
HAL Id: tel-04335842
https://theses.hal.science/tel-04335842

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Higher Structures in Homotopy Type Theory
Antoine Allioux

To cite this version:
Antoine Allioux. Higher Structures in Homotopy Type Theory. Computer Science [cs]. Université
Paris Cité, 2023. English. �NNT : �. �tel-04335842�

https://theses.hal.science/tel-04335842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Université Paris Cité

École de Sciences Mathématiques Paris Centre (ED 386)
Institut de Recherche en Informatique Fondamentale (IRIF)

Thèse de doctorat en informatique
Dirigée par Pierre-Louis Curien

Higher Structures in
Homotopy Type Theory

par Antoine Allioux

Présentée et soutenue publiquement le 17 juillet 2023
devant un jury composé de :

Pierre-Louis Curien DR émérite Université Paris Cité Directeur de thèse
Eric Finster Lecturer University of Birmingham Co-encadrant de thèse
Matthieu Sozeau CR Centre Inria de l’Université de Rennes Co-encadrant de thèse
Marcelo Fiore Prof. University of Cambridge Rapporteur
Samuel Mimram Prof. École Polytechnique Rapporteur
Martín H. Escardó Prof. University of Birmingham Examinateur
Nicolai Kraus Assoc. prof. University of Nottingham Examinateur
François Métayer MCF Université Paris Nanterre Examinateur
Paige R. North Asst. prof. Utrecht University Examinatrice
Emily Riehl Prof. Johns Hopkins University Examinatrice

Higher Structures in
Homotopy Type Theory

Antoine Allioux

PhD Thesis

Abstract

The definition of algebraic structures on arbitrary types in homotopy type theory
(HoTT) has proven elusive so far. This is due to types being spaces instead of plain
sets in general, and equalities of elements of a type behaving like homotopies.
Equational laws of algebraic structures must therefore be stated coherently.
However, in set-based mathematics, the presentation of this coherence data
relies on set-level algebraic structures such as operads or presheaves which are
thus not subject to additional coherence conditions. Replicating this approach
in HoTT leads to a situation of circular dependency as these structures must be
defined coherently from the beginning.

In this thesis, we break this situation of circular dependency by extending
type theory with a universe of cartesian polynomial monads which, crucially,
satisfy their laws definitionally. This extension permits the presentation of types
and their higher structures as opetopic types: infinite collections of cells whose
geometry is described by opetopes. Opetopes are geometric shapes originally
introduced by Baez and Dolan in order to give a definition of 𝑛-categories.

We open this thesis by giving a purely type-theoretical definition of opetopes
in a type theory similar to book HoTT in Chapter 1. Our definition essentially
defines opetopes as sequences of well-founded trees satisfying some properties
which are nicely captured by their typing. The opetopic approach particularly
shines in the context of type theory as well-founded trees fall within the realm
of inductive types. More specifically, our construction is based on a sequence of
cartesian polynomial monads, a notion which becomes central in later chapters.
We conclude this chapter with an inductive definition of the faces of an opetope.
This self-contained chapter is the occasion for the reader to get familiar with
opetopes in type theory which are sets and therefore elude considerations of
coherences before broaching on opetopic types whose complexity may hide the
conceptual simplicity of opetopes.

We then extend type theory with a universe of cartesian polynomial monads
closed under some monad constructors in Chapter 2. We do so in the aim of
defining opetopic types in Chapter 3. Contrary to our definition of opetopes
which only involves sets, opetopic types are valued in arbitrary types. As a
consequence, we can no longer state the equational laws of Chapter 1 in a
coherent fashion, having no means to do so. We therefore define our universe
of polynomial monads in order that these equational laws hold definitionally.
The constructors under which our universe is closed then allow us to define, in
particular, the Baez-Dolan slice construction on which is based our definition
of opetopic types. We then define a number of extensions in order to establish
some more advanced results in Chapter 3.

Finally, we take advantage of our universe of polynomial monads to define
opetopic types in Chapter 3. This enables us to define coherent higher algebraic
structures, among which ∞-groupoids and (∞, 1)-categories. Crucially, their
higher structure coincides with the one induced by their identity types. We

ii Abstract

then establish some expected results in order to motivate our definitions. In
particular, we compare our definition of fibrant opetopic types with Baez and
Dolan definition of coherent algebras, and we show that they are equivalent
under certain assumptions.

Keywords: homotopy type theory, higher algebra, higher category theory, poly-
nomial monads, opetopes

Résumé

La définition de structures algébriques sur des types arbitraires en théorie des
types homotopiques (HoTT) s’est révélée hors de portée jusqu’à présent. Cela
est dû au fait que les types sont, en général, des espaces plutôt que de simples
ensembles, et que les égalités d’éléments d’un type se comportent comme des
homotopies. Les lois équationnelles des structures algébriques doivent donc être
énoncées de manière cohérente. Cependant, en mathématiques ensemblistes, la
présentation de ces données de cohérence se fait à l’aide de structures algé-
briques sur des ensembles, telles que les opérades ou les préfaisceaux, qui ne
sont donc pas soumises à des conditions de cohérence supplémentaires. Repro-
duire cette approche en HoTT conduit à une situation de dépendance circulaire
puisque ces structures doivent être définies de manière cohérente dès le départ.

Dans cette thèse, nous brisons cette circularité en étendant la théorie des
types d’un univers de monades polynomiales cartésiennes qui, de manière cru-
ciale, satisfont leurs lois définitionnellement. Cette extension permet de présen-
ter les types et leurs structures supérieures sous forme de types opétopiques
qui sont des collections infinies de cellules dont la géométrie est décrite par les
opétopes. Les opétopes sont des formes géométriques introduites par Baez et
Dolan afin de donner une définition des 𝑛-catégories.

Nous ouvrons cette thèse en donnant une définition des opétopes dans une
théorie des types similaire à celle du livre HoTT au chapitre 1. Nous définis-
sons les opétopes comme séquences d’arbres bien fondés satisfaisant certaines
propriétés qui sont capturées par leur typage. L’approche opétopique est parti-
culièrement adaptée au contexte de la théorie des types car ces arbres sont aisé-
ment définissables comme types inductifs. Plus précisément, notre construction
est basée sur une séquence de monades polynomiales cartésiennes, une notion
qui devient centrale dans les chapitres suivants. Nous concluons ce chapitre
par une définition inductive des faces d’un opétope. Ce chapitre est l’occasion
pour le lecteur de se familiariser avec les opétopes en théorie des types qui sont
des ensembles et qui échappent donc aux considérations de cohérence avant
d’aborder les types opétopiques dont la complexité peut obscurcir la simplicité
conceptuelle des opétopes.

Nous étendons ensuite la théorie des types d’un univers de monades poly-
nomiales cartésiennes clos sous certains constructeurs de monades au chapitre 2
qui nous servira à définir les types opétopiques au chapitre 3. Contrairement
à notre définition des opétopes qui n’implique que des ensembles, les types
opétopiques sont à valeurs dans des types arbitraires. Par conséquent, nous ne
pouvons plus énoncer les lois équationnelles du chapitre 1 de façon cohérente.
Nous définissons donc notre univers de monades polynomiales afin que ces lois
soient satisfaites par définition. Les constructeurs sous lesquels notre univers est
clos nous permettent alors de définir, en particulier, la construction tranche de

iv Résumé

Baez et Dolan sur laquelle repose notre définition de type opétopique. Nous dé-
finissons finalement un certain nombre d’extensions afin d’établir des résultats
plus avancés au chapitre 3.

Enfin, nous tirons parti de notre univers de monades polynomiales pour dé-
finir les types opétopiques au chapitre 3. Cela nous permet de définir des struc-
tures algébriques supérieures cohérentes, parmi lesquelles les ∞-groupoïdes
et les (∞, 1)-catégories. De manière cruciale, leur structure supérieure coïncide
avec celle induite par leurs types d’identités. Nous établissons ensuite quelques
résultats attendus afin de motiver nos définitions. En particulier, nous compa-
rons notre définition de type opétopique fibrant avec la définition d’algèbre
cohérente de Baez et Dolan, et nous montrons qu’elles sont équivalentes sous
certaines hypothèses.

Mots clés : théorie des types homotopiques, algèbre supérieure, théorie des
catégories supérieures, monades polynomiales, opétopes

Acknowledgements

I could not have undertaken this journey without the people who made it
possible. I am deeply indebted to Matthieu Sozeau, my unofficial supervisor,
for giving me the opportunity to do this PhD. Eric Finster for his pioneering
work on opetopic approaches in type theory: my thesis owes a lot to Eric’s
work and it has been a pleasure to collaborate with him. Samuel Mimram and
Marcelo Fiore, the “rapporteurs” as we say in French, for the time they dedicated
to the review and the evaluation of this thesis, and for their helpful comments.
The members of the jury: Emily Riehl, Paige North, Martín Escardó, Nicolai
Kraus, and François Métayer for attending the defence and for their interesting
questions. Pierre-Louis Curien, my official thesis supervisor for administrative
reasons, for having coordinated the organisation of the defence. I also wish
to thank Jamie Vicary, who supervised my Master’s thesis at the University of
Oxford in 2015 and with whom I had my first research experience, as well as
Michele Pagani and Thomas Ehrhard who supervised my internship at IRIF in
2016.

I am grateful to my colleagues and friends for their support and for the
many interesting discussions that we have had throughout these years and
that, I hope, we will continue to have. In particular, I would like to thank
Léonard for the numerous evenings spent at the Cuves de Fauve talking about
the connections between type theory and higher category theory. Raphaël for
his interesting perspectives on artificial intelligence, a recent interest of mine,
and for our numerous adventures, notably in New York City. Ésaïe for his
kindness, our discussions on artificial intelligence and finance, and for our
nights out; I am glad to have found a fellow clubber! Daniel for his love for the
formalisation of mathematics in proof assistants that I share with him and for
the discussions that we have had on countless topics. Chait for his kindness
and for his consistently thoughtful opinions on many topics including but not
limited to maths. Sarah for our trips to the catacombs and, in particular, for this
memorable orienteering we participated to down there. Jules for his kindness
and for his interesting reading lists. Léa for her consistent support and for
her interesting and singular perspectives, it is good not to be surrounded only
by scientists! Adelin and Alexis for their friendship. Ben and Alexia for their
hospitality. Pierre for staying true to himself in all circumstances. Sacha for our
nights out. Doris for her hospitality and her gentleness. Hugo that I wish I had
seen more often despite sharing the same office. Fanny for the hikes in the south
of France which were a welcome break from Paris. Guyjean and Zandeck, that I
have known since the “prépa”, and with whom I have managed to stay in touch
daily. The friends that I met at IRIF in 2016 while interning there: Ludovic,
Théo, Cyrille, Maxime, Joey. The people that I have met at IRIF more recently:
Félix, Colin, Gaëtan, Kostia, Moana. My friends from the weekly bar of iiens
which took my mind off work: moïse, Cara, Amora, corn, Fériel.

Lastly, I am thankful to my parents and my brother, Julien, for their support.
I never lacked anything and I realise how privileged I was in this respect.

vi Acknowledgements

Contents

Introduction 1

1 Opetopes in type theory 11
1.1 Introduction . 11
1.2 Diagrammatic depiction of opetopes 12

1.2.1 Trees . 12
1.2.2 Nestings . 12
1.2.3 Correspondences . 13
1.2.4 Subdivisions . 13
1.2.5 Subdivision pairings . 14
1.2.6 Opetopes . 15
1.2.7 Faces of an opetope . 17
1.2.8 Grafting of opetopes . 18
1.2.9 Composition of opetopes 19

1.3 Opetopes in type theory . 20
1.3.1 Definition of opetopes . 21
1.3.2 Definition of pasting diagrams 21
1.3.3 Definition of positions . 23
1.3.4 Inductive representation of opetopes 24
1.3.5 Informal presentation of the monad structure 28
1.3.6 Specification of positions operations 35
1.3.7 Definition of the monad structure 38
1.3.8 Definition of the positions operations 41

1.4 Faces of an opetope . 48
1.4.1 Definitions . 49
1.4.2 Examples . 50

2 Polynomial monads 53
2.1 Cartesian polynomial monads . 53

2.1.1 Polynomials . 53
2.1.2 Monads . 54

2.2 The universe of polynomial monads 57
2.2.1 The identity monad . 57
2.2.2 The pullback monad . 57
2.2.3 The slice monad . 58

2.3 Morphisms of monads . 63

viii Contents

2.3.1 Identity morphism . 65
2.3.2 Slice monad morphisms . 65
2.3.3 Pullback monad morphisms 66
2.3.4 Composition of monad morphisms 66

2.4 Monad families . 66
2.4.1 The identity monad . 68
2.4.2 The pullback monad . 69
2.4.3 The slice monad . 69
2.4.4 Dependent sums . 71

3 Opetopic methods in type theory 73
3.1 Opetopic types . 73
3.2 Algebras . 75

3.2.1 Algebraic structure . 75
3.2.2 Fibrant opetopic types . 84

3.3 Algebraic characterisation . 85
3.4 An explicit characterisation of the composition 93
3.5 𝑀-multicategories . 97
3.6 Fibrations of opetopic types . 104

3.6.1 Families of opetopic types 104
3.6.2 Dependent algebras . 104
3.6.3 Fibrations of opetopic types 107
3.6.4 Dependent sums of opetopic types 108

3.7 The opetopic universe of types . 109
3.8 The opetopic type associated with a type 111
3.9 Adjunctions . 112

Conclusion 119

Bibliography 123

A Background material 127
A.1 Constructive mathematics . 127
A.2 Intuitionistic type theory . 129
A.3 Propositions as types . 132
A.4 Homotopy type theory . 134

A.4.1 The genesis . 134
A.4.2 Univalence . 135

A.5 Our setting . 136
A.5.1 Function types . 137
A.5.2 Σ-types . 138
A.5.3 Inductive types . 138
A.5.4 Identity types . 140

B Extended abstract (French version) 145

Introduction

Algebra in type theory

More than fifty years after its inception, Martin-Löf type theory (MLTT) in its
intensional form continues to be a source of wonder. This past decade has
been marked by the development of homotopy type theory (HoTT), a field
which stemmed from the discovery that Martin-Löf identity types provide a
link between type theory and homotopy theory, a branch of algebraic topology.
Simply put: equalities of elements of a type can be regarded as paths in a space
that the type represents, with equalities of equalities corresponding to higher
dimensional paths. Under this correspondence, we can use topological intuition
when working with types and their proof-relevant equality types.

The notion of homotopy type first arose in algebraic topology from the desire
to consider topological spaces up to a coarser notion of equivalence, namely
homotopy equivalence, where we ask not that a function have an inverse "on the
nose", but up to deformation. The homotopy type of a space is the structure
which only contains the information of the algebra of paths in the space and
higher paths between them.

Over time, the notion of homotopy type became an object of study in itself.
The desire to axiomatise this algebra of paths led to the connection between al-
gebraic topology and higher category theory. Alexander Grothendieck’s homo-
topy hypothesis asserts exactly that the algebra of higher paths can be understood
as an ∞-groupoid, that is, a weak higher-dimensional category in which all
higher morphisms are invertible. More recently, it was discovered that identity
types of HoTT give a precise axiomatisation of ∞-groupoids. Several funda-
mental results in the field have made this connection precise, showing that
type theory gives rise to particular definitions of∞-groupoids (Lumsdaine 2010;
Van Den Berg and Garner 2011). This connection has been further generalised
to establish that HoTT is the internal language of (∞, 1)-topoï (Shulman 2019).
Establishing the connection between types and ∞-groupoids allows regarding
statements about types as statements about ∞-groupoids and vice versa. This
has allowed the reformulation of a great body of homotopy theory results in a
more conceptual way and this has led to the development of new proof tech-
niques (Univalent Foundations Program 2013).

In light of these connections, it is possible to think of type theory as a found-
ation of mathematics based on strong principles, among which Voevodsky’s
Univalence Principle asserting that all statements about types are invariant under

2 Introduction

equivalence (Awodey 2014).

This foundation of mathematics should have its own theory of algebra.
This, however has proven problematic. The reason is that defining algebraic
structures on homotopy types requires that we do so coherently; otherwise, some
expected constructions cannot be defined. So far, we have not been able to do
so without assuming additional principles such as the uniqueness of identity
proofs (UIP) which are not compatible with the homotopy interpretation of
types that we subscribe to in HoTT. The difficulty lies in the description of
the laws satisfied by the algebraic structure at hand. This problem is usually
tackled in set-based mathematics — where spaces are defined in terms of sets
— by using set-level algebraic structures such as operads or presheaves in order
to present algebraic structures on spaces and their infinite data of coherences.
However, this approach is denied to us in HoTT where types behave like spaces
with equalities between elements of a type behaving like homotopies. This is a
blessing as this allows to state constructions in a homotopy invariant way, but
this is also a curse as this seems to prevent us from defining algebraic structures
on arbitrary types. Related to this problem is the open question of defining semi-
simplicial types. It was raised during the special year on Univalent Foundations
at the Institute for Advanced Study in 2013 and all attempts to solve it have
required modifying type theory in some way by reintroducing a strict equality
(Altenkirch, Capriotti and Kraus 2016; Annenkov et al. 2017; Capriotti and
Kraus 2017; Kraus and Sattler 2017) thus defeating the foundational ambition
of HoTT.

The objective of this thesis is therefore to provide the means to define a
range of fully coherent and non-truncated higher algebraic structures in type
theory while retaining the homotopy interpretation of types. The approach we
adopt consists in extending type theory with a universe of polynomial monads.
Crucially, the monad structure is defined in such a way that the laws hold defin-
itionally. These structures are enough to define opetopic types: type-valued
collections of cells whose geometry is governed by opetopes. Opetopes are
many-to-one geometric shapes used in geometric approaches to higher algebra.
A construction of opetopes based on polynomial monads known as the Baez-
Dolan construction (Baez and Dolan 1998) underlies our approach. Equipped
with this structure of opetopic type, we are able to define a number of higher
algebraic structures, among them being∞-groupoids and (∞, 1)-categories. We
then develop opetopic methods that we apply to prove elementary facts about
our higher algebraic structures.

We have implemented our system in the Agda proof assistant which has
been an invaluable assistance in order to develop our ideas. We took advantage
of its facilities allowing to postulate new constants and rewriting rules in order
that our monads enjoy definitional laws.

Before introducing our approach in greater details, let us pause to see some
of the subtleties of coherence definitions in type theory.

Algebra in type theory 3

(𝑎 ⊗ (𝑏 ⊗ 𝑐)) ⊗ 𝑑 𝑎 ⊗ ((𝑏 ⊗ 𝑐) ⊗ 𝑑)

(𝑎 ⊗ 𝑏) ⊗ (𝑐 ⊗ 𝑑)

((𝑎 ⊗ 𝑏) ⊗ 𝑐) ⊗ 𝑑 𝑎 ⊗ (𝑏 ⊗ (𝑐 ⊗ 𝑑))

𝛼𝑎,𝑏⊗𝑐,𝑑

1𝑎 ⊗ 𝛼𝑏,𝑐,𝑑𝛼𝑎,𝑏,𝑐 ⊗ 1𝑑

𝛼𝑎⊗𝑏,𝑐,𝑑 𝛼𝑎,𝑏,𝑐⊗𝑑

Figure 1: Stasheff polytope 𝐾2

Coherence

A subtle consequence of the non-trivial nature of the higher structure of types
is that, when one uses identity types to state algebraic laws, one has to do
so coherently unless uniqueness of identity proofs (UIP) is assumed. Without
these coherence laws, expected mathematical results simply do not hold. For
instance, we cannot define the slice category of a category in general. Without
UIP, type theory admits models in spaces and intuition of homotopy theory
applies. Definitions of algebraic structures therefore become infinitary in their
presentation to account for their coherence laws.

Let us illustrate this phenomenon with the definition of an associative
magma on a type 𝑋. This consists in a binary operation ⊗ : 𝑋 × 𝑋 → 𝑋
satisfying the associative law

𝛼𝑎,𝑏,𝑐 : (𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐)

for all elements 𝑎, 𝑏, 𝑐 : 𝑋. The definitions does not end here however, as 𝛼𝑎,𝑏,𝑐
is a piece of data in a proof-relevant setting and its choice can not be arbitrary.
It has to be coherent which means that any diagram made of 𝛼 such as the one
depicted on Figure 1 must commute. This condition is stated as an identity
between the two paths of this diagram. In turn, this new identity can not be
arbitrary and must satisfy its own coherence laws leading to an infinite tower of
data whose geometry is described by Stasheff polytopes 𝐾𝑛 .

As an example of the ill-behaved nature of a non-coherent associative law,
consider the definition in type theory of the slice category 𝐶/𝑐 where 𝑐 is an
object of a category 𝐶. We witness a switch in dimension where the data of
dimension 𝑛 of 𝐶/𝑐 uses the (𝑛 + 1)-dimensional data of 𝐶. In particular, when
defining the composition in 𝐶/𝑐, one has to make use of the associative law in
𝐶. And when it comes to proving that the composition in 𝐶/𝑐 is associative, we
are stuck unless we have the data of the MacLane’s pentagon.

Specifying the infinite tower of coherence data in type theory in terms of
identity types has proved elusive without the ability to resort to a strict equality
which is not subject to these coherence conditions. In particular, this is the

4 Introduction

approach taken by Voevodsky’s homotopy type system (Voevodsky 2013) and
two-level type theory (Altenkirch, Capriotti and Kraus 2016). In this thesis, we
pursue another approach consisting in extending type theory with a universe of
polynomial monads satisfying their laws definitionally. This lets us specify the
necessary coherence data while retaining the homotopy interpretation of types.

Opetopic types

Our approach will consist in defining a higher-dimensional presentation of types
as opetopic types. The geometry of opetopic types is governed by opetopes that
can also be seen as the terminal opetopic type. Opetopes are geometric shapes,
like simplices or globes, that were introduced by Baez and Dolan (Baez and
Dolan 1998) in order to define 𝑛-categories. We chose opetopes as they can
be defined using cartesian polynomial monads which lend themselves well to a
definition in type theory.

Opetopes are many-to-one cells whose (𝑛 + 1)-cells can be seen as relating a
source formal composite of 𝑛-cells with a target 𝑛-cell. We understand (𝑛 + 1)-
opetopic cells as witnessing the composition of pasting diagrams of 𝑛-cells.
(𝑛+2)-cells then witness the laws satisfied by the composition of 𝑛-cells, (𝑛+3)-
cells witness some additional coherence data that the laws satisfy, and so forth.
If enough of these cells exist, in a sense that we will make precise later, we
say that the opetopic type is fibrant and we regard it as an infinite-dimensional
collection of cells describing a fully coherent algebraic structure.

Let us depict some examples of opetopic cells in order to gain intuition.

0-cells They are the objects of our opetopic types, their depiction is therefore
0-dimensional:

𝑎 𝑏 𝑐

1-cells They relate a single source 0-cell to a single target 0-cell hence their
depiction as arrows:

𝑎 𝑏
𝑐

Starting from this dimension we can talk about formal composites of 𝑛-cells
named pasting diagrams. In dimension 1 they are just linear trees of arrows such
as the following one:

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔

Algebra in type theory 5

2-cells They relate a source pasting diagram of 1-cells — a possibly empty
linear tree — to a single arrow. Some examples of 2-cells are the following:

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓
𝑔

ℎ

𝑖
𝑎 𝑏

𝑐

𝑑

𝑒

𝑎

𝑏

𝑐

We understand these cells as witnessing that a certain pasting diagram of arrows
composes to a particular arrow. The geometry of opetopes allows the expression
of an unbiased notion of composition. The units will be given by the composition
of empty pasting diagrams as depicted in the third case. Unary cells which
relate a pair of parallel arrows (i.e., arrows sharing the same source and the
same target) are particular cases of opetopic cells. Given that unary cells exist
in all dimensions, opetopic types subsume globular types.

2-cells can be assembled into pasting diagrams by gluing the target of a 2-cell
to a matching source of another 2-cell as illustrated in the next diagram:

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓

ℎ

𝑖

𝑔

𝑗

𝑘

The two cells 𝑗 and 𝑘 are glued along the common face 𝑔.

3-cells As a last example, consider the following 3-cell 𝑚:

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓

ℎ

𝑖

𝑔

𝑗

𝑘

𝑚

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓

ℎ

𝑖

𝑙

Its source — the diagram on the left — is a pasting diagram of 2-cells; that is, a
formal composite of the 2-cells 𝑗 and 𝑘 glued along a common face 𝑔. Its target
is the 2-cell 𝑙 whose frame — its source pasting diagram along with its target
cell — matches the one of the source pasting diagram of 𝑚.

Fibrant opetopic types We are interested in opetopic types which satisfy the
following property: for any pasting diagram of 𝑛-cells, there exists a unique
composite 𝑛-cell sharing the same frame. We say that such an opetopic type is
fibrant. They are the opetopic types which represent fully coherent algebras.

6 Introduction

As an example, such an opetopic type would guarantee the existence of the
red data displayed on the following diagram given the black source pasting
diagram:

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓
𝑔

ℎ

𝑖

Moreover, the red data formed of the pair comprising the cell ℎ and the cell 𝑖wit-
nessing that ℎ is a composite of its source pasting diagram is unique. By unique,
we mean that the type of pairs, of which (𝑖 , ℎ) is a member, is contractible. The
notion of contractibility is fundamental in HoTT and is easily defined.

Polynomial monads

Cartesian polynomial monads form the backbone of our system; we will use
them to define opetopes. They are at the heart of the so-called Baez-Dolan
construction (Baez and Dolan 1998) which was introduced in the setting of op-
erads with the aim of defining 𝑛-categories. Cartesian polynomial monads can
be understood as presentations for strongly regular algebraic theories. These
are algebraic theories whose equations are constrained in such a way that vari-
ables have to appear in both sides without repetition and in the same order
(Leinster 2004). From now on, we will not systematically specify that our poly-
nomial monads are cartesian even though they always are in order to lighten
the notation.

The endofunctor part of the polynomial monad structure is also known as an
indexed container in the type theory literature (Abbott, Altenkirch and Ghani
2005; Altenkirch, Ghani et al. 2015). They provide a calculus of datatypes used
to internalise a large class of inductive datatypes in type theory allowing, for
example, the conception of generic algorithms on datatypes.

Polynomial monads lend themselves well to a definition in type theory as
indexed families. The data underlying a polynomial endofunctor and that we
refer to as a polynomial is described by the following type families and typing
function where𝒰 stands for the universe of types:

Idx :𝒰
Cns : Idx→𝒰
Pos : {𝑖 : Idx} → Cns 𝑖 →𝒰
Typ : {𝑖 : Idx} (𝑐 : Cns 𝑖) → Pos 𝑐 → Idx

This data can be regarded as a description of a signature of an algebraic theory:
the elements of Idx, which we refer to as indices serve as the sorts of the theory,
and for 𝑖 : Idx, the type Cns 𝑖 is the collection of operation symbols whose
“output” sort is 𝑖. The type Pos 𝑐 is then the collection of “input positions” of
the operation 𝑐 which are themselves assigned an index via the function Typ.

Algebra in type theory 7

𝑎 𝑐 𝑑

𝑔 ℎ

𝑖

𝑓

𝑏 𝑒

Figure 2: A 𝑃-tree

In this thesis, we will use a graphical language to depict the constructors of
our polynomial monads. A constructor is depicted as a corolla whose output
points downward and whose inputs point upward. In the following depiction
of a corolla, the constructor is labelled 𝑓 , the inputs are labelled 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛,
and the target is labelled 𝑦.

𝑥1
. . .

𝑥𝑛

𝑓

𝑦

For any polynomial functor 𝑃, its constructors can be assembled into finite
rooted trees named 𝑃-trees (Figure B.1) provided that for each inner edge, the
index of the target and the index of the input of the corresponding constructors
match.

The additional structure on a polynomial endowing the induced polynomial
endofunctor with a structure of cartesian polynomial monad is specified, in part,
by the following operations:

η : (𝑖 : Idx) → Cns 𝑖
μ : {𝑖 : Idx} (𝑐 : Cns 𝑖) (𝑑 : (𝑝 : Pos 𝑐) → Cns (Typ 𝑐 𝑝)) → Cns 𝑖

These operations have to satisfy certain laws that we do not detail in this section,
but we will comment both operations.

For each index 𝑖 : Idx, there is a unary constructor η 𝑖 : Cns 𝑖 whose input’s
index is 𝑖. We can depict this constructor as follows:

𝑖

η 𝑖

𝑖

As for the operation μ, its arguments comprise a constructor 𝑐 as well as a family
of constructors 𝑑 indexed by the positions of 𝑐. We regard this data as specifying

8 Introduction

a depth-2 tree such as the one displayed on the left of the following figure. The
operation μ then sends this tree to a constructor sharing the same inputs and
the same output such as the one depicted on the right. The fact that the input
positions as well as their typing is preserved by the operation μ is due to the
fact that our monads are cartesian.

𝑎 𝑐 𝑑

𝑔 ℎ

𝑖

𝑓

𝑏 𝑒

𝑎 𝑐 𝑑

𝑗

𝑓

An alternative depiction of a tree along with a constructor sharing its boundary
consists in drawing the tree inside the constructor in question.

𝑗

𝑎 𝑐 𝑑

𝑔 ℎ

𝑖

𝑓

𝑏 𝑒

In addition, the operation μ has to be associative and unital with units specified
by the operation η. We emphasize that we will implement our universe of
polynomial monads by extending type theory in such a way that these laws
hold definitionally.

Plan

We open this thesis by first giving a purely type-theoretical definition of opetopes
in a type theory similar to book HoTT in Chapter 1. Our definition essentially
defines opetopes as sequences of well-founded trees satisfying some properties
which are nicely captured by their typing. The opetopic approach particularly
shines in the context of type theory as well-founded trees fall within the realm
of inductive types. More specifically, our construction is based on a sequence
of polynomial monads, a notion which becomes central in later chapters. We
conclude this chapter with an inductive definition of the faces of an opetope.
This self-contained chapter is the occasion for the reader to get familiar with
opetopes before broaching on opetopic types whose complexity may hide the
conceptual simplicity of opetopes.

Equipped with the understanding of opetopes, a simple example of poly-
nomial monads, we then extend type theory with a universe of cartesian poly-
nomial monadsℳ closed under some monad constructors in Chapter 2. We

Formalisation 9

do so in the aim of defining opetopic types, collection of types whose combin-
atorics is described by opetopes, in Chapter 3. Contrary to our definition of
opetopes which only involves sets, opetopic types are valued in arbitrary types.
As a consequence, we can no longer state the equational laws of Chapter 1 in a
coherent fashion, having no means to do so. We therefore define our universe
of polynomial monads in order that these equational laws hold definitionally.
The constructors under which our universe is closed then allow us to define, in
particular, the sequence of polynomial monads defining opetopes. In addition
to this universe which constitutes the core of our addition to type theory, we
add two sorts of universes as further extensions. First, we define a family of uni-
verses 𝑀 →𝑚 𝑁 of cartesian monad morphisms from 𝑀 to 𝑁 . Then, we define
a family of universesℳ↓𝑀 of polynomial monad families over on a monad 𝑀.
These two extensions are developed in order to establish some more advanced
results in Chapter 3.

Finally, we take advantage of our universe of polynomial monads to define
opetopic types in Chapter 3. This enables us to define coherent higher algeb-
raic structures, among which ∞-groupoids and (∞, 1)-categories. Crucially,
their higher structure is encoded in terms of identity types. We then establish
expected results in order to motivate our definitions. We first compare our
definition of fibrant opetopic type with Baez and Dolan definition of “coherent
𝑂-algebras” and show that they are equivalent if we require all morphisms to
be invertible. Then, we establish that set-truncated fibrant 𝑀-opetopic types are
equivalent to precategories as defined in the HoTT book for some monad 𝑀. We
quickly reach for the dependent monads as alluded earlier in order to establish
the remaining results. We start by defining fibrations of opetopic types which
are a generalisation of fibrant opetopic types then we show that fibrant opetopic
types are closed under dependent sums. We also define the universal fibration
of types as an opetopic type. Finally, we define Grothendieck (op)fibrations
that we use to define Lurie’s definition of an adjunction (Lurie 2009, Definition
5.2.2.1) as a bifibration over the interval.

Formalisation

The vast majority of the results presented in this thesis have been formalised in
the Agda proof assistant (Agda development team 2022) and can be found at the
following address.

https://github.com/allioux/thesis-formalisation

Most of the types involved in this thesis fall within the scope of the types which
can be defined in Agda except for the universe of polynomial monadsℳ which
is the subject of Chapter 2. We resorted to some features provided by Agda
which allow to postulate new constants and new rewriting rules (Cockx 2020).
This permits the definition of the different rules characterizing the universeℳ
with the definitional equalities being defined as oriented rewriting rules.

https://github.com/allioux/thesis-formalisation

10 Introduction

Related work

As previously stated, we do not know if it is possible to express the coherences
of arbitrary algebraic structures internally to homotopy type theory. Such phe-
nomena are typically handled using a strict equality in set-based mathematics.
The reintroduction of a strict equality in type theory in addition to the homo-
topical one forms the basis of two-level type theory (Altenkirch, Capriotti and
Kraus 2016; Annenkov et al. 2017; Capriotti and Kraus 2017; Kraus and Sattler
2017). Briefly, it consists in internalising homotopy type theory inside a second
type theory satisfying the UIP. In such a type theory, we distinguish between the
fibrant types belonging to the HoTT fragment and the non-fibrant types which
live in the strict fragment. In addition, going back and forth between the two
fragments is subject to some constraints. However, one drawback of this ap-
proach is that it leads us to abandon the unrestricted interpretation of all types
as homotopy types since it does not apply to the non-fibrant fragment. Fur-
thermore, introducing a second type theory in which univalence does not apply
undermines the idea that mathematics can be based on homotopy theory. By
contrast, our proposal preserves the unrestricted homotopy interpretation of
types.

Chapter 1

Opetopes in type theory

In this chapter, we give a purely type-theoretical treatment of opetopes. Opetopes
will be a recurring theme of this thesis and will constitute the backbone of an
extension of type theory based on opetopic types that will be developed in the
next chapters.

1.1 Introduction

Opetopes are geometric shapes intended to capture the combinatorics of many-
to-one cells involved in certain definitions of weak 𝑛-categories and∞-categories
which are then defined as opetopic sets satisfying some properties. The 0-cells
represent the objects of the categories, the 1-cells represent the morphisms, the
2-cells represent the composition of morphisms, the 3-cells represent the laws
satisfied by the composition of morphisms, and so forth.

Opetopes were first introduced by Baez and Dolan (Baez and Dolan 1998)
as a construction involving symmetric operads. Hermida, Makkai, and Power
then gave their own definition based on generalised multicategories instead
of operads and called them multitopes (Hermida, Makkai and Power 2000).
Leinster defined opetopes in the more general setting of𝑇-multicategories where
𝑇 is a cartesian monad (Leinster 2001). All these definitions of opetopes were
shown to be equivalent by Cheng (Cheng 2004a,b).

Finally, Kock et al. gave a definition of opetopes in the setting of cartesian
polynomial monads (Kock et al. 2010) which naturally arise in locally cartesian
closed categories (LCCC). They showed that their opetopes are equivalent to
Leinster’s ones. Our formulation of opetopes in type theory draws from the
definition of Kock et al. which lends itself well to this task as type theory admits
semantics in LCCC.

All these definitions have in common that opetopes in dimension 𝑛 + 1 are
generated from opetopes in dimension 𝑛 by the so-called slice construction which
can be adapted to the different mentioned settings.

12 Chapter 1. Opetopes in type theory

1.2 Diagrammatic depiction of opetopes

We present an informal and diagrammatic depiction of opetopes inspired from
Kock’s “5-minute definition” of opetopes (Kock et al. 2010). This section aims
at giving the reader an intuitive understanding of opetopes. We will give our
own formal definition of opetopes in type theory in a further section.

1.2.1 Trees

Our definition will make use of directed finite rooted trees. This means that our
trees have a single root that we draw at the bottom. Each node of a tree has a
finite number of input edges and a single output edge. Edges which are both
an input edge and an output edge are called internal edges. The other edges are
drawn with a loose end corresponding to the absence of a source or a target. A
single edge which is neither an input edge nor an output edge is a valid tree.
The following are all examples of trees:

Blue boxes represent the nodes of our trees while black wires represent their
edges. We will sometimes label the nodes and the edges so that we can refer to
them. Any tree is endowed with a partial order on the collection of edges with
the root being the maximal element and the leaves being minimal elements.

1.2.2 Nestings

We introduce an equivalent representation of trees named nestings. A nesting
is a collection of non-intersecting boxes included in the plane endowed with a
partial order induced by the inclusion relation. It must have a greatest element
— there exists a box in which all the other boxes are included — and the minimal
elements are the empty boxes. For the representation to be equivalent to trees,
we also have to distinguish a subset of the minimal elements which correspond
to the root edges of the nodes of the corresponding tree having no source.

The following nestings correspond to the four trees depicted in the previous

1.2. Diagrammatic depiction of opetopes 13

section in a sense that we will soon make precise.

Here, we have chosen to draw the distinguished subset of empty boxes in green.

1.2.3 Correspondences

A correspondence between a tree and a nesting consists in an isomorphism
between the boxes of the nesting and the edges of the tree. This isomorph-
ism has to satisfy the following properties:

• The unmarked empty boxes are in bĳection with the leaves of the tree.

• The isomorphism has to preserve the partial orders.

An example of correspondence between a nesting and a tree is the following:

𝑓

𝑐

𝑎

𝑏
𝑑

𝑒

𝑎 𝑏 𝑒

𝑓

𝑐
𝑑

Here, the data of the correspondence is visible through the labelling.

1.2.4 Subdivisions

We call subdivision the superposition of a nesting with a tree which satisfies the
following properties:

• The unmarked empty boxes of the nesting are the nodes of the tree.

• The content of the other boxes must form a tree.

Note that these requirements force marked empty boxes to contain a single edge
otherwise they would not be empty.

14 Chapter 1. Opetopes in type theory

An example of such a subdivision is displayed in the following diagram:

𝑓

𝑐

𝑎

𝑏

𝑑

𝑒

We will not mark the boxes of the nesting of a subdivision in the future as
this information is already conveyed by the fact that these boxes are the ones
containing a single edge. Subdivisions are called that way as they correspond
to nested subdivisions of a tree.

1.2.5 Subdivision pairings

We define a subdivision pairing to be two subdivisions such that the nesting of the
first subdivision and the tree of the second subdivision are in correspondence.
Such a situation is depicted in the following diagram:

𝑓

𝑐

𝑎

𝑏

𝑑

𝑒
𝑘

𝑗

𝑔

ℎ

𝑖

In the following diagram, we forget the tree of the first subdivision and the
nesting of the second one to make the connection clearer. In doing so, we mark
one node of the first nesting to remember that it used to contain a single edge.

1.2. Diagrammatic depiction of opetopes 15

𝑓

𝑐

𝑎

𝑏
𝑑

𝑒

𝑔

ℎ

𝑖

1.2.6 Opetopes

Opetopes are non-empty sequences of subdivisions such that two consecutive
subdivisions form a subdivision pairing. Moreover, the first subdivision does
not contain any tree, and is a single box if the sequence is of length 1 or is a
linear nesting otherwise. The last subdivision of a sequence of length greater
than one is a tree with a single node and no nesting. A sequence of 𝑛 such
subdivisions denotes an opetope of dimension 𝑛 − 1. We will also refer to
opetopes of dimension 𝑛 as 𝑛-opetopes. We name the leaves of the last tree
in the sequence the sources of the opetope while its root is called the target of
the opetope. We now illustrate this definition by presenting some examples of
opetopes.

The object There is a single opetope of dimension 0 called the object.

The object has no source nor target. It is a nesting consisting of a single empty
box.

The arrow There is a single opetope of dimension 1 called the arrow.

𝑏

𝑎 𝑐

Boxes constituting an opetope are called faces and each corresponds to an
opetope. For example, the arrow has three faces. Its top face 𝑐 is the arrow
itself while both its source 𝑎 and its target 𝑏 are objects. We will often conflate
the face of an opetope with the opetope it denotes.

A more common depiction of the arrow is the following:

𝑎 𝑏𝑐

16 Chapter 1. Opetopes in type theory

The 2-simplex The 2-simplex (a triangle) is then defined as follows, taking the
second tree to be a linear tree with two nodes:

𝑐
𝑏

𝑎

𝑓

𝑑

𝑒
𝑔

The 2-simplex is more commonly depicted as a triangle:

𝑏

𝑎 𝑐

𝑒

𝑓

𝑑
𝑔

Note that the second tree will always be linear as the order of the first nesting is
linear.

Loops Starting from dimension 2, we can have loops which are arrows having
same source and target whose filler is witnessed by a higher-dimensional face
with no source:

𝑎 𝑏 𝑐

The loop is usually depicted as a loop whence its name:

𝑎

𝑏

𝑐

One last example Our interest in opetopes stems from the fact that opetopes
capture the combinatorics of the higher dimensional laws that the composition
of faces has to satisfy. We therefore expect to be able to denote a particular
way of composing three unary faces for example. The following opetope of

1.2. Diagrammatic depiction of opetopes 17

dimension 3 can be seen as denoting a way of composing the faces 𝑒, 𝑓 , and ℎ:

𝑑

𝑐

𝑏

𝑎

𝑖

𝑔

𝑒

𝑓

ℎ
𝑙

𝑘

𝑗

𝑚

Once again, the previous diagram is more commonly depicted as follows:

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓

ℎ

𝑖

𝑔

𝑗

𝑘

𝑚

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓

ℎ

ℎ

𝑙

We see that we are hitting the limits of the geometric depiction of opetopes,
it is cumbersome to draw them in higher dimensions. The advantage of our
notation is that it scales to any dimension due to the uniform nature of our trees:
they are trees all the way up.

1.2.7 Faces of an opetope

We refer to the different boxes of a sequence of subdivisions forming an opetope
as its faces. To each face corresponds an opetope that we can directly extract
from the sequence. To illustrate this fact, we represent an opetope where we
have highlighted the opetope corresponding to its face 𝑘:

𝑑
𝑐
𝑏

𝑎

𝑖

𝑔

𝑒

𝑓

ℎ 𝑙

𝑘

𝑗

𝑚

Note that the opetope corresponding to the face 𝑚 is the whole opetope, we
also say that 𝑚 is its top face. We will often refer to an opetope using the name

18 Chapter 1. Opetopes in type theory

of its top face. We briefly describe how we obtained the highlighted opetope
corresponding to the face 𝑘. First, we consider the corolla labelled 𝑘 which
will become the last subdivision of the new opetope we wish to create. Then,
we proceed to determine the preceding subdivisions by decreasing dimension.
Consider the edges touching 𝑘, they correspond to the faces 𝑔, ℎ, and 𝑖. The
second subdivision then forgets the faces 𝑒 and 𝑓 , and the face 𝑔 becomes a node
of a linear tree whose other node is ℎ. Finally, consider the edges of this tree,
they correspond to the faces 𝑎, 𝑐, and 𝑑 forming a linear nesting. The sequence
of subdivisions that we just obtained represents the opetope associated with the
face 𝑘.

1.2.8 Grafting of opetopes

𝑛-opetopes can be pasted together along a matching (𝑛 − 1)-face — it is possible
to paste along faces of lower dimension, but we will not cover this case here. We
name pasting diagram the result of such a pasting. Consider the following two
opetopes:

𝑐
𝑏

𝑎

𝑔

𝑒

𝑓
𝑗

𝑑
𝑐

𝑎

𝑖

𝑔

ℎ
𝑘

We want to graft 𝑗 on 𝑘 along the common face 𝑔 whose corresponding opetope
has been highlighted. The resulting pasting diagram is the following one:

𝑑
𝑐
𝑏

𝑎

𝑖

𝑔

𝑒

𝑓

ℎ

𝑘

𝑗

The last diagram is the result of the graft of the corolla 𝑗 on the corolla 𝑘 along
the common face 𝑔. The subdivision of dimension 1 has been obtained from the
corresponding subdivision of the opetope 𝑘 by substituting the corresponding
subdivision of the opetope 𝑗 for the face 𝑔. Finally, the subdivision of dimension
0 has been obtained from the corresponding subdivision of the opetope 𝑘 by

1.2. Diagrammatic depiction of opetopes 19

substituting the corresponding subdivision of the opetope 𝑗 for the face 𝑐 along
with the content of its corresponding box.

Notably, any opetope can be regarded as a pasting diagram with a single
node corresponding to its top face.

1.2.9 Composition of opetopes

Given a pasting diagram of opetopes, there exists a unique composite which is
obtained by contracting the nodes of the tree in the last dimension and by delet-
ing the boxes of the subdivision corresponding to the inner edges which have
been removed. The composition is witnessed by a unique higher-dimensional
face — its filler — whose sources are in correspondence with the nodes of the
tree and whose target is the composite.

We illustrate the composition with the following pasting diagram:

𝑑
𝑐
𝑏

𝑎

𝑖

𝑔

𝑒

𝑓

ℎ

𝑘

𝑗

Its composite is:

𝑑
𝑐
𝑏

𝑎

𝑖

𝑒

𝑓

ℎ

𝑙

The face 𝑙 has been obtained by contracting the nodes of the tree. The face 𝑔
corresponding to its inner edge has therefore been removed.

20 Chapter 1. Opetopes in type theory

The opetope filler is witnessing that the tree composes to the composite:

𝑑
𝑐
𝑏

𝑎

𝑖

𝑔

𝑒

𝑓

ℎ
𝑙

𝑘

𝑗

𝑚

Due to the fact that pasting diagrams of opetopes have a unique composite and a
unique filler, opetopes are entirely determined by their source pasting diagram.

1.3 Opetopes in type theory

We now give a formal definition of opetopes in type theory. We will first
introduce the different signatures before giving the precise definitions. We will
define opetopes as the types of a sequence of cartesian polynomial monads. The
data defining opetopes is summarised in Figure 1.1 while the operations of the
monad structure are summarised in Figure 1.2. We will have more to say about
polynomial monads in Chapter 2.

We briefly comment each type. The type 𝒪 𝑛 is the type of opetopes of
dimension 𝑛. The type 𝒫 𝑜 is the type of pasting diagrams which compose
to the opetope 𝑜. The type Pos 𝑥 is the type of node locations of the pasting
diagram 𝑥. The opetope Typ 𝑥 𝑝 is then the opetope corresponding to the node
of 𝑥 located at position 𝑝.

Defining the different types and their operations is a little involved due
to their mutual dependency. The definition of opetopes will then follow the
following plan:

1. Definition of opetopes (Section 1.3.1).

2. Definition of pasting diagrams (Section 1.3.2).

3. Definition of positions (Section 1.3.3).

4. Informal presentation of the monad structure (Section 1.3.5).

5. Specification of positions operations (Section 1.3.6).

6. Definition of the monad structure (Section 1.3.7).

7. Definition of the positions operations (Section 1.3.8).

1.3. Opetopes in type theory 21

𝒪 : N→𝒰
𝒫 : {𝑛 : N} (𝑜 : 𝒪 𝑛) → 𝒰
Pos : {𝑛 : N} {𝑜 : 𝒪 𝑛} → 𝒫 𝑜 →𝒰
Typ : {𝑛 : N} {𝑜 : 𝒪 𝑛} (𝑝 : 𝒫 𝑜) → Pos 𝑝 → 𝒪 𝑛

Figure 1.1: The data defining opetopes

η : {𝑛 : N} (𝑥 : 𝒪 𝑛) → 𝒫 𝑥
μ : {𝑛 : N} {𝑥 : 𝒪 𝑛} (𝑦 : 𝒫 𝑥) → −→𝒫 𝑦 → 𝒫 𝑥

Figure 1.2: The monad structure

1.3.1 Definition of opetopes

We define opetopes of dimension 𝑛 as sequences of trees of length 𝑛 + 1 as we
did in the informal presentation.

Definition 1.3.1 (Opetopes). The family of opetopes

𝒪 : N→𝒰

is defined as an inductive type with two constructors

ob : 𝒪 0
_ ⊳ _ : {𝑛 : N} (𝑜 : 𝒪 𝑛) → 𝒫 𝑜 → 𝒪 (𝑛 + 1)

where the underscores indicate that _⊳_ is a left-associative infix operator which,
when applied to the arguments 𝑥 and 𝑦, will be written 𝑥 ⊳ 𝑦.

Opetopes are either the object ob or an opetope of the form 𝑥 ⊳ 𝑦. The object
has no source nor target while opetopes of the form 𝑥 ⊳ 𝑦 have a collection of
sources specified by Pos 𝑦 — the type of positions of the pasting diagram 𝑦 —
and a single target 𝑥. The typing ensures that 𝑦 is parallel to 𝑥 in that they share
the same sources and the same target.

1.3.2 Definition of pasting diagrams

Before defining pasting diagrams, we introduce some notations to denote two
different kind of families of pasting diagrams.

22 Chapter 1. Opetopes in type theory

Notation. For any opetope 𝑥 : 𝒪 𝑛 and any pasting diagram 𝑦 : 𝒫 𝑥, we
introduce the notation

−→𝒫 𝑦 :≡ (𝑝 : Pos 𝑦) → 𝒫 (Typ 𝑦 𝑝)
denoting families of pasting diagrams indexed by the opetopes
corresponding to the nodes of 𝑦.

Let 𝑥 : 𝒪 𝑛 be an opetope and let 𝑦 : 𝒫 𝑥 be a pasting diagram. Consider the
following figure:

𝑛 𝑘

𝑚

𝑎 𝑏 𝑐 𝑑

𝑔

𝑚

ℎ 𝑘

𝑓𝑎
𝑎

ℎ

𝑏 𝑐 𝑑

𝑓

𝑗

𝑖

𝑒

𝑎 𝑓

𝑔

𝑙

Suppose that 𝑛 is the top face of the opetope 𝑥 and that the tree inside it is
the parallel pasting diagram 𝑦. We regard a family

−→𝒫 𝑦 as specifying a family
of pasting diagrams indexed by the nodes ℎ, 𝑘, and 𝑚 that we displayed here
inside their indexing opetope surrounding the pasting diagram 𝑦.

We introduce a second notation for families of pasting diagrams in the next
dimension.

Notation. For any opetope 𝑥 : 𝒪 𝑛, any pasting diagram 𝑦 : 𝒫 𝑥, and
any family of pasting diagrams 𝑧 :

−→𝒫 𝑦, we introduce the notation

−→𝒫 (𝑦 ◀ 𝑧) :≡ (𝑝 : Pos 𝑦) → 𝒫 (Typ 𝑦 𝑝 ⊳ 𝑧 𝑝)
denoting families of pasting diagrams indexed by the opetopes
Typ 𝑦 𝑝 ⊳ 𝑧 𝑝 for any position 𝑝 : Pos 𝑥.

Consider again the previous figure and suppose that it displays the data of
the family of pasting diagrams 𝑧 indexed by the nodes of the pasting diagram

1.3. Opetopes in type theory 23

𝑦. We think of a family of type
−→𝒫 (𝑦 ◀ 𝑧) as specifying a family of pasting

diagrams which, for each position 𝑝 : Pos 𝑦, specifies a pasting diagram of
type 𝒫 (Typ 𝑦 𝑝 ⊳ 𝑧 𝑝). Consider the node 𝑘 for example, a pasting diagram of
the appropriate type for this position would be a pasting diagram having the
pasting diagram made of the nodes 𝑖 and 𝑗 for source and the opetope 𝑘 for
target.

We are now ready to define pasting diagrams of opetopes.

Definition 1.3.2 (Pasting diagrams). Pasting diagrams are inductively defined
as the type family

𝒫 : {𝑛 : N} (𝑜 : 𝒪 𝑛) → 𝒰
whose constructors are:

ob-pd : 𝒫 ob
lf : {𝑛 : N} (𝑜 : 𝒪 𝑛) → 𝒫 (𝑜 ⊳ η 𝑜)
nd : {𝑛 : N} (𝑥 : 𝒪 𝑛) (𝑦 : 𝒫 𝑥) {𝑧 :

−→𝒫 𝑦}
→ −→𝒫 (𝑦 ◀ 𝑧) → 𝒫 (𝑥 ⊳ μ 𝑦 𝑧)

This definition involves the operations η and μ that will be explained later.
We comment the role of each constructor. The constructor ob-pd corresponds
to the unique pasting diagram made of the unique opetope ob of dimension 0.
The leaf constructor lf 𝑜 is the empty pasting diagram made of a single edge
whose source and target are both the opetope 𝑜. Finally, nd 𝑥 𝑦 𝑡 is the pasting
diagram obtained from grafting the family of pasting diagrams 𝑡 indexed by
the positions of 𝑦 on the sources of the opetope 𝑥 ⊳ 𝑦. We will write nd (𝑥 ⊳ 𝑦) 𝑡
instead of nd 𝑥 𝑦 𝑡 to stress that the root node of this pasting diagram is the
opetope 𝑥 ⊳ 𝑦.

1.3.3 Definition of positions

For any pasting diagram 𝑡 : 𝒫 𝑜, the type Pos 𝑡 is the type of paths in 𝑡 from its
root to its different nodes.

Definition 1.3.3 (Positions of a pasting diagram). The family of node positions
of a pasting diagram

Pos : {𝑛 : N} {𝑜 : 𝒪 𝑛} (𝑡 : 𝒫 𝑜) → 𝒰
is defined by recursion on 𝑡:

Pos ob-pd :≡ ⊤
Pos (lf 𝑜) :≡ ⊥
Pos (nd (𝑥 ⊳ 𝑦) 𝑡) :≡ ⊤ +∑(𝑝:Pos 𝑦) Pos (𝑡 𝑝)

To summarise, the unique pasting diagram made of the object has a single
node. Leaves have no nodes therefore they have no node positions. Finally, a

24 Chapter 1. Opetopes in type theory

node position of a tree built from the nd constructor is either the position of its
root node or the position of one of the nodes specified by the family of trees
grafted on the root node.

For example, the position of the node 𝑗 in the following tree which has been
highlighted in red is denoted by the term inr (𝑝𝑒 , inr (𝑝𝑑 , inl ★)) where 𝑝𝑒 is the
position of the source of 𝑚 corresponding to the edge 𝑒 and where 𝑝𝑑 is the
position of the source of 𝑘 corresponding to the edge 𝑑.

𝑎 𝑏 𝑓

𝑖 𝑗

𝑘 𝑙

𝑚

ℎ

𝑐 𝑑

𝑒 𝑔

We are finally able to define the typing function Typ which simply projects out
the opetope at a specified position of a pasting diagram.

Definition 1.3.4 (Typing of positions of a pasting diagram). The function giving
the typing of positions of a pasting diagram

Typ : {𝑛 : N} {𝑜 : 𝒪 𝑛} (𝑝 : 𝒫 𝑜) → Pos 𝑡 → 𝒪 𝑛

is defined by induction on pasting diagrams and on their positions.

Typ ob-pd ★ :≡ ob
Typ (nd (𝑥 ⊳ 𝑦) 𝑡) (inl ★) :≡ (𝑥 ⊳ 𝑦)
Typ (nd (𝑥 ⊳ 𝑦) 𝑡) (inr (𝑝, 𝑞)) :≡ Typ (𝑡 𝑝) 𝑞

1.3.4 Inductive representation of opetopes

We now clarify the link between our type-theoretical definition of opetopes
and their diagrammatic representation so that we can give some examples. We
describe a depiction of opetopes by induction on opetopes and on their pasting
diagrams.

We begin with the representation of pasting diagram by enumerating the
three different possible cases.

• The object pasting diagram ob-pd is the unique pasting diagram composed
of the object ob. We depict it as a box:

1.3. Opetopes in type theory 25

• Leaves lf 𝑜 are depicted as a single edge:

• Nodes nd (𝑥 ⊳ 𝑦) 𝑡 are depicted as trees that we recursively draw as follows.
First, we draw a node standing for the root node 𝑥⊳𝑦. Then, we recursively
graft the trees 𝑡 𝑝 on the root node for each position 𝑝 : Pos 𝑦 using the
present algorithm. The following figure illustrates an example of this case
with a root node and two recursively grafted trees on its two positions: a
leaf and a single node.

Opetopes We depict opetopes as a sequence of diagrams by recursion on their
dimension.

• The first base case is the object ob; it is depicted as a box.

• The second base case is the arrow ob ⊳ ob-pd. We first draw the object
ob then we draw the pasting diagram ob-pd in the object resulting in two
stacked boxes. Finally, we add a corolla with a single source corresponding
to the unique position of ob-pd.

• The inductive case corresponds to opetopes of shape 𝑥 ⊳ 𝑦 ⊳ 𝑧 where 𝑧 is
a pasting diagram parallel to the opetope 𝑥 ⊳ 𝑦. The induction hypothesis
tells us how to depict 𝑥 ⊳ 𝑦. The last diagram of the depiction of 𝑥 ⊳ 𝑦 is
a corolla. As 𝑧 is parallel to 𝑥 ⊳ 𝑦, we can depict it inside that corolla as it
shares its sources with the opetope it is parallel to. Then, we add a corolla
to the sequence whose sources are in correspondence with the positions

26 Chapter 1. Opetopes in type theory

of the pasting diagram 𝑧. Now, an alteration of the diagram representing
𝑦 has to be performed. We start by erasing the tree while preserving its
enclosing corolla then we distinguish two cases:

– If 𝑧 is of the form lf 𝑜 then we are done.
– If 𝑧 is of the form nd (𝑎 ⊳ 𝑏) 𝑡, we draw the pasting diagram 𝑏 in the

empty corolla. Finally, we recursively fill each node of 𝑏 at position
𝑝 according to the data of 𝑡 𝑝 by considering the two cases presently
listed.

The resulting tree is exactly 𝑦, but the diagram contains additional boxes
forming a subdivision revealing where the successive substitutions took
place according to the data of 𝑧.
We illustrate this last case with a few examples. Consider the loop

ob ⊳ ob-pd ⊳ lf 𝑜

We start with the representation of the arrow ob ⊳ ob-pd.

We add the leaf to the last corolla.

We then add a corolla with no source as leaves have no nodes.

Finally, we alter the first diagram by removing its pasting diagram. We
then reach the lf case of our algorithm and we stop.

1.3. Opetopes in type theory 27

We consider another example: the 2-simplex ob ⊳ ob-pd ⊳ 𝑡 where

𝑡 :≡ nd (ob ⊳ ob-pd) (𝜆𝑝 → nd (ob ⊳ ob-pd) (𝜆𝑞 → lf (Typ ob-pd 𝑞)))
We start with the representation of the arrow ob ⊳ ob-pd and we draw 𝑡 in
its last diagram which gives us:

Then, we add a corolla whose sources are in correspondence with the
nodes of 𝑡.

We finally have to alter the first diagram according to the data specified
by 𝑡. We start by erasing ob-pd and keeping its enclosing box. The pasting
diagram 𝑡 being equal to nd (ob ⊳ ob-pd) 𝑡′ for some tree 𝑡′, we draw ob-pd
in the empty box. Now, for each position of 𝑝 : Pos ob-pd, we recursively
draw the appropriate trees according to the data of 𝑡′ 𝑝 by following the
steps of our algorithm. There is only one such position which leads us to
first add ob-pd again then we reach the lf case and we are done. We depict
the changes of this first diagram over time:

The resulting diagram is therefore:

28 Chapter 1. Opetopes in type theory

1.3.5 Informal presentation of the monad structure

We discuss the informal specification of the operations of Figure 1.2, and illus-
trate them in order that the reader understand their role in the definition of
pasting diagrams. We will only define them after having introduced some fur-
ther operations corresponding to the fact that the monad structure is cartesian.

Note that opetopes being entirely determined by the last pasting diagram in
their sequence, operations on pasting diagrams can be regarded as operations
on opetopes too. We will stress this matter by illustrating the two perspectives
using our graphical depiction of trees and opetopes.

The operation η

The operation η takes an opetope 𝑜 and returns the tree whose sole node is the
opetope 𝑜. Its signature is

η : {𝑛 : N} (𝑜 : 𝒪 𝑛) → 𝒫 𝑜
We display η 𝑜 as a corolla, just like the top face of the opetope 𝑜 itself.

. . .

𝑜

The pasting diagram η 𝑜 determines the opetope 𝑜 ⊳ η 𝑜.

. . .

𝑜

. . .

𝑜 𝑜 ⊳ η 𝑜

Here we chose to label the faces with the opetopes they correspond to. Also, we
have only drawn the last two diagrams of the opetope, omitting the first ones.

The operation μ

The operationμ substitutes a family of pasting diagrams for the nodes of another
pasting diagram. It is associative with unit η, but we delay the precise statement
of the laws as they require the introduction of some further operations. We
recall its signature

μ : {𝑛 : N} {𝑜 : 𝒪 𝑛} (𝑡 : 𝒫 𝑜) → −→𝒫 𝑡 → 𝒫 𝑜
The arguments of the operation μ comprise a pasting diagram 𝑡 : 𝒫 𝑜 and a
family of pasting diagrams 𝑢 :

−→𝒫 𝑡 indexed by the positions of 𝑡. An example of

1.3. Opetopes in type theory 29

such data is depicted in the figure

𝑛 𝑘

𝑚

𝑎 𝑏 𝑐 𝑑

𝑔

𝑚

ℎ 𝑘

𝑓𝑎
𝑎

ℎ

𝑏 𝑐 𝑑

𝑓

𝑗

𝑖

𝑒

𝑎 𝑓

𝑔

𝑙

where we suppose that 𝑛 is the top face of the opetope 𝑜, where 𝑡 is the tree
enclosed in the face labelled 𝑛, and where the family 𝑢 is represented as the
three trees indexed by the opetopes ℎ, 𝑘, and𝑚 corresponding to the three nodes
of 𝑡. Here, we have chosen to draw each tree along with their indexing opetope
enclosing them.

Another way to depict this data is to draw the trees specified by 𝑢 in the
nodes of 𝑡:

𝑛

𝑘

𝑚

ℎ

𝑏 𝑐 𝑑

𝑗

𝑖

𝑒

𝑎

𝑔

𝑙 𝑓

The operationμ then returns the pasting diagram resulting from the substitution

30 Chapter 1. Opetopes in type theory

of the trees specified by 𝑢 for the nodes of 𝑡:

𝑛

𝑏 𝑐 𝑑

𝑗

𝑖

𝑒

𝑎

𝑔

𝑙 𝑓

Note how the pasting diagram 𝑡 and the resulting pasting diagram share the
same indexing opetope 𝑛.

If, instead, we consider the opetopes determined by 𝑡 and 𝑢, the arguments
of μ, we can regard them as specifying a depth-2 tree of opetopes whose root
opetope is 𝑜 ⊳ 𝑡 and whose opetopes grafted on 𝑜 ⊳ 𝑡 at position 𝑝 are Typ 𝑡 𝑝 ⊳𝑢 𝑝.
Illustrating this perspective with our running example, the opetope 𝑜 ⊳ 𝑡 is the
following one:

. . .

𝑛

𝑎 𝑏 𝑐 𝑑

𝑔

𝑚

ℎ 𝑘

𝑎 𝑓

ℎ 𝑘 𝑚

𝑟

𝑛

As for the opetopes specified by the family 𝑢, they are the following ones:

. . .
ℎ

𝑎

𝑎

𝑜

ℎ

. . .

𝑘

𝑏 𝑐 𝑑

𝑓

𝑗

𝑖

𝑒

𝑖 𝑗

𝑘

𝑝

1.3. Opetopes in type theory 31

. . .

𝑚

𝑔

𝑎 𝑓

𝑙

𝑚

𝑙

𝑞

These opetopes assemble into the following depth-2 tree depicted on the right:

. . .

𝑛

𝑘

𝑚

ℎ

𝑏 𝑐 𝑑

𝑗

𝑖

𝑒

𝑎

𝑔

𝑙 𝑓

𝑖 𝑗 𝑙

𝑜

𝑛

𝑟

𝑝 𝑞

ℎ

𝑘

𝑚

The operation μ then contracts this pasting diagram of opetopes into the follow-
ing opetope:

. . .

𝑛

𝑏 𝑐 𝑑

𝑗

𝑖

𝑒

𝑎

𝑔

𝑙 𝑓

𝑖 𝑗 𝑙

𝑠

𝑛

This operation preserves the sources and the target. Finally, the operation μ is
associative and unital with units given by η. Being unital means that substituting
the nodes of a tree with corollas made of these same nodes does nothing. Being
associative means that the order in which we apply different substitutions does
not matter. We will only illustrate the left unitality and the right unitality of μ
respectively.

32 Chapter 1. Opetopes in type theory

For instance, both this pasting diagram

. . .

𝑔
𝑔

𝑎 𝑏

𝑒

𝑓

𝑑

𝑐

𝑒 𝑓

ℎ

𝑔 ⊳ η 𝑔

𝑔

and this pasting diagram

. . .

𝑔

𝑒

𝑓

𝑎 𝑏

𝑒

𝑓

𝑑

𝑐

𝑒 𝑓

𝑒 ⊳ η 𝑒 𝑓 ⊳ η 𝑓

ℎ

𝑔

are sent to the following pasting diagram under the operation μ:

. . .

𝑔

𝑎 𝑏

𝑒

𝑓

𝑑

𝑐

𝑒𝑓

ℎ

𝑔

The operation γ

The definition of the operation μ will involve a further operation:

γ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑡 : 𝒫 (𝑥 ⊳ 𝑦)) (𝑢 :
−→𝒫 (𝑦 ◀ 𝑧))

→ 𝒫 (𝑥 ⊳ μ 𝑦 𝑧)

1.3. Opetopes in type theory 33

The operation γ takes a tree 𝑡 and a family of trees 𝑢 whose targets match the
sources of the former and grafts the latter on the leaves of the former.

We consider the opetope 𝑥 ⊳ 𝑦 and the family of opetopes Typ 𝑦 𝑟 ⊳ 𝑧 𝑟 for
any position 𝑟 : Pos 𝑦 as specifying a depth-2 tree of opetopes constituting the
indexing data for the trees we want to graft. We illustrate the action of γ on an
example and represent the depth-2 tree as follows:

𝑎 𝑏 𝑓

𝑙 𝑚

𝑝

ℎ

𝑒 𝑓

We suppose that 𝑝 is the top face of the opetope 𝑥 ⊳ 𝑦 and that the two other
nodes are the top faces of the opetopes Typ 𝑦 𝑟 ⊳ 𝑧 𝑟 for each position 𝑟.

Second, the tree 𝑡 on which the grafting will take place is indexed by the
opetope 𝑥 ⊳ 𝑦. Therefore, we depict this tree in its indexing opetope:

𝑝

𝑎 𝑏 𝑓

𝑙 𝑚

𝑛

𝑜

ℎ

𝑒 𝑓

𝑔

Next, the family 𝑢 specifies a family of trees to graft on the leaves of 𝑡 indexed
by the opetopes specified by Typ 𝑦 𝑟 ⊳ 𝑧 𝑟 for any position 𝑟 of 𝑦. We therefore

34 Chapter 1. Opetopes in type theory

complete our example with this new data:

𝑙

𝑝

𝑎 𝑏 𝑓

𝑖 𝑗

𝑘
𝑚

𝑛

𝑜

ℎ

𝑐 𝑑

𝑒 𝑔

Finally, the operation γ defines a tree resulting from the grafting of the family 𝑢
on the tree 𝑡. The opetope indexing this new tree is then obtained by taking the
image of the depth-2 indexing tree — in green — under the operation μ, hence
the type of the resulting tree 𝒫 (𝑥 ⊳ μ 𝑦 𝑧):

𝑞

𝑎 𝑏 𝑓

𝑖 𝑗

𝑘 𝑛

𝑜

ℎ

𝑐 𝑑

𝑒 𝑔

As we will see, the operation γ satisfies some laws. It is unital and its units
are leaves indexed by opetopes of the form 𝑜 ⊳ η 𝑜. Consider the following two
situations:

1.3. Opetopes in type theory 35

𝑖

𝑎 𝑏

𝑒 𝑓

𝑔

ℎ

𝑑

𝑐

𝑖

𝑎 𝑏

𝑔

ℎ

𝑗

𝑑

𝑐

The operation γ being right and left unital, the image under γ of these two con-
figurations is therefore

𝑖

𝑎 𝑏

𝑔

ℎ

𝑑

𝑐

Note that we used the fact that the operation μ is itself left and right unital as
the opetopes indexing the leaves are of the form 𝑜 ⊳ η 𝑜. Finally, the operation γ
is also associative in that the order in which we perform multiple graftings does
not matter.

1.3.6 Specification of positions operations

We will now introduce some operations witnessing that positions along with
their typing information are compatible with the algebraic structure of pasting
diagrams. This is due to the fact that we are defining cartesian monads. Once
again we will only present the signatures of these operations along with their
laws and delay their definitions until later.

Operations relative to Pos (η 𝑥)
Given an opetope 𝑥, the pasting diagram η 𝑥 has a single node which is 𝑥 itself.
Its type of positions, Pos (η 𝑥), should therefore be equivalent to the unit type.
This leads us to state the following operations reminiscent of the introduction
and elimination rules for the unit type:

posη : {𝑛 : N} (𝑥 : 𝒪 𝑛) → Pos (η 𝑥)
Pos-η-elim : {𝑛 : N} (𝑥 : 𝒪 𝑛) (𝐴 : Pos (η 𝑥) → 𝒰)
→ (𝑎posη : 𝐴 (posη 𝑥)) (𝑝 : Pos (η 𝑥)) → 𝐴 𝑝

36 Chapter 1. Opetopes in type theory

The position posη 𝑥 is the unique position of the pasting diagram composed
of the single opetope 𝑥. As for the elimination rule for Pos (η 𝑥), it states that
posη 𝑥 is its unique element. The elimination rule applied to the introduction
rule satisfies the following identity:

Pos-η-elim 𝑥 𝐴 𝑎posη (posη 𝑥) = 𝑎posη (Pos-η-elim-𝛽)

Finally, the typing information is compatible with η and it is the case that
Typ (η 𝑥) (posη 𝑥) = 𝑥. As the type of positions of η 𝑥 is contractible, we have
the more general rule:

Typ (η 𝑥) 𝑝 = 𝑥 (posη-typ)

Operations relative to Pos (μ 𝑥 𝑦)
The positions operations relative to trees of the form μ 𝑥 𝑦 implement the
cartesian structure of our monads. The operation μ substitutes compatible trees
specified by a family of trees 𝑦 for the nodes of a given tree 𝑥. The type of
positions of the resulting tree μ 𝑥 𝑦 should therefore be equivalent to the sum
of the positions of the trees specified by 𝑦. Therefore, we want the positions of
a tree of the form μ 𝑥 𝑦 to be characterised by the following requirements:

1. Any position 𝑝 : Pos 𝑥 along with a position 𝑞 : Pos (𝑦 𝑝) should determine
a unique position of μ 𝑥 𝑦.

2. Any position of μ 𝑥 𝑦 should correspond to a position 𝑝 : Pos 𝑥 along with
a position Pos (𝑦 𝑝).

3. Moreover, the induced functions should be inverse to each other.

These desiderata are captured by the following operations:

pairμ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑝 : Pos 𝑦) (𝑞 : Pos (𝑧 𝑝))
→ Pos (μ 𝑦 𝑧)

prμ1 : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ Pos (μ 𝑦 𝑧) → Pos 𝑦

prμ2 : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑝 : Pos (μ 𝑦 𝑧)) → Pos (𝑧 (prμ1 𝑝))
Moreover, these operations obey the following laws:

pairμ (prμ1 𝑝) (prμ2 𝑝) = 𝑝 (pairμ-𝜂)
prμ1 (pairμ 𝑝 𝑞) = 𝑝 (prμ1 -𝛽)
transport𝜆𝑝→Pos (𝑧 𝑝) prμ1 -𝛽 (prμ2 (pairμ 𝑝 𝑞)) = 𝑞 (prμ2 -𝛽)

where we refer to prμ1 -𝛽 in the last equation without making explicit how we
instance it, a practice we will adopt throughout this thesis.

1.3. Opetopes in type theory 37

Note how these operations along with their laws mirror the introduction
and elimination rules of sigma types to the difference that the laws only hold
propositionally. We have chosen to grey the transport out in order not to ob-
fuscate the meaning of the law. We also state how the typing operation behave
with regard to the substitution:

Typ (μ 𝑥 𝑦) 𝑝 = Typ (𝑦 (prμ1 𝑝)) (prμ2 𝑝) (μ-pos-typ)

In other words, the correspondence between positions under the substitution
operation extends to their typing information. In future proofs we will often
need the following identity that can be deduced fromμ-pos-typ, prμ1 -𝛽, and prμ2 -𝛽:

Typ (μ 𝑥 𝑦) (pairμ 𝑝 𝑞) = Typ (𝑦 𝑝) 𝑞 (μ-pos-typ-aux)

Operations relative to Pos (γ 𝑡 𝑢)
The operation γ grafts a family of trees 𝑢 :

−→𝒫 (𝑦◀ 𝑧) on the leaves of a given tree
𝑡 : 𝒫 (𝑥 ⊳ 𝑦). The type of positions of the resulting tree should be equivalent to
the sum of the positions of 𝑡 with the sum of the positions of the trees specified
by the family 𝑢. Therefore, we want the positions of a tree of the form γ 𝑡 𝑢 to
be characterised by the following requirements:

1. For any position 𝑝 : Pos 𝑡, we can obtain a position of γ 𝑡 𝑢.

2. For any position 𝑝 : Pos 𝑦 along with a position 𝑞 : Pos (𝑢 𝑝), we can obtain
a position of γ 𝑡 𝑢.

3. For any position 𝑝 : Pos (γ 𝑡 𝑢), we can either deduce a position of 𝑡 or we
can deduce a position of 𝑢 𝑝 for some position 𝑝 : Pos 𝑦.

Formally, these desiderata are captured by the following operations:

inlγ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ {𝑡 : 𝒫 (𝑥 ⊳ 𝑦)} {𝑢 :
−→𝒫 (𝑦 ◀ 𝑧)}

→ Pos 𝑡 → Pos (γ 𝑡 𝑢)
inrγ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :

−→𝒫 𝑦}
→ {𝑡 : 𝒫 (𝑥 ⊳ 𝑦)} {𝑢 :

−→𝒫 (𝑦 ◀ 𝑧)}
→ (𝑝 : Pos 𝑦) → Pos (𝑢 𝑝) → Pos (γ 𝑡 𝑢)

A further function, akin to an elimination rule, states that the only positions of
γ 𝑡 𝑢 are obtained with the operations inlγ and inrγ:

Pos-γ-elim : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ {𝑡 : 𝒫 (𝑥 ⊳ 𝑦)} {𝑢 :
−→𝒫 (𝑦 ◀ 𝑧)}

→ (𝐴 : Pos (γ 𝑡 𝑢) → 𝒰)
→ (𝑎inlγ : (𝑝 : Pos 𝑡) → 𝐴 (inlγ 𝑝))
→ (𝑎inrγ : (𝑝 : Pos 𝑦) (𝑞 : Pos (𝑢 𝑝)) → 𝐴 (inrγ 𝑝 𝑞))
→ (𝑝 : Pos (γ 𝑡 𝑢)) → 𝐴 𝑝

38 Chapter 1. Opetopes in type theory

Moreover, it satisfies the following laws:

Pos-γ-elim 𝐴 𝑎inl 𝑎inr (inlγ 𝑝) = 𝑎inl 𝑝 (Pos-γ-elim-inl-𝛽)
Pos-γ-elim 𝐴 𝑎inl 𝑎inr (inrγ 𝑝 𝑞) = 𝑎inr 𝑝 𝑞 (Pos-γ-elim-inr-𝛽)

Finally, the correspondence between positions extends to the typing informa-
tion:

Typ (γ 𝑡 𝑢) (inlγ 𝑝) = Typ 𝑡 𝑝
Typ (γ 𝑡 𝑢) (inrγ 𝑝 𝑞) = Typ (𝑢 𝑝) 𝑞

1.3.7 Definition of the monad structure

At last, we can define the monad structure. We start with the unit of the
substitution operation.

Definition 1.3.5 (The unit η). The unit η has type

η : {𝑛 : N} (𝑥 : 𝒪 𝑛) → 𝒫 𝑥
It is defined by induction on 𝑥.

• If 𝑥 is of the form ob, we simply return ob-pd : 𝒫 ob, the object pasting
diagram.

• If 𝑥 is of the form 𝑥 ⊳ 𝑦, we need to return a tree of type 𝒫 (𝑥 ⊳ 𝑦). We
denote

𝑡 :≡ nd (𝑥 ⊳ 𝑦) (𝜆𝑝 → lf (Typ 𝑦 𝑝))
the tree with opetope 𝑥 ⊳ 𝑦 for sole node. It has type

𝒫 (𝑥 ⊳ μ 𝑦 (𝜆𝑝 → η (Typ 𝑦 𝑝)))
therefore we transport it along a path

μ 𝑦 (𝜆𝑝 → η (Typ 𝑦 𝑝)) = 𝑦

which holds by μ-unit-r.

We then define the substitution operation.

Definition 1.3.6 (The substitution operation μ). The operation μ has type

μ : {𝑛 : N} {𝑥 : 𝒪 𝑛} (𝑦 : 𝒫 𝑥) (𝑧 :
−→𝒫 𝑦) → 𝒫 𝑥

The operation μ substitutes the opetopes of a pasting diagram 𝑦 — its nodes
— with compatible pasting diagrams provided by the family 𝑧. It is defined by
induction on 𝑦:

• If 𝑦 is ob-pd, we substitute the tree 𝑧 ★ for the only position of ob-pd
therefore we simply return 𝑧 ★.

1.3. Opetopes in type theory 39

• If 𝑦 is of the form lf 𝑥, leaves have no node therefore there is nothing to
substitute, and we just return the tree lf 𝑥 intact.

• If 𝑦 is of the form nd (𝑥 ⊳ 𝑦) 𝑢 with 𝑢 :
−→𝒫 (𝑦 ◀ 𝑡) for some family 𝑡 :

−→𝒫 𝑦,
we have to define a tree of type 𝒫 (𝑥 ⊳ μ 𝑦 𝑡) which should be the tree
nd (𝑥⊳𝑦) 𝑢whose nodes have been recursively substituted with compatible
trees specified by the family 𝑧. Therefore, the resulting tree should be the
result of the grafting of the family

𝑣 𝑝 :≡ μ (𝑢 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞)))

— which is our induction hypothesis — on the tree 𝑧 (inl ★); that is, the
tree

γ (𝑧 (inl★)) 𝑣

We finally state the laws obeyed by the operation μ which is an associative
and unital operation with unit η,

μ 𝑦 (𝜆 𝑝 → η (Typ 𝑦 𝑝)) = 𝑦 (μ-unit-r)
transport𝒫 posη-typ−1 (μ (η 𝑥) 𝑦) = 𝑦 (posη 𝑥) (μ-unit-l)
μ (μ 𝑦 𝑧) 𝑤 = μ 𝑦 (𝜆 𝑝 → μ (𝑧 𝑝) (𝑤′ 𝑝)) (μ-assoc)

where 𝑤′ 𝑝 𝑞 :≡ transport𝒫 μ-pos-typ-aux (𝑤 (pairμ 𝑝 𝑞))

We define the grafting operation γ.

Definition 1.3.7 (The grafting operation γ). The operation γ has type

γ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑡 : 𝒫 (𝑥 ⊳ 𝑦)) (𝑢 :
−→𝒫 (𝑦 ◀ 𝑧))

→ 𝒫 (𝑥 ⊳ μ 𝑦 𝑧)

The operation γ grafts the family of trees 𝑢 on the leaves of the tree 𝑡 which are
determined by the positions of the tree 𝑦. This operation is defined inductively
on 𝑡.

• In the case γ (lf 𝑥) 𝑡, where 𝑡 :
−→𝒫 (η 𝑥 ◀ 𝑦), the result of grafting the sole

tree specified by 𝑡 at position posη 𝑥 on the leaf lf 𝑥 should precisely be the
tree 𝑡 (posη 𝑥). We conclude the proof by transporting it along a path

𝒫 (Typ (η 𝑥) (posη 𝑥) ⊳ 𝑦 (posη 𝑥)) = 𝒫 (𝑥 ⊳ μ (η 𝑥) 𝑦)

deduced from posη-typ and μ-unit-l:

transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= posη-typ−1 μ-unit-l)−1 (𝑡 (posη 𝑥))

40 Chapter 1. Opetopes in type theory

• In the case γ (nd (𝑥 ⊳ 𝑦) 𝑡) 𝑢, with 𝑡 : 𝒫 (𝑦 ⊳ 𝑧) and 𝑢 : 𝒫 (μ 𝑦 𝑧 ◀ 𝑤), the
root node of the resulting tree will still be 𝑥 ⊳ 𝑦. We are therefore looking
for some tree nd (𝑥 ⊳ 𝑦) 𝑣 where 𝑣 is a family resulting from the grafting of
the family 𝑢 on the family 𝑡.

In order to graft on the family 𝑡, we need a family of families
−→𝒫 (𝑡 𝑝◀𝑤′ 𝑝)

indexed by positions 𝑝 : Pos 𝑦 where the family 𝑤′ has yet to be defined.
Such a family of families can be defined from 𝑢 as

𝑢′ 𝑝 𝑞 :≡ transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑢 (pairμ 𝑝 𝑞))

where 𝑢 (pairμ 𝑝 𝑞) is transported along a path

𝒫 (Typ (μ 𝑦 𝑧) (pairμ 𝑝 𝑞) ⊳ 𝑤 (pairμ 𝑝 𝑞)) = 𝒫 (Typ (𝑧 𝑝) 𝑞 ⊳ 𝑤′ 𝑝 𝑞)

using μ-pos-typ-aux. This forces the definition of 𝑤′ to be

𝑤′ 𝑝 𝑞 :≡ transport𝒫 μ-pos-typ-aux (𝑤 (pairμ 𝑝 𝑞))

We therefore obtain the family

𝑣 :
−→𝒫(𝑦 ◀ (𝜆𝑝 → μ (𝑧 𝑝) (𝑤′ 𝑝)))

𝑣 𝑝 :≡ γ (𝑡 𝑝) (𝑢′ 𝑝)

The resulting tree nd (𝑥 ⊳ 𝑦) 𝑣 has type 𝒫 (𝑥 ⊳ μ 𝑦 (𝜆𝑝 → μ (𝑧 𝑝) (𝑤′ 𝑝)))
where we need it to have type 𝒫 (𝑥 ⊳ μ (μ 𝑦 𝑧) 𝑤). We therefore conclude
the proof by performing a last transport along a proof of associativity of μ

transport𝜆𝑦→𝒫 (𝑥⊳𝑦) μ-assoc−1 (nd (𝑥 ⊳ 𝑦) 𝑣)

Finally, we state the laws obeyed by the operation γ which is associative and
unital with unit lf,

transport𝜆𝑦→𝒫 (𝑥⊳𝑦) μ-unit-r (γ-unit-r)
(γ 𝑡 (𝜆𝑝 → lf (Typ 𝑦 𝑝))) = 𝑡
for all 𝑡 : 𝒫 (𝑥 ⊳ 𝑦)

transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= posη-typ−1 μ-unit-l) (γ-unit-l)
(γ (lf 𝑥) 𝑡) = 𝑡 (posη 𝑥)
for all 𝑡 :

−→𝒫 (η 𝑥 ◀ 𝑦)
transport𝜆𝑦→𝒫 (𝑥⊳𝑦) μ-assoc (γ-assoc)
(γ (γ 𝑡 𝑢) 𝑣) = γ 𝑡 (𝜆𝑝 → γ (𝑢 𝑝) (𝑣′ 𝑝))
for all 𝑡 : 𝒫 (𝑥 ⊳ 𝑦), 𝑢 :

−→𝒫 (𝑦 ◀ 𝑧), 𝑣 :
−→𝒫 (μ 𝑦 𝑧 ◀ 𝑤), and

where 𝑣′ 𝑝 𝑞 :≡ transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑣 (pairμ 𝑝 𝑞))

1.3. Opetopes in type theory 41

1.3.8 Definition of the positions operations

Now that we have defined the different operations relative to pasting diagrams
as well as the type of their positions, we can define the operations on their
positions. We start with two simple lemmas that will be needed throughout this
chapter and which essentially state that positions of trees are invariable under
transport. For any tree 𝑡 : 𝒫 𝑥 and any identity 𝑝 : 𝑥 = 𝑦,

Pos 𝑡 = Pos (transport𝒫 𝑝 𝑡) (Pos-transp𝒪)

For any tree 𝑡 : 𝒫 (𝑥 ⊳ 𝑦) and any identity 𝑝 : 𝑦 = 𝑧,

Pos 𝑡 = Pos (transport𝜆𝑦→𝒫 (𝑥⊳𝑦) 𝑝 𝑡) (Pos-transp𝒫)

They are both proven by a simple induction on 𝑝.
We also define two functions akin to elimination rules for types of the form

Pos (transport𝜆𝑦→𝒫 (𝑥⊳𝑦) 𝑝 𝑡) and Pos (transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) 𝑝 𝑡) in order to reduce
the need for annoying transports.

Pos-transp𝒪-elim : {𝑛 : N} {𝑥0 𝑥1 : 𝒪 𝑛} {𝑦0 : 𝒫 𝑥0} {𝑦1 : 𝒫 𝑥1}
→ (𝑒 : (𝑥0 , 𝑦0) = (𝑥1 , 𝑦1))
→ (𝑡 : 𝒫 (𝑥0 ⊳ 𝑦0))
→ (𝐴 : Pos (transport𝜆(𝑥,𝑦)→𝒫(𝑥⊳𝑦) 𝑒 𝑡) → 𝒰)
→ (𝑓 : (𝑝 : Pos 𝑡) → 𝐴 (transport Pos-transp𝒪 𝑝))
→ (𝑝 : Pos (transport𝜆(𝑥,𝑦)→𝒫(𝑥⊳𝑦) 𝑒 𝑡))
→ 𝐴 𝑝

Pos-transp𝒫-elim : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 𝑧 : 𝒫 𝑥} (𝑒 : 𝑦 = 𝑧)
→ (𝑡 : 𝒫 (𝑥 ⊳ 𝑦))
→ (𝐴 : Pos (transport𝜆𝑦→𝒫(𝑥⊳𝑦) 𝑒 𝑡) → 𝒰)
→ (𝑓 : (𝑝 : Pos 𝑡) → 𝐴 (transport Pos-transp𝒫 𝑝))
→ (𝑝 : Pos (transport𝜆𝑦→𝒫(𝑥⊳𝑦) 𝑒 𝑡))
→ 𝐴 𝑝

They are both trivially defined by an induction on the path 𝑒 in which case it
suffices to return 𝑓 𝑝.

Operations relative to Pos (η 𝑥)
We start by showing that the type of positions of η 𝑥 is contractible for any
opetope 𝑥 : 𝒪 𝑛 which will allow us to derive the introduction and elimination
rules for Pos (η 𝑥).

42 Chapter 1. Opetopes in type theory

Lemma 1.3.8. For any natural number 𝑛 : N and any opetope 𝑥 : 𝒪 𝑛, the type
Pos (η 𝑥) is contractible.

Proof. We prove this property by induction on the opetope 𝑥. If 𝑥 is of the form
ob, η ob is the object pasting diagram ob-pd and its type of positions is the unit
type 1 which is contractible. If 𝑥 is of the form 𝑥 ⊳ 𝑦, the unit η (𝑥 ⊳ 𝑦) is the tree

𝑡 :≡ nd (𝑥 ⊳ 𝑦) (𝜆 𝑝 → lf (Typ 𝑦 𝑝))
up to a transport along the path μ-unit-r. It is easy to show that the type Pos 𝑡
is equivalent to 1 and is therefore contractible. It suffices to transport this result
along a path Pos 𝑡 = Pos (η (𝑥 ⊳ 𝑦)) to conclude that Pos (η (𝑥 ⊳ 𝑦)) is contractible
as well. □

We use the previous result to define posη 𝑥 to be the centre of contraction of
Pos (η 𝑥). As for the elimination rule, we first recall its signature:

Pos-η-elim : {𝑛 : N} (𝑜 : 𝒪 𝑛) (𝐴 : Pos (η 𝑜) → 𝒰)
→ (𝑎posη : 𝐴 (posη 𝑜)) (𝑝 : Pos (η 𝑜)) → 𝐴 𝑝

We simply define it by transporting 𝑎posη from 𝐴 (posη 𝑜) to 𝐴 𝑝 using the path
from the centre of contraction of Pos (η 𝑜) to any position 𝑝 : Pos (η 𝑜). Also, the
operation Pos-η-elim satisfies the law

Pos-η-elim 𝑥 𝐴 𝑎posη (posη 𝑥) = 𝑎posη (η-pos-elim-𝛽)

Indeed, the specified path from the centre of contraction to itself is proposition-
ally equal to refl which is a property of contractible types.

Operations relative to Pos (μ 𝑥 𝑦)
We define the three operations pairμ, prμ1 , and prμ2 relative to positions of trees
of the form μ 𝑥 𝑦. The operation pairμ takes a position 𝑝 of a tree 𝑦 : 𝒫 𝑥 and
a position 𝑞 of the tree 𝑧 𝑝 where 𝑧 :

−→𝒫 𝑦 in order to return a position of the
resulting tree μ 𝑥 𝑦.

Definition 1.3.9 (pairμ).

pairμ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑝 : Pos 𝑦) (𝑞 : Pos (𝑧 𝑝))
→ Pos (μ 𝑦 𝑧)

We define pairμ by induction on the tree 𝑦 and on the position 𝑝:

• If 𝑦 is ob-pd, μ ob-pd 𝑧 is equal to 𝑧 ★, and we are looking for a term of type
Pos (𝑧 ★) but 𝑝 is of type Pos ob-pd and must be equal to ★. We therefore
return 𝑞 which is of the required type.

• If 𝑦 is of the form lf 𝑥, Pos (lf 𝑥) is the empty type and we are done.

1.3. Opetopes in type theory 43

• If 𝑦 is of the form nd (𝑥 ⊳ 𝑦) 𝑢, μ (nd (𝑥 ⊳ 𝑦) 𝑢) 𝑧 is equal to γ (𝑧 (inl ★)) 𝑣
where

𝑣 𝑝 :≡ μ (𝑢 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞)))
In order to determine a position of γ (𝑧 (inl ★)) 𝑣, we have to proceed by
induction on 𝑝:

– If 𝑝 is inl ★, 𝑞 is a position of 𝑧 (inl ★) which is the tree on which the
grafting takes place. The position that we are looking for is therefore
inlγ 𝑞.

– If 𝑝 is inr (𝑟, 𝑠) with 𝑟 : Pos 𝑦 and 𝑠 : Pos (𝑢 𝑟), the position that
we are looking for is a position of one of the trees specified by the
family 𝑣 injected into Pos (γ (𝑧 (inl ★)) 𝑣). This family 𝑣 is indexed by
Pos 𝑦 and 𝑟 is precisely such a position. We now need a position of
𝑣 𝑟, that is a position of μ (𝑢 𝑟) (𝜆𝑞 → 𝑧 (inr (𝑟, 𝑞))), which is readily
obtained as pairμ 𝑠 𝑞. In the end, the position that we are looking for
is inrγ 𝑝 (pairμ 𝑠 𝑞).

Conversely, the operation prμ1 takes a position of μ 𝑥 𝑦 and returns a position
of the first tree 𝑥.

Definition 1.3.10 (prμ1).

prμ1 : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑝 : Pos (μ 𝑦 𝑧)) → Pos 𝑦

The operation prμ1 is defined by induction on the tree 𝑦:

• If 𝑦 is ob-pd, we simply return the only position of ob-pd, that is ★.

• If 𝑦 is of the form lf 𝑥, we simply eliminate from the empty type Pos (lf 𝑥).
• If 𝑦 is of the form nd (𝑥 ⊳ 𝑦) 𝑢, 𝑝 is a position of the tree γ (𝑧 (inl★)) 𝑣 where

𝑣 𝑝 :≡ μ (𝑢 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞)))
We will therefore have to resort to the elimination rule for γ. We are
looking for a position of nd (𝑥 ⊳ 𝑦) 𝑢 therefore we set the motive to the
constant

𝐴 𝑝 :≡ Pos (nd (𝑥 ⊳ 𝑦) 𝑢)
and we treat the following two cases:

– If 𝑝 is a position of the base tree 𝑧 (inl★), we return the position of the
root node of nd (𝑥 ⊳ 𝑦) 𝑢, that is inl ★.

– If 𝑝 is a position of one of the trees grafted on the base tree, we can
break it down into a position 𝑟 : Pos 𝑦 and a position 𝑠 : Pos (𝑣 𝑟).
From 𝑠, we get a position of 𝑢 𝑟 as the position prμ1 𝑠. We finally obtain
the wanted position of nd (𝑥 ⊳ 𝑦) 𝑢 as the position inr (𝑟, prμ1 𝑠).

44 Chapter 1. Opetopes in type theory

Finally, the operation prμ2 takes a position of μ 𝑥 𝑦 and returns a position of
the tree 𝑦 (prμ1 𝑝).
Definition 1.3.11 (prμ2).

prμ2 : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ (𝑝 : Pos (μ 𝑦 𝑧)) → Pos (𝑧 (prμ1 𝑝))

The operation prμ2 is defined by induction on the tree 𝑦:
• If 𝑦 is ob-pd, we need to return a position of type Pos (𝑧 (inl ★)) which is

precisely the type of 𝑝 that we therefore just return.

• If 𝑦 is of the form lf 𝑥, we simply eliminate from the empty type Pos (lf 𝑥).
• If 𝑦 is of the form nd (𝑥 ⊳ 𝑦) 𝑢, 𝑝 is a position of the tree γ (𝑧 (inl★)) 𝑣 where

𝑣 𝑝 :≡ μ (𝑢 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞)))
We will therefore have to resort to the elimination rule for γ. We are
looking for a position of 𝑧 (prμ1 𝑝) therefore we set the motive to

𝐵 𝑝 :≡ Pos (𝑧 (prμ1 𝑝))
It remains to treat the two cases that we are facing:

– If 𝑝 is a position of the base tree 𝑧 (inl ★), we have to return a position
of type Pos (𝑧 (prμ1 (inlγ 𝑝))) that can be obtained from 𝑝 : Pos (𝑧 (inl★))
by transporting it along the path Pos-γ-elim-inl-𝛽−1 remembering that
prμ1 (inlγ 𝑝) is defined as an application of Pos-γ-elim in the present
case.

– If 𝑝 is a position of one of the trees grafted on the base tree, we can
break it down into a position 𝑟 : Pos 𝑦 and a position 𝑠 : Pos (𝑣 𝑟).
We are looking for a position of type Pos (𝑧 (prμ1 (inrγ 𝑟 𝑠))) that can
be obtained from prμ2 𝑠 : Pos (𝑧 (inr (𝑟, prμ1 𝑠))) by transporting it along
the path Pos-γ-elim-inr-𝛽−1 remembering that prμ1 (inrγ 𝑟 𝑠) is defined
as an application of Pos-γ-elim in the present case.

Operations relative to Pos (γ 𝑡 𝑢)
We now define the functions relative to positions of the form Pos (γ 𝑡 𝑢).
Definition 1.3.12 (inlγ).

inlγ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ {𝑡 : 𝒫 (𝑥 ⊳ 𝑦)} {𝑢 :
−→𝒫 (𝑦 ◀ 𝑧)}

→ (𝑝 : Pos 𝑡) → Pos (γ 𝑡 𝑢)

The operation inlγ is defined by induction on the tree 𝑡 and on the position 𝑝:

1.3. Opetopes in type theory 45

• If 𝑡 is of the form lf 𝑥 then we eliminate the empty type Pos (lf 𝑥).
• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, we have to determine a position of the tree

transport𝜆𝑦→𝒫 (𝑥⊳𝑦) μ-assoc−1 (nd (𝑥 ⊳ 𝑦) 𝑣)
with 𝑣 defined as

𝑣 𝑝 :≡ γ (𝑡 𝑝) (𝑢′ 𝑝)
and 𝑢′ defined as

𝑢′ 𝑝 𝑞 :≡ transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑢 (pairμ 𝑝 𝑞))
We proceed by induction on 𝑝:

– If 𝑝 is inl ★; that is, if 𝑝 is the root node of the base tree then we need
to determine the root node of the tree nd (𝑥 ⊳ 𝑦) 𝑣 up to the required
transport which is

transport Pos-transp𝒫 (inl ★)
– If 𝑝 is of the form inr (𝑝, 𝑞) where 𝑝 : Pos 𝑦 and 𝑞 : Pos (𝑡 𝑝), we use

our induction hypothesis inlγ 𝑞 to obtain a position of 𝑣 𝑝, and we
deduce that inr (𝑝, inlγ 𝑞) is the position of nd (𝑥 ⊳ 𝑦) 𝑣 that we are
looking for. Finally, we return the position

transport Pos-transp𝒫 (inr (𝑝, inlγ 𝑞))
Definition 1.3.13 (inrγ).

inrγ : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ {𝑡 : 𝒫 (𝑥 ⊳ 𝑦)} {𝑢 :
−→𝒫 (𝑦 ◀ 𝑧)}

→ (𝑝 : Pos 𝑦) (𝑞 : Pos (𝑢 𝑝)) → Pos (γ 𝑡 𝑢)

The operation inrγ is defined by induction on the tree 𝑡:

• If 𝑡 is of the form lf 𝑥, 𝑝 is a position of η 𝑥, 𝑞 is a position of 𝑢 𝑝, and we
have to determine a position of the tree

transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= posη-typ−1 μ-unit-l)−1 (𝑢 (posη 𝑥))
We start by establishing a position of 𝑢 (posη 𝑥). In order to do so, we
eliminate the position 𝑝 using the elimination rule for η with the motive

𝐴 𝑝 :≡ (𝑞 : Pos (𝑢 𝑝)) → Pos (𝑢 (posη 𝑥))
and with clause 𝑎η 𝑝 :≡ 𝑝. This elimination rule applied to 𝑝 and 𝑞 yields
the required position of type Pos (𝑢 (posη 𝑥)). It remains to perform the
required transport:

transport Pos-transp𝒫 (Pos-η-elim 𝑥 𝐴 𝑎η 𝑝 𝑞)

46 Chapter 1. Opetopes in type theory

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) 𝑡 with 𝑡 :
−→𝒫 (𝑦 ◀ 𝑧) for some 𝑧 :

−→𝒫 𝑦, 𝑝 is a
position of μ 𝑦 𝑧, 𝑞 is a position of 𝑢 𝑝, and we have to determine a position
of the tree

transport𝜆𝑦→𝒫 (𝑥⊳𝑦) μ-assoc−1 (nd (𝑥 ⊳ 𝑦) 𝑣)
with 𝑣 defined as

𝑣 𝑝 :≡ γ (𝑡 𝑝) (𝑢′ 𝑝)
and 𝑢′ defined as

𝑢′ 𝑝 𝑞 :≡ transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑢 (pairμ 𝑝 𝑞))
We start by establishing a position of nd (𝑥 ⊳ 𝑦) 𝑣. In order to do that, we
first define 𝑝0 :≡ prμ1 𝑝 of type Pos 𝑦 and 𝑝1 :≡ prμ2 𝑝 of type Pos (𝑧 𝑝0) then
we establish a position of 𝑣 𝑝0 by injecting a position 𝑞′ of the tree 𝑢′ 𝑝0 𝑝1
into Pos (𝑣 𝑝0). We define 𝑞′ from 𝑞 by first transporting it along the path
pairμ-𝜂−1 to obtain a position of the tree 𝑢 (pairμ 𝑝0 𝑝1) then we transport
that position along the path Pos-transp𝒪 to obtain a position of 𝑢′ 𝑝0 𝑝1.
To summarise,

𝑞′ :≡ transport Pos-transp𝒪 (transport𝜆𝑝→𝒫 (𝑢 𝑝) pairμ-𝜂−1 𝑞)
The position of 𝑣 𝑝0 that we are looking for is therefore the position
𝑟 :≡ inrγ 𝑝1 𝑞′. We conclude by performing the needed transport to obtain
the final position transport Pos-transp𝒫 𝑟.

Finally, we define the elimination principle for positions of type Pos (γ 𝑡 𝑢).
Definition 1.3.14 (Pos-γ-elim).

Pos-γ-elim : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} {𝑧 :
−→𝒫 𝑦}

→ {𝑡 : 𝒫 (𝑥 ⊳ 𝑦)} {𝑢 :
−→𝒫 (𝑦 ◀ 𝑧)}

→ (𝐴 : Pos (γ 𝑡 𝑢) → 𝒰)
→ (𝑎inl : (𝑝 : Pos 𝑡) → 𝐴 (inlγ 𝑝))
→ (𝑎inr : (𝑝 : Pos 𝑦) (𝑞 : Pos (𝑢 𝑝)) → 𝐴 (inrγ 𝑝 𝑞))
→ (𝑝 : Pos (γ 𝑡 𝑢)) → 𝐴 𝑝

We define Pos-γ-elim by induction on 𝑡:

• If 𝑡 is of the form lf 𝑥 then 𝑝 is a position of the tree

transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= posη-typ−1 μ-unit-l)−1 (𝑢 (posη 𝑥))
We use the elimination rule Pos-transp𝒪-elim with motive 𝐴 and we are
reduced to defining a term of type𝐴 (transport Pos-transp𝒪 𝑝) for any posi-
tion 𝑝 : Pos (𝑢 (posη 𝑥)). The term 𝑎inr (posη 𝑥) 𝑝 has type𝐴 (inrγ (posη 𝑥) 𝑝).
However, inrγ (posη 𝑥) 𝑝 is equal to transport Pos-transp𝒪 𝑝′ where

𝑝′ :≡ Pos-η-elim 𝑥 (𝜆𝑝 → Pos (𝑢 𝑝) → Pos (𝑢 (posη 𝑥))) (𝜆𝑝 → 𝑝) (posη 𝑥) 𝑝

1.3. Opetopes in type theory 47

but 𝑝′ is equal to 𝑝 according to the 𝛽-law for Pos-η-elim, we therefore
conclude with this last transport:

transport𝜆 𝑓→𝐴 (transport Pos-transp𝒪 (𝑓 𝑝)) Pos-η-elim-𝛽 (𝑎inr (posη 𝑥) 𝑝)

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) {𝑧} 𝑡 then 𝑝 is a position of the tree

transport𝜆𝑦→𝒫 (𝑥⊳𝑦) μ-assoc−1 (nd (𝑥 ⊳ 𝑦) 𝑣)

where

𝑣 𝑝 :≡ γ (𝑡 𝑝) (𝑢′ 𝑝)
𝑢′ 𝑝 𝑞 :≡ transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑢 (pairμ𝑝 𝑞))

We use the elimination principle Pos-transp𝒫-elim with motive 𝐴, and we
are reduced to defining a term of type

𝐴 (transport Pos-transp𝒫 𝑝)

for any position 𝑝 : Pos (nd (𝑥 ⊳ 𝑦) {𝑧} 𝑣).
We start by defining the shorthand 𝐴′ 𝑝 :≡ 𝐴 (transport Pos-transp𝒫 𝑝)
then we proceed by induction on 𝑝.

– If 𝑝 is of the form inl ★, we choose 𝑎inl (inl ★) which is of the required
type 𝐴 (inlγ (inl ★)) considering that there is a definitional equality

inlγ (inl ★) ≡ transport Pos-transp𝒫 (inl ★)

– If 𝑝 is of the form inr (𝑝, 𝑞), we are looking for some term of type
𝐴′ (inr (𝑝, 𝑞)) for positions 𝑝 : Pos 𝑦 and 𝑞 : Pos (γ (𝑡 𝑝) (𝑢′ 𝑝)).
Our induction hypothesis allows applying Pos-γ-elim to 𝑞with motive
𝜆𝑞 → 𝐴′ (inr (𝑝, 𝑞)) and we are reduced to defining two families
covering the two possible cases for 𝑞.
We start with the definition of the family of type

𝐴′ (inr (𝑝, inlγ 𝑞))

for any position 𝑞 : Pos (𝑡 𝑝) that is simply obtained as 𝑎inl (inr (𝑝, 𝑞)).
The second family to define has type

𝐴′ (inr (𝑝, inrγ 𝑞 𝑟))

for any positions 𝑞 : Pos (𝑧 𝑝) and 𝑟 : Pos (𝑢′ 𝑝 𝑞).
We use the remaining hypothesis and arrive at the following term:

𝑎inr (pairμ 𝑝 𝑞) (transport Pos-transp𝒪
−1
𝑟)

48 Chapter 1. Opetopes in type theory

However, the type is not quite right as it is equal to

𝐴′ (inr (𝑝′, inrγ 𝑞′ 𝑟′))
with

𝑝′ :≡ prμ1 (pairμ 𝑝 𝑞)
𝑞′ :≡ prμ2 (pairμ 𝑝 𝑞)
𝑟′ :≡ transport Pos-transp𝒫 𝑟2
𝑟2 :≡ transport𝜆𝑝→Pos (𝑢 𝑝) pairμ-𝜂−1 𝑟3

𝑟3 :≡ transport Pos-transp𝒫−1
𝑟

It then remains to perform a transport along an identity (𝑝, 𝑞, 𝑟) =
(𝑝′, 𝑞′, 𝑟′). An identity (𝑝, 𝑞) = (𝑝′, 𝑞′) is readily established using
both μ-pos-fst-𝛽 and μ-pos-snd-𝛽. In order to prove the identity

transport𝜆(𝑝,𝑞)→Pos (𝑢′ 𝑝 𝑞) (pair= μ-pos-fst-𝛽 μ-pos-snd-𝛽) 𝑟′ = 𝑟

we can show, albeit tediously, that the left-hand side is of the form
transportPos 𝑒 𝑟 for some path 𝑒 of type

transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑢 (pairμ 𝑝 𝑞))
= transport𝜆(𝑥,𝑦)→𝒫 (𝑥⊳𝑦) (pair= μ-pos-typ-aux refl) (𝑢 (pairμ 𝑝 𝑞))

But, the type of trees being a set, this identity must be equal to refl
which permits to conclude the proof.

This concludes our definition of opetopes.

1.4 Faces of an opetope

Our inductive definition of opetopes allows to easily characterise the faces which
compose them. We will define the type family

ℱ : {𝑛 : N} → 𝒪 𝑛 → N→𝒰
For any opetope 𝑜 : 𝒪 𝑛, the elements of ℱ 𝑜 𝑚 will be the (𝑚 − 1)-dimensional
faces of 𝑜. We will explain why this dimension shift later on. Let us pause and
think what should the faces of an opetope be. Any opetope has a top face whose
dimension is the one of the opetope; therefore for any opetope 𝑜 : 𝒪 𝑛, there will
be a constructor top : ℱ 𝑜 (𝑛 + 1). In particular, this will be the only face of the
object ob. Now, what could the other faces of an opetope be? Any (𝑛+1)-opetope
has some source faces and a single target face as 𝑛-dimensional faces. The target
face is unique so, given any opetope (𝑥 ⊳ 𝑦) : 𝒪 (𝑛+1) there will be a constructor
target : ℱ (𝑥 ⊳ 𝑦) (𝑛 + 1). As for the source faces, they are in correspondence
with the node positions of 𝑦. So, for each position 𝑝 : Pos 𝑦, there will be a

1.4. Faces of an opetope 49

constructor src 𝑝 : ℱ (𝑥 ⊳ 𝑦) (𝑛+1). The difficulty is now to characterise the faces
of lower dimension. The definition that we propose consists in identifying the
remaining faces — if any — with the edges of the trees whose sequence defines
an opetope.

We now present our definition of the faces of an opetope which will be
followed with some examples.

1.4.1 Definitions

We first define the type of edges of a tree.

Definition 1.4.1 (Edges of a tree). The family of edges of a tree has signature

ℰ : {𝑛 : N} {𝑥 : 𝒪 𝑛} (𝑦 : 𝒫 𝑥) → 𝒰
It is inductively defined with constructors:

lf-edge : {𝑛 : N} (𝑜 : 𝒪 𝑛) → ℰ (lf 𝑜)
root-edge : {𝑛 : N} (𝑥 : 𝒪 𝑛) (𝑦 : 𝒫 𝑥) {𝑧 :

−→𝒫 𝑦}
→ (𝑡 :

−→𝒫 (𝑦 ◀ 𝑧))
→ ℰ (nd (𝑥 ⊳ 𝑦) 𝑡)

nd-edge : {𝑛 : N} (𝑥 : 𝒪 𝑛) (𝑦 : 𝒫 𝑥) {𝑧 :
−→𝒫 𝑦}

→ (𝑡 :
−→𝒫 (𝑦 ◀ 𝑧))

→ (𝑝 : Pos 𝑦) → ℰ (𝑡 𝑝)
→ ℰ (nd (𝑥 ⊳ 𝑦) 𝑡)

We characterise the edges of the two possible forms of trees. In the case of a
leaf, there is a single edge corresponding to the leaf itself. While in the case of
a tree of the form nd (𝑥 ⊳ 𝑦) 𝑡, an edge is either the root edge or an edge of one
of the trees grafted on the root node at some position 𝑝 : Pos 𝑦.

We want to collect the edges of the sequence of trees forming an opetope, we
therefore need a further type collecting these edges corresponding to the lower
faces of an opetope.

Definition 1.4.2. The family of lower faces of an opetope has type

ℱ : {𝑛 : N} (𝑜 : 𝒪 𝑛) → N→𝒰
and is defined as an inductive type with two constructors

edge : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥}
→ ℰ 𝑦 → ℱ (𝑥 ⊳ 𝑦) 𝑛

lower : {𝑛 : N} {𝑥 : 𝒪 𝑛} (𝑦 : 𝒫 𝑥) {𝑘 : N}
→ ℱ 𝑥 𝑘 → ℱ (𝑥 ⊳ 𝑦) 𝑘

50 Chapter 1. Opetopes in type theory

A lower face of a (𝑛 + 1)-opetope of the form 𝑥 ⊳ 𝑦 is therefore either an edge
of 𝑦 or a lower face of the opetope 𝑥. We can finally explain the dimension shift
in the indexing. The edges of 𝑦 correspond to the (𝑛 − 1)-dimensional faces of
𝑥 ⊳ 𝑦 but in order to avoid subtracting indices, we choose to index 𝑛-dimensional
faces with the index 𝑛 + 1.

We are finally in position to define the type of faces of an opetope.

Definition 1.4.3 (Faces of an opetope). The family of faces of an opetope has
type

ℱ : {𝑛 : N} (𝑜 : 𝒪 𝑛) → N→𝒰
and is defined as an inductive type whose constructors are

top : {𝑛 : N} (𝑜 : 𝒪 𝑛) → ℱ 𝑜 (𝑛 + 1)
target : {𝑛 : N} (𝑜 : 𝒪 (𝑛 + 1)) → ℱ 𝑜 (𝑛 + 1)
src : {𝑛 : N} {𝑥 : 𝒪 𝑛} {𝑦 : 𝒫 𝑥} → Pos 𝑦 → ℱ (𝑥 ⊳ 𝑦) (𝑛 + 1)
lower-face : {𝑛 : N} {𝑜 : 𝒪 𝑛} {𝑘 : N} → ℱ 𝑜 𝑘 → ℱ 𝑜 𝑘

The first three constructors correspond to the ones discussed in the intro-
duction of this section and the last one corresponds to the lower faces.

The faces of an opetopes actually assemble into an opetopic type. Opetopic
types will be the subject of Chapter 3; however, the precise definition of the
opetopic type of the faces of an opetope is still a work in progress.

1.4.2 Examples

We revisit a few elementary opetopes and list their faces in order to illustrate
our definition.

The object The object has a single face top ob.

The arrow The arrow ob ⊳ ob-pd has three faces:

𝑎 :≡ src ★
𝑏 :≡ target (ob ⊳ ob-pd)
𝑐 :≡ top (ob ⊳ ob-pd)

𝑏

𝑎 𝑐

1.4. Faces of an opetope 51

The 2-simplex The 2-simplex (ob ⊳ ob-pd ⊳ 𝑡)where

𝑡 :≡ nd (ob ⊳ ob-pd) (𝜆𝑝 → nd (ob ⊳ ob-pd) (𝜆𝑞 → lf (Typ ob-pd 𝑞)))
has seven faces:

𝑎 :≡ lower-face (edge (nd-edge (ob ⊳ ob-pd) 𝑡′ ★
(nd-edge (ob ⊳ ob-pd) (𝜆𝑝 → lf (Typ ob-pd 𝑝)) ★ (lf-edge ob))))

𝑏 :≡ lower-face (edge (nd-edge (ob ⊳ ob-pd) 𝑡′ ★
(root-edge (ob ⊳ ob-pd) (𝜆𝑝 → lf (Typ ob-pd 𝑝)))))

𝑐 :≡ lower-face (edge (root-edge (ob ⊳ ob-pd) 𝑡′))
𝑑 :≡ src (inr (★, inl ★))
𝑒 :≡ src (inl ★)
𝑓 :≡ target (ob ⊳ ob-pd ⊳ 𝑡)
𝑔 :≡ top (ob ⊳ ob-pd ⊳ 𝑡)

where
𝑡′ :≡ nd (ob ⊳ ob-pd) (𝜆𝑝 → lf (Typ ob-pd 𝑝))

𝑐
𝑏

𝑎

𝑓

𝑑

𝑒
𝑔

Loops The loop ob ⊳ ob-pd ⊳ lf ob has three faces:

𝑎 :≡ lower-face (edge (lf-edge ob))
𝑏 :≡ target (ob ⊳ ob-pd ⊳ lf ob)
𝑐 :≡ top (ob ⊳ ob-pd ⊳ lf ob)

𝑎 𝑏 𝑐

Leaves having no node, the only 1-dimensional face in this example is 𝑏 which
is the target of the opetope ob ⊳ ob-pd ⊳ lf ob.

52 Chapter 1. Opetopes in type theory

Chapter 2

Polynomial monads

In this chapter, we extend type theory with a universe of cartesian polynomial
monads closed under a number of monad constructors. We will take advantage
of these structures to define opetopic types, collections of types whose geometry
is governed by opetopes, in Chapter 3. Opetopes are then obtained as the
terminal opetopic type. Most importantly, we require the laws of polynomial
monads to hold definitionally in order to avoid making the coherence laws
explicit as our constructions are not sets any more in this chapter. We will
finally add two extensions to our system: morphisms of monads and monad
families.

2.1 Cartesian polynomial monads

Cartesian polynomial monads form the backbone of our system. They are at the
heart of the so-called Baez-Dolan construction (Baez and Dolan 1998) which was
introduced in the setting of operads for the purpose of defining 𝑛-categories.
Cartesian polynomial monads can be understood as presentations for strongly
regular algebraic theories. These are algebraic theories whose equations are
constrained in such a way that variables have to appear in both sides without
repetition and in the same order (Leinster 2004). We will not systematically
specify that our polynomial monads are cartesian even though they always are
in order to lighten the notation.

The endofunctor part of the polynomial monad structure is also known as an
indexed container in the type theory literature (Abbott, Altenkirch and Ghani
2005; Altenkirch, Ghani et al. 2015). They provide a calculus of datatypes used
to internalise a large class of inductive datatypes in type theory allowing, for
example, the conception of generic algorithms on datatypes.

2.1.1 Polynomials

We start by postulating a universe of polynomial monads ℳ : 𝒰 whose ele-
ments are regarded as codes for our polynomial monads. Contrary to a regular
universe à la Tarski there will not be a single decoding function but four of them

54 Chapter 2. Polynomial monads

Idx :ℳ →𝒰
Cns : (𝑀 :ℳ) → Idx 𝑀 →𝒰
Pos : (𝑀 :ℳ) {𝑖 : Idx 𝑀} → Cns 𝑀 𝑖 →𝒰
Typ : (𝑀 :ℳ) {𝑖 : Idx 𝑀} (𝑐 : Cns 𝑀 𝑖) → Pos 𝑀 𝑐 → Idx 𝑀

Figure 2.1: The data defining a polynomial

which will describe the different data defining a polynomial (Figure 2.1). For
any monad 𝑀 : ℳ, we can regard this data as describing the signature of an
algebraic theory: the elements of Idx 𝑀, which we refer to as indices serve as
the sorts of the theory, and for 𝑖 : Idx 𝑀, the type Cns 𝑀 𝑖 is the collection of
operation symbols whose output sort is 𝑖. The type Pos 𝑀 𝑐 then assigns to
each operation a collection of input positions which are themselves assigned an
index via the function Typ 𝑀. We will write the monad indexing the decoding
functions in subscript and write Cns𝑀 𝑖 instead of Cns 𝑀 𝑖 for example.

For any monad 𝑀, the data of its polynomial gives rise to an endomorphism
called its extension

⟦𝑀⟧ : (𝑋 : Idx𝑀 →𝒰) → Idx𝑀 →𝒰

whose defining equation is

⟦𝑀⟧ 𝑋 𝑖 :≡ ∑
(𝑐:Cns𝑀 𝑖) (𝑝 : Pos𝑀 𝑐) → 𝑋 (Typ𝑀 𝑐 𝑝)

This is the type of constructors of 𝑀 whose inputs are decorated with elements
in 𝑋. Polynomials are definable in any locally cartesian closed category, and
their extension is then a functor on some slice category (Gambino and Kock
2013).

2.1.2 Monads

In this section, we specify some additional structure on polynomials which,
in a categorical setting, endows their extension with a structure of a monad.
We therefore refer to the elements of ℳ as polynomial monads by abuse of
language.

2.1. Cartesian polynomial monads 55

η : (𝑀 :ℳ) (𝑖 : Idx𝑀) → Cns𝑀 𝑖

μ : (𝑀 :ℳ) {𝑖 : Idx𝑀} (𝑐 : Cns𝑀 𝑖) (𝑑 :
−−−−→
Cns𝑀 𝑐) → Cns𝑀 𝑖

Figure 2.2: The monad structure

Notation. We denote Fam𝑀 the type of families of types indexed by the
indices of a monad 𝑀:

Fam𝑀 :≡ Idx𝑀 →𝒰
We also introduce a notation for the type of sections of type families of
the form 𝐴 ◦ Typ𝑀 𝑐 which are indexed by the positions of a constructor
𝑐. Given a monad 𝑀, a type family 𝐴 : Fam𝑀 , and a constructor
𝑐 : Cns𝑀 𝑖, we define the notation

−→
𝐴 𝑐 :≡ (𝑝 : Pos𝑀 𝑐) → 𝐴 (Typ𝑀 𝑐 𝑝)

A particularly recurrent family will be
−−−−→
Cns𝑀 𝑐 for some constructor 𝑐. A con-

structor 𝑐 : Cns𝑀 𝑖 along with a family
−−−−→
Cns𝑀 𝑐 denote a depth-2 tree of con-

structors.
The structure of a polynomial monad comprises two operations (Figure 2.2).

Our monads being cartesian, they will satisfy the following equivalences:

Pos𝑀 (μ𝑀 𝑐 𝑑) ≃ ∑
(𝑝:Pos𝑀 𝑐) Pos𝑀 (𝑑 𝑝)

Pos𝑀 (η𝑀 𝑖) ≃ 1

Moreover, their typing function Typ𝑀 is compatible with these equivalences.
The unit η𝑀 𝑖 is therefore a unary constructor whose both input and output are
labelled by the index 𝑖. As for the operation μ𝑀 , it composes a depth-2 tree of
constructors to a constructor sharing its index with the one of the root node.
In addition, μ𝑀 preserves the type of positions of its input tree as well as their
typing.

These operations have to satisfy a number of definitional laws which we will
detail after having introduced some further operations on positions with regard
to the cartesian monad structure. Indeed, the mentioned equivalences will rarely
be equal to the identity. That is why we will characterise the type of positions
of constructors obtained from the operations η and μ using operations that
can be seen as witnessing these equivalences but which will obey definitional
laws. These operations on positions correspond exactly to those introduced in
Chapter 1.

56 Chapter 2. Polynomial monads

Operations relative to Pos𝑀 (η𝑀 𝑖)
The type of positions of a unit constructor is contractible and can be character-
ised by the existence of a centre of contraction along with an elimination rule
equivalent to the one of the unit type which leads us to postulate the following
principles:

posη : (𝑀 :ℳ) (𝑖 : Idx𝑀) → Cns𝑀 𝑖

Pos-η-elim : (𝑀 :ℳ) (𝑖 : Idx𝑀) (𝑋 : Pos𝑀 (η𝑀 𝑖) → 𝒰)
→ (𝑥posη : 𝑋 (posη𝑀 𝑖))
→ (𝑝 : Pos𝑀 (η𝑀 𝑖)) → 𝑋 𝑝

The elimination rule satisfies the following definitional computation rule:

Pos-η-elim𝑀 𝑖 𝑋 𝑥posη (posη𝑀 𝑖) ≡ 𝑥posη (Pos-η-elim-𝛽)

The typing function is compatible with the operation η𝑀 :

Typ𝑀 (η𝑀 𝑖) 𝑝 ≡ 𝑖 (posη-typ)

Operations relative to Pos𝑀 (μ𝑀 𝑥 𝑦)
The type of positions of a constructor obtained through the application of the
operation μ𝑀 is characterised by a pairing function along with two projection
functions similarly to sigma types:

pairμ : (𝑀 :ℳ) {𝑖 : Idx𝑀} (𝑐 : Cns𝑀 𝑖) (𝑑 :
−−−−→
Cns𝑀 𝑐)

→ (𝑝 : Pos𝑀 𝑐) (𝑞 : Pos𝑀 (𝑑 𝑝))
→ Pos𝑀 (μ𝑀 𝑐 𝑑)

prμ1 : (𝑀 :ℳ) {𝑖 : Idx𝑀} {𝑐 : Cns𝑀 𝑖} {𝑑 :
−−−−→
Cns𝑀 𝑐}

→ Pos𝑀 (μ𝑀 𝑐 𝑑) → Pos𝑀 𝑐

prμ2 : (𝑀 :ℳ) {𝑖 : Idx𝑀} {𝑐 : Cns𝑀 𝑖} {𝑑 :
−−−−→
Cns𝑀 𝑐}

→ (𝑝 : Pos𝑀 (μ𝑀 𝑐 𝑑)) → Pos𝑀 (𝑑 (prμ1 𝑝))
These functions are inverse to each other which is witnessed by the following
definitional equalities:

pairμ𝑀 (prμ1𝑀 𝑝) (prμ2𝑀 𝑝) ≡ 𝑝 (pairμ-𝜂)
prμ1𝑀 (pairμ𝑀 𝑝 𝑞) ≡ 𝑝 (prμ1 -𝛽)
prμ2𝑀 (pairμ𝑀 𝑝 𝑞) ≡ 𝑞 (prμ2 -𝛽)

Note how prμ2 -𝛽 is stated without having to transport the left-hand side along
prμ1 -𝛽 now that the laws are definitional. The typing function is compatible with
the operation μ𝑀

Typ𝑀 (μ𝑀 𝑐 𝑑) 𝑝 = Typ𝑀 (𝑑 (prμ1𝑀 𝑝)) (prμ2𝑀 𝑝) (μ-pos-typ)

2.2. The universe of polynomial monads 57

Finally, we postulate the laws obeyed by the operations η𝑀 and μ𝑀 :

μ𝑀 𝑐 (𝜆𝑝 → η𝑀 (Typ𝑀 𝑐 𝑝)) ≡ 𝑐
μ𝑀 (η𝑀 𝑖) 𝑐 ≡ 𝑐 (posη𝑀 𝑖)
μ𝑀 (μ𝑀 𝑐 𝑑) 𝑒 ≡ μ𝑀 𝑐 (𝜆𝑝 → μ𝑀 (𝑑 𝑝) (𝜆𝑞 → 𝑒 (pairμ𝑀 𝑝 𝑞)))

That is, the operation μ𝑀 is associative and unital with unit η𝑀 .
You might have noticed that we have not mentioned the operation γ so far.

This is because it is not part of the definition of a polynomial monad. Instead,
it will be an operation concerning a specific monad, the slice monad 𝑀/ of a
monad 𝑀, and which will be used in order to define the operation μ𝑀/.

2.2 The universe of polynomial monads

We now populate the universe with some monad constructors. In order to do so,
we postulate a new code for each monad that we want to add, then we define its
corresponding decoding functions specifying the data of its polynomial along
with the operations characterising its cartesian monad structure.

2.2.1 The identity monad

The first monad we introduce is the trivial monad with a single constructor
which is unary and whose type of sorts is the unit type. We start by postulating
the new code Id :ℳ. Its polynomial part is predictably defined as follows:

IdxId :≡ 1
CnsId 𝑖 :≡ 1
PosId 𝑐 :≡ 1
TypId 𝑐 𝑝 :≡ ★

We do not detail the definitions of the different operations relative to the identity
monad as they are all trivial, having the unit type as codomain. The extension
of the identity monad ⟦Id⟧ is then equivalent to the identity on FamId hence its
name.

2.2.2 The pullback monad

Given a monad 𝑀 and a type family 𝑋 : Fam𝑀 , we define a new code for the
pullback monad 𝑋∗𝑀 :ℳ which reindexes the monad 𝑀. Its constructors are
constructors of 𝑀 along with a decoration of both their inputs and output with
elements of the family 𝑋. Its polynomial part is defined as follows:

Idx𝑋∗𝑀 :≡ ∑
(𝑖:Idx𝑀) 𝑋 𝑖

Cns𝑋∗𝑀 (𝑖 , 𝑥) :≡ ∑
(𝑐:Cns𝑀 𝑖)

−→
𝑋 𝑐

Pos𝑋∗𝑀 (𝑐, 𝑥) :≡ Pos𝑀 𝑐

Typ𝑋∗𝑀 (𝑐, 𝑥) 𝑝 :≡ Typ𝑀 𝑐 𝑝

58 Chapter 2. Polynomial monads

The operations of the pullback monad 𝑋∗𝑀 simply use the ones of the under-
lying monad 𝑀.

η𝑋∗𝑀 (𝑖 , 𝑥) :≡ (η𝑀 𝑖 , η-dec𝑀 𝑥)
where η-dec𝑀 𝑥 is defined as

η-dec𝑀 𝑥 :≡ Pos-η-elim𝑀 𝑖 (𝜆𝑝 → 𝑋 (Typ𝑀 (η𝑀 𝑖) 𝑝)) 𝑥

The unit then takes an index 𝑖 : Idx 𝑀 as well as an element 𝑥 : 𝑋 𝑖 and returns
the unit of the underlying monad η𝑀 𝑖 whose only position is decorated with
the element 𝑥.

The multiplication is defined as

μ𝑋∗𝑀 (𝑐, 𝑥) 𝑑 :≡ (μ𝑀 𝑐 (𝜆𝑝 → pr1 (𝑑 𝑝)),𝜆𝑝 → pr2 (𝑑 (prμ1𝑀 𝑝)) (prμ2𝑀 𝑝))

The multiplication multiplies the 𝑀-constructors given by 𝑐 and 𝑑 using μ𝑀 ,
then decorates the positions of the resulting constructor using the decoration
specified by 𝑑 while forgetting the inner decoration specified by 𝑥.

As for the operations on the positions, they are straightforward since the
pullback monad shares its type of positions with its underlying monad.

posη𝑋∗𝑀 (𝑖 , 𝑥) :≡ posη𝑀 𝑖

Pos-η-elim𝑋∗𝑀 (𝑖 , 𝑥) 𝑋 𝑥posη 𝑝 :≡ Pos-η-elim𝑀 𝑖 𝑋 𝑥posη 𝑝

Finally, the positions operations with regard to the operation μ are defined as
follows:

pairμ𝑋∗𝑀 𝑝 𝑞 :≡ pairμ𝑀 𝑝 𝑞

prμ1𝑋∗𝑀 𝑝 :≡ prμ1𝑀 𝑝

prμ2𝑋∗𝑀 𝑝 :≡ prμ2𝑀 𝑝

2.2.3 The slice monad

The slice monad of a monad 𝑀, denoted 𝑀/, is at the heart of the Baez-Dolan
construction (Baez and Dolan 1998). It is the monad which materialises the
algebraic structure of a monad 𝑀, encoding it into data as constructors of the
monad 𝑀/. Iterating this construction, we capture the laws governing the
multiplication of 𝑀, then the coherences they satisfy, and so forth. This is the
monad constructor which describes how to raise the dimension of opetopes.

The slice polynomial

We start by postulating a new code 𝑀/:𝒰 for any monad 𝑀. Its indices are the
constructors of 𝑀:

Idx𝑀/ :≡ ∑
(𝑖:Idx𝑀) Cns𝑀 𝑖

2.2. The universe of polynomial monads 59

Notation. We will adopt the notation of Chapter 1 and denote the
elements of Idx𝑀/ as 𝑦 ⊳ 𝑥 in place of (𝑦, 𝑥). This is meant to convey the
idea that 𝑦 ⊳ 𝑥 is the data of a configuration of inputs given by 𝑥 along
with the data of an output given by 𝑦. A type family Fam𝑀/ is then
regarded as a relation over this data. As the type of 𝑥 depends on 𝑦, we
will often reverse the naming order and write 𝑥 ⊳ 𝑦 instead.
We also extend our notation to families. For any type family 𝑋 : Fam𝑀/,
any constructor 𝑥 : Cns𝑀 𝑖, and any family 𝑦 :

−−−−→
Cns𝑀 𝑥, we define the

following notation:

−→
𝑋 (𝑥 ◀ 𝑦) :≡ (𝑝 : Pos𝑀 𝑥) → 𝑋 (Typ𝑀 𝑥 𝑝 ⊳ 𝑦 𝑝)

We now define the type of constructors of the slice monad of 𝑀

Cns𝑀/ : Idx𝑀/ →𝒰
Constructors of the monad 𝑀/ indexed by 𝑥 ⊳ 𝑦 are well-founded trees of
constructors of 𝑀 which multiply to 𝑦 — a 𝑥-indexed constructor of 𝑀 — using
the monad structure of 𝑀. The type family Cns𝑀/ is therefore defined as the
following inductive type:

lf : (𝑥 : Idx𝑀) → Cns𝑀/ (𝑥 ⊳ η𝑀 𝑥)
nd : (𝑥 : Idx𝑀) (𝑦 : Cns𝑀 𝑥) {𝑧 :

−−−−→
Cns𝑀 𝑦}

→ (𝑡 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧))

→ Cns𝑀/ (𝑥 ⊳ μ𝑀 𝑦 𝑧)
Once, again we will write nd (𝑥 ⊳ 𝑦) 𝑡 instead of nd 𝑥 𝑦 𝑡. This type is very similar
to 𝒫 from Chapter 1 and it helps to understand it pictorially. The presentation
given in the simpler context of opetopes transposes to this new setting. The
leaf lf 𝑥 represents the empty tree with one input and one output sharing the
same index 𝑥. The node nd (𝑥 ⊳ 𝑦) 𝑡 represents a tree whose root node is the
constructor 𝑦 on which are recursively grafted the trees specified by 𝑡 on the
positions of 𝑦. As trees are indexed by constructors, one has to first specify a
family of constructors 𝑧 indexed by the positions of 𝑦. The tree 𝑡 𝑝 grafted at
position 𝑝 of 𝑦 is therefore indexed by Typ 𝑦 𝑝 ⊳𝑧 𝑝. The resulting tree, nd (𝑥 ⊳𝑦) 𝑡,
is indexed by 𝑥 ⊳ μ𝑀 𝑦 𝑧 where μ𝑀 𝑦 𝑧 is indeed its image under the operation
μ𝑀 since this operation is associative.

The type of positions of a constructor of the slice monad is the type of paths
from the root of the tree to its nodes:

Pos𝑀/ (lf 𝑥) :≡ ⊥
Pos𝑀/ (nd (𝑥 ⊳ 𝑦) 𝑡) :≡ 1 +∑(𝑝:Pos𝑀 𝑦) Pos𝑀/ (𝑡 𝑝)

The leaf has no node and therefore no position. A position of a tree made of a
root node is either this root node or a position of one of the trees grafted on this
node.

60 Chapter 2. Polynomial monads

The typing function then projects out the index corresponding to the node
indicated by a position 𝑝:

Typ𝑀/ (nd (𝑥 ⊳ 𝑦) 𝑡) (inl ★) :≡ 𝑥 ⊳ 𝑦
Typ𝑀/ (nd (𝑥 ⊳ 𝑦) 𝑡) (inr (𝑝, 𝑞)) :≡ Typ𝑀/ (𝑡 𝑝) 𝑞

The monad structure

We now define the monad structure of the slice polynomial. The operations will
be similar to the ones acting on 𝒫 but, considering that their laws are now taken
to be definitional, their definition will be greatly simplified.

The unit takes an index 𝑥 ⊳ 𝑦 : Idx𝑀/ and returns the tree whose sole node is
𝑥 ⊳ 𝑦:

η𝑀/ (𝑥 ⊳ 𝑦) :≡ nd (𝑥 ⊳ 𝑦) (𝜆𝑝 → lf (Typ𝑀 𝑦 𝑝))
The multiplication substitutes a family of compatible trees for the nodes of a
given tree. It requires the definition of the grafting operation γ that we already
encountered in Chapter 1:

γ : (𝑀 :ℳ) {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ (𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦)) (𝑢 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧))

→ Cns𝑀/ (𝑥 ⊳ μ𝑀 𝑦 𝑧)
This operation takes a tree 𝑡 and a family of trees 𝑢 indexed by the positions of 𝑡
and returns the result of the graft of the family 𝑢 on 𝑡. It is defined by induction
on 𝑡:

• If 𝑡 is of the form lf 𝑥, we simply return𝑢 (posη𝑀 𝑥). Note that this typechecks
due to μ-unit-l being definitional.

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, we recursively graft the trees specified by 𝑡
and 𝑢 on the root node 𝑥 ⊳ 𝑦:

nd (𝑥 ⊳ 𝑦) (𝜆𝑝 → γ𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (pairμ𝑀 𝑝 𝑞)))

We are now in position to define μ𝑀/ 𝑐 𝑑 by induction on 𝑐:

• If 𝑐 is of the form lf 𝑥, there is nothing to substitute and we return lf 𝑥
intact.

• If 𝑐 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, the root note will be substituted with the tree
𝑑 (inl ★), in consequence we recursively graft on this tree the result of the
substitution of the nodes of 𝑡 with the corresponding trees specified by 𝑑:

γ𝑀 (𝑑 (inl ★)) (𝜆𝑝 → μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑑 (inr (𝑝, 𝑞))))

Operations on positions

We now define the position operations of the slice monad.

2.2. The universe of polynomial monads 61

η position operations Let an index 𝑖 : Idx𝑀/, we define posη𝑀/ 𝑖 to be the only
position of η𝑀/ 𝑖:

posη𝑀/ 𝑖 :≡ inl ★

As for the elimination rule, Pos-η-elim𝑀/ 𝑖 𝑋 𝑥η 𝑝 is defined by induction on 𝑝
of type Pos𝑀/ (η𝑀/ 𝑖)whose sole case is when 𝑝 is equal to posη𝑀/ 𝑖:

Pos-η-elim𝑀/ 𝑖 𝑋 𝑥η (posη𝑀/ 𝑖) :≡ 𝑥η

γ position operations We need some operations characterising the positions
of constructors obtained throughγ before moving on to theμ case. The positions
of trees of the form γ𝑀 𝑡 𝑢 fall into two categories.

In the first case, inlγ injects a position of a tree 𝑡 into the type of positions of
the tree γ𝑀 𝑡 𝑢:

inlγ : (𝑀 :ℳ) {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ {𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦)} {𝑢 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧)}

→ (𝑝 : Pos𝑀/ 𝑡) → Pos𝑀/ (γ𝑀 𝑡 𝑢)
It is defined by induction on 𝑡 and on 𝑝,

• If 𝑡 is of the form lf 𝑥, Pos 𝑡 is the empty type and there is nothing to do.

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, we have to return a position of the tree
nd (𝑥 ⊳ 𝑦) 𝑣 where 𝑣 𝑝 :≡ γ𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (inr (𝑝, 𝑞))). There are two cases
to cover for 𝑝:

– If 𝑝 is inl ★, that is, the position of the root node of the base tree, we
return the position of the root node of the resulting tree which is inl★.

– If 𝑝 is of the form inr (𝑝, 𝑞) with 𝑝 : Pos 𝑦 and 𝑞 : Pos (𝑡 𝑝), we obtain
a position of 𝑣 𝑝 as inlγ𝑀 𝑞 and finally obtain a position of nd (𝑥 ⊳ 𝑦) 𝑣
as inr (𝑝, inlγ𝑀 𝑞).

In the second case, given a tree 𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦) and a family 𝑢 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧),

inrγ injects a position of the tree 𝑢 𝑝 for some position 𝑝 : Pos𝑀 𝑦 into the type
of positions of γ𝑀 𝑡 𝑢.

inrγ : (𝑀 :ℳ) {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ {𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦)} {𝑢 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧)}

→ (𝑝 : Pos𝑀 𝑦) (𝑞 : Pos𝑀/ (𝑢 𝑝)) → Pos𝑀/ (γ𝑀 𝑡 𝑢)
It is defined by induction on 𝑡,

• If 𝑡 is of the form lf 𝑥, we have to return a position of 𝑢 (posη𝑀 𝑥) but 𝑞
is a position of 𝑢 𝑝 where 𝑝 : Pos𝑀 (η𝑀 𝑥). We therefore have to use the
corresponding elimination principle with motive

𝐴 𝑝 :≡ Pos𝑀/ (𝑢 𝑝) → Pos𝑀/ (𝑢 (posη𝑀 𝑥))

62 Chapter 2. Polynomial monads

and return the position

Pos-η-elim𝑀 𝑥 𝐴 (𝜆𝑝 → 𝑝) 𝑝 𝑞

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) {𝑧} 𝑡, we have to return a position of the tree
nd (𝑥 ⊳ 𝑦) 𝑣 where 𝑣 𝑝 :≡ γ𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (inr (𝑝, 𝑞))). In this context, 𝑝 has
type Pos𝑀 (μ𝑀 𝑦 𝑧). We first obtain a position of 𝑣 (prμ1 𝑝) as inrγ (prμ2 𝑝) 𝑞
and we finally get a position of nd (𝑥 ⊳ 𝑦) 𝑣 as inr (prμ1 𝑝, inrγ (prμ2 𝑝) 𝑞).

We conclude with the elimination rule for positions of grafted trees:

Pos-γ-elim : (𝑀 :ℳ) {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ (𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦)) (𝑢 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧))

→ (𝐴 : Pos𝑀/ (γ𝑀 𝑡 𝑢) → 𝒰)
→ (𝑎inl : (𝑝 : Pos𝑀/ 𝑡) → 𝐴 (inlγ 𝑝))
→ (𝑎inr : (𝑝 : Pos𝑀 𝑦) (𝑞 : Pos𝑀/ (𝑢 𝑝)) → 𝐴 (inrγ 𝑝 𝑞))
→ (𝑝 : Pos𝑀/ (γ𝑀 𝑡 𝑢)) → 𝐴 𝑝

It is defined by induction on 𝑡 and on 𝑝:

• If 𝑡 is of the form lf 𝑥, 𝑝 is a position of 𝑢 (posη𝑀 𝑥). We return the term
𝑎inr (posη𝑀 𝑥) 𝑝 which has type 𝐴 (inrγ (posη𝑀 𝑥) 𝑝) which is definitionally
equal to 𝐴 𝑝.

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, 𝑝 is a position of the tree nd (𝑥 ⊳ 𝑦) 𝑣 with
𝑣 𝑝 :≡ γ𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (inr (𝑝, 𝑞))) there are two cases to cover for 𝑝:

– If 𝑝 is inl ★, we return 𝑎inl (inl ★)which has the required type.
– If 𝑝 is of the form inr (𝑝, 𝑞), 𝑝 is a position of 𝑦 and 𝑞 is a position of 𝑣 𝑝

which leads us to eliminate 𝑞. We set the motive to 𝐵 𝑞 :≡ 𝐴 (inr (𝑝, 𝑞))
and it remains to define the two cases of the elimination with the two
defining equations:

𝑏inl 𝑞 :≡ 𝑎inl (inr (𝑝, 𝑞))
𝑏inr 𝑞 𝑟 :≡ 𝑎inr (pairμ 𝑝 𝑞) 𝑟

Packaging all this data together, we obtain the following expression:

Pos-γ-elim𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (inr (𝑝, 𝑞))) 𝐵 𝑏inl 𝑏inr 𝑞

μ position operations We conclude the definition of the slice monad with the
definition of operations relative to positions of constructors obtained from μ.

Let 𝑥 : Idx𝑀/, 𝑦 : Cns𝑀/ 𝑥, and 𝑧 :
−−−−−→
Cns𝑀/ 𝑦. For any positions 𝑝 : Pos𝑀/ 𝑦

and position 𝑞 : Pos𝑀/ (𝑧 𝑝), there is a position pairμ𝑀/ 𝑝 𝑞 of the tree μ𝑀/ 𝑦 𝑧
that we define by induction on 𝑦 and on 𝑝:

• If 𝑦 is of the form lf 𝑥, Pos (lf 𝑥) is the empty type and we are done.

2.3. Morphisms of monads 63

• If 𝑦 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, we are looking for a position of the tree
γ𝑀 (𝑧 (inl ★)) 𝑢 with 𝑢 𝑝 :≡ μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞))). There are two
cases to cover for 𝑝:

– If 𝑝 is inl ★, 𝑞 is a position of 𝑧 (inl ★) and we inject it as inlγ𝑀 𝑞.
– If 𝑝 is of the form inr (𝑝, 𝑟) where 𝑟 is a position of 𝑡 𝑝 then 𝑞 is a

position of 𝑧 (inr (𝑝, 𝑟)). We therefore obtain a position of 𝑢 𝑝 as
pairμ𝑀/ 𝑟 𝑞 that we inject it as inrγ𝑀 𝑝 (pairμ𝑀/ 𝑟 𝑞).

Conversely, given a position 𝑝 : Pos𝑀/ (μ𝑀/ 𝑦 𝑧), we define prμ1𝑀/ 𝑝 and prμ2𝑀/ 𝑝
by induction on 𝑦. The case of the leaf is quickly eliminated and we are left
with the node case of the form nd (𝑥 ⊳ 𝑦) 𝑡. The position 𝑝 is a position of the
tree γ𝑀 (𝑧 (inl ★)) 𝑢 with 𝑢 𝑝 :≡ μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞))) and we have to
eliminate it using the elimination rule for γ.

In order to define prμ1𝑀/ 𝑝, we set the motive to the constant𝐴 𝑝 :≡ Pos𝑀/ (nd (𝑥⊳
𝑦) 𝑡) and define:

𝑎inl 𝑝 :≡ inl ★
𝑎inr 𝑝 𝑞 :≡ inr (𝑝, prμ1𝑀/ 𝑞)

Indeed, the first case concerns the substitution of the root node of nd (𝑥 ⊳ 𝑦) 𝑡
and the second one corresponds to a nested substitution somewhere in one of
the trees specified by 𝑡; hence the recursive call to prμ1𝑀/.

Finally, to define prμ2𝑀/ 𝑝, we set the motive to 𝐴 𝑝 :≡ Pos𝑀/ (𝑧 (prμ1𝑀/ 𝑝))
and define:

𝑎inl 𝑝 :≡ 𝑝
𝑎inr 𝑝 𝑞 :≡ prμ2𝑀/ 𝑞

This concludes the presentation of the core of our extension of type theory with
polynomial monads. This is enough to internalise higher algebraic structures
such as∞-groupoids as we shall see in Chapter 3.

2.3 Morphisms of monads

The extension of type theory with polynomial monads would not be com-
plete without also introducing their morphisms. More precisely, we will define
cartesian morphisms of monads which preserve the type of positions of a con-
structor as well as their typing. We will only make a modest use of them as their
only purpose in this thesis is to reindex opetopic types in Chapter 3.

Similarly to monads, morphisms of monads are a primitive feature of our
system enjoying definitional laws. For each monads 𝑀 and 𝑁 , we postulate
a universe of morphisms from 𝑀 to 𝑁 whose elements are seen as codes for
morphisms of monads from 𝑀 to 𝑁

𝑀 →𝑚 𝑁 :𝒰

64 Chapter 2. Polynomial monads

idx→𝑓 : Idx𝑀 → Idx𝑁
cns→𝑓 : {𝑖 : Idx𝑀} → Cns𝑀 𝑖 → Cns𝑁 (idx→𝑓 𝑖)
pos→𝑓 : {𝑖 : Idx𝑀} {𝑐 : Cns𝑀 𝑖} → Pos𝑀 𝑐 → Pos𝑁 (cns→𝑓 𝑐)
pos←𝑓 : {𝑖 : Idx𝑀} {𝑐 : Cns𝑀 𝑖} → Pos𝑁 (cns→𝑓 𝑐) → Pos𝑀 𝑐

Figure 2.3: The data defining a monad morphism

A morphism of monad 𝑓 : 𝑀 →𝑚 𝑁 is characterised by a collection of decoding
functions (Figure 2.3). Note that due to the fact our morphisms are cartesian,
they have to preserve the positions of constructors as well as their typing. First,
morphisms of monads respect the typing of constructors’ positions:

idx→𝑓 (Typ𝑀 𝑐 𝑝) ≡ Typ𝑁 (cns→𝑓 𝑐) (pos→𝑓 𝑝)
Second, the positions operations are inverse to each other:

pos←𝑓 (pos→𝑓 𝑝) ≡ 𝑝
pos→𝑓 (pos←𝑓 𝑝) ≡ 𝑝

Finally, monad morphisms respect the monad structure. We have a first set of
laws regarding η:

cns→𝑓 (η𝑀 𝑥) ≡ η𝑁 (idx→𝑓 𝑥)
pos→𝑓 (posη 𝑖) ≡ posη (idx→ 𝑖)
pos←𝑓 (posη (idx→ 𝑖)) ≡ posη 𝑖

There is a second set of laws regarding μ:

cns→𝑓 (μ𝑀 𝑐 𝑑) ≡ μ𝑁 (cns→𝑓 𝑐) (𝜆𝑝 → cns→𝑓 (𝑑 (pos←𝑓 𝑝)))
pos→𝑓 (pairμ 𝑝 𝑞) ≡ pairμ (pos→𝑓 𝑝) (pos→𝑓 𝑞)
pos→𝑓 (prμ1 𝑝) ≡ prμ1 (pos→𝑓 𝑝)
pos→𝑓 (prμ2 𝑝) ≡ prμ2 (pos→𝑓 𝑝)
pos←𝑓 (pairμ 𝑝 𝑞) ≡ pairμ (pos←𝑓 𝑝) (pos←𝑓 𝑞)
pos←𝑓 (prμ1 𝑝) ≡ prμ1 (pos←𝑓 𝑝)
pos←𝑓 (prμ2 𝑝) ≡ prμ2 (pos←𝑓 𝑝)

We now define a monad morphism constructor for each of the monad construct-
ors populating the universe of monads.

2.3. Morphisms of monads 65

2.3.1 Identity morphism

The identity morphism behave as expected, it sends constructors of a monad
to themselves. Given a monad 𝑀, we postulate a new code for the identity
morphism on 𝑀:

id𝑀 : 𝑀 →𝑚 𝑀

Its components are all identities:

1. For any index 𝑖 : Idx𝑀 ,
idx→id𝑀 𝑖 :≡ 𝑖

2. For any constructor 𝑐 : Cns𝑀 𝑖,

cns→id𝑀 𝑐 :≡ 𝑐

3. For any constructor 𝑐 : Cns𝑀 𝑖 and position 𝑝 : Pos𝑀 𝑐,

pos→id𝑀 𝑝 :≡ 𝑝
pos←id𝑀 𝑝 :≡ 𝑝

2.3.2 Slice monad morphisms

A monad morphism 𝑓 : 𝑀 →𝑚 𝑁 induces a morphism between their respective
slice monads preserving the structure of trees. Given such a morphism 𝑓 , we
postulate a new code for the monad morphism between the slice monads 𝑀/
and 𝑁/:

𝑓 /: 𝑀/→𝑚 𝑁/
Its components are defined as follows:

1. For any index (𝑖 , 𝑐) : Idx𝑀/,

idx→𝑓 / (𝑖 , 𝑐) :≡ (idx→𝑓 𝑖 , cns→𝑓 𝑐)

2. cns→𝑓 / is defined by induction on 𝑐 : Cns𝑀/ 𝑖,

cns→𝑓 / (lf 𝑖) :≡ lf (idx→𝑓 𝑖)
cns→𝑓 / (nd (𝑥 ⊳ 𝑦) 𝑡) :≡ nd (idx→𝑓 𝑥 ⊳ cns→𝑓 𝑦) (𝜆𝑝 → cns→𝑓 / (𝑡 (pos←𝑓 𝑝)))

3. pos→𝑓 / is defined by induction on 𝑐 : Cns𝑀/ 𝑖 and 𝑝 : Pos𝑀/ 𝑐,

pos→𝑓 / (nd (𝑥 ⊳ 𝑦) 𝑡) (inl ★) :≡ inl ★

pos→𝑓 / (nd (𝑥 ⊳ 𝑦) 𝑡) (inr (𝑝, 𝑞)) :≡ inr (pos→𝑓 𝑝, pos→𝑓 / 𝑞)

4. pos←
/ 𝑓

is defined by induction on 𝑐 : Cns𝑀/ 𝑖 and 𝑝 : Pos𝑁/ (cns→𝑓 / 𝑐),

pos←𝑓 / (nd (𝑥 ⊳ 𝑦) 𝑡) (inl ★) :≡ inl ★

pos←𝑓 / (nd (𝑥 ⊳ 𝑦) 𝑡) (inr (𝑝, 𝑞)) :≡ inr (pos←𝑓 𝑝, pos←𝑓 / 𝑞)

66 Chapter 2. Polynomial monads

2.3.3 Pullback monad morphisms

Given a monad morphism 𝑓 : 𝑀 →𝑚 𝑁 , two type families 𝐴 : Fam𝑀 and
𝐵 : Fam𝑁 as well as a function 𝑔 : {𝑖 : Idx𝑀} → 𝐴 𝑖 → 𝐵 (idx→𝑓 𝑖), we postulate
a new code for the induced morphism between the pullback monads 𝐴∗𝑀 and
𝐵∗ 𝑁 :

Pb 𝑓 ,𝑔 : 𝐴∗𝑀 →𝑚 𝐵∗ 𝑁

This morphism acts by mapping constructors and their decoration. Its compon-
ents are defined as follows:

1. For any index (𝑖 , 𝑥) : Idx𝐴∗𝑀 ,

idx→Pb 𝑓 ,𝑔 (𝑖 , 𝑥) :≡ (idx→𝑓 𝑖 , 𝑔 𝑥)

2. For any constructor (𝑐, 𝑥) : Cns𝐴∗𝑀 (𝑖 , 𝑦),
cns→Pb 𝑓 ,𝑔 (𝑐, 𝑥) :≡ (cns→𝑓 𝑐,𝜆𝑝 → 𝑔 (𝑥 (pos←𝑓 𝑝))

3. For any constructor 𝑐 : Cns𝐴∗𝑀 𝑖 and position 𝑝 : Pos𝐴∗𝑀 𝑐,

pos→Pb 𝑓 ,𝑔 𝑝 :≡ pos→𝑓 𝑝

4. For any constructor 𝑐 : Cns𝐴∗𝑀 𝑖 and position 𝑝 : Pos𝐵∗ 𝑁 (cns→Pb 𝑓 ,𝑔
𝑐),

pos←Pb 𝑓 ,𝑔 𝑝 :≡ pos←𝑓 𝑝

2.3.4 Composition of monad morphisms

We finish this section with the definition of the composition of two monad
morphisms. Let 𝑓 : 𝑋 →𝑚 𝑌 and 𝑔 : 𝑌 →𝑚 𝑍, we define their composition

𝑔 ◦𝑚 𝑓 : 𝑋 →𝑚 𝑍

Its components are defined as follows:

idx→𝑔◦𝑚 𝑓 𝑖 :≡ idx→𝑔 (idx→𝑓 𝑖)
cns→𝑔◦𝑚 𝑓 𝑐 :≡ cns→𝑔 (cns→𝑓 𝑐)
pos→𝑔◦𝑚 𝑓 𝑝 :≡ pos→𝑔 (pos→𝑓 𝑝)
pos←𝑔◦𝑚 𝑓 𝑝 :≡ pos←𝑓 (pos←𝑔 𝑖)

2.4 Monad families

Working in dependent type theory, it is natural to generalise polynomial monads
to families of polynomial monads indexed by a monad. Roughly, we regard
monad families as specifying a collection of constructors indexed by a base

2.4. Monad families 67

Idx↓𝑀↓ : Idx𝑀 →𝒰
Cns↓𝑀↓ : {𝑖 : Idx𝑀} → Idx↓𝑀↓ 𝑖 → Cns𝑀 𝑖 →𝒰
Typ↓𝑀↓ : {𝑖 : Idx𝑀} {𝑐 : Cns𝑀 𝑖}
→ Cns↓𝑀↓ 𝑖↓ 𝑐 → (𝑝 : Pos 𝑀 𝑐) → Idx↓𝑀↓ (Typ𝑀 𝑐 𝑝)

Figure 2.4: The data of a monad family

constructor. The algebraic structure then grants the ability to compose these
constructors resulting in a constructor indexed over the composite of their base
constructors. We can also regard monad families as yet another axiomatisation
of cartesian morphisms of monads.

We will introduce the dependent counterpart of all the constructions that
have already been introduced in this chapter. This is a very laborious albeit
straightforward process therefore we will gloss over the details. For any monad
𝑀 :ℳ, we introduce a universe of monads dependent over 𝑀:

ℳ↓𝑀 :𝒰

Notation. We will postfix all our dependent constructions with the
symbol ↓. Often, an expression named 𝑥↓will depend on some other
expression 𝑥. For example, when talking about a monad 𝑀↓without
having made explicit the type of 𝑀↓, we will assume that it is a monad
family indexed by an ordinary monad 𝑀.

The polynomial part of a family of polynomial monads 𝑀↓ : ℳ↓𝑀 is charac-
terised by a set of decoding functions (Figure 2.4) depending over their non-
dependent counterpart. Note that the type of positions of a constructor of 𝑀↓
is the one of the constructor of 𝑀 it depends on. We understand this data as
defining a cartesian morphism of polynomial monads preserving the type of
positions of constructors by definition.

68 Chapter 2. Polynomial monads

η↓𝑀↓ : {𝑖 : Idx𝑀} (𝑖↓ : Idx↓𝑀↓ 𝑖) → Cns↓𝑀↓ 𝑖↓ (η𝑀 𝑖)
μ↓𝑀↓ : {𝑖 : Idx𝑀} {𝑐 : Cns𝑀 𝑖} {𝑑 :

−−−−→
Cns𝑀 𝑐}

→ {𝑖↓ : Idx↓𝑀↓ 𝑖} (𝑐↓ : Cns↓𝑀↓ 𝑖↓ 𝑐) →
−−−−−−→
Cns↓𝑀↓ 𝑐↓ 𝑑

→ Cns↓𝑀↓ 𝑖↓ (μ𝑀 𝑐 𝑑)

Figure 2.5: The monad structure

Notation. We extend families over the type of indices of a monad to
their dependent counterpart. Let 𝑀↓ :ℳ↓𝑀 and 𝑋 : Fam𝑀 , we define

Fam↓𝑋𝑀↓ :≡ {𝑖 : Idx𝑀} → Idx↓𝑀↓ 𝑖 → 𝑋 𝑖 →𝒰

We extend the notation
−→
𝑋 𝑐 to families of elements of Fam↓𝑋𝑀↓ dependent

over the positions of a constructor. Let 𝑀↓ :ℳ↓𝑀 , let 𝑋 : Fam𝑀 , let
𝑋↓ : Fam↓𝑋𝑀↓ be a type family, let 𝑐↓ : Cns↓𝑀↓ 𝑖↓ 𝑐 be a constructor, and let

𝑥 :
−→
𝑋 𝑐 be a family of elements of 𝑋 indexed by the positions of 𝑐. We

define the notation
−→
𝑋↓ 𝑐↓ 𝑥 as follows:

−→
𝑋↓ 𝑐↓ 𝑥 :≡ (𝑝 : Pos𝑀 𝑐) → 𝑋↓ (Typ↓𝑀↓ 𝑐↓ 𝑝) (𝑥 𝑝)

As expected, the multiplication and unit of monad families depend on their non
dependent counterpart (Figure 2.5). Luckily for us, we do not have to introduce
dependent versions of the operations on positions, so we can state the laws that
have to be obeyed by the monad operations immediately.

μ↓𝑀↓ 𝑥↓ (𝜆𝑝 → η↓𝑀↓ (Typ↓𝑀↓ 𝑥↓ 𝑝)) ≡ 𝑥↓
μ↓𝑀↓ (η↓𝑀↓ 𝑥↓) 𝑦↓ ≡ 𝑦↓ (posη𝑀 𝑥)
μ↓𝑀↓ (μ↓𝑀↓ 𝑥↓ 𝑦↓) 𝑧↓ ≡ μ↓𝑀↓ 𝑥↓ (𝜆𝑝 → μ↓𝑀↓ (𝑦↓ 𝑝) (𝜆𝑞 → 𝑧↓ (pairμ𝑀 𝑝 𝑞)))

We are now ready to define the dependent versions of the monad constructors
we had introduced at the beginning of this chapter.

2.4.1 The identity monad

We start with the dependent identity monad defined for any type 𝑋:

Id↓𝑋 :ℳ↓Id

2.4. Monad families 69

The polynomial part of its definition is straightforward.

Idx↓Id↓𝑋 𝑖 :≡ 𝑋
Cns↓Id↓𝑋 𝑖↓ 𝑐 :≡ 1
Typ↓Id↓𝑋 {𝑖↓ = 𝑥} 𝑐↓ 𝑝 :≡ 𝑥

We do not describe its trivial monad structure. This family has a single unary
constructor for any element 𝑥 : 𝑋. Moreover, both its input and its output have
𝑥 for index. When we omit the type 𝑋 and write Id↓, we assume that 𝑋 is the
unit type 1.

2.4.2 The pullback monad

Given a monad family 𝑀↓ : ℳ↓𝑀 and a dependent family 𝑋↓ : Fam↓𝑋𝑀↓, we
introduce the dependent pullback monad 𝑋↓∗𝑀↓ : ℳ↓𝑋∗𝑀 . Its polynomial
part is defined as follows:

Idx↓𝑋↓∗𝑀↓ (𝑖 , 𝑥) :≡ ∑
(𝑖↓:Idx↓𝑀↓ 𝑖) 𝑋↓ 𝑖↓ 𝑥

Cns↓𝑋↓∗𝑀↓ (𝑖↓, 𝑥↓) (𝑐, 𝑦) :≡ ∑
(𝑐↓:Cns↓𝑀↓ 𝑖↓ 𝑐)

−→
𝑋↓ 𝑐↓ 𝑦

Typ↓𝑋↓∗𝑀↓ (𝑐↓, 𝑥↓) 𝑝 :≡ Typ↓𝑀↓ 𝑐↓ 𝑝

Once again, its monad structure is a straightforward generalisation of the non-
dependent version.

η↓𝑋↓∗𝑀↓ (𝑖↓, 𝑥↓) :≡ (η↓𝑀↓ 𝑖↓, η↓-dec 𝑥↓)
μ↓𝑋↓∗𝑀↓ (𝑐↓, 𝑦↓) 𝑑↓ :≡ (μ↓𝑀↓ 𝑐↓ (𝜆𝑝 → pr1 (𝑑↓ 𝑝)),𝜆𝑝 → pr2 (𝑑↓ (prμ1𝑀 𝑝)) (prμ2𝑀 𝑝))

where η↓-dec𝑀 𝑥 is defined as

η↓-dec𝑀 𝑥↓ :≡ Pos-η-elim𝑀 𝑖 (𝜆𝑝 → 𝑋↓ (Typ↓𝑀↓ (η↓𝑀↓ 𝑖↓) 𝑝) (η-dec 𝑥)) 𝑥↓

2.4.3 The slice monad

Given a monad family 𝑀↓ : ℳ↓𝑀 , we introduce the dependent slice monad
𝑀↓/:ℳ↓𝑀/.

Notation. We extend the notation
−→
𝑋 (𝑐 ◀ 𝑑). Let 𝑀↓ :ℳ↓𝑀 , let

𝑋↓ : Fam↓𝑋𝑀↓/ be a family indexed by the indices of the monad 𝑀↓/, let

𝑐↓ : Cns↓𝑀↓ 𝑖↓ 𝑐, let 𝑑↓ :
−−−−−−→
Cns↓𝑀↓ 𝑐↓ 𝑑, and let 𝑥 :

−→
𝑋 (𝑐 ◀ 𝑑). We define the

notation
−→
𝑋↓ (𝑐↓◀ 𝑑↓) 𝑥 as follows:

−→
𝑋↓ (𝑐↓◀ 𝑑↓) 𝑥 :≡ (𝑝 : Pos𝑀 𝑐) → 𝑋↓ (Typ↓𝑀↓ 𝑐↓ 𝑝 ⊳ 𝑑↓ 𝑝) (𝑥 𝑝)

70 Chapter 2. Polynomial monads

As expected, its indices are constructors of 𝑀↓:
Idx↓𝑀↓/ (𝑖 , 𝑐) :≡ ∑

(𝑖↓:Idx𝑀↓ 𝑖) Cns↓𝑀↓ 𝑖↓ 𝑐
Its type of constructors is an inductive type with two constructors, one for each
constructor of its base type:

lf↓ : {𝑖 : Idx𝑀} (𝑖↓ : Idx↓𝑀↓ 𝑖) → Cns↓𝑀↓/ (𝑖↓ ⊳ η↓𝑀↓ 𝑖↓) (lf 𝑖)
nd↓ : {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :

−−−−→
Cns𝑀 𝑦} {𝑡 :

−−−−→
Cns𝑀 (𝑦 ◀ 𝑧)}

→ (𝑥↓ : Idx↓𝑀↓ 𝑥) (𝑦↓ : Cns↓𝑀↓ 𝑥↓ 𝑦) {𝑧↓ :
−−−−−→
Cns𝑀↓ 𝑦↓ 𝑧}

→ (𝑡↓ :
−−−−−−→
Cns↓𝑀↓ (𝑦↓◀ 𝑧↓) 𝑡)

→ Cns↓𝑀↓/ (𝑥↓ ⊳ μ↓𝑀↓ 𝑦↓ 𝑧↓) (nd (𝑥 ⊳ 𝑦) 𝑡)
The typing function projects out the data of the node specified by the position:

Typ↓𝑀↓/ (nd↓ (𝑥↓ ⊳ 𝑦↓) 𝑡↓) (inl ★) :≡ (𝑥↓ ⊳ 𝑦↓)
Typ↓𝑀↓/ (nd↓ (𝑥↓ ⊳ 𝑦↓) 𝑡↓) (inr (𝑝, 𝑞)) :≡ Typ↓𝑀↓/ (𝑡↓ 𝑝) 𝑞

The unit returns a corolla whose sole node is specified by its argument:

η↓𝑀↓/ (𝑥↓ ⊳ 𝑦↓) :≡ nd↓ (𝑥↓ ⊳ 𝑦↓) (𝜆𝑝 → lf↓ (Typ↓𝑀↓ 𝑦↓ 𝑝))

In order to define μ𝑀↓/, we first have to define the grafting operation whose
signature is

γ↓𝑀↓ : {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ {𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦)} {𝑢 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧)}

→ {𝑥↓ : Idx↓𝑀↓} {𝑦↓ : Cns↓𝑀↓ 𝑥↓ 𝑦} {𝑧↓ :
−−−−−−→
Cns↓𝑀↓ 𝑦↓ 𝑧}

→ (𝑡↓ : Cns↓𝑀↓/ (𝑥↓ ⊳ 𝑦↓) 𝑡) (𝑢↓ :
−−−−−→
Cns𝑀/ (𝑦↓◀ 𝑧↓) 𝑢)

→ Cns↓𝑀↓/ (𝑥↓ ⊳ μ↓𝑀↓ 𝑦↓ 𝑧↓) (γ𝑀 𝑡 𝑢)
It is defined by induction on 𝑡↓:

• If 𝑡↓ is of the form lf↓ 𝑖↓, we simply return 𝑢↓ (posη 𝑖).
• If 𝑡↓ is of the form nd↓ (𝑥↓ ⊳ 𝑦↓) 𝑡↓, we return nd↓ (𝑥↓ ⊳ 𝑦↓) 𝑡↓′ with

𝑡↓′ 𝑝 :≡ γ↓𝑀↓ (𝑡↓ 𝑝) (𝜆𝑞 → 𝑢 (pairμ 𝑝 𝑞))
We are now in position to define μ↓𝑀↓/ 𝑐↓ 𝑑↓ by induction on 𝑐↓:

• If 𝑐↓ is of the form lf↓ 𝑖↓, there is nothing to substitute and we return lf↓ 𝑖↓
intact.

• If 𝑐↓ is of the form nd (𝑥↓⊳ 𝑦↓) 𝑡↓, the root note will be substituted with the
tree 𝑑↓ (inl★), in consequence we recursively graft on this tree the result of
the substitution of the nodes of 𝑡↓with the corresponding trees specified
by 𝑑↓:

γ↓𝑀↓ (𝑑↓ (inl ★)) (𝜆𝑝 → μ↓𝑀↓/ (𝑡↓ 𝑝) (𝜆𝑞 → 𝑑↓ (inr (𝑝, 𝑞))))

2.4. Monad families 71

2.4.4 Dependent sums

We end this chapter with the definition of dependent sums of monads which
will be used to define dependent sums of opetopic types. Let 𝑀 : ℳ be a
monad and let 𝑀↓ : ℳ↓𝑀 be a family of monads indexed by 𝑀, we form the
new monad

Σ𝑚(𝑀,𝑀↓) :ℳ
Its different components are defined by the following equations:

IdxΣ𝑚(𝑀,𝑀↓) :≡ ∑
(𝑖:Idx𝑀) Idx↓𝑀↓ 𝑖

CnsΣ𝑚(𝑀,𝑀↓) (𝑖 , 𝑖↓) :≡ ∑
(𝑐:Cns𝑀 𝑖) Cns↓𝑀↓ 𝑖↓ 𝑐

PosΣ𝑚(𝑀,𝑀↓) (𝑐, 𝑐↓) :≡ Pos𝑀 𝑐

TypΣ𝑚(𝑀,𝑀↓) (𝑐, 𝑐↓) 𝑝 :≡ (Typ𝑀 𝑐 𝑝, Typ↓𝑀↓ 𝑐↓ 𝑝)

Its monad structure is then defined as follows:

ηΣ𝑚(𝑀,𝑀↓) (𝑖 , 𝑖↓) :≡ (η𝑀 𝑖 , η↓𝑀↓ 𝑖↓)
μΣ𝑚(𝑀,𝑀↓) (𝑐, 𝑐↓) 𝑑 :≡ (μ𝑀 𝑐 (𝜆𝑝 → pr1 (𝑑 𝑝)),μ↓𝑀↓ 𝑐↓ (𝜆𝑝 → pr2 (𝑑 𝑝)))

We do not detail the definitions of the operations acting on positions which
simply use the ones of the monad 𝑀.

We conclude with the definition of two monad morphisms witnessing that
the slice monad and the pullback monad constructors both distribute over the
dependent sum. We will need them in Chapter 2. We start with the slice monad.
Let 𝑀 :ℳ and 𝑀↓ :ℳ↓𝑀 , we form the new monad morphism

Σ𝑚/(𝑀,𝑀↓) : Σ𝑚(𝑀,𝑀↓)/ →𝑚 Σ𝑚(𝑀/, 𝑀↓/)
Its components are defined as follows:

1. idx→Σ𝑚/(𝑀,𝑀↓) 𝑖 is defined by the equation

idx→Σ𝑚/(𝑀,𝑀↓) ((𝑖 , 𝑖↓), (𝑐, 𝑐↓)) :≡ ((𝑖 , 𝑐), (𝑖↓, 𝑐↓))

2. cns→Σ𝑚/(𝑀,𝑀↓) 𝑐 is defined by induction on 𝑐,

cns→Σ𝑚/(𝑀,𝑀↓) (lf (𝑖 , 𝑖↓)) :≡ (lf 𝑖 , lf↓ 𝑖↓)
cns→Σ𝑚/(𝑀,𝑀↓) (nd ((𝑥, 𝑥↓) ⊳ (𝑦, 𝑦↓)) 𝑡) :≡
(nd (𝑥 ⊳ 𝑦) (𝜆𝑝 → pr1 (cns→Σ𝑚/(𝑀,𝑀↓) (𝑡 𝑝))),
nd↓ (𝑥↓ ⊳ 𝑦↓) (𝜆𝑝 → pr2 (cns→Σ𝑚/(𝑀,𝑀↓) (𝑡 𝑝))))

3. pos→Σ𝑚/(𝑀,𝑀↓) {𝑐} 𝑝 is defined by induction on 𝑐 and 𝑝,

pos→Σ𝑚/(𝑀,𝑀↓) {nd (𝑥 ⊳ 𝑦) 𝑡} (inl ★) :≡ inl ★

pos→Σ𝑚/(𝑀,𝑀↓) {nd (𝑥 ⊳ 𝑦) 𝑡} (inr (𝑝, 𝑞)) :≡ inr (𝑝, pos→Σ𝑚/(𝑀,𝑀↓) {𝑡 𝑝} 𝑞)

72 Chapter 2. Polynomial monads

4. pos←Σ𝑚/(𝑀,𝑀↓) {𝑐} 𝑝 is defined by induction on 𝑐 and 𝑝,

pos←Σ𝑚/(𝑀,𝑀↓) {nd (𝑥 ⊳ 𝑦) 𝑡} (inl ★) :≡ inl ★

pos←Σ𝑚/(𝑀,𝑀↓) {nd (𝑥 ⊳ 𝑦) 𝑡} (inr (𝑝, 𝑞)) :≡ inr (𝑝, pos←Σ𝑚/(𝑀,𝑀↓) {𝑡 𝑝} 𝑞)

Similarly, we define the map witnessing that pullback monad constructors
distribute over dependent sum constructors. Let 𝑀 :ℳ and 𝑀↓ :ℳ↓𝑀 be two
monads and let 𝑋 : Fam𝑀 and 𝑋↓ : Fam↓𝑋𝑀↓ be two type families. We form the
new monad map

Σ𝑚∗(𝑀,𝑀↓, 𝑋, 𝑋↓) : Σ↓(𝑋, 𝑋↓)∗ (Σ𝑚(𝑀,𝑀↓)) →𝑚 Σ𝑚(𝑋∗𝑀, 𝑋↓∗𝑀↓)
where the family Σ↓(𝑋, 𝑋↓) : FamΣ𝑚(𝑀,𝑀↓) is defined by the equation

Σ↓(𝑋, 𝑋↓) (𝑖 , 𝑖↓) :≡ ∑
(𝑥:𝑋 𝑖) 𝑋↓ 𝑖↓ 𝑥

Its components are defined as follows:

1. idx→Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) 𝑖 is defined by the equation

idx→Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) ((𝑖 , 𝑖↓), (𝑥, 𝑥↓)) :≡ ((𝑖 , 𝑥), (𝑖↓, 𝑥↓))

2. cns→Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) 𝑐 is defined by the equation

cns→Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) ((𝑐, 𝑐↓), 𝑥) :≡ ((𝑐,𝜆𝑝 → pr1 (𝑥 𝑝)), (𝑐↓,𝜆𝑝 → pr2 (𝑥 𝑝)))

3. pos→Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) 𝑝 is defined by the equation

pos→Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) 𝑝 :≡ 𝑝

4. pos←Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) 𝑝 is defined by the equation

pos←Σ𝑚∗(𝑀,𝑀↓,𝑋,𝑋↓) 𝑝 :≡ 𝑝

Chapter 3

Opetopic methods in type theory

We leverage the extension of type theory with polynomial monads that we
introduced in Chapter 2 to define opetopic types: collections of types whose
geometry is governed by opetopes. We will use them to define a range of fully
coherent higher algebraic structures such as∞-groupoids and (∞, 1)-categories.
We will then apply opetopic methods in order to establish a number of element-
ary results about higher algebra in homotopy type theory.

In particular, we will prove in Section 3.3 that our definition of∞-groupoid
is equivalent to a particular instance of Baez and Dolan’s definition of a coherent
𝑂-algebra (Baez and Dolan 1998).

3.1 Opetopic types

We introduce the notion of opetopic type which is a higher-dimensional collec-
tion of elements whose combinatorics is described by opetopes. Opetopic types
are parametrised by a base monad 𝑀. The collection of 0-cells is given by a first
family indexed by the indices of 𝑀, that is a type family 𝑋0 : Fam𝑀 . We expect
1-cells to be relations between a configuration of source 0-cells and a single tar-
get 0-cell. Such a configuration is given by a constructor of 𝑀 whose inputs and
output are decorated with elements of 𝑋0. These are precisely the constructors
of the monad 𝑋∗0 𝑀. Equivalently, these correspond to the indices of the monad
(𝑋∗0 𝑀)/. A family of 1-cells is therefore given by a family 𝑋1 : Fam(𝑋∗0 𝑀)/. We
can continue this process indefinitely. 𝑛 + 1-cells are then relations between a
configuration of source 𝑛-cells and a single target 𝑛-cell.

Notation. The construction of a pullback monad followed by its slice
monad will be pervasive in this chapter and we adopt the following
notation:

𝑀/𝐴 :≡ (𝐴∗𝑀)/

74 Chapter 3. Opetopic methods in type theory

Notation. Similarly, we will write 𝑓 /𝑔 instead of the more convoluted
Pb 𝑓 ,𝑔/ for the monad morphism of type 𝑀/𝐴→𝑚 𝑁/𝐵.

The previous informal description is captured by the following definition.

Definition 3.1.1 (Opetopic type). An opetopic type parametrised by a monad
𝑀 — or 𝑀-opetopic type — is a coinductive sequence of type families which is
defined by the following data:

• A type family 𝑋 : Fam𝑀 .

• An opetopic type parametrised by the monad 𝑀/𝑋.

We denote 𝒪𝑀 the type of opetopic types parametrised by the monad 𝑀.

Notation. An opetopic type 𝑋 is therefore an infinite sequence of
families (𝑋0 , 𝑋1 , 𝑋2 , . . .)where 𝑋𝑛 is its (𝑛 + 1)th type family for 𝑛 : N.
We denote 𝑋>𝑛 the opetopic type consisting of the families
(𝑋𝑛+1 , 𝑋𝑛+2 , . . .). We call 𝑛-cells the elements of 𝑋𝑛 .

Our first example of opetopic type is the terminal opetopic type for a monad 𝑀,
denoted 1𝑜𝑀 , whose type families are the trivial families with one element.

Definition 3.1.2 (Terminal 𝑀-opetopic type). Let 𝑀 be a monad, the terminal
𝑀-opetopic type 1𝑜𝑀 is defined coinductively as follows:

• Its family of objects is the constant family 𝑋0 𝑖 :≡ 1.

• Its opetopic type of relations is 𝑋>0 :≡ 1𝑜𝑀/𝑋0
, the terminal opetopic for the

monad 𝑀/𝑋0.

If we take 𝑀 to be the monad Id, we precisely obtain the opetopes as defined
in Chapter 1 although monad laws now hold definitionally. For now, an opetopic
type is just an infinite collection of cells whose geometry of 1-cells is governed
by the base monad 𝑀 and whose geometry of higher cells is given by the slice
construction but which is devoid of algebraic structure. In the next section, we
will introduce fibrant opetopic types which are opetopic types whose cells can
be coherently composed.

A presentation of opetopic types would not be complete without introducing
their morphisms. They are simply defined coinductively as levelwise functions.

Firstly, we need to define the reindexing of an opetopic type along a monad
morphism. We make use of morphisms of monads that we introduced in the
previous section to that effect.

Definition 3.1.3 (Reindexing of an opetopic type). Given a monad morphism
𝑓 : 𝑀 →𝑚 𝑁 and an opetopic type 𝑋 : 𝒪𝑁 , we can reindex 𝑋 along 𝑓 and

3.2. Algebras 75

obtain a 𝑀-opetopic type, denoted 𝑓 ∗ 𝑋, defined coinductively by the following
equations:

(𝑓 ∗ 𝑋)0 𝑖 :≡ 𝑋0 (idx→𝑓 𝑖)
(𝑓 ∗ 𝑋)>0 :≡ (𝑓 /id)∗ 𝑋>0

This allows the definition of morphisms of opetopic types.

Definition 3.1.4 (Morphism of opetopic types). Given a monad 𝑀 and two 𝑀-
opetopic types 𝑋 and 𝑌, a morphism from 𝑋 to 𝑌, denoted 𝑋 →𝑜 𝑌, is defined
coinductively and consists of the following:

• A function 𝑓 : {𝑖 : Idx𝑀} → 𝑋0 𝑖 → 𝑌0 𝑖.

• A morphism of opetopic types 𝑋>0 →𝑜 (id𝑀/ 𝑓)∗ 𝑌>0.

An equivalence of opetopic types is then a morphism of opetopic types
whose levelwise functions are all equivalences.

3.2 Algebras

In this section, we discuss algebras of polynomial monads which are a first
step towards the notion of fibrant opetopic type. Informally, we will express
algebras as functional relations. For any monad 𝑀, an algebra will be defined
as the data comprising a type family 𝑋 : Fam𝑀 — the carrier of the algebra —
along with a relation — its action — witnessing that, for any constructor of 𝑀
and any decoration of its inputs with elements of 𝑋, there exists an element
decorating its output. Moreover, the data of this last element along with the
element witnessing the relation live in a contractible type. Such a relation is
typically defined as a type family in type theory. Its indexing type will be the
type of constructors of 𝑀 whose both inputs and output are decorated with
elements of 𝑋. These relations are therefore elements of type Fam𝑀/𝑋 .

3.2.1 Algebraic structure

We call pasting diagram a pair (𝑐, 𝑑) of type ⟦𝑀⟧ 𝑋 𝑖 for some monad 𝑀, family
𝑋 : Fam𝑀 , and index 𝑖 : Idx𝑀 . We regard 𝑐 as specifying a configuration
of inputs and 𝑑 as providing compatible elements of 𝑋 for each position of
𝑐. We will mostly be concerned with pasting diagrams of some slice monad
𝑀/. In this case, pasting diagrams are trees of constructors of 𝑀 decorated with
compatible cells. We will extend our notion of algebra from polynomial monads
to opetopic types by requiring that any two consecutive cell families (𝑋𝑛 , 𝑋𝑛+1)
form an algebra for the monad indexing 𝑋𝑛 . Given such an opetopic type, we
can compose any pasting diagram of 𝑛-cells and its composite is unique up to a
higher cell which happen to coincide with a propositional equality.

We start with the definition of 0-algebras. A 0-algebra determines an oper-
ation of composition of pasting diagrams witnessed by a higher cell, but this
composition does not obey any law.

76 Chapter 3. Opetopic methods in type theory

Definition 3.2.1 (0-algebra). Given a monad 𝑀, a 0-algebra for 𝑀 is a type
family 𝑋0 : Fam𝑀 along with a type family 𝑋1 : Fam𝑀/𝑋0 such that for any
index 𝑖 : Idx𝑀 and any pasting diagram (𝑐, 𝑥) : ⟦𝑀⟧ 𝑋0 𝑖, the following type is
contractible: ∑

(𝑦:𝑋0 𝑖) 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥))
In other words, 𝑋1 is a functional and entire relation. This predicate, being

expressed as the contractibility of some type, is a proposition and therefore a
property of 𝑋1. This property brings to mind the Segal condition as presented
in the bisimplicial setting of Riehl and Shulman (Riehl and Shulman 2017).

This property provides us with the ability to compose pasting diagrams and
this composition is witnessed by a filler:

𝛼𝑋1 : {𝑖 : Idx𝑀} → ⟦𝑀⟧ 𝑋0 𝑖 → 𝑋0 𝑖

𝛼fill
𝑋1

: {𝑖 : Idx𝑀} → (𝑥 : ⟦𝑀⟧ 𝑋0 𝑖) → 𝑋1 ((𝑖 , 𝛼𝑋1 𝑥) ⊳ 𝑥)
These two functions are simply defined to be the two components of the centre
of contraction of the proof that (𝑋0 , 𝑋1) is a 0-algebra.

Notation. Note that we will often implicitly curry functions such as 𝛼𝑋
and write 𝛼𝑋 𝑐 𝑥 instead of 𝛼𝑋 (𝑐, 𝑥).

We will say that a family is a 1-algebra if it satisfies the usual laws of a set-level
algebra (Mac Lane 2013, VI.2); that is, the following informal diagrams should
commute up to a propositional identity.

⟦𝑀⟧ ⟦𝑀⟧ 𝑋0 ⟦𝑀⟧ 𝑋0

⟦𝑀⟧ 𝑋0 𝑋0

⟦𝑀⟧ 𝛼𝑋1

μ𝑀 𝑋0 𝛼𝑋1
𝛼𝑋1

𝑋0 ⟦𝑀⟧ 𝑋0

𝑋0

η𝑀 𝑋0

id
𝛼𝑋1

Definition 3.2.2 (1-algebra). Given a monad 𝑀 and a 0-algebra (𝑋0 , 𝑋1) with
𝑋0 : Fam𝑀 and 𝑋1 : Fam𝑀/𝑋0 , (𝑋0 , 𝑋1) is a 1-algebra if 𝛼𝑋1 is compatible with
the multiplication μ𝑀 and the unit η𝑀 of the monad 𝑀; that is, it satisfies the
following identities:

𝛼𝑋1 (μ𝑀 𝑐 𝑑) 𝑥 = 𝛼𝑋1 𝑐 (𝜆𝑝 → 𝛼𝑋1 (𝑑 𝑝) (𝜆𝑞 → 𝑥 (pairμ 𝑝 𝑞))) (𝛼-μ)
𝛼𝑋1 (η𝑀 𝑖) 𝑥 = 𝑥 (posη 𝑖) (𝛼-η)

We now state a key property of 0-algebras as a characterisation of its action
family which will come handy in the rest of this chapter.

Lemma 3.2.3 (Cell characterisation). Let 𝑀 be a monad and let (𝑋0 , 𝑋1) be a 0-
algebra for 𝑀. For any constructor 𝑐 : Cns𝑀 𝑖, any family 𝑥 :

−→
𝑋0 𝑐, and any element

𝑦 : 𝑋0 𝑖, a cell 𝑓 : 𝑋1 ((𝑖 , 𝑧) ⊳ (𝑐, 𝑥)) implies the existence of a family of equivalences

𝑒𝑦 : 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) ≃ (𝑧 = 𝑦)

3.2. Algebras 77

such that 𝑒𝑧 𝑓 = refl. In particular, the algebra (𝑋0 , 𝑋1) guarantees the existence of the
cell 𝛼fill

𝑋1
𝑐 𝑥 : 𝑋1 ((𝑖 , 𝛼𝑋1 𝑐 𝑥) ⊳ (𝑐, 𝑥)).

Proof. The equivalence follows from the HoTT book’s Theorem 5.8.2 which states
that if a pointed predicate (𝑅, 𝑟∗) over a pointed type (𝐴, 𝑎∗) is such that the type∑
(𝑎:𝐴) (𝑅 𝑎) is contractible then the equivalence 𝑒𝑎 : 𝑅 𝑎 ≃ (𝑎∗ = 𝑎) holds for any

𝑎 : 𝐴; moreover, 𝑒𝑎∗ 𝑟∗ = refl. In our situation, the pointed predicate in question
is 𝑅 𝑦 :≡ 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥))with point 𝑓 : 𝑅 𝑧. As (𝑋0 , 𝑋1) is a 0-algebra, the type∑
(𝑦:𝑋0 𝑖) 𝑅 𝑦 is contractible which allows us to conclude that there is a family of

equivalences 𝑒𝑦 : 𝑅 𝑦 ≃ (𝑧 = 𝑦) such that 𝑒𝑧 𝑓 = refl. □

Algebras for slice monads We now turn to algebras for slice monads and con-
sider families 𝑋0 : Fam𝑀/ and 𝑋1 : Fam𝑀//𝑋0 . We will see in Section 3.5 that
their algebras correspond to what we call wild𝑀-multicategories, multicategor-
ies whose arity of morphisms is parametrised by constructors of the monad 𝑀
but whose laws are not necessarily coherent.

Notation. Given a monad 𝑀, a family 𝑋 : Fam𝑀/, a cell 𝑡 : 𝑋 (𝑥 ⊳ 𝑦), and
a family of cells 𝑢 :

−→
𝑋 (𝑦 ◀ 𝑧), we will make great use of the depth-2

pasting diagram whose root node is decorated with the cell 𝑡 and whose
family of nodes grafted on the root node is decorated with the cells
specified by 𝑢. It is defined as the pair (𝑐, 𝑑) : ⟦𝑀/⟧ 𝑋 𝑥 where 𝑐 is the
depth-2 tree nd (𝑥 ⊳ 𝑦) (𝜆𝑝 → η𝑀/ (Typ𝑀 𝑦 𝑝 ⊳ 𝑧 𝑝)) and where 𝑑 is a
family decorating the nodes of 𝑐 defined by the following equations:

𝑑 (inl ★) :≡ 𝑡
𝑑 (inr (𝑝, inl ★)) :≡ 𝑢 𝑝

We denote this pasting diagram 𝜃𝑡 ,𝑢 .

When (𝑋0 , 𝑋1) is a 0-algebra, we define a biased composition of 0-cells μ𝛼
𝑋1

along
with its filler μ𝛼fill

𝑋1
:

μ𝛼
𝑋1

: {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ (𝑡 : 𝑋0 (𝑥 ⊳ 𝑦)) (𝑢 :
−→
𝑋0 (𝑦 ◀ 𝑧))

→ 𝑋0 (𝑥 ⊳ μ𝑀 𝑦 𝑧)
μ𝛼fill

𝑋1
: {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :

−−−−→
Cns𝑀 𝑦}

→ (𝑡 : 𝑋0 (𝑥 ⊳ 𝑦)) (𝑢 :
−→
𝑋0 (𝑦 ◀ 𝑧))

→ 𝑋1 (((𝑥 ⊳ μ𝑀 𝑦 𝑧),μ𝛼
𝑋1
𝑡 𝑢) ⊳ 𝜃𝑡 ,𝑢)

78 Chapter 3. Opetopic methods in type theory

These operations are defined by the following equations:

μ𝛼
𝑋1
𝑡 𝑢 :≡ 𝛼𝑋1 𝜃𝑡 ,𝑢

μ𝛼fill

𝑋1
𝑡 𝑢 :≡ 𝛼fill

𝑋1
𝜃𝑡 ,𝑢

We will see that under a certain condition, this composition is unital and asso-
ciative up to a propositional identity.

We define a second operation η𝛼 which associates to any index 𝑥 : Idx𝑀 , a
unary cell of type 𝑋0 (𝑥 ⊳ 𝜂𝑀 𝑥) along with its filler:

η𝛼𝑋1
: (𝑥 : Idx𝑀) → 𝑋0 (𝑥 ⊳ η𝑀 𝑥)

η𝛼
fill

𝑋1
: (𝑥 : Idx𝑀) → 𝑋1 (((𝑥 ⊳ η𝑀 𝑥), η𝛼𝑋1

𝑥) ⊳ (lf 𝑥,⊥-elim))
These operations are defined by the following equations:

η𝛼𝑋1
𝑥 :≡ 𝛼𝑋1 (lf 𝑥) ⊥-elim

η𝛼
fill

𝑋1
𝑥 :≡ 𝛼fill

𝑋1
(lf 𝑥) ⊥-elim

The unary cells η𝛼𝑋1
𝑥 will act as units for μ𝛼

𝑋1
when (𝑋0 , 𝑋1) is a 1-algebra.

Algebraic laws We now study how, given a 0-algebra (𝑋0 , 𝑋1), a second 0-
algebra (𝑋1 , 𝑋2) forces (𝑋0 , 𝑋1) to be a 1-algebra.

Methodology. We will quite often want to prove that two cells
𝑥, 𝑦 : 𝑋0 𝑖 are equal. Most of the time, we will use the fact that we have a
family 𝑋1 : Fam𝑀/𝑋0 such that (𝑋0 , 𝑋1) is a 0-algebra and that one of 𝑥 or
𝑦 — say 𝑥 — is accompanied by a filler of type 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑧)). That
(𝑋0 , 𝑋1) is a 0-algebra means that we can deduce an identity 𝛼𝑋1 𝑐 𝑧 = 𝑥
from Lemma 3.2.3. Therefore, proving 𝑥 = 𝑦 amounts to finding another
filler of type 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑧))which allows, in turn, to deduce an identity
𝛼𝑋1 𝑐 𝑧 = 𝑦 from which we finally deduce the identity 𝑥 = 𝑦.
The difficulty will therefore lie in finding this second filler. When one
has, in addition, a family 𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋1 , 𝑋2) is a
0-algebra, this filler will often be obtained as the composition of a pasting
diagram of 1-cells.

Theorem 3.2.4. Given a monad 𝑀 and families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 , and
𝑋2 : Fam𝑀/𝑋0/𝑋1 , if (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras then (𝑋0 , 𝑋1) is a 1-algebra.

Proof. We start to prove 𝛼-μ.
Let 𝑖 : Idx𝑀 , 𝑐 : Cns𝑀 𝑖, 𝑑 :

−−−−→
Cns𝑀 𝑐, and a family 𝑥 :

−→
𝑋0 (μ𝑀 𝑐 𝑑). We want to

establish the following identity in 𝑋0 𝑖:

𝛼𝑋1 (μ𝑀 𝑐 𝑑) 𝑥 = 𝛼𝑋1 𝑐 (𝜆𝑝 → 𝛼𝑋1 (𝑑 𝑝) (𝜆𝑞 → 𝑥 (pairμ 𝑝 𝑞)))

3.2. Algebras 79

𝑥1,1
. . .

𝑥𝑛,𝑚𝑛

𝛼fill
𝑋1
(μ𝑀 𝑐 𝑑) 𝑥

𝛼𝑋1 (μ𝑀 𝑐 𝑑) 𝑥

μ𝛼
𝑋2
𝑓 𝑔

𝑥1,1
. . .
𝑥1,𝑚1 𝑥𝑛,1

. . .
𝑥𝑛,𝑚𝑛

𝑔1 . . . 𝑔𝑛

𝑓

𝛼𝑋1 𝑐 (𝜆𝑝 →
𝛼𝑋1 (𝑑 𝑝) (𝜆𝑞 →
𝑥 (pairμ 𝑝 𝑞)))

Figure 3.1: The two ways to compose (μ𝑀 𝑐 𝑑, 𝑥)
𝑥

𝛼fill
𝑋1
(𝜂𝑀 𝑖) 𝑥

𝛼𝑋1 (𝜂𝑀 𝑖) 𝑥

𝑥

η𝛼𝑋2
𝑥

𝑥

Figure 3.2: Cells witnessing the unit law

Let us denote 𝑦 the right-hand side. According to Lemma 3.2.3, establishing
this identity amounts to defining a cell of type

𝑋1 ((𝑖 , 𝑦) ⊳ (μ𝑀 𝑐 𝑑, 𝑥))
We define it as the composition of the pasting diagram 𝜃 𝑓 ,𝑔 represented on the
right part of Figure 3.1 and that we now describe.

We define the family 𝑔 as the fillers witnessing the compositions of the
pasting diagrams (𝑑 𝑝,𝜆𝑞 → 𝑥 (pairμ 𝑝 𝑞)) for any position 𝑝 : Pos𝑀 𝑐, hence:

𝑔 𝑝 :≡ 𝛼fill
𝑋1
(𝑑 𝑝) (𝜆𝑞 → 𝑥 (pairμ 𝑝 𝑞))

We then define 𝑓 as the filler for the composition of the pasting diagram made
of the targets of the family 𝑔:

𝑓 :≡ 𝛼fill
𝑋1
𝑐 (𝜆𝑝 → 𝛼𝑋1 (𝑑 𝑝) (𝜆𝑞 → 𝑥 (pairμ 𝑝 𝑞)))

One can finally check that μ𝛼
𝑋2
𝑓 𝑔 has the required type

𝑋1 ((𝑖 , 𝑦) ⊳ (μ𝑀 𝑐 𝑑, 𝑥))
which concludes the proof of 𝛼-μ.

We now prove 𝛼-η. Let 𝑖 : Idx𝑀 and 𝑥 :
−→
𝑋0 (η𝑀 𝑖), we want to establish the

following identity in 𝑋0 𝑖:

𝛼𝑋1 (η𝑀 𝑖) 𝑥 = 𝑥 (posη 𝑖)

80 Chapter 3. Opetopic methods in type theory

According to Lemma 3.2.3, establishing this identity amounts to defining a cell
of type

𝑋1 ((𝑖 , 𝑥 (posη 𝑖)) ⊳ (η𝑀 𝑖 , 𝑥))
The situation is represented on Figure 3.2. Using the algebraicity of 𝑋2, we first
obtain the cell of type

𝑋1 ((𝑖 , 𝑥 (posη 𝑖)) ⊳ (η𝑀 𝑖 , η-dec (𝑥 (posη 𝑖))))
as η𝛼𝑋2

(𝑖 , 𝑥 (posη 𝑖)). We obtain the desired cell by transporting the previous
cell along a path η-dec (𝑥 (posη 𝑖)) = 𝑥 using the elimination principle for
Pos𝑀 (𝜂𝑀 𝑖). This concludes the proof of 𝛼-η. □

We now prove that, if the base monad is a slice monad of the form 𝑀/, the
biased composition μ𝛼

𝑋1
is associative and unital.

Theorem 3.2.5. Given a monad 𝑀 and families 𝑋0 : Fam𝑀/, 𝑋1 : Fam𝑀//𝑋0 , and
𝑋2 : Fam𝑀//𝑋0/𝑋1 , if (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras, then μ𝛼

𝑋1
is associative and

unital with unit η𝛼𝑋1
:

μ𝛼
𝑋1
𝑓 (𝜆𝑝 → η𝛼𝑋1

(Typ𝑀 𝑦 𝑝)) = 𝑓 (μ𝛼
𝑋1

-unit-r)

μ𝛼
𝑋1
(η𝛼𝑋1

𝑥) 𝑓 = 𝑓 (posη 𝑥) (μ𝛼
𝑋1

-unit-l)

μ𝛼
𝑋1
𝑓 (𝜆𝑝 → μ𝛼

𝑋1
(𝑔 𝑝) (𝜆𝑞 → ℎ (pairμ 𝑝 𝑞))) = μ𝛼

𝑋1
(μ𝛼
𝑋1
𝑓 𝑔) ℎ (μ𝛼

𝑋1
-assoc)

Proof. We start with the proof of μ𝛼
𝑋1

-unit-r. Given a cell 𝑓 : 𝑋0 (𝑥 ⊳ 𝑦), we want
to prove the following equation:

μ𝛼
𝑋1
𝑓 (𝜆𝑝 → η𝛼𝑋1

(Typ𝑀 𝑦 𝑝)) = 𝑓

We use the fact that (𝑋0 , 𝑋1) is a 0-algebra which implies the contractibility of
the following type:∑

(𝑔:𝑋0 (𝑥⊳𝑦)) 𝑋1 (((𝑥 ⊳ 𝑦), 𝑔) ⊳ η𝑋∗0 (𝑀/) ((𝑥 ⊳ 𝑦), 𝑓))
The pair (𝑓 , η𝛼𝑋2

((𝑥 ⊳ 𝑦), 𝑓)) lives in this type and it remains to find a second pair
whose first component is therefore μ𝛼

𝑋1
𝑓 (𝜆𝑝 → η𝛼𝑋1

(Typ𝑀 𝑦 𝑝)) — the left-
hand side of the equation that we denote 𝑙 — in order to establish the wanted
identity. We obtain the second component — denoted 𝛽 on Figure 3.3 — as the
composition of the pasting diagram that we now describe and which will consist
in filling the units grafted on 𝑓 with leaves. This pasting diagram must have
target 𝑙 and we choose its root node to be the cell μ𝛼fill

𝑋1
𝑓 (𝜆𝑝 → η𝛼𝑋1

(Typ𝑀 𝑦 𝑝)).
The source pasting diagram of this cell is 𝜃 𝑓 ,𝜆𝑝→η𝛼𝑋1

(Typ𝑀 𝑦 𝑝). We define a family
of trees to graft on its positions by induction. In the case of the root node, 𝑓 , we
just plug a leaf lf ((𝑥 ⊳ 𝑦), 𝑓) as we want to keep 𝑓 intact in the first diagram. In
the case of the other positions 𝑝 of 𝑦, the source of 𝑓 , we graft unit fillers corollas

η𝛼
fill

𝑋1
(Typ𝑀 𝑦 𝑝) : 𝑋1 ((((Typ𝑀 𝑦 𝑝) ⊳ η𝑀 (Typ𝑀 𝑦 𝑝)), η𝛼𝑋1

(Typ𝑀 𝑦 𝑝))
⊳ (lf (Typ 𝑀 𝑦 𝑝),⊥-elim))

3.2. Algebras 81

μ𝛼
𝑋1
𝑓 (η𝛼𝑋1

𝑦𝑖)

η𝛼𝑋1
𝑦1 . . . η𝛼𝑋1

𝑦𝑛

𝑓

𝛽

η𝛼
fill

𝑋1
𝑦1 . . . η𝛼

fill

𝑋1
𝑦𝑛

μ𝛼fill

𝑋1
𝑓 (η𝛼𝑋1

𝑦𝑖)

Figure 3.3: μ𝛼
𝑋1

is right unital

This corresponds to filling the units in the first pasting diagram with leaves. We
compose the resulting pasting diagram using the fact that (𝑋1 , 𝑋2) is a 0-algebra
and obtain a cell of type

𝑋1 ((𝑥 ⊳ 𝑦, 𝑙) ⊳ μ𝑋∗0 (𝑀/) (𝜃 𝑓 ,𝜆𝑝→η𝛼𝑋1
(Typ𝑀 𝑦 𝑝)) 𝑚)

where 𝑚 is the family of pasting diagrams indexed by the positions of

𝜃 𝑓 ,𝜆𝑝→η𝛼𝑋1
(Typ𝑀 𝑦 𝑝)

determined by the source pasting diagrams of the family of cells grafted on
μ𝛼fill

𝑋1
𝑓 (𝜆𝑝 → η𝛼𝑋1

(Typ𝑀 𝑦 𝑝)). It then remains to transport this cell along the
easy to establish path

μ𝑋∗0 (𝑀/) (𝜃 𝑓 ,𝜆𝑝→η𝛼𝑋1
(Typ𝑀 𝑦 𝑝)) 𝑚 = η𝑋∗0 (𝑀/) ((𝑥 ⊳ 𝑦), 𝑓)

We now prove μ𝛼
𝑋1

-unit-l using a similar argument. Given an index 𝑥 : Idx𝑀 ,

a family of constructors indexed by a unit 𝑦 :
−−−−→
Cns𝑀 (η𝑀 𝑥), and a family

𝑓 :
−→
𝑋0 (η𝑀 𝑥 ◀ 𝑦), we want to establish the following identity

μ𝛼
𝑋1
(η𝛼𝑋1

𝑥) 𝑓 = 𝑓 (posη 𝑥)
We denote 𝑙 its left-hand side. We once again use the fact that (𝑋0 , 𝑋1) is a
0-algebra and this time we are looking for a cell of type

𝑋1 (((𝑥 ⊳ 𝑦 (posη 𝑥)),μ𝛼
𝑋1
(η𝛼𝑋1

𝑥) 𝑓) ⊳ (η𝑋∗0 (𝑀/) (𝑥 ⊳ 𝑦 (posη 𝑥)), 𝑓 (posη 𝑥)))
We obtain this cell — denoted 𝛽 on Figure 3.4 — as the composition of the
pasting diagram that we now describe and which will consist in filling the unit
on which is grafted 𝑓 with a leaf. This pasting diagram must have target 𝑙 and
we choose its root node to be the cell μ𝛼fill

𝑋1
(η𝛼𝑋1

𝑥) 𝑓 . Its source pasting diagram
is 𝜃(η𝛼𝑋1

𝑥), 𝑓 and we define a family of trees to graft on its positions by induction.
In the case of the root node, η𝛼𝑋1

𝑥, we graft the unit filler corolla

η𝛼
fill

𝑋1
𝑥 : 𝑋1 (((𝑥 ⊳ η𝑀 𝑥), η𝛼𝑋1

𝑥) ⊳ (lf 𝑥,⊥-elim))

82 Chapter 3. Opetopic methods in type theory

μ𝛼
𝑋1
(η𝛼𝑋1

𝑥) 𝑓

. . .

𝑓

η𝛼𝑋1
𝑥

𝛽

η𝛼
fill

𝑋1
𝑥

μ𝛼fill

𝑋1
(η𝛼𝑋1

𝑥) 𝑓

Figure 3.4: μ𝛼
𝑋1

is left unital

and, in the case of the position of 𝑓 , we just plug a leaf lf ((𝑥⊳𝑦 (posη 𝑥)), 𝑓 (posη 𝑥))
as we want to keep 𝑓 intact in the first diagram.

The family of pasting diagrams that we just specified implicitly determines
a family of source pasting diagrams that we denote𝑚. We compose this pasting
diagram using the fact that (𝑋1 , 𝑋2) is 0-algebra and obtain a cell of type

𝑋1 ((𝑥 ⊳ 𝑦, 𝑙) ⊳ μ𝑋∗0 (𝑀/) (𝜃(η𝛼𝑋1
𝑥), 𝑓) 𝑚)

It then remains to transport this cell along the easily established path

μ𝑋∗0 (𝑀/) (𝜃(η𝛼𝑋1
𝑥), 𝑓) 𝑚 = η𝑋∗0 (𝑀/) ((𝑥 ⊳ 𝑦 (posη 𝑥)), 𝑓 (posη 𝑥))

We finally prove the associativityμ𝛼
𝑋1

-assoc. Given 𝑓 : 𝑋0 (𝑥⊳𝑦), 𝑔 :
−→
𝑋0 (𝑦◀𝑧),

and ℎ :
−→
𝑋0 (μ𝑀 𝑦 𝑧 ◀ 𝑡), we want to establish the following identity:

μ𝛼
𝑋1
𝑓 (𝜆𝑝 → μ𝛼

𝑋1
(𝑔 𝑝) (𝜆𝑞 → ℎ (pairμ 𝑝 𝑞))) = μ𝛼

𝑋1
(μ𝛼
𝑋1
𝑓 𝑔) ℎ

Establishing this identity amounts to finding two cells sharing the same source
and whose target are the two sides of the identity that we denote 𝑓 (𝑔ℎ) and
(𝑓 𝑔)ℎ then concluding using that fact that (𝑋0 , 𝑋1) is a 0-algebra. The two cells
in question correspond to the two different ways to multiply the cells 𝑓 , 𝑔, and
ℎ and correspond to the cells 𝛽 and 𝛾 on Figure 3.5. We start with the case of
the cell 𝛽. We obtain it as the composition of the pasting diagram whose root
node is μ𝛼fill

𝑋1
𝑓 𝑔ℎ where 𝑔ℎ is the family

𝑔ℎ 𝑝 :≡ μ𝛼
𝑋1
(𝑔 𝑝) (𝜆𝑞 → ℎ (pairμ 𝑝 𝑞))

The source of this node is the pasting diagram 𝜃 𝑓 , 𝑔ℎ and we specify the trees
to graft on its positions by induction. In the case of the root node, 𝑓 , we graft a
leaf, while on positions 𝑝 of 𝑦, we graft corollas

μ𝛼fill

𝑋1
(𝑔 𝑝) (𝜆𝑞 → ℎ (pairμ 𝑝 𝑞))

This concludes the description of the pasting diagram whose composition is the
cell 𝛽.

3.2. Algebras 83

𝑓 (𝑔ℎ)

𝑔ℎ1 𝑔ℎ𝑚

.

ℎ1,1 . . . ℎ1,𝑛1

𝑔1 . . .

𝑓

.

ℎ𝑚,1 . . . ℎ𝑚,𝑛𝑚

𝑔𝑚

𝛽

.

𝑔ℎfill
1

. . . 𝑔ℎfill
𝑚

𝑓 (𝑔ℎ)fill

(𝑓 𝑔)ℎ𝑓 𝑔

.

ℎ1,1 . . . ℎ1,𝑛1

𝑔1 . . .

𝑓

.

ℎ𝑚,1 . . . ℎ𝑚,𝑛𝑚

𝑔𝑚

𝛾

. . .
. . .

𝑓 𝑔fill

(𝑓 𝑔)ℎfill

Figure 3.5: The two different ways to associate 𝑓 𝑔ℎ

We now turn to the case of the cell 𝛾. It is defined as the composition of
the pasting diagram that we now describe. Its root node is μ𝛼fill

𝑋1
(𝑓 𝑔) ℎ where

𝑓 𝑔 :≡ μ𝛼
𝑋1

𝑓 𝑔. The source pasting diagram is therefore 𝜃(𝑓 𝑔),ℎ and we specify
the pasting diagrams to graft on its positions by induction. In the case of the
root node, 𝑓 𝑔, we graft the corolla μ𝛼fill

𝑋1
𝑓 𝑔. As for the other positions 𝑝 of

μ𝑀 𝑦 𝑧, we simply graft leaves lf ((Typ𝑀 (μ𝑀 𝑦 𝑧) 𝑝 ⊳ 𝑡 𝑝), ℎ 𝑝). This concludes
the description of the pasting diagram whose composition is the cell 𝛾.

The two cells 𝛽 and 𝛾 both have a source propositionally equal to the pasting
diagram denoting the unbiased composition of 𝑓 , 𝑔, and ℎ which allows us to
conclude the proof.

□

We call the algebraic structure thus described a wild𝑀-multicategory which
is the subject of Section 3.5.

We finish this section with a last technical result concerning the interaction
of the algebra with the grafting operation γ.

Lemma 3.2.6. Let𝑀 be a monad and let families𝑋0 : Fam𝑀/ and𝑋1 : Fam𝑀//𝑋0 such
that (𝑋0 , 𝑋1) is a 1-algebra. For any tree 𝑡 : Cns𝑀/ (𝑥 ⊳ 𝑦), family 𝑢 :

−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧),

84 Chapter 3. Opetopic methods in type theory

and family 𝑣 :
−→
𝑋0 (γ𝑀 𝑡 𝑢),

𝛼𝑋1 (γ𝑀 𝑡 𝑢) 𝑣 = μ𝛼
𝑋1
(𝛼𝑋1 𝑡 (𝜆𝑝 → 𝑣 (inlγ 𝑝))) (𝜆𝑝 → 𝛼𝑋1 (𝑢 𝑝) (𝜆𝑞 → 𝑣 (inrγ 𝑝 𝑞)))

Proof. We notice that γ𝑀 𝑡 𝑢 is equal to μ𝑀/ 𝜃𝑡 ,𝑢 where 𝜃𝑡 ,𝑢 is seen as a depth-2
pasting diagram whose root node is decorated with 𝑡 and whose children nodes
are decorated with elements of the family 𝑢. This allows to conclude using the
identity 𝛼-μ as (𝑋0 , 𝑋1) is a 1-algebra. □

The following simple corollary follows.

Corollary 3.2.7. Let 𝑀 be a monad and let families 𝑋0 : Fam𝑀/ and 𝑋1 : Fam𝑀//𝑋0
such that (𝑋0 , 𝑋1) is a 1-algebra. For any constructor 𝑦 : Cns𝑀 𝑥, any family of trees
𝑡 :
−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧), and any family 𝑣 :

−→
𝑋0 (nd (𝑥 ⊳ 𝑦) 𝑡),

𝛼𝑋1 (nd (𝑥 ⊳ 𝑦) 𝑡) 𝑣 = μ𝛼
𝑋1
(𝑣 (inl ★)) (𝜆𝑝 → 𝛼𝑋1 (𝑡 𝑝) (𝜆𝑞 → 𝑣 (inr (𝑝, 𝑞))))

Proof. We notice that the constructor nd (𝑥 ⊳ 𝑦) 𝑡 is actually equal to γ𝑋1 (η𝑀/ (𝑥 ⊳
𝑦)) 𝑡 which allows us to apply Lemma 3.2.6. □

3.2.2 Fibrant opetopic types

In light of the precedent section, we can expect a fully coherent 𝑀-algebra to be
an infinite sequence of families (𝑋0 , 𝑋1 , . . .) such that 𝑋𝑛+1 : Fam𝑀/.../𝑋𝑛 — in
other words, an opetopic type — and such that any pair (𝑋𝑛 , 𝑋𝑛+1) is a 0-algebra.
We call these opetopic types fibrant.

Definition 3.2.8 (Fibrant opetopic type). Given a monad 𝑀 and a 𝑀-opetopic
type 𝑋, we say that this opetopic type is fibrant if it satisfies the following
coinductive property:

• The pair (𝑋0 , 𝑋1) is a 0-algebra.

• The opetopic type 𝑋>0 is fibrant.

A fibrant opetopic type is to be seen as a collection of 𝑛-dimensional cells
for all 𝑛 : N which can be composed. Moreover, the operations of composition
are fully coherent.

We are now equipped to define our next important class of examples of
opetopic types.

Definition 3.2.9 (∞-groupoid). An∞-groupoid is an Id-opetopic type which is
fibrant.

Weakening this definition to only require 𝑋>0 to be fibrant allows having
1-cells which are not necessarily invertible which is precisely the definition of
an (∞, 1)-category. We will not deal with (∞, 𝑛)-categories for 𝑛 > 1 so we just
call them∞-categories for short.

Definition 3.2.10 (∞-category). An ∞-category is an Id-opetopic type 𝑋 such
that 𝑋>0 is fibrant.

We will prove elementary results on∞-groupoids and∞-categories in order
to showcase opetopic methods later on in this chapter.

3.3. Algebraic characterisation 85

3.3 Algebraic characterisation

The property of fibrancy very elegantly embodies both an algebraic structure on
an opetopic type stated in terms of the existence of enough cells and a property
of univalence connecting this structure with the higher structures endowing its
families of cells granted by their identity types. This situation is reminiscent of
complete Segal spaces. In this section we make explicit the former structure,
that we call coherent 𝑀-algebra structure, and the property of univalence then
show that their conjunction is equivalent to the fibrancy property. Coherent 𝑀-
algebras correspond to Baez and Dolan’s coherent 𝑂-algebras (Baez and Dolan
1998) with the exception that we ask for all cells to be invertible in our case.

Notation. Let 𝑀 be a monad whose types of positions have decidable
equality and let 𝑋 : Fam𝑀 be a type family. Suppose that we have a
constructor 𝑐 : Cns𝑀 𝑖 and a family 𝑥 :

−→
𝑋 𝑐. Given a position 𝑝 : Pos𝑀 𝑐

and an element 𝑦 : 𝑋 (Typ𝑀 𝑐 𝑝), we denote 𝑥[𝑦/𝑝] the function of type−→
𝑋 𝑐 which takes the same values as 𝑥 excepted at the position 𝑝 where it
is equal to 𝑦:

𝑥[𝑦/𝑝] 𝑞 :≡
{
𝑦 if 𝑝 = 𝑞

𝑥 𝑞 otherwise

In the rest of this section, we assume that whenever we introduce a monad 𝑀,
its types of positions have decidable equality. This property is preserved by the
pullback monad constructor as positions of constructors of 𝑋∗𝑀 are defined
to be those of the underlying constructors of 𝑀. Likewise, the slice monad
constructor preserves this property.

Notation. We will sometimes use ellipses in place of easily inferable
indices. For example, we may write η𝛼𝑋1

(. . . , 𝑓) instead of η𝛼𝑋1
(𝑖 , 𝑓) if 𝑖 is

actually too large and can be inferred from 𝑓 in order not to clutter a
proof.

We define the notions of target and source universality which are mutually
dependent and which are central to the definition of coherent 𝑀-algebra in
Definition 3.3.1 and Definition 3.3.2.

Definition 3.3.1 (Target universality). Let 𝑋 be a 𝑀 opetopic type. A cell
𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) is target universal in 𝑋 if for every cell sharing the same
source 𝑔 : 𝑋1 ((𝑖 , 𝑧) ⊳ (𝑐, 𝑦)), there exists a unary cell

ℎ : 𝑋1 ((𝑖 , 𝑧) ⊳ (η𝑀 𝑖 , η-dec 𝑥))

and a filler
ℎfill : 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)

86 Chapter 3. Opetopic methods in type theory

Moreover, ℎfill is target universal in 𝑋>0 and source universal in 𝑋>0 at position
inl ★, the position of ℎ.

A target universal cell witnesses that its target is, in some sense, a good
composite of its source as any cell sharing the same source factorises through it
uniquely. Note that this is an additional structure and not a proposition.

Similarly, we define the notion of source universality.

Definition 3.3.2 (Source universality). Let 𝑋 be a 𝑀 opetopic type. A cell
𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) is source universal in 𝑋 at position 𝑝 : Pos𝑀 𝑐 if for any cell
𝑧 : 𝑋0 (Typ𝑀 𝑐 𝑝) and cell 𝑔 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑧/𝑝])), there exists a unary cell

ℎ : 𝑋1 ((Typ𝑀 𝑐 𝑝, 𝑦 𝑝) ⊳ (η𝑀 (Typ𝑀 𝑐 𝑝), η-dec 𝑧))
and a filler

ℎfill : 𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,ℎ)
where 𝜃 𝑓 ,ℎ denotes the pasting diagram with root node 𝑓 on which are grafted
leaves expected at position 𝑝 where we graft ℎ. Moreover ℎfill is target universal
in 𝑋>0 and source universal in 𝑋>0 at position inr (𝑝, inl ★), the position of ℎ.

Note that, once again, being source universal is an additional structure.
We now define the structure of coherent 𝑀-algebra on a 𝑀-opetopic type.

This definition is heavily inspired from Baez and Dolan’s coherent 𝑂-algebras
with the exception that we ask for all cells to be target universal in our case
corresponding to the fact that we only deal with invertible cells.

Definition 3.3.3 (Coherent 𝑀-algebra structure). A 𝑀-opetopic type 𝑋 has a
structure of coherent 𝑀-algebra if it satisfies the following conditions:

• Every pasting diagram (𝑐, 𝑥) : ⟦𝑀⟧ 𝑋0 𝑖 has a composite 𝛼𝑋 𝑐 𝑥 : 𝑋0 𝑖 and
a filler 𝛼fill

𝑋 𝑐 𝑥 : 𝑋1 ((𝑖 , 𝛼𝑋 𝑐 𝑥) ⊳ (𝑐, 𝑥)).
• Every cell 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) is target universal.

• The opetopic type 𝑋>0 has a structure of coherent 𝑀/𝑋0-algebra.

Note that we reused the symbols 𝛼 and 𝛼fill, the context should disambiguate
whether they refer to the fibrant structure or to the structure of coherent 𝑀-
algebra. This also applies to the operations η𝛼, μ𝛼, and their fillers that we now
introduce.

This definition allows us to recover the biased operators that we defined
earlier, among them:

η𝛼𝑋 : (𝑥 : Idx𝑋∗0 𝑀) → 𝑋1 (𝑥 ⊳ η𝑋∗0 𝑀 𝑥)
μ𝛼
𝑋 : {𝑥 : Idx𝑋∗0 𝑀} {𝑦 : Cns𝑋∗0 𝑀 𝑥} {𝑧 :

−−−−−−→
Cns𝑋∗0 𝑀 𝑦}

→ 𝑋1 (𝑥 ⊳ 𝑦) → −→𝑋1 (𝑦 ◀ 𝑧) → 𝑋1 (𝑥 ⊳ μ𝑋∗0 𝑀 𝑦 𝑧)
Note that 𝛼𝑋 satisfies the algebraic laws and that μ𝛼

𝑋 is associative and unital
with units given by η𝛼𝑋 . These laws are not witnessed by an identity this time

3.3. Algebraic characterisation 87

but by a higher unary cell and are obtained by following the proofs exposed
earlier in this chapter using target universality instead of the 0-algebra property.

We now define univalent coherent 𝑀-algebras. In a coherent 𝑀-algebra, all
cells are target universal and all unary cells are therefore equivalences. Suppos-
ing that we have a 𝑀-opetopic type 𝑋 equipped with a structure of coherent
𝑀-algebra, we define

id-to-equiv𝑋 : {𝑖 : Idx𝑀} {𝑥 𝑦 : 𝑋0 𝑖} → 𝑥 = 𝑦 → 𝑋1 ((𝑖 , 𝑦) ⊳ (η𝑀 𝑖 , η-dec 𝑥))
with defining equation

id-to-equiv𝑋 refl𝑥 :≡ η𝛼𝑋 (𝑖 , 𝑥)
This leads us to the definition of univalent coherent 𝑀-algebras.

Definition 3.3.4 (Univalent coherent 𝑀-algebra). Let 𝑋 be a 𝑀-opetopic type
with a structure of coherent𝑀-algebra. We say that𝑋 is univalent if the function
id-to-equiv𝑋 is an equivalence and if the opetopic type 𝑋>0 is univalent.

We will see that being a univalent coherent 𝑀-algebra is a property.
We have now introduced all the required notions in order to state the main

theorem of this section.

Theorem 3.3.5. Let 𝑋 be a 𝑀-opetopic type. The property witnessing that 𝑋 is fibrant
is equivalent to the structure of univalent coherent 𝑀-algebra on 𝑋.

The plan of the proof is to first establish the corresponding logical equi-
valence and conclude with the observation that being a univalent coherent
𝑀-algebra is a property. We start with a number of lemmas about algebras
which we will later use to make the connection between fibrancy and target and
source universality.

Lemma 3.3.6. Let a monad 𝑀 and let families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 , and
𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras. Let a constructor
𝑐 : Cns𝑀 𝑖, a position 𝑝 : Pos𝑀 𝑐, two cells 𝑦 𝑓 , 𝑦𝑔 : 𝑋0 𝑖, a cell 𝑓 : 𝑋1 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥)),
and a cell 𝑔 : 𝑋1 ((𝑖 , 𝑦𝑔) ⊳ (𝑐, 𝑥)). Then we have the following equivalence:

(∑(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)) ≃ ((𝑦 𝑓 , 𝑓) = (𝑦𝑔 , 𝑔))
Proof. We equivalently define the equivalence∑

(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)
≃ ∑

(𝑞:𝑦 𝑓 =𝑦𝑔) transport𝜆𝑦→𝑋1 ((𝑖 ,𝑦)⊳(𝑐,𝑥)) 𝑞 𝑓 = 𝑔

We first apply Lemma 3.2.3 with the cell

η𝛼𝑋2
(𝑖 , 𝑦 𝑓) : 𝑋1 ((𝑖 , 𝑦 𝑓) ⊳ (η𝑀 𝑖 , η-dec 𝑦 𝑓))

in order to establish the family of equivalences

𝑒𝑦𝑔 : 𝑋1 ((𝑖 , 𝑦𝑔) ⊳ (η𝑀 𝑖 , η-dec 𝑦 𝑓)) ≃ (𝑦 𝑓 = 𝑦𝑔)

88 Chapter 3. Opetopic methods in type theory

such that 𝑒𝑦 𝑓 (η𝛼𝑋2
(𝑖 , 𝑦 𝑓)) = refl. We finally define, for any identity 𝑞 : 𝑦 𝑓 = 𝑦𝑔 ,

the equivalence

𝑋2 ((. . . , 𝑔) ⊳ 𝜃𝑒−1 𝑞, 𝑓) ≃ (transport𝜆𝑦→𝑋1 ((𝑖 ,𝑦)⊳(𝑐,𝑥)) 𝑞 𝑓 = 𝑔)

We assume that 𝑞 ≡ refl therefore 𝑒−1 𝑞 = η𝛼𝑋2
(𝑖 , 𝑦 𝑓) and we are left to establish

the equivalence
𝑋2 ((. . . , 𝑔) ⊳ 𝜃η𝛼𝑋2

(𝑖 ,𝑦 𝑓), 𝑓) ≃ (𝑓 = 𝑔)
Applying Lemma 3.2.3, we obtain the equivalence

𝑋2 ((. . . , 𝑔) ⊳ 𝜃η𝛼𝑋2
(𝑖 ,𝑦 𝑓), 𝑓) ≃ (μ𝛼

𝑋2
(η𝛼𝑋2
(𝑖 , 𝑦 𝑓)) 𝑓 = 𝑔)

We conclude by left unitality of μ𝛼
𝑋2

. □

We deduce the following corollary.

Corollary 3.3.7. Let a monad 𝑀 and let families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 , and
𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras. Let two cells 𝑥 𝑓 , 𝑥𝑔 :
𝑋0 𝑖, a constructor 𝑐 : Cns𝑀 𝑖, and a family of cells 𝑦 :

−→
𝑋0 𝑐. Suppose given two cells

𝑓 : 𝑋1 ((𝑖 , 𝑥 𝑓) ⊳ (𝑐, 𝑦)) and 𝑔 : 𝑋1 ((𝑖 , 𝑥𝑔) ⊳ (𝑐, 𝑦)), the following type is contractible:∑
(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)

Proof. This last type is equivalent to the identity type (𝑥 𝑓 , 𝑓) = (𝑥𝑔 , 𝑔) by
Lemma 3.3.6 which lives in the type

∑
(𝑥:𝑋0 𝑖) 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) which we know

to be contractible since (𝑋0 , 𝑋1) is a 0-algebra. □

We can derive similar results for identities between two cells which differ at
a source position.

Lemma 3.3.8. Let a monad 𝑀 and let families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 , and
𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras. Let a cell 𝑥 : 𝑋0 𝑖, a
constructor 𝑐 : Cns𝑀 𝑖, a position 𝑝 : Pos𝑀 𝑐, a family 𝑦 :

−→
𝑋0 𝑐 defined everywhere

but at position 𝑝, two cells 𝑦 𝑓 , 𝑦𝑔 : 𝑋0 (Typ𝑀 𝑐 𝑝), a cell 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑦 𝑓 /𝑝])),
and a cell 𝑔 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑦𝑔/𝑝])). Then we have the following equivalence:

(∑(ℎ:𝑋1 ((...,𝑦 𝑓)⊳(η𝑀 ...,η-dec 𝑦𝑔))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,ℎ)) ≃ ((𝑦𝑔 , 𝑔) = (𝑦 𝑓 , 𝑓))

Proof. We equivalently define the equivalence∑
(ℎ:𝑋1 ((...,𝑦 𝑓)⊳(η𝑀 ...,η-dec 𝑦𝑔))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,ℎ)
≃ ∑

(𝑞:𝑦𝑔=𝑦 𝑓) transport𝜆𝑦𝑝→𝑋1 ((𝑖 ,𝑥)⊳(𝑐,𝑦[𝑦𝑝/𝑝])) 𝑞 𝑔 = 𝑓

We first use Lemma 3.2.3 with the cell

η𝛼𝑋2
(𝑖 , 𝑦𝑔) : 𝑋1 ((. . . , 𝑦𝑔) ⊳ (η𝑀 . . . , η-dec 𝑦𝑔))

3.3. Algebraic characterisation 89

in order to establish the family of equivalences

𝑒𝑦 𝑓 : 𝑋1 ((. . . , 𝑦 𝑓) ⊳ (η𝑀 . . . , η-dec 𝑦𝑔)) ≃ (𝑦𝑔 = 𝑦 𝑓)
such that 𝑒𝑦𝑔 (η𝛼𝑋2

(. . . , 𝑦𝑔)) = refl. We finally define, for any identity 𝑞 : 𝑦𝑔 = 𝑦 𝑓 ,
the equivalence

𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,𝑒−1 𝑞) ≃ (transport𝜆𝑦𝑝→𝑋1 ((𝑖 ,𝑥)⊳(𝑐,𝑦[𝑦𝑝/𝑝])) 𝑞 𝑔 = 𝑓)

We assume that 𝑞 ≡ refl therefore 𝑒−1 𝑞 = η𝛼𝑋2
(. . . , 𝑦𝑔) and we are left to establish

the equivalence
𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,η𝛼𝑋2

(...,𝑦𝑔)) ≃ (𝑔 = 𝑓)
Applying Lemma 3.2.3, we obtain the equivalence

𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,η𝛼𝑋2
(...,𝑦𝑔)) ≃ (μ𝛼

𝑋2
𝑓 (η-dec (η𝛼𝑋2

(𝑖 , 𝑦 𝑓))) = 𝑔)

We conclude by right unitality of μ𝛼
𝑋2

. □

This lemma has a corresponding corollary which differs from Corollary 3.3.7
in that we need a further assumption.

Corollary 3.3.9. Let a monad 𝑀 and let families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 , and
𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras. Let a cell 𝑥 : 𝑋0 𝑖,
a constructor 𝑐 : Cns𝑀 𝑖, and a family of cells 𝑦 :

−→
𝑋0 𝑐 defined everywhere but at a

position 𝑝 : Pos𝑀 𝑐. We suppose the following type to be a proposition:∑
(𝑦𝑝 :𝑋0 (Typ𝑀 𝑐 𝑝)) 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑦𝑝/𝑝]))

Suppose given two cells 𝑦 𝑓 , 𝑦𝑔 : 𝑋0 (Typ𝑀 𝑐 𝑝) and another two cells 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳
(𝑐, 𝑦[𝑦 𝑓 /𝑝])) and 𝑔 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑦𝑔/𝑝])), the following type is contractible:∑

(ℎ:𝑋1 ((...,𝑦 𝑓)⊳(η𝑀 ...,η-dec 𝑦𝑔))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,ℎ)

Proof. This last type is equivalent to the identity type (𝑦 𝑓 , 𝑓) = (𝑦𝑔 , 𝑔) by
Lemma 3.3.8 which lives in the type

∑
(𝑦𝑝 :𝑋0 (Typ𝑀 𝑐 𝑝)) 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑦𝑝/𝑝]))

which we know to be a proposition by assumption. □

We now establish the counterpart of Lemma 3.2.3 in the case of a univalent
coherent 𝑀-algebra.

Lemma 3.3.10. Let 𝑋 be a 𝑀-opetopic type with a structure of univalent coherent
𝑀-algebra. For any constructor 𝑐 : Cns𝑀 𝑖, any family 𝑦 :

−→
𝑋0 𝑐, and any element

𝑥 : 𝑋0 𝑖, a cell 𝑓 : 𝑋1 ((𝑖 , 𝑧) ⊳ (𝑐, 𝑦)) implies the existence of a family of equivalences

𝑒𝑥 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) ≃ (𝑧 = 𝑥)
such that 𝑒𝑧 𝑓 = refl. In particular, the structure of coherent 𝑀-algebra guarantees the
existence of the cell 𝛼fill

𝑋 𝑐 𝑦 : 𝑋1 ((𝑖 , 𝛼𝑋 𝑐 𝑦) ⊳ (𝑐, 𝑦)).

90 Chapter 3. Opetopic methods in type theory

Proof. Note that the proof is stated by taking 𝑓 to be 𝛼fill
𝑋 𝑐 𝑦 but the truth of this

lemma does not depend on this choice.
Proving this lemma amounts to establishing the family of equivalences

𝑒𝑥 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) ≃ 𝑋1 ((𝑖 , 𝑥) ⊳ (η𝑀 𝑖 , η-dec (𝛼𝑋 𝑐 𝑦)))
such that 𝑒𝛼𝑋 𝑐 𝑦 (𝛼fill

𝑋 𝑐 𝑦) = η𝛼𝑋 (𝑖 , 𝛼𝑋 𝑐 𝑦) and concluding by univalence.
In the forward direction, given a cell 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)), there exists

another cell sharing the same source 𝛼fill
𝑋 𝑐 𝑦 : 𝑋1 ((𝑖 , 𝛼𝑋 𝑐 𝑦) ⊳ (𝑐, 𝑦)). This

last cell being target universal, we obtain the wanted unary cell 𝑔 : 𝑋1 ((𝑖 , 𝑥) ⊳
(η𝑀 𝑖 , η-dec (𝛼𝑋 𝑐 𝑦))).

We check that 𝑒𝛼𝑋 𝑐 𝑦 (𝛼fill
𝑋 𝑐 𝑦) = η𝛼𝑋 (𝑖 , 𝛼𝑋 𝑐 𝑦). By target universality of

𝛼fill
𝑋 𝑐 𝑦, we have a unary cell 𝑔 : 𝑋1 ((𝑖 , 𝛼𝑋 𝑐 𝑦) ⊳ (η𝑀 𝑖 , η-dec (𝛼𝑋 𝑐 𝑦))) along

with its filler 𝑔fill : 𝑋2 ((. . . , 𝛼fill
𝑋 𝑐 𝑦) ⊳ 𝜃𝑔,𝛼fill

𝑋 𝑐 𝑦). By left-unitality of μ𝛼
𝑋 , we have a

concurrent unary cell η𝛼𝑋 (𝑖 , 𝛼𝑋 𝑐 𝑦) : 𝑋1 ((𝑖 , 𝛼𝑋 𝑐 𝑦)⊳(η𝑀 𝑖 , η-dec (𝛼𝑋 𝑐 𝑦))) along
with its filler μ𝛼fill

𝑋>0
(η𝛼𝑋 (𝑖 , 𝛼𝑋 𝑐 𝑦)) (𝛼fill

𝑋 𝑐 𝑦) : 𝑋2 ((. . . , 𝛼fill
𝑋 𝑐 𝑦)⊳𝜃η𝛼𝑋 (𝑖 ,𝛼𝑋 𝑐 𝑦),𝛼fill

𝑋 𝑐 𝑦).
By source universality of 𝑔fill, we obtain the required unary cell 𝑋2 ((. . . , 𝑔) ⊳
(η𝑀/𝑋0 . . . , η-dec (η𝛼𝑋 (𝑖 , 𝛼𝑋 𝑐 𝑦)))).

In the other direction, from a unary cell 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (η𝑀 𝑖 , η-dec (𝛼𝑋 𝑐 𝑦))),
we obtain the wanted cell as μ𝛼

𝑋>0
𝑓 (𝛼fill

𝑋 𝑐 𝑦) : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)).
It remains to show that the two sides of the equivalence are inverse to

each other. Starting with a cell 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)), we want to establish the
identity μ𝛼

𝑋>0
𝑔 (𝛼fill

𝑋 𝑐 𝑦) = 𝑓 where 𝑔 is the lift of 𝑓 that we obtain by target
universality of 𝛼fill

𝑋 𝑐 𝑦. This amounts to finding a unary cell 𝑋1 ((. . . , 𝑓) ⊳
(η𝑀/𝑋0 . . . , η-dec (μ𝛼

𝑋>0
𝑔 (𝛼fill

𝑋 𝑐 𝑦)))). We obtain it by target universality of
μ𝛼fill

𝑋>0
𝑔 (𝛼fill

𝑋 𝑐 𝑦) : 𝑋2 ((. . . ,μ𝛼
𝑋>0

𝑔 (𝛼fill
𝑋 𝑐 𝑦)) ⊳ 𝜃𝑔,𝛼fill

𝑋 𝑐 𝑦) along with the second cell
sharing the same source: 𝑔fill : 𝑋2 ((. . . , 𝑓) ⊳ 𝜃𝑔,𝛼fill

𝑋 𝑐 𝑦).
Finally, starting with a cell 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (η𝑀 𝑖 , η-dec (𝛼𝑋 𝑐 𝑦))), we want to

establish the identity 𝑔 = 𝑓 where 𝑔 is the lift ofμ𝛼
𝑋>0

𝑓 (𝛼fill
𝑋 𝑐 𝑦) : 𝑋1 ((𝑖 , 𝑥)⊳(𝑐, 𝑦))

obtained by target universality of 𝛼fill
𝑋 𝑐 𝑦. The corresponding filler is 𝑔fill :

𝑋2 ((. . . ,μ𝛼
𝑋>0

𝑓 (𝛼fill
𝑋 𝑐 𝑦)) ⊳ 𝜃𝑔,𝛼fill

𝑋 𝑐 𝑦). Consider the other cell μ𝛼fill

𝑋 𝑓 (𝛼fill
𝑋 𝑐 𝑦) :

𝑋2 ((. . . ,μ𝛼
𝑋>0

𝑓 (𝛼fill
𝑋 𝑐 𝑦)) ⊳ 𝜃 𝑓 ,𝛼fill

𝑋 𝑐 𝑦). By source universality of 𝑔fill, we use
μ𝛼fill

𝑋 𝑔 (𝛼fill
𝑋 𝑐 𝑦) to obtain the required unary cell and conclude by univalence. □

This allows us to deduce that such an opetopic type is fibrant.

Lemma 3.3.11. A𝑀-opetopic type𝑋 with a structure of univalent coherent𝑀-algebra
is fibrant.

Proof. We show that (𝑋0 , 𝑋1) is a 0-algebra. That is, given a constructor 𝑐 :
Cns𝑀 𝑖, and a family 𝑥 :

−→
𝑋0 𝑐, the following type is contractible:∑

(𝑦:𝑋0 𝑖) 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥))
The centre of contraction is readily provided by the structure of coherent 𝑀-
algebra. It remains to show that for any pair of cells 𝑓 : 𝑋1 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥))

3.3. Algebraic characterisation 91

and 𝑔 : 𝑋1 ((𝑖 , 𝑦𝑔) ⊳ (𝑐, 𝑥)), there is an identity (𝑦 𝑓 , 𝑓) = (𝑦𝑔 , 𝑔). Consider
Lemma 3.3.6 and notice that its proof only uses Lemma 3.2.3 that we rees-
tablished in Lemma 3.3.10 in the case of univalent coherent 𝑀-algebras. This
signifies that we have the equivalence

(∑(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)) ≃ ((𝑦 𝑓 , 𝑓) = (𝑦𝑔 , 𝑔))

We are then reduced to finding a pair of type∑
(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)

which is obtained by target universality of 𝑓 .
Finally, the coinductive hypothesis applied to 𝑋>0, which has a structure of

univalent coherent 𝑀-algebra, allows us to conclude that 𝑋 is fibrant. □

It remains to establish the other side of the equivalence. We start by proving
the following two lemmas.

Lemma 3.3.12. Let 𝑋 be a fibrant 𝑀-opetopic type. Any cell of type 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥))
is uniquely target universal.

Lemma 3.3.13. Let 𝑋 be a fibrant 𝑀-opetopic type. Let a cell 𝑥 : 𝑋0 𝑖, a constructor
𝑐 : Cns𝑀 𝑖, a position 𝑝 : Pos𝑀 𝑐, and a family of cells 𝑦 :

−→
𝑋0 𝑐. We suppose the

following type to be a proposition:∑
(𝑦𝑝 :𝑋0 (Typ𝑀 𝑐 𝑝)) 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦[𝑦𝑝/𝑝]))

Then any cell 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) is uniquely source universal at position 𝑝.

It is important to note that, when an opetopic type 𝑋 is fibrant, being target
universal is no longer an additional structure but a property as we shall see. The
same remark applies in the case of source universality under the appropriate
condition.

Proof of Lemma 3.3.12. Let 𝑋 be a fibrant 𝑀-opetopic type. The coinductive
hypothesis allows us to establish that property for 𝑋>0 which is fibrant.

It remains to show that all 1-cells are uniquely target universal. Consider
a cell 𝑓 : 𝑋1 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥)) that we want to show to be target universal and
another cell sharing the same source 𝑔 : 𝑋1 ((𝑖 , 𝑦𝑔) ⊳ (𝑐, 𝑥)). The 0-algebra
provides us with an identity (𝑦 𝑓 , 𝑓) = (𝑦𝑔 , 𝑔) that gives us a pair (ℎ, ℎfill) :∑
(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓) by Lemma 3.3.6. Moreover, this pair

lives in a contractible type by Corollary 3.3.7. To conclude that 𝑓 is target
universal, we have to prove that ℎfill is target universal and source universal at
position inl ★. The coinductive hypothesis allows to readily conclude that ℎfill is
uniquely target universal.

In order to conclude that it is also uniquely source universal we first note
that the type ∑

(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)

92 Chapter 3. Opetopic methods in type theory

is contractible and is, in particular, a proposition, as it is equivalent to a path
(𝑦 𝑓 , 𝑓) = (𝑦𝑔 , 𝑔) by Lemma 3.3.6 which lives in a contractible type. This allows
us to conclude that ℎfill is uniquely source universal at position inl★ by applying
Lemma 3.3.13. □

Proof of Lemma 3.3.13. For any cell 𝑦𝑔 : 𝑋0 (Typ𝑀 𝑐 𝑝) and cell 𝑔 : 𝑋1 ((𝑖 , 𝑥) ⊳
(𝑐, 𝑦[𝑦𝑔/𝑝])), we apply Corollary 3.3.9 to obtain the pair

(ℎ, ℎfill) :
∑
(ℎ:𝑋1 ((...,𝑦)⊳(η𝑀 ...,η-dec 𝑦𝑔))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,ℎ)

which therefore lives in a contractible type. We apply Lemma 3.3.12 to deduce
that ℎfill is uniquely target universal, and we use the coinductive hypothesis along
with the fact that the type of the pair (ℎ, ℎfill) is contractible, and is therefore
a proposition, to conclude that ℎfill is uniquely source universal at position
inr (𝑝, inl ★), the position of ℎ. □

Corollary 3.3.14. For a 𝑀-opetopic type, being a univalent coherent 𝑀-algebra is a
property.

We want to emphasise the surprising nature of this result. Being a coherent
𝑀-algebra is an additional structure which turns out to be a property when the
structure is univalent.

Proof. Let 𝑋 be a 𝑀-opetopic type and suppose it is a univalent coherent 𝑀-
algebra. By Lemma 3.3.11,𝑋 is therefore fibrant and, for any pasting diagram, its
composition and filler live in a contractible type. Finally, Lemma 3.3.12 informs
us that the data witnessing that any cell is target universal lives in a contractible
type too. We conclude that being a univalent coherent 𝑀-algebra is therefore a
property. □

At last, we define the remaining side of the equivalence.

Lemma 3.3.15. A fibrant 𝑀-opetopic type has a unique structure of univalent coherent
𝑀-algebra.

Proof. Let 𝑋 be a fibrant 𝑀-opetopic type. The coinductive hypothesis allows
us to establish that 𝑋>0, which is fibrant, has a unique structure of univalent
coherent 𝑀-algebra.

Now, the composition and filler for pasting diagrams of 0-cells are readily
given by the 0-algebra (𝑋0 , 𝑋1) and live in a contractible type. The fact that any
1-cell is uniquely target universal follows from Lemma 3.3.12. □

We summarise our results in the proof of Theorem 3.3.5.

Proof of Theorem 3.3.5. Corollary 3.3.14 states that being a univalent coherent
𝑀-algebra is a property. Lemma 3.3.11 and Lemma 3.3.15 establish a logical
equivalence between being fibrant and being a univalent coherent 𝑀-algebra.
We conclude that this logical equivalence is an equivalence of types. □

3.4. An explicit characterisation of the composition 93

3.4 An explicit characterisation of the composition

Given a monad 𝑀 and a 𝑀-0-algebra (𝑋0 , 𝑋1), Lemma 3.2.3 informs us that
𝑋1 is equivalent to a family of identity types. A family 𝑋2 : Fam𝑀/𝑋0/𝑋1 such
that (𝑋1 , 𝑋2) is a 0-algebra then induces an operation of composition on these 1-
cells. In this section we provide a concrete definition of this composition acting
on these identity types in terms of the usual operations on identity types and
prove that it is equivalent to the one induced by 𝑋2. This perspective allows
to leverage the body of results that has already been established about identity
types to deduce properties about the multiplication induced by 𝑋2. This result
was initially used by the author in order to gain intuition about the properties
of the multiplication induced by 𝑋2.

We start with the definition of the families𝑋=
1 : Fam𝑀/𝑋0 and𝑋=

2 : Fam𝑀/𝑋0/𝑋=
1

where 𝑋=
1 equivalent to 𝑋1 under Lemma 3.2.3.

Definition 3.4.1. Let𝑀 be a monad and let the families𝑋0 : Fam𝑀 ,𝑋1 : Fam𝑀/𝑋0 ,
and 𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras. For any
constructor 𝑐 : Cns𝑀 𝑖, any family of elements 𝑥 :

−→
𝑋0 𝑐, and any element 𝑦 : 𝑋0 𝑖,

we define the family

𝑋=
1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) :≡ 𝛼𝑋1 𝑐 𝑥 = 𝑦

We define an operation of composition of pasting diagrams of cells valued
in 𝑋=

1 ; that is, given a constructor 𝑐 : Cns𝑀/𝑋0 𝑖 and a family 𝑥 :
−→
𝑋=

1 𝑐, we
define an element of 𝑋=

1 𝑖. We name this operation 𝛼𝑋=
2

which defines a family
𝑋=

2 : Fam𝑀/𝑋0/𝑋=
1

defined as

𝑋=
2 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) :≡ 𝛼𝑋=

2
𝑐 𝑥 = 𝑦

We define 𝛼𝑋=
2

by induction on 𝑐.

• If 𝑐 is of the form lf (𝑖 , 𝑥), we need to define an element of type 𝑋=
1 ((𝑖 , 𝑥) ⊳(η𝑀 𝑖 , η-dec 𝑥)), that is an identity 𝛼𝑋1 (η𝑀 𝑖) (η-dec 𝑥) = 𝑥 which we

define to be 𝛼-η using the fact that 𝑋1 is a 1-algebra.

• If 𝑐 is of the form nd ((𝑖 , 𝑦) ⊳ (𝑐, 𝑧)) {𝑤} 𝑡, we need to define an identity of
type

𝛼𝑋1 (μ𝑀 𝑐 (𝜆𝑝 → pr1 (𝑤 𝑝))) (𝜆𝑝 → pr2 (𝑤 (prμ1 𝑝)) (prμ2 𝑝)) = 𝑦

We use 𝛼-μ to establish the first identity:

𝛼𝑋1 (μ𝑀 𝑐 (𝜆𝑝 → pr1 (𝑤 𝑝))) (𝜆𝑝 → pr2 (𝑤 (prμ1 𝑝)) (prμ2 𝑝))
= 𝛼𝑋1 𝑐 (𝜆𝑝 → 𝛼𝑋1 (pr1 (𝑤 𝑝)) (𝜆𝑞 → pr2 (𝑤 𝑝) 𝑞))

Then, we get a second identity by congruence and from the induction
hypothesis applied to the pasting diagram (𝑡 𝑝,𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞))) for any
position 𝑝 : Pos𝑀 𝑐:

𝛼𝑋1 𝑐 (𝜆𝑝 → 𝛼𝑋1 (pr1 (𝑤 𝑝)) (𝜆𝑞 → pr2 (𝑤 𝑝) 𝑞)) = 𝛼𝑋1 𝑐 𝑧

94 Chapter 3. Opetopic methods in type theory

Finally, the last identity 𝛼𝑋1 𝑐 𝑧 = 𝑦 is given by 𝑥 (inl ★).
In the end, the formal definition of the identity thus defined is:

𝛼-μ � ap (𝛼𝑋1 𝑐) (funext (𝜆𝑝 → 𝛼𝑋=
2
(𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞))))) � 𝑥 (inl ★)

By contractibility of singletons, (𝑋=
1 , 𝑋

=
2) is a 0-algebra and we now want to

check that 𝑋=
2 is equivalent to 𝑋2 in a suitable sense in order to transport the

properties of 𝛼𝑋=
2

to 𝛼𝑋2 . To this effect, we first have to show that the equivalence
of Lemma 3.2.3 is a morphism of 0-algebras — in that the laws are not mapped
— from (𝑋1 , 𝑋2) to (𝑋=

1 , 𝑋
=
2).

Lemma 3.4.2. Let 𝑀 be a monad and let the families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 ,
and 𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 1-algebras. Consider the
0-algebra (𝑋=

1 , 𝑋
=
2) defined in Definition 3.4.1. The equivalence 𝑒 of Lemma 3.2.3 —

where we take the cell 𝑓 to be the filler provided by the algebra (𝑋0 , 𝑋1)— is a morphism
of 0-algebras from (𝑋1 , 𝑋2) to (𝑋=

1 , 𝑋
=
2), that is

𝑒 (𝛼𝑋2 𝑐 𝑥) = 𝛼𝑋=
2
𝑐 (𝜆𝑝 → 𝑒 (𝑥 𝑝))

for any constructor 𝑐 : Cns𝑀/𝑋0 𝑖 and family 𝑥 :
−→
𝑋1 𝑐.

Proof. We proceed by induction on 𝑐.

• If 𝑐 is of the form lf (𝑖 , 𝑦), we have to establish the following identity:

𝑒 (𝛼𝑋2 (lf (𝑖 , 𝑦)) 𝑥) = 𝑒 (transport𝜆𝑦→𝑋1 ((𝑖 ,𝑦 (posη 𝑖))⊳(η𝑀 𝑖 ,𝑦)) 𝑝 (η𝛼𝑋2
(𝑖 , 𝑦)))

with 𝑝 :≡ funext (Pos-η-elim𝑀 𝑖 (𝜆𝑝 → 𝑦 = 𝑦) refl) and where the right-
hand side is the formal definition of 𝛼-η established in Theorem 3.2.4.
Remember that η𝛼𝑋2

(𝑖 , 𝑦) ≡ 𝛼𝑋2 (lf (𝑖 , 𝑦)) ⊥-elim. It is clear that 𝑝 = refl and
we conclude the proof by noticing that 𝑥 = ⊥-elim is obviously true as they
are both functions with domain ⊥.

• If 𝑐 is of the form nd ((𝑖 , 𝑦) ⊳ (𝑐, 𝑧)) {𝑤} 𝑡, we have to establish the following
identity:

𝑒 (𝛼𝑋2 (nd ((𝑖 , 𝑦) ⊳ (𝑐, 𝑧)) {𝑤} 𝑡) 𝑥) = 𝛼-μ � ap (𝛼𝑋1 𝑐) 𝑝 � 𝑒 (𝑥 (inl ★))
with 𝑝 :≡ funext (𝜆𝑝 → 𝛼𝑋=

2
(𝑡 𝑝) (𝜆𝑞 → 𝑒 (𝑥 (inr (𝑝, 𝑞))))).

We first establish the identity

𝑒 (𝛼𝑋2 (nd ((𝑖 , 𝑦) ⊳ (𝑐, 𝑧)) 𝑡) 𝑥)
= 𝑒 (μ𝛼

𝑋2
(𝑥 (inl ★)) (𝜆𝑝 → 𝛼𝑋2 (𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞)))))

using Corollary 3.2.7 in context.
Then we establish the identity

𝑒 (μ𝛼
𝑋2
(𝑥 (inl ★)) (𝜆𝑝 → 𝛼𝑋2 (𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞)))))

= 𝛼-μ � ap (𝛼𝑋1 𝑐) 𝑞 � 𝑒 (𝑥 (inl ★))

3.4. An explicit characterisation of the composition 95

where 𝑞 :≡ funext (𝜆𝑝 → 𝑒 (𝛼𝑋2 (𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞))))).
Instead, we prove the more general statement:

𝑒 (μ𝛼
𝑋2
𝑓 𝑔) = 𝛼-μ � ap (𝛼𝑋1 𝑐) (funext (𝜆𝑝 → 𝑒 (𝑔 𝑝))) � 𝑒 𝑓

for any constructors 𝑐 : Cns𝑀 𝑖 and 𝑑 :
−−−−→
Cns𝑀 𝑐, any 0-cells 𝑥 : 𝑋0 𝑖,

𝑦 :
−→
𝑋0 𝑐, and 𝑧 :

−→
𝑋0 (μ𝑀 𝑐 𝑑), and any 1-cells 𝑓 : 𝑋1 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) and

𝑔 :
−→
𝑋1 ((𝑐, 𝑦) ◀ (𝜆𝑝 → (𝑑 𝑝,𝜆𝑞 → 𝑧 (pairμ 𝑝 𝑞)))).

Knowing that (𝑋0 , 𝑋1) is a 0-algebra, we can eliminate 𝑓 and 𝑔 and assume
the following equalities

𝑔 𝑝 ≡ 𝛼fill
𝑋1
(𝑑 𝑝) (𝜆𝑞 → 𝑧 (pairμ 𝑝 𝑞))

𝑓 ≡ 𝛼fill
𝑋1
𝑐 (𝜆𝑝 → 𝛼𝑋1 (𝑑 𝑝) (𝜆𝑞 → 𝑧 (pairμ 𝑝 𝑞)))

Then we readily obtain 𝑒 (μ𝛼
𝑋2
𝑓 𝑔) ≡ 𝛼-μ according to the definition of 𝛼-μ

that we gave in Theorem 3.2.4 and it remains to show that both 𝑒 𝑓 and
ap (𝛼𝑋1 𝑐) (funext (𝜆𝑝 → 𝑒 (𝑔 𝑝))) are equal to refl. But both 𝑒 𝑓 and 𝑒 (𝑔 𝑝)
are equal to refl by the very definition of 𝑒 which concludes the proof.
Returning to the original proof, it is easy to establish the remaining identity
by applying the induction hypothesis in context:

funext (𝜆𝑝 → 𝑒 (𝛼𝑋2 (𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞)))))
= funext (𝜆𝑝 → 𝛼𝑋=

2
(𝑡 𝑝) (𝜆𝑞 → 𝑒 (𝑥 (inr (𝑝, 𝑞)))))

□

This last lemma allows concluding that 𝑋=
2 is equivalent to 𝑋2.

Lemma 3.4.3. Let 𝑀 be a monad and let the families 𝑋0 : Fam𝑀 , 𝑋1 : Fam𝑀/𝑋0 , and
𝑋2 : Fam𝑀/𝑋0/𝑋1 such that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 1-algebras. For any constructor
𝑐 : Cns𝑀/𝑋0 𝑖 and 1-cells 𝑥 :

−→
𝑋1 𝑐 and 𝑦 : 𝑋1 𝑖,

𝑋2 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) ≃ 𝑋=
2 ((𝑖 , 𝑒 𝑦) ⊳ (𝑐,𝜆𝑝 → 𝑒 (𝑥 𝑝)))

with 𝑒 the equivalence established in Lemma 3.4.2 where we take the cell 𝑓 to be the filler
provided by the algebra (𝑋0 , 𝑋1).
Proof. Let 𝑐 : Cns𝑀/𝑋0 𝑖 be a constructor and let 𝑥 :

−→
𝑋1 𝑐 and 𝑦 : 𝑋1 𝑖 be 1-cells.

We start by applying Lemma 3.2.3 and obtain a first equivalence:

𝑋2 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) ≃ (𝛼𝑋2 𝑐 𝑥 = 𝑦)
Then using the fact that 𝑒 is an equivalence, we obtain the second equivalence:

(𝛼𝑋2 𝑐 𝑥 = 𝑦) ≃ (𝑒 (𝛼𝑋2 𝑐 𝑥) = 𝑒 𝑦)
Finally, using the equivalence established in Lemma 3.4.2 we obtain the final
equivalence:

(𝑒 (𝛼𝑋2 𝑐 𝑥) = 𝑒 𝑦) ≃ (𝛼𝑋=
2
𝑐 (𝜆𝑝 → 𝑒 (𝑥 𝑝)) = 𝑒 𝑦)

□

96 Chapter 3. Opetopic methods in type theory

Having established that 𝑋2 is equivalent to 𝑋=
2 , let us revisit Corollary 3.3.7

and Corollary 3.3.9 in light of this new connection. In the former case, estab-
lishing that the following type is contractible∑

(ℎ:𝑋1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)
for any 1-cells 𝑓 : 𝑋1 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥)) and 𝑔 : 𝑋1 ((𝑖 , 𝑦𝑔) ⊳ (𝑐, 𝑥)) is equivalent to
showing that the following type is contractible∑

(ℎ:𝑋=
1 ((𝑖 ,𝑦𝑔)⊳(η𝑀 𝑖 ,η-dec 𝑦 𝑓))) 𝑋

=
2 ((. . . , 𝑔) ⊳ 𝜃ℎ, 𝑓)

for any 1-cells 𝑓 : 𝑋=
1 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥)) and 𝑔 : 𝑋=

1 ((𝑖 , 𝑦𝑔) ⊳ (𝑐, 𝑥)). Using the
definition of 𝑋=

2 , we realise that this actually amounts to showing that the
following function is an equivalence:

𝜆ℎ → 𝛼𝑋=
2
𝜃ℎ, 𝑓

for any 1-cell 𝑓 : 𝑋=
1 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥)). Or, equivalently, if we replace 𝛼𝑋=

2
by its

definition:

𝜆ℎ →𝛼-μ � ap (𝛼𝑋1 (η𝑀 𝑖)) (funext (η-dec
(𝛼𝑋=

2
(η𝑀/𝑋0 ((𝑖 , 𝑦 𝑓) ⊳ (𝑐, 𝑥))) (η-dec 𝑓)))) � ℎ

which can, in the present case, be simplified to

𝜆ℎ → 𝛼-μ � ap (𝛼𝑋1 (η𝑀 𝑖)) 𝑓 � ℎ
owing to the fact that (𝑋=

1 , 𝑋
=
2) is a 1-algebra as the equivalent algebra (𝑋1 , 𝑋2) is

a 1-algebra too. But, this function is obviously an equivalence as the operation
of precomposing with an identity is an equivalence.

Now, in the case of Corollary 3.3.9 things become a bit more subtle. Estab-
lishing that the following type is contractible∑

(ℎ:𝑋1 ((...,𝑥 𝑓)⊳(η𝑀 ...,η-dec 𝑥𝑔))) 𝑋2 ((. . . , 𝑔) ⊳ 𝜃 𝑓 ,ℎ)
for any 1-cells 𝑓 : 𝑋1 ((𝑖 , 𝑦)⊳(𝑐, 𝑥[𝑥 𝑓 /𝑝])) and 𝑔 : 𝑋1 ((𝑖 , 𝑦)⊳(𝑐, 𝑥[𝑥𝑔/𝑝])) amounts
to showing that the following function is an equivalence under the hypotheses
mentioned in the corollary:

𝜆ℎ → 𝛼𝑋=
2
𝜃 𝑓 ,ℎ

for any 1-cell 𝑓 : 𝑋=
1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥[𝑥 𝑓 /𝑝])) and where ℎ has type 𝑋=

1 ((. . . , 𝑥 𝑓) ⊳(η𝑀 . . . , η-dec 𝑥𝑔)). Or, equivalently, using the definition of 𝛼𝑋=
2

𝜆ℎ →𝛼-μ � ap (𝛼𝑋1 𝑐) (funext (𝜆𝑝 →
𝛼𝑋=

2
(𝑑 𝑝) (ℎ′ 𝑝))) � 𝑓

where 𝑑 and ℎ′ are defined as follows:

𝑑 𝑞 :≡
{
η𝑀/𝑋0 ((Typ𝑀 𝑐 𝑝, 𝑥 𝑓) ⊳ (η𝑀 (Typ𝑀 𝑐 𝑝), η-dec 𝑥𝑔)) if 𝑞 ≡ 𝑝
lf (Typ𝑀 𝑐 𝑞, 𝑥 𝑞) otherwise

3.5. 𝑀-multicategories 97

ℎ′ 𝑞 :≡
{
η-dec ℎ if 𝑞 ≡ 𝑝
⊥-elim otherwise

Using the fact that (𝑋=
1 , 𝑋

=
2) is a 1-algebra, we consider the following equivalent

function:

𝜆ℎ →𝛼-μ
� ap (𝛼𝑋1 𝑐) (funext (𝜆𝑝 → 𝛼-η))
� ap (𝜆𝑥𝑝 → 𝛼𝑋1 𝑐 𝑥[𝑥𝑝/𝑝]) ℎ
� 𝑓

This function is an equivalence if and only if the following function is itself an
equivalence:

𝜆ℎ → ap (𝜆𝑥𝑝 → 𝛼𝑋1 𝑐 𝑥[𝑥𝑝/𝑝]) ℎ
which is equivalent to requiring that the function 𝜆𝑥𝑝 → 𝛼𝑋1 𝑐 𝑥[𝑥𝑝/𝑝] is an
embedding. But this corresponds exactly to the hypothesis of Corollary 3.3.9
stating that the following type is a proposition:∑

(𝑥𝑝 :𝑋0 (Typ𝑀 𝑐 𝑝)) 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥[𝑥𝑝/𝑝]))

3.5 𝑀-multicategories

In this section, we define 𝑀-multicategories which are a generalisation of or-
dinary categories whose arity of morphisms is specified by the constructors of a
monad 𝑀. We establish an equivalence between 𝑀-multicategories and fibrant
𝑀/-opetopic types whose family of 1-cells is a set. This equivalence specialises
to categories if we take the monad 𝑀 to be the identity monad Id.

Definition 3.5.1 (Wild 𝑀-multicategory). Let 𝑀 be a monad. A wild 𝑀-
multicategory 𝐶 is defined by the following data:

• A family 𝑋 : Fam𝑀/ whose elements are called morphisms. The objects
are then the indices of the monad 𝑀.

• A function providing a unary morphism for every index:

η𝛼𝐶 : (𝑥 : Idx𝑀) → 𝑋 (𝑥 ⊳ η𝑀 𝑥)

• For every objects 𝑥 : Idx𝑀 , 𝑦 : Cns𝑀 𝑥, and 𝑧 :
−−−−→
Cns𝑀 𝑦, a composition

function
μ𝛼
𝐶 : 𝑋 (𝑥 ⊳ 𝑦) → −→𝑋 (𝑦 ◀ 𝑧) → 𝑋 (𝑥 ⊳ μ𝑀 𝑦 𝑧)

• The composition μ𝐶 is right and left unital. That is, for every morphism
𝑓 : 𝑋 (𝑥 ⊳ 𝑦), we have the following identity:

μ𝛼
𝐶 𝑓 (𝜆𝑝 → η𝛼𝐶 (Typ𝑀 𝑦 𝑝)) = 𝑓

98 Chapter 3. Opetopic methods in type theory

Likewise, for every families 𝑦 :
−−−−→
Cns𝑀 (η𝑀 𝑥) and 𝑓 :

−→
𝑋 (η𝑀 𝑥◀ 𝑦), we have

the following identity:

μ𝛼
𝐶 (η𝑀 𝑥) 𝑓 = 𝑓 (posη 𝑥)

• The composition μ𝛼
𝐶 is associative. For every morphisms 𝑓 : 𝑋 (𝑥 ⊳ 𝑦),

𝑔 :
−→
𝑋 (𝑦 ◀ 𝑧), and ℎ :

−→
𝑋 (μ𝑀 𝑦 𝑧 ◀ 𝑡), we have

μ𝛼
𝐶 𝑓 (𝜆𝑝 → μ𝛼

𝐶 (𝑔 𝑝) (𝜆𝑞 → ℎ (pairμ𝑀 𝑝 𝑞))) = μ𝛼
𝐶 (μ𝛼

𝐶 𝑓 𝑔) ℎ

We borrow the terminology of Capriotti and Kraus (Capriotti and Kraus
2017) and call a 𝑀-multicategory whose family of morphisms is not a set wild.
These multicategories do not necessarily satisfy their laws coherently.

Definition 3.5.2 (𝑀-multicategory). Let 𝑀 be a monad. A 𝑀-multicategory is
a wild 𝑀-multicategory such that its family of morphisms is a set.

The type of objects of a 𝑀-multicategory is the type of indices of the monad
𝑀, that is Idx𝑀 . It is clear from this definition that, given a family of sets
𝑋 : 1 → 𝒰 , (𝑋∗ Id)-multicategories are nothing more than precategories — as
defined in the HoTT book — whose type of objects is 𝑋 ★.

We now state the theorem of this section.

Theorem 3.5.3. Let 𝑀 be a monad. 𝑀-multicategories are equivalent to fibrant 𝑀/-
opetopic types 𝑋 whose family 𝑋1 is a set.

We break its proof into several lemmas.

Lemma 3.5.4. Let 𝑀 be a monad and let 𝑋0 : Fam𝑀/, 𝑋1 : Fam𝑀//𝑋0 , and 𝑋2 :
Fam𝑀//𝑋0/𝑋1 be families such that 𝑋0 is a set. If (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras
then we can define a 𝑀-multicategory whose family of morphisms is given by 𝑋0.

Proof. The data defining the wild multicategory has been established in Sec-
tion 3.2. In addition, we use the fact that 𝑋0 is a set. □

The previous lemma admits a reciprocal and we break this result down into
two lemmas which will each define the required 0-algebra.

Lemma 3.5.5. Let 𝑋 be a 𝑀-multicategory and let 𝑋0 : Fam𝑀/ be its family of
morphisms. The structure of multicategory gives rise to a family 𝑋1 : Fam𝑀//𝑋0 such
that (𝑋0 , 𝑋1) is a 1-algebra.

Proof. We want 𝑋1 to witness the composition of morphisms given by μ𝛼
𝑋 , and

we start by defining an unbiased composition function:

𝛼𝑋1 : {𝑖 : Idx𝑀/} (𝑐 : Cns𝑀/ 𝑖) (𝑥 :
−→
𝑋0 𝑐) → 𝑋0 𝑖

We define it by induction on 𝑐:

• If 𝑐 is of the form lf 𝑥 then we need a cell 𝑋0 (𝑥 ⊳ η𝑀 𝑥)which we define to
be η𝛼𝑋 𝑥.

3.5. 𝑀-multicategories 99

• If 𝑐 is of the form nd (𝑤 ⊳ 𝑦) {𝑧} 𝑡, we need a cell of type 𝑋0 (𝑤 ⊳ μ𝑀 𝑦 𝑧)
which is given by μ𝛼

𝑋 (𝑥 (inl ★)) (𝜆𝑝 → 𝛼𝑋1 (𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞)))).
We now define 𝑋1 : Fam𝑀//𝑋0 ,

𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) :≡ 𝛼𝑋1 𝑐 𝑥 = 𝑦

An element of 𝑋1 then witnesses that a certain pasting diagram of 0-cells (𝑐, 𝑥)
multiplies to the target 0-cell 𝑦. It is immediate that (𝑋0 , 𝑋1) is a 0-algebra as
the type

∑
(𝑦:𝑋0 𝑖) (𝛼𝑋1 𝑐 𝑥 = 𝑦) is contractible. Note how 𝛼𝑋1 that we just defined

coincides exactly with the composition function induced by the structure of
0-algebra on (𝑋0 , 𝑋1) therefore there is no clash of notation.

We now show that the 0-algebra (𝑋0 , 𝑋1) is a 1-algebra. We start with the
unit law which asserts that, for any index 𝑖 : Idx𝑀/ and family 𝑥 :

−→
𝑋0 (η𝑀/ 𝑖), the

identity 𝛼𝑋1 (η𝑀/ 𝑖) 𝑥 = 𝑥 (posη 𝑖) holds. By definition of 𝛼𝑋1 and posη 𝑖, this
amounts to proving the identity

μ𝛼
𝑋 (𝑥 (inl ★)) (𝜆𝑝 → η𝛼𝑋 (Typ𝑀/ (η𝑀/ 𝑖) 𝑝)) = 𝑥 (inl ★)

which holds by right-unitality of μ𝛼
𝑋 .

In order to show that 𝛼𝑋1 is compatible withμ𝑀/, we first need to show that it
is compatible with the grafting operationγ𝑀 . That is, for any tree 𝑡 : Cns𝑀/ (𝑥⊳𝑦),
any family 𝑢 :

−−−−−→
Cns𝑀/ (𝑦 ◀ 𝑧), and any family 𝑣 :

−→
𝑋0 (γ𝑀 𝑡 𝑢):

𝛼𝑋1 (γ𝑀 𝑡 𝑢) 𝑣
= μ𝛼

𝑋 (𝛼𝑋1 𝑡 (𝜆𝑝 → 𝑣 (inlγ 𝑝)))
(𝜆𝑝 → 𝛼𝑋1 (𝑢 𝑝) (𝜆𝑞 → 𝑣 (inrγ 𝑝 𝑞)))

We proceed by induction on 𝑡:

• If 𝑡 is of the form lf 𝑥 then, by definition of 𝛼𝑋1 , we are left to prove the
following identity which holds by virtue of the fact that μ𝛼

𝑋 is left-unital.

𝛼𝑋1 (𝑢 (posη 𝑥)) 𝑣 = μ𝛼
𝑋 (η𝛼𝑋 𝑥) (𝜆𝑝 → 𝛼𝑋1 (𝑢 𝑝) (𝜆𝑞 → 𝑣 (inrγ 𝑝 𝑞)))

• If 𝑡 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, the left-hand side is equal to

μ𝛼
𝑋 (𝑣 (inl★)) (𝜆𝑝 → 𝛼𝑋1 (γ𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (pairμ 𝑝 𝑞))) (𝜆𝑞 → 𝑣 (inr (𝑝, 𝑞))))

As for the right-hand side, it is of the form μ𝛼
𝑋 (μ𝛼

𝑋 𝑣1 𝑣2) 𝑣3 where 𝑣1, 𝑣2,
and 𝑣3 are defined as follows:

𝑣1 :≡ 𝑣 (inl ★)
𝑣2 𝑝 :≡ 𝛼𝑋1 (𝑡 𝑝) (𝜆𝑞 → 𝑣 (inr (𝑝, inlγ 𝑞)))
𝑣3 𝑝 :≡ 𝛼𝑋1 (𝑢 𝑝) (𝜆𝑞 → 𝑣 (inr (prμ1 𝑝, inrγ (prμ2 𝑝) 𝑞)))

Using the inductive hypothesis we get a first identity:

μ𝛼
𝑋 𝑣1 (𝜆𝑝 → 𝛼𝑋1 (γ𝑀 (𝑡 𝑝) (𝜆𝑞 → 𝑢 (pairμ 𝑝 𝑞))) (𝜆𝑞 → 𝑣 (inr (𝑝, 𝑞))))
= μ𝛼

𝑋 𝑣1 (𝜆𝑝 → μ𝛼
𝑋 (𝑣2 𝑝) (𝜆𝑞 → 𝑣3 (pairμ 𝑝 𝑞)))

100 Chapter 3. Opetopic methods in type theory

Therefore, we are left to show that

μ𝛼
𝑋 𝑣1 (𝜆𝑝 → μ𝛼

𝑋 (𝑣2 𝑝) (𝜆𝑞 → 𝑣3 (pairμ 𝑝 𝑞)))
= μ𝛼

𝑋 (μ𝛼
𝑋 𝑣1 𝑣2) 𝑣3

But this is readily proved as we know that μ𝛼
𝑋 is associative.

We can now prove that 𝛼𝑋1 is compatible with the operation μ𝑀/. That is,
given an index 𝑥 : Idx𝑀/, a constructor 𝑦 : Cns𝑀/ 𝑥, a family of constructors
𝑧 :
−−−−−→
Cns𝑀/ 𝑦, and a family of elements 𝑣 :

−→
𝑋0 (μ𝑀/ 𝑦 𝑧), we have the following

identity:

𝛼𝑋1 (μ𝑀/ 𝑦 𝑧) 𝑣 = 𝛼𝑋1 𝑦 (𝜆𝑝 → 𝛼𝑋1 (𝑧 𝑝) (𝜆𝑞 → 𝑣 (pairμ 𝑝 𝑞)))

We proceed by induction on 𝑦:

• If 𝑦 is of the form lf 𝑥, both sides of the identity reduce to η𝛼𝑋 𝑥 by definition
of 𝛼𝑋1 and we conclude the proof by reflexivity.

• If 𝑦 is of the form nd (𝑥 ⊳ 𝑦) 𝑡, the left-hand side of the identity is equal to

𝛼𝑋1(γ𝑀 (𝑧 (inl ★)) (𝜆𝑝 → μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞))))) 𝑣

while the right-hand side is equal to

μ𝛼
𝑋 𝑣1 (𝜆𝑝 → 𝛼𝑋1 (𝑡 𝑝) (𝜆𝑞 → 𝛼𝑋1 (𝑧 (inr (𝑝, 𝑞))) (𝜆𝑟 → 𝑣 (inrγ 𝑝 (pairμ 𝑞 𝑟)))))

where 𝑣1 :≡ 𝛼𝑋1 (𝑧 (inl ★)) (𝜆𝑝 → 𝑣 (inlγ 𝑝)). We obtain a first identity
using the fact that 𝛼𝑋1 is compatible with γ𝑀 .

𝛼𝑋1 (γ𝑀 (𝑧 (inl ★)) (𝜆𝑝 → μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞))))) 𝑣
= μ𝛼

𝑋 𝑣1 (𝜆𝑝 → 𝛼𝑋1 (μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞)))) (𝜆𝑞 → 𝑣 (inrγ 𝑝 𝑞)))

We conclude the proof using the inductive hypothesis to establish the
following identity for any position 𝑝 : Pos𝑀/ 𝑦:

𝛼𝑋1 (μ𝑀/ (𝑡 𝑝) (𝜆𝑞 → 𝑧 (inr (𝑝, 𝑞)))) (𝜆𝑞 → 𝑣 (inrγ 𝑝 𝑞)))
= 𝛼𝑋1 (𝑡 𝑝) (𝜆𝑞 → 𝛼𝑋1 (𝑧 (inr (𝑝, 𝑞))) (𝜆𝑟 → 𝑣 (inrγ 𝑝 (pairμ 𝑞 𝑟))))

□

We are now in a position to define the second 0-algebra.

Lemma 3.5.6. Let 𝑋 be a 𝑀-multicategory and let 𝑋0 : Fam𝑀/ be its family of
morphisms. Let 𝑋1 : Fam𝑀//𝑋0 be the family that we defined in Lemma 3.5.5, the
structure of 𝑋 gives rise to a family 𝑋2 : Fam𝑀//𝑋0/𝑋1 such that (𝑋1 , 𝑋2) is a 0-algebra.

3.5. 𝑀-multicategories 101

Proof. We first need to establish a composition function on 1-cells which has the
following type:

𝛼𝑋2 : {𝑖 : Idx𝑀//𝑋0} (𝑐 : Cns𝑀//𝑋0 𝑖) → (𝑥 :
−→
𝑋1 𝑐) → 𝑋1 𝑖

Let us pause a moment to understand what such a function amounts to. The
definition will essentially be the same as the one of 𝛼𝑋=

2
that we introduced in

Definition 3.4.1.
The type𝑋1 ((𝑖 , 𝑦)⊳(𝑐, 𝑥)) is defined as 𝛼𝑋1 𝑐 𝑥 = 𝑦. An inhabitant of this type

then witnesses that the pasting diagram (𝑐, 𝑥)multiplies to 𝑦. Now, suppose we
have a pasting diagram of 1-cells (𝑑, 𝑧) : ⟦𝑀//𝑋0⟧ 𝑋1 ((𝑖 , 𝑦)⊳ (𝑐, 𝑥)). The pasting
diagram (𝑑, 𝑧) then denotes a way of composing its source pasting diagram
(𝑐, 𝑥) to 𝑦. Having a function 𝛼𝑋2 then amounts to saying that for any such
configuration, we can prove that the unbiased composition of (𝑐, 𝑥) composes
to 𝑦.

We define 𝛼𝑋2 𝑐 𝑣 inductively on 𝑐:

• If 𝑐 is of the form lf (𝑖 , 𝑥) then we have to inhabit the type

𝑋1 ((𝑖 , 𝑥) ⊳ η𝑋∗0 𝑀/ (𝑖 , 𝑥))
which is defined as

𝛼𝑋1 (η𝑀/ 𝑖) (η-dec𝑀/ 𝑋0 𝑥) = 𝑥

and which holds since (𝑋0 , 𝑋1) is an algebra according to Lemma 3.5.5.

• If 𝑐 is nd ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) {𝑧} 𝑡 then we have to inhabit the type

𝑋1 ((𝑖 , 𝑥) ⊳ μ𝑋∗0 𝑀/ (𝑐, 𝑦) 𝑧)
which is defined as

𝛼𝑋1 (μ𝑀/ 𝑐 (𝜆𝑝 → pr1 (𝑧 𝑝))) (𝜆𝑝 → pr2 (𝑧 (prμ1 𝑝)) (prμ2 𝑝)) = 𝑥

The operation 𝛼𝑋1 being compatible with μ𝑀/, we have the identity 𝛼-μ:

𝛼𝑋1 (μ𝑀/ 𝑐 (𝜆𝑝 → pr1 (𝑧 𝑝))) (𝜆𝑝 → pr2 (𝑧 (prμ1 𝑝)) (prμ2 𝑝))
= 𝛼𝑋1 𝑐 (𝜆𝑝 → 𝛼𝑋1 (pr1 (𝑧 𝑝)) (pr2 (𝑧 𝑝)))

For any position 𝑝 : Pos𝑀/ 𝑐, the inductive hypothesis 𝛼𝑋2 (𝑡 𝑝) (𝜆𝑞 →
𝑣 (inr (𝑝, 𝑞))) of type 𝛼𝑋1 (pr1 (𝑧 𝑝)) (pr2 (𝑧 𝑝)) = 𝑦 𝑝 allows us to establish
the second identity:

𝛼𝑋1 𝑐 (𝜆𝑝 → 𝛼𝑋1 (pr1 (𝑧 𝑝)) (pr2 (𝑧 𝑝))) = 𝛼𝑋1 𝑐 𝑦

Finally, 𝑣 (inl ★) concludes the proof by providing the following identity:

𝛼𝑋1 𝑐 𝑦 = 𝑥

102 Chapter 3. Opetopic methods in type theory

We finally define the type family 𝑋2 : Fam (𝑀//𝑋0/𝑋1)with defining equation

𝑋2 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) :≡ 𝛼𝑋2 𝑐 𝑥 = 𝑦

Once again, it is immediate that (𝑋1 , 𝑋2) is a 0-algebra as the type∑
(𝑦:𝑋1 𝑖) (𝛼𝑋2 𝑐 𝑥 = 𝑦)

is contractible for any constructor 𝑐 : Cns𝑀 𝑖 and family 𝑥 :
−→
𝑋1 𝑐. □

At this stage, the data of wild multicategory structure allowed us to construct
the two families 𝑋1 and 𝑋2. Now, if we require in addition that 𝑋0 is a family of
sets, we can define a fibrant 𝑀/-opetopic type whose first three cell families are
𝑋0, 𝑋1, and 𝑋2.

Lemma 3.5.7. Let 𝐶 be a 𝑀-multicategory. Consider the 𝑀/-opetopic type 𝑋 defined
as follows:

• 𝑋0 is the family of morphisms of 𝐶.

• 𝑋1 and 𝑋2 are the families defined in Lemma 3.5.5 and Lemma 3.5.6.

• 𝑋>2 is the terminal opetopic type for the monad 𝑀//𝑋0/𝑋1/𝑋2.

Then 𝑋 is a fibrant opetopic type.

Proof. We already know that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras. We therefore
have to show that the opetopic type 𝑋>1 is fibrant. We show that (𝑋2 , 𝑋3) is
a 0-algebra, that is, for any index 𝑖 : Idx𝑀//𝑋0/𝑋1 , and pasting diagram (𝑐, 𝑦) :
⟦𝑀//𝑋0/𝑋1⟧ 𝑋2 𝑖, the type

∑
(𝑥:𝑋2 𝑖) 𝑋3 ((𝑖 , 𝑥) ⊳ (𝑐, 𝑦)) is contractible. It suffices

to show that both types of the sigma type are contractible. We already know
that 𝑋3 is a trivial family so all its fibres are contractible.

As for 𝑋2, it is defined as a family of identity types living in fibres of 𝑋1
which is itself defined as a family of identity types living in fibres of 𝑋0 which
are sets. We deduce that 𝑋1 is a family of propositions and that 𝑋2 is a family
of contractible types. We are left with 𝑋>2 but this is the terminal opetopic type
1𝑜𝑀//𝑋0/𝑋1/𝑋2

which is trivially fibrant. □

It remains to show that our constructions are inverse to each other.

Lemma 3.5.8. Let𝐶 be a𝑀-multicategory and let𝐶′ be the𝑀-multicategory associated
to the fibrant 𝑀/-opetopic type obtained from 𝐶 using Lemma 3.5.4, Lemma 3.5.5, and
Lemma 3.5.6. The 𝑀-multicategories 𝐶 and 𝐶′ are equivalent.

Proof. Firstly, the family of morphisms 𝑋 : Fam𝑀/ remains unchanged and all
we have to show is that the structure of 𝑀-multicategory of 𝐶′ is equivalent
to the one of 𝐶. As 𝑋 is a family of sets, we readily obtain that the laws are
propositions and must be equal. Therefore, we only have to show that the units
η𝐶 and η𝐶′ as well as the composition operations μ𝐶 and μ𝐶′ are equal.

3.5. 𝑀-multicategories 103

For any index 𝑥 : Idx𝑀 , we have the following definitional equalities:

η𝐶′ 𝑥
3.5.4≡ 𝛼𝑋1 (lf 𝑥) ⊥-elim
3.5.5≡ η𝐶 𝑥

where 𝑋1 is the family of 1-cells of the opetopic type obtained from 𝐶.
As for the composition operation, given a morphism 𝑓 : 𝑋 (𝑥 ⊳ 𝑦), and a

family 𝑔 :
−→
𝑋 (𝑦 ◀ 𝑧), we have:

μ𝐶′ 𝑓 𝑔
3.5.4≡ 𝛼𝑋1 𝜃 𝑓 ,𝑔
3.5.5≡ μ𝐶 𝑓 (𝜆𝑝 → μ𝐶 (𝑔 𝑝) (𝜆𝑞 → η𝐶 (𝑧 (pairμ 𝑝 𝑞))))
= μ𝐶 𝑓 𝑔

where the last identity is obtained by right unitality of μ𝐶 . □

Finally, we prove that defining a multicategory out of a fibrant set-truncated
opetopic type then reconstructing a fibrant opetopic type from this information
gives us back an equivalent opetopic type.

Lemma 3.5.9. Let 𝑋 be a fibrant 𝑀/-opetopic type whose family 𝑋0 is a family of sets.
Let 𝑋′ be the 𝑀/-opetopic type obtained from the 𝑀-multicategory associated with 𝑋
using Lemma 3.5.4, Lemma 3.5.5, and Lemma 3.5.6. Then 𝑋 and 𝑋′ are equivalent
opetopic types.

Proof. We have to show an equivalence of opetopic types between 𝑋 and 𝑋′ (see
Definition 3.1.4); that is, we need to define a coinductive sequence of equival-
ences between their cell families. We start by noticing that 𝑋0 ≡ 𝑋′0 therefore we
simply use the identity equivalence. Next, we have to show that for all index
𝑖 : Idx (𝑀//𝑋0), the equivalence 𝑋1 𝑖 ≃ 𝑋′1 𝑖 holds.

But Lemma 3.5.5 defines 𝑋′1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) to be 𝛼𝑋′1 𝑐 𝑥 = 𝑦
and Lemma 3.2.3 applied to 𝑋1 gives us the equivalence 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) ≃
(𝛼𝑋1 𝑐 𝑥 = 𝑦). We therefore conclude by establishing the identity 𝛼𝑋1 𝑐 𝑥 =

𝛼𝑋′1 𝑐 𝑥 for any constructor 𝑐 : Cns𝑀 𝑖 and family 𝑥 :
−→
𝑋0 𝑐 by induction on 𝑐.

• If 𝑐 is of the form lf (𝑖 , 𝑦), we must define the identity 𝛼𝑋1 (lf (𝑖 , 𝑦)) 𝑥 =
η𝛼𝑋1
(𝑖 , 𝑦). But η𝛼𝑋1

(𝑖 , 𝑦) ≡ 𝛼𝑋1 (lf (𝑖 , 𝑦)) ⊥-elim thus it suffices to show that
𝑥 = ⊥-elim which is the case as both functions have domain the empty
type ⊥.

• If 𝑐 is of the form nd (𝑦 ⊳ 𝑧) 𝑡, the identity to define is now

𝛼𝑋1 (nd (𝑦 ⊳ 𝑧) 𝑡) 𝑥
= μ𝛼

𝑋1
(𝑥 (inl ★)) (𝜆𝑝 → 𝛼𝑋′1 (𝑡 𝑝) (𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞))))

which is readily established by applying Corollary 3.2.7 and by using the
induction hypothesis.

104 Chapter 3. Opetopic methods in type theory

Finally, in order to conclude that the opetopic types 𝑋>1 and 𝑋′>1 are equivalent
— up to a base change— we note that they are both fibrant and that their families
of objects have contractible fibres. They are therefore necessarily equivalent to
the terminal opetopic type for the appropriate monad. □

We gather these results into the proof of our main theorem.

Proof of Theorem 3.5.3. Lemmas 3.5.4, 3.5.5, 3.5.6, and 3.5.7 define the two direc-
tions of the equivalence. Lemmas 3.5.8 and 3.5.9 show that they are both inverse
to each other. □

This concludes this section which shown that the type of truncated fibrant
𝑀/-opetopic types and 𝑀-multicategories are equivalent.

3.6 Fibrations of opetopic types

We take advantage of monad families and extend opetopic types to families
of opetopic types indexed over an opetopic type. We regard these families
as specifying a collection of opetopic cells each indexed over a base cell. We
conclude by introducing their fibrations which generalise the notion of fibrant
opetopic type to families of opetopic types. We will apply these notions in the
context of∞-categories in a subsequent section.

3.6.1 Families of opetopic types

Definition 3.6.1 (Family of opetopic types). Given a monad family 𝑀↓ :ℳ↓𝑀
and an opetopic type 𝑋 : 𝒪𝑀 , a family of opetopic types indexed by the monad
family 𝑀↓ over the opetopic type 𝑋 is defined by the following data:

• A type family 𝑋↓ : Fam↓𝑋0
𝑀↓.

• A family of opetopic types indexed by the monad family 𝑀↓/𝑋↓ over the
opetopic type 𝑋>0.

We denote 𝒪↓𝑋𝑀↓ the type of opetopic types over an opetopic type 𝑋 : 𝒪𝑀 and
indexed by a monad family 𝑀↓ :ℳ↓𝑀 .

3.6.2 Dependent algebras

Likewise, we extend the notions of algebras and fibrant opetopic types to the
dependent setting.

3.6. Fibrations of opetopic types 105

Notation. We extend the notation for pasting diagrams to monad
families. Let 𝑀↓ :ℳ↓𝑀 be a monad family indexed over a monad 𝑀
and let 𝑋↓ : Fam↓𝑋𝑀↓ be a family of types dependent on the indices of 𝑀↓
and on a family 𝑋 : Fam𝑀 . Let 𝑖↓ : Idx↓𝑀↓ 𝑖 be an index and let
(𝑐, 𝑦) : ⟦𝑀⟧ 𝑋 𝑖 be a pasting diagram. We define a notation for pasting
diagrams of cells depending on the cells of a base pasting diagram:

⟦𝑀↓⟧ 𝑋↓ 𝑖↓ (𝑐, 𝑦) :≡ ∑
(𝑐↓:Cns↓𝑀↓ 𝑖↓ 𝑐)

−→
𝑋↓ 𝑐↓ 𝑦

Notation. We extend our notation for depth-2 pasting diagrams of
dependent cells. Given a monad family 𝑀↓ :ℳ↓𝑀 , a family
𝑋↓ : Fam↓𝑋𝑀↓/, a cell 𝑡↓ : 𝑋↓ (𝑥↓ ⊳ 𝑦↓) 𝑡, and a family of cells

𝑢↓ :
−→
𝑋↓ (𝑦↓◀ 𝑧↓) 𝑢, we define the type of depth-2 pasting diagrams

whose root node is decorated with the cell 𝑡↓ and whose family of nodes
grafted on the root node is decorated with the cells specified by 𝑢↓. It is
defined as the pair (𝑐↓, 𝑑↓) : ⟦𝑀/↓⟧ 𝑋↓ 𝑥↓ 𝜃𝑡 ,𝑢 where 𝑐↓ is the depth-2
tree nd↓ (𝑥↓ ⊳ 𝑦↓) (𝜆𝑝 → η↓𝑀↓/ (Typ↓𝑀 𝑦↓ 𝑝 ⊳ 𝑧↓ 𝑝)) and where 𝑑↓ is a
family decorating the nodes of 𝑐↓ defined by the following equations:

𝑑↓ (inl ★) :≡ 𝑡↓
𝑑↓ (inr (𝑝, inl ★)) :≡ 𝑢↓ 𝑝

We denote this pasting diagram 𝜃𝑡↓,𝑢↓.

We start with the definition of dependent 0-algebras.

Definition 3.6.2 (Dependent 0-algebra). Let 𝑀↓ :ℳ↓𝑀 be a monad family, let
𝑋0 : Fam𝑀 , let𝑋1 : Fam𝑀/𝑋0 , let𝑋↓0 : Fam↓𝑋0

𝑀↓, and let𝑋↓1 : Fam↓𝑋1
𝑀↓/𝑋↓0 . We say

that (𝑋↓0 , 𝑋↓1) is a dependent 0-algebra if for any base cell 𝑢 : 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥))
and any pasting diagram (𝑐↓, 𝑥↓) : ⟦𝑀↓⟧ 𝑋↓0 𝑖↓ (𝑐, 𝑥), the following type is
contractible: ∑

(𝑦↓:𝑋↓0 𝑖↓ 𝑦) 𝑋↓1 ((𝑖↓, 𝑦↓) ⊳ (𝑐↓, 𝑥↓)) 𝑢

Let 𝑀↓ : ℳ↓𝑀 be a monad family and let 𝑋↓0 : Fam↓𝑋0
𝑀↓ and 𝑋↓1 :

Fam↓𝑋1
𝑀↓/𝑋↓0 be families. If (𝑋0 , 𝑋1) and (𝑋↓0 , 𝑋↓1) are 0-algebras, we recover

106 Chapter 3. Opetopic methods in type theory

the usual operations of composition of cells.

𝛼↓𝑋↓1 : {𝑖 : Idx𝑀} {𝑥 : ⟦𝑀⟧ 𝑋 𝑖} {𝑖↓ : Idx↓𝑀↓ 𝑖} (𝑥↓ : ⟦𝑀↓⟧ 𝑋↓ 𝑖↓ 𝑥)
→ 𝑋↓0 𝑖↓ (𝛼𝑋1 𝑥)

𝛼↓fill
𝑋↓1 : {𝑖 : Idx𝑀} {𝑥 : ⟦𝑀⟧ 𝑋 𝑖} {𝑖↓ : Idx↓𝑀↓ 𝑖} (𝑥↓ : ⟦𝑀↓⟧ 𝑋↓ 𝑖↓ 𝑥)
→ 𝑋↓1 ((. . . , 𝛼↓𝑋1 𝑥↓) ⊳ 𝑥↓) (𝛼fill

𝑋1
𝑥)

They are defined as the two projections of the centre of contraction of the witness
of the corresponding dependent 0-algebra using 𝛼fill

𝑋1
𝑐 𝑥 as base cell. Note the

use of the 0-algebra (𝑋0 , 𝑋1) to index the resulting dependent cells. We will
often place ourselves in a case where the base opetopic type is fibrant.

Similarly, in the case of dependent 0-algebras of a slice monad𝑀/, we obtain
the following operators:

η↓𝛼𝑋↓1 : {𝑖 : Idx𝑀} (𝑖↓ : Idx↓𝑀↓ 𝑖) → 𝑋↓0 (𝑖↓ ⊳ η↓𝑀↓ 𝑖↓) (η𝛼𝑋1
𝑖)

η↓𝛼fill

𝑋↓1 : {𝑖 : Idx𝑀} (𝑖↓ : Idx↓𝑀↓ 𝑖) → 𝑋↓1 ((. . . , η↓𝛼𝑋↓1 𝑖↓) ⊳ (lf↓ 𝑖↓,⊥-elim)) (η𝛼fill

𝑋1
𝑖)

with definining equations:

η↓𝛼𝑋↓1 𝑖↓ :≡ 𝛼↓𝑋↓1 (lf↓ 𝑖↓) ⊥-elim

η↓𝛼fill

𝑋↓1 𝑖↓ :≡ 𝛼↓fill
𝑋↓1 (lf↓ 𝑖↓) ⊥-elim

In addition, we have a biased composition along with its filler:

μ↓𝛼𝑋↓1 : {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ { 𝑓 : 𝑋0 (𝑥 ⊳ 𝑦)} {𝑔 :
−→
𝑋0 (𝑦 ◀ 𝑧)}

→ {𝑥↓ : Idx↓𝑀↓ 𝑥} {𝑦↓ : Cns↓𝑀↓ 𝑥↓ 𝑦} {𝑧↓ :
−−−−−−→
Cns↓𝑀↓ 𝑦↓ 𝑧}

→ (𝑓 ↓ : 𝑋↓0 (𝑥↓ ⊳ 𝑦↓) 𝑓) (𝑔↓ :
−−→
𝑋↓0 (𝑦↓◀ 𝑧↓) 𝑔)

→ 𝑋↓0 (𝑥↓ ⊳ μ↓𝑀↓ 𝑦↓ 𝑧↓) (μ𝛼
𝑋1
𝑓 𝑔)

μ↓𝛼fill

𝑋↓1 : {𝑥 : Idx𝑀} {𝑦 : Cns𝑀 𝑥} {𝑧 :
−−−−→
Cns𝑀 𝑦}

→ { 𝑓 : 𝑋0 (𝑥 ⊳ 𝑦)} {𝑔 :
−→
𝑋0 (𝑦 ◀ 𝑧)}

→ {𝑥↓ : Idx↓𝑀↓ 𝑥} {𝑦↓ : Cns↓𝑀↓ 𝑥↓ 𝑦} {𝑧↓ :
−−−−−−→
Cns↓𝑀↓ 𝑦↓ 𝑧}

→ (𝑓 ↓ : 𝑋↓0 (𝑥↓ ⊳ 𝑦↓) 𝑓) (𝑔↓ :
−−→
𝑋↓0 (𝑦↓◀ 𝑧↓) 𝑔)

→ 𝑋↓1 ((. . . ,μ↓𝛼𝑋↓1 𝑓 ↓ 𝑔↓) ⊳ 𝜃 𝑓 ↓,𝑔↓) (μ
𝛼fill

𝑋1
𝑓 𝑔)

with definining equations:

μ↓𝛼𝑋↓1 𝑓 ↓ 𝑔↓ :≡ 𝛼↓𝑋↓1 𝜃 𝑓 ↓,𝑔↓
μ↓𝛼fill

𝑋↓1 𝑓 ↓ 𝑔↓ :≡ 𝛼↓fill
𝑋↓1 𝜃 𝑓 ↓,𝑔↓

3.6. Fibrations of opetopic types 107

Algebraic laws In the presence of a further dependent algebra, we recover a
dependent version of the algebraic laws satisfied by a 1-algebra.

Let 𝑀↓ : ℳ↓𝑀 be a monad family indexed over a monad 𝑀 and let 𝑋↓0 :
Fam↓𝑋0

𝑀↓, 𝑋↓1 : Fam↓𝑋1
𝑀↓/𝑋↓0 , and 𝑋↓2 : Fam↓𝑋2

𝑀↓/𝑋↓0/𝑋↓1 be dependent families
over the families 𝑋0, 𝑋1, and 𝑋2. We suppose that (𝑋↓0 , 𝑋↓1) and (𝑋↓1 , 𝑋↓2) are
dependent 0-algebras and that (𝑋0 , 𝑋1) and (𝑋1 , 𝑋2) are 0-algebras.

In that case, (𝑋↓0 , 𝑋↓1) satisfies the usual algebraic laws albeit with an ad-
ditional transport:

transport𝑋↓0 𝑖↓ 𝛼-η (𝛼↓𝑋↓1 (η↓𝑋↓1 𝑖↓) 𝑥↓) = 𝑥↓ (posη 𝑖)
transport𝑋↓0 𝑖↓ 𝛼-μ (𝛼↓𝑋↓1 (μ↓𝑋↓1 𝑐↓ 𝑑↓) 𝑥↓)

= 𝛼↓𝑋↓1 𝑐↓ (𝜆𝑝 → 𝛼↓𝑋↓1 (𝑑↓ 𝑝) (𝜆𝑞 → 𝑥↓ (pairμ 𝑝 𝑞)))
We do not prove these laws as they are a straightforward generalisation of the
non-dependent ones. We say that (𝑋↓0 , 𝑋↓1) is a dependent 1-algebra.

Similarly, if the monad 𝑀 is of the form 𝑀′/ for some monad 𝑀′, the
operation μ↓𝛼𝑋↓1 is associative and unital with unit η↓𝛼𝑋↓1 :

transport𝑋↓0 (𝑥↓⊳𝑦↓) μ𝛼
𝑋1

-unit-r (μ↓𝛼𝑋↓1 𝑓 ↓ (𝜆𝑝 → η↓𝛼𝑋↓1(Typ↓𝑀↓ 𝑦↓ 𝑝))) = 𝑓 ↓
transport𝑋↓0 (𝑥↓⊳𝑦↓ (posη 𝑖)) μ𝛼

𝑋1
-unit-l (μ↓𝛼𝑋↓1(η↓𝑋↓1 𝑖↓) 𝑓 ↓) = 𝑓 ↓ (posη 𝑖)

transport𝑋↓0 (𝑥↓⊳μ↓𝑀↓ 𝑦↓ (𝜆𝑝→μ↓𝑀↓ (𝑧↓ 𝑝) (𝜆𝑞→𝑡↓ (pairμ 𝑝 𝑞)))) μ𝛼
𝑋1

-assoc
(μ↓𝛼𝑋↓1 𝑓 ↓ (𝜆𝑝 → μ↓𝛼𝑋↓1 (𝑔↓ 𝑝) (𝜆𝑞 → ℎ↓ (pairμ 𝑝 𝑞))))

= μ↓𝛼𝑋↓1 (μ↓
𝛼
𝑋↓1 𝑓 ↓ 𝑔↓) ℎ↓

3.6.3 Fibrations of opetopic types

We are now able to define fibrations of opetopic types.

Definition 3.6.3 (Fibration of opetopic types). Let𝑀↓ :ℳ↓𝑀 be a monad family
indexed over a monad 𝑀 and let 𝑋↓ be a 𝑀↓-opetopic type over a 𝑀-opetopic
type 𝑋. We say that 𝑋↓ is a fibration of opetopic types if it satisfies the following
conditions:

• (𝑋↓0 , 𝑋↓1) is a dependent 0-algebra.

• 𝑋↓>0 is a fibration of opetopic types.

We also define fibrations of∞-categories which we will use in Section 3.9.

Definition 3.6.4 (Fibration of ∞-categories). Let 𝑋 be an ∞-category. A family
of opetopic types 𝑋↓ : 𝒪↓𝑋Id↓ over 𝑋 is a fibration of ∞-categories if 𝑋↓>0 is a
fibration of opetopic types. We denote ∞-category↓𝑋 the type of fibrations of
∞-categories over 𝑋.

We expect the fibres of a fibration of∞-categories to be∞-categories. How-
ever, there is no easy way to define such a construction in our current formalism.

108 Chapter 3. Opetopic methods in type theory

3.6.4 Dependent sums of opetopic types

Opetopic types are closed under dependent sums. Let 𝑋↓ : 𝒪↓𝑋𝑀↓ be a family
of opetopic types indexed over an opetopic type 𝑋 : 𝒪𝑀 . We form the opetopic
type

Σ𝑜(𝑋, 𝑋↓) : 𝒪Σ𝑚(𝑀,𝑀↓)

It is defined by coinduction by the following equations

Σ𝑜(𝑋, 𝑋↓)0 :≡ Σ↓(𝑋0 , 𝑋↓0)
Σ𝑜(𝑋, 𝑋↓)>0 :≡ 𝑓 ∗(Σ𝑜(𝑋>0 , 𝑋↓>0))

where the second equation specifies a reindexing (Definition 3.1.3) along a
monad map 𝑓 whose type is

Σ𝑚(𝑀,𝑀↓)/Σ↓(𝑋0 , 𝑋↓0) →𝑚 Σ𝑚(𝑀/𝑋0 , 𝑀↓/𝑋↓0)

and which is defined as

Σ𝑚/(𝑋∗0 𝑀, 𝑋↓∗0 𝑀↓) ◦𝑚 Σ𝑚∗(𝑀,𝑀↓, 𝑋0 , 𝑋↓0)/

We end this short section by proving that fibrant opetopic types are closed under
dependent sums.

Lemma 3.6.5. Let 𝑋↓ : 𝒪↓𝑋𝑀↓ be a fibration of opetopic types indexed over a fibrant
opetopic type 𝑋 : 𝒪𝑀 . The opetopic type Σ𝑜(𝑋, 𝑋↓) is fibrant.

Proof. We first have to show that for any index (𝑖 , 𝑖↓) : IdxΣ𝑚(𝑀,𝑀↓), any con-
structor (𝑐, 𝑐↓) : CnsΣ𝑚(𝑀,𝑀↓) (𝑖 , 𝑖↓), and any family of elements 𝑥 :

−−−−−−−−−−→
Σ𝑚(𝑀,𝑀↓) 𝑐,

the following type is contractible:∑
((𝑦,𝑦↓):

∑
(𝑦:𝑋0 𝑖) 𝑋↓0 𝑖↓ 𝑦)

∑
(𝑧:𝑋1 ((𝑖 ,𝑦)⊳(𝑐,pr1◦𝑥))) 𝑋↓1 ((𝑖↓, 𝑦↓) ⊳ (𝑐↓, pr2 ◦ 𝑥)) 𝑧

Reordering the sigma types, it is equivalent to prove that the following type is
contractible:∑
((𝑦,𝑧):

∑
(𝑦:𝑋0 𝑖) 𝑋1 ((𝑖 , 𝑦) ⊳ (𝑐, pr1 ◦ 𝑥)))

∑
(𝑦↓:𝑋↓0 𝑖↓ 𝑦) 𝑋↓1 ((𝑖↓, 𝑦↓) ⊳ (𝑐↓, pr2 ◦ 𝑥)) 𝑧

But this follows from the fact that (𝑋0 , 𝑋1) and (𝑋↓0 , 𝑋↓1) are 0-algebras. Sigma
types of contractible types are again contractible.

It remains to prove that the opetopic type 𝑓 ∗(Σ𝑜(𝑋>0 , 𝑋↓>0)) is fibrant where
𝑓 is the appropriate monad morphism. But fibrant opetopic types are closed
under reindexing and the coinduction hypothesis states that Σ𝑜(𝑋>0 , 𝑋↓>0) is
fibrant as 𝑋>0 and 𝑋↓>0 are themselves fibrant which concludes this proof. □

3.7. The opetopic universe of types 109

3.7 The opetopic universe of types

A compelling argument in favour of an opetopic theory of types is the ease with
which we can define the universal opetopic fibration of types. Recall that in type
theory, the universal fibration of types is the first projection of pointed types
pr1 :

∑
(𝐴:𝒰) 𝐴→𝒰 (see Section 4.8 of the HoTT book).

The universal fibration of Id-opetopic types is the unique fibration 𝑓 :𝒰 𝑜• →
𝒰 𝑜 such that any fibration of Id-opetopic types 𝑔 : 𝐴→ 𝐵 arises uniquely as the
pullback of some fibration �̃� : 𝐵→𝒰 𝑜 along 𝑓 .

𝐴 𝒰 𝑜•

𝐵 𝒰 𝑜

𝑔 𝑓

�̃�

In this section, we will only define the map 𝑓 : 𝒰 𝑜• →𝒰 𝑜 regarded as a family
of opetopic types𝒰 𝑜• : 𝒪↓𝒰 𝑜

Id↓ over𝒰 𝑜 : 𝒪Id without proving that it is a fibration,
let alone that it is the universal one which is left for future work.

Intuitively,𝒰 𝑜 is the opetopic type whose objects are types and whose higher
cells are fibrant relations: relations which intuitively correspond to equivalences.
𝒰 𝑜• is then the family of opetopic types whose objects over a type 𝑋 are the
elements of 𝑋 and whose higher cells over a given fibrant relation and a frame
— the data of a source pasting diagram and a target cell — are the witnesses
that this relation holds for the given frame.

First, note that for any monad 𝑀 : ℳ and monad family 𝑀↓ : ℳ↓𝑀 over
𝑀, there are two canonical type families Rel𝑀↓ : Fam𝑀 and Rel↓𝑀↓ : Fam↓Rel𝑀↓

𝑀↓
defined by the following equations:

Rel𝑀↓ 𝑖 :≡ Idx↓𝑀↓ 𝑖 →𝒰
Rel↓𝑀↓ 𝑖↓ 𝑅 :≡ 𝑅 𝑖↓

We will see that these two families arrange themselves into opetopic types. The
type family Rel𝑀↓ can be regarded as a family of relations over Idx↓𝑀↓ 𝑖 while
the family Rel↓𝑀↓ associates, to any relation 𝑅 and any element 𝑖↓ : Idx↓𝑀↓ 𝑖, the
type 𝑅 𝑖↓ of witnesses that 𝑖↓ satisfies the relation 𝑅.

As we are interested in fibrant relations, we specialise our type families in
the case the indexing monad is of the form 𝑀↓/𝑋↓ for some monad family
𝑀↓ :ℳ↓𝑀 and dependent family 𝑋↓ : Fam↓𝑋𝑀↓:

Rel 𝑓𝑀↓,𝑋↓ 𝑖 :≡ ∑
(𝑅:Rel𝑀↓/𝑋↓ 𝑖) is-algebraic 𝑖 𝑅

Rel↓ 𝑓𝑀↓,𝑋↓ 𝑖↓ (𝑅, 𝑅-is-algebraic) :≡ 𝑅 𝑖↓

110 Chapter 3. Opetopic methods in type theory

where is-algebraic is a predicate defined as follows:

is-algebraic ((𝑖 , 𝑦) ⊳ (𝑐, 𝑥)) 𝑅 :≡ {𝑖↓ : Idx↓𝑀↓ 𝑖} (𝑐↓ : Cns↓𝑀↓ 𝑖↓ 𝑐)
→ (𝑥↓ : Fam↓𝑋↓𝑀↓ 𝑐↓ 𝑥)
→ is-contr (∑(𝑦↓:𝑋↓ 𝑖↓ 𝑦) 𝑅((𝑖↓, 𝑦↓), (𝑐↓, 𝑥↓)))

We now define the universe.

Definition 3.7.1 (The opetopic universe of types). The opetopic universe of types
and their fibrant relations𝒰 𝑜 is the Id-opetopic type defined by the equations

𝒰 𝑜
0 :≡ RelId↓
𝒰 𝑜

>0 :≡ 𝒰 𝑜
Id↓,RelId↓

where the 𝑀/𝑋-opetopic type𝒰 𝑜
𝑀↓,𝑋↓ is defined coinductively by the equations

(𝒰 𝑜
𝑀↓,𝑋↓)0 :≡ Rel 𝑓𝑀↓,𝑋↓

(𝒰 𝑜
𝑀↓,𝑋↓)>0 :≡ 𝒰 𝑜

𝑀↓/𝑋↓,Rel 𝑓𝑀↓,𝑋↓

for any monad family 𝑀↓ :ℳ↓𝑀 and family 𝑋↓ : Fam↓𝑋𝑀↓.

We continue with the definition of the universal fibration.

Definition 3.7.2 (The universal opetopic fibration of types). The universal opetopic
fibration of types 𝒰 𝑜• is the family of opetopic types over 𝒰 𝑜 indexed by the
monad family Id↓:

𝒰 𝑜• 0 :≡ Rel↓Id↓
𝒰 𝑜• >0 :≡ 𝒰 𝑜• Id↓,Rel↓Id↓

where the family of opetopic types 𝒰 𝑜• Id↓,Rel↓Id↓ over 𝒰 𝑜
Id↓,Rel↓Id↓ indexed by the

monad family 𝑀↓/𝑋↓ is defined coinductively by the equations

(𝒰 𝑜• 𝑀↓,𝑋↓)0 :≡ Rel↓ 𝑓𝑀↓,𝑋↓
(𝒰 𝑜• 𝑀↓,𝑋↓)>0 :≡ 𝒰 𝑜• 𝑀↓/𝑋↓,Rel↓ 𝑓𝑀↓,𝑋↓

for any monad family 𝑀↓ :ℳ↓𝑀 and family 𝑋↓ : Fam↓𝑋𝑀↓.

This concludes the definition of the universal fibration of fibrant opetopic
types.

3.8. The opetopic type associated with a type 111

3.8 The opetopic type associated with a type

It is well-known that types are∞-groupoids (Lumsdaine 2010; Van Den Berg and
Garner 2011). It is therefore expected that we can define the fibrant Id-opetopic
type associated with a type 𝑋. To this effect, we will use the monad family Id↓𝑋 .

First, note that for any monad 𝑀 and monad family 𝑀↓ : ℳ↓𝑀 , there are
two canonical type families Rel𝑀↓ : Fam𝑀 and Rel↓𝑀↓ : Fam↓Rel𝑀↓

𝑀↓ defined by
the following equations:

Rel𝑀↓ :≡ Idx↓𝑀↓
Rel↓𝑀↓ 𝑖↓ 𝑗↓ :≡ 𝑖↓ = 𝑗↓

This is enough to define the opetopic type associated with a type.

Definition 3.8.1 (Associated opetopic type). For any family of monad 𝑀↓ :
ℳ↓𝑀 , we define the 𝑀-opetopic type 𝑀↓𝑜 :

𝑀↓𝑜0 :≡ Idx↓𝑀↓
𝑀↓𝑜>0 𝑖 :≡ (𝑀↓/Rel↓𝑀↓)𝑜

The opetopic type associated with a type 𝑋 is the opetopic type Id↓𝑜𝑋 .

It remains to establish that Id↓𝑜𝑋 is fibrant. To this effect, we introduce a
few more results about monad families and in particular those of the form
𝑀↓/Rel↓𝑀↓.

First, we will need the notion of fibration of monads.

Definition 3.8.2 (Fibration of monads). Let 𝑀↓ be a monad family indexed over
a monad 𝑀. We say that 𝑀↓ is a fibration of monads if, for any constructor
𝑐 : Cns𝑀 𝑖 and family of indices 𝑥 :

−−−−→
Idx↓𝑀 𝑐, there is an index 𝑖↓ : Idx↓𝑀↓ 𝑖, a

constructor 𝑐↓ : Cns↓𝑀↓ 𝑖↓ 𝑐 satisfying Typ↓𝑀↓ 𝑐↓ = 𝑥. Moreover, this data is
unique. That is, the following type is contractible:∑

(𝑖↓:Idx↓𝑀↓ 𝑖)
∑
(𝑐↓:Cns↓𝑀↓ 𝑖↓ 𝑐) Typ↓𝑀↓ 𝑐↓ = 𝑥

In particular, one can establish that a fibration of monads 𝑀↓ implies that
(Idx↓𝑀↓, Idx↓𝑀↓/Rel↓𝑀↓) is a 0-algebra using the equivalence

(∑(𝑖↓:Idx↓𝑀↓ 𝑖)
∑
(𝑐↓:Cns↓𝑀↓ 𝑖↓ 𝑐) Typ↓𝑀↓ 𝑐↓ = 𝑥) (3.1)

≃ (∑(𝑖↓:Idx↓𝑀↓ 𝑖) Idx↓𝑀↓/Rel↓𝑀↓ ((𝑖 , 𝑖↓) ⊳ (𝑐, 𝑥)))

We now show that a particular slice construction is a fibration of monads.

Lemma 3.8.3. Let 𝑀↓ be a monad family indexed over a monad 𝑀. The monad family
𝑀↓/Rel↓𝑀↓ is a fibration of monads over 𝑀/Rel𝑀↓.

112 Chapter 3. Opetopic methods in type theory

Proof. We only sketch the proof, the fully detailed proof can be found in the
formalisation. Let 𝑖 : Idx𝑀/Rel𝑀↓ , 𝑐 : Cns𝑀/Rel𝑀↓ 𝑖, and 𝑥 :

−−−−−−−−−−−→
Idx↓𝑀↓/Rel↓𝑀↓ 𝑐. We

prove that the necessary data exists and is unique by induction on 𝑐. Essentially,
we show that a pasting diagram 𝑐 can be uniquely lifted to a pasting diagram
dependent on 𝑐 — therefore having the same form — and whose nodes are
given by 𝑥.

• If 𝑐 is of the form lf (𝑖 , 𝑖↓), it uniquely lifts to lf↓ (𝑖↓, refl) and the identity
Typ↓𝑀↓/Rel↓𝑀↓ (lf↓ (𝑖↓, refl)) = 𝑥 is uniquely witnessed as the two sides of
the identity are functions whose domain is the empty type.

• If 𝑐 is of the form nd (𝑦 ⊳ 𝑧) 𝑡, it uniquely lifts to nd↓ (𝑥 (inl★)) 𝑡↓ such that

Typ↓𝑀↓/Rel↓𝑀↓ (nd↓ (𝑥 (inl★)) 𝑡↓) = 𝑥

where 𝑡↓ is the induction hypothesis applied to 𝑡 𝑝 and 𝜆𝑞 → 𝑥 (inr (𝑝, 𝑞))
for any position 𝑝 : Pos𝑀/Rel𝑀↓ 𝑧 up to a tedious transport that we do not
detail in order to get the indexing right.

□

This suffices to define a fibrant opetopic type from a fibration of monads.

Lemma 3.8.4. Let 𝑀↓ be a fibration of monads over a monad 𝑀. Then the opetopic
type 𝑀↓𝑜 is fibrant.

Proof. Proving that (𝑀↓𝑜0 , 𝑀↓𝑜1) is a 0-algebra essentially uses the fact that 𝑀↓ is
a fibration of monads along with Equivalence 3.1.

We conclude by applying the coinductive hypothesis to the monad family
𝑀↓/Rel↓𝑀↓ which is a fibration of monads according to Lemma 3.8.3. □

As a corollary, we obtain that Id↓𝑜𝑋 is fibrant.

Corollary 3.8.5. The opetopic type Id↓𝑜𝑋 is fibrant.

Proof. It is easy to check that Id↓𝑋 is a fibration of monads which allows to
conclude that Id↓𝑜𝑋 is fibrant by virtue of Lemma 3.8.4. □

The operation of defining a fibrant opetopic type from a type and the op-
eration of extracting the type of objects of a fibrant opetopic type are actually
inverse to each other. This statement corresponds to the internalisation of the
result stating that types are ∞-groupoids (Finster, Allioux and Sozeau 2021)
whose proof is not detailed here.

3.9 Adjunctions

In order to display the capabilities of our formalism, we define the notion of
adjoint functors following Lurie’s definition (Lurie 2009, Definition 5.2.2.1) as
an∞-category over the interval.

3.9. Adjunctions 113

Notation. In this section we will only deal with∞-categories which are
Id-indexed opetopic types 𝑋 whose morphisms are therefore unary. We
will denote their type of objects 𝑋0 instead of 𝑋0 ★. Also, for any pair of
objects 𝑥, 𝑦 : 𝑋0, we will write 𝑋1 (𝑥 ⊲ 𝑦) for their type of morphisms
from 𝑥 to 𝑦 instead of the more convoluted 𝑋1 ((★, 𝑦) ⊳ (★,𝜆𝑝 → 𝑥)).
Similarly for fibrations of∞-categories 𝑋↓ over an∞-category 𝑋, we will
denote 𝑋↓0 𝑥 their type of objects over an object 𝑥 instead of 𝑋↓0 ★ 𝑥.
Also, for any pair of objects 𝑥↓ : 𝑋↓0 𝑥 and 𝑦↓ : 𝑋↓0 𝑦 along with a base
morphism 𝑓 : 𝑋1 (𝑥 ⊲ 𝑦), we will write 𝑋↓1 (𝑥↓ ⊲ 𝑦↓) 𝑓 for the type of
morphisms from 𝑥↓ to 𝑦↓ over 𝑓 in place of 𝑋↓1 ((★, 𝑦↓) ⊳ (★,𝜆𝑝 → 𝑥↓)) 𝑓 .

Finally, we will denote the composition of morphisms 𝑔 ◦ 𝑓 instead of
μ𝛼
𝑋2
𝑔 (η-dec 𝑓) or μ↓𝛼𝑋↓2 𝑔 (η-dec 𝑓) in the dependent case. As for the

unit, we will write 1𝑥 instead of η𝛼𝑋2
𝑥 or η↓𝛼𝑋2

𝑥 in the dependent case.

We start with the definition of the higher categorical counterpart of Grothen-
dieck (op)fibrations which rely on the existence of enough (co)cartesian morph-
isms.

Definition 3.9.1 (Cartesian morphism). Let 𝑋↓ : ∞-category↓𝑋 be a fibration of
∞-categories over an∞-category 𝑋. Let 𝑓 ↓ : 𝑋↓1 (𝑥↓⊲ 𝑦↓) 𝑓 be a morphism over
𝑓 : 𝑋1 (𝑥 ⊲ 𝑦), 𝑓 ↓ is a cartesian morphism if for any morphism 𝑔↓ : 𝑋1 (𝑧↓ ⊲ 𝑦↓) 𝑔
over 𝑔 : 𝑋1 (𝑧 ⊲ 𝑦) and any morphism ℎ : 𝑋1 (𝑧 ⊲ 𝑥) such that there is an identity
𝑝 : 𝑓 ◦ ℎ = 𝑔, there exists a unique morphism ℎ↓ : 𝑋↓1 (𝑧↓ ⊲ 𝑥↓) ℎ such that

transport𝑋↓1 (𝑧↓⊲𝑦↓) 𝑝 (𝑓 ↓ ◦ ℎ↓) = 𝑔↓
That is, the following type is contractible∑

(ℎ↓:𝑋↓1 (𝑧↓⊲𝑥↓) ℎ) transport𝑋↓1 (𝑧↓⊲𝑦↓) 𝑝 (𝑓 ↓ ◦ ℎ↓) = 𝑔↓
This leads us to the definition of Grothendieck fibration.

Definition 3.9.2 (Grothendieck fibration). Let 𝑋↓ : ∞-category↓𝑋 be a fibration
of ∞-categories over 𝑋. 𝑋↓ is a Grothendieck fibration if for any morphism
𝑓 : 𝑋1 (𝑥 ⊲ 𝑦) and any object 𝑦↓ : 𝑋↓0 𝑦 there is an object 𝑥↓ : 𝑋↓0 𝑥 and a
cartesian morphism 𝑓 ↓ : 𝑋↓1 (𝑥↓ ⊲ 𝑦↓) 𝑓 over 𝑓 .

Similarly, we define cocartesian morphisms and opfibrations.

Definition 3.9.3 (Cocartesian morphism). Let𝑋↓ : ∞-category↓𝑋 be a fibration of
∞-categories over an∞-category 𝑋. Let 𝑓 ↓ : 𝑋↓1 (𝑥↓⊲ 𝑦↓) 𝑓 be a morphism over
𝑓 : 𝑋1 (𝑥 ⊲ 𝑦), 𝑓 ↓ is a cocartesian morphism if for any morphism 𝑔↓ : 𝑋1 (𝑥↓⊲ 𝑧↓) 𝑔
over 𝑔 : 𝑋1 (𝑥 ⊲ 𝑧) and any morphism ℎ : 𝑋1 (𝑦 ⊲ 𝑧) such that there exists an
identity 𝑝 : ℎ ◦ 𝑓 = 𝑔, there exists a unique morphism ℎ↓ : 𝑋↓1 (𝑦↓ ⊲ 𝑧↓) ℎ such
that

transport𝑋↓1 (𝑥↓⊲𝑧↓) 𝑝 (ℎ↓ ◦ 𝑓 ↓) = 𝑔↓

114 Chapter 3. Opetopic methods in type theory

That is, the following type is contractible∑
(ℎ↓:𝑋↓1 (𝑦↓⊲𝑧↓) ℎ) transport𝑋↓1 (𝑥↓⊲𝑧↓) 𝑝 (ℎ↓ ◦ 𝑓 ↓) = 𝑔↓

Definition 3.9.4 (Grothendieck opfibration). Let 𝑋↓ : ∞-category↓𝑋 be a fibra-
tion of∞-categories over 𝑋. 𝑋↓ is a Grothendieck opfibration if for any morph-
ism 𝑓 : 𝑋1 (𝑥 ⊲ 𝑦) and any object 𝑥↓ : 𝑋↓0 𝑥 there is an object 𝑦↓ : 𝑋↓0 𝑦 and a
cocartesian morphism 𝑓 ↓ : 𝑋↓1 (𝑥↓ ⊲ 𝑦↓) 𝑓 over 𝑓 .

Next, we define the interval∞-category 𝐼.

Definition 3.9.5. The interval 𝐼 is the∞-category defined as follows:

• The type of objects 𝐼0 is 2 whose sole elements are 0 and 1.

• The family of morphisms is defined by case analysis on the objects:

𝐼1 (𝑥 ⊲ 𝑦) :≡
{

0 if 𝑥 ≡ 1 and 𝑦 ≡ 0
1 otherwise

• 𝐼>1 is 1𝑜Id/𝐼0/𝐼1 , the terminal opetopic type for the monad Id/𝐼0/𝐼1.

It is easy to see that the opetopic type 𝐼>0 is fibrant. 𝐼 is therefore an∞-category.

At last, we define adjunctions following Lurie’s definition (Lurie 2009, The-
orem 5.2.2.1) although we cannot establish a formal equivalence between each
fibre and their corresponding∞-category (i.e., we cannot state that the fibres of
a fibration of∞-categories are∞-categories in the present formalism).

Definition 3.9.6 (Adjunction). An adjunction is a fibration of∞-categories over
the interval 𝐼 which is both a Grothendieck fibration and a Grothendieck op-
fibration.

In that case, the adjunction is between the two ∞-categories defined by the
fibres. We now show that this definition is compatible with a more explicit
characterisation of adjunction in low dimensions. We will in particular show
that it induces a map on objects, a map on morphisms which satisfies the usual
laws of functors, and, moreover, an equivalence of homs stemming from the
adjunction.

We first check the functor part.

Lemma 3.9.7. Given a Grothendieck opfibration over the interval 𝐶 : ∞-category↓𝐼 ,
we can define two functions between the two fibres:

𝑓0 : 𝐶0 0→ 𝐶0 1
𝑓1 : {𝑥 𝑦 : 𝐶0 0} → 𝐶1 (𝑥 ⊳ 𝑦) 10 → 𝐶1 (𝑓0 𝑥 ⊳ 𝑓0 𝑦) 11

satisfying the following laws:

𝑓1 (𝑔 ◦ 𝑓) = 𝑓1 𝑔 ◦ 𝑓1 𝑓
𝑓1 1𝑥 = 1 𝑓0 𝑥

3.9. Adjunctions 115

Proof. The proof is standard in category theory. We start with the definition of
𝑓0. For any object 𝑥 : 𝐶0 0, the Grothendieck opfibration guarantees the existence
of a morphism over★ : 𝐼 (0⊲1) that we denote 𝑓 fill

0 𝑥 whose source is 𝑥 and whose
target over 1 is the image of 𝑥 under 𝑓0.

Next, for any morphism 𝑔 : 𝐶1 (𝑥 ⊲ 𝑦) 10 in the fibre over 0, we can compose
it with 𝑓 fill

0 𝑦 : 𝐶1 (𝑦 ⊲ 𝑓0 𝑦) ★ and, given that 𝑓 fill
0 𝑥 is a cocartesian morphism,

there exists a morphism of type 𝐶1 (𝑓0 𝑥 ⊲ 𝑓0 𝑦) 11 which, composed with 𝑓 fill
0 𝑥

is equal to 𝑓 fill
0 𝑦 ◦ 𝑔. We associate this morphism with the image of 𝑔 under 𝑓1.

This determines the function 𝑓1.

𝑥 𝑓0 𝑥

𝑦 𝑓0 𝑦

𝑔

𝑓 fill
0 𝑥

𝑓1 𝑔

𝑓 fill
0 𝑦

It remains to check the laws. Let 𝑔 : 𝐶1 (𝑥⊲𝑦) 10 and ℎ : 𝐶1 (𝑦⊲𝑧) 10 be morphisms
in the fibre over 0. We want to establish the identity 𝑓1 (ℎ ◦ 𝑔) = 𝑓1 ℎ ◦ 𝑓1 𝑔.

We start by noticing that 𝑓1 (ℎ ◦ 𝑔) is obtained as the lift of the morphism
𝑓 fill
0 𝑧◦ℎ◦𝑔 along the cocartesian morphism 𝑓 fill

0 𝑥. We have to show that 𝑓1 ℎ◦ 𝑓1 𝑔
is another lifting candidate then conclude by uniqueness of the lift. By definition
of 𝑓1 𝑔, we have a first identity 𝑓1 𝑔 ◦ 𝑓 fill

0 𝑥 = 𝑓 fill
0 𝑦 ◦ 𝑔 then by definition of 𝑓1 ℎ,

we have a second identity 𝑓1 ℎ ◦ 𝑓 fill
0 𝑦 = 𝑓 fill

0 𝑧 ◦ ℎ. This allows to conclude that
𝑓1 ℎ ◦ 𝑓1 𝑔 ◦ 𝑓 fill

0 𝑥 is equal to 𝑓 fill
0 𝑧 ◦ ℎ ◦ 𝑔 and therefore that 𝑓1 (ℎ ◦ 𝑔) = 𝑓1 ℎ ◦ 𝑓1 𝑔

by uniqueness of the lift.

𝑥 𝑓0 𝑥

𝑦 𝑓0 𝑦

𝑧 𝑓0 𝑧

𝑔

𝑓 fill
0 𝑥

𝑓1 𝑔

ℎ

𝑓 fill
0 𝑦

𝑓1 ℎ

𝑓 fill
0 𝑧

Regarding the mapping of identities, for any object 𝑥 : 𝐶0 0 in the fibre over 0,
the morphism 1 𝑓0 𝑥 is defined as the lift of 𝑓 fill

0 𝑥 ◦1𝑥 , that is 𝑓 fill
0 𝑥, along 𝑓 fill

0 𝑥. But
1 𝑓0 𝑥 is an equally good lifting candidate therefore we conclude by uniqueness

116 Chapter 3. Opetopic methods in type theory

of the lift.

𝑥 𝑓0 𝑥

𝑥 𝑓0 𝑥

1𝑥

𝑓 fill
0 𝑥

1 𝑓0 𝑥

𝑓 fill
0 𝑥

□

A Grothendieck fibration induces the same data but in the other direction.

Lemma 3.9.8. Given a Grothendieck fibration over the interval 𝐶 : ∞-category↓𝐼 , we
can define two functions:

𝑓0 : 𝐶0 1→ 𝐶0 0
𝑓1 : {𝑥 𝑦 : 𝐶0 1} → 𝐶1 (𝑥 ⊳ 𝑦) 11 → 𝐶1 (𝑓0 𝑥 ⊳ 𝑓0 𝑦) 10

satisfying the following laws:

𝑓1 (𝑔 ◦ 𝑓) = 𝑓1 𝑔 ◦ 𝑓1 𝑓
𝑓1 1𝑥 = 1 𝑓0 𝑥

Proof. The proof is similar to the one of about Grothendieck opfibrations but
proceeds in the other direction. □

We now check that the pair of functors thus defined forms an adjunction.

Lemma 3.9.9. Let 𝐶 be an adjunction. For any pair of objects 𝑥, 𝑦 : 𝐶0 0 in the fibre
over 0, we have the following equivalence:

𝐶1 (𝑓0 𝑥 ⊲ 𝑦) 11 ≃ 𝐶1 (𝑥 ⊲ 𝑔0 𝑦) 10

where 𝑓0 (resp. 𝑔0) is the action on objects due to the structure of Grothendieck opfibration
(resp. fibration).

Proof. We start with the definition of the forward direction of the equivalence
and define the function

𝑒 : 𝐶1 (𝑓0 𝑥 ⊲ 𝑦) 11 → 𝐶1 (𝑥 ⊲ 𝑔0 𝑦) 10

Given a morphism ℎ : 𝐶1 (𝑓0 𝑥 ⊲ 𝑦) 11, we compose it with 𝑓 fill
0 𝑥 then we use

the cartesian nature of 𝑔fill
0 𝑦 to obtain a morphism of type 𝐶1 (𝑥 ⊲ 𝑔0 𝑦) 10 that

3.9. Adjunctions 117

we assign to the image of ℎ under 𝑒. This is the unique morphism satisfying
𝑔fill

0 𝑦 ◦ 𝑒 ℎ = ℎ ◦ 𝑓 fill
0 𝑥.

𝑥 𝑓0 𝑥

𝑔0 𝑦 𝑦

𝑒 ℎ

𝑓 fill
0 𝑥

ℎ

𝑔fill
0 𝑦

Conversely, we define the reciprocate function

𝑒−1 : 𝐶1 (𝑥 ⊲ 𝑔0 𝑦) 10 → 𝐶1 (𝑓0 𝑥 ⊲ 𝑦) 11

Given a morphism ℎ : 𝐶1 (𝑥 ⊲ 𝑔0 𝑦) 10, we compose it with 𝑔fill
0 𝑦 then we use

the cocartesian nature of 𝑓 fill
0 𝑥 to obtain a morphism of type 𝐶1 (𝑓0 𝑥 ⊲ 𝑦) 11 that

we assigns to the image of ℎ under 𝑒−1. This is the unique morphism satisfying
𝑒−1 ℎ ◦ 𝑓 fill

0 𝑥 = 𝑔fill
0 𝑦 ◦ ℎ.

We now show that 𝑒 is a section. Let ℎ : 𝐶1 (𝑓0 𝑥 ⊲ 𝑦) 11 be a morphism.
𝑒−1 (𝑒 ℎ) is the unique morphism such that 𝑒−1 (𝑒 ℎ)◦ 𝑓 fill

0 𝑥 = 𝑔fill
0 𝑦◦ 𝑒 ℎ. But 𝑒 ℎ is

the unique morphism such that 𝑔fill
0 𝑦 ◦ 𝑒 ℎ = ℎ ◦ 𝑓 fill

0 𝑥. From these two identities
we deduce that 𝑒−1 (𝑒 ℎ) ◦ 𝑓 fill

0 𝑥 = ℎ ◦ 𝑓 fill
0 𝑥 and therefore that 𝑒−1 (𝑒 ℎ) = ℎ using

the fact that 𝑓 fill
0 𝑥 is cocartesian.

The fact that 𝑒 is a retraction follows from the same argument therefore we
do not detail the proof. □

118 Chapter 3. Opetopic methods in type theory

Conclusion

We have explored an extension of type theory in which higher algebraic struc-
tures on types are definable. We managed to use this type theory to define
an important range of algebraic structures including ∞-groupoids and (∞, 1)-
categories as well as to prove elementary facts about them. To this end, we
chose to use opetopes: geometrical shapes which capture the combinatorics of
the coherence data that we wish to describe.

We therefore opened this thesis by first giving a purely type-theoretical
definition of opetopes in a type theory similar to book HoTT in Chapter 1. Our
definition essentially defines opetopes as sequences of well-founded trees satis-
fying some properties which are nicely captured by their typing. The opetopic
approach particularly shines in the context of type theory as well-founded trees
fall within the realm of inductive types. More specifically, our construction is
based on a sequence of polynomial monads, a notion which becomes central
in later chapters. We concluded this chapter with an inductive definition of
the faces of an opetope. This self-contained chapter is the opportunity for the
reader to get familiar with opetopes before broaching on opetopic types whose
complexity may hide the conceptual simplicity of opetopes.

Equipped with the understanding of opetopes, a simple example of polyno-
mial monads, we extended type theory with a universe of cartesian polynomial
monads ℳ closed under some monad constructors in Chapter 2. We did so
in the aim of defining opetopic types, collection of types whose combinatorics
is described by opetopes, in Chapter 3. Contrary to our definition of opetopes
which only involves sets, opetopic types are valued in arbitrary types. As a
consequence, we can no longer state the equational laws of Chapter 1 in a co-
herent fashion, having no means to do so! We therefore defined our universe
of polynomial monads in order that these equational laws hold definitionally.
The constructors under which our universe is closed then allow us to define, in
particular, the sequence of polynomial monads defining opetopes. In addition
to this universe which constitutes the core of our addition to type theory, we
added two sorts of universes as further extensions. First, we defined a family
of universes 𝑀 →𝑚 𝑁 of cartesian monad morphisms from 𝑀 to 𝑁 . Then,
we defined a family of universesℳ↓𝑀 of polynomial monad families over on
a monad 𝑀. These two extensions were developed in order to establish some
more advanced results in Chapter 3.

Finally, we took advantage of our universe of polynomial monads to define
opetopic types in Chapter 3. This enabled us to define coherent higher algebraic

120 Conclusion

structures, among which ∞-groupoids and (∞, 1)-categories. Crucially, their
higher structure is encoded in terms of identity types. We then established
expected results in order to motivate our definitions. We first compared our
definition of fibrant opetopic type with Baez and Dolan definition of “coherent
𝑂-algebras” and shown that they were equivalent if we require all morphisms
to be invertible. Then, we established that set-truncated fibrant Id-opetopic
types are equivalent to precategories as defined in the HoTT book. We quickly
reached for the dependent monads as alluded earlier in order to establish the
remaining results. We started by defining fibrations of opetopic types which are
a generalisation of fibrant opetopic types then we showed that fibrant opetopic
types are closed under dependent sums. We also defined the universal fibration
of types as an opetopic type. Finally, we defined Grothendieck (op)fibrations
that we applied in order to define Lurie’s definition of an adjunction (Lurie 2009,
Definition 5.2.2.1) as a bifibration over the interval.

As future work, we aim to first improve our system by extending type the-
ory with a primitive notion of opetopic types instead of relying on a universe of
polynomial monads. This more synthetic framework would prevent some diffi-
culties that we had to face with the current one. In particular, we could dispense
with the universes of monad morphisms which have been introduced for purely
technical reasons while none of our results crucially rely on it. Concerning the
results that we wish to establish, we would like to first fully formalise the equi-
valence between types and∞-groupoids that we presented at LICS2021 (Finster,
Allioux and Sozeau 2021). Next, a work in progress consists in defining the
fibrant opetopic types of the faces of an opetope. These opetopic types would
correspond to the representable functors on the category of opetopes. A more
ambitious project consists in the development of higher category theory in uni-
valent opetopic foundations. A lot of basic category theory results remain to
be established such as the slice construction of an opetopic type which we have
failed to define so far. In that respect, there is no reason to think that approaches
similar to ours but based on other geometries could not be fruitful. In particu-
lar, a presentation of types based on simplicial sets might be useful in order to
get closer to the current higher category literature. However, we do not expect
simplicial techniques to directly transfer to a homotopy type theory in which all
types are homotopy types.

Apart from the wealth of results that remain to be established in our system,
we identify two other themes for future work. The first one is the development
of a dedicated type checker for our type theory or even a dedicated Agda mode.
Our present implementation has been carried out in Agda and its system of
rewrite rules has been invaluable to quickly implement and experiment with
our framework. However, we had to get around some of its shortcomings more
than once, and we feel that we have hit some of its limits. The second theme is
the semantic justification of our system on which we stayed silent in this thesis.
Once we reach an optimal presentation of our framework, we should investigate
its precise semantics.

More broadly, regarding the general challenge of defining higher algebraic
structures on types, the opetopic approach that we propose is the first which

121

departs from the line of work based on two-level type theory (Altenkirch, Capri-
otti and Kraus 2016; Annenkov et al. 2017; Capriotti and Kraus 2017; Kraus and
Sattler 2017) which originates with Voevodsky’s Homotopy Type System (Vo-
evodsky 2013). Instead of reintroducing a strict equality, incompatible with
the homotopy interpretation of types, we introduce a means of presentation for
higher dimensional structures based on opetopes. This approach is still in its in-
fancy, and only a better theoretical understanding of our system will allow us to
grasp the full extent of its capabilities and how practical they are. Nonetheless,
it paves the way for future approaches.

122 Conclusion

Bibliography

Abbott, Michael, Thorsten Altenkirch and Neil Ghani (2005). “Containers: Con-
structing strictly positive types”. In: Theoretical Computer Science 342.1, pp. 3–
27 (cit. on pp. 6, 53).

Abel, Andreas, Jesper Cockx et al. (2020). “Leibniz equality is isomorphic to
Martin-Löf identity, parametrically”. In: Journal of Functional Programming 30
(cit. on p. 134).

Abel, Andreas, Brigitte Pientka et al. (2013). “Copatterns: Programming infinite
structures by observations”. In: ACM SIGPLAN Notices 48.1, pp. 27–38 (cit.
on p. 138).

Agda development team (2022). Agda 2.6.2.2 documentation. url: https://agda.
readthedocs.io/en/v2.6.2.2/ (cit. on p. 9).

Altenkirch, Thorsten, Paolo Capriotti and Nicolai Kraus (2016). “Extending ho-
motopy type theory with strict equality”. In: arXiv preprint arXiv:1604.03799
(cit. on pp. 2, 4, 10, 121).

Altenkirch, Thorsten, Neil Ghani et al. (2015). “Indexed containers”. In: Journal
of Functional Programming 25 (cit. on pp. 6, 53).

Angiuli, Carlo et al. (2021). “Syntax and models of Cartesian cubical type the-
ory”. In: Mathematical Structures in Computer Science 31.4, pp. 424–468. doi:
10.1017/S0960129521000347 (cit. on p. 136).

Annenkov, Danil et al. (2017). “Two-level type theory and applications”. In:
arXiv preprint arXiv:1705.03307 (cit. on pp. 2, 10, 121).

Awodey, Steve (2014). “Structuralism, invariance, and univalence”. In: Philo-
sophia Mathematica 22.1, pp. 1–11 (cit. on p. 2).

Awodey, Steve and Michael A Warren (2009). “Homotopy theoretic models
of identity types”. In: Mathematical proceedings of the cambridge philosophical
society. Vol. 146. 1. Cambridge University Press, pp. 45–55 (cit. on p. 135).

Baez, John C and James Dolan (1998). “Higher-dimensional algebra III. n-
categories and the algebra of opetopes”. In: Advances in Mathematics 135.2,
pp. 145–206 (cit. on pp. 2, 4, 6, 11, 53, 58, 73, 85, 147, 150).

Belnap, Nuel D. (1962). “Tonk, Plonk and Plink”. In: Analysis 22.6, pp. 130–134.
issn: 00032638, 14678284. url: http://www.jstor.org/stable/3326862
(visited on 23/01/2023) (cit. on p. 132).

Bezem, Marc, Thierry Coquand and Simon Huber (2014). “A Model of Type
Theory in Cubical Sets”. In: 19th International Conference on Types for Proofs
and Programs (TYPES 2013). Ed. by Ralph Matthes and Aleksy Schubert.
Vol. 26. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,

https://agda.readthedocs.io/en/v2.6.2.2/
https://agda.readthedocs.io/en/v2.6.2.2/
https://doi.org/10.1017/S0960129521000347
http://www.jstor.org/stable/3326862

124 Bibliography

Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 107–128.
isbn: 978-3-939897-72-9. doi: 10.4230/LIPIcs.TYPES.2013.107. url: http:
//drops.dagstuhl.de/opus/volltexte/2014/4628 (cit. on p. 136).

Brouwer, L. E. J. (1949). “Consciousness, Philosophy, and Mathematics”. In:
Proceedings of the Tenth International Congress of Philosophy 2, pp. 1235–1249
(cit. on p. 127).

Brouwer, Luitzen Egbertus Jan (1907). Over de grondslagen der wiskunde. Maas &
van Suchtelen (cit. on p. 127).

Capriotti, Paolo and Nicolai Kraus (2017). “Univalent higher categories via com-
plete semi-segal types”. In: Proceedings of the ACM on Programming Languages
2.POPL, pp. 1–29 (cit. on pp. 2, 10, 98, 121).

Cheng, Eugenia (2004a). “Weak n-categories: comparing opetopic foundations”.
In: Journal of Pure and Applied Algebra 186.3, pp. 219–231 (cit. on p. 11).

— (2004b). “Weak n-categories: opetopic and multitopic foundations”. In: Journal
of Pure and Applied Algebra 186.2, pp. 109–137 (cit. on p. 11).

Cockx, Jesper (2020). “Type theory unchained: Extending Agda with user-
defined rewrite rules”. In: 25th International Conference on Types for Proofs and
Programs (TYPES 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(cit. on p. 9).

Cohen, Cyril et al. (2016). “Cubical type theory: a constructive interpretation of
the univalence axiom”. In: arXiv preprint arXiv:1611.02108 (cit. on p. 136).

Dummett, Michael (1991). The logical basis of metaphysics. Harvard university
press (cit. on p. 132).

Finster, Eric, Antoine Allioux and Matthieu Sozeau (2021). “Types are internal
∞-groupoids”. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). IEEE, pp. 1–13 (cit. on pp. 112, 120).

Gambino, Nicola and Richard Garner (2008). “The identity type weak factorisa-
tion system”. In: Theoretical computer science 409.1, pp. 94–109 (cit. on p. 135).

Gambino, Nicola and Joachim Kock (2013). “Polynomial functors and polyno-
mial monads”. In: Mathematical proceedings of the cambridge philosophical soci-
ety. Vol. 154. 1. Cambridge University Press, pp. 153–192 (cit. on p. 54).

Gisin, Nicolas (2020). “Mathematical languages shape our understanding of
time in physics”. In: Nature Physics 16.2, pp. 114–116 (cit. on p. 129).

Hermida, Claudio, Michael Makkai and John Power (2000). “On weak higher
dimensional categories I: Part 1”. In: Journal of pure and applied algebra 154.1-3,
pp. 221–246 (cit. on p. 11).

Heyting, Arend (1930). “Die formalen Regeln der intuitionistischen Logik”.
In: Sitzungsbericht PreuBische Akademie der Wissenschaften Berlin, physikalisch-
mathematische Klasse II, pp. 42–56 (cit. on p. 128).

Hofmann, Martin and Thomas Streicher (1998). “The groupoid interpretation
of type theory”. In: Twenty-five years of constructive type theory (Venice, 1995)
36, pp. 83–111 (cit. on p. 134).

Howard, William A (1980). “The formulae-as-types notion of construction”. In:
To HB Curry: essays on combinatory logic, lambda calculus and formalism 44,
pp. 479–490 (cit. on p. 133).

https://doi.org/10.4230/LIPIcs.TYPES.2013.107
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628

Bibliography 125

Kapulkin, Krzysztof and Peter LeFanu Lumsdaine (2021). “The simplicial model
of Univalent Foundations (after Voevodsky)”. In: Journal of the European Math-
ematical Society 23.6, pp. 2071–2126 (cit. on p. 136).

Kock, Joachim et al. (2010). “Polynomial functors and opetopes”. In: Advances in
Mathematics 224.6, pp. 2690–2737 (cit. on pp. 11, 12).

Kraus, Nicolai and Christian Sattler (2017). “Space-valued diagrams, type-
theoretically”. In: arXiv preprint arXiv:1704.04543 (cit. on pp. 2, 10, 121).

Lambek, Joachim and Philip J Scott (1988). Introduction to higher-order categorical
logic. Vol. 7. Cambridge University Press (cit. on p. 133).

Leinster, Tom (2001). “Structures in higher-dimensional category theory”. In:
arXiv preprint math/0109021 (cit. on p. 11).

— (2004). Higher operads, higher categories. 298. Cambridge University Press (cit.
on pp. 6, 53, 147).

Lumsdaine, Peter LeFanu (2010). “Weak omega-categories from intensional type
theory”. In: Logical Methods in Computer Science 6 (cit. on pp. 1, 111, 135).

Lurie, Jacob (2009). Higher topos theory. Princeton University Press (cit. on pp. 9,
112, 114, 120).

Mac Lane, Saunders (2013). Categories for the working mathematician. Vol. 5.
Springer Science & Business Media (cit. on p. 76).

Makkai, Michael (1995). “First order logic with dependent sorts, with applic-
ations to category theory”. In: Preprint: http://www. math. mcgill. ca/makkai
(cit. on p. 136).

Martin-Löf, Per (1975). “An intuitionistic theory of types: Predicative part”. In:
Studies in Logic and the Foundations of Mathematics. Vol. 80. Elsevier, pp. 73–118
(cit. on p. 129).

— (1994). “Analytic and synthetic judgements in type theory”. In: Kant and
contemporary epistemology. Springer, pp. 87–99 (cit. on p. 133).

— (1996). “On the meanings of the logical constants and the justifications of
the logical laws”. In: Nordic journal of philosophical logic 1.1, pp. 11–60 (cit. on
p. 130).

Martin-Löf, Per and Giovanni Sambin (1984). Intuitionistic type theory. Vol. 9.
Bibliopolis Naples (cit. on p. 136).

McBride, Conor (2002). “Elimination with a motive”. In: Types for Proofs and
Programs: International Workshop, TYPES 2000 Durham, UK, December 8–12,
2000 Selected Papers. Springer, pp. 197–216 (cit. on p. 131).

Paulin-Mohring, Christine (1993). “Inductive definitions in the system Coq rules
and properties”. In: Typed Lambda Calculi and Applications: International Con-
ference on Typed Lambda Calculi and Applications TLCA’93 March, 16–18, 1993,
Utrech, The Netherlands Proceedings 1. Springer, pp. 328–345 (cit. on p. 134).

Riehl, Emily and Michael Shulman (2017). “A type theory for synthetic ∞-
categories”. In: arXiv preprint arXiv:1705.07442 (cit. on p. 76).

Shulman, Michael (2019). “All (∞, 1)-toposes have strict univalent universes”.
In: arXiv preprint arXiv:1904.07004 (cit. on p. 1).

Sørensen, Morten Heine and Pawel Urzyczyn (2006). Lectures on the Curry-
Howard isomorphism. Elsevier (cit. on p. 133).

126 Bibliography

Univalent Foundations Program, The (2013). Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study:https://homotopytypetheory.
org/book (cit. on pp. 1, 127, 136, 141).

Van Den Berg, Benno and Richard Garner (2011). “Types are weak𝜔-groupoids”.
In: Proceedings of the london mathematical society 102.2, pp. 370–394 (cit. on pp. 1,
111, 135).

Voevodsky, Vladimir (2006). “A very short note on the homotopy 𝜆-calculus”.
In: Unpublished note, pp. 10–27 (cit. on p. 135).

— (2013). “A simple type system with two identity types”. In: Unpublished note
(cit. on pp. 4, 121).

Wadler, Philip (2015). “Propositions as types”. In: Communications of the ACM
58.12, pp. 75–84 (cit. on p. 132).

Weyl, Herman (1921). “On the New Foundational Crisis of Mathematics”. In:
(cit. on p. 128).

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Appendix A

Background material

We recall homotopy type theory and its history then we recall elementary results
from the HoTT book (Univalent Foundations Program 2013) that will be used
throughout this thesis in Section A.5. Homotopy type theory is an extension of
Intuitionistic intensional type theory (ITT), a formal language which can serve
as a foundation for constructive mathematics. It internalises certain principles
which are satisfied by homotopical models of ITT.

A.1 Constructive mathematics

Broadly speaking, constructive mathematics qualifies the mathematics done in
such a way that asserting the existence of a mathematical object consists in
exhibiting a particular instance of this object. This implies that certain modes of
reasoning typical of classical logic such as the double negation elimination are
prohibited. There are a number of reasons why one would like to avoid those
principles ranging from philosophical reasons to more practical ones.

There are many schools of constructivism with diverging motivations. In-
tuitionism, on which is based intuitionistic logic, the logic implemented by
ITT, originates with the work of Brouwer (Luitzen Egbertus Jan Brouwer 1907).
Brouwer advocates a mathematics conceived as a construction of the mind ap-
pealing to our intuitions: “There are no non-experienced truths”(L. E. J. Brouwer
1949). In this philosophy of mathematics, one cannot appeal to the properties
of a Platonic realm of mathematical truths where any proposition is either true
or false. This belief, not motivated by any intrinsic mathematical reason, and le-
gitimised in some formal systems by logical axioms such as the law of excluded
middle (LEM) made Brouwer suspicious of both Platonists and Formalists. He
particularly denied the “creative role” of logic as he held the belief that logic
had to be submitted to mathematics and not the other way around.

In Intuitionism, in order to assert the existence of a mathematical object, one
has to provide a concrete construction of that object. Mathematics exist only to
the extent that we can write them therefore we are constrained by the language
we use and our means of calculation. This is to be compared with an “ideal
mathematician” with unlimited memory and time. In this respect, the LEM is

128 Appendix A. Background material

forbidden as it allows concluding the truth of a proposition without explicitly
proving it by virtue of the fact that, in the Platonic realm of mathematical truths,
any proposition is either true or false. The axiom of choice (AC) is also commonly
rejected as it entails the LEM by Diaconescu’s theorem. Though, depending on
its formulation, some forms of it can be accepted. Rejecting the LEM implies
rejecting the double negation elimination as well. This means that we cannot
prove a proposition 𝑃 by assuming ¬𝑃 and deriving a contradiction. However,
we can still prove ¬𝑃 by assuming 𝑃 and deriving a contradiction.

Hermann Weyl, who temporarily adopted the intuitionistic views of Brouwer,
held that if knowledge is a treasure then an existential statement in classical logic
asserts the presence of a treasure without disclosing its location (Weyl 1921). A
simple and illuminating example is the proof that there exist irrational numbers

𝑥 and 𝑦 such that 𝑥𝑦 is rational. The classical proof goes as follows: either
√

2
√

2

is a rational number therefore we take 𝑥 = 𝑦 =
√

2, or
√

2
√

2
is not a rational

number and we take 𝑥 =
√

2
√

2
and 𝑦 =

√
2 as, in this case, 𝑥𝑦 = 2 which is

a rational number. Such a proof rests upon the use of the LEM as it uses the

fact that
√

2
√

2
is either rational or irrational. Constructivists object that this

proof is not satisfying as it does not inform us about which one of the two pairs
(𝑥, 𝑦) is the one having the required property. A constructive proof of the same
statement is the following: consider the two irrational numbers 𝑥 =

√
2 and

𝑦 = 2 log2 3, the number 𝑥𝑦 = 3 is indeed a rational number. Such a proof gives
concrete evidence of its truth by specifying particular irrational numbers 𝑥 and
𝑦 satisfying the proposition. Another gripe with the LEM is that it allows to
assert the truth of propositions dealing with infinite collections that we might
not be able to check anyway. Consider the statement “There are seven 7’s in a
row in the decimal representation of 𝜋”. The LEM allows concluding that this is
either true or false. Constructively, we would have to check each decimal until
we find an instance of these seven 7’s in order to conclude that this statement
is provable. However, we could not refute it as we cannot check the infinity of
digits of 𝜋 in a finite amount of time.

There are other grounds for rejecting classical principles. In particular,
statements which do not make use of classical reasoning principles are valid
in more models. For example, a statement in intuitionistic logic is true in any
topos, not just boolean ones which are home to classical logic. Another reason
to be constructive is if one wants to extract a program from a proof. This
is particularly useful when one wants to certify a piece of software. In this
thesis, we reject unrestricted classical principles on the ground that they are, in
general, incompatible with univalence which is central to homotopy type theory.
However, HoTT identifies a class of types for which these principles apply. In
that sense, we regard HoTT as subsuming set theory and classical logic.

Despite Brouwer’s hostility towards formalism, one of his students, Arend
Heyting, devised intuitionistic logic (Heyting 1930) in order to give a formal
foundation to Brouwer’s mathematics. This logic is characterised by two key
properties: the existence and the disjunction properties. The existence property

A.2. Intuitionistic type theory 129

asserts that a proposition of the form ∃𝑥.𝐵(𝑥) is true if and only if there is a
particular element 𝑎 such that 𝐵(𝑎) is true. As for the disjunction property,
it asserts that a proposition of the form 𝐴 ∨ 𝐵 is true if and only if we can
prove that either 𝐴 or 𝐵 is true. The strong interpretation of the existential
quantifier in intuitionistic logic reflects a shift in the interpretation of the truth of
a proposition. In this logic, truth is identified with provability. It is then natural
to see the notion of time emerging from this interpretation. Being able to prove
𝐴 ∨ ¬𝐴 for example is being able to prove 𝐴 or ¬𝐴 right now which might not
be possible. Consider an open conjecture such as the Riemann hypothesis for
example. We cannot prove it nor refute it at the time of writing. This notion of
time is implicit in Kripke models for intuitionistic logic where a model consists of
a collection of consistent states of knowledge assembled into a poset modelling
the accumulation of knowledge consistent with previously established facts.
Today, some physicists study whether intuitionistic logic could be better suited
to the study of the physical world than classical logic (Gisin 2020).

Having rejected the interpretation of logical judgements in terms of truth
values, an explanation of their meaning is given by the so-called Brouwer-
Heyting-Kolmogorov interpretation of intuitionistic logic. In this interpretation,
logical connectors and quantifiers are explained in terms of their collections of
proofs:

A proof of consists of
𝐴 ∧ 𝐵 a proof of 𝐴 and a proof of 𝐵
𝐴 ∨ 𝐵 a proof of 𝐴 or a proof of 𝐵
𝐴 =⇒ 𝐵 a method which takes a proof of 𝐴 and returns a proof of 𝐵
∃𝑥.𝐵(𝑥) an element 𝑎 along with a proof of 𝐵(𝑎)
∀𝑥.𝐵(𝑥) a method which, for any element 𝑥, produces a proof of 𝐵(𝑥)
¬𝐴 a proof of 𝐴 =⇒ ⊥
⊥ nothing

This interpretation does not specify what a proof is nor what a method is,
it is left to the ambient logical system to specify these notions. We can regard
intuitionistic type theory as giving a formal treatment to the BHK interpretation.

A.2 Intuitionistic type theory

Intuitionistic intensional type theory is a formal language due to Per Martin-Löf
(Martin-Löf 1975) which can serve as a foundation for constructive mathemat-
ics. It is a formal system of abstract constructions classified by types. Types are
defined by specifying their canonical elements as well as when two terms of a
type are equal by definition. This leads us to consider the following two forms of
judgements:

Judgement Meaning
𝑥 : 𝐴 𝑥 is a term of type 𝐴
𝑥 ≡ 𝑦 : 𝐴 𝑥 and 𝑦 are definitionally equal terms of type 𝐴

130 Appendix A. Background material

Judgements are the facts that can be established in our type theory. A judgement
is an “object of knowledge” (Martin-Löf 1996). They are assertions about the
meta-language and cannot be denied internally. Compare a typing judgement
with a set-theoretical membership proposition: one is external while the other
is internal. In set-theory it is possible to ask whether the proposition 0 ∈ 1 is
true while there exists no corresponding typing judgement in type theory where
such a question is just nonsensical.

New judgements may be derived from prior ones using the inference rules
of type theory. For example, proving a mathematical proposition using the
propositions-as-types paradigm corresponds to deriving a judgement of the
form 𝑡 : 𝐴 where 𝐴 is the type corresponding to the proposition that we want
to prove and 𝑡 is a term witnessing the truth of this proposition.

Defining a new type consists in adding new inference rules to our type theory.
Contrast this approach with the set-theoretical one where inference rules are
fixed — they are most often those of first-order logic — and where new sets
are built from existing ones using a fixed set of axioms — the Zermelo-Fraenkel
axioms for example. Set theory lacks the distinction between judgements —
which are external statements — and internal statements.

Our type theory has a universe à la Russell; that is, a family of types (𝒰𝑛)𝑛:N
such that 𝒰𝑛 : 𝒰𝑛+1. Any type inhabits a particular universe and a universe
inhabits a greater universe in order to prevent paradoxes such as Russell’s para-
dox. In order not to clutter the notation, we will omit the universe levels in this
informal presentation of type theory.

ITT can be seen as a dependently typed lambda calculus as soon as we
introduce function types which allow internalising hypothetical judgements.
Let𝐴, 𝐵 :𝒰 be two types, we define their function type𝐴→ 𝐵 :𝒰 . Considering
a term 𝑡 : 𝐵 under the assumption that a variable 𝑥 : 𝐴 may appear in 𝑡, there
is a function (𝜆𝑥 → 𝑡) : 𝐴 → 𝐵 where 𝑥 is now no longer an assumption — it
is bound. Given a function 𝑓 : 𝐴 → 𝐵 and a term 𝑡 : 𝐴, 𝑓 can be applied to
𝑡 to yield the term 𝑓 (𝑡) : 𝐵. The application has to satisfy the 𝛽-reduction rule
(𝜆𝑥 → 𝑢)(𝑡) ≡ 𝑢[𝑡/𝑥] where 𝑢[𝑡/𝑥] is the capture-avoiding substitution of the
occurrences of 𝑥 in 𝑢 by the term 𝑡.

Along with the universe 𝒰 , function types permit the definition of type
families — also called dependent types — which are functions of type 𝐴 → 𝒰 ,
where 𝐴 is a type. This allows the generalisation of function types to dependent
function types. Let 𝐴 : 𝒰 be a type and let 𝐵 : 𝐴 → 𝒰 be a type family. We
form the type (𝑥 : 𝐴) → 𝐵(𝑥) : 𝒰 . Dependent functions are then introduced
as sections of 𝐵; given a term 𝑡 : 𝐵(𝑥) for any 𝑥 : 𝐴 where the variable 𝑥 may
appear in 𝑡, we introduce the function (𝜆𝑥 → 𝑡) : (𝑥 : 𝐴) → 𝐵(𝑥). Given a
function 𝑓 : (𝑥 : 𝐴) → 𝐵(𝑥) and a term 𝑡 : 𝐴, 𝑓 can be applied to 𝑡 to yield
the term 𝑓 (𝑡) : 𝐵(𝑡). The application also has to satisfy the 𝛽-reduction rule
(𝜆𝑥 → 𝑢)(𝑡) ≡ 𝑢[𝑡/𝑥]. If 𝐵 is the constant family 𝜆𝑥 → 𝐵 then (𝑥 : 𝐴) → 𝐵(𝑥)
coincides with the ordinary function type 𝐴→ 𝐵.

Defining a new type, in the predicative version of type theory, consists in
introducing new inference rules following a particular pattern that we now
illustrate with the definition of the type of natural numbers N.

A.2. Intuitionistic type theory 131

1. Formation rule. The formation rule introduces a new type by asserting
that N is an element of the universe of types.

N :𝒰

2. Introduction rules. The introduction rules introduce the canonical ele-
ments of N. In the case of the unary definition of natural numbers, we
distinguish two cases:

• There is an element 0 : N standing for the natural number 0.
• For any natural number 𝑛 : N, there is an element suc(𝑛) : N standing

for the successor of 𝑛.

3. Elimination rules. The elimination rule states the consequences that can
be derived from an arbitrary element of N. It prescribes how to define any
function 𝑓 : N → 𝑋 for an arbitrary type 𝑋 that we sometimes call the
motive of the elimination (McBride 2002). In our case, this corresponds to
functions defined by primitive recursion.
For any type 𝑋 :𝒰 , a function defined by primitive recursion requires the
data of a base case 𝑥0 : 𝑋 and a function 𝑥suc : N→ 𝑋 → 𝑋. Then, for any
natural number 𝑛 : N, there is an element

Nelim(𝑋, 𝑥0 , 𝑥suc , 𝑛) : 𝑋

4. Computation rules. The computation rules state how the elimination
rules behave with regard to the introduction rules. In the present case, we
have to treat the two different introduction rules which correspond to the
definition of a primitive recursive function:

Nelim(𝑋, 𝑥0 , 𝑥suc , 0) ≡ 𝑥0

Nelim(𝑋, 𝑥0 , 𝑥suc , suc(𝑛)) ≡ 𝑥suc(𝑛,Nelim(𝑋, 𝑥0 , 𝑥suc , 𝑛))

In addition to these four sorts of rules, there might be additional rules specific
to the type in question. It is for example common to specify uniqueness rules,
often named 𝜂-rules, stating how should the introduction rules behave with
regard to the elimination rule. For example, pairing the projections of a pair
𝑝 should be a pair definitionally equal to 𝑝: (pr1(𝑝), pr2(𝑝)) ≡ 𝑝. Similarly, any
function 𝑓 should satisfy the equality (𝜆𝑥 → 𝑓 (𝑥)) ≡ 𝑓 .

The definition of natural numbers that we just gave is synthetic or axiomatic
as we directly state what they are without defining them out of more primitive
constructions as it is customary in set theory. This definition is an example of a
certain class of types named inductive types which are freely generated by their
constructors.

Of course, the elimination rule cannot be arbitrary or else we run the risk
of being inconsistent. It has to follow from the introduction rules, which was

132 Appendix A. Background material

pointed out by Belnap (Belnap 1962) and named logical harmony by Dummett
(Dummett 1991). To a first approximation, when introduction and elimination
rules are in harmony, we can infer no more and no less than what has been estab-
lished by the introduction rules. In the particular case of inductive types, a more
algebraic point of view on this matter is to consider them as initial algebras for
some endofunctor. The elimination rule then defines the unique homomorph-
ism out of this algebra. The picture becomes more subtle when considering the
particular case of identity types whose elimination rule does not allow deducing
that its sole elements are the ones introduced by the introduction rules. This is
a fundamental observation which allowed to postulate new principles such as
the univalence axiom and higher inductive types which constitute the novelties
of homotopy type theory.

Often, we will want to use a more general elimination rule where the motive
is a type dependent on the type being defined, that is 𝑋 : N→𝒰 in the case of
natural numbers. The data to provide now consists of 𝑥0 : 𝑋(0) and 𝑥suc : (𝑛 :
N) → 𝑋(𝑛) → 𝑋(suc(𝑛)). The dependent elimination, also called the induction
principle, then provides the following element Nind(𝑋, 𝑥0 , 𝑥suc , 𝑛) : 𝑋(𝑛) subject
to the same computation rules as the ordinary elimination principle. While
we can see the regular elimination principle as defining functions by recursion
over the type being defined, the induction principle can be regarded as defining
proofs by induction over this same type.

A.3 Propositions as types

In addition to being able to define mathematical constructions, we need to be
able to formulate propositions about those constructions and be able to prove
them. If we subscribe to the Brouwer-Heyting-Kolmogorov interpretation of
intuitionistic logic, the meaning of a proposition is determined by its collec-
tion of proofs. Framing this interpretation in type-theoretical terms, we define
propositions as types whose introduction and elimination rules reflect their
counterpart in intuitionistic logic. This is known as the propositions-as-types
paradigm (Wadler 2015) which establishes the following connection between
logic and type theory:

Logic Type theory
⊥ 0
𝐴 ∧ 𝐵 𝐴 × 𝐵
𝐴 ∨ 𝐵 𝐴 + 𝐵
𝐴 =⇒ 𝐵 𝐴→ 𝐵
∃(𝑥 ∈ 𝐴).𝐵(𝑥) ∑

(𝑥:𝐴) 𝐵(𝑥)
∀(𝑥 ∈ 𝐴).𝐵(𝑥) (𝑥 : 𝐴) → 𝐵(𝑥)

Type theory is therefore a language rich enough to accommodate and unify
seemingly disparate concepts such as mathematical constructions and logical
propositions. Typing judgements can thus have the following readings depend-

A.3. Propositions as types 133

ing on how we interpret the types in question.

𝐴 :𝒰 𝑥 : 𝐴
𝐴 is a type 𝑥 is an element of type 𝐴
𝐴 is a proposition 𝑥 is a proof of the proposition 𝐴
𝐴 is a specification 𝑥 is a program meeting the specification 𝐴

The second interpretation is the point of view of the propositions-as-types
paradigm. The third one corresponds to the interpretation of ITT as a pro-
gramming language.

The richness of types even opens up the possibility of defining types which
have no direct counterpart either as a set-based mathematical construction or as
a logical proposition. This observation is at the root of homotopy type theory
whose motivation is to classify and study types according to their intrinsic
geometrical content.

The connection between types and propositions had already been noticed.
There is a precise correspondence between types of the simply typed lambda
calculus (STLC) and intuitionistic propositional logic (IPC) known as the Curry-
Howard correspondence (Howard 1980). Under this view, the typing rules of
STLC can be seen as an annotated version of the rules of natural deduction for
IPC. Lambda terms can then be seen as certificates for the proof derivations they
denote. The correspondence includes a correspondence between the reduction
rules of the lambda calculus and proof normalisation of natural deduction.
De Bruĳn himself arrived independently at a similar correspondence. Lambek
further extended this connection to category theory and showed that the STLC
was the internal language of cartesian closed categories (Lambek and Scott
1988). The Curry-Howard correspondence has since been extended to more
expressive lambda calculi (Sørensen and Urzyczyn 2006).

We finish this section by considering the decidability of judgements. Typing
judgements of the form 𝑥 : 𝐴 are decidable. The rules of ITT are such that 𝑥
acts as a certificate from which we can establish the derivation leading to the
judgement in question. It then suffices to check that this derivation is correct.
The same applies to a judgement of the form 𝑥 ≡ 𝑦 : 𝐴, it suffices to compare
the normal forms of 𝑥 and 𝑦 — up to certain rules — in order to conclude. In
contrast, a judgement like 𝐴 true that can be derived only if there exists some
term 𝑡 such that the judgement 𝑡 : 𝐴 holds, is undecidable. It is missing a
piece of information, namely the data of 𝑡, in order to decide whether it holds.
However, there does not exist any algorithm able to establish whether a type is
inhabited or not as this problem is undecidable. This distinction is important for
proof assistants which are programs that help mathematicians check that their
proofs are correct. Because of this limitation, mathematicians are still expected
to produce a proof in the first place, although this process can be automated
to some extent. This distinction corresponds to the one between analytic and
synthetic judgements which goes back to Kant (Martin-Löf 1994). Analytic
judgements distinguish themselves from synthetic judgements by the fact that
they carry their own proof.

134 Appendix A. Background material

A.4 Homotopy type theory

A.4.1 The genesis

Homotopy type theory refers to ITT extended with principles consistent with
the homotopy interpretation of types. Under this interpretation, types enjoy the
rich structure of abstract space conferred by their identity types.

Martin-Löf identity types are the types which correspond to propositional
equality under the propositions-as-types paradigm. From their proof-relevance
arises interesting phenomena. We present them using the formulation due to
Paulin-Mohring (Paulin-Mohring 1993).

Let 𝐴 : 𝒰 be a type and let 𝑥, 𝑦 : 𝐴, we form the type 𝑥 =𝐴 𝑦 : 𝒰 of
identifications between 𝑥 and 𝑦. We will often drop the type indication 𝐴when
it can be inferred from the context. Identity types have a single introduction
rule refl𝑥 : 𝑥 =𝐴 𝑥 for any 𝑥 : 𝐴 corresponding to the fact that any definitional
equality 𝑥 ≡ 𝑦 can be turned into a propositional one. We say that 𝑥 =𝐴 𝑦 is
parametrised by𝐴 and 𝑥 and indexed by 𝑦 in that𝐴 and 𝑥 are fixed before defining
the introduction rule (i.e., it is not constrained by it) while 𝑦 is constrained to
be definitionally equal to 𝑥 by the introduction rule. We now describe the
corresponding induction principle. Let 𝐴 : 𝒰 and 𝑥 : 𝐴 be the parameters of
our type. Let 𝐵 : (𝑦 : 𝐴) → 𝑥 =𝐴 𝑦 → 𝒰 be a type family which will play
the role of the motive of elimination. In order to define a term 𝐵(𝑦, 𝑝) for any
identity 𝑝 : 𝑥 =𝐴 𝑦, it suffices to provide a term 𝑑 : 𝐵(𝑥, refl𝑥). The induction
principle therefore provides us with the term

=ind (𝐴, 𝑥, 𝐵, 𝑑, 𝑦, 𝑝) : 𝐵(𝑦, 𝑝)
satisfying the following computation rule when applied to refl𝑥 :

=ind (𝐴, 𝑥, 𝐵, 𝑑, 𝑥, refl𝑥) ≡ 𝑑
The assumption 𝑑 of the induction principle corresponds to the data needed to
cover the unique case where 𝑝 is refl𝑥 .

The induction principle of identity types allows deriving a substitution prin-
ciple which is a formal version of Leibniz’s identity of indiscernibles. Given two
elements 𝑥, 𝑦 : 𝐴 and an identity 𝑝 : 𝑥 = 𝑦 then, for any type family 𝐵 : 𝐴→𝒰 ,
there is a function 𝑝∗ : 𝐵(𝑥) → 𝐵(𝑦). Conversely, the identity of indiscernibles
implies the corresponding identity type. This logical equivalence can be turned
into an equivalence of types assuming internal parametricity (Abel, Cockx et al.
2020).

Interestingly, this induction principle does not allow proving that any iden-
tity 𝑝 : 𝑥 =𝐴 𝑥 is equal to refl𝑥! This principle, named uniqueness of identity proofs
(UIP), is summarised as

UIP : (𝐴 :𝒰) (𝑥 : 𝐴) (𝑝 : 𝑥 = 𝑥) → 𝑝 = refl𝑥

Determining whether such a principle was provable in ITT remained an open
question for a long time until it was settled by Hofmann and Streicher (Hofmann

A.4. Homotopy type theory 135

and Streicher 1998) who defined a model of ITT, the groupoid model, where
it does not hold. In this model, a type 𝐴 : 𝒰 is interpreted as a groupoid
whose objects are the elements of 𝐴 and whose morphisms between two objects
corresponding to two elements 𝑥, 𝑦 : 𝐴 correspond to identities 𝑥 =𝐴 𝑦. The
structure of groupoid stems from the operations that can be defined using the
induction principle of identity types. For any type 𝐴 : 𝒰 and triplet 𝑥, 𝑦, 𝑧 : 𝐴
there is a composition operation

𝑥 = 𝑦 → 𝑦 = 𝑧 → 𝑥 = 𝑧

We denote 𝑝 � 𝑞 the identity resulting from the composition of two identities 𝑝
and 𝑞. There is a second operation inverting identities

𝑥 = 𝑦 → 𝑦 = 𝑥

We denote 𝑝−1 the inverse of the identity 𝑝. We can prove that those operations
satisfy the following propositional laws for any 𝑝 : 𝑥 = 𝑦, 𝑞 : 𝑦 = 𝑧, and 𝑟 : 𝑧 = 𝑡:

𝑝 � refl𝑦 = refl𝑥 � 𝑝 = 𝑝

𝑝 � 𝑝−1 = refl𝑥
𝑝−1 � 𝑝 = refl𝑦
(𝑝 � 𝑞) � 𝑟 = 𝑝 � (𝑞 � 𝑟)

Then, considering the group Z2 viewed as a one-object groupoid, for example,
there is an identity 𝑝 : ∗ =𝑍2 ∗ different from refl∗ which disproves the UIP.

This observation paved the way for a line of work clarifying the semantics
of type theory in its intensional form. The tools of homotopy theory proved
themselves to be adapted to this task with Gambino and Garner (Gambino
and Garner 2008) showing that the axioms of identity types induce a weak
factorisation system on the syntactic category of type theory and Awodey and
Warren (Awodey and Warren 2009) showing that there is a Quillen model
structure on this category where identity types play the role of path objects.

Similarly, the tools of higher algebra allowed Lumsdaine (Lumsdaine 2010)
and Van Den Berg and Garner (Van Den Berg and Garner 2011) to generalise
the Hoffman-Streicher interpretation of types to ∞-groupoids using globular
operads.

A.4.2 Univalence

In his note (Voevodsky 2006), the mathematician Vladimir Voevodsky identified
a missing principle in type theory. It is commonplace in mathematical practice
to use the same notation for different but equivalent mathematical structures
without being explicit about it. Informally, we say that we are making an abuse
of language. Framing this principle in type-theoretical terms and identifying
mathematical structures with (families of) types, given two types 𝐴, 𝐵 : 𝒰 and
an equivalence of types 𝑒 : 𝐴 ≃ 𝐵, we expect that any structure 𝑇 — modeled as
a type family 𝑇 : 𝒰 → 𝒰 — on 𝐴 gives rise to the same structure on 𝐵; that is,

136 Appendix A. Background material

we want a function 𝑇(𝐴) → 𝑇(𝐵). In other words, we want the types 𝐴 and 𝐵 to
be indiscernible which amounts to having an identity 𝐴 = 𝐵. However, there is
no way to obtain an identity from an equivalence of types in ITT in general. For
example, the type of booleans have two automorphisms, one being the identity
function and the other being the function swapping its elements, however there
is no identity corresponding to this second equivalence.

Voevodsky then drafted a model of type theory in simplicial sets in which
equivalence of types coincides with identities between types leading to the
simplicial model as we know it (Kapulkin and Lumsdaine 2021). Although
there is no term in ITT corresponding to this principle, it is consistent to assume
it as the axiom known as the univalence axiom

UA : (𝑋 𝑌 :𝒰) → (𝑋 = 𝑌) ≃ (𝑋 ≃ 𝑌)
such that UA(𝑋, 𝑋, refl𝑋) = id𝑋 .

We understand this axiom as formalising the equivalence principle: any state-
ment about types should be invariant under equivalence. The idea of having a
logical foundation respecting the principle of equivalence is not new and was
the original motivation for the FOLDS system (Makkai 1995).

A family of type theories with models in cubical sets have since been de-
veloped in order to give a computational meaning to UA, they are referred to
as cubical type theories (Angiuli et al. 2021; Bezem, Coquand and Huber 2014;
Cohen et al. 2016).

Related to the UA is the development of the univalent foundations of math-
ematics which refers to the practice of mathematics in mathematical foundations
satisfying the univalence axiom, ITT + UA being one of them. This project was
popularised by Univalent Foundations Program 2013 which is the result of the
special year on Univalent Foundations of Mathematics which took place at the
Institute for Advanced Study in Princeton in 2012-2013. In this book is presented
homotopy type theory which is ITT + UA + HITs, also known as book HoTT, as
well as a number of mathematical results in homotopy theory, category theory,
set theory, and logic developed in this new foundation.

A.5 Our setting

We introduce the type theory used in this thesis. This section is self-contained
and will recall some definitions which were already discussed in the preceding
sections.

Our type theory is the one implemented by Agda which is an enhanced
version of Martin-Löf’s logical framework (Martin-Löf and Sambin 1984). We
will make heavy use of the most cutting-edge features of Agda such as inductive-
inductive definitions, rewriting rules, and coinductive records to name a few.
We will be concerned with two kinds of judgements. The judgement 𝑥 : 𝐴
means that 𝑥 is an element of type 𝐴 while the judgement 𝑥 ≡ 𝑦 : 𝐴 means that
𝑥 and 𝑦 are definitionally equal elements of type 𝐴. There is a type universe à
la Russell 𝒰𝑛 : 𝒰𝑛+1 for 𝑛 : N. We will intentionally omit the universe level in
order not to clutter the notation and simply write𝒰 .

A.5. Our setting 137

We introduce the basic type formers of our type theory that we will use
throughout this thesis.

A.5.1 Function types

We open this section with a stylistic remark. Our notation for application departs
from the one used in the preceding sections in that we will write 𝑥 𝑦 instead of
𝑥(𝑦) to lessen the number of parentheses in large lambda terms.

Let 𝐴, 𝐵 : 𝒰 be two types, we form the type of functions with domain 𝐴
and codomain 𝐵 denoted 𝐴 → 𝐵. Given a term 𝑡 : 𝐵 which may contain an
occurrence of a variable 𝑥 : 𝐴, we introduce the function (𝜆𝑥 → 𝑡) : 𝐴 → 𝐵
where 𝑥 is now bound. Conversely, given a function 𝑓 : 𝐴→ 𝐵 and a term 𝑡 : 𝐴,
we define the application of 𝑓 to 𝑡 denoted 𝑓 𝑡 : 𝐵. The application satisfies the
computation rule:

(𝜆𝑥 → 𝑢) 𝑡 ≡ 𝑢[𝑡/𝑥]
for any term 𝑢 : 𝐵 possibly containing an occurrence of the variable 𝑥 : 𝐴
and for any term 𝑡 : 𝐴 where 𝑢[𝑡/𝑥] is the capture-avoiding substitution of the
occurrences of the variable 𝑥 in the term 𝑢 with the term 𝑡. Functions moreover
satisfy the following uniqueness rule, also called 𝜂-law:

(𝜆𝑥 → 𝑓 𝑥) ≡ 𝑓
Function types are now generalised to dependent types also named Π-types.
Let 𝐴 : 𝒰 be a type and let 𝐵 : 𝐴 → 𝒰 be a type family, we form the type
(𝑥 : 𝐴) → 𝐵 𝑥. The other rules are similar to ordinary function types with the
difference that the variable 𝑥 in the introduction and elimination rules can now
appear in 𝐵 𝑥. Given an element 𝑡 : 𝐵 𝑥 for any variable 𝑥 : 𝐴 such that 𝑡 may
contain an occurrence of 𝑥, we introduce the function (𝜆𝑥 → 𝑡) : (𝑥 : 𝐴) → 𝐵 𝑥
where 𝑥 is now bound. Conversely, given a function 𝑓 : (𝑥 : 𝐴) → 𝐵 𝑥 and
an element 𝑥 : 𝐴, we define the application of 𝑓 to 𝑥 denoted 𝑓 𝑥 : 𝐵 𝑥. The
application satisfies the computation rule:

(𝜆𝑥 → 𝑡) 𝑦 ≡ 𝑡[𝑦/𝑥]
for any term 𝑦 : 𝐴 and where 𝑡 : 𝐵 𝑥 is a family of terms indexed by the variable
𝑥 : 𝐴 such that 𝑡 possibly contains an occurrence of the variable 𝑥 : 𝐴. Similarly,
dependent function types satisfy their own 𝜂-law. In the case 𝐵 is the constant
type family 𝜆𝑥 → 𝐶 where 𝐶 : 𝒰 is a type where 𝑥 is not free, the dependent
function type (𝑥 : 𝐴) → 𝐵 𝑥 coincides with the ordinary function type 𝐴→ 𝐶.

When writing dependent function types whose codomain is itself a depend-
ent function type; that is, types of the form (𝑥1 : 𝐴1) → · · · → (𝑥𝑛 : 𝐴𝑛) → 𝐵, we
instead write (𝑥1 : 𝐴1) . . . (𝑥𝑛 : 𝐴𝑛) → 𝐵 without the intermediate arrows. Also,
if we have 𝑛 consecutive binders with the same type as in (𝑥1 : 𝐴) → · · · → (𝑥𝑛 :
𝐴) → 𝐵, we instead group them together and write (𝑥1 . . . 𝑥𝑛 : 𝐴) → 𝐵.

Finally, we introduce a notation for implicit arguments of functions. When
the argument of a function can be inferred from the type of its application, this
argument can be omitted in the notation. We use curly brackets for implicit

138 Appendix A. Background material

arguments such that 𝑓 : {𝑥 : 𝐴} → 𝐵 𝑥 is a function whose argument 𝑥 is
implicit. This notation is particularly convenient in nested function types when
an argument depends on a number of previous arguments. For example, given
a function 𝑓 : {𝑥 𝑦 : 𝐴} (𝑧 : 𝐵 𝑥 𝑦) → 𝐶 𝑥 𝑦 𝑧 and an element 𝑧 : 𝐵 𝑥 𝑦 for 𝑥
and 𝑦 two elements of 𝐴, we denote 𝑓 𝑧 the application of 𝑓 to the arguments
𝑥, 𝑦, and 𝑧 but omitting the first two in the notation. Not all arguments can be
made implicit, and we will only employ them when it is easy for the reader to
infer them. Sometimes we will want to make explicit the implicit arguments in
which case we write 𝑓 {𝑥} {𝑦} 𝑧.

A.5.2 Σ-types

Σ-types are the types of dependent pairs. Let 𝐴 : 𝒰 and 𝐵 : 𝐴 → 𝒰 , we form
the type

∑
(𝑥:𝐴) 𝐵 𝑥 : 𝒰 . A pair of elements 𝑥 : 𝐴 and 𝑦 : 𝐵 𝑥 defines an element

(𝑥, 𝑦) :
∑
(𝑥:𝐴) 𝐵 𝑥. Conversely, given a pair 𝑝 :

∑
(𝑥:𝐴) 𝐵 𝑥, we can project its two

components as pr1 𝑝 : 𝐴 and pr2 𝑝 : 𝐵 (pr1 𝑝) such that, for any 𝑥 : 𝐴 and 𝑦 : 𝐵 𝑥,
pr1 (𝑥, 𝑦) ≡ 𝑥 and pr2 (𝑥, 𝑦) ≡ 𝑦 which constitute the two 𝛽-laws of Σ-types.
Moreover, Σ-types satisfy the 𝜂-law 𝑝 ≡ (pr1 𝑝, pr2 𝑝) for any 𝑝 :

∑
(𝑥:𝐴) 𝐵 𝑥.

When defining a mathematical structure as a type endowed with a number
of operations each satisfying some laws, we implicitly formalise it as a nested
sigma type. For example, if we have to write the definition of an associative
magma, we will say that it is the data of

• A type 𝑋 :𝒰 .

• A binary operation 𝑚 : 𝑋 × 𝑋 →𝒰 .

• A proof that 𝑚 is associative; that is, for any triplet 𝑥, 𝑦, 𝑧 : 𝑋, a proof of
𝑚 (𝑚 𝑥 𝑦) 𝑧 = 𝑚 𝑥 (𝑚 𝑦 𝑧).

but implicitly we have to think of this definition as being formalised as the type∑
(𝑋:𝒰) (

∑
(𝑚:𝑋×𝑋→𝒰) (𝑥 𝑦 𝑧 : 𝑋) → 𝑚 (𝑚 𝑥 𝑦) 𝑧 = 𝑚 𝑥 (𝑚 𝑦 𝑧))

We allow coinductive definitions as implemented in Agda (Abel, Pientka et al.
2013), in which case we drop the 𝜂-law as it could lead to non-terminating type-
checking. For example, the type Stream𝐴 of stream of type 𝐴 is defined as the
data of

• An element of type 𝐴.

• A stream Stream𝐴.

A.5.3 Inductive types

Most of the types that we will be using fall within the scope of inductive types
which, intuitively, are freely generated by their introduction rules that we name
constructors. Their elimination rules then naturally follow from their construct-
ors and consist of a clause specifying what to do for each of the constructors.
We introduce a few inductive types which will be used throughout this thesis.

A.5. Our setting 139

Empty type The empty type⊥has no constructor. Given a type family𝐴 : ⊥ →
𝒰 , defining a function 𝑓 : (𝑥 : ⊥) → 𝐴 𝑥 requires no clause corresponding to
the fact that there is no constructor inhabiting this type. Its induction principle
is

⊥-elim : (𝐴 : ⊥ →𝒰) (𝑥 : ⊥) → 𝐴 𝑥

Unit type The unit type 1 has a single constructor ★. Given a type family
𝐴 : 1 → 𝒰 , defining a function 𝑓 : (𝑥 : 1) → 𝐴 𝑥 requires a single clause
corresponding to its only constructor

𝑓 ★ :≡ 𝑓★

where 𝑓★ : 𝐴 ★.

Natural numbers The type of natural numbers N have two constructors:

0 : N
suc : N→ N

Given a type family 𝐴 : N→ 𝒰 , a function 𝑓 : (𝑛 : N) → 𝐴 𝑛 is defined by the
following equations

𝑓 0 :≡ 𝑓0
𝑓 (suc 𝑛) :≡ 𝑓suc 𝑛 (𝑓 𝑛)

where

𝑓0 : 𝐴 0
𝑓suc : (𝑛 : N) → 𝐴 𝑛 → 𝐴 (suc 𝑛)

Sum types Given two types 𝐴 and 𝐵, we form the type 𝐴 + 𝐵 of the disjoint
union of 𝐴 and 𝐵. It has two constructors:

inl : 𝐴→ 𝐴 + 𝐵
inr : 𝐵→ 𝐴 + 𝐵

Given a family 𝐶 : 𝐴 + 𝐵 → 𝒰 , a function 𝑓 : (𝑥 : 𝐴 + 𝐵) → 𝐶 𝑥 is defined by
the following equations

𝑓 (inl 𝑎) :≡ 𝑓inl(𝑎)
𝑓 (inr 𝑏) :≡ 𝑓inr(𝑏)

where 𝑓inl : (𝑎 : 𝐴) → 𝐶 (inl 𝑎) and 𝑓inl : (𝑏 : 𝐵) → 𝐶 (inr 𝑏).

140 Appendix A. Background material

A.5.4 Identity types

Identity types model the notion of propositional identity. Let 𝐴 : 𝒰 be a type.
Given two elements 𝑥, 𝑦 : 𝐴, we form their identity type 𝑥 =𝐴 𝑦 : 𝒰 dropping
the type annotation and writing 𝑥 = 𝑦 instead when it can be inferred from
the context. Its sole constructor is refl𝑥 : 𝑥 = 𝑥 for any element 𝑥 : 𝐴. Identity
types 𝑥 =𝐴 𝑦 depart from ordinary inductive types in that they are inductively
defined family of types indexed by 𝑦. The sole constructor of identity types then
specifies an inhabitant of the fibre over 𝑥.

In order to define the elimination principle for identity types, we consider a
type family 𝐵 : (𝑦 : 𝐴) → 𝑥 = 𝑦 →𝒰 . Note how 𝐵 depends on 𝑦 being variable
owing to the fact that 𝑦 is the index of this inductively defined family of types.
Now, in order to define an element of 𝐵 𝑦 𝑝 for any element 𝑦 : 𝐴 and identity
𝑝 : 𝑥 = 𝑦, it suffices to define an element 𝑑 : 𝐵 𝑥 refl𝑥 . Intuitively, we imagine
𝑝 to be a path whose 𝑦 endpoint is free in such a way that we can contract 𝑝 to
refl𝑥 then use 𝑑. Moreover, if 𝑝 was definitionally equal to refl𝑥 in the first place,
we just return 𝑑.

To summarise, the induction principle has type:

=ind : {𝐴 :𝒰} {𝑥 : 𝐴} (𝐵 : {𝑦 : 𝐴} → 𝑥 = 𝑦 →𝒰)
→ (𝑑 : 𝐵 refl𝑥)
→ {𝑦 : 𝐴} (𝑝 : 𝑥 = 𝑦)
→ 𝐵 𝑝

subject to the equation
=ind 𝐵 𝑑 refl𝑥 ≡ 𝑑

This induction principle reduces to the following substitution principle when 𝐵
does not depend on the particular identity:

transport : {𝐴 :𝒰} (𝐵 : 𝐴→𝒰) {𝑥 𝑦 : 𝐴} (𝑝 : 𝑥 = 𝑦) → 𝐵 𝑥 → 𝐵 𝑦

The use of transport is ubiquitous in ITT and can often obfuscate the crux of a
proof. We will therefore adopt the notation

transport𝐵 𝑝 𝑢

in place of transport 𝐵 𝑝 𝑢 in order to highlight the term being transported which
is 𝑢 in the present case. When 𝐵 is the identity function id𝒰 , we will even omit
𝐵 and write transport 𝑝 𝑢.

We recall a number of definitions relative to HoTT which make use of identity
types and which will be used throughout this thesis.

Inverse Let 𝐴 be a type, let 𝑥, 𝑦 : 𝐴, and let 𝑝 : 𝑥 = 𝑦. There exists an identity
𝑦 = 𝑥 that we denote 𝑝−1. It is defined by induction on 𝑝.

A.5. Our setting 141

Composition Let 𝐴 be a type, let 𝑥, 𝑦, 𝑧 : 𝐴, let 𝑝 : 𝑥 = 𝑦, and let 𝑦 = 𝑧, then
there exists an identity 𝑥 = 𝑧 that we denote 𝑝 � 𝑞. It is defined by induction on 𝑝
or 𝑞. The composition satisfies the following propositional laws for any 𝑝 : 𝑥 = 𝑦,
𝑞 : 𝑦 = 𝑧, and 𝑟 : 𝑧 = 𝑡:

𝑝 � refl𝑦 = refl𝑥 � 𝑝 = 𝑝

𝑝 � 𝑝−1 = refl𝑥
𝑝−1 � 𝑝 = refl𝑦
(𝑝 � 𝑞) � 𝑟 = 𝑝 � (𝑞 � 𝑟)

This defines a structure of groupoid on types.

𝑛-Types We recall that types can be classified into 𝑛-types: types which are
contractible above the dimension 𝑛. We will in particular use the explicit defin-
ition of the following three particular cases.

Definition A.5.1 (Contractible type). A type 𝐴 is contractible if there exists an
element 𝑥 : 𝐴 such that, for all elements 𝑦 : 𝐴, we have 𝑥 = 𝑦. The element 𝑥 is
named the centre of contraction.

is-contr 𝐴 :≡ ∑
(𝑥:𝐴) (𝑦 : 𝐴) → 𝑥 = 𝑦

Definition A.5.2 (Proposition). A type 𝐴 is a proposition if any two elements
𝑥, 𝑦 : 𝐴 are equal.

is-prop 𝐴 :≡ (𝑥 𝑦 : 𝐴) → 𝑥 = 𝑦

Definition A.5.3 (Set). A type is a set if, for any two elements 𝑥, 𝑦 : 𝐴 and any
two identities 𝑝, 𝑞 : 𝑥 = 𝑦 then 𝑝 = 𝑞.

is-set 𝐴 :≡ {𝑥 𝑦 : 𝐴} (𝑝 𝑞 : 𝑥 = 𝑦) → 𝑝 = 𝑞

Moreover, it can be shown that is-contr(𝐴), is-prop(𝐴), and is-set(𝐴) are all
propositions.

We now give a definition of equivalence of types based on contractible func-
tions; we refer the reader to Chapter 4 of the HoTT book (Univalent Foundations
Program 2013) for other equivalent definitions.

Definition A.5.4 (Homotopy fibre). The homotopy fibre of a function 𝑓 : 𝐴→ 𝐵
at a point 𝑦 : 𝐵 is the subtype of 𝐴 which has image 𝑦 under 𝑓 .

fib 𝑓 𝑦 :≡ ∑
(𝑥:𝐴) 𝑓 𝑥 = 𝑦

We define equivalences as functions whose fibres are contractible.

Definition A.5.5 (Equivalence). A function 𝑓 : 𝐴 → 𝐵 is an equivalence if for
every element 𝑦 : 𝐵, the type fib 𝑓 𝑦 is contractible.

is-equiv 𝑓 :≡ (𝑦 : 𝐵) → is-contr (fib 𝑓 𝑦)

142 Appendix A. Background material

This, in turn, allows us to define equivalences of types.

Definition A.5.6 (Equivalence of types). An equivalence of types 𝐴 ≃ 𝐵 is a
function 𝐴 → 𝐵 together with a proof that it is an equivalence. We therefore
define

𝐴 ≃ 𝐵 :≡ ∑
(𝑓 :𝐴→𝐵) (is-equiv 𝑓)

We will often use the more practical definition of quasi inverse. It is logically
equivalent to an equivalence of types, but it is not as well-behaved as it is in
general not a proposition. However, from a quasi inverse we can always define
an equivalence of types. When defining an equivalence we will then often just
provide a quasi inverse.

Definition A.5.7 (Quasi inverse). A function 𝑓 : 𝐴 → 𝐵 has a quasi-inverse if
there exists a function 𝑔 : 𝐵→ 𝐴 such that

𝑓 ◦ 𝑔 = id𝐴
𝑔 ◦ 𝑓 = id𝐵

We will denote 𝑒−1 the inverse of an equivalence 𝑒. We finally recall the
univalence axiom. First, notice that for any two types 𝐴 and 𝐵, there is a
function

id-to-equiv : 𝐴 = 𝐵→ 𝐴 ≃ 𝐵
defined by induction which associates to any identity 𝑝 : 𝐴 = 𝐵 the function

𝜆𝑥 → transportid𝒰 𝑝 𝑥

together with a proof that it is an equivalence — easily proven by an induction
on 𝑝.

Definition A.5.8 (Univalence axiom). For any two types 𝐴 and 𝐵, the function
id-to-equiv is an equivalence. In particular, we have

(𝐴 = 𝐵) ≃ (𝐴 ≃ 𝐵)
It is well known that univalence implies function extensionality.

Definition A.5.9 (Function extensionality). Let 𝐴 :𝒰 be a type and let 𝐵 : 𝐴→
𝒰 be a family of types. Let 𝑓 , 𝑔 : (𝑥 : 𝐴) → 𝐵 𝑥 be two functions, if 𝑓 and 𝑔 are
pointwise equal then 𝑓 = 𝑔.

funext : {𝐴 :𝒰} {𝐵 : 𝐴→𝒰} { 𝑓 𝑔 : (𝑥 : 𝐴) → 𝐵 𝑥}
→ (𝑝 : (𝑥 : 𝐴) → 𝑓 𝑥 = 𝑔 𝑥) → 𝑓 = 𝑔

The definition uses the univalence axiom and can be found in Section 4.9 of
the HoTT book.

We define a last operation which relates pairs of identities and identities of
pairs.

A.5. Our setting 143

Definition A.5.10. Let 𝐴 : 𝒰 and let 𝐵 : 𝐴 → 𝒰 be a type family. Let 𝑥, 𝑦 : 𝐴,
let 𝑢 : 𝐵 𝑥, and let 𝑣 : 𝐵 𝑦. If we have an identity 𝑝 : 𝑥 = 𝑦 along with an identity
transport𝐵 𝑝 𝑢 = 𝑣 then there is an identity (𝑥, 𝑢) = (𝑦, 𝑣) in the type

∑
(𝑥:𝐴) 𝐵 𝑥.

pair= : {𝐴 :𝒰} {𝐵 : 𝐴→𝒰} {𝑥 𝑦 : 𝐴} {𝑢 : 𝐵 𝑥} {𝑣 : 𝐵 𝑦}
→ (𝑝 : 𝑥 = 𝑦) (𝑞 : transport𝐵 𝑝 𝑢 = 𝑣)
→ (𝑥, 𝑢) = (𝑦, 𝑣)

Moreover, pair= is an equivalence. The proof is done by induction on 𝑝 and
𝑞.

144 Appendix A. Background material

Appendix B

Extended abstract (French
version)

La définition de structures algébriques sur des types arbitraires en théorie des
types homotopiques (HoTT) s’est révélée hors de portée jusqu’à présent. Cela
est dû au fait que les types sont, en général, des espaces plutôt que de simples
ensembles, et que les égalités d’éléments d’un type se comportent comme des ho-
motopies. Les lois équationnelles des structures algébriques doivent donc être
énoncées de manière cohérente. Cependant, en mathématiques ensemblistes,
la présentation de ces données de cohérence se fait à l’aide de structures algé-
briques sur des ensembles, telles que les opérades ou les préfaisceaux, qui ne sont
par conséquent pas soumises à des conditions de cohérence supplémentaires.
Reproduire cette approche en HoTT conduit à une situation de dépendance cir-
culaire puisque ces structures doivent être définies de manière cohérente dès le
départ.

Dans cette thèse, nous brisons cette circularité en étendant la théorie des
types d’un univers de monades polynomiales cartésiennes qui, de manière cru-
ciale, satisfont leurs lois définitionnellement. Cette extension permet de présen-
ter les types et leurs structures supérieures sous forme de types opétopiques
qui sont des collections infinies de cellules dont la géométrie est décrite par les
opétopes.

Opétopes

Nous ouvrons cette thèse en donnant une définition des opétopes dans une
théorie des types similaire à celle du livre HoTT au chapitre 1. Les opétopes
sont des formes géométriques introduites par Baez et Dolan afin de donner une
définition des 𝑛-catégories. Les opétopes de dimension 𝑛 + 1 ont pour source
une collection d’opétopes de dimension 𝑛 et ont pour cible un unique opé-
tope de dimension 𝑛. Nous définissons les opétopes comme séquences d’arbres
bien fondés satisfaisant certaines propriétés qui sont capturées par leur typage.
L’approche opétopique est particulièrement adaptée au contexte de la théorie
des types car ces arbres sont aisément définissables comme types inductifs.

146 Appendix B. Extended abstract (French version)

Plus précisément, notre construction est basée sur une séquence de monades
polynomiales cartésiennes, une notion qui devient centrale dans les chapitres
suivants.

Nous décrivons informellement quelques exemples d’opétopes en basse di-
mension afin d’en saisir l’intuition.

0-opétope Il y a un seul opétope de dimension 0 que l’on représente par un
point.

•

1-opétope Il y a un seul opétope de dimension 1 que l’on représente par une
flèche. Elle a une unique source et une cible qui sont tous deux des 0-opétopes.

• •

À partir de cette dimension, on peut former des composites formels de 𝑛-
opétopes aussi appelés schémas de composition. En dimension 1 ce ne sont que
des chaînes de 1-opétopes comme celle-ci :

• • • •

2-opétopes Les 2-opétopes ont une source constituée d’une chaîne de 1-opétopes
(possiblement vide) et ont pour cible l’unique 1-opétope. Les diagrammes sui-
vants illustrent des exemples de 2-opétopes :

•

• •

•
• •

•

Les 2-opétopes peuvent être assemblés pour former des schémas de composition
de 2-opétopes en collant la cible d’un 2-opétope à l’une des sources d’un second
2-opétope comme illustré sur le diagramme suivant :

•

• •

•

3-opétopes Nous présentons un dernier exemple d’opétope dont la source
est un schéma de composition de 2-opétopes et dont la cible est un 2-opétope
parallèle en cela que le schéma source et l’opétope cible ont tous deux la même

Monades polynomiales cartésiennes 147

source et la même cible.

•

• •

• •

• •

•

Ce chapitre est l’occasion pour le lecteur de se familiariser avec les opétopes en
théorie des types qui sont des ensembles et qui échappent donc aux considé-
rations de cohérence avant d’aborder les types opétopiques dont la complexité
peut obscurcir la simplicité conceptuelle des opétopes.

Monades polynomiales cartésiennes

Nous étendons ensuite la théorie des types d’un univers de monades polyno-
miales cartésiennesℳ clos sous certains constructeurs de monades au chapitre 2
qui nous servira à définir les types opétopiques au chapitre 3.

Les monades polynomiales cartésiennes constituent la fondation de notre
système. Elles sont au cœur de la construction dite de Baez-Dolan (Baez et
Dolan 1998) qui a été introduite dans le cadre des opérades dans le but de
définir les 𝑛-catégories. Les monades polynomiales cartésiennes peuvent être
considérées comme des présentations de théories algébriques fortement régu-
lières. Ce sont des théories algébriques dont les équations sont contraintes de
telle sorte que les variables doivent apparaître des deux côtés sans répétition et
dans le même ordre (Leinster 2004). À partir de maintenant, nous ne préciserons
pas systématiquement que nos monades polynomiales sont cartésiennes même
si elles le sont toujours afin d’alléger la notation.

Les monades polynomiales se prêtent bien à une définition en théorie des
types en tant que familles indexées. Les éléments de notre univers ℳ sont
considérés comme des codes pour nos monades. Pour toute monade 𝑀 : ℳ,
la donnée définissant son endofoncteur sous-jacent est spécifiée par les familles
de types et la fonction de typage suivantes :

Idx𝑀 :𝒰
Cns𝑀 : Idx𝑀 →𝒰
Pos𝑀 : {𝑖 : Idx𝑀} → Cns𝑀 𝑖 →𝒰
Typ𝑀 : {𝑖 : Idx𝑀} (𝑐 : Cns𝑀 𝑖) → Pos𝑀 𝑐 → Idx𝑀

où𝒰 représente l’univers des types.
Ces données peuvent être considérées comme une description de la signature

d’une théorie algébrique : les éléments de Idx, que nous appelons indices, sont
les sortes de la théorie, et pour chaque index 𝑖 : Idx, le type Cns 𝑖 est le types des
symboles d’opérations dont la sorte de “sortie” est 𝑖. Le type Pos 𝑐 est alors le
type des “positions d’entrée” de l’opération 𝑐 auxquelles sont affectées un index
via la fonction Typ.

Dans cette thèse, nous utiliserons un langage graphique pour représenter
les constructeurs de nos monades polynomiales. Un constructeur est représenté

148 Appendix B. Extended abstract (French version)

𝑎 𝑐 𝑑

𝑔 ℎ

𝑖

𝑓

𝑏 𝑒

Figure B.1 : A 𝑃-tree

par une corolle dont la sortie pointe vers le bas et dont les entrées pointent vers le
haut. Dans la représentation suivante d’une corolle, le constructeur est étiqueté
𝑓 , les entrées sont étiquetées 𝑥𝑖 pour 1 ≤ 𝑖 ≤ 𝑛, et la cible est étiquetée 𝑦.

𝑥1
. . .

𝑥𝑛

𝑓

𝑦

Pour tout foncteur polynomial 𝑃, ses constructeurs peuvent arrangés en arbres
appelés 𝑃-arbres (Figure B.1) à condition que, pour chaque arête interne, l’indice
de la cible et l’indice de la source des constructeurs correspondants soient les
mêmes. La structure supplémentaire conférant à un foncteur polynomial 𝑀 une
structure de monade polynomiale cartésienne est spécifiée, en partie, par les
opérations suivantes :

η𝑀 : (𝑖 : Idx𝑀) → Cns𝑀 𝑖

μ𝑀 : {𝑖 : Idx𝑀} (𝑐 : Cns𝑀 𝑖) (𝑑 : (𝑝 : Pos𝑀 𝑐) → Cns𝑀 (Typ𝑀 𝑐 𝑝)) → Cns𝑀 𝑖

Ces opérations doivent satisfaire certaines lois que nous ne détaillons pas dans
cette section, mais nous commentons les deux opérations.

Pour chaque indice 𝑖 : Idx𝑀 , il existe un constructeur unaire η𝑀 𝑖 : Cns𝑀 𝑖
dont l’index d’entrée est 𝑖. Nous pouvons représenter ce constructeur comme
suit :

𝑖

η 𝑖

𝑖

En ce qui concerne l’opération μ, ses arguments comprennent un constructeur
𝑐 ainsi qu’une famille de constructeurs 𝑑 indexée par les positions de 𝑐. Nous
considérons ces données comme spécifiant un arbre de profondeur 2 tel que

Monades polynomiales cartésiennes 149

celui représenté à gauche de la figure suivante. L’opération μ envoie alors cet
arbre sur un constructeur partageant les mêmes entrées et la même sortie tel
que celui représenté à droite. Le fait que les positions des entrées ainsi que leur
typage soient préservés par l’opération μ est dû au fait que nos monades sont
cartésiennes.

𝑎 𝑐 𝑑

𝑔 ℎ

𝑖

𝑓

𝑏 𝑒

𝑎 𝑐 𝑑

𝑗

𝑓

Une autre façon de représenter un arbre ainsi qu’un constructeur partageant les
mêmes sources et cibles consiste à dessiner l’arbre à l’intérieur du constructeur
en question.

𝑗

𝑎 𝑐 𝑑

𝑔 ℎ

𝑖

𝑓

𝑏 𝑒

En outre, l’opération μ est associative et unitaire, les unités étant spécifiées par
l’opération η. Nous soulignons que nous mettrons en œuvre notre univers de
monades polynomiales en étendant la théorie des types de manière que ces lois
soient définitionnelles.

Contrairement à notre définition des opétopes qui n’implique que des en-
sembles, les types opétopiques sont à valeurs dans des types arbitraires. Par
conséquent, nous ne pouvons plus énoncer les lois équationnelles du chapitre 1
de façon cohérente. Nous définissons donc notre univers de monades polyno-
miales afin que ces lois soient satisfaites par définition. Les constructeurs sous
lesquels notre univers est clos nous permettent alors de définir, en particulier,
la construction tranche de Baez-Dolan sur laquelle repose notre définition des
types opétopiques.

En plus de cet univers qui constitue le cœur de notre ajout à la théorie des
types, nous définissons deux extensions supplémentaires. Tout d’abord, pour
toutes monades 𝑀 et 𝑁 , nous définissons un univers de morphismes cartésiens
de monades de 𝑀 vers 𝑁 dénoté 𝑀 →𝑚 𝑁 . Ensuite, pour toute monade 𝑀,
nous définissons un univers de monades polynomiales au dessus de 𝑀 dénoté
ℳ↓𝑀 . Ces deux extensions permettent d’établir des résultats plus avancés au
chapitre 3.

150 Appendix B. Extended abstract (French version)

𝑋0 : Fam𝑀

𝑋>0 : 𝒪𝑀/𝑋0

Figure B.2 : Définition de 𝒪𝑀

Construction de Baez-Dolan

Notre univers de monades est clos sous la construction tranche de Baez-Dolan
(Baez et Dolan 1998). Étant donné une monade 𝑀 : ℳ et une famille de
types 𝑋 : Fam𝑀 avec Fam𝑀 :≡ Idx𝑀 → 𝒰 , nous définissons une nouvelle
monade 𝑀/𝑋. Son type d’indices est

∑
(𝑖 ,𝑦):∑𝑖:Idx𝑀 𝑋 𝑖

∑
𝑐:Cns𝑀 𝑖

−→
𝑋 𝑐, le types des

constructeurs de 𝑀 dont les entrées et la sortie sont décorées par des éléments
de 𝑋, où

−→
𝑋 𝑐 :≡ (𝑝 : Pos𝑀 𝑐) → 𝑋 (Typ𝑀 𝑐 𝑝) est le type de décorations des

entrées de 𝑐 avec des éléments bien typés de 𝑋.
Nous nommons ces quadruplets cadres et les dénotons (𝑖 , 𝑦) ⊳ (𝑐, 𝑥). Nous

considérons les familles de type Fam𝑀/𝑋 comme des familles de remplissages
pour ces cadres mettant en relation une configuration d’entrées spécifiée par
(𝑐, 𝑥) avec la sortie (𝑖 , 𝑦).

Les constructeurs de 𝑀/𝑋 indexés par un cadre (𝑖 , 𝑦) ⊳ (𝑐, 𝑥) sont alors des
arbres bien fondés de cadres qui se multiplient en (𝑖 , 𝑦) ⊳ (𝑐, 𝑥) en utilisant la
multiplication μ𝑀 pour réduire les constructeurs et en oubliant les décorations
des arêtes internes. La corolle ayant (𝑖 , 𝑦) ⊳ (𝑐, 𝑥) pour seul nœud est une unité
pour la monade 𝑀/𝑋. La grande force de l’approche opétopique est que de tels
arbres sont très commodément définis comme types inductifs. Cependant, leur
indexation utilisant la structure des monades, nous avons besoin que les lois
des monades soient définitionnelles afin de ne pas rencontrer de problèmes de
cohérence.

Étant donné un constructeur 𝑐 : Cns𝑀/𝑋 𝑖, son type de positions Pos𝑀/𝑋 𝑐 est
le type de chemins de la racine de 𝑐 à ses différents nœuds. La fonction de typage
attribue alors le cadre correspondant à un nœud de 𝑐 à une position spécifiée.

Enfin, la multiplication μ𝑀/𝑋 prend un arbre 𝑐 : Cns𝑀/𝑋 𝑖 ainsi qu’une
famille d’arbres 𝑑 :

−−−−−−→
Cns𝑀/𝑋 𝑐 indexés par les positions de 𝑐 et substitue les arbres

spécifiés par 𝑑 aux nœuds de 𝑐. Nous définissons également cette multiplication
de manière à ce qu’elle soit associative et unitaire définitionnellement.

Types opétopiques

Nous tirons parti de notre univers de monades polynomiales pour définir les
types opétopiques au chapitre 3. Étant donné une monade 𝑀, un type 𝑀-
opétopique 𝑋 : 𝒪𝑀 (Figure B.2) est une collection coinductive de cellules opé-
topiques. On note 𝑋𝑛 la (𝑛 + 1)-ième famille de cellules d’un type opétopique 𝑋
et on note 𝑋>𝑛 le type opétopique des familles 𝑋𝑚 pour 𝑚 > 𝑛.

Nous qualifions un type opétopique 𝑋 : 𝒪𝑀 de fibrant s’il possède la

Applications 151

propriété coinductive suivante. Premièrement, pour tout constructeur décoré
(𝑐, 𝑥) :

∑
𝑐:Cns𝑀 𝑖

−→
𝑋0 𝑐, il existe un unique composite 𝑦 : 𝑋0 𝑖 ainsi qu’un remplis-

sage de type𝑋1 ((𝑖 , 𝑦)⊳(𝑐, 𝑥)). En d’autres termes, le type
∑
𝑦:𝑋0 𝑖 𝑋1 ((𝑖 , 𝑦)⊳(𝑐, 𝑥))

est contractile. Deuxièmement, le type opétopique 𝑋>0 est fibrant. Autrement
dit, pour tout schéma de composition de 𝑛-cellules, il existe un unique compo-
site de 𝑛-cellules partageant le même cadre. Ces types opétopiques représentent
des algèbres cohérentes.

À titre d’exemple, un type opétopique fibrant garantit l’existence des cellules
rouges affichées sur le diagramme suivant étant donné le schéma de composition
affiché en noir :

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓
𝑔

ℎ

𝑖

De plus, la donnée rouge formée de la paire comprenant la cellule ℎ et la cellule
𝑖 témoignant que ℎ est un composite de son schéma de composition source est
unique. Par unique, nous entendons que le type de paires dont (𝑖 , ℎ) est membre
est contractile. La notion de contractilité est fondamentale en HoTT et est très
naturellement définie.

Applications

Nous clôturons cette thèse par la définition de structures algébriques supé-
rieures cohérentes et nous motivons ces définitions en prouvant un certain
nombre de résultats attendus. Les types opétopiques fibrants nous permettent
de définir, en particulier, les infini-groupoïdes et les (infini, 1)-catégories. De ma-
nière cruciale, leur structure supérieure est univalente en ce sens qu’elle coïncide
avec celle induite par leurs types d’identités. Ensuite, nous comparons notre dé-
finition de type opétopique fibrant à la définition d’algèbre cohérente de Baez et
Dolan, et nous montrons qu’elles sont équivalentes sous certaines hypothèses.
Puis, nous établissons que les types opétopiques indexés par la monade identité
et dont la famille de 1-cellules est un ensemble sont équivalents aux précatégo-
ries telles que définies dans le livre HoTT. Nous nous tournons vers les monades
dépendantes auxquelles nous avons fait allusion plus tôt afin d’établir les résul-
tats restants. Nous commençons par définir les fibrations de types opétopiques
qui sont une généralisation des types opétopiques fibrants, puis nous montrons
que les types opétopiques fibrants sont clos sous les sommes dépendantes. Nous
définissons également la fibration universelle des types opétopiques. Enfin, nous
définissons les (op)fibrations de Grothendieck que nous appliquons à la défini-
tion de Lurie d’une adjonction comme bifibration au-dessus de l’intervalle.

	Introduction
	Opetopes in type theory
	Introduction
	Diagrammatic depiction of opetopes
	Trees
	Nestings
	Correspondences
	Subdivisions
	Subdivision pairings
	Opetopes
	Faces of an opetope
	Grafting of opetopes
	Composition of opetopes

	Opetopes in type theory
	Definition of opetopes
	Definition of pasting diagrams
	Definition of positions
	Inductive representation of opetopes
	Informal presentation of the monad structure
	Specification of positions operations
	Definition of the monad structure
	Definition of the positions operations

	Faces of an opetope
	Definitions
	Examples

	Polynomial monads
	Cartesian polynomial monads
	Polynomials
	Monads

	The universe of polynomial monads
	The identity monad
	The pullback monad
	The slice monad

	Morphisms of monads
	Identity morphism
	Slice monad morphisms
	Pullback monad morphisms
	Composition of monad morphisms

	Monad families
	The identity monad
	The pullback monad
	The slice monad
	Dependent sums

	Opetopic methods in type theory
	Opetopic types
	Algebras
	Algebraic structure
	Fibrant opetopic types

	Algebraic characterisation
	An explicit characterisation of the composition
	Wild M-multicategories
	Fibrations of opetopic types
	Families of opetopic types
	Dependent algebras
	Fibrations of opetopic types
	Dependent sums of opetopic types

	The opetopic universe of types
	The opetopic type associated with a type
	Adjunctions

	Conclusion
	Bibliography
	Background material
	Constructive mathematics
	Intuitionistic type theory
	Propositions as types
	Homotopy type theory
	The genesis
	Univalence

	Our setting
	Function types
	Σ-types
	Inductive types
	Identity types

	Extended abstract (French version)

