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Thank you to all Ph.D. students and member staff at Laboratoire de Physique Nucléaire et Hautes Energies (LPNHE). Thank you for their help and support during my Ph.D. I extend my heartfelt gratitude to my parents, sisters, and entire family for their unwavering moral support and assistance throughout my academic journey. Their encouragement and belief in my abilities have been instrumental in my achievements. I am especially grateful to my wife, Armina, for her unwavering support, understanding, and patience throughout this challenging endeavor. Her presence and constant encouragement have been a source of strength for me. To my beloved son, Arkani, I apologize for not being able to spend as much time with you as I would have liked during this period. Your curiosity and engaging questions have brought joy to my work and reminded me of the importance of balancing family and academic pursuits. i Théorie des perturbations cosmologiques : modèles sans échelle et dépendance à la cosmologie Résumé La théorie des perturbations cosmologiques est un outil analytique central dans la théorie de la formation des structures cosmologiques. Il s'agit d'un domaine de recherche très actif qui prépare des prédictions théoriques pour les grands programmes d'observation à venir dans ce domaine. Cette thèse se concentre sur la dépendance des résultats au delà de l'ordre principal dans la théorie des perturbations cosmologiques sur l'histoire de l'expansion du modèle cosmologique, un effet faible qui est généralement négligé. Nous abordons d'abord la question en utilisant une classe simplifiée de modèles cosmologiques appelés Einstein de Sitter généralisés. Ceux-ci nous permettent d'étudier la dépendance cosmologique paramétrée par une seule constante contrôlant le taux de croissance. Nos résultats analytiques pour les noyaux de la théorie des perturbations expliquent pourquoi la dépendance cosmologique est faible. Ils motivent également une formulation alternative du calcul des corrections cosmologiques dans les modèles standards (de type LCDM). Nous obtenons ainsi une expression simplifiée pour le spectre de puissance exact à une boucle qui ne dépend que de deux fonctions de "taux de croissance effectif" dépendant du temps. En utilisant les noyaux analytiques d'Einstein de Sitter généralisé, nous dérivons également des résultats exacts pour le spectre de puissance à une boucle dans les modèles sans échelle généralisés avec un fond d'Einstein de Sitter généralisé. Nous comparons notre prédiction de la dépendance du spectre de puissance par rapport au taux de croissance avec les résultats mesurés dans les simulations à N-corps de ces modèles, démontrant un très bon accord. Nous déduisons également des corrections à ces prédictions dans une approche de "théorie du champ effectif" et soulignons comment d'autres simulations pourraient fournir des tests rigoureux. Enfin, nous exploitons un ensemble de grandes simulations à N-corps convenablement conçues pour tester numériquement la dépendance cosmologique prédite du spectre de puissance dans les cosmologies standard.

Introduction (EN)

At the recombination era, photons decoupled from matter, allowing them to freely travel through the Universe. The freely streaming photons underwent stretching as the Universe evolved, and can now be observed as the cosmic microwave background (CMB). The CMB exhibits small temperature fluctuations on the order of ∼ 10 -5 , which indicate that density perturbations of this amplitude existed at the time of decoupling. These small density fluctuations grew over time under the influence of gravity, eventually forming the complex cosmological structures we observe today such as galaxies. The distribution of matter and galaxies in space is not random but instead it is highly organized in clusters that form filamentary structures. As observational technology advances, we have access to data of unprecedented precision. Through different statistical analyses, rich information may be extracted from these data. To calculate a prediction for the nonlinear structure of the Universe, we employ in particular one standard tool: N-body simulations. N-body simulations evolve the initial condition given by fluctuations deep in the matter-dominated era in a fixed cosmological background. These simulations calculate the evolution of numerous particles under the influence of gravitational forces, resulting in the formation of nonlinear structures up to a characteristic length scale that increases monotonically in time. To complement and control the simulations, an analytical perturbation theory approach is employed. Perturbation theory can be employed effectively in the weakly nonlinear regime where the fluctuations remain small. The focus of this thesis is the dependence of results in cosmological perturbation theory on expansion history. Indeed most perturbation theory calculations in the literature make the assumption that the dependence of results on the cosmological background can be well approximated using the so-called "EdS approximation". This assumes that dependence on the cosmological background is taken into account by replacing the linear growth factor in the perturbation theory result calculated in an EdS cosmology by that of the model. The perturbative corrections beyond linear order at a given time are then expressed solely in terms of the linear power spectrum and are thus independent of the expansion history. While it has been shown by fuller calculations that this "EdS approximation" is indeed a very good one -e.g. leading, in typical standard type models, to sub-percent corrections to the power spectrum of dark matter at the relevant scales -in the present and forthcoming era of high precision cosmological data, it has become highly relevant to model carefully, and try if possible to understand better, these corrections. The study of these corrections also potentially provides, as we will discuss, precision tests of perturbation theory and of N-body simulations.

Organization of the thesis

This manuscript is divided into three main sections. The first section, which corresponds to Chapters 1 and 2, gives a general introduction to the relevant background x Introduction (EN) material. The second section corresponds to Chapters 3,4,5, and 6, and presents the original results of the research project. The final section, Chapter 7, gives the conclusion and summary of the entire manuscript. The manuscript adopts a theoretical approach to studying the cosmological structure of the Universe. Some parts of the manuscript include comparisons with N-body simulations to test the accuracy of the theoretical predictions.

Chapter 1 gives a brief overview of the standard cosmological model. It first introduces the Friedmann equations, and its different solutions for the matter and radiationdominated eras, as well as the standard LCDM model. Additionally, this chapter includes a literature review of observational data from galaxy surveys, which serves as motivation for the project. Further we give a very brief overview of the theoretical approach to studying the large-scale structure. The final part of this is dedicated to describing the importance of numerical approaches in comprehending real data and gives a brief review of N-body simulations.

Chapter 2 presents further theoretical background for this project, focusing on perturbation theory. Starting from the collisionless Boltzmann equation, one uses the zeroth and the first moment to obtain the fluid equations for density and velocity. Neglecting the velocity dispersion results in the nonlinear equation that can be solved using a perturbative approach to obtain analytical solutions. This approach to solving the fluid equations perturbatively without velocity dispersion is commonly known as standard perturbation theory (SPT). We consider the canonical case of the Einstein-de-Sitter (EdS) model, assuming a universe dominated by cold dark matter. The subsequent part introduces the generalization of the theoretical framework of perturbation theory for standard-type (e.g. LCDM-like) cosmological models. Finally, we discuss briefly the so-called effective field theory (EFT) approach in the last section.

In Chapter 3 we study the dependence on cosmological background in perturbation theory beyond the EdS approximation in so-called "generalized EdS" cosmologies. These are, like standard EdS, models with an expansion driven only by a matter-like (zero pressure) component, but they differ in that only a fraction of this component is assumed to cluster. This gives, as in the standard EdS model, the growth law for the scale factor a ∝ t 2/3 , but a linear growth rate D(a) ∝ a α where α can now take any non-negative value. Thus the constant α parametrizes a variable linear growth rate. We derive exact analytical results in perturbation theory for these models, generalizing the expressions of the known EdS kernels to ones depending on the parameter α. These expressions throw light on the origin of the very weak dependence of perturbative corrections on cosmology. Additionally, we present the asymptotic behavior of the one-loop correction to determine the convergence properties of the power spectrum (in the infrared and ultraviolet limits). The content of this chapter corresponds to approximately half of the article [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF] published in Phys. Rev. D.

In Chapter 4 we show that the calculation of cosmology-dependent corrections in perturbation theory in standard (e.g. LCDM-like) models can be simplified, and their magnitude and parameter dependence better understood, by relating them to our analytic results for gEdS models. At second order the time-dependent kernels are equivalent to the analytic kernels of the gEdS model with a single redshift-dependent effective growth rate. At third order the time evolution can be conveniently parametrized in terms of two additional such effective growth rates. For the PS calculated at one loop order, the correction to the PS relative to the EdS limit can be expressed in terms of just two effective growth rate-dependent parameters and the four infra-red safe integrals of the gEdS limit. This is much simplified compared to expressions in

Introduction (FR)

À l'époque de la recombinaison, les photons se sont découplés de la matière, ce qui leur a permis de se déplacer librement dans l'univers. Les photons circulant librement se sont étirés au fur et à mesure de l'évolution de l'Univers, et peuvent maintenant être observés sous la forme du fond diffus cosmologique (CMB). Le CMB présente de petites fluctuations de température de l'ordre de ∼ 10 -5 , ce qui indique que des perturbations de densité de cette amplitude existaient au moment du découplage. Ces petites fluctuations de densité ont augmenté au fil du temps sous l'influence de la gravité, pour finalement former les structures cosmologiques complexes que nous observons aujourd'hui, telles que les galaxies. La distribution de la matière et des galaxies dans l'espace n'est pas aléatoire mais elle est au contraire très organisée en amas qui forment des structures filamentaires. Grâce aux progrès de la technologie d'observation, nous avons accès à des données d'une précision sans précédent. à des données d'une précision sans précédent. Grâce à différentes analyses statistiques, il est possible d'extraire de riches informations de ces données. Pour calculer une prédiction de la structure non linéaire de l'Univers, nous utilisons en particulier un outil standard : Les simulations à N-corps. Les simulations à N-corps font évoluer la condition initiale donnée par les fluctuations au coeur de l'ère dominée par la matière dans un fond cosmologique fixe. Ces simulations calculent l'évolution de nombreuses particules sous l'influence des forces gravitationnelles, ce qui entraîne la formation de structures non linéaires jusqu'à une échelle de longueur caractéristique qui augmente de façon monotone dans le temps. Pour compléter et contrôler les simulations, une approche analytique de la théorie des perturbations est employée. La théorie des perturbations peut être utilisée efficacement dans le régime faiblement non linéaire où les fluctuations restent faibles.

Cette thèse se concentre sur la dépendance des résultats de la théorie des perturbations cosmologiques par rapport à l'histoire de l'expansion. En effet, la plupart des calculs de la théorie des perturbations dans la littérature font l'hypothèse que la dépendance des résultats sur le fond cosmologique peut être bien approximée en utilisant ce qu'on appelle l'"approximation EdS". Cela suppose que la dépendance du fond cosmologique est prise en compte en remplaçant le facteur de croissance linéaire du résultat de la théorie des perturbations calculé dans une cosmologie EdS par celui du modèle. Les corrections perturbatives au-delà de l'ordre linéaire à un moment donné sont alors exprimées uniquement en termes de spectre de puissance linéaire et sont donc indépendantes de l'histoire de l'expansion. Bien qu'il ait été démontré par des calculs plus complets que cette "approximation EdS" est en effet très bonne -conduisant par exemple, dans les modèles typiques de type standard, à des corrections inférieures à un pour cent du spectre de puissance de la matière noire aux échelles pertinentes -dans l'ère actuelle et à venir des données cosmologiques de haute précision, il est devenu très pertinent de modéliser soigneusement, et d'essayer si possible de mieux xiii xiv Introduction (FR) comprendre, ces corrections. L'étude de ces corrections permet également, comme nous le verrons, de tester avec précision la théorie des perturbations et les simulations à N-corps.

Organisation de la thèse

Ce manuscrit est divisé en trois sections principales. La première section, qui correspond aux chapitres 1 et 2, donne une introduction générale aux documents de référence pertinents. La deuxième section correspond aux chapitres 3, 4, 5 et 6 et présente les résultats originaux du projet de recherche. La dernière section, le chapitre 7, présente la conclusion et le résumé de l'ensemble du manuscrit. Le manuscrit adopte une approche théorique pour étudier la structure cosmologique de l'Univers. Certaines parties du manuscrit comprennent des comparaisons avec des simulations à N-corps afin de tester la précision des prédictions théoriques.

Le chapitre 1 donne un bref aperçu du modèle cosmologique standard. Il présente d'abord les équations de Friedmann et ses différentes solutions pour les ères dominées par la matière et le rayonnement, ainsi que le modèle standard LCDM. En outre, ce chapitre comprend une revue de la littérature sur les données d'observation des études de galaxies, qui sert de motivation pour le projet. Nous donnons ensuite un bref aperçu de l'approche théorique de l'étude de la structure à grande échelle. La dernière partie de ce chapitre est consacrée à la description de l'importance des approches numériques dans la compréhension des données réelles et donne un bref aperçu des simulations à N-corps.

Le chapitre 2 présente le contexte théorique de ce projet, en se concentrant sur la théorie des perturbations. En partant de l'équation de Boltzmann sans collision, on utilise le moment zéro et le premier moment pour obtenir les équations du fluide pour la densité et la vitesse. En négligeant la dispersion de la vitesse, on obtient l'équation non linéaire qui peut être résolue à l'aide d'une approche perturbative pour obtenir des solutions analytiques. Cette approche de la résolution perturbative des équations des fluides sans dispersion de vitesse est communément appelée théorie standard des perturbations (SPT). Nous considérons le cas canonique du modèle d'Einstein-de-Sitter (EdS), en supposant un univers dominé par de la matière noire froide. La partie suivante introduit la généralisation du cadre théorique de la théorie des perturbations pour les modèles cosmologiques de type standard (par exemple de type LCDM). Enfin, nous discutons brièvement de l'approche dite de la théorie effective des champs (EFT) dans la dernière section.

Dans le chapitre 3, nous étudions la dépendance du fond cosmologique dans la théorie des perturbations au-delà de l'approximation EdS dans les cosmologies dites "EdS généralisées". Il s'agit, comme dans l'EdS standard, de modèles dont l'expansion n'est pilotée que par une composante de type matière (pression nulle), mais qui diffèrent par le fait que seule une fraction de cette composante est supposée se regrouper. Cela donne, comme dans le modèle EdS standard, la loi de croissance pour le facteur d'échelle a ∝ t 2/3 , mais un taux de croissance linéaire D(a) ∝ a α où α peut maintenant prendre n'importe quelle valeur non-négative. Ainsi, la constante α paramétrise un taux de croissance linéaire variable. Nous obtenons des résultats analytiques exacts en théorie des perturbations pour ces modèles, en généralisant les expressions des noyaux EdS connus à ceux qui dépendent du paramètre α. Ces expressions nous éclairent sur l'origine de la très faible dépendance des corrections perturbatives à la cosmologie. De plus, nous présentons le comportement asymptotique de la correction à une boucle pour déterminer les propriétés de convergence du spectre de puissance (dans les limites de l'infrarouge et de l'ultraviolet). Le contenu de ce chapitre correspond à environ la Introduction (FR) xv moitié de l'article [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF] publié dans Phys. Rev. D.

Dans le chapitre 4, nous montrons que le calcul des corrections dépendant de la cosmologie dans la théorie des perturbations pour les modèles standard (par exemple de type LCDM) peut être simplifié, et que leur magnitude et leur dépendance aux paramètres peuvent être mieux comprises, en les reliant à nos résultats analytiques pour les modèles gEdS.

Au deuxième ordre, les noyaux dépendant du temps sont équivalents aux noyaux analytiques du modèle gEdS avec un taux de croissance effectif unique dépendant du redshift. Au troisième ordre l'évolution temporelle peut être paramétrée de manière pratique en termes de deux taux de croissance effectifs supplémentaires. Pour le PS calculé à l'ordre d'une boucle, la correction du PS par rapport à la limite EdS peut être exprimée en termes de seulement deux paramètres effectifs dépendant du taux de croissance et des quatre intégrales infrarouges sûres de la limite gEdS. Ceci est très simplifié par rapport aux expressions de la littérature qui utilisent six ou huit fonctions dépendant du décalage vers le rouge et qui ne sont pas explicitement sûres pour l'infrarouge. L'utilisation de l'expression analytique gEdS pour le PS donne une bonne approximation du résultat exact. Le contenu de ce chapitre représente environ la moitié de l'article [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF] publié dans Phys. Rev. D.

Dans le chapitre 5, nous utilisons les résultats du chapitre 4 pour calculer la PS à une boucle dans des modèles sans échelle en arrière-plan gEdS (modèles sans échelle généralisés). Comme nous avons remarqué que ces les modèles peuvent être commodément paramétrés par α, le taux de croissance linéaire logarithmique constant des fluctuations (avec α = 1 dans le cas habituel). Pour -3 < n < -1, où le PS à une boucle est à la fois convergent infrarouge et ultraviolet et donc explicitement auto-similaire, il se caractérise commodément par une coefficient numérique unique c(n, α). Nous comparons les prédictions analytiques pour c(n = -2, α) avec les résultats d'une suite de simulations de N -corps avec α ∈ [0. [START_REF] Peebles | Statistical Analysis of Catalogs of Extragalactic Objects. I. Theory[END_REF][START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF] effectué avec une version modifiée de manière appropriée du code GADGET. Bien que le les simulations sont de petites boîtes (256 3 ), la contrainte d'auto-similarité permet l'identification du PS convergé à un niveau de précision suffisant pour tester les prédictions analytiques pour la dépendance α du PS évolué. Bon accord pour la dépendance prédite à α du PS est trouvé. Pour traiter la sensibilité aux UV des résultats qui grandit à mesure que l'on s'approche de n = -1, on en déduit des résultats exacts incorporant une régularisation k c et obtenir des expressions pour c(n, α, k c /k). En supposant que cela la régularisation est compatible avec l'auto-similitude nous permet d'inférer une prédiction forme fonctionnelle du PS équivalente à celle dérivée de la théorie des champs effectifs (EFT). Le coefficient de la correction EFT principale à une boucle a une forte dépendance sur α, avec un changement de signe à α ≈ 0.16, fournissant un test potentiellement rigoureux de l'EFT. Ce chapitre est basé sur l'article [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF] Testing growth rate dependence in cosmological perturbation theory using scale-free models 1

The standard cosmological model: a brief overview

The standard cosmological model

The standard cosmological model is based on the so-called 'Cosmological Principle' that the Universe is homogenous and isotropic on a large scale. Homogeneity means that there is no special location in the Universe i.e. invariance under translation. Isotropy means that there is no particular direction in the Universe i.e. invariance under rotation. This is essentially a 'Copernican Principle' that imposes that the Universe, on average, looks the same to all observers. Although the Cosmological Principle was initially simply a hypothesis, it has been supported ever more strongly by observational data over many decades. Penzias and Wilson's chance discovery of the CMB in 1965 provided the first compelling observational endorsement for isotropy. Using more advanced technology, the cosmic microwave background (CMB) was observed by many collaborations such as FIRAS (Far Infrared Absolute Spectrophotometer) [START_REF] Fixsen | The cosmic microwave background spectrum from the full cobe firas data set[END_REF], Cosmic Background Explorer (COBE) [START_REF] Bennett | Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results[END_REF], Wilkinson Microwave Anisotropy Probe (WMAP) [START_REF] Bennett | Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results[END_REF] by The National Aeronautics and Space Administration (NASA) Group and Planck [START_REF] Ade | Planck 2013 results. xvi. cosmological parameters[END_REF] by The European Space Agency (ESA) with even greater accuracy. We can see from the map in Fig. 1.1 by Planck collaboration that the temperature fluctuations of CMB are very tiny as the color graduation scale represents the variation of temperature of order 10 -5 . These observations are also highly consistent with a similar level of homogeneity at very large scales. These temperature fluctuations came from the recombination era, where photons decoupled from the baryonic matter when the Universe was around 380.000 years old. From these small fluctuations, the Universe evolved to that filled with the structures we observe today.

With advances in observational technology, galaxy surveys can observe more galaxies and produce maps of their distribution. These 3-D maps provide very strong evidence for the homogeneity and isotropic of the Universe at a large scale. For example, the galaxies distribution mapped by the Sloan Digital Sky Survey (SDSS) in Fig. 1.2 show that the galaxies' distribution is almost homogeneous and isotropic at a large scale (at least 100h -1 M pc) [START_REF] Hogg | Cosmic homogeneity demonstrated with luminous red galaxies[END_REF]. 

Friedmann equation

In this section, we give a brief review of the standard cosmological model ( see e.g. [START_REF] Carroll | Spacetime and geometry[END_REF][START_REF] Baumann | Cosmology[END_REF][START_REF] Dodelson | Modern cosmology[END_REF]). In Newtonian dynamics, gravity is defined in terms of force. Instead, in General Relativity, gravity arises as a manifestation of the spacetime curvature. The relation between spacetime geometry and the matter-energy distribution is given by Einstein's field equation (EFE):

G µν + Λg µν = 8πGT µν , (1.1.1) 
with

G µν = R µν - 1 2 Rg µν (1.1.2)
where G µν , the Einstein tensor, is a combination of Ricci tensor R µν and Ricci scalar R with µ, ν = 0, 1, 2, 3, 4, g µν is the metric tensor, Λ is the cosmological constant, G is the gravitational constant, and T µν is the stress-energy tensor. The left-hand side of Eq. (1.1.1) depends on the metric while the right-hand side (RHS) depends on the matter-energy content. John Wheeler summarized this EFE in a sentence "spacetime tells matter how to move; matter tells spacetime how to curve."

On a large scale, the Cosmological Principle enables us to solve the EFE. Einstein started initially to show that his EFE admitted a static universe model if the additional "cosmological constant" term was included. Hubble's discovery in 1929 [START_REF] Hubble | A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae[END_REF] of galaxy recession provided strong evidence that the Universe is not static but expanding. We need to modify the static solution to accommodate the observational data. We now can write the line element of spacetime in Friedmann-Lemaître-Robertson-Walker(FLRW) models:

ds 2 = dt 2 -a 2 (t)γ ij dx i dx j , (1.1.3)
where t is the cosmic time, a(t) is the scale factor, γ ij is the spatial metric which obeys the spherical symmetry, and x i are comoving coordinates with i, j = 1, 2, 3.

The symmetry of γ ij can be used to derive FLRW metric in general form

ds 2 = dt 2 -a 2 (t) dr 2 1 -Kr 2 + r 2 dΣ 2 , (1.1.4)
where K is the spatial curvature of the Universe and the angular component of the metric is expressed as dΣ 2 = dθ 2 + sin 2 θdφ 2 . Based on the value of curvature K, three distinct scenarios need to be differentiated: flat Universe (K = 0): In the case where there is no curvature, resulting in the Euclidean metric, we have r = S K (χ) = χ with

γ ij dx i dx j = dχ 2 + χ 2 dΣ 2 = dx 2 + dy 2 + dz 2 . (1.1.5) open Universe (K < 0): The case of constant negative curvature gives r = S K (χ) = (-K) -1/2 sinh[(-K) 1/2 χ] with γ ij dx i dx j = dχ 2 + (-K) -1 sinh 2 [(-K) -1/2 χ]dΣ 2 . (1.1.6) closed Universe (K > 0): The case of constant positive curvature gives r = S K (χ) = (K) -1/2 sin[(K) 1/2 χ] with γ ij dx i dx j = dχ 2 + (K) -1 sin 2 [(K) 1/2 χ]dΣ 2 . (1.1.7)
1.1 The standard cosmological model Thus one can rewrite the FLRW metric Eq.(1.1.4) as:

ds 2 = dt 2 -a 2 (t)[dχ 2 + S 2 K (χ)dΣ 2 ]. (1.1.8)
We now consider the effect of matter on spacetime, expressed in FLRW through the evolution of the scale factor a(t). Assuming a perfect fluid model one can write the stress tensor T µν T 00 = -ρg 00 , T ii = P g ii , T ij = 0 (1.1.9)

where i, j = 1, 2, 3 are the space indices, ρ is the energy density and P is the pressure.

Combining the source term of EFE in Eq. (1.1.9) with the FLRW metric on the RHS of Eq. (1.1.1), one can derive the Friedmann equations as

H 2 = 8πGρ 3 - K a 2 + Λ 3 , (1.1.10) 
where H = ȧ/a is the Hubble constant and

ä a = - 4πG 3 (ρ + P ) + Λ 3 . (1.1.11)
Taking the time derivative of Eq. (1.1.10) and inserting it into Eq. (1.1.11) we have

ρ + 3H(ρ + P ) = 0, (1.1.12) 
which is the continuity equation. This equation describes the evolution of energy density which depends on the pressure P and Hubble rate H. The specific solution for different models will be reviewed in the next section. Before solving Eq.(1.1.12), let us review the definition of the equation of state. The equation of state describes a relation between pressure P and density ρ:

P = wρ, (1.1.13)
where w is a parameter, which can be a constant or time-dependent. Taking the parameter w as a constant, we obtain the solution of Eq.(1.1.12):

ρ(t) = ρ 0 a(t) -3(1+w) , (1.1.14) 
where ρ 0 is the energy density at some time reference. Considering the flat Universe K = 0, we can define the critical density by

ρ c (t) = 3H 2 8πG . (1.1.15)
We can define the ratio of the energy density to the critical density so-called the energy density parameter:

Ω i = ρ i ρ c . (1.1.16)
For the specific case, today t 0 density parameters can be expressed by

Ω i,0 = ρ i,0 ρ c,0 , (1.1.17) 
where a(t 0 ) ≡ 1. We thus have that the time dependence of the density parameter given as

Ω i (a) = Ω i,0 a -3(1+w) H 0 H 2 (1.1.18)
where H 0 is the Hubble rate at some time reference. Explicitly, we have all density parameters for matter, radiation, dark energy, and curvature, respectively as

Ω m = ρ m ρ c = 8πGρ m 3H 2 , (1.1.19) Ω r = ρ r ρ c = 8πGρ r 3H 2 , (1.1.20
)

Ω Λ = ρ Λ ρ c = Λ 3H 2 , (1.1.21
) 

Ω K = ρ K ρ c = - K H 2 a 2 . ( 1 
Ω m + Ω r + Ω Λ + Ω K = 1, (1.1.23) 
Ω tot ≡ Ω i + Ω Λ = 1 -Ω K ,
where Ω tot is the total energy density parameter and tells us the curvature of the Universe. For Ω tot = 1 one can infer that the Universe is flat with

K = 0. Ω tot < 1 corresponds to the open Universe with K = -1. Furthermore Ω tot > 1 is the closed Universe with K = 1.
We now consider different simple cases for the perfect fluid dominating the energy density:

• matter w = 0: In this case, pressure is negligible compared to the energy density. We thus can assume P = 0 as a case of a 'dust-matter' universe (or also e.g. a zero mode of an oscillating scalar field). This assumption gives ρ m ∝ a -3 .

(1.1.24)

• radiation w = 1/3: Relativistic matter has a pressure which is expressed by P = ρ/3. It corresponds in particular to the Universe dominated by radiation.

We have in this case

ρ r ∝ a -4 . (1.1.25)
The additional factor a -1 in ρ r , compared to the matter-dominated era, is associated with the redshift of photon energy.

• dark energy w = -1: This is the case of a cosmological constant with negative pressure i.e. P = -ρ. We have

ρ Λ ∝ a 0 , (1.1.26)
corresponding indeed to a constant energy density. 

H 2 = H 2 0 (Ω m,0 a -3 + Ω r,0 a -2 + Ω Λ,0 + Ω K,0 a -2 ), (1.1.27)
where H 0 is commonly defined as H 0 = 100h(km/s)/M pc.

Let us now consider the solution of the Friedmann equation for the specific universe with the zero curvature Ω K = 0. First, in the matter-dominated era i.e. Ω m = 1 with w = 0, the solution of the Friedmann equation is

a(t) = t t 0 2/3 . (1.1.28)
Second, in the radiation-dominated era i.e. Ω r = 1 with w = 1/3, neglecting the other universe components, the solution to the Friedmann equation is

a(t) = t t 0 1/2 . (1.1.29)
In the third case, at cosmological constant dominated era, assuming Ω Λ = 1 and w = -1, we have the solution to the Friedmann equation as below

a(t) = e H 0 Ω 1/2 Λ (t-t 0 ) . (1.1.30) 
This means that the Universe expands exponentially. In the last case, for Ω m ̸ = 0 and Ω Λ ̸ = 0 and the flat universe i.e. Ω K = 0, we have the solution to Friedmann equation:

a(t) = Ω m Ω Λ 1/3 sinh 2/3 3 √ Ω Λ H 0 2 t . (1.1.31)
For small t, this scale factor corresponds to the matter-dominated case and for large t it corresponds to the cosmological constant-dominated case.

LCDM model

In 1929 Hubble discovered that our Universe is expanding and not static as previously thought [START_REF] Hubble | A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae[END_REF]. This discovery was observed based on the empirical observation that more distant galaxies are moving away from us with a recession velocity proportional to their distance from us. Interpreted in the framework of GR the wavelength of light is stretched (or redshifted) by the Universe's expansion. In the late 90s, Perlmutter [START_REF] Perlmutter | Measurements of Ω and Λ from 42 High-Redshift Supernovae[END_REF] as the leader of the Supernova Cosmology Project (SCP), and Schmidt and Riess [START_REF] Riess | Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant[END_REF] from the High-z Supernova Search Team discovered that the Universe expands and accelerates using observation Type Ia supernovae. Correlating with Eq. (1.1.10), we can understand how the Universe's evolution is influenced by its energy budget. For example, Eqs. (1.1.29)- (1.1.31) shows the different scale factor a(t), which represents the evolution of the Universe for matter-dominated, radiation-dominated, cosmological constant dominated and Lambda cold dark matter (LCDM) model.

From the CMB observation by Planck [START_REF]Planck overview[END_REF], the best-fit data correspond to the composition of the Universe: 26% matter, 69% dark energy, 5% baryonic matter, and zero curvature [START_REF] Ade | Planck 2013 results. xvi. cosmological parameters[END_REF] at today. From this data, we can conclude that our universe is dominated by dark matter and dark energy. One thus can write the Friedmann equation for the LCDM model:

H 2 = H 2 0 (Ω m,0 a -3 + Ω Λ,0 ) (1.1.32) ä a = - 4πG 3 (ρ + P ) + Λ 3 = H 2 0 (Ω Λ,0 - 1 2 Ω m,0 a -3 ). (1.1.33)
Taking the time derivative of the Hubble rate we have

Ḣ = ä a -H 2 (1.1.34) = H 2 0 (Ω m,0 a -3 + Ω Λ,0 ) -H 2 0 (Ω Λ,0 - 1 2 Ω m,0 a -3 ) = - 3 2 H 2 0 Ω m,0 a -3 . (1.1.35)
Defining the conformal time i.e. dτ = dt/a we can re-express the Friedmann equation by where Ω Λ = 1 -Ω m . This is a Friedmann equation of the standard model in the conformal time

H 2 = H 2 0 (Ω m,0 a -1 + Ω Λ,0 a 2 ) (1.1.36)
H ′ = a 2 (H 2 + Ḣ) = Ω Λ - 1 2 Ω m )H 2 = 1 - 3 2 Ω m H 2 , (1.1.37)

Large scale structure

In this section, we give an overview of the observation, theory, and numerical simulations of large-scale structures.

Observations

The Universe's "large-scale structure" is defined by the distribution of matter and galaxies on a scale very much larger than the galaxies themselves. To understand the evolution of large-scale structures and structure formation we need to map as accurately as possible the distribution of matter and galaxies up to as high a redshift as we can [START_REF] Peebles | The large-scale structure of the universe[END_REF][START_REF] Zel | Gravitational instability: An approximate theory for large density perturbations[END_REF]. Using the catalog data of galaxies in the 1970s such as Zwicky [START_REF] Zwicky | Catalogue of galaxies and of clusters of galaxies[END_REF] and Lick [START_REF] Shane | [END_REF], Peebles [START_REF] Peebles | The large-scale structure of the universe[END_REF] and his collaborators studied the clustering of the galaxies. These early studies on clustering laid the basis for understanding structure formation (further details see [START_REF] Zel | Gravitational instability: An approximate theory for large density perturbations[END_REF][START_REF] Peebles | Statistical Analysis of Catalogs of Extragalactic Objects. I. Theory[END_REF]).

Advances in observational technology in the 1980s, such as CCDs, generated a revolution in the study of large-scale structures. Different groups and collaborations surveyed and mapped the distribution of galaxies. In 1977 the Center for Astrophysics (CfA) started a survey to collect data for up to 2401 galaxies which finished in 1982 [START_REF] Huchra | A survey of galaxy redshifts. IV -The data[END_REF] and continued up to 18,000 galaxies by CfA2 in 1995 [START_REF]Bibliography[END_REF]. Following Two-degree-Field Galaxy Redshift Survey (2dFGRS) collected the data from up to 221,000 galaxies with redshift up to 0.3, and Sloan Digital Sky Survey (SDSS) targeted to collect the data up to ∼ 10 5 -10 6 galaxies with redshift up to 0.15. The galaxy distribution map by SDSS can be seen in Fig. 1.2. This map shows that the distribution of galaxies has a striking filamentary structure with voids between the filaments. From the data, we can infer that the Universe approaches homogeneity on a large scale [START_REF] Hogg | Cosmic homogeneity demonstrated with luminous red galaxies[END_REF]. The correlation function from early data can be approximated by a power law [START_REF] Peebles | The large-scale structure of the universe[END_REF].

The observational data of the distributions of galaxies contain much information about the Universe. Different statistics can be used to characterize the clustering of matter and galaxies in the Universe. The most simple ones are two-point statistics-the twopoint correlation function (2pCF) defined by

ξ(r) = ⟨δ(x)δ(x+r)⟩. (1.2.1)
where δ(x) is the fluctuations around mean density ρ

δ(x) = ρ(x) - ρ ρ (1.2.2)
and it Fourier transform (FT), the power spectrum

P (k) = d 3 rξ(r) exp[-ik • r]. (1.2.3)
A discovery of great importance for the standard cosmological model was that of the predicted baryonic acoustic oscillations (BAO) by 2dFGRS [START_REF] Cole | The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications[END_REF] and SDSS [START_REF] Eisenstein | Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies[END_REF] in 2005.

The power spectrum result of 2dGFRS on a logarithmic scale can be seen in Fig. 1.3

1.2 Large scale structure that shows the BAO "wiggles" on 0.05hM pc -1 ≲ k ≲ 0.2hM pc -1 . In configuration space, Fig. 1.5 shows the BAO "bump" at r ∼ 100h -1 M pc. The BAO comes from the coupling between baryons and photons before the recombination era. The success of BAO detection has enabled us to probe more galaxies redshift surveys up to z ∼ 0.7, such as done by SDSS as shown in Fig. 1.5. Other BAO detections was achieved by WiggleZ [START_REF] Blake | The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6[END_REF][START_REF] Blake | The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations[END_REF] and Baryon Oscillation Spectroscopic Survey (BOSS) [START_REF] Anderson | The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: measuring da and h at z= 0.57 from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample[END_REF][START_REF] Aviles | Clustering in massive neutrino cosmologies via Eulerian Perturbation Theory[END_REF], which extends to much higher redshift one has much better statistics. On the other hand, BAO detection provides a standard ruler for the angular diameter distance measurement. Furthermore, the Hubble expansion rate can be extracted from BAO detection. Indeed this BAO as it is at large scales, can be well approximated by linear theory. Figure 1.6 also shows the clustering of galaxies as observed by CFA2, SDSS and 2dGFRS. The relation of the galaxy distribution to that of the total matter distribution complex, and modeling it one uses the concept of galaxy 'biasing'. The relation of galaxy clustering to that of the mass distribution can be written by

ξ g = b 2 ξ dm , (1.2.4)
where b is a galaxy bias. Note that this formulation assumes the linear relation between galaxy clusters and matter distribution. The idea of galaxy bias was first introduced by Kaiser [START_REF] Kaiser | On the spatial correlations of Abell clusters[END_REF] in 1984. An alternative approach to probing the total matter distribution involves using the shape distortions of background galaxies caused by the distribution of mass along the line of sight, which is known as weak gravitational lensing (see e.g. a review [START_REF] Mellier | Probing the universe with weak lensing[END_REF][START_REF] Bartelmann | Gravitational lensing[END_REF]). These distortions can be analyzed independently or in conjunction with the distribution of foreground galaxies, providing valuable insights into the integrated mass distribution along the line of sight. To investigate the three-dimensional distribution of matter, galaxy surveys become essential. While the angular positions of galaxies can be determined with precision, estimating the radial distance relies on the redshift of spectral lines, which can be affected by peculiar motions relative to the Hubble flow. Spectroscopic Galaxy Surveys employ the measurement of galaxy spectra to determine redshift, while Photometric Galaxy Surveys map the sky in multiple spectroscopic bands and utilize the relative intensities of these bands to estimate redshift. Both methods offer accurate angular positions, but spectroscopic surveys exhibit a smaller error in terms of radial distance estimation.

The unprecedented data from forthcoming galaxy surveys such as the Dark Energy Spectroscopic Instrument (DESI) [START_REF] Dey | Overview of the desi legacy imaging surveys[END_REF], the Large Synoptic Survey Telescope (LSST) [START_REF] Ivezić | Lsst: from science drivers to reference design and anticipated data products[END_REF], and Euclid [START_REF] Laureijs | Euclid definition study report[END_REF] require advanced statistical methods to extract maximal information about the Universe's evolution and structure. The data is projected to allow us to determine more accurately e.g. energy budgets of the Universe, such as DM, baryon, and DE components, or possible modification of Einstein's gravity.

Theory

Section 1.2.1 has shown that we now have unprecedented from galaxy surveys and observations of weak lensing. Generally, there are two standard tools to develop theoretical predictions of the statistical properties of the galaxy and matter distribution.

In this section, we give a brief overview of the analytical perturbation theory (PT) approach (for a review see [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF] and Chapter 2).

In the weakly nonlinear regime in which the density fluctuations are small, we can use the perturbation theory approach. It uses a standard method, the so-called 'standard This map shows the distribution of Baryon Oscillation Spectroscopic Survey (BOSS) massive galaxies up to redshift z = 0.7 (credit to Michael Blanton and SDSS collaboration). The red color represents the new BOSS galaxies surveys with the higher redshift, the white color represents the previous SDSS luminous red galaxy, and normal SDSS galaxies are represented by yellow.

Figure 1.6: The distribution of galaxies in the universe is displayed on a map using data from various sources, including the 2-degree Field Galaxy Redshift Survey (2dFGRS) [START_REF] Cole | The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications[END_REF][START_REF] Colless | The 2df galaxy redshift survey: final data release[END_REF] and the Sloan Digital Sky Survey (SDSS) [START_REF] Eisenstein | Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies[END_REF][START_REF] Eisenstein | Sdss-iii: Massive spectroscopic surveys of the distant universe, the milky way, and extra-solar planetary systems[END_REF], as well as simulated catalogs based on the Millenium simulation [START_REF] Springel | Simulations of the formation, evolution and clustering of galaxies and quasars[END_REF]. The map shows the relationship between redshift (radial direction) and right ascension (polar angle). The top two slices of the map highlight significant structures like the Great Wall and the Sloan Great Wall [START_REF]Bibliography[END_REF], which are among the largest observed structures in the universe, spanning billions of light years and containing thousands of galaxies. Additionally, a section of the galaxy distribution map from the 2dFGRS is shown on the left, providing information on over 220,000 galaxies. The bottom and right sections of the map display mock catalogs constructed using semi-analytic techniques, representing the formation and distribution of galaxies within the framework of the Millenium simulation. Credit to [START_REF] Springel | The large-scale structure of the Universe[END_REF].

perturbation theory' (SPT), to solve fluid equations for matter coupled to the Poisson equation and obtain solutions for density and velocity fields.

Taking the simple statistical properties i.e. two-point statistics (power spectrum) we obtain the loop corrections to the linear power spectrum (see e.g. [START_REF] Crocce | Renormalized cosmological perturbation theory[END_REF]). This approach neglects all effects arising from velocity dispersion. For any given statistic one can then derive correction order by order in the perturbation expansion.

In general, the perturbation theory approach demonstrates good performance in modeling at sufficiently large scales and/or sufficiently high redshifts, where nonlinearity is small. However, as we move towards smaller scales and lower redshifts, the nonlinear effects become more prominent, necessitating the inclusion of higher-order corrections.

Until nonlinear effects become so significant that incorporating additional corrections does not provide substantial improvement and perturbation theory is no longer a useful approach.

To address this issue (in the weakly non-linear regime), the renormalized perturbation theory (RPT) was introduced as a solution, with the aim of solving the problem [START_REF] Crocce | Renormalized cosmological perturbation theory[END_REF][START_REF] Bernardeau | Constructing regularized cosmic propagators[END_REF] RPT classifies the corrections into two categories: mode-coupling effects and the renormalization of the gravitational dynamics' propagator. This classification in RPT leads to a more precise definition of the corrections for nonlinearity, resulting in better agreement with the nonlinear power spectrum, even on smaller scales compared to standard perturbation theory (SPT).

Another approach is known as the effective field theory (EFT) [START_REF] Carrasco | The effective field theory of cosmological large scale structures[END_REF] has been much studied in recent years. EFT characterizes the matter fluid on large scales using parameters like sound speed and viscosity, which are determined by the small-scale physics described by the Boltzmann equation. In practice, these parameters are determined through measurements from N-body simulations with a chosen smoothing radius. Similar to RPT, EFT exhibits improved agreement with the nonlinear power spectrum on smaller scales compared to SPT(see e.g. [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF][START_REF] Baldauf | Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound[END_REF][START_REF] Baldauf | The bispectrum in the Effective Field Theory of Large Scale Structure[END_REF].

Numerical calculations

While PT is a powerful tool, its applications are limited to the regime where the inhomogeneity is small. Beyond PT, while there are analytical tools that help to understand structure formations beyond the perturbative regime (e.g. the spherical collapse model), the only tool to calculate quantitatively accurate predictions is numerical simulations and more specifically the N-body method. To understand how the nonlinear structure of our Universe forms, we can use N-body simulation to study the formation of structure. Probably the first attempt to understand the Nbody system under the gravitational force was Holmberg's simulation using 37 light bulbs [START_REF] Holmberg | On the Clustering Tendencies among the Nebulae. II. a Study of Encounters Between Laboratory Models of Stellar Systems by a New Integration Procedure[END_REF], a kind of analog computer system. Each light bulb in his simulation represented a galaxy. He studied tidal deformations between galaxies using a photocell and galvanometer as an apparatus. In the early 1960s, using computers, the N-body simulations with about 100 particles were performed by von Hoerner and Aarseth (see [START_REF] Hoerner | Die numerische Integration des n-Körper-Problemes für Sternhaufen. I[END_REF][START_REF] Aarseth | Dynamical Evolution of Clusters of Galaxies, I[END_REF]). In the decades since, simulations of the N-body have continued to grow in size up to a billion particles or blueeven much more (for reviews, see e.g. [START_REF] Bertschinger | Cosmological N-body simulations[END_REF][START_REF] Dehnen | N-body simulations of gravitational dynamics[END_REF][START_REF] Angulo | Large-scale dark matter simulations[END_REF]).

As an example, N-body simulations used 2160 3 particles, assuming the Universe dominated starting from an initial redshift z = 127 by [START_REF] Springel | Simulations of the formation, evolution and clustering of galaxies and quasars[END_REF]. Such simulations have shown that structures form hierarchically, and the statistical properties have the potential to test against the galaxies survey data. Another example is the Millenium simulation of the LCDM cosmology, performed using the "GAlaxies with Dark matter and Gas 1.2 Large scale structure intEracT (GADGET)" [START_REF] Springel | GADGET: a code for collisionless and gasdynamical cosmological simulations[END_REF][START_REF] Springel | The cosmological simulation code GADGET-2[END_REF] code with more than 10 billion particles. In its development, GADGET currently has a fourth version ( for more details, see [START_REF] Springel | Simulating cosmic structure formation with the GADGET-4 code[END_REF]). Nowadays the N-body simulations use more advanced techniques and reduce numerical costs (e.g. [START_REF] Teyssier | Full-sky weak-lensing simulation with 70 billion particles[END_REF][START_REF] Stadel | Quantifying the heart of darkness with GHALOa multi-billion particle simulation of our galactic halo[END_REF][START_REF] Klypin | MultiDark simulations: the story of dark matter halo concentrations and density profiles[END_REF]) and obtain more precise and accurate data. Most of the simulations are based on assumptions of pure DM particles under gravitational interactions.

One of the challenges is to include 'baryonic effects' i.e. the essential non-gravitational physics which ultimately is responsible for the formation of stars and galaxies. This is done by hydrodynamic simulations, and notably by projects such as EAGLE (Evolution and Assembly of GaLaxies and their Environments) [START_REF] Schaye | The EAGLE project: Simulating the evolution and assembly of galaxies and their environments[END_REF] and Illustris [START_REF] Vogelsberger | Introducing the illustris project: simulating the coevolution of dark and visible matter in the universe[END_REF]. However, the computation is extremely intensive which limits the size and resolution of simulations (∼ 100h -1 M pc). A different approach is COLA (COmoving Lagrangian Acceleration) (ref. [START_REF] Tassev | Solving large scale structure in ten easy steps with COLA[END_REF][START_REF] Tassev | sCOLA: The N-body COLA Method Extended to the Spatial Domain[END_REF]) or PTHalos as a combination of N -body simulations at small distances and analytical approaches. Specifically for this thesis, we use GAD-GET cosmological N-body simulation data to be analyzed. We do not at all consider effects due to other than gravitational forces.

To compare the simulation data with observation so-called mock catalogs are constructed. A comparison between such mock data and the observational data is presented in Fig. 1.6 (this figure is reprinted from [START_REF] Springel | The large-scale structure of the Universe[END_REF]). A similar structure between mock by Millenium Simulations and observational data by CfA and 2ddGFRS collaborations forms the cosmic web. Each point in the two-dimensional figure represents a galaxy. The structure formed has a clustering where not in random structure. One notes the qualitative striking similarity of the predicted galaxies distributions maps with the simulations as shown in Fig. 1.6.

N-body simulations

In this section we give a brief review of N-body simulations (see e.g. [START_REF] Springel | GADGET: a code for collisionless and gasdynamical cosmological simulations[END_REF]). In N-body methods we sample the phase space density with N particles (further details about Nbody simulations can be seen in [START_REF] Springel | GADGET: a code for collisionless and gasdynamical cosmological simulations[END_REF][START_REF] Springel | The cosmological simulation code GADGET-2[END_REF][START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Benhaiem | Non linear gravitational clustering in scale free cosmological models[END_REF]). The number of these particles is finite and has equal mass m, with the infinite universe treated using periodic boundary conditions. We can formulate the dynamics of particles using a Hamiltonian (see [START_REF] Peebles | The large-scale structure of the universe[END_REF][START_REF] Springel | GADGET: a code for collisionless and gasdynamical cosmological simulations[END_REF])

H = i p 2 i 2ma 2 + 1 2 i,j m 2 ϕ(x i -x j ) a , (1.2.5) 
where ϕ(x) is the gravitational potential. We can obtain the gravitational potential ϕ(x) by solving the Poisson equation below

∇ 2 ϕ(x) = 4πG - 1 L 3 + n (x -nL) (1.2.6)
where the simulation box of side L (i.e. a cube). Using Eqs. (1.2.5) and (1.2.6) we can derive the equation of motion of the particle

d 2 x i dt 2 + 2H dx i dt = 1 a 3 F i (1.2.7)
where x is the comoving coordinates and the gravitational force is defined by

F i = -Gm P j̸ =i x i -x j |x i -x j | 3 = j ∇ i ϕ(x i -x j ).
(1.2.8)

Initial conditions

Initial conditions are generated by applying a correlated displacement field to a "preinitial" configuration (either a cubic lattice or a 'glassy' configuration) which is appropriate to the desired input theoretical model. The simplest version of this method is based on the Zeldovich approximation, the leading approximation in a Lagrangian formulation of PT. It gives us the relation of the displacement field to the power spectrum used as the initial condition. Using this approximation the particle position is expressed by r(q, t) = q + f (t)u(q), (1.2.9)

where q is the initial position at the reference time (t = 0), u is the displacement field, and f (t) is the growth rate. The displacement field is defined by

u(q) = ∇ • Φ(q). (1.2.10) 
Using the theoretical input of PS P th one can obtain the gravitational potential Φ which is used to generate the displacement field u. Note that the relation of the gravitational potential is defined by

ϕ(q) = k R 1 P th (k) k 2 cos(kq) + R 2 P th (k) k 2 sin(kq) , (1.2.11) 
where R 1 and R 2 are the Gaussian random number. Taking the time derivative of Eq.

(1.2.10) one has the velocity

v 0 = d dt f (t)u 0 . (1.2.12)
Further details about the initial condition using Zeldovich approximation can be found in [START_REF] Bertschinger | COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes[END_REF][START_REF] Joyce | Quantification of discreteness effects in cosmological n-body simulations: Initial conditions[END_REF].

Employing the Zeldovich approximation to derive initial conditions raises problems related to transients in the evolution of the statistical properties of density fields.

To mitigate the transient problems and obtain more accurate results needed for the precision cosmology we need to improve the initial condition up to the second order i.e. on second-order Lagrangian perturbation theory (2LPT) initial conditions [START_REF] Soc | Transients from initial conditions in cosmological simulations[END_REF].

Alternatively, other initial conditions that incorporate up to third-order Lagrangian perturbation theory (3LPT) [START_REF] Michaux | Accurate initial conditions for cosmological n-body simulations: Minimizing truncation and discreteness errors[END_REF] have been proposed in order to significantly reduce systematic errors when predicting the non-linear large-scale structure. Using 3LPT simulations can be initiated as late as redshift z = 12 [START_REF] Michaux | Accurate initial conditions for cosmological n-body simulations: Minimizing truncation and discreteness errors[END_REF]. For a multifluid system, we can use the generalization of LPT up to nth-order (nLPT) [START_REF] Hahn | Higher order initial conditions for mixed baryon-cdm simulations[END_REF] and give an improvement compared to the single fluid initial conditions.

1.2 Large scale structure

Calculation of the force

The divergence of the potential at zero separation poses a numerical challenge in cosmological N-body simulations. To address this issue, a "softening" is introduced that regularizes the potential. An often-used instance of this softening technique is referred to as Plummer softening [START_REF] Plummer | On the problem of distribution in globular star clusters[END_REF] for the potential is written by

Φ(r i ) = -G i,i̸ =j Gm j (|r i -r j | 2 + ϵ 2 ) 1/2
(1.2.13) with ϵ known as the 'gravitational softening length'. This equation describes the potential that would be generated if each particle followed a Plummer density profile

ρ P (r) = 3m 4πϵ 3 1 + r 2 ϵ 2 -5 2 . (1.2.14)
However, the popularity of the Plummer softening method has declined. This is because the force exerted by the Plummer sphere is always weaker than that exerted by point particles. Consequently, the expected forces within a Plummer softened Nbody system systematically deviate from the forces observed in the original system. One way to mitigate this force bias is by using a compact kernel that restores the force to that of a point particle beyond a specific radius. In GADGET, the spline kernel introduced by [START_REF] Monaghan | A refined particle method for astrophysical problems[END_REF] in 1985 within the framework of smoothed-particle hydrodynamics (SPH) is employed as the kernel. This particular kernel corresponds to a density distribution associated with each individual particle

ρ s (r, ε) =          0, r ε > 1, 16m πε 3 1 -r ε 3 , 1 2 < r ε ≤ 1, 8m πε 3 1 -6 r ε 2 + 6 r ε 3 , 0 < r ε ≤ 1 2 .
(1.2.15)

In the case of this kernel, the forces between particles that are separated by a distance greater than ε are equivalent to the forces observed between point particles.

Direct calculation method

We can obtain the force on a particle by the direct summation of the forces exerted by all particles [START_REF] Fukushige | On the origin of cusps in dark matter halos[END_REF]. Although this method is very simple, it is expensive computationally as the computation time is proportional to the square of the number of particles N . It is not a good choice for computations in cosmological simulations, as the force can be much more efficiently calculated to a sufficient level of approximation Particle mesh method The particle mesh method [START_REF] Hockney | Computer simulation using particles[END_REF][START_REF] Klypin | Three-dimensional numerical model of the formation of large-scale structure in the universe[END_REF] divides the simulation area into cells, interpolates the particle masses onto the grid points, solves the Poisson equation to acquire the grid potential, and then interpolates it back to the particle positions. This method offers the advantage of computational speed, allowing simulations with a large number of particles to be efficiently performed. The transformation from real space to reciprocal space is accomplished using the Fast Fourier Transform (FFT) algorithm, which requires M log(M) operations, where M represents the number of grid points. However, these methods introduce a resolution scale ϵ, approximately equal to the size of the grid. Below this scale, the accurate gravitational dynamics are not resolved.

To address this limitation and capture the dynamics of high-density regions where the grid resolution might be insufficient, new techniques have emerged. These methods involve local refinement of the grid in regions of high density, allowing for improved resolution and accuracy in those specific areas.

Tree code method

Tree codes [START_REF] Barnes | A hierarchical o (n log n) force-calculation algorithm[END_REF] use a hierarchical tree structure to partition the simulation box into cubic cells, enabling efficient force calculations in cosmological simulations. The construction of this tree involves recursively dividing the space as illustrated in Fig. 1.7.

In this method, the space experiences recursive refinement until each subdivision contains either zero or one body.

To compute the force acting on a particle, an approximation is made when the center of mass of an internal node is sufficiently distant from the particle. 1 In such cases, the particles within that node are treated as a single particle, with its position set as the center of mass and its mass equal to the sum of the masses of all particles within the node. The opening angle θ serves as a parameter to determine if a node is far enough to warrant this approximation. By evaluating the ratio of the width of the region represented by the internal node (s) to the distance (d) between the particle and the center of mass, if s/d is smaller than the opening angle, the approximation is considered valid, indicating that the node is sufficiently distant. The opening angle θ thus controls the precision of the simulation as well as its numerical cost. In the limit of θ = 0, no internal nodes are treated as single bodies, and the algorithm functions as a direct summation method.

To enhance the computational speed while maintaining sufficient accuracy, sophisticated cosmological codes often employ a combination of different techniques. For instance, P 3 M codes utilize the particle mesh technique to compute forces resulting from the large-scale distribution of matter. Additionally, they employ direct force calculations for nearby particles. Another approach involves the use of the Tree-Particle Mesh (TPM) method, where the "T" represents the Tree-code algorithm employed in conjunction with a particle mesh technique. This hybrid approach combines the advantages of both methods to optimize the simulation's efficiency and accuracy.

GADGET employs various methods, including Particle-Mesh (PM), Tree, or a combination of PM and Tree, to calculate the forces in the simulation.

1.2 Large scale structure

Leapfrog integration

Commonly, in numerical analysis, leapfrog integration is used for integrating numerically differential equations. Different from the regular method such as Euler which is a first-order method in time, the leapfrog uses a second-order method in time. At different interleaved time points this method updates the position and velocities. We can write the equations for updating position and velocity:

x i = x i-1 + v i-1/2 ∆t (1.2.16
)

a i = F (x i ) (1.2.17) v i+1/2 = v i + 1 2 (a i + a i+1 )∆t. (1.2.18)
where x i and v i are the position and velocity at step i. To preserve integration stability, a time step ∆t must be a constant in time.

The Leapfrog integration method possesses the crucial characteristic of time reversibility. This means that one can initiate the integration process at any given point and proceed to integrate backward in time, ultimately arriving back at the initial point. This property of time reversibility enhances the flexibility and versatility of the Leapfrog method in numerical simulations. Nevertheless, the precision may be influenced by the existence of numerical rounding errors.

Another notable strength of the Leapfrog integration is its symplectic nature. It conserves the phase space density resulting from the Hamiltonian nature of the system's evolution. This conservation property ensures that important physical quantities, such as energy and angular momentum, remain accurately preserved throughout the integration process. The symplectic nature of the Leapfrog method contributes to the overall stability and reliability of simulations, particularly in systems governed by Hamiltonian dynamics.

To resolve regions with high density accurately, a smaller timestep is necessary. However, using the smallest timestep for all particles leads to elevated computational costs. To resolve this issue, individual and adaptive timesteps have been implemented by GADGET [START_REF] Springel | The cosmological simulation code GADGET-2[END_REF] and RAMSES [START_REF] Teyssier | Cosmological hydrodynamics with adaptive mesh refinement-a new high-resolution code called ramses[END_REF]. Although this refinement deviates from the symplectic nature of the Leapfrog integration, careful control of stability is required for simulations involving such adjustments. Further details of simulations related to the main study of this manuscript are given in Chapter 5.

In this thesis, we will use results from N-body simulations performed with a modified version of GADGET-2 (as will be described in Chapter 5) and using a standard version of GADGET-4 [START_REF] Springel | Simulating cosmic structure formation with the GADGET-4 code[END_REF] in Chapter 6.

This chapter will focus on the basic concepts of perturbation theory in EdS and FLRW backgrounds. As in all the work in this thesis, our treatment is restricted to sub-horizon scales and non-relativistic velocities so that the Newtonian approximation is applicable. In the first section, we start by considering the dynamics of the fields and derive the fluid equations that govern the evolution of collisionless cold dark matter.

In the following section, we derive the standard fluid equations for density and velocity.

Then we review how to solve these fluid equations using perturbation techniques i.e. standard perturbation theory (SPT) and also Lagrangian perturbation theory (LPT). We derive corresponding kernels for Eulerian and Lagrangian perturbation theory and use perturbation theory to obtain the so-called one-loop correction to the power spectrum of mass density fluctuations. However the one-loop power spectrum has UV divergences, which leads to the breakdown of PT. We discuss briefly one approach to regularizing these divergences, the so-called "effective field theory" (EFT) that uses techniques completely analogous to those used in the renormalization of quantum field theory (QFT). The content of this chapter draws on numerous references and in particular [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF][START_REF] Carrasco | The effective field theory of cosmological large scale structures[END_REF][START_REF] Baldauf | Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound[END_REF][START_REF] Baldauf | The bispectrum in the Effective Field Theory of Large Scale Structure[END_REF][START_REF] Baumann | Cosmological non-linearities as an effective fluid[END_REF][START_REF] Taruya | Direct and fast calculation of regularized cosmological power spectrum at two-loop order[END_REF][START_REF] Blas | Cosmological perturbation theory at three-loop order[END_REF][START_REF] Hertzberg | Effective field theory of dark matter and structure formation: Semianalytical results[END_REF][START_REF] Mercolli | On the velocity in the Effective Field Theory of Large Scale Structures[END_REF][START_REF] Porto | The Lagrangian-space Effective Field Theory of large scale structures[END_REF][START_REF] Carroll | Consistent effective theory of long-wavelength cosmological perturbations[END_REF][START_REF] Carrasco | The Effective Field Theory of Large Scale Structures at two loops[END_REF][START_REF] Carrasco | The 2-loop matter power spectrum and the IR-safe integrand[END_REF][START_REF] Senatore | Redshift Space Distortions in the Effective Field Theory of Large Scale Structures[END_REF][START_REF] Senatore | The IR-resummed Effective Field Theory of Large Scale Structures[END_REF][START_REF] Vlah | A Lagrangian effective field theory[END_REF][START_REF] Angulo | The oneloop matter bispectrum in the Effective Field Theory of Large Scale Structures[END_REF].

2.1 Standard Perturbation Theory (SPT)

Particle Dynamics

We work in the non-relativistic (Newtonian) limit as we are interested in scales well below the horizon and clustering matter with velocities that are well approximated as non-relativistic. The relation between physical position r and comoving position x is

r = a(t)x (2.1.1)
where a(t) is the scale factor. Taking the time derivative we have the velocity Using the relation between physical time t and conformal time τ given by τ = dt/a the velocity can be rewritten as follows:

v = dr dt = ȧ a r + a ẋ. ( 2 
v = Hx + u (2.1.3)
with u = dx dτ . As noted the sub-horizon regime and the non-relativistic limit for velocity (v/c ≪ 1) we can use the Newtonian approximation. We thus can write the Lagrangian of a particle m that moves with the velocity v in gravitational background potential Φ(x, τ )

L = T -V L = 1 2 mv 2 -mΦ(x, t) = 1 2 m(Hx + u) 2 -mΦ(x, t), (2.1.4)
where T is the kinetic term and V is the potential term. Using the canonical transformation with L → -dψ/dt, ψ = mHx 2 /2, the Lagrangian becomes

L = 1 2 mu 2 -mϕ(x, τ ), (2.1.5) 
where we have introduced the cosmological gravitational potential ϕ(x, τ ) (with respect to smooth gravitational potential Φ(x, τ )) as

ϕ(x, τ ) ≡ 1 2 ∂H ∂τ x 2 + Φ(x, τ ). (2.1.6) 
The first term on the right-hand side of Eq. (2.1.6) corresponds to the peculiar potential. From the Lagrangian, we can obtain the equations of motion of momentum p and the physical time derivative of momentum, 

p ≡ ∂L ∂ ẋ = ∂L ∂( u/a) = mau, ( 2 

Fluid Equations

In phase space, we describe the particle distribution by the distribution function f (x, p, τ ), with the number of particles in the infinitesimal phase space volume d 3 xd 3 p given by where ∂x/∂τ and ∂p/∂τ are substituted using Eqs. (2.1.7) and (2.1.9). Note that the third term on the left-hand side of Eq. (2.1.12) is the nonlinear term which is the coupling between the gravity and the momentum derivative of the particle distribution function f (these are fully nonlinear differential equations with respect to three-dimensional space x, three-dimensional momentum p, and time τ ). The equation expresses the conservation of the number of particles, meaning that the rate of particle number variation per unit phase-space volume is the same as the net particle flux passing through its surface. We will consider solving now a truncated approximation to this equation corresponding to fluid equations.

dN = f (x, p, τ )d 3 xd 3 p. ( 2 
Using Eq. (2.1.10) the density of particles in comoving coordinates x and the conformal time τ is defined by

n(x, τ ) ≡ d 3 pf (x, p, τ ) (2.1.13)
One thus writes the proper mass density

ρ(x, τ ) ≡ m a 3 d 3 pf (x, p, τ ), (2.1.14) 
(2. 1.15) which has a proportionality to a -3 . Here, we focus on the fluctuation of mass density around the background or the smooth/mean density

ρ(x, τ ) ≡ ρ(τ )(1 + δ(x, τ )), (2.1.16) 
where ρ(τ ) is the mean density and δ(x, τ ) is the density fluctuations. Henceforth we work using density contrast δ rather than mass density fluctuations ρ with

δ(x, τ ) = ρ(x, τ ) -ρ(τ ) ρ(τ ) = ρ(x, τ ) ρ(τ ) -1.
(2.1.17)

The relation of mass density ρ(x, τ ) to the gravitational potential Φ(x, τ ) is given by

∇ 2 Φ(x, τ ) = 4πGa 2 (ρ + 3P ) -a 2 Λ, (2.1.18) 
which is a modified version of the Poisson equation including additional terms associated with the pressure P and the cosmological constant Λ. This second derivative of the Newtonian gravitational potential Φ(x, τ ) depends on the source terms i.e. the matter ρ, the pressure, and the cosmological constant Λ.

Taking the second derivative of Eq. (2.1.6) and using (2.1.18), we have Using the definition of the density contrast Eq. (2.1.17) and Eq. (1.1.27), the Poisson equation may be written as

∇ 2 ϕ(x, τ ) = ∇ 2 1 2 ∂H ∂τ x 2 + Φ(x, τ ) = 1 2 ∂H ∂τ ∇ 2 x 2 + ∇ 2 Φ(x, τ ) = 3 ∂H ∂τ + 4πGa 2 (ρ + 3P ) -a 2 Λ = 3 - 4πG 3 a 2 (ρ + 3P ) + Λ 3 a 2 + 4πGa 2 (ρ + 3P ) -a 2 Λ = 4πGa 2 (ρ -ρ). ( 2 
∇ 2 ϕ(x, τ ) = 4πGa 2 (ρ -ρ) = 4πGa 2 δ ρ = 4πGa 2 δ Ω m 3H 2 8πGa 2 = 3 2 Ω m H 2 δ = 3 2 Ω m,0 H 2 0 δ a (2.1.20)
Thus we see explicitly that the gravitational potential ϕ has only the density contrast δ as a source.

Moments of the Vlasov equation

To study the evolutions of the matter density ρ(x, τ ) or density field δ(x, τ ), the peculiar velocity u(x, τ ), and the velocity dispersion σ ij (x, τ ), we take moments of the Vlasov Eq. (2.1.11). To obtain the equation of the matter density ρ(x, τ ), we start by integrating the Vlasov Eq. (2.1.11) over momentum (giving the zeroth moment):

d 3 p ∂f ∂τ + d 3 p p ma • ∂f ∂x -am∇ϕ • d 3 p ∂f ∂p = 0 (2.1.21) d 3 p ∂f ∂τ + d 3 p p i ma ∂f ∂x i -am ∂ϕ ∂x i d 3 p ∂f ∂p i = 0, (2.1.22) 
where ∇ ≡ ∂/∂x i , p ≡ p i , and x ≡ x i . The final term of Eq. (2.1.21) is an integrated total derivative over the full space, resulting in an integral involving the function at infinity. Since the function f needs to approach zero at infinity in order to be well-defined, this term is zero. We now have

∂ ∂τ d 3 pf + d 3 p ∂ ∂x i (p i f ) -f ∂ ∂x i p i = 0 (2.1.23)
The last term on Eq. (2.1.21) vanishes because ∂p i /∂x i = 0. The remaining terms are 

∂ ∂τ d 3 pf + ∂ ∂x i d 3 p p i am f = 0. (2.1.24) Defining ρ(x, τ ) ≡ m a 3 d 3 pf (x, p, τ ), (2.1.25) u(x, τ ) ≡ 1 d 3 pf (x, p, τ ) d 3 p p ma f (x, p, τ ), ( 2 
∂ ∂τ δ(x, τ ) + ∇ • u(x, τ )(1 + δ(x, τ ) = 0 (2.1.31) ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) + [u(x, τ ) • ∇]u(x, τ ) + ∇ϕ(x, τ ) = - 1 ρ e i ∇ j (ρσ ij ) (2.1.32) ∇ 2 ϕ(x, τ ) = 3 2 Ω m H 2 δu(x, τ ).
(2.1.33)

The density field δ couples with the peculiar velocity u and the peculiar velocity of Euler equations couples to the stress tensor σ ij and the gravitational potential ϕ. These two equations constitute the initial components of an infinite hierarchy of equations. In the context of standard perturbation theory (SPT), we employ a truncation by neglecting the term that involves the stress tensor.

Linearized Fluid Equations

On a large scale, the universe is homogeneous. We thus assume that the fluctuations of the field such as density field δ(x, τ ), velocity field v(x, τ ), gravitational field ϕ(x, τ ) are very tiny on a sufficiently large scale. In this section, we focus on the linear approximation in which we neglect the nonlinear term in Eq. (2.1.31) and Eq. (2.1.32), and obtain the linearized fluid equations

∂ ∂τ δ(x, τ ) + ∇ • u(x, τ ) = 0 (2.1.34) ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) = -∇ϕ(x, τ ). (2.1.35)
These can be straightforwardly solved.

Standard Perturbation Theory (SPT)

Recalling the Helhomtz theorem [START_REF] Panofsky | Classical electricity and magnetism[END_REF] that any vector field with well-behaved properties can be decomposed into longitudinal and transverse parts, we write the velocity fluid u as

u(x, τ ) = u ∥ + u ⊥ (2.1.36)
where u ∥ is the longitudinal/parallel part and u ⊥ is the transverse/perpendicular part.

The curl and divergence of the velocity field u(x, τ ) can be defined as

θ(x, τ ) ≡ ∇ • u(x, τ ) (2.1.37) w(x, τ ) ≡ ∇ × u(x, τ ) (2.1.38)
where

∇ • u ⊥ = 0 and ∇ × u ∥ = 0.
Taking the divergence of Eq. (2.1.35) we have

∇ • ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) = ∇ • -∇ϕ(x, τ ) ∂ ∂τ ∇ • u(x, τ ) + H(τ )∇ • u(x, τ ) = -∇ 2 ϕ(x) ∂ ∂τ ∇ • u(x, τ ) + H(τ )∇ • u(x, τ ) + ∇ 2 ϕ(x) = 0 ∂ ∂τ ∇ • u(x, τ ) + H(τ )∇ • u(x, τ ) + 3 2 Ω m H 2 δ(x, τ ) = 0, ∂ ∂τ θ(x, τ ) + H(τ )θ(x, τ ) + 3 2 Ω m H 2 δ(x, τ ) = 0 (2.1.39)
where ∇ 2 ϕ(x) is defined in Eq. (2.1.33). Then the curl of Eq. (2. 1.35) gives At the linear level, the solution to the vorticity equation is just w(a) ∝ a -1 . This implies that any initial vorticity present in the system decays in time.

∇ × ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) = ∇ × -∇ϕ(x, τ ) ∂ ∂τ ∇ × u(x, τ ) + H(τ )∇ × u(x, τ ) = 0 ∂ ∂τ w(x, τ ) + H(τ )w(x, τ ) = 0 ( 
Assuming that vorticity is absent, we can further simplify the linear fluid equation for the density field δ(x, τ ) and the divergence of velocity field θ(x, τ ) as

∂ ∂τ δ(x, τ ) + θ(x, τ ) = 0 (2.1.42) ∂ ∂τ θ(x, τ ) + H(τ )θ(x, τ ) + 3 2 Ω m (τ )H 2 δ(x, τ ) = 0.
(2.1.43) 

∂ ∂τ δ(x, τ ) + H(τ )δ(x, τ ) - 3 2 Ω m (τ )H 2 δ(x, τ ) = 0. (2.1.44)
It is important to observe that the equation solely involves time derivatives and no operator acting on the spatial coordinates. This characteristic feature is significant in the context of instability growth in a pressureless fluid, as it indicates that the linear growth rate of the fluctuations remains independent of the scale. We thus write the solution of (2.1.44) as a separable solution of time τ and space

x δ(x, τ ) = D 1 (τ )δ 0 (x), (2.1.45) 
where D 1 (τ ) is the linear growth factor and δ 0 (x) is the density contrast at some reference time. Inserting the ansatz Eq. (2.1.45) into Eq. (2.1.44) we have the equation of the linear growth factor D 1 (τ ) 

∂ 2 ∂τ 2 D 1 (τ ) + H(τ ) ∂ ∂τ D 1 (τ ) - 3 2 Ω m (τ )H 2 D 1 (τ ) = 0 (2.
H = ȧ a = 2 3 t -1/3 t -2/3 0 1 t 2/3 t -2/3 0 = 2 3t . (2.1.47)
Taking the scale factor today a(t = t 0 ) ≡ a 0 ≡ 1, the Hubble rate today is 

H 0 = 2 3t 0 . ( 2 
H = H 0 a -1/2 = 2 τ . (2.1.51)
Assuming Ω m = 1 and Hubble parameter (2.1.51), we thus can rewrite (2.1.46) as

∂ 2 ∂τ 2 D 1 (τ ) + 2 τ ∂ ∂τ D 1 (τ ) - 3 2 2 τ 2 D 1 (τ ) = 0 (2.1.52) ∂ 2 ∂τ 2 D 1 (τ ) + 2 τ ∂ ∂τ D 1 (τ ) - 6 τ 2 D 1 (τ ) = 0. (2.1.53)
Taking ansatz D 1 (τ ) ∝ τ p the equation above gives

p 2 + p -6 = 0, (2.1.54) 
where p = 2 or p = -3. We now have the linear growth factor for EdS The growing mode D 1,+ grows as a function of scale factor a while the decaying mode D 1,-, of course, decays in time and can always thus be neglected at sufficiently large times. Henceforth we will always neglect the decaying mode and only focus on the growing mode of the density field. The relation of the scaling of the decaying and growing modes as a function of the scale factor a are displayed in Fig. 2.1. We write the linear 'growing mode' solution of the density field for EdS

D 1,+ (τ ) = τ 2 , D 1,-(τ ) = τ -3 . ( 2 
δ(x, a) = D 1,+ (a)δ (1) (x) = aδ (1) (x), (2.1.57) (2.1.58)
where δ (1) (x) is the space-dependent of the linear density field. The linear density field δ(x, a) grows in proportion to the scale factor a.

We can obtain the solution of the velocity field u(x, τ ) by using the relation of the equation (2.1.42). We thus have

θ (1) (x, τ ) = - ∂ ∂τ δ (1) (x, τ ), θ (1) (x, a) = - ∂a ∂τ ∂ ∂a aδ (1) (x) = -Ha ∂ ∂a aδ (1) (x) = -Haδ (1) (x). (2.1.59)
The divergence of the linear velocity field θ (1) (x, a) evolves depending on the Hubble parameter H or the matter content of the universe, the scale factor a, and the initial density field δ (1) (x). We will return to the more general case of FLRW cosmology in Section 2.4.

PT beyond linear order in EdS cosmology

We now consider including the nonlinear terms in Eqs. (2.1.31)-(2.1.32), while still neglecting the stress tensor term σ ij . We thus have the Euler equation

∂u(x, τ ) ∂τ + H(τ )u(x, τ ) + [u(x, τ ) • ∇]u(x, τ ) + ∇ϕ(x, τ ) = 0. (2.1.60)
Taking the divergence of Eq. (2.1.60) we obtain

∂ ∂τ θ(x, τ ) + H(τ )θ(x, τ ) + 3 2 Ω m (τ )H 2 δ(x, τ ) = -∇ • (u(x, τ ) • ∇)u(x, τ ) . (2.1.61)
and Eq. (2.1.31) can be rewritten as

∂ ∂τ δ(x, τ ) + θ(x, τ ) = -∇ • δ(x, τ )u(x, τ ) . (2.1.62)
Let us use the definition below to transform the field from linear to Fourier space

f (k) = d 3 x exp -ik • x f (x), (2.1.63) f (x) = d 3 k (2π) 3 exp ik • x f (k). (2.1.64)
Using the transformation above the divergence of velocity u(x) becomes 

d 3 xe -ik•x θ(x) = d 3 xe -ik•x ∇ • u(x) θ(k) = d 3 x∇ • u(x)e -ik•x -d 3 xu(x)∇ • e -ik•x θ(k) = iku(k) u(k) = -i k k 2 θ(k). ( 2 
δ ′ (k, τ ) + θ(k, τ ) = S α(k, τ ), (2.1.66) θ ′ (k, τ ) + Hθ(k, τ ) + 3 2 Ω m (a)H 2 δ(k, τ ) = S β (k, τ ), (2.1.67) 
where ′ ≡ ∂/∂τ and the source terms S α and S β in Eqs. (3.1.11) and (3.1.12) are given by

S α(k, τ ) = - d 3 q (2π) 3 α(q, k -q)θ(q, τ )δ(k -q, τ ), (2.1.68) S β (k, τ ) = - d 3 q (2π) 3 β(q, k -q)θ(q, τ )θ(k -q, τ ), (2.1.69) 
where the coupling kernels α(q 1 , q 2 ) and β(q 1 , q 2 ) respectively are defined as

α(q 1 , q 2 ) = q 1 .(q 1 + q 2 ) q 2 1 , (2.1.70) β(q 1 , q 2 ) = 1 2 (q 1 + q 2 ) 2 q 1 .q 2 q 2 1 q 2 2 . (2.1.71)
We note that the kernel β is symmetric under exchange of q 1 and q 2 while α is not. Further of details the derivation of Eqs. ( 2 

- ∂ 2 δ ∂τ 2 -H ∂δ ∂τ + 3 2 H 2 δ = S β -( ∂ ∂τ + H)S α , (2.1.72) 
∂ 2 θ ∂τ 2 + H - 2 H ∂H ∂τ ∂θ ∂τ - ∂H ∂τ θ - 3 2 H 2 θ = ∂ ∂τ S β - 3 2 H 2 S α - 2 H ∂H ∂τ S β , ( 2 
H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2 δ(k, a) = S β -H∂ a (aS α ) (2.1.75) H a 2 ∂ 2 a + 5 2 a∂ a -1 θ(k, a) = ∂ a (aS β ) - 3 2 HS α . (2.1.76)
Further details of the derivation of (2.1.75) and (2.1.76) are presented in Appendix (A.5). We now have the second-order differential for density δ and velocity fields θ with respect to mode k and scale factor a. These are the fully nonlinear equations with source terms the source terms S α and S β where S α is a convolution of the density δ and velocity field θ with the coupling kernel α and S β is a convolution of the two velocity fields θ with the coupling kernel β.

At the linear level, we have shown the solution density and velocity fields in section (2.1.3). Supposing now that the density field δ(k, a) and the divergence of velocity field θ(k, a) to be given as expansions around the linear solution we write

δ(k, a) = δ (1) (k, a) + δ (2) (k, a) + δ (3) (k, a) + . . . (2.1.77) θ(k, a) = θ (1) (k, a) + θ (2) (k, a) + θ (3) (k, a) + . . . (2.1.78)
where δ (1) (k, a) and θ (1) (k, a) are the linear density and the divergence velocity fields. Analogous to the linear density field solution δ (1) (k, a) in Eq. (2.1.57) which has the separable solution of k and scale factor a, we seek the density field solution in the separable form

δ(k, a) = aδ (1) (k) + a 2 δ (2) (k) + a 3 δ (3) (k) + . . . = ∞ i=1 a i δ (i) (k), (2.1.79) 
where the higher order of density field δ (i) is the i-convolution of the linear density field (δ 1 ) i . Following the same relation between the density δ (1) and velocity fields θ (1) (see Eq. (2.1.59)) where the velocity field θ is minus the time derivative of the density field δ, we can express the velocity field as

θ(k, a) = -H(a)aθ (1) (k) -H(a)a 2 θ (2) (k) -H(a)a 3 θ (3) (k) + . . . = -H(a) ∞ i=1 a i θ (i) (k). (2.1.80)
Here the higher-order terms of the velocity field θ (i) are also i-convolution of the linear density field (δ 1 ) i . Note that we only consider the growing mode solution assuming the decaying mode to be negligible.

The higher-order term of the density and velocity fields is the convolutions of the i-linear density fields, which we can write

δ (n) (k) = n m=1 d 3 q m (2π) 3 δ (1) (q m ) (2π) 3 δ D (k -q| n 1 )F n (q 1 , . . . , q n ), θ (n) (k) = n m=1 d 3 q m (2π) 3 δ (1) (q m ) (2π) 3 δ D (k -q| n 1 )G n (q 1 , . . . , q n ), (2.1.81) 
where q| n 1 = q 1 +q 2 +• • •+q n and F n (q 1 , . . . , q n ) and G n (q 1 , . . . , q n ) are the coupling kernels. The kernels are dimensionless, and are, as we will exploit below, combination of the mode-coupling function α(q 1 , q 2 ) and β(q 1 , q 2 ) (see Eqs. Let us now solve the equations for the density and velocity fields i.e. Eqs. (2.1.75) and (2.1.76) using ansatz Eqs. (2.1.79) and (2.1.80). At the linear order, of course, we obtain δ (1) (k) = θ (1) (q) with coupling kernels F 1 (q 1 ) = G 1 (q 1 ) = 1. Next, we consider the second-order solution for the density field using Eq. (2.1.75)

H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2 δ (2) (k, a) = S (2) 
β -H∂ a (aS (2) α ),

H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2 a 2 δ (2) (k) = S (2) β -H∂ a (aS (2) α ), (2.1.82)
where

S (2) α = - d 3 q (2π) 3 α(q, k -q)θ (1) (q, a)δ (1) (k -q, a) (2.1.83) S (2) β = - d 3 q (2π) 3 β(q, k -q)θ (1) (q, a)θ (1) (k -q, a). (2.1.84)
2.1 Standard Perturbation Theory (SPT) From the left-hand side of (2.1.82) we get

q 1 q n k F n
S (LHS) 2,δ = H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2 a 2 δ (2) (k) = H 2 a 2 - 7 2 δ (2) (k). (2.1.85) 
The right-hand side of (2.1.82) gives

S (RHS) 2,δ = S (2) 
β -H∂ a (aS (2) α )

= -d 3 q (2π) 3 β(q, kq)θ (1) (q, a)θ (1) (k -q, a) + H∂ a a

d 3 q (2π) 3 α(q, k -q)
×θ (1) (q, a)δ (1) (k -q, a) 

= - d 3 q (2π) 3 β(q, k -q)δ (1) (q)δ (1) (k -q)H 2 a 2 - d 3 q (2π) 3 α(q, k -q) ×δ (1) (q)δ (1) (k -q)H - H a a 3 + 3Ha 2 = -H 2 a 2 d 3 q (2π) 3 δ (1) (q)δ (1) (k -q) 5 2 α(q, k -q) + β(q, k -q) . ( 2 
S (LHS) 2,δ = S (RHS) 2,δ H 2 a 2 - 7 2 δ (2) (k) = -H 2 a 2 d 3 q (2π) 3 δ (1) (q)δ (1) (k -q) 5 2 α(q, k -q) + β(q, k -q) δ (2) (k) = d 3 q (2π) 3 δ (1) (q)δ (1) (k -q) 5 7 α(q, k -q) + 2 7 β(q, k -q) .
(2. 1.87) which gives the second-order density kernel

F 2 (q 1 , q 2 ) = 5 7 α(q 1 , q 2 ) + 2 7 β(q 1 , q 2 ). (2.1.88)
We now proceed to obtain the second-order solution of the velocity field by using Eq.

(2.1.76)

H a 2 ∂ 2 a + 5 2 a∂ a -1 θ (2) (k, a) = ∂ a (aS (2) β ) - 3 2 HS (2) α H a 2 ∂ 2 a + 5 2 a∂ a -1 (-Ha 2 )θ (2) (k) = ∂ a (aS (2) 
β ) -

3 2 HS (2) α (2.1.89)
Using the same method as for the density field, we have the left-hand side of Eq.

(2.1.89)

S (LHS) 2,θ = H a 2 ∂ 2 a + 5 2 a∂ a -1 (-Ha 2 )θ (2) (k) = - 7 2 Ha 2 θ (2) (k). (2.1.90)
The right-hand side of Eq. (2.1.89) gives

S (RHS) 2,θ = ∂ a (aS (2) 
β ) - 

3 2 HS (2) α = -∂ a a d 3 q (2π) 3 β(q, k -q)θ (1) (q, a)θ (1) (k -q, a) + 3 2 H d 3 q (2π) 3 α(q, k -q)θ (1) (q, a)δ (1) (k -q, a) = -∂ a H 2 a 3 d 3 q (2π) 3 β(q, k -q)δ (1) (q)δ (1) (k -q) - 3 2 H 2 a 2 d 3 q (2π) 3 α(q, k -q)δ (1) (q)δ (1) (k -q) = -2H 2 a 2 d 3 q (2π) 3 β(q, k -q)δ (1) (q)δ (1) (k -q) - 3 2 H 2 a 2 d 3 q (2π) 3 α(q, k -q)δ (1) (q)δ (1) (k -q) = -H 2 a 2 d 3 q (2π) 3 δ (1) (q)δ (1) (k -q) 3 2 α(q, k -q) + 2 β(q, k -q) . ( 2 
S (LHS) 2,θ = S (RHS) 2,θ H 2 a 2 - 7 2 θ (2) (k) = -H 2 a 2 d 3 q (2π) 3 δ (1) (q)δ (1) (k -q) 3 2 α(q, k -q) + 2 β(q, k -q) θ (2) (k) = d 3 q (2π) 3 δ (1) (q)δ (1) (k -q) 3 7 α(q, k -q) + 4 7 β(q, k -q) .
(2. 1.92) which gives the second-order velocity kernels

G 2 (q 1 , q 2 ) = 3 7 α(q 1 , q 2 ) + 4 7 β(q 1 , q 2 ). (2.1.93)

Lagrangian Perturbation Theory (LPT)

Continuing the same method we get the third-order density kernel

F 3 (q 1 , q 2 , q 3 ) = 1 18 7 α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + 2 β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + 7α(q 1 + q 2 , q 3 ) + (2) β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) , (2.1.94) 
and third-order velocity kernels

G 3 (q 1 , q 2 , q 3 ) = 1 18 3 α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + 6 β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + 3α(q 1 + q 2 , q 3 ) + 6 β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) .
(2.1.95)

Further details of derivation are given in Appendix D. Following the same manner to obtain the second and third-order kernels, we find the nth-order density kernel given by the iterative expression

F n (q 1 , q 2 , . . . , q n ) = n-1 m=1 G m (q 1 , q 2 , . . . , q m ) (2n + 3)(n -1) (2n + 1) α(q| m 1 , q| n m+1 )F n-m (q m+1 , . . . , q n ) +2 β(q| m 1 , q| n m+1 )G n-m (q m+1 , . . . , q n ) , (2.1.96) 
G n (q 1 , q 2 , . . . , q n ) = n-1 m=1 G m (q 1 , q 2 , . . . , q m ) (2n + 3)(n -1) 3α(q| m 1 , q| n m+1 )F n-m (q m+1 , . . . , q n ) +2n β(q| m 1 , q| n m+1 )G n-m (q m+1 , . . . , q n ) . (2.1.97)

Lagrangian Perturbation Theory (LPT)

In section 2.1, we have considered the Eulerian approach, where fluid motion is characterized by fluid quantities such as the density and velocity fields. Here we use the Lagrangian approach instead of the Eulerian description by following the particle trajectories of the fluid elements.

Let us start by considering the dynamics of the particles. Starting from the initial position q the instantaneous position x(q, τ ) of a particle can be written as

x(q, τ ) = q + Ψ(q, τ ), (2.2.1) 
where Ψ(q, τ ) is the displacement field. Using Eq. (2.1.9) we have the equation of motion of the particles

dp dτ = -ma∇ϕ d dτ (mau) = -ma∇ϕ m d dτ a dx dτ = -ma∇ϕ d 2 x dτ 2 + H dx dτ = -∇ϕ. (2.2.2)
Now we jump to consider the mass conservation of the particles, which moves from the initial position q to the final position x. Relating the density of the particles, the mass conservation can be written

ρ m f d 3 x = ρ m i d 3 q ρ m i 1 + δ(x) d 3 x = ρ m i d 3 q 1 + δ(x) d 3 x = d 3 q, (2.2.3)
where ρ m i and ρ m f are the inial and final mass density. Moving the particles distorts their volume, which as expressed through the Jacobian

J = d 3 x d 3 q = det δ (K) ij + Ψ i,j , (2.2.4) 
where Ψ i,j = ∂Ψ i /∂q j . Using the relation in the last line of Eq. (2.2.3), we have

δ(x) = 1 J -1. (2.2.5)
Taking the divergence of the last line of equation (2.2.2) and inserting (2.1.20), we obtain

∇ x • d 2 x dτ 2 + H dx dτ = ∇ x • (-∇ x ϕ), J∇ x • d 2 Ψ dτ 2 + H dΨ dτ = 3 2 Ω m H 2 [J -1].
(2.2.6)

Now we have the equation of motions for the displacement field Ψ, which is coupled to the Jacobian J. This is a fully nonlinear equation that can not be solved analytically.

We again use a perturbative method to solve the equation using the ansatz for the displacement field as

Ψ = Ψ (1) + Ψ (2) + Ψ (3) + . . . (2.2.7)
and the ansatz for Jacobian is

J = 1 + J (1) + J (2) + J (3) + . . . . (2.2.8)
where the latter is related to the former up to the third order by the following expressions (for a detailed derivation, see e.g. [START_REF] Bouchet | Perturbative Lagrangian approach to gravitational instability[END_REF]):

J (1) = i Ψ (1) 
i,i ,

J (2) = i Ψ (2) i,i + 1 2 i̸ =j Ψ (1) i,i Ψ (1) j,j -Ψ (1) i,j Ψ (1) 
j,i ,

J (3) = i Ψ (3) i,i + i̸ =j Ψ (2) i,i Ψ (1) j,j -Ψ (2) i,j Ψ (1) j,i + detΨ (1) 
i,j .

(2.2.9)

Using this ansatz and Eq. (2.2.5) at linear order we thus have

δ (1) (x) = -J (1) = -Ψ (1) 
i,i (x).

(2.2.10)

where the linear density fields correspond to the gradient of the displacement field.

To solve Eq. (2.2.6) we need to transform ∇ x in terms of the Lagrangian variables using the chain rule

∇ x i = (δ (K) ij + Ψ i,j ) -1 ∇ q j . (2.2.11)
Using this chain rule Eq. (2.2.6) can be written as

(1 + J (1) + J (2) + J (3) + . . . )(δ (K) ij -Ψ i,j + Ψ i,l Ψ l,j + . . . ) × d 2 Ψ i,j dτ 2 + H dΨ i,j dτ = 3 2 Ω m H 2 [J (1) + J (2) + J (3) + . . . ].
(2.2.12)

At first order, we have the equation of motion of the displacement field is

d 2 Ψ (1) i,i dτ 2 + H dΨ (1) i,i dτ - 3 2 Ω m H 2 Ψ (1) i,i = 0. (2.2.13)
This equation looks familiar, reminding us of Eq. (2.1.44) (density field equation). Of course, it has a solution which is related to the that for linear density field by

Ψ (1) i,i (x, τ ) = -δ (1) (x, τ ). (2.2.14)
We again only consider the growing mode solution here. Working in Fourier space, one can write Eq. (2.2.14) as

Ψ (1) (k, τ ) = ik k 2 δ (1) (k)D 1 (τ ).
(2.2.15)

LPT beyond linear order in EdS cosmology

The displacement field grows linearly like the density field with the growth factor D 1 (τ ). Here we consider again the EdS cosmology with the growth factor D 1 (τ ) = a.

We thus can write the first-order displacement field as

Ψ (1) (k, τ ) = ik k 2 δ (1) (k)a(τ ). (2.2.16)
Let us transform the conformal time derivative in (2.2.12) to become scale factor derivatives using the following relation:

d dτ = da dτ d da = Ha d da , d 2 dτ 2 = da dτ d da (Ha d da ) = Ha dH da a d da + H d da + Ha d 2 da 2 .
(2.2.17)

Now we have the equation with the scale factor a derivatives

(1 + J (1) + J (2) + J (3) + . . . )(δ (K) ij -Ψ i,j + Ψ i,l Ψ l,j + . . . ) × Ha dH da a d da + 2H d da + Ha d 2 da 2 Ψ i,j = 3 2 Ω m H 2 [J (1) + J (2) + J (3) + . . . ].
(2.2.18)

Notice that the first-order solution of the displacement field in Eq. (2.2.16) has a similar form to the first-order density field. Analogously to the n-th order density field ansatz we make the separable ansatz as

Ψ (n) (k, a) = a n Ψ (n) (k) . (2.2.19)
Using this proportionality we thus have

dΨ (n) da = n a Ψ (n) (2.2.20) d 2 Ψ (n) da 2 = n(n -1) a 2 Ψ (n) (2.2.21)
Inserting Eq. (2.2.20) and using dH/da = -H/2a we can rewrite Eq. (2.2.18) as

(1 + J (1) + J (2) + J (3) + . . . )(δ (K) ij -Ψ i,j + Ψ i,l Ψ l,j + . . . ) × n 2 + n 2 H 2 Ψ i,j = 3 2 H 2 [J (1) + J (2) + J (3) + . . . ].
(2.2.22)

Solving this equation perturbatively order by order we obtain n-th order solutions of the displacement field.

At second order, from Eq. (2.2.22), we have

3 2 Ψ (1) i,i Ψ (1) 
j,j -Ψ (1) 
i,j Ψ

i,j + 5Ψ

(2)

i,i = 3 2 Ψ (2) i,i + 1 2 Ψ (1) i,i Ψ (1) 
j,j -Ψ (1) i,j Ψ (1) j,i , Ψ (2) 
i,i = -

3 14 i,j Ψ (1) 
i,i Ψ

(1)

j,j -Ψ (1) 
i,j Ψ

i,j .

(2.2.23)

In Fourier space this equation becomes ikΨ

i (k) = -3 14

d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q 1 )δ (1) (q 2 ) 1 - (q 1 • q 2 ) 2 q 2 1 q 2 2 (2π) 3 δ (D) (k -q 1 -q 2 ) Ψ (2) 
i (k) = i 2 d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q 1 )δ (1) (q 2 ) 3 7 k k 2 1 - (q 1 • q 2 ) 2 q 2 1 q 2 2 (2π) 3 δ (D) (k -q 1 -q 2 ), (2.2.24) 
where the second-order density field is a convolution of two first-order density fields δ (1) . Here we can see the second-order solution of displacement field Ψ

i has a similar structure to the second-order density field δ (2) .

Continuing to the third order, we have from the left-hand side of Eq. (2.2.22)

Ψ (LHS) 3 = 21 2 Ψ (3) i,i -5Ψ (1) 
i,j Ψ

i,j -

3 2 Ψ (2) i,j Ψ (1) 
i,j + 5Ψ

i,i Ψ

j,j -

3 2 Ψ (1) i,i Ψ (1) 
i,j Ψ

(1) i,j

+ 3 2 Ψ (2) i,i Ψ (1) 
j,j + 3 4 Ψ (1) i,i Ψ (1) 
j,j Ψ (1) 
k,k -Ψ (1) 
i,i Ψ

j,k Ψ (1) 
k,j + 3 2 Ψ (1) i,l Ψ (1) 
l,j Ψ (1) i,j (1) 
and from the right-hand side

Ψ (RHS) 3 = 3 2 Ψ (3) i,i + 3 2 Ψ (2) i,i Ψ (1) j,j -Ψ (2) i,j Ψ (1) 
j,i + 3 2 1 6 Ψ (1) i,i Ψ (1) 
j,j Ψ (1) k,k - 1 2 Ψ (1) i,i Ψ (1) j,k Ψ (1) 
k,j + 1 3 Ψ (1) i,l Ψ (1) l,j Ψ (1) 
i,j .

( 

Ψ (LHS) 3 =Ψ (RHS) 3 (2.2.27)
and thus

Ψ (3) i,i = - 5 9 Ψ (2) i,i Ψ (1) 
j,j + 5 9 Ψ (2) i,j Ψ (1) 
j,i + 3 18 Ψ (1) i,i Ψ (1) 
i,j Ψ

(2.2.28)

- 1 18 Ψ (1) 
i,i Ψ

(1)

j,j Ψ (1) 
k,k -

1 9 Ψ (1) i,k Ψ (1) k,j Ψ (1) 
j,i . (2.2.29) 36 2.
3 Power spectrum at one-loop

We write the n-th order displacement field Ψ (n) as a convolution of n-times first-order density fields δ (1) with the coupling kernels L n

Ψ (n) (k) = i n! n! i=1 d 3 q i (2π) 3 δ (1) (q i ) L n (q 1 , . . . , q n )(2π) 3 δ (D) (k -q 1 . . . q n ). (2.2.30)
Using this relation one thus can write the first up to the third-order kernels as

L 1 = k k 2 , L 2 = 3 7 k k 2 1 - q 1 • q 2 q 1 q 2 2 , L 3 = 5 7 k k 2 1 - q 1 • q 2 q 1 q 2 2 1 - (q 1 + q 2 ) • q 3 |(q 1 + q 2 |q 3 2 - 1 3 k k 2 1 -3 q 1 • q 2 q 1 q 2 2 + 2 (q 1 • q 2 )(q 2 • q 3 )(q 3 • q 1 ) q 2 1 q 2 2 q 2 3 .
(2.2.31)

Using the known relations between the kernels of LPT and EPT (see [START_REF] Aviles | Nonlinear evolution of initially biased tracers in modified gravity[END_REF][START_REF] Matsubara | Nonlinear perturbation theory integrated with nonlocal bias, redshift-space distortions, and primordial non-Gaussianity[END_REF][START_REF] Rampf | Lagrangian perturbations and the matter bispectrum I: fourth-order model for non-linear clustering[END_REF]), we have the first-order kernel of the density field

F 1 (k) = k • L 1 (k) = k • k k 2 = 1. (2.2.32)
The second-order kernels are

F 2 (q 1 , q 2 ) = 1 2 k • L 2 (q 1 , q 2 ) + [k • L 1 (q 1 ][k • L 1 (q 2 )] = 5 7 + 1 2 q 1 • q 2 q 1 q 2 q 2 q 1 + q 1 q 2 + 2 7 (q 1 • q 2 ) 2 q 2 1 q 2 2 , (2.2.33) 
which agrees with Eq. (2.1.90) and at third order we have

F 3 (q 1 , q 2 , q 3 ) = 1 3! k • L (s) 3 (q 1 , q 2 , q 3 ) + [k • L 1 (q 1 )][k • L 2 (q 2 , q 3 )] + cyc + [k • L 1 (q 1 )][k • L 1 (q 2 )][k • L 1 (q 3 )] .
(2.2.34)

It is straightforward to check that this gives the result in Eq. (2.1.94).

Power spectrum at one-loop

In studying large-scale structures in cosmology, we are not focused on the fate of individual but aim instead to describe the statistical properties of fields such as density field δ(x), and the divergence of velocity field θ(x). We assume that the CP applies also to fluctuations, meaning that statistically (i.e. in the ensemble average) they are homogeneous and isotropic. We can define a two-point correlation function as an ensemble average of two fields in real space

ξ(|r|) = ⟨f (x)f (x+r).⟩ (2.3.1)
These two fields are at two different locations i.e. x and x+r and depend, give the assumption of statistical homogeneity and isotropy, only on the relative separations |r| ≡ r. Specifically, the two-point correlations function of density fields is

ξ(r) = ⟨δ(x)δ(x+r)⟩. (2.3.2)
Using the definition in Eq. (2.1.64), the density field itself can be expressed in Fourier space as

δ(x) = d 3 k (2π) 3 exp ik • x δ(k) (2.3.3)
where

δ(k) = d 3 x exp -ik • x δ(x). (2.3.4)
Note that the density field δ(x) in configuration space is a real quantity while δ

(k) is complex, with δ(k) = δ * (-k).
Taking an ensemble average of two density fields in Fourier1 space gives

⟨δ(k)δ(k ′ )⟩ = d 3 x d 3 (x+r) exp -ik • x δ(x) exp -ik ′ • (x+r) δ(x+r) = d 3 x d 3 r⟨δ(x)δ(x+r)⟩ exp -i(k + k ′ ) • x -ik ′ • r = d 3 x d 3 rξ(r) exp -i(k + k ′ ) • x -ik ′ • r = (2π) 3 δ (D) (k + k ′ ) d 3 r exp[-ik ′ • r]ξ(r) = (2π) 3 δ (D) (k + k ′ )P (|k| ≡ k). (2.3.5) 
Now we have the relations between the correlation function in real space and the power spectrum in Fourier space

P (k) = d 3 rξ(r) exp[-ik • r] (2.3.6)
and its inverse relation

ξ(r) = d 3 k (2π) 3 P (k) exp[ik • r]. (2.3.7)
Using the definition Eq. (2.3.5), the ensemble average of two density fields which is expanded around the linear density fields can be written by

⟨δ(k)δ(k ′ )⟩ = ⟨[δ (1) (k) + δ (2) (k) + δ (3) (k) + . . . ][δ (1) (k ′ ) + δ (2) (k ′ ) + δ (3) (k ′ ) • • • ]⟩ = ⟨δ (1) (k)δ (1) (k ′ )⟩ + ⟨δ (1) (k)δ (2) (k ′ )⟩ + ⟨δ (2) (k)δ (1) (k ′ )⟩ +⟨δ (2) (k)δ (2) (k ′ )⟩ + (k ′ )⟩ + ⟨δ (1) (k)δ (3) (k ′ )⟩ + (k ′ )⟩ +⟨δ (3) (k)δ (1) (k ′ )⟩ + • • • (2.3.8)
Assuming Gaussian initial conditions and applying Isserlis' theorem [START_REF] Isserlis | On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables[END_REF] or Wick's theorem [START_REF] Wick | The evaluation of the collision matrix[END_REF], which implies the ensemble average of an odd number of fields vanishes, one can rewrite the above equation

⟨δ(k)δ(k ′ )⟩ = ⟨δ (1) (k)δ (1) (k ′ )⟩ + ⟨δ (2) (k)δ (2) (k ′ )⟩ + 2⟨δ (1) (k)δ (3) (k ′ )⟩. (2.3.9)
Note that there is symmetry under the exchange of two fields

⟨δ (i) (k)δ (j) (k ′ )⟩ = ⟨δ (j) (k)δ (i) (k ′ )⟩.
(2.3.10)

Power spectrum at one-loop

We consider here only this "one loop" correction of the power spectrum (i.e. working to fourth-order in the linear density field).

Let us now unravel the terms of Eq.(2.3.9). The first (i.e. linear) term gives

⟨δ (1) (k)δ (1) (k ′ )⟩ = (2π) 3 δ (D) (k + k ′ )P lin (k), (2.3.11) 
where P lin (k) is the linear power spectrum.2 [START_REF] Baldauf | Modelling large scale structure statistics for precision cosmology[END_REF]. From the second term of Eq. (2.3.10) (hereafter '22' term), we have

⟨δ (2) (k)δ (2) (k ′ )⟩ = d 3 k 1 (2π) 3 δ (1) (k 1 )δ (1) (k -k 1 )F 2 (k 1 , k -k 1 ) × d 3 k 2 (2π) 3 δ (1) (k 2 )δ (1) (k ′ -k 2 )F 2 (k 2 , k ′ -k 2 ) = d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 F 2 (k 1 , k -k 1 )F 2 (k 2 , k ′ -k 2 ) ×⟨δ (1) (k 1 )δ (1) (k -k 1 )δ (1) (k 2 )δ (1) (k ′ -k 2 )⟩ = (2π) 3 δ (D) (k + k ′ ) 2 d 3 k 1 (2π) 3 [F 2 (k 1 , k -k 1 )] 2 ×P lin (k 1 )P lin (|k -k 1 |) = (2π) 3 δ (D) (k + k ′ )P 22 (k). (2.3.12) 
Further details of the calculation of the '22' term are given in Appendix A.7. We thus have the '22' contribution to the PS:

P 22 (k) = 2 d 3 q (2π) 3 [F 2 (q, k -q)] 2 P lin (q)P lin (|k -q|). (2.3.13) 
Continuing with the '13' term, we obtain

⟨δ (3) (k)δ (1) (k ′ )⟩ = F 1 (k ′ ) d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 d 3 k 3 (2π) 3 (2π) 3 δ (D) (k -k 1 -k 2 -k 3 ) ×F 3 (k 1 , k 2 , k 3 )⟨δ (1) (k ′ )δ (1) (k 1 )δ (1) (k 2 )δ (1) (k 3 )⟩ = (2π) 3 δ (D) (k + k ′ ) 3P lin (k) d 3 k 2 (2π) 3 P lin (k 2 ), F 3 (k, k 2 , -k 2 ) . (2.3.14)
From this equation, we get

P 13 (k) = 3P lin (k) d 3 q (2π) 3 P lin (q)F 3 (k, q, -q). (2.3.15)
More details on these derivations are also given in Appendix A.7.

We can now infer that

P 1-loop (k, a) = P lin (k, a) + P 22 (k, a) + 2P 13 (k, a), (2.3.16)
which, for the assumed EdS cosmology, can be written

P 1-loop (k, a) = a 2 P lin (k) + a 4 P 22 (k) + 2a 4 P 13 (k) = a 2 P lin (k) + a 4 P 22 (k) + 2P 13 (k) .
(2.3.17)

where P lin (k), P 22 (k) and P 13 (k) are these terms evaluated at a = 1. Next, we continue to obtain simplified expressions for these explicitly. We parametrize the momenta using k = (0, 0, k),

q = rk( 1 -µ 2 , 0, µ). (2.3.18)
Using this parametrization, the second-order density kernels3 can be rewritten as

F (s) 2 (q, k -q) = 5 7 + 1 2 q • (k -q) |q||k -q| |k -q| |q| + |q| |k -q| + 2 7 (q • (k -q)) 2 |q| 2 |k -q| 2 F (s) 2 (r, µ) = 7µ + (3 -10µ 2 )r 14r(r 2 -2µr + 1) . (2.3.19)
Inserting this equation into (2.3.13) and using momenta parametrization, one can rewrite the '22' term as

P 22 (k) = 2 d 3 q (2π) 3 [F (s) 2 (q, k -q)] 2 P lin (q)P lin (|k -q|) = 2 dr (2π) 3 k(rk) 2 dµ 2π 0 dθ[F (s) 2 (r, µ)] 2 P lin (rk)P lin (k 1 + r 2 -2rµ) = k 3 2π 2 drr 2 dµ[F (s) 2 (r, µ)] 2 P lin (rk)P lin (k 1 + r 2 -2rµ). (2.3.20) 
Following the same procedure we obtain the '13' term as

P 13 (k) = k 3 1008π 2 P lin (k) drr 2 P lin (kr) 12 r 4 - 158 r 2 + 100 -42r 2 + 3 r 5 (7r 2 + 2)(r 2 -1) 3 ln |1 + r| |1 -r| . (2.3.21)
More details of the derivation of this '13' term can also be found in Appendix D.

Asymptotic behavior of the one-loop power spectrum for EdS

In this section, we overview how to determine the convergence properties of P 13 and P 22 . We follow here the treatment of [START_REF] Baldauf | Modelling large scale structure statistics for precision cosmology[END_REF] where further details may be found.

According to standard analysis and as we will in Chapter 3, the two-dimensional integrals P 22 exhibit divergences in certain cases when the limit ε/k → 0 is approached at r = 0 and r = 1. It has been observed (see e.g. [START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF]) that both divergences contribute equally due to the symmetry of the integrals. Specifically, the divergence at r = 1 corresponds to |q -k| → 0, which is identical to the contribution at r = 0 after a change in a variable. Consequently, the infrared behavior can be determined by simply doubling the contribution at r = 0, which can be easily deduced from a Taylor expansion. For the '22' term, expanding first separately P lin (|k -q|) and 40 2.

3 Power spectrum at one-loop

IR-divergent UV-divergent P 22 n ≤ -1 n ≥ 1/2 P 13 n ≤ -1 n ≥ -1 P 1-loop n ≤ -3 n ≥ -1
Table 2.1: Convergence properties of the two contributions, P 22 and P 13 , to the one loop PS P 1-loop , in EdS background. In each case the bound on n is that obtained assuming that P lin ∼ k n in the relevant (k → 0 or k → ∞) limit.

|F (s)

2 (k -q, q)| 2 about q = 0 and qk = 0 in powers of q/k, we obtain on combining them that

P 22 (k) = k 2 P lin (k)σ 2 d + 569 735 P lin (k) - 47 105 k dP lin (k) dk + 1 10 k 2 d 2 P lin (k) dk 2 σ 2 + • • • (2.3.22)
where

σ 2 d = 1 6π 2 dq P lin (q) , σ 2 = 1 2π 2 dq q 2 P lin (q) , (2.3.23) 
are, respectively, the one-point variance of the displacement and density fields, and the dots indicate terms proportional to integrals with more rapid infra-red convergence.

For the '13' term, the angular part of the integral over F 3 can be directly expanded about q = 0 in powers of q/k, and gives

2P 13 (k) = -k 2 P lin (k)σ 2 d + 116 315 P lin (k)σ 2 + • • • (2.3.24)
where again the dots indicate terms proportional to integrals which are more rapidly converging in the infra-red.

Considering P lin ∼ k n as k → 0, the integrals P 22 and P 13 are individually divergent for n < -1. However this leading divergence cancels when the two terms are summed and the condition for infra-red convergence becomes the expected one, n > -3, corresponding to the condition that the normalized mass fluctuations σ 2 (r) decay at large distances.

To determine the ultra-violet convergence properties (r → ∞) we proceed analogously, but expanding now each term in the limit q ≫ k. This gives

P 22 (k, a) = 9 98 k 4 d 3 q (2π) 3 P 2 lin (q) q 4 + • • • , (2.3.25)
and

2P 13 (k) = - 61 105 P lin (k)σ 2 d + + 4 105 k 4 P lin (k) d 3 q (2π) 3 P lin (q) q 4 + • • • (2.3.26)
where the dots now indicate terms proportional to integrals which converge more rapidly in the ultra-violet than the leading ones.

Using the same input PS i.e. P lin ∼ k n as k → 0, we can see that the leading term in P 22 is a divergence for n ≥ 1/2, while that in P 13 diverges for n ≥ -1.

The convergence properties of the contributions to the one-loop power spectrum are summarized in Table 3.1.

Standard perturbation theory in FLRW cosmologies

In the previous section, we have derived the fluid equations and the one-loop corrections to the power spectrum for the EdS cosmology. Here we consider exactly the same formalism but generalized to a generic FLRW background (while assuming still that the only perturbed component is pressureless matter). We choose to follow closely the treatment of the [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] and we will discuss other (equivalent) ones [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF][START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF] in Chapter 4. The complexity of this general analysis arises from the fact that perturbative equations no longer admit the separable solution Eq. (2.1.79). A very good approximation (the "EdS approximation") is nevertheless obtained by assuming the separability ansatz

δ(k, a) = ∞ i=1 D(a) i δ (i) (k) i.e.
replacing D = a of EdS by that of the cosmology. We will consider in detail the corrections to this approximation. Indeed this is the main subject of this thesis.

We rederive the equations for the relevant time-dependent functions describing the density perturbations up to the third order. The calculation of the power spectrum at one loop is also given in this section.

Let us reconsider the fluid equations for a generic FLRW cosmology. Combining Eq. (2.1.66) and Eq. (2.1.67) we have the single differential equation for the density field

- ∂ 2 δ ∂τ 2 -H ∂δ ∂τ + 3 2 Ω m H 2 δ = S β - ∂ ∂τ + H S α (2.4.1) 
Using this transformation we can rewrite Eq.(2.4.1) as

H 2 -a 2 ∂ 2 a + 3 2 Ω m -2 a∂ a + 3 2 Ω m δ = S β -H ∂ ∂a [aS α],
(2.4.2)

where the source terms S α and S β are defined in Eqs. (3.1.14) and (3.1.15). We now have the single differential equation for density with respect to the scale factor a with the source terms on the right-hand side of the equations. Note that source term S α is, as previously, a term coupling between density and velocity.

Next we write the single differential equation for velocity for the LCDM universe. Starting by taking a conformal time derivative of Eq. (2.1.67), we have

∂ 2 θ ∂τ 2 + ∂H ∂τ θ + H ∂θ ∂τ + 3 2 ∂Ω m ∂τ H 2 δ + 3Ω m H ∂H ∂τ δ + 3 2 Ω m H 2 ∂δ ∂τ = ∂S β ∂τ .(2.4.
3)

It will be easier if we separate this equation into three terms before transforming it into a scale factor dependency a

Θ (LHS 1 ) = ∂ 2 θ ∂τ 2 + ∂H ∂τ θ + H ∂θ ∂τ (2.4.4) Θ (LHS 2 ) = 3 2 ∂Ω m ∂τ H 2 δ + 3Ω m H ∂H ∂τ δ + 3 2 Ω m H 2 ∂δ ∂τ (2.4.5) Θ (RHS) = ∂S β ∂τ , (2.4.6) 
where Θ (LHS i ) is the left-hand side of equation and Θ (RHS) is the right-hand side of 2.4 Standard perturbation theory in FLRW cosmologies equation. Using Eq. (2.2.17) we get

Θ (LHS 1 ) = Ha 2 ∂H ∂a ∂θ ∂a + H 2 a ∂θ ∂a + H 2 a 2 ∂ 2 θ ∂a 2 + Ha ∂H ∂a θ + H 2 a ∂θ ∂a = H 2 a - 3 2 Ω m + 1 ∂θ ∂a + H 2 a ∂θ ∂a + H 2 a 2 ∂ 2 θ ∂a 2 + H 2 - 3 2 Ω m + 1 θ +H 2 a ∂θ ∂a .
(2.4.7)

Continuing with the second term, we obtain

Θ (LHS 2 ) = H(3Ω m -3) S β -Ha ∂θ ∂a -Hθ + H(2 -3Ω m ) S β -Ha ∂θ ∂a -Hθ + 3 2 Ω m H 2 S α - 3 2 Ω m H 2 θ, (2.4.8) 
while the right-hand side of the equation gives

Θ (RHS) = Ha ∂S β ∂a .
(2.4.9)

Combining Eqs. (2.4.7), (2.4.8), and (2.4.9) we thus have

Θ (LHS 1 ) + Θ (LHS 2 ) = Θ (RHS) H 2 a 2 ∂ 2 θ ∂a 2 + H 2 4 - 3 2 Ω m a ∂θ ∂a + (2 -3Ω m )H 2 -HS β + 3 2 Ω m H 2 S α = Ha ∂S β ∂a H a 2 ∂ 2 a + 4 - 3 2 Ω m a∂ a + (2 -3Ω m ) θ = ∂ a (aS β ) - 3 2 Ω m HS α. (2.4.10) 
Instead of treating the simple case, the EdS cosmology, to obtain the density field solution, we use more general case of FLRW cosmologies, of which a special case is the current standard (LCDM) model.

Before solving it perturbatively, it is convenient to rewrite the equation for the density fields

-H 2 a 2 ∂ 2 δ ∂a 2 -2H 2 a ∂δ ∂a -Ha 2 ∂H ∂a ∂δ ∂a + 3 2 Ω m H 2 δ = S β -Ha ∂ ∂a + H S α.
(2.4.11)

Linearized approximation

At linear order, we can neglect (as previously) the terms on the RHS of Eq. (2.4.11) and obtain

-H 2 a 2 ∂ 2 δ (1) ∂a 2 -2H 2 a ∂δ (1) ∂a -Ha 2 ∂H ∂a ∂δ (1) ∂a + 3 2 Ω m H 2 δ (1) = 0. (2.4.12)
This equation only has only a time derivative and therefore (as for EdS), it has a separable solution of time and space which we write

δ (1) (k, a) = D 1 (a)δ (1) (k), (2.4.13) 
Inserting this ansatz into Eq. (2.4.14) and using the relation H = Ha, we have

-H 2 a 4 d 2 D 1 (a) da 2 -3H 2 a 3 dD 1 (a) da -Ha 4 dH da dD 1 (a) da + 3 2 Ω m H 2 a 2 D 1 (a) = 0.(2.4.14)
Using the transformation below

dD 1 (a) da = d d ln a D 1 a + D 1 a , d 2 D 1 (a) da 2 = 1 a d 2 d ln a 2 D 1 a + 1 a d d ln a D 1 a (2.4.15)
we can rewrite Eq. (2.4.14) (see Appendix D.4 for further details)

d 2 d ln a 2 D 1 a + 4 + d ln H d ln a d d ln a D 1 a + 3 + d ln H d ln a - 3 2 Ω m (a) D 1 a = 0. (2.4.16)
On the other hand, the linear solution for the divergence of the velocity field is

θ (1) k, a) = -a 2 H(a) dD 1 (a) da δ (1) (k).
(2.4.17)

Second-order

To obtain the second-order solution we can insert the first-order density δ (1) and velocity θ (1) fields into the source term of the last line of Eq. (2.4.2) which gives

-H 2 a 2 ∂ 2 δ (2) ∂a 2 -2H 2 a ∂δ (2) ∂a -Ha 2 ∂H ∂a ∂δ (2) ∂a + 3 2 Ω m H 2 δ (2) = S (2) β -H ∂ ∂a [aS (2) 
α ],

H 2 a 2 ∂ 2 δ (2) ∂a 2 + 2H 2 a ∂δ (2) ∂a + Ha 2 ∂H ∂a ∂δ (2) ∂a - 3 2 Ω m H 2 δ (2) = H ∂ ∂a [aS (2) 
α ] -S

where

S (2) α = - d 3 q (2π) 3 α(q, k -q)θ (1) (q, a)δ (1) (k -q, a) (2.5.2) S (2) β = - d 3 q (2π) 3 β(q, k -q)θ (1) (q, a)θ (1) (k -q, a). (2.5.3) 
This equation has two source terms which involve convolutions of linear density and velocity fields (δ (1) * θ (1) ) with the coupling kernel α and two convolutions of linear velocity fields (θ (1) * θ (1) ) with the coupling kernel β. To simplify, we can rewrite Eq.

(2.5.1) as

L (2) δ (2) (k, a) = L 2A aS (2) α (k, a) + L 2B S (2) β (k, a) (2.5.4)
where

L (2) = H 2 a 2 ∂ 2 ∂a 2 + 2H 2 a ∂ ∂a + Ha 2 ∂H ∂a ∂ ∂a - 3 2 Ω m H 2 L 2A = H ∂ ∂a L 2B = -1.
(2.5.5)

Studying these source terms, we know that this differential equation has two solutions. Eq. (2.5.4) gives the second-order density field solution, which is denoted by where the Fourier mode dependency is

δ (2) (k, a) = D 2 1 = δ 2A (k, a) + δ 2B (k, a) = D 2A A(k) + D 2B B(k), (2.5 
A(k) = 5 7 d 3 qα(q, k -q)δ 1 (q)δ 1 (k -q), B(k) = 2 7 d 3 q β(q, k -q)δ 1 (q)δ 1 (k -q).
(2.5.7)

Note that for D 2A = D 2B = D 2 1 we recover the separable EdS solution like in EdS

δ (2) (k, a) = D 2 1 δ (2) (k), (2.5.8) θ(2)(k, a) = -H(a) d ln D 1 d ln a D 2 1 (a) θ (3) (k), (2.5.9) 
but that the growth factor of EdS is replaced by the approach D 1 . This approximation is the "EdS approximation." Meanwhile, the time dependence part of Eq. (2.5.4) gives two growth factor equations i.e.

L (2) D 2 =    7 5 L 2A Ha d ln D 1 d ln a D 2 1 for D 2A 7 2 L 2B -H 2 d ln D 1 d ln a 2 D 2 1 for D 2B .
(2.5.10)

Using the transformation below

dD 2 (a) da = a d d ln a D 2 a 2 + 2 D 2 a , d 2 D 2 (a) da 2 = d 2 d ln a 2 D 2 a 2 + 3 d d ln a D 2 a 2 + 2 D 2 a 2 , (2.5.11) 
Eq. (2.5.10) is transformed (further details of derivation can be found in Appendix D.4).

d 2 d ln a 2 D 2 a 2 + 6 + d ln H d ln a d d ln a D 2 a 2 + 8 + 2 d ln H d ln a - 3 2 Ω m (a) D 2 a 2 =        7 5 dD 1 da 2 + 3 2 Ω m (a) D 1 a 2 for D 2A , 7 2 
dD 1 da 2 for D 2B .
(2.5.12)

These differential equations for the second-order "growth factor" D 2A,B were solved numerically by [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF]. The result shows that the relative differences

D 2A D 2 1 -1 and D 2B D 2 1 -1 are very small: (≲ 4%) for 0.1 < Ω m < 1 and < -1.5 < Ω m < -0.5. [3]
provided simple numerically calibrated fits for parameter dependence of

D 2A D 2 1 -1 , D 2B D 2 1
-1 , etc. We will compare our numerical results for the second-order growth factor D 2A,B with those of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] in Chapter 4.

Third-order

The equation of the third-order density field is

H 2 a 2 ∂ 2 δ (3) ∂a 2 + 2H 2 a ∂δ (3) ∂a + Ha 2 ∂H ∂a ∂δ (3) ∂a - 3 2 Ω m H 2 δ (3) = H ∂ ∂a [aS (3) 
α ] -S

β , (2.5.13)

where (2) (q, a)θ (1) (k -q, a).

S (3) α = - d 3 q (2π) 3 α(q, k -q)θ (1) (q, a)δ (2) (k -q, a) - d 3 q (2π) 3 α(q, k -q)θ (2) (q, a)δ (1) (k -q, a) (2.5.14) S (3) β = - d 3 q (2π) 3 β(q, k -q)θ (1) (q, a)θ (2) (k -q, a) - d 3 q (2π) 3 β(q, k -q)θ
(2.5.15)

Using Eq. (2.5.13) together with Eqs. (2.5.14) and (2.5.15) we obtain (as in [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF] ) the third-order density field solution in the form

δ 3 (k, a) = D 3AA (a)C AA (k) + D ′ 3AA (a)C ′ AA (k) +D 3AB (a)C AB (k) + D ′ 3AB (a)C ′ AB (k) +D 3BA (a)C BA (k) + D 3BB (a)C BB (k), (2.5.16) 
with

C AA (k) = 7 18 d 3 qα(q, k -q)δ 1 (q)A(k -q), (2.5.17) 
C ′ AA (k) = 7 30 d 3 qα(q, k -q)δ 1 (k -q)A(q), (2.5.18) 
C AB (k) = 7 18 d 3 qα(q, kq)δ 1 (q)B(k -q), (2.5.19)

C ′ AB (k) = 7 9 d 3 qα(q, k -q)δ 1 (k -q)B(q), (2.5.20) 
C BA (k) = 2 15 d 3 q β(q, k -q)δ 1 (q)A(k -q), (2.5.21) 
C BB (k) = 4 9 d 3 q β(q, k -q)δ 1 (q)B(k -q).
(2.5.22)

Note that for D 3XX = D 3 1 (where denote the different relevant combination) we again recover the "EdS approximations" given by the separable form:

δ (3) (k, a) = D 3 1 δ (3) (k), (2.5.23) θ (3) (k, a) = -H(a) d ln D 1 d ln a D 3 1 (a) θ (3) (k), (2.5.24)
To derive the equation of third-order growth factors D 3XX as in [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], we use the transformation

dD 3 (a) da = a 2 d d ln a D 3 a 3 + 3 D 3 a , d 2 D 3 (a) da 2 = a d 2 d ln a 2 D 3 a 3 + 5a d d ln a D 3 a 3 + 6 D 3 a 2 .
(2.5.25)

Second-order

and also H = Ha, which allows the left-hand side of Eq. (2.5.13) to be recast as

LHS (D 3 ) = H 2 a 4 d 2 D 3 (a) da 2 + 3 a dD 3 (a) da + 1 H dH da dD 3 (a) da - 3 2 Ω m D 3 (a) a 2 = H 2 a 5 d 2 d ln a 2 D 3 a 3 + 8 + d ln H d ln a d d ln a D 3 a 3 + 15 + 3 d ln H d ln a - 3 2 Ω m (a) D 3 a 3 .
(2.5.26)

Inserting the first term of Eq. (2.5.14) into the first term of the right-hand side of Eq.

(2.5.13) gives

H ∂ ∂a a d 3 q (2π) 3 αHa ∂D 1 ∂a D 2A Â + D 2B B δ (1) (2.5.27)
which is the source term of equations for D 3AA and D 3AB . The source term of the equation for D 3AA is

S D 3AA = H ∂ ∂a a d 3 q (2π) 3 αHa ∂D 1 ∂a D 2A Âδ (1) = H ∂ ∂a Ha 2 ∂D 1 ∂a D 2A d 3 q (2π) 3 α Âδ (1) = Ha dH da a 3 dD 1 da D 2A + 3Ha 2 dD 1 da D 2A + Ha 3 d 2 D 1 da 2 D 2A + Ha 3 dD 1 da dD 2A da × d 3 q (2π) 3 α Âδ (1) = H 2 a 4 d 2 D 1 da 2 + 3H 2 a 3 dD 1 da + Ha 4 dH da dD 1 da D 2A + dD 1 da dD 2A da × d 3 q (2π) 3 α Âδ (1) = H 2 a 4 3 2 Ω m D 1 a 2 D 2A + dD 1 da dD 2A da d 3 q (2π) 3
α Âδ (1) , (2.5.28)

which can be rewritten as

C 3AA H 2 a 5 2 dD 1 da + 3 2 Ω m D 1 a D 2A a 2 + a dD 1 da d da D 2A a 2 (2.5.29)
using the transformation below

dD 2A da = a 2 d da D 2A a 2 + 2 D 2A a .
(2.5.30)

Following the same method from Eq. (2.5.27) we can rederive the equations for

D 3AB C 3AB H 2 a 5 2 dD 1 da + 3 2 Ω m D 1 a D 2B a 2 + a dD 1 da d da D 2B a 2 . (2.5.31)
Inserting Eq. (2.5.15) into the second term of the right-hand side of Eq. (2.5.13) we obtain 

S D 3BA,3BB = - d 3 q (2π) 3 βθ (2) θ (1) = d 3 q (2π) 3 β -Ha ∂D 2A ∂a - 7 5 
dD 1 da D 1 Â -Ha dD 2B da B × -Ha dD 1 da d 3 q (2π)
C 3BB H 2 a 2 dD 2B da dD 1 da = C 3BB H 2 a 5 D 2B a 2 + 2 D 2B a 2 dD 1 da . (2.5.34)
Inserting the second term of Eq. (2.5.14) into the first term of the right-hand side of Eq. (2.5.13) gives

S D ′ 3AA,3AB = H ∂ ∂a a d 3 q (2π) 3 βθ (2) δ (1) = H ∂ ∂a a d 3 q (2π) 3 β -Ha ∂D 2A ∂a - 7 5 
dD 1 da D 1 Â -Ha dD 2B da B ×D 1 δ (1) . (2.5.35)
One can extract the source term for equations D ′ 3AA from Eq. (2.5.35)

C ′ 3AA Ha ∂ ∂a Ha 3 dD 2A da - 7 5 
dD 1 da D 1 = C ′ 3AA H 2 a 5 3 2 Ω m D 2A a 2 - 7 5 dD 1 da 2 D 1 a + a d da D 2A a 2 + 2 D 2A a 2 dD 1 da (2.5.36)
and for 

D ′ 3AB C ′ 3AB Ha ∂ ∂a Ha 3 dD 2B da D 1 = C ′ 3AB 3 2 Ω m D 2B a 2 + 7 2 dD 1 da 2 D 1 a + a d da D 2B a 2 + 2 D 2B a 2 dD 1 da . ( 2 
d 2 d ln a 2 D 3 a 3 + 8 + d ln H d ln a d d ln a D 3 a 3 + 15 + 3 d ln H d ln a - 3 2 Ω m (a) D 3 a 3 =                              18 7 2 dD 1 da + 3 2 Ω m (a) D 1 a D 2A,B a 2 + 18 7 a dD 1 da d da D 2A,B a 2 for D 3AA,3AB 15 dD 1 da a d da D 2A a 2 + 2 D 2A a 2 -7 5 D 1 a dD 1 da for D 3BA 9 2 dD 1 da a d da D 2B a 2 + 2 D 2B a 2 for D 3BB 30 7 3 2 Ω m D 2A a 2 -7 5 dD 1 da 2 D 1 a + a d da D 2A a 2 + 2 D 2A a 2 dD 1 da for D ′ 3AA 9 7 3 2 Ω m D 2B a 2 + 7 2 dD 1 da 2 D 1 a + a d da D 2B a 2 + 2 D 2B a 2 dD 1 da for D ′ 3AB (2.5.38) 48 
2.5 Second-order where for the EdS limit D 3XX grows linearly as D 3 1 . To solve the growth factor for the third-order density fields we can use the boundary condition that the growth factor is D 3XX → a 3 for the scale factor a → 0.

These differential equations for third-order growth factor D 3XX were also solved numerically by [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF]. The results show that the relative differences

D 3XX D 3 1 -1 between D 3XX and D 3
1 are very small: (≲ 7%) for 0.1 < Ω m < 1 and < -1.5 < Ω m < -0.5. Combining the results for D 2A and D 2B one finds corrections to the PS of ≲ 0.5% for the relevant regime in typical LCDM-like cosmologies. A detailed comparison with our own numerical calculations will be presented in Chapter 4.

Power spectrum at one-loop in FLRW background

Following exactly the same procedures as described, for the case of an EdS background, in Section 2.3 we can calculate also the one-loop PS for a generic FLRW background by using the expressions just derived, to evaluate the terms in Eq. (2.3.9).

'22' term

Taking now instead the exact expression for δ (2) derived above we obtain ⟨δ (2) (k, a)δ (2) 

(k ′ , a)⟩ = ⟨[D 2A A(k, a) + D 2B B(k, a)][D 2A A(k ′ , a) + D 2B B(k ′ , a)]⟩ = D 2 2A ⟨A(k, a)A(k ′ , a)⟩ + D 2A D 2B ⟨A(k, a)B(k ′ , a)⟩ +D 2A D 2B ⟨B(k, a)A(k ′ , a)⟩ + D 2 2B ⟨B(k, a)B(k ′ , a)⟩ = t 2AA + t 2AB + t 2BB .
(2.5.39)

The first term of the last line of Eq. (2.5.39) can explicitly be written as

t 2AA = D 2 2A ⟨A(k, a)A(k ′ , a)⟩ = 25 49 D 2 2A d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 α(k 1 , k -k 1 )δ (1) (k 1 )δ (1) (k -k 1 )α(k 2 , k ′ -k 2 ) ×δ (1) (k 2 )δ (1) (k ′ -k 2 ) = 25 49 D 2 2A d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 α(k 1 , k -k 1 ) α(k 2 , k ′ -k 2 ) ×⟨δ (1) (k 1 )δ (1) (k -k 1 )δ (1) (k 2 )δ (1) (k ′ -k 2 )⟩ = (2π) 3 δ (D) (k + k ′ )P 2AA (2.5.40)
with

P 2AA = 25 49 D 2 2A d 3 k 1 (2π) 3 2|α(k 1 , k -k 1 )| 2 P lin (k 1 )P lin (|k -k 1 |). (2.5.41)
The second term of the last line of Eq. (2.5.39) gives

t 2AB = 2D 2A D 2B ⟨A(k, a)B(k ′ , a)⟩ = 2 10 49 D 2A D 2B d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 α(k 1 , k -k 1 )δ (1) (k 1 )δ (1) (k -k 1 ) β(k 2 , k ′ -k 2 ) ×δ (1) (k 2 )δ (1) (k ′ -k 2 ) = 2 10 49 D 2A D 2B d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 α(k 1 , k -k 1 ) β(k 2 , k ′ -k 2 ) ×⟨δ (1) (k 1 )δ (1) (k -k 1 )δ (1) (k 2 )δ (1) (k ′ -k 2 )⟩ = (2π) 3 δ (D) (k + k ′ )P 2AB (2.5.42)
with

P 2AB = 2 10 49 D 2A D 2B d 3 k 1 (2π) 3 |α(k 1 , k -k 1 ) β(k 2 , k ′ -k 2 ) ×P lin (k 1 )P lin (|k -k 1 |).
(2.5.43)

From the third term of the last line of Eq. (2.5.39) we have

t 2BB = D 2 2B ⟨B(k, a)B(k ′ , a)⟩ = 4 49 D 2 2B d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 β(k 1 , k -k 1 )δ (1) (k 1 )δ (1) (k -k 1 ) β(k 2 , k ′ -k 2 ) ×δ (1) (k 2 )δ (1) (k ′ -k 2 ) = 4 49 D 2 2B d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 β(k 1 , k -k 1 ) β(k 2 , k ′ -k 2 )
×⟨δ (1) (k 1 )δ (1) 

(k -k 1 )δ (1) (k 2 )δ (1) (k ′ -k 2 )⟩ = (2π) 3 δ (D) (k + k ′ )P 2BB (2.5.44) 
with

P 2BB = 4 49 D 2 2B d 3 k 1 (2π) 3 2| β(k 1 , k -k 1 )| 2 P lin (k 1 )P lin (|k -k 1 |). (2.5.45)
Combining the terms we have We now take an ensemble average of the first and third-order density fields to obtain '13' correction

⟨δ (2) (k, a)δ (2) (k ′ , a)⟩ = (2π) 3 δ (D) (k + k ′ )P ′ 22 (2.
⟨δ (3) (k, a)δ (1) (k ′ , a)⟩ = ⟨[D 3AA C AA (k, a) + D ′ 3AA C ′ AA (k, a) + D 3AB C AB (k, a) +C ′ 3AB C ′ AB (k, a) + C 3BA C BA (k, a) + C 3BB C BB (k, a)][δ (1) (k ′ , a)], = D 3AA ⟨C AA (k, a)δ (1) (k ′ , a)⟩ + D ′ 3AA ⟨C ′ AA (k, a)δ (1) (k ′ , a)⟩ +D 3AB ⟨C AB (k, a)δ (1) (k ′ , a)⟩ + D ′ 3AB ⟨C ′ AB (k, a)δ (1) (k ′ , a)⟩ +D 3BA ⟨C BA (k, a)δ (1) (k ′ , a)⟩ + D 3BB ⟨C BB (k, a)δ (1) (k ′ , a)⟩.
(2.5.48)

Using the definition

⟨δ (3) (k, a)δ (1) (k ′ , a)⟩ = (2π) 3 δ (D) (k + k ′ )2P ′ 13 (k, a) (2.5.49)
we have the "13" term

P ′ 13 (k, a) = D 3AA (a)P 3AA (k) + D ′ 3AA (a)P ′ 3AA (k) + D 3AB (a)P 3AB (k) +D ′ 3AB (a)P ′ 3AB (k) + D 3BA (a)P 3BA (k) + D 3BB (a)P 3BB (k), (2.5.50) 
where 

P 3AA (k) = - 5 54π 2 k 3 P lin (k) ∞ 0 drP lin (kr)(1 + r 2 ), P ′ 3AA (k) = 1 24π 2 k 3 P lin (k) ∞ 0 drP lin (kr) 1 + 4r 2 -r 4 + 1 2r (r 2 -1) 3 ln r + 1 r -1 , P 3AB (k) = - 1 27π 2 k 3 P lin (k) ∞ 0 drP lin (kr)(1 + r 2 ), P ′ 3AB (k) = 2 27π 2 k 3 P lin (k) ∞ 0 drP lin (kr)r 2 , P 3BA (k) = 1 168π 2 k 3 P lin (k) ∞ 0 drP lin (kr) 2 r 2 (1 -4r 2 -r 4 ) + (r 2 -1) 3 r 3 ln r + 1 r -1 , P 3BB (k) = - 4 189π 2 k 3 P lin (k) ∞ 0 drP lin (kr),

The full result at one loop

The full result is then

P = P lin + P ′ 22 + P ′ 13 .
(2.5.52)

When we take D 2A = D 2B = D 2 1 and D 3XX = D 3 1 we obtain exactly Eq. (2.3.17) with a replaced by D 1 i.e. take the one-loop PS evaluated in the EdS approximation.

In this section we have presented the calculation of the one-loop power spectrum for FLRW background. In Chapter 4 we will derive the one-loop power spectrum in our "generalized" Einstein de Sitter (gEdS) cosmologies which leads to a much simpler expression than Eq. (2.5.52). We will also show that this can be used to obtain a good analytical approximation to the exact expression.

In Chapter 4 we will also discuss the IR and UV convergents properties of this expression. This expression is not IR convergent for -3 < n < -1 unless certain relations are assumed between P 2A , P 2B , and P 3XX . We will see that these conditions are indeed respected when EdS (on in fact gEdS) boundary conditions are imposed.

Effective field theory (EFT)

In the previous section, we discussed perturbation theory and how it is applied to the fluid equations i.e. the continuity and Euler equations, where the stress tensor is neglected. In this section, we overview briefly effective field theory in large-scale structure (for a review see e.g. [7, 47-49, 81, 84-93, 103, 104]).

It is evident that SPT has limitations and is only valid in the regime of small density fluctuations (i.e., δ ≪ 1). When we reach the regime where k ∼ k N L , indicating the nonlinear regime with δ ∼ O(1), perturbation methods are no longer applicable. This nonlinear domain typically on scales around λ ∼ 10M pc at z = 0. To simplify, we can divide this regime into two categories: weakly coupled, where perturbation methods can be used for k < k N L , and strongly coupled, which refers to the regime where k > k N L .

Further the UV divergences indicate a fundamental issue in SPT, even within its supposedly valid regime. The presence of these divergences implies that there is a sensitivity of large-scale effects to small-scale effects, which cannot be adequately described by PT. EFT provides a systematic method for regularizing these divergences by regulating the impact of small scales on large scales, albeit at the cost of introducing free parameters, using a methodology similar to renormalization techniques in Quantum Field Theory (QFT).

In the context of LCDM cosmology, the coupling of modes at small scales to large scales is responsible for this limitation. SPT fail to adequately describe this coupling, as they are incapable of capturing the complexities of the relationship. EFT becomes invaluable by offering a systematic framework to account for the effects of small scales on large scales. By introducing counterterms, we can effectively cancel out the divergences. The determination of these counterterms can be guided by symmetry considerations or through detailed analysis of the divergences.

We follow here the formulation of EFT given by [START_REF] Baumann | Cosmological non-linearities as an effective fluid[END_REF]. To integrate out the small scales, we smooth the distribution function for k modes less than non-linear k-mode. Smoothing the arbitrary fields on the scale Λ we write

X l = [X] Λ = d 3 x ′ W Λ (|x -x ′ |)X(x ′ ), (2.6.1)
where the "short wavelength" part is X s = X -X l and the Gaussian filter in real and Fourier space are

W Λ (x) = Λ √ 2π 3 e -Λ 2 x 2 2 , W Λ (k) = e -k 2 2Λ 2 .
(2.6.2)

Effective field theory (EFT)

We can define the coarse-grained density and momentum as

ρ l = d 3 pf l (x, p, τ ), (2.6.3) 
π l = ρ l v l = m a 3 d 3 p p ma f l (x, p, τ ).
(2.6.4) Using Eqs. (2.6.3) and (2.6.4), we can obtain then the zeroth and first moment of the smoothed Boltzmann equation (i.e. are the continuity and Euler equations) expressed as

δ ′ l + ∂ j (1 + δ l )u l,j = 0, (2.6.5) u ′ l,i + Hu l,i + ∂ i ϕ l + u l,j ∂ j v l,i = - 1 ρ l ∂ j [τ ij ] Λ , (2.6.6) 
where

τ ij = ρσ ij + ρu s i u s j - ϕ s ,k ϕ s ,k δ (K) ij -2ϕ s ,i ϕ s ,j 8πG , (2.6.7)
where ′ is a partial derivative of the conformal time τ and ,x is a partial derivative of x.

We can obtain the effective stress tensor of eq. (2.6.7) using Taylor expansion which gives

[τ ij ] Λ = pδ (K) ij + ρ cs 2 δ (K) ij δ l - ρ c2 u,b H δ (K) ij ∂ m u l,m (2.6.8) 
- 3 4 ρ c2 v,s H ∂ i u l,j + ∂ j u l,i - 2 3 δ (K) ij ∂ m u l,m + ∆τ ij , (2.6.9)
where p is the background pressure, cs is the speed of sound, cu,b and cu,s are the bulk and shear viscosity ρ is the mean density and ∆τ ij is the deviation from actual realization. We can take two times spatial derivative of the effective stress tensor i.e. Eq. (2.6.9) and give

τ θ = ∂ i ∂ j [τ ij ] Λ = ρ cs 2 ∂ 2 δ l - c2 u,b H ∂ 2 θ l - 3 4 c2 u,s H ∂ 2 θ l + ∂ i ∂ j ∆τ ij (2.6.10) = ρ cs 2 ∂ 2 δ l - c2 v H ∂ 2 θ l + ∂ i ∂ j ∆τ ij .
(2.6.11)

We can write the fluid equations in general cosmology with the effective fluid term as follows,

H 2 -a 2 ∂ 2 a + 3 2 (Ω m (a) -2)a∂ a + 3 2 Ω m (a) δ(k, a) = S β (k, a) -H∂ a (aS α(k, a))
(2.6.12)

H a 2 ∂ 2 a + (4 - 3 2 Ω m (a))a∂ a + (2 -3Ω m ) θ(k, a) = ∂ a (aS β (k, a)) - 3 2κ 2 HS α(k, a). (2.6.13)
where

S α(k, τ ) = - d 3 q (2π) 3 α(q, k -q)θ(q, τ )δ(k -q, τ ), (2.6.14) S β (k, τ ) = - d 3 q (2π) 3 β(q, k -q)θ(q, τ )θ(k -q, τ ) + τ θ (k, τ ).
(2.6.15)

Cosmological perturbation theory 53 Using Eq. (2.6.12) the linear solution for the density field is expressed as

c 2 s k 2 δ (1) (k) ≡ δ c 2 s = da ′ G δ (a, a ′ )k 2 [ cs 2 (a ′ ) + cv 2 (a ′ )]δ (1) (k, a ′ ) (2.6.16)
where

G δ (a, a ′ ) = Θ(a -a ′ ) 2 5 1 H 0 Ω m,0 D + (a ′ ) a ′ D -(a) D -(a ′ ) - D + (a) D + (a ′ ) .
(2.6.17)

Thus, we have the density field up-to third-order

δ(k, τ ) = δ (1) (k, τ ) + δ (2) (k, τ ) + δ (3) (k, τ ) -k 2 c 2 s (τ )δ (1) (k, τ ) + δ J (k, τ ), (2.6.18)
where the fourth and fifth terms are the 'effective field' and 'stochastic' terms, respectively.

Power spectrum in EFT

Taking an ensemble average over the realization of the density field, we obtain PS

P (k) = P lin (k) + P 22,Λ (k) + 2P 13,Λ (k) -2c 2 s,Λ P 11 (k) + P J J ,Λ (k). (2.6.19)
Here the power spectrum depends on the cut-off Λ which is unphysical. Taking a finite cut-off Λ allows one to regularize the theory as we now describe.

The '13' term contribution for 0 < k < ∞ can be written as

P 13,∞ (k) = 3P lin (k) Λ 0 d 3 q (2π) 3 F (s) 3 (k, q, -q)P lin (k) +3P lin (k) ∞ Λ d 3 q (2π) 3 F (s)
3 (k, q, -q)P lin (k)

= P 13,Λ (k) -k 2 P lin (k) 61 210 1 6π 2 ∞ Λ dqP lin (q).
(2.6.20)

On the other hand, the counter term in eq. (2.6. [START_REF] Perlmutter | Measurements of Ω and Λ from 42 High-Redshift Supernovae[END_REF]) is

2c 2 s,∞ k 2 P lin (k) = 2 c 2 s,Λ k 2 P lin (k) -k 2 P lin (k) 61 210 1 6π 2 ∞ Λ dqP lin (q) c 2 s,∞ = c 2 s,Λ - 61 210 1 6π 2 ∞ Λ dqP lin (q) . (2.6.21)
We can avoid the cut-off dependence of the '13' term by combing P 13,Λ with c s,Λ

P 13,Λ (k) -c 2 s,Λ k 2 P lin (k) = P 13,∞ (k) + k 2 P lin (k) 61 210 1 6π 2 ∞ Λ dqP lin (q) -c 2 s,∞ k 2 P lin (k) -k 2 P lin (k) 61 210 1 6π 2 ∞ Λ dqP lin (q) = P 13,∞ (k) -c 2 s,∞ k 2 P lin (k). (2.6.22)
The residual term c 2 s,∞ k 2 P lin (k) represents a correction to the SPT. It is a free parameter in the effective theory, referred to as a low-energy constant, which needs to be fitted to the observed data. There are two approaches to determining this parameter. One is by fitting the one-loop power spectrum to a non-linear power spectrum, while 2.6 Effective field theory (EFT) the other involves measuring the effective stress tensor for a fixed smoothing scale Λ and extrapolating it to obtain c 2 s,∞ using Eq. (2.6.21). Now let's explore the impact of the stochastic term on the power spectrum (PS). The stochastic component arises from fluctuations in shorter modes, which can be comprehended as a local rearrangement of material, transitioning from an initially linear configuration δ to a significantly nonlinear configuration δ. This reshuffling process maintains the conservation of mass and momentum, which helps elucidate the characteristics of the stochastic term

δ J (k) = R d 3 xe -ik•(x 0 +x) δ(x 0 + x) -δ(x 0 + x) = e -ik•x 0 R d 3 x 1 + ik • x - 1 2 (k • x) 2 + O(x 3 ) δ(x 0 + x) -δ(x 0 + x) = O(k 2 ) (2.6.23)
The integration of δ-δ can be disregarded based on mass conservation, and momentum conservation necessitates a shift in the center of mass k • x(δδ). Hence, the power spectrum for the stochastic term can be represented as

P J J ∝ k 4 . (2.6.24)
This term is associated with the UV behavior of P 22 as discussed in Eq. (3.2.14). By combining this stochastic term with P 22 , both of which depend on the cutoff Λ, we obtain

P 22,Λ (k) + P J J ,Λ (k) = P 22,∞ (k) + P J J ,∞ (k). (2.6.25) 
Therefore, we can take the cutoff to approach infinity, meaning we can compute the regular SPT loop integral. From an observational standpoint, these integrals in LCDM models are formally convergent. However, the non-perturbative behavior in certain wavenumbers necessitates a counterterm to account for the non-physical contribution. This counter-term can be conveniently provided by the residual correction term c 2 s,∞

P (k) = P lin (k) + P 22 (k) + 2P 13 (k) -2c 2 s,∞ P 11 (k) + P J J ,∞ (k).
(2.6.26)

We note that our analysis here of EFT has assumed the validity of the EdS approximation, and thus neglects the cosmological correction we have described in Section 2.1.4. In Chapter 5 we will describe the application of analogous methods to regularize our 'generalized' scale-free models and we will study in particular the dependence of the EFT correction on the growth rate of fluctuation.

Perturbation Theory in gEdS models

(Text based on Phys. Rev. D 107, 103510 (2023) [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF])

Understanding the origin of the large-scale structures in the Universe first revealed several decades ago by early red-shift surveys remains a central and open problem in cosmology. This is driven by the ever-increasing richness and accuracy of observational data which will grow in the coming years with programs such as Euclid, DESI and LSST [START_REF] Dey | Overview of the desi legacy imaging surveys[END_REF][START_REF] Ivezić | Lsst: from science drivers to reference design and anticipated data products[END_REF][START_REF] Laureijs | Euclid definition study report[END_REF]. In standard cosmological models the clustering observed at cosmological scales today is the result of evolution under the gravity of primordial fluctuations, that is highly constrained by observations of the fluctuations in the cosmic microwave background, with potential fluctuations ∼ 10 -5 at the time of decoupling. Calculation of predictions derived from the non-linear equations governing the evolution of matter fluctuations rests in practice essentially on numerical solutions using the N -body method (for a recent review, see e.g. [START_REF] Angulo | Large-scale dark matter simulations[END_REF]). At sufficiently early times and/or large scales, when fluctuations to uniformity are small, analytical perturbative approaches may be used and provide an invaluable guideline and control on numerical simulations. Perturbation theory beyond the leading (linear) order was originally treated in early works (e.g. [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF][START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF][START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF][START_REF] Juszkiewicz | On the evolution of cosmological adiabatic perturbations in the weakly non-linear regime[END_REF][START_REF] Vishniac | Why weakly non-linear effects are small in a zero-pressure cosmology[END_REF][START_REF] Goroff | Coupling of modes of cosmological mass density fluctuations[END_REF][START_REF] Suto | Quasinonlinear theory of cosmological self-gravitating systems[END_REF][START_REF] Bertschinger | Gravitational Instability of Cold Matter, Astrophys[END_REF][START_REF] Bernardeau | The Nonlinear Evolution of Rare Events[END_REF][START_REF] Catelan | Eulerian perturbation theory in non-flat universes: second-order approximation[END_REF]) and has been developed since in an extensive literature (for a review, see [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF]). In recent years perturbation theory has remained highly topical, with development of various different aspects and cosmological applications (see e.g. [START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF][START_REF] Crocce | Renormalized cosmological perturbation theory[END_REF][START_REF] Carlson | Critical look at cosmological perturbation theory techniques[END_REF][START_REF] Taruya | Constructing perturbation theory kernels for large-scale structure in generalized cosmologies[END_REF][START_REF] Modi | Modeling CMB lensing cross correlations with CLEFT[END_REF][START_REF] Chen | Consistent modeling of velocity statistics and redshift-space distortions in one-loop perturbation theory[END_REF][START_REF] Chen | The Lyα forest flux correlation function: a perturbation theory perspective[END_REF][START_REF] Chen | Cosmological Analysis of Three-Dimensional BOSS Galaxy Clustering and Planck CMB Lensing Cross Correlations via Lagrangian Perturbation Theory[END_REF]), and, more recently, of the so-called Effective Field Theory (EFT) of cosmological structure formation (see e.g. [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF][START_REF] Crocce | Renormalized cosmological perturbation theory[END_REF][START_REF] Carrasco | The effective field theory of cosmological large scale structures[END_REF][START_REF] Steele | Precise calibration of the one-loop bispectrum in the effective field theory of large scale structure[END_REF][START_REF] Mcdonald | Dark matter clustering: A simple renormalization group approach[END_REF]).

In this chapter we explore and derive results for the perturbation theory of cosmological structure formation in a particular set of idealized cosmological models. We refer to these as "generalized Einstein de Sitter" (gEdS) models as they are models in which the background cosmological evolution is that of an EdS cosmology. However, only a fraction of the total energy density driving the expansion of the background corresponds to clustering matter, the rest remaining uniform. This is simply equivalent to a smooth matter-like component (e.g. arising from a homogeneous mode of a scalar field, or from a massive neutrino-like contribution when perturbations are neglected). We derive analytical solutions for the key quantities (kernels) in both 56

3.1 Perturbation Theory kernels in generalized EdS models standard (Eulerian) perturbation theory (SPT) and also in Lagrangian perturbation theory (LPT), and use them to derive the expression for the power spectrum at the leading non-trivial order (one loop).

The chapter is organized as follows. The next section presents first the family of gEdS models, and then the calculation of perturbation theory kernels in them for both Eulerian and Lagrangian formulations, giving the density and velocity kernels up to the third order. In Section 3.2 we study the convergence properties of the one-loop PS in gEdS cosmologies, considering how the well-known results for standard EdS are modified. For readers wishing to make use of our simplified expression for the cosmological corrections to the EdS approximation for the one-loop PS in standard cosmologies, given in terms of just two redshift-dependent functions, without going through the full derivation given in the body of the chapter, we give the necessary equations also in Appendix C.3.

Perturbation Theory kernels in generalized

EdS models

Generalized EdS models

We consider perturbed Friedman-Lemaitre-Robertson-Walker (FLRW) models with a pressureless perturbed matter component and a smooth component (i.e. without perturbations). The Friedmann equations can be written as

H 2 = 8πG 3 a 2 ρ m + ρ s , ∂H ∂τ = - 4πG 3 a 2 ρ m + (1 + 3w s )ρ s , (3.1.1) 
where H = d(log a)/dτ and τ is the conformal time related to cosmic time t by τ = dt/a, a is the scale factor, ρ m is the mean density of the perturbed matter component, ρ s is the smooth "dark energy" component with equation of state p s = w s ρ s (where w s can be a function of a). The case w s = -1 corresponds to the Lambda Cold Dark Matter (LCDM) cosmology. As canonically, we define the fraction of matter and dark energy as

Ω m = ρ m ρ tot , Ω s = ρ s ρ tot , (3.1.2) 
where ρ tot = ρ m + ρ s is the total energy density (and Ω m + Ω s = 1). Once w s is specified, the model is fully characterized by specifying the value at some time of one of these two parameters. Our analysis of standard cosmologies below applies to this class of models, with the sole further assumption that the total energy density asymptotically scales as matter at early times.

The family of cosmologies we will focus on first, those we will refer to as generalized Einstein de Sitter cosmologies (hereafter gEdS), simply correspond to the case w s = 0.

In this case [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Benhaiem | Non linear gravitational clustering in scale free cosmological models[END_REF] the smooth component behaves exactly like a matter component scaling as ρ s ∝ 1/a 3 , so that both Ω m and Ω s are constant. They may thus be parameterized by this constant value of Ω m (or Ω s ). In order to avoid confusion below with the general LCDM-type model where Ω m is a function of time, we will use, as in [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF], the parameter 

κ 2 = 1 Ω m . ( 3 
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We then have that

H 2 = 8πG 3 a 2 κ 2 ρ m , ∂H ∂τ = - 4πG 3 a 2 κ 2 ρ m , (3.1.4) 
and the scale factor a(t) evolves as that of an EdS model, with

a = κt t 0 2/3
where

t 0 = 1 6πGρ m,0 , (3.1.5) 
where ρ m,0 is the matter density at some reference time. At the level of background cosmology this family of cosmologies are all equivalent to a standard EdS cosmology driven by a total "matter" density ρ tot = κ 2 ρ m . However, as soon as perturbations to uniformity are considered, the dependence on the evolution of the scale factor on κ 2 when expressed in terms of the mean (clustering) mass density translates into a physical difference of the models as a function of κ 2 . This is seen already, as we will show below, in the evolution of perturbations at linear order. As in the standard EdS case (κ = 1) there is a growing mode and a decaying mode, but their temporal evolution is modified when κ ̸ = 1. In particular the growing mode for density perturbations has the behaviour D(a) ∝ a α where

α = - 1 4 + 1 4 1 + 24 κ 2 . (3.1.6)
As α is a one-to-one function of κ 2 , either can be used to characterize the oneparameter family of gEdS models. Because of the crucial role played in perturbation theory by the linear theory growing mode, we will often find it convenient to give our results as functions of α in our analysis below.

We note that while it is required that ρ tot > 0, and ρ m > 0, it is not necessary that ρ s > 0. Thus we consider the family of gEdS cosmologies to be parameterized either by κ ∈ [0, ∞] or, alternatively, by α ∈ [0, ∞]. Our motivation for studying these models here comes, as has been outlined in the introduction, from their interest as a theoretical tool rather than as relevant physical models. We note however that, for ρ s > 0 (i.e. 0 < Ω m < 1), a smooth component with zero pressure can model approximately in certain regimes a component in massive neutrinos, or also a contribution from the zero mode of a scalar field oscillating about the minimum of a quadratic potential or rolling in a simple exponential potential (see e.g. [START_REF] Ferreira | Cosmology with a primordial scaling field[END_REF] and references therein). An alternative physical interpretation, which extends also to models with ρ s < 0 (or κ 2 < 1), is in terms of a model in which the gravitational coupling is scale-dependent, with the expansion being driven by a rescaled coupling κ 2 G. The limit κ → 0 corresponds formally to the case of a static universe, in which a smooth component with negative energy exactly balances the clustering matter (for further detail, see [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF]).

Eulerian Perturbation Theory (EPT)

Our starting point is the usual fluid equations for the evolution, under gravity only, of perturbations in the matter in an FLRW universe in the Newtonian (sub-horizon, non-relativistic) limit (see e.g. [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF]): 

+ ∇ • [1 + δ(x, τ )]u(x, τ ) = 0, (3.1.7) ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) + [u(x, τ ) • ∇]u(x, τ ) = -∇ϕ(x, τ ) - 1 ρ ∇(ρσ ij ), (3.1.8) ∇ 2 ϕ(x, τ ) = 3 2 Ω m H 2 δ, (3.1.9) 
where δ(x, τ ) ≡ ρ(x, τ )/ρ(τ ) -1 is the matter density fluctuation, with ρ(x, τ ) the matter density and ρ(τ ) its mean value, u is the (peculiar) velocity, ϕ(x, τ ) is the (Newtonian) gravitational potential, and σ ij is the velocity dispersion tensor. We will henceforth neglect this last term, treating the fluid in the single flow approximation.

Using the Fourier transform conventions

f (k) = d 3 r exp -ik • r f (r), f (r) = d 3 k (2π) 3 exp ik • r f (k), (3.1.10) 
Eq. (3.1.7) and the divergence of Eq. (3.1.8) can be combined to give

δ ′ (k, τ ) + θ(k, τ ) = S α(k, τ ), (3.1.11) 
θ ′ (k, τ ) + Hθ(k, τ ) + 3 2 Ω m (a)H 2 δ(k, τ ) = S β (k, τ ), (3.1.12) 
where θ is the divergence of the velocity field u, so that

u(k) = -i k k 2 θ(k). (3.1.13)
The velocity field can be assumed to have zero vorticity because the latter can be shown to always decay compared to the irrotational part (see e.g. [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF]). The source terms S α and S β in Eqs. (3.1.11) and (3.1.12) are given by

S α(k, τ ) = - d 3 q (2π) 3 α(q, k -q)θ(q, τ )δ(k -q, τ ), (3.1.14) 
S β (k, τ ) = - d 3 q (2π) 3 β(q, k -q)θ(q, τ )θ(k -q, τ ), (3.1.15) 
where the coupling kernels α and β respectively are defined as 

α(q 1 , q 2 ) = q 1 .(q 1 + q 2 ) q 2 1 , (3.1.16) β(q 1 , q 2 ) = 1 2 (q 1 + q 2 ) 2 q 1 .q 2 q 2 1 q 2 2 . ( 3 
H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2κ 2 δ(k, a) = S β (k, a) -H∂ a (aS α(k, a)), (3.1.18) H a 2 ∂ 2 a + 5 2 a∂ a + 1 2 - 3 2κ 2 θ(k, a) = ∂ a (aS β (k, a)) - 3 2κ 2 HS α(k, a) , (3.1.19) 59 
where ∂ a is the partial derivative respect to scale factor a.

We now proceed to solve these equations following the standard method (see e.g. [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF]) in standard Eulerian perturbation theory (EPT). Working to linear order in δ and θ, Eq. (3.1.18) is just

-a 2 ∂ 2 a δ(k, a) - 3 2 a∂ a δ(k, a) + 3 2κ 2 δ(k, a) = 0, (3.1.20) 
which has linearly independent decaying and growing mode solutions so that

δ(k, a) = δ + (k, a) + δ -(k, a) = D + (a)δ +,0 (k) + D -(a)δ -,0 (k), (3.1.21) 
where δ ±,0 (k) are constants fixed at some reference time, a = 1, and

D ± = a α ± with α ± = - 1 4 ± 1 4 1 + 24 κ 2 . (3.1.22)
We assume the growing mode initial conditions, corresponding to the solution at linear order which may be written 

δ(k, a) = D(a)δ (1) (k), (3.1 
δ(k, a) = ∞ i=1 D i (a) δ (i) (k), θ(k, a) = -H(a)α ∞ i=1 D i (a) θ (i) (k), (3.1.28) 
where D i (a) ≡ (a α ) i , and δ (i) , θ (i) (k) are the contributions at order i to each of these quantities. Such a "separable" ansatz means that all dependence on the cosmological model disappears when δ(k) and θ(k) are expressed in terms of their values at linear order. Such an ansatz solves the equations exactly in perturbation for the EdS model (see e.g. [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF]). For the family of perturbed FLRW cosmologies with a perturbed matter component, one can consider the same ansatz with α replaced by α 1 (a), and it has been shown [START_REF] Martel | Second-Order Perturbation Theory in Omega not = 1 Friedmann Models[END_REF][START_REF] Scoccimarro | Nonlinear Evolution of the Bispectrum of Cosmological Perturbations[END_REF] that the condition for it be a solution is that the ratio

Ω m α 2 1 , (3.1.29) 
is constant in time. While this condition is not satisfied in LCDM-like models, it is in gEdS models (in which both Ω m and α 1 are individually constant).

Using this ansatz (5.1.4) the n-th order solutions for the density and velocity fields can be expressed in exactly the same form as in standard EdS as

δ (n) (k) = n m=1 d 3 q m (2π) 3 δ (1) (q m ) ×(2π) 3 δ D (k -q| n 1 )F n (q 1 , . . . , q n ), (3.1.30) 
θ (n) (k) = n m=1 d 3 q m (2π) 3 δ (1) (q m ) ×(2π) 3 δ D (k -q| n 1 )G n (q 1 , . . . , q n ). (3.1.31) 
Working to second-order in the expansion, we have

H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2κ 2 a 2α δ (2) (k) = - d 3 q (2π) 3 β(q, k -q)δ (1) (q)δ (1) (k -q) × H 2 α 2 a 2α - d 3 q (2π) 3 α(q, k -q)δ (1) (q) × δ (1) (k -q) ×H 2 α 2 + 2α 2 a 2α , (3.1.32) 
from which we obtain the second-order density kernel F 2 (q 1 , q 2 ) as

3α 2 + α 2 F 2 (q 1 , q 2 ) = α 2 β(q 1 , q 2 ) + α 2 + 2α 2 α(q 1 , q 2 ),
and thus finally

F 2 (q 1 , q 2 ) = d 2 α(q 1 , q 2 ) + (1 -d 2 ) β(q 1 , q 2 ), (3.1.33) 
where

d 2 = 1 + 4α 1 + 6α . (3.1.34)
For the velocity field divergence at the same order we have 

H a 2 ∂ 2 a + 5 2 a∂ a + ( 1 2 - 3 2κ 2 ) -Hαa 2α θ (2) (k) = - d 3 q (2π) 3 β(q, k -q)δ (1) (q)δ (1) (k -q) × H 2 2α 3 a 2α - d 3 q (2π) 3 α(q, k -q) ×δ (1) (q)δ (1) (k -q)H 2 α 2 2 + α 3 a 2α , ( 3 

61

which leads to the solution

G 2 (q 1 , q 2 ) = d2 α(q 1 , q 2 ) + (1 -d2 ) β(q 1 , q 2 ) (3.1.36) where d2 = 1 + 2α 1 + 6α . (3.1.37)
Continuing to third-order in the same manner we obtain

F 3 (q 1 , q 2 , q 3 ) = 1 2 d 3 α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) +(1 -d 3 ) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + d 3 α(q 1 + q 2 , q 3 ) +(1 -d 3 ) β(q 1 + q 2 , q 3 ) ×G 2 (q 1 , q 2 ) , (3.1.38) 
and

G 3 (q 1 , q 2 , q 3 ) = 1 2 d3 α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) +(1 -d3 ) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + d3 α(q 1 + q 2 , q 3 ) +(1 -d3 ) β(q 1 + q 2 , q 3 ) ×G 2 (q 1 , q 2 ) , (3.1.39) 
where

d 3 = 1 + 6α 1 + 8α , d3 = 1 + 2α 1 + 8α . (3.1.40)
Higher-order kernels can be inferred by continuing this recursion.1 Fig. 3.1 shows how the kernels F 2 and G 2 vary relative to those in the standard EdS case as a function of α (and F 3 and G 3 have very similar behaviours). We see that the dependence on α is very weak, other than at values of α very much less than unity. Indeed expanding about α = 1 we have

d 2 = d 2 (1) 1 + 2 35 (1 -α) + O((1 -α) 2 ) , d 3 = d 3 (1) 1 + 2 63 (1 -α) + O((1 -α) 2 ) , (3.1.41) 
and, over the whole range of α, varying from 0 to ∞, we have A naive guess would be that, in a generic FLRW cosmology, the kernel at any time can be approximated by those in a gEdS model, with the growth rate corresponding to the instantaneous value of its effective logarithmic growth rate α 1 (a). For standardtype cosmological models, as we will discuss in detail in the next section, such an effective growth rate decreases relative to EdS to at most α ≈ 0.5 at z = 0 as dark energy contributions accelerate the expansion. From Fig. 3.1 we see that this would correspond to a change of about 5% (3%) in d 2 (d 3 ) relative to EdS. In practice, as we will see in the second part of the paper, such a mapping to an approximate mapping may indeed to used, but the relevant effective growth exponent is given by this naive guess only for a sufficiently slowly varying smooth component. For LCDMlike models it is much closer to the initial value. The very small sub-percent corrections calculated for LCDM-like models can thus be understood as a combination of the very weak sensitivity of the gEdS kernels to the growth rate of fluctuations, and the rapid evolution of dark energy at low redshift.

7 5 > d 2 d 2 (1) > 14 15 , ( 3 

Lagrangian Perturbation Theory (LPT)

In LPT one characterizes the evolution of the fluid using its displacement field Ψ(q, t) as a function of its initial Lagrangian position q of the particle, in terms of which the Eulerian position is given by x(q, τ ) = q + Ψ(q, τ ). and that the determinant J of the Jacobian matrix is given by

J = d 3 x d 3 q = det δ (K) ij + Ψ i,j , (3.1.46) 
where

Ψ i,j = ∂Ψ i ∂q j , (3.1.47) so that δ(x) = 1 J -1. (3.1.48)
The equation of motion for the fluid particle is

d 2 Ψ dτ 2 + H dΨ dτ = -∇ x ϕ. (3.1.49)
Taking the divergence of this equation, and using the Poisson Eq. (3.1.9), one obtains

J∇ x • d 2 Ψ dτ 2 + H dΨ dτ = 3 2 Ω m H 2 [J -1]. (3.1.50)
This equation order is then solved order by order using the perturbative expansion for

Ψ = Ψ (1) + Ψ (2) + Ψ (3) + . . . (3.1.51) and J = 1 + J (1) + J (2) + J (3) + . . . (3.1.52)
where the latter are related to the former up to third order by the following expressions (for a detailed derivation, see e.g. [START_REF] Bouchet | Perturbative Lagrangian approach to gravitational instability[END_REF]):

J (1) = i Ψ (1) 
i,i ,

J (2) = i Ψ (2) 
i,i + 1 2 i̸ =j Ψ (1) 
i,i Ψ

j,j -Ψ (1) 
i,j Ψ

j,i ,

J (3) = i Ψ (3) 
i,i + i̸ =j Ψ (2) 
i,i Ψ

(1)

j,j -Ψ (2) 
i,j Ψ

i,j .

(

Using the chain rule

∇ x i = (δ (K) ij + Ψ i,j ) -1 ∇ q j , (3.1.54) 
one then solves Eq. (3.1.50) order by order. At linear order we have simply

d 2 Ψ (1) i,i dτ 2 + H dΨ (1) i,i dτ - 3 2 Ω m H 2 Ψ (1) 
i,i = 0,

and thus, choosing the growing mode solution, Ψ

i,i (x, τ ) = -δ (1) (x, τ ), (1) 
which gives in Fourier space Considering now gEdS cosmologies, we proceed to solve Eq. (3.1.50) to non-linear order making the separable ansatz analogous to that in EPT:

Ψ (1) (k, τ ) = - ik k 2 δ (1) (k)D 1 (τ ). ( 3 
Ψ (n) (k, τ ) = D n (τ )Ψ (n) (k) . (3.1.58) 64 
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We have then

(1 + J (1) + J (2) + J (3) + . . . )(δ (K) ij -Ψ i,j + Ψ i,l Ψ l,j + . . . ) × nα nα + 1 2 Ψ i,j = 3 2κ 2 [J (1) + J (2) + J (3) + . . . ], (3.1.59) 
where we have used dH da = -H 2a . At second order we have therefore

Ψ (2) i,i = - 2α + 1 2(6α + 1) i,j Ψ (1) i,i Ψ (1) j,j -Ψ (1) i,j Ψ (1) 
i,j .

(3.1.60)

The result at third-order, of which further details are given in Appendix C.1.2, is

Ψ (3) i,i = 1 (8α + 1) (4α + 1) -Ψ (2) 
i,i Ψ

(1)

j,j + Ψ (2) 
i,j Ψ

(1) j,i

+(2α + 1) 1 2 Ψ (1) i,i Ψ (1) 
i,j Ψ

(1)

j,i - 1 6 Ψ (1) 
i,i Ψ

(1)

j,j Ψ (1) 
k,k -

1 3 Ψ (1) i,k Ψ (1) 
k,j Ψ

.

(3.1.61)

At n-th order the displacement field in Fourier space can be written in the form

Ψ (n) (k) = - i n n i=1 d 3 q i (2π) 3 δ (1) (q i ) L n (q 1 , . . . , q n ) ×(2π) 3 δ (D) (k -q 1 . . . q n ), (3.1.62) 
where the first, second, and third-order solutions correspond to the following kernels: 

L 1 = k k 2 , ( 3 
L 2 = 2α + 1 6α + 1 k k 2 1 - (q 1 • q 2 ) 2 q 2 1 q 2 2 , ( 3 
.1.64)

L 3 = 3 4α + 1 8α + 1 2α + 1 6α + 1 k k 2 1 - q 1 • q 2 q 1 q 2 2 × 1 - (q 1 + q 2 ) • q 3 |(q 1 + q 2 |q 3 2 - 2α + 1 8α + 1 k k 2 × 1 -3 q 1 • q 2 q 1 q 2 2 +2 (q 1 • q 2 )(q 2 • q 3 )(q 3 • q 1 ) q 2 1 q 2 2 q 2 3 . (3.1.65)
As a check on our calculation we can use the known relations between the EPT and LPT kernels (see [START_REF] Aviles | Nonlinear evolution of initially biased tracers in modified gravity[END_REF][START_REF] Matsubara | Nonlinear perturbation theory integrated with nonlocal bias, redshift-space distortions, and primordial non-Gaussianity[END_REF][START_REF] Rampf | Lagrangian perturbations and the matter bispectrum I: fourth-order model for non-linear clustering[END_REF]). At first-order we have simply

F 1 (k) = k • L 1 (k) = k • k k 2 = 1. (3.1.66)
The second-order density kernels are related by 

F 2 (q 1 , q 2 ) = 1 2 k • L 2 (q 1 , q 2 ) + [k • L 1 (q 1 ][k • L 1 (q 2 )] = 4α + 1 6α + 1 + 1 2 q 1 • q 2 q 1 q 2 q 2 q 1 + q 1 q 2 + 2α 6α + 1 (q 1 • q 2 ) 2 q 2 1 q 2 2 , ( 3 
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while at third order we have

F 3 (q 1 , q 2 , q 3 ) = 1 3! k • L (s) 3 (q 1 , q 2 , q 3 ) + [k • L 1 (q 1 )][k • L 2 (q 2 , q 3 )] +cyc +[k • L 1 (q 1 )][k • L 1 (q 2 )] ×[k • L 1 (q 3 )] . (3.1.68)
It is straightforward to check that we indeed recover the results in EPT of the previous subsection.

Power spectrum in gEdS models

We define the power spectrum P ( ⃗ k) ≡ P (k) (k = |k|) of the (assumed) statistically homogeneous and isotropic stochastic density field by

⟨δ(k, a)δ(k ′ , a)⟩ = (2π) 3 δ (D) (k + k ′ )P (|k|, a), (3.2.1) 
where ⟨• • • ⟩ denotes the ensemble average. Assuming that the fluctuations are Gaussian at linear order, one obtains, retaining terms up to fourth order in the linear order solution,

⟨δ(k, a)δ(k ′ , a)⟩ = ⟨δ (1) (k, a)δ (1) (k ′ , a)⟩ +2⟨δ (1) (k, a)δ (3) (k ′ , a)⟩ +⟨δ (2) (k, a)δ (2) (k ′ , a)⟩, (3.2.2) 
and thus the expression for the "one-loop" power spectrum as

P 1-loop (k, a) = P lin (k, a) + P 22 (k, a) + 2P 13 (k, a), (3.2.3) 
where P lin (k, a) is the linear power spectrum (i.e. defined by Eq. (5.1.3) with δ( ⃗ k, a) = D(a)δ (1) ( ⃗ k), and the two other terms correspond to

P 22 (k, a) = 2 d 3 q (2π) 3 P lin (q, a)P lin (|k -q|, a) ×|F (s) 2 (k -q, q)| 2 . (3.2.4)
and are the symmetrized form of F 2 and F 3 (with respect to permutation of their arguments). These expressions are formally identical to those in standard EdS, and share the property of any separable solution that the perturbative corrections to the PS at any time are functionals only of the linear power spectrum at that time. The modifications of gEdS relative to the standard EdS model are 66 3.2 Power spectrum in gEdS models expressed solely through the α-dependence of the kernels F 2 and F 3 which we have derived above. Using these to make the α-dependence explicit we obtain

P 13 (k, a) = 3P lin (k, a) d 3 q (2π) 3 P lin (q, a) ×F (s) 3 (k, q, -q), (3. 
P 22 = M 0 + 1 + 4α 1 + 6α M 1 + 1 + 4α 1 + 6α 2 M 2 , (3.2.6 
)

2P 13 = N 0 + 1 + 2α 1 + 8α N 1 + 2α(1 + 2α) (1 + 6α)(1 + 8α) N 2 , (3.2.7) 
where the M i are the integrals

M i (k, a) = 1 8π 2 k 3 ∞ 0 drP lin (kr, a) × 1 -1 dµ P lin (k 1 + r 2 -2µr, a) (1 + r 2 -2µr) 2 ×m i (r, µ), (3.2.8) 
with m 0 (r, µ) = (µ -r) 2 , (3.2.9)

m 1 (r, µ) = 4r(µ -r)(1 -µ 2 ), (3.2.10) m 2 (r, µ) = 4r 2 (1 -µ 2 ) 2 , (3.2.11)
and N i are the integrals

N i (k, a) = 1 8π 2 k 3 P lin (k, a) ∞ 0 drP lin (kr, a)n i (r) (3.2.12) 
with

n 0 (r) = - 4 3 , n 1 (r) = 1 + 8 3 r 2 -r 4 + (r 2 -1) 3 2r ln |1 + r| |1 -r| , n 2 (r) = 1 r 2 (1 - 8 3 r 2 -r 4 ) + (r 2 -1) 3 2r 3 ln |1 + r| |1 -r| , (3.2.13) 
and we have defined µ = k • q/kq and r = q/k.

Convergence properties of the one-loop power spectrum

We now consider the convergence properties of these one-loop contributions to the PS in the gEdS model i.e. for what asymptotic behaviours of the linear PS, P lin (k, a), the integrals converge. The results of this analysis are summarized in Table 3.1. These are obtained straightforwardly by considering the r → 0, and r → ∞, behaviours of the integrands for the infra-red and ultra-violet limits, respectively. In the M i integrals there is also a divergence in the angular integral at µ = 1 for r = 1, corresponding to |q -k| → 0, but because of the symmetry of exchange of the variables k and qk in the integral (as noted e.g. in [START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF]), its contribution is identical to that from r → 0 and is thus taken into account by multiplying it by a factor of two.

The leading contribution to M 0 as r → 0 corresponds to m 0 = µ 2 , which when integrated over angle, and multiplied by two, gives a factor of 4/3 which can be seen Perturbation Theory in gEdS models (Text based on Phys. Rev. D 107, 103510 (2023) [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF])

67 IR-divergent UV-divergent M 0 n ≤ -1 n ≥ 1/2 M 1 n ≤ -3 n ≥ 1/2 M 2 n ≤ -3 n ≥ 1/2 N 0 n ≤ -1 n ≥ -1 N 1 n ≤ -3 n ≥ -1 N 2 n ≤ -3 n ≥ -1 N 0 + M 0 n ≤ -3 n ≥ -1
Table 3.1: Convergence properties of the integrals M i and N i (i = 0, 1, 2). In each case the bound on n is that obtained assuming that P lin ∼ k n in the relevant (k → 0 or k → ∞) limit. Integrals are "infra-red safe" if they converge for n > -3, i.e. when P lin (k) itself is integrable (in three dimensions) as k → 0. The cancellation of the divergences for -1 ≥ n > -3 in the sum N 0 + M 0 corresponds to the well-known cancellation between the full P 22 and P 13 contributions in an EdS cosmology. As expected this cancellation generalizes to the gEdS case, but without the need for any cancellation in the α-dependent terms. We will show below that the corrections in standard (e.g. LCDM-like) cosmologies to the one-loop PS are expressed in terms of the four infra-red safe integrals

M 1 , M 2 , N 1 , N 2 .
to exactly cancel the corresponding leading contribution from N 0 . These contributions to each integral are proportional to P lin (k)dk i.e. to the variance of the displacement field. As understood in early works on perturbation theory (e.g. [START_REF] Vishniac | Why weakly non-linear effects are small in a zero-pressure cosmology[END_REF][START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF], see also [START_REF] Peloso | Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure[END_REF] for a useful discussion), these are unphysical divergences if the system (as is the case here, just as in standard EdS) is Galilean invariant, and their cancellation is a consequence of this invariance. The next term in the expansion as r → 0 does not cancel but is proportional to P lin (k)k 2 dk i.e. to the variance of the fluctuation field (which is Galilean invariant). Their sum M 0 + N 0 is then said to be "infra-red safe" in this case: the integral converges for any P lin (k, a) which is integrable at k → 0.

We see, on the other hand, that the integrals M 1 , M 2 , N 1 and N 2 are all infra-red safe: for r → 0, the functions m 1 , m 2 , n 1 , n 2 all have, after integration over angles, a leading behaviour ∼ r 2 . This means that infra-red safety of all the α-dependent contributions is obtained term by term, without any cancellation between different terms. This is evidently a necessary condition to obtain infra-red safety given that the α-dependence in the F 2 and F 3 kernels are given through independent non-linear functions of α. As we will see below it turns out that we can write the cosmological corrections (due to departures from EdS) of the one-loop PS in LCDM-like models in terms of the same integrals. Infra-red safety of these cosmological corrections is thus explicit and their numerical calculation simplified, without the additional manipulations needed for the leading EdS approximated contribution (see e.g. [START_REF] Carrasco | The 2-loop matter power spectrum and the IR-safe integrand[END_REF]).

Although we will not discuss them further in this paper, it is interesting to consider also the ultraviolet divergences. These are physical divergences marking a real breakdown of standard perturbation theory. It is straightforward to show (see Appendix C.2 for details) that combining the leading contributions in the six integrals above we obtain

P 22 (k, a) = 7 + 36α + 92α 2 30(1 + 6α) 2 k 4 d 3 q (2π) 3 P 2 lin (q) q 4 + • • • , (3.2.14)
and

2P 13 (k) = 7 -14α -176α 2 15(1 + 6α)(1 + 8α) k 2 P lin (k) d 3 q (2π) 3 P lin (q) q 2 68 
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+ 12(8α -1)(1 + 2α) 105(1 + 6α)(1 + 8α) k 4 P lin (k) × d 3 q (2π) 3 P lin (q) q 4 + • • • (3.2.15)
where the dots now indicate terms proportional to integrals which converge more rapidly in the ultra-violet than these leading terms. The first expression corresponds to the sum of the leading contribution in the integrals M i , which we see (as indicated in Table 3.1) diverge for n ≥ 1/2, while the second shows the sum of the leading contributions from the N i , the first diverging for n ≥ -1 (as indicated in Table 3.1) and the next one diverging for n ≥ 1.

The integrals in these expressions are the same as those in the standard EdS models, the only difference being in the coefficients which are manifestly all explicitly α dependent. The leading divergence overall is that in P 13 , diverging for n ≥ -1. We note that this remains true in the family of gEdS models, except that there is a specific value, α = 0.1635 • • • , at which the coefficient of this leading term, proportional to 7 -14α -176α 2 , vanishes. For this specific value of α therefore the one-loop PS is ultra-violet convergent for n < 1/2. We will not explore further in this chapter the physical significance of this result, nor more generally the α dependence of the ultra-violet divergences. To address these questions it is necessary to consider the regularisation of these divergences, using for example, the RPT or EFT approaches (see references cited in the introduction above). We will explore some of these issues in the next chapter.

Perturbation Theory in LCDM using generalized Einstein de Sitter models (Text based on Phys. Rev. D 107, 103510 (2023) [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF])

In this chapter we consider how the functions characterising the exact evolution of the PS in perturbation theory in a class of standard (LCDM-like) cosmological models can be approximated by interpolation of gEdS models. We explore the relation of these models to standard (e.g. LCDM-like) cosmological models. The class of models considered are the FLRW models described at the beginning of Section 3.1.1, i.e., with a clustering matter component and a smooth component with a generic equation of state. Further to this we will assume only that cosmology is matter dominated at early times, i.e. that it is EdS, or gEdS if there remains a smooth matter-like component (e.g. massive neutrinos or matter-like dark energy). Specifically we explore whether we can make use of the analytical results for perturbation theory in gEdS to calculate, exactly or approximately, results in standard models (see references further below). More precisely we wish to consider whether the functions, Q(z) say, characterising the evolution of fluctuations in perturbation theory in an LCDM model as a function of redshift z may be interpolated on the family of gEds models, so that we can write

Q(z) ≈ Q gEdS (α = α ef f (z)), (4.0.1) 
where α ef f (z) is an effective growth exponent which can be calculated given the parameters of the LCDM model. Further we will determine whether the approximation

Q(z) ≈ Q gEdS (κ 2 = 1/Ω m (z)), (4.0.2)
is valid, i.e., whether we can take

α ef f (z) = - 1 4 + 1 4 1 + 24Ω m (z), (4.0.3) 
which means that we match both the instantaneous expansion rate and growth rate of the FLRW cosmology to that of a gEdS cosmology. We will say in this case that 70 4.1 Linear growth rate interpolated on gEdS the interpolation is adiabatic, because we expect such an approximation to be valid when we can neglect the temporal variation of the smooth component relative to that of matter. Indeed we will see in all our equations below for effective growth exponents that the approximation Eq. (4.0.3) becomes exact as w s → 0, which corresponds to this limit.

We will apply here this analysis up to third order in perturbation theory, which is what is needed to calculate the one-loop power spectrum. We have chosen for our analysis to follow closely that of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], who have calculated explicitly the corrections in LCDM and provided phenomenological fits to the relevant redshift dependent functions for standard type models. As we will show, our method of analysis in seeking to relate these results to those in gEdS, leads to a simplification of the formulation and calculations of the results of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], and other treatments given in the literature (e.g. [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF][START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF][START_REF] Fasiello | Nonlinear fields in generalized cosmologies[END_REF]) Further in so doing it provides greater insight into the reason why these cosmology-dependent corrections are typically so small, and how they depend on cosmological parameters. We compare our numerical results in detail to the fits of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] in Appendix C.4. For completeness we detail also a comparison of our analysis, and numerical results when possible, with that of [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] in Appendix C.5, and with those of [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF] and [START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF] in Appendix C.6. where a 0 to be the reference time at which D 1 = 1, and

Linear growth rate interpolated on gEdS

α 1 = d ln D 1 d ln a , (4.1.3) 
we have, trivially, an interpolation in the sense of Eq. (4.0.1) taking α ef f (z) = α 1 .

Let us now consider the accuracy of an adiabatic gEdS interpolation, in the sense defined by Eq. (4.0.2) above, i.e., the approximation numerically) and α 10 , for models with constant equation of state w s = w 0 , for w 0 = -0.5, -1, -1.5. The left panel shows the two quantities, and the right panel their ratio. We see that, even for the LCDM case (w 0 = -1), the approximation is quite good down to z = 0 (when Ω m ≈ 0.3). This result is somewhat surprising as one would anticipate that it would hold only for |w 0 | small compared to unity. To understand what is observed better, we re-express Eq. (4.1.1) as an equation for α 1 :

α 1 (z) ≈ α 10 (z) = 1 4 -1 + 1 + 24Ω m (z) . ( 4 
dα 1 d ln a - 3 2 wα 1 + α 2 1 + 1 2 α 1 - 3 2 Ω m = 0, (4.1.5) 
where

w = -1 - 2 3 d ln H d ln a = 1 3 
d ln Ω m d ln a , (4.1.6) 
and for the specific case of a smooth (dark energy) component with the constant equation of state, w s = w 0 , we have

w = w 0 (1 -Ω m ). (4.1.7)
The approximate solution Eq. (4.1.4) corresponds to neglecting the first two terms in square brackets i.e., setting w = 0 and neglecting the time derivative, and taking the growing mode solution of the remaining quadratic equation. It is thus formally the solution at leading order in a gradient expansion in Ω m (z) for which w (or w 0 for a constant equation of state) is the control parameter. Given that e.g. in LCDM w = -0.7 when Ω m = 0.3, it is indeed, as we have noted, surprising that the leading w = 0 approximation is so good. To see why this is the case more explicitly we define is the coefficient multiplying w which gives the source term for ϵ 1 , the correction to the leading adiabatic gEdS approximation. The coefficient S(Ω m ) of the source term in Eq. (4.1.9) as a function of (1/2 + 2α 10 ), and as a function of Ω m (upper x-axis). We see that the ratio of |S(Ω m )|/(1/2 + 2α 10 ) remains quite small as dark energy starts to dominate, so that even for |w| ∼ 1 the adiabatic gEdS approximation for the linear growth factor can remain good.

α 1 = α 10 (1 + ϵ 1 (z)) . ( 4 
Why ϵ 1 remains small for relatively large w is just a consequence of the smallness of the source term S relative to the coefficient of the ϵ 1 term on the left-hand size of the equation. This is shown explicitly in Fig. 4.2 which shows the numerical value of S(Ω m ) plotted against that of ( 1 2 + 2α 10 ). The relative smallness of S arises from an approximate cancellation of the two terms in Eq. (4.1.10), which corresponds to that between the two terms in square brackets in Eq. (4.1.5). Indeed at high redshift we have S ≈ 3 2 -9 5 = -0.3. A corollary of this observed accuracy of the leading gEdS interpolation is that the approximation for α 1 obtained by solving the linear Eq. (4.1.9) is an accurate one. Fig. 4.3 shows a comparison of the value of the growth rate obtained in this way with the exact α 1 . We see that it is indeed accurate well below the sub-percent level even for a LCDM model at z = 0.

Second-order growth rates interpolated on gEdS models

In treating LCDM models in perturbation theory at second and higher order, a considerable additional complexity arises because the separability of the EdS solution is not valid. In practice it has been shown (see e.g. [START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF][START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF][START_REF] Fasiello | Nonlinear fields in generalized cosmologies[END_REF] and references therein) that the associated corrections are very small for standard type cosmological models, and for most purposes can be done using the EdS kernels and the assumption of separability, replacing simply the EdS linear theory growth rate by that of the model. Given the ever-improving precision of cosmological observations, however, even small theoretical errors arising from cosmology dependence are of interest and have been discussed in a number of recent works (see e.g. [START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF][START_REF] Aviles | Clustering in massive neutrino cosmologies via Eulerian Perturbation Theory[END_REF][START_REF] Baldauf | The bispectrum in the Effective Field Theory of Large Scale Structure[END_REF][START_REF] Baldauf | Modelling large scale structure statistics for precision cosmology[END_REF][START_REF] Steele | Precise calibration of the one-loop bispectrum in the effective field theory of large scale structure[END_REF][START_REF] Aviles | A Lagrangian perturbation theory in the presence of massive neutrinos[END_REF][START_REF] Baldauf | Two-loop bispectrum of large-scale structure[END_REF]).

We discuss here the calculations of such corrections in light of our results in gEdS models. More specifically we consider whether the time-dependent functions, addi- tional to D 1 (a), which appear in describing the cosmology dependence of the evolved density field can be interpolated on gEdS models in the sense we have defined at the beginning of this section. In this section we consider the density fluctuation at second order, and in the following one at third order. For conciseness, we will not present here the full derivation of the results we use from EPT including cosmological corrections as it has been given in several other works, both for LCDM-type models ( [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF]) or in a broader class of models (e.g. [START_REF] Taruya | Constructing perturbation theory kernels for large-scale structure in generalized cosmologies[END_REF][START_REF] Fasiello | Nonlinear fields in generalized cosmologies[END_REF]). As anticipated above we will follow in the main text the treatment of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], but we also provide in Appendices C.5-C.6 detailed comparison with several other works [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF][START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF].

The solution for the density perturbation in a general FLRW cosmology at second order is given by [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] as

δ 2 (k, a) = D 2A A(k) + D 2B B(k), (4.2.1) 
where

A(k) = 5 7 Â(k) = 5 7 d 3 qα(q, k -q)δ 1 (q)δ 1 (k -q), B(k) = 2 7 B(k) = 2 7 d 3 q β(q, k -q)δ 1 (q)δ 1 (k -q), (4.2.2) 
and D 2A and D 2B are time-dependent functions which are solutions to the equations corresponding exactly to the separable solutions we have derived in the previous section.

d 2 d ln a 2 D 2 a 2 + 6 + d ln H d ln a d d ln a D 2 a 2 + 8 + 2 d ln H d ln a - 3 2 Ω m (a) D 2 a 2 =        7 5 dD 1 da 2 + 3 2 Ω m (a) D 1 a 2 for D 2A , 7 
In light of these solutions it is natural to define the functions

d 2A = 5 7 D 2A D 2 1 , d 2B = 2 7 D 2B D 2 1 , (4.2.5) 
in terms of which 

δ 2 (k, a) = d 2A D 2 1 Â(k) + d 2B D 2 1 B(k) . ( 4 
D (2) d 2A = α 2 1 + 3 2 Ω m , D (2) d 2B = α 2 1 , (4.2.7) 
where

D (2) = d 2 d ln a 2 + 1 2 (1 -3w) + 4α 1 d d ln a + (2α 2 1 + 3 2 Ω m ). (4.2.8) 
We see immediately that D (2) (d 2A + d 2B -1) = 0, from which it follows that the evident property

d 2A + d 2B = 1, (4.2.9) 
of the usual EdS solution (with d 2A = 5/7 and d 2B = 2/7), shared by the gEdS cosmologies (with d 2A = 1+4α 1+6α and d 2B = 2α 1+6α ), will hold in a general LCDM-like cosmology, if at asymptotically early times the cosmology approaches EdS (or gEdS). There is therefore in this case only one real function (in addition to D 1 ) is needed to describe the evolution of the density perturbation at second order, just as in the original treatment of [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF]. Given our gEdS solutions (4.2.4), it is natural to define, without loss of generality, the time dependence using the function α 2 (a) defined by 

d 2A (a) = 1 + 4α 2 (a) 1 + 6α 2 (a) , d 2B (a) = 1 -d 2A (a) . ( 4 
i.e. the coefficients in the definition of the perturbation γ 2 have been chosen so that, in the limit of small γ 2 , we obtain γ 2 = 1 -α 2 .

From Eq. (4.2.7) we have that the equation obeyed by γ 2 is

D (2) γ 2 = 21 2 Ω m -α 2 1 . (4.2.13)
It is instructive to rewrite this equation as

d 2 γ 2 d ln a 2 + 1 2 (1 -3w) + 4α 1 dγ 2 d ln a + 2α 2 1 + 3 2 Ω m [γ 2 -γ (0) 2 ] = 0, (4.2.14) 
where

γ (0) 2 = 21(Ω m -α 2 1 ) 4α 2 1 + 3Ω m . ( 4 

.2.15)

We recover explicitly from this equation the result [START_REF] Martel | Second-Order Perturbation Theory in Omega not = 1 Friedmann Models[END_REF][START_REF] Scoccimarro | Nonlinear Evolution of the Bispectrum of Cosmological Perturbations[END_REF] that the solution is separable if and only if the ratio Ω m /α 2 1 is constant. Indeed, as we have noted, separability corresponds to a time-independent solution for γ 2 , which here is admitted if and only if γ (0) 2 is constant in time, and therefore if and only if the ratio Ω m /α 2 1 is so. More generally we note that solving in the adiabatic gEdS approximation, i.e. neglecting all terms proportional to w and all time derivatives, and taking, in the same approximation, α 1 = α 10 , we then obtain at leading order

γ 2 = 7 1 -α 10 1 + 6α 10 , (4.2.16) 
which corresponds to α 2 = α 10 , (4.2.17)

i.e. we recover as expected, as w → 0, the adiabatic gEdS approximation for d 2A (and d 2B ). for γ 2 , with initial conditions corresponding to the asymptote to EdS as z → ∞:

γ 2 (0) = 0, dγ 2 d ln a (0) = 0 . (4.2.18)
In practice, rather than extrapolating to an initial time a i ≪ 1 at which Ω m ≈ 1, we can avoid the very early time transients by taking directly as the initial condition

γ 2 (a i ) = 1 -α 10 (a i ), dγ 2 d ln a (a i ) = - dα 10 d ln a (a i ) , (4.2.19) 
since γ 2 (a) = 1-α 10 (a), as we have noted above, becomes a good approximation to the exact evolution in the limit w ≪ 1. Indeed this can be seen in Fig. 4.4, in which this adiabatic approximation α 2 = α 10 is shown (solid line). We see that, for very small absolute values of w 0 , α 2 is very well approximated by α 10 . In other words as expected, d 2A and d 2B are then well approximated by an adiabatic interpolation of gEdS models. However, unlike what we observed for α 1 (z), this adiabatic approximation fails for increasing values of |w 0 |. In this case we see that α 2 stays much closer to its initial value. This can be understood simply as a result of the increasing contribution of the dark energy, which increases (through the dependence in w) an effective damping term in Eq. (4.2.13) which slows greatly the "relaxation" to γ 2 = γ We see that, for very small absolute values of w 0 , α 2 is well approximated by the adiabatic linear growth rate α 10 so that, as expected, d 2A and d 2B are well approximated by an adiabatic interpolation of gEdS models. For larger absolute values of w 0 , α 2 stays much closer to its initial value because of rapid evolution which causes effective damping in its evolution equation.

Third order growth rates

Following again the treatment of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], we write the density perturbation to third-order as

δ 3 (k, a) = D 3AA (a)C AA (k) + D ′ 3AA (a)C ′ AA (k) +D 3AB (a)C AB (k) + D ′ 3AB (a)C ′ AB (k) +D 3BA (a)C BA (k) + D 3BB (a)C BB (k), (4.3.1) 
where

C AA (k) = 7 18 d 3 qα(q, k -q)δ 1 (q)A(k -q), (4.3.2) 
C ′ AA (k) = 7 30 d 3 qα(q, k -q)δ 1 (k -q)A(q), (4.3.3) 
C AB (k) = 7 18 d 3 qα(q, kq)δ 1 (q)B(k -q), (4.3.4)

C ′ AB (k) = 7 9 d 3 qα(q, k -q)δ 1 (k -q)B(q), (4.3.5) 
C BA (k) = 2 15 d 3 q β(q, k -q)δ 1 (q)A(k -q),
Perturbation Theory in LCDM using generalized Einstein de Sitter models (Text based on Phys. Rev. D 107, 103510 (2023) [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF])

(4.3.6)

C BB (k) = 4 9 d 3 q β(q, kq)δ 1 (q)B(k -q). 

+ 15 + 3 d ln H d ln a - 3 2 Ω m (a) D 3 a 3 =              18 7 2 dD 1 da + 3 2 Ω m (a) D 1 a D 2A,B a 2 + 18 7 a dD 1 da d da D 2A,B a 2 for D 3AA,3AB 15 dD 1 da a d da D 2A a 2 + 2 D 2A a 2 -7 5 D 1 a dD 1 da for D 3BA 9 2 dD 1 da a d da D 2B a 2 + 2 D 2B a 2 for D 3BB , (4.3.8) 
and the two remaining functions are determined by the relations

5 18 D 3AA + 2 9 D ′ 3AB = 1 2 D 3 1 , 1 6 D ′ 3AA + 1 9 D 3AB + 2 21 D 3BA + 8 63 D 3BB = 1 2 D 3 1 . (4.3.9) 
Analogously to the previous section we now define

d 3AA = 5 9 
D 3AA D 3 1 , d ′ 3AA = 1 3 D ′ 3AA D 3 1 , d 3AB = 2 9 D 3AB D 3 1 , d ′ 3AB = 4 9 D ′ 3AB D 3 1 , d 3BA = 2 21 
D 3BA D 3 1 , d 3BB = 8 63 
D 3BB D 3 1 . (4.3.10)
For the case of the gEdS cosmologies, it is simple to verify using the kernels F 2 , G 2 and F 3 derived in Section 3.1 that we obtain 3) 

d 3AA = d 3 d 2 = 1 + 4α 1 + 8α , d ′ 3AA = d 3 d2 = 1 + 2α 1 + 8α , d 3AB = d 3 (1 -d 2 ) = 2α 1 + 8α , d ′ 3AB = d 3 (1 -d2 ) = 4α 1 + 8α , d 3BA = (1 -d 3 ) d2 = 2α(1 + 2α) (1 + 6α)(1 + 8α) , d 3BB = (1 -d 3 )(1 -d2 ) = 8α 2 (1 + 6α)(1 + 8α
D (3) d 3AA = (4α 2 1 + 3Ω m )d 2A + 2α 1 d d 2A d ln a , D (3) d 3AB = (4α 2 1 + 3Ω m ) -(4α 2 1 + 3Ω m )d 2A -2α 1 d d 2A d ln a , D (3) d 3BA = -2α 2 1 + 4α 2 1 d 2A + 2α 1 d d 2A d ln a , D ( 
d 3BB = 4α 2 1 -4α 2 1 d 2A -2α 1 d d 2A d ln a , (4.3.12)
where

D (3) = d 2 d ln a 2 + 1 2 (1 -3w) + 6α 1 d d ln a + 3(2α 2 1 + Ω m ) . (4.3.13)
The two constraints Eqs. (4.3.9) may be written as

d 3AA + d ′ 3AB = 1, (4.3.14) d 3AB + d ′ 3AA + 2(d 3BA + d 3BB ) = 1. (4.3.15)
Setting all derivatives to zero in Eq. (4.3.12), we recover, as required, the expression for the gEdS cosmologies Eq. (4.3.11) above.

Taking the sum of Eqs. (4.3.12) we note that we obtain also

D (3) (d 3AA + d 3AB + d 3BA + d 3BB -1) = 0, (4.3.16) 
and therefore, given that this quantity is zero in an EdS (and gEdS) cosmology, we obtain the additional constraint

d 3AA + d 3AB + d 3BA + d 3BB = 1, (4.3.17)
when we assume that the cosmology is asymptotically EdS (or gEdS). Further writing Eq. (4.2.7) for d 2A as

D (3) d 2A = α 2 1 + 3 2 Ω m + (4α 2 1 + 3 2 Ω m )d 2A + 2α 1 d d 2A d ln a , (4.3.18) 
we see also that

D (3) (2d 2A -d 3AA + d 3BB -1) = 0, (4.3.19)
so that we can infer (again assuming the cosmology to be asymptotically EdS or gEdS) the additional relation

2d 2A -d 3AA + d 3BB = 1. (4.3.20)
The full set of constraints now reads

d 3AA + d ′ 3AB = 1, (4.3.21) d ′ 3AB + d ′ 3AA + d 3BA + d 3BB = 1, (4.3.22) d 3AB + d 3AA + d 3BA + d 3BB = 1, (4.3.23) 2d 2A -d 3AA + d 3BB = 1. (4.3.24)
We can thus conclude that the perturbation at the third order can therefore be described fully by only just two independent functions in addition to d 2A . This result agrees again, as we saw at second order, with the original analysis of [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF] for the asymptotic EdS case. The exact mapping between our functions and those of [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF] is given in Appendix C.6. Our analysis above shows that this same result (and either our parametrization or that of [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF]) generalizes to the broader class of cosmologies which are asymptotically gEdS.

We choose now (arbitrarily) to use, in addition to d 2A , the two functions d 3AA and d 3AB to describe the cosmology-dependent corrections to the third-order perturbation To describe them in terms of interpolation on gEdS models we thus introduce, following the treatment of the second order perturbation, effective growth exponents as follows:

d 3AA (a) = 1 + 4α 3AA (a) 1 + 8α 3AA (a) = 5 9 1 + 4 45 γ 3AA (a) , d 3AB (a) = 2α 3AB (a) 1 + 8α 3AB (a) = 2 9 1 - 1 9 γ 3AB (a) , (4.3.25)
where, as for the second order case, the numerical coefficients have been chosen so that we will have, in the limit of small γ 3XX , that α 3XX ≈ 1 -γ 3XX .

The evolution of the γ 3AA and γ 3AB are now given by the equations

D (3) γ 3AA = 135 14 Ω m -α 2 1 + 81 98 (4α 2 1 + 3Ω m )γ 2 + 2α 1 d γ 2 d ln a , (4.3.26) 
D (3) γ 3AB = - 54 7 Ω m -α 2 1 + 81 49 (4α 2 1 + 3Ω m )γ 2 + 2α 1 d γ 2 d ln a , (4.3.27)
which can also be written as

d 2 γ 3XX d ln a 2 + 1 2 (1 -3w) + 6α 1 dγ 3XX d ln a + 3 2α 2 1 + Ω m × (γ 3XX -γ (0) 3XX ) = c 3XX (4α 2 1 + 3Ω m ) × (γ 2 -γ (0) 2 ) + 2α 1 d γ 2 d ln a , (4.3.28) 
where c 3AA = 81 98 , c 3AB = 81 49 and

γ (0) 3AA = γ (0) 3AB = 9(Ω m -α 2 1 ) 2α 2 1 + Ω m . (4.3.29)
For purposes of comparison it is useful to rewrite Eq. (4.2.14) for γ 2 as

D (3) γ 2 = 21 2 Ω m -α 2 1 + (4α 2 1 + 3 2 Ω m )γ 2 + 2α 1 d γ 2 d ln a , (4.3.30)
and ), α 3AA and α 3AB as a function of Ω m obtained by numerically integrating these equations for different dark energy models with the fixed equation of state with the same initial conditions as for γ 2 (corresponding to EdS at high redshift). For the smallest value of w 0 we see, as expected, all three exponents well approximated by the adiabatic solution Eq. (4.3.33). Then as |w 0 | increases we see that not only do the exponents differ from this solution but they start differing, albeit to a lesser extent, from one another. More specifically we note that α 2 ≈ α 3AA , while the third exponent differs. The origin of these behaviours can be seen easily in the coefficients of the equations above: those in the equations for γ 2 and α 3AA are almost identical, while those in the equation α 3AB differ not only in magnitude (by about a factor of 2) but also in sign. In Appendix C.4 we report a detailed comparison of our numerical results with those of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], and adapt the fitting functions provided by it to infer corresponding fits for the two functions γ 3AA and γ 3AB . We see that for these values of w 0 becomes larger, one of the three exponents has quite a different value from the α 2 , so an interpolation of the functions describing deviations from separability on a single gEdS the model with α = α 2 is not necessarily a valid approximation in general, although it turns out to be for the calculation of the one-loop PS.

d 2 γ 2 d ln a 2 + 1 2 (1 -3w) + 6α 1 dγ 2 d ln a + 3 2α 2 1 + Ω m × (γ 2 -γ (0) 2 ) = (4α 2 1 + 3 2 Ω m )(γ 2 -γ (0) 2 ) + 2α 1 d γ 2 d ln a .

The PS at one loop

We now derive our simplified expressions for the PS at one loop in the class of FLRW cosmologies specified in Section 3.1.1 (clustering matter plus a generic dark energy fluid component), making use of the reduction of the number of independent functions and expressing these in terms of the effective growth exponents we have defined above. We also consider finally to what accuracy this exact result can be approximated by a direct interpolation of the PS in gEdS models (i.e. by just replacing α in the analytic gEdS kernels by a single effective growth rate). In our analysis we start from the expressions we need (for each of the '22' and '13' contributions) in a form easily comparable (up to notation) to the expressions given in [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF]. This facilitates the explanation of the simplifications we obtain.

'22' term

Starting from Eq. (4.2.1), we obtain the full time-dependent P 22 directly as

P 22 = d 2 2A [M 0 + M 1 + M 2 ] + 2d 2A d 2B [M 0 + 1 2 M 1 ] +d 2 2BB M 0 = (d 2A + d 2B ) 2 M 0 + d 2A (d 2A + d 2B )M 1 +d 2 2A M 2 (4.4.1)
where the integrals M i are those defined above in Eq. (3.2.8). The first expression is, up to simple notational differences, identical to that given by [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF]. 4.1: A summary of the calculation of the three "effective growth rates" parametrizing the second and third-order density kernels using the different approximations we have discussed and also the exact calculation.

'13' term

Starting from Eq. (4.3.1), the expression for P 13 can be obtained directly as

2P 13 = d 3AA (N 0 + N 3 ) + d ′ 3AA (N 1 -N 3 ) +d 3AB (N 0 + N 3 ) -d ′ 3AB N 3 + d 3BA (N 0 + N 2 ) +d 3BB N 0 = (d 3AA + d 3AB + d 3BA + d 3BB )N 0 +d ′ 3AA N 1 + d 3BA N 2 + (d 3AA -d ′ 3AA +d 3AB -d ′ 3AB )N 3 , (4.4.6)
where the integrals N 0 , N 1 , N 2 are those defined by Eq. (3.2.12) and Eq. (3.2.13). N 3 is an additional integral defined also by Eq. (3.2.12) but with n 3 = -4 3 r2 , and which, it is simple to verify, is infra-red safe. The first expression has been written to be easily compared to that given by [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] in terms of the six functions d 3XX and six integrals. 2 Making use now of the relations Eqs. (4.3.21)-(4.3.24) obtained from the EdS (or gEdS) boundary condition, we find that the coefficient of N 3 vanishes, and further that the expression can be simplified to be a function of only of d 2A and only one of the initial six functions d 3XX :

2P 13 = N 0 -N 1 + 2d 2A N 1 + d 3BA (N 2 -N 1 ), (4.4.7) 
Thus, as for P 22 , we obtain an expression involving only the same three integrals as in the gEdS one-loop PS, and as in that case, the cosmology-dependent terms involve only the two infra-red safe integrals N 1 and N 2 . We note that this latter property is obtained using the relation Eq. (4.3.23). Conversely, without employing this relation, which we have shown here follows from the condition that the cosmology asymptotes to EdS (or gEdS) at early times, it is not possible to recover explicitly the infra-red safety of the cosmological correction.

The cosmological correction in P 13 can thus be taken to depend in general only on γ 2 , as defined in Eq. (4.2.11), and on just one additional function. It is convenient then to introduce the function γ 3BA = γ 3 , defined, following the same treatment as in Section 4, as

d 3BA = 2α 3 (1 + 2α 3 ) (1 + 6α 3 )(1 + 8α 3 ) = 2 21 1 + 5 63 γ 3 , (4.4.8) 
so that α 3 ≈ 1 -γ 3 for γ 3 ≪ 1. γ 3 is given in terms of γ 2 and the two functions γ 3AA and γ 3BA analysed in the Section 4, by

15γ 3 = 162γ 2 -196γ 3AA + 49γ 3AB . (4.4.9)
It is thus a solution to the equation 4.7 shows the ratio of this approximation to the exact result. As might be anticipated from the expression Eq. (4.4.14)which depends on the function γ 3 only in one term with a small pre-factor -we find that interpolation provides a good approximation (within about 25%). In practice it is not significantly more difficult to calculate the exact result, but the result shows that for understanding the origin of the smallness of the calculated correction, the approximation to gEdS is very instructive. We underline, however, that the adiabatic approximation α 2 ≈ α 10 is not valid, so this is not an adiabatic interpolation in the sense we have defined. The effective growth exponent α 2 can be roughly thought of a time-averaged behaviour of the exact linear growth exponent α 1 , which is itself a good approximation to α 2 for small |w|.

D (3) γ 3 = - 189 5 Ω m -α 2 1 + 189 35 4α 2 1 γ 2 + 2α 1 d γ 2 d ln a , ( 4 
To summarize we present in Table 4.1 a synthesis of the different approximations for the calculation of density perturbations up to third order, in cosmological models with a self-gravitating matter component and a smooth time-dependent component (given through an effective equation of state p = w(a)ρ). To parametrize the temporal evolution of the kernels we have defined the three functions α 2 , α 3AA and α 3AB (and also equivalent functions γ 2 , γ 3AA and γ 3AB ). The table indicates how each of these three functions is calculated in each of the three approximations we have discussed for the exact result.

Testing growth rate dependence in cosmological perturbation theory using scale-free models Cosmological perturbation theory (PT) is a very important tool in the theory of cosmological structure formation (for a review, see e.g. [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF]). It is essentially the only useful analytical instrument currently available to provide insight into non-linear dynamics, and also an exact benchmark for numerical simulations. Despite its apparent simplicity, it has remained an active area of research over several decades, and there are still open unresolved issues relevant to its application to standard cosmological models. In particular much research has been focused on the sensitivity of the functions describing non-linear corrections at a given (weakly non-linear) scale to contributions from smaller scales. These "ultraviolet" contributions are associated with apparently unphysical divergences in the simplest formulation of PT, and a number of different approaches have been proposed to regulate them (see e.g. [7, 45, 47-49, 81-93, 103, 104, 129, 130]).

Scale-free models, on the other hand, are a family of simplified cosmological models with initial fluctuations characterized by a power spectrum (PS) and an Einstein de Sitter (EdS) expansion law a(t) ∝ t 2/3 . Scale-free models are of interest in the context of perturbation theory -and more generally -because they provide a very wellcontrolled framework within which to understand and test it against numerical results. This is the case because of the so-called self-similar evolution characterising these models, which makes the temporal evolution of clustering statistics essentially trivial as it is given by a rescaling of the spatial coordinates. This property means that any theoretical predictions which can be made for them will take a much simpler form than in a realistic (e.g. Lambda cold dark matter (LCDM)) cosmology. In perturbation theory, for example, the correction to the PS at each order in perturbation is given by a single number, rather than by a function of scale as in standard models. Further, as has been demonstrated recently [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], this same property of self-similarity allows one to obtain very precise results for statistics from numerical simulations. These 88 5.1 Power spectrum in generalized scale-free models models can thus provide a potential test-bed for PT and in particular for the question of their ultraviolet divergences and their regulation.

Scale-free models are usually understood to correspond to a standard EdS cosmology, with source for the expansion being the matter which clusters start from initial Gaussian fluctuations with a PS P (k) ∝ k n . This means that one can explore the properties of clustering -and the adequacy of perturbation theory in describing them -as a function of the initial conditions (i.e. of n), but only within the setting of the single EdS cosmology. In this chapter we consider perturbation theory in a broader class of scale-free models first considered in [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF] and which we call here generalized scale-free models. In these models the initial fluctuations are still defined by a power-law PS P (k) ∝ k n but the EdS expansion is driven by the energy density of the clustering matter and, additionally, of a smooth matter-like component (with energy density scaling as 1/a 3 ). The EdS model is thus one of a one-parameter family of such models. This parameter can be given by the ratio of the energy density of the matter clustering matter to the total energy density, or equivalently, by the linear growth rate of density fluctuations. This allows us to potentially exploit the nice properties of scale-free models to test perturbation theory in a broader setting which probes also dependence on the expansion history, and specifically on the linear growth rate of fluctuations. We focus here on the simplest canonical analysis in perturbation theory, of the one-loop PS. Building on our derivation in [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF] (hereafter P1) of the kernels in Eulerian and Lagrangian perturbation theory for the generalized EdS cosmologies, we generalize existing analytical results in standard perturbation theory for the one loop PS in the usual scale-free models to these generalized scale-free models. We analyse the interesting and non-trivial predicted dependences on the growth rate and report some tests of these results against analysis of data from N -body simulations performed with an appropriately modified code developed in [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF]. We also discuss how the effective field theory (EFT) approach to the regularisation of ultraviolet divergences is modified in this class of scale-free models and the interesting possible numerical tests these results suggest.

Power spectrum in generalized scale-free models

We consider (as in [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF]) models of pressureless matter clustering under its self-gravity starting from density fluctuations which are Gaussian and characterized by a powerlaw PS P (k) ∝ k n . The expanding cosmological background in which it evolves is given by

H 2 = κ 2 8πG 3 ρ m (5.1.1)
where ρ m is the density of clustering matter, H is the Hubble expansion rate, and κ 2 is a positive constant. While the physical interpretation of this expansion law is not in practice of any relevance to our considerations here, we note that, as discussed in P1 (see also [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF]), for κ 2 > 1 one can interpret it as arising from the contribution of an additional matter component that does not cluster, while for any κ 2 it can be interpreted in terms of a change in the effective Newton constant governing expansion relative to that governing clustering. Doing the standard analysis of linear perturbation theory using this expansion law we obtain a growth law D(a) ∝ a α where the Testing growth rate dependence in cosmological perturbation theory using scale-free models (Text based on Phys. Rev. D 108, 023509 (2023) [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF]) 89 constant growth rate α is related to κ 2 by the relation

α = - 1 4 + 1 4 1 + 24 κ 2 . (5.1.2)
Just as in the usual EdS model (with κ 2 = 1 and α = 1), we have an expansion law a(t) ∝ t 2/3 and there is only one characteristic length scale associated with the powerlaw PS. The property of self-similarity of evolution of clustering follows if such evolution is indeed well-defined without cut-offs in the infrared and ultraviolet. Theoretical analysis (see e.g. [START_REF] Peebles | The large-scale structure of the universe[END_REF]) suggest that this can be expected to be true for -3 < n < 4, and many different studies using numerical simulations indicate that such self-similarity is indeed observed in at least up to n = 2 (see e.g. [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Efstathiou | Gravitational clustering from scale-free initial conditions[END_REF][START_REF] Padmanabhan | Patterns in Nonlinear Gravitational Clustering: A Numerical Investigation[END_REF][START_REF] Colombi | Self-Similarity and Scaling Behavior of Scale-free Gravitational Clustering[END_REF][START_REF] Jain | Self-similar Evolution of Gravitational Clustering: Is N = -1 Special?[END_REF][START_REF] Jain | Self-Similar Evolution of Gravitational Clustering. II. N-Body Simulations of the N = -2 Spectrum[END_REF][START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF][START_REF] Orban | Self-similar bumps and wiggles: Isolating the evolution of the BAO peak with power-law initial conditions[END_REF]), and irrespective of whether cosmological EdS expansion is supposed or not [START_REF] Baertschiger | Gravitational dynamics of an infinite shuffled lattice of particles[END_REF][START_REF] Baertschiger | Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit[END_REF][START_REF] Baertschiger | Gravitational dynamics of an infinite shuffled lattice: Early time evolution and universality of nonlinear correlations[END_REF]. Indeed a hypothesis underlying numerical simulation in cosmology is that clustering is insensitive to the infra-red or ultraviolet cut-offs necessarily introduced by such method (box size, particle density, force smoothing, etc.).

Power spectrum in generalized EdS cosmology

We define canonically (and as in P1) the PS P ( ⃗ k) ≡ P (k) (k = |k|) of the (assumed) statistically homogeneous and isotropic stochastic density field by

⟨δ(k, a)δ(k ′ , a)⟩ = (2π) 3 δ (D) (k + k ′ )P (k, a), (5.1.3) 
where ⟨• • • ⟩ denotes the ensemble average. We have shown in P1 that, just as for the usual EdS model, the equations describing the clustering of matter in the fluid limit, with irrotational velocity, can be solved, in generalized EdS models (gEdS), with a separable ansatz for the density field:

δ(k, a) = ∞ i=1 D i (a) δ (i) (k), (5.1.4)
and likewise for the velocity perturbations. Assuming that the fluctuations are Gaussian at linear order, one obtains the PS at one loop as where P L (k, a) is the linear power spectrum and the one-loop contributions are

P 13 (k, a) = 3P L (k, a) d 3 q (2π) 3 P L (q, a)F (s)
3 (k, q, -q), (5.1.6)

P 22 (k, a) = 2 d 3 q (2π) 3 P L (q, a)P L (|k -q|, a)|F (s) 2 (k -q, q)| 2 , (5.1.7)
where the superscript "s" indicates that the kernels F 2 and F 3 are symmetrized with respect to their arguments. These expressions are identical to those in the standard EdS model and the only difference in the gEdS models come through the modification 5.1 Power spectrum in generalized scale-free models

If c remains finite when we take the limits ε → 0 and k c → ∞, c becomes a function of n and α only, with

∆ 2 1-loop (k) = ∆ 2 L 1 + c n, α ∆ 2 L . (5.1.30)
The evolution is then explicitly self-similar in a sense that

∆ 2 (k, a) = ∆ 2 k k N L (a)
, 1

(5. 1.31) i.e. the temporal evolution of clustering corresponds to a rescaling of the spatial coordinates in proportion to the sole characteristic scale, the non-linearity scale ∝ k -1 N L , defined by the power-law PS.

Convergence analysis

By studying the behaviour of the integrals Mi and Ni in the limit ε/k → 0 and k c /k → ∞ we can determine their infrared and ultraviolet convergence properties. Following standard analysis, and as discussed also in P1, the two dimensional integrals Mi have divergences for certain cases in the limit ε/k → 0 at r = 0 and r = 1. As noted e.g. by [START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF] the contribution of each is in fact identical because of the symmetry of the integrals (the r = 1 divergence corresponds to |q -k| → 0, which is identical to the r = 0 contribution after a change in variable). This means that the infra-red behaviour can be determined simply by doubling the r = 0 contribution, which can easily be inferred from a Taylor expansion.

Explicitly the leading behaviour as r → 0 of the integrands of M0 and N0 is ∼ r n , leading to divergence for n ≤ -1, but when summed (and taking into account the factor of two mentioned above) these leading divergences cancel and give a "safe" leading behaviour ∼ r n+2 i.e. convergence for n ≥ -3. The integrands of the four integrals M1 , M2 , N1 , N2 , which contribute to the PS via an α-dependent pre-factor, all have this same safe behaviour. As noted in P1 the overall infra-red convergence for any n > -3 thus holds for any α, exactly as in the standard EdS model. This result is expected since such convergence is a consequence of Galilean invariance [START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF][START_REF] Peloso | Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure[END_REF], a property that is respected by the generalized EdS cosmologies just as in the canonical case.

For r → ∞, on the other hand, the integrands in N0 , N1 , N2 all have the same leading behaviour ∼ r n , and all those in M0 , M1 , M2 the leading behaviour ∼ r 2n-2 . For the canonical α = 1 case, the one loop PS therefore diverges for n > -1 with a leading divergence coming from the term ∼ r n for n < 2, and from the term ∼ r 2n-2 for n > 2.

As noted in P1, the same result holds in the gEdS models, except for one important difference: the coefficient of the leading divergence vanishes at a specific value of α. This can be seen by using the results in Table 5.1 to infer the linear combination of these integrands which is used to obtain the one loop PS as in Eq. (5.1.24). The expansion around (1/r) = 0 of the resultant integrand is then

f -1 (α)r n + f 1/2 (α)r 2n-2 + O r n-2 , r 2n-4
(5.1.32)

with the former giving the leading term for n < 2 and the latter for n > 2, and where

f -1 (α) = 7 -14α -176α 2 15(1 + 6α)(1 + 8α) , (5.1.33) f 1/2 (α) = 7 + 36α + 92α 2 30(1 + 6α) 2 .
(5.1.34)
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Table 5.1: Expansion around (1/r) = 0 of the integrands of Mi and Ni . As in the standard EdS model (α = 1) these imply that the one loop PS is divergent for n > -1. As discussed in the text, the coefficients of these divergences depend on α and at a specific value (α ≈ 0.16) the leading divergence vanishes and the one-loop result remains ultraviolet convergent for n < 1/2.

expansion of integrand M0 r 2n-2 1 2 + n 2 -3n-2 12r 2 + O 1 r 4 M1 r 2n-2 -4 3 - 2(n 2 -3n-4) 15r 2 + O 1 r 4 M2 r 2n-2 16 15 + 8(n 2 -3n-4) 105r 2 + O 1 r 4 N0 -1 3 r n N1 r n 4 5 -4 35r 2 + O 1 r 4 N2 r n -4 3 + 4 5r 2 + O 1 r 4
The indices of the functions f have been chosen to indicate the value of n at which the corresponding terms lead to ultraviolet divergence of c. As noted in P1 the function f -1 crosses zero at α = α c , where

α c = 0.1635 • • • (5.1.35)
while f 1/2 is always non-zero and of the same sign as in the case α = 1 (see Fig. 5.1). Thus the leading divergence actually vanishes at this specific value α c , and one loop PT gives in this case a well-defined (i.e. finite) prediction up to n = 1/2. The two leading terms in the expansion of the integrand in c about (1/r) = 0 are then given by

f 1 (α c )r n-2 + f 1/2 (α c )r 2n-2 + O r n-4 , r 2n-4 (5.1.36)
where

f 1 (α) = 4(1 + 2α)(8α -1) 35(1 + 6α)(1 + 8α) (5.1.37) 
For n < 0 the first term is the leading one while for n > 0 it is the latter.

We will return to discuss these behaviours in more detail in Section 5.3 below, in which we consider the regularisation of ultraviolet divergences in these models. Until then we lay aside the consideration of these divergences, deriving exact one loop results for the ultraviolet convergent regime (for any α i.e. for n < -1). We report our numerical tests of these results, in the still more restricted regime where they appear to be very insensitive to (finite) contributions from ultraviolet scales.

Exact results for PS (-3 < n < -1)

To obtain an analytical expression for the one-loop corrections in the range where there are the infrared divergences cancel out and there are no ultraviolet divergences, i.e. for -3 < n < -1, it is convenient to use dimensional regularization to treat the infrared divergences in the individual contributing terms (as in [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF][START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF]). To do so, it is convenient to work directly with the initial unsimplified expressions for P 13 and P 22 as in Eqs. (5.1.6) and (5.1.7) where P L is a simple power-law (without cut-offs).

5.2 Numerical tests of predicted α-dependence (for n = -2)

Section 5.3, can be obtained directly using the expressions in Eq. (5.1.26) as

c(n = -2, α) = 3π 2 (4α + 1)(22α 2 + 10α + 1) 8(6α + 1) 2 (8α + 1) . (5.1.44)
The left panel of Fig. 5.2 shows c(n, α) as a function of n for different chosen values of α, including the canonical α = 1 case. Compared to the latter, the most evident qualitative change as α varies is that the zero crossing of c, which is at n = n c ≈ -1.38 for α = 1, not only increases towards n = -1 as α decreases but actually ceases to exist at a certain critical value of α. The right panel of Fig. 5.2 shows the quantative behaviour of n c as a function of α. This critical value is none other than α c , the positive root of the function f -1 discussed above, at which the leading divergence changes sign. Indeed we can see this also by expanding our expression Eq. (5.1.43) around n → -1, where it has a simple pole, which gives

c(n = -1 + ξ, α) = - (7 -14α -176α 2 ) 15(6α + 1)(8α + 1)ξ + 4(2α + 1)(4α + 1) 9(6α + 1) 2 + • • • (5.1.45)
We note also that, other than very close to the divergence, c is a very slowly varying function of α in the range of α which is relevant to current standard type models, for which the logarithmic linear growth rate varies between α = 1 (and high redshift) and α ∼ 0.5. As discussed in P1, the correction to the one loop PS relative to the EdS value in these models can be well approximated (to about 20 -25%) by calculating in a gEdS model with an effective value at z = 0 of α ∼ 0.9 (which represents an appropriately averaged growth rate over the cosmological evolution).

Numerical tests of predicted α-dependence (for n = -2)

In this section we compare the results of numerical simulations with the analytical result given by Eq. (5.1.43). While it is potentially of interest to consider a wide range of different n and α, we limit ourselves here to probing the α-dependence (which is the novelty of our analysis) of the result for n in the regime where we expect that this result may actually provide a good approximation i.e. where the ultraviolet sensitivity of the result is weak, for n well below -1. To quantify this a little more we show, in Fig. 5.3, the results of a determination of c(n, α, k c /k) by direct numerical integration for the different indicated values of the cut-off k c /k. The ultra-violet sensitivity as expected diminishes markedly as n decreases. In the left panel of Fig. 5.2 we see, on the other hand, that the α-dependence remains quite uniform for n < -1.5. If n decreases too close to n = -3, however, the dynamical range of a simulation due to the finite simulation box size will become very limited. We thus consider the value n = -2. Figure 5.4 shows, for this value of n, the predicted difference as a function of α between the coefficient c and its value for α = 1. Given that the modification of the PS is proportional to c multiplied by ∆ 2 L (k), and that the one-loop calculation is expected to be valid only for small values of the latter, it is evidently of interest to simulate smaller values of α for which the difference in power is amplified. We consider here simulations with N = 256 3 particles, and the values α = 1.00, 0.7, 0.5, 0.33, 0.25. The lower limit α = 0.25 is imposed, as we will explain further below, because the Testing growth rate dependence in cosmological perturbation theory using scale-free models (Text based on Phys. Rev. D 108, 023509 (2023) [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF]) 97 numerical cost of the simulations increases strongly as α decreases. Nevertheless this value is sufficient to give predicted changes in the power of order 5% for ∆ 2 L = 0.1, much greater (and therefore much easier to measure numerically) than the predicted changes of ∼ 0.5% in standard (LCDM-like) models (see [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Garny | Two-loop power spectrum with full time-and scaledependence and EFT corrections: impact of massive neutrinos and going beyond EdS[END_REF]). As discussed in P1, the latter can be well approximated by using a gEdS model with α ≈ 0.9.

Simulation method

Our numerical results here have been obtained using N -body simulations performed with an appropriately modified version of the GADGET2 code [START_REF] Springel | The cosmological simulation code gadget-2[END_REF] as described in detail in [START_REF] Benhaiem | Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations[END_REF], and further in [START_REF] Benhaiem | Non linear gravitational clustering in scale free cosmological models[END_REF]. Indeed the class of scale-free models we are considering cannot be simulated by the standard version of GADGET2 code, which allows only expanding backgrounds specified by the standard cosmological parameters. The gEdS cosmology has been implemented instead by modifying the module of the GADGET2 code which allows simulation also of a static universe (i.e. of an infinite periodic system without expansion). The usual equations solved in N -body simulations for particles in an expanding background are given in comoving coordinates x as

d 2 x i dt 2 + 2H dx i dt = 1 a 3 F i (5.2.1)
where the gravitational force is

F i = -Gm P j̸ =i x i -x j |x i -x j | 3 W ε (|x i -x j |) (5.2.2)
with W ε a function that smooths the singularity of the Newtonian force at zero separation, at a characteristic scale ε, and the "P" in the sum indicates that there is a sum over the copies of the periodic system. As discussed in further detail in [START_REF] Benhaiem | Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations[END_REF], these equations can be recast, by the simple change of time coordinate τ = dt a -3/2 , as L ≪ 1. At ∆ 2 L ∼ 0.1 the predicted maximal change in power, for α = 0.25, is thus of order of 5%. This can be compared with the much smaller changes in standard (LCDM-like) models, of order 0.5% at z = 0 (see P1 and [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Garny | Two-loop power spectrum with full time-and scaledependence and EFT corrections: impact of massive neutrinos and going beyond EdS[END_REF]) where

d 2 x i dτ 2 + Γ dx i dτ = F i , (5.2.3) 
Γ = 1 2 a 3/2 H = 1 2 a -1 da dτ . (5.2.4) 
Thus the equations of motion are just those of self-gravitating particles in a nonexpanding system subject to a simple fluid damping. The family of gEdS cosmologies corresponds to models given by a constant value of Γ, with

Γ = κ 2πGρ 0 /3 (5.2.5)
where ρ 0 is the mean mass density at some chosen reference time. The static universe module of GADGET2 has thus been modified to include this constant fluid-damping term, keeping the original "Kick-Drift-Kick" structure of its leap-frog algorithm and modifying appropriately the "Kick" and "Drift" operations. The structure of the code is otherwise unchanged. Further details and various tests of the modified code have been described in [START_REF] Benhaiem | Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations[END_REF], in particular tests of energy conservation (using the so-called Layzer-Irvine equations) as well as a direct comparison showing excellent agreement between simulations of the standard EdS (i.e. α = 1) model using the existing GAD-GET2 expanding universe module and the new modified static universe module.

To generate initial conditions we use the canonical method, applying displacements to the simulation particles initially placed on a perfect lattice, and ascribing corresponding initial velocities, as prescribed by the Zeldovich approximation, for a random realization of a Gaussian fluctuation field with the chosen input PS (for more details see e.g. [START_REF] Bertschinger | COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes[END_REF] and [START_REF] Joyce | Quantification of discreteness effects in cosmological N-body simulations: Initial conditions[END_REF]). At the starting time, a 0 , the initial amplitude of the PS has been set using the specific choice (following the criteria of [START_REF] Jain | Self-Similar Evolution of Gravitational Clustering. II. N-Body Simulations of the N = -2 Spectrum[END_REF][START_REF] Knollmann | Dark matter halo profiles in scale-free cosmologies[END_REF])

∆ 2 L (k N , a 0 ) = 0.03 (5.2.6) 
where k N is the Nyquist frequency of the initial particle grid. We use the same realization of the initial density field in all five simulations. The initial displacements
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Outputs of the simulations have been saved, starting from the initial time, at times defined by

t s = log D(a) = 0.1 s (5.2.7)
where D(a) is the linear growth factor, defined so that D(a 0 ) = 1, and s = 0, 1, 2 • • • 33.

Thus the predicted linear power spectrum in each simulation is identical at each output, and the final output, at a = a f , corresponds to an amplitude ∆2 L (k b , a 0 ) = e 6.6 0.03/256 ≈ 0.17 at the fundamental mode k b = 2π/L of the periodic box. As we will see below by this time the finite box size corrections are very dominant over the very small effects we are seeking to measure (at the few percent levels).

To calculate the power spectrum based on data from N-body simulations, we have used the publicly available POWMES code [START_REF] Colombi | Accurate estimators of power spectra in N-body simulations[END_REF] with the size of FFT grid equal to 512 3 (compared to the 256 3 initial particle grid) and without any "foldings". This is quite sufficient resolution for the analysis here, focussing on smaller k.

Results

Figure 5.5 shows the dimensionless PS measured in the five simulations, at the starting time and at three subsequent times. Also shown (solid black line) is the linearly evolved theoretical input PS (which, by construction, is the same at each time for all the simulations). Likewise we see that the initial PS of the IC is identical at the starting time. Inspecting the α dependence of the evolving PS, we observe a qualitative behaviour in line with Fig. 5.4: as α decreases the non-linear power increases. However this trend with α is in fact clearly visible in these plots only starting from ∆ 2 approaching unity, where we do not expect perturbation theory to apply. Indeed as we have discussed, Fig. 5.4 implies changes to the non-linear power of at most about ten percent. The origin of the amplification of the highly non-linear power we observe in this plot -and more particularly the steepening of its slope as a function of α has been discussed at length in [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF]. Here we focus instead on the perturbative regime.

We also see in Fig. 5.5 the visible effects of finite mode sampling on the small k modes (i.e. small ∆ 2 L ) which are relevant for the regime we are interested in: indeed for smaller k there are clearly, at the initial time, visible fluctuations of the measured PS ∆ 2 sim (k) relative to the theoretical linear PS power spectrum ∆ 2 L (k). 2 Thus we expect that a comparison of the observed power with the theoretical prediction can be accurate at best up to a systematic error of order δ = (∆ 2 (k)/∆ 2 sim (k)) -1, while if we consider the measured ratio of the power between two simulations we can expect accuracy instead of δ × [c(n, α) -c(n, α = 1)]. In order to measure the very small effects predicted, we therefore consider this relative measurement, using (arbitrarily) α = 1 as our reference.

Figure 5.6 shows results for the ratio of the PS measured in the four simulations with α < 1 to that in the standard EdS case. Following the analysis method developed in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], each panel is for a different bin of ∆ 2 L (corresponding to a fixed bin of rescaled wavenumber k/k N L ), and shows the ratios measured in the different snapshots. The indicated values of ∆ 2 L correspond to those calculated for the theoretical input PS spectrum at the geometric centre (in k) of the bins, which are equally spaced in log space with ∆ log 10 k = 0.1. We underline that, because the points are plotted as a function of log D, the differences measured in these plots arise purely from the nonlinear evolution. Further the measured power spectrum is self-similar if and only if it is a function of ∆ 2 L (k) only i.e. if it is constant in each plot. The ratios of the measured (self-similar) power predicted by eq. (5.1.43) for each value of α, is indicated by a horizontal line. 3The behaviour we observe in the plots in Figure 5.6 is qualitatively similar to that in analagous plots from the (much larger, but standard EdS) simulations analysed and discussed in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]. The points from any given simulation, at the chosen rescaled wavenumber k/k N L in each plot, display approximately, in differing degrees and ranges of time, the flat behaviour corresponding to self-similarity. The strong temporal evolution at early times arises from the ultraviolet cut-offs (grid spacing, force smoothing), while the strong suppression at later times arises from the finite box size. Indeed the latter sets in at later times in the successive plots, as ∆ 2 L , and therefore the associated k at a given time, increases. The vertical line in each plot indicates the time at which k corresponds to the Nyquist wavenumber of the initial grid, which likewise increases as ∆ 2 L does so. In the upper two plots the results are also, because they correspond to smaller k at any time, significantly more noisy. The plateaus can just about be discerned within a large approximate error bar given by the amplitude of the scatter in the flattest five or six points. Comparing these plateau values with the predicted ones (given by the dotted lines) we see that the overall agreement is very good, and most particularly in the cases where the plateau is very well defined, notably in the lower two plots. It appears that the theoretical value is systematically a little high in the first two plots. This can be attributed to the fact that this theoretical prediction is calculated with the theoretical input ∆ 2 L , which fluctuates more at these smaller k relative to the actual initial conditions. The apparently slightly low theoretical values for the smallest α simulation in the last plot probably reflect the increasing contribution of higher order corrections expected as the amplitude of the deviations grow (in these cases above about ten percent). We conclude thus that the α-dependence of the PS observed in our simulations are apparently in good agreement with the one-loop PT predictions.

α dependence of UV divergences and their regulation

General considerations (see e.g. [START_REF] Peebles | The large-scale structure of the universe[END_REF]) lead one to expect that non-linear cosmological clustering should be ultra-violet insensitive for power-law initial conditions P (k) ∝ k n provided n < 4. For scale-free models, with an EdS expansion law, such cut-off independence implies self-similarity. Numerous numerical studies confirm that such self-similarity is indeed observed, with different authors exploring different ranges of n, up to n = 2 (see e.g. [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Efstathiou | Gravitational clustering from scale-free initial conditions[END_REF][START_REF] Padmanabhan | Patterns in Nonlinear Gravitational Clustering: A Numerical Investigation[END_REF][START_REF] Colombi | Self-Similarity and Scaling Behavior of Scale-free Gravitational Clustering[END_REF][START_REF] Jain | Self-similar Evolution of Gravitational Clustering: Is N = -1 Special?[END_REF][START_REF] Jain | Self-Similar Evolution of Gravitational Clustering. II. N-Body Simulations of the N = -2 Spectrum[END_REF][START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF][START_REF] Orban | Self-similar bumps and wiggles: Isolating the evolution of the BAO peak with power-law initial conditions[END_REF][START_REF] Baertschiger | Gravitational dynamics of an infinite shuffled lattice of particles[END_REF][START_REF] Baertschiger | Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit[END_REF][START_REF] Baertschiger | Gravitational dynamics of an infinite shuffled lattice: Early time evolution and universality of nonlinear correlations[END_REF][START_REF] Bottaccio | Clustering in N-body gravitating systems[END_REF]). The ultra-violet divergences which render the predictions of SPT undefined as n approaches -1 from below are a priori therefore unphysical. The PS of standard cosmologies, however, at large k has a behaviour (typically ∼ k -3 log k) which leads to finite SPT predictions. Nevertheless there is also a region where the effective logarithmic slope of the PS corresponds to that of the ultraviolet divergent region, and one expects then that the associated Testing growth rate dependence in cosmological perturbation theory using scale-free models (Text based on Phys. Rev. D 108, 023509 (2023) [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF]) 103

Table 5.2: Analytical expressions for the six integrals, Mi and Ni (for i = 0, 1, 2), for n = 1, n = 0, n = -1 and n = -2, up to linear order in k/k c and in the limit 

ϵ = 0. Mi , Ni n=1 n=0 n=-1 n=-2 M0 1 2 kc k -7 8 π 2 16 1 3 log k ε k 3ε M1 -4 3 kc k + 9 4 -π 2 8 -4 9 0 M2 16 15 kc k -3 2 π 2 8 8 9 3π 2 16 N0 -1 6 k 2 c k 2 -1 3 kc k 1 3 log ε kc -k 3ε N1 2 
1 (7-14α-176α 2 ) 30(6α+1)(8α+1) ( kc k ) 2 + (7+36α+92α 2 ) 30(1+6α) 2 kc k + 4(2α+1)(8α-1) log( kc 4k ) 35(6α+1)(8α+1) -4α(α(168072α+133249)+59990)+26667 29400(6α+1) 2 (8α+1) 0 (7-14α-176α 2 ) 15(6α+1)(8α+1) kc k + π 2 α(4α+1)(5α+1) 2(6α+1) 2 (8α+1)
-1

(7-14α-176α 2 ) 15(6α+1)(8α+1) ln kc k + 4(2α+1)(32α+7)(52α+7) 225(6α+1) 2 (8α+1) -2 3π 2 (4α+1)(2α(11α+5)+1) 8(6α+1) 2 (8α+1) 
unphysical divergences lead to inaccuracies of the predictions of SPT. In the last number of years there has been much interest and work on the so-called effective field theory (EFT) approach to the regulation of this ultraviolet divergences (see e.g. [7, 47-49, 81, 84-93, 103, 104]). This theory provides a systematic approach to the problem directly inspired from that used in high energy physics.

Without employing the full machinery of EFT, we can recover very simply its results for the class of model we are considering. To do so we impose a finite ultraviolet cut-off in the PS (i.e. we take k c to be finite) above, and then consider how k c can scale with k in a manner compatible with self-similarity.

For n ≥ -1, an analytical expression for c(n, α, k c /k) (with k c /k finite) can be found for integer values of n. To do so, as shown e.g. by [START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF], one can conveniently rewrite the Mi double integrals by breaking up the integration range as

1/ω ϵ dr µmax µ min dµ = 1-ϵ ϵ dr 1 -1 dµ + (1/ω)-1 1+ϵ dr 1 -1 dµ + 1+ϵ 1-ϵ dr (1+r 2 -ϵ 2 )/2r -1 dµ + 1/ω (1/ω)-1 dr 1 (1+r 2 -ω -2 )/2r
dµ,

where ϵ = (ε/k) and ω = (k/k c ). For the Ni integrals we simply divide the integration range over r into ϵ to 1 and from 1 to 1/ω. For each of the resulting integrals an explicit analytic expression can be obtained (using Mathematica [START_REF] Inc | Mathematica[END_REF]), and written 5.3 α dependence of UV divergences and their regulation as a series expansion about ϵ = 0 or ω = 0, with poles associated with the divergences we have analysed. As previously discussed the divergences as ϵ → 0 in M0 and N0 cancel for n > -3. The results for the individual integrals, Mi and Ni , are shown in Table 5.2 and the resulting expressions for c(n, α, k c /k) in Table 5.3. In each case we have included terms in the expansion around ω = 0 and ϵ = 0 which do not vanish when the latter goes to zero. We note that the terms which diverge as k c /k are in agreement with the results for the leading ultraviolet divergences given in Section 5.1, with the leading divergence ∼ k n+1 c and the following one at ∼ k 2n-1 c . Further in the expressions for c we recover exactly the factors proportional to the α-dependent coefficients f -1 , f 1/2 and f 1 given in Eqs. (5.1.33)-(5.1.34) and (5.1.37).

In order to respect self-similarity it is sufficient to choose a regularization k c /k which is assumed to be some function of ∆ 2 L (k). The simplest and natural choice is to take

k c ∝ k N L (5.3.1) 
i.e. to assume that the effective cut-off in the one-loop integrals is set by the nonlinearity scale. Using this prescription we write the regularized result first as

creg (n, α, k N L k ) = c n, α, k c k = γ k N L k = lim λ→∞ c n, α, k c k = λ + ∆c n, α, γ, λ
where

∆c = c n, α, γ k N L k -c n, α, λ . (5.3.2) 
Assuming that γ k N L k and λ are large, we can use the results of our analysis of the ultraviolet divergences in Section 5.1.3 to obtain the expansion of ∆c:

∆c = f -1 n + 1 (α) γ n+1 k N L k n+1 -λ n+1 + f 1/2 2n -1 (α) γ 2n-1 k N L k 2n-1 -λ 2n-1 + f 1 n -1 (α) γ n-1 k N L k n-1 -λ n-1 + • • • (5.3.3)
for any n other than the specific values n = -1, 1/2, 1..., where the power-law functions are replaced by logarithms. For the sake of brevity, we will not give results for these special cases explicitly here. Using these expressions the regularized one-loop result can now be written as

∆ 2 1-loop,reg (k) = ∆ 2 L (k) 1 + c reg (n, α)∆ 2 L (k) + f -1 (α) γ n+1 n + 1 (∆ 2 L (k)) 2 3+n + f 1/2 (α) γ 2n-1 2n -1 (∆ 2 L (k)) 4-n 3+n + f 1 (α) γ n-1 n -1 (∆ 2 L (k)) 4 3+n 
(5.3.4)

Testing growth rate dependence in cosmological perturbation theory using scale-free models (Text based on Phys. Rev. D 108, 023509 (2023) [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF]) [START_REF] Angulo | Large-scale dark matter simulations[END_REF] where

c reg = lim λ→∞ c(n, α, λ) -f -1 (α) λ n+1 n + 1 -f 1/2 (α) λ 2n-1 2n -1 -f 1 (α) λ n-1 n -1 + • • • (5.3.5)
This result is almost exactly equivalent to that obtained in EFT, corresponding to the addition of the counter-terms

c 1 k 2 P L (k) + c 2 k 4 + c 3 k 4 P L (k) (5.3.6) 
where we have, additionally, that

c 1 = (2π 2 ) 2 3+n f -1 (α) γ n+1 n + 1 c 2 = (2π 2 ) 4-n n+3 f 1/2 (α) γ 2n-1 2n -1 c 3 = (2π 2 ) 4 n+3 f 1 (α) γ n-1 n -1 (5.3.7) 
where γ = k N L /k c , a positive constant which may also depend also on n and α. We note that these coefficients are predicted to be related as they are because we have used a "UV inspired" strategy like that of [START_REF] Baldauf | The bispectrum in the Effective Field Theory of Large Scale Structure[END_REF][START_REF] Steele | Precise calibration of the one-loop bispectrum in the effective field theory of large scale structure[END_REF]. If we used instead a symmetrybased approach, the coefficients would not be related as given, but would instead be free parameters.

Usually only the first two terms are included, as they represent the leading corrections (the first term for n < 2 and the second for n > 2). As we have discussed, this is sufficient here also other than when α = α c . In this case we have c 1 = 0, which makes the third term the leading EFT correction for n < 0. Correspondingly the expression for c reg is just the unregularized result c ∞ (n, α) for n < -1, and then regularized appropriately for n ≥ -1, except again for α c where the unregularized result remains valid up to n = 1/2.

The ultraviolet regularized one loop result for the family of generalized scale-free models thus gives a very specific prediction that can be used in principle to test this regularisation framework: the sign of the correction to the raw (unregularized) one loop result should depend on α as given by f -1 (α), and in particular at α = α c it vanishes so that, in this case, the raw (unregularized) one-loop result gives a welldefined finite prediction up to n = 1/2. A suite of simulations for n around -1 like those reported above for the case n = -2, but extending to smaller α, would allow us to probe this regime. Two or higher loop corrections could also potentially be probed. At two loops SPT corrections diverge (in the "double hard" limit, see [START_REF] Baldauf | Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound[END_REF]) for n > -2. The coefficients of these divergences will generically be α-dependent, but we do not expect that their coefficients will vanish at α = α c . The regularisation of these divergences in EFT will lead again to additional terms with predicted functional dependences on ∆ 2 L . Simulating such small values of α is however more challenging numerically, because we have k N L ∝ a 2α 3+n and therefore the ratio of the final to the initial scale factors of a simulation is given by

a f a i = k N L (a i ) k N L (a f ) 3+n 2α . (5.3.8) 106 5 

.3 α dependence of UV divergences and their regulation

In order to make use of self-similarity in order to establish accurately converged values of the PS, we need the factor k N L (a i ) k N L (a f ) to be reasonably large (at least a decade). For n = -1 and α ≈ 0.16 the exponent is three times larger than it was for the smallest value α we reported above for n = -2. This means that, for a given k N L (a i ) k N L (a f ) , the nonlinear structures formed will become relatively much denser as n increases and/or α decreases. This can in principle be remedied by using a sufficiently large gravitational smoothing ϵ, but in this case one must control carefully that its effects do not propagate to the intermediate (weakly non-linear) scales we are interested in for comparison with perturbation theory.

Precision tests of the cosmological dependence of perturbation theory in standard cosmological models (Work in progress [A. Pohan, M. Joyce, and A. Sanchez, in preparation])

Introduction

As discussed in Chapter 2 and Chapter 4, several other authors [4-6, 44, 143] have performed PT calculations with the full cosmology dependence (rather than adopting the EdS approximation). Because the associated corrections are so small, they have not been specifically tested numerically in N-body simulation. Indeed one of our motivations for studying scale-free models has been to simplify the framework for probing PT specifically for its cosmological dependence and testing the predicted dependence against numerical simulations.

We have seen in our numerical study of scale-free models in the previous chapter that we were indeed able to measure robustly the very weak dependence on the cosmology of the power spectrum in the weakly non-linear regime. We did so by considering the differences between simulations of identical initial conditions, matched at times at which their linear amplitude is identical. Although we do not have the test of self-similarity to guide us in finding converged results for non-scale free models, we expect that we may, in sufficiently large simulations, have a resolution sufficient to detect these small effects.

What we need is therefore simulations with different growth histories but identical initial conditions. Further, we wish to compare the outputs at fixed linear amplitudes. This is precisely what has been done in the set of simulations reported in [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF], which considered studying the non-linear growth of structure formation by separating out the dependence on the shape of the power spectrum and that on the growth history. We use the PS data from these simulations to test its dependence on cosmology against PT at one loop. This chapter is organized as follows. In Section 6.2 we give analytical expressions for the one-loop PS, effectively just a summary of the relevant result from Chapter 4. Section 6.3 gives a brief overview of the simulation. Section 6.4 presents the theoretical calculations of PS and provides a detailed discussion of the obtained results, specifically focusing on the comparison between theoretical predictions and simulation data.

Calculation of exact one-loop PS

Assuming a statistically homogeneous and isotropic stochastic density field we can define the PS P (k)

⟨δ(k, a)δ(k ′ , a)⟩ = (2π) 3 δ (D) (k + k ′ )P (k, a). (6.2.1)
Taking an ensemble average of the two density fields up to the fourth order, ⟨δ(k, a)δ(k ′ , a)⟩ = ⟨δ (1) (k, a)δ (1) (k ′ , a)⟩ + 2⟨δ (1) (k, a)δ (3) (k ′ , a)⟩ +⟨δ (2) (k, a)δ (2) (k ′ , a)⟩, (6.2.2)

we have the expression of one-loop PS as

P 1-loop (k, a) = P lin (k, a) + P 22 (k, a) + 2P 13 (k, a). (6.2.3) 
which can, for the study of the cosmological corrections to the EdS approximation, be conveniently be rewritten (see derivation in [START_REF] Joyce | Cosmological perturbation theory using generalized einstein-de sitter cosmologies[END_REF] or Chapter 4 ) as The expansion history dependence is given entirely through ∆P 1-loop , via dependence on z of the functions γ 2 and γ 3 . In deriving these expressions it is assumed only that the background cosmology approaches, at asymptotically high redshift, that of a pressureless fluid i.e. it is EdS, or, more generally, gEdS as described in the previous chapters.

P 1-loop (k, a) = P lin (k, a) + P EdS 22 (k, a) + 2P EdS 13 (k, a) + ∆P 1-loop (k, a), (6.2.4) 
The M i are the integrals

M i (k, a) = 1 8π 2 k 3 ∞ 0 dr 1 -1
dµP L (kr, a)

× P lin (k 1 + r 2 -2µr, a) (1 + r 2 -2µr) 2 m i (r, µ), (6.2.8) 
with m 0 (r, µ) = (µ -r) 2 , (6.2.9) 

m 1 (r, µ) = 4r(µ -r)(1 -µ 2 ), (6.2 
n 2 = 1 r 2 1 - 8 3 r 2 -r 4 + (r 2 -1) 3 2r 3 ln |1 + r| |1 -r| . (6.2.15)
The functions γ 2 (a) and γ 3 (a) are solutions of the equations

dα 1 d ln a = 3 2 w e α 1 -α 2 1 - 1 2 α 1 + 3 2 Ω m , (6.2.16 
)

d 2 γ 2 d ln a 2 = - 1 2 (1 -3w e ) + 4α 1 dγ 2 d ln a -2α 2 1 + 3 2 Ω m γ 2 + 21 2 (Ω m -α 2 1 ), (6.2.17) 
d 2 γ 3 d ln a 2 = - 1 2 (1 -3w e ) + 6α 1 dγ 3 d ln a -3(2α 2 1 + Ω m )γ 3 - 189 5 Ω m -α 2 1 + 189 35 4α 2 1 γ 2 + 2α 1 dγ 2 d ln a , (6.2.18) 
with w e = 1 3 d ln Ωm d ln a and subject to the boundary conditions

α 1 (0) = α 0 γ 2 (0) = 7 1 -α 0 1 + 6α 0 , γ 3 (0) = 63 5 (1 -α 0 )(6α 0 -1) (1 + 6α 0 )(1 + 8α 0 ) , dγ 2 da (0) = 0, dγ 3 da (0) = 0, (6.2.19) 
where α 0 is the asymptotic EdS, or gEdS, growth rate given by

α 0 = 1 4 -1 + 1 + 24Ω m,∞ (6.2.20) 
and Ω m,∞ is the asymptotic value of the density of the clustering component of the matter at high redshift.

N-body simulations

We review first the cosmological models considered in [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF]. These are chosen from four families of standard-like models: • wCDM: Like the LCDM model with a constant equation of state parameter w s = w 0 , but w 0 ̸ = -1.

• DDE(dynamic dark energy): In this family [START_REF] Chevallier | Accelerating universes with scaling dark matter[END_REF][START_REF] Linder | Exploring the expansion history of the universe[END_REF], w s evolves linearly as a function of the scale factor a as:

w s = w 0 + w a (1 -a), (6.3.1) 
where w 0 and w a are a constant.

• EDE(early dark energy: In this family [START_REF] Wetterich | Phenomenological parameterization of quintessence[END_REF] the equation of state parameter as a function of the scale factor a varies as

w s = w 0 (1 -b ln a) 2 , (6.3.2)
where the constant b is given as

b = -3w 0 ln 1-Ω de,e Ω de,e + ln 1-Ω m,0 Ω m,0 , (6.3.3) 
where Ω m,0 is the density parameter of clustering matter at z = 0 and Ω de,e is the density parameter of the early dark energy. Indeed we have that

Ω m = ρ m,0 a -3
ρ m,0 a -3 + ρ de,0 exp -3 Thus indeed asymptotically the dark energy behaves like a smooth matter-like component with density parameter Ω de,e at the high redshift z. The model is thus asymptotically a gEdS model, and the PT results in the previous section can be used for it (taking the appropriate gEdS boundary condition).

As in [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF] we consider nine specific cosmological models from these four families, labeled as modeli, where i = 0, 1, . . . , 8. A summary of these cosmological can be found in Table 6.2 (taken from [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF]). These share identical "shape parameters" Θ s = (ω γ , ω b , ω c , n s , . . . ) but differ in their evolution parameters Θ e = (A s , ω K , ω de , ω de (a), . . . ), where ω i = Ω i h 2 represents the physical density parameter. Thus their linear PS are identical, other than for their overall amplitudes that evolve according to the different growth rates corresponding to each background cosmology. The reference model, model0, with parameter values listed in Table 6.1, is the best-fitting flat ΛCDM model for the latest P lanck data [START_REF] Aghanim | Planck 2018 results-vi. cosmological parameters[END_REF], assuming zero contribution from massive neutrinos. The two models model1 and model2 are also flat ΛCDM models, but they differ in the value of the dimensionless Hubble parameter, with h = 0.55 for model1 and h = 0.79 for model2. model3 and model4 closely are wCDM models, with the two indicated values of w 0 . model5 and model6 are DDE models. The parameter A s corresponds to the canonical normalization to CMB (see e.g. [START_REF] White | Anisotropies in the cosmic microwave background[END_REF]) and has been chosen so that all models have identical amplitude at z = 0 specified (following [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF]) by the value of the top-hat variance at 12 Mpc, σ 12 = 0.825.

Simulations of these nine models have been performed as described in [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF] using GADGET-4 [START_REF] Springel | GADGET: a code for collisionless and gasdynamical cosmological simulations[END_REF]. All simulations are of 1500 3 particles and the box side length is L box = 1492.5 Mpc, and Plummer-equivalent comoving softening equal to 2 percent of the mean inter-particle distance, corresponding to 22kpc, was employed. All the simulations were started at a redshift of z = 99, with the initial conditions generated using the 2LPTic) method [START_REF] Soc | Transients from initial conditions in cosmological simulations[END_REF], i.e. using LPT at second order. As the goal is to study the cosmology dependence alone, the same realization of the initial PS is used for all the simulations. We note also that the 2LPTic) method uses the EdS approximation for the cosmology at the starting redshift -a point we will return to in discussing the results below.

The matter power spectra was computed in each simulation at times specified by five reference values of the mass variance σ 12 : 0.343, 0.499, 0.611, 0.703, and 0.825, ordered from higher to lower redshifts. As noted the reference value σ 12 = 0.825 is the value at z = 0 in all models, while for the other cases each value of σ 12 corresponds to different redshifts for the different models. This choice 6.4 Results

Results

In this section, we report our comparison of the PT predictions for the PS at one loop against the results of the N -body simulations described in the previous section (and reported in [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF]).

Calculation of PT predictions

We calculate the PS predicted by one-loop by evaluating numerically the terms in Eq. (6.2.3) for the nine cosmological models in Table 6.2. The dependence on the wavenumber k is given through the integrals M i and N i , which, as discussed, are identical in the nine models, up to an overall normalisation given by the linear theory growth rate squared. All non-trivial dependence on the cosmological parameters coming from the one-loop contribution is given through the redshift-dependent functions γ 2 (z) and γ 3 (z).

For the numerical integration of M i , we impose sharp infra-red and ultra-violet cutoffs on the PS, at k = ε and k = k c respectively. The integrations can then be written conveniently as where ϵ = (ε/k), 1/ω = (k c /k), and µ min and µ max are defined in Eq. (5.1.27). The numerical integration of N i is obtained by breaking up the range integration of r into two pieces, from ϵ to 1 and from 1 to 1/ω. We test for convergence by extrapolating ϵ and ω to smaller and smaller values, and in practice our expressions for the full PS are given ϵ = 0.01 and ω = 0.01, for which excellent convergence is found for k in the relevant range i.e., k from k = 0.01 to k = 0.3. We further test our integrations by comparing our results, for the EdS limit (i.e. setting γ 2 = γ 3 = 0) with those obtained using the publicly available code FAST-PT [START_REF] Mcewen | Fast-pt: a novel algorithm to calculate convolution integrals in cosmological perturbation theory[END_REF] for this case. Figure 6.1 show the result of this comparison, which shows excellent agreement between our numerically converged expressions and that of FAST-PT.

To obtain γ 2 (z) and γ 3 (z), we solve numerically Eqs. (6.2.16)-(6.2.18) with the given boundary conditions Eq. (6.2.19), corresponding to Ω m,∞ = 1 in all but model8, for which Ω m,∞ = 1 -Ω de,e . To do so we first solve for α 1 by integrating numerically Eq. (6.2.16). The functions Ω m (z) and w(z) for the nine models considered are shown in Figure 6. 
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Combining our results for the integrals, and those for the functions γ 2 and γ 3 depending on the expansion history of each model, we obtain from Eq. (6.2.3) the theoretical prediction for the one loop PS in each model.

Comparison with N-body data

Figure 6.5 shows a direct comparison between the PS measured in N -body simulations and those predicted by standard PT at one loop, for the nine cosmological models in Table 6.2, in the range from k = 0.01 to k = 0.3. Each of the five panels corresponds to a different time specified by one of five chosen reference values of σ 12 . The corresponding redshifts z 0 in model0 are also given for reference. We observe that, as expected and described in numerous previous studies (see e.g. [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF][START_REF] Carlson | Critical look at cosmological perturbation theory techniques[END_REF] and references therein), the one-loop PT prediction and simulations exhibit agreement at a few percent level, in a range of sufficiently small k which becomes progressively smaller as redshift decreases, e.g. at z 0 = 2 few (< 3) percent agreement extends to beyond k = 0.3, while at z 0 = 0 it is restricted to less than k = 0.1. Using extensions of perturbation theory, agreement with theoretical predictions can be obtained. Notably, using EFT [START_REF] Carrasco | The effective field theory of cosmological large scale structures[END_REF][START_REF] Carrasco | The Effective Field Theory of Large Scale Structures at two loops[END_REF][START_REF] Senatore | The IR-resummed Effective Field Theory of Large Scale Structures[END_REF] approaches up to two-loop [START_REF] Baldauf | Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound[END_REF][START_REF] Garny | Two-loop power spectrum with full time-and scaledependence and EFT corrections: impact of massive neutrinos and going beyond EdS[END_REF], and even three-loop [START_REF] Konstandin | The effective field theory of large scale structure at three loops[END_REF], agreement in this range of k slightly below the 1% level has been reported.

Given this level of agreement between PT approaches and N -body simulation data, it is understandable that the predicted sub percent corrections to theoretical calculations using the EdS approximation have been largely neglected. Indeed the plots in Figure 6.5 for the different models are so well superimposed that we can only just marginally discern a difference between the different models at the very largest k at low redshift, where the one-loop PT predictions is poor. As we will now see this indeed results from the fact that the cosmological corrections are much below the percent level. Nevertheless it turns out that, by using the method employed here, these tiny corrections can not only be measured in N -body simulations but agree remarkably well with those predicted by PT at one loop. Figure 6.6 shows the differences between the PS in each cosmological model modeli and that in the reference model model0, normalized by the PS measured in the simulation of the latter model. The solid lines correspond to the differences measured in the N -body simulations, and the dashed lines to those predicted by one-loop PT (i.e. as given in Eq. (6.3.6), with j = 0.) Each panel shows the same range of k as in the previous Fig. 6.5 and corresponds to again to a specific value of σ 12 . We draw the reader's attention first to the fact that the PT prediction for the maximal fractional difference in the power in the family of models ranges from approximately 0.1% at z 0 = 2 to approximately 0.5% at z 0 = 0. Qualitatively we see clearly a similar overall tendency in line with what we expect (and saw also for the full PS): at each time there appears to be excellent agreement for a range of sufficiently small k, of which the upper limit decreases as redshift decreases. There is only one 'outlier', model8, which does not approximate well the PT predicted value at the earliest times. The origin of this discrepancy between theory and simulations may be attributed to the initial conditions used in the simulations. As mentioned they are set up using 2LPTic [START_REF] Soc | Transients from initial conditions in cosmological simulations[END_REF], which employs the EdS approximation for the LPT calculation. However, as discussed above, model8 in fact differs from the other models in that it has a residual smooth matter-like component at high red-shift. Our test picks up at early times this (very tiny) discrepancy. Figures 6.7 and 6.8, by restricting to k ≤ 0.1 and showing fewer models, facilitate comparison of the theoretical and simulation results. The first shows exactly the same quantities as in Fig. 6.6 for the models i = 3, 4, 5, 6, 7, while the second does so for i = 1 and i = 2. Figure 6.7 shows theoretical one loop predictions aligning remarkably well with the N -body simulation results, even when the fractional changes in the predicted (and measured) power are below 0.01%. For the lower redshifts, as noted, we see clearly that agreement is still also remarkably good, but in a range of smaller k (≤ 0.04 at z 0 = 0). Figure 6.8 shows likewise remarkable agreement, albeit marginally poorer than for the models in Figure 6.7, with a small offset absent in Figure 6.8.

Results

Conclusions

In Chapter 3 we have derived in detail the kernels for both standard EPT and LPT in a family of EdS models, characterized by their constant linear growth rate α.

While such results for this family of models are implicit in previous treatments of perturbation theory in the FLRW cosmologies (e.g. [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF][START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF][START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF][START_REF] Juszkiewicz | On the evolution of cosmological adiabatic perturbations in the weakly non-linear regime[END_REF][START_REF] Vishniac | Why weakly non-linear effects are small in a zero-pressure cosmology[END_REF][START_REF] Goroff | Coupling of modes of cosmological mass density fluctuations[END_REF][START_REF] Suto | Quasinonlinear theory of cosmological self-gravitating systems[END_REF][START_REF] Bertschinger | Gravitational Instability of Cold Matter, Astrophys[END_REF][START_REF] Bernardeau | The Nonlinear Evolution of Rare Events[END_REF][START_REF] Catelan | Eulerian perturbation theory in non-flat universes: second-order approximation[END_REF]), or in a broader class of cosmologies (e.g. [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Fasiello | Nonlinear fields in generalized cosmologies[END_REF]), the simple analytical results in this case which generalize those of the standard EdS model have not (to our knowledge) been discussed in the literature previously. For the one-loop power spectrum in EFT we have used these kernels to show that the expected infra-red convergence properties of the corrections relative to a standard EdS model are obtained, without the need for cancellation between the two contributing integrals. Further we have noted that the coefficients of ultra-violet divergent terms have a strong dependence on α, and the leading divergence can even change sign (and is zero at a certain value).

In Chapter 4 we have shown that these analytical results for the kernels in these models can be exploited to obtain a simplified formulation of the calculation of the cosmology-dependent corrections to the usual separable EdS approximation in any standard type non-EdS cosmology, and in particular in LCDM-like cosmologies. We do so by parametrizing the relevant time-dependent functions characterizing this cosmology dependence as effective growth rates in gEdS models. Assuming only that the cosmology at asymptotically early times is gEdS, second-order corrections are parametrized in terms of one such exponent, and third-order corrections in terms of it and two more such exponents. Thus, for example, the bispectrum calculated at leading non-trivial order in perturbation theory, depending on the second-order perturbation, is, at any time, exactly equal to that in a gEdS model. For the power spectrum we show the results on the infra-red convergence behaviour of the gEdS model generalize, and we derive explicit expressions for the corrections to the EdS model expressed in terms of infra-red safe integrals. This expression turns out to depend on only one of the two effective exponents needed at the third order. Nevertheless the PS is in fact given to a relatively good approximation (up to ∼ 25%) by that obtained with the analytic gEdS kernels on replacing the fixed growth rate α of gEdS by the single effective exponent α 2 (z) defining the exact evolution at second order. Our exact expression is much simplified compared to previous (equivalent) expressions derived in [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] which involve six or eight redshift-dependent functions and do not explicitly
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recover the infra-red convergent properties as we have done.

Our formulation of the cosmological corrections in this way makes it simple to understand why they are so very small in LCDM-like models (typically < 1% even at z = 0).

The effective growth exponents we introduce to map the time-dependent kernels to those of the gEdS models obey equations in which one can clearly identify an adiabatic limit, of a dark energy component scaling like matter (i.e. w = 0) in which these exponents converge to the instantaneous logarithmic linear growth rate. The more rapid evolution of dark energy at low redshift acts like a damping of this evolution, leading to the effective exponent much closer to its initial EdS value. Combined with the very weak α dependence shown by the analytical expression for the gEdS kernels, the corrections turn out to be as small as they are. Only for models accelerating much faster than LCDM at z = 0 can such corrections be comparable to the EdS approximated loop corrections, and even in the asymptotic limit that Ω m → 0 they remain finite and at most of the order unity.

In Chapter 5, we have exploited the results for the kernels in gEdS to obtain exact analytical solutions for the PS in what we will call "generalized scale-free models" i.e. for a PS which is a simple power law and the cosmology is gEdS [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Benhaiem | Non linear gravitational clustering in scale free cosmological models[END_REF]. We have thus generalized existing analytic results for the standard EdS case [START_REF] Makino | Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields[END_REF][START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF] to this one-parameter family, with the corresponding analytic expressions now becoming functions not just of the power law exponent n but also of the logarithmic growth rate α in the model. These models share the property of self-similarity of usual scale-free models (with a standard EdS expansion law). This makes them ideal for numerical testing for the accuracy of the analytical predictions, as the property of self-similarity allows the extraction of highly accurate results from simulations (see [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]). We also explored the ultra-violet divergences in perturbation theory in these models and examined their regularization by methods such as effective field theory. This may, we anticipate, provide insights into the application of such techniques in standard cosmologies. It would also be interesting to extend the analysis we have presented here to determine analogous formulations (in terms of effective growth rate functions) of analyses previously reported in the literature for cosmological corrections, both for other statistics (two-point velocity statistics, pairwise velocities, trispectrum etc.) at one-loop and two-loop, and also for a broader range of cosmological models. In particular it would be interesting to explore such a formulation of perturbation theory with a massive neutrino component including its perturbations (see e.g. [START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF][START_REF] Aviles | Clustering in massive neutrino cosmologies via Eulerian Perturbation Theory[END_REF][START_REF] Aviles | A Lagrangian perturbation theory in the presence of massive neutrinos[END_REF][START_REF] Garny | Two-loop power spectrum with full time-and scaledependence and EFT corrections: impact of massive neutrinos and going beyond EdS[END_REF]). In this case the kernels have also a scale dependence that might be expected to be conveniently formulated in terms of (scale-dependent) effective growth exponents analogous to those we have employed here.

While these models are idealized and very different from typical standard cosmological models, they provide a simple framework in which to test cosmological perturbation theory. Specifically they are evidently designed to probe the cosmology dependence, and indeed we have seen that, by exploiting self-similarity, it is possible with even quite small N -body simulations to test and validate our predictions to a high degree of accuracy. To our knowledge, this is the first time that the predictions of perturbation theory for dependence on the growth rate of fluctuations have been tested numerically.

In Chapter 6, we tested our theoretical calculation of the one-loop power spectrum (PS), as shown in Chapter 4, against the simulation results provided by [START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF]. Our calculations focused on the cosmological correction to the one-loop PS. We examined the relative difference between the cosmological correction in each model and the reference model, which is the LCDM model. Our predictions showed excellent agreement with the simulations, exhibiting a relative difference of almost one-hundredth of a percent at small values of k within the regime of our interest. Hence, we can disregard this effect. Further, we plan to run numerical simulations specifically for the EdS case to directly compare the relative difference between LCDM-type models and EdS. This would allow us to test further the theoretical prediction of the cosmological correction to the PS against simulations.

Another possible further extension of this project is to compute other statistics, such as velocity-velocity correlation, and to probe non-gaussianity like skewness and kurtosis. Specifically, in Chapter 6, we calculate the two-loop power spectrum and incorporate the effective terms to assess the accuracy and effectiveness of the two-loop calculation. Additionally, we can further refine the test of Effective Field Theory (EFT).
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A.2 Perturbation theory kernels

The ratio of the second to first Friedmann equations for the case matter-dominated (EdS) universe, which is pressureless or 

P = 0 is ä/a H 2 = -4πGρ m /3 8πGρ m /3 = - 1 2 ä a = - H 2 2 ∂H ∂t = - 1 2 H 2 a ∂H ∂a ∂a ∂t = - 1 2 H a 2 a ∂H ∂a = - 1 
σ ij (x, τ ) ≡ 1 d 3 pf (x, p, τ ) d 3 p p i ma p j ma f (x, p, τ ) -u i (x, τ )u j (x, τ ).(A.3.3)
The velocity dispersion σ ij is a deviation from the single coherent flow that refers to an anisotropic stress-energy tensor (see e. g. [START_REF] Pueblas | Generation of vorticity and velocity dispersion by orbit crossing[END_REF]). Let us start from the first line of Eq. (2.1.29)

d 3 p p i ma ∂f ∂τ + d 3 p p i ma p j ma ∂f ∂x j -am ∂ϕ ∂x i d 3 p p i ma ∂f ∂p j = 0. (A.3.4)
The first term of (A.3.4) is

d 3 p p i ma ∂f ∂τ = ∂ ∂τ d 3 p p i ma f -d 3 p ∂ ∂τ p i ma f = ∂ ∂τ d 3 p p i ma f + d 3 p p i m ∂a ∂τ a -2 f = ∂ ∂τ d 3 p p i ma f + H d 3 p p i ma f = ∂ ∂τ a 3 m ρu i + H a 3 m ρu i . (A.3.5)
where the definition of the matter density ρ and velocity u i refer to Eq. (A. 

∂ ∂τ a 3 ρ m ρu i = u i a 3 ρ m ∂δ ∂τ + a 3 ρ m ∂δ ∂τ u i = -u i a 3 ρ m ∂ ∂x j u j (1 + δ) + a 3 ρ m ∂u i ∂τ = -u i ∂ ∂x j a 3 m ρu i + a 3 ρ m ∂u i ∂τ = -u i u j ∂ ∂x j a 3 m ρ - a 3 m ρu i ∂ ∂x j u j + a 3 ρ m ∂u i ∂τ (A.3.9)
Inserting Eq. (A.3.9) into Eq. (A.3.9), we thus have

a 3 m ρ ∂ ∂τ u i + H a 3 m ρu i + ∂ ∂x j ρσ ij + a 3 m u i ∂ ∂x j u j + a 3 m ρ ∂ ∂τ u i = 0. (A.3.10)
We divide Eq. (A.3.10) by ρa 3 /m to get the Euler equation

∂ ∂τ u i + Hρu i + u • ∇u i + ∇ϕ = - 1 ρ ∇ i (ρσ ij ) ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) + [u(x, τ ) • ∇]u(x, τ ) + ∇ϕ(x, τ ) = - 1 ρ e i ∇ j (ρσ ij ), (A.3.11)
where e i is the unit vector.

A.4 Coupling kernels of the source terms S α and S β

The transformation from real space to Fourier space and vice versa can be expressed as

f (k) = d 3 x exp -ik • x f (x), (A.4.1) f (x) = d 3 k (2π) 3 exp ik • x f (k), (A.4.2)
We define the divergence of velocity as

θ(x) = ∇ • u(x) (A.4.3) 130 
A.4 Coupling kernels of the source terms S α and S β and in Fourier space

d 3 xe -ik•x θ(x) = d 3 xe -ik•x ∇ • u(x) θ(k) = d 3 x∇ • u(x)e -ik•x -d 3 xu(x)∇ • e -ik•x θ(k) = iku(k) u(k) = -i k k 2 θ(k). (A.4.4)
We can transform the continuity equation to Fourier space as below

∂δ ∂τ + ∇ • u(1 + δ) = 0 d dτ d 3 xδ(x)e -ik•x + d 3 x ∇ • u(x) e -ik•x + d 3 x ∇ • u(x)δ(x) e -ik•x = 0 d dτ d 3 xδ(x)e -ik•x + d 3 x ∇ • u(x) e -ik•x = -d 3 x ∇ • u(x)δ(x) e -ik•x . (A.4.5)
From the right-hand side of the equation (A.4.5), we obtain

d 3 x ∇ • u(x)δ(x) e -ik•x = d 3 xd 3 y (∇ x • u(x))δ(y) + u(x) • ∇ y δ(y) δ (3) (x -y)e -ik•x = d 3 xd 3 yδ (3) (x -y) d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 e iq 1 •x e iq 2 •y × iq 1 u(q 1 )δ(q 2 ) + iq 2 u(q 1 )δ(q 2 ) e -ik•x = d 3 xd 3 yδ (3) (x -y) d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 e iq 1 •x e iq 1 •y × i(q 1 + q 2 ) u(q 1 )δ(q 2 )e -ik•x = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 u(q 1 )δ(q 2 )[i(q 1 + q 2 ) ×(2π) 3 δ (3) (k -q 1 -q 2 ) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 (-i q 1 q 2 1 )θ(q 1 )δ(q 2 )[i(q 1 + q 2 ) ×(2π) 3 δ (3) (k -q 1 -q 2 ) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 ( q 1 q 2 1 )[(q 1 + q 2 ) θ(q 1 )δ(q 2 ) ×(2π) 3 δ (3) (k -q 1 -q 2 ) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 α(q 1 , q 2 )θ(q 1 )δ(q 2 )q 1 (2π) 3 δ (3) (k -q 1 -q 2 ) , (A.4.6)
where α(q 1 , q 2 ) = q 1 .(q 1 + q 2 ) q 

(k) ∂τ + Hθ(k) + 3 2 Ω m (a)H 2 δ(k) = -d 3 xe -ik•x ∇(u • ∇u) (A.4.9)
From the right-hand side of the equation (A.4.9), we can write

d 3 xe -ik•x ∇(u • ∇u) = d 3 xd 3 yδ (3) (x -y)e -ik•x × ∇u(x) • ∇u(y) + 1 2 u(x) • ∇(∇u(y)) + 1 2 u(y) • ∇(∇u(x)) = d 3 xd 3 yδ (3) (x -y)e -ik•x d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 e iq 1 •x e iq 2 •y × q 1 • q 2 u(q 1 )u(q 2 ) + 1 2 u(q 1 )q 2 • q 2 u(q 2 ) + 1 2 u(q 2 )q 1 • q 1 u(q 1 ) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 [(q 1 + q 2 ) θ(q 1 )θ(q 2 ) (q 1 • q 2 ) 2 q 2 1 q 2 2 + q 2 2 (q 1 • q 2 ) 2q 2 1 q 2 2 + q 2 1 (q 1 • q 2 ) 2q 2 1 q 2 2 (2π) 3 δ (3) (k -q 1 -q 2 ) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 β(q 1 , q 2 )θ(q 1 )θ(q 2 )(2π) 3 δ (3) (k -q 1 -q 2 ), (A.4.10)
where β(q 1 , q 2 ) = 1 2 (q 1 + q 2 ) 2 q 1 .q 2 q 2 1 q 2 2 .

(A.4.11)

A.5 Second-order differential equation for density and velocity field

We can rewrite the continuity and Euler equations as below

∂δ ∂τ + θ = S α → θ = S α - ∂δ ∂τ , (A.5.1) ∂θ ∂τ + Hθ + 3 2 Ω m H 2 δ = S β . (A.5.2)
Then we can derive the second-order differential equation for density by substituting eq. (A.5.1) to eq. (A.5.2) 

∂(S α -∂δ ∂τ ) ∂τ + H(S α - ∂δ ∂τ ) + 3 2 Ω m H 2 δ = S β , - ∂ 2 δ ∂τ 2 -H ∂δ ∂τ + 3 2 Ω m H 2 δ = S β -( ∂ ∂τ + 
H 2 δ = S β -H ∂ ∂a (aS α ), -H 2 a 2 ∂ 2 δ ∂a 2 - 3 2 H 2 a ∂δ ∂a + 3 2 Ω m H 2 δ = S β -H ∂ ∂a (aS α ), -H 2 a 2 ∂ 2 δ ∂a 2 - 3 2 H 2 a ∂δ ∂a + 3 2κ 2 H 2 δ = S β -H ∂ ∂a (aS α ), H 2 -a 2 ∂ 2 a - 3 2 a∂ a + 3 2κ 2 δ = S β -H∂ a (aS α ). (A.5.5)
Then we can obtain the second-order differential equation for velocity from a derivation of eq. (A.5.2) to conformal time

∂ ∂τ ∂θ ∂τ + Hθ + 3 2κ 2 H 2 δ = ∂ ∂τ S β , ∂ 2 θ ∂τ 2 + ∂H ∂τ θ + H ∂θ ∂τ + 3 κ 2 H ∂H ∂τ δ + 3 2κ 2 H 2 ∂δ ∂τ = ∂ ∂τ S β . (A.5.6)
Thus we obtain the second-order differential eq. for velocity with respect to conformal time by putting (A.5.1) and eq. (A.5.2) to eq. (A.5.6)

∂ 2 θ ∂τ 2 + ∂H ∂τ θ + H ∂θ ∂τ + 3 κ 2 H ∂H ∂τ (S β -θ ′ -Hθ) 3 2κ 2 H 2 + 3 2κ 2 H 2 (S α -θ) = ∂ ∂τ S β , ∂ 2 θ ∂τ 2 + H - 2 H ∂H ∂τ ∂θ ∂τ - ∂H ∂τ θ - 3 2κ 2 H 2 θ = ∂ ∂τ S β - 3 2κ 2 H 2 S α - 2 H ∂H ∂τ S β .
(A.5.7)

Then we can transform the equation (A.5.7) by using the equation (A.5.4) as below

H a 2 ∂ 2 a +
C.4 Detailed comparison with results of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] solving the coupled equations:

dα 1 d ln a = 3 2 wα 1 -α 2 1 - 1 2 α 1 + 3 2 Ω m , (C.3.2) d 2 γ 2 d ln a 2 = - 1 2 (1 -3w) + 4α 1 dγ 2 d ln a -2α 2 1 + 3 2 Ω m γ 2 + 21 2 (Ω m -α 2 1 ), (C.3.3) d 2 γ 3 d ln a 2 = - 1 2 (1 -3w) + 6α 1 dγ 3 d ln a -3(2α 2 1 + Ω m )γ 3 - 189 5 Ω m -α 2 1 + 189 35 4α 2 1 γ 2 +2α 1 dγ 2 d ln a , (C.3.4)
subject to the boundary conditions, given at a = 0, by

α 1 (0) = α 2 (0) = α 3 (0) = α 10 (0), dα 2 da (0) = dα 3 da (0) = 0, (C.3.5)
or, more explicitly,

γ 2 (0) = 7 1 -α 10 (0) 1 + 6α 10 (0) , γ 3 (0) = 63 5 (1 -α 10 (0))(6α 10 (0) -1) (1 + 6α 10 (0))(1 + 8α 10 (0)) , (C.3.6) and dγ 2 da (0) = 0 , dγ 3 da (0) = 0, (C.3.7)
and where α 10 (0) is given by Eq. (4. 1.4) with Ω m given by the asymptotic (constant) fraction of clustering matter at high redshift. Given that α 1 = α 2 = α 3 (0) = α 10 (a)

is the solution at leading order in w, we can integrate in practice from 0 < a i ≪ 1 assuming exactly the initial conditions given by this solution. Note that in a standard EdS cosmology we have of course α 10 (0) = 1, and the case α 10 (0) ̸ = 1 corresponds to the more general gEdS case where part of the matter component at high redshift is smooth (e.g. a massive neutrino component or matter-like dark energy component).

C.4 Detailed comparison with results of [3]

Expressions for the cosmological corrections, at second and third order in EPT, and for the one-loop PS (as in the previous appendix), have been given in [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], in terms of six time-dependent functions. Further this paper provides phenomenological fits for the parameter dependence in the case of a smooth component with a constant equation of state. We make explicit here how these six functions are related to one another by the three additional constraints we have derived (which reduces the number of independent functions to three, of which only two are required to calculate the PS at one loop). We also check that there is indeed good numerical agreement between our results and those of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF].

C.4.1 Second-order growth factor [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] gives results for the second-order growth factor in terms of two numerically fitted functions as We see that our numerical solution for γ 2 well agree very accurately with Eq. (C.4.4) for w 0 = -0.5, -1 and well, albeit slightly less so, for w 0 = -1.5. 

T 2A = D 2A D 2 1 -1 = | ln Ω m | 5.54 × 10 -3 |w 0 | - 3.40 × 10 -3 |w 0 | , (C.4.1) 
T 2B = D 2B D 2 1 -1 = | ln Ω m | - 1 

C.4.2 Third-order growth factor

At this order [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] gives results in terms of the four functions

T 3AA = D 3AA D 3 1 -1 ≃ | ln Ω m | 8.21 × 10 -3 |w 0 | - 5.14 × 10 -3 |w 0 | , (C.4.5) T 3AB = D 3AB D 3 1 -1 ≃ | ln Ω m | 1.5+0.4 ln |w 0 | |Ω m | 0.7|w 0 | - 9.16 × 10 -3 |w 0 | + 8.95 × 10 -3 |w 0 | , (C.4.6) T 3BA = D 3BA D 3 1 -1 ≃ | ln Ω m | 1.06-0.5 ln |w 0 | 7.68 × 10 -3 |w 0 | -1.130 × 10 -2 |w 0 | , (C.4.7) T 3BB = D 3BB D 3 1 -1 ≃ | ln Ω m | - 2.641 × 10 -2 |w 0 | + 1.582 × 10 -2 |w 0 | , (C.4.8)
and two additional functions D ′ 3AA and D ′ 3AB determined by the relations in Eqs. (4.3.9). These are related to the functions we have introduced by For the first relation it is easy to check the accuracy with which it is satisfied by the expressions above from [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF], because the same functional form has been used to fit the functions on both sides: comparing the two fitted coefficients on the left and right-hand side of the relation Eq. (C.4.12), we find they agree at the sub-percent level. Further to check the numerical accuracy of these fits against ours we plot in the left panel of Fig. C.2 the ratio between our own numerical solution for γ 3AA and γ 3AA,T ak = (45/4)T 3AA . The agreement is at a comparable level to that for γ 2 .

T 3AA = 4 45 γ 3AA , T 3AB = - 1 9 γ 3AB , T 3BA = 5 63 γ 3BA , T 3BB = - 16 
To assess both the agreement of Eq. (C.4.13) with the fits of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] given above, and the accuracy of these fits in describing the exact solutions, we plot in the right panel of Fig. C.2 the ratio of our numerical solutions for γ 3 = γ 3BA to γ 3BA,T ak1 = (63/5)T 3BA and γ 3BA,T ak2 = (63/5)T ′ 3BA respectively, where T ′ 3BA is the linear combination on the right-hand side of Eq. (C.4.13). These curves are for a model with w 0 = -1. We can infer that Eq. (C.4.13) is obeyed by the fitting formulae at the 10% level, and that the agreement with our numerical results is slightly better if we use the fit for T 3BA . We have checked carefully the origin of these small discrepancies and find that they arise from transients from initial conditions which disappear. In practice however, notably for the PS corrections which depend only very weakly on γ 3 , the fits provided by [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] are accurate enough for any current practical application.

C.5 Comparison with analysis of [4]

In [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] the time dependence of the second order kernel is parametrized by two functions λ 2 , which are identical to the two functions we have used:

λ (1) 2 = d 2A , λ (2) 2 = d 2B . (C.5.1)
The six functions used to parametrize the third-order density kernels just differ by a factor of 2:

λ (1) 3 = 1 2 d 3AA , λ (2) 3 
= 1 2 d 3AB , λ (3) 3 
= 1 2 d ′ 3AA , λ (4) 3 
= 1 2 d ′ 3AB , λ (5) 3 
= 1 2 d 3BA , λ (6) 3 
= 1 2 d 3BB . (C.5.2)
For the specific case of a LCDM cosmology, [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] provide analytical solutions for these eight functions (and further ones parametrizing the fourth and fifth order kernels) as power series in the parameter ζ = Ω Λ0 Ω m0 e 3η , where η ≡ ln D + (D + the linear growth factor normalized to unity at z = 0, and Ω Λ0 and Ω m0 are the dark energy and matter fractions at z = 0, respectively). It is straightforward to verify that the expressions given in Appendix A of [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF], up to third order in η, satisfy the five relations Eq. (4.2.9) and Eqs. (4.3.21)-(4.3.24).

To check the numerical agreement of our results with those of [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] we calculate the functions we have used to parametrize the PS and find

γ 2 = 7 2 (7λ (1) 2 
-5) = - 7c 1 26 ζ - 2c 2 19 ζ 2 - 7c 3 125 ζ 3 , (C.5.3) γ 3BA = 63 5 (21λ (5) 3 
-1) = 462c 1 1625 ζ + 51c 2 266 ζ 2 + 2576c 3 20625 ζ 3 , (C.5.4)
where .3 shows the comparison between our numerical solutions to the exact equations for the functions γ 2 and γ 3 = γ 3BA and the power series solutions of [START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] for the same quantities, in LCDM models, up to the indicated orders. We observe excellent agreement where the power series solutions appear to converge well.

c 1 = - 3 32 , c 2 = - 141 
C.6 Comparison with analysis of [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF][START_REF] Garny | Loop corrections to the power spectrum for massive neutrino cosmologies with full time-and scale-dependence[END_REF] [5] parametrized the time dependence of second order and third order density kernels in terms of three functions. Comparing their definitions directly to ours (equivalent to those of [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF]) we obtain [START_REF] Bernardeau | Skewness and Kurtosis in Large-Scale Cosmic Fields[END_REF]. As we have seen in Section 4, these same conditions are also appropriate for the more general case of gEdS boundary conditions.
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Third-order density kernel

The second-term in RHS of the equation (D.0.2) can be written as below

- d 3 q (2π) 3 α(q, k -q, τ )θ (2) (q, τ )δ (1) (k -q, τ ) = - d 3 q (2π) 3 α(q, k -q, τ )(-Hf D 2 (τ ))θ (2) (q)(D(τ ))δ (1) (k -q) = Hf D 3 (τ ) d 3 q (2π) 3 α(q, k -q, τ )θ (2) (q)δ (1) (k -q) = Hf D 3 (τ ) d 3 q (2π) 3 d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q)δ (1) (q 1 )δ (1) (q 2 )α(q, k -q)G 2 (q 1 , q 2 ) × (2π) 3 δ (D) (q -q 1 -q 2 ), (D.0.6)
where

θ (2) (q) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q 1 )δ (1) (q 2 ) × G 2 (q 1 , q 2 )(2π) 3 δ (D) (q -q 1 -q 2 ). (D.0.7)
The first-term in RHS of the equation (D.0.3) can be written as below

- d 3 q (2π) 3 β(q, k -q, τ )θ (1) (q, τ )θ (2) (k -q, τ ) = - d 3 q (2π) 3 β(q, k -q, τ )(-Hf D(τ ))θ (1) (q)(-Hf D 2 (τ ))(q)θ (2) (k -q) = -H 2 f 2 D 3 (τ ) d 3 q (2π) 3 β(q, k -q, τ )θ (1) (q)θ (2) (k -q) = -H 2 f 2 D 3 (τ ) d 3 q (2π) 3 d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q)δ (1) (q 1 )δ (1) (q 2 ) β(q, k -q)G 2 (q 1 , q 2 ) × (2π) 3 δ (D) (k -q -q 1 -q 2 ), (D.0.8)
where

θ (2) (k -q) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q 1 )δ (1) (q 2 ) × G 2 (q 1 , q 2 )(2π) 3 δ (D) (k -q -q 1 -q 2 ).
(D.0.9)

The second-term in RHS of the equation (D.0.3) can be written as below 

- d 3 q (2π) 3 β(q, k -q, τ )θ (2) (q, τ )θ (1) (k -q, τ ) = - d 3 q (2π) 3 β(q, k -q, τ )(-Hf D 2 (τ ))θ (2) (q)(-Hf D(τ ))θ (2) (k -q) = -H 2 f 2 D 3 (τ ) d 3 q (2π) 3 β(q, k -q, τ )θ (2) (q)θ (1) (k -q) = -H 2 f 2 D 3 (τ ) d 3 q (2π) 3 d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q)δ (1) (q 1 )δ (1) (q 2 ) β(q, k -q)G 2 (q 1 , q 2 ) × (2π) 3 δ (D) (q -q 1 -q 2 ), ( 
(2) (q) = d 3 q 1 (2π) 3 d 3 q 2 (2π) 3 δ (1) (q 1 )δ (1) (q 2 )
× G 2 (q 1 , q 2 )(2π) 3 δ (D) (q -q 1 -q 2 ). and

S β (k, τ ) = -H 2 f 2 D 3 (τ )(B 1 + B 2 ). (D.0.13)
Then we can write 

H∂ a aS α) = H∂ a aHf D 3 (τ )(A 1 + A 2 ) = H∂ a aHf a 3α (A 1 + A 2 ) = H∂ a Hαa 3α+1 (A 1 + A 2 ) = H - H 2a αa 3α+1 + Hα(3α + 1)a 3α (A 1 + A 2 ) = H 2 a 3α 1 2 α + 3α 2 (A 1 + A 2 ).
S β -H∂ a aS α) = -H 2 α 2 a 3α (τ )(B 1 + B 2 ) -H 2 a 3α 1 2 α + 3α 2 (A 1 + A 2 ) (D.0.15)
Thus we have the third-order density solution

δ (3) (k) = -α 2 (B 1 + B 2 ) -1 2 α + 3α 2 (A 1 + A 2 ) -9α 2 -3 2 α + 3 2κ 2 = -α 2 (B 1 + B 2 ) -1 2 α + 3α 2 (A 1 + A 2 ) -9α 2 -3 2 α + 3 2 2α 2 +α 3 = α(B 1 + B 2 ) + 1 2 + 3α (A 1 + A 2 ) 8α + 1 . (D.0.16)
The third-order density kernel can be expressed as below F 3 (q 1 , q 2 , q 3 ) = 1 2(8α + 1) (6α + 1) α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + (2α) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + (6α + 1) α(q 1 + q 2 , q 3 ) + (2α) β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) .

(D.0.17) D.1 The Detailed derivation of Lagrangian perturbation theory

D.1 The Detailed derivation of Lagrangian perturbation theory

The second of displacement field Ψ can be expressed as
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(D.1.1)

The third-order of the Left Hand Side right (hereafter LHS) terms in equation (3.1.59) can be written as

(18α 2 + 3α) 2 Ψ (3) i,i -(4α 2 + α)Ψ (1) 
i,j Ψ

i,j -
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(2α 2 + α) 2 Ψ (1) j,k Ψ (1) k,j + 
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(1) i,j (D.1.2)

and Right Hand Side (hereafter RHS) terms have

(2α 2 + α) 2 Ψ (3) i,i + (2α 2 + α) 2 Ψ (2) 
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j,i . (D.1.4) (1) 
Third-order density kernel 155

The second-order EPT kernel F 2 can be expressed from LPT kernel L as below

F 2 (q 1 , q 2 ) = 1 2 k • L 2 (q 1 , q 2 ) + [k • L 1 (q 1 ][k • L 1 (q 2 )] = 1 2 k • 2α + 1 6α + 1 k k 2 1 - (q 1 • q 2 ) 2 q 2 1 q 2 2 + k • q 1 q 2 1 k • q 2 q 2 2 = 1 2 2α + 1 6α + 1 1 - (q 1 • q 2 ) 2 q 2 1 q 2 2 + (q 1 + q 2 ) • q 1 q 2 1 (q 1 + q 2 ) • q 2 q 2 2 = 1 2 2α + 1 6α + 1 1 - (q 1 • q 2 ) 2 q 2 1 q 2 2 + (1 + q 1 • q 2 q 2 1 )(1 + q 1 • q 2 q 2 2 ) = 1 2 8α + 2 6α + 1 + q 1 • q 2 q 1 q 2 q 2 q 1 + q 1 q 2 + 4α 6α + 1 (q 1 • q 2 ) 2 q 2 1 q 2 2 = 4α + 1 6α + 1 + 1 2 q 1 • q 2 q 1 q 2 q 2 q 1 + q 1 q 2 + 2α 6α + 1 (q 1 • q 2 ) 2 q 2 1 q 2 2 .
(D.1.5)

D.2 gEdS Cosmology

It can be defined as the Friedmann equation in kappa cosmology

H 2 = κ 2 8πG 3 a 2 ρ m , ∂H ∂τ = -κ 2 4πG 3 a 2 ρ m (D.2.1)
The relations below can be obtained from equation ( 12)

∂H/∂τ H 2 = - 1 2 ∂H ∂τ = - 1 2 H 2 ∂H ∂a = - 1 2 H a . (D.2.2)
The Euler and continuity equation (the velocity dispersion tensor is negligible) can be written as

∂δ(x, τ ) ∂τ + ∇ • [1 + δ(x, τ )]u(x, τ ) = 0, (D.2.3) ∂u(x, τ ) ∂τ + H(τ )u(x, τ ) + [u(x, τ ) • ∇]u(x, τ ) = -∇ϕ(x, τ ). (D.2.4)
The equation ( 14) and divergence of equation [START_REF] Carroll | Spacetime and geometry[END_REF] in Fourier space can be expressed as δ ′ (k) + θ(k) = S α, (D.2.5)

D.3 Limit the Integration of power spectrum

Explicit integration range for power spectrum P 22 can be expressed as We thus recover Eq. (2.4.16).

D.4.2 Second-order density field

The equation of the second-order growth factor is expressed by where give the equation of second-order growth factor D 2 in [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] by crossing out factor of -H 2 a 4 .

D.4.3 Second-order velocity kernel

Using the relation in Eq. (3.1.11) the velocity kernels for the second order can be written as θ (2) (k, a) = -∂δ (2) (k, a) ∂a + S (2π) 3 α(q, kq)θ (1) (q, a)δ (1) (k -q, a)

= -Ha ∂ ∂a D 2A Â(k) + D 2B B(k) + d 3 q (2π) 3 α(q, kq)Ha ∂D 1 ∂a D 1 δ (1) (q)δ (1) kq)

= -Ha (D.4.17)

Third-order density kernel 161 D.5 Comparing the one-loop PS to [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF][START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory. II. Two-Point Statistics and Self-Similarity[END_REF] Let us define the nonlinear scale R 0 as the scale when the smoothed linear variance is equal to the unity We get the same expression with [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF]; however, it is slightly different with [START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory. II. Two-Point Statistics and Self-Similarity[END_REF], which has a different sign in the fourth term of P 22 with [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF]. A comparison of our result (MA) with [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF][START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory. II. Two-Point Statistics and Self-Similarity[END_REF] can be seen in = Ω m,0 Ω m,0 + Ω de,0 a -3(w 0 +wa) e 3wa(a-1) .

(E.2.2)

E.3 EDE model

The equation of state parameter of the early dark energy (EDE) model is The distribution of galaxies in the universe is displayed on a map using data from various sources, including the 2-degree Field Galaxy Redshift Survey (2dFGRS) [START_REF] Cole | The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications[END_REF][START_REF] Colless | The 2df galaxy redshift survey: final data release[END_REF] and the Sloan Digital Sky Survey (SDSS) [START_REF] Eisenstein | Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies[END_REF][START_REF] Eisenstein | Sdss-iii: Massive spectroscopic surveys of the distant universe, the milky way, and extra-solar planetary systems[END_REF], as well as simulated catalogs based on the Millenium simulation [START_REF] Springel | Simulations of the formation, evolution and clustering of galaxies and quasars[END_REF]. The map shows the relationship between redshift (radial direction) and right ascension (polar angle). The top two slices of the map highlight significant structures like the Great Wall and the Sloan Great Wall [START_REF]Bibliography[END_REF], which are among the largest observed structures in the universe, spanning billions of light years and containing thousands of galaxies. Additionally, a section of the galaxy distribution map from the 2dFGRS is shown on the left, providing information on over 220,000 galaxies. The bottom and right sections of the map display mock catalogs constructed using semi-analytic techniques, representing the formation and distribution of galaxies within the framework of the Millenium simulation. Credit to [START_REF] Springel | The large-scale structure of the Universe[END_REF] L which gives the fractional change in the predicted PS, and one loop PT is expected only to apply for ∆ 2 L ≪ 1. At ∆ 2 L ∼ 0.1 the predicted maximal change in power, for α = 0.25, is thus of order of 5%. This can be compared with the much smaller changes in standard (LCDM-like) models, of order 0.5% at z = 0 (see P1 and [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Garny | Two-loop power spectrum with full time-and scaledependence and EFT corrections: impact of massive neutrinos and going beyond EdS[END_REF]) . . . . . . . . . 98 

Résumé

La théorie des perturbations cosmologiques est un outil analytique central dans la théorie de la formation des structures cosmologiques. Il s'agit d'un domaine de recherche très actif qui prépare des prédictions théoriques pour les grands programmes d'observation à venir dans ce domaine. Cette thèse se concentre sur la dépendance des résultats au delà de l'ordre principal dans la théorie des perturbations cosmologiques sur l'histoire de l'expansion du modèle cosmologique, un effet faible qui est généralement négligé. Nous abordons d'abord la question en utilisant une classe simplifiée de modèles cosmologiques appelés Einstein de Sitter généralisés. Ceux-ci nous permettent d'étudier la dépendance cosmologique paramétrée par une seule constante contrôlant le taux de croissance. Nos résultats analytiques pour les noyaux de la théorie des perturbations expliquent pourquoi la dépendance cosmologique est faible. Ils motivent également une formulation alternative du calcul des corrections cosmologiques dans les modèles standards (de type LCDM). Nous obtenons ainsi une expression simplifiée pour le spectre de puissance exact à une boucle qui ne dépend que de deux fonctions de "taux de croissance effectif" dépendant du temps. En utilisant les noyaux analytiques d'Einstein de Sitter généralisé, nous dérivons également des résultats exacts pour le spectre de puissance à une boucle dans les modèles sans échelle généralisés avec un fond d'Einstein de Sitter généralisé. Nous comparons notre prédiction de la dépendance du spectre de puissance par rapport au taux de croissance avec les résultats mesurés dans les simulations à N-corps de ces modèles, démontrant un très bon accord. Nous déduisons également des corrections à ces prédictions dans une approche de "théorie du champ effectif" et soulignons comment d'autres simulations pourraient fournir des tests rigoureux. Enfin, nous exploitons un ensemble de grandes simulations à N-corps convenablement conçues pour tester numériquement la dépendance cosmologique prédite du spectre de puissance dans les cosmologies standard.

Abstract

Cosmological perturbation theory (PT) is a central analytical tool in the theory of cosmological structure formation. It remains a very active area of research preparing theoretical predictions for major forthcoming observational programs in the field. The focus of this thesis is the dependence of results beyond leading order in cosmological PT on the expansion history of the cosmological model, a weak effect that is usually neglected. We first approach the question using a simplified class of cosmological models called generalized Einstein de Sitter (gEdS). These allow us to study cosmology dependence parametrized by a single constant controlling the growth rate. Our analytical results for the PT kernels throw light on why cosmology dependence is weak. They also motivate an alternative formulation of the calculation of cosmological corrections in standard (LCDM-like) models. We obtain in this way a simplified expression for the exact one-loop power spectrum (PS) depending on only two time-dependent "effective growth rate" functions. Making use of the analytic gEdS kernels, we also derive exact results for the one-loop PS in scale-free models generalized with a gEdS background. We compare our predicted growth rate dependence of the PS with results measured in N-body simulations of these models, demonstrating very good agreement. We also derive corrections to these predictions in an "effective field theory" approach and highlight how further simulations could provide stringent tests of it. Finally, we exploit a set of appropriately designed large N-body simulations to test numerically the predicted cosmological dependence of the PS in standard cosmologies.
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 2111 Figure 1.1: CMB map from observations by Planck collaboration (credit to[START_REF]Planck overview[END_REF]). The color graduation scale shows very small variations of CMB temperature.

Figure 1 . 2 :

 12 Figure 1.2: The projection of the SDSS 3-dimensional map depicting the distribution of galaxies is cut into sections. The observer is at the center of the plot, and each individual point represents a galaxy, typically consisting of approximately 100 billion stars. The galaxies are assigned colors based on the ages of their stars, with the reddish and more tightly grouped points indicating galaxies composed of older stars. The outer circle represents a distance of two billion light years. The area between the wedges remains unmapped by the SDSS due to the presence of dust from our own Galaxy, which obstructs the view of the distant universe in those specific directions. Both sections encompass all galaxies falling within a declination range of -1.25 and 1.25 degrees. Credit to Michael Blanton and SDSS collaboration.
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 13 Figure 1.3: This figure shows the BAO detection by 2dGFRS, which is presented in Fourier space. We can see that the BAO wiggles in the range 0.05hM pc -1 ≲ k ≲ 0.2hM pc -1 (Credit to 2dGFRS collaboration).
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 14 Figure 1.4: This plot shows results for the two-point correlation function obtained by SDSS. The continuous lines are the theoretical predictions (for slightly different values of cosmological parameters). The line without an acoustic peak has pure cold dark matter (CDM). The figure shows the BAO bumps at comoving separation r ∼ 100h -1 M pc.

Figure 1 . 5 :

 15 Figure 1.5: This map shows the distribution of Baryon Oscillation Spectroscopic Survey(BOSS) massive galaxies up to redshift z = 0.7 (credit to Michael Blanton and SDSS collaboration). The red color represents the new BOSS galaxies surveys with the higher redshift, the white color represents the previous SDSS luminous red galaxy, and normal SDSS galaxies are represented by yellow.
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 17 Figure 1.7: This figure illustrates a partition of 15 bodies by tree code in 2-dimensional representations (credit to [79]).

  2.1.40) where based on the theorem ∇ × [∇ϕ(x, τ )] = 0. The last line of Eq. (2.1.40) is an equation for the vorticity of the velocity field. We can write Eq. (2.1.40) as a function of the scale factor a as ∂w(x, a) ∂a ∂a ∂τ + H(a)w(x, a) = 0 ∂w(x, a) ∂a H(a)a + H(a)w(x, a) = 0 ∂w(x, a) ∂a a + w(x, a) = 0. (2.1.41)

Figure 2 . 1 :

 21 Figure 2.1:The decaying (green) growing (red) modes of the growth factor. The black vertical dash line is the scale factor a = 1 (today). The growing mode increases as the scale factor increases. On the other hand, the decaying mode decreases and may be neglected at some cosmological time.

.1. 55 )

 55 Using the relation Eq. (2.1.50), the linear growth factor as a function of scale factor aD 1,+ (a) = a, D 1,-(a) = a -3/2 .(2.1.56)

  (2.1.70)-(2.1.71)). Eq. (2.1.81) can be represented diagrammatically as shown in Fig. 2.2.

Figure 2 . 2 :

 22 Figure 2.2: This figure shows the diagrammatic representation of Eq. (2.1.81). The right side of the figures represents the n-convolution of the linear density field with the coupling F n to give the higher-order density field as described on the left side of the figure.
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 2 5.51) with r = k 1 k . Taking D 3XX = D 3 1 this equation can be reduced to Eq.(2.3.21).

58 3. 1

 581 Perturbation Theory kernels in generalized EdS models ∂δ(x, τ ) ∂τ

. 23 )

 23 where D(a) = a α , and δ(1) (k) is the fluctuation at a = 1. At the same linear order we have the relation between density fluctuations and velocity θ(k, τ ) = -δ ′ (k, τ ) , (3.1.24) from which the solution at linear order for the velocity divergence follows, θ(k, a) = -H(a)αD(a)δ (1) (k). (3.1.25) For the case κ = 1 (and α = 1) we recover the standard expression for the EdS model. These expressions are just special cases of the standard ones for FLRW cosmologies, which correspond to Eq. (3.1.23) and θ(k, a) = -H(a)α 1 (a)D 1 (a)δ (1) (k), (3.1.26) where D 1 (a) is the appropriate growth factor for the linear theory growing mode in the cosmology, and α 1 (a) = d ln D 1 d ln a . (3.1.27) Taking leading order solutions as Eqs. (3.1.23) and (3.1.25), we now proceed to solve Eqs. (3.1.18) and (3.1.19) perturbatively to higher orders taking the ansatz
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 31 Figure 3.1: Variation of the functions d 2 and d 3 determining the EPT kernels at second and third order relative to their values in EdS, as a function of the logarithmic growth rate α of gEdS. The dashed vertical lines bracket approximately the region in which the effective growth rate α 1 (a) varies in LCDM-like models.
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 3144 It follows in particular that1 + δ(x) d 3 x = d 3 q, (3.1.45)

.1. 57 )

 57 This is the solution for any perturbed FLRW cosmology and thus for gEdS in particular with D 1 (a) = D(a) = a α .

  .1.63) 

α 1

 1 By combining Eqs.(3.1.11) and (3.1.12) at linear order (i.e. neglecting the source terms S α and S β ) we obtain easily the equation obeyed by the linear growth factor D 1 (a) which can be cast as (a) d(ln a 0 ) , (4.1.2)

.1. 4 )Fig. 4 .

 44 Fig.4.1 shows a comparison of the exact growth rate α 1 (obtained by solving Eq. (4.1.1) numerically) and α 10 , for models with constant equation of state w s = w 0 , for w 0 = -0.5, -1, -1.5. The left panel shows the two quantities, and the right panel their ratio. We see that, even for the LCDM case (w 0 = -1), the approximation is quite good down to z = 0 (when Ω m ≈ 0.3). This result is somewhat surprising as

Figure 4 . 1 :

 41 Figure 4.1: Left panel: Exact solution for the growth rate α 1 compared with its "adiabatic gEdS approximation" α 10 , as a function of Ω m and for different indicated values of w 0 , parametrizing the constant equation of state of the smooth (dark energy) component. Right panel: the relative difference of the same quantities.

.1. 8 )ln α 10 d ln a = 3 2 -

 82 and rewrite Eq. (4.1.5), neglecting the single quadratic term in ϵ 1 , as a linearized equation in ϵ 1 : 9Ω m α 10 (1 + 4α 10 ) , (4.1.10)

Figure 4 . 2 :

 42 Figure 4.2: The coefficient S(Ω m ) of the source term in Eq. (4.1.9) as a function of (1/2 + 2α 10 ), and as a function of Ω m (upper x-axis).We see that the ratio of |S(Ω m )|/(1/2 + 2α 10 ) remains quite small as dark energy starts to dominate, so that even for |w| ∼ 1 the adiabatic gEdS approximation for the linear growth factor can remain good.

Figure 4 . 3 :

 43 Figure 4.3: Ratio of the growth rate α 11 obtained using the linearized approximation Eq. (4.1.9) for ϵ 1 = (α 1 /α 10 )-1, compared to the exact solution from Eq. (4.1.5).

Fig. 4 .

 4 Fig. 4.4 shows the numerical solutions obtained for α 2 as a function of Ω m , for models with the different indicated values of w 0 . These are obtained by solving Eq. (4.2.13) for γ 2 , with initial conditions corresponding to the asymptote to EdS as z → ∞:

  |w 0 |.

Figure 4 . 4 :

 44 Figure 4.4: The effective growth rate α 2 of a gEdS model with the same instantaneous value of the functions d 2A (and d 2B ), for dark energy models with the constant equation of state parametrized by the indicated values of w 0 . We see that, for very small absolute values of w 0 , α 2 is well approximated by the adiabatic linear growth rate α 10 so that, as expected, d 2A and d 2B are well approximated by an adiabatic interpolation of gEdS models. For larger absolute values of w 0 , α 2 stays much closer to its initial value because of rapid evolution which causes effective damping in its evolution equation.

( 4 . 3 . 7 ) 2 d ln a 2 D 3 a 3

 4372233 and the six functions D 3XX are the solutions of the four differential equations d

( 4 .

 4 3.31) 
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 454 Figure 4.5: Evolution of the effective growth rate α 2 , α 3AA and α 3AB which describes in general the cosmology-dependent corrections to the separable EdS approximation at third order in perturbation theory. The different sets of curves correspond to the different indicated values of w 0 . Also shown is the adiabatic linear growth rate α 10. We see that for the smallest values the adiabatic approximation is good, but that it degrades increasingly as w increases.

Figure 4 . 6 :

 46 Figure 4.6: Same as in the previous figure but for models with larger absolute values of w 0 .We see that for these values of w 0 becomes larger, one of the three exponents has quite a different value from the α 2 , so an interpolation of the functions describing deviations from separability on a single gEdS the model with α = α 2 is not necessarily a valid approximation in general, although it turns out to be for the calculation of the one-loop PS.

P 1 -

 1 loop (k, a) = P L (k, a) + 2P 13 (k, a) + P 22 (k, a), (5.1.5)
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 53 Figure 5.3: Numerically evaluated c(n, α = 1, k c /k) for different indicated values of the cutoff k c , as a function of n. Also shown is the exact result (solid line) obtained using dimensional regularisation.

Figure 5 . 4 :

 54 Figure 5.4: Difference between the coefficient c(n = -2, α) and its value in the standard EdS model c EdS = c(n = -2, α = 1), for α in the range explored by our suite of simulations. Note that it is this quantity multiplied by ∆ 2 L which gives the fractional change in the predicted PS, and one loop PT is expected only to apply for ∆ 2L ≪ 1. At ∆ 2 L ∼ 0.1 the predicted maximal change in power, for α = 0.25, is thus of order of 5%. This can be compared with the much smaller changes in standard (LCDM-like) models, of order 0.5% at z = 0 (see P1 and[START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF][START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF][START_REF] Garny | Two-loop power spectrum with full time-and scaledependence and EFT corrections: impact of massive neutrinos and going beyond EdS[END_REF])

Figure 5 . 5 :

 55 Figure 5.5: Dimensionless PS measured in our suite of five simulations, with the indicated values of α, as a function of k (in units in which the boxsize L = 1). The solid black line is the dimensionless linear PS ∆ 2 L (k). The first panel is the initial configuration (with identical power in each simulation) and the other three progressively more evolved snapshots.
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 56 Figure 5.6: Ratios of PS measured in the four simulations with α < 1 to that measured in the standard EdS (α = 1) simulation, as a function of time parametrized as log D. Each plot corresponds to the indicated chosen value of the theoretical input dimensionless PS ∆ 2 L . Self-similar behaviour (i.e. a result independent of the scales introduced by the N -body simulation) corresponds to a constant value. The different horizontal lines correspond to the (self-similar) ratios predicted by one loop standard perturbation theory. The vertical line on each plot indicates the time at which k = k N , the Nyquist wavenumber of the particle grid.
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 1653 Analytical expressions for the one-loop coefficients c(n, α, k c /k) for n = 1, n = 0, n = -1 and n = -2 up to linear order in k/k c and in the limit ϵ = 0. n c(n, α, k c /k)
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 1082 Calculation of exact one-loop PS

110 6. 3 N

 1103 -body simulations

ln a ln a 0 3 ln a ln a 0 ( 1 + w 0 ( 1 -Ω= 1 -

 031011 (w s + 1)d ln a ′ = ρ m,0 a -3 ρ m,0 a -3 + ρ de,0 expb ln a ′ ) 2 )d ln a ′ = Ω m,0 Ω m,0 + Ω de,0 exp -3w 0 ln a 1-b ln a (6.3.4) Precision tests of the cosmological dependence of perturbation theory in standard cosmological models (Work in progress [A. Pohan, M. Joyce, and A. Sanchez, in preparation]) m,0 + (1 -Ω m,0 ) exp ln Ω de,e 1-Ω de,e + ln Ω m,0 1-Ω m,0 Ω de,e . (6.3.5)

1 (1+r 2

 12 -ω -2 )/2r dµ,
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 23 and show the expected behaviours. The left panel of Fig. 6.2 is obtained using the equations in Appendix E. Applying w e = 1 ln Ωm d ln a to the equations of matter density parameter Ω m in Appendix E we have the right panel of the Fig. 6.2. The results for α 1 (z) are displayed in Figure 6.3, and finally those for γ 2 , and γ 3 in Figure 6.4. Their magnitude and monotonic behaviour with redshift are in line with our results in Chapter 4.

Figure 6 . 1 :

 61 Figure 6.1: Comparison of the one-loop PS at z = 0 as a function of k, in the EdS approximation, obtained FAST-PT (solid line) and obtained by our own numerical integration with numerical cut-offs ϵ = 0.01 and ω = 0.01 (stars).

Figure 6 . 2 :

 62 Figure 6.2: Evolution of the clustering matter density parameter Ω m (left panel), and the effective equation of state parameter (right panel) w e as a function of redshift z, for each of the nine cosmological models inTable 6.2.

Figure 6 . 3 :

 63 Figure 6.3: Numerical solutions from Eq. (6.2.16) for the logarithmic growth rate α 1 = d ln D1 d ln a for each of the nine cosmological models in Table 6.2.

Figure 6 . 4 :

 64 Figure 6.4: Numerical solutions for γ 2 (left panel) and γ 3 (right panel) as a function of redshift z, for each of the nine cosmological models inTable 6.2.

Figure 6 . 5 :

 65 Figure 6.5: Ratios of the PS measured in N -body simulations, P i,sims , for the nine models modeli in Table 6.2 (i = 0, 1, 2, . . . , 8) to those predicted by standard PT at one-loop, P i,theo (see Eq. (6.2.4)). Each panel (showing the same range of k, from k = 0.01 to k = 0.3) corresponds to the given indicated value of σ 12 .

Figure 6 . 6 :

 66 Figure 6.6: Differences between the PS in modeli and that in model0 (used as reference) as measured in N -body simulations (solid lines) and as predicted by standard PT at one loop (dashed lines), normalized by P 0,sims (k), the PS measured in the reference simulation. Each panel (showing the same range of k, from k = 0.01 to k = 0.3) corresponds to the given indicated value of σ 12 .

Figure C. 1 :

 1 Figure C.1: The ratio of our numerical solutions for γ 2 to the parametric fit of [3] γ 2,T ak for the same quantity, for dark energy with constant equation of state w 0 = -0.5, -1.0, and -1.5.
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 19710 Fig. C.1 shows the ratio between the results we obtain for γ 2 by numerical integration of Eqs.(C.3.2) and (C.3.3) with the fit for the same quantity inferred from [3]:

Figure C. 2 :

 2 Figure C.2: Left panel: Ratio of the function γ 3AA given by our direct numerical solution of Eq. (4.3.26) to its value inferred from the fits of [3], for a smooth component with constant equation of state (w 0 = -0.5, -1 and -1.5). Right panel: Same comparison, but only for the model with w 0 = -1, and for γ 3 = γ 3BA (from numerical solution of Eq. (C.3.4)). The two different curves correspond to the two different possible numerical fits which can be inferred from those of [3]: the full line corresponds to that inferred from T 3BA directly, and the dashed line to that obtained using the linear combination on the right-hand side of Eq. (C.4.13)). The level of accuracy is less good than for γ 2 and γ 3AA , but quite adequate for calculation notably of the PS at any practically relevant level of precision.

Figure C. 3 :

 3 Figure C.3: Our numerical solutions for γ 2 , and γ 3 = γ 3BA (solid black lines) in LCDM (w 0 = -1) compared with the power series expressions in Eqs. (C.5.3)-(C.5.4) obtained from [4]. The different lines correspond to including terms in the power series up to the indicated order.

  Figure C.[START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF] shows the comparison between our numerical solutions to the exact equations for the functions γ 2 and γ 3 = γ 3BA and the power series solutions of[START_REF] Fasiello | Perturbation theory of LSS in the ΛCDM Universe: exact time evolution and the two-loop power spectrum[END_REF] for the same quantities, in LCDM models, up to the indicated orders. We observe excellent agreement where the power series solutions appear to converge well.

  D.0.10) Third-order density kernel 153 where θ

(D.0. 11 )

 11 To simplify we can write the first-term in RHS of the equation (D.0.2) (hereafter A 1 ), the first-term in RHS of the equation (D.0.2) (hereafter A 2 ), the first-term in RHS of the equation (D.0.3) (hereafter B 1 ), and the second-term in RHS of the equation (D.0.3) (hereafter B 2 ). Thus we haveS α(k, τ ) = Hf D 3 (τ )(A 1 + A 2 ),(D.0.12)

(D.0. 14 )

 14 By combining the equation (D.0.13) and (D.0.14) the source term of second-order density equation can expressed as follows

  can collect equal terms from LHS (D.1.2) and RHS (D.1.3) 

1 ) 3 -3ρ m,0 a 4 ( 1 +-H 2 a 4 1 a d 2 d ln a 2 H 2 a 2 D 1

 1341221 The derivative of the Friedmann equation to the scale factor a can be written w 0 )ρ de,0a 3(1+w 0 ) (1 + w 0 )Ω de H 1 + w = Ω m + (1 + w 0 )Ω de 1 + w = Ω m + (1 + w 0 )(1 -Ω m ) w = w 0 (1 -Ω m ), (D.4.5)where Ω de = 1 -Ω m .D.4.1 Linear order density fieldUsing the transformation in Eq. (2.4.15) we have (a) = 0. (D.4.6) 

-H 2

 2 a 4 d 2 D 2 (a) da 2 -3H 2 a 3 dD 2 (a)da left-hand side of Eq. (D.4.7) becomesLHS (D

( 2 )α 160 D. 4

 21604 (k, a) = -Ha ∂ ∂a D 2A Â(k) + D 2B B(k) LCDM model d 3 q

1 Da 2 = H 2 a 4 a d 2 d ln a 2 D 3 a 3 a 2 = H 2 a 5 d 2 d ln a 2 D 3 a 3

 122332233 the second-order velocity kernelsθ (2) (k, a) = D θ2A Â(k) + D θ2B B(k), θ2B = Ha ∂D 2B ∂a . (D.4.15)D.4.4 Third-order density kernelContinuing at the third-order density field, we have the left-hand side of the equation of the growth factor i.e.LHS (D 3 ) = H 2 a 4 d 2 D 3 (a)

σ 2 lin 0 dkk 2 2 ≡ 1 = ∞ 0 dkk 2+n 4πAa 2 exp -k 2 = 3 ) 2 c

 202210232 (R 0 ) = d 3 kP lin (k, a)W 2 (kR 0 ) ≡ 1, (D.5.1) where W (x) = e -x 2 /2 is the Gaussian filter and P lin (k, a) ≡ Aa 2 k n is the linear (initial) power spectrum of a scale-free model. Taking the definition from Eq. (D.5.1) we haveσ 2 lin (R 0 ) = ∞ 4πAa 2 k n exp -(kR 0 ) 2 2 Aa 2 2πΓ (n + 3)/2 . (D.5.2)Using this equation and definition of the dimensionless power spectrum we can write∆ 2 lin (k nl ) = 4πk 3 nl P lin (k nl )Now we can express the dimensionless power spectrum up to one loop correction∆ 2 (k) = ∆ 2 lin (k) + ∆ 2 1-loop (k) = 4πk 3 P lin (k) + 4πk 3 P 1-loop (k) = 4πk 3 Aa 2 k n + 4πk 3 A 2 a 4 c 13 (n) + c 22 (n) k 2n+3 13 (n) + c 22 (n) k 2n+6 δ (n)kR 0 ) n+3 .(D.5.4)

Fig. D. 1 . 164 E. 2

 11642 DDE modelE.2 DDE modelThe dynamic dark energy (DDE) model has a time-dependent equation of state parameterw s = w 0 + w a (1 -a), (E.2.1)where w 0 and w a are a constant. Following the same manner as the LCDM model for the parameter mass density, we have parameter energy density for flat DDEΩ m = ρ m,0 a -3 ρ m,0 a -3 + ρ de,0 exp -3 ln a ln a 0 (w s + 1)d ln a ′ = ρ m,0 a -3ρ m,0 a -3 + ρ de,0 exp -3 ln a ln a 0 (w 0 + w a (1 -a ′ ) + 1)d ln a ′

0 ( 1 -Ω= 1 -

 011 Ω de,e is the density parameter of the early dark energy. We now can write the mass density parameter for EDE modelΩ m = ρ m,0 a -3ρ m,0 a -3 + ρ de,0 exp -3 ln a ln a 0 (w s + 1)d ln a ′ = ρ m,0 a -3 ρ m,0 a -3 + ρ de,0 exp -3ln a ln a 0 (1 + w b ln a ′ ) 2 )d ln a ′ = Ω m,0 Ω m,0 + Ω de,0 exp -3w 0 ln a 1-b ln a . (E.3.3)At the limit a → 0 the mass density parameter islim a→0 m,0 + (1 -Ω m,0 ) exp ln Ω de,e1-Ω de,e + ln Ω m,0 1-Ω m,0 Ω de,e . (E.3.4) 1.1 CMB map from observations by Planck collaboration (credit to [14]). The color graduation scale shows very small variations of CMB temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2The projection of the SDSS 3-dimensional map depicting the distribution of galaxies is cut into sections. The observer is at the center of the plot, and each individual point represents a galaxy, typically consisting of approximately 100 billion stars. The galaxies are assigned colors based on the ages of their stars, with the reddish and more tightly grouped points indicating galaxies composed of older stars. The outer circle represents a distance of two billion light years. The area between the wedges remains unmapped by the SDSS due to the presence of dust from our own Galaxy, which obstructs the view of the distant universe in those specific directions. Both sections encompass all galaxies falling within a declination range of -1.25 and 1.25 degrees. Credit to Michael Blanton and SDSS collaboration. . . . . . . . . . . . . . . . . . . . . . 1.3 This figure shows the BAO detection by 2dGFRS, which is presented in Fourier space. We can see that the BAO wiggles in the range 0.05hM pc -1 ≲ k ≲ 0.2hM pc -1 (Credit to 2dGFRS collaboration). . . 1.4 This plot shows results for the two-point correlation function obtained by SDSS. The continuous lines are the theoretical predictions (for slightly different values of cosmological parameters). The line without an acoustic peak has pure cold dark matter (CDM). The figure shows the BAO bumps at comoving separation r ∼ 100h -1 M pc. . . . . . . . . . . . . . 1.5 This map shows the distribution of Baryon Oscillation Spectroscopic Survey (BOSS) massive galaxies up to redshift z = 0.7 (credit to Michael Blanton and SDSS collaboration). The red color represents the new BOSS galaxies surveys with the higher redshift, the white color represents the previous SDSS luminous red galaxy, and normal SDSS galaxies are represented by yellow. . . . . . . . . . . . . . . . . . . . .
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 1252301621712 The decaying (green) growing (red) modes of the growth factor. The black vertical dash line is the scale factor a = 1 (today). The growing mode increases as the scale factor increases. On the other hand, the decaying mode decreases and may be neglected at some cosmological time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This figure shows the diagrammatic representation of Eq. (2.1.81). The right side of the figures represents the n-convolution of the linear density field with the coupling F n to give the higher-order density field as described on the left side of the figure. . . . . . . . . . . . . . . . . Variation of the functions d 2 and d 3 determining the EPT kernels at second and third order relative to their values in EdS, as a function of the logarithmic growth rate α of gEdS. The dashed vertical lines bracket approximately the region in which the effective growth rate α 1 (a) varies in LCDM-like models. . . . . . . . . . . . . . . . . . . . . . . . . . . . Left panel: Exact solution for the growth rate α 1 compared with its "adiabatic gEdS approximation" α 10 , as a function of Ω m and for different indicated values of w 0 , parametrizing the constant equation of state of the smooth (dark energy) component. Right panel: the relative difference of the same quantities. . . . . . . . . . . . . . . . . . . . . . The coefficient S(Ω m ) of the source term in Eq. (4.1.9) as a function of (1/2 + 2α 10 ), and as a function of Ω m (upper x-axis). We see that the ratio of |S(Ω m )|/(1/2 + 2α 10 ) remains quite small as dark energy starts to dominate, so that even for |w| ∼ 1 the adiabatic gEdS approximation for the linear growth factor can remain good. . . . . . . . . . . . . . . 72 4.3 Ratio of the growth rate α 11 obtained using the linearized approximation Eq. (4.1.9) for ϵ 1 = (α 1 /α 10 ) -1, compared to the exact solution from Eq. (4.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 List of Figures
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 652 Same as in the previous figure but for models with larger absolute values of w 0 . We see that for these values of w 0 becomes larger, one of the three exponents has quite a different value from the α 2 , so an interpolation of the functions describing deviations from separability on a single gEdS the model with α = α 2 is not necessarily a valid approximation in general, although it turns out to be for the calculation of the one-loop PS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Left panel: The one loop cosmological (non-EdS) correction ∆P 1-loop as a fraction of P 1-loop , the full one-loop PS in EdS, at z=0, for w 0 = -1 and w 0 = -0.5 (and a typical standard like cosmological PS, see text) calculated using the exact expression Eq. (4.4.14), and also using the exact gEdS kernels with α replaced by the single effective growth exponent α 2 (z). Right panel: ratio of the gEdS approximation to the exact result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 The pre-factors in Eqs. (5.1.32) and (5.1.36) for j = -1, 1/2, 1 as a function of α. The associated leading UV contribution, which diverges for n ≥ -1, is proportional to f -1 and thus vanishes at α = α c ≈ 0.16. Left panel: coefficient c characterising the one-loop correction to the PS in standard perturbation theory, as a function of n in the range n < -1 where the result is finite, for different values of α. Right panel: the critical value n = n c at which the one-loop correction to the PS changes sign, as a function of α. The black dash-dotted horizontal line corresponds to standard EdS for which n ≈ -1.38, and the black dashed vertical lines indicate the critical value α c ≈ 0.16 below which c is always positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Numerically evaluated c(n, α = 1, k c /k) for different indicated values of the cut-off k c , as a function of n. Also shown is the exact result (solid line) obtained using dimensional regularisation. . . . . . . . . . . . . 5.4 Difference between the coefficient c(n = -2, α) and its value in the standard EdS model c EdS = c(n = -2, α = 1), for α in the range explored by our suite of simulations. Note that it is this quantity multiplied by ∆ 2
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 59961152 Dimensionless PS measured in our suite of five simulations, with the indicated values of α, as a function of k (in units in which the boxsize L = 1). The solid black line is the dimensionless linear PS ∆ 2 L (k). The first panel is the initial configuration (with identical power in each simulation) and the other three progressively more evolved snapshots. Ratios of PS measured in the four simulations with α < 1 to that measured in the standard EdS (α = 1) simulation, as a function of time parametrized as log D. Each plot corresponds to the indicated chosen value of the theoretical input dimensionless PS ∆ 2 L . Self-similar behaviour (i.e. a result independent of the scales introduced by the N -body simulation) corresponds to a constant value. The different horizontal lines correspond to the (self-similar) ratios predicted by one loop standard perturbation theory. The vertical line on each plot indicates the time at which k = k N , the Nyquist wavenumber of the particle grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.1 Comparison of the one-loop PS at z = 0 as a function of k, in the EdS approximation, obtained FAST-PT (solid line) and obtained by our own numerical integration with numerical cut-offs ϵ = 0.01 and ω = 0.01 (stars). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evolution of the clustering matter density parameter Ω m (left panel), and the effective equation of state parameter (right panel) w e as a function of redshift z, for each of the nine cosmological models in
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 1186 (6.2.4)). Each panel (showing the same range of k, from k = 0.01 to k = 0.3) corresponds to the given indicated value of σ 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differences between the PS in modeli and that in model0 (used as reference) as measured in N -body simulations (solid lines) and as predicted by standard PT at one loop (dashed lines), normalized by P 0,sims (k), the PS measured in the reference simulation. Each panel (showing the same range of k, from k = 0.01 to k = 0.3) corresponds to the given indicated value of σ 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 List of Figures 6.7 Same quantities as in Fig. 6.6, but restricted to the range k = 0.01 to k = 0.1, and to the models i = 3, 4, 5, 6, 7. . . . . . . . . . . . . . . . . 6.8 Same quantities as in Fig. 6.6, but restricted to the range k = 0.01 to k = 0.1, and for the models i = 1, 2. . . . . . . . . . . . . . . . . . . . C.1 The ratio of our numerical solutions for γ 2 to the parametric fit of [3] γ 2,T ak for the same quantity, for dark energy with constant equation of state w 0 = -0.5, -1.0, and -1.5. . . . . . . . . . . . . . . . . . . . . . C.2 Left panel: Ratio of the function γ 3AA given by our direct numerical solution of Eq. (4.3.26) to its value inferred from the fits of [3], for a smooth component with constant equation of state (w 0 = -0.5, -1 and -1.5). Right panel: Same comparison, but only for the model with w 0 = -1, and for γ 3 = γ 3BA (from numerical solution of Eq. (C.3.4)).The two different curves correspond to the two different possible numerical fits which can be inferred from those of[START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF]: the full line corresponds to that inferred from T 3BA directly, and the dashed line to that obtained using the linear combination on the right-hand side of Eq. (C.4.13)). The level of accuracy is less good than for γ 2 and γ 3AA , but quite adequate for calculation notably of the PS at any practically relevant level of precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.3 Our numerical solutions for γ 2 , and γ 3 = γ 3BA (solid black lines) in LCDM (w 0 = -1) compared with the power series expressions in Eqs. (C.5.3)-(C.5.4) obtained from [4]. The different lines correspond to including terms in the power series up to the indicated order. . . . . . D.1 The coefficient of one loop power spectrum i.e. '13' and '22' terms. . .
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  Second-order growth rates interpolated on gEdS models These equations have been written in a form adapted to their comparison with the standard EdS model, for which the right-hand side vanishes giving the solutions D 2A = D 2B = a 2 . It is straightforward to verify that in the gEdS cosmology they admit the solutions

	74	4.2 D 2A = 7 5	1 + 4α 1 + 6α	a 2α , D 2B =	7 2	2α 1 + 6α	a 2α ,	(4.2.4)
			2	dD 1 da	2	for D 2B .		(4.2.3)

  .2.10) α 2 (a) is just then the value of α in the gEdS model with the same instantaneous values of d 2A and d 2B , i.e., it is the effective growth exponent required to interpolate (exactly) these functions on gEdS models. Anticipating the fact that we will consider in particular here the small corrections due to the non-separability of the LCDM model relative to the EdS approximation (with d 2A = 5/7 and d 2B = 2/7), we also define

	Perturbation Theory in LCDM using generalized Einstein de Sitter models
	(Text based on Phys. Rev. D 107, 103510 (2023) [1])		
	d 2A =	5 7	1 +	2 35	γ 2 , d 2B =	2 7	1 -	1 7	γ 2 ,	(4.2.11)
	where		γ 2 =	1 -α 2 1 + 6 7 (1 -α 2 )	,				(4.2.12)

  ). Third order growth rates It is straightforward to show that using Eqs. (4.3.8), and d 2B = 1 -d 2A , we obtain

	4.3
	(4.3.11)

Table

  The PS at one loopP 22 = M 0 + d 2A M 1 + d 2 2A M 2 ,(4.4.2)i.e. to a form evidently equivalent to that in the gEdS model Eq. (3.2.6) when we parametrize d 2A by α 2 or γ 2 as defined in the previous section. Defining nowRecalling our discussion below we see that this correction is thus given in terms just of integrals that are explicitly infra-red safe, which is not the case if we do not make use of the relation Eq. (4.2.9).

	∆P 22 = P 22 -P EdS 22 , is the result in the separable EdS approximation P EdS 22 = M 0 + 5 7 M 1 + 25 49 M 2 , the cosmology dependent correction ∆P 22 is expressed explicitly as a function of γ 2 (a) (4.4.3) where P EdS 22 (4.4.4) by ∆P 22 = 2 49 γ 2 (M 1 + 10 7 M 2 ) + ( 2 49 γ 2 ) 2 M 2 . (4.4.5) Approximation α 2 α 3AA α 3AB EdS 1 1 1 adiabatic gEdS α 1 = d ln D 1 d ln a , Eq. (4.1.5) α 1 α 1 gEdS α 2 , Eq. (4.2.14) α 2 α 2 exact α 2 , Eq. (4.2.14) α 3AA , Eq.(4.3.28) α 3AB , Eq. (4.3.28)	Precision ≲ 0.5% for PS at z = 0 (LCDM) valid for small |w 0 | (cf. Figs. 4.4, 4.5, and 4.6) ≲ 0.1% for PS at z = 0 (LCDM) -	(Text based on Phys. Rev. D 107, 103510 (2023) [1])	Perturbation Theory in LCDM using generalized Einstein de Sitter models
			83	

1 

Making use of the additional relation Eq. (4.2.9) we have derived above, this simplifies to 82 4.4

  The PS at one loop by replacing α by α 2 (z) in Eqs. (3.2.6) and (3.2.7) (and subtracting the EdS result from their sum). The right panel of Fig.

	4.4	
		.4.10)
	with appropriate boundary conditions. Defining	
	2∆P 13 = 2P 13 -2P EdS 13 ,	(4.4.11)

Table 6 . 1 :

 61 Parameters for model0 i.e flat LCDM Model (taken from[START_REF] Sánchez | Evolution mapping: a new approach to describe matter clustering in the non-linear regime[END_REF]). In this table, ω b refers to the physical density parameter of baryons, ω ν represents the physical density parameter of neutrinos, ω c denotes the physical density parameter of cold dark matter, n s represents the spectral index, ω K corresponds to the physical density parameter of curvature, ω de represents the physical density parameter of dark energy, and w de is the equation of state parameter for the LCDM model. The current standard model with a cosmological constant, equivalent to a dark energy with a constant equation of state parameter w s = w 0 = -1.1 

	Parameter	value
	ω b	0.02244
	ω c	0.1206
	ω ν	0
	n s	0.96
	ω K	0
	ω de	0.3059
	w de	-1
	h	0.67
	• LCDM:	

Table 6 .
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	2.

Table 6 .
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  H)S α .

	132														A.6 PT kernels at third-order in gEdS
	we can transform the equation (A.5.3) in variable of scale a factor as follows
						-Ha	∂ ∂a	(Ha	∂δ ∂a	) -H(Ha	∂δ ∂a	) +	3 2	Ω m H 2 δ = S β -(aH	∂ ∂a	+ H)S α ,
	-Ha	∂H ∂a	a	∂δ ∂a	+ H	∂δ ∂a	+ aH	∂ 2 δ ∂a 2 -H 2 a	∂δ ∂a	+	3 2	Ω m H 2 δ = S β -H	∂ ∂a	(aS α ),
	-Ha (-	H 2a	)a	∂δ ∂a	+ H	∂δ ∂a	+ aH	∂ 2 δ ∂a 2 -H 2 a	∂δ ∂a	+	3 2	Ω m
															(A.5.3)
	By using the transformation below	
											d dτ	= aH	d da	and	∂H ∂a	= -	H 2a	,	(A.5.4)

  2 ) = -H 2 a 4 d 2 D 2 (a) da 2 -3H 2 a 3 dD 2 (a) Ha 3 d 2 D 1 da 2 D 1 + Ha 3 dD 1 da H 2 a 4 d 2 D 1 da 2 D 1 + Ha 4 dH da dD 1 da D 1 + 3H 2 a 4 dD 1 da D 1 + H 2 a 4 dD 1 da H 2 a 2 D 2 1 + H 2 a 4 dD 1 da

	Third-order density kernel	159
	The right-hand side of Eq. (D.4.7) gives
	RHS (D 2A ) = -	7 5	H	∂ ∂a	Ha	d ln D 1 d ln a	D 2 1
				= -	7 5	Ha	∂ ∂a	Ha	d ln D 1 d ln a	D 2 1
				= -	7 5	Ha	d da		Ha 3 dD 1 da	D 1
				= -	7 5	Ha		dH da	a 3 dD 1 da	D 1 + 3Ha 2 dD 1 da	D 1 + 2
				= -	5 7							2
				= -	7 5	3 2	Ω m 2
				= -	7 5	H 2 a 4 dD 1 da	2	+	3 2	Ω m	a D 1	2
														(D.4.10)
	and												
										RHS (D 2B ) =	7 2	-H 2 d ln D 1 d ln a	2	D 2 1
														= -	7 2	da H 2 a 4 dD 1	2
														= -	7 2	H 2 a 4 dD 1 da	2	.	(D.4.11)
	Combining Eqs. (D.4.9)-(D.4.11) we have
	-H 2 a 4		d 2 d ln a 2	D 2 a 2 + 6 +	d ln H d ln a	d d ln a	D 2 a 2 + 8 + 2	d ln H d ln a	-	3 2	Ω m (a)	D 2 a 2
	=	    -7 5 H 2 a 4 dD 1 da		2	+ 3 2 Ω m	D 1 a	2	,
		   -7 2 H 2 a 4 dD 1 da		2	da	-Ha 4 dH da	dD 2 (a) da	+	3 2	Ω m H 2 a 2 D 2 (a) (D.4.12)
	= -H 2 a 4 d 2 D 2 (a) da 2 +	3 a	dD 2 (a) da	+	1 H	dH da	dD 2 (a) da	-	3 2	Ω m	D 2 (a) a 2
	= -H 2 a 4	d 2 d ln a 2	D 2 a 2 + 3	d d ln a	D 2 a 2 + 2	D 2 a 2
		+	3 a	a	d d ln a	D 2 a 2 + 2	D 2 a	+	1 H	dH da	a	d d ln a	D 2 a 2 + 2	D 2 a
		-	3 2	Ω m	D 2 (a) a 2					
	= -H 2 a 4	d 2 d ln a 2	D 2 a 2 + 6 +	d ln H d ln a	d d ln a	D 2 a 2 + 8 + 2	d ln H d ln a	-	3 2	Ω m (a)	D 2 a 2 .
														(D.4.9)

  . . . . . . . . . . . . . . . . . . . . 12 1.7 This figure illustrates a partition of 15 bodies by tree code in 2-dimensional representations (credit to [79]). . . . . . . . . . . . . . . . . . . . . . . 17

  4.4 The effective growth rate α 2 of a gEdS model with the same instantaneous value of the functions d 2A (and d 2B ), for dark energy models with the constant equation of state parametrized by the indicated values of w 0 . We see that, for very small absolute values of w 0 , α 2 is well approximated by the adiabatic linear growth rate α 10 so that, as expected, d 2A and d 2B are well approximated by an adiabatic interpolation of gEdS models. For larger absolute values of w 0 , α 2 stays much closer to its initial value because of rapid evolution which causes effective damping in its evolution equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Evolution of the effective growth rate α 2 , α 3AA and α 3AB which describes in general the cosmology-dependent corrections to the separable EdS approximation at third order in perturbation theory. The different sets of curves correspond to the different indicated values of w 0 . Also shown is the adiabatic linear growth rate α 10 . We see that for the smallest values the adiabatic approximation is good, but that it degrades increasingly as w increases. . . . . . . . . . . . . . . . . . . .

Table 6 .

 6 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3 Numerical solutions from Eq. (6.2.16) for the logarithmic growth rate α 1 = d ln D 1 d ln a for each of the nine cosmological models in Table 6.2. . . 116 6.4 Numerical solutions for γ 2 (left panel) and γ 3 (right panel) as a function of redshift z, for each of the nine cosmological models in Table 6.2. . 116 6.5 Ratios of the PS measured in N -body simulations, P i,sims , for the nine models modeli in Table 6.2 (i = 0, 1, 2, . . . , 8) to those predicted by standard PT at one-loop, P i,theo (see Eq.

A "node" denotes a particular element or arrangement in a hierarchical tree data structure that is used to represent the distribution of particles in a simulation.

We note that we adopt the convention as in[START_REF] Baldauf | Modelling large scale structure statistics for precision cosmology[END_REF]. This differs by a factor of (2π) 3 from that used in[START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF].

The linear PS is often denoted P11(k). Here we use the same notation as that of

Note that we use the symmetrized form of F (s)[START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF] . More details on how to symmetrize the secondorder kernels and to parametrize the momenta are presented in Appendix B.

Further details of these calculations are given in Appendix D.

An equivalent expression is given in[START_REF] Fasiello | Nonlinear fields in generalized cosmologies[END_REF], also in terms of two redshift dependent functions and three integrals which are linear combinations of M0, M1 and M2.

The equivalent expression in[START_REF] Fasiello | Nonlinear fields in generalized cosmologies[END_REF] is given in terms of six redshift dependent functions and five integrals.

As noted in[START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF], there is a sign error in one term in the expression for the fourth term of P22 given in[START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF]. The latter reference also defines a coefficient labelled α δ analogous to our c, but differing by a factor, with α δ =

Γ( n+32 ) c.

Note that the fundamental mode in our units is 2π. The visible "dip" at small k arises from just the first sparsely populated bin.

The finite size of the bins has also been taken into account in this latter calculation but only very marginally modifies the result.

The variable we in Eqs. (6.2.16)-(6.2.18) represents the effective equation of state parameter, while ws refers to the equation of state parameter of dark energy.

(Work in progress [A. Pohan, M. Joyce, and A. Sanchez, in preparation])

Figure 6.7: Same quantities as in Fig. 6.6, but restricted to the range k = 0.01 to k = 0.1, and to the models i = 3, 4, 5, 6, 7.

Figure 6.8: Same quantities as in Fig. 6.6, but restricted to the range k = 0.01 to k = 0.1, and for the models i = 1, 2.

a∂ a +

dΩm(a) d ln a ). The two functions γ 2 (a) and γ 3 (a) are obtained by

What we have denoted by w0 here corresponds to w in[START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF].
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is the usual result in the separable EdS approximation, the cosmological correction is given as a function of γ 2 and γ 3 as The left panel in Fig. 4.7 shows ∆P 1-loop relative to the full one loop PS in EdS, at z = 0, in a standard cosmological model (specifically, with the cosmological parameters of [START_REF] Ade | Planck 2013 results. xvi. cosmological parameters[END_REF] and calculated using the approximation to the transfer function of [START_REF] Eisenstein | Baryonic Features in the Matter Transfer Function[END_REF]). The model labeled by w 0 = -0.5 is identical but for this parameter. As previously documented in the literature (e.g. [START_REF] Takahashi | Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe[END_REF]) the corrections are at the sub percent level in the former case but increase as |w 0 | decreases. The reason for this behaviour is very evident in light of our analysis: a smaller |w| is closer to the adiabatic limit, which corresponds to an effective α closer to the instantaneous linear growth exponent α 1 = d log D 1 /d log a (i.e. to a larger value of |γ 2 | and |γ 3 |.) Also shown are the approximation to ∆P 1-loop obtained by directly interpolating with a gEdS model i.e., 5.1 Power spectrum in generalized scale-free models to the kernels, which (see P1 for detail) are now functions of the parameter α:

F 2 (q 1 , q 2 ) = 1 + 4α 1 + 6α α(q 1 , q 2 ) + 2α 1 + 6α β(q 1 , q 2 ), (5.1.8)

G 2 (q 1 , q 2 ) = 1 + 2α 1 + 6α α(q 1 , q 2 ) + 4α 1 + 6α β(q 1 , q 2 ), (5.1.9)

F 3 (q 1 , q 2 , q 3 ) = 1 2

1 + 6α 1 + 8α α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + 2α 1 + 8α β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + 1 + 6α 1 + 8α α(q 1 + q 2 , q 3 ) + 2α 1 + 8α β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) , (5. 1.10) where α(q 1 , q 2 ) = q 1 .(q 1 + q 2 ) q 2 1 , β(q 1 , q 2 ) = 1 2 (q 1 + q 2 ) 2 q 1 .q 2 q 2 1 q 2 2 .

(5. 1.11) Using these expressions (see P1) the PS at one loop is then expressed in terms of three integrals with α dependent coefficients:

where the M i (k) are the integrals

dµP L (kr)

and the N i (k) integrals are

with

)

The variables r and µ in the integrals have been defined from the momenta in Eqs. (5.1.6)-(5.1.7) as r = q/k and µ = k.q/(kq).

Testing growth rate dependence in cosmological perturbation theory using scale-free models (Text based on Phys. Rev. D 108, 023509 (2023) [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF]) 91

Power spectrum for scale-free initial conditions

We now consider the case that P L (k) is a simple power law. In order to control carefully for infrared and ultraviolet divergences we introduce cut-offs, taking

where A is the amplitude of the power spectrum at a = 1, D ≡ a α is the linear growth rate of fluctuations, and ε (k c ) are the infrared (ultraviolet) cut-offs.

We will work with the dimensionless power spectrum, defined canonically as

The one-loop result in Eq. (5.1.5) can then conveniently be rewritten as

for ε ≤ k ≤ k c , and where

where the Mi and Ni are dimensionless integrals:

where m i and n i are the same functions defined above, and .27) are the angular integration limits.

Defining the characteristic scale

and, given the assumed power-law form,

.

(5.1.29)

5.1 Power spectrum in generalized scale-free models Replacing the integrations d 3 q by d d q we obtain

(5.1.38)

3 (k, q, -q).

(5.1.39)

To integrate Eqs. (5.1.38) and (5.1.39) we use the formula (see the appendix in [START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF]) as below

together with relation .1.41) This leads directly to the following expressions:

Testing growth rate dependence in cosmological perturbation theory using scale-free models (Text based on Phys. Rev. D 108, 023509 (2023) [START_REF] Pohan | Testing growth rate dependence in cosmological perturbation theory using scale-free models[END_REF]) 95 

from which it follows that

(5.1.43)

Setting α = 1 in the individual expressions for P 13 and P 22 used to derive Eq. (5.1.43), we have checked that we recover identical expressions to those in [START_REF] Pajer | On the renormalization of the effective field theory of large scale structures[END_REF] and [START_REF] Scoccimarro | Loop Corrections in Nonlinear Cosmological Perturbation Theory[END_REF]. 1 A further check on the correctness of the expression Eq. (5.1.43) is obtained by comparing with the exact result for the case n = -2 which, as detailed further below in 6.3 N-body simulations allows us to isolate, by comparing the different simulations at these reference times with identical linear PS, the dependence of evolution on the cosmological expansion history. Indeed in the analytical result for one loop power spectrum in Eq. (6.2.4), the integrals M i and N i are, at given σ 12 , identical in all nine models, and only the term ∆P 1-loop (k, z) differ from model to model, through the model-dependent functions γ 2 (z) and γ 3 (z). More explicitly, if we define a σ,i (z σ,i ) as the scale-factor (redshift) at which σ 12 = σ in modeli, denoting

1-loop (k, z) the predicted PS at one loop in modeli we have

where D σ is the linear growth factor when σ 12 = σ (with D 0.825 = 1 corresponding to z = 0), and the '0' superscript on the M i and N i integrals indicates that they are evaluated at z = 0.

Precision tests of the cosmological dependence of perturbation theory in standard cosmological models (Work in progress [A. Pohan, M. Joyce, and A. Sanchez, in preparation]) 

A Appendices A.1 Appendix: Introduction

To transform Eq. (1.1.4) one can focus on the term

For K = 1 the denominator of (A.1.1) has form (1 -r 2 ) which can be transformed using trigonometric properties by letting r = sin χ become

In case K = -1 the denominator can be transformed using r = sinh χ which gives

In the last case for K = 0, the denominator only has a simple form dr 2 , which can be transformed using r = χ. We thus have the metric for K = 1

and for K = 1

A.6 PT kernels at third-order in gEdS A.6.1 EPT Eq. (3.1.18) at third order in δ (1) gives

β (k, a) -H∂ a (aS

where

β (k, a) = -d 3 q (2π) 3 β(q, kq, a)θ (1) (q, a)θ (2) (k -q, a) -d 3 q (2π) 3 β(q, kq, a)θ (2) (q, a)θ (1) (k -q, a).

(A.6.3)

We can write eq. (D.0.2) as

where

(A.6.5) and eq. (D.0.3) as

where

(A.6.7)

The right-hand side of eq. (D.0.1) can then be written as

from which we obtain

which corresponds to

(6α + 1) α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + (2α) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + (6α + 1) α(q 1 + q 2 , q 3 ) + (2α) β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) .

(A.6.10)

A.6.2 LPT

The left-hand side of eq. (3.1.59) at third order can be written

i,j -

i,j Ψ

(1)

i,i Ψ

(1)

i,i Ψ

(1)

i,l Ψ

l,j Ψ

i,j , (A. 6.11) and the right-hand side as

i,j Ψ

i,i Ψ

(1)

l,j Ψ

i,j .

(A.6.12)

Collecting up the terms we have

i,i Ψ

j,j + (4α + 1)Ψ

i,j Ψ

i,j Ψ

i,i Ψ

i,k Ψ

k,j Ψ

which gives eq. (3.1.61).

A.7 Explicit calculations of power spectrum A.7.1 gEdS case

Taking the ensemble average of two second-order density fields we get

Note that ensemble averaging only works in the density fields which can be written explicitly as

where the first term only contributes at k so that we can neglect. The second and third terms have symmetry which can be combined into

Inserting (A.7.3) into (A.7.1) we have the '22' term.

Calculations P 13

Following the same way we can express the ensemble averages of the linear and thirdorder density fields

Following the same manner as gEdS model taking an ensemble average of two secondorder density field yield

where each term can explicitly be written as

×⟨δ (1) (k 1 )δ (1) 

A.7 Explicit calculations of power spectrum which gives

The second and third terms give

which results

From the fourth term, we have

which gives

Thus we have a full of '22' term P 22 = P 2A + P 2AB + P 2B . (A.7.12)

'13' term

Third-order density field can be rewritten as

where

2 7 d 3 qα(q, kq)δ 1 (q) B(kq) , (A.7.16)

2 7 d 3 qα(q, kq)δ 1 (k -q) B(q), (A.7.17)

We now take an ensemble average of the first and third-order density fields to obtain '13' correction ⟨δ (3) (k, a)δ (1) 

(A.7.20)

B

Second-order kernels

The second-order kernel of the density field for EdS cosmology can be symmetrized by

1 2

1 2

Let us define the internal momenta as q and the external momenta as k where q 1 = q and q 2 = kq , we thus have the second-order density field

Using the parametrization parameters i.e. k = (0, 0, k),

Second-order kernels

we can rewrite the second-order density field as

For gEdS cosmology the second-order density field is

Parametrizing the momenta uses Eqs. (B.0.3) we thus have

C

Appendix of gEdS C.1 PT kernels at third-order in gEdS C.1.1 EPT Eq. (3.1.18) at third order in δ (1) gives

where S

α (k, a) = -d 3 q (2π) 3 α(q, kq, a)θ (1) (q, a)δ (2) (k -q, a)

β (k, a) = -

We can write Eq. (D.0.2) as

where

C.1 PT kernels at third-order in gEdS and Eq. (D.0.3) as

where

The right-hand side of Eq. (D.0.1) can then be written as S

β -H∂ a aS

from which we obtain

which corresponds to

(6α + 1) α(q 1 , q 2 + q 3 ) × F 2 (q 2 , q 3 ) + (2α) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + (6α + 1) α(q 1 + q 2 , q 3 ) + (2α) β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) .

(C.1.11)

C.1.2 LPT

The left-hand side of Eq. (3.1.59) at third order can be written

i,j Ψ

i,j -

i,j + (4α 2 + α)Ψ

i,i Ψ

(2) j,j

i,i Ψ

i,j Ψ

i,i Ψ

k,k -Ψ

i,i Ψ

l,j Ψ

i,j , (C. 1.12) and the right-hand side as

i,i Ψ

(1)

l,j Ψ

i,j .

(C. 1.13) Collecting up the terms we have
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C.2 Ultra-violet divergences in one-loop PS for gEdS

We detail here a little more the analysis leading to the expressions Eq. (3.2.14) and Eq. (3.2.15) which allows us to infer the ultraviolet convergence properties of these integrals i.e. the asymptotic large k behaviour of P lin (k) for which they converge.

For the P 22 the leading divergence is obtained simply by replacing P lin (|k -q|) by P lin (q) and taking the leading term in the series expansion in k/q around (k/q) = 0:

where µ = k•q kq is the angular variable. Using Eqs. (3.2.4) and (C.2.1) we then obtain, after integrating µ, Eq. (3.2.14).

Likewise expanding

3 (k, q, -q) in a power series in k/q around (k/q) = 0 we obtain

k 2 q 2 + . . . 

C.3 Summary of calculation of cosmology dependent corrections to the EdS approximation for the one loop PS in standard perturbation theory

We have shown that this correction is given by

where the four integrals are given in Eqs. ( 

D

Third-order density kernel

We can write the third-order density equation as

β (k, a) -H∂ a (aS 

α (k, τ ) = -

β (k, τ ) = -d 3 q (2π) 3 β(q, kq, τ )θ (1) (q, τ )θ (2) (k -q, τ )

The first-term in RHS of the equation (D.0.2) can be written as below

where

with θ = ∇ • u.

For κ cosmology, the continuity and Euler equation from eq. ( 14) and ( 15) can be written as a second-order differential equation The source terms S α and S β given by S α(k, τ ) = -d 3 q (2π) 3 α(q, kq, τ )θ(q, τ )δ(k -q, τ ), (D.2.9)

S β (k, τ ) = -d 3 q (2π) 3 β(q, kq, τ )θ(q, τ )θ(k -q, τ ), (D.2.10)

with the coupling kernels α and β respectively are defined as α(q 1 , q 2 ) = q 1 .(q 1 + q 2 ) q 2 1 , (D.2.11) β(q 1 , q 2 ) = 1 2 (q 1 + q 2 ) 2 q 1 .q 2 q 2 1 q 2 2 .

(D.2.12)

We also get the second-order density kernel as F 2 (q 1 , q 2 ) = ( 1 + 4α 1 + 6α ) α(q 1 , q 2 ) + ( 2α 1 + 6α

) β(q 1 , q 2 ), (D.2.13) and the second-order velocity kernel G 2 (q 1 , q 2 ) = ( 1 + 2α 1 + 6α )α(q 1 , q 2 ) + ( 4α 1 + 6α

) β(q 1 , q 2 ). (D.2.14)

The third order density F 3 and velocity G 3 kernels written as F 3 (q 1 , q 2 , q 3 ) = 1 16α + 2 (α + 6) α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + (2α) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + (α + 6) α(q 1 + q 2 , q 3 ) + (2α) β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) , (D.2.15)

G 3 (q 1 , q 2 , q 3 ) = 1 16α + 2 (2α + 1) α(q 1 , q 2 + q 3 )F 2 (q 2 , q 3 ) + (6α) β(q 1 , q 2 + q 3 )G 2 (q 2 , q 3 ) + (2α + 1) α(q 1 + q 2 , q 3 ) + (6α) β(q 1 + q 2 , q 3 ) G 2 (q 1 , q 2 ) . 

E

Cosmological models

The evolutions of energy density can be described by the equation: where ρ 0 is the energy density at the present time.

E.1 LCDM model

The energy density parameter is the fraction of the density of matter to the critical energy density which for the LCDM model is

ρ m,0 a -3 + ρ de,0 exp -3 ln a 0 (w s + 1)d ln a ′ + ρ k,0 a -2

, (E.1.1)

where w s ≡ w 0 is a constant and ρ m,0 ,ρ de,0 , ρ k,0 are the mass, dark energy, curvature density at some time reference. Taking the ratio of the numerator and denominator of Eq. (E.1.1) to the critical density today ρ c,0 we have Ω m = Ω m,0 Ω m,0 + Ω de,0 a -3w 0 + Ω k,0

. (E.1.2)

For the flat LCDM Ω k,0 = 0 the parameter mass density becomes Ω m = Ω m,0 Ω m,0 + Ω de,0 a -3w 0 .

(E. 1.3)