑|     . . . 0 E LP 0 . . .        . . . . . . A . . . . . .       . . . . . . B . . . . . .        . . . . . . 0 . . . . . .     C 1 (E ⃗ k ) C 2 (E ⃗ k ) . . .
A = ⟨Φ LP ↑ | D ⃗ k |Φ HH ↑⟩ = ℏ k + ⟨Φ c ν ′ |Φ h ν ⟩ B = ⟨Φ LP ↑ | D ⃗ k |Φ LP ↓⟩ = 1 √ 3 ℏ k -⟨Φ l ν ′ |Φ c ν ⟩ -⟨Φ c ν ′ |Φ l ν ⟩ + 2 3 ℏ k -⟨Φ s ν ′ |Φ c ν ⟩ -⟨Φ c ν ′ |Φ s ν ⟩ C = ⟨Φ LP ↓ | D ⃗ k |Φ HH ↓⟩ = ℏ k -⟨Φ c ν ′ |Φ h ν ⟩
The diagonal matrix elements E LP and E HH are composed of LP and HH eigenvalues (along the growth ⃗ e z axis) forming the basis, respectively noted E LP,ν ′ and E HH,ν ′ together with a parabolic dispersion versus ⃗ k. We subtract from all these terms the value of the in-plane energy E ⃗ k that must be determined by diagonalization.

For HH, in the same way as equation 4.14, we include far band corrections of Luttinger (Bastard1991 [START_REF]Electronic States in Semiconductor Heterostructures[END_REF] p243, Pigeon and Brown [START_REF] Pidgeon | Interband magneto-absorption and faraday rotation in insb[END_REF]), giving us :

E LP = E LP,ν ′ + ℏ 2 ⃗ k 2 2m 0 -E ⃗ k δ ν ′ ν E HH = E HH,ν ′ -(γ 1 + γ 2 ) ℏ 2 ⃗ k 2 2m 0 -E ⃗ k δ ν ′ ν (5.7)

In-plane energy dispersion

Let us study the energy dispersion versus the plane wave vector ⃗ k in our 3 electric field cases (null, weak and strong) for a 10 periods superlattice. Given the fact that we did not consider far band corrections, the plane energy dispersion is isotropic according to the axis k x ⃗ e x and k x ⃗ e y , leading to set the plane wave vector as being k = k 2 x + k 2 y . To get this dispersion, we diagonalize the matrix 5.6 using Linear Algebra PACKage (LAPACK) and we plot the plane eigenvalues E k versus k .

10 periods superlattice

We work with the structure given in figure: 4.6 without electric field, and we set the energy spectrum large enough in the continua above and below the structure to have a sufficient amount of states E k for ensuring a realistic band coupling along k. We can notice around k=0.1 nm -1 that HH states change of curvature, indeed these ones have a negative parabolic-like shape before this value, after these bands are splitting and mixing when k increases becoming a flat mini-band of HH.

It is due to the fact that HH states are totally decoupled along the growth ⃗ e z axis at k null, however the diagonalization of the plane Hamiltonian matrix 5.6 induces a coupling between all states thanks to off diagonal terms (A, B, C), this one increases with k. However, even with band coupling, HH states remain very localized in each well whatever the value of the wave vector k.

10 periods superlattice under weak electric field

We work with a structure under a weak electric field of E= 5 kV/cm (figure: 4.11), using the same assumption for this dispersion as the previous without electric field. We observe that conduction states are slightly affected by ⃗ E leading to be a little higher in energy, furthermore the energy separation of each degenerate CB states remains very thin. In the second graph (figure b) zoomed within the structure energy bounds (0 to about 550 meV), we see that conduction states keep the same behaviour as parabolic-like shape dispersion. For valences states we have, at low k, the HH states that were extremely dense without electric field, are here less dense and higher energy within the structure due to the applied positive electric field, reducing the gap between LP and HH. The HH states retain their mini-band shape, although this one is larger in energy.

10 periods superlattice under strong electric field

We work here with a the structure under a strong electric field of E= 50 kV/cm (figure: 4.15), giving the following dispersion : In this case, we observe that a strong electric field reduces significantly the gap between CB and VB. Conduction states conserve the same parabolic-like dispersion at low ⃗ k, except that a lifting of spin degeneracy appears even at low k. Besides the mini-gap in valence band between the HH and LP states disappears totally, in the same way as the HH mini-band, leaving instead a complete mix of HH and LP states.

Chapter 6

Optical properties

Electron-radiation interaction Hamiltonian

The interaction between an external electromagnetic field and Bloch electrons inside a semiconductor is described by the electron-radiation Hamiltonian (CTDL [START_REF] Cohen-Tannoudji | Mécanique Quantique[END_REF] p1299), expressed as follows :

H = 1 2m 0 ⃗ p + e ⃗ A(⃗ r, t) 2 + V (⃗ r ) + e U(⃗ r, t) + e m 0 ⃗ S . ⃗ B(⃗ r, t)
where

• ⃗ A(⃗ r, t) vector potential • V (⃗ r ) crystalline potential of the material
• U(⃗ r, t) scalar potential, the voltage applied to the system (in Volt)

• ⃗ S. ⃗ B(⃗ r, t) interaction between the spin ⃗ S and the magnetic field ⃗ B applied Firstly, we can simplify some terms, no magnetic field will be applied and there is no coupling with the electric field ⃗ E, so ⃗ B = 0. Furthermore, our system being only subject to a radiation field, so it is considered as far from sources, that gives us U(⃗ r, t) = 0.

Next, we use a semi-classical approach with which the electromagnetic field is treated classically while electrons are described by quantum mechanics (Bloch wave functions), we develop our Hamiltonian such as :

H = ⃗ p 2 2m 0 + V (⃗ r ) + e 2m 0 ⃗ p . ⃗ A(⃗ r, t) + ⃗ A(⃗ r, t) . ⃗ p + e 2 2m 0 ⃗ A 2 (⃗ r, t)
In the weak field approximation we set ⃗ A 2 = 0, and knowing the gauge invariance we choose the Coulomb gauge -→ ∇. ⃗ A = 0 , this choice implies that the commutator of ⃗ p = -iℏ -→ ∇ and the vector potential ⃗ A vanishes :

⃗ p, ⃗ A = 0 yielding ⃗ p . ⃗ A(⃗ r, t) = ⃗ A(⃗

r, t) . ⃗ p

In fine, we can write our electron-radiation Hamiltonian as :

H = ⃗ p 2 2m 0 + V (⃗ r ) H 0 - e m 0 ⃗ A(⃗ r, t) . ⃗ p = H 0 + H e-γ
where

• H 0 non-perturbed Hamiltonian of the system (secular Hamiltonian eq: 2.5)

• H e-γ electron-radiation interaction which is considered as a perturbation 6.2 Transition rate of electron-radiation interaction

Radiation field

We study a ray hitting our system, leading to write the vector potential as being a radiation field of plane waves with a radiation wave vector ⃗ q , yielding : ⃗ A(⃗ r, t) = A 1 e -i⃗ q.⃗ r e iωt ⃗ ϵ + A 2 e i⃗ q.⃗ r e -iωt ⃗ ϵ

where A 1 and A 2 depend on initial conditions of the system, and ⃗ ϵ is a unit vector.

The electric field is such as :

⃗ E(⃗ r, t) = - -→ ∇U(⃗ r, t) - ∂ ∂t ⃗ A(⃗ r, t)
as aforementioned U(⃗ r, t) = 0 giving us :

⃗ E(⃗ r, t) = - ∂ ∂t ⃗ A(⃗ r, t) (6.1)
= -iω A 1 e -i⃗ q.⃗ r e iωt ⃗ ϵ -A 2 e i⃗ q.⃗ r e -iωt ⃗ ϵ

Let us speak about the initial conditions, when the vector potential ⃗ A is applied on the system with a constant amplitude, in the initial state it gives :

⃗ A(0, 0) = ( A 1 + A 2 ) ⃗ ϵ = A 0 ⃗ ϵ
for derivatives we know that due to the Coulomb gauge

-→ ∇. ⃗ A(⃗ r, t) = 0 , so : -→ ∇ . ⃗ A (0,0) = 0 i⃗ q.⃗ ϵ (-A 1 + A 2 ) = 0 hence A 1 = A 2
Because of ⃗ q is not necessarily null, and ⃗ E being also a plane wave due to the equation 6.1 we have :

⃗ E(⃗ r, t) = E 1 e i(ωt-⃗ q.⃗ r ) ⃗ ϵ + E 2 e -i(ωt-⃗ q.⃗ r ) ⃗ ϵ ⃗ E(0, 0) = -iω( A 1 -A 2 0 ) ⃗ ϵ = ( E 1 + E 2 ) ⃗ ϵ = 0 whence E 1 = -E 2
And setting the constant amplitude of the field as E 0 = E 1 , it gives the electric field expression :

⃗ E(⃗ r, t) = E 0 sin(ωt -⃗ q.⃗ r ) ⃗ ϵ
Finally we obtain the vector potential formulae :

A 1 = A 2 = A 0 2 and E 0 = ω A 0 exponential form ⃗ A(⃗ r, t) = E 0 2ω e i(ωt-⃗ q.⃗ r ) ⃗ ϵ + E 0 2ω e -i(ωt-⃗ q.⃗ r ) ⃗ ϵ (6.2) cosinus form ⃗ A(⃗ r, t) = E 0 ω cos(ωt -⃗ q.⃗ r ) ⃗ ϵ (6.3)

Fermi golden rule

Working within the framework of the time-dependant perturbation theory, which leads us to use the Fermi's golden rule on the electron-radiation interaction H e-γ to calculate the transition probability. As previously explained in the chapter 5, we remind that we have to study the states of the whole system, in means each energy E ⃗ k for each plane wave vector ⃗ k // . The Fermi's golden rule is used to calculate the probability of a transition per time unit of a system from the initial state |i, ⃗ k ν ⟩ to the final state |j, ⃗ k µ ⟩, given by :

Γ i ⃗ kν →j ⃗ kµ = 2π ℏ ⟨j, ⃗ k µ | H e-γ |i, ⃗ k ν ⟩ 2 δ E j ⃗ kµ -(E i ⃗ kν ± ℏω ⃗ q )
where :

• Γ transition rate (unit 1/s)

• H e-γ electron-radiation interaction (unit meV)

• E j ⃗ kµ = E i ⃗ kν ± ℏω ⃗ q final energy state (unit meV), with ℏω ⃗ q the photon energy This rule gives us the transition rate Γ i j νµ depending on two plane eigenvalues {E i , E j } of respectively two wave vectors { ⃗ k ν , ⃗ k µ }. Using the exponential form of the vector potential ⃗ A (eq: 6.

2) which contains two terms, only the one containing e -iωt yields the absorption process, thus its complex conjugate e +iωt gives rise to an emission process, so we get a general form such as :

Γ i ⃗ kν →j ⃗ kµ = 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⟨j, ⃗ k µ | e ±i⃗ q.⃗ r ⃗ ϵ.⃗ p |i, ⃗ k ν ⟩ 2 δ E j ⃗ kµ -(E i ⃗ kν ± ℏω ⃗ q ) (6.4)
where the term in +ℏω ⃗ q inside the delta function means a photon absorption, and inversely -ℏω ⃗ q for a photon emission.

Calculation of transition states

We seek to determine the absorption and emission transitions, to do this we use the previous formula of transition rate (eq: 6.4) that we project on all the heterostructure wave functions Ψ of the system (eq: 5.1), we write this expression as being a four indices term such as :

Γ i j νµ abs/emi = 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⟨Ψ jµ | e ±i⃗ q.⃗ r ⃗ ϵ.⃗ p |Ψ iν ⟩ 2 δ E j ⃗ kµ -(E i ⃗ kν ± ℏω ⃗ q ) (6.5)
Remembering that the heterostructure wave functions (eq: 5.1) are written for an energy E i ⃗ kν at a wave vector ⃗ k ν , such as : We rewrite this expression with a lighter-weight form :

∀ k ∈ R 2 ⟨⃗ r |Ψ iν ⟩ = Ψ iν (⃗ r ) = 8 n=1 1 √ S e i ⃗ kν .⃗ ϱ f n (z, E i ⃗ kν ) U 0n (⃗ r ) with • |n⟩ = |c, l,
Ψ iν = n F ⃗ kν n (⃗ r, E i ) U 0n (⃗ r ) (6.6)
with the following properties :

• F ⃗ kν n (⃗ r, E i ) = 1 √ S e i ⃗ kν .⃗ ϱ f ⃗ kν n (z, E i )
slowly varying wave function at the primitive cell scale Ω .

• U 0n (⃗ r ) rapidly varying wave function inside Ω, and as being a Bloch function such as

U (⃗ r + ⃗ R ) = U (⃗ r
) , so repetitive in each primitive cell (eq: 2.

3).

Separation of the wave function into slowly and rapidly varying components

We are interested in the overlap part of Γ i j νµ from the initial state |i, ⃗ k ν ⟩ to the final state |j, ⃗ k µ ⟩ of the heterostructure wave function, getting :

⟨Ψ jµ | e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p |Ψ iν ⟩ = m n ⟨F ⃗ kµm j U 0m | e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p |F ⃗ kν n i U 0n ⟩ = m n ⟨F ⃗ kµm j U 0m | e ±i⃗ q.⃗ r |U 0n ⃗ ϵ . ⃗ p F ⃗ kν n i ⟩ + ⟨F ⃗ kµm j U 0m | e ±i⃗ q.⃗ r |F ⃗ kν n i ⃗ ϵ . ⃗ p U 0n ⟩ = m n F ⃗ kµm (⃗ r, E j ) U 0m (⃗ r ) e ±i⃗ q.⃗ r U 0n (⃗ r ) ⃗ ϵ . ⃗ p F ⃗ kν n (⃗ r, E i ) d⃗ r 3 + F ⃗ kµm (⃗ r, E j ) U 0m (⃗ r ) e ±i⃗ q.⃗ r F ⃗ kν n (⃗ r, E i ) ⃗ ϵ . ⃗ p U 0n (⃗ r ) d⃗ r 3 (6.7)
The dot product ⃗ ϵ . ⃗ p implies an integral over all the terms, knowing the properties of F (⃗ r ), U (⃗ r ) and U (⃗ r + ⃗ R ), we look for simplifying each integral into two separate terms. One for the crystalline wave function U (⃗ r ) rapidly varying, and another for the whole system wave function F (⃗ r ) slowly varying. Assuming a crystalline material with a volume V composed of primitive cells of volume Ω, we can express it in the following manner : 

Ω l = V ∀ l ∈ N N l=1 Ω l dΩ l = V (6.8) N l=1 Ω l dΩ l = ⃗ r∈V d⃗ r 3
We show in the table 6.1 below some crystalline primitive cell dimensions of binary materials :

Crystal material lattice length L 0 (Å) lattice volume Ω Å Table 6.1: Primitive cell dimensions of cubic (T d group) semiconductor materials, with the three lattice vectors that define the unit cell as being L x =L y =L z =L 0 , and the lattice volume Ω=L 3 0 .

Let us discuss the properties of the envelope wave function F , we can see thanks to the scheme 4.1 that due to the thinness of the materials used, for instance our InAs or InAsSb layers, the function F is not constant inside a lattice length L 0 (whose sizes are given in the table 6.1 above) but slowly varying.

Using the property of our volume equation 6.8, we rewrite the envelope function F initially describing the whole crystalline volume V , as being a sum of F (⃗ r ′ ) inside each primitive cells Ω l , such as :

⃗ r ∈V F (⃗ r ) d⃗ r 3 = N l=1 ⃗ r ′ ∈ Ω l F (⃗ r ′ ) dΩ l (6.9)
with ⃗ r ′ belonging to the primitive cell Ω l .

Indeed the envelope wave function F is slowly varying continuously throughout the heterostructure, that implies to be differentiable at least in the first order. That is why we propose to express F using the Taylor series around an arbitrary point ⃗ r 0 of each lattice length L 0 :

F (⃗ r ′ ) = ∞ s=0 1 s! ∂ s F (⃗ r ′ ) ∂⃗ r ′ s r 0 (⃗ r ′ -⃗ r 0 ) s = F (⃗ r 0 ) + -→ ∇F (⃗ r 0 ) (⃗ r ′ -⃗ r 0 ) + 1 2 -→ ∇ 2 F (⃗ r 0 ) (⃗ r ′ -⃗ r 0 ) 2 + ...
with ⃗ r 0 such as 0 < r 0 ⩽ L 0 , so we get F (⃗ r 0 ) as being a constant inside the primitive cells, as shown in the scheme below 6.2 for a chosen orientation : . Working in a single dimension, the green curve is an average of the function F for each ⃗ r 0l of each primitive length L 0 .

We have here two remarks, first when the layers are made of two different materials, the first-order derivative diverges at the layer interfaces. It turns out that the second-order derivative and others will exhibit the same behavior. Our second point is that the orders of Taylor polynomials lead to the generation of terms such as (⃗ r ′ -⃗ r 0 ) s for s > 0, involving in the hereinafter developments new kinds of crystalline matrix elements that are unknown, to circumvent this, we will restrict ourselves to using only the zeroth-order Taylor polynomial. So using the zeroth order Taylor polynomial we tweak the integrals of the equation 6.7 , leaving aside the operator ⃗ p for now, it yields :

⃗ r ∈V F ⃗ kµm (⃗ r ) U 0m (⃗ r ) F ⃗ kν n (⃗ r ) U 0n (⃗ r ) d⃗ r 3 = N l=1 ⃗ r ′ ∈ Ω l F ⃗ kµm (⃗ r ′ ) U 0m (⃗ r ′ ) F ⃗ kν n (⃗ r ′ ) U 0n (⃗ r ′ ) dΩ l ≈ N l=1 F ⃗ kµm (⃗ r 0l ) F ⃗ kν n (⃗ r 0l ) ⃗ r ′ ∈ Ω l U 0m (⃗ r ′ ) U 0n (⃗ r ′ ) dΩ l
Knowing that the functions F (⃗ r 0l ) are constant inside each primitive cell Ω l , we can consider them as an average within Ω l (in green in the 1D scheme 6.2), such as :

F ⃗ kµm (⃗ r 0l ) F ⃗ kν n (⃗ r 0l ) = F ⃗ kµm F ⃗ kν n Ω l
Let us develop our expression using this property :

N l=1 F ⃗ kµm (⃗ r 0l ) F ⃗ kν n (⃗ r 0l ) ⃗ r ′ ∈ Ω l U 0m (⃗ r ′ ) U 0n (⃗ r ′ ) dΩ l = N l=1 1 Ω l ⃗ r ∈ Ω l F ⃗ kµm (⃗ r ) F ⃗ kν n (⃗ r ) dΩ l ⃗ r ′ ∈ Ω l U 0m (⃗ r ′ ) U 0n (⃗ r ′ ) d⃗ r ′ 3
whatever the primitive cell, the overlap of crystalline periodic wave functions U is always the same ∀ l Ω l = Ω. However because of F is a continuous slowly varying function throughout the total space V , its overlap depends on the primitive cell position inside the heterostructure, yielding :

= 1 Ω ⃗ r ′ ∈ Ω U 0m (⃗ r ′ ) U 0n (⃗ r ′ ) d⃗ r ′ 3 N l=1 ⃗ r ∈ Ω l F ⃗ kµm (⃗ r ) F ⃗ kν n (⃗ r ) dΩ l
Using our aforementioned expression 6.9 we sum the envelope wave functions overlap over the whole crystal, at last to give us :

⃗ r ∈ V F ⃗ kµm (⃗ r ) U 0m (⃗ r ) F ⃗ kν n (⃗ r ) U 0n (⃗ r ) d⃗ r 3 = ⃗ r ∈ V F ⃗ kµm (⃗ r ) F ⃗ kν n (⃗ r ) d⃗ r 3 1 Ω ⃗ r ′ ∈ Ω U 0m (⃗ r ′ ) U 0n (⃗ r ′ ) d⃗ r ′ 3 (6.10)
To lighten the writing, we set the crystalline function as being normalised :

u n (⃗ r ′ ) = 1 √ Ω U n (⃗ r ′ )
Finally we use the result equation 6.10 in the initial overlap part of Γ i j νµ (eq: 6.7), taking into account the operator ⃗ p, to separate the slowly and rapidly varying wave functions overlaps such as :

⟨Ψ jµ | e ±i⃗ q.⃗ r ⃗ ϵ.⃗ p |Ψ iν ⟩ = m n ⃗ r ∈V F ⃗ kµm (⃗ r, E j ) e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p F ⃗ kν n (⃗ r, E i ) d⃗ r 3 ⃗ r ′ ∈Ω u 0m (⃗ r ′ ) u 0n (⃗ r ′ ) d⃗ r 3 + ⃗ r ∈V F ⃗ kµm (⃗ r, E j ) F ⃗ kν n (⃗ r, E i ) e ±i⃗ q.⃗ r d⃗ r 3 ⃗ r ′ ∈Ω u 0m (⃗ r ′ ) ⃗ ϵ . ⃗ p u 0n (⃗ r ′ ) d⃗ r 3 = m n ⟨F ⃗ kµm j | e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p |F ⃗ kν n i ⟩ ⟨u 0m |u 0n ⟩ intraband + ⟨F ⃗ kµm j | e ±i⃗ q.⃗ r |F ⃗ kν n i ⟩ ⟨u 0m |⃗ ϵ . ⃗ p |u 0n ⟩ interband (6.11)
To facilitate the comprehension, we will study individually the interband and intraband terms, knowing that due to our structure properties we separate ⃗ q into the in-plane ⃗ e ϱ axis and the growth ⃗ e z axis : e i⃗ q.⃗ r = e i⃗ q / / . ⃗ ϱ e iqz z with ⃗ q / / . ⃗ ϱ = q x x + q y y 6.3.2 Light polarisation along the ⃗ e z axis for interband terms

Using our previous expression eq: 6.11, we only work with the interband terms in this section, let us develop this one by introducing the envelope wave function f (eq: 6.6), such as :

⟨Ψ jµ | e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p |Ψ iν ⟩ inter = m n 1 S e i( ⃗ kν -⃗ kµ±⃗ q / / ).⃗ ϱ d⃗ ϱ f ⃗ kµm (z, E j ) f ⃗ kν n (z, E i ) e ±iqzz dz ⟨u 0m |⃗ ϵ . ⃗ p |u 0n ⟩ = δ ⃗ kν , ⃗ kµ∓⃗ q / / m n ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ ⟨u 0m |⃗ ϵ . ⃗ p |u 0n ⟩
assuming q z is negligible due to q z ≪ k z , so e iqz ≈ 1 . (6.12)

The development generates a Kronecker delta linking the initial and the final wave vectors, it implies that the optical transitions can only be direct, let us speak about this in the next section 6.5 .

The matrix elements ⟨u 0m |⃗ ϵ . ⃗ p |u 0n ⟩ depend on the group theory, for the T d group (see eq: 2.7) with sp 3 hybridization at Γ point , we remember that only these matrix elements exist :

⟨X | px | S ⟩ = ⟨ Y | py | S ⟩ = ⟨ Z | pz | S ⟩ = -im 0
For a Light polarisation along the ⃗ e z axis, it means that ⃗ ϵ = ⃗ e z and knowing that |⃗ e z | = 1 we write ⃗ ϵ . ⃗ p = pz . We have to sum over all indices n and m of our basis (Table : 2.3), for the overlap part we get :

m n ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ ⟨u 0m | pz |u 0n ⟩ = - 2 3 m 0 ⟨f c ↑ j | f l ↑ i ⟩ + ⟨f c ↓ j | f l ↓ i ⟩ + ⟨f l ↑ j | f c ↑ i ⟩ + ⟨f l ↓ j | f c ↓ i ⟩ + 1 3 m 0 ⟨f c ↑ j | f s ↑ i ⟩ + ⟨f c ↓ j | f s ↓ i ⟩ + ⟨f s ↑ j | f c ↑ i ⟩ + ⟨f s ↓ j | f c ↓ i ⟩

Light polarisation along the ⃗ e z axis for intraband terms

Using our aformentioned expression eq: 6.11, we only work with the intraband terms in this section, we develop by introducing the envelope wave function f (eq: 6.6), such as :

⟨Ψ jµ | e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p |Ψ iν ⟩ intra = m n δ mn 1 S d⃗ r 3 f ⃗ kµm (z, E j ) e -i ⃗ kµ.⃗ ϱ e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p f ⃗ kν n (z, E i ) e i ⃗ kν .⃗ ϱ = n 1 S d⃗ r 3 f ⃗ kµn (z, E j ) e -⃗ kµ.⃗ ϱ e ±i⃗ q.⃗ r ⃗ ϵ . ⃗ p f ⃗ kν n (z, E i ) e i ⃗ kν .⃗ ϱ
knowing ⃗ ϵ . ⃗ p = pz and reminding that :

• q z ≪ k z so e ±iqzz ≈ 1

• |n⟩ = |c, l, h, s⟩ ⊗ |↑↓⟩ • pz = -iℏ

∂ ∂z

It allows to write the intraband terms as being :

⟨Ψ jµ | e ±i⃗ q.⃗ r pz |Ψ iν ⟩ intra = n 1 S d⃗ r 3 f ⃗ kµn (z, E j ) e -i ⃗ kµ.⃗ ϱ e ±i⃗ q.⃗ r pz f ⃗ kν n (z, E i ) e +i ⃗ kν .⃗ ϱ = n 1 S e i( ⃗ kν -⃗ kµ±⃗ q / / ).⃗ ϱ d⃗ ϱ dz f ⃗ kµn (z, E j ) e ±iqzz pz f ⃗ kν n (z, E i ) = -iℏ δ ⃗ kν , ⃗ kµ∓⃗ q / / n dz f ⃗ kµn (z, E j ) ∂ ∂z f ⃗ kν n (z, E i ) = -iℏ δ ⃗ kν , ⃗ kµ∓⃗ q / / n f ⃗ kµn j ∂ ∂z f ⃗ kν n i (6.13)
Exactly as for interband development, we obtain a Kronecker delta linking the initial and the final wave vectors (see next section 6.5).

In-plane polarized light for interband terms

In the same way as the previous section: 6.3.2, we use the equation: 6.11 and project it on the plane axis ⃗ ϵ = ⃗ e ϱ = ⃗ e x + ⃗ e y , knowing that we have to renormalize this axis such as :

| ⃗ e ϱ | = C |e x | 2 + |e y | 2 = 1 so C = 1 √ 2
yielding for the ⃗ p operator :

⃗ ϵ . ⃗ p = 1 √ 2 px + 1 √ 2 py = 1 √ 2 p// (6.14)
So we write the interband terms as being :

Ψ jµ e ±i⃗ q.⃗ r p// √ 2 Ψ iν inter = δ ⃗ kν , ⃗ kµ∓⃗ q / / m n 1 √ 2 ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ ⟨u 0m | p// |u 0n ⟩ = δ ⃗ kν , ⃗ kµ∓⃗ q / / m n 1 √ 2 ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ ⟨u 0m | px |u 0n ⟩ + ⟨u 0m | py |u 0n ⟩ (6.15)
The crystalline plane matrix elements ⟨u 0m | p// |u 0n ⟩ depend on the operators px and py , using the table 2.3 and thanks to the group theory 2.7, we sum over all indices n and m, getting for the overlap part :

m n ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ 1 √ 2 ⟨u 0m | px |u 0n ⟩ + ⟨u 0m | py |u 0n ⟩ = m 0 √ 2 e i π 4    ⟨f c ↑ j |f h i ↑⟩ + ⟨f h ↓ j |f c i ↓⟩ + 1 √ 3 ⟨f c ↓ j |f l i ↑⟩ -⟨f l ↓ j |f c i ↑⟩ + 2 3 ⟨f c ↓ j |f s i ↑⟩ -⟨f s ↓ j |f c i ↑⟩    + m 0 √ 2 e -i π 4    ⟨f h ↑ j |f c i ↑⟩ + ⟨f c ↓ j |f h i ↓⟩ + 1 √ 3 ⟨f l ↑ j |f c i ↓⟩ -⟨f c ↑ j |f l i ↓⟩ + 2 3 ⟨f s ↑ j |f c i ↓⟩ -⟨f c ↑ j |f s i ↓⟩   
(6.16)

In-plane polarized light for intraband terms

Using the equation 6.11, with in-plane polarized light (along the ⃗ e ϱ axis) the overlaps for intraband terms give :

Ψ jµ e ±i⃗ q.⃗ r p// √ 2 Ψ iν intra = n 1 S d⃗ r 3 f ⃗ kµn (z, E j ) e -i ⃗ kµ.⃗ ϱ e ±i⃗ q.⃗ r p// √ 2 f ⃗ kν n (z, E i ) e +i ⃗ kν .⃗ ϱ
Leaving aside the normalisation factor (eq: 6.14) in front of the p// operator (but without forget it in the exponential term with ⃗ k ν .⃗ ϱ ) we have :

p// e i ⃗ kν .⃗ ϱ = -iℏ ∂ ∂x + ∂ ∂y e i kν √ 2 (x+y) ∀ k ν,x = k ν,y = k ν = 2 √ 2 ℏk ν e i ⃗ kν .⃗ ϱ
it turns out :

Ψ jµ e ±i⃗ q.⃗ r p// √ 2 Ψ iν intra = ℏk ν n 1 S d⃗ ϱ e i( ⃗ kν -⃗ kµ±⃗ q / / ) dz f ⃗ kµn (z, E j ) f ⃗ kν n (z, E i ) e ±iqz z
= ℏk ν δ ⃗ kν , ⃗ kµ∓⃗ q / / n ⟨f ⃗ kµn j |f ⃗ kν n i ⟩ (6.17)

Direct transitions

Either interband and intraband terms make appear a Kronecker delta function linking the initial wave vector state ⃗ k ν to the final one ⃗ k µ . In the next section we will sum over all wave vectors leading to convert the index µ into ν, knowing that ⃗ q is negligible due to its small value, we obtain that only direct transitions are possible.

A particular mention shall be made for intraband terms, because of this transition happens inside the band, it will necessarily be an indirect transition. Hence, a phonon interaction is required to move from an energy state to another. 

Modelling results for overlaps in k plane

We are interested in the interband overlaps of the envelope wave function f , however they depend on a lot of parameters such as the initial and final energy for a given wave vector k and a given electric field ⃗ E. In addition they have a real and an imaginary part, this is why the independent study of all overlaps given section 6.3.2 and 6.3.4 would be long and fastidious. Instead, we propose to study the total probability density |Ψ| 2 including the 8 bands wave functions (ignoring spin-obits states f s ) to have a global view of the envelope wave functions behaviour, we express it as being :

|Ψ| 2 = |f c ↑ | 2 + |f c ↓ | 2 + |f l ↑ | 2 + |f l ↓ | 2 + |f h ↑ | 2 + |f h ↓ | 2
and knowing that due to the normalisation property :

Ψ(E k , z) 2 dz = 1

10 periods superlattice

We choose two different wave vectors for our study, the first at k=0 nm -1 where there is no coupling between LP and HH states, and a second at k=0.4 nm -1 where theses states are coupled. We select 4 energies of the band dispersion (section: 5.3) for a given k, corresponding to the first conduction band c 1 above the gap, to the first heavy hole band h 1 below the gap, together with the first Tamm band and the light hole band l 1 .

We keep the same band number throughout the k dispersion leading to identify c 1 , h 1 , T amm, l 1 states by the same name even with a different k value, as shown in the figure below 6.4 : In the case where no electric field is applied we have the following results : 

10 periods superlattice under weak electric field

In the same way we have for a weak electric field of 5 kV/cm : In the same way as the results of wave functions along the ⃗ e z axis section 4.6, the total probability density |Ψ| 2 is shifted to left side of the structure for conduction states due to the positive electric field, while valence states are shifted to the right side.

Linear optical properties in semiconductor

To understand the linear optical properties within our heterostructure, we are not interested in the transition rate for a particular initial electron state, but in the total number of transitions happening per second, it leads us to study the absorption and emission transition power. These ones are obtained multiplying the transition energy of photons ℏω ⃗ q and, using the Fermi golden rule, by summing the transition rate Γ i j νµ (eq: 6.5) over all the possible initial states | ⃗ k ν ⟩ and final states | ⃗ k µ ⟩ weighed by their occupation probability.

The total occupation probability η of each state corresponds to the filling probability of the initial state and the emptiness probability of the final state. The particles interacting being fermions, we use the statistical probability distribution of Fermi-Dirac :

η ⃗ kν i = g ⃗ kν i
e β E ⃗ kν i -µ + 1 where :

• η ⃗ kν i the average number of particles in an energy state E i ⃗ kν

• g ⃗ kν i particle degeneracy of the state |i, ⃗ k ν ⟩ • E ⃗ kν i energy state at the wave vector ⃗ k ν • β = 1 k B T
thermodynamic energy of the heterostructure at the temperature T

• µ chemical energy

The spin degeneracy being lifted due to our basis, we have no degeneracy so g=1.

We express the transition power between an initial |i, ⃗ k ν ⟩ and a final state |j, ⃗ k µ ⟩ such as :

P ij (ℏω ⃗ q ) = ℏω ⃗ q ⃗ kµ ⃗ kν η ⃗ kν , i 1 -η ⃗ kµ , j Γ i j νµ
For the absorption process we use Γ i j νµ abs (eq: 6.5) with an absorbed energy +ℏω ⃗ q , and Γ i j νµ emi for emission process with an emitted energy -ℏω ⃗ q , it occurs :

P abs ij (ℏω ⃗ q ) = ℏω ⃗ q ⃗ kµ ⃗ kν η ⃗ kν , i 1 -η ⃗ kµ , j 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⟨j, ⃗ k µ | e +i⃗ q.⃗ r ⃗ ϵ.⃗ p |i, ⃗ k ν ⟩ 2 . δ E j ⃗ kµ -(E i ⃗ kν + ℏω ⃗ q ) P emi ij (ℏω ⃗ q ) = ℏω ⃗ q ⃗ kµ ⃗ kν η ⃗ kν , i 1 -η ⃗ kµ , j 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⟨j, ⃗ k µ | e -i⃗ q.⃗ r ⃗ ϵ.⃗ p |i, ⃗ k ν ⟩ 2 . δ E j ⃗ kµ -(E i ⃗ kν -ℏω ⃗ q )
Initial and final states being arbitrary, it should be more interesting to set the same states for both absorption and emission processes, so inverting emission indices, and after rearrangement we get :

P emi ji (ℏω ⃗ q ) = ℏω ⃗ q ⃗ kµ ⃗ kν η ⃗ kµ , j 1 -η ⃗ kν , i 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⟨j, ⃗ k µ | e -i⃗ q.⃗ r ⃗ ϵ.⃗ p |i, ⃗ k ν ⟩ 2 . δ E j ⃗ kµ -(E i ⃗ kν + ℏω ⃗ q )
Giving schematically for both processes : Figure 6.11: Absorption and emission processes between two states, the lowest energy is |i, ⃗ k ν ⟩ and the highest energy is |j, ⃗ k µ ⟩. For the both optical transitions the population is given by the statistical distribution of states η .

We obtain the net transition by taking the difference between absorption and emission power, and summing over all energy states of the system :

P (ℏω ⃗ q ) = i j P abs ij (ℏω ⃗ q ) -P emi ji (ℏω ⃗ q ) (6.18)
We propose to study separately interband and intraband effects, ignoring voluntarily the other in either case. However we have to bear in mind that we must sum interband and intraband terms inside the squared modulus of the transition rate Γ i j νµ (eq: 6.5).

Light polarisation along the ⃗ e z axis for interband terms (ignoring intraband)

Using the net transition power (eq: 6.18) and our aforementioned interband expression for light polarisation along the ⃗ e z (eq: 6.12), we have :

P inter (ℏω ⃗ q ) = ℏω ⃗ q i j 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⃗ kν ⃗ kµ δ ⃗ kν , ⃗ kµ∓⃗ q / / m n ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ ⟨u m | pz |u n ⟩ 2 . η ⃗ kν , i (1 -η ⃗ kµ , j ) -η ⃗ kµ , j (1 -η ⃗ kν , i ) δ E j ⃗ kµ -(E i ⃗ kν + ℏω ⃗ q )
The sum over the Kronecker delta for momenta conservation implies that transitions, due to photon absorption or emission, are only direct transitions of vector ⃗ k ± ⃗ q / / , so the sum over momenta does not depend on their final or initial states (see section 6.3.6). Furthermore, the photon wave vector ⃗ q / / is generally so much smaller than the crystal momentum ⃗ k that we can ignore it, occurring the momenta as being ⃗ k ν = ⃗ k µ = ⃗ k . Finally we obtain for the net transition of interband terms along the growth axis ⃗ e z :

P inter (ℏω) = 1 ℏω πℏ 2 eE 0 m 0 2 i j ⃗ k m n ⟨f ⃗ k m j |f ⃗ k n i ⟩ ⟨u m | pz |u n ⟩ 2 η ⃗ k , i -η ⃗ k , j . δ E j ⃗ k -(E i ⃗ k ± ℏω)

Light polarisation along the ⃗ e z axis for intraband terms (ignoring interband)

We propose to develop the intraband expressions, although we will not use them due to our aforementioned explanation (see section: 6.3.6). In the same way as interband terms, using the net transition power (eq: 6.18) and our earlier intraband expression for light polarisation along the growth ⃗ e z axis (eq: 6.13), we have :

P intra (ℏω ⃗ q ) = ℏω ⃗ q i j 2π ℏ eE 0 2m 0 ω ⃗ q 2 ⃗ kν ⃗ kµ δ ⃗ kν , ⃗ kµ∓⃗ q / / -iℏ n f ⃗ kµn j ∂ ∂z f ⃗ kν n i 2 . η ⃗ kν , i (1 -η ⃗ kµ , j ) -η ⃗ kµ , j (1 -η ⃗ kν , i ) δ E j ⃗ kµ -(E i ⃗ kν + ℏω ⃗ q )
For the same reason as previously explained, only direct transitions are possible for intraband terms, giving :

P intra (ℏω) = 1 ℏω πℏ 3 2 eE 0 m 0 2 i j ⃗ k n f ⃗ k n j ∂ ∂z f ⃗ k n i 2 η ⃗ k , i -η ⃗ k , j δ E j ⃗ k -(E i ⃗ k + ℏω)

In-plane polarized light for interband terms (ignoring intraband)

We work here with in-plane polarized light, using the previously made equation 6.15 for Γ i j νµ , that we insert into the equation of net transition power (eq: 6.18), we get :

P inter ⊥ (ℏω) = 1 ℏω ⃗ q πℏ 2 eE 0 m 0 2 i j ⃗ k m n ⟨f ⃗ kµm j |f ⃗ kν n i ⟩ 1 √ 2 ⟨u m | px |u n ⟩ + ⟨u m | py |u n ⟩ 2 . η ⃗ k , i -η ⃗ k , j δ E j ⃗ k -(E i ⃗ k + ℏω)
whose all the in-plane overlaps are given equation 6.16.

In-plane polarized light for intraband terms (ignoring interband)

Identically, we use the relation of the equation 6.17 for Γ i j νµ inside the net transition power (eq: 6.18), giving for intraband terms :

P intra ⊥ (ℏω) = 1 ℏω πℏ 3 2 eE 0 m 0 2 i j ⃗ k ⃗ k n ⟨f ⃗ k n j |f ⃗ k n i ⟩ 2 η ⃗ k , i -η ⃗ k , j δ E j ⃗ k -(E i ⃗ k + ℏω)

Gaussian distribution

The Dirac delta function, in the case of an ideal structure, is an atomic-like spectral line which is energy-centred in

E j ⃗ k -E i ⃗ k .
Nevertheless, for a real structure we have to consider diffusion processes within the structure because of defects, phonons and impurities interfering with electrons movement in the plane of growth layers leading to enlarge the delta function.

That is why we express it as a normalised Gaussian distribution depending on the σ parameter taking empirically into account these enlargement mechanisms, we write it such as :

δ E j ⃗ k -(E i ⃗ k + ℏω) = 1 σ √ 2π e - E j ⃗ k -(E i ⃗ k + ℏω) 2 2σ 2
Figure 6.12: a) Atomic-like spectral line b) Gaussian distribution centered in

E j ⃗ k -E i ⃗ k .
With the Full Width at Half Maximum (FWHM) and σ properties :

δ max 2 = δ ± F W HM 2 = 1 2σ √ 2 π F W HM = 2σ 2ln(2)
6.6 Photons absorbance

Absorption

To study absorption effects in the weak field approximation we use the Beer-Lambert law, which assumes that the fraction of photons absorbed in the medium is proportional to the length of the structure and equal to the attenuation coefficient (with a negative sign due to losses) :

dn dz = -α n with
• n number of photons per unit of volume (unit m -3 ) in the spectral range dω

• α absorption coefficient (unit m -1 )
We define the transmitted light intensity as being the energy flux of photon (with c the light celerity) times the structure surface S perpendicular to the growth ⃗ e z axis :

I = ℏω c n S
Let us rewrite the Beer Lambert's law in term of intensity and integrate it along the structure thickness l :

I I 0 1 I dI = - l 0 α dz ln(I) -ln(I 0 ) = -α l I = I 0 e -αl (6.19)
Where I 0 is the intensity of light entering in the slab of material, I corresponds to the transmitted intensity and P is the absorbed energy :

I + P = I 0
Using equation 6.19, it yields :

P (ℏω) = I 0 1 -e -α l
The absorption coefficient α being very small, we approximate this expression with a first-order Taylor series, it turns out : P = I 0 α l (6.20)

Poynting vector

The Poynting vector is a directional power flow of an electromagnetic field, it represents the energy transfer per unit area per time unit . Its modulus is therefore the density of energy flow, we link the formulae of the incident intensity I 0 and the Poynting vector magnitude thanks to the average over a period of time, such as :

I 0 = -→ Π τ S
Let us be interested in the magnitude of the Poynting expression :

-→ Π = 1 µ 0 ⃗ E × ⃗ B
with µ 0 the vacuum permeability.

Using our previous consideration (section 6.2.1) and the cosinus form of the radiation field (equation 6.

3), we have :

⃗ E = - ∂ ⃗ A ∂t = E 0 sin(ωt -⃗ q . ⃗ r) ⃗ ϵ ⃗ B = -→ ∇ × ⃗ A = ⃗ q × ⃗ ϵ E 0 ω sin(ωt -⃗ q.⃗ r) giving : -→ Π = E 2 0 µ 0 ω sin 2 (ωt -⃗ q.⃗ r) |⃗ ϵ × ⃗ q × ⃗ ϵ |
Let us see the squared modulus of the triple cross product component :

|⃗ ϵ × ⃗ q × ⃗ ϵ | 2 = ⃗ q (⃗ ϵ .⃗ ϵ ) -⃗ ϵ (⃗ ϵ . ⃗ q ) 2 = |⃗ ϵ | 2 |⃗ ϵ | 2 |⃗ q | 2 -(⃗ ϵ . ⃗ q ) 2 = |⃗ ϵ | 2 |⃗ q | 2 sin(θ)
with θ the angle between ⃗ ϵ and ⃗ q, knowing that these ones are orthogonal and |⃗ ϵ | 2 is a normalized unit vector, it yields :

|⃗ ϵ × ⃗ q × ⃗ ϵ | = |⃗ q |
Now we are able to calculate the average of the Poynting vector magnitude over a time period τ :

-→ Π τ = 1 τ τ 0 -→ Π dt = E 2 0 µ 0 ω q τ τ 0 sin 2 (ωt -⃗ q . ⃗ r )dt = E 2 0 µ 0 ω q 2
knowing that :

q = ω c n and c 2 = 1 ε 0 µ 0
with n the refractive index and ε 0 the vacuum permittivity.

We finally obtain the expression for the average magnitude of the Poynting vector over a time period :

-

→ Π τ = 1 2 E 2 0 n c ε 0 (6.21)

Absorbance

Taking the absorption formula equation 6.20 and our aforementioned result equation 6.21, including the adequate net power (section 6.5), we have :

α(ℏω) = P (ℏω) -→ Π τ S l = 2 E 2 0 n c ε 0 S l P (ℏω)
To express the absorbance A, we write it as a linear function of absorption along the structure thickness : A(ℏω) = α(ℏω) l (6.22)

Absorbance modelling

For all our modelizations we leave intraband terms aside (section: 6.3.6) and we consider electrons population at a temperature T =0 K, implying that the conduction band is empty and the valence band is full, and we will take the sigma value parameter σ=8 meV.

Properties at k null

We propose an overview of the absorbance behaviour at k=0 nm -1 for a short superlattice of 5 periods, allowing for easy differentiation of each state, giving : As explained in the section 6.5 on linear optics, we analyse two types of polarisation for our absorbance relation (eq: 6.22), yielding : Whatever the light polarisation, the most important peaks are for transitions around the gap zone, and the highest amplitudes are observed for transitions in bands with the same number like c 1l 1 , c 2l 2 or c 1h 1 , c 1 -T amm. For c 1h 1 and c 2h 1 transition are specific since, at k null, we have the HH states (except Tamm) extremely close to each other, so even though c 1h 1 is the main amplitude, we have to compare each overlap to know how important the other band mixing influences are (c 1h 2 , c 1h 3 , etc).

Absorbance versus electric field

To study the electric field effect in superlattice absorbance, we work with our 3 usual values of the electric field : For each case we have : no electric field (blue), with a weak electric field applied E=5 kV/cm (red) and with a strong one E=50 kV/cm (purple). Independent results of each case (electric field and polarisation) are given in annex: D.

We observe that the electric field has a very weak effect on the absorbance process, regardless of the light polarization, with the slight difference being that absorbance starts at lower energy ℏω.

Absorbance versus periods number

We analyse here, the effect of the number of periods on absorbance in 4 different cases without an applied electric field. We show that by increasing the number of periods, we can recover the absorption spectrum of an infinite SL. As one might expect, the more periods there are, so the more effective absorbance is. We calculated the absorbance for two types of polarisation of the incident light. In figure 6.16.b. the calculation are done for an incident in-plane polarized light, this is the configuration required for photodetectors. For comparison we make also the calculation of the absorbance with incident light polarized along the growth axis. We clearly see the absorption onsets corresponding to the activation of the transition from the HH 1 miniband to E 1 miniband (at ≈ 250 meV and E=0 kV/cm) and the transition from the LH 1 miniband to E 1 miniband (at ≈ 320 meV and E=0 kV/cm) in the photodetector configuration. We notice that the absorbance does not change significantly with the application of our external field. However, the absorption onset shifts toward lower energies when a strong electric field is applied.

Chapter 7

Conclusion

Superlattice electro-optics study

Superlattices are used in various optoelectronic application such as IR photodetectors or cascade laser. We were interested in photodetection in the MWIR spectral window with a Ga-free Type-II superlattice. We have shown that in InAs/InAs 1-x Sb x SL, electrons are not localized in the conduction band, whilst heavy holes are particularly well localized in each QW of the structure, and light holes are also well delocalized in valence band. As a consequence, electrons and light holes have a wide miniband and heavy holes a thin miniband. The required cut-off wavelength of 5mm corresponds to the transition from the first heavy holes miniband to the first electron miniband. Thanks to the electron delocalization and in spite of the heavy hole localization, the wavefunction overlap is good enough to ensure good absorption performances. However, transport by photogenerated holes can be limited by the flat heavy hole dispersion along the growth axis. Additionally, we have shown that heavy hole localization can be strongly increased by applying an external electric field, leading to the formation of a Wannier-Stark ladder.

We have shown that the application of a constant electric filed has very little effect on absorbance, even though a strong electric field allows to have a shift the absorbance onset to lower energies, but with a weak amplitude. We utilized the Gaussian approximation for energy conservation in the calculation of transition probabilities from an initial state to a final state, which provides a correct description of the phenomenological diffusion processes within the structure.

We calculated the SL energy dispersion versus the isotropic wave vector ⃗ k under the influence of varying electric fields ⃗ E. To obtain a more accurate curvature at high ⃗ k values it is necessary to include a complete far bands correction into the in-plane Hamiltonian to diagonalize. Finally, we studied the impact of the number of periods on absorbance within the Beer-Lambert approximation, demonstrating that greater numbers of periods result in more efficient absorbance.

Perspective

We can extend the numerical method used for superlattices to simulate other systems such as the Quantum Cascade Lasers (QCL) that works only in conduction band, as well as the Interband Cascade Lasers (ICL) with a coupling in all the bands of the Kane model (see figure 7.1 next page).

Our modelling is efficient and accurate for calculating electronic states and wave functions, which are essential for determining the overlaps of each energy states, leading to describe the electro-optical properties. We have focused on studying linear optical effects, but it is entirely feasible to extend our analysis to predict non-linear optical effects by calculating the n-th order susceptibilities χ (n) of the medium. In general, our numerical modeling provides the flexibility to combine different materials, enabling device designs tailored for optimal performance in electro-optical heterostructures.

Scheme of a part of a typical Interband Cascade Laser : Chapter 8

Introduction

Context

Downscaling of semiconductor nanoelectronics involves generation of heat, the most detrimental being the self-heating effect due to the thermalization of hot carriers generated by high electric fields. Consequently the device power density largely exceeds 100 W/cm 2 , leading to lattice temperature above the critical value of 400 K (Gaska1998 [START_REF] Gaska | Self-heating in high-power AlGaN-GaN HFETs[END_REF], Pop2006 [START_REF] Pop | Thermal phenomena in nanoscale transistors[END_REF]), which implies a significant reduction in performance (Rhyner2016 [73]) and lifetimes (Srinivasan2004 [START_REF] Srinivasan | International Conference on Dependable Systems and Networks[END_REF]) of the devices.

The current cooling technologies are particularly cumbersome and/or energy consuming, this is why thermoelectric devices based on the Peltier effect have a growing interest (Pennelli2014 [START_REF] Pennelli | Review of nanostructured devices for thermoelectric applications[END_REF]). Operating principle is based on the diffusive phonon and electron transport close to the equilibrium state, resulting in limited cooling power.

In this thesis we are interested in the other type of cooling devices based on the thermionic emission, operating in the nonequilibrium regime and able to achieve higher cooling power and efficiency than conventional thermoelectric devices (Ziabari2016 [START_REF] Ziabari | Nanoscale solid-state cooling: A review[END_REF]).

State of art

The first apparition of thermionic cooling devices began in the 50's (Murphy1956 [77]) and were characterized by two metals separated by a vacuum area. The functioning was based such as electrons with high thermal energy are thermionically emitted from the metal cathode (transfering their kinetic energies) to escape to the anode, thus generating cathode refrigeration (Hatsopoulos1979 [START_REF] Hatsopoulos | Thermionic energy conversion. Volume II. Theory technology, and application[END_REF]). However, metal-vacuum-metal based thermionic refrigerators are only able to operate at temperatures higher than 700 K. Room temperature refrigerators using this concept were investigated in the 90's with the emergence of semiconductor heterostructures in which quasiballistic transport of electrons could occur (Mahan1994 [START_REF] Mahan | [END_REF], Shakouri1997 [80], Zeng2000 [81]). In these structures the central vacuum area was replaced by a semiconductor heterostructure including one or several potential barriers that allowed a lattice cooling of approximately 1 K to 5 K was observed at 300 K (Mahan1998 [82], Zhang2004 [83], Vashaee2004 [84]).

Recently, works around heterostructures led to an efficient thermionic cooling effect (temperature reduction of 40%) in semiconductor-superconductor junctions for quantum computing applications with a sub-kelvin temperature bath (Mykkänen2020 [85]).

Functionning

In our project we are interested in double-barrier asymmetric heterostructures (Zhu2021 [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF]), as shown in the following figure G.2: Figure 8.1: Electron transport in double-barrier semiconductor heterostructures for thermionic cooling [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF].

The structure couples tunnel injection and thermionic extraction in a way that cold electrons are injected from the emitter into the single quantum well (QW) via a resonant tunneling effect through a thin potential barrier on the Left Hand Side (LHS) of the system. This one permits to concentrate the cooling in the QW, indeed the hot electrons which gain energy from the lattice due to phonon absorption process are removed from the QW through thermionic emission above a thick barrier on the Right Hand Side (RHS). This process, referred to as "evaporative cooling", is schematised in figure 8.2. Then electrons are relaxed in the collector (far right of the system) by emitting phonons, the thickness of the right barrier prevents the tunneling effects and enforces to surpass it thermionically. Thus, it is measured (Yangui2019 [START_REF] Yangui | Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures[END_REF]) that this kind of evaporative cooling of the electron gas (Jayasekera2007 [START_REF] Jayasekera | Cooling electrons in semiconductor devices: A model of evaporative emission[END_REF]) leads to a lowering of its internal temperature. Figure 8.2: Schematic concept of the evaporative cooling [START_REF] Yangui | Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures[END_REF] Operation of the device is strongly dependent on the bias voltage, When an electric field is applied cold electrons are injected, while hot electrons are extracted above the thick collector barrier. The remaining electrons with lower energy are rethermalized in the QW, resulting in a lower temperature for these electrons.

It was recently demonstrated, experimentally and by Non-Equilibrium Green Functions (NEGF) modeling, that asymmetric double-barrier thermionic structures are an effective device to reduce the electron temperature by applying a bias voltage to the structure (Yangui2019 [START_REF] Yangui | Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures[END_REF], Bescond2018 [START_REF] Bescond | Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure[END_REF]). The NEGF analysis of the current-voltage characteristics provided a quantitative description of the cooling of the electron gas (Bescond2022 [START_REF] Bescond | Comprehensive analysis of electron evaporative cooling in double-barrier semiconductor heterostructures[END_REF]). With this formalism, it is however very much time demanding to systematically study the cooling versus the different parameters of the system (barrier thicknesses, QW width, barrier heights) and the physical mechanisms controlling the cooling are not so explicit.

Here, we shall present an intuitive and analytical analysis of the electron density and temperature using rate equations for the population and energy of the 2D electron gas in an asymmetric QW under applied bias. Our model provides an understanding of physical mechanisms governing the electron cooling and the role of the various parameters. Such an understanding would lead to a more efficient design.

Rate equations

Electrons constantly enter (by tunnelling from the emitter or back flow from the collector near zero bias) and leave the QW (by thermally activated escape in the continuum or by tunnel back flowing to the emitter). Our model assumes the 2D electron gas is in a stationary state at temperature T QW while the phonon bath is at equilibrium at temperature T 0 . At a given applied bias, the stationary electric current is constant, which means there are as many electrons going in and out of the QW. Indeed the number of electrons n QW inside the well is constant and likewise for density energy of the electron gas, causing that the total power exchanged P QW is also null. These two conservation conditions give : where the summation index i runs over the various mechanisms that change the population and/or the energy of the electron gas. The solution this system of two rate equations suffices to determine both the electron temperature T QW and concentration n QW /S in the quantum well.

d( nQW S ) dt = i d( nQW S ) dt i = 0 conservation
In our asymmetrical double barrier structure, we consider the following processes :

• Injection from the emitter (inj) : electrons are elastically injected from electron bath to the QW by the resonant tunnel effect through the V 0 barrier (also called emitter barrier).

• Back Flow (BF) from the QW to the emitter (emitter BF) : electrons come back from the QW to electron bath with the same process as above.

• Scattering-assisted thermionic emission to the continuum (thermal escape) : the electrons escape from the QW to the 3D above-barrier states, via phonon absorption or emission.

• Scattering-assisted back flow from the collector (collector BF): electrons come back to the QW with the same process as above.

• Intrasubband transitions (intra) : process of energy exchange inside the QW, in which electrons gain or lose energy via phonon absorption or emission. The total number of electrons does not change during this process.

All the mechanisms contributing to the injection and extraction of electrons, as well as to changes in the internal energy of the electron gas, are schematically represented in figure 8.3. In the figure the energy E 1 is the QW bound state. In our study, we shall ignore interactions between particles of the same species, for electronelectron interaction because in semiconductor material like GaAs the carrier concentration is too low to be considered, and for phonon-phonon interaction because we suppose that the lattice is at thermodynamic equilibrium.

So we rewrite the conservation equations 8.1 depending on : And we sum the differentials of all the previous effects to derive the rate equations : 

d nQW S dt = d nQW S dt inj + d nQW
Note that the electronic concentration 8.2 in the QW does not contain the intrasubband term inasmuch as the latter does not change the number of electrons within the well. The sign appearing in front of the nQW dt terms depends on the nature of electron exchanges. It is positive/negative when the concentration of QW electrons increases/decreases. On the other hand the second equation 8.3 of the system embraces all the contributions, as above their signs depend on whether the electrons in the QW acquire or lose energy.

In the following, we will firstly determine the expressions of the terms of the rate equations related to the processes due to resonant tunnel effect (injection in the QW and the back flow to emitter), that are developed from mesoscopic physics. Secondly we will determine the expressions of the terms related to Longitudinal Optical (LO) phonons scattering assisted processes (thermionic emission to the continuum, back flow from the collector, intra QW energy redistribution). Details about the structure parameters are given in the next paragraph, and LO phonons will be defined in section 10.1.

Sample structure

We apply our model to a double barrier GaAs/AlGaAs heterostructure whose conduction band profile is schematically represented in the figure 8.4. The emitter, on the left-hand side, is made of Si doped GaAs of doping density n D , and is followed by a thin barrier of Al x Ga (1-x) As.

Then, there is an undoped thin GaAs QW and after a thick V b barrier of Al x Ga (1-x) As. The collector, on the right-hand side, is a n-doped GaAs region having the same doping density as the emitter. We only work with a single parabolic conduction band (CB), and we ignore the band coupling and non-parabolicity. We will essentially work with the following parameters [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF] :

• Emitter barrier : L 0 = 6 nm, x Al = 50 %, V 0 = 374.2 meV, m l /m 0 = 0.110 • Quantum well (QW) : L 1 = 6 nm, x Al = 0 %, V 1 = 0 meV, m 1 /m 0 = 0.063 • Collector barrier : L b = 100 nm, x Al = 25 %, V b = meV, m b /m 0 = 0.0837
where m 0 is the electron mass, unit kg.

The doping density in the emitter and in the collector is n D /Ω = 10 18 cm -3 . Consequently, with these parameters the QW binds only one state.

Chapter 9

Processes from tunnel effect 9.1 Transport through a potential barrier

Tunneling current density

The resonant tunnel transfer of electrons or energy through the thin V 0 barrier is modeled using the Datta formalism [START_REF] Datta | Electronic transport in mescoscopic systems[END_REF] for the calculations of the resonant sequential tunneling current in a double barrier structure. Within this model, the 1D current through the V 0 barrier is expressed as :

I 1 = -e h f em (E) -f QW (E) A(E -E 1 ) Γ(E) dE (9.1)
where f em and f QW are the electron occupation functions in the emitter and in the QW, with -e the electron charge, E 1 is the QW bound state, and the energies E belong to the electron states in the emitter.

We write the spectral function :

A(E -E 1 ) = Γ (E -E 1 ) 2 + (Γ/2) 2
imposing that tunneling is possible only when E 1 is resonant with the energy states in the emitter (with an energy width Γ). The term Γ/ℏ is the rate at which an electron in the QW would leak out through the V 0 barrier into the emitter. Following Datta we can write Γ ℏ = νT , where ν is the attempt frequency, which tells the number of times per second that an electron attempts to escape, and T is the tunneling transmission probability of an electron passing through the left-side barrier V 0 .

Notice that, for a 1D system with transport along the ⃗ e z axis, assuming parabolic energy dispersion in the emitter :

E kz = ℏ 2 k 2 z
2m 1 Leading to rewrite the above expression of 1D current through the V 0 barrier (eq: 9.1) as :

I 1 = -e L kz v z f em (E kz ) -f QW (E kz ) A(E kz -E 1 ) Γ(E kz )
where v z is the electron speed and L is the emitter length.

Following Zhu et al. [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF], we adapt this formulation to the calculation of the vertical current through a barrier in a layered heterostructure grown along the ⃗ e z direction, where the electrodes are 3D systems (instead of the 1D electrodes in the Datta model).

We get the average tunneling current density by summing over contributions from all electronic states ⃗ k of the electron gas, it yields the J 1 expression for the current density through the V 0 barrier (next page).

We express it such as :

E : { ⃗ k ∈ R 3 } J 1 = -e Ω ⃗ k v z (E kz ) f em (E kz , E k// ) -f QW (E 1 , E k// ) A(E kz ) Γ(E kz )
where :

• J 1 current density of electrons, unit A m 2

• ⃗ k = ( ⃗ k // , k z ) electron wave vector in the emitter (3D)

• v z speed of carriers

• E kz = ℏ 2 k 2 z 2m 1
energy state of the emitter in the continuum for the growth axis ⃗ e z

• E k// = ℏ 2 k 2 //
2m 1 energy state of the emitter in the continuum for the in-plane axis ( ⃗ e x , ⃗ e y )

• f em statistical Boltzmann distribution for electrons in the emitter

• f QW statistical Boltzmann distribution for electrons in the QW

• A Lorentzian fonction (Datta [90] p253) • Γ ℏ
tunneling rate at which an electron tunnels through the emitter barrier, unit s -1

• E 1 QW bound state in presence of external electric field, unit s -1
To obtain this relation in the form of continuous wave vectors, we transform the sum into integrals as :

J 1 = -e Ω Ω 8π 3 +∞ -∞ dk 2 // +∞ -∞ dk z v z (E kz ) f em (E kz , E k// ) -f QW (E 1 , E k// ) A(E kz ) Γ(E kz )
with Ω a volume (unit m 3 ).

We perform a change of coordinates from Cartesian to Cylindrical :

E : R 3 → [0; +∞[×[0; 2π[×R J 1 = -e 8π 3 +∞ 0 k // dk // 2π 0 dθ +∞ -∞ dk z v z (E kz ) f em (E kz , E k// ) -f QW (E 1 , E k// ) A(E kz ) Γ(E kz )
To express the current density integral in terms of energy, we write k // depending on E k// :

E k// = ℏ 2 k 2 // 2m 1 hence k 2 // = 2m 1 ℏ 2 E k// and the same for k z with E kz : knowing v z (E kz ) = ℏ m 1 k z = 1 ℏ ∂E kz ∂k z so v z (E kz ) dk z = 1 ℏ dE kz (9.
2) yielding :

J 1 = -e 8π 2 +∞ 0 2m 1 ℏ 2 dE k// +∞ -∞ 1 ℏ dE kz f em (E kz , E k// ) -f QW (E 1 , E k// ) A(E kz ) Γ(E kz )
In the following calculations, as in [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF], we consider a perfect transmission, omitting enlargement effects due to tunnel leakage, so we take A(E kz ) = 2π δ(E kz -E 1 ). Notice also that, as the inplane wavevector is conserved during a tunneling process, and as the effective mass is the same on both sides of the barrier, the in-plane energy

E k// = ℏ 2 k 2 / /
2m 1 is conserved. Thus, the tunneling current density becomes :

J 1 = -e 2π m 1 ℏ 3 +∞ 0 dE k// f em (E 1 , E k// ) -f QW (E 1 , E k// ) Γ(E 1 ) (9.3) 
For an electron gas with a temperature high enough (T room ≈ 300K) to neglect quantum effects, we use the Maxwell-Boltzmann statistics to describe the average number of particles (LL [START_REF] Lifchitz | [END_REF] p133) as :

f i = g i e β(E i -µ)
where :

• f i average number of particles in the energy state E i • g i degeneracy for an electron of energy E i (the number of quantum states at this energy)

• µ electron chemical potential

• β = 1 k B T
with k B the Boltzmann constant and T the system temperature

In case of electrons in the emitter the chemical potential µ em is determined by charge neutrality, the chemical potential of the QW µ QW is unknown, and taking into account the spin we have two quantum states |↑↓⟩ for an electron, that gives us a degeneracy g i = 2.

So we obtain the statistical distributions :

• f em (E kz , E k// ) = 2 e -βem (E ⃗ k -µem) = 2 e -βem (E kz +E k / / -µem) • f QW (E 1 , E k// ) = 2 e -βQW (E 1 +E k / / -µQW)
The electronic concentration in the emitter is governed by the Boltzmann distribution, implying a higher density of electrons at the lower energies near the bottom of the emitter.

As we have done in the equation 9.3, the energy E kz has been substituted by E 1 at resonance :

J 1 = -e π m 1 ℏ 3 Γ(E 1 ) e -βem(E 1 -µem) +∞ 0 dE k// e -βemE k / / -e -βQW(E 1 -µQW) +∞ 0 dE k// e -βQWE k / /
It occurs :

J 1 = - e m 1 πℏ 2 Γ(E 1 ) ℏ 1 β em e -βem(E 1 -µem) resonant injection - 1 β QW e -βQW(E 1 -µQW)
emitter back flow

= J inj + J emitt.bf (9.4)
As we can see from the previous equation, the current density includes two terms. The term related to the "resonant injection" to insert electrons with low energy (low k z ) due to the statistical distribution and the energy value E 1 , as explained in the previous paragraph. And the term "emitter back flow" which corresponds to a return of electrons from the QW to emitter.

We introduce the more compact notation Γ(E 1 ) ℏ = 1 τtunnel for the tunneling rate at which an electron in the QW tunnels through the emitter barrier.

Following the method of Datta, we calculate this rate such as :

1 τ tunnel = ν QW (E 1 ) T (E 1 ) (9.5) 
where ν QW (E 1 ) is oscillation frequency of an electron bound to the E 1 state of the QW and T (E 1 ) is the tunneling transmission probability of the emitter barrier.

Calculation of the tunneling rate

The band profile of the asymmetric double barrier heterostructure in presence of an external electric filed E is represented below in figure 9.1. We choose the zero of energy at the conduction band edge of the emitter. In the presence of a bias and neglecting the intra-well Stark effect on account of the small QW width (4-6 nm), the energy E 1 of the electron bound to the QW is taken as :

E 1 = ∼ E 1 -e ϕ QW = ∼ E 1 -eE L 0 + L 1 2 (9.6)
where ∼ E 1 > 0 is the zero-field electron confinement energy, ϕ QW is the electrostatic potential at the center of the QW given that it is zero at the junction between the emitter and the V 0 barrier and E is the applied electric field. We calculate the oscillation frequency of an electron in the well using a classical "pingpong" model in presence of an applied bias. In such a case, the carrier is uniformly accelerated from left to right of the QW, and uniformly decelerated from right to left. As it hits a wall of potential, it reflects at both sides where its speed changes direction.

An electron with energy E 1 for the z motion satisfies the following classic expression for the mechanical energy :

1 2 m 1 dz dt 2 + eEz = E 1 (9.7)
We determine the first half of the oscillation with a duration T 1 (from left to right with dz/dt > 0) such as :

T 1 = m 1 2 L 0 +L 1 L 0 dz 1 √ E 1 + eEz = √ 2m 1 eE E 1 + eE(L 0 + L 1 ) -E 1 + eEL 0
In the second half of the oscillation with a duration T 2 after electron bounces off the right wall (from right to left with dz/dt < 0), we have with the same method as above :

T 2 = - m 1 2 L 0 L 0 +L 1 dz 1 √ E 1 + eEz = T 1
Thus, the oscillation frequency of an electron bound to the ∼ E 1 state of the QW is written :

ν QW (E 1 ) = 1 T 1 + T 2
And may be expressed using the equation 9.6 and the decomposition L 1 = L 1 /2 + L 1 /2 , such as :

ν QW (E 1 ) = eE 2 √ 2m 1   ∼ E 1 + eE L 1 2 - ∼ E 1 -eE L 1 2   -1 (9.8)
We notice that when E 1 (E) is inferior to the emitter CB edge, there is no more resonant tunneling injection.

The electron probability to tunnel through the V 0 barrier T (E 1 ) is calculated by using the following expression :

T (E 1 ) =   cosh 2 (K 0 L 0 ) + 1 4 ξ 2 - 1 ξ 2 2 sinh 2 (K 0 L 0 )   -1 where ξ = k 1 m l K 0 m 1 (9.9) 
where :

• k 1 = 2m 1 E 1 /ℏ • K 0 = 2m l (V 0 -E 1 )/ℏ

Electrons resonant injection

The first term of equation 9.4 J inj refers to the injected current density from the emitter to the well and it is given by :

J inj = - e m 1 πℏ 2 β em 1 τ tunnel e -βem (E 1 -µem) ( 9.10) 
We do not know the chemical potential of the emitter, but we can determine it from the number of electrons inside the emitter N em . At room temperature (T room ≈ 300K), it is reasonable to consider that all the donors are ionised such as

N em = n D .
Let us show how we express e βem µem in terms of N em :

The average number of electrons in the emitter summing over contributions from all electronic states ⃗ k of the electron gas, and using the statistical Boltzmann distribution f ( ⃗ k ) taking into account the spin degeneracy |↑↓⟩, is :

E : { ⃗ k ∈ R 3 } N em = ⃗ k f ( ⃗ k)
The sum is transformed into integral, and we perform a change of coordinates from Cartesian to Spherical :

E : R 3 → [0; +∞[×[0; π] × [0; 2π[ N em = 2 Ω 8π 3 +∞ 0 k 2 dk π 0 sin(θ) dθ 2π 0 dϕ e -βem ℏ 2 k 2 2m 1 -µem = Ω π 2 e βem µem +∞ 0 k 2 dke -βem ℏ 2 k 2 2m 1
A change of variable is required :

assume x 2 = ℏ 2 k 2 2m 1 β em ∀ k, x ∈ R + we have k = 2m 1 ℏ 2 β em x hence dk = 2m 1 ℏ 2 β em dx
and bounds are not modified :

N em = Ω π 2 e βem µem 2m 1 ℏ 2 β em 3 +∞ 0 dx x 2 e -x 2

J

where J = 1 4

√ π whence :

N em = Ω 4 e βem µem 2m 1 πℏ 2 β em 3 it turns out : e βem µem = N em Ω 4 2m 1 πℏ 2 β em -3 2 (9.11)
We can now rewrite J inj as :

J inj = -2 e 1 τ tunnel N em Ω 2m 1 πℏ 2 β em -1 2 e -βemE 1
The rate of change of the QW electron concentration due to the injection from the emitter is related to J inj as :

J inj = -e d nQW S dt inj so d nQW S dt inj = 2 n D Ω e -βemE 1 2m 1 πℏ 2 β em -1 2 1 τ tunnel (9.12)
with Ω the emitter volume such as Ω = L em S

Electron back flow to the emitter

The second term of equation 9.4 J emitt.bf refers to the back flow current density from the well to the emitter via tunneling through the V 0 barrier and it is expressed by :

J emitt.bf = e m 1 πℏ 2 1 τ tunnel 1 β QW e -βQW(E 1 -µQW)
We rewrite in such a way as to make appear a dimensionless term corresponding to the number of electron n QW in the QW :

J bf = e S Sm 1 πℏ 2 1 β QW e -βQW(E 1 -µQW) nQW 1 τ tunnel = e n QW S 1 τ tunnel
with the electronic concentration in the QW :

n QW S = m 1 πℏ 2 β QW e -βQW(E 1 -µQW) (9.13)
where

[ nQW S ] ≡ 1/m 2
This expression describes the electron behavior in the QW, it involves they come back in the emitter via tunnel effect T (E 1 ) through the barrier V 0 .

The electron density flowing back to the emitter is related to the current such as :

J emitt.bf = -e d nQW S dt emitt.bf d nQW S dt emitt.bf = - nQW S τ tunnel (9.14)

Power gain and loss

We need to take into account the rate of change of the 2D electron gas internal energy due to the tunnel injection of electrons in the QW and the back flow of electrons to the emitter. In analogy with the resonant current density, we express the power density P/S exchanged via tunneling through the left barrier as :

E : { ⃗ k ∈ R 3 } P S = 1 Ω ⃗ k E ⃗ k v z (E kz ) f em (E kz , E k// ) -f QW (E kz , E k// ) A(E kz ) Γ(E kz )
Using the same definitions as in the previous paragraphs and following similar analytical developments, (detailed in the appendix E ) the previous expression becomes :

P S = 2 n D Ω 2m 1 πℏ 2 β em -1 2 e -βem E 1 1 τ tunnel E 1 + 1 β em - nQW S τ tunnel E 1 + 1 β QW = P inj S + P emitt.bf S ( 9.15) 
where the first term is associated with the injected power (energy gain for the QW electrons) and the second term with the power lost with electron back flow (energy loss for the QW electrons).

Chapter 10

Scattering time due to phonons

Phonon scattering

We study here the phonon scattering in the system, as we discussed in the introduction part, we ignore interactions such as electron-electron and phonon-phonon (see chapter: 8.4), to be interested in the electron-phonon interaction.

Phonon in a crystal

The phonons are elastic collective excitations in a periodic arrangement of atoms, it corresponds to a quantization of vibrations modes, different sorts of vibrational modes exist :

• Acoustic phonons This is a coherent movement of lattice atoms out of their equilibrium positions. We call Longitudinal Acoustic (LA) phonons if the displacement is in the direction of propagation corresponding to compressional sound waves. Whilst, for the Transverse Acoustic (TA) phonons, if the displacement is perpendicular to the propagation direction, they are shear sound waves. The velocities of these sound waves are determined by the shear moduli (for TA) and bulk elastic moduli (for LA), since it is usually easier to shear than to compress a crystal, so the TA phonons travel with lower velocities than the LA phonons (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p111). 

Statistical physics

The thermodynamic properties of a solid are directly related to its phonon modes, the set of all possible phonon modes which are described by the dispersion relations determines the heat capacity of a crystal. If a crystal lattice is at zero temperature, it resides in its ground state and contains no phonons. When the lattice is heated and held at a non-zero temperature, its energy fluctuates randomly due to haphazard lattice vibrations. In view of the fact that the temperature of the lattice generates these phonons, they are called thermal phonons (with a temperature T 0 ), and they can be created or destroyed by random energy fluctuations [START_REF]Non-metals: thermal phonons[END_REF].

The number of phonon is not fixed, and they are identical bosons of zero mass and spin 1 with no mutual interaction, hence no chemical potential (µ is null [START_REF] Combescure | Cours de mécanique statistique Master 1ere annee[END_REF]). The behavior of thermal phonons is similar to the photon gas produced by an electromagnetic cavity, wherein photons may be emitted or absorbed by the cavity walls.

Let us speak about the phonon statistical distribution, as a massless particle they are characterized by their :

• Momentum ⃗ p = ℏ ⃗ q • Energy E = ℏ ω ⃗ q
We follow the Landau ([91] p179) approach for a Bose gas, taking as notation n j the number of phonons considered as being huge, and g j the number of states (particles degeneracy) for a quantum state j.

For a set of occupation of n j particles among g j states (with at least one particle per state), the number of permutations that modify the microscopic state of the distribution on the level j (MF [START_REF] Mathieu | Physique des semiconducteurs et des composants électroniques[END_REF] p46) is given by :

℧ j = (n j + g j -1)! n j ! (g j -1)!
where ℧ j represents the number of possibilities to populate the level E j with n j particles.

The total number of possibilities on all energy states E j is given by the product of ℧ j :

℧ = j ℧ j = j (n j + g j -1)! n j ! (g j -1)!
We calculate the system entropy such as :

S = ln (℧) = j ln (n j + g j -1)! n j ! (g j -1)!
using the Stirling formula for a huge number of particles N : ln(N !) ≈ N ln(N ) -N S = j (n j + g j -1) ln(n j + g j -1) -(n j + g j -1)n j ln(n j ) + n j -(g j -1) ln(g j -1) + (g j -1)

We seek to maximize the entropy S while considering the constraints that are : N = j g j n j total number of particles U = j g j n j E j intern energy (total energy) Using the Lagrangian multipliers method, and taking into account µ = 0, we have :

0 = ∂ ∂n j S k B -βU + βµN 0 = j ln(n j + g j -1) -ln(n j ) -β E j with β = 1 k B T
and k B the Boltzmann constant and T the system temperature For a given state j, we obtain the number of particles such as :

ln n j + g j -1 n j = β E j
g j being huge we have :

g j -1 ≈ g j ln n j + g j n j = β E j n j = g j e β ℏω ⃗ q -1
which corresponds to the Bose-Einstein statistics governing the behavior of phonons.

Semiconductor materials particularities :

As explained by Yu & Cardona [START_REF] Cardona | Fundamentals of Semiconductors[END_REF], in the diamond and zinc-blende type lattices there are two atoms per primitive unit cell, and hence there are six phonon branches, which are divided into three acoustic phonon branches (the three lower energy curves of the image 10.4 below) and three optical phonon curves. Along high-symmetry directions (such as the [START_REF] Philippe | Rate equations description of the asymmetric double barrier electronic cooler[END_REF] and [111] directions in Si and GaAs) the phonons can be classified as transverse or longitudinal according to whether their displacements are perpendicular or parallel to the wave vector ⃗ q direction. Figure 10.4: Phonon dispersion curves in GaAs along high-symmetry axes [START_REF] Strauch | Phonon dispersion in GaAs[END_REF]. The experimental data points were measured at 12 K. The continuous lines were calculated with an 11 parameter rigid-ion model. The numbers next to the phonon branches label the corresponding irreducible representations [START_REF] Cardona | Fundamentals of Semiconductors[END_REF].

The TA phonons have a dispersion relatively flat near the zone edge, and their energies are much lower than the LA phonon energies near this area, due to covalent bonds in these types of crystals. In GaAs and other zinc-blende-type semiconductors, the LO phonons have higher energy than the Transverse Optical (TO) phonons near the zone center. Exactly at this location, the TO and LO phonons in the zinc-blende crystals must also be degenerate because of the cubic symmetry of this sort of structure (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p112).

Optical phonon properties :

At wave vectors near the zone center, the LO phonon energy in GaAs and other zinc-blende crystals is larger than that of TO phonons. The reason resides in the partially ionic nature of the bond in zinc-blende crystals. In the case of GaAs, the As atoms contribute more electrons to the bond than the Ga atoms, implying that the As atoms are slightly negatively charged while the Ga atoms are slightly positively charged.

Since optical phonons can interact with electromagnetic radiation, we propose to understand this effect and show why the LO phonon energy is systematically larger than the TO phonons for polar semiconductors.

Following the Yu and Cardona approach ([12] p292), let us model phonons as quantum harmonic oscillators. We will begin by examining the response of a set of identical and charged quantum harmonic oscillators under a plane wave electric field ⃗ E. We shall assume that these harmonic oscillators are isotropic and uniformly distributed throughout the entire space in such a way to avoid problems related to the presence of surfaces.

Considering a system without damping and simply time dependent, the present forces are :

• ⃗ F res (t) = -γ ⃗ r(t) restoring force • ⃗ F elec (t) = ±e ⃗ E(t) electric force
with the stiffness constant γ and the harmonic electric field in plane wave ⃗ E

(t) = E 0 e -iωt
We put the equation of motion for our harmonic oscillator :

m 0 ∂ 2 ⃗ r(t) ∂t 2 = ⃗ F res (t) + ⃗ F elec (t) = -γ ⃗ r(t) ± e ⃗ E(t) = -m 0 ω 2 TO ⃗ r(t) ± e ⃗ E(t)
with ω TO = γ m 0 the transverse resonance frequency Let us resolve this differential equation using the Green's function formalism, applying the Fourier transform T F on the both sides of the motion equation, knowing :

∀ ⃗ r(t) ∈ R 3 and T F ∂ n ∂t n ⃗ r = -iω ′ n r
It gives us :

-ω ′2 r = -ω 2 TO r ± e m 0 Ê(ω ′ ) r = ± e m 0 1 ω 2
TOω ′2 Ê(ω ′ ) Finally to find the position function ⃗ r we apply the inverse Fourier transform such as :

⃗ r = ± e m 0 Ê(ω ′ ) ω 2 TO -ω ′2 e -iω ′ t dω ′ 2π knowing Ê(ω ′ ) = T F E 0 e -iωt = E 0 e i(ω ′ -ω)t dt = E 0 2π δ(ω ′ -ω) ⃗ r = ± e m 0 E 0 ω 2 TO -ω ′2 2π δ(ω ′ -ω) e -iω ′ t dω ′ 2π = ± e m 0 1 ω 2
TOω 2 E 0 e -iωt ⃗ e r Now we consider a chain of quantum harmonic oscillators as being a one dimensional Bravais lattice along the ⃗ e z axis with two atoms per unit cell (typically for GaAs material), each atom moves in the opposite direction and interacts only with the nearest neighbors via ζ = Ű(z), where U (z) is the interaction energy between two atoms (AM [START_REF] Ashcroft | solid state physics[END_REF] p430) . These ones are at a distance a/2 from each other, having two masses m 1 and m 2 , with opposite charges ±e, and interacting with a harmonic electric field in plane wave ⃗ E(t).

So we use the resolution above to obtain the two solutions :

⃗ r 1 = + e m 1 1 ω 2 TO -ω 2 E 0 e -iωt ⃗ e r and ⃗ r 2 = - e m 2 1 ω 2 TO -ω 2 E 0 e -iωt ⃗ e r (10.1)
The transverse optical phonon frequency ω TO at ⃗ q ≈ 0 is given by the relation (Misra [START_REF] Prasanta | Physics of Condensed Matter[END_REF] p45) :

ω TO = 2 ζ µ
and the reduced mass

1 µ = 1 m 1 + 1 m 2
The harmonic oscillators are charged and their movements are along the axis ⃗ e z , they produce a macroscopic polarization ⃗ P oscillating also at frequency ω :

⃗ P . ⃗ e z = ρ e (⃗ r 1 + ⃗ r 2 )
. ⃗ e z with ρ the atomic density (units m -3 )

= ρ e (z 1 -z 2 )
where z 1 and z 2 are the projections of eq: 10.1 onto the ⃗ e z axis

= ρ e 2 µ 1 ω 2 TO -ω 2 E 0 e -iωt
To determine the dielectric function ε r (ω) for semiconductor materials, we begin by taking into account two terms for the electric susceptibility, the contribution of valence electrons χ e and the contribution of the lattice χ l , that we can find using the following general relation between an arbitrary polarization ⃗ P and the electric field ⃗ E :

⃗ P i = ε 0 j χ l ij ⃗ E j
The electric susceptibility of the lattice χ l ij is a tensor of rank 2, in terms of components in 3 dimensions {⃗ e x , ⃗ e y , ⃗ e z }, it gives :

   P x P y P z    = ε 0    χ lxx χ lxy χ lxz χ lyx χ lyy χ lyz χ lzx χ lzy χ lzz       E x E y E z   
we work with dielectric materials that are uniform in all orientations, so for an isotropic electric susceptibility :

χ l ij =    χ lxx χ lxy χ lxz χ lyx χ lyy χ lyz χ lzx χ lzy χ lzz    =    χ l 0 0 0 χ l 0 0 0 χ l    = χ l
it yields a relation such as :

⃗ P = ε 0 χ l ⃗ E χ l = ρ e 2 µ ε 0 1 ω 2
TOω 2 And we write the dielectric function :

ε r (ω) = 1 + χ e + χ l = 1 + χ e + ρ e 2 µ ε 0 1 ω 2
TOω 2 We shall assume that the bandgap E g ≫ ℏω so that the radiation field appears to be static for electrons, on the other hand if ω ≫ ω TO the harmonic oscillators cannot follow the electric field and they no longer contribute to the total dielectric function (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p293) : ε r (∞) = 1 + χ e for E g ≫ ℏω ≫ ℏω TO This is the high frequency dielectric constant, much higher than vibrational frequencies but below electronic excitation energies.

Finally we obtain the dielectric function :

ε r (ω) = ε r (∞) + ρ e 2 µ ε 0 1 ω 2 TO -ω 2 (10.2)
For the static case, we have ω = 0 which gives us the relation :

ε r (0) = 1 + χ e + ρ e 2 µ ε 0 ω 2 TO
this is called the static dielectric constant, so we are able to rewrite the dielectric function :

ε r (ω) = 1 + χ e + ρ e 2 µ ε 0 ω 2 TO 1 1 -ω 2 ω 2 TO = ε r (∞) + ε r (0) -ε r (∞) 1 -ω 2 ω 2 TO (10.3)
We notice that the resonance frequency appears when ω = ω TO .

We will now study the electric displacement, assuming there are no excess charges in the media, we have the Gauss equation :

⃗ ∇ . ⃗ D = 0 giving ε r (ω) ⃗ k . ⃗ E = 0
It leads us to obtain both configurations for which Gauss equation vanishes, knowing ⃗ E ̸ = 0 :

• Transverse field ⃗ k . ⃗ E = 0 In this case, the electric field is perpendicular to the propagation direction given by ⃗ k, harmonic oscillators response is described by the dielectric function equation 10.2 .

• Longitudinal field ⃗ k// ⃗ E and ε r (ω) = 0 Here we have ⃗ k . ⃗ E ̸ = 0 because the electric field is parallel to the propagation direction ⃗ k, so we call the longitudinal frequency ω LO , and using the equation 10.3 we find the solution as following :

ε r (ω LO ) = 0 ε r (∞) + ε r (0) -ε r (∞) 1 -ω 2 LO ω 2 TO = 0 1 - ω 2 LO ω 2 TO = ε r (∞) -ε r (0) ε r (∞) ω LO = ω TO ε r (0) ε r (∞) (10.4) 
known as being the Lyddane-Sachs-Teller (LST) relation.

Different values of dielectric constants for semiconductor materials are mentioned in the table below :

Figure 10.5: Values of high-frequency ε r (∞) and static-frequency ε r (0) dielectric constants tabulated as experimental and theoretical for zinc-blende structured solids [START_REF] Verma | Dielectric constants of zinc-blende semiconductors[END_REF].

We have for our GaAs material ε r (∞) = 10.88 and ε r (0) = 12.85, which gives us using the LST formula (eq: 10.4), a relation such as ω LO = 1.087 ω TO .

Considerations for our study

We work around the high-symmetry point Γ considering uniquely the optical phonons, because the interaction electron-phonon is more efficient with optical than acoustical phonons due to their higher energy (figure: 10.4) on this symmetry point. More particularly, we decide to take into consideration only the LO phonons ω LO , due to the fact that LO phonons create a macroscopic polarization whilst TO phonons ω TO vibrations induce a polarization in the primitive cell.

Interaction electron-phonon

In this part we will study the effects between the quantum well and the continuum, which is above the collector barrier, via absorption and emission of LO phonons.

System Hamiltonian

We set the total Hamiltonian of our system (figure : 8.4), such as :

H = H 0 + H e-ph
where :

• H 0 non-perturbed Hamiltonian of the system

• H e-ph electron-phonon interaction which is considered as a perturbation For the electron-phonon interaction, the eigenvectors have the following basis :

|n, ⃗ k⟩ ⊗ |N ⃗ Q,qz ⟩ = |n, ⃗ k⟩ |N ⃗ Q,qz ⟩ where :
• |n, ⃗ k⟩ band state n with the wave vector ⃗ k

• |N ⃗ q ⟩ phonon state of wave vector ⃗ q = ( ⃗ Q, q z ) where ⃗ Q = q x ⃗ e x + q y ⃗ e y = Q ⃗ e ϱ

We consider a system governed by quantum harmonic oscillators, so we write the electron-phonon interaction H e-ph with the ladder operators. For a bosonic particle in the state |N ⃗ q ⟩ with a wave vector ⃗ q we have :

b |N ⃗ q ⟩ = √ n ⃗ q |N ⃗ q -1⟩ annihilation b † |N ⃗ q ⟩ = n ⃗ q + 1 |N ⃗ q + 1⟩ creation
The electron-phonon interaction H e-ph is given by :

H e-ph = ⃗ Q qz V ( ⃗ Q, q z ) e i( ⃗ Q.⃗ ϱ + qz z) b + V ( ⃗ Q, q z ) e -i( ⃗ Q.⃗ ϱ + qz z) b † 10.2.

Calculation of scattering time

We suppose a weak coupling with H e-ph , which allows us to handle this interaction within the framework of the time-dependant perturbation theory, and considering this system as having only elastic shocks (Fishman [5] p559). It leads us to use the Fermi golden rule to calculate the scattering time for a system from the initial state |i, ⃗ k ⟩ to the final state |j, ⃗ k ′ ⟩, the transition probability is given by :

Γ i ⃗ k→j ⃗ k ′ = 2π ℏ ⟨j, ⃗ k ′ | H e-ph |i, ⃗ k ⟩ 2 δ E j -(E i ± ℏω)
where :

• Γ transition probability (unit 1/s) We seek to determine the probability of a state transition between two subbands, given by the relaxation time. We propose to consider a transition from the state n=1 toward the state n ′ =2 knowing E 2, ⃗ k ′ > E 1, ⃗ k , and obtain a relation that we would then use for thermal escape effect and intrasubband exchange.

• Phonon absorption

First of all, we are interested in the absorption process, let us assume a state transition :

|1, ⃗ k⟩ |N ⃗ Q,qz ⟩ → |2, ⃗ k ′ ⟩ |N ′ ⃗ Q,qz ⟩
From the energy phonon absorption ℏω LO , as previously explained (chapter: 10.2.2), we apply the Fermi golden rule to the annihilation part of H e-ph :

Γ 1 ⃗ k→2 ⃗ k ′ = 2π ℏ ⃗ Q,qz ⟨N ′ ⃗ Q,qz | ⟨2 ⃗ k ′ | V ( ⃗ Q, q z ) e i ⃗ Q.⃗ ϱ e iqzz b |1 ⃗ k ⟩ |N ⃗ Q,qz ⟩ 2 δ E 2 ⃗ k ′ -(E 1 ⃗ k + ℏω LO ) = 2π ℏ ⃗ Q,qz ⟨2 ⃗ k ′ | e i ⃗ Q.⃗ ϱ e iqzz |1 ⃗ k ⟩ V ( ⃗ Q, q z ) ⟨N ′ ⃗ Q,qz | b |N ⃗ Q,qz ⟩ 2 δ E 2 ⃗ k ′ -(E 1 ⃗ k + ℏω LO )
studying separately the band term :

⟨2 ⃗ k ′ | e i ⃗ Q.⃗ ϱ e iqzz |1 ⃗ k ⟩ = ⟨2| e iqzz |1⟩ ⟨ ⃗ k ′ | e i ⃗ Q.⃗ ϱ | ⃗ k ⟩
and we know that from the Bloch theorem, we have for a wave vector ⃗ k such as :

| ⃗ k ⟩ = |Ψ ⃗ k ⟩ = 1 √ S e i ⃗ k⃗ ϱ |U ⃗ k ⟩ it occurs : ⟨Ψ ⃗ k ′ | e i ⃗ Q.⃗ ϱ |Ψ ⃗ k ⟩ = 1 S e i ⃗ Q.⃗ ϱ e i( ⃗ k-⃗ k ′ )⃗ ϱ d⃗ ϱ ⟨U ⃗ k ′ |U ⃗ k ⟩ =1 (normalisation see Fishman [5] p15) = 1 S e i( ⃗ k-⃗ k ′ + ⃗ Q)⃗ ϱ d⃗ ϱ = δ ⃗ k , ⃗ k ′ -⃗ Q (10.5)
Let us now study the phonon term :

⟨N ′ ⃗ Q,qz | b |N ⃗ Q,qz ⟩ = ⟨N ⃗ Q,qz -1| b |N ⃗ Q,qz ⟩
due to the fact that we lose a phonon from the final state ⟨N ′ ⃗ Q,qz |, then the residual quantity is the initial minus one :

N ′ ⃗ Q,qz = N ⃗ Q,qz -1 that gives : ⟨N ′ ⃗ Q,qz | b |N ⃗ Q,qz ⟩ = ⟨N ⃗ Q,qz -1| √ n LO |N ⃗ Q,qz -1⟩ = √ n LO ⟨N ⃗ Q,qz -1|N ⃗ Q,qz -1⟩ =1
Finally we obtain the absorption probability for a phonon energy ℏω LO :

Γ 1 ⃗ k→2 ⃗ k ′ = 2π ℏ n LO ⃗ Q,qz ⟨2| e iqzz |1⟩ 2 V ( ⃗ Q, q z ) 2 δ ⃗ k , ⃗ k ′ -⃗ Q δ E 2 ⃗ k ′ -(E 1 ⃗ k + ℏω LO )
• Phonon emission

We are interested in the emission process, let us assume a state transition :

|2, ⃗ k⟩ |N ⃗ Q,qz ⟩ → |1, ⃗ k ′ ⟩ |N ′ ⃗ Q,qz ⟩
From the energy phonon absorption ℏω LO , in this case we apply the Fermi golden rule to the creation part of H e-ph :

Γ 2 ⃗ k→1 ⃗ k ′ = 2π ℏ ⃗ Q,qz ⟨N ′ ⃗ Q,qz | ⟨1 ⃗ k ′ | V ( ⃗ Q, q z ) e -i ⃗ Q.⃗ ϱ e -iqzz b † |2 ⃗ k ⟩ |N ⃗ Q,qz ⟩ 2 δ E 2 ⃗ k ′ -(E 1 ⃗ k -ℏω LO ) = 2π ℏ ⃗ Q,qz ⟨1 ⃗ k ′ | e -i ⃗ Q.⃗ ϱ e -iqzz |1 ⃗ k ⟩ V ( ⃗ Q, q z ) ⟨N ′ ⃗ Q,qz | b † |N ⃗ Q,qz ⟩ 2 δ E 2 ⃗ k ′ -(E 1 ⃗ k -ℏω LO )
As before, we separate the band and phonon term such as :

⟨1 ⃗ k ′ | e -i ⃗ Q.⃗ ϱ e -iqzz |2 ⃗ k⟩ = ⟨1| e -iqzz |2⟩ ⟨ ⃗ k ′ | e -i ⃗ Q.⃗ ϱ | ⃗ k⟩
with :

⟨Ψ ⃗ k ′ | e -i ⃗ Q.⃗ ϱ |Ψ ⃗ k ⟩ = 1 S e i( ⃗ k-⃗ k ′ -⃗ Q)⃗ ϱ d⃗ ϱ = δ ⃗ k , ⃗ k ′ + ⃗ Q (10.6)
and the phonon term gives us :

⟨N ′ ⃗ Q,qz | b † |N ⃗ Q,qz ⟩ = ⟨N ⃗ Q,qz + 1| b † |N ⃗ Q,qz ⟩
Due to the fact that we gain a phonon from the final state ⟨N ′ ⃗ Q,qz |, then the residual quantity is the initial plus one :

N ′ ⃗ Q,qz = N ⃗ Q,qz + 1 that gives : ⟨N ′ ⃗ Q,qz | b † |N ⃗ Q,qz ⟩ = ⟨N ⃗ Q,qz + 1| √ n LO + 1 |N ⃗ Q,qz + 1⟩ = √ n LO + 1 ⟨N ⃗ Q,qz + 1|N ⃗ Q,qz + 1⟩ =1
Finally we obtain the emission probability for a phonon energy ℏω LO :

Γ 2 ⃗ k→1 ⃗ k ′ = 2π ℏ (n LO + 1) ⃗ Q,qz ⟨1| e -iqzz |2⟩ 2 V ( ⃗ Q, q z ) 2 δ ⃗ k , ⃗ k ′ + ⃗ Q δ E 2 ⃗ k ′ -(E 1 ⃗ k -ℏω LO ) (10.7)
10.3 Electron-LO-phonon interaction

Fröhlich interaction

In a polar or partially ionic crystal such as GaAs, the wavelength of longitudinal optical (LO) phonons induces an oscillating macroscopic polarization producing an electric field which interacts with electrons. This coupling of long range can be described by the Fröhlich interaction (YC [START_REF] Cardona | Fundamentals of Semiconductors[END_REF] p134), given by :

H F r = ⃗ q i C f q b e i⃗ q.⃗ r + b † e -i⃗ q.⃗ r
where :

C f = e ℏω LO 2ε 0 Ω 1 ε r (∞) - 1 ε r (0)
This expression is calculated in terms of macroscopic parameters of permittivity such as the high frequency dielectric constant ε r (∞) and the static dielectric constant ε r (0) (see table 10.5), besides it depends on the phonon wave vector q -1 . Hence it diverges in the case of q decreases to zero, fortunately this is not possible in intraband electron-LO-phonon scattering because the frequency of these ones is nonzero even at ⃗ q = 0.

Using this interaction we can write the potential of the perturbative term H e-ph , separating the plane ⃗ ϱ axis and the growth ⃗ z axis , such as :

V ( ⃗ Q, q z ) = i C f q knowing q = Q 2 + q 2 z and H e-ph = ⃗ Q,qz V ( ⃗ Q, q z ) e i ⃗ Q.⃗ ϱ e iqzz b + V ( ⃗ Q, q z ) e -i ⃗ Q.⃗ ϱ e -iqzz b † 10.3.

Calculation of state change probability for Fröhlich interaction

To determine the relaxation time we use the same method that was previously investigated (chapter: 10.2.3) in the case of the Fröhlich interaction for LO phonons. We show here a general overview about this mechanism, we look for the life time computation τ 1 ⃗ k that an electron remains on the state |1 ⃗ k⟩ with an absorption of a phonon of energy ℏω LO , for a transition between two subband states |1, ⃗ k⟩

|N ⃗ Q,qz ⟩ → |2, ⃗ k ′ ⟩ |N ′ ⃗ Q,qz
⟩, using the Fermi golden rule such as :

1 τ 1 ⃗ k = 2π ℏ C f 2 ⃗ k ′ , ⃗ Q,qz ⟨N ′ ⃗ Q,qz | ⟨2 ⃗ k ′ | e i ⃗ Q.⃗ ϱ e iqzz b |1 ⃗ k ⟩ |N ⃗ Q,qz ⟩ 2 ⃗ Q 2 + q 2 z δ E 2 ⃗ k ′ -(E 1 ⃗ k + ℏω LO ) = 2π ℏ C f 2 n LO ⃗ k ′ , ⃗ Q,qz ⟨Ψ 2 | e iqzz |Ψ 1 ⟩ 2 ⃗ Q 2 + q 2 z δ ⃗ k , ⃗ k ′ -⃗ Q δ E 2 + ℏ 2 ⃗ k ′2 2m 2 -E 1 + ℏ 2 ⃗ k 2 2m 1 + ℏω LO
We are interested in the wave vector amplitude of the phonon as a function of ⃗ k and ⃗ k ′ :

| ⃗ Q| 2 = | ⃗ k ′ -⃗ k| 2
we want to replace the phonon wave vector ⃗ Q to use the relation above :

δ ⃗ k , ⃗ k ′ -⃗ Q = δ ⃗ Q , ⃗ k ′ -⃗ k
and we replace it in the equation of τ 1 ⃗ k :

1 τ 1 ⃗ k = 2π ℏ C f 2 n LO ⃗ k ′ ,qz ⟨Ψ 2 | e iqzz |Ψ 1 ⟩ 2 | ⃗ k ′ -⃗ k| 2 + q 2 z δ E 2 + ℏ 2 ⃗ k ′2 2m 2 -E 1 + ℏ 2 ⃗ k 2 2m 1 + ℏω LO (10.8)
To obtain this relation as a continuous wave vector, we transform the sums into integrals, and we change the coordinates from Cartesian to Polar :

E : R 2 → [0; +∞[×[0; 2π[ | ⃗ k ′ -⃗ k| = k 2 + k ′2 -2kk ′ cos(θ)
Assuming Ω a volume (unit m 3 ), it yields :

1 τ 1 ⃗ k = 2π ℏ C f 2 n LO Ω 8π 3 ∞ 0 k ′ dk ′ . 2π 0 dθ dq z ⟨Ψ 2 | e iqzz |Ψ 1 ⟩ 2 | ⃗ k ′ -⃗ k| 2 + q 2 z δ E 2 + ℏ 2 k ′2 2m 2 -E 1 + ℏ 2 k 2 2m 1 + ℏω LO δ(∆ Ẽ21 ) 1 τ 1 ⃗ k = 2π ℏ C f 2 n LO Ω 8π 3 ∞ 0 k ′ dk ′ 2π 0 dθ ∞ -∞ dq z ⟨Ψ 1 | e -iqzz |Ψ 2 ⟩ ⟨Ψ 2 | e iqzz |Ψ 1 ⟩ | ⃗ k ′ -⃗ k| 2 + q 2 z δ(∆ Ẽ21 ) = 2π ℏ C f 2 n LO Ω 8π 3 ∞ 0 k ′ dk ′ 2π 0 dθ dz dz ′ Ψ 1 (z ′ )Ψ 2 (z)Ψ 1 (z)Ψ 2 (z ′ ) . ∞ -∞ dq z e iqz(z-z ′ ) q 2 z + | ⃗ k -⃗ k ′ | 2 I δ(∆ Ẽ21 )
where

I = π e -|z-z ′ | | ⃗ k-⃗ k ′ | | ⃗ k -⃗ k ′ | (demonstration see annex H.1)
We put it in the development :

1 τ 1 ⃗ k = 2π ℏ C f 2 n LO Ω 8π 2 ∞ 0 k ′ dk ′ 2π 0 dθ dz dz ′ Ψ 1 (z ′ )Ψ 2 (z)Ψ 1 (z)Ψ 2 (z ′ ) e -|z-z ′ | | ⃗ k-⃗ k ′ | | ⃗ k -⃗ k ′ | δ(∆ Ẽ21 ) = 2π ℏ C f 2 n LO Ω 8π 2 ∞ 0 k ′ dk ′ . (10.9) 2π 0 dθ dz dz ′ Ψ 1 (z ′ )Ψ 2 (z)Ψ 1 (z)Ψ 2 (z ′ ) e -|z-z ′ | √ k 2 +k ′2 -2kk ′ cos(θ) k 2 + k ′2 -2kk ′ cos(θ) F (k ′2 ) δ(∆ Ẽ21 )
Now, we are looking to write δ(∆ Ẽ21 ) as a function of k ′ to integrate it on dk ′ .

We have :

δ(∆ Ẽ21 ) = 2m 2 ℏ 2 δ k ′2 + 2m 2 ℏ 2 E 2 -E 1 -ℏω LO - ℏ 2 k 2 2m 1 -ξ 2 = 2m 2 ℏ 2 δ k ′2 -ξ 2
We finally obtain :

1 τ 1 ⃗ k = 2π ℏ C f 2 n LO Ω 8π 2 ∞ 0 k ′ dk ′ 2m 2 ℏ 2 δ(k ′2 -ξ 2 ) F(k ′2 ) = 2π ℏ C f 2 n LO Ω 8π 2 m 2 ℏ 2 Υ(ξ 2 ) F(ξ 2 )
with • Υ Heaviside function

• ξ 2 = 2m 2 ℏ 2 E 2 -E 1 -ℏω LO - ℏ 2 k 2 2m 1

Scattering time caused by Fröhlich phonons in the system

The QW population and the associated energy decrease because of thermionic emission to the continuum assisted by the absorption or emission of LO phonons. The other scattering mechanisms (elastic scatterers, acoustical phonons) will be neglected as they were proven to be less efficient (Zhu2021 [START_REF] Zhu | Electron Transport in Double-Barrier Semiconductor heterostructures for Thermionic Cooling[END_REF]). The V 0 barrier being much taller than the V b one, the electrons will escape predominantly to the continuum above the V b low barrier. The height of the right hand side potential barrier V b of the structure can be tailored by the external applied electric field E, such as :

V b (E) = V b,x -e E (L b + L)
where V b,x corresponds to the zero field, whose the potential barrier height is fixed by the Al content x.

The thermal escape mechanism consists of a loss of a hot electron from the QW band toward the continuum in a manner to keep only the cold electrons. First of all, we aim to determine the relaxation time of thermal escape of an electron in our system (figure 8.4), caused by the absorption/emission of a LO phonon ℏω LO from the QW to the continuum, we will study both processes separately.

Absorption

Assuming the state transition

|1, ⃗ k ⟩ |N ⃗ Q,qz ⟩ → |k ′ z , ⃗ k ′ ⟩ |N ′ ⃗ Q,qz
⟩ from the absorption of a phonon energy ℏω LO , the ground eigenstate |1, ⃗ k⟩ corresponds to the first energy state E 1 of the QW with a wave vector ⃗ k, while the final eigenstate |k ′ z , ⃗ k ′ ⟩ corresponds to the continuum states. The scattering time due to phonon absorption ℏω LO is given by :

1 τ abs 1 ⃗ k = 2π ℏ C f 2 ⃗ k ′ ,k ′ z ⃗ Q,qz ⟨N ′ ⃗ Q,qz | ⟨k ′ z , ⃗ k ′ | e i ⃗ Q.⃗ ϱ e iqzz b |1, ⃗ k ⟩ |N ⃗ Q,qz ⟩ 2 ⃗ Q 2 + q 2 z δ E k ′ z , ⃗ k ′ -(E 1, ⃗ k + ℏω LO )
We expand this equation in the same way as before (see eq 10.8) :

1 τ abs 1 ⃗ k = 2π ℏ C f 2 n LO ⃗ k ′ ,k ′ z ,qz ⟨Φ k ′ z | e iqzz |Ψ 1 ⟩ 2 | ⃗ k ′ -⃗ k| 2 + q 2 z δ E k ′ z , ⃗ k ′ -(E 1, ⃗ k + ℏω LO ) δ(∆E abs )
And put it as integrals form with | ⃗ k ′ -⃗ k| in Polar coordinates (see eq 10.9) :

1 τ abs 1 ⃗ k = 2π ℏ C f 2 n LO Ω 8π 2 ∞ 0 k ′ dk ′ 2π 0 dθ L b 2π .
(10.10)

dz dz ′ Ψ 1 (z ′ )Ψ 1 (z) ∞ -∞ dk ′ z Φ k ′ z (z)Φ k ′ z (z ′ ) e -|z-z ′ | √ k 2 +k ′2 -2kk ′ cos(θ) k 2 + k ′2 -2kk ′ cos(θ) δ(∆E abs )
where Ω is the quantum well volume such as Ω = L 1 S (unit m 3 ).

The energy conservation for absorption given by ∆E abs term is:

E k ′ z , ⃗ k ′ = E 1, ⃗ k + ℏω LO V b + ℏ 2 k ′2 2m b + ℏ 2 k ′2 z 2m b = E 1 + ℏ 2 k 2 2m 1 + ℏω LO (10.11)
Now, we want to write δ(∆E abs ) as a function of k ′ to integrate it on dk ′ :

δ(∆E abs ) = δ E k ′ z , ⃗ k ′ -(E 1, ⃗ k + ℏω LO ) = δ ℏ 2 k ′2 z 2m b + V b + ℏ 2 k ′2 2m b -E 1 - ℏ 2 k 2 2m 1 -ℏω LO -η abs (k ′2 ) = δ ℏ 2 k ′2 z 2m b -η abs k ′2
this function depends on k ′ z and k ′ that we have to integrate.

The energy conservation imposes that :

ℏ 2 k ′2 z 2m b -η abs = 0 and ℏ 2 k ′2 z 2m b ⩾ 0 ∀ k ′ z ∈ R it implies ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO ⩾ 0 (10.12) yielding : δ(∆E abs ) = 2m b ℏ 2 δ k ′2 z - 2m b ℏ 2 η abs
The function Φ k ′ z (z) corresponds to the continuum wave function when an electron is absorbed by a phonon ℏω LO , we can write it as a propagative plane wave of a wave vector k ′ z , such as :

Φ k ′ z (z) = 1 √ L b e ik ′ z z
Insert into in the equation 10.10 :

1 τ abs 1 ⃗ k = 2π ℏ C f 2 Ω 8π 2 n LO L b 2π ∞ 0 dk ′ 2 2 2π 0 dθ dz dz ′ Ψ 1 (z ′ )Ψ 1 (z) e -|z-z ′ | √ k 2 +k ′2 -2kk ′ cos(θ) k 2 + k ′2 -2kk ′ cos(θ) . 1 L b ∞ -∞ dk ′ z e ik ′ z (z ′ -z) 2m b ℏ 2 δ k ′2 z - 2m b ℏ 2 η abs F z,z ′ ,θ,η abs (k ′2 ) (10.13) 
leading after development to have :

1 τ abs 1 ⃗ k = C f 2 n LO Ω 8π 2 ℏ 1 2 ∞ 0 dk ′ 2 2π 0 dθ . dz dz ′ Ψ 1 (z ′ )Ψ 1 (z) e -|z-z ′ | √ k 2 +k ′2 -2kk ′ cos(θ) k 2 + k ′2 -2kk ′ cos(θ) F z, z ′ , θ, η abs = C f 2 n LO Ω 8π 2 ℏ 2 √ 2m b 4 ∞ 0 dk ′ 2 2π 0 dθ 1 η abs (k ′2 ) . dz dz ′ Ψ 1 (z ′ )Ψ 1 (z) e -|z-z ′ | √ k 2 +k ′2 -2kk ′ cos(θ) k 2 + k ′2 -2kk ′ cos(θ) cos   2m b η abs (k ′2 ) ℏ (z ′ -z)   I(k 2 ,k ′2 ,θ)
We obtain the Fröhlich scattering time for an electron to absorb a LO phonon in our system, such as :

1 τ abs 1 ⃗ k = C f 2 n LO Ω 8π 2 ℏ 2 √ 2m b 4 ∞ 0 dk ′ 2 2π 0 dθ I(k 2 , k ′2 , θ) η abs (k ′2 ) (10.14) with η abs k ′2 = ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO 10.4.

Emission

In the emission case, the state transition is still the same as the absorption case, meaning we have The principle is the same as for the absorption of a phonon of energy ℏω LO , however we need to modify the conservation of states for this process.

|1, ⃗ k ⟩ |N ⃗ Q,qz ⟩ → |k ′ z , ⃗ k ′ ⟩ |N ′ ⃗ Q,qz ⟩,

• Momentum conservation for absorption

⃗ Q = ⃗ k ′ -⃗ k =⇒ Q = | ⃗ k -⃗ k ′ | (see 10.5) for emission ⃗ Q = ⃗ k -⃗ k ′ =⇒ Q = | ⃗ k -⃗ k ′ | (see 10.6)
leading to obtain the same momentum ⃗ Q for absorption together with emission.

• Number of phonon for emission

As seen previously (eq : 10.7), we obtain :

knowing n LO = 1 e βem ℏωLO -1 n LO + 1 = n LO 1 + 1 n LO = n LO e βem ℏωLO
(10.15)

• Energy conservation

for absorption E k ′ z , ⃗ k ′ = E 1, ⃗ k + ℏω LO (see eq: 10.11) η abs = ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO for emission E k ′ z , ⃗ k ′ = E 1, ⃗ k -ℏω LO η emi = ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO
We obtain the Fröhlich scattering time for an electron to emit a LO phonon in our system :

1 τ emi 1 ⃗ k = C f 2 n LO e βem ℏωLO Ω 8π 2 ℏ 2 √ 2m b 4 ∞ 0 dk ′ 2 2π 0 dθ I(k 2 , k ′2 , θ) η emi (k ′2 ) (10.16)
10.5 Energy loss rate (ELR) due to escape toward the continuum Energy Loss Rate (ELR) is the power corresponding to the amount of energy gained or lost by the electron gas per unit of time. Using our aforementioned relation of thermal escape relaxation time for absorption (eq: 10.14) and emission (eq: 10.16), we will deduce the average density of power. First, let us understand the phonon absorption process and then deduce the phonon emission process.

Absorption

We look at the average energy lost by the electron gas (BCNB [START_REF] Ndebeka-Bandou | Quantum States And Scattering In Semiconductor Nanostructures[END_REF] p149), we express that as the following manner :

E : { ⃗ k ∈ R 2 } ⟨P ELR esc ⟩ abs = ⃗ k f (E 1 ⃗ k ) -E 1 ⃗ k τ abs 1 ⃗ k
Summing over contributions from all electronic states ⃗ k of the electron gas, we consider a Boltzmann statistical distribution taking into account the spin properties, we have two quantum states |↑↓⟩ for an electron, so a degeneracy that equals 2, such as :

f (E 1 ⃗ k ) = 2 e -βQW(E 1 +E k -µQW)
where :

• E k = ℏ 2 k 2 2m 1
the energy state of the continuum in the emitter, plane axis ( ⃗ e x , ⃗ e y )

• β QW = 1 k B T QW thermodynamic energy of the QW, with T QW the electron temperature

• µ QW chemical energy of the QW
The sum is transformed into integral and we perform a change to Polar coordinates : with :

E : R 2 → [0; +∞[×[0; 2π[ ⟨P ELR esc ⟩ abs = S 4π 2 ∞ 0 k dk 2π 0 dϕ 2 e -βQW(E 1 +E k -µQW) (-E 1 -E k ) 1 τ abs 1 ⃗ k = -C f 2 Ω n LO √ 2m b 16π 2 ℏ 2 S 4π e -βQW(E 1 -µQW) ∞ 0 dk 2 e -βQWE k (E 1 + E k ) . ∞ 0 dk ′ 2 2π 0 dθ I(k, k ′ , θ) η abs (k, k ′ ) (10.
I(k, k ′ , θ) ∼ | ⃗ k -⃗ k ′ | = k 2 + k ′2 -2kk ′ cos(θ) η abs = ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO A complete development is proposed in annex F .
Inserting the results in our main equation eq: F.3, and tweaking the function I such as :

I(y, v, θ) = ℏ √ 2m b I(y, v, θ)
it yields the expression of energy loss rate for absorption :

⟨P ELR esc ⟩ abs = -C f 2 Ω n LO √ 2m b 16π 2 ℏ 2 S 4π e -βQW(E 1 -µQW) 8m b m 1 ℏ 4 e -βQW∆E abs β QW β QW ℏ √ 2m b . ∞ 0 dy e -y V b -ℏω LO + y β QW √ y 0 dv 2π 0 dθ I(y, v, θ)
Let us make the electronic concentration appear, which is given by the equation 9.13 as being :

n QW S = m 1 πℏ 2 β QW e -βQW(E 1 -µQW)
We obtain the expression of the absorption power density : with :

⟨P ELR esc ⟩ abs S = -C f 2 Ω n LO n QW S m b 8π 2 ℏ 3 e -βQW∆E abs β QW ∞ 0 dy e -y V b -ℏω LO + y β QW .
I(y, v, θ) = dz dz ′ Ψ 1 (z ′ ) Ψ 1 (z) e -|z-z ′ | D(y,v,θ) D(y, v, θ) cos v 2m b β QW ℏ 2 (z ′ -z) D(y, v, θ) = β -1 QW (y -v 2 ) + (β -1 QW y -∆E abs ) m 1 m b -2 m 1 m b (β -1 QW y -∆E abs )β -1 QW (y -v 2 ) cos(θ)
where

∆E abs = V b -E 1 -ℏω LO for absorption
These equations permit us to determine the power thermal escape over the right barrier (collector) by a LO phonon absorption from the QW energy state E 1, ⃗ k to a continuum energy E kz, ⃗ k . The energy separating these bands is the potential V b , and knowing that the ground state inside the QW is E 1 , the minimum energy for an absorption E abs 1, ⃗ k is given by the following relation : 

knowing η abs ⩾ 0 E 1 + ℏ 2 k 2 2m 1 -V b + ℏω LO ⩾ 0 so E 1 + ℏ 2 k 2 2m 1 ⩾ V b -ℏω LO = E abs

Emission

Let us deduce the thermal escape emission, based on the absorption version discussed above. The emission principle for a LO phonon energy ℏω LO is given (as seen in chapter 10.4.2) by the state transition :

|k ′ z , ⃗ k ′ ⟩ |N ′ ⃗ Q,qz ⟩ → |1, ⃗ k ⟩ |N ⃗ Q,qz ⟩
We should recall that the number of phonons for emission (eq: 10.15) is given by :

n LO + 1 = n LO e βemℏωLO
We obtain the expression of the emission power density :

⟨P ELR esc ⟩ emi S = -C f 2 Ω n LO e βemℏωLO n QW S m b 8π 2 ℏ 3 e -βQW∆E emi β QW ∞ 0 dy e -y V b + ℏω LO + y β QW . √ y 0 dv 2π 0 dθ I(y, v, θ) (10.20) 
with :

I(y, v, θ) = dz dz ′ Ψ 1 (z ′ ) Ψ 1 (z) e -|z-z ′ | D(y,v,θ) D(y, v, θ) cos v 2m b β QW ℏ 2 (z ′ -z) D(y, v, θ) = β -1 QW (y -v 2 ) + (β -1 QW y -∆E emi ) m 1 m b -2 m 1 m b (β -1 QW y -∆E emi )β -1 QW (y -v 2 ) cos(θ)
where

∆E emi = V b -E 1 + ℏω LO for emission
Here we determine the power thermal escape over the right barrier (collector) by a LO phonon emission from a continuum energy E kz, ⃗ k to the QW energy state E 1, ⃗ k . The energy separating these bands is the potential V b , and knowing that the ground state inside the QW is E 1 , so the minimum energy for an emission E emi 1, ⃗ k is given by the following relation : 

knowing η emi ⩾ 0 E 1 + ℏ 2 k 2 2m 1 -V b -ℏω LO ⩾ 0 so E 1 + ℏ 2 k 2 2m 1 ⩾ V b + ℏω LO = E emi 1, ⃗ k

Total thermal escape ELR

The total process of thermal escape energy loss rate toward the continuum is the sum of the absorption (eq: 10.18) and emission (eq: 10.20) thermal escape effects. Besides, there is an increase of the power density due to the backflow from the collector, this property is taken into account empirically when writing :

⟨P ELR esc ⟩ S = ⟨P ELR esc ⟩ abs S + ⟨P ELR esc ⟩ emi S 1 -e -β coll eE L b (10.22)
where we assume that the electrons temperature in the collector is equal to the lattice temperature leading β coll = β 0 . It ensures that the thermionic emission from the QW is exactly balanced by the thermionic emission from the collector at E=0 kV/cm, while the backflow from the collector becomes negligible for E ≳ 10 kV/cm.

Average escape time

We seek to determine the QW population density thanks to the thermal escape relaxation time τ esc . The first step consists to estimate the average escape time of the absorption < τ abs 1 ⃗ k > , and then deduce the average escape time of the emission process < τ emi 1 ⃗ k > .

Average time for absorption

Remembering the scattering time for phonon absorption (from eq: 10.14) :

1 τ abs 1 ⃗ k = C f 2 n LO Ω 8π 2 ℏ 2 √ 2m b 4 ∞ 0 dk ′ 2 2π 0 dθ I(k 2 , k ′2 , θ) η abs (k ′2 ) with η abs (k ′2 ) = ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO
We calculate the average escape time by summing on the electronic states ⃗ k to obtain an average on all electrons, such as :

E : { ⃗ k ∈ R 2 } 1 τ abs 1 ⃗ k = ⃗ k f (E 1 ⃗ k ) 1 τ abs 1 ⃗ k
The sum is transformed into integral and we perform a change to Polar coordinates :

E : R 2 → [0; +∞[×[0; 2π[ 1 τ abs 1 ⃗ k = S 4π 2 ∞ 0 k dk 2π 0 dϕ 2 e -βQW(E 1 +E k -µQW) 1 τ abs 1 ⃗ k where E k = ℏ 2 k 2 2m
1 is the energy state of the continuum in the emitter, plane axis ( ⃗ e x , ⃗ e y )

We have as in the equation F.1 an expression such :

1 τ abs 1 ⃗ k = C f 2 Ω n LO √ 2m b 16π 2 ℏ 2 S 4π e -βQW(E 1 -µQW) ∞ 0 dk 2 e -βQWE k ∞ 0 dk ′ 2 2π 0 dθ I(k, k ′ , θ) η abs (k, k ′ )
Proceeding as before, we finally obtain the average scattering time expression for phonon absorption : with :

1 τ abs 1 ⃗ k = n QW C f 2 Ω n LO m b 8π 2 ℏ 3 e -βQW∆E
I(y, v, θ) = dz dz ′ Ψ 1 (z ′ )Ψ 1 (z) e -|z-z ′ | D(y,v,θ) D(y, v, θ) cos 2m b β QW ℏ 2 v (z ′ -z) D(y, v, θ) = β -1 QW (y -v 2 ) + (β -1 QW y -∆E abs ) m 1 m b -2 m 1 m b (β -1 QW y -∆E abs )β -1 QW (y -v 2 ) cos(θ)
where ∆E abs = V b -E 1 -ℏω LO for the absorption process

Average time for emission

Similarly, we obtain the expression for the average scattering time for phonon emission :

1 τ emi 1 ⃗ k = n QW C f 2 Ω n LO e βemℏωLO m b 8π 2 ℏ 3 e -βQW∆E emi β QW ∞ 0 dy e -y √ y 0 dv 2π 0 dθ I(y, v, θ)
with :

I(y, v, θ) = dz dz ′ Ψ 1 (z ′ )Ψ 1 (z) e -|z-z ′ | D(y,v,θ) D(y, v, θ) cos 2m b β QW ℏ 2 v (z ′ -z) D(y, v, θ) = β -1 QW (y -v 2 ) + (β -1 QW y -∆E emi ) m 1 m b -2 m 1 m b (β -1 QW y -∆E emi )β -1 QW (y -v 2 ) cos(θ)
where ∆E emi = V b -E 1 + ℏω LO for the emission process

Total frequency for thermal escape

To retrieve the total frequency we use the Matthiessen rule, which gives the characteristic relaxation time of phonons τ propagating in a crystal when there are several superimposed phenomena with a relaxation time τ i . In our case, for the absorption and emission phenomena :

1 τ = i 1 τ i
where the summation index i runs over all the miscellaneous superimposed phenomena.

This rule expresses the additivity of the transition probabilities from a state to another in a thermodynamic system made up of phonons, when the phenomena from the source (vibrations of the crystal lattice, imperfections, ...) are independent, this is not an exact description but a reasonable approximation (Callaway [99]).

Firstly, we write the relaxation frequency of each contribution such as :

1 τ abs 1 ⃗ k = n QW τ abs 1 τ emi 1 ⃗ k = n QW τ emi
with n QW the electron density (equivalent of a statistical weight).

So 1/τ abs and 1/τ emi are the relaxation frequencies for one electron, and we apply the Matthiessen rule to obtain the thermal escape total frequency :

1 τ esc = 1 τ abs + 1 τ emi
Remembering the stationary rate equation discussed in equation 8.2, we obtain the electron density loss inside the QW for a thermalized population, such as :

d nQW S dt esc = - nQW S τ esc 10.6.

Collector back flow effect on electron density

The increase of the QW population density due to the backflow from the collector is empirically taken into account, as for the power density expression (eq: 10.22), by writing :

d nQW S dt esc = - nQW S τ esc 1 -e -β coll eE L b
knowing that the device will work better at elevated temperatures because the extraction of the hot carriers will be more efficient (Philippe2023 [START_REF] Philippe | Rate equations description of the asymmetric double barrier electronic cooler[END_REF]).

Scattering time due to intersubband exchange

In this part we are interested in the electrons exchange inside the QW, we begin with a general overview of intersubband effects between two subbands. After having studied these mechanisms, we will apply them to our system which is composed of a single band, resulting in having only intrasubband exchange. Let us investigate the scattering time for intersubband process, in the first case for LO phonon emission, and after we will deduce the LO phonon absorption effect.

Emission

We develop, as previously done in chapter 10.3.2, the scattering time for phonon emission from a band n ′ with a wave vector k ′ to another band n with a wave vector k.

The energy conservation between these two bands is such as :

E n ′⃗ k ′ = E n ⃗ k -ℏω LO
giving the energy transition for phonon emission.

We calculate the average intersubband relaxation time by summing on the electronic states ⃗ k and all the final states |n ′ , ⃗ k ′ ⟩ to obtain an average on all electrons :

E :{ ⃗ k ∈ R 2 } 1 τ emi n ⃗ k = 2π ℏ C f 2 n ′ , ⃗ k ′ ⃗ Q,qz ⟨N ′ ⃗ Q,qz | ⟨n ′ ⃗ k ′ | e -i ⃗ Q.⃗ ϱ e -iqzz b |n ⃗ k ⟩ |N ⃗ Q,qz ⟩ 2 ⃗ Q 2 + q 2 z δ E n ′⃗ k ′ -(E n ⃗ k -ℏω LO ) = 2π ℏ C f 2 (n LO + 1) n ′ , ⃗ k ′ ,qz ⟨Ψ n ′ ⃗ k ′ | e -iqzz |Ψ n ⃗ k ⟩ 2 | ⃗ k ′ -⃗ k| 2 + q 2 z δ E n ′ + ℏ 2 ⃗ k ′2 2m n ′ E n ′ ⃗ k ′ -E n + ℏ 2 ⃗ k 2 2m n -ℏω LO E n ⃗ k -ℏωLO
The sum is transformed into integral and we perform a change to Polar coordinates :

E : R 2 → [0; +∞[×[0; 2π[ 1 τ emi n ⃗ k = 2π ℏ C f 2 (n LO + 1) Ω 8π 3 n ′ ∞ 0 k ′ dk ′ 2π 0 dθ dz dz ′ Ψ n (z ′ )Ψ n ′ (z)Ψ n (z)Ψ n ′ (z ′ ) . ∞ -∞ dq z e -iqz(z-z ′ ) q 2 z + | ⃗ k -⃗ k ′ | 2 I δ(∆ Ẽn ′ n ) where I = π e -|z-z ′ | | ⃗ k-⃗ k ′ | | ⃗ k -⃗ k ′ | (demonstration see annex H.1) 1 τ emi n ⃗ k = 2π ℏ C f 2 (n LO + 1) Ω 8π 2 n ′ ∞ 0 k ′ dk ′ 2π 0 dθ . dz dz ′ Ψ n (z ′ )Ψ n ′ (z)Ψ n (z)Ψ n ′ (z ′ ) e -|z-z ′ | √ k 2 +k ′2 -2kk ′ cos(θ) k 2 + k ′2 -2kk ′ cos(θ) J n ′ n (k 2 ,k ′2 ,θ) δ(∆ Ẽn ′ n )
Now, we are looking to write δ(∆ Ẽn ′ n ) as a function of k ′ to integrate it on dk ′ .

We have :

δ(∆ Ẽn ′ n ) = δ E n ′ + ℏ 2 k ′2 2m n ′ -E n + ℏ 2 k 2 2m n + ℏω LO = 2m n ′ ℏ 2 δ k ′2 + 2m n ′ ℏ 2 E n ′ -E n - ℏ 2 k 2 2m n + ℏω LO -ξ 2 emi = 2m n ′ ℏ 2 δ k ′2 -ξ 2 emi
The energy conservation imposes that :

k ′2 -ξ 2 emi = 0 and ℏ 2 k ′2 2m n ′ ⩾ 0 ∀ k ′ ∈ R it implies ℏ 2 ξ 2 emi 2m n ′ ⩾ 0 ∀ ξ emi ∈ R so ℏ 2 ξ 2 emi 2m n ′ = ℏ 2 k 2 2m n -E n ′ + E n -ℏω LO ⩾ 0 whence ℏ 2 k 2 2m n + E n ⩾ E n ′ + ℏω LO
We highlight here the initial condition that must be respected to emit a phonon ℏω LO , as shown in the image below, it induces that a minimal energy is required for an emission process. It occurs :

1 τ emi n ⃗ k = 2π ℏ C f 2 (n LO + 1) Ω 8π 2 n ′ m n ′ ℏ 2 2π 0 dθ J n ′ n k 2 , ξ 2 emi , θ 10.7.

Absorption

In this case, the state transition is |n

⃗ k⟩ |N ⃗ Q,qz ⟩ → |n ′ ⃗ k ′ ⟩ |N ′ ⃗ Q,qz
⟩ from the emission of the phonon energy ℏω LO , the energy conservation is such as :

E n ′⃗ k ′ = E n ⃗ k + ℏω LO giving

the energy transition for phonon absorption

As previously for emission, we have for absorption :

δ(∆ Ẽnn ′ ) = 2m n ′ ℏ 2 δ k ′2 + 2m n ′ ℏ 2 E n ′ -E n - ℏ 2 k 2 2m n -ℏω LO -ξ 2 abs = 2m n ′ ℏ 2 δ k ′2 -ξ 2 abs
the energy conservation imposes that :

k ′2 -ξ 2 abs = 0 and ℏ 2 k ′2 2m n ′ ⩾ 0 ∀ k ′ ∈ R it implies ℏ 2 ξ 2 abs 2m n ′ ⩾ 0 ∀ ξ abs ∈ R so ℏ 2 ξ 2 abs 2m n ′ = ℏ 2 k 2 2m n -E n ′ + E n + ℏω LO ⩾ 0 whence ℏ 2 k 2 2m n + E n ⩾ E n ′ -ℏω LO
Here, there is no particular condition to have an absorption, for instance in the lowest energy band state

E 1 + ℏ 2 k 2 2m 1 , we have a transition |1 ⃗ k⟩ → |2 ⃗ k ′ ⟩ due to a phonon absorption ℏω LO .
For the general case, the absorption process is such as : The scattering time for absorption for a state |n ⃗ k⟩ is obviously in the same form as before :

1 τ abs n ⃗ k = 2π ℏ C f 2 n LO Ω 8π 2 n ′ m n ′ ℏ 2 2π 0 dθ J nn ′ k 2 , ξ 2 abs , θ
10.8 Energy loss rate due to intrasubband effect

In our system, the parameters (see figure: 8.3) involve working with only one band in the QW. So in this section the intersubband effects are restricted to a single band, it results only intrasubband effects, using the aforementioned notation we have n= 1 and n ′ =1, as shown in the sketch 10.12 below :

Figure 10.12: Intrasubband transitions within the single band of the QW due to phonon absorption or emission, the continuum (in green) is located above the V b potential barrier.

Intrasubband transitions include an energy exchange inside the QW, in which an electron gains or loses energy with respectively a LO phonon absorption or emission, so the total quantity of electrons does not change during this process.

If the electron temperature (T QW ) is equal to that of the phonons (T 0 ), these transitions do not lead to a change in the average energy of the electron gas. On the other hand, if the electron and phonon temperatures differ, the average energy of electrons will change.

Emission

We look at the average energy lost by the electron gas due to the emission of a phonon of energy ℏω LO , we express it in the following manner :

E : { ⃗ k ∈ R 2 } ⟨P ELR intra ⟩ emi = ⃗ k f (E 1 ⃗ k ) -ℏω LO τ emi 1 ⃗ k
Summing over contributions from all electronic states ⃗ k of the electron gas, we consider a Boltzmann statistical distribution taking into account the spin, we have two quantum states |↑↓⟩ for an electron so a degeneracy that equals 2, such as :

f (E 1 ⃗ k ) = 2 e -βQW(E 1 +E k -µQW)
where :

• E k = ℏ 2 k 2 2m 1
the energy state of the continuum in the emitter, plane axis ( ⃗ e x , ⃗ e y )

• β QW = 1 k B T QW thermodynamic energy of the QW, with T QW the electron temperature

• µ QW chemical energy of the QW
The sum is transformed into integral and we perform a change to Polar coordinates :

E : R 2 → [0; + ∞[×[0; 2π[ ⟨P ELR intra ⟩ emi = -ℏω LO 2π ℏ C f 2 Ω 8π 2 m 1 ℏ 2 (n LO + 1) e -βQW(E 1 -µQW) S 2π ∞ 0 dk 2 e -βQWE k . 2π 0 dθ J 11 k 2 , ξ 2 emi , θ
with :

• J 11 k 2 , ξ 2 emi , θ ∼ | ⃗ k -⃗ k ′ | = k 2 + ξ 2 emi -2kξ emi cos(θ) • ℏ 2 ξ 2 emi 2m 1 = ℏ 2 k 2 2m 1 -ℏω LO A complete development is proposed in annex G.1.
We obtain :

⟨P ELR intra ⟩ emi = -C f 2 Ω (n LO + 1) ℏω LO 4πℏ 2 n QW m 1 2 e -βQW ℏωLO ∞ 0 du e -u 2π 0 dθ J 11 (u, θ)
with :

J 11 (u, θ) ∼ | ⃗ k -⃗ k ′ | = 2u β -1 QW + ℏω LO -2 u β -1 QW (ℏω LO + u β -1 QW ) cos(θ)
The term e -βQW ℏωLO comes from the fact that phonon emission is possible only if E ⃗ k ⩾ ℏω LO , so electrons must be energetic enough.

Absorption

In the same way we just did (chapter 10.8.1), we will now determine the intrasubband energy loss rate for a phonon absorption. We take the absorption scattering time due to intersubband exchange, for a state |n ⃗ k⟩, defined chapter 10.7.2 such as :

1 τ abs n ⃗ k = 2π ℏ C f 2 n LO Ω 8π 2 n ′ m n ′ ℏ 2 2π 0 dθ J nn ′ k 2 , ξ 2 abs , θ
Summing over contributions from all electronic states ⃗ k to obtain the power average, and we insert it into the equation :

E : { ⃗ k ∈ R 2 } ⟨P ELR intra ⟩ abs = ⃗ k f (E 1 ⃗ k ) ℏω LO τ abs 1 ⃗ k
and changing into Polar coordinates :

E : R 2 → [0; +∞[×[0; 2π[ ⟨P ELR intra ⟩ abs = ℏω LO C f 2 Ω m 1 S 8π 2 ℏ 3 n LO e -βQW(E 1 -µQW) ∞ 0 dk 2 e -βQWE k 2π 0 dθ J 11 k 2 , ξ 2 abs , θ
with :

• J 11 k 2 , ξ 2 abs , θ ∼ | ⃗ k -⃗ k ′ | = k 2 + ξ 2 abs -2kξ abs cos(θ) • ℏ 2 ξ 2 abs 2m 1 = ℏ 2 k 2 2m 1 + ℏω LO A complete demonstration is proposed in annex G.2.
We obtain :

⟨P ELR intra ⟩ abs = C f 2 Ω n LO ℏω LO 4πℏ 2 n QW m 1 2 ∞ 0 du e -u 2π 0 dθ J 11 (u, θ)
with :

J 11 (u, θ) ∼ | ⃗ k -⃗ k ′ | = 2u β -1 QW + ℏω LO -2 u β -1 QW (ℏω LO + u β -1 QW ) cos(θ)

Net energy loss rate for intrasubband effects

The sum of the two contributions gives us the net energy loss rate, let us write it in terms of power density :

⟨P ELR intra ⟩ net S = ⟨P ELR intra ⟩ abs S + ⟨P ELR intra ⟩ emi S = C f 2 Ω ℏω LO 4πℏ 2 n QW S n LO -(n LO + 1) e -βQW ℏωLO m 1 2 ∞ 0 du e -u 2π 0 dθ J 11 (u, θ)
We note that :

n LO -(n LO + 1) e -βQW ℏωLO = n LO 1 -e ℏωLO (βem-βQW)
It is interesting to note that if an electron with a temperature T QW inside the QW and a phonon with a temperature T 0 from the emitter coincide, then there is no energy loss rate or energy gain rate, indeed : (n LO + 1) e -βem ℏωLO = n LO (see eq: 10.15)

Meaning that the thermal equilibrium is stable against electron-phonon interaction, in the sense that, on average at complete thermal equilibrium, there is no energy gain or loss for electrons from the phonon bath, leading ⟨P ELR intra ⟩ net = 0 .

Chapter 11

Thermionic cooling modelling results

We have found that the population rates of change associated with the tunnel back flow to the emitter and the LO-assisted thermionic emission are proportional to the electron density n QW /S inside the QW. From equation 8.2 it means that n QW /S becomes proportional to the dopant concentration n D /Ω in the emitter : The energy loss rates are all proportional to n QW /S but this is not the case for P inj , which is proportional directly to n D /Ω. It follows that the conservation requirement of the energy of the 2D gas is expressed by an implicit equation that no longer contains n D /Ω. Thus, the solution T QW of equation 8.3 will also be n D /Ω independent. It means that decreasing/increasing the doping of the emitter would lead to injecting fewer/more electrons in the QW but would not change their temperature T QW as long as the Boltzmann approximation is valid. This behavior may not be observed if the electron statistics in the QW or the emitter become degenerate.

n QW S = n D Ω 2 e -βemE 1
As seen from equation 11.1, a good indicator of the electron cooling capability of a given asymmetric double barrier structure is given by the ratio τ bf emitter /τ esc . If this ratio is bigger than one, so the escape of the QW electrons mainly proceeds by thermionic emission in the continuum above the V b barrier. It means that energetic carriers are more efficiently removed from the well than cold ones, leading that the QW electron gas cools down. Note however that an efficient electron cooling will be accompanied by a low n QW /S . For our modelling we will work the system parameters seen section 8.5.

Lattice temperature effects

We illustrate this trend below, where we plot n QW /S, T QW and τ bf emitter /τ esc versus the external electric field E applied to the system at various lattice temperatures T 0 on figure 11.1. We show that, in this structure, the thermionic emission is always a more efficient process than tunneling and that the ratio becomes larger when the external electric field E increases. In fact, the electric field lowers the V b barrier rendering the thermionic emission a faster process, thus warm electrons leave the QW faster compared to cold ones.

This leads to the linear and slow decrease of T QW with increasing E, shown in figure 11.1.b for three values of T 0 . Thus, cooling is only possible if the electron density is low, as it can be seen from figure 11.1.c where n QW /S = 0.5 . 10 14 -2 . 10 14 m -2 . The steep decrease of the electron density at low E field reflects the thermo-activated behavior of the electron back flow from the collector. This collector back flow becomes negligible when E > 10 kV /cm. In figure 11.1.b we see the strikingly improved electron cooling upon increasing the lattice temperature T 0 , which is a clear signature of the thermo-activated escape to the continuum. 

Quantum well thickness effects

We study the quantum well thickness L 1 dependencies on the system for three cases with all the other parameters remaining the same as aforementioned and T 0 = 300K, as shown in figures 11.2 below : 

Left barrier thickness effects

We study the left barrier thickness L 0 influences on the system for three cases with all the other parameters remaining the same as aforementioned and T 0 = 300K, as shown in figures 11.3 below : 

Effects of Aluminium concentration in V b potential

We are interested in the aluminium concentration in the right side barrier V b , when the concentration decreases the potential height also decreases. We analyse this parameter versus E for four cases (with all the other parameters remaining the same as aforementioned and T 0 = 300K) as shown in figures 11.4. We notice that we cannot choose an Aluminium concentration lesser than x Al < 19 % due to a pole appearing within the I(y, v, θ) function of equations 10.18 and 10.20 of the ELR thermal escape.

Results comparison between modelling, NEGF and experiments

Several samples were grown by molecular beam epitaxy on n-type GaAs substrate. We discuss in this work the measurements and the calculations made for two samples which differ mainly for the left-hand side barrier thickness L 0 and height V 0 . In the following we will refer to the two samples as sample A and sample B, the structural parameters of the two samples are listed in Table 11 We show in figure 11.6 at T 0 = 300K the bias dependence of the measured T QW and the calculated T QW either by NEGF (Yangui2019 [START_REF] Yangui | Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures[END_REF]) or by rate equations for sample A 11.6.a and sample B 11.6.b . The electric field to be introduced in the calculation is deduced from the applied bias V via the ideal capacitor model E = V /L tot where L tot = L 0 + L 1 + L b is the total length of the undoped layers between the contacts. For sample A, photoluminescence measurements show that a remarkable cooling of 27K of the electron temperature can be achieved by applying a bias of U= 0.4V. Experimentally we observe a steep decrease of the electron temperature between 0 and 2V, and then a saturation above 2V. The rate equation model predicts the electron cooling, even if it is lower ( ∆T QW = 16K when a bias of U= 0.6V is applied) than the one found experimentally, and qualitatively reproduces the cooling effect of the double barrier structure in the presence of an applied bias. 11.6 also shows that NEGF modeling gives an almost perfect agreement with experiments. In 11.6.b we compare the results of the rate equations calculations, with the measurements and the NEGF calculations shown for sample B. Here, the predictions of the rate equations stop at the bias where E 1 passes below the emitter conduction band edge (about 0.6V for sample B), while experimental data keep being measured far beyond that voltage. This shows that beyond 0.6V, electrons are still supplied to the QW from the emitter. The sample B structure should indeed be very inefficient on account of the 15 nm thick V 0 barrier and it is likely that the QW feeding takes place by thermal activation above the V 0 barrier rather than by direct tunnelling.

Conclusion

We have reported a rate equation analysis of the electron population and temperature in an asymmetric double barrier cooling structure. We have found that an efficient electron cooling compared to the lattice temperature is always accompanied by a small n QW /S < 10 14 m -2 equilibrium electron concentration in the QW. Our findings are in good qualitative agreement with experiments. Despite being less precise than the NEGF technique, the rate equations approach is much less demanding to implement than the NEGF and provides an easier grasp of the complex physical processes that control the electron cooling in semiconductor heterostructures (Philippe2023 [START_REF] Philippe | Rate equations description of the asymmetric double barrier electronic cooler[END_REF]).

A.2.1 Bohr magneton

Using the previous equation A. [START_REF] Koster | Properties of the thirty-two point groups[END_REF], within the framework of the Bohr atom, we have the angular momentum ⃗ L such as :

⃗ L = n ℏ ∀ n ∈ Z
So we obtain via the magnetic dipole moment :

| ⃗ m | = n eℏ 2m 0 = n µ B A.2.

Magnetic dipole moment of electron

Including quantum electrodynamics effects via the Landé factor for electrons g s , it occurs :

m s = -g s µ B ℏ S
with S the spin operator, and g s from ZP [START_REF] Zeiger | Magnetic interactions in solids[END_REF] :

g s = 2 1 + e 2 4πε 0 ℏc ≈ 2.0023
Modifying the equation B.1 and knowing v x ⩾ 0 , it yields : We are in the case of an electron moving in crossed electric and magnetic field, taken such a way that the electric Coulomb force is balanced by the magnetic Lorentz force. This case is especially true, inasmuch as in special relativity, there are no accelerations ⃗ v = 0 :

B ′ z = B z - v x c 2 E y 1 + 1 2
⃗ F = -e ⃗ E + ⃗ v × ⃗ B = 0 ⃗ E = -⃗ v × ⃗ B (B.2)
knowing the initial conditions :

⃗ B =    0 0 B z    and ⃗ v =    v x 0 0   
we develop the previous equation B.2 such as:

   E x E y E z    = -    v x v y v z    ×    B x B y B z    = -    v y B z -v z B y v z B x -v x B z v x B y -v y v x    =    0 v x B z 0   
we find B z v x = E y , so :

B ′ z = B z + E z v x c 2 1 2 + 3 8 v x c 2 + ... -E y v x c 2 1 + 1 2 v x c 2 + 3 8 v x c 4 + ... = B z + E y v x c 2 - 1 2 - 1 8 v x c 2 -...
Considering the electron motion being non-relativistic v ≪ c, we have the Thomas precession for an electron :

B ′ z = B z - 1 2 E y v x c 2 with ⃗ B ′ = B ′ z ⃗ e z ⃗ v = v x ⃗ e x
where B ′ z is the magnetic field induced by electron motion, and B z is the magnetic field applied on the electron

B z ≡ ⃗ B ext ⃗ e z . ℏk -⟨Φ s |Φ c ⟩ B = 1 √ 3 ℏk -⟨Φ l |Φ c ⟩ -⟨Φ c |Φ l ⟩ + 2 3 ℏk -⟨Φ s |Φ c ⟩ -⟨Φ c |Φ s ⟩
And the last one is C = ⟨Φ LP ↓ |H|Φ HH ↓⟩ corresponding to :

C = ⟨Φ LP ↓| V c, ⃗ k 0 ℏk + 0 0 -1 √ 3 ℏk - 0 -2 3 ℏk - 0 0 V l, ⃗ k 0 0 1 √ 3 ℏk - 0 0 0 0 ℏk - 0 V h, ⃗ k 0 0 0 0 0 0 0 0 0 V s, ⃗ k 2 3 ℏk - 0 0 0 0 0 1 √ 3 ℏk + 0 2 3 ℏk + V c, ⃗ k 0 ℏk - 0 0 -1 √ 3 ℏk + 0 0 0 0 V l, ⃗ k 0 0 0 0 0 0 0 ℏk + 0 V h, ⃗ k 0 |Φ h ⟩ -2 3 ℏk + 0 0 0 0 0 0 V s, ⃗ k 0      C = ℏk -⟨Φ c |Φ h ⟩
We remember that :

k ± = 1 √ 2 (k x ± i k y ) E n, ⃗ k = E n + ℏ 2 ⃗ k 2 2m 0 with n ∈ {c, l, h, s}
Appendix E

Power gain and loss demonstration

We express the power density P/S exchanged via tunneling through the left barrier as :

E : { ⃗ k ∈ R 3 } P S = 1 Ω ⃗ k E ⃗ k v z (E kz ) f em (E kz , E k// ) -f QW (E kz , E k// ) A(E kz ) Γ(E kz )
The sum is transformed into integral, we perform a change to Cylindrical coordinates : A change of variable is required :

E : R
let x = E k// + E 1 ∀ x ∈ R, we have dx = dE k//
and bounds give :

• inf E k// = 0 then x = E 1 we remember that the tunneling rate is given by :

Γ(E 1 ) ℏ = 1 τ tunnel
Leading to obtain the final expression of the gain and loss of power : Appendix F

P S = 2 N em Ω 2m 1 πℏ 2 β em -1 2 e -βem

Energy Loss Rate thermal escape demonstration

The sum is transformed into integral and we perform a change to Polar coordinates : with :

E : R 2 → [0; +∞[×[0; 2π[ ⟨P ELR esc ⟩ abs = S 4π 2 ∞ 0 k dk 2π 0 dϕ 2 e -βQW(E 1 +E k -µQW) (-E 1 -E k ) 1 τ abs 1 ⃗ k = -Cf 2 Ω n LO √ 2m b 16π 2 ℏ 2 S 4π e -βQW(E 1 -µQW) ∞ 0 dk 2 e -βQWE k (E 1 + E k ) .
I(k, k ′ , θ) ∼ | ⃗ k -⃗ k ′ | = k 2 + k ′2 -2kk ′ cos(θ) η abs = ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO
Working on the k ′ integral :

knowing dk ′ = 2m b ℏ 2 dE k ′ this integral becomes ∞ 0 dk ′2 2π 0 dθ I(k, k ′ , θ) = 2m b ℏ 2 ∞ 0 dE k ′ ∞ 0 dθ I ℏ 2 k 2 2m 1 , ℏ 2 k ′2 2m b , θ
The energy conservation imposes that η abs ⩾ 0 (see eq: 10.12)

ℏ 2 k 2 2m 1 - ℏ 2 k ′2 2m b -V b + E 1 + ℏω LO ⩾ 0
A change of variable is required such that x ′ = ℏ 2 k ′2 2m b and x ′ ⩾ 0, with the condition k ′ ∈ R, so we have : we obtain the following form : with :

-x ′ + ℏ 2 k 2 2m 1 -V b + E 1 + ℏω LO
2m b ℏ 2 ∞ 0 dE k ′ ∞ 0 dθ I ℏ 2 k 2 2m 1 , ℏ 2 k ′2 2m b , θ η ℏ 2 k 2 2m 1 , ℏ 2 k ′2
I(y, v, θ) ∼ | ⃗ k -⃗ k ′ | = √ 2m b ℏ β -1 QW (y -v 2 ) + (β -1 QW y -∆E abs ) m 1 m b -2 m 1 m b (β -1 QW y -∆E abs )β -1 QW (y -v 2 ) cos(θ) η abs = v 2 β QW
Inserting the results in our main equation eq: F.3, and tweaking the function I such as :

I(y, v, θ) = ℏ √ 2m b I(y, v, θ)
it yields the energy loss rate for absorption : We obtain the energy loss rate :

⟨P ELR esc ⟩ abs = -Cf 2 Ω n LO √ 2m b 16π 2 ℏ 2
⟨P ELR intra ⟩ emi = -ℏω LO Cf 2 Ω (n LO + 1) m 1 S 8π 2 ℏ 3 e -βQW(E 1 -µQW) 2m 1 ℏ 2 ∞ ℏωLO dx e -βQW x 2π 0 dθ J 11 x, x ′ , θ with :

J 11 x, x ′ , θ ∼ | ⃗ k -⃗ k ′ | = √ 2m 1 ℏ x + x ′ -2 √ xx ′ cos(θ)
Let us make the electronic concentration appear, this one is given by the equation 9.13, in order to obtain the final expression of phonon absorption : with :

n QW S =
J 11 (u, θ) ∼ | ⃗ k -⃗ k ′ | = 2u β -1 QW + ℏω LO -2 u β -1 QW (ℏω LO + u β -1 QW ) cos(θ)

G.2 Absorption

The sum is transformed into integral and we perform a change to Polar coordinates : We proceed with the same kind of variable change:

E : R
x = ℏ 2 k 2 2m 1 x ′ = ℏ 2 ξ 2 abs 2m 1 = x + ℏω LO so dk 2 = 2m 1 ℏ 2 dx ∀ k, ξ abs ∈ R
Remember the previous discussion chapter 10.7.1, about the minimal energy required for a phonon absorption, here no particular energy is necessary. However, the minimal energy for the final state x ′ must be x + ℏω LO , that corresponds to the absorption of a phonon.

The two new variables x and x ′ are linked such as x = x ′ -ℏω LO , it induces a constraint on the new bounds, we have : 

• inf x ′ = ℏω LO then x = 0 • sup x ′ = +∞ then x = +∞
J 11 x, x ′ , θ ∼ | ⃗ k -⃗ k ′ | = √ 2m 1 ℏ x + x ′ -2 √ xx ′ cos(θ)
Now we introduce the electronic density n QW and the function J 11 defined equation G.1, to have : 

⟨P ELR intra ⟩ abs = Cf 2 Ω n LO ℏω LO β QW 4πℏ 2 n QW
z 2 + a 2 ⩾ |z| 2 -a 2 z 2 + a 2 ⩾ R 2 -a 2 1 |z 2 + a 2 | ⩽ 1 R 2 -a 2 (H.1)
and we want to parametrize the nominator e ikz such as z = Re it where t ∈ [0; π], R ∈ R * + .

e ikz = e ikR e it = e ikR cos(t)+isin(t) = e ikRcos(t)

1

. e -kRsin(t)

= e -kRsin(t) with k > 0 sin(t) > 0 ∀ t ∈ [0, π] According to Jordan's lemma, it occurs that : 
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 11 Figure 1: Représentation schématique de a) Diagramme orbital moléculaire sp 3 pour GaAs, b) Structure de bande formée par hybridation sp 3 pour une structure de zincblende semiconductrice, équivalent pour une structure de type diamant s 2 p 2 .

2

 2 Light polarisation along the ⃗ e z axis for interband terms . . . . . . . . . . . . . . . 6.3.3 Light polarisation along the ⃗ e z axis for intraband terms . . . . . . . . . . . . . . . 6.3.4 In-plane polarized light for interband terms . . . . . . . . . . . . . . . . . . . . . . 6.3.5 In-plane polarized light for intraband terms . . . . . . . . . . . . . . . . . . . . . . 6.3.6 Direct transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Modelling results for overlaps in k plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1 10 periods superlattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 10 periods superlattice under weak electric field . . . . . . . . . . . . . . . . . . . . 6.4.3 10 periods superlattice under strong electric field . . . . . . . . . . . . . . . . . . . 6.5 Linear optical properties in semiconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Light polarisation along the ⃗ e z axis for interband terms (ignoring intraband) . . . 6.5.2 Light polarisation along the ⃗ e z axis for intraband terms (ignoring interband) . . . 6.5.

Figure 1 . 1 :

 11 Figure 1.1: Schematic representation of a) sp 3 Molecular orbitals diagram for GaAs, b) Band structure formed by sp 3 hybridization for a semiconductor zincblende structure, equivalent for s 2 p 2 diamond-like structure.

Figure 1 . 4 :

 14 Figure 1.4: First Brillouin zone for O h and T d goups, as being a truncated octahedron showing the high symmetry points and directions. The dotted lines are inside the first Brillouin zone, while continuous lines are on the surface (purple) or outside (blue).

Figure 1 . 6 :

 16 Figure 1.6: Comparison of the band structure for a) direct bandgap gallium arsenide GaAs (T d group) and b) indirect bandgap diamond CC (O h group). Image adapted from Majdi2020 [13].
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 21 Figure 2.1: Splitting of the p-levels due to spin-orbit interaction
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 22 Figure 2.2: For a bulk material, the Γ 1C (Γ - 2 ) state of the simple group engenders two states in the double group depending on the spin (see Table:2.4), renamed Γ 6 which corresponds to the two j=1/2 states. The three Γ 15V (Γ + 25 ) states of the simple group, engender six states in the double group, which are split by the spin-orbit interaction into four states, the renamed band Γ 8 corresponds to the four states j=3/2, the renamed band Γ 7 corresponds to the two states j=1/2 .

  Figure 2.2: For a bulk material, the Γ 1C (Γ - 2 ) state of the simple group engenders two states in the double group depending on the spin (see Table:2.4), renamed Γ 6 which corresponds to the two j=1/2 states. The three Γ 15V (Γ + 25 ) states of the simple group, engender six states in the double group, which are split by the spin-orbit interaction into four states, the renamed band Γ 8 corresponds to the four states j=3/2, the renamed band Γ 7 corresponds to the two states j=1/2 .
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 23 Figure 2.3: Image of the Germanium bulk around the symmetry point Γ for the simple group (a) and the double group (b), figure adapted from Dresselhaus [2].
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 31 Figure 3.1: Superlattice grown in ⃗ e z axis with staggered gap (type II) materials, and below the energy E Conduction band (red) and Valence band (dark blue) representation.
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 32 Figure 3.2: Representation of transmittance as a function of infrared wavelength radiations, the infrared spectrum is categorized as visible, near infrared (NIR), short-wavelength infrared (SWIR), middle wavelength infrared (MWIR).
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 33 Figure 3.3: Schematic view of XBn structure
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 34 Figure 3.4: Photon exitance deduced from Planck's law[START_REF] Durlin | InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain[END_REF] 

Figure 3 . 5 :

 35 Figure 3.5: Normalized Photoluminescence (PL) spectra at 80K of two InAs/InAsSb T2SL structures having periods equal to 8nm (red curve) and 6nm (green curve). For comparison, PL spectrum of a sample made of bulk InAs 0.91 Sb 0.09 lattice matched to GaSb is also presented.The PL peak of the InAs(4.5 nm)/InAsSb(1.5 nm) SL structure with a period of 6 nm, is observed at a wavelength equal to 5µm at 80K while the T2SL sample with a period of 8nm exhibits a PL peak position at a wavelength higher than 6µm[START_REF] Durlin | InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain[END_REF].
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 36 Figure 3.6: Schematic representation of SL periods with minibands of heavy holes in blue, and lights particles (electrons, light holes) in light red. Energy bands of each material are : conduction band (CB) Γ 6 in red, and valence band (VB) Γ 8 in blue and red, taking account of the strain effects. We ignore the underneath spin-orbit band Γ 7 .
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 3 Figure 3.7: a) Energy band dispersion E ⃗ k at high symmetry points for different concentrations of antimony Sb x , with below the crystalline lattice representation for each species, ZB is for zincblende-like structure and WZ is for wurtzite-like structure (figure adapted from [63]). b) Energy band dispersion E ⃗ k around the Γ point for 8 bands with {Γ 6 , Γ 8 , Γ 7 } [64].
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 38 Figure 3.8: Parameters of our SL modelling, with E g (InAs)=340 meV E g (InAs 0.65 Sb 0.35 )=340 meV, offsets are denoted V c for conduction band (yellow), V l for light holes (red) and V h for heavy holes (blue). Due to material strain Γ 8 band is split into V l and V h via δ InAsSb and δ InAs . Each material has a thickness such as L InAs 0.65 Sb 0.35 =1.3 nm and L InAs =3.9 nm.
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 41 Figure 4.1: Envelope wave function F in an heterostructure (here a simple quantum well) with the crystalline wave function U for each crystal lattice L 0 . Image adapted from Coldren [66].
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 4 Figure 4.2: a) Superlattice with 10 periods within boundaries b) The SL is embedded inside a big well surrounded with two high and large potential barriers.
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 43 Figure 4.3: LP wave functions in CB for a) Φ c (z) and b) Φ l (z) for the first 3 states And we have for the first 3 states in valence band :

Figure 4 . 4 :

 44 Figure 4.4: LP wave functions in VB for a) Φ c (z) and b) Φ l (z) for the first 3 states We can easily recognize the sinusoidal-like form of wave functions Φ c in CB and Φ l in VB, because of LP are not very localized. Probability density function of a chosen particle position is given by |Φ| 2 , if we apply it to the figure 4.3 in CB we have a higher probability amplitude for electron than light holes, and inversely using figure 4.4 in VB .
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 4546 Figure 4.5: HH wave functions in VB for Φ h (z) for the first 3 statesWe remind that Φ h (HH) is totally decoupled from LP, and belongs only to the VB. This kind of state is extremely localized in each quantum well contrary to LP, we can easily recognize the 10 peaks corresponding to the 10 wells formed by V h (z). Let us show it in a representation with the first state of each wave function {Φ c , Φ l , Φ h } within the structure in terms of probability amplitude :

Figure 4 .

 4 Figure 4.7: a) SL structure with 100 periods b) boundary conditions
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 48 Figure 4.8: LP wave functions in CB for a) Φ c (z) and b) Φ l (z) for the first 3 states
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 49410 Figure 4.9: LP wave functions in VB for a) Φ c (z) and b) Φ l (z) for the first 3 states

Figure 4 .

 4 Figure 4.11: SL structure with the first energy state in a) VB |Φ h | 2 and |Φ l | 2 , b) BC |Φ c | 2

Figure 4 .

 4 Figure 4.12: LP wave functions in CB for a) Φ c (z) and b) Φ l (z) for the first 3 states

Figure 4 .Figure 4 . 14 :

 4414 Figure 4.13: LP wave functions in VB for a) Φ c (z) and b) Φ l (z) for the first 3 states

Figure 4 .

 4 Figure 4.15: SL structure with energy states in a) VB |Φ h | 2 and |Φ l | 2 , b) BC |Φ c | 2

Figure 4 .Figure 4 . 17 :

 4417 Figure 4.16: LP wave functions in CB for a) Φ c (z) and b) Φ l (z) for the first 3 states And we get in valence band the following LP wave functions :

Figure 4 .

 4 Figure 4.18: HH wave functions in VB for Φ h (z) for the 5 first states, including Tamm state 2As previously for the weak electric field in figure4.14, in the case of strong ⃗ E these states are more confined on the right side of the structure, and each main peak of Φ h belongs to its own quantum well. The first state is localized on the QW far right due to the positive electric field, and the others are located in each well toward the left side, except for the negative one corresponding to the second energy states of HH. This special state is called Tamm state, let us speak about it in the next section.
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 419 Figure 4.19: Probability amplitude of Tamm state, this one depends on the lattices geometry

Figure 4 .

 4 Figure 4.20: a) LP dispersion versus E z b) HH dispersion versus E z , the Tamm state begins within the mini-gap between the HH mini-band and the states below the structure.
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 51 Figure 5.1: Energy dispersion versus k without electric field, a) full spectrum of chosen states, b) zoom around the gap area.

Figure 5 . 2 :

 52 Figure 5.2: Energy dispersion versus k with a weak electric field E= 5 kV/cm, a) full spectrum of chosen states, b) zoom around the gap area.
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 53 Figure 5.3: Energy dispersion versus k with a strong electric field E= 50 kV/cm, a) full spectrum of chosen states, b) zoom around the gap area.
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 6 Figure 6.1

Figure 6 . 2 :

 62 Figure 6.2: Schematic representation of the slowly varying envelope wave function F along a chosen crystal segment. Assuming a cubic distribution of N primitive cells Ω inside the whole crystal, the total number of Ω per segment is N 1 3. Working in a single dimension, the green curve is an average of the function F for each ⃗ r 0l of each primitive length L 0 .
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 63 Figure 6.3: Schematic examples of authorized transitions in blue and unauthorized transitions in red,for a bulk-like dispersion..

Figure 6 .

 6 Figure 6.4: a) Energy dispersion over 10 periods versus wave vector k at E = 0 kV/cm, with energy band denomination b) a zoom in the heavy holes mini-band.
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 65 Figure 6.5: The total probability density |Ψ| 2 at k=0 nm -1 and k=0.4 nm -1 for a) l 1 state, and b) T amm state.
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 66 Figure 6.6: The total probability density |Ψ| 2 at k=0 nm -1 and k=0.4 nm -1 for a) h 1 state, and b) c 1 state.
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 67 Figure 6.7: The total probability density |Ψ| 2 at k=0 nm -1 and k=0.4 nm -1 for a) l state, and b) T amm state.
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 6869 Figure 6.8: The total probability density |Ψ| 2 at k=0 nm -1 and k=0.4 nm -1 for a) h state, and b) c 1 state.6.4.3 10 periods superlattice under strong electric fieldAnd finally we get for a strong electric field of 50 kV/cm :

Figure 6 . 10 :

 610 Figure 6.10: The total probability density |Ψ| 2 at k=0 nm -1 and k=0.4 nm -1 for a) h 1 state, and b) c 1 state.

Figure 6 .

 6 Figure 6.13: a) 5 periods superlattice b) Energy dispersion versus k

Figure 6 . 14 :

 614 Figure 6.14: Absorbance results (in arbitrary amplitude) for a) light polarized along the ⃗ e z axis, and b) in-plane polarized light .

Figure 6 . 15 :

 615 Figure 6.15: Electric field on 10 periods superlattice for a) Light polarized along the ⃗ e z axis (QCL type) b) In-plane polarized light (photodetectors).For each case we have : no electric field (blue), with a weak electric field applied E=5 kV/cm (red) and with a strong one E=50 kV/cm (purple). Independent results of each case (electric field and polarisation) are given in annex: D.

Figure 6 . 16 :

 616 Figure 6.16: Absorbance versus the number of periods with four cases : 5 in blue, 8 in red, 10 in purple and 12 in green. For a) light polarized along the ⃗ e z axis, and b) in-plane polarized light .

Figure 7 . 1 :

 71 Figure 7.1: ICL scheme of the active W-well and the hole injector part, with CB in red, the VB is composed of Light Holes (LH) band in yellow and Heavy Holes (HH) band in blue (ignoring the strain potentials) together with Spin-Orbit (SO) band in teal.

  of particles, with n QW number of particles in the QW

Figure 8 . 3 :

 83 Figure 8.3: Schematic representation of the double barrier heterostructure. All the mechanisms contributing to change in electron number or energy are shown. Thick horizontal arrows refer to the resonant tunneling process. The parabolic energy dispersion of the first (and only) subband is depicted. Straight arrows refer to the intrasubband transitions. Curbed arrows refer to to the scattering assisted thermionic emission from QW to the continuum above the collector barrier and also refer to the collector backflow.

Figure 8 . 4 :

 84 Figure 8.4: System parameters without electric field

Figure 9 . 1 :

 91 Figure 9.1: System under electric field, and tunnel effect processes

Figure 10 . 1 :

 101 Figure 10.1: Schematic representation of acoustical phonon for an atom chain with two different kinds of charges

Figure 10 . 2 :

 102 Figure 10.2: Schematic representation of optical phonon for an atom chain with two different kinds of charges

Figure 10 . 3 :

 103 Figure 10.3: Phonon dispersion for a diatomic linear chain (one-dimensional Bravais lattice) having a constant lattice a, at the Brillouin zone boundary it appears two branches : optical and acoustical

Figure 10 . 6 :

 106 Figure 10.6: Thermal escape from the QW to the continuum due to phonon absorption, the energy of the QW (in L 1 ) ground state band is E 1 , and the energy of continuum states |k ′ z , ⃗ k ′ ⟩ (in green) is the height of the collector barrier V b .

  because thermal escape process consists of a loss of a hot electron from the QW band toward the continuum (in our current case due to a phonon emission ℏω LO ) inducing that the eigenvectors transition direction does not change. We have the ground eigenstate |1, ⃗ k⟩ corresponding to the first QW energy state E 1 of wave vector ⃗ k, and the final eigenstate |k ′ z , ⃗ k ′ ⟩ corresponding to continuum states.

Figure 10 . 7 :

 107 Figure 10.7: Thermal escape from QW to continuum due to phonon emission, the beginning of the QW (in L 1 ) ground state band is E 1 , and the beginning of continuum states |k ′ z , ⃗ k ′ ⟩ (in green) is the height of the collector barrier V b .
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 1108 Figure 10.8: Absorption of a LO phonon of energy ℏω LO (in pink), beginning at the ground state E 1 of QW, and V b the height of the potential collector barrier (right side) with above the continuum (in green). The state E abs 1, ⃗ k corresponds to the minimum energy required to have an absorption (eq: 10.19).

Figure 10 . 9 :

 109 Figure 10.9: Emission of a phonon of energy ℏω LO (in pink), beginning at the ground state E 1 of QW, and V b the height of the potential collector barrier (right side) with above the continuum (in green). The state E emi 1, ⃗ k corresponds to the minimum energy required to have an emission (see eq: 10.21).

  y, v, θ)
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 1010 Figure 10.10: Intersubband exchange between two bands n and n ′ , with an emission of phonon ℏω LO .

Figure 10 . 11 :

 1011 Figure 10.11: Intersubband exchange between two bands n and n ′ , with an absorption of phonon ℏω LO .
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Figure 11 .

 11 Figure 11.1: a) Ratio of characteristics times for tunneling and thermionic emission, b) QW electronic temperature, and c) QW electron density versus applied electric field.

Figure 11 .

 11 Figure 11.2: a) Ratio of characteristics times for tunneling and thermionic emission, b) QW electronic temperature, and c) QW electron density versus applied electric field.

Figure 11 .

 11 Figure 11.3: a) Ratio of characteristics times for tunneling and thermionic emission, b) QW electronic temperature, and c) QW electron density versus applied electric field.

Figure 11

 11 Figure 11.4: a) Ratio of characteristics times for tunneling and thermionic emission, b) QW electronic temperature, and c) QW electron density versus applied electric field.

Figures 11 .

 11 Figures 11.4.b and 11.4.c show respectively the T QW and n QW /S dependence on the Al percentage of the V b barrier for structures. Increasing the Al content increases the barrier height, which limits the electron thermionic emission, so the electron concentration n QW /S increases and limits the cooling that leads a T QW rising.

Figure 11 . 5 :

 115 Figure 11.5: Schematic representation of the conduction band profile of the double barrier heterostructure without external electric field. E 1 is the only one bound state of the QW.

Figure 11 . 6 :

 116 Figure 11.6: QW electronic temperature versus the applied bias in sample A (a) and sample B (b). Rate equations (red) and NEGF (blue open circles) calculations are compared to experimental results (black filled circles). T 0 = 300K.
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Table 1 .

 1 2: Eigenfunctions of O h group for CB and VB made by a linear combination of atomic orbitals of two atoms denoted with a and a

′ 

. We preserve here our previously made notation concerning molecular orbitals (see scheme 1.1), meaning that we have capital letters for bonding (lowest energy) and with a bar for antibonding (highest energy).

Table :

 : 

				1.2 for the band structure properties of
	O h group we get :			
	Eigenfunction Mulliken Basis function band name (Koster)
	P (CB)	T 1	{x, y, z}	Γ 4
	S (CB)	A 2	xyz	Γ 2
	P (VB)	T 2	{yz, xz, xy}	Γ 5
	S (VB)	A 1	s	Γ 1
	1.2.3 Symmetry properties for T d		

Table 11 .

 11 .1 below : Sample n D /Ω (cm -3 ) L 0 (nm) y L 1 (nm) L b (nm) 1:Table of samples characteristics.

	x

  We consider the system at resonance with A(E kz ) = 2π δ(E kz -E 1 ), yielding :(E k// + E 1 ) e -βem(E 1 +E k / / -µem)e -βQW (E 1 +E k / / -µQW)

			3 → [0; +∞[×[0; 2π[×R
	P S	=	1 Ω	Ω 8π 3	+∞ dk dk 2 2π +∞ 0 k // dk // 0 dθ -∞ // = 2m 1 ℏ 2 dE k//
					v z (E kz ) dk z =	1 ℏ	dE kz from eq: 9.2
	P S	= dE kz E = 1 8π 3 2π +∞ 0 1 2 2m 1 ℏ 2 dE k// +∞ -∞ 1 ℏ +∞ m 1 0 πℏ 3 Γ(E 1 ) dE k//

z v z (E kz ) E ⃗ k f em (E kz , E k// )-f QW (E kz , E k// ) A(E kz )Γ(E kz ) knowing : E ⃗ k = E kz + E k// kz + E k// f em (E kz , E k// )f QW (E kz , E k// ) . Γ(E kz ) 2π δ(E kz -E 1 )

  Using our previous results, we have from the equation 9.11 :

		e βem µem =	N em Ω	4	πℏ 2 β em 2m 1	-3 2
	and from the equation 9.13 :	n QW S	=	m 1 πℏ 2 β QW	e -βQW(E 1 -µQW)

• sup E k// = +∞ then x = +∞

P S = m 1 πℏ 3 Γ(E 1 ) e βem µem +∞ E 1 dx x e -βem x Aem e βQW µQW +∞ E 1 dx x e -βQW x AQW where A = 1 β e -β E 1 E 1 + 1 β

  m 1 πℏ2 β QW e -βQW(E 1 -µQW)and we set :J 11 x, x ′ , θ = ℏ √ 2m 1 J 11 x, x ′ , θ (G.1)⟨P ELR intra ⟩ emi = -Cf 2 Ω (n LO + 1) ℏω LO β QW 4πℏ 2 n QWTo adjust the integral bounds we set a new variable such as t = x -ℏω LO :we have the couple : x = ℏω LO + t and x ′ = x -ℏω LO = t new bounds are :• inf x = ℏω LO then t = 0 • sup x = +∞ then t = +∞ ⟨P ELR intra ⟩ emi = -Cf 2 Ω (n LO + 1) ℏω LO β QW 4πℏ 2 n QW ⟨P ELR intra ⟩ emi = -Cf 2 Ω (n LO + 1) ℏω LO 4πℏ 2 n QW

	m 1 2	ℏωLO ∞	dx e -βQW x	0	2π	dθ J 11 x, x ′ , θ
	m 1 2	e -βQW ℏωLO	0	∞	dt e -βQW t	0	2π	dθ J 11 (t, θ)
	We obtain :							
	m 1 2	e -βQW ℏωLO	0	∞	du e -u	0	2π	dθ J 11 (u, θ)

with :

J 11 (t, θ) ∼ | ⃗ k -⃗ k ′ | = 2t + ℏω LO -2 t(t + ℏω LO ) cos(θ)

to simply again, let us write :

u = β QW t so dt = 1 β QW du

and bounds are unchanged.

  J 11 k 2 , ξ 2 abs , θ ∼ | ⃗ k -⃗ k ′ | = k 2 + ξ 2 abs -2 k ξ abs cos(θ)

	•	ℏ 2 ξ 2 abs 2m 1	=	ℏ 2 k 2 2m 1	+ ℏω LO

2 → [0; +∞[×[0; 2π[ ⟨P ELR intra ⟩ abs = ℏω LO Cf 2 Ω m 1 S 8π 2 ℏ 3 n LO e -βQW(E 1 -µQW) ∞ 0 dk 2 e -βQWE k 2π 0 dθ J 11 k 2 , ξ 2 abs , θ

with :

•
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Thermoionic cooling

Appendix

Appendix A

Magnetic moment of the spin ⃗ m s

A.1 Current inside a spire and angular velocity

For an infinitesimal spire, the electric current for an electron charge -e is :

where ν is the charge frequency, meaning the number of spire revolutions per second ([ν] ≡ 1/s).

There are two definitions of angular velocity ⃗ ω : We can deduce of these expressions, the frequency ν :

Magnetic dipole moment

The fundamental expression of a magnetic dipole moment is given by an electric current I through an oriented surface ⃗ S, such as :

Considering the spire geometry, we use the cylindrical coordinate, with ⃗ S = πr 2 ⃗ e z , and working without external electromagnetic field, we have :

with m 0 the electron mass.

Appendix B

Thomas precession for an electron

Thomas precession describes an electron movement with the velocity ⃗ v through space in the presence of an electric field ⃗ E. The electron undergoes, in its own moving frame of reference, a Lorentz transformation of the magnetic field ⃗ B.

We take ⃗ R ′ as reference in motion relative to the reference ⃗ R along the ⃗ e x axis parametrized by the constant velocity v x , and the Lorentz factor γ : In special relativity, Lorentz transformations of ⃗ E and ⃗ B give :

The magnetic field is taken along ⃗ e z axis such :

Let us develop γ as a series expansion :

Overlap matrix elements

We define :

The matrix element A = ⟨Φ LP ↑ |H|Φ HH ↑⟩ is such as :

The second matrix element B = ⟨Φ LP ↑ |H|Φ LP ↓⟩ is calculated as : Appendix G

Linear Optical Absorbance

Energy Loss Rate intrasubband demonstration

G.1 Emission

The sum is transformed into integral and we perform a change to Polar coordinates :

with :

As we discussed in the chapter 10.7.1, the emission of phonon requires a minimal energy, so as shown in the relation above, the two new variables x and x ′ are linked such as x = x ′ + ℏω LO .

It induces a constraint on the new bounds, we have : 

The variable change leaves the same function J 11 for absorption and emission.

As before we finally simplify :

and bounds are unchanged.

We obtain :

with :

e ikx x 2 + a 2 dx Contour integration : We set z = x + iy, with y ∈ R :