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Chapter 1

INTRODUCTION

Repetition is often boring. Reading a book for the second time is not the same, we
already know the plot, the ending and everything that happens. In a theme park, the
second time you ride a roller coaster is not the same. After each ride, the amount of
emotion diminishes. Fortunately, there are often other roller coasters in the same park,
and there are many new books to read.

When creating something (a new roller coaster, a book, music), the creators try to
find new ways put together elements that have never been seen before. They try to make
something new out of what already exists. In recent years, many Artificial Intelligence (AI)
tools have been developed and improved to assist creation in many areas. For example,
one of my favourite electronic music creators, DJ S3RL, created a song using only AI.
He made a video about the whole process 1. He trains OpenAI Jukebox [169] by giving it
all his tracks. OpenAI Jukebox then generates a new music. This music should be edited
manually by DJ S3RL, as it has good melodies but lacks the musical structure (fixed
BPM, repetition of a chorus). Also, the lyrics generated are not intelligible. DJ S3RL
then uses another AI to generate the lyrics, and uses Vocaloid to make an AI sing the
lyrics. Some post-processing is required to add stereo tracks and bass, and to fine-tune the
music. The music video is also created by an AI. Interestingly, S3RL is not a computer
scientist. This means that all the tools he uses can be used by non-experts. All these AI
tools give very diverse results, so they can be used by a content creator to get new ideas
that can then be improved by hand.

1. https://www.youtube.com/watch?v=JChbUcjZUBM
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1.1 Examples in Games

As a fan of board games and video games, I want to find new games with new ideas
to play something I have never played before 2. But good games are often designed to be
replayable. This means that some elements of the game must change each time we play
it.

A bad example of a game is the Tic Tac Toe. This game may be fun to play a few
times, but after a while, a simple strategy can be found because there are only a few
possible moves, there is no difference between the games. There is no reason to play this
game again.

Interestingly, there are not that many ways to make something replayable.

1.1.1 Deterministic, but Combinatorial Games

Tic Tac Toe is a deterministic game with complete information. Its weakness comes
from the fact that all games can be easily enumerated by hand (up to symmetry). However,
other games are also deterministic with complete information, but are highly replayable.
This is the case of chess or go. In chess, the first few moves are often memorised in order to
avoid big mistakes. After the opening, however, the game leads to a board that has never
been seen before in any game in history. This is where the replayability comes in. The
game is now completely new, and it is not possible to rely on a pre-determined strategy.

Many video games are deterministic (i.e. giving the same inputs to the game will
result in the same behaviour). An example of such a game is Trackmania 3, a highly
competitive arcade racing game. This game runs at 60 frames per second, so the player’s
inputs are recorded every 1/60-th of a second. No matter how good the players are, no
one can perform consistent actions every hundredth of a second (these are known as frame
perfect tricks, and are extremely difficult to perform even once). In Trackmania, after a
few seconds, the player will not have performed exactly the same movements, and will
therefore be in a new position and have to react to other elements of the track.

Logic games are a special type of deterministic and combinatorial game. Also called
puzzles, they are one-player games in which from an initial position there is a single
solution satisfying the rules of the game. Often, the rules are defined as constraints on the

2. I focus on games with complete information. In games with incomplete information, also called fog
of war in video games, uncertainty should be taken into account.

3. www.trackmania.com/
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solution. For example, in Sudoku a solution contains different values in the 9 cells, rows
and columns. There are several different games, often involving numbers. I developed an
Android app 4 that solves some logic games (Sudoku, Kakuro, Slitherlink, Bridges, and
Rikudo). In this app, I use constraint programming to find the solution to a logic game,
as the rules of the game are constraints on the solution.

Replayability in logic games comes from the different starting positions. Sometimes,
patterns can be used to solve the game, so diverse patterns should be present in the
starting position such that different techniques are used to solve the game. Creating a
starting position for a logic game is not an easy task. There should be only one solution
from this starting position. Also, there are often several levels of difficulty, depending on
the techniques used when solving by hand.

1.1.2 Procedurally Generated Worlds

Creating the world in which the players move is a difficult task. Procedural generation
makes this task easier by allowing an algorithm to do the world generation. In a game,
the world is designed by the developers, so there is a limit to the size of the world that can
be created in a given amount of time. To generate diverse maps, the game designers can
define some basic blocks and an algorithm will generate a world from these basic blocks.
For example, the designers can create different houses, buildings, and wall textures (brick,
concrete). Then an algorithm generates different city layouts, with buildings and houses
with different textures. This can either be used as a first step for designers to improve
later, or it can be the whole world, which can thus be much larger than hand-made worlds.

Examples of video games that use such a procedure are Minecraft and many rogue-like
games 5. In these games, the world is procedurally generated to be different each time.
For example, in The Binding of Isaac each room is handmade, but the layout of the maze
is procedurally generated. In Dead Cells, small layouts are designed, and glued together
by an algorithm at each restart. In the board game Magic Maze, the maze is generated
as it is discovered, by adding tiles to the board.

4. https://play.google.com/store/apps/details?id=com.mvavrill.logicGamesSolver
5. In rogue-like games, the game is restarted from scratch each time the player dies
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1.1.3 Randomised Games

Procedurally generating a world provides an efficient way to create large maps. How-
ever, if the algorithm is deterministic, the generated world would always be the same. For
multiple generation, randomness is used to change the output.

Randomness can also be used as a central mechanic. Dice games are an example of
such use of randomness. In the game Yahtzee (or Yams), five dice are thrown to make
combinations. However, using only randomness, there is not much to play with. For this
reason, the dice can be rolled two more times to change the outcome. Dice Forge is also a
dice game, but the dice used are special. The sides of the dice can be changed (by buying
new sides). The new sides can contain more items (coins, or other game currency), so new
dice rolls will produce more coins new rolls, for example, more coins. In card games, the
deck is often shuffled at the beginning of the game, changing the order in which the cards
can be played.

In some of the most popular video games, some players have developed a way to in-
crease replayability by introducing randomness into the game. We focus on Metroidvania
style games where unlocking power-ups gives access to new parts of the map. For exam-
ple, unlocking the ability to jump allows the player to access new areas and find new
objects. Examples of such games are the The Legend of Zelda series, Metroid and Hollow
Knight. Some players have created randomisers for these games, a tool that randomises
the position of the objects on the map. However, if the jump ability is behind a gap, or
above the player it would not be possible to get it, and the player would be stuck. In Hol-
low Knight, for each location, the players made a list 6 of the items needed to reach that
location. This gives constraints on the possible items in a given location. The problem
then becomes finding a way to place the items in the locations, in a random way, while
allowing the game to be completed, i.e. while satisfying the constraints. This problem of
finding a solution of a combinatorial structure can be very hard to tackle without the right
tools [172]. In Hollow Knight, the randomiser uses a heuristic approach 7. This approach
can fail, so restarts are made until a solution is found.

6. https://github.com/homothetyhk/RandomizerMod/tree/master/RandomizerMod/Resources/
Logic

7. https://github.com/homothetyhk/RandomizerMod/tree/master#progression-depth-settings
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1.2 Constraint Programming

Constraint Programming (CP) as an AI declarative programming technique. With a
declarative programming technique, the properties on the solutions are defined, but the
actual algorithm finding the solutions is already implemented. In constraint programming,
the user declares constraints that should be satisfied by a set of variables, and a CP solver
finds a solution (i.e. a value for the variables) that satisfies the constraints. Constraint
programming is very generic, with several constraints allowing the user to state high level
properties on the solutions. It can be seen as a black-box: the user inputs constraints,
and the algorithms finds a solution, but the search process can also be tuned in multiple
ways. In that sense, it can be referred to as a grey-box, i.e. the main algorithm cannot be
modified, but an extensive API is provided to tweak the behaviour.

We distinguish between three types of people working with CP solvers. At one end,
the users have real-life problems to solve. In Constraint Programming, we think in terms
of solutions: what do the users want to get out of the algorithm and how can a solution
can be described. Once the users have described their problem (this can be an iterative
process), a modeller translates this problem into a constraint satisfaction problem, i.e.
in the CP solver language. This modeller should have knowledge of the functions (and
constraints) provided by the solver (either through an API, or using high level languages
such as MiniZinc [39] or XCSP3 [11]). In this step, modelling choices can be made, and
search strategies can be defined to implement domain knowledge in the CP solver. At the
other end of the CP application, the CP solver developer implements the tools required
by the modeller to find the solutions. The developer should provide an easy to use API,
but also implement all the efficient constraint propagation algorithms in the back-end of
the solver.

In this thesis, we oscillate between the modeller and the developer, while still consid-
ering the needs of the end-users. We want to define diversity in a way that is easy to use
for a modeller, and implement it in the solver. For example, in Chapter 5, we provide a
way to generate solutions randomly, and implemented it in the solver.

1.3 Contributions

This thesis is about solution diversity in CP solvers by using probabilistic approaches.
The backtrack search of CP solvers is a powerful, but rigid framework for finding solutions.
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We propose ways to tweak the behaviour of the solver using randomness to generate diverse
solutions. We also thoroughly analyse the behaviour of our algorithms (and state-of-the-
art algorithms) to understand their properties.

A review of state-of-the-art constrained samplers We review constrained state-
of-the-art samplers and evaluation tools. We present the samplers (with the pseudo-code,
or an outline of it) in such a way that the differences between them and the improvements
over the years can easily be understood. This allow to have a clear overview of the field
of sampling in constrained problems (in SAT and CP).

A new sampler for CP problems We propose a new sampler, TableSampling,
dedicated to constraint programming problems. It is the first CP sampler that works in
the CP framework. TableSampling is now available in the solver choco-solver (since
version 4.10.9).

A strategy for diversification in pattern mining We present a new search strategy
dedicated to pattern mining, OrientedSearch, which is used to orient the search to-
wards spaces with diverse solutions. We also show that the default random search strategy
is a very fast approach that returns diverse solutions.

A strategy for t-wise coverage in feature models We propose a second search
strategy, FrequencyDiff, dedicated to the generation of high t-wise coverage test suites.
This search strategy greatly improves the size and the quality of the generated test suites.

A probabilistic study of the RandomSearch search strategy We analyse the
behaviour of the default search strategy RandomSearch on the t-wise coverage problem.
We show a lower bound on the probability of drawing the t-wise combinations when using
RandomSearch.

Diversity constraints and algorithms We prove multiple properties on the diversity
constraints, depending on the aggregator and distance used. We also prove properties on
the greedy and random algorithms.
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An application to a multi-objective real life problem We apply diversity to a
multi-objective application. We show a two-step approach adapted to the multi-objective
framework to generate good diverse solutions.

1.4 Outline

First, in Part I we define the background of the thesis. Chapter 2 formally defines
Constraint Programming. We present it in two steps: first from a user/modeller point
of view, i.e. as a declarative programming framework, and then we present the general
solving algorithm. We also present the SAT framework (mostly used in Chapters 4 and 7)
and the diversity definitions in CP (mostly used in Chapter 6 and Part IV). The following
Chapter 3 defines the probability concepts used in this thesis. First, we recall the classical
definitions and notations. These definitions and notations are used in every chapter of this
thesis. We also introduce the hashing framework, by defining hashing constraints. These
hashing constraints are used by several samplers in Part II.

The following chapters of this thesis are contributions. The second part, Part II, focuses
on samplers. First, in Chapter 4 we present several state-of-the-art constrained samplers.
Then, in Chapter 5, we present a new sampler that we have designed: TableSampling.
This chapter is mostly taken from our conference [1] and journal [2] publications.

The third part, Part III, presents two uses of constraint programming to generate
diverse solutions using search strategies. Chapter 6 presents our contribution on pattern
mining. Then, in Chapter 7, we present our contribution on feature models, both theoret-
ical and practical. A part of this work on feature models (Section 7.6) has been published
as a research report [3].

In the fourth and final part of this thesis, Part IV, we study diversity approaches in CP.
In Chapter 8 we study in detail the diversity constraints and the properties and guarantees
of the algorithms. In Chapter 9 we study diversity in a multi-objective application.

Appendices are presented at the end of this thesis in Part V. First, Appendix A
contains some technical proofs of Chapters 7 and 8. Appendix B presents a supplementary
material for Chapter 5. Appendix C presents the Android application I developed, Logic
Games Solver, with CP models for several logic games.
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Chapter 2

CONSTRAINT PROGRAMMING

2.1 Introduction

Constraint Programming (CP) follows the declarative programming paradigm. As
such, it can be used as a black-box. However, CP solvers also propose several ways to
tune the search, either to speed-up the process or to find different solutions.

In this chapter, we first introduce constraint satisfaction problems from a modelling
point of view in Section 2.2. As an example, we present the model of a logic game, rikudo,
in Section 2.3. We present how solutions are found in solvers in Section 2.4, i.e. from the
solver’s point of view. An overview of SAT solving is given in Section 2.5. In Section 2.6
we define the diversity in the case of combinatorial problems.

2.2 Definitions

As a declarative programming paradigm, Constraint Programming focuses on solu-
tions. In this section, we consider CP from a user’s point of view, i.e. from a modelling
point of view. We define what are solutions and how to define constraints on those solu-
tions. Constraint Satisfaction Problems (CSP) provide the framework for defining prob-
lems.

Definition 1 (Constraint Satisfaction Problem (CSP)). A CSP P is a triple ⟨X ,D, C⟩
where

• X = {X1, . . . , Xn} is a set of variables. These variables are the unknowns of the
problem;

• D is a function that associates a domain with each variable. In this thesis, the
domains are a finite subset of the integers;

• C is a set of constraints, each constraint C ∈ C consisting of:
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2.2. Definitions

— a tuple of variables called scope of the constraint scp(C) = (Xi1 , . . . , Xir), where
r is the arity of the constraint. It defines the variables involved in the constraint.

— a relation, i.e. a set of instantiations

rel(C) ⊆
r∏

k=1
D (Xik

) .

The relation defines the values that the variables of the scope can take.

If a variable has a domain D (X) = {0, 1}, it is said to be Boolean. When all the
variables of the problem are Boolean and the constraints are propositional formulae, the
framework of SAT can be used, presented in section 2.5. The domains of the variables
define a search space, i.e. all the values that can be taken by all the variables: ∏n

i=1D (Xi).

2.2.1 Solutions

Within the search space, the solution space, which contains all the solutions to their
problem, is the one that users are interested in.

Definition 2 (Solution). Let P = ⟨X ,D, C⟩ be a CSP. We call instantiation a function
σ : X → ⋃

X∈X D (X) which associates each variable X to a value in its domain D (X),
i.e. ∀X ∈ X , σ(X) ∈ D (X).

An instantiation σ is said to satisfy a constraint C if the values associated with each
variable of the scope scp(C) are in the relation rel(C), i.e. if scp(C) = (Xi1 , . . . , Xir),
then (σ(Xi1), . . . , σ(Xir)) ∈ rel(C).

An instantiation is said to be a solution if it satisfies all the constraints in C. We note
Sols (P) the set of solutions to the problem P , also called the solution space.

Once a solution is found, it can be presented to a user, for example as a schedule (in
the case of a scheduling problem), or as routes on a map (in the case of a vehicle routing
problem), etc. Depending on the user, solving a problem can have different meanings.
Users may want a single solution, or all solutions. They may also want some solutions
that they can compare and choose from. On the other hand, solutions may be associated
to an objective function, assessing how acceptable the solution is. In this case, solving the
problem is finding the solution that optimises the given criterion.

Definition 3 (Constraint Optimisation Problem (COP)). A COP is a quadruplet P =
⟨X ,D, C, obj⟩ where obj is a special variable, called the objective to be optimised. Then,
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solving the COP means finding a solution σopt that maximises the variable obj, i.e.

σopt = argmax
σ∈Sols(P)

σ(obj) .

Remark. We have presented the definition as a maximisation problem, but minimisation
is also allowed in COPs.

When there are multiple (possibly conflicting) objectives, the problem is called a multi-
objective problem. In this case it is more difficult to define what is the “best” solution.
Multi-objective problems and solution quality are defined and studied in detail in Chap-
ter 9.

2.2.2 Constraints

In the definition 1 of CSPs, constraints are defined by a scope and a relation. This
definition of a constraint in extension (by listing the allowed values) is called a table
constraint.

Definition 4 (Table constraint). Given a tuple of r variables Xi1 , . . . , Xir , and a set
of tuples T , the table constraint C = table((Xi1 , . . . , Xir), T ) is such that scp(C) =
(Xi1 , . . . , Xir), and rel(C) = T .

Table constraints allow the representation of any constraint or relationship between
variables. However, it is not user-friendly, as the users have to determine themselves
all the allowed values, and in the worst case, the number of tuples in rel can be ex-
ponential in the number of variables in the table. CP languages (such as MiniZinc [39]
or XCSP3 [11]) allow for a wide range of constraints defined in intension. These con-
straints ease the modelling phase, but also helps the solver, as they are often asso-
ciated to dedicated algorithms. For example, the arithmetic constraint X + Y ≤ 2
(with X, Y ∈ {0, 1, 2}) is a condensed representation of the constraint C such that
scp(C) = {X, Y } and rel(C) = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)}. This language
also includes global constraints, which are predicates that express a conjunction of several
other constraints.

Definition 5 (Global constraint (from Chapter 6 of [50])). A global constraint is a con-
straint that captures a relationship between a non-fixed number of variables.
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Global constraints facilitate the modelling phase. There are many global constraints
to model different behaviours (423 global constraints in the global constraint catalogue 1

at the time of writing). One of the most classic constraint is the alldifferent.

Definition 6. The alldifferent constraint ensures that all the variables take different
values, i.e. if σ is an instantiation then

σ satisfies alldifferent(Xi1 , . . . , Xir)⇔ ∀1 ≤ j < k ≤ r, σ(Xij
) ̸= σ(Xik

) .

As we will see in the following section 2.4.1, global constraints not only make modelling
easier, they also allow for better and faster algorithms.

2.3 Example of Model: Rikudo

App logo

In this section we present an example of problem, and the corre-
sponding CSP. This example comes from the Android application I
developed for solving logic games using CP. The detailed presentation
of the application (called Logic Games Solver 2 and available in the
Play Store) is given in Appendix C. There are several ways of rep-
resenting a single problem. We present here one way to model this
problem, but it is a good exercise to try to model it in a different way.

2.3.1 Game Rules

Rikudo is a logic game played on a hexagonal grid. Logic games are games where a
set of rules and initial clues restrict the problem to a unique solution. In Rikudo, the goal
is to enter numbers from 1 to M (where M is the number of cells, 36 in the example of
Figure 2.1). These numbers must form a continuous path from 1 to M using adjacent
cells. Some numbers are already given as clues. Also, some edges are required to be taken
in the path.

Figure 2.1 shows an input (which you can solve). The small squares between two cells
represent mandatory edges. Note that the middle cell is not used in this game.

1. http://sofdem.github.io/gccat/
2. https://play.google.com/store/apps/details?id=com.mvavrill.logicGamesSolver
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15 14 12
16 9 11

19 27 8 5 3
20 6 2

35 34 33 31
22 23 26 28 30

24 25
Figure 2.1 – Example of rikudo grid

2.3.2 Model

Here we define a CSP that can be used to solve this problem. Here we use one integer
variable per cell, and Boolean variables representing the underlying graph from which a
path is created.

Notation. We note:
• M the number of cells. In the example M = 36.
• S the set of all hexagonal cells S = {s1, . . . , sM} (not in any order);
• Given a cell s ∈ S, N(s) is the set of the neighbours of s, i.e. the 6 cells surrounding
s (or less if c is on the border of the grid).

We create M integer variables Xs, one for each cell:

∀s ∈ S,Xs ∈ {1, . . . ,M} .

These are the variables that define the solution. A first constraint on these variables is
that they should all be different. The constraint is

alldifferent(Xs1 , . . . , XsM
) .
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Remark. If the values 1 and 36 are present as clues, this constraint is redundant with
others presented later. A redundant constraint is not necessarily a bad thing, as it helps
the solver.

If a set of clues Hcell (for the values) is given containing pairs (cell, value), we have to
add the constraints

∀(s, v) ∈ Hcell, Xs = v .

Now we need to ensure that the clues form a single path, and that the values on that
path are adjacent. We create Boolean variables representing directed edges from one cell
to one of its neighbours:

∀s ∈ S,∀s′ ∈ N(s), Es,s′ ∈ {0, 1} .

We use these variables to ensure that a path is taken through all the cells. We create
a special cell s0 which is connected to all other (real) cells, with the Boolean variables
Es0,s, Es,s0 for s ∈ S. This special cell transforms the problem of finding a path into the
problem of finding a cycle (by connecting the beginning and end of the path using s).
Working with a cycle ease the modelling because there are no more special cases in the
beginning and the end of the path. A cycle is defined by the fact that all cells have an
out-degree and an in-degree equal to 1. This is enforced by the following constraints:

∀s ∈ S,∀s′ ∈ N(s) ∪ {s0},
∑

s′∈N(s)∪{s}
Es,s′ = 1 (out-edges)

∀s ∈ S,∀s′ ∈ N(s) ∪ {s0},
∑

s′∈N(s)∪{s}
Es′,s = 1 (in-edges)

∑
s∈S

Es0,s = 1 (special out-edges)
∑
s∈S

Es,s0 = 1 . (special in-edges)

Remark. If 1 is present as a clue, it is possible not to use the out-edges of the special
cell, and to state that the sum of the in-edges going to the cell containing 1 is equal to 0.
The same is true for the cell containing the clue M .

We also need to use the clues on the mandatory edges. We assume that we have access
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to a setHedge containing pairs (s, s′) of (undirected) mandatory edges. Then, the following
constraint adds the clue constraints (one of the two directed edges has to be taken):

∀(s, s′) ∈ Hedge, Es,s′ + Es′,s = 1

These constraints ensure that the underlying graph contains only cycles. However there
can be more than one cycle. The following constraints, which link the edges to the values,
deal with this issue, and at the same time constrain the values of the cells in the path.
The constraint states that if the edge s, s′ is taken, then the value of s′ follows the value
of s.

∀s ∈ S,∀s′ ∈ N(s), Es,s′ ⇒ (Xs′ = Xs + 1) .

The problem is now fully constrained, and if all the clues are given, only one solution
is allowed.

Remark.
• It is possible (to help the solver) to provide more expert knowledge by adding redun-

dant constraints. For example, two non-adjacent cells cannot have adjacent values.
Such a constraint can be defined as:

∀s ∈ S,∀s′ ̸∈ N(s), Xs′ ̸= Xs + 1 .

• Other CSPs are possible to solve this problem. For example 3, it is possible to use
hexagonal coordinates, and define the path using moves in that coordinate system.
Dealing with cell clues is very easy, but dealing with edge clues is harder.

For more examples of models, the Appendix C presents CSPs for other logic games
(such as Sudoku and Kakuro). I also show some optimisations that can be made by
merging constraints, adding redundant constraints to help the solver, or using graph
variables.

2.4 CP solving

In the previous section, I presented CP from the user’s point of view. Here I present the
solving process used to actually find the solutions. For actual practical implementations,

3. This idea comes from Matthew Coyle, a fellow PhD student who motivated me to solve this very
interesting problem.
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1 Function Solve(P)
Data: A CSP P = ⟨X ,D, C⟩
Result: The set of solutions of P

2 P ′ ← Propagate(P)
3 if ∃Xi ∈ X ′ such that |D′(Xi)| = 0 then
4 return ∅
5 else if ∀Xi ∈ X ′ with |D′(Xi)| = 1 then
6 return {D}
7 else
8 d←MakeDecision(P ′)
9 return Solve(P ′ ∧ d) ∪ Solve(P ′ ∧ ¬d)

Algorithm 2.1: Recursive CP solver

every solver has a different framework, but an interested reader can look into [30], the
inspiration for choco-solver.

Algorithm 2.1 presents a basic functional programming and recursive algorithm for
finding all the solutions of a CSP. This algorithm alternates between two steps: prop-
agation and decision. The propagation phase (line 2) analyses the constraints and the
current domains, and tries to find values that cannot appear in solutions. These values
can be safely filtered (i.e. removed from the domains). We present this step in detail in the
following section 2.4.1. After this propagation step, if the domain of a variable is empty
(line 3), then there are no solutions, the sub-problem is said to be inconsistent. If all
the variables are instantiated (i.e. their domain contains a single value, in line 5), then a
solution has been found and can be returned. Otherwise, if the sub-problem is consistent,
and there are still uninstantiated variables, a decision must be performed. A function
MakeDecision is called to generate a decision (a constraint that can be negated) in
line 8. Then recursive calls are made on the sub-problem with the decision (and with its
negation) in line 9. This decision step is described in detail in the following section 2.4.2.

The recursive calls in Algorithm 2.1 define a recursive tree. In CP, this tree is called
the backtrack tree, and the backtrack-search traverses this tree. A backtrack is the action
of returning from a sub-call of the Solve function. A backtrack occurs when a solution
or an inconsistency is found, or when both branches of a decision have been traversed.

Remark. This thesis is all about understanding the backtrack-search and trying to change
the order in which solutions are returned. The backtrack-search has to completely enumer-
ate a sub-space (P ′∧d) before moving on to the next sub-space (P ′∧¬d). Hence, solutions
close to each other are returned sequentially. If the search is stopped before all solutions
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have been enumerated, some search-spaces would not have been seen by the solver. Diver-
sity properly defines how to evaluate whether a subset of solutions covers the space well,
and is presented in Section 2.6.

2.4.1 Constraint Propagation

The first main component of the Solve function is the Propagate function. Con-
straint propagation is the task of reducing the domain of the variables, without removing
solutions. This reduces the search space, hence focusing the search on the solution space.
This step searches for values that can be safely removed.

Consistency

In order to know which values can be deleted, a notion of consistency is defined. We
present arc consistency, the most commonly used notion of consistency.

Definition 7 (Arc consistency [34]). Let P = ⟨X ,D, C⟩ be a CSP. Let C be a constraint
with scp(C) = {Xi1 , . . . , Xir}. Let j ∈ {1, . . . , r}, a value xij

∈ D
(
Xij

)
is said to be arc

consistent with constraint C iff there exists a tuple τ = (xi1 , . . . , xir) (with xik
∈ D (Xik

))
such that τ ∈ rel(C). τ is called a support for the value xij

.
If all the values in the domains of all variables are arc consistent with all constraints,

then the CSP is also said to be arc consistent.

Intuitively, when considering one particular value and one constraint, if there is a
value for all the other variables such that the constraint is satisfied, then the value under
consideration is arc consistent. We illustrate arc consistency using the alldifferent
constraint and its decomposition.

Example. We consider the following CSP:

P =

⟨ {X1, X2, X3},

D :


X1 → {1, 2, 3}
X2 → {2, 3}
X3 → {2, 3}

,

{alldifferent(X1, X2, X3)} ⟩
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(a) Value graph

X1

X2

X3

1

2

3

(b) Value graph after filtering

Figure 2.2a shows a representation of the domains of the variables through the value
graph. This bipartite graph has nodes representing the variables, and nodes representing
the values. An edge is present if the value is in the domain of the variable.

In the CSP P, we can check if the value 3 of X2 is consistent (with the only constraint).
The tuple (1, 3, 2) satisfies the constraint, so the value 3 of X2 is consistent. However, it
is not possible to create a tuple satisfying the constraint with the value 2 (or 3) for X1. If
we try to instantiate X1 to 2, then X2 is necessarily instantiated to 3, and then there is no
possibility for X3. In consequence, the values 2 (and 3) can be removed from the domain
of X1, resulting in the value graph in Figure 2.2b.

Now we want to show that using the global constraint alldifferent improves the
propagation. This constraint can be decomposed into three ̸= constraints:X1 ̸= X2, X1 ̸=
X3, and X2 ̸= X3. We can check whether the value 2 for X1 is consistent with this
reformulation. It is consistent with the constraint X1 ̸= X2 because the tuple (2, 3) satisfies
the constraint. The same reasoning works for the constraint with X3, and X1 does not
appear in the last constraint.

We see that the use of the global constraint allow us to find earlier that some values
are inconsistent. We show another example of such constraint reformulation in the Kakuro
logic game in Appendix C.4 where merging alldifferent and sum constraints improves
the propagation.

Remark. Other notions of consistency can be defined. For example, path consistency [6] is
a stronger consistency, in the sense that it removes more values than arc consistency. On
the other hand, bound consistency [13, 31, 47] filters fewer values (they restrict only the
bounds of the domains). These definitions (as well as others) allow a stronger propagation
at the cost of a longer running time, or fewer propagation but faster.
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1 Function PropagateAC3(P)
Data: A CSP P = ⟨X ,D, C⟩
Result: false if the problem is inconsistent, true otherwise, with the

domains reduced.
2 Q← {(X,C) | C ∈ C, X ∈ scp(C)}
3 while Q ̸= ∅ do
4 (X,C)← Q.pop()
5 if Revise(X,C) then
6 if D(X) = ∅ then return false
7 else Q← Q ∪ {(X ′, C ′)|C ′ ∈ C\{C}, X ′, X ∈ scp(C ′), X ′ ̸= X}

8 return true

9 Function Revise(P , X, C)
Data: A CSP P = ⟨X ,D, C⟩
Result: false if the problem is inconsistent, true otherwise, with the

domains reduced.
10 change← false
11 for v ∈ D(X) do
12 if v is not arc-consistent with C then
13 Remove v from D(X)
14 change← true

15 return change

Algorithm 2.2: AC3: enforcing arc-consistency.

Every constraint has its own filtering algorithm. Global constraints often allow to have
very efficient algorithms to find values to filter. A textbook filtering algorithm is the one
of the alldifferent constraint, presented in [49]. The author notes the correspondence
between a support for a value, and a maximum matching in the value graph. He can then
use matching theory to find which values that do not belong to any maximum matching.

Propagation Algorithm

When removing a value from a domain (using arc consistency), some other values
may no longer be arc consistent with some other constraints. These values need to be
checked on these constraints, until the problem becomes arc consistent. One of the first
algorithms proposed to do this is AC3 [34], presented in Algorithm 2.2. It is based on
a Revise function that filters the values of X that are not arc consistent with C. It
also informs the main algorithm when a change has been performed. The main algorithm
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uses a queue Q of pairs of a variable X and a constraint C such that some values of
X may not be arc consistent with the constraint C. While the queue is not empty, it
pops a pair variable/constraint from the queue, and performs the consistency check using
Revise. If a modification has been done, the algorithm checks that the domain is not
empty (otherwise the sub-problem is inconsistent, line 6). It also updates the queue to
add all the variables whose values may no longer be consistent. For all the constraints C
such that X ∈ scp(C), it adds the pair X ′, C for all X ′ ∈ scp(C) (except X).

This algorithm was later improved, for example by storing more information, in
AC4 [37], AC6 [7], and AC2001 [8]. These algorithms are very efficient when reason-
ing on the support tuples, i.e. with table constraints. Other frameworks for propagation
have been proposed that focus on constraints [30, 55].

Implementing a CP solver is a difficult task because there are plenty of optimisations
to consider. During the propagation phase, some constraints can be prioritised because
they may filter more values faster (for example, the alldifferent may not filter many
of values until the domains are small enough [10]). Algorithm 2.1 presented the CP solver
in a recursive and functional programming pseudocode. Implementations may not use
this framework. In this case, changes to domains should be recorded so that they can be
undone later when a backtrack occurs.

2.4.2 Search Strategies

The second main component of the Solve function is the MakeDecision function.
When no more constraint propagation can be done, a decision must be made to reduce
the search space.

Definition

In all generality a decision is a constraint that can be negated. Such a constraint must
be designed to directly reduce the domains of some variables. Otherwise, the search may
get stuck in a loop of making decisions that do not reduce the domains. In most cases,
the decisions are unary, i.e. their scope is a single variable. This way, the domain of the
variable can be reduced immediately.

A unary constraint is necessarily of the form X ∈ D with D ⊆ D (X) (and its negation
X ̸∈ D). Two particular sets D are interesting for decisions. If D contains all the values
of D (X) smaller than some value v, the decision is equivalent to X < v (and its negation
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X ≥ v). This decision is especially useful when dealing with continuous domains. If
|D| = 1, the decision is directly an instantiation X = v, and its negation (X ̸= v). In this
manuscript, we will focus on this type of decision: X = v.

Remark. In the Solve function, the branching is binary, i.e. the decision and its negation
are applied. It is also possible to enumerate the values of a variable, and to make one
recursive call per value.

The search strategy, which chooses which decisions are made during the search, has
a strong influence on the efficiency of the solver. Search strategies can be designed to
perform well on a wide range of problems (black-box search strategies), or to perform
well on a specific set of instances (such as scheduling, or routing problems). Some black
box strategies are based on the domains of the variables. The dom [21] search strategy
chooses the variable with the smallest domain. It can be improved with dom/wdeg [12], by
weighting the constraints according to the conflicts they caused. To this day, dom/wdeg
remains one of the most competitive black-box search strategies. Adaptive strategies, such
as impact [48] and activity [36], collect and use information during the search, such as
variables/values that lead to conflicts, or reduction of domains. CBS [42] uses counting
algorithms on constraints to estimate the density of solutions, to guide the search towards
promising spaces. There are meta-strategies that modify the behaviour of other strategies
(for example by reducing the set of variables to branch on), such as lastConflict [32].
Search strategies are an active area of research, and newer strategies are often developed,
such as FRBA [33] or wdegca.cd [63]. For some specific problems, a tailored strategy may
improve the running time, such as SetTimes [18] for scheduling problems.

These search strategies are heuristics, and as such they may make decisions that do
not lead to solutions. In this case, the solver may spend a long time in a sub-space without
solution, before finally proving that there are no solutions. This phenomenon is called a
heavy-tail [19] and can be avoided by using restarts. Restarts stop the search, and start
again from the root of the search. Restarts can be performed after some conflicts (i.e.
inconsistencies) have been detected. To avoid returning to a sub-space already traversed,
no-goods can be added to the model. For example, the Luby [178] sequence defines how
often restarts should be performed. Adaptive search strategies benefit from the use of
restarts, because they learn from their mistakes. At the beginning of the search, bad
decisions may be made, that are undone with restarts. After a while, the search learns
from the conflicts, and makes better decisions (i.e. decisions that are likely to lead to
solutions).
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1 Function RandomSearch(X )
Data: X the variables of the problem
Result: A decision to perform in the search

2 X ′ ← {X ∈ X | |D (X) | ≠ 1};
3 X ← Random (X ′);
4 v ← Random (D (X));
5 return Decision(X = v);

Algorithm 2.3: Random search strategy

RandomSearch

The search strategies presented so far are designed to find solutions quickly. They are
often deterministic, i.e. running the solver twice will produce the same solution. In some
cases it is interesting to run the solver a second time to get a different solution. In this
case, randomness is useful.

Algorithm 2.3 presents RandomSearch, the basic random search strategy. This strat-
egy considers all the variables, randomly chooses an uninstantiated variable X to branch
on, randomly chooses a value v in its domain, and returns the decision X = v.

Using RandomSearch as the search strategy allows solutions to be returned ran-
domly. However, some solutions are more likely to be selected than others.

Example. We consider the following CSP:

P =
〈
{X, Y },

 X 7→ {0, 1}
Y 7→ {0, 1}

, {X + Y > 0}
〉

This problem has three solutions for (X, Y ): (0, 1), (1, 0), and (1, 1). We can now follow
the behaviour of the solver to determine the probability of getting each solution. The initial
propagation step cannot remove any value from the domain of the variables. The decision
step is applied. A variable has to be chosen randomly, there are two cases (each with equal
probability 1/2 of being chosen):

• X is chosen, then one of its values is chosen at random, again there are 2 cases
(each of equal probability 1/2 of being chosen):
— 0 is chosen. The only possible solution resulting from this decision is the solution

(X, Y ) = (0, 1) (the propagation step will easily filter 0 out of the domain of
Y );

— 1 is chosen. Then the constraint is satisfied, so no more filtering can be done.
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A decision step is performed again, selecting the only uninstantiated variable
Y . Then there are two possible values:
— 0, then the solution is (X, Y ) = (1, 0);
— 1, then the solution is (X, Y ) = (1, 1);

• Y is chosen, then one of its values is chosen at random, there are again 2 cases
(each with equal probability 1/2 of being chosen):
— 0 is chosen. The only possible solution resulting from this decision is the solution

(X, Y ) = (1, 0) (the propagation step will easily filter 0 out of the domain of
X);

— 1 is chosen. Then the constraint is satisfied, so no more filtering can be done.
A decision step is performed again, choosing the only uninstantiated variable
X. Then there are two possible values:
— 0, then the solution is (X, Y ) = (0, 1);
— 1, then the solution is (X, Y ) = (1, 1).

Let us define s to be the random solution returned by the algorithm. The probability to
return each solution can be computed. For example for s = (0, 1), we have

P (s = (0, 1)) = P(X is chosen first) · P(0 is chosen for X)
+ P(Y is chosen first) · P(1 is chosen for Y ) · P(0 is chosen for X)

= 1
2 ·

1
2 + 1

2 ·
1
2 ·

1
2

= 3
8

The final random distribution of the solutions when using the RandomSearch search
strategy is

P(s = (0, 1)) = 3
8

P(s = (1, 0)) = 3
8

P(s = (1, 1)) = 1
4

This distribution is not uniform, the solutions do not all have an equal chance of being
sampled.

From this simple example we can see that the distribution of RandomSearch is
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not uniform. This fact has also been proven experimentally in Chapter 5 Section 5.6.
Computing the exact distribution of the solutions is not an easy task. In Chapter 7
Section 7.4, I analyse the behaviour of RandomSearch and give a lower bound on the
probability of drawing certain combinations of variables.

Considering running time, RandomSearch is extremely simple to implement and fast
to run (the only difficulty is knowing what are the uninstantiated variables). However,
it makes very bad decisions. These bad decisions can lead the search into unsatisfiable
sub-spaces for which the solver will take a long time to prove the unsatisfiability. This
was shown experimentally on a benchmark of hard instances in Chapter 5 Section 5.7.
On easier instances (either with many solutions or where the propagation quickly finds
inconsistencies), it finds solutions much faster, as shown in the experimental section of
both Chapters 6 and 7.

2.4.3 choco-solver

In this thesis, I used choco-solver [46] to implement the algorithms, and to solve the
problems. choco-solver is an open-source CP solver implemented in Java, and available
as a Maven dependency. There is also a Python binding 4. The following code shows how
to define variables and a simple constraint.

1 Model model = new Model("Example");
2 IntVar x = model.intVar("X",0,2); // X \in {0,1,2}
3 IntVar y = model.intVar("Y",0,2); // Y \in {0,1,2}
4 x.add(y).le(2).post(); // Constraint X+Y <= 2
5 Solver solver = model.getSolver();
6 solver.setSearch(Search.inputOrderLBSearch(new IntVar[]{x,y}));
7 solver.limitTime(1000); // Time limit in ms
8 Solution solutions = solver.findAllSolutions();
9 System.out.println(solutions);

Once the model is defined, the solver helps to define strategies, time limits, and to find
the solutions. Many state-of-the-art constraints and strategies are already implemented
in choco-solver and can be used directly. For users who want to use a specific search
strategy, choco-solver allows to implement new strategies and use them during the
solving. Users can also design and implement their own propagation algorithms, and
attach them to the constraint propagation of choco-solver.

4. https://pypi.org/project/pychoco/
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2.5 The Satisfiability Problem (SAT)

A special case of constrained problem is when all the variables are Boolean, and
constraints are propositional formulas. We call this a SAT (satisfiability) problem. It is
one of the central problems in computer science, both theoretically and practically. It
was the first problem to be shown NP-complete [167], and it was then used to show that
many other problems are NP-complete [173] using reductions to SAT. We present SAT as
a special case of CP, but in practice, SAT was introduced before CP, and a lot of design
ideas in CP come from SAT ideas.

2.5.1 Definition

Compared to CP, SAT is defined on a simpler constraint language for Boolean vari-
ables, called propositional formulas as defined in logic.

Definition 8 (Propositional formula). Given variables xi, a propositional formula is de-
fined recursively such that

• a variable is a propositional formula;
• given a propositional formula ϕ, its negation ¬ϕ is a propositional formula;
• given two propositional formulas ϕ1 and ϕ2, and a binary operator □ ∈ {∧,∨,→,↔
,⊕} (respectively for the and, or, implication, equivalence, and xor constraints),
then ϕ1 □ϕ2 is a propositional formula.

Propositional formulas allow for a great expressiveness, but for SAT solvers, a simpler
input format is preferable. This format is called Conjunctive Normal Form (CNF).

Definition 9 (Conjunctive Normal Form (CNF)). Given a variable x, we call a literal
the formula x and ¬x. A clause C is a disjunction of literals, i.e. C = l1 ∨ l2 ∨ ... ∨ lk.
A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, i.e.
ϕ = C1 ∧ C2 ∧ ... ∧ Cm.

In the CNF form, clauses are the constraints: all the clauses must be satisfied. For a
clause to be satisfied, at least one literal must be true. Converting propositional formulas
into CNF form is not an easy task. Classically, implications, equivalences and xor con-
straints are reformulated using only negations, ∧ and ∨. Then, propagation of negation to
literals, and distribution operations (of ∧ over ∨ or the vice versa) can convert the formula
into CNF. However, there are formulas (such as xor constraints x1 ⊕ x2 ⊕ . . .⊕ xn) that
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require an exponential number of clauses to be represented as CNF [29] without increasing
the number of variables. There are other transformations, such as the Tseitin transforma-
tion [61]. The Tseitin transformation introduces new variables (one per sub-formula) and
new constraints linking these new variables (containing at most 3 variables per clause).
This transformation has a size (number of variables and number of constraints) at most
polynomially larger than the original formula.

The DIMACS format is a common textual representation for CNF. The first line has
the form

p cnf [v] [c]

where [v] is the number of variables, and [c] is the number of clauses. Then there is a
line for each clause, ending with a 0. Each clause is a list of integers. The variables are
numbered from 1 to n. Given 1 ≤ i ≤ n, i represents the variable xi, and −i represents
its negation ¬xi.

Example. The DIMACS representation of the CNF (¬x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x2) ∧
(x1 ∨ ¬x2 ∨ ¬x4) is

p cnf 4 3
-1 2 -3 4 0
1 2 0
1 -2 -4 0

This textual representation can then be passed to a SAT solver.

2.5.2 Solver

The basic algorithm for solving SAT problems uses a backtrack-search similar to CP.
One of the main algorithms is DPLL [14], which is very similar to the one presented in
Algorithm 2.1, but adapted to Boolean variables and clauses. It uses a special propagation
step, called Boolean constraint propagation (or unit propagation). It searches for a clause
where all but one literal is instantiated to false, and instantiates it to true.

Example. We consider the same example formula as the previous example of DIMACS
representation: (¬x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x4). We assume that in
the first step, x1 was instantiated to 0 (false). The formula can then be simplified to

(1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (0 ∨ x2) ∧ (0 ∨ ¬x2 ∨ ¬x4)
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The first clause contains a true literal, it is then satisfied and can be forgotten. The literals
set to 0 can be omitted from the clauses. This results in the following reduced formula:

(x2) ∧ (¬x2 ∨ ¬x4)

In this formula, the first clause contains a single literal x2, which must be set it to true
(i.e. instantiated to 1). The formula is then reduced to only the clause (x4), so x4 must
also be set to 1. After that, there is no more constraint, so x3 can take any value.

As with CP, there are also search strategies for choosing the variable and value to
branch on. Some strategies use the number of occurrences of the literal in the clauses to
choose, such as DLCS [56]. Other select literals appearing in previous conflicting clauses,
such as VSIDS [38].

DPLL was later improved by CDCL [57] (conflict-driven clause learning). In CDCL,
when the search reaches a conflict, a new clause is learned to prevent the search from
reaching the same conflict again. Information stored during unit propagation can be used
to learn a new clause representing the conflict. Non-chronological backtracking can also
be performed to backtrack from multiple levels at once.

SAT solvers use many other improvements that are beyond the scope of this the-
sis. For a detailed presentation of SAT solving, we refer the reader to the Handbook of
Satisfiability [9].

2.6 Diversity

As mentioned earlier, solving a problem means finding solutions. However, users want
to be given choices, and not just a single solution. This is even more important in the
modelling phase, where the constraints may not all be formulated. On the other hand,
showing the user all the solutions is overwhelming. On some problems there are too many
solutions. On some instances (of software product lines) presented in Chapter 7 there are
more than 10120 solutions. From all these possible solutions, an interesting small subset
has to be extracted. Diversity is used here to formally define interestingness measures.

2.6.1 Definitions

How to evaluate the “interestingness” of a set of solutions ? From a user’s point of
view, some properties are desirable.
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• Are the solutions far apart ? Solutions that are close to each other may contain
redundancy and give little new information to the user.

• Do the solutions represent the other solutions well ? Solutions should be represen-
tative of all the options available to the user.

• Does the solution set have some coverage properties ? If the set of solutions offers
guarantees (for example for software testing), the users can trust them.

The first item raises the question of diversity, as defined in [24]. The second item uses the
notion of representativeness, as defined in [157]. The third item evaluates the guarantees
of the solutions, as presented for example in Chapter 7 on the t-wise coverage of a test
suite.

Distances

When referring to solutions as close or far from each other, an underlying distance is
used. Many distances can be defined over solutions, depending on the application. Here,
we define different useful distances.

Definition 10 (Distances). We suppose that we have two solutions s = (s1, . . . , sn) and
s′ = (s′

1, . . . , s
′
n), defined over numerical spaces (such as R or Z). We define the following

distances.
• Hamming, or l0 distance, noted δH:

δH (s, s′) =
n∑

i=1
1si ̸=s′

i

This distance is important when the dimensions of the solution do not represent
integers that are meant to be compared. This is the case,for example, in config-
uration problems, where a variable may take the value {car, bus, plane}, but the
reformulation to solve the problem identifies the identifiers with integers, for ex-
ample with {car 7→ 0, bus 7→ 1, plane 7→ 2}. Then the variable has no meaning in
the integers, the only comparison possible to do is the equality (here, disequality)
test. The Hamming distance can deal with these variables in a meaningful way.

• Manhattan, or l1 distance, noted δl1 :

δl1 (s, s′) =
n∑

i=1
|si − s′

i|
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This distance, unlike the Hamming distance, gives more leeway when comparing
two solutions. It allows the values to be used to have a more precise comparison.

• Euclidean, or l2 distance, noted δl2 :

δl2 (s, s′) =
√√√√ n∑

i=1
(si − s′

i)2

This distance is the natural distance between two solutions in the space. For ap-
plications where the variables represent points in the space, it may be more appro-
priate to use the Euclidean distance.

Remark. The three distances presented are classical when working in high-dimensional
spaces, but other distances can be defined:

• These three distances are particular cases of the Minkowski distance, also called lp
distance, noted δlp (p = 0 for Hamming, p = 1 for Manhattan, and p = 2 for the
Euclidean distance). Given p ≥ 0, the Minkowski distance is defined as

δlp (s, s′) =
(

n∑
i=1

(si − s′
i)p

)1/p

• To use only integers, it is sometimes possible to use the squared Euclidean distance
(i.e. omitting the square root).

• A combination of the above distances can be used. For example, the Hamming
distance can be used for some dimensions, and the Euclidean distance for others.

• When the solutions are sets, other metrics can be used, such as the F-score, or the
Jaccard index (presented and used in Chapter 7).

When comparing or summing values, normalisation factors should be considered. In-
stead of giving each dimension the same weight, a distance can multiply the different
dimensions by certain factors. This can either normalise the problem, or give more weight
to certain dimensions that the user is more interested in.

The definition of distances heavily depends on the needs of the users. Some dimensions
may be irrelevant, or important to them. In the following, we try to be as generic as
possible, and use a distance noted δ.
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Diversity Problems

In this section, we focus on satisfaction problems (CSPs). Defining diversity in an
optimisation framework is harder. It is possible to transform an optimisation problem
into a satisfaction problem by bounding the objective function (to be close to the optimal
value), as done in Chapter 5. In Chapter 9 we study and define diversity in a multi-
objective setting.

In satisfaction problems, diversity can be defined in a number of ways. In CP, it was
introduced in [24]. The most general problem is MaxDiverseKSet. It searches for the most
diverse set of k solutions of the problem.

Definition 11 (MaxDiverseKSet). Let k ≥ 2 be an integer and P be a CSP, with solutions
Sols (P), and δ be a distance over these solutions. MaxDiverseKSet(k) is the problem of
finding a subset of solutions S̃ ⊆ Sols (P) of size k that maximises the distances between
the solutions, i.e.

S̃ = argmax
S⊆Sols(P)

|S|=k

min
s,s′∈S
s ̸=s′

δ(s, s′) .

In this definition, the solution set of the problem is the set that maximises the minimum
distance between solutions. This ensures that all selected solutions are distant.

Remark. In this definition, the minimum is used to aggregate all the pairwise distances.
It is possible to use other aggregators to have a single value as an interestingness evaluator.
The sum of the distances can also be used to aggregate all the pairwise distances. This is
equivalent to averaging the pairwise distances. Using the sum aggregator has an impact on
the resulting solution set. This impact is studied in Chapter 8.

To understand the difficulty of this problem, we can look at the naive implementation.
Given a problem P , and a desired number of solutions k, we search for a subset S of
Sols (P) of size k. There are

(
|Sols(P)|

k

)
such sets. In addition, it may already be difficult

to find solutions of P .
To ease this problem, we can search for the solutions one by one. The MostDistant

problem searches for the most distant solution from a set of previously found solutions.

Definition 12 (MostDistant). Let S ∈ Sols (P) be a set of solutions and δ be a distance.
MostDistant(S) is the problem of finding the solution s̃ that is most distant from all the
solutions in S, i.e. for all s ∈ Sols (P),

s̃ = argmax
s∈Sols(P)

min
s′∈S

δ(s, s′) .
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Y

X

Figure 2.3 – Example of MostDistant solving. The variables are X, Y ∈ {0, 10}, S =
{(0, 0), (10, 0), (10, 10), (0, 10)}

Example. We show an example of MostDistant solution. We consider an unconstrained
problem with variables X and Y with domains {0, . . . , 10}, a set S = {(0, 0), (10, 0),
(10, 10), (0, 10)} of solutions already returned, and the Manhattan distance. Figure 2.3
shows a graphical representation of this problem, with the solutions in S marked in red.
We search for the most distant point from S. Let us consider the point (X, Y ) = (7, 3).
The minimum distance to the points in S is 4, with the point (10, 0) ∈ S. If we consider
the point (5, 6) as a candidate, the minimum distance to the points in S is 9, with the
point (0, 10) (and (10, 10)). The point (5, 6) is more distant than (7, 3) to the points in S.
However, the most distant point is (5, 5).

The MostDistant problem can be seen as a greedy solving of MaxDiverseKSet. The
solutions are drawn incrementally, and chosen to be the most distant from all the previ-
ously found solutions.

Remark. For the diversity to be a meaningful question, the initial problem should have
plenty of solutions. On a problem with very few solutions, all the solutions can be presented
to the user.

These two problems ensure that the set of solutions generated contains distant solu-
tions. However, there is no information about the remaining (not returned) solutions of
the problem. It would be interesting for a user to know if the returned solutions cover
the whole set of solutions. This is the notion of representativeness. A returned solution
represents the solutions that are the closest to it.
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Definition 13 (MostRepresentativeKSet [157]). Let k ≥ 2 be an integer and P be a
CSP, with solutions Sols (P), and δ be a distance over these solutions. MostRepresentative-
KSet(k) is the problem of finding a subset of solutions S̃ ⊆ Sols (P) of size k which
minimises the diameter of the represented solution sets, i.e.

S̃ = argmin
S⊆Sols(P)

|S|=k

max
s∈Sols(P)

min
s′∈S

δ(s, s′) .

This definition is the same as MaxDiverseKSet, except for the evaluation of the solution
sets. We describe this definition in more detail. The innermost min computes the minimum
distance between a solution s of the problem P and the selected solutions (in S). This is
equivalent to assigning the solutions to their closest representative solutions in S. Then
the max computes from all the solutions of the problem, what is the largest distance to one
of its representative solutions in S. The outer argmin searches for the set of representative
solutions S that minimises the maximum distance to the representative solutions.

Remark. The maximum distance to the representative solution is called the diameter.
This definition tries to minimise the diameter of the representative solution set. It would
also be interesting to count how many solutions are represented by each returned solution.
Ideally, a user would like for each returned solution to represent the same number of
solutions.

The user may only want a good set of solutions, not necessarily the best one. The
following section shows how CP can be used to generate sets of solutions (and approxi-
mations) for the problems we have presented.

2.6.2 Finding Diverse Sets

This section first presents COPs to solve exactly the MaxDiverseKSet and Most-
Distant problems. Then the PostHoc approach is presented. This is an approximation
using a post-processing of the solutions.

Problem Reformulation

COPs for solving the MaxDiverseKSet and MostDistant problems were presented
in [24]. Both assume that the original problem was already represented by a CSP P =
⟨X ,D, C⟩, with X = {X1, . . . , Xn} and C = {C1, . . . , Cm}.
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Remark. The ability to find diverse solutions greatly depends on the ability to find so-
lutions in the initial problem. In problems where finding a single solution is already very
hard (takes hours or days of running time), finding diverse solutions may not be tractable.
Diversity may more often be used in problems where solutions can easily be found, but there
are many solutions in different parts of the search space.

MaxDiverseKSet For the problem MaxDiverseKSet, a set of k solutions is wanted. To
represent this problem as an optimisation problem, the initial model is duplicated k times.
Each copy is one of the k solutions of the solution set. Formally, we define new variables
(we name the “new” variables and constraints using exponents):

∀1 ≤ i ≤ k, we define the variables X i
1, . . . , X

i
n .

The domains D′ of these new variables are duplicated from the domains of the initial
model:

∀1 ≤ i ≤ k,∀1 ≤ j ≤ n,D′(X i
j) = D(Xj) .

The constraints are also duplicated. For 1 ≤ i ≤ k, for each constraint Cj ∈ C, a new
constraint Ci

j is created such that scp(Ci
j) = (X i)X∈scp(C) and rel(Ci

j) = rel(Cj).
The problem defined this way is simply the initial model duplicated k times. We now

need to link the different duplicated models with distance constraints. We define new
variables to store the pairwise distances between solutions.

∀1 ≤ i < j ≤ k, we define the variables di,j .

We do not specify the domain of these variables, as it depends on the distance used, and
the domains of the variables of the initial model. We can now add the constraints on the
distances:

∀1 ≤ i < j ≤ k, we define the constraints di,j = δ((X i)X∈X , (Xj)X∈X ) .

We assume that we are able to define the distance δ using the constraints of the language.
It may be necessary to use intermediate variables to do this. We can now define the
objective variable as the minimum of all the distances:

obj = min
1≤i<j≤k

di,j .
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The complete optimisation problem is

P ′ =

⟨ ⋃
1≤i≤k{X i

1, . . . , X
i
n},

D′,⋃
1≤i≤k{Ci

1, . . . , C
i
m},

obj⟩

Finding a solution to P ′ that maximises the variable obj gives an optimal solution set for
the MaxDiverseKSet problem.

Example. We show the same reformulation on a simple example. We consider the problem
with only two variables X and Y with domains {0, . . . , 2} and the constraint X + Y ≤ 2.

We want to find a solution set for the MaxDiverseKSet(3). We copy the initial problem
3 times with the variables X1, X2, X3 and Y 1, Y 2, Y 3, all with domains {0, . . . , 2}. We add
the same constraints on these variables as in the initial problem: X1+Y 1 ≤ 2, X2+Y 2 < 3,
and X3+Y 3 ≤ 2. Here, we use the Manhattan distance δl1. We create the distance variables
d1,2, d1,3, d2,3 with domains {0, . . . , 4} (we know that the maximum Hamming distance for
two solutions of the problem is 4). We now add the constraints on the distances:

d1,2 = |X1 −X2|+ |Y 1 − Y 2|

d1,3 = |X1 −X3|+ |Y 1 − Y 3|

d2,3 = |X2 −X3|+ |Y 2 − Y 3|

We create the objective variable obj = min(d1,2, d1,3, d2,3). This variable obj should be
maximised.

Figure 2.4 shows two optimal solution sets that can be generated using this model. The
optimal minimum distance is 2. From a user’s point of view, the second solution set (in
Figure 2.4b) seems more diverse, because two solutions have a distance of 4 (the top and
rightmost solutions). However, this is not captured by the model, as only the minimum
distance is used to evaluate the set. This behaviour of the min aggregator is studied in
Chapter 8.

This formulation of the problem as a COP allows finding the optimal set of solutions
that maximises the minimum pairwise distance. However, copying the problem k times
adds a level of complexity. Satisfying the constraints on each problem can be hard, so
finding the k most optimal solutions is even harder.
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Y

X

(a)

Y

X

(b)

Figure 2.4 – Two examples of optimal diverse solution sets. The black dots are solutions,
the grey dots are the search space, the diagonal line is the constraint X +Y < 3. The red
circles are the solutions in the diverse solution set.

MostDistant To avoid having to solve a problem k times larger, it is possible to generate
the solutions one by one. From an initial set S = ∅, the most distant solution from the
set S is found iteratively and added to it. Solving the problem MostDistant(S) k times
produces an approximation of MaxDiverseKSet(k). Given a problem P = ⟨X ,D, C⟩, it is
possible to reformulate P to find the most distant solution from those in the set S (i.e.
to solve the MostDistant(S) problem). This reformulation is simpler than the one for
MaxDiverseKSet because only one solution is searched. For each solution s ∈ S we create
a variable ds for the distance between the new solution and the previous ones. We add
the constraints

∀s ∈ S, ds = δ(X , s) .

We then create the objective as before

obj = min
s∈S

ds .

Finding the optimal solution for this COP gives the solution to the MostDistant(S)
problem. Compared to the previous reformulation, this one is easier to solve, because the
initial problem P is not duplicated. However, after k calls, the generated solution set is
an approximation of the MaxDiverseKSet(k) problem. In Chapter 8 we show that calling
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1 Function PostHoc(P , k,Find, K,Div)
Data: P a problem, integers k and K such that K > k, an algorithm Find

finding solutions of P , and an algorithm Div finding a diverse subset
of solutions.

Result: A set of k diverse solutions of P
2 SK ← Find(P , K); // find K solutions
3 Sk ← Div(SK , k); // extract k solutions
4 return Sk;

Algorithm 2.4: PostHoc: diverse solutions in two steps

k times MostDistant is a 2-approximation of the MaxDiverseKSet (i.e. in the worst case,
the minimum distance of the solution set is half the optimal distance).

Post-Processing Solutions

Another approach, called PostHoc, was designed in [28] to approximate the Max-
DiverseKSet problem. The idea is to split the MaxDiverseKSet problem into two prob-
lems: first finding solutions to the initial problem, and then finding a diverse subset of
those solutions.

Algorithm 2.4 presents PostHoc. PostHoc generates k solutions. To do so, it first
generates K > k solutions using the Find function. Then it uses the Div function to
extract k diverse solutions from the K initial ones. Using the two functions Find and
Div allow to split the problem into two simpler sub-problems: finding solutions (to a
possibly hard problem), and extracting diverse solutions.

For the Find function, an exact approach is not wanted (this is exactly what the
PostHoc approach avoids). The Find function can be implemented using a greedy ap-
proach such as calling MostDistant K times. It can also use a random approach to
generate the solutions (such as using the RandomSearch search strategy). A bad im-
plementation would be using the default backtrack-search, because the solutions returned
are close to each other. The implementation of the Find function needs to generate so-
lutions in the whole solution space, but not necessarily diverse: this is what the second
step is for.

The Div function extracts k diverse solutions from the K solutions generated by Find.
When K and k are small enough, an exact approach can be implemented (searching
among

(
K
k

)
subsets of solutions). If this exact approach would take too much time, a

greedy approximation (such as MostDistant, but with solutions already known) can be
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implemented.
The choice of K depends on the desired quality of the resulting set. The more solutions

generated, the more likely it is to find a good diverse subset. We have evaluated the
PostHoc approach experimentally in Chapter 6.

Figure 2.5 – A Sudoku grid. When there is still place at the end of a chapter, I add a logic
game that you can solve during a break.
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Chapter 3

PROBABILITIES

3.1 Introduction

Randomness is a term we use to describe behaviour that cannot be predicted. It starts
with a simple coin toss. A fair coin will land heads half of the time on average. However,
with practice, by always flipping the coin always in the same manner, it is possible to
increase the odds of getting a chosen side. Throwing a dice works in the same way. If the
initial conditions are the same, the outcome of the dice will always be the same. However, a
small change in the initial conditions (an angle of the table, the presence of an air current)
will completely change the result. This behaviour is chaotic. It is extremely difficult to
study a chaotic system accurately with a deterministic approach: this is where randomness
comes in. Instead of trying to analyse the behaviour perfectly, it is possible to analyse
the average result. Albert Einstein’s famous quote about quantum mechanics is another
example of the use of randomness as a modelling tool: “God does not play dice with
the universe.” The random behaviour of quantum particles is a modelling approximation,
because we do not know the exact underlying behaviour of such particles.

In this thesis, we use randomness to modify the behaviour of otherwise deterministic
algorithms. The use of randomness in optimisation algorithms is not new. For example
Simulated Annealing, Genetic Algorithms and Monte-Carlo Tree Search all use random-
ness and would not work without it. For example, in Monte-Carlo Tree Search, the future
winner of a given game position cannot be accurately evaluated due to the combinatorial
explosion of the states of a game. A random game is played, and under good conditions,
doing enough of these random games gives a good evaluation of the game position.

The analysis of random algorithms should be done in a probabilistic framework. For
example, it is rarely instructive to analyse the worst case of a random algorithm, as it
is commonly done for deterministic algorithms, because this worst case may have an ex-
tremely low chance of happening. For random algorithms, other properties are important,
such as the average number of operations, the average quality of the solutions (given a
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metric), the probability of failure, the distribution of the solutions, and so on.
In this chapter we give the definitions and notations of the probability concepts used

in the rest of this thesis. It facilitates the other chapters by defining and explaining all
the probability concepts we use. It is not intended to be as complete as a textbook: we
focus on the topics used in this thesis, for example, we mostly use finite and discrete
probabilities.

The chapter is structured as follows: in Section 3.2 we define the basic notions of proba-
bilities, and classical random distributions. In Section 3.3 we present properties of random
algorithms (such as samplers). Finally, in Section 3.4 we present hashing constraints used
in several samplers.

3.2 Definitions and Notations

We start by defining the basic concepts.

3.2.1 Probability

It is possible to define probabilities very formally in order to be as generic as possible.
However, in this section we have opted for a more intuitive presentation. For a more
detailed presentation of the foundations of probability theory (such as probability spaces
or measures), we refer the reader to probability textbooks.

Definition 14. We define the basic notions of probabilities, and the notations we use in
this thesis.

• A distribution is a function associating each element s of a finite set S to a prob-
ability ps such that ∑s∈S ps = 1.

• A random variable is a variable that takes a value in the set S under a given
distribution.

• An event is a set of outcomes, i.e. given a random variable Y and a set S ⊆ S,
Y ∈ S is an event.

• We note P (Y ∈ S) the probability of the event Y ∈ S. It is the sum of the prob-
abilities of each element of S, i.e. P (Y ∈ S) = ∑

s∈S ps. When S contains a single
element s, the event Y ∈ S is also noted Y = s, and P (Y = s) = ps.

• Given two eventsA andB, the conditional probability ofA knowingB is P (A | B) =
P (A ∧B) /P (B).
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• Two eventsA andB are independent if P (A | B) = P (A), or equivalently, P (A ∧B) =
P (A)P (B).

• If S is a finite subset of the integers Z, and Y is a random variable on a distribution
on S, then the expected value of Y is E (Y ) = ∑

s∈S
s · P (Y = s).

Example. We take the example of a 6-sided dice. A random variable Y recording the
outcome of a roll takes values in the set {1, . . . , 6}. The distribution of the values is
uniform U({1, . . . , 6}) such that pi = 1/6 for i ∈ {1, . . . 6}. The random event of getting
an even value is Y ∈ {2, 4, 6}, and has probability P (Y is even) = P (Y ∈ {2, 4, 6}) = 1/2.
Given the events A = “Y = 2” and B = “Y is even”, the probability of the roll being 2
knowing that it is an even number is P (A | B) = 1/3. The expected value of the variable
Y is 3.5 (= 1

6 + 2
6 + 3

6 + 4
6 + 5

6 + 6
6).

The following property states that the expected value is linear, i.e. the expected value
of the sum of the variables is the sum of the expected values. Note that there is no
assumption about the variables (they do not have to be independent).

Property 1 (Linearity of Expected Value). Let Y1, . . . , Yn be random variables taking
values in R. Then,

E
(

n∑
i=1

Yi

)
=

n∑
i=1

E (Yi) .

In the following we define different distributions (Bernoulli, uniform and weighted),
we define what a sampler is, and we introduce hashing constraints.

3.2.2 Distributions

Here we define different distributions.

Uniform Distribution When all the outcomes are equiprobable, the distribution is
said to be uniform. It is denoted U(S), and ps = 1/ |S|. In the pseudocode, we assume that
we have access to a function Random (S) which returns a random element according to
the uniform distribution. We also assume that Random () returns a random real number
from [0, 1] (randomness is harder to define on continuous spaces, we simply assume that
we have access to such a function).
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Weighted Distribution When one wants to specify the exact distribution, it is possible
to use a weighted distribution. For each s ∈ S a weight ωs is defined. The weighted
distribution isW(S, ω) and the associated probabilities are ps = ωs/

∑
s′∈S ws′ . Generating

a random variable from a weighted distribution is easy when the weights and the set S
are known [192], and a uniform generater is avaialable.

Bernoulli Distribution The Bernoulli distribution is a distribution on a set of two
elements, usually {0, 1}. The probability of getting the value 1 is noted p, and the distri-
bution is noted B(p). Let Y be a random variable following a Bernoulli distribution, then
E (Y ) = P (Y = 1) = p.

Implementation of Random Numbers In this thesis, I use the Java programming
language. The random number generator we use is the default one in Java: java.util.Random.
This generator uses a formula of linear congruence to modify a 48-bits seed, given as in-
put. The Java documentation refers to [175] section 3.2.1 for more information. This
randomness generator has flaws (notably a period of 248), but is sufficient for our needs
(as shown in [163]). The seeds allow us to have deterministic executions of the code (i.e.,
two different executions using the same seed will use the same random numbers).

3.3 Random Algorithms

Using randomness in algorithms helps to make an algorithm non-deterministic, and
thus returning solutions in another order. However, it is important to know the properties
of new algorithm.

3.3.1 Samplers

A sampler is an algorithm that randomly generates solutions to a problem. When
designing a sampler, we are interested in the distribution of the solutions guaranteed by
the sampler. The most common guarantee is the uniformity of the sampling.

Definition 15 (Uniform Sampler). Given an input problem P , an algorithm U is a
uniform sampler iff

∀s ∈ Sols (P) ,P (U(P) = s) = 1
|Sols (P)| .
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Remark. We want to point out that in this definition, U is not a function in the mathe-
matical sense because it returns different outputs (random solutions) given the same input
(the problem).

Sometimes, it is difficult to guarantee the uniformity of the sampling. There are relax-
ations of the definition of a uniform sampler to allow for approximate uniform sampling.

Definition 16 (Approximately Uniform Sampler). Given an input problem P , an algo-
rithm U is an approximately uniform sampler iff there exists ϵ > 0 such that

∀s ∈ Sols (P) , 1
(1 + ϵ) |Sols (P)| ≤ P (U(P) = s) ≤ 1 + ϵ

|Sols (P)| .

Remark. This definition is the multiplicative-approximate uniform sampler: bounding the
probability between 1

1+ϵ
and 1 + ϵ. Another definition, the additive-approximate uniform

sampler, bounds the probability between 1−ϵ and 1+ϵ. The additive-approximate definition
is more relaxed than the multiplicative one, because 1− ϵ ≤ 1

1+ϵ
.

An approximate sampler guarantees that the distribution of the solutions is close (up
to ϵ) to the uniform distribution. In some samplers, ϵ can be given as a parameter. If ϵ
is close to 0, the sampling is close to uniform, but more computation may be required by
the sampler to give this guarantee.

Another guarantee, more relaxed than the approximate uniformity, is the near-uniformity.

Definition 17 (Near-Uniform Sampler). Given an input problem P and an approximation
factor 0 < c < 1, an algorithm U is a near-uniform sampler iff

∀s ∈ Sols (P) ,P (U(P) = s) ≥ c

|Sols (P)| .

The near-uniformity guarantees that all the solutions have at least a fixed probability
of being sampled. As c tends to 1, the sampling tends to uniformity.

Chapter 4 presents several samplers of SAT and CP problems. Some samplers have
guarantees, and some focus on efficiency. This gives the users a choice depending on their
application.

3.3.2 Other properties

It is important to know whether a random algorithm terminates. Algorithms that
terminate in a random running time are called Las Vegas algorithms. Algorithms that
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terminate in a deterministic time, but that can produce a wrong answer (with a bounded
probability) are called Monte-Carlo algorithms.

Probably Approximately Correct Algorithm

Monte-Carlo algorithms can have guarantees: the guarantee that they will not fail,
and the guarantee that they will give an answer close to the actual solution. This can
be formalised by the probably approximate property. We define it for approximate model
counting algorithms, i.e. counting the number of solutions of a model.

Definition 18 (Probably Approximately Correct). Given a problem P , a tolerance ϵ > 0
and a confidence δ, a probably approximately correct (PAC) model counter A will with
probability at least δ give an answer that is close (up to a factor ϵ) to the actual solution
|Sols (P)|, i.e.

P
(
|Sols (P)|

1 + ϵ
≤ A(P) ≤ |Sols (P)| (1 + ϵ)

)
≥ δ .

Chapter 4, Section 4.2.1 shows the links between approximate counting and sampling.

Randomness as a Constraint

In this thesis, we consider randomness as a global property, i.e. a statistical property
on a subset of solutions. Formally, it does not make sense to say that one solution is more
random than another solution. However, when showing a solution to a user, the gambler’s
fallacy can bias their opinion about the randomness of the solution. For example, although
the sequences 1010110001 and 1111111111 are two equiprobable outcomes of a uniform
sampler over {0, 1}10, the former sequence seems more random than the latter. In [45],
the authors formalise this intuition using Kolmogorov complexity. However, since Kol-
mogorov complexity is uncomputable, the authors approximate the entropy of a sequence
(i.e. a solution of a problem) by using compression algorithms. If a compression algorithm
cannot compress a sequence much, this intuitively means that it has a random-like be-
haviour. The authors design two constraints based on the main compression algorithms: a
frequency entropy constraint which limits the number of occurrences of values, and a dic-
tionary entropy constraint which limits the number of occurrences of k-grams (blocks of k
adjacent symbols). The generated solutions are sequences that cannot be be compressed,
i.e. sequences that will appear random to a user.
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Stochastic Constraint Programming

In some applications, uncertainty should be taken into account in the modelling phase.
For example in, production planning, demand may vary from month to month. It can be
modelled as a stochastic variable: a variable that takes a random value. Then, the goal is
to find a schedule that satisfies the demand with a certain probability.

Stochastic Constraint Programming [60, 62] is an extension of CP to allow the mod-
elling of uncertainty. In addition to the usual decision variables, stochastic variables are
introduced to model probabilistic behaviour. Instead of a fixed domain, these variables
follow a probability distribution. Solving the stochastic CSP means finding an assignment
to the decision variables such that the probability that the constraints are satisfied is
greater than a threshold θ chosen by the user. In [62], the author proposes an adaptation
of the classical CP backtrack-search algorithm to account for the stochastic variables and
in [59, 60], the authors show how to find solutions to the stochastic CSP by solving clas-
sical CSPs. Recently, in [40], stochastic constraint programming has been extended with
distribution variables. The domain of these variables are probability distributions, so that
during the solving, these variables are instantiated to a distribution, and then they act as
stochastic variables.

3.4 Hashing Constraints

In this section, we present hashing constraints, which are an adaptation of hash func-
tions to constrained problems. Hash functions are a powerful tool, mostly studied for the
hash table data structure. In hash tables, the number of operations depends on the num-
ber of collisions. To reduce the number of collisions, powerful hash functions are designed.
However, if the hash function is selected beforehand, a worst case can be designed to
have many collisions. To avoid this worst case, hash functions are picked randomly from
a family of functions. For well constructed families of hash functions, the average number
of operations is constant (amortized).

Hashing constraints provide the same framework as hash functions but for constrained
problems. When added to a model, hashing constraints act in the same way as other
constraints, reducing the search and solution space. However, to ensure some properties
on which part of the solution space is removed, they are randomly generated.

Let P be a problem with n variables X1, . . . , Xn. Let H be a family (i.e. a set) of con-
straints on the variables of P . Let h be a random constraint ofH. h can be seen as a random
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variable taking a constraint as a value. Then the (random) constraint h(X1, . . . , Xn) can
be added to the problem P to reduce the number of solutions.

When a hashing constraint is added to a problem, it is chosen randomly from a family
of hashing constraints. A family of hashing constraint should not favour any solution, so
all the solutions in the solution space should have the same probability of satisfying the
hashing constraint.

Definition 19 (Uniform Partitioning). Let X , and let H be a family of constraints on all
the variables of X . The family H uniformly partitions the space iff there exists a constant
c such that for a random h ∈ H and for all instantiations σ,

P (σ ∈ rel(h)) = 1/c

The uniform partitioning of the search space ensures that the hashing constraints
reduce the search space and the solution space. It should be remarked that the constant
c does not depend on the other constraints imposed on the variables. This is one of the
powers of hashing constraints: they are oblivious to the other constraints of the problem.

Another important property when designing a family of hashing constraints is the
r-independence of the family.

Definition 20 (r-independence). Let X , and let H be a family of constraints on all the
variables of X . The family H is r-independent iff for a random h ∈ H and for σ1, . . . σr

instantiations of the variables in X

P (σr ∈ rel(h) | σ1 ∈ rel(h) ∧ . . . ∧ σr−1 ∈ rel(h)) = P (σr ∈ rel(h))

Intuitively, the r-independence means that knowing that r− 1 instantiations satisfy h
gives no information about any r-th instantiation. This means that the solution space of
the problem is partitioned independently of the solutions. This property is very important:
if the hashing constraint were not independent, some sets of solutions would never be
partitioned (and would always be together in the hashed space). The r-independence is a
very hard property to guarantee.

We now present two families of hashing constraints.
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3.4.1 XOR constraints

XOR constraints, introduced in [79], are a 3-independent family of hashing constraints
designed for Boolean problems.

Definition 21. Given n Boolean variables x1, . . . , xn and Boolean coefficients ai ∈ {0, 1}
for 1 ≤ i ≤ n+ 1, an XOR constraint is

a1x1 ⊕ . . .⊕ anxn = an+1

The family of all XOR constraints on n variables is noted Hxor (n), i.e.

Hxor (n) = {a1x1 ⊕ . . .⊕ anxn = an+1 | a1, . . . , an+1 ∈ {0, 1}} .

Notation. We also define the family of systems of m XOR constraints on n variables
Hxor (n,m):

Hxor (n,m) = {h1 ∧ . . . ∧ hm | h1, . . . , hm ∈ Hxor (n)} .

This is equivalent to adding m XOR constraints to a problem.

To ensure the properties of the family of hashing constraint, the hashing constraint
should be picked randomly and uniformly from the family. Picking a random XOR con-
straint (from Hxor (n)) can be done by randomly generating the coefficients a1, . . . an+1.
Picking a random system of m XOR constraints (from Hxor (n,m)) can be done by either
generating m random XOR constraints, or directly by generating a matrix of (n+ 1)×m
coefficients.

Property 2 (Uniform Partitioning [79]). Let x1, . . . , xn be n variables, and σ be an in-
stantiation on these n variables. Let h be a random XOR constraint from Hxor (n), then

P (σ ∈ rel(h)) = 1/2 .

Let H be a random system of m XOR constraints from Hxor (n,m), then

P (σ ∈ rel(H)) = 1/2m

This property means that on average, an XOR constraint reduces the search and
solution space by a factor 2. A system of m XOR constraints divides the search and
solution space by a factor 2m. Moreover, the family of XOR constraints is 3-independent.
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Property 3 (3-independence [79]). The family Hxor (n) is 3-independent.

This property ensures that there is no dependency between any 3 solutions when
hashing with XOR constraints. It is at the heart of the proofs of uniformity (or almost
uniformity) of samplers. Samplers using the Hxor (n,m) family of hashing constraints are
presented in Chapter 4 Section 4.2.1.

3.4.2 Linear Modular Equality System

The family Hxor (n) of XOR constraints is defined over Boolean variables. In CP, the
variables have a larger domain. Linear modular equalities extend the family Hxor (n) to
integer variables.

Notation. Let p be a prime number. We define Fp to be the finite field of elements
{0, . . . , p − 1} with operations modulo p. For example, the Boolean field is F2, where the
addition (xor) and multiplication (and) are done modulo 2. The term field means that
the addition and multiplication have good properties on Fp. In particular, every element
(except 0) has an inverse, which means that the division is also well defined.

Family of Constraints

Linear modular equalities as hashing constraints were introduced in [41]. They are
extensions of the XOR constraints (linear constraints in F2) to integers (in Fp). For
a more detailed analysis, and more theoretical background we refer the reader to the
original article.

Definition 22 (Linear Modular Equality). Let p be a prime number. Let a1, . . . , an ∈ Fp

be coefficients, b ∈ Fp be a constant, and X1, . . . , Xn be n variables. A linear modular
equality is an equality

n∑
i=1

aiXi ≡ b (mod p) .

The family H(mod p) (n) is the set of all linear modular equalities modulo p, i.e.

H(mod p) (n) =
{

n∑
i=1

aiXi ≡ b (mod p) | a1, . . . , an ∈ Fp, b ∈ Fp

}

XOR constraints divided the space by a factor 2, and similarly, linear modular equal-
ities divide the space by a factor p.
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Property 4 (Uniform Partitioning [41]). Let X1, . . . , Xn be n variables, and σ be an
instantiation on these n variables. Let h be a random linear modular equality constraint
from H(mod p) (n), then

P (σ ∈ rel(h)) = 1/p .

The prime number p must to be chosen to be larger than the range of the domains of
the variables to ensure an independent hashing of the space. With such a prime number
p, these linear modular equalities can be used as hashing constraints.

Theorem 1 (2-independence [41]). Let X1, . . . , Xn be integer variables, and let p be
a prime number greater than the range of the domains (i.e. p > max

1≤i≤n
(maxD(Xi) −

minD(Xi))). Then the family H(mod p) (n) of linear modular hashing constraints is 2-
independent.

The prime number p has to be bigger than the maximum range of the domains because
all the values of the domains should be mapped to a different value modulo p. For example,
if a value v and v + p are in the domain of a variable, then modulo p, both values are
mapped to the same integer.

To use these hashing constraints, one must be able to randomly pick in H(mod p) (n).
This can be achieved by randomly picking the coefficients ai and the constant b in Fp.

Often, several hashing constraints are added to a problem. When using linear modular
equalities (with a fixed p), all the constraints can be combined into a single system of
modular equalities. We now present the filtering algorithm for such a system.

Propagation Algorithm

The algorithm used to propagate inconsistent values is based on the Gauss-Jordan
elimination. Fp is a field when p is a prime number, so it is possible to apply the Gauss-
Jordan elimination to a system of equations modulo a prime number.

The first step of the algorithm is to put the system into row reduced echelon form using
the Gauss-Jordan elimination. This step splits the variables into two sets: the parametric
variables and the non-parametric variables. The property of this form is that if all the
parametric variables are instantiated, then only one value is allowed for the non-parametric
variables.

No propagation is done at the beginning of the search, when only a few variables are
instantiated. Propagation starts when the size of the Cartesian product of the domain of
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the parametric variables is less than 1000 (i.e. when |∏X∈X D(X)| ≤ 1000). The threshold
1000 was chosen experimentally by the authors as a good compromise between propagation
being too late (if a small threshold is chosen) and the enumeration of values being too large
(if a large threshold is chosen). Once all the possible values for the parametric variables
have been enumerated, it is possible to compute the corresponding values for the non-
parametric variables. This enumeration is exactly the set of instantiations allowed by the
constraints (at this particular step of the search with many variables already instantiated).
These instantiations serve as a support for the application of a filtering algorithm such as
table constraints.

Example Below we show how the propagator works on an example. We consider a prob-
lem with four variables X1, X2, X3, and X4 with domains D(X1) = D(X3) = {0, . . . , 4},
D(X2) = {0, 1, 2}, andD(X4) = {0, 1}. We consider a randomly generated system of linear
modular equality constraints. To generate this system, the coefficients and the constant
are randomly picked in F5 = {0, . . . , 4} (i.e. random hashing constraints in H(mod 5) (4)).
This yields a system like the following: 3X1 +2X2 +3X3 +1X4 ≡ 4 (mod 5)

4X1 +1X2 +1X3 +0X4 ≡ 0 (mod 5)

• The first step is to apply Gauss-Jordan elimination. The exact operations on the
lines are L1 ← 2L1;L2 ← L2 − 4L1;L2 ← 3L2;L1 ← L1 − L2. This leads to the
following system of equations: 1X1 +4X2 +0X3 +1X4 ≡ 0 (mod 5)

0X1 +0X2 +1X3 +1X4 ≡ 3 (mod 5)

• We can now identify the parametric and the non-parametric variables. The non-
parametric variables are X1 and X3 (used in the pivot operation of the Gauss-
Jordan elimination). The parametric variables are X2 and X4. We can rewrite the
system to make this clear: X1 ≡ 0 −4X2 −1X4 (mod 5)

X3 ≡ 3 −0X2 −1X4 (mod 5)

• Now, by definition of parametric variables, fixing values for X2 and X4 will fix the
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values of X1 and X3. By enumerating the domains of X2 and X4 we can enumerate
all the possible instantiations that satisfy the constraint:

(X1, X2, X3, X4) ∈ { (0, 0, 3, 0),
(4, 0, 2, 1),
(1, 1, 3, 0),
(0, 1, 2, 1),
(2, 2, 3, 0),
(1, 2, 2, 1)}

• The constraint is converted to a table constraint using these instantiations.
In this example, the number of enumerated tuples was less than 1000, but in practice this
will not be the case at the start of the search. In this case, the propagator waits until the
threshold is reached (either other propagators or decisions during the search will reduce
the domain of some parametric variables).
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Figure 3.1 – Two Slitherlink grids, see rules in Appendix C.2.1.
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Chapter 4

A HISTORY OF SAMPLERS

4.1 Introduction

Sampling refers to the action of randomly drawing solutions from a family of solutions.
It is a strong probabilistic approach to estimating quantities. For example, an approach
to estimating the number of fishes in a closed lake can be done in two steps [171]: first,
N fishes are caught, tagged, and released. A few days later (to allow the fishes to mix),
a N fishes are caught again, and the number of fishes marked (say n) is counted. Thus
there is an estimated proportion of n/N tagged fishes in the lake, then the estimated total
number of fishes in the lake is N2/n. This sampling approach avoids drying up the lake
and killing all the fishes to count them.

In combinatorial problems, the solution space is often too large to be enumerated. In
theory, sampling approaches can be used to estimate the number of solutions. Sampling
also provides diversity in the solutions returned, for example when diversity cannot be
formally defined, or when it is too expensive to compute.

The holy grail of sampling is perfect uniformity, where all solutions have the same
probability of being sampled. Weighted sampling is even harder because it allows the
users to define their own solution distribution. In constrained problems, very few samplers
achieve uniformity. On the other hand, efficient sampling, even if not exactly uniform,
can be used as an approximation to generate multiple solutions. This leads to multiple
samplers. Figure 4.1 shows a historical timeline of SAT samplers. We can see that sampling
constrained problems is an active area of research, as almost half of the samplers in this
timeline were created after 2017.

In this chapter, we review the constrained samplers (in SAT and CP) using a thematic
and historical approach. In Section 4.2 we present the SAT samplers categorised by the
approach they use. In Section 4.3 the CP samplers are presented. Finally, in Section 4.4
we present how to evaluate the randomness of constrained samplers.
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Figure 4.1 – Historical timeline of samplers

1 Function HashingBasedSampler(F )
Data: A propositional formula F
Result: A random assignment of F

2 repeat
3 C ← random hashing constraint
4 cell← F ∧ C
5 S ← Sols (cell)
6 until 0 < |S| ≤ pivot
7 return Random (S)

Algorithm 4.1: Outline of a hashing-based sampler

4.2 SAT Samplers

As defined in Chapter 3, Section 3.3, a uniform sampler is defined by a property on the
returned solutions rather than by an implementation. This led to broad design ideas. To
present these samplers, we grouped them by topic, to emphasise the differences in design,
properties, and efficiency.

4.2.1 Hashing Based

Using hashing functions to reduce the solution space is the core idea of many samplers.
A simplified outline of such a sampler is given in Algorithm 4.1. The samplers will try to
divide the solution space into small cells 1 (defined by a pivot value in line 6). To create
and find such a small cell, a random hashing constraint is generated (line 3), added to

1. Here, “cell” refers to a sub-space of the problem constrained by hashing constraints.
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the problem (line 4), and the solutions of that cell are enumerated (line 5). If a small cell
is found, one of its solutions is chosen at random. The samplers I present in this section
mostly follow this algorithm. They may use different hashing constraints, different pivot
values, or different stopping conditions. The idea is always to find small cells by using
hashing constraints.

Historically, hashing-based samplers originated from work in complexity theory linking
the question of approximate counting and uniform generation [81, 191, 92]. Approximate
counting allows to know the density of sub-spaces, which helps to know with what prob-
ability one should search in those sub-spaces in order to obtain a uniform distribution.
This connection is used for example in Unigen, which makes calls to ApproxMC, a
probably approximately correct model counter (see Definition 18).

In 2006, the Hxor family of XOR constraints was introduced [79] and became the
baseline hashing constraints. The years 2013-2015 saw many improvements in the use of
these XOR constraints, leading to the current state-of-the-art sampler Unigen3.

In this section, the samplers have strong theoretical guarantees of almost-uniformity
or near-uniformity.

BGP

One of the first procedures for uniform sampling, BGP 2, is presented in [65]. It uses
an r-independent family of hashing functions using r−1 degree polynomials over F2 from
{0, 1}n to {0, 1}m, denoted H(n,m, r). Given a formula F over n variables, and denoting
l = 2⌈log2 n⌉, the algorithm searches for a value i ∈ {l, . . . , n}, and a hashing function
h ∈ H(n, i − l, r) such that ∀α ∈ {0, 1}i−l, |Sols(F ∧ h(x) = α)| < 2n2 (i.e. it searches
for a hashing function making small cells). A random cell is chosen by picking a random
α ∈ {0, 1}i−l. All the solutions Sols(F ∧ h(x) = α) of this cell are enumerated, an index
j ≤ 2n2 is chosen, and the j-th solution is returned (if there are fewer than j solutions,
the algorithm fails, and should be re-run).

XorSample

XorSample [79] is the first sampler that uses XOR constraints to sample solutions.
On average, XOR constraints divide the number of solutions of the model by two. Then
if there are 2s∗ solutions to the model, adding s (with s close to s∗) XOR constraints to

2. We keep the name BGP as used in [67] from the initial letters of the authors’ names
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the model makes it likely to retain a single solution. The authors present two variants. In
the first one, if there is more than one solution, new XOR constraints are generated and
the process is restarted. In the second variant, all the solutions of the model constrained
by the XOR constraints are computed, and one is returned uniformly at random (if there
are no solutions, the algorithm fails).

The authors show that when s is close to s∗, the distribution of the solutions is ex-
ponentially close to the uniform distribution. However they do not provide any way to
estimate this parameter s.

UniWit

The previous two samplers have flaws that make them impractical, either too many
calls to SAT solvers have to be done, or some parameters need to be estimated. BGP
needs to ensure that every cell is small, by counting the 2i−l cells. Also, the threshold for a
cell to be considered small is 2n2. To run XorSample, an approximation of the number
of solutions is required to know how many XOR constraints to add, but the authors do
not show how to get such an approximation.

To address these issues, the authors of UniWit [67] noted that only a single cell needs
to be checked in BGP, that the limit at which a cell is considered small can be lowered
to 2n1/k, and that the number of XOR constraints added can be increased over time until
the cells are small enough. They also use the CryptoMiniSat [58] SAT solver, which is
optimised for XOR constraints.

Algorithm 4.2 presents the pseudocode of UniWit. It uses a function BoundedSAT(F, n)
which returns at most n solutions of F . If there are fewer than pivot total solutions, one of
them is randomly returned (line 4). Otherwise, the loop (lines 7-11) increases the number
of XOR constraints added until a small non-empty cell is found. Then, a random solution
is returned (with a chance of failure if the random index j is greater than the number of
solutions in the cell).

PAWS

PAWS [75] is a weighted sampler based on an embedding (into a higher dimension
problem) and a projection (into small cells). The embedding increases the dimension of
the problem P into a problem P ′ so that uniform sampling in P ′ is equivalent to weighted
sampling in P . The projection step adds XOR constraints to P ′ in the hope that the
projected problem will have fewer solutions than a selected pivot value. The number of

71



Part II, Chapter 4 – A History of Samplers

1 Function UniWit(F, k)
Data: A propositional formula F on variables X , an integer k ≥ 1
Result: A random assignment of F (or a fail ⊥)

2 pivot←
⌈
2n1/k

⌉
3 S ← BoundedSat(F, pivot+ 1)
4 if |S| ≤ pivot then return Random (S)
5 l←

⌊
1
k

log2 n
⌋

6 i← l − 1
7 repeat
8 i← i+ 1
9 h← Random (Hxor (n, i− l))

10 S ← BoundedSAT(F ∧ h(X ), pivot+ 1)
11 until 1 ≤ |S| ≤ pivot ∨ i = n
12 if |S| > pivot ∨ |S| = 0 then return ⊥
13 else
14 j ← Random ({1, . . . , pivot})
15 if j ≤ |S| then return Sj

16 else return ⊥

Algorithm 4.2: UniWit: sampling using XOR constraints

XOR constraints to add is chosen by a procedure making an accurate guess with high
probability.

WeightGen

WeightGen [70] is a weighted sampler using recent advances made in approximate
model counting [68]. It proposes a weighted model counting algorithm WeightMC
adapted from ApproxMC [68]. A call to WeightMC gives an approximation of the
sum of the weights, which is used to approximate a number q of XOR constraints to add.
Then i constraints are added where i varies from q − 3 to q. As XOR constraints are
added, the sum of the weights of the remaining solutions is computed, and if it is between
a low and a high threshold, one random (weighted) solution is returned.

Unigen

Unigen [82] is a family sampler that has seen many improvements over the years.
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Unigen-1 [69] Released at the same time as WeightGen, Unigen-1 shares the same
ideas, without the weights. It uses ApproxMC to compute an approximate model count,
and uses this count to know a value q of how many XOR constraints to add. Varying
the number of constraints added from q − 3 to q, if the number of solutions remaining in
the constrained model is between a low and a high threshold, a random (and uniform)
solution is returned.

Unigen-2 [71] Unigen-2 focuses on running time optimisation while maintaining the
theoretical guarantees of Unigen-1. An algorithm is designed to improve the computa-
tion of the parameters (instead of calling ApproxMC). Parallelization is considered to
improve running time (and because previous samplers are not easily parallelizable). Sam-
ple generation in Unigen-1 picked one solution from a set of at least loThresh solutions
(loThresh is the low threshold defining acceptable small cells). Instead, Unigen-2 returns
all the solutions. Then, if N solutions are sought on k threads, performing N

k·loT hresh
calls

to the sampler on each thread (in parallel) generates N solutions.

Unigen-3 [89] The efficiency of a SAT solver directly impacts the efficiency of the as-
sociated SAT sampler. The SAT solver CryptoMiniSat [58] is dedicated to CNF formulas
to which XOR constraints have been added. In [89], the authors present improvements
to the SAT solver to better handle with the XOR constraints, called BIRD2 (for Blast,
In-process, Recover, Detach, and Destroy, the five steps of the integration of the XOR
constraints in the SAT solver).

For model counting and sampling, an improvement is presented using the previously
found solutions. This is due to the improved generation of XOR constraints in [82] for
Unigen-2. When increasing the number of constraints, instead of re-generating every
constraints, it is possible to re-use the previous XOR constraints and generate a single
new one. This means that the new solutions will be a subset of the previous solutions.
On average, if there were thresh solutions in the previous round, thresh/2 solutions will
satisfy the new XOR constraint. Starting by checking if the solutions satisfy the new
constraint avoids making unnecessary calls to the SAT solver.

4.2.2 Compilation-Based

The class of instances on which an algorithm works has a strong influence on its com-
plexity. For example, SAT solvers have remarkable performance on industrial instances [5].
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A 5

B 2 C 3
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x1
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(a) BDD representation

∨

∧ ∧

x1 ∨ ∨ ¬x1

∧ ∧ ∧

x2 ¬x3 ¬x2 x3

(b) d-DNNF representation

Figure 4.2 – Two representations of the formula (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
¬x2 ∨ ¬x3)

There are also classes of instances, such as 2-SAT, where the problem is polynomial.
Compilation-based techniques work in two steps. First, the compilation translates the

problem (often in CNF form) into a new structure. Then, an efficient algorithm is applied
to this structure to find a solution to the initial problem.

The main disadvantage of this technique is that the compilation phase is very expensive
and can produce a structure that is exponentially larger than the original formulation.
However, the structure only needs to be generated once, and all the calls to solve the
problem can then be performed efficiently. After the compilation phase, samples can be
generated with the strong guarantee of exact uniformity.

Examples of the two representations used by these samplers are shown in Figure 4.2.
The formula used has 5 solutions (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), and (1, 1, 1).

SimGen

SimGen [95] uses a Binary Decision Diagram (BDD) to represent the set of solutions
of a problem. An example of a BDD is shown in Figure 4.2a. A BDD is a layered directed
acyclic graph (DAG) where each layer represents a variable. A path from the top to the
bottom is a solution where if a dotted edge is taken, the variable is instantiated to 0, and
if a plain edge is taken, the variable is instantiated to 1.

With a bottom-up traversal, the number of paths from a node to the bottom of the
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BDD can be computed, representing the number of partial solutions from that node. This
information can then be used in a top-down traversal to know with what probability to
take each edge, leading to a uniform distribution.

Example. In Figure 4.2a we show a BDD where the nodes have been named (A to F).
A path from the top to the bottom represents a solution of the formula. For example, the
path through A, B, and E represents the solution {x1 7→ 0, x2 7→ 1, x3 7→ 0}. The values
next to the nodes are the number of extensions of the current partial assignment from this
node to the bottom. For example, C (representing the partial assignment x1 7→ 1) can be
extended to 3 solutions. The number of assignments for every node can be computed in a
bottom-up pass.

These counts can then be used to know with what probability to choose each value for
the variables. For example, x1 7→ 1 can be extended to three solutions, and x1 7→ 0 can be
extended to two solutions. When sampling we choose the value 1 for x1 with probability
2/5. If the value 1 is chosen, then x2 7→ 0 can be extended to one solution, and x2 7→ 1
can be extended to two solutions. We choose the value 1 with probability 2/3.

KUS

KUS [88] uses more modern compilation techniques to compute a d-DNNF represen-
tation. Such a representation is a DAG with or and and nodes, and literal leaves. An
example of a d-DNNF representation is given in Figure 4.2b. In addition, d-DNNFs are
deterministic, i.e. the operands of or nodes are mutually inconsistent, and decomposable,
i.e. the operands of and nodes should be expressed in a mutually disjoint set of variables.
The compilation tool D4 [176] is used to obtain the d-DNNF representation of the input
formula.

After the compilation a bottom-up annotation phase is performed to compute for each
node the number of solutions and the set of variables in the sub-formula. Then, samples
can be generated using a top-down pass on the annotated d-DNNF.

Example. Figure 4.2b shows the representation of the example formula using a d-DNNF.
In a d-DNNF, leaf nodes are literals, inner nodes are operations (∨ or ∧) and their children
are the operands. The exact transcription of the example d-DNNF is the formula(

x1 ∧
(
x2 ∨ (¬x2 ∧ ¬x3)

))
∨
(
¬x1 ∧

(
(x2 ∧ ¬x3) ∨ (¬x2 ∧ x3)

))
,

which is equivalent to the initial formula.
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WAPS

WAPS [80] is an extension of KUS with three improvements : weighted, projected,
and conditioned sampling.

• WAPS allows weighted sampling. The weights are defined as a multiplicative
literal-weight function, i.e. the weight of an instantiation is the product of the
weights defined over the literals. The annotation phase uses this weight function to
compute the weights of the sub-formula represented by the node, and the sampling
can be done in the same way as in KUS.

• It allows projected sampling, i.e. given a formula G on variables X and Y , the
projection on the set X is defined as F (X ) = ∃Y , G(X ,Y). This is useful, for
example, when the formula has been rewritten and there is not a one-to-one solution
correspondence between the initial and the new formula. This projection is enforced
using the d-DNNF compiler Dsharp [179].

• It allows conditioned sampling, i.e. sampling with some literals fixed. This is done
by modifying the weight function to give a weight of 0 to solutions where the literals
do not have the chosen value. Going through the annotation phase again allows to
generate conditioned samples.

4.2.3 #SAT-Based

The two samplers presented in this section are based on the #SAT problem, i.e.
counting the number of satisfying assignments of a SAT problem. They could arguably
be classified as compilation-based techniques, since they implicitly traverse a tree-like
structure. As such, they are exact uniform samplers.

SPUR

SPUR [64] is an adaptation of the #SAT solver sharpSAT [91] to allow for uniform
sampling. We will first present sharpSAT and then show the modifications made in
SPUR.

sharpSAT sharpSAT is based on the DPLL algorithm [14], and on #SAT ideas such
as component decomposition and component caching. sharpSAT improves the component
caching by encoding the components differently, greatly reducing the size of the encoding.
It also uses an algorithm for finding failed literals that is more suited to #SAT.
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1 Function sharpSAT(F )
Data: A propositional formula F
Result: The number of satisfying assignments of F

2 BCP(F )
3 if IsCached(F ) then return CachedCount(F ) // Cache-hit leaf
4 if Clauses(F ) = ∅ then return 2|Var(F )|

5 if Unsat(F ) then return 0
6 C1, . . . , Ck ← ComponentDecomposition(F )
7 if k > 1 then // Component decomposition
8 for i = 1 to k do
9 Zi ← sharpSAT(Ci)

10 Z ← ∏k
i=1 Zi

11 else
12 v ← BranchVariable(F )
13 Z ← sharpSAT(F ∧ v) + sharpSAT(F ∧ ¬v)
14 AddToCache(F,Z)
15 return Z

Algorithm 4.3: sharpSAT: model counting with component decomposition and
caching

The outline of sharpSAT is presented in Algorithm 4.3. Basically, it is a recursive
algorithm that performs boolean unit propagation (line 2), splits the formula into sub-
formulas and solves them recursively. If a sub-formula has no unsatisfied constraints, there
may be uninstantiated variables remaining. The number of satisfying assignments is then
2nbF reeV ars, where nbFreeV ars is the number of uninstantiated variables. If there is an
empty clause, then there are no solutions to the sub-formula.

There are two ways a formula can be split. After some variables have been instantiated,
the constraint network may be disconnected. The connected components can be counted
recursively. The count of the main formula is then the product of the counts of the formulas
for each component (line 10). Otherwise (if the constraint network is connected), a variable
is selected and branched on. The count of the main formula is the sum of the counts of
the two sub-formulas (line 13). The branching strategy that chooses the variable is the
VSADS heuristic from [53] as it is tailored for model counting.

In addition to component decomposition, sharpSAT also implements a cache storage
of the number of assignments of the computed sub-formulas. When a count is computed,
it is added to the cache (line 14). When a formula to be computed is already present in
the cache, the count is returned directly (line 3). This is implemented using an efficient
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representation of formulas. A forgetting process is also implemented to prevent the cache
size from exceeding a user-defined threshold. A score is given to the formulas in the cache
each time they are hit, and all the scores are divided periodically.

SPUR SPUR is built on top of sharpSAT and has the same structure. We show how
to modify Algorithm 4.3 to sample uniformly. We first consider a simplified version of
sharpSAT without caching. Instead of simply returning the number of solutions of the
formula, SPUR also returns a uniformly selected partial assignment. These assignments
can come from three places:

• Line 4: when there are no more constraints, a random value is chosen for all the
uninstantiated variables.

• Line 10: different partial assignments from the component decomposition can be
merged together.

• Line 13: when a branching, one of the branches has to be selected with a probability
proportional to its count.

Component caching actually does not actually complicate this process. The authors
noted that there is no issue of non-independence when caching the samples because a
cached sample can only be used once in the solution. Caching can then be added without
further consideration.

Sampling multiple solutions (say k) at once adds a level of difficulty. The authors used
a technique called reservoir sampling to deal with multiple solutions. The idea is to store
(in the cache) for each sub-formula a “reservoir” of k partial assignments. Then, when
merging partial assignments (line 10) or choosing a sub-branch (line 13), the recursive
partial assignments can be selected from the reservoirs. For the exact procedure, we refer
the reader to the original article [64] where the authors show how to compute the number
of solutions to sample from each reservoir to ensure uniformity of the sampling.

Smarch

Smarch [84] is a uniform sampler based on #SAT, but it differs from SPUR in several
ways. The algorithm is presented in Algorithm 4.4. Instead of sampling as the counting
tree is traversed, calls are made to a #SAT solver (sharpSAT). When there are no more
constraints, a random assignment of the remaining variables can be returned. Otherwise,
the cube-and-conquer strategy [26] (line 9) is used to split the formula into sub-formulas
that are counted, and one is chosen to sample from.
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1 Function Smarch(F, n)
Data: A propositional formula F , an integer n
Result: n distinct uniformly sampled assignments of F

2 count← |Sols (F )|
3 rSet← n distinct random integers from [1, count]
4 return {SmarchSample(F, r, ∅) | r ∈ rSet}
5 Function SmarchSample(F, r, s)

Data: A propositional formula F , an integer r, and a partial assignment s
Result: The r-th satisfying assignment of F ∧ s

6 if BCP(F ∧ s) has no constraint then
7 return s∧ r-th assignment of the uninstantiated variables
8 else
9 cubes← CubeDecomposition(F ∧ s)

10 for cube ∈ cubes do
11 cs← |Sols (F ∧ s ∧ cube)|
12 if r ≤ cs then
13 return SmarchSample(F, r, s ∧ s)
14 else
15 r ← r − cs

Algorithm 4.4: Smarch: sampling with cubes decomposition and counting

Compared to SPUR, no caching is done, but the samples are guaranteed to be different
(line 3).

4.2.4 Other Samplers

In this section, we present solvers that do not fit into any of the other categories. The
three samplers presented here are designed to return solutions from a distribution close
to the uniform distribution, but no theoretical proofs are given (and evaluations [66, 74,
90] show that they are not exact uniform samplers).

SampleSAT

SampleSAT [93] is based on the WalkSat solver [87], which is classified as a Monte-
Carlo Markov Chains (MCMC) approach. MCMC methods are among the best known
methods for sampling combinatorial spaces and have many variations. For a general pre-
sentation of MCMC methods we refer the reader to [185].

In the case of propositional formulas, a random walk starts from a random instantiation
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(which does not satisfy the constraints) and flips the values of variables until all the
constraints are satisfied. The flip is chosen by picking a literal of an unsatisfied clause.
On 2-SAT, in [180], the authors showed that such a random walk finds a solution with
high probability in O (n2) steps (where n the number of variables). On 3-SAT a similar
result is given in [188] but the number of steps is exponential: O (1.334n), still better
than the whole space enumeration in O (2n). In WalkSat, the algorithm picks a variable
minimising the number of unsatisfied clauses. Ties are broken randomly.

In SampleSAT the authors analyse the behaviour of WalkSat on the sampling
distribution. They find that it is highly non-uniform. They propose to interleave this
algorithm with simulated annealing steps. The procedure chooses a random variable to
flip, and computes ∆C the increase in the number of satisfied clauses. The algorithm then
performs the flip with probability e−∆C/T (where T is the temperature parameter, tuned
by the authors and set to 0.1). This means that SampleSAT allows to flip variables that
increase the number of unsatisfied clauses. This simulated annealing step greatly improves
the distribution of the samples.

Ambigen

Ambigen [174] is a sampler for mixed Boolean/integer formulas, where the integer
variables can only be constrained by linear inequalities. It is based on Monte-Carlo Markov
Chain methods (similar to SampleSAT) and combines Metropolis-Hastings, Gibbs and
WalkSat moves to randomly generate solutions.

It is based on a random move procedure that finds a new solution from an initial one.
The initial solution is modified by flipping a boolean variable, or changing the value of
an integer variable. If this new assignment does not satisfy the constraints, Metropolis
and WalkSat moves are performed until all the constraints are satisfied. This move
procedure is then used to generate new solutions. Performing multiple moves changes the
solution enough so that the new solution has little correlation with the initial solution.

SearchTreeSampler

SearchTreeSampler [74] uses a SAT solver as a black box. The principle is to
extend a set of pseudo-solutions until all the variables have been instantiated.

Definition 23 (Pseudo-solution). A pseudo-solution of level m is an assignment to the
first m variables that can be completed to form a solution.
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1 Function SearchTreeSampler(F, k, l)
Data: A propositional formula F with n variables, k a number of solutions to

sample, l step size for each iteration
Result: Between k and 2lk solutions from F (if enough exist)

2 if F is not satisfiable then return ∅
3 Φ0 ← {∅} // empty assignment
4 L← ⌈n

l
⌉

5 for i = 1, . . . , L do
6 Φi ← ∅
7 for j = 1, . . . ,min(k, |Φi−1|) do
8 sj ← sample from Φi−1 without replacement
9 Φsj

← pseudo-solutions of level i ∗ l with sj as ancestor // Calls the
SAT solver

10 Φi ← Φi ∪ Φsj

11 return ΦL

Algorithm 4.5: SearchTreeSampler: layered sampling

Remark. The first variables do not have to be the first ones defined in the problem. An
order can be specified but for the sake of simplicity (and without loss of generality) we
present the algorithm without specifying an order.

The algorithm is presented in Algorithm 4.5. A set of pseudo-solutions Φ is grown
iteratively from the singleton of the empty (level 0) pseudo-solution. At each step at most
k pseudo-solutions are sampled from this set, and each of these solutions is extended to
all the possible pseudo-solutions at a level increased by a parameter l. This step, line 9,
can be solved by iteratively solving the problem F ∧ sj ∧

∧
s∈S ¬s where sj is the current

pseudo-solution, and S is the set of pseudo-solutions being generated. The algorithm
returns at least the required k solutions.

There is no actual guarantee on the uniformity at the end of the search, but there is
an iterative property.

Property 5. Suppose that Φi is a uniform sample of pseudo-solutions of level i. Let s, s′

be two solutions of Φi+1, then

1
1 + ϵ

≤ P(s)
P(s′) ≤ 1 + ϵ

with ϵ = 2l−1
k

, depending on the parameters k and l.
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This property states that if the solutions in Φi are uniformly distributed in the set of
pseudo-solutions (of level i×l), then the solutions in Φi+1 are almost-uniformly distributed.
Then the solutions in Φi+2 are almost-almost-uniformly distributed, and so on. At the
end of the process, after ⌈n

l
⌉ iterations, the distribution may have drifted too far from the

uniform, and may be skewed.

CMSGen

CMSGen [78] is a sampler based on the conflict-driven clause-learning [57] (CDCL)
algorithm of modern SAT solvers (using CryptoMiniSat). Its design is very simple: it
uses RandomSearch with clause learning and restarts. It picks a random unassigned
variable and assigns it a random value. Unit propagation is performed, and if all variables
are assigned the assignment is returned. If a conflict is found the solver’s conflict analysis
learns new clauses representing the conflict, and performs a back-jump to continue the
search. If too many conflicts are learned, there is a deletion mechanism to reduce the
formula. CMSGen also performs periodic restarts to allow the search to escape from
some parts of the search space.

It is quite easy to show the non-uniformity of CMSGen, since it is based on Ran-
domSearch (as we proved in Chapter 2 Section 2.4.2), and as shown in an issue in
CMSGen’s repository. 3 Despite this non-uniformity, Barbarik accepts CMSGen as a
uniform sampler. This led to the design of ScalBarbarik which rejects CMSGen (see
section 4.4 about evaluation of SAT samplers).

4.2.5 Efficiency Oriented

The samplers presented so far often provide strong guarantees at the cost of a long
running time. In some cases, these strong guarantees are not needed, and a lot of random
(well distributed but not necessarily uniform) solutions are required in a short time. This
has led to the design of efficient samplers, that generate solutions non-uniformly, but
quickly.

QuickSampler

QuickSampler [73] is a sampler, based on atomic mutations. Given two solutions σa

and σb, an atomic mutation is δ = σa ⊕ σb. Given a third solution σc, QuickSampler’s

3. https://github.com/meelgroup/cmsgen/issues/3

82

https://github.com/meelgroup/cmsgen/issues/3


4.2. SAT Samplers

idea is to look at the assignment σc ⊕ δ that may be a solution.
QuickSampler starts with an initial solution σ. Starting from this solution, it iterates

over all variables xi, 1 ≤ i ≤ n. For each variable, it finds an instantiation σi, that
differs from σ on the variable xi (σ(xi) ̸= σi(xi)), using MaxSAT queries. Each of these
instantiations give an atomic mutation δv, and the set of all atomic mutations found this
way is denoted ∆1

σ. From this set ∆1
σ, atomic mutations can be combined to produce new

mutations of higher order, giving the sets ∆k
σ. Then the sets Σk

σ = {σ ⊕ δ | δ ∈ ∆k
σ}

are generated, corresponding to all the assignments mutated from the initial σ using
mutations. Experimentally the authors show that, with high probability, the assignments
in Σk

σ satisfy the constraints, leading to new solutions.
To generate the assignments σi, the MaxSAT queries are done by adding soft con-

straints on the values of σ, and forcing v to be different. To select σ at the beginning, a
random assignment is chosen and its closest solution is found using the same MaxSAT
query.

Some tweaks can be made to improve the algorithm and its properties. ∆k
σ can be

computed as soon as one new δ is found. The sampler can also be easily modified to
sample projected formulas.

ESampler

ESampler [94] is a method for efficiently generating solutions from an oracle sampler.
It is based on the same general idea as QuickSampler, but it will never produce invalid
assignments.

Algorithm 4.6 presents ESampler, and its the derivation function. The main function
generates an assignment from an oracle sampler (the authors use QuickSampler and
Unigen-3). From this assignment, a set of solutions is derived, and added to the generated
set.

The derivation procedure takes as input the formula, an assignment, and a maximum
number of solutions to generate. A queue Q is created (line 11), initially containing only
the input assignment. Iteratively, an assignment is popped from this queue (line 13) and
used to generate new assignments. These assignments are created by flipping the value of
one variable (line 15). If a new assignment satisfies the constraints (line 16), it is added
to the set of derived solutions, and to the queue. When enough assignments have been
generated (less than a maximum number Nmax), or when the queue is empty (all the
sub-space has been explored), the derived set is returned.

83



Part II, Chapter 4 – A History of Samplers

1 Function ESampler(F, k,Sampler, Nmax)
Data: A propositional formula F , a desired number of solutions k, a sampler

Sampler, and a maximum derivation size Nmax.
Result: At least k distinct assignments of F .

2 S ← ∅
3 repeat
4 σ ← Sampler(F )
5 Sderived ← Derive(F, σ,Nmax)
6 S ← S ∪ Sderived

7 until |S| ≥ k
8 return S
9 Function Derive(F, σinit, Nmax)

Data: A propositional formula F , an initial assignment σinit, and the
maximum number of assignments to generate Nmax.

Result: At most Nmax distinct assignments of F .
10 Sderived ← {σinit}
11 Q← {σinit}
12 while |Q| ≠ 0 ∧ |Sderived| < Nmax do
13 σ ← Q.pop()
14 for 1 ≤ i ≤ n do
15 σi ← σ[xi 7→ ¬σ(xi)]
16 if σi ̸∈ Sderived and σi satisfies F then
17 Sderived ← Sderived ∪ {σi}
18 Q.add(σi)

19 return Sderived

Algorithm 4.6: ESampler: derived samples

ESampler offers a compromise between uniformity (only calling the sampler and not
the derivation procedure with Nmax = 1) or efficiency (a high value of Nmax to derive
many assignments). When using the derivation procedure, ESampler is able to generate
solutions orders of magnitude faster than other samplers.

4.3 CP Samplers

The samplers presented so far are designed to sample SAT problems. Extending these
samplers to CP is not an easy task because CP deals with larger domains and broader a
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language of constraints (such as global constraints). We present here CP samplers 4.

4.3.1 MBE-s

MBE-s [72] is to our knowledge the first sampler working on constraint satisfaction
problems. It transforms the constraint network into a belief network, a structure repre-
senting conditional probability tables, i.e. P (X = a | Xj1 = a1, . . . , Xjk

= ak). To do so, a
framework called bucket-elimination is used, with a time and space exponential algorithm.
If n is the number of variables, then n buckets are created and the i-th bucket stores all
the constraints whose last variable (in a chosen order) is Xi. The buckets are then used
to generate functions computing conditional counts, i.e. number of solutions extending a
partial assignment. These conditional counts can then be used to compute the conditional
probability tables. Samples can be generated by instantiating the variables in the given
order, using the conditional probability to weight the different values of the variable.

This bucket elimination is time and space exponential unless the induced width of
the constraint graph is bounded. To reduce the time and space requirements, an approx-
imation scheme called Mini-Bucket Elimination (MBE) is used. Instead of computing
the exact counts, MBE computes an upper bound of the conditional counts. A bound-
ing parameter can be chosen to control the tightness of the bound, trading efficiency for
uniformity.

4.3.2 SampleSearch

SampleSearch [76] uses the same idea of computing the conditional probability
tables. Instead of using the Mini-Bucket Elimination, the author uses IJGP [168], a
different belief propagation algorithm. Instead of working on buckets, IJGP works on a
structure called the join-graph, and iteratively propagates information on it to compute
the conditional probability tables (hence the name, Iterative Join-Graph Propagation).
IJGP is also exponential in time and space, and an approximation scheme is proposed,
IJGP(i) by limiting the number of variables during the computations.

The authors note that the approximation scheme removes guarantees that the samples
will be solutions. To ensure that all samples generated are solutions to the problem, the
sample generation is modified. If a sample is not a solution, a back-jump is performed,

4. When the samplers presented here have not been given a name by the authors, we name them after
the technique they use to sample.
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and the (approximate) probability distribution is updated. A no-good is also added to
prevent the algorithm from searching this space again.

SampleSearch was later improved in [77] in two ways. First by using a Metropolis-
Hasting method, which performs a random walk on the set of samples. It starts from
an initial sample, and changes to a new one with a given probability (depending on the
distributions of the samples). A second method is proposed using Sampling/Importance
Resampling. The idea is to first generate N samples, and then extract (re-sample) the M
desired solutions using a weighted distribution. The resulting distribution converges to
the uniform distribution as N grows.

4.3.3 MDD-s

MDD-s [85] is a compilation-based technique adapted to CP. Multi-valued Decision
Diagrams (MDDs) are an extension of BDDs as used in SimGen [95] already presented in
section 4.2.2. As for the BDDs, an annotation phase is performed to compute the weights
of the arcs, and then sampling can be performed in a top-down linear pass on the MDD.

4.3.4 Recent samplers: TableSampling and LinMod-s

In 2021, I proposed TableSampling [1], a sampling algorithm based on hashing tech-
niques (presented in section 4.2.1) adapted to constraint programming. I also showed ex-
perimentally that using linear modular equality constraints (instead of table constraints)
makes the sampler uniform. Simultaneously, linear modular equalities (and inequalities)
were used to design a sampler, LinMod-s [86].

I present TableSampling in detail in the following Chapter 5. I also postpone the
presentation of LinMod-s to the same chapter, in Section 5.8, in order to have a precise
comparison of the two approaches.

4.4 Evaluation

As with any algorithm, samplers should be tested on different instances, and their
behaviour should be studied. As they are random by nature, multiple runs should be
done to get an average (or median) value, for example for the running time.

Testing the quality of the randomness is more difficult. By definition, any event, even
if unlikely, can occur. This includes events where the sampler does not seem uniform (for
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example, returning the same solution multiple times).

4.4.1 Examples of Evaluations

To assess the quality of the randomness, the authors evaluate their samplers using
various methods. Of the 24 samplers presented, a distribution test was performed on 14
of them. These tests are often performed on smaller problems on which the whole solution
set can be enumerated, so that the sampler can return the same solution several times in
order to know precisely the distribution of solutions.

Solution Distribution

One of the first ways of evaluating the randomness is simply to print out the frequency
of each solution (i.e. the distribution). If the sampler is far from uniform, this test allows
to see which spaces are sampled more than others (such as done in Figure 2 of [93]).

Solution Counts

If the distribution of solutions seems uniform, one can look at the distribution of the
number of occurrences of each solution. Formally, let us consider a uniform sampler over
the set [1, N ] and draw from it M times (through random variables Xk, 1 ≤ k ≤ M).
We count the number of occurrences Occi = |{Xk|Xk = i, 1 ≤ k ≤M}|. This number of
occurrences should follow a binomial distribution with parameter M and p = 1/N . If the
experimental distribution is far from the binomial distribution, then the sampler may not
be uniform.

To have a quantitative value of the difference between two distributions, the Kullback-
Leibler (KL) divergence can be used.

Definition 24. Given two probability distributions P and Q over a set S, the Kullback-
Leibler (KL) divergence is defined as

DKL(P | Q) =
∑
s∈S

P (s) log
(
P (s)
Q(s)

)
.

This divergence is equal to 0 when the distributions are the same, and increases when
the distributions are different. This KL divergence can also be used on the distribution of
the solutions to compare directly to the uniform distribution.
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χ2 Test

More powerful statistical tests can also be used. Pearson’s χ2 test [181] is a test that
can state with high confidence that a sampler does not follow a given distribution. This
test is applied to TableSampling and is presented in detail in the following Chapter 5.
This test takes advantage of the number of samples drawn to give a more confident answer.

4.4.2 Evaluation Tool

The evaluation approaches presented previously need to be able to sample all the
solutions multiple times. In [164], the authors show that if one only has access to samples,
then at least Ωα

√
|Sols (P)| samples are required to give an experimental guarantee (with

α a value depending on the strength of the guarantees). This requirement is completely
impractical in some instances (for example, many instances of feature models we used in
Chapter 7 have more than 10120 solutions).

More recently, an evaluation tool, Barbarik [66], has been designed specifically for
SAT samplers (and improved in two subsequent versions). It overcomes this testing curse
of dimensionality by designing formulas with two solutions (or two classes of solutions).
We present it in this section.

Barbarik

In order to prove uniformity, the samplers must sample many solutions. However, if
the instance has few solutions, then this task becomes easy. The extreme case is when the
instance has only 2 solutions (or 2 sets with the same number of solutions).

Algorithm 4.7 presents a simplified version of Barbarik to outline how it works. We
refer the reader to the original article [66]for the complete presentation, including full
pseudocode, implementation details, and proofs. Barbarik generates a sample σ1 using
the sampler under test, and another sample σ2 using a uniform sampler (such as SPUR).
Then, it creates a new formula using these two samples such that this formula has 2τ
solutions, where τ solutions correspond to σ1, and the other τ solutions correspond to
σ2 (by projecting over a subset of variables, simplified here). It then generates samples
using the sampler under test on the newly constructed formula. It counts the number of
samples generated that correspond to σ1, and if this number is too far from 1/2 it rejects
the sampler. In the full algorithm, this process is repeated several times and if the sampler
passes all the tests, then Barbarik returns ACCEPT .
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1 Function BarbarikSimple(A,U , ϕ)
Data: A sampler A under test, a uniform sampler U , a formula ϕ
Result: ACCEPT (resp. REJECT) the uniform (resp. non-uniform) sampler

2 σ1 ← A(ϕ)
3 σ2 ← U(ϕ) // different from σ1

4 ϕ̂← Kernel(ϕ, σ1, σ2)
5 S ← N samples from A(ϕ̂)
6 b← |{σ ∈ S | σ = σ1}|
7 if b < 1−C

2 ∨ b >
1+C

2 then
8 return REJECT
9 else

10 return ACCEPT

Algorithm 4.7: Barbarik (simplified): sampler evaluation

Barbarik2

Barbarik2 [83] improves Barbarik by allowing the testing of weighted samplers. It
is based on the same idea, except that when sampling from the new formula (ϕ̂, with the
two classes of solutions), the sampling is weighted, so the rejection criterion depends on
the weights of σ1 and σ2.

ScalBarbarik

ScalBarbarik [90] was designed after CMSGen which was shown to be accepted
by Barbarik but can easily be proven to be non-uniform. Compared to Barbarik, the
generation of the new formula is modified in ScalBarbarik. The authors noted that in
CMSGen, when the solver spends too much time in a sub-space, restarts are performed.
This means that solutions in hard sub-spaces are less likely to be selected. ScalBarbarik
generates a formula containing two sub-spaces : one corresponds to the first solution σ1 and
is “easy”, i.e. solutions are found quickly, and the other one is “hard”, i.e. solutions require
more computations to be found, leading to possible restarts. A hardness parameter can be
tuned to have an easier or harder formula. ScalBarbarik is shown to reject CMSGen
while still accepting Unigen-3 as a uniform sampler.
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Chapter 5

TABLE SAMPLING

This chapter is taken from my work on TableSampling, which appears in two publi-
cations: first in the CP 2021 conference [1], and an extended version in the Constraints
journal [2]. A humorous trailer of the conference presentation can be found online a, as well
as the full presentation b. The same work was also accepted and presented in the CP 2021
doctoral program, and in the JFPC 2021 conference, where I received the young researcher
award c. Since the publication, TableSampling has been added to choco-solver (ver-
sion 4.10.9).

a. https://www.youtube.com/watch?v=Ss4A6OaG_sg
b. https://www.youtube.com/watch?v=iX0d_7E-oIc
c. https://www.i3s.unice.fr/jfpc_2021/prix/

5.1 Introduction

Using constraint satisfaction as a core technique, constraint solvers have been en-
riched with various additional properties, such as optimisation (even with multiple objec-
tives [152]), user preferences [51], diverse solutions [24], robust solutions [23], etc. However,
there are very few works about solution randomisation in CP solvers.

In the previous chapter, we introduced eighteen SAT samplers, but only three CP
samplers. Moreover, these CP samplers are not designed as improvements to CP solvers,
but rather as separate algorithms: MBE-s [72] and SampleSearch [76] transform the
constraints into a belief network, and MDD-s [85] transforms the constraints into a MDD.
These three samplers do not benefit from improvements in CP solvers (such as a better
running time, or new constraints).

In this chapter, we propose a method for sampling solutions to a constraint problem,
without modifying its model, and using a CP solver as a black box. This work is motivated
by many situations where the user of a constraint solver needs randomised solutions: to
facilitate user feedback and decision making (by providing a variety of solutions, represen-
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tative of the solution space), to ensure fairness (to avoid patterns in consecutive solutions,
for instance in planning problems), or to provide solution coverage (for instance in test
generation problems).

Currently, a straightforward way to randomly sample solutions with a CP solver is to
use RandomSearch, i.e. to randomly select a variable and a value as an enumeration
strategy. However, this strategy does not return uniformly drawn solutions (uniformly
within the solution set). Another major drawback of this technique is that Random-
Search replaces the strategy that may have been chosen or built for the problem, and
this is likely to increase the solving time.

Our approach is inspired by Unigen [82], an approximately uniform sampling algo-
rithm for SAT, adapted to the CP framework. The idea is to split the search space by
adding random hashing constraints, until only a small, tractable number of solutions re-
main. There is no need to replace the strategy and the sampling can be done among the
remaining solutions. Our algorithm also features a dichotomic variation.

The chosen family of random hashing constraints has a strong impact on the running
time. To keep it reasonable, we choose to randomly generate table constraints [15], which
are implemented in all constraint solvers. We rely on their extensional representation of
valid tuples to generate, at low cost, a multivariate uniform distribution.

We implemented our proposal on top of choco-solver [46] and compare it to Ran-
domSearch on a broad benchmark, built from the annual MiniZinc competition. We
show that our approach using the table constraints improves, in practice, the quality of
the randomness compared to RandomSearch, while also sampling more problems.

We also apply our algorithm with linear modular equalities [41], which are hashing
constraints with stronger theoretical properties in terms of randomness, but harder to
propagate. On our benchmark set, using linear modular equalities gives a better random-
ness quality compared to the table constraints, as it provides a uniform sampling. The
disadvantage is a longer running time.

Outline In this chapter, we first recall the important related works and the defini-
tions in Section 5.2. We then introduce our new sampling approach, TableSampling,
in Section 5.3. In Section 5.4 we discuss some design choices, and some properties of
TableSampling. The experiments are divided into three sections: first we present the
methodology in Section 5.5, then we perform preliminary experiments in Section 5.6, and
we finally show experiments on a benchmark of instances of the MiniZinc challenge in
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Section 5.7. In Section 5.8 we present the LinMod-s sampler (which was not presented
in the previous chapter), and highlight the differences with our approach.

5.2 Background

In this section, we recall the related works and the background needed for this chapter.
Most of the related works consist of samplers, which were already presented in the previous
Chapter 4, and the background was already introduced in Chapters 2 and 3.

5.2.1 Related Works

The question of sampling combinatorial problems is central in hardware/software ver-
ification and testing, especially for SAT models. For example, in [182], random generation
is used to generate random stimuli to test circuits. Some testing problems have also been
expressed with CP models, for example because of the need for non-Boolean variables:
in [121], the authors define a variability model on continuous variables. They then discre-
tise these variables and sample solutions using RandomSearch. In [20], the Test Suite
Reduction problem is tackled with constraint optimisation problems using global con-
straints. In [183], array constraints are used to handle data structures. Our work brings
sampling to these CP models.

Instance generation is also an area where sampling methods are used. In [17], the
authors use uniform sampling to generate instances, but as the size of the instances to
be generated increases, RandomSearch is used as a more efficient approach. In [190],
random generation is enhanced by genetic algorithms to generate interesting instances.
In [4], a parameter tuning tool is used to find a value for the parameters of instances
such that the generated instance is neither too hard nor too easy to solve. The parameter
tuning tool used, irace, randomly generates parameters in promising spaces, and updates
the random distribution after testing these parameters.

The broad literature on constrained sampling has already been presented in the pre-
vious Chapter 4. We would like to point out that our approach is inspired by the works
on the hashing constraints presented in the previous chapter, Section 4.2.1. Hashing con-
straints have recently been used in a CP context for model counting in [41]. These con-
straints were then used in the sampler LinMod-s [86]. We experiment our approach with
the linear modular equality constraints (instead of the table constraints) and we com-

92



5.2. Background

pare it to LinMod-s in Section 5.8. In some sense, our approach is also related to the
SearchTreeSampler sampler [74] as it enumerates and restricts the allowed values for
a subset of variables.

5.2.2 Definitions

In this chapter, we only consider constraint satisfaction problems P = ⟨X ,D, C⟩. A
constraint C ∈ C is defined by its scope scp(C) (the variables involved in the constraint)
and its relation rel(C) (the allowed values for the variables in the scope). In this chapter,
we use table constraints.

Definition 4 (Table constraint). Given a tuple of r variables Xi1 , . . . , Xir , and a set
of tuples T , the table constraint C = table((Xi1 , . . . , Xir), T ) is such that scp(C) =
(Xi1 , . . . , Xir), and rel(C) = T .

These constraints allow to directly define the allowed values for the variables. We use
table constraints as hashing constraints. If a family of hashing constraints divides the
possible solutions evenly and independently, it is said to be r-independent.

Definition 20 (r-independence). Let X , and let H be a family of constraints on all the
variables of X . The family H is r-independent iff for a random h ∈ H and for σ1, . . . σr

instantiations of the variables in X

P (σr ∈ rel(h) | σ1 ∈ rel(h) ∧ . . . ∧ σr−1 ∈ rel(h)) = P (σr ∈ rel(h))

This property of a family of hashing constraints is central in the proofs of uniformity
of samplers. In [41] a family of hashing constraints, the linear modular equalities, were
introduced as extensions to integer variables of XOR constraints.

Definition 22 (Linear Modular Equality). Let p be a prime number. Let a1, . . . , an ∈ Fp

be coefficients, b ∈ Fp be a constant, and X1, . . . , Xn be n variables. A linear modular
equality is an equality

n∑
i=1

aiXi ≡ b (mod p) .

The family H(mod p) (n) is the set of all linear modular equalities modulo p, i.e.

H(mod p) (n) =
{

n∑
i=1

aiXi ≡ b (mod p) | a1, . . . , an ∈ Fp, b ∈ Fp

}
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1 Function RandomTable(P , v, p)
Data: A CSP P = ⟨{X1, . . . , Xn},D, C⟩, v > 0, 0 < p < 1
Result: A random table constraint

2 T ← {}
3 i1, . . . , iv ← GetIndices(P , v)
4 foreach (xi1 , . . . , xiv) ∈ ∏v

k=1D(Xik
) do

5 if Random() < p then
6 T .add((xi1 , . . . , xiv))

7 return table((Xi1 , . . . , Xiv), T )
Algorithm 5.1: Random table constraint generation algorithm

This family of hashing constraints requires the choice of a prime number p larger than
the maximum range of the domains. If such a p is chosen, this family is 2-independent.

RandomSearch During the solving, when no more propagation can be done, the search
strategy chooses an uninstantiated variable X and a value v in its domain, and makes the
decision X = v (or its negation X ̸= v). The random search strategy RandomSearch
chooses the variable uniformly at random among all the uninstantiated variables, and
chooses the value uniformly at random from the domain of the variable. This search
strategy makes decisions in constant time, but these decisions can lead to unsatisfiable
spaces, hence finding solutions more slowly than with dedicated search strategies.

5.3 TableSampling

We present here a new approach to sample solutions in a CSP. This approach is
twofold: first we present a way to generate random table constraints, a key component
of the method, and second, we present an algorithm to sample solutions using these
generated constraints.

5.3.1 Random Table Constraints

The algorithm for generating random table constraints is presented in Algorithm 5.1.
We assume that the following functions are available:

• Random() which returns a random floating point number between 0 and 1,
• GetIndices(P , v) which returns v indices i1, . . . iv such that |D(Xik

)| ≠ 1, 1 ≤
k ≤ v (if there are fewer than v such indices, they are all returned),
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• and table(X ′, T ) which creates a table constraint C such that scp(C) = X ′ and
rel(C) = T .

In addition to the CSP P , the algorithm has two parameters: v the number of variables
in the table, and p the probability of adding a tuple to the table. The algorithm first
randomly selects v variables from those whose domains are not reduced to a singleton,
iterates through all the instantiations of these v variables, and adds each instantiation in
the table with probability p. The goal of these tables is to reduce the solution space to a
smaller sub-space. The following theorem shows that, on average, the number of solutions
to the problem is reduced by a factor p.

Theorem 2. Let P be a CSP, and T be a table constraint randomly generated with
probability p. Then

E (|Sols (P ∧ T )|) = p |Sols (P)|

or equivalently, if σ is an instantiation, then

P (σ ∈ rel(T )) = p .

Proof. For σ ∈ Sols (P), let γσ be a random variable equal to 1 if and only if σ ∈
Sols (P ∧ T ). P (γσ = 1) is the probability that σ satisfies T . Let Xi1 , . . . , Xir be the
variables chosen in T . Every instantiation of these variables has been added in the table
with probability p, including the instantiation (σ(Xi1), . . . , σ(Xiv)). This means that σ
satisfies the table constraint T with probability p. We thus have p = P (γσ = 1) = E (γσ).
It follows:

E (|Sols(P ∧ T )|) = E

 ∑
σ∈Sols(P)

γσ


=

∑
σ∈Sols(P)

E (γσ)

=
∑

σ∈Sols(P)
p

= p|Sols(P)|

The purpose of Theorem 2 is the following: by adding table constraints, we reduce the
size of the solution set by a factor p on average. Since p is a parameter of the algorithm,
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1 Function TableSampling(P , κ, v, p)
Data: A CSP P , κ ≥ 2, v > 0, 0 < p < 1
Result: A solution to the problem P

2 S ← FindSolutions(P , κ)
3 if |S| = 0 then
4 return "No solution"
5 while |S| = 0 ∨ |S| = κ do
6 T ← RandomTable(P , v, p)
7 S ← FindSolutions(P ∧ T, κ)
8 if |S| ≠ 0 then
9 P ← P ∧ T

10 return Random (S)
Algorithm 5.2: Sampling algorithm by adding table constraints

we can control how fast the reduction is performed. A low value of p has a higher chance
of making the problem inconsistent, but a higher value of p reduces the solution space
less.

5.3.2 Sampling Algorithm

The sampling algorithm is presented in Algorithm 5.2. First, we present the helper
functions used in this algorithm. The first one is Random (S), which returns a random
element taken uniformly in S. The second function is FindSolutions(P , s), which enu-
merates the solutions of P until s solutions have been found, and returns them. Note
that, if this function returns s solutions, then |Sols(P)| ≥ s, and if it returns fewer than
s solutions, then all the solutions have been found. The depth-first search in constraint
solvers makes it easy to implement such a function.

The sampling algorithm works as follows: table constraints are added to the problem to
reduce the number of solutions. When there are fewer solutions than a given pivot value,
a solution is randomly returned from the remaining solutions. The algorithm is described
in details in Algorithm 5.2. There are three parameters in addition to the CSP P . A value
κ for the pivot is chosen to limit the number of solutions enumerated in the intermediate
problems, as well as the number of variables per table v and the probability p to add a
tuple in the table. The algorithm first enumerates κ solutions and stops immediately if
there are no solutions, or fewer than κ solutions. If the problem has more than κ solutions,
a new table constraint is randomly generated. If the problem with this constraint still has
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solutions, the constraint is definitively added to the problem (this is the purpose of the
test line 8). The algorithm stops when there are fewer than κ solutions. Finally, one of
the remaining solutions is randomly chosen and returned.

The solutions are returned one by one by our approach, similarly to UniGen and
for the same reasons: once a solution has been chosen, the tables used to find this solu-
tion cannot be kept to choose another one, as this would create dependencies. Thus, to
generate multiple independent solutions, the algorithm is run several times from scratch.
Furthermore, there is no guarantee on the size of the final set, except for the one ensured
by line 5, 0 < |S| < κ. In other words, the number of solutions in the final set cannot be
fixed. If a user does not mind the bias described above, it is very easy to return the final
set directly, and run the algorithm again until the desired number of solutions is found.

5.3.3 Proof of termination

When designing random algorithms, one must be particularly careful about the ter-
mination. Here we show that Algorithm 5.2 terminates with probability 1.

We fix values for κ ≥ 2, v > 0 and 0 < p < 1. The case of the initial problem not being
satisfiable is caught at the beginning of the algorithm (line 3).

The following lemmas show that there always exists a table that reduces the number
of solutions to the problem without making it inconsistent, and that this table is chosen
with a non-zero probability. Without loss of generality, we assume that there are always v
variables in the tables. If fewer than v variables are not instantiated, we pick some of the
already instantiated variables and use their current values to complete the instantiations.

Lemma 1. Let P be a problem with at least two solutions. In our framework, there exists
a random table constraint T0 such that

0 < |Sols(P ∧ T0)| < |Sols(P)|

Proof. Let σ1 and σ2 two distinct solutions of the problem P . Let i1 be such that σ1(Xi1) ̸=
σ2(Xi1). Let i2, . . . , iv be other indices such that |D(Xik

)| ̸= 1, 2 ≤ k ≤ v. Let us define
the table

T0 = table ((Xi1 , . . . , Xiv), {(σ1(Xi1), . . . , σ1(Xiv))})

Then σ1 ∈ Sols(P ∧ T0) so Sols(P ∧ T0) ̸= ∅, and σ2 ̸∈ Sols(P ∧ T0) so Sols(P ∧ T0) ̸=
Sols(P). Since we add a constraint to P to build P∧T0, we have Sols(P∧T0) ⊆ Sols(P).
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In the end, we have: Sols(P ∧ T0) ̸= ∅, Sols(P ∧ T0) ⊆ Sols(P) and Sols(P ∧ T0) ̸=
Sols(P), thus Sols(P ∧ T0) ⊂ Sols(P), so 0 < |Sols(P ∧ T0)| < |Sols(P)|.

Lemma 2. There exists a constant ρ > 0, depending only on the initial problem, such
that, for T a randomly chosen table constraint with v variables:

P (0 < |Sols(P ∧ T )| < |Sols(P)|) ≥ ρ

Proof. We know from Lemma 1 that there is at least one table constraint T0 such that
0 < |Sols(P ∧ T0)| < |Sols(P)|. Let d be the maximum size of the domains of the
initial problem. We bound the probability of RandomTable(v, p) picking exactly T0

(up to ordering of the scope of the constraints). Let T be a random table returned by
RandomTable(v, p). We want to bound

P(T = T0) = P (scp(T ) = scp(T0) ∧ rel(T ) = rel(T0))
= P (scp(T ) = scp(T0)) · P (rel(T ) = rel(T0) | scp(T ) = scp(T0))

There are
(

n
v

)
ways of choosing the v variables appearing in the table (the order does

not matter), so P (scp(T ) = scp(T0)) = 1/
(

n
v

)
. Let k be the number of tuples in T0.

There are at most dv possible tuples in total. The probability of choosing any tuple
in T0 and not the others is pk(1 − p)dv−k. Since k ≤ dv we have the lower bound
P (rel(T ) = rel(T0) | scp(T ) = scp(T0)) ≥ pk(1 − p)dv−k ≥ min(p, 1 − p)dk . By defining
ρ = 1

(n
v)
min(p, 1− p)dk we have the desired bound, and ρ > 0 because 0 < p < 1.

We have proved that during an iteration of the loop, there is a probability strictly
greater than 0 of removing solutions without making the problem inconsistent. We can
now prove that the algorithm terminates with probability 1. The proof is similar to the
one showing that tossing a fair coin until tails comes up ends with probability 1.

Theorem 3. Algorithm 5.2 terminates with probability 1.

Proof. For some k > |Sols(P)| − κ, we want to find an upper bound on the probability
that the algorithm has not stopped after k iterations. In some cases, an iteration reduces
the number of solutions to the problem without making it inconsistent. There can be at
most |Sols(P)| − κ such iterations, because the algorithm stops if there are fewer than
κ solutions (condition of the while, line 5). For the other iterations, the condition of the
while loop ensures that: either the (most recently added) table has made the problem
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inconsistent, or it has not reduced the number of solutions. The probability of making the
problem inconsistent or not reducing the number of solutions is less than 1− ρ, as stated
in Lemma 2. Thus, the probability that the algorithm has not stopped after k iterations
is less than (1− ρ)k−|Sols(P)|+κ. This probability tends to zero as k tends to infinity. This
proves that the algorithm stops with probability 1.

This proof is built with an upper bound, and considers the worst case (when solutions
are slowly eliminated), but in practice there is more than one table that satisfies Lemma 1.
The solving time in practice will be studied in Section 5.7.

5.3.4 Dichotomic table addition

From early experiments, we noticed a behaviour of the algorithm that led us to create
a variant. In fact, there is little chance that the first tables added will make the problem
inconsistent. On the contrary, after many iterations, several tables have been added, and
it becomes very fast to find the κ solutions (or to prove inconsistency). This is due to the
fact that all the previously added tables really restrict the search space and are quickly
propagated.

It is possible to modify the algorithm by increasing the number of tables added at
each step. This will reduce the number of iterations at the beginning of the algorithm.
At the end, it increases the probability of having an inconsistent problem, but as we
have seen, it is very fast to prove inconsistency in the last iterations. There is a trade-off
between the number of steps of the algorithm and the number of inconsistent problems
created. Depending on the problem this variant may or may not be faster than the baseline
algorithm.

The exact algorithm is inspired by the unbounded dichotomic search: first, find i such
that the value we want to guess is between 2i and 2i+1, and then, run a usual dichotomic
search between 2i and 2i+1.

The algorithm of dichotomic table addition is presented in Algorithm 5.3, and should
replace lines 6 to 9 of Algorithm 5.2. Let τ be the number of tables added in the previous
step, we choose nbTables = 1 if τ = 0 or nbTables = 2τ otherwise, and nbTables tables
are generated and stored in an array T . The algorithm then enumerates κ solutions to the
problem where the tables in T have been added. If there are no solutions, it deletes half
of the constraints in T . The procedure stops when the problem is satisfiable or |T | = 0.
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1 Function DichotomicTableAddition(P , nbTables, κ, v, p)
Data: A CSP P = ⟨X ,D, C⟩ , nbTables > 0, κ ≥ 2, v > 0, 0 < p < 1
Result: P with the new table constraints, and the number of added tables

2 T ← array of size nbTables
3 for i = 0 to nbTables− 1 do
4 T [i]← RandomTable(P , v, p)
5 S ← FindSolutions(P ∧ ∧t∈T t, κ)
6 while |S| = 0 ∧ |T | > 0 do
7 T ← T [0 : |T |/2[
8 S ← FindSolutions(P ∧ ∧t∈T t, κ)
9 return P ∧ ∧t∈T t, |T |

Algorithm 5.3: Dichotomic addition of tables variation

Theorem 3 can be extended to the case of the dichotomic table addition, because line 6
in Algorithm 5.3 ensures that the problem does not become inconsistent.

This variant of the algorithm has comparable running times to the baseline algorithm
(as seen in Section 5.7.1). It performs better on some instances, and worse on others. A
user can try both variants on some instances before running the full sampling, in order
to choose the best variant for their application.

5.4 Discussion

In this section, we discuss the algorithmic choices we have made in Algorithm 5.2,
compare it more closely with Meel’s approach, and extend our approach to other hashing
constraints.

5.4.1 Quality of Table’s Division

In the proof of Theorem 2, the random variables (γσ)σ∈Sols(P) are not independent. For
example, let σ1 and σ2 be two solutions to the problem that only differ in one variable X,
then

P(γσ2 = 1 | γσ1 = 1) = P(X ∈ scp(T )) · p+ P(X /∈ scp(T )) (5.1)

Indeed, if the variable X appears in T , then σ2 is be kept with probability p, but if X is
not in the scope of T , then σ2 is always be kept. If the table does not have all the variables
in its scope, then it may not split the clusters of solutions that take the same values on
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multiple variables. This notion of independence is central to Meel’s approaches [82] to
show the uniformity of the sampling. In contrast to this approach, our sampling is not
uniform. We choose to have tables of a controlled size for sake of efficiency.

Formula 5.1, which shows the non-independence, also shows that increasing the number
of variables in the table makes the random variables γσ more independent, thus bringing
the whole sampling process closer to uniformity. Tables containing all the variables of the
problem would make the random variables γσ fully independent (i.e. n-independent), since
in this case P(X /∈ scp(T )) = 0. This would give a theoretical guarantee of sampling, but
is impossible to generate in practice.

5.4.2 Comparison with ApproxMC

In his thesis [82], Kuldeep Singh Meel presented an algorithm to count (ApproxMC)
and then to sample solutions of SAT formulas (UniGen) based on adding of XOR con-
straints to the problem. Their counting algorithm ApproxMC adds multiple XOR con-
straints to the SAT formula until there are less than a given number of solutions, and
then extrapolates the total number of solutions. Running this function several times gives
a probably approximately correct (PAC) counter, i.e. given two parameters 0 < ϵ and
0 < δ < 1, if c is the value returned by the algorithm with the parameters ϵ and δ on the
formula F , then

P(|Sols(F)|/(1 + ϵ) ≤ c ≤ |Sols(F)|(1 + ϵ) ≥ 1− δ

He then uses this counter to get an almost uniform sampler (the probability of sampling
is close to the uniform by a factor ϵ, where ϵ that can be chosen).

Our approach is inspired by ApproxMC but differs in that we have traded the proven
uniformity for a faster algorithm. The constraint used to reduce the solution space is not
an XOR constraint (or its extension to CP, a linear modular equality constraint), but a
table constraint. A table constraint with few variables allows for a propagation closer
to the root of the search tree, whereas a linear modular equality only propagates close to
the bottom of the search tree. The 2-uniformity of the linear modular equalities is also
their downfall: it ensures that the solutions satisfying the constraint are well distributed
throughout solution space. Therefore, it is not possible to use this constraint to efficiently
propagate and cut large sub-spaces of the search space.

The algorithm to get a sample has also been simplified to what is strictly necessary.
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ApproxMC has to run the algorithm several times to get a proven model counter, and
then use that model count to sample a solution. Our algorithm is applied only once and
will always return a solution (whereas UniGen may not return a solution).

5.4.3 Using Different Constraints

Algorithms 5.2 and 5.3 have been presented using the random tables, but they can
actually be used with any constraint that divides the space. In fact, we can replace the
line 6 in Algorithm 5.2 (or the line 4 in Algorithm 5.3) by the creation of any constraint
that we want. In our experiments we tested this sampling algorithm with randomly gen-
erated linear modular equalities (with randomly picked coefficients). This set of hashing
constraints ensures the strong property of 2-independence of the presence of solutions. We
call this algorithm (our approach using linear modular equalities) LinModEq and eval-
uate the quality of the randomness and the running time in the experiments. We expect
to get a better sampling distribution using these constraints, and eventually a uniform
sampling.

5.4.4 Influence of the Parameters

Three parameters must be chosen to run the algorithm. We discuss here their influence
on the running time and on the quality of the randomness.

• As seen in the previous subsection, increasing the number of variables in the tables
should improve the randomness, but will also exponentially increase the number
of tuples in the table, with a negative impact on the running time.

• Reducing the probability of adding a tuple in a table should improve the running
time because the tables will be smaller, so the propagation will be faster, and the
number of tables added will be lower because the problem will be reduced more
quickly.

• The influence of the pivot on the running time is unclear. A higher pivot means
that more solutions have to be enumerated at each step, but it also means that the
algorithm stops after adding fewer constraints.

These hypotheses are verified experimentally in Section 5.6.2.
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5.5 Experiments Methodology

This section presents the methodology used to carry out the experiments. First we
present the details of the implementation, and then we present the benchmarks, their
characteristics, and the reason for using each one of them. The approach is independent
of the constraints of the problem, so we were able to apply it to different problems without
being limited by the presence or absence of a constraint.

5.5.1 Implementation

The code is available online 1, along with the benchmarks used and all the scripts
used to generate the figures presented in this chapter. TableSampling has now been
integrated in choco-solver since the version 4.10.9.

TableSampling

The implementation was done in Java 11 using the constraint solver choco-solver ver-
sion 4.10.6 [46]. It is possible to create a model directly in Java using the choco-solver
library, or by passing a file in the FlatZinc format (generated from the MiniZinc for-
mat). If no strategy is defined in the FlatZinc file, the solver’s default strategy is used
(dom/Wdeg [12] and lastConflict [32]).

A technical variation has been made by adding a propagation step before creating a
table (before line 6 of Algorithm 5.2). This avoids enumerating some tuples that would
be immediately deleted by propagation. This small variation is evaluated in Section 5.7.1.

In the following, TableSampling refers to the algorithm using DichotomicTableAd-
dition.

LinModEq

The LinModEq approach is Algorithm 5.2, where we replaced the random table con-
straints with random linear modular equalities. For the implementation of the propagator
of the linear modular equality system, we reused the implementation by [41], which is
already available in Java. Their implementation is based on the minicp solver, modified
to use belief propagation 2. We have adapted their linear modular equality propagator to
work in the choco-solver’s framework.

1. https://github.com/MathieuVavrille/tableSampling
2. https://github.com/PesantGilles/MiniCPBP
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To ensure that our implementation is not flawed compared to the original implemen-
tation, we tested it on the same benchmark as the one used in [41]. We observe the same
behaviour, although there are differences due to the underlying CP solver. To enumer-
ate all the solutions (without any linear modular equality), choco-solver is an order
of magnitude faster than minicp. In fact, according to the official website, minicp “is
not focused on efficiency but rather on readability to convey the concepts as clearly as
possible”.

Despite the gap in global performance, we observe the same behaviour as [41] when
adding linear modular equalities (and by using the propagator designed for a system of
linear modular equalities): increasing the number of equalities reduces the running time.

5.5.2 Preliminary Benchmark

First, we use a small benchmark to perform extensive experiments, in order to calibrate
the settings of the algorithm. Its purpose is to evaluate the randomness of our approach
and the impact of the parameters in order to extract a generic set of parameters to use
as a baseline. The evaluation of the randomness has to be done on small problems due to
the computational cost of the χ2 test.

This benchmark consists of three problems, which are describe in detail below. The
results of the evaluation on this preliminary benchmark are presented in Section 5.6. The
running time comparison with RandomSearch and LinModEq will be done with a
harder benchmark.

Problems

The following problems have been chosen for their reasonable number of solutions (to
apply the χ2 test), and for their relevance. The computation time is small enough to allow
extensive experiments, and we use the results to calibrate the parameters of our method.

N-queens The first problem is the N -queens problem, which consists of placing N

queens on an N × N chessboard in such a way that no queen attacks any other queen
(queens attack in all 8 directions, as far as possible). We implemented it using the classical
model with N variables with domain [1, N ], and binary disequality constraints (the same
model as the one used in [41]). We use the 9-queens instance, which has 352 solutions.
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On Call Rostering This problem models the rostering system used in partular by
health workers. This instance is available in the MiniZinc benchmarks 3 and contains dif-
ferent types of constraint, such as linear constraints, global constraints count, absolute
values, implications and table constraints. Many datasets are available but only the small-
est (4s-10d.dzn) was used here. This is an optimisation problem (minimisation), so it was
necessary to transform this problem into a satisfaction problem by limiting the objective
function. The optimal value is 1:

• There are 136 solutions with obj ≤ 1
• There are 2,099 solutions with obj ≤ 2
• There are over 10,000 solutions with obj ≤ 3

By randomising the solutions, the solver can be used as a decision support tool for the
planners (giving them several plans to compare) and brings a form of equity between the
workers. Indeed, oriented search methods could favour some employees at the expenses of
others.

Feature Model This is a problem of software management problem that helps to decide
on the order of implementation of software features. The instance is specified in the
MiniZinc format in [184] using the data in [186]. Again, this is an optimisation problem
(maximisation), the optimal value is 20,222. We add the constraint obj ≥ 17, 738 to make
it a satisfaction problem with 95 solutions.

Evaluation of uniformity

Evaluating the randomness of a system is a difficult task. In fact, random systems can
take surprising values without being biased: for example, a fair coin will occasionally land
heads ten times in a row. The chi-squared (or χ2) test is a classical method for comparing
the result of a random experiment with an expected probability distribution. It derives
from a convergence result of the χ2 law, given in [181] and recalled here. Let Y be a
random variable on a finite set, which takes the value k with probability pk for 1 ≤ k ≤ d.
Let Y1, . . . , Yn be independent random variables with the same law as Y . Let N (k)

n be the
number of variables Yi, 1 ≤ i ≤ n equal to k.

Theorem 4 ([181]). As n tends to infinity, the cumulative distribution of the random

3. https://github.com/MiniZinc/minizinc-benchmarks/tree/master/on-call-rostering
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variable

Zn =
d∑

k=1

(
N (k)

n − n · pk

)2

n · pk

tends to the cumulative distribution of the law of the χ2 with (d − 1) degrees of freedom
(noted χ2

d−1).

The χ2 test boils down to picking values at random, assuming that they follow the
law of Y , computing the experimental value zexp

n of Zn, and computing the probability
(called the p-value)

P(Zn ≥ zexp
n ) ≈ P(χ2

d−1 ≥ zexp
n )

If this probability is close to zero, then, having a more extreme result than the one obtained
is very unlikely. This means that the hypothesis that the experimental values follow the
same law as Y can be confidently rejected. Conversely, if the p-value stays close to one,
we can confidently assume that the experimental values follow the same law as Y . Here,
we are interested in the uniform distribution, i.e. ∀k ∈ {1, . . . , d}, pk = 1/d.

Experimentally, knowing the number nbSols of solutions to a problem (and numbering
these solutions), nbSamples samples are drawn and count the number of occurrences
nbOcci of each solution i ∈ {1, . . . , nbSols}. We compute the value of the variable

zexp =
nbSols∑

k=1

(nbOcck − nbSamples/nbSols)2

nSamples/nbSols

and then the p-value of the test 4 (i.e. the probability that the χ2 law takes a more extreme
value than zexp). This p-value gives a numerical measure of the quality of the randomness.
More precisely, a large number of samples are drawn (more than the number of solutions)
and the evolution of the p-value is plotted as a function of the number of samples. In
order to perform this test, we need to know the number of solutions nbSols and to sample
nbSols solutions multiple times, so the evaluation of the randomness can only be done on
small instances.

As an example to understand the evolution of the p-value, let us consider a problem
with two solutions, and suppose that our sampling method is biased towards the first
solution, returning it with probability 0.6. After taking 10 samples, the experimental
solution distribution might be (6, 4) (i.e. 6 times the first solution, and 4 times the second).

4. We use the library "Apache Commons Mathematics Library" (https://commons.apache.org/
proper/commons-math/) for the probability computations
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Knowing that we have only taken 10 samples, no one can be sure that the distribution
is not uniform. This leads to a high p-value (here the p-value is 0.527). After doing 100
samples, the experimental solution distribution might be (62, 38). At this point, it is
becoming unlikely that a uniform distribution could produce such a distribution, but
still not impossible. The p-value is getting closer to 0 (here the p-value is 0.0164). After
doing 1000 samples, the experimental solution distribution might be (587, 413). Now it is
almost impossible to get this distribution from a uniform distribution. The p-value will
be extremely close to 0 (here the p-value is 3.7 · 10−8).

We plot the evolution of the p-value as a function of the number of samples. The
non-uniform approaches have a p-value that tends to 0, and the approaches that give a
uniform distribution will have a p-value that tends to 1. The rate at which the p-value
tends to 0 also gives information about the distance to the uniform distribution. In the
previous example, if the distribution was (0.8, 0.2), then after sampling 100 solutions the
experimental distribution may be (81, 19), hence the p-value would already be extremely
close to 0 (in fact the p-value is 5.6 · 10−10).

So the p-value allows to rank non-uniform approaches. An approach whose p-value
tends to 0 more slowly is “more uniform” (but still not exactly uniform) than an approach
whose p-value tends to 0 more quickly.

5.5.3 MiniZinc Challenge Benchmark

To evaluate the performance of our approach, we also performed experiments on a sec-
ond larger benchmark with harder problems from the MiniZinc challenge 5. The MiniZinc
challenge is a yearly solver competition on a large, diverse benchmark. To evaluate our
approach, we created a benchmark based on the problems from the 2016 to 2021 challenge.

The challenge contains very hard instances and sets a time limit of 20 minutes. We
decided to keep this 20 minutes time limit for our computations. For many optimisation
problems, no solver was able to prove that the solutions found (if any) were optimal. We
restricted the benchmark to problems where choco-solver was able to find and prove the
optimal value. We transformed all the optimisation problems into satisfaction problems
by fixing the objective function to its optimal value.

We recall that if we choose a parameter κ > |Sols(P)|, the TableSampling ap-
proach boils down to enumerating all the solutions and returning one at random. This

5. https://www.minizinc.org/challenge.html

107

https://www.minizinc.org/challenge.html


Part II, Chapter 5 – Table Sampling

is not at all interesting for testing our approach as it will never add any constraint (ei-
ther table constraint or linear modular equality). In the experiments, we chose κ = 16
(see section5.6.2), thus we restricted the benchmark to problems where we were able to
enumerate more than 15 solutions before the timeout of 20 minutes.

The approaches are random, so the running time is impacted by this randomness. To
limit these random factors, we run each approach 10 times on each instance and average
the total time. If an approach times out on one of the runs, we record this as a timeout
of the approach on that instance (we are no longer able to average the time).

In summary, this is how the benchmark was built:
• we start with all the instances of the MiniZinc challenge from 2016 to 2021;
• we remove the optimisation problems where we could not find the optimal value in

less than 20 minutes. We then transform them into satisfaction problems by fixing
the objective to the optimal value;

• we remove all the problems with than 16 solutions (enumerated in less than 20
minutes);

• we run each approach 10 times on each instance and record the average running
time.

The final benchmark contains 82 instances.

5.6 Preliminary Experiments

This section presents the results of the preliminary experiments carried out to evaluate
the impact of the parameters. RandomSearch, TableSampling and LinModEq were
run to sample the problems multiple times. Different sets of parameters (for κ, v, and p)
were used for TableSampling and LinModEq. Figures 5.1, 5.2, 5.3 and 5.5 show some
results that illustrate the behaviour of the approaches.

Remark. The figures show the p-value on a logarithmic scale, because it tends to 0. Also,
since the computations are done using floating point representation, a p-value less than
10−16 is considered to be equal to 0.

5.6.1 Quality of the Randomness

The first goal of the experiments is to evaluate the quality of the randomness, i.e. to
know if the solutions are randomly and uniformly sampled. The following results show
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probability allows to have smaller tables, so the solution space is reduced faster. Thus the
algorithm converges faster to a small set of solution (smaller than κ). There is no point
in reducing the probability too much, because at some point the average table will be
empty. One has to find a trade-off for the probability p, and it depends on the average
size of the variable domains. For variables with large domains, the probability must be
small in order to keep the tables tractable. On the other hand, tables that hold only on
Boolean variables need a higher probability, to avoid empty tables.

Base set of parameters

The number of variables in the tables should be chosen as a trade-off between the
desired quality of randomness and the running time. It will also depend on the application:
instances with big domains may require smaller v to avoid too large tables (for example,
v = 4 for domains of size 100 means enumerating 108 tuples). From our experiments, we
suggest the default parameter values: κ = 16 and p = 1/16. We choose to have p = 1/κ,
because it reduces the chances of having inconsistencies after adding a table: we know
that the problem has more than κ solutions. Thus, after adding a table with probability
1/κ, there will be more than one solution on average.

5.7 MiniZinc Challenge Experiments

We present here the running time results on the MiniZinc challenge benchmark, as
presented in Section 5.5.3. The raw results are given in Appendix B. The experiments
were performed with the parameters κ = 16, v = 2 and p = 16.

5.7.1 Difference between the variants

In this section we study the running time of variants of the base algorithm. We note
BaseNoPropag the base algorithm presented in Algorithm 5.2. When the propagation
step (introduced in Section 5.5.1) is added, we note the approach TableBase. Then there
is the dichotomic variant of the algorithm. With propagation we call it TableSampling,
and without propagation we call it TableSamplingNoPropag.

In Figure 5.6 we show a scatter plot of the running time for each instance and we
compare the approaches with and without the propagation step. In Figure 5.6a we cannot
see a significative difference between the algorithm with, or without the propagation step
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the search tree. On the contrary, our approach does not require any modification of the
heuristics, if efficient ones exist. Thus, TableSampling can benefit from all the dedicated
(or black box) search strategies designed in solvers.

On the other hand, the 3 instances solved by RandomSearch and not by Table-
Sampling identify a limit of our algorithm. These instances have variables with large
domains. For example, in the zephyrus instances, some variables have a domain of size
4097. With v = 2 in our experiments, this can lead to an enumeration of more than
8 million tuples. These large domains are a limit of our approach because the creation
and the propagation of the random tables will be costly. In this situation, the design of
other random table generation algorithms tables could be interesting. For example, it is
possible to generate tables with a fixed number of tuples. It would also be possible to use
the variables with a small domain first, or to have a v that changes during the resolution,
depending on the size of the domains.

5.8 Comparison with LinMod-s

Due to the parallel and overlapping work in [41, 86] we want to clarify the timeline of
the publications. The article [41] on linear modular equalities was published in CPAIOR
2021, with submissions in January and the conference in July. At the same time, we
submitted the TableSampling conference article [1] to the CP conference 2021, with
submission in May, and the conference in October 2021. We extended the conference
article in December 2021 using linear modular equalities and submitted it to the journal
Constraint. This extended article was accepted and published in July 2022 [2]. At the same
time, the article [86] was published in the CPAIOR 2022 conference, with submission in
early December and the conference in June. This section is new compared to our journal
publication [2], to present the comparison between TableSampling and the recent CP
sampler LinMod-s [86].

In the previous chapter we postponed the presentation of the recent sampler using
linear modular equalities and inequalities LinMod-s [86]. We present it here, and we then
compare it with the experiments we carried out by using the linear modular equalities
instead of the table constraints.
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5.8.1 LinMod-s

In [86] the authors use linear modular equalities and inequalities. We have already
introduced the family H(mod p) (n) of linear modular equalities. We now introduce the
family H≤

(mod p) (n, c) of linear modular inequalities.

Definition 25 (Linear Modular Inequality). Let p be a prime number, n an integer, and
c ∈ {1, . . . , p− 2}, the family H≤

(mod p) (n, c) is defined as

H≤
(mod p) (n, c) =

{
n∑

i=1
aiXi + b ≤ c | a1, . . . , an ∈ Fp, b ∈ Fp

}
.

Remark. In this definition b is an offset. Without this offset, the instantiation (0, . . . , 0)
would always be a solution. Also, the value c cannot be equal to p− 1 because it would not
restrict the space.

Linear modular inequalities can be represented by a disjunction of linear modular
equalities. The propagation algorithm for a system of linear modular inequalities is based
on this disjunction and is presented in [86]. On average, linear modular equalities with a
prime number p reduce by a factor p the number of solutions of the problem (Property 4).
The linear modular inequalities retain more solutions because more values are allowed for
the linear sum.

Property 6. Let X1, . . . , Xn be n variables, and σ be an instantiation on these n variables.
Let h be a random linear modular inequality constraint from H≤

(mod p) (n, c), then

P (σ ∈ rel(h)) = c+ 1
p

.

Compared to equalities, inequalities can be used to reduce fewer solutions (by choosing
a large value for c).

LinMod-s, the sampling algorithm presented in [86], uses the families H(mod p) (n)
and H≤

(mod p) (n, ·) to add linear modular equalities and inequalities to the problem. Al-
gorithm 5.4 presents the base blocks of LinMod-s. It takes as parameters the problem
P and a reduction factor λ, and returns on average close to λ |Sols (P)| solutions. This
algorithm is substantially different to our Algorithm 5.2.

To sample solutions, the algorithm first calls an auxiliary function Partition, which
chooses how many equalities and inequalities to add to the problem, and the bounds of
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1 Function LinMod-s(P , λ)
Data: A CSP P with n variables, 0 < λ < 1
Result: A set of solutions to the problem P

2 m,F ← Partition(λ, p); // λ ≈ 1
pm

∏
c∈F

c+1
p

3 for i ∈ {1, . . . ,m} do
4 h← Random

(
H(mod p) (n)

)
;

5 P ← P ∧ h;
6 for c ∈ F do
7 h← Random

(
H≤

(mod p) (n, f)
)
;

8 P ← P ∧ h;
9 return Sols (P);
Algorithm 5.4: LinMod-s: sampling with linear modular equalities and inequalities

the inequalities. The output values are m the number of equalities, and a set F of bounds
for the inequalities. These values are chosen by the function so that the added constraints
approximately reduce the number of solutions by a factor λ. Each of the m equalities
reduces the number of solutions by a factor 1/p, and for each inequality factor c ∈ F ,
the inequality generated from H≤

(mod p) (n, c) reduces the number of solutions by a factor
(c+ 1)/p. In total, Partition reduces the number of solutions by a factor 1

pm

∏
c∈F

c+1
p

.
The algorithm then adds the desired number m of random linear modular equalities

and inequalities using the selected values in F . It then returns all the remaining solutions
of the constrained problem.

5.8.2 Comparison to TableSampling

LinMod-s takes a different approach by sampling multiple solutions at once. If a
given number of solutions is desired, the parameter λ is difficult to estimate. It requires
to know an approximation of the total number of solutions. In practice the number of
solutions to the problem will not be known in advance, so several values of λ should be
tested.

On the other hand, LinMod-s can be easily extended to an approximate model
counter. On average, the number of solutions is reduced by a factor λ, so one can easily
estimate the total number of solutions by running the sampler several times, counting
how many solutions it returns, and multiplying that number by λ.

The experiments of the authors of LinMod-s confirm our experiments. They show
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experimentally that their approach is uniform using the χ2 test, as we did. They also
run TableSampling and got similar results to ours. In one set of instances of their
experiments (the synthetic instances), TableSampling is experimentally close to the
uniform distribution.

Overall, LinMod-s is very close to our algorithm using linear modular equality con-
straints. The main differences are in the parameters. LinMod-s reduces the number of
solutions by a factor λ, but our approach finds by itself how many constraints should
be added to have few solutions left. The authors also remark that the linear modular
constraints only propagate values late in the search tree. Using table constraints allows
to easily prune large parts of the search space, speeding up the solving.

5.9 Conclusion

We presented an algorithm that uses table constraints to randomly sample solutions
of a problem. Experiments show that our algorithm provides a reasonably good quality of
randomness, while keeping the computation time tractable. The most important feature
of our method is that it does not require any change to the solver settings or the model.

Our approach is lightweight, because it uses the solver as a black box. Moreover, the
table constraints offer a wide range of possibilities to tweak the solving process according
to the user’s needs. For example, by playing with the probabilities for certain tuples to
be selected, one can orient the sampling in certain subspaces, depending on the user’s
needs. This allows us to tackle randomisation with any given distribution, not necessarily
uniform. On the same idea, reducing the probability of tuples contained in previously
found solutions would induce a diversified search.

Exploiting the random reduction of the search space leads to other promising ideas.
For example, portfolio algorithms runs several solving processes in parallel, which ideally
all search in different subspaces. Feeding the processes with randomly reduced search
spaces would force them to explore different subspaces without any biases.

This chapter also began to question the links between sampling (or diversity) and
search strategies. On the one hand, RandomSearch randomises the algorithm, but not
uniformly. On the other hand, dedicated search strategies make strong choices about the
spaces searched, and are strongly biased towards some spaces, but they can find solutions
quickly. In the next part of this thesis, we use search strategies to find diverse solution
sets.
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CONCLUSION

In this part, we have focused on samplers, i.e. algorithms that generate a random
solution satisfying the constraints. It is not difficult to generate random solutions, but it
is difficult to ensure some properties of the generation. There is often a trade-off between
the guarantees of the sampler (uniformity, near-uniformity) and the running time.

We have presented TableSampling, a sampler dedicated to constraint programming
problems. It uses table constraints as hash constraints. We decided not to focus on
uniformity, but rather on running time, to return solutions quickly. This sampler uses a
CP solver as a black-box, so it will benefit from improvements in solvers, such as more
constraints or a better running time.

In the following part, we generate diverse solutions to constrained problems using a
different approach: search strategies. We design two randomised search strategies tailored
to the problems we study. These search strategies allow to search in interesting sub-spaces
to find diverse solutions. We also show that sampling uniformly from the solution space
does not necessarily generate diverse solutions.
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Search strategies
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Chapter 6

PATTERN MINING

This chapter comes from an unpublished collaboration with Samir Loudni, Arnold Hien
and Albrecht Zimmermann on a pattern mining problem. It is a continuation of Hien’s
work on diversity in pattern mining in [109]. In this contribution, Samir Loudni and
Albrecht Zimmermann helped with most of the related works section 6.6 (and the pattern
mining definitions), and Arnold Hien helped by running the experiments (to run other
state-of-the-art approaches). I contributed everything else, i.e. the design of the search
strategy, the implementation (I started from Hien’s implementation in [109] and improved
it), the analysis and the presentation of the results, and the writing.

6.1 Introduction

Recently, several data mining problems have been expressed in Constraint Program-
ming (CP), allowing users to define complex queries using high-level languages [97, 104,
108, 110, 115]. CP solvers are modular, so queries can be refined without revising the
solving process, unlike dedicated pattern mining algorithms. Additional constraints can
easily be added to suit the needs of a user [113]. For example, a pruning function such
as the total transaction price (a bound on a weighted sum on the pattern) as seen in [96]
is natively handled by CP solvers. More recently, Hien et al. [109] proposed a global con-
straint to mine patterns of interest, ensuring that the results are diverse with respect to
the Jaccard index, a classical metric in pattern mining. The authors had to relax the prob-
lem to deal with the non-monotonicity of the Jaccard index, which limits the efficiency of
the constraint.

However, databases are often huge, and the number of patterns found by the solvers
can be far too large to be useful. Both human experts and downstream algorithms need
small sets of patterns to work with. One of the most classical constraints added on the
patterns is the frequency. The problem of frequent pattern mining was introduced in [96]
for the task of association rule mining. It allows to find many interesting relationships
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between data. The frequent patterns shown to a user should also be diverse to avoid the
repetition of information, which wastes the expert’s time or leads algorithms astray. A
classic approach is to first mine a large set of patterns, and to then select a good subset.
However, the infamous pattern explosion leads to very large results that are difficult to
post-process, especially on dense or large databases.

In this chapter we use search strategies, which are classically designed to improve the
efficiency of solvers, as a way to enforce diversity in frequent constrained pattern mining.
We propose OrientedSearch, a new strategy, and an associated scoring function, to
orient the search towards diverse solution spaces. We measure diversity using the Jaccard
index, but our approach can use any diversity measure (monotonous or not). We have
experimented our approach on sparse and dense databases. The experiments show that
using random search strategies (RandomSearch or the proposed OrientedSearch)
significantly improves the diversity of the returned patterns compared to other state-
of-the-art approaches. The first solutions returned by OrientedSearch are already
very diverse. However, when many patterns are desired, the computation of the score
in OrientedSearch can become too expensive. In this case, RandomSearch offers a
great diversity and is often the fastest approach.

Outline

This chapter first defines in Section 6.2 the closed frequent pattern mining task, and the
diversity problem. Section 6.3 presents our contribution and discusses the design choices.
Section 6.4 presents the experimental methodology and Section 6.5 presents the results
of the experiments. Section 6.6 discusses related work.

6.2 Background

We first define the pattern mining framework, and adapt the diversity definitions.

6.2.1 Pattern Mining

The pattern mining task takes a database as an input.

Definition 26 (Database). Let I be a set of n items. We call a transaction a subset of I.
A database is a bag (or multiset) of transactions. A pattern (or itemset) is a non-empty
subset of I.
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The number of patterns grows exponentially in the number of items (there are 2|I|− 1
patterns). Pattern mining searches for interesting patterns. The measure of interestingness
depends on the user, but a well-known pattern mining task is frequent itemset mining [96]:
this is the problem we will focus on.

Definition 27 (Frequent Itemset Mining). The cover of an itemset P in D is the
(multi)set of transactions in which it occurs, i.e.

VD(P ) = {t ∈ D | P ⊆ t} .

In the following, the database will always be fixed, so we just write V(P ) for VD(P ). The
support of an itemset P is the cardinality of its cover:

sup(P ) = |V(P )| .

Given a threshold θ, a pattern P is said to be frequent if its support is greater than or
equal to θ, i.e. |V(P )| ≥ θ. The task of frequent itemset mining is to compute all the
frequent itemsets.

The frequent pattern mining task returns patterns that cover many transactions. How-
ever, these patterns may contain redundancy, for example if two patterns have the same
cover (i.e. are included in the same transactions). To avoid this redundancy, the notion of
closed patterns was introduced in [102, 117].

Definition 28 (Closed pattern). A pattern P is said to be closed iff there is no Q ⊇ P

such that sup(P ) = sup(Q), i.e. P is maximal with respect to set inclusion among the
itemsets with the same support.

By restricting the problem to closed itemsets, the itemsets returned will not contain
any redundancy. In this chapter we restrict ourselves to closed and frequent itemsets.

Example. Table 6.1 shows an example of a database. This database contains five items
A,B,C,D,E and four transactions. We simplify the notation of the transactions and
patterns: for example t2 = {A,B,C} is simplified as t2 = ABC. Given a pattern, the
cover is the transactions that contain the pattern. For example, the pattern CE is covered
by the transactions t3 and t4, so V(CE) = {t3, t4}.

We take a threshold of θ = 2 for the frequent patterns. In this case, the pattern AE

is not frequent because it only covers the transaction t1, so sup(AE) ̸≥ θ. However, the
pattern containing only A is frequent because it covers the transactions t1 and t2.
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A B C D E
t1 ∗ ∗ ∗
t2 ∗ ∗ ∗
t3 ∗ ∗ ∗ ∗
t4 ∗ ∗ ∗

Table 6.1 – Example of database with five items (ABCDE) and 4 transactions (t1, t2, t3, t4).

Closed patterns are patterns that cannot be extended (by adding another item) without
decreasing its cover. For example the frequent pattern A is not closed because the pattern
AB also covers the transactions t1 and t2 (V(AB) = V(A)). However, the pattern AB is
closed (and frequent) because for every other item X ∈ {C,D,E}, sup(AB) ̸= sup(ABX).
In total there are six frequent closed itemsets in this database with the threshold θ =
2:{AB,B,BC,BCE,BE,CE}

A CP model for mining frequent closed itemsets was proposed in [115], which suc-
cessfully encoded both the closeness relation and the frequency into a global constraint
called closedPattern. It uses a vector of Boolean variables (X1, . . . , X|I|) to represent
itemsets, where Xi represents the presence of the item i ∈ I in the itemset. Given a
(partial) instantiation σ the pattern associated with σ is P = {i ∈ I |σ(Xi) = 1}.

Definition 29 (closedPattern constraint [115]). Let (X1, . . . , X|I|) be a vector of Boolean
variables, θ a support threshold and D a database. Let σ be an instantiation, and P = {i ∈
I | σ(Xi) = 1} the associated pattern. The constraint closedPatternD,θ(X1, . . . , X|I|)
holds iff P is a closed frequent itemset w.r.t. the threshold θ.

The closedPattern constraint merges the two constraints (frequent and closed pat-
tern). This constraint has later been improved by coverSize [119] to allow the threshold
to be a variable. The base model contains only the closedPattern constraint, but other
constraints can easily be added. In the following, we will denote as a solution any frequent
closed itemset.

6.2.2 Solution Diversity

Finding a set of diverse itemsets is an important task in data mining. Several measures
have been proposed to measure the diversity of itemsets. In this paper, we consider the
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Jaccard index as a measure of similarity on sets, and use it to quantify the overlap of the
covers of itemsets.

Definition 30 (Jaccard index). Let P and Q be two itemsets. The Jaccard index is
defined as

JV(P,Q) = |V(P ) ∩ V(Q)|
|V(P ) ∪ V(Q)|

Note that JV has values in [0, 1]. Also, it is a similarity measure and not a distance
measure, i.e. to ensure a high diversity between pairs of itemsets, a small Jaccard is
desired.

The diversity problem has been defined and studied in [24]. MaxDiverseKSet is the
problem of finding the most diverse set of k patterns. MostDistant is a greedy approxi-
mation of MaxDiverseKSet. We recall here its definition adapted to the Jaccard index.

Definition 12’ (MostDistant for Pattern Mining). Let H ⊂ Sols (P) be a set of closed
and frequent patterns. MostDistant(H) is the problem of finding the pattern P̃ that is
most distant from all the patterns in H, i.e.

P̃ = argmin
P ∈Sols(P)

max
P ′∈H

JV(P, P ′) .

The MostDistant problem consists in finding the solution that minimises the Jaccard
index to the previously found solutions. This chapter presents new ways to approximate
this problem, by using search strategies tailored for pattern mining problems.

The ClosedDiv constraint

Recently, Hien et al. have proposed in [109] to add a diversity constraint to the basic
closed pattern mining model. Diversity is controlled by a threshold on the Jaccard simi-
larity. This constraint maintains a history of previously found patterns and ensures that
the newly mined pattern is diverse with respect to all itemsets in the history.

Definition 31 (Maximum Diversity Constraint). Let H be a history of patterns, jmax

a bound on the maximum allowed Jaccard. Let σ be an instantiation, and P be the
associated pattern. The maximum diversity constraint divJV (P,H, jmax) ensures that P
is diverse with respect to the H and jmax, i.e.

divJV (P,H, jmax)⇔ ∀H ∈ H, JV(P,H) ≤ jmax
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To solve the MostDistant problem, jmax can be minimised. However, in [109] the
authors decided to fix this value at 0.05. As search progresses, each time a solution is
found, it is added to H. The constraint is thus modified, and may prune a larger part
of the search space. This approach is closely related to dominance programming [114,
116], where each time a solution is found, a dominance blocking constraint is added to the
model to remove dominated solutions.

Since the Jaccard index has no monotonicity property, in [109] the authors had to
relax the constraint. They proposed an anti-monotonic lower bound relaxation that al-
lows to prune non-diverse itemsets during search. This was integrated through the global
constraint ClosedDiv. However, the proposed approach provides no guarantees on the
actual Jaccard index between the returned solutions (the actual value of the Jaccard is not
checked when a solution is found). Furthermore, the number of solutions returned cannot
be specified: the solving process stops when the search space is exhaustively explored.

6.3 New Diversification Strategy for Mining

ClosedDiv is a constraint, and as such works at the propagation level. To ensure
diversity it prunes parts of the search space that contain only non-diverse patterns.

In this article, we stay within the CP framework, and instead orient the search towards
diverse patterns by defining new dedicated search strategies. In this way, we can produce
diverse patterns without modifying the model or the internal structure of the solver. Users
can thus still refine the model, for example by adding new constraints, depending on their
application.

6.3.1 OrientedSearch Strategy

In CP, search strategies lack insight into the distance between the solutions. The ra-
tionale behind our new strategy, called OrientedSearch, is to use the Jaccard distance
to choose items that will induce solutions that are diverse from the previously found
solutions.

At a given step of the solving process, some variables are instantiated and some others
are not. The pattern in construction can be retrieved by taking all the variables that are
instantiated to 1: X+ = {i ∈ I|Xi = 1}. When the solver needs to make a decision, it calls
the search strategy. The strategy thus has access to the list of uninstantiated variables,
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1 Function OrientedSearch(P ,H)
Data: A CSP P = ⟨(X1, . . . , Xn),D, C⟩, a history H
Result: A decision to perform in the search

2 ϵ← 10−8

3 X+ = {i ∈ I |Xi = 1}
4 W ← array of size n (indexed from 1)
5 for i = 1 to n do
6 if D(Xi) = {0, 1} then
7 W [i]← 1/(hs(i,X+,H) + ϵ)
8 else W [i]← 0
9 X ← Random (X1, . . . , Xn,W )

10 return Decision(X = 1)
Algorithm 6.1: Computation of the decision of OrientedSearch

the ones on which the decision will be made. We rank each uninstantiated variable Xi

(associated to the item i) according to a score computed using the Jaccard index with
the previously found solutions. We propose the following score:

Definition 32 (History score). Given a pattern X+ in construction, an item i whose
associated variables Xi are uninstantiated, and a history H of solutions, we define the
history score hs as

hs(i,X+,H) = max
H∈H

JV(X+ ∪ {i}, H)

This score has two important parts. The computed values are the Jaccard indices be-
tween X+∪{i} and the solutions of the history. When making the decision, it is preferable
to choose an item such that X+∪{i} will be diverse from the solutions of the history. Then
all these values have to be aggregated into a single score. We used the max aggregator,
which allows to consider the worst Jaccard of all the ones computed, ensuring a minimum
diversity. For example, if the score is 0.04, it ensures that the Jaccard distance between
X+ ∪ {i} and all the solutions of H is less than 0.04.

We propose to bias a random distribution to choose variables (i.e. items) that will
be diverse from the previously found solutions. We use the history score to weight the
distribution. The pseudocode is given in Algorithm 6.1.

The current pattern X+ is extracted from the variables. An array is created to store
the distribution that will be used to pick the variable. Instantiated variables are given a
weight of 0 (in line 8), as we must not choose them. For each uninstantiated variable, a
weight is computed as follows. Recall that a “good” value for the Jaccard index is close to
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0. To bias the random distribution towards small values, we have to invert the computed
history score. The actual weight used in the random distribution is 1/(hs(i,X+,H) + ϵ)
(in line 7). The addition of ϵ is here to avoid dividing by 0. Taking a small enough value
for ϵ ensures a deterministic choice when the history score is 0. Finally, a variable is
randomly chosen with respect to the weights in W in Random (X1, . . . , Xn,W ) [192], i.e.
with probability W [i]/∑j W [j]. This variable is set to 1 by the decision, adding the item
to the current pattern.

6.3.2 Complexity

When designing a search strategy, there is a trade-off between a simple but fast variable
selection criterion and a more complicated one at the cost of a longer running time. Our
strategy OrientedSearch needs to perform several computations to make an insightful
decision. At every decision, for each uninstantiated variable, the Jaccard indices with the
solutions in the history are computed. The complexity of computing of the Jaccard index,
JC(D), depends on the size of the database D and the patterns involved. The complexity
for a decision of the strategy OrientedSearch is then O

(
|X | · |H| · JC(D)

)
. At the

root node (i.e. the first decision of each restart), the history score can be computed
incrementally, and only the new solution needs to be processed, giving a complexity for
the root decision of O

(
|X | · JC(D)

)
.

For the task of diverse pattern mining, this complexity is not an issue. Only a few
patterns are desired by a user, so the history score is quickly computed for each deci-
sion. However, in the experiments we generate many patterns, and in some cases the
computation of the decision becomes expensive.

6.3.3 Best of Random and Greedy Algorithms

The OrientedSearch strategy presented is a fusion of two ideas, keeping the best
of both worlds. On the one hand, a fully random strategy RandomSearch (choosing the
variables with equal probability) provides coverage of the solution space, but lacks insight
into the distance. On the other hand, a fully greedy algorithm (choosing the variable that
minimises the history score) provides diversity, but may get stuck in a local optimum,
preventing from searching in the whole solution space. Our strategy allows to keep the
strength without the weaknesses, finding diverse solutions in the whole solution space.
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6.4 Experimental Methodology

This section presents the methodology used in the experiments, the results of which
are presented in Section 6.5. The experimental evaluation focuses on the achieved diver-
sity and running times. For the diversity, we look at the global diversity (of the many
solutions returned), but we also look at the first solutions returned. Only a few solutions
are presented to a user, so in a diversity setting, only the first few solutions are used.

6.4.1 Databases

We consider a wide range of real-world databases coming from the CP4IM repository 1.
The database statistics for each are shown in Table 6.2. For each database we show the
number of items, teh number of transactions, and the density (relative number of 1s). We
have selected databases of various sizes and densities. We have taken some of the largest
and most dense databases, such as hepatitis and chess. Others, such as T10I4D100K
and retail, are very sparse (resp. 1% and 0.06%). Different support thresholds were
chosen for each database. These thresholds were chosen to be as low as possible, while
still allowing the processing to finish within 24 hours for .

6.4.2 Comparison with Other Approaches

We compare our diversity strategy with several state-of-the-art approaches. We are
interested in approaches that can tackle the problem we are studying, i.e. frequent and
closed pattern mining. The first approaches that we tested are based on CP solvers, and
can therefore handle frequency constraints and more. In the CP framework, constraints
can easily be added to tackle a specific problem.

• We compared to ClosedDiv (already presented in Section 6.2.2) with a maximum
diversity threshold jmax = 0.05. ClosedDiv is the only approach, among all the
tested ones, where the number of solutions cannot be fixed. We use the number of
solutions returned by ClosedDiv to fix the number of solutions returned by the
other approaches.

• We used the naive random strategy RandomSearch, a search strategy that
chooses the variable to branch on uniformly at random (as opposed to our weighted
random distribution).

1. https://dtai.cs.kuleuven.be/CP4IM/datasets/
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• PostHoc [28] is a two-step ad hoc algorithm to find a given number k of diverse
solutions. We used, as proposed in [28], a random approach for the first step to
generate K = 2k solutions (we use two variants, RandomSearch and Orient-
edSearch), and a greedy approach for the second step to extract the k solutions.

We also compared with an approach that is not based on CP, but that can enforce the
frequency constraint.

• Flexics [107] is a sampling method, we use the EFlexics variant, using the
Eclat solver for pattern mining. It splits the search space into cells using random
XOR constraints, and then draws a certain number of patterns from these cells.
EFlexics is based on a specialised search procedure, Eclat, and is therefore not
as generic as the CP approaches as it can only sample frequent and closed patterns,
other constraints are not supported.

6.4.3 Implementation

Our implementation is available online. 2 It is built upon the implementation of Closed-
Div in [109], which uses the CP solver choco-solver-4.10.7 [46]. Implementations of
Flexics and ClosedDiv were made available to us by the original authors. Flexics
is implemented in Scala, the others are implemented in Java. All experiments were con-
ducted as single-threaded runs on AMD Opteron 6174 (2.2GHz) processors with 256 GB
of RAM and a 24-hour time limit.

6.5 Experimental Results

The quality of a set of solutions depends on the user’s needs. In this section we show
two different ways to evaluate the diversity of a set of solutions. In Section 6.5.1 we show
plots of the diversity of the whole solution set. In Section 6.5.2 we show plots of the average
Jaccard on the first solutions returned by the approaches. 3 We also plot the running time
in Section 6.5.3. In all the plots, θ is given as a percentage of the number of transactions
in the database |D|. The frequency constraint is therefore sup(P ) ≥ |D| · θ/100 for a
pattern P .

2. https://github.com/MathieuVavrille/pattern-diversity-cp-strategy
3. We show the results on 6 instances. All graphs can be found alongside the implementation.
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returned:
fmean(m) = 2

m(m− 1) ·
∑

1≤i<j≤m

JV(si, sj)

If the plot is low, it means that the average Jaccard index is close to 0 and the solutions
are diverse.

Figure 6.2 shows the average pairwise Jaccard (fmean) on the first 10 solutions on
different databases. The PostHoc approach gives the best average Jaccard on the first
solutions, because it applies a post-processing to the set of solutions. We see that Orient-
edSearch returns diverse early solutions and then converges to a low average Jaccard,
a result in accordance with the global pairwise Jaccard plotted in the previous section.
Since most of the other approaches do not consider previously found solutions, there is
no good diversification between early solutions.

Remark on PostHoc’s behaviour All the approaches except PostHoc return so-
lutions in an online fashion, i.e. a user does not have to wait for all the solutions before
starting to use the first ones. However, PostHoc must first compute a larger set of so-
lutions, and then post-process them before returning the most diverse ones. Thus, a user
may have to wait much longer to get the result.

6.5.3 Running Time

The running times of all the approaches on all the databases and the associated thresh-
olds are shown in Figure 6.3. Table 6.2 also shows the running times, and the number
of solutions drawn for each instance. Note that for some instances (such as splice1 or
mushroom) more than 10,000 solutions are generated.

First, it is clear that RandomSearch is always one of the fastest approaches. PostHoc
using RandomSearch is also among the fastest approaches, often taking exactly twice
as long as RandomSearch. It is only when a large number of itemsets are sampled
that the second step can take a long time. For example, in the mushroom database, more
than 10,000 solutions are returned by ClosedDiv, so the PostHoc approach searches
for more than 20,000 patterns with the oracle (recall that K = 2k). Computing all the
pairwise Jaccard indices between these patterns is already very expensive.

The running time of OrientedSearch depends strongly on the number of returned
solutions. The most striking example is the only timeout of our approach, on the splice1
database with θ = 2. ClosedDiv returned 70,434 solutions, so it was too expensive for
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Table 6.2 – Running times of all approaches, in seconds. The statistics of the datasets are
#items × #transactions, and the density is given as a percentage. − indicates a time
limit, ∗ indicates that an unexpected error occurred.

Dataset θ |S| Oriented Random PostHoc Closed Flexics
Search Search Oriented Random Div

hepatitis 20 50 0.39 0.33 0.57 0.4 0.27 102.54
68× 137 10 1340 48.3 1.44 131.22 3.36 4.55 8363
50% 5 33645 34263.48 150.53 - 1173.34 1550.15 -
chess 20 76 1.16 0.42 2.82 0.59 0.64 254.22
75× 3196 15 294 12.55 0.85 38.69 1.53 3.61 1151.98
49.33% 10 2083 397.3 3.19 1623.87 15.95 109.62 18788
kr-vs-kp 30 14 0.3 0.29 0.4 0.33 0.24 38.02
73× 3196 20 66 1.04 0.41 2.95 0.57 0.54 202.15
49.32%
mushroom 1 10618 12227.21 26.44 50536 380.91 925.01 65909
112× 8124 0.8 13513 21991.79 38.36 87838 622.12 1598.31 -
18.75%
splice1 5 7920 5266.17 13.11 23165 156.93 737.79 13840
297× 3190 2 70434 - 98.46 - 9796.2 53965 -
20.91%
T10I4D100K 5 10 0.4 0.46 0.5 0.48 0.38 *
870× 100000 1 359 12.98 18.07 42.21 49.91 193.29 236.49
1.16%
T40I10D100K 8 124 2.14 2.57 5.93 6.98 12.47 33.36
942× 100000 5 283 9.14 11.85 24.82 30.67 90.28 125.74
4.20%
retail 5 11 1.64 2.16 2.59 2.43 1.57 -
16470× 88162 1 104 5.82 5.29 17.6 9.21 6.59 -
0.06% 0.4 514 64.1 27.1 264.44 75.27 146.48 -
pumsb 40 3 0.6 0.73 0.71 0.82 0.53 511.29
2113× 49046 30 13 1.81 1.37 2.21 2.18 0.82 1136.23
3.50% 20 41 6.55 2.51 20.39 4.55 3.3 2505.61

RandomSearch and OrientedSearch on either the diversity or the running time
shows that the search strategies are an excellent way of using CP solvers to enforce
diversity in pattern mining problems.
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The PostHoc approach can be used in conjunction with either RandomSearch or
OrientedSearch to further improve the diversity at the cost of a longer running time.

6.6 Related Works

We have already presented and benchmarked against ClosedDiv [109] and Flex-
ics [107]. Other approaches have been proposed to make pattern mining more useful for
exploratory purposes. Each of these solutions has its own advantages and disadvantages.

Some approaches are designed to find diverse patterns depending on some quality mea-
sure in a generic pattern mining problem. Gibbs [99] is a sampling process driven by an
interestingness measure [100] updated with statistics of patterns already found. The num-
ber of iterations of the process can be increased to get a better sampling. CFTP [101] is a
fast two-step random sampling procedure tailored to a limited set of itemset mining tasks,
using an objective quality measure φ. Patterns’ probability of being sampled is related to
their score but ignores previously sampled patterns. Using φ = sup, the patterns should
be sampled according to their frequency. However, these two approaches cannot deal with
a strict frequency constraint. In practice, in some instances the sampled itemsets may be
very small. For example, on T40I10D100K with θ = 5, CFTP (with a parameter of 3)
only samples patterns covering a single transaction, and only 2% of the patterns sampled
by Gibbs satisfy the constraint we imposed on the CP (and Flexics) approaches.

Condensed representations [106] still typically leave many patterns and do not achieve
diversity in the final sets. Top-k mining [120] is efficient but results in strongly related,
redundant patterns. Pattern set mining [118] takes into account the relationships between
the patterns, which can result in small solution sets, but just pushes the problem further
down the line.

Older works on pattern set selection [105, 111, 112] have investigated alternative mea-
sures of diversity in pattern sets. Joint entropy is proposed in [111] as a quality measure
to mine maximally informative k-itemsets in post-processing. Recent work, on the other
hand, pushes diversity constraints into the mining process itself [98, 103]. In [103], the
authors propose using MCTS and upper confidence bounds to guide the search to inter-
esting regions in the lattice, given the already explored space. The authors of [98] propose
a greedy algorithm exploiting upper bounds to iteratively extract up to k subgroup de-
scriptions, considering sets of subgroup descriptions as disjunctions of such patterns.
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6.7 Conclusion

We presented OrientedSearch, a new approach to mine diverse patterns that ex-
ploits one of the strengths of CP solvers: search strategies. We focused on the Jaccard
index to measure the diversity of the solutions, but OrientedSearch is generic and
other measures could be used, by simply changing the definition of the history score. We
have shown experimentally that our approach can generate small sets of well-diversified
solutions very efficiently. As it is based on the CP framework, users can add their own
constraints to suit their needs.

Our approach takes longer to run when many solutions are requested, but in this
case, RandomSearch returns patterns that are just as diverse. Despite its simplicity,
RandomSearch allows the solver to find solutions very quickly. It can also be combined
with a post-processing step such as PostHoc to extract only diverse patterns from those
returned.

This chapter shows that search strategies are an excellent diversity approach to solve
pattern mining problems. In frequent and closed itemset mining, the constraint propagates
inconsistent values well, so the search strategy does not often make decisions that lead to
unsatisfiable spaces. We used this to design diversity oriented search strategies.

Figure 6.4 – Two Bridges grids, see rules in Appendix C.3.1.
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Chapter 7

FEATURE MODELS

This contribution originated from discussions with Mathieu Acher on software tests gener-
ation. It continued with Erwan Meunier’s internship, which I co-supervised, on a uniform
sampler for feature diagrams. Following this internship, I published a research report [3],
which is presented in this chapter in Section 7.6. The rest of this chapter is my work
on t-wise coverage: the theoretical analysis of RandomSearch and the design of a new
search strategy. A short article on the behaviour of RandomSearch was accepted and
presented at the ROADEF 2023 conference. a

a. https://roadef2023.sciencesconf.org/434918

7.1 Introduction

Efficient testing of Product Lines is of high importance to assess quality or (in the
case of Software Product Lines) the absence of bugs [138]. In highly configurable systems,
this testing task is complicated by the large number of interacting features. For example,
the Linux kernel contains thousands of interacting features (such as compilation options
or installed libraries) [140]. Configurations (i.e. sets of features) can be tested by instan-
tiating them on the given product line (for example by compiling the Linux kernel with
specific options and libraries). These tests can be expensive (in terms running time [140],
memory [130], or manpower [127]), so efficient test suites (a set of configurations) need to
be generated.

One way to measure the quality of a test suite is the t-wise coverage [137]. It aims to
ensure that all interactions (combinations) of up to t features are tested. But there can
be 2t

(
n
t

)
t-wise combinations on n features. Thus, with thousands of features, computing

the t-wise combinations allowed by the product line can be prohibitive, let alone gen-
erating a minimal test suite that covers all these combinations. To overcome this issue,
approaches have been developed that use approximations based on random processes such
as uniform [84] or weighted [123] sampling. These approaches lose the guarantees, but the
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diversity induced by the randomness allows for good experimental coverage and running
times.

In this chapter, we use Constraint Programming’s random search strategies to find
high-coverage test suites. Search strategies are a way of making the search find solutions
in different solution spaces. In particular, random search strategies do not need to compute
expensive metrics (such as the number of allowed combinations) and can generate diverse
(i.e. high coverage) solutions. The contributions of this chapter are as follows.

• We analyse the theoretical properties of the default random search strategy. We
show that the (non-uniform) distribution of the solutions returned by this default
random search strategy is well suited to the task of computing solution sets with
a good t-wise coverage.

• We design an improvement to this search strategy by using information about the
product line: the commonality. The commonality of a feature is the number of
times it appears in all the possible configurations. We use this information to make
better choices during the decisions of the search strategy, to find solutions that
cover more unseen combinations.

We experiment with these two search strategies and compare them to state-of-the-art
sampling approaches. We show that the search strategies outperform all other approaches
in the t-wise coverage and running time. Our new approach improves the default random
search strategy without any running time overhead. We show that a uniform sampling is
actually detrimental to the t-wise coverage.

Outline

This chapter is organised as follows. Section 7.2 defines the notions used in the rest of
the chapter and Section 7.3 presents the related works. In Section 7.4 we analyse of the
RandomSearch strategy. Our new strategy FrequencyDiff for finding good coverage
solution sets is presented in Section 7.5. Finally, Section 7.7 presents the methodology and
the results of the experiments.

7.2 Background

This section introduces the notions used in this chapter.
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Sailboat

Spi

AsymRadial

Hull

MultiMono

Cross-tree constraints:
Multi =⇒ Asym

(a) Example of Feature Model

1 2 3 4 5 6 7 8
Sailboat ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Hull ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Mono ∗ ∗ ∗ ∗
Multi ∗ ∗ ∗ ∗
Spi ∗ ∗ ∗ ∗ ∗ ∗

Radial ∗ ∗ ∗ ∗
Asym ∗ ∗ ∗ ∗

(b) Allowed configurations. There is one col-
umn per configuration, and a ∗ means that the
feature is present. Configurations 7 and 8 are al-
lowed by the feature diagram but not the cross-
tree constraint

Figure 7.1 – A feature model and its set of allowed configurations.

7.2.1 Feature Models

Feature models are a graphical and condensed representation of the products in a
product line [126]. Given a fixed set of features F , a feature model is a pair of, first, a
feature diagram, which gives a hierarchical structure to the organisation of the features,
and second, a conjunction of propositional formulas over F .

Example. Figure 7.1a shows a feature model representing sailboats. It is mandatory that
a sailboat has a Hull (black dot above the Hull node) and optionally a Spi (empty dot
above the Spi node), which is a special sail at the front of the boat. The Hull can be either
Mono or Multi hull, but not both (represented by the arc between the two nodes). If there
is a Spi, it can be a Radial one, an Asym (asymetric) one, or both (represented by the
black arc between the two nodes). There is also a constraint that a Multi-hull boat must
have an Asymetrical spi.

Table 7.1b shows the configurations allowed by this feature model. The last two config-
urations (7 and 8) are allowed by the feature diagram, but not by the cross-tree constraint.

As shown in Figure 7.1a, feature models are defined using a tree structure, called
a feature diagram, and cross-tree constraints. Feature diagrams define the hierarchical
structure of the features in a feature model. We now formally define feature diagrams.

Definition 33 (Feature Diagram). A feature diagram is an n-ary labelled tree, where the
nodes can be of different types. A feature diagram D stores a feature D.feature ∈ F at
its root. The children can be from:

145



Part III, Chapter 7 – Feature Models

• a mandatory/optional group, where the sets D.mand and D.opt contain the
mandatory and optional children;

• an exclusive (xor) group, where the set D.xor contains the children;
• an or group, where the set D.or contains the children.

In addition, each feature may appear only once in the feature diagram.

This definition is a recursive definition of feature diagrams. We call D′ a sub-feature
diagram of D if D is an ancestor of D′ or D itself. Feature diagrams restrict the allowed
configurations (set of features) of the feature model.

Definition 34 (Allowed Configuration). Given a feature diagram D, a configuration
C ⊆ F is allowed iff:

• D.feature ∈ C
• for all D′ sub-feature diagram of D, ∀D′′ ∈ D′.children, D′′.feature ∈ C ⇒
D′.feature ∈ C

• for all D′ sub-feature diagram of F , if D′.feature ∈ C then:
— ∀D′′ ∈ D′.mand, D′′.feature ∈ C
— ∃D′′ ∈ D′.or, D′′.feature ∈ C
— ∃!D′′ ∈ D′.xor, D′′.feature ∈ C

We denote by Sols (D) the set of allowed configurations.

Informally, all the features in D.mand children must be taken, at least one feature in
the D.or group must be taken, and exactly one feature in the D.xor group must be taken.
When a feature is taken, its parent feature must also be taken.

To provide greater for more expressiveness when modelling feature interactions, fea-
ture diagrams are extended with propositional formulas that allow to model interactions
between features that are not ancestors of each other.

Definition 35 (Feature Model). A Feature Model M is a pair ⟨D,ψ⟩ where D is a feature
diagram and ψ is a Boolean formula where the variables are features contained in F . A
configuration is allowed by M if it is allowed by D and satisfies the Boolean formula ψ.
We note Sols (M) the set of allowed configurations.

The propositional formulas allow for more diverse constraints, but also make the prob-
lem much harder, as simply finding a configuration is NP-complete. Some definitions re-
strict the cross-tree constraints in ψ to the implication or exclusion of features [126], but
this has been shown to reduce the expressiveness [136].
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Feature models can be translated into CNF formulas, where an instantiation corre-
sponds to a unique configuration [125]. The model defines a variable Xf for each feature
f . However, the conversion of propositional formulas can lead to an exponential num-
ber of clauses [29]. To prevent this exponential explosion, CP was used in [134, 135] (for
extensions of feature models to integer variables and global constraints).

Example. The Sailboat feature model defined in Figure 7.1a can be modelled by a CSP
with Boolean variables XF for F a feature, and the constraints

XSailboat = 1 (root feature)
XHull =XSailboat (mandatory child)

XMono +XMulti =XHull (exclusive children)
XSpi ⇒XSailboat (child implies parent)

XRadial ⇒XSpi (child implies parent)
XAsym ⇒XSpi (child implies parent)

XRadial +XAsym ≥XSpi (or children)
XMulti ⇒XAsym (cross-tree constraint) .

7.2.2 t-wise Coverage

In this chapter, the metric used to assess the quality of a test suite is the t-wise
coverage. This metric focuses on testing interactions of t features, through means of com-
binations.

Definition 36 (t-wise Combination). A t-wise combination is a mapping σ : F ′ → {0, 1}
with F ′ ⊆ F and |F ′| = t.

A configuration C covers a t-wise combination σ iff ∀f ∈ F ′, σ(f) = 1⇔ f ∈ C. In this
case we say that σ is included in the configuration, and write σ ⊂ C. We note Combt(C) all
the t-wise combinations covered by a configuration C (if there is no ambiguity about the
value of t, we omit it in Combt). By extension, given a test suite S, Comb(S) is the set of
combinations covered by at least one configuration of S (i.e. Comb(S) = ⋃

C∈S Comb(C)).
Given a feature model M , a combination is said to be possible if there is a combination

in Sols (M) that covers it. For simplicity we note Comb(M) = Comb(Sols (M)) all the
combinations covered by at least one configuration allowed by M . The coverage of a test
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suite is the fraction of possible combinations that are covered, i.e.

Cov(S) = |Comb(S)|
|Comb(M)| .

As t grows, the number of t-wise combinations grows exponentially. Indeed, the number
of possible combinations can be as large as

(
|F|
t

)
2t. The number of combinations covered

by a single configuration also grows exponentially as t grows, and is equal to
(

|F|
t

)
.

Ideally, all the interactions of features are tested, so that all the |F|-wise combinations
are covered, but in practice this is impossible due to the exponential growth of the number
of combinations. A study by the NIST [138] states that most of the faults/bugs in software
come from up to 6-wise combinations. This greatly reduces the number of combinations
to test, but for large feature models it would still not be reasonable to try to enumerate
all the possible 6-wise combinations.

7.2.3 Links between Commonalities and Uniform Sampling

This section recalls the properties of t-wise coverage of uniform samplers stated in [141].
A sampler is a random selection process whose result is not deterministic. On a feature
model M , a sampler U generates a random allowed configuration, i.e. U(M) is a random
variable taking values in the set Sols (M). We recall the definition of a uniform sampler,
adapted to feature models.

Definition 15’ (Uniform Sampler). Let M be a feature model. A function U is a uniform
sampler on M iff

∀C ∈ Sols (M) ,P (U(M) = C) = 1
|Sols (M)| .

Applied to configurations of feature models, uniform sampling can generate a test suite.
It has already been used on feature models in Smarch [84] and extended to weighted
sampling in Baital [123]. There is no guarantee of t-wise coverage, but there is no need
to compute the exponential set of all t-wise combinations: the diversity is provided by
randomness.

When using random algorithms, since there are fewer guarantees, it may be useful
to have information about the average behaviour. This average behaviour of uniform
samplers on the t-wise coverage was studied in [141]. The authors found that the t-wise
coverage depends on the commonalities of the combinations, defined as follows.
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Definition 37 (Commonality). The commonality of a combination σ in a feature model
M , noted φσ, is its frequency of occurrence in the set of allowed configurations, i.e.

φσ = |{C ∈ Sols (M) | σ ⊂ C}|
|Sols (M)|

Commonalities provides important information about the feature model. It allows to
know which combinations are more common in the set of allowed configurations. A user
may want to design a test suite that covers the frequent combinations, as these may be the
most used, or conversely, a user could focus on low commonalities to test combinations
that may have been missed by other tests.

The problem of computing the commonality of a configuration is hard, because it
requires calls to a #-SAT solver. For example, the strategy 3 of baital [123] makes |F|+ 1
calls to a #-SAT solver to compute all the commonalities of features. For large feature
models this can be prohibitively expensive. If the cross-tree constraints are dropped (only
the feature diagram is considered), it is possible to compute the commonalities for all the
features (1-wise combinations) in linear time [129, 3]. This quickly gives an approximation
of the commonality of the features.

Uniform samplers guarantee that all solutions have the same probability of being
returned. For the t-wise coverage, however, we are interested in the probability that a
t-wise combination is returned by the sampler. The following proposition states that this
probability is equal to the commonality of the combination.

Proposition 1 ([141]). Let M be a feature model, U be a uniform sampler (i.e. ∀C ∈
Sols (M) ,P (U(M) = C) = 1/ |Sols (M)|), and σ be a combination, then

P (σ ⊂ U(M)) = φσ .

Proof. We use the definition of the probability of a random event (positive cases divided
by total cases), and the definition of the commonality

P (σ ⊂ U(M)) = #positive cases
#total cases

= |{C ∈ Sols (M) | σ ⊂ C}|
|Sols (M)|

= φσ
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The probability of having a given combination in the solution returned by a uniform
sampler is equal to the commonality of the combination. This means that if there are
features with very low commonality, a sampler may never return a solution containing
them in a reasonable number of samples. For example, the authors in [141] remarked
that on their experiments, 38.8% of the features (1-wise combinations) have a common-
ality φσ < 0.0001, so it is very unlikely that a uniform sampler will produce a solution
containing these features.

Notation. Given a sampler A (uniform or not), a feature model M , and a t-wise com-
bination σ, we note pA

σ (M) = P(σ ⊂ A(M)) the probability that the sampler A returns
a solution that covers the combination σ. In the following, when there is no ambiguity in
the feature model, we simply write pA

σ . In this chapter, we consider two types of samplers.
For a uniform sampler, noted U , proposition 1 states that pU

σ = φσ. For a sampler based
on the RandomSearch search strategy, the probability pR

σ is unknown, we analyse it in
Section 7.4.

For the task of t-wise coverage, if many of combinations are unlikely to be found, the
test suite would not have a good t-wise coverage. Let Sn be a test suite generated by
calling a sampler n times independently on a feature model M . Sn is a random variable
taking values in Sols (M)n. The t-wise coverage of Sn, Cov(Sn), is also a random variable
taking values in [0, 1]. To evaluate the behaviour of a sampler in terms of t-wise coverage,
we are interested in the expected value of Cov(Sn), i.e. E(Cov(Sn)). A formula for this
expected t-wise coverage is given in [141] in the case of uniform samplers. We recall and
prove it here in the general case (for any sampler).

Proposition 2 ([141]). Let M be a feature model. Let pA
σ be the probability that a sampler

A (uniform or not) returns a solution containing the combination σ. Let Sn be a set of n
configurations of a feature model M , generated by a such a sampler (by calling it n times
independently). Sn is a random variable, and so is the set of t-wise combinations covered
Cov(Sn). The expected value of Cov(Sn) is

E(Cov(Sn)) = 1
|Comb(M)| ·

∑
σ∈Comb(M)

(1− (1− pA
σ )n) .

Proof. Given a combination σ, we define the random variable Zσ to be equal to 1 iff σ is
covered by a solution in Sn (and 0 otherwise). Then, |Comb(Sn)| = ∑

σ∈Comb(M) Zσ. Due
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to the linearity of the expected value,

E(Cov(Sn)) = 1
|Comb(M)| ·

∑
σ∈Comb(M)

E(Zσ) .

Zσ follows a Bernoulli distribution (it has only 2 possibilities), hence E(Zσ) = P(Zσ =
1) = 1− P(Zσ = 0). The probability that σ is not covered by any of the configurations of
Sn = {C1, . . . , Cn} is

E(Zσ) = 1− P(Zσ = 0)

= 1−
n∏

i=1
P(σ ̸⊂ Ci) (independence of solutions)

= 1− (1− pA
σ )n

This proposition confirms the intuition that the expected t-wise coverage depends
on the probability of sampling each combination. If there are combinations with a low
sampling probability of being sampled, the expected coverage will increase more slowly
(when the number of solution increases) than if all the combinations had a high sampling
probability of being sampled. In Section 7.4 we prove a lower bound on the sampling
probability pR

σ when using RandomSearch.

7.3 Related Works

7.3.1 Dedicated Approaches

t-wise coverage is a well-studied problem in feature models. Most approaches either
require access to the set of possible combinations (by making

(
|F|
t

)
2t calls to a SAT

solver), or will iteratively generate this exponential set. These approaches often have the
guarantee that all combinations are covered, at the cost of an expensive generation of
combinations. AETG [128] is one of the first algorithms for t-wise coverage. The authors
propose a way to select variables to set (or forbid) in the searched configuration based on
the combinations that have not yet been covered.

ICPL [133] is based on the fact that a t-wise covering test suite is a good starting
point for generating a t+ 1-wise covering test suite. This remark also allows to speed up
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the generation of possible t + 1-wise combinations, since some of them were detected as
impossible by the t-wise test suite.

In IncLing [122] the authors propose several improvements (such as the detection of
dead or core features and a feature ranking heuristic) in an incremental sampling. In [143],
the authors propose to use the advances in SAT solvers to detect impossible combinations
more efficiently (instead of making a SAT call to verify each combination). By using
unsatisfiability cores returned by SAT solvers on unsatisfiability, they can reduce the set
of potential combinations. This greatly reduces the number of SAT calls required to find
a covering test suite.

7.3.2 Sampling Based Approaches

All these approaches have the guarantee of generating a covering test suite, but at
the cost of having to generate the set of possible combinations, which can be prohibitive
for large feature models or t. A well-known approach to search for diverse configurations
is to use randomness, and for example a uniform sampler. Recent advances in uniform
SAT samplers such as Smarch [84] can efficiently generate configurations of large feature
models. This approach does not guarantee coverage and it has been shown experimentally
in [141] that up to 1014 configurations (almost the enumeration of all solutions) need to
be generated to achieve 100% coverage on some feature models.

Baital [123] corrects this issue by using the weighted sampler WAPS [80]. This sam-
pler compiles the cnf formula representing a feature model into a d-DNNF representation.
This representation is then annotated with weights, and a weighted sampling can be per-
formed very efficiently. Baital will perform r rounds, each rounds drawing s samples
will be drawn from a given distribution. At the start of each round, the distribution is
modified by changing the annotation of the d-DNNF representation depending on the
solutions found. If a feature has only been sampled a few times, its weight is increased to
increase the probability of sampling a configuration containing it. Each annotation phase
is costly, but it helps to find new combinations. We compare our approach to Baital in
the experimental section 7.7.

CMSGen [78] is a recent SAT sampler that has been shown to generate test suites
with higher coverage than Baital. CMSGen modifies a SAT sampler to use the Ran-
domSearch strategy (picking a random uninstantiated variable, and a random value
between 0 and 1). This sampler is therefore non-uniform (this can even be shown on a
problem with two variables x and y, and the clause x ∨ y). In Section 7.4 we analyse the

152



7.4. RandomSearch’s Behaviour

behaviour of RandomSearch (and thus CMSGen) on the task of test suite generation
for t-wise coverage. We show why RandomSearch is well suited for this task, and at
the same time explain the reasons for the great results of CMSGen. In the experiments
we compare to RandomSearch, i.e. the CP version of CMSGen.

7.3.3 In Constraint Programming

Constraint Programming provides a variety of modelling and solving tools (such as
search strategies and global constraints). In Pacogen [131, 132], constraint programming
is used to find the smallest test suite that ensures full pairwise coverage. The authors pro-
pose a data structure (in a matrix) to store the full test suite to be generated, and a global
constraint to ensure that the pairwise combinations are covered. As other approaches, the
combinations need to be enumerated, so this approach would not scale to larger t and
large feature models (with thousands of features).

Recently, advances done in hashing-based SAT samplers (see the Unigen [69] line of
work) have been extended to CP. By adding random hashing constraints to the model,
the solution set is randomly cut inso small cells. In Chapter 5 we presented TableSam-
pling [2], a sampling algorithm that uses table constraints as hashing tables. A table
constraint is a constraint given in extension, i.e. for a given subset of variables, all the
allowed instantiations are given to the constraint. In a t-wise framework, this can be seen
as allowing or disallowing some t-wise combinations on a given set of variables. We eval-
uate TableSampling in Section 7.7 to see if such hashing constraints based on table
constraints lead to a good t-wise coverage.

7.4 RandomSearch’s Behaviour

As shown in Proposition 2, the t-wise coverage of a sampler A is related to its proba-
bility pA

σ of sampling a given combination σ. In the case of a uniform sampler U , Propo-
sition 1 states that pU

σ = φσ. For a sampler R using the RandomSearch strategy, this
probability (noted pR

σ ) is unknown: we study it here.

7.4.1 Example for a Single Feature

The main difference between uniform sampling and RandomSearch is that uniform
sampling focuses on configurations, whereas RandomSearch focuses on features. At the
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Main

StudiedNoise

NnNn−1. . .. . .N3N2N1

Figure 7.2 – Example of noisy Feature Model

decision level, all the features have the same probability of being picked (or removed).
The toy feature model in Figure 7.2 illustrates this behaviour. At the root node Main,
this feature model has two exclusive children Noise and Studied. We are interested here
in the Studied feature, which is only contained in the configuration {Main, Studied}.
However, there are many other configurations the Noise feature is selected. This feature
has n optional children, so there are 2n possible configurations.

On the one hand, it is very unlikely that a uniform sampler will generate the solution
containing the feature Studied, because it is flooded among other configuration. The
exact probability of sampling feature Studied is pU

Studied = φStudied = 1/(2n + 1) (there is
only one configuration containing Studied, but 2n noisy configurations).

On the other hand, RandomSearch is much more likely to sample the feature
Studied. The CSP representation of a feature model contains one variable per feature.
We make the CSP explicit for the example 7.2.

Example. To represent the feature model given in Figure 7.2 as a CSP, one variable
XF is created for each feature (F = {Main, Studied, Noise, N1, . . . , Nn}). All the variables
have a Boolean domain. The constraints are the following:

• The root node must be selected:

XMain = 1 .

• A xor node (the Main node) states that if the parent is selected, only one child is
selected:

XStudied +XNoise = XMain .
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• If an optional child is selected, then the parent must be selected:

∀i ∈ {1, . . . , n}, XNi
⇒ XNoise .

When all the variables are instantiated, the combination can be retrieved by keeping all
the features whose variables take the value 1, i.e. if S is the solution to the CSP, the
associated configuration is C = {F ∈ F | S(XF) = 1}.

At the start of the search, XMain is propagated to 1, and no more propagation can be
done. A decision is then computed. There are n + 2 uninstantiated variables: XStudied,

XNoise, XN1 , . . . , XNn . RandomSearch chooses a variable uniformly, so it has a probabil-
ity of 1/(n + 2) to choose XStudied. A value is chosen randomly, so it has a probability
1/2 of being 1. In this case, the decision XStudied = 1 is pushed to the search, and the
solution will contain the feature Studied. Overall, there is at least a probability 1

2(n+2)

that a solver using RandomSearch will produce a solution containing Studied.
This toy example shows the advantage of RandomSearch for the task of t-wise

coverage. Choosing each variable with the same probability ensures that each variable
has a non-negligible chance of being taken.

7.4.2 Generalising to Multiple Features

Having understood the behaviour for a single feature, we can now generalise the rea-
soning for multiple features, hence t-wise combinations. In this section, we first give and
prove a loose bound. This proof gives the intuition for the behaviour of RandomSearch
on t-wise combinations. We then give a tighter bound, and prove it in Appendix A.1. This
proof is a refinement of the one presented here, but is more technical and it does not give
more insight into the behaviour.

Proposition 3. On a feature model with n features, the probability pR
σ of sampling an

allowed t-wise combination σ can be lower bounded by

pR
σ ≥

1
2t
(

n
t

)
Proof. We restrict our analysis to the first t decisions made during the search. To be
sure that the sampled solution contains σ, then these first decisions must be made on the
features of σ. In the first decision, there is a t

n
chance of choosing one of the variables of
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σ. On the second decision, there may be only m ≤ n − 1 uninstantiated variables left.
There is a t−1

m
≥ t−1

n−1 chance to choose a second variable of σ during the second decision.
Continuing the reasoning, the probability of choosing all the variables of σ during the t
first decisions is greater than

t

n
· t− 1
n− 1 · · ·

1
n− t+ 1 = 1(

n
t

) .
To get exactly the combination σ, the chosen values for every variable XF must be the
one in the combination, i.e. σ(XF). For each decision there are two two choices with same
probability, hence the factor 1

2t .

We are interested in the case where t is small (less than 7 as remarked in [138]) and
n is large. In this setting, the proposition can be refined by the following theorem, which
gives a lower bound as a convergence result.

Theorem 5. Given a feature model with n features, and σ an allowed t-wise combination,
there is a sequence ut

n such that
pR

σ ≥ ut
n

and
ut

n ∼n→∞

1(
n
t

) .
Proof. In Appendix A.1.

Informally, pR
σ can be approximately lower bounded by 1/

(
n
t

)
. Compared to the pre-

vious proposition, the factor 1/2t has been dropped.
If t is fixed to a small value, this lower bound is polynomial in n, the number of features

in the feature model. On the other hand, for uniform sampling, the sampling probability
can only be lower bounded by 1/2n, as seen in the previous example in Figure 7.2. We
recall that Proposition 2 states that the lower the sampling probabilities, the worse the
expected t-wise coverage. The polynomial lower bound for the sampling probability using
RandomSearch is an argument for the fact that it is a sampling method that generates
test suites with high t-wise coverage. We prove this fact experimentally in Section 7.7.
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1 Function FrequencyDiff(P ,F , φ, φobs)
Data: A CSP P = ⟨(X1, . . . , Xn),D, C⟩, a set of solutions S, a list of features

(associated to variables) F = {F1, . . . , Fn}, a mapping φ giving the
commonality of every feature, and a mapping φobs giving the observed
frequency of every feature in the previous solutions.

Result: A decision.
2 W ← array of size n (indexed from 1) initialized at 0;
3 for i = 1 to n do
4 if D(Xi) = {0, 1} then
5 W [i]←

∣∣∣φobs
Fi
− φFi

∣∣∣;
6 varId← PickWeightedRandom(W );
7 if φobs

FvarId
> φFvarId

then
8 chosenV alue← 0;
9 else

10 chosenV alue← 1;
11 if Random() > 1+W [varId]

2 then
12 chosenV alue← 1− chosenV alue;
13 return Decision(XvarId = chosenV alue);

Algorithm 7.1: Computation of the decision of FrequencyDiff

7.5 Frequency Difference Search Strategy

The previous section showed that RandomSearch is a good starting point for a
search strategy to generate a good coverage test suite. However it lacks insight into the
solutions found previously. It can only avoid returning a solution that has already been
found.

7.5.1 Presentation of the Algorithm

We now present the search strategy we have designed to generate a test suite with high
t-wise coverage. It is an improvement over RandomSearch which uses the knowledge
of the solutions already returned. We also use the commonalities to guide the search. We
call this new search strategy FrequencyDiff because it uses the difference between
the observed frequency of features, and the commonalities. In this section, we suppose
that we have access to the commonalities of all features F in φF . In practice, we use
an approximation of the commonalities. The experiments in Section 7.7 show that an
approximation of the commonalities is sufficient to outperform other approaches.
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Our approach is a search strategy, i.e. the choice of an uninstantiated variable, and a
value in its domain to branch on during the solving process. This search strategy guides the
search towards an interesting solution. When a solution is found, the search is restarted. It
is presented in Algorithm 7.1. The search strategy has access to the model P , the features
F (such that Xi is the variable associated with the feature Fi), the commonalities for each
feature φ, and the observed frequency of each feature φobs. Given a set of previously found
solutions S, the observed frequency of a feature F is φobs

F = |{C∈S|F ∈C}|
|S| . These observed

frequencies can be updated in time O(|F|) when a solution is found.
The strategy first computes the absolute difference between the observed and theoret-

ical frequencies and stores it in an array of weights W . These absolute differences are a
quantification of how some features are underrepresented by the current set of solutions.
The goal of FrequencyDiff is to correct this underrepresentation by increasing the
random weights of such features.

The next step of the algorithm, line 6, is to choose the decision variable. An index is
chosen according to the weights in W (i.e., P(varId = i) = W [i]/∑j W [j]) [192]. This
weighted choice will favour the features that have an observed frequency far from their
commonalities. We want to point out that this also applies to the absence of features.

Example. Using the example feature model in Figure 7.1a, and assuming that the first
configuration returned is the fifth one (in Table 7.1b), containing the Multi feature. The
Multi feature has a commonality of 1

3 (because it only appears in configurations 5 and 6),
but it has an observed frequency of 1, so its weight will be 2

3 . This weight is high, which
increases the chance of returning configurations not containing Multi.

The next and final step is to choose the value associated with the variable in the
decision. This choice is made in two steps. In a first step, the chosen value is determined
depending on the comparison between the observed frequency and the commonality. If
the observed frequency is higher than the commonality, then we choose the value 0, to
exclude the feature from the constructed configuration. Otherwise, a value of 1 is chosen
to include the feature in the configuration. Then, in a second step (line 11), a random swap
is performed. The probability that the value is swapped is proportional to the difference
between the observed frequency and the commonality (stored in the array W ). If this
difference is close to 1 (i.e. there is a big under (or over)-representation of the feature),
then it is unlikely that the chosen value will be swapped.

To summarise the search strategy: weights are computed with the difference between
the observed frequency and the commonality, a variable is drawn according to these
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weights, the value is chosen to bring the observed frequency closer to the commonality,
and this value is swapped with a small probability.

7.5.2 Design Choices

We have chosen to randomise the choice of the value (line 11) to prevent the search
from getting stuck in an unsatisfiable subspace. It is possible that some features are always
present or absent (called core or dead features) due to some constraints. It is not trivial
to check whether a feature is a core or a dead feature (unless it is trivially a core feature
from the feature diagram, such as a mandatory child of the root node). We have chosen
not to perform this check to avoid a pre-processing step.

If a core or dead feature is still uninstantiated, our search strategy may choose it as
the decision variable. Then the value chosen would be 0 in the case of a core feature in
line 8, or 1 in the case of a dead feature in line 10. When the solver makes this decision, it
enters an unsatisfiable sub-space. Many computations and backtracks may be necessary
to leave this sub-space.

To avoid failing in that case, we used two techniques. We first we added randomisation
to the value. This way there is a small chance of not entering the unsatisfiable sub-space.
If the search did enter such a sub-space, we use restarts monitoring the number of fails
during the search. If there are too many fails (i.e. backtracks), the search is restarted from
scratch. Randomising the value allows to avoid making the same bad decisions again and
again when restarting.

7.6 Efficient Computations on Feature Diagrams

Computing the commonality on feature models requires to make calls to a #SAT
solver. This is due to the presence of the cross-tree constraints. However, if we consider
only the feature diagram, computing the commonalities becomes much easier (because it
has a tree-like structure).

7.6.1 Variation Degree

The variation degree is the number of configurations allowed by a feature model. It
can be computed recursively thanks to the following formulas.
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Theorem 6 (Variation Degree of Feature Diagrams [139]). Let D be a feature diagram.
Then

• If D.children = ∅, then |Sols (D)| = 1.
• If D.mand ∪D.opt ̸= ∅,

|Sols (D)| =
∏

D′∈D.mand

|Sols (D′)|

×
∏

D′∈D.opt

|Sols (D′)|+ 1 .

• If D.xor ̸= ∅,
|Sols (D)| =

∑
D′∈D.xor

|Sols (D′)| .

• If D.or ̸= ∅,

|Sols (D)| =
 ∏

D′∈D.or

|Sols (D′)|+ 1
− 1 .

Proof. In Appendix A.2

This theorem naturally leads to a procedure to recursively compute the variation
degree can naturally be derived. This procedure has a complexity linear in the number of
features, and also computes the variation degree of each sub-feature diagram. All these
results can be memoized for later access in constant time.

Example. We show the computation of the variation degree on the example of Figure 7.1.
We note by Df the feature diagram rooted in feature f .

• The variation degree of all leaves is 1 (singleton product), so for all D in {DMono,

DMulti, DRadial, DAsym}, |Sols (D)| = 1.
• DHull is an xor node, so the variation degrees of the children are added: |Sols (DHull)| =

2.
• DSpi is an or node, so |Sols (DSpi)| = (|Sols (DRadial)|+1)·(|Sols (DAsym)|+1)−1 =

3.
• The root node, DSailboat, is a mandatory/optional node. Using the formula we have
|Sols (DSailboat)| = |Sols (DHull)| · (|Sols (DSpi)|+ 1) = 8.

7.6.2 Feature Commonality

The variation degree is an important value to know before trying to enumerate all the
solutions. However, it does not provide information about specific features: depending on
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the structure of the feature model, some features may appear more often than others in
the set of allowed configurations. The commonalities of 1-wise combinations (i.e. features)
give an insight into the presence of features in the allowed configurations.

As for the variation degree, the commonality of a feature can be computed with a
recursive function thanks to the following formulas.

Theorem 7 (Commonalities on Feature Diagrams [129]). Let f be a feature and D be a
feature diagram. We note ϕf (D) = |{C ∈ Sols (D) |f ∈ C}| the number of occurrences of
a feature in the set of allowed configurations. Then

ϕf (D) =



|Sols (D)| if D.feature = f
|Sols(D)|
|Sols(D′)| · ϕf (D′) if f ∈ D′ and D′ ∈ D.mand

|Sols(D)|
|Sols(D′)|+1 · ϕf (D′) if f ∈ D′ and D′ ∈ D.opt or D′ ∈ D.or

ϕf (D′) if f ∈ D′ and D′ ∈ D.xor

The commonality of f in D can then be computed with φfD = ϕf (D)
|Sols(D)| .

Proof. In Appendix A.2

From this theorem, we naturally derive a recursive computation method for the number
of occurrences of a single feature. The computation of the commonality of all features of
D can also be done in a single traversal of D, leading to a complexity that is linear in
the number of features. The algorithm for computing the commonality for each feature is
given in Algorithm 7.2.

The commonality of each feature in the feature diagram is a rough approximation
of the commonality in the whole feature model (including the propositional formulas).
However the problem of computing the commonality (or even the variation degree) is
much harder in the general case, and requires calls to a #-SAT solver. For example the
strategy 3 of Baital [123] makes |F| + 1 calls to a #-SAT solver to compute all the
commonalities. For large feature models this may be prohibitive.

7.6.3 Uniform Sampler

In addition to providing information on the software product line, the variation degree
can also be used to perform uniform sampling. The tree-like structure of the feature
diagrams can be used to design a recursive sampler.
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1 Function Occurrences(R)
Data: A feature diagram R
Result: A mapping σ : F → N from features to their number of occurrences

2 σ ← {}
3 OccurrencesRec(R, 1, σ)
4 return σ

5 Procedure OccurrencesRec(R, κ, σ)
Data: A feature diagram R, an integer κ for the recursive factor and a

mapping σ.
Result: Nothing is returned, but σ is filled with the features present in R.

6 σ[R.feature]← κ · |Sols(R)|
7 for R′ ∈ R.mand do
8 OccurrencesRec(R′, |Sols(R)|

|Sols(R′)|κ, σ)
9 for R′ ∈ R.opt ∪R.or do

10 OccurrencesRec(R′, |Sols(R)|
|Sols(R′)|+1κ, σ)

11 for R′ ∈ R.xor do
12 OccurrencesRec(R′, κ, σ)

Algorithm 7.2: Computation of the number of occurrences of every feature in the
set of allowed configurations.

Proposition 4 (Uniform Sampler on Feature Diagrams). Given a feature diagram D, the
following recursively defined algorithm UF D is a uniform sampler.

• If D.children = ∅, then UF D(D) = {D.feature}
• If D.mand ∪D.opt ̸= ∅,

UF D(D) = {D.feature} ∪
⋃

D′∈D.mand

UF D(D′)

∪
⋃

D′∈D.opt

 ∅ with probability 1
|Sols(D′)|+1

UF D(D′) otherwise

• If D′.xor ̸= ∅, choose D′ ∈ D.xor with probability |Sols(D′)|
|Sols(D)| , then

UF D(D) = {D.feature} ∪ UF D(D′)
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• If D.or ̸= ∅, we define

C =
⋃

D′∈D.or

 ∅ with probability 1
|Sols(D′)|+1

UF D(D′) otherwise

and

UF D(D) =
 {D.feature} ∪ C if C ̸= ∅

UF D(D) otherwise
Proof. In Appendix A.2

Remark. In the definition of the uniform sampler UF D, in the D.or ̸= ∅ case, there is
a recursive call with the same feature diagram. This is the case where C = ∅ which is
forbidden (at least one child of D.or has to be taken). In this case, we simply generate a
new configuration C by recursively calling UF D(D). The probability of C being empty (i.e.
the probability of calling UF D(D) again) is 1

|Sols(D)|+1 , so it is very unlikely to happen.

Example. We apply the sampling algorithm to the same example of Figure 7.1a. Recall
that the algorithm does not consider the cross-tree constraint. The algorithm starts at
DSailboat (the feature diagram rooted in the feature Sailboat). This node is a mandato-
ry/optional node:

• A sub-configuration is sampled in the mandatory child (DHull). This child is an
alternative group, so only one child is selected. All the children have the same
variation degree (equal to 1), they are all likely to be selected.
— Suppose that child DMono is chosen. This child is a leaf node, so the sub-configuration

returned is {Mono}.
The feature Hull is added, so the sub-configuration returned is {Hull, Mono}.

• With probability 3
4 = 1 − 1

|Sols(DSpi)| the sub-feature diagram DSpi is sampled. Let’s
suppose that this probability is met. The DSpi feature diagram is an or node:
— With probability 1

2 the child DRadial is sampled. We suppose that this event does
not happen, and that DRadial is not chosen, hence the sub-configuration returned
is {}.

— With probability 1
2 the child DAsym is sampled. We suppose that this event does

not happen, and that DAsym is chosen, so the sub-configuration returned is {Asym}.
We construct the sub-configuration C = {} ∪ {Asym} ≠ ∅, hence the returned sub-
configuration is {Spi, Asym}.

The final configuration returned is {Hull, Mono, Spi, Asym, Sailboat} (union of the sub-
configurations of the mandatory and the optional children plus the root node).
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7.7 Experimental Results

This section describes our experiments. First, the methodology is presented in Sec-
tion 7.7.1 (implementation details, benchmark and state-of-the-art approaches tested).
Section 7.7.2 contains the comparison with the other approaches in terms of t-wise cover-
age and running time. Finally, Section 7.7.3 confirms that the approach behaves the same
way for higher values of t.

7.7.1 Methodology

Implementation

Our implementation is available online 1. It is written in Java, using the CP solver
choco-solver version 4.10.10 [46]. For the commonalities φ we used the linear time
approximation presented in the previous Section 7.6.2. FrequencyDiff and Random-
Search are implemented using choco-solver’s search strategies. After each solution the
search is restarted and the solution is excluded. A restart strategy is used when too many
fails are encountered. The number of fails to restart follows a Luby sequence [178] of factor
50.

We compared these strategies with three state-of-the-art approaches:
• Baital 2 with 5 and 10 rounds. We use strategy 4 presented in [123] (numbered

strategy 5 in the implementation) as it is among the best strategies in terms of
coverage, and also among the fastest as it does not need to compute the set of
combinations.

• Uniform sampling. We use Baital with 1 round for convenience, which is equiva-
lent to using the uniform sampler WAPS [80].

• TableSampling [2] using the implementation in choco-solver. TableSam-
pling takes 3 parameters as input: κ the pivot values for the number of solutions
enumerated at each step, v the number of variables in the table, and p the proba-
bility of keeping a tuple in the table. In Chapter 5, we recommended using κ = 1/p,
and values of v depending of the allowed running time and desired randomness.
We use the sets of parameters (κ, v, p) ∈ {(4, 4, 1/4), (8, 6, 1/8), (16, 8, 1/16)}.

The experiments were run on single threads on a Xeon E7-8870 v4 / 20c / 1.4GH
processor. For each instance, 100 solutions are generated. This solution generation is run

1. https://github.com/MathieuVavrille/frequency-diff
2. https://github.com/meelgroup/baital
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twice with different random seeds, and the results in terms of running time or size of the
coverage are averaged (using the arithmetic mean) over these two runs.

Benchmark

The instances used to test our approach come from the uvl-models 3 repository, in the
UVL input format [142]. It contains feature models from various domains (e.g. automotive,
operating systems,etc).

Baital takes as input a CNF formula, we used FeatureIDE 4 to transform the UVL
format into .dimacs files. Instances where the conversion did not terminate (mostly due
to the size of the instance) or raised an error (mostly due to bad naming of features
that could not be easily fixed) were excluded from the benchmark. On two instances,
Baital did not generate a configuration containing all the features due to an issue in the
compilation of the d-DNNF representation. These two instances were also removed from
the benchmark.

In the end, we applied the approaches to 123 instances. A large part of the instances
(116 instances) come from the same initial benchmark [136]. These instances have between
1178 and 1408 features, and between 816 and 956 cross-tree constraints.

Evaluation Metrics

To evaluate the improvement of our strategy, we consider three metrics: the running
time, the coverage, and the number of solutions to achieve a given coverage.

Speedup The running time is one of the most important metrics in some applications.
We compute the speedup of our strategy over other approaches, i.e. how much faster
our strategy could generate the required 100 solutions. Let τ I

freq be the time taken by
our approach to sample 100 solutions on the instance I, and τ I

baital be the time taken by
Baital. The speedup of our approach over Baital is then τI

freq

τI
baital

on instance I. We use
the geometric mean to average the speedups over all instances in I:

speedup =
(∏

I∈I

τ I
freq

τ I
baital

)1/|I|

3. https://github.com/Universal-Variability-Language/uvl-models
4. https://github.com/FeatureIDE/FeatureIDE
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approaches need to generate to get the same coverage. After 50 solutions (label B), Baital
covers 2,363,836 combinations (label U). FrequencyDiff covers the same number of
combinations after only 7 solutions (label A). This means that FrequencyDiff can
give the same coverage with B/A ≈ 7 times fewer solutions than Baital. We call this
ratio the size improvement. Again, we aggregate the results using the geometric mean.

7.7.2 Comparison with other approaches

In this section, we compare the experimental results in terms of coverage and running
time. All the the aggregated ratios (of coverage or running time) are summarised at the
end of this section in Table 7.1.

Coverage

Figure 7.3 shows plots of the evolution of the number of pairwise combinations found
by the different approaches. The behaviour is roughly the same for all instances, except
for two specific instances that are discussed in the next sub-section. Apart from these two
instances, our approach gives the best coverage on all but five instances (and Random-
Search often gives the second best coverage). On these five instances FrequencyDiff
is the second best approach, just behind RandomSearch. This means that the search-
strategies (RandomSearch and FrequencyDiff) outperform the other approaches on
121 instances (all the benchmark except the two particular instances). FrequencyDiff
by itself outperforms all the other approaches on 116 out of the 123 instances of the
benchmark. We can also look at the other approaches in detail.

• Uniform sampling is the worst approach in terms of coverage. It fails to find new
combinations after the first few solutions and after 100 solutions, the coverage is
much lower than all the other approaches. On average, FrequencyDiff finds
34% more combinations.

• Jumps in the coverage can be seen in the plots for Baital. These are due to the
updating of the weights between the rounds. Before the first update, the curve
follows the uniform sampling curve because all the weights are equal. At the end
of the rounds, the weights are recomputed according to the solutions found, so the
sampling is weighted towards features (and combinations) that have not yet been
found, giving the jump in the coverage. On average, FrequencyDiff finds 4%
more combinations than Baital-10.
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VIRTUAL_ROOT

Strands

S100S99. . .S2S1

UIFeedingModes

TopHBV

Cross-tree constraints:
∀i ∈ {5, . . . , 100}, Si =⇒ ¬top

Figure 7.5 – Feature Model of the instance dm_ASEJ1. The feature’s names have been
simplified for clarity.

children. The special feature in this feature model is Strands. It has 100 children in an
alternative group (only one of the children can be taken). It also contains a cross-tree
constraint (the instance dm_DissModel does not have such a constraint).

The optimal strategy for optimising the t-wise coverage on this instance is to choose
a different Si on each solution. The reason why FrequencyDiff does not perform well
is because of the very low commonality (i.e. frequency) of features Si (around 1/100)
combined with the alternative group they are in. This increases the chances of selecting
the same feature more than once.

Example. We show how the search may behave. We suppose that we have already sampled
20 solutions with FrequencyDiff, all containing a different Si. We want to estimate the
probability of picking an already chosen Si. The observed frequency of the already chosen
Si is 1/20. For the already chosen Si, the weights are then 1/20 − 1/100 ≈ 1/20, and is
only 1/100 for the not yet chosen Si. Then the probability of choosing an already taken Si

is more than 1/2 (it is 20· 1
20

20· 1
20 +80· 1

100
= 1

1.8). By default, the value chosen would be 0, as the

observed frequency is higher than the commonality, but there is a 1+ 1
20

2 chance of swapping
this value, thus adding this feature to the solution.

We argue that the modelling of this instance as a feature model was not the right way
to represent it. Therefore, the use of feature models based approaches is not appropriate.
The Strands feature with 100 children Si should have been modelled as an integer variable
(for example in a CP framework) as Strands ∈ {1, . . . , 100}. Such modelling of integer
variables (called attributes) in feature models has been studied in [135] and allows the use
of CP’s global constraints. RandomSearch would work as is in a CP framework (where
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the values are not necessarily binary). If necessary, it would also be possible to prevent
completely already chosen Si from being taken. The fact that FrequencyDiff does not
perform well on these two instances is not representative of the performance on the whole
benchmark set.

Size of the Solution Set

The improvements in coverage may seem small, but as the number of combinations
found increases, it becomes harder and harder to find new combinations. Therefore, even
a small percentage of improvement is hard to achieve when the coverage is already high.
Due to the inverse exponential behaviour of the coverage, the number of solutions needed
to achieve the same coverage varies greatly for different approaches.

On average, FrequencyDiff requires 5 time fewer solutions than Baital-10 to
achieve the same coverage. This means that, on average, the coverage of FrequencyDiff
will be the same after 20 solutions as that of Baital-10 after 100 solutions.

The coverage of TableSampling is better than that of Baital, and this reflects to
the number of solutions needed to obtain a given coverage. To obtain the same coverage as
TableSampling after 100 solutions, FrequencyDiff requires 2.4 times fewer solutions.

To achieve the same coverage as RandomSearch (the second best approach), Fre-
quencyDiff requires 1.4 times fewer solutions.

Remember that the goal of generating solutions is to use them as tests of a product
line. The actual implementation of the solution in the product line could be expensive
(in the case of an automotive product line) or time consuming (in the case of software
compilation). Any reduction in the number of solutions generated, without affecting the
coverage, is directly reflected in faster or lower cost of tests of the product line. Our
strategy FrequencyDiff significantly improved this size of test suite generated.

Running Time

A scatter plot of the running time of the other approaches compared to frequency_diff
is given in Figure 7.6. For clarity, the plot is divided into a comparison with SAT sampling
approaches (uniform sampling and Baital) in Figure 7.6a and CP sampling approaches
(RandomSearch and TableSampling) in Figure 7.6b. On the two scatter plots, the
y-axis is the time taken by FrequencyDiff. If a point (an instance) is below the dotted
line, it means that FrequencyDiff was faster.
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at the beginning of each round (and only once in the case of uniform sampling). This is
reflected in the running time, as Baital-5 is about 5 times slower than uniform sampling,
and Baital-10 is about 10 times slower.

FrequencyDiff has a speedup of 41 compared to TableSampling with parame-
ters (4, 4, 1

4). With parameters (16, 8, 1
16), TableSampling is the slowest approach. The

running time increases significantly when the number of variables increases, because more
tuples have to be generated during table creation. As noted in the previous section, the
coverage is better when v is smaller. We can conclude that there is no reason (on the
problem of t-wise coverage) to use high values of v.

Analysis of TableSampling

The analysis of TableSampling is interesting and underlines what we want to show
in this chapter. In Chapter 5 we showed that the sampling becomes more uniform as
v increases. However, in the t-wise coverage experiments, we show that it is better to
have a small value of v to get a good coverage. In fact, we have shown that for the
task of t-wise coverage, uniformity is a disadvantage and not an advantage. In the case
of TableSampling, using a high value for v makes the sampling more uniform, and
therefore is a disadvantage.

The experiments also show opposite results to Chapter 5 in terms of running time
compared to RandomSearch. In Chapter 5 the benchmark was made from hard in-
stances of the MiniZinc challenge. The search strategy was very important to be able to
find solutions quickly, and RandomSearch made bad decisions. On feature models it
is much easier to find a solution, so there is no downside to using RandomSearch as a
search strategy (the propagation removes most of the inconsistent values).

Summary of the experiments

We summarise the coverage and running time results given in the previous sections.
Table 7.1 gives all the ratios (compared to FrequencyDiff) that were partly mentioned
in the previous sections. When a coverage ratio was mentioned in the previous section,
it referred to the coverage after 100 solutions. It is also possible to give this ratio after
only 50 solutions, and these ratios are present in the table with the label 50. These ratios
do not differ much between those computed after 100 solutions. The running time is only
recorded at the end of the 100 solution generation.

172



7.7. Experimental Results

Table 7.1 – Summary of the coverage/running time average ratios between other ap-
proaches and FrequencyDiff.

Random- Uniform Baital TableSampling− (κ, v, p)
Search Sampling 5 10 (4, 4, 1

4) (8, 6, 1
8) (16, 8, 1

16)
Coverage-100 1.00 1.34 1.07 1.04 1.01 1.02 1.04
Coverage-50 1.01 1.37 1.16 1.07 1.03 1.04 1.06

Size-100 1.39 23.89 7.44 5.10 2.37 3.65 5.21
Size-50 1.50 14.21 6.98 4.12 2.25 2.88 3.58

Time Speedup 1.18 12.27 60.35 118.29 41.14 82.83 961.99

It should be noted that all the ratios compared to FrequencyDiff in this table are
greater than 1. This means that overall on the whole benchmark, in coverage or running
time, FrequencyDiff is the best strategy compared to the other approaches tested.

7.7.3 Higher Value of t

In the previous section we plotted the evolution of the pairwise coverage. Ideally we
would like to evaluate the t-wise coverage for higher values of t, but this is too expensive
to compute. Most of the instances have thousands of features, so there are more than a
billion 3-wise combinations covered by each solution. However, we can compute the exact
number of 3-wise (and even 4-wise) combinations on a smaller instance, or approximate
this value using ApproxCov [124] for larger instances.

Exact Computation

We plot in Figure 7.7 the evolution of the t-wise coverage for t ∈ {1, 2, 3, 4} on the
instance berkeleydb. We can see that the behaviour of the approaches remains the same
for all values of t.

We can see that Baital performs better for t = 1. This is a consequence of the
literal-weight function used as the distribution weight. This function assigns weights to
the features, and samples according to these weights. Hence, we see that after updating
the weights once (at solution 10 for Baital-10, and solution 20 for Baital-5) all the
feature-wise combinations are found.
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even for large instances.
In the previous section, we only showed the pairwise coverage. As noted in [133], a

test suite with a good t-wise coverage will most likely also have good t+ 1-wise coverage.
We have proved this experimentally. Thus, the pairwise coverage results we showed in the
previous section extend to higher values of t.

7.8 Conclusion

In this chapter we showed that CP’s search strategies are an excellent way of gener-
ating test suites with high t-wise coverage. We explained this result by analysing Ran-
domSearch’s probability of returning a solution containing a given combination. This
analysis showed that RandomSearch is more suited to generate test suites with high
t-wise covering than uniform sampling.

We proposed an improvement to RandomSearch called FrequencyDiff, which
uses information about previously generated solutions. Using this information, and com-
paring it with the commonality of the features, it tweaks the distribution used in Ran-
domSearch to favour interesting features.

We experimentally tested these search strategies on feature models with more than a
thousand features. The results showed that the search strategies outperformed other sam-
pling approaches by several orders of magnitude in running time, significantly improved
the coverage, and reduced the number of solutions required to achieve a given coverage.
FrequencyDiff also improves the coverage over RandomSearch, making it the best
of the approaches we tested, with no running time overhead.
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CONCLUSION

In this part, we used search strategies to extract a good subset of solutions to con-
strained problems. We showed that the default random search strategy, RandomSearch,
produces good sets of solutions. We proposed to improve it by weighting the choice of the
variable and value to orient the search towards interesting sub-spaces. This can greatly
improve the quality (diversity, or number of combinations covered) of the solutions gener-
ated. We have also shown that uniform sampling is not always beneficial, because of how
the solutions are distributed in the search space.

In this part, we evaluated the quality of a solution set in two different ways: first in
pattern mining using the Jaccard index as a diversity measure, and second, by considering
the number of combinations covered by the solutions. Depending on the application, there
are several other ways to evaluate a solution set.

In the following part, we study diversity in more detail. We analyse how the choice
of the distance and the aggregator impacts the algorithms. For different distances, we
show propagation algorithms, approximation algorithms and prove diversity guarantees.
We also study diversity in a multi-objective framework, showing state-of-the-art multi-
objective optimisation algorithms and new approaches to finding good and diverse solu-
tions.
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Questions of Diversity

179



Chapter 8

BACK TO THE DEFINITIONS

This chapter contains questions of diversity, linking the mathematical definitions with the
implementations as constraints and the properties of the algorithms. Part of this chapter
was presented in the semi-formal conference organised by the doctoral school for PhD
students (JDOC).

8.1 Introduction

Diversity bridges the gap between solvers, with the rigid backtrack-search, and users,
who want to be presented with multiple diverse solutions. In this chapter, we consider
diversity from three perspectives: how users define their diversity problems, how diversity
constraints can be implemented in solvers, and what are the properties of the approxima-
tion algorithms.

Initially in CP, diversity was defined in [24]. The authors define the MaxDiverse-
KSet and MostDistant problems, and diversity constraints to solve these problems. These
constraints are a bound on the minimum distance between all the solutions. However, to
aggregate the distances, the sum is often used [44, 54]. In this chapter, we come back to the
definitions of diversity in constrained problems, and we analyse in detail the definitions
and properties of the diversity constraints.

First, in Section 8.2 we revisit the definitions to properly define the diversity problems.
This defines the diversity from the user’s point of view. In particular, we allow the user
to specify an aggregator for the pairwise distances. In Section 8.3, we look at the diver-
sity constraints from a solver’s perspective. We are interested in the complexity of the
propagation of the constraint, and show reformulations of the diversity constraints either
as smaller constraints or as existing global constraints. Experimentally, the behaviour
of the aggregators (and their differences) is presented in Section 8.4. In Section 8.5, we
analyse the guarantees of approximation algorithms. We prove that, in the worst case,
the minimum distance between the solutions returned by approximation algorithms is at
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most twice worse than that of the optimal solution set. We also analyse the behaviour of
uniform sampling in a simple case.

8.2 Diversity: Revisiting the Definitions

In this section, we revisit the definitions of the diversity problems presented in Chap-
ter 2 Section 2.6. These definitions consider multiple pairwise distances. To get a single
value to compare the diversity quality of solution sets, all the distances are aggregated
into a single value.

In the original definition [24], the distances are aggregated using the minimum. Other
articles [44, 54] use the definition of these problems but use the sum to aggregate the
distances. In [28], the authors leave the choice to the user modelling the problem.

Remark. The choice of the ∑ or min aggregator has an interesting parallel with com-
putational social choice [165] and multi-agent resource allocation [166] under the notions
of utilitarian and egalitarian social welfare. In a utilitarian setting, the total satisfaction
of agents should be maximised, but some agents may not be satisfied. In an egalitarian
setting, the satisfaction of the least satisfied agent should be maximised. Other measures
(i.e. aggregators) are proposed in this area, such as the Nash product (multiplication of
the distances), which is a compromise between the utilitarian and the egalitarian social
welfare, or the median rank dictators, where the median of the distances is maximised.

We now redefine the MaxDiverseKSet and MostDistant problems but with an arbi-
trary aggregator A.

Definition 11’ (MaxDiverseKSet). Let k ≥ 2 be an integer and P be a CSP, with
solutions Sols (P), δ be a distance over these solutions, and A an aggregator of distances
(min or ∑). MaxDiverseKSet(k) is the problem of finding a subset of solutions S̃ ⊆
Sols (P) of size k that maximises the distances between the solutions, i.e.

S̃ = argmax
S⊆Sols(P)

|S|=k

A
s,s′∈S
s ̸=s′

δ(s, s′) .

Definition 12’ (MostDistant). Let S ∈ Sols (P) be a set of solutions, δ be a distance
and A be an aggregator. MostDistant(S) is the problem of finding the solution s̃ that is
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most distant from all the solutions in S, i.e.

s̃ = argmax
s∈Sols(P)

A
s′∈S

δ(s, s′) .

Remark. When the number of solutions is fixed (to k), aggregating all the distances
using the sum is equivalent to computing the average distance (by a factor of k(k − 1)/2
for MaxDiverseKSet or k for MostDistant).

In Chapter 2.6 Section 2.6.2 we already presented how a constraint satisfaction problem
can be reformulated as a constraint optimisation problem to solve MaxDiverseKSet or
MostDistant. For MaxDiverseKSet this is done by duplicating the initial problem k times
using sets of variables X 1, . . . ,X k and adding a constraint on the distance between the
solutions of the duplicated problems (i.e. between the sets X 1, . . . ,X k). For MostDistant,
the distance constraint between the problem and the previous solutions can be added. We
formally define the diversity constraints, i.e. the constraints on the distances between the
variables (and the solutions in the case of MostDistant).

Definition 38 (Diversity constraints). Let δ be a distance function, A be an aggregator,
and k be an integer. Let X = {X1, . . . , Xn} and d be variables, and let S be a set of
k solutions. The single_diversityA,δ constraint considers the distance from one set of
variables to multiple solutions already found:

single_diversityA,δ (X ,S, d)⇔ A
S∈S

δ (X , S) ≥ d (8.1)

For 1 ≤ j ≤ k, let X j be k sets of n variables, and d be a variable. The multiple_diversityA,δ

constraint considers the distance between the sets of variables X 1, . . . ,X k, i.e. δ(X i,X j)
is the distance between the i-th and the j-th duplicated solution:

multiple_diversityA,δ

(
X 1, . . . ,X k, d

)
⇔ A

1≤i<j≤k
δ
(
X i,X j

)
≥ d (8.2)

Remark. In [24], the single_diversitymin,δH
constraint is called Diversemin and the

single_diversityΣ,δH
constraint is called DiverseΣ. A propagation algorithm for

single_diversityΣ,δH
is also presented.

In this definition, multiple_diversityA,δ is the diversity constraint for MaxDiverse-
KSet and single_diversityA,δ is the one for the MostDistant problem.
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8.3 Analysis of Diversity Constraints

In the previous section we revisited the definitions of the diversity problems, and their
associated constraints. Here we look at the diversity constraints in more detail, depending
on the aggregator used.

8.3.1 ∑ Aggregator

Here we focus on the ∑ aggregator. When using the ∑ aggregator, all the pairwise
distances are summed. The distances are computed between two vectors in n dimensions.
We first remark that some distances are also computed by summing sub-distances on each
dimension of the problem. We call such distances separable distances.

Definition 39 (Separable Distance). A distance δ : Rn × Rn → R is separable iff there
exists a function δ̃ : R×R→ R such that for all x, y ∈ Rn,

δ(x, y) =
n∑

i=1
δ̃(xi, yi) .

Lemma 3. The Hamming and Manhattan distances are separable, with

δ̃H (a, b) = 1a̸=b (8.3)
δ̃l1 (a, b) = |a− b| . (8.4)

Using a separable distance means that each dimension is independent of the other. This
allows us to reformulate the diversity constraints. We introduce the diversity constraints
on a single dimension.

Definition 40. Let δ be a separable distance function and k be an integer. Let X and d
be a variable, s1, . . . , sk be integers, and X1, . . . , Xk be variables. We define the diversity
constraints on a single dimension:

single_diversity_dimδ(X, s1, . . . , sk, d)⇔
k∑

i=1
δ̃(X, si) ≥ d (8.5)

multiple_diversity_dimδ(X1, . . . , Xk, d)⇔
∑

1≤i<j≤k

δ̃(Xi, Xj) ≥ d (8.6)

Remark.
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• The constraints only enforce the inequality with the variable d. It is possible to
constrain the equality, but it is not necessary, because d will be maximised. So even
if d is loosely constrained, it will be instantiated to the largest value possible in its
domain to maximise the diversity.

• The single_diversity_dimδ constraint is binary, i.e. the scope contains only two
variables.

These two constraints enforce diversity on a single dimension of the problem. When
using a separable distance, the dimensions are independent of each other, so we can use
these constraints to reformulate the main diversity constraints.

Proposition 5. For δ a separable distance function,

single_diversityΣ,δ(X ,S, d)

⇔


∀i ∈ {1, . . . , n}, single_diversity_dimδ(Xi, S1[i], . . . Sk[i], di)
n∑

i=1
di ≥ d

(8.7)

multiple_diversityΣ,δ(X 1, . . . ,X k, d)

⇔


∀i ∈ {1, . . . , n}, multiple_diversity_dimδ(X1

i , . . . , X
k
i , di)

n∑
i=1

di ≥ d
(8.8)

Proof. We use the definitions of the constraint:

single_diversityΣ,δ(X ,S, d)⇔
k∑

j=1
δ(X , Sj) ≥ d (by definition)

⇔
k∑

j=1

n∑
i=1

δ̃(Xi, Sj[i]) ≥ d (δ separable)

⇔
n∑

i=1

k∑
j=1

δ̃(Xi, Sj[i]) ≥ d (sum permutation)

We create the variables di (with the same domain as d) and add the constraints

k∑
j=1

δ̃(Xi, Sj[i]) ≥ di
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. The reformulation is then

n∑
i=1

k∑
j=1

δ̃(Xi, Sj[i]) ≥ d⇔


∀i ∈ {1, . . . , n},∑k

j=1 δ̃(Xi, Sj[i]) ≥ di
n∑

i=1
di ≥ d

⇔


∀i ∈ {1, . . . , n}, single_diversity_dimδ(Xi, S1[i], . . . Sk[i], di)
n∑

i=1
di ≥ d

Reformulating by using smaller constraints may not always be a good idea, as we know
from the example of the alldifferent constraint (some values may be arc consistent with
the network of disequalities, but not arc consistent with the alldifferent constraint).
However, in our case we do not alter the quality of the propagation.

Proposition 6. All the values are arc consistent on the constraint single_diversityΣ,δ

(resp. multiple_diversityΣ,δ) iff the network of constraints of the reformulation in
equation 8.7 (resp. equation 8.8) is arc consistent.

Proof. In Appendix A.3.1.

This reformulation does not lose any propagation power because the structure of the
constraint network is a tree (d at the root, linked to the variables di, which are linked to
the variables Xi). This should be constrasted with the clique structure of alldifferent
constraint reformulation (there is a constraint xi ̸= xj between any pair of variables xi

and xj).

Example. Figure 8.1 shows an example of the space allowed by a single_diversityΣ,δl1

on a problem with two variables X and Y with domain {0, . . . , 10} and no constraints.
The solutions S found so far are (1, 1), (4, 10), (8, 2) and (10, 8), marked by red dots in the
figure. The green area shows all the possible solutions, and the red area shows the search
space that contain no solutions. In Figure 8.1a a value of d = 31 is used. Using this value,
nothing can be propagated by arc consistency, because we see that X = 0 is a support for
all possible values D (Y ), and Y = 0 is a support for all possible values in D (X).

Using d = 35, the values x ∈ {4, . . . , 8} can be removed from D(X) because there is no
value y ∈ D (Y ) such that (x, y) satisfies the constraint. We can look at the reformulation
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Y

X

0

0

5

5

(a) With d = 31

Y

X

0

0

5

5

(b) With d = 35

Figure 8.1 – Example of propagation of the single_diversityΣ,δl1
((X, Y ),S, d) con-

straint for S = {(1, 1), (4, 10), (8, 2), (10, 8)}. The green area contains all the solutions.

of the constraint using Proposition 5. This reformulation is

single_diversityΣ,δl1
((X, Y ), {(1, 1), (4, 10), (8, 2), (10, 8)}, d)

⇔


|X − 1|+ |X − 4|+ |X − 8|+ |X − 10| ≥ d1

|Y − 1|+ |Y − 2|+ |Y − 8|+ |Y − 10| ≥ d2

d1 + d2≥ d

The maximum value for d2 is 21 (for Y = 0). For d = 35 this means that d1 is necessarily
greater than or equal to 14. For all the values of X ∈ {4, . . . , 8}, d1 is lower than or equal
to 13, so these values can be removed from the domain of X.

In this example, we see that the reformulation is able to remove as many values as the
initial constraint, as guaranteed by Proposition 6.

We would also like to point out that the most distant point is (0, 0). This may seem
counter-intuitive, because it is very close to (1, 1), but it is also very far from all the other
points. Because the ∑ aggregator is used, all the distances are taken into account, without
any minimum distance constraint. This fact will also be shown in Section 8.4.

We now go one step further and look at how the diversity constraints on each dimension
can be propagated. We first look at the single_diversity_dimδ constraint, then we
consider two cases of multiple_diversity_dimδ, with δ = δH or δ = δl1 .
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1 Function Propagatesingle_diversity_dim(X, s1, . . . , sk, d, δ)
Data: Two variables X and d, integers si, and a distance δ.
Result: The domains of X and d reduced by arc consistency.

2 M ← max
v∈D(X)

n∑
i=1

δ̃(v, si)

3 D (d)← D (d) ∩ [−∞,M ] // d upper bounded by M
4 for v ∈ D (X) do
5 if

n∑
i=1

δ̃(v, si) < minD (d) then
6 Remove v from D (X)

Algorithm 8.1: Propagation of single_diversity_dimδ.

Case of single_diversity_dimδ

The single_diversity_dimδ constraint is a binary constraint, with the two variables
X and d and parameters s1, . . . , sk. Algorithm 8.1 presents a procedure for propagating
arc consistency for the constraint. This procedure is adapted from the bound consistency
propagator of a sum constraint [22]. First, the maximum of the sum of the distances
between the values of X and the si are computed. This value M is a bound of the variable
d, so we can reduce its domain. Then, for all variables v in the domain D (X) of X, if the
sum of the distances between v and the si is less than the minimum value of d (line 5),
then we can safely remove v from D (X).

The values ∑
i=1,...,n

δ̃(v, si) for all v ∈ D (X) can be pre-computed in time O(|D (X)|+k)

when using the Hamming or Manhattan distance (if the si are sorted). For the Hamming
distance, it is only necessary to count how many si take a value v (as in the counting
sort). For the Manhattan distance, we can use Proposition 8 and compute the distances
incrementally.

Another improvement is to loop over the values of X in increasing order of
n∑

i=1
δ̃(v, si)

in line 4. This way, if the condition in line 5 is not satisfied, we know that none of
the following values can be removed. Overall, this propagator makes a linear number of
computations from the root node of the search to the bottom of the search tree. However,
this does not mean that it has a constant amortized complexity, since the depth of the
search tree is unknown.

Remark. The propagation algorithm presented requires very few computations to ensure
arc consistency. Here, we refer to other implementations of the single_diversity_dimδ

constraint.
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• When using the Hamming distance, single_diversity_dimδH
is equivalent to a

count constraint:

count(X, {s1, . . . , sk},≤, k − d)⇔ |{si | X = si}| ≤ k − d .

• It is possible to use smart tables [35] to represent the constraint:

smart_table
(

(X, d),
{(

v, · ≤
n∑

i=1
δ̃(v, si)

)
| v ∈ D (X)

})
.

This smart table has a size linear in the domain of X. It could also be implemented
as a classical table, by enumerating the possible values of the smart table (of size
at worst O (|D (X)| · |D (d)|)):

table
(

(X, d),
{

(v, v′) |v ∈ D (X) , v′ ∈ D (d) ,
n∑

i=1
δ̃(v, si)) ≥ v′

})
.

Case of multiple_diversity_dimδH

We have created the multiple_diversity_dimδH
constraint from the diversity con-

straint. We remark that it is equivalent to a soft version of the alldifferent constraint 1,
introduced in [27], which is also equivalent to a soft version of the allequal constraint
(introduced in [25]).

Definition 41 (soft_alldifferentmin
G ≡ soft_allequalmax

G [25, 27]).
The soft_alldifferentmin

G constraint counts the number of inequalities that are not
respected in the alldifferent constraint, i.e.

soft_alldifferentmin
G (X1, . . . , Xn, N)⇔ N ≥ |{(i, j)|Xi = Xj, i < j}| .

Soft constraints are an important modelling tool. They allow the modelling of over-
constrained problems, where some constraint may be violated (i.e. not satisfied). Soft
versions of constraints also allow to quantify how far the constraint is to be satisfied. For
example in a scheduling problem, workers are legally constrained to work at most a certain
amount of time. However, it is possible for some workers to work overtime. This overtime

1. Also called soft_alldifferent_ctr in the global constraint catalogue http://sofdem.github.
io/gccat/gccat/Csoft_alldifferent_ctr.html
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can be quantified using soft constraints. Then the overtime can be constrained depending
on other laws (for example there may be a maximum amount of overtime allowed).

In a sense, soft constraints allow to measure the distance between the fully constrained
problem and the solution of the soft problem. We now show the equivalence between the
diversity constraint and the soft constraint.

Proposition 7. Let X1, . . . , Xk be k variables. When using the Hamming distance, the
multiple_diversity_dimδH

constraint can be rewritten as a soft_alldifferentmin
G

constraint:

multiple_diversity_dimδH
(X1, . . . , Xk, d)

⇔ soft_all_differentmin
G

(
X1, . . . , Xk,

k(k − 1)
2 − d

)
.

Proof.

multiple_diversity_dimδH
(X1, . . . , Xn, d)

⇔
∑

1≤i<j≤k

1Xi ̸=Xj
≥ d

⇔ |{(i, j)|Xi ̸= Xj, 1 ≤ i < j ≤ k}| ≥ d

⇔ k(k − 1)
2 − |{(i, j)|Xi = Xj, 1 ≤ i < j ≤ k}| ≥ d

⇔ k(k − 1)
2 − d ≥ |{(i, j)|Xi = Xj, 1 ≤ i < j ≤ k}|

⇔ soft_all_differentmin
G

(
X1, . . . , Xk,

k(k − 1)
2 − d

)

In [27], an algorithm for the arc consistency in O(n ·m) is presented, where n is the
number of variables in the constraint and m is the sum of the sizes of the domains. This al-
gorithm can also be used to propagate arc consistency on the multiple_diversity_dimδH

constraint using Proposition 7.

Case of multiple_diversity_dimδl1

To our knowledge, the multiple_diversity_dimδl1
constraint has never been studied

as a global constraint. The goal is to find the values of variables that maximise the sum
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of all the pairwise distances (absolute value of the difference) between two variables, i.e.

k∑
i=1

k∑
j=i+1

|Xi −Xj| ≥ d .

The first (and naive) way to implement this constraint is to create variables for all the
differences dij = |Xi−Xj| and sum these variables. There will be k(k−1)/2 such variables.
Splitting the formula between these variables loses the information that each variable
occurs in multiple dij, thus reducing the power of propagation.

The absolute values are the hard part of this sum. They prevent the formula from being
factorised. However, if the variables Xi are sorted, we can safely remove the absolute values
(a ≥ b⇒ |a−b| = a−b). The following proposition factorises the formula when the values
are sorted.

Proposition 8. Let x1, . . . , xk ∈ Z such that x1 ≤ x2 ≤ . . . ≤ xk. Then

k∑
i=1

k∑
j=i+1

|xi − xj| =
k∑

i=1
(2i− k − 1)xi

Proof.

k∑
i=1

k∑
j=i+1

|xi − xj| =
k∑

i=1

k∑
j=i+1

(xj − xi)

=
k∑

i=1
(i− k)xi +

k∑
i=1

k∑
j=i+1

xj

=
k∑

i=1
(i− k)xi +

k∑
j=1

j−1∑
i=1

xj

=
k∑

i=1
(i− k)xi +

k∑
j=1

(j − 1)xj

=
k∑

i=1
(2i− k − 1)xi

The only requirement for this formula is that the xi must be sorted. If we can ensure
that the variables in the constraint are sorted, then we can use this formula to reformulate
the constraint. To ensure that the variables are sorted, we can use the sort(X ,Y), which
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ensures that there is a one-to-one correspondence between the variables in X and in Y ,
and that the variables Y1, . . . , Yn are sorted in ascending order. This gives a reformulation
of the constraint.

Proposition 9. We introduce new variables Y = {Y1, . . . , Yk} with domains equal to the
union of the domains of the variables in X . We can reformulate the constraint as follows

multiple_diversity_dimδl1
(X1, . . . , Xk, d)⇔


sort(X ,Y)

k∑
i=1

(2i− k − 1)Yi ≥ d

Proof. The sort constraint ensures that the variables Yi are sorted, so we can apply Prop-
erty 8.

Using this reformulation, a change in the domain of d can be propagated to the vari-
ables Yi and then to the variables Xi. It is also possible to use the fact that the Yi

are sorted when propagating the constraint ∑k
i=1(2i − k − 1)Yi ≥ d. For example, the

constraint increasing_sum (Y1, . . . , Yk, d) states that ∑i Yi ≥ d and the variables Yi are
sorted, and the bound consistency can be done in linear time O(k) [43]. In our case the
sum is weighted, so the consistency algorithm should be adapted. Also, arc-consistency
of the sort constraint is NP-hard [52], so only an approximation of arc-consistency can
be performed for high value of k.

Remark. If there are no other constraints, maximising the sum ∑k
i=1(2i − k − 1)Xi is

straightforward. It can simply be done by choosing the smallest possible values for the
variables Xi for 1 ≤ i ≤ ⌊k/2⌋ (i.e. for negative coefficients 2i − k − 1), and the largest
possible values for the variables Xi for ⌊(k + 1)/2⌋ < i ≤ k (i.e. for positive coefficients
2i− k − 1). We also note that when k is odd, X⌈k/2⌉ has a coefficient 0, so has no effect
on the distance.

8.3.2 min Aggregator

The second aggregator we study is the minimum min of the pairwise distances. When
using the ∑ aggregator, the constraints can be split into smaller constraints on each di-
mension. This is not possible when using the min aggregator. Propagating arc consistency
on the single_diversitymin,δ is thus much more complicated.

Theorem 8 ([24]). Arc consistency is NP-hard to propagate on single_diversitymin,δH
.

191



Part IV, Chapter 8 – Back to the Definitions

Y

X

0

0

5

5

(a) With single_diversitymin,δl2
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(b) With δl2 ((X, Y ), (10, 0)) ≥ 6

Figure 8.2 – Examples of propagation of the diversity constraint using the min aggregator.

Corollary 1. Arc consistency is NP-hard to propagate on multiple_diversitymin,δH
.

In [24], this result is proved only for the Hamming distance, here we extend it to all
the lp distances (this includes the Manhattan and Euclidean distances).

Theorem 9. For any p ≥ 0, arc consistency is NP-hard to propagate on single_diversitymin,δlp

and on multiple_diversitymin,δlp
.

Proof. In Appendix A.3.1

Example. We use the same problem as in the previous example in Figure 8.1, but with
the min aggregator and the Euclidean distance. Figure 8.2a shows the solution space (in
green) of the single_diversitymin,δl2

. We see that there is no support for the values
x ∈ {7, . . . , 10} in D (X), nor for the values y ∈ {0, . . . , 3} in D (Y ). This does not mean
that these values can be propagated easily by the solver.

To propagate a min constraint, the solver reformulates it as multiple inequalities:

min
s∈S

δ(X , s) ≥ d⇔ ∀s ∈ S, δ(X , s) ≥ d .

However, this reformulation loses propagation power because fewer values can be propa-
gated. For example, Figure 8.2b shows the solution space of the constraint δl2 ((X, Y ), (8, 2)) ≥
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pairwise distances are greater than 3.
It would be very difficult to constrain the solver to return the third solution set instead

of the second solution set. Ideally, not only the minimum distance should be maximised,
but also the second minimum distance, the third, and so on. This means that the most di-
verse set is the one that maximises the lexicographic order of the sorted pairwise distances.
This adds another level of complexity when the set of all possible solutions is unknown.
In the following Chapter 9 Section 9.6.1 we show how to optimise the lexicographic order
in a reasonable time when the set of solutions is known and is a one-dimensional set (such
as a Pareto front in two dimensions).

8.4.2 In Two and Three Dimensions

In two and three dimensions we generate 500 random points in [0, 1]k where k = 2 or
3. We use the greedy approach (iteratively finding the point the most distant from the
ones previously found) with the Euclidean distance to extract 20 solutions, starting from
a randomly chosen one (in blue in the plots).

Figure 8.4 shows the allowed solutions in green and the 20 selected solutions in red,
for the two aggregators. It also shows as a heat map the distance from any point to the
returned solution set.

When using the min aggregator, the solutions are well distributed in [0, 1]2. The heat
map shows the regions that are further away from the selected points with a darker shade.
This draws the Voronoi diagram of the selected points.

When using the ∑ aggregator, the solutions are clustered around the corners of the
space. This is similar to the behaviour in one dimension, which could be explained by the
reformulation of the multiple_diversity_dimδl1

. This extends to multiple dimensions if
separable distances are used. Interestingly, the plot shows that there is the same behaviour
with non separable distances, such as the Euclidean distance in our case.

Figure 8.5 shows the same experiment in three dimensions. Using the min aggregator
the solutions returned are well distributed in [0, 1]3. Using the ∑ aggregator, the solutions
are again clustered around the corners of the [0, 1]3 cube but not in the inside of the cube.

From the point of view of solution space coverage, using the ∑ aggregator seems to be
a very bad solution. However, we can also see that it finds the boundary of the solution
space. In some cases this can be very important, for example when testing corner cases
of a software.
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This proposition ensures that in the worst case, the solution set of the greedy or hybrid
approach is not too much worse than the optimal solution. The following proposition shows
that this worst case is achievable.

Proposition 11. There exist problems where the minimum distance of the solution re-
turned by the greedy or hybrid approaches is exactly half the minimum distance of an
optimal solution.

Proof. In Appendix A.3.2

These propositions show that there is a theoretical guarantee when using a heuristic
method, but this guarantee is far from the optimal. Since the exact approach may not
be solved to optimality in a reasonable time, it is advantageous to use heuristics because
they produce good quality solutions in practice.

Another takeaway from the propositions is the fact that the hybrid approach does not
give more guarantee than the greedy approach alone. In fact, finding the k most diverse
solutions is not an iterative process: from an optimal set of size k, adding one solution
may give a set of size k + 1 far from the optimal.

8.5.2 Random Approach

We have seen in the previous chapters (in Part III) that randomness can provide
good diversity and good coverage. Here, to theoretically analyse the behaviour of random
approaches, we focus on the unit square [0, 1]2 (or the unit hypercube, if simple formulas
can be derived).

∑ Aggregator

We first consider the ∑ aggregator. We want to compute the average sum of the
distances of k randomly generated points. To do this, we first need to know the average
distance between two randomly generated points. This has been studied under the term
mean line segment length [187].

Proposition 12 ([187]). Let s1 and s2 two random points in [0, 1]2, i.e. random variables
following the uniform distribution U ([0, 1]2). Then the expected Euclidean distance between
s1 and s2, noted ∆(2) is

∆(2) = E (δl2 (s1, s2)) = 2 +
√

2 + 5 ln(1 +
√

2)
15 ≈ 0.52 .
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Since the expected value is a linear function, we can easily calculate the expected sum
of the distances of randomly generated points.

Corollary 2. Let S = {s1, . . . , sk} be a set of independent and identically distributed
points following the uniform distribution U ([0, 1]2) on the unit square. Let Z be the sum
of the Euclidean distances, i.e.

Z =
∑

s,s′∈S
s̸=s′

δl2 (s, s′) ,

then
E (Z) = k(k − 1)∆(2) .

Proof.

E (Z) = E

 ∑
s,s′∈S
s ̸=s′

δl2 (s, s′)


=

∑
s,s′∈S
s ̸=s′

E (δl2 (s, s′)) (by linearity of E)

=
∑

s,s′∈S
s ̸=s′

∆(2) (by Proposition 12)

= k(k − 1)∆(2)

We can compare this value with the optimal set of points. Using the Manhattan
distance, it can be shown (using the Propositions 5 and 9) that the optimal solution set
has solutions in the corners of the unit square. In the case where k is a multiple of 4,
there are k/4 solutions at each corner of the unit square. We assume that the solutions
of the same corner differ by a value ϵ > 0, which we neglect (it can be chosen to be as
close to 0 as we want). Figure 8.4 and 8.5 show that the same reasoning works for the
non separable Euclidean distance. Each solution has a distance 0 from the solutions in
the same corner (by neglecting ϵ), a distance

√
2 from the k/4 solutions in the opposite
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corner, and a distance 1 from the k/2 other solutions. The sum of the distances is then

∑
s∈S

1 · k2 +
√

2 · k4 = k2 2 +
√

2
4 ≈ 0.85k2 .

This means that the random approach is on average 61% worse than the optimal solution
set (in the unit square).

In higher dimension The average distance ∆(n) of two randomly chosen points in the
hypercube [0, 1]n is difficult to compute. The one-dimensional case is simple, with ∆(1) =
1/3, and a closed form formula is known for ∆(3) (also known as the Robbins constant),
∆(4) and ∆(5). Only bounds of ∆(n) are known for higher dimensions, but the values
can be computed approximately (∆(n) ≈

√
n/6− 7/120 is a good approximation [161]).

We can compute the optimal sum of distances using solutions at the corners of the
hypercube. From a corner, the distance to the k/2n solutions in the corner with i changes
is
√
i, and there are

(
n
i

)
such corners. So the sum of distances is

k2

2n

n∑
i=0

(
n

i

)√
i .

This allow the ratio between the optimal and the random solution set to be calculated.
On average, as the dimension increases, the random solution is 57% worse than the optimal
solution.

Manhattan distance Using the Manhattan distance, the same reasoning can be done,
but the computations are simpler. The problem can be split into each dimension. On a
line [0, 1] the average distance between two points is ∆(1) = 1/3. This means that in the
hypercube [0, 1]n the average distance between two points is n/3, so the average distance
between k points is k(k − 1)n/3.

The sum of the distances between k points at the corners of the hypercube is

k2

2n

n∑
i=0

(
n

i

)
i = k2n

2 .

This means that on average, a randomly generated solution set has a sum of distances
66% worse than the optimal set.
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min Aggregator

Computing the average value of the minimum of the distances of points in the unit
square is also difficult.

In one dimension The average minimum distance is known [160] in one dimension
(i.e. for random variables in [0, 1]).

Proposition 13 ([160]). Let X1, . . . , Xk be k independent and identically distributed ran-
dom variables following the uniform distribution over the unit line U([0, 1]). Let Z =∑

1≤i<j≤k |Xi − Xj| be the minimum distance between the random variables (in one di-
mension, the Euclidean distance is equivalent to the Manhattan distance). Then E (Z) =
1/(k2 − 1).

The optimal solution set is to space the points evenly, so the minimum distance is
1/(k − 1). The average minimum distance is thus smaller than the optimal minimum
distance by a factor n, so the approximation factor tends to 0 when k grows.

In higher dimension In higher dimension, the minimum distance of k randomly cho-
sen points may be studied using extreme value theory. For example, the Fisher-Tippett-
Gnedenko theorem [170] gives a convergence result for the distribution of the maximum of
random variables. However, here we do not know explicitly the distribution of the distance
between two random points. However, from experimental simulations, we can make the
following conjecture.

Conjecture 1. Let X1, . . . , Xk be k independent and identically distributed random vari-
ables following the uniform distribution over the unit hypercube of dimension n U([0, 1]n).
Let Z = ∑

1≤i<j≤k δl2 (Xi, Xj) the minimum distance between the random variables. Then,
there is a constant c such that E (Z) ∼ c/k2/n.

We can easily give a lower bound on the optimal minimum distance of a solution set.
When can place the solutions in a lattice (n-dimension grid) where the minimum distance
is ⌊1/k1/n⌋. The minimum distance in the order of 1/k1/n of the optimal solution should
be compared with the expected minimum distance of a random solution set (1/k2/n). This
means that the approximation factor of the random sampling also tends to 0 as n grows.
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Conclusion The analysis of random sampling shows that optimising the minimum dis-
tance is harder than optimising the sum of the distances. To optimise the minimum
distance, solutions should be well chosen in the solution space, and this task is difficult.
Random sampling cannot give a guarantee of approximation.

When optimising the sum of the distances, it can be expected that random sampling
will give a decent solution set. On average, the sum of the distances of the solution set
returned by random sampling is close to the optimal one, up to a constant factor.

8.6 Conclusion

In this chapter, we returned to the definitions of the diversity problems presented
in [24]. To solve these problems, we defined diversity constraints. We studied these con-
straints depending on the aggregator (∑ or min) and the distance used. We were able to
reformulate the diversity constraints using the ∑ aggregator into smaller constraints, we
showed a propagation algorithm, and a link to soft constraints. We experimentally anal-
ysed the solution sets returned by using either the ∑ or the min aggregator. The solution
sets have specific characteristics, with solutions in different parts of the search space. We
also analysed the quality of the approximation algorithms (greedy, hybrid, and random)
and showed approximation factors that ensure the quality of the returned solution set
compared to the optimal solution set.

This chapter bridges the gap between three domains:
• At the start of the chain are the users. They want to be presented with solutions to

have an understanding of their possibilities. Depending on their needs, the solutions
should either cover the solution space well (using the min aggregator), or find
extreme points (using the ∑ aggregator).

• Between the solver and the user are the modellers. Their role is to translate the
user’s needs into a constraint programming model. It is also their role to know what
degree of approximation is allowed. We give to the modellers theoretical guarantees
about the behaviour of the approximation algorithms.

• At the end of the chain, solver developers have to implement the diversity con-
straints used by the modeller. For these developers, we have shown how the diver-
sity constraints can be reformulated (without loss of propagation power) as smaller
constraints, or already existing constraints. This facilitates the development phase
by reusing basic blocks.
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In this chapter, we have assumed that the problem is specified as a satisfaction prob-
lem. However, in many cases multiple (possibly conflicting) objectives are to be optimised.
The following chapter studies diversity in a multi-objective framework and shows how to
define the diversity problems and constraints in this framework.

Figure 8.6 – A Sudoku grid.
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Chapter 9

APPLICATION: DIVERSITY IN A

MULTI-OBJECTIVE PROBLEM

This chapter describes an ongoing collaboration with members of the R-IOSuite project.
In this project, the end-user is a prefect making decisions that have impact on the life of
people.

9.1 Introduction

In the previous chapters, we developed methods that are studied theoretically. But the
only way to evaluate these methods is practical, by presenting solutions to a user. Hence,
we started a collaboration with the RIO-Suite project in order to see how we could adapt
our work to a real-life problem. Here the end-user is a decision maker in a high stakes
situation (monument fire, natural disaster, etc). This decision maker must choose between
multiple objectives to optimise: the duration of the intervention, the cost, the expertise
of the agents, etc.

In a multi-objective problem, even if the solutions are well defined by constraints, it
is more difficult to find an optimal solution. The objectives may be conflicting, so the
solutions cannot be compared. In satisfaction problems, the diversity has been defined
between the instantiations of the solutions (the actual values of the variables). In multi-
objective problems, however, solutions are first compared by their objective values. The
users must understand how the objectives interact, and what the possible values of the
objectives are before making a decision. This way, the diversity is not defined on the
solutions, but rather in the objective space.

In this chapter, we propose an approach inspired by PostHoc [28] to find a good set
of diverse solutions to present to a user. This approach first finds solutions to the problem,
and then extracts a subset of diverse solutions from them.

We first present an application in Section 9.2. This application shows the challenges of
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Figure 9.1 – Component diagram of the R-IOSuite software suite.

finding solutions to multi-objective problems, and interacting with a user. In Section 9.3 we
then formally define the multi-objective framework. In Section 9.4 we present algorithms to
generate diverse weights in the simplex, a prerequisite for most of the following approaches.
We then present algorithms to perform the two steps of the approach we use in Sections 9.5
and 9.6.

9.2 R-IO: a Model of Crisis Management

In this section I present an application of diversity in a multi-objective setting. It is
based on my preliminary work on the R-IOSuite project. “R-IOSuite is a software suite
that embeds a set of tools dedicated to support efficiently inter-organizational collabora-
tions (collaborative industrial projects, supply chain, crisis management, etc)”. 1 R-IOSuite
is a large project with several components. Figure 9.1 shows the different components of
the R-IOSuite project. It includes tools for modelling the problem, a mobile application,

1. https://r-iosuite.atlassian.net/wiki/spaces/RIOSUITE/overview?mode=global
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tools to simulate events, etc. Of all these components, we focus on the R-IODA compo-
nent: the design assistant. This is the component that translates the domain knowledge
(rules, possible tasks) and the input (agents available, skills) into a constraint satisfaction
problem, solves it and proposes the solutions to the users.

9.2.1 Context

Albi’s Cathedral 2

We use an example application to show the purpose of R-
IODA (the design assistant of R-IOSuite): the cathedral of
Albi (a World Heritage Site) is on fire. The prefect (this can
apply to other decision makers, such as mayors or presidents)
has to plan the rescue team and the firefighters to save the
visitors and stop the fire.

The prefect has a number of agents divided into different
classes. In this example, we focus on three classes: firefight-
ers, police officers, and paramedics/doctors. Each class has a
number of agents that can be deployed to solve the problem
at hand. Each class of agents has a set of skills for specific
tasks, for example, paramedics are experts at treating injured
people, but firefighters are also trained in first-aid. Depend-
ing on the the number of agents available, some firefighters can be assigned to the help of
injured people instead of stopping the fire.

There are several tasks that need to be carried out in order to stop the fire safely. Before
the fire can be tackled, the injured should be evacuated from the cathedral. Ideally, this
would be done by paramedics, but often firefighters are the first to arrive at a scene. Once
all the survivors have been evacuated, and when all the preparations have been made
(preparing the fire engines and the water), the firefighters can stop the fire. At the same
time, a safety zone should be set up around the cathedral to prevent people from entering
a dangerous place. This task can be carried out by police officers, a class of agents trained
to set up safety zones. At the end of the fire, the structural integrity of the cathedral
should be checked before ending the intervention, to prevent, for example, some parts
of the cathedral from falling on nearby dwellings. Figure 9.2 graphically represent the
dependencies between the tasks. Evacuation and the preparations are prerequisites for

2. By Krzysztof Golik — Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.
php?curid=62150141
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Evacuation

Preparation

Fire

Safety

Structure

Figure 9.2 – Dependency graph of the tasks to stop the fire. A vertex is a task and an arc
is a dependency. The dotted double arc is a support dependency (the two tasks should be
done at the same time.

stopping the fire. The safety task (keeping the zone safe) is a support task, i.e. it should
be done at the same time as stopping the fire. Then, there is a successor task, to ensure
the stability of the structure.

This example is a scheduling problem: agents with different skills should be assigned
to perform tasks in a given order. In this example, the total time taken by the schedule
(i.e. the time taken to complete the last task) should be as short as possible. This is one
of the objectives of the optimisation. However, there are several other objectives, some
of which are easier to model than others. We now give some examples of such objectives
that the user might want to optimise.

• The expertise of agents assigned to tasks should be maximised: the most skilled
agents for a given task should be assigned to that task. However, this may mean
delaying tasks in order to always assign the most skilled agent (who may be in
another task at the same time).

• The cost should be minimised. In our example, the prefect can ask for help from
the fire brigades of other neighbouring towns, but this has a cost (transporting
people and equipment).

• The probability of success should be maximised. A model is a partial representation
of the reality, and other non-modelled factors may cause a task to fail (for example,
failing to stop the fire because of wind). This probability may depend on the
expertise of the agents assigned to a task, or the preparation time, or the number
of agents assigned.

• The fatigue of agents should be minimised. Depending on the duration of the
event, some agents may need to take breaks. For example, during extreme forest
fires (which become more and more frequent during the summer), firefighters risk
their lives on a daily basis in a stressful environment. Fatigue should be taken into
account at the planning stage to protect their mental and physical health.
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• The number of lives saved should be maximised. However, it can be very difficult to
model this objective with incomplete information. For example, in an earthquake
this can be used to prioritise which collapsed buildings should be dug out first (for
example, residential areas can be prioritised).

• The heritage value of the monument (after all the tasks have been completed)
should be maximised. For example, the firefighters might try to stop the fire in the
part of the cathedral that contains the valuable paintings first.

• The safety of the agents should be maximised. Taking non-experts agents in a
dangerous place may put them at risk.

Some of these objectives (such as costs or the expertise) are easy to model. How-
ever, some other objectives may be more difficult to model due to lack of information or
modelling approximation. Also, most of these objectives are conflicting:

• The solution that minimises the makespan (total time) is likely to be costly,as a
lot of agents, vehicles and equipment will be borrowed from neighbouring cities.

• To save the most people, some low-expertise agents may be assigned to the rescue
(in addition to the expert agents), which may also put them at risk.

• Trying to save some parts of the monument may allow the fire to spread further,
reducing the likelihood of effectively stopping the fire.

In this multi-objective situation, it is not possible to find the best solution. Even if the
problem were perfectly modelled, it is not possible to leave the decision to the algorithm
alone. The prefect who makes the final decision takes responsibility for her/his choices.
These decisions have a real impact on whether or not lives are saved. It is very difficult
to simplify some of the objectives, as it would require being able to compare them: this
would mean giving a price for a life saved, or comparing the safety of the agents to the
probability of success. In this setting, it is necessary to give the user (the prefect) a small,
well-chosen (i.e. diverse) set of solutions from which to choose. The prefect has to perform
the final decision.

9.2.2 CP Model

First we present the data of the problem. There is:
• a set S of skills;
• a set of tasks to perform T . Each task t ∈ T has

— a duration δt;
— a set of predecessor tasks ρt that must be completed before t starts;
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— a set of support tasks σt that have to be performed while t is performed;
— a required skill χt;
— a consumption const.

• a set of agent classes A. Agent classes represent a class of agents (for example,
firefighters or policemen). Each agent class a ∈ A has
— for each skill s ∈ S a level λa,s;
— a capacity capaa, giving the number of agents in the class.

We now define the variables used in the model. For all agent classes a ∈ A and tasks
t ∈ T :

• dstart
t and dend

t are the starting and ending time of task t;
• makespan is the ending time of the latest task;
• toa,t is a Boolean variable equal to 1 iff the agent class a is assigned to the task t;
• agentt is the agent class assigned to task t;
• levelt is the skill level of the agent class assigned to task t;
• total_skill is the sum of all skills of the agent classes at their assigned tasks.

We now give the constraints of the model. First we link the variables toa,t to agentt.

∀t ∈ T , agentt = a⇔ toa,t = 1 .

This also ensures that all tasks are performed by a single agent class (enforced by the
redundant constraint ∀t ∈ T ,∑a∈A toa,t = 1). We need to ensure that at all time, the
consumption of the tasks assigned to an agent class is not higher than the capacity of this
class. This is exactly represented by a cumulative constraint.

∀a ∈ A, cumulative
(
{(dstart

t , dend
t , const × toa,t) | t ∈ T }, capaa

)
.

The cumulative constraint takes as parameter a set of triples containing a starting time,
an ending time, and a consumption, and ensures that the sum of the consumption of
overlapping tasks does not exceed the capacity. In our case, the consumption is either
const if the task is assigned to the agent class (toa,t = 1), or 0 otherwise. We first constrain
the starting and ending times of the tasks. All the predecessor tasks must be completed
before the current task.

∀t ∈ T ,∀t′ ∈ ρt, d
end
t′ ≤ dstart

t .
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All the support tasks must be performed at least at the same time as the considered task.

∀t ∈ T , ∀t′ ∈ σt, d
start
t′ ≤ dstart

t ∧ dend
t ≤ dend

t′ .

The makespan is the ending time of the latest task, i.e. the maximum ending time.

makespan = max
t∈T

dend
t .

The skill level of the agent class assigned to the the task is constrained by the following
constraints.

∀t ∈ T ,levelt > 0
∀t ∈ T ,element

(
levelt, [λa1,χt , . . . , λa|A|,χt ], agentt

)
total_skill =

∑
t∈T

levelt

The element(v, T, i) is equivalent to v = T [i]. Here we create an array containing the
skill level of each agent for the skill χt (the skill required for the task t). This element
constraint forces the levelt to be equal to the level of the agent agentt on the task χt.

9.2.3 Visualisations

When working with a non-expert user, the visualisations are almost as important as
the quality of the solutions. Depending on the application, different visualisations are
possible, for example a Gantt chart for planning problems, or a plot of the routes for
vehicle deliveries. However, in a multi-objective setting, it is also difficult to show the user
the quality of the solution. The solution is evaluated against multiple objectives, which
may be conflicting. We show here an example of a visualisation to show to the user the
differences between the objective values of the solutions.

As an example, we have generated a planning problem with the constraints presented
in the previous section. We generated 15 tasks with some dependencies between them, and
a random duration (between 10 and 20 minutes). We defined three agents (three classes
containing a single agent): their skills for each task were randomly generated (between
0 and 100), and we also randomly generated values for a third dimension (between 0
and 100). We suppose that this third dimension models the safety of the agents, to be
maximised (it could be used to model other objectives as well). We try to minimise the
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84

608 945
Solution 1

263

738 942
Solution 2

67

851 689
Solution 3

77

794 882
Solution 4

231

921 616
Solution 5

177

904 808
Solution 6

Figure 9.3 – Representation of the three objectives for six solutions. The topmost vertex of
the triangles is the value for the makespan, the leftmost is for the skill, and the rightmost
is for the third dimension. A big triangle (i.e. with vertices close to the maximum of the
spider plot) represents a good solution.

makespan of the problem (i.e. the total time it takes to complete all the tasks), maximise
the expertise of the agents (the skill levels), and maximise the safety.

In Figure 9.3 we show the objective values for 6 diverse solutions on spider plots. For
example, the first solution has a makespan of 84, a total skill level of 608 and a safety
value of 945. The six solutions have very different objective values. For example, the first
solution is very good for the makespan and the safety (represented by the blue triangle
pointing to the topmost and rightmost vertices of the plot), but the fifth solution is almost
the opposite: it has a very good objective value for the total skill, but not for the other
two objectives. The six solutions we present here have diverse objective values.

For a user, seeing a representation of the solutions like this can help with the decision.
A common way to find good solutions for multi-objective problems is to transform the
multiple objectives into a single objective by applying a weighted sum. However, it can be
difficult for users to choose good weights. Seeing the objective values on some solutions
can help them to find weights, or at least express preferences. For example, in Figure 9.3
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the fourth solution is good on all objectives, but the fifth solution is almost optimal on
the total skills, but very bad on the other two objectives. Seeing these two solutions, a
user might say that the improvement in the total skill is not worth having an objective
so bad on the other objectives. This kind of visualisation can be used in an interactive
setting where the user is shown solutions, and the algorithm learns preferences.

9.3 Definitions

We now formally define the multi-objective optimisation framework.

9.3.1 Multi-Objective Optimisation

In Chapter 2 we defined Constraint Satisfaction Problems (CSPs) and Constraint
Optimisation Problems (COPs). We define here COPs with multiple objectives.

Definition 42 (Multi-objective COP). A multi-objective constraint optimisation problem
is a quadruplet P = ⟨X ,D, C, {obj1, . . . , objm}⟩ where X ,D, and C are the variables, the
domains, and the constraints of the problem, and obji are objective variables that should
be optimised.

We call objective space the projection of the search space on the objective values. We
define the function Fobj as the mapping between a solution and the objective space, i.e.
let σ ∈ Sols (P), then

Fobj (σ) = (σ(obj1), . . . , σ(objm)) .

We say that Fobjσ is the objective vector of σ. We also extend the definition of Fobj to
sets, i.e. with S ∈ Sols (P), then Fobj (S) = {Fobj (σ) |σ ∈ S}.

Remark. In this chapter we assume, without loss of generality, that all objectives should
be maximised. If an objective were to be minimised, it is possible to create the variable
obj′ = −obj that should be maximised.

In the usual COP, the goal is to find a solution that maximises the objective. In
multi-objective optimisation, however, the solutions may not be comparable.

Example. Consider a company that wants to maximise its profits. They also want to
maximise the welfare of their employees, which can be modelled as the number of holidays
they have. These two objectives are contradictory, there is no single solution that max-
imises both objectives at the same time. To maximise the profit, the company should not
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obj2

obj1

Figure 9.4 – Graphical representation of the dominated, and non-dominated solutions.
The dots are the points in S = {(1, 9), (3, 8), (4, 6), (7, 4), (8, 1)}, the area in red are the
dominated solutions, in green the dominant solutions, and in blue the non-dominated and
non-dominant solutions.

give any holidays to the employees. To maximise the employees happiness, the company
can give lots of holidays days, but the profit will be lower.

To define what can be considered as optimal solutions, we need to define an ordering
on the objective space.

Definition 43 (Dominance). Let y1 and y2 be two objective vectors in the objective space
Rm, we define the following orders:

• y1 ≤ y2 (y2 weakly dominates y1) iff ∀i{1, . . . ,m}, y1
i ≤ y2

i

• y1 < y2 (y2 dominates y1) iff y1 ≤ y2 and y1 ̸= y2

Given two solutions s1 and s2 to a problem P , we say that s2 dominates s1 (noted s1 ≺ s2)
iff Fobj (s1) < Fobj (s2). We note s1 ̸≺ s2 when s1 is not dominated by s2.

A set S = {s1, . . . , sk} is said to be non-dominated if ∀si, sj ∈ S, si ̸≺ sj.

This order is a strict partial order, because it is irreflexive, antisymetric, transitive,
but not total (i.e. it is false that for all s ̸= s′, s ≺ s′ or s′ ≺ s). This means that some
solutions cannot be compared.

Example. In Figure 9.4 shows an example of 5 solutions S = {(1, 9), (3, 8), (4, 6), (7, 4),
(8, 1)} in the objective space in two dimensions. This set is a non-dominated set of solu-
tions. S divides the space into three sub-spaces:
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• The red area represents all the objective vectors dominated by at least one solution
in S.

• The green area contains all the objective vectors that dominate at least one solution
of S.

• The blue area contains all the objective vectors that are not dominated by any
solution in S.

Non-dominated sets of solutions contain solutions that cannot be compared. Of all the
possible non-dominated sets of solutions, there is an optimal one, called the Pareto set.

Definition 44 (Pareto set/front). Let P be a multi-objective optimisation problem. The
Pareto set of P is the set of all solutions that are not dominated by any other solution,
i.e.

{s ∈ Sols (P) | ∀s′ ∈ Sols (P) , s ̸≺ s′} .

The Pareto front is the projection of the Pareto set onto the objective space.

An optimal solution to a multi-objective constraint optimisation problem is a solution
of the Pareto set.

Ideally, solving a multi-objective optimisation problem boils down to finding the Pareto
set. Unfortunately, this set can be exponential in the number of objectives.

9.3.2 Pareto Constraint

Single objective constraint optimisation problems (with a variable obj to maximise)
are solved by transforming the problem into a satisfaction problem by constraining the
objective function. Each time a solution σ (with objective value σ(obj)) is found, a new
constraint obj > σ(obj) is added, forcing the solver to find a better solution. When the
problem is unsatisfiable, the best solution has been found.

A similar approach is used in multi-objective optimisation. Given a set of non-dominated
solutions, a constraint is added forcing the next solution to be non-dominated.

Definition 45 (pareto constraint [156]). Let P be a multi-objective optimisation prob-
lem, and let S be a non-dominated set of solutions of P . The pareto constraint forces
the next solution not to be dominated by any solution in S, i.e.

pareto(obj1, . . . , objm,S)⇔ ∀σ ∈ S, (obj1, . . . objm) ̸≺ s .
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1 Function ParetoSolve(P)
Data: A multi-objective COP P = ⟨X ,D, C, {obj1, . . . , objm}⟩
Result: The Pareto set of P

2 S ← ∅
3 while Sols (P ∧ pareto(obj1, . . . , objm,S)) ̸= ∅ do
4 snew ← one solution of P ∧ pareto(obj1, . . . , objm,S)
5 S = {s ∈ S|s ̸≺ snew} ∪ {snew}
6 return S

Algorithm 9.1: Multi-objective Pareto set solving.

This constraint is called pareto because it is used to find the Pareto set. However, it
does not directly constrain solutions to be in the Pareto set. It only constrains solutions to
be non-dominated by the solutions in S. To find the full Pareto front, an iterative process
must be performed, as in single objective optimisation.

Algorithm 9.1 shows the iterative solving process to generate the Pareto set. It main-
tains a set S of non-dominated solutions, which is improved until it is equal to the Pareto
set. To do this, the problem is solved by constraining solutions to be non-dominated by
the solutions in S. When a solution is found, the set S is updated by removing the solu-
tions dominated by the new solution snew (in line 5). This iterative process stops when
there is no solution to the problem with the pareto constraint. This ensures that the set
S is the Pareto set.

Algorithm 9.1 generates the Pareto set. However, if the running time is bounded, the
set S can still be returned as an approximation of the Pareto set.

9.3.3 Solution Set Evaluation

We present how to evaluate if a set of non-dominated solutions is good, or how to
compare two sets of solutions. We present the hypervolume indicator. For detailed surveys
about performance indicators we refer the reader to [144, 154, 159]. The hypervolume
indicator measures the size of the space dominated by the solutions in the evaluated set.

Definition 46 (Hypervolume Indicator). We extend the notion of closed interval to high
dimension. Let l and u be two vectors of Rm, then [l, u] is the set of points that dominate
l but are dominated by u, i.e.

[l, u] = {v ∈ Rm | l ≤ v ≤ u} =
m∏

i=1
[li, ui] .
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Let S be a set of objective vectors, and let r be a reference point dominated by each vector
in S. The hypervolume indicator Hyp (S) is the size of the set of points that dominate r
and are dominated by at least one point of S, i.e.

Hyp (S) =
∣∣∣∣∣⋃
s∈S

[r, s]
∣∣∣∣∣ .

Example. We use the same example as in Figure 9.4 with the set S = {(1, 9), (3, 8), (4, 6),
(7, 4), (8, 1)}. We take the reference point r = (0, 0). The hypervolume in two dimensions is
a surface, here the surface in red. In two dimensions it is easy to compute the hypervolume,
and in this example Hyp (S) = 44.

In [157] the authors propose to evaluate a subset by computing the representativeness
of the solutions. Each solution in the solution space should be represented by a nearby
selected solution.

Definition 47 (Representative Solutions). Let F be the Pareto front (or an approxima-
tion of it), and S ⊂ F a subset of selected solutions. The radius of S is defined as

Ω(S) = max
p′∈F

min
p∈S

δ(p, p′) .

In this definition, minp∈S δ(p, p′) is the distance between p′ and its closest selected
solution. Ω(S) is then the largest distance between one solution and its closest selected
solution. To maximise the representativeness of S, the radius should be minimised (i.e.
the solutions are represented by nearby selected solutions).

Finally, it is also possible to evaluate the quality of the solution set by considering the
minimum pairwise distance, as done in the previous chapter.

9.4 Diverse Weight Generation

In the following sections, we need to generate diverse weights in m dimensions such
that the sum of the values is 1. In this section, we make a detour from multi-objective
optimisation to present algorithms for generating diverse weights. The sum of the values
of the weights we want to generate is equal to 1. In m + 1 dimensions, the set of such
weights is called the m-simplex.
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1 Function SimplexSample(m)
Data: An integer m
Result: A random (uniformly sampled) vector of Wm

2 for i ∈ {0, . . . ,m} do
3 wi ← − ln (1−Random ())
4 s← ∑m

i=0 wi

5 return
(

w0
s
, w1

s
, . . . , wm

s

)
Algorithm 9.2: Uniform sampling in Wm.

lytical procedure. Also, by using a discretisation, and solving exactly the MaxDiverseKSet
problem, it is only possible to generate very small sets (less than 10 weights) because of
the combinatorial explosion of the cases the solver has to search.

We now present three different ways to generate diverse simplex weights. A survey of
simplex point generation is done in [149] with more algorithms than the ones presented
here.

9.4.1 Random Generation

A first way to generate (approximately) diverse weights from Wm is to pick them
randomly. However, this random generation should be done with care if a uniform dis-
tribution is desired. The naive way to generate a random weight is to pick the value w0

of the first dimension uniformly in [0, 1], and then the next value in [0, 1− w0], the next
value in [0, 1−w0−w1], etc., and the last dimension is fixed to 1−∑m−1

i=0 wi. However, the
generated weights do not follow a uniform distribution in Wm. The resulting distribution
from this random sampling is shown in Figure 9.5b. It is skewed towards one vertex of
the space (the dimension sampled). Generating uniformly all the wi and then normalising
does not either generate an uniform distribution (the solutions are skewed away from the
vertices of the space).

Algorithm 9.2 [155] shows an algorithm to sample uniformly in the simplex Wm. It
first generates wi for 0 ≤ i ≤ m according to the distribution

F (x) =
 0 if x < 0

1− e−x if x ≥ 0

To do this, we use the fact that if X is uniformly distributed, then the random variable
F−1(X) is distributed according to F . The computation line 3 generates the wi using
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1 Function DasAndDennis(m,β)
Data: Two positive integers m and β.
Result: A set of points in the simplex Wm.

2 S ← ∅
3 T ← array of size m+ 1
4 DasAndDennisRec(m,β,S, 0)
5 return S
6 Function DasAndDennisRec(m,β,S, i, T )

Data: Three integers m,β and i, a set S.
Result: No output, but points are added in the set S.

7 if i = m then
8 T [m]← 1−∑m−1

j=0 T [j]
9 S.add(Copy(T ))

10 else
11 k ← 0
12 while k/β +∑i−1

j=0 T [j] ≤ 1 do
13 T [i]← k/β
14 DasAndDennisRec(m,β,S, i+ 1, T )
15 k ← k + 1

Algorithm 9.3: Generation of points in a grid in the simplex [148]

this property. The weights are then divided by their sum, to ensure that the sum of the
returned vector is equal to 1. The proof of the correctness of this algorithm can be found
in [155].

Remark. There is another simple way to uniformly generate weights presented in [149].
The idea is to take the interval [0, 1], cut it at random places, and return the length of the
cut intervals (which necessarily sum to 1). First values w1, . . . , wm are generated uniformly
in [0, 1]. Then the values w′

0, . . . , w
′
m+1 are computed by sorting the values 0, w1, . . . , wm, 1.

The vector (w′
1 − w′

0, . . . , w
′
m+1 − w′

m) is uniformly distributed in Wm. The complexity is
O(m logm), compared to the O(m) complexity of Algorithm 9.2.

9.4.2 Das and Dennis’ Generation

In [148], the authors proposed a weight generation algorithm that generates evenly
spaced points (in a grid) of the simplex Wm. It is presented in Algorithm 9.3. The algo-
rithm takes as input the number of dimensions m (to be sampled in the simplexWm), and
an integer β used to define the spacing of the points. It generates points in the simplex
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obj2

obj1

(a) Dominated sub-space

obj2

obj1

(b) Diversification sub-space

obj2

obj1

(c) Intensification sub-space

Figure 9.4’ – Graphical representation of the dominated, and non-dominated solutions in
a bi-objective maximisation problem as in Figure 9.4. The dots are the points in S =
{(1, 9), (3, 8), (4, 6), (7, 4), (8, 1)}.

9.5 Pareto Front Optimisation

The approach we propose in this chapter to find diverse solutions in multi-objective
problems is a two-step procedure based on the PostHoc approach [28]. First, a set of
solutions is generated (in our case, a non-dominated set of solutions, ideally the Pareto
set). This set does not have to be diverse, but it should cover a large part of the space.
Second, the k desired solutions are extracted from this set. This step should find diverse
solutions.

In this section, we study the first part of this two-step approach. This step is where
the problem is solved. There are two goals: to find good solutions, and to find multiple
solutions covering the solution space. These two goals are similar to the exploration/
exploitation in several learning algorithms (such as Monte-Carlo Tree Search or Markov
Decision Process). We want to improve good solutions previously found, but we also want
to explore unseen parts of the space that may contain other good solutions.

9.5.1 Multi-Objective LNS

One of the first approaches to find a good non-dominated set of solutions in CP
was presented in [156]. It adapts a Large Neighborhood Search (LNS) to multi-objective
optimisation. LNS is a meta-heuristic improving solutions by destructing some parts of a
previously found solution and reconstructing it the best possible way.
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1 Function MO-LNS(P , limit, sublimit)
Data: A multi-objective COP P = ⟨X ,D, C, {obj1, . . . , objm}⟩, limit and

sublimit two limits (such as the running time or number of
backtracks).

Result: A set of non-dominated solutions of P
2 S ← {FindOneSolution(P)}
3 P ← P ∧ pareto(obj1, . . . , objm,S)
4 while limit is not met do
5 s← ChooseSolution(S)
6 S ′ ← ImproveLNS(P , s, sublimit)
7 S ← NonDominated(S ∪ S ′)
8 P ← P ∧ pareto(obj1, . . . , objm,S)
9 return S

Algorithm 9.5: Outline of the MO-LNS procedure.

The authors remark that the search space is divided into three sub-spaces, shown in
Figure 9.4’: the dominated sub-space (in Figure 9.4’a) contains all the solutions worse
than those previously found in S. They are removed using the Pareto constraint. The
diversification sub-space (in Figure 9.4’b) contains all the solutions that are not compa-
rable to those in S. It is important to find these solutions to cover more of the search
space. Finally, the intensification sub-space (in Figure 9.4’c) contains all the solutions
that dominate at least one solution of S. This sub-space should be explored to improve
the current solutions.

Multi-Objective LNS (MO-LNS) presented in [156] iteratively improves a set S by
selecting a solution, and using it in the LNS procedure to find a better solution. Algo-
rithm 9.5 gives the outline of MO-LNS. Two limits must be chosen: limit to stop the
computations, and sublimit to stop the iterations of the LNS. The algorithm starts with
an initial solution, and adds the pareto constraint to the problem. Then, iterations are
performed to improve the set S. First, a solution s is selected using ChooseSolution.
Then, this solution is improved (or diversified) using the LNS algorithm (adapted to
the CP framework). At the end of the iteration, the non-dominated set of solutions S is
updated with all the new solutions. This algorithm uses two important functions: Choos-
eSolution and ImproveLNS.
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ChooseSolution

Due to the local search performed by the LNS, ImproveLNS finds solutions close to
the one selected by ChooseSolution. A naive approach to select the solution would be
to pick one at random from S. However, as the authors remarked, this has a major flaw.
Due to the locality effect of ImproveLNS, the set S may not be uniformly distributed
in the space. Then, if the solution is chosen at random, it will with high probability be in
sub-spaces of S with high density of solutions already found. Then new nearby solutions
will be generated, increasing the density of S in that sub-space.

To avoid over-sampling some sub-spaces, a weight can be randomly (and uniformly)
generated from Wm−1 and used to pick the solution from S. To pick a solution from a
weight u, it is possible to pick the solution that is closest to the line defined by the vector
u. This ensures that all sub-spaces are given the same chance.

ImproveLNS

When a solution s is chosen, an LNS iteration is performed to improve it. However, as
we saw in Figures 9.4’b and 9.4’c, an improvement of s could mean either intensification
(i.e. a dominant solution), or diversification (i.e. non-comparable solutions). To find so-
lutions in the intensification sub-space, a constraint is added to the problem stating that
the solution found should dominate s. To find solutions in the diversification space, no
constraint is added. To alternate between diversification and intensification (as in explo-
ration/exploitation), an LNS iteration will search in the diversification sub-space half of
the time, and in the intensification sub-space the rest of the time. This has been shown
experimentally to greatly improve the set S.

9.5.2 Weighted Sum Strategy

The approach presented in this section is a personal communication [158] that does not
appear in any publication. I present it here with the author’s permission.

A simple way to deal with multi-objective problems is to transform them into single-
objective optimisation (using a weighted sum for example), and solve them using the usual
approach. However, this may not be possible when the objectives cannot be weighted.
In [158], the author proposes a search strategy that uses this transformation (a weighted
sum of the objectives) to improve the optimisation of the non-dominated set of solutions.
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1 Function WeightedSumStrategy(X , ω, score1, . . . , scorem)
Data: A set of variables X , ω a point in the simplex Wm−1, and m score

functions scorei : X ×N→ R.
Result: A decision to perform during the search.

2 (X, v)← argmax
X∈X ,v∈D(X)

(
m∑

i=1
ωi · scorei(X, v)

)
3 return Decision(X = v)

Algorithm 9.6: Strategy weighting variable/value pairs depending on scores.

1 Function ScoreSolving(P , limit, sublimit,W , score1, . . . , scorem)
Data: A multi-objective COP P = ⟨X ,D, C, {obj1, . . . , objm}⟩, limit and

sublimit two limits (such as the running time or number of
backtracks), a set of weights W ⊂Wm−1, and m score functions
scorei : X ×N→ R.

Result: A set of non-dominated solutions of P
2 S ← ∅
3 while limit is not met do
4 ω ← NextWeight(W)
5 strat←WeightedSumStrategy(X , ω, score1, . . . , scorem)
6 S ′ ← FindSolutions (P , strat, sublimit)
7 S ← NonDominated(S ∪ S ′)
8 P ← P ∧ pareto(obj1, . . . , objm,S)
9 return S
Algorithm 9.7: Iteratively solving the problem using a weighted strategy to find
good multi-objective solutions.

This approach assumes that there is a way (or an approximation) to score the vari-
able/value pairs to optimise a given objective. It assumes that for the problem, there is
a function score1 such that the value v for variable X that maximises score1(X, v) is the
best decision to optimise objective obj1. Using these scores, the author designs a search
strategy performing a weighted sum of the scores. Algorithm 9.6 presents the search strat-
egy. The decision performed by the strategy is the couple variable/value that maximises
the weighted sum of the scores on each dimension of the problem. For example, in a two
dimension problem, with a weight ω = (1/2, 1/2), the strategy WeightedSumStrat-
egy chooses the variable/value pair that maximises the sum of the scores on the two
dimensions.

Algorithm 9.7 presents the main solving algorithm using WeightedSumStrategy.
As with MO-LNS, it is an iterative process. A limit is set on the number of iterations
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(or time). A weight is chosen from a set W of weights (in the m − 1-simplex). This
weight is used in the weighted strategy. This strategy is then used to find solutions to the
multi-objective problem (with the pareto constraint) until a sublimit is reached (number
of solutions found, number of backtracks performed, or time limit). These newly found
solutions are added to the non-dominated set of solutions S.

The set of weights W must be chosen to be diverse. In this case, Das and Dennis’
generation is very good because it covers well the whole space (including the boundaries).
There is no issue in not having a chosen number of weights, as there will be many iterations
of the algorithm. In two dimensions, the weights are of the form (t, 1 − t) for t ∈ [0, 1].
In this case, a small optimisation can be done when selecting the next weight. At the
beginning, t is increased from 0 to 1, but at t = 1, instead of cycling back from 0, it is
possible to go back from t = 1 to t = 0. This way, as we previously found good solutions
using the weight (0, 1), the pareto constraint will prune a larger part of the search space,
thus finding even better solutions.

This solving algorithm using WeightedSumStrategy is efficient when good scores
are available for the problem. For example, in a knapsack problem, items have a cost (to
be maximised) and a weight (the total weight of the selected items is bounded). A good
score to maximise the cost of the selected items is the efficiency: the cost divided by the
weight. If more dimensions are added to the problem, this efficiency can be defined for
each of them: dividing the value of the dimension by the weight. However, the existence
of weights is a strong assumption. Sometimes the variables are not easy to rank. Also, a
weighted sum heavily depends on the range of the scores. If in one dimension, score1 gives
scores ranging from 0 to 10, and in another dimension, score2 gives scores ranging from 0
to 10000, the second dimension will have a greater impact on WeightedSumStrategy.

9.5.3 Wavering Strategy

The strategy presented in the previous section uses scores to select the pair variable/
value on which to branch, however such scores may not always be available or compara-
ble. To get around this issue, we propose a new meta-search strategy. Our search strategy,
Wavering, only assumes that there exist search strategies that optimise each dimen-
sion, without assuming that these search strategies give a score to the variables. We use
these sub-strategies as a black-box. We use weights, seen as a probability distribution, to
randomly choose the strategy used. The strategy is called Wavering because it wavers
between several strategies.
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does not only find a solution that optimises the sum of the two objectives, but also
nearby solutions. This is illustrated in Figure 9.8. The points in orange are the set of
non-dominated solutions returned when using Wavering with only the three weights
(0, 1), (1/2, 1/2) and (1, 0) (using β = 2)). We can see that there are solutions that are
very good for obj1 (because of the weight (1, 0)), some solutions are very good for obj2

(because of the weight (0, 1)), and several solutions are a compromise between the two
objectives (because of the weight (1/2, 1/2)). We can remark that there is no randomness
when using the weights (1, 0) and (0, 1) (only the strategy that optimises one objective
is used), so the solutions are thus more often located on the edge of the front. With
the randomness, the space covered by the search strategy (with multiple restarts) is very
large. The line in blue is the Wavering approach with more weights (11 weights with
β = 10 in Das and Dennis’ generation). Using more weights fills in the gaps in the front
that were missing when only three weights were used. The whole front is well sampled
with our approach.

9.5.4 Conclusion on Pareto Optimisation

We have presented three approaches to find good non-dominated sets of solutions. It
is interesting to note that these three approaches use weights in the simplex for different
purposes. However, they are always used to guide the search to a new sub-space. In MO-
LNS, these weights are used to find solutions that cover the space, to improve every part
of the space. In WeightedSumStrategy they are used in a weighted sum to aggregate
scores. In Wavering they are used as a probability distribution to randomly pick a
sub-search strategy.

9.6 Solution Set Extraction

The previous section presented how to find a good non-dominated set of solutions in the
whole search space. The second step of the PostHoc approach we use here is to extract
few diverse solutions from this set. In this section we first present exact algorithms in two
dimensions . We then propose a simple approach based on weights to extract solutions in
higher dimension.
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9.6.1 Efficient Algorithms for Two Objectives

When restricted to two objectives, some multi-objective problems become easier. This
is the case for the subset selection problem.

Hypervolume Indicator

To optimise the hypervolume indicator Hyp, algorithms in time O (n(k + log n)) were
proposed in [147, 153]. They find the subset of size k that maximises the hypervolume indi-
cator from a non-dominated set of solutions of size n. This algorithm is an improvement on
the dynamic programming approach presented in [145]. We present an adaptation of the
dynamic programming approach because it is simpler and can easily be extended to other
metrics (such as the minimum distance or the representativeness). This dynamic approach
uses the efficient computation of the hypervolume for a bi-objective problem [146].

Property 7 ([146]). Let S = {s1, . . . , sn} be a set of solutions sorted by increasing first
dimension, and r be a reference point. Then

Hyp (S) = (s1[0]− r[0])(s1[1]− r[1]) +
n∑

i=2
(si[0]− si+1[0])(si[1]− r[1]) .

The dynamic approach defines a recursive function f(i, l) equal to the maximum hy-
pervolume contribution possible with l solutions without considering the area before si[0]
(where r is s0 by convention). This function can be computed recursively by the following
formula:

f(i, l) = max
i<j≤n

(sj[0]− si[0])(sj[1]− r[1]) + f(j, l − 1)

This recursive formula searches for the next solution sj to take, and recursively calls
f(j, l− 1) (i.e. the maximum hypervolume of l− 1 solutions without considering the area
before sj[0]). Then f(0, k) gives the maximum hypervolume of a set of k solutions. As
usual for dynamic programming approaches, a subset that achieves the best value can be
easily retrieved.

This dynamic approach can be extended to metrics other than the hypervolume. For
example if the minimum distance δ between the solutions is considered, the formula for
f becomes:

f(i, l) = max
i<j≤n

min (δ(si, sj), f(j, l − 1)) .

This approach has a complexity of O (n2k). When the set of solutions S is not too
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large (less than tens of thousands of solutions), the best subset can be computed quickly.

Representative Set

Representative solutions were introduced in [157]. In [151] the authors propose an
algorithm to find the most representative subset of solutions when the Pareto front is
known. We recall that the radius of a set of solutions S from a Pareto front (or an
approximation of it) F is

max
p′∈F

min
p∈S

δ(p, p′) .

This radius measures the maximum distance between a point in the front and its repre-
sentative (the closest solution) in the selected subset.

In [151], the algorithm for finding the most representative subset is divided into two
algorithms. First, given a maximum radius, an algorithm generates a subset satisfying
that radius (or nothing if no such subset exists). Then a dichotomic search on the value
of the radius allows to find the optimal one.

9.6.2 Higher Dimension Algorithm

In higher dimension (more than 2) the problem of finding the most diverse subset is
more difficult. In [157] the authors show that if the Pareto front is known, the problem
is NP-complete, but when it is unknown it is ΣP

2 -complete (i.e. one class of complexity
harder).

In our case, this is the second step of the procedure (first generating good solutions,
and then extracting diverse solutions). We propose to use an approach similar to the one
used in MO-LNS’s solution selection. If k solutions are desired by the user, we generate
k weights, for example using the adapted Lloyd’s approach. We then use these weights
to select solutions. A weight is a vector in the objective space. This vector supports a
line. We select the solution that is the closest to the line defined by the vector. Let s be a
solution (a vector) in the objective space, and ω be a weight. We note u the normalised (in
euclidean distance) vector of ω, i.e. ω/∥ω∥. The distance between s and the line defined
by ω is dist(s, ω) = ∥s− (s · u)u∥ . where · is the vector dot product and ∥v∥ is the norm
of the vector v.

For each of the k chosen weights, we select the solution s that minimises dist(s, ω). It
is possible that some solutions are the same (if some part of the space is very sparse), but
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in this case, it is possible to randomly generate new weights until the desired number of
solutions is reached.

9.7 Conclusion

In this chapter, we experimented our approach on a real-life problem, which made
us adapt our ideas to multi-objective problems. We presented an application to planning
problems aimed at helping a non-expert user (for example, a prefect) to make decisions.
In this setting, multiple objectives can be defined, and there exist no optimal solution on
all of the objectives. Also, the users must choose between solutions because it has a heavy
impact on people. Multiple good solutions should be presented to them.

The approach we propose to find diverse solutions is two step and inspired by the
PostHoc approach. First, a good non-dominated set of solutions is found using the solver.
In optimisation problems, the search strategy is very important, so we propose a new
search strategy Wavering that uses sub-search strategies that optimise each dimension
separately. This strategy covers the objective space well, and generates good solutions.

Then, in a second step, we propose to generate weights using an adaptation of Lloyd’s
algorithm, and use these weights to extract solutions. This step does not use a CP solver,
as the solutions are already found.

Our approach fits well within the CP framework. In fact, we defined a meta-search
strategy for multi-objective optimisation. This is similar to the search strategies we pre-
sented in Part III, but adapted to multi-objective optimisation. The diversity provided by
using a probabilistic approach allows different parts of the search space to be searched,
while still orienting the search towards good solutions. It is also possible to customise it,
by choosing the weights. It can be used to model the users’ preferences to search in certain
spaces. In the same way, the second step of the approach, the solution set extraction, can
be easily tuned to return more solutions in a given space.
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Chapter 10

CONCLUSION

In this thesis, we have shown how to add diversity to the solutions returned by a CP
solver. To do this, we used probabilistic approaches. Adding randomness to the search
breaks the rigid backtrack search solving algorithm, and allows the solver to explore
different spaces.

In constrained problems, a first way to add randomness is to randomly sample so-
lutions. With samplers, everything depends on the guarantees of the distribution of the
solutions. The most commonly desired guarantee is uniformity of the distribution, but
the distribution can also be specified by a user. Designing a sampler with guarantees (and
proving these guarantees) is a difficult task. Some other samplers are not guaranteed not
to be uniform, but they can return many more solutions in the same time. In CP, the
design of a sampler is made even more difficult by the variety of constraints (compared
to the clauses in SAT).

The sampler we proposed, TableSampling, is designed to provide randomness in
a reasonable time. The distribution is not uniform, because the focus is on the running
time. We obtain a good trade-off between randomness quality and computation time.
Instead of a perfectly uniform but costly sampler, a good approximation with a faster
running time may be more useful for the user. In a FairAI approach, the randomness
in the decision also ensure fairness between the solutions. Today, decision performed by
algorithms impact people, and in this case, randomness ensures that there is no bias of the
solver towards certain solutions. This way, the same people will not always be aggrieved.

We adopted the same practical approach for pattern mining and feature model con-
figurations. We used search strategies to find diverse solutions quickly. These solutions
are not uniformly distributed, but by adjusting the randomness, they can be very diverse.
We even showed that a uniform distribution does not always provide a good diversity of
solutions, due to the way solutions are distributed in the search space. We encourage users
and modellers to use search strategies designed for their problem (with a specific diversity
measure) to find diverse solutions. If this is not satisfactory, more powerful approaches
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(such as diversity constraints, or weighted sampling) can be used.
In this thesis, we have also shown that randomness is a very powerful tool. This may

deter users at first but we have shown that on average there are great guarantees (ap-
proximation factors, and average lower bounds). Moreover, the lack of strong guarantees
can be overcome by applying a post-processing step to the randomly generated solutions.
This produces very diverse sets of solutions much faster than exhaustive search, which is
generally not even applicable.

We have applied diversity to a real problem. This is an ongoing collaboration, and
the goal is to present solutions to a real user. This user is the only one who can tell
if the solutions are diverse or not. The evaluation metrics are only here as a modelling
tool. It would be very interesting to see how a user reacts to the solutions and what
their requirements are. Further research should be conducted on designing meaningful
visualisation tools to show as much information as possible, as quickly as possible.

Diversity should be applied whenever real-life impactful decisions are made, in par-
ticular when solvers are used in cases where the solutions have consequences on people,
such as in disaster management. This means that the approaches should be extended to
as many applications as possible. In this thesis, we have always taken generic approaches
(using the model as a black-box), but we have also used domain knowledge to improve the
search of the solutions (such as commonalities in feature models). It would be interesting
to develop a framework that allows the users to specify their problem, but also the desired
properties of the solutions (diverse, covering, optimal), without taking into account the
implementation (diversity constraints, random search, Pareto optimisation). This is more
than just an API on top of a CP solver, it would require to being able to model domain
knowledge in a generic way, and to add it to the CP solving process.

A first step towards this framework would be to consider a specific domain and see how
domain knowledge can be represented. In the introduction of this thesis, I presented video
game randomisers. This is an example of a domain that requires randomisation (changing
which items are where) under the constraints that the game should still be able to be
completed. Also, domain knowledge should force the randomisation to be interesting,
so that all the powerful items are not at the beginning of the game. There are many
games that already have randomisers, but they are usually developed by players in their
own community, without using randomisers from other games as a starting point. There
is no common framework to facilitate the development process. The use of constrained
randomisation and diversity can benefit to all the players.
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Appendix A

PROOFS

A.1 RandomSearch’s Distribution

This section proves Theorem 5. The proof done is in two steps. First, we need to define
some mathematical objects and show some properties of them. We then link these objects
to the probability of RandomSearch to sample a given combination.

First, we introduce a family of polynomials that appear in the lower bound we are
proving.

Definition 49. We note P t the only polynomial of degree t− 1 such that P t(i) = t! · 2i

for i in {0, . . . , t− 1}. By convention, we extend the definition to P 0(n) = 0.

There is a unique polynomial of degree d which passes through d+ 1 points, so P t is
well defined. We now prove a recurrence formula for these polynomials.

Lemma 4. The polynomials P t follow the recurrence relation

P t(n) = P t(n− 1) + t · P t−1(n− 1) .

Proof. Let P = P t+1(n+1)−P t+1(n)
t+1 . We want to prove that P = P t, so we need to show that

it has degree t− 1 and that for i ∈ {0, . . . , t− 1}, P (i) = P t = t! · 2i.
• The monomial of degree t cancels in the substraction P t+1(n+ 1)− P t+1(n), so P

only has degree t− 1
• Let i ∈ {0, . . . t− 1},

P (i) = P t+1(i+ 1)− P t+1(i)
t+ 1

= (t+ 1)! · 2i+1 − (t+ 1)! · 2i

t+ 1
= t! · 2i
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So P = P t. The property follows from a rearrangement of the equality.

With these polynomials, we can define a (two dimensional) sequence. This sequence
is the lower bound of pR

σ , which is used in the theorem we want to prove.

Definition 50. We define the two dimensional sequence u on 0 ≤ t ≤ n as

ut
n = (n− t)! · (t! · 2n − P t(n))

n! · 2n
.

This sequence is used as a lower bound in the theorem we want to prove. We first
show a convergence property of u.

Lemma 5. Let t be an integer, then ut
n is equivalent to 1/

(
n
t

)
when n tends to infinity,

i.e.
ut

n ∼n→∞
1/
(
n

t

)
.

Proof.

ut
n ·
(
n

t

)
= (n− t)! · (t! · 2n − P t(n))

n! · 2n
·
(
n

t

)

= (t! · 2n − P t(n))
t! · 2n

= 1− P t(n)
t! · 2n

−−−→
n→∞

1

To link this sequence to the probability we are studying, we use the following lemma,
which gives a recurrence relation for ut

n.

Lemma 6. For n and t integers such that 1 ≤ t ≤ n, the sequence u follows the recurrence
relation

ut
n = 1

2n
(
t · ut−1

n−1 + (n− t) · ut
n−1

)
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Proof. We simply replace the definition of u in the right hand side of the equality.

1
2n

(
t · ut−1

n−1 + (n− t) · ut
n−1

)
= 1

2n

(
t · (n− t)! · ((t− 1)! · 2n−1 − P t−1(n− 1))

(n− 1)! · 2n−1

+(n− t) · (n− t− 1)! · (t! · 2n−1 − P t(n− 1))
(n− 1)! · 2n−1

)

= (n− t)!
n! · 2n

(
t! · 2n − t · P t−1(n− 1)− P t(n− 1)

)
= (n− t)! · (t! · 2n − P t(n))

n! · 2n

= ut
n

To prove the main theorem, we prove the following stronger version.

Lemma 7. Let n be the number of features, and σ be a t-wise combination appearing on
the set of solutions, then pσ ≥ ut

n.

Proof. We note ltn the lower bound, and we show that it verifies the same recurrence
relation as ut

n. We now consider a fixed t-wise combination σ, on a problem with n

variables. We know that there is at least one configuration C containing σ. We recall that
there is a Boolean variable Xf associated with each feature in F . When all variables are
instantiated, it defines a configuration such that f ∈ C ⇔ Xf = 1.

To obtain the recurrence relation, we apply the RandomSearch search strategy.
Suppose that there are m uninstantiated variables. Then

• with probability t
m

one variable of σ is picked by RandomSearch (let’s note
it Xf ). Then there is a 1

2 probability that the correct value for Xf is chosen (i.e.
σ(Xf )). Then the other t−1 variables must also be fixed, among the remainingm−1
uninstantiated variables. In the best case, some values are propagated, reducing
the number of uninstantiated variables. In the worst case, there is no propagation.
In this case, the probability of choosing the correct values for the t− 1 remaining
variables from the m−1 variables is lt−1

m−1. Overall, this has a probability to happen
of

t

2mlt−1
m−1

• otherwise (so with probability m−t
m

= 1 − t
m

), a variable Xf is chosen that is not
in σ. Then there is a chance that the value chosen for Xf does no longer allow
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the combination σ. However, we know that there is (at least) one solution that
contains σ, so if Xf takes the same value as in that solution, there is still a chance
to return a solution with σ. Since there are two possible values for Xf , there is a 1

2

chance that it takes the value in C (i.e. Xf = 1⇔ f ∈ C). Then, the t variables in
σ still have to be chosen from the m − 1 remaining variables, hence a probability
of ltm−1.

Combining these probabilities, we have

pσ ≥ ltn = 1
2n

(
t · lt−1

n−1 + (n− t) · ltn−1

)
.

ltn follows the same recurrence relation as ut
n and has the same initial values (l0n = 1 for

n ≥ 0, and ltt = 1/2t for t ≥ 0), so it is equal to ut
n.

We can now prove the main theorem simply by using the previous lemmas.

Theorem 5. Given a feature model with n features, and σ an allowed t-wise combination,
there is a sequence ut

n such that
pR

σ ≥ ut
n

and
ut

n ∼n→∞

1(
n
t

) .
Proof. We simply apply Lemmas 5 and 7.

A.2 Sampling on Feature Diagrams

This section proves the theorems presented in Chapter 7 Section 7.6 about counting
and sampling on feature diagrams.

A.2.1 Expansion Operator

To make the proofs easier, we first introduce an operator called the expansion.

Definition 51 (Expansion Operator). Let E1 and E2 be two sets of configurations, we
define the expansion operator as

E1 ⋄ E2 =
⋃

C1∈E1
C2∈E2

{C1 ∪ C2} .
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Given E = {E1, . . . , En} n sets of configurations, we extend the expansion operator to

⋄
Ei∈E

Ei = E1 ⋄ . . . ⋄ En .

Sampling on Feature Diagrams

Remark. As a consequence of the definition, an expansion on the empty set is:

⋄
Ei∈∅

Ei = {∅}

This definition is similar to the Cartesian product, but for merging sets of configura-
tions. Informally, if there is a set of configurations E1 on features F1, and E2 on features
F2 then E1⋄E2 is the allowed configurations on F1∪F2 (assuming there are no constraints
between the features in F1 and F2).

This operator allows us to easily recursively compute the set of allowed configurations
of a feature diagram.

Proposition 14 (Set of Configurations). The expansion operator can be used to recur-
sively compute the set of allowed configurations of a feature diagram D:

• If D.children = ∅, then Sols (D) = {{D}}
• If D.mand ∪D.opt ̸= ∅,

Sols(D) = {{D.feature}} ⋄ ⋄
D′∈D.mand

Sols(D′)

⋄ ⋄
D′∈D.opt

Sols(D′) ∪ {∅}

• If D.xor ̸= ∅,

Sols(D) = {{D.feature}} ⋄
⋃

D′∈D.xor

Sols(D′)

• If D.or ̸= ∅,

Sols(D) = {{D.feature}} ⋄
(( ⋄

D′∈D.or
Sols(D′) ∪ {∅}

)
\{∅}

)

Proof. We recall that the expansion operator is the operator for merging sets of configu-
rations. The formula boils down to 5 items:

• {{D.feature}} ⋄ . . . is the part where the current feature is added to the set of
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configurations;
• ⋄D′∈D.mand Sols(D′) is the part where all the configurations of all mandatory chil-

dren are merged;
• ⋄D′∈D.opt Sols(D′)∪{∅} is the part for optional children. The singleton containing

the empty set is a neutral element for the expansion operator. Adding the empty
set to the set of configurations is a way to allowing of either allowing the children
to take a configuration or not, which is exactly the definition of optional children;

• ⋃
D′∈D.xor Sols(D′) simply does the union of the configuration of children, with-

out the expansion operator because a single configuration is chosen from the xor
children;

•
(⋄D′∈D.or Sols(D′) ∪ {∅}

)
\{∅} is almost the same as the optional children, ex-

cept that at least one child must be chosen, so the empty set is removed.

A.2.2 Variation Degree

Before proving the formula for the variation degree, we show a lemma to show that it
is easy to count with the expansion operator.

Lemma 8. Let E1 and E2 be two sets of configurations on different sets of features. Then

|E1 ⋄ E2| = |E1| · |E2|

Proof. If the sets of features of E1 and E2 are disjoint, then the union in the definition of
the expansion operator is a disjoint union. Then

|E1 ⋄ E2| =

∣∣∣∣∣∣∣∣
⋃

C1∈E1
C2∈E2

{C1 ∪ C2}

∣∣∣∣∣∣∣∣
=

∑
C1∈E1
C2∈E2

|{C1 ∪ C2}|

=
∑

C1∈E1
C2∈E2

1

= |E1| · |E2|
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Theorem 6 (Variation Degree of Feature Diagrams [139]). Let D be a feature diagram.
Then

• If D.children = ∅, then |Sols (D)| = 1.
• If D.mand ∪D.opt ̸= ∅,

|Sols (D)| =
∏

D′∈D.mand

|Sols (D′)|

×
∏

D′∈D.opt

|Sols (D′)|+ 1 .

• If D.xor ̸= ∅,
|Sols (D)| =

∑
D′∈D.xor

|Sols (D′)| .

• If D.or ̸= ∅,

|Sols (D)| =
 ∏

D′∈D.or

|Sols (D′)|+ 1
− 1 .

Proof. The proof follows from Lemma 8 and Property 14. All the sub-feature diagrams
use disjoint sets of features.

A.2.3 Commonalities

Theorem 7 (Commonalities on Feature Diagrams [129]). Let f be a feature and D be a
feature diagram. We note ϕf (D) = |{C ∈ Sols (D) |f ∈ C}| the number of occurrences of
a feature in the set of allowed configurations. Then

ϕf (D) =



|Sols (D)| if D.feature = f
|Sols(D)|
|Sols(D′)| · ϕf (D′) if f ∈ D′ and D′ ∈ D.mand

|Sols(D)|
|Sols(D′)|+1 · ϕf (D′) if f ∈ D′ and D′ ∈ D.opt or D′ ∈ D.or

ϕf (D′) if f ∈ D′ and D′ ∈ D.xor

The commonality of f in D can then be computed with φfD = ϕf (D)
|Sols(D)| .

Proof. The idea of the proof is the same as for Theorem 6, but instead of computing the
variation degree directly, we first restrict to the set of allowed configurations containing
the selected feature.

Let D be a feature diagram and f a feature in it. We note Φf (D) the set of allowed
configurations of D containing f (i.e. Φf (D) = {C ∈ Sols (D) |f ∈ C}). Then ϕf (D) =
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|Φf (D) |.
If f = D.feature, then all the allowed combinations of D contain f , so ϕf (D) =

|Sols (D)|. Now suppose that f is in some D′ ∈ D.children. There are different cases
depending on whether D′ is in D.mand, D.opt, D.or or D.xor:

• If D′ ∈ D.mand, we split the formula of Property 14 between D′ and the other
children of D

Sols (D) ={{D.feature}} ⋄ Sols (D′) ⋄ ⋄
D′′∈D.mand\{D′}

Sols (D′′)

Φf (D) ={{D.feature}} ⋄ Φf (D′) ⋄ ⋄
D′′∈D.mand\{D′}

Sols (D′′)

ϕf (D) =ϕf (D′)×
∏

D′′∈D.mand\{D′}
|Sols (D′′)|

ϕf (D) =ϕf (D′) · |Sols (D)|
|Sols (D′)|

• If D′ ∈ D.opt the same reasoning works, just by remarking that

∏
D′′∈D.mand\{D′}

|Sols (D′′)| = |Sols (D)|
|Sols (D′)|+ 1

.
• If D′ ∈ D.or, we remark that removing the empty set does not matter because

we are interested in the solutions that contain the feature f . The formula of Prop-
erty 14 for the D.or children becomes the same as for the D.opt children.

• If D′ ∈ D.xor,

Sols (D) ={{D.feature}} ⋄

Sols (D′) ∪
⋃

D′′∈D.xor\{D′}
Sols (D′′)


Φf (D) ={{D.feature}} ⋄ Φf (D′)
ϕf (D) =ϕf (D′)

A.2.4 Uniform Sampling

To prove the uniformity of UF D, we first need to introduce lemmas to link the expansion
operator with sampling.
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Lemma 9. Let E1 and E2 be two sets of configurations on different sets of features, and
let U1 (resp. U2) be a uniform sampler on E1 (resp. E2). Then the sampler defined as

U(E1 ⋄ E2) = U1(E1) ∪ U2(E2)

is a uniform sampler.

Proof. Let C ∈ E1 ⋄ E2, we want to show that

P (U(E1 ⋄ E2) = C) = 1
|E1 ⋄ E2|

Since E1 and E2 have different sets of features, a sampled configuration can be uniquely
divided into two sub-configurations C = C1 ∪ C2 such that C1 ∈ E1 and C2 ∈ E2. Then

P (U(E1 ⋄ E2) = C) = P
(
U1(E1) ∪ U2(E2) = C1 ∪ C2

)
= P

(
U1(E1) = C1 ∧ U2(E2) = C2

)
= P

(
U1(E1) = C1

)
· P
(
U2(E2) = C2

)
independency

= 1
|E1|
· 1
|E2|

= 1
|E1 ⋄ E2|

by Lemma 8

Lemma 10. Let S be a set of n elements, and c be an element not in S. If U is a uniform
sampler on S, then U ′ is defined as

U ′(S ∪ {c}) =
 c with probability 1

n+1

U(S) otherwise

Proof. By definition,

P (U ′(S ∪ {c}) = c) = 1
n+ 1
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and
∀s ∈ S,P (U ′(S ∪ {c}) = s) = P (U ′(S ∪ {c}) ̸= c) · P (U(S) = s)

= n

n+ 1 ·
1
n

= 1
n+ 1

Lemma 11. Let S be a set of n elements, and let s ∈ S. If U is a uniform sampler on
S. To define U ′ on S\{c} we first sample s′ from S, and define U ′ as

U ′(S\{s}) =
 s′ if s′ ̸= s

U ′(S\{s}) otherwise

Then, U is a uniform sampler in the set S\{s}.

Proof. At each step, there is a probability of 1
n

of sampling s from S, which we do not
want. Otherwise there are 1

n
chances of picking every other element.

∀s′ ∈ S\{s},P (U ′(S\{s}) = s′)) = 1
n

+ 1
n
· 1
n

+ 1
n

( 1
n

)2
+ . . .

= 1
n
·

∞∑
i=0

( 1
n

)i

= 1
n
· 1

1− 1
n

= 1
n− 1

From these three lemmas we can then prove that the sampler we propose for feature
diagrams is uniform.

Proposition 4 (Uniform Sampler on Feature Diagrams). Given a feature diagram D, the
following recursively defined algorithm UF D is a uniform sampler.

• If D.children = ∅, then UF D(D) = {D.feature}
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• If D.mand ∪D.opt ̸= ∅,

UF D(D) = {D.feature} ∪
⋃

D′∈D.mand

UF D(D′)

∪
⋃

D′∈D.opt

 ∅ with probability 1
|Sols(D′)|+1

UF D(D′) otherwise

• If D′.xor ̸= ∅, choose D′ ∈ D.xor with probability |Sols(D′)|
|Sols(D)| , then

UF D(D) = {D.feature} ∪ UF D(D′)

• If D.or ̸= ∅, we define

C =
⋃

D′∈D.or

 ∅ with probability 1
|Sols(D′)|+1

UF D(D′) otherwise

and

UF D(D) =
 {D.feature} ∪ C if C ̸= ∅

UF D(D) otherwise

Proof. We use Property 14 and the previous lemmas.
• If D.children = ∅, Sols (D) = {{D.feature}}, so there is only one solution to

sample.
• If D.mand ∪D.opt ̸= ∅, then we use Lemma 9, and for the D.opt children we also

use Lemma 10
• If D.xor ̸= ∅, we first choose a child D′ with probability |Sols(D′)|

|Sols(D)| , and then uni-
formly chooses a solution in D′. The probability of choosing any solution is then

∀s ∈ Sols (D) ,P
(
UF D = s

)
= P (s ∈ Sols (D′) ∧ U(D′) = s)

= P (s ∈ Sols (D′)) · P (U(D′) = s)

= |Sols (D′)|
|Sols (D)| ·

1
|Sols (D′)|

= 1
|Sols (D)|

• If D.or ̸= ∅, we use Property 14, lemmas 9 and 11.
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A.3 Diversity

A.3.1 Diversity constraints

We first recall the definitions of the constraints, already presented in Chapter 8.

Definition 38 (Diversity constraints). Let δ be a distance function, A be an aggregator,
and k be an integer. Let X = {X1, . . . , Xn} and d be variables, and let S be a set of
k solutions. The single_diversityA,δ constraint considers the distance from one set of
variables to multiple solutions already found:

single_diversityA,δ (X ,S, d)⇔ A
S∈S

δ (X , S) ≥ d (8.1)

For 1 ≤ j ≤ k, let X j be k sets of n variables, and d be a variable. The multiple_diversityA,δ

constraint considers the distance between the sets of variables X 1, . . . ,X k, i.e. δ(X i,X j)
is the distance between the i-th and the j-th duplicated solution:

multiple_diversityA,δ

(
X 1, . . . ,X k, d

)
⇔ A

1≤i<j≤k
δ
(
X i,X j

)
≥ d (8.2)

We recall that for a separable distance δ, we note δ̃ the distance on each dimension,
such that δ(a, b) = ∑n

i=1 δ̃(ai, bi).

Definition 40. Let δ be a separable distance function and k be an integer. Let X and d
be a variable, s1, . . . , sk be integers, and X1, . . . , Xk be variables. We define the diversity
constraints on a single dimension:

single_diversity_dimδ(X, s1, . . . , sk, d)⇔
k∑

i=1
δ̃(X, si) ≥ d (8.5)

multiple_diversity_dimδ(X1, . . . , Xk, d)⇔
∑

1≤i<j≤k

δ̃(Xi, Xj) ≥ d (8.6)

We now prove the propositions stated in Chapter 8.

Proposition 6. All the values are arc consistent on the constraint single_diversityΣ,δ

(resp. multiple_diversityΣ,δ) iff the network of constraints of the reformulation in
equation 8.7 (resp. equation 8.8) is arc consistent.

Proof. Let X be a set of variables, d be a variable and S be a set of solutions. We
show the proof for the single_diversityΣ,δ(X ,S, d) constraint, it is similar for the
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multiple_diversityΣ,δ constraint. We remark that the variables di are intermediate
variables, so we do not consider them in the arc consistency: the only interesting variables
are those in X and d. To prove the equivalence, we prove both implications.

AC on single_diversityΣ,δ ⇒ AC on the reformulation We suppose that
single_diversityΣ,δ is arc consistent. Let Z be a variable of the scope of the con-
straint (remark that Z can be a variable of X , or the variable d) and z ∈ D(Z).
Since single_diversityΣ,δ is arc consistent, there exists a tuple τ such that τ(Z) = z,
∀X ∈ X , τ(X) ∈ D(X), and τ ∈ rel(single_diversityΣ,δ). From τ we build supports
for each constraint of the reformulation. Let τi containing the variables Xi and di such
that τi(Xi) = τ(Xi), and τi(di) = ∑k

j=1 δ̃(Xi, Sj[i]). The τi supports are supports for the
constraints single_diversity_dimδ(Xi, S1[i], . . . Sk[i], di) for all i ∈ {1, . . . , n}. Let τ ′

such that τ ′(di) = ∑k
j=1 δ̃(Xi, Sj[i]) and τ ′(d) = τ(d). τ ′ is a support for the constraint∑n

i=1 di ≥ d. Thus, from a support for a variable of single_diversityΣ,δ, we can build
support tuples for all the constraints of the reformulation containing the value z for Z, so
the reformulation is arc consistent.

AC on the reformulation ⇒ AC on single_diversityΣ,δ We suppose that all the
constraints of the reformulation are arc consistent. Let Z be a variable, and z ∈ D(Z) a
value. We show how to build a support τ for the single_diversityΣ,δ constraint such
that τ(Z) = z. We need to build the appropriate supports τi and τ ′ from the constraints
of the reformulation to generate τ . There are two cases, depending on whether Z ∈ X or
Z is the variable d.

• If Z is the variable d: we use the arc consistency of the constraint ∑n
i=1 di ≥ d to

build a support τ ′ for the value z of Z (i.e. such that τ ′(Z) = z). Then we can
build supports from all the diversity constraints on each dimension τi such that
τi(di) = τ ′(di).

• If Z ∈ X , then Z is a variable Xj for some j. We build the support τj using arc
consistency of z on the j-th dimension diversity constraint, such that τj(Z) = z.
We then use arc consistency on the constraint ∑n

i=1 di ≥ d to build a support τ ′

such that τ ′(dj) = τj(dj). Then we build supports for all the remaining diversity
constraints τi (i ̸= j) such that τi(di) = τ ′(di).

From the supports τi and τ ′, we build the support τ such that τ(Xi) = τi(Xi) and
τ(d) = τ ′(d). In this support, τ(Z) = z (by construction of the smaller supports). We
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have therefore proved that z is arc consistent with the diversity constraint.

Theorem 9. For any p ≥ 0, arc consistency is NP-hard to propagate on single_diversitymin,δlp

and on multiple_diversitymin,δlp
.

Proof. This proof is similar to the one for the Hamming distance presented in [24]. We
reduce 3SAT to our problem. Given a Boolean formula ϕ = C1 ∧ . . . ∧Ck on the variables
x1, . . . , xn, our goal is to create a CSP size at most polynomially larger than ϕ (using the
diversity constraint) that has a solution iff the Boolean formula has a solution. To do so,
we build k solutions Sl such that the clause Cl is satisfied iff the solution of the CSP is
distant of Sl.

We create the variables X1, . . . , Xn with domain {−1, 1}. These variables define solu-
tions of the initial Boolean formula ϕ such that Xi = 1 ⇔ xi = true. For each clause Cl

(1 ≤ l ≤ k) we build a tuple Sl such that Sl[i] = −1 if the variable xi appears as a positive
literal in Cl, Sl[i] = 1 if xi appears as a negative literal in Cl, and Sl[i] = 0 otherwise. For
example, if Cl = xi1 ∨xi2 ∨¬xi3 , we build the tuple Sl where Sl[i1] = −1, Sl[i2] = −1, and
Sl[i3] = 1, otherwise 0. We create the constant variable d = 2+

⌊
(n− 3)1/p

⌋
. We create the

constraint single_diversitymin,δlp
({X1, . . . , Xn}, {S1, . . . , Sl}, d). This constraint has a

solution iff the 3SAT formula has a satisfying assignment:
• If the assignment does not satisfy the model because of clause l, then δlp ((Xi)i, Sl) =

(n− 3)1/p < d, so the instantiation does not satisfy the constraint.
• If the assignment satisfies the model, then for 1 ≤ l ≤ k, δlp ((Xi)i, Sl) ≥ (2p +
n− 3)1/p ≥ 2 + (n− 3)1/p ≥ d (by Cauchy-Schwarz inequality). The instantiation
satisfies the constraint.

We showed that it is NP-hard to say whether the constraint has a satisfying instantiation
or not. It is thus NP-hard to ensure that all values of all variables have a support.

A.3.2 Approximation algorithms

Proposition 10 (1/2-approximation). When using the min aggregator, the greedy and
hybrid approaches are 1/2-approximations of the MaxDiverseKSet problem, i.e. if Sopt is
the optimal diverse set of size k, dopt is the minimum pairwise distance of Sopt, Sg is the
set returned by the greedy or hybrid approach, and dg its minimum pairwise distance, then
1
2dopt ≤ dg ≤ dopt

Proof. We give the proof for the greedy approach. It can be extended to the hybrid
approach.
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Let Sopt be an optimal solution, and dopt = mins,s′∈Sopt δ(s, s′) the minimum pairwise
distance. Let Sg be the solution returned by the greedy approach, and dg the minimum
pairwise distance in Sg.

We want to prove that dopt/2 ≤ dg. We proceed by contradiction, so we suppose
that dopt/2 > dg. We note S−

g the set Sg where the last solution found has been removed
(equivalently, S−

g is the greedy solution of size k−1). We assume without loss of generality
that the last solution found has a distance of dg with another solution (we can just proceed
by induction to restrict ourselves to this case). By property of the greedy algorithm, this
means that all the solutions to the problem have a distance less than or equal to dg to the
solutions in S−

g . In particular, it means that for all the solutions s ∈ Sopt, ∃sg ∈ S−
g such

that δ(s, sg) ≤ dg < dopt/2. There is a unique such solution sg in S−
g which achieves this

distance because for s, s′ ∈ Sopt, if ∃sg ∈ S−
g such that δ(s, sg) ≤ dg and δ(s′, sg) ≤ dg,

then δ(s, s′) ≤ δ(s, sg) + δ(s′, sg) ≤ 2 ∗ dg < dopt, but δ(s, s′) ≥ dopt by definition of
dopt. We proved that every solution in Sopt can be uniquely linked to a solution in S−

g , so
|Sopt| ≤ |S−

g | = k − 1, which is a contradiction.
We have proved that there necessarily exists a solution whose distance to other solu-

tions is greater than or equal to dopt/2, and solving the MostDistant(S−
g ) will necessarily

find one. This proves that the greedy approach is 2-optimal.

Proposition 11. There exist problems where the minimum distance of the solution re-
turned by the greedy or hybrid approaches is exactly half the minimum distance of an
optimal solution.

Proof. We show a proof using the Hamming or Manhattan distance δ.
For the hybrid approach, we show an example with k′ = k− 1. We consider the space

{0, 1}2k′ . We construct k′ solutions s0, . . . , sk′−1 where

∀i ∈ {1, . . . , k′}, j ∈ {1, . . . , 2k′}, si[j] =
 1 if ⌊j/2⌋ == i

0 otherwise
.

We also construct 2k′ solutions s′
1, . . . , s2k′ where

∀i ∈ {1, . . . , 2k′}, j ∈ {1, . . . , 2k′}, s′
i[j] =

 1 if j == i

0 otherwise
.

We note S = {s1, . . . , sk′} and S ′ = {s′
1, . . . , s

′
2k′} and S = S ∪ S ′. For example, if k′ = 3,
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the set S and S ′ are as follows:

S =


(1, 1, 0, 0, 0, 0),
(0, 0, 1, 1, 0, 0),
(0, 0, 0, 0, 1, 1)

 and S ′ =



(1, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 1)


.

We have some properties on the distances:
• ∀s, s′ ∈ S such that s ̸= s′, δ(s, s′) = 4,
• ∀s, s′ ∈ S ′ such that s ̸= s′, δ(s, s′) = 2,.
• ∀s′ ∈ S ′,∀s ∈ S, δ(s′, s) ∈ {1, 3},

When the hybrid approach is applied on the set S, it first solves exactly for k′ solutions,
returning the set S (of minimum distance 4). It will then greedily choose a solution s′,
necessarily in S ′. The resulting set has a minimum distance of 1, because there is a solution
s in S such that δ(s, s′) = 1.

However, an optimal solution set is to pick k solutions from S ′, giving a minimum
distance of 2.

We were able to build a solution set so that the minimum distance is half the minimum
distance of an optimal solution.

Remark. It is possible to extend this proof to deal with the general case of any combination
of k′ and k in the hybrid or greedy approach.
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Appendix B

SUPPLEMENTARY MATERIAL FOR

TABLESAMPLING

This appendix presents in Table B.1 the running times on all instances of the MiniZinc
benchmark.

Table B.1 – Running times of sampling approaches on the MiniZinc benchmark. A ⊥
indicates a timeout, a ∗indicates an error (java.lang.OutOfMemoryError: Java heap
space). Dicho is the dichotomic variation of the base algorithm.

Year Problem Instance
Random-

TableSampling
Lin-

Search
NoPropag Propag

ModEq
Base Dicho Base Dicho

2016

elitserien

handball3 ⊥ 72.6s 137s 75.8s 143s ⊥
handball7 ⊥ 52.7s 166s 77.8s 169s ⊥
handball5 ⊥ 182s 410s 305s 357s ⊥
handball20 ⊥ 36.9s 115s 37.1s 64.2s ⊥

mrcpsp
j30_15_5 22.6s 130s ⊥ 39.2s 35.2s ⊥
j30_17_10 1.14s 1.96s 5.82s 444ms 718ms ⊥

depot-placement

rat99_6 585s 299s 587s 390s ⊥ ⊥
rat99_5 11.7s 22.9s 64.5s 22.7s 50.1s 135s
st70_5 67.9s 130s ⊥ 147s 293s ⊥

ulysses22_5 56.1s 221s 291s 150s 113s ⊥

java-auto-gen
plusexample_6 ⊥ 137s 258s 123s 161s 535s

binpack_11 ⊥ 21.5s 13.8s 8.57s 15.9s ⊥

filters

fir_1_3 53.3ms 238ms 370ms 621ms 248ms ⊥
dct_1_3 1.86s ⊥ ⊥ ⊥ ⊥ ⊥
fir_1_4 55.1ms 262ms 441ms 681ms 259ms ⊥
ar_1_3 4.23s 13.4s 33.7s 13.9s 17.2s ⊥

ewf_1_2 116s 471ms 936ms 259ms 360ms ⊥
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14__6__8__3 3.05s 479s ⊥ 247s 367s ⊥
zephyrus 12__6__8__3 2.96s ⊥ ⊥ ⊥ ⊥ ⊥

12__8__6__3 2.97s 318s ⊥ 629s ⊥ ⊥
14__8__6__3 1.92s 220s 366s 121s 173s ⊥

rcpsp-wet
j30_27_5-wet ⊥ 502s ⊥ 377s ⊥ ⊥
j30_44_8-wet 67.6s 160s 292s 201s 464s 156s

carpet-cutting mzn_rnd_test.11 ⊥ ⊥ 334s ⊥ 165s ⊥

2017

routing-flexible routing_GCM_0022 122s ∗ ∗ ⊥ ⊥ ∗

groupsplitter

u6g3pref0 ⊥ ∗ ⊥ ⊥ ∗ ⊥
u12g1pref0 33.6s ⊥ ⊥ 137s 296s 161s
u5g1pref0 3.11s 18.8s 73.0s 8.93s 31.1s 1.36s
u12g1pref1 20.4s 210s 387s 103s 118s 146s

community-detection Sampson.s10.k3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

steelmillslab
bench_16_10 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
bench_14_1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

tc-graph-color
k5_05 ⊥ 60.5s 162s 70.0s 146s 101s
k10_31 ⊥ 296s ⊥ 287s ⊥ 373s

opd
small_bibd_08_28_14 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
small_bibd_06_50_25 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

2018

elitserien

handball18 ⊥ 45.6s 159s 48.2s 100s ⊥
handball1 ⊥ 154s 373s 158s 165s ⊥
handball15 ⊥ 101s 352s 117s 163s ⊥
handball6 ⊥ 50.1s 108s 46.5s 97.9s ⊥
handball16 ⊥ 215s 694s 290s 432s ⊥

soccer-computationa xIGData_22_12_22_5 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

test-scheduling
t100m10r3-2 ⊥ ∗ ∗ ⊥ ∗ ⊥
t30m10r10-5 ⊥ ∗ ∗ ⊥ ⊥ ⊥

neighbours neighbours1 22.1s 82.6s 113s 112s 113s 87.6s

steiner-tree
es10fst10.stp 8.92s 37.2s 57.5s 37.3s 62.3s 23.9s
es10fst03.stp 4.57s 8.56s 13.9s 6.71s 14.1s 5.71s

racp j30_26_2_1.0 ⊥ 269s ⊥ 189s ⊥ ⊥

rotating-workforce
Example103 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Example1479 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

concert-hall-cap
concert-cap.mznc201 72.8s 71.1s 157s 82.2s 65.9s 510s
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concert-cap.mznc201 3.52s 12.8s 20.5s 7.85s 10.2s 11.1s

oocsp_racks
oocsp_racks_100_r1_ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
oocsp_racks_050_r1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

2019

stack-cuttingstock d3 701ms 3.29s 8.58s 5.16s 7.25s 11.9s

groupsplitter
u6g1pref1 4.21s 73.2s 70.7s 20.4s 37.8s ⊥
u9g1pref1 17.4s 145s 257s 60.8s 94.1s 80.2s

stochastic-vrp vrp-s4-v2-c3_svrp-v 4.20s 378ms 656ms 308ms 445ms 123ms

steelmillslab
bench_19_6 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
bench_20_8 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

median-string p2_10_8-0 ⊥ 97.2s 160s 87.6s 136s 291s

zephyrus
12__8__6__3 3.02s 308s ⊥ 632s ⊥ ⊥
14__6__6__3 761ms 5.78s 9.35s 3.26s 3.66s ⊥
12__6__6__3 862ms 4.48s 8.01s 2.40s 2.57s ⊥

2020

is
A3PZaPjnUz ⊥ ∗ ∗ 3.56s 6.64s ⊥
v1HjuSBQMb 127s ∗ ∗ 5.44s 8.97s ⊥

soccer-computationa xIGData_22_12_22_5 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

collaborative-const 46 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

bnn-planner cellda_y_10s ⊥ 121s 198s 251s 268s ⊥

p1f-pjs 10 ⊥ 123s 89.0s 124s 101s ⊥

skill-allocation skill_allocation_mz ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

pentominoes

05 ⊥ ⊥ ⊥ 485s ⊥ ⊥
04 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
02 7.60s 14.5s 41.8s 63.7s 27.3s ⊥
06 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
07 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

racp j30_26_2_1.0 ⊥ 271s ⊥ 185s ⊥ ⊥

minimal-decision-se breast-cancer_train ⊥ 74.5s 120s 97.5s 122s ⊥

2021

peacable_queens 8 47.4s 168s ⊥ 209s 498s 609s

opt-cryptoanalysis

r2 151ms 42.4ms 40.8ms 126ms 65.8ms 196ms
r4 31.8s 2.34s 9.75s 3.04s 2.56s ⊥
r3 390ms 93.5ms 93.4ms 107ms 136ms 13.3s
r1 88.1ms 46.5ms 29.6ms 100ms 83.5ms 64.7ms
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Appendix C

LOGIC GAMES SOLVER

This chapter presents the models implemented in the application Logic Games Solver. I
developed this application for the CP app competition that took place during the confer-
ence CP 2022. The application won a honourable mention (i.e. the first place). The app
is available in the Android Play Store a.

a. https://play.google.com/store/apps/details?id=com.mvavrill.logicGamesSolver

C.1 Introduction

Logic games are single player games where, from an initial grid, a single solution can
be created satisfying the rules of the game. Constraint Programming is a great tool to
solve logic games because the rules are often stated as constraints. I present here four
logic games and their CP model.

C.2 Slitherlink

C.2.1 Rules

Slitherlink is a game where, from a grid of dots and the goal is to connect the dots
(vertically and horizontally) to make a single loop. The digits indicate the number of
edges around the clue. The loop does not have to touch every dot. An example of input
and solution is given in Figure C.1. Remark that a single loop defines one inside and one
outside (due to Jordan curve theorem). For example, in Figure C.1b, the inside is coloured
in grey.
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(a) Input grid
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2

(b) Solution

Figure C.1 – Example of Slitherlink input and its solution.

C.2.2 CP Model

We first present a working model, and then present improvements by adding expert
knowledge.

A First Model

The game’s solution loop can be seen as a cycle in a graph. We use graph variables [16]
where each dot of the game is a vertex, and the link between two dots is a possible edge.
Using the graph variable makes the model very simple:

• The graph should be a cycle.
• For every clue, the number of edges present around the clue is fixed.
Specifically, we create a graph variable (i.e. a graph whose edges are boolean variables)

where each vertex of the graph is a node of the game. For each node node, we note node.top
(resp. node.bottom, node.left, node.right) the edge variable on top (resp. bottom, left,
right) of the node. Then, the graph induced by the node and the edges should be a cycle.
To do so, the cycle constraint can be used. It ensures that the graph contains only a
single cycle. It allows to filter edges that would make a sub-cycle.

To ease the notations, we note cell a structure representing a cell of the game (between
four nodes). In this structure, the attribute cell.clue contains the clue (or -1 if the cell
is empty). It also contains the attribute cell.ul (resp. cell.ur, cell.br, cell.bl) for the the
upper left (resp. upper right, bottom right, and bottom left) node of the cell. Finally, the
structure contains the attribute cell.top (resp. cell.bottom, cell.left, cell.right) to store the
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(a) Pattern 0 (b) Pattern 1 (c) Pattern 2 (d) Pattern 3

(e) Pattern 4 (f) Pattern 5 (g) Pattern 6

Figure C.2 – The seven patterns for the loop passing (or not) through a node. A cross
indicates the absence of an edge.

edge at the top (resp. bottom, left and right) of the cell. The constraint for the clues is
then: ∀cell, if cell.clue ̸= −1, then cell.top+cell.bottom+cell.left+cell.right = cell.clue.

This simple model is sufficient to find the solution. However, without guidance, it is
rare to be able to draw (or remove) a link (except for the 0 clues) without decisions and
backtracks. To improve the model (make the solving faster), it is possible to add expert
knowledge.

C.2.3 Expert Knowledge

I present here a way to add redundant constraints to the model. These redundant
constraints do not further constrain the solution (as it is already found by the base
model), but help the solver propagate more information (instead of making decisions and
backtracks). To add this expert knowledge, we create a variable for each node, noted
node.var. There are only a few ways the loop can pass through a node, we enumerate
these ways and associate them with an integer as in Figure C.2. Graphically, the absence
of an edge is drawn using a cross.

The variables node.var take values in the set {0, . . . , 6} and model the pattern of
the node. These patterns need to be associated to the edge variables. This is done using
a table constraint, which contains a tuple for each pattern. For each node node, the
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3

(a) (2, 6, 3, 2)

3

(b) (2, 6, 3, 5)

3

(c) (4, 6, 3, 2)

3

(d) (4, 6, 3, 5)

Figure C.3 – Possible patterns (in black) for clue three such that cell.left = 0
(red edges and crosses are fixed). The sub-captions give the values associated to
(cell.ul, cell.ur, cell.br, cell.bl).

following constraint is added

table(node.var, node.left, node.top, node.right, node.bottom,



(0, 0, 0, 0, 0),
(1, 0, 1, 0, 1),
(2, 1, 0, 1, 0),
(3, 1, 1, 0, 0),
(4, 0, 1, 1, 0),
(5, 0, 0, 1, 1),
(6, 1, 0, 0, 1)



)

This table constraint links the node pattern to its adjacent edges. For the nodes in the
border of the game, either special tables with fewer variables can be created, or fake edges
that take the values 0 can be used (to replace of the non-existent edge outside the game).

These patterns can then be linked to the given clues. For example, Figure C.3 enu-
merates the possibilities for a cell.clue = 3 and cell.left = 0. There are 4 ways to
arrange the loop. The possibilities should also be enumerated when the top, bottom
and right edges are absent. This makes 16 possible patterns for the tuple of variables
(cell.ul, cell.ur, cell.br, cell.bl). These tuples can be put into a table constraint. This also
makes the constraint cell.top+ cell.bottom+ cell.left+ cell.right = cell.clue redundant,
as all the possibilities are enumerated.

For all possible clue values (either 0, 1, 2, or 3), all the possibilities should be enumer-
ated and a table constraint added. The tables contain:

• 16 tuples for a clue 0,
• 64 tuples for a clue 1,
• 64 tuples for a clue 2,
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3

Figure C.4 – Examples of propagation using expert knowledge. The edges (and crosses) in
black are the already found information, and the edges (and crosses) are the information
that can be extracted (i.e. propagated by the model).

(a) Input grid (b) Solution

Figure C.5 – Example of Bridges input and its solution.

• 16 tuples for a clue 3.

Once all these constraints have been added, the solver will be able to propagate more
information. For example, Figure C.4 shows two examples of propagation performed by
the model with the expert knowledge.
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C.3 Bridges

C.3.1 Rules

Bridges (also called Hashi) is a game about an archipelago. A group of islands (the
input numbers) should be connected by bridges (only vertically and horizontally), so that
in the end, all the islands are connected (by a path of bridges) and that there are no
cycles. The numbers in the islands are the number of bridges connected to the island.
From one island to another, there can be either zero, one or two bridges. An example of
solution is given in Figure C.5.

C.3.2 CP Model

Bridges is also a game with an underlying graph structure. This time, the graph has a
tree structure (i.e. connected without cycles). There is one vertex for each island, and one
edge variable for each possible bridge. Given two islands A and B, the edge variable EA,B

is equal to one if there is at least one bridge between A and B. On this graph variable,
a tree constraint can be posted (ensuring that the graph is a tree, i.e. connected and
has no cycle). Then, there is also an integer variable to know how many bridges there
are between the two islands XA,B ∈ {0, 1, 2}. This integer variable is channelled to the
edge variable by the constraint EA,B = 0 ⇔ XA,B = 0. This allows to link the graph
variable (the edge variables) to the ones counting the number of bridges on each island.
The sum of the variables linked to an island should be equal to the number of bridges on
that island.

C.4 Kakuro

C.4.1 Rules

In Kakuro, the goal is to enter digits from 1 to 9 into the cells. The numbers given
in the grid correspond to the sum of the digits in the corresponding row (column). In
addition, the digits from the same row or column (i.e. corresponding to the same clue)
should all be different.
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C.4.2 CP Model

The model contains one variable per empty cell, taking value in the set {1, . . . , 9}. For
each clue H, the sum of the variables in the row (or column) of that clue should be equal
to H, and all these variables should be different. Let X be the variables associated with
the clue. Then the model contains the constraints

∑
X∈X

X = H

alldifferent(X ) .

However, performing arc consistency on these two constraints does not filter out all
the impossible values. For example, if three cells must sum to 24 and be different, then the
only possible set of values is {7, 8, 9}. However, as the sum and alldifferent constraints
are separated, the value 6 is kept because the sum constraint cannot filter it (because
6 + 9 + 9 = 24).

To improve the propagation, as suggested in [189], it is possible to merge the two
constraints into one alldifferent_sum constraint. In the Kakuro, the sums can be at
most be 45 (using all values from 1 to 9). It is very easy to enumerate all the possible
values for the variables associated with the clues. A table constraint can then be created
to represent and propagate the alldifferent_sum constraint.

C.5 Sudoku

C.5.1 Rules

The goal is to fill the cells with digits from 1 to 9 so that each row, column and large
3× 3 cells contain different digits.

C.5.2 CP Model

The CP model contains one variable Xi,j per cell (i, j) that takes values in the set
{1, . . . , 9}. The model contains 27 alldifferent constraints (9 for the rows and columns,
and 9 for the big cells).
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Annexe D

RÉSUMÉ LONG

Introduction

La répétition est souvent ennuyeuse. Lire un livre pour la deuxième fois n’est pas
la même chose, on connaît déjà l’intrigue, la fin et tout ce qui se passe. Dans un parc
d’attractions, la deuxième fois que vous montez sur les montagnes russes n’est pas la
même. Après chaque tour, la quantité d’émotions diminue. Heureusement, il y a souvent
d’autres montagnes russes dans le même parc, et il y a beaucoup de nouveaux livres à
lire.

Lorsqu’il·elle crée quelque chose (une nouvelle montagne russe, un livre, de la mu-
sique), le·a créateur·ice essaie de trouver de nouvelles façons d’assembler des éléments
qui n’ont jamais été vus auparavant. Il·elle essaie de créer quelque chose de nouveau à
partir de ce qui existe déjà. Ces dernières années, de nombreux outils d’Intelligence Ar-
tificielle (IA) ont été développés et améliorés pour aider à la création dans de nombreux
domaines. Par exemple, l’un de mes créateurs de musique électronique préférés, DJ S3RL,
a créé une chanson en utilisant uniquement l’IA. Il a réalisé une vidéo sur l’ensemble
du processus 1 où il entraîne OpenAI Jukebox [169] en lui donnant tous ses morceaux.
OpenAI Jukebox génère alors une nouvelle musique. Cette musique doit être éditée ma-
nuellement par DJ S3RL, car elle contient de bonnes mélodies mais manque de structure
musicale (BPM fixe, répétition d’un refrain, paroles incompréhensibles). Il est intéressant
de noter que DJ S3RL n’est pas un informaticien. Cela signifie que tous les outils qu’il
utilise peuvent être utilisés par des non-experts. Tous ces outils d’IA donnent des résultats
très divers, de sorte qu’ils peuvent être utilisés par un·e créateur·ice de contenu pour
obtenir de nouvelles idées qui peuvent ensuite être améliorées à la main.

1. https://www.youtube.com/watch?v=JChbUcjZUBM
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Programmation Par Contraintes

La Programmation Par Contraintes (PPC) est une technique de programmation dé-
clarative de l’IA. En tant que technique de programmation déclarative, les propriétés des
solutions doivent être définies, mais l’algorithme de recherche est déjà implémenté. En
programmation par contraintes, l’utilisateur·ice déclare des contraintes qui doivent être
satisfaites par un ensemble de variables, et un solveur de contraintes (solveur PPC) trouve
une solution (c’est-à-dire une valeur pour les variables) qui satisfait les contraintes. La
programmation par contraintes est très générique, avec de multiples contraintes permet-
tant à l’utilisateur·ice d’énoncer des propriétés de haut niveau sur les solutions. Elle peut
être considérée comme une boîte noire : l’utilisateur·ice introduit les contraintes et les
algorithmes trouvent une solution, mais le processus de recherche peut également être
modifié de multiples façons. Dans ce sens, on peut parler de boîte grise, c’est-à-dire que
l’algorithme principal ne peut pas être modifié, mais qu’une API étendue est fournie pour
ajuster le comportement.

Nous distinguons trois types de personnes travaillant avec des solveurs de PPC. D’un
côté, les utilisateur·ices ont des problèmes réels à résoudre. Dans la programmation par
contraintes, nous pensons en termes de solutions : que veulent obtenir les utilisateur·ices
de l’algorithme et comment une solution peut-elle être décrite. Une fois que les utilisa-
teur·ices ont décrit leur problème (il peut s’agir d’un processus itératif), un·e modéli-
sateur·ice traduit ce problème en un problème de satisfaction de contraintes, c’est-à-dire
dans le langage de résolution de la programmation par contraintes. Ce·tte modélisa-
teur·ice doit connaître les fonctions (et les contraintes) fournies par le solveur (soit par
le biais d’une API, soit en utilisant des langages de haut niveau tels que MiniZinc [39] ou
XCSP3 [11]). Au cours de cette étape, des choix de modélisation peuvent être faits et des
stratégies de recherche peuvent être définies pour ajouter la connaissance du domaine dans
le solveur de PPC. À l’autre extrémité de l’application de PPC, le·a développeur·euse
du solveur de PPC implémente les outils nécessaires au modélisateur·ice pour trouver
les solutions. Le·a développeur·euse doit fournir une API facile à utiliser, mais aussi
implémenter tous les algorithmes efficaces de propagation de contraintes dans le solveur.

Dans cette thèse, nous oscillons entre le·a modélisateur·ice et le·a développeur·ice,
tout en tenant compte des besoins des utilisateur·ices finaux. Nous voulons définir la
diversité d’une manière qui soit facile à utiliser pour un modélisateur·ice, et l’implémenter
dans le solveur. Par exemple, dans le chapitre 5, nous fournissons un moyen de générer
des solutions de manière aléatoire, et nous l’avons implémenté dans le solveur.
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Aléatoire

L’aléatoire est un terme utilisé pour décrire un comportement qui ne peut pas être
prédit. Cela commence par un simple jeu de pile ou face. Une pièce équilibrée tombera sur
pile une fois sur deux en moyenne. Toutefois, avec de l’entraînement, il est possible d’aug-
menter les chances d’obtenir un côté choisi en jouant toujours à pile ou face de la même
manière. Le lancer d’un dé fonctionne de la même manière. Si les conditions initiales sont
les mêmes, le résultat du dé sera toujours le même. Cependant, une petite modification
des conditions initiales (un angle de la table, la présence d’un courant d’air) changera
complètement le résultat. Ce comportement est chaotique. Il est extrêmement difficile
d’étudier avec précision un système chaotique avec une approche déterministe : c’est là
qu’intervient l’aléatoire. Au lieu d’essayer d’analyser parfaitement le comportement, il est
possible d’analyser le résultat moyen. La célèbre citation d’Albert Einstein à propos de
la mécanique quantique est un autre exemple de l’utilisation du hasard comme outil de
modélisation : “Dieu ne joue pas aux dés avec l’univers”. Le comportement aléatoire des
particules quantiques est une approximation de modélisation, car nous ne connaissons pas
le comportement sous-jacent exact de ces particules. Dans cette thèse, nous utilisons le
hasard pour modifier le comportement d’algorithmes habituellement déterministes. L’uti-
lisation du hasard dans les algorithmes d’optimisation n’est pas nouvelle. Par exemple,
le recuit simulé, les algorithmes génétiques et la recherche arborescente de Monte-Carlo
(MCTS) utilisent tous le hasard et ne fonctionneraient pas sans lui. Par exemple, dans le
MCTS, le futur gagnant d’une position de jeu donnée ne peut être évalué avec précision
en raison de l’explosion combinatoire des états d’un jeu. Une partie aléatoire est jouée et,
dans de bonnes conditions, un nombre suffisant de ces parties aléatoires permet d’obtenir
une bonne évaluation de la position de jeu.

Contributions

Cette thèse porte sur la diversité des solutions dans les solveurs de PPC en utilisant
des approches probabilistes. L’algorithme de backtrack-search des solveurs de PPC est
un cadre puissant mais rigide pour trouver des solutions. Nous proposons des moyens de
modifier le comportement du solveur en utilisant l’aléatoire pour générer des solutions
diverses. Nous analysons également en détail le comportement de nos algorithmes (et des
algorithmes état-de-l’art) afin de comprendre leurs propriétés.

Dans un premier temps nous étudions les échantillonneurs de problèmes de contraintes,
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et nous proposons un nouvel échantillonneur, TableSampling, dédié à la PPC. Ensuite
nous utilisons les stratégies de recherche comme moyen d’ajouter de l’aléatoire pour trou-
ver des solutions diverses. Enfin, nous étudions en détail les notions de diversité dans les
solveurs de contraintes, notamment dans un formalisme multi-objectif.

D.1 Échantillonneurs

Dans un premier temps de cette thèse nous nous concentrons sur les échantillonneurs
état-de-l’art. L’échantillonnage consiste à tirer au hasard des solutions d’une famille de
solutions. Il s’agit d’une approche probabiliste puissante pour estimer des quantités. Par
exemple, une approche visant à estimer le nombre de poissons dans un lac fermé peut
être réalisée en deux étapes [171] : tout d’abord, N poissons sont capturés, étiquetés
et relâchés. Quelques jours plus tard (pour permettre aux poissons de se mélanger), N
poissons sont à nouveau capturés et le nombre de poissons marqués (disons n) est compté.
Ainsi, on estime qu’il y a une proportion de n/N poissons marqués dans le lac, alors le
nombre total estimé de poissons dans le lac est de N2/n. Cette méthode d’échantillonnage
évite d’assécher le lac et de tuer tous les poissons pour les compter.

Dans les problèmes combinatoires, l’espace des solutions est souvent trop grand pour
être énuméré. En théorie, les approches d’échantillonnage peuvent être utilisées pour esti-
mer le nombre de solutions. L’échantillonnage permet également de diversifier les solutions
obtenues, par exemple lorsque la diversité ne peut pas être définie formellement ou lors-
qu’elle est trop coûteuse à calculer.

Il est très difficile d’échantillonner des solutions parfaitement uniformément, où toutes
les solutions ont la même probabilité d’être échantillonnées. L’échantillonnage pondéré
est encore plus difficile car il permet aux utilisateurs de définir leur propre distribution
de solutions. Dans les problèmes contraints, très peu d’échantillonneurs parviennent à
l’uniformité. En revanche, un échantillonnage efficace, même s’il n’est pas exactement
uniforme, peut être utilisé comme approximation pour générer plusieurs solutions. Cela
conduit à de multiples échantillonneurs.

Nous présentons dans le chapitre 4 de nombreux échantillonneurs de problèmes de
contraintes. Nous les avons triés par approche utilisée (contraintes de hachage, comptage,
compilation, PPC) et nous les présentons dans les grandes lignes, avec du pseudo-code.
Cela permet d’avoir une vue globale des algorithmes d’échantillonnage ainsi que de leurs
propriétés.
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D.2 TableSampling

En utilisant la satisfaction des contraintes comme technique de base, les solveurs de
contraintes ont été enrichis de diverses propriétés supplémentaires, telles que l’optimi-
sation (même avec des objectifs multiples [152]), les préférences de l’utilisateur [51], les
solutions diverses [24], les solutions robustes [23], etc. Cependant, il existe très peu de
travaux sur la randomisation des solutions dans les solveurs PPC.

Il y a peu d’échantillonneurs de PPC, et ces échantillonneurs ne sont pas conçus comme
des améliorations des solveurs PPC, mais plutôt comme des algorithmes distincts : MBE-
s [72] et SampleSearch [76] transforment les contraintes en un réseau Bayesien, et
MDD-s [85] transforme les contraintes en un MDD (diagramme de décision multi-valué).
Ces trois échantillonneurs ne bénéficient pas des améliorations apportées aux solveurs
de PPC (comme un meilleur temps d’exécution ou de nouvelles contraintes). Dans ce
chapitre, nous proposons une méthode pour échantillonner des solutions à un problème
de contraintes, sans modifier son modèle, et en utilisant un solveur PPC comme boîte
noire. Ce travail est motivé par de nombreuses situations où l’utilisateur d’un solveur de
contraintes a besoin de solutions aléatoires : pour faciliter le retour d’information et la
prise de décision de l’utilisateur (en fournissant une variété de solutions, représentatives
de l’espace des solutions), pour assurer l’équité (pour éviter les modèles dans les solu-
tions consécutives, par exemple dans les problèmes de planification), ou pour fournir une
couverture de solution (par exemple dans les problèmes de génération de tests).

Actuellement, un moyen simple d’échantillonner aléatoirement des solutions avec un
solveur PPC consiste à utiliser RandomSearch, c’est-à-dire à sélectionner aléatoirement
une variable et une valeur en tant que stratégie d’énumération. Toutefois, cette stratégie
ne renvoie pas les solutions uniformément (uniformes au sein de l’ensemble de solutions).
Un autre inconvénient majeur de cette technique est que RandomSearch remplace la
stratégie qui peut avoir été choisie ou construite pour le problème, ce qui est susceptible
d’augmenter le temps de résolution.

Notre approche s’inspire de Unigen [82], un algorithme d’échantillonnage approxima-
tivement uniforme pour SAT, et nous l’adaptons au cadre de la PPC. L’idée est de diviser
l’espace de recherche en ajoutant des contraintes de hachage aléatoires, jusqu’à ce qu’il
ne reste qu’un petit nombre tractable de solutions. Il n’est pas nécessaire de remplacer la
stratégie et l’échantillonnage peut être effectué parmi les solutions restantes.

La famille de contraintes de hachage aléatoire choisie a un impact important sur le
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temps d’exécution. Pour garder un temps de calcul raisonnable, nous choisissons de générer
aléatoirement des contraintes de table [15], qui sont implémentées dans tous les solveurs
de contraintes. Nous nous appuyons sur leur représentation en extension des tuples valides
pour générer, à faible coût, une distribution uniforme multivariée.

Nous avons implémenté notre proposition dans le solveur choco-solver [46] et nous
la comparons à RandomSearch sur un large benchmark, construit à partir de la compé-
tition annuelle MiniZinc. Nous montrons que notre approche utilisant les contraintes du
tableau améliore, en pratique, la qualité de l’aléatoire par rapport à RandomSearch,
tout en échantillonnant plus de problèmes.

Nous appliquons également notre algorithme avec des égalités modulaires linéaires [41],
qui sont des contraintes de hachage avec des propriétés théoriques plus fortes en termes
d’aléa, mais plus difficiles à propager. Sur notre ensemble de référence, l’utilisation d’égali-
tés modulaires linéaires donne une meilleure qualité d’aléatoire par rapport aux contraintes
de table, car elle fournit un échantillonnage uniforme. L’inconvénient est un temps d’exé-
cution plus long.

D.3 Fouille de Données

Récemment, plusieurs problèmes de fouille de données ont été exprimés en program-
mation par contraintes, ce qui permet aux utilisateurs de définir des requêtes complexes
à l’aide de langages de haut niveau [97, 104, 108, 110, 115]. Les solveurs PPC sont
modulaires, de sorte que les requêtes peuvent être affinées sans modifier le processus de
résolution, contrairement aux algorithmes dédiés à la fouille de données. Des contraintes
supplémentaires peuvent facilement être ajoutées pour répondre aux besoins d’un·e uti-
lisateur·ice [113]. Par exemple, le prix de transaction total (une limite sur une somme
pondérée sur le motif) comme vu dans [96] est gérée de manière native par les solveurs
PPC. Plus récemment, Hien et al. [109] ont proposé une contrainte globale pour extraire
des motifs intéressants, en veillant à ce que les résultats soient diversifiés par rapport à
l’indice de Jaccard, une métrique classique dans l’extraction de motifs. Les auteurs ont
dû assouplir le problème pour tenir compte de la non-monotonicité de l’indice de Jaccard,
ce qui limite l’efficacité de la contrainte.

Cependant, les bases de données sont souvent très grosses et le nombre de motifs
trouvés par les solveurs peut être beaucoup trop important pour être utile. Les experts
humains ou les algorithmes de décision ont besoin de petits ensembles de motifs pour
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travailler. L’une des contraintes les plus classiques imposées aux motifs est la fréquence.
Le problème de l’extraction de motifs fréquents a été introduit en [96] pour la tâche d’ex-
traction de règles d’association. Il permet de trouver de nombreuses relations intéressantes
entre les données. Les motifs fréquents présentés à un utilisateur doivent également être
diverses pour éviter la répétition des informations, qui fait perdre du temps à l’expert
ou égare les algorithmes. Une approche classique consiste à exploiter d’abord un vaste
ensemble de motifs, puis à sélectionner un bon sous-ensemble. Cependant, la fameuse
“explosion de motifs” conduit à des résultats très volumineux qui sont difficiles à traiter
a posteriori, en particulier sur des bases de données denses ou de grande taille.

Dans cette thèse, nous utilisons des stratégies de recherche, qui sont classiquement
conçues pour améliorer l’efficacité des solveurs, comme moyen d’imposer la diversité dans
l’exploration de motifs fréquents. Nous proposons une nouvelle stratégie, Oriented-
Search, et une fonction de notation associée, pour orienter la recherche vers des espaces
de solution diversifiés. Nous mesurons la diversité à l’aide de l’indice de Jaccard, mais
notre approche peut utiliser n’importe quelle mesure de diversité (monotone ou non). Nous
avons expérimenté notre approche sur des bases de données denses et peu denses. Les ex-
périences montrent que l’utilisation de stratégies de recherche aléatoire (RandomSearch
ou l’approche proposée OrientedSearch) améliore de manière significative la diversité
des motifs retournés par rapport aux autres approches état-de-l’art. Les premières solu-
tions renvoyées par OrientedSearch sont déjà très diversifiées. Cependant, lorsque de
nombreux motifs sont souhaités, le calcul du score dans OrientedSearch peut deve-
nir trop coûteux. Dans ce cas, RandomSearch offre une grande diversité et constitue
souvent l’approche la plus rapide.

D.4 Feature Models

Il est très important de tester efficacement les lignes de produits pour évaluer la qua-
lité ou (dans le cas des lignes de produits logiciels) l’absence de bogues [138]. Dans les
systèmes hautement configurables, cette tâche de test est compliquée par le grand nombre
de caractéristiques en interaction. Par exemple, le noyau Linux contient des milliers de
caractéristiques en interaction (telles que les options de compilation ou les bibliothèques
installées) [140]. Les configurations (c’est-à-dire les ensembles de fonctionnalités) peuvent
être testées en les instanciant sur la ligne de produits donnée (par exemple en compilant le
noyau Linux avec des options et des bibliothèques spécifiques). Ces tests peuvent être coû-
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teux (en termes de temps d’exécution [140], de mémoire [130], ou de main d’œuvre [127]),
de sorte que des jeux de tests efficaces (un ensemble de configurations) doivent être géné-
rées.

Une façon de mesurer la qualité d’une suite de tests est la couverture t-wise [137]. Elle
vise à garantir que toutes les interactions (combinaisons) d’un maximum de t caractéris-
tiques sont testées. Mais il peut y avoir 2t

(
n
t

)
t-wise combinaisons sur n caractéristiques.

Ainsi, avec des milliers de caractéristiques, le calcul des combinaisons t-wise autorisées
par la ligne de produit peut être prohibitif, sans parler de la génération d’un jeu de tests
minimale qui couvre toutes ces combinaisons. Pour surmonter ce problème, des approches
ont été développées qui utilisent des approximations basées sur des processus aléatoires
tels que l’échantillonnage uniforme [84] ou pondéré [123]. Ces approches perdent les ga-
ranties, mais la diversité induite par le caractère aléatoire permet une bonne couverture
expérimentale et de bons temps d’exécution.

Dans cette thèse, nous utilisons les stratégies de recherche aléatoire de la program-
mation par contraintes pour trouver des jeux de tests à couverture élevée. Les stratégies
de recherche sont un moyen de faire en sorte que la recherche trouve des solutions dans
différents espaces de solution. En particulier, les stratégies de recherche aléatoire n’ont
pas besoin de calculer des métriques coûteuses (telles que le nombre de combinaisons au-
torisées) et peuvent générer des solutions diverses (c’est-à-dire à couverture élevée). Les
contributions de ce chapitre sont les suivantes.

• Nous analysons les propriétés théoriques de la stratégie de recherche aléatoire par
défaut, RandomSearch. Nous montrons que la distribution (non uniforme) des
solutions renvoyées par cette stratégie est bien adaptée à la tâche de calcul d’un
jeu de tests avec une bonne couverture t-wise.

• Nous concevons une amélioration de cette stratégie de recherche en utilisant des
informations sur la ligne de produits : la fréquence des caractéristiques. La fré-
quence d’une caractéristique est le nombre de fois où elle apparaît dans toutes les
configurations possibles. Nous utilisons cette information pour faire de meilleurs
choix lors des décisions de la stratégie de recherche, afin de trouver des solutions
qui couvrent plus de combinaisons inédites.

Nous expérimentons ces deux stratégies de recherche et les comparons aux approches
d’échantillonnage les plus récentes. Nous montrons que les stratégies de recherche sont
plus performantes que toutes les autres approches en termes de couverture et de temps
d’exécution. Notre nouvelle approche améliore la stratégie de recherche aléatoire par dé-
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faut sans aucun surcoût en termes de temps d’exécution. Nous montrons aussi qu’un
échantillonnage uniforme est en fait préjudiciable à la couverture t-wise.

D.5 Diversité dans les Solveurs

La diversité comble le fossé entre les solveurs, avec la recherche rigide backtrack-search,
et les utilisateur·ices, qui souhaitent se voir présenter plusieurs solutions différentes. Dans
ce chapitre, nous considérons la diversité sous trois angles : comment les utilisateur·ices
définissent leurs problèmes de diversité, comment les contraintes de diversité peuvent être
implémentées dans les solveurs, et quelles sont les propriétés des algorithmes d’approxi-
mation.

Initialement, en PPC, la diversité a été définie dans [24]. Les auteurs définissent les
problèmes MaxDiverseKSet et MostDistant, ainsi que les contraintes de diversité pour
résoudre ces problèmes. Ces contraintes constituent une limite à la distance minimale
entre toutes les solutions. Cependant, pour agréger les distances, la somme est souvent
utilisée [44, 54]. Dans cette thèse, nous revenons sur les définitions de la diversité dans
les problèmes contraints, et nous analysons en détail les définitions et les propriétés des
contraintes de diversité.

Nous proposons des implémentations et prouvons les propriétés des contraintes, en
fonction de l’agrégateur et de la distance utilisée. Nous prouvons une limite d’approxima-
tion pour l’approche gourmande. Nous analysons également le comportement moyen d’un
échantillonneur uniforme dans l’hypercube unitaire, c’est-à-dire la diversité des solutions
lorsqu’elles sont sélectionnées au hasard.

D.6 Multi-objectif

Dans les chapitres précédents, nous nous sommes concentrés sur les problèmes de
satisfaction. Dans les problèmes d’optimisation à objectif unique, lorsque les solutions
sont classées, l’utilisateur souhaite soit une solution unique (la solution optimale), soit
quelques solutions proches de la solution optimale (en limitant la valeur de l’objectif). Il
s’agit en fait d’un problème de satisfaction. Cependant, lorsque les objectifs sont multiples,
les enjeux ne sont pas les mêmes.

Dans un problème à objectifs multiples, même si les solutions sont bien définies par
des contraintes, il est plus difficile de trouver une solution optimale. Les objectifs peuvent
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être contradictoires, de sorte que les solutions ne peuvent pas être comparées. Dans les
problèmes de satisfaction, la diversité a été définie entre les instanciation des solutions (les
valeurs réelles des variables). Dans les problèmes multi-objectifs, cependant, les solutions
sont d’abord comparées en fonction de leurs valeurs objectives. Les utilisateurs doivent
comprendre comment les objectifs interagissent et quelles sont les valeurs possibles des
objectifs avant de prendre une décision. De cette manière, la diversité n’est pas définie
sur les solutions, mais plutôt dans l’espace objectif.

Dans cette thèse, nous proposons une approche inspirée de PostHoc [28] pour trouver
un bon ensemble de solutions diverses à présenter à un utilisateur. Cette approche en deux
étapes consiste d’abord à trouver des solutions au problème, puis à en extraire un sous-
ensemble de solutions diverses. Pour les deux étapes, nous présentons des approches état-
de-l’art et nous concevons également de nouveaux algorithmes. Nous présentons un nouvel
algorithme pour générer des points divers dans le simplexe, inspiré de l’algorithme de
Lloyd. Nous présentons également une nouvelle méta-stratégie de recherche, Wavering,
conçue pour les problèmes multi-objectifs. Nous montrons ensuite comment extraire des
solutions du front de Pareto afin de les présenter à un utilisateur.

Conclusion

Dans cette thèse, nous avons montré que le hasard est un outil très puissant. Cela peut
effrayer les utilisateurs au début, puisque par définition il n’y a pas de garanties fortes,
mais nous avons montré qu’en moyenne il y a de nombreuses garanties. En outre, l’absence
de garanties fortes peut être surmontée en appliquant une étape de post-traitement aux
solutions générées aléatoirement. Cela permet d’obtenir des ensembles de solutions très
diversifiés beaucoup plus rapidement que la recherche exhaustive, qui n’est généralement
même pas applicable.

La diversité devrait être appliquée chaque fois que des décisions réelles sont prises.
Cela signifie que les approches de diversité doivent être étendues à autant d’applications
que possible. Dans cette thèse, nous avons toujours adopté des approches génériques
(en utilisant le modèle comme une boîte noire), mais nous avons également utilisé la
connaissance du domaine pour améliorer la recherche des solutions (comme la fréquence
des caractéristiques dans les feature models). Il serait intéressant de développer un cadre
qui permette aux utilisateurs de spécifier leur problème, mais aussi les propriétés sou-
haitées des solutions (diverses, couvrantes, optimales), sans tenir compte de la mise en
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œuvre (contraintes de diversité, recherche aléatoire, optimisation de Pareto). Il ne s’agit
pas seulement d’une API au-dessus d’un solveur de CP, il faudrait pouvoir modéliser la
connaissance du domaine de manière générique et l’ajouter au processus de résolution de
CP.
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Figure D.1 – A Slitherlink grid.
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Résumé : Dans cette thèse, je présente de
nouvelles approches pour générer des so-
lutions aléatoires ou diverses dans le cadre
de la Programmation Par Contraintes (PPC).
Utilisées comme outil d’aide à la décision,
les solutions impactent les personnes : la
planification d’employé·es, l’itinéraire des li-
vreur·euses, les congés des soignant·es de
garde. L’algorithme utilisé dans les solveurs
de PPC est efficace, mais c’est un cadre ri-
gide, qui renvoie des solutions basées sur des
heuristiques de branchement qui peuvent être
biaisées en faveur d’un espace de solution
particulier. Les décideur·euses veulent aussi
choisir entre plusieurs solutions, ces solutions
doivent donc être diversifiées.

Mon travail s’appuie sur des outils proba-
bilistes. Le hasard est utilisé pour briser la
rigidité du backtrack-search des solveurs de
PPC et pour trouver des solutions dans un
ordre différent à présenter à l’utilisateur·ice.
Pour ce faire, j’ai conçu TABLESAMPLING, un
échantillonneur travaillant dans le cadre de la
PPC, qui bénéficie ainsi de toutes les amé-
liorations des solveurs de PPC (temps d’exé-
cution, ou nouvelles contraintes). Cependant,
le caractère aléatoire n’est pas suffisant pour
assurer la diversité. J’ai étudié et modifié des
stratégies de recherche aléatoire pour géné-
rer des solutions diverses. La recherche peut
ainsi être guidée vers des solutions dans des
espaces intéressants.
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Abstract: In this thesis, I present new ap-
proaches to generate random or diverse so-
lutions in the Constraint Programming (CP)
framework. When used as a decision support
tool, the solutions have an impact on peo-
ple: the scheduling of employees, the route
of delivery drivers, the day off for healthcare
workers on rosters. The backtrack-search al-
gorithm used in CP solvers is efficient, but it
is also a rigid framework, returning solutions
based on branching heuristics that may be bi-
ased towards a particular solution space. Fur-
thermore, decision makers may also want to
choose between multiple solutions, so these

solutions should be diverse.
My work relies on probabilistic tools. Ran-

domness is used to break the rigid backtrack-
search of CP solvers and find solutions in a
different order to present to a user. To do so, I
designed TABLESAMPLING, a sampler working
in the CP framework, that thus benefits from
all the improvements in CP solvers (running
time, or new constraints). However, random-
ness alone is not sufficient to provide diversity.
I studied and modified random search strate-
gies to generate diverse solutions. The search
can thus be guided to solutions in
interesting spaces.
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